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HOW WELL DO ECONOMISTS FORECAST STOCK MARKET PRICES?
A STUDY OF THE LIVINGSTON SURVEYS

ABSTRACT

Using the Livingston surveys for the forecasts of the Standard and

Poor's Composite Stock Market Index from June 1955 through June 1985, we

find that stock market forecasts are statistically unbiased and minimum

error variance estimators. These findings contrast with earlier studies,

and are generated (at least in part) by an improved computational algori-

thm.
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value of the stock market index (base index) at the time predictions are

made (denoted by time t' in Figure I). In order to compute stock market

rates of return forecasts, prior studies usually assume that the survey

participants create their predictions at the end of May (November) for the

June survey (December survey). For example, in Figure I, each survey

participant is assumed to generate the December 31, 1980 (denoted by t+1)

stock price forecast based upon information available as of May 31, 1980

(denoted by t" ^ t'). Since stock market data are constantly changing,

sometimes substantially in short time intervals (i.e., between t" and t'),

computed stock market rates of return forecast over the t" to t+1 time

period are likely to be "noisy" and statistically suspect.

In order to avoid the choice of a base index, we employ an alterna-

tive method for computing expected stock market rates of return. We

define the expected forward stock market rate of return from time t+1 to

time t+2 in equation (1):

(1) 1 + E t .[ t+1Rt+2 ] = Et

Pt+2

"^+7

where E t
» is the conditional expectations operator at the time the pre-

diction is made; t+l^t+2 *s tne rate °^ return from time t+1 to time t+2;

and P^+4 is the stock market index level at time t+j

.

We assume that stock prices follow a random walk which implies that

(2) Et .[ t+1Rt+2 ]
= Et .[ tRt+1 ].

We define ft as 1 + the risk-free interest rate at time t'; and zt as

z

E t 'i Pt+2)

t E
t
.[Pt+1 ]
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where E t »[Pt+ jJ
and Et '[Pt+2] are stock market index forecasts from the

Livingston surveys.

The expected forward rate in equation (1) and zt are not necessarily

the same because the forecasts of P^+i and P^+2 may not be statistically

independent. To adjust for non- independence, we employ a second-order

Taylor series expansion of equation (1) around (E t »[Pt+ ^], E t »[Pt+2l)j anc^

express the expected rate of return over the t+1 to t+2 time period,

^t' I t+l^t+2^ »
as ecluat i°n (3) (see Appendix A):

(3) 1 + Et .[ t+1Rt+2 ]
= zt

(zt -l)(zt -ft )

+

ezj: - (zt -i)

= i + Et 'URt+i]

where 9 is the relative risk aversion parameter, and is assumed to be the

same across all individuals.

Equation (3) is our algorithm for computing expected stock market

rates of return. We use six-month Treasury bill rates at the beginning

of June and December in each year for the risk-free interest rates.

2
If individual respondents for each survey provided six-month fore-

casts for the Consumer Price Index, the Industrial Production Index and
Gross National Product, and the six-month and twelve-month forecasts for
the stock market index, expected stock market rates of return are computed
using equation (3), assuming that 8 = 1, 2, .... 10, and •». The number of
qualified participants for our analysis varies from survey to survey from
a low of 29 in the June 1980 survey to a high of 50 in the December 1962
survey, resulting in a total of 2,348 usable responses from 61 surveys.
Though the S&P Composite Index forecasts start with the June 1952 survey,
the first six surveys are omitted from our analyses because of insuffi-
cient number of respondents.
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II. EMPIRICAL ANALYSIS

Our empirical results focus on three principal areas. First, using

the simple average forecast of all participants for each of the Livingston

surveys from June 1955 through June 1985, we test if Livingston stock

market forecasts are statistically unbiased. Second, using individual

forecasts for each of the surveys, we test if Livingston forecasts are

minimum error variance estimators. Third, we show that prior tests for

the informational efficiency of the Livingston stock market forecasts are

likely to be misspecif ied.

A. Unbiasedness

In order to simplify our notation, hereafter, E*.' = E t and ^R^+l =

Rfc+l* The null hypotheses for unbiasedness require jointly that o = and

6=1 for ordinary least squares (OLS) regression (4):

(4) Rt+1
= a + 6 Et [Rt+1 ] + nt+1

where the dependent variable is the realized semi-annual rate of the re-

turn for the S&P Composite Index (at the end of June and December) without

dividend yields.

In Table I, we report OLS results from the testing of unbiasedness

for different risk aversion parameters (Panel A) and for alternative sub-

periods (Panel B). In brief, we reject neither (i) a = 0, (ii) 6=1, nor

(iii) the joint hypotheses of a = and 6=1. Our statistical findings

Since expected dividends are not included in the stock market index
level predictions, the realized stock market rates of return should not include
dividend yields. Otherwise, the residuals from the OLS regression (4) would be
spuriously autocorrelated.



for unbiasedness are robust for different assumed values of the risk aver-

sion parameter (Panel A), and for different sub-periods (Panel B).

For convenience of the readers, the lower part of Panel B restates

the regression results of the prior studies by Lakonishok, Brown and

Maital, and Pearce. We can use equations (4-b-2) and (4-b-3) to compare

our findings directly with those of Brown and Maital, and Pearce. While

equations (4-b-2) and (4-b-3) can not reject unbiasedness for the

Livingston stock market forecasts data, the earlier studies do. We attri-

bute the difference between the current study and earlier studies to our

improved algorithm for computing expected stock market rates of return.

OLS will be inappropriate for testing unbiasedness if stock market

forecast errors are autocorrelated. Brown and Maital find that their

estimates of expected stock market rates of return have significantly

autocorrelated forecast errors, and therefore employ GLS for testing un-

biasedness. However, we find, as shown by the values of Durbin-Watson

statistics in Table I, Panels A and B, the residuals (i.e., the forecasts

errors) are statistically uncorrelated over time. We suspect that the

high autocorrelation of the residuals found by Brown and Maital may be

attributed to their computational algorithm. In brief, we cannot reject

OLS as an appropriate method for testing unbiasedness.

To save space, Panel B reports our results for a "meaningful" value of
the risk aversion parameter, 6 = 3.0. Merton (1980), for example, shows that 8

is 3.2.

We also find the forecast error to be uncorrelated with the lagged
forecast error:

Rt " Et-l[ Rt] = °- 005 " °- 025 ( Rt-1 " Et-2[ Rt-lD
(0.329) (-0.190)

(Adj R2 = -0.01, DW = 2.01)

where t-statistics are in parentheses below coefficient estimates.
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B. Adaptive Expectations and Minimum Error Variance Forecasts

Muth (1960) demonstrates that if the underlying stochastic process is

a random walk, expectations formed adaptively are minimum error variance

(rational) forecasts. The null hypothesis for adaptive expectations (AE)

for stock market returns requires that < 6 < 1 for OLS regression (5):

(5) AE
t
[Rt+1 ]

= B(R
t

- E^IR^) + |i
t

where A is the first order time difference operator.

Changes in expected (required) returns cause changes in realized

stock prices (i.e., determine realized returns) and, thus, forecast

errors. Hence, the AE model as specified in equation (5) contains an

intertemporal simultaneity bias. Since Rt at any point in time is exoge-

nous to each participant, we can test the AE model by using individual

participant cross-sectional data for each of the Livingston surveys.

The adjustment coefficients, B's, arc not necessarily the same across

individuals. For simplicity, we assume that the larger individual fore-

cast error, the smaller will be the adjustment coefficient:

B 1 = fi/0 1

where o* is the estimated standard deviation of individual i's forecast

errors .

"

In Table II, we report OLS results for the AE hypothesis for each of

the surveys from June 1955 through June 1985. From the sixty-one regres-

sion results, 60 coefficient estimates for 6 are inside the anticipated

unit interval (i.e., < G < 1); and 54 of these estimated coefficients

are statistically significant. The Livingston stock market forecasts are

We compute o for respondents who participated in at least 10 surveys
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consistent with the AE hypothesis, and, to the extent stock market prices

follow a random walk, appear to be minimum error variance estimators.

C. Informational Efficiency

If forecasters fully utilize available information at the time pred-

ictions are made, forecast errors should be uncorrelated with lagged

information. Brown and Maital and Pearce regress Livingston stock market

forecast errors on "many" lagged information variables. Pearce finds that

lagged money supply and government expenditures are statistically corre-

lated with the forecast errors, and asserts that Livingston stock market

forecasts are informational ly inefficient.

As discussed previously, forecast errors are also determined by

changes in the required return. The simple time-series relationships

among the forecast errors and lagged information variables (no matter how

many there are) are likely to be fraught with intertemporal simultaneity-

model specification problems. For example, suppose that the stock price

is determined by the constant growth model, equation (6):

(6) In Pt
= In Et [xt+1 ]

- In (Et [Rt+1 ]
- g)

where x is cash flows to shareholders, and g is the growth rate of expect-

ed cash flows. Since Aln Pt
~ Rt , we can express equation (6) as

Rt = SjAEtlXt+i] - 6
2
AEt [Rt+1 ]

where 6's are positive capitalization factors. The forecast error will be

(7) Rt - E^tRJ * e^E^x^] - Et [Rt+1 ]
- (6 2 -l)AE t [ Rt+1 ] .

If lagged inflation were to represent available information, and

since inflation is autoregressive, lagged inflation (TT
t _^), current real-
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ized inflation (TT
t ) and current expected inflation (E

t
[TTt+ j]) are inter-

correlated. Since Et [irt+ ^] determines E
t
[Rt+ ^], tt^-1 w^l De positively

correlated with E*. [ R-t+1 i
• Given this positive correlation, equation (7)

illustrates that without controlling for E
t
[R^+ i], lagged inflation would

appear to be negatively correlated with the forecast error.

Equation (8), estimated using OLS, illustrates the "spurious"

relationship.

(8) Rt
- E^IRJ = c + 2.114 AE t [xt+1 ]

- 1.426 it^
(3.269) (-1.843)

(Adj R 2 = 0.15; DW = 2.22)

where t-statistics are in parentheses below coefficient estimates, and

inflation is lagged six month (from April or October to ensure its availa-

bility to the forecasters).

Equation (9), estimated using OLS, demonstrates that lagged inflation

will become statistically insignificant for explaining the forecast error

by adding E t [Rt+ ^] to regression (8).

(9) R
t

- E
t _ 1

[R
t ]

= c + 1.887 AE
t
[xt+1 ]

- 0.930 E
t
[Rt+1 ]

- 0.143 wt_j
(2.846) (-1.369) (-0.118)

(Adj R 2 = 0.17; DW = 2.26).

Taken together, regressions (8) and (9) show that a simple time-

series relationship between the forecast error and lagged information

variables may not necessarily be used to test informational efficiency.



III. SUMMARY

We find that the Livingston stock market surveys are statistically

unbiased estimators of realized stock market rates of return; and we

attribute the difference between our study and earlier studies (at least

in part) to an improved algorithm for computing expected rates of return.

We, also, find that the Livingston stock market forecasts are "adaptive."

To the extent stock market prices follow a random walk, this finding

implies that the Livingston stock market forecasts are minimum error vari-

ance (rational) estimators. Finally, we illustrate that a simple time-

series relationship between the stock price forecast error and lagged

information variables is unlikely to provide a meaningful test for the

informational efficiency.



10

REFERENCES

Brown, Bryan W. and Shlorao Maital, "What Do Economists Know? An Empirical
Test of Experts' Expectations," Econometrica , (1981), pp. 491-504.

Cowles, Alfred 3rd, "Can Stock Market Forecasters Forecast?" Econometrica ,

(1933), pp. 309-324.

Lakonishok, Joseph, "Stock Market Return Expectations: Some General
Properties," Journal of Finance , (1980), pp. 921-930.

Merton, Robert C. , "On Estimating the Expected Return on the Market,"
Journal of Financial Economics , (1980), pp. 323-361.

Muth, John F. , "Optimal Properties of Exponentially Weighted Forecasts,"
Journal of the American Statistical Association . (1960), pp. 299-306.

Pearce, Douglas K. , "An Empirical Analysis of Expected Stock Price Move-
ments," Journal of Money, Credit, and Banking , (1984), pp. 317-327.



APPENDIX A

COMPUTATIONAL ALGORITHM FOR EXPECTED STOCK MARKET RATES OF RETURN

We define

(A-l) Et .[ t+1Rt+2 ] * Et
t

t+2

t+1

The second-order Taylor series expansion of equation (1) around

(Et .[Pt+1 ], Et .[Pt+2 ]) yields

11

(A-2) Et
.

t+2

t+1

= zt +
zt VARt .(Pt+1 ) - COVt .(Pt+1> Pt+2 )

(Et '[Pt+ l])
2

where VAR and COV are conditional variance and covariance operators.

By our random walk assumption for stock prices, COVt (P^+l' ^t+2^

VARt »(Pt+ j), and E t »[ tRt+ jJ
= Et »

[ t+l^t+2^ * Equation (A-2) becomes

(A-3) 1 + E
t «[ t

Rt+1 ]
= z

t
+

= zt +

(zt -l) VARt .(Pt+1 )

(E t '[P t+l])
2

(zt -l) VARt
.( tRt+1 )

(1 + Et .[ tRt+1 ])
2

Using the capital asset pricing model, we generate equation (A-4):

(A-4) 1 + Et .[ tRt+1 ]
- ft

= 6 VARt .( tP t+1 )

where ft is the risk-free rate at the time the forecast is made, and 8 is

the relative risk aversion parameter. By substituting equation (A-4) for

the unobserved VAR t »( tRt+1 ) in equation (A-3), we create equation (A-5):
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(A-5) (1 + E t .[ tRt+1 ])
3 - z t (l + E t .[ t Rt+1 ])

2
- 8

_1
(1 + E t .[ tRt+1 J)

+ 9
-1

(zt -l)ft = 0,

We linearize equation (A-5) around zt , and, then, solve for

1 + Et'lt^t+ll' ^e s°lut i°n produces equation (3) in the main text



Figure I

Livingston Survey Chronology and Forecasting Horizon:
An Example of the June 1980 Survey

presumed unknown forecasting "six month" "twelve month"
base index base index horizon predictions predictions

as of as of begins at as of as of

5/31/80 ? 6/30/80 12/31/80 6/30/81

t+1 t+2

At time t
1

(late May or early June), survey participants make predictions for
the levels of the stock market index at time t+1 and t+2, P^+i an<^ ^t+2*



Table I - Testing Unb iasedness

Rt+1 = a + B E t [Rt+1 ] + Ht+1

(standard errors are in parentheses)

Panel A (Surveys from June 1955 through June 1985).

Risk Aversion
Eq. No. Parameter,

8

F for
Adj R2 a = and C = 1 DW

4-a-l

4-a-2

4-a-3

4-a-4

4-a-5

4-a-6

1.0

3.0

5.0

7.0

9.0

0.003 0.968
(0.021) (0.461)

0.006 0.962
(0.020) (0.465)

0.007 0.959

(0.020) (0.465)

0.007 0.957
(0.020) (0.465)

0.007 0.956
(0.020) (0.464)

0.008 0.937
(0.021) (0.461)

0.054

0.052

0.052

0.051

0.051

0.049

0.009

0.054

0.069

0.076

0.080

0.104

2.062

2.070

2.072

2.072

2.073

2.073

Panel B.

Eq. No. Surveys
F for

Adj R 2 a = and C = 1 DW

4-b-l 1960.06-

(8 = 3.0) 1985.06

4-b-2 1961.12-
(8 = 3.0) 1977.12

4-b-3 1955.06-
(8 = 3.0) 1980.06

Brown and Maital a

(1961.12-1977.12)

Pearceb

(1954. 12-1980.06)

Lakonishokc

(1946.06-1974. 12)

-0,.0004 0,,978

(0,,025) (0,,551)

-0. 019 1,,164

(0,.032) (0,,755)

-0,,001 1,,137

(0.,021) (0,,484)

0,,084 -0. 33

(0. 083) (0. 82)

0. 084 0, 027

(0. 005) (0, 033)

0. 031 0. 553

(0 017) (0. 250)

0.041

0.041

0.083

N.A.

0.0003

N.A.

0.003

0.216

0.052

N.A,

472.495

5.207

2.114

2.116

2.144

N.A,

N.A.

N.A.

Brown and Maital use average forecast data to estimate their results using
GLS. They report that first-order autocorrelation of the residuals from
their OLS regression is -0.31.
Pearce uses individual forecasts by pooling cross-section and time-series
data.
Lakonishok uses average forecasts. Since Dow Jones 30 Index predictions were
made in the surveys from June 1946 through December 1951, we cannot compare
our findings with Lakonishok' s study for his entire sample period.



Table II - Testing Adaptive Expectations

AE^[Rt+1 ] = ot + Bt [(Rt - EJ.^RtD/o 1
} + u*

(t-statistics are in parentheses)

Surveys from June 1955 through June 1985

Survey B, Adj R' Survey B, Adj R'

1. 55.06 0.109 [4.228) 0.457 31. 70.06 0.072 [2.565) 0.227

2. 55.12 0.057 [1.578) 0.064 32. 70.12 0.061 [2.358) 0.202

3. 56.06 0.083 [4.578) 0.487 33. 71.06 0.065 [1.977) 0.122
4. 56.12 0.011 1[0.359) 0.039 34. 71.12 0.090 [4.841) 0.529

5. 57.06 0.086 [3.746) 0.343 35. 72.06 0.090 [2.219) 0.164

6. 57.12 0.068 1[2.814) 0.198 36. 72.12 0.189 [4.856) 0.518
7. 58.06 0.093 1[5.248) 0.478 37. 73.06 0.147 1[4.450) 0.461
8. 58.12 0.114 1[3.680) 0.317 38. 73.12 0.132 [3.681) 0.343
9. 59.06 0.130 I[4.228) 0.368 39. 74.06 0.125 [7.587) 0.694

10. 59.12 0.082 1[3.094) 0.217 40. 74.12 0.088 [2.360) 0.145

11. 60.06 0.153 1[7.405) 0.620 41. 75.06 0.067 1[2.562) 0.176
12. 60.12 0.135 ([6.393) 0.563 42. 75.12 0.085 [3.511) 0.311
13. 61.06 0.120 ([3.882) 0.343 43. 76.06 -0.003( -0.068) -0.043
14. 61.12 0.032 ([1.240) 0.018 44. 76.12 0.164 1[5.812) 0.577
15. 62.06 0.051 ([1.695) 0.065 45. 77.06 0.122 1[4.513) 0.468

16. 62.12 0.092 ([5.544) 0.482 46. 77.12 0.094 1[2.145) 0.146
17. 63.06 0.068 ([3.104) 0.236 47. 78.06 0.104 1[4.369) 0.501
18. 63.12 0.086 (;4.633) 0.390 48. 78.12 0.070 1[2.439) 0.207
19. 64.06 0.104 (;3.355) 0.268 49. 79.06 0.060 1[1.938) 0. 121

20. 64.12 0.115 ([5.716) 0.490 50. 79.12 0.098 I[4.386) 0.465

21. 65.06 0.095 (;4.072) 0.320 51. 80.06 0.079 1[2.626) 0.211
22. 65.12 0.064 ([2.347) 0.111 52. 80.12 0.074 1[2.297) 0.169
23. 66.06 0.093 (.4.609) 0.373 53. 81.06 0.093 ([5.099) 0.521
24. 66.12 0.143 ([4.570) 0.399 54. 81.12 0.107 1[2.996) 0.266
25. 67.06 0.063 ( 2.910) 0.237 55. 82.06 0.088 1[1.988) 0.123

26. 67.12 0.200 ( 4.948) 0.495 56. 82.12 0.146 ([2.994) 0.275
27. 68.06 0.206 (.4.807) 0.501 57. 83.06 0.134 ([5.734) 0.592
28. 68.12 0.166 ( 7.416) 0.675 58. 83.12 0.131 ([4.068) 0.425
29. 69.06 0.111 ( 0.952) 0.004 59. 84.06 0.072 ([1-517) 0.067
30. 69.12 0.204 ( 9.791) 0.811 60. 84.12 0.143 (;3.881) 0.468

61. 85.06 0.172 (;2.543) 0.296













HECKMAN
BINDERY INC.

JUN95
| Bound

-To -VU.*
R MANCHESTER.
INDIANA 4696^




