

I.IBRARY
 OF

THE AMERICAN MUSEUM OF NATURAL, HISTORY OSBORN LIBRARY OF VERTEBRATE PALA.ONTOLOGY

THE HORSE

By J. H. WALSH, F.R.C.S.
AND

Harold Leeney, M.R.C.V.S., Etc.

A TYPICAL RACEHORSE (PETRARCH
In his day one of the best sires in England.

THE HORSE

IN THE STABLE AND THE FIELD

HIS VARIETIES
MANAGEMENT IN HEALTH AND DISEASE ANATOMY, PHYSIOLOGY, Etc.

By J. H. WALSH, F.R.C.S. (Stonehenge)
EDITOR OF ${ }^{6}$ THE FIELD'
AUTHOR OF ' BRITISH RURAL SPORTS,' ETC.

REVISED BY HAROLD LEENEY, M.R.C.V.S., Etc.

```
WIIH TWO HUNDRED AND THIRTEEN ILLUSTRATIONS EY HAKRISON WEIR, ZWECKER, AND OTHERS
```

SIXTEENTH EDITION, in TWO VOLUMES

HITH FOUR COLOURED PLATES

VOL.II

LONDON

george routledge and Sons, Limited NEW YORK: F. P. DUTTON AND CO.

PRINTED BY
CUWIN \& CO., LTL.
PERTH

CONTENTS

THE ANATOMY OE THE HORSE

CHAPTER XYII

Classification of the rarious organs, and pilysiology of the skeleton
Classifieation of the various organs-Of the structure of bone-Of the ske'eton in general-The artificial skeleton-Number of bones composing the skeletonGeneral anatomy of the spinal column-. Of the head and face and of the hyoid arch-Of the thoracie arch and anterior extremities-Of the pelvie arch and hind extremities - The tail-The fore and hind extremities considered as organs of locomotion

CHAPTER XYIII

DESCRIPTIVE ANITOMY OF THE SEVERAL BONES

The head-Bones of the eranimm-Bones of the face-The lower jaw-The teethOs hyoides-Characters of Vestebre in general-General characters of the cervical vertebre-Peculiarities of certain cervical vertebre-General characters of the dorsal vertebre-Peeuliarities of the dorsal vertebre-(ieneral characters of the lumbar vertebre-Peculiarities of the lumbar vertebre-The saerum-The \& coceygeal vertcbræ-The ribs and their cartilages-The sternmm, or breast-bone -Scapula, blade-bone or shoulder-blade-Humerus, the upper arm-bone-The bones of the fore-arm (os brachii) - The carpus (knee) and metacarpus (camon) The phalangeal bones (pasterns and foot)-The pelvis-The femur (round-bone) and patella-Bones of the leg-Metatarsal and posterior phalangeal bones .

CHAPTER NIX

OF TIIE JOINTS, AND 'HILE TISSUES ENTERING INTO TILEIR COMPOSITION
General remarks-Cartilage-Fibrous tissue-Fibro-cartilage-Synovial membranes -Classification of the joints-Movements of the joints-Articuations of the vertebral column-The ligamentum muchoe, or great cervical ligament, and other peenliarities in the ligaments of the neek-Movements of the vertebre in general, and of eertain of their joints in particular-Thoracie articulations--Peenliarities in the articulations of the lumbar vertebre-The lumbo-sacral artienlation and saeral ligaments-The coceygeal joints-The temporo-maxillary articulationThe sacro-iliac artieulation-Ischio-pubic symphysis-The shonlder joint-The elbow joint-The knee joint (carpus, or wrist) - Inter-metacarpal articulations Fetlock joint-The pastern joint -The cotfin joint-The hip joint-Stifle joint or coxo-femoral articulation-Tibio-fibular articulation-The hoek joint-Tarsometatarsal articulation-Terminal articulation of the posterior limbs .

CHADMEN NK

 -Anteroinferiorsapular remon The intemalsapmberegion Prosternextemal
 homeal region Muscles of the arm amt fomeley- Maseles of the haunch-
 Internal ifir-femmal region The deep mashe of the ilow femoral rewonAnterior femoro cramal region-lontering temmontural resion

CHAPTER XXI

Contents of the thome The hhom- Genemal pan of the itculation-The heart and aterios The veins Physhog of reppiation Merhanism of the puhmonary
 - The lumss l'uhmonary glamls, cte.

CHAPTER XXII

The ablomen and its contents- Physiolog of digestion- Stoncture of glame and physologe of secretion-Depuration, amd its otlive in the animal econemyAnatomy of the salivary ghands, phatus, 1 sophagns, aml stomach- The intestine-The liver-The pleen-The panereas The kilners-The pelvisThe harlier-The organs of gemeration, male amd female 74

CHADTER XXIII

Physiology of the merous system-Chicf livisions of the nervons system-The spinal eomd-The medulla oblongata-The eneephaton-The sympathetic system 490

CHADTER NXIV

SPI:M.11, OHETANS
'The organ of smell The eye-The ear-The organ of tonch-The foot
496

THE DLSEASE OF THE HORSE

Ch. 1 PER: XXV

Genemal remarks fiplints linghome abl sile ione-lime spavin-lixostosis of the
 Fractures-sylit pateras

CHAPTER XXVI

INJULY AND DISEASES OF THE JOINTS, MESCLES, AND TENDONS

Diseases of muscle, tendon, and ligament-Inflamed tendinons sheaths-Inflamed burse mucose-Strains-Those of the back and loins-Of the shoulder-Of the knee-Of the fetlock-Of the cothin joint-Of the suspensory liganents-Of the back sinews-Breaking down-Strains of the hip joint, stifle, and hock-Cur)-Dislocation-W Wounds of joints

```52:3
```


CHAPTER XXVII

DISEASES OF TIIE TIIORACIC ORGANS AND TIIEIF APPENDAGES

General remarks-Catarrh or cold-Influenza-Bronchitis-Chronic cough-Laryngitis, roaring, whistling, ete. - Pneumonia and congestion of the lungs--Plemisy -Broken wind-Thick wind-Spasm of the diaphragm-Diseases of the heartDiseases of the blood-vessels of the ehest and nose

CHAPTER NXVIII

MWEASES OF THE ABDOMHNAL VIGCERA AND THEIR APYENDAGES

General remarks-Diseases of the month and throat-Dyspepsia-GiastritisStomach staggers-Grass staggers-Rupture of the stomach-Colic: Gripes or fret-Flatulent colic-Inflammation of the bowels-Twisted gut-l'eritonitis-Constipation-Diarrhea-Calenli in the bowels-Diseases of the liver-Diseases of the kidneys-Diabetes-Inflammation of the bladder-Diseases of the generative organs-Cancer of the penis.

CHAPTER NXIX

DISEASES OF THE NELVOUS SJSTEM

Paralysis of the lips-Epilepsy and convulsions-Megrims-Mad staggers-Sun-stroke-Rabies, or madness-Tetanns, Lock jaw-Apoplexy and paralysis-String laalt

CHAPTER XXX
 diseases and injtries of certain special organs

Diseases of the ear-Diseases of the $\epsilon \mathrm{yc}$-Torn eyelids-Inflammation of the eyesPeriodic or eonstitutional ophthalmia-Cataract-Amaurosis-Buck eye . . 5

CIIAPTER XXXI

SKIN DISEASES
Mange-Lice-Poultry lousiness-Ringworm-Eezema-Itchy tail-Mallenders and Sallenders-Harness galls and sitfasts-Chapped or cracked heels-swelled legs -Warts

CHAPTER XXXII

FEVERS AN゙D SIECIFIC FISEASES

Specific fevers-Stable fever-Influenza-Strangles-Bastard strangles-Authrax, or Loodiana fever-South African horse sickness-ilanders-Farcy-fuflammatory ferlema, or water farey-Purpura Hemorrhagica-Scarlatina-Azoturia -Rhemmatism

CHAPTER NXXIII

DISEASES OF THE FEE「

Corns-Sanderaek-False quarter-Quittor-Thrush-Canker-Laminitis-Seedy toe-Brittle feet-Villitis-Treal-Pricked foot-Contraction of the foot-Nusieular disease-Accidents to the legs and feet

CH．NJTER NXXIV

I＇IIS．IVITES
paik
Worms－bints． －ぼ
（＇HAIPEER NXXV
methons of rosteon．
 621
operithonsnerving liodtaction of hernit－The atministration of medienes－Clysters－linck－raking．107
ON THE ACMON OF MEHICINES
CHAPTER XXXVII
Alteratives Anasthetis－Anolynes－Antache－Anthelmintics－AntispasmoticsDemblents－biaphoretics－ligestives－binctics－Vmbrecations－Vmblsions－saries－suppostories639
CIIAPTER NXXVIII
Shocing 655
（＇H．DPTER NXXIX
A list of veterinary druses，with their actions aml doses 675
Cll．\ITRER NL
On sommhess ；and on the purchase and sale of horses 681

THE ANATOMY OF THE HORSE

CHAPTER XVII

CLASSIFICATION OF THE VARIOUS ORGANS, AND PHYSIOLOGY OF THE SKELETON

CLASSIFLCATION OF THE VAIIOUS ORGANS—OF THE STRUCTURE OF BONE-OF THE SKELETON IN GENERAL-THE ARTIFLCLAL SKELETON-NUMBER OF BONES COMPOSING TIIE SHELETON -GENERAL ANATOMY OF TUE SPINAL COLUMN-OF THE IlEAD AND FACE AND OF TIIE HYOID ARCH-OF THE THORACIC ARCII AND ANTERIOR EXTREMITIES-OF TIE PELYIC ARCII AND IIIND EXTREMITIES-THE TAIL—TIIE FORE AND HIND EXTIEMITIES CONSIDERED AS ORGANS OF LOCOMOTION.

CLASSIFICATION OF THE VARIOUS ORGANS

The body of the Horse, like all the vertebrate animals, may be considered as made up of several distinct apparatuses or systems. Of these, the first is a machine composed of the bony skeleton, or framework, the various parts of which are united by Joints and moved by muscles. Secondly, there are contained within the thorax the organs which supply the whole body with the means of nutrition in the form of blood, and purify this fluid. Thirdly, in the abdomen are presented to view the important organs which assimilate the food to the condition of the blood; while in the adjoining cavity, the pelvis, are the urinary and generative apparatuses. Fourthly, the nervous system may be considered, as comprising the grand centre of the mental faculties, and, also, as presiding orer and controlling the whole of the functions performed by the several organs; and fifthly, certain special organs, as, for example, those of sense, and likewise the foot, will complete the whole circle of systems to be reviewed. Each of these groups will, therefore, be described in a separate chapter.

OF THE STRUCTURE OF BONE

The bones are composed of a tissue peculiar to them, enveloped by a membrane, the periosteum. They contain a semi-fluid of a fatty nature, the marrow, and are pierced in various directions by blood-cessels and nerves.

The: reople thete of the bome is mate up of two distinet subtances, - ither of which may he removed hy artiticial mame, leasine the other entire. If, for instame, a bow is submited to the heat of a fornawe, it retains its shap and risidity, hut bexmes muth whiter in colowe and is rembered
 are loft, but the animal matter himbing them haserne is completely derom. f"ach and wariod all in a gaseots fom. On the wher hamb, by immersing athere for two there werks in diluted hydrowhorie adid, the carthy salts afe disedved, while the amimal matter is untouched. Hore the bone retains its migimal shape, hut it is sut and flexihb: amb inteal of presenting its
 odinary gelatine of the shaps. Aecording to Berailliss, bome is cheminally compused of the following constituonts-mamely, "atilage, reducible to ?ndatine her briling ; hlowl-vesels: phophate of lime: catomate of lime ; thate of lime: pheshate of manesia : senta and chlorile of sodium.
('onsidered modemiotlly, the bones form the famework of the animal machine. In the limbe they are bollow evlinders, amimbly fitted he their shape and texture toresit violence and support weight. In the trunk and hasd they are flatemed and arehed, to proteet the contente of the eavities they form, and to provile an extemsise surfare for the attachment of murles. In certain situations their exterior is raised into projections called porness, which serm as levers for the museles to act unen; in others they are srooved into smonth surfaces for the eaty gliding of tendons, when these are streteded between the fle hy part of a muscle and one of its attachments. Latly, they sometmes present a lare hollow for the lemgent of the belly of a musele, as in the can of the seapulat. These diflementy shaped bones may, therefore, be elassed under the following three heads:-
l-t. The lome bemes comsint of the humerus, bulius, ulna, fomme, tibia, and fibula; the metacapal amb metatarsal bones (ealled, in horsemon's language, the camon bemes), the phatares (pastem bones), and the ribs. These bones are all divivible into a contmal evlindrial shaft, and two heats or extremities. The shaft is usually of a primod form, deme in texture, and promeng a longitudinal tube in the interior, ealle the medullary camal, Which contans marow. The heads are brad, to artioulate with the next a! anining bones, amb are covered with a thin layer of eartilate, which will bedererbed in the chapter trating of the joints. Their outer surface is a ham wsoms layer, within which is a mans of cells containing red medulany watter, to be presently deseribed.
$\because 31$. The det lmos are compused of two layers of dense tissue, one on woh surfare, havine lexween them amother of a cellular nature, called the diphn. As a matter of comse, from their shape, they have surfaces, borders, and angrs: in athlitu to which they have projoctions, called processes, of barins shapes. 'Theyemsist of the chicf bones of the head, the seapula, and 1"小is.
imh. The irroguter lomes comprise the hesser bones of the head and face, the vertelna, cacrum, stomum, eapal amb taral bones, the smamoid bones, the bome of the forot ame the patellar. They rewemble the fat hones in their structure.
 and hommenern, substance (bias substance), in which are numberless
minute cells (corpuscles of Purkinje). The basis substance is partially fibrous and slightly lamellated, the layers being concentric in long bones and parallel in flat; it is traversed in all directions (more especially in the lons axis, where there is one) by canals (Haversian eanals), which freefuently branch and inosculate, giving passage to vessels and nerves. In certain situations the lamellie separate, and leave between them spaces of various sizes, called concelli. Besides entering into the composition of the basis substance, the lamelle are collected concentrically round the Haversian canals, the boundaries of which they form, generally to the extent of ten to fifteen layers. Both the compact and spongy tissues are, therefore, composed of the same elementary strncture, the former being especially intenderl to afford resistance to violence with as little weight as is consistent with its office, for which reason it is hollowed into a tube; while the latter is enlarged as much as possible without unnecessarily adding to its weight, the problem being solved by its development in a cellular form.

The periosteum is a dense fibrous membrane which covers every part of the surface of the bones, excepting their extremities when they enter into the composition of a joint, its place being then oceupied by cartilage (see Joints). When this membrane corers the bones of the skull it is called pericranium, and when it invests the cartilages of the ribs it receives the name perichondrium. It is full of blood-vessels, especially in the young, ant they freely communicate with those of the surrounding soft parts. Hence it is extremely liable to inflammation, either eansed by injury to itself or to the parts which cover it.

The marror, or medullary sulbstance, is contained in the cavities formed within the bones, being of a yellow colonr and oily nature in the shafts of the long bones ; and more or less red, from the admixture with blood, in the flat and irregular bones, and in the hearls of the long bones. It is contained within the areolar meshes of a membrane, which lines these cavities, answering to the periosteum, which has been already described. This medullary membrane is of excessive tenuity, and is composed of blood-vessels ramifying in fine cellular tissues. The use of marrow in the animal economy is not very clearly demonstrated.

In the embryo, all the bones originally exist in the state of cartilage, being soft and flexible. By degrees vascular canals are developed within its substance, by the union of its cells in rows. These concentrate towards some one or more points, which in a long bone are one in the centre of the shaft and one at each extremity. Starting from this point (punctum ossificationis), fibres run out, embracing clusters of cells, and sending branches between the individuals composing each group. In this mamer the network, characteristic of bone, is formed, the cells uniting to form the permanent areole and Haversian canals. At first the contents of the cells are transparent, then gramlar, and finally opaque, from the pressure of amorphous mineral matter. The several ossified portions are quite distinct for a long time in the young animal, and may readily be separated by boiling or maceration.

OF THE SKELETON IN GENERAL

 it heine the only part of the boxly which will hear desiceation without dhage of form. In the eroforate it is an internal bony framework, but in the renstare it insests the soft parts, and foms an insemible coverins to them, white at the same time it serves the purpese of locomotion. In both these divisions of the ammal kingem then skeloton fomens a sories of arehes or rings, capable of moving on each other, but so fimbly attached as $t 0$ seevere protection to the impertant organs contained within them. In the lurse, as in all the higher mammalia, these rimes or areles are double-one set, the superior, lowing continums throughout the whole length of the animal from the lead to the root of the tail, and containing the nervons system; while the other lying belaw, but closely comected to them, is interrupted in certain localitios, being found to exist chiefly in three regions: -lst, where it forms the jaws and bone of the tongoe; 2nd, where, by means of the ribs and stemmen, it combtitutes the than and its appendages, the anterine extremities : and, :molly, where, in the shape of the pelvic arch, it proterts the organs of eneration, and, through the posterion extremities prolonged from it, assist in locomotion. The superior of these arches, from contaning the bram, and its promgation, the ginal cord, is called the nemal arch. The inferion is termed the hemal arch (aipa, bood), because it protects the heart and its lare blond-vessels as the latter pass from the thorax towards the head and posterior extremities. In all the vertebrata the nemal arch comsists of one comtinnous cavity, defemded fom end to end by bony plates, strongly joined together ; and in some of the lower forms (lizarels) the hamal arch is monly as complete, these ammals having cervical ribs: while the durong and some others are furni-hed with ribe in their tails. Conserpently, it is fair to comsider the whold skeleton in the superior forms of the animal lingolon acempesed of 1 wo series of arehed plates, firmly united twother, but still allowing more or lews motion, and serving to protect the centres of the nervous and sambuncous systems, from which they have received their manes.

THE ARTIFICIAL SKELETON

The boses of the Iforse, as of thenther mammalia, may be preserved with their natural ligamentons attachments comecting them in a dry state, in which condition the skeleton is called a matual one. It is unal, however, to macerate them so long that all the soft parts readily separate, leaving the bones withont any of the ligaments or cartiages which are firmly fixed to them during life. They are then put together ly wires, ete., the eartilages being represented by leather and cork. In this way it often happens that the promertions are not exatly preswed, and, on reforme to an artienlated skeldon in any mucoun, the inexperioned eye may be greatly misled. Thus it is very common torperent the thasax in the artificial skeleton as mach shatlower than it is in natme, where its lower margin is on the aserage about midway between the thp of the withers and the groand. Again,

in the fresh state, the interverthral fibro-cartilage is in some parts of tho spine of considerable thickness ; and if the proper substance is not artificially supplied, the skeleton will be too short, or if too thick a material is ahllel it will be too long. In the engiaving of the skeleton occupying the opposite page, which is drawn from the skeleton in the Museum of the Royal Veterinary College, London, the spine is correctly represented, but the thoras is too shallow, and the scapula, together with the whole fore extremity, is piaced too far forward.

NUMBER OF BONES COMPOSING THE SKELETON

Tife sfeleton is composed of two hundred and forty-seven separate bones, which are united by joints to form the spine, thorax, pelvis, tail, and fore and hind extremities. The spine is finished anteriorly by the head, which is divided into the cranimm and face, and contains the teeth. Separated from the head is the os hyoides, which completes the number of bones. Thins:-
The spine consists of 7 cervical, 18 dorsal, and 6 lumbar vertebre- Total 31
The thonax is made up of the dorsal vertelme, with 18 ribs on each side, and the sternum in the middle-Total 37
The pelvis comprises 2 ossa imominata (or ilium, isciium, and pubes), and 1 sacrum--'Total :
The tafl contains on the average 17 bones 17
Tine fone extremity is made up on each side of the scapnla, humerus, os brachii, and 8 carpal bones, 3 metacarpal, os suffraginis, os coronæ, os pedis, os maviculare, 2 ossa sesmoidea-Total on both sides 40
Tife hind extremity has the femur, patella, tibia, fibula, 6 tarsal bones, 3 metatarsals, os suffiraginis, os corone, os pedis, os naviculare, 2 ossa sesamoidea-Tutal 39
Bones of the craniuy 10
Bones of the face and lower Jaw 18
Teeth ${ }^{1}$. 40
Bones of the internal ear, t in each organ 8
Os hyondes, or bone of the tongue, made up of five sections 5
Grand total 247
GENERAL ANATOMY OF THE SPINAL COLUMN

Tife vertebral or spinal colume is the first rudiment of internal skeleton seen in the lower vertebrate animals, and this constitutes the type of that great division of the animal kingdom. In the horse, also, it is the portion of the skeleton first developed in the embryo, and forms the centre around

[^0]which all the other parts arr framol. At its firt atmatance it is a

 divided into distinet pieces called oretrate, tw which the benes of the head are is peotengation, comerponling in their nature, though differing outwarlly in form.

The retober are divisible into true and falbe, the fomer reaching from the head to the pelvis, and the latter extemtiner thenw haw watel, being mepectively callol the sactum and coerex.
 vertebrar. Farh comsints of a boly, from which two lamina or plates project upwame, tominating in a minous process. In aldition to these are two lateral projections (tramberse processes), which serve the purpose of firmly commecting the vertohne together by means of the muscles attached to them, amb also to the ribs and extremities below. Lastly, each vertobra has two small surfaces before and the same momber behind (articular -urtaces), which form distinct joints between them. The details of these parts, ame the peculiarities mot with in each set, will be deseribed in the bext ehapiter.

Between the body, the lamina, and the spinous process is an opening more or less triangular in shate, in which lie the spinal cord and its investments. The edges of this opening are aftached to those before and lohind ly ligamentous tissues (ligamenta sulflata), which, opposite cach intervertebsal sate, are piered by openings on each side to give exit to the romberal nerves pasing ont to the exterior of the body and to the extrmitios. Opposite to these openings the bone is notched above and below, and these intervertebal mothes complete the parts common to the whole wries. Thus the rertebat or spinal column serees as a firmly secured but flexible tube for the lodgment of the spinal cord, while at the same time it gives passage to its nerves. By this formation it is far less liable to injury, and also more useful as an aill to lecomotion, than if it were mate of one solid piece of bone, which, from its length, would be readily broken.

OF THE HEAD AND FACE, AND OF THE HYOID ARCH

Modens Andtomsts, following out the inlea first suggested by Maclise and Owen, consider the head as made up of six vertebre; the posterior one, w that nearest to the neck, boing the owipital bome, the next two being male up of the temporal bome, and the ultimate vertebrae consisting of the sphenod and athmoid bomes. This is a somewhat fanciful hypothesis, when worked out in tetail ; but it is olvious that the several bones of the skull subserve the same purposes as the vertobre, and resemble those parts of the skenton in foming a serios of irrequar ardes to protect the brain, the divisum into sparate pinees being far more secure than if the whole were in ones.

The mones of the face, incluting the lower jaw and as lyoides, depend from the neural arch or brain-case much in the same way as the ribs and
pelvic bones posterior to them are attache 1 to the vertebre, and though they inclose organs of less vital importance, yet they are perfectly analogous to these parts in their types and in the offices which they perform.

OF THE THORACIC ARCH AND ANTERIOR EXTREMITIES

Lying in the horse at some distance posteriorly to the three first segments of the hremal arch (the bones of the face, lower jaw, and os hyoides), and separated from them by the neck, where there is a hiatus, the thoracic arch and anterior extremities depend from the vertebre corresponding to them. In many of the higher vertebrates the fore extremity is firmly united by a joint to the thorax, and may be considered with it; but in the horse it is only attached by muscles, the thorax being slung between the upper edges of the blade-bones by means of two broad sheets of muscular fibres. Hence the collar-bone is entirely absent in this animal ; and thus, while he is free from dislocations and fractures of that bone, to which he would be constantly subject if it were present, he is rendered more liable to strains and rheumatic inflammations of the muscular sling, by which freedom of action is impaired.

In the articulated skeleton it is usual to consider the thorax as made up by the eighteen dorsal vertebre superiorly, the eighteen ribs and their cartilages on each side, and the sternum with its cartilages below. But the cavity of the thorax, as bounded by the diaphragm posteriorly, is not nearly so large as would be supposed from a consideration of the dry skeleton, for though the diaphragm is attached to the twelve posterior ribs near their cartilages, yet its surface is so convex towards the thoracic cavity, that a very large space within the bony thorax is really occupied by the abdominal organs. This will be hereafter more fully explained in examining these parts at page 456 et seq.

THE PELVIC ARCH AND HIND EXTREMITIES

Behind the thorax occurs a second interval corresponding to the loins, where the hemal arch is deficient ; but at the pelvis the circle is completed by the bones of the ischium, ilium, and pubes, united to the sacrum above, and having the hind extremities firmly articulated to them at the hip joints. The pelvis constitutes not only a firm and solid case for the protection of the large blood-vessels, and of the minary and genital organs, but it is also intimately connected with locomotion, to which the posterior extremities largely contribute.

THE TAIL

This organ appears to be intended chiefly to protect the body from insects; but it also serves to some extent as an aid in balancing the body when rapidly moving in any new direction. It is made up of from fifteen to eighteen bones, which will be described in the next chapter.

THE FORE AND HIND EXTREMITIES CON SIDERED AS ORGANS OF LOCOMOTION

 means of locomotion. Eath extromity embits of correxpending divisions, the ilime beine the amatoge of the swapula; the femme of the homerus; the thbia ame fibula of the uha and ratius: the tareus of the carpus ; and lower down, the benes of the fore and hind extremitios beinsprecisely similat in their foms. Thore is, howerer, a want of exact comeremdence in the fom and limetion wit the jointe, which hats beren murla insisted on by homolo-

 matters mene simple but the rewere, and that the proper peint of view is to recad the humens and femme as homengos, and the tibia, with the patella, as analugous th the ulna amb its wecramon process. The intersention of the ligament between the patella and thaia does not affect the use of the former as a lowe ; and both joints being perfectly hinge-like in their antions, there is no other impertant difference. Desending to the next joint, the os alleis stands ont as an important lever, amb is represented in
 havines impertant muscles inserted in their upper edses. It is true that the one is an agent in what is called extension, white the other is engaged in thexing the limb; but this is anly dependent upen the limit to motion in wither direction. Below the carpis and tassus there is no necessity for continuing the comparison.
 the fore dimbs are nearer the centre of wavity, amb, therefere, sustain more weight than the hime. 'The fomequater is suspended between the bases of the two shoulder-hlades, ehiefly he sermati masni, and in such a way as to reguire no perial mascular contraction. The four parts of which the limb itself is compoed boing bent at varions angles, are prevented from grivin way by the museulate actions of the extemsors of the humerus and
 being supgerted ly the thexo musches and sumenemy ligament. The hinder limbe, thoush sustaning les weight, are not so favomably ciremenstanced fore this promer, the angles between their several parts being generally more acute. Dut if these are attentively regarded, there is not so much difference as is ermerally suppert. Thus, the first joint, the itiofemeral, forms a less acuto ande than its analysue, the shoulder joint (nee Fig. I, r, m). Agam, though the stithe joint is comedembly bent, it is mot mare so than the cllbow joint, which will be eloar on comparing the two in the skedeton given at
 of sulpurt will be fomm in the hock, as compared with the knee, the latter being nearly stratht, while the former is much bent: but as it has a long lever tor asist it (the os calcic), and as this is kept in position by the powerful hamstring musilas, ach of which serves its purposes far mose completely than the thexor of the earpue inserted in the as pisiforme, it may readily be
understood that the hind-limb is not greatly at a disadvantage in supporting the weight of the borly.

As afents of locomotion, the offices of the fore and hind limbs are widely different. Each has been ahready described as consisting of four sections, bent at angles on cach other. In the fore-limb these angles are framed to serve as springs, so that when the feet tonch the ground, they are enabled to adapt themselves so as to avoid altering the line of progres ion of the body. In those animals which have small and short fore-legs, as the kangaroo and hare, the most rapid locomotion ever consists in a series of curves; whereas, in the horse at full speed, the body progresses in one straight line, owing to this elastic structure of the anterior limbs. So, also, in descending from an extraordinary leap, the springy action of the forelimbs of the horse is so powerful that he can get off again without dwelling, whereas the kangaroo and hare most depend almost entirely upon their hindlegs, and consequently stop for a second after their descent. On the other hand, the angular formation of the hind-limbs is intended to enable the animal to drive its whole body forward, by first flexing all the joints, and thus drawing their feet under the belly ; and then suddenly extending them with the feet fixed on the ground, the weight is necessarily propelled. Or if the feet are not fixed they are lashed out backwards, developing the action so well known as "kicking." The difference between the powers displayed by the two limbs, in straightening their component parts, is well displayed in comparing kicking with the striking out of the fore-foot, which is common enough among vicions horses. It is true that the latter will sometimes cause a severe blow; but it could very rarely break a limb, which is the least amount of mischief to be apprehended from the full force of a lash out with the hinder-limb.

CILAPTER NVIII

DESCRIPTIVE AN.ATOUY OF THE SEVERAL BONES

THE HEAD

Is courosen of the bones of the cramim, fate, and jaw.

Fic. a.-Prother View of the head ade Fice.

1. Occijut.
\because Bariatal bone.
\therefore Frontal lumb.
2. Jutrons juntion of $t \cdot m$ nral thone.
\%. \%, momatic arelo.
f. Lachrimal bone.
\therefore Malar lwan.
\therefore Ponterior maxillary bone.
!-11. Nasal bone.
3. Anterior maxillary bone.
4. Tennjoral fosca.

12, 13. Lower jaw.

BONES OF THE CRANIUM

Ture cravicy, of hain-case, is small as compared with that of man, and orcupies less than one-fourth of the whole head. It is made up of nine bones, three of which are paim and three single ones. These bones are in most parts made up of two tables, with a cellular structure interposed, called the diphie, which is in eertain situations expanded into large cells, as in the fromtal sinuses. They are comected together be serated sutures, exept wher the tomporal bone overlaps the parictal, and in that situation, on each side the skull one thin soale (squama werlaps the other. The two
frontal bones unite to form the anterior part of the cranial cavity and the upper walls of the orbits, leaving a space between them for the reception of the athmoid bone. The two parietals are situated at the upper and lateral parts of the brain case, and are of an irregularly quadrilateral figure -each meeting its fellow in the median line on the top of the head. The temporal bone overlaps the parietal on each side, with its squamous portion, while the petrous part runs in towards its fellow on the opposite side, constituting a part of the floor of the brain-case, and separating that cavity into two. It contains within its bony structure the true organ of hearing. The occipital bone occupies the b uck part of the cranium, and makes up the base. It has a large opening (the foram ${ }^{n}$ magnum), for the passage of the medulla oblongata, and vertebral arteries : and on each side of this are large smooth articulating surfaces, for the attachment of the atlas vertebra. The sphenoid bone is of a most remarkable shape, resembling slightly a bat, with its wings partially expanderl. The body and wings complete the middle of the base of the skull, and the legs go to form part of the walls of the nasal cavity and mouth. Lastly, the cethmoid b me is made up of a cribriform plate supporting the anterior lobes of the br in, and giving passage to the olfactory nerves, which spread over the cellu'ar structure that constitutes the whole substance of this bonc. Another thin plate contributes to form the imner and posterior wall of the orbits.

BONES OF THE FACE

The face is made up of the nasal, posterior, and anterior maxillary, molar, lachrymal, and palate bones, the four turbinated bones, vomer, and lower jaw.

Fig. 3.-Loxgitcdival Section of Hean.

1, 2, 3. The upper walls of the cranium.
4. Frontal sinus.
5. Naisal bones.
6. Suncrior turbinated bone. 7. Athmoilal cells.
8. Sphenoid bone, uniting with
9. Oecipital bone.
10. Petrous portion of temporal bone. 11. Vomer.
12. Inferior turbinated bone.
13. Palatine plate of posterior maxillary.
14. Posterior maxillary bone, onter wall.
15. Anterior maxillary bone.

The nasal bones are long and thin, forming the roof of the nostrils. Posteriorly they are broad, and taper gradually forwards to a sharp point. The posterior maxillary bones are triangular in shape, thick behind, and presenting thin edges in front. The anterior marillary lones are of an irregular shape, being connected with the corresponding edges of the posterior maxillary and nasal bones, and completing with the former the roof of the mouth. The malar bone has an irregularly triangular shape,
presenting its broad base forwards, and is connected with the temporal, posterion maxillary, and lachrymal bones. The lechoymel bones form the intermal comers of the orbits, where they are very thin, and are hollowed out to receive the lachrymal sate, and sime passage to its duct. The palute bones are of a rery irregular shape, and are comected with the frontal, athmoid, sphenoid, posterion maxillary, inferior turbinated bones, and vomer. The tarbimeted bomes, two in earh nasal cavity, are attached to its outer walls one above the other, and appear to be intemded merely for the purpose of extemling the surface for the expansion of the olfactory nerve. The romer resembles in shape the share of the plough, after which jt is named, and rises up in the middle line of the back of the division between the nostrils.

THE LOWER JAW

The lower Juw resembles in general shape the leter V, the point being rounded off forwads and receiving the incisor teeth, while the two branches are broal, thin, amb slightly curved, being surmounted by the condyles for articulation with the glenoid cavity of the temporal bone, and giving longment to the tushes and grinders. The two lines of alseolar earities are not so wide as thase of the upper jaw, and conseruently the two sets of teeth do not exactly correspond.

THE TEETH

The teetil are developed within their apmpriate cavities or sockets, Which are fomm exactly corresponding with their number in the upper and bwer jaws, being narower in the lower than in the upper. Before birth they are nearly all in a state of incomplete arowth, covered and concabled by the gums, but som afterwards they rise through it in pars, the first set, or milk teeth, being in course of time superseded by the permanent teeth ats in all the mammalia. The following is the formula of the complete dentition of the horse :-

Incisors ${ }_{6}^{6}$, canine $\frac{2}{2}$, molars $\frac{1}{1} \frac{1}{2}$.
Eisn tontu is developed within its corresponding candy in the jaw, and is made up of three distinct substances-cement, enamel, and dentine. The rement of the horse's tooth (sometimes called erusta petrosa) elosely corresponds in texture with his bone, and, like it, is traversed by vasenlar camals. The rammel is the harkest constitnent of the tooth, and consists of eartly matter armaged in the mimal matrix, but contamed in canals, so as to give the striated apparamee which it presents on splitting it open. Dentine has an organized animal basis, presenting extremely minute tubes and cells, and containing earthy particles, which are partly blended with the animal matter in its interspaces, and partly contaned in a granular state within its rells. These three sulstances are show in the amexed sections of an incisor toofh. one of which, Fier I, is of the natural size, while the other, lige \bar{i}, is shown umber the micrascope.

Is the MoLif teeth the arrangement of these three substances is the
same, except that the cement and enamel dip down into two or more carities instead of one, and are also reflected in a sinuous manner upon the sides. This inequality in the hardness of the component parts of these teeth causes them to wear away with different degrees of rapidity, and thus leaves a rough surface, which materialiy aids in grinding down the hard grain which forms a large portion of the animal's food. In the upper jaw, the table presented by each molar tooth is much larger than those of the corresponding lower teeth, and therefore it is easy to distinguish the one from the other.

Fif. 4.-Section of Incisor.
c. Cement on external surface.
c. Cement reflecterl within the cavity.
e. Enamel atso reflected.
d. Dentine.
8. Tartar, coloured black by decomposition of food, contained within the cavity.

Fio. 5.
Section of a Portion of Incisor (maqnified).
c. Cement. e. Enamel. d. Dentine.

Tine femporary or milk incisors differ in shape a good deal from the permanent set. The milk teeth are altogether much smaller, but especially in the neck, which is constricted in them, whilst in the permanent set, which go on growing as they wear out, the diameter is nearly the same throughout. The former are also whiter in colour, and have grooves or indentations on their outer surfaces, running towards the gum. Lastly, the mark on the table is much slighter than in the permanent teeth. The temporary molars are not distinguishable from the permanent teeth of that class.

As a consequence of this artangenent of parts, the teeth, as they wear down, present a different appearance according to the extent to which their attrition has reached. On this fact is founded a means of arriving at
a knowledge of the age of the horse after he hats shed his milk teeth, which as a ruld he does in pairs at cortain fixed perionts. In order, therefore, to be able to estimate the ase of the horse from his terth, it is necessary to ascertain, as meally at may be, the exact time at which he puts up each pair of his milk or sucking teeth, and afterwards the perionds at which they are replaced be the permanent teeth. Finally, it becomes the province of the reterinarian to lay down rules for aseertaning the age from the degree of attrition which the permanent teeth have undersone. For these several purposes, the horse's mouth must be studied from the earliest period of his life up to old age.

In horseman's language the incisors are called nippers, the canine teeth tushes, and the molars grinders.
liv the end of the fhest fear the colt has cut his twelve nippers and sixteen grinders, which usually pierce the grums at the following months. Before birth, the cight anterior grimlers have generally shown themselves, followed about a week after foaling by the two central nippers. At the end of the first month another grinder makes its appearance all round, and in the middle of the second the next nipper shows itself. By the end of the second month the central nippers have attained their full size, and the second are about half-grown, requiring another month to overtake their fellows. Between the sixth and ninth months the corner nippers are cut, and towards the end of the first year reach their full size. This first set of nippers consists of teeth considerably smaller in size than the permanent teeth, and somewhat different in shape. They are more rounded in front, and hollow towards the mouth, the outer edge being at first much higher than the inner. As they wear down, these two edges soon become level, but the corner nippers maintain this appearance for a long time. At six months the central nippers are almost level, with the black "mark" in their middle wide and faint; and about the ninth month the next nipper on each side above and below is also worn down almost to a level surface.

Dubing the second yane the following changes take place:-In the first montl, and sometimes towards the end of the first year, a fourth grinder is cut all round, which commences the set of permanent teeth, the three first molars only being shed. At a year and a half, the mark in the central nippers is much worn out, and has become very faint; the second is also worn flat, but is not so faint ; and the corner nippers are flat, but present the mark clearly emongh. In colts which have been reared on com and much hay, the wearing down proceds more rapidly than in those fed upon grass alime.

The thand yenr is oceupied hy the commencement of the seond dentition, which is eflected in the same order in which the milk teeth made their appearance. Both sets are contained within the jaw at birth, the permanent teeth being small and only partially developed, and lying deeper than the milk teeth. As the mouth grows, it becomes too large for its first set of teeth; and the roots of these being pressed upon by the growth of the permanent set, their fangs are absorbed, and allow the new teeth to show themselves, cither in the places of the former, or be their sides, in which case they ate known by the name of wolf"s toth. This change proceeds in the same order as the cutting of the milk teeth, commencing with the first grinder, which is shed and replaced hy a permanent tooth eatly in the
third year, a fifth grinder (permanent) making its appearance about the same time. Towards the end of this year the sixth grinder shows itself, but grows very slowly, and the central nippers above and below fall out, and are replaced by permanent ones, which, as before remarkerl, are considerably larger in size and somewhat different in form.

At three rears the mouth presents the appearance shown in Fig. 6, the development of the permanent teeth varying a good deal in different individuals. At three years and four or six months, the next nipper all

Yig. B -Thimee-Yeati-Old Mouth.
B. Anterior maxillary bone.

1. 2. Central permanent tiphers, nearly finlgrown.
1. 2. Milk teeth worn down.
1. 3. Corner milk tenth, still showing central mark.
1. 4. Tushes concealed within the jaw.
round falls out, and is replaced by the permanent tooth. The corner nippers are much worn, and the mark in them is nearly obliterated. About this time also the second grinder is shed.

At four years of age the mouth should differ from that represented in Fig. 6 in the following particulars :-The central nippers begin to lose their sharp edges, and have grown considerably in substance. The next nipper all round has grown nearly to its full size, but not quite, and its edges are still sharp, with the mark deep and very plain. The corner milk nippers still remain, unless they have been knocked out for purposes of fraud, which is sometimes done to hasten the growth of the permanent teeth, and give the horse the appearance of being four or five months older than he is.

Between four and a madf and fies years, the corner nippers are hom, amb the tush protrudes through the gum. These changes are shown in lix. 7 .

Ar fire vente the month is complete in the nmber of its teeth; and from this date it becomes mecessary to staly their aspert in both jaws. Fig. \& shms the uprer tecth at this ate by comparing which with Fig. 7 the singt srowth in the half-year may be traned. In the lower teeth of the same mouth, the edges of the central cavities are much more worn away,

Fig. 7.-Moutil of tifp Coit at Fomband a Mate Yearg.

[^1]Hrowth, with the eflges of the eavity sharl, and the mark very jlain.
4. H. The tashes showing themselvers through the gum, but not full-grown.
the ecutral nipper having only a mall batk epeck in the middle of a smooth - mface, while the next is much worn, and the comer teeth, though showing the mark very panly, hear evidence of having been used. The tush is much wrown, with its outer surface resularly convex, and its inner concave, the edfes being sharp and woll dedined. The sixth molar is at its full growth, and the thirel is shed to make rom for the gromanent tooth in its phee. These two dot mamed teeth should always be examined in cases where there is any doulit about the age. After five years, no further shedding oceurs in any of the teeth.

The six-year-old motur is the last upon which any great reliance can be
placed, if it is desired to ascertain the age of the horse to a nicety ; but by attentively studying both jaws, a near apmoximation to the truth may bo arrived at. It is ascertained that the nippers of the upper jaw take about two years longer to wear out than those of the lower; so that until the horse is eight year's old, his age may be ascertained by referring to them, nearly as well as by the lower nipper's at six. But as different horses wear out their teeth with varying rapidity, it is found that this test camnot be implicitly relied on ; and in erib-hiters or wind-suckers the upper teeth

Vte. s.-Theer Nippers and Tlehes as Tive Tear: Ofi

1. 2. Central nippers, with the mark still unobliterated.
1. 2. Next nil'pers, with the mark still lamer.
1. 3. Conner niplers, with the elges very nimaty worn 4.t. Tushes well developed, and still showing the groove on the outside pilainly.
wear out wonderfully soon. Fig. 10 is taken from the lower jaw of a six-year-old horse, showing the marks of the central nippers almost obliterated but still presenting concentric circles of discoloured brown tartar in the middle; next to which is the cement, then the cnamel, and the dentine, with a thin layer of enamel outside. Up to this age the nippers stand nearly perpendicular to each other, the two sets presenting a slight convexity when viewed together, as seen in Fig. 2, page 354. Afterwards the nippers gradually extend themselves in a straight line from each jaw, and, in the very old horse, form an acute angle between them.

At aront the eighth vent the upper nippers jereme the same appear-
 are considerahly wom awily at their points, and the upher ones more so than the lower.

At vine tenes of age the mpremiduld mipms are worn down completely. The mext pair hase at shat mank laft, but their surfaces are quite
 depressiom.

After sine vears the age of the horse can only be guessed at from his teeth, which gradually grow in laght, and are move in a line with the jaw.

 (1)TI.
b. 1 tho enken part bally worn
1.1. T -hese with the grooves inside almost (b)lumatim.

The section of each nijper presented th the ere becomes more and more triangular instead of being oval, as seen in Fisc. 10 and 11 ; but after about the twelfth year the triangular section disappears, and the tooth becomes nearly mond. In aceordane with the increase of length is the colour of the tooth altered, being of a dirty yellow in very ohl horses, with occasional streaks of hrown and back. 'The tushes wear down to a very small size, amd very often one or both drup out.
 nippers for the prome of imbuins a mone rapid growth of the next set, which, however, is mot matrially afliond by the operatim, but dishonest deaters have recourse to another deceptim, callod hiskoning, by which an
aged horse may be passed off upm an inexperineced person for a six yeathht. The phan adoped is to cut off all the nippers with a saw to the proper lengeth, and then with a cutting instrument the operator seorps ont an oval cavity in the corner nippers which is afterwards burnt with a hot iron until it is quite black. It is extremely easy to detect the imposition by carefully comparing the corncr nippers with the next, when it will be seen that there is no gradation from the centre to the corner nippers, but that the four middle ones are exactly alike, while the corners present a large black cavity, without a distinct white edge to it, the dentine being generally encroached

Fig. 10.-The Lower Nippers and Tesimes of a Six-Year-Old Horse.
B. The lower jaw.

1. 2. The central nip!ers, with the marks wormunt.
1. 2. The next niplurs, with the marks disaprearing.
1. 3. The corner niplers, showing the mark plainly
enough, but with the edges of the cavity considerally worn.
1. 4. The tushes, standing up three-quarters of an inch, with their loints only slightly blunted.
upon withont any regnlarity in the concentric rings. Horeover, on comparing the lower with the upper nippers, unless the operator has performed on the latter also, they will be found to be considerably more worn than the lower, the reverse of which ought natmally to be the case. Occasionally a clever operator will burn all the teeth to a properly regulated depth, and then a practised eye alone will detect the imposition. In the present day there is not so great a demand for six-year-old horses as was formerly the case, and purchasers are contented with a nine or ten-year-old mouth if the legs and constitution are fresh. Hence bishoping is seldom attempterl excepting with horscs beyond the age of eleren or twelve; and the mere use
 fillu"se of the "copere." Formeny it wate very common to sme monthe with
 them: but, for the rasme given above, the plan is mow almose entirely abandoneal.
 horse, often caused by the practice of punching ont the milk tonth whasten the growth of the permanemt set. Instad of having this affect, however,

 11+1: $4:$
A. Ant raor maxillar: hon

Fio. Hry-1.omis Nimelo asd Leet Tush of a vary blf llurse, the Rigut hav. NGG MALEN OCT.
 follows they do not wear down an they natmally shomld. In punching out the conner nipper it is sery ofton boken uff, aml t!n fang is allowed to rematin the socket. Thbe manduener is that the picking up of the foot does mot hasten the momal of the fane of the mills lomene and insteat of aceelerating the growth of the permanent tooth in the fat bal position, it retards it and sometimes drives it to seek a passage through the gums behind its proper socket. Here, not meeting the corresponding nipher of the upper
jaw, it grows like a tush, and has sometimes been mistaken for a second tooth of that kind. Some horses are naturally formed with "pig jarws"that is to say, with the upper longer than the lower-and in these cases the whole set of teeth grow to a great length, and interfere with the prehension of the food.

OS HYOIDES

The os hyoides in the horse consists of five distinct picces, contributing to the support of the tongue and larynx. One of these (the body) is central, the other four are in pairs called the greater and lesser horns. They are connected by ligaments.

The body resembles a two-pronged fork in form, having a central portion flat, an appendix, or spur, which lies in the centre of the muscles of the tongue, and two branches. At the sides of the central portion are two little knobs for the articulation of the lesser cornua.

The horns are four in number, two short and two long; the former ascend obliquely from the sides of the bodies, and end in oblong flattened smooth surfaces for the attachment of the long horns. These are much larger than the short horns, constituting two long, flat, thin bones, which give attachment to the stylo-hyoideus and hyoideus magnus muscles, and also to the constrictors of the pharynx. The bones composing the os hyoides are delineated in connection with the larynx in the twenty-first chapter.

CHARACTERS OF VERTEBREIN GENERAL

Every vertebra from the head to the sacrum is made up of certain parts, to the uses of which in the animal economy attention has been already drawn at page 350. These are-1st, a body, which may at once be recognized as the central and most substantial part; 2nd, projecting upwards from its upper edges are the two lamince, or sides of the ring, in which lies the spinal cord ; 3rd, at the upper part of the ring is a projection, more or less marked, called the spinous process; 4th, projecting outwards from each side of the body is a lateral process, intended to give insertion to muscles, and in the region of the back affording a firm attachment to the ribs. In addition to the connection between the bodies of the contiguous vertebree by means of a thick fibro-cartilage, there is also a distinct articular surface on each side of the anterior and posterior faces of the body, which is placed upon a projection called the articular or oblique process. Thus, each vertebra has four oblique processes, two transverse processes, a spinous process, and two laminæ or sides to its large foramen, in addition to its body. This last part presents an anterior and a posterior surface, more or less oval, by which it is united to the next adjacent vertebre; a superior face, which forms the floor of the spinal canal, and an inferior face, which is clothed with muscle on each side of a projecting rough line, called, wherever it is marked, the dingerior spine.

Throughouthe spine no two vertebræ are exactly alike, even the sixth

 In thin chamer the thanition is urabal, the sixth and swomth emveal

 hackwamk.

GENERAL CHARACTERS OF THE CERVICAL VERTEBR压

distinguished from those of the back and loins by the following characters: -1st. The inferior spine of the body is strongly marked, and terminates posteriorly in a tubercle (Fig. 12, 17). 2nd. The head of the body which looks forward is very globular, and the corresponding cavity in the posterior surface is of a cup-like shape (Fis. $1 \underset{\sim}{2},{ }_{14}$), but larger than the head, in order that it may receive the inter articular cartilage which intervenes. 3rd. The spinous processes (Fig. 12, 3, 4, 5, 6) are very slightly marked. 4th. The transverse processes (Fig. 12, b, b, b) are unusually lengthened from before backwards and downwards, and are each pierced with a hole for the passage of the vertebral artery. 5th. The four articular or oblique processes (Fig. $12,15,15,15$) project greatly, and have an inclination from above downwards, backwards and inwards. Each fossa for this purpose is large and deep.

PECULIARITIES OF CERTAIN CERVICAL VERTEBR压

The frrst cervical vertebra (counting from the head) has received the name of atlas in human anatomy, from its surmounting all the others; and though in quadrupeds there is no longer the same reason for the appellation, it has been extended to them. It deviates more completely than any of the others from the type of all, the must remarkable differences consisting in

Fig. 13.-Fore View of the Athas.

1. Upper spine.
2. 2. Wings or alæ.
$\overline{3}$. Hole for the 1 assage of the spinal corl. 4. Lower sline.
5.5. S Ifaces for articulation with the condyles of the occiput.
c. ©. Hules for the lassage of the vertebral arterips.
the almost total absence of body, and in the division of the large foramen into two portions by a projecting ridge on the inner side of each lamina. This ridge is not well shown in the fore view of this bone (Fig. 13), where it is concealed by the articular surfaces, but it is easily seen in Fig. 14. Below it the foramen is occupied by the tooth-like (odontoid) process of the second cervical vertebra, which is confined in its place by a ligament stretched across from one ridge to the other. Upon this, as on a pirot, the atlas turns, carrying with it the head, and allowing of those lateral movements which could not otherwise be accomplished. On each side of the spinal formen are the articular surfaces (Fig. 13, 5), which are covered with cartilage, and form a firm hinge-like joint between the atlas and the occiput.
 having a hollow deeply rut in them, amb moling in a small hole thromgh which the vertobal artery passes on cath side to chter the ramium, making a sharp convolution in the cavity thus formed for it. The posterior surface

Fig. 1.-Back laew of the Atlas.

1. 'run'r sume.
$\therefore . \because$ Wime.
2. Spinal foramen.
3. Lower spine.
4. 5. Surfaros articulating with dentata.
1. Surfare articulating witli the odontoid frocess of the slentata.
shows the corresponding margin of the spinal foramen (Fig. l4), of which the one part (6) is occupied by the odontoid process, and the other (3) by the spinal cord. On each side of this are the articular surfaces, by which it is attached to the corresponding surfaces of the second vertebra, and still more externally are the ale or wings. The superior and inferior spinous processes are shown at 1 and 4 in each engraving.

2. Suprine spine.
3. Transwerse processes.
4. 3. Surfares articulat:nz with cortormang ones
on the posteriur part of the athas.
1. Odontoid I rocess.
\therefore Infirior =rine.
(i. Sbnasl formmen.
2. F. Formmina for the lassige of the vertebral arteries.

The second cervical vertbibs, called whis from its being the centre on which the athas turns, and dentat, from its presenting a tooth-like process for this purpose, appoximates somewhat more nearly to the usual type, but is remarkable for the process already alluded to, which is shown at ${ }_{4}$. Fig. 15. Inferiorly this part is smoothly rounded, to enable it to play against the first vertebra, while superiorly it is flatter, and is in
apposition with the transverse ligament. The foar articular processes are shown at ${ }_{3,3}$, Fig. 15 and ${ }_{\text {n, }}^{5}$, Fig. 16. The lateral processes are well shown at,, in both engravings, and the posterior oblique processe's at
 (glenoid) is shown, by which the body of this vertebra unites with the head of the third.

Tife third, fourth, and fifth cervical vertebre alosely resemble the

Fig. 16.-Posterior View of Second Ceritical Vertebra.

1. Spinal foramen.
2. 2. Transverse processes.
3.3. P'usterior view of the anterior articular surfaces.
1. Glenoid cavity articulating with the hear of third cervieal vertebra.
2. 5. Posterior oblique processes.
1. Inferior sline.
type of all; but the third has commonly a more elevated spine, and is thimer across the upper part of the body.

The sixtir has no inferior spine; its transverse processes are trifid.
Tile seventh vertebra is the shortest, and approaches in its characters to those of the dorsal region. Its borly posteriorly presents two semilunar hollows for the articulation of the head of the first rib on each side. The superior spine is elevater and sharp, and the transverse process is short and obtuse, being sometimes without the foramen for the vertebral artery.

GENERAL CHARACTERS OF THE DORSAL VERTEBRÆ

The eigiteen donsal vertebra differ greatly in general appearance from the cervical, though they still resemble the type of all. Thus, instead of being cuboidal in shape, and without prominent processes, they have each a long spinous process projecting upwards about two or three times the depth of the body, as shown at ${ }_{1,1,1}$, Fig. 17. The spinal hole is comparatively small, and the transverse processes short. On each side of the upper and lower margin of the borly is a smooth hollow, which, together with its corresponding surface in the vertebra, above all (or below, as the case may be), lodges the head of a rib. There is also a second articulating surface on the transrerse process, by which the tubercle of the rib is connected with the vertebre.

PECULIARITIES OF THE DORSAL VERTEBRA

 fomm of the cervial, as manifester in the shothess of the spinous process, which terminates in a peint, and by the latere size of its obligue processes. The seemd and thim sradually asemme the donsal ty".

Fig. 17.-Donshl Vertelif F.
A. Profile view of a dorsal veithbris seen frum the $1+\mathrm{ft}$.

1. Fpinons fromes.
\because Bonly.
2. Convexity on Imols.
1.4. Surfaces for the articulation of the rib
tuberte.
3. Posterinr wblique process.
(i. Surface for artapulation of the lexal of the rib.
4. Concavity on burly.
5. Fore view of a dorsal vertelna.
6. Sumons procis.

7. 4. Anterour uhligme rucesses.
1. 5. Nufface for the articulation of the lenal of the rib.
is. Stmal hole.
C. Batc siew of a clorsal vertebra.
1. Simous process.
\therefore A Masity on borly.
A. A. Transversp processes.
2. 5. Bisck oblinle processes.
i. (i. Surfaces for the aticulation of the head of thie th.
1. Spinal hole.
 articular surfaces on the pusterion and extmad faces of its benty, there being nu ribs here to articulate with it.

The spinous processes, as far back an the twelthe, take a direction upwards and backwards; the thirteenth takes a direction upwards, and those posterior to it take a direction upwats and fowwards. The thire, fourth, and fifth spinous proerses are the lomgest, amd afterwards they irarlaally

GENERAL CHARACTERS OF THE LUMBAR VERTEBR压

Tifese are five, and sometimes six, in number ; the body is short and thick; broader from side to side than from before lackwards; flattened superiorly, convex inferiorly, but not presenting so prominent a spinous ridge as the dorsal. Its articular conrexity before and concavity behind assume rather an oval shape. The superior spinous process is shorter than the average of the dorsal vertebre; it has broad, flat sides, and protuberates at the front of the summit, having a slight inclination forwards; the transverse processes, large and flattened above and helow, stand out horizontally at right angles to the body for a consideralble distance, contrasting strongly with the corresponding larts of the dorsal and cervical regions.

A. Profile view of lmular vertelura.

1. 2. 3. ete. Spinons 1 rocesses.
1. 2. 2. etc. Transverse 1 rocess 's ; the analogres of the ribs.
1. 3. 3. cte. Obligue promsses.
a. a. a. etc. Bodies.
by means of which the fifth artionlates with a similar surface on the sisth, and the sixth with a corresponding surtace on the sacrim.
\therefore Surfaces articulating with corresponding ones on the last dorsal vertebra.
aces articulating with the sacrun.

The oblique processes are larger than in the dorsal region ; they project from the roof of the arch in a horizontal direction (3, 3, 3, Fig. 18) ; the anterior surfaces in each of these joints are concave, widely separated and look inwards; the postcrior are convex, nearer together, and look outwards.

PECULIARITIES OF THE LUMBAR VERTEBRÆ

The fourtio lumbar vertebra possesses two surfaces of articulation on the posterior border of its transverse process.

Tie fiftil (or the sixth, if there is one) assumes somewhat the characters of the first sacral bone. The transverse processes, which are longest in the middle of this regin, gratuaily shorten towards the sacrum. On the fifth
there is posteriorly an articular surface of an oral form, and on the sixth there is a similar one on each surface, the praterior being slightly concave, and fitting to a comespondins facette on the sacrum.

THE SACRUM

This bone, in furm irregularly prismatic, is mate up from the conjunction by ossification of five vertebra, in which latter comlition it is found in the embryo. It is mited in front with the lat lumbar vertebra by three articulatory surfaces (1, n. is, Figr 19) posterindy with the first bone

Fig. 19.-Tife Sirtivi.

1. Fore view of the sacrum.
$\because . \because 2$ ete. Spinons 1 romes.
2. Lateral free surfan.
3. Head articulating with the con wity on the hond of the last lmatar veltura.
4. abminne prowssts.
 resses of lacl lumbar wabbra.
5. 7. T. ete. Formma for the passog of the inferior samal home.
S. S. Surfares artmating with the ilimm.
of the coccyx, and on earh side with the ilium or hiphome, by a large rough surface (s,s Fig. 19). The whole bone is bightly eurved, with its comeavity downwards. This inferion surface is browl and smooth, forming the superior boundary of the pelvic basin. On it are painty traced fome transerse lines, marking the situation of the original divisions into separate bones. Here are alsor fome large holes on each site for the passage of the inferior sacral nerves. The superion surfaer is fumished with fise spines
 vertebar. They mite at their hases, but are distinct above, terminating in a protuberance which is sometimes bifid. The two sides are thick and concave in the midhle, and terminate pesteriondy in a rongh lip. Anteriorly they form an irregular surface, having an indination from above downwards, backwards, and inwards. The inferion pretion of this face is lined with cattilage, which is attached both to it and to the ilimm, while
the superior has a set of strong ligamentous fibres similarly attached. The base looking forwards has been already described as consisting of three articular surfaces, above which is the spinal foramen. The apex is only marked by the surface of articulation with the first bone of the coccyx, above which is the spinal foramen, here obliquely cut and small, and presenting also the rudiments of oblique and transverse processes.

THE COCCYGEAL VERTEBR \mathbb{E}

These bones form the skeleton or bony basis of the tail, recciving their name from ко́ккv ξ, a cuckoo, whose bill was supposed to resemble this part in the human body. They vary in number from sixteen to eighteen. In the

1. 2. 3. etc. Bodies.
2.2.2. Spines; the lips forming the frrst are joined, forming the neural arch, the second partially so, and the third are open.
1. 3. 3. Transterse 1 rocesses.
1. 4. 4. etc. Fore surfaces by means of which the boties articulate.
1. 5. 5. Back surfaces of articulation.

A, first; B, third ; C, eighth; D, sixteenth ; E, seventeenth: F, eighteenth, or last coceygeal vertebra.
first four or five all the characters of a vertebra are present, as shown below at A B ; but these are gradually lost, and the bones at last assume the form of simple spines, D E F, the intermediate grade being seen at c. Here there are two little processes (2), evidently abortive neural arches or lateral laminæ, but not meeting together to form the spine. This whole set of bones is simply intended as a strong and flexible whip, to be moved by the four sets of muscles lying along, and attached to the sides of each.

THE RIBS AND THEIR CARTILAGES

The ribs (costce) have been described at page $35 i$ as forming the lateral boundaries of the thorax. They are eighteen in number, of which the nine anterior (true or sternal) extend by means of their cartilages to the sternum, while the cartilages of the remainder do not extend so far, and they are therefore styled false or asternal (see Skeleton at page 348).

The ribs are all long flattened bones, irregularly twisted on themselves, and so arranged that, when forming the walls of the thorax, they readily increase the volume of its contents by being drawn nearer together and towards the apex. In doing this they revolve upon their extremities as upon two centres, the superior admitting of motion from their formation as joints, and the inferior from their elastic cartilaginous structure.

Ban th is disicible into a boty and two extmontios. The body has two that suffers and two boders: the hater of which ateroncave and thim,
 waries in the tave athl faberibs, a will be better seen by reference to the

Fig. 2l.-A Trife and Futar Rib.
A. Profile view of a but true or strmal ibh.
 of vetebra,
3. Hearl, trine.

1. 13nely.
2. Jumetion of rib and its corresponding sermal -arthlo.
i. St+rnah cartilary
3. Protile view of lith false or aspomal rilu (etioh. lomath).
4. Tubureht fused in whe with the hear.
5. Hual.
6. Borly.
7. dunction of false rib ame asternal watilu.
\therefore A. A. mad cartilage.
C. Vien on the nifur extmenty of stermal ribinverter to show the mode by wnich the articulating surfaces on the "fler part of the rib corre. slund to the nine anterior dorsal vertebra.
8. Buly.
9. lubrele. sparate.
 articulatwh, and the: noteh in which the rosiml licannont is attarhet.
1). Vinm uf the lat asturnil rilb, also inverted to show the funion of talwrede and head together.
10. laula.
$\because 3$. Thberalo fused with heal.
 are all attached to the ribl herm uniom of their fibres to a deep pit in the axtremity of eath rib. 'They serve the double purpuse of giving elasticity to the thoma in the act of reparation and of emathing it to bear severe -hocks without fracture.

Among the sereal ribs, the first is the thickest and shortest, and is irregularly arrhed; the second is very shighty comend: from this point they
increase in length and brealth to the ninth; from the ninth to the last they become more curved and shont. In the seventeentl and eighteenth the articulatory surface of the tubercle becomes confumaded with that of the hearl, and the neck is wanting (see :,3 B, Fig. 21).

THE STERNUM, OR BREAST BONE

Tine stemun, which forms the inferior boundary of the thorax (see page 403), forms in the adult one long keel-like bone, of a spongy or cellular nature, more or less dividerl by cartilage ; but in the embryo it, like the sacrum, is made up of distinct pieces, six or seven in number. Anteriorly

Fif: 22.-lbumle Vimu uf Strpnum (Breast-bone).

1. 2. 3. etr. Pits for attachment of costal cartilages.
1. 3. Posterior extremity with its ensiform car2. 2. Anterior extremity enling in cariniform cartilage.
the breast-bone is prolonged in a manner resembling the keel and figure-head of a shin, being clothed with cartilage, which is hence called cariniform (carina, a keel) (2, 2, Fig. 22). Posteriorly it terminates also in a cartilage of a thinner and more flexible form, and called, from its resemblance to a sword, ensiform (ensis, Lat. sword) or xiphoid (ξ ' $\psi o s$, Gk. sword).

Tine sides are occupied above by the cavities for the insertion of the costal cartilages, and below by a rough surface, to which the fibres of the pectoral muscles are attached. The superior face forms a very lengthened isosceles triangle, having its apex forward. It is slightly hollowed from before backwards.

The three anterior divisions of the sternum present broad lateral surfaces ; the three posterior have projecting sides inclining downwards, and forming the boundaries between the inferior surface and the sides. The ribs are received into cavities in the cartilage existing between the separate bones, the last posterionly having, however, an additional pit in its midtle for the cartilage of the eighth rib.

SCAPULA, BLADE-BONE OR SHOULDER-BLADE

Intervening between the thorax and the fore extremity, and presenting large surfaces for the attachment of muscles to connect these two parts of the skeleton, is the scapula or shoulder-blate. It is a triangular that bone, and lies obliquely on cach side of the anterior part of the thonax, with its
 (see pare 348).

It pheserts thre fnsia, three borders, and three angles; in addition to which there are the epine, the coracoid process, and the glemod cavity.

The posse are two extemally, (a) the anterior, imd (b) the posterior fussa, divided by the spine (1 , Fig. 23). These ledge and give attachment to the fibres of the suphat inf in-spinatus museles, while the internal fossa, sometines called the venter sarula (belly of the scapula), in the same way subserves the nse of the sularapulatio.

Fig. 23.-Outer Surfarfe of lfit scapula.

1. Sjine.
2. Coracoid process.
3. Glenoid cavity.
a. Auterior fossa.
b. Rusterion fussa.
c. Sulurior costa, to which the cartilage is attacher.

The superior border is rough for the attachment of the broad strip of cartilage, which increases the length of the blade. The anterior border is thin, while the posterior is comparatively thick.

The two suphiok angles present nothing very remarkable, but the inferior is occupied by the coracoid process anteriorly, and by the gienoid catvity posteriorly-which latter is a smooth oval cavity, lined with cartilage. It receives the head of the humerus.

Os account of the mbortant offices belonging to the muscles which "cenly the fosse on this bone, and since it is fomm that in proportion to the extent of the latter will he the muscular power, horsemen examine with great eare the due development of the seapulat. Unless it is long and broad it may alwas be predieted that the honter will be powerless in using his fore-legs "in dirt," or in getting out of other ditticulties ; and though some hacks with short shoulders may go well enough, yet, in the majority, such will not be the case. Heasy hraughthorses, in which a great thickness of muche is heaped upon the hade, are not so dependent upon its length and lowadth, as has been already shown in treating of the external form of

HUMERUS, THE UPPER ARM-BON

Lies between the scapula and elbow, in an oblique direction from the point of the shoulder downwards and backwards.

Like all tie long bones, the humerus may be described as consisting of a body or shaft and two extremities.

The bodr, which has a prismatic section, looks as if it had been twisted on itself. In the upper part it is expanded laterally to form the external tuberosity (${ }_{5}$, Fig. 24) on the outside and the scabrous tubercle (4, Fig. 25) internally, both being for the attachment of muscles. Towards the lower extremity it becomes rounderl, and then suddenly spreads out to present the

Fig. 24.-Eytrenal View of Lfft Itemfres.
6. Sigmoil fossa.

1. Body of humerus withe musculu-spiral groove.
2. Hend.
3. External tubercle.
4. Tubercles in front of head.
5. External tuborosity.
6. Olecranon fossa.
7. External confyle.
8. Internal condyle.
wide surface which ends in the condyles on each side with the intervening articular surfaces.

Tife superior extremity, larger than the inferior, presents for consideration a head and four tubercles. The head is the hemispherical smooth part, projecting posteriorly. It articulates with the glenoid cavity of the scapnla, which it much exceeds in extent of superficies. Anteriorly, the head is surmounted by four tubercles; three directly in front are between two smooth grooves, which are covered with cartilage. The outer, or fourth tubercle, is joined with the tuberosities by a protuberant ridge, the external edge of which serves to guard against dislocation.

The inferior extremity is made up of two condyles, or knuckle-like projections (s, 9, Fig. 24), having between them the smooth articular surface for the elbow joint. This surface is broad, and assumes a segmental form, being
dividul into thren portions berajecting lines- Fint, a middle groove, which terminates in front in the coromid fossa and behind in the olecranon fossa,
 ratins, therede derhing the motion of the joint. second, the extemal

1. 1 lue heall.

2. Intwhal tifovio.
3. S"almons flabla.
4. Internal depresion to which the in oenal lateral Jitalu-nt is attarlend.

i. Internal comml.
en

Suove, which is comparatively sightly marked; and third, the smooth surface liming the intemal comples. Sll of these fit accurately into the articular surface of the uhat amb ratius, wo perently deseribed, allowing of mothins but a hingelike motion. (fe the combly the inner is larger and mowe projecting than the wutw.
 the shaft by cantilage only.

THE BONES OF THE FORE-ARM (OS BRACHII)

In the momas subaser, and in the dore and cat among our domestic amimals, the bomes of the fore-am are distinct, amb may realily be separated from eath other as the ulata amb radius. In the carly periods also of the life of the home the same smatition obtains, but when he is matured, these bemes are imbiculnbly mitul hy witioatom. The line of junction can alwars be tracen, and them is in openines left which is called the rectio-
 umberand that the term wombit mean the bone composed of the uniter ulan and radin. and that in alluring w each of these divisions we only racals of thom, in amalng with lmana amatomy, as rematte bones. By
drawing a line from the back of the combly of the homerus till it cuts the posterior edge of the shaft of the os brachii about its middle, the line of demarcation may easily be arrived at.

Tine Radius forms the bulk of the os brechii, supporting the weight of the body upon its hearl, and conveying it to the carpus through its lower extremity. Its shaft is long, smooth, and convex anteriorly ; rough for the attachment of muscles, and concave posteriorly. The superior extremity is expanded and presents an articular surface divided into two fosse by a slight ridge, the imner of the two being broader and more circular. On each side of these pits is a slight projection, callerl the lateral process, to which the corresponding ligaments are attached. The inferior extremity, which is also expanded, is remarkable for the varionsly shaped pits slightly marked on its articular surface, each being intended to fit one of the carpal bones of which the lance is made up. There is a prominent internal lateral process, and one less distinct on the outside marked with a groove.

The ulna (or ulnar division of the os brachii) is much shorter than the radius, and can scarcely be considered as having two extremities, its lower end being cut off in an oblique direction and terminating in a sharp point, so as to look: like a splicing of the one bone to the other. It may be considered as consisting of a short borly (2, Fig. 26), sumounting which is the olecranon process (3) behind, and the articular surface (4)

Fig. 26.-Bunes of the Fune-Am, Knee, Cannon, Isterna, AND Folt.

1. Semicircular fossa fomet by the radius and ulna for the elbow joint.
2. Body of the nlna.
3. Olerranon prucess.
4. Articulating surface.
5. Budy of the radius.
6. Surface artieukting with the comblyte of the hamans.
7. Tuberele to which the coraco-ratialis musele is attur hed.
8. Articulatory surfaces corresponting to the nipel row of lineebones.
?. Os pisiforme.
9. - cuneiforme.
10. - lunare.
11. - unciforme.
12. - magntum.

1t. Metacaryus or eamon-bons.
15. External small metacarpal hum.
16. "ubercle to which the tendon of the muscle (patensor metacarpi magnus) is attacher?
17. Joint uniting with the os stufraginis.
18. Os suffraginis.
19. External sesamoid bone.
20. Os coronæ.
21. Os pedis.

22, 22. Wings of yedal bone.
23. Os naviculare.

in front. Descembing from the lunly is the thin watan of bone which is matod indissolubly with the shaft of the ratius at the point marked 5 , and may be trated down to the candal joint.
'The articular surfere comprises part of the elbow foint, and has below it some roughened incyatities for the attachant of liganents.

The olecrenon forms, we flow, is of considerable size and strength, forming a strong lever for the action of the tricess masele, which is inserted in its point. Its anterior chse hats at shap point, which deepens the articular cavity, and checks the motion of the joint from heing carried too far.

THE CARPUS (KNEE) AND METACARPUS (CANNON)

The kNEE of the horse comesponds with the wrist of man, and though the name so well known to lamomen will probably always be maintained, yet seientifically catch of the bones receives the corre-

 MOSEM CABLELTHE KNAI
\therefore Lower extramity rulints.
3. Ulia, lower exthemp: טi.
4. Os pisiforme.
\therefore - cunciforme.
is - lumare.
7. - scaphoides.
8. - unciformer.
9. - maz! 1 !

11. Smatl meta": 1 p: 1 bome. sponding names, and the whole group is called the carpus.

The anterior surface of the carpus is convex; the justerim, concave and irregular, and marked by bony prominences.

It consists of cight bones, disposed in two rows, whe above the other, as follows:-

The first, or top row, begiming to enumerate from within outwards, consists of the scaphoid, lunar, cunciforme, and pisiforme bones.

The second, or lower row, consists of the essa trapezoid, magnum, ant unciforme, and sometimes of a small tloating beme situated behind the trapezoid.

The superior row may be described as follows:-
Os scaphombes ($\sigma \kappa<\dot{d} \neq$, a crudle), the largest of this row, articulates superionly with the inferior and imer extremity of the radias, internally by means of two distinct facettes with the os lanare, and inferiorly with the os trapezoides and os magnum.

Os Levare (luna, the moon) aticulates superiwhe with the ratins, intemally as lefore mentioned with the as seaphoiles, and extemally through the medium of two farettes with the os concifome.
 rionly with the inferion and outer extremity of the ranlius, intersory with the os unciforme and poslerionly with the as pisifome.

Os Pharome (pisum, a pra) is situated at the pustero-extemal side of the top row, and presents for dencription two surfaces and four borlers. The external surface is mevenly comsex, and elevated for ligamentous attachment. The internal surface is concave and porous, and also roughened for ligamentoms attachment. The anterior border
presents two smooth ovoid surfaces: the superior one articulates with ther radius; the inferior with a corresponding surface, mentioned as occurring on the posterior surface of the os cuneiforme. The three other borders, namely, the superior, posterior, the inferior, are unevenly convex, and roughened for the attachment of ligaments.

The bones of the inferior row, viz. the Os Trapezoides ($\tau \rho a ́ \pi \pi \zeta \zeta \alpha$, a table), Os Magnum (the large bone), and Os Unciforme (uncus, a hook), articulate laterally one with the other, superiorly with the top row of bones, and inferiorly with the three metacarpal bones.

The Metacarpal Bones, answering to the bones in the palm of the hand of man, are three. One (metacarpus magnus) is much larger than the other two, which, from thus supporting, are sometimes called splint-bones.

The Metacarpus Magnus, or cannon-bone, has a body and two extremities, the superior of which articulates with the carpus while the inferior rests upon the next phalanx, or great posterior bone (see Fig. 26).

The body is convex and smooth, anteriorly and laterally; thus forming two-thirds of a cylinder. Posteriorly it is flattened; its sides, extending from above, downwards, to about three inches above its inferior extremity, present two triangular scabrous surfaces, on the upper parts of which two smooth articulatory spots occur, to which the small metacarpal bones are attached.

The superior extremity presents a smooth articulatory surface which is, for the most part, flat; it slopes off, however, on its outer side for articulation with the os unciforme. There is also another small spot which slightly declines, situated at the outer side of the head of the imner small metacarpal bone. This spot articulates with the postero-inferior surface of the os trapezoides. The flat surface articulates with the os magnum, to which it corresponds in figure. Its anterior and lateral edges are somewhat roughened.

The inferior extremity presents two smooth condyloid surfaces, separated by a smooth semicircular eminence, which articulate with a corresponding formation on the superior extremity of the os suffraginis. On the sides of each of the condyles a depression occurs.

Fig. 2s.-Os Pisifurmil.

1. Body of os pisiforme.
2. Surface articulating with inferior extremity of the radius.
3. Surface articulating with the cuneiform bone.

Fig. 29.-Back View of the Large and Small Metagarpal Bones.
3. Metacarpus magnus.
3. The surfaces above artieulate with the lower carpal bones.

1. 4. External and internal small metacarpal bones.
1. 5. Condyloid surfaces articulating with corresponding ones on the upper extremity of the os suffraginis.
(i. Eminence articulating with a correspondmg depression on the upjer extremity of the os suffraginis

Ossa Metacarpi Parva are in number, two ; external and internal. In form they are pyramidal, presenting bases turned upwards, apices down. wards, and bodies or middles.
 informy by moughed tubersities, exept anterinly, where two smooth articular surfaces oceur, which articulate with correpmoting surfaces mentioned as existimer on the metacapus magnus.

The body is trifacial. 'The anterins surfac is rough, and articulates with the metacarpus magnus. The imer surface is excavated. The outer surface is convex and smooth. The apex tominates in a bubous extremity, which looks posteriorly, and does not artienlate with the metacarpus magnus.

THE PHALANGEAL BONES (PASTERNS AND FOOT)

Beyond the metacappes in the horse, there is only a single bone in each joint, the five fingers being merged in one. The same number of phalanges, however, is mantaned, counting from the metacarpus to the distal phatans, Which is the pedal bone. The whole may, therefore, be considered as anatogous to one hmman finger, with the addition of the two sesamoid bones, and the navicular bone, all thee of which are intended to assist in giving leverage to the tendmes moving these parts. The highest of these is the os suffragimis or hargel pastem, the next the os corona or lesser pastern, and the lowest the os pectis or cothin bone.

The Os Supmbagins amd its Ossa Sesamomea

Fig. 30.-Osisa Sesaymiria. may be taken tugether, the latter lying on each side of the bark of its superion extremity, but playins only on the large metacarpal. They are separately shown at Fig. 30. The os sumbaginis has a body and two © xtemities.

Time body hows an anterion surface, which is conves and smooth; and a posterior which is rough and flattened, and presents superiorly a triangular space, bemoled laterally by two roughened ridges, which meet at a point inferiorly.

The supemon extmemity presents two shallow concavities, which are separated one from the other by a deep transverse canal. Behind these concavities, two tuberosities exist for the attachment of the crucial ligaments.

The inferion exthemity has two somi erlimbod convexities, divided thansversely by a shallow depresion, which is widened posteriorly.

Os Conove (corona, e coronct) is in form a parallelogram with four surfaces.

The anterior surface is comed and romghened, presenting two tuberwities below.

The posterion stridere is smooth, and has superiony a semilumar smooth surface.

The stremon surface proints two momil comeavities, divided by an sminence rumning form behiml forwards, and bommed, anteriorly and fasteriorly, by two roughomed pujections. Thewe form the lesser fetlock joint with the bone above.

Tine inferion scraface remembles the comeromeding part of the os suflizaginis.

Us redis (the bone of the foot, formerly called the coftiobone). In form it is semilunar, divided into wall, sole, articulatory surface, and retrossal processes, commonly called wings (see Fig. 31).

The wall, the semicircular prominent part, possesses some degree of declivity, increasing in circumference from above, downwards. It is full of foramina, and rough. Superiorly, the bone bulges out, forming the coronal process $(8,8)$. The middle part of it terminates in a peak, which looks slightly backwards-the cacumen corone (the peak of the coronet).

The wall terminates posteriorly in wings; the retrossal processes

Fig. 31.-Posterior View of Phalanges.
A. Os suffraginis.

1. 2. Surfaces articulating with tho lower extremity of the large metaearpal bone.
1. Groove.
2. Rough surface for the implantation of ligaments.
3. 4. Inferior exiremity articulating with
B. Os corone.
1. 5. Superior articulatory surfaces.
6.6. Inferior articulatory surfaces.
C. Os pedis.
1. 7. Artieulatory surfaces.
1. S. Coronal process.
2. 9. Sontiform jrocesses.
1. 10. Retrossal 1 roresses.
1. Surface articulating with a corresponding one on the bavicular bone (13.)
D. Os naviculare.
2. Surface articulating with the os corona.
3. Surface over which the flexur pedis lerforans tendon glides.
4. I4. Points attarhed to the redal bone by ligaments.

$(10,10)$; each wing is divided into two parts by a groove, which runs through it from before, backwards.

The inferior surface or sole is divided into an anterior semilunar plantar surface, and into a posterion sharp semicircular edge which divides it from the tendinous portion. The former is slightly concave, porons, and bounded by the inferior circumferent edge of the wall.

The superior articulatory surface, semilunar in form, presents two lateral concavities, separated by an eminence. The eminence is bounded anteriorly by the cacumen corone, which stands before it, the point looking backwards. Posteriorly, it is bevelled off for articulation with the os naviculare.

Os Naviculare (navis, a ship), sometimes called the shuttle-bone, in form is semilunar and elongated. It is divided into four surfaces and two extremities.

The superior surface presents, in its centre, an eminence, which declines laterally, leaving two slight concavities.

The inferior surface presents two shighty comvex divisions, with a prominent smonth ridge dividing them, ruming from lehind forwards.

The antermos sumpane presents smurionly a smooth triangular articula tory surface, and inferiorly a porous, roughened face.

The posterion surface is trimgular, roughened, and porous. The extremities, the intemal and external, turned upwards, terminate obtusely.

THE PELVIS

The general features belonging to the pelvis have been alluded to in the last chapter, and the sacrum which forms its upper wall has been described in this. It remains now to ascertain the shape and anatomical

1. 2. Wings of the iliac bons.
1. 8. Pubic bone.
1. Ischia lone.
2. 4. Suprabinsterior spingts procen of the two nssa ilii.
1. Antero-inferior spmous process of the left intum. 6. 'The narrow part or neek of the ilium.
2. 7. obturator holes (foramina).
1. 9. Tuberosity of each ischium.
1. An.tal! ! m.
bearings of the bones which complete the arch. These in the embryo are three on each side, uniting below in the median line by symphysis, and above to the rough surface on the side of the sacrum. These three are 1st, Os ischi; 2nd, Os ilii, and 3rd, Os mubis. The whole bone, which is firmly united in the adult, receives the somewhat paradoxical denomination of Os innominatum, or the umamed bone.

On referring to the skeleton at page 318 it will be apparent that the attachment of this bone to the sacrum is sollanged that it shall act as a
spring in breaking the jars received by the hind extremity from the ground. Its oblique direction, its comparatively short surface of attachment to the sacrum, and its own great length show this most plainly, especially when compared with the human pelvis, in which a very different formation prevails. In the horse it forms, with the sacrum, the first of a series of angles, the second being between it and the femur, the third at the stifle joint, and the fourth at the hock.

In the embryo the three bones are quite distinct, the cartilaginous lines of separation being visible for some time after birth, running through the cup-like cavity which forms the socket of the hip joint. The portion lying above and in front of this cavity, and taking in also two-thirds of its own cup, is the os ilii. Posteriorly to the cavity, the bone is divided into two strong branches by a large opening, the obturator foramen, and that portion which lies above it is the os ischii, while the lower division is the os pubis. It is needless to describe these bones separately.

The bone as a whole may be considered as divided into two parts by the contracted neck which forms its middle. The anterior of them is hollowed out externally for the reception and attachment of the glutei muscles. Internally it is rough, and gives attachment to the strong cartilage and ligaments which bind it to the sacrum. The processes extending forwards are called the spinous processes of the ilium (see Fig. 44). Behind the neck the bone swells out slightly for the development of the cotyloid (котv́ η, a cup) cavity, or acetabulum. This is nearly three inches in diameter, and is surrounded on all sides but that looking towards the obturator foramen by a prominent lip. The interval is called the notch, and corresponding with it is a rough depression in the cotyloid cavity, where the cartilage is absent, and to which the round ligament of the hip is attached. Behind the cotyloid cavity is the obturator hole, apparently intended to lighten the bone, being filled up by a strong membrane, the obturator ligament. Above this opening is the ramus of the ischium, which bone also enters into the composition of the hip joint as already described. Posteriorly the ischium terminates in a rough protuberance, the tuberosity (9-9, Fig. 32), which is the rounded projection felt and seen on each side the root of the tail in the living horse. Below the foramen is the os pubis, the anterior part of which is the ramus, and the small section of the cotyloid cavity which it forms, while posteriorly the body unites with the os ischii, to form, with the corresponding bones of the opposite side, the symphysis, or connecting joint between them.

By the conjunction of the two ossa imominata an oval ring is nearly completed, the deficiency being supplied by the sacrum above. The anterior margin of this ring is the brim of the pelvis, and it is upon the size of this as compared with the foal that parturition is in general rendered easy or difficult.

THE FEMUR (ROUND-BONE) AND PATELLA

The Os Femoris, the strongest and heaviest bone in the body, is situated between the os innominatum and the tibia. It takes an oblique direction from above downwards and forwards, and presents a central part or body,
and two extremities. Tt was fomerly callerl the romblbone, from being in the centre of the part called by butchers " the round."

The body, although compressed, is mearly cylimbrical towards its centre; anteriorly, the bone is convex aurl smooth; posteriorly, flattened and rough; superiorly and inferiorly, it is expanded to meet the enlarged extremities.

The superior exthemity is prolonged into a thick, thattened neek,

A. Fitrinal viow of prosterior half of tha: os int nobsinattam.
a. Rough surfare for the attachment of musclos.
b. (")tyloin rim.
c. Jula fosity of the ischum.

1. Cotyloid eavity.
2. lopression in which ther romm latatent (ligamentum tores) is tical.
3. (1)turator lapes.
4. Litermal vinw of the right fomm:r.

\therefore l'ro fantar majo rexternas.
is Tutaralo an the herat of the femmer

- Trumanter mimu evtemms.
- Fiona fir mascmbar insertion.
:13. Trombear surfaees for atticulation with tho

10. Extoran? (and! la.
11. Staraces ationdating with urler extremity of the thia, or lay. bone.
directed upwards and inwarls, so as form an obtuse angle with the :haft. At the point of union are two eminences (trochanters, too $\begin{gathered}\text { àr, to }\end{gathered}$ run or roll) ; one on the outer, and the other on the inner side; and it is from between these that the neek arises.

The trochanter major is prolonged from the posteroexternal margin of the body, and nearly in a line with its axis: it is a large irregular projection, rising into a pyramilal eminence. Fosteriorly; at its base, it presents
an oral cavity, the digital fossa, for the attachment of several small muscles. Inwardly it presents a concamoconvex smoth surface ; ontwardly, a convex and rough one. From the back of the great trochanter a prominent line runs vertically down, terminating in the trochanter minor externus (i, Fig. 33) ; and from this again a roughened ridge descends, taking a course downwards and slightly forwards to the oval fossa situated above the external condyle (8).

The neck is surmounted by a hemispherical smooth head, coated with cartilage, and lodged in the acetabulum ; on it is a deep ovoid fossa, which gives attachment to the ligamentum teres.

The trochanter minor internus, a conical rounded eminence, arises from the posterior and internal side of the bone. It is placed above the trochanter minor externus, which is on the opposite side.

Tife inferior extremity has on each side an eminence (the external and internal condyles), separated by a deep fossa. Between these anteriorly two articular surfaces occur (external and internal), separated by a semicircular groove, in which the patella plays.

The external condyle is larger and projects more forwards than the internal; its articular surface is also broader: the internal presents a tuberosity on its inner surface.

The articular surfaces of both condyles are covered with cartilage, and united anteriorly to the prominences before mentioned, where they form a pulley-like surface, concave from side to side, over which the patella glides. Inferiorly, from before backwards, these prominences converge together, and terminate abruptly on the postero-interior surface of the bone; thus leaving a space between them and this interval, which has been denominated the intercondyloid fossa.

Tile patella, stifle-bone, or knee-cap, lies on the lower extremity of the femur, at the anterior part of the stiffe joint. It is quadrangular in form ; its anterior surface is converse and rough ; its posterior being covered with cartilage is smooth, and is divided by an eminence running over it into two shallow cavities (the superficies of the internal being the larger), which correspond with the trochlear prominences, situated anteriorly to the condyles of the femur. Superiorly it presents a triangular roughened space, bounded by its two lateral angles, which gives attachment to muscles, and inferiorly we notice a fourth angle. These angles are all blunt and slightly rounded off.

Fig. 34.-Posterior View of the Patella.

1. Superior angle.
2. 3. Surfaces gliding on the trochlex of the femur.

BONES OF THE LEG

Tife tibia (so called because the ancient shepherds used this bone as a flute) lies between the fomur and tarsus (hock), forming an angle with each. It is broad, and of a spongy texture above ; contracted and dense below, where it is felt immediately beneath the skin and tendons.

Tue body is of a triangular or prismatic shape above, its angles gradually rounding off kelow, and then expanding laterally to meet the condyles of the
lower extremity. The anterior angle is the shin, and at the upper part of this is a strong tubercle (${ }_{3}$ Fis. 35).

The superion extremity has two integuaty owal and slightly hollowed articulatory surfares, which rewher unon the comblyes of the femur, the awity being deepend in cach by the interention of the semilunar cartilago. Between them are to be seen a sharp elevation and two pits to which the

[^2]erucial ligaments are attacherl. In front is the tuberosity to which the ligament of the patella is fixel. On the sides of the head are the condyles, rongh for the attachment of the comemonding lisaments, and the external having an oral articular fosea for the head of the fibma.
'Tie inferior or tarsil morbenty is much smaller than the superior, lout wider than the berly, and nearly quadrilateral ; its anterior border is flat and rough; its posterior border is alen flat. and presents numerous foramina.

The external border is prominent and rough, and has a groove in its centre. Depending from each side is a process (the internal and external malleolus of human anatomy), serving to strengthen the articulation with the astragalus, and the internal being considerably the longer. Between these are two deep grooves, smoothly covered with cartilage, and having a projection in the middle similarly clothed. The direction of these grooves is obliquely forwards and outwards. Both the malleoli are lined with cartilage, which enters into the joint.

The Fibula is a slender bone, having a slight enlargement at its superior extremity to form the head. On its inner surface there is a layer of articular cartilage to form the joint with the tibia. Below it has a bulbous end, which is free, and affords attachment to the ligamentous fibres which connect it with the tibia. Between the two bones there is a considerable space, occupied by a thin membrane.

The Tarsus, or hock, is made up of several bones connecting the tibia above with the metatarsus below. It corresponds with the ankle of man ; and if the term wrist were to be applied to the knee of the horse, as suggested by certain writers, in order to be consistent the hock must be called the ankle, which would lead to endless confusion. The better plan is to retain the names by which these parts are known in our ordinary language, and to adopt the nomenclature of the anatomical school for any scientific description. Thus the carpus and tarsus of the anatomist are rendered into the knee and hock of the horseman without impropriety, and at the same time without any chance of a misunderstanding.

The tarsus consists of six bones, clisposed in two rows, the astragalus and os calcis forming the upper one, but the former bone alone entering into the tibio tarsal, or hock joint, with the tibia.

The Astragalus (á σ tó́yados, a die) is an irregular bone, situated in front of the os calcis, between the tibia and the os

Fig. 36.-Internal View of Tarsal Bones.
2. Inferior extremity of the tibia.
c. Internal malleolus.
b. External malleolus.
3. Os calcis.

4 and 5 . Surfaces of articulation on the astragalus, which, together with corresjonding ones on the tibi:l, form the great hinge-joint of the skeleton.
c. Tubercle on the astragalus for the attachment "f liganents
6. Os scaphoides.
7. - cuneiforme magnum
8. - euneiform parvun.
!. - Large inetatarsal bone.
10. Internal small metatarsal bone. scaphoides: it is divided into five sur-
faces: first, the supero-anterior surface, pulley-like and articulatory, corresponds with the inferior extremity of the tibia, and consists of two semicircular prominences, separated by a deep groove, taking a course obliquely outwards and forwards; secondly, the inferior presents a smooth convex surface with a roughened depression posterionly, for ligamentous attachment, and articulates with the superior face of the as seaphoides;
thirelly, the pontorion is incernhar, and pements on its surface four smooth
 excavations. 'The external site is maked by lisamentoms impersions; the anternal, smoother than the extemal, presents behimi and behow a little tuberele, which gives attachment to ligaments.
 presents two surfaces, two borders, and two extrenities; the external surface is almost platin; the internal is exavated as a growe ; the anterion is slighty concave; the postomion is staight and roughoned; on the superion "xtremity is a thick tuberons termination, to which the hamstrings are attached; its inferior extremity is later and concave, and presents four surfaces for articulation with the astragalus, os cuboides, and os scaphoides, and a median rough interspace to which ligaments are attached.

The Os Cubones (κ v́pos, a cubre) is situated m the pastero-external sides of os cumeifome matmum and os seaphoites, between the inferior extremity of the us ealcis and the head of the extermal small metatarsal bone and also a portion of the superior extremity of the large metatarsal bone. It presents six surfaces: a superior, which articulates with the os calcis: an inferior by two facettes corresponds to similar ones situated on the large and external small metatirsal bones just mentioned; internally two arthrodial surfaces occur, which face with similar surfaces on the os cunciforme magnum and os scaphoides. The extemal, anterior, and posterior surfaces are roughened for ligamentous attachment.

The Os Scaphomes is in figure thiangular ; the superior surface, smonth and slightly concawe, is entirely articulatory, with the exception of a little groove, ruming to its middle from the outer side; this surface corresponds with the under surface of the astragalus. The inferior surface is similar to the superior, except that it is slightly convex, and articulates with the superior surface of the os conciforme magnm, and also on its internal angle with the os cunciforme parvom ; it ofters also, on its postero-external face, two small diarthrotial surfaces for articulation with the os cuboides ; in the rest of its extent, it is roughened for ligamentous attachment.

The: Os Cunemfonue Magnum.-This bone, although smaller than the scaphoil, at the same time greatly resembles it ; its superior surface articulates with the inferior surface of that bome ; the inferior surface articulates with the larse metatarsal bone; its extemal border is provided with two arthrolial spots for articulation with comesponding ones on the os cuboides. the internal borler alsw offers a spot which articulates with a similar one on the wemeriome farwm ; its anterior border is roughened throughout.

The (). Conemponme Panven is situated on the intemal side of the tillous 'This bome, smaller than all, is prolonsed from before backwards, flatten'd from one side to the other, and articulates with the os cunciforme magnum and with the lame and intemal small metatarsal bones, to which it correspond hy four surfaces conered with cartilage.

METATARSAL AND PHALANGEAL BONES

Tife Metatarsal and Phalangeal bones, known to the horseman as the cannon-bones, the pasterns, and the hind-feet, resemble so closely those of the fore extremity, that it is unnecessary to repeat the description of them here.

CHAPTER XIX

OF TIIE JOINTS, AND THE TISSUES ENTERING INTO TIIEIR COMPOSITION

GENERAL REMARKS—CARTILAGE-FIBROUS TISSUE—FIERO-CALTILAGE-SYNOYIAL MEM-RRANES-CLASSIFICATION OF THE JOINTS-MOVEALENTS OF THE JOINTS-ARTICULATIONS OF THE VERTEBRAL COLUMN-THE LIGAMENTUM NUCHEE, OR GREAT CERVICAL LIGAMENT, AND OTHER PECULIARITIES IN THE LIGAMENTS OF THE NECK-MOVEMENTS OF THE VERTERRE IN GENERAL, AND OF CERTAIN OF TIIEIR JOINTS IN PARTICULARTHORACIC ARTICULATIONS—PECULIARITIES IN THE ARTICULATIONS OF THE LUMBAR VERTEBRE—THE LUMBO-SACRAL ARTICULATION AND SACRAL LIGAMENTS-THE COCCYGEAL JOINTS-TILE TEMPORO-MAXILLARY ARTICULATION-TIIE SACRO-ILIAC ARTICULATION - ISCHIO-PUBIC SYMPHYSIS - THE SHOULDER JOINT - THE ELBOW JOINT - THE INEE JOINT (CARPUS, OR WRIST). - INTER-METACARPAL ARTICULATIONS - FETLOCK JOINT—TIIE PASTERN JOINT—THE COFFIN JOINT—THE ILIP JOINT—STIELE JOINT OR CONO-FEMORAL ARTICULATION-TIBIO-FIBULAR ARTICULATION-TIIE ILOCK JOINT-TARSO-METATARSAL ARTICULATION - TERMINAL ARTICULATION OF THE POSTERIOR LIMBS.

GENERAL REMARKS

The joints are all formed between two or more separate bones, having a suft and elastic substance interposed, whose structure varies with the amount of motion. Where this is extensive, as in the joints of the limbs, the adjacent surfaces are covered with a peculiar kind of cartilage arranged in a thin and very smooth layer upon them. In addition to this protection against friction and vibration, the bones are firmly bound together by strong bands of white fibrous inelastic tissue under the general name of ligaments, each bundle receiving a distinct appellation. In those situations where the motion is limited, a mixture of cartilage and fibrous tissue is inserted between the ends of the bones and attached to both, as in the vertebre, ischio-pubic symphysis, etc.; while in order to reduce the vibration and friction in certain important joints fibrocartilages are introduced, with both surfaces free, and in contact only with the usual layer of cartilage, as in the stifle and jaw. A lubricating fluid (called synovia) is required to reduce the amount of friction; and to produce it, as well as to keep it within proper limits, a membrane (synovial) is developed. This is attached to each
lone in a peouliar maner, to be presently descoibed. Lastly, an elastic tibrous tissue (rellow) is met with in certan situations, the most remarkable being the sreat ligament of the neek. Each of these different structures will require a sparate docription ; for as the diseases of the joints are of ureat importane, a knowledge of the structure of their component parts must be carefully obtained before entering upon the treatment with any hope of success.

CARTILAGE

Treme carthane (which is familialy known to all when it shows the latge white masses in a breast of val, as dressed for the table) is a homowonems, white, semi-tansjament subtance, possessing a certain amome of chasticity, and easily cut with a linife. In the eary embryo it exists as the whe fonimbation of the skeleton, bone being afterwards deposited in its menter and finally substuted for it. This is called the temporary cartilage. In after life it invests those parts of the bones which enter into the componition of the joints (articular cartilage, which is what we are considerins just now), and alsu forms the costal cartilages, the ensiform and cariniform cartilages, and those of the larynx, trachea, and mose Reticular or mrmbuniform cartilage, differing slightly from true cartilage, is met with in the Euntachean tube, the external car, and the epiglottis.

Smecture-On putting a slice of true cartilage under the microscope, it is seen to consist of a number of minute cells disseminated through a vitreons substance. The cells are oval, oblong, or polyhedal in shape, and more of less thattened by packing. The membrane forming the cell-wall is wailly Wended with the matrix, but sometimes consists of concentric layers. White fibres usually enclose the mass of cells, and even dip sometimes inter those cells more superficially placed. The cells or corpuseles are contained in lollow cavities, called lacune. Sometimes they do not entirely fill up the bacune, so that a vacant space is left. The compascles are usually dispersed in wroups, varying in size and form, through the matrix ; the groups towarts the surface of the cartiaze are senerally flatened conformably with the surface. In articutar certitage, the matrix in a thin seetion appears dim :mul presents a gramular aspect, the colls and nuclei of which are small. The parent-cells enclose two or three younger cells. The groups they form are flatemed near the surface and lie paralled with it. In the internal part of this cartilate the cells assume a linear direction, and point towards the surface. Near its attached surface cartiage blends with the bone, the eells aml muclei of which become suromoded he little granular bodies, which arem to be the rudimentary depesit of lome. In costal cartitege the cells are rery larse; they contain two or more muclei, which are clear and tranopirent, abl sume contain a few oil globles. The cells, internally situaterl, form oblong grouns, dinposed in lines radiating to the dircumference. We observe a great quantity of intercellular tissue, in the form of white fibrous structure, the filnes of which are parallel and st raight.
 substance, which covers the external surface of all cartilages, except those
of the joints. In this membrane the blood-vessels which supply the cartilage with blood, ramify. It is analogous to the periosteum which covers the external surface of bones.

Nerves.-No nerves have been traced into any of the cartilages; they are destitute of sensation while free from inflammation.

Blood-vessels.-Cartilage is non-vascular ; it receives its nourishment from the bone and perichondrium by imbibition. The law of endosmose coming into operation when the tissue is thick, as in the costal cartilages, canals are formed through which the ressels pass to supply the parts which are too far removed from the perichondrium. In articnlar cartilages no vessels enter. When cartilage is remored by mechanical means, or by absorption, it is not regenerated, and when fractured, as in the ribs, there is no reunion by cartilage, but by fibrous, or most frequently by osseons deposition.

Cifemical Composition.-True cartilage contains three-fifths of its weight of water. It is ascertained that the cells and the intermediate substance are composed of different materials. The membranes of the cartilage cells are not resolved by boiling, and offer a lengthened resistance to alkalies and acids. The contents of the cells coagulate in water and dilute acids, and are dissolved by alkalies. The intermediate substance consists of chondrine, which differs from gelatine in not being precipitated by the mineral acids.

FIBROUS TISSUE

Fibrous tissce exists very generally throughout the body, being composed of fibres of extreme minuteness. It is found under three forms, as white fibrous tissue, yellow fibrous tissue, and red fibrous tissue.

White fibrous tissue is composed of cylindrical fibres of exceeding minuteness, transparent, and undulating. They are collected first into small fasciculi and then into larger bundles, which, according to their arrangement, compose thin layers or membranes, ligamentous bands or tendons. The membranous form is seen in the periosteum and perichondrium, the fasciee corering rarious organs, the membrane of the brain, etc.-Ligaments are glistening and inelastic bands, composed of fasciculi of fibrous tissue generally ranged side by side, sometimes interwoven with each other. These fasciculi are held together by separate fibres, or by areolar tissue. They are of all forms, from the round band to the expanded membrane known as a capsular ligament-Tendons are constructed like ligaments, but usually in larger and more rounded bundles. Sometimes they are spread out in the form of aponeuroses.

Yeblow fibrous tissue is also known as elastic tissue, from its most prominent physical characteristic, in which it differs from white fibrous tissue. It is so elastic that it may be drawn out to double its natural length, without losing its power of returning to its original dimensions. Its fibres are transparent, brittle, flat or polyhedral in shape, colourless when single, but yellowish when aggregated in masses. When this tissue is cut or torn, the fibres become curved at their extremities in a peculiar manner. It is met with in the ligamenta subflava of the vertebre, the
lisamontum colli, the clondar vocales, and membenes of the larnyx and trachea, and the midile coat of the arteries.
 prwer of contracting under certain stimulants, is intermediate between rellow fibrous tisue and muscular fibre. Its fibres are eylindrical, transparent, of a reddish colour, and collected in bundles. It has no connection with the joints, but is met with in the iris, around certain exeretory ducts, and in the coats of the veins.
('hemical C'mposition. - The flexibility of fibrous tissue is owing to the presence of water in it, of which it contains about twothieds of its weight. A tembon or ligiment will realily dry and become brittle. Aectic acid causes it th swell up, and here the acil discloses the existence of nuclei and dastic fibres. It is chiclly composed of gelatine, which is cxtacted by beriling.

Blood-epserls.-White fibrous tisue contains few blood-vessels. Ther lavally follow the course of the fasciculi; in ligaments they run in a longitudinal direction, sending off communicating branches across the fisciculi, and eventaally forming an open network. The periosteum is much mome vascular, but the vessels do not strictly belong to the membrane, as the ramifications found in it are chictly intended for supplying blood to thr bene which it covers.

Sores.-Small tendons contain no nerves, and large ones only small tilaments. In the periostem, nerves are abundant; they exist there - hiedy for supplying the hones with sensibility. The pain caused in rheumatism, which is an intencely painful discase, is a proof of the sensibility of white fibrous tissue.

FIBRO-CARTILAGE

This strastance, intermediate in structure and uses between eartilage and fibrous tissue, is composed of a network of white glistening fibres collected into fasciculi of varions sizes, and containing within its meshes cells and a sul)fibrous tissue resembling that of true cartilage. Fibrocartilage atmits of arrangement in four groups:-

1. Interabtideliz mbeo-canthase is placed between the moving surfices of bones. It serves to comect them together, to facilitate their orliling motion, and to act as a cushion, thas preserving the articular surfaces from attrition, and the bones from the effects of sudlen concussion. It is usually placed where much motion is enjoyed, as in the lower jaw and knee, in the form of womb wal plates growing thimer in the centre. Marginal cartilages such as that around the cotyloid cavity are of the same kinel.
\because Stratimon fhber cabthase form a thin coating to the bony grooves wer which tembons play.
:3. Interosseous fimo camtilase ocurs between the vertebre, at the inchiopulice smphysis, ete.
2. Fiees rimo camthages are met with in the tarsal cartilages of the eyelids, ete.

SYNOVIAL MEMBRANES

The synovial membrane is a thin layer, which invests the articular cartilages of opposite bones, and is continued from one to the other by being reflected beneath the ligaments which comect them. It resembles the serous membrane in being a shat sac or bladder, and a synovial capsule may be compared to a small bladder, containing only as much fluid as will adhere to its interior, placed between the opposite ends of two bones forming a joint. The secretion formea by it, synovia ($\sigma \grave{v} r^{\prime}$, together, coór', as eqg), is alkaline, and contains albunıen, which is coagulable by boiling. Heale has ascertained, by the aid of the microscope, that this membrane is actually reflected over the articular cartilage, a point which has been lonis disputed. Besides the joints, the synovial membranes also form smaller sates which lubricate the tendons as they pass over the ends of the bones, and which are called burse mucose. The epithelium lining these membranes is of the kind called tesselated ; it is developed in the same manner with that of other free surfaces, being continually reproduced as it is worn away. Synovial membranes, in many situations, are closely and completely invested externally by fibrons layers-the fibrous capsules, as they are termed. These fibrous coats are met with especially in situations where the articulation is either wholly unprotected or but thinly cosered by soft parts; or where a very firm connection is required, as in the hil, joint. They are absent where muscles or ligaments rest upon the articunation; or where, for speciai purposes, the synovial membrane is exposed to more considerable movements, as in the knees.

The synovial capsule is attached, either simply to the cartilaginous surface, extending thence directly to the other bone, or it may, in the first place, besides the cartilage, also invest a larger or smaller extent of the surface of the bone itself, and then pass to the second bone, with which it is connected in the one way or the other.

Synovia is a viscid transparent fluid, of a pale straw colour, slightly alkaline. In chemical and general characters it is like the serum of the vlood. A drop of synovia is found to contain-fat molecules, epithelial celis, and small granular corpuscles, iearing a close resemblance to the white corpuscies of the biood. This fiuid on account of the presence of albumen, is coagulabie by neat.

CLASSIFICATION OF THE JOINTS

The skeleton has already been described as composed of different pieces of bone, united to each other in various manners: from this union result the artieulations, which are sometimes very movable; sometimes joined to wach other through the medium of long digitations or teeth, which fix them, if not to immobility, at least to a very constrained movement ; and, lastly, mited together through the medium of cartilage, the elasticity of which permits latitude of movement. In the first ease, the articulations take the name of diarthrosis or movable articulations ($\delta \dot{a}$, through, and äpepov, " limb); in the second, synarthrosis (ovv, together, and ä $\rho \theta \rho o v$, a limb); and
 time, of the two clasis of articulation abow mentioned-mamely, synarthoosis, in the contimuty establinod by the articular surfaces ; and diantmosis, in the limited extent of mownent it permits.

The guile the the dasifiation of joints is the comfiguration of their articular surfaces, and the mosements they allow.

1. Enarthoois. This lime of joint is characterizel be the reception of an articular heal into a cavity of alpopriate fomm. It is the seat of most extensive movements; mamely, flexim, extension, adduction, aloduction, ciccumblation, and rotation. Example: Sectabulum with femur.
‥ (inglymus. A perfect hinge-jeint, the articular surfaces of which are contigured in a trochlear armagenem, in such a manner that wo or more prominenes may fit into 1 wo more excatations of apmpate form for their reception. Their mly mowements are tlexion and extension. Example: Tibia with the antragalne.
:3. Arthrodia (a kind of shallow aticulatiom), comsinting almost of plain surfaces. (iliting is the only possible mosement. Example: the Ciapometacapal articulation.
 be examined as parts of the bomy skeletem:-
2. Ilamonia, in which the bones are joined by aposition, ats in the nasal bones.

2 . Schindylesis, in which a ridge or keel projects into a cleft. Example: Vomer with sphemid.
8. Gomphosis. Like a mail in its sucket, as the teeth in the alveoli.
4. Sutura. Indented, and sublivided into sutmar sermata, as in the fomtal bones, and sutwa squmona, as in the union of the parietal ant temperal bomes.
 manner of diarthodial surfaces. At wher times they are more or less rough. These joints are mited together for the most part by fibro-cartilage. Their extent of movement depends om the thicknese and elasticity of the interarticular fibro-eatilage. They do not glide, therefore, one over the wher. Only one species of amphiarthosis exists of which the articulations of the vertebra, the ischio-pubie symphere, and the intemetacaral joints ate examples.

MOVEMENTS OF THE JOINTS

Tan: motmse frmited in the joints are four-mamely, glinling, angular motion, circumbluction, and rotatim.

1. (immat: is the simple motion of one beme und the other, without materially altering their relations.
\because. Axidan motos may be either limiterl to one plame, as in the tracehinge, or it may be extemded to more, when the motiom becomes nearly allied to circmatuction. The elbow and hook are examples of the former, as, indeed, are mon of the homes jointe.
2. Cincembecton is a motion very little seen in the large joints of this
animal, and is confined to the hip and shoulder joints, in which it is far more limited than in the corresponding joints of the human frame. It is displayed when a limb is made to describe a segment of a large circle around the joint which connects it to the body.
3. Rotation is the movement of a bone on its own axis, and is only seen in the horse in the joint between the two first vertebre of the neck.

ARTICULATIONS OF THE VERTEBRAL COLUMN

Tine vertebre are connected together by ligaments, fibro-cartilage, and synovial membranes; the first two serring to retain them in position ; the last to facilitate motion. They correspond, firstly, by their bodies; secondly, by their spines ; and thirdly, by their oblique and transverse processes. It is necessary to state, that the general details into which this study leads us will apply only to the articulations which unite the sis lower cervical vertebre, the dorsal and lumbar vertebre, and the sacrum.

Tue bodies comect themselves by their surfaces, which in the cervical region represent, 1st, the anterior, or true head; End, the posterior, or glenoid cavity, which receives the head of the vertebra immediately belind it. In passing from the first dorsal to the sacrum, these tend to efface themselves, and become plainer; nevertheless, they preserve throughont the one its convexity, and the other its concavity. Their means of union are-(1) fibro-cartilages, interposed between the articular surfaces; (2) a common superior vertebral ligament; (3) a common inferior vertebral ligament.

The intervertebral filno-cartilages are circular or elliptical dises, convex before, concave behind; firmly fixed to the surfaces of the bones which they separate. The fibrocartilaginous substance which forms them is composed of an external laminar part, constituting the cireumference of an internal soft or pulpy part, which occupies the centre. The laminar part forms more than half the whole mass, and consists of lamine, or plates of fibro-cartilage, and fibrous tissue, alternating one with the other. The centual part is a pulpy, elastic material, which is of a yellowish colour, and destitute of the concentric arrangement seen externally. The fibro-cartilages join at their circumference the two common vertebral ligaments, and in the vertebre of the back help to form the intervertebral cavities destined for the reception of the hearls of the ribs.

The superior vertebral ligement within the spinal canal, and attached to the posterior surface of the bodies of the vertebre, extends from the dentata to the sacrum. In the neck, it spreads across the bodies ; but in the back and loins it is broader opposite the intervertebral cartilage than opposite the bodies of the bones. It adheres firmly to the fibro-cartilages and to the contiguous margins of the bodies of the vertebre ; but it is separated from their middles by a transverse venous plexus.

The inferior vertebral ligament reaches from the fifth dursal vertebrat to the first bone of the sacrum ; becoming broarler and broader as it approaches the sacrum, along its course it comnects itself to the inferior spines of the boolies of the vertebre and to the intervertebral dises.

The union of the vertebre througil their spinal part is effected by a superior spinal ligament and an interspinal ligament.

The suprospinums ligtemernt comsints of small compresied bumdles of longi

The interspimel ligements comsint of fibmos phates, filling up the spaces
 Thus of of then diben pases from the anterion border of one spine to the funtrin lander of the one latioe it, taking a direction from below, forwats
 anterine berder of that situatend belime it, taking a direction from below, "pwatels and bathwards.

 Theirathehment extemb form the mots of theolligue processes to the origin
 When of the sertebral pates whinh are in fromt. Their posterior edges are attachent the thentior edges and inforion face of the plates which are

[^3]Whend. The lizamenta subtiava du not exist letween the oceiput and athas, or Wetwern the athan and dentata.

 1he anm lux itw it.
 wher. Thma rabules throughot the vertebse of the back, are protwand he white fibmos tisume but in the cervieal region the fibres
 wwing the the size of their arthomial suranes latitude of movement is
 ragion.

THE LIGAMENTUM NUCHCE, OR GREAT CERVICAL LiGAMENT, AND OTHER PECULIARITIES IN THE LIGAMENTS OF THE NECK

 the lowerine of the hat in erazinge and of rainge it for varions purposes, an woll an halaneing ite great weight at all times. lateral flexion and
rutation on its orn axis are also neessitated for the purvose of directing the muzale right and left of the straight line, an 1 for these several motions the following deviations from the ordinary rertebral joints are developed.

Tife ligamextum nucies, or great cervical ligament, is intended to relieve the muscles of the neck in supporting the head by its natural or inherent elasticity. It is entirely formed of yellow elastic tissue, and occupies the angle formed posteriorly by the anterior dorsal spines, and inferiorly by the cervical spinons processes, thus separating the cervical muscles of the right side from those of the left.

Fig. ss.-Profile Yiew of tife Great Lighient of tue Neck.

1. Crest of the occipot.
2. 2. Cervical vertebre.
1. 3. norsal vertebre.
1. 4. 4. Borsal spines.
1. 5. 5. Cordiform or funicular bortion of the
ligamentum nurho.
1. Cordiform prontion of the ligamentum colli mixing with the supra-spinous ligament.
2. T. Lamellary portion of the ligamentum nucho. S. S. S. lutersimous ligaments.

It is divilad for description into two parts-a funicular and lamellary portion. The first, designated under the name of the cord of the cervical ligament, is representel by a large band, which extends immediately from the dorsal spinons processes to the top of the head, divided into two lateral lips by a mesian line. The cord is connected posteriorly with the supra-spinous ligament, and is inserted anteriorly into the scabrons pit, situated just below the crest of the occiput. It is covered superiorly by a mass of thick adipo-fibrous tissue, much developed in low-bred animals. Inferiorly it gives off the lamellary portion, which is composed of two plates united by cellular membrane. These lie between the two sets of muscles, and give off six tongues or slips, which unite with the spines of the six posterior cervical vertebre, mixing with the fibres of the interspinous ligaments.

Tie Atlas is united to the occiput by lateral ligaments, which bind itis articular surfaces to the condyles of the bone-also by two inferior ligaments and synovial capsules.

The two lateral ligaments, broad and membranous, arise from the supero

 with imilar latus wh the in-itu of the rinus ut the

 h ham town har.

MOVEIIENTS OF THE VERTEBR压IN GENERAL AND OF CERTAIN OF THEIR JOINTS IN PARTICULAR

The anout of notion between any two vertebre is extremely limited, with the exception of the atlo-axoid articulation, in which the degree of rotation is considerable. But when the spine is viewed as a whole, these slight individual movements multiplied together are sufficient to allow of flexion and extension, as well as of inclination to either side. In the region of the back the joints are rigid, in the loins less so, but in the neck and tail steat liberty is allowed. Flexion and extension, as well as lateral motion, are dependent entirely upon the elasticity of the intervertebral substance, which allows of one part being compressed while the other is extended. Thus, when the loins are arched upwards the lower edge of this substance is compressed, while the upper part assumes a more expanded condition, ant at the same time the spinous processes are separated more widely, and their ligaments are stretched. The reverse of this takes place when these bones are arched downwards, while in lateral inclination the sides are compresserl and expanded in a corresponding manner. Tery slight rotation of the whole spine, or more properly twisting, is permitted by the elastic nature of the intervertebral substance ; but in the atlo-axoid articulation a perfect rotation occurs around the centre of the odontoid process, allowing the muzzle to be turned in either direction, which could not be done without an arrangement of this nature. The capsular ligaments and the superior and inferior atlo-axoid ligaments are necessarily lax to allow of this motion. Lastly, the great ligament of the neck serves to support the weight of the head, which would be too great for the muscles of the neck, in consequence of the length of leverage which is presented.

THORACIC ARTICULATIONS

The articulations which unite the bones composing the thorax may be divided first into costo-vertebral articulations, or those which unite the ribs with the spine ; secondly, chondro-costal, or those which unite the ribs with their cartilages ; thirdly, the chondrosternal, or those which mite the cartilages with the sternum ; fourthly, the articulations of the cartilages among themselves.

Eacir mab (with the exception of the first ant last) is comected with the bodics of two rertebre, the three bones, together with the intervertebral substance, forming two joints which are separated from each other by a band of fibres passing from the head of the rib to the intervertebral sub)stance. Besides these there is also an articulation between the rib and the transverse process of the vertebra behind it.

The superior costo-vertelaral ligament connects the head of each rib to the sides of the bodies of the vertebre, and is divided into three bundles, of which one bundle (the middle) passes to the corresponding intervertebral fibro-cartilage, whilst the anterior passes to the body of the vertebra before, the posterior to the body of the vertebra behind. This ligament is called
the sumpan sullate lixament. From the inforin surite of the neck there is a ligatmont, whinh is diymund in the samu wity inferionty :the foregoing is sundions, in attanhing the ribe the thenties of the vertebre. This is called the jutorion sudlate ligimment.

$\therefore .2 .+1 \times$ surior costo-vertebral or stellate benment.

 tuberele of the rib, is a sumeth convex articular suffee, which is in apposition

Fonor lignments strenshen this atioulation. Fiast, the pesterior costo-
 from the penterior sumian of the smmmit of the transorse process, to the

 articulation.
 continumed with the comedembine contorertebral joints.
 complonis of the symathenlial joints. It is fommed by the implantation of the infurin extrmity of the rib into the surerior extremity of the cartilage,
which presents a surface corresponding with the rough depression in the end of the rib. Further strength is given to this articulation by the periosteum,

Fig. 41.-1xferior Vien of the Custo-Vertebril Articulations.

1. 2. etc. Inferior common vertebral liganent.
1. 2. etc. Inter-fibro-cartilaginous dise.
1. 3. ete. Inferior costo-transverse ligament.
1. 4. etc. Inferior costo-vertebral ligament.
which, in passing from the bone to the cartilage, forms a strong uniting band.

The ciondro-sternal articulations occur between the inferior extremity of the cartilage of each rib, and the oblong cavities existing along each side of the sternum. The eight anterior cartilages form, with the fosse in the sternum, eight corresponding articulations.

The joints which result from the union of these two surfaces are

Fig. 42.-Proflle Yiew of Stervo-Cotal and Ciondro-Costal Articulitions.

1. 2. Anterior end of sternum and caniniform cartilage.
1. Ensiform eartilage.
2. 3. ete. Sternal eartilages.
1. 4. ete. Chondro-stemal articulations.
1. 5. etc. Ends of the true ribs with the articulations between them, and the cartilactes seen butween 3 and 5 .
enveloped on all sides by fasciculi of white and extended fibres, the whole of which constitute a ligamentous capsule. The superior fibres are sometimes described as the superior chondro-sternal ligament. The inferior are continuous with the origin of the pectoral muscles.

The foremost chondro-sternal articulation is not separated from the corresponding one on the opposite side. The two cartilages being close together,

 lignter it.

T\%, "atermal ar fink motilats are miterl one to the other by a yellow
 1"-n

 intorine armal lisamonts. Tha longitudinal fibers are mixed with those

PECULIARITIES IN THE ARTICULATIONS OF THE LUMBAR VERTEBRIE

 Whon, hat the fifth dither in having on the powterion pate of each trans-
 untines it with the sixth. This last hate alse form atriculatery surfaces on

 s:themm.

THE LUMBRO-SACRAL ARTICULATION AND SACRAL LIGAMENTS

 athl the satcom is masually thick, amd the jaint is protected alow ex.

 allulw) (a.

 mited by ossilication.

THE COCCYGEAL JOINTS

Tile sacro-coccygeal and inter-coccygeal articulations are comstructed much after the same principle as the other vertebral articulations. The coccygeal bones, however, are only united together by their bodies. The anterior and posterior articulatory surfaces of each vertebra

Fif. 43.--Articulations of tie levmbar Vertfrre with the Sacrum.
A. Last three lumbar vertebre.
B. Saerum.
C. C. Hliae bones.

1. 2. Transverse process of fouth lumbar vertebra.
1. 2. Transverse process of fifth lumbar vertubra.
1. 3. Tiamsverse process of sixth lumbar vertebra.
1. 4. ete. Inferior common vertebral ligament.
1. 5. Ligamentous fibres covering the cajpules jetween the transverse processes of the forath and fifth lumbsar vertebrae.
1. 6. Cajrsular ligaments waiting together the fifth and sixth lumbar vertebid.
1. 7. Lumbu-sacral lignments.
1. S. Sucro-iliac ligaments.
are both convex, and their inter-articular fibro-cartilage is hollow on both surfaces. As to ligaments, they are represented by bundles of longitudinal fibres spread on the surfaces of these bones, which they envelop in a common sheath.

THE TEMPORO-MAXILLARY ARTICULATION

The lower Jaw articulates on each side by one of its condyles with the glenoid cavity of the temporal bone. Between them is placed an iater-articular fibro-cartilage, with one synovial membrane above and another below it.

The articular surfaces above mentioned do not exactly fit one into the other. This, however, is corrected through the interposition of a fibrocartilaginous disc between them. This disc represents an irregular plate, thattened above and below, thicker in front than behind, moulded on each
sufare, whid it spatas, so that its superim foter pronts in front a con-
 and it commenty behiml, whid is bulied in its ehomid cavity. As to its infering face it is imhontel by andmer furmw, in which the condyle of the

 is attahent be its mise th the articular surface which it unites, as well as

 nally by smowal membames. The larem of the two, after liming the upper surface of the Jine, is retheoted upwat to the oflemid cavity of the temperal bone. 'The inforior s.mowial membrane is interposed between the inferionsurture of the cartiane and the comble of the hower jaw ; and thus a double joint is comstituml.

Th, raternal letoral ligement is a short fasciculus of fibres, attached sumpuny to a tuberoular prominence, situate on the superoexternal part of the simamons temperal bone, and inferiorly to the extemal surface of the combly, ant the the posmexternal surface of the neck of the lower jaw, just bolow the comlyle ; its fibres take a backward and downward

The informel letiral ligement is loowe amb more chasated than the external. It atoml from the immer surface of the spamons temporal bone to the ratilate amd immen surfor of the condyle of the superion maxillary bone, rambins down the ther part of its angle.

Monamixt. - The tompmomaxilary articulation is the centre of every movement of the lawe jaw. These are-ctevation, lowering, lateral mownumt, amb horizontal stidins. which motions tosether acomplish the ertuling atton neromary to triturate the hate gratin upon which the hure tomb.

THE SACRO-ILIAC ARTICULATION

 and is formal by the sarum and os immmatum. It behongs to the arthro-
 utioular sumbe, lined with at thak layer of artilate which is fomly unted

 and f, the sumpuratic.

 sammand internal bumber of the ilium. The informe half of this lisament
 tomore, is hidhlon he the iliun.

The sumpron ilinsterel ligement is a latses, stroms, shot ligament, which, aring imm the intemal part of the ilim, is arried barkwarls and fixes
itself upon the sacral spines, where it mixes its fibres with the supra-spinous liganent of the lumbar vertebre.

The inferior ilio-sacral ligament is a triangular and very resisting membranous band, formed of parallel fibres rumning obliquely from above downwards, and from before backwards. It is attached by its interoinferior edge to the superior half of the ischiatic border and the internal angle of the ilimm, mixing itself with the preceding ligament; its superior

Fig. 44.-Profile Yiew of mime Ilio-Sacral and Sacro-Sciatic Ligamests.
A. Os ilium.

Is. Os pubis.
C. Os ischium.
1). Femur.
E. Trochanter major externus.
F. large tubercle at the head of femur.
G. Heat of the femur.
II. Rim of the entylid cavity.
K. K. Sacral spines.
N. M. O. Tubercles on the antero-inferior spinous process of the ilium.

1. 2. Superior iliu-sacral ligament.
1. 3. 4. Sacro-sciatic ligament.
border inserts itself upon the roughened ridge which bounds the sacrum laterally ; its posterior border is united to the aponemroses which cover the coccygeal muscles.

The sacro-sciutic ligament is a rast membranous expansion, stretched upon the side of the pelvis, between the sacrum and the os innominatum; it serves rather as an inclosure for the pelvic cavity than as a means of securing the firmness of the sacro-iliac articulation. Its form is irregularly quadrilateral, presenting four borders-a superior, attached to the lateral roughened edge of the sacrum ; an inferior, inserted in the ridge below the cotyloid cavity ; an anterior, mattached in a great part of its course, and serving as a protection to the large vessels and nerves which pass through the sciatic notch ; and lastly, a posterior margin, which splits into two laminæ, between which the semi-membranous muscle takes its origin.

A synovial membrane covers the sacro-iliac ligament, but furnishes it small quantity of synovia.

Movenerts.-The two sacro-iliac articulations, through which all the
 ＂ithent intorforing with the tamomission of locommike foree，permit but a

ISCHIO－PUBIC SYMPHYSIS

 the foral thin is a distinct jome possessing an inter－articular cartilage， and sume tamsere ligamontons fibres above and below ；but in the adult hone the two bomes am dimbly united hy asification，and the ossa inno－ minata lwerlher form a complete arch，without the slightest movement betwern them．

THE SHOULDER JOINT

 formoll be the abula miting with the hamerne，at an obtuse ande．
＇The matetole sheacts which compose this joint are the heal of the
 demeriberl and illutaterl at bages ：3－ib，it will be seen that the head of the
 and incalablo of mantamint the fommer in its plate without some collatemal aill．It is anmewhat semakable that the ligments of this joint are ex－
 （apsule，which is su how that after removing all the other soft parts，and making a small wenine into the joint，the two lome miy be ratdy separated

 states that a ligamont descem！from the comanid process of the scapula， whinh diwere athl hocomes inserted into the tubreles at the anterior part of the hat of the hameros．Ile also states that it is lowe，and therefore

 laterally two stays，smilat th two pime of tap．The extemal one，arising from the duter lif，if the elemoid ratity，is attanded to the outer and batek part of the hat of the hamern．The internal ome arises from the inner
 beat of the humaras．
 material in remisting dindeations．The whole joint is surroumbed by elastic

Anteriorly, the Coraco Humeralis, and Flexor Brachii.
Externally, the Antea Spinatus, and Postea Spinatus.
Posteriorly, the Scapulo-Humeralis Posticus, etc.
Internally, the Subscapularis, etc.
Whenever, therefore, any violent strain is thrown upon the joint, which would force the head of the humerus forwards, the Coraco Humeralis and Flexor Brachii contract and prevent the accident. In the same manner, each of the above muscles acts in its own direction, and the result is that dislocation of the humerus in the horse is extremely rare.

The movements of the shoulder joint in the horse are much more limited than in man, and indeed they are almost confined to flexion and extension. When all the muscles are cut away from the joint, rotation and circumduction may be easily effected; but in examining its movements during life, it will be evident that neither one nor the other of these acts can be effected in any appreciable clegree; this is at once prosed if it is attempted to turn the foot inwards or outwards, when it is flexed at the knee, during the life of the horse, for beyond the slight motion of the whole limb, including the scapula, the foot is firmly fixed, and there is not the slightest rotation or circumduction at the shoulder joint. Without the power of pronation and supination possessed by man, and partially by the clog and cat, the above actions would be worse than useless, and it is altogether a mistake to ascribe to any other of the domestic animals, as Chaureau has done, in addition to flexion and extension of the shoulder joint, the four movements of abduction, adduction, circumduction, and rotation. ${ }^{1}$ It would much puzzle that generally accurate anatomist to turn the horse's foot up in front so that its possessor could see the sole ; yet if circumluction and adduction were permitted, this could readily be done as by the domestic cat or dog in

Fig. 45.-Profile View ce the Scapulo-1Jumeral, or Shoulder Joint.
A. Inferior third of sea. pula.
B. Coracoid $1^{\text {rocess }}$ of scapula.
C. Analogue of the acromion rrocess.
D. Rim of glenoil eavity.
E. Superior third of humerus.

1. Capisular ligament.
2. Fendon of the coracoradialis muscle. licking the inside of the fore-i The shoulder joint is, in fact, a true hinge (ginglymus) in the horse, ass, cow, sheep, and goat, but in the first of these animals it is more especially limited in its movements, by the enormonsly powerful muscles which surround the joint, and which are constantly tense, though extremely elastic, and giving way to every voluntary movement. It is a beautiful provision of nature, to enable the horse to bear the shocks which his shoulders have to sustain in coming down from a leap with a great weight on his back, and without it he would be rendered comparatively useless to man.
[^4]
THE ELBOW JOINT

 alditional joint betwern the matios and mha, wberev-

1 1 fisturthint ufthe h:

If li. Livertalambint ant:

 bih.t.
11 1: म!いに.
1 1. A Wrat luental liz. $110 \cdot 1^{+}$.
 1501^{19}.

 able in matn and partially in the dors ame cat ; but the two lume ate dimbly usitied together in the alalt, as allwaty dowribel all pace :3:
 ment<, two lateral (an intemal and an external), a

T\%, intoroull lif, o.el ligument arises fomen at foseat
 it takes a motioal rourse, expandins as it descents: aml is invertel patl? on the wombed inner border wi the artionlar cavity of the ralius. Its middle fibres, which arr the loment, take the same course as the fintmr, asmming while pasinge wer the radius the -hale of a comb, which is inserted into the inner and for pate of the ralius about thro imbers below the

The: it, roml lehtodel ligument is shomter but strongen than the intronal. It abise from the superior fossat and riden smanmane it. on the woter surface of the "xtermal comly of the humerns, and is inserted int" 1hn tulnonaty on the ulper and extermal part of the rathes. Its - uperticial fibres take a rertical comese. while its intromal fibme takn an mblique disection, fom lel for bottom and from back to fromt.
 lumeter to the surfaces survoming the comblyes of the lamorus: be it intorion border, to the ciremmference of the sumpur part of the mans; and by its posterior

 the juint.

 lue dhew, the frese will mot onternmel with that projoction, but will be

 ines. This armagemot is hemoht alout be the whigue direction of the gulle like articular surfoce on the humerns, ulna, and radius, and appars
 it in tmoting. When the ohliguty is incmitiont, either cutting of the
fetlocks or speedy cutting is sure to be manifested ; if too great, the awkward sait known as "dishing" is established. Extension is not nearly so complete as in the human subject, being limited by the greater length and breadth of the olecranon process, the upper part of which forms a prominence which fits into the corresponding fossa of the homerns, and thus serves as a check to the extension of the fore-arm. In most men the upper arm and fore-arm can be made to fall into one straight line, but in the horse there is always a considerable angle.

THE KNEE JOINT (CARPUS, OR WRIST)

Tiiss articulation is a very complicated one, and in order to understand it thoroughly, it will be necessary to examine the parts composing it under three divisions. 1st. The articulations between the several carpal bones. ㅡnd. The Radio-carpal articulation ; and $3 r d$. The Carpo-metacarpal joint ; to which must be added (4) the examination of certain ligaments common to all three.

1. Tine two nows of carpal bones, which have been described in the dry state at page 380 , are furmished with cartilages on the faces, by which they correspond, thus forming a serics of nearly plane arthrodial surfaces, havins syovial capsules, but embracing several of them in one. It may be remembered that these bones are arranged in two rows, the upper one consisting of the scaphoid, lunar, cuneiform, and pisiform bones, while the lower comprehends the os magnum, the trapezoid, and the unciform bones.

The upper row is united together by six ligaments, three cuterior and three interosseous. The anterior ligaments consist of flattened bands of fibres which lie in front of the knee, and connect the four bones together, passing laterally from one to the other. The interosseous are strong and short tibres concealed between these bones, and attached to the rough excavations: between the distinct facettes on the several bones to which allusion has been made at page 380 , the ligament comecting the pisiform bone with the scaphoid being particularly well marked.

The bones of the second row are, in a similar way, united by entrion and interosseous ligaments, but instead of being three, there are only two of each, in correspondence with the diminished number of bones. It is unnecessary to describe them more minutely.

The tuo rous again, between which is a partial hinge joint, are miterl by three special ligaments, in addition to those common to the whole lenee joint, which will be presently described. Two of the special ligaments consist of very short fibres lying behind the carpal bones, and covered by the great posterior ligament. The third is larger than these, and extends from the pisiform bone to the unciform, and to the head of the external small metacarpal bone (see ${ }_{5}$. Fig. 48). It is mited on the outer side with the external lateral ligament, and internally with the common posterior ligament. To its posterior border are attached the outer fibres of the sheath of the flexor tendons.

The symovial capsules proper to these articulations line all the above ligaments and articular surfaces, being reflected from one to the other, and forming also pouch-like prolongations upwards between the bones of each

 but the extermal of the two lower commmatates with that of the carge
 ．it the kime juint．

 it mation．Thu lower emb of the eamon－bone can

1\％：

A．Juforint that！if the for 4！！ 1 ．

 ．1T115．

 1117．11．｜1．11－1．4 ？\therefore ． I！： 1

 （at｜al l－l．e A
 dowthe fully mimety dentex of a circle around the liner joint as a centre ；but the full extent of thie mondon is divided betwern the there several artien－ lations to which I have alluded，the ratiocarpal baking condedobly the largest shave The lowe －oul of the reelins jreants an inverular articular sur－ fiter，lomser from side th site than from before backwarls，and a mon－articular pit on fossa hollowed but to receive a projection of the lanar bone during the thexion of the joint．On each sille of these are the lateral procemes．Ther＂phirs surferes of the arpel bemes are moulted exactly to fit the inferior extremity of the ratius，and a lowe symorial conserte passes from one to the other，extenting downwarts betwern the thee immermont carpal bones as far as their interomorns lisathente，and sumetimes also to the capsule betwern the piniform and cunciform 1wines．

Then liguments promer to this articulation，in ath－ dition to thane common the the whe knee joint，are thor．Wi thee one forms a latere rounted cord， attatherl the tadins above，and to the emneiform lome bulw，taking an oblique direction downwards amblinwarls lomath iln common posterior ligat mont．＇Ther seomul，much smaller in size，is ex－ waleni betwern the external lateral process of the rallin amt the pifinm lune，luins partially covered beg the common external lateral ligament，but allow－ inse a mall triangular pace to intervene，through Whinh the syoutial rapeule is sometimes protruded in tixamed contitinto of this joint．The third，still bune thin and weak in its fibore is situated beneath the－ inte the interomenn ligament which miter the piviform and the seaphoid

 therther comstutine a limital ling jome There surfaces abose and
 Which，as almaly mentionel，commmonates with that int wern the two rows of carpal bobes．

Besides the common liyaments, there are seven proper to this joint-three anterior, two posterior, and two interosseous.

Of the three anterior ligaments, the external one, covered by the external lateral ligament, unites the unciform bone to the outer small metacarpal lone. The middle one unites the os magnum to the large metacarpal bone. The internal one unites the trapezoid to the inner small metacarpal bone.

Fig. 48.-Back View of Left Knee Joint, seen obliquely from the Rigiti, and Showing the deep.seated Ligaments.
A. Inferior third of radius.
B. I'isiform bone.
C. External small metacarpal bone.
D. Internal small metacarpal bone.

1. External lateral ligament.
2. 3. Scapho-metacarpal ligament.
1. Radio-lunar ligament.
2. Ligament between the pisi. form, unciform, aml evternal small metacarpal bone.

lig. 49. - Bark View of Right Knee Jolnt, showing the superficial Liga. MENTS.
A. Inferior third of rarlins.
B. Superior third of large metacarpal bone.
C. Internal small metacarus,
D. External suall notacarlal bone.
3. Interual lateral ligament.
4. External lateral ligament.
5. Ligament between the radins, lunar, and pisiform bones.
6. 5. Liganent between the unciform, pisiform, and between the external small metacar. pal bones.
1. Strong band of ligamentons fibres, binding down the flexor tendons in their sheath or groove.
2. 7. Groove for the fassage of the perforans and perforatis tendons.

The two posterior liyaments, described by Rigot, are very difficult of demonstration, being only with the greatest care separated from the common posterior ligament. One of them, however, is capable of being made out by dissection, as a strong band of fibres passing from the back of the scaphoid bone to the imner small metacarpal bone (see 2, , Fig. 48).

The two interosseous liyaments ascend from the ronghened depressions existing betwcen the three metacarpal bones to the interosseous ligaments of the second row.

Thereromel lateral ligement is a thick "ond, formed of two kinds of tibres, a deppseaterl and a sumptiatial at, which take a crucial direction. It arises from the extmal lateral procese of the ralins, and deseends vertically on the side wif the kere joint. In ite passatere it sives ofle a ham to the
 fle extmal sumblatamal bome. This lizament lies on the carpal bones :anl caprular lisamem.
 the "中mente side, is thicker and larsor. It arises from the internal lateral pareces of the radius, and tembinates on the superoanterior and internal - Hrtace of the lare metacarpal amd head of the internal small metacarpal bomes. Tha fibere of this ligament take a crucial direetion ; in its parase downwarl, it sives ofl thme little bands, namely, one to the saphoit bome, whe to the in masmum, anl one the the trezoid.

The cuterion our rafsela, ligement covers the anterior face of the carpal articulations. Its surerion edee is attached to the inferior extremity of Whe radius: its inforior elge is attached to the superion extremity of the larer metacarpal home: its right and left bovers are in contact with the latemal ligaments: its extemal face is commeted with tendons, etc: its intrinal face is lined, at certain points, by syovial membrane. This lisiment is formed of tamsverse fibres, more or less abligne, cionsed ami re corsord.

The pusto dion litum, "owne the 1"nterin' surtace of the knee. It is inserted superionly inte" the
 fustroun patt of the eatral bunes, it becomes attached to the immer bender
 athl scaphoid homes teminatins on the fusternsuprion extremity of the fate metacapal bune. The saphometacarpal lisament, described as part of the pesturn ligament of the carpometacarpal jeint, is with ditliculty - paratan from this lisament.
以tonsum and llexim; to which there others, very limited in their extent, may be alden, mand!e ahluctiom, abluction, amd ciremuluction.

As atorerly mentionel, all the canal artienlations do not take an equal part in the execotion of these momements: in fact, it is evident that they
 fonmed latwern the two rows of carpal hines. Each ni these articulations

 the ir wither in the same mammer.
 ratius: the intorior row mose in the same way on the sumper mow. The motacarpus is carriod hackwads amd upwark, thas relaxing the eommon !member lisament. The anterion ligament, on the contrary is rembere innse. The articular surfaces, expecially these of the serond joint, separate in front from whe another.

In , wension, the metacarpus is carrind below and forwards by an inerse
mechanism. This movement is arrested when the radius and the meta carpus are placed in the same vertical line, as in the standing position.

In flexion, the bony radii do not directly approach each other; the inferior extremity of the metacarpus is always carried outwards. The movements of abduction, adduction, and circumduction are not able to be performed until the foot is bent up under the fore-arm, and are then only capable of being very partially carried out.

The plain athrodial surfuces existing between the lower row of carpal bones and the superior metacarpal extremity, only admit of a simple sliding of the surfaces in contact. The limited motion of this articulation can have but a secondary inflnence over the general movements of the knee; but it favours them by permitting the carpal bones to change their reciprocal comections, and thence lends itself, through the medium of the radio-carpal and inter-carpal ginglymi, to a more exact coaptation of the articular surfaces which constitute them.

INTER-METACARPAL ARTICULATIONS

Eacif small metacarpal bone articulates with the large metacarpal bone through the medium of two diarthrodial surfaces, situated on the inner part of their hearls ; a third, of a synarthrodial character, occurs on the anterior part of the body. Each of these articulates with corresponding surfaces on the large metacarpal bone.

Au interosseous ligament, composed of very short and strong bundles, is interposed between the synarthrodial surfaces, and fixes them solidly one on the other.

The inter-metacarpal anticulations allow only of a very slight vertical sliding movement.

FETLOCK JOINT

The fetlock jonst is formed by the junction of the inferior condysoid extremity of the large metacarpal bone with the biconcave surface of the os suffraginis, and by the anterior smooth surfaces of the ossa sesamoidea with the posterior part of the condyles of the same metacarpal bone. If is a perfect hinge.

The ligaments forming the bond of mion between these surfaces are as follow :-First, those which belong to the ossa sesamoidea; secondly, those which connect the os corone and pastern together; thirdly, a ligament common to both. Besides which, there is a synovial capsule.

1. The first have received the general names of the sesamoideal ligaments, and are six in number, namely, three inferior, two lateral, and an inter-sesamoideal.

The inferior sesamoideal ligaments are divided into three, namely, the superficial, the middle, and the deep. Of these the first is a narrow band, flattened behind and before ; arising from the middle of the fibro-cartilaginous mass, which completes behind the superior articular surface of the os coromæ, it continues slightly expanding as it ascends, until it reaches the
bases of the ossa sesamemiden, to which it is inserted, mixing also with the inter-sesamoideal ligament. The midelt is of a triangular shape, and is formed of thee bames, two lateral amb a median. It is often confounded with the first ligament, although eavily distinguishable from it by its lower insertion. Frixed in common, inferiorly, th the apex of the triangular ridge situated on the posterior surfate of the os sulfraginis, these three

${ }^{7}$ I'. : 0 ANI I'Asteres JuINに.

1. 2. 3. Lower yow of rartal buncs.

1. Sulfrazinal! ha.

is. Lons lyamotat which butals inferiorly with the telibun of the. raternsor limis.
g Puint where tho axtensur toritan bugins wrypathl.
15 d. 11 . Pointa on whah the extensur

2. 12. Lateral (atilages.

Fig. 5l.-Postrrior Vifw of Fetlock and DANTERS JUNNTS.
A. Metacarpal twise.
13. 13. Sammod hathes.

11. Corotial \mint".

F. Navi , nlar bone.

1. 2. 3. Lower row of carpal bones.

1. 3. linturation of samm, in onder to join the sakatmill bonnes.
1. 2. Intur-s'samuildeal fibro-cartilaginous substanco.
1. Lיint wr. which the tenton of the flexor pedis 1" riorald plave.
2. 1nf.rint superturial sexamolideal limament.
3. 7. Minulle infortur spambideal limament, under

 coronal lumms.
1. I. Fimment conneting the jeetal and navienlar luntes.
bands diveren, the two lateral to he attached the thaves of the ossa sosammilua, the median becming confoundel with the surroumding ligaments. The depesentel ligument is formed by two little bands, hidden by the mildle ligement, thin and short. These are fixed above to the bases of the "心ginis nem the endee of it articular surface. This ligament is in close contact with the synowiat membrane.

The literal sestmoided ligaments are formed by twon thates, whicn
extend from the base of each sesamoid bone to the tubercle which exists on the superior side of the os corone. On their internal faces they are lined with synovial membrane.

The inter-sesamoideal ligament consists of fibro-cartilaginous substance, which runs from the posterior part of one sesamoid bone to that of the other, spreading over the external surface of the outer, and internal surface of the inner bone. It is composed of the fibro-cartilaginous substance in which the ossa sesamoidea were originally developed. This mass of fibrous matter, in common with the posterior and internal faces of the two bones, forms the smooth pulley-like groove over which the flexor tendons play.
2. The ligaments connecting the cannon-bone to the pastern (or, in scientific language, the metacarpus to the os suffraginis) are three, namely, two lateral and a capsular.

Each lateral ligament consists of two bundles of fibres, one superficial and one deep-seated, firmly united together at their adjacent surfaces. The superficial arises from a projection on the infero-lateral part of the large metacarpal bone, just above the condyloid surface. It descends vertically, so as to terminate on the lateral parts of the superior extremity of the us sutfraginis. The deep-seated one is attached strongly to the excavation on the lateral surfaces of the anterior extremity of the large metacarpal bone, and directs its course from the ossa sesamoidea to the superior extremity of the os suffraginis, where it is fixed, by mixing its fibres with the lateral sesamoideal ligaments.

The capsular ligament is a very resisting membranous expansion, which is attached to the edges of the cartilaginous articular surfaces of the bones composing this joint. It is internally lined with synovial membrane.

The suspensory liyament, which should be carefully studied on account of the numerous accidents to which it is liable, is attached to all four of the bones entering into this joint, and may be described as being composed of a strong band of white fibrous tissue, sometimes having intermixed a few bundles of muscular tissue. It is thin and comparatively weak towards the knee, but as it approaches the fetlock joint, it almost equals the back sinews in substance, and its volume and wiriness to the touch may be taken as some test of the power of any particular leg in resisting a " break down." Occupying the space between the two small metacarpal bones, and lying close against the large metacarpal, it arises from the posterior common ligament of the knee joint, from a projection on the back of the large metacarpal bone just below it, and from the inner sides of the heads of the small metacarpals. Descending thence close to the large metacarpal bones, it splits into two strong bands, each of which is attached to the upper edge of the corresponding sesamoid bone, a few fibres passing on to re-unite below the joint and become continuous with the tendon of the extensor pedis in front of the os corone.

The synovial capsule of the fetlock joint is prolonged forwards in the form of a cul de sac lining the bifurcation of the suspensory ligament. There is also frequently developed, in front of the joint, a pouch communicating with this capsule which lines the posterior surface of the extensor tendons.

The movements of the fetlock joint are almost entirely confined to flexion and extension, a very slight lateral motion being permitted when the ligaments are relaxed, as in passive flexion of the leg.

THE PASTERN JOINT

Tha somenl furs which enter moth the fomation of this joint are the two

 inforion s－atmondial ligamente，and four pass on the the sides of the os

 Juist．
－Infom lhind of the lare metacarpal tursi．
1：．E：Whall sesamain bume
1．Fatheximan lunan．
1．Comatal Land．
1．Namuhar herte．

\because Iatwal matumbidal ligament（extermal）．
 कur fetlis bulun liy the susjunsory lizatumt．

 म．＂गt．

ach shat with the twa disivion of the thexe perforatus．In addition to
 weded be fwo lateral liganmt，and in front be the extensor tendon．

The lof roll ligemonts，thick amd stmons take an ohligue direction from

 part of the on sutforinis．and temmathe at the superion edge of the as
 the extremition of the or natimbare and constitute the pesterior lateral lisaments of the anlin jome

Th si！n，

 an uflawilli．

 lateral motion．

THE COFFIN JOINT

The coffin joint is made up of the lower end of the os corone, inserted in the concavity of the pedal bone, and supported behind by the navicular bone. These are lined by one continuous synovial calsule, and protected by ligaments which may be divided into two sets. First, those connecting the os corone to the os perlis. Secomelly, that between the os naviculare and the os perdis, which is of an interosseous character, being short, and composed of very strong fibres; and thirdly, the ligament on each side connecting the os naviculare with the coronet.

1. The corono-pectal ligaments are two on cach side, one anterior and the other posterior. The former consist of two large, thick and short bundles of

> lim. no-Postmeion View of the Comin Jonst.
> A. Coronal bone.
> 1. Navicular bone.
> (: Perlal bones.
> I. Corono-navictlar ligamont.
> \therefore 2. Lateral ligaments of the
> mavicular bone.
> 3. Pedo-navjenlar lis fament.
fibres attached above to the sides of the os corone, and below to the lateral edges of the cacumen coronse of the pedal bone (see page 41s). Each is partly covered posteriorly by the lateral cartilage in which it becomes lost, while the anterior edge is continuous with the tendon of the extensor pedis. The posterior lateral ligament on each side commences above from the lower fibres of the lateral ligament of the pastern joint, and from the sides of the lower end of the os corone. It descends obliquely backwards, and is inserted in the retrossal process of the pedal bone, and in the upper edge of the lateral cartilage.
2. Between the os naviculare and the os pmedis is a very short but strong band of fibres in the nature of an interosseus ligament. It arises from the groove on the lower and fore edge of the os naviculare, and passes forward to be attached to the back part of the plantar surface of the pedal bone.
3. Tuo lateral ligaments, one on each side, attach the os naviculare to the sides of the coronal bone.

Tife synovial membrane is inserted around the margins of the cartilaginous articular surfaces of the os corone, os pedis, and os naviculare; in front it is attached to the tendon of the extensor pedis, at the posterior part of the os naviculare, and between this surface and the tendon of the flexor peclis perforans another capsule occurs.
'The movements of the coffin joint are similar to those of the fetlock and lastern, with the addition of a very limited gliding motion enjoyed between the as naviculare and os perlis.

THE HIP JOINT

 moth in the fowne and a mond surfine on the intermal side of the latter， t．，which the romml liciment is altarlacl．

 cours umber the trambera ligament．It arines from the elge of the


```
\because. 1- 1:11111.
\therefore 1 +14111.
```


\therefore Gut？mind lizament．
（i．A．ABlallar lizthant covering the cotsluid hatan at．
acetabulum，and from the noth in the heat of the of femoris，in company with the ligamentmon trees，aml is inserted at the symplysis pubis，where

 circlo．

At the metch in the eften of the arotaloulam，where the fibres of the cotyond ligament row one amotler，aml are continued from side to side，
 from the fibweartilat，aml beine hoth hamer and bwader，have been mallueld the tiotuserse ligement．
 three faceiculi of fibres，fommine a thick，dence lunly，attached by one extremity，which is round，the the in the heal of the os femoris，and
by the other, which is broad and trifid, to the margins of the cotyloid notch, where its fibres are blended with the fibro-cartilaginous ring and transverse ligament.

The capsular ligament is attached by one extremity to the margin of the acetabulum, and by the other to the edge of the cartilaginous surface of the

Fig. 5j--Vien of Hip Joint.

1. 2. Iliac portion of os innominatum.
1. Femur.
2. Head of fenur.
3. Ischium.
4. Pubio-femoral ligament.
5. Transverse liganent.
6. Ligamentum teres, or round ligament. S. Obturator foramen.
head of the femur. The superior circular edge of this capsule is chiefly attached to the bone within four or five lines of the cotyloid ligament.

Movements.-The coxo-femoral articulation is one of the joints which enjoys the most extensive and varied movements ; namely, flexion, extension, abduction, adduction, circumduction, and rotation of the thigh upon the pelvis. The mechanism of these diverse morements is most simple.

STIFLE JOINT, OR COXO-FEMORAL ARTICULATION

Tine stifle joint is formed by the union of the inferior extremity of the femur, with the superior extremity of the tilia, and the posterior surface of the patella.

Articulatory surfaces.-To constitute this articulation, the femur opposes at one part its two condyles to the large undulating surfaces on the upper extremity of the lateral tuberosities of the tibia: at the other part its trochlear articulatory surface, to the posterior face of the patella. Between the tibia and femur are the two semilunar cartilages.

The semilunar fibro-cartilages are two crescent-shaped bodies, placed on the articulating surfaces at the head of the tibia, and interposed between these and the condyles of the femur. The outer border of each is thick and convex, the inner thin and concave; leaving the central parts of the superior surface of the tibia uncovered by them. The internal semilunar

 stronero of the two, is attanderl the the fossa at

 Stifle Jolst.
S. 11.f.efor thint of femat.

1i. If. A.undslos.
! - in+1 r tharil of the tibis. 1. 1 !nita.

1. 1יitell:a.
2. 1:atromal laterat ligammat of the latolla.

 Jation.
11.t.rnat hateral ligammat at thar formaroluhial artivis lat inn.
 5. - Amilumar couthlazes. the bark of the space butwen tho comdrles. The latter, hhmor amd boader, is spead out upen the punterion entare of the extomal tibial articulating -urfine.

The symencial imrombione linus the contiguous surfices of the parts enterines into the composition of the still juint. Commencinte trace the reflections wi this membrane at the borler of the patella, it will be fomed tw line the capeule, but below that bume it is separated firm the anterior ligaments by a comsindable quantity of adipose tiesue, which prolonss itwedt th the intereombloid hollow, where it is attarbed: from this it is relloceded wer the semilumar cartiatise armol the crucial ligaments, and forms a patial conomis for them, inclosing them ate far as their attachmome. At the sides of the patella it forms two slight folds, the ligamenta alaria. Finally it acemis in fornt of the femme, and passes downwad to the matsin of the patella.

The, liy,m, ", "ts are, tirst, those which mate the fomme to the thas, comsiting of the lateral, the romial, the 1usterior, the transerse, and the capsular: amb, secondly, hame miting the patella to the tibia, whirh atre thee, an extemal, a midelle, and an internal.

1. The lentrenl lignements are fibrous band, situated on the sides of the articulation, more behind than in fromt: they become relaxel during flexion, and lohl the bones stronsly together cluring exten--iom. The Extmmal, a monded, corl-like fasciculus
 amsly of the femme the heal of the fibula ; its direction is almost wotal. Tlue Thtomal, bowd and flat, comnects the tuberosity of the inbemal comlye of the femur with the uper and imer edere of the tuberosity of the tibia. It atheres to the internat semilmar cartibase
 1he foint, extomal to the syovial mombane, but partially invested by it. Thoir direction is ohlique, so that they crose or deensate somewhat like the foter X. Whe is named the anterior, the other the posterior. The Antrin is fixal by its inferion extrmity to the sronse formed on the summit of tho tibial spine, and by its superior extremity to the intercombloid hollow, and to the imere part of the extemal condyle. The
fibres which enter into its eomposition are slightly bent and spiral. The Posterior, longer than the preceding, and oblique, is attached inferiorly to the back part of the pit behind the tibial spine, and superiorly to the fore-part of the inter-condyloid hollow, as well as slightly to the side of the inner condyle of the femur ; its fibres are directed upwards and forwards.

The posterior ligament, ligamentum pasticum, belongs to the class of membranous ligaments; it is formed of white and yellow fibres, which interlace with one another in different ways, and is pierced by numerous openings for the transit of blood-vessels, etc. It is attached by its superior border beneath the condyles of the femur, and by its inferior to the posterior circumference of the superior tibial surface. Its internal surface embraces the condyles of the femur, and adheres to the posterior crucial ligament, as well as to the inter-articular semilunar cartilages.

The transrerse ligament.-Towards the front of the joint the convex borders of the interarticular fibro-eartilages are comnected together by a transverse band, denominated the transverse ligament.

Under the head of the capsular ligament are described certain strong portions of fibrous membrane which cover exposed parts of the synovial sac. The first, the longest and strongest, terminates in the pit situated on the inter-condyline hollow. The second, thin and flattened, is inserted upon the external surface of the tibia. The third passes from the outer edge of the patella to the external condyle of the femur (see , Figs. 57 and 58). The fourth corresponds with this on the inner side of the joint. These are sometimes described as independent ligaments.
2. Ligaments of tife patella. The external lateral ligament is the longest and strongest, being a flattened band attached by its inferior extremity to the supero-anterior point of the tuberosity of the tibia, and by its superior to the anterior sur-

Fig. ${ }^{\prime}$ í.-External View of the Left Stifle Joint.
A. Fercur.
B. External condyle of femur.
C. Trochlea.
D. Tibia.
E. Fibula.
F. Patella.

1. Strong land of fibrea.
2. External lateral ligament, or the eapsular ligament, comnecting the patella with the extmal comyla.
3. 3. Great ligament of the $\mathrm{l}^{\text {na }}$ tella.
1. 4. External ligament of the ratella.
1. 5. Semilunar fibro-cartilage. face of the patella. This ligament is mited to the internal ligament by an aponeurotic expansion, which is rery resisting.

The internal ligament of the patella forms also a flattened band, longer, but not so large as, and thimer than, the preceding. Its inferior extremity is attached to the internal side of the anterior tuberosity of the tibia. Its superior extremity, much thickened, becones fibro-cartilaginous, and is inserted in the projection on the inner and upper border of the patella.

The middle ligament, a rounded cord (situated, as its name indicates, between the two precerling ligaments), covers and assists in protecting the synovial capsule in front.

Movements.-During flexion and extension, which are the chief motions permitted, the semilunar fibro-cartilages which are fixed on the

 anominis th the monamat wombul. liat at the same time they glide,
 Thas, at the time of thexims, they mowe form bhind forwards upon this

 the tire momment of the combles in their glemod cavities, but by the diphacing of the memilumar cartilases on the superion extremity of the tibia.

TIBIO-FIBULAR ARTICULATION

Toms amoctatan is formed be the union of the litte athrodial spot, fount at the intemal surface of the hean of the fibula, with a corre--f"mbing surface upn the extemal and superior tuberosity of the tibia.
 fimuly in contact. The fibula is arain at ached to the tilna-lst, above, by litth ligamentous buntles, erossed in the shape of an Λ, which form the -untior part of the arearle, or bidse, fomed between the tibia and fibula;
 dimininhes from above downameds, like that of the interval which it fills; Bind, blow, by a lisamentous bam, which joms the fibula to the extemal taleronty of the inferin extremity of the tibia, where this cord divides :min mites with the two external lateral ligaments of the tibio-tatsal ationation.

The noremests of this articulation are very limited.

THE HOCK JOINT

Two boxes only concur to form the ginglymus, or true hinge, constituting the lurk juint: then ame the tibia amb antrasalus. The artimblatory surfaces are situaterl on the siles of the inferion extremity of the tibia, presenting

 it anterouperior lnoder, two memicircular prominences, separated by a 1enp avity which exactly corrempmis to the inforion tibial eminence just mominned, all bexing comed by cartilage.
 lataral, haree internal lateral, one anterim, and a posterior.

The poternel leteral ligum, uts are two, distinguisherl acoorling to their wative pusition. The sumptiverl ortomel ligement is a large cord, flattened in it inforion half. It dencents from the external tuberasity of the tibia, bund the grone which separates this inte two parts: taking a vertical
 bulwhes the large motatamal bone and th the heal of the smatl external antatasal bume. Thim lisament sive off fibes, anterionty the tendon

ligament. The deep-seated external liyament, much shorter than the preceding, is attached superiorly upon the anterior part of the external tuberosity of the tibia; it takes il course obliquely downwards, to the outer side of the astragalus and os calcis, where it is attiched.

Fig. 58. - Fexternil View of the Iluck Joint.
A. Tibia.
B. External malleolus of tibia.
C. Os calcis.
D. Large metatarsal home.
E. Caposuar liganent ondert ant partially remover.
F. Prominpare in lad of exlemal small metatarsal bone, sometimes mistalien for (m).
f. Astragalus.
II. Cuturid hone.

1. Scaphoil bone.
K. Cunsitom bone.
2. 2. Calcaneo-tibial ligament.
$3 \& 4$. Ligaments letween the astragalus and os ralcis.
1. Cuboido-metatarsal ligament.
2. Great calcaneo-cuboid liga. ment.

The internal lateral ligaments.-These are three cord-like bands, of which there is one superficial, one median, and one deep-seated. The superficial internal ligament, the strongest and largest of the three, arises from the infero-internal tuberosity of the tibia, and inserts itself on the astragalo-

Fig. 59. - Interval View of the Huck Joint.
A. Tibia.
B. Internal malleolus.
C. Os calcis.
D. Large metatarsal bone.
E. Intemal suall metatarsal bone.
F. External small metatarsal bone.
(i. Astragalus.

IL. Scapluitid bone.
I. 1. Liganent common to the os calcis, astragalus, aml
internal small metatarsal bone.
2. Ligament between the tibia and astragalus.
3. Calcaueo-astragalan ligament.
4. Ligament between the astragaTus aurd os calcis.
5. Calcaneo-cuboirl ligament.
6. Calcaneo-metatarsal liganernt.
metatarsal ligament, to the tuberosity on the internal surface of the astragalus, the small cuneiform bone, and to the intemal borders of the two remaining tarsal bones, viz. the scaphoid and cuneiform, and to the upper and inner surface of the large metatarsal bone, and head of the inner small splint bone. The mertian internal ligament is composed of two cords, attached in common beneath the preceding, to the internal tubcrosity of

 astracalan attirulation ratmes the lames below to deviate outwards, owing (w) the whiguty withe aticular surfaces.

ARTICULATIONS BETWEEN THE BONES OF THE TARSUS

 If the tifontanal antiontatom ane common the this joblat ; and we also have

 patallel filme thrown from one bone the the other, is situated near the

The lefroll liguments are two wey thin lmalles, which mite the os caleis th the antagatus laterally, hidhen umber the ligaments which bind the tibia

faces, one anterior, the other posterior ; and also with the os cunciformo magnum by two similar surfaces. The os saphoides articulates with the
 intemally and laterally with the parvom.

Tue liganents which keep these diarthrolial surfaces in eontact are numerous. The astragalometatarsal and the posterior tarso-metatarsal ligaments are common to this articulation. They consist of-

Tuo autriour ligaments, rumning from the cuboid to the os scaphoilers and magmm, one above and the other below the growse between these three bones.

Tho interossons ligaments from the superior and inferior sides of the forenamed groove.

An interosseous liyament, ruming from the os scaphoides to the cunci forme parrum.

An interosscous liyament rumning from the os scaphoides to the cunciforme masirum.

The syovial membrane is formed between the os seaphoides and os cuneiforme: this membrane belongs also to the two arthrodial surfaces existing on the upper parts of the internal surface of the os cuboides and os cunciforme parvom. A capsule proper also exists between the superior surface of the astragalus, the superior surface of the os scaphoides, and os cuboides. As to the arthrodial surfaces between the os cunciforme medium on the one side, and the os cuboides and cunciforme parvum on the other, they are supplied with synovial membranes by two prolongations from the taiso metatarsal synovial capsule.

Morements.-Scarcely amy.
Articulations between the two rows.-This arthrodia is formed by the union of the inferior extremity of the astragalus and os calcis, on the one part, with the superior extremity of the os scaphoides and os cuboides on the other. This articulation has six principal ligaments.

The tuo superficiel lateral liyaments of the tibio-tarsal artioulation.
The calcaneo-metatarsal liyament, which mites the posterior border of the os calcis to the cuboid bone and to the head of the external small metatarsal bone.

The astratalo-metatarsal liyament is a large radiating fasciculus, whose fibres run from the tuberosity of the astragalus, diverge, and become confounded with the internal superficial tarsal ligaments on the ossa cunciforme magnum, scaphoides, and the superior extremity of the large metatarsal bone.

The postrior tarso-metutarsal ligament is very strong, and unites, posteriorly, the tarsal bones to the three metatarsal bones; it is continuons below with the suspensory ligament; it mixes at the sides with the cal-canco-metatarsal ligament, and with the internal and superficial tarsal ligament.

An interosseous ligament is attached to the four bones which form this articulation.

It is provided with a syovila capsule, which always communicates in front with the tibio-tarsal capsule. This capsule prolongs itself superiorly between the os calcis and astragalus, to lubricate the two inferior arthrodial surfaces between these bones. It also descends between the
os seaphoides, os cubnides, ant the little arthrotial eputs between the os cunciforme and we culvides.

THE TARSO-METATARSAL ARTICULATION

 extremities of the them metatasal homes, which are kept in contact therogh the merlime of the sun ricial lateral lisaments of the tibn tassal articulation,

 interionly the there metatamal banes.

The rhople suovise curste of this juint mounts between the cubuidescaphoid arthrolial surfars and those which unite the ossa cunciforme magnum and parwon ; it deseents between the inter-metatarsal articulations.

Movements. -Similar to the preceding.

INTER-METATARSAL ARTICULATIONS

These are precisely similar to the inter-metacerpal articulations deseribed at fatye $41 \because$.

REMAINING ARTICULATIONS OF THE POS. TERIOR MEMBERS

The deseriptione of the several joints of the fore-imbs at pages 395,396 , $\therefore 97$, will suttice for thase of the hind lays.

CHAPTER XX

THE MUSCULAR SYSTEM

Abstract

PIIYSIOLOGY OF MUSOLE-CUTANEOUS MCRCLES-MLSCLES OF TIE IIEID-ANTERIOR MAAILLARY REGION-MTSELES WHOSE OFFICE IT IS TO NOYE THE LOWER JAW—— MUSCLES OF TIIF ESTERNAL EAR—EXTERNAI MUSCLES OF TILE EYELIDS-OCULAR REGION-NUSCLES OF TIIE TONGUE—MUSELES OF THE PHARYNX-LAIVNGEAL REGIUN - PALATINE REGION-SUPELFICLAL MUSCLES OF THE NECK AND TEUNK—LATERAR, CERVIGAL REGION-INFEIIOR CERVICAL REGION-SUPERIOR CELVICO-OCCIPITAL REGIUN —INFEFIOR CERVICO-OCCIPITAL REGION-MUSCRES CONNECTING THE SCAPULA WITII TIIE IIEAD, NECK, AND CIIEST-MUSCLES OF TIIE THORAX-DORSAL REGION-MUSCLES OF TIE ABDOMEN-SUPERFICIAL ABDOAINAL REGION-DEEP ABDOMINAL REGIONPELVIC REGION-MUSCLES OF TIIE FORE ENTREMITY-EXTERNAL SCAPULAR REGIUN゙ -ANTERO-LNFERIOR SCAPULAR REGION-THE INTEIRNAL SCAPULAR REGION-TOSTERO. EXTERNAL SCAPULAR PEGION—TIE ANTERO-ENTERNAL IUUMERAL REGION-TIIF POSTERO-INTERNAL IIUMERAL REGION-MUSCLES OF THE ARM AND FURE-LEG-MUSCLES OF THE HAUNCII-GLUTEAL REGION-EXTERNAL ILIO-FEMORAL REGION-ANTERIOR II IOFEMORAL REGION-INTERNAL ILIO-FEMORAL REGION-TIIE DEEP MUSCLES OF THE II IOFEMORAL REGION-ANTERIOR FEMORO-CRURAL REGION-POSTERIOR FEMORO-CRURAI, REGION.

PHYSIOLOGY OF MUSCLE

With trifling exceptions the whole of the movements of the body and limbs are performed by the agency of that peculiar substance, known in our butchers' shops as "flesh," and recognized by anatomists as muscular tissue. This constitutes the chief bulk of the soft parts external to the three great cavities (the cranial, thoracic, and abdominal), and in the half-starved subject of the knacker or highly-trained race-horse, in which the fat has almost entirely disappeared, the ordinary observer will detect nothing but muscles (with their tendons) and bones beneath the skin covering the limbs. On the trunk they are spread out into layers varying in thickness, sometimes interrupted by flat tendons, so as to form, at the same time, a protection to the organs within, easily capable of extension or contraction, and a means of moving the several parts upon each other.

Tendons resemble ligaments in being composed of white fibrous tissue, described at page 393. They serve to connect muscle with bone, and are useful as affording an agent for this purpose of much less compass than muscle itself, and also of a structure not so easily injured by extermal violence. Thus they are generally met with around the joints, the muscular. substance chiefly occupying the space between them. There are three rarieties of tendon. 1. Funicular, consisting of cord-like bands; 2 Fascicular; including bands of a flatter and more expanded mature; and 3. Aponeurotic, which are membranous, and are chietly met with around the abdomen. The fibres are firmly attached to the bones, which generally present rough surfaces for this purpose, and are also closely incorporated with the periosteum. This union is so strong that it very rarely gives way; and when extreme violence is used, either the bone itself breaks, or the tendon snaps in its middle. Tendons are non-elastic.

To the suken me an ondinary muscle appars to be composed of a number of small bumilne of dibus, aramon in paralled lines, and connected be a fine membanm. Theve bundlew may still further be separated intu what somes at tiat tobe enmentary fibres; but when jaced in the micro-

 withom them. She former indures all the mushes whose movements are mater the conten of the will as well as these of the hart, and some of the
 the stomitch, intwins, hithler, ate, which are comprehended under the Encoral term incoluntary

Tue sumonenva is the name given by Mr. Buman to the areolar tissue invertins ead fibre, sometimes also called myolemme. It is rery delicate
 any speeific structure, but sometimes it presents an aspect as if there was an interweaving of filanents.

Whas a fombita of striated muscle is examined under the mieroscopo 1if a high magnifyus power, it is seen to prent a beaded appearance, as if made up of a linear aggregation of distinct cells, alternately light and dark. When the fibrilla is relased, each cell is lomger than it is broad; but, during the action of the muscle, it assumes the opposite dimensions, the increase in one diameter beins always in proportion to the diminution of the other. As the contraction takes place the substance becomes firmer than before, but the bulk remains the same, the mass merely gaining in thieliness what it has lost in length. The application of certain stimulating agents will produce the contraction for a certain period after life is dentrom, varing aceording to the vitality of the animal experimented upen and the nature of the individual muscle. This is called irritatility in the striated muscles, which exhibit powerful contractions, alternating with relaxations-while in the involuntary museles a more steady, permanent, and molerate contraction is met with, to which the name of tonicity las- been siven.

Pore mestane fabre appears to be identical in composition with the fibume of the bood, being made up of about sesenty seven parts water, fiftern and a half parts fibrine, and sewen and a half partu of fixed salts. The "home of the flesh of the bedy is langely smplied with bloot, and it is found hy wheriment, on the we hame, that it this is cut off contraction ceases beremembly after : and on the other, that in propertion to the amount of macular action will be the demand for fresh suphlies of blood. None of the -triated museles, exeppt the heart and the museles of repiration, can go on antine withou intervals of rest, during which matim in their structure are 1 fleceded. If, therefore, the voluntary muscles are to be brought into the hishest state of vigour amb development of size, they must be regularly "aceised and rated at proper intervals. During the former eondition bhonl is atteacted to them, and at the same time that fluid itself is rendered mane fit for the phouse of mutrition; whild during the latter period the incrased flow of blood continumin allows for a complete reparation of the
tissues. Thus we find the muscles of the well-trained race-horse full and firm to the touch; but if suflicient intervals of rest are not allowed between his gallops, they will present a very different feel, being flabby and wasted, and indicating that he has been "overworked."

The roluntary museles assume various shapes, aceording to their positions and offices. Sometimes they are merely long strips of muscular tissue, with a very short tendon at each end, as in the levator humeri, and are then called fusiform. At others their fibres radiate, as in the latissimus dorsi, which is hence called a radiating muscle. A third set are called pemuiform, from their fibres being attached to one side of a tendon, or bipemiform, when they are fixed to both sides like the full tail or wing feather of a bird. A muscle with two masses of its tissue connected in the middle by a tendon is called digastrio.

Tife special nomenclature of muscles is founded upon: 1 st, their position, as tilialis, pterygoideus, zygomaticus; 2nd, upon their action, as flexor, extensor, levator ; 3rd, upon their direction, as obliquus, rectus, transversalis; 4th, upon their attachments, as scapulo uharis ; and 5th, upon their division into separate portions or heads, as biceps, triceps, digastricus, ete.

In describing eacir muscle it is usual to speak of it as having an origin from one bone, or set of bones, and an insertion into another, the former term being generally assigned to the more fixed division of the two. This is, however, merely for the sake of convenience, and is entirely arbitrary.

Bursex mucose, which are shut sacs, varying in size from that of a pea to a moderate pear, and lined with synovial membrane (see page 395), are placed on all the prominent points of bone over which tendons glide. Thus there is a large one on the point of the hock, and another on the elbow, both of which sometimes inflame and become filled with synovia, constituting the states known as capped hock and elbow. A third situation is just above the sesamoid bones, where the swelling from inflammation receives the name of windgall. Where, as in the legs, the tendons have to glide to a great extent, they are invested with synovial sheatis, which are bound down by white fibrous tissue at the points where the strain is the greatest. In the limbs the museles are bound up into masses by strong but thin layers of intererossed white fibrous tissue, which receives the name of fascia. In the horse this is very firmly attached to the surface of the muscles beneath, and greatly interferes with the elean dissection of them.

CUTANEOUS MUSCLES

Immediately beneatif tie skin there is a thin layer of musele, spread over nearly the whole surface of the body, and called panniculus carnosus. It is attached internally to some of the most prominent points of the skeleton, chiefly through the intervention of the fascia, which binds down the various groups of museles. Externally it is inserted at short intervals into the imner surface of the skin, and into the cellular membrane beneath it. Its action is to throw the skin into folds or wrinkles, in so sudden a manner as to dislodge flies or other irritating insects. It is also powerful enough to shake off particles of dust or dirt which have fallen upon the part, and are not glued to it by any adhesive matter

MUSCLES OF THE HEAD

The mosurs of tue mian are in number ahove sivty, chicfly arranged in paire, which correpumb exactly with mach wher. Wiant of space will

 action-

Fifi fo--Sumphicial. Misititi of the llfad.

1. Masseter.
2. Namalis loman labii superioris.

3. Dilatator narjs lateradis.

\therefore 1h prinur labii itaterioris.
4. 5) hatator narix antreror.
io. 10. Orbienlatris als.

- b. Levatur Ialy hric sumioris, or corrugatot sultercilii.

12. Partinlomarimaria.
13. Silentus.

ANTERIOR MAXILLARY REGION

Zagonaticts. -Situation on the middle of the side of the face. Originfrom the anterior two thirds of the zegrmatic ridge. Insorion-to the angle uf the mouth. Action-to retract the angle of the mouth.

Levitur habil superiohes aleque xasi is situated on and above the side of the face. Origin-from the lachrymal, matar, and superior maxillary benes. Insertion-th the superopoterior part of the matal opening, and to the anteronionior part of the nostril and upfer lip. detion-to dilate the nustrils amd to retract the upper lip.

Rambiotob mand sprobobis is situated on the side of the face. Origin-from the anmion part of the xramatic ridge, and from the correpmonds bat of the superior manillay bone Insertion-to the sides of the motril aml superolatema parts of the upper lip. Aetion-to retract the upper lip.

Nashats bostes labil surerions is situated on the upper part of the face. Origin-from the inferoexternal part of the lachermal and malar bones, and from the inferior pat of the superior maxillay bone; at the cartilages
of the nose the tendons, the one on the right side and the other on the left, blend together and unite in one common tendon, which is inserted upon the superior part of the upper lip. Action-to corrugate the upper lip, and thence to raise it.

Caninus is situated over the two anterior molar teeth. Origin-from the superior maxillary bone, near its junction with the anterior maxilla. Iusertion -to a roughened depression on the inferior maxillary bone, just behind the lower tush. Action-to assist in closing the mouth.

Dilatator naris anterior is situated in front of and between the nostrils. Origin-from the supero-anterior surface of the os nasi. Insertion-to the anterior part of the alar cartilages, blending with the orbicularis oris. Action-to raise the upper lip.

Nasalis brevis labil superioris is situated behind the nostrils. Origin -from the superior and anterior maxillary bones, and from the suture uniting them. Insertion-to the supero-anterior part of the septum nasi, and to the skin of the false nostrils. Action-to dilate the nostrils.

Buccinator is situated between the upper and lower jaws. Originfrom the tuberosity of the superior maxillary bone, and from the outer walls of the alveolar cavities of the upper molar teeth. Insertion-to the outer walls of the alveolar cavities of the lower molar teeth. In front it is blended with the orbicularis oris. Action-to draw back the angle of the lips, and tighten the outer wall of the mouth.

Retractor labil inferioris is situated on the anterior part of the lower jaw. Oriyin-from the external part of the lower jaw, just behind the last molar tooth. Insertion-to the inferior part of the lower lip. This muscle blends with the orbicularis oris. Action-to retract the lower lip.

Naso transversalis is situated between the two alar cartilages. This muscle runs between the antero-internal borders of each cartilage to which it is attached, and its action tends to approximate them.

Depressor labil superioris lies upon the anterior part of the upper jaw. Origin-from the anterior maxillary bone, and from the outer border of the alveoli of the incisor teeth, extending as far back as the tush. Insertion-to the upper lip and inferior nasal cartilages. Action-to assist in dilating the nostrils, and in retracting the upper lip.

Orbicularis oris.--This sphincter muscle is situated within the border of the lips. Origin-from the outer surfaces of the superior and inferior maxillary bones. Insertion-it interlaces with its own fibres at the angles, and is also attached to the glandular substance and skin of the lips. Action -to contract the opening of the lips, and compress them against the jaws.

Depressor labil inferioris lies along the side of the lower jaw. Origin -from the side of the lower jaw, close to that of the buccinator. Insertioninto the fat of the prominence of the chin.

Levator menti is a little square muscle bracing the soft parts, covering the chin, up against the jaw. It arises from the edge of the alveolar process of the corner tooth on one side, passes beneath the chin, and mects there its fellow of the opposite side.

MUSCLES WHOSE OFFICE IT IS TO MOVE THE LOWER JAW

Tempormats is sitmated on the (op and sildes of the heal. Origin-from

 rater tha lower jaw, and thas to a-int in maticalions.

Mas: TE forms the prominence of the chak. Origen-from the inferion surface of the grematio ritur. Insertion-th the whole of the external
 amd thus assist in matication.

Stuo maxhanis lies behind the hwor jaw. Origin-from the styloid pancess of the occipital bome. Insmion-to the anghe of the lower jaw. Arem-to retract the jatw and assist in openine the month.

Pathatobers exterves lins within the jaw. Origin-from the ala of the sphemod bone. Insitim-inth the rongh depmession at the inner side of the root of the conlyle of the jaw. Action-to raise the jaw and draw it forwards.

Prervanders interves is situated bolow the extermal pterygoid, and passes in a more horizontal direction. Origin-from the ala of the sphemid bone, from the palate bone, and the tuberosity of the superior maxillary bone. Insertimb-b the imer side of the angle of the jaw. Action-each musche ading separately draws the jaw towards the opposite side, and the two acting altemately pooluce the griming motion necessary for reducing the foret.

MUSCLES OF THE EXTERNAL EAR

Six pars of muchere move the cartiage of the eare in all directions ; but they are not of sutheient importane to rexuire any deserption here.

EXTERNAL MUSCLES OF THE EYELIDS

 60 a 6 . It forms a phane aromel the edge of the lids, extending upwasds and downwade, and having a tendon at the inncr angle, by which it is attached to the frontal amd hachemal bones Its action is to close the lids aml draw them towards the inner angle.

Levator parpebre suberonts.-Fig. 60 l is a thin slip of muscle which is attached above to the apmeumotie expanaion aml skin of the forehead, athl behw the ondicularis palpetharum. Its action is to raise the upper evelid and wrink the brew.

OCULAR REGION

Eigint muscles are lodged within the orbit for moving the eyelid and eye. They are severally named from the otlices which they perform.

MUSCLES OF THE TONGUE

Ten muscles are attached to the os hyoides, or loone of the tongue, for the purpose of moving it backwards and laterally, and also to serve as agents in the various movements of the tongue.

MUSCLES OF THE PHARYNX

As the mouth contracts to form the fumel-shaped tube which ends in the oesophagus, the latter is clothed with several muscles, which aid in driving the food backwards. These are the hyo-pharyngeus and palatopharyngeus and the three constrictors of the pharnyx.

LARYNGEAL REGION

The cartilages of the larynx are moved by seven pairs of small but beautifully defined muscles, named after their attachments.

PALATINE REGION

Two muscles move the soft palate, the tensor palati and circumflexus palati ; but they can only be made out by a careful dissection of these parts.

SUPERFICIAL MUSCLES OF THE NECK AND TRUNK

Tife muscles of tie neck and trunk are so intimately blended together by their several attachments that they must be examined together. It will be impossible to describe more than the superficial ones; but the most important being those which connect the trunk with the extremities, they will be selected as more especially deserving attention.

LATERAL CERVICAL REGION

Splevies is situated on the superion part of the neck. Origin-from the three anterion dorsal spines. Insertion-to the mastoid process of the petrous pertion of the temporal bone, west of the ociput, wing of the

Fio. 61.- Superficial Múscles of the Neck ANo Tousk.

31. Flesor motanarii intorms.
35. - molins.

37. Superticialis contarum.
38. dilnterns maximms.
39. Tensur varinse limoris.
do. diluteus pxtarmus.
41. 'Trimers almburtor fomoris (fart).
42. Kemi-nembranusus anl semi-hemdinosus.
43. T Tricels abluctor femoris (remainder).

4i. 15. Extemsor padis.
44. Flexor putlis arersmotus.
47. Flexam junlis pelforans.

6.f. Gastron'minits intemulls.
51. Tenlun ui zislrocnemius externus.
33. Flexur metararif exterana
athas, tramerse process of the weomb, thirl, fourth, and fifth cervical vertebrar, and to the lateral parts of the ligamentum nucher. Action-to draw the head on one side, when one muscle acts; when both together to erect the head.

Comblexus masori is situaten umber the shenius. Orimin-from the
transverse processes and spines of the six anterior dorsal vertelnee. Inesertion -to the oblique processes of all the cervical vertebre, wing of the atlas, tubercle on the occipital crest, lateral parts of the ligamentum nuche, and by blending with the tendon of the splenius to the mastoid process of the petrous portion of the temporal bone. Action-to erect the head.

Tracinelo mastoideus is deeply seated under the splenius. Originfrom the transverse processes of the two anterior clorsal spines. Insention -to the oblique processes of all the cervical vertebne, wing of the atlas, and mastoid process of the petrons portion of the temporal bone. Action -similar to the splenius.

Spinalis colli lies close to the bodies of the vertebre, between their oblique and spinous processes. Origin-from the oblique processes of the five posterior cervical vertebre and the first dorsal. Insertion-to the spinous processes of all the cervical vertelire but the atlas. detion-to bend the neck upwards and backwards.

INFERIOR CERVICAL REGION

Sterxo-manillafis is situated on the inferior part of the neck. Origin -from the supero-anterior part of the cariniform cartilage. Insertion(opposite the thyroid body it becomes tendinous) to the posterior angle of the inferior maxillary bone. Action-to depress the lower jaw, and, through it, the whole head.

Sterno-thineo nyondeus is situated above the sterno-maxillaris. Origin -from the infero-internal part of the first rib, and from the superoanterior part of the cariniform cartilage. Insertion-half-way up the neck it bifurcates, one part going to the postero-external part of the body of the thyroid cartilage, the other to the spur process of the os hyoides. Action - to draw the tongue and larynx backwards and downwards.

Subscapulo hyoideus is situated on the antero-superior part of the neek. Origin-from the supero-intemal part of the body of the humerns, just below the immer tubercle. Insertion-to the under side of the root of the spur process of the os hyoides. Action-to depress the os hyoides, or if that is fixed, to aid the last muscle in lowering the head.

SUPERIOR CERVICO-OCCIPITAL REGION

Five pairs of small and short muscles connect the atlas and dentata with the head, occupying the space known as the poll. These are complexus minor, rectus capitis posticus major and minor, obliquus capitis superior and inferior. Their action is to raise the head and preserve the union of the bones intact.

Scalenus connects the first rib with the two posterior cervical vertebre. Action-to depress the neck, and, when that is fixed, to raise the first rib in forcible inspiration.

Loygus colli is deeply seated on the under side of the rertebre. It arists by fleshy digitations from the bodies of the six anterior dorsal vertebre, and
is inserted into the bonles, transserse proesses, and lown spines of all the cervial vertebra, exerpt the atlas, which has a tendinous insertion only

INFERIOR CERVICO-OCCIPITAL REGION

Thas is accernan by three maseles, antagonint to those of the poll. They are rectus capitic anticus major and minor and obliquus capitis anticus, and conneet the bobles and tramserse processes of the cervical vertebre with the comeiform process of the oceipital bone. Ftecir action is to bend the head on the neck.

MUSCLES CONNECTING THE SCAPULA WITH THE HEAD, NECK, AND CHEST

Desmes the scbacapedo myoneus, which has been described in con nection with the inferior cervical region, the following nine museles connect the shoulder with the head, neck, and chest. When these are dissected, the anterior extremity may be removed and separately examined. The two first may be considered as occupying the humero-cervical region, the three next the dorso-scapular region, and the four last the seapulothoracie region.

Levitor heneri is sitmated on the antero inferior and lateral parts of the neek. Origin-from the mastoid process of the petrous portion of the temporal bone, crest of the occipital lone, wing of the athas, and transverse processes of the second, thirl, fourth, and sometimes fifth cervical vertebree. Insertion-slightly to the pine of the scapula and shoulder-joint ; to the inferior part of the ridge of the humerus, that extends from the outer part of the outer tubercle; and to a depression, "scaber canalis," on the antero-inferior part, with the pectoratis transversus. Action-to rase and draw the shoukder forwads; to turn the neck on one side; or, should both muscles act at one and the same time, to depress the head.

Rhomboners mosecs is situated on the smperolateral part of the neek. Origin-from the lateral part of the ligamentum nuche as far anteriorly as the thided cervical vertebra, and posterionly as far as the anterior part of the second dorsal pine. Insertion-to the imer surface of the superior angle, lorder, and cartilage of the seapula. Action-to draw the scapula upwards and forwards.

Trisezies is situated upon the side of the withers and neek It presents the figure of a right-angled triangle. Origin-from the ligamentum nuelue and spines of the dorsal vertehne as far back as the eleventh. Insertionto a tuberele on the spine of the scapula. Action-to elevate the scapula, and to draw it forwards and hackwards.

Lathsints bors is situated on the lateral part of the chest and back. Origin-from the ligumentm nucher as far anteriorly as the second dorsal spine, and posterionly as far as the fascia lumborum at the elerenth dorsal
spine. Insertion - to the rough tubercle on the inner side of the body of the humerus. Action-to draw the humerus upwards and backwards.

Rrombordeus brevis, lying upon the side of the withers, has its orijin from the spines of the second, third, and fourth dorsal vertebre. Insertion -to the inner part of the superior border and cartilage of the scapula. This muscle is clothed externally with yellow elastic tissue. Action-to elevate the scapula.

Pectoralis transversus is placed on the lateral, anterior, and posterior parts of the breast. Origin-from the lateral and posterior parts of the cariniform cartilage, over which it plays, being lubricated by a bursa, and meets its fellow by a white tendinous line. Insertion-to the antero-inferior part of the body of the humerus, "scaber canalis," and the fascia covering the leg. Action-it forms a sling to support the trunk, and to keep the arm close to the chest during locomotion.

Pectoralis magnus is situated on the infero-lateral part of the thorax. Origin-from the fourth, fifth, and sixth bones of the stermm, ensiform cartilage, and the cartilages of the four posterior true ribs. It is attached by fascia to the external oblique muscle of the abdomen. Insertionbifid: one portion to the internal tubercle at the head of the humerus; the other consists of a few fibres, which pass over to the external tubercle at the head of the humerus. Action-to draw the shoulder downwards and forwards.

Pectoralis parvus lies between the fore-leg and side of the thorax. Origin -from the lateral parts of the cariniform cartilage, and slightly from the four anterior bones of the sternum. Insertion--to the outer tubercle at the head of the humerus, and to the supero-anterior border of the scapula, reaching nearly to its antero-superior angle. Action-to assist the lastnamed muscle.

Serratus magnus is situated between the shoulder-blade and side of the chest. Origin-from the transverse processes of the four posterior cervical vertebre, and from the entire length of the first, second, third, fourth, and fifth ribs as low as their cartilages ; from the sixth, seventh, and eighth as low as their middles; digitating with four portions of the external oblique muscle. Insertion-to the superior border, and by a few fibres to the ventral surface and cartilage of the scapula. Action-it tends greatly to support the trunk in a sling, especially when the weight of the body comes down with a sudden shock, as in jumping. The two muscles are more or less concerned in all the motions of the scapula, and will become dilators of the chest, whenever they are contracted, while the limbs remain fixed points.

MUSCLES OF THE THORAX

The ribs are approximated to each other by two layers of muscles, which cross cach other, so that when acting together the greater length of fibre given by this arrangement increases their power. These are the intercostales externi and interyi.

Lateralis sterni and stervo costales assist the intercostals in contracting the chest.

Supmatamas costaren lim on the back in the form of a thin layer of aponeurosis, edgen with howy slign, which indigitate with those of the whiguns ablominis externms (sen Fig. 61). Its action is to raise the ribs and increane the eapacity of the chest.

Thasimensums cospara is situater on the supero-lateral part of the tharax. Oregin-frem the ribs done to the spine. Insertion-to the thamererse process of the last eervical vertebree. Artion-to aid the lastnamed muscles.

Levinomes cosmacin are fifteen or sixteen muscular slips, which con neet the transerse processes of the dorsal vertebree with the anterion bonders of the ribs, in the spaces betwern their tubercles and angles Action-to raise the ribs and enlarge the cavity of the thorax.

DORSAL REGION

Lremsames mons lies along the back beneath the musces of the superion extremity (which have been removel). It is a latge powerful musele, aml forms the chief mass of the soft parts constituting the loins and back. Urigin-from the crest of the ilium, side of the sacrum, and spinous and tramserse processes of all the lumbir vertebre. Insertion-to the angles of the twelve pusterior ribs, and to the transerse processes of all the dorsal sertebre, and of the three posterior cervical. Artion-to bend the back, and thus raise either the fore or hind-quarter, when the other is fixed. It is the man agent in rearing and kicking, and is strongly ealled into play in galloping and leaping.

Srinals morsi is situated decply on the sites of the withers. Origin -it is closely comectel posterionly with the last muscle, being attached to the spinous processes of the posterion dorsal vertebree. Insertion-to the phines of the six or seven anterior torsal vertebra, and the three or four 1"sterior eervical. Action-to assist the longissimus dorsi in reaning and in ratising the fore-quarters in galloping.

Semberisilis monsi is deeply buried beneath the two last muscles, with which it co-operates in its action.

MUSCLES OF THE ABDOMEN

 pritions which they wermer and the ohlices they berfom. Thus the superficial abominal muscles form the lower walls of the eavity of the abdomen, while the deep abdominal museles boumd it anteriorly and superiorly.

SUPERFICIAL ABDOMINAL REGION

The mbomina mescise, four in number, comstitute the lower walls of the lofly, and lugether fom, as it were, an ang shet, by means of which the intentines and abdominal morns are kipt in pasition. After reflecting the
skin, they are seen to be covered by the panniculus carnosus and a thick layer of yellow fibrous tissue, through which their division into tendon and muscle can faintly be discerned. These must be dissected off to bring into view the true abdominal muscles, when the following lines of demarcation will be discerned-

1. Tief linea alba, which occupies the median line from the os pubis to the ensiform cartilage, and consists of a tough layer of white fibrous tissue, which unites the muscles of the abdomen together. At a little more than a third of its length from the pubes is found a lozenge-shaped space in which the tissue is almost entirely absent, and through which in the fretus the umbilical vessels pass. This is the umbilicus, or navel, of the adult.
2. On the surface of the rectus are several transverse white lines-the lince transversales.
3. Near the edge of the rectus muscle commences the linea semilunaris, which marks the union of the fleshy and tendinous portion of the external oblique.

Obliques abdominis externus is situated on the lateral parts of the belly. Origin-by fleshy slips from the fourteen hindermost ribs, where it indigitates with the serratus magnus and latissimus dorsi, and from the fascia lumborm, reaching to the antero-superior spinous process of the ilium. Insertion-tendinous into the whole length of the linea alba, and by two strong divisions into the os pubis, between which is formed the triangular space called the external abdominal ring. The posterior of these, stretching from the ilium to the os pulis, is called the crural arch, and corresponds with Poupart's Ligament in human anatomy. Action-it flexes the pelvis on the thorax, and has the power of contraction, and, by this means, of expelling the fecees, and in the mare the fetus; it also serves to force up the diaphragm, and thus to aid in expiration.

Obliquus abdominis internus lies deeper than the foregoing muscle. Origin-from the transverse processes of the lumbar vertebre and anteroinferior spinous process of the ilium and crural arch. Insertion-to the inner surface of the cartilages of the three or four last ribs, and to the ensiform cartilage; also in close union with the tendon of the external oblique to the linea alba. Action--to expel the feeces and urine, and to act as above. Like the last, it is also a muscle of respiration.

Transversalis abdominis is still deeper than the last-mentioned muscle. It has its origin from the transverse processes of the lumbar vertebre, antero-inferior spine of the ilium, and symphysis pubis. Insertion- to the imner surface of all the ribs, except the three last, linea alba, and ensiform cartilage. Action-to assist the two muscles above, and to support the burden of the viscera.

Rectus abdominis is placed on each side the median line beneath the viscera. Origin-from the symphysis pulis. Insertion-to the cartilages of all the ribs, except the three first, linea alba, ensiform cartilage, and four posterior bones of the sternum: it blends with the lateralis sterni, covering the sides of the sternum. Action-to brace the middle parts of the lelly, and to contract the thoracic cavity.

Tine pants connected whin hemena formed by the above museles are:-

1st. The umbiliens, which hames a weak plame in the ablominal parietes, expecially at and som after hirth, throush which mobilical rupture takes place. Ent. The external ring, and the camal of which it is the onter bommliwy, tosether with the internal ring, which should be carefully examined by the stmbent of vetermary surgery. Wiant of space will, howerer, forbid mow than a genemal deseription here. The external ring has already been deseribed as formed by the posterior temdinous fibres of the pxternal obligue, and throng this desembls the spermatie cond to the scrotum. In tracing hackwarls and outwards this corl to the point wherd it anters the wall of the ablomen, it will be found to lie between the fibres of the crumal areh and those of the intermal obligue, supported by the protonemm and a thin fascia, which is continued from the edge of the transersalis muscle, but is not su distinct as the corresponding part in the haman suligect. Abont there or fome inches from the extemal ring this faccia is pierced by the corl, an this part is called the internal abdominal rins, the space between the two rings being the inguinal canal. (See Sprmatic Cord, Chapter xaii.)

DEEP ABDOMINAL REGION

The abomex is bounded by a musular wall anteriorly, which forms a movable septum between it and the chest, and is called the diaphagm. Suprionly also there are the muscles which serve to bend the spine downwame, in opposition to the dorsal mascles.

The mapmeage consists of a large flat musele and two crura, with a thin circular layer of tendon in the centre. The former arises by fleshy digitations from the cartilages of the ribs, from the eighth to the sixteentlo inclusive, and from the ensiform cartilage. It is insertal into a contral flat tendon of a circular shape. Each ceus arises from its corresponding side of the bodies of the lumbar vertehne: the two cross each other opposite the sevententh donsal vertehra, and agatin decussate after allowing the resophagus to pass throurh, being finally attached to the central tendm. Between the cruma and the bwhies of the vertebne the aorta passes backwards, and in the contral tembon is the opening for the vena cava posterior. The action of this muche is to diminish the capacity of the thorax by relucing the convexity of ite surface.
 bevaras, ate thee museles hasing numerons attachments to the transbere
 action is to apmoximate the pelvis to the thorax, and thas to oppose the doral muscles by romuling the back.

Pooas maricts is a lomis and strons mucle lying beneath the spine. Its origiu is from the nerks of the lant two rils, and from the bodies and transwrep procesce of the last hasal and all tha lambar wetelma Insertione -intu the troblanter mimer internus of the femme. derim-to flex the hamely unon the pelvie, or, if the hind leg is fixed, to assist the three last muncles in romoling the back.

Psons parves lies along the imer side of the P. magnts. Origin-from
the heads of the last three ribs, and from the bodies of the three last dorsal and all the lumbar vertebree. Insertion--into the brim of the pelvis. Action -to assist the last muscle in romoding the back.

Iliacus is situated in the iliace fossia. Origin-from the crest of the ilium external to the sacrum, from the venter and anterior spinous process. Iusertiom-with the psoas magnus into the trochanter minor internus of the femur. Action-to flex the haunch.

PELVIC REGION

Several muscles are attached to the pelvis: 1 st, for the control of the anus; 2nd, for the genital organs, and accelerating the flow of urine ; 3rd, for the movements of the tail.

Retractor ani is a fummel-shaped layer of thin muscular fibres arisiny within the pelvis, and inserted into the margin of the anus. Action-to prevent the anus from being forced outwards by the expulsive efforts of the abdominal muscles.

Sphincter ani is attached above to the coccyx, and encircles the anus with fleshy fibres, which serve to close it.

Cremaster is a thin layer of musele which is attached to the yellow fascia covering the abdomen, and to the internal oblique, from which it descends upon the spermatic cord after it passes through the external abdominal ring, and is inserted into the fibrous covering of the testicle.

The muscles of the penis, vagina, and clitoris have no general interest; they are, erector penis, triangularis penis, and accelerator urine, in the male ; and sphincter vagine and erector clitoridis in the female.

The coccygeal muscles are described as in four sets, erector, depressor, curvator, and compressor coccrgis, the names of which bespeak their actions. They all arise from the pelvis and pelvic ligaments, and are inserted into the corresponding sides of the bodies and transverse processes of the coccygeal bones.

MUSCLES OF THE FORE EXTREMITY

The muscles of the fore extremity are classed in three divisionsviz. those of the shoulder, arm, and leg. In the two first of these great confusion exists, in consequence of the different names given to them by English and French veterinary writers. Percivall only enumerates twelre, while Chauveau gives fifteen; ${ }^{1}$ the former not considering the long extensor of the fore-arm as a distinct muscle, but as a part of the triceps. The scapulo humeralis posticus (or grêle of Chatweau) is omitted altogether by Mr. Percivall, though quite a distinct muscle, and playing a most important part in supporting the capsular ligament of the

[^5]shoulder joint, and preventing it from low: pinched in the motions of the joint. The omiswion of the satpule hameralis externus by our dhod Enerlish anthority is most macoomable,

EXTERNAL SCAPULAR REGION

Antel spmates lies upon the anterion fossal of the scapula. Origin-from the anterior angle, border, fossa, and anterior surface of the spine of the scapula. Insertionbifill: one part to the outer, the other to the inner tuberele at the head of the humerus, the insertion extemting from the tubercular summits to a roughened depression, just puteriorly placed to each. This bifid insertion embraces the tendon of the flexor brachii. Action-to draw the scapula into the same line with the humerus.

Posted spinates is situated upon the posterior fossa of the seapula. Origin-from the posterior angle, border, fossa, and posterior surface of the spine of the scapula. Insertion-hifud: one portion to the posteroextemal tubercle; the other is tendinous, ant passes ower the pesteroexternal tubercle to a depression just below the outer tubercle. Action-to fix the scapula on the humerus or vice rersa.

Fig. g2. E ternal Vifw of the Mesches of the Fork Evmemicy

1. Antora spinatus.

2. Sabuto hamw ratio warmas.
3. Teres externus vel miner.
4. Insertion of ant at phatiss.
5. 11umpralis ext+rutas athl theor Lramhii above.
6. Sapulo umaris.
7. Tricpes extensor larabhii,
8. Betensur metarari magnis. a. c. Tembon of the same rerefing ligmuntous slips.
9. Extmar lindis.
10. Exturnor sumpramis.

ANTERO-INFERIOR SCAPULAR REGION

Coraco humeralis is situated on the infero-intemal part of the shoulder. Origin-from a tubercle on the inner side of the coracoid process of the scapula. Insertion-bifid: one portion on a tubercle on the middle third of the antero-internal part of the body of the humerus; the other passes over the insertions of the teres internus and latissimus dorsi, just below which points it is inserted. Action-to extend the humerus and draw it inwards.

Flexor bracini is placed upon the antero-inferior part of the shoulder. Origin-from the antero-inferior part of the coracoid process of the scapula, passing over the trochlea formed by the tubercles of the humerus. Inser-tion-to the supero-anterior and inner part of the body of the radius. Action-to extend the radius, and at the same time to elevate it.

THE INTERNAL SCAPULAR REGION

Subscapularis fills up the venter scapule. Origin-from the two inferior thirds of the rentral surface, extending from the anterior to the posterior border of the scapula. Insertion-to the inner ridge just below the lesser tubercle of the humerus. Action-to draw the humerus inwards and upwards.

Teres internus vel major is situated upon the posterior part of the shoulder. Origin-from the inner surface of the supero-posterior angle and from a slight indentation internally placed to the posterior border of the scapula. Insertion-to the rough tubercle on the inner side of the body of the humerus, in company with the latissimus dorsi. Action-to draw the humerus inwards.

Scapulo ulnaris lies upon the posterior part of the shoulder. Originfrom the supero-posterior and inner part of the scapula, extending from its angle to just above its glenoid cavity. Insertion-to the olecranon and to the postero-internal part of the ulna, extending from its summit to where the ulna joins the radius. Action-to assist the caput magnum of the triceps.

Scapulo mumeralis posticus is situated upon the posterior part of the shoulder. Origin-bifid; one part from the superior two-thirds of the inner surface of the posterior border of the scapula, the other from above the postero-intemal surface of the glenoid cavity. Insertion-to the supero-posterior part of the humerus. Action-it serves as a ligament, protecting the joint.

Tricers extensor brachil (caput parvum) is situated on the inferointernal part of the shoulder. Origin-from the intermal and middle third of the humerus. Insertion-to the olecranon and to a tubercle on the supero-internal part of the ulna, close to the olecranon. Action-to extend the arm.

POSTERO-EXTERNAL SCAPULAR REGION

 proterin part of the shoulder, aceupying the amsular interspace between thu andula aml humerus. Origin-from the whole length of the losterior

a. a. Cartilace at the have of the seapula.

". Inartion of thambilanc lurgne

4. 5. Sulmalatulars.
\therefore Tures inturnus sel major.

- Insurtion of latisciman 小hat.
s. Trinnlo extemsor bra hii ("ajut magmm).
!. (oraco hmmembis.
11). lisortion of prectoralis.

11. Iliever lirachii.
12. Trever liachin.
13. Extemsor motamar i magmus.
14. Fhewr metacaryi mbrahs.
15. llexor metacary modius.
hmmer as high up as the superoposterior angle of the scapula. Insertion(1) the inner and upper part of the olecranom. Arfiom-to approximate the scapula and humerus, and thus raise the elbow juint ; if the former is fixed, (1) extend the arm.
 batt of the shoulder and humerus. Origin-from the humerus, just behind
a ridge at the postero-external part of the superior third. Insertion-to the supero-external and posterior part of the olecranon. Action-to extend the arm.

Teres externus is situated upon the postero-external part of the shoulder. Origin-from a little tuberele just below the supero-posterior angle, and from the lower border of the seapula. Insertion-to a ridge descending from the outer tubercle of the humerus, and to the ligament which extends from the outer tubercle to the onter condyle of the same bone. Action-to flex the scapula on the humerus, or the humerus on the scapula.

Scapulo humeralis externus lies upon the postero-external part of the shoulder. Origin-from the inferior two-thirds of the posterior border of the scapula, just above the glenoid cavity, and from its dorsal surface. Insertion--to the middle of the ridge extending from the outer tubercle of the humerus. Action-to flex the humerus, and draw it outwards.

THE ANTERO-EXTERNAL HUMERAL REGION

Humeralis externus lies on the infero-external side of the upper arm. Origin-from the infero-posterior, imner, and outer surface of the body of the humerus, and winds round that bone. Insertion-to the supero-anterior and internal part of the radius. Action-to flex the arm.

THE POSTERO-INTERNAL HUMERAL REGION

Anconeus is situated upon the hollow space between the condyles. Origin-from the supero-posterior part of the lower third of the humerus. Insertion-to the antero-external border of the ulna and capsular ligament of the joint. Action-to extend the elbow, and to protect the capsular ligament during the movement between the two bones.

MUSCLES OF THE ARM AND FORE-LEG

Extensor metacarpi magnus is situated on the anterior part of the arm Origin-from a ridge situated at the antero-external part of the liumerus, and also from a depression just above the external condyle of the humerus. Insertion-to the antero-superior part of the os metacarpi magnum. Action-to extend the leg.

Extensor pedis is situated upon the antero-external part of the arm. Origin-from the fore-part of the extemal condyle of the humerus, and from a ridge just superiorly placed to it; from the outer part of the head, and from the anterior and supero-external part of the body of the radius; and from the capsular ligament of the elbow joint. Insertion-to the coronal process of the os pedis, adhering firmly to the capsular ligament of the fetlock joint. Action-to extend the knee, metacarpals, and pasterns, and to elerate the toe.
 He arm. Origin - from a rigen wh the extermal surfan of the heel process uf the external comble of the hamerus. Lasertion-lifitl: ome to the surew pusterion part of the pisifombene the other
 pasers through a sheath to the head of the external smatl medacalpal bomes. Action-to flex the leg.

Flexon metcener mbies lies an the posterointernal part of the arm. Origiu-bifil: whe from the middle of a rible extemting atomg the internal comble of the humerns; the ather from the superointomal and pusteriw part of the ulua. Insertionlifitil: we part to the superopesterion part of the os pisiforme, and to the pusterior amular ligament; the other to the posterointomal part of the head of the imner small metacarpal bone. Action-to flex the les.

Flexor metacirpl internus is situated on the postero-internal side of the arm. Origin-from a rifge behind the internal conlyle of the humerns. Insortion-to the head of the os metacarpi parrum: previous to its insertion, it enters a sheath formed ly the annular ligament. Action-to flex the leg.

Flexor pedis pehforiss et perforatus is situated on the posterior part of the arm. Origincommon to both muscles, from a ridge on the heel process of the intermal condyle of the humerus. Insertion-of perforatus lifid, to the external and internal border of the supereposterior part of the os corona. Iusertion-of performs; after receiving a strong bundle of ligamentous fibres from the posterior carpal ligament, it pierees the two divisions of the ilexor perforatus, opposite the pastern, and spreading out is attached to the posteroinferior part of the os peedis. Action-to flex the knee, and bend the fetlock and pastern joints.

Ulvimis accresmars is deeply seated at the posterion part of the arm. Origin-from the whole of the internal concave surface of the uha. Insertion -to the temdon of the flexor pelis, with which it

[^6]blends. Action-to assist the perforans and perforatus in flexing the knee, etc.

Extenson strfraginis is situated on the postero-external part of the

Fig. 65.-View of the Exterinal Mésceres of tife Maysich and Tinger.

1. Gluteus maximus.
2. Gluteus extermis.
3. Tensor vagine femoris.
4. Vastus extermus.
5. 5. 5. Triceps abductor femoris.
1. 7. Bicels rotator tibialis, or seni-membranosus and semi-tendinosus.
1. Extensor pedis.
2. P'ronells.
3. Plantaris.
4. Gastromemius internus.
5. Gastrornemius extermus.
fore-arm. Oriyin-from a tubercle in the posterior and external part of the radius; from the above bone as far down as the ulna reaches, and from the shaft border of the ulna. Insertion-to the supero-anterior part of the os suffraginis, and to the capsular ligament of the fetlock joint. Action-to extend the fetlock.

Extexsor metacabpi obliques is situated on the infero-anterior part of the arm. Origin-from the infero-anterior and outer part of the radius, extending as high up as the midele. Insortion-after passing underneath the temben of the extensor pedis, and over the tendon of the extensor metacapi magnos, to the superomenter part of the os metacarpi internum. Action-to confine the tendon of the extensor metacappi in its place during action aml to extemd the leg.

Himmats Acressombes is situated on the infero-posterior part of the arm. Origin-from the posterior part of the midnle of the radius. Inser-tion-tw the tendon of the perforans, which it joins "plowite the carpo. metacargal articulation. Action-to assist the perforans.

MUSCLES OF HAUNCH

Tue difficulties expericnced by the student in distinguishing the muscles of the shoulder are as nothing when compared with those he will encounter in making out the muscles of the hannch. The latter are firmly connected together by fascia, so that their fibres must be divided by the knife in order to make them agree with any description which is given of them by comparative anatomists. To comply with the desire to retain the names used in hman anatomy, this has been done to a most ridiculous extent; but unfortunately, as the analogy is very slight, the imagination of the dissector has been called into phay and different anatomists have pursued a varied nomenclature, to the great amoyance of the student. Thus the triceps alductor femoris of our text is the biceps of Percivall, and the long vaste of Chaureau, but it should either be regarded as one large mass of muscle, in common with the semi-membranosus and semi-tendinosus, or if it is divided from them it must itself be described as a tricipital muscle, for it has three distinct insertions. Again, Mr. Percivall deseribes the rectus as a separate muscle from the two vasti and crureus, and appends a fifth, to which he gives the name of rectus parvus. This appears to correspond with the grele antericur of Chauvean, and if the analogy of human anatomy is to be taken as a guide, it shond properly be deseribed as the crureus. By adopting the same plan as with the muscles of the slooulder joint, the student will be able to ascertain at a glance to which deseription, in the two authorities I have quoted, each particular muscle can be referred.

SYNONYMS OF THE MUSCLES OF THE HACNCII.

SyNonyms of the muscles of the hauncil (contimued).

names used in the text.	mr. pereivall's nomenclature.	ciauveau's names.
Gracilis	Gracilis	Court adducteur.
l'ectineus	Pectineus	Pectiné.
Adductor longus	rAdductor longns	Grand adducteur de la cuisse.
brevis	Alductor brevis	Petit adducteur de la
Pyriformis	Pyriformis	Pyramidal.
Obturator externus	Obturator externus	Obturateur externe.
O ${ }^{\text {\% }}$ internus	, ${ }^{\text {ani }}$ inter	,

GLUTEAL REGION

Gluteus externus forms the top part of the haunch. Origin-from the spine of the third sacral bone and lower tuberele on the antero-inferior spinous process of the ilium. Insertion-to the anterior part of the trochanter minor extermus.

Gluteus maximus is situated on the middle part of the haunch. Origin -from the ligamentous structure of the longissimus dorsi, from the spine of the second and third sacral bones, the sacro-sciatic ligament, the top of the supero-posterior spine, the antero-inferior spine, crista, and dorsal surface of the ilium. Insertion-to the posterior part of the trochanter major externus and superior part of the tubercle.

Gluteus internus is situated under the maximus. Origin-from the posterior half of the dorsum ilii and a small portion of the ischium. In-sertion-to the upper part of the tubercle at the head of the femur. The action of the glatei is, to extend the femur on the pelvis, and to assist in the aets of kicking and rearing. They are the main propellers of the body.

Tensor vasine femoris is placed on the antero-external part of the haunch. Origin-from the outer part of the lower tubercle on the anteroinferior spinous process of the ilium. Insertion-to the superior part of the patella. Action-to assist in extending the thigh.

EXTERNAL-ILIO FEMORAL REGION

Triceps abductor femoris oecupies the postero-external side of the haunelr and thigh. Origin-from the third and fourth spines of the sacrum, and from the anterior part of the tuberosity of the ischium. Insertion-by three attachments. First, to the posterior part of the femur and lateral part of the patella. Secondly, to the lateral part of the ligament extending from the patella to the spinous ridge on the tibia. Thirdly, to the ridge on the tibia and faseia, which binds down the flexors and extensors. Action -to rotate the leg and to turn the hock outwards.

Biceps rotator tibialis is situated on the postero-external side of the haunch. Origin-from the last bone of the sacrum, the two anterior eoceygeal bones, and posterior part of the tuberosity of the ischium. Insertionto the antero-internal and mesian part of the tibia and faseia of the leg Action-to rotate the leg.

ANTERIOR ILIO-FEMORAL REGION

Thafenom motubers consists of a mas of muscle lying bencath tho tensor varime, and formint the anterion prominence of the haunch. It consists of three divisions-the rectus, vastus externus, and internus. Rectus femoris is anterion aml superior to the other portions. Origin -from the ilium, just above the acetabulum. Insertion-to the anterior part of the capsulat ligament and superolateral part of the patella. Artion-to extend the thigh and draw it under the body. The two vasti consist of a mass of muscle occupying the front and sides of the f. mor, and lying bencath the rectus. Origin-from the whole of the ${ }^{\prime \prime}$ per part of the femur to the roots of the trochanters. Insertion-to the uper edge amd sides of the patella. Action-to assist the rectus in extembing the thigh and lifting the stifle under the body in progression.

Rectus parves is an humble imitation of the homan crureus, lying deep bencath the rectus femoris on the upper part of the femur. It is a small cylindrical muscle, having its origin from the ilium external to that of the rectus femoris, and its belly lying between the two vasti close upon the bone; it is inserted on the anterior face of the femur. Its action is chiefly to defend the capsular ligament of the ilio-femoral articulation.

INTERNAL ILIO-FEMORAL REGION

Sartomes lies on the antero-internal part of the haunch. Originfrom the inferior part of the transerse process of the first sacral bone and venter ilii. Insertion-to the imer and inferion fart of the lateral ligament of the patellit, and through the medium of the gracilis to the supero-internal part of the tibia. Action-to bend the leg and to draw it inwards.

Gracilis is situated on the internal part of the haunch. Origin-from the interior and posterior ents of the symplysis pubis. Insertion-to the spinous ridge on the supero-internal part of the tibia. Action-to raise the leg and draw it inwards.

Pbetineves lies close to the sartorius. Origin-from the anterior surface of the os pubis, near the symphsis and acetabulum. Insertion-to the ridse of the fembr, leatins downards from the trochanter internms. Action-to flex and :ddluct the femur.

Abdectore bovates lies at the lack of the mase of intermal museles of the haunch. Origin from the inferior surface of the ischium, and from the adjacent facia. Insertion-by two portions, which are distinguished as separate muscles by some anatomists. One (A. magnus) into the posterior face of the femme external to the admetor brevis ; the other (A. longus), to the imer and upper part of the internal comdyle. Action-to adduct and rotate the femme inwards.

Amecton maris lies envered by the admetor magnms. Origin-from the inferior surface of the as pubis. Insirtion-to the spluare rough surface on the posterior face of the femmer. Action-to adduct the femur.

Fig. 66. -Internal View of tine Deep Muscles of the Thimif and Leg.
a. b. c. Ischitum and pubes divided at the symphysis.

1. Sarro-sciatic lignment.
2. Alductor (brevis et longus),
3. Rectus.
4. Vasins internus.
5. Peetineus.
6. Gastroenenins extemut.
7. Flexor jerlis arcessorius.
8. Tendon of the gastrommins passing down over the hock to becume the flexor perlis perforatirs.
9. Flexor bextis lerforans.
10. Extensor 1 edis.

THE DEEP MUSCLES OF THE ILIO-FEMORAI REGION

Fork sumbe Mosctes attach the fossat of the trochanter major to tho lelvis, alled rotate the femur outwards.

Praforms.-Origin-from the transerse proceses of the sacrum, and the internal face of the ilium be fleshy fibres, which are inserted into the trochanteric fossa. Artion-to rotate the femur outwats.

Obterator experats ame intranes are attached, one to the outside and the other to the inside of the margins of the olforator foramen, and to the two faces of the fascia which fills it up. Insertion-by separate tendons into the trochanterie fossa.

Cimmse arise by two bundles of fibres from the supero-posterior part of the ischium. Insertion-to the trochanteric fussia. Action-the same as the three last named muscles.

ANTERIOR FEMORO-CRURAL REGION

Extersor pedis lies superficially on the anterior part of the leg. Origin-from a depression on the antero-inferior and external part of tho extemal condyle of the femur. Insertion-to the coronal process of the os pedis. Action-to flex the hock and extend the foot.

Peroneus lies on the antero-external side of the leg. Origin-from the head of the fibula and onter part of the tibia. Insertion-to the superoanterior part of the os suffraginis. Action-to assist the foregoing muscle.

Flexor metatansi is sitmated on the anterointemal side of the leg. Origin-in common with the extensor pedis, from the outer condyle of the femur, and from the uper part of the anterior face of the tibia. Insertion- to the os cuboides and to the large and small metatarsal bones. Action-to flex the huck.

POSTERIOR FEMORO-CRURAL REGION

Gastrocmants bxamats lies abong the postorion part of the leg. Origin-in two portions from the fossa just behind amb above cach condyle of the femur. Insertion-to a repression on the centre of the point of the os calcis. Action-to elevate the point of the hock, and thus to extend the leg.

Gastrocnemics intersus is situated on the posteromesian part of the leg. Origin-from the immer part if the ridge which surrounds the fossa behind and between the two condyles of the femme. Insertion-above the hock it becomes tendinous, and passes over the print (from which it is separated by a large bura mones, the seat of eapped hook), and descends along the bacls of the flexor tendons, where it corresponds with the flexor
perforatus of the foreleg, to be finally attached to the supero-posterior part of the os corone. Action-to extend the hock and flex the fetlock and pastern joints.

Plantaris is situated on the postero-external part of the thigh. Origin-from the superior part of the head of the fibula. Insertion-to the supero-external part of the os calcis. Action-to assist in extending the hock.

Popliteus lies at the back part of the stifle. Origin-fiom the lateral part of the external condyle of the femur, from which it winds round the head of the tibia. Insertion-to the supero-internal and posterior part of the tibia. Action-to flex the stifle joint.

Flexor pedis perforans is situated on the postero-external side of the leg. Oriyin-from the supero-external part of the tibia, from the body of that bone and to the posterior part of the fibula. Insertion-to the posterior part of the plantar surface of the os pedis. Action-to extend the hock and to flex the fetlock and pasterns.

Flexor pedis accessorius lies on the postero-internal part of the leg. Origin-from the supero-extemal part of the tibia and side of the fibula. Its insertion is blended with the tendon of the flexor pedis.

CIIAPTER NXE

THE THORACIC OROANS AND TIHER APREVDMSES

CONTENTS OF THE THORAX

The: thonax, on chest, is that cavity formed by the bolies of the dorsal butumae sureriorly; by the ribs and their cartilages with the connecting mu-cles laterally; by the stermum inferiorly; by the diaphagm posterinty; and by the immer margins of the first ribs and body of the first dorsal vertebra anteriorly. It contains

[ina is.-Sectional Plan of Thomix ant if

A. Heart.
13. B. J.migs.
(i. 1). F. Walls of the thorax.
(i. (i. Mleura comalis.
11. H Plema pummatis. the central parts of the important organs of circulation and respiration, and gives passage to the cesophagus, as it connects the pharyux with the stomach. As these lie within it, they are allowed to play frecly in performing their functims, by being enveloped by smooth serous membranes, called the plewra and the prriondiem, the latter being also protected by a fibrous layer. Λ section of the thorax, as shown in the plan, Fig. Gs, will give some idea of the mative situation of these organs and their investments, as well as of the shape of the carity itself in this direction. The heart is shown at λ, lying between the two base of the pleura, in the space called the mediestimem. The langs we shown at 13 li, eovered by a fine serons membrame (1 I II), plenera pulmonatis, except at their roots, where the air tubes amd bowderesels pass into their substance. This portion of the plema is continums with the serous membrane lining the ribs ($;$ (i, phere contelis), which thas allows them to expand and contract freely, by allowing one surface to glide against the wher: Thas, the pleura on each site covering the lumgs, and reflected thence to the inside of the ribs, and the thoracie side of the diaphragm, fonms a shat sac or bas, which in the matual state contains only sufficient wrum to lubricate its walls; but in diverae this is often increased to an momons extent, ending in drons of the chest, or in a collection of pus when the membrame is greatly intamed. The shape of the thorax in a longitudinal direction is shown at lig. 69, in which its posterior wall, the
diaphragm (12, 12), is seen separating the stomach $(a 10,11)$ and the liver (a small section of the left lobe of which mity is shown) from the lungs

$$
\begin{array}{llll}
& \text { Fig. 69.-Longitudinal Section of the Thofiad, it. } \\
& & \text { Tongue. } & \text { 9.9. ©solihagus. }
\end{array}
$$

,
(14) and the heart (15), while the trachea (13,13) is seen entering through its anterior boundary, below the œesophagus (9,9, 9), and the aorta passes close to the spine above the latter.

As the walls of the thmax apmen be the action of the museles which move the ribs, as well at ly, contration of the diaphaym, rendering its thomacic surface bes combex, the abity is enlatered and air is drawn in through the trachea, constituting the aet of inpriration. On the other hand the contraction of the walls, and the forcing upwarls asainst the diaphragm of the stomach and liser, ly the action of the aldominal musces, relluces the size of the thoma, fores out the air, amd induces expiration. The repetition of these twotant is known hy the gendal term respiration.

Before proceding to deseribe the heart and lumes, it will be necessary to examine the blood, for trammitting which dhid to all parts of the body the heart and its vessels are fommen while, for it preper acration, the lungs, windpipe, and laryox are intembed by nature.

THE BLOOD

Tire bloon, supplied from the fool by the digestive process hereafter to be deseribed, furnishes all the tisues of the borly with a constantly renewed stream of the materials which they se serally require, whether for their nutrition on for the functions of secretion and excretion performed by the varions orgins devoted to these purposes. It is necessary, therefore, that this fluid should be compered of elementary matters capable of comhining to form the materials refuiced, or of those substances ready prepared. Thus, the museles demand for their proper action fibrine and oxygen, both of which are largely combined in arterial hood, while the nervous system camot respond to the calls of its grand centre without having a due supply of fatty matter, also, in combination with the oxyen obtained by respiration, which, however, is not only intended to afford this gas, but also to remove the carbon that would otherwise accumblate to a prejudicial extent. For these several purposes the blowe mont br supplied with licuid elements by absorption from the digestive organs, and with its oxyen, by imbibition through the delicate membrane lining the lungs on which it is spread as it passes through the system of hool-vessels especially set apart for that purpose. When it is considemed that the stomath, bowels, liver, pancreas, and spleen are all occupied almost solely in suplying the fluid with its grosser materials, and that the heart, lunge, kidners, and skin are constantly engaged in circulating it, supplying it with oxyen, and purifying it from moxious salts and gases, its importane in the animal economy may be estimated as it deserves.

As it cincllates in, or immediately after it is drawn from, its appropriate vessels, the bowe consits of an "papue, thickish fluid, composed of water, fibrine, albumen, aml various salts, and called Liquor sanguinis, colomred red, by havings suspended in it a quantity of red corpuscles of a peculiar nature, being white. Whendrawn from an artery or vein, and allowed to remain at rest for a few mimutes, a cogrulation takes place, by which the bood is separated into the clot (extrulum) and the serum. The former is composed of fibrine, having entangled in its meshes the eorpuseles; and the latter is the liquor samsumis, without its fibrine. As in all of the mammalia but the camels, these bodies are circular flattened diece, and are of the same size (nearly) in all animals of the same species, whatever may be the age or
sex. According to Messrs. Prevost and Dumas, the blood of the horse contains less solid matter than that of man, in the proportion of $9 \cdot 20$ to 12.92 in 1000 parts. The temperature is alout 99.5 degrees of Fahrenheit's thermometer ; the pulse varies greatly according to the breed of horse, being as slow as 32 to the minute in some heavy cart-lorses, and as high as 42 in high-bred and sensitive specimens of the race. The shade of colour in the red corpuscles depends upon the proportion of carbonic acid and oxygen combined with them. If the former preponderates, a deep purplered is developed, known as that of venons blood: while a liberal supply of oxygen develops the bright scarlet peculiar to arterial blood. The saline matters dissolved in the liquor sanguinis consist chiefly of the chlorides of sodium and potassium (which comprise more than one-half of the whole salts), the tribasic phosphate of soda, the phosphates of magnesia and lime, sulphate of sodit, and a little of the phosphate and oxide of iron.

GENERAL PLAN OF THE CIRCULATION

The blood is circulated through the body, for the purposes of nutrition and secretion, by means of one forcing pump, and through the lungs, for its proper aeration, by another; the two being united to form the heart. This organ is therefore a compound machine, though the two pumps are joined together, so as to appear to the casual observer to be one single organ. In common language, the heart of the mammalia is saill to have two sides, each of which is a forcing pump; but the blood, before it passes from one side to the other, has to circulate through one or other of the sets of vessels found in the general organs of the body, and in the lungs, as the case may be. This is shown at Fig. 70, where the blood, commencing with the capillaries on the general surface at A, passes through the veins which finally end in the vena cava (B), and enters the right auricle (C). From this it is pumped into the right ventricle (D), which, contracting in its turn, forces it on into the pulmonary artery (E), spreading out upon the lining membrane of the lungs, to form the capillaries of that organ at E , from which it is returned to the left auricle (G) through the pulmonary veins. From the left auricle it is driven on to the left ventricle; and

Fig. 70.-Plan of the Circulation.
A. Capillaries on the general surface.
B. Vena cava.
C. Right auricle.
D. Firht ventricle.
E. Pulmonary artery.
I. Capillaries of the lungs, uniting to form the pilmonary veins, which enter
G. The left auricle.
H. The left ventricle.

1. The aorta posterior, dividing into sinaller arteries, and united with the capillaries at A.
J. The trunk of the aorta anterior. this, by its powerful contractions, forces the blood through the aorta (I), and the arteries of the whole body, to the capillaries (A), from which the description commenced. But though this organ is thus made up of two pumps, yet they are united into one organ, and the two auricles and two ventricles each
rontract at the same moment, "amsins only a donble somm tw he heard,

 indicatine that it comtans ditrli homet, while the othere contams hood of a
 wher armeral, the distinction only apples to the womer ementation ; for

 is purified, amt has asain reedom oxysen sutheiont th doweht the searlet colour again. betwern the ambeles amb rentricles, amb again at the openinge of the latter eavities into their resective atorise values of a form pecular to rach are phaced, so as to allow of the free paseage onwards of the homel, lat not of its mom heremestation. If they lecome diseased, the action of the hear is imperded, and the eirenlation of the blood is more or. less serinusly interfoned with. So, ako, if the muscular fibres, of whel the walls of the anricles and, in much thicker layers, of the ventricles are composed, become wak by want of proper excecise, of from the deposit of fat in their interspaces, a correspoling despe of mischief is effected in the patsace of the blood. The furce with which the left ventriche contracts may be estimated from the fact, that if a pije is inserted in the carotid artery of a horse, and hed jerpendicularly, the blood will rise in it to a height of ten feet; and the rapidity of his circulation is such, that a saline substance will pass from the veins of the mper pat of the booly to those of the lower in little more than twenty secomls. Sow, as this transmission (an only take place through the current that retmons to the heart, and patses thence through the lungs and back again, afterwads being foreed into the lower vessels throng the anta, it follows that erory particle of this thuid passes completely through the whale circulation in the above short period of time.

THE HEART AND ARTERIES

 two auricles and rentricles, with their several valves, amb flaced within the thmax in the pace called the mediastimm, between the two saes of the flema) is covered hy a filno-serons sate of its awn called the pericardium. It is situated "pposite the third, fometh, fith, amd sixth ribs, immediately in front of the diaphram, :mm athon the sternum, as shown in Fig. 69, at page 457 . It peechte an imesular come. with the base tumed upwards, and the apex dieceted towards the stemmen. Tt is alnont ten and a quarter
 moter, and fise and a guater from sible twsile. In weight it varies from six and a half to seven pound: the than dimondions can omly be taken as an approximation to the actuat awerase The tight amicle and rentricle are directed forwarls, and the left hatwards. The ambeles have much thimer walls than the voutrichs, ame the mucular substance of the left ventricle, ocopying the apex of the heart, is wer much thicker than that of the right. The organ is suppliad with bloul for its nourishment by two arteries (the coronary), which leave the aorta cluse to its origin, and their
trunks lie in the space on each side between the two rentricles. The movements of the heart may be carried on independently of the brain and spinal cord, if these parts are gradually removed; but if they are suddenly destroyed or partially injured, it ceases to beat. Its nerves are deriverl from the preumogastric and sympathetic.

The pericardiun is made up externally of a thin layer of white fibrous matter, attached to the roots of the great vessels above, and by a few prolongations to the sternum below, and the central tendon of the diaphragm behind. Within this the heart lies, loosely covered with a serous bag, which also lines the fibrous coat above mentioned, and forms with it the pericardium as a whole. The use of the external layer is to restrain the movements of the heart within due bounds, and of the serous layer to allow it to play freely withont being restrained by the friction of its exterior against the surrounding parts, which would be the case in the absence of the double sac of serous membrane which it is endowed with. Like the pleura, this sac, during health, contains only sufficient sermm to lubricate it; but after inflammation or congestion, serum, lympl, or pus are thrown out, so as to interfere with its proper functions.

Eacif artery has three distinct coats: an outer cellular coat, capable of great distension ; a middle coat, consisting in part of yellow fibrons tissue and in part of non-striated muscular fibres, which is highly elastic ; and an immer serous coat, intended to diminish the friction of the bloorl as it rushes on. It is in the elastic middle coat that the power resides of equalizing the flow of blood, retarding its velocity when the vessel containing it is near the heart, and accelerating it at a distance from it. In this way the intermittent jets which are produced by the ventricular contraction become at length converted into a continuous stream, having midway between the two extremities developed the arterial pulse, which can be felt in all the arteries of any size throughont the body, and most conveniently within the lower jaw, at the submaxillary artery.

Tife capillaties are generally spoken of as a distinet system of small blood-vessels, but no line of demarcation can be demonstrated either at their junction with the larger branches of the arteries, or with the veins; and they should be regarded simply as the minute terminations of the one set and commencement of the others, together making a fine network of vessels which vary greatly in the mode of their ramifications, according as they minister to muscular fibre, gland, or membrane. Like the arteries themselves, they possess the power of contraction and dilatation, which is, apparently, under the influence of the nerrous system. This, on the application of a local stimulus, the eapillaries of the part admit more blood without any increase of the heart's action, and this may go on to the states known as congestion and inflammation acconding to the presence or absence of other circumstances bearing upon their action.

Tine aftenes are arranged in two great groups, one of which has been sufficiently alluded to at page 460 , as conveying black blood to the lungs; the other commences at the left ventricle as the aorta, and dividing at once into the anterior aortit and posterior aorta, supplies the corresponding parts of the body with arterial blood, after brameling off into innumerable subdivisions. This is clearly marked in the aceompanying plan, which indicates the position of the heart in the thorax, and most of the principal
ateries of the bonly: hat being on she mall a scale, it can only convey a seneral idea of their numbers and the sitnation at which they each leare the parent trunk.

The aomen, or great artery of the boxy, as it emerges form the substance of the heart and rises towards the opine, deseribes a curve whose comsexity looks upwards and forwards. Tmmediately above the valves at its ront are the origins of the two coronary arteries, supplying the heart as deseribed at page 460. Nbout two inches above these it gives off a large branch-the anterior aorta--supplying the anterior extremities, the neek, and the head; the hinder portion is called the posterior aorta, and is destined to afford blood to the watls of the thome and ablomen, to the contents of these eavities, and to the hinder extremities.

The anterior aorta is about an inch and a half in length before it gives off any of its branches. It aseends between the two lamine of the anterior mediastinm, lying above the right auricle and below the trachea, with the vena cava on its right hand. Opposite the body of the third dorsal vertebra it divides into the right and left arteria immominata. The former is considerably the larger of the two, being nearly double the diameter of the left. This is owing to its supplying both the carotids in addition to those which it has previously given off in correspondence with the left arteria innominata. These branches common to both are seven in number:-
1.-A. dorsalis branches backwards, and supplies a twig to the superior mediastinum, and the four or five first intercostal arteries.
\because-. . servicalis superior, distributed to the museles of the neck lying above the spine.
3.-A. vertebratis, a ressel of considerable size, is given off bohind the first rib, and passes bencath the transwerse process of the seventh cervical vertebra to enter the foramen in that of the sixth. From this it proceeds through the foramina of all the cervical vertebra in suceession, and enters the foramen magnom to supply the base of the brain with blood.
1.-1. thoracica interna, given off opposite the last artery, descends at once (o) the upper and inner surface of the sternum, on each side of which it lies, supplying the intercostal mus les, and, inoseulating with the intercostal arteries, terminates by meeting the ascenting branches from the epigastric artery.

- - I. thoracica evterna, a small banch which is given off externally to the first rib, and deseends at once to the inferior sufface of the stemum, on the museles covering which it teminates.
6.-.1. cervicalis ingerine is a shont branch, and supplies the muscles ant glands at the root of the neek.
T. - A. axillaris descents at once to the imide of the fore extremity, and supplies the seapula, am, and leg. It is the continuation of the matin artery after it has given off the abwo banchese and bes deeply imberted in the collabar memband which fills up the phare betwern the sternme and the shomker juint. Here it supplies (ef) three or four thoracic branches; (b) the A. dorsalis scapulae; (c) A. subseapularin; the destinations of which will bre explaned he their names. It

then runs along the inner side of the heal of the as hameri, where it receives the name of A. hmmeralis, and gives ofl there or four muscular branches, having the whar and sparal nerves on its inmer side, and in front the radial newe, whith the hamomal wins belind. Above the clbow joint, and in front of the humerus, it splits into three, A. uharis, spiralis, and radialis; the last again dividing into two, A. plantaris extema and A. ${ }^{\prime}$. interna, which will again be alluded to in deseribing the anatomy of the foot.

The common caromid hatery, which is the continuation of the right A. imominata, after it has given off its axillary branches, ascends along the lower face of the trachea for a very short distance, and then divides into the right and left carotids, which lie on each side the trachea, gradually sinking deeper among the muscles of the neck till they arrive at tho level of the laryns, when they respectively divide into thee branches-A. carotidora erterna, A. occipitalis, and A. carotidua interna. In this course they supply the thyroideal artery and several small muscular beanches. The external carotid gives off (a) the submaxillary artery, which has a number of branches supplying the muscles of the pharynx, palate, and face; (7) the parotideal; (c) internal pterygoid ; (l) branches to the masseter and auricular museles; and finally (c) the internal maxillary, which penetrates deeply behind the lower jaw, and supplies those parts; then going on to the eye, for which it gives off a special branch, the ocular, destined to the museles of the eye and the fat in which it lies.

The occipital artery passes backwards, deeply hidken by the museles of the neck and the transverse process of the athas, where it unites with the vertebral artery.

The internal carotid, a comparatively small artery, ascends towards the base of the skull, which it enters at the point of the petrous part of the temporal bone, and supplies the brain in common with the vertebral artery, with which it freely anastomoses.

Tue posterior aofta must now be deseribed. It is much longer and of larger diameter than the anterior, commencing opposite the fourth dorsal vertebra, where it lies at some little distance below the boty of that bone. Passing upwards and backwards it becomes closely comected with the bodies of the verteboa, lying a little to the leit, aml having the osophagus and vena azygos on the right, and the thoracie duct on the left. Here it is called the thoracic aorta ; but passing through the erurat of the diaphragm it enters the abdomen, amb receives the name of abominal aorta. The thorasie division suppies small branches to the bronchi and cesophagus, as well as the intercostal arteries to all but the fon or five anterior intercostal spaces. After passimg through the diaphagm, the anda gives of the phrenic arteries right amd left to the diapharg, and then supplies the important arteries of the visera, namely: (ot the "cultue ertery, dividing into the splenic, gastric, and hepatic arteries; (b) the anterior mesenteric; (c) the renal ; (d) the spermatic ; (e) the posterior mesenteric ; (f) the lumbar arteries; and finally, just below the last lumbar vertebra, it sublivides into (g) the two intemal, and (h) the two external iliac arteries. Tn the horse there is no common iliat artery, as in man, the four beints given off in one group, out the two internals generally forming a short continuation of the trunk.

The internal iliac abtery has a very short trunk, which passes backwards and outwards in close comnection with the sacrum. Its first branch is (a) the umbilical artery. It then gives off (b) the artery of bulb, after which and just opposite the sacro-iliac articulation it divides into a leash of

Fig. tre-Brinehes of fie Riget Anteria twxominata.

1. Posterior aorta.
2. 2. 2. 2. lntereostal branches of posterior aorta.
1. Anterior aorta.
2. Right arteria imoninata, encling in common carotir and
3. Axillary artery.
4. B. 6. A. dursalis.
5. 7. A. "ervimalis superior,
1. 8. S. Vertploral artery.
(1. 10. Inosenhations of these three arterips.
1. Urigins of the internal and external thoracie arteries.
branches, which are (c) the obturator, (l) the lateral sacral, and (e) the gluteal artery. The umbilical artery is almost entirely obliterated in the adult, but a small branch still remains passing along the cord which exists as the only remmant of the large artery which in the fotus carries on the circulation peculiar to that condition. The artery of the bulb supplies the bladder and the internal organs of generation. The olturutor artery gives off branches to the muscles of the haunch, and finally ends in the internal pubic artery, which gives blood to the penis and adjacent organs. The lateral sacral artery proceeds backwards along the side of the sacrum
tw the bones of the tail, ahmir whish it ramitios Latly, the gluteal whery pases out of the provis therogh the hole in the saterosciatic ligament in company with the sciatic nerve, and suphers muscular branches to the shateri.

The extmasa bade matay is mather than the internal, and takes the same course at far as the articulation, beroml whinh it paras, lying just within the hrim of the pluis, in chose comtant with the prats and iliacus maselas aml cosered by the peritomemon. About midway betwern the simphisis pulsis and the anterion spmons process of the ilimm it gives off the circumbex atery of the ilime, and then receres the name of the fimomel artery. At this peint the femomal rein lies posterion to it, and it is ako acempanied by the intmonal saphema mere Proceeding in an whigue direction down the mildle of the hamelh, it reabhes the hollow at the back of the stithe joint, where it is eatled the poplitarel artory, amb "Plesite the heal of the thia this bifurcates into the anterior ame pesterior libial artaris. Just after amersing from the pelvis it gives of a con-
 down through the muscles of the thigh it gives of nmmerons small branches to them.

THE VEINS

'lue veins generally correspond with the arteries, the blood of which they return to the hear. Thas there is a lare vein which conveys all the blood from the anterior half of the body supplied by the anterior aorta, and this is called vena cura anterior. In a similar mamer the posterior renu rova is made up of veins which accompany the several arteries that are found throughout the body, with one remarkable exception connected with the secretion of bile. If the splenic and mesenteric reins are taced they will be found to mite together into a large trunk, whicl, instead of going on to empty itself into the vena cava posterior, enters the liver, where it is called the rear porter, and branches ont again like an artery, the general purposes of which it serves by furnishing blood for the secretion of bile. This will be more fully described under the head of the liver, in the next chapter. From the terminations of the portal reins and hepatic artery the hepatic veins arise, and these empty themselves into the posterior vena cava, junt behind the diaphagm. Beniles that brought ly the two vena cavae, the blood from the heart itself enters the anricle through the coronary reins.
 fications, yet there is a hare das of superficial reins which are not accompanied be any of the latter resels. Th lomes which for many generations have been actutomed the fat wonk, the-e superficial veins are strongly deredncil, and are particularly plain in the Arab and his descendants. As a conserpence of this, and of the fact that many of the arteries are acompaniol ly two winc, the whole number of veins is much sreater than that of the arteries, and the intemal area of the former may be considered to be nealy domble that of the latter. In their walls the veins are much thimer that the arterics, though like them they have
three coats, the serous and cellular being very similar in structure, but the fibrous is very much thinner and devoid of muscular fibres. A feature peculiar to the veins is the existence of valves, which are sometimes single, at others double, and occasionally arranged in threes and fours around the interior of the large veins. They vary in numbers, and are altogether absent in the pulmonary veins, in the venre cave, and the vena portr.

The anterior vena cava is made up of the jugular vein, the pectoral, vertebral, axillary, and cervical reins, and the vena azygos. The jugular vein, which is that usually selected for bleeding, returns the blood from the brain, jaws, and neck, along each side of which it lies, separated from the carotid artery in the upper part of the neck by a layer of oblique fibres belonging to the levator humeri. In the lower half the vein becomes more deeply seated, approaches more closely the carotid artery, and, entering the chest with it, falls into the vena cava anterior between the first and second ribs. Near its termination it receives the superficial brachial vein (the plate vein), which passes up in front of the arm, along the anterior edge of the flexor, and winding upwards in the hollow between the arm and sternum joins the jugular vein. The vertebral and arillary veins correspond with the arteries of the same name, the divisions of the latter contained within the foot being described with that organ. The left axillary vein receives the contents of the thoracic duct which opens into it close to its jurction with the vena cava.

Tile posterior vena cava commences by the junction of the two common iliac reins (each made up of an external and internal iliac corresponding to the arteries of the name). It is then joined by the lumbar veins, the spermatic and renal veins, after which, and close to its termination, the hepatic and phrenic veins empty themselves into it.

The pulmonary veins, commencing with eight trinks as they emerge from the lungs, soon unite into four, in which number they enter the left auricle. They carry arterial blood, and differ in this respect from all the other veins of the body, as has been already mentioned.

PHYSIOLOGY OF RESPIRATION

Tine essence of the act of breathing consists in the absorption of oxygen from the air, and the excretion of carbonic acid from the blood which is circulated through it. In a state of rest this interchange must go on with regularity, for carbonic acid is constantly developed by the decay of the tissues, arising from the peculiar necessities of the muscular and nervous tissues, and by the conversion of the carbon of the food which appears to be required for the development of heat. But when the muscles of the whole body are called into play with unusual rapidity and force, the development of carbonic acid is largely augmented, and thus, not only is there a necessity for extra means of excreting the carbonic acid, but there is also a demand for more oxygen to unite with the carbon, which is the result of the disintegration of the muscular fibres employed. Hence the acts of respiration are more complete and rapid during exercise than in a state of rest, and while much more carbonic acid is given off, a greater volume of oxygen is absorbed from the air which is inspired.
 ation of oxyent, haroush a thin membrathe such as blahdor, it absorbs a frotion of that gis, amd changes its colour from dark red to a bright scathet. This is in acembane with the rewshized latws of endosmose and exosmose : and as the howd circulates in very fine streams within the vessels of the lumse whese wath are much thimer than an ordinary madder, it may radily be momernot that it is placod in more favourable circumstances for this interchange of gases than when tied up in a large mass within a companatively thick membanc. On examining the structure of the lunge, they are found to be made up of a pair of cellular sacs, communieating with the tachea, which admits air into them; and these sacs are furnished with a fine network of capillary vessels distributed on their walls, and on those of the numerous cellular partitions of which they are composed. Thus the blood, as it enters the lungs in a venous state, is submitted under very farourable circumstances to the asency of atmospheric air; it ratlily absorls the oxyen while it gives off large volumes of carbonic acid gas, the result of the combination of previously absorbed oxyen with the carbon given off by the various organs of the body already alluided to.

The exact chemical changes which have taken place in the atmospheric air exhaled from the lungs and in the blood itself are believed to be as follows:-1. A certain portion of oxygen has disappeared from the air. 2. It has received a considerable volume of carbonic acid. 3. It has ahsorbed fresh nitrogen. 4. It has parted with some of the nitrogen of which it was previously made up. The last two changes camot readily be demonstrated, but are infered from the fact that, under varying conditions of the body, the nitrogen in the exhaled air may be either above or below the proper proportion. Besiles these, the air also receives a considerable yuantity of moisture, and some organic matters, which in certain cases are largely increased. The changes in the blood are not so fully known ; but it is now the genema opinion of physiologists that the formation of carbonic acid does not take place in the lungs, but that the blood arrives there surcharged with it already made, and not with carbon, as was formerly believed. The action chietly consists in the exeretion of this cabonic acid, and in the absorption of oxtene, which is stored up for the several purposes for which it is required in the course of its circulation through the body. Magnus demonstrated by experiment that arterial and benous blood contain very diferent quantities of carbonic acid, oxyen, and nitrogen in a free state, for on whaining, by means of the air-pump, a volume of the gats contamed in cach kind of hand, and amalyzing them, he found them to be mate ul at follows:-

It appears, therefore, that in pasing through the eapillaries, the gas in the arterial hood hase about dight per cent. of oxyon, and receives about nine per cent. of carbonic acid, which action is reversed as it passes through the lungs.

MECHANISM OF THE PULMONARY APPARATUS

Althougil the whole of these parts are not contained within the thorax, it will be convenient to examine them together, since they all mutually bear upon each other both in health and disease.

The pulmonary apparatus of the horse consists of four parts-First, the nasal cavities, destined to prepare the air for entering the larynx; second, of the larynx, which acts as a portal or guard against the admission of noxious matters floating in it ; third, of a set of tubes, consisting of the trachea and bronchi, which convey the air from the larynx to the air-cells; and fourthly, of the air-cells themselves, where the changes are effected in the blood, for which the lungs are specially designed.

THE NASAL ORIFICES AND CAVITIES

Tiie nasal orifices in the horse and ass differ from those of the other domestic animals, and also from the human nostrils, in being the sole means of admitting air to the lungs. The ox, sheep, dog, cat, etc. can breathe cither throngh the nostrils or the mouth, but the horse is prevented, by the formation of his soft palate, from drawing in air through his mouth, and hence he requires nostrils of a size calculated to admit an extra supply of air. ${ }^{1}$ The orifices or nostrils consist of an oblong opening on each side of the nose, separated from each other externally by the skin covering the cartilaginous alce, which encircle three-fourths of the opening. These alæ, together with the septum, which divides the two nostrils vertically, constitute the five cartilages of the nose, all being lined by the Schneiderian membrane, upon which the nerves of smell are freely distributed. Each nostril has two flexible and easily dilated ale-a superior or internal ala, having a broad cartilaginous plate, and an inferior ala, of a crescentic shape, with its concavity turned inwards. The four ale, when in position, resemble the letter X, and form a framework which keeps the openings always patulous, while it resists the actions of the muscles when they draw the external folds of the skin away from it in order to enlarge the openings. Two little pouches of skin are found internally above the true nostrils, and are called the false nostrils, the use of which is not clearly demonstrated. At the inner and inferior part of the nasal fossa, underneath the fold of skin covering the inferior ala, is the orifice of the nasal duct, which leads down from the eye, and conveys the surplus secretion of lachrymal fluid from that organ to the nose. In the ass and mule this orifice is found just within the superior ala. If these ale are not of full size and the nostrils latulous, it may generally be surmised that the other organs of respiration are equally undeveloped, and that the horse's wind will be proportionally bad.

The nasal cavities, or fossef, are partly bounded by bone, and partly by the cartilage known as the septum nasi. The surface of membrane is much increased by the convolutions of the turbinated bones, so that the air, as it passes through these chambers, is warmed if cold, and if

[^7]dry it is moistened, su as tornder it fit for reppiration. The frontal, athmoidal, sphenodal and maxillary sinuse alon "ןen into these fosse, the whole of them being lined by a continuation of the Schneiderian membrane.

THE LARYNX

Immembtely behind amb below the matal cavities is the larynx, which arves the double purpose of acting as a portal to the inspired air, and of forming the few rocal sounde uttered by the herse. It consists of five eartilages, unted together bey ligments, and moved by a number of delicate muscles. It is lined with a fine mucous membrane, and is supplied,

Fig. 73.-Proflef Vow of tue Os IIfoldes and Lahimix.

1. Lateral plates of the thyroid cartilage. a. Epinhotis.
2. Thym-hyoid mumbrane.
3. Borls of the theroid cartilage.
4. Branch of the binly of the os hyoides.
i. Slur lyoces, or ajuendix.
5. Short hom.
6. Long horm of the os hyoithes.
!. 9. !. !. Cartilaginous rings of the trachea.
7. 10. 10. Wrmbarants comecting these rings.
like all other parts of the borly, by its proper vessels and nerves. It is suspended from the os hyoides, or bone of the tongue, by a strong but thin membrane, and terminates posteriorly in the trachea, or air-tube learling to the Jungs.

The thyrond cartilage (θ refós, a shield, eiòos, like) is composed of two lateral plates, each presenting the form of an obliqueangled parallelogram, joined together in front, and separated by a considerable sate behind, which is occupied be the ericoid eartilage. The print in front which corresponds with the pmom dilmi in man, is called the body. The posterior angles of the lateral phates are each terminated by a prolongation, called a comea or ala-the two superior being mited by ligaments to the os hyodes, and the two inferior to the ericoid eartiage. In the upper part of the anterior angle is fixed the epiglottis, by means of the union called amphiarthrovis.

Tue cricoid cartilage (rpikos, a ring, cioos, like) is a complete ring, but it is much deeper behind than before. It is somewhat depressed from side to side, enpecially in those horses which are deticient in wind. On the upper elge behind it has two rounded surfaces, which articulate with the
arytenoid cartilages. In the middle is a vertical ridge, to which the wsophagus is mited by cellular membrane, and on each side of this is : hollow for the lodgment of muscles.

The arytevoid cartilages (upútalva, a pitcher, eîoos, like), two in number, are triangular in form, broad and thick below, and pointed above. They give attachment to the rocal chords, and are the means by which these are rendared tense or lax, open or close, by the action of the muscles of the laryns.
 lage of a heart shape, attachell to the angle between the lateral plates of the thyroid cartilage. When pressed lmekwards, it closes the rima glotticlis or fissure between the rocal chords, and in this way prevents the food from passing into the laryn.

By tiel aid of these cartilages, and of the ligaments connecting them, as well as by means of the muscles which move thrm, a triangular opening called the rima glotidis is formed, having its base behind at the arytenoid cartilages and its apex in front, below the epiglottis. The sides of this opening are formed by ligamentous bands, attached to the arytenoid cartilages, so that as these are drawn backwards they are rendered tense; and if they are drawn apart the rima or fissure is widened and admits more air. When this fissure is contracted, either by thickening of the edges or by the wasting of the muscles which keep it

Fig. 74.-Posterior View of the os Hyoides and Larinx.

1. Eliglottis.
2. Aistenoil cartilages.
3. Cricoill cartilage.
4. Slur process, or appendix of the os hyondes.
5. 5. Branches of the body of the os hyoiles. c. 6. Short horns.

7 . 7 . Long horns of the as hroides.
8. Membrane completing the back of the trachea.
9. 9. 9. Tracheal rings incomple te behind.
10. 10. 10. Membrane between the rings of the trachea. eren, roaring or whistling is produced ; so that it is important to arrive at a correct idea of its mechanism.

THE TRACHEA AND BRONCHI

Tire tracires is a flexible and elastic tube, formed of a series of incomplete cartilaginous rings, about fifty in number, connected together by an clastic membranc, which also fills up the space left at the back of each ring. It passes down the lower margin of the neck, and, on arriving at the level of the base of the heart, it divides into two bronchi or lesser tubes, of somewhat the same character and structure as itself. In its course, it has the sterno-lyoidens and thyroideus in front, the esophagus behind; and the carotid artery, with the pneumogastric, recurrent, and sympathetic nerves on each side; the jugular vein leing more superfician
than these, but also on the side of the tracheat. At the mper and back part of the tradea a layer of museular fibe is formb, eomecting together the funterior edens of the cartilages. The oflice of these muscular bands is (1) diminish the area of the trachea.

The: mexcme eonsist at first of the two tubes into which the trachea diviles, the right being the more capacions of the two. Afterwards they onfulisile, like the branches of a tree, into leseer tubes, still called bromWhial, which finally open into the aireelle of the lunss. These tubes differ from the trachea in that each ring of cartiage is mate up of sereral distinct phaces, which overlap ach other, and thus allow of amsiderable dilatation dume foreible expration. The sing are held towe her by an clastic cellulat substance, and are lined first be a finwo layer, with which it is supposed that some muscular tissue is mised up, as in the latger bronchi, and internally by fine mucous membane.

THE LUNGS

'lone dungs consist of two conical spongy bodies, adapted to the shape of the thomax, the left being the smaller of the two. Jetween these halves If the lunge is a space called the mediastimum, already described, occupied ly the hoart, great blood-vessels, nerves, and glands; they are capable of arate diatation by the act of inspiration, and of being again reduced in size ly expination. In structure, they are made up of three distinct parts-(1) an internal or serous coat, called the pleura, deseribed at page 456 ; (2) a midhle or tome puhmonary tissue, consisting of the intercellular passages and aireclls, of the arteries and veins, lymphaties and nerves, hound Westhor by an areolo-fibrous tissue, and called the preventhma; (3) the terminal branches of the bronchial tubes. The pleara is simply a layer of - mous membrane, liable to its peculiar accidents and diseases, hereafter to be dweribed. The perenchyma has a beatiful pate rese colour in the healthy subject. Though very delicate, it strongly resists extemal volence, and is bu! easily torm. It is divided into a vast number of little polyhedral luhbes, each of which receives one of the terminating branches of a bronWhial tube, and is again broken up into a cluster of air-cells, on the walls of which the capillary branches of the pulanomary arteries and reins wh thickly spreal out. The extent of surface upon which these vessels manif is cnomous, probably ten or twoke times that of the skin. The parenchema of the lungs appeas to be entirely pasese in respiration, being filled with air be the expansion of the cavity in which it lies; and that, asatin, being due to the ant of the inspinatory museles.

The mosemol tumes divide and sublivide motil ihey diminish to a diameter of $:^{\prime}$. of an inch, when they terminate in the intereellular passages, ley wheh they communicate with the air cells. At their terminations, the mucnus membrane ceases abruptly, the fibrens envelne being alone continued, together with the vacoular network common to both. Tlus the mucous mombrane lining the bonchi, and the fibtons walls of the air-cells, aro quite distinct ; and this will accombt for each being often the seat of a pereuliar intlammation, withont extending to the other.

PULMONARY GLANDS, ETC.

In connection witi the luness are three bodies, the uses of two of which are not very clearly made out. These are the thyroid body, just below the laryox ; the thymus gland, clidely developer in the fretus; and the bronchial glands, which are merely lymphatic glands of the usmal character, situated aromel the principal divisions of the loronchi.

The thrroid body is not very fully developed in the horse, and has little interest connected with it, seldom being enlargerl, as in the dog and in the human species. It consists of two oval masses, about the size of an egg, lying on each side of the trachea, just beneath the larynx, and connected by a band or middle lobe. The use of the thyroid body is not ascertained.

Just within the thorax, and in close contact with the trachea, a somewhat similar body to the preceding is met with in the foetus and yonng foal ; but it soon wastes away as the young animal grows up. This is the thymus gland (known to cooks as the sweetbread), resembling in shape the thyroid borly, but of a paler colour. Like it, the use of this gland is not fully known ; but in structure it is more like the conglomerate glands, and Sir Astley Cooper, who examined it most minutely, supposed that it is intended "to prepare a fluid, well fitted for the fotal growth and nourishment, from the lhool of the mother, before the birth of the fortus."

Tife bronchifal glands are merely lymphatic glamks, similar to those in other parts of the body, and gromed aromd the large bronchial tubes. They are of a greyish colour, stained with black in latehes.

CHAPTER NXTI

THE ABDOMEN AND ITS CONTENTS

 moly bey the diapagm, an the inmontant ongan of digestion, and the brace in which ther are clasely packed is called the abdomen. This part is capable of lowig distended downwards and sideways to an enomons extent, of of contracting till the lower walls aproach vore closely the the uper. The anterior boundary, as before remaked, is the diaphragm, the plate of which moves comaderably in active respiratim, causing the thanks, or pusterolateral walls of the ablomen, to rise and fall, in a corresponding mamer, and thus to imlicate the extent of distress in an exhausted ammal, or any penliarity of hathinge at in "haken wind," or in the several inflammatory comditions of the lunge. Poterinty, the laundary is an open one, being the anterion houndary of the pelvis, and compeponding with the brim of that carity Superionly are the eruma of the diaphragm, the lumbar vertehne, and pans amd ilacus muselos: and laterally, as well as inferiorly, the ahomimal monsles, amt cartilase of the false ribs. Alhough the abdominal muches are eaphan of erat diatation, yet in the maturad con-
 attachoments, and hence the dopth and width of the back rilse and pelvis
 marow back ribe give a small abmminal waty, and semerally speaking a comespondindy weak romlition of the diswtive orsans: for though this
 for practical purpmes. lasamoe do nexur of stout and hearty horses frsensed of comtracted middepinees, but they are so rare as to be merely whanets of curiosity. Thr small pmen whinh is devoted to the organs of digetion in the horse when back ribe are shallow will he readily undertonal be reforence th the ammexal wetion, in which the emormous mass of intectines and the liver here heen rememed. leavine only the stomach and phen. When the wall of thath lomen ame distembed laterally and downwarde, as the alway are in bowe at urase for witaty of the abdomen is at lean domblet.

The conteve of the dmonios are the stomach, the liver, the pancreas, the spern, the small and large intentins, the mesenteric glands and chyliterons dnets amt tho kidners, twother with their vessels and nerves. Some of these organs are fixad close to the spine, as the kidneys and
pancreas; but the others glite upon cach other as they are alternately empty or full: and to facilitate this motion they are (like the lungs)

invested with a serous coat, the peritoneum. They may be divided into the hollow organs, which form one continuous tube (the alimentary), and the solid viscera, which, with the exception of the spleen, are all of a
ghandular structure, though diflering in their minute anatomy. The allmentary canal consists thonghout of three distinet layers: the extemal semons coat (prefomeat), the middle or mosentar coul, and the internal mucons coat, which are united her collular mombrame, sometimes regarded as formines two distinet additional coats.

The bermonsum, like the pleura, is a sorous membane, forming a shat sace, and armanged in such a manner that all the abdominal organs are behind it, and two layers of it must be diviled before reaching the interior of any of the organs from the lateral or inferion boundanies of the abdomen.

Fig. 76.-Sectional Plan of the hlnese's Abdemin beinind thp Rymach and Liver.

[^8]F. F. Folds commoling the small intestines with the same, and called the mesenlers.
G. Abiduninal muscles.
11. II. Ribs.

1. I. limbar muselnes.
J. J. kirlneys enberled in fat.

This will be better understond by examining the amexed plan, in which the solid black part represents the interior of the peritencal sac, a space usually extremely small, but capable of being distended to a great extent hy a secretion of serum from the internal surface, as in abdeminal dropsy. The white line indieates the whale continuous surface of the peritoneum inclosing the back space, which is exasgerated, in order to render the plan more distinct. It will thas be readily understond that unless the peritoneum is detached from the upper walls of the alntomen, and its layers are separated, ats at E E, the viseera cammo lne reached without dividing it twice ; first, as it lines the wallo of the abdomen : and neeondly, as it elosely covers the organ whieh it is desired to 'gen. In certan conditions it is important to remember this, as for instance in distended states of the colon, when it may be a question whether the bowel may be punctured from the flank withent wounding the peritonemm. It is a very delicate and irritable membrane in the horse, and should never be interfered with if it is possible to avoid it. Its sectetion is a clear sermm, merely sufficient
in health to lubricate the surface, but in disease becoming very profuse and greatly altered in character.

The muscular coat of the hollow viscera varies in thickness; but the whole of it belongs to the unstriped division of muscles, and its action is purely involuntary. In all but the large intestines the fibres are arranged in a circular direction, but in these they are divided into sets, one eireular, and the other collected in separate longitudinal bands. By the consecutive action of these fibres (called peristaltic), the food is driven onwards from one end to the other of the alimentary canal,

Tife nucous membrane, which lines the whole length of the alimentary canal, from the mouth to the anus, is continuous with the skin at these two orifices-with the mucous membrane lining the air-passages of the lungs at the entrance to the larynx-with that investing the nasal passages and cavities at the antero-superior part of the pharynx-and, lastly, with the internal ear through the eustachian tubes which open into the hack of the pharynx. It is also reflected into the ducts of the salivary glands, which open into the mouth, and into those of the liver and pancreas, so that it has very extensive communications with these several organs. Like the skin, this membrane has a base composed of primary membrane, called the corium, on which are seattered the glands that secrete the gastric juice, imbedded in loose areolar tissue. In the intestines we shall find it extensively supplied with absorbents, which open upon its velvety pile or villi, and the whole protected by epithelium, which serves an important part in the production of the mucus everywhere found upon its surface when in a healthy state. In the œesophagus it is thick, and disposed in longitudinal folds, allowing of lateral distension. In the stomach it exists in coarse folds or rugce, and in the intestines it is gathered into sharp folds, chiefly manifested in the duodenum. It is extensively supplied with blood throughout its whole surfaee, but especially where it lines the stomach and small intestines, and it is also liberally furnished with nerves, chiefly derived from the great sympathetic system.

The abdominal viscera are supplied with blood by branches from the aorta, passing between the folds of the peritoneum to reach their destination, excepting in the cases of the kidneys and pancreas, which have no such folds. The same folds also include the veins returning the blood to form the vena portie (see page 466), and also the lymphatics and chyliferous albsorbents, to be hereafter described.

The nerves are chietly derived from the great sympathetic system ; but branches from the cerebro-spinal system are also distributed to the contents of the abdomen, and especially to the stomach, by means of the pneumogastric nerve.

PHYSIOLOGY OF DIGESTION

Before proceeding to examine into the anatomy of the abdominal organs, it may be well to investigate the nature of the processes whieh are carried out by them. To do this, the food must be traced from its prehension by the lips and teeth to its expulsion from the anus. Thus, commencing with the mouth, we find it there ground into a coarse pulp,
amel mined with the aliva, which ath as a kinl of derment in comerting the starehy matters, which form so large a proportion of the hoese's food, into sugar, :mb, with the aid of the gastric juice, into the proteine compounds necessary for the formation of flesh. Perfect mastication and insalivation are therefore highly important processes to healthy digestion. When it reaches the stomach, the food undergoes still further changes by the agency of the gastrie juice and of maceration; but this organ being small in the horse, it camot remain there long enough to be converted into perfect chyme (the result of the first process of digestion), but is passed on into the duodenum for that purpose. Nere it is further elaborated, and receives the bile and pancreatic juice, which are poured out through their ducts opening on the intemal surface of this intestine. The nutritious parts of the food are now gradually converted into chyle; and as it passes into the jejumm and ilimm, it is there absorbed by the lymphatics (here called lacteals), whose mouths open upon the villi thickly lining this part of the canal. These mite into one duct (the thoracic), and the chyle is by it carried into the veins through an opening at the junction of the left vena cata anterior with the axillary vein. From the small intestines, the food, minus its nutritive portions, is passed on into the large intestines, and finally reaches the rectum and inns, in the form known as faeces. The peculiar olliees performed by the bile and pancreatic dluid will be described muder the sections treating of each of those organs.

The absonition of plutd from the interior of the alimentary canal is effeeted in two different modes-first, by the lacteals, which take up the dyyle through their open mouths; serondly, be the veins, which absorb it through their walls be the process known as endosmose. In the former case, the chyle is at onee carried to the heart; hat in the latter it passes through the liver, and becomes purified and chemically attered in that organ. The lacteals pass through the mesmencic glands, which lie between the layers of the mesentery.

STRUCTURE OF GLANDS AND PHYSIOLOGY OF SECRETION

A rilind may be defined to be an organ whose oflice it is to separate from the blood some peculiar substance, which is poured out through an excretory duct, whose internal surface is continnous with the mucous membrane, or skin. A simple gland is, in fact, nothing more than a pouch of macous membrane; and a collection of these pouches constitutes a compound one, which, if the groups of which it is compersed are loosely bound together like grapes, as in the salivary glands, is called comglomerate; while if they are unted into a solid mase, such as the liver, the term conglobate is applied.

By secretion is understood the process of separation of various matters from the blood; the term being also applied to the prolucts of the process, such as soliva, bile, etc., which are commonly known as secretions. These are all removed from the blood for one of two purposes-first, in order to be employed for some ulterior objeet in the various processes going on in the borly, either for its own [meseration, or that of others; or, secondly, as
being injurious to its welfare, and therefore to be discarded. The term secretion is sometimes confined to the former, while the latter action receives the distinguishing term excretion: but as in many cases the fluid which is removed as being injurious to the system is also used for beneficial purposes, the distinction is not capable of being strictly maintained. The nature of the process is essentially the same in all cases, being carried out by the development of simple cells, each possessing its own independent vitality. These cells select certain ingredients from the blood, and then set them free by the rupture of their walls; and being situated on the free surface of the lining membrane of the gland, which is continuous with the mucous membrane or skin, the secreted fluid gradually reaches the one or the other. It is impossible, at present, to ascertain the precise means by which each gland is made up of cells having special powers of selection ; but that the fact is so is capable of demonstration. Thus, the cells of the liver select the elements of bile; those of the salivary glands saliva; and so on. But, as we shall hereafter find, there are minute points of difference in the arrangement of these cells in the different glands. It is now ascertained that the elements of the various secretions exist in the blood ; and therefore the oftice of the glands is confined to the selection and separation of their products, and they have litile or nothing to do with their conversion.

DEPURATION, AND ITS OFFICE IN THE ANIMAL ECONOMY

The whole of fie variou's secretions which go on in the budy are necessary for the due preservation of its health ; but the most important of the class alluded to above as eicretions, must be removed from the blood, or death will speedily ensue. Thus, if saliva and gastric juice, as well as the other secretions aiding digestion, are not mixed with the food, the nutrition of the body will be imperfectly carried on, and its health will suffer. But if the elements of bile and urine are retained in the blood, not only is the system upset, but absolute death is produced in severe cases. Hence it follows, that attention to the state of the organs of depuration, or excretion, is of more importance even than to those of secretion, using these terms in the sense explained in the last paragraph. The chief organs of depuration are the lungs, which remove carbon from the blood; the liver, which secretes the bile; the kidneys, which get rid of the urea; and the skin, which relieves it of its superfluous watery and some small proportion of its solid particles. Experiment shows that the retention of carbon, or urea, in the blood is speedily followed by death ; while the non-secretion of bile, if entire, poisons the system ; and in milder cases, its absence from the alimentary canal interferes with the due elaboration of the chyle.

ANATOMY OF THE SALIVARY GLANDS, PHARYNX, ESOPHAGUS, AND STOMACH

 and are named the parotid, submaxillary, and sublingual ghands.
'Jus panotid (so named from its proximity to the ear, mapù, near ; oús, Gros, the ear) is the largest of the three, and lies in the space between the ramus of the lower jaw and the petrous patt of the temporal bone, eovered by the parotido auricularis muscle (see Muscles, Fig. 60). It is enveloped in a case of dense cellular membrane, being itself made up of a number of little lubes, eath of which has an investment continuous with the external one. The lobes have each an excretory duct, and these mite together like the stalks of a grape, to form one single duct, which passes along the inner part of the angle of the jaw, along the border of the masseter, piercing the mucous membrane of the mouth opposite the second molar tooth. The submaxilamy ghand lies within and before the angle of the jaw, and is of the same structure as the parotid. Its duct passes forward by the side of the root of the tongue, and opens on the side of the firenum. Tine sublingual gland is the smallest of the three, and is situated between the middle of the tongue and the lower jaw. Its ducts, which are several in number, upen on the side of the fromum of the tongue, close to the orifice of the submaxillary gland. Tine shliva secreted by these glands contains various saline and earthy matters identical with those of the blood, and a peculiar substance called petyaline, which is the ferment used in the digestive process. The earthy phosphates in the silliva collect around the teeth, being held together ly anmal matter, and forming what is linown as turtar.

Tue phanyn and esomiagus receive the fool from the back of the mouth and convey it to the stomach. The former is a fumel-shaperl hag, lined with mucous membrane, and covered by the three constrictors of the pharynx, which suspend it to the os hyoides and palate bones. Posteriorly it lies close to the spine, being only sepatated by a thin liyer of museles (see anterior cervico-vecipital region). Anteriorly and superiorly it opens into the month and nasal cavities, from which it is separated by the soft palate and epiglottis. Posteriorly and superionly the custachian tubes open into it bell-mouthed; and inferionly it contrants to comect itself with the esophagus. The velum-palati is so armaged as to act as a valse in preventing the entrance of air into the laryux through the mouth, but in the act of coughing the latter is convolsively drawn down, and the valve cases to cover its orifice, so that fombibe expration can then be eflected.

Tine esoringus commences where the pharonx emte, being at first placed behind the larynx and in front of the corvical vertebre. It soon inclines to the left, where for several inches the pasaige of a bolus may be observed in the living horse, again ascending and passing into the thorax above it. On reaching the cruma of the diaphagm it passes through the opening made for it by the decussation of their fibres (see Diaphragm), and is connected with the stomach about the centre of its anterior curve. Throughont this course it has a muscular coat, composed of striped fibres at its ammencement, but afterwards they are unstriped. It is lined by mucous membrame, which is very thick and white.

The sromach is situated on the left side of the abtominal cavity, immediately behind the diaphagn. It resembles in shape the bag of the Scotch bag-pipes, laving two openings, two curvatures (a lesser and a greater), two surfaces, and two sacs, which are generally divided by a constriction as shown in the accompanying engraving. Its volume varies with its contents, but in the horse of average size it will not contain more than three gallons, while the stomach of man, whose weight is only

Fig. 77.-The Stomach and Stleffr.

1. Pylorus (tied witlı a ligature).
2. 2. The y^{5} loric sac.
1. Cardiac orifice (tied)
2. 4. The cardiac sac.
1. 5. 5. The greater curvature.
1. 6. 6. The lesser curvature.
1. 7. 'lhe spleen.
S. 8. S. Omentum attaching the stomach to the spleen.
one-eighth that of the horse, holds three quarts. It lies across the abdomen, with its anterior surface in contact with the diaphragm on the left side, and in the middle having the liver between it and the central tendon of that muscle. Its posterior face is in contact with the colon; its inferior or larger curvature with the spleen, attached to it by the omentum, and separated from the abdominal muscles by the curvatures which the colon here makes. The left, or cardiac sac, is in contact with the supero-lateral walls of the abdomen and the left extremity of the pancreas, approximating to the anterior border of the left kidney. The right, or pyloric sac, is in contact with the ight lobe of the liver, and the curvatures of the colon. Like the rest of the alimentary canal within
the abdemen，the stomath is mate up of there ants：the external serous， Which is a contimation of the protomemm；the middle or macular ；and the internal，or moous rat．On slitting it open and examining the interior，it is at once apporent that the two sates are ver difiomenty lined． The cardiac mucous membrame resembles in alparame the interion of the usophatas，being whitish brown，tongh，emmparatively dry，and covered with a thick layer of epithelimm．On tating the mucous mombane to the left sace，it presents an abrupt line of demarcation＂pposite the combriction between the two sacs．Begond this，to the right，it is of a brownish red， marbled with lighter shades of the same colour，casily torn，and covered with a very thin epithelim．The left sate is in fact a simple reservoir of food，while the right is the true organ of digestion．Each of the two orifices also presents a peculiarity．The cardiac is slightly constricted，and has several small folls of mucous membrane around it，which acoonts for the rarity of romition in the horse．On the other hand the pyloric orifice is larger，and is merely surounded by a raised cushion，which no doubt can be closed by the muscular sphincter，the fibres of which envelop it， but which is most probably kept patent during the ordinary process of digestion．The muscular cont of the left sae is composed of three planes， the fibres of which pass in diflerent directions，all tending to empty its contents into the right．The latter sace is，howerer，surromuled by only one plane of muscular fibres，all passing in a circular direction，forcing the contents towards the phoms．The arteries of the stomath are large and numerous，being derived from the anta through the superior gastric，the right and left gastrie，and the vasi beria，whinh are given off by the trunk of the splenic artery．The reins empty themselves into the vena porte；and the nerves are derived from the phemonastric and solar plexus of the sympathetic．

The mucots membane of the reome sac of the somach is made up almost entirely of tubular follicles elonely applied to each other，their blind extrenities resting u＂n the submacous cellular membane，while their mouths open into the stomach；they are arrangeal in bundles or groups，bound together by a fine aredan membane，and the follicles from cach of these groups open into small pits or depreseions，which may be seen in the interion of this part．They secrete the ！festric fluir，which contains besides other matters，of which the acid，so variable in its nature， is＇the most remarkable，a peculiar organce compound known as pepsine， which seems to be a main agent in the digestive process，acting，like pityaline，as a ipecies of ferment，but of a mome powerful kind．From the researches of phrsologists it apears that the acid i：s the solvent，while the pepsine acts in comberting the dimolsed materials into a condition fit for absorption into the blood，there to be ned for the general purposes of that fluid．

THE INTESTINES

The intestines，large and small，constitute a hollow tube，very variable in diameter，and measuring from eighty to ninety feet in length in an average－sized horse．They extend from the stomach to the anus：and
though nature has only divided them into two portions, the small and large, yet anatomists hare suldivided each of these into three morenamely, duodenum, jejunum, and ileum : cecum, colon, and rectum. All have three coats: the external, or peritoncal, which is very partial in the duodenum and rectum ; the middle, or muscular ; and the internal, or mucous; but the last two are also differently armiged in the large and small intestines.

Tife small intestines are about seventy feet long, and rary from an inch to an inch and a half in diameter, except at their commencement, where there is a considerable dilatation, forming a sort of ventriculus or lesser stomach. They are gathered up into folds, in consequence of the mesentery, which attaches them to the superior walls of the abdomen, being of very limited extent as compared with their length; and thus they may be described as presenting two curres, a lesser mesenteric curvature, and an outer or free one covered by the peritoneum. The outer layer of the muscular coat consists only of a few scattered fibres, while the inner one is circular in its arrangement, and though thin as compared with the stomach, yet it is easily distinguished. The mucous coat is gathered into a few longitudinal folds when empty, which are very marked at its commencement; but there are no valvular appendages, as in the liuman intestines. It is everywhere studded with rilli or little projections, like the pile of velvet, through the open mouths of which the chyle is taken up; and heneath it are numerous glands, named after their discoverers. The small intestines are liberally supplied with blood by the anterior mesenteric artery. Commencing at the pyloric opening of the stomach, the small intestine swells out into a sceond little bag, having, like that organ, a large and small currature, the former being presented to the lesser curvature of the stomach. The enlargement soon ceases, and this part of the intestine (in England called duodenum) is bound up against the walls of the abdomen by the root of the mesentery and mesocolon. It then crosses the spine and enters the left lumbar region, where it becomes loose or flonting in the carity of the abdomen, being only retained by the mesentery (see plan, Fig. 76, page 476). About twenty-four inches from the commencement it receives the name of jejunum, which it retains until within the same distance of its termination, when it becomes ileum: but in the French school it is divided only into the fixed portion or duorlenum, and the loose or floating portion, comprehending what is here called the jejunum and ilcum. In this course it receives the biliary and pancreatic fluids; the duct from the liver, and that from the pancreas, opening together into the duodenum, six or seven inches from the pylorus. At its termination in the caccum there is a valve, called ileo cocal, which prevents the return of the contents of the crecum into the ileum.

The large intestines, as their name implies, are of much greater diameter than the small ; but they are not above one third of their length. Instead of being convoluted, they are puckered into pouches by a peculiar arrangement of the longitudinal muscular fibres, which are collected into bundles or cords (14 a, Fig. 78), and, being shorter than the intestine, gather it up into cells. The mucous membrane also has very few villi, which become more and more rare towards the rectum. At the commencement the gut is enlarged to an cnormous size, and forms a cul de sac called the
eacom, which is about four feet long, and tominates in a point, the whole being compared to a jelly bag, and forming a reservir, where the watery particles of the fool are absorbed, leaving the facal matter in a comparatively selin stath. Indeed this gut at unce receives nearly all the water which is swallowed, it parsing throgh the stmatch and intestines without

1. Thempolonum, with its ath do sar re momed.
2. 2. 2. 2. 2. 2. The colsomations of the jejunum and ilmm.
1. 3. The muswitery.
1. The sjex of the cinum.
2. Its body.
$\therefore \quad \therefore$ Commenemment of colon.
… Transveran rolon.
3. Trminal jortion of the colon.
4. Boctum.
a, a, Musenar lands of colon.
any delay, when of course, as this sac has only one opening, it must
 the ilom prosenting its retum into the tmall intestine. The cacum necupise the right thank, and takes an whigue diection from above downwards and forwarls.

Tus coln extemb from the ileocacal value, ocupying the right flank, in an elliptical dimetion to the left hamk. Whose it mis in the rectum, and thus ends very near the $p^{\text {wint }}$ where it began, after traversing nearly the whole abdominal cavity. It is of such an enormons capacity that it will

Lold from twelve to thirteen gallons of water. Its largest diameter is at the commencement, from which it begins to contract, and as it crosses from the right of the abdomen near the liver to the other side, where it is in close proximity to the stomach, it is contracted to a comparatively small diameter, but enlarges again as it lies in the left flank. Like the cecum, it has three longitudinal muscular hands for three-fourths of its course, but these afterwards are reduced to two, and as it merges in the rectum they disappear altogether, the longitudinal fibres being then equally distributed. The cæeum and colon are supplied with blood by the posterior mesenteric artery.

Tine rectum, or straight gut, begins on the margin of the pelvis, from which it extends in a straight line to the anus. It gradually expands to form a considerable reservoir for the fæeces, and is uncovered by peritoneum after its commencement.

THE LIVER

Ziifs important organ is in close contact with the right side of the diaphragm. It is of an irregular figure, thick in the middle and thin at the edges ; divided into three lobes ; convex on its anterior surface, where it is adapted to the concave aspect of the diaphragm ; concave posteriorly. The colour is that which is so well known, and peculiar to itself. It is everywhere invested by the peritoneum, excepting the spaces oceupied by the large veins as they enter and pass out, and the coronary ligament which suspends it, as well as the three other folds of peritoneum, which have also received particular names.

Tine structure of the liver is most peculiar ; but it will be impossible to enter fully into its minute anatomy for want of space. Suffice it to observe that it is composed of lobules, of an areolo-fibrous connecting medium (which has received the name of the capsule of Glisson), of the ramifications of the vena portæ, hepatic artery, hepatic veins, hepatic duct, lymphatics and nerves, enclosed in the investing peritoneal coat. The portal vein returns the blood from the stomach and small intestines to be circulated through the lobules, and from this the bile is secreted. It distributes its numberless branches through canals which are everywhere worked out in the substance of the liver, and from which the lobules are supplied. From these, which are each a small gland perfect in itself, the bile is received by a network of minnte ducts, ultimately coalescing to form the hepatic duct, which opens into the duodenum. The secretion of bile is entirely from the venous blood, and the hepatic artery is solely destined to nourish the gland. The nerves are chicfly from the sympathetic system, a few small branches being derived from the pneumogastric through the solar plexus. The horse has no gall bladder like the cow, as well as the human species.

The function of the liver is cloubtless chiefly of a depuratory nature; besides the separation from the blood of the compound known as bile, it appears to be the manufactory in which glycogen is produced. The fluid which it pours into the intestine has the quality of arresting putrefactive action in the ingesta, emulsifying fats with the assistance of the pancreatic and other secretions, and stimulating the walls of the intestines to perform their duties.

THE SPLEEN

 the left side of that arsan. It is coverel le a serons coat comtinuous with the peritomem, and its intemal structure is sponse aml made up of cells which eontain a large quantity of blood.

The fuemon of the shenen is not pesitively aseertained, but it is believed to perform the other of a renervir for the hbod reguired by the stomach, with which it is dosely commeted hy a sot of resels (rasa brevia), and akn to eflect whme change in tha bomititerti.

THE PANCREAS

Tue paseneas is an clongated gland rexmbling in structure the salivary glands, placed close to the spine, abore the stemach. It has two excretory duets, which carry the panereatic lluid secreted by it into the duordenmon through a valuabernening eommon to it and the hapatie duct. The ese of the pancreatic fluid appars to be similar that of the saliva.

THE KIDNEYS

 only retained in their paition log the fatty cellular mombane wheh envelipe them, and ber the umand perme of the other abominal visecta bunw thon. The right kidney is completny within the ribs, but the left waredy adsances at all beyond the eighternth rib: each averages about forty comers in weight, but there is a eonsiderable variation in size amb form. Cnlike the cormemming organ in the com, the horse's kidney is
 and surface, as maty be seen in the ammend ligure, which was taken from a -pecimen somewhat remarkable in these rejurts. A tramberse section -hows the internal structure, which is compoed of a eroltal cavity, the pelvis, into which the urine thows and from which it is carmed to the bladder ley the ureter. In thic pelvis seroral comial ponjections are visible, having minute "ponings aromit their apiees, whel are the tominations of the tebobl uriniferi compuning the substane of the internal part of the organ. The extemal is the troe sereting portion, amd in this are contained a multitude of minute red ofhoular bodies, composed of a thexus of capillary besels, amd of a coil of tube in connection with the uriniferous tubuli, both
being enclosed in a membranous capsule. Each cone is containe? within a eup-like pouch of the pelvis, which is called a calyx.

Fig. 79.-The Kidney.
A. Fissure through which the vessels enter and the ureter passes out.

1. 2. 3. 4. surface of kilney.

At the anterior extremity of each kidney is a small body called the suprarenal capsule, the use of which is not ascertained.

Fig. 80.-Transverse Section of Kidsey:
2. Felvis,

1. 2. Lreter
1. 3. Patrilla or cones.
1. 4. 4. 4. Tubular portion.
1. 5. 5. 5. External cortical portior.

THE PELVIS

The canty of The mon knmen at the pelvis is stumal ledime the
 tion of the peritmemm．A riflen of hane（ihn brim of the pelvic）is the line of femareation anterionly．The sacrom and os cocergis bound it superiondy， the anms ponerionly，ami the osea immminata inforionly amd laterally．It eontans the badiler and reetum in both sexes，and in eath the organs of gemeration peculiar to it．

THE BLADDER

 as it is gralually weenord from the ureters，which hring it down from the kidners．It liew in the midde of the pelvis，ocellying abo more or less of the ablomen acemeline to its combition in puint of repletion or emptiness． $1 t$ is of an oval hape，with its pusterior extremity somewhat more printed than the other，and callem its neck．At this print it gives origin to the methra，at canal for carring off the mine．It receives the two wreters at its superion surfice about an inch in front of the neck，where they pierce the sereral coats in an olligue direction forming a complete valve，which prevents the return of the urine，and so invisible that the presence of two npenings is searedy erom suspeted by the ordinary observer．Only about one－thind of the biadder is cosered be the peritoneme the remainder being made up solely of the muscular ani mucons coats，which compose all the hollow viscera．It is retaned in its glace by the cellular membrane which commects it with the lower walls of the pelvis，posterionly be the urethra， and by the folds of the peritoneum，which are continued from it to the siles of the pelvin，and are called the broad ligaments of the bladder．

THE ORGANS OF GENERATION，MALE AND FEMALE

The male obgans of gexeration consist of the testes and their ducts， the vasa deferentia，the latter conveving the semen to the uretha or to the wiculat seminales，which are oval bage commeted with the upper surface of the noek of the bithler．Here the sominal fand is stored up for use， and when wanted is consered into the vagina ley means of the externat whan or penis．The anatomy of the texticles is that which manly concerns the homemater，as they are gemerally remowed by opration．They are containel within the serotum，which is citernally compued of skin，wrinkled in the fual，hat subsemuently distemed he the size and weight of its eentents． loneath this is a layer of a pate vellowith fibous membrane called the
 thin coat of collabar membame alone romater this from the double serous
 just as the planat dues the inng．In the early stage of fontal life the testes
are contained within the abdomen above the peritonem, but being attacherl to the scrotum by a thin muscle (the cremaster), they are gradually dragged downwards through the inguinal camal ; and each brings a double layer of peritoneum, which continues its comection through life, so that fluid injected into the cavity of the tunica vaginalis will flow into the peritomeun. Hence inguinal hernia in the horse becomes scrotal in a very short space of time, and rarely remains confined to the former position. The testicles with their appendages, the resicule seminales, form the semen by the usual process of secretion. They are of about the size of a duck's egg, and besides their attachment by the reflexions of the tunica vaginalis to the scrotum, they have also the spermatic cord which suspends them to the inguinal canal through which it passes. This cord it is which is divided in castration, and it is well to ascertain its component parts. They are, lst. The artery which supplies the testicles witil blood, and is of considerable size and tortuous in its course. 2nd. The artery of the cord, small and unimportant. 3rd. The veins which accompany these arteries. tth. The nerves and absorbents, the division of the former giving great pain and causing a slight shock to the system. 5th. The vas deferens or duct carrying the semen to the urethra, and possessing walls of such thickness that it feels like whipcord under the finger. These several parts are comected together by cellular membrane and covered by the two layers of reflected peritoneum, namely, the tunica vaginalis and tunica vaginalis reflexa, by the thin layer of cremaster muscle, as well as by a fourth investment, a continuation of the superficial fascia of the abdomen. All these parts must be divided before the canal is reached, for operating in castration.

The female organs of generation are essentially the ovaries, the uterus and its appendages forming the bed in which the embyro is nurtured to maturity. The ovaries are two small oval bodies, about the size of large walnuts, situated behind the kidneys, and having the fimbriated extremities of the fallopian tubes hanging loosely adjacent to them. These tubes, one on each side, terminate in the uterus, which is of a remarkable shape in the mare. It consists of a body and two homs. The body has a mouth, or os, which opens into the end of the vagina, while, in itself, it is oblong, and in the umimpregnated state it is entirely contained within the pelvis. Anteriorly it divides into two horns (cornua), which diverge towards the loins, turning upwards, and lying under the wings of the ossa ilii (see Fig. 75, page 475). They terminate in rounded extremities. Each cornu receives the fallopian tube of its own side, the opening being so small as scarcely to admit a silver probe. The vagina lies between the bladder and rectum, and is about eighteen inches in length; it is lined with mucous membrane, and surrounded with muscular fibres, which form the sphincter vagine.

CHAPTEK N゙XIII

Abstract

 Aリ゙ンには。

PHYSIOLOGY OF THE NERVOUS SYSTEM

Hombato we have bern engatel in examining into the conformation of the framework of the benty：into the strueture and action of the museles， which seve tomone this framework ；and inte the several organs which alfind mowihment to the whole，and keep it somd and in good order． We have now to combiter the prime mover of all these several agents，the nerous sytem，which may be eompared th the fud that heats the water of the steam－engine，and comerts that apharently most simple and inno－ cent thaid into the powerful agent which is eapable of developing almost any amount of fore This fuel，howerer，is itcelf inactive matil it is entewed with life be the ageney of fire ；anch，in the same way，the nervons system of the animal being must be porided with the living principle，of whone mature we can only jutge by its effects when preent，aud by the cescation of all ate tion when absent．There are many frecesses which are carried on in the amimal as in the rewtahle without the neeessity for any direct stimulus from a nerons centre，such a the growth of eate separate tissue throughout the bonly，which taken plawe in the former，just as it dues in the latter，be a suecies of eefl－terelopment and metamorphosis independent of nowous energy ；but though this growth is thus accom－ phished，yet it would som be stared out for wat of pholum，were it not for the suyly of fool to the stomach，which requires the mandate of the merrous setem for its performance，and so on with every corresponding action of the boty．

The sermocs shatem is made up of two dintinct substances，one grey in colour，and granular in structure，which is the seat of all nervous power； the wher white and fibrous，which is the telegraph wire by which this pwwer is communicated．Sometimes the grey matter envelops the white， and at others it in enclosed within it，but in every case each has its peculiar whice as abowe mentioned．Each collection of wree matter is ealled a ganglion，whatever its shape may be：but the white fibres may be either in the form of commisures for comecting the sanghat tugether，or they may be agents for communicating with other orgins，and are then called nerves．

CHIEF DIVISIONS OF THE NERVOUS SYSTEM

Is the monse，as in all the vertebnata，the nerrous sytem is made up of the following part．lit．The samsliat，which are intemted to subserve what are called the redex actions of the wesme of lacomotion，ete．，and which
necupy the whole length of the spinal cord, one on each side. ${ }^{2}$ nd. The respiratory gangla, situated higher up towards the brain, constituting the

part called medulla oblongata, and placed in superintendence over the functions of respiration, mastication, and deglutition. 3rd. A series of
gemglia controlling the organs of succial sense, situated at the hase of the lamin. Hh. The romedhan, whish seems speci-
 ally intemberl to combine amb halance the seremal mise ular adions of the boly. Sth. The cerehrum, "hich is the seat of intellisemee aml will. 6th. The sympthetie syisem of winglia, which specially controls the wital orsans of ciroulation, digestion, and depmation. 'Ine first five divisions are Sindally included under the hatl of the nervous -ystom of arimel life, the lant being eonsidered (i) be peculiar to oreqemir life. The diagram on the preceding pace will show at one view the chicf component pate of (hatwosystems.

THE SPINAL CORD

Tue spisin, conomay le considered to be the primary division of the nerrons system, because it represents the lowest development of this organ in the anmal kingemen. But instead of consistinge of a sories of le eomotive ganglia, as in the articulute, it is here found in the shape of two long masses of erey matter, covered with white fibles, which serve to commmicate between the sereral parts of which it is composed.

Oppusite each joint, between the vertebre, a nerve is siven off, which passes ont in the foramen secially contrived for its exit, and thence goes on to its destination. Eath of these nerves has two distinet origins: one from the upper part of the grey cential matter (the sensitive root), the other from its inferion surface, which is the motor portion. The superion has an aceession of grey matter around it, soon after the union of its nervelets, called its ganglion, beyond which the two divisions unite to form a large nerve, which soom begins to subdivide again for supplying the several parts of the boly: The terminating branches remite in lonps, so that these nerves may be comsidered to form a complete circle, those of semation receiving impressions from the parts on which they are distributed, and conveying them to the entablation, white the motor nerves ealuse the mancies which they suply to

contract on receipt of the proper stimulus from the centre. The spinal nerves are from forty-two to forty-three in number on each side; namely, eight pairs of cervical, seventeen pairs of dorsal, six pairs of lunhar, five pairs of sacral norves, and six or seven coccygeal. Lach of these merves divides at once into a superior and inferior branch, the latter giving off a small nervelet to communicate with the sympathetic, and then going on to supply the lower parts of the body and the extremities. The cord varies somewhat in size in the several regions of the spine. It commences at the occiput of full size, then diminishes to the fifth cervical vertebra, where there is a slight swelling, after which it is gradually reduced in dimensions to the loins, where it spreads out into a wide but thin plate, after which it divides into its terminal branches, which have been compared to a horse's tail.

THE MEDULLA OBLONGATA

The medulla oblongata is the anterior enfarged portion of the spinal cord, of a conical shape, which extends to the pons varolii. On its inferior face it presents two pyramidal bodies, and on its superior two flattened cords, the corpora restiformia, while between the two are the corpora olivaria. On making a section of this part, the corpus olivare is seen to be chiefly composed of grey matter, and is a ganglion, superadded for the special purpose of establishing the respiratory function. From its lower border proceed the filaments, which unite to form the hypoglossal nerve, while from the upper side emerge the glosso-pharyngeal and pneumogastric nerves.

THE ENCEPHALON (ε^{\prime}, , in, $k \& \phi a \lambda i$, , head $)$

The cerebellum together witil the cerebruy form the mass of the encephalon, and they may be examined together with advantage. The two completely fill the cavity of the cranium, and are invested by three membranes;-the dura mater, fibrous and strong; the pia mater, vascular and tender ; and the arachnoid, a serous membrane of the ordinary character. The dura mater also dips down between the lobes of the cerebrum to form a protection against lateral displacement called the falx, and is spread across from one petrous bone to the other, constituting the tentorium cerebelli. The mass of the encephalon in the horse is small as compared with that of man, weighing not quite a pound and a half, while the human brain averages three pounds in the male, and four or five ounces less in the female. Taking into consideration that the body of the horse weighs at least eight times as much as a man's, it follows that the brain of the latter is relatively sixteen times as large as that of the horse. The cerebellum occupies the postero-superior part as the head is usually carried, and is much smaller than the cerebrum, being only one-sixth of its volume Examining it from above it presents three lobes; a middle and two latera lobes. The former is prominent, and subdivided into lobuli by severa grooves, constituting the anterior and posterior vermiform processes. The

 nit grey aml white mather, the formm latine distributed throughout the interior in such a way that when slied it pmonts an arboresent appearance.
 uf which are compuied of grey matter, a white bamb slighty striped from

「ig. §3.-Vies of the Superior slupace of tife Exctration.

[^9]r. Nimhe lobe of the cerebellum.
\because e. Sul mor median tisure.
i. :' Membrants cuvering the spinal cord.
side to side makes its appearance. This is the corpus eallosum, which is the great commisure, and consints entirely of white fibrous matter, uniting the two halves. leneath this, on cach side, are the lateral ventricles, and within cach are the optic thalamus and compus striatum, with the choroid flexus lying between. Turning the bain with its inferior surface in riew it presents antorionly the continuation of the longitulinal fissure. On each side of this are the olfactory neroce, which low like prolongations of the hemispheres. Close bohind thos two are the optic or seemd pair of nerves, commeded together hy their commisure. Then two small white bodies; the
corpora albieantia, and behimt these again the thite par of nerves, suppying the muscles of the rye. Still further back is a square eminence, the pons varolii, from the sides of which the fourth and fifth pairs of nerves arise, while its posterior border gives origin to the sixth pair in the middle and the seventh externally to these. The eighth and ninth nerves have :llready been alluded to, as arising from the medulla oblongata.

THE SYMPATHETIC SYSTEM

Tiils division of tile nerves consists of a series of ganglia, lying on each side the spine, from the head to the coccyx, communicating with the cranial and spinal nerves, and distributing branches to all the internal organs of tigestion, circulation, depuration, and generation. The branches of clistribution accompany the arteries, forming a plexus, or series of meshes, around each of them. In the head there are four small ganglia, in the neck three, and posteriorly a small ganglion lies opposite each vertebra. The posterior cervical ganglion communicates with the spinal nerves of that region by a branch which accompanies the vertebral artery, and sends forward filaments to form the bronchial and cardiac plexus, the former being largely supplied also with branches from the pnemmogastric nerve. From the dorsal ganglia a large nerve is formed, the greater splanchnic nerve, and also the lesser splanchnic, which enter the abdomen close beneath the crus of the diaphragm, where they give off a number of branches which, together with filaments of the pnemogastric nerve, unite on both sides to form the semilunar ganglion, or collection of ganglia arranged somewhat in that shape. They lie close to the posterior aorta, and surround the root of the coliac artery, supplying branches to form the phrenic and the splenic plexus, the gastric plexus, the hepatic plexus, the anterior and posterior mesenteric plexus, the renal plexus, and the spermatic plexus, all surrounding the corresponding arteries and supplying the important organs whose names they bear.

CHAPTER AXIV

SPECHAL OLADNS

THE ORGAN OF sMLIL-THE RYE-THE E.AR-THE DRGAN OF TOUCH—THF. FOOT

THE ORGAN OF SMELL

The nose of the horse, like all the sodipedes, is entowed with a sensibility far greater than that of man; but in this respect he is not equal to many other anmals, such as the dog and cat kinds, and the sole use which he makes of this sense is in the selection of his food. I have already alluded to the nasal fossie at page 469 , and need only here remark that the large mass of nervons matter componins the olfactory nerves pierees the cribriform flate of the athmoid bone in momerons fibillae, which spread over the mombrame (Schneiderian) lining the athmoilal vells, the turbinated bones, and the septum nasi.

THE EYE

The ongay of sigirt may be considered as consisting, first of all, of an optical instrument very similar to the camera obsura, now so commonly used in photography, and, scoondly, of the parts which are employed to move, adjust, and protect it from injury.

Tne exe itself consists of three tramparent humours, which answer the purpose of the lens of the camera, by collecting the rays of light upon tho back of the eye. There are the aqueoms in front, the crystalline lens in the mildle, and the viteous hmour behind. The first is a perfectly transparent and limpid thuil, secreted by the lining of the chamber in which it lies, and capable of being rapidly renewed in case of a puncture letting it out. The lens, on the eontrary, has the consistence of very hard jelly, and is arranged in concentric layors, like the coats of an onion. It is merely a double convex lens, precisely like that of the camera in its action, and is the chief asent in proflucing the impresion of an object upon the sensitive part of the eye. Behind it is the vitrous hmmomr, composed like the aqueous of a limpil fluid; but insteal of being unconfined except by the walls of the chamber in which it lies, it is bound up in a network of transparent celle, which sive it the emsistency and appearance of a delicate jelly. Lem the perfect trancmarney and proper shape of these humomrs depends the sight of the animal. lint in addition to the risk of blindness from any defeet in these parts, it the investing eoats or membranes are intlaned or dismqumed, their functions are not performed, and the sight is either impaired or destroyed. Thme the rats of light may be fairly collected, so as to throw the impression of every object within the sphere ef rision 1 pun the back of the ere, and yet the hore may be blind, beeausu
the retina or expansion of the optic nerve is disorganized by disease. When inflammation attacks the coats of the eye, it gencrally extrmels to the investments of the humours, and to the substance of the lens itsidf, producing cataract or opacity of that part; but it is possible to have the sight impaired from a mere defect of shape in the anterior coat, so as to make the surface too convex, and thus alter the focus of the sight. This is the "buck-eye," which leads to shying, ant is perfectly incurable. The membranes are, first, the cornca, a perfectly transparent coat, placed in front of the eye, and inserted, like a watch-glass, in the sclerotic coat covering the posterior four-fifths of the glube. The latter is a white fibrous membrane, strong and inelastic, so as to afford protection to the parts within it from external violence. This forms the white of the eye, which, however, is only occasionally visible in the horse. Beneath the sclerotic is the choroid coat, consisting of a network of blood-vessels, and lined with a black pigment, which again has on its internal surface, at the part opposite the pupil, a greenish-white iridescent lining, called tapetum lucidum, or luminous carpet. Lastly, within the whole of this surface is spread a beantiful expansion of the optic nerve, called the retina, which receives the impressions derived from the rays of light, forming a distinct figure upon it exactly similar to the objects which are presented to it, except in point of size, and in being inverted. Beyond these parts, there is a provision made for moderating the rays of light, according to their intensity. This is effected by means of an opapue septum, piereed witis an oval hole; the former being called the iris, and the latter the pupil. The substance of the iris itself is composed of contractile tissue, which has the power of expanding or contracting the pupil in obedience to the impression produced upon the retina; and thus, if the eye is examined in a strong light, the pupil will appear large when shaded by the hand, but contracts immediately on exposing the eye. The horse's iris is brown, varying somewhat in shade in different individuals, and at the uper part of the pupil it presents one or two little floating appendages, which serve to moderate the sun's rays. Sometimes the brown colour is absent, and the iris is either partially white or light blue, in which case it is called a "wall eye" ; but though this is considered unsightly, it does not interfere with vision. The iris is stretched across the chamber of the aqueous humour, and is thus enabled to act freely. There are many other delicate structures worthy of being examined, but want of space must prevent any further allusion to them.

Tife appendages of the eye are: 1st. The conjunctiva or membrane protecting the exposed surface of the eye. 2nd. The eyelids. 3rd. The membrana nictitans or haw. 4th. The muscles of the eye. 5th. The lachrymal apparatus. The conjunctiva covers the whole front of the eye, being thin, and perfectly transparent in a healthy state, but on the occurrence of inflammation speedily becoming red and puffy. It is reflected from this face to the inside of the eyelids, and the whole membrane is extremely liable to inflammation from any external irritation. The eyelids have nothing very remarkable about them, being merely cartilaginous shutters covered with fine skin, and lined with conjunctiva, and raised and lowered by museles peculiar to them. The membrane nictitans or haw is a cartilage lying just within the inner corner of the eye, but capable of being thrust

 deposited upen the comjunctiva, amd which, catusing the eye to be drawn back, diallae the fat deposited on the batek of the orbit, and this again pushes fombar the haw. For this reacon in all irritable states of the eye the haw is prominent.

The babmates practue of excising it as an offemting body has happily ecased with the alvent of skilled reterinary surgons. The museles move the "re in all directions, and have the peculia property of keeping the long diameter of the pupl always marly in a line parallel with the horizon. Practically they are not of any great impontance. The lachrymal apperatus consists of the lachermal ghand, situated bencath the outer wall of the orbit, and secretins the tears, whid are intended to wish the conjunctiva clear of any foreign boly: The sectetion is thrown out upon its surface through a number of small ducts, and traversing from the outer angle to the inner, is conducted through two small openings in the lids to the lachrymal sac, and from that by the maval duct to the nose.

THE EAR

This orgas is divided into the external ear for collecting the waves of sound, and conveying them inwards, and the internal ear which is situated within the petrous part of the temporal bone. The latter is a very compicated and delicate organ ; bat its formation does not difler in any essential features from that of the other wrtehnate ammals, nor are the diseases attacking it in the horse of any paticular importance, so that its deseription will le omitted.

THE ORGAN OF TOUCH

The sexse of toccir is necessary for the proper appreciation of the mechanical form and nature of the objects paced in apposition to the body, and of their temperature. It is seated generally in the terminations of the nerves of sensation on the skin ; but there are certain parts specially enclowed with these nerver, which in the horse are the lips and the four extremities.

Tane she is composed of two layers, onc internal and living termed the dromis or chorion, the other a secetion from it, and called the opedermis, the inner and freshly secreted layer of which is the rete muensem of the ohd authors. The demins constitutes ncarly the w!ole subtance of the skin, and varies in thickness in different regions of the body, and also in tho nature of its attachment to the subjacent pate, heing very lowely connected in some, and in others so tight that it camot he pinched up. It consists of a layer of cellubar and mantie fibres crossing each other in all diections, and abundandy suplicd with bond-wesels and nerves. Its external surface is frovided with numberns little elevations termed papillier, each of which contains the temmation of a nerbe: and it is piereed with an immense
number of holes, some of which allow the hairs to pass through, others are the pores through which the sweat is poured out, and others again are follicles for the secretion of sebaceous or half-oily fluid, for the purpose of lubricating the skin. These last are particularly numerous at the flexures of the joints, as at the inner part of the hock, knee, and heel, in each of which situations they are liable to become clogged, leading to the conditions known as mallender's, sallenders, and eracked heels, which will be hereafter clescribed.

The epidermis, cuticle, or scarf skin, is very thin but tough, and in the horse its innermost layer is generally of a dank slate colom, the better to protect the dermis from the rays of the sum. It is composed of scales agglutinated together, and its internal surface is reflected in the form of

Fig. 84.-Nerves of Sensation stralied to the Lips of the llorse, showing also the Origin of the Jugular Veln.
fine sheaths around all the hairs which pierce it, and of linings to the sweat pores and sebaceous follicles. As fresh cuticle is secreted the outer layers fall off; and in the horse this growth is very rapid, so that in a very few days the coat of hair becomes loaded with them if it is not regularly cleansed. They afford a great protection against wind and rain, and for that reason they should not be removed by friction from those horses which are about to be turned out of doors.

The hairy appendages of the skin of the horse are of two kinds :-1st. The general coat. 2nd. The horsehair, which is of a thicker and stiffer kind, and grows from the top of the neck, forming the mane, from the dock as the tail, from the backs of the legs, and from the eyelids and lips to act as feelers in enabling them to avoid injury. Lach hair is secreted by its bulb, which is seated partly in the dermis and partly in the cellular membrane, closely subjacent to the true skin. Unless, therefore, the whole thickness of the dermis is destroyed, the bulb may be safe, and the hair is restored in the course of time. The coat is shed twice a yeur, in spring and autumn, the secretion from the bulb ceasing for a short period, and the
hatir, loning its commertion, falls out ; but the goums hair som takes its place and grows to a length suited to the temperature to which the skin is exposed. The homehair on the contray is mot shem, but if it is phacked out it is reproduced, though slowly.
 but the selne of touch, such as we persess in the fingers, can only be said to reside in the lipe, amd partially in the feet. All these parts are profusely suppled with nerwe of semsation, and the herse may often be observed to use them in examining external objects, expecially his lips, which are the mont delicate of his orgaths of tonch. The engraving on page 499, of a preparation of the nerves of the face, shows this distribution very clearly, and will give in idea of the monerous ramifications of sensitive newes supplied to the lips. The feet are also largely suphied with nerves, though mot to the same extent at the human fingers : and being covered with homy matter, the sensibility of the surface is greatly reduced : still there can be no doubt that the horse uses them occasionally in making wot the nature of objeets presented to him: and this is especially the case with the fore-feet, though it will sometimes happen that the hind extremities are used for the same purpore; as, for instance, in ascertaning the nature of a hard body before kicking at it. ${ }^{1}$

THE FOOT

It is secessme to eximise the structure of the foot most carefully, not as an objeet of euriosity eonnected with the sense of touch, but on account of the numberless diseases and accidents to which it is subject. No part of the horse is so liable to the eflects of have work and mismanagement as this, and there is consegnently none which more requires our care both in health and disease. The bones and ligaments entering into the composition of this organ have ahealy been deseribed; the former at page 383, the latter at page 119. We have now to examine into the structure of the sensible and insensible parts which cower these bones.

Tas parts entering into the composition of the foot will be better understood by a reference to the amexed section of the phalanges or fingers terminating the metampal or metatarsal bones, as the case may be: with their investments. It will be seen that there is very little space between the pedal-bone and the crust, which, together with the sole, forms a horny case or natural shoe, for the sensible and delicate insestments of the bone. So small is this space, that when intlammation takes place there is no room for any swelling (the invariable accompaniment of that disease) and intense pain is weanionerl, as well as rapid disorganization of the structure itself. The horny case is attached to the foot by a delicate membane, which lies in folds upon the pelal-bone, and it can be torn away by violence, or when putrefaction his commencer, with great ease. These parts are here separately displayed. The several parts which we shall have

[^10]to examine, commencing from without, are-1st. The horny case or houf; 2nd. The parts which secrete it ; 3rd. The arteries which supply it with blood ; and 4 th. The pedal-bone and cartilages, as well as the navicular bone, which it encases.

The hoof consists of three distinct parts, which, though in the recent state they are inseparably mited, may be readily separated after maceration for a few days in strong soda-water. These are the external wall or crust, the sole or slightly concave surface forming the bottom or floor of the case, and the triangular central portion of this called the frog. The crust rearhes from the edge of the hairy skin to the gromd, and averages about three

Fig. 85.-Section of the parts lintering into the composition of the Foot and the Fetlock and pastern Juints.

inches and a half in depth. The front is the toe, the back the lieel, and the intermediate part the quarter on each side. It is described as a section of a truncated cone. When examined from the side, the anterior surface should form an angle of about forty-five degrees with the line of the sole, and the upper edge or coronary band should join the sole, so as to leave a moderate substance at the heel ; for if too great the foot does not expand, and is liable to disease from that cause ; or if too thin and narrow, the foot is weak and gives way downwards, ending in a convexity of the sole instead of the reverse. The front of the crust is rather more than half an inclı in thickness, and in a strong fout of arerage size gradually diminishing to the quarters, at the back of which it is generally barely a quarter of an inch thick, especially at the imer of the two. This proportion is however confined to the forc-fout, for in the hind there is little difference between the toe and quarters in point of thickness. The superior border, or coronary
band, is marker lỵ it whith cohnus: ()n it external sutace it resemble the erout below : but internally it dillers in being moothly exeavated,
 but this is not well shown in Fig. ob. In examining the cut of the sole, Fig. se, it will be seen that the crust is bent inwands fowards the frog at the bed on each side: these are the bare, which in the natural fout appear ats shargened prominences, extemting from the heelsinte the centre of the foot, betwern the sole and tho fros, and which ane useful as buttreaces, supporting the erut from being eru-hed inwads he tho sumpemment weight. The sole is the plate at the buthom of the foot, which should be sightly coneave downwards, and is fixel to the inner eden of the erust, and the outer sides of the bare and not to their former surfaces. Its usual thickness is about one-sixth of an inch, but it will vary greatly in different horses, and it is thicker where it runs back between the bars and the erust. It is secreted

Frie. sti, The Hor.
A. Outer surface of eriot.
B. Inner surface of criset
C. Eluer surface of olv.
D. Part compelwnime with the cieft of the frog.
E. Coromary banml.

 Font. WITH 7HE llowf ReMoved.

- Comonary unl-tance. B. So00 Laminat.

Fig. ss.-The vNDER surface Cf the Foot.
A. ($\%$.ft of frog.
13. 13. sole.
C. Cleft between heels.
in plates, which can readily be separated with a knife in that direction. The frog is the prominent, triangular, and elastic substance, which fills up the space between the heels posteriorly, the bars on eath side, and the sole in front. In the midde is a longitudinal fisure, called the eleft, the sides of which should form an angle of about forty-five degrees. In front of this cleft is a solid wedge of the elatic horny substance, constituting the frog, which lies immediately beneath the navicular bone, and har received the name of the chshion. Posteriorly it is -pead uut intu a thim band on each side which covers the bulbs of the loes, and pawes round the upper part of the wall con-tituting the coronary frombend of Bracy Clark, which is continuons with the coronary sulstance. The structure of the horn which forms these three divisions varies a gool deal. In the crust it is fibrous, somewhat resembling whalelone in this respect, but not quite so hard; these bristly fibres are united by a gelatinous substance, but they are arranged so as to lie in straight lines descending from the coronary circle to the ground. The wall may, therefure, be considered as composed of hairs agglutinated thgether, and each secreted by one of the villi, which are so thickly fread over the surface of the cormary circle. The sole is also
fibrous, but not nearly so much so as the wall ; and the fibres are nut arranged in so parallel a manner, taking rather an oblique direction from behind forwards, and being more easily separated into scales. The frog differs from both, in possessing finer tibres and in smaller quantity, in comparison with the gelatine, which formation renders it more soft and elastic and also more prone to decomposition. The horny matter is sometimes coloured a greyish brown, sometimes white, and sometimes marbled by a mixture of the two colours. (These parts are shown more clearly in the article treating of Shoeing in Clapter xxxii.)

The noof is developed by secretion, which has its seat in the coronary substance and lamine. It consists in a pouring out on their surface of a plasma, in which rounded cells develop themselves, in correspondence with the villi from which the secretion is poured out. These cells are arranged in layers, corresponding with the secretory surface. In the crust this growth takes place from the superior border to the inferior, but in the sole and frog, from the internal surface to the external. This growth is constant through the life of the animal, and it would give the hoof an excessive development if it were not either for the wear of the soil in the unshod horse, or the action of the smith's knife in the shod one; but the increase of the wall being solely from above downwards, it does not require any reduction on its external surface. The coronary substence, sometimes called the coronary ligament, is a fibrocartilaginous band intervening between the skin of the leg and the hoof, covered with cuticle externally, and with villi, which form a secretory surface on the edge towards the hoof. It is most liberally supplied with bloorl, as we shall presently see, and is at-

Fig. 80. - View of Vessels of the Foot, injected.

1. Plantar vein.
2. Plantar artery.
3. Branches to the eororary substance and laminæ. 4. Pusterior division of plantar artery.
4. Perpendicular hranch.
5. Anastomosis with oplosite plantar artery. tached to the upper part of the coffin-bone and extensor tendon by cellular tissuc. It gratually becomes thinner as it descends upon the pedal-bone, and ends in puckers or folds, which are continuous with those of the lamine, and are not even separable from them by maceration. The lamince thus continuing upon the pedalbone, consist of about five hundred parallel folds or plaits, plentifully supplied with blood, and forming a secretory surface, which aids the coronary substance to form the horn. They lie upon an elastie substratum of fibrous periosteum, which is of great service in taking off the jar from the foot in its battering upon hard roads, for it appears that the weight of the
body is suspended fiom these plates, and mot earried upon the sole. The lamina are continuous at the toe with the sensible sole, which is a vascular membrane coweng the then of the pedalbone, and secreting the lomy sole. In the centre of the posterion part of this is the semible fiog, which is of nearly the same shape as the lomy frog, and is still more liberally suppled with blood than the semsible sole.
 wins taking it latek, are of great innortance. Commencing with the large metacapal artery, which is the continu-

I'ua, go. -Vhiw of the Ahterifa of tili Fhog ANO AHE, INTETES.
 18. 1.atema surface of jerlat bone.
(1 : Jhe plantar reins.

1) W. 'line phantar aiterins.
$1 \therefore$ Latumblartilage contranted by drying. I. Vininc of the from, injereterl. ation of the radial below the knee, we find it desermbing ly the side of the temdoperfatus under the posterionammular ligament. Tmmediately above the fetlock joint it splits into three banches; the mildle one passing to the derp parts of the leg, and the two others, forming the plantar arteries, deseend on eath side the posterior joint to the postero lateral parts of the coronary substance. Here they divide into two learling portions, the auterior tumning round to meet its fellow of the "pposite side, and givins off with it a complete fringe of vessels, which are displayed in the aceompanying representation of an injected preparation of the foot. The branches uniting in fromt of the foot and eneircling the coronary ligament are ealled the superior coronary cirele. The posterion division of the plantar artery gives off, "rposite the pastern joint, the artery of the frog, which descends obliquely inwards through the sulstance of the sonsible fros, amd divides into two branches within it, after which it supflies the whole of that substance with momerous vessels, and then gexs on to the sole, to which it gives off a number of radiating branches. Siter giving off the artery of the frog, the plantar artery end posteriorly in the lateral laminal haneh which passes throush the formen in the ala of the os pedis, and supplics the laminae. Thas the whole of these structures are full of blood vessels, for not enly are the arteries above deseribed ramifying thus extensively upon them, but the blood is returaed by corresponding veins.

The pidal and suricclaf moxes have bem minutely deseribed at page
 the pedal bome, which are of comsilemabe importanee. These are called the
 outwards from the fusterion amd upher homere of the contin or pedal-bone. They are mited in front with the expanded temmations of the extensor
tendon, and by cellular membrane with the lower eut of the os corone. Posteriorly they wind upwards around the ala of the pedal-bone, to which they are firmly fixed, forming the foundation for the heel. But in addition to these lateral or true cartilages, there are also two others, of a fibrocartilaginons nature, which commenee from the sides of the former and proceed forwards towards the heels of the pedal-bone, and spread inwards upon the surface of the temto-perforans. They are scarcely worthy of being described as distinet cartilages, and appear more like ordinary condensed cellular membrane.

It will thus be seen that the foot of the horse is a most complicated structure, which is liable to derangement whenever the hoof or horny case is interfered with, and this may oceur either from mismanagement in shoeing, causing mechanical injury, or from inflammation of the secreting surface, which will end in the formation of imperfect horn, or from punctures or other wounds of the foot. Perhaps in no organ cloes an injury so soon produce a return at compound interest, for the inevitable first result is a malformation of the hoof, and this again only adds to the original mischief. Hence it is that in the foot, more than in any other part even, prevention is better than cure, for in many of its diseases it happens that a cure cannot be obtained without rest; and yet it is also the fact that the secretion of horn will not go on perfectly without the stimulus of necessity afforded by exercise. The position of the leg is such that its veins have a hard task to perform at all times in returning the blood from the feet, but when the horse is not exercised at all they become doubly sluggisl, and congestion in them is almost sure to vecur.

THE DISEdSES OF THE HORSE
 ．べい
 THE ACCIDENTS TO WHICII HE IS LIABLE WITH THEAR TREATMENT

CLIAPTER NXV

TIIE DISEASEA ANO INHOBLES OF BONE

GENERAL REMARKS

The mesebs of boxe are not commonly attended by any constitutional disturbance，and neither require an examination of gemeral symptoms，nor the adoption of any but local treatment，beemed that attention to the health whel is always neecsary．They may all be included under the heads of， —let．Exontosis，or increased growth of bone．2nd．Caries，or ulceration． ind．Anchylosis，or umatual mion of two bomes，in consequence of exotosis，we caries，or buth．Sh．Fractures，on disunion by external force． Matismant dispase of thr bome also orew very rame in the horse，so that
 equectally as they are perfectly incmable．

Exostoss is the result of increand antion in the mutrition of the part， and is much more prevalent in roung horses than in old．It may be recognized hy a hard swelling of the part，which in reent cases is painful on presure ；hat sometimes its site camot berember with the fuger，and the disease ean then only be detertod be it rifors．I hlow upon any of
 followed by exoronin；but the most matary wan is the over－stimulus of had work．Heary horses are more prome to exostosis than light ones， bartly from the weight of their borlies and their high lumbering action
jarring their limbs in a greater degree, but also from the more spongy and open texture of their bones which admit of the pressure of large hoortvessels within them, and are thas more liable to congestion, and consequent morbid secretion. Exostasis is shown in the form of splints, ringbone, sidebone, or ossified lateral cartilages, spavin, as well as in the growths which oecur oecasionally in other parts of the body which have received no distinguishing name.

Caries (ulceration) oceurs as a consequence of inflammation, and in the horse either results from external injury, as in poll evil and fistulous withers, or from mismanagement, or heredity as in navicular disease, whieh latter affection will be emsidered under the diseases of the foot. It is always attended with pain, and in severe cases with the formation of sufficient matter to require an outlet, but in very restricted ulcerations, such as oecur in navieular disease, the pus passes into the joint, and is reabsorhed with the synovia.

Axchrlosis, when it is the result of earies in the two adjacent surfaces of a joint, produces union between them, but in the horse it is generally of a secondary kind, the result of hony growths (exostosis) thrown out from the surfaces of the two bones near the joint, which, coalescing, unite into one mass, and thus destroy all motion.

SPLINTS

The strict definition of this disease is "an exostosis from the lower part of the small metacarpal bone, connecting it by bony union with the large metacarpal bone," but among horsemen, any bony growth from the cannon-bone is considered a splint, and the latter is almost as common as the former. The regular splint rarely attacks the outer small metacarpal bone alone, but sometimes in very bad cases both are implicated in the disease, a speeimen of which is given in Fig. 92, on next page. It is difficult to give a valid reason for this greater frequency of splint on the insite than on the out, but it is commonly said that the inner splint-bone receives more of the weight of the body than the outer one, and that it is more under the centre of gravity, but as it is merely suspended from the carpus, and is not supported from below (in any way, mediately or directly), this can produce no injurious effect upon it. The fact is so, however, whatever may be the cause.

The Symptoms of splint are generally a greater or less degree of lameness duing its formation, but sometimes it may go on to attain a large size without any such result, especially if its growth is slow, and the horse is not severely worked. While the periosteum or membrane covering the bone is inflamed and stretehed, much lameness is often present, but when the first inflammatory action subsides the animal may go sound again. Thus we find a young horse come out sound and fall lame on the journey when splint is the cause, while a foot lameness may be marked on the starting, but pass off on the road with the inereased eireulation of the blood, and additional secretion of synovia or joint oil. A night's rest and a cold bandage may appear to restore the animal to soundness, but on being put to work or even moderate exercise the lameness will often recur. Though splints or exostoses which

Would be so called on the front lers often oceur wh the himd limbs they are sedfom a cause bi lameness. There are - mome homes with what has been eatled a bony diathowis, prone to throw out bony deposits with the slightest fromation and smotimes with mo other cause than the weight of their own bodies. Chargers and inther light homes that have been sound enough

 Methinifoal. Buses.

1 Internal small meta argal bone.
\because Extrrnal small moticenroul.
3. 'aty
4. 4. liony growth (ontict tut ng a largis shint, ant attan hay the small to the large metacalpal bont.

 small Metanarials to the Large.

1. Larem metararpal bone.
©. 3. Mass of ixhalosis comnecting the three Metamaral bunes together.
at their duty are apt to form these bony deposits when enforced idleness and georl feeding combin to werload them with fat.

The importance or otherwise of a splint depends both upon its position and the age of the subject. Those situated high up aml near the knee or backwart, so as to involve the tendons or their sheaths, are of serious import, while there is no great objection to their presence if well forward, not long and diffuse, and upon the lower third of the splint-bone. If large enengh to be in thager of being struck by the foot of the opposite leg, they are dingerons as well as moightly, and may bring down the rider without a prediminary stumble. Very few mature horses are to be met with that are
absolutely free from some eallosity that may be called a splint, and motwithstanding the fact that they seldom give trouble, they are, as it were, slepling dogs, and may at any time be awoke to activity and be a source of lameness when the subject is put to unusual exertion.

The Treatment of a splint will depend upon the state in which it exists, and upon the purpose to which the horse possessing it is destined. If no lameness exists, and the blemish is not objected to, it is far better not to meddle with it, for in the course of a few years it may disappear by absorption. Although lameness from splint will generally cease with complete rest, there will in the majority of cases be a larger growth when thus left to nature, than if treated with some l, histering material. Of these there are a great variety, but probably for the particular purpose under reviow none answers so well as biniodide of mereury in the form of an ointment, and in the proportion of one to seven, eight, or ten parts of any convenient vehicle, as lard, vaseline, lanolin, or butter. Before applying it the patient should have an aperient dose of from three to five drachms of aloes (see Physic). The patient should be secmed to the pillar reins when blistered for this or any other cause in front, and there is a right and a wrong way of setting about it. Two stont hempen halters, the one put on in the usual way and the other left-handed, are to be preferred to any kind of bridle and bit, since some horses are very violent when suffering the pain of a blister, and not a few mouths have been injured by a reckless disregard of consequences in trying to get at the seat of pain. The halters shouli be so fastened that the patient cannot get his head low enough to touch the blistered parts by raising the limb. The veterinary surgeon takes all necessary precautions, while the damaged muzzles and eyes one often sees as the result of amateur blistering are generally to be traced to the neglect of these very necessary restraints. The morning should be chosen for operations of the kind when the groom is in attendanee, and can pacify the patient and see that he does not get into any difficulty. The worst of the pain will then have passed off before the attendant leaves his charge for the night. Many of the destructive blisters advertised at extravagant prices should be avoided, as they too often contain bichloride of mercury and induce sloughing of the skin and permanent blemishes which no aftertreatment can avail to remove. Splints vary so much in size, as well as in their production of lameness, that no absolute rule can be laid down as to their treatment-in one case a single application and two or three weeks' west may prove all that is needed, while in another it should be repeated at short intervals several times. In some of the cliffuse splints before referred to, the seton may have to be adopted, or scarification. Neither of these operations should be attempted by the horse-master, who had better seek the aid of a capable veterinary surgeon when any but a simple splint has to be treated. It is the custom to clip the hair closely over the part to be blistered, and it certainly looks more workmanlike, but is not at all necessary if the inunction of the blistering material is thorough. Some eminent veterinarians prefer not to clip any but a coarse, hairy leg, giving as a reason the probable greater amount of abserption to follow from the pressure of id dry hard scab. The "quality of mercy" makes one wish to soothe an inflamed leg next day with warm fomentations, but it had better be left alone, taking care only to anoint with some simple dressing, as lard or
 somm skin with matter from above 'To the justement of the professional attendant shonkl be left the ghowion of tiring in those eases where other means have faterd, of fom the natme of the exestosis make it probable that they would so fail. Pero-puncture is the name given to the operation which leaves the minimam of bhmish if the actual catutery must be used. It \therefore done with an instroment having a momber of tine steel points, or else by the insertion at regular intervals of a pointed iron or an aluminium point luated by passing the vapour of benzol themed an apparatus designed for the furpose, and of great mility to the expert, hat not to be recommended to the imatemp, since it requires a sood deal of practice for its eflecient use, is rery costly, and liable to on wot of wain. Litne firing, or "diamond," is alan adoptent with sucose in many intances, and would appear to have the aflect clamed by itcedvocates of hinding down the pate, as it were, with a fermanent hambeg amd support, but the value of all amal so operated upon is, of comese, bery mad lessened, as he will never lose the marks.

RINGBONE AND SIDEBONE

These terms, often indifferently user by the horseman, are quite distinet, as affecting diflement stroctures. limgone, like splint, is a growth of bone afon bone, while sidebone is the comverson of cattase into bone.

Ringbone for convenione of deseription is semerally divided into high and low, and first receised its apellation from the growth surrounding or nealy surrombling the bomes affected. It is ablled high when growing upon the long pastem (os suffiaginis), amd low when the shat bome (os corona) is athected. Both may be inwotred ame include the pedal or coffin-bone as well in one mass of bony depesit, mitins them into a common anchylosis and destroying their matual movements.

The fore-limbs are more prone to this rlisemse than the hind, but any or all may be affected. Howy draughthomes aw such frequent subjects of -ifferme (ossification of the lateral (antiage) that it is probable in time to come it will have to be mo longer comsidered as a canse of unsoundness, but all example of evolution.

Sigmptome-Lamencss as a rule acompanies the formation of ringbone, but in many heasy amimals used only at a walking pace a considerable deposit often takes phace without being observed, until some mucky twist or sip excites active inllammation, and ealls attention to the cause. With light horses the comension produced by fistar paces is pretty sure to produce ealy lameness, the amimal as a rule failing in his work rather than showing a"stable" lameness. Carful manimation will semerally demonstrate the seat of pain, and early treatmont is lopeful.

Treatment of ringhone is very simila to that of plint, but more time should be allowed for rest before putting the mimal to work. Care should be taken to aroid irritating the hollow of the hed by filling it first with lad before using a blister.

Sidebone.-The lateral cartilages described elsewhere as prolongations of the pedal-bome should in a sound hosse yied to the pressure of the thumb, and in the very yomg amimal be easily fompressel towards the heel, but in
the heary dranghthorse they beome dense at an early age, and to find a mature anmal that has been long at town work without some degree of ossification is the exception wather than the rule. Many horses so affected work sound year after year without suspicion of lameness, lut in their case the gradual deposition of ossific matter in phace of cartiage colls never amounts to inhammatory action but merely degeneration. With others, particularly the carriage-horse and the hack, lameness is a first symptom,

1. Os shlfarainis.
\because Us cotonit.
2. U. pedis.
3. Complete mion ly ossitie mather betwenn the

4. Comple te main of tha there bones.
and the affection is of much more serions import in horses destined for first work. Canses are horedity, coneussion, and blows, as from treads. bat shoring undoubtedly contributes toward its production.

The Treatment.-While sphints, ringbones, and other ossifie deposits may be wholly abonbed in course of time, and as the result of exciting the absorbent vessels with blisters, the same cannot be sail of sidebones. They may be greatly modified by similar treatment, and "emred" for all practical purposes, but the cartilage never parts with the bone cells that have been deposited within its proper strmeture. The diminution of a sidebone so noticeable as a result of successful treatment is due to absorption of the surrounding deposit upon the other structures adjacent, lence it does not make the horse sound from a buyer's point of view--the expert will still detect it.

The lameness of sidebone is not merely the result of change of structure,

 The applation of blisters where sidelnme is the tronble should inelude the
 anty fomation of a new ring of honi latser than before, and giving room to the mumbed arow th of bony material which may be umberenins ahsorgtion at the same timse.

Batl cases are treated with the firine inon buth by puncture and lines. "hen it is usual to draw the hat iron thromsh the cormet with a view to ""pening it out," as it is called. Leengnizing the meed of giving additinmal

Fij. 24.-Shebone.

1. Pmlat bone.

2. 3. The lateral cartilages ossifted.
room in the foot in biel cases of sidebone, Major Fred simith has adopted the plan of sawing through the houf and puttins the horse to work almost immediately.

The shoes should be removed and tips take their place to protect the toe from breaking away. This should be done either before operation or else Weferred for two or three weeks till the first soreness has pased away, and it becomes pusible to hamble the parts without giving bain or causing blemish, but the foot should mever la deprived of protection during the action of a blister, as the arust is very liable to be broken by the horse gawing with the pain. The necessary restrant which adds so much to the discomfort of a blistered horse may be the sooner maxed by using what is known as a cratle. These can be purchased of saddlers; but a handy man can make one in an hour with a bundle of sticks and some string. When this applance is adjusted round the neek so that the patient camot gnaw the tember spot, he may have the liberty of a hooe box or paddock. In ease of a horse seratehing his head with a hind foot, the cord employed in the cradle should never be so stout and strons as not tobreak away if he hangs up in it. For the same reawo ann orchated is a bat place to turn out, as oflering inducements to rub, and adding to the risks of getting hung up.

BONE SPAVIN

This dispase, so frequently the caluse of lameness in those horses which we their hocks severely (as for example race-horses, hanters, carriage-horses, eavalry, and mose palicularly eathomen), consists in exontosis from the
aljacent extemal surfaces of the tarsal bones, always showing itself at the inner side of the hock joint, on the scaphoid and cuneiform bones, and extending to the head of the internal small motatarsal bonce. As in the case of splint, the occurrence of exostosis on the internal rather than on the external side of the hock has been accounted for by the supposition that increased weight is thrown upon the internal small metatarsal bone, from the turning up of the outer heel of the shoe, which is the common practice of smiths. It appear's to me, however, that the contrary is the case, and that though more stress is laid upon the foot on that side, there is less weight on the imner side of the hock, which has a tendency to spring open in that direction. This will cause a strain upon the ligaments connecting the tarsal bones, and nature coming to their aid throws out bone, which ultimately substitutes anchylosis for ligamentous union between these bones. In all the actions of the hind-leg, from the natural shape of the hock, and more especially in those horses which are naturally "cow-hocked," there is a tendency to yield inwards rather than in the opposite direction. The consequence is that there is more strain upon the ligamentous fibres which connect the scaploid with the two cuneiform and the internal metatarsal, than upon those uniting the cuboid with the os calcis and external metatarsal bone. Hence, although exostosis does sometimes show itself in other parts of the tarsal bones, it here, as in the foreleg, is almost always confined to what is called the "spavin place," namely, the contiguous surfaces of scaphoid, cuneiform, and internal metatarsal bones. In

Fig. 0j.-Aytrroninterval View of Exostusle constitcting spavin.

1. Os scaphoikes.
\because Os cuneiforme parvim.
2. Norbill growth of bone, constituting the thispase known as bone suavin.
3. Large metatarsal or cannon bone. very bad cases the articular cartilage becomes involved, and there is not only an external casing of new bone, but the internal surfaces absolutely coalesce or anchylose.

Symptoms.-Lameness is an almost invariable symptom at the commencement, and may continue throughout the life of the animal. As a rule, the pain and consequent lameness is most manifest when first coming out of the stable or after a rest. Many horses continue to do useful work though sparined, as they "warm up" as it is called, and throw off all symptoms of pain when they have gone a little way, as many an inexperienced purchaser has learned to his cost ; thongh he may not have "swopped horses in erossing a stream," he may have purchased a horse with spavin that comes out dead lame after the day of the fair at which he was sold.

In the early stages of this affection it is often difficult to detect, and
beds the trained hamb and ere of the expert whme intimate knowledge of the anatoms of the joint mathes him ly canvelulompariom and the partien-

The Tiontment swuld be dibectend to the abstement of the indammation Which sives rian th pain, amd aiss to promote absultion of the new growth. It is often asemed that the dismase camot bo comed, and that a oravinal hase will always remain the subject of it, and therefe unsombl. but practically it is known that mathe a hack which has hem the seat of
 in it, although tried most sererely through a series of vares sitill on dissertion after death, the ligaments will not how their natual white and shistenines stucture and the tarsal bones will be to a certain extent united
 -udfaces, and with it inflammation of the stmosial mombathere, which maty aml ofton doxs exis without the carios. Now as these are much more
 palliate, it follows that although certain remertios will be ernerally successful with frmine bome satan (oxnstovis), get ther will tail when the above complication exists. This alceration of cartilage is kown as acealt sparin, and often puzzles experts to decide positively as to its existence. Experiment, hate beon recontly made with the Ronteren auss which may lead to a mowe entain method of diagnosis. A conrespembent of the Fieli, July 18, 1896, writes:-
" By the courtesy of the Dean of the Royal V'eterinary College, Professor J. MFadyean, I witnessed within the has few days further experiments in
 the subjerts were a deal home amel a living donker. Dath exposure lasted about five minutes. The pats examined were the near knere and hock of the horse and the near hock of the ass. The photosmathe whe well-marked -parin in the anchylowed condition of the hack joints. The reaults in each case may be considered satisfactory, and sive pomise of comaderable utility in the future, after furthere experiment and experiene shall have perfected

"Therliving amimal-the ass-had tobe subjected in chloroforen ; and here one of the sereat ditliculties in aplying the new serince to animals arises. They cannot be mate to keep still lonse though to be photostaphed by the procese witlunt the nse of anterthetiex, ant eren then the operation may not at all times prove satisfactory.
"Pmonsor ILoblay amd lut. Rowland are, I beliere, the first—at least in this country - to apply Rontern may to wermaty diagomsis."

The treatment must therefore be adapted to the exact mature and extent of the disease. Prior to the adoption of any plan the joint should be rested, the outer heel of the shoe should be lowered, the com should be taken away, and the system cooled by apmoniate treatment. After these precautions are taken, the next thing is to deeide unom the remedies which wall be suited to the case. They eonsist in-lst. Blisters, which hawe a tendency to cause
 tion; 1 th. Division of the nerve. If them is simply a slight exostosis, with little lamenese, and no evidence of the joint being inphicated, the binindide of
mercury may be applied as described at page 509. Repeated dressings will be necessary, and the joint must have at least two months' absolute rest, the horse being placed in a loose box. This remedy is often successful, but it will fail utterly where the exostosis is extensive, or there is caries, or even severe intlammation of the synovial membrane. Firing is the usual plan adopted for sparin, and on the first intimation of the disease it is often adopted. Its chief advantage is, that while it is a certain means of establishing a strong counter-irritation, it has no tendency to canse any increase of inflammation in the structures beneath the skin, and therefore the good it does is unalloyed by any counterbalancing evil. It is now the fashion to deny its use, and horsemasters are often tempted to try some substitute for it in the hope of escaping a blemish ; but too often they are compelled to submit to it at last, and probably after the disease has been aggravated by some " unfailing" remedy. If there is a strong desire expressed to avoid a blemish, the veterinary surgeon is perfectly warranted in doing all in his power to effect a cure without the use of the irons; but the mere fashion of the day should not induce him to decry a plan which has for so many years been proved to be successful. In human surgery the same course has been adopted, and for the last thirty or forty years the actual cautery has been voted "barbarous" in this country. Now, however, a counter current is setting in, and it is the general opinion of the first hospital surgeons of the day that, in certain diseases of the joints, no remedy is so efficacious. All sorts of attempts are made to render the use of the hot iron less repugnant to the senses; but in the case of the horse it is only necessary to measure its comparative utility and the amount of pain which it gives. The former has been ahready considered, and as to the latter, if the irons are properly heated, I much doubt whether their action is not less painful than that of any other comer-irritant.

Setons, perhaps, give less pain if skilfully inserted, and they are admirable remedies, having nearly the same beneficial effects as firing, and leaving a far slighter blemish. They should be passed beneath a considerable track of the skin, covering the "spavin place," and the tape requires to be smeared with blistering cerate to produce sufticient irritation. Their use by themselves is often sufficient, but when preceded by subeutaneous scarification they seem to act even more certainly than firing. Mr. Holmes, of Beverley, has oltained great celebrity for his treatment of spavin on this plan, and undoubtedly not without foundation. Some of his cures have been very remarkable, as even old-standing and extensive grovths of bone have been reduced, and the hocks have remained sound afterwards. It requires an intimate knowledge of the anatomy of the parts to avoid doing mischief by cutting into one of the joints. There is always afterwards considerable effusion into the subeutaneous cellular membrane, demanding two or three months for its removal : but as the sparined horse requires that interval of rest, this is of little or no consequence. When the disease has gone so far that no method of treatment will remove it, the nevve above the hock may be divided, which will enable the horse to work without pain for a time, but the disease goes on the faster, and the benefit derived is only temporary.

EXOSTOSIS OF THE HUMERUS AND SCAPULA

The heans of the busis adjacent to most of the joints of the borly are mom or less subject to exostoris, thongh not su frequently as these of the fastum-lones and tams. Next to these probably emmes the houlder joint, the neighburnhou of which is often the seat of this disease, but seldom to

Fig. 00.-Ancifionsia of the Shotlder Joint from Exostoslz.
A. Siajula.
C. D. Exostosis nremmt the sla bller joint problacing
b. Humerus. anchy山us.
the extent shown in the ease from which the acempanying engraving is taken. It represents the left sapmla and humerus of a horse, which were completely anchylowed, and of comer the corexisted a propertionate amount of hamenes during the prowes of the dimease, white after the anchyonis thak place the want of artion mut have been complete. In examination by the hand of the print of the choulder would readily detect so large a growth of bone as this ; but smaller ones are eccansonally thrown out beneath
the mass of muscles surrounding the shoulder joint, and consequently beyond the reach of the most accomplished finger.

Treatment. - If a correct diaguosis could be made it is extremely doubtful if any treatment would be successful, such cases generally are not seen except at post-mortem examinations of subjects that have long been valueless. It has only a pathological interest to the veterinary student, and may be dismissed as beyond the scope of this work.

FISTULA

Fistulous wounds are met with in other parts besides the withers, but to the horseman fistula means an open wound following upon a swelling in or near the shoulder-blades or that part of the animal designated the withers. It is at all times a troublesome disease, and not rarely incurable for reasons that will presently be seen.

Causes.-These are blows and contusions, not necessarily violent but repeated, as when an ill-fitting collar jolts upon the withers in going downhill, or a saddle too narrow or in want of stuffing pinches the tissues beneath. In the gentleman's stable fistula is now of rare occurrence, and was becoming less common in agricultural districts until the general adoption of mowing-machines, which have proved very fruitful of wrung and fistulous withers. The first indication may be "collar pride," or the patient slave may endure the pain of a forming abscess until an enlargement is observed by the attendant. The swelling, at first hard and extremely painful, becomes softer as matter forms beneath and gradually comes to a point, when it breaks, discharges a quantity of thick pus as in the case of an ordinary abscess, but instead of healing up, there is sulssidence of the swelling and the establishment of a drain from which a thin but variable discharge is poured out, a puckered opening in the skin shows a distinct tube inside from which the matter flows, and if this is traced to its source branches may have been established which run under the blade-bone (scapula), and ramify among the loose connective tissue, where, in the living subject, it is impossible to reach except by the forcible injection of fluid agents. These constitute the incurable division, but there is often very little pain and perhaps no lameness in an old-established case, and such horses are worked for years in country districts where visits are not expected from officers of the Royal Society for the Prevention of Cruelty to Animals. No doubt many horses with this disease can work in a breast-collar without pain or inconvenience, but it can hardly be supposed that an ordinary collar can be so fitted as to aroid pressure upon the parts affected.

Treatment.-Early recognition of the injury and fomentation with hot water may bring the abscess to a head so quickly as to avoid the burrowing which causes the establishment of the drain. When the soft place or "point" of the abscess yields very readily to the pressure of the finger, it may be assumed to be rearly for the lancet, which should be boldly plunged into it, and the matter evacuated by gentle pressure of a sponge dipped in moderately hot water. A pledget of tow dipped in turpentine and pushed into the carity will ensure its pretty complete evacuation the next day, and
promote the healing proees be granulation within．It is an old－fathoned methor，but attemled with su much succens in to merit notice as an alternative to the more modern treatmont，which comsists in syringing out the eavity with dilute eabblic acid，a shlution of bichloride of mereury or of Combẙ Fluid，and attempting to retain a lotion similarly constituted on a wetted pad in contact with the womm．＇The pationt generally frustrates these attempts on the part of the surgeon，and it is usually best to apply dry powders in the shape of indoform，borie acid，or salicylates which can be dusted over the parts from time to time．

If a fistula is once formed，or there is even reason to suspect it，heroic measures should be taken．There is readly nothing to be feared from the use of the most powerful agents，amd those men to be met with in different parts of the country who mulertake to cure on the principle of＂no cure no pay＂meet with a large measure of suceses，becatuse they have no fear of bad comsequences from the use of those destructive agents whose properties they do wot understand in any other comnection．A cure is often effeeted without ohtaining a depending orifice or introducing a seton；the powerful escharoties emploved appear to have the effect of sloughing out all the impediments to discharge of the deep－seated matter，and gramulation taking place from the bottom of the wound eventual recovery is certain．

This rough，and，as we have saill，often successful method of treatment does not commend itself to the modern surgeon，who will accomplish his aim with greater certainty by obswing the usual rules and seeking for effectual drainage，somotimes be the introduction of a drainage tube，at others by a seton，at circumstances may dictate．A tube may be pushed into the furthermost extremity of the sinus when it is not possible，from its situation，course，and direction，to obtain a depemdent orifice．The tubing sold by chemists for infants feoling－bottles answers the purpose well，when notches have been cut at intervals of abont an inch throughont the length to be used．It may be retained in place by a conde of stitehes through the lips of the womd．Cimstic solutions should be introduced by means of a syringe each time that the dranage tube is taken ont and cleared of the matter which has a temberey to accumbate within it．The remedies usually selected are chlorike of zine，bichlowide of mercury；sulphates of copleer and zine，and acetate of leal．The first mamed has sueh an aftinity for water，that when a solid stick of it is pushed into a simus it will do its work more rapidly than any other agent，finding its way to the bramehes of a fistula，and ocasionally suceeding when others have failed．Its chief dibalvantage is，that whon it has dome its work the parts are so long a time in commencing to granalate．Bichloride of mereury either alone or in combination with sulphate of colpur is mont aflecem by the hereditary ＂－pecialin＂refered to aloore．Nitrate of silver，in the large quantities often needed for establinhed fistula，is expensive，and no better than the remedies named for destruction of the sinus，but promotes healthy and durable sramulations in the fimal stage．If the discharge decreases in guantity and boonme thickix，asmmins the apparance of healthy pus， amb a probe binge up a stain of bright－red haod，it may be assumed that repar is taking pare，whether or matongh on＂come＂has been east out of the wound．The cautic der－inse will be no longer needed，cleanliness and free drainage being all that is necerary．

Setoning is a generally successful plan where enlargement takes place on both sides of the withers, and one is higher than the other. If the long needle used for the purpose is made to follow the direction of the sinus and passed from above downwards, coming out on the other side in such a manner as to form a drain, both abscesses are simultaneously drained. Tape or stout cord is generally employed, and the ends secured by knotting, or a piece of wood. Tying the ends in a loop has the objection that it may hang up. The seton is dressed with one or more of the agents before mentioned, and from time to time drawn backwards and forwards until there is reason to suppose from the character of the discharge that its presence is no longer necessary.

POLL EVIL

Poll evil is now rarely met with in good stables, but almost confined to the low dark dens in which the poorer class of townsmen stable their horses, or the mean hovels that do duty in some agricultural districts. The disease is of similar character to that of fistula and caused in the same way. It has been frequently traced to blows on the poll in going through low doorways, or from the pressure of ill-fitting and heavy harness, and occasionally, it must be added, from wilfully striking a horse between the ears.

The Symptoms are restiveness when the collar is put over the head and the bridle placed upon it, soon to be followed by swelling and the formation of an abscess. This is often a very long time in forming, but sooner or later it breaks, diseharges, and leaves a fistulous wound.

Treatment is the same as for fistulous withers, but more care must be exereised in the use of powerful canstics, as that portion of the spinal cord between the two first bones of the neck (Atlas and Dentata) is comparatively open and liable to injury. Many cases prove incurable as the sinus runs under the wing of the atlas and cannot be reached by surgical or other means.

CARIES OF THE JAW

Tife upper jaw, from its exposed situation, and the lower from the same cause, and also from the abuse of the bit, are liable to mechanieal injury, which ends in caries (ulceration), or sometimes in neerosis (mortification), of the part. Caries of the lower jaw, between the tushes and grinders, is extremely common, owing to the barbarous punishment which is inflicted by the use of long levers to curb bits, together with tight curb chains. The bony plate forming the roof of the mouth is also often injured by the pressure of the part when a tight nose-band is employed to keep the mouth shut. Either may be known by the existence of a sore of a peculiar character; there is a depression indicating a loss of substance, and in this lies a mass of unhealthy granulation (proud flesh), which is not attached to the surrounding surface, being only fixed to the bottom of the cavity, or perhaps partially on one side. A watery and offensive discharge goes on constantly, but this is lost in the saliva, and very often the only circumstance that draws attention to the disease is the constant bleeding from the
 boinz full of pink froth, it should be carefully examined, and the state of
 am-i-t in the arloption of a bit presing upn amother part of the mouth, Whancine the curb for a snaffle. The wound should be kept open by the u-1 of caustic (lonar) daily, which should be paned deply into it for a c...np? if seconcle, and will dectroy the unlmalthy granulations. By conGmine there measures, taking eare not to domore with the eaustic than (a) arye to kerp down the funcous growth, a cure can always be effected dirased bune.

OSTEO SARCOMA

The faws are oceasionally attackod by a malignant growth from their Mhlar structure of a sulstance partaking of the nature both of cartilage and bone. It increases cometimes to an enormous size, and forms a large irvegular tumour, which interferes terribly with their functions, often

-2rawing so as to prevent the closure of the teeth. This disease is reprenotl in Fig. 97, as far as the oweous tiscue is concerned ; but the soft -rwwthe, which occuried the central parts of the tum, ur, have been removed log maceration. The symptoms are entircly local, and when a large, unwinly, and irregularly hard swelling on cither of the jaws is met with, it may afcly be set down as belonging to this closs of disease. No treatment i- uf any avail except excision, which can rarely be carried through without rendering the horse unserviceable for his ordinary duties.

FRACTURES

 wrally wecurs either during the violent exemion of the muscles of the mil, or from great external force, it follows that in most cases the injury Wh Whe soft parts is so great as to forbill the lope of a preffect reparation. The veterinary as compared with the human surgeon is at a great

disadvantage, his patient will not lie in bed restrained by the fear of being a cripple for life, but as a rule uses his best endeavours to undo every kind of appliance that ingenuity can invent. Neither is it enough to have saved his life and turned him out of hospital on crutches ; he must be absolutely sound again or he will never repay the owner for maintenance-not to mention his doctor's bill. It is for this reason that horses with broken bones are usually slaughtered, and not as many people suppose because nature will not repair fractures in this animal. Broken bones are, however, often successfully treated by country practitioners in colts and young horses on grass or farm keep, where as a matter of mere business calculation it would not pay to attempt it in the town kept and adult horse, unless for some exceptional reason, as in a mare sufficiently valuable to be retained for breeding.

The symptons of simple fracture are a greater or less degrec of deformity of the limb, swelling, pain on motion, and a peculiar grating or jarring which is felt rather than heard, and which has received the name of "crepitus." The last symptom can only be made out when the broken ends of the bone can be brought together ; but when this is impossible, the alteration of form is in itself sufficient to lead to a detection of the nature of the accident. In fractures of the head and spine there is no crepitus felt, and the effect of pressure upon the brain and spinal cord will be often the sole means of coming to a correct diagnosis. Fractures of the pelvis are very difficult to make out, unless the ala of the ilium is broken off, which is a common accident, for here the unnatural flatness of the hip, showing itself without any great difficulty of moving the hind-leg of that side, plainly marks that there is no dislocation, and that the case can only be one of fracture. It is always the result of a blow, either when the horse is cast in a stall or in passing through a narrow doorway, or from a similar cause ; and there will therefore be some swelling of the soft parts which will interfere with the examination at the time, but as nothing can be done to restore the broken portion to its place, and as there is no doubt about the diagnosis from dislocation, this is of little consequence. Fractures of the ribs cannot be readily detected; but as they almost always follow a kick on the part, and as they do not require any treatment unless their broken ends press upon the important viscera of the thorax or abdomen, it will be well to wait for the symptoms which are caused by this mechanical irritation before resorting to bandages, etc. When a fracture occurs in any of the bones of the limbs which are concealed by a large mass of muscle, the total inability to use the member, and the loose way in which it is connected to the body, so as to allow it to be moved in any direction, indicate the general nature of the case without difficulty, though a careful examination must be made by a skilful surgeon before the exact particulars relating to it can be ascertained.

The Treatment will depend upon the bone which is broken, and whether the fracture is simple or compound. In most cases of the latter description none will avail, and the horse had better be destroyed.

If the bones of the skull are fractured, unless there are symptoms of pressure on the brain, it is advisable to leave all to nature, simply keeping the patient quiet and low, and, if in a high state of plethora, bleeding and physicking.

A mokes tower raw is by mo means uncommon as the result of a kick. The best treatment is to set the fracture, and then mould some gutta-pereha tw it, which may be confined behimd be strips romel the forehead and poll, and beforn by a palded strap patsed through the month between the nippers and tu-hes and bemeath the tonguce The home mast be fed umon mashes and stomand forl. A special apparatus known as a face cratle has been invented be Mr. Walker, Vetrinary sursem, of lmatorl, and is illustrated in Profesor Willians' work on veterinary surgry.

IV fidemper of the shise and pelifs nothing am be done beyond rest and lowrins, of necessary, by physic.

Bhokex mas, when they catse intlammation of the lungs or liver by their shap embls pressing upon these organs, may be treated by buckling two or thee ordinary rollers abreast of one another tishtly round the chest, so as to lyerent the natmal dilatation of the thomax, whieh takes place in inspiration, and which keeps up the irritation by constantly moving the ends of the ribs. The general means necessany to adopt to relieve the internal mischicf will depend upon its extent.

When either the scapula, humerus, or femur is broken, all that can be tone is to sling the horse, and by bandases endeavomr to bring the limb into as natural a position as possible, and keep it there. There must of necessity be great displacement of the ends of the bones, and these cannot by any incans be bronght into apposition ; but the sides in contact with one another, as they over-ride, will unite in course of time, and this is all that can be achieved by the utmost efforts of the veterinary surgeon.

Fractcres of the lower part of the tibia, of the ratlius, of the cannonbones, if simple, must be treated by adjusting the ends (which is the chief ditliculty, and will often require strong extension to be employed), and then aulipting to the sides of the bones splints of wood, gutta-pereha, plaster of Paris, lead, or other flexible metal.

If, by the aid of assistants, the parts can be brought into a good position, these may be carefully adjusted to maintain it, and may be kept in place by tapes or straps fastened moderately tightly around them. It is useless, however, to attempt a minute description of the means to be employed, which can hardly be understood without a demonstration. Many horses have recovered a fair use of the limb by the application of splints, without slinging, as they will take care to avoid resting on that foot in consequence of the pain it gives; but under the care of an accomplished veterinary surgeon slings will afford the best chance of recovery.

SPLIT PASTERNS

In the adelt monse the prictere most often treated with success is that oceurring in the long or short pastern (os sufleginis and os corona). If broken transversely the case is not very hopeful, or if splintered into numerous fragments as sometimes happens; but in what is called a split pastern, where the fracture oceurs in the long axis of the bone, the probabilities are in favour of recovery. There may result a considerable ring of bone around the pastern, but mueh of it will be afterwards absorbed.

Treatment consists in a cooling dose of aperient medicine and mechanical
support. This may be given in a variety of ways, but there is prolably none better than a preliminary wrapping with tow (to avoid making the skin sore), and then a series of starch or glued bandages which are retained in their proper place if the heel is filled up with tow or wool and they are put on from the hoof upwards. With three legs to rest the weight upon the patient generally learms to get up and down without injury to the affected limb. If he does not do so, slings may be tried, but they always need a watchful eye to see that they do not cause sores or get too slack when the horse has learned to depend on them. Patients in slings for whatever cause vary rery much in behaviour; with some they are the means of saving life and with others of practically no use.

CHAPTER XXVI

INJURY AND DISEASES OF THE JOINTS, MUSCLES, AND TENDONS

DISEASES OF MUKC'LE, TENDON, IND LIGAMENT-INFLAMED TENDINOUS NIIEATIS-IN: FLAMED BURSE MUCOSA—STRAINS—THOSE OF THE BACK AND LOLNS—OF THE SHOULDER-OF THE KNEE—OF TIIE FETLOCL゙-OF THE COFFIN JOHN- OF TIIE SUSPENSORY LIGAAENTS—OF TILE BACK SINEWS—BREAKING DOWN—STRAINS OF TLE $111 P$ JOINT, STIFLE, AND 11OCK—CURB——ISLOCATION-WOUNDS OF JOINTS.

DISEASES OF MUSCLE, TENDON, AND LIGAMENT

Muscle is subject to simple atrophy, with or without fatty degeneration The disease shows itself by a wasting away of the part, accompanied by a flabby feel to the touch. It is often difficult to account for the sudden wasting of a part that has not been thrown out of use by lameness or other recognized cause. The theory most generally accepted at the present day is some injury to the nutrient nerves of the part.

In agricultural districts it is by no means rare for colts, which are put to plough at two or three years, to manifest a sudden atrophy of the shoulder muscles, particularly those on the blade-bone (antea and postea spinatus), but in such a case it can easily be imagined that the position of one foot on the ridge and the other in the furrow may result in some injury to the immature tissues of the animal. Recovery is however the rule, and it is generally supposed that friction with some stimulating liniment assists to restore the muscles, whether by rousing the nerves to greater action or merely by bringing increased nutrition to the part by a greater blood supply is not clear, probably both.

Acute inflammation of tiee synovial membrane is seldom met with; but a chronic state, inducing an excessive secretion of synovia, is extremely common. The most usual situation is at the hock, where the swelling has
received the name of buseman and thonorshin; but they also oceur at the fetlerk and knee joints; in the former case being sometimes confounded with windsalls, which ate indamel hurse mucosar (sere Wimlsalls).

 at the inner shar of the joint, beatue here the ligaments are wider apart, and there is monerom for distension. Its seat is the capoule between the tibia and astragalus, which is leme monotected by any strong fibrous cosering, and ramlily yidhs to the grandal pressure of the sectetion from its internal surface (see Fig. 5s, (: H, page 405).

Thonotrinpm may be either an increased sectetion of the synovial capsule, between the astragalus and os calcis, w between the scaphoid and cunciform bones, or of the bursa mucosa lying between the tendo Achillis and the tendo perforatus. In the first of these cases it often coexists with bogsparin, and the synovia may be made to fluctuate from one bag to the other, the only line of demarcation being the astragalo calcanean ligament (see Fig. 58, G, page 425).

Both bug-spacin and thoroughpin may exist, or either separately, without occasioniny lameness; but where they are just established, there is generally some small degree of active inflammation, which causes a slight lameness on first groing out of the stable, but soon disappearing.

The Treatment should be by pressure, kept up for a long time, by means of a carrfully adjusted truss. Failing success by pressure, a blister-charge and a longrest may succed. These are made of pitch, resin, and bees-wax with the addition of a small quantity of cantharides or Spanish fly. They are applied hot and covered with chopped tow or wool, which prevents the bedding from sticking to the part when the horse lies down. A slight amount of irritation of the skin is proluced and some effusion under it, which acts as a cushion ; the contraction and pressure of the charge acts for a considerable time as a bandage, as it does not as a rule come off until the hair of the part is moulted.

Line firing is also adopted for the proluction of a permanent support, as wherever the lines heal up a new and inclastic tissue takes the place of true skin, but this should only be resorted to when other measures have failed; it should be done thoroughly if done at all, the whole hock being covered. These dropsical conditions are successfully treated by an operation for the removal of the redumlant fluid by an aspirator, under aseptic conditions, and an injection of a special preparation of iodine.

Delicate yousg fohls are subjeet to a rheumatic intlammation of their synovial membranes, seccially displayed in the linees and hocks, and apparently cansed by exposure to cold. It seliom groes on to produce disorganization of the eartilages, but the eajular ligaments are distended with thin yellow synovia, camsing considerable stiftiness. The cellutar tissue around the joints also becomes wdematons, and the less fill all the way down to the feet. It is commonly known among breeters as the "joint evil," and though in itself it is not dangerons, get it marks the existence of constitutional weakness which is likely to occasion some more fatal malady.

The Trutment should consist in attending to the general health by strengthening the mare, which is bent done by giving her a drachm of sulphate of iron in her com twice a day. The joints of the foal should be
rubbed with equal parts of soap limiment and spirit of turpentine, and it should be assisted to stand for the purpose of sucking at regular short intervals if it is unable to help itself. In aggravated cases, however, the foal is not likely to recover its general strength, and it may los better to destroy it, but so long as it can stand and feeds well, hopes may be entertained of the joints recovering.

INFLAMED TENDINOUS SHEATHS

Every practical horseman is aware that the sheaths in which the back sinews and other tendons are lodged are liable to inflammation and thickening, without the tendon itself being involved. By passing the hand down the leg, an irregular network may be felt surrounding the tendons, which move up and down without disturbing it ; and the surrounding cellular membrane is also thickened, and become hard and myielding. There may be considerable heat about the part, but often it is quite cool; and the disease may continue for months without any great lameness, and with nothing to draw attention to it (excepting a slight stiffness on leaving the stable) but the sensation commmicated to the hand. At length, an unusually severe day's work sets up active inflammation, the leg rapidly fills, and there is so much lameness as to canse the horse to be thrown by.

Treatment.-In the early stage Captain Hayes recommends a compress of dry cotton-wool under a bandage, applied with a moderate degree of pressure. It is often surprising what this simple remedy will accomplish, but if it fail an evaporating lotion may be tried. Linen bandages should be saturated with it and frequently renewed, and only walking exercise permitted. In established cases where the thickening has become permanent a fly-blister may be necessary and a two or three months' rest. Chamois leather adapted to the shape of the leg and neatly sewn on is used both as a preventive and curative measure.

INFLAMED BURSÆ MUCOSÆ

These synovial bags are liable to inflammation, either from hard work, as in windgalls and thoroughpin, or from blows, as in capped hock and elbow. The latter take on the character of serious abscesses. In all horses a subcutaneous bursa exists on the cap of the elbow and hock; and these become inflamed and filled with a very thin synovia, when they are bruised. They never extend beyond a certain size, and have no tendency to burst; nor are they inclined to a healthy termination of their own accord, but go on in the same condition from year to year.

Capped elbow can be successfully operated upon when it has passed the stage when friction may be expected to reduce it, and fresh injury prevented by a pad or cushion made specially to prevent bruising when the horse is lying down. The swelling, which is at first of a fluid nature, is sometimes cured by passing a drainage tube through it from above downwards. It may consist of india-rubber piping about a quarter of an inch in dimeter, and having notches at frequent short intervals. Trritant agents are forced into the tube, and in this way the secreting membrane is destroyed. With-
 then is to firat east the patient with hohbles, :thl then has ing aremed hims
 disencting out the egot ampletely so that only the lane folds of kin remain.

 be juduced tw subsida and the tombence to lill up with new material perented
 wimmel. In the majomity of caces mothing mome is left than a slight thicken-

Wisumats, ons fors, are the most usual foms of these enlargements, and may he whered in the lage (hind as well as fore) of neatly every hard. worked hore, atter a time. Grat care in the manawement of the legs by handaging will somethes lien then off, and some homes have maturally motendency to finm them: but in most caces, on examining the legs, just abowe the fotleck joints, of horses at work, a little wal bag may be felt on wad side, between the back sinew and the bome. If recont, it is soft and pulli: but if the work is havi, and the windgall is of long standing, it will be as teme as a chom. The syovial bag has no communication with the fetlock joint ; hat there is anotioer sac in fromt of the joint, and bencath the tendons of the extensors, which is often entarged, though not so much so as the seat of the the windgall, and which is generally, though not always, continuons with the symovial rapsule of the joint. The treatment consists in presume by means of bandages, and the application of cold lotions, if the legs are lont and inlamed. Bibstering and rest will remove then entirely; but no sooner is the horse put to work agrin, than they retmon as badly as aser. There is mo ralial eure but subentaneons functure and seatileation, and this will proluce too much athesion to be mbantareonsly appled.

Tan: rons of Thomecompan in whin the bursa mucosa between the
 hat been alluded to at pige $\overline{-}$: 1 , amt its trentment is there described.

Comper mock is always the rimult of a browe of the superficial bursa, which is situated on the ferin of the hock, immediately beneath the skin. It is gemoraly cansed he lying on bare dome. Fome lorses have a habit of getting the bedding frem under them, and this is one of the results; it mily alow imblate either that the paracome has kicked in the stable or in hamber but it is mome fremently ratum in the former way than in the

 Where there wosht to be mothing but bone felt bemeth the skin. Tho buma always mon fremy on the bume, and when hage, it can be haid hold of and shakeni like a bladider of water.

Tratmont. - In recent cases masage aided by epmal parts of soap limment and water may suresel in dianeral of this mathty but other
 thene may be applied on a piece of stout calico on time wanas shaped inte a cal, catefully fitting the point of the horls: ame thi beine tied by several gieces of tape in frome of the low, will allow mit mly ot the application of cold
lotions, but of pressure also. By this phan, continued for some weeks, considerable enlargements have been removed, but they are very apt to return on the slightest bruise. Special trusses are made for the prevention of capped hock, and they often effect a cure by removing the cause when absorption of the fluid follows, if nut of long standing.

STRAINS

Thie fibres of muscles, ligaments, and tendons, and the fascia covering them, are all liable to be overstretched, and more or less mechanically injured. This is called a strain, the symptoms of which are similar to the inflammation of the part occurring idiopathically. They are heat, swelling, and pain on pressure or movement, shown by flinching in the one case, and lameness in the other. In some cases there is considerable effusion of blood or serum, the former occurring chiefly in the muscles, and the latter among the torn fibres of the tendons or ligaments. -The symptoms and treatment will depend upon the part injured, which will be found described under the following heads.

STRAIN OF THE BACK AND LOINS

Winen a young horse has been hunted or ridden with hounds over any kind of fence, he is very apt to over-exert himself in his awkward attempts to clear the obstacle, and next day he will often show a stiffness of the loins and back, which is seated in the large muscles connecting the pelvis with the thorax. He is said to have "ricked his back," in the language of the stable, and if the mischief is confined to the muscles alone, he may generally be permanently cured, though he will be more liable to a return than an animal which has never suffered from any accident of the kind. If, however, the spinal cord is injured, either from fracture of the vertebree, or from effusion of blood or serum pressing upon it, the case is different, and a perfect cure is seldom obtained. It is, however, very difficult to form a correct diagnosis between the one case and the other, and the treatment may generally be conducted with a hope that the more important organ is uninjured. When there is complete paralysis of the hind extremities, so that the horse can neither feel nor use them in the slightest degree, the case is hopeless (see Diseases of the Nerrous System). For the management of the strain of the loins, an aperient close may be given, and the diet lowered, green meat if obtainable, perfect rest and quietude enjoined. When the sprain affects the muscles under the loin (the Psoa muscles or "undercut" of the butcher), diuretic medicines, as nitrate of potash, appear to act advantageonsly, but if the muscles on the top (Longissimis dursi, etc.) are the seat of mischief, much may be done to relieve them with external remedies. A warm compress composed of a double fold of thick flannel or serge dipped in warm water, frequently renewerl, and covererl over with oiled silk or india-rubber sheeting, answers well, or a pillow-case may be filled with bran previously scalded and applied when the temperature is such that one's naked elbow can comfortably be placed in it. This takes a long time to cool if covered
with some material that will present waporation. If fencl mursitag canmot

 tret cond, as in the invervals of pmulticing hy an indiffrent attendant. In larse wablinlments where cavalties mist newsarily be expected, the Fomenting lius invented hy hr: Field, and manuactured by Mr. C. H. Huish, will br found an invaluahle apmliance ; it will mantan a emmfortable heat to the gart repuired for fire or six hours without requiring attention. If in abont ten days the amimal is not making eood progress a charge may be spread over the loins, and a long rest enjoined.

STRAIN OF THE SHOULDER

Shoulder stran was formerly very often chosen as the seat of lameness in the fore extremity, solely because the case is so obscure that it is beyond the knowledge of the unskilful examiner. Many cases of navicular disease and other lameness in the foot not clearly defined are often attributed to the shoulder. Chronic lamenes of the shoulder is comparatively rare, but drop jumps in the hunting-feld, and collisions with the stall post, or street accidents cause temporary anl often very acute lameness.

The Symptoms are dragging the toe, and an inability to extend the limb; when compelled to mowe, the leg is moved in an outward direction in the form of a half-circle. When the museles are strained (serratus magnus, pectoralis transrersus, ete.) the animal may evince acute pain when the limb is pulled up forcibly or drawn back.

Treatment.-Rest, but not absolute inaction, is necessary, compulsory gentle exerese for a few minutes nisht and morning at a walking pace being found the best restorative. There is so much tendency to effusion which must needs be again absorbed that the abzolute rest formerly preseribed for man and beast is mot found to be desirable. Many a blacksmith (not in receipt of elub pay) will recover a sprained wrist with a leathern strap around it by continuing at his work in less time than if he carried the arm in a sling. Wirm fomentations relieve tension, and rubbing with a saponaceous embrocation tends to give mobility to the parts rendered stiff by the reparative process gaing on within. Tempel, Buittner, and other Continental veterinary authorities, adverate the injeetion into the affected parts of morphia and atropine, which is said to give immediate relief; but the curative effect must be due to the fact that the animal, freed from pain, can be induced to take the necesiry exereise above recommended. Unless there is a known history of the catse the amateur should not trust himself to diagnove shoulder lamones, since the great majority of lamenesses attributed to that region prove to be in the font.

STRAINS OF THE KNEE

The kvee, mulike its analugue in the human subject (the wrist), is seldom strainel in the horse, in consequence of the strong ligaments which bind the bones of the carpus together. still it sometimes happens that the internal lateral ligaments are overstretched, or, in calf-kneed horses,
the posterior common ligaments, or that comecting the scaphoid with the pisiform bone, or probably all these, will suffer from over extension. The accident may be recognized by the heat and swelling of the part affected, as well as by the pain given on nsing the joint. The auterior ligaments are seldom strained, but are liable to injury from blows received in various ways. The treatment should be conducted on the same principles as those of strains in the shoulder. Cold applications will seldom do anything but harm in the early stage ; but after hot fomentations have relieved the active mischief, by encouraging the effusion of serum into the surrounding cellular membrane, the former may be used with advantage. When the heat and other signs of active inflammation have disappeared, the biniodide of mercury ointment may be rubbed in, avoiding the back of the joint (see Blistering).

STRAIN OF THE FETLOCK

This accidext shows itself at once, in consequence of the superficial mature of the joint, by swelling, heat, soreness to the tonch, and lameness. It may be of a slight and temporary nature or involve important ligaments and be of a lasting character. Treatment. Warm fomentations, a bran or linseed poultice, an aperient dose if in full corn, followed by cold applications and the support of a bandage. If these fail a cantharides blister may be necessary, followed by a long rest in a loose box or very small paddock, where the patient cannot gallop about.

STRAIN OF THE COFFIN JOINT

Dissection proves that this joint is sometimes the seat of strain ; but it is almost impossible to ascertain its existence with certainty during life. The diagnosis is, however, not of much consequence, as the treatment will be the same, whether the coffin joint or the navicular joint is the seat of the mischief. In the absence of corns and all other evidence pointing to previous lameness or shoeing troubles, in the sudden demonstration of acute pain, pointing of the foot, considerable heat around the coronet, and tenderness on pressure of the heel, we have some of the symptoms indicating a strained joint. As in any acute foot lameness some benefit may be anticipated from an aloetic purge, the animal should be at once prepared (see Physic, page 302), and a dose proportioned to his age, size, and condition administered. Poulticing or warm fomentations give relief by permitting expansion of the foot and the engorged vessels in the neighbourhood of the joint. After the acute symptoms have passed away, cold lotions or wet swabs should be constantly applied, and the treatment concluded with a mild blister around the coronary band. In all joint injuries a long rest should be prescribed in a roomy box where the patient will take just sufficient exercise to promote the secretion of healthy synovia.

STRAIN OF THE SUSPENSORY LIGAMENTS

The suspensory ligament not being elastic like the back sinews (which, though not in themselves extensible, are the prolongations of muscles which
have that property), is very liable to strains, especially in the hunter, and to a less denree in the race-horse. On reference to pages 444, 448, the inferior commections of this part will be seen to be the two sesamoid bones, by a bifurcation of its substance, and as these bomes support the pastern joints by the inferion sesammideal ligaments, when the suspensory ligament is stamed the whole apmatus is remberel useless, becatuse the pain oceasioned by the extension of the upper part prevents the borse from putting his weight unn the foot. The aceident is reality made ont, for there is lecal swellang and temberness, and in the well-hed horse, which is alone likely to meet with a stain of this kind, the lef is rarely sutliciently grmmy to present the finwer from making out the comdition of the ligaments and temdons. There is no giving way of the joints as in "break down," but on the contray the leg is llexed, and if the case is a bad one, the toe only is allowed to touch the gromod. In ordinary eases, however, there is merely slight swelling of the suspencory bigment in a limited spot usually near its bifuration, or sometimes in one division only, close alrose the sesamoid bone to which it is attached. The lamse can stand readily on that leg, but on being trotted he limpe a wool deal. Sometimes, howerer, there is a swelling of the part without lameness, hut in this case the enlargement is generally due to an effision of sermm into the cellular cowerins of the ligament, and not to an actual strain of its fibres. The trentment will depend greatly upen the extent of the mischiof ; if there is no great injury done, and the enlarsement is chicfly from effusion of sermm, rest and cold applications by means of bandases or otherwise will in the course of two or three months effect a cure. (iemerally, howerer, the ease will last six or eight months before the ligament rewores its tome, and in a valuable horse no attempt should be mate to work him before that time. Where the swelling is small, as it generally is, bambage have no power over it, as the propection of the thexor tendons keeps the presure off the injured part. Here, dipping the leg in a bueket of water every low will bo of fat more service than a bandage, and the sudden shock of the cold water will be doubly etheacious. After all heat hats disappeared the biniodide of moreury may be used as a blister two or thare times, and then the howe may either be turned out, or put into a loose lox for three or fom months, after which walking exereise will complete the cure.

STRAIN OF THE BACK SINEWS

Ty Tins Aconbext the prition of the leg is the same as in strmin of the suspensury ligament, ant there is no givius way of the joints. The flexor tendons are colarged, lowt, and temder, and there is great lameness, the horse having the power to flex the joints below the knee, but resolutely objecting to extend them, by bearing what little weight is mavoidable upon his toe. The ease is often confoumled with a "break down," but it may readily be distinguibed be the fact that in the latter the joints sive way on putting the weight upon them, whist in mere strains they do not, and the tendency is to the "plosite exteme. Frequently atter a bad strain of the flexor tendons, the tetlock is "over shot," or beyond the upright, in conseduence of the continucd tlexion of the joint, to prevent pressure upon the injured
fibres, and in the managrment this result should be carcfully guarded against. The injury is generally confined to the sheath of the tendons, which in most cases grarlually puts on an inflammatory conrlition for some time before actual lameness is observed. In bad cases, however, the ligamentous fibres which are given off by the posterior carpal ligament to the flexor tentons are ruptured, greatly increasing the amount of inflammation and subsequent loss of strength. In any case the tendon feels spongy, and slightly cularged, and there is more or less soreness on pressure and on being trotted, but in the latter case exercise remores the tenderness, and very often temporarily causes an absorption of the eflused fluid, which is again deposited during rest. This state of things goes on for a time, the groom doing all in his power to alleviate it by wet bandages, etc., but at last a severe race or gallop brings on an extra amount of inflammation, with or without actual strain of the fibres of the tendon, and then there can be no doubt about the propriety of rest and severe treatment. It often happens that both legs are slighty affected, but one being more tender than the other, the horse attempts to save it by changing legs, the consequence of which is that the comparatively sound tendons are strained, and he returns to his stable with both legs in a bad state, but with one of them requiring immediate attention.

Treatment.-An aloetic purge and warm fomentations. A high-heeled shoe (called a patten) should be put on the foot, so as to allow the horse to rest part of the weight upon the heel without distressing the tendon, and this will have a tendency to prevent him from over-shooting at the fetlock joint, which he will otherwise be very apt to do, from constantly balancing his leg on the toe. After three or four days the hot fomentations will have done what is wanted, and a cold lotion may be applied by means of a loose linen bandage. The best is composed as follows:-

Take of Ammonium Chloride 2 oz .
Vinegar 소 lint.
Methylated spirit $\frac{1}{4}$ pint.
Water ${ }_{2}^{2}$ juurts. Mix.
With this the bandage should be kept constantly wet, the application being continued for a fortnight at least, during which time the patient must be kept cool, by lowering his food. At the end of three weeks or a month from the accident, the leg must be either blistered or fired, the choice depending upon the extent of injury, and the desire to avoid a blemish if such a feeling exists. The latter is the more efficacious plan, no doubt, but Distering will frequently suffice in mild cases. If, however, the tendons at the end of a month continne greatly enlarged, a cure can hardly be expected without the use of the "irons."

BREAKING DOWN

Great confusion exists among trainers as to the exact nature of this accident, which is considered by the veterinary surgeon to consist in an actual rupture of the suspensory ligament either above or below the sesamoid bones, which, in fact, merely separate this apparatus of suspension into two portions, just as the patella intervenes between the rectus femoris and
the tibia. Whichever part of the suspensory apparatus is gone (whether the superior or inferior sestmodal ligament is immaterial), the fetlock and pastern joints lose their whole inclastic support ; and the thexor tendons, together with their ligamentons fibres which they receive from the carpus, giving way, as they must do, to allow of the acodent taking place, the toe is turned up, and the fetleck joint bears upon the grouml. This is a complete "break down"; but there are many cases in which the destruction of the ligmentous fibres is not complete, and the joint, though much lowered, does not actually touch the gromm. These are still called breaks down, and most be regirded as such, and as quite distinct from strains of the flexor tendons. The aceident generally occurs in a tired horse, when the flexor muscles do not continue to support the ligaments, from which circumstance it so often happens in the last few strides of a race. The symptoms are a partial or entire giving way of the fetlock joint downwards, so that the baek of it cither touches the ground or nearly so, when the weight is thrown upon it. Usually, however, after the horse is pulled up, he hops on three legs, and refuses altogether to put that which is broken down to the ground. In a very few minutes the leg "fills" at the seat of the aceident, and becomes hot and very tender to the touch. There can, therefore, be no doubt as to the nature of the mischicf, and the eonfusion to which allusion has been male is one of names rather than of facts. Treatment can only be directed to a partial recovery from this accident, for a horse broken down in the sense in which the term is here used can only be used for stud purposes or at slow farm work. A patten shoe should at once be put on, and then fomentations followed by cold lotions should be applied, as directed in the last section. As there must neersarily be a deformity of the leg, there can be no objection on that score to firing, and when the severe inflammation following the accident has subsided this operation should be thoroughly perfomed, so as to afford relicf not only by the counter-irritation which is set up, and which lasts only for a time, hut by the rigid and unyielding case which it leaves behind for a series of years.

STRAINS OF THE HIP JOINT, STIFLE, AND HOCK

The mip joint, or round bone, is liable to be strained by the hind-feet slipping and being stretched apart, or by blows against the side of the stall, when cast, which are not suflicient to dislocate the femur, but strain its ligaments severely. The consequence is an inllammation of the joint, which is evidenced by a dropping of one hip in goinge the weight being thrown more upon the somm side than upon the other. This is especially remarkable on first starting, the lameness soon guing off in work, but returning after rest. The ease, however, is a rare one, and its deseription need not, therefore, wecupy much of our space. When it does happen, it is very apt to lead to a wasting of the deep museles of the hameh, which nothing but compulsory work will restore to a healdhy condition. The only tratment necessary in the carly stase of strain of the hip joint is rest and cooling diet, ete.; but, after six werks or two monthe, a gralual return to work is indispensable to aflect a cure.
strains of the stifle, independently of blows, are rare; but the latter
often are inflicted upon this joint in honting, leaving little evidence externally, so that it is amost always doubtful whether the injury is the result of a blow or strain. The symptoms are a swelling and tenderness of the joint, which can be ascertained by a careful examination ; and on trotting the horse, there is manifested a difficulty or stiffiess in drawing forward the hind-leg under the belly. Treatment.-Physicking in the early stage, together with hot fomentations to the part, continued every hour until the heat subsides. After a few days, if the joint is still painful, a large blister should be applied, or a seton should be inserted in the skin adjacent.

The hock itself is liable to strain, independently of the peculiar accident known as "curb." When it occurs, there is some heat of the part, with more or less lameness, and neither spavin, thoroughpin, nor curb to account for them. The injury is sometimes severe, and is known as "sprung" hock, or trifling, and relieved by fomentations for a day or two, followed by cold lotions, as prescribed for strain of the back sinews.

CURB

By a reference to page 425, it will be seen that the lower part of the posterior surface of the os calcis is firmly united to the cuboid and external metatarsal bone by two strong ligamentous bands, called the calcaneocuboid and calcaneo-metatarsal ligaments. The centre of these ligaments is about seven or eight inches below the point of the hock, and when a soft but elastic swelling suddenly makes its appearance there, it may with certainty bo asserted that a "curb" has been thrown out. The accident occurs somewhat suddenly; but the swelling and inflammation do not always show themselves until after a night's rest, when the part is generally enlarged, hot, and tender. The precise extent of the strain is of little consequence; for whatever its nature, the treatment should be sufficiently active to reduce the ligaments to their healthy condition. Some horses have naturally the head of the external small metatarsal bone unusually large, and the hock so formed that there is an angle between the large metatarsal bone and the tarsus, leaving a prominence, which, however, is hard and bony, and not soft and elastic, as is the case with curb. Such hocks are generally inclined to throw out curbs: but there are many exceptions, and some of the most suspicious-looking joints have been known to stand sound for years. Curbs are seldom thrown out by very old horses, and usually occur between the commencement of breaking-in and the seventh or eighth year, though they are not unfrequently met with in the younger colt, being occasioned by his gambols over hilly ground. The treatment should at first be studiously confined to a reduction of the inflammation; any attempt to procure absorption till this is effected being injurious in the extreme. If there is much heat in the part, the corn should be removed, and a dose of physic given as soon as practicable. The curb should then be kept wet (by means of a bandage lightly applied with the lotion recommended for capped hocks), and this should be continued until the inflammation is entirely gone. During this treatment, in bad cases, a patten shoe should be kept on, so as to keep the hock as straight as possible, and thus take the strain off the ligaments which are affected. After the
pat has become conl, it may be reduced in size, bexnins absorption to be

 the skin. The binixdide of mereme has this double alsantase and thero is mo aplication known to surger which will act equally well in effecting the abmption of a curb). It shomla be appled in the mode recommended at pase 509 , and asain rubbed on at an interval of about a week, for three or four times in sucerom, when it will gemeally low fount that the absorption of the matamal swelling is aflected; but the lisaments remain as weak as before, and mothing hot exomise mot ton serere, or it will inllame them asain) will strengthen them suthecontly to present a return. friction with the hamd, aided by a sighty stmulatins oil (such as neatsfoot and turpentine mixed, or noatsfort and oil of origamm, or, in fact, fay stimulating essential oil), will temd to strengthen the ligaments, by exciting their vessels to throw out ahlitional fibses ; and in course of time a curb may be comsidered to be sutlicionty restored to render it tolerally safe to use the horse again in the walue way which originally produced it.

In many instances firing is necessaly, and if the bemish of a few lines drawn across the seat of curb is not an insuperable objection on the part of the owner, it will prove more lastingly successful than any other treatment. As a surgical blemish it is less to be objected to than any other, as it was formerly the custom with some breeders, especially in Ireland, to fire colts on thic part as a preventive measure.

DISLOCATION

By mislocation is meant the foreible remosal of the end of a bone from the articulating surface which it natmally ocempies. In the horse, from the strength of his ligaments, the accitent is not common ; those that do occur beins chiefly in the hip joint, and in that between the patella and the end of the femur.

Dislocation of the mp joint is known by the rigidity of the hind-leg, which cannot be moved in any direction, and is carried by the horse when he is compelled to attempt to alter his position. There is a flatness of the haunch below the hip, but the erest of the ilium is still there, and by this the accident may be diagnosed from fracture of that part. No treat. in'ut is of the slightest avail, as the part camot be reduced, and tho lonse is uscless except for stud purposes. The accident is not very common.

DISLOCATION OF THE PATELLA

This is a sot cacomvis accinext of colthood on hilly ground or where drop jumps are taken sideways while at play with others. The symptoms are lameness, defomity, turking up of the thank, and loss of flesl. There is a partial dislocation alow which is due to wak ligaments becoming elongated. With some adult hares this form beomes habitual, weduring repeatedy. The external vastus musde contracting spasmodically draws the patella outwards; with relaxation of the muscle the patella goes into its place again with a click that can be heard at several paces distant.

Treatment.- In a true or complete dislocation no time should be lost in placing the patient under the influence of chloroform, so as to completely relax the muscles. There is no objection to casting him with hobbles previous to administering the anmsthetic, as the only accident likely to happen is reduction of the dislocation itself. When sufficiently under its influence the hobble on the affected leg should be undone, the toe drawn forcibly forward by an assistant while the operator by manual pressure induces the patella to pass over the eminence and into its trochlea. It can be seen, felt, and heard as a rule to go into its place. Great care should be exercised in letting the animal get up again lest luxation occur again in the act of rising. The hobbles should be noiselessly removed, and the patient allowed to remain on the ground as long as he likes. When the attendants see that he is determined to rise, the affected stifle and leg should bepressed upon during the act. As som as he has gained his feet a smart blister should be applied, covering plenty of space, as the greater the tumefaction the better; the effusion under the skin and around the joint acts as a cushion and a support, while the soreness induced will restrain the patient from undue exertion of a part requiring repose.

Tife introduction of a long seton has a somewhat similar effect and is in farour with a good many country practitioners, whose familiarity with the accidents of colthood should make their opinion valuable.

WOUNDS OF JOINTS

The knee is the joint most frequently suffering from wound, as in the majority of falls it is the part brought in contact with the ground. Whether the joint itself is injured, or only the skin, the accident is called a "broken knee," and for convenience' sake it will be well to consider botn under the present head.

Wilen a broken knee consists merely in an abrasion of the skin, the attention of the groom is solely directed to the restoration of the har which will grow again as well as ever, if the bulbs or roots are not injured. These are situated in the internal layer of the true skin, and therefore, whenever there is a smooth red surface displayed, without any difference in the texture of its parts, a confident hope may be expressed that there will be no blemish. If the skin is penetrated, either the glistening surface of the tendons or ligaments is apparent, or there is a soft layer of cellular. membrane, generally containing a fatty cell or two in the middle of the wound of the skin. Between a simple abrasion, wounded tendons, and open joint, there is so wide a difference that all sorts of treatment may be required.

In all injuries to the inee, the general rule may be laid down to reduce inflammatory action, as far as possible by fomentation and poultices, in the first instance, as the case is from the first, and by its cause, removed from the category of wounds to be treated antiseptically or by dry processes. There is generally so much bruising of the tissues adjacent, that the final mobility of the knee and usefulness of the horse depends upon early relief and preventing the formation of adventitious material as a result of contmued inflammatory action. Nor is it an objection that increased swelling results
from warmth and moisture continumsly : 1 plied, since these conditions fatour absomption by giving rom to the vessels.

Tf contincen too lose such treatment will result in the production of soft and spongy granulations, but for the first few days there will bo none to contend with. In order to retain a poultice on the knee without tying the tapes too tight either above on bolow it, a couphe of handages or a foundation of tow should be wrapped round the leg below. A dose of aloes and a redueed diet should be enforced, as ther is much temlency to sympathetic fever in serions injuries to joints, ant as the mimal cammot in such cases lie down, ho had better have his head tied up, since some horses will eat their poultices and whers will gnaw a wounl, though the majority will not interfere with it. When the reduction of pain and inflammatory symptoms warrant the discontinuance of poultices, the knee may be earefully cleaned and a pad of soft lint or calieo dipped in carbolized oil, bandaged lightly over the surface and renewed at least twice a day. With the appearance of healthy Eramulations all covering may be discontinued and the wound only dressed with earbolized oil. The evaporation that follows exposure, causes contraction in the direction desired, and the object to be studied is to so treat the wound as to obtain only the minimum of blemish. Profuse granulations theatening to rise above the level of the knce should be lightly touched at the most prominent points with nitrate of silver (lunar canstic), while the less vigorous growths in the depressions are making prosress towards a level surface, which, being attained, is made to form a seab by an equal dressing all over with the caustic. If this seab is roughly remosed and the raw surface touched over again with the silver nitrate overy few days a smaller one is each time formed, and the edges of the skin made to approximate much more elosely than if left to nature. The "bumbley" knees one often sees are quite unnecessary, for however badly a knee is broken, it may be made level by good surgery.

When the soint itself is opened the ease is much more serious, and there is a risk not only of a serious blemish, which can seldom be avoided, hut of a permanent stiffness of the leg, the mischief sometimes being sufficient to lead to constitutional fever, and the loeal intlammation going on to the restruction of the joint by anchylosis. The treetment should be clivected to cleanse and then close the joint, the former object being earried out by a carcful ablution with warm water, and an antiseptic, as C ady's fluid, contimed until there is no doubt of all the dirt and grit having been removed. Then, if there is only a very small "pening in the capsular ligamont, it may be closed by a carrful and light tonch of a pointed iron heated to a red heat. Generably, howerer, it is better to apply some dry "arded eoton to the wouml, and a banlage over this, leaving all on for four or five days, when it may be removed and reapplied. The horse shouk be physicked, takines care to prewent all chance of his lying down by racking him up. He will seldom attempt to do this on aceount of the pain oecasioned in benting the knee, but some animals will disregard this when tired, and will go down, swnehow. When the cotton is reapplied, if there are granulations above the level of the slin, they must be kept dwwn as recommended in the last paragraph, and blister may be applied. By these means a rery extencive woum of the knee may be sometimes curer, lout it is doubtful whether the majority of open joint cases are
worth treatment. Many so-called cures were never open joints at all, but the persons treating them have mistaken the saffron-coloured discharge from an open bursa for the inflamed synovia of the joint.

Tife knee is sometimes punctured by a thom in hunting, causing great pain and lameness. If it can be felt externally it is well to cut down upon it and remove it ; but groping in the dark with the knife among important tendons in front of the knee is not on any account to be attempted. The knee should be well fomented five or six times a day, until the swelling, if there is any, subsides, and, in process of time, the thorn will either show its base, or it will gradually free itself from its attachments and lie beneath the skin, from which position it may be safely extracted with the knife or forceps.

CHAPTER XXVII

diseases of the thoracic organs and their appendages

GENERAL REMARKS-CATARRH OR COLD-1NFLUENZA-BRONCHITIS-CHMONIC COUGH

 IMSEAKES UF THE HEAKT-DISEASES OE THE BLOOD-VESSELS UF LHE CHEST AND NOSE.

GENERAL REMARKS

The mportance of soundness in the respiratory apparatus is so fully reengnized, that in common parlance it is put before the organs of locomotion, a popular expression being "sound in wind and limb." It is true that good wind is useless without legs; but the disases of the latter are known to be more under control than those of the chest, and hence it is, perhaps, that the wind is so earefully scrutinized by all purchasers of horses. There is, also, much greater difficulty in ascertaining the eondition of the lungs and their appendages, and the ordinary obiserver can only judge of them by an absolute trial; while the state of the legs may be seen and felt, and that of the feet ean be tolerably well aseertained by a very short run upon hard ground. So, also, with the acute discases of these parts; while the legs and feet manifest the slightest inflammation going on in them by swelling and heat, the air-passages may be undergoing slow but sure destruction, without giving out any sign that can be detected by any one but the practised veterinarian. In most of the diseases of the ehest there is disturbance of the breathing, even during a state of rest; but in some of them, as in roaring, for instance, no such evidence is afforded, and the disease can only be detected by an examination during, or immediately after, a severe gallop. Roarers will often grunt when threatened with a stick, but it is not a reliable test.

CATARRH, OR COLD

 lim, womplated with this comdition of the mes. Tha latter is, perhaps,

 is invaliahy semm derres of fowislmess, sometimes very considerable, at whers so slight ats to be easily pased wer. Vatly the pulse is accelerated th about fonty or fifte, the alpertite is imparent, and there is often sore thrat, with more or less congh. On examining the interior of the nostrils, they are more red than matural, at first dry and swollen, then bedewed with a watery discharge which som becomes yellow, thick, and, in bad caces, purulent. The efes are generally involved, their conjuctival coat boing injected with hourl, and often some slight weeping takes place, but there is always an expression of slecpiness or duhess, partly owing to the local condition of the organ, and partly to the general impaiment of the health.

Cousses-Chills from exposure to draught or sudden allernations of tomperature, as from a hot stable to a cold one, or vice-verse. Horses more often sufler from catiorhal fever when brought in from a cold pure air to the vitiated atmosphere of the stable than when turned out to grass without proper preparation.

Treatment.-Consists in good mursing while combating special symptoms, these varying in individuals as well as in type in diflerent years.

If some throat is a poomenex sympon, comoter-imitation should be resorted to. Few things answer better than mustard mixed as for the table and rubbed over the affected part. Ammonia and soap liniment have an adrantage over mustard, inasmuch as the application may be repeated at short intervals, but as a rule one moderate vesication with mustard is all that is necessary. Constipation being common, with inereased internal temperature, a saline aperient or small dose of linseed oil may be given, but on no aceount aloes. The inhalation of Friar's Balsam upon scalded ban suspemed by a nosebag is calculated to give relief where the dischatge is thick amd got rid of with ditliculty.

The foon should be moistened and of a laxative character ; cut grass and vetches in summer ; carrots, scalded chaff and corn with linseed tea, ete., when green forel is mot obtamable. The extremities should be kept warm by handaging and the body elothet, pure but not necessarily warm air being desimable.

An aprabexthy shmpe cold may at any time lead to more serious disorders, as premmonia or bomblitis, amd pon the exhibition of any
 \therefore mgen ere it is the late.

INFLUENZA

By this term is generally meant an infectious felrile disease in which a common symptom is a catarthal condition of the mucous mombranes of the respiratory tract. It varies greatly, not only in its manifestation in individuals, but in different years it assumes varying forms, at one time having all the appearances of a feverish cold, at others causing glandular swellings, and an abscess like that of strangles, liver complications, resulting in jaundice, lameness of the right fore-limb in supposed sympathy with the liver, and sometimes partial paralysis of a limb or limbs. Our forefathers described it as the "distemper," and naturally so since it makes its presence felt in as many shapes as the distemper of dogs. It is found almost simultaneously on three continents, but whether the germs are carried through the air faster than by ocean steamers is not proved. In North America and in South Africa it takes on a type in which intense redness of the conjunctival membrane is a conspicuous feature, and for this reason is known as "pink eye" among the many other names accorded it. Its history in varying forms has been traced for centuries ; but what climatic or other conditions favour its spread or increase its intensity does not appear. There are many theories and perhaps a specific bacillus, but there is certainly no specific with which it can be treated.

The Symptoms are at first those common to febrile attacks, in which duhness, staring coat, perhaps shivering and loss of appetite are among those most usually observed ; sore throat, cough, difficulty in swallowing, and general malaise. Increased temperature, which may be ascertained by the clinical thermometer per rectum.

Treatment.-Is directed especially to the amelioration of the prominent symptoms in each case, but wit! a general regard to the fact that great prostration and loss of nerve force is to be guarded against. Powerful doses of quinine, gentian, and the mincral acids in small quantity tend to maintain the patient's strength, while local applications in the form of stimulating liniments to the throat or other parts are undoubtedly useful. The appetite should be tempted with variety in the way of food, and only a little at a time offered to the patient. Carrots, linseed, crushed oats, and damped chaff should be tried in turns, and if the animal is very low and absolntely refuses his food he may be for a time sustained by the administration of eggs and milk, gruel, etc. With a falling temperature appetite returns, and restoration to health and vigour may be aided by iron and quinine, gentian and calumba, a little table salt in the food-in a word, grood nursing, which comprises bandaging, clothing, exercise when capable of benefiting by it, and all those altentions to the wants of the sick which to some men devoted to amimals appears to be a natural gift, while others never acquire it. Unless some serious complication accrues or the catarrhal symptoms invade the bronchi, or substance of the lungs, larses seldom die of influenza, but like their nurses succumb to sequela brought on by resuming their ordinary avocations too soon.

BRONCHITIS

Brovchits is an intlammation of the mucous membrame lining the bronchi, and almost invariably extending to these parts through the trachea, from the laryox and nasal passages, which are primarily aflected as in ordinary cold. The membrame in the early stage becomes filled with blood, and as a consequence, the diameter of the tubes is diminished, attended by some difliculty and increased rapidity of breathing. After a time a frothy mucus is poured out from it, and this still further interferes with respiration, and necessitates a constant cough to get rid of it. These symptoms are always present, but they will vary greatly in intensity, and in the rapidity with which they progress, from wheh circumstances bronchitis is usually said to be acute or chronic, as the case may be. In the acute form there are also several variations, and retemary writers are in the habit of again subdividing it into acute and sub-acute, but the two leading divisions are suthicient for all practical purposes. It begins with the usual premonitory appearances of a severe cold, accompanied by a staring coat and entire loss of appetite. The breathing is somewhat accelerated, the temperature increased, and the pulse of greater frequency and less force. The ears and legs vary in temperature, the visible mucous membranes are injected, and a cough which is hard, dry, and painful. On auscultation there is a dry rattling sound, very diflerent from the crepitation of pueumonia, and as soon as mucus is secreted, succeeded hy gurghing and soap-bubble sounds easily distinguished when once heard. If the attack goes on favourably, the cough becomes loose, and there is a free discharge of mucus, both from the lungs, as evidenced from the nature of the cough, and from the nostrils, as shown by the rumning from them.

On the other hand the prognosis is unfarourable when the breathing is very laborious, with the legs extended, and the cough constant and ineffectual in affording relief.

Ireatment.-Counter-irritation still commends itself to the majority of veterinary practitioners as likely to afford the most immediate relief combined with those internal remedies which in human medicine are known as expectorants.

Broscmuts pure and simple without the larynx being involved is infrequent, and it is usually advisable to apply mustard to the throat and down the course of the trachea till the thick muscles of the brisket are reached, where the application would be useless as being so far from the affected tubes. The sides of the chest immediately behind the elbows may receive a share of attention in some cases, but as a rule the veterinarian contents himself with covering the parts already named.

Where larengeal symptoms do not preclude the administration of a ball, the following will be found suitable and may be given twice a day:-

$$
\begin{gathered}
\text { Take of ligitalis } \\
\text { C. } \\
\text { Cilomel } \\
\text { Tartar Emetic }
\end{gathered} .
$$

Mix with treacle.
Chrosic broxcmitis seldom exists except as a sequel to the acute form,
and after adopting the balls recommended for that state, it may be treaterl by attention to the general health, and the exhibition of an expectorant ball twice a day, composed of the following materials :-

Mix and make into a ball.

CHRONIC COUGH

By this term is understood a cough that comes on without any fever or evidences of the horse having taken cold. It differs in this respect from chronic bronchitis, which generally supervenes upon the acute form, and is always attended in the early stage by feverishness. It appears probable that chronic cough is dependent upon an unnatural stimulus to the mucous membrane, for it almost always makes its appearance when much corn is given without due preparation, and ceases on a return to green food. It is, therefore, very commonly termed a stomach cough. The symptoms are all summed up in the presence of a dry cough, which is seldom manifested while in the stable, but comes on whenever the breathing is hastened by any pace beyond a walk. Two or three coughs are then given, and the horse perhaps is able to go on with his work, but after resting for a few minutes, and again starting, it comes on again, and annoys the rider or driver by its tantalizing promise of disappearance followed by disappointment. Very often this kind of cough is caused by the irritation of worms, but any disorder of the digestive organs appears to have the power of producing it. The usual treatment for chronic bronchitis seems here to be quite powerless, and the only plan of proceeding likely to be attended with success, is to look for the cause of the irritation, and remove it. Sometimes this will be found in a hot stable, the horse having previously been accustomed to a cool one. Here the alteration of the temperature by ten or fifteen degrees will in a few days effect a cure, and nothing else is required.

Again, it may be that the corn has been overdone, in which case a gentle dose of physic, followed by a diminished allowance of corn, and a bran-mash twice a week, will be successful. If the stomach is much disordered, green food will be the best stimulus to a healthy condition, or in its absence a few warm cordial balls may be tried. The existence of worms should be ascertained in doubtful cases, and if they are present, the proper remedies must be given for their removal. Linseed oil and spirit of turpentine, which are both excellent worm remedies, are highly recommended in chronic cough, and whether or not their good effect is due to their antagonism to worms, they may be regarded as specially useful.

A very successful combination is the following mixture :-
Take of Spirit of Turpentine 2 ounces.

Mucilage of Acacia
Gum Ammoniacum

Mix, and give half-a-pint as a drench every night: the bottle must be well shaken before pouring out the dose.

LARYNGITIS, ROARING, WHISTLING, ETC.

We of the mose compon disases among well-bed homse of the present day is the existence of some mechanical imperliment to the pasage of the air into the longe, causing the anmal to "make a noise." The exact nature of the somed has little or no practical bearing on the canse that produces it ; that is to say, it camot be predicated that roaring is produced by laryngitis; nor that whistling is the result of a palsy of some particular mascle, but undoubtedly it may safely be asserted that all lesions of the laryon, by which the shape and area of its ounning (rima glotidis) are altered and diminished, are sure thate a prejudicial eflect unom the wind, and either to proluce roming, whistling, wheezing, or trumpeting, but which would result it miont be dillicult to say, although the precise condition of the larymx were known, which it camnt be during life. Veterinary surgens were formerly puzzled by often fimting on examination of a roarer's larynx after death no visible orgmic change in the opening, and many were led to imagine that this part could not be the seat of the disease. On a atreful dissection, howerer, it is fomm that a muscle or muscles whose oflice it is to dilate the larym is wasted and thabby (erico-arytenoideus lateralis and thyro-inytenoidens). The other muscles are perhaps equally atrophiel, but as their othice is to close the ofening, their defects are not equally injurious, and at all events are not shown by producing an unnatural noise.

The cause of thas wasting is due to some defective nerve supply, and careful examination and dissection shows it is deqencration of its structure and interruption of the current. It is a subject which has occupied the most eminent veterinarians with hitherto very little progess towards an accurate knowledge of its pathology. It was hoped at one time that excision of a portion of eartilage would prove a success, but experiments upon a goodly number of army horses proved that the relief was only temporary, and that falling in of the laryux and a still greater diminution of its calibre followed, so that the operation was early abandomed.

A mome successel operation is that of thacheotomy, which consists in the introduction of a metal tube into the trachea, permitting the air to be breathed direct into the lungs instead of passing through the ordinary way. The place usually selected is between the thim and fourth rings of the trachea, where the windpipe has the smatlest amome of museular covering, but the plan adopted and the instrmment invented hy Mr. Jones, M.R.C.V.S., of Leicester, has certain advantages over the old method. This gentleman inserts the tube very high up, where it can only be seen by a person looking under the horse's head, and in a pusition where it is less likely to meet with extemal violence. The tube is prosided with a ${ }^{\text {han }}$ which can be kept in it at night only, and most not he left out in swimming or the creature may be drowned. The wwor of a farourite hmater so operated on is generally satisfied with about two smanos, and such horses find their way into calss at a nominal sum. For several reasons it will be necessary to examine first of all into the several linds of inflammation, ete., to which the larym in subject, mal then to investigate as far as we may, the nature,
mode of detection, and treatment of the several conditions known to horsemen by the names of roaring, whistling, etc., which are only symptoms of one or other of the cliseases to which allusion will presently be made.

By acute laryngitis is meant a more than ordinary inflammation of the larynx, and not that slightly morbid condition in which the mucous membrane of that organ is always involved in "the passage of a cold into the chest." In the latter state the ear detects no unusual sound, and indeed there is plenty of room for the air to pass. But in true laryngitis, on placing the ear near the throat, a harsh rasping sound is heard, which is sufficient at once to show the nature and urgency of the symptoms. The mucous membrane is swollen, and tinged with blood; the rima glottidis is almost closed, and the air in passing through it produces the sound above described, which, however, is sometimes replaced by a stridulous or hissing one. In conjunction with this well-marked symptom there is always a hoarse cough of a peculiar character, and some considerable fever, with frequent respiration, and a hard, wiry pulse of seventy to eighty.

Fig. 0.- Jones' Patent Tracheotomy Tube.

Treatment.-No time should be lust in producing counter-irritation, int mustard, which is everywhere obtainable, is as good as anything else for the purpose ; the most distressing cases are usually relieved by its application in a very short time. If it fails and suffocation threatens, the tracheotomy tube referred to at page 542 must be inserted without loss of time. Large doses of emetic tartar, digitalis, and calomel were formerly prescribed, but modern treatment with electuaries is much safer, and probably more effectual. A given quantity, as a teaspoonful, is smeared upon the back of the tongue, with the double advantage of acting topically as well as
through the ordinary medimm of the circulation. The following is a suitable preparation :-

This quantity may be safely given three times a day. With abatement of the acute symptoms extract of gentian may be substituted for belladonna as caleulated to restore appetite and enable the animal to recover from the weakness intueed by a severe attack. The administration of both balls and drinks is attended with some danger, and if the latter are given the head should not be held up for long together, and only small "go-downs" at a time attempted. The electuary is undoubtedly the form of medicament to be chosen for cases of the elass under consideration.

Gruel and soft food generally should be given, and the bedding must not be of a kind that a greedy ammal would eat during convalescence. The greatest care must be taken to prevent a relapse, by avoiding all excitement either loy stimulating food or fast exercise.

Cimonic laryngitis may occur as the result of the acute form above described, or it may come on gradually, without any violent inflammation preceding it. In either case the symptoms are similar in their nature to those met with in the acute form, but less in degree. The noise made is not nearly so harsh, and ean often hardly be heard on the most careful examination. The peculiar harsh, grating cough is, howerer, always present, and by it the nature of the case may generally be casily made out. The disease often accompanies strangles, although in mine cases out of ten it is overlooked by the carcless attendant. Very commonly, however, it makes its ravages in so insidious a manner that no suspicion is felt of its presence, until the horse begins to make a noise, though he must in all probability have shown by the cough peculiar to the complaint that it has been working its way for some weeks at least. Suelr cases chiefly occur in the training stable, and are due, according to my belief, to the enormous quantity of oats which it is now the fashion to give to colts from the earliest period of their lives, increased to seven and eight feels a day during the second year. Contimued spirit-hinking has precisely the same effect upon the human being, and the harsh stridulens eough of the confirmed drunkard marks the existence of ulceration of the larynx, in the only way which he will allow it to be displayed, for he is not, like the horse, made to exert his powers of ruming, whether his wind is good or bad. There is, of course, a considerable diflerence between the two diseases, but there is suthicient analogy between them to explain why the stimulus of over-corning should affect the laryox in preference to any other part. It would be difticult to show the comection between the two in any other way, beyond the simple fact that roaring has become general in an exact proportion to the prevalence of the present fashion of feeding. The advocates of the plan will say that though the two have come in together, yet it is merely a coincidence, and not a consequence, the one of the other; but if it can be shown that in man a similar cause produces a similar effect, the argument is strengthened to such a degree as to be almost unanswerable. But what-
ever may be the cause there can be no doubt that the treatment is most troublesome, and often baffles the skill of the most accomplished veterinarian.

Blistering and occasionally line firing has been attended with good results. The frequent application of a remedy that is slightly vesiccating, as white oils, turpentine diluted with oil, oil of cantharides, etc., is often beneficial, but before any defimite line of treatment is decided upon it will be well to thoroughly examine the back of the mouth with the aid of Huish's speculum or gag. This instrument (Fig. 99) enables one to get a good view of the fauces, and by drawing out the tongue with the hand it may be possible to detect an ulcerated condition of the rima glottidis. If this is found to be

Fig. 19.-Gag showing Rubber.cgevered Bars fixed for Oferation on Incisors.
the case an application of solution of nitrate of silver on a camel-hair pencil may do more towards effecting a cure than any other treatment, however long continued.

Careful dieting in all cases of laryngitis, or of chronic cough from whatever cause, will do much to alleviate the symptoms. Linseed in various forms is among the most valuable agents to be employed either as a food to be eaten or the expressed oil poured over the usual feed. Most horses will take it readily in this way and even acquire such a liking for it as to look round with dissatisfaction if at any time it is omitted.

Roaring is the bugbear of the purchaser at the hammer, and not without good reason. The most experienced veterinarian or dealer will often fail to ascertain its existence, in spite of all the artifices he may call into play.

Not the slightest somul is latiod durins a state of guiesernee, or even when the horse is tratted or salloped for the short distance which " the ride" will afford. The blow on the side siven with due artistic effect dieits no grunt, and yet the animal is a confirmed roarer, and not worth a shillins, perhaps, for the purpose to which he is intended to be devoted. On the other land, many a sound home is comblomed as a roarer for giving out the obnoxious gront ; and thongh there is mo doubt that this sign may be relied on in a great many cases, yet it camot be atecepted as either mesatively or positively a certain froot. The only mal trial is the noiseless gallop on turf or plough, when the ear can detect the slightest sound, and can distinguish its exact nature, and the precise spot from which it procceds. Many a horse will, when he is excited, make a harsh noise in his breathing, accompanied by a kind of "gluck," proceeding from a spasmodic flapping of the velum palati, hut on galloping him all this goes off, and he may probably exhibit excellent wind. Such cases I have many times known, and they woukd be condemmed as unsound by those who have had little experience, or are content with a careless and inetlicient trial. Stallions are particularly prone to make this kind of noise, and it is extremely difficult to ascertain their soundness in this respect by any means which ean be safely resorted to. The causes of roming are of three kinds: 1 st. Tntlammation, which has left a thickening or ulceration of the mucous membrane, or a fungous growth from it ; 2nd. Paralysis of the museles; and 3rd. An alteration of the shape of the cartilages of the larynx, produced by tight reining.

In rouring produced by an ulecrated or thickened comtition of the mucous membrane, or by a fungous growth, the somm elicited is always the same in proportion to the rapidity of respiration. None of the ordinary expedients by which the breath is introduced in a modified stream (such as a full meal, or pressure on the nostrils or wind pipe) will be of much arail, and the horse roars sturdily whenever his pace is sufliciently accelerated. If a horse so adiected can be made to grunt by the blow on the side, the sound will always indicate the discase, for it will be harsh and rough, and not the natural grunt of the ammal. It is usually supposed that no treatment can he of the slightest avail here. Setons, blisters, and embrocations are all useless, as has been proved in numberless cases; and beyond the palliation which can be afforded by employing the horse only at such a pace as his state will allow, nothing else can be suggested. In some cases the roarer will be able to do adinary harness work, which, however, in hot weather, will try him severely; in others he may be so slightly affected as to be fit to lumt in a country where, from its mature, the pace is not very severe; but by confirmed roarers the slow work of the cart is all that can be performed without cruelty.

Whistling, piping, and whemang, are terms applied to those horses which do not actually roar but make abormal sounds which are perhaps best deseribed by such names.

There is no longer any question as to the howeritary nature of roaring, and it may be hoped that its recognition may leal in the near future to a diminution ia the number of animats so affected.

PNEUMONIA AND CONGESTION OF THE LUNGS

These disenses, associated as they are in human practice, aud spoken of as different stages of the same affection, have quite a different significance for the veterinarian. Pnemonia he understands as inflammation of the paraxchyma or long substance, but congestion of the lungs is a condition in which the pulmonary vessels are engorged as a result of over-exertion in an unfit state, and not cansed by coll or invasion from other parts of the respiratory tract.

Pneunowia.-The causes are much the same as those which produce catarrh or common cold, such as exposure to cold, draughts when heated, damp stables, injudicious clipping, crowding aboard ship and other unhealthy conditions by which an adefuate supply of pure air is not provided. By invasion, or extension, as when bronchitis primarily exists, and the parenchyma becomes associated with it, when it is called broncho-pneumonia, or by extension from the pleura, when the condition is known as pleuropneumonia.

Symptoms.-Rigors, or shivering fits, usher in most acute inflammatory affections, but are not always observed by the attendants. Refusing the food may be the first symptom noticed, and further examination show that the coat is staring, the extremities cold, the visible membranes more or less injected, the breathing hurried and shallow, with cough variable in character. It is not the loud, harsh congh of laryngitis, but deeper and infrequent, as if the pain eaused in coughing were so great as to induce the animal to suppress it altogether. There are to be met with unmistakable cases of pneumonia in which cough is not present at all. The internal temperature rises rapidly, and the animal wears a dejected aspect. As the disease progresses, the breathing becomes more and more difficult and the lungs consolidated or else gangrenous, and death ensues.

Treatment.-As with the other inflammatory disorders of the respiratory tract counter-irritation with mustard, applied early, is usually good treatment, but many eminent practitioners prefer hot compresses around the chest, and special appliances are made for the purpose similar to those referred to in connection with sprains of the lumbar region (see page 527). A sheet dipped in hot water and wrung ont quickly may be applied with a sufficient covering of other materials to prevent rapid evaporation. Pure air, and that as cool as the circumstances permit, should be ohtained while clothing the body and bandaging the extremities to keep up the circulation. To reduce the temperature of the body and the frequency of the pulse while increasing its force will be the chief object of any medicines prescribed. Aconite and digitalis have the reputation of bringing about this desirable result, and three or four doses may be given at intervals of as many hours, but they are not remedies to be persisted in for any length of time, and a change may be made to belladonna and nitrate of potish. Bicarbonate of potash may be given in the drinking water, or salicylate of soda, but in this way of giving medicines care must be exercised to dissolve the medicament in only just so much water as the horse will drink, or he will rever get two doses of equal proportion.

If the application of mustard is quickly followed by the usual results it
is regarded as a hopeful symptom, but the animal that appears indifferent to the sting of it, and upon whose skin no visible effect is produced, is not very likely to recorer. Good nursing and suitable environment is of the utmost importance, and every inducement offered to the animal to lie down. It is not true to say that horses affected with this disease never lie down, but it is a common symptom, and doubtless militates against their recovery, as a few minutes' sleep is more likely to be obtained at intervals if the animal assumes a recumbent posture. Tonies, as quinine, vegetable bitters, and mineral acids are helpful in restoring the patient's strength when the temperature hats come down to nearly normal, but some considerable time should be allowed to clapse before he is put to work, as the products of inflammation must have time to be carried away before it is safe to call upon the lungs for any great effort.

Congestion of the lungs.--To clearly understand the difference between congestion and inflammation of the lungs the reader is referred to the Physiology of Respiration at page 467 . It is not congestion of the lung substance itself, though it has that appearance to the unaided eye when seen post-mortem. It is engorgement of those pulmonary vessels whose oftice it is to carry venous blood to the lungs for removal by contact with the oxygen of inspired air. The known causes are several besides others not so clearly understood. To put a typical case before the reader we will choose the hastily conditioned hunter, or the grass-bellied yeomanry horse which the recruit in his pride parades on the first day of "permanent" duty. The first has had too much corn and too little exertion, while the latter is soft and full of blood, conditions altogether unfawourable for severe muscular exertion. In the excitement of the chase (or under orders and a heary kit), the animal is overtaxed and the blood forced into the lungs is not carried away; the animal's distress tells a practised horseman that it is time to pull up and turn his head to the wind, slacken his girths, and retire from the field. If he has a thask in his holster the rider will give its contents to his horse rather than himself, and probably no further trouble will result. On the other hand, if the animal is urged to further exertion his life may be the forfeit. Though ridden to a stindstill he may presently be induced to walk to the nearest hostelry, but he will not feed. His rars and legs will be found to be cohl, his eyes injected, not with the same tint as in ordinary intlammation, but darker in colour ; blowing, trembling, perhaps partial sweats, hanging his head in a corner and looking altogether a picture of dejection. If successful treatment is mot adopted he succumbs in a day or two from literal "want of breath," or a portion of the lungs may remain patent and he dies a few days later when the engorged part has become putrid. Congestion of a less severe nature may show itself only in dulness and shallow breathing, staring coat, loss of appetite, and the symptoms above described only in a morlified form. It is nevertheless extremely dangorous, and such caros after a few days suddenly take a turn for the worse and death ensues when the wwher may not have thought at all seriously of the case. From what has been satid it will be seen that consestion of the longs is sudden in its develomment and dangerous to the animal's life

Treatment.-The disease being one of obstructed circulation, the rational treatment is to give such remedies as enjoy the reputation of urging on the
blood stream and diffusible stimulants which will enable the heart to carry on the work at which it has failed. One may be a long way from a veterinary surgeon or medical aid, but half-a-pint of whisky can generally be obtained, and should be given in a quart of water in the absence of professional assistance.

Once in a stable, and provided the disease has not made too much progress, bleeding from the jugular vein may be the means of saving the patient's life. The attentive reader will lave observed that the practice of bloodlletting is very rarely advocated in this work, but the disease we are considering is one in which that operation is especially beneficial if performed at the right time. It is a good plan to give a stimulant first and use the lancet some ten minutes afterwards, there being a difficulty in getting the blood to flow. There was a time when every farmer almost could and did bleed a horse or a cow for any and every complaint, but since the evil has been generally recognized and the custom fallen into desuetude, the subject of congestion of the lungs may have to wait for the attendance of a veterinary surgeon before it can be effected. He will judge by the character of the pulse whether bleeding is likely to be beneficial, and may deem it advisable to abstract two or three quarts of blood. With less blood to deal with and an artificial impulse given to the heart by stimulants, a more general distribution of the fluid may be effected, and some very excellent "cures" are brought about in this way. There is a difference of opinion as to the application of mustard to the sides of the chest, but the majority of experienced practitioners are still in favour of it. Besides the popular forms of alcohol, heart stimulants may be given of a more lasting character, as digitalis, ether, aromatic spirit of ammonia, or the carbonate in solution. Every effort should be made to re-establish the circulation in the parts most distant from the centre, and the legs and ears should be wisped and pulled, clothed and bandaged. While keeping the surface warm, the patient should be placed in a box where he can obtain the largest amount of pure air, tying up his head to the open door, if he is found to persistently hang it down in the worst corner of the box. If the appetite is entirely lost the patient may be sustained with milk and eggs given with the drenchingbottle. Constipation should be guarded against by the use of laxative foods, as bran, green meat, carrots, etc., or a soap-and-water clyster, a dose of sulphate of magnesia or soda, but on no account should an aloetic ball be given. Only walking exercise should be prescribed until the patient has made considerable progress tuwards recovery.

PLEURISY

Is an inflamed condition of the membrane which lines the walls of the chest and is reflected over the surface of the lungs. In health this serous surface secretes a fluid intended to lubricate the chest and permit of the movements necessary to respiration without the possibility of friction. If the pleure become inflamed, whether by association with pneumonia (pleuropneumonia) or bronchitis (broncho-pneumonia) or the condition of pleuritis exist alone, there will be an altered secretion. A period of congestion is
rapidly followed by onn of elhasion, which maty on to surl| an extent as to comstitute wather on the chest (hydrothomas).

The catses are the same :

 a firictinn somm maty he detected as of two pinces of paper rubled together W, weren the lingers, and as the diseate progresses the presthere of thad may lo math out by a shathing or tinkling somm at of dons of water falling into a well.

Trertment-This should be the same as for other inflammatory diseases of (harenest (see Pommonia, p. 547), but there shomble bo hesitation about the "plication of mustard, simer the disemed tissue is so ermparatively near to the skin, the very best results may be anticipated from counter-irritation.

BROKEN WIND

A brokex-winden hotis: can be detected at onee by any horseman possessed of experience, from the peculiar and fomilde double expration. Inspiration is performed as usbal, then comes a rapid but mot violent act of expiration, followed by a forcible repetition of the same, in which all the museles of respration, auxiliary and ordinary, are called into play. This i, of conrse, most maked when the horse has been galloped, but even when he is at rest the duuble expiration is manifest at ahmost any ordinary distance from the observer.

Nore or lese empherma of the lungs is usually foum after death, but in not a few broken-wimed homes is it absent, and the ealuse cannot be stated with certainty. Over and above the residual air which is normal in heath, there is in broken wind an increased amount which the single and usual act of expiration fails to expel. The causes are bad and imnutritious food-musty hay, wutwles of hayricks, chopped straw and other fond entailing a large anoumt of digestion for very small results. It is also largely hereditary.

Trontment.-Thush no hope of curing broken wind can be held out, there are many horsudoing sood work while badly affected with it. The symptoms mave be ver much amoliorated by judicions ferding and management. No laror quamtity of fool or water should be allowed at one time. All the food siven should be damped, aml a bed providel, such as satwhet, or peat-moss, that the animal will not eat: instead of dy haty ent grass and clover, lucerne, ree, carrots, boibed linsed or linsend oil mixed with the kibbled corn. Treade or molases is a farmote momy in Frame and there is mo doule that it is benelicial, as also oecasiomal dosing with tar athl fate, as suet and lard.

THICK WIND

Ther wne is the horseman: form for any defective respiation unaccompanied by a moise, of he the signs of amphema just alluded to. It usually follows pmommia, but it may arive from chronic bronchitis, ocasioning a thecknine of the muenwe membrane linine the bronchial tubes
and thus lessening their diameter. No treatment will be of any service except such as will aid the play of the lungs mechanically, by aroiding overloading the stomach, as mentioned in the last section.

Careful dieting, as for broken wind, has a modifying infuence, and considerable improvement may take place in recent cases by the absorption of the morbid products of inflammation.

SPASM OF THE DIAPHRAGM

Some horses, when at all distressed by the severity of their gallops, communicate to the rider a most unpleasant sensation, as if some internal part was giving a sudden blow or flap. This is not only a sensation, but a reality, for the diaphragm being naturally weak, or overstrained at some previons period, acts spasmodically in drawing in the air. If the horse thins affected is ridden onwards afterwards, he will be placed in danger of suffocation and death, either from rupture of the diaphragm, or from its cessation to act, or from its permanently contracting and refusing to give way during expiration. There is no cure for the weakness which tends to produce the spasm, and all that can be done is to avoid using the horse affected with it at any very fast pace, and over a distance of ground. Urgent symptoms may be relieved by a cordial-drench, such as the following :-

$$
\begin{aligned}
& \text { Take of Laulanum } 6 \text { drachms. } \\
& \text { Ether } 1 \frac{1}{2} \text { ounces. } \\
& \text { Aromatic Spirit of Ammouia } 3 \text { drachms. } \\
& \text { Tincture of Ginger } 3 \text { drachuns. } \\
& \text { Ale } 1 \text { lint. Mix. }
\end{aligned}
$$

Or_{r} if there is any difficulty in giving a drench, a ball may be made up and given-

$$
\begin{gathered}
\text { Take of Carbonate of Ammoma } \\
\begin{array}{c}
\text { Camphor } \\
\text { Powderell Ginger } \\
\text { Cor }
\end{array} . \\
\text { Linseel meal and water sufficient to make into a ball. }
\end{gathered}
$$

Either of the above may be repeated at the end of three hours, if relief is not afforded. Increased strength may be given to the diaphragm by regular slow work, and the daily mixture of a drachm of powdered sulphate of iron with the feed of corn.

DISEASES OF THE HEART

The monse is subject to inflammation of the substance of the heart (carditis) of a rheumatic nature, and of the fibro-serous covering (pericarditis), but the symptoms are so obscure that no one but the professional veterinarian will be likely to make them out. Dropsy of the heart is a common diseaso in worn-out horses, and hypertrophy, as well as fatty degeneration, is often met with among well-conditioned animals.

DISEASES OF THE BLOOD-VESSELS OF THE CHEST AND NOSE

 duriner violem exertion, and many a race hav beron hos from this cause. Fat worfed homes ate the most likely to sufler from hamomphage ; but most f"川le are aware of the risk incured in wererding or driving them, and for this reasom they are not so often sulject to this aceident (for such it is rather than a diseace) as they otherwise would be. It is unnecessary to describe its symptoms, as the sush of blood rembers it but too apparent, and the only peint necessary to inguire into is, whether the lungs or the nasal cavities are the seat of the rupture of the ressel. In the former case the boorl comes from both nostrils, and is frothy; while in the latter it generally proceds from one only, amb is perfectly fluicl. The treatment should comsist in cooling the huse down by a dose of physic and a somewhat lower diet ; but if the bleeding is very persistent, and returns again and again, a saturated solntion of almm in water may be syinged up the nostril daty, or, if this fails, an infusion of matico may be tried, which is far more likely to succed. It is made by pouring half-a-pint of boiling water on a drachm of mation-leaves, and letting it stand till cool, when it should be strained, and is fit for use.

Hemonhimae fron the luags is a fiur more serions affair, and its control requires active remedies if they are to be of any service. It may be caused by the rupture of a latge rescel, or on the contrary only some small capillaries, and its volume will to a great extent indicate which. Perfect repose in an airy box is a first necessity, and an arodance of all excitement and fuss on the part of attendants. Only such arents as act through the medium of the circulation can be used, and of these gallic acid and sugar of lead are the most likely to be of service in arresting the flow of blood. Suitable doses (see Table of Doses) should be administered every hour if necessary, or until the hemomhage ceases. When it has been arrested there necessarily remains an area of lung in which the cells are blocked up, and this has to molergo certain changes before the parts can be restored, and cease to be a swuree of danger. Pucumonia may follow from the presence of a blood-clot, or one of these entering a ressel may be arested in some other part and set up a new area of inflammation. Apparently rapid and complete recoveries often take place, but should be treated with the areatest care, not suffering the anmal to exort himelf beyond what is necessary for gentle exercise. No attempt shmid be made to train such a horse either for racing or hunting for some months, and even then he will be liable to a recurrence of the accident and had better be put to work of a slower chameter.

CIIAPTER XXVIII

DISEISES OF THE ABDOMINAL VISCERA AND THEIR APPENDACES

GENERAL REDARKS-DISEASES OF TLE MOUTH AND THROAT-DYSPEPS1A-GASTRITIS— STOMACII STAGGERS-GRASS STAGGERS—IUUPTURE OF THE STOMACH—COLIC: GRIPES OR FRET-FLITULENT COLIC-INFLAMMATION OF TLIE BOWELS-TWISTED (GUT-TERITONITIS—CONSTIPATION-DIARRIIEA—CALCLLI IN THE BOWELS—OISEASES OF THE LIVER-DISEASES OF THE KIDNEYS-DIABETES-INFLAMMATIUN OF THE BLADDER -DISEASES OF TIIE GENERATIVE ORGANS-CANCER OF TIIE PENIS.

GENERAL REMARKS

Though not often producing what in horse-dealing is considered unsoundness, yet diseases of the abdominal viscera constantly lead to death, and frequently to such a debilitated state of the body, that the sufferer is rendered useless. Fortunately for the purchaser, they ahmost always give external evidence of their presence, for there is not only emaciation, but also a staring coat and a Hlabby state of the muscles, which is quite the reverse of the wiry feel communicated to the hand in those instances where the horse is "poor" from over-work in proportion to his food. In the latter case, time and good living only are required to restore the natural plumpness; but in the former, the wasting will either go on until death puts an end to the poor diseased animal, or he will remain in a debilitated and wasted condition, utterly unfit for hard work.

DISEASES OF THE MOUTH AND THROAT

Several parts about the noutir are liable to inflammation, which would be of little consequence in itself, but that it interferes with the feeding, and this for the time starves the horse, and renders him unfit for his work, causing him to "quid" or return his food into the manger without swallowing it.

Injuries to the lips, tongue, lining membrane of the mouth, dental troubles, eruptions, glandular swellings, and lodgment of foreign bodies are among the causes of quidding.

Where any difficulty either in the prehension of the food or in mastication is observed, the mouth should be carefully examined, and if nothing is to be seen by the ordinary method of opening it and pulling the tongue on one side, a proper mouth-gag (see page 545) should be used to make further search.

If a temporary touth has become wedged it must be removed, and the same remark applies to any other body that may have become impacted between the teeth. Young horses, particularly yearlings at grass, are subject to the formation of a bladder or blain inside the lips and upon the side of the tongue, giving rise to distressing symptoms; food is refused and long ropes of viscid and perhaps discoloured saliva hang from the angles of the
 lancer and with the armation of ita content waly wide may be expected.

 remedies the bert for mouth somes, and in the dits of foot and-month disease, lawer ratenel wes misht be seen almost hated with a few applications.
 a th the domblation mast be used to prevent a recurrence of the trouble.

Fig. Ma.-C'. H. IIcisn's Tooth-r.ss.
The ald-fachimed instrument was a dumse contrivance, needing a very large amount of manal power and some dexterity, hat with the instrument here illustrated the lameowner will effeet a saving in his corn that will soon lay the cost of one.

Sore throat. - Dy this term it is mot intended to comvey the idea of disease of the respiratory tract, although an inflammatory condition of the fances often leals by sympathy or invasion to affections of the larynx (seo Larrusitis).

When the thonat intlames, as is evilencer hy fulness and hardness of this part, and there is ditioulty of swallowing, the skin covering it should immediately be severely sweated, or the larynx will be inwoded and irreparable injury done. The tincture of eantharides diluted with an equal part of sirit of turpentme and a litthe wil, may be rubbed in with a piece of sponge, until it porluces irritation of the skin, which in a few hours will be followed ber a dinchatse from the part. Six or eight drachans of nitre may also be diesolver in the water which the horse drinke, with some dilliculty, but still, as he is thirsty he will take it. Smotimes eating sives lese pain than drinking, and then the nitre may be given with a bran mash instead of the water.

Conkre:- Thisaceident, which is of comparatively frefuent necurrence in wher amimals, is rate in the horer but attended with considerable danger. It may oecur in any part of the fool passage from the back of the mouth to the divtant or cardiate omb of the gullet.

The ('onses-D Dad terth, imperfect mastication, fright, drinking with food in the mouth, impaction of foreign bodies or diseased condition of the asophagus, Jmperfect mistication, either from bad teeth or sreediness, may result in a pellet of food $l^{\text {nassinger into the phargnx in a condition unfot for }}$
swallowing ; the muscles are unable to contract upon it with sufficient force, and it becomes lodged, or, in the case of long hay or straw, it may be entangled among the long and ragged molars at the back of the mouth. An apple, round, smooth, and slipery, may pass beyond control of the tongue, and lodge in the pharynx or any part of the esophagus ; so also with pieces of tumip or whole egrse, administered by the groom for conditioning purposes. Nails, pins, needles, and other foreign bodies finding their way into the manger are also occasional causes of choking. The term is further applied to obstructions in the wintpipe.

The Symptoms are very distressful ; the animal suddenly ceases feeding, a spasmodic contraction of the throat and neck muscles gives him the appearance of having a stiff neck, the nose is poked out, the breathing hurried and loud, the eyes bloodshot, and gulping efforts alternated with attempts at vomition and coughing.

Treatment.-The patient's fear and excitement must be allayed as far as possible by a soothing manner on the part of the attendant, and an immediate effort made to ascertain the nature and situation of the obstacle. A glance at the left chamnel of the neck may show an enlargement, or an examination of the mouth may lead to the detection of the offending body, or it may be so low down in the thoracic portion of the gullet as to be invisible. If seen from the outside and felt to be of a compressible nature, it may be so manipulated as to pass on with but very little mechanical aid. It often happens that only a very slight additional power is needed by the muscular tube which for the moment has become paralyzed; failing to remove the obstacle with gentle pressure, other measures should be adopted. A little linseed oil poured into the throat, and repeated in a few minutes, may alone accomplish the purpose by lubricating the passage and softening the pellet. If it fail to do so and the obstruction is not discovered to be in the pharynx, the mouth speculum should be adjusted to enable the operator to pass a probang. This is a long tube either of coiled wire or other material, covered with leather, and having a cup-like portion at one end, and a ball at the other. The end chosen for insertion should be oiled and passed over the tongue with gentle but continuous force until the object is reached, when, if the resistance is not too great, it should be pushed on without hesitation right down to the stomach, and the instrument withdrawn. It may be necessary to remove the probang and give a little more oil and pass it again : the operator, unless he is an experienced veterinary surgeon, being liable to fall into the error of too much haste. An obstruction such as an apple will often yield at the second or third attempt, when the oil has had a softening effect. Nails, needles, and the like, cannot of course be removed in this way, and must be carefully sought. They do not cause such acute symptoms, and if not lodged in the chest portion of the gullet may be found and cut down upon.

After treatment consists in abstinence, sloppy food, and if there is reason to suppose that the lining membrane is injured, small quantities of oil or glycerine and water may be given in sips or small "go-downs." Linseed tea at frequent intervals will be found to have an emollient effect. If a horse is subject to choking, it is not worth while keeping him, as it may be due to a sacculated condition of the gullet for which there is no remedy.

DYSPEPSIA

Every momestic Avimat suffers in health if he is eonstantly fed on the same artiches, amt man himself, perhap, more than they do. lartritges ate relinhed hy him auly in september, but tomjoers periere would disgust the most insedmate lowe of that article of ford. Jours are too often made to sution fien beins fed on the same meal, flavoured with smilar flesh or hooth, from one montl to another. It is well known that cattle and sheep mun chanse their lature, or they soon lose combtion ; and yet horses are expected to an on eating oats and hay for vars twsether without injury to health; and at the same time they are often exposed to the cluse air of a confined stable, and to an irrerular amome of exercise. We cannot. therefore, wonder that the mater is often told that some one or other of his horses is "a little off" his feed"; nor shoull we be surprised that the constant repetition of the panacea for this, "a dose of physic," should at length permanently establish the condition which at first it would always alleviate. It is a source of wonder that the apletite continues so groed ats it does, in the majority of horses, which are kept in the stable on the same kind of forxl, always from July to May, and often through the other months also. The use of a few small buntles of vetches, lucene, or clover in the spring, is supposed to be quite sutlicient to restore tone to the stomach, and moloubtedly they are better than no change at all ; but at other seasons of the year something may be done towarts the prevention of dypupia, by varying the quality of the hay, and by the use of a few carrots once or twice a week. In many stables, one rick of hay is made to serve throughont the whole or a great part of the year, which is a very bad plan, as a change in this important article of food is as much reguired as a chame of pasture when the amimal is at grass. When attention is paid to this circumstance, the appetite will sehtom fail in horses of a good constitution, if they are regularly worked ; but without it, resort must oceasionally be had to a chse of physic. It is from a neglect of this precaution that so many horses take to cat their litter, in peference to their hay ; but if the same animal was pacel in a straw yard for a month, without hay, and then allowed access to both, there would be litule doulst that he would frefer the latter. Some horses are naturally so voracious that they are always obliged to be supplied with less than they desire, and they seldom sufler from loss of appetite; but delieate feeders require the greatest eare in their management. When the stomach suflers in this way, it is always denable to try what a complete change of food will do before resorting to modicine ; and, if it can be obtained, sreen foot of some kinc should be chosem, or if not, camots. In place of hay, sound wheat or barley straw may be cut into chatf, and mixed with the carrots and eom; and to this a little malt-tust may be added, once or twice a week, so as to alter the flavous. liy continally chansing the fool in this way, the most dyspeptic stomach may often be restered to its peoper tone, without doing harm with one haml while the other is domig somb, as is too often the ease with medicine. The use of the fa-himable "herse feeds "of the present day will seve the same purpose ; and if the slight changes I have mentioned do not answer, Thorleys food may be tried with great probability of success.

GASTRITIS

In the horse this affection may be acute or chronic. It is an inflamed condition of the stomach, in which the secreting glands participate, and result in failure to digest the food and a pouring out of excessive quantitics of fluid.

Causes.-Engorgement with food, particularly when it is of a coarse and innutritious nature, as in the case of hill-ponies subsisting upon heath and ligneous fibres with but little grass. Over-stimulating food given in excessive quantity is another cause, or it may be induced by diseases in adjacent structures, as the liver. The accidental or intentional administration of irritant poisons, as arsenic, lead, and zinc, or by eating poisonous compounds out of curiosity. Sheep-dips composed largely of arsenic and having a saline taste are readily eaten when left within reach by careless persons. The leaves of yew trees and the young shoots of some rhododendrons are also causes of gastritis.

Symptoms.-These are abdominal pain evinced by restlessness, looking round at the side, scraping with the front feet or striking at the belly with the hind limbs; and to differentiate letween pain caused by any other abdominal affection, we must look for other symptoms, as a frothy discharge of saliva from the mouth, or hanging ropes of thick glassy mucus from the corners of it, a depressed and anxious countenance and nausea exhibited by turning up the lip. The breath is more often sour and offensive than in cases of prolonged colic, which in many respects it resembles. The conjunctival membranes are reddened, the pulse is quick and irritable, and the breathing hurried.

Treatment.-Before any remedial measures can be taken, it is of the utmost importance to obtain a history of the case, and if possible ascertain which of the causes enumerated is to be held responsible for the result. If dietetic errors alone are traceable, in the correction of these, aided by stomachic medicines, success may be looked for. A gentle purge with linseed oil or saline doses consisting of Epsom or Glauber salts should be first given, in order to get rid of offending material and prepare the way for suitable food, which should be given in small quantities only and assisted by such agents as mux vomica, calumba root, and cither a course of alkalies, bicarbonate of soda or potash, or else the mineral acids. When the alkalies prove unsuitable a mixture of acids, as nitrohydrochloric, may have the desired effect, and although in theory it would seem that what is known as an acid condition would be necessarily benefited by ant-acids, it is not always the case in practice.

If acute gastritis is the result of irritant poisons, and their nature can be ascertained, direct antidotes may be given to neutralize chemically any remaining portion that may not have been already absorbed, or physiological ones administered to counteract their effect. With the horse we are precluded from the use of emetics, and as a rule too much time is lost to neutralize the poison or employ agents which will render it innocnous. If either of the mineral acids have been given, or carbolic, an effort should be made to neutralize them with chalk, carbonate of soda or potash, or whitewash from the walls. Eggs and milk also mask the bad effects, and may bo
given iu large quantities. The foresong are very rave catuses, and can only

Arsenic, in the form of woed killer or shere dip, hats proved fatal to not a few, either from whther mixel whth the forl, or beine discovered and eaten
 bemifuere, amd tomahe the coat shime, be latey attemblats. All that the

 the prohable camse an masion of common wecurvere in the exeitement and
 that the veterimaty sument am hape for any sucess.

With an abatoment of the sympoms, caroful nursing and dirt may succed in restoring the gatient to health, as the stomath is caprable of effectins womberiul repaiss, as may be seen ley the industrions student who examines a latere nomber at the slanghterers yards.

Chmosic Gistrits presents the same sympoms only in a less marked dewre, and the treatment is much the same, diet being the primary consideration.

STOMACH STAGGERS

Tms diseave is induced berergersins the stomach, and is a frequent result of feeding upon conked foods, which the animal swatlows without suthciont insalivation (see Digestion). Watering after a full meal, lons fasting and greedy feedins, abo contribute to disteme the stonade begond its capadity to contract upen the food within it.
crymptoms.-Colicky pain with eructations, pawins with the front fect, trembling, sometimes fomiting and discharge through the nostrils. These simpoms are common to gastritis, but a comatese combition follows. In socalled staderers the animal stands in a dazed and stuphe condition, resting his forehead agimst the manger or leaning against a wall or post, and if compelled to move stageres as if intoxicated. The breathins is slow and laborions, actual shoring being not uncommon. The pulse is full in volume aml slow.

Thatment. -The comatose condition is best treated by copious bleeding, withont which a fit of delirime or rupture of the stomach may oceur before other remedies hate had time to act. A full dose of aperient medicine may be gisen at the same time, four to cight drathos of aloes in the form of a loblus being a suitable one.

With convaleserne great care in the matter of diet must be observed, and the subject of this disease will allway be liable to its recurrence.

GRASS STAGGERS

Witif the advasee of semade amd when the grases are in seed, it is suppued that some narootic principle is devoloned in them, for it is at such times this affection is met with. It does mot come on with the suddenmess of sleepy or stomakh stagerers, and may appear anong a number of horses at the same time. If noticed eally, the animal is seen to walk with
his head down, or almost between his knees, and may even be made to trot in that peculiar attitude. With the progress of the malady he becomes paralyzed, is trombled to keep on his feet, staggers in his walk, and supports himself against a tree or gate. Convulsions may cause his death.

Treatment.-If detected carly in its manifestation, the disease may be cut short with a full dose of aperient medicine, which should be combined with calomel-aloes and calomel, in the form of a ball-but if it has gone on for some time and the symptoms are severe, bleeding from the jugular vein should be at once resurted to, the rectum unloaded with the hand, and a clyster of soap and water thrown up. As soon as the aperient acts grass staggers pass off. Change to another pasture, or hay in limited quantities, may be advisable.

RUPTURE OF THE STOMACH

This accident is usually the result of previons engorgement and weakening of the walls, when upon some extra exertion, the stomach being full, its coats give way and more or less of the contents escape into the cavity of the abdomen. It has been known to happen from casting horses when full of grass, and from falls while hunting or in harness. It is also attributed to the action of great numbers of buts and the lesions produced by habitual wind-sucking.

The Symptoms are similar to those of impaction of the stomach or acute gastritis, and romition is almost diagnostic, so seldom does it oceur under other conditions. The returned food comes through the nostrils (by way of the posterior nares). There is every sign of collapse, as running down pulse, cold extremities, haggard face, and panting breath, while partial sweats, trembling, and reeling generally precede the fall of the animal in his death struggles.

Fo Treatment can be attempted, but if there is any doubt in the mind of the owner, the remedies advised for gastritis and engorgement should be prescribed.

COLIC, GRIPES OR FRET

Acute abdominal pain is generally known by the above terms. It may be evanescent and of very little importance, or have its origin in serious diseases of the abdominal viscera. It is frequently observed to be hereditary, and the subjects of it are more liable to a recurrence than horses that have never suffered.

Ccuses.- Indigestion, excessive fatiguc, watering on a full stomach, boiled foods, constipation, impaction, and heredity. Diseases of the liver and other organs taking part in digestion. Tumours, stones, and foreign bodies.

The common forms of colic have two principal causes, namely, spasmodic contraction of the muscular coat of a portion of the intestine or distension by gases eliminated by retained and fermented focrl. The first is known as spasmodic colic and the second as datulent, but they may both be present at the same time.

The Sympitoms of spasmodic enle ate acute ablominal pain evinced by pawing and seraping with the front foet, stamping and striking at tho belly with the hind ones, looking round at the flank, crouchins, lying down, rolling, sometimes wraming, partial sweats, laying back the ears, anxions comenance, ineflectual attempts to pass mine. Intervals of ease in which the pationt may resume the meal he had suddenly ceased to eat ; again all the acute symptoms returning when the attemdants imagine the attack has passed away.

The pasing of mine eromeally follows relaxation of the spasm, and this hats given rise to a very gencral behef among stablemen that cases of colic are nearly always attributable to the kidneys or " in the water."

Trectiment. - Diflusible stimulants and anodynes. Among the former, aromatic spirit of ammonia, ether, nitrous ether, turpentine, brandy, whisky, old ale, ete., have long enjoyed a reputation, while preparations of opiom, as the tincture (laudanum), chlorodyne, and other mixed sedatives are generally empheyed with good effect. Unloading the rectum with an oiled hand (back-raking), eysters of warm suap and water, tobacco-smoke, ete., are recommended. The modern veterinarian, armed with subcutaneous syringe and tabloids of concentrated drucs, may injoct morphia and aconite, or belladomat, choosing the loose thin skin behind the elbow or other convenient situation. Hand-rubbing and kneading the abdomen with the knackles appears to be grateful to the patient in some instanees. Walking him about when in acute pain is a long-established custom based upon the fear of twisted ght or rupture occurring in the amimal's struggles upon the sround if allowed to choose those attitudes which suggest themselves alike to man and heast ; there can be no proof adduced that the former lesion is brought about by rolling, but that rupture of an organ already distenterl may so ocen has some support in the fact that horses cast for surgical operations, or falling in hamess or the chase, occasionally come to an untimely end in this way.

When an attack has passed off an aperient dose may be advisable, and a seneral inguiry into the feeding and management in order to prevent a recurence through any error of diet.

FLATULENT COLIC.

While resembling spasmodic colic in the srmptoms of pain and distress and the suddemess of the attack, has the additional one of distended tank, a drum-like comdition is observed on striking the space between the last rib and the hip, besides which there may be eructations and frequent flatus from the reetum. A quantity of fermented food may generahy be surmised, and a dose of alos proportionate to the size and constitution of the anmal should be preseribet. It will be doing its werk in removing the mass of ingesta, while anti-spasmodic remedies are alministered to relieve pain, decompose gises, and reduce the tension of the bowels and stomach. These gases are of variable composition, and remedies intended to act chemically by decomposing them into harmless salts are not sc successful in practice as might be expected if an accurate knowledge of them were possessed. For the most part they are composed of carbonic
acid and sulphuretted liydrogen. Ammonia, otherwise than in the form of carbonate, may have a speedy effect in reducing the tympany. Chlorinated lime in small doses, and freely diluted, is often beneficial, and carbolic acid, with the same precautions as to dilution, appears to prevent or retard the elimination of noxious gas. Linseed oil is a good remedy both for its well-known effect in keeping down fermentation in the ingesta and for its subsequent action as a laxative. Back-raking and clysters are particularly useful in giving increased facilities for breaking off wind, and of softening and assisting in the removal of hardened feces.

Puncture of the large gut (colon) with a suitable trochar and camula is a comparatively safe and very effectual remedy in the hands of the skilled veterinarian, but without an intimate knowledge of anatomy it will not be advisable for the horseman to attempt it.

Only during the paroxysms of pain is the pulse very much disturbed, and the temperature is but slightly raised, or not at all in cases of short duration.

INFLAMMATION OF THE BOWELS

Enteritis and Peritonitis often pass under this name. The former is a disease of the middle or muscular coat of the intestine, or it may affect the mucous layer also when it is known as muco-enteritis. It is a very fatal disease, and not much is known of its true nature. There are some farms and stables where it is prone to occur, and the most thorongh investigation may fail to discover any defect in the water or food. The death of horses suffering from this malady in such a short time has led to the supposition that some disease germ gets introduced into the intestinal wall, and postmortem examination of a superficial nature goes to confirm it by the patchy character of the discoloured and diseased portion of the bowel. While enteritis usually comes on without any apparent cause, it may also be a sequel to colic, impaction or other disease. Chills and excessive fatigue are also supposed to produce it.

Symptoms.-These have a common likeness to colic, but the patient's behaviour is usually more temperate; in the place of violent pawing and rolling, he scrapes the ground uneasily and lies down carefully, not with the abandon of a horse with spasmodic colic. He remains longer prone and looks mournfully round from time to time, gets up again, scrapes, crouches, and soon resumes his old attitude on the floor of the box. The membranes of the eye and nostrils, in sympathy with the bowels, are very much injected, the pulse irritable and small, and a high temperature is persistently maintained throughout. There are no intervals or remissions of pain as in colic. Clammy sweats alternate with coldness of the body surface, and the legs and ears vary greatly-one leg will be warm and another cold, the ears at one time warm and at another cold. As the disease progresses, he will, if in a loose box, wander round and round unhappily, with tail somewhat erect and trembling when he comes to a halt. He may die in a fit of delirium, or gradually sink; the quietness which is often mistaken for improvement in his condition is but a precursor of death.

I'reatment.-In a disease the origin of which is so ill understood, it is
not surprising that much diflerence of opminn exists as to the proper treatment. Captam Hayes thus smmanizes the "principhes of treatment."-"1. (iove the the indmed part rest, which is best accomplished by opium, as that (hus has a sumblat action in aresting the monion of the intestines. 2. Amminter a strons semative to allay the pain which theatens the life of the animal, amd allow him to tide wer the attack, for which purpose opium is alsn sutable. 3 . Cluek the action of disease serme, or, at least, of decomperines food in the bowels, as may be done by Jeyes' Fluid or (:arbolie acid!."

Ifatiounce doses of powdered minm in the form of extract, or like doses of extant of cammas indica may be wiven. Jeyes' Flaid may be atministered in half- or three-quater ounce doses in a pint of linsed oil or whter blaml thaid, as mucilage of acacia, stareh, or linseed tea. Hot fomentations to the abdomen, and the injection of warm water per rectum have a soothing eflect, and are now very sencratly atoped by veterinary surgeons in the treatment of this fatal complaint, from which but a small number of recoverice takr place.

TWISTED GUT

Tins acement is as a rule a sequel to some other disease, as colic, spasmodic or thatukent, and is sencrally believed to result from strusesing on the ground (see Colic). Captain Layes, whose experience as a breaker as well as a veterinary smogem, is jerhaps mequalled, is "strongly of opinion that these viobnt movements never induced twist of the bowel, unless, possibly, the relative positions of its parts are altered from their normal condition ly some umurnal catuse, stuch as distension."

The semptoms during life are thone of colic with some variations, but there is practically no diagnostie one be which we can say with cortanty that a twist will be fomel after death. The $\mathrm{p}_{\text {min }}$ is more continuous than in ordinary colie, and before the amimal dies a quieseent perion is usual. There is a dhickering pulse which finally becomes impereptible, sighing, trembling, and deadly cold extremities, the amimal generally trying to keep on his feet till the last.

Troulmeret for twist, intussuseeption, and wher aceidental displacements of the bowels is "expectant"-that is to sal. " we can do is to treat the spasm and pain in the hope that relaxation of the pats affected may follow. If displacement of a pertion of the small intestine conld be diagnosed with certatiny before any great amome of indammation had arisen it would be pmasibe under the intluence of chlowom to ent through the abrominal parices and reduce it, indeed it has been done, but the dilliculties are great and the propects of menery very smatl, as the peeliopsition of the home (1) peritmitis eren unter the most favourable aseptic conditions is ahmost a fatal oljowetion.

PERITONITIS

Inflamation of the lining membrane of the abdomen which also invests the riseera is an extremely dangerous disease, and may be excited by com-
paratively trivial causes. It is often idiopathic, arising from no known canse, or may result from external violence, abdominal operations, castration, punctured wounds, escape of food into the cavity, as in ruptured stomach and bowel, or from sympathy with any inflamed organ in the abolomen.

Symptoms.-Hurried breathing, maintaining a fixed attitude with disinclination to change it, icy cold extremities, total loss of appetite, quick irritable pulse, depressed and anxious countenance.

Treatment.-The same as for enteritis (see page 561).

CONSTIPATION

This is usually due to dietetic errors, and is best corrected by laxative food. Healthy faces should be so well known to the practical horseman that he should not fail to recognize constipation in its carly stage when the dung balls are small and glassy, and passed with an expulsive effort amounting to straining, erecting the tail, and arching the back. If these signs are disregarded, impaction and stoppage may follow.

Treatment.-An oily aperient, as a pint of linseed oil, and a few bran mashes are all that is needed as a rule; the chief concern of the owner should be to prevent a recmrence by a judicious admixture of laxative food. When constipation is the result of inactive liver an alvetic ball may be necessary, and less stimulating food for a time until the bowels are properly regulated.

DIARRHEA

While some horses are liable to constipation others are disposed to looseness of the bowels, although there may be nothing in the food to excite it. Horses with this predisposition to looseness are called "washy," and frequently occasion a good deal of trouble to their keepers. Besides those whose dung is habitually too soft in the stable there are nervous, irritable animals that begin to unload the rectum at the sight of saddle or harness and become looser and looser upon the road, the diarrhoa ceasing again when stabled.

Super-purgation is diarrhea induced by too large or too oft repeated a dose of physic. It generally happens through failure of the first dose to act, when the inexperienced give another and the medicine appears to be cumulative in its effects.

Treatment.-This will vary according to the cause. The "washy" may have a proportion of pea-meal and only dry foods allowed them. For the excitable very little can be done except to carry one's own feed upon a journey and avoid excitement and over-taxing the animal. When too much aperient medicine is responsible, astringents may be given. Of these, opium and catechu with chalk or bismuth may be chosen, and if there is a distinctly acid odour with the evacuations, benefit may be derived from the drinking of alkaline bicarbonates, as those of potash and soda, and a portion of lime water added to the drinking water. Arrowroot and starch gruel with eggs whipped up in them are also recommended. No bran or other laxative food should be allowed, but as much well-seasoned hay as the animal will take.

CALCULI IN THE BOWELS

A stoprabe in tur howels somotimes ohstinately persists, in spite of all kinds of remerties, amb, wath taking phate, it is foumd on examination that a latere calculus has blocked up the area of the canal. Sometimes one of these calculi is foumd in the stomach, but this is extremely rare. On making a section they are foumd to comsist of eoncentric layers of bran, chaff, and other hard particles of the foos, mixed enemembly with some small proportion of cartly matter, and arranged around some foreign boly, such as a piece of stome from the corn, or the head of a mail. Treatment is out of the questiom, as it is imposible to diseover the calculus during life, and even if it could be ascertained to exist, no remedy is known for it. Those who are eurious about the compusition of these calculi, will be pleased with the following letter by Mr. Buckiand, surgeon to the lst Life Guards, in reply to an inguiry made in The Field as to the composition of a calculus found in a horse belonging to a enrrespundent :-
"Mr. C. Pemberton C'arter having, in his interesting letter, requested mo to throw some light upon this subject, I have great pleasure in giving what little information I ann able to afford, with apologies for delay, as Aldershot camp is by no means a firourable spot for scientific investigations or literary pursuits. As regards the actual composition of calculi such as he has sent, we learn from the catalogue of the muscum of the Royal College of Surgeons that they are composed for the most part of the phosphate of magnesia and ammonia, with small quantities of phosphate of lime. They also contain an anmal and extractive matter, to which the brown colour of the calculus is owing. They also contain muriates of sorla, and various alkaline salts derived from the intestinal juices. The amimal matter resembles that of all other coneretions, and sepanates in concentric lamine when the ealeulus is dissolved in an acid. In more impure varicties, grains of sand, portions of hay, straw, ete., are frequently found cmbedded in the calculus, and there is one speeimen in the museum which contans an entire layer of regetable hairs. Mr. Carter remarks that 'his impression is that the calenlus is made up of bran" (chemically speaking). He is not far wrong, for we read in the College catalogue, "Nost anthorities argee that these calculi are formed from phosphate of magnesia, contaimel in wheat, oats, hay, ete., and this opimion derives confirmation from the ciremstance that they oceur most frequently in millers' and breters' horses, which are fed upon grains, bran, and substances known to contain a much larger propertion of masnesian salts than other regetable matters.' Mr. Carter has detected minute portions of wheat, oats, and hay in the calculus, which therefore may be said to consist of two substances, viz. the vesctable and the mineral. So much, then, for the composition of the calculus; now for its mechanical structure. Most decidedly it may be compared to an onion, layer being packed over layer, so as in section to present a ringed appanamee. We may also liken it to other whjects. It has lately struck me toramine the structure of a common ericket-ball, which combines hardness, lightness, and elasticity in such an admirable way. Upm making a section, I found the cricket-ball to be composed of layers, one ower the other, round a central nuclens. The layers are componed of leather, atternated with a regetable fibre, the mucleus being
a bit of cork. The calculus in the horse is formed in a similar way. The nucleus in Mr. Carter's specimen is a bit of flint ; in a capital instance I have in my own collection, of a common shot, about No. 5 size, which has been crushed by the horse's teeth, and subsequently swallowed ; in another instance, of a chair nail of brass; in another of a single oat-seed ; in another of a minute bit of cinder, and so on, as it seems to be alsolutely necessary that these calculi should have a commencement-a starting-point. Where is the school-boy who can make a gigantic snowball without begiming with a small lump of snow or a stone, as a nucleus upon which he builds all the rest ?
"Mr. Carter seems to wonder at the weight of the specimen, 5 lbs. ; this is by no means a large size ; in the museum of the Royal College of Surgeons we have a very fine collection of calculi; the largest, taken from the intestines of a horse, weighs no less than 17 lbs., and is about the size and shape of an ordinary skittle-ball. In the case where this is contained he will see many other specimens, cut in sections to show the nuclei; he will observe that calculi also form in the intestines of the camel and of the elephant, and even in the wild horse, for there is a good specimen from the intestines of a Japanese wild horse. Stones, not true calculi, are sometimes found ip animals, which have been actually swallowed by them, and have not been chemically formed in this walking laboratory. There is a case containing several pebbles-thirty in number-found in the stomach of a cow at Barton-under-Needwood, Burton-on-Trent. These stones belong to the geological formation of the neighbourhood; it is curious to see how they have been acted on by the action of the stomach, for they are highly glazed and polished. I have seen specimens of gravel pebbles which I took from the gizzard of an ostrich, which are as highly polished as an agate marble. The bird swallowed the stones to assist its digestion; the cow out of a morbid appetite. I know of a somewhat similar instance that lately happened: A young lady was taken ill, and died of very strange symptoms; it was subsequently ascertained that the stomach was quite filled with human hair, which had moulded itself into the shape of the interior of that organ. The poor girl had naturally very long and beautiful hair, and she had an unfortunate habit of catching the loose hairs with her lips and swallowing them ; in time they felted together, became a solid mass, and killed hera warning to other young ladies which should not be neglected. In the lower animals we frequently find rolled balls of hair from the creatures licking themselves. I have seen one at Dristol from a lioness; it is formed of hairs licked with her rough tongue from her cubs. Curious concretions are found in goats, etc., called 'bezoar' stones; they were formerly supposed to have medicinal virtues: of this at another time.

"F. T. Buckland."

DISEASES OF THE LIVER

The farmer's horse and those subsisting largely upon grass are rarely subject to liver diseases, but the corn-fed and stalled horse of towns participates in the evils of town-life in common with his master. Not only do we stimulate our horses with excessive quantities of nit:ogenous food,
hat keep them in impure air, and the consequences are impared function or actual disease of this important weme

The exact mature of liser diwoder ean seldom be aseertaned during life, get treatment is amemally sucessful, blind empiricism it may be called, but the practical horseman will mot mind that, if the result is good.
s:mm, fom. - If the liver fail in its oflice of pouring bile of a proper quality and of sullirient quantity into the intestinal canal, digestion is intertered with, the faces are altered in colour and of offensive odour, there is a loss of thriftiness on the part of the amimal, the skin loses its bowo and may be hide-boumb, and the hais feed harsh, white constipation may be followed by diarhea. A sommes of breath and irregular appetite and incerased thirst is observable. The foregong symptoms may be all due to simple congestion or excessive blood supply, aml a duse of calomel and aloes put the matter right. On the other ham, there may be slow but certain degeneration of structure taking place, that can only be arrested in its pregress by a return to the natural life of a horse at grass.

JAUNDICE

Is commonly spoken of as a special disease of the liser, but it is really one of the syintoms or proofs of liver disease whereby the colouring matter of the bile has been thrown into the general cireulation, making its presence easily seen in the mucous membranes, particularly those of the conjunctive. Jaundice may be the result of acute or charonic congestion of the liver, of interruption of the gall ducts, or of the common duct (ductus communis collidicus, of eirhosis or hardening and enlargement of the connective tissue between the true liver cells which are thereby squeczed out of existence. Abscesses and other tumours and malignant growths in a few instances account for jaundice. We might summarize for the guidance of the horseowner, and say that a yellowness of the membranes that disappears with physic after a short time is probably but a temporary functional derangement of no serions importance, white a permanent staining of the membranes is indicative of chronic disease, and probably serious degenerative changes of structure.

Troutment. - Change of diet from stimulating food to grass if possible. A summer's run will often do wonders even in cases of long standing, and in which it is almost certain there is structural change. The sound portion of the liver appears to make an effort to du the work of a whole one, and the subject of disease may du much usoful work asim. The livers both of homses and men one has known during life as comparatively cheerful and healthy, often show an amount of downation which, without experience, one would suppere to be inconsistent with continued existence. Salines in the form of sulphates of magnesia and soda eombined with nux vomica may serve to keep a useful horse going, but no medicaments can compare with the beneficial effects of grass keep and pure air. In winter a straw-yard in the country is to be prefered to continued drugging in the stable, as the coldness of the atmosphere does good alike to the liver and legs of a stale town horse.

DISEASES OF THE KIDNEYS

These are by no means so eommon as is generally believed by stablemen, who are too fond of dosing with nitre and diuretics generally. Because a horse passes thick urine there is not necessarily anything the matter with lim, but many coachmen and grooms on seeing a little milky urine passed are alarmed for the health of their charges. The salts and organic matter are but feebly held in solution, and any change of diet may eause them to be precipitated. The first bundle of green meat after a winter of dry food will almost invariably result in thick urine, but a few days suffice for it to become normal again. If, as many old writers state, the kidneys of the horse are very liable to disease, it is because they are so liable to abuse at the hands of their masters and of the quacks who attribute every abdominal pain to "something wrong with the water."

Inflamation of the kidneys (nephritis) is generally produced by an exposure of the loins to wet and cold, as in carriage-horses standing about in the rain during the winter season. Sometimes it follows violent muscular exertion, and is then said to be eaused by a strain in the back; under the back it really is, for horses in jumping do occasionally strain the psow muscles, and by invasion or extension, one or more kidneys may be affected. Usually only one, but that is no argument against the theory of loin-sprain producing it, since the kidneys are not parallel or very close together. Exposure to cold in a state of exhaustion, abuse of diuretic medicines, absorption of cantharidine blisters, the presence of calculi, and in rare instances parasites.

The Symptoms are a constant desire to void the urine, which is of a very dark colour-often almost black. Great pain, as evidenced by the expression of countenance and by groans, as well as by frequent wistful looks at the loins. On pressing these parts there is some tenderness, but not excessive, as in rheumatism. The pulse is quick, hard, and full. The attitude of the hind-quarters is peculiar, the horse standing in a straddling position with his back arched, and refusing to move without absolute compulsion. It is sometimes difficult to distinguish nephritis from inflammation of the neck of the bladder, but by attending to the state of the urine, which is dark brown or black in the former case, and nearly of a natural eolour in the latter, the one may be diagnosed from the other. To make matters still more clear, the oiled hand may be passed into the rectum, when in nephritis the bladder will be found contracted and empty (the urine being so pungent as to irritate that organ), while in inflammation or spasm of the neck it will be distended, often to a large size.

The Treatment to be adopted must be active, as the discase runs a very rapid course, and speedily ends in death if neglected. The skin must be acted on energetically, so as to draw the blood to its surface. The application of hot water, as recommended at page 528, may be tried, and in many eases it has acted like a charm. Failing the means for carrying out either of these remedies, the loins should be rubbed with an embrocation consisting of olive oil, liquor ammonix, and laudanum in equal parts, but cantharides and turpentine must be earefully avoided, as likely to be
absinded, when they would add fuel to the fire. A fresh sheepskin slould lay wamol with hot (not boiling) water, and applied wor the back, and
 its phare immerliately aftorwarls. Mastame is sometimes used instead of ammonia, amb as it is alwars at hand it may fom a woul substitute, but it is not mealy su pewerfal an imitant th the skin as the latter, especially when exapenation is prevented be the sherpsin, or by a piece of any waterprof article. A mild aperient may be siven, as linsed oil ; if the bworls montinm obstinate sive Epsom salts, grat care being taken to assist
 tim tw the kirhers. The diet shomblembet of sealded linsed and bran mashes, water being allowed without contaming suflicient linsed tea to make it sighty shatinoms, hut mot so muth so as to maseate the pationt. salieylate of sentameng the newer remedies has been foum valuable, and may he siven (in solution) in half omme closes at intervals of two or thee homse Homoronathic doses of cantharifles are said to have acted beneficially in the hands of persons whose testimony may be relied on.

DIABETES

Trace nimpetes ravely, if ever, exists in the horse, but a spurious form is compamatioly commom. Diabetes insipidus, polyuria or profnse staling is nut diabotes in the sense used ly medical men, as sugar is not present in the urine, amd the disease is anemally curable. The canse does not appear to be in the kitneys themselves, they being merely agents in the elimination of urine of bow epecific gravity. Long before flysiologists suggested an explanatin, it was known by pactial horse-kepers to rexult from certain damased fomase, as musty hay of that which has bern worheated in the rifk, kiln-dried oats and ferding mon roots (i.e. swedes and mangolds, (arrens, and in fommer times pasmips). 'The explanation is now given in the fact that imitation of a particular portion of the han causes excessive mination, and that bood intheneed he disease serms derived from forage may prove se frisoneus in the bain as to set up this thain of symptoms.

The s!mytmens need hat litte description, as the groom's attention will be arrented be the frequent desire of his howe to stald. Considerable thirst acempanies tho malaty. The laret hoses tome and the fulse is consequently wak, there is las of the m, mothrifty coat, mmatural pallor of the gums, some brath, constipation, a disposition to sweat pon slight exertion, and dropical swellinge.

Freatment.-A mulerate dose of aloes, linseed tea, drachm doses each of fewdered motgalls aml sulphate of iron or indine in similar doses for a few days only. The amome of drinkines water should be momited, and a comphete elange of diet should be urdered whether or no the forage appears to ber sood.

INFLAMMATION OF THE BLADDER

Is an extremely painful affection caused by retention of urine, injuries, the presence of calculi, irritation of abnormal urine, by extension from the kidneys, and occasionally from foreign bodies whose presence it is mest diflicult to account for in such a situation.

The Symptoms are much the same as nephritis, but examination per rectum may discover the madder to be full and unable to contract upon its contents, the muscular coats being paralyzed. Frequent attempts at micturation with constantly protruded penis, arched back, anxious countenance, high temperature, quick and irritable pulse.

Treatment.-The same generally as for nephritis (see page 567), but by the nise of the catheter something may be done to relicre the pain, and by forcibly syringing up the urethral passage a mixture of extract of bellartomna and glycerine diluted with warm water. Belladomna is the one active drug for which the claim can be made that it has a special soothing effect upon the urinary apparatus, where opium for various reasons is inadmissible. Demulcent drinks, as linseed tea and barley-water, should be siven freely.

Retextion of urine may be due cither to inflammation of the neck of the bladder, occasioning a spasmodic closure of that part, or there may be spasm mattended by inflammation and due to the irritation of some offending substance, such as a calculus.

The Trentment in cither case must be directed to the spasmodic constriction, which is generally under the control of large doses of opium and camphor, that is, from one drachm to two drachms of each, repeated every five or six hours. If the symptoms are urgent, bleeding may also be resorted to, and when the bladder is felt to lee greatly distended, no time should be lost in evacuating it by means of the catheter, which operation, however, should only be entrusted to a regular practitioner accustomed to its use.

Calculi in tiee bladder are formed of several earthy salts, and present various forms and appearances, which may be comprised under four divisions. 1st. The mulberry calculus, so named from its resemblance to a mulberry, possessing generally a mucleus (see Fig. 100). 2nd. A very soft kind resembling fuller's-earth in appearance, and being chietly composed of phosphate of
lime aml muns (ser Fis. IOI.) Bra. Calculi of a white or yellowish colour, rongh extemally aml rasily friahle (sere Fits 102). dth. Those which aro
 sanditus (see Fig. 10:i). These caleuli sometimes attan an immense size, wiyhing smoral lumbls.

The simmpoms are a dilliculty of widing the urine, which generally comes away in jerks, the penis remains protruded from the shath, which evidently indieater that the horse feels as if his bladder was not relieved. Often there

is mueopurulent matter mixel with the urine, which is rendered thick and slutinous thereby, but this only hilpens in cases of long standing.

The Tromement must be either palliative or curative. If the former, it should consist in the athotion of the means employed for subduing irritation amd inflammation of the bladler which have been alrearly deseribed. The cone can only be effected by removing the stome. This reguires the perform ance of a difleult and dangerous operation (lithetomy), the details of which can be only useful to the professed veterinary surgeon, and I shall therefore omit them lere.

DISEASES OF THE GENERATIVE ORGANS

libantrs, or intlammation of the glans penis (β ajdaros, glans), is not uncommon in the lomse, being bronght an liy the decomposition of the nateral semenons, when they have bemallowed to collect for any length of time. It first there is merely a slight discharge of pus, but in proces of time foul some have ont, and ver often fungous arowths spring from them, which bonk up the pasiage through the ofnong of the sheath, and eanse considerable swelline and incomenience. There are quitedistinct from warts, which vecur in this part just as they do in other sithations.

The" Treatment requires some skill and experience, because mild remedies are of no use, and serere ones are not mattembel with danger. The parts must first of all be well cleansed hy sringing, or if the end of the penis can be laid lowl of, hy whing with a spongr. The following wash may then be applied, and it shombl be repeated every day:-

$$
\begin{gathered}
\text { Tuke of solution of Choride of Zine Burnett's Fluid) . . } 2 \text { drachms. } \\
\text { Water }
\end{gathered}
$$

If the morbid growths are very extensive, nothing but amputation of the penis or the use of corrosive sublimate will remove them. Severe hamorhage sometimes follows both of these measures, lut it scldom goes on to a dangerous extent. Still it is scarcely advisable for any one but a professional man to undertake the operation.

CANCER OF THE PENIS

Cancer of the kind known as epithelioma sometimes attacks the penis of the horse, and if allowed to remain attains to great dimensions, making it impossible to withdraw the organ into the sheath. It generally begins at or near the urethral orifice, and when once diagnosed as a malignant growth no time should be lost in amputating the affected portion. It is not attended with serious danger, hemorrhage being provided against by a competent surgeon, and precautions taken to avoid injury and swelling to the sheath from the discharges.

Gonorrifea may affect either sex, but geldings are usually exempt unless by some trammatic canse, as the descent of small calculi, when urethral irritation is set up, which stimulates the true gonorrhœeal discharge.

In stallions it is usually the result of too much sexual intercourse during the service season, and mares are infected in coitu. In this country it rarely passes the limits of a simple clap, but on the Continent it at times becomes malignant and even fatal.

Treatment consists in careful cleaning of the affected membranes by syringing with warm water, to which has been added some mild astringent as sulphate of zinc, alum, or boric acid. A cooling dose of physic may be necessary, and a horse so affected should not be used for stud purposes till perfectly recovered.

CHAPTER XXIX

diseases of Tile neryous system

```
PARALYSIS OF THE LIPS-EPILEPSY AND CONVULSIONS-MEGRIMS-MID STAGGERS-SUN-
    STROKE-PABIES, OR MADNESS-TETANUS, LOCK-JAW-APOPLEXY AND PAMALYSIS-
    STRING-HALT.
```

Except in hot climates these are not very numerous. In India a disease known as kumree with paralysis of the loins is described by Captain Meyrick, Captain Hayes and others, and is comparatively common. In the British Islands a somewhat similar affection is met with in the rich grazing districts, and affects chiefly the heavy types of horse. As two and three
year olds, when first put towork, it eommences with all the appearances of
 paralys follows. At the same aye an aflection known as "shivering makive its appatance, amb it is pobable that they lave a common origin like the nervors form of dintemper in dogs. I am mot aware of any thorough investigation, extendins over a mumber of easse, that has proved red soften-
 wher, and ahtworh I hawe met with many eases of both, the opportunities of makines careful pest-mortom examination are so fow for a busy man, and the diseection neressaty so considerable, that 1 atsame this oginion with
 during eolthond, ame the comparison holde wowl with the dors ; he either has
 the attack, lat the one does mot lead to the other. 'That some form of consestion initiates the attack cammot be doubted, as there are all the symptoms of pressure upon the spimal cord, which can be accounted for in no other way. Shivering resembles st. Vitus's Dance in the human subject and chorea in the dog. There is either a jerking movement of the fore- or hindbarte, or else an inability to co-ordinate the museles.

Trecternt is not likely to be sucecssful for ether of the nervous disorders alluded to in the previous paragraphs. That usually adopted is combter-iritation to the spine, blecding, pursing, and the administration, in the case of paralysis, of strychme over a considerable period and until muscular twitchings are observed. Spinal sedatives, as chloral and the bomides of potassium and ammonimm, are sometimes given in cases of shivering.

PARALYSIS OF rHE LIPS

This is said to be produced by the prescure of ill-fitting and heary bridles. Many low-bred horses have heary pendulous lips from eolthood, and odd ones are alon disposed to dow the lower one. It seldom exists to the extent of preventing prehension of the food, and as it is gralual in its approach the animal learns to seize his food with his teeth or buries his mouth in it instead of using the lips in the usual way.

Tromement, exept in the early stase, is not likely to be of much use. All pressure should be avoded, and stimulating liniments or a mild blister aplied wor the nowes of sump (the sewnth pair), besiming just below the par and rubbing in the chosen agent along the eheek.

EPILEPSY AND CONVULSIONS

Tuese misases, or symptoms of divease, are not often met with in the abhlt, but in the foal they sometimes occur, and are not mattended with danger. 'Jhe yomes thing will perhaps gallop after its dam round and round its paldock, and then all at onee stop, stagere, and fall to the ground, Where it lies, strugering with more or less violence, for a few minutes or longer, and then raises its heal, stares about it, gets up, and is apparently as well as ever. It is generally in the hot days of summer that these
attacks occur, and it appears highly probable that the direct rays of the sun playing on the hearl have something to do with it. Death seldom takes phace during the first attack, but sometimes after two or three repetitions the convulsions go on increasing, and the foal becomes comatuse and dies. A mild dose of linseed or castor oil is the only remedy which can safely be resorted to, and as it is supposed that worms will sometimes produce these convulsive attacks, it is on that account to be selected. Epilepsy is so very rarely mot with in the adult, and of its causes and treatment so little is known, that I shall not trouble my readers with any account of them.

MEGRIMS

This term is used to conceal our ignorance of the exact nature of several disordered conditions of the brain and heart. In fact, any kind of fit, not attended with convulsions, and only lasting a short time, is called by this name.

The most usual symptoms are the following: - The horse is perhaps trotting along, when all at once he begins shaking his head as if the bridle chafed his ears, which are drawn back close to the poll. The driver gets down to examine these facts, and observes the eyelids quivering, and the nostrils affected with a trembling kind of spasm. Sometimes the rest will allow of the attack going off, but most frequently the head is clrawn to one side, the legs of that half of the body seem to be paralyzed, and the horse making a segment of a circle goes down, lies a few minutes on the grount, and then rises as if nothing had happened beyond a slight sweating, anl disturbance of the respiration.

Treatment can be of little avail, however, unless a correct diagnosis is made, for remedies which would be suited to congestion would be prejudicial to a diseased heart. If the attack has happened while in harness, the collar should always be carefully inspected, and if at all tight it should be replaced by a deeper one. A "piped" collar, hollowed out, where it would otherwise press upon the trachea, will enable many horses to work that are otherwise liable to symptoms of brain pressure. Bleeding gives immediate relief, and if the driver lacks the skill and nerve to operate on the jugular vein he may prick the palate with his penknife. A dose of aloes should follow, and constipation be guarded against by judicions dieting. Horses liable to megrims are dangerous creatures to use, and are constantly changing hands at auction sales, where they become quite well known to habitués, who like to ascertain each new purchaser's address for their own purposes, when the owner discovers he has not drawn a prize and is willing to make a sacrifice.

MAD STAGGERS

Pirenitis or Mad Staggers are terms used to denote delirium and violence, which may arise from a variety of causes; as a sequel to inflammatory diseases, brain tumours, rupture of internal organs, and poisoning.

If the disease is caused by eating some toxic agent, as Indian vetches,
and the animal can be got at without too moll rike, hlowletting is the most likely thing to control the delirimm, after which a bold dise of aloes may be given, but, as stated above, it is usually a sequel to some disease and ends fatally.

SUNSTROKE

Thas nesease is rare in England thongh not hy any means unknown. The condition is one of great prostration, amd may be winced by langing the had and blowing, or banging the head abont and falling. When on the wromd the anmal maty struggle violently to get up again, and fail to do so, as the hind-less are paratyed. Those cases in which tho animal lies on his side as if dead are the most likely to recorer.

Trecutment.-An ice-bag to the poll and cold water affusions over the burly and subsequent friction to the body and legs. A powerful stimulant, as halfapint of bandy or whisky, shouk be given as soon as possible. A cool and shady situation is desimble, and it the patient camot be moved some sort of awning erected to keep off the direct rays of the sun. Horses that have had one stroke are rembered more susecptible to the sun, and the paralysis may to some extent remain after the severity of the attack has lissed away.

RABIES OR MADNESS

One reason only can be given for describing this disease, which is wholly beyond the reach of art ; but as the horse attacked by it is most dangerons, the sooner he is destroyed the better ; and for this reason, every person who is likely to have any control over him should be aware of the symptoms. Rabies is not idiopathically developed, but must follow the lite of a rabid animal. The dog, being constantly about our stables, is the usual cause of the development of the disease, and it may supervene upon the absorption of the salivary virus without any malicious bite, as has happened according to more than one carefully recorded case. The lips of the horse are liable to be ulcerated from the action of the bit, and there is reason to believe that in the carly stages of rabies these parts have been licked by a dog, the saliva has been absorbed, and the inoculation has taken place just as it would do from any other wound. It is difficult to prove that this is the true explanation of those cases where no bite has been known to have occurred, but as the mouth has in each instance been shown to have been abrated, there is some reason for aceepting it as such. To proceed however to the symptome, Mr. Youatt, who had great opportunities for examining rabies, both in the dog and horse, described the earliest as consisting in "a spasmodic movement of the upper lip, particularly of the angles of the lip. Close following on this, or contemporancous with it, are the depressed and anxious countenance, and inquiring gaze, suldenly, however, lighted up, and becoming fiesce and menacing from some unknown cause, or at the approach of a stranger. From time to time different parts of the frame, the eyes, the jaws, particular limbs, will be conrulsed. The eye will occasionally wander after some imaginary object, and the horse will
snap again and again at that which has no real existence. Then will come the irrepressible desire to bite the attendants or the animals within its reach. To this will succeed the demolition of the rack, the manger, and the whole furniture of the stable. Towards the close of the disease there is generally paralysis, usually confined to the loins and the hinder extremities, or involving those organs which derive their nervous influence from this portion of the spinal cord; hence the distressing tenesmus which is occasionally seen." How paralysis can procluce tenesmus is not very clear, but of the very general existence of this symptom there can be no doubt.

A craving thirst with inability to drink may be a symptom, or, as in some instances, a spasm may be incluced by the sound of the bucket. Whenever, therefore, these symptoms follow upon the bite of a dog, unless the latter is unquestionably in good health, rabies may be suspected, and the bare suspicion ought always to lead to the use of the bullet, which is the safest way of killing a violent horse. ${ }^{1}$ There is only one disease (pherentis) with which it can be confounded, and in that the absence of all consciousness and, in milder cases, of fear, so that no moral control whatever can be exercised, marks its nature, and clearly distinguishes it from rabies, the victim to which is conscions to the last, and though savage and violent in the extreme, is aware of the power of man, and to some extent under his influence.

TETANUS-LOCK-JAW

Tetanus, one form of which is known as lock-jaw, has its seat apparently in the nervous system, but like many other diseases of the same class, the traces it leaves behind are extremely uncertain, and are displayed more on the secondary organs, through which it is manifested, than on those which we bclieve to be at the root of the mischief. Thus the muscles, which have been long kept in a state of spasm, show the marks of this condition in their softened and apparently rotten condition. They, in fact, have had no interval of rest, during which nutrition could go on, and have lost much of the peculiarity of structure which enables them to contract.

The stomach often shows marks of inflammation, but as all sorts of violent remedies are employed, this may be due to them rather than to idiopathic disease. The lungs also are generally congested, but here, like the state of the muscles, it may be a secondary effect of the long-continued exertions of the latter, which nothing but the absence of all important lesions of the brain and spinal cord would induce the pathologist to pay the slightest attention to. It almost always follows some operation, or a severe injury in which a nerve has been implicated, the most frequent canses being the piercing of the sole by a nail, or a prick in shoeing, or the operations of docking, nicking, castration, or accidental injuries, as broken knces.

Tetanus is now known to be due to a specific microbe, the tetanus bacillus, and can be cultivated in the usual media and reproduced with certainty.

The Symptoms are a permanent rigidity of certain voluntary muscles, and especially of the lower jaw (whence the popular name, lock-jaw). The mouth

[^11] One or beth sides of the mek are rigid, in the former cate the head being thened to whe side, and in the latter stretched out as if carved in marble. The bestrils ate dibated ; the eves retacted, with the hatws thrust forward wer them ; the cars erect and stifl, amd the countenance as if homorestruck. The tail enect on persistemtly ladd on one sule and partially elevated ; as the disean prostreses eontrol of the extremities is lat, and then they become rigid, like the neck and head. The patient is suatery able to stand, amp pants his feet widely apart to pop himself up. 'The pulse varies a woml deal, in some cases being quick, smatl, amd hand, and in ohoms show and habored. The bowels are whemalle costive, and the urine seanty; but this last symptom is mot su well marked as the state of the bowels alluded to.

Trentment-Anti-tetanin somm has mot as yet prowed a reliable remedy, and we must be contant to combat symptoms or else do nothing, the latter buliey beins adrocated by more than one eminent veterinarian ; cases of recower being recorled where the patient has been locked up in a loose box with hay and water, no one being permitted to enter. The subcutaneous injection of moph hat and other sedatives has been tried ; the administration of Indian hemp, chhoral, sulphonal, bromides, and all the direct sedatives and natrotice, hut it is doubtful if any recosories are due to the remedies employed. Any interference with the sufferer is caleutated to bring on the tetanic spasms. Choroform inhaled subdues the spasm for a time, but it is doubtial if any permanent benefit is derived from it.

APOPLEXY AND PARALYSIS

Usualiy these are only different degrees of the same disease, but there are exeptions in which the batter is produced by some chronic affection of the epinal chord or brain. As a rule both depend upon pressure made on the batin by an overloated state of the vessels, commonly known as congestion, or by extravasation of blour, in which it exeapes from them.

Apophexy, known among writers of the old sehool as sleepy staggers, is not often met with in the present day, wing to the improvement in the management of our stables, and specially to their better rentilation. It is marked by great seopiness, from which the horse cain be with ditliculty roused, soon going on to absolute unconseiousness, attended by a slow snoring respiration, and spedily followed by deatl. The only treatmont likely to be suceespul is copious bleedins, purgation, and blisters to the head and neek.

Paratysis is marked by a loss of power over the museles of a part, and may be eonfined to one limb or organ or extend to more. It is a symptom of pressure on, or diomsanization of some part of the nervons system, and must be considered ats such, and not as a disease of the affected muscles. Thus it requires a knowledse of anatomy to trace it to its seat, without Which its treatment would be conducted on false $p^{\text {ninciples. By far the }}$ most common form of paralysis is hemplegia, or paralysis of the museles of the hinder extremities and loins, generally arising from an injury to the spine. Sometimes the body of a vertebra is broken, and the parts being separated, their edges press upon the spinal cord and produce the disease. At others the vessels within the canal have received a shoek, and the serous
membrane secretes (or allows to onze out) a bloody fluid which presses upon the cord, and produces the same effect but in a more gradual manner.

When a horse falls in liunting, and never moves lis hind-legs afterwards, but lies with his fore-legs in the position to get up, groaning and expressing great pain and distress, it may be concluded that he has fractured or dislocated his spine and that the case is hopeless. Sometimes, however, after lying for a few seconds, he slowly and with difticulty rises and is led to a stable, but after two or three hours lies down and camnot be got up again. Here there will be some ditliculty in ascertaining whether the mischief is confined to a strain of the muscles or is situated within the vertebral canal. If the former is the case the pain is extreme, and generally there will be some quivering or slight spasm of one or more of the muscles of the hinder extremity, which feel naturally firm, while in paralysis they feel suft and are as quiet as they would be after death. By attention to these signs the two cases may be distinguished, but when the case is made out to be true paralysis the treatment is not likely (even if successful in preserving life) to bring about a useful restoration to healthy action. In valuable horses an attempt may be made by bleeding, physicking, and blistering to produce an absorption of the effused serum or blood, but the recovered animal is seldom worth the outlay, and too often as soon as he is put to any kind of work is subject to a relapse. The most humane and certainly the most economical plan is to put him out of his misery at once lyy a pistol bailt or knife, but if it is determined to try what can be done towards effecting a cure, no better means can be adopted than those I have alluded to.

STRING-HALT

1 This is a peculiar svatcineg up of the hind-leg, and is supposed to depend upon some obscure disease of the sciatic nerve. It however is very doubtful whether this explanation is well founded, and there is evidence that in some cases the hock itself has been affected. The extensor pedis seems to be the muscle most severely implicated, though not the only one which is thrown into spasmodic action. No treatment is of the slightest avail. Horses with string-halt are able to do any kind of work, but it is considered to be a form of unsoundness.

CHAPTER XXX

 1. © I.

DISEASES OF THE EAR

fearaiss is sometimes met with in the herse, but I know of no symptoms bey which its precise natme can be made out; and without aseertaining the seat of the disease, it is useless to attempt to treat it.

Somernes from a blow on the external ear inflammation is set up, and an abseese forms ; but all that is necessary is to open it, so that the matter can readily flow out as fast as it forms, without which precaution it will not radily heal. Fistulous womels are also met with and shoukd be traced to thein source and laid opern, unless the inmer car is involved, when operative interference is not desinable. Keeping the meatus clean and using a little antiseptic lotion, as cabolized oil or Condy's Fluid, is usually all that is neressary, but sometimes these discharges are very offensive, and a veterinary surgeon should be asked to investigate the cause.

DISEASES OF THE EYE

Dseases of the bye and its appendages are happily of less frequent oceurence in these days than they were under the od bat system of dark and ill-ventilated stables. still, aceidents will happen, and we will brietly glance at a few of the commoner ones.

TORN EYELIDS

Ramely does this occur at work, but as a result of emmi in stable or patderk. The veterinarian is frequently ealled in to pateh up the most Ghastly-hoking injuries, and it may be added with a very large measure of sucers. In the stable the most frequent canses are nats in the walls or mangers, splinters of wool, and rough edises agrinst which the horse rubs his face. Hanters in going through fences may ont injuries to the eyes, but they are seldem tome

Trectment consists in clearing the parts of any foregn body, and aproximating the edges of the womm by sutures as yuickly as possible. A few homses can be induced by the persuasion of the t witch to stand while this pretation is performed, amp a painting of eocane is a raluable aid, but with well-bed or very irritable lomes it is sometimes necessary to cast them in arder to get that perfect control which will enable the surgeon to bring the
lips of the wound together in such a mamer as to aroid a "puckered" appearance afterwards. No atom of torn lid should be excised, and the most lacerated wounds should not be despaired of, as they have a wonderful knack of " piecing up" at last, and only a little notch is usually left. A wet pad of folded lint may be kept on by a very careful nurse, but if allowed to get dry it will do more harm than good. The chief thing is to keep the parts together, not even removing the clotted blood, which serves as a bandage until some amount of granulation has taken place underneath. The amateur's love of plaster is misplaced-it never answers upon a hairy skin, and sutures are the only reliable means of mechanical adjustment. A dark box is to be recommended in all cases of inflamed eyes or injuries to their appendages.

INFLAMMATION OF THE EYE

Inflamation of the covering membrane, conjunctivitis, is not infrequent and is very painful, sometimes leading to opacity and interference with vision.

The causes are accidental, as from blows, the lash of the whip, hay seeds, flies, or other foreign bodies getting within the lids, or from constitutional causes as catarrh and influenza.

The Symptoms are drooping lid, extreme sensibility when approached from the affected side, tears overrunning the cheek and intolerance of light.

Treatment.-The eye should be examined with the aid of cocaine solution, and any foreign body deftly removed, frequently fomented with warm water and a cooling dose of medicine given. A large cool and somewhat dark box free from flies and dust should be provided, and the patient will probably recover in a few days. If the whip has caused the trouble it may be found in a day or so that there is a central spot of inflammation with a cloud shading off from it, and to prevent a permanent blemish it may be necessary to excite the absorbents by introducing a weak solution of sulphate of zine or nitrate of silver. With the best of treatment a little nelonla will often be left, and although it may not be any detriment to the animal's vision it depreciates his value and should not be disregarded in purchasing.

Injuries affecting the cornea and of a more severe nature than we have supposed in the above paragraph, may result in an ulcer and possible escape of the aqueous humour. These are capable of a good deal of amendment by good treatment. The ulcers may be induced to heal by judicions touching up with silver nitrate, and the aqueons hamour will again fill up the chamber. Some disfiguration will remain, but if the patient is not a hunter and can see the ground under the scar he may remain as useful as before.

PERIODIC OR CONSTITUTIONAL OPHTHALMIA

Tiif grave condition of tief eye is fortunately becoming less common than formerly. It appears to be hereditary and is prone to recur, ending at last in blindness if the horse attains to old age. It not only affects the conjunctiva and cornea but the middle eye, the iris becomes entangled in
bands of lymp which curtail its mowements, and aftor repeated attacky the humbers beenme opaque and the lens is atso involved.
sigmptoms.-These are very much like those of simple ophthatmia or conjunctivitis but not perhaps so acute, mone gralual in their manifestation aund more lasting. "Ten lays in coming and ten days in groing" is a common estimate of its duration.

Teratment.- In aloetic ball, followed by small does of iodide of potassium and the local treatment recommended for ordinary inflammation. With a view to keepine the iris moving alternate doses of belladoma and Gpium have been recommended.

CATARACT

Citaract, or apacity of the lens, is very common]y the result of iritis, its capule having been coated with a layer of white lymph, deposited by the intlamed vessels ; but it also sometimes makes its apparance without being preceded by any of the sisns of intammation. In the former case, the early somptoms are those of iritis; but in the latter, the opacity often gres on increasing, without the owner of the horse, or his grom, having his attention drawn to the eyes, until he finds that he is nearly blind. This prostes is genemily marked by the development of an unusual timidity; the prevously bold anmal is alarmed at objeets adsancing on the road, and coverd carts and wargons, of which he formerty took no notice, occasion him to shy in the most timid mamer. On examining his eyes carefully, instead of the beautifully dear pupil, with the reflection of telu'tum lucidum shining thrombit, there is seen either a mass of dull white, senerally more opaque in the centre, or an appearanee of mottled, semitransparent soap, or, lastly, one or two distinct white spots, not quite circular, but with irregular edges. In confirmed cataract, the white pupil can be seen at any distance; but in the very early stase, only a practised eye can detect the opacity, which, howerer, is so manifest to him, that he wombers it is not visible to every one dse. The reason of this difficulty of detecting the alteration of structure secms to be, that inexperienced examiners look at the eye in such a manner that they are confused by the reflection on it of their own faces, hiding all beneath. If, however, they will tum their heads a little more on one side, this will disaplobar, and they cannot fail to pereetre the disease. When catamet is clearly phowed to exist, all idea of tromtment may be abandoned, as nothine but an operation can perume a removal of the opacity ; and that would lease the horse in a more useless comdition than before, since he could see nothing cleaty, and would only be subject to contimual alarms. In the hman beins, the operation is performed with wreat suceess, because the lens which is sacrificed can be repaced externally by means of convex glasses; but in the horse, nothing of the kind can be done. Hence, it is useless to dream of effecting any improvement in this disease: and if both eves are the sulpect of cataract, the horse is incurahly blint. But supposing there is a cataract in one cee only, is the wher sure to go blime or may a reasomable hope be entertained of its remaining semed? Here the history of the diseave mot be examined before any onimion can be formed. If the opacity folluwed an accident, there is no reason for concluding that the
other eye will become diseased ; but if it came on idiopathically, either preceded by inflammation or otherwise, there is great risk of a repetition in the sound eye. Nevertheless, instances are common enough of one eye going blind from cataract, while the other remains sound to the end of life ; and those are still more frequent in which the one sound eye continues so for six or seven years.

AMAUROSIS

This is A palsy of the nervons expansion called the retina, produced by some disease, either functional or organic, of the optic nerve, which is generally beyond the reach of our senses, in examining it after death.

The Sympoms are a full dilatation of the pupil, so that the iris is shrunk to a thin band aromnd it, and is so insensible to the stimnlus of light, in confirmed cases, that, even when the eye is exposed to the direct rays of the sun, it does not contract. In the early stages, this insensibility is only partial ; and though there is such complete blindness that the horse cannot distinguish the nature of surrounding objects, yet the pupil contracts slightly, and the inexperienced examiner might pass the eye as a sound one. The umaturally large pupil, however, should always create suspicion ; and when, on closing the lids and re-opening them in a strong light, there is little or no variation in its size, the nature of the disease is at once made apparent.

The Treatment of amaurosis must depend upon the extent to which it has gone, and its duration. If recent, bleeding and a seton in close proximity to the diseased organ will be the most likely to restore it. Sometimes the disease depends upon a disordered condition of the stomach, and then a run at grass will be the most likely means to restore both the affected organs to a sound state. Generally, however, an amaurotic eye in the horse may be considered as a hopeless case.

BUCK EYE

A bUCK EYE is, strictly, rather a congenital malformation than a disease; but practically, in reference to the utility of the animal, it matters little. It depends upon an access of convexity in the cornea, by which the focus of the cye is shortened too much, the image being thus rendered indistinct as it falls on the retina. No treatment can be of the slightest use.

CHAPTER XXXI

SKIN DISEASES

Many of these are tromblesome and annoying both to the horse and his rider, and the causes of some of them are still obscure. As they usually yied to treatment, and it is nut necessary for us to enter minutely into their pathology, we will briedly consider those likely to be met with by the horseman

MANGE

This scocref of the stable and of armies on the march, is caused by a parasite similar to that which causes itch in man, scab in sheep, and mange in dogs. It is extremely contagious, and is communicable by stall-posts and mangers as well as by actual contact of one animal with another. The irritation which they set up is caused in their quest for food, as they first bite the skin, and then introduce a poisonous principle which causes the serum of the blood to come up in little vesicles, and upon these they feed. There are three varieties of this insect with somewhat different habits.

1. The Dermatonectes one Psonoptes is the most common in Britain. These prick the skin only and revel in the scabs that result, the mane and tail having a special attraction for them. A large proportion remaining on the surface, their presence is easily determined by seraping and examining with a lens of morlerate power. The irritation set up is intolerable, and the lost is to be found constantly rubling against every available object until the skin is harless, raw and wrinkled. In some countries it is known as "sweet itch," and its contagious nature not properly appreciated because the halbits of the parasite are such that he remains in a locality only so long as there is plentiful food. In this respect he differs greatly from the second variety, which is full of manderlust, and known as
2. Simeortes.-This is escentially a burower, not living on the surface, but tumelling in every direction, and the suljeect of his ravages may be cosered with mange in a woek or two. The skin has the appearance of immomerable pimples, which, if carefully examined, will be foand to consist of a tiny scal, to which a few hairs are atherent; when seratehed off a small red sore is left. With comstant rubhing the hairs come out, the skin becomes wrinkled, dry, amd shrivelled, and there is loss of condition and spirits, as the vietim gets little rest or sleep if badly attacked. As with all parasites, whether of amimals or plants, there are seasons in which they are particularly active and aggressive, causing even the death of their hosts. Among Shetland ponies, sareoptic mange takes on such a severe form as from time to time to destroy considerable numbers, and among the horses of a great London distributing company a few years ago, a number died or had
to be killed from this cause. Experiments upon the human skin have gone to prove that, if transferred to it, the sarcoptes of the horse will live and even multiply for a time, but not establish a permanent home.
3. Tine Simbiotes are not nearly so active, and affect chiefly the hairy legs of heavy horses, seldom rising above the knee. They cause the animal to rub one leg against the other and to stamp the ground, which is a symptom of grease, and for which it is no doubt often mistaken.

Treatment.-For this clisease we have fortunately a specific, discorered by the old Friars, whose piety was more remarkable than their cleanliness. Sulphur is a certain cure for the itch of man, and making some time allowance for hair and cuticular thickening in horses, we may make the same claim for it, but it must be used in such a mamer as to come into actual contact with the enemy, who can also be attacked from within. A very good dressing can be made by mixing together a gill of oil-of-tar, a quarter-pound of sulphur (flowers of sulphur, also called sublimed sulphur), and halt-a-gallon of linseed oil ; olive or other seed oils are equally good, but expensive. This may be applied with a water brush, a certain amount of friction being not unvelcome to the patient, who will lean towards the hand that rubs him. In an established case, when a lot of white, dry scab has become deposited upon the surface, it may be necessary to first wash the horse with soft soap and warm water to enable the lotion to penetrate. Paraflin is a popular remedy, and effectual, but it is liable to blister, and if used should be diluted with two or three parts of some bland oil, as linseed or cotton-seed oil, together with sulphur. A second or third dressing should be used at intervals of three or four days, as the eggs may not be destroyed, and a fresh crop result.

Sulphur may also be given internally, as it is exhaled by the skin, ${ }^{1}$ and in this way contributes towards the destruction of mange mites.

Sulphur and train-oil is an old remely of repute, and mercurial ointment or the compound sulphur ointment may do for circumscribed patches of the first and third forms of mange.

All clothing should be destroyed unless it will admit of boiling. Harness and saddlery is to be thoroughly dressed over with the lotion.

LICE

In former days lice were not uncommon in the horse, but they are now comparatively rare. Still they are occasionally met with, and their presence is readily ascertained, being of a considerable size, and easily seen with the naked eye. They may be destroyed by rubling into the roots of the hair white precipitate, in powder, taking care to avoid sweating the horse or wetting his skin for some days afterwards.

With farm horses, especially those which have wintered on barley straw, there may be too many to deal with as above, and the patients should be first washed on a sunny morning with soft soap and warm water, and afterwards treated to a dressing of Jeyes' Fluid, in the proportion of one to fifty of warm water, and then walked about until dry. If sufficient oil is used, lice may be suffocated without any other dressing, but it takes a great
${ }^{1}$ Proof of this is given by the blackening of silver watches worn by persons taking sulphur for some time.
frantity to catuate a lone winter coat, and the creosote emulsion is the chealer and mome athertual remedy.

POULTRY LOUSINESS

Ampinerem it is puite umal to have proultig among the horses of the farm, and in some cans rancting in the stable, not to mention the perverse old hen who will hay mowere dse but in a manger, and come flustering out when the home comes in, and this arangement may exist for years without tmmh品, get ever now and asian lomses become infested with poultry lousi-
 The same remodies will be found to answer as have been preseribed above.

RINGWORM

Asi erebtow upon the hose in the form of a broken circle is commonly called by this mame but true ringworm is cansed by parasites. There are two principal varieties, known as timen tomsuroms and fieres; they are both contagious, and may also be tramsmitted to man; a matter of quite common wecurrence in hot elimates.

It alliects the roots of the hairs, causing them to become brittle and fall wfl. The ring which gives this disease its name in man is not so regular in honses, and the fungus spreads in any direction. The midulle portion, which at tirst appeared somd, may presently be allectent.

Tranmont.- It is often troublesome to cure, and the more so because some article of cluthing, or maybe stable brush or mbler, has not also been treated, or the bedding not destroyed. In one of the large London studs this disease seemed as if it had come to stay, until moss litter was made to sive pace to pine sawilust. There are many agents used in the destruction of the troublesome fungus, which will sublue it at one time and fail at :mother, and in such cases it is woll to ring the changes. Jeyes' Fluid, (awhlic acid, pieric acid, crosote, iowline, and all the meremials have been bed with more or less sucess. Alhough it is usually grod treatment to ty milld remedies first, we would make an exeeption to ringworm, and first paint the patches with tincture of iodine, and on alternate days rub in ritrine ointment (nitrate of mercury).

ECZEMA

Tins vame serves to deseribe any simple rruption characterized by watery vesicles which break and leave mere or less of a seab. Thes may be very - mall indisichally, but coming in clusters and coaloseing, form an unsightly -ah and some soreness. The parts most allected are the neek, breast, belly, and thighs.

C'mens--These are usually thought to be chills to the skin when heated, imitation from harness and elothing, infection, ervors of diet, and possibly paracites.

Tratment-For a topieal dresing earbizel oil one part in thirty
answers well enough, and is to be recommended in hot climates, where raw surfaces are so likely to be poisoned by flies. A wash of glycerine and Goulard water is also calculated to allay irritation and heal the abraded surface. The diet should be carefully considered, and any doubtful meal or hay rejected and grass or bran mashes given, and a dose of aloes in the form of a physic ball. The attack generally passes off in a few days under a suitable régime.

There are some itchinesses, if we may be allowed to coin the term, which do not fall into any of the squares marked out by pathologists, and treatment must be experimental. Now and again a chronic case will suddenly yield to washings with sulphuretted potash, and cover the prescriber with glory, when all the Erasmus Wilsons of the stable have failed. It is a filthy compound, but has a place in the Pharmacopoia, and is used for some intractable skin diseases of men.

ITCHY TAIL

Tiis annoying and disfiguring malady is one of the itchinesses which have not yet had a parasite or a bacillus definitely assigned to it. Captain Hayes, in his Veterinary Notes, throws a wide pathological net over it, thus-"The animal is usually prompted to do this (rub the tail) by skin diseaseparasitic or non-parasitic-of the part, or by rellex irritation, such as that clue to worms." If we add enmui nothing more need be said except how best to allay the itching. Thoroughly washing with an abundance of soft soap, and plentiful rinsings followed by a lotion composed of hydrocyanic acid 2 drachms, solution of potash (liquor potesse) 4 drachms, and water 1 quart. This should be poured on to the tail while it is held up, so that the lotion does not run off, but among the roots of the hairs.

If parasites are known to be within the rectum the usual remedies may be adopted (see Bots). We have known horses to stop rubbing with no other treatment but the introduction of a little lard or vaseline, when it may be assumed that some dryness or itching within the sphincter has been the cause of rubbing.

Bandaging the tail or encasing it with leather helps to preserve its appearance, if it does little to stop the habit, but there is something, to me, extremely ludicrous about a horse with his tail in what looks like a carbine bucket, or even a bandage.

MALLENDERS AND SALLENDERS

These eruptions are both of the same nature, differing only in the locality where they are displayed. The former shows itself in the flexure at the back of the knee, and the latter at the bend of the hock.

The Symptoms are shown in the appearance of a foul scurf mixed with a few thin scabs, the skin underneath being stiff and unyielding. They are generally brought on by washing the legs and leaving them undried.

The Treatment required is merely the application of the following ointment, which should be well rubbed in every night:-

[^12]If the skin continues to be very hard and stiff, a little glycerine should be hrushed on two or three times a week.

There are, howeser, constitutional cases of mallenders where it is not atdrisable to dry up the sure, as lamenes is the alternative. The parts can be kept dean and comfortable by the application of carbolic ointment or oil.

HARNESS GALLS AND SITFASTS

Muga asworasee is camed the horse-owner bey galls produced by saddlery and harness, and a good horseman will insoet it for himelf from time to time, so that no carelessness on the part of his servants shall throw a horse out of work in this way. Some tender-skinned animals are so prone to gall that no amount of care can prevent it at all times.

Siymptoms.--When the skin is not broken and the injury not patent to all, there may be only a crouching when the saddle is put on, or a swelling may be found, hot, tender, and hard to the feel. The formation of matter may follow, or instead, what is known as a sitfast.

Treatment.-Removal of the cause, fomentation or the application of cold lotions on linen or other material that permits of evaporation. This treatment will often disperse a gall if adopted early. If matter seems determined to form it is well to enconage it by poulticing, and when ripe, introduce the lancet and continue the poultices until the swelling subsides. No pressure should be put upon the parts again until thoroughly healed.

Sitedst.-When the swelling is not absorbed nor an abseess formed, the Nkin injured may die, and lifting up round the edges continue to retain its hold on the flesh by the central and living portion. It is a troublesome and tedious business waiting for it to come away, and no great ham is likely to acerue if the impatient owner cuts it out, but he should take care that he does cut it out and not offi; or the delay will be all the greater. Whether by time or force the removal of the dead skin is essential before any healing can take place. Once removed the raw surface soon forms a healthy erust and heals up.

CHAPPED OR CRACKED HEELS

Tife meel of the norse in health has a soft, unctuous feeling due to the secretion of certain glands under the skin whose function it is to keep this part supple during the many movements of the pastern and foot. From calnes th be presently named these become inflamed, the skin cracks and bamemes results, oftern acempaniod with a good deal of pain and swelling. If neglected it may run on to "srease" and the formation of waty exeresrenere known as grapes from a slight resemblane to that fruit in shape.

C'onses.-When the weather is for a lomg time dry and dust is thick upon the roarle there is a contimal shower of minute particles of powdered stones being thrown upen the hairless portion of the pastern we call the heel, and these summer cracks are often the worst of all to deal with. Longeontinued wet weather, when wet instead of dry grit is in constant contact, and evaporation groes on whenever the horse is at rest. Snow and slush make red the heel during exereise and cause it to crack when at rest. Cold winds,
washing the legs in the stable, or any of those causss which roughen and chap our own skins are liable to produce the same effects on the horse's heels.

Treatment.-Avoid washing the legs and feet, or if absolutely necessary to do so, carefully dry them and anoint the heel with vaseline or any simple ointment. Simple chaps may be cured by a wash made of glycerine and water, by dusting over with flour and oxide of zinc, or by the application of carbolized oil, but cracks may need a poultice if the heel looks red and angry, and there is pain and lameness. A cooling dose of medicine may also be desirable. The cracks themselves are apt to remain open when the surrounding inllammation has subsided. They take on the character of indolent ulecers and need to be stimulated into reunion by the application of such agents as nitrate of silver, sulphate of copper, etc., but these caustics should not be too freely used, as a crack that heals up too quickly is the more liable to break open again. An excellent ointment for chaps and cracks is made of cacao butter one part and vaseline five parts. Goulard's extract in linseed oil is also a good application and especially suited to the inflamed heels produced by salt mixed with snow ; an abomination permitted on tramway tracks. Grease, so often assuciated with cracked heels, or following upon them, is not so much a disease of the well-bred horse as his hairy-legged brother in the cart. It may le distinctly constitutional and hereditary, without chapped or cracked heels, and when this is the case it is well to attack it from within. Before any eruption is seen or abrasion of the skin manifest, there may be stamping the ground and rubbing one leg over the other. This has been referred to in connection with symbiotes (sce Mange), and as the result of a series of careful microscopic examinations, Mr. E. Martin, of the Royal Veterinary College, is of opinion that many so-called cases of grease are the result of thesc mange mites pricking for their food in cold weather, when the secretions of the skin are not so abundant as to supply them with food.

Treatment.-Wash the legs with soft soap and water to ensure the medicaments coming in contact with the affected parts, and when nearly dry rub in a lotion composed of-

Shake well and apply with a water-brush daily.
This has the effect both of repressing the fungoid growths and destroyin: any parasites that may have their habitat among them. As an internal remedy a ball twice a week may be given of the following ingredients :-
Sulplate of Copper
Sulphur.
Sulllllllllll${ }_{p}$
Nitre
Treacle enough to form a bolus.

This may be varied with small doses of arsenic, but it is advisable in giving such powerful drugs to act only under the advice of a skilled veterinarian.

SWELLED LEGS

Ordinary swelling of the legs, or adema, occurs in every degree, from a slight "filling," to which many horses are always subject whethe:
they work or stand in the stable, to an enlargement extemding up to the stifles amd dobos, sombtimes remdering the leers almost as round and as had as mill perts. When homes are first brought in from grass their
 to their work there is seldom that clean condition of the suspensory ligaments amd back simews which one likes to sere even before the daily
 action of the kidners, but chedly on the vescls of the legs not acting mulicinotly without constant walking exercise, such ats is natural to the homser when at liberty, and which he takes at grass. Ilalf-an-hour's walking will wromally protuce absorption completely, so that a daily remedy is forthermints.

The Tratment will greatly depend on the exact caluse. If the swelling is only due to the change from grass to the confinement of a wam stable, time alone is wanted, taking care not to overwork the horse in the meantime. Bandares will always asist in keeping down the swelling, hot they should not be used without necessity, as when once the horse becomes aconstomed to them his legs can hardly be kept fine without their aid. If weakness is the canse, a drachm of suldate of iron given in the com twice a day will often strengllen the system, and with it the legs. Dimeties may be adopted as an occasional aid to the kidneys, but they should be of the mildest kind, such as nitre, or they will do more harm, by weakening the body generally, than good by their stimulus to the kidneys. Indeed, they are often the sole cause of the legs filling, for some grooms use them so continually, whether they are wanted or not, that the kidneys berome diseased and refuse to act, which is a sure fore-rumer of odema. Where swelling of the legs is confirmed, banlages must be regularly applied.

WARTS

Warts are, generally, only to be considered as eyesores; for, unless they weur on the penis, they are not injurious to health; nor do they interfere with work moless they happen to appear on the shouklers beneath the collar in a harness horse, which is very rare indeed. They are, doubtless, very msightly, and, for this reason, it is often desired to remove them, which may be done by first pieking off the rough outer surface, so as to make them bleed, and then rubbing in, with a stiff brush, some yellow orpiment, wetted with a little water. This will cause considerable inflammation, and in a few days the wart will drep ciff, lewing a healthy sore, which soon heals. Sometimes the whole wat does mot com away on the first application, in which case a secomd must be mate. When the glans penis is completely covered with warts, the best plan is to amputate it, as it requires the greatost caution and tact to remove them by arsenic or any other caustic without destroying, also, as much of the penis as is taken away by the knife.

There are also to be met with, a variety of warts or encysted tumours which may occur on any part of the broly, but most frequently affect the under surface of the belly and thighs. They are casily removed by cutting through the skin and squeezing them out, as they have no attachments, being simply contained within a sae or eyst. No other treatment is needed

CHAPTER XXXII

FEVERS AND SPECIFIC DISEASES

```
slecific fevers - stable feveli- influenza - stlingles - bastard strangles -
    ANTHRAX, OR LOODIANA REVER-SOUTH AFHCAN HOLSE SLC'KNESS—GLANDELS-FALB'Y
    —inflamalatory edema, on water farcy-puriuta hemorrhagica-scarlatidi
    - AZotulia-rineumatism.
```

Comparatively small causes give rise to increase of temperature in horses and other symptoms of fever, as rigors, cold shivers, trembling, staring coat, cold extremities, loss of appetite, increased number and diminished force in the contractions of the heart whereby a small pulse is produced, and if the thermometer be introduced into the rectum a rise of several degrees above normal will be discovered. The temperature in health of the average horse is about $99 \cdot 5$ degrees of Fahrenheit, and may vary in individuals from 1.5 above or below that. A slight chill from a change of clothing, or standing in the wind when heated, a mild attack of indigestion, sudden changes from the field to the stable, any of these things may induce a simple attack of fever which may be evanescent in character, passing off without any treatment or yielding to one of the ordinary fever draughts which have so long been in use among horse keepers. On the other hand a rise of temperature may indicate some serious disease, and taken in conjunction with other signs enable the attendant to diagnose the malady. The experienced veterinarian will know how much importance to attach to a rise of temperature, and its continuance for any length of time will put him on his guird against some specific fever-disease. A sudden elevation of temperature, even to the extent of four or five degrees, may run down again in a few hours, while a lower temperature maintained for a couple of days may be of the most serious import. Temperature as indicated by the thermometer is a valuable aid to diagnosis, but may easily lead the amateur astray if he be not able to review the other symptoms of disease and appreciate their significance.

SPECIFIC FEVERS

By these we mean such illnesses as follow upon the introduction into the animal's system of disease germs which will produce certain definite diseases, as glanders, influenza, anthrax, etc. Specific bacilli have been clearly made out as the cause of glanders and anthrax, and it is only a question of time and researeh when all the specific fevers will be known to be due to a particular microbe. By further study of bacteriology there will doubtless come a time when antagonistic microbes will be employed to cut short the lives and prevent the multiplication of those germs responsible for disease. Our present knowletge only enables us to select such agents as we know to be prejudicial to germ life. First among these may be mentioned quinine, for without knowing what germs cause the many forms of
 mondobtedly cuts them short．Carbolic acid，salicine，arsenie，and other hruge and salts have alsw a reputation in certain pecifie diseases．

STABLE FEVER

Is all large towns，and particularly in ohd and cowded stables，there afpears to be an abiding fever germ which more or las atlects new－comers until they acyuire immunty from it by one or more attacks．

Th＂S゙ymitoms are loss of apotite，lurried breathing，quick pulse， incrased internal temperature with extremities altemately wam and cold．

Troutment－Tt may pass off without any，or develop a particular set of romptoms，and no very definite rules can be here given．

Th hot dimates malimal feier amd helarsing feter are well known to same a geographical distribution．

INFLUENZA

Thas is one of the specitic ferers only too well kiown in the British Wands，though appearing from time to time in diflerent guises（see Chapter入べVII．，page 539）．

STRANGLES

This infantile diselses is commonly contracted between the second amd fond thear of colthood，and varies in chanacter in one somson from that of another，boing alparently infections among eolts in ordinary years，but foom time to time it assumes a severe form amd attacks lorses of all ages． bagming with a febrile attack，inapretence and the usual symptoms of are throat，it som roms on to the formation of an abscess between the banches of the lower jaw which in course of time breaks，discharges a guantity of pus，and finally heals up if the colt does not succumb to complications or starvation from inability to eat．

N＇ynuthoms．－If at grass，the eolt ceases to play and stands about with an appeatace of general depresion，attempts to saze but soon relinquishes the eflint wwing to the pain of holling his head down．When brought into the stable the symptoms emmon to sore thoat are whereed，temderness about the space under the jaws，and more or less swelling of the glands there situate．There is more or less fever as indicated by the thermometer．

Treatment．－The disease must run its comree，and if it were possible to arrest it，the procedure would not be alviahlor．Tt is chesimble to cheourage the formation of an absess．With the molisciplined colt we have to con－ tent ourselves with one or two stimulating applications such as turpentine and oil or ammonia liniment，but with horses properly broken，continuous poultieing offers the best prospect of early suppuration，besides giving a good deal of relief to the painful swelling．As soon as a soft place or ＂point＂is discovered，it may be opened with the lancet ind the contents
allowed to escape. This operation should never be undertaken prematurely, and some veterinary surgeons go so far as to prefer letting it break of its own accord, but the proper time being chosen to make an incision there is undoubtedly an advantage in releasing the pus and enabling the animal to feed again, and so save some days of umnecessary suffering and loss of strength. A simple digestive ointment such as the resin ointment of the Pharmacopecia will help the wound to take on healthy action, and the majority of cases will require no further treatment, gramulation taking place rapidly ; subsidence of the glandular enlargements, and a return to health may be assisted, however, by mineral tonics, as sulphate of iron in drachm doses daily in the food.

BASTARD STRANGLES

In older horses a milder form of strangles is met with and still passes under the name given above. The disease is very similar, but usually affecting only one side of the space under the jaw, the abscess being comparatively small and the constitutional disturbance less severe. The same treatment may be recommended as for ordinary strangles.

ANTHRAX, OR LOODIANA FEVER

Tims disease is met with in many parts of the world, being common in tropical climates, and comparatively rare in Britain. In India it is well known by the second of the two names given above, and is prevalent in the Bengal Presidency and in Burmah. It is commonly divided into two varieties according to the parts it affects, but is always due to the anthrax bacillus. When affecting the throat and involving the tongue it is called gloss-anthrax or thoracic, and if the viscera are its centre it may be described as abdominal.

Symptoms.-Sudden loss of appetite, extreme prostration, pulse quick and feeble, membranes a yellowish or orange red, breathing hurried and shallow, while the nostrils are dilated. The temperature has been known to reach 108°, while 107° is quite common. The distress increases until the animal falls and dies.

Treutmert.--In England no treatment is or should be attempted, as anthrax is one of those contagious diseases where slanghter and burial six feet deep are prescribed by law. If the so called cures occasionally reported in this country were investigated, they would probably turn out to be glossitis or inflammation of the tongue from traumatic causes.

Major Fred Smith, who has had much experience in India, recommends giving one ounce carbolic acid in a quart of water, and a drachm every hour afterwards as long as required. If tumours appear, they may be laid open and the interior dressed with neat carbolic acid. Half-ounce doses of indine given in form of ball are also recommended every four hours.

SOUTH AFRICAN HORSE SICKNESS

In move nespects this resimbles anthax, hut Majom Num, who was sent wht to the C'ifur to inuestigate it, only found the anthax hacillus, or a similar one, after doath, amb that the spleen wats nomly nomal instrad of, as in true anthans, contaning tary fluid and being chomonsly distended. The pathology of Aricim lowse sickness is therefore undeciled, but its distribution is much wider than was supposed when first it was noticed at the Cape. The Italians at Massowah sulfered from it, and it is known well anong the Dervish cavalry. Horses that have survivel it are comparatively immune and much valued, especially by travellers into the interior, who need "salted" animals more than any one else.

GLANDERS

This frigitful constitutional diskase is due to a specific bacillus gaining arcess to the lhood. It is incurable, and therefore it is only necessary to sturly its symptoms, with a view to distinguish it from ozena, with which alone it is liable to be confoundel. Its chronic character and insidious onset will serve to distinguish it from catarrh and strangles.

At frs conmencement it seems to be confined to the internal lining of the nostrils, which is not reddened, as in chronic catarrh (ozena), luat presents a lealen or purple colour, sometimes of a deep shade, but at first generally very light and pale. This is accompanied by a thin acrid discharge, transparent, and without odour. Gencrally, one nostril only is affected, which in this country is more frequently the left, and in France the right; but why this should be so has never yet been even conjectured with any appearance of probability. This state of things uxally only lasts for a few weeks, but it may go on for an indefinite time, and is recognized as the first stage, during which the health does not sulfer, and the horse can, and of en does, go on with his ordinary work. It may be distinguished from ozena by the purple colour of the lining membrane, and by the transparency and freedom from smell of the discharge.

In the second stage the discharge increases in quantity, and though still watery and tramsparent, it is slightly sticky, indicating the presence of mueus. The lymphat ic glants below the jaw enlange, and become adherent to the bone, feeling hard to the touch, and almost like exostoses. Here the permanent character of the discharge and the adtherence of the glands to the bone are the diagnostic signs and distinguish it from ozena.

Is the than stais the dixcharge increases rapilly, and becomes yellow and opague - in foct, it is pure phes. If the mose is catefully examined, its liming membrane will be seen to preath , one on mome sores, with depressed centres and ragend edges, and surmumbed ly small varicose vessels leading to them from all directions. The appotite fails-the home loses flesh and spirits-the coat is turned the wrong way-the skin is hide-bound, and the legs fill slightly during the day, but go down at night-the nose is, at last, frightfully ulcerated, the sores spreading to the laryux-ulecrs break out on the body-and the horse fimally dies, worn to a skeleton.

When the diagnosis of the disease is confirmed, as it is undoubtedly highly contagious, both to other horses and to man himself, the patient must be destroyed.

Doubtful cases are now decided by veterinary surgeons by the injection of a cultivation known as Mallein. It is on the principle of tubereulin, at which "all the world wondered" when the Cerman Emperor forced the hand of Dr. Koch and the press lost its head. Unlike tuberculin, however, it is a reliable test and a means of preventing untold animal suffering and pecuniary loss to owners of horses.

FARCY

Is a similar disease to glanders, ultimately developing into it, and so long as farcied horses are kept alive glanders will be always with us. If the reader desires to possess himself of all the information obtainable and in a condensed form, he should read Mr. Hunting's treatise on glanders and farcy, when he can hardly fail to be a convert to that eminent veterinary surgeon's views with regard to stamping it out. Farcy used to be considered amenable to treatment, and was certainly kept in check for a very long time by the use of drugs we need not name, and by the application of the hot iron to the so-called "buds" which form in the course of the lymphatics, especially of the hind limbs and on their inner aspect.

The Symptoms differ from glanders in not at first affecting the respiratory tract or that part of it which is visible, swelling of a hind-leg being a common warning of what may be expected, as also loss of condition and continued febrile symptoms. The owner of an animal having any doubt in his mind should call in an expert without delay and not tinker with a malady so dangerous. The only disease it is likely to be mistaken for is inflammatory cedema, which the old farriers called "water farcy."

The probable effect of the Glanders and Farcy Order of 1894 may be gathered from a perusal of the annexed report presented to the Public Control Committee of the London County Council. It is taken from The Field of July 18, 1896. It (the order) requires the local authorities to slaughter every glandered horse and to pay the owner compensation of not less than $£ 2$ or not more than a quarter the value of the animal before it became affected. It also gives power to slaughter suspected animals, with the consent of the owner, subject to the payment of full value as compensation if on post-mortem examination the animal is found not to be glandered. The following resolutions were passed by the Council for giving effect to the order : That every horse, ass, or mule certified by a veterinary inspector to be diseased under the Glanders or Farcy Order of 1894 be slaughtered as provided for in such order, and every such veterinary inspector is hereby authorized and required to cause the slaughter of every such diseased animal. That the sum of $£ 2$ be paid as compensation to the owner of every diseased horse, and the sum of 10 s . to the owner of every diseased ass or mule which has been slaughtered in pursuance of Article 13 of the Glanders or Farcy Order of 1894, except in cases where there is reason to believe the owner knew of the existence of the disease and failed to give notice thereof. That a post-mortem examination be made by one of the Council's veterinary inspectors of the carcass of
every animal certified to be diseased and slathtered in pursuance of Article 13 of the (ilamers or Fiarey Order of 1892 , and that the results of such bextmartem examination be reported to the committee, but not communicated to owners muless under the commitees athority. That the chief ofticer do whert to the committe any suspected cases of glanders where he comsiders it desiable that the suspected amimal should, with the consent of the owners, le slathtered under the powers given by Article 13 of the Glanders or Farey Order of 1894. The Comeil's veterinary surgeons were reguibed to take all the measures in their power to free their districts from gamders, to keppall suspeeted stables and all stables in which disease hat existed within fifty-six days under observation, and to visit them fortnightly and carcfully examine the horses therein, and especially horses that might have heen in contact. Whenever a horse was suspected by the inspector, whether becanse of outward indications or because it had been working with or standing near to s.ghendered horses, or for any other reason, it was marked "suspected," and whenever possible isolated from other horses. In doubtful eases the inspector was anthorized, where he considered that course desirable, (1) advise the owner to cause suspected horses to be properly injected with mallein, and to adopt the precautions set out under the head "injection of mallein" issued by the Council. The committee desired it to be distinctly unlerstood that the employment of mallein injections for the purpose of diagnosis of glanders should rest entirely upon the advice and responsibility of the veterinary inspector. The committee now reported that they hat hat before them reports from the chicf oflicer of the lablic Control Bepatment showing the effects of the measures taken. These reports showed that during the year, from November 19, 1594, to November 18, 1:95, the total number of glandered horses slaughtered was 1067, which was an increase on the previous year, when the numbers were 968 . The chief otlicer, however, feinted out that the increase was more than accounted for by the inereasing use of mallein with suspected or in-contact horses, as during the last six months alone 130 cases of disease had been diagnosed after the injection of matlein. The chief otticer also peinted out that one reason for increase might be found in the importation of infected horses from Canada and America. In October last, in a comsigmment of $6 t$ horses which reached Willesten from Canada, nine were found to be glandered, and ordered to be slatugtered by the Middlesex Comenty Comecil. As a large proportion of the imported horses were purchased for use in London, it might reasomably be inferred that some of the disease in Lomdon was due to that source. The following statemont showed the number of eases of glanders which oceured in London in the two years before and the two years after the passing of the urder:

In the six months from November 19, 1895, to May 18, 1896, 414 cases of glanders were reported, of which 143 were diagnosed by the aid of mallein. The committee had had the following documents before them, which coutained suggestions for the payment of increased compensation for the purpose of inducing owners to take prompt moasures for the discovery
of disease and the slaughter of suspected horses: Resolutions signed by eighty-five of the largest horse-owners in London; memorial from forty-five Metropolitan veterinary surgeons ; and a letter from the London General Ommibus Company. They had given careful consideration to the suggestions made, but were not prepared at present to recommend any departure from the practice adopted with regard to the payment of compensation. The experience gained in the administration of the order had, however, confirmed their opinion of the desirability-which they hat on more than one occasion urged upon the Board of Agriculture-of provision Jeing made for (1) Compulsory notification by veterinary surgeons of cases of glanders within their knowledge, and (2) inspection and sanitary supervision of trade stables. The committee further stated that they were also of opinion, having regard to the statement in the chief oflicers' reports as to the importation of infected horses, that precautions should be taken against that source of infection by requiring statutory evidence of freedom from disease before horses were allowed to be imported. They lad accordingly asked the President of the Board of Agriculture to receive them as a deputation, in order that they might lay before him a statement of their views.

The use of mallein has had a quite unexpected effect in spreading glanders. Infected studs have been submitted to the test and a weeding process pursued, the suspects being sent to auction sales, the moderately affected kept at work, and stabled apart from the healthy, while the seriously ill have been slaughtered after proof to the local authority. While a local authority allows but $£ 2$ for a clinically affected animal, a quarter value is given for those apparently well but proved to be infected when voluntarily submitted to the mallein test.

INFLAMMATORY GEDEMA, OR WATER FARCY

Inflammatory Gdema, "Monday morning leg," "weed," and some other local names are given to a painful and swollen condition of a limb, more frequently a hind one, which has been erroneously called water farcy as distinguished from true farcy. There is no connection, and the term is only used here for convenience of the amateur who might not look for it under its more scientific name.

Causes.-Over-feeding and insufficient exercise will account for most cases among light horses, but with the heavy breeds, confined in town stables and fed on beans, maize, and other highly-nitrogenous foods, there is an inalility to carry off effete material when the exercise ceases, even for a day or two. The comparatively slow circulation in heavy horses and the less judicious keepers may have something to do with it. It has been called Monday morning disease, as after the day of rest it most frequently appears. No great stud of dranght-horses is exempt, especially after the enforced idleness of public holidays. When these cause a cessation of work the opportunity is generally taken of giving the physic balls for which several members of the stud have been qualifying.

Symptoms.-Sudden and great swelling, which generally takes place in the night. Extreme tenderness to the touch, some blowing, and perhaps inappetence. On the limb being felt, the afficted animal will sometimes
catch it up with so violent a jerk as to raise fears lest he will fall down. There is wherally a clearly-defined portion of the limb affected, above which the patient is mot sensitise. It has the apparance of having a cord drawn round, at or near the gaskin, or in a front-leg just below the elbow. Its sudden and acutely painful nature serves to distinguish it from farey or the simple ordematous swelling of debility.

Treutment.- A dose of physic, as much as seven or eight drachms to a shire or dray-horse. Frequent fomentations with warm water, to which Goulard's extract and glyecrine has been added. As the pain is in the distended skin, relief may be expected from anything that relieves the tension, henee oily applications and ointments made from colt's foot or "grasshoppers" have that effect, the benefit being derived from the ointment base and not the ingredients. As soon as the physic has excited the absorbents to renewed activity the acute symptoms may be expected to abate, and not until then should exercise be prescribed, as the acnte pain caused in moving the limb more than counteracts any possible benefit from it.

Diuretic medicines, as resin and nitre, are both curative and preventive, and their use can hardly be objected to where horses are habitually fed with too much com in order to make them round and big. It is the price of plethora.

In tien country this disease is sometimes met with in under-fed and old animals, and bears the relationship of "poor man's gout" to the "pains arthritic that infest the toe of libertine excess." Tonics, as sulphate of iron and copper, nux vomica and gentian, with a more liberal diet, may in such cases prove hejpful.

PURPURA HÆMORRHAGICA

This is a disease of the blood, which appears to undergo some sort of decomposition, cither as the result of bad sanitation or following upon some exhausting disease, as strangles and influenza. It is not considered infectious.

Symptoms.-Sudden swellings about the head and face, neek, breast, or belly, with more or less fever and great debility, while constipation is generally present. Small purple spots the size of a flea-bite may be seen on the membrane inside the nostrils. The urine is very dark-coloured. The swellings may suddenly disappear, and others come up on different parts of the body, and the animal die when to all appearanco he is convalescent.

I'reatment.-To arrest the rupture of the red blood corpuscles and assist the emunctories in getting rid of effete matter is our object. Until quite recently the treatment generally recognized as the most successful was frequent dosing with perchloride of iron and turpentine, but this has been almost superseded by iodine in some form or other. Injection into the trachea was first recommended, but has given place to the administration of iodide of potassium in solution, in doses of about half-an-ounce every four hours. The bowels should be kept open with elysters, and if the appetite is retained a laxative diet consisting of bran, carrots, linseed, and cut grass.

SCARLATINA

It must not be supposed that this disease resembles the ferer nnown by that name in man, nor is it communicable from the horse. It is akin to purpura, showing the spots (petechice) on the membranes and swellings about the body, but with this difference: the petechire are scarlet instead of purple, and the swellings small and exuding a serosity like that of a blister. Sore throat is a prominent symptom in scarlatina and an exceptional one in purpura.

Treatment.-Good nussing and sanitary surroundings, freedom from draughts and avoidance of chills leing most important. Chlorate of potash as a blood oxidizer is most in favour, and may be given in two drachm doses for several days, followed by mineral acids and quinine or gentian and calumba, if there is digestive feebleness.

AZOTURIA

Is the result of dietetic errors, and characterized by spasm and paralysis of the hind-quarters, which comes on very suddenly when at work. It was formerly called hysteria, as it was first observed in mares, but is not confined to one sex. As a consequence of high feeding and incapacity to appropriate the rich products in the blood, a form of self-poisoning ensues, which in some respects resembles both gout and lumbago in man.

Symptoms.-Sudden and acute lameness, followed by complete failure of the hind-quarters within a few seconds of what seems to be a false step. The subject has probably travelled but a short distance, after a few days' idleness in the stable, when this occurs. The pain evinced is very acute, and the animal wears an agonized and often angry expression. It is with great difficulty he is walked home, and it is probable that some horses are slaughtered under the impression that the back is broken. The urine is very dark-coloured and, if tested in the usual way, shows a great quantity of urea and of hippurates, besides, in some cases, albumen.

Treatment. - Remore with care to the nearest available stable and support in slings. Give a bold dose of aloes, back-rake and wash out the bowel with clysters of soap and water. A pillow-case, full of scalded bran, laid over the loins appears to give relief, but no blistcring agents should be applied. If the urine is not passed-its scalding quality and the difficulty of posturing induces the animal to retain it-the catheter should be used to draw it off. Pleeding from the jugular vein is recommended early in the attack, and without waiting for the operation of the aloctic purge, half-ounce doses of salicylate of soda may be given three times in twenty-four hours. The debility produced in a short time is so great that a low diet should not be prescribed when the animal has recovered sufficiently to desire food. Exercise should be confined at first to a few minutes' walking, and increased daily.

Bad attacks often leave permanent lameness or "catching " of one limb, and the patient is predisposed to a recurrence of it.

RHEUMATISM

Amporgir this is a convenient term used to describe obscure lameness, it is very doubtful if genuine rhematiom is ever met with in horses. That is to saly, the shemmatic aflection which in men and carnivorous anmals is accompanied with acute fever. The sudden transtome of pain and lameness from one limb to another is suggestive of rheumatism both in the muscles and joints.

Thutment--Local stimulation with soap liniment, white oils or turpentine diluted with seven pats of any bland oil. Salines or the salicylate of sodat internally in doses of two to four drachms twice daily.

CIIAPTER XXXIII

DISEASES OF TIIE FEET

```
CORNS—SANDCRACK—FALSE QUAlRTER—QUITTOH-TllII*N-CANKER—IDMINITIS-SEFDY
```



```
    NAVICCLAR DISEANE-ACCIDEN~S TO THE LEGS AND FEET.
```


CORNS

These troublesome results of bad shoeing, or subsequent neglect of the feet, make their appearance in the sole of the foot, in the angle formed between the crust and the bar (see Fig. 118 (is e,) Chap. xxxviii.). Where the foot is properly prepared for the shoe, and the smith seats the heel of the crust and the bar on a level surface, no corn will make its appearance in a healthy foot; but if a corn has previously existed, or if the shoe is allowed to press upon the sole at this point, the delicate blood-vessels of the semsible sole are ruptured, and, instead of secreting a sound horn, capable of bearing the shight strain upon it which is required, a fungoid growth is formed, presenting a redish appanance, and exquisitely sensitive. This morbid substance does not at all resemble the hard eorn of the human sulject, which is a thickenert sectetion of cuticle, but it bears some comparison with the soft corns that form so often between the toes, and give so much trouble in their removal. It is, in fact, a new growth, of a semifungoid chamater, partly made up of gramulations and partly of horny matter, the two being elosely united. The eorn may anse from improper pressure made on this part of the sensible sole, either direetly from the shoe, or indireetly by presing a thin brittle crust inwiuds uponit. Generally,
however, it is met with at the imner heel, from the shoe being overgrown by that part of the foot when kept on too long. The outer nails do not allow it to work in the contrary direction, and if there is a clip on the outer quarter this is rendered still more improbable. If, therefore, shoeing is properly managed, corns may always be prevented, and we shall see in the directions for shoeing, at Chapter xxxviii., how this is to be managed. At present I have to consider how they are to be relieved or cured when they are already established.

The ordinary mode of treativg corns is simply to cut them out, leaving the bar and heel of the crust full, and thus taking all pressure of them. This enables the horse to do his work for about ten days, but then the shoe must be removed, and the paring out repeated, a process which weakens the already weak crust by making additional nail-holes in it. The shoe at the same time is generally "sprung," that is, it is so bent or filed that the heel does not fully bear upon it; but this does not last many hours, and is of little real utility. The plan answers well enough for the purposes of fraudulent sellers, as the horse runs sound for about ten days; and when he fails, and on taking off his shoe he is discovered to have a corn, it is impossible to prove that it existed at the time of sale by any evidence but that of the smith who shod him previonsly to it. Excepting, therefore, in very slight and recent cases, in which it will sometimes be followed by success, this plan of treatment is only palliative, and what is worse, it tends to increase the weakness of the foot and consequent tendency to the disease.

For the curative plan we must do something more than merely take the pressure off the sole; the bar and heel of the crust must also be relieved, and the sensible sole must be stimulated, by a proper application, to secrete healthy horn, as well as by pressure on the frog. If the horse is to be rested, this can be done easily enough by taking off his shoes, but he may be kept at work by putting on a bar shoe (Fig. 123, Chap. xxxviii.), and cutting down the bar and crust, so as to throw all the pressure off them upon the frog. A double purpose is effected in this way. First, the sensible sole is relieved of the constant pressure which the crust bears upon it laterally; anl, secondly, the jar on the frog, communicated through the shoe, from the ground, induces a healthy action in the foot, and the sole has a greater tendency to secrete healthy horn. There is no doubt in my mind that all horses would work much better, and keep their feet in much sounder condition, if their frogs could be brought into use, without being guarded as they are by the ordinary shoe. This part is intended by Nature to take mpon itself great pressure ; and if it has not its natural stimulus it becomes weak itself, and, moreover, it does not stimulate the surrounding parts to a healthy action, as it ought to do. The bar shoe is inconvenient for many purposes, and, therefore, it is not generally applied ; but as a curative agent these objections are to be dispensed with, and then it will be found to be extremely valuable, not only in relieving the diseased part (the corn), but in giving a healthy action to its seat, the sole. The smith should therefore pare down the crust at the heel, so that when the bar shoe is applied it will allow a peuny-piece to be insinuated between the two surfaces. With this the horse does his work comfortably on the road; and in process of time, that is, in two or three months, the heel grows up, and takes its own share
of pressure, or a part of it, becoming gradually accustomed to the amount which it will have to bear when the bar shoe is diseontinued. In the meantime a little of the following lotion may be applied daily to the situation of the corn by means of a feather:-

Take of Chhoride of Zinc
Water Glycerine

In erery case the bar shoe must be continued matil the hee of the crust and the bar frow down strongly ; and then a common shoe may be applied, as directed in Chap xxxviii.

SANDCRACK

In the anatomeal descifiption of the foot, at page 38.3, it will be seem that the crust is composed of fibres, romning parallel to each other in a direction from the eoronct to the gromul surface These fibres are glued logether firmly in a sound and strong hoof; but, in a weak one, it sometimes happens that the gelatinous matter is not in sufficient quantity, and then the fibres separate, and leave a crack of greater or less extent, according to eiremmstances. This, called a sanderack, lappens at the thinnest bart, which is the inner quarter in the fore foot, and the toe in the hind. Tow cure it, the foot must be rested, or at loast that part of it where the crack oceurs, which in the forefoot may be effected by the use of a bas shoce throwing the pressure entirely on the frog, as recommended in the last section on corms, and taking eare that the coust behind the erack is not in contact with the shoe. By adopting this plan, I have succeeded in curing sambeacks during molerate work; lont if it happens in the hind-foot, comflete rest must be given, as the toe camot be relieved by any possible contrivance. The next thing to be tone is to open the crack slightly, so that any srit getting into it slall not cause its further expansion ; and in doing this, if there is any little cellular cavity, it should be exposed. If the crack (xtmonds to the coronet, a V-shaped groove should be marle in the hoof with the firing-iron, the apex pointing to the ground and the lines terminating (1) either side of the breach in the coronary bant. A mild blister may from time to time be applied to the coronary secreting surface, when the houf may be expected to grow down and the crack gradually disappear. The V has the effert of divertins concussion from the weakest spot. The jar can also be reduced by euting out a little hollow at the other end of the crack. In this way horses may be kept at work while the new material is forming. It takes about a year to grow down, but horses vary much in the rapility with which their hoofs grow.
'iou prevent falling in or lapping wer of the edges, a welge is sometimes fitted into the space, and Mr. South, of New Bomd Street, London, has insented an ingenious contrivanee for the prowe.

FALSE QUARTER

When, from an accident, the coronary substance is permanently injured, it ceases to secrete sound horn, and a strip of the erust, defective in strength, runs all the way down from the coronet to the plantar edge. This generally happens at the immer quarter, and is owing to the horse treading on his coronet; but it may also occur on the outside, either from the tread of another horse, or from some kiml of external violence. The result is similar to that of a sanderack; there is no strength in the affected heel, and lameness is produced.

The Treatmont is very much the same as for sandcrack. In the first place, the pressure must be taken off the quarter, and a bar shoe applied, so as to convey the weight on the frog, as described under the head of Sanderack. The heel of the affected quarter should be lowered, and thus further injury will be prevented. The next thing to be done is to stimulate the coronet to a healthy action by blistering it, which must be done two or three times, taking care that the blister is not of too violent a nature, and that the skin heals before a second is applied. By these means, a cure may sometimes be effected ; but it takes a considerable time, and until the quarter is reproduced in full strength, or nearly so, the bar shoe should be continued. By its use, any horse with a sound frog can travel very well on the road, even if the quarter is entirely and permanently separated from the toe by inefficient horn ; and without it, the chance of a cure is not to be reckoned on.

QUITTOR

By this term is understood a chronic abscess of the foot, the matter always forming sinuses, from the difficulty which Nature has to overcome in finding a way for it to reach the surface. Generally, the mischief is occasioned by an overreach, or a bruise of the sole, or by the inffammation resulting from a neglected corn, or from a nail-prick. From any of these causes, inflammation of the delicate investment of the coftin-bone is set up, pus is secreted, and, in working its way to the surface, it burrows between the horn and the bone, and forms one or more sinuses, or pipes, as these fistulous tubes are called by the farrier. A quittor is recognized by the cye and nose detecting an opening in the horn, from which a foul discharge proceeds ; and on introducing a probe, it will generally pass frecly in two or three directions, sometimes giving a grating sensation to the finger, showing that the bone is denuded, and most probably carious. There is gencrally a considerable increase of temperature in the foot, and always more or less lameness, with, in most cases, swelling of the bulbous hecls and coronet. On examining the sole carefully, some part will either show a difference of colour from the adjacent horn, or there will be a yielding on pressure, owing to its being undermined.

The Treatment must be conducted on the same principle as for fistulons wounds. In the first place, a dependent opening must be formed, so that no matter shall be confined, but it shall be allowed to come away as fast as it
forms. This can only be done ly probing: and if the original opening is in the coronet, the probe must be passed down :ce low arssible, and then the sole should bre pard away till the eme can be reachel. In tolerably rewnt quittors, this plan alone will allow the sinns to hal : hut in old ones, Were internal surface has beome callous, and mornalations are thown out. Hare :m injertion should bo thown in every day with a syringe, a saturated
 finme the chborde answe still better, using one drachon of the salt to a pint of water at first, amb eroing on up to two drachus. By injecting this daty, and intomlucing a piece of lint, wetter with it, into the superior openings, leaving the lower one free, 1 have comed many bad guitors, even When there wats evidence of carins of the collin-joint. The disease requires a carent adjustment of the remedies to its extent and nature, and a thenretical deseription of it is of littla use.

THRUSH

Any offensive discmabge fion the frog is called by this name, although the canse and treatment may be as different as possible. It varies greatly in the fore and hind feet ; amd, indeel, it must never be forgotten that, in wher case, the cause which has produced the discharge must be clearly made out before any plan of treutment can be carried out with any prospect of suceess. Sometimes thrush is merely the result of the decomposition of the homy frog, from the foot being constantly kept wet with urine, which is most common in the hind-foot. Here the surface becomes soft, and is gradually dissolved: while the cleft, from its retaining the moisture, is inereased in size. This state is often brought on by the too frequent use of cowdung-stopping in horses with soft frogs ; and, instead of doing good by his treatment of the foot, the groom is really destroying it by encouraging the decomposition of the healthy defence which Nature has given to it. For this kind of thrush, very litile treatment is required if the cause which proluced it is withdrawn. Still, it is not always casy to keep the frog dry, and stup the decomposition, without the application of some astringent; and if the mere use of diy litter, and the application of tar ointment, do not serm to harden the frog at once, it may be touched with a wash composed of ten grains of bluestone to the ounce of water. This will soon dry it ; or, if it fails by any chance, the chloride of rinc may be used in the same way, by dicsolving five grans in ath ounce of water.

The second kind of thaten is that in which from a gross habit of body there is a simple inflammation of the sensible fros, and instead of sound hom being seemerl, a spong substance is deposited, which breaks away in places, and the fros lowk rased and unern, with a greats surface, smells very foul, ame fors hot the thene itere the trentment must be general as well as local. A duse of phesie should be eiven, the fowe should be of a bese stimulating quality, and eare should be taken that regular exercise is allowed every day. The stable should be kept conl, and of course attention Should be paid to the ehanliness both of the food and the litter. As to lowal remertios, they must mot be of the stimmating kimd which will suit the thush from dexmpmitiom, or that presently to be deseribed. The foot
should be placed in a bran poultice, and kept in it for some days, till the united action of the local and general treatment have reduced the inflammation. After a few days it will be well to dress the frog with tar ointment, or the poultice will do more harm than good, by causing the decomposition of its homy covering, and indeed it is seldom that this wet application should be employed for more than a few clays. After this, all the grood to be derived from it has been accomplished, and the subsequent treatment may generally be effected by attention to the health, and dressing the frog with tar ointment. Sometimes it may be necessary to employ a slight stimulus, and then the solution of chloride of zinc will be found to be the best.

The third kind of thrusif occurs in contracted feet, and is due to the same cause, namely, chronic inflammation of the sensible frog, produced by overwork, aided in many cases by neglect in shoeing. There is a tendency to the secretion of unsound horn over the whole foot, sometimes too thick and hard, and at others of a cellular structure, without sufficient strength to bear the pressure of the road. The horny frog generally looks shrmken and withered, and in its cleft there is a foul discharge, on wiping out which a soft spongy matter may be seen at the bottom, which is the sensible frog itself, but in a diseased condition. In bad cases, the sides of the horny frog have separated, and even the toe is sometimes deficient of its covering; but generally the horn has only disappeared in patches, and there are ragged portions remaining. The disease here is of too chronic a nature to be easily cured, and if there is much disorganization of the lamine it will be almost impossible to effect a perfect cure. The first thing to be done is to clear away all the ragged portions of horn, so as to be able to reach the sensible frog. Some tow is then to be smeared with the following ointment:-

and pressed into the cleft of the frog, where it can best be retained by a bar shoe lightly tacked on, and in this case taking its bearing on the heels and not on the frog. Sometimes a wash answer's better than a greasy application, and then a strong solution of the chloride of zine may be employed, about six grains to the ounce of water. Tow dipped in this may be applied in the same way as with the ointment, and either one or the other shoukd be re-applied every day. As the new horn grows, it must be kept supple by tar ointment, and until it is fully developed the bar shoe should be kept on, applying some degree of pressure by means of the tow, which should be stuffer in so as to compress the frog, beginning with very light pressure, and, as the horn increases in substance, augmenting it in proportion. By attention to these directions a thrush of this kind may be cured, if the foot is not damaged throughont, and even the frog may be restored to a comparative state of health.

CANKER

Caskea is arnerally an extension of the thind form of thrush, the fungus prombing to the semsible sole, and afterwards to the collin-bone itself. At first the mondid surface is concealed by the wh hom, but gradually this breaks away, amd then the extent of the mischief may be seen. A part or the whole of the sole and the frog may be in a state of degeneration, generally depending upon the time during which the disease has been in existence, and the care which has been taken of it, or the reverse. The only treatment to be adopted is the careful removal of every loose piece of horn, so as to expose the unsound surface to the action of remedies, and at the same time to avoid poisoning it ly the decomposing horn, which has a most irritating eflect. The sulphate of copper, and chloride of zine, are the best applications, aml they must be used in full strength. These cases, however, require an experiencel eye to mable the prescriber to judge of the proper amount of caustic required; and beyond suggesting the kind of remedy required, no good can be done by witten preseriptions. If it is impossible to obtain the advice of a veterinarian, it will be better to begin by using a mith canstie, and then increase the strength as it is found to be wanted. Piteh ointment forms the best greasy application to the aljacent sound surfaces to protect them from the irritation of the discharge.

LAMINITIS

(Founder or Fever of the Feel)

The tens lamiviths is now familiar with every one at all accustomed to horses. The disease has been recognized for many years under the terms "founder" and "fever of the feet." It consists in an inthammation (which may be acute or chronie) of the parts between the crust or wall and the petal-bone, including the lamine, whence the name ly which it is now distinguished. These parts are supplied with a profusion of blood-ressels (see 1age 504), and when inflammation is set up in them, the progress which it makes is rapid, and the constitutional disturbance is unusually great, owing probably to the want of space for the swelling which accompanies all inflammations, and especially of vascular substances. The causes are either-l st. Localization of fever, whence the name "ferer in the feet." 2nd. The mechanical irritation of hard roads upen feet not accustomed to them ; and Brt. Long eonfucment in a standing position on boad ship. Laminitis is also metastatic, making its apperance very sublenly in a horse suffering from quite another disease, as congestion of the lungs and in mares after foaling, there being a pecularempathy between the feet and the mucous membranes. When it is recollected that in our system of shoeing, the lamine are made to support the whole weight of the borly in consequence of the shoe being in contact with the crust only, it can only oceasion surprise that this disease is not more frequent. Nature framed the horse's foot so that an clastic pad should interpose between its back parts and the ground, intending that the edge of the crust should take its share, but not all of the
weight. The lamine are therefore called upon to do far more than their structure is designed for, and when there is the slightest weakness or tendency to inflammation, they are sure to suffer.

Tife acute form is generally the result of fast work upon hard roads, and especially liable to it are the fat and over-fed ponies so loved of old ladies, and those of the sporting publican who "corns" his trotter all the week and drives him fast and far on a Sunday. The chronic form is often not suspected until irreparable mischief is done, the elasticity of the lamine beins destroyed, and the foot having assumed a shape which utterly unfits it for bearing the pressure of the shoe upon hard roads. When the disease has been going on for a long time, the elastic substances between the lamine and the pedal-bone, as well as the fine horny lamine between them and the crust, lose the property of extension, and the horn of the crust is secreted by Nature of a more spongy character, and much thicker in substance, than in health. On making a section of such a foot, the arrangement of parts will be such as here delineated in Fig. 104, in which 1 is the os suffraginis, 2 , the os coronæ, and 3 , the pedal-bone, with its anterior surface separated from that of the crust (7) by a wide space occupied by spongy matter. Here the toe of the pedal-bone projects into the sole and renders it convex, instead of being concave, and corresponding with the lower surface of the pedal-bone.

The lamine and elastic substances between them and their contiguous structures no longer suspend the pedal-bone to the crust, but the weight falls partly upon the sole by means of the toe of the

Fig. 104.-Section of the Foot in Confirmed Laminitis.

1. Os suffraginis.
2. Os coronæ.
3. Pedal-bone.
4. Navicular bone.
5. Frog.
6. Sole.
7. Wall or crust greatly thickened. pedal-bone, and partly on the frog, which descends so low that in spite of the thickness of the shoe it touches the ground. This descent of the frog is a very marked feature in laminitis, and whenever it is apparent that disease may be suspected.

But to produce such a maried alteration of form as is here delineated and described takes a long time, and even then it is only in a few cases that the disease reaches to this stage. It will, therefore, be necessary to trace its progress from the commencement, and the effects which are exhibited as it goes on.

Wien acute laminitis sets in, there is a considerable amount of fever, indicated by a rapid pulse, usually full and hard, and hurried respiration. It may affect the front feet only, or all four. The animal puts all the weight he can on the heels, and is unable to move. By putting his hind-feet under his body and leaning somewhat backward with an arched loin, he appears to find most relief, and this attitude often leads the attendant to suppose that his back is hurt. If he is made to move, he does so with great difficulty, after swaying his body undecidedly. On examining the feet, there is
sreat reluctance to allow one to be picked up, on account of the necessity which is; thrown upon the other of taking the whole weight of the forequarter. The coronet and hoof feel very hot, and if this state of things is not speedily stopped, the lamina cease to secrete hom, and the connection between them and the hoof ceases, causing the latter to separate, and the nensible parts to be exposed, covered with a thin scaly horn. This has harpened in many eases which have afterwards secreted new hoofs; but the horn is not so strong and useful as before, and a horse with such feet is not fit for hard work on the roal. If proper treatment is adopted, the inflammation either subsides entirely, leaving no mischief behind it, or there is a chronic inflammation left which induces the alterations of structure which have been alluded to.

The Treatinent should be by first removing the shoes, and then, after paring down the sole so as to allow of the expansion of the sensible parts, a large quantity of blool is taken from the toe, making sure that a vessel of suthicient size is opened to produce a strong shock on the heart and arteries, as well as to relieve the local affection. If the blood does not flow freely, the foot may be phacel in a pail of warm water, but when the operation is properly performed there is never any difficulty in obtaining any quantity of blood which may be required. Next tack the shoes on lightly again, and then give a smart dose of physic, or else, what is perhaps a better plan, give the following:-

```
Take of Barlmotos Alocs
    Tartar Emetic, of each . . . . . . . . . . 1 drachm.
    Powdered Disitalis . . . . . . . . . . . \(\frac{1}{2}\) drachm.
    Syrup enough to form a ball.
```

whieh should be given every six hours, mutil the bowels act, when the other materials may be continued without the aloes. The feet should be kept constantly wet and cool by tying a piece of folt or tlannel around each bistem, and allowing it to fall over the hoof, when it is to be continually wetted, or poultices of bran and linseed may be continually applied. Any alplication of moisture is calculated to relieve pain by permitting of expansion. The alministration of aloes is thought by some veterinary surgeons to increase the risk of pulmonary congestion by metastasis, and there is some doult, as to the allvisability of enforeed movement. Mr. Broad, of Bath, who is an eminent authority on the subject, advocates gentle exercise, and putting on a slue as early as possible made of iron " t wice the ordinary thickness and thimel from behind the quarters, so that the heel part of the shoe is wide and thin, and fitted rocker fashon, which enables the horse to throw his weight where he tries to, much better than he can in ordinary sheses or without any:"

Comosie baminits is generally first shown by a slight soreness or lamemess, generally apmorius in both fore feot, and, therefore, being often werlooked by casual observers. In coming in from work the coronets feel wamer than matural ; hut this goes off during the night, and, for a time, no great fears are entertained of the feet recovering their former condition, the blame being, perhaps, laid upon the shoe. In a month or two, however, the smith (who has, perhaps, been ordered to take off the shoes two or three times, by which the injury is increased) finds that his nails do not hold, and the quarter break away; white the action of the horse
becomes more shambling every day, and he cannot make a sound trot on any hard road, especially with a weight on his back. In many cases a horse with chronic laminitis can run in hand sound enough for an ordinary observer ; but when the extra weight of a rider is placed on him the feet cannot bear the pain, and the gait is shambling in the extreme. Such animals have a strong propensity to save their toes, and prefer (if their shoulders will allow it) bringing their heels to the ground first, so that, although their action is excessively low and shuffling, they seldom fall. An experienced horseman at once detects this peculiar style of going, and condemns its possessor for laminitis. Indeed, it may be assumed as a rule, that wherever the heel is put carefully down upon the ground with low action, the foot is the subject of laminitis to some extent. When the heel is naturally brought to the ground first, the knee is well bent, and the foot is raised high in the air ; but in process of time work tells on it, the lamine become inflamed, and then the action is reduced in height, and the feet are moved in the manner peculiar to foundered horses, including those which before they were foundered perhaps exhibited "toe action," or, at all events, a level fall of the foot. This state of disease ought to be well studied, and compared with the remarks on sound action at page 7 et seq., which it will serve to illustrate and explain. The foot itself is changed in form, and the toe and sole have more or less altered their relations, as explained already. Sometimes there is a large space or cavity between the outer surface and the inner, shown at 7, Fig. 104, page 605. This hollow in the crust is more or less cellular, and the disease is called a "seedy toe," but for what reason I am at a loss to know. The sole, moreover, is always either flatter than natural or absolutely convex, and its horn is brittle and spongy, constituting what is termed the "pumiced foot." The frog is generally large and spongy; and on placing a straight-edge across the shoe, from heel to heel, it is found to touch that part, or nearly so, indicating that the relations between it and the crust, as well as the sole, are altogether changed from a natural state. The lamine are no longer slings for the foot, but the whole pressure is taken by the parts lying beneath the pedal or coffin-bone and the navicular bone. Such being the symptoms, the next thing is to consider what can be done? If the disease is of long standing, little hope can be given of a perfect recovery. The shape of the external parts may be partially restored, but the internal delicate structures no longer have the power of performing their oftices; and the clastic action of the horse suffering from the effects of laminitis can seldom be restored on hard ground. After proper treatment he may, and generally does, go on turf well ; but either on hard ground or on plough (on the latter of which, though soft enough for the lamine, the sole has to bear considerable pressure) he is dreadfully sore and lame. This is shown after all inflammation has ceased, the foot being as cool as possible, and sometimes exhibiting very slight evidences of previous mischief. In treatiny such calses, if there is no heat or other sign of inflammation, bleeding and similar lowering measures will be of no avail. They may be required soon enough, it is true, for a foundered foot is always in danger of inflammation when battered; but until symptoms of this kind of mischief are exhibited it is better to avoid all depletory measures. At the same time, everything which will tend to keep off increased action should be avoided ; the horse should be
fed on the least heating food which will serve the purpose for which he is intemded, and his stable should bre kept as cool as possible. Beans ought never to the allowed to the prestessom of fect with the slightest supicion of foumber; and no more oats should be used than are necessany for the condition reguired. For horses at slow work, loan mashes and nitre, with small doses occasionally of physic, will serve to kep down the temency to intlammation, and by their use, joinel to cold applications after work (they are of no use at other times), and a cool stable, the horse may be enabled to domoderately fast work. If the foos is not very prominent, a leather sole, put on in the usual way, will save the jar, and in some measure supply the place of the natual clastic tissue, destroyed in this disease. Usaally, however, it only alds to the mischief by increasing the pressure on the from, and then the leather must be introduced between the foot and the shoe, but cut to the same shape as the latter, so as not at all to bear on the frog. Many horses with slight traces of laminitis can work for years with leather applied in this way, and it may be said to be the most useful monle of treating this disease when exhibited in a mild form. Sometimes by thowing a horse by for six months, taking off his shoes, and blistering his coronets two or three times, a great deal of grod may be done, but he must be made to stand on tan or sawdust during the whole time, and never allowed to go on hard groumd, even for half-imile at a walking pace. A modification of the shoe recommended by Mr. Broad will enable many a horse to do useful work.

SEEDY TOE

Is the name given to a condition of the foot in which a defective toe results from a cavity within the wall of the hoof extending from the plantar surface upwards. It may spread in either direction and affect both front and himed fect, but the toe of a front foot is its most frequent situation. It is a common result of laminitis, but there are many eases in which no inflammatory disease has been the precursor so far as ean be ascertaned. The shocing smith is usually the first to observe it, and if not attended to, the erust is soon broken and appears shelly and brittle. When the shoe is removel there will be discovered a cheesy material between the sound parts.

Treatment consists in picking out all the morbid deposit and pouring in warm tar so as to thoroughly fill up the space, and replace the shoe in such a manner that no chip shall press upon the defective parts, and no direct baring be imposed on them. The coronet shoukd be gently stimulated from time to time with a mild blister and the tar dressing repeated as often as the removal of the shoe or opportunity aftiods. Many eases of sedy toe are in this way cured or the progress of the disease at least so far arrested as not to interfere with the animal's wefulness.

BRITTLE FEET

In some feet the proportion of gelatinous material appears to be inadequate, and the wall of the foot is consequently brittle and ditficult to shoe, as the clinches of the nails chip away the foot, and if a shoe should be cast on the road, serious damage to the crust may follow before the shoe can be replaced. The defect may be congenital and is observed among colts, or it may be the result of chronic indigestion according to Captain Hayes, who points to the sympathy existing between the sensitive lamine and the mucous membrane lining the stomach and intestines.

Tar has the reputation of improving the quality of horm, and lanoline also appears to supply in a measure the material required.

VILLITIS

Inflamation of the coronet. Swelling all round above the foot; heat and some tenderness distinguish the cause of lameness, which is the result of concussion, and therefore most frequent among roadsters with high action, and in dry, hot climates. When a subject of this malady has been rested, and wet swabs applied for a day or so, he may come out fairly sound, but with work the pain returns and a shuffling gait, and ends in lameness before a moderate journey can lee accomplished.

Treatment.-Remove the shoe and poultice ; give a mild aperient, laxative food, preferably grass or lucerne, and when all inflammatory symptoms have passed off, replace the shoe and blister the coronet with a one-to-sixteen biniodide ointment. A turn-out on marshy land, but not a salt marsh, should be obtained if possible, to complete the cure.

TREAD

The name describes the cause of an injury often met with in heavy horses who tread themselves while turning in harness, or are trodden upon by their fellows when harnessed side by side. It happens also to other classes of horses when, from fatigue or debility, slippery roads or shoes that have been "roughed," a false step is made. The amount of injury done may be so slight as to be amenable to a dressing or two with Friar's balsam or tincture of myrrh; or it may be so severe as to canse death of the skin; injury to the coronary secreting substance, and eventually quittor. Fomentation and efficient poulticing in the first instance may prevent the more serious consequences, but if a slough begins to show it must be patiently poulticed until it detaches itself from the living parts. This process is sometimes facilitated by a mild fly-blister.

PRICKED FOOT

Because a horse is pricked in shoeing it most mot be too hastily assumed that the farrier is to blame, since the most careful and skilful practitioners of the art camot aroid once in a waty driving a nail awry. The mat may "sliver" if a hamlmade one, or he tumed aside by an old "stub" which could not be seen or felt. A restise horse may plunge at the moment of strikins, indeed one misht find a great many excellent excuses for an accikent which is not after all so common as it is represented to be when the number of nails driven in a given time is considered. The unpardonable sin in the smithy is trying to cover up the accident, when a poultice for one night might have prevented the most disastrous consequences which a prick will sometimes bring about. The smith does not always know himself, if he has "put on the shoe too tight," as he calls it, for the horse may have a hal it of smatching his foot while in the lap of the farrier, and the moment in which he flinched may not have been decisive. He may go sound for a day or two, or even a weck, before the pressure of a mail which does not actually prick, but presses on the sensitive part, causes him to go lame.
symp,toms.-Lameness, at first slight, and perhaps decreasing with exercise, but returning when rested. Pointing the foot in the stable. More heat at one part of the foot than mother when carefully felt and compared. Absence of other causes of lameness.

Thertment.-There is a veterinary tradition to the effect that "you should have the shoe off if the horse is lame in the head," and it is no bad rule to insist upon, so often is a lameness ascertained to be in the foot after the shoulder and other parts of the limb have been treated without benefit. Each nail should be examined for blood-stains or matter, the height of each clench upon the erust carcfully noted, the manks of dawn mails upon the plantar surface examined and probed. The foot pinched round to see if it is more susceptible to pressure in one phace than another, and if it should prove to be tender upposite a nail that was driven too high, or where a drawn mail has left its mark, the place shoukd be cut down upon, and the direction aseertained. A farrier who neither pritehelled the holes in the hoe nor put it on will be more expert in finding a prick than the man who did it, as a rule, but an honest cflort may fail to discover it at first, and with the remoral of the pressure of the shoe and a few poultices the lameness may pass away. If it does not do so matter will form at the seat of injury, and the lameness be very acute. Further search must be made, and will end in liberating a drop of areen salpy fluid which has been responsible for such intense pain, owing to it confined situation, where no swelling can relieve it. The arifice should the enlarsed to permit of free dranage, and poultied till no matter can be found, when a little astringent applieation, as tincture of iron or Friar's balsam, may be applied to prevent a soft spongy gramulation rising above the level of the wound. Neglected pricks run on till the matter, now consisting of pus, and finding no exit, seeks the least line of resistance, coming through at the coronet. This is also the case with festered corns or any injury which causes suppuration within the homy box. A dependent orifice should be obtained and poulticing assiduously practised, or quittor may result.

CONTRACTION OF THE FOOT

This reputed disease has long been the bugbear of the horsemaster; but it is now discovered to be a complete mistake. Some of the most contracted feet in point of width are particularly free from all risk of discase, and on the other hand many open ones are as liable to it. The donkey, whose heels are shaped exactly like those of the contracted horse's foot, is so seldom lame, that few can recall having seen one in that condition, and, therefore, reasoning from analogy, one would be led to doubt that this shape renders the horse prone to lameness. At the same time it is quite true that in the disease which will next be investigated, the frog withers and contracts, and the heels are thereby drawn in ; but bere the contraction is a consequence and not a cause of disease, and certainly camot be considered as a disease in itself. Bad shoeing will do much to cause either laminitis or navicular disease, and it will certainly produce corns and inverted heels, but it will not waste the frog, or induce that condition of the foot where the sole is arched so high that the frog does not touch the ground when the shoe is off. Such a state of things can only be brought on either by thrush or navicular disease, and is never the result of the mechanical mismanagement of the foot, to which what used to be called contraction was generally attributed. All sorts of plans have been suggested for expanding the heels and for allowing them to expand; but the real truth is that so long as the frog is sound and the parts above it, allowing the proper amount of pressure to be communicated to the sole, bars, and heel of the crust, these latter divisions of the foot have no room to contract, and of a certainty they never do.

NAVICULAR DISEASE

This formidable disease, called also the navicular joint lameness, and navicularthritis, is the chief danger to be apprehended from a good-looking strong foot, just as the open flat one is prone to laminitis, and is rarely subject to disease in the navicular joint. The reason of this immunity on the one hand, and the contrary on the other, is this. The open foot, with a large spongy frog, exposes the navicular bone and the parts in contact with it to constant pressure in the stable, so that these parts are always prepared for work. On the other hand, the concave sole and well-formed frog are raised from the ground by our unfortunate mode of shoeing, and when the whole foot is exposed to injury foom battering, and in addlition the tendon which plays over the navicular bone presses it against the os corone, the unprepared state in which this part is allowed to remain is sure to produce inflammation, if the work is carried far enough. Thus in each case the weak part suffers, but occasionally, though very rarely, the foot with an arched sole contracts laminitis, and the flat one is attacked by navicular disease; the exceptions, however, are so few that they may be thrown out of the calculation, and from the shape of the foot alone it may almost invariably be pronounced, when a horse is known to be subject to chronic lameness, whether its seat is in the lamine or in the navicular joint.

When a foot is exivined after neatil which is known to have been the subject of navicular disease, the parts implicated are invariably either the navicular bone, or the soft parts in contact with it, or often all together. Mast frequently on diviling the tembon of the dexom perforans and turning it down so ats to expese the back of the joint between the navieular and coromal bomes, that part will be areatly thiskened ame inflamed, the tendon being oftem alluerent to it. In the healthy eondition there ought to be no athesion of the fibere of the temben to any part of the navicular bone but its postero-inferior dede, to which the tentom is fixed by some few fibres, the halk passing on to be inserted in the os pedis. The posterior face of the navicular bone shouk be beatifully smooth, and lined by synovial membrane which forms a lubricating sac for it to play upon, and thus tako off the friction between the tenton and the bone. Such is Nature's provision

Fio. 105.-Ulceration of the Costerior Surface of the Nayicular Bone.

1. Lower or llantar surface of jeal-bone. 2 . Small specks of exostosis.
2. Carious patcla.
against mischief in this delicate part of the machinery of the foot, which she keepe in order by the constant supply of synowia or joint-oil. But when the sac is not stimulated to a healthy action by the pressure of the frog below it indoms and out, synovia is no longer secreted in proper quantity, and as soon as the horse is put to hard work inflammation takes place for want of it. The result is some one of the consequences of indlamed joints. Either ulecration takes place in the postero-inferior surface, where the tendon glites ower it as shown in lise 105 (at 3), sometimes enting in caries of the bone itsolf ; or athesion takes place without ulceration of the temben with the surface of the bome, or there are small exostoses thrown out, see Fig. 10.5 (2), or lastly there is simple intlammation without either athesion or ulereation, and in this stage the divense is amenable to treatment without leaving any trace belond.

The siymutoms of mericuler disotas are the same, whether the mischief has extented to ulecration or not ; but the history will guide us in ascertaining how far it has sone. Of course they vary in degree, for there may be only a slight extent of ulecration, or a high degree of simple inflammation;
but in the former case the lameness will not be so marked as in the latter, though the prospect of recovery will be much less. There is always more or less lameness ; but, in consequence of its affecting both feet, it is not so marked to the careless observer as in some much more trivial cases where only one is diseased. The distinguishing sign, though not absolutely infallible, is the pointing of the toe, and at the same time resting the hindleg on the opposite side so as to relieve the navicular bone of any weight. In laminitis, the object of the sufferer is to relieve all pressure as much as possible, by bringing the hind-legs under the body, and by bearing the weight of the fore-quarter on the heels. Here, the reverse of the latter attitude is observed-the heels are not allowed to take any pressure, and the toes alone are placed at all firmly on the ground. This is marked in the stable by the pointing of the toe (in each foot alternately, if both are diseased, but in the one only, if they are not both affected). Out of doors, the toes dig into the ground, the heel never being brought firmly down, and frequent stumbles mark the difference between this species of lameness and laminitis. The subject of navicular disease generally walks sound ; but the moment he is trotted, he goes as if his legs were tied together, his stride being shortened in a remarkable manner, but without exhibiting the peculiar fumbling gait of the foundered animal. As in his case, soft ground suits him, and he has no fear of plough, because his sole is hard and unyielding. Many tolerably confirmed cases of navicular disease may, therefore, be hunted, except when the ground is hard, supposing of course that they are kept off the road ; but no plan of management will enable them to bear the jars incidental to harness-work or hacking. When one foot only is the subject of navicular disease, it often happens that it is smaller altogether than the other; but it is somewhat difficult to say whether this is a cause or a consequence of inflammation. One thing is quite clear, that many horses are met with, still perfectly free from lameness, in which there is a difference of size in their fore-feet; but whether or no these are afterwards invariably the subjects of navicular disease, it is almost impossible to ascertain. It is, however, the general opinion, founded on experience, that when this variation exists, navicular disease is extremely likely to attack the smaller foot, if it is not already there ; and for this reason, horses with such feet are generally avoided by the intending purchaser.

The Treatment of navicular disease, as before remarked, is only successful in the early stage, before either ulceration or adhesion has taken place. If a horse with strong concave soles suddenly becomes lame, points his toe, and shows other signs that his navicular bone is inflamed, he should be treated in the usual way suited to inflammation, and at the same time liberty should be given to the vascular tissues to expand, by reducing the substance of the horn. Bleeding at the toe has the double good effect of abstracting blood, and at the same time weakening the sole, so as to allow of the expansion which is desired. The operation should, therefore, at once be performed; at the same time, the whole sole may be reduced in thickness, and the heels lowered in proportion. The foot should then (after the shoe is tacked on) be placed in a cold bran poultice, which will soften the horn ; and the system should be reduced by the exhibition of the medicines recommended under Laminitis, at page 606. But when the disease itself is mastered, there is still a good deal to be done to prevent
the injurious eflects which are so apt to follow. The horse contracts a habit of stepping on his toes, to prevent lourting lis navicular structures; and hence the fros is not used, the heds of the crust and the bars are not strained, and there being no stimulus to the soft parts which secrete them, they waste and contract in size. If the homan ham is allowed to lie idle, the pallon and the incides of the fingers are cowed with a delicate cuticle, which affords so poor a protection to the cutis, that, on using it with any kind of havd work, it actually separates, and leaves an exposed surface, which spedily indlanes. But by gradually exposing the same hand to pressure, a thickened and tougher cuticle is secreted; and this will bear any moderato amount of pressure or friction without injury. Nerertheless, even tho hand so prepared must be continually stimulated by work, or the skin returns to its original delicate state, and is then exposed to the same risk of injury as before. So it is with the horse's foot, even in a state of health: but this is far more mirked after an attack of disease. The temeney then is to protuce the natmal borny growths of a smaller substance than before; and if the secreting surfaces are not stimulated by pressure, they become doubly idle, and the frog, as well as the adjacent parts beneatl the navicular bone, shows a wasted and shrivelled appearance. To aroil the risk of these ill conserfuences, the horse should be placed, for two or three hours daily, on a bed of wet clay, which will allow the shoe to sink into it, but will yet be tenacions cnough to make firm and stearly pressure on the frog, while its low temperature will keep down inflammation. No plan is of so much service in producing what is called expansion of the heels and growth of the frog as this ; not, as is commonly supposed, from the clay mechanically pressing the heels out, but from the stimulus of its pressure causing the soft parts to secrete more horn, and of a sounder quality than before.

Should these membdes pail in restoring the foot affected with navicular disease to a healthy state, recourse can only be had to the operation of neurotomy, which is perfectly eflicacious in removing the lameness; and if there is no ulceration, and merely an athesion of the tendon to the bone, it will, by causing the horse to step more on his heels, effect an absolute improvement in the shape of the foot, and hence it is considered to have produced a cure And for all practical purposes it is a cure, inasmuch as a horse previonsly useless can be mate to work sound and perhaps continue so for years. A good deal of umrasoning prejulice exists against this operation, as many persoms camot be comvinced that a horse is not more likely to fall becausi he cannot feel his feet, and the very unfair comparison is made botwenn a really sound horse and an unnerved one, whereas the comparisen should be as botween a hopeless criple and a serviceable animal. The late Mr. Georse Williams, who for so many years held the appointment of veterinary sureson to the Queen, was an camest altocate of manerving, and perhaps operated on more horses than any other surgeon of his day. He, like the present editor, who is proul of having heen his pupil, rode many unnerved horses and found them as sure-fonted ats others. I have known unersed homses die of old ator and of all sonts of diseases, but subjects that hase not been operated on until the bone is extemsively diseased are liable to break down either by fracture of the navicular bone itcolf or rupture of the tombms, and then the toe turns up, the pastern goves
down, and the knacker may be sont for without delay. The chief danger lies in undiscovered pricks and festered corns which may lead to losing the hoof, because no pain is evinced and separation may take place before it is ascertained that anything is wrong. It should, however, be clearly understood that there is no reason why, if detected, an injury to the foot camnot be treated successfully, as the nerves of nutrition are not divided, and I lave worked a horse with a seton through a festered corn, the horse trotting sound, until he recovered. I mention this merely as a proof, and not as a practice to be recommended, as it was done to demonstrate the practicability of treatment.

ACCIDENTS TO THE LEGS AND FEET

These parts are subject to a variety of accidents, trifling perhaps in the cause which produces them, but scrious in their effects, from the lameness which ensucs. The chief of these are ordinary cutting, speedy cutting, and pricks of the foot either from putting the sole down upon a nail or a piece of glass. Bruises and over-reaches also come under this head.

Ordinary cutting may occur either in front or behind, the latter being the more common. It is often met with in poor horses, where the flesh is so reduced in substance that the legs are brought nearer together than in a proper condition. Here all that is required is patience, till the legs are restored to their proper relative position, taking care in the meantime that there is no permanent injury done. Usually the inside of one or both feet strikes the fetlock joint of the other leg in passing it, but sometimes the blow is given higher up, and it may occur anywhere on the cannon-bone except just below the knce, when it is called "speedy cutting," which will be separately considered. Sometimes this blow on the side of the cannon-bone is either the canse or the effect of a splint, the blow of the foot having a tendency to produce exostosis (see Splints, page 507). But if a splint is thrown out on a part of the cannon-bone which comes in the way of the natural action, the horse whose foot previously passed clear of that part of the other leg will hit it, and not only give pain, but cause a considerable access of inflammation in the previous enlargement.

In the Treatment, therefore, of cutting, it is necessary to prevent the labit being continued from the swelling produced either by a splint or by previous blows. Λ horse perhaps, either from weakness or bad shoeing, hits his leg and produces considerable swelling and soreness. Here, muless the swelling is reduced or protected, there is no chance of preventing the cutting, because there is a projection of the swollen soft parts right in the way of the other foot. No alteration of the shoeing, and no increase of strength or flesh, will be of service until the inflammation is reduced, and the sore, if any exists, is healed, and this can only be done either by rest or by protecting the leg with a boot. The latter is the better plan, and wherever is horse cuts it is, in my opinion, advisable to let him wear a boot for some weeks, until the skin is quite sound again and reduced to its proper thickness. A piece of an old rug folded round the leg so as slightly to overlap.
and then tied with a tape and tumend down over the fetheck joint, is quito sullicient to serve this temporar purpe, and being soft it is well calculated (1) protect a swollen joint; but it it is worn for any length of time, the presure of the tape and the friction of the grit from the road wear away the lair, and caluse an unsightly apearane, which is semetimes permanent. If, therefore, the cutting is not rectified completely in the course of a month or six wecks, a leather or indiaublow boot should be nicely adapted to the joint and buckled romd it, the flat surface of the strap not having so ingurious an effect as the tape of the cloth boot. When the cutting takes place above the joint, a pal must be aldpted to its inside, and fastened round the camon-hone by two or three buckles, according to the height at which the injury takes place.

S'CHi is The best mode of guarling against the injury done ly cutting, but we must also consider how it can be entirely prevented. In the first face it should be carefully ascertaned by what part of the foot or shoe the hluw is given. Nost commonly it will be found, hy chalking the inside of the foot, that a small pateh is rubbed clear of chalk, about half-an-inch above the middle of the quater, and corresponding with the hindermost mail-hole, especially when four inside nails are used. When this is the hitting-point, if great care is taken to avoid driving in a nail there, the tendeney to cut can never be incrased, as it often is by a raised clench, and at the same time the rasp may safely be used to reduce the thickness of the hoof at least the eighth of an inch, or often much more. The crust is usually here about threecighths of an inch thick, and very often it is so sound that it will hear to be rasped down till there is only one-eighth left, morided it las not to bear the pressure of a mail near it, and that the reduction is not carried up too near to the coronct. In the hind-foot the quarter is fully half an inch thick, and it therefore will bear reduction hetter even than the fore foot. Sometimes the blow is given by the shoe itelf, which is fixed on so as to overlap the crust, and then the remedy is simple enough, for this ought never to occur, and can casily be prevented low iny smith. But supposing, in spite of these precautions, the cutting still continues after the horse is restored to his natural strength and flesh, can anything be done by shoeing? In most cases this question may bo answered in the attirmative, by the use of what is called a feather-edged shoe, which will be described under the head of Shoeing in Chapter axxviii. By its aid the heds are buth raised, not the inner one only (which is cintirely useless and even prejudicial, for then the ground surface of the shoe is not a true planc), but both heels, the inner one being narrow, and having no nailholes beronel the two near the toe, so that there is no dimser of the web projecting; nor is there any nail-hole required, with the fear of a elench rising, or of the crust being weakened so as to prerent its being thinned to a proper degree. Jy thus raising the heels (in the hime foot especially), the fetlock is less bent, and as in horses that wot there is almost adrays a tendeney in their fetlock joints to bend inwards as well as backwarls, this rliminution of the angle will not only strengthen the leg in a forward direction, but will also increase the distance between the joints, which is the object to be desired. In the forefoot the obliquity in this direction is not so frequent, and then the high heel will be of no use; indeed, it is only when the toes are much turned
out that this plan of shoeing the fore-foot is ever successful. When cutting occurs before, unless there is this tum out, it is better to put the shoes on in a perfectly level manner, and trust to the reduction of the thickness of the quarter, and the absence of the third nail. If, with these precautions, the horse, when in good condition, still strikes his forelegs, it will be better to put up with the constant use of a boot. Generally, however, if the inflammation is first subdued, and tle foot is shor in a perfectly true and level mamer, taking care to rasp away the particular part which strikes the other leg, it will be found that the cutting is avoided.

Speedy cutring is more dangerous than ordinary cutting, because the pain given by the blow is generally more severe, and is often so great that the horse falls as if he were shot. On examining the leg of a confirmed speedy catter there is always apparent a small scab or bruise on the inside of the cannon-bone, immediately below the knee; but in slight cases rest may have been used to allow the skin to heal, and then no mark may possibly be left. A careful examination will, however, generally detect a small bare place, partially concealed by the growth of the adjacent hair. In bad cases the periosteum is swollen, and there is a considerable enlargement of the surface of the bone.

In the Management of slight cases of this kind of cutting, the action should be examined while the hoof is covered with chalk, and the latter should be treated in the same way as already described. If, however, this fails, as it generally does in this form of cutting, there is no remedy but to put on a regular speedy-cut boot, in which there is a pad buckled on the inside of the leg, and reaching from the knee to the fetlock. It must be of this length, because otherwise it cannot be kept in its place, as the leg allows it to slip down until it reaches the larger circumference presented by the joint. Where there is pain and swelling, caused by the contusion, it must be treated in the ortinary way, by the application of cold water and tincture of arnica, a wineglassful of the latter in two quarts of water.

When a nail is picked up on the road, the prognosis will depend upon the part which it has penetrated. If it has entered deeply into the toe of the frog, the probability is that the navicular joint has been wounded, or possibly the tendon of the flexor at its insertion into the pedal-bone, either of which are very serious accidents. If the wound is further back, there is less risk of permanent injury, as the bulbous heel or cushion of the frog will bear a considerable amount of injury without permanent mischief.

In any case the Treatment should consist in cutting away the hom round the opening, so as to allow of a free escape of matter if it forms. At the same time inflammation should be kept under by cold "swabs" to the coronet, or, better still, by putting the whole foot into a bran poultice.

Over-reaches, when slight, may be treated by the application of Friar's balsam, or tincture of arnica in full strength, which will have a tendency to dry them up and prevent suppuration. If, however, the heel is very much bruised, a poultice must be applied, but even then a little tincture of arnica should be sprinkled on it. When the bruise is so severe that a slough or core comes away, the wound may be dressed with a piece of
lint, dipped in a solution of mitrate of siluer, uidnt grains to the ounce of distilled water, amd wer this a batn praltice. In most cases, however, it is better to foment the part werl, and then aplly the tincture of arnica meat.

A burns: on a thin whe will smetimes ame matter to form, in whels case the horn munt lo cout away, and the cate treated as for quittor. Before mattor forms, the lom should be reduced, and the foot should be placed in a cold bean poultice.

CHAPTER NXXIV

P.AR.ASITES

WORMS

Theme are a number of worms that cause loss of condition in horses, and even death, when by their habits they piedee vital stractures and form bents, as with the strmsulas armatus, whe chones for a home the function of some important artery. I'rofesare Cobhnhe, who made helminthology a life stmly, saty in his Iutornal I'arositos wi the Domesticated Animals, "Althugh the parasites of the lomse and ass are suticiently numerous as species, their improtate in relation to disase of these amimals is, speaking generally, far less than that which obtains in the ease of other domestic amimals similarly affecterl. The large roum worms (Asearis megalocephala), thongh ocasionally present in great mombers, are reatily got rid of by a
 to merit attention. As to the strongles, which give rise to amemrisms in old lorses amd donkers (stromplos armatms), no doubt they are sometimes the calle of death, but the amont of mortality from this eatuse is exeedingly trilling.

 remedies. At the sugeretion of lr. Blane, the well-kinown heal of the Imdian Medical leportment, and one of the Alssinian captives, the "xpriments tried by Mios billon on donarate cases proved that thymol, in sutheient doses, is a certain dentrover of the pest. The doses, to be etlicacions, should be not las than fiftere grams in the early morning, the same quantity at night, and a duse of castoroil at midday the next day. To be reprated in at week, if any sion remainc of undestroved ova.
'The sharp-abiled the whorms or maw-woms (0, oyuris curvere) eertainly
may occasion considerable irvitation within the larger bowel, but we can casily expel them with purgatives. The worm in the eye (filaria papillosa) is confined to tropical conntries, and moreover the inconvenience it creates is readily cured by its removal. Lastly it is almost superfluous to mention the occurrence of the gid hydatid (Camurus cerebralis) and other forms of cestode larve (Cysticercus fistularis), since the assistance of the veterinary practitioner is rarely demanded for the treatment of the disorders they produce.
"It assuredly does so happen that bad forms of parasitism in the horse are comparatively rare; and this I take to be due, not so much to the alleged imnocnonsmess of the individual parasites themselves, as to the circumstance that horses are, as a rule, much more closely looked after, in a sanitary sense, than most animals. The scrupulous cleanliness observed in all large stables is eminently destructive to the welfare of parasites, and the large proportion of dry and artificially prepared fodder consumed by

Fig. 105áa.-Group of Bots attached to the Stonach.
horses leaves little opportunity for the transference of the ova of cestodes and nematodes, which require a certain amount of moisture for their preservation in the free condition. Moreover, the drinking water supplied to horses is, generally speaking, tolerably pure."

This summary on the part of the best helminthologist of the century makes it unnecessary to trouble the reader with the life history and detailed anatomy of worms with which the late professor was wont to regale his classes.

Remedies.-For the intestinal worms of the round varieties, turpentine, santonine, emetic tartar, iron, aloes, and thymol. For tapeworms-Areca nut, iron and oil of male fern, infusion of kousso, aperients generally. For doses see Anthelmintics.

BOTS

The larve of the ostrus equi, a species of gadfly, are often found in large numbers, attached by a pair of hooks, with which they are provided, to the cardiac extremity of the stomach ; they are very rarely met with in
the true disestive portion of this organ, but sometimes in the duodenum or jogumm in small mumbers. A sponf of these larsa, which are popularly called bots, are her reperented, but sometimes neaty all the cardiac extromity of the stomath is ormpied with them, and umon the interstices are fomm litthe projections which are caused by those that have bet go their hold, and have been expelled with the foxd. Seremal of these papille are shown (on the engrating, which whemeates alse the appeamane of the bots themsivers, so that no we can fail to meosmize them when he sees them. Amother variety, kmown as fumdanent bots, are obsorwal to attach themshes to the invide of the rectum, where they cames a cromd deal of imitation. The tle watehes its enpertmenty to deposit the ora while the anmal is in the act of defaration.

BTovirol tors apmar to do no harm in molerate numbers, but they

Tisatime ut- bestroy the ages with famalin weremial ointment rubbed upen the hates where they are deposited about the knees and shoulders by the bot fly, and the fundiment bots by inunction of the rectum with the mintment. The latter may be picked off with the fingers by the groom if he watches his opportunities.

CHAPTER XXXV

METIIODS OF CONTROL

THE TWITCII-TIIE IIALTER TWITCII—SIDE LINES——IOBBLES—SLINGS—ANESTHESIA
Besides those referred to in the part of this work dealing with the breaker's art, there are occasions when for medical treatment or surgical operations it is necessary to control the patient by methods which form no part of the ordinary education of the horse. There are simple contrivances known to horsemen, and others requiring hobbles and expensive gear, or else the production of local or general anesthesia. Horses differ so in temperament that while one individual will submit to firing with no greater restraint than holding up a foot, another will have to be cast for the removal of a wart.

THE TWITCH

This consists of a stout stick with a hole near one end through which a loop of cord of about the thickness of box-cord or clothes line is fastened. The operator passes the loop over his left hand, and with the thumb and fingers grasps the upper lip, on to which he places the loop, and with his right hand proceeds to wind it tight so as to enclose and compress this highly sensitive part of the animal (it will be remembered that there is a plexus of nerves here situated), until he realizes that it hurts him more to resist the twitch than to submit to some minor operation for which this cruel implement is used. Cruel it undoubtedly is, and to be avoided when any other safe and effectual method of control can be devised, but there are circumstances where its use is justifiable, and the safety of human beings must ever take precedence over the comfort of animals. There are not wanting foolish people who would expose the lives and limbs of stablemen to great danger rather than their pets should be put to the least pain or inconvenience, the base selfishness of which ducs not strike them until after an accilent has happened.

THE HALTER TWITCH

An ordinary hempen malter and rope answers well enough. This is put on in the usual way, but there must be no knot or check in the rope, which is made into a half-hitch, passed over the cars and the loop carried
under the horse's upper lip. Jerking the loose end inflicts pain, and to aroid a repetition of it the amimal may consent to remain steady. With each jesk the worl of command should be siven, "steady! steady!" being at all times a better word than "Woa," since the horse is taught to understand by the latter that he is to halt, and a young one may show the same confusion as the infant who has to learn that a certain word of one syllable may mean "Thank you" or something masty, and to be avoided. Both the infant and the horse lean to differentiate, but it is by the tone only.

Strapping up a fore het with a stimup leather may answer when some operation has to be performed on the heal or opposite fore-leg, or upon the lind-les of the same side as that in the stap). A horse camnot, or does not, cow-kick, that is to say lick with one leg without mising the loins, if the foreleg on the same side is held up, but he may kick with the opposite hind-leg. A kneceap should be put on, and a bandage from below the knee, so that, in the event of the horse throwing himself down, the skin may escape blemish. The leg can be sceured by either passing the strap round the pastern and the fleshy part of the arm, or suspended from a loop in a surcingle.

Dlindfolinng, says Captain Hayes in his Illustrated Morse Breaking, is an eflicient means of control with the majority of horses, although it excites some to offer more vigorous resistance than they would otherwise do. 1 have never found a horse which would, when blindfolded, attempt to kick or strike out on the chance of hitting his man, unless he was touched about the limbs or body.

SIDE LINES

Thrse are cither for securing a hind-leg, preventing kicking, or else for the purpose of throwing the animal down altogether. An ordinary rope such as wagoners use, preferably one that has become supple with work, may be passed round the horse's neck like a collar and then between his himl-legs, and picked up again in such a manner as to bring it round the pastern: it is then turned once round itself so as to make a loop near the fetlock, and the end pulled through the collar or loop which was first formed. If the foot is drawn forward sufficiently to prevent much slack, the animal is not likely to get out of it, and it can be fastened off with :n ordinary litch. It is a useful contrivance when a torn quarter has tw be sewn up and there are reasons for not casting.

The docble sipe line is adjusted in much the same way, only that the rupe is first folded in the middle, and a lnot made so that when put over the horse's head it will be about the same size as his collar. The free ends are carried between the hind-legs and passed through in exactly the same way as a single line. Some operators allow the knot to fall on the chest and pass the lines between all the legs, but more power for throwing is whatined by keeping the knot on the top of the withers, and the lines outside the fore limbs. With nothing more than an ordinary thirty-six-foot wagon rope the castrator has performed for ages, and it is a very effectual way of getting a horse down, if the assistants pull well together and behind the horse, instead of, as often happens, in a ziszas, or in any position but the right one. Site lines are now made by all the veterinary instrument makers
with rings or D's fitted in the collar portion, and with wide soft webbing for the hollows of the heels. The latter is a decided improvement on the old rope,

l'ig. 100.-Hobbled refdy for Tilrowing on tile Off Side.

Fig. 107.-Mobbles in Position for Casting un the Near Side.
as sore heels, cracks, etc., often date from the casting of a colt for castration. When an animal has been cast the hind-legs are drawn up tight to the belly and secured by half-hitches, and he is perfectly helpless until released.

HOBBLES

Casting by means of leather hobbles is the method generally adopted by veterinary surgeons. Fcur strut straps with steel eyes or loops are

Fig. 10s.
severally buckled round the pasterns, and a rope is passed through the
eyes, so that the lwheing brought together the harse is thrown upon his sile. As som an he ferme his lews oning he wherally assists hy his struggles to secure his own duwnfall. No hitches are repuired with these modern

Fig. 10?.
appliances, which will be better understood by the accompanying engravings than any verbal explanation.

Peamis Patext Hobbles.-These hobbles grather up their own slack, and each link is it is pulled forward through a steel cylinder is caught by a spring and secured. They are most easily adjusted or remored from the legs hy means of a hinged lock-bar over the strapi, the hole of which fits wer it stud. One man can throw the heaviest anmal.

SLINGS

It somethes hapreas that instead of throwing horses down we have oceasion to had thom up, perkaps get them up when prone. It is a diflicult tati with a heary horse, and in a cramperl stable with no "head-room," as butchers call height in their shanghterhouses. Whatever appliances aro used for raising a pustrate horse, the first thing to be asectained is whether or ma pulley can bo phaed at a sulferient hoight above him to give the newsary power for rasing sogreat a woight. With low eedings a floor-board or two maty semetimes be remoreal, or in the ease of horels with roofs of less vabe than the tenant, three holes may be mate thaccommodate as many poles, and these being phaced after the manner of the gipys camp kette and lawhed aloft, the neessany power can be obtained. It is nut possible to
describe the methods of getting the slings under the horse, but by judicious lifting and pulling it can always be managed. The amexed engraving shows where the slings are wanted, with breastplate and breeching to prevent the

FIG. 110.
patient slipping out at either end. The chain is an "endless" one and does not slack; the relaxing of the slings was always a difficulty with the oldfashioned ones made with wooden pulleys and ropes

AN压STHESIA

In addirion to the mechanical contrivances already described for gaining control over horses, we are able to practise both local and general anesthesia. Cocaine in solution, 2 to 4 per cent., is a most valuable agent for reducing the sensibility of the eye and of mucous membranes generally, so that tumours and foreign bodies may be removed without the additional pain of twitch and gag and hobble. If injected under the skin by a proper instrument, it so reduces the pain of firing that it can often be done without casting. Ether spray is not favoured by veterinary practitioners because wounds so treated are apt to slough or be very slow in healing. Chloroform alone is found to suit horses letter than the A.E.C. ${ }^{1}$ mixture so much favoured by human surgeons. There is practically no danger in the use of it, as it is found most difficult to kill a horse intentionally even ly prolonged inhalation of large quantities. There are several approved muzzles invented by veterinary surgeons, but they are quite unnecessary, there being safe and convenient methods of chloroforming without any of these appliances. It is of course presumed that the horse is already cast in hobbles, for, if not, a muzzle must of necessity be used. The animal's head being firmly held by two assistants, one nostril is thoroughly lubricated with vaseline inside and out, a sponge the size of an orange is saturated with chloroform

[^13]and squesed out with the hand before being introduced inside the greased nostril, where it is to be retained by gentle pressure, and the horse compelled to inspire through the spenge only and expire through the other nostril. It is convenient to use the left hand for retaining the spoge in position and the right for compressing the other nostril during cach act of drawing air into the lumss, and relaxing it during cach expration. The patient not miny succumbs to the methon quicker than ly any muzzle we have seen used, but is muler such complete control that one can inerease or diminish the destere of insensibility in the pationt at will. Those horses which go umber quickly come out quickly, and there is no safety in the prolonged inhalation of a mixture of atmospheric air and the vapour of chloroform ; experience of a very large number of horses and other animals under the intluence of this arentimbuces me to say that it is the better plan to subdue them quickly with pure chloroform alone.

If castivg is objected to, either from the absence of hobbles, or from fear of injury to the horse, a soft bed of straw should be provided, and a strong halter must be put over the muzzle with two cords, one of which shouk be held by a man on each side. These will serve to guide the horse in falling; but it is extremely diflicult to make sure of his going down where he is wanted to lie; and there is also considerable time lost in securing lim after he is down, which the safety of the operator imperatively requires. The effect of the chloroform must therefore be kept up for a much longer time than if it is given after the horse is cast and secured.

CHAPTER XXXXVI

OPERATIONS

BLEEIHNG—FIRING—SETONS AND ROWELS—BLISTERING-CASTRATION - DGCKING - CN-NERVING-REDUCTION OF IIERNIA-THE ADMIN1STRATION OF MEDICLNES-CLYSTERS-. BACK-RAKING.

BLEEDING

Bleeding is either performed in the jugular vein, when the whole system is to be affected; or when a part of the body only is inflamed, it may be desirable to abstract blood locally, as for instance from the toe or from the plate vein, in inflammation of the foot, and in ophthalmia from the vein which lies on the face just below the eye.

Tine instruments used are either the lancet or the fleam, the former being the safer of the two, but requiring some practice to manage it properly. In bleeding from the jugular vein a string is sometimes tied round the neck below the part to be opened, which is four or five inches below the fork in the vein (shown at page 465) in the upper part of the neck. The skilled operator, however, makes pressure with his left hand answer the purpose of causing the vein to rise, and during this state either uses the lancet with his right or the fleam with the aid afforded by the blow of a short stick, called a "hlood stick." When the blood begins to flow, the edge of the bucket which catches it is pressed against the same part, and as long as this is continued a full stream will run until faintness occurs. After sufficient blood has been taken, the two lips of the wound are raised between the fingers, and a small common pin passed through both, when the point is cut off and some tow is twisted round, by which the edges are kept together and the pin is retained in position. In a couple of days the pin may be withdrawn without disturbing the tow, and the wound will heal with little or no deformity. Sometimes the blood continues to flow beneath the skin after it is pinned, and a swelling takes place in consequence. When this happens, cold water should be freely applied and the head kept up by racking to the manger.

Inflamation of tie vein will sometimes supervene upon bleeding, the symptoms being a slight swelling appearing in the evening, or the next day, with a little oozing from the wound. These are soon followed by a hard cord-like enlargement of the vein, which feels hot to the touch, and the parts at the angle of the jaw swell considerably. The consequence generally
is that the wem is abliterater，weasminer some disturnane to the circula tion，experially when the hand is hed down，as it is at gatas．

The Tronemone consists in codlapplications as long as there is heat．When the heat hate subsided，and the vein remains enlarsed，the biniodide of mereme will prome the absurpion of the new depusit，by rubbing it in as recommemed at pare 630.

FIRING

Tue rebeose for which the heated iron is emploved is twofold ；first， to produee immediate cometer－iritation，by which the previous inflamma－ tion is reducol；and seoomlly，to canse the formation of a tight compress －wer the part，which is permanent．The bemish which it leaves，and the pain which it occasions，both during and after the application of the irons， should cause it to be aroited when any equally useful substitute can be employed ；but，unfortunately，there are many cases where it stands without a rival，as being at once the safest and the most efficient remedy which ean be adopted．Blisters and setons can be made to cause the same amount of counter－irritation，but have not the same effect in producing pressure upon the parts beneath．The pain of firing can be relieved entirely at the time of the uperation by chloroform：hut the subsequent smarting is quite as bad， and this is beyond the reach of any anmsthetic．Independently，however，of the interests of the master，it is also to the advantage of the horse to get thoroughly cured；for if he is not，he will either work on in misery，or he will be consigned to the knacker＇s yaml ；and，therefore，the adoption of the most eflicacious plan of tratment，even if somewhat the most painful，is the best for both．

Fiming may be performed atanding，by the use of the side line for the lind－leg，or by fixing up one fore leg when the other is to be operated on The firing－iron should have a smooth edge，about the thickness of a worn shilling；and it should be heated to the point when it shows a dull red in the dark．When the disease for which the irons are used is slight，the skin should not be penetrated；but in bad cases，where the mischief is great，and particularly when it is wanted to have a gook permanent bandage，the cauterization must be deeper；but this requires some practical knowledge to decide．The hair of the part should be cut very elosely with the seissors， or shaved；then，hasing secured the leg，the iron is to be steadily but rapilly passed in parallel lines over the skin，making just the proper pressure which is reguired to burn to the reguisite depth．A light brown mark should be left，which shows that the proper effeet has heen produced ；and the colour should be mifom，unless it is desired to penetrate deeper at certain parts，which is sometimes practised with alsantage．The lines are sometimes mate in a slanting direction round the leg，and at others straight up and down ；but it is useless to deseribe the details of this operation， which can only be learned by watching its performance by another hand． Badly done firing is always an eyesore；but when the lines are evenly drawn， and they have healed without any sloughs，eatused by irregular or excessive

[^14]pressure, they show that a master hand has been at work, and that the poor beast has been treated scientifically. In very severe diseases, a blister is sometimes applied over the part, immediately after the firing ; but this can seldom be required, and as it aggravates the pain tenfold, it should be avoided, if possible. On the following day, a little neat's-foot oil should be gently rubbed, or brushed with a feather; over the leg; and this should be repeated daily, until the swelling which comes on has nearly subsided. Less than three months' rest should never be allowed for the operation to have its full effect, as, if the horse is put to work before that time has clapsed, the disease will almost certainly return. Tnileed, it is far better to allow double this time, especially if the horse is wanted for fast work.

SETONS AND ROWELS

Setons are pieces of tape or other material, passed through and beneath the skin, leaving the two ends hanging out, either tied together or with a knot upon cach. The latter is the safer plan, as the loop is always liable to be caught on a hook or other projecting body. The needle with which the passage is effected has a spear point, slightly turned up, and an eye at the other end (see Fig. 111), through which the tape or cotton is threader. They are made in all sizes, and by their means a tape, smeared with blister cerate, may be passed through a long track of the cellular membrane, by pinching up the skin into a foll, and piercing this close to the body with the needle, which is then to be carried straight through. On drawing the tape out of the cye, it must be tied in a large knot at each end, which will prevent its slipping out. In three or four days a profuse discharge will come on, and it must be kept up, if necessary, by repeated applications of blister cerate, or digestive ointment, as may be necessary. The ends should be sponged occasionally, to remove the accumulated matter.

A smaller curved needle, about five or six inches long, is used for introducing a seton into the frog, or beneath the cye. For the former operation, a twitch is first applied, and the foot is then buckled up to the arm, as described at page 622 . The needle then, armed with the tape, greased with blister cerate, and a little oil to lubricate the surface, is thrust in at the heel and out at the cleft of the frog, taking care not to go deep enough to wound the tendon as it passes over the navicular bone. The needle is then forcibly drawn through, and the tape knotterl, as already described. The openings must be kept clean by sponging daily; and in three or four

Fig. 111. weeks the tape will have nearly worked its way out, when it may be withdrawn.

Frog setoning is now rarely practised.

BLISTERING

 cherely as pande: the dintment is then rublad in with the ham for ten
 be blistered, the herds slouhd be protected by lame Comsiderable itehing is daused after the first two or three days, amd many larses, if allowed, graw the part to such an cxtent as to canse a serious blemish. It is therefore uncesuary to keep the head away, which is done by putting a "cradle" on the neck. The irritation of lonse staw is vory agravating, and the stall or box should either be bedded with tan, or sawhet, or with used litter, so damp as to lie smoothly. It is generally the practice to put the bistered horse on a bare flom; bat he will often do grat harm to his legs and feet (which are of course momed, or they would not be treated in this way), by constantly stamping from the pain occasioned while the blister is beginning to rise. When the legs are stiff and sore from the swelling, he stands still enough, but at first there is nothing of this kind to keep him quiet. At the end of a week some neat's foot oil should be applied every morning, with a feather or soft brush, to keep the seabs as supple as possible. The various formule for blisters will be given in the list of materia medica.

CASTRATION

For memovivg tine tesmenes several methols of operation are in vogue. It is generally performed when the eolt is about a vear ohl, and the months of May and June are considered the most farourable, as being warm and too som for the main crop of dies, this operation being done, of course, while the suljects are yet rumning free in pasture. In this country castration has been successfully performed for centuries by men of very little education, but expert in the art, which as a rule is an hereditary one. For the preliminary part of their methorl, see casting with side lines at page 622 . The colt being securely held down upon his left side, his hind-legs drawn forwad and his head kept as much as possible in a line with his back, the operator first examines for possible rupture and then proceeds to wash out the sheath with suap and warm water to clear it of that accumulation which he calls "cod wax." During this preliminary work his irons aro getting hot in the fire baket which he carries about with him, if he has any regard for time. Ite next grasps the serotum with his left hand so as to apueeze the testicles up and remder the covering tense, when with in bold sweep of his knife he makes a clean incisim, nearly the whole length of the testis, which immediately eseapes, and is seized with the left hand and held firmly during the momentary struggle that follows: the eremaster muscle presently yields and the clam (see Fig. 112) is closed upon the cord and divided by a very hot iron; a little powdered resin is put upon the divided surface and a partially cooled iron is brought to bear upon it, until a melted pellicle of resin appears to have sealed the artery. The operator does not immediately release the clams but eases them a little, and if a drop of bright red bloud comes up from the divided vessel he applies the actual cautery
again. Removal of the second testis is but a repetition of what has been here described. The traditions of the castrator vary in the different counties, and some not only smear the clams with an ointment of verdigris, lut prefer to divide the scrotum with a keen-edged iron instead of a knife, using a special iron for searing the corcl. The majority of colts are still castrated in this way, but among veterinary surgeons whose greater fitness makes the surviral of the castrator only a question of time, several other methods are employed. An American, styling himself "Farmer Miles," created a good deal of sensation by introducing the Écraseur which is here illustrated (Fig. 113). The principle upon which it works

Fig. 112.-Castrating Clam,
is the crushing and squeezing together of the divided tissues in such a manner as to prechude hemorrhage. It usually succeeds, but if the artery bleeds an hour or two after the operator has gone away it is a difficult matter to stop it, and some deaths have occurred in this way. A decided

Fig. 113.-Ecrasetr.
improvement upon it is the Huish-Blake castrator, which crushes the cord and artery l,y means of a serrated metal disc placed in the slot (see Fig. 114 on next page), and a serrated blade and outside ledge.

Such an instrument, which can be used with one hand, offors great advantages over the original Écraseur, and the patentee has beea at some pains to collect reliable statistics respecting its use, which go to prove that hemorrhage or other had results are very rare. This instrument is specially faroured by those persons who practise what the Editor of the Veterinary Record has called "acrobatic surgery," by which term he describes the operation of castrating colts in the standing position. Why a man should accept a serious risk to his own person, rather than allow a slight risk to the owner's colt, I cannot conceive, but this method is becoming very common among the more athletic members of the veterinary profession.

Operation by Caustic Clam is a very old one, and has been revived with the "standing" operation. It is very much more painful than the actual
abutery or the erushing instrument previously deseriben, as it is so long in eflecting its purpose.

Castration by Torsion and he Ligature are not suitable to the lorse, and being but rarely practised in Engrland need not be here deseribed.

Fig. M4.-Mlish-Blake Castrator.
The art of the instrument maker, and the competition among castrators, may account for a good deal of clange in the present-day methods of perform-

Fin. 11 ma. - Mcisu's Catistic Cum.
ing this indispensalile operation, but as fire is the most aseptic method of all, it is not minkely that the old plan will again come into farour when the

Fig. 119.-Krnanf and Semmaxis Casta Come
motives for a new departure no lomger exist, and the old gelder will have gone with the dodo. A rood deal of swelling after the operation is quite usual and may be disregarded so long as the animal feeds well and is not abnormally stiff in his hind-quarters. A finger dipped in carbolized oil may be introduced into the wounds on the third or fourth diy, if there is reason to suppose that matter is imprisumed. Common tallow eandles are much in fatour for this purpose, and I see no objection to them even if they do con-
tain an infinitesimal quantity of arsenic, a popular belief which has not been verified to my knowledge.

DOCKING

About tie advisabidity of this operation there has leen much dispute, and especially since Dr. Fleming was chicf veterinary surgeon to the Army. He wats instrumental during his term of office in rejecting all remounts that harl been docked, it being his opinion that horses suffer sess from the annoyance of flies, and use a long tail as a rudder in making short turns. Whatever other

Fig. 116.-Docking Knife.
effect this order may have had, we know for certain that it keeps out of the ranks a great many suitable horses, sinee breeders do not keep long tails on their horses for the sake of the heggarly price given by the Army, while a short dock gives a smartness to most horses, displaying their quarters to advantage. Every drill season when the Yeomanry regiments are up for "permanent duty," as their ten days" fagging is ealled, an officer is deputed to purchase any likely-looking mags the troopers may have for sale, lout as nine out of ten of them are docked there are very few purchased.

To say that an operation is not a severe one is not to justify cruelty, and if it is done only to enhance the smartness or the price of the anmal it is not defensible, but there are many harness horses in which docking is absolutely necessary for the safety of persons using them; they have long tails, which they swish round in a circle and are prone to catch the reins, a most awkward accident, liable with the best-tempered horse to canse a collision with another vehicle, or provoking a horse to kick in many instances. A great many prosecutions against persons for doeking have been conducted at the instance of the Royal Society for the Prevention of Crueliy to Animals, but the results are indecisive. If the Bench is largely composed of countrygentlemen with a practical knowledge of horses, the verdict is usually in
favour of the defemtant, maless some crude and clumsy method has been allopted, hat if the case comes before a town stipendiary with more know. lenge of the laws of evidener than the laws of driving, the deeision may be in fasour of the society, whose oftions are tained bxperts in giving evidence, though they maly be quite free from a desire to add to the ammall list of comvictions which apeals su suceessfully to the pockets of subseribers. Many colts aro docked at the same time that they are castrated, a practice which should long aso have bern put a stop to lig the abovenamed Society, if the zeal of its adieers latd been hetter directed. ${ }^{1}$

Workos: is very rapidy perfomed ly the aid of the docking knife, which is mate on the principle of the guillotine. As the tail is removed at one sudhlen and forcible chop, the horse need not be confined in any way beyond holding up his foredes, unless he is a very violent animal. The exact length of the dock to be left being fixed upon, the hair is cut off close below and the remainder tied back to the root of the tail. A tight ligature immediately above the site chosen for operation does away with the necessity for searing with a hot iron, the method commonly adopted. The cut end may he bound up in tow with a little perchloride of iron if the ligature becomes slack or there is any disposition to bleed. It may be removed the next day. When the hot iron is used, resin is cmployed in the same way as described under Castration (see page 630).

UNNERVING

The nenves distributed to the foot are sometimes divided for navicular disease, as they lie on each side of the bone above the fetlock joint. No one, however, should attempt this operation without having previously seen it performed, as it requires considerable dexterity for its due exceution. I have deseribed such operations as can be wanted in the colonies, where a veterinary surgeon camot always be reached, but unnerving is never required there, and I shall therefore omit any detailed account of it.

REDUCTION OF HERNIA

When meraid occios is the colt, either at the navel or serotum, it is often desired to eflect a cure by returning the howel and causing the opening to close by athesive intlammation. If the colt is uncut, the performance of the coverel operation on the French plan will generally succeed, great care being of course necessary to retum the intestine before the clams are applied. In umbilical hemia a similar method has been tried, but the athesion is too superficial to be of much use ; and the only successful one is the passage of one or two skewers through the opposite edges of the opening, add then winting sume waxed twine round them, with a moslerate destee of force. This should not be sullicient to cause mortifica-

[^15]tion, or the opening will only be increased in size, and the bowel will protrude without any covering of skin ; but it should be just sutlicient to cause adhesive inflammation, experience in such matters alone enabling the operator to hit upon the right amount.

Fig. 117.-Hutsi's IIerna Clamp.
In all operations for hernia chloroform is of great assistance, as it prevents the risk of a protrusion of the bowel while the knife is being used, which will otherwise sometimes happen during the struggles of the horse.

This appliance is made by Mr. Huish in aluminium, thereby reducing the weight 75 per cent.

THE ADMINISTRATION OF MEDICINES

The country gentlenan who lias been more or less associated from childhood with the domesticated animals will hardly need to be reminded of the great difference in size, habits, and constitution of patients from time to time requiring medical treatment.

The difference between the management of the unhaltered colt on the hill-side and the ponderous dray-horse suffering from mad staggers in a narrow stall will sufficiently illustrate my meaning.

In the endeavour to administer medicaments we need to call into requisition all the arts of the pharmaceutical chemist, considerable strategy, and not a little physical courage, if we would succeed in regular dosing with the agents of our choice. Drugs are not forced down the reluctant throats of animals in the wholesale manner of former times, but the difficulties attendant on their administration offer to the idle an inducement to trust too much to the Vis medicatrix nature. Some of the methods adopted in menageries may be studied with advantage: every device rather than force is made use of, while in too many stables the twitch is employed without first making the attempt to give an ordinary draught by simply holding the head up.

The majority of horses accustomed to the restraint of bit and bridle will take a draught without serions opposition if the head is held up by placing the hand under the chin and introducing the fluid in small quantities. It is the impatience of the operator which causes more than half the trouble in drenching. One man will often succeed in giving a draught where half-a-
doren have failed with twiteh and gag and pullegs. It should be borne in mind that the objoction to swallow a natseons potion is an instinct of orffrespation displayed by all amimals, aml children too young to mason with, or not having implicit confidence in thair nurses. The un-
 that britality which sanctiond nickins and cropping. A better use for the twiteh, powided the cond is loner emough, is to pase the loop into the mouth, wer the nose and behind the uper incisors, holding up the head be means of the stick insteal of the common and dangerous practice of using a stable fork, the tines of which are liable to inflict injuries when a retive amimal throws his head from side to side. There are instances where twitehing the nose may be justifiable, but a wide experience is in fawour of the conclusion that it is very ravely indispensable. When an animal rears there are other methods of restraint, as putting him in a low building and hobbling one leg, or the phan adopted for strikers, of attaching a heary bag of corn to a collar. Where spirituous preparations are preseribed, the tinctures for instance, they must of necessity be given in the form of dranghts, but an intimate knowledge of modern pharmacy will cnable the attendant in many instances to employ extracts or tabloids, electuanies, supositories, pessaries or injections, subeutaneous or otherwise. The tabloid form of medicine naturally commends itself to the practitioner, whether human or veterinary ; lut it is not yet absolutely demonstrated that the dry residues of evaporated tinctures are therapeutically of the same value as the tinctures themselves, nor does analysis prove that, because two substances give the same chemical formula they are physically the same thing. If it were so, we might flavour our blenc-manyes with turpentine instead of oil of kemon.

Portability is a great point in veterinary medicine, and it is receiving increasing attention from our War Department. Balls and draughts are alike unsuitable forms of medication in cases of sore throat, setting up coughing and necessitating an attitude on the part of the patient both irritating and dangerous. Balls are oecasionally coughed up into the nasal chambers, and draughts taken down the trachea, either aceident producing serious inconvenience, and often very grave results. Electuaries, in which the medicinal agents are mixed with honey, treacle, or slyeerine, are in sueh cases the best forms of medicine to he used, the preseribed dose being smearad upon a smooth spatula or flat pineer of wool (as a lath) and freed from rough edges, then phaced upon the back of the tongue, which may be drawn slightly forward with the left or diengaged ham. In eases of sore throat this form of medication has the donble advantage of acting tepically ats a same would do, and further by its introduction into the cireulating medimn in the usual way.

Reduction of the bulky danght into the form of a powdered tabloid thrown upon the tongue is certainly "clegant pharmacy", as the diseiples of that art are wont to clam, and if expericnee confims the elams to physiologieal or therapeutic results and accurate dosage made by the various manufacturers, many ditheulties will be overcome in phyicking animals.

The adoption of suboutaneous injections by reterinary surgeons is a distinct alsantase in many acute diseases. Active agents like morphine, aeonitine atropine, ete., are sold in standardized solutions and the dose can
be accurately measured ; the effect can be observed in a few minutes of a drug that by the usual channel would take half-an-hour. Chemical changes must necessarily take place in the stomach or duodenum before entering into the circulation, and some proportion be lost in the bulky contents of the stomach. That the fulness or otherwise of the stomach may have a modifying influence upon the action of remedies introduced into it may be proved by a familiar example in our own persons. A draught of mineral water or saline taken before breakfast will readily effect the clesired purpose in the empty stomach, but fail altogether when taken after a meal. It may be said then, that some medicaments can with advantage be given subcutaneously, while others are better introduced into an empty or a "prepared" stomach.

Powders as a form of medicament to be given in the food are not likely to suffer in popularity among stablemen and horse keepers not expert in the art of administering draughts and balls or provided with the appliances for subcutaneous injection. There is no difficulty in putting sulphur and nitre, or any favourite nostrum, into a bran mash or sprinkling it upon damped chaff or corin. It will always commend itself to the groom as a safe and easy method. While the habitual use of so-called condition powders or other medicines is to be condemned, it is often convenient to make use of the manger as a receptacle for medicines. If we take samples of the principal grasses in a pasture, or in the dried form, and chew them, the prevailing acrid, bitter taste will perhaps account for so dainty a feeder as the horse being willing to eat such bitter drugs as Epsom salts. It might be supposed that very few horses would voluntarily take a medicine that causes such wry faces when given to men, but actual experience proves that a very large proportion of horses will take food so adulterated. In fact, with the exception of pungent substances, as ammonia and camphor, tar, essential oils, etc., there are but few drugs which may not be given in food to horses whose appetite remains with them in illness. Nay, some horses have such gross palates, that they will take chlorodyne in a mash, this useful preparation being redolent of oil of peppermint, than which there is nothing more pungent, or it would be supposed more repulsive, unless it be assafortila, and experience has proved that many horses will eat the latter.

In giving a ball, place a halter on the head without a knot, so that the jaws may be widely opened. Then turn the horse round in the stall and back him up to the manger, lay hold of the tongue and draw it out of the mouth, grasp it with the left hand, which must also hold the halter-cord so short that the strain is partly taken off the tongue, and then holding the ball in the right hand with the fingers enclosing it like a cone, and the arm hare, it should be rapidly carried to the back of the mouth and deposited there, holding the head up till it is seen to pass down the gullet. Cautious grooms use a balling iron, which gags the mouth and protects the arm, but a handy man will have less difficulty in introducing his laand than in inserting the gag, unless the horse is a determined loiter, when it may be absolutely necessary. In that case the gag is insinuated with as much ease as a bit in a flat direction, and the handle being suddenly depressed, the mouth is made to open, and the teeth cannot be brought together. Then holding the handle together with the halter in the left hand, the right easily introduces the ball into the pharynx.

In giving a mexen two persons are necessary, the operator standing at the right shoulder, while the assistant is realy to steady the head and aid him on the left. The operator atises the head with his left hand bencath thr jaw, and with his right he forces the lip of the bottle or hom into the wide of the month, and, raising the small emb, pours the contents in. If the horen is violent, a twitcla must be placed on the nose, and held by the asistant. The horn must not be passed far into the mouth, or any umbecesary violence used, for fear of protucing a cough; in which case, the hand must be instantly lowered. A neghect of this precaution will probably camse some of the liquid to pass into the laryms.

CLYSTERS

Are most vafeable agents, if propely administered. The best syringe fon the purpose is Read's, by which any quantity may be thrown up; and in colic, some gallons of wam water are sometimes repuived to produce the Wesired effect. For an ordinary opening elyster, a handful or two of common salt may be dissolved in five or six quarts of warm water.

BACK-RAKING

Is effected by passing the greased hand and arm into the rectum, and withdrawing any hardened feces which may have accumblated there. When the yumenty of these is great, the hand must be passed sereral times, until it camot reach any more. Whenever phesic is given to an unprepared horee, as is sumetimes necessary in severe disease, this precantion should never be neglected. There may be some trouble in passing an musually large hand into the rectum of a very small pony, but no hand of average size is nearly so large as the mass of dung commonly present ; and those Who are not abore deing a dirty job uhen dety requires it, well know by experience that the hand and arm may he passed to the shoulder without giving any pain whatever. Instruments are useful when they cannot be dienensed with, but they are always lable to cause laceration.

ON THE ACTION OF MEDICINES
 $A N D$
 THE DOSES IN WHICH THEY CAN SAFELY BE ADMINISTERED

CHAPTER XXXVII

the action of medicines, and tile formis in wilicil they are PRESCRIDED

Abstract

ALTERATIVES—ANESTIETICS - ANODYNES - ANTACIDS—ANTIIELMINTICN-ANTISPASMODICS - APEIRIENTS—ASTRINGENTS—BLISTERS—CAISTICS—CHARGES—CLISTERS—CORDIALS-DEMULEENTS-DIAPILORETICS—DIGESTIVES—DIURETICS—EMBROCATIONS—EMULSIONS— ENPECTORANTS - FEBRIFIGES - LOTIGNS - NARCOTICS - REFRIGERANTS - SEDATIVES STIMCLANTS - STOMACIICS - STYPTICS - TUNICS - VERMIFUGES - ELECTLARIES - PES. SARIES-SUPPOSITUIIES.

ALTERATIVES

Tiis term is not very scientific, but it is in very general use, and easily explains its own meaning, though the modus operandi of the drugs employed to carry it out is not so clear. The object is to replace unhealthy action by a healthy one, without resorting to any of the distinctly defined remedies, such as tonics, stomachics, etc. As a general rule, this class of remedies produce their effect by acting slowly but steadily on the depuratory organs, as the liver, kidneys, and skin. The following may be found useful :-

Dhack Sulphuret of datimnny 2 in f hachans.

Nitre ※̈hbluths.
limsed moal and water chongh to form a lall.

Flowers of stiphor Gommes.

 given two wr ther times a werk.
6. IN Dephaty of Stomach-

Syrup mongl to make ball, which may be given wice a week, or every other night.

ANたSTHETICS

 to all external imprescons, and therefore to pain. They resemble narcoties in their action, and, when taken into the stomach, may be considered purely as such. The most certan and safe way of administering them is by inhalation, and chloroform is the drug now universally employed. The modus oquramli of the various linds has never yet been satisfactorily explained; and when the emparison is male, as it often is, to the action of intoxicating fluids, we are moneare to it than before. With alcoholie fluids, however, the diserder of the mental furctions is greater in propention to the insensibility to $\mathrm{l}^{\text {nin }}$; and if they are taken in sumberent guantities to produce the latter effect, they are dangerous to life itself. The action of anesthetics on the horse is very similar to that on man (see Methods of Control, page 625).

ANODYNES

Gomermes called vancotics, when taken into the stomach, pass at oneo into the blood, and there ate in a special manner on the nervous eentres. At first they exalt the nervons force ; but they som depress it, the secomed stage coming on the sombre acooding to the increase of the dose. They are given either to sonthe the someal morous system, of to stop diarhea; or sometimes to relieve spasm, as in colic or tetamus. Opimm is the chice amolyne used in veterinary medicine, and it may be employed in very largo duses. Camalbis Indica amb cocaine are abo of service:-

[^16]8. Anodyne Ball for Colic (only useful in mild cases)-
Powderel Opiun $\frac{1}{2}$ to 2 drachms.
Castile Soap $\overline{2}$ drachms.
Camphor 2 drachms.
Ginger $1 \frac{1}{2}$ drachms.
Make into a ball with Liquorice powder and Treacle, and give every hour while the pain lasts. It sloonld be kept in a bottle or tin.
9. Avodrae Ball (ordinary)--
Opium $\frac{1}{2}$ to 1 drachm.
Castile Soap 2 to 4 drachns.
Ginger 1 to 2 drachms.
10. Extract of Cannabis Indicus 4 drachms to 1 ounce as a ball mixed with any meal.
11.
Cocaine 5 grains.
Powdered Aniseed $\frac{1}{3}$ to 1 ounce.
Oil of Caraway Seeds $\frac{1}{2}$ drachm.
Syrup enough to form a ball.

13. In Chronic Diarriige-
Bismoth $\frac{1}{2}$ ounce.
Powdered Chalk and Gtum Arabie, of each . . . 1 ounce.
Laudanum $\frac{1}{2}$ ounce.
Peppermint Water 10 ounces.
Mix, aud give night and morning.

ANTACIDS

As the term implies, these remedies are used to neutralize acids, whether taken into the stomach to an improper extent, or formed therein as products of diseases. They are often classed as alteratives, when used for the latter purpose. They include the alkalies and alkaline earth. The bicarbonates of soda and potash are those most often employed in veterinary medicine.

ANTHELMINTICS

Drugs which are used to destroy worms receive this name in medical literature, when the author is weckled to the Greek language. The admirers of Latin call them vermifuges, and in English they receive the humble name of worm medicines. Their action is partly by producing a disagreeable or fatal impression on the worm itself, and partly by irritating the mucous lining of the bowels, and thus causing them to expel their contents. The following may be useful:-
14. Worm Ball (recommended by Mr. Gamgee)-

Oil of Male Fern $. . \quad . \quad . \quad . \quad . \quad .30$ drops.
Treacle enough to make a ball, which should be given at night, and followed by a purge next moming.

```
15. Mhbin Damen fur Wham-
    Linsired Oil . . . . . . . . . . . 1 pint.
```



```
Mix, and give once a wexk, fimting.
```


ANTISPASMODICS

Astispasmones are medicines which are intended to comnteract excessive museular action, called sumsim, or, in the limbs, cromp. This deranged condition depembls upon a variety of causes, which are gonerally of an irritating nature : and its sucersful treatment will often depend upen the employment of remerties calculated to remose the canse, rather than directly to relieve the efloct. It therofore follows that, in many eases, the medicines most sucopsfal in removine spasm will be derived from widely separated divisions of the meterin indere, such as aperients, anolynes, alteratives, stimulants, amd tonice. It is useless to attempt to give many formule for their exhihition: but there are one or two medicines which exercise a peculiar control wor -pasm, and I shall give them withont attempting to analyze their mode of uperation.
16. 1. Colle-

```
pirit of Turpentine . . . . . . . . . . 32 ounces.
Laudanum . . . . . . . . . . . . . 1 \(\frac{1}{2}\) ounces.
Solution of Pabradoes Alues. . . . . . . . 2 ounces.
```

Give as a drench in thin gruel.
17. Clestrer in Come-

Extract of Belladona $\frac{1}{2}$ onnce.
filyerine 2 omees.
Solntion of Aloes 1 ennce.
bissolve in three quarts of wam water.
18. Antishowome Drexfl-
(iin 4 to 6 onnces.
Tincture of Carsicum. 2 drachms.
Laudanm 1 ounce.
Wimm Water $1 \frac{1}{2}$ pints.
Mix, and give as at drench, when there is no indmmation.
19.

This may le repated in two hours if no relief is obtained.

APERIENTS

Apemexts, or purges, are those medicines which quicken or increase the evacuations from the bowels, varying, however, a grood deal in their mole of operation. Some act merely by exeiting the muscular coat of the bowels to contract ; others cause an immense watery discharge, which, as it were, washes out the bowels; whilst a third set combine the action of the two. The various purses also act upen different parts of the canal, some stimulating the small intestines, whitst others pass through them
without affecting them, and only act upon the large bowals; and others, again, act upon the whole canal. There is a third point of difference in purges, depending upon their influencing the liver in addition, which mercurial purgatives certainly do, as well as rhubarb and some others, and which effect is partly due to their absorption into the circulation, so that they may be made to act, by injecting into the veins, as strongly as by actual swallowing, and their subsequent passage into the bowels. Purgatives are likewise classed, according to the demree of their effect, into laxatives, acting mildly, and drastic purges, or cathartics, acting very severely.

This old-fashioned formula answers well enough where one ball is to be made up, but since Professor Tuson's pharmacopeia has been generally adopted, masses of physic are kept containing a definite proportion of aloes, the excipient being glycerine and the condition of the mass always suitable for dispensing. Neither the veterinary surgeon nor the pharmaceutical chemist spends his time in the preparation of single balls of the kind used in routine practice, but the wholesale druggist supplies these things in convenient form and accurate doses.

Mix, by dissolving the Aloes in the Mint Water by the aid of heat, and then adding the other ingredients.

ASTRINGENTS

Aprear to produce contraction on all living animal tissues with which they come in contact, whether in the interior or on the exterior of the body; and whether immediately applied or by absorption into the circulation. But great doubt exists as to the exact mode in which they act ; and, as in many other cases, we are obliged to content ourselves with their effects, and to preseribe them empirically. They are divided into astringents administered liy the mouth, and those applied locally to external ulcerated or wounded surfaces.

BLISTERS OR VESICANTS

Blisters are applications which inflame the skin, and produce a secretion of serum between the cutis and cuticle, by which the latter is raised in the form of small bladders; but in consequence of the presence of the hair, these are imperfectly seen in the horse. They consist of two kindsone, used for the sake of counter-irritation, by which the original disease is lessened, in consequence of the establishment of this irritation at a short distance from it; the other, commonly called "sweating" in veterinary surgery, by which a discharge is obtained from the vessels of the part itself, which are in that way relieved and unloaded: there is also a subsequent process of absorption in consequence of the peculiar stimulus applied.

```
37. Mild Blister On\tmest (Conntef-Imimtant)-
    Vaseline . . . . . . . . . . . . . }4\mathrm{ ounces.
    Venice Turpentine . . . . . . . . . . l ounce.
    Powdered Canthurides . . . . . . . . . }6\mathrm{ drachnns.
    Mix, and spread.
38. Stronger Blister Ointment (Counter-Imritant)-
    Spirit of Turpentine . . . . . . . . . I ounce.
    Sulphuric Acid, by measure . . . . . . . 2 drachms.
    Mix carefully in an open 1lace, and add-
    Hog's lard . . . . . . . . . . . . 4 ounces
    Powdered Cantharides . . . . . . . . . l ounce.
    Mix, and spread.
39. Very Strong Blister (Counter-Irritant)-
    Strong Mercurial Ointment . . . . . . . }4\mathrm{ omnces.
    Oil of Origanum . . . . . . . . . . . \frac{1}{2}}\mathrm{ ounce.
    Finely-powdered Euphorbium . . . . . . }3\mathrm{ drachms.
    Powdered Cantharides . . . . . . . . . \frac{1}{2}ounce.
    Mix, and srread.
40. Ratidly activg Blister (Counter-Irritant)-
    Best Flour of Mustard
        8 ounces.
    Made into a paste with water.
    Add Oil of Turpentine . . . . . . . . . 2 ounces.
    Strong Liquor of Ammonia . . . . . . . 1 ounce.
```

 This is to be well rubbed into the chest, belly, or back, in cases of acute
 inflammation.
 41. Biniodide of Mercury 1 part.
Lard or Vaseline 8 to 16 parts.

The last-named agent has almost superseded all the others, especially when applied as a remedy for bony growths, as splint, sidebone, ringbone, and spavin. The strength or proportion to he used is a matter of judgment, depending upon a variety of circumstances, as breed, thickness of skin, degree of ossification, and recent or chronic nature of the malady.

CAUSTICS, OR CAUTERIES

Carstars ane substames which hum away the living dissues of the borly by the deemposition of their dements. They are of two kindsviz. first, the atual catery, comsistins in the application of the burning irom, and callon firing: aml, soromdly, the putmial cantery, by means of the penvers of mineral cantice, such as zine chloride, lunar catustic, corrosive sublimate, ele.

Fiman: is dexeribel in the chapter on Opmatioms, at page 628.
The following are the ordinary chemical applications used as potential caluteries:-
44. Fesen Potase, difficult to manage, because it runsabout in all directions, and littlo used in veterinary modicine.
45. Lexme Carsie, or Nitrate of Silver, very valualle to the veterinary surgeon, and constantly used to arply to profue grambations.
46. Scipiate of Copph, almost emally useful, hut not so strong as Lumar Caustic; it may bo applied to all high gramulations, as in broken knees, and similar growths.
47. Combonve Simmate in powder, whim ats most energetically upon warty growths, but should he nsed with great eare and dispretion. It may safely be appried to small surfices, but not without a megmar pactitioner to large ones.
48. Yeunow Ommest is not so strong as Conmive Sublimate, and may he usol with mure frectom. It will gencrally remove warty growths, by pieking off their heals and rubing it in.
49. Murme of Anmoxy, called linter of Antimony; a strong but rather m. manateable canstie, and used cithrey itself or mixed with more or less water.
50. Culuride or Zave is a most powerfal matic. It may be nsed in old sinuses in solution, 7 drachms in a pint of water.
Milider curstics:-
51. Verdigris, wither in lwowler or mixel with hard as an ointment, in the proportion of 1 to 3 .
ER. Rewl precipitate, dittu, ditto.
53. Bunt alum, misil diy.

Mhld herid Cismas:-
54. Solution of Nitratr of silver, 5 to 15 grains to the onure of distilled water.
55. Solution of Bla Vitriol, of alout domble the ahove strength.

56 . Chluride of Zine, 1 to 3 grains to the omes of water.

CHARGES

Are admende plastens which are spread while hot on the legs or other parts, and at onee covered with shart tow, so as to form a strong and unyiedling sumport while the horse is at grase.

Cinarges ready spread in the form of bandages can be purchased through wholesale druggists, and are much more convenient, but in many parts of the world the ingredients may be obtained where the fimished article is not procurable.

CLYSTERS, OR ENEMATA

Chrsens are intemderl either toreliere obstruction or spasm of the boweds, and are of great service when properly applied. They may be made of warm water or gruel, of which some quarts will be required in colic. They should be thrown up with the proper syringe, provided with valves and a flexible tube.

For the turpentine clyster in colic, see Antispasmodics.
Aperient clysters, see Aperients.
58. Anudyne Clyster in Diamencea:-

Starch, made as for washing 1 quart.
Powdered Opium 2 drachms. The O_{l} imm is to be boiled in water, and added to the starch.

COUGH BALLS

59.

\quad| Extract of Belladomna |
| :--- |
| Nitre. |
| Camphor |

Linseed and treacle to make a ball..

Linseed and treacle to make a ball.

CORDIALS

Are medicines which act as temporary stimulants to the whole system, and especially to the stomach. They augment the strength and spirits when depresserl, as after over-exertion in work.

64. Curdial Drencii-

A quart of good ale warmed, and 2 drachms of grated ginger.


```
    lowderedsigill . . . . . . . . . . . 1 drachm.
    Pぃwinad Myrd. . . . . . . . . . . . \(1 \frac{1}{2}\) drarhms.
    labath of lown, whugh to lom a hall.
```



```
    Bałatn of Th川! . . . . . . . . . . . . 1 ! drachms.
    l'malumd simil . . . . . . . . . . . . l drachm.
Lineed med and boiling water, enough to form intu a mass.
```


DEMULCENTS

Are cavd for the purpose of somhing irvitations of the bowels，kid－ 11＂以，or bladder，in the two last cases by their effect upon the secretion of urine．

```
bi. Demilcext Dremch -
    Gum Arabic . . . . . . . . . . . . . \(\frac{1}{2}\) ounce.
    Water . . . . . . . . . . . . . . 1 lint.
```

 Dissolve, and give as a drench night and monning, or mixel with a mash.
 68. linsecd 4 omnces.
Water 1 quart.
simmer till a strong and thick decoction is ohtained, and give as above.
69. MARSH-M.HILOW 1)RENCH—
Marsh-mallows A double handful
Water 1 quart.
Simmer, as in No. 68, and use in the same way.

DIAPHORETICS

II aye a special action on the skin，increasing functional activity．

71．Snlution of Acetate of Ammonia ．．．．．．． 2 ounces．
Spirit of Nitric Dther ．．．．．．．．．． 2 ounces．
Mix，and give as ahore．
ig．In Hme．Porvo－
Emetic Tartar ．．．．．．．．．．．．． $1 \frac{1}{2}$ drachms．
C＇anphor．．．．．．．．．．．．．．．$\frac{1}{2}$ drachun．
Ginser ．．．．．．．．．．．．．．．2 drarhms．
Opin！
$\frac{1}{2}$ drachin．
Oil of Coraway．．．．．．．．．．．．． 1 号 drops．
Tincome meal and hoilint water，to form a bull，which is to be given twice or thrice a week．

73．Is Hameromed（hut ant so efficacions）－
Antimonial l＇owiler ．．．．．．．．．．． 2 drachms．
Gingor ．．．．．．．．．．．．．． 1 drachm．
lowinellathas：．．．．．．．．．． 6 drachms．
vil of Minewil ．．．．．．．．．．．． 20 drops．
Mix as abose．

These remedies require moderate exercise in clothing to bring out their effects, after which the horse should be wisped till quite dry.

DIGESTIVES

Digestives are applications which promote stuppuration, and the healing of wounds or ulcers.

The resin ointment of the British Pharmacopœia is that now in general use, but it is rather too stiff for convenient application, and many veterinary surgeons employ less wax or more oil.

DIURETICS

Diuretics are medicines which promote the secretion and discharge of urine, the effect being produced in a different manner by different medicines; some acting directly upon the kidneys by sympathy with the stomach, while others are taken up by the blood-vessels, and in their elimination from the blood cause an extra secretion of the urine. In either case their effect is to diminish the watery part of the blood, and thus promote the absorption of fluid effused into any of the cavities, or into the cellular membrane in the various forms of dropsy.

Linseed meal and treacle sufficient to form a convenirnt sized ball.

EMBROCATIONS

Embrocatons or Liniviats are stimulating or sedative extemal applica－ tions，inten led toreduen the pain and indtammation of external parts when tublerd into the skin with the hand．

A popular embrocation universally used and sold as a proprietary article is made as follows：－

The ammona minhest of the Britioh Phamacoperia is a useful applica tion for sprains，and is made by simply aritating one part of strong Liquid Ammonia with three parts of olive oil．Any other veretable oil will do for veterinary purposes，but none emulsify so completely as to satisfy the phamatist．

EMULSIONS

Wimes ons materes have their ghbules hoken down by friction with mucilaginous substances，such as sum ambie or polk of wis，they are called emulsions，and are specially nseful in sonthing intitation of the mucous membanate，of the trachea，and bunchi．

85．Simble EMDLATON－

Dissolve the honn and futas in the water ；fhen ahd the linsem oil by degrees in a lare mortar，when it slould assume a milky apuarance．It may be given night and morning．
86. Anomel: mhe active Emulion-

Simple Emulsion, No. 85 Camphor Opinm in Powler

Rub the three last ingredients torether in a mortar with some white sugar ; then add the emulsion by degrees.

When bismuth and chalk and other heavy and insoluble agents are to be given as draughts they are suspended in mucilage of acacia, or tragacanth, glycerine, syrup, or treacle; they are not strictly emulsified, but "held up" with shaking matil they can be administered. Such arts as emu!sification belong to the pharmacist, whose skill is but poorly remunerated, and they are only referred to here for the benefit of those realers who have not the advantage of a dispensary at which to get their medicines prepared.

EXPECTORANTS

Expectonants excite or promote a discharge of mucus from the lining membrane of the bronchial tubes, thereby relicving inflammation and allaying congh.
87. Expectorant Bahl in Ohmaniy Cutgi whthut Inflamation-
Gum Ammoniactum $\frac{1}{2}$ onnce.

Powdered Siquil 1 drach 1 .
Castile Soap 2 drachms.
Honey enough to form a lall.
88. In Old Standing Cough (Stomadi) -
Asafeetida 3 drachmis.
Galbanum 1 drathm.

Carbonate of Ammonia $\frac{1}{2}$ drarlim.
Ginger $1 \frac{1}{2}$ drachms.
Honey cnough to form a ball.
89. A Sthong Expectoliant Ball-

Linseed meal and water chough to form a ball, which is not to be repeated without great care.

FEBRIFUGES

Generally called fever medicines, are siven to allay the arterial and nervous excitements which accompany febrile action. They do this partly by their agency on the heart and arteries through the nervous system, and partly by increasing the secretions of the skin and kidneys.

LOTIONS OR WASHES

('ovsist in liguids applied to the external parts, either to cool them or to prexluce a healthy action in the vessels.

Goulard Extrat. 1 ounce.
Vinegrar 2 ounces.
Spirits of Wine (Methle.) 3 ounces.
Water $1 \frac{1}{2}$ pints.
Mix, and apply with a calico bandase.
96 . Avother, usefll for Lnflamed lees; on for Galled Shouliers on Back-

Sal Ammoniac 1 onnce.
Vinegar 4 ounces.
Spirits of Wine (Methrl.) 2 ounces.
Tincture of Arnica 2 drachms.
Water $\frac{1}{2}$ pint. Mix.
97. Lotion for Foul Ulicers-

Sulphate of Copper 1 ounce.
Nitric Acid $\frac{1}{2}$ ounce.
Water 8 to 12 ounces. Mix.
98. Lotion for the Eyes-

Sulphate of Zinc 20 to 25 grains.
Water 6 ounces. Mix.
99. iery Strong One, ani only to be dropiti in-

Nitrate of Silver
5 to 8 grains.
Distilled Water 1 ounce.
Mix, and use with a eamel-hair bush.
100. Cocaine 5% solution for rendering the eye insensitive, Irevious to applicaion of ahove, or for minn operatious.

NARCOTICS

A mondernon is sometimes made between amorlyes aml nareoties, but there is no necessity for semating them in a work of this chameter. (Siee Anodynes.)

REFRIGERANTS

Lower the ammal ineat by contat with the skin, the ordinary ones being cold air, cold water, ice, and evaparative lotions. (See Lotions.)

SEDATIVES

Depress the action of the circulatory and nervolts systems. They are very powerful in their effects, and are conveniently divided into brain sedatives and heart sedatives. As examples of the first class may le cited chloral and the bromides, and of the second digitalis, opium and belladonna, and digitalis, which is the drug commonly used for this purpose, has a special quality known by the name of cumulative, that is to say, if repeated small doses are given at intervals for a certain time, an effect is produced almost equal to that which would follow the exhibition of the whole quantity at once. Besides digitalis, aconite is also sometimes used to lower the action of the heart, and by many it is supposed to be equal in potency to that drug, without the danger which always attends its use.

STIMULANTS

By this term is understood those substances which excite the action of the whole nervous and vascular systems ; almost all medicines are stimulants to some part or other, as, for instance, aperients, which stimulate the lining of the bowels, but to the general system are lowering. On the other hand, stimulants, so called par excellence, excite and raise the action of the brain and heart.

101. | Old Ale |
| :---: |
| Carbonate of Ammonia
 Tincture of Ginger . |
| |
| Mix, and give as a drench. |.

For other stimulants, see Cordials.
The term stimulant is here used in its popular acceptation. Alcohol in its various forms may be a true stimulant in very small doses, but it is usually regarded in medicine as a narcotic, beeanse it first excites and then depresses nerve force, whereas a true stimulant is not followed by any reaction. The true stimulants in use for animals, such as ginger, capsicum, cinnamon and other drugs, we are accustomed from a horseman's point of view to regard as cordials, carminatives, or tonics.

STOMACHICS

Stomachics are medicines given to improve the tone of the stomach when impaired by bad management or disease.


```
Mivas in No. luz.
```


STYPTICS

 month．of the the pert itati in the shap of lotions，ete：or the actual ＂atore sombtome，hwore，the part camot be reachorl，and is yet within the inthomen of an injortion，ats in berelinef from the nostrils，for ＂Which the follow ims may be employed：－

TONICS

deratiot the visun of the whole bo！lemmanenty，whilst stimulants

106．Тッチバ R．an．－
Sulhate of Ith i ．．．．．．．．．．$\frac{1}{3}$ ounce．
Extrawt of Cammil ．．．．．．．．．． 1 ounce．
Mix，and form into a ball．Or，

VERMIFUGES，OR WORM MEDICINES

Aise beccanem under the head of Anthelminties，which see．

CIIAPTER XXXVIII

SIIOEING

To shoe or not to show, that is the fuestion which every few years provides newspapers with cheap copy, when the sea-scrpent's clams have for the time failed to draw. Why were horses first shod? There can be only one answer to that question, and it includes a refutation of the oftrepeated statement that present-day horses have had their feet so spoilt by shoeing that it has become a necessity. If it were true, which it is not, that Arab horses are never shod on the dry and sandy soil of Arabia proper, it would not prove that in this hmmid climate and on macarlamized roads horses' feet are able to bear the attrition which ordinary work necessitates. Look in at the village farricr's, if you will, and choose a flat country as well, and cxamine the fect of colts about to be shod for the first time. How many will you find whose feet are not already broken and misshapen? Still more so is this the case when the ground is hilly and meven, although nature provides a harder and more upright foot for those bred on high ground.

If, however, the feet of the mbroken colt are good enough to support his frolics at pasture without artificial covering, there are but very few capable of bearing the strain of work upon the roads. The few consist of horses used upon the fens for agricultural work, and now and again one belonging to a faddist, who can accomplish a journey of a few miles upon the level wooden or asplait roads of the city and West-End of London. Experiments have again and again been marle, but ended in failure. The evils of shoeing are many and great, but in accepting the services of the farrier we are choosing the lesser evil. Mr. Hunting, in his Art of IIorse Shoeim, says: "The gentleman with a fad, who occasionally appears in England with unshod horses at work, is an unconscious impostor. He sets his little experience against the common-sense and universal practice of others. The shoeless experiment has been tried over and over again, bat always with the same result-i return to shoeing. In dry weather the hoof becomes hard, and it is wonderful how much wear it will then stand on the hardest of roads. In wet weather the hoof lecomes soft, and then the friction on hard roads soon prohibits work without shoes. If work be persisted in, under such circumstances, the hoof rapidly wears away and lameness results. Persons trying to prove a preconceived theory meet this difficulty by resting the horse until the horn grows, but husiness men, who keep horses for work
in all weathers, can athon mo sum lusurs" The same excellent authority

 for tavelling on smow and ice. The lomses mond mot kep their feet, and were mable to dras the wnes and watons, which hatl to be abandoned. During the Franco (ieman war lambaki's retrat beathe a confused rout from a similar caluse.
 it is therefore ummers:ay to return to it agin. It will, however, be dexable, in deseribing the prater mode of peparing the foot for the

> A. The heel of the erust
> 13. The for cat ant to remive thon ajo.
> \therefore C. The quaters of the exn-t.
> 1). W. The hars ats they should lue laft with the full frog inetween them.
E. E. The anghe between the heel and bars "hore corns a! !ear.

(i. (i. The bultrous heels.
II. The cleft.

Whe, to recapitulate the several puts which the smith has to work upon. These are delineated in Fig. 118 , of the proper form amd propertions. Ton
 be taken off, to do which the rnollece most be raised with the toot called the bufler, lowseming aty mals which mas apear tight by driving them back with the punch. Then takiner hokd of one wels of the shoe, rase it from its bed ley lifting ome side hodily and then the other, taking eare not to draw it off completely on one side, or the erust will be broken. Next rasp the whale surface of the erust to a level, which will expose any stubs remaining, and if there are any they must be taken out. All this is a mere mechanical uncration, requiring no thonght; but now comes
the important part of the smith's work. It demands some knowledge of the anatomy of the foot and also of its diseases. He must remember that he has only about half-an-inch of horn at the thickest part betweon his knife and the sensitive internal parts; and though he can generally make a foot look well by the use of his tools, he often only does this at the expense of the destruction of a part which alone keeps the foot sound. Much will depend upon the natural or acquired formation of the foot he has to shoe. If it is very strongly covered with horn, great liberties may be taken with it, as compared with one where the sole is flat and thin, and the crust very shelly and weak. Gencrally he will only have to take an equal proportion off from the whole concave surface of the sole, that is, supposing the foot was properly prepared the last time it was shod; but sometimes it will have been allowed to grow greatly out of shape, and then much experience and skill are required to know how far to go with the knife. A perfect model must not always be carried in the eye, with a view to render the one before the smith exactly like it, but he must rather consider how he can make the best of the materials he has to work upon, which will generally be by preserving horn rather than by removing it. If the foot is strong, the toe may be slightly shortened, the heels of the crust and the bars may be lowered a little; the sole should not be pared out. The frog will only want to be cleared of any ragged portions depending from it, and the attachment of the bars to the crust must studionsly be preserved. It is usual to clear out the sole in the angular interval between the bar and the crust, so as to avoid all risk of the shoe pressing upon the foot and cansing a corn ; but if care is taken to prevent the shoe from being twisted side-ways, this can never happen and the sole may be left here on a level with the bar, unless it has previously been the seat of a corn.

Such are the general directions for preparing the healthy foot for the ordinary English shoe; but supposing that there is any disease or tendency to it, or that some unusual form of shoe is decided on, there will be a necessity for certain modifications in the plan adopted.

THE FORM AND MANUFACTURE OF SHOES

In spite of the prolonged opposition of a powerful trades' union, machinemade shoes are now largely used, thongh never likely altogether to displace the hand-made article. There were many serious objections to them at first, but these have been practically overcome, and really good shoes, capable, if necessary, of cold fitting, are now turned out by the British and Colonial Company. Λ great many different materials have, from time to time, been tried, among them compressed leather, vulcanite, and papier maché. None answer so well as iron, although a mild steel is used for the short Charlier, to which Mr: South has given the name of the "Rational" shoe. The rapid cooling which is necessary in fitting shoes, makes steel too brittle or else too slippery. New bar iron, plain, fullered or Rodway, is commonly used for front shoes, and "doubles" for hind shoes of hard-working horses. Old shoes doubled and welded together and drawn out with heavy hammers are more lasting than new and less brittle than steel.

The chief objects to be attained in any particular pattern or form of
shoe are-that it be light, carily and saffly metamed by few nails, capable of wearing three weeks or a month, and that it afford soor! foothold to the horse.

The average weight of shoes-

1. The common Exibisif shof for general purposes is represented in the amexed engraving, which shows both its surfaces. It is often made wider at the heels than the foot it is intended for, but this is a great mistake, and leads to the very mischiof which it is intended to avod. On examining the foot represented at page 656, it will be seen that at the back part of the crust on each side there is a considerable narrowing, or approach of the one heel to the other. This should be exactly eopied, so that when the shoe is fitted neither heel will project a hair's-breadth beyond the other. The web will vary in breadth according to the nature of the sole which it has to proteet, being made broider for a thin, weak sole, than for a strong one. On the internal or foot surface, the inner half or rather more is forged in a concave shape, so as to make the inner edge much thinmer than the outer. This is called the concave seat, and is intended to keep all pressure oft the sole, and to prevent the ordinary sized pieces of grit and grawel which insinuate themselves between the shoe and the font from injuring the latter by their presence. The web of this shoe is perfectly flat on the ground surface, and is of the same thickness throughout.

Only the very best iron can be used to produce good nails. Nothing is dearer than bad nails, which cause injury to the foot and loss of shoes.

A good nail should present certain forms of head, neck amd shank. The head should not be too broad at the top or it may become fixed in the nailhole only by its upper edge, and when the shoe has hat a few days' wear the nail luses its hold, and the shoe is loose. The neck should not be too thick, as it is then liable to press on the sensitive foot and to break the wall. The shank should not be too wide or too thick. The point should not be too long or too tapered as this leaves insufficient metal to form a grood elinch.

There are two methods of putting nailhohes into shoes-by "fullering " and by "stamping." A stamped shee is on in which the nail-holes are merely punched at certain distances, so as to leave four-sided tapered holes of the exact shape of a mallhead. A fullered shoe is one having a groove round the eiremuference through which the nail-holes are punched. Both processes, when well-done, admit of mails being driven into the hoof with equal safety and case.

Whether stamped or fullered, there are a few more important points to remember about the nail-holes. The wall is not of the same thickness throughout, but becomes thinner towards the heels. The inner side of the foot is also somewhat thimer and more upright than the outer. The safest position, then, for the nails is in the front half of the foot, but should this position not present sound horn they may be placed further back. The danger of placing nails near the heels is due entirely to the greater risk in
driving them through the thin horn. There need be no fear of interfering with expansion.

Fig. 119.-Concave-smated English Shoe for Off Fore-fogt, showing both Surfaces.
A. Clip at Toe.
B. Concave surface to lighten the shoe, and keep off pressure from the sole.
C. C. Level bearing for heel of crust and bar to rest upon.
D. D. Fuilering for nail heads.
E. E. Flat web, ground side.

The distance of the nail-holes from the outer edge of the shoe should depend upon the thickness of the horn of the wall, and therefore be greater
in large shoes than in smaller, and greater at the toe than at the heels of the same shoe.

Seven is the usual number of mails used, four on the outer and three on the inner quarter, but for some horses five only will be nate to answer well enough. Feet vary so much that no absolute rule can be laid down as to the proper number to be employed.

The shoe recommended by Mr. Spooner in his well-known and admirable work on The Fout of the ILorse, is described by that gentleman as follows:-"It is then a seated shoo, with the flat part rather wider than common. The wel) of the shoe, for a moderate sized horse used on the road, is about an inch in width, but varying aceording to circumstances, and being narower at the beels, where the uper wearing surface is very slightly bevelled outwarls, than at the other parts; the ground part flat, sometimes fullered and sometimes stamped; but when the former plan is adopted the fuller is not deep, or too near the edge, but somewhat wider than common. Three holes merely are stamped on the inside toe, and five on the outside toe and quarters, with a clip at the toe and another at the outer quarter. sometimes, instead of a clip at the toe, the shoe is turned up in the French fashion, as recommended by Mr. Goodwin; this plan is very advantageous when horses are in the habit of hitting the toe and tripping, or wearing it in undue proportion. In contracted feet the application of this shoe has materially enlarged the foot, quite as much as it is desirable to do ; indeed, I believe if it were applied early, contracted feet would be altogether avoided.
It is also calculated in great measure to prevent corns, from bearing so easy on the inside heel."

These are admirable directions, with the exception of the clip on the outside, which I strongly object to as destroying so much of the crust for no useful purpose. Mr. Spooner's plan of filing the heels, with a slight inclination outwards, is excellent, as it has a tendeney to prevent the heel of the crust from curling inwards, and may possibly cause it to expand slightly in the contray direction. I confess, however, that I cannot see what there is in his shoe to make "the bearing so casy on the inside heel." On the contrary, the bevelling outwards of the heel of the shoe has a tendency to cause an increase of pressure on the seat of corn, rather than to relieve it. My uwn opinion is that it does neither the one nor the other, unless the shoe is twisted bodily outwards.

The siof used in hunting is made of a different shape as regards the seating, being only slightly relieved with the file at this part, so as to avoid any approach to convexity, and hollowed on the outside, in a manner similar to the form adopted in the inside of the ordinary shoe, shown in Fig. 119. This is intended to give a firmer foothold of the ground than the smooth web of the common shoe will allow of, and answers that purpose most effectually. In other respects, the hunting shoe is made exactly like the common shoe, except that it is generally as light as possible, consistently with a necessary strength. Sometimes the outside nails must be carried considerably further back than I have here represented, and especially when the horse to be shod is apt to pull off his shoes, or when he is intended for a deep clay country; but for grass or any light arable, seven nail holes, punched as I have represented in lig. 120, and the nails well driven and clinched, will keep on the shoe, without any dinger of its getting a twist,

Here, again, I shall insert Mr. Spooner's admirable description of the shoe recommended by him for this purpose: "For hunting, the shoe must be narrower than for the road, and an additional nail may be placed on the inside; no evil will result from this, because in the field the pressure on the crust is in a great degree relieved by the sole and frog. There must be space for a piece of paper to pass between the foot and inner rim of the shoe, but no more, as the foot can then be withdrawn from heary soil with

Fig. 120.-Hunting Shoe for Off Fore-foot, concave on tile Ground Side.
A. Concavity male to give foothold and lighten the shoe.
less difficulty than when the usual space is permitterl. To avoid overreaching, the heels of the fore-shoe should scarcely project beyond the heels of the crust" (they should not at all), "and they should be rounded off, instead of being left square, as is usually the case. The hind-shoes should also, when there is any disposition to overreach, be square at the toe, set a little within the crust ; and the inner rim at the toe should have a piece cut out, so that, instead of a sharp edge, there should be a rounded surface, which, of course, is not so likely to catch the heels of the fore-feet." It will be seen that this description tallies very closely with that which I have given above, the only point of difference being the external concavity of the web, which I believe to be of great importance in procuring a secure foothold. It also allows the foot to be pulled out of wet clay far more easily than the flat web; and there is a reduction of useless weight, as the hunting shoe does not wear out, except with those riders who keep to the roads, and they of course should have a road shoe.
2. The French shoe differs from the English form in both its surfaces, that which comes in contact with the foot being concave, while the other is convex. To make it fit the foot, the toe and heels of the latter must be pared away and marle to fit the shoe, as here represented. The web is very
wide, and punched with eight counter-smnk nail-holes, the English plan of fullering not being adopted. The holes are also punched fully the thitd of an inch from the edge of the shoe, and the nails are driven in a very great slant, so that they come out little more than half-an-inch above the shoe, as represented in Fig. 121. By ulopting this plan, several advantages are said to be suined, as compared with the English method, which Mr. Goodwin, who adrocates the French shoe (yet proposes amother on exactly the opposite principles), emmerates as follows:-"If we refer to the action of the forela, it will tend to explain some of the advantages to be derived from the emese shoe. When a horse is about to move, the first indication of motion is a bend at the knee, which necessarily raises the heels, and they become more and more elevated, till the toe (which is the last part that leaves the (rround) is suspended for the moment that the foot is lifted. The base of the foot, just at its leaving the ground, is almost perpendicular; when the

Fio. 121.-The French Shof.
knee is bent to its fullest extent, the foot is then in the same position, with the hecels of the shoe pointing upwards. If we consider this final part of the motion of the limb, we find the movement of the foot very nearly deseribe a semicircle, and on viewing the form of the joints connected with action, the necessity for a cure at the toe is clearly demonstrated. Again, the form of the shoe, worn out, at once shows that it mast be more suitable to put on a new one of that form, rather than to suffer the action of the leg to be opposed mitil it is worn to that form. In the second part of the action, when the foot comes to the ground, the quarters and heels touch first, and they are the only parts oceupied in placing it on the ground again. There may be deviations from this general rule, as in those horses that have bad action; also when horses are drawing heavy weights, it must necessarily difler. The forelegs may be considered simply as pillars of support, having no power of themselves to propel the body forward, progression leing entirely performed by the hind parts ; and if it were not so, the action would be different, as I have before observed it to be in those
horses which have great weights to draw, and this may he more readily observed in any draught-horse going up-hill. I have offered these few remarks on action, in order to bring the reader's attention to the eurve of the French shoe at the toe. This form of shoe certainly harmonizes more with the motion of the fore foot than the English does ; it affords a greater surface of bearing at the toe than the projecting ridge of the straight ordinary sloe, and is much more calculated to allow of the motion of the leg and fout; the labour of the muscles is also diminished, and the limb being in its natural position, the ligaments have less imposed upon them ; they are more at ease, and consequently are not so liable to be strained. The shape of the coffin-bone is also another proof of the French system being more consistent with the principles of nature than the straight ordinary shoe. If the coflin-bone of a fore-foot be placert on a level smface, the quarters and heels are the only parts in contact with it, which proves that they are intended by nature to meet the ground first, and to bear the greate: proportion of weight ; but if the quarters of the hoof be removed (lowered or diminished) to admit of the straight shoe, the portion of weight intended to be borne on the quarters must be thrown upon the heels; and hence the great misclief which ensues from the common (plain) English shoe. A reference to page 379 , where the coffin-bone is carefully delineated in profile, will show the correctness of a part of this argument; for undoubtedly the lower surface of the edge of the coffin-bone is convex, and therefore there is no impropriety in cutting away the crust till it is left of an equal thickness between this bone and the shoe. But if it is decided to adopt the French shape, it must never be forgotten that it is not merely by cutting away the heels and toe that a foot prepared in the English way can be fitted to a French shoe, but by allowing the quarters to grow at the part where they are usually, in this country, sliced away to arrive at a plain surface. If this is not done, the heels will be too much weakened, and a corn will almost inevitably be produced in the inner one. The directions given by M. Bourgelat, and by M. Janze in his quarto on shoeing, are nearly the same; namely, that the convexity should be two and a half times the thickness of the shoe. This curvature is distributed so that the tue shall be raised twice the thickness of the shoe from the ground, and the heel the remaining half; the bend at the latter part beginning at the hindmost nail-hole, and that of the front of the shoe springing from the next nail. There is a great deal to be said in favour of this method of shoeing, grounded on the theory of action, which is not very clearly explained by Mr. Goodwin in the remarks which I have quoted; but the strongest argument is founded on the fact, that French horses are much sounder on their feet than the English. It must be remembered, however, that the roads in France are not like ours ; they are either paved or composed of loose gravel, both of which surfaces are more likely to suit the convex shoe than our hard flint, gravel, or granite roads. But, independently of the difference in surface in the shoes of the two countries, there is also a great variation in the nail-holes, which in the French shoe are placed on both sides of the web, as I have represented them on the outside (Figs. 120 and 121) ; thus the outer heel is less confined in France than in this country, and to this fact I attribute a great part of their superior success. It would be a long time before so great a revolution could be accomplished as is necessary for tho
introluction of the French shoe into general use; but I believe that it Wonld, on the whole, be far sumpror to our own.
3. Ar. (iommin has suggeated an improvement on the French shoe, (m)nsting in making the heels of the shoe shishtly comsex towards the foot, nemsitating a double swerp in buth surfaces. It is dithent to conver an arcmato idea of Mr. (Gmelwins show withom an illustation, but his ohject is to place the hoed of the crust on a slopings suface, so that when pressure
 (wor, that all attompts for elliot this ohject hy medamieal means are fallarions, and that it is only hey casing a dur development of the frog and hars thengh the stimulus of pressume that it can be done. I therefore see (II) : Whantate in Mr: (iondwin's alteration, and should prefer the French bian, pure amb simple.
4. Ans. Bracy Clark, in his great amxiety to prevent contraction, sugsested a hinge at the toe of the shoe, by which it might be allowed to wame with the foot. At first sight this looks extremely simple, and likely to be edlicacious, but there is one objection which completely explains the reasen of its utter failure in practice. It must be nailed on firmly to both quaters, and at least four nails in each will be reguired. If, therefore, the heeds are to expand, they must do sulby hinge or bend in the toe of the foot, since the quaters are mailed to the shoe, and no yielding ean possibly take place between the four mails winch are driven into each. Now the the is not the faulty bart in contraction, but the curve takes place at the back of the quarters, and moreover, the toe being guarded by the thickest part of the hom in front, and strengthened ly the angle which the sole makes with it, camnot possibly expand or contract in the way which must be accomplished to carry out the object of the hinged shoe. The plan is therefore abondoned as practically useless. and theoretically founded on fallacious principles.
5. Turner's unilateral shoe. This name is not very deseriptise of the Han which Mr. Turner, the well-known veterinary surgeon of Regent *tredt, introdnced. It is mot a mesited shoe, but a shoe mailed only on the outside quarter and toe. Fig. lege is a featheredge hind shoe, with somewhat smilar naling. Two dips are used, one at the toe and the wher at the back of the outside quarter. Ins alsis reduces the thickness of the hool by tiling away the wromel surface, laving a shoulder about thee quarters of in incli from the extreme point, and thas his shoe is nearly (xactly similar in principle to the Fiench plan, cxcepting in not continuing the curve to the toc. Mr. Turner considers that this prevents any pressure being made at the seat of com ; but he forgets that iron is of a most mo yidhling mature, ant that a blow given to the midhe of the shoe is distributed equally wer the whole of the under surface of the foot, and is not confined to that part only immediately above it. I believe that his plan is more likely to produce coms than to prevent them, as by reducing the shoe ul to a shoukder it is more likely to beme there, and then permanent presulue would be mand on the heel, which would be far more likely to produce a corn than oceasiomal blows. As far as the modo of nailing on the ont ide only is concemend, I boliew it alde is lialde to objection, inasmuch at while it entirely frens the inside half of the foot, it saterifiees the motside in a terrible maner. It is quite true that the inner heel is weaker
than the outer, but a contracted foot is affected on both sides of the frog, aud thus there is more mischief done to the outer heel than good to the imer. The principle of avoiding confinement of the heel by nailing is good, but the practice of sacrificing the outer one to the inner is not to be recommonded, where it is possible to avoid injury to either. As I before remakerl, contraction takes place in the back part of the foot and not at the toe, and a nail driven considerably in front of the middle of the quarter has no prejudicial effect in confining the heel.
6. Tine half-moon siof was strongly recommended by Professor Coleman, in the belief that unless the frog tonches the ground it is impossible to keep יIP a due secretion of the parts which depend upon that organ for their

Fig. 122.
proper size and situation. His shoe was flat towards the foot, and concave like the hunting shoe (Fig. 120) on the ground side of the sole, and would allow of sufficient parting out to give space between the two. If this could not be done, the usual kind of concave seating (Fig. 119) was adopted. The toe was made of the usual thickness, the web becoming gradually thinner till it was reduced to one-third at the back of the quarter, where it ended. In prepring the foot the toe was lowered considerably, so as to make up for the difference in the thickness of the shoe, and thus take off the extria jar which would otherwise be thrown upon it, and the additional strain on the flexor tendons and suspensory ligament. Mr. Coleman did not expect that any unsound foot could bear this shoe, nor that it could be used on any horse whose heels had long been protected by iron, without a considerable preparation by gradual work, but he thought that if adopted from the first the frog and heels would bear the friction of our roads without suffering, and if so, that the contraction would be entirely prevented. The plan was tried on the Royal Artillery horses, and was reported on favourably, but it was not long persevered in, and has never since, so far as I know, been reintroduced. It is excellent in minciple, but the general opinion is that,
when carried into practice, few of owr horses would bear the battering of their heels which our hated roats would entail.
7. 'Tome Tw is exactly smilar in shape to the half-mom shoe, but is not so carefully wated on the foot, because it is merely wanted for horses intended (1) be turned out on soft gromul. It is alse gemerally mate of equal thickusis throughout, but it would be better if the substance of iron were reduced at the heels.
\therefore The phate one raciva shoe is merely a narrow rim of iron, flat on

Fig. 123.-Bar Shor for Off Forefoot: Fitted, but not nailed on.
A. A. Bubluns heels of the foot 13. B. Fulfering pmehed with seven holes.
the side towards the foot, and srooved on the other. This groove gives a frod fonthold, and conceats the mail heads also, so that no fullering or countersinking is required. The breadth of the web is generally about half-ath-inch.
9. The bar shoe is never used in this comntry for sound feet, but it is a great pity that some modification of it camot be introduced so as to whiate all the objections which afply the ordinary shoe. It consists of a complete ring of irom, similar in shape to the wrlinary shoe, as far as the back of the quarters, but from that part bonding inwards to meet the web of the opposite side, with which it is welled. It is now used for two purpowes, exatly the remerse of ath other. In the one ease the foot is so prefared that the frog shall tomeh the shee, white the heels are quite free, and are theroy relieved from all presure. In the other the frog does not come in contact with the sha; which is solely supperted by the erust and

Dars. It may thus be made either to defend the frog or the heels, whichever may be in fault, and it is one of the most valuable aids to veterinary surgery. Should the frog be more prominent than the crust, the shoe may be made thin in proportion, at the part where it covers the former, and by this means it may be made exactly to fit the two when it is desired to divide the weight between them. There are many weak-heeled harness horses which would do their work far better if they were permanently shod in this way, and but for the danger of pulling these shoes off, and the little hold which they take of the ground, hacks might also sometimes be advantageously shod with the bar shoe. It is unsightly, certainly, and at present marks the existence of some disease, and for these reasons it is now seldom employed, except on compulsion.
10. The patten is merely a bar shoe made square at the heels and turned down at the back, so as to raise this part an inch from the ground. The object is to relieve the flexor tendons or suspensory ligament. It is also sometimes used in curb, with a view to relax the calcaneocuboid ligament, and the tendon of the gastrocnemius internus muscle.

When the choice of the shoe is arrived at, the next thing is to make it and put it on. The former is a mechanical operation, which an scarcely

Fig. 124.-Machine-made Shoe-Fore-foot.

Fio. 125.-Machine-made Shoe-Hind-foot.
be learnt without actual demonstration, and I shall omit all account of it here, and refer the reader to Mr. Hunting's admirable treatise, ${ }^{1}$ from which much of this chapter is derived, or to the larger work compiled by Messes. Dollar and Wheatley. ${ }^{2}$
11. A leather sole is often introduced between the shoe and the foot, for the double purpose of lessening the vibration and protecting the sole and frog from injury by blows against an irregular surface, such as newlaid gravel, or granite, or rough paving. Sometimes, when the frog and sole are sound, but from the action being very high there is a tendency to jar the foot, the leather is cut to the exact shape of the shoe inside and out, leaving the sole and frog uncovered; but in general a piece of leather

[^17]is insinuated between the two, with a straight edge, consing from heel to
 off level with the foot. Before, lowever, this is done, the space occupied

Fif. 120.-Front shees, most suitable for Riding and Carriafe Horises. 1
by the concavity of the sole, and the crevices in the cleft of the frog and !etween it and the bars, must be carefully filled with tow, saturated with a minture composed of equal parts of tallow and tar. 'This not only keeps the horn moist, but it prevents any grit or fine gravel from working its way forwards through the erevices which are presented in the eleft of the frog and at its sides. It is an extremely usefal mode of saving the feet of high actioned horses which are much used on our hard roads, especially where the heels are weak. The leather must be well soaked in water

Fig. 127.-Urquinat's Pads.
lefore it is used, and it will then accommodate itself to every slight irregularity in the foot. It is often alleged that this plan allows the frog to receise more presure than with the orlinary shoe; but the leather is se yielding that this camon really be the case, especially as it is of the same thickness throughout.

The pads illustrated abowe have now become general among those who can afford to double the cont of shomins, aml on London roals they are a comfort to the horse, enablius him to erip the greasy pasement, while providing just that frog presure contended for byany of the anthorities

[^18]quoted in different parts of this volume. Numbers $1,2,3,4$, wre Mr. Urquhart's patterns, with which he claims to prevent slipping, contracted and diseased feet; economize the wear and tear of legs through alosence of concussion ; develop the lealthy functions of the feet.

The "Grip" and the "Ring" pads do not cover the whole surface, and therely prevent healthy evaporation, as do the other patterns here shown. Mr. Sheather, the well-known veterinary surgeon, seeks to obviate this objection by his pneumatic pad. It is not solid like the ordinary fros-pad, but hollow, and is compressed at each step, but immediately resumes its prominent form on being relieved of pressure.

In nalling on the shoe very little art is reguired if the holes are punched straight through far enough from the edge, and the erust is not broken or

Fig. 128.-Sheather's Pad.
unusually thin. If these precautions are not taken, the inclination of the hole gives a bias to the nail which it is difficult to rectify, while, if the holes are punched too near the edge, in order to get a sufficient hold they nust be driven with a very slight slant far up into the wall of the hoof, and then the difficulty consists in bringing their points out at the proper place. When the nails are all driven through, a notch is male beneath each with the rasp; they are then carefully turned down and twisted off with the pincers, leaving a proper length to clinch, when after a second hammering. to secure their being driven well home they are clinched with the hammer by turning their points down into the notch previously made with the rasp. The whole foot is then slightly rasped over so as to remove any rough edges projecting beyond the shoe, and the operation is completed.

In the nind-shoe there is not so much variation as in that used for the
fore fort, lneathe the himb font is mot neaty so subject to disease as the fore. It is semerally made thicker but narower than the foreshoe, and there is no necessity to make it concave-seated, because the sole is not often tender,

Fig. 129.-Feather-edged Off Hind-Shoe.
A. Clip at toe.
B. Inside heel.
C. Outside heel, with "calking."
nor is it ever so thin and flat as is common enough before. As the horse stops himself by his hind-feet chiefly, he reruires something to prevent his sliping, and the common practice is to turn up one or both heels, which

A. The toe rommed of before and liohinul.
13. Ifaile lumi, fratheredged. C. Outsino lomel, with " calkins."
projections are called " calking, "or "cogs" (ne Figs. 129, 130, C). In horses fon heary harness work it is necessary to use these on both heels, but as the inner one is apt to cut the opposite fetlock joint, or bruise the coronet
by trearling on it, and one suffices for light work, the usual practice is to tim'n up the outer heel only for all ordinary work, such as light, fast harness, hacking and hunting. If, however, this is done, the imner heel must be made proportionately thick, so as to give the horse a level bearing, without which he never works in comfort. Many smiths maintain that this is not necessary, because the calking sinks into the ground and does not therefore really raise that heel above the other. This is true enough when the roads are soft; but when they are hard, as even macadamized roads often are, the calking sinks very little or not at all, and the twist complained of is actually felt. It is the best practice, therefore, to shoe the hind-feet in all light harness-horses, hunters, and hacks, with an outside calking, but the inner web narrow but deep, or what is called "feather-edged." This is shown in Figs. 122 and 129, which are views of such a shoe, specially adapted to prevent "cutting," but also, as before remarked, useful for general purposes. Mr. Miles recommends instead of this, for ordinary horses, that both heels should be made of double thickness for about an inch, leaving a shoulder in the ground surface at that distance from the heel, but this is just as likely to cause "cutting" as the "calking," as there need be no more projection in the one than in the other, and the ncarer this is to the quarter the more likely it is to strike the opposite leg, this part of the foot being wicler than the heels. I camot, therefore, recommend the adoption of Mr. Miles' hindshoe, which has all the disadrantages of the double calking and of the feather-edged shoe without the advantages of either. As I before remarked, there can be no objection to the feather-edged shoe, which is not necessarily without nails on the inside, and may be punched by using a deep fullering so as to take two or three nails on that side. The toe of the hind-shoe wears away very rapidly, being always brought to the ground before the heel on level roads and in going up hill, in the latter especially so, while in going down hill it wears away as fast as the heel. It should therefore be made stouter and thicker than the fore-shoe, with a small clip in the mitdle to prevent it from being driven back out of its seat. The back edge as well as the front side of the clip should be well rounded, as represented in Fig. I30, to prevent any risk from overreaches caused by a cutting blow from the latter, while the former, if left sharp, will be liable to catch hold of the projecting heel of a fore-shoe and pull it off.

Tie time for removing the shoes of a horse must depend upon the work he does, and the nature of his foot. If the quarters are thin or broken, the less frequently the shoes are removed the better, up to a month, beyond which no shoe should be allowed to remain on. Those that have plenty of horn are better for a "remove" at the end of a fortnight, and the shoes of horses doing no work should never be allowed to remain on for more than three weeks at the ontside, as the feet are far more liable to contract while at rest than when at work, provided always that the latter is not so hard as to produce inflammation and consequent deficiency in the secretion of the horn.

During frosts, when the roads are rendered slippery by ice, the shoes must be "roughed" in some way, to enable the horse to go with safety upon it. The common method is to turn up the heels with a sharp" calk ing," and sometimes also to rivet a sharpened projection at the toe. These take hold of the ice and enable the horse to travel as easily as on the summer
road as long as they ate hatp, but in a fow days the finints wear down and the shoe must he momome In shight fonts a fow of the mats may be
 places; but thene are of mone for athy distance, as their heats soon wear down. To awod the newssity for this remesal of the shere at the commencement and during the couse of crery frost, several phan have been invented, but none of them inswer the purpose, exapt that introduced to general notice by Mr. White, in his Perriory, sixty yeats ato.

Alterations and improtements in the way of ifust cegs have been made

 a sharpened calking or rog, shown full size.
1, Iteel with calking sareweal in, reaty for use.
d. Side view of coneave-seated fore-shoe, with calkings screwed in (nalueed size).
by Dr. Fleming, Mr. Hunting, Mr Rugers and others, but they are all modifications of White's plan

I have used it for many years, and can spak from experience as to its great utility and extreme simplicity. The phan is as follows :-

A hole is drilled in each heel, and tapped to receive the serew at the base of a calking (see Fig. 1:31). This is all that is neessaty to be chone at the time of shoeing, ats the cogs may be mate in lame numbers, ant ean be kept at home till they are wanted, when they may bo fincel the shoe in tive minutes on the aprearmee of a front, anl won if the horses are from home, by merely carrying the necessary bol, which is simply a spamer made to fit them (see Fig. 132, e). I hate always heon charged fld. per shoe extra for this punching of the heels and taphing, and finding the taps myself, which it is better to procure, lugether with the ealkings, from an engineer, the
former costing 6s., anl the latter Dd. to 3 d . a-piece, if ordered by the score.

The extra cost, therefore, for shoeing homes during three months of the year in this way is about $3 s$. per month, which places the owner out of all risk of accident or delay, and it is certainly not more than is paid for roughing in the ordinary way on the average of seasons, while it saves the horse's feet from damage, and cften prevents a broken knee or a worse accident.

Fig. 132.-Spañer and Taps for Ronehing.
e. Spanner. f. g. Taps for tapping. $\frac{1}{4}$ inch size.

The tapped hole fills with dirt, which can readily be cleaned out with a bit of stick, and it will always last as long as the shoe. No one who is likely to want his horses roughed at a minute's notice should lee without this apparatus; but there is always a diticulty with the smiths, as they object to it on account of the loss of work which it causes to them. But masters should remember that what is a loss to the one is a gain to the other; and as the choice rests with them, they can adopt the plan if they like.

Since the first edition of this book was published, I have had so many
impuiries for the best mone of prowing these cons aml torls, that I have arranged with a Lomdon enginerr, whon is to be dependedom, to furnish them when reguired. His prices are shightly higher than the biminghan charges, but the quality of his work is far superior, as the taps are all hand-made. The foresoing are the tools he supplies, with the prices. His address is S. Morris, 50 Rathbone Place, Oxford Sitreet, Lomdon.

The price of these is $6 s$., and the cogs $3 s$. per dozen. If a larger screw is wanted-that is, three-eighths of an inch in diameter-the price is So. for tools, and $4 s .6 c l$ a dozen for cogs.

CHAPTER XXXIX

A LIST OF VETERINARY DRUGS, WITH TIEIR ACTIONS AND DOSES

As a lroad rule, but admitting of many exceptions, the doses for animals are calculated loy their relative weight to man ; but veterinary therapeutics are in a very backward state, and many of the remedies which have a perfectly well-muderstood action on the human subject appear to be inert with most animals. Goats, for instance, will eat strong shag tobacco without experiencing any of its narcotic effects, and ergot is equally inoperative upon cattle in large doses, although there are still persons to be found who attribute abortion in cows to the small quantity of ergotized grasses in a pasture. The veterinary profession is not so blimeworthy as might be at first supposed for this state of things. It has not the inherited wealth of the medical profession, whose best men have laboured for many centuries, to hand on knowledge to mborn generations, and only in quite recent years has it copied the faults of its richer sister by multiplying materia medica to such an extent that no practitioner can acquire a fair acquaintance with a tenth part of the Pharmacopœia. Again, experiments in doses upon healthy animals are not permitted by the Vivisection Act. The most barbarous practices are yet permitted by law, if clone with the object of curing clisease ; but a healthy mongrel may not be chosen to watch the effects of pharmaceutical agents for publication, and any information acquired in this way has to slowly filter into the student's note-book viva roce. It is to be regretted that none of the veterinary colleges have applied for licences and carried out a series of therapeutic experiments, which might have for their result fir greater benefits than the bacteriological cultivations which have for so long engrossed some of the best men tu the exclusion of more practical matter.

Until such experiments have been carried out, Voltaire's description will continue to hold good-i.e.
"Pouring in agents of which we know little, into bodies of which we know less."

The dose for a horse means for one 15 hands 2 inches high, and not less than five years old.

Doses Accomdive to Age.

For a yearling	\ldots	\ldots	\ldots
One-third that for an adult.			
For a two-year-old	\ldots	\ldots	One--half that for an adult.
For a three-year-ohld	\ldots	\ldots	Two-thirds.
For a four-year-old	\ldots	\ldots	Three-fourths.
For a five-year-old	\ldots	\ldots	The full dose.

Dosen Aroomblyit to size ANi) Class.

F	As
For a healy dranuht-lunse	Whe fouth more than
For a cols 1.1 hamds	He fifth less than a hunter
Fion a pony 13 himuls	Twodifths less tham a hunter.

 rooling lotions.
Aonste; Monkshonl, Wolfshane.-A most active poison in large dosis. Used medicinally, it is a pewerful general sedative, anti-spasmodic, and amolyme : and by many pratitionors it is proferred to Digitalis. It is senerally wiven as a tincture, of which the dase is 10 to 15 drops.
Acconol ; Spifit of Wine, known as rectified rpirit, and proof spirit.The latter is nsed as a stimulant, in the dose of 2 ounces to 6 ounces.
Aboes; Barbatoes is the kind of this drug which is chicfly used in reterinary practice-lts action is cathartic in large doses, mauseating in medimm doses, and alterative in small. Dose, from 1 drachm to 6 drachms. For the foal, 5 grains may be given for every week of its age.
Abur ; Sulphate of Alumina and Potass.- Action, irritant, astringent, and sedative. Dose, 2 dradhms to 2 ounces.
Ammonia, Aromatic Spirit of ; Sel Tolutile.-Used in the same way as the Liquor, which is generally substituted for it in veterinary medicine.
Ammonia, Carbonate of.- A strong dillusible stimulant. Dose, l drachm to 4 drachms.
Ammonia, Liquor of; Caustic Ammonia, Spinit of Hartshorn.-A diffusible stimulant internally ; externally, a strong irritant. Dose, 1 drachm to 6 drachins.
Amoniun, Chloride ; Sal Ammoniur.-Only used externally, dissolved in water as a lotion, mixed with an equal quantity of nitre. One part of the mixture should be dissolved in sixtem parts of water, when it will bower the temperatare 40 of Fahemberit.
Anserd.- Stomachic and carminative. Dose, 1 drachm to 1 omnce.
Astmony, Chbride of ; Buter of Antimony- Used as a canstic.
Ammony, Oxide of ; Antimonial Powiler.-Little nsed in veterinary medicine.
Avmosy, sulphmet of.-A somewhat moertain drug, alterative and anthehmintic. Dose, 2 drathme to 1 omme.
Avmons, Tartarized: Tatar Embic.- I vor common febrifnge and anthemintic for lomser, but of late assortend ley the authorities of the E, inhburgh Veterinary College to be almost inert ; and this assertion is supported by a momber of experiments. Iboe, 1 drachon to 6 drachms.
Assavic, Fowlers solution of: Lignor Assmertis.-A solution of white arsenic with potase in water, each onnce comtaning 4 grains of arsenions

Absmac, White; Amenions Acid.-In laren dwes, an imitant poison; in small ones, a tonic, and having also a preuliat oflect on the skin. Dose, 5 to 10 grains.
Asaperid., Gum.-A mild stimulant, cammative, and vermifuge. Dose, \because drachoms.
Behamonsa; Deally Nightshade-A mareotie acrid voison in large doses,
in small doses, anodyne and anti-spasmodic. Dose, of the extract, $\frac{1}{2}$ drachm to 2 drachms.
Cabomel, Subchloride of Mercury.--Trritant, purgative, alterative, and antiphlogistic. Dose, 20 grains to 1 drachm.
Camomile; Flowers of Authomis Solitis.-Stomachic, carminative, and mildly tonic. Dose, of extact, 1 to 4 drachms.
Cimpror; a peculiar concrete volatile oil from Cumphora officinurem.Slight stimulant; then sedative and anti-spasmodic. Dose, 1 drachm to 4 drachms.
Cantiarides; Blistering or Spanish Flies.-Given internally, irritant, stimulant, and diuretic; externally, rubefacient and vesicant. Dose, 4 grains to 20 grains. In homoopathic doses it is given for bloody urine.
Cantilarides, Ointment of ; Blistering Ointment.-For recipes, see page 645.
Cantharides, Tincture of ; Liquid Blister.-Powdered cantharides, 1 ounce; proof spirit, 16 ounces; digest for several days, and strain. An active sweating or vesicating fluid.
Cantilaridis Acetum.-A solution in ten parts of acetic acid of one of powdered Cantharides. More active than the liquid blister.
Cascarilla; Bark of Croton Eleuteria.-A warm bitter tonic. Dose, 1 ounce to 2 ounces, generally made into an infusion.
Castor Oll ; expressed from Ricinus communis.-Purgative. Dose $\frac{1}{2}$ to 1 pint.
Catecuu ; extract from Acacia Catechu.-Astringent and antiseptic. Dose, 2 drachms to 5 drachms.
Cilalk ; Carbonate of Lime.-Antacid and astringent in diarrhea. Dose, 1 ounce to 2 ounces.
Cinarcoal; Carbon.-A powerful antiseptic; ehiefly used externally to foul wounds.
Cilloroform. - Anæsthetic, stimulant, and antispasmodic. Inhaled in doses of from $\frac{1}{2}$ to 2 ounces. Given internally-dose, 1 drachm to 2 drachms.
Cinchona; Bark of several species of Cinchona.-Astringent and tonic. Dose, 1 ounce to 3 ounces.
Colcmicum; Meadow Saffron.-Cathartic, diuretic, and sedative. Dose of the root or sects, $\underset{\sim}{\frac{1}{2}}$ drachm to 2 drachms.
Copper, Suppate of.-Tonic and astringent. Used externally it is a mild caustic. Dose, 1 drachm to 2 drachms.
Copper, Subacetate of ; Verdigris.-An external application in grease and quittor.
Corrosive Sublimate, Chloride of Mercury.-An irritant poison. Used as a caustic, or as a wash, dissolved in water, for mange, lice, etc.
Creosote.-Sedative, anodyne, astringent, and antiseptic. Dose, 20 to 30 minims. Used externally in skin diseases, mixed with lead or onl - 1 drachm to 3 or 4 ounces.

Croton oll and seeds; Croton Tiglium.- Internally a strong cathartic; externally a connter-irritant. Dose, 10 to 15 seeds; of the oil, 15 to 20 drops.
Digitalis; Foxglove; leaves of Digitalis Purpurea.-A strong sedative and diuretic. Dose, of the powdered leaves, 20 to 30 grains.

Etner, Sulphuric.-Stimulant, narcotic, and antispasmodic. Dose, 2 drachms to 2 ounces.
Eyner, Spirit of Nitric.-See Sweet Spirit of Nitre.
Gabiac Acid ; Tamin exposed to air and mosture. Dose, $\frac{1}{2}$ drachm to 1 drachm.
Gabs ; Excrescences of Quereus Infecturia-A powerful astringent. Dose, 1 drachms to 6 drachms. Used in polyuria.
(implan; Root of Gentience Lated.-A bitter stomathic and tonic. Dose, 2 drachms to 1 ounce.
(inger: Root of Zingiber officinale. -Stomachic, cordial, and carminative. Dowe, ? to 1 ounce.
(imenmine: one of the products of soap-boiling.- A most useful emolient external application, and an aperiont introdnced pire retrom.
(icy Arame:-Useful for making a soothins mucilagimons emulsion. I Dose, discolved in water, 1 ounce.

Heldebohe, White.-See Voratmon.
Hewlock; Leates of Comiem Murulutum.-(of little value as a medicine for the horse.

Iombe of Pornsiom.-Sce Potassimm, Iodide of.
lomse is given intemally to produce abserption of morbid growths. Dose, 1 drachm to 4 drachms. Externally it is aplied in the form of tincture.
Iron, Sulphate of ; Green Vitriol.-Astringent aml tonic. Dose, 1 drachm to 3 drachms.
Junaper Berraes.-Caminative and diuretic. Dose, 1 ounce to 3 ounces.
Lead, Acetate of.-Tntemally astringent, but not powerfully so in the horse. Dose, 20 to 60 grains. Extemally useful in the form of solntion as Goularl's extract, and with lard, cte., as the cerate of acetate of leal.
Lemp, Oxide of ; litharge.-Used to make various plasters.
Lisseed; Limem Laitetissimmm; Flax seeds.-Used scalded as an emollient food, and for fattening purposes, in 'quantities of 4 to 6 ounces.
Laneled Oit. - \boldsymbol{A} mild pursative. Dose, 1 pint to 2 pints.
Mavesis, Cimmote of.-A mild aperiont for foals. See Rhmbarb.
Marivesia, sulphate of.-lymom salts, an uncertain cathartic, but generally dibiretic. Dore, 2 ounces to 1 poumd.
Matsa Mabows; Root of Althen mifinetis. - A mucilaginous emulsion is made by boilins. See page 648 . Aloo an ointment for inflamed uhblers.
 manse and lice.
Merctra, Ammonochloride of ; White Precipitate.-U'sed as a local application to kill lice.
Mercerr, Nitrate of.-Used mixed with larl, ele., to form an ointment, which is cellicacions as a mild stimulant.
 diluted with water.

Mustard ; Flour of the seeds of Sinapis Nigra. - Irritant applied externally.
Nitric Acid.-A tonic when largely diluted. Dose, 1 drachm to 2 drachms.
Nux Vomed. - A stimulant to the nerves, and useful in paralysis. Dose, 1 drachm of the powder.
Olive Oil.-Chicfly used as an ingredient in liniments.
Oprun; Juice of the I'apaver Somniferum.-Primarily stimulant. Then narcotic and anodyne. Dose, 1 drachm to 2 drachns.
Potass, Acetate of.-The same as the nitrate, but milder in its effects on the kidneys.
Potass, Nitrate of ; Nitre ; Saltpetre.-Diurctic and febrifuge. Dose, 6 to 8 drachms.
Potassium, Iodide of.-Diuretic and deobstruent, having the property of causing the absorption of morbid growths. Dose, 2 drachms to 4 drachims.
Prussic Acid; Hydrocyanic Acid.-Used in the form of diluted hydrocyanic acid, as a gastric sedative in inflamed stomach. Dose, 20 to 30 minims.
Pyroxylic Acid; Medicinal Naphtha.-Narcotic, having a special action on the bronchial mucous membrane. It is used in chronic cough. Dose, $\frac{1}{2}$ ounce.
Resin, or Rosin.-An active diuretic. Dose, 1 ounce to 2 ounces.
Rhubarb; Root of Rheum Palmatum.- A mild purgative and stomachic, chicfly employed for foals, combined with magnesia.
Salt, Common.-See Chloride of Sodium.
Savin ; Tops of Jumiperus Subina.-Anthelmintic. The essential oil is the best form. Dose, 3 to 4 drachms.
Silver, Nitrate of ; Lunar Caustic ; Lapis Infernalis.—Used externally in the solid form and in solution.
Sodiun, Chloride of ; Common salt.- A useful addition to the diet of horses.
Spermaceti Ointment. - A very useful foundation for several external applications.
Sulphur.-An efficacious remedy in several skin discases.
Sulphur Ointment, Compound.-Sulphur, $\frac{1}{2}$ pound; white hellebore, 2 ounces; nitre, 1 drachm ; soft soap, $\frac{1}{2}$ pound; lard, $1 \frac{1}{2}$ pounds: mix. The most useful application in mange.
Sulphuric Acid.- A powerful caustic, only used externally.
Siweet Spirit of Nitre. - Diuretic, diaphoretic, antispasmodic, and stimulant. Dose, $\frac{1}{2}$ to 2 ounces.
Tannic Acid.-Powerfully astringent. Dose, 20 to 30 grains.
Lar ; Pix Liquidd.-Used externally as an ingredient in ointments, and as a stimulant to the growth of horn.
[urpentine, Spirit of ; Oil of Turpentine.-An excellent antispasmodic, diuretic, and vermifuge. Dose, 1 ounce to 2 ounces; or as a diuretic, $\frac{1}{2}$ ounce to 1 ounce.
Vaseline-As a simple ointment or base.
Veratrum Albun ; White Hellebore.—Sedative, for which purpose it is highly lauded by Mr. Percivall, who gave it in doses of 20 to 30 grains. Externally it forms an ingredient in several ointments.

Zinc, Cablomate of ; Calamine- Cere extermally in the form of ointment.
 Sir Wr. I'urnett's disinfecting duid, which contans 25 grans in each fluid drathom.
Zanc: Chanime, Sticks of.-For use as a powerful canstic instead of the solution.
Kixe, Oxide of.-. Tred externally as a mild soothing ointment, mixed with land, amd as a powder for elapped heels.
Kise, Sulphate of ; White Vitriol.-- Inissolved in water to form a wash for the eges, and as an ingredient in srease lution.

CHAPTER XL

ON SOUNDNESS; AND ON THE PURCHASE AND SALE OF HORSES
The elastic conscience of a horse-dealer has become a by-word; but I confess that my experience does not lead me to conclude that the class is more open to charges of unfair dealing than others. Few intending purchasers of a horse will be content with anything less than what they believe to be absolute perfection in him ; and if the seller tells the truth about the animal he has to dispose of, his chance of a sale would be a poor one. The dealer is, therefore, placed in the dilemma of being compelled either to give his horse a character which he does not deserve, or to forego all chance of a sale; and hence it is not surprising that he draws rather extensively upon his imagination. According to my experience, however, amateurs are not exempt from this failing ; and if I were compelled to purchase a horse from character alone, I should far prefer relying upon that given by a respectable dealer. The latter class are, no doubt, more skilled in hiding defects and disease, and therefore it requires a more practical knowledge of the horse to detect their artifices where they are sufficiently short-sighted to adopt them. On the whole, however, it may generally be concluded that unless a gentleman has had an extensive experience in purchasing horses, he will do well to place himself in the hands of a dealer, telling him exactly what he wants, and not pretending a knowledge which he does not possess.

In all large towns there are men of some character and standing, who may be selected for this purpose; and in London, Dublin, Edinburgh, Birmingham, Liverpool, Cheltenham, and other places there are repositories, where horses are sold by auction on stated days. These auction-marts save the vendor from some responsibility, as there are conditions of sale at the head of the catalogue by which both buyer and seller are bound to abide.

In a few cases horses are entered as sound, but more often with a veterinary surgeon's certificate of recent date. A number of professional men, who from long practice are expert in the detection of unsoundness in the bustle of the auction-yard, are always in attendance, and the buyer does well to seek their advice.

Messrs. Tattersall's, of Albert Gate, London, and Messrs. Freeman's of "Aldridge's," St. Martin's Lane, may be taken as examples of the usual rules obtaining at permanent auction-marts, and are as follows :-
"All horses sold at this Repository as 'good hunters' must not only be sound in 'wind and eyes,' but must be quiet to ride, have been hunted,
and be eapable of being hunted. Horses deseribed as hanters without the word 'good' must have been hunted and be capable of being hunted, but this deseription does not gramantee them somm in 'wind and eyes.'
"4. Any horse sold at this establishment with a warranty, must, in caso the buyer contend that it dues not correspond with such warranty, bo returned before five oclock p.m. on the second day after the sale (Sumday excluded), otherwise it shall be deemed and taken to be in all respects as warranted as between all persons, and the non-return within the time limited shall be a bar to any claim on account of any breach of warranty, and the buyer shall be bound to keep and pay for the horse, whether it bo or be not according to the warranty.
" 5 . Should a horse warranted quiet in harness or to ride, be returned, it shall be tried by an impartial person, to be named by the proprietors of this establishment, whose decision shatl be fimal and conclusive upon all persons, and a fee of ten shillings for the trial shall be paid by the party in error.
" 6 . Should any horse, sold here, warranted to ride or draw, be considered by the buyer to be incapable of working, from any infirmity or disease, it may be returnet heve before five o'elock on the second day after the sale, with a certificate from a veterinary surgeon to that effect; if not so returned with such certificate, it shall be taken not to have been returned within the meaning of the 4 th condition; and if such certificate be not confirmed by another, to be furnished by the vendor within two days, or in case the vendor shall neglect or refuse to furnish such certificate, the auctioneer shall immediately appoint a veterinary surgeon, whose decision shall be final and binding, and the whole expense must be paid by the party in error.
" 7. No horse considered to be affected with glanders, mange, or other infectious or contagious disorder, must, under any circumstances, be returned in accordance with the 4 th condition, but in lieu of such return, a notice in writing, of the fact of the horse being so affected, and of the place where it stands, must be given at this establishment within the time mentioned in that condition, accompanied with the certificate of a veterinary surgeon that the horse is so affected ; and in case of omission to give such notice, accompanied by such certificate within such time, the said horse shall be deemed and taken to be as between all persons not affeeted with any such disorder, and such omission shall be a har to any claim on account of the said horse being so affeeted, and the buyer shall be bound to keep and bay for the same whether it be or be not so affected.
"s. If such notice from the buyer, accompanied by a certificate, be given, the vendor will immediately be required to procure a certificate from his veterinary surgeon ; and in case of non agrement of these two opinions, or in case the ventor neglect or refuse to furnish a certificate within two days after his receiving the notice, then the anctioneer shall appoint a veterinary surgeon, whose decision shall be final and binding upon all parties, and all expenses must be paid by the party in error.
"When a horse is sold as 'quiet to ride and drive' a warranty of 'workably sound' is implied, and he 'must be sound enough to be ridden or driven.' " 1

[^19]References lave been made to a number of causes of unsoundness in the course of these pages, and following the plan adopted in previous editions, a list of diseases and accidents which have been settled as sufficient to entitle the purchaser to return a horse if warranted sound, and a further summary of those defects which are either insufficient or doubtful canses for rejection are given. The law of warranty is very masatisfactory, and differs in England and Scotland, while custom to a great extent supplants law in Ireland. So well has it become known, that the custom of warranty is fast dying out, and in its stead a reasonable trial and reterinary surgeon's examination as to soundness is generally accepted by the purchaser, and agreed to by the rendor. A warranty in England holds good "for ever," while in Scotland it covers a lunar month, but neither is fair to the seller, as a horse may be perfectly sound and free from vice, and all or nearly all that the seller represents him, and in a day or a week be lame from accident or clisease, or spoilt by bad handling. The vendor in gising a warranty unclertakes an unfar risk, making himself responsible for the folly and incompetence of the purchaser or his servants.

The definition of unsoundness is, "the existence of disease or alteration of structure which does or will impair the horse's natural usefulness." The judge's definition usually accepted by the veterinary schools is "anything that does now or may hereafter interfere with the usefulness of the animal."

Vice also may be defined, on a similar principle, as "the prevalence of a habit which interferes with the horse's natural usefulness." But these definitions must be taken with some modifications, for there is not one horse in a hundred which does not possess some disease or vice likely to impair his general usefulness to some slight extent; indeed, the proportion of strictly sound horses may be considered to be much smaller even than this. A bad feeder is so generally from a disordered state of stomach, and such a horse cannot stand work like one which will consume double the quantity of corn, yet he would not be considered unsound ; nor would a horse be returnable as vicious if he showed the usual symptoms of being "fresh," though they might impair his usefulness in carrying a timid rider. But subject to such modifications, the above definitions may be accepted as sufficient to make intelligible the terms, Unsoundness and Vice.

Tife following list comprises the diseases and injuries which have been settled as sufficient to entitle the purchaser to return a horse warranted sound :-

Bog spavin, when it is so severe as elearly to interfere with the action of the joint; and blood spavin, as marking an aggravated form of the same disease.

Break-down, even though the horse is restored so as to run without lameness.

Broken wind.
Cataract, in any degree.
Corns, unless very trifling ; but they should be discovered within a few days of the sale, or it may be alleged that they have been produced by subsequent mismanagement.

Cougir, as long as it lasts. A horse with chronic cough is clearly returnable.

Curbs constitute unsoundness; but they must be shown to exist at the
time of purchase, for a horse may throw one out immediately after he is transfered to the purchaser.

Deseases of the organic kind, in any of the internal viscera.
Faber.
Founder, or mamitis, whether it protuces lameness or not, if it manifestly hats existed, is to be accepted as unsoundness; for when there is evidence of its previous occurrence, the lamine are injured so much as inevitably to lead to lameness when the horse is put to work.

Grease, and Giavbers.
Mavie.
Meframs, when the attack comes on subsequently to the sale, and can bo shown to have occurred before it.

An unverted horse is unsound from the existence of the disease for which the operation has been performed, as well as from the division of the nerves.

Ormthalma, if it can be proved to have previousty existed, and comes on soon after the purchase, is to be received as unsoundness. So, also, when any of the evidences of its previous presence can be detected, and are proved by a veterinary surgeon, the horse is returnable.

Ossification of any of the structures adjacent to the joints is unsoundness, and hence ossification of the lateral cartilages will be considered so, without doubt.

Pumiced foot, as evidence of laminitis.
Quidding.
Quittor.
Ringbones, and Sidebones, whether large or small, are undoubtedly suflicient to constitute a horse unsomml.

Roaring, whistling, ete., as interfering with respiration.
Ruptures of all kinds.
Spavin (bone), although it may not have occasioned lameness, if it is clearly the disease so named.

Stmigainat has been decided to be unsoundness (Thompson v. Patterson).
Thick wind, as marking some impediment to respiration.
Thrusn, when it is in one of its severe forms, and not caused by mismanagement.

Thickening of the back sinews, or suspensory ligament, when existing to any extent easily appreciable, is to be received as a proof of unsoundness.

Returvable Vices are comprehended in the following hist :-
Biting, when carried to any unusual extent.
Bolting or rumning away.
Crib-biting.
Kicking, when more than usual.
Restiveness, or refusal to proceed in the desired direction.
Reding.
Suring, when marked.
Wemvisg in the stable.
Tine following diseases and accidents are generally considered not to render their possessors unsound :-

Bog Spavin in a slight degree only.

A brokey knee, unless the joint is injured so as to impair its functions, is not considered to be unsoundness.

Capped hocks and elbows do not produce any lameness, nor do they in any way interfere with the action of the joints to which they are adjacent.

Contraction of the foot is no evidence of disease, and, taken by itself, is not sufficient to prove it to be unsound.

Crib-biting was decidel, in the cases of Proennembury v. Ifaycock and Scoleflelel v. Robl, not to be unsoundness; but Baron Parker ruled in the latter that it came within the meaning of the word "vice." Undoubtedly this is a habit which is generally attended by impaired digestion, and, as such, it comes strictly within the definition given above; but the law is as I have stated it.

Curdy hocks, though experience may tell us they are likely to be attended by curbs, are decided not to be unsoundness. In Broun v. Elfington, the attention of the vendor was directed to the hocks by the purchaser before the sale, as likely to spring curbs; but in the action on the warranty it was held by Lord Abington that "a defect in the formation of the horse, which had not occasioned lameness at the time of sale, though it might render the animal more liable to be lame at some future time, was no breach of warranty; " and the Court of Exchequer confirmed this view of the law, by refusing a rule for a new trial.

Cutting, on the same principle, is no breach of warranty, unless the horse is lame from it at the time of sale.

A splint is not, in itself, evidence of unsoundness; but if it is so situated as necessarily to interfere with the suspensory ligament or tendons, or if it has already produced lameness, it is to be accepted as a mark of unsoundness.

Thorougifpin, when existing to a moderate extent, is not sufficient to render the horse unsound ; but this will always be a question of opinion, and a horse with thoroughpin is, therefore, not to be warranted with safety.

Tirnusn, occurring from mismanagement only, and not from any defect in the horse, is clearly not to be considered as unsoundness.

Soreness of the joints from work, as it soon goes off after a short rest, is not accepted as unsoundness.

Windgalls are also only evidences of work, and do not usually cause lameness. When this co-exists, it is sufficient to produce unsoundness, without reference to the windgalls.

Wilen a horse is purcilased, with the conditions that he is warranted sound, or free from vice, or quiet to ride and drive, the warranty must either be in writing, or given in the presence of a disinterested third person. The form of warranty is as follows, and it is better that it should be on the same paper as the stamped receipt, though this is not absolutely necessary if it is shown that the receipt is properly given.

Date.
Received of A.B.C. fifty pounds for a bay gelding, by Smallhopes, warranted five years old, sound, free from vice, and quiet to ride and drive.

Any one or more of these points may be omitter, or the horse may simply be warmated "a good hack," in which case he must fairly answer that deseription. The terms "has been honted," or "has carried a lady," are not to be trusted, as it is only necessary to prove in defence that the horse has seen hounds, and had a woman on his back.

Whether the horshe unher examination is to be warranted or not tho intending purchaser should never omit to look over every point where unsomdness is likely to oceur. To do this effectually it should be done renularly, by which there is less chance of passing over any serious defect. The usual mote of procepling is as follows. Under no circumstances, if it can possibly be avoidol, shond the horse be looked at immediately after having been out of doors; and if he is of necessity brought to the purchaser, let himbe put in the stable and quietly rested for one or two hours at the least, hy which time the eflects of most of the "coping" tricks will have sone ofl'.

Before the horse passes the stadee moor, stop him with his head just inside, and in this position carefully examine his cyes. The light is exactly suited to this, and the sensibility of the iris may be well judged of. Any specks or opaeities are also here readily seen. Then let him be led to a level surface, and then proceed to look over every part, beginning with that nearest the one already inspected, namely the mouth. Then "cough" him by tightly grasping the larynx, by which some idea may be formed of the state of his respiratory organs, after which the usual manceuvre with the stick may be practised if there is no opportunity of examining into his freedom from roaring in the saddle. When these points are satisfactorily disposed of, look to the position of the fore-legs, that is, whether they are turned in or out, and if the latter feel the elbows, and see if they are confined or "tied," that is too close to the ribs, also look for marks of cutting and speedy cutting. Pass the hand down the back sinews and suspensory ligaments, examine the knees for any marks, and then carefully feel the coroncts and heels for any marks of oxostosis or ossification. Lastly, take a good look at the front of the foot, and then lifting it inspect the frog, heels, and sole. This will complete the front half of the body, after which the form of the middle and loins should be regarded, and then, lifting the tail, the openness or otherwise of the space round the anus will give some idea of the strength of constitution, while the resistance afforded by the dock will be a sign of the muscular strength of the back. Then look earefully at the hocks, eximine the spavin and eurb places, and finish the whole by passing the hand down the hind camon bones to the fetlocks, and feel them in the same order as in the fore-legs. Now let the horse rest a minute if his groom will let him, with his head quite at liberty, and you will be able to judge of his ordinary hal,it of standing, when unexcited. At the conclusion of this careful examination while at rest, the action must be as minutely investigated, by furst having the horse walked with a loose rein, and then trotted in the same way slowly, when if he is somnd he will put his feet down regularly and firmly. Grooms, when they want to conceal defeets, will not let the head be loose, nor will they trot slowly, but bustte the horse along with their hands as close as possible to the mouth, so as to prevent any nodding of the head as much as they can. A very good judge will be perhavs able to select a pleasant hack or harness horse by seeing him thus run
and afterwards ridden, but a far better test is to ride or drive him yourself, when his freedom from vice, or disease, may be ascertained, as well as his manners, and the ease of his various paces. No trouble should be spared to get this real trial, which is worth ten per cent. on the purchase money, for many a horse which looks to go well does not feel so, and it is well worth that sum to be saved the trouble attending upon the possession of a horse which does not suit. When, however, after such a careful examination by a competent judge, and subseruent trial in the saddle or in harness, the horse is found to be really likely to answer all the purposes for which he is wanted, a few pounds should never prevent his being obtained.

INDEX

Abdomen, boundaries of the, 474 ; contents of, ib. ; longitudinal scetional plan of the, 475; transverse sectional plan of the, 47%.
Ablominal diseases, general remarks on, 553.
Ablominal viscera, supply of blool to the, 477 ; nerves of the, $i b$.
Abyssinia, the horses of, $\simeq 2$, et seq.
Accident; to the legs and feet, $6!5$.
Action, locomotive, of horses, 141.
African horses, 21, 37.
Age of the horse, marks of, 357, ct seq
Agricultural horse, the, 133 .
Ali Bey, his description of the modern Arab, 27.

Alimentary canal, absorption of fluid from, 478.

Alteratives, action of, 639 ; recipes for, $i b$.
Amaurosis, nature of, 581 ; symptoms of, $i l$. ; treatment of, ib.
Amble, the, description of, 155.
America, list of English horses imported into, 47.

American horse, fastest trotting on record of, 43.

American match-trotting, extent of, 43-4.
American thoronghbred, the, 47 ; stoutness of the, 59 .
American trotter, the, 45 ; pedigrees of, $i b$.
Amphiarthrodial joints, 306.
Ancesthetics, action of, 640 ; recipes for, $i b$.
Anchylosis, nature of, 507 ; of the shoulde:joint, case of, 516 .
Ancient methods of using the horse, 5.
Anodynes, action of, 610-1; recipes for, ib.
Antacids, action of, 640 ; recipes for, ib.
Anthelmintics, action of, 641 ; recipes for, it.
Antispasmodics, action of, 642 ; recipes for, $i b$.
Aperients, action of, 642 ; recipes for, ib.
Apoplexy, nature of, 576 ; treatment of, $i b$.
Apparatus for breaking to harness, 213.
Arab horse, colour of the, 30 ; food of the, $i b$.; of antiquity, 4 ; pure, 29 ; speed of the, 30 ; stallion, the, 29 ; the modern, 25 ; mare, the, 33 .
Arsenic, treatment of the effects of, 557-8.
Arteria, 461, et seq.; aorta, 462 ; aorta, anterior, anatomy of, ib.; aorta, posterior, 464 ; axillaris, 462 ; carotidcea externa, 464; carotidea interna, 464 ; cervicalis inferior, 462 ; cervicalis superior, ib.; circumflexa ilii, 463 ; celiaca, 404 ; common carotid, 464 ; dorsalis, 465 ; epigastrica, 466 ; femor-
alis, ib. ; gastrica, 462; hepatica, 404 ; iliaca externa, 466 ; innominata, 46^{2}; plan of branches of, 465 ; tibialis anterior, 466 ; lumbalis, 464; masseterica, ib.; maxillaris interna, ib.; mesenterica anterior, ib.; mesenterica posterior, ib.; obturator, il.; of the lulb, il.; of the fres, 503 ; plantaris, ib. ; occipitalis, 461 ; parotidea, 465 ; poplitea, 466 ; profunda femoris, ib. ; pterygoidea interna, 465; renalis, 464 ; sacralis lateralis, ib. ; spermatica, ib.; splenica, ib.; submaxillaris, ib.; iliaca interna, 46; ; thoracica externa, 466 ; thoracica intema, ib. ; tibialis posterior, ib.; mmbilicalis, 465; vertebralis, 462.
Arteries, arranged in two groups, 461 ; coats of the, ib. ; plan of the, 463 .
Arteries, supplying the ablominal viscera, 477 ; anatomy of the, 459 ; of the foot, the, 503 ; of the foot, view of, injected, ib.; of the frog and sole, view of, injected, 504 ; of the stomach, 481 .
Arthrodia, 396.
Artieulation, astragalo-calcanean, 425 ; betwcen the bones of the tarsus, il.; carpometacarpal, 413 ; chondro-costal, 403 ; chon-dro-sternal, ih.; costo-transverse, ib.; costovertebral, 402 ; coxo-femoral, $4: 0$; femorotibial, 422; inter-metacarpal, 415 ; intermetatarsal, 428; inter-phalangeal, 417 ; limbo-sacral, 404 ; metacarpo-phalangeal, 415 ; of atlas with occiput, 400 ; of dentata with atlas, $i b$.; of the lumbar vertebre and sacrum, 404 ; of the thorax, 403 ; phalangeopedal, 419 ; radio-carpal, $3 \subset 0$; remaining, of the posterior members, 428; sacro-iliac, 407 ; scapulo-humeral, 408 ; tarso-metatarsal, 428 ; temporo maxillary, 405 ; tibiofibular, 424 ; tibio-tarsal, 425 ; view of costovervebral, 400^{2}; view of metacarpo-phalangeal, 416.
Arytenoid cartilages, anatomy of the, 470 ; view of, 471.
Asiatic horses, 35.
Astragalus, os, 389.
Astringents, action of, 644 ; recipes for, $i b$.
Atlas, articulation of, with occiput, 400 ; back view of, 368.
Atlo-axoid ligament, superior, 400 ; inferior, $i b$.
Atmospheric air, changes produced in, by respiration, 468.
Attitude assumed by horses in standing, 142.

Australian horse, the, 30 .
Anstrian herse, the, $\overline{\mathrm{I}}$.
Arerage age of the lionse, 16 .
Diack and loins, symptoms of strain in, 597 ; treatment of strain in, it.
Batk-raking, mode of perfomming, fi3s.
back sinews, remarks on stain of the, 530 ; sympoms of strain of the, itr. ; treatment of strain of the. 5:31.
Balanitis, smptoms of, 530 : treatment of, it.
Bandages, two kimls of, est : use and applieation of, $\therefore=1$.
Barl, the 19.
Burley as food for horses, 2.8.
Barrier bar for stables, wit.
lar she, the, titit; view of the, it.
Path, the Turki-h, :an: plan of Turkish, 301.
Beans, wed as ford, :-
Budding of horsos, 2il ; wheat straw for, it. ; refuse tan for, 273 ; saml for, ib, sawdust for, il.
Bit, used for breaking, 901.
lites of insecets, treatment of, 83.
liting, remedy for the vice, 29.1 .
I its, varicties of smafile, $3 \cong 1$; of curb, $3 \cong 3$.
Blacking, recipe for harness, 317 .
IBluler, anatomy of the, tss; diseases of, 569 ; calculi in, ib.
blade-bone, the, 375.
Blerling, remarks on, 627; when performed, ih.: instruments need in, ib.
llimduess, cansed by various diseases, 581.
l'intering, remarks on, 630 .
Blisters, action of, 645: recipes for, ib.
Blool, physiolory of the, 45s ; circulation of the, 45%; putity of. in the racehorse, 97 ; spavin, iteutical with bog spavin, which see, 5:3.
Blowi-vessels of the chest and nose, diseases of the, 5ide.
Bor spavin, nature of, 52.4 ; symptoms of, ib.; treatment of, ib.
lione, its structure, 341 ; office of, ib,; medulla of, $316 ;$ priostem of, ib.; enumeration of the diseases of, 506.
Bone spavin, nature of, 519; riew of, il.; symptoms of, 518; treatment of, 514.
Bones, umber of, composing the skeleton, 349 .
Bots, nature of, 619 ; group of, attached to the stomach, ib.; uselessuess of treatment for, 6:O.
Bowels, 48.
Breaking down, remarks on, 531 ; symptoms of, $i^{\prime \prime}$; treatment of, il.
Breaking, halter used for, 203-1; superiority of the orlinary method of, 212; f or the sadille, ordinary English mothod of, 203; Rarey's apparatus for, 26 ; to harness, 210 ; apparatus for, 213 ; bit used for, :064; importance of forming the mont $\mathrm{l}_{1} \mathrm{in}, \mathrm{S}_{16}$; tirst thing to he tone in, 205 ; rapid methots of, 211 .
Treathone, the, 375 ; protile view of, ib.
lercast-plate, the, $3 \geq 0$.
lireast-strap, view of, 341.
lireathing, essence of, 467.
Brcechen and kicking-strap united, view of, $3 H$.
Bred of racehorses, object of encouraging the, 9 ; of horse's in India, 36.
Jireeding, adrantages and disadvantages of each plan of, 106 ; bent age for. 170; blood most suitable for hunters, 179; causes of a
" hit" $\mathrm{in}, 168$; choice of a sire aud dam in, 171; concluding remarks on, 181 ; in-and-in, 165 ; importance of health in, 169 ; importance of sounduess $\mathrm{in}, i l$.; influence of tho sir. and dam in, 171; kind of horse most profitable for, 180; ont-crossing in, 166; principles of, 161 ; selection of blood in each class of horse, 176 .
briclle, the chain snafle, 321 ; the Chifney lit, 321 ; the eurb, 323 ; the double-jointed smattle, $3: 1$; the double-ring snaftle, it.; the gag-suafte. ill.; the Hanoverian Pellam, :is3; the ordinary curb, ib, the plain lelham, ib. ; the plain snaffle, 321 ; the snafte with domble month-piece, ib.; the twisted suatte, ib.; the unjointed suaffe, $i b$.
Irrille hooks, 210 .
Bridles, varicties of, 321 ; remarks on, it.
Writish horse, the origiual, 5 .
broken knee, treatment of slight, 539 ; treatment of, when the joint is opened, ib.
lirok'n wind, nature of, 550 ; symptoms of, ib. ; treatment of, il.
Broncli, anatomy of the, 471 .
Bronchial glants, anatomy of the, 473 .
Bronchial tubes, subitivision of, 472.
Bronchitis, nature of, 540 ; symptoms of, $i l$. ; treatment of, $i b$. : treatment of chronic, $i b$.
Brood mare, the, 182 ; after treatment of the foal, 190 ; early treatment of the foal, 189; general management of the, $\mathbf{1 8 6}$; hovel for, 182 ; paddock for, $i b$. ; time of sending to the horse, 186 ; treatment of the, when in foal, 157 ; treatment of, after foaling, 188; weaning of the foal, 190.
Brougham horse, the, $1 \geqslant 9$.
Pucephalus noseband, the, 324.
Buck eye, nature of, 581.
Burman horse, the, 21 .
Bursa mucose, anatomy of, 431; nature of inflammation in, $i b$.; varieties of inflammation in, $5: 6$.

Cab-horse, the, 129.
('secum, anatomy of the, 481.
('aleanco-astragalan articulation, 388-9.
(Galcis, os, 390.
Calculi iu the bowels, nature of, 564 ; urinary, 569 ; symptoms of urinary, ib. ; treatment of winary, ib.
Cauadian horse, the, 41 ; portrait of, 42 .
('anter, the, 143; mote of starting into a, 144.
('apillarios, anatomy of the 461.
('apped elbow, treatment of, 525 ; hock, cause of, $5 \because 6$; treatment of, $i l$.
Capsule, the suprarenal, 487.
Caries, nature of, 507 ; of the jaw, 519 ; symptoms of, it.; treatment of, ib.
('arpo-metacarpal articulation, 41?.
('arpus (wist or knee joint), articulations of, $3-9$; bones of the, ib.
Carriage-horse, the, 129 .
Carriage, hrougham, or cab-horse, portrait of ther, 130.
Carrots, as food, 260.
C'art-horse, the Clydestale, 138; the Lincolusliire, 137 ; the Suffolk, 134 ; mixed breeds of, 139.
Cartilage, $39 \div$; articular, ib. ; blood-vessels of, ib.; chemical composition of, 393 ; fibro, 394 ; nerves of, 394 ; perichondrium of, 392.
Cartilages, the costal, 403; the lateral, 504; of the ribs, 403.

Casting, methor of, 623; for onerations upon the fore-leg, 629 method of, for eastration, ib.
Castration, 630 ; method of casting for, 622 .
Cataract, eauses of, 580 ; nature of, ith.
Catarrh, nature of, 528 ; treatment of, ib.
Catchpit, section of, 2.25.
Caustics, action of, 616 ; recipes for, $i b$.
C'ecil, Lord Arthur, 139.
Celebrated match made by the Duke of Queensbury, 73.
Cercbellum, anatomy of the, 493.
Cerebrum, anatomy of the, 493.
Cervical ligament, 398 ; view of, 390.
Cervical vertebræ, 360 ; peculiarities of, 307 ; profile view of, ih.
Chaff, as food for the horse, 259.
Chaff-cutters, 259.
Chapped heels, treatment of, 551 .
Charger, the, portrait of, 117 ; the Norman, 58.
Clarges, action of, 646 ; recipes for, ib.
Chest, water on the, 550 .
Chifney bit, the, $3 \geq 4$.
Childers, the Devonshire, 82 ; the Flyiug, ib.
Chloroform, apparatus for administering, 605 ; mode of administration, ib.
Chondro-eostal articulations, 403 ; view of, $i b$.
Chondro-sternal articulations, 403.
Chronic cough, nature of, 541 ; symptoms of, $i b$. ; treatment of, $i b$.
Chyle, the, 478.
Circulation, plan of the, 459.
Classifeation of the horse, 7.
Cleveland horse, the, 139 .
Clipping the horse, 278.
Clothes, remedy for tearing off the, 203.
Clothing for horses, 246.
Clover, for soiling, 260.
C'lydesdale horse, 138.
Clysters, mode of administering, 647 ; aetion of, $i b . ;$ recipes for, $i b$.
Coach-house, 241.
Coacliman, 245.
Cob, the, 112, 125.
Cocaine, $6 \div 5$.
Cocesgeal joints, 405 ; vertebre, 373 ; profile view of, $i \%$.
Coffin-joint, anatomy of, 419.
Cokt, nature of, 538 ; treatment of, ib.
Colic, nature of, 559 ; symptoms of, ib.; flatulent, 560 ; sigus of, ib.; from stoppage, symptoms of, $i b . ;$ signs of spasmortic, $i l$, ; treatment of spasmodic, 501 ; treatment of flatulent, $i b$.; treatment of, from impaction, il.
Colon, anatomy of the, 484.
Colour of the Arab horse, 30.
Colt, breaking of the, 192 .
Comparative stoutness of horses, 87 .
Coneealed manger for erib-biters, 238 .
Condimental food, artificial, $\llcorner 62$; reeipe for, ib.
Conestoga draught-horse, the, 51 ; portrait of the, ih.
Congestion of the lungs, symptoms of, 548 ; treatment of, ib.; remarks on, 549.
Conjunctiva, anatomy of, 496.
Constitutional diseases, 550.
Contraction of the foot, 611.
Convulsions, symptoms of, 572 ; treatment of, 573.

Cord, anatomy of the spinal, 40 .
Cordials, action of, 647 ; recipes for, $i b$.

Corn for the horse, 254.
Corns, nature of, 598; treatment of, it.
Corone, os, 383.
Coronary frog band, the, 502.
Coronary substance, anatomy of the, 502.
Costre, the rils, 374.
Costo-transverse articulations, 402 .
Costo-vertebral articulations, 403; interior view of, $i b$.
Cotyloid cavity, view of, 886 .
Cough, nature of chronic, 541 ; symptoms of chronic, $i h$. : treatment of chronic, $i b$.
Covert hack, the, 118.
('oxo-femoral articulation, 420.
Cranium, hones of the, 304.
('rib-liters, concealcel manger for, $£ 38$.
Crib-biting, remedy for, 20.
('ricoid cartilage, anatomy of, 470 .
Cruiser in the power of his master, 196 ; with leg-strap and surcingle on, 195.
Crust of the hoof, anatomy of the, 502.
Cuboides, os, 390.
Cunciforme, os magnum, (9); os parvum, i).
Curb-bit, the, 323 .
Curb-bits, varieties of, $3 \supseteq 3$.
Curb-bridle, the ordinary, $3: 3$.
Curb, nature of, 533 ; treatment of, 534.
Cushion of the frog, 502 .
Cuts, stable management of, simple, 307.
Cutting, ordinary, 615 ; description of speedy,
017 ; prevention of, 339,548 ; treatment of
effects of, 615 ; treatment of ordinary, 339 ;
treatment of speedy, il.
Cystitis, symptoms of, 569 ; treatment of, ib.
Dally exercise of the horse, 288 .
Damascus Arab, importation of, into Englant, 72.

Darley Arabian, the, 71.
Demulcents, action of, 648 ; recipes for, $i t$.
Dental formula of the horse, 7 .
Dentata, anterior view of vertebra, 368 ; posterior view of vertebra, 360 .
Depuration, its office in the amimal economy, 479.

Dermis, the, 498.
Dervish horse, the, 2.2
Devoushire Childers, the, 82 .
Diabetes, symptoms of, 568 ; treatment of, $i b$.
Diaphoretics, action of, 648 ; recipes for, $i l$.
Diaphragm, symptoms of spasm of, 551 ; treatment of spasm of, $i b$.
Diarrhœa, nature of, 563 ; treatment of, ib.
Diarthrodial joints, 396.
Digestion, physiology of, 477.
Digestives, action of, 619 ; recipes for, $i b$.
Dislocation, nature of, 534 ; of the hip joint, $i b$. ; of the patella, $i b$.
Dismounting, directions for, $3 \geq 4$.
Distemper, nature of, 539 ; treatment of, $i b$.
Diureties, action of, 649 ; recipes for, $i l$.
Docking, operation for, 633.
Dongola, the horses of, 21 .
Door for loose box, 294 .
Doors of stables, 224 .
Dorsal vertebre, general charaeters of, 369 ; peculiarities of, 370 .
Drainage of stahles, -24 , t seq.; scetion of eatclipit for, 295.
Draught-horse, the Conestoga, 54.
Dray-hors, the Lincolnshire, 137 ; portrait of the, $i b$.

Jrescing of louses. 273.
Driving a mir, 312 ; a single horne, 33 ; fomr-in-hanl, :313.

Buct, the thoracic, 1is.
Buets, the Lacrymal, fos.
buke of duecribury, mateh made hy, 73.
1hnorlemm, amtomy of the, th:
Hyspeia, nature of, 556 ; symptoms of, ith treatment of, ib.

Fure, anatomy of the, 49 ; diseaser of the , ill. ; serateling the, remoly for, ato.
Darly maturity of the horse, 91.
hast, the horsis of the, 19.
belipee pertigree of, 76 ; history of, 83 ; St. liels measurement of, i.
E"zrma, 5x1.
Eiryptian lorse, the, 4, 2).
Elbow joint, the, 379 ; view of, $i l$; treatment of (apperl, $5=2$)
Embrucations, action of, co.n; recipes for, ib.
Emulsions, action of, 650 ; recipes for, il.
Enartlorosis, 396.
Sncephalon, amatomy of, 191 ; view of the superior surface of the it.
Burland, tirst importation of the bamasens Arab into, 72.
Buglish thoronghbed hores, the, 67 ; general history of the, ihe; thomoghbed horse of 5-nt, the, 69 : horses imported into America, list of the, 4 s .
Ensilage, unfit for horses, 263 .
Eintrritis, nature of, 561 ; symptoms of, il.
Epilemmis, the, 499.
Epighottis, josterior view of, 171; anatomy of, ih. ; vew of, 170.
Libilosy, symptoms of, ate ; treatment of, it.
Exemtials in the thoromghtmed, 96.
Ethan Allen, the trottor, 10 .
European ('ontinental hurses, the 50.
Excretion, physiolory of, 479.
Exercise, hally, of the horse. ass.
Exhantion, treatment of, afler work, 3 m.
Exmoor pony, the, 127 .
Esuntosis, nature of, 506 ; of the humerus and s apmla, 516 ; treatment of, ib.
Expectorants, aetion of, bti ; reeipes for, it.
Extemal form of the horse, as imlicated by points, 8 ; formation of the racelorse. 98.
Extromities, bones eompoing the fore and hind, $3=-2$.
Exe thatomy of the, 49G; appemiages of. 497 ; eoats of, ih, lhmours of the ih.; simple inflammation of the 50 a ; symptoms of simple inflammation of the, ib, treatment of simple intlammation of the, it. ; treatment of injuries of, 578 ; eyelics, anatomy of the, 597.

Face, bones of the, 30°.
False quarter, nature of, 601 : treatment of, i.
Fares, symptoms of, E93; treatment of, i.
Farm horses, feeding of. ± 70.
Fedrifuges, action of, 651 : recip sor, ib.
Fereling. theory and practiee of, 206 .
Feet, aceilents to. 615; management of the,

Femerotihial artionlatim, to3; extrmal view uf, ih. ; posterior siow of, fas.
Femur, the 3 as: view of the, it.; treatment of fracture of, 52:
Fetlock joint, anatomy of. 415.

Fictlock, remarks on train of the, 529 ; treatment of strain of the i,
Fevers, remarks on, in the horse, 500 ; symptoms of simple, ib, treatment of simple, ib.
Fibro-cartilage, 39 t ; interartienlar, ib.
Fibro-cartilages, connecting, 391.
Fihrons tissue, white, 393.
Filnula, the, 3 se ; view of the, it.
Jiring, method of performing, 628 ; remarks on, ib.
Fisherman, portrait of, 99.
Fistula of the withers, 517; nature of, ib. ; symptoms of, ib.; treatment of, ib.
Flemish horse, the, 64.
Floors of stables, brindled briek for, 228 ; patent paving brick for, il.; yellow adamantine clinkers for, $i b$; conerete for, $i b$.
Flora Temple, the trotter, 46.
Flying ("hilders, the, 82.
Flying gallop, the, 153.
Foal, the, 190 ; after treatment of the, 189 ; early treatment of the ill.; weaning of the 190 .
Foon, condimental, 262 ; recije for, i.
Food for horses, 251 ; of the Arab horse, 30.
Foot, the, inh ; diseases of, 598, et seq.
Foot, anatomy of the, 500 ; lateral cartilages of, 501 ; section of the, 501 ; the parts entering iuto the composition of, ib. ; view of the under surface of, 502 ; with the hoof removed, view of the, ib.; contraction of the, 611.
Fore-arm, hones of the, 378 .
Force extremity, view of the bones of, 379 .
Fore-foot, prepared for the shoe, view of, 6:6.
Fore-quarter, relative proportions of the 10 .
Fracture of the femur, treatment of 522 ; of the humerns, treatment of, it.; of the lower jaw, treatment of, ib.; of the pelvis, treatment of, ih: of the ribs, treatment of, ith. ; of the seapula, treatment of, ib.; of the slimll, treatmont of, ib. ; of the spine, treatmont of, il.
Fractures, remarks on, 500 : symptoms of simple, $5=2$; treatment of simple, ih.
French horse, the, 58 ; stallions, list of, 59.
Frog, anatomy of the, 502.
Furze for soiling. © 61 .
Gbilof, the flying, 53 ; variation in leugth of stride of, il. ; correct views of the, 152 , et seq. ; received interpretation of the, 151 ; the hand, 150) : the extended, 153.
Galloway, the, bas.
(ialls, treatment of harness, $5 \leqslant 6$.
(ithglia, nervoms, 495
Gastric thid. the. Aㄹ..
(Gistritis, 5.j7: canses, ib.; symptoms of, ib.; treatment of, $\%$.
General charactoristies of the horse. 7.
General history of the thoronghbred Euglish horse, 67.
General mangement of the brood mare, 180.
Generation, anatomy of the female organs of, 459 ; amatomy of the mate organs of, 488 ; theory of 16 t.
Generative organs, disease of the, 570 .
German horse, the, 57.
(ijgster, the 132.
(iinglymns, 396 .
(iirths, 320 .
Gland, the kidueys, 457 ; the liver, 455 ; the pathereas, 46 ; the stllingual, anatomy of,

- 480; the parotid, anatomy of, ib.

Glands, structure of, 475 ; anatomy of the salivary, 480; brouchial, 473 ; the pulmonary, il.
Glamilers, symptoms of, 502 .
Goblolphin Arabiau, the, 19-71.
Gomplosis, 306.
Gorse, for soiling, 961.
Granary, construction of. 으.
Grass, for the horse, 351 ; turuing out to, 309.
(rease, symptoms of, 586 ; treatment of, 587 .
Greck horse, the, 2 .
Green food, for horses, 960 ; for soiling horses, ib.
Green oats for soiling, 201 .
Groom, duties of, 245.
Grooming of horses, 273 .
Grucl, 200.
Mamits, of the horse, 7 ; out-door bat, 336.
Hack, the covert, 118; the road, il.; the park, it.
Hacks, preparation of, for work, 305 ; feedius of, ib.
Hemorrhage, from the lungs, treatment of, 552 ; from the nose, treatment of, $i b$.
Half-bred horse, the, 112.
Halters nsed for brealing, 203-205.
Hamd gallop, the, 150.
Hands, attainment of good, in riting, $3 \geq 9$.
Hanoverian horses, the, 65 ; Peham, the, 323. Harmonia, 306.
Harness, hlaeking, recipes for, 317 ; breaking to, 212 ; choice of, 339 ; eare of, 31.5 ; double, view of, 342; directions for cleaning, 315; details of single, 339 ; horses, preparation of, for work, 304 ; method of dryiug, 238 ; room in stables, 23 s.
Haw, anatomy of, 497.
Hay, chamber, 221 ; as fool for horses, 952 ; musty, 253 ; quantity required of the, $\mathbf{2 5 4}$; upland, 252 ; weather-beateu, 253 ; burut, 253.

Hearl, bones of the, 354 ; divisi m of the bones of, il.; relative proportions of the, 350 .
Health, upland grass most useful in restoring, 311.

Heart, anatomy of the, 460 ; and arteries, plan of the, 463 ; obscurity of diseases of the, 551 .
Heary maehiner, the, 131.
Heels, treatment of chapped, 586 .
Hemi *phere, Western, liorses of the, 38.
Hempsced, for stallions, 959.
Ifepatization of the lungs, 517 .
Hernia, operation for reducing, 634: the anatomy of the parts connected with, 440.
Herbert's, Mr., account of widd horse of America, 39.
Heroll history of, it ; pedigree of, ib.
Highblowing, see roaring, 516.
Highland pony, the, $1 \because 7$.
Hip-joint, 420 : dislocation of, 534; ligaments of, 420 ; rarity of strain of, 532 ; symptoms of strain of, ib.; treatment of strain of, $i b$.
Hobbles, description of, and method of using, 623 ; improved, 624.
Hock, the, 424 ; eause of capped, 526 ; treatment of eapped, ib.; treatment of strain of the, 533.
Hock-joint, the, 424; anterior ligament of, 425 ; external view of, il, internal view of, ib. ; lateral ligaments of, ib.; iuternal lateral ligaments of, ib.; postcrior ligaments of,
il.: strain of the, 533 ; synovial membrane of, 426 .
Hoof, anatomy of the, 500 ; development of, by secretion, 503 ; view of the, 5n.
Horse, action of the walk in the, 145 ; after treatment of the foal of, 190 ; ancient methots of using the, 5 ; Arab, food of the, 30 ; Arab, speed of the, it.: Arab, colours of the, il. ; advantages and disadvantages of each plau of breeding, 167; American, fastest trotting on record, 43 ; apparatus for breaking to harness, 212 ; average age of the, 16; malted barley and wheaten lread for the, 258 ; beans and pease for the, 2.97 ; bran mash for the, 259 ; bedding of, 271 ; best age to breed from, 170 ; Burman, the, 24 ; bit used for breaking, 204 ; blood most suitable for breeding lunters, 179 : bounding on his hind-legs, the, 197 ; breaking of the colt, 192; breaking to harness of the, 212 ; breed of, in India, 36 ; remarks on the buying of, 681 ; carruts for the, 260 ; castration of the foal, 191, 630; causes of a "hit" is breeding, 168; chaff for the, 259 ; choice of sire and dam in hrecting, 174; classification of the, 7 ; clipring the, 278; clothing, kind of, 246 ; prices of, 247 ; comparative stoutness of, 87; conclurling remarks on breeding, 181; corn for, 251 ; daily exereise of the, 288; dental formula of the, 7 ; distribution of weight in, 141; dressing of the, 273 ; early history of, 1; early maturity of the, 94 ; early treatment of the foal, 189 ; English, imported into America, a list of, 4s; external form of, as indicated by points, 8 ; feeding of farm, 270 ; feerling of harness, 269 ; first thing to be done in breaking, 205 ; food of the, 251 ; general characteristies of, 7; general history of the English thoroughbred, 67 ; general management of the brood mare, 186 ; grass for the, 186; green foorl for soiling, -60 ; grooming of, 273 ; gruel for the, 256 ; habits of the, 7 ; halter used for breaking in, $903-$ 205 ; lay for the, 187 ; history of, 7 ; hempseed for the, 259 ; hovel for brood mare, 189 ; importance of forming the mouth in, 206 ; importance of health in breeding, 169 ; inportance of somnluess in breeding, it.; in-and-breeding, 165 ; increase of size in, 86 ; iverease of symmetry in, ih.; influence of the sire and dam in breediug, 171 ; jumpiug, 157; leaping, il.; linseed for the, 259 ; locomotive action of, 141 ; management of the feet in the, 385 ; maturity of the, 16 ; mental development of the, 17 ; methods of restraint, 6 ± 1; mildle piece of the, 15 ; mixed breeds of cart, 139 ; mode of progression iu, 142 ; most profitable kind fer breeding purposes, 180 ; natural and aequired paces of, 141; oats for the, 9.56 ; of Abyssinia, the, 24 ; of Dongola, the, 21 ; of the East, the, 19 ; of the Western Hemisphere, the, 38 ; of Toorkistan, the, 35 ; omnibus, on the management of, 2.77; on his knees about to fall on his side, portrait of the, 198; ordinary Euglish method of breaking for the sadlle, 203 ; origin of the thoroughbred, 70 ; other Asiatic, 35 ; outcross in breeding, 166 ; paces of the manege, 157 ; paciug, 134 ; paddock for brood mare, 182 ; parsnips for the, 260 ; pease for the, 257 ; pedigrees of American trotting, 46;
perionical moulting of the, 17 ; pinciples of breding, 1 til : propertions of the various
 chatso of the, 6al ; lioney's apparatus for braking, ens: lame methol of training, 190 ; relative proportions of the, 9 ;
 selection of blowd in each class in breeding, 176 : selling of, 65 ; singoting, 2以 1 ; small stomach of the, 15 ; stable clothing for, 316 ; stoutans of the Amerian thoronghtred, 5:- ; superionity of the ordinary methon of breaking, $2 \mathrm{at}^{\circ}$; swaters for the, 217; synonyms of the, 7 ; the agricultural, 133 ; the Aralr of antiguity, 4; the American thoroughbert, 17 ; the Austrian, it ; the Anstratian, 36 ; the british original, 5 ; the brool mare. 18: the brongham, 1:9) the cab, il.: the carriage, it.; the ('anadian, 41 ; the charger, 117: the Clevelam, 1:9; the (Dydesiale, 134 : the eolb, 11:, 125; the Conestoga, 54; the covert hack, 118 ; the Jarley Arabian, 7l; the Eryptian, 4; the Jinglish theroughmed, 67 ; the English thoronghbred of 1750 , 69); the Exmoor pony, 127 ; the European contimental, 56 ; the fast trotter, 13:- the Fhmish, 61; the foal of, 1-2 ; the French, 55 ; the Galloway, 125; the (iemman, 57 ; the gigster, 182 ; the Gomblohin Arabian, 19, 71; the Greek, - ; the half-hred, 112; the Hanowrian, 65; the heavy machiner, 131 ; the llighlanl pony, 127 ; the Mungarian, 07 ; the lrish hunter, 116 ; the Italian, 56 ; the ladies', 104 ; the libyan, 4; the lincolnshire dray, 137; the modern thoronghbred, 67 ; the Aloorish, 4 ; the Morgan, 39; the New Forest pony, 12t; the Norwerian, 66 ; the Nmmidian, 4 ; the, of Scriptwe, 1 ; the park hack, lls; the Perian, 34; the phacton, 132; the polo pony, 127 ; the Porturnese. 56 ; the l'russian, 57 ; the roul hack, 118 ; the laman, 3; the Jinsian, 6; the Shetlam pony, 1-9; the shire honse, J33; the Sonth American, 38 ; the Spanish, 56 ; the Sutfolk eart, 131 ; the Swedish, 66: the 'lartar, 35; the trooper, 117; the 'urkish, 35; the Vermont, 53 ; the Wrish prony, 126 ; theory of generation of, 161 ; thoronghbred, essentials in the, 97 ; time of somling brood mare to the, 180 ; times made by, in the middle of the last century, 90 ; times of the best American, mald in Amoriea and Enghand, 91 ; times of best modern English, it.; treatment of the bromi mare when in foal, 187 ; treatment of brood mare after foaling, lso ; trimming the, $2 x$; water for the, 261, it sen.; weaning of the foal, 190 ; wheaten bread for the 2 est widd, of America, Mr. IF erberts accoment of the, 3!) will 'Tartar, 35 ; use of bandages for the, 2t; two kinds of, 2077 .
Horsmanilhip, M. Batucher's method of, ?10. Howel, the, for hrout mare, lse.
IIumerus, the, 377 ; and seapula, 516 ; treatment of exostusis of, ik: external iew of 377 ; internal view of, 378 ; treatment of fracture of, 522 .
Ilmgarian horse, the, 57.
Ilunter, fecting of the, 269 ; choosing of the half-imed, 111 ; blowd most suitable for breeding, 186 ; final preparation of, 304 ; mouth of the half-bred, 110; 1roints essen-
tial to the half-bred, 114: proparation of, :9) ; the hati-hred, 11: ; the Irish, 116 ; height of the half-bred, Its; the theroughhem, 110 ; treatment of blows in the legs of, 306 ; treatmont of exhanstion of the, ib. : treatment of werreach, ib.; treatment of thorns in the legs, il.
llydrophohi:, sere rabis, 5it.
Itymothomax a seruch of pleurisy, 550 ; treatment of, it.
Ityoides, os, 170 .
Insm, anatomy of the, ist.

His-cecal valwe, the, 1s.1.
Ilio-sacral ligament, the inferior, 107; the sumerior, ih. ; view of, it.
Importation of the damas:ins Arab into F'mglami, ia.
In-amb-in brealing, 165.
Incisor teeth, sections of, 357.
India, hreed of horses in, 36 .
Indian pony, the, 41.
Indigestion (I)yャpesia), $5 \boldsymbol{0} 0$.
Intlammation of the bones, 507 ; of burse mucosie, 525 ; of temblinous sheaths, ib. ; of the hadder, 509 ; of the bowels, 561 ; of the brain, 5i3; of the bronchi, 510 ; of the eye, 579 ; of the kidneys, 567 ; of the larynx 512 ; of the lungs, 517 ; of the pleura, 549 ; of the stomach, 557 ; of the veins after bleeding, $6 \geq 7$.
Intluenza, nature of, 539 ; treatment of, i. .
Imominatum, os, 384 ; uper view of os, ib.
Inter-metacarpal articnlations, 115.
Inter-metatarsal articulations, 428 .
Inter-phalangeal articulations, 415.
luter-sesamoileal ligament, 415.
Intestines, anatomy of the large, 482 ; small, 433 , t seq.
Intus-susecption, nature and symptoms of, 502.

Irish honter, the, 116 .
Iron tittings for stalls and loose boxes, 237.
Iron surface gutter, saju.
Ischii, os, 351.
Italian horse, the, 56.
J.w. osteo sarcom: of, 520 ; symptoms of (aries of, il.; the lower, 356 ; treatment of caries of, Dero.
Je junum, anatomy of the, I8t.
Jog-trot, starting into the, $1 / 7$.
Joints, general remarks th, :391; composition of, i^{\prime}; classitication of, 305 ; movements of, 296 ; womms of, 83:.
Jugnar vein, when whliterated, renders horse unfit to be turned ont, $31 \because$.
Jumping, 157.
Kickivg out of doors, prevention of, 337 ; intheors, 291 .
Kilneys, anatomy of the, 180 ; diseases of the, irit ; section of the 457 ; situation of the, sat; view of the 107.
Kine-joint (wrist, or earpus), back view of, $3 \checkmark 1$; remarks on strain of the, 528 ; symptoms of strain of the, ib, treatment of strain of the, 5e9; articulatiens of, 410; movements of, 415 ; broken, 535.

Lacmarmul hembitcs, anatomy of, 498; ducts, anatomy of, ib.

Lacteals, the, 478.
Ladies' horse, the, 124.
Lamine, anatomy of the, 502.
Laminitis, nature of, 604; symptoms of, 605; treatment of, 606; chronic, i.
Lamp, for singeing, 282.
Lampas, or swelled palate, symptoms of, 553 ; treatment of, ib.
Laryugitis, nature of, 542 ; symptoms of acute, 243 ; symptoms of chronic, 544 ; treatment of acute, 543 ; treatment of ehronic, 545.
Lirynx, anatomy of, 470 ; view of, il.
Latieral cartilages, ossification of, 512 ; symptoms of ossification of, 510 ; treatment of̂ ossification of, 511.
L. aping, 157.

Leg, bones of the fore, 379 ; of the hind, 384 , et seq.
1.egs, accileuts to, 615.

Inhyan horse, the, 4.
Tice, clestruction of, 583 ; poultry, 584 .
lig ment, astragalo-calcanean, $4 \geq 6$; capsular. of the hip, 421 ; common to the carpal joints, 415 ; cotylod, 420 : disease of the, 523 ; inferior atlo-axoid, 400; inferior vertebral, :97; inter-articular costal, 402; interspsamoideal, 417 ; of dorsal vertebre, profile view of, 398 ; of the os pisiforme, ${ }^{4} 13$; of the rows of the tarsal bones, 426 ; of the sternmm, 403 ; of the temporo-maxillary articulation, 405 ; odontoid, 400 ; pubio femoral, 420; the inferior ilio-sacral, 407; the long inf rior sesamoideal, 415 ; the true suspensory, 417 ; sacro-iliac, 363 ; saero-seiatic, 406 ; strain of the suspensory, 529 ; superior atlo-axoid, 400 ; superior costo-vertebral, 40^{2}; superior vertebral, 39 ; superior sesamoileal, 415 ; superior ilio-sacral, 406 ; suspensory, 417.
Ligamentum colli (or nuche), 399 ; view of, ill. ; teres, 400.
Lighting of stables, 299.
Limbs, as agents of locomotion, 415 ; as means of support, 141.
Li colnshire dray-horse, the, 137.
Linea alba, 441.
Linee transversales, 441 .
linseed as food for the horse, 259 .
lips, the chief seat of the organ of toueh, 500 .
Lisit of English horses imported into Ameriea, 48 ; of French stallions, 59 ; of drugs, 675.
Titter, remedy for eating the, 994.
liver, anatomy of the, 485 ; disease of the, 565 ; function of, 485 ; structure of the, ib. ; symptoms of disease of the, 566 ; treatment of disease of the, $i b$.
lock-jaw, nature of, 575 ; symptoms of, il.; treatment of. 576.
Lrose boxes, 224 ; iron fittings, 232.
L, tions, action of, 652 ; recipes for, $i b$.
lower jaw, treatment of fracture of, $5 \geq 2$.
I ucerne for soiling, 261 .
Lumbar vertelre, articulation of the, with sacrum, 405 ; general characters of, 371; preculiarities of, 404 ; profile view of, 37 I.
Lumbo-sacral articulation, 404.
Junare, os, $3 \succ 0$.
Lungs, air cells of, 472; anatomy of, il.; lobules of, ib.; parenchyma of, il.; remarks on congestion of the, 518 ; symptoms of congestion of the, $i b$.; treatment of congestion of the, il.; inflammation of (pneumonia), 547 ; treatment of hamorrhage from, $55^{2} 2$.

Lying dowa at work, management of, 337 .
Lymphaties of bone, 344 .
Minness, symptoms of, 574 : treatment of, ib. ; nature of, ib.
Mad staggers, nature of, 573.
Magnum, os, 381.
Maize as food, 257.
Mallein, 503.
Mallenders, $585 ;$ treatment of, ib.
Malt as food, 257 .
Manege, paces of the, 157.
Mange, insect, 582 ; nature of, il.; symptoms of, ils.; treatment of, $5>3$.
Mangers for stables, $934-936$.
Manger and rack, the, 231.
Mare, management of the brood, 156 ; after treatment of the foal of, 190 ; early treatment of the foal of, 189 ; general management of, I86; hovel for, 18^{-3}; padlock for, ib. ; time of sending to the horse, 186 ; treatment of, after foaling, 188 ; treatment of, when in foal, 187 ; weaning of the foal of, 190 ; the Arab, $\because 5$.
Narshes, for turning out, 311.
Match, celebraterl, made by the Duke of Queensbury, 73 ; trotting in Amorica, extent of, 44.
Matchem, history of, 82 : peligree of, 78.
Maturity of the horse, 16 .
Meadow land, producing grass, 310-11.
Medicines, action of, and recipes for, 639 , et seq.; alteratives, ib.; anæsthetics, 640 ; anodynes, $i b . ;$ antacils, 641 : anthelmintics, ill.; aperients, 612; astringents, 644 ; blisters, 645 ; caustics, 640 ; charges, il.; clysters, 647 ; cordials, ib.: demuleents, 648; diaphoreties, il.; digestives, il.; diuretics, 619 ; embrocations, 650 ; emulsions, $i l$. ; expectorants, 651 ; febrifuges, $i l$. lotions, 652; narcotics, ib.; refrigerants, il.: sedatives, 653 ; stimulants, ih.; stomachies, ib.; styptics, 654; tonies, il. : vermifuges, or worm-medieines. it.
Medulla oblongata, anatomy of the, 493.
Megrims, nature of, 573 ; symptoms of, i\%.; treatment of, $i l$.
Membrana nictitans, anatomy of, 497.
Membranes, synovial, 395.
Mental development of the horse, 17.
Metaearpal bones, 381 ; view of the, ib.
Metacarpo-phalangealarticulations, 382 ; views of, 383.
Metacarpus, bones of the, 380 .
Metatarsal bones, the, 389 .
Methods of using the horse, ancient, 5 .
Middlepiece of the horse, $1 \geqslant$.
Mode of progression in horses, I42.
Modern Arab, the, 25 ; Ali lieys description of the, 27 .
Moderu thoroughbred, the, 85.
Moorish horse, the, 4 .
Morgan horse, the, 39.
Mounting, directions for, 324 .
Mouth and throat, diseases of, 553 .
Mouth, the three-year-old, 359 ; the six-yearold, 363 ; the five-year-old, 362 ; the four-year-old, the lower jaw, 3.99 ; the six-yearold horse, showing the lower teeth, 363 ; of the eight-year-old horse, 364; of the very old horse, il.
Mucous membrane lining the abdominal viscer, 477; of the stomach, 48.

Muncle, anatomy of, $1: 9$; burse mucose of, 4:3) : dienase of the 5 , 23 : examine muler the mieroserpe, d30; itentical in composition with the tibrine of the hlomel, ih. : mome of deseribine $:\{1$; momenclature of, it.; physiology of, fe? ; sarohemma of, $4: 0$: roluntary 431: antero-inforion scapulat rerion, 1 ti ; antero-xternal humaral rexion, f17: anterior fomorecrural rexim, 45! : anterior ilin-femoral resion, fis; of the ahdomen, fll) ; the cocevel, flat the slepp alolominal rewinn, fte: domal region, flo:
 nal ear. 434: extornal se:pular region, 1/4; esternal ilio-femomal region, 501 ; extemal, of the eyclids f:1: of the fore-lege 4.17 ; antero-xternal view of, it.: of the fore exIr.mity, HI : of the hameh, fio? ; xtemal vi w of, 419 : of the lead, fie2; interiorarvical occipital mon, 430; inforior ervi(al region, 437: intemal scapular region, 4.5; internal ilio-femoral region, 4.3; of the lege, extermal view of the .453 ; laryongeal region, d35: mowing the lower jaw, 431: o-ular region. 435: of the pharys, ib.; postero-intemal scapular region, $446:$ pos-thrior-exteral seapuar region, ih. ; posterion fomoromaral region, 45!: palatine region,
 of the neck and trunk, 436 : superficial almominal region, tot superior cervical region, 137 ; connecting the sapula with the heach. neck, and ehent, 435 ; of the shoubler and arm, internal view of, 446 : superfictal, of the neck and trank, 436 ; of the tongue, 435; of the thomax, 489 ; of the arm and fore-lege 413 ; lateral ecrucal region, 4:6; alnteal region, 4.1; postero-external lomeral rasion, 147 ; of the leg and thigh, internal view of the deep tris; of the fore extremity, external view of, the ; view of the superticial, of the head, 132 ; cutaneous, 431.

Muscular coat of the hollow viscera of the adomen, las, t seq.
Muscular system, the, 4o?.
Museulus, 429 ; adductor brevis, 402 ; adluetor longus, il. : anconeus. 417 : antea spimatus, 411 : liceps rotator tilialis, 451 ; buecinator, 433 ; canims, ily. : complexus major, 136 : compresser coceygis, 433 ; eoraco-humeratis, 145 ; crmaster, 413 ; eurvator cocegrix, 413; depressor voceygis, ib; depressor tabii inferioris, $4: 3$; depressor labii smerions, il.; diaphragma. the: dilatator naris anterior, 433: eractor coreygis, 413: extensor metacarpi magnus, 477 : extensor metacarpi whlipus, fort extensor pedis, 177: extensor sutfraginis, 449: Hexor hrachii, flo: thexur metatarsi, 4.j) thexer metacarpi extermas, 418: thexor metacarpi intemus, ih.; flexor metacarpi mendus, is. : flewor pedis accemmius, 4% : thexor pedis perforans et perforatus, 418 ; satrocmemins exterms. fin; gintrocnemins intornus, il: : gemini, il.; ghatens extermus, 4il: glutemsinternus, if.: glutus mamime, ih: gracilis, liz; humeralis extemus, 417; iliuns, 18: 子at ralis sterni, 439 : latissimus dorsi, •83-: levator humeri, ib: levator menti, 43: levator palperesuperioris, 1:31: levatores contarm, $3: 3$: levator labii superion is allefthe nasi, 432 ; longissimus
(lorsi, 414: masseter, 43t; nasalis longus labii superioris, $43=$; masa'is previs latii superioric, 433 : nano transversalis, ib.; obligume abulominis extrrums, 442 ; obliguus abulominis intermus, 4\% ; obturator extermus, ih. ; obturator intemus, ib. ; orbicularis oris, 433 ; orbi-ularic palpebrarum, 434 ; panniculus carmsuc, 431 : pectineus. 452 : pertoralis magmes, 439 : pectoralis parvus, it. ; pectoralis tramsersus, ibs peroneus, 4.4; plantaris, 4is; poplitus, il.; postea spinathes, 44; 1soas magnos, 412; psoas parvos, ib. ; pervigincus extermes, 431 : pterygoiptersembens internus, ih, priformis, 404; ralialis accessorias, foo; rectus abelominis, 441 ; rectus parms, i^{\prime}; retractor ani, 43 ; retractor lal iii superimis, 43-' ; retractor labii inforioris, 433 ; rhomboidens brevis, 439 : rhomboilens longus, 43 ; superficial costatrum, 46 ; sartorius, 420 ; scalenus, 437 ; seapmlo-lmmeralis extermes, 4.47 ; seapulohumeralis pesticus, 41 ; scapulo uluaris, $i b$. ; semi-npinalis tors, 440 ; semi-spinalis lumbormu, 44: : sorratus magnos, 439 ; sphinctor ani, 43 ; spinalis colli, 390 ; spinalis dorsi, 137 ; mhenins, 436 ; sterno-costalis, 130; sterno-maxillaris, 437°; sterno-thyrohyoileus, it. : stylo-maxillaris, 434 ; subscapularis, 445 ; sub-scapula hyoideas, 435 : temporalis, 431 ; tensor vagine femoris, 451 ; tores intermus vel major, 447 ; teres externus, ib. : trachelo-mastoidens, 437; transversalis abdominis, 411 ; transversalis costarum, 410 : trapezins, 438; triceps atductor femoris, 4.1 ; tricels extensor larachii, 440 ; trifemoro rotultens. 4.3 ; maris aceessorius, 4.40 ; zygomaticus. $43=$.

Nabcotics action of dion.
Nasal cavities, 4;9 ; oritices, io.
Natural history of the horse, 5.
Savicular disease, neurotomy for, 614; symptoms of. 611; treatment of, 613.
Naviculare, us, 3-3.
Neck, relative proportions of the, 10 .
Nephritis, cance of, 566^{7}; symptoms of, ib. : treatment of, ib.
Nerves of the stomach, 4 -2 ; supplying the abdominal viscera, 47 ; the sympathetic, 195 ; the spinal, $4!2$.
Nervons system, chitf divisions of the, 490 : distase of. $\overline{17}$: diagram of the, 491 ; of anmal life, 492: $\mathrm{p}^{\prime \prime}$ ysiology of, 40 ,
Neurotomy for navionlar disease, 614.
New Forest pony, the. 126 .
Norman charger, the, 5 .
North America, wild horse of, 39.
Norwegian hurse, the, Gif.
Noseband, the Ene phalus, 304 .
Nose, hemorrhage from the, 55.
Sumidian hosse, the. 4.
OAts, as foorl, 9.51 : hruisers, 96 ; how given, ith.: kiln dried. 2.5 : new, ib.
Object of encouragiug the brecd of racehorses, 9.5

Olontoid ligaments, 10.3 .
(E)
(F,trus equi, history of, 619 .
 charoform, 6 er) : methode of contining the lowse, 6:1: blewdins. (02: firing, 62s: sctons anl rowels, 629; blistering, 630:
eastrating, il.; docking, 633; mnnerving, 634 ; reduction of hervia, il; adminintration of physic, 635; elysters, 638 ; backraking, ih.
Ophthalmia, symptoms of, 579 ; treatment of, it.
Original British horse, the 4.
Origin of the thoroughbred horse, 70.
Os hyoides, 470 ; view of, 470-71.
Ossification of lateral eartilages, 510 ; view of, 511.

Osteo-sareoma of the jaw, ease of, 520 .
Out-erossing breerling, 166.
Otit-dow vices, 336 ; treatment of, it.
Over-reaches, stable management of, 306; treatment of, $i b$.

Paces of the manege, I5:.
Paces, natural and acquircd, of horses, 141.
Paddock, the, for brood mare. 1se.
lancreas, anatomy of the, 456 ; function of, ib.
Paralysis, nature of, 576; from injury of the spine, il. ; treatment of, 577.
Parenchyma of the lungs, 47:.
Pirk hack, the, 118 .
Parotisl gland, anatomy of, 480.
Parsnips as food, 260 .
Pastern joint, anatomy of, 418.
Pasture, nature of upland, 310 .
l'asturing, 309.
Patella, the, 385 ; dislocation of, 534 ; internal ligament of, 425 ; femoral capsule of, $4 \div 2$; external lateral ligament of, it.; middle ligament of, 493 ; internal lateral ligament of, $i b$.
Patten, the, 667.
Pease as food, 2:7.
I'sligree of Eclipse, 76 ; of H rod, it ; of Matchem, 78.
Pedis, os, 383.
Pelham, the plain, 323; the Hanoverian, ib.
Pelvis, the 384 ; boundaries of the, 488 ; bones of the, 384 ; cavity of the, 488.
Pepsine, 48.
Pericardium, anatomy of the, 461.
Perichondrium, 39:.
l'eriodical moulting of the horse, 17 .
Peiosteum, 346 .
Peritoneum, anatomy of, 476.
Peritonitis, uature of, 562 ; symptoms of, 563 ; treatment of, $i b$.
Persiau horse, the, 34.
Phaeton horse, the, 132.
1'halangeal bones, the fore, 382 ; the hind, 391 .
Phalanges, posterior view of, 383.
Phalangio-pedal articulation, 419 ; view of, $i l$.
Pharynx, anatomy of the, 480.
Phrenitis, nature of, 573.
Physic, $30-$; cooling powers of. i\%.; injurious effects of, 304 ; mode of administerius, 637; remarks on, 302 .
Physiology of the blood, 458 ; of digestion, 477 ; of musele, 429 ; of respiration, 467 ; of secretion, 478 ; of the nervous system, 490 .
liping, nature of, see roaring, 54 .?
Jisiforme, os, 380 .
Plantar artery, the, 663.
Plate, the, for racing, ti66.
Plate vein, anatomy of, 467.
1'leura, anatomy of, 45%.
Pleurisy, symptoms of, 549 ; treatment of, 550.

Pluuging, treatment of, 337.
l'neumonit, eanse of, 547 ; symptoms of, ib.; treatment of, 548.
Points of the horse, 7 .
Poll evil, nature of, 519 ; symptoms of, il.; treatment of, $i \hbar$.
Ponies, feeding of, 270.
Pony, the, $1 \cdot 7$; the Exmoor, it. ; the Highlond, il.; the Iudian, 41 ; the New Forest, 120; the Shetland, $1 \because!$; the Welsh, $1 \geq 6$.
Portuguese horse, the, 56 .
Preparation, final, of the hunter, 304 ; for work, $i \%$; of hacks for work, 305.
Pricks, from a nail picked np on the road, 617 ; in shoeing, 610 ; treatment of, in shoeing, ib.; treatment of, from a wail picked up on the road, 617.
Progression, mode of, in horses, I42.
Proportions of the various points of the horse, 5.

Prussian horse, the, 57.
Ptyaline, 482.
Puffs, treatment of. 506.
Pulmonary apparatus, component parts of, 469 ; mechamism of, ib.; glands, etc., 473; tissue, the, 472 ; reins, 467.
Purity of blood in the raceborse, 97.
Quarter, nature of false, 601; treatment of false, $i b$.
Queensbury, celebrated match made by the Duke of, 73.
Qnittor, nature of, G01 treatment of, ib.
Rabies, nature of, 574 ; symptoms of, $i b$.
haeehorse, croup of the. 101 ; back of the, ib.; back ribs of the, 105 ; belly of the, ill.; boue of the lesg of the, 108 ; coat of the, 110 : colour of the, 109 ; external formation of the, 98 ; feeding of, 265 ; flank of the, 10.7 ; fore-arm, or arm of the, 108 ; head of the, 106 ; beight of the, 109 ; hind-quarter of the, 108; knee of the, $i b$. ; loins of the, 101 ; mane of the, J 10 : neck of the, 10.5 ; object of encouraging the breed of, 05 ; purity of bloorl in the, 97 ; shoulder-blade of the, 107 ; tail of the, 110 .
Racing or hunting stable, 242.
liacks for stables, new forms of, 234 , et seq.
Radio-earpal articulation, 380.
Radius, the, 379 .
liarey's apparatus for breaking horses, 205 : halter or bridle for colts, $i b$. ; leg strap, No. I, 194 ; No. 2, 19.); method of traiuing, 192; reflections on plans of, 202 .
Rearing, management of, 337.
Rectum, anatomy of the, 485.
liefrigerants, action of, $6 \pi-2$.
Reins, management of, $: 227$.
lielative proportions of the fore-quarter, 10 ; of the head, 9 ; of the horse, ib.; of the rieck, 10.
liespiration, effect of, on atmospheric air, 458 ; physiology of, 467.
Rete mucosum, the, 408.
Rheumatism, symptoms of aente, 598 .
libs, the, 374 ; cartilages of, 402 ; treatment of fractured, 5.2 ; view of a true and false, 37.1.

Hisling, and driving, 319 ; to hounds, 333 ; to hounds, rules ablopted' in, il.; to hounds, directions for, $i \%$.; modes of starting the horse in the various paces, 3.9 ; mounting
and dismonting, $3: 1$: management of the reins in, $3=7$: hecesity of good bamls in, 389 : the seat in. 30 : starting into a gallop, 83: ; starting the horse into a jog trot in, 330 : starting into a regnlar trot in, ill.: atarting the horw into a walk in, 33? ; use of spurs in, its.
Rima glotidis, anatom y of, 171.
Kinghone, ase of, ill : insture of, ila; symptoms of, ib.: treatment of, ETl.
liond hack, the 114.
Roaring, hereditary nature of, sha ; promed hy alteration in the shape of the cartilages, it.: proxlued by thickening of the mucons membrane, il.: prodneed le paralysis of the muscles of the larsmx. if.; plan for stopling the noise made in, 2.43 .
lemanh horse, thes, 3 .
loots for the hors. -60 .
lioughing shoes, White s mode of, Giz.
liound worms, tils.
lim at grass, choice of, 311 : a winters. 313.
liuming a way, manare ment of, 33 -
limpture of the howels, see Twist, 56 .
linssian horses, the, tin.
live-grasi for soiling, 2lil.
sacro-llitc articulation, fut: ligament, ib.;
siatic ligamant, 4n; view of, it.
Sacrum, the, : si : vicw of, 14.
Sallilery, care of , 81\%.
Sadhle airer. 29 brackets, 210 ; priees of patent, il. ; method of drying. 23s: girths, $3=0$; iron sallle-howe osa : remarks on, ib.
St. Iel's measurement of Eelipse, 83.
suinfoin for soiling, 2til.
Shale of horses. remarks on, Gist.
Saliva, composition of the. fio.
Salivary glands, anatomy uf din.
sallemifersmptoms of, Es, ; treatment of. ib. salt as fuol, $\because 63$.
S: nd for lied ling, 273 .
Simulark, nature of. Gon) : treatment of. it.
Samerer. portrait of. 101 .
stawdunt for lushling, 273.
Saphoides. os, 3ol.
Frapula, the \therefore : 6.
Stap uha, profile view of, 376 : treatment of fracture of.
Scapulo-humeral articulation, 377: view of 169. Schimlylesis, 89 .
seripture the hores of, 1.
Sat in riling, direction, for, 306 .
Arecetion, physioheg ot, tir.
Sulatives, action of, ias.
somy toe, nature ami treatment of, cos.
Silling of horets. remarks on, bisl.
fensat:on, merves of shphlied to the lips, 10: Sesamoilea, osa, :'s
Scomoincal ligament, the long inferior. fle: superior. ih, : the hont inferior ligament. il.
 setons, insertion of, (29) : remarks on, ild.
Shetlam pony, the, 129 ; portrait of the, il.
shire horse, the, 183.
thoe, Mracy (lark' h hinged, C61: Mr. Goodwins improwment on the French. il.: mailing on of. (fig? remarkson the limel, ih.: the har, Cifit: the eommon Engli,h, 65:
 the half-mon. fis; the mode of fitting, dis ; : the patten, 6itia: the racing, or plate, bet : the. recommended ly Mr . Spooner, 600:
the tip, C6: : Tmeners milateral, 664: view of hind, fitis, 607: view of the bar, di66: siew of the concave-seated, (iz!): view of the French, wion; view of the, used in huming. Eiti.
Shoring, leather sole used in, 667; pieks in. 610: remarks on, il.
Shocs, lint of varieties of, 6.5-6.2 ; modes of roughing, bis, et seq. ; patent machine-mate. 667: view of patent machine-mate, 664: Whites mode of roughing, 67:.
Shouldering, the bat habit, 338 .
Shonder joint, the, 409 ; profile view of, ith.
shoulder, ohliphe, of the horse, 11 ; remarks (11 strain of, 5: S: symptoms of strain of, it.; treatment for strain of, ib.; upright, of the horse, 11.
Shying, management of, 336,
Sitilbone, nature of, 510 ; symptoms of, ib.; treatment of, il.
Side-line, description and us of, 62.2 .
Singeing, $\boldsymbol{3}-1$; lamp for, $98:$.
Sitlasts, treatment of, 566.
size, increase of, in horses, 86.
skeleton, the, 3 ts ; chief divisions of the, i^{\prime}.; in general, the, 347 ; umber of bones composing the, 349 ; the artificial, 317 ; view of the artificial, 348.
Skin, anatomy of the, 495 ; hairy appentages of the. 199 : papillie of the, 498 ; the organ of touch, 495 .
Sknll, treatment of fracture of, 52.
sleepy staggers, 5%.
Smell, anatomy of the organ of 490 .
Snaffle, the chain, $32=2$; the double monthpieced, il.: the donhe ring, ib.; the donblejointed, il. : the gag, 323 : the unjointed, ih.: the plain, $32 l$; the twisted, ih.
soiling, clover for, 260 : furze for, 261 : gors. for, il.: green fool for, 2b0: green oats for, otil: lucerne for, ith: remarkson, 30s; rye-grass for, 261 ; sainfoin for, ib, tares for, 260 ; vetehes for, ih: whins for, 261 .
Sole, anatomy of the, cols the leather for shoeing, 667: treatment of bruive of, 618,
Sore-throat, $5: 1$.
fombluess, remarks on the law of, 681 .
south American horse, the, 33 .
panish horse, the, 5ri.
Spasm of the diaphagm, symptoms of, 551 ; treatment of, il.
Sparin, nature of $\log , 524$: nature of bone, 512: symptoms of bone, ih.; treatment of hone, 511 : view of hone, 573.
Sped of the Arab horse. 30.
Erinal columm, bones composing the, 349 .
pinal corl, anatomy of the, 4!2; view of, it.
-pine, injury of the, cans ing paralysis, oi 6.
Splece, anatomy of the tef; function of, ib.
Splint, definition of, 20 : symptoms of, ib. ; treatment of, 509 : view of 508.
spurs, use of, in riding, $3: 2$.
stables, varions kinds of, $216-238$; accessories, prices of, 210-211: yellow adamantine elinkers for floors of, ais : a barrier bar for, 231 ; aspeet of, 217 ; chafientters for, $2=3$; clothing. $\because 45$; clothing. prices of. $\because 14$; coachman, 245 ; concrete for Hhors of. $2=$: best loricks for floors of, ih. : doors of $\because 3$: drainage of, -24 , et seq. : chamellem tiles for, 237 : fittings, 232 : fomblations of 218 : gramary of, 221 ; groom. $\because 6$; grooved briclis for, $2=$; ground plan
of racing or lunting, 241; harness room for, 238; hay-ehamber of, se21; height of, 219 ; implements, 2 46 ; iron mangers of, 231 , et seq.; lighting of, $2: 9$: management of, 245 ; management continued, 289 ; mangers for, 234 ; materials for mangers of, $i b$. ; materials for floors, 22s; materials for racks of 234 ; materials for walls of, 2.23 ; necessity of airing new, 243 ; oathruisers for, 256 ; plan of, for three horses. 212 ; prices of iron mangers, 236 : prices of wooden mangers, it.; proper temperature of, 289 ; concealed manger for crib-biters, 238 ; duties, reeapitulation of, 289 ; remedy for eating the litter: 294 ; remedy for kicking the wall, 291 ; remedy for tearing off the clothes, 293 ; remedy for weaving, il.: remedy for vices, 290 ; remedy for seratching the ears, 292 ; servants' rooms, 243 ; situation of, 217 ; stalls rersus lose boxes, 2.20 : superficial area of, 219; the helper, 245 : the travis, 233 ; ventilation of, 2.9 ; walls, lining of, 238 ; water-pipes for, 229 ; water supply of, ib.; windows for, il.; wooden mangers of, 230.
Staggers, mad, nature of, 573 ; mad, treatment of, ib.; stomach, nature of, 558; stomach, symptoms of, ib.; treatment of, is. 9.
Stalls versus loose boxes, 22 ; iron fittings for, 233.

Stallions, list of Freuch, 59.
Stauling, attitule assumed by horses in, 112.
Starting the horse in his various paces, modes of, $3 \div 9$.
Steeplechaser, the thoroughbred, 110.
Stench traps, $2: 7$.
Sterno-costal articulations, view of, 403.
Steruom, the, 375 ; ligaments of, 403 ; proper view of, ib.
Stifle, capsular ligament of, $4 \cdots$; erucial, ligaments of, $i v$. ; semilunar fibro-cartilages of, $4 \div 1$; lateral ligaments of, $4 \geq 2$; posterior ligament of, 423 ; synovial membrane of, 422 ; joint, the, il.; symptoms of strain of the, 476 ; treatment of strain of the, 532 .
Stimulants, action of, 653: recipes for, ill.
Stomach, anatomy of the, 480 ; arteries of the, 482; mucous membrane of the, $i b$. ; nerves of, ih.; veins of, ib.; view of, il.: staggers, nature of, 558 ; symptoms of, ib. ; treatment of, 559 .
Stomachics, action of, 653 ; recipes for, $i \%$.
Stoutness of horses in 1759, 87 .
Strain, nature of, 527 ; of the back sinews, symptoms of, 530 ; treatment of, 531 ; of the fetlock, remarks on, 529 ; of the fetlock, treatment of the, ib.; of the hip joint. symptoms of, 470 ; of the hip joint, treatment of, ib.; of the hip joint, rarity of, 532 ; of the knee, 528 : symptoms of, 520 ; of the knee, remarks on, il.; of the knee, treatment of, ib.: of the shoukler, remarks on, 528 ; of the shoulder, symptoms of, ih.: of the shoukler, treatment of, il.; of the stifle-joint, symptoms of, $53-$; of the stiflejoint, treatment ($f, i l$.; of the suspensory ligaments, remarks on, 529 ; of the suspensory ligameuts, 530 ; symptoms of, it.; of the suspensory ligaments, treatment of, ib. ; symptoms of, in the back and loins. 527; treatment of, in the back and loins, 528 .
Strangles, symptoms of, 590 ; treatment of, ib.
Strangulation of the bowels, symptoms of, 562 .

Straw-yard, the, 314.
Striughalt, nature of, 577.
Structure of bone, 344 .
Stumbling, management of, 338.
Styptics, action of, 654 ; recipes for, ib.
Sublingual gland, anatomy of, $4: 9$.
Submaxillary gland, anatomy of the, 450 .
Suffolk cart-horse, the, 134 ; portrait of the, 136.

Suffraginis, os, 383.
Summering, remarks on, 307.
Superior cervical vertebral joints, view of, 366 .
Superpurgation, treatment of, 563 .
Suprarenal capsule, the, 487 .
Suspensory ligament, 417 ; remarks on strain of the, 530 ; symptoms of strain of the, 529 ; treatment of strain of the, 530.
Sutura, 396.
Sweat, mode of giving the ordinary, 298.
Sweaters for the horse, 247 .
sweating, process and object of, 806 .
sivedish horse, the, 60 .
Swelled legs, treatment of, 587.
Symmetry, inerease of, in horses, 86 .
Sympathetic system of nerves, 495 .
Synonyms of the horse, 7 .
Synoria, 395.
Synovial membranes, 395 ; diseases of, $5: 5$
Tail, the, 351 ; bones of the, 373.
Tan, for belling, 273 .
Tares, for soiling, 260 .
Tarso-metatarsal articulation, 428.
Tarsus, the boues of, 389 ; lateral ligaments of the, 425 ; interosseous ligament of the, ib. view of, $4:-$.
Tartar horse, the, 35.
'Teeth, after nine years, 364; at nine years, il.; ; at about the eighth year, il,; at the end of the first year, 358 ; bishoping of, 362 ; composition of, 356 ; development of the, ih.; during the second year, 358 ; during the third year, ib.; horseman's nomenclature of, $i b$. ; irregularities in the growth of, 364; lower nippers and tushes at five years, 362 ; mouth at three years, 359 ; mouth at four years, it.: mouth at five years, 361 ; of the very old horse, 364 ; shedling of, between four and a half and five years, 360 ; the sis-year-old mouth, 363 ; view of the mouth at four and a half years, 360 ; view of the three-year-old mouth, 359 ; view of upper nippers and tushes at five years, 361 ; upper nippers in the eight-sear-old horse, 364 .
Temporo-maxillary articulation, 434 .
Tendinous sheaths, inflammation of, 525; sheaths, treatment of inflamed, it.
Tendons, allatomy of, 429 .
Tendons, disease of the, 523 ;
'Jetanus, nature of, 575 ; symptoms of, ib.; treatment of, 570.
Thick wind, nature of, 546 .
Thigh bone, the, 386 .
Thoracic arch, 351.
Thoracic duct, 478.
Thoracic organs, 456 ; remarks on the diseases of, 537 .
Thorax, articulations of the, 401 ; bones of the, 373 : boundaries of, 4σ : contents of, ih.; longitudinal section of the, 457 ; plan of, il.
Thorns in the leg of the hunter, treatment of, 306.

 hant r ，the，111：＂riorin ot the，Ill：stont－

 monlerth，\therefore ：the Imeriand．I7．

＇lharal worms．itl．

＇Thymus arlaml，anatomy of ther．I7B．
Thisuil huly anat mux of the ih．
Thyrull c：arthatas，：motomy uf，foll．
＇libis，view of the，3－9．
 tion．it．

＇limes mate by horves of the milllle of the

 turning tht． 312 ．
Tーur，whit．finmos．3ッ．
Fomis，action ot，（i．j）：recipusfor，it．

Tonth，setion of indivor，357．
＇Voueh，anstomy of the or ran of，fox：sense of， heresaly to the apryeretion of torm，it．
Trache：l，anatomy ot， 471.
Jrainime horers．litrey mothon of，192．

Travis，ther，of stables，ä3．
ドぃmminer，ご，
Croullot，the，117．
I＇rot，the 117 ；action in the the，i^{\prime} ：st atimer intu a， 331.
Mrottr，the American，f：；the fast．11：the Norfolk． $13:$ ．
Trotting horsos．Ammrican，peligrees of， 46 ； American，faston on recoril．IS．
Torkinh bath，description of the：end：plan of， 267 ．
＇I＇mbinh lorse，the 3）
＇Turning out，morntues for．3l｜；mondow lan I

Twitch，the 62 l ．
$1{ }^{\circ} 1.1$ ，the． 379.
I＇n iforme，ox， 3 ．
lajlateral shoe，obl．
1＂mmejng，remarkis on， 631.
F nownmlnme of the fect and legs，matohes

1 flaml hay ac foot，2－iz．
1 plamp pariture，nature of，：Blo．
1 ＂per arm bome，the， 377.
rertr，the，小ー
1 rinary caleuli， 50 o．
Frime retention of，fors：treatment of re－ teation of，it．

axillary，loit ；the plate，ib ；the superficiai hatchisl，ihe：the vertubral，il．；of the Atomatcl！，In：the manomary，467；the －
Vinat－civit，anatomy of，167 ；anturior，anatomy of，il，；ponterior，amatomy of，it．
Vinnus hloml，action of air on， 168.
Centilating shaft，：3I：winlows，23：．
Ventilution of stables， $2=9$.
Vrmaifnges，ation of，6i：1．
Virumat eart－lansu，the，53．
Vertelna at las． 36 ．
Vertetra dmota，anterior view of， 368 ；pos－

Vertelore lonly of，Bat；cervical，3to；cosey－

 of the lumbar． 371 ：greneral movements of the，foll：pronliarities of eertain cervical，
 ariti s of the limbar， $3 \overline{7} 1$ ；protile riew of ther crrvical， 3 aty．
Virt lual colnmm，aticulations of the， 397 ； ligament，intrior，il．；ligament，superior， il．
Votches for soilines．2GO．
Viras，ont－lour，i：3＋；treatment of，il．；shying，
 ih．：plangins，il．；rumning away， 33 ； －tumblinit，il．
Yivila，mucular coat of the hollow， 177.
N＂A．K，ation of the 145 ；morle of starting the horse into，：＂：
W゙alkins，rate oll， 320 ．
Wall，st able，to be lined，238．
Warts，removal of．Nis．
Witer，remarks on． 261 ：proper quantity of， $\because 3$ ；proper temperature of，$\because 64$ ；supply of， for stalles．．2．t．
Waterpipe for stahles， 229.
Wraving，remetly for，ed3．
Wirght，dintribution of，in horses， $1 / 1$.
Welsh pany，tho． 120 ．
Westeru hemisph re．horses of the， 38 ．
Whe：at as food for the horse．25－
Wheat straw for bolding，271．
Wherzing，nature of． 540° ．
Whins for suiling，2é
Whast ling．nat ure of， 546 ．
Wild horec of Imerics，Mr．Herbert＇s account of the，：3：；of Nonth America，ib．
Will＇lartar homese，the，35．

Wimoluws fom stables，ze？！）
Winters rim， 3 ：
Withers，nature of fistula uf． 517 ；symptom； of tistmla of it．：treatment of fistula of， 518.
Work，prepration for，：94t tratment of the lorse after．：3．5．
Worms intestinal，GIS ：symptoms of intestin－ al．il．：treatment of intertinal，ib．
Worm m＂dicincs，ation of， 65 t ．
Wombls of joint：siz．

[^0]: ${ }^{1}$ The teeth are not strictly speaking bones, but as the general reakr usually regarde them as such, and the distinction is a purely scientific oue, we have allowel them to count in the usual way

[^1]: 1 Anterior maxallary bone.

 alges slightly worn.
 3. 9. C'orner fermanemt nijyers, in a stite on

[^2]: 1. Tibia.
 2. 2. Articulatory surfapps.
 1. Tuberosits.
 2. Sinne.
 3. External malle lus.

 B. Fibula.
 C. Us ealcis.
 4. Point of hock.
[^3]:
 -uMmos tu the Vertebre.
 2. 2. Bulins of vertelrit.
 a. 3 . ${ }^{\text {minnes }}$
 4. 4. Trancyerse processes.
 B. Hewn of the berly.
 (i. Whatime jromss.
 \therefore Hule of combigition.
 8. Cilenoid cabity.
 a. Supra-spums lipament.

 1II. Dutra-sjinnms lyment.
 11. Interwestubral hibroctart aner.

 1:. 12. Inferior common vertebrial ligament.

[^4]: ${ }^{1}$ Under certain eireumstances, lame and otherwise injured horses prove the possession of those movements claimed by Chauveau, but only to a very limited extent. - Ediror.

[^5]: ${ }^{1}$ Chanveau's arrangement is now generally accepted. For the detailed anatomy of the muscles see McFadyean's Anutomy of the Horse.

[^6]:

 1. Antoa spinatna.

 8, 1. Sajuhn hum qulis extomus.

 2. Tria elis atumar hrathii (calut has mam)
 3. I'a Luralis Irambiorsus, divulal.

 ©. Flowor brachai.

 4. Hummerilis at rams.
 inveltion.
 5. Eiva'mar shlfarinio.

[^7]: ${ }^{1}$ It is often observed that horses breathe through an open mouth shortly before they die.

[^8]: A. A. Large intestines.
 B. B. B. B. Small intestines.
 C. C. C. Pritnheum covering intestines.

 1. 2. Ieritoneum lining the walls of the abdomen.
 E. E. Fulls monecting the larg intwotine with the parietal deritunema, called mesocolun.
[^9]: a Abtarior tormination of the longitminal tissure.

 c. c. r. Corg tha callustm.

[^10]: 1 'The editor has hat hundreds of monered hurses muler observation, but faterl to discorer ant difference in their manner of using the front feet, to ascertain the nature of an object in which they were intereated. Jhe they not employ the feet merely to move ath ulyeet for better in-pection or more convenient application of the lips:

[^11]: ${ }^{1}$ As rabies is now known to run its course and end fatally in less than ten days, the afflicted horse may be given the benefit of the doubt, provided he is rendered secure against inflieting injury upon his attendants or other animals.

[^12]: Take of Ccrate of Superacetate of Lead 2 ozs.
 Creosote.
 10 drops. Mix.

[^13]: ${ }^{1}$ Alcohol, ether, and chloroform.

[^14]: ${ }^{1}$ It is not fomm in practice to interfere with the health of horses at grass，as col lateral citedation is estahlished and effectual．

[^15]: 1 Since the above lines were pemed the Royal Agrieultural Society of Figland has passed a resohtion which will have the ettect of grathally disqualifying horses which have hat their tails docked. It may be hoped that docking for fashionss sake only will fall into desuetude.

[^16]: 7. Anompe Dmam ron C'ma-

 Linsed Oil. 1 pint.
 (i) of 'lurpentine 1 to 2 ounces.

 Lambaum 1 to 2 ounces.
 Mix, and give every hour thl relief is atlorded.

[^17]: 1 The Art of Horse-Shoeing : A Menual for Farriers.
 ${ }^{2}$ Horse-Shoeiny, and the Morse's Foot.

[^18]: 1 Manufactured by the British and Colomial Hurse-shoe and Machiae Company.

[^19]: ${ }^{1}$ Extract from a letter of Messrs. Tattersall, dited 1S90.-Ediror.

