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PREFACE TO THE SECOND EDITION

In this edition it has been possible to add new material which

the author has found necessary in his present courses. This

consists principally of graphical methods of solving certain

practical problems, the determination of the economic size of

pipe, and problems of flow through compound pipes, branching

pipes, pipes with laterals, and through rotating channels. The
treatment of various topics has also been extended in many
sases, and certain other portions have been rewritten where

sxperience has indicated that this was desirable for greater

sffectiveness.

The author has been aided in this revision by the helpful

suggestions of many individuals and in particular of Professor

F. G. Switzer of Cornell University. R. L. D.

TROY, N. Y.,

May, 1919.





PREFACE TO FIRST EDITION

This book has been prepared as a text for students who are

required to cover a wide fieldin hydraulics in a limited amount of

time. Therefore the treatment has been made as brief and con-

cise as is consistent with clearness. Attention has been given

mostly to matters which are of fundamental importance and

but little space has been devoted to those things which are of

small practical value, except where necessary to illustrate basic

principles. As a step in saving the student's time a liberal use

has been made of diagrams, curves, and half-tones. These

not only save words but often give a clearer idea at a glance than

can be obtained in any other way.
The treatment throughout has been made as consistent as is

possible. The solution of all problems involving the flow of

water is made to depend upon applications of Bernoulli's theorem,
which is the key to a rational treatment of the subject. The
student is not told in the very beginning that V = V^gh and

then compelled to unlearn it later. Experience in the class room
has shown that many students will persistently apply that

formula whether it fits the case or not. By deriving it at a

later time by an application of Bernoulli's theorem, they will

more readily see that it is a very special case and thus realize

more fully its limitations.

An effort has been made to avoid special cases so far as is

possible. The treatment in the text and the equations are for

the most part perfectly general. Special cases are given only

when necessary to illustrate the application of some general

principle, or where a special case makes some proposition clearer,

and when the general treatment is too complex. But the at-

tention of the reader is called to the fact that the equations there

given are not universally applicable.

Class-room experience has shown that very few students ob-

tain a true physical conception of the subject of hydraulics. To
most of them, even some of the best, it is very largely an abstract

subject. This is partly due to the fact that, with their limited

experience and observation, they have actually seen but few of

vii



viii PREFACE

the things with which the book deals and hence they can form

no adequate mental picture of the physical facts. In order to

overcome this, so far as possible, a large number of illustrations

from photographs have been employed. As a further step in

implanting a true physical idea in the mind of the student, a

great deal of care has been exercised in the arrangement and pre-

sentation of the subject and a constant attempt has been made

to connect one part with another. In many cases the problems
have been taken from actual practice and have also been ar-

ranged so as to be instructive in themselves.

In considering turbines and centrifugal pumps the first es-

sential is to convey a fair idea as to the general appearance,

construction, and arrangement of such machines and possibly

some simple features of their operation, since it is useless to

plunge directly into a mass of equations which are no more than

mathematical gymnastics to most students. The second step

should be the presentation of the principles of operation together

with a general idea as to actual characteristics. These facts

could then be explained by as much theory as one had time to

go into. In this text but very little theory has been given and

that of the simplest kind, though it is believed that what is given
is both general and rational. By the aid of this theory the nature

of the characteristics of these machines can be accounted for.

After that one is ready to take up certain very useful and prac-

tical commercial factors by the aid of which one can classify

turbines or pumps, can compare one type with another, and

can make an intelligent selection of the best type for certain

conditions.

The simple theory of hydraulic machinery that has been given
here covers about all that is really useful in a text of this scope.

The design of turbines and pumps is too empirical, and requires

too much judgment and experience backed up by a good supply
of test data, to be expressed by a few equations. Any brief

treatment of this phase of the subject would be false and mis-

leading, hence it has been omitted. For any more extended

treatment of these subjects the reader is referred to other publi-
cations of the author.

The main idea underlying the entire text has been to present
fundamental principles. After this ground has once been cov-

ered, those who desire to specialize in hydraulics are prepared to
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study certain topics more intensively. The devotion of con-

siderable space to an account of experiments and test data is

unwarranted here, though the student should not lose sight of

the fact that the study of such is desirable when important work
is undertaken. However, a sufficient amount of information

on experimental coefficients and empirical factors has been given
so that a correct idea may be formed both as to the range of

values arid the considerations that enter into the choice of a

suitable value for a given case.

Very naturally some very important topics in practical hydrau-
lics have been omitted, altogether or treated very briefly and

superficially because they did not involve fundamental principles

and hence were not within the scope of this text, or else were of

such a nature as to belong to advanced treatises. The final

apology which the author makes for this work is that it has been

prepared primarily to meet the needs of his own classes.

The author wishes to acknowledge his indebtedness to the

various parties whose names are attached to certain of the

illustrations for their kindness in furnishing the same. He is also

indebted to E. H. Wood, Professor of Mechanics of Engineering
in Sibley College, and to D. R. Francis, Instructor in Sibley

College, for valuable assistance in the criticism of the manu-

script and the reading of the proof. R. L. D.

ITHACA, N. Y.,

April, 1916.
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NOTATION

A = angle between V and u (Fig. 142)
a = angle between v and u (Fig. 142)
c = coefficient of discharge or coefficient of flow

ce = coefficient of contraction

cv = coefficient of velocity
D = diameter of turbine runner or pump impeller in inches

d = diameter of pipe in feet

d" = diameter of pipe in inches

e = efficiency

6h = hydraulic efficiency

em = mechanical efficiency

ev = volumetric efficiency

F = area in square feet; in turbines and pumps it is the total area of the

streams measured normal to the absolute velocity of the water

/ = friction factor in pipes
= area in square feet in turbines or pumps measured normal to the

relative velocity of the water
G = any weight in pounds
g = acceleration of gravity in feet per second per second
H = total effective head in feet,

= p + z + V*/2g
H' = any loss of head in feet

h = head in feet

/ = moment of inertia

k = any coefficient of loss

I = any length in feet

m = hydraulic mean depth (or hydraulic radius) in feet

N = revolutions per minute

N, =
specific speed, = N X VB.hp./h*4

n = factor in Kutter's formula
= any abstract number

P = total pressure or force in pounds
p = intensity of pressure in feet of water

p' =
intensity of pressure in pounds per square foot

p" = intensity of pressure in pounds per square inch

q = rate of discharge in cubic feet per second
r = radius to any point in feet

8 = slope of hydraulic gradient, = H'/l
= tangential component of absolute velocity, = V cos A

T = torque or moment of a force in foot pounds
u = linear velocity of a point in feet per second

V = absolute velocity of water (or relative to earth) in feet per second

XV



xvi ABBREVIATIONS

v = velocity of water relative to some moving point in feet per second

W = pounds of water per second, = wq
w = density of water in pounds per cubic foot

z = any vertical distance in feet; in measuring "head" it is a vertical

elevation above any arbitrary datum plane

= ratio of peripheral speed of turbine runner or pump impeller to \/2gh

<f> e
= value of <f> for which the maximum efficiency is obtained

w = angular velocity in radians per second, = 2-jrN/QQ = u/r

Values of quantities at specific points will be indicated by subscripts.

In the use of subscripts (1) and (2) the water is always assumed to flow

from (1) to (2).

ABBREVIATIONS

G.P.M. = gallons per minute

Sec. ft. = cubic feet per second

R.p.m. = revolutions per minute

Hp. = horsepower

B.Hp. = brake horsepower = D.Hp.

W.Hp. = water horsepower



HYDRAULICS
CHAPTER 1

INTRODUCTION

1. Definition of Subject. Hydromechanics is the science of

the mechanics of fluids. It may be subdivided into three

branches: Hydrostatics is the study of the mechanics of fluids

at rest, hydrokinetics deals with the flow of fluids, while hydro-

dynamics is concerned with the forces exerted by or upon fluids

in motion.

Hydraulics is practical hydromechanics, that is, it is the study
of the applications of hydromechanics to engineering problems.

1

While it might deal with any fluid it is generally restricted to

liquids and especially to water.

By idealizing conditions and ignoring phenomena that are

known to exist, it is possible to study hydromechanics as a subject
in pure mathematics. But naturally the results of such studies,

though interesting, are often of little practical value. The
determination of actual results by rigorous mathematics is often

impossible because of the fact that the exact nature of certain

hydraulic phenomena are either unknown or if known are

so complex that it is not feasible to express them as mathematical

functions. We must, therefore, resort to a combination of rigid

mathematics, empirical expressions, and experimental coeffi-

cients. The science that results, based partly upon pure reason-

ing and partly upon experimental evidence, is called hydraulics.

It is seen that hydraulics is not an exact science. In its actual

applications much depends upon the judgment and the ex-

perience of the engineer. In many cases it is necessary to

compute or estimate results for which satisfactory experimental

data is lacking. And in applying any experimental factors or

empirical formulas it is well to have some familiarity with the

1 The derivation of the word "hydraulics" means "flow of water in a

pipe" but usage has given the word a much broader significance.

1



work upon which they were based in order to judge as to their

application to the case in hand.

2. Distinction between a Solid and a Fluid. The distinction

between a solid and a fluid is ordinarily quite clear but there are

plastic solids which flow under the proper circumstances and

even metals may flow under high pressures. On the other hand,
there are certain very viscous liquids which do not flow readily

and it is easy to confuse them with the plastic solids. The
definition of a fluid as a substance which flows must be extended

therefore. The distinction is that any fluid, no matter how vis-

cous, will yield in time to the slightest stress. But a solid, no

matter how plastic, requires a certain magnitude of stress to be

exerted before it will flow.

Also when the shape of a solid is altered by external forces the

tangential stresses between adjacent particles tend to restore the

body to its original figure. With a fluid these tangential stresses,

which are proportional to the viscosity, can act only while the

change is taking place. When motion ceases the tangential

stresses disappear and the fluid does not tend to regain its

original shape.

3. Distinction between a Gas and a Liquid. A fluid may be

either a gas or a liquid. A gas is quite compressible and when
all external pressure is removed it tends to expand indefinitely.

A gas is, therefore, in equilibrium only when it is completely en-

closed. A liquid, on the other hand, is relatively incompressible
and if all pressure, except that of its own vapor, be removed the

cohesion between adjacent particles holds them together so that

the liquid does not expand indefinitely. Therefore, a liquid may
have a free surface, that is, a surface from which all pressure is

removed, except that of its own vapor.

The volume of a gas is greatly affected by changes in either

pressure or temperature or both. It is usually necessary, there-

fore, to take account of changes in volume and temperature when

dealing with gases. Since the mechanics of gases is largely one of

heat phenomena it is called thermodynamics.
The volume of a liquid is affected to a very small extent by

changes in pressure or temperature and for most purposes the

changes in volume or temperature may be ignored.

4. Compressibility of Water. Water is usually said to be

incompressible and as compared with gases it is relatively so.

But it is much more compressible than many solids such as steel

or even wood where the elastic limit is not passed. Its bulk or



INTRODUCTION 3

volume modulus of elasticity, the ratio of the change of pressure

per unit area to the change per unit of volume, is

Ev
= 294,000 Ib. per sq. in.

This value holds only for pressures below 1,000 Ib. per sq. in. and
for temperatures near the freezing point. For higher tempera-
tures it increases slightly. -Thus at 77F. it is about 327,000
Ib. per sq. in. and at 212F. it is 360,000 Ib. per sq. in. Also for

higher pressures than the above the modulus is materially larger.

Thus at a pressure of 65,000 Ib. per sq. in. Kite found a value

of Ev
= 650,000 Ib. per sq. in.

Temperature -Degrees Centigrade
10 20 30 40 50 60 70 80 90 100

62.6

62.4

62.2

.62.0

C1 Q
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pressure for the range of temperature from freezing to boiling.

The presence of impurities increases these values somewhat.

Thus ocean water may ordinarily be taken as weighing 64.0 Ib.

per cu. ft. In the computations in this book it will be sufficient

to take

w = 62.4 Ib. per cu. ft.

6. Accuracy of Computations. No computed result can be

more accurate than the data upon which it is based and it is

therefore not only useless but also misleading to carry out results

to more significant figures than the data warrant. It should

be noted that the number of significant figures has no relation

to the location of the decimal point. Thus 347,000, 34.7,

0.0000347 are all values given to three significant figures and

are of the same degree of accuracy. It is incorrect in such a

figure as the first to preserve any more figures such as 347,129

if three figure work is all that is warranted. And if it is warranted

it is likewise incorrect in such a value as the last to abbreviate it

to 0.00003 for that is equivalent to saying that its value is

0.0000300 to three significant figures.

There are some quantities that may be known with a high

degree of accuracy but in hydraulic work most experimental
factors are uncertain in the third significant figure and there are

some coefficients or values which are uncertain even in the second

significant figure. Thus slide rule work is all that is usually

justified.

Suppose for example that the product is desired of two quanti-

ties whose values are 34.7 and 125. Multiplying these two

numbers together we obtain 4,337.5 but the answer that should

be given is 4,340. If our values were known to be 34.700 and

125.00 then the exact product would be permissible. But if our

values are experimental they may range for example from 34.6

to 34.8 and 124 to 126 respectively. The products of the

minimum and maximum values in each case are 4,290 and 4,380,

thus showing that our result of 4,340 is uncertain in the third

significant figure as we should expect when the given data are

not correct in the third figure.

7. Notation. The use of a systematic and consistent notation

is highly desirable and familiarity with the notation will save

time and trouble. A table of the notation employed in this

book is given on page xiii.
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So far as possible an attempt has been made to employ the

same notation that the majority of other writers use in this and
in related subjects. This will result in a few cases of the same
letter being used for different quantities but in such instances the

quantities are so unlike that it is believed no real confusion can

result. Unfortunately, the necessity of avoiding real conflicts

in notation prevents the mse of certain letters that most

naturally suggest themselves for several different quantities, the

quantities not being sufficiently removed from each other to

permit the duplication.

8. Units. The standard system of units employed in this

book is based upon the foot, pound, and second. With few

exceptions all formulas are to be used with such units. There are

some few exceptions that commercial practice makes necessary or

desirable. For instance the diameter of a pipe is customarily

given in inches rather than in feet. Any exceptions to the general
rule will be clearly indicated.

It should be noted that the units of the answer in any computa-
tion can be determined from the units involved in the separate
items. Thus the product of velocity and area is the product of

(ft. /sec.) X sq. ft.
= cu. ft. /sec. The familiar quantity v2

/2g is

(ft./sec.)
2
/(ft. /sec.

2
)
=

ft. The product of the depth of water

by the density of water is ft. X lb. per cu. ft.
= Ib. per sq. ft., etc.

It will frequently be necessary to use the value of g, the ac-

celeration of gravity. Its units are feet per second per second,

often written ft. /sec.
2 The value of g varies with latitude and

elevation. Its value for any locality may be computed by the

following formula according to Pierce,

g = 32.0894 (1 + 0.0052375 sin 2
Z)(l

- 0.0000000957 e),

where I is the latitude in degree and e is the altitude in feet. For

ordinary purposes g may be taken as 32.2 ft. per sec. 2

9. PROBLEMS

1. If a body of water is subjected to a pressure of 65,000 lb. per sq. in.

how much less will its volume be than in a perfect vacuum?
. Ans. 10 per cent.

2. What pressure will be required to reduce the volume of a body of

water by 0.1 of 1.0 per cent, if the temperature is 32F. and the initial

pressure 10 lb. per sq. in.

Ans. 304 lb. per sq. in.
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3. If the temperature is 77F. what would be the result in problem 2?

Ans. 337 Ib. per sq. in.

4. A cubic foot of ocean water at the surface and at ordinary temperature

weighs 64.0 Ib. At the surface it is under a pressure of 14.7 Ib. per sq. in.

What will be the weight of a cubic foot at a depth such that the pressure is

2,000 Ib. per sq. in.? Assume E v
= 310,000 Ib. per sq. in. (Density is

inversely proportional to volume.)
6. The radiator of an automobile holds 2.0 cu. ft. of water. It is filled

with water at 50F. After the engine has been running the temperature of

the water is 180F. Assuming no loss by evaporation or otherwise and

neglecting expansion of radiator, how much water will have run out the

overflow?

6. If we multiply cubic feet of water by the density of water in pounds

per cubic foot and by feet, in what units will the answer be?

7. If we multiply torque, which is the product of a force in pounds and a

distance in feet, by angular velocity in radians per second, what units will

be involved in the answer?

8. If we multiply pounds per second by feet per second and divide by g, in

what units is the answer?

9. If we multiply a force in pounds by velocity in feet per second in what

units is the answer?



CHAPTER II

INTENSITY OF PRESSURE

10. Definition of Intensity of Pressure. By intensity of

pressure is meant pressure per unit area. It may be expressed
in various units such as pounds per square inch, pounds per

square foot, or, as will be seen later, in feet of water, inches of

mercury, etc.

If P represents the total pressure on some finite area, F, while

dP represents the total pressure on an infinitesimal portion of

area, dF, the intensity of pressure is

|i
"

'

?'= ." w
If the pressure is uniformly distributed over the area in question
the intensity of pressure would then be p

f = P/F. If the pres-

sure is not uniformly distrib-

uted the latter expression will

give the average value only.

The word "pressure
"

is usu-

ally used for "intensity of

pressure" though the latter

term should be employed
where there is any possibility

of misunderstanding. The
word

"
pressure" is also used

to designate the resultant

force exerted on an area. In order, to clearly distinguish this

usage from intensity it would be well to employ the term "re-

sultant pressure" or "total pressure."
11. Variation of Pressure in a Liquid. Let us consider a

slender prism of the liquid in Fig. 2 as a free body in equilibrium.

The forces acting upon it will be the pressures on its various faces

and the pull of gravity. If the intensity of pressure at A be

denoted by p' i} the total pressure on the end at A will be p'idF,

where dF is the cross-section area. In similar manner the total

pressure on the end at B will be p' 2dF. The weight of the volume

7
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of liquid is evidently wdFl. Since the prism of water is in

equilibrium the algebraic sum of the components in any direction

of all the forces acting on it will be zero. If the forces be

resolved along the axis AB the three forces mentioned will be the

only ones that will appear since the forces acting on the sides

of the prism are all normal to the axis. Hence we may write

2/1 dF -
2/2 dF + wdFl cos a = 0.

Since I cos a = z%
-

z\ it follows that

p'z
-

p'i
= w(z 2

-
zi) (2)

This equation shows that the difference in the intensity of

pressure at two different points varies directly as the difference

in the depths of the two points. Also if point A be taken at the

level where p'\ is zero and if z be the elevation of such level above

any other point, then in general

p
f = wz (3)

From this equation it can be seen that the intensity of pressure

varies directly as the depth of the point in question below the

level where p
f
is zero.

The results of equations (2) and (3) are strictly true only for an

incompressible fluid in which the density, w, is constant at all

depths. For practical purposes water is an incompressible fluid

and hence these equations may be applied. But, owing to the

high degree of compressibility of gases, they should not be used

for a gas except where there are relatively small differences in

pressure.

12. Surface of Equal Pressure. It may be seen from equation

(3) that all points in a connected body of water at rest are under

the same intensity of pressure if they are at the same depth.
This indicates that a surface of equal pressure is a horizontal plane.

Strictly speaking it is a surface everywhere normal to the direc-

tion of gravity and it is, therefore, approximately a spherical

surface concentric with the earth. But a limited portion of such

a spherical surface is practically a plane area.

A free surface is strictly one on which there is no pressure.

Usually however the surface of a liquid exposed only to the pres-

sure of the atmosphere is said to be a free surface.

13. Pressure the Same in all Directions. In a solid, owing to

the existence of tangential stresses between adjacent particles,
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the stresses at a given point may be different in different direc-

tions. But in a fluid at rest no tangential stresses can exist and
the only forces exerted between adjacent surfaces are normal
to the surfaces. Therefore, the intensity of pressure at a given

point is the same in every direction.

This can be proven by reference to Fig. 3 where we have a small

triangular element of volume whose thickness perpendicular to the

plane of the paper is constant and equal to dz. Let a be any
angle, p' the intensity of pressure in any direction, and p'x the

intensity of pressure on a vertical plane. The following forces

act upon this volume of fluid: The

pressure on the vertical face is p'x dydz,

the pressure on the slanting face is

p'dldz, then there are the pressures on

the horizontal face and on the two
faces parallel to the plane of the

paper, and the weight of the volume.

Their values are not required. Since

this volume is a fluid body at rest

there are no other forces besides these normal to the surfaces, and,
since it is a condition of equilibrium, the sum of the components
in any direction is equal to zero. Writing such an equation for

components in a horizontal direction we have only

p'dldz cos a p'x dydz = 0.

Since dy = dl cos a, it is seen that

This result is independent of the angle a, and, therefore, it follows

that the intensity of pressure is the same upon any plane passing

through 0.

14. Pressure Expressed in Height of Liquid. In Fig. 4

imagine a body of liquid upon whose surface there is no pressure.

Then by equation (3) the intensity of pressure at any depth z

is p
f = wz. For a given liquid w is constant and thus there is

a definite relation between p' and z. That is any pressure per

unit area is equivalent to a corresponding height of liquid. In

hydraulic work it is often more convenient to express intensity

of pressure in terms of height of a column of water rather than in

pressure per unit area.

Even if the surface of the liquid in Fig. 4 is under some pressure
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the relation stated is still true. For this pressure on the surface

could be expressed in terms of height of the liquid and such value

added to z. The resulting value of p
f would thus be increased by

the amount of this surface pressure.

The intensity of pressure expressed in terms of the height of a

column of liquid will be denoted by the letter p. It will thus be

seen that we have the relation

This equation is true for any con-

sistent system of units. Thus if w
is density in pounds per cubic foot,

p must be expressed in feet, and

FlG 4 p' will then be in pounds per square
foot. For pure water at ordinary

temperatures we have the relation p'
= 62.4p. It is quite com-

mon to express intensity of pressures in pounds per square inch,

but p is rarely found expressed in other units besides feet of

water. Since p'
= 144p" = 62.4p we have

p" = 0.4333p and p = 2.308p"

EXAMPLES

1. Neglecting the pressure of the atmosphere upon the surface, what is

the pressure in pounds per square inch at a depth of 3,000 ft. in fresh water?

At a depth of 3,000 ft. in the ocean?

2. A certain pump for a hydraulic press delivers water at a pressure of

5,000 Ib. per sq. in. To what height of pure water would that be equivalent?
To what height of liquid having a density of 100 Ib. per cu. ft.?

3. The specific gravity of mercury is 13.57, that is, its density is 13.57

times that of pure water. How many feet of mercury is equivalent to a

pressure of 100 Ib. per sq. in.?

4. If the specific gravity of mercury is 13.57 how many feet of water is

equivalent to a pressure of 10 ft. of mercury?
6. The pressure of the atmosphere is about 14.7 Ib. per sq. in. To what

height in feet of water is this equivalent? What is the equivalent height

in inches of mercury?

15. Barometer. If a tube such as that in Fig. 5 has its lower

end immersed in a liquid and the air is exhausted from the tube

the liquid will rise in the latter. If the air is completely ex-

hausted we shall have zero pressure on 'the surface of the liquid

in the tube, and the liquid will have reached its maximum height.
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This device is called the barometer and is used for measuring the

pressure of the atmosphere.

By Art. 12 it may be seen that the intensities of pressure at o

(within the tube) and at a (at the surface of the liquid outside)

are the same. That is p = pa - And, since the pressure on the

surface of the liquid in the tube is zero, the intensity of pressure

at o is by equation (3)

p'
= wy.

And by equation (4) p' wp . Thus the pressure of the air in

terms of height of the liquid column is

Pa = y (5)

The liquid employed is usually mercury because of the fact

that its density is sufficiently great to enable a reasonably
short tube to be used, and because its vapor

pressure is negligible at ordinary tempera-
tures. If water were employed the height of

tube would be inconvenient and also its vapor

pressure at ordinary temperatures is appreci-

able so that instead of having a perfect vac-

uum at the top of the tube we should have a

space filled with water vapor. The height

attained by the liquid would consequently be

less than what would otherwise be the case,

the tube should be at least 0.5 in. in order to eliminate errors due

to capillarity.

The "pressure of the atmosphere is different in different locali-

ties, depending upon elevation, and at a given point it varies from

time to time according to the temperature and other factors.

In round numbers the pressure of the atmosphere may be

taken as 14.7 Ib. per sq. in., 30 in. of mercury, and 34 ft. of water.

(These values are not exact equivalents.)

EXAMPLES

1. If the barometer reads 29.92 in. of mercury, what is the pressure in

pounds per square inch?

2. If the pressure of water vapor at 80F. is 0.505 Ib. per sq. in. what

would be the height of the water barometer if the atmospheric pressure were

14.7 Ib. per sq. in.? (Use correct density of water for this temperature.)

3. Assuming the density of air to be 0.0807 Ib. per cu. ft., what would be

the height of the air surrounding the earth and producing a pressure of 14.7

Ib. per sq. in., if air were incompressible?

FIG. 5. Barometer.

The diameter of
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16. Vacuum. Pressures less than that of the atmosphere are

usually called vacuums, a perfect vacuum meaning an entire

absence of all pressure. Vacuum is usually measured from the

pressure of the atmosphere as a base and is commonly, though not

necessarily, measured in inches of mercury. If the atmospheric

pressure is 30 in. of mercury, a perfect vacuum would then be a

vacuum of 30 in. And a vacuum of 10 in. of mercury would

mean that there was a real pressure of 20 in. of mercury.

. EXAMPLES

1. If the barometer reads 28.5 in. of mercury and the absolute pressure in

the condenser for a steam turbine is 1.5 in. of mercury, what is the value of

the vacuum?
2. The barometer reads 30 in. of mercury and within a certain vessel there

is a vacuum of 22 in. of mercury. What is the real pressure within that

vessel in pounds per square inch? What is the excess external pressure on

the walls of the vessel in pounds per square inch?

17. Absolute and Relative or Gage Pressures. If the pres-

sure is measured above absolute zero pressure it is called absolute

pressure. If it is measured from the atmospheric pressure as a

base it is called relative or gage pressure, since

it is only relative pressure that a gage meas-

ures. Thus Fig. 6 shows a compound gage
which will measure pressures either above or

below that of the atmosphere. When the

gage is open to the atmosphere the hand

points to zero. If the gage is connected to

any vessel in which there is a pressure above
FIG. 6. Compound

gage. that of the surrounding air the hand will turn

in a clockwise direction from zero. If the pres-

sure is a vacuum the hand will move in the opposite direction.

Thus the gage measures only the difference between the pressure

on the inside of the gage tube and that of the air surrounding the

gage.

In Fig. 7 let indicate entire absence of all pressure or absolute

zero and the ordinate OA represent the pressure of the atmos-

phere. Then suppose we have any pressure such as at B. The

gage will read the value AB and this is the gage pressure. The
absolute pressure is OB. Also if we have a vacuum of AC, the

gage pressure is ACj the minus sign merely indicating a value

below atmospheric just as a plus sign indicates a pressure above

that of the atmosphere. But the absolute pressure is OC.
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When dealing with absolute pressures all values &re positive.
In the case of gage pressures only values above that of the atmos-

pheric pressure are positive, but the minus sign for pressures
below that of the atmosphere serves only to indicate a vacuum.
There may still be a real pressure between

adjacent particles of water. A true negative

pressure would mean that,the water was in a

state of tension and as water can sustain only
a very slight tensile stress it is impossible to

have a pressure below absolute zero. Abso-

lute zero is the point where the stress in the

liquid would change from compression to

tension.

In most problems in hydraulics we are A
Atraospheric Press e

not interested in absolute pressures. We are c

concerned with the differences in pressure in-

side a vessel and that outside for example o

and in general that would be the gage pres- FlG
sure. And in many other cases the atmos-

pheric pressure acts alike at all points and balances out.

EXAMPLES

1. A gage reads 20 Ib. per sq. in. when the gage itself is surrounded by the

atmosphere. If the air surrounding the gage be exhausted to a vacuum of

20 in. of mercury while the real pressure of the fluid on the inside of the gage
tube remains the same, what will be the reading of the gage?

2. If the barometer reads 30 in. of mercury and a vacuum gage reads 5 in.

of mercury, what is the absolute pressure?
3. A gage pressure of 25 ft. of water is how much less than a gage pres-

sure of 10 ft. of water?

18. Instruments for Measuring Pressure. Gage. The famil-

iar pressure or vacuum gages have already been referred to and

the combination of the two is shown in Fig. 6. In this type

of instrument a curved tube is caused to change its curvature

by changes of pressure within the interior of the tube. The

moving end of the tube then rotates a hand by means of some

intermediate links. It is usually assumed that the pressure

indicated by the gage is that existing at the center of the gage.

Thus the location of the center of the gage should always be

taken into consideration. For instance, referring to Fig. 8, the
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pressure at A is the gage reading plus the distance z. If the gage
reads pounds per square inch, as is customary,

pA = 2.308 p" + z.

Piezometer Tube. A piezometer tube is a simple device for

measuring moderate pressures. It consists of a tube in which the

liquid can freely rise, without overflowing, un-

til equilibrium is established. To prevent error

due to capillarity the diameter of the tube should

be at least 0.5 in. The height of the surface of

liquid in the tube will give the pressure de-

sired directly. It should be noted that if the

water, whose pressure is desired, is flowing the

true pressure can be obtained only by having
the axis of the tube at the point of connection

perpendicular to the stream flow and further-

more the interior opening should be smooth and

free from all projections. If the end of the pipe

projects into the stream, as in the case of the fourth tube in

Fig. 94, the pressure read will be too low.

Mercury U Tube. For high pressure the water piezometer is

not suited and some modification must be adopted. The mercury

FIG. 8.

FIG. 9. Piezometer. FIG. 10.

U tube shown in Fig. 10 may then be used. If s is the specific

gravity of the mercury (or whatever liquid may be employed) the

pressure at the point C is sy. This is also the pressure at B
but the pressure at A is greater than this by the amount z, if the
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tube from A' to B is filled with water. If it were filled with air,

then, neglecting the slight weight of the air within the tube, the

pressures at B and at the surface of the water at A' would be

equal. In practice it would be difficult to insure the absence of

air and if the tube were partially filled with air and partially with
water it would be troublesome to make correction and accuracy
would be impossible unless at were known just what proportion
of the tube was filled with water and what with air. It is

therefore desirable to provide some means of permitting all the

air to escape and its place to be taken by water. If the con-

necting tube in Fig. 10 is filled with water the pressure at A is

pA = z + sy.

FIG. 11. FIG. 12.

In measuring a vacuum we must interpret y as a negative

quantity in Fig. 11 so that we have, if the tube is filled with water,

PA = z - sy.

If this connecting tube from A' to B were filled with air then

the correction for the height above A' would be negligible but it is

difficult to insure this being filled with air and error will be intro-

duced if it is not. Thus the arrangement in Fig. 12 is much better

as that permits no air to collect in the tube and introduce errors

in the readings. In this case z is negative so that

PA = ~ z -
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Differential Gage. The differential gage is used for measuring
differences of pressure only. One form of this is shown in Fig. 13.

Assuming the entire connecting tubing to be filled with water

except that portion of the U that is filled with the denser liquid,

such as mercury for instance, the pressure at A' will exceed that

at B' by the amount sy. That is

But

and

FIG. 13.

Substituting these values we have

PA ~ PB = sy + ZA - ZB
= sy

-
y =

(s
-

l)y.

In the differential manometer the left-hand column of mercury,
or whatever it is, has a column of water of height y resting upon
it that is not balanced by a corresponding amount on the right-

hand column, hence the pressure difference is not sy alone.

EXAMPLES

1. Two pressure gages are connected to the same vessel containing water

under pressure. One of these gages is 10 ft. below the point where the pres-



INTENSITY OF PRESSURE 17

sure is measured and it reads 40 Ib. per sq. in. The other gage is located 15

ft. above the point in question. What will it read ? What is the pressure in

the vessel? (It is assumed that the connecting pipes are filled with water.)
2. Two vessels are connected to a differential manometer using mercury

(specific gravity = 13.57). When the mercury reading is 36 in. what is the

difference in pressure in feet of water between the two vessels?

19. The Hydraulic Press. The most important device operat-

ing upon the principle of equal transmission of intensity of pres-

sure in all directions is the hydraulic press. If in Fig. 14 a

force PI be applied to the small piston whose area is FI the

intensity of pressure throughout the whole volume of liquid

will be increased by the amount p'
= Pi/Fi. Then the total

additional force exerted upon the face of the large piston will be

p'F2 .
= (Pi/Fi)F2

= Pi(F2/Fi). It is thus seen that a small force

m

r

FIG. 14. Hydraulic press.

exerted on the smaller piston is enabled to oppose a much

greater load on the large piston. If G\ and G% denote the

weights of the pistons while z is the difference in elevation of

their faces, we have for equilibrium

P2 + 2-- = --
ff

--
:

r i ft

Since the volume of liquid in the vessel must remain constant,

it follows that the distance moved by the larger piston must be

much less than that moved through by the smaller piston.

EXAMPLES

1. In Fig. 15 the diameter of the small piston is % in. and that of the large

one is 20 in. The big plunger weighs 1,000 Ib. and sustains an external load

2



18 HYDRAULICS

of 6,000 Ib. The liquid used is water. What total force P applied to the

small piston will secure equilibrium?
Ans. 4.12 Ib.

2. When the small piston has descended 20 ft. how far will the plunger
have been raised?

20. PROBLEMS

1. In Fig. 16 what are the values of absolute pressure at A, B, C, and D,

assuming the liquid to be water? What are the values of gage pressure?

FIG. FIG. 16. FIG.

What is the value of the vacuum at C? (Give answers in feet of water,

pounds per square inch, and inches of mercury in every case.)

2. In Fig. 17 the cylinder is 2 ft. in diameter and the weight of the piston
and load is 4,000 Ib. What will be the gage reading in pounds per square
inch?

3. If the mercury manometer in Fig. 17 reads 35 in., how far is the top of

the lower mercury column below the piston? If the manometer remained at

Open Tube

2000*

FIG. 18.

this same place but the connection were made to the tank at a different

level, would the mercury reading change?
4. The small piston in Fig. 18 has a diameter of 3 in. Neglecting friction,

when a force PI of 20,000 Ib. is applied to it, what will be the force P 2 that

can be exerted by the plunger with a diameter of 24 in. ? To what height
would water rise in the piezometer tube shown?



CHAPTER III

Free Surface

HYDROSTATIC PRESSURE ON AREAS

21. Total Pressure on Plane Area. Since we are dealing with

fluids at rest, no tangential forces can be exerted and hence all

pressures are normal to the surfaces in question. If the pressure

were uniformly distributed over an area, the total or resultant

pressure would be the product of the area and the intensity of

pressure and the point of application

of the force would be the center of

gravity of the area. In general the in-

tensity of pressure is not uniform,
hence further analysis is necessary.

In Fig. 19 consider a vertical plane
whose upper edge lies in the free sur-

face. Let this plane be perpendicular
to the plane of the paper so that AB
is merely its trace. The intensity of

pressure will vary from zero at A to

BC at B. It will thus be seen that

the total pressure P will be the sum-

mation of the products of the ele-

mentary areas and the intensities of

pressure upon them. It is also ap-

parent that the resultant of this sys-

tem of parallel forces must be applied
at a point below the center of gravity of the area, since the

center of gravity of an area is the point of application of the re-

sultant of a system of uniform parallel forces. If the plane be

immersed to A'B' the intensity of pressure varies from A'D at A'

to B'E at B'. Since the proportionate change of intensity of

pressure from A' to B' is less than before, it is clear that the

center of pressure will approach nearer the center of gravity.

In Fig. 20 let AB be the trace of a plane making any angle B

with the horizontal. The view to the right is the projection of

this area upon a vertical plane which is also normal to the plane

containing AB. Let z be the depth of any point and y be the

19

FIG. 19.
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distance of any point from OX, the axis of intersection of the

plane, produced if necessary, and the free surface. The coordin-

ates of the center of gravity of the area may be denoted by z and y

respectively.

Take an element of area dF such that all portions of said ele-

ment are at the same depth z. Then the total pressure on dF is

dP = p'dF = wzdF]
Hence P = wfzdF.
But fzdF = zF,

hence P = wzF (6)

22. Depth of the Center of Pressure. The point of applica-
tion of the resultant force on an area is called the center of pres-

sure. We usually locate the line of action of a force by taking
moments. In this case it is convenient to take OX in Fig. 20

as the axis of moments. On any element of area dF the total

pressure is

dP = wzdF = wy sin BdF

and its moment is

ydP = wy* sin 6dF.

If the distance of the center of pressure from OX be denoted by y'

,

' fydP w sin 6fy 2dF
''

fdP
"
w sin BfydF

But fy zdF is the moment of inertia of the area F about the axis

OX, and fydF is the statical moment of the area with respect to

the same axis, hence

To
y ~~

(8)

This may be put in a more convenient form by noting that, if

Ia is the moment of inertia of the plane area about its gravity
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axis and kg is the radius of gyration about the gravity 'axis, we
have

<

'''

From these equations it may be" seen that the location of the

center of pressure is independent of the angle 0, that is, the plane
area may be rotated about the axis OX without affecting the loca-

tion of the center of pressure. However, this will not hold for

6 = zero since the value of P would also be zero.

From equation (10) it may also be seen that the center of

pressure is always below the center of gravity. Also as the depth
of immersion is increased for a given value of 0, the distance

y increases. But as kg remains constant in value it may be

seen that the last term in equation (10) becomes relatively

small, hence y
f

approaches y in value. The same thing would be

true if the depth of the center of gravity z remained constant

while the plane was rotated so as to approach a horizontal direc-

tion. (This is entirely different from rotation about the axis OX,
since y no longer remains constant.)

EXAMPLES

1. A rectangular plane area is 5 ft. by 6 ft., the 5-ft. side is horizontal, and
the 6-ft. side vertical. Determine the resultant pressure and the location of

the center of pressure when: (a) the top edge is in the water surface; (6)

the top edge is 1 ft. below the water surface; (c) the top edge is 100 ft. below

the water surface.

Ans. (a) P = 5,620 lb., y'
= 4 ft.; (6) P = 7,500 lb., y'

= 4.75 ft.; (c)

P = 193,000 lb., y'
= 103.03 ft.

2. Suppose in Fig. 20 that we have a rectangular area 5 ft. by 6 ft., that

AB = 6 ft., the 5-ft. edge being normal to the plane of the paper, and that y
4 ft. Find the magnitude of the total pressure and the location of the

center of pressure when 6 has values of 90, 60, 30, and 10.
Ans. (a) P = 7,488 lb., y

f = 4.75 ft.; (6) P = 6,490 lb.; (c) P = 3,744 lb.;

(d) P = 1,302 lb.

3. Suppose that in problem (2) y was variable but that z = 4 ft. Solve

with values of 6 of 90, 60, 30, and 0.

Ans., (a] P = 7,488 lb., y'
= 4.75 ft.; (6) y'

= 5.265 ft.; (c) y
1 = 8.375 ft.;

(d) y'
=

infinity, z' = 4 ft.

4. Find the depth of the center of pressure on a vertical triangular area

whose altitude is h and whose base is 6 if : (a) its vertex lie's in the water

surface and base is horizontal; (ft) its base lies in the water surface.

Ans. (a) if
= %h\ (6) ?/

= %h.
*
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23. Lateral Location of Center of Pressure. For most prac-

tical problems the depth of the center of pressure is all that re-

quires solution since the areas with which we deal are usually

such that a straight line can be drawn through the centers of all

horizontal lines. In such cases the center of pressure is seen to lie

on this line. But in case this is not so we should have to com-

pute x' as in Fig. 20, x' being measured from any axis parallel to

trace AB.

Again we employ moments as in the preceding article. If x

is the distance of an element from the axis in question the

moment of dP is

xdP = wxy sin0 dF

Hence the value of x' is

fxdP w sin BfxydF

fdP
'

w sin BfydF

fxydF

yF
(11)

This equation differs from (7) simply in the fact that we have

fxydF instead of ftfdF. The latter quantity is more frequently

met with, it is given a name, symbolized by the letter /, and

values of I for different areas can usually be found in tables.

The former expression is called
"
product of inertia," is symbolized

by the letter J, but owing to the infrequent use that is made of it

values of J cannot usually be obtained save by integration.

Lacking the knowledge of the value of J for any area, we should

simply proceed to evaluate fxydF just as we should evaluate

fy*dF in case we did not know the value of / for the area in

question.

It will be found that reduction formulas can be used here as

with moments of inertia. If J indicates the product of inertia

with respect to the intersection of any two axes, while a and b

are the coordinates of the center of gravity of an area about which

the product of inertia is Jg ,
it will be found that

J = J + Fab.

In using equation (11) it must be noted that y is to be measured

as in Fig. 20, while x may be measured from any axis in the plane

of the figure and perpendicular to OX.
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EXAMPLES

1. Given a right triangle with height, h, and base, b, with its vertex in the

water surface and its plane vertical. Find the value of y' and then determine

x'\ (a) by inspection; (6) by calculus.

Ans. y'
= %h; x' = %6.

2. Find the center of pressure on an area which is a quadrant of a circle.

It is placed in a vertical plane and one edge lies in the water surface.

Ans. y = 4r/37r; y'
= 3*T/16^' = 3r/8.

23a. Graphical Solution for Pressure on Plane Area. It is not

always feasible to apply equations (6), (8) and (11) directly,

especially if the plane area in question is irregular in outline so

that its center of gravity and moment of inertia cannot be readily

determined. The problem may then be solved as follows.

In Fig. 20a is shown a plane area at I which makes any angle

B with the horizontal. As in Art. 21 let us taken an element of

area such that every portion is at the same depth below the

water surface. Then dF = xdy. Note also that z = y sin B.

The intensity of pressure, p'
= wz, is shown in //, values of wz

being plotted perpendicular to the inclined base line.

The total pressure on an element of area is dP = wzdF =

wzxdy. The total pressure on the entire area is

P = wfzxdy = w sin Bfxydy.

In III xy is plotted as a function of y. The elementary rectangle

there shown is of length xy and width dy. The sum of all such

areas is the total area shown in III. But the sum of all values

of xydy is the value of the definite integral. Hence to find the

total pressure on the area shown at I, it is only necessary to
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multiply values of x by the corresponding values of y and plot

the product against the values of y. The area then represents

to some scale the value of the integral between the limits used,

and when multiplied by w sin 6 will give the value of the total

force. 1

Since the ordinates of III, when multiplied by the proper

constant, represent values of forces on elementary areas, the

resultant force will act through the center of gravity of III.

This then serves to locate the y co-ordinate of the center of pres-

sure of the actual area in I. It will also be perceived that, in

general, the centers of gravity of areas I and III do not coincide.

Hence the center of gravity of the actual area I and its center of

pressure never coincide, except in the special case where the in-

tensity of pressure is uniform. To determine the location of the

center of gravity of III or in other words to locate the center of

pressure in I we take moments. Thus

Py
f = w sin8j*xy

2
dy

The area shown in IV is seen to represent the value of this inte-

gral. Since y'
= Py'/P,

, _ f*y*dy

fxydy
or y' is obtained by dividing the area of IV by the area of III

after reducing each to its proper scale value. A similar procedure

could be employed for finding the value of x' if desired.

It may be noted that the area of III represents

fxydy = fydF = yF

or is the moment of the actual area in I. And the area repre-

sented by IV is

f xy*dy = fy*dF = 1

or is the moment of the area III or the moment of inertia of

the actual area I.

1 In general when one has an integral of the form J'udv it may be impossible
to integrate it either because the calculus solution cannot be discovered or

because u cannot be expressed as .a mathematical function of v. In either

case a numerical value of the definite integral may be obtained by plotting

values of u against values of v and determining the area between the curve

and the v axis.

If u is plotted to such a scale that 1 in. = a units and v to such a scale

that 1 in. =6 units, then the scale for the area is 1 sq. in. = ab units.

If it is not convenient to plot the curve and measure the area with a

planimeter, the ordinates can be computed and the area determined without

actually plotting it by some method of approximation, such as Simpson's
rule.
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EXAMPLES
1. A vertical plane area, whose upper edge coincides with the water sur-

face, has the following widths starting with the surface and at 1 ft. intervals

below it. 4.90 ft., 4.48, 4.00, 3.46, 2.82, 2.00, and 0. Plot values of zx

and z2x and determine the magnitude of the resultant pressure and the

depth of the center of pressure.

Ana. P = 2930 lb., y'
= z' = 3.43 ft.

2. Find the area of the plane and the depth of the center of gravity.

Ans. F = 19.6 sq. ft., y = $"= 2.4 ft.

3. Solve the above problems by Simpson's rule.

24. Resultant Thrust on Plane Areas. So far we have dealt

with the total pressures on one side of a plane area alone. Of

course, when the area is completely immersed in a fluid as shown

in some of the previous illustrations, the total pressure on one

side is balanced by that on the other and the net effect is zero.

But when the two sides are not subjected to the same pressure,

there is a resultant thrust whose value we desire.

AlVater Surface

So far we have considered the surface of the liquid as being
free from all pressure. Thus in Fig. 21 we should consider the

intensity of pressure as varying from zero at A to BC at B. But
in reality there is some pressure, in general, from the atmosphere

acting upon the water surface equivalent to a height of about 34 ft.

of water, and thus the true free surface might really be at point, O,

the distance AO being equal to the height of the water baro-

meter. The absolute intensity of pressure upon the left-hand side

of the plane, AB, therefore varies fromAD toBE. But in practical

applications we desire the difference between the pressure on the

left-hand side and that on the right-hand side. But the pressure

on the right-hand side is that due to the atmosphere and its

intensity is uniform from A to B being equal ioAD'. But AD' =

AD = CE. Hence atmospheric pressure is added alike to both
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sides, and it is useless to consider it. Therefore, we neglect

atmospheric pressure altogether and treat the water surface as a

true free surface in most calculations.

Suppose we have an area such as AB in Fig. 22 with a fluid

pressure on both sides but of different intensities. Of course, we
could compute the magnitudes of the total pressures on both

sides of the area and the difference would be the resultant

desired. But we should also have to find the centers of pressure
on both sides and then locate the line of action of the resultant

of these two forces. The following analysis will indicate a much
easier solution.

At A the intensities of pressure on the two sides are AI and

AK. If IJ be laid off equal to AK the net difference in the

intensity of pressure will be AJ. In similar manner at B the

net intensity of pressure is BF. And it is readily seen that,

since CDE and HKG make the same angle with the vertical, the

values of HDj AJ
f
and BF are equal. Thus the resultant

intensity of pressure on the area, AB, is uniform and equal to HD
in value. But HD is the intensity of pressure at the depth, h.

Hence the resultant thrust on any area with both sides com-

pletely covered by the same liquid is

R = whF (12)

where h is the difference in level of the two liquids. And since

the net intensity of pressure is uniform, the resultant thrust will

act through the center of gravity of the plane area.

EXAMPLES

1. Suppose that a rectangular area is 2 ft. wide by 3 ft. high and that its

upper edge lies in a water surface. What twisting moment will be necessary
in a shaft through A (Fig. 21), perpendicular to the plane of the paper, to

withstand the water pressure? It will be assumed that the gate received

no support save what the shaft affords, and that atmospheric pressure acts

alike on the water surface and the right-hand side of the gate.

Ans. 1,123 ft.-lb.

2. Suppose that the right-hand side of the gate in problem (1) is under a

vacuum of 30 in. of mercury, and that the barometer reading is 30 in. of

mercury. What twisting moment would be required?

Ans. 20,200 ft.-lb.

3. Suppose that the barometer reads 30 in. of mercury and that the right-

hand side of the gate in problem (1) is under a vacuum of 20 in. of mercury.
What twisting moment would be required?

Ans. 13,800 ft.-lb.

4. Suppose the barometer reads 30 in. of mercury, that the right-hand
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side of the gate in problem (1) is under atmospheric pressure/ while the sur-

face of the water is under a gage pressure of 50 Ib. per sq. in. What twisting
moment would be required?

Ans. 65,900 ft.-lb.

6. Suppose in Fig. 22 that AB is a circular gate of 3-ft. diameter, that BC
= 10 ft. and BH = 4 ft. Find: (a) magnitude and line of action of total

pressure on left-hand side only; (6) magnitude and line of action of total

pressure on right-hand side only; (c) resultant thrust on gate.

Ans. (a) 3,747 Ib., 1.566 ft: below top of gate; (6) 1,102 Ib., 1.725 ft.

below top of gate; (c) 2,645 Ib., 1.500 ft. below top of gate.

25. Horizontal Pressure on Curved Surface. On any curved

or irregular area in general, such as that whose trace is AB in

Fig. 23, the pressures upon different elements are different in

direction and an algebraic or calculus summation is impossible.

FIG. 23.

Hence equation (6) can be applied only to a plane area. But
we may find the component of pressure in certain directions.

Thus if we multiplied each dP by cos 0, being a variable angle

which each elementary force makes with the horizontal, the total

horizontal force would be

px = fdP cos 0. (13)

In general it will be tedious to integrate the latter and often

practically impossible. Hence the following procedure may be

employed

Project the irregular area in question upon a vertical plane,

the trace of the latter being A'B'. The projecting elements are

AA', BB r

,
etc. It is seen that these projecting elements, which are

all horizontal, enclose a volume whose ends are the vertical
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plane A'B
r and the irregular area whose trace isAB. This volume

of liquid is in equilibrium under the action of the following

forces. Upon the vertical plane at the left there is a force P',

gravity G
f
acts upon the volume and is vertical, the pressures on

the projecting elements are all normal to these elements, hence

normal to P f
. Then there are the pressures upon the area in

question at the right-hand end, the horizontal component of

pressure being represented by Px and the vertical component by
Py . Since we have a condition of equilibrium the sum of all the

forces in any direction must be equal to zero. But in a hori-

zontal direction the only forces are P f and Px .

Hence Px = P'. (14)

That is the component, in any given horizontal direction, of the

pressure upon any area whatever is equal to the pressure upon
the projection of the area upon a vertical plane which is per-

pendicular to the given horizontal direction. The lines of action

must also be the same.

26. Vertical Pressure on Curved Surface. The vertical com-

ponent of pressure on an irregular surface can be found by a

method similar to that for the horizontal pressure. Thus in

Fig. 23 if we take a volume of liquid of which the area in question
forms the base and vertical elements such as AD and BC form

the sides, we find the following forces are acting. Considering
CD a free surface the pressure on the upper face is zero. The

pressure on the lower face is composed of the two components
Px and Py . Gravity, G, is the only other vertical force, the

pressures on the sides all being horizontal. Summing up the

vertical forces and equating to zero we have

Pv
= G. (15)

Hence the vertical component of pressure on any area whatever

is equal to the weight of that volume of liquid which would

extend vertically from the area to the free surface.

27. Component of Pressure in any Dkection. In general
the component of pressure in any direction aside from horizontal

and vertical cannot be found, since the weight of the volume of

liquid, such as AA'B'B in Fig. 23 would have to enter the equation.
But if the depth of immersion is great so that the pressures on

AB and A 'B' are great compared with the weight G' the latter

may be neglected. Hence in such cases only, the component of



HYDROSTATIC PRESSURE ON AREAS 27

pressure in any direction may be taken as the pressure upon an

area projected in that direction upon a plane which is perpen-
dicular to the given direction.

Of course with a plane area the component of pressure in any
direction may be found by multiplying P by the proper function

of some angle. Or it may be convenient to find it by the methods
of Arts. 25 and 26. Also-for a plane area, since P cos 6 = (wzF)
cos 8, it may be seen that the component of pressure is the same
as the pressure upon an area of value F cos 6 provided the center

of gravity of such area be the same depth as the center of gravity
of the given plane.

28. Resultant Pressure on Curved Surface. In general there

is no single resultant pressure on an irregular surface, for a system
of non-parallel and non-coplanar forces does not usually reduce

to anything simpler than two single forces. Thus in general

Px and Py are not in the same plane and hence cannot be com-

bined. But in some special cases of symmetrical surfaces, these

two components will lie in the same plane and hence can be

combined into a single force.

EXAMPLES

1. In Fig. 24 is shown a quadrant of a circular cylinder, AB, whose length

perpendicular to the plane of the paper is 4 ft. (a) Find the horizontal com-

ponent of pressure. (6) Find the vertical com-
, , , , _,. , .,

_,

'

i i Water Surface

ponent of pressure, (c) Find the magnitude and
direction of the resultant water pressure,

locates its line of action?

29. Pipes under Pressure. If the in-

ternal pressure in a cylindrical pipe is great

enough to be considered in determining the

thickness of pipe wall necessary, it will be

large enough so that the weight of the

watermay be disregarded. Hence according
to Art. 27 we may compute the resultant pressure in any direction.

Suppose that in Fig. 25, we pass a plane XY through a diameter

of the pipe as shown. The total pressure on one-half of the pipe

in any direction, such as that normal to XY, will evidently be

p
r X 2r X I, I being any length of pipe. This follows directly

from Art. 27 or may be seen from the fact that the thrust of the

water on the wall of the pipe normal to XY must be balanced by
the thrust of the water on the plane XY. This pressure will tend

to rupture the pipe across the plane XY and is resisted by the

(d) What
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tensions in the walls of the pipe, such as T. Evidently 2T =

2p'rl. If the thickness of the pipe wall be denoted by t, and the

stress induced in it by Sh ,
then T = Shtl. Hence

Sht = p'r (16)

From (16) the thickness of wall necessary may be computed for

any allowable unit tensile stress. However, it is well to note

that p' should be the maximum intensity of pressure that may
occur and in case of water hammer these intensities are much

greater than the static pressures alone. Also it may often be

found that (16) gives entirely too thin a wall to stand ordinary

handling and to allow for a certain amount of corrosion. In

practice p
r

is, therefore, increased to allow for possible water

hammer and the thickness determined by (16) is then increased

FIG.

Y

FIG. 26.

to a value necessary for these other reasons. The tension in the

case shown is called hoop tension.

Referring to Fig. 26 it may be seen that a cylindrical pipe may
also be ruptured by forces parallel to the axis. Thus the pressure

on the blank end is balanced by the tension in any section such as

XY. The total pressure, assuming it to be of uniform intensity,

is p' X TiT
2

. And the tension across a section XY is T
Si X 2irrt. Hence, equating these two,

2S tt
=

p'r (17)

This stress is called longitudinal tension and it may be seen that

it is one-half the hoop tension.

For cylinders with thin walls these formulas will hold, since

they assume uniform intensity of stress across the metal. But

with thick walls they do not hold. In the case of hoop tension in

a cylinder with thick walls it is usually assumed that the intensity

of stress is a maximum at the inner face and decreases to zero at

the outside of the wall. Also the elasticity of the material enters
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into the hypothesis. John Sharp
1

gives the following empirical
formula for hoop tension in a cast-iron cylinder with thick walls

S loge ^
= p' (18)

where r2
= external radius and r internal radius. For wrought

iron and steel cylinders he gives the empirical expression

[(7-1)+ log. 7]
= V:

-

(19)

Equation (16) with S understood as compressive stress would

also hold for external pressure provided the pipe remained truly

cylindrical. But actually it may become slightly distorted from

the cylindrical form and then there is a possibility of sudden

collapse. A large thin tube which can stand a high internal

pressure can withstand only a small external pressure. All

formulas for determining the strength of pipes against external

pressure are purely empirical. So far no satisfactory expression

has been deduced, an.d sufficient data is lacking.

30. Buoyant Force of the Water and Flotation. Considering

the body EHDK immersed in a fluid in Fig. 27, we see that it is

acted upon by gravity and the pressures from the surrounding

fluid at least. In addition there may be other forces applied.

On the upper surface of the body the vertical component of the

pressure, Pv,
will be equal to the weight of the volume of fluid

AEHDC. In similar manner the vertical component of the

pressure on the under surface, P'y,
will be equal to the weight of

the volume of fluid AEKDC. It is evident that P'v is greater

than Py and that the total vertical force exerted by the fluid is

upward and is equal in magnitude to

P'v
- PV = weight of volume AEKDC - weight of volume

AEHDC.

But the difference between these two volumes is the volume of

the body EHDK. Hence for any body immersed in a fluid such

as water the buoyant force of the water is equal to the weight of

the water displaced.

If the body remains in equilibrium in the position shown in

Fig. 27, when no other forces are acting, it is seen that G = P'y

Pv . Hence the body must be of the same density as the fluid in

which it is immersed. If it is lighter than the fluid, a downward

1 "Some Considerations Regarding Cast Iron and Steel Pipe."
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force will have to be applied whose value is B G, B being the

buoyant force of the fluid. If the body is denser than the fluid,

it will have to be supported by a force whose value is G B.

But if the body rests on the bottom of a body of fluid (Fig. 28)

in such away that the fluid does not have access to the under side,

there will be no buoyant effect for then P'y
= zero. Thus in

the case of a ship, for example, sunk in the mud at the bottom of a

body of water, the pull T necessary to raise the ship is not only

FIG. 27. FIG. 28.

the weight of the ship but also the weight of the entire volume of

water resting on top of it. Thus in Fig. 28, T = G + Py .

If no external forces are applied to a body which is lighter than

the fluid, it will float on the surface, such portion of its volume

being immersed as is necessary to displace an amount of fluid

equal in weight to the weight of the body.
If the body is slightly heavier than the fluid, it will sink. If it

is less compressible than the fluid and there is sufficient depth, it

will sink until such a depth is reached that

the density of the fluid is equal to its own

density. If it is more compressible than

^^g the fluid its own density will be increased

more rapidly than that of the water and it

^^= will sink to the bottom.
i

EXAMPLES

FIG. 29. 1. A body whose volume is 2 cu. ft. weighs 200 Ib.

What will be the force necessary to sustain it when
it is immersed in fresh water? In ocean water?

2. In Fig. 29 the cube A is 12 in. along each edge and weighs 100 Ib. It is

attached to the square prism B which is 6 in. by 6 in. by 8 ft. and weighs 30

Ib. per cu. ft. What length of B will project above the water surface?

Ans. 1.76ft.
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3. A balloon weighs 250 Ib. and has a volume of 10,000 cu. ft. When it is

filled with hydrogen which weighs 0.0056 Ib. per cu. ft. what load will it

support in air which weighs 0.08 Ib. per cu. ft.?

Ans. 494 Ib.

4. The specific gravity of a solid is 0.8. What portion of its volume will

be above the surface of the water upon which it floats?

5. A body weighs 50 Ib. and has a volume of 4 cu. ft. What vertical force

is necessary to sink it beneath the surface of the water?

31. Metacenter. For a body floating on the surface of the

water, such as in Fig. 30, there are only the two vertical forces,

its weight G and the buoyant force of the water B. The latter

acts through the center of gravity of the water displaced. This

point is called the center of buoyancy. If the body is in equilib-

rium, these two forces must be in the same straight line.

FIG. 30.

Suppose that by some external agency the body is rolled or dis-

placed through some angle 6. The center of gravity is naturally

unchanged in its position in the section but the center of buoy-

ancy, in general, will change. Thus G and B constitute a couple.

In Fig. 30 (6) this is a righting couple since it tends to restore

the body to the upright position.

It may be seen that the line of action of B cuts the axis at

point M. This point is called a metacenter. As the angle

varies, the amount of this couple will vary and the point M will

also change its location. The position which M approaches as 6

approaches zero is the true metacenter. It may be seen that if

the couple is a righting couple the point M must always be above

C the center of gravity. It is necessary in ship design to insure

that M will be above the center of gravity for all angles of heel.

Thus not only is it necessary to locate the true metacenter but

also to compute the moment of the righting couple for all values

of 6 which are likely to be encountered. Further consideration

of this topic properly belongs to the subject of ship design.



CHAPTER IV

APPLICATIONS OF HYDROSTATICS

32. The Gravity Dam. One of the most important of the

many applications of hydrostatics is the design of dams, of which

there are several types. The gravity dam is one which depends
for its stability upon its weight. A typical cross-section of such

a dam is shown in Fig. 31. If the face AB is curved it will be

necessary to compute the two components of the water pressure,

H being equal to the pressure on a plane whose trace is A'B
while V is the weight of the volume of water represented by

FIG. 31. Cross-section of gravity dam.

ABA'. In all computations it is customary to consider a length

of dam (perpendicular to the plane of the figure) of 1 ft. Evi-

dently the stability of a gravity dam is independent of the total

length of the dam.

The total water pressure P combined with the weight of the

section G gives a resultant pressure on the base whose value is

R. This pressure is distributed all over the base BO but may be

considered to have a single point of application C. If R be

resolved into two components at the point C, evidently the value

of the horizontal component must be equal to H while that

32
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of the vertical component will equal G + V . By taking moments
of all the forces about it will be easy to locate the point C.

If the dam rests solidly upon impervious rock and there is no

leakage of water along any plane, or if a cutoff wall at B runs
down deep enough to stop percolation, and the base of the dam
is well drained, the above forces are all that act upon the struc-

ture, excepting of course tKe support of the earth which is equal
and opposite to R. But if water does have access to the under

side of the dam there will be exerted upon BO a vertical upward
pressure due to this. How much this may amount to depends

upon conditions. Thus if water saturates the foundation but

does not have an opportunity of escaping past the whole base

of the dam will be subjected to a water pressure equal to BA'
in intensity. But if the water can escape past there will be a

flow of water under the dam and consequently the pressure must
decrease from BA' at B to a very much smaller value at 0. It

is often reasonable to assume the pressure as zero at 0. But in

any event the admission of water to the base of the dam tends to

decrease the safety of the structure.

It may be seen that the horizontal thrust of the water H
is opposed solely by the friction between the dam and the founda-

tion upon which it rests. If the coefficient of friction here be

denoted by /* then it is clear that if the dam is safe against

sliding the value of H must be less than n(G + V). The factor

of safety against sliding is the ratio of the latter quantity to H.

Any leakage of water under the base of the dam decreases the

pressure between the dam and the material upon which it rests

and thus tends to decrease the frictional resistance. The
frictional resistance can be increased by sinking portions of the

dam into trenches such as in the case of the cutoff wall at B.

If it were possible for the dam to act as a rigid body under all

circumstances it could then fail by overturning about as an axis.

It is seen that with as a center of moments, H tends to overturn

the dam but is resisted by G and V. If water pressure acted upon
the base it would also tend to overturn the dam. The factor

of safety against overturning is the ratio of the moment of G + V
to the moment of H and the water pressure on the base, if any is

allowed for. However, before a masonry dam of any size would

overturn, the material along the base near would be crushed

due to the high intensity of pressure it would be under. Thus

although the point C might be to the left of in Fig. 31 so that
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the structure is safe against overturning, the base would still

not be safe against crushing. Hence, the second consideration

of the stability of the dam is not as to whether it will or will

not overturn but is concerning the distribution of stresses along

the base BO.

Referring to Fig. 32, a uniform intensity of stress p' distributed

over an area represented byAB gives a resultant pressureP applied

midway between A and B. If, however, the stress varies uni-

formly from P'A at A to zero at B, the resultant P will pass through
a point one-third the distance from A to B. If the total pressure

From a photograph by the author.

FIG. 33. Concrete dam at Crystal Springs Lake, California. 145 feet high.

P has the same value in both cases, it is clear that the intensity

of pressure at A is greater in the latter case than in the former.

And if P is applied at a point less than one-third the distance

from A to B, the intensity of stress will be still greater at A and

at B the intensity of stress P'B will be opposite in sign to that at
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A. It is thus clear that it is desirable to have the resultant pres-
sure pass as nearly through the midpoint as possible. And if

tensile stresses are to be avoided the resultant pressure must be

kept within the middle third. As masonry is not supposed to en-
dure tensile stresses, it is customary to so design the dam that the
resultant pressure falls within the middle third of any section.

It is not only necessary~to undertake such an analysis of the
dam as a whole but also to investigate the stability of all portions ,

of the dam with respect to any horizontal plane. In all such
studies the maximum height of water should be assumed. But
also the pressures should be determined when the reservoir is

empty as the inner face of the dam might then be subjected to

excessive vertical stresses.

33. The Framed Dam. Contrasted with the gravity dam we
have the framed dam shown in Fig. 34 which depends for its

FIG. 34. Framed dam.

stability upon the strength of its members. It consists of a

water-tight deck AB supported by struts, trusswork, or buttresses

at certain intervals along the length of the dam (perpendicular
to the plane of the figure). The deck is always inclined so that

the weight of the water upon it may hold the structure down and
increase the factor of safety against sliding.

34. The Arch Dam. In the, case of a short high dam in a

situation where firm support can be had from the walls on either

side the arch dam is desirable. It is designed to withstand the

water pressure by pure arch action and to transmit the pressures

to the abutments at either end. The material in an arch dam is

usually much less than in a pure gravity dam but any arch dam
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acts to some extent as a gravity dam. Its analysis is not within

the scope of this text.

From a photograph by the author.

FIG. 35. Lake Spaulding, Cal., variable radius arch dam. Ultimate height
will be 325 ft.
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FIG. 36. Section of Calaveras earth dam.

35. The Earth Dam. Under favorable circumstances the

earth dam is a very economical type. A typical section of such
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a dam may be seen in Fig. 36. The slopes on both tne upstream
and downstream faces are less than the angle of repose of the

From a photograph by the author.

FIG. 37. Upstream face of San Andreas earth dam. 90 ft. high.

From a photograph by the author.

FIG. 38. Incompleted Calaveras earth dam. Ultimate crest will be at

dotted line making it the highest earth dam in the world.

material used. In order to make such a dam water-tight it is

provided with an impermeable core which may be a thin vertical

wall of concrete or other material, or, as in Fig. 36, it may be
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obtained by depositing fine earth under water. Fig. 38 shows the

pool of water in the center of the dam where such a core is being
formed. There is little mathematical analysis to be made for

such a dam. The main problems are those of construction and

careful selection of the materials employed.
36. Additional Notes on Dams. In most cases there are

times when there is an excessive quantity of water that must be

disposed of, usually by allowing it to flow over a spillway that

is provided for that purpose. The spillway may be located at a

different place from the dam so that no water ever overtops the

latter as will be the case in Fig. 35. Again the spillway may

From a photograph by the author.

FIG. 39. Low dam at Ithaca, N. Y.

occupy a portion of the crest of the dam as in Fig. 33 where the

spillway can be seen in the middle. In other cases, such as in

Figs. 36, 37, and 38, the spillways are located at one end of the

dam and consist of rectangular canals through which the flood

waters are discharged. But in Fig. 39 it may be seen that the

entire crest of the dam is used for a spillway. This dam also

shows the curved face that is provided to minimize the scouring

effect of the waterfall upon the bed of the stream at the toe of the

dam. For it must be recognized that water in falling over a dam

acquires kinetic energy that must be expended in some way and

unless suitable provision is made for this it may be expended in

undermining the dam itself.
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37. Flashboards. In storing water by means of a' dam it is

desirable to keep the water level as high as possible without

flooding any lands upstream. If, therefore, the crest of the dam
were located at the elevation allowable under normal conditions

it would be excessively high in times of flood. In order to over-

come this difficulty movable devices are employed called flash-

boards, movable crests, amd various other names (Fig. 40).

These are all schemes for increasing the height of the dam by
equipment which can be removed when necessary. In some cases

they work automatically, being either washed away when the

water reaches a certain stage or caused to drop to a horizontal

position. Other types require removal by hand in such emer-

gencies. After the flood is past and the drier season comes on

T

\
FIG. 40. Flashboard.

they may be replaced again. Some of these are entirely auto-

matic in their action as in the case of the Stickney automatic crest

outlined in Fig. 41. We have here two planes AB and BC
rigidly connected and rotating about B. The water pressure on

AB together with the weight of the shutters and the additional

weight added at C tend to rotate the device in one direction but

that is opposed by the pressure of the water on BC. By a

suitable adjustment of area and weights it is possible to keep this

crest in the position shown until the water reaches the level of A.

Then the pressure on AB may be sufficient to cause it to drop to

the position A'BC'. Hence the crest of the dam will then be

reduced to the height of B, and the flood water will pour over the

shutter BA f and hold it down. But when the excess waters have

passed and the water level drops to B, or thereabouts, the pres-
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sure on BC', no longer opposed by that on BA', will raise the

crest to the initial position.

^^^^S^^^^//g^'siS?ij
&^;4&jfc$$^

FIG. 41. Automatic dam crest.

38. PROBLEMS

1. The intake tower in Fig. 42 will be surrounded by water when the

reservoir is filled and the outflow of water will take place through the

openings provided in the tower. Assume one of these gates to be 3 ft. wide
and 4 ft. high and to weigh 1,000 Ib. When the inside of the tower is sub-

jected to the pressure of the air only, what vertical pull on a gate rod will be

necessary to open the gate when the water stands 10 ft. above its top, if

the coefficient of friction between the gate and its guides is 0.3?

2. The valve in Fig. 43 is 34 in. in diameter. If it is closed and under a

pressure of 1,000 ft. of water on one side and atmospheric pressure on the

other, what pull will have to be exerted on the valve stem to open it if the

coefficient of friction is 0.4?
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From a photograph by F. H. Fowler.

FIG. 42. Intake tower at Elizabeth Lake Reservoir on Los Angeles Aqueduct.

From a photograph by the author.

FIG. 43. A 34-in. high-pressure gate valve in the shop of the

Pelton Water Wheel Co.
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3. Find the magnitude and point of application of the resultant pressure
on the 2-ft. circular gate shown in Fig. 44.

4. The gate AB in Fig. 45 rotates about an axis through B. If the width
is 4 ft., what torque applied to the shaft through B is required to keep the

gate shut?

6. What value of 6 in Fig. 46 is necessary to keep the masonry wall from

sliding? Masonry weighs 150 Ib. per cu. ft. and the coefficient of friction

equals 0.4. Will it also be safe from overturning? If it has a factor of

safety against sliding of 2, where will the resultant of the water pressure
and its weight cut the base?

FIG. 44.

B
FIG. 45.

L
FIG. 46.

6. In the framed dam shown in Fig. 47, the struts CD are placed 5 ft.

apart along the dam (perpendicular to the plane of the figure). WTiat will

be the load on each strut? What will be the value of the reaction at A?
If the length BE is 4 ft. and the depth of the water flowing over the crest at

E is 3 ft. what will be the load on the strut?

7. Assume the weight of the dam in Fig. 48 to be 150 Ib. per cu. ft., that

there is no seepage of water under its base, and that the coefficient of friction

between the dam and the material upon which it rests is 0.6. For 1 ft.

T

FIG. 47.

'-H 6'r* 20^ H.

FIG. 48.

length compute : (a) Horizontal component of water pressure. (6) Vertical

component of water pressure, (c) Weight of dam. (d) Is it safe against slid-

ing? (e) Is it safe against overturning? (/) Where does the resultant of

the water pressure and the weight of the dam cut the base?

8. In Fig. 40 the flashboard AB rests against a solid block at B but there

is a pin at either end at A which is breakable. If the length of a section of

flashboard is 6 ft., what must be the shearing strength of the pins if they give

way when the water level reaches A ?
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9. In Fig. 41 what weight must be added at C per foot of len'gth in order
that the crest may drop when the water level reaches A ? Neglect the weight
of the rest of the movable crest, and assume EC =7.5 ft.

10. Figure 49 shows a cylindrical tank. What is the total pressure on the
bottom? What is the total pressure on the annular surface A-A ? Find the

maximum intensity of longitudinal tensile stress in side walls B-B: (a) If

the tank is suspended from the top. (6) If it is supported on the bottom.
Ans. 392 lb., 147 lb., (a) 20.8 lb. per sq. in., (6) 7.8 Ib. per sq. in.

U-12Diam.->

T
12"

M-
12"

I

N 24 Diam. H

FIG. 49.

11. A pipe line 3 ft. in diameter is to carry water under a pressure of

1,000 ft. If the allowable tensile stress is 20,000 lb. per sq. in., what should

be the thickness of steel used?

12. With the thickness of metal computed in the preceding problem what
would be the tensile stress across a circumferential section if a valve was

closed, the pressure on the other side of it being atmospheric?



CHAPTER V

HYDROKINETICS

39. Actual and Ideal Conditions. From the standpoint of

pure mechanics the subject of hydrokinetics is rather unsatis-

factory. This is due to the fact that so many assumptions are

necessary, many of which are known not to be true. Thus in

the greater portion of the work all particles of water in any cross-

section of a flowing stream are assumed to move in parallel

paths and with equal velocities. This is shown in Fig. 50, a

of A

o
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have no assurance as to its exact nature in every case 'and, if we

did, our equations would be too complicated for practical use.

But in Fig. 51 all particles of water have been assumed to be

moving in straight lines parallel to the axis of the pipe, which we
know is very seldom the case. In fact the path of a given par-

ticle is very irregular as is shown in Fig. 52 and at the instant

From a photograph by the author.

FIG. 53. Showing vortices on surface of canal.

in question a particle at point may be moving with some

velocity OD. But in most practical problems we are concerned

with OB which is the axial component of the true velocity. Thus

not only do our equations ordinarily deal with a mean velocity,

but they deal with a component of the true velocity. Instead

of water flowing in parallel threads the true phenomena has been
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very aptly compared to the motion of a cloud of feathers blown

along by the wind. Water tends to travel in vortices as may often

be observed upon the surface of an open stream such as the canal

shown in Fig. 53. In this particular scene the water was flow-

ing with a moderate velocity (about 3 miles an hour) over a

reasonably smooth bed but the surface was covered with little

vortices.

Since actual conditions depart so widely from the ideal con-

ditions assumed by our imperfect theory we can expect our

theory to provide little more than a framework upon which may
be hung the results of experimental investigation.

The mean velocity at any section (strictly the mean axial

component of velocity) is obtained by dividing the total rate of

discharge by the total area of the section. That is V = q/F.

EXAMPLES

1. Experiment indicates that the velocity curve ABC of Fig. 51 is approxi-

mately a semi-ellipse and that OB is about twice O'A. Assuming this to

be so, find the ratio between the mean velocity and the maximum velocity.

(The total rate of discharge is f VdF and the value of this integral is the

volume of the solid O'ABCO'. Dividing the solid by the area of the base,

?rr2
,
we should have the mean ordinate or in this case the mean velocity.

The volume of an ellipsoid is two-thirds that of the circumscribing cylinder.)

Ans. 0.833.

2. A stream is divided into five equal areas and the mean velocity of

each portion is found by some method. These velocities are 3, 3, 4, 4, and

5 ft. per sec. What is the mean velocity of the entire stream?

Ans. 3.80 ft. per sec.

3. Suppose that the areas are not equal but have values of 2.5, 2.5, 2.0,

2.0, and 1.0 sq. ft. while the velocities are 3, 3, 4, 4, and 5 ft. per sec., respect-

ively. What is the total rate of discharge? What is the mean velocity?

Ans. 36 cu. ft. per sec.; 3.60 ft. per sec.

40. Critical Velocity. The path followed or assumed to be

followed by a single particle of fluid is called a stream line. It

has been found that for very low velocities the stream lines are

straight parallel lines as shown in Figs. 50 and 51, but that as

soon as a certain velocity is exceeded the flow becomes turbulent

or sinuous as in Fig. 52. The velocity at which the change
occurs is called the critical velocity. The value of the critical

velocity is affected by the temperature and also the size of the

tube or pipe; the larger the latter the lower the critical velocity.

For ordinary size pipes with which the engineer has to deal the

critical velocity is so low that its value is of no interest.
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41. Steady Flow. By steady flow is meant that at any point
in a stream all conditions remain constant with respect to time.

This does not mean that the conditions at any one point are

necessarily like those at some other point.

Unsteady flow is met with in cases where change is taking
place. Thus suppose a pipe line is flowing full of water and a

From a photograph by the author.

FIG. 54. The Los Angeles Aqueduct.

valve is closed suddenly at its lower end. The velocity of the

water would be brought to zero and in so doing there would be

certain pulsations of pressure, which if violent enough would be

recognized as water hammer. While such changes are in progress

we should have unsteady flow. Again suppose that a gate is

opened so as to admit water into an open canal originally empty.
As the canal filled with water the level at any point would stead-
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ily rise and also the velocity would in general be changing at all

points. While such changes were under way the flow would be

unsteady. But when equilibrium is finally established, the water

level at any point and the velocity of flow across any section no

longer vary from time to time and we then have steady flow.

In the strictest sense of the word steady flow is seldom met
with in ordinary engineering work as it would be found only
with velocities below the critical velocity. For with all veloci-

ties above the critical we have continual fluctuations of flow

at any point due to the irregular motion of the individual par-

ticles. It is for this reason that manometers or pressure gages
attached to pipes, in which water is flowing, continually pulsate.

Another evidence may be seen in Fig. 54, the dark band on either

side of the water being where the latter has wet the concrete by
wave action.

For all practical purposes we disregard these slight fluctuations

at individual points. If the average conditions over the entire

section are reasonably constant with respect to time, we consider

the flow as steady. While problems of unsteady flow are often

problems of great practical value, especially in connection with

the speed regulation of water power plants, they are rather

difficult of mathematical treatment. Fortunately they are not

as common as the more simple problems of steady flow. For the

most part this text will be devoted to the latter.

42. Rate of Discharge. The volume of water flowing across

any section per unit time is called the rate of discharge. It must
not be confused with velocity, since it is the product of the cross-

section area of the stream and the velocity of flow across the

section. It may be expressed in various units such 'as cubic

feet per minute, gallons per day, etc., depending upon the custom

in that particular class of work. In the foot-pound second sys-

tem of units such as are employed in this text it would naturally
be in cubic feet per second. This is often called

"
second foot"

for brevity and written as "sec. ft." 1

43. Equation of Continuity. In Fig. 56 it is apparent that the

volume of water between any two sections such as (1) and (2)

must remain constant if the flow is steady. Hence it follows

that the rate at which water flows in at (1) must be equal to the

rate at which it flows out at (2) ,
otherwise there would be a change

1 In irrigation work in India the term "cusec" has gained acceptance for

this rate of discharge.
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in the volume contained between the two sections. Thus we
may say that for steady flow, qi

=
g 3 .

If the flow is unsteady this is not necessarily so. For suppose
that the closure of a gate above (1) shut off the flow of water at

(1), we would still find water flowing for a time past (2) though
at the expense of the volume stored between the two sections.

Hence in case of unsteady flow, where the volume in any distance

is changing, the equation of continuity no longer applies.

The equation of continuity states that for steady flow

q
= FiVi = F ZV 2

=
. . . . .

= FV = constant (20)

This equation justifies the use of the term "
rate of discharge

"
for

the rate of flow across any section even though it be in the middle

of a length of pipe or at some point in a river. For at some
ultimate point the pipe or stream actually discharges in the usual

sense of the word. And the rate of discharge at this point is

equal, if the flow be steady, to the rate of volume flow at all

sections throughout the stream.

EXAMPLES

1. In Fig. 55 the portion of pipe between A and C is the frustum of a

right circular cone with vertex at 0. If the rate of discharge is 10 cu. ft.

per sec., what are the velocities at A, B, and C? Between A and C the

velocity will vary as what function of the distance from 0? What shape
of tube should be between A and C in order that the velocity may decrease

uniformly with respect to distance? (Take origin at point where velocity
would become zero.)

FIG. 55.

2. The canal shown in Fig. 53 is 14.5 ft. wide and 4.2 ft. deep. If the

velocity of the water is 3.5 miles per hour, what will be the rate of dis-

charge in cubic feet per second?

3. The water in the canal of problem (2) finally flows down a steel pen-

stock (Fig. Ill) which is 52 in. in diameter. What is the velocity of flow?

4. At the end of the pipe line in problem (3) the water is discharged

through four nozzles the jets from which are approximately 7 in. in diameter.

What is the jet velocity?

44. General Equation for Steady Flow. In the case of steady

flow we may derive a very useful equation commonly known as
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Bernoulli's theorem in honor of Daniel Bernoulli who proposed
it in 1738. We shall make use of the principle of work and

kinetic energy, and the following conditions will be assumed:

(a) Flow is steady.

(6) Fluid is incompressible.

(c) Velocity across any cross-section is uniform.

In Fig. 56 let A and B be any two cross-sections of a filament of

a stream in steady flow. Suppose that during an infinitesimal

time interval particles passing A and B move to A' and B f

respectively. The pressure, elevation, velocity, and cross-section

area between A and A' will be denoted by pi, Zi, Vi, and Fi

respectively, while between sections B and B' these will be p 2 ,

22, V2 and F2 respectively. Since the flow is steady and the

fluid is incompressible, the volumes of water passing A and

B during any time interval must be equal so that Fidsi

FIG. 56.

From the principle of work and kinetic energy, the net work

done on the volume between A and B while it moves to the posi-

tion between A' and B r
is equal to the corresponding change in

its kinetic energy. The net work done on the volume under

consideration is the sum of three parts: (1) The work done by
pressures normal to the external surface of the filament; (2) the

work done by gravity; (3) the work done by frictional forces.

In the first item it is necessary to consider only the work done

by the pressures on the end cross-sections, since the side pressures
do no work. These forces at A and B are wiFi and re-
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spectively and the displacements of their application points in

the directions in which they act are dsi and dsz respectively.

Hence the net work done by these forces is wp\F\dsi wpzFzds*.

Since the location of the center of gravity of the portion of the

filament between A' and B remains unchanged, the net work
done by gravity during the time interval is equal to that due to

the change of elevation of trie volume of water Fidsi from z\ to

Zz. The net work done by gravity is thus wFidsi(zi zz).

The work done by friction will be neglected for the present.

Since the kinetic energy of the portion between A' and B
remains unchanged if the flow is steady, the whole change of

kinetic energy is the difference between the kinetic energies of

the parts between B and B r and between A and A'; that is

9
2 y z

Combining all the work and energy terms in an equation and

noting that Fidsi = F2dsz

y 2 _ Y 2

Dividing both terms by wFidsi and rearranging, we have

Zl

This is Bernoulli's theorem, but, since all real fluids are viscous,

it is impossible for flow to take place without fluid friction and

hence a term should always be included to account for the energy
converted into heat and hence lost.

Experiment indicates that the friction loss is some function of

the velocity and for the present we shall represent it as H' =
kVn

/2g, realizing that this is purely an empirical expression.

Hence we may write the general equation as

In case the velocity varies between (1) and (2) the V for the

friction term might be taken as the average velocity, or by using
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a suitable value of k it may be written as V\ or Fa- In practical

work the difficulty of using equation (21) lies largely in estimat-

ing proper values of k and n, and it is necessary to rely entirely

upon experimental evidence.

45. Use of the Word "Head." Examining each term of

equation (21) in detail we find: The term p indicates intensity

of pressure expressed in feet of water, hence it is a linear quantity

and indicates the height of a column of water necessary to pro-

duce the given pressure. There may be no such real height of

water in the problem, as in the case of a small volume of water

enclosed within a cylinder and subjected to pressure by a piston.

The quantity p is called pressure head.

The elevation of a point above any arbitrary datum plane

is indicated by z. It is a linear quantity and in our system of

units it should be expressed in feet. It is called elevation head

or potential head.

The third ternvy 2
/2# may also be seen to reduce to a linear

quantity when we analyze the units involved in V and g. The
linear quantity equivalent to V2

/2g is the height through which

a body might fall in a vacuum from rest and acquire the velocity

V. In many cases it is a purely artificial quantity in that there

is no actual height in the figure illustrating the problem that

gives any indication of its value. It may be called velocity head.

Since all the other quantities in equation (21) are in linear

dimensions, or feet in our system of units, it follows that kVn
/2g

must also be in feet. It may be called the lost head
}
and is

represented by the letter H'.

The sum of the pressure, elevation, and velocity heads at any
section is called the total or the effective head at that section.

However, the effective head, or any of the individual terms

composing it, may be called "head" without any qualifying

adjective.

It is often convenient to let a single letter stand for the effective

head, hence we may write

H = P + z +
|f (22)

Using this brief notation we may rewrite equation (21) as

H, - H' = H,' (23)

We see that the effective head must decrease in the direction of

flow by an amount H'. Hence, although either pressure, eleva-
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tion, or velocity may increase in the direction of flow, the sum
of all three of them must continually decrease. Therefore an
increase in one of these items must always be accompanied by a

corresponding decrease in one or both of the other heads.

EXAMPLES

1. Assuming a body of water at rest in Fig. 57, so that there is no loss

of head, what are the values of the pressure head at A, B, C, and D? What
are the values of the elevation head?

What are the values of the effective

head at these four points?
2. In Fig. 58 the point A is 30 ft.

higher than B. Assuming the pipe to

be of uniform diameter, in which

FIG. 57. FIG. 58.

direction will the water be flowing if the pressure at A is 20 Ib. per sq.

in. and that at B is 40 Ib. per sq. in*? What is the head lost between

the two points? What would the pressure be at A if the flow were to be

in the opposite direction, the rate of discharge remaining the same?

FIG. 59.

3. In Fig. 59 suppose 8 cu. ft. of water per sec. to be flowing from A to

C. Assume a loss of head from A to B to be equal to 0.0017^ and an equal

loss to occur between B and C. If the pressure head at B is 2 ft., how high

will the water stand in piezometer tubes at A and C?
4. Neglecting all loss of head in Fig. 55, what kind of a curve would ex-

press the variation of pressure from A to C?
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46. Energy and Power Meaning of Head. Suppose we

multiply the elevation head z by the weight G of a definite volume

of water. The product Gz being pounds times feet represents

foot-pounds and we recognize it as potential energy. That is

the body of weight G possesses Gz foot-pounds of potential energy

by reason of its elevation z.
1 In like manner if we multiply the

velocity head by G we have GV2
/2g, which represents the kinetic

energy of G pounds of water due to its mass and velocity. By
analogy we might expect that if we multiplied the pressure head

p by G we should also have Gp foot-pounds of energy which we
could call pressure energy.

But we here face the difficulty that we recognize energy in

only two fundamental forms which we call potential energy or

kinetic energy as the case might be. All other forms of energy

may be reduced to one of these two. It is not clear that pressure

energy can be reduced to either of these and so we have to seek

further for an explanation of this term. Energy is ability to do

work and we feel that water under pressure is capable of doing
work. But if a particle of water should in some manner suddenly
be disconnected from its fellows it would still have its initial

elevation and velocity; these are qualities that it possesses in itself .

But its pressure would be lost, since that is derived from contact

with other particles. Thus water can do work due to pressure only

so long as it is still connected with other particles. Hence we

might conclude that pressure energy, if the term is permissible,

is not something that a particle possesses but is merely energy
that is transmitted from one to the other by virtue of the pressure

and the motion.

A good analogy to the way that energy may be transmitted

past any point is offered by a belt connecting two pulleys. The
belt possesses kinetic energy due to its mass and velocity and

this energy is carried past any stationary reference point. But

in addition to this the belt is under tension and is in motion and

hence transmits energy from one pulley to the other that it does

not in itself possess. In like manner in the case of a flowing

stream of water, the water carries across any transverse section

a certain amount of energy which it possesses in either the

potential or the kinetic form or both. In addition to this it

1
Strictly speaking this energy is possessed by the system consisting of

the earth and the water.
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may transmit energy across the section due to its pressure and
motion.

Suppose we consider a particle of water flowing from (1) to (2)

in Fig. 56 and assume that there is no loss of head so that H =

p + z + V2
/2g = constant. In the case of a freely falling body

acted upon by no other forces save gravity we should find that

the loss of potential energy^ was compensated for by an equal
increase in kinetic energy so that its energy remains constant.

But if we assume that the stream of water is confined in a channel

of uniform area the velocity is constant according to the equation
of continuity, hence the kinetic energy cannot change. If the

particle loses potential energy without any increase in its kinetic

energy, it follows that its total energy must decrease. This is

true for the particle. But the total energy in the system does

not change for we are assuming no loss. The reason the velocity

of the particle of water cannot increase is that negative work is

being done upon.it by the pressure dp'dF (Fig. 56). But this

negative work, although it reduces the energy of the particle,

is not lost from the system. If conditions permit the particle

of water to again ascend to a higher elevation or to increase in

velocity the pressure acting on it will then do positive work and

restore the potential or kinetic energy to it.

The discussion may be concluded by stating that head repre-

sents energy per unit weight of water. In the case of lost head

H' represents the energy lost and dissipated in the form of heat

per unit weight of water. Thus head may represent foot-

pounds per pound of water.

If we multiply the effective head H by the weight of water W
flowing across any section per unit time, the product of the two

will be energy per unit time. But energy per unit time, or the

rate at which energy is transmitted, is power. In our system
of units the product WH will be in foot-pounds per second.

Thus head is equal to the energy per unit weight of water or it

is equal to the power per unit rate of discharge.

EXAMPLES

1. The surface of a lake is 500 ft. above a certain arbitrary datum plane

with respect to which energy is to be measured, (a) What is the energy

per pound of water? (6) If the lake is capable of furnishing 200 cu. ft. of

water per sec. what power is available at the datum plane?
2. In a pipe line which is 24 in. in diameter we have water flowing with

a velocity of 15 ft. per sec. under a pressure of 10 Ib. per sq. in. What power
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is being transmitted through the pipe due to pressure? What is the total

power delivered?

Ans. 123.2 hp.; 141.8 hp.
3. A jet of water free from all pressure is 7 in. in diameter and has a veloc-

ity of 250 ft. per sec. What is the horsepower?
Ans. 7,390 hp.
4. A pipe line draws water from a lake and delivers it to a power house

at a point 500 ft. below the level of the surface of the lake. The water is

delivered at a velocity of 170 ft. per sec. by a jet 6 in. in diameter, and free

from all pressure (save that of the atmosphere). What horsepower has been

lost in the pipe line?

47. Correct and Incorrect Applications of Bernoulli's Theorem.

Bernoulli's theorem states that along any stream line the

effective head remains constant. But in a real fluid which is

viscous there can be no flow whatever without some loss due

to friction. Hence the correct statement is that along any
stream line the effective head always decreases in the direction

of flow.

It should be emphasized that the general equation should be

written only between two points in the same stream line so that

a particle of water may be assumed to flow from one point to

the other. If there were no loss of energy it would follow that the

effective head is constant at all points throughout a connected

body of fluid and in that event only we might apply the equation
to any two points whatever. But in reality this would lead us

to incorrect conclusions as the following will show.

Suppose that we have no loss due to friction; it would then

follow that we should have all particles of water at a section

moving with equal velocities in parallel paths as shown in Fig. 50.

All particles of water would have the same amount of kinetic

energy and it is clear that all particles of water through the section

would have the same amount of energy. But in reality the

velocity across any section of a circular pipe, for example, is

like that in Fig. 51. This is due to the fact that the greater

frictional resistance near the walls of the pipe has retarded the

water near them. Certain persons have incorrectly applied

Bernoulli's theorem between a point near the wall and a point at

the center of the pipe and reasoning that there could be no loss

between two such points come to the conclusion that the pressure

is less at the center of the pipe than it is near the wall because

the velocity head is higher. This would lead to an excessive

pressure difference if true. This reasoning has even been bol-



HYDROKINETICS 57

stered up by claims of experimental evidence, but in reality the

data were inaccurately determined.

It is no more permissible to apply the general equation be-

tween two points in adjacent stream lines than between two

separate streams in different channels. It is a mistake to assume

that the effective head is constant across any section. Correct

experimental evidence shows that the pressure head across any
section varies only according to the depth, the same as in the

case of water at rest. Hence if the sum of pressure head and

elevation head is constant across any section while the velocity

head varies, it follows that the total head varies at different

points in the section. This is in harmony with a correct appli-

cation of Bernoulli's theorem along the different assumed stream

lines. If all particles started with the same store of energy it

is clear that those near the pipe wall would have lost more by
friction than those near the center. Hence the energy of those

particles near the pipe wall should be less than that of those in

the center.

In practical application of the general equation we do not

deal with stream lines but with entire streams. Hence we have

for H the average head across the section and for V the average

velocity across the section. But we do equate the average head

at some section of a stream to the average head at some other

section of the same stream.

In considering an entire stream, rather than a single stream

line, we assume the kinetic energy per unit time to be WV2
/2g,

where V is the average velocity. This is not strictly true for,

if the velocity varies from point to point over the section, the

kinetic energy is the sum of the kinetic energies of all the in-

dividual particles. Considering an elementary area dF, the flow

through it will be wV'dF, where V is the actual velocity at the

point in question. The kinetic energy of the elementary stream

would be wV' 3
dF/2g. Hence the total kinetic energy for the

entire stream is

-' (v
20 J

l W. (24)

If the velocity is constant this will become wV*F/2g = WV2
/2g

since the true velocity at every point is the average velocity

for the section. But in reality the velocity does vary to some

extent over the section and hence (24) gives the true kinetic
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energy. If the law of variation of V throughout the section is

known this integral can be evaluated, but in any event it can be

shown that the kinetic energy so obtained is greater than that

computed by using the average velocity.
1 Thus making the

assumption that the velocity in the center of a circular pipe is

twice that near the walls and that the velocity curve is a semi-

ellipse it will be found that the true kinetic energy is 1.06 times

that based upon the mean velocity. Fortunately the difference

is not great in important cases met with in practice. Thus in

the case of a jet of water from a good nozzle, where there is

little variation in velocity, the difference may be a matter of

about 1 per cent, only.
2 A correct application of equation

(21) would require us to insert some factor before the velocity

head, based upon the average velocity, to give a correct value.

But if the velocity curves at sections (1) and (2) are similar and

the velocities nearly the same in value the error in one may
nearly balance that in the other. Hence it is not customary to

allow for this discrepancy between the true kinetic energy and

that computed by using the average velocity.

EXAMPLE

1. Assume that in a rectangular stream the velocity of the water is uni-

form from side to side at any depth but that it varies from the top to the

bottom inversely as the depth. If the velocity at the top is twice that at

the bottom find the ratio between the true kinetic energy passing a section

per unit time and that based upon the mean velocity.

Ans. 1.11.

48. Applications of General Equation. For the solution of

problems in hydrokinetics we have two fundamental equations,

the equation of continuity (20) and the general equation for

steady flow (21), usually known as Bernoulli's theorem. In most

cases the following procedure may be employed:
1. Choose a datum plane through any convenient point.

2. Note at what sections the velocity is known or assumed.

If at any point the cross-section is great as compared with its

value elsewhere, the velocity will be so small that the velocity

head may be disregarded.

3. Note at what points the pressure is known or assumed.

In a body of water at rest with a free surface the pressure is

!L. M. Hoskins, "Hydraulics," page 119.

2 W. R. Eckart, Jr., Inst. of Mech. Eng., Jan. 7, 1910.
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known at every point. The pressure in a jet is the Bame as that

in the medium surrounding the jet.

4. Note if there is any point where the three items of pressure,

elevation, and velocity are known.

5. Note if there is any point where there is only one unknown

quantity.

It is generally possible Jo write equation (21) between two

points such that they fulfill conditions (4) and (5) respectively.

Then the equation may be solved for the one unknown. If it is

necessary to have two unknowns then equation (21) must be

solved simultaneously with equation (20). The procedure is

best shown by applications such as the following:

In Fig. 60 we have a pipe BCD which is 6 in. in diameter

through which water flows from reservoir A. The diameter of

the stream discharging freely into the air at E is 3 in. Let us

assume that n = 2 in equation (21) so that the loss of head due

to friction is proportional to the square of the velocity. Then
H' = kV2

/2g, where V is the velocity in the pipe. Suppose that

the roughness of the pipe and the lengths between the various

points are such that the values of k from the reservoir to B,
from B to C, from C to D, and from D to E are 2, 4, 4, and 1

respectively. Let it be required to find the pressure at C when
flow takes place.

At C there is both an unknown pressure and an unknown

velocity, hence we cannot immediately apply equation (21) as

one equation is capable of determining only one unknown. Let

us then follow the procedure outlined. The location of a datum

plane is immaterial in the solution of the problem but it is usually

convenient to take it through the lowest point in the figure

and thus avoid negative values of z. Therefore let us assume

a datum plane through E. In the reservoir we find that the

velocity is negligible because of the large area as compared with
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the area of the pipe. At a point A on the surface of the water

we find the pressure to be atmospheric, which is also the case

with the stream at E. Thus whatever the pressure of the atmos-

phere may be its effects can easily be shown to balance out and

therefore we neglect it altogether. Hence at A we find that

everything is known while at E the velocity head is the only
unknown.

We shall apply equation (21), or its equivalent (23), between

points A and E. We find that

#A =0 + 40 +
#E = + + F/2

/2<7

#'A_E = 11 F2
/2<jr.

Now V is the velocity of the jet at E while V is the velocity

in the pipe but one may be replaced in term of the other by
equation (20). (It is seldom necessary to compute areas for

this. It is both easier and more accurate to use the ratios of

the areas, which means the ratios of the diameters squared.)

Now V = FV/F', where F' is the area of the jet. But F/F' =

(6/3)
2 = 2 2 = 4. Hence V = 47 and F' 2 = 16F2

. Replacing
V by V and substituting in equation (23) we have

40 - llV2
/2g =

Thus V2
/2g = 40/27 = 1.48 ft. We have now determined one

of the unknowns at C.

We may next apply equation (23) between C and either A or

E since we know the value of H at either of the latter points.

The value of the effective head at C is H = p + 25 + 1.48

while #'A_c = 6F2
/20 = 6 X 1.48 = 8.88 ft. Now from (23)

40 - 8.88 = Hc = p + 26.48.

Hence p = 4.64 ft.

If the rate of discharge is also desired we can easily find that.

Since V2
/2g = 1.48, V = V2g 1.48 = 8.025\/L48 = 9.78 ft.

per sec. Hence q = 0.196 X 9.78 = 1.92 cu. ft. per sec.

EXAMPLES

1. Compute the pressures at B and D in Fig. 60.

2. Suppose that all other data for Fig. 60 remains unchanged except the

diameter at C. What will this diameter be if there is a vacuum of 20 in.

of mercury at C?
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3. Suppose the diameter at C in Fig. 60 remains 6 in. and all other data

is likewise unchanged except the elevation of C. How far above E can C
be placed to produce a vacuum of 20 in. of mercury?

4. What fall from the surface of the reservoir in Fig. 60 to the outlet at

E would be necessary to produce the same rate of discharge, if there were

no loss due to friction?

49. PROBLEMS

1. In Fig. 60, with data as given in preceding article, what is the energy

per cubic foot of water in the reservoir? What is the power transmitted

past C? What is the power in the jet at El What is the value of the power
lost by friction?

2. Suppose all radiation of heat from the pipe in Fig. 60 could be pre-

vented and that the temperature of the water in the reservoir is 32F.
What would be the temperature of the water in the jet? (778 ft.-lb. of work
will raise 1 Ib. of water 1F.)

FIG. 61.

3. In the siphon shown in Fig. 61 the loss of head from the intake to B
is 4 ft. and that from B to the discharge end of the pipe is 3 ft. Find the

rate of discharge and the pressure head at B if the pipe is of a uniform diame-

ter of 6 in.

Ans. p = 14 ft.

4. Suppose the discharge end of the siphon of Fig. 61 were 4 in. in diameter,

other data remaining the same, what would be the rate of discharge and

pressure at 5?
6. If all data were as given in problem (4) except that the size of the

stream discharging from the end of the siphon were not fixed, how large

could the diameter of this be if the pressure at B is 25 ft.? What would

then be the rate of discharge?
6. The diameter of the pipe in Fig. 62 is 4 in. and that of the stream dis-

charging into the air at E is 3 in. Neglecting all losses of energy, what are

the pressures at B, C, and D? (Velocity assumed negligible at A.)



CHAPTER VI

APPLICATIONS OF HYDROKINETICS

50. Definition of a Jet. A jet is a stream bounded by a fluid

of a different kind. The jets with which we are concerned in

practical hydraulics are streams of water entirely surrounded by
air. It is evident that the pressure to which the water in a jet

is subjected is exactly equal to the pressure exerted upon its

boundaries by the surrounding air.

51. Jet Coefficients. Due to frictional resistance the actual

velocity of a jet is always less than would otherwise be the case.

From a photograph by W. R. Eckart, Jr.

FIG. 63. Jet from 7^-inch nozzle. (Head = 822 ft., velocity
per sec.)

227.4 ft.

The velocity which would be attained if friction did not exist

may be termed the ideal velocity.
1 The ratio of the actual

velocity to the ideal velocity is called the coefficient of velocity,

1 This is frequently called "theoretical velocity" by others but the author

feels that this is a misuse of the word "theoretical." Any correct and

sensible theory should allow for the fact that friction exists and affects the

result. Otherwise it is not theory but merely an incorrect hypothesis.
62



APPLICATIONS OF HYDROKINETICS 63

The area of the opening through which the jet issues is some-

thing that is readily determined, but in many cases the area
of the jet cannot so readily be measured without special equip-
ment. Hence it is desirable to know the relation between the
area of a jet and the area of the open-

ing through which it came. This

factor, the ratio of the area of the

jet to the area of the opening, is called

the coefficient of contraction. The
word " contraction" is used because

the jet usually contracts and is

smaller than the opening, as may be

seen in Fig. 63. In case the jet does

contract, the section of minimum

area, the "vena contracta," is the

section whose area is considered in the calculations. The velocity
of a jet is also understood to be the velocity found at this point.

The coefficient of contraction may be unity, indicating that

the area of the jet is equal to the area of the opening from which

FIG. 64. The "vena
contracta."

From a photograph by the author.

FIG. 65. Discharge from end of a straight pipe. (Mixture of water, mud,
and rocks building up the Calaveras earth dam.)

it issued. This is the case when the sides of the stream are

parallel before it issues from the opening, as when the discharge

is from the open end of a pipe as shown in Fig. 65. Of course

after passing the point of minimum section the jet diverges again
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due to the loss of velocity from frictional resistance. This is

seen in Figs. 63, 66, and 67.

From a photograph by the author.

FIG. 66. Jet from hydraulic giant sluicing out material for Calaveras
earth dam.

From a photograph "by the author.

FIG. 67. Nearer view of jet in preceding figure.

The product of the coefficient of velocity and the coefficient of

contraction is called the coefficient of discharge. It is the ratio
of the actual rate of discharge to the ideal rate of discharge
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that would be obtained if there were no friction and if the jet
did not contract.

52. Flow through Orifice. An orifice is any opening in the
wall of a containing vessel. The only restriction is that the

thickness of the wall shall be only a small fraction of the diam-
eter or other linear dimension of the opening.

Let us write the general equation (23) between points (1) and

(2) of Fig. 68, assuming the pressure is atmospheric at both

points and that the area of the vessel is such that the velocity

FIG. 68.

at (1) may be neglected. We shall also assume a loss of head

between the two points which we shall consider as being propor-
tional to the square of the velocity of the jet V and introduce

such a factor k that #'i_ 2
= kV2

/2g. Thus we have

H l
= + h + 0, # 2

= + + V2
/2g.

Hence #1 - kV 2
/2g = V 2

/2g.

From this, V2
/2g = #,/(! + k) or,

V =
,

l

V2JHI (25)
V 1 + k

If there were no frictional resistance to flow, the value of k

would be zero. Thus the ideal velocity is V = \/2gHi. It is

the ideal velocity that is to be multiplied by the coefficient of

velocity to obtain the true velocity. Hence

c, = -
7=k= (26)
V 1 + k
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In this equation we have the relation between the coefficient of

velocity and the coefficient of loss. By squaring both sides and

rearranging this may also be written

k = n
- 1 (27)

Since in this case H i
=

h, we may now write equation (25)

in its more usual and more convenient form

V = cv Zgh (28)

53. Orifice in Case of Unequal Pressures. In case the jet

in Fig. 68 discharged into a medium under a different pressure

from that existing upon the surface of the liquid in the vessel

we should proceed as follows:

Hi = pi + h + 0, H z
= P2 + + V*/2g

Completing the solution as in the preceding article we should

obtain

V = + pi
- pz) (29)

54. Submerged Orifice. For a submerged orifice as shown in

Fig. 69 we could write for points (1) and (2) :

#1 = + (h + y) + 0, H 2
= y + + V*/2g.

FIG. 69.

The pressure in the stream of water at (2) is equal to that upon
its boundaries and that is equal to the depth y. It is evident

that y cancels out so that for the submerged orifice we also have

V = cvV2gh (30)

The coefficients for a submerged orifice would be different

from those for an orifice discharging into the air. It is possible

that the contraction coefficient would be materially larger and

the velocity coefficient somewhat smaller.
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EXAMPLES
1. In Fig. 69 determine the loss of head between (2) and (3), the velocity

at the latter point being negligible. Ans. V 2
/2g.

2. Knowing the loss of head between (2) and (3) add this to kV 2
/2g

and solve for the velocity of flow through the orifice by writing an aqua-
tion between (1) and (3).

55. Values of Orifice Coefficients. The value of the coefficient

of velocity is always less than unity, though it may often approach
that value very closely. In some very well made nozzles and

sharp-edged orifices the coefficient of velocity may be as high as

0.98 and occasionally 0.99 may be attained.

(6) () ,

FIG. 70. Types of orifices.

A standard orifice is one with a sharp edge as in Fig. 70 (a).

It is called a standard orifice because one will give practically

the same results as another of the same size. Any other form

of orifice such as (c) in Fig. 70 would give different results de-

pending upon the thickness of the plate, the roughness of the

material, etc.; hence the coefficients for each individual one

would have to be determined if accurate computations were

desired.

If the plate is thin and the inner corner is square and sharp,

the orifice in Fig. 70 (6) may also be considered a standard

orifice. But if the plate is too thick the condition in Fig. 70 (c)

is met with and the velocity coefficient will be less than in the

former case due to the greater frictional resistance the water

encounters. Rounding the edge as in Fig. 70 (d) reduces the

eddy losses and hence increases the coefficient of velocity slightly.

The contraction coefficient is much more sensitive to varia-

tions in the nature of the orifice than is the velocity coefficient.

But it should be noted that contraction affects only the size of
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the jet and not its velocity. The coefficient of contraction is the

least in (a) and (6) and may be unity in (c) and (d). Hence the

latter forms of orifices may discharge much more water than the

former. Thus the type of orifice to be used depends upon
whether one wishes a large discharge or wishes the maximum

velocity. Of course if an orifice is used as a means of measur-

ing rate of discharge only the standard orifice should be em-

ployed unless the special orifice can be calibrated.

If F and V denote the area and velocity of the jet respec-

tively, while F is the area of the orifice, it may be seen that,

since c = cccv ,

q = FV =
(ccF )(cv\/2gH'l) = cF \^2glTi.

Values of coefficients of discharge for standard circular and

square orifices are given in Tables 1 and 2 respectively. These

orifices are to be sharp edged and to be in vertical planes. The
orifice should be so situated that it is flush with a flat wall on the

water side free from all obstructions, projections, and sides

for a distance in all directions of at least three times the diameter

of the orifice. If this is not so the full contraction will not be

obtained and the actual coefficient will be larger than given by
the tables. The tables show that the coefficients are different for

different sizes and for a given orifice vary with the head on the

orifice, thus illustrating the impossibility of stating general

values or laws that hold in all cases. It will be noted that the

coefficients decrease as the head increases and that as higher

values are attained the rate of decrease is much smaller. For

heads above 100 ft. the values for 100 ft. may doubtless be ap-

plied with little error.

EXAMPLES
1. Find values of the coefficient of loss when the velocity coefficient has

values of 1.00, 0.99, 0.95 and 0.80. Find cv when k has values of 0, 0.5, 1.00.

2. Water issues from a vertical orifice (one in a vertical plane) under a

head of 16 ft. The diameter of the orifice = 2 in. When measured it was
found that ^

= 33 cu. ft. per min. What is the coefficient of discharge? If

the coefficient of velocity is assumed to be 0.96, what is the value of the

coefficient of contraction? What will be the diameter of the jet?

3. The discharge from an orifice under a head of 230 ft. was found to be

180 cu. ft. per min. The jet was found to be 2.16 in. in diameter while the

diameter of the circular orifice was 2.25 in. What are the coefficients of

velocity, contraction, and discharge?

4. What would be the rate of discharge from a standard circular orifice

of 2 in. diameter under a head of 3 ft.? What would be the probable
value of the jet velocity?
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TABLE I. DISCHARGE COEFFICIENTS FOR STANDARD CIRCULAR VERTICAL
ORIFICES ACCORDING TO HAMILTON SMITH

Head on
center of
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56. Flow through Short Tubes. A short tube, whose length

is not more than two or three diameters, may be treated in the

same manner as the orifice. If its length is much greater it be-

comes a pipe, the consideration of which will be taken up in a sub-

sequent chapter. As a measuring device the tube is not as

valuable as the standard orifice, since the coefficients of the latter

are known with greater accuracy. It is possible to apply to

any standard orifice coefficients taken from tables and to have

some assurance as to the accuracy of the result. But the tube

(<*) (6)

FIG. 71. Coefficients for tubes.

cannot be standardized as accurately as the orifice and hence it is

necessary to calibrate the tube itself if it is to be used for water

measuring.
The coefficient of velocity is the highest in the case of the bell-

mouthed tube, Fig. 71 (a), since the eddy losses at entrance are

reduced to a minimum. The greatest hydraulic friction loss is

met with in the case of the re-entrant tube in Fig. 71(c) ;
hence its

velocity coefficient is the least. The contraction coefficients of

all tubes are unity, provided the tubes have parallel sides.

EXAMPLES

1. In Fig. 72 the diameter of the jet at C is

1.5 in. If the coefficient of discharge is 0.96,

what is the rate of discharge?

2. At B in Fig. 72 the diameter is 1.0 in. while

that at C is 1.5 in. What is the value of the

velocity and pressure at J5? (Assume no loss

^F of head between B and C.)
' ' 3. In Fig. 72 if the pressure at B is to be

FIG - 72. absolute zero, what will be the velocity at that

point? What would be the velocity at B if

the tube were cut off at that section?

57. Flow through Nozzles. A nozzle is a converging tube

usually placed on the end of a pipe line or hose. It may be a
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plain conical nozzle as in Fig. 73 (a) or a smooth convex nozzle

as shown in Fig. 73 (c). The jet from a nozzle may undergo some

(fl) Conical Nozzle (6 ^Straight Tip (C) Convex Nozzle

FIG. 73. Standard Nozzles.

From a photograph by the author.

FIG. 74. Jet from hydraulic giant washing out material for earth fill dam.

contraction or, if a small portion near the mouth is of uniform

diameter as in Fig. 73(6), the water may leave in parallel lines

and suffer no contraction.
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Nozzles may be used as water-measuring devices the same as

standard orifices, and are especially useful for that purpose when

high heads are employed. They may also be used to furnish jets

at high velocities for fire purposes, for power, or for hydraulic

mining and similar work such as shown in Fig. 74.

In the case of a nozzle the water in the pipe leading to it

usually flows with a velocity which is quite appreciable and it is

desirable to consider this velocity of approach. Hence we shall

derive an expression which takes this velocity head into account.

FIG. 75.

For points (1) and (2) of Fig. 75 we have H l
= p l + + VS/2g,

# 2
= + 0+ Vz

2
/2g, and H'i- 2

= kV2
2
/2g. Now applying the

general equation (23) we have

From this

(31)

This is similar to the result for the orifice, but here we have

HI = pi + Vi z
/2g instead of = h as in Art. 52. Inserting this

value we have

(32)

If the velocity in the pipe is known in some way this equation
could be used directly. In case it is not known, we may proceed
as follows:

Squaring both sides of equation (32) we have

By the equation of continuity Vi = (F2/Fi)V2 . Substituting

this in the above and transposing we have
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From this we obtain

In this equation F2 is the actual area of the jet at the point of

minimum area. If the area of the nozzle opening be expressed

by Fo, then F% = ccF and the latter expression could be inserted in

(33). The rate of discharge is obtained by multiplying Vz by F%
or by ccFo as the case may be.

The velocity coefficients of well-made nozzles are very high,

being practically equal to those of a standard circular orifice.

We may reasonably assume an average value of the velocity

coefficient of 0.98, though even this is often exceeded. 1

The height to which a good fire stream can be thrown by a

nozzle is from about two-thirds to three-fourths of the effective

head at the base of the nozzle. The proportion is higher for large

jets than for small ones, for smooth nozzles than rough ones, and

for low pressures than for high pressures.

58. Efficiency of Nozzle. Since a nozzle is frequently em-

ployed for power purposes, we may be interested in its efficiency.

The efficiency of a nozzle may be defined as the ratio of the power
in the jet to the power delivered to the nozzle. But we have seen

that for a given rate of discharge, power is directly proportional
to head. Thus referring to Fig. 75, we have

e = #2/#i-

But from equation (31) H 2
= V2

2
/2g = cv

2
Hi. From this it may

be seen that

e = c,
2

(34)

This would be exactly true if all particles of water in the jet

possessed the same velocity and hence the same kinetic energy.

Actually F2 is the average velocity of the jet, and it has

been stated in Art. 47 that the true kinetic energy of a stream is

greater than that obtained by using the square of the average

velocity. Hence the true efficiency of a jet from a good nozzle

may be about 1 per cent, more than the value given by (34).

1 John R. Freeman, Trans. A. S. C. E., vol. 21, page 303 (1889); Trans.

A. S. C. E., v.ol. 24, page 492 (1891).

W. R. Eckart, Jr., Inst. of Mech. Eng., Jan. 7, 1910.

V. R. Fleming, Proc. of Fifth Meeting of 111. Water Supply Assoc., 1913.

R. L. Daugherty, "Hydraulic Turbines," page 69.
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EXAMPLES

1. In Fig. 63 the actual measured diameter of the minimum section of

the jet was G 1^ m
-> the area of the nozzle opening being 43.02 sq. in. Com-

pute the coefficients of velocity, contraction, and discharge using the values

of Hi and Vz given. What is the efficiency of the nozzle? What is the

horsepower in the jet?

2. What is the value of the head lost in hydraulic friction in the nozzle of

Fig. 63? What is the value of kl

3. The velocity of water in a 6-in. pipe is 12 ft. per sec. At the end of the

pipe is a nozzle whose velocity coefficient is 0.98. If the pressure in the pipe
at the base of the nozzle is 10 Ib. per sq. in., what is the velocity of the jet?

What is the diameter of the jet? What is the rate of discharge?
4. A jet 2 in. in diameter is discharged through a nozzle whose velocity

coefficient is 0.98. In the pipe at the base of the nozzle there is a pressure
of lOlb. persq. in., the diameter of the pipe at that point being 6 in. What is

the velocity of the jet? What is the rate of discharge?
6. If the diameter of the jet in problem (4) were 1.0 in., all other data

remaining the same, find the jet velocity and the rate of discharge.

69. Venturi Meter. If water is caused to flow through the

device shown in Fig. 76, the increased velocity through the

"throat" will produce a corresponding pressure drop. This drop
in pressure may be made to serve as a measure of the rate of

discharge. Such an instrument is called a Venturi meter.

FIG. 76. Venturi meter.

It may be seen that the Venturi meter is very similar in prin-

ciple to the nozzle. In both there is an increase in velocity of the

water accompanied by a corresponding pressure drop. And in

both the rate of discharge may be found to be a function of the

pressure drop. The only difference is that the pressure at the

throat of the Venturi meter may be either somewhat greater or

less than atmospheric, and the stream at that point is not a free jet

but is expanded again to fill the pipe below the meter. Hence the
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equations for the nozzle would seem to apply directly to the
Venturi meter, with pi equal to the pressure drop in both cases.

Actually the coefficients for the Venturi meter are based upon a
formula derived by a slightly different procedure. Thus we
equate HI to H z assuming that H' is zero, and then intrpduce a
coefficient as the very last step. Assuming the meter to be hori-

zontal so that Zi = zZ) we have

Pi -h K

From this,

- = -h

By the equation of continuity Vi = (F2/Fi)V2 ,
and hence

V 2
-

Since there is some slight loss of head between (1) and (2) the

true velocity will be less than this and so we multiply it by a

velocity coefficient. We then have

(35)

This may be seen to differ from equation (33) in that the term

(Fz/Ftfis not multiplied by cv
2

,
but both (33) and (35) could be

made to yield the same numerical value by using a slightly different

value of cv for the two. Custom has based values of cv upon (35)

for the Venturi meter and upon (33) for the nozzle.

With the Venturi meter we desire q, not F2 ,
and hence, multi-

plying (35) by F2 and replacing cv by c, we have

For a given meter F\ and F2 are known quantities and, if Kr =
F2V^g/Vl -

(F z/Fi)\ this may be reduced to

q = cK'Vh (37)

The coefficient c may be assumed to be 0.985 for a new meter and
0.980 for an old one, the interior of which will be slightly rougher
and perhaps reduced in area through incrustation. These

factors will give a result that is very accurate. The coefficient is

practically a constant, though there is some slight reason to
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believe that it increases slightly with higher rates of discharge.
If c is assumed constant for any given meter, it is convenient

to replace cK' by K and we then have

q
= K\/h (38)

The Venturi meter, invented by Clemens Herschel in 1886,

affords a most valuable and accurate means of measuring water,

especially in large quantities.
1 By a suitable recording device

Courtesy of Builder's Iron Foundry.

FIG. 77. Venturi meter in wood pipe line.

it is possible to make a continuous record of the flow of water

through any pipe line in which a Venturi meter is installed. The
sole objection to its permanent use in a pipe is that it must neces-

sarily cause some slight friction loss or resistance to flow. If this

loss be expressed as H r = kVz
2
/2g, we find that values of k range

from about 0.1 to 0.2. The higher values of k naturally go with

smaller values of F2/Fi.

The usual ratio of the diameter of the throat to the diameter of

1 Trans. A. S. C. E., vol. 17, page 228 (1887).
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the pipe is about 1 to 3, making the ratio Fz/Fi =
1/9. But in

order to reduce the resistance as much as possible and also to avoid

producing -pressures at the throat below atmospheric, it is quite
common to make the diameters in the ratio of 1 to 2, making
Fz/Fi = 1/4. Of course this reduces the magnitude of h for a

given rate of discharge and hence makes the readings less accu-

rate, especially for very low Discharges.

Courtesy of Builder's Iron Foundry.

FIG. 78. Venturi meter of riveted steel.

A diverging stream is always less stable than a converging

stream, that is it is more readily broken up into whirlpools and

eddies, and hence more loss of energy takes place in the portion
of the meter on the downstream side of the throat. In order to

minimize this the down stream portion is made to taper much
more gradually than the upstream side.

EXAMPLES

1. A Venturi meter with a 4-in. throat is to be used in a 12-in. pipe line.

Assuming a value of c = 0.985, determine the value of K for this meter.

2. If a differential manometer employing mercury (sp. gr.
= 13.57) were

to be used, determine the value of K for the Venturi meter in problem (1),

replacing h by y (Fig. 13) in inches of mercury.
3. Suppose the throat of the meter in problem (1) were to be 6 in. the pipe

remaining 12 in. Compute the value of K.

4. Suppose that 5 cu. ft. per sec. is flowing tnrough the Venturi meter.

What are the values of h in problems (1) and (3)?
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5. Water flows through a pipe line 6 ft. in diameter with a velocity of 7 ft.

per sec. In this pipe line is installed a Venturi meter with a throat diameter

of 2 ft. Assuming the value of k to be 0.12, what will be the loss of head

caused by the meter? What will be the power lost?

60. Large Vertical Orifice. In the case of an orifice whose

vertical dimensions are large as compared with its depth below

the free surface it is necessary to proceed as follows : Choose an

elementary area dF such that all portions are at the same depth
z below the free surface. ,Now by Art. 52 the rate of discharge

through this strip may be expressed as

dq = cV2gz dF (39)

The rate of discharge through the entire orifice may be obtained

by integrating equation (39) . Thus

*dF (40)

-
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In similar manner the rate of discharge through a circular

orifice of area F is given by the expression

r d 2 5d* ~\

q = cFV^hl ~ ~iM5 ~ ' ' '

J

It may be found that when h = 2d the value of this series is

0.998, thus indicating that the use of the exact formula is unnec-

Free Surface

* V-

\
\

\
FIG. 80.

essary for heads above that value. In Tables I and II the coeffi-

cients in black-face type are to be used in the exact formulas, all

other coefficients to be used in the formulas of Art. 52.

61. Weir. A weir is a special form of orifice, its distinguishing

feature being that it is placed at the water surface so that the

head on its upper edge is zero. Thus the usual formulas for ori-

FIG. 81. Weir.

fices given in Art. 52 can no longer be applied and the methods of

Art. 60 must be employed. The weir is one of the most widely

accepted standard devices for the measurement of water.

If it be assumed that the velocity of water through an orifice

varies as the square root of the depth, the curve in Fig. 80 would

give a true representation of the flow. However, the particles of



80 HYDRAULICS

water at the surface of the weir opening do not remain at rest but

flow with considerable velocity. It may also be observed that

the level of the water at this point drops below its normal value, as

shown in Fig. 81. Also it must be noted that the stream lines

L flowing through the weir are not neces-

sarily normal to the plane of the weir;

hence it is hardly correct to multiply
their velocities by areas in the plane

of the latter. For these and other

reasons it is impossible to derive by
theory weir formulas which are ex-

actly correct, but they serve as ex-

pressions which may be made to yield

correct results by the proper choice

and use of experimental coefficients.

It might seem natural to measure

the depth of water flowing over the

crest of a weir, but in practice it is

difficult to do this with any degree of

accuracy. It is found more feasible

to measure the elevation, above the

weir crest, of the water surface at

some distance back from the weir,

where the water is relatively quiet.

Thus all weir formulas express the rate

of discharge as a function of H (Fig.

81). This measurement must be

taken at a point far enough back to

avoid the effects of the surface curve.

This distance should be at least 6H.

The usual instrument for measuring
H is the hook gage, one form of

which is shown in Fig. 82. The gage
should be mounted on some rigid sup-

W. & L. E. Gurley.

FIG. 82. Hook gage.

port. In using it the sharp-pointed hook is submerged beneath

the surface and then carefully raised until a slight distortion may
be seen on the water surface. The hook should then be lowered

until this distortion barely disappears. From this reading the

value of H is obtained by subtracting the "hook gage zero,"

which is the reading of the gage when its point is just level with

the crest of the weir, as the lower edge is called.
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The Triangular Weir. The triangular weir such as is shown in

Fig. 83 is useful for measuring relatively small rates of discharge,

as a reasonable value of H may be obtained by employing a

sufficiently small vertex angle. But for discharges much above

2 or 3 cu. ft. per sec. excessively high values of H are necessary
and other types of weir would then be used.

The Suppressed RectangularWeir. Probably the most common

type of weir is one whose shape is rectangular. If the width of

From a photograph by the author.

FIG. 83. Discharge from a 60 triangular weir.

the weir is the same as that of the channel of approach, as in

Figs. 84 and 85, the stream of water flowing over the crest will

not undergo any lateral contraction, that is the end contractions

are suppressed. With this type of weir it is customary to extend

the sides of the channel beyond the crest so that the falling stream

is bounded by them. If these sides are not so extended the

stream will expand somewhat and the discharge for a given value

of H will be slightly larger than in the standard type.

It is necessary in this or any type of weir to insure that the weir

is
"
ventilated," that is that air has access to the under side of the

6
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falling water. Otherwise the air will be gradually swept out and
the water will tend to cling to the face of the weir instead of

springing clear of it. For a given value of H the rate of discharge

From a photograph by the author.

FIG. 84. Rectangular weir without end contractions.

From a photograph by the author.

FIG. 85. Rectangular weir without end contractions.

would then be greatly increased and the usual coefficients would
no longer apply.

In order to insure that the water shall spring clear, that is that
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perfect crest contraction shall be attained, it is necessary to have

a sharp edge on the weir plate. This may be produced by bevel-

ing the edge of a metal plate down to a knife edge. However, a

From a photograph by F. H. Fowler.

Fia. 86. Rectangular weir with end contractions.

PLAN VIEW

OF CONTRACTED

RECTANGULAR WEIR

END VIEW

OF TRAPEZOIDAL

WEIR

FIG. 87.

perfectly sharp square shoulder is just as good as a knife edge if

the plate is not too thick for the water to clear the other shoulder.

For very low values of H the knife edge would still permit crest

contraction to take place when the flat edee of a Dlate would not.
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Contracted Rectangular Weir. When the width of the weir is

less than that of the channel of approach, as in Fig. 86, the

contraction that Occurs at each end causes the real width of the

stream of water to be less than that of the weir itself. Such a

weir is called a contracted weir.

Trapezoidal or Cippoletti Weir. The trapezoidal weir is one

in which the sides of the notch are not vertical but diverge so

that the width at the water surface increases. If the side slopes

have the ratio of 1:4 the weir is called a Cippoletti after an

Italian engineer of that name who proposed it. The advantage
of this type of weir will be stated later.

FIG. 88.

62. The Triangular Weir. In Fig. 88 we have a triangular

weir with any vertex angle 6. The rate of discharge through an

elementary strip of area dF will be

dq = c\/2gz dF.

Now dF = xdz and by similar triangles x : b = (H z) : H.

Hence dF = 77 (H z)dz. Substituting in the above we have
rz

for the entire notch

=

Integrating between limits we have

But b = 2H tan 6/2. Inserting this and reducing we have

q
= T^ c\/2g tan H** (44)

10
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This expression for any given weir may be reduced to

q
= K (45)

In Figs. 89 arrd 90 may be found experimental values ofK for sev-

eral triangular weirs. The 54, 60, and one of the 90 weirs are

in the laboratory of Sibley College.
1 The two lower curves in

Fig. 90 were plotted from data in a very valuable paper by James
Barr. 2 The weir for which the very lowest curve was constructed

1.60

1.50

N
"8

81.40

1.30

1.20

GO Triangular Weir

angular Weir

0.1 0.2 0.3 0.4 0.5 0.6

H in Feet

FIG. 89. Coefficients of triangular weirs.

0.7 0.8

2.6C

2.50

2.40

Triangular Weir

0.1 0,2 0.3 0.60.4 0.5

H in Feet

FIG. 90. Coefficients of 90 triangular weirs.

0.7 0.8

had a very fine sharp edge, while the other weir had a square

corner and a thickness of about KG m - Both of these weirs have

values of K below that of the Sibley College weir but the differ-

ence, of about 1 per cent., may be due to different methods of

measurement of the water and of H.

1
Engineering News, vol. 73, page 636 (1915).

2
"Experiments upon the Flow of Water over Triangular Notches."

Engineering, Apr. 8 and 15, 1910.
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These curves show either that the discharge does not vary as

the five-halves power of H or that c is not a constant. Thomp-
son, who first employed the triangular weir, chose for K a value

of 2.54. The value of 2.65 that so many writers persist in giving

is entirely too high and is based upon Thompson's first experi-

ments which were not accurately performed.

(In finding H^ on some slide rules, it is well to note that

H* = # 2V#.)
63. The Rectangular Weir. For the rectangular weir in Fig.

91 the discharge through the elementary strip of area dF may be

given by
dq = c\/20z bdz.

f~f
i_ H

FIG. 91.

Integrating between limits we have

CH
q
= c\/2g b I z* dz

q
=

| c\/2g bH
H

(46)

This is the fundamental formula. Many variations of it have

been suggested in an attempt to express the value of c, which is

not necessarily a constant for all values of H. (It may be noted

thatJST* = HVB.)
64. The Francis Weir Formula. About 1850 Mr. James B.

Francis made some very accurate investigations of the flow of

water over weirs. 1 As a result of his experiments he selected a

value of 0.622 for c in equation (46), so that for a suppressed weir

we have

q
= 3.336tf% (47)

With a contracted weir he concluded that the effect of each con-

traction was to reduce the effective width of the weir by O.I//.

Thus for a contracted weir we have

q = 3.33(6
- 0.1 nH)H* (48)

1 "Lowell Hydraulic Experiments."
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The usual type of contracted weir will have two end contractions,

giving n a value of 2 in equation (48), but we might have a weir

with one end contracted and one end without contraction.

Equation (48) is strictly empirical and applicable only within

limits. IfH is greater than one-third b it is impossible for perfect
end contraction to occur and hence the conditions upon which

(48) is based no longer exist.

When the cross-section area of the channel of approach is rela-

tively small, there may be a velocity of flow in it that is high

enough to affect the result. This velocity is called the velocity
of approach. Francis corrected for this by replacing H^ in

both (47) and (48) by [(H + hj* -
h?], where hv is the velocity

head in the channel. In practical work the last term is often

dropped. There is no real good theoretical foundation for any

expression involving velocity of approach. A modified Francis

formula for the suppressed weir is

q
= 3.336 (H + ah,)* (47a)

in which a is given values ranging from 1 to 2. If the velocity

of water in the channel at the section where H is measured is

uniform over the cross-section, a value of 1 should be used for

a. But if the surface velocity is much higher than the bottom

velocity, the value of a should be greater than unity. This is

because the true velocity head which affects the discharge over

the weir is greater than the hv which is based upon the average

velocity in the section. The value of a is sometimes taken as

the ratio of the surface velocity to the average velocity. Note

that the area of the section is the product of the total width of

the channel by (H + y) in Fig. 81. In using equation (47a)

first solve (47) to obtain an approximate value of q. Divide this

by the area of the section, where the hook gage is located, "and

from this velocity an approximate value of V, and hence hv ,

can be obtained. This ahv is to be added to H and a new and

somewhat larger value of q calculated. From this a new value

of hv could be computed, and so on. However, after about two

such solutions it would be found that further solution would

alter the result very slightly.

65. The Bazin Weir Formula. Bazin, in France, made a valu-

able series of experiments upon weirs without end contractions

and with high velocities of approach. From these he devised a

weir formula which expresses the effect of velocity of approach in a

much less awkward manner than the Francis formula. -* His most
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accurate formula is rather complicated, but for practical work the

following approximate formula is sufficient:

= 3.25 0.55 (49)

The quantity y indicates the height of the weir crest above the

bottom of the channel and thus introduces the effect of velocity

of approach into the formula in an indirect manner.

66. Comments on Weirs. The formula (48) for the contracted

weir is applicable only to the standard Francis weir, whose lim-

iting proportions are shown in Fig. 92. Unless there is sufficient

space left at the two ends and at the bottom of the weir, perfect

contraction will not be obtained. These dimensions may be
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seen that velocity of approach need not be considered in a con-

tracted rectangular weir. But with a suppressed weir the depth
of the channel would have to be QH, and that is not often the case.

Hence most suppressed weirs have a velocity of approach that

needs to be considered. The Francis coefficient was based upon
work with weirs having a velocity of approach less than 1 ft. per

sec. When the velocity of approach is high, the formula of

Bazin should be applied.

The most accurate type of weir is a suppressed weir with such

a deep channel of approach that the velocity of approach is neg-

ligible. A contracted weir for which the velocity of approach is

negligible is about in the same class with a suppressed weir with

a moderate velocity of approach. End contractions have been

held to be a source of error and there appears to be no truly

rational way to correct for them. The least desirable type of

weir is the one with a high velocity of approach because of the

difficulty not only of reading H accurately but also of allowing

for the effect of this velocity in a scientific manner.

It almost goes without saying that a weir should be set with its

crest level and its plane vertical. An inclination upstream
decreases and an inclination downstream increases the dis-

charge for a given H. The crest should be sharp and in good
condition.

In using weirs for accurate work it is desirable to study the

original experiments upon which the formulas are based and use

the formula that has been derived under circumstances most

nearly like those in hand. And it is likewise desirable to dupli-

cate the original investigator's methods. The hook gage, for

instance, should be located in the same way and at the same

distance from the weir. Unless these precautions are followed

one has no assurance that the coefficients given fit his own

case.

67. The Cippoletti Weir. In order to avoid the trouble of

correcting for end contractions, the sides of the Cippoletti weir

are given such a batter (1:4) that they add enough to the effect-

ive width of the stream to offset the contraction 0.2H of the con-

1 For information on weirs see:

"Weir Experiments, Coefficients, and Formulas," by R. E. Horton,

U. S. G. S. Water Supply and Irrigation Paper, No. 150, Revised No. 200.

Hughes and Safford, "Hydraulics."

Parker, "The Control of Water."
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traded Francis weir. Thus computations may be made upon
the basis of the width b at the crest by the following formula

q
= 3.367&#* (50)

68. Special Weirs. There are other types of weirs for special

purposes. Thus we have a floating circular intake weir in Fig.

93. The purpose of this is not for accurate water measurement,
but rather to float in such a manner in the reservoir that a certain

From a photograph by F. H. Fowler.

FIG. 93. Floating circular intake weir for Los Angeles aqueduct.

depth of water continually flows through or over its passageways
and down the intake in the center. Thus no matter how the

water level in the reservoir rises and falls a uniform quantity will

automatically be delivered to the intake.

69. The Pitot Tube. Among other water-measuring devices

is the Pitot tube. This is an instrument which indicates the

velocity of water at a point. From the velocity the rate of dis-

charge may be obtained.

The principle of the Pitot tube is illustrated in Fig. 94 and its

theory will be discussed in a subsequent chapter. For an open
stream only a single tube is necessary, but in a stream of water

under pressure a second tube is necessary to record the pressure
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alone. The quantity desired is the difference between the two

readings, which we shall call h. It can be shown by correct

theory that if h is the value in feet of water of the dynamic pres-

sure exerted by the impact of the stream against the opening of

the tube, the velocity of the water is given by

V = V2gh (51)

T

_i

FIG. 94.

This has been found by experiment to be true when there is

smooth stream line flow, but in case of turbulent flow we should

introduce a coefficient whose value is about 0.977, so that we

should write

V = 0.977V2gh (52)

The fact that this coefficient is anything less than unity is not

because our theory is at fault nor because of any defect in the in-

strument itself, but is due to the fact that the instrument records

the true velocity at the point while we desire, for practical pur-

poses, the axial component of velocity. Hence the factor is

designed to give us the axial component of velocity (OB in Fig.

52 rather than OD).
1

In using the Pitot tube it is often convenient to divide a cross-

section of the stream up into parts of equal area and to determine

the velocity in the center of each area. The average velocity of

1 L. F. Moody,
" Measurement of the Velocity of Flowing Water." Proc.

of the Engineer's Soc. of W. Penn., vol. 30, page 319 (1914).
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the stream will be the average of the observed velocities. But if

the areas are not equal the average of the velocities will have no

significance. It will then be necessary either to plot a curve

from which velocities at other points may be taken or to multiply
each observed velocity by the area which it may be assumed to

represent. The total rate of discharge of the entire stream is the

sum of all such partial discharges. Thus

q
= ZF'V (53)

where F f
is a portion of the total area and V is the velocity

through that area. If the average velocity is desired, it can be

obtained by dividing the rate of discharge by the total area.

70. The Current Meter. For moderate velocities such as are

found in canals and natural streams the current meter is well

adapted. It consists of a wheel, -as in Fig. 95, or in other types a

screw, which is rotated by the action of the water. By calibra-

tion the relation is determined between the velocity of the water

and the rate of rotation of the meter.

In many current meters each revolution is recorded by a click

in a telephone receiver at the ear of the observer, the click being

produced by the wheel making an electric contact every revolu-

tion. In most meters the contact is not made so frequently,

every ten revolutions being the number commonly recorded.

Other types of meter have some form of mechanical recording

device. It is generally better to determine the time necessary
for a given number of revolutions rather than to attempt to find

the number of revolutions made in some specified time, owing
to the difficulty of estimating fractions of a revolution or frac-

tions of the number of revolutions that may be recorded as a

unit.

Current meters may be roughly divided into two classes, those

with the axis vertical, as in Fig. 95, and those with the axis

horizontal.

In comparatively shallow water the meter may be rigidly

fastened to a rod, and in this case the weight and tail, as shown
in Fig. 95, are unnecessary. But for deeper water where the

meter is suspended by a cable the latter are required to hold the

meter in the proper position.

Generally it is desired to find the velocity of the water flowing

across some sectional area. If the stream lines are not perpen-
dicular to the area in question, it is the normal component of the
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velocity that is desired rather than the value of the Actual veloc-

ity. It may be seen that the type of meter shown in Fig. 95

will rotate with equal velocity no matter from which horizontal

direction the water may come. It will also be rotated by a cur-

rent that is vertical, or parallel to its axis. And in any case the

Courtesy of W. & L. E. Curley.

FIG. 95. Current meter.

rotation is always in the same direction. Thus this meter tends

to record the value of the velocity regardless of its direction.

In other types, generally with the axis horizontal and the wheel

made in some form similar to a screw propeller, the meter records

only the component of the velocity parallel to its axis. And in

case the meter is located in a portion of the stream where an
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eddy causes a reverse current the meter will then give a negative

reading, since it will be rotated in the opposite direction. Such

a type of meter is more accurate in all cases where the flow is

irregular or turbulent. However, the type shown in the figure

is of excellent mechanical construction and is widely used. For

many cases where the stream flow is fairly regular and extreme

accuracy is not required, it is quite satisfactory.

In using the current meter the velocities are determined at a

number of different points and the total discharge of the entire

stream computed in the same manner as in Art. 69.

71. Comments on Measurement of Water. The accurate

measurement of rate of discharge is one of the most difficult

problems in practical hydraulics. The only positive way of

measuring rate of discharge is to weigh the amount of water dis-

charged in a given time or to determine its volume in suitably

calibrated tanks or reservoirs. The former method is applicable

only for relatively small rates of discharge, and facilities for the

latter are seldom to be had. Also in the latter method the effect

of leakage, evaporation, and other factors may sometimes prove
troublesome.

The methods that are usually employed are the ones that have

been given in this chapter. They are all indirect in that we as-

sume the velocity or the rate of discharge to be a function of some

other quantity which can be measured.

The discharge of water from any tank can be measured by an

orifice, tube, or nozzle. When a stream of water flows in an open
channel it may be caused to flow over a weir or its velocity through-
out any cross-section may be found by a current meter, by floats,

or other means. For a stream of water confined within a closed

pipe we may use a Pitot tube to determine the velocity across

a cross-section or cause the water to flow through a Venturi
meter. At the end of a pipe line we might place a nozzle which
would also permit the rate of discharge to be obtained. ^ The

discharge from a nozzle may be computed or it may be measured

directly by determining the velocity of the jet with a Pitot tube.

The means of measurement that is to be used depends upon
the circumstances.

In addition to the methods of measurement that have been

described in this chapter, there are other methods, especially

chemical methods. One of these is simply a matter of discharg-

ing a small quantity of highly colored liquid into the intake of a

pipe line and noting the time that it takes for the discoloration to
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be noted at the other end. Knowing the length o*f pipe it is

easy to compute the velocity of the water. Another valuable
method consists of adding a strong salt solution at a known
definite rate. Samples of water are taken at a down- stream
section and analyzed. Knowing the strength of the solution

used, its rate of discharge, and the amount of dilution in the

main stream the rate of discharge in the latter may be determined
This method has been used in some cases with a high degree of

accuracy and it may offer an easy, cheap, and convenient way
of measuring rate of discharge of large quantities of water. 1

Where water flows over a spillway dam the latter may be used

as a special type of weir. The same weir formula as given in

equation (46) may be applied, if the proper value of the coefficient

is known. Since the spillway crest may be of various shapes and

dimensions, it is not a standard piece of apparatus like the sharp
crested weir. Hence the value of the coefficient has to be deter-

mined for each case either by calibrating the spillway in question
or using the results of observations upon another spillway of

similar form.

72. Discharge under Varying Head. If the head varies, the

rate of discharge will likewise vary and the total discharge in a

given time, or the time required for a given total discharge, must
be determined as follows.

Let Q = the total volume in cubic feet of any given body of

water, while q = cu. ft. per second as usual. Then

q
= dQ/dt or dQ =

qdt.

Suppose that into this body of.water in question there is an inflow

at the rate of qi cu. ft. per second, while water flows out at the

rate of
<?2 cu. ft. per second. It then follows that the change in.

the total volume in any time dt is

dQ = qdt - q2dt.

Also let A = the area of the water surface of the body in question

while dz = the change in the level of the surface. Then

dQ = Adz

Equating these two expressions for dQ we have

Adz =
qidt

-
qzdt (54)

Now either qi or q2 or both may be variable and functions of z

the variable height of the water surface, or one of the two may
1 "

Chemihydrometry and Precise Turbine Testing" by B. F. Groat in

the Trans. A. S. C, E., Vol. Ixxx, p. 951 (1916).
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have a constant value or be equal to zero. For instance if the

water is discharged through an orifice or pipe line of area F under

the head z, we may write

#2
=

cF\/2gz,

while if it overflows a weir or spillway dam of width b we have

In the former case z might correspond to the h in Fig. 96 while

the value of c would be determined from the principles of Art. 74

and subsequent articles in case the discharge takes place through
a pipe line. In the case of flow over a spillway the z would be

the height of the surface of the water above the crest or in other

words would correspond to the H in Fig. 81 or of equation 46.

And in like manner qi may also be some function of z.

Equation (54) is perfectly general and if it is possible to express

A, qi, and #2 as mathematical functions of z, it may then be

possible to solve the problem by integration. In other cases the

integral may be evaluated by graphical methods. For example
from equation (54) we may write

By integration this will give us the time required for the water

level to change from Zi to 22 . If it cannot be integrated by cal-

culus we may do it graphically by computing values of qi and

#2 and plotting values oiA/(qi 92) against corresponding values

of z. The area between this curve and the z axis is the value of

the integral. Of course without actually plotting it, the value

of the area may be computed by various rules of approximation.

73. PROBLEMS

1. What is the rate of discharge of a 54 triangular weir when H = 0.400

ft. ? With the same value of H what would be the rate of discharge of a 90

triangular weir?

2. What would be the value of H for a rate of discharge of 2.0 cu. ft. per

sec., if a 60 triangular weir is used? Assume K = 1.45.

3. The width of the weir in Fig. 84 is 7.573 ft. Neglecting velocity of

approach, what is the rate of discharge when H = 1.200 ft.?

4. In problem (3), if the value of y is 2.85 ft., solve for the rate of discharge

by using the Francis formula with a. = 1.0. Solve with a. = 2.0.

6. Solve problem (4) by the use of Bazin's formula.

6. Assume that the weir in Fig. 86 is also 7.573 ft. in width, What would

be the rate of discharge when H = 1.200 ft.?
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7. Assume that a Pitot tube and a piezometer tube are connected to two
sides of a differential manometer containing mercury. Suppose the Pitot
tube is placed in such positions in the stream, which is 10 in. in diameter, that
it measures the velocities in five areas of equal magnitude. Suppose
these five readings on the differential manometer are 1.50, 2.15, 2.84 3.62
and 4.05 in. of mercury. Find the rate of discharge of the stream.

8. Suppose that a ship lock in a canal has a uniform area of water surface
at all depths of water, what would be the integration of equation (54) ?

9. Suppose that a ship lock in a canal is of uniform rectangular cross-sec-
tion and that it is 300 ft. by 90 ft. by 40 ft. deep. Suppose that the water
from this lock is discharged through a tunnel which is 3 ft. in diameter, the
coefficient of discharge being 0.50. If the initial head under which water

discharges is 35 ft., how long will it take for the level to drop 25 ft.?

10. In the problem (9) how large would the tunnel have to be to permit the

water level to drop from 35 ft. to 10 ft. in 15 min.?

11. Water enters a reservoir at a uniform rate of 150 cu. ft. per second

and flows out over a spillway whose length of crest is 100 ft. The value of

K for this spillway is 3.45. Areas of water surface at various elevations

above the crest of the spillway are given in the adjoining table, (a) Find

the time required for the level to drop from 3 ft. to 1 ft. above the crest.

(6) Find the final elevation after equilibrium is established, (c) How long
a time will it take for equilibrium to be established?

Ans. (a) 2052 seconds. (6) 0.573 ft. (c) Infinite time theoretically.

z (ft.) A (sq. ft.)

3.00 860,000
2.50 830,000
2.00 720,000
1.50 590,000
1.25 535,000
1 . 00 480,000

12. The spillway of a reservoir is 40 ft. long and is of such a form that

K = 3.50. There is a constant inflow into the reservoir of 300 cu. ft. per

second. Areas of water surface are given iii the adjoining table, (a) What
will be the height of the water surface for equilibrium? (6) Starting with

the water level 3 ft. below the crest of the spillway, how long will it take for

the water to rise until the height of the water surface is 1.50 ft. above the

crest?

Ana. (a) 1.66 ft. (6) 3 hrs. 49 min.

z (ft.) A (sq. ft.)

-3.0 500,000

-2.0 530,000

-1.0 560,000

0.0 600,000

+0.5 650,000

+ 1.0 700,000

+ 1.5 740,000



CHAPTER VII

FLOW THROUGH PIPES

74. Loss of Head in Pipe Friction. In dealing with such

devices as the orifice, nozzle, Venturi meter, etc., we have

compensated for the effect of frictional resistance to flow by the

introduction of velocity coefficients. This is feasible because

all of these devices can be standardized so that the coefficients

which have been determined for one may be applied to another

of the same type. We might have velocity coefficients for pipes

also if the latter were more nearly alike. But actually pipe lines

differ from each other in length, size, degrees of roughness, and

other respects to such an extent that the application of velocity

coefficients is impractical. Therefore it is necessary to proceed
on a different basis.

In Art. 44 it is stated that the loss of head which always

accompanies flow may be expressed as

#'-*U (55)

In the case of a pipe line, or any water conduit of any length, it

is apparent that the loss of head between two sections is a

function of the distance between them and that the factor k

should correspond to the roughness of the surface of the channel.

Mathematical analysis as well as experimental evidence indi-

cates that, other quantities being equal, the friction is less in a

large conduit than in a small one. It is also found that hy-
draulic friction is independent of the pressure and the tempera-
ture effect is so slight that it can be neglected.

In order to express k as a function of the size of the channel we
need some dimension which can be used for all shapes of cross-

section. In the case of a circular pipe alone we might use the

diameter, but this would not be applicable for other shapes.

The quantity that is used for this purpose is the ratio

area of water cross-section
f

.

~

length of wetted perimeter
96
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i

This is a linear dimension and is called the "hydraulic mean

depth" or the "hydraulic radius." Its physical meaning, so

far as it has any, is that m is the depth of water necessary on a

plane surface of width equal to the length of the wetted perime-

ter, so that the imaginary volume of water thus formed

shall be equal to the actual volume.

Mathematical analysis ^and experimental investigation have

led to an approximate empirical formula

*-{^ (57)4 m
where / is a friction coefficient which depends upon the roughness
of the surface as well as upon other factors.

Experimental evidence indicates that the value of n in equation

(55) varies from about 1.75 to 2.00, the former holding for very
smooth surfaces and the latter for rough ones such as the interiors

of iron and steel pipes after years of service. 1 As shown in Art.

84 it is possible to select values of n for different kinds of surfaces

but ordinarily this is not done since it is difficult to express degree

of roughness with any precision and often the degree of roughness
cannot be known or estimated. Hence for the sake of simplicity

in computation the value n = 2.00 is usually used.

Assuming n = 2.00 and inserting the value of k given by (57)

in (55), we have,
i J V z

rjf _ J l ' /eo\

"4m ~2g

If the channel is a circular pipe flowing full of water the value

of m is

m = 7rr
z
/2irr

= r/2 = d/4.

Inserting this value of m in equation (58) we have for a circular

pipe full of water,

H'=f^Y (59)

If equation (59) were entirely correct we should expect that /
would depend only upon the roughness of the surface. But we

have already seen that the loss of head does not always vary as

the square of the velocity. If the actual exponent of V is less

than 2, the value of / in equation (59) would have to decrease

with increasing velocity. But for rough surfaces, where the

1 For velocities below the critical the loss of head varies as the first power
of the velocity. It is then also a function of temperature.

7
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exponent is practically 2, the value of /in (59) should be inde-

pendent of the velocity. Fortunately the variation of / with V
is not very great in most cases of actual practice and may be

neglected in the present treatment. It has also been found that

the loss of head does not vary inversely as the first power of d

but rather as d1 - 25
. Thus if equation (59) is used, the value of/

should be made to decrease as d increases.

According to the experiments of Darcy the value of / for new,

clean, cast-iron pipes may be given by

/ = 0.02 +~ (60)

For old, corroded, cast-iron pipe the values given by (60) should

be doubled, but it is impossible to formulate any definite law by
which the value of / should be increased with age. It depends
to some extent upon the chemical composition of the water

carried. In the case of a smooth wood-stave pipe the value of

/ should be somewhat less than that given by (60) and it does

not increase with age. For a riveted steel pipe the values of /
are slightly greater than given by (60). But roughness cannot be

expressed mathematically and the selection of / for any given

case is largely a matter of judgment.
1

It should be noted that in (60) the value of d" is in inches, but

/ is an abstract number. In equation (59) we have another

abstract number, the ratio of the length to the diameter. Thus
I and d should both be in the same units.

EXAMPLES

1. What will be the loss of head in a 10-in. pipe line 2,000 ft. long, when
the velocity of the water in the pipe is 6 ft. per sec.?

Ans. 29.5 ft.

FIG. 96.

2. Suppose that the pipe of problem (1) is shown in Fig. 96, that there

are no losses save those due to pipe friction, and that the size of the stream

discharging at the end is the same as that of the pipe. What value of h

will be required to produce the flow in problem (1)? Ans. 30 ft.

1 Unless otherwise specified, all problems in this text will be based upon
the value of / given by (60) for the sake of uniformity.
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3. Suppose we were to express the velocity of discharge from the pipe
line in Fig. 96 as V = cv\/2gh. With the same data as in problem (1)

what would be the value of cw ?

Ans. cv
= 0.1365.

4. What will be the pressure at a point 1,000 ft. from the end of the pipe
in Fig. 96, if the point is located 10 ft. above the mouth of the pipe? The

length of pipe is 2,000 ft., the diameter is 6 in., and the value of h is 50 ft.

75. Loss of Head at Entrance. Whenever the velocity of a

flowing stream is abruptly altered there will be eddy currents set

up which will cause a certain loss of head due to the internal

friction of the particles of water against each other. Thus

when water flows into a pipe from a reservoir, the loss of

head within the first few feet may be much greater than that

due to pipe friction alone in that same distance. This additional

(a) fc=o (b) *=o.5 (c) k=i.o

FIG. 97. Entrance and discharge losses.

(d) *=i.o

loss is called entrance loss. It is estimated to be about the same

as the loss of head in a short tube such as those shown in Fig. 71.

Using the velocity coefficients which are there given and de-

termining values of k from them, it may be found that for a bell-

mouthed intake the entrance loss is very small and so it is

usually neglected. For a pipe that is flush with the surface of

the reservoir wall, such as Fig. 97(6), the value of k is taken to

be 0.5, while for a projecting pipe, such as in Fig. 97 (c), the value

of k is assumed to be 1.0. These are not the precise values that

are obtained from the values of the velocity coefficients, but are

close enough for practical purposes when it is realized that the

entrance losses are often very small as compared with the other

losses of head.

If V indicates the velocity in the pipe itself, the losses of head

at entrance may be assumed to be:

For a non-projecting pipe

fl'-0.5^| (61)
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For a projecting pipe

H'-l.o|J (62)

76. Loss of Head at Discharge. In the case of a pipe dis-

charging into a body of water at rest, as in Fig. 97 (d), the entire

kinetic energy of the stream may be lost,
1 for considering the

body of water in Fig. 97 (d) to be so large that the velocity at (2)

is negligible we may write,

#1 = y + + V 2
/2g, Hz

= y + + 0.

Then #'!_2
= H 1

- H 2

or

H' = ^ (63)

77. Loss of Head in Nozzle. Although a nozzle does not

produce an abrupt change of velocity, it nevertheless causes a

FIG. 98. Loss in nozzle.

certain loss of head by virtue of which its velocity coefficient is

less than unity. For Fig. 98 we may write H 1 = HI H 2 . Since

V2
= C.V20/T!,

and

Therefore for the nozzle

giving for k the value
"'-CMS 1

exactly as in the case of the orifice in Art. 52. Note that in

equation (64) the loss of head in the nozzle is based upon the

jet velocity.

1 Unpublished experimental work by L. F. Moody of Rensselaer Poly-
technic Institute indicates that in some cases at least there may be a certain

amount of diffusion so that only about 70 per cent, of the kinetic energy is

lost, the rest being converted into pressure.
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78. Other Minor Losses of Head. When there is an abrupt
contraction of the stream as in Fig. 99(a), there is a loss of head

H' = kV 2
2
/2g, where k has the values given in the following

table: 1

TABLE III

F 2

Fi
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79. Flow through Long Pipe Line. The strict application of

the general equation

H 1 -H 2
= H r

would require us to express H' as a function of all the various

losses that might exist in a certain pipe line. This procedure
is followed in the case of short pipes but in the case of a long

pipe line, whose length is at least one thousand diameters,
it will usually be found that the loss in pipe friction alone renders

the others insignificant. For we have just seen that all the

losses in a pipe line may be expressed in the form

V z

ff' k
2ff

and in the case of entrance, discharge, and other similar minor

losses values of k are either less than unity or but very little

greater. But for pipe friction alone we have seen that

and if I is only great enough the magnitude of the quantity

fl/d may make all other values of k negligible by comparison.
In view of the uncertainty of the exact value of / as well as

other loss factors, too great a degree of refinement is unwarranted.

FIG. 100.

Assume a pipe line discharging freely into the air at (2) in

Fig. 100. We may write for this

H l
=

h, #2 = V*/2g.

If the length be great enough all other losses save those due to

pipe friction may be neglected and hence between (1) and (2),

I V2

H' =
f-j 77-. Thus from the general equation we have
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/ l\V2
f

Therefore h =
(1 + /-g-j ^-.

However, if the length be great

enough
(
/ 7j) may be so much greater than unity that the ex-

pression
I V2

is often used. But it should be noted that this is applicable only
when the pipe line is long and when the velocity of the stream at

(2) is no greater than that in the pipe itself. Equation (65)

is equivalent to the assumption that H' = h.

Inspection of equation (65) shows that for a given head and

length of pipe, the velocity will vary somewhat with the di-

ameter of the pipe. For by equation (60) / decreases as d

increases and in (65) the ratio l/d also becomes smaller with

larger diameters
;
therefore the entire coefficient of V2

/2g becomes

smaller as the size of the pipe increases. Hence for the same

value of h, V will increase as the diameter of the pipe increases,

and it may be shown that V varies as d
' 5 to ' 6

.

EXAMPLES

1. Suppose that in Fig. 100 the pipe projects into the reservoir at entrance

and discharges freely into the air at (2), the size of the jet being equal to the

diameter of the pipe. If h = 40 ft., d" = 12 in., and I = 50 ft., compute
the rate of discharge considering all losses.

Ans. 22.7 cu. ft. per sec.

2. In problem (1) if I = 1,000 ft., all other data remaining the same,

compute the rate of discharge considering all losses. Compute the rate of

discharge by the approximate method, neglecting minor losses.

Ans. 8.2 cu. ft. per sec.; 8.56 cu. ft. per sec.

3. Suppose in Fig. 100 that a nozzle on the end of the pipe line discharges

a jet which is 2.5 in. in diameter. Assume the velocity coefficient of the

nozzle to be 0.95. If h = 260 ft., d" = 10 in., and I = 5,000 ft., find the

rate of discharge.

Ans. 3.45 cu. ft. per sec.

4. Find the rate of discharge in problem (3) if the nozzle were removed

so that the pipe would discharge freely a stream of 10 in. diameter.

Ans. 6.11 cu. ft. per sec.

6. In problem (3) find the pressure head hi the pipe at the base of the

nozzle.

Ans. 176.8ft.

80. Hydraulic Gradient. If a piezometer tube be erected

at B in Fig. 101, the water will rise in it to some height BB'

equal to the pressure head existing at that point. If the lower

end of the pipe were closed so that no flow could occur, the
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height of this column would evidently be EM. The drop from
M to B r

that is found when flow takes place is due to two factors,

one of these being that a portion of the pressure has been con-

verted into the velocity head which the water has at B and the

other that there has been a loss of head through friction between

A and B.

If a series of water piezometers were erected along the pipe

line, the water would rise in them to various levels. The line

drawn through the summits of such an imaginary series of

water columns is called the hydraulic grade line or the hydraulic

gradient. It is seen that this line is an indication of the pressure

FIG. 101. Hydraulic gradient.

variation along the pipe. Thus at any point the vertical dis-

tance from the pipe line to the hydraulic gradient is the pressure

at that point. Since at C this distance is zero it follows that at

C the pressure is atmospheric. And at D the line is below

the pipe indicating that at the point in question the pressure

is below that of the atmosphere and is equal to DN. The

advantage of the construction of the hydraulic gradient is that

it gives a very clear picture of the pressure variation along a

pipe line. Also in practical applications the profile of a pro-

posed pipe line should be drawn to scale. Then by computing
a few points only the hydraulic gradient can be drawn and from

it the pressures at all points can be readily measured.

The vertical distance from the hydraulic gradient to the level

of the water surface at A represents H' + V 2
/2g. Hence the

position of the hydraulic gradient is independent of the position

of the pipe line. Thus it is not always necessary to compute

pressures at various points in order to plot the gradient. Instead

values of H' + V 2
/2g may be laid off below the proper horizontal

line, and this procedure is often more convenient. It is usually

necessary to locate only a very few points and often only two,
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the terminal points, are sufficient. For example if "Fig. 101

represents the profile of a pipe of uniform diameter drawn to

scale, the hydraulic gradient can readily be drawn as follows. At
the intake to the pipe there will be a drop below the level

of the surface of the water which should be laid off equal to the

sum of V 2
/2g plus the entrance loss. At H the pressure is known

to be zero gage pressure and hence the gradient must pass through
the end of the pipe. In the case shown the hydraulic gradient is

practically a straight line and hence may be drawn at once from

these two points. The location of other points, as B', may be

computed if desired. In the case of a long pipe line the velocity

may be such that the drop in the gradient at the entrance is

very small and hence the error is very slight if the gradient is

drawn as a straight line from the surface of the water above the

intake to the lower end of the pipe.

FIG. 102. Hydraulic gradient.

The hydraulic gradient is not necessarily a straight line. For

a pipe of uniform diameter it will be a straight line only if the

pipe itself is straight. If the pipe is of uniform diameter the

drop in the hydraulic gradient along its length is then a measure

of the loss of head and this will be proportional to the horizontal

distances in the figure only when the latter in turn are propor-
tional to the actual lengths of pipe. But for ordinary amounts

of curvature the hydraulic gradient will deviate but very little

from a straight line. Of course if there are losses of head aside

from those due to ordinary pipe friction there will be abrupt

drops in it, and any variations in velocity head due to changes

in diameter affect the hydraulic gradient.

It may be seen that if the velocity head is constant the drop

in the hydraulic gradient between any two points is the measure

of the loss of head between those two points. And the slope of

the gradient is a measure of the rate of loss. Thus in Fig. 102

the rate of loss is much less in the larger pipe than in the smaller

one. If the velocity changes, the hydraulic gradient might actu-
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ally rise in the direction of flow as may be seen in both Figs. 102

and 102a. Additional illustrations of the hydraulic gradient for

other cases are to be seen in Figs. 105, 108, and 109.

It is sometimes instructive to represent not only the variation

of pressure head but also the variation of total head. If any
arbitrary datum plane is assumed, the vertical distance from it

to any point in the pipe represents the elevation head for that

point. And the vertical distance from this point to the hydraulic

FIG. 102a.

gradient represents the pressure head. Hence the vertical dis-

tance from the datum plane to the hydraulic grade line represents

the sum of pressure head plus elevation head. If to this we add

the velocity head a curve is obtained, as shown in Fig. 102a, the

ordinates of which represent total head or energy. And, as in

the case of the hydraulic gradient, the location of this total head

curve is independent of the position of the pipe and may be

plotted by laying off values of loss of head below a horizontal line.

The particular one shown, plotted from experiments made by
the author, shows that the chief loss of head in a Venturi meter

takes place just beyond the throat. The total loss of head be-

tween the two tanks is h and both entrance and discharge losses

are here represented.

The drop in the gradient at entrance to a pipe depends both

upon the velocity head and the entrance loss. But in Fig. 102

the gradient ends at the water surface directly above the dis-

charge end of the pipe. This means that the pressure at this

end is equal to the depth of water. The discharge loss means

not a loss of pressure head, but a loss of velocity head and hence

it is not shown by the gradient, If the velocity head were not all
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lost, a portion of it would have to be converted int6 pressure
head and this could take place only if the pressure at the end of

the pipe were less than in the still water some distance away.
And if this were so the water surface would have to be as shown
in Fig. 1026. In other words the case would be similar to what
would be found if the end of the pipe were produced in a diverging
form as shown by the dotted Jines.

It may be observed that the hydraulic gradient in all cases

represents what would be the free surface, if one could exist and
maintain the same conditions of flow.

FIG. 102b.

EXAMPLES
1. Draw the hydraulic gradients for problems (3) and (4) of Art. 79.

2. In Fig. 102 assume the pipe to be of a uniform diameter of 20 in. and
500 ft. in length. The difference in level of the two water surfaces is 30 ft.

Consider all losses. Find the distance the hydraulic gradient drops below
the surface of the water at a point just within the pipe at entrance.

Ans. 7.23 ft.

3. In Fig. 101 suppose the horizontal distance from the intake of the

pipe to D is 300 ft. and to H is 900 ft. The vertical distance from the reser-

voir level to D is 20 ft. and to H is 100 ft. Suppose that at H the water
does not discharge freely into the air but the conditions are such that the

pressure at H is 52 ft. Draw hydraulic gradient neglecting slight drop at

entrance, plot profile of pipe line (sketching portions BC and EFG at pleas-

ure), and find pressure head at D.

Ans. 4 ft.

81. Effect of Air at Summit. In Fig. 101 is shown a pipe
line having a "summit" at D, which is above the hydraulic

gradient, indicating that the pressure at this point is less than

atmospheric. In practice this would be avoided, for not only

might the excess external pressure cause this portion of the

pipe to collapse, but the accumulation of air at this point might
interfere with or even stop the flow entirely. All ordinary water

carries air in solution and readily gives it up at a point of low

pressure so that air would collect in time, though it were all

expelled by some means in the beginning. Therefore in design-

ing a pipe line
;
whenever any portion of it is found to be above
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the hydraulic gradient, an attempt would be made to change
the profile so that this may be avoided. In case this is impossible

then provision must be made for exhausting the air occasionally,

if full flow is to be maintained.

If the summit is below the hydraulic gradient, air could still

collect, though not so readily since water under pressure tends

to absorb air. But under such conditions it is very easy to

release the air, since it will escape if an opportunity is offered

it. A valve for such a purpose is shown in Fig. 103. Such

valves usually have a float, the dropping of which, as air collects

Courtesy Redwood Manufacturers Co.

FIG. 103. Air valve on wooden pipe line.

and lowers the water surface, causes a valve to open. When
the air escapes, the water level rises and the float closes the

valve again. The valve in Fig. 103 is also constructed so as to

admit air into the pipe in case a vacuum should accidentally

occur in any way. This will prevent the pipe from collapsing

in such an event. In many cases it is highly desirable that pipe

lines be furnished with suitable air valves for both these purposes.

In Fig. 104 is shown how a vacuum might accidentally occur,

when normally the pipe is under a positive pressure. We have

seen that the greater the velocity of flow through a pipe line

the less the pressure will be at any point. Hence if some event,

such as the bursting of the pipe at C, permits a larger flow of

water, the hydraulic gradient will be much steeper than normal.

This means that it will be lowered, and it may be lowered suffi-

ciently to be below portions of the pipe as in Fig. 104,
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Also if the admission of water to a pipe line is shut off by
the closure of a gate valve at intake, the water which is already
in the pipe will tend to run out. As no more water can get in

to take its place, a vacuum might be created unless air were
admitted. Hence, some device is usually provided just below
the valve at the intake, and in some cases at other points, to

admit air upon such an occasion.

82. Hydraulic Slope. If the velocity in a pipe line is constant

the drop in the hydraulic gradient is equal to the loss of head.

The ratio

= y (66)

is called the hydraulic slope. If there were no loss of head the

hydraulic gradient for a pipe of uniform diameter would be a

horizontal line. Hence the steepness of this line, or the mag-
nitude of s, is a measure of the rate of loss.

83. Chezy's Formula. Equation (58), expressing the loss

of head due to pipe friction may often be written and used in

another form known as Chezy's formula. Thus (58) is

ff'^lll?4m 2g

Solving this equation for V2 we have

For a given channel 8g/f may be a constant whose value we
shall indicate by c2 so that

f
(67)

By equation (66) H'/l =
s, the slope of the hydraulic gradient,

hence

V = c -\/ms (68)
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It may be seen that equation (68) can be used only for a long

pipe line to which equation (65) could be applied. If it is

desired to consider other losses of head aside from pipe friction

Chezy's formula cannot be used.

84. Other Formulas for Pipe Friction. It has already been

pointed out that equation (59) is known not to be correct in

form but is widely used because of ease of computation, its

defects being covered by suitable values of /. The true equation
is of the form

ff'-fJjT- (69)

In this equation /' would be independent of both d and V and

would depend only upon the nature of the pipe wall. The
value of x is given as 1.25, though occasionally other values

differing slightly from this are to be found. The value of n

ranges from about 1.75 to 2.00 depending upon the nature

of the surface. In practical cases the selection of /' and n is

about as difficult as the choice of /in equation (59). On account

of the greater ease of computation with equation (59) it is likely

that it will continue to be used and that more precise ways of

expressing/ will be determined. 1

In regard to equation (60) it has been established that values

of / for cast-iron pipes are really somewhat less than given by

Darcy's experiments, but this discrepancy should be looked

upon as a small factor of safety. The formula itself errs on the

side of safety.

We also have various exponential forms of Chezy's formula,

equation (68), and in these also the exponents are variables

but the coefficient itself depends only upon the nature of the

surface. The one most commonly used in this country is the

Hazen-Williams formula in which values of the exponents for

average conditions are used. This equation is of the form

V = c'w- 63s- 54
(70)

In order to facilitate computation by this formula a set of

tables has been prepared and also a special slide rule constructed. 2

Moritz gives the following as the practice of the U. S. Rec-

lamation Service;

q
= c"d 2 - 7

(1000 s)-
555

1 For a method of doing this see article by R. Biel, Zeit. des Ver. deut.

Ing., June 27, July 4, 1908.
8 Williams and Hazen, "Hydraulic Tables."
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where c" has the values given Table IV. Since s is the slope of

the hydraulic gradient, 1000 s will be the drop of the hydraulic

gradient in feet per thousand feet of pipe.

TABLE IV
Values of c"
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Values of c in the table are average values for use in Chezy's

formula, equation (68), though methods of computing c may be

found in the next chapter. The values of c' in Table V are

for use in the Hazen-Williams formula, equation (70). These

values are merely selected as typical for the classes of surface

given in the table. The values of n in Table V are to be used

in the formulas of Kutter and Manning, which are to be found

in the following chapter.

TABLE V
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used which will give a slightly greater value thart this rather

than one just under it. In the problems of the text sizes of

pipe are used in whole inches. Actual standard pipe dimensions

are given on page 263.

If good judgment is used, one should be able to get the correct

answer within two or three trials at most. In order to do this

it is necessary to carefully- compare the rate of discharge com-

puted with the value specified and then to estimate how much
the area of the pipe might need to be increased or diminished

to yield the proper result. In doing this it must be borne in

mind that the velocity is not the same in pipes of different

sizes. The larger the pipe the higher the velocity of flow and

hence it will discharge more in proportion to its area than a

smaller pipe. This is not a matter that is worth making any

computations on for this purpose, but it might be noted that,

all other things being equal, the rate of discharge varies about

as d2 - 6
. Therefore in assuming a new diameter one should

not go quite so far from the former value as one would if the

velocity remained the same in value, in which case q would

vary as d2
.

As an example, suppose it is desired to find the diameter of

pipe necessary to discharge 9 sec. ft. with a total fall of 50 ft.

in a distance of 2 miles. Since the length is so great we may use

the approximate formula, equation (65). Suppose we assume

d" = 10 in., then / = 0.0220 and

10 2g

Solving this we find that

V = 3.40 ft. per sec.

and

q = 0.545 X 3.40 = 1.85 sec. ft.

The value desired, of 9 sec. ft., is 9/1.85 or about 5 times the

result obtained. If the velocity were unchanged we should

require a pipe whose area was 5 times that of a 10-in. pipe. But

we know that the velocity will be somewhat larger with a larger

pipe, and so we would assume a pipe whose area is about 4 times

that of the 10-in. pipe, trusting that the increase in velocity will

make up the difference. Now this pipe would have a diameter

the square of which would be about 4 times 10 2 or 400.
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So we use 20 in. as a second trial value. For a 20-in. pipe,

/ = 0.0210 and

.

Solving this we obtain

V = 4.92 ft. per sec.

and

q
= 2.18 X 4.92 = 10.74 sec. ft.

This answer would appear to be satisfactory as it is on the safe

side and is not much larger than the value desired. The next

size pipe below this is 18 in. and we know that the rate of dis-

18 2

charge through it must be less than
^Tp X 10.74 = 8.7. (The

actual value for the 18-in. pipe is 8.20.) Hence we would

conclude that a 20-in. pipe would be required unless it were

allowable for the capacity to be somewhat less than 9 sec. ft.

EXAMPLE

1. What must be the diameter of pipe necessary to discharge 6.5 sec.

ft. under a head of 120 ft. if the length of pipe is 5,000 ft.

87. Power Delivered by a Pipe. In Fig. 105 consider a

point C which is located near the end of a pipe line. When
no flow occurs, due to the closure of a valve or other device

c
FIG. 105. Varying hydraulic gradient with different rates of discharge.

beyond C, the pressure at C is a maximum, being equal to CX.
But when flow occurs the pressure at C drops to the value CY,
and the greater the rate of discharge the steeper will be the

hydraulic gradient and the less will be the pressure at C. If

the nozzle, or other device beyond C, be removed entirely making
C a point at the very end of the pipe, the pressure will then

be reduced to zero. In Fig. 106 are shown the decrease in

pressure head at C and the increase in velocity head at C as
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the rate of discharge is caused to increase by opening wider

whatever device is below C. Now the total head at C is the

sum of the pressure head and the velocity head, but it is seen

to continually decrease with increasing discharge until it reaches

a minimum value which is the velocity head when the pipe is

wide open.

We have seen that power is a function of both q and H and

may be expressed as wqHc- In the case under consideration

H decreases as q increases. When q is zero Hc is a maximum

Rate of Discharge

FIG. 106. Head and power delivered by a pipe.

but the power is zero. And when q is a maximum the power is

small due to the small value of HC. Somewhere between these

two extremes the product of these two variables reaches a

maximum as shown by Fig. 106. It can be shown that the power
is a maximum when the flow is such that one-third of the static

head is consumed in friction, provided H f varies as V 2
.

The efficiency of a pipe line may be defined as the ratio of the

power delivered to the power supplied. But power is propor-
tional to head, and hence the efficiency is Hc/h, where h = CX in

Fig. 105. In the case of maximum power delivered one-third of

CX has been consumed in friction, hence the efficiency is only

66% per cent. If economy of water is no object it would be

desirable to transmit power under these conditions as the cost

of the pipe line would be small in proportion to the power de-

livered. But under usual conditions it is undesirable that

one-third of the energy of the water be wasted, and hence such a

size of pipe line would be employed that it could deliver the

water available with a loss of only a few per cent. With ordinary
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power-plant practice the efficiency of the pipe lines leading to

the turbines is about 95 per cent.

EXAMPLES

1. Find the power delivered in the jet in problem (3) of Art. 79.

2. What is the efficiency of the pipe line (and nozzle) in problem (3) of

Art. 79?

Ans. 61.5 per cent.

3. A pipe line 2,000 ft. long is 5 ft. in diameter. If the fall from the

reservoir to the end of the pipe is 120 ft., what is the maximum amount of

power the pipe could deliver?

4. What amount of power would the pipe in problem (3) deliver if its

efficiency were 95 per cent.?

6. What size pipe would be required to deliver the water discharged in

problem (3) if the efficiency of the pipe were to be 90 per cent.?

88. Pipe Line with Pump. In case a pump lifts water from

one reservoir to another, as in Fig. 107, it not only does work in

lifting the water the height z but it also has to overcome the

FIG. 107. Pipe line with pump.

friction loss in the suction and discharge piping. This friction

head is equivalent to some added lift so that the effect is the

same as if the pump lifted the water a height z + H f

,
without

loss. Hence the power delivered to the water by the pump is

W(z + #') (71)

The power required to run the pump is greater than this, de-

pending upon the efficiency of the pump. Although the pump
actually lifts the water a height z, it is said to work against a

head h whose value is

h = z + H' (72)
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In case the pump discharges a stream of watef through a

nozzle, such as in Fig. 108, the water has not only been lifted

a height z but it has also received kinetic energy proportional
to V2

2
/2g, where Vz is the velocity of the jet. Thus the power

delivered to the water by the pump is

w

And the head against which the pump works is now

(73)

(74)

The difference between the two cases in Figs. 107 and 108 is

really slight. In equation (71) we have considered the velocity

FIG. 108. Pipe line with pump.

head at E to have been lost, while in equation (73) the velocity

head in the jet has not yet been lost. Thus H f
in (71) includes

the velocity head of discharge while the H r

in (73) does not.

EXAMPLES

1. A 10-in. pipe line is 3 miles long. If 4 cu. ft. of water per sec. are to be

pumped through it, the total actual lift being 20 ft., what will be the horse-

power required if the pump efficiency is 70 per cent. ?

Ans. 240 hp.

2. In Fig. 107 assume d" = 10 in., BC = 20 ft., DE = 3,000 ft., and

z = 135 ft. If q = 7 sec. ft. and the pump efficiency is 80 per cent., what

is the power required?
Ans. 340 hp.

3. In problem (2), if the elevation of C above the water surface is 13 ft.

and that of D is 15 ft., compute the pressures at C and D.

Ans. PC = 19.48 ft., pD = +323 ft.

4. In Fig. 107 assume d" = 3 in., BC = 20 ft., DE = 200 ft., and z = 70

ft. The elevation of C above the water surface is 15 ft. (a) If the pressure

at C is to be -25 ft., what is the rate at which water is pumped? (6) If

the efficiency of the pump is 60 per cent., what is the power required?

Ans. (a) q = 0.613 cu. ft. per sec. (6) 15 hp.
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6. When a certain pump is delivering 1.0 cu. ft. of water per sec., the

pressure gage at D (Fig. 107) reads 20 Ib. per sq. in., while a vacuum gage
at C reads 10 in. of mercury. The pressure gage is 2 ft. higher than the

vacuum gage. If the diameter of the suction pipe is 4 in. and that of the

discharge pipe is 3 in., find the power delivered to the water.

Ans. 7.23 hp.

89. Pipe Line with Turbine. The type of machine that

is usually employed for converting the energy of water into

mechanical work is called a turbine. In flowing from the

upper body of water in Fig. 109 to the lower, the water loses its

potential energy due to the elevation z. This energy, which the

FIG. 109. Pipe line with turbine.

water loses, is expended in two ways. A part of it is consumed in

hydraulic friction in the pipe and the rest of it is delivered to

the turbine. Of that which is delivered to the turbine, a portion
is lost in hydraulic friction within the machine and the rest is

converted into mechanical work.

The power delivered to the turbine is decreased by the fric-

tion loss in the pipe line, and its value is given by

W(z - H') (75)

The power delivered by the machine is less than this depending

upon both the hydraulic and mechanical losses of the turbine.

The head under which the turbine operates is

h = z - H r

(76)

In the case of a turbine the only loss of head H'
',
which is de-

ducted, is that in the supply pipe. The draft tube, as the

conduit which leads the water away from the turbine is called,

is considered an integral part of the machine and hence h should

cover losses in it as well as in the turbine case itself.
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In applying these equations it should be noted that the

particular location of the turbine is immaterial so long as it

is not set so high above the lower water level that the pressure
at the top of the draft tube approaches absolute zero in value.

But as long as this is avoided the turbine can make use of the

entire fall to the lower water level by the use of an air-tight

draft tube. The higher the turbine is situated, within the limit

specified, the less the pressure will be at intake but this is offset

by an increased suction on the discharge side.

EXAMPLES

1. In Fig. 109 assume d" = 12 in., BC = 200 ft., and z = 120 ft. The
entrance to the pipe at the intake is flush with the wall, (a) If q = 8 sec.

ft., what is the head supplied to the turbine? (6) What is the power deliv-

ered by the turbine if its efficiency is 75 per cent.?

Ans. (a) h = 112.2ft. (6) 76.5 hp.
2. In problem (1) if the elevation of C above the water level is 18 ft.,

what is the pressure head at that point?
Ans. 92.56ft.

3. A turbine operating under a total fall of 120 ft. (z
= 120 ft.), is sup-

plied with water through 300 ft. of 8-in. pipe. If the rate of discharge be

such that 30 ft. of head is lost in friction in the pipe, what will be the power
delivered to the turbine?

89a. Equation of Energy with Turbine or Pump. The general

equation of energy, derived in Art. 44, may be applied equally

well to a pipe line in which there is any form of turbine or pump
between the two sections considered. But the equation should

always be applied with the water flowing from point (1) to point

(2) regardless of the relative positions of these two points. In

the preceding article H r

represents the energy lost by the water in

pipe friction, while h represents the energy lost by the water

within the turbine. (Of the latter a part is lost within the tur-

bine in hydraulic friction and a part is converted into mechanical

work, but it is all lost so far as the water is concerned.) Hence

we may write for the turbine

H 1
- #2

= H' + h.

This is really equivalent to equation (76) where A and F

correspond to points (1) and (2) in the above equation, for

HA - HF = z.

In the case of the pump the h represents energy put into the

water by the pump between points C and D in Fig. 107 and hence
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it is a negative loss. We may thus write for the pump
H l

- H 2
= H' - h.

This is equivalent to equation (72) where HA H* = z or to

equation (74) where H l
- H 2

= -
(z + V 2

2
/2g).

As an illustration let us consider a special case where a turbine

of known capacity is placed in a pipe line of known dimensions

and it is then desired to determine the rate of discharge. Since

in the pipe line H r = kV 2
/2g, we may write H' = Aq 2 where A

is a constant whose value may be determined from the dimen-

sions of the pipe. It may be shown (Art. 149) that the rate of

discharge through any turbine may be expressed as q
= k\/Ji and

k would be known for a given turbine. Hence we may write

h =
(q/k)

2 = Bq2
,
where B is another constant whose value can

be determined. Now referring to Fig. 109

H l
- Hz

= HA
- HF = H' + h

z = Aq 2 + Bq 2

-4:A + B'

After q is determined the net head on the turbine may readily be

found and everything is then known. The method can readily

be extended to other combinations.

EXAMPLES

1. Assume the total fall from one body of water to another to be 120 ft.

The water is conducted through 200 ft. of 12 in. pipe with the entrance

flush with the wall. At the end of the pipe is a turbine and draft tube

which discharged 5 cu. ft. of water per second when tested under a head of

43.8 ft. in another location. What would be the rate of discharge through
the turbine and the net head on it under the present conditions.

Ans. q = 8 cu. ft. per second, h = 112.2.

2. Compare the above with problem 1 of Art. 89.

89b. Economic Size of Pipe. Where the physical conditions

fix the value of the head to be lost in pipe friction, the size of

pipe for a given rate of discharge is to be determined as in Art. 86.

But in case the pipe line is to deliver the water from a pump
the friction head may have any value whatever, while if it sup-

plies water to a turbine the head lost may also be of any magni-
tude up to the value of the total head available minus the velocity

head in the pipe. Practically, however, it should be restricted

to less than one-third the total head. See Fig. 106.
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If we assume the rate of discharge to be constant, 'it is clear

that the larger the pipe the less the velocity of flow and hence

the less the value of the head lost. Since lost head means a

waste of power in pumping water, or a loss of power which might
otherwise be developed by a power plant, the problem becomes
one of determining the proper value to be assigned to this item.

The larger the pipe the more it costs as is shown in Fig. 109a.

The values plotted in this curve, however, are a certain percent-

age of the total cost being the annual fixed charges and including

Diameter

FIG. 109a.

interest on the investment, depreciation, etc. This curve in gen-

eral is a discontinuous function since the costs of different com-

mercial sizes do not follow a mathematical equation. Also the

curve is subject to abrupt breaks where the increasing size may
compel the change from one type of pipe to another of different

construction. For each size of pipe the loss of head may be deter-

mined and hence the amount of power lost. If this horse-power

lost is then multiplied by the annual value of a horse-power a

second curve showing the annual loss due to pipe friction may
be plotted. The sum of these two items is the total annual cost
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of the pipe line. The size for which this total is a minimum is

the most economical.

It must be pointed out that an accurate solution of this prob-
lem may be difficult in practice, especially in the case of a water

power plant. The chances are that the rate of flow through the

pipe line will not be constant, since the load on the plant will

vary, and hence the load factor must be known before one can

compute the total amount of power lost per year. And even

then it is hard to fix the exact money value of such power lost.

However, it is probable that in most cases a sufficiently accurate

solution may be obtained by considering the flow constant and

taking the value of a horse-power per year to be lower as the load

factor is lower.

It must also be noted that in some cases the economic solution

may not be the best.
'

In case the value of a unit of power is

small and the fixed charges are high the resulting pipe size would

be relatively small and the loss of head large. This means that

the velocity of the water would be high and, as will be seen later,

this may cause trouble due to surges and water hammer when

any change is made in the flow in governing the turbine. Also

when the loss of head is large the variation in head from full load

to no load is large, as may be seen in Fig. 106. This may also

be undesirable in the operation of the turbine. Hence for these

reasons a larger size pipe may be used.

It should be clearly understood that in Art. 87 the size of the

pipe is fixed and varying rates of discharge are assumed to flow

through it. In the present case the size of the pipe is varied

while the rate of discharge is constant. In the latter case also

the power delivered by the pipe varies, increasing as the diameter

of the pipe increases. If the problem is one of delivering a fixed

amount of power, it may be seen that the larger the pipe the

higher the net head on the turbine and the less the water con-

sumption. From Art. 87 it follows that the smallest size of pipe

that can be used for a given amount of power regardless of econ-

omy of water is such that the loss of head is one third the static

head. - The best size of pipe may be- determined in a manner

similar to that shown in Fig. 109a, if a money value can be

assigned to a cubic foot of water.

EXAMPLE

1. A water supply of 300 cu. ft. per second is available for a power plant

under a static head of 1200 ft. The penstock is of riveted steel (/
= 0.022)
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and 7000 ft. long. Assume the fixed charges on investment to be 10%
per year and the annual value of a horse-power to be $20 under the conditions
of operation, treating the case as though the flow were constant. Fill in

the table and determine the most economical size.

Ans. 90 in.

Diam.
in.
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minor losses and in long pipes may be neglected as in Art. 79.

Solving for V we obtain

V =

<?
=

fl+nd
Since K is a constant for any given pipe we may compute its

value in each case and write

go
=

where K Q
= KI + K 2 + K z .

If the value of H f be given and all dimensions of the pipes are

known it is then easy to find the rate of discharge in each separate

pipe. If the total rate of discharge, q ,
be given the value of

H* may be computed and then the flow in each pipe can be found.

If the dimensions of one or more of the pipes are unknown, how-

ever, a solution by trial may be necessary. If any water is sup-

posed to be withdrawn between A and B, it will then be necessary
to combine this problem with that in Art. 89d

EXAMPLE

1. In Fig. 1096 suppose that water enters at A from a large standpipe
and that B is located 50 ft. above a given datum plane. The three pipes

are of the following dimensions : 1200 ft. of 6-in. pipe, 1000 ft. of 8-in. pipe,

and 1200 ft. of 10-in. pipe, while the diameter at B is 16 in. If 14 cu. ft.

of water per second are delivered at B under a pressure head of 100 ft.,

what must be the elevation of the water surface in the standpipe above the

datum plane?
Ans. 242 ft

89d. Branching Pipes. Suppose the water flowing in pipe AB
in Fig. 109c divides at B, a portion flowing through BC into the

reservoir shown, while the rest flows on through pipe BD to some

destination not shown. Suppose the pressure at D to be indi-

cated by a piezometer column. (In reality both branches are

similar since the condition would be practically the same if the

second pipe discharged at D into a reservoir whose water surface
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were the same as the top of the water in this tube*.) We have

here two fundamental relations also. The flow in the main AB
is equal to the sum of the flow in the branches. And the pressure

at B is a value common to all three pipes. That is

1.

2. (or h) = common to all.

FIG. 109c.

Applying Bernoulli's theorem, as in the preceding article, we have

This problem is not so readily solved as the one in the preceding
article because the factor under the radical sign is different for

each pipe. Also in the former case there may be different rates

of flow and hence different values of H'. But in this case there

is only one value of pB or h for equilibrium and hence there can

be only one rate of flow, if other dimensions are fixed.

The solution of this problem is illustrated by Fig. 109d. The
value of h at which equilibrium is attained is given by the inter-

section of curves for q Q and qi + #2 - It should be noted that if

the conditions are such that h is greater than hi for instance the

flow in BC would be opposite to that assumed and the curve

for qi would then be as indicated by the dotted line. In this

case values of i should then be added to qg.

EXAMPLE

1. Suppose that in Fig. 109c, AB consists of 1500 ft. of 12-in. pipe, BC of

800 ft. of 6-in. pipe, and BD of 1200 ft. of 8-in. pipe. The value of hi is
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20 ft., B is 35 ft. below the level of the water surface at A, and D is 60 ft.

below. When the pressure head at B is 25 ft., find the values of the flow

in each pipe and the pressure head at D,

Ans. qQ
=

3.49, qi
= 0.817, q 2

=
2.67, pD = 12.6 ft.

89e. Pipe with Laterals. Assume a pipe main from which

water is withdrawn by laterals along its course. Then either

V or d or both must vary. In such a case the loss of head be-

tween any two points may be determined as follows. Differ-

FIG. 109d.

entiating the expression for loss of head we obtain an expression

for the loss of head in any infinitesimal distance dl. Thus

The integration of this between the proper limits of I will give

us the value of the head lost in that distance. Thus

H' -
f-

(76a)

If it is possible to express /, V, and d as functions of I the integra-

tion of the above equation will give the value of H r
. If an inte-

gration by calculus is not possible values of fVz
/d may be plotted

as a function of Z. The area between this curve and the axis for

I is the value of the integral.
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Special Case. If the pipe is of uniform diameter and the lat-

erals are uniformly spaced and may be assumed to take off water

uniformly along its length, the above may readily be integrated.
If the velocity of the water entering the length considered is V\
and that leaving it is F2 while the total length is

I, the above
conditions give us

dV
~

7 2
- Vi

since the velocity decreases uniformly along the length of pipe.

Substituting this value of d(l) in equation (76a) we have

H ' = X

fl

l

V f
F2

-
ViJ v,

~
3 2gd Vi - V2

If the terminal of the main is a dead end so that the value of

V2 is zero, this expression is further simplified and indicates that

the loss of head is one-third the loss that would exist if the entire

amount of water entering at (1) flowed clear through the pipe
and discharged at (2).

EXAMPLE
1. In Fig. 109d, suppose that the branch BD were closed at D and dis-

charged uniformly through laterals along its length. What would then be

the pressure head at D.

Ans. 37.7 ft.

From a photograph by the author.

FIG. 110. Cast-iron pipe line.

90. Construction of Pipe Lines. Cast-iron pipes have been

employed for the last 200 years and are very satisfactory for

ordinary water-works purposes where moderate heads are

employed. They are very durable and require but little atten-
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tion. While it is sometimes used under higher pressures, cast

iron is not considered desirable for heads above 400 ft. nor is it

suitable for very large diameters on account of low tensile

strength and possible defects in casting. For temporary pur-

From a photograph by the author.

FIG. 111. Riveted steel pipe under head of 1300 ft. leading to Drum power
house of Pacific Gas & Elec. Co. in California.

poses or for cheaper installations pipes are sometimes made

of very light weight riveted steel, usually coated with some

material in order to enable them to resist corrosion.

From a photograph by the author.

FIG. 112. Old wooden water pipe at New Orleans made from cypress log.

For high pressures cast iron is unsuitable and steel pipe is

used. These may be riveted as in Fig. Ill, or they may be

welded in special cases. Riveted steel pipe offers more resis-

tance to flow than a new cast-iron pipe on account of the
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projecting rivet heads and the overlapping of the plates, but
an old riveted steel pipe and an old cast-iron pipe are about the

same since both become coated alike with tubercles. A steel

pipe is not considered as durable as a cast-iron pipe, but for

high heads it is necessary to use it.

For heads under 200 or 300 ft. wood-stave pipe offers many
advantages. It is cheaper "than a metal pipe for the same
service. The resistance to flow is less than a riveted steel pipe

Courtesy of Redwood Manufacturers Co.

FIG. 113. Construction of wood-stave pipe.

and about the same as a new, smooth, cast-iron pipe, but it has

the advantage that its capacity does not decrease with age.

The early types of wooden pipe used were simply hollow logs

as shown in Fig. 112. Some of these were used for many years.

Modern wood pipe is generally built up of staves as shown in

Fig. 113. The staves are so arranged that the joints are

"broken." In order to make a water-tight joint, a thin steel

tongue is inserted in a saw cut across the end of each stave.

This piece of steel is slightly wider than the stave so that when
the bands are tightened up it will sink into the staves on either

side a distance of about - in. or more. In the life of a wood-
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stave pipe the encircling metal bands often have to be renewed.

It is essential that a wooden pipe be kept filled with water, if

it is to have a long life, as wood does not rot rapidly if it is kept

continually wet or continually dry. It rots the worst when it

is exposed to alternations in these conditions. The life of a

wood pipe is not as long as that of a heavy cast-iron pipe but it

From a photograph by the author.

FIG. 114. Curves in wood-stave pipe. In the Sierra Nevada Mts. of

California.

may be as long as that of a steel pipe. However, statistics of

these matters are lacking and subject to much dispute. The
wood pipe is free from corrosion and from electrolysis and is not

attacked by acids in the water. Hence, it is often used for

carrying liquids that could not be handled by a metal pipe.

It is possible to introduce broad sweeping curves into a wood-
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stave pipe without any special devices or fittings, afe shown in

Fig. 114.

Metal pipes are subject to expansion and contraction due to

temperature changes and provision must often be made for this.

In the case of a cast-iron pipe line the amount of play afforded

at each joint is usually sufficient. But a riveted-steel pipe line

has no such flexibility and expansion devices may be employed.

From a photograph by the author.

FIG. 115. Expansion joint in 8.5 ft. riveted steel pipe under low head.

One type of expansion joint is shown in Fig. 115, which is suit-

able only for low pressures. It may be seen that the circular

plates can spring enough to permit the necessary endwise motion

of the pipe. For higher pressures a joint such as in Figs. 116

and 117 may be used.

When water is lifted by a pipe line to a greater height than

the initial water level, as in Fig. 118, the pipe is called a

siphon. Of course it is necessary to exhaust the air by some

means in order to start the flow, and if the flow is to continue
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From a photograph by the author.

FIG. 116. Expansion joint in high pressure riveted steel pipe line.

FIG. 117. Expansion joint.
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the air which collects at the summit must be removed from time

to time. There are times when such a device cannot be avoided.

By analogy a pipe line such as shown in Fig. 119 is called an
"
inverted siphon," and it is usually found where it is necessary

FIG. 118. Siphon. FIG. 119. Inverted siphon.

From a photograph by the author.

FIG. 120. Riveted steel siphon. Lake Spaulding development of Pacific

Gas & Elec. Co.

to carry water across a valley or depression as in Fig. 120.

However, it is quite common to call a pipe so situated simply

a "
siphon."
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91. PROBLEMS

1. A pipe line 850 ft. long discharges freely into the air under a fall of

40 ft. (Assume a projecting pipe at entrance.) (a) If d" = 6 in., find the

rate of discharge. (6) If d" = 12 in., find the rate of discharge.

Ans. (a) q
= 1.55 sec. ft. (6) q = 8.85 sec. ft.

2. Suppose a pipe line runs from one reservoir to another, both ends of

the pipe being under water. Assume the intake end is non-projecting. If

the difference in water levels is 110 ft., the length of pipe is 500 ft., and the

diameter 10 in., what will be the rate of discharge? What will the capacity

be when the pipe is old?

3. In problem (2) a point C in the pipe is located 120 ft. below the level

of the surface of the water in the upper reservoir and 300 ft. from the intake.

What will be the pressure at that point? Draw the hydraulic gradient.

Ans. 49.5 ft.

4. A pipe line 800 ft. long discharges freely at a point 150 ft. below the

water level at intake. The pipe projects into the reservoir. The first

500 ft. is 12 in. in diameter and the remaining 300 ft. is 8 in. in diameter.

Find the rate of discharge.

Ans. q = 9.25 sec. ft. *

5. The junction of the two sizes of pipe in problem (4) is 120 ft. below the

surface of the water level. Find the pressure just above C and just below

C, where C denotes the point of junction. Assume a sudden contraction

at this point.

6. A jet of water is discharged through a nozzle at a point 200 ft. below

the water level at intake. The jet is 4 in. in diameter and the velocity

coefficient of the nozzle is 0.90. If the pipe line is 12 in. in diameter, 500 ft.

long, with a non-projecting entrance, what is the pressure at the base of

the nozzle?

Ans. 177.8ft.

7. It is desired to deliver 3 cu. ft. of water per sec. at a point 10,000 ft.

distant with a loss of head of 150 ft. What size pipe would be required?
8. What would be the probable capacity of the pipe in problem (7) when

it was old?

9. A pump delivers water through 300 ft. of 4-in. fire hose to a nozzle

which throws a 1-in. jet. The velocity coefficient of the nozzle is 0.98 and
the value of / for the hose may be a.ssumed to be 0.025. The nozzle is 20

ft. higher than the pump. It is required that the velocity of the jet be 70 ft.

per sec. What will be the necessary pressure at the pump?
10. The steel siphon shown in Fig. 120 is 8.5 ft. in diameter. It is 1,900

ft. long and carries 300 cu. ft. of water per sec. What must be the difference

in water level at the two ends? (It is arranged as in Fig. 119.)

11. The pipe line shown in Figs. 116 and 191 has an average diameter

of 62 in., is 6,272 ft. long, and the difference in level between the power
house and the intake is 1,375 ft. When the pipe delivers 300 cu. ft. of

water per sec., what is its efficiency?

12. What is the horsepower delivered to the plant in problem (11)?



CHAPTER VIII

UNIFORM FLOW IN OPEN CHANNELS

92. Open Channels. An. -open channel is one in which the

stream is not completely enclosed by solid boundaries and there-

fore has a free surface subjected only to atmospheric pressure.

The flow in such a channel is not dependent upon some external

head but rather upon the slope of the channel and of the water

surface.

The principal types of open channels are: natural streams or

rivers, artificial canals, and sewers, tunnels, or pipe lines not

completely filled.

From a photograph by the author.

FIG. 121. Canal of the Pac. Gas & Elec. Co. with one bank
rock lined.

The accurate solution of problems of flow in open channels is

much more difficult than in the case of pressure pipes. Not only

is reliable experimental data more difficult to secure, but there is

a wider range of conditions than is met with in the case of pipes.

Practically all pipes are round, but the cross-sections of open

channels may be of any shapes from circular to the irregular

forms of natural Breams. It is probable that the shape of the

125
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cross-section affects the flow in a way that is not covered by the

factor, m, the hydraulic mean depth (see page 97). In pipes the

degree of roughness ordinarily ranges from that of new, smooth,

FIG. 122.

cast-iron or wood-stave pipes on the one hand to that of old

corroded pipes on the other. But with open channels the sur-

faces vary from smooth timber (Fig. 123)* to the rough and

From a photograph by the author.

FIG. 123. Non-uniform flow in wooden flume.

irregular beds of some rivers. Hence the choice of friction fac-

tors is attended with greater uncertainty in the case of open
channels than in the case of pipes.
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93. Uniform Flow. If the shape and size of any wft,ter cross-

section is identical with that of every other section in the length
of channel under consideration, the flow is said to be uniform.
Such cases are shown in Figs. 54 and 121. Uniform flow must
not be confused with steady flow. The former requires that the

conditions at any time be the same from place to place; the

From a photograph by the author.

FIG. 124. Cascade on Los Angeles aqueduct.

latter requires that the conditions at every section be constant

with respect to time. We might have steady flow for both uni-

form and non-uniform flow as shown in Fig. 122. Uniform flow

is obtained only when a channel is uniform for a considerable

distance so that the water has a chance to adjust itself. The

channel in Fig. 123 is uniform but the flow is non-uniform in the

portion shown because the water has just entered it and has not
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yet attained a condition of equilibrium. The conditions are

similar to the upper portion of the channel shown in Fig. 122. On
the other hand the flow is non-uniform in Fig. 124 because the

slope of the channel varies.

94. Hydraulic Gradient. It is quite evident that in the case of

an open channel the hydraulic gradient coincides with the water

surface. For if a piezometer tube be attached to the side of the

channel the water will rise in it until its surface is level with that

of the water in the channel.

95. Equation for Uniform Flow. The equation that is most

generally used for steady uniform flow in open channels is one

that is also often used for flow in long pipes. It is

V = c Vm* (68)

the derivation of which was given in Art. 83. In this formula, c

is a coefficient dependent upon the roughness of the surface in

contact with the water, and it is also often given as a function of

other variables as well. The quantity, m, is the hydraulic mean

depth, or hydraulic radius, and its value is given by

area of water cross-section
/yy\

s - f ^f\ ]

length of wetted perimeter
1

In the case of an open channel, s is the slope of the water surface,

according to Art. 94.

Recognizing that the velocity does not vary exactly as the

square root of m or of s, exponential formulas such as equation

(70) are sometimes used. But if equation (68) is employed it is

seen that c must then be a function of m and s, since equation

(68) does not involve the correct exponents of m and s.

96. Kutter's Formula for c. The formula for c that has prob-

ably been more widely used than any other is that of Kutter and

Ganguillet, two Swiss engineers. This formula is based upon a

wealth of data from small artificial canals up to natural streams

as large as the Mississippi, and for this reason it is believed to be

applicable to a wide range of conditions. But any formula that

attempts to cover too large a field must necessarily be a mere

average of a number of scattered values and, though giving

approximate values at least for any combination of factors, it

1 The wetted perimeter is only that portion of the channel section that is in

contact with the water. The width across the free surface of the water

should not be included.



UNIFORM FLOW IN OPEN CHANNELS 129

cannot be expected to give exact values in individual cases.

Hence too great reliance must not be placed upon values given

by the use of this or any other such empirical formula.

In Art. 95, it was pointed out that, since equation (68) is not a

true expression of the law of flow, the value of c must be a func-

tion of ra and s as well as the roughness of the surface. The
formula of Kutter takes all three factors into consideration. It

is

41.65
n

1 + (41.65 + O^
281

)

*
s f \/m

(77)

In this expression the factor n is a coefficient of roughness,

values of which are given in Table VI.

TABLE VI. VALUES OF n IN KUTTER'S AND MANNING'S FORMULAS

Nature of surface

Planed and smoothly laid timber . 009

Planed timber, not perfectly true . 010

Wood-stave pipes 0.011

Smooth cement 0.011

Smooth iron pipes . Oil

Rough timber, good brickwork . 013

Slightly rough iron pipes . 015

Rough brickwork, cut stones . 015

Good rubble masonry . 017

Tuberculated iron pipes . 017

Rough brick and stonework . 017

Smooth earth channels . 017

Coarse gravel, well packed . 020

Large earth channels, good condition . 022

Small earth channels, good condition . 025

Channels in fair condition 030

Channels in bad order, with weeds, etc 035

Qhannels encumbered with drift . 045

In order to save tedious computation when equation (77) is

used, various sets of tables have been published and also a num-

ber of graphical solutions have been devised. 1 In Table VII

will be found values of c determined by equation (77). Inter-

1 One of the simplest of these is the diagram published by Karl R.

Kennison.
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TABLE VII. VALUES OF c COMPUTED FROM KUTTER'S FORMULA

Slope
8
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mediate values may be found by interpolation with as much
accuracy as the conditions warrant.

Although c is a function of the slope, it will be found that its

variation with values of s is not great. The difference between
values of c for s = 0.0001 and s = 0.0010 is a matter of from 10

to 15 per cent, at the very most. The equation also shows that

as s increases in value its influence upon the value of c decreases.

For all values from s = 0.0010 up to s = 0.100, or even greater,

the change in the value of c is negligible. See Fig. 125, which is

constructed for several values of m when n = 0.017. Similar

results would be obtained with any other value of n.

\
10'

3.28

017

.017

n= 0.017

.0001 .0003 .0005 .0010 .0015

Values of s

FIG. 125. Relation between c and s.

From the range of experiments upon which it is based, Kut-

ter's formula would appear to be applicable for values of m up to

10 ft., for velocities up to 10 ft. per sec., and for slopes greater

than s = 0.0001. Outside of these limits reliable data are lacking

and Kutter's formula should be used with caution.

97. Manning's Formula for c. Since the value of c is affected

by the slope to a very small extent only, as shown by Fig. 125, both

Manning and Bazin disregard its influence altogether and pro-

pose formulas in which c is independent of s. This results in

much simpler expressions. The formula of Manning gives almost

the same values as that of Kutter and is probably as accurate as

the circumstances warrant. It is

1.49 m0.17
(78)
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in which n is the same as in Kutter's formula. Values of n are

given in Table VI.

Equation (78) gives a better idea of the way c varies with n
and m than can be obtained from an inspection of equation (77).

Since these two equations give values of c which are approxi-

mately equal to each other, it follows that in Kutter's formula c

varies approximately inversely as n and directly as ra- 17
.

For practical use it is better to compute V directly, rather than

to determine c separately by Manning's formula. Substituting

the value of c given by equation (78) in equation (68) we obtain
1 4.Q

V = Vm* Vs. (79)

Values of m^ may be found on page 263.

98. Bazin's Formula for c. For small artificial channels with

values of m less than 3 ft. and for velocities of flow of not more

than 4 ft. per sec., the formula of Bazin is considered excellent.

It is

where n' depends upon the roughness of the surface. It will be

noted that this formula does not give c as a function of s. In

Table VIII will be found values of n' for use in equation (80).

TABLE VIII. VALUES OF n' IN BAZIN'S FORMULA

Nature of surface n'

Smooth cement, or planed wood ........................ . 109

Rough lumber, cut stone, and brickwork ................ . 290

Rubble masonry ...................................... . 833

Earth channels with regular surfaces ..................... 1 . 54

Ordinary earth channels................................ 2 . 35

Rough earth channels with boulders and weed-grown sides. 3. 17

99. Construction of Open Channels. Inspection of the

expression V = c-\/ms shows that, for a given slope and degree of

roughness, the velocity increases as m increases. This is also

accentuated by the fact that the value of c also increases as m
increases or, as shown by equation (79), V varies as m^. There-

fore for a given area of water cross-section the rate of discharge

will be a maximum when m is a maximum. Or for a given rate

of discharge the cross-section area will be a minimum when the

design is such as to make m a maximum,
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From equation (56) it may be seen that the value ofm will be a

maximum for a given area when the length of the wetted perime-
ter is a minimum Now of all geometric figures, the circle has

the least perimeter for a given area. Hence a semicircular open
channel will discharge more water than one of any other shape,

assuming that the area, slope, and roughness of surface are the

same. Semicircular open channels are often built of pressed

From a photograph by the author.

FIG. 126. Open channel with steep slope. Future power site on Los

Angeles Aqueduct. Drop in elevation = 524 ft.

steel and other forms of metal, but for other types of construc-

tion such a shape is impractical. (The open channel in Fig. 126

has a semicircular steel lining. This channel has a wooden

covering over it but that does not convert it into a pressure

conduit.)

For wooden flumes the rectangular shape is usually used. Of

all rectangles the square has the least perimeter in proportion to
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area and hence for an open channel the depth of the water should
be half the width.

Canals excavated in earth must have a trapezoidal section, and
of all trapezoids the half hexagon will have the largest value of m.
But the angle cannot always be made equal to 60 for other

reasons. The slope of the sides must be such that the angle 6 is

FIG. 127.

From a photograph by the author.

FIG. 128. Unlined canal with steep banks. In the Sierra Nevada Mts.

less than the "angle of repose" of the material of which the banks
are composed, otherwise the latter will cave in. In Fig. 128 the

angle 6 is made much greater than 60 in order to save a consider-

able amount of excavation in a deep cut, the firm character of the

soil permitting such steep sides.
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Whatever the value of the angle, it will be found tha't the best

proportions will be obtained when the sides are tangent to a

semicircle whose center lies in the water surface.

But other forms of cross-section are often used either because

they have certain advantages in construction or are desirable

from other standpoints. Thus oval or egg-shaped sections are

common for sewers and simitar channels where there may be

large fluctuations in the rate of discharge. It is desirable that

the velocity, when a small quantity is flowing, be kept high

enough to prevent the deposit of sediment, and when the conduit

is full the velocity should not be too high on account of wearing
the lining of the channel.

100. Non-uniform Flow in Open Channels. As a rule uniform

flow is found only in artificial channels of regular shape and slope,

although even under these conditions the flow for some distance

may be non-uniform as shown in Fig. 123. But with a natural

stream the slope of the bed and the form and size of the cross-

section usually vary to such an extent that true uniform flow is

rare. Hence the application of the equations given in this chap-

ter to natural streams can be expected to yield results which are

New Water Surface

FIG. 129.

only rough approximations to the truth. In order to apply these

equations at all it is necessary to divide the stream up into

lengths within which the conditions are approximately the same.

A satisfactory and reliable treatment of the problem of non-uni-

form flow in open channels is lacking.

In the case of pressure conduits we have dealt with uniform

and non-uniform flow without drawing any distinction between

them. This is possible because in a closed pipe the area of the

water cross-section, and hence the velocity, is fixed at every point.

But in an open channel these conditions are unknown and the

stream adjusts itself to the size of cross-section that the slope of

the hydraulic gradient requires.

In either artificial or natural streams non-uniform flow may be

produced in a variety of ways, each one of which leads to a differ-
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ent hydraulic phenomenon. The one case that is of the most

practical importance is where a dam or other obstruction is

placed across a flowing stream (see Fig. 129). It is desirable to

determine how far up-stream the
" backwater" created by this

dam will extend, or at a given point, how far the water level will

be raised.

A mathematical treatment of this case is given in various

books, but it rests upon assumptions of conditions which are

rarely fulfilled in natural streams, so that its accuracy for most

practical cases is doubtful. 1 In view of the fact that it is only an

approximation, it seems fully as satisfactory to apply the simple

equation, V = c\/ms, to the case. In order to do this the

stream must be divided up into various lengths within which the

flow may be assumed to be fairly uniform. Then for each

length an average value of m and s should be used and the solu-

tion completed for that length. Of course the solution for one

portion must be consistent with that for other portions, that is,

the same rate of discharge must exist for all of them.

101. Stream Gaging. The determination of the rate of dis-

charge of a stream for any given depth of water is termed stream

gaging. It may be seen that the rate of discharge of a stream

could be computed from the formula, V = c\fms, if the flow is

uniform and the cross-section area, the hydraulic mean depth,

and the slope of the water surface are known. But a more accu-

rate determination of dis-

charge can be made by meas-

uring the velocity directly,

by passing the water over a

weir, or by other means.

In a straight portion of an

artificial channel the velocity

might vary as shown in Fig.

130. These curves are veloc-

ity contours or curves of

equal velocity. Within the area enclosed by the curve the

velocity is higher than that of a point on the curve. Outside

the enclosed area the velocity is less than that on the curve.

1 The formula derived by calculus to fit this case is based upon the

assumptions that the slope of the bed is uniform, that the form of the

water cross-section is uniform except that its depth varies, and that the

stream is very broad as compared to its depth.

FIG. 130.
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FIG. 131.

It may be seen that the velocity of the water varies fr&m side to

side and from top to bottom. If there is a bend in the channel,
or if the bed is irregular, as in natural streams, these velocity

curves are often very irregular and distorted from the forms

shown here. It is, therefore, necessary to determine the

velocity at a number of different points across the section of the

stream.

The instrument that is commonly used for this purpose is the

current meter, described in Art. 70. In using the current meter

or any other device it is cus-

tomary to divide the stream

up into sections as in Fig. 131

and to determine the contour

of the bed, so that the area

may be computed. If then

the average velocity is de-

termined for some section such as ABCD the discharge through
this section will be the product of this velocity and the area

ABCD. The sum of all such partial discharges gives the total

rate of discharge of the entire stream.

In finding the average velocity in the area ABCD it is cus-

tomary to take it as the average of the velocity measured in the

line AB and the velocity measured in the line CD. But, as

shown in Fig. 132, the velocity varies from A to B or from C to

___^ >^=^ D> and hence we should determine the

average velocity in each vertical line.

This might be done by taking a num-

ber of observations so that curves

similar to that in Fig. 132 could be

plotted. But a study of a number of

such curves has shown that in general

the average velocity in a vertical line

is found at about 0.6 the depth. Hence

if the current meter be set at that

depth, the velocity determined by it may be assumed to be the

mean velocity. Of course this is only an approximation. To

insure a higher degree of accuracy than a single observation could

give, measurements are often taken at 0.2 the depth and 0.8 the

depth. The mean of these two values will be approximately the

average velocity. Thus, in an actual stream gaging, observa-

tions would be made at the points indicated by the circles in

^Tj^^r] Average Velocity ^TuT^IL

FIG. 132.
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Fig. 131. Further details of this topic are not within the scope
of this text. 1

Sometimes floats are used but such procedure is less accurate.

However they are often applicable when other methods are not

feasible, such as during floods. If surface floats are used, the

average velocity may ordinarily be taken as about 0.9 that of the

surface velocity. But the velocity at the surface is greatly
affected by the wind.

102. Rating Curve. If a natural stream is to be used for water

supply or power purposes, it is necessary to determine the

amount of water it can be depended upon to furnish. Since the

flow will usually be subject to wide fluctuations during a long

period of time it is necessary to make an extended series of

observations upon it.

Rate of Discharge

FIG. 133. Rating curve.

The level of the surface of the water in a stream is called the

gage-height, and may be measured above any arbitrary point.

Thus the gage-height does not necessarily coincide with the

depth of the stream.

It is apparent that for a given stream, the rate of discharge will

be a function of the gage-height. If the rate of discharge of

the stream be determined for several gage-heights a curve, such

as in Fig. 133, may be constructed. This curve is called the

rating curve, and from it the value of q for any height of water

can be obtained.

Thus in making a study of the stream it is necessary to make

only a record of the gage-heights. From the rating curve the

quantity of flow can then be determined. This gage-height

might simply be read and recorded once a day by an observer, or

by means of a float and clockwork a continuous record could be

1 See Hoyt and Grover, "River Discharge."
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obtained which would show all the variations in the- flow. Fig.
87 shows such a gaging station.

103. PROBLEMS

1. A circular conduit of smooth cement is exactly half full of water. The
diameter is 4 ft. and the slope is 1 ft. per 10,000 ft. Compute the rate of

discharge by the formulas of KutJ;er, Manning, and Bazin.

Ans. q =
8.38, 8.51, and 8.92 sec. ft. respectively.

2. A rectangular flume of timber slopes 1 ft. per 1,000 ft. Compute the

rate of discharge if the width is 6 ft. and the depth of water 3 ft.

Ans. 114'sec. ft.

3. What would be the rate of discharge in problem (2) if the width were 3
ft. and the depth of water 6 ft. ? Which of the two forms would require less

lumber?
4. A rectangular channel of rubble ma-

sonry is 6 ft. wide, the depth of water is 3

ft., and the slope of 1 ft. per l
r
OOO ft. Com-

pute the rate of discharge and compare with

that in problem (2).

Ans. 65 sec. ft.

6. A semicircular channel of rubble ma-
sonry with a slope of 1 ft. per 1,000 ft. will

give what discharge when flowing full if its

diameter is 6.55 ft.? Compare the cross-

section areas and amounts of lining required
with that in problem (4).

Ans. 65 sec. ft.

6. A circular conduit of concrete (n = 0.012) is 10 ft. in diameter and

slopes 1.6 ft. per 1,000 ft. (See Fig. 134). The following table gives values of

wetted perimeter and area of water cross-section for various depths of water

in the conduit. Find values of V and q for the various depths in the table.

What value of y gives the highest velocity? What value of y gives the

highest rate of discharge?

FIG. 134.

Depth, y
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If the slope is 2.5 ft. per mile, what must be the width at the bottom?
(This problem can best be solved by trial.)

10

FIG. 135.



CHAPTER IX

HYDRODYNAMICS

104. Dynamic Force Exerted by a Stream. Whenever the

velocity of a stream of water is changed either in direction or

in magnitude, a force is required. By the law of action and

reaction an equal and opposite force is exerted by the water

upon the body which produces this change. This is called

a dynamic force in order to distinguish it from static forces due

to the pressure of the water.

AV

Let the resultant force exerted by any body upon the water

be denoted by R and its components by Rx and. Ry . Let dR
be the force exerted upon the elementary mass shown in Fig. 136.

Then, since resultant force equals mass times acceleration,

dV
dR = dm

dt

The summation of the forces acting upon all such elementary
masses along the path will give the total force exerted upon the

water by the entire body at any instant. But it is necessary

to express dm as a function of V or vice versa before this can be

integrated. Let the time rate of flow be dm/dt. Then in an

interval of time dt there will flow past any section the mass

(dm/dt)dt, which will be the amount considered. Hence we may
write

But (dV/dt)dt = dV. Our discussion here shall be restricted to

141
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the case where the flow is steady in which case dm/dt is constant

and equal to W/g. Therefore

dR = dV.

In general these various elementary forces will not be parallel

and, since integration is an algebraic and not a vector summa-

tion, it is necessary to take components along any axes in order

to integrate the above. Thus

Q

Now at point (1) the value of V x is FI cos a\ and at (2) it is

F 2 cos 2 . Inserting these limits and noting from Fig. 136 that

F2 cos 2 Vi cos ai = AF X we have

W WR x = (Vz cos 2 Vi cos ai) = AF*
9 9

If P indicates the value of the force exerted by the water,

which is equal and opposite to R, we shall have

W W
P x = (Vi cos !

- F 2 cos ,)
= - - AF X (81)

y y

In similar manner the y component of P will be

W W
Pv

= (Vi sin ai - F2 sin 2 )
= - AF, (82)

/ J/

Since P = \/P* 2 + P y
* and AF = \/AFx

2 + AFV
2
,

the value of the resultant force is

P= AF (83)

The direction of 72 will be the same as that of AF and the direc-

tion of P will be opposite to it. It is because P and AF are in

opposite directions that the minus sign appears in the last terms

of equations (81) and (82). Note that AF is the vector difference

between V\ and F2 .

104a. Dynamic Force (Second Method). The preceding
derivation pictures the total dynamic force exerted by a flowing

stream to be the vector sum of all the elementary forces exerted

along its path at any instant. The following derivation makes

it clear that the total force depends solely upon the initial and

terminal conditions and is independent of the path. (Of course

the numerical value of the terminal velocity would be affected

by friction losses which might be different for different paths.)

The former method is based on the principle that resultant force

equals mass times acceleration. The second method is based on
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the principle of force and momentum, which may be stated as

follows: The time rate of change of the momentum of any sys-

tem of particles is equal to the resultant of all external forces

acting on the system. Thus instead of R mdV/dt we write

R = d(mV}/dt.
Consider the portion of a filament of a stream in Fig. 136a

which is between two cross-sections A and B at the beginning
of a time interval dt, and between the cross-sections A' and B'

at the end of the interval. Denote by dsi and dsz the distances

moved during the interval by particles at A and B at the begin-

t
. /

FIG. 136a.

ning. Let FI be the cross-section area at A, Vi the velocity of

the particles, and i the angle between the direction of Vi and

any convenient x axis. Let the same letters with subscript (2)

apply to B.

At the beginning of the interval the momentum of the portion

of the filament under consideration is the sum of the momentum
of the part between A and A' and that of the part between A'

and B. At the end of the interval its momentum is the sum of

the momentum of the part between A' and B and that of the

part between B arid B r
. In the case of steady flow the momen-

tum of the part between A' and B is constant. Hence the

change of momentum is the difference between the momentum
of the part between B and B' and that of the part between A and

A'. Noting that wF^Si = wF2ds2 ,
since the flow is steady, the
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change in the x component of the momentum during dt is then

t cos 0:2 K i cos

If the rate of flow be denoted by W, then

wFidsi == Wdt

and the time rate of change of the x component of the momen-
tum is

W- (F2 cos 2 Fi cos i).

Denoting by R 2 the x component of the resultant force which

changes the momentum,
W W

R x = (Vz cos 2 Vi cos i)
= AF X .

Q 9

From this point the treatment is the same as the last paragraph
of the preceding article.

This method has the advantage that it may readily be extended

to the case where the flow is unsteady, if desired.

104b. Dynamic Action upon Stationary Body. In order to

v find the dynamic force exerted by
a stream upon a stationary object,

we have merely to find the value

of AF, assuming the rate of dis-

charge to be known. The follow-

FIQ. 137. mg special forms of equations (81)

and (82) will often be more convenient. If the x axis be taken

parallel to FI and the angle between V\ and F2 be denoted by 6,

Fig. 137 (0
= a 2 ai and cos i

=
1.0),

W W
P x = - - AF X = (Vi

- Vz cos 0) (84)
y y

W W
P y

= - AF, = - F2 sin 6 (85)
y y

In certain special cases a stream will be equally divided so that

the P y for one half will be equal and opposite to the P y for the

other half. Hence in this special case P = P x . It may be

noted also that friction in flow over the body tends to decrease

the numerical value of F2 . This increases the value of P x if

is less than 90 but decreases it if is greater than 90.

EXAMPLES

1. In Fig. 137 assume that 6 = 60, and that the stream striking the

body is a jet 2 in. in diameter with a velocity of 100 ft. per sec. If the

frictional loss is such as to reduce the velocity of the stream leaving the
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body to 80 ft. per sec., find: (a) the component of the force ^n same direc-

tion as the jet, (6) the component of the force normal to the jet, (c) the magni-
tude and direction of the resultant force exerted by the water.

Ans. (a) 254 Ib. (6) 293 Ib. (c) 388 Ib. at 49 08' with direction of jet.

2. Suppose the jet in problem (1) struck a flat plate normally, what
would be the value of the force exerted upon the plate?

Ans. 423 Ib.

3. Suppose the jet in problem (1) were completely reversed in direction,

or that 6 = 180. If ,F2 were lOOfft. per sec., what would be the component
of the force in the same direction as the jet? (Compare with problem (2).)

What would be the component normal to the direction of the jet?

Ans. 846 Ib

4. Suppose that in problem (3) the value of V% were reduced to 80 ft.

per sec. as in problem (1). What would be the value of the force exerted?

(Compare with problem (3).)

Ans. 761 Ib.

105. Force Exerted upon Pipe. When a flowing stream is

confined there may be static forces due to pressure as well as

dynamic forces due to

changes in velocity. Con-

sider the water to be flowing

to the right in Fig. 138. -^>

Since the velocity is increased

from Vi to V*, the dynamic pIG 133

force exerted upon the water,

according to equation (83), will be

This force, producing the acceleration of the water, must be the

resultant of all the forces acting. The real forces acting upon
the volume of water shown are the pressures upon the two ends

p'iFi and p' 2Fz exerted by the rest of the water, and the force

N exerted by the pipe walls. 1 If there were no friction this force

would be normal to the walls, but actually it will be inclined

somewhat from the normal because it must have a frictional

component. Let the component of N parallel to the axis of

the pipe be denoted by Nx . It may be seen that R must be in

the same direction as Vi and 72 in Fig. 138. Hence the sum

1 The N shown in Fig. 138 represents the force for an element only. For

a pipe of circular cross-section the resultant force exerted by the walls must

be axial
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of all the forces parallel to the axis of the pipe must equal R.

Therefore

R = pVi -
P'*F2

- Nx .

(86)

Inserting the value of R given above, it follows that

Nx = p' 1F 1
-

p' 2F2
- ~ (V2

-
Fi)

It must be remembered that Nx is assumed to be the axial com-

ponent of the force exerted upon the water by the conical por-

tion of pipe. The force exerted by the water upon the pipe
is equal and opposite to this. That is, its magnitude is given by
equation (86) but it acts toward the right.

If the velocity of the water in a

closed passage undergoes a change
in its direction, as in the pipe bend

shown in Fig. 139, the procedure
would be similar to that in the

preceding case. The forces acting

on the water in the bend are the

pressures p'iFi and p'2F2 and the

pressure exerted by the walls of

the pipe, designated by N. By
equation (83) the resultant force acting upon this volume of

W
water will be R = AF, but R is the resultant of the three

forces just mentioned. Since these are vector quantities not in

the same straight line, it will be better to take x and y com-

ponents. Thus we should write

FIG. 139.

and

Rx = --
(F2 cos e - F x)

= p
y

W
Ry

= F2 sin B = - p
f

2F 2 sin 6 + Nv .

- p
f

2F2 cos e - Nf

Solving these equation we find that

WNx = p'iF,
- p

f

2F2 cos + (Vi - V2 cos 0)

and
WNv

= p'zF2 sin B -\
-- V2 sin 6.

y

(87)

(88)

But again N represents the force exerted by the pipe bend upon
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the water. The force exerted by the water upon the bend will be

equal and opposite to this.

It may be seen that these forces tend to move the portion of

pipe considered. Hence a pipe should be " anchored" where

such changes in velocity occur.

EXAMPLES

1. On the end of a 6-in. pipe is a nozzle which discharges a jet 2 in. in

diameter. The pressure in the pipe is 55 Ib. per sq. in. and the pipe velocity

is 10 ft. per sec. The jet is discharged into the air. (a) What is the re-

sultant force acting on the water within the nozzle? (6) What is the

axial component of the force exerted on the nozzle?

Ans. (a) 304 Ib. (b) 1,250 Ib.

2. Water under a pressure of 40 Ib. per sq. in. flows with a velocity of

8 ft. per sec. through a right-angle bend having a imiform diameter of 12 in.

(a) What is the resultant force acting on the water? (6) What is the total

force exerted on the bend?

Ans. (a) 137.8 Ib. (6) 6,530 Ib.

106. Theory of Pitot Tube. The Pitot tube has been briefly

described in Art. 69 and illustrated in Fig. 94. We shall now

consider the dynamic action of the water upon it. In Fig.

140 a Pitot tube is placed with its opening facing upstream,
the velocity of the water being denoted by V. The dotted lines

in the figure are intended to represent an imaginary cylinder

of cross-section area F equal to that of the mouth of the tube

and extending to point (1) as far up stream as the influence of

the tube is felt.
1

1 The method of derivation of the Pitot tube formula given here, as well

as some interesting experimental results, will be found in a paper by L. F.

Moody, "Measurement of the Velocity of Flowing Water," Proc. of the

Engineers' Soc, of West. Penn., vol. 30, page 279 (1914).
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At point (1) the water within this cylinder has a velocity V
and, as it approaches the Pitot tube, its velocity continually
decreases until it becomes zero at point (2). But if water

flows into this cylinder, bounded by the dotted lines, it must
also flow out. It does this along the sides, for since the area F
is constant while the velocity is a decreasing quantity, it follows

that q (within the cylinder) must become less as the Pitot tube

is approached. The conditions for a certain mass of water are

therefore as shown in Fig. 140 (a). As the velocity of the water

decreases the cross-section area must increase for the same value

of q. Referring to Fig. 140 (a), consider that water flows into

this portion of the stream with a velocity V and leaves it with

a velocity V AV'. If the cross-section area of the stream

entering the section is F, we have W = wq = wFV. If the two
faces of this volume be taken at an infinitesimal distance apart
the velocity will decrease by an amount dV, hence the dynamic
force exerted upon this small mass of flowing water will be

W wF
dR = - dV = - - - V'dV.

Q 9

The value of V varies from V at point (1) to at point (2).

Since F is constant we may write

9

The dynamic force exerted by the flowing water upon the body
of still water within the Pitot tube is equal and opposite to R.

If the force be represented by P, we have

P = wF^ (89)

This is the value of the total force distributed over the area F.

The intensity of pressure is p'
= wV2

/2g, or dividing by w we

have intensity of pressure in feet of water so that

h =
^'-

(90)

That this is true has been amply demonstrated by experimental

evidence. If the water is under pressure, the Pitot tube will

read the sum of the pressure head and the dynamic head, given

by equation (90). It is therefore necessary to determine the
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pressure head separately or else use a differential fnanometer,
one side of which shall be connected to the Pitot tube and
the other to a piezometer tube. The chief source of error in

the use of the Pitot tube lies in the measurement of the pressure.

If the Pitot tube is used in a pipe, the pressure reading should

be taken by a piezometer tube which does not project within

the walls of the pipe and which is at right angles to it, as in the

second tube of Fig. 94. If it is necessary, for some reason, to

have the tube project into the stream, a correct reading may be

obtained if the piezometer orifice is made in a flat plate, the plane
of which may be parallel to the stream lines, as is shown by the

third tube in Fig. 94. Or the orifice may be made in the side of

a smooth tube, whose axis is parallel to the stream lines and

whose closed upstream end is pointed so as to diminish eddy
disturbances. 1

107. Water Hammer and Surges in Unsteady Flow. In all

the rest of this book the treatment is restricted to cases of

steady flow, but in the present article a brief description will be

1 The Pitot tube formula has often been derived by an incorrect ap-

plication of the principles of Art. 104. If a jet of water with cross-section

area F impinges normally upon a flat plate, the dynamic force will be

p _ ,.99 9

This is twice the value given by equation (89), and dividing this by the area

of the Pitot tube orifice, which is also assumed equal to F, the intensity of

V 2

pressure in feet of water is apparently h = . But this reasoning is in-

correct; for a flat plate of an area the same as that of a jet would not be able

to deflect all the water through an angle of

90. Experiment shows that the dynamic
pressure exerted by a circular jet is distrib-

uted over a circular area whose diameter is

at least twice that of the -jet. Therefore if

the entire stream of water is to be deflected

through an angle of 90 the area of the

plate must be at least four times that of

the jet. Dividing P by 4F we should have
Pressure Curve

the average intensity of pressure to be p
f =

wV2
/4:g. It is found experimentally that

the maximum intensity of pressure at the FIG. 140(6).

center of the plate in feet of water is V2
/2g,

and that this pressure diminishes in intensity as the outer margins of the

area in question are approached, as shown in Fig. 140(6).

See "Pitot Tube Formulas Facts and Fallacies" by B. F. Groat, Proc,

of Engineers' Soc. of West. Penn., vol. 30, page 324 (1914),
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given of the problems of unsteady flow that are of the most

practical importance. An adequate mathematical treatment

of unsteady flow would occupy too much space to warrant its

inclusion here and no attempt will be made to do more than

record some accepted results.

In the event of a valve at C in Fig. 141 (a) being rapidly closed

in a short interval of time At, the velocity of the water in the

pipe will be abruptly reduced to zero. But in so doing there

will be a considerable rise in pressure within the pipe, which may
be much greater than any static pressure that could possibly

exist in the given pipe. This high pressure lasts for an instant

only, and then follows a periodic fluctuation of pressure which

finally dies out, if the pipe does not burst in the meantime.

This is known as water hammer.
What happens is that the lamina of water next to the valve

at C is brought to rest and is then compressed by the rest of

the column of water flowing up against it. At the same time

Normal Gradient
d Load

the walls of the pipe surrounding this lamina will be stretched

by the excess pressure. The next lamina of water will be

brought to rest by the first and so on. It is seen that the volume
of water in the pipe does not behave as a rigid body but that

the phenomena is affected by the elasticity of the water and the

pipe. Thus the cessation of flow and the increase of pressure

progresses along the pipe as a wave action. After a short interval

of time the volume of water BC will have been brought to rest,

while the water in the length AB will still be flowing with its

initial velocity, and with its initial pressure. But the volume

of water in BC will be under a much higher pressure due to the

compression it is under and the pipe walls will be stretched. The
excess pressure DE is the same for all portions of the pipe and

is independent of the length of the pipe.

Finally the pressure wave will have reached the reservoir

and the entire volume of water will be at rest. But, owing to its
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compression as well as the tension of the pipe, the flow will

tend to start toward the reservoir. Thus a wave of rarefaction

proceeds from A to C, and so on until the waves die out. If the

valve is alternately opened and closed at just the proper intervals

of time it is possible to add one pressure wave on top of another,
so that there is no limit to the maximum pressure that might
be attained.

The velocity with which this pressure wave progresses along
the pipe will be given by the following formula: 1

Fw =4700 /-
-
d (91)

^# +
300,000^-

where Vu = velocity of pressure wave in feet per second, E
modulus of elasticity in tension of the material composing the pipe
in pounds per square inch, and d/t is the ratio of the diameter of

the pipe to the thickness of the walls, which means that both d

and t must be in the same units. The values of E for steel,

cast iron, and wood are about 30,000,000 Ib. per sq. in., 15,000,-

000 Ib. per sq. in., and 1,500,000 Ib. per sq. in. respectively.

For pipes of ordinary dimensions the velocity of this pressure

wave will be about 3,300 ft. per sec. In any event it will be less

than 4,700 ft. per sec., which is the velocity of sound in water

or the velocity with which a pressure wave would be propagated
in water in a rigid pipe. See equation (91).

The time required for a pressure wave to travel the length

of the pipe, or the time that it takes for the entire mass of

water to be brought to rest will be

T = l/Vu (92)

The total force exerted may be determined by applying
the principle that force equals mass times acceleration. Since

the volume of water is a non-rigid body we must deal with the

acceleration of the mass center. The pressure wave travels

at a uniform rate; hence the velocity of the mass center is

uniformly retarded. Therefore the acceleration may be deter-

mined by dividing the change in velocity by the time required

for the change to occur. The velocity of all the water, and

1 The complete expression involves the volume modulus of elasticity of

the water, the density of the water, and the value of g. Using average

values of these quantities the above is obtained.
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hence that of the mass center, decreases from V to in the time

T. Thus we may write

p _wFlV wFl VVU
=

VVy
g T~ g I g

Dividing by the area F and also by w we obtain intensity of

pressure in feet of water. If this excess pressure, due to water

hammer, be denoted by pm ,
we have

VV
(93)

It will be noted that this pressure increase is independent of the

length of the pipe line.
1

The length of the pipe line enters into the problem in this

way. The time required for a pressure wave to make the

round trip from the gate to the reservoir and back is twice

the value given by equation (92). It has been found that

the pressure created is independent of the time of closure of

the gate provided that it is closed in less time than it takes

for a pressure wave to make the round trip. That is the gate

must be closed in less time that 21/Vu . If the time is greater

than this the pressure is reduced in proportion as follows :

P = Pm ^7 (94)

where Tr is the time for a round trip of the pressure wave, T'

is any time greater than this and p is the pressure that will be

attained in such a case.

It is seen that in a short pipe line the value of Tr is so small that

it is nearly impossible to close the gate quickly enough to pro-

duce water hammer of maximum intensity. In a long pipe

line it is necessary to close the gate slowly in order to prevent
this and the longer the pipe line the slower the gate must be

closed.

For the sake of clearness in explanation it has been assumed

in the preceding discussion that the velocity of the water has

1 The subject of water hammer has been experimentally investigated by
Joukovsky of Moscow on pipes of 2-, 4-, 6-, and 24-in. diameter and with

lengths ranging from 1,050 ft. to 7,007 ft. He found the results to agree
with the formulas given. For a resume of his work see "Water Hammer"
by Simin, Trans. Amer. W. W. Ass'n, 1904.
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been reduced to zero. But the results are true for any reduction

in velocity, it being simply necessary to substitute AF for V.

Water hammer may be prevented by the use of slow closing

valves, or its effects diminished by the use of automatic relief

valves which permit water to escape when the pressure exceeds

a certain value. Also air chambers of suitable size provide
cushions which absorb a great portion of the shock. But for

water power plants a standpipe or surge chamber such as is

shown in Fig. 141(6) has certain marked advantages.
In the event of a sudden decrease in load on a water power

plant it would be necessary for the governors to rapidly reduce

the amount of water supplied to the wheels, if the speed of the

latter is to be maintained constant. A surge chamber provides
a place into which this excess water may flow and thus avoids

water hammer in the supply pipe. The inertia of the mass
of water flowing down this supply pipe may be such as to carry
the water level above the static level and . produce an ascending

hydraulic gradient. But this excess pressure acts as a retarding
force on the mass of water in the. pipe line and thus reduces

its velocity. In any event the temporary water level in this

surge chamber will be higher than the normal value and hence

it will reduce the velocity of flow too much. The result will be

that there will be fluctuations of velocity in the pipe line

accompanied by "surges" of the water level in the chamber
until a condition of equilibrium is finally reached. The phe-
nomenon is very similar to that of water hammer as there are

periodic alternations in pressure and velocity, but the pressure
variations are much less severe.

The surge chamber fulfills another valuable function in that

it not only takes care of excess water in case of a sudden re-

duction of flow but it also provides a source of water supply in

the event of a sudden demand. When the load on the plant

increases it is necessary to supply more water to the wheels at

once. If the pipe line is long it may take some time to accelerate

the entire mass of water and in the meantime the head at the

plant has dropped considerably in order to provide an ac-

celerating force. But the surge chamber permits a certain

amount of water to flow out during that period. To be sure

enough flows out so that the hydraulic gradient drops below

its normal level for the new load, but the effect is not as serious

as if the surge chamber were absent.
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In Fig. 195 is shown a surge chamber of large size. It is

at the end of a pressure tunnel which is approximately 7.76

miles in length, with an average cross-section area of 100 sq.

ft. and in which is a maximum velocity of flow of 10 ft. per sec. 1

EXAMPLES

1. A cast-iron pipe line is 24 in. in diameter and the metal is 0.75 in.

thick. If the velocity of water in it is 6 ft. per sec., find the pressure that

would be created by the instantaneous closure of a valve.

Ans. 296.5 Ib. per sq. in.

2. If the pipe line in problem (1) were 500 ft. long, within what length
of time must the valve be closed to produce the same pressure as an in-

stantaneous closure? What would the length of time be if it were 5,000

ft. long?
Ans. T = 0.27 sec., 2.7 sec.

3. If the pipe line in problem (1) were 7,000 ft. long what would be the

time of closing the valve so that the pressure produced were only one-

third of that in case of instantaneous closure?

Ans. 11.43 sec.

108. Relation between Absolute and Relative Velocities. In

much of the work that follows it will be necessary to deal with

/ M
8 ^

'

r s
>j

r*-~s--
i I

FIG. 142. Relation between absolute and relative velocities.

both absolute and relative velocities of the water. The absolute

velocity of a body is its velocity relative to the earth. The rela-

tive velocity of a body is its velocity relative to some second

body which may in turn be in motion relative to the earth. The

absolute velocity of the first body is the vector sum of its velocity

relative to the second body and the absolute velocity of the lat-

ter. The relation between the three is shown in Fig. 142. 2

*W. F. Durand, "Control of Surges in Water Conduits," Journal,

A. S. M. E., June, 1911.

See also, "The Differential Surge Tank"
\y by R. D. Johnson, Trans. A. S. C. E., vol. 78,

760 (1915).

FIG. 143.
2 A clearer idea of this relationship may be ob-

tained from the illustration in Fig. 143. Suppose
raft is moving downstream with a uniform velocity u. A man on the
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109. Dynamic Action upon Moving Body. The dynamic force

exerted by a stream upon a moving object can be determined by
a direct application of equation (83). The principal difference

between action upon a stationary and upon a moving object is

that in the latter case we need to deal with both absolute and

relative velocities, and the determination of AF may be more

difficult.

Let us assume a stream of cross-section area FI and absolute

velocity FI to flow upon a moving object. The rate of discharge

will be FiVi so that W = wFiVi. But this may not be the

amount of water that strikes the object per second. For instance,

if the body is moving as rapidly as the stream and in the same

direction it is clear that none of the water will strike it. The
amount of water which will flow over any object is proportional

to the velocity of the water relative to the object itself. If we
denote by W the pounds of water striking the moving body per

second, then W =
wfiVi, where /i is the cross-section area normal

to VL

As a special case to illustrate the above let us consider a jet

from a nozzle acting upon a body moving in the same direction

as the jet with a velocity u. In this case, since u and V\ are in

the same direction, FI =
fi and vi = Vi u. But in general

we should have a vector relationship as shown in Fig. 142. How-

ever, for this particular case W = wF\.(V\ u). The reason

that less water strikes the body per second than issues from the

nozzle per second is that the body is moving away from the

latter and there is an increasing volume of water between the

two. If we consider an impulse wheel with a number of vanes

around its circumference, the above is true for one vane only.

But the wheel as a whole does not move away from the nozzle

and hence the amount of water striking the wheel may equal

that issuing from the nozzle. The explanation is that two or

more vanes are acted upon by the water at the same time as is

shown in Fig. 202.

In order to find AV it is necessary to determine the magnitude

raft at A walks over to the diagonally opposite corner at a uniform rate.

But by the time he reaches B the latter point on the raft will have

moved downstream to point C. Thus the path of the man relative to

the raft is AB but relative to the earth it is AC. Since the velocities are

all uniform they are all proportional to the distances traversed in this in-

terval of time.
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and direction of the absolute velocity at outflow, assuming the

FI to be known. The direction of the relative velocity at out-

flow is tangent to the surface of the body at that point. The

angle between v 2 and the positive direction of u is denoted by az .

Assuming u and a2 to be known we may proceed as follows.

Solve the vector triangle (Fig. 142) for vi if FI, u, and AI are

known. In flow over the object there may be a loss of energy
due to friction such that v 2 is less than vi and hence we may write

v2
=

nvi, where n is less than unity. Having now the values of

v 2} u, and a2 we may solve the vector triangle (Fig. 142) for F 2

and A 2 . This enables us to find the value of AF.

As a special case to illustrate

the procedure let us consider

Fig. 144 where the jet strikes

an object moving with a uniform

FIQ 144 velocity in the same direction as

the jet. Hence A l
= 0. Let

us assume the x axis parallel to the jet and use equations (84)

and (85).

W WPx = - AFX = (Fi cos A l
- F2 cos A 2 )

y y

Fi COS AI = Fi

Vz cos A 2
= u + v2 cos a2 from Fig. 142.

= u + nvi cos a2

Since AI = 0, v\ = Vi u and hence for this special case

F2 cos A 2
= u + n(Vi u) cos a 2 .

Substituting this in the above and reducing we have

W
P x

=
(1
- n cos a2)(Fi

-
u) (95)

= l

(1
- n cos a2)(7i

-
u)

2
(96)

The value of P y may be determined in a similar manner,

noting that in this case F2 sin A 2
= v 2 sin a2 . It must be borne

in mind that these equations" are true only for the special case

considered and that they apply to a single moving object. The

general case would differ from the above only in the fact that

Vi is then the vector and not the algebraic difference between Fi

and u.
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It may be seen that the magnitude of the force exerted by a

jet depends both upon the shape and the velocity of the object

struck. In fact the same value of AF might be had with either

a stationary or a moving object or with moving objects having
different velocities provided only that their shapes, which in this

case means their values of a2 ,
were suitable.

As another illustration of the foregoing let us consider the

dynamic force exerted by a*jet of water upon the moving body
from which it issues. When a stream of water issues from any

device, such as the vessel shown in Fig. 145, a force is required

to accelerate the water and impart to it the velocity it has upon

leaving. This force is exerted upon the particles of water flow-

ing out the orifice by adjacent particles of water and ultimately

by the walls of the vessel. By the law of action and reaction

an equal and opposite force will be exerted upon the vessel. It

is impossible to analyze this reaction in detail but we know that

its total value will be given by an application of equation (83).

Let us assume that the vessel in Fig. 145 moves to the left

with a uniform velocity u, and that the orifice is so small com-

pared to the size of the vessel that the relative velocity of the

water in the latter may be neglected as may also the change in h.

Then Vi = u. If the jet issues from the orifice with a velocity

V2 the absolute velocity of the jet will be F 2
= u v%. Hence

AF = Vi - Vz
= u - (u

-
t;2 )

= v2 . Therefore

W wF
(97)

This might have been determined more directly if another

proposition had been previously established. That is that for

any case whatever AFX = &vx + Aux ,
where the subscript x

merely denotes a component along any axis. In this case, since

u is constant, it may be seen that AF
= Av and is independent of the velocity
of the vessel.

Since v% = cv\/2gh, we may write

equation (97) as

P = 2cv
2wFh (98)

FIG. 145.
If losses of energy be neglected in

both cases, it may be seen that the re-

action of the jet in Fig. 145 is equal to the force of impact upon
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a flat plate, normal to the jet, providing the area of the plate be

large enough to deflect the water through 90. l

EXAMPLES

1. A jet of water 3 in. in diameter has a velocity of 120 ft. per sec. It

strikes a vane with an angle a 2
= 90 which moves in the same direction as

the jet with a velocity u. Assume that the loss in flow over this vane is

such that n = 0.9. When u has values of 0, 40, 60, 80, 100, and 120 ft.

per sec., find values of: (a) W, (6) F2 cos A 2j (c) Px .

2. If the jet in the preceding problem strikes a vane for which a 2
= 180,

all other data remaining the same, find values of: (a) W, (6) t> 2 , (c) 7 2|

110. Impulse and Reaction of a Jet. When a stream of water

strikes any object, the dynamic force exerted, due to the impact,
is often termed the impulse of the jet. The dynamic force ex-

erted by the jet upon the vessel from which it issues is often called

the reaction of the jet. But in both cases the force is due to

the change that is produced in the velocity of the water.

111. Distinction between Impulse and Reaction Turbine.

The distinction between these two fundamental types of turbines

according to the action of the water as defined in the preceding
article was proper in primitive wheels. But in modern turbines

the so-called impulse at entrance and reaction at exit may both

be effective in either type. A better classification is as to "pres-
sureless" and "

pressure" turbines.

Thus the water within the impulse wheel is not confined but is

open to the air, while in the reaction turbine the wheel passages
must be completely filled with water. In the former the pressure

remains unchanged in flowing over the buckets, while with the

latter the pressure decreases during flow through the runner.

The energy delivered to the impulse turbine is all kinetic, while

that delivered to the reaction turbine is partly kinetic and

partly "pressure energy."

1 The hydrostatic pressure on an area equal to that of the jet F at a depth
h is given by wFh. The fact that this is only half the dynamic pressure

considered is of no significance. As has already been pointed out, the

dynamic pressure on a plate is distributed over an area much larger than

that of the jet and we have not increased the intensity of pressure in either

case.
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But it is well to bear in mind that in both types tke essential

thing is that the velocity of the water must be altered in order

that a dynamic force may be exerted upon the wheel. And in

both types it is necessary if high efficiency is attained that the

absolute velocity of the water as it leaves the wheel be low,

since this velocity represents so much kinetic energy that is not

utilized.

112. Theorem of Angular Momentum. In Fig. 146 we will

suppose a particle of mass dm to be located at a point whose co-

ordinates are x and y and to be moving with a velocity V. The
momentum of this particle will be dm.V. The moment of mo-

mentum is called angular momentum. For this particle the

angular momentum is dm.V X rcosA. Since the moment of

\
X O

FIG. 146.

any quantity is the algebraic sum of the moments of its compo-

nents, we may write

dm.rV cos A dm.VyX dm.Vxy dm(-rrx -37- y } .

Differentiating the above with respect to time we obtain

d(rVcosA) , fdy dx
, d*y dx dy d*x

- '

= dm(a yx a xy)

where a denotes acceleration, with ax and ay as its axial com-

ponents. (Vx = dx/dt }
ax = dVx/dt = d*x/dl

2
, etc.). If the re-

sultant force acting on the particle be denoted by dR, dmav
=

dRv ,
and dmax = dRx . Thus

dmd(rV cos A)/dt = dRvx dRxy.
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The torque exerted upon the particle with respect to point
is seen to be dR X I. By the principle of moments

dR X I = dRyx
- dRxy

Thus, if T denotes torque so that dR X I = dT,

(99)

That is, the time rate of change of the angular momentum of any
particle with respect to an axis is equal to the torque of the re-

sultant force on the particle with respect to the same axis.

113. Torque Exerted upon Turbine by Water. When a stream

flows through a turbine runner in such a way that its distance

from the axis of rotation remains unchanged, the dynamic force

can be computed by the principles of Art. 104. But when the

KeiativePath

of Water

Absolute Path

of Water

FIG. 147. Hydraulic turbine.

radius to the stream varies it is not feasible to compute a single

resultant force. It is necessary to find the total torque exerted

by summing up the elementary torques produced by all the ele-

mentary forces.

In Fig. 147 let MN represent a vane of a wheel which may
rotate about an axis perpendicular to the plane of the paper.

Water enters the wheel at M and since the wheel is in motion,

by the time the water arrives at N on the vane that point of the

vane will have reached position Nr
. Thus the absolute path of

the water is really MN'.
Let us consider an elementary volume of water forming a hol-

low cylinder, or a portion thereof, concentric with 0. Let the
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time rate of mass flow be dm/dt. Then in an internal of time

dt, there will flow across any section the mass (dm/dt)dt. Let'

this be the mass of the elementary volume of water we are to

consider. Substituting this value in equation (99) we have

(dm \ d(rVcosA) (dm\ ,, T _dT = -'dt - ~~ ' = '

d(rV cos A )

The above procedure is simitar to that in Art. 104, the only dif-

ference being that here we are dealing with the moment of a

force. In the case of steady flow (dm/dt) = (W/g) and thus

d(rV cos A)
wn

'

VJi

Integrating between limits we have the value of the torque ex-

erted by the wheel upon the water, or by changing signs, the

value of the torque exerted by the water upon the wheel. There-

fore the torque exerted upon the wheel by the water is

W
T = (nVi cos Ai - r2V2 cos A 2) (100)

a

It may be seen that V cos A is the tangential component of

velocity. It is convenient to represent this by a single letter s

and so

T = (ni -
rt8J (101)

It is immaterial in the application of this formula whether the

water flows radially inward, as in Fig. 147, radially outward, or

remains at a constant distance from O. In any case r\ is the

radius at entrance and r2 is that at exit.

114. Torque Exerted upon Water by Centrifugal Pump. The

derivation of an expression for the torque exerted by a pump
impeller is exactly the same as in the preceding article except

for the substitution of limits. As turbines are universally con-

structed there are certain guide vanes surrounding the runner

which give the water its initial direction A\. Thus any angular

momentum which the water has as it flows into the runner is

imparted by the guides. In some centrifugal pumps there are

guide vanes within the "eye" of the impeller, which give the

water a definite direction as it flows into the latter. For such

pumps we should merely reverse equation (101), since we desire

the torque exerted upon the water and not by it.

But for the usual type of centrifugal pump there is nothing at
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entrance to the impeller to give the water any definite direction.

In fact the water enters a given impeller at different angles de-

pending upon conditions of operation, and, while the ordinary

pump is designed for a "radial entrance" this can be had only
for the normal rate of discharge. But any angular velocity with

which the water enters the impeller has been really derived from

the impeller and so should be credited to the latter. Hence we
should take as our lower limit of integration not (1) where the

water enters the impeller but some point back in the suction pipe,

where the angular momentum is zero. 1 Thus we should have

Absolute
Path.

FIG. 148. Centrifugal pump.

for the ordinary centrifugal pump under all conditions of opera-

tion,

W
T = r2s2 (102)

115. Power. If torque be multiplied by angular velocity

the product represents power. Angular velocity must be

expressed in radians per second, hence, if N = r. p. m. ;
the horse-

power will be

If T has the value given by equation (101), the power will be

less than that supplied to the turbine by the water, the difference

being the power lost in hydraulic friction within the turbine case,

runner, and draft tube. It is greater than the power delivered

by the turbine by an amount equal to the losses in mechanical

friction. It is the power that is actually delivered to the shaft

1 This point is fully discussed by the author in "Centrifugal Pumps,"

page 61.
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from the water, and is analogous to the indicated power of a
steam engine.

If T has the value given by equation (102) the power given by
equation (103) will be less than that required to run the pump
by an amount equal to the mechanical losses and it will be greater
than the power delivered in the water by the amount of the hy-
draulic losses. It represents4he power actually expended by the

impeller on the water and is analogous to the indicated power of

a reciprocating pump.
While equations (101) and (102) are true, they are of little real

service because the proper values to use in them are often not

known with exactness. The precise values of velocities and direc-

tions of stream lines are difficult matters to determine. Since

water does not fulfill the ideal conditions assumed, it will be

found that these equations often yield numerical results that are

considerably in error. 1

It should be noted that power can be expressed in the following

forms; as well as by equation (103).

WH wqH qH
'"550

= ~ =

In the last expression H may represent any head for which the

corresponding power is desired.

116. Definitions of Heads. In turbine and pump practice we
find the word "head" used to express several different physical

quantities. The head h under which a turbine or pump actually

operates is explained in Arts. 88 and 89. But there is energy
lost in hydraulic friction within the runner or impeller and thus

there is head lost. We shall designate this by h'. And in the

turbine a portion of the energy of the water is delivered in the

form of mechanical work and the head thus utilized by the runner

we shall denote by h". In the centrifugal pump h" will represent

the head actually imparted to the water by the impeller.

Thus for the turbine we shall have h" = h h' and for the

pump h = h" h'.

117. Definitions of Turbine Efficiencies. The word "effi-

ciency" without any qualifying adjective is always understood

x See "Hydraulic Turbines," page 83 and "Centrifugal Pumps," pages

76, 81, 82, and 84.
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to mean gross or total efficiency. It is the ratio of the developed

or brake horsepower to the power delivered in the water to the

turbine. That is

e = b.hp./w.hp. (106)

Mechanical efficiency is the ratio between the power delivered

by the machine and the power delivered to its shaft by the water.

If q represents the total turbine discharge while q
f

equals the

amount of leakage through the clearance spaces, the actual

amount of water doing work is q q'. Hence

(107)

Hydraulic efficiency is the ratio of the power actually delivered

to the shaft to that supplied in the useful water. That is

eh = W (q
-

q')h"/w(q
-

q')h
= h"/h (108)

Volumetric efficiency is the ratio of the water actually used by
the runner to total amount discharged. Thus,

ev = (q~ q')/q (109)

The total efficiency is the product of these three separate fac-

tors. That is,

e = em, X eh X ev (110)

118. Definitions of Pump Efficiencies. The various pump
efficiencies are similar to those for the turbine. 'The total effi-

ciency is

e = w.hp /b.hp. (Ill)

The mechanical efficiency is

(112)

The hydraulic efficiency is

eh = w(q+q')h/w(q+ q')h" = h/h" (113)

The volumetric efficiency is

e, = q/(q + q') (114)

As in equation (110) the total efficiency is the product of these

three.

j 119. Centrifugal Action or Forced Vortex. If a vessel con-

taining a liquid is rotated about its axis, the liquid will tend to
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rotate at the same speed. If the vessel is open the free surface

of the water will assume the curve shown in Fig. 149a. If the

water is confined within a closed vessel, which it completely fills

so that it cannot change its position, the pressure along a horizon-

tal line will vary in the same way as in the preceding case. In

fact if piezometer tubes were connected to the vessel the water

would rise in them as shown in Fig. 1496. Since the hydraulic

gradient represents the free surface that corresponds to the actual

pressure conditions, it is seen that the two cases are equivalent.

Such a rotation is sometimes described as a forced vortex because

the water is forced to rotate by external forces.

The variation in pressure in such a body of water may be

(a) OPEN VESSEL (6) CLOSED VESSEL

FIG. 149. Forced vortex.

found in the following manner. If we take an elementary volume

in Fig. 149 whose length along the radius is dr and whose area

normal to the radius is dF, we have an elementary mass wdFdr/g

moving in a circular path. This mass has an acceleration

uz
/r or w2

r, directed toward the axis of rotation. Consequently

the accelerating or resultant force is (wdFdr/g)u
2r directed toward

the axis. The intensity of pressure on the two faces of the ele-

mentary volume differs by dp' = wdpr . The value of the

resultant force is therefore wdprdF. Consequently,

wdprdF = (wdFdr/g)u
2r

dpr
=

(<

But this expression shows only the difference of pressure along
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the radius and in the same horizontal plane. If we move along
a path parallel to the vertical axis of rotation so that the radius

is constant, the pressure decreases directly as the elevation in-

creases. Thus,

dpz
= dz.

The variation of the intensity of pressure in any direction

may be found by combining the two preceding equations.

Thus, in general, when both r and z vary,

dp = - dz + (u*/g)rdr (115)

To find the equation of the free surface or any surface of equal

pressure we need only place dp equal to zero. We then have

fdz = (o*/g)frdr
z = r2 co2/2<7 + constant.

To determine the constant we may assume z = when r = 0.

Thus the constant = so that

z = rW/2g (116)

From this it may be seen that the free surface or any surface of

equal pressure is a paraboloid.

To find the variation of pressure in the same horizontal plane

we need only assume dz = 0, and integrating between limits we
obtain

; P2.- .2?r
= fa

2 - ri)
2
/20 =

(W2
2 _ u^/2g (117)

For the difference in pressure between any two points we must

integrate equation (115) which gives

(118)

^ ( -t
p,

T
120. Free Vortex. Where external forces are applied to the

water, as in the preceding case, we have a forced vortex. Where
no external forces are applied but the water rotates by virtue of

its own angular momentum, previously derived from some source,

we have a free vortex.

A free circular vortex consists of a body of water in rotation

without any appreciable flow so that the stream lines are con-

concentric circles. Since no torque is exerted on the water,

neglecting friction, it follows that there can be no change in

angularmomentum. Since angular momentum is proportional to
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rV cosA, it is apparent tljat V cos A varies as 1/r, as the

angular momentum is constant. Since the stream lines are
circles V cos A is the value of V itself. Since no energy is im-

parted to the water, we will have, if friction is neglected,

H = p
72+ TT = constant.

(a,)

FIG. 150. Free vortex.

The free surface of such a vortex is shown in Fig. 150a. A
familiar example of such a surface is when water entering a

vertical pipe sets up a rotation and sucks air down the center,

though of course that velocity then has a radial component.
Since V X r = constant, it is seen that when r =

0, the value of

V is infinity and p + z = infinity. Since this is impossible,
we never have the free vortex exist with extremely small values

of r. (If p is constant or equal to zero as in the case of the free

surface, values of z will give the elevation of the surface. If z

is constant values of p will give the hydraulic gradient, which is

the same curve.)

Considering a pure radial flow between two circular plates,

either inward or outward, "as in Fig. 1506, and letting b equal the

distance between the two plates we have q = 2irrbV. For steady
flow q is constant and hence rbV is constant. And if the plates

are parallel rV is constant. Thus V varies as 1/r, as in the

preceding case.

A free spiral vortex is a combination of radial flow and circular

flow. The velocities in the two cases above are then merely

components of the .velocity in the latter case. Since each com-

ponent varies as 1/r it follows that the velocity in a spiral flow
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also varies as 1/r. Also since both components vary at the same

rate, the angle A, which the velocity makes with the tangent to

the circle, remains constant. Thus the free stream line is the

equi-angular or logarithmic spiral. Since the total head is also

constant here, neglecting friction, the free surface or the hydraulic

gradient, as the case may be, is the same as shown in Fig. 150.

Since H is constant we may write, considering the two points

to be at the same elevation

H = Pl + TV/20 = p 2 + TV/20

Pi
-

Pi
=

[1
"

(ri/r,)']TV/20 (119)

Of course the effect of friction is always to make p 2 smaller than

would be given by the above, since H is not constant. (Note

that the flow may be either inward or outward.) It may be seen

that as r increases V decreases and p approaches H as a limit.

The principal application of Arts. 119 and 120 is in the case

of the centrifugal pump. In Fig. 221 may be seen a forced vortex

in the impeller from (1) to (2) and a free vortex in the casing

between (2) and (3). It may be added that the foregoing treat-

ment may readily be extended to the case where the width b is

variable.

120a. Flow Through Rotating Channel. We shall now extend

the treatment of the forced vortex (Art. 119) to the more general

case where the water flows through the rotating vessel. It has

been seen that with the free vortex the hydraulic gradient or the

resulting equation (119) is the same whether the water merely
rotates in concentric circles or flows in spiral paths, but with the

forced vortex the equation will be found to be somewhat different

when flow occurs. The reason is that in the free vortex no

energy, save that lost by friction, is imparted to or taken from

the water; but in case water flows through a rotating vessel,

energy is delivered either to it or by it.

The torque exerted by the water on a moving object is given

by equation (100). 'When multiplied by the angular velocity,

<o = u/r = UI/TI
= u2/r2 ,

this reduces to

Tu = (W/g)(uiVi cos A! - u 2V2 cos A 2)

But torque times angular velocity is power or Tco = Wh".

Hence
cos Ai - u2V2 cos A 2_n
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This h" is the head given up by the water and converted into

mechanical work. But if h" is found to have a negative value it

signifies that energy is being delivered to the water by the vessel

instead of being abstracted from it. In practice the former action

takes place in a turbine and the latter in a centrifugal pump.
The general equation of energy (21) may be applied to this

case as well as any other provided that in addition to the head

lost in hydraulic friction we consider that lost (or gained) in

mechanical work. Hence we may write

#i-# 2
= h' + h"

where h' represents the head lost in hydraulic friction. This may
be expanded by substituting p + z + V 2

/2g for H and the value

given by equation (119a) for h". Noting that by trigonometry
V2 = v 2 + u 2 + 2uv cos a and V cos A = u + v cos a, we may
replace the absolute velocities by the relative velocities so that

the above readily becomes

If there is no flow, both v\ and vz become zero and the equation
reduces to that of the forced vortex, equation (118). If there is

no rotation, both HI and u z become zero, the relative velocity v

becomes the same as the absolute velocity V and we have the

general equation of energy in its usual form.

The head lost in hydraulic friction is proportional to the

square of the velocity of flow and is commonly taken as

The equation of relative velocities (1196) is chiefly used in

turbine and centrifugal pump theory to fix the relation between

conditions at inflow to and outflow from thej runner. With the

impulse turbine pi = p2 (usually Zi = z2 also), and the equation
is then used to determine the relation between vi and v2 . In the

reaction turbine the streams fill the runner passages, hence the

areas /i and /2 may be assumed to be known and the relation

between the velocities may then be found by the equation of

continuity, since q =
f\v\

= f2v2 . The sole use of equation

(1196) would then be to find the drop (or gain) in pressure,

Pi
~

P*.
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121. PROBLEMS
1. Find the horsepower of a jet of water with a cross-section area of 3

sq. in. if it has a velocity of 100 ft. per sec.

Ans. 36.8 hp.
2. Suppose this jet in problem (1) were to strike a wheel with curved

vanes. Assime that A\ =0, r\ =
TZ, and that the vanes reversed the

relative velocity of the water through 180 without friction loss. Find

values of the force exerted when the peripheral speeds of the vanes are

0, 30, 50, 80, and 100 ft. per sec. (For an entire wheel we use W and not

W.)
Ans. 808, 566, 404, 161.5, and lb., respectively.
3. Find the horsepower for the five speeds given in problem (2).

Ans. 0, 30.8, 36.8, 23.5, and hp., respectively.
4. What are the efficiencies of the wheel in problem (2) at the various

speeds given? When the power of the wheel is less than that of the jet, what
becomes of the difference?

6. Suppose that the wheel in problem (2) were equipped with vanes for

which dz = 90. How would the values of force and power compare with

the values when a2
= 180?

6. Suppose that the wheel in problem (2) were equipped with vanes for

which 2
= 160, and that the loss in flow over the vanes were such that

v2 =0.8 i. Find the values of force exerted, power, and efficiency for the

five speeds given.

7. What would be the force of the reaction of the jet in problem (1)?

8. The absolute velocity of water entering a turbine runner is 60 ft. per
sec. and that leaving is 15ft. per sec. Ai = 20, A z

= 80, TI = 2.5 ft.,

Tt =4.0 ft. (a) If W = 600 lb. per sec., find the torque on the wheel.

(6) If ui = 50 ft. per sec., find the power delivered to the wheel.

Ans. (a) 2,430 ft.-lb. (6) 88.5 hp.
9. If the radius = 3 ft., find the torque exerted on the wheel in problem

(2). Find it by using equation (101) and compare with values obtained by
multiplying P and r.

10. An open cylindrical vessel is rotated about its axis, which is vertical.

If the vessel is partially filled with water, what speed would be necessary
to cause the water surface at a radius of 1.5 ft. to be 4.0 ft. higher than

the surface at the center of rotation?

11. A closed vessel completely filled with water is rotated about its axis

at a speed of 2,000 r.p.m. If the pressure at the center of rotation is 2 ft.

of water, what will it be at a radius of 6 in. ?

Ans. 172 ft.

12. If the inner and outer radii of the "whirlpool chamber" in Fig. 150

are 8 in. and 16 in. respectively, what will be the values of V and A at

the outer diameter when water enters the inner diameter with a velocity of

80 ft. per sec. at an angle of 15 with the tangent? What will be the gain

of pressure, neglecting losses?



CHAPTER X

DESCRIPTION OF THE IMPULSE WHEEL

122. The Impulse Wheel. There have been several types of

impulse turbines produced, but the only one that has survived

in this country is of the kind shown in Fig. 151. This is the

impulse wheel or the Pelton wheel, so called in honor of L. A.

Pelton who contributed to its early develo'pment. It may be also

designated by the name of the tangential waterwheel, from the

fact that the center line of the jet is tangent to the path of the

center of the buckets.

From a photograph by the author.

FIG. 151. Impulse water wheel with needle nozzle. (Needle is drawn back

and nozzle is wide open.)

The wheel in Fig. 151 is operated by a jet of water from the

nozzle at the left. This same wheel in action may be seen in

Figs. 206 to 210. A view of another wheel showing the relation

of the nozzle to the buckets is shown in Fig. 152. The jet strikes

the dividing ridge, or
"
splitter," of the buckets, is divided into

two parts, flows over the face of the bucket, and is finally dis-

charged at both sides of the latter.

165
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In Figs. 153 and 154 we see views of an assembled wheel with

the
"
chain type" of construction. That is, each bolt is instru-

mental in holding two buckets, so that the latter are fastened

together as a chain. This permits of a compact construction

and enables the buckets to be placed closer together than in

the type shown in Fig. 151.

From a photograph by the author.

FIG. 152. Impulse wheel viewed from below. (Nozzle closed by needle.)
D = 84"; h = 134'; N = 124; Hp = 280.

The device shown at the right in Fig. 151 is the "
stripper,"

its function being to prevent water being carried around with

the wheel and thus adding to the windage losses. The buckets

pass through an opening in this with a clearance of about 0.5 in.

123. Buckets. Typical styles of buckets now in use for

impulse wheels are seen in Figs. 155 and 156. The theory
shows that the face of the bucket should be a surface of double
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curvature, and it is also found that the shape of the* back of the

bucket may be as important as that of the face. The reason for

this is that the back -of the bucket may interfere with the water

which is acting upon the bucket ahead, for when a bucket

swings down into the jet it merely cuts off the jet from the preced-

ing bucket and leaves a "slug" of water to complete its work on

the one ahead. If the back of the bucket is not properly shaped
it may not leave sufficient clearance for the water. The " notch "

From a photograph by the author.

FIG. 153. Pelton-Doble wheel, in shop of Pelton Water Wheel Co. D =

76"; h = 540'; N = 257; Hp = 2100.

is cut out of the Pelton-Doble bucket so that it may reach a posi-

tion where its path is more nearly tangent to that of the jet

before the latter strikes it.
1

For service under moderate heads these buckets may be made
1 For impulse wheels of high specific speeds there are other reasons for

this construction which space forbids taking up here in detail. In brief, it

is so that every bit of water may complete its work upon the bucket before

the latter "leaves the line of action of the jet, in which event some of the

water would not be utilized. (See Fig. 202.)
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of cast iron, though the better ones are of bronze or steel. For

very high heads only the latter may be employed. The working
face of the bucket should be smoothed up- or polished and the

dividing edge, or
"
splitter," ground to a knife edge in order to

reduce hydraulic friction losses.

For high efficiency it is desirable that the bucket reverse the

relative velocity of the jet as nearly as is feasible. But a com-

From a photograph by the author.

FIG. 154. Pelton-Doble wheel.

plete reversal of 180 is not permissible, as the water must be

thrown to one side so as to clear the following bucket. An angle

of about 165 is usually employed, though even 170 may fre-

quently be used. Due to surface tension the actual direction of

the water will always be somewhat less than the bucket angle,

the difference between the two decreasing as higher heads are

used. For good efficiency the width of the bucket should be at

least three times the diameter of the jet, and the diameter of the

wheel should be at least nine times that of the jet. (The usual
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From a photograph by the author.

FIG. 155. Pelton-Doble ellipsoidal bucket.

Courtesy Allis-Chalmers Mfg. Co.

FIG. 156, Allis-Chalmers buckets.



170 HYDRAULICS

ratio is 12 in the latter case.) Since jets 10 in., or more in

diameter are in use, buckets of at least 30 in. in width are

sometimes seen.

124. Nozzles and Governing. The jets used in impulse wheels

are almost always furnished by needle nozzles, of which the

earliest type is shown in Fig. 158. The needle of the style used

today is shown in Fig. 159. As it is moved back and forth in

the nozzle it varies the size of the nozzle opening and hence

varies the amount of water discharged. But fortunately it

does not involve any serious loss of head until the nozzle is

nearly closed. The efficiency of a needle nozzle when it is wide

Courtesy Allis-Chalmers Mfg. Co.

FIG. 157. Allis-Chalmers impulse wheel for Pacific Light & Power Co.
D = 94"; h = i860'; N = 375; Hp = 10,000.

open may be about 97 or 98 per cent., the velocity coefficient

being about 0.99 or a little less. The nozzle efficiency would not

fall below 90 per cent, until the needle was closed so far that

about half the maximum amount of water was being discharged.

Thus it is a very efficient regulating device.

In order to keep the speed of a wheel constant under different

loads it is necessary to vary the amount of water so that the

power supplied to the turbine shall be proportional to the power
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From a photograph by the author.

FIG. 158. The original needle nozzle.

Courtesy of Pelton Water Wheel Co.

FIG. 159. Pelton-Doble needle and nozzle tip.
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demanded. This can sometimes be done by changing the posi-

tion of the needle in accordance with the power the wheel must
deliver. Under certain conditions the governor may control the

position of the needle for this purpose. But if the changes of

load are rapid and the pipe line is long, this procedure would

involve serious water hammer, if close speed regulation were

attempted.
In order to secure close speed regulation and yet be free from

the danger of water hammer, the deflecting nozzle is often used.

The entire nozzle is movable about a ball and socket joint near

the base and swings on trunnions. In case of a sudden drop of

From a photograph by the author,

FIG. 160. Deflecting needle nozzle for a 10,000 h.p. jet.

load on the machine the governor could lower the end of the

nozzle so that only a small part of the jet struck the buckets,

the rest of the water being wasted. As the load increased the

nozzle could be raised so that a larger amount of water would

strike the wheel. As this would be wasteful of water, such noz-

zles are almost always equipped with needles as well, which can be

set by the station attendant in accordance with the load the

wheel carries. Thus water would be wasted for a short time

only, but the needle would be closed so slowly that no damage
would be done to the pipe line. But the nozzle may be deflected
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with any degree of rapidity so that close speed regulation may
be secured. Of course in case of an increase in load it would be

necessary for the operator to open the nozzle, as the governor is

powerless there. But ^he experience is that increases of load

come on gradually enough for this to be done. The chief func-

tion of the governor is to prevent racing in cases of abrupt de-

From a photograph by the author.

FIG. 161. The needle nozzle with auxiliary relief.

creases in load. Occasionally the nozzle is so made that the

governor deflects it first and then slowly closes the needle.

The needle nozzle with an auxiliary relief, as shown in Fig. 161,

is frequently used. In this type the jet from the upper nozzle

strikes the wheel while that from the lower nozzle goes below it.
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Courtesy of Allis-Chalmers Mfg. Co.

FIG. 162. Needle nozzle with deflecting tip.

From a photograph by F. H. Fowler.

FIG. 163. DeSabla power plant in normal operation. Under head of 1531 ft.
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It is so arranged that when the governor closes the upper nozzle
it opens the lower one. Thus there is no abrupt change in flow
in the pipe line as the surplus water simply flows out through
another place. But in order to prevent waste of water, the con-
nection between the governor and the auxiliary nozzle is a dash-

pot arrangement which permits the needle to be moved only
when the governor movement is rapid, and when the relief

has been opened, this arrangement permits it to be gradually

From a photograph by F. H. Fowler.

FIG. 164. DeSabla power plant with nozzles deflected.

closed again. Thus we have accomplished close speed regulation

and have also secured economy in the use of water.

The nozzle shown in Fig. 162 is similar in principle to the de-

flecting nozzle in that the jet is deflected below the wheel. But
it is so constructed that only the tip of the nozzle has to be moved
rather than the entire nozzle. This has certain advantages.

It will be noted that all of these devices may prevent rapid

changes in flow in the pipe line in the case of decreasing loads.
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But only a surge chamber located near the wheels will be able

to supply water in the case of a sudden demand.

125. Conditions of Service. The impulse wheel is well

adapted for service under high heads, though it may also be

employed under low heads if the power is small. In fact the

choice of the type of turbine is a function of power as well as

head.

The highest head that has ever been developed is in Switzer-

land where 15,000 hp. is generated under a head of 5,412 ft.

The power of each wheel in the plant is 3,000 hp., its diameter

Courtesy of Allis-Chalmers Mfg. Co.

FIG. 165. Double overhung Allis-Chalmers wheels for Pacific Light and
Power Co. D = 94"; h = I860'; N = 375; Hp = 20,000 (for unit).

is 11.5 ft. and it runs at 500 r.p.m. The diameter of the jet is

1.5 in.

In this country the highest head that has been used is 2,100 ft.,

and. heads ranging from 1,000 ft. to 2,000 ft. are not uncommon.

A plant under 2,100 ft. static head is shown in Fig. 198.

The jets used upon impulse wheels are of all sizes up to about

10 in. or a little over. Ordinarily only one jet is used with a

single wheel, but occasionally two or more nozzles may be em-

ployed, though at a slight sacrifice of efficiency. In order to

increase the power of a single unit two separate wheels are

often used on the same shaft, as in Fig. 165.

The largest power developed by a single impulse wheel with

one jet upon it is 10,000 hp. A wheel of that capacity is shown

in Fig. 157, though there are several cases where the power of a

single wheel has approached such a value.
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DESCRIPTION OF THE REACTION TURBINE

126. The Reaction Turbine. The inward-flow type of reac-

tion turbine is the only one that is of any importance at the

present time, all others having been eliminated because of certain

relative disadvantages. Modern inward-flow turbines are com-

monly known as Francis turbines in honor of James B. Francis,
who built the first successful one in 1849. However, the wheels
of today differ considerably from his, which was a purely radial-

flow turbine. See page 197.

Courtesy of Platt Iron Wks. Co.

FIG. 166. Turbine with cylinder gates for open flume.

By radial flow is meant that a particle of water, during its

flow through the rotating runner, remains in a plane which is

normal to the axis of rotation, so that its position changes only

with respect to its distance from the axis of rotation. In the

evolution of the modern turbine it became desirable to have the

water enter the runner with a "radial" flow and then to turn and

flow in such a manner that a component of its velocity might be

parallel to the shaft. In fact some of the particles of water, at

12 177



178 HYDRAULICS

least, before they reached the discharge edge of the bucket or

vane might be following paths which lay on the surfaces of cylin-

ders concentric with the axis. This is known as mixed flow, and

such a type of turbine is sometimes called the American turbine,

though the name Francis is generallyextended to cover all inward-

flow wheels. In Figs. 167 and 168 may be seen the nearest

approach in present practice to a radial-flow runner, while in

Figs. 171 and 172 may be seen the mixed-flow type.

The general arrangement of a reaction turbine may be seen in

Fig. 166. This particular one is of the open-flume type and is

Courtesy of Pelton Water Wheel Co

FIG. 167. Low-speed turbine rufmer D = 74"; h = 487'; N = 360;
'

Hp = 20,000

set so as to be completely surrounded by water in a manner

similar to the vertical-shaft turbine shown in Fig. 181. The

water flows through the stationary guide vanes and enters the

runner, which is in the center. During flow through the runner,

the velocity of the water suffers a change in both direction and

magnitude and thereby exerts a dynamic force. In Fig. 166

there are two runners set on the same shaft and discharging into

a common draft chest, from which the water flows down to the

tail race through a draft tube.
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127. Runners. The part of the turbine upon which the water
does its work is called the runner. Runners may be built up
of separate pieces of metal which are welded together but they
are usually cast in one piece. Occasionally they are built in

sections and the sections bolted together. For large sizes and
low heads cast iron is employed. Better runners are made of

bronze and occasionally cast steel is used for high heads.

From a photograph by the author.

FIG. 168. Low speed turbine runner for Pacific Gas and Electric Co.

Runners differ considerably in their proportions and appear-
ances. One extreme is shown in Figs. 167 and 168 while the

other extreme is shown in Figs. 170, 172, and 173. It may be
noted that the runners in Figs. 167 and 172 develop the same
amount of power though differing widely in size. This is due to

the fact that the smaller runner operates under a much higher
head and consequently needs to discharge less water for the

same amount of power. And the largest runner in the world,
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FIG. 169. Double discharge turbine.

From a photograph by the author.

FIG. 170. The largest turbine runner in the world. For Cedars Rapids
Mfg. and Power Co. D = 143"; h =

30'; N = 55.6; Hp = 10,800.
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shown in Fig. 170, develops less power than either of the others

because it is under a still lower head.

Ring

FIG. 171.

Courtesy of I. P. Morris Co.

FIG. 172. High-speed turbine runner. D = 102"', h = 76'; N = 120;

Hp = 20,000.

It may be noted that the width of the runner parallel to the

shaft in Fig. 168 is a very much smaller proportion of the diame-

ter of the runner than in the type shown in Figs. 170 and 173.
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Sometimes runners are of the double discharge type as in Fig.

169 which is equivalent to placing two single discharge runners

back to back. Such a turbine must have two separate draft

elbows.

As shown in Fig. 171 there may be several places at which the

diameter of a turbine runner may be measured and practice

differs in this respect. The custom that is generally followed is

to give the mean diameter at entrance to the runner. This is

the dimension that will be found in Figs. 170 and 172. The

Courtesy of I. P. Morris Co.

FIG. 173. Turbine runner for Laurentide Co.

maximum diameters in these two cases are 17 ft. 7 in. and 12 ft.

7 in. respectively.

128. Gates and Governing. The quantity of water passed

through the turbine is regulated by means of gates, of which there

are several kinds. In Fig. 166 we find the cylinder gate used.

In that class of turbine the guide vanes surrounding the runner

are absolutely fixed. Between the ends of these vanes and the

runner is a metal cylinder which may slide along parallel to the

shaft: If moved in one direction it admits water to the runner

and may be so far withdrawn as to offer no obstruction whatever
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between the guides and the wheel. And if it is moved in the

other direction it is possible to shut off the water altogether.

This style of regulation causes the turbine to have a poor effi-

ciency on "part gate," which is the term used when the turbine

is running under less than full load. But such a style of gate

permits a turbine to be constructed at less cost.

Courtesy of Pelton Water Wheel Co.

FIG. 174. Wicket gates or swing gates.

The better type of gate so far as efficiency is concerned is the

kind shown in Fig. 174. Here the guide vanes themselves are

movable and by rotating about their axes they may vary the

size of the area through which water may flow. This means that

the angle A\ changes. These gates are known either as swing

gates, wicket gates, or pivoted guide vanes. They involve more

expensive construction than the cylinder gate but are vastly

better if economy of water is any object.
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In Fig. 175 may also be seen some movable gates as they are

installed in the turbine. The runner is to go into the space in

the center.

Courtesy of PeUon Water Wheel Co.

FIG. 175. Spiral-case turbine showing swing gates.

Courtesy of Platt Iron Wks. Co.

FIG. 176. Shifting ring for operating gates.

The swing gates are operated by moving a "
shifting ring" to

which each gate is attached by links. In Fig. 176 may be seen
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the rods from the governor connected to this ring so that, when
it is moved slightly with the turbine shaft as a center of rotation,

each gate will be turned through some angle. The links which

connect the gates to this ring can be seen more clearly in Fig. 177.

The problem of governing a reaction turbine is similar to that

of the impulse wheel. When the governor closes the gates and

thus reduces the discharge-through the turbine it is necessary

to provide some bypass for the water in order to prevent water

hammer in the pipe line. The usual practice is to use a relief

Courtesy of Allis-Chalmers Mfg. Co.

FIG. 177. Swing gates.

valve such as that shown over at the right in Fig. 178. When
the governor closes the gates it opens the relief valve at the same

time, and the water coming down the pipe is then discharged

through this into the tail race alongside the draft tube. The
action of such a relief valve may be seen in Figs. 179 and 180.

The connection between the governor and the relief valve is

usually not a rigid connection, in order that the relief valve may
slowly close and prevent the waste of water.

129. The Draft Tube. The water is conducted from the tur-

bine to the tail race through a draft tube, which may be con-
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structed of riveted steel plates as in Fig. 179 or may be molded in

concrete as in Fig. 182. The draft tube should be made air-

tight so that a partial vacuum can exist within it and thus there

may be a "suction" produced on the discharge side of the runner

which shall compensate for the elevation of the latter above the

tail water level. By the use of the draft tube it is possible to set

Courtesy of S. Morgan Smith Co.

FIG. 178. Tallulah Falls turbine showing gate mechanism and relief valve

. H = 580'; N = 514; Hp = 19,000.

the turbine at a convenient distance above the water level with-

out losing any head thereby.

But this is not the sole function of the draft tube. The velocity

with which the water is discharged from the runner represents

kinetic energy that is not utilized and such a loss cuts down the

efficiency of the wheel. If the draft tube is made to diverge the

velocity at its mouth will be much less than that with which the

water enters it from the runner and hence the kinetic energy

finally lost may be much reduced. With some types of turbine

runners it is necessary to allow the water to be discharged with
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a relatively high velocity and such wheels would not possess

favorable efficiencies if it were not for the use of suitable draft

tubes. The usual rate of diffusion provided for is such that a

circular tube will be made a frustum of a cone' the vertex angle

of which is 8. Some experiments by the author indicate that

a larger angle than this might be permissible. For a given rate

of diffusion the longer the J,ube
the greater the reduction of the

From a photograph by the author.

FIG. 179. Small discharge from relief valve near draft tube in Cornell

University power plant.

kinetic energy of the water. Therefore, in some cases it is de-

sirable to have a long draft tube even though the runner might

be set very near the water level.

On account of the function which is fulfilled by the draft tube it

is properly regarded as an integral part of the turbine. Con-

sidering the turbine and the draft tube as a unit, it may be seen

that the less the kinetic energy lost from the mouth of the tube

the higher the efficiency of the wheel, thus justifying the state-
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ment of the preceding paragraph. But it is not yet clear just
how this saving in the draft tube enables the turbine itself to

deliver more power until we consider the effect of the draft tube

upon the pressure at the exit from the runner. The less the losses

within the draft tube and the less the discharge loss from the

draft tube the less the pressure may be at this point.

130. Cases and Settings. The turbine, draft tube, and all

parts intimately connected with it comprise what is called the

From a photograph by the author.

FIG. 180. Discharge from relief valve when opened.

setting. Impulse wheels are almost always set with horizontal

shafts, but reaction turbines may have either horizontal or

vertical shafts. For large units under low heads the vertical

shaft is the most recent practice, as it permits several desirable

features to be attained. 1
Occasionally several runners may be

1 H. B. Taylor,
" Present Practice in Design and Construction of Hydraulic

Turbines," Canadian Soc. of C. E., Jan. 15, 1914.
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mounted on the same shaft but the tendency is to eliminate such

construction and have larger runners and fewer of them, and two
on the same shaft as in Fig. 166, is as many as are desirable. As
in the case of the impulse wheel, we may have two separate
turbines connected to a single generator.

Courtesy of S. Morgan Smith Co.

FIG. 181. Reaction turbine in open flume.

Under low heads of not more than 20 or 30 ft., we may have

the open flume setting such as is shown in Fig. 181, but for higher

heads this is not practicable. For either low or moderate heads

the wheel may be enclosed within a concrete case as in Fig. 182,
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but the action of the turbine is no different from that in the pre-

ceding case. The water has no free surface immediately above

the turbine but it is under practically the same pressure as if it

Courtesy of S. Morgan Smith Co.

FIG. 182. Reaction turbine in concrete case.

did have. The only difference is that, since the area of the

water passage is less than before, the velocity with which the

water approaches the turbine will be somewhat higher, and thus
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there will be a lesser rate of acceleration as the water enters the

guide vanes. For still higher heads a concrete case would be
unsuitable and then the guide vanes are surrounded by a metal

|
LOW TAIL
WATER

SLOT FOR
STOP LOGS

Courtesy of S. Morgan Smith Co.

FIG. 183. Reaction turbine in metal case.

case as shown in Fig. 183. The only difference between this

and the other two cases so far as the hydraulics is concerned is

largely one of appearances, save that the velocity of the water as
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it approaches the guides may be somewhat higher owing to the

smaller area.

In order that the water may have the same velocity of ap-

proach to the guides all around the circumference, the spiral case

is frequently used. Cases of this type are illustrated in Figs.

175, 183, 184, and 185. In Fig. 184 may also be seen the main

gate valve which may be used to shut off the water more com-

pletely than is possible with the wicket gates, and on the right-

hand side may be seen a portion of the draft elbow. Very large

Courtesy of S. Morgan Smith Co.

FIG. 184. Spiral case turbine showing main gate valve, shifting ring and
links for guide vanes, and draft elbow.

cases are built in sections as shown in Fig. 185. The spiral case

is considered the most desirable type though other less expensive
ones are sometimes used.

In Fig. 186 is shown a type of turbine that might be set as in

Fig. 181, while in Fig. 187 we get a glimpse into the intake of a

large turbine set as in Fig. 182. In such a setting the runner and

guide vanes may be surrounded by a "
speed ring" such as shown

in Fig. 188. The columns which support the upper crown plate

and its load are made of a shape similar to guide vanes so as to
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m a photograph by the author

FIG. 185. Large spiral case for Canadian Light and Power Co. in shop of
I. P. Morris Co.
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reduce eddy losses and also to give the water the proper direction

as it enters the real guide vanes. In Fig. 189 we see a vertical

shaft turbine for a higher head.

131. Conditions of Service. The reaction turbine is well

adapted for service under low heads especially for large powers.

They may also be used very satisfactorily for heads of several

hundred feet. The highest head that has ever been employed

Courtesy of Allis-Chalmers Mfg. Co.

FIG. 186. Vertical open-flume turbine for Eastern Michigan Edison Co.
h =

14'; N = 100; Hp. = 575.

for a reaction turbine is 670 ft. for two 6,000-hp. units installed

by the I. P. Morris Co. in Mexico. There are several cases where

heads of over 500 ft. have been used.

The most powerful turbine unit yet built is shown in Fig. 190,

the power of the two wheels combined being 25,000 hp. The

greatest power developed in a single runner is 22,500 hp. in a
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Courtesy of Mississippi River Power Co.

FIG. 187. Intake for turbine at Keokuk.

From a photograph by the author.

FIG. 188. Speed ring for Canadian Light & Power Co. in shop of I. P.

Morris Co.
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wheel built by Allis-Chalmers for service under a head of 480 ft.

It is a double-discharge runner, however. The greatest power
ever developed in a single-discharge runner is 20,000 hp. in the

runners shown in Figs. 167 and 172.

But the power of a turbine depends not only upon its size but

also upon the head under which it operates. Thus the most

Courtesy of S. Morgan Smith Co.

FIG. 189. Vertical shaft spiral case turbine for Great Falls, Mont.
h = 150'; N = 200; Hp = 15,000.

powerful turbines may not be as big in size as others which

develop less power because they run under lower heads. The

largest runners in the world in size are those at Cedars Rapids,

Canada, one of which is shown in Fig. 170. They slightly exceed

in size those at Keokuk.
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13la. Historical Note. The inward flow turbine was pro-

posed by Poncelet in 1826. Howd patented and built the first

one in 1838 and a number of his wheels were installed in the

mills of New England. In 1849 Francis constructed a pair of

pure radial inward flow turbines from the Howd patent but his

wheels were of much better design and mechanical construction.

About 1860 Swain produced runners in which the flow was

Courtesy of T. P. Morris Co.

FIG. 190. Washington Water Power Co. Two 22,500 hp. units at 200

r.p.m. under head of 168 ft.

mixed, somewhat like that shown in Fig. 167, and in 1876

McCormick built the first of the modern high capacity runners,

somewhat like that shown in Fig. 171. All modern turbine

runners more nearly resemble either the Swain or McCormick

types than they do the Howd-Francis type. The use of the

name Francis is in part a misnomer and in part due to the fact

that the mixed flow runner was really a natural development

from the original Francis turbine.
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WATER POWER PLANTS

132. Elements of a Water Power Plant. A complete water

power development may comprise a great deal of construction

and equipment aside from the power house and contents, so

From a photograph by the author.

FIG. 191. Penstock leading to Drum power house of Pacific Gas & Elec.

Co. under 1375 ft. head.

much so that the cost of the latter is often a small proportion
of the total investment. For a complete plant some or all of

the following details may be required according to the physical

situation.

198
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A dam of some sort is usually essential. It may be nothing
more than a wing wall extending a short way into the river to

divert a small portion of the flow, or it may extend clear across

the stream. In the latter case the water level will be raised

above its former height and also a certain amount of water will

be stored up by it. If the contour of the land permits, a dam
may create an artificial lake or storage reservoir. In some cases

the power plant draws water directly from this body and in other

cases it would be used merely as a "
feeder."

The water is conducted to the power house through canals,

flumes, pressure tunnels, or pipe lines, as the case may be. It is

From a photograph by the author.

FIG. 192. Pelton-Doble impulse wheels in Drum power house of Pacific

Gas & Elec. Co. h = 1375' static or 1300' under normal load; N = 360;
Hp = 8,500 per wheel.

not uncommon for the water to be carried from 5 to 10 miles or

more in order to permit the utilization of a higher fall than could

be obtained near the intake. It is desirable that the water be

kept at as high an elevation as possible during the first portion

of its course as this permits the use 'of open channels or low-pres-

sure pipes, which is cheaper than if the water had to be carried

under high pressure all the way. This portion of the conduit is

often called the "
flow-line" from the fact that its main function

is to deliver water and not to transmit pressure.
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From a photograph by F. H. Fowler.

FIG. 193. Las Plumas plant at Big Bend on the Feather River in Cali-

fornia, containing six reaction turbines of 18.000 hp. each under a head of
465 ft.



WATER POWER PLANTS 201

At the end of such a flow-line the water will be abruptly
dropped down the hillside as shown in Fig. 191. This portion of

the pipe line is the penstock.

Where the distance from the intake to the power plant is a
number of miles, it is desirable that there be some break in the

continuity of flow, on account of speed regulation. If conditions

From a photograph by the author.

FIG. 194. San Francisquito Power Plant No. 1 on the Los Angeles
Aqueduct. Static head from maximum water level in surge chamber on
creast of hill to the nozzles is 941 ft.

permit, a forebay may be constructed at the head of the penstock.

The forebay is a reservoir of limited capacity whose function

is to equalize the flow. Into it the water may be delivered at a

uniform rate, while from it the water may be drawn by the pen-

stock at varying rates according to the demands upon the tur-
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bines. Thus the fluctuations in the flow of water through the

turbines need not extend back all the way to the source.

Where a forebay is impossible or not really necessary, it is

desirable to provide surge chambers or other means of relieving

the abnormal conditions attendant upon changes of flow. In

the upper left-hand corner of Fig. 193 is seen a small surge cham-

ber, and an overflow. The five penstocks receive water from a

pressure tunnel 3 miles in length. In case of a sudden decrease

in discharge through the turbines, the excess water could surge

up the large pipe line running up the hillside and if the surge was

From a photograph by the author.

FIG. 195. Surge chamber designed by W. F. Durand. It is 100 ft. in

diameter at the top and the maximum water level is 150 ft. above the pres-
sure tunnel. Only 35 ft. projects above the ground.

great enough some water would overflow, thus preventing any
excessive increases in pressure.

In Fig. 194 is shown a power plant with a large surge chamber

at the end of a pressure tunnel which is 7.76 miles in length and

in Fig. 195 is seen as much of the surge chamber as is visible

above the ground. This is also provided with a spillway so that

it may overflow if the surge is violent.

The power plant shown in Fig. 196 receives water through a

conduit 1,711 ft. in length and is equipped with a large air

chamber within the power house to absorb shocks.

The water from a power plant may be discharged directly into
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some natural stream or it may be necessary to 'construct an
artificial channel for a tail race, as in Fig. 200. In other cases,
as with some of the plants at Niagara Falls, the tail race may be
a long tunnel.

133. High-head Plants. It is impossible to establish any
definite number of feet which is required to differentiate a high-

t
From a photograph by the author.

FIG. 196. Cornell University hydro-electric plant. Head = 140 ft.,
1-550 hp. turbine, 2-280 hp. impulse wheels, 2-50 hp. impulse wheels.

head from a medium- or a low-head plant. A high-head is one

of several hundred feet or more, while a low-head plant would

doubtless be under 50 ft. But one type shades very gradually
into the other.
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In Fig. 197 is shown a high-head development, where a fall of

4,000 ft. is divided between two power houses in series. In this

one view may be seen a complete plant with many of the features

that have been described, except that a forebay is not required.
The mountain ranges, which rise to a height of 11,000 ft., provide
a water shed, the runoff from which is gathered by a lake about

4 miles long, and with an elevation of 6,000 ft. The lake is

created by the erection of three dams which can be seen placed
in gaps in the hills. From the lake the water flows down the

penstocks to the first plant. The discharge from this supple-

Courtesy of Stone and Webster.

FIG. 197. Big Creek development of Pacific Light and Power Corpora-
tion. The fall from the lake to the first power house is 2100 ft., and from
that to the second power house is 1900 ft.

mented by some water from a little stream then flows through

a tunnel for a way until it takes another drop to the second power
house which can be seen in the lower part of the picture, a little

to the left of the center. In Figs. 198 and 199 are closer views of

these two plants. At the upper right-hand corner of Fig. 198 can

be seen two standpipes, the water level in which will be nearly

as high as that in the lake so that the entire 2,100 ft. drop is shown

here. The standpipes for the second plant can barely be seen

on the crest of the hill in the upper left-hand corner of Fig. 199.

A high-head plant requires but little water for a given amount

of power and it is usually so situated that a storage reservoir is



WATER POWER PLANTS 205



206 HYDRAULICS

Courtesy of Stone and Webster.

FIG. 199. Power Plant No. 2 at Big Creek.

Up. = 40,000.

Static head = 1900 ft.;

Courtesy of T. P. Morris Co.

FIG. 200. Appalachin Power Co. development No. 2. Head = 49
four turbines of 6000 hp.'each at 110 r.p.m,

ft.,
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to be had. Consequently it may be able to run for a long time

merely on the water that is conserved by the creation of such

reservoirs. It is always necessary to have a penstock and many
of the other details that have been enumerated.

134. Low-head Plants. A typical low-head plant is shown in

Fig. 200. The head, under which the turbines operate, has been

practically created by the erection of a dam. There are no pipe
lines and the body of water produced by the dam now becomes

the forebay. The turbines in such a plant may have any one

of the three types of settings shown in Figs. 181, 182, and 183.

It may be seen that fluctuations in the flow of the river, with

consequent changes in water level, cause variations in the head

under which the turbines operate. This is something that

scarcely exists in a high-head plant. Also low heads are usually
found in fairly flat countries, where the nature of the topography
renders it impractical to store up large quantities of water and
furthermore under a low head a large amount of water is required
to develop a given power. This makes it impossible to run very

long on storage and hence the plant is dependent upon a regular

stream flow.

The differences between the high- and low-head plants are

such as to require turbines of different characteristics in order to

meet the conditions most satisfactorily.
1

Another typical low-head plant is shown in Fig. 201. The

length of the dam across the river is nearly a mile. While a

low-head plant is often free from many of the items that are

required in a high-head development, it must be remembered

that it must be built to handle large volumes of water and much
massive construction is required.

1 R. L. Daugherty, "Hydraulic Turbines," Chap. XII.



CHAPTER XIII

THEORY OFJTHE IMPULSE WHEEL

135. Action of the Water. The impulse wheel is more ac-

curately described as a tangential waterwheel from the fact that

the center line of the jet is tangent to the path described by the

center of the buckets. The latter is called the "
impulse circle"

and computations are based upon the linear velocity of the wheel

at this radius. For an impulse wheel the nominal value of D
is the diameter of this circle.

FIG. 202.

It is often stated that the jet at impact is also tangent to this

circle, but this is not a true representation of the facts as Fig.

202 will show. The jet strikes the buckets before they arrive

at a point directly under the center of rotation and hence the

angle A\ is not zero. Observation of various Pelton wheels in

action has convinced the author that average values of AI

may vary from 5 to 20, according to the design of the wheel.

The value of A\ must be an average value for a given wheel

from the fact that the bucket moves through a certain angle

from the time it first enters the jet until the last drop of water

has struck it.

14 209
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The illustration also shows that when a bucket first enters

the jet it cuts off the water from the preceding bucket and
leaves a "slug" of water to catch up with the latter and to

complete its work upon it. Thus the water may be acting upon
several buckets at the same time. This explains why there is a

difference between the W of Art. 109 and W. The former is

the amount of water acting upon a single bucket, the latter is

the total acting upon all the buckets. It is not necessary to

know how many buckets are in action at a time for, since the

wheel does not move away from the nozzle, it follows that all

of the water discharged by the nozzle may act upon it.

But it is not necessarily true that the wheel utilizes all of

the water under all circumstances. Suppose for instance that

the buckets were to move as fast as the jet; it would then be

seen that none of the water could overtake them, but that all would

go right on through. And for speeds somewhat less than this a

portion of the water would deliver its energy to the buckets

and the latter portions of the intercepted "slugs" would not

be able to overtake the buckets before they had swung up above

the line of action of the jet. The problem is to so design the

buckets and the wheel that all of the water in the jet will be able

to do its work upon the wheel, when running at the proper speed.

For speeds much above the normal speed a certain amount of

water must necessarily go right on through without having
had a chance to do work.

By the proper speed or normal speed is meant the one that

the wheel should have for the jet velocity in question. A high

jet velocity would require a high wheel speed and vice versa.

In fact we are concerned with the relation between the various

velocities rather than with their actual values, and hence it is

desirable to introduce factors which shall express this relation-

ship and be independent of the head. Thus if the jet velocity

be denoted by Vi and the linear velocity of the bucket at the

impulse circle by u\ t
we may use cv and </> such that

(120)

(121)

It may be seen that cv is the velocity coefficient of the nozzle,

the value of which is constant for any setting of the needle.

Thus for any given value of the relation between Vi and u\

is known at once regardless of the value of h.
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FIG. 203.

<^ U\ V
1 ll Vi

v
W,

~~
Vi

U MS

0=0.0 0=0.20 0=0.45 = 0.55

FIG. 204. Velocity diagrams for different speeds.

From a photograph by the author.

FIG. 205. A 42-in. Pelton-Doble impulse wheel.
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From a photograph by the author.

FIG. 206. Showing discharge from buckets when wheel is at rest, or <f>
= 0.0.

From a photograph by the author.

FIG. 207. Wheel running at slow speed. <f>
= 0.20.
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From a photograph by the author.

FIG. 208. Wheel running at normal speed. = 0.45.

From a photograph by the author.

FIG. 209. Wheel running at higher speed. = 0.55.
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The absolute path of the water and the velocity vectors at

discharge from the buckets may be seen in Fig. 203. For dif-

ferent wheel speeds under the same head, which means different

values of 0, we should have such diagrams as are shown in Fig.

204. As the speed of the wheel increases from zero, the angle
of deflection of the jet continually decreases. It may also be

seen from the diagrams that the value of 72 is relatively high
when the wheel is at rest, that it becomes a minimum at such a

From a photograph by the author.

FIG. 210. Wheel at run-away speed. <p
= 0.80.

speed that A 2 is approximately equal to 90, and then increases

again.

The action of the water as just described is illustrated by
some rather unusual photographs taken of a 42-in. wheel in

action. The side of the casing was removed for the purpose.
The needle was withdrawn as far as possible so that the maximum
size jet which the design permitted is shown in the photo-

graphs. In Fig. 206 the wheel was prevented from rotating

by applying a sufficient torque to the shaft. The jet cannot be

seen, but the water leaving the bucket is shown. In Fig. 208

the wheel is running at its most efficient speed. The water
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leaving the buckets drops down into the tailrace with most of

its energy abstracted. In Fig. 210 the wheel is shown at run-

away speed, all load having been removed save its own friction

and windage and that of the generator to which it is direct-

connected.

136. Force Exerted by Jet. The tangential waterwheel,
Pelton wheel, or impulse wheel, as it is variously called, is really

an impulse turbine with approximately
"
axial" flow. By this

is meant that ri = r2 . The latter is not strictly true but is

sufficiently close for all practical purposes.
1

The force desired is really the tangential component of the

resultant force. This may be obtained by computing the

tangential component of the AF in equation (83), or, since fi

and r2 are equal, it may be obtained from equation (100). The

results are identical. The desired component is

, cos A l
- V z cos A 2). (122)

The values of Vz and A 2 depend upon the jet velocity and the

speed of the wheel, and are therefore variable and unknown.

It is desired to replace them in terms of V\ and u\ and wheel

dimensions which may be supposed to be known. It is thus

necessary to find some relation between the velocities at entrance

and those at discharge. The equation of flow between these

two points will be found on page 164c, and for the impulse
turbine it becomes

VS V-? Uj US _ V 2
*

,

}

^2g-2g
+ ^g-2g-

k
2g

where k is a coefficient of loss in flow over the buckets, such that

the head lost is kv 2
2
/2g. Since we are assuming that u\ = u2 ,

this gives us for the Pelton wheel the special relation

In a numerical case the value of Vi can be computed by trig-

onometry according to whichever one of the methods given on

page 264 is deemed to be more convenient or more accurate.

Having Vi the value of v2 may be found by the equation just given.

The velocity diagram at outflow is now determined since v2 ,
u 2 ,

and a2 are known.
1 For further details see "Theory of the Tangential Waterwheel," by

R. L. Daugherty, Cornell Civil Engineer, vol. 22, p. 164 (1914). Also see

"Hydraulic Turbines," Chap. VII.
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From the vector diagram (Fig. 142) it may be seen that

V2 cos A 2
= u2 + v 2 cos a 2 .

The numerical value of P can be readily calculated after inserting

the latter quantity in equation (122).

For an algebraic solution we may write the above as

COS Cto

F2 cos A 2
= ui + Vl

and in turn v\ may be replaced by a trigonometric expression

involving V\ and u\.

The resulting expression may be greatly simplified by the fol-

lowing assumption, though our result will not be precisely cor-

rect. While it is not true that AI = 0, yet it is small enough
so that its cosine differs from unity by only a few per cent. As-

suming that cos AI =
1, the expression for v\ reduces to vi =

Vi ui and thus we have as an approximation

T7- COS fl2 /Tr X72 cos A 2 = Ul + /r (Fi - MI).
\/ 1 ~r /c

Inserting this value in the expression for P we have

(125)

,

The equation just derived shows that P decreases as the

speed of the wheel is allowed to increase. This is what we
should expect, since the value of AF decreases as shown by

Figs. 206 to 210. Equation (125) is apparently the equation
of a straight line between P and 1*1. However, the factor k

is not strictly constant and, as has been shown, the value of

W will decrease for speeds much above the normal. Likewise

the correct equation involves AI and this also changes somewhat

with the speed.
1

The torque exerted by the water upon the wheel may be

obtained by multiplying P by r\, the radius of the impulse

circle. The torque which the wheel can deliver is somewhat

less than this because of bearing friction and windage.

Fig. 211 shows the performance of a certain wheel at different

1 The exact equation for all impulse turbines is

W[~ T ,
* cos o 2 , 1

P = y L
cos Al ~ XUl -

T/fTjc vVJ + zW - Wiui cos A! J

where x =
TZ/TI. For the Pelton wheel or axial flow turbine x =

1; for

the outward or inward flow Girard impulse turbines it is more than or less

than unity respectively.
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speeds under a constant head. The variation in "the force at

zero speed is due to changes in the angle A\ and r2/ri with

different positions of the buckets. This is shown for one nozzle

setting only, though it exists in all.

137. Power of Wheel. Since power is the product of P and

HI or T and o>, it may be seen that it is zero when the wheel is

at rest, though the torque is then a maximum, and it is also

zero when the speed is a maximum for the torque is then zero.

B.P.M.

FIG. 211. Relation between torque and speed.
1

The maximum power will be obtained for some speed between

these two extremes, as shown by Fig. 212.

Since for a given head and nozzle opening the power input

is constant regardless of the speed of the wheel, it follows that

the efficiency is directly proportional to the power developed.

But it should be noted that the power delivered in the water

increases with the nozzle opening so that the needle setting

that gives the largest power is not necessarily the most efficient.

138. Speed. From equation (125) we should conclude that

P would become zero when Ui = Vi or when <j>
= cv ,

the value

of which would be about 0.98. Also if we should multiply this

1 From the test of a 24-in. wheel by F. G. Switzer and the author.
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equation by HI the power would be seen to be a maximum when
u\ = 0.5Fi. But equation (125) is only an approximate
representation of the actual facts. Because of the large amount
of water that is not utilized at high values of 0, and also because

148 Turns

B.P.M.

FIG. 212. Relation between power and speed.

the bearing friction and windage prevent the torque from ever

being reduced to zero, the actual maximum speed attained by
the tangential waterwheel is such that < is approximately

equal to 0.80.

In like manner the maximum power, and hence the maximum
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efficiency for a given nozzle opening, is also attained when
the wheel speed is something less than 0.5W Thus in actual

practice we have for the best efficiency

(j)e
= 0.43 to 0.48.

In practical applications we are usually interested in the

performance . of a wheel at a constant speed under a constant

head. Values for this may be obtained from Figs. 211 and 212

by following along any vertical line. Generally the vertical

line should be the one for the speed at which the maximum
efficiency is found. The resulting curves for the impulse wheel

would be very similar to those for the reaction turbine shown
in Fig. 216.

FIG. 213.

139. Head on Impulse Wheel. The nozzle is considered an

integral part of the impulse wheel and hence the head under

which the wheel is said to operate must include it. If C in Fig.

213 indicates a point at the base of the nozzle,

h = Hc
= Pc +

20
(126)

It is this value of h that should be used in determining the

efficiency of the wheel.

This value of h is the total fall from headwater to nozzle minus

the head lost in the pipe line. The energy supplied at this point

is expended in four ways. A small amount is lost in flow through
the nozzle, a portion is expended in hydraulic friction and eddy
losses within the buckets, kinetic energy is carried away in the

water discharged from the buckets, while the rest is delivered to

the wheel to do useful work and overcome mechanical friction

and windage losses. Calling h" the head delivered to the buckets

we may write

/"I .xFi
2

.

7
V2

2

,

F2
2

h =
&r.

l
)2T

+ k
9J
+ '***

r'
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It may also be noted that Wh" = Pui, hence h" can be obtained

from equation (122) by merely substituting Ui for W.
See also Art. 120a.

140. PROBLEMS

1. A nozzle having a velocity coefficient of 0.98 discharges a jet 6 in. in

diameter under a head of 800 ft. This jet acts upon a wheel with the follow-

ing dimensions: diameter 6 ft., A\ = 10, a 2
= 165, and it is assumed

k = 0.70. Find the force exerted upon the buckets when <j>
= 0.45.

2. Solve problem (1), assuming that AI =0.
3. Find the power developed upon the buckets of the wheel in problem

(1), assuming AI = 0. What is the hydraulic efficiency of the wheel?

4. If the mechanical efficiency of the wheel is 0.97, what is the gross

efficiency in problem (3)?

5. Assuming AI =0 in problem (1), find the power lost in hydraulic
friction within the buckets. Find the value of Vz and determine the power
carried away in the water discharged from the turbine.

6. Is the hydraulic efficiency of an impulse wheel dependent upon the

head under which the wheel is run? What equation would express the

value of the hydraulic efficiency for any tangential waterwheel?

7. What would be the proper r.p.m. of the wheel in problem (1) ?

8. A good proportion between jet and wheel is that the diameter of the

wheel in feet should equal the diameter of the jet in inches. Using this

ratio, what size wheel would be required to deliver 5,000 hp. under a head
of 1,400 ft., assuming an efficiency of 82 per cent.? What would be the

speed of the wheel?

9. The maximum speed attained by the wheel of Fig. 211 was 475 r.p.m.

under a head of 65.5 ft. What was the value of <?

10. The best efficiency for the wheel whose curves are shown in Fig.

212 was found with the needle open 6 turns. The speed was 275 r.p.m.

and the head 65,5 ft. What was the value of <t>,t



CHAPTER XIV

THEORY OF THE REACTION TURBINE

141. Introductory Illustration. The reaction turbine is so

called because an important factor in its operation is the reac-

tion of the streams of water discharged from the runner. It

is well to bear in mind, however, that the total dynamic effort

is due to the entire change in the momentum of the water just

as in the impulse turbine.

As an illustration, consider the vessel ABC of Fig. 214 into

which water enters across AB with a velocity Vi and is dis-

charged at C with a velocity

F2 . Now the reaction of the

jet alone could be determined .
&

by an application of Art. 110.

But the total force is due not

only to this reaction but also

to the impulse of the water

entering at AB. It is not FlG 2 i4.

feasible to separate the effect

of impulse from that of reaction, neither is it necessary to do

so. The horizontal component of the total dynamic force is

obtained directly by

p = ^(ylCOsAl +y2).
t?

Suppose now that this vessel moves to the left with a uniform

translation u. Assume that in some way the water is still

supplied to it with a velocity Vi. This might be the case if

the vessel passed under a series of stationary passages each of

which in turn was permitted to discharge water into it. The
value of the absolute velocity of discharge is now

V2
= v 2 u.

Inserting this value above we have

W
P = (Vi cos Ai + v 2 u)

221
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This equation indicates that
'

P decreases as the speed increases,

just as in the case of the impulse turbine. Also the water enter-

ing the vessel at AB is under pressure and is not a free jet.

Therefore V\ must be less than y/2gh. Since all the passages

are completely filled with water the equation of continuity can

be applied, and it will show that V\ and vz are inversely pro-

portional to the areas of their respective streams. But the value

of v2 depends upon the losses of head, and in a real turbine these

Values of

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

100 200 300 400 500 600 700 800 900 1000 1100

Revolutions per Minute

FIG. 215. Test of 27 in. I. P. Morris turbine. Head and gate opening
constant. Speed variable. 1

hydraulic losses vary with the speed. Since Vi is proportional
to 02, it follows that V\ varies with the speed of the wheel.

Thus some fundamental differences between impulse and

reaction turbines are that in the former V\ = cv\/2gh, where

cv is a velocity coefficient nearly equal to unity. This velocity,

and hence the amount of water discharged by the nozzle, is

1
Figs. 215 and 216 are from the test of a reaction turbine in the Cornell

University power plant. See "Investigation of the Performance of a

Reaction Turbine" by R. L. Daugherty, Trans. A. S. C. E., vol. 78, p. 1270

(1915).
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entirely independent of the design of the wheel and its operation.
But for the reaction turbine

Vi = cVlgh (127)

where c is not a velocity coefficient but a factor whose value

varies from about 0.6 to 0.8 for ordinary designs. The value

of c depends upon the design of the wheel and the speed at which

it is run under a given head. This means that c is also a

function of <, where has the meaning given by equation (121).

With the radial-flow type of turbine centrifugal force also

causes the value of c to vary with the speed of the wheel, the head

remaining constant. The centrifugal force opposes the flow

of water in the case of the inward-flow turbine so that, as the

speed increases under a constant head, the discharge tends to

decrease as shown in Fig. 215. But there are other influences

at work also, so that for some inward-flow turbines the value of

q actually increases somewhat as the speed increases above zero,

but after a certain speed is exceeded the rate of discharge falls

off again.

142. Torque Exerted. The preceding article merely illustrates

a few fundamental points regarding the reaction turbine. Since

with the real machine the radii of the water at inflow and outflow

differ materially, it is not feasible to compute the force exerted

by the water and we must get the torque instead. Before pro-

ceeding any further with the theory it should be noted that,

while our equations are rational, they must assume that all

particles of water move in similar paths with equal velocities.

Actually we have to deal with average values. But we do not

know these average values with any precision. For example,
we have no assurance that the angles A\ and a^ are the same as

the angles of the guide vanes and the runner vanes respectively.

In fact we have some evidence to indicate that they differ by
as much as 5 or 10. The same condition exists with regard to

the areas of the streams and all other dimensions used. Thus

the numerical results of such computations cannot be expected

to agree precisely with actual facts.

Despite this the theory has its value. It serves to explain

the principles of operation of such machines, to indicate the nature

of their actual characteristics, and to account for numerous

observed facts. In design the theory shows what proportions

are desirable and what the effect of certain changes of dimensions
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would be. Thus if we have some actual test data to work from,
the theory would enable us to alter existing designs with some

degree of assurance.

In order to compute the torque exerted upon the runner by
the water we should take the fundamental formula of Art. 113,

W
T = (nFi cos Ai r2F2 cos A 2).

Just as in the case of the impulse turbine in Art. 136, the values

of Vz and A 2 are variable and unknown, and it is necessary
to replace them in terms of known quantities. It is assumed
that all the dimensions of the wheel and the values of V\ and

Ui are known.

From the vector diagram it may be seen that

Vz cos A 2
= Uz + vz cos a2 .

But Uz = (r2/ri)wi, and, since the passages are completely
filled with water in the reaction turbine, the equation of con-

tinuity gives q
= FiVi = f2v2 ,

or

v2
= (F l/f2Wi (128)

(Contrast this procedure with that for the impulse turbine in

Art. 136 and note that equation (122) does not apply here.)

Making the proper substitutions we easily derive

cos Al ~ ' cos tt2 Vl " * 1 (129)
=
7 ri

[ (

In the use of equation (129) we should have to determine the

value of W for any value of u\, either by experiment or by
computing the rate of discharge by theory.

143. Power. The power developed by the water is deter-

mined by multiplying T by the angular velocity. The torque

actually exerted by the shaft and the power delivered are ob-

tained by multiplying these values by the mechanical efficiency.

The hydraulic efficiency of the turbine is obtained by

Tu _ Wh" _ h^
eh ~ Wh~ Wh

'"'

h'

It is difficult to obtain the hydraulic efficiency by test as it

is necessary to determine the bearing friction and also the

disk friction due to the drag of the runner through the water
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in the clearance spaces. But these losses may be allowed for

and the hydraulic efficiency then secured approximately.
Because of the necessary defects of the theory, the hydraulic

efficiency may be assumed with less error than is usually in-

volved in computing T. For turbines of rational design and

running at their proper speeds the value of the hydraulic ef-

ficiency may range from Or80 to 0.95. The higher values are

found only in large turbines and with favorable proportions.

Only experience can enable one to select the proper value be-

100 200 300 400

B.HP. =HP. Output

500

FIG. 216. Test of 27 in. I. P. Morris turbine. Head and <p approximately
constant. Gate opening variable.

tween these two extremes, which are not necessarily limits.

For improper speeds and incorrect designs no values can be

assigned.

The curves of Fig. 215 show the characteristics of a reaction

turbine with a fixed gate opening and the speed variable.

These are similar to those of the impulse wheel except that q

is not a constant. Hence maximum power developed and the

maximum efficiency do not necessarily occur at the same speed.

The characteristics of the same turbine at a constant speed are

15
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shown in Fig. 216. The maximum efficiency is 88 per cent, at

550 hp. under a head of 141.8 ft.

144. Speed. Although the water flowing through the runner

of a reaction turbine is entirely confined, the velocity under-

goes changes similar to that in the impulse turbine, except
that for a fixed gate opening the angle A\ is constant. Hence
the values of F2 and A 2 vary in just the same way as is shown

by Figs. 204 to 210.

The speed at which the efficiency is the highest will be some-

\ where in the neighborhood of the one for which the discharge

< loss is the least. The value of F2 will be a minimum in such a

) case as Fig. 208. For this condition it will be found that ap-

/ proximately A 2
= 90 or that u2

= v%. Note that these two

conditions are not identical but they differ but little It is

\^ customary to assume one or the other according to convenience.

In the case of the reaction turbine V\ is less than for an im-

pulse turbine under the same head. But the water at entrance

is under pressure and, as it flows through the runner, this is

converted into velocity. Hence at discharge t>2 may easily

be as large as in the case of the impulse wheel. And if u2
= vz ,

it may be seen that u2 will be about the same in either type.

But with the inward flow reaction turbine HI is greater than

HZ, and therefore the peripheral velocity of the reaction turbine

is greater than that of the impulse wheel.

Not only is the peripheral speed higher for maximum efficiency

but also the runaway speed is higher. The maximum value of

$ for the reaction turbine is about 1.30, though with some it

may easily exceed this value. And for the normal speeds at

which the maximum efficiency is obtained we have

</>e
= 0.60 to 0.90,

the exact value for a given wheel depending upon its design.

145. Values of ce and <f>e for Maximum Efficiency. The
turbine should run normally at such a speed under any head that

the maximum efficiency will be attained. It will be assumed

that this speed is such that the discharge is "radial" or A 2
= 90.

The angle which the runner vane at entrance makes with HI

will be denoted by a'i. As the turbine is ordinarily designed,

the value of the vane angle would be such that it would agree

with ai as determined by the vector diagram for this same

speed. But at any other speed the value of a\ would be different
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from a'i, hence there would be an abrupt change in the direction

of the water entering the runner giving rise to what is known
as

" shock loss."

The following expressions therefore apply only to the special

case where A 2
= 90 and a 'i

= a\. From the vector diagram
of velocities we have

Vi sin A] = Vi sin ai = Vi sin a\

Vi cos Ai = U} + Vi cos ai = u\ + v\ cos a'\

Eliminating Vi between these two equations we have

as the relation between u\ and Vi when there is no loss at entrance

to the runner.

The power delivered by the water to the runner may be

expressed as

Tco = Wh" = ehWh,

where T has the value given by equation (100). Thus

W u
Wh" = (riVi cos AI rzVz cos A 2)-*

If the discharge is "radial," A 2
= 90 and hence F2 cos A 2

= 0.

Therefore

Solving equations (130) and (131) simultaneously, we have

eh 2gh sin

2

From this it follows that

2 sin (a'i A\) cos

2gh sin (a'i

/_eh sin a'i_
'\2sm(a f

l -A 1)cosAi

leh sm(a'i
- AI)

** =
\Trin a'i cos Ax'

It must be borne in mind that equations (132) and (133) can be
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applied only for the special case stated. For any other speed a

different procedure would be necessary but it will not be given
here. 1

The speed desired is the one for which the gross efficiency

is a maximum and this may not be quite the same as the one for

which the hydraulic efficiency is the highest. Hence the true

value of fa may differ slightly from the value given by equation

(133).

These equations appear to be independent of conditions at

outflow from the runner. But it must be noted that they are

to be used only upon the assumption that the dimensions used

at exit will be such as to make A 2
= 90, when ce and <f>e have the

values given.

An interesting result may be obtained by multiplying equations

(132) and (133). This gives

(134)

This would indicate that all other things being equal, the higher

the value of fa the smaller the value of ce . With the impulse

turbine, to which these equations apply also, fa is small but

c = cv and is near unity. With the reaction turbine fa is larger

than for the impulse wheel but c is smaller.

146. Theory of th,e Draft Tube. If the draft tube is properly

designed its area next to the runner should be such that the

velocity in it is equal to Vz, the absolute velocity of discharge,

otherwise there will be an abrupt change of velocity involving

losses. For Fig. 217 we may write

#2 = Pz + z2 + Vz*/2g, and H 4
= 0.

The losses between points (2) and (4) are made up of the friction

losses within the tube, H'f ,
and the discharge loss at (3). Apply-

ing the general equation between "points (2) and (4) we have

72
2 7, 2

""r*~j& +jr/** (135)

The larger the diameter of the tube at its mouth the less will

be the value of F3 and hence the less the pressure at the point of

discharge from the runner. But if too great a rate of diffusion

is provided for in the tube the flow in it will be unstable and

*A general relation between c and for all conditions will be found in

the author's "Hydraulic Turbines," Chap. VIII.
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the friction loss H'f will be increased. The pressure at the top
of the draft tube should not be made less than about 5 ft. absolute,
and the value of zz determined accordingly. A "

high-speed
"

turbine runner with a large value of F2 cannot be set as far above
the water level as a "

low-speed"
turbine with a smaller value of

F*
If H'f be assumed equal for

both straight and flared tubes,

it may be seen that the diverg-

ing draft tube increases the head

utilized by the turbine by

147. Head on Reaction
Turbine. For a reaction turbine

the draft tube is an integral part
of the machine, hence (Fig. 218)
the head under which it operates
is given by

h = H c
- Hf

=
20

(136)

This is the value of h upon which computations are based, and
it is the one to be used in determining the efficiency of the

turbine.

FIG. 218.

However, though the turbine maker usually constructs or

designs the draft tube also, he is often limited by the conditions

of the setting and may not be able to use the proper proportions.

In order to eliminate this defect in the setting, over which he

has no control, the velocity head at (E) is sometimes deducted

from the value given by equation (136). If it were feasible to
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eliminate the friction in the draft tube as well we should then

have the efficiency of the runner alone, which is independent of

the draft tube. But what we usually desire is the efficiency of

the entire unit from the intake of the casing to the tailrace.

148. PROBLEMS

1. A certain reaction turbine was found by actual test to have a hydraulic

efficiency of 0.83 when <
= 0.670 and c = 0.655. The angles were: Ai =

13 and a'i = 115. Compute the values of <f>e and ce and compare with the

actual values. (The slight discrepancy between the two is largely due

to the fact that shockless entrance and radial discharge were not obtained

at exactly the same speed.)

Ans. <t>e
= 0.678, ce

= 0.628.

2. For a reaction turbine the dimensions are: Ai = 35, o'i = 136,

h
= 0.845. Compute the values of <j>e and ce .

Ans. <j>e
=

0.85, ce = 0.60.

3. In the test of the Cornell University turbine the pressure was read

by a mercury manometer attached near the intake flange where the diameter

was 30 in. At full load when the discharge was 44.5 cu. ft. per sec., the

manometer read 9.541 ft. of mercury, the top of the shorter mercury column

being 0.500 ft. above the intake. If the elevation of the intake above the

water level in the tailrace is 9.230 ft. find the head on the turbine.

Ans. 140.5ft.

4. In the turbine of problem (3) the diameter of the draft tube at the

upper end is 24.5 in. and at the bottom it is 42 in. Find the gain in head

due to its use when the discharge is 44.5 cu. ft. per sec.

5. The top of the draft tube in problem (4) is 10.0 ft. above the level of

the water in the tailrace. Neglecting the friction in it, but considering the

discharge loss at the bottom, find the pressure at its top.

6. A reaction turbine by test was found to discharge 31.8 cu. ft. of water

per sec. when running at 600 r.p.m. under a head of 143.1 ft. If FI = 0.535

sq. ft. and D = 27 in., find values of c and <.



CHAPTER XV

TURBINE LAWS AND FACTORS

149. Operation under Different Heads. In the entire dis-

cussion in the two preceding chapters we have assumed that

the head remained constant though the other quantities might

vary. But a turbine may be installed in a plant where the head

changes from time to time, and also a given design of turbine

might be used in different plants under a wide range of heads.

Thus we desire to investigate this phase.

Let us recall the expression, Ui =
4>\/2gh. Suppose now that

a turbine is compelled to run at a constant speed while the

head varies. It is clear that < also varies then just as it would

in the preceding case. But it would be possible under some

circumstances to change the speed as well in such a way as to

keep </>
a constant. Hence we need to consider two distinct

cases when the head changes ;
one is where

<f>
is constant, and the

other is where also changes.

If
<f>

remains constant, the wheel speed must vary as \fh.

But a definite value of <f>
is accompanied by a definite value

of c. Hence the rate of discharge must also vary as \/Ti, since

Vi c\^2gh. Now the power of the water is proportional to

the product of q and h. Since q varies as \/
Ji, it follows that

the power varies as h?*. And in similar fashion it may be shown

that the torque varies as h.

The hydraulic efficiency is a function of c, 0, and the turbine

dimensions. As long as remains constant the hydraulic

efficiency remains the same regardless of the head. This must be

true because the hydraulic losses may all be shown to vary as h
,

just as the power input. But the friction of the bearings and

the windage or the disk friction of the runner do not vary in

the same way. It is not possible to formulate an exact law for

this but they may be said to vary between N and N2
. Since

N varies as yT, they must vary between hH and h. Hence the

mechanical losses become a smaller percentage of the total as

231
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the head increases. 1
But, except for very low heads, the dif-

ference in the efficiency is usually a matter of not more than 2

or 3 per cent, at most. See Fig. 219.

Now if the speed remains constant while the head changes, or

if it does not vary as \/h, the value of will change. Re-

ferring to Fig. 215, it may be seen that this means a change
of c also. Hence the efficiency will change. Thus none of the

simple proportions that have just been stated will be true in

such a case. It is impossible to calculate the new results unless

Hydraulic Efficiency

Gross Efficiency

<t>
= Constant

Head

FIG. 219. Effect of head upon efficiency of a given turbine.

curves, such as those of Fig. 215, are available, or unless we
have some complex equations which will give values of all these

quantities for any value of </>.

150. Different Sizes of Runner. If a series of runners are

all built of the same design with the same angles and proportions

so that one is simply an enlargement or reduction of another, they
should all have the same values of

</>e and ce . Since their peri-

pheral speeds would all be the same under a given head it follows

that their rotative speeds would be inversely proportional to

their diameters. And the area FI would be proportional to D2
.

Hence their capacity and power would vary as D2
. Thus if the

performance of one runner is known, that of the rest of the series

1 An impulse wheel should be set with sufficient space on either side of

the buckets at discharge so that the water rebounding from the walls

will not strike them. The velocity with which the water rebounds is pro-

portional to Vz and hence to \/Ji. Therefore if this space is not ample
for all values of h, a point may be reached where this action would decrease

the efficiency.
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may be predicted with some assurance, due allowance being
made for slight increases in efficiency as the size increased.

We may express these statements algebraically as follows:

D

where 1,840 is a constant which we obtain when we solve for N
in terms of peripheral speed, the latter being given by equation

(121). For the two types of turbines in common use we have:

Impulse wheel <$>e
= 0.43 to 0.48

Reaction turbine
<j>e

= 0.60 to 0.90

according to design. And as to capacity

q
= KiD*\fh (138)

where K\ has the following range of values:

Impulse wheel KI = 0.0002 to 0.0005

Reaction turbine KI = 0.0014 to 0.0360

It must be understood that these constants are based upon values

corresponding to e and that the speed of the wheel must be such

that <j>e is obtained if they are to apply.

Making a suitable allowance for the efficiency the power
delivered by the turbines can be determined when the discharge
is known.

It may be seen that the peripheral speed of the reaction turbine

is higher than that of an impulse wheel and that it may be varied

through a wider range by changes in the design. Also the values

of KI show that for a given diameter a reaction turbine can dis-

charge more water, and hence develop more power, than an im-

pulse turbine. That means that if they are to deliver the same

power the diameter of a reaction turbine will be much less than

that of a corresponding impulse wheel. Thus for a given head

and power the rotative speed of the reaction turbine will be much
,

higher than that of the impulse wheel due, both to its higher

peripheral speed and to its much smaller size.

161. Specific Speed. A useful factor in turbine work is one

that will now be derived. It involves the head, speed, power, and

efficiency.
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Since power is proportional to D2 and to h% we may write,

b.hp.
= KzD 2h3/i

. This may be rewritten as

Inserting the value of D as given by equation (137) we have

Vb.hp.

Rearranging this and letting \/^2 1,8400 = N,, we have

(139)

While any value of N might be used, the expression has but

little meaning unless a particular value is employed. That is

generally understood to be Ne ,
the value of N at which the

maximum efficiency under a given head is attained. As to the

value of b.hp. it should logically be the one for which the maxi-

mum efficiency is obtained under the given head. But in

some cases the value of the maximum power at this same speed
is used.

The quantity Na is generally known as specific speed. Other

names applied to it are unit speed, type characteristic, and

characteristic speed. Its value indicates the class to which a

turbine belongs. Thus we have seen that for a given head and

power the impulse wheel runs at a relatively low r.p.m. There-

fore it would have a low value of N8 .

For an impulse wheel under a given head at a given speed
the power would increase with the size of the nozzle used.

Thus there need not be any lower limit to the value of Na but

the upper limit would be the one for which we had the maximum
size jet that could be employed. We find that the efficiency is

not appreciably reduced until after we pass a value of about

4.5 for Na and after a value of 6 the jet is so large for the size of

the wheel that the efficiency drops off materially. But any
value above 4.5 involves some sacrifice of efficiency.

For the reaction turbine we have limits in both directions

as indicated below, though these may be extended in future

designs. The values of the specific speed are

*h* = h Xh^
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Impulse wheel N8
= to 4.5 (6 max.)

Reaction turbine N8
= 10 to 100.

For a given turbine the value of N8 is naturally a constant'

but it is also practically constant for a whole series of runners

of the same design regardless of size. The larger the diameter

of a runner the greater its power but the less the value of N for a

given head. Hence the product remains constant.

Values of N8 given for the impulse wheel are for a single jet

upon a single wheel. When two or more jets are used the power
is naturally increased without changing the speed. This enables

values between 6 and 10 to be obtained, if necessary. For

values above 100 the conditions are impossible. Either the

power or the speed of the unit must be decreased.

The specific speed factor shows that the impulse wheel is a

low-speed, low-capacity turbine and the reaction turbine is a

high-speed, high-capacity turbine. The use of these words is

relative rather than absolute. Thus the turbine in Fig. 170

runs at only 55.6 r.p.m. but its specific speed is 82.3, thus in-

dicating that it is a high-speed wheel. For the speed is high

as compared with that of other turbines of the same power
under that head. For instance the speed of an impulse wheel

for similar conditions would be only 4 r.p.m. And the specific

speed of the highest head impulse wheels in the world (Art.

125) is only 0.592 though they run at 500 r.p.m. But a slow-

speed reaction turbine under the same conditions would run at

8,450 r.p.m. at least, and a high-speed reaction turbine such as

those at Cedars Rapids would run at 69,300 r.p.m. Of course

these values are absurd and simply demonstrate the fitness of

each type for its own field.

152. Uses of Specific Speed. The values of Na ,
as of all

other factors in this chapter, are supposed to be obtained from

test data, not computed by theory. They serve to classify

a turbine and indicate to what type it belongs. They are useful

in selecting units for a prospective plant. For such a case the

head is known but the size and speed of the units is not. If it

is desired to use wheels of a certain type, that fixes the value of

Na between narrow limits, and it is easy to compute the com-

binations of speed and power that can be produced. Or, if

the speed and power be fixed, it may at once be found what

type of turbine would be required.

J
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153. Factors Affecting Efficiency. The efficiency of the im-

pulse wheel is practically independent of the size of the wheel.

The author makes this statement after testing sizes from 12 in.

to 84 in. in diameter and comparing all the other test data which

is accessible. It would seem reasonable that this should be so,

for there is no loss in connection with the impulse wheel which

would not vary in proportion to the power of the wheel. Aside

from questions of design and workmanship the efficiency would

appear to be a function of the specific speed. Too low a value of

the specific speed would mean a large diameter of wheel for a

given power output with a consequently large friction and

windage loss. Too high a specific speed would mean that the

jet was too large for the wheel and buckets with a consequent

lowering of the hydraulic efficiency. The most favorable value

Impulse Wheel

Size of Unit

FIG. 220. Effect of size of turbine upon its efficiency.

of Na is about 4.0 and the best efficiency that is obtained is about

82.0 per cent. This is slightly exceeded at times and values

below it are often obtained.

With the reaction turbine the efficiency is a function of

its size. This is partly due to the fact that the hydraulic ef-

ficiency increases with the size, but more to the fact that the

volumetric efficiency increases. With a reaction turbine there

is always a certain amount of leakage between the guides and

the runner so that a portion of the water escapes through the

clearance spaces and does not pass through the wheel. The
area of these clearance rings would naturally be less in proportion
to the area of the wheel passages as the size of the wheel in-

creases. Hence a much larger per cent, of the water is made
to deliver its power to the runner. Such a condition does not
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exist with the impulse wheel. This leads to comparative values

for the two types as shown in Fig. 220.

Another distinction between the two types of turbines is that

the reaction turbine suffers certain hydraulic losses on part

gate that are lacking in the other. Hence, although in some
cases the maximum efficiency of a reaction turbine is greater
than that of the impulse wheel, the efficiency on a light load

might not be as good.
Like the impulse turbine the efficiency of the reaction turbine

also depends upon the specific speed, being less at either extreme.

The best efficiencies are obtained with values of N8 ranging from

30 to 60. The efficiency of a turbine of good design and work-

manship depends upon size, specific speed, and other factors to

such an extent that definite values cannot be given, but for fair

size units it should range from 80 to 90 per cent, and occa-

sionally more. For small wheels, especially with unfavorable

specific speeds, a value of from 60 to 80 per cent, is all that

should be expected.

154. PROBLEMS

1. The turbine, whose performance is shown in Fig. 216, developed its

maximum efficiency of 88.0 per cent, when delivering 550 hp. at 600 r.p.m.

under a head of 141.8 ft. The water consumed was 38.8 cu. ft. per sec.

What would be its proper speed under a head of 283.6 ft.? What would
then be the rate of discharge and the horsepower?

2. In Fig. 215 the turbine delivered 617 hp. when running at 600 r.p.m.

under a head of 140.5 ft., the rate of discharge being 44.5 cu. ft. per sec.

and the efficiency 87.0 per cent. If the speed is maintained at 600 r.p.m.

when the head is 70.2 ft., fincl values of discharge, power delivered, and

efficiency. (Note: This can be determined only by making use of the

curves for this particular turbine. The procedure would be to find the

value of <j> for the new conditions and then take values of q, hp., and e from

the curves. These quantities would then have to be reduced to the proper
values for the new head.)

3. Compute the factors < and Ns for the runners shown in Figs. 152,

157, 167, 170, and 172. Compare these values with each other.

4. It is desired to develop 6,000 hp. at 514 r.p.m. under a head of 625

ft. Will an impulse or reaction turbine be required? (This can be deter-

mined by computing the specific speed.)

6. If only 900 hp. is to be developed for the conditions given in problem

(4), what type of turbine will be required?
6. It is desired to use a type of turbine whose specific speed is 30 to

deliver 100 hp. under a head of 100 ft. What will be the proper r.p.m.

for the unit?

7. An impulse wheel is to be used for 625 hp. under a head of 144 ft.
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What will be the maximum rotative speed at which it can be run without
material sacrifice of efficiency? What will be the approximate diameter

of the wheel?

8. What would be the minimum speed for a reaction turbine for the

conditions of problem (7)? If = 0.60, what would be the diameter of

the runner?

9. What would be the maximum speed for a reaction turbine in problem

(7)? Assuming <
= 0.85, what would be the diameter of the runner?

10. The runner in the Cornell University turbine is 27 in. in diameter.

The wheel develops 550 hp. when running at 600 r.p.m. under a head of

141.8 ft. What would be the speed and power of a 54-in. runner of the

same type under the same head? Would the specific speed of these two be

the same?



CHAPTER XVI

THE CENTRIFUGAL PUMP

155. Definition. Centrifugal pumps are so called because

of the fact that centrifugal force or the variation of pressure

due to rotation is an important factor in their operation.
1

In brief, the centrifugal pump consists of an impeller rotating

within a case as shown in Fig. 221. Water enters the impeller

at the center, flows radially outward, and is discharged around

the circumference into the case. During flow through the

impeller the water has received energy from the vanes resulting

in an increase both in pressure and velocity. Since a large part

of the energy of the water at discharge is kinetic, it is necessary
to conserve this kinetic energy and transform it into pressure,

if the pump is to be efficient.

As a matter of convenience in illustration, the water is repre-

sented as entering the impeller in Fig. 221 with a positive pres-

sure. However, the pump is usually set above the level of the

water from which it draws its supply, in which case the pressure

at this point would be negative. Likewise, the axis of rotation

need not be vertical as shown.

156. Classification. Centrifugal pumps are broadly divided

into two classes:

1. Turbine pumps.
2. Volute pumps.

While there are still other types these two are the most funda-

mental. Also, as we shall see, these may in turn be subdivided

in other ways.
The turbine pump is one in which the impeller is surrounded

by a diffuser containing stationary guide vanes as shown in Fig.

222. These provide gradually enlarging passages whose function

it is to reduce the velocity of the water leaving the impeller and

thus efficiently transform velocity head into pressure head. The

casing surrounding the diffuser may be either circular and con-

1 For a more complete treatment of this entire subject, either descriptive,

theoretical, or practical, see "Centrifugal Pumps," by R. L. Daugherty.

239
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centric with the impeller or it may be spiral like the cases of

some reaction turbines.

The volute pump, shown in Fig. 223, is one which has no

diffusion vanes but, instead, the casing is of a spiral type so

FIG. 221.

proportioned as to produce an equal velocity of flow all around

the circumference and also to gradually reduce the velocity of

the water as it flows from the impeller to the discharge pipe.

Thus the energy transformation is accomplished in a slightly
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different way. This spiral is often called a volute, whence the

name of the pump.
Occasionally pumps have been built with a whirlpool chamber

as shown in Fig. 221. This produces a free spiral vortex, the

nature of which has been shown in Art. 120.

FIG. 222. Turbine pump.

157. Description of the Centrifugal Pump. The centrifugal

pump is similar to the reaction turbine both in its construction

and in its theory. However, one is not the reverse of the other,

and their differences are as striking as their similarities.

FIG. 223. Volute pump.

The rotating part of the pump which is instrumental in

delivering the water is called the impeller. Impellers may
receive water on one side only or, as in Fig. 224, from both

sides, in which case they are known as double-suction im-

pellers. Fig. 225 gives a view of the pump whose section is

16
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seen in Fig. 224. It may be seen that this impeller is relatively

narrow as compared with its diameter, while the opposite type is

shown in Fig. 226. For the same rotative speed the latter will

discharge more water than the former but at a lower head.

For high heads it becomes desirable to place impellers in series,

in which case we have the multi-stage pump, such as is shown
in Fig. 227. Multi-stage pumps may be either of the turbine

or the volute type. The former may be seen in Fig. 227 and

the latter in Fig. 228. The addition of guide vanes so as to

produce a turbine pump results in a much more complex con-

Courtesy of the Allis-Chalmers Mfg. Co.

FIG. 224. Double-suction volute pump.

struction, as Fig. 229 will show. The water in a multi-stage

turbine pump usually passes from one impeller to the next

through passages which are like those shown in Fig. 230. There

are other arrangements besides this, but they will not be de-

scribed here.

158. Conditions of Service. Centrifugal pumps are used

for lifting water a few feet only or as much as several thousand

feet, if necessary. Several such pumps have been built for heads

of 2,000 ft.

The capacities of centrifugal pumps range from very small

quantities up to as high as 300 cu. ft. per sec. (134,500 G.P.M.

or 194,000,000 gal. per 24 hr.). The 1. P. Morris Co. has built

several of the latter for a head of 16 ft. at 77.5 r.p.m.
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Courtesy of the Allis-Chalmers Mfg. Co.

FIG. 225. Double-suction volute pump.

Courtesy of Platt Iron Wks.

FIG. 226. Double-suction volute pump.
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Courtesy of Chicago Pump Co.

FIG, 227. Two-stage turbine pump.

Courtesy of Platt Iron Wks.

FIG. 228. Three-stage centrifugal pump without diffusion vanes,
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Courtesy of Platt Iron Wks.

FIG. 229. Two-stage centrifugal pump with diffusion vanes.

Discharge

Suction

FIG. 230. Worthington two-stage turbine pump.
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The greatest power of any centrifugal pump is that of a

pump installed by Sulzer Bros, in Italy. A single-stage pump
running at 1,002 r.p.m. delivers 32,530 G.P.M. at a head of

498.6 ft. with an efficiency of 81.0 per cent. The water horse-

power is 3,590 and the power required to run it is 4,430 hp.

For most pumps the power required is less than 500 hp.

Rotative speeds may vary all the way from 30 to 3,000 r.p.m.

in ordinary practice according to circumstances. The highest

speed ever employed was 20,000 r.p.m. for a single-stage volute

Courtesy of Allis-Chalmers Mfg. Co.

FIG. 231. 72-in. centrifugal pump for drainage at Memphis, h = 15';
N = 100. Capacity, 194,000,000 gal. per day.

pump with an impeller 2.84 in. in diameter. The pump delivered

250 G.P.M. against a head of 700 ft. with an efficiency of 60.0

per cent. The highest peripheral speed used was with a single-

stage pump with an impeller 3.15 in. in diameter. At 18,000

r.p.m. it delivered 189 G.P.M. against a head of 863 ft. and for

a smaller discharge it developed a head of 995 ft.

Centrifugal pumps have been built with as many as 12 stages.

It is customary to limit the head per stage to a value of not

more than 100 to 200 ft., but this has been greatly exceeded in

several cases mentioned above.

Water turbines are rated according to the diameters of their

runners, but the size of a centrifugal pump is usually designated
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by giving the diameter of the discharge pipe. The rated head
and discharge for a centrifugal pump are the values for which
the efficiency is a maximum under a given speed. This value

of the rate of discharge is often designated as the normal dis-

charge. These values will be different for different speeds.

159. Head Developed. The head developed by a centrifugal

pump when no flow occurs is called the
"
shut-off head" or the

Pressure Chamber

^==^
FIG. 232. Crude centrifugal pump.

"head of impending delivery." Its value may be found by
applying the principles of Art. 119/

If water in a closed chamber be set in motion by a paddle-

wheel as in Fig. 232, there will be an increase in pressure from

the center to the circumference. If the water is assumed to

rotate at the same speed as the impeller, the peripheral velocity

of which is u2 ,
it may be seen from equation (117) that p% p\ =

u2*/2g, where pi denotes the pressure at the center. If this water

?.s in communication with a pressure chamber to which a pie-
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zometer tube is attached, as in Fig. 232, water will rise in the

latter to such a height that

h = u2
z
/2g (140)

If the height of the tube were less than this, water would flow

out and we should have a crude centrifugal pump.
Actually there are certain influences at work in the real

pump which affect this relation slightly. Some of these factors

tend to increase the head and others to decrease it. The net

effect is that for the usual type of centrifugal pump the head of

impending delivery is

h = 0.85 to 1.10 uj/2g. (141)
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As the water in the suction pipe approaches the impeller it

may have a rotary motion imparted to it before it ever reaches

the latter, due to the viscosity of intervening particles of water.

Hence, we shall write equations between points (2) and (s) in

Fig. 221, the latter point being removed far enough from the

impeller so that the water has no rotational flow imparted to it.

In Fig. 234a is shown the hydraulic gradient in the case of

Uz
2

zero flow and, as in equation (140), h = ^~-
^9

When flow occurs there will be a drop in pressure at (2), which

is just within the impeller, due to the velocity head at that point

60

30

W 2

Efficien

De jLavQ

W.H.P.
10

0.2 0.4 0.6 P.8 1.0 1.2 1.4 L6 1.8 2.0 2.2 2A 2.6

Discharge-Ou. Ft. p.er Sec.

FIG. 234. Characteristics of a 6-in. pump at a constant speed.

and also due to the loss of head within the impeller passages or

from (s) to (2). If k" is the coefficient of loss the drop in pressure

at the outlet of the impeller will be (1 + k"}v^/2g.
1 But the

pressure at (s) likewise decreases by an amount equal to Vs
2
/2g.

Also as the water flows from (2) to (d) in Fig. 234a, there is a

reduction in velocity head from V2
2
/2g to Vd*/2g. This means.

1 As an illustration consider a hose with a nozzle on the end. When the

nozzle is opened so that water may flow, the pressure at the base of the nozzle

is decreased below the value obtained when it is closed, by an amount equal

to the velocity head at that point and to the friction losses up to that point.

If next the hose should be moved around, this pressure drop would not be

affected in the least, for it is a function of the velocity of flow within the hose,

which is the relative velocity, and does not depend upon the velocity of the

water with respect to the earth.
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a corresponding gain in pressure, though not without some loss.

Thus raTV/20 is converted into pressure plus Vd
2
/2g, the loss

being (1
- m)V2

2
/2g.

From equation (145) the total head developed by the pump,
including impeller and case, is (see Fig. 234a)

h = H d
- H s

=
(Pd + zd + TV/20) -

(p.

= h Q
-

(1 + k")v 2
2
/2g + raTV/20

_ u 2
2 v 2

2 TV
20 2g 20

V 2
/2g]

(143)

FT

i

FIG. 234a.

In reality there will be a further drop in pressure at (s) when
flow takes plaice, due to the loss of head in friction in the suction

pipe. However, this would also have the effect of decreasing
the pressures at (2) and (d) by the same amount. Hence the

difference in pressure, with which we are here concerned, would

be exactly the same.

It must be noted that the quantity m is a variable. When
the discharge from the impeller is such that the angle A 2 (see

Fig. 235) agrees with the angle of the diffusion vanes of a turbine

pump, or the velocity Vz is the proper value for a volute pump,
the maximum proportion of the velocity head will be saved.

For larger or smaller discharges than this there will be additional

losses attending this conversion. For a turbine pump the

maximum value of m is about 0.75 and for a volute pump it is

somewhat less.

With a centrifugal pump the impeller areas are fixed and
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constant in value and hence it is convenient to express the rate
of discharge as

0.
= /a2. (144)

FIG. 235. Velocity diagrams.

FIG. 236. Stream lines for three different rates of discharge.

Now referring to the vector diagrams shown in Figs. 235 and
236 it may be noted that as the rate of discharge varies the

values of Vz and A 2 change. It may be seen that as q ap-

proaches zero, v2 and Az approach zero, while Vz approaches
uz. Hence for an infinitesimal discharge the value of Vz may be

regarded as equal to u2) while the velocity of the water in the

case surrounding the impel ] er is practically zero. Therefore, a

particle of water leaving the impeller with a high velocity enters
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a body of water at rest and loses all of its kinetic energy. Thus,
as the rate of discharge approaches zero, the factor m approaches
zero. Hence it may be seen that when we have zero discharge

the value of h in equation (143) reduces to that given by equa-
tion (140).

An inspection of equation (143) serves to explain the rising

or falling characteristics of Fig. 233. If the increase of pressure

due to the conversion of the velocity head of discharge is more

than enough to offset the decrease due to the velocity and the

losses within the impeller, we have a rising characteristic. If

they are about equal we have a flat characteristic, and if

the quantity mVz 2 is less than (1 + k")v<? we have a falling

characteristic.

Because of the difficulty of efficiently transforming velocity

head into pressure head it is desirable to keep F2 as small as

possible. It may be seen that, for a given value of v%, the smaller

the angle 0,2 the less will be the magnitude of Vz- Therefore, in

almost all centrifugal pumps the value of az is from 20 to 30,

though occasionally this angle is as small as 10 or as large as

80. It is rarely made larger than 90 because of the inefficiency

of such designs.
1

160. Measurement of Head. We may compute the head

which a pump is required to work against by equations (72) or

(74). The head which the pump can develop may be estimated

by equation (143), but when we desire to measure the head which

the pump actually does develop we do so by taking certain read-

ings on the discharge and suction sides of the pump. Thus in

Fig. 237 the difference between the energy which the water has

as it enters the pump at (s) and that with which it leaves at (d)

is due solely to the pump. Hence we may write

But Hd = pd + zd + Vd
2
/2g, and H8

= pa + z8 + V.*/2g.

Therefore it follows that

h = (pd
- p8 ) + (zd

- za) + (7d
' _

y.2)/ 2flf . (145)

1 In the turbine theory the angle a has been defined as the angle between

v and u. This is satisfactory for that purpose, but with ordinary centrifugal

pumps this angle is always greater than 90. Hence it is much more
convenient to define it here as the angle between v and u, as may be seen

in Fig. 235.
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As a usual thiig the water enters the pump under a pressure
less than that of the atmosphere, in which case the value of p8

will be negative. If the suction and discharge pipes at the

points where the gages are attached are of the same diameter

the velocity heads will cancel, in which event the value of h

FIG. 237. Head developed by pump.

Pltot Tube

FIG. 238. Measurement of head.

will be the difference in the levels of the surfaces of the two

water columns shown in Fig. 237.

In testing the pump the gages might be connected as shown

in Fig. 238. It is not really necessary to reduce the gage read-

ings to the pressures which would be found at the center line
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of the pipe. If the gage readings are used direct in equation

(145) and the value of y represents (zd zs), it may be shown
that the result is the same. 1

161. Head Imparted by Impeller. The amount of energy
delivered to the water by the impeller is greater than that

actually delivered in the water, the difference being due to

hydraulic friction losses within the pump. If the head actually

developed by the pump is represented by h, the head imparted
to the water by the impeller is

h" = h + h' or - h" = h/eh .

In ah ideal pump without hydraulic losses of any kind these two

quantities would be equal, but in any real pump they represent
two entirely different things. For a given pump under different

conditions of operation, h" and h neither differ from each other

by a constant amount nor is one a constant proportion of the

other. Hence the curves representing actual values of both h"

and h not only do not coincide but they are not even of the same

shape. This may be seen in Fig. 239 in which the curve "Actual

Head Input h"" has been determined with a reasonable degree
of accuracy from test data by the author. It may be seen

that for rates of discharge from to 0.6 cu. ft. per sec. the value

of h increases while that of h" decreases. In some other cases

the difference is more marked than is here shown.

An expression for h" may be derived by using the value of

T given in equation (102). Since Wh" = Tu, h" = uzs2 /g.

The value of 82 is u% vz cos 2 ,
hence

-
vz cos a2) ,

4g
,

t/

1 The question is often raised as to why it is necessary to deduct V* 2
/2g

in determining the head, since the pump has imparted that velocity to the

water. The first answer is that equation (145) is the result of a direct

application of the principles of energy, but the explanation of the matter is

that we also have included ps ,
whose value is a function of Vs . Suppose,

for example, that the suction pipe were so large that the velocity in it

were negligible. Then the measured value of pg would give a higher pres-

sure than when the suction pipe is smaller and, disregarding losses, the

values of ps in the two cases would differ by Vs
2
/2g. If we are to omit the

velocity head at (s) we should omit the pressure reading also. We might
then obtain the total head by adding to the "

discharge head" the value of

zs + suction pipe losses. But we should have to compute the latter and

it may be shown that they are determined experimentally when ps is meas-

ured and the velocity head Vs
2
/2g also employed.
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This could also be obtained from equation (143) by eliminating
the hydraulic losses. This would require values of k" = and
m = 1.0. The next step would be to solve the vector triangle
for 72 in terms of u*, v2 ,

and a2 . The result would agree with

equation (146).

0.2 0,4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Discharge-Cu. ft. per Second

FIG. 239. Analysis of centrifugal pump at a constant speed.

It may be seen that for a constant value of impeller speed the

value of h" given by equation (146) will increase with q (and v2)

for values of a2 greater than 90, will be independent of q for

a* = 90, and will decrease for values of a2 less than 90. It is

sometimes argued from this that rising or falling characteristics

are obtained by a suitable choice of a2 ,
but that is due to confusing
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h" and h. The value of 02 does have some effect upon this, but

it alone does not determine the matter. The author has found a

decidedly rising characteristic in a pump he has tested with an

angle of 0,2
= 26. And tests of other pumps with a% = 90

have shown steep falling characteristics. The real explanation

may be seen only in equation (143).

The hydraulic efficiency is the ratio h/h". For the same

reasons as are given in Art. 142, it is difficult to calculate true

values of h" and thus the true hydraulic efficiency can be deter-

mined only by test. The latter gives directly the value of the

total efficiency only and it is necessary to allow for other losses

or determine them by special methods in order to get the actual

hydraulic efficiency. Applying equation (146) and using the

actual impeller dimensions the computed values of h" may be

found to lie on a straight line, such as is labelled "Ideal Head

Input" in Fig. 239. Thus the ratio between the actual h and

the h" computed in the ordinary manner is much less than the

hydraulic efficiency in all cases. It is very often less than the

gross efficiency thus proving that it is not a true value. But

it is still useful for some purposes of design and is called "mano-

metric coefficient." The value of this ratio is usually between

0.55 and 0.65.

162. Centrifugal-pump Factors. Just as in the case of turbines,

it is found that to obtain the best efficiency with a given

centrifugal pump there must be a certain relation between head,

speed, .and discharge. Also the equations show that these

three quantities are mutually interrelated. Hence it may be

seen from equation (143) that for a velocity diagram of the same

shape to be formed it is necessary that w2 ,
t>2 ,

and V% vary as

Hence we shall find it convenient to write 1

uz
= <j>V2h (147)

(148)

We find that a certain value of <f>
is required to obtain

the maximum efficiency just as with the turbine. And a

definite value of c is associated with every value of <j>
as may

1 For the pump <t> has the same meaning as in the inward flow reaction

turbine since it gives the peripheral speed in both cases. But c has a

different meaning, since we find it more convenient to deal with v2 rather

than with F2-
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be seen from equation (143). For ordinary types of pumps
we find the following values of these factors:

For shut-off = 0.95 to 1.09

For normal discharge $e
= 0.90 to 1.30

For normal discharge ce = 0.10 to 0.30

The value of <f>6 will depend upon the design of the pump.
Thus the smaller the angle 0,2 and the fewer the number of

impeller vanes, the larger the value of
<f>e .

Just as in Art. 150, it may be shown that

- :

. (137)

163. Specific Speed. The specific speed factor for turbines

involves the developed horsepower, since that is the quantity
with which we are concerned. But with centrifugal pumps we
are primarily interested in their capacity and it will be more

useful if we derive a similar expression giving N8 in terms of

discharge. Since power and discharge are really proportional
to each other it may be seen that we are merely expressing
the specific speed for the pump in terms of different units.

Proceeding just as in Art. 151, except that we use equation

(138) direct, we obtain for the centrifugal pump

(149)

The capacity of a centrifugal pump is generally expressed in

gallons per minute rather than in cubic feet per second. Thus

the expression will probably be the handiest in the above form.

(1 cu. ft. = 7.48 U. S. gal.).

For an impeller, either single-suction or double-suction,

values of specific speed may be found between the following

limits :

N8
= 500 to 8,000.

For special constructions even higher values may be attained.

It must be noted that these apply only to single stages. For a

multi-stage pump it is necessary to divide the total head by the

number of stages to obtain the proper value of h for use in the

equations in this chapter.

*Note that h& = h + hy* = h -i- \/V^. Some values of h*. will be

found on page 263.

17
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Values of specific speeds are obtained from tests of actual

pumps and they may then be applied to other pumps of

the same type. For N8 is an index of the type of pump just as

it is in the case of the turbine. Its great value is that it enables

us to determine the combinations of speed, capacity, and head

per stage that are possible or desirable. And if we desire to

employ a certain type of pump with a definite value of N9t

we may then find the combinations of these factors that are

required.

164. Operation at Different Speeds. In this chapter we
have shown characteristics of centrifugal pumps operating

under variable heads at constant speeds. We may now desire

to know how the pump is affected by a change in speed. This is

shown by equations (147) and (148). To obtain similar

conditions of operation it is necessary that the values of </>

and c be maintained constant. If they are, it may be seen that

both the speed and discharge of the pump will vary as the square

root of the head. But if $ and c are not constant then we have

no simple index to the variation of the equantities. We can then

only resort to some second degree equation of the form shown in

Art. 159. Hence if the head is varied due to a change in speed

it must be understood that the rate of discharge varies also if

the following simple ratios are to apply.

From equation (147) it may be seen that

1 U2
2

. .

h = ^w
Which shows that if remains constant, the head developed

varies as the square of the pump speed. From equation (148)

we may obtain, after substituting the value of h given by equa-

tion (150),

vz
= -Uz

9

Hence it follows that if < remains constant, c will also remain

constant and the rate of discharge must vary directly as the

speed. Since power is a function of the product of h and q it

may be seen that it will vary as the cube of the speed. Just a&

in the case of the turbine, the hydraulic efficiency of a centrifugal

pump is independent of the speed, within reasonable limits, as

long as
</>

is constant. But the maximum gross efficiency of a

given pump will increase slightly as higher speeds are attained.
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165. Factors Affecting Efficiency. The considerations of

Art. 153 apply here also. The most important factor in deter-

mining the efficiency of a centrifugal pump is its capacity, as

may be seen in Figs. 240 and 241. A pump of small capacity
will have a low volumetric efficiency because of the relatively

large per cent, of the water which will leak back into the

1,000 2,000 3,000 4000 5,0j

~

m 6,000 ,1,000 8,000 9,000 10,000

Turbine Pumps, Discharge in GalU'peE'Min.

FIG. 240. Efficiency as a function of capacity.

suction side through the clearance rings. Also the disk fric-

tion of such a pump is a greater percentage of the total power

expended.
It may be shown that the head per stage has only a slight

effect upon the efficiency of the pump, providing the design is

carefully made.

oiwi

90 "-
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as a function of the latter. Figs. 242 and 243 show the relation

between efficiency and specific speed for a large number of

turbine and volute pumps. But it should be borne in mind
that for any given specific speed the larger the capacity the higher
the efficiency. Hence we can have no single curve that will

enable us to select definite values for any case.

90

I-

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 360Q

Tutblne Pumps Specific Speed y3= NYG -P
-^L-

FIG. 242. Efficiency as a function of specific speed.

40U 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 6200 660060006400 6800 7200 7600 8000

Volute Pumps. Specific Speed, N' = W^
FIG. 243. Efficiency as a function of specific speed.

166. PROBLEMS

1. The curves of Fig. 239 are for a single-stage pump in which D = 9.12

in., /2
= 0.0706 sq. ft., a2

= 27. At 1,700 r.p.m. when q = 1.315 cu. ft.

per second, h = 55.7 ft. If it be assumed that m = 0.50, find the value

of k".

2. A two-stage turbine pump running at 1,700 r.p.m. delivered 0.429

cu. ft. per sec. at a head of 225 ft. The essential dimensions were: D =

12 in., /2
= 0.0244 sq. ft., a2

= 26. K it be assumed that m = 0.70,

compute the value of k".

3. The curves of Fig. 234 were obtained from the test of a single-stage

pump having the following dimensions: D =9.12 in., /2
= 0.0706 sq. ft.

Find the values of</>t and ce .

4. If it be assumed in Fig. 233 that the value of </> for shut-off is 1.0, what

is the value of < for the maximum lift of the pump with the rising char-

acteristic? What is the value of <f> for maximum efficiency in each case?
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6. The diameter of a pump impeller is 10 in. The speed is to be 1,200

r.p.m. If <f>
= 1.20, what is the value of hi

6. Compute the value of the specific speed for the pump shown in Fig.

231.

7. Compute the value of the specific speed for the pump whose dimensions

are given in problem (2).

8. What would be the capacity, head, and power of the pump whose

performance is shown in Fig. 234, if it were run at a speed of 1,000 r.p.m.?

9. What speed would be necessary to double the capacity of the pump
whose curves are shown in Fig. 234? What speed would be required to

double its lift?

10. If the speed of the pump of Fig. 234 were doubled, what would be

the head for a discharge of 2.4 cu. ft. per sec.? What would be the ef-

ficiency for this rate of discharge at the higher speed?
11. It is desired to deliver 1,600 G.P.M. at a head of 900 ft. with a single-

stage pump. What would be the minimum rotative speed that could be

used?

12. If a speed of 600 r.p.m. is desired in problem (11), how many stages

must the pump have at least?

13. It is desired to use a type of pump whose specific speed is 2,000

under a head of 16 ft. If the speed is to be 1,800 r.p.m., what will be the

capacity?
14. Compute the specific speeds of the pumps for which data are given

in Art. 158.
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APPENDIX TABLES

TABLE 9. AREAS OF CIRCLES

Diameter
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TABLE 10. STANDARD WROUGHT-IRON PIPE SIZ'ES

Diameter
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FUNDAMENTAL TRIGONOMETRY

In a right angle triangle, such as Fig. 244 :

sin A = a/c sec A = c/b

cos A = b/c

tan A a/6

esc A
cot A

c/a

b/a

Any function of A is the same numerically as the co-function

of any combination of A with an odd multiple of 90, Thus:

sin A = cos (90 A) = cos (270 A).

Any function of A is the same numerically as the function

of any combination of A with an even multiple of 90. Thus:

sin A = sin (180 A).

The sign of the function depends in any case upon the quadrant
in which the angle itself lies.

b

FIG. 244.

For the solution of an oblique triangle, such as that shown in

Fig. 245, we have

sin A _ sin B _ sin C
a b c

a 2 = b 2 + c2 - 26c cos A.

a* = (b
-

c)
2 + 46csin2

^
a 2 =

(b + c)
2 - 46c cos2

^
a2 = (b sin A) 2 + (c cos A -

b)
2

This is as much as is required for the solution of the vector

triangles that will be encountered with turbines and centrifugal

pumps.
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Absolute path, 153, 158, 240

pressure, 12

velocity, 152

Air chamber, 151

Air in pipes, 105

Angular momentum, 157

Atmospheric pressure, 11

Automatic crest, 39

B

Barometer, 11

Bazin, 87, 132

Bends, pressure at, 144

Bernoulli's theorem, 50

Branching pipes, 117e

Buckets, 166

Buoyancy, center of, 31

force of, 30

Case, 189

Center of pressure, 20

Centrifugal action, 161

Characteristics, pump, 218

Chezy's formula, 107

Cippoletti weir, 89

Coefficient of contraction, 63

of discharge, 64

of velocity, 62

Compound pipes, H7d
Compressibility of water, 2

Continuity, equation of, 48

Contracted weir, 84

Critical velocity, 46

Current meter, 93

Dams, 32

Density of water, 3

Differential manometer, 16

Diffuser, 239

Discharge loss, 100

Discharge, measurement of, 92

rate of, 48

Draft tube, 185

Dynamic force, 141, 153

E

Effective head, 52

Efficiency, factors affecting, 236, 259

as functions of size, 236, 259

of pipe line, 113

pump, 162

turbine, 162

Energy, 54

Entrance losses, 97

Flashboards, 39

Flow, line, 199

non-uniform, 135

steady, 47

uniform, 127

unsteady, 148

Fluid, 2

Force exerted, 104, 143, 215

Forced vortex, 162

Forebay, 201

Francis turbine, 177

Francis weir formula, 86

Free surface, 2

Free vortex, 164

Friction factors, 110

G

Gage height, 138

Gage pressure, 12

Gates, 182

Governing, 172, 185

Gradient, hydraulic, 104
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Graphical integration, 23a

Guide vanes, 178, 183

Hazen-Williams, 108

Head, developed by pump, 114, 251

for impulse wheel, 219

for reaction turbine, 229

losses of, 96

meaning of, 52

measurement of pump, 252

shut-off, 247

Hook gage, 80

Hydraulic gradient, 104, 128

mean depth, 97

radius, 97

slope, 107

Manometric coefficient, 256

Measurement of head, 14, 252

Metacenter, 31

N

Needle nozzle, 170

Non-uniform flow, 135

Nozzles, 71, 170

efficiency of, 73

loss in, 100

Open channel, 125. 132

Orifice, 65

coefficients, 69

Ideal velocity, 65

Impeller, 241

Impending delivery, 247

Impulse of jet, 156

Impulse turbine, 155, 165, 209

Intensity of pressure, 7

Jet, coefficients of, 63

definition of, 62

force of, 153

power of, 55 -

Kinetic energy, true, 57

Kutter's formula, 129

Laterals, pipe with, 1170

Liquid, definition, 2

Losses of head, 96

M

Manning's formula, 131

Path of water, 153, 158

Pelton wheel, 165

Penstock, 201

Piezometer, 14

Pipe efficiency, 113

friction, 97, 108

Pitot tube, 91, 145

Power, 160, 217

delivered by pipe, 113

meaning of head, 55

plants, 198

Press, hydraulic, 17

Pressure, absolute, 17

on area, 19, 23

gage, 17

intensity, 7

negative, 13

wave, 148

Pump, characteristics, 218

service, 242

turbine, 239

volute, 240

R

Radius, hydraulic, 97

Rate of discharge, 48

Rating curve, 138

Reaction of jet, 156
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Reaction turbine, 155, 177, 221

Relative velocity, 152

Runner, 179

S

Settings, turbine, 188

Shut-off head, 247

Siphon, 123

Size of pipe, 110, 117a

Slope, hydraulic, 107

Specific speed, 234, 257

uses of, 235

Speed, 218, 226, 258

Standard orifice, 67

Steady flow, 47

Stream gaging, 136

Suppressed weir, 81

Surge, 148

Surge chamber, 151

Tangential wheel, 165

Torque, 158, 159, 224

Trapezoidal weir, 84

Triangular weir, 81

Tubes, 70

Turbine case, 189

Turbine pump, 239

Turbine setting, 188

U

Uniform flow, 127

Units, 5

Unsteady flow, 148

Vacuum, 12

Varying head, 94a

Velocity, absolute, 152

diagrams, 211

critical, 46

head, 52

measurement of, 93

relative, 152

Venturi meter, 74

Volute pump, 240

Vortex, 161, 164

W

Water barometer, 1 1

Water hammer, 107, 148

Water, properties of, 3

Weirs, 79

Wetted perimeter, 128











THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW

AN INITIAL FINE OF 25 CENTS
WILL BE ASSESSED FOR FAILURE TO RETURN

THIS BOOK ON THE DATE DUE. THE PENALTY

w"Ll INCREASE TO so CENTS ON THE FOURTH

DAY AND TO $1.OO ON THE SEVENTH DAY

OVERDUE.

MAY 6 i

efee-i
SEP 1H943

NOV 22

DEC 24

^WT'W

..<AN 31

fEa_^-49<S-

AHU 10 134JT

APR~2Sl943

^EP-*-^43 -

LD 21-100m-7,'39(402s)



THE UNIVERSITY OF CALIFORNIA LIBRARY




