

This book is DUE on last date stamped below
MAR. 6 1929

$$
\text { i } ;
$$

HYDRAULIC

TABLES, COEFFICIENTS,

AND

FORMULE

FOR

FINDING THE DISCHARGE OF WATER FROM ORIFICES, NOTCHES, WEIRS, PIPES, AND RIVERS.

JOHN NEVILLE, C.E., M.R.I.A.,

COUNTY SURVEYOR OF LOUTH, AND OF THE COUNTY OF THE TOWN OF DROGHEDA.

46475

" It ought to be more generally known, that theory is nothing more than the conclusions of reason from numerous and accurately-observed phenomena, and the deduction of the laws which connect causes with effects; that practice is the application of those general truths and principles to the common affairs and purposes of life; and that Science is the recorded experience and discoveries of mankind, or, as it has been well defined, 'the knowledge of many, orderly and methodically digested and arranged, so as to become attainable by one.' "American Quarterly Review.

LONDON:

JOHN WEALE, 59, HIGH HOLBORN.
1853.

LONDON:

WOODFALL AND KINDER, PRINTERS, angel court, skinner street.

```
\therefore
    & 
```


CONTENTS.

PAGE.
Introduction vii
Sect.
I. Application and use of the Tables, Formulæ, \&c. 1
II. Formulæ for the Velocity and Discharge from Orifices, Weirs, and Notches.-Coefficients of Velocity, Contrac- tion, and Discharge.-Practical Remarks on the Use of the Formula 17
III. Experimental Results.-Coefficients of Discharge 31
IV. Variations in the Coefficients from the Position of the Orifice.-General and Partial Contraction.-Velocity of Approach.-Central and Mean Velocities 51
V. Submerged Orifices and Weirs.-Contracted River Chan- nels 71
VI. Short Tubes, Mouth-pieces, and Approaches.-Coefficients of Discharge for Simple and Compound Short Tubes.- Shoots 78
VII. Lateral Contact of the Water and Tube.-Atmospheric Pressure.-Head measured to the Discharging Orifice. Coefficient of Resistance.-Formula for the Discharge from a Short Tube.-Diaphragms.-Oblique Junctions. -Formula for the Time of the Surface sinking a Given Depth 89
VIII. Flow of Water in uniform Channels.-Mean Velocity.- Mean Radii and Hydraulic Mean Depths.-Border.- Train.-Hydraulic Inclination.-Effects of Friction.- Formulæ for calculating the Mean Velocity.-Applica- tion of the Formulæ and Tables to the Solutions of three useful Problems 99
IX. Best forms of the Channel.-Regimen 127
X. Effects of Enlargements and Contractions.-Backwater Weir Case.-Long and Short Weirs 136
XI. Bends and Curves.-Branch Pipes.-Different Losses of Head.-General Equation for finding the Velocity.- Hydrostatic and Hydraulic Pressure.-Piëzometer.- Catchment Basins.-Rain Fall per annum.-Water Power 150
PAGE.
Note A. Discharge from one Vessel or Chamber into another. Lock-chambers 169
Table.
I. Coefficients of Discharge from Square and Differently Pro- portioned Rectangular Lateral Orifices in Thin Verti- cal Plates 174
II. For Finding the Velocities from the Altitudes and the Altitudes from the Velocities 176
III. Square Roots for finding the Effects of the Velocity of Approach when the Orifice is small in proportion to the Head. Also for finding the Increase in the Discharge from an Increase of Head. See p. 55. 186
IV. For Finding the Discharge through Rectangular Orifices; in which $n=\frac{h}{d}$. Also for Finding the Effects of the Velocity of Approach to Weirs, and the Depression on the Crest. See p. 55 188
V. Coefficients of Discharge for different Ratios of the Chan- nel to the Orifice 192
VI. The Discharge over Weirs or Notches of One Foot in Length in Cubic Feet per Minute 198
VII. For Finding the Mean Velocity from the Maximum Velo- city at the Surface, in Mill Races, Streams, and Rivers with uniform Channels; and the Maximum Velocity from the Mean Velocity. See p. 101 204
VIII. For Finding the Mean Velocities of Water flowing in Pipes, Drains, Streams, and Rivers 205
IX. For Finding the Discharge in Cubic Feet, per Minute, when the Diameter of a Pipe, or Orifice, and the Velo- city of Discharge, are known; and vice versA 218
X. For Finding the Depths on Weirs of different Lengths, the Quantity discharged over each being supposed constant. See pages 149 and 150 220
XI. Relative Dimensions of equal Discharging Trapezoidal Channels, with slopes from 0 to 1 , up to 2 to 1 221
XII. Discharges from the Primary Channel in the first column of Table XI. 222
XIII. The Square Roots of the Fifth Powers of Numbers forfinding the Diameter of a Pipe, or Dimensions of aChannel from the Discharge, or the reverse ; showingthe relative discharging powers of Pipes of differentDiameters, and of any similar Channels whatever, closedor open. (See pages 13, 123, 124, \&c.)224

ERRATA.

Page 4, line 11, for " 3807 " read " 3807 ."
Page 6, line 10, for " $1 \cdot 497$ " read " 14.97 .'
" line 15 , for " $1 \cdot 3089$ " read " 13.089 ."
., line 16 , for " $\cdot 1745$ " read " $1 \cdot 745$."
" line 17, for " $\cdot 0131$ " read " $\cdot 131$."
" line 18 , for " $\cdot 0004$ " read " $\cdot 004$."
" line 19 , for " $1 \cdot 4969$ " read " $14 \cdot 969$."
" line 22 , for " $1 \cdot 497$ " read " 14.97 ."
" ", for " $1 \cdot 485$ " read " $14 \cdot 85$."
Page 9, line 24, for " $1732 \cdot 2$ " read " 17322 ."
Page 13 , line 15 , for "Table IV." read "Table XIII."
" lines 30 and 31, for "Example 9, page 6" read "Example IX., page 109.
Page 14, line 5 from the bottom, for "formulæ" read " formula."
Page 20, line 13, for " or $=617$ or" read " or $=7854$ or."
Page 24 , line 2, for " -2 " read " $\frac{2}{5}$ ".
Page 25 , line 8 , for " $3 \cdot 4478$ " read " 34478 ."
Page 29 , line 15 , for " $\frac{2}{-} \sqrt{2 g}$ " read " $\frac{2}{3} \sqrt{2 g}$."
Page 36, in note, for " 637 " read " 636 ."
Page 142, line 9 , for " proposition" read "proportion."

INTRODUCTION.

In preparing the following little work, we had three objects in view: first, a collection of useful hydraulic formulæ; secondly, a collection of experimental results, and coefficients ; and, thirdly, a collection of useful practical tables, some calculated entirely from the formulæ and experiments, and others for the purpose of rendering the calculations more easy.

The Tables at the end of the volume are all original, with the exception of Table I., which contains the well-known coefficients of Poncelet and Lesbros; but those are newly arranged, the heads reduced to English inches, and the coefficients for heads measured over and back from the orifice, placed side by side, for more ready comparison. The coefficients in the small Tables throughout the work have been all calculated by us from the original experiments; the formulæ have been carefully examined, and the continental ones reduced to English measures-some of them, as will be seen, for the first time. No labour has been spared in preparing the Tables, and they are all purely hydraulic, though some of them are capable of being otherwise applied. We have filled no gap by the introduction of Tables applicable to other subjects, and in every-day use.

The correction of some of the experimental formulæ, particularly the continental ones, as printed in some English books, cost us some labour. Even Du Buât's well-known formula is frequently misprinted; and in a late hydraulic work, $\sqrt{\bar{d}}-\cdot 1$, one of the factors, is printed $\sqrt{d-1}$ in every page where it is quoted. It is not always that such mistakes can be avoided, but experimental formulæ are so often copied from one work into another without sufficient
examination, that an error of this kind frequently becomes fixed; and when applied to practical purposes erroneous formulæ get the correct ones into disrepute. See note to formula (91), p. 113.

The Tables of velocities and discharges over weirs and notches have been calculated for a great number of coefficients to meet different circumstances of approach and overfall, and for various heads from $\frac{1}{4}$ th of an inch up to 6 feet. Table II. embodies the velocities acquired by falling bodies under the head of "theoretical velocity," and the velocities, suited to various coefficients, for heads up to 40 feet.

The formulæ for calculating the effects of the velocity of approach to orifices and weirs, and the necessary corrections for the ratio of the channel to the orifice, as well as Table V., we believe to be original. They will be found of much value in determining the proper coefficients suited to various ratios. The remarks throughout Section IV. are particularly applicable to the proper use of this Table.

Table VII. of surface and mean velocities will be found to vary from those generally in use, and to be much more correct, and better suited for practical purposes, particularly as applied to finding the mean velocities in rivers.

We have extended Table VIII. so as to make it directly available for hydraulic mean depths, from $\frac{1}{16}$ th of an inch to 12 feet, and for various hydraulic inclinations, even up to vertical, for pipes. The fall in rivers seldom exceeds 2 or 3 feet per mile, or the velocity 5 or 6 feet per second. The extension of the table for great inclinations, and consequently great velocities, was made for purposes of calculation, and to include pipes. It must be understood throughout this Table that the velocities are those which continue unchanged for any length of channel, viz., when the resistance of friction is equal to the acceleration of gravity, the moving water and channel being then in train. Several of Du Buât's experiments were made with small vertical pipes. This Table is equally applicable to pipes and rivers, and gives directly either the hydraulic inclination, the hydraulic mean depth, or the velocity when any two of them are known.

Hydraulic formulæ have been frequently rendered unnecessarily complex, and unsuited for practical application, by combining them with those of mere mensuration in order to find the discharge. We have therefore given formulæ for finding the mean velocity principally,-unless in a few instances, as in orifices near the surface, where the discharge itself is first necessary to find the mean velocity: this once determined, the calculation of the discharge becomes one of simple mensuration.

We have preferred giving the mean velocity to the discharge itself in Table VIII., because, while an infinite number of channels having the same hydraulic inclination (s) and the same hydraulic mean depth (r) must have the same velocity (v), yet the sectional areas, and consequently the discharges, may vary upwards from $6.2832 r^{2}$, the area of a semicircular channel, to any extent; and the operation of multiplying the area by the mean velocity, to find the discharge, is so very simple that any tabulation for that purpose is unnecessary. Besides this, the banks of rivers, unless artificially protected, remain very seldom at a constant slope, and therefore any Tables of discharge for particular side slopes are only of use so far as they apply to hypothetical cases. Indeed we have seen, in new river cuts, the banks, cut first to a given slope, alter very considerably in a few months; while the necessary regimen between the velocity of the water and the channel was in the course of being established. The velocity suited to the permanency of any proposed river channels, though too often entirely neglected, is the very first element to be considered.

For circular pipes, however, Table IX. gives the discharge in cubic feet per minute when the velocity in inches per second is known, or found from Table VIII., and is calculated for pipes from $\frac{1}{4}$ th of an inch up to 12 inches in diameter. Table XII. gives also the discharges in cubic feet per minute from the different equivalent river channels in Table XI.

Table X., for finding the heads on weirs of different lengths, Table XI., of equal discharging river channels, and Table XII., of the actual discharges from the equivalents in

Table XI., will be found of great practical value when new weirs and water-cuts have to be made. Tables XI. and XII. are equally applicable to channels having side slopes, the widths being then the mean or central widths : see pages 124 , 125, and 126.

When the discharge and fall are known, and the hydraulic mean depth and the dimensions of any channel have to be determined, Problem III., page 122, as illustrated in Example 17, page 13, gives a new and perhaps the most practically useful solution yet published. Tables XI., XII., and XIII. are particularly applicable to this problem.

A uniform notation is preserved throughout the work, so that the different experimental formulæ can be compared without any further reduction. The letter h is used in every instance for the head, c for the coefficient, r for the mean radius or hydraulic mean depth, and s for the sine of the hydraulic inclination, unless it be otherwise stated. In order to designate particular values, the primary letters have deponent or initial letters below to explain them. Thus h_{t} is the head to the $t \mathrm{op}$ of an orifice, h_{b} the head at the bottom, h_{w} the head on a weir, h_{f} the head due to friction, c_{d} the coefficient of discharge, c_{v} the coefficient of velocity, c_{c} the coefficient of contraction, \&c. When the whole head is made up of different elements, such as the portions due to friction, velocity, contractions, bends, \&c., it is expressed by the capital letter н.

Some writers and engineers appear to confound the inclination of a pipe, simply so called, or the head divided by the length, with the hydraulic inclination; and consequently have fallen into error in applying such of the known formulæ as take into consideration only the head due to the resistance of friction. When pipes are of considerable length, and the water is supplied from a reservoir at one end, the inclination, found as above, and the hydraulic inclination, may be taken equal to each other without sensible error; but for shorter pipes, of say up to 100 feet long, or even longer, the greater number of formulæ, as Du Buât's and others, do not directly apply; and it is necessary to take into consideration the head
due to the orifice of entry, the velocity in the tube, and also to the impulse of supply when there are junctions. These separate elements, and their effects, will be considered in the following pages; but it will be of use to refer here to some late experiments, and the imperfect application of formulæ to them, first premising that a pipe may be horizontal, or even turn upwards, and yet have a considerable hydraulic inclination.

Mr. Provis's valuable experiments* with $1 \frac{1}{2}$-inch pipes, from ' 20 to 100 feet long, have been used in a recent work for the purpose of testing the accuracy of Du Buât's and some other formulæ; but the head divided by the length is assumed to be the hydraulic inclination throughout, and no allowance is made for the head due to the orifice of entry and velocity in the pipe. Of course the writer's conclusions are erroneous. We have shown, Section I., page 12, how nearly the formulæ and experiments agree.

The formulæ appear to have been also misunderstood by the surveyor who experimented for the General Board of Health; for the inclination of the pipe in itself is assumed to be the hydraulic inclination, and no allowance is made for the head due to the impulse of supply. We quote from the Civir Engineer and Architect's Journal, Vol. XV., page 366, in which it is stated that "the chief results as respect the house drains are thus described in the examination of the surveyor appointed to make the trials." \dagger

[^0][^1]"At the same inclination what would a 4-inch pipe discharge with the same distances? TWice the amount (that I found from experiment); or, in other words, 100 gallons would be discharged in half the time. This likewise applies to a pipe receiving water only at the inlet, and of not greater height than the head. In these cases the section of the stream is diminished at the outlet to about half the area of the pipe.
"Before these experiments were made, were there not various hypothetical formulæ* proposed for general use ?-Yes.
"What would these formulæ have given with a 3 -inch pipe, and at an inclination of 1 in 100 ? and what was the result of your experiments with the 3 -inch pipe? -The formulæ would give 7 cubic feet, the actual experiment gave 11_{3} cubic feet; converting it into time, the discharge, according to the formulæ, compared with the discharge found by actual practice, would be as 2 to 3 .
"How would it be with a 4-inch pipe ?-The formulæ would give about 14.7 cubic feet per minute, whereas practice gave 23 cubic feet per minute.
"Take the case of a 6 -inch pipe of the same inclination ?-The results, according to Mr. Hawkesley's formula, would be $40 \frac{1}{3}$ cubic feet per minute; from experiment it was found to be $63 \frac{1}{2}$ cubic feet per minute.
"Then with respect to mains and drainage over a flat surface, the result of course becomes of much more value, as the difference proved by actual practice increases with the diminution of the inclination ?-Certainly, to a very great extent. For example, the tables give only $14 \cdot 2$ cubic feet per minute as the discharge from a pipe 6 inches diameter, with a fall of 1 in 800 ; practice shows that, under the same conditions, $47 \cdot 2$ cubic feet will be discharged.
"Will you give an example of the practical value of this when it is required to carry out drainage works over a very flat surface?-An inclination of 1 in 800 gives only 14 cubic feet per minute, according to theory, while, according to actual experiment, and with the same inclination, 47 cubic feet are given.
"Then this difference may be converted either into a saving of water to effect the same object, or into power of water to remove feculent matter from beneath the site of any houses or town?-It may be so.
"And also the power of small inclinations properly managed ?-Yes;

* It is a mistake to call those formulæ hypothetical, unless so far as the hypothesis is founded on facts. Every formula with which we are acquainted is founded on experiments, and has been deduced from them, but those formulæ are too often hypothetically applied to short tubes without the necessary corrections. It will be seen from Section VIII. that the experiments from which the formulæ there given were derived, were in every way greatly more extensive than those made by the directions of the Board of Health.
for example, if it was required to construct a water course that should discharge, say 200 feet per minute, the formula would require an inclination of 1 in $60=2$ inches in 10 feet; whereas, experiment has shown that the same would be discharged at an inclination of 1 in $200=\frac{5}{8}$ inch in 10 feet, thus effecting a considerable saving in excavation, or a smaller drain would suffice at the greater inclination."

We have extracted and tabulated the results given above, in the following Table, and also eight of the experiments made for the Metropolitan Commissioners of Sewers*; and assuming for the present, with the surveyor examined by the Commissioners, that the inclinations of the pipes and hydraulic inclinations of the formulæ are the same, which is incorrect, we give the calculated discharges, found by means of Tables VIII. and IX., in the last column of the Table.

Diameter of pipe in inches.	Inclination of pipe.	Discharge in cubic feet per minute by experiment.	Hypothetical discharge by Du Buât's formula.
3	1 in 120	$5 \cdot 3$	$6 \cdot 6$
4	1 in 120	$10 \cdot 7$	14
3	1 in 100	$11 \cdot 2$	$7 \cdot 5$
4	1 in 100	23	$15 \cdot 6$
6	1 in 100	$63 \cdot 5$	$43 \cdot 8$
6	1 in 800	$47 \cdot 2$	$13 \cdot 3$
6	1 in 60	75	$59 \cdot 3$
6	1 in 100	63	438
6	1 in 160	54	$33 \cdot 4$
6	1 in 200	52	$29 \cdot 2$
6	1 in 320	49	$21 \cdot 8$
6	1 in 400	$48 \cdot 5$	$19 \cdot 6$
6	1 in 800	$47 \cdot 2$	$13 \cdot 3$
6	Level	46	00

Du Buât's formula, therefore, gives larger results than the experiments in the two first cases, because the water received at one end only barely filled it, and the pipe was not full at

[^2]the lower end; but less in the others. If in these the head due to the impulse of entry, at the upper end, and at the side junctions, were known, and the proper hydraulic inclination determined by the experiments, the formulæ would be found to give larger approximate results in every case, as might have been expected from the sewage-water used. In the last eight experiments it is stated*, that "the water was admitted at the head of the pipe, and at five junctions or tributary pipes on each side, so regulated as to keep the main pipe full," and that " without the addition of junctions the transverse sectional area of the stream of water near the discharging end was reduced to one-fifth of the corresponding area of the pipe, and that it required a simple head of water of about 22 inches to give the same result as that accruing under the circumstances of the junctions." It is also stated, that "in the case of the 6 -inch pipe, which discharged 75 cubic feet per minute, the lateral streams had a velocity of a few feet per minute."

Now, the head of "about 22 inches" is wholly neglected in the foregoing calculations, though in a pipe 100 feet long it would be equal to an inclination of 1 in 55! It however includes three elements at least, viz. the portion due to the orifice of entry, the portion due to the velocity in the pipe, and the portion due to friction. Let us assume the case of the horizontal pipe, which discharged 46 cubic feet per minute + . This is equal to a mean velocity of 46.9 inches per second; with this velocity, we find from Table VIII. the hydraulic inclination of a 6 -inch pipe to be 1 in 94 , and, therefore, the head due to friction in a pipe 100 feet long is $12 \cdot 7$ inches. Assuming the coefficient for the orifice of entry and velocity to be 815 , we also find from Table II. a head of $4 \frac{1}{4}$ inches due to these. We then have,

[^3]Head due to the velocity and orifice of entry 4.25 inches
Head due to the resistance of friction . . $12 \cdot 70 \quad$ "
Radius of pipe

Total
which is about 2 inches less than the observed head: this, however, is not stated definitely. It is therefore evident, that the formula gives, if anything, larger results than these experiments*, as. might have been expected, instead of less in the ratio of 2 to 3 , as is stated in the Report.

Wherever junctions are applied, as in the examples above referred to, the formulæ in general use require correction; for the quantity of water then flowing below each junction is increased. A certain amount of error is, perhaps, inseparable from every calculation of this kind; but before we condemn formulæ deduced from experiment by men every way qualified for the task, it would be well that we should learn to understand and properly apply them.

The diameter of a short pipe gives in itself the means of increasing very considerably the surface inclination of the fluid stream, by reducing the section at the lower end. If we assume a horizontal pipe 50 feet long and 6 inches in diameter, we perceive, that if the receiving end be full, and the discharging end one-third full, this inclination will be $\frac{6-2}{50 \times 12}=\frac{1}{150}$; and that the discharging end cannot be kept full unless a head of several inches be maintained at the receiving end, or an equivalent from a lateral supply. When the pipe is about two diameters long it becomes a short tube; and when the length vanishes, the transverse section becomes, simply, a discharging orifice.

We have been led into the foregoing remarks, not from any desire to find fault with a Report containing so much valuable information as the one referred to, but for the pur-

[^4]pose of defending from unmerited reproach, in a Blue Book, the researches in this department, of
"Those dead but sceptred sovereigns who still rule Our science from their urns-"
Du Buât, Young, Eytelwein, Prony, and others.
We do not pretend to any particular accuracy in the sketches scattered throughout the work; they are only intended to illustrate the text, and were sketched while writing it, without further aim; neither do we pretend to have entered fully into the principles or practice of hydraulics, our object being to select, construct, and arrange useful hydraulic formulæ, experiments, and Tables for the use of all classes of engineers. We make, however, no apology for preferring formulæ, in their simplicity, to any written rules which may be deduced from them, as being in every way more general, concise, and elegant. In conclusion, it is hoped that any errors of consequence in the work, will be found corrected in the errata.

[^5]
DISCHARGE OF WATER

FROM

ORIFICES, WEIRS, PIPES, AND RIVERS.

SECTION I.

APPLICATION AND USE OF THE TABLES, FORMULE, \&c.
To find the velocity of a falling body from the height fallen, or the height fallen from the velocity.

Rule.-Multiply the square root of the height IN INCHES BY $27 \cdot 8$, AND THE PRODUCT WILL BE THE VELOCITY IN INCHES. To FIND THE HEIGHT FROM THE VELOCITY, SQUARE THE VELOCITY IN INCHES AND DIVIDE THE SQUARE BY 772.84 , THE QUOTIENT WILL BE THE height in inches. See equation (1). Table II., column 1, will give the velocity from the height, found in the column of "altitudes," or the height from the velocity, directly.

Example 1.-What is the velocity acquired by a heavy body falling $\frac{1}{8}$ th of an inch? In the Table opposite to $\frac{1}{8}$ th of an inch, found in the column headed "altitudes h," we find 9.829 in column 1 , for the required velocity in inches per second.

Example 2.-What is the velocity acquired by a fall of 11 feet 3 inches? Opposite to 11 feet 3 inches, as before, we find 323.007 inches, for the velocity required.

Example 3.-What height must a heavy body fall from to acquire a velocity of $40 \frac{1}{2}$ feet per second? Here $40 \frac{1}{2}$ feet equal 486 inches, opposite to the nearest number to which, found in column 1, we find 25 feet 6 inches for the required fall. In this example, the nearest number to 486
found in the Table is $486 \cdot 301$. The difference 301 corresponds, very nearly, to $\frac{3}{8}$ ths of an inch in altitude, and, therefore, the true head according to the rule would be $25^{\prime} 6 \frac{8}{8}{ }^{\prime \prime}$; but for all practical purposes the difference is immaterial.

By means of Table II. we can find directly, or by simple interpolation, the velocity due to all heights from $\frac{1}{100}$ part of an inch up to 40 feet, and the heights from the velocities. For a greater height than 40 feet it may be divided by 4,9 , or some square number s^{2}, and the velocity found for the quotient, from the Table, multiplied by 2,3 , or s, the square root of the divisor, will give the velocity required.

Example 4.-What is the velocity acquired by a fall of 45 feet? $\frac{45}{4}=11^{\prime} 3^{\prime \prime}$, the velocity corresponding to which, found from the Table, is $323 \cdot 007$. Hence,

$$
323.007 \times \sqrt{4}=323.007 \times 2=646^{\prime \prime} \cdot 014=53^{\prime} 10^{\prime \prime} \cdot 014
$$

is the velocity per second required. The reverse of this example is equally simple.

Columus 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 in the Table, give the values of $\sqrt{2 g h}$ multiplied by the coefficients therein stated. These columns will be found of great practical use in finding the mean velocities in the vena-contracta, in the orifice, and in short tubes; and consequently also in finding the mechanical force and discharge. An examination of the coefficients in the small Tables in Section III., and also those in Tables I. and V., at the end of the work, will show how much they vary; but those most generally useful and their products by the theoretical velocity due to different heads, up to 40 feet, are given in the columns referred to.

Example 5.-What is the discharge from an orifice 4 inches by 8 inches, the centre sunk 20 feet below the surface of a reservoir? From Table II., we find 430.676 inches equal 35.89 feet for the theoretical velocity of discharge : hence, $\frac{8 \times 4}{144} \times 35.89=\frac{2}{9} \times 35.89=7.976$ cubic
feet per second is the theoretical discharge. If the discharge takes place through a thin plate, or if the inner arrisses next the water in the reservoir be perfectly square, and the water in flowing out does not fill the passage so as to convert the orifice into a short tube, the coefficient will be found from Table I. to be 603 . The true discharge then is 7.976 人 $\cdot 603=4 \cdot 809$ cubic feet per second.

For the determination of the coefficient suited to any particular orifice, and the circumstances of its position, we must refer generally to the following pages. If in the example just given, the arrisses next the reservoir were rounded into the form of the contracted vein, see Fig. 4, the coefficient would increase from 603 to 974 or 956 , for a passage not exceeding a couple of feet in length. With the former the discharge would be $7.976 \times 974=7.769$ cubic feet, and with the latter $7 \cdot 976 \times \cdot 956=7 \cdot 625$ cubic feet. We may find from Table II. the latter results otherwise. With a head of 20 feet and the coefficient 974 , the velocity is 419.48 inches $=34.957$ feet; hence, the discharge is $\frac{2}{9} \times 34.957=7.768$ cubic feet. With a coefficient of 956 , the velocity is 411.73 inches $=34.31$ feet, and $\frac{2}{9} \times 34.31=$ $7 \cdot 624$ cubic feet. These results are the same, practically, as those previously found.

If the inner arrisses be square, and the passage out be from 18 inches to 2 feet long, the orifice will be converted into a short tube, the coefficient for which is 815 . With this coefficient, and a head of 20 feet, we find as before, from Table II., the mean velocity of discharge equals 351 inches $=29.25$ feet; hence, the discharge now is 2 $\frac{2}{9} \times 29 \cdot 25=6.5$ cubic feet per second.

The velocities in inches per second, given in Tables II. and VIII., or elsewhere in the following pages, may be converted into velocities in feet per minute, by multiplying by 5 , equal $\frac{60}{12}$.

Example 6.-The discharge from a small orifice having its centre placed 10 feet below the surface of a reservoir is 18 feet per mimute, what will be the discharge from the same orifice at a depth of 17 fcet? The discharges will be to each other as $\sqrt{10}: \sqrt{17}$, or as $1: \sqrt{1 \cdot 7}$; or, from Table III., as $1: 1.3038$, whence we get the discharge sought equal $1.3038 \times 18=23.4684$ cubic feet.

Example 7.-What is the value of the expression $c_{d}\left\{1+\frac{c_{d}^{2}}{m^{2}-c_{d}^{2}}\right\}^{3}$ in equation (45), when $c_{d}=\cdot 617$, and $m=2$? Here we have-

$$
\frac{c_{d}^{2}}{m^{2}-c_{d}^{2}}=\frac{\cdot 617^{2}}{4-617^{2}}=\frac{3807}{3 \cdot 6193}=\cdot 1052 ;
$$

whence the expression becomes equal to $617(1 \cdot 1052)^{\frac{1}{2}}$ equal, from Table III., $617 \times 1 \cdot 0513=\cdot 649$, the value sought. Table V. contains the values of this expression for various values of c_{d} and m, which latter, m, stands for the ratio of the channel to an orifice; and we can immediately find from it, opposite 2 in the first column, and under the coefficient $\cdot 617$ in the sixth column, $\cdot 649$, the value sought. When the head due to the pressure, and the velocity of approach, are both known, we can determine the new coefficient of discharge by the above expression, and thence the discharge itself. The coefficient suited to the velocity of approach is, however, to be found directly in Table V.

Example 8.-What is the discharge from an orifice 17 inches long and 9 inches deep, having the upper edge placed 4 inches below the surface, and the lower edge 13 inches? The expression for the discharge is

$$
\frac{2}{3} \times \mathrm{A} \sqrt{2 g d} \times c_{\mathrm{d}}\left\{\left(1+\frac{h_{\mathrm{t}}}{d}\right)^{\frac{3}{2}}-\left(\frac{h_{\mathrm{t}}}{d}\right)^{\frac{3}{2}}\right\}
$$

equation (43), in which we must take $d=9$ inches; $h_{t}=9$ inches; $A=17 \times 9=153$ square inches; and $\sqrt{2 g d}$, found from Table II. $=83.4$ inches. We have, also, $\frac{h_{\mathrm{t}}}{d}=\frac{4}{9}=\cdot 444$, and hence the value of

$$
(1 \cdot 444)^{\frac{3}{2}}-(\cdot 444)^{\frac{1}{2}}=(\text { from TABLE IV.) } 1 \cdot 44
$$

Assuming the coefficient of discharge to be $\cdot 617$, we then have the discharge in cubic inches per second equal to

$$
\begin{aligned}
& \frac{2}{3} \times 153 \times 83.4 \times 617 \times 1 \cdot 44= \\
& \frac{2}{3} \times 12760 \cdot 2 \times 88848=7558
\end{aligned}
$$

Consequently, $\frac{7558}{1728}=4.374$ is the discharge in cubic feet per second. From equation (6), we get the discharge equal to

$$
\frac{2}{3} \times \cdot 617 \times 27: 8 \times 17 \times\left\{13^{\frac{3}{2}}-4^{\frac{3}{2}}\right\}
$$

But $13^{\frac{3}{2}}-4^{\frac{3}{2}}=46.872-8$, from Table IV., equal to 38.872 , whence the discharge is
$\frac{2}{3} \times 617 \times 27.8 \times 17 \times 38.872=11.4351 \times 17 \times 38.872=$ $194.3967 \times 38.872=7557$ cubic inches $=4.374$ cubic feet, the same as before.

It is shown in equation (31), that by using the mean depth for orifices near the surface, the discharge will approximate very closely to the true discharge, and that even for weirs the error will not exceed 6 per cent. The discharge is then expressed by $617 \sqrt{2 g \times 8 \frac{1}{2}} \times 9 \times 17=$ (from $\mathrm{T}_{\text {able III }}$) $50.01 \times 153=7651.53$ cubic inches $=4.427$ cubic feet per second. The head to the centre of the orifice is here $8 \frac{1}{2}$ inches, and the depth of the orifice 9 inches, therefore, in equation (31), $h=d$ very nearly; and, therefore, this result must be multiplied by 989 , as shown in that equation; then $989 \times 4.427=4.378$ cubic feet, which gives a result differing from those otherwise found, by a very small quantity, which, practically, is of no value. By means of Table VI. the discharge from rectangular orifices near the surface can be found with very great facility.

We may always find the discharge from an orifice near the surface with sufficient accuracy by taking the head to the centre, as if it were sunk to a considerable depth, and
then applying the corrections given in equation (31); or if the orifice be circular, those given in equation (28).

Example 9.-What is the discharge from a circular orifice 4 inches in diameter, having its centre placed 4 inches below the surface, when the coefficient of discharge is 617 ? The area of the orifice is $4 \times 4 \times \cdot 7854=12 \cdot 566$ square inches. The velocity at the mean depth of 4 inches, with a coefficient of $\cdot 617$, is $34 \cdot 31$ inches, whence the discharge is $12 \cdot 566 \times 34 \cdot 31=431 \cdot 139$ cubic inches $=\cdot 2496$ cubic feet per second, or 1.497 cubic feet per minute. By means of Table IX. the discharge in cubic feet per minute can be found very readily when the velocity, 34.31 inches per second, is known. Thus,

	Inches.					Cubic feet.	
For a velocity of	$30 \cdot 00$	the discharge is	$1 \cdot 3089$				
$"$	$"$	$4 \cdot 00$	$"$	$"$	$\cdot 1745$		
$"$	$"$	$\cdot 30$	$"$	$"$	0131		
$"$	$"$	$\cdot 01$	$"$	$"$	$\cdot 0004$		
$"$	$"$	$34 \cdot 31$,	$"$	$1 \cdot 4969$		

By applying the coefficient found from equation (28), which is 992 , when the depth at the centre is twice the radius, as it is in this example, we get $992 \times 1 \cdot 497=1.485$ for the discharge in cubic feet per minute.

The application of Table VI. will enable us to find the discharge from rectangular orifices near the surface very quickly. Resuming " Example 8," the discharge may be found from this Table for each foot in length of the orifice, as follows. The discharge in cubic feet per minute, when the coefficient is 617 for a notch 1 foot long and 13 inches deep, is 223.323 ; and for a notch of 4 inches deep, $38 \cdot 116$; therefore, the discharge from an orifice 9 inches deep, with the upper edge 4 inches below the surface, is 223.323 $38 \cdot 116=185 \cdot 207$ cubic feet per minute. But as the length of the orifice is 17 inches, this must be multiplied by $\frac{17}{12}$, and the product 262.377 is the discharge in cubic feet per minute; this is equal to a discharge of 4.373 cubic feet per second,
which agrees with that before found. This is the simplest way of finding the discharge from rectangular orifices near the surface.

Example 10.-What is the discharge in cubic feet per minute, from an orifice 2 feet 6 inches long and 7 inches deep, the upper edge being 3 inches below the surface, and the coefficient of discharge -628? From Table VI. we find the discharge from a notch 1 foot long and 10 inches deep to be $153 \cdot 353$, and for a notch 3 inches deep, 25•199. The difference, or $128 \cdot 154$, multiplied by $2 \frac{1}{2}$, will be the discharge required; viz. $2 \frac{1}{2} \times 128 \cdot 154=320 \cdot 385$ cubic feet per minute.

Example 11.-The size of a channel is 2.75 times the size of an orifice, what is the coefficient of discharge when that for a very large channel in proportion to the orifice is 628 ? We find from Table V. the coefficient sought to be $\cdot 645$, when the approaching water suffers full contraction. By attending to the auxiliary Tables in the text, we find, for this case, $\frac{\text { orifice }}{\text { channel }}=\frac{1}{2 \cdot 75}=\cdot 36$. We must, therefore, multiply 2.75 by 857 , which gives 2.36 for the ratio of the mean velocities in the orifice and approaching it. With this new value of the ratio of the channel to the orifice, we find, as before, the value of the coefficient from Table V. to be -651. The remarks throughout the work, with the auxiliary tables, will be found of much use in determining the coefficients for different ratios of the channel to the orifice, notch, or weir, and the corrections suited to each. If in this example we were considering, other things being the same, the alteration in the coefficient for a notch, or weir, it would be found from the Table, column 4, to be 672 instead of $\cdot 645$ found in column 3, for an orifice sunk some depth below the surface. For the corrections suited to mean and central velocity, and to the nature of the approaches, we must refer to the body of this work and the auxiliary tables.

Example 12.-What is the discharge over a weir 50 feet long; the circumstances of the overfall, crest, and ap. proaches, being such that the coefficient of discharge is $\cdot 617$,
when the head measured from the water in the weir basin, 6 feet above the crest, is $17 \frac{1}{2}$ inches? Table VI. will give the discharge in cubic feet per minute, over each foot in length of weir, for various depths up to 6 feet. It is divided into two parts; the first for " greater coefficients," viz. ${ }^{6} 66$ to $\cdot 617$; and the second for "lesser coefficients," viz. 606 to $\cdot 518$. The coefficient assumed being $\cdot 617$, we find the discharge over 1 foot in length, with a head of $17 \frac{1}{2}$ inches, to be 348.799 cubic feet per minute; hence the required discharge is $50 \times 348.799=17439.95$ cubic feet.

The determination of the coefficient suited to the circumstances of the overfall, crest, approaches, and approaching section, will be found discussed elsewhere through this work. The valuable Table derived from Mr. Blackwell's experiments will also be of use; but the heads being taken at a much greater distance back from the crest than is generally usual, the coefficients taken from it for heads greater than 5 or 6 inches, will be found under the true ones for heads measured immediately at or about 6 feet, above the crest. For heads measured on the crest, the small Table of coefficients in Section III., applicable to the purpose, will be of use.

Example 13.-What is the mean velocity in a large channel, when the maximum velocity along the central line of the surface is 31 inches per second? Table VII. gives 25.89 inches for the required velocity, and for smaller channels 24.86 inches. In order to find the mean velocity at the surface from the maximum central velocity, the latter must be multiplied by 914 .

The velocity at the surface is best found by means of a floating hollow ball, which just rises out of the water. The velocity at a given depth is best found by means of two hollow balls connected with a link, the lower being made heavier than the upper, and both so weighted by the admission of a certain quantity of water that they shall float along the current, the upper one being in advance but nearly vertical over the other. The velocity of both will then be the velocity at half the depth between them. The velocity at the
surface, found by means of a single ball, being also found, the velocity lost at the half depth is had by subtracting the common velocity due to the linked balls from that of the single ball at the surface. The velocity at any given depth is then easily found by a simple proportion; but the result will be most accurate when the given depth is nearly half the distance between the balls, which distance can never exceed the depth of the channel. Pitot's tube, Woltmann's tachometer, the hydrometric pendulum, the rheometer, and several other hydrometers, have been used for finding the velocity; but these instruments require certain corrections suited to each separate instrument, as well as kind of instrument, and are not so correct or simple for measuring the velocity in open channels as a ball and linked balls.

Example 14.-What is the discharge from a river having a surface inclination of 18 inches per mile, or 1 in 3520, 40 feet wide, with nearly vertical banks, and 3 feet deep? The area is $40 \times 3=120$ feet, and the border $40+2 \times 3$ $=46$ feet; therefore the hydraulic mean depth is $\frac{120}{46}$ $=2 \cdot 61$ feet $=2$ feet $7 \cdot 3$ inches*. With this and the inclination we find from Table VIII. $28.27+2.75 \times \frac{1 \cdot 3}{6}$ $=28.87$ inches per second $=28.87 \times 5=144.35$ feet per minute for the mean velocity; hence we get 144.35×120 $=1732.2$ cubic feet per minute for the required discharge. For channels with sloping banks we have only to divide the border, which is always known, into the area for the hydraulic mean depth, with which, and the surface inclination, we can always find the velocity by Table VIII., and thence the discharge. Unless the banks of rivers be protected by stone pavement or otherwise, the slopes will not continue permanent; it is therefore almost useless to give the discharges for channels of particular widths and side slopes. When the mean velocity is once known, the remaining calculations are

[^6]those of mere mensuration, and they should be made separately.

Example 15.-The diameter of a very long pipe is $1 \frac{1}{2}$ inch, and the rate of inclination, or whole length of the pipe divided by the whole fall, is 1 in $71 \frac{1}{2}$; what is the discharge in cubic feet per minute? The hydraulic mean depth, or mean radius, is $\frac{1 \cdot 5}{4}=375$ inches $=\frac{3}{8}$ inch. Consequently we find from Table VIII. the velocity in inches per second equal to $25.09-1.92 \times \frac{1.5}{10}=25.09-\cdot 29=24.80$. The discharge in cubic feet per minute for a $1 \frac{1}{2}$-inch pipe is now found most readily by means of Table IX., as follows:-

Inches.				Cubic feet.		
For a velocity of	20.0	the discharge is	$1 \cdot 227$			
$"$	$"$	4.0	$"$	$"$	$\cdot 245$	
$"$	$"$.8	$"$	$"$.049	
$"$	$"$	$24 \cdot 8$	$"$	$\#$	1.521	

Whence the discharge in cubic feet per minute is 1.521 .
For short pipes, of 100 or 200 feet in length and under, the height due to the velocity and orifice of entry must be deducted from the whole height to find the proper hydraulic inclination, and also the height due to bends, curves, cocks, slides, and erogation. The neglect of these corrections has led some writers into mistakes in applying certain formulæ, and in testing them by experimental results obtained with short pipes. We shall now apply the Tables to the determination of the discharge from short pipes, and compare the results with experiment, referring generally to equation (153) and the remarks preceding it for a correct and direct solution.

Example 16.-What is the discharge in cubic feet per minute from a pipe 100 feet long, with a fall or head of 35 inches at the lower end, when the diameter is $1 \frac{1}{2}$ inch? Find also the discharge from pipes 80 feet, 60 feet, 40 feet, and 20 feet, of the same diameter and having the same head. If the water be admitted by a stop-cock at the upper end, the coefficient due to the orifice of entry will probably be about 75 or less, 815 being that for a clear entry to
a short cylindrical tube. The approximate inclination is $\frac{100 \times 12}{35}=1$ in 34.3 ; but as a portion of the fall must be absorbed by the velocity and orifice of entry, we may assume for the present that the inclination is 1 in 35 . With this inclination and the mean radius $\frac{1 \frac{1}{2}}{4}=\frac{3}{8}$ inches, we find the mean velocity from Table VIII. to be 38.06 inches. Now when the coefficient due to the orifice of entry and velocity is $\cdot 75$, we find from Table II. the head due to this velocity to be $3 \frac{3}{8}$ inches nearly, whence $35-3 \frac{3}{8}=31 \frac{5}{8}=31 \cdot 625$ inches is the height due to friction, and $\frac{100 \times 12}{31 \cdot 625}$ equals 1 in $37 \cdot 9$, the inclination, very nearly. With this new inclination we find, as before, from Table VIII. the mean velocity of discharge to be now 36.35 inches ; and by repeating the operation we shall find the velocity to any degree of accuracy in accordance with the table, and the shorter the pipe is, the oftener must it be repeated. The height due to 36.35 inches taken from Table II. as before, with a coefficient of 750 , is $3 \frac{1}{8}=3 \cdot 125$ inches. The corrected fall due to the friction is now $35-3 \cdot 125=31 \cdot 875$, and $\frac{1200}{31 \cdot 875}$ equal 1 in $37 \cdot 6$, the corrected inclination. With this inclination we find the corrected velocity to be now 36.53 inches per second. It is not necessary to repeat the operation again. The discharge determined from Table IX. is as follows:-

Inches.					Cubic feet.		
For a velocity of	30.00	the discharge is	1.841				
$"$	$"$	6.00	$"$	$"$.368		
$"$	$"$.50	$"$	$"$.031		
$"$	$"$	-03	$"$	$"$	-002		
$"$	$"$	36.53	$"$	$"$	$2 \cdot 242$		

The experimental discharge found by Mr. Provis was $2 \cdot 264$ cubic feet per minute in one experiment, and 2.285 in another. The discharge from the shorter pipes may be found in a similar manner, and we place the results alongside
the experimental ones given in the work referred to below* in the following short table:-

EXPERIMENTAL AND CALOULATED DISOHARGES FROM SHORT PIPES.

100	35	$2 \cdot 275$	37-082	31	317	$37 \cdot 6$	36.53	$2 \cdot 242$
80	35	$2 \cdot 500$	40.750	$3 \frac{3}{4}$	$31 \frac{1}{4}$	$30 \cdot 8$	41.18	$2 \cdot 521$
60	35	2.874	$46 \cdot 846$	5	30	24.0	48.02	2.946
40	35	3.504	$57 \cdot 115$	$7 \frac{1}{2}$	$27 \frac{1}{2}$	$17 \cdot 5$	58.50	$3 \cdot 590$
20	35	4.528	73.801	121 $\frac{1}{2}$	$22 \frac{1}{2}$	10.7	78.61	4.824

The velocities in the fourth column have been calculated by the writer from the observed quantities discharged, from which the height due to the orifice of entry and velocity in column 5 is determined, and thence the quantities in the other columns as above shown. The differences between the experimental and calculated results are not large, and had we used a lesser coefficient than 750 for the velocity, stop-cock, and orifice of entry, say $\cdot 715$, the calculated results, and those in all of Mr. Provis's experiments in the work referred to, would be nearly identical \dagger.

Example 17.-It is proposed to supply a reservoir near the town of Drogheda with water by a long pipe, having an inclination of 1 in 480, the daily supply to be 80,000 cubic feet; what must the diameter of the pipe be? The discharge

[^7]per minute must be $\frac{80,000}{1440}=56$ cubic feet, nearly. Assume a pipe whose "mean radius" is 1 inch, or diameter 4 inches, and the velocity per second found from Table VIII. will be 14.41 inches. We then have from Table IX.,

For a velocity of		Inches.		Cubic feet.
		10.00	a discharge of	4:363
"	"	4.00	"	1.745
"	"	-40	" "	$\cdot 175$
"	"	01	" "	-004
"	"	14.41	" "	6.287

The discharge from a pipe 4 inches in diameter would be therefore 6.287 cubic feet per minute. We then have

$$
4^{\frac{5}{2}}: d^{\frac{5}{2}}:: 6 \cdot 287: 56, \text { or } 1: d^{\frac{5}{2}}:: \cdot 196: 56:: 1: 286
$$

therefore $d^{\frac{5}{2}}=286$, and $d=9 \cdot 61$ inches, nearly, as found from Table IV., \&c. This is the required diameter. It is to be observed that this diameter will not agree exactly with Du Buât's formula, because by it the discharges are not strictly as $d^{\frac{5}{2}}$, but in practice the difference is immaterial.

Example 18.-The area of a channel is 50 square feet, and the border $20 \cdot 6$ feet; the surface has an inclination of 4 inches in a mile; what is the mean velocity of discharge? $\frac{50}{20 \cdot 6}=2 \cdot 427$ feet $=29 \cdot 124$ inches is the hydraulic mean depth; and we get from Table VIII. $12.03-\frac{1.30 \times 876}{6}$
$=12.03-\cdot 19=11.84$ inches per second for the required velocity. Though this velocity will be found under the true value for straight clear channels, it will yet be more correct for ordinary river courses, with bends and turns, of the dimensions given, than the velocity found from equation (114). For a straight clear channel of these dimensions, Watt found the mean velocity to be 13.35 inches. See Example 9, page 6.

Example 19.-A pipe 5 inches in diameter, 14637 feet in length, has a fall of 44 feet; what is the discharge in cubic
feet per minute? The inclination is $\frac{14637}{44}=332 \cdot 7$, and mean radius $\frac{5}{4}=1 \frac{1}{4}$. We then find from Table VIII. the velocity equal to $19.81+\frac{.41 \times 4.8}{12 \cdot 5}=19 \cdot 81+\cdot 16=19 \cdot 97$, or 20 inches per second very nearly; and by Table IX. the discharge in cubic feet per minute is, as before found to be, $13 \cdot 635$.

Example 20.-What is the velocity of discharge from a pipe or culvert 4 feet in diameter, having a fall of 1 foot to a mile? Here $s=\frac{1}{5280}$, and $r=1$ foot. We then find the velocity of discharge from Table VIII. to be 14.09 inches equal $1 \cdot 174$ feet per second. By calculating from the different formulæ referred to below, we shall find the velocities as follows:-

		Velocity in feet.	
Reduction of Du Buat's formula equation (81) $1 \cdot 174$			
"	Girard's do. (Canals with aquatic plants)	(86)	. 521
"	Prony's do. (Canals).		$1 \cdot 201$
"	Prony's do. (Pipes)		$1 \cdot 257$
"	Prony's do. (Pipes and Canals)		$1 \cdot 229$
"	Eytelwein's do. (Rivers)		1-200
"	Eytelwein's do. (Rivers)		$1 \cdot 285$
"	Eytelwein's do. (Pipes)		$1 \cdot 364$
"	Eytelwein's do. (Pipes)		$1 \cdot 350$
"	Dr. Young's do.		$1 \cdot 120$
"	D'Aübuisson's do. (Pipes) .		$1 \cdot 259$
",	D'Aubuisson's do. (Rivers)		$1 \cdot 199$
"	The writer's do. (Clear straight Channels)	(114)	$1 \cdot 268$
	Weïsbach's do. (Pipes).	(119)	$1 \cdot 285$

We have calculated this example from the several formulæ above referred to, whether for pipes or rivers, in order that the results may be more readily compared. The formulæ from which the velocity and tables for the discharge in rivers are usually calculated is, for measures in feet, $v=94 \cdot 17 \sqrt{r s}$. This gives the mean velocity, in the foregoing example, equal to 1.295 feet per second, which is
certainly much too high if bends and curves be not allowed for separately. For all practical purposes the result of Du Buât's general formula, equation (81), should be adopted; and we have, accordingly, preferred calculating the results in Table VIII. from it, notwithstanding the greater additional labour required in the calculations, than from any other.

Dr. Young's formula gives less results for rivers and large pipes than Du Buât's, but they are too small unless where the curves and bends are numerous and sudden. Girard's formula (86) is only suited for canals containing aquatic plants, and must be increased by about $\cdot 7$ foot per second to find the velocity in clear channels. A knowledge of various formulæ, and their comparative results, applied to any particular case, will be found of great value to the hydraulic engineer, and the differences in the results show the probable amount of error.

Example 21.-Water flowing down a river rises to a height of $10 \frac{1}{2}$ inches on a weir 62 feet long; to what height will the same quantity of water rise, on a weir similarly circumstanced, 120 feet long? $\frac{62}{120}=\cdot 517$, nearly. In
Table X. we find, by inspection, opposite to $\cdot 517$, the ratio of the lengths, the coefficient 644 , rejecting the fourth place of decimals; whence $10 \frac{1}{2} \times 644=6.76$ inches, the height required. When the height is given in inches it is not necessary to take out the coefficient to further than two places of decimals.

Example 22.-The head on a weir 220 feet long is 6 inches; what will the head be on a weir 60 feet long, similarly circumstanced, the same quantity of water flowing over each? $\frac{60}{220}=\cdot 273$. As this lies between $\cdot 27$ and $\cdot 28$, we find from Table X. the coefficient 4208 ; hence $\frac{6}{\cdot 4208}$ $=14 \cdot 26$ inches, the head required.

Table X. will be found equally applicable in finding the head at the pass into weir basins and in contracted water channels. See Section X.

Example 23.-A river channel 40 feet wide and $4 \cdot 5$ feet deep is to be altered and widened to 70 feet; what must the depth of the new channel be so that the surface inclination and discharge shall remain unaltered? In "Table XI., op equal discharging rectangular Channels," we find opposite to $4 \cdot 54$, in the column of 40 feet widths, 3 in the column of 70 feet widths, which is the depth required.

Example 24.-It is necessary to unwater a river channel 70 feet wide and 1 foot deep, by a rectangular side cut 10 feet wide; what must the depth of the side cut be, the surface inclination remaining the same as in the old channel? In Table XI. we find 4.5 feet for the required depth. When the width of a channel remains constant, the discharge varies as $\sqrt{r s} \times d$, in which d is the depth; and when the width is very large compared with the depth, the hydraulic mean depth r approximates very closely to the depth d, and $d=r$; consequently the discharge varies as $d^{\frac{3}{2}} \times s^{\frac{1}{2}}$, and when it is given $d^{\frac{3}{2}}$ must vary inversely as $s^{\frac{1}{2}}$; or more generally $d r^{\frac{1}{2}}$ must vary inversely, as $s^{\frac{1}{2}}$, when the width and discharge remain constant.

In narrow cuts for unwatering, it is prudent to make the depth of the water half the width of the cut very nearly, when local circumstances will admit of these proportions*; for then a maximum effect will be obtained with the least possible quantity of excavation; but for rivers and permanent channels the proper relation of the depth to the width must be regulated by the principles referred to in Section IX.

Table XI. is equally applicable, whether the measures be in feet, yards, or any other standards.

[^8]
SECTION II.

FORMULE FOR THE VELOCITY AND DISCHARGE FROM ORIFICES, WEIRS, AND NOTCHES.-COEFFICIENTS OF VELOCITY, CONTRACTION, AND DISCHARGE.-PRACTICAL REMARKS ON THE USE OF THE FORMULEE.

The quantity of water discharged in a given time through an aperture of a given area in the side or bottom of a vessel, is modified by different circumstances, and varies more or less with the form, position, and depth of the orifice; but the discharge may be easily found, when we have determined the velocity and the contraction of the fluid vein.

VELOCITY.

If g be the velocity acquired by a heavy body falling from a state of rest for one second, in vacuo, then it has been shown by writers on mechanics, that the velocity v per second acquired by falling from a height h, will be

$$
\begin{equation*}
v=\sqrt{2 g h .} \tag{1.}
\end{equation*}
$$

The numerical value of g varies with the latitude; we shall assume $2 g=772 \cdot 84$ inches $=64 \cdot 403$ feet. These will give for measures in inches,

$$
v=27 \cdot 8 \sqrt{ } \bar{h}, * \text { and } h=\frac{v^{2}}{772 \cdot 84}
$$

and for measures in feet,

$$
v=8.025 \sqrt{h}, \text { and } h=\frac{v^{2}}{64.4 \cup 3} \cdot \dagger
$$

* The velocities for different heights are given in the column number 1, Table II.
\dagger The force of gravity increases with the latitude, and decreases with the altitude above the level of the sea, but not to any considerable extent. If λ be the latitude, and h the altitude, in feet, above the sea level, then we may, generally, take

$$
g=32 \cdot 17(1-.0029 \cos 2 \lambda) \times\left(1-\frac{2 h}{R}\right),
$$

in which R , the radius of the earth at the given latitude is equal to

$$
20887600(1+\cdot 0016 \cos 2 \lambda)
$$

COEFFICIEN' OF VELOCITY.

Let the vessel $\mathbf{A b c d}$, Fig. 1, be filled with water to the level ef: then it has been found by experiment that the velocity of discharge through a small orifice o, in a thin plate, at the distance of half the diameter outside it, will be very nearly that due to a heavy body falling freely from the height h, of the surface of the water EF, above the centre

of the orifice. The velocity of discharge determined by the equation $v=\sqrt{2 g h}$, for falling bodies, is, therefore, called the theoretical velocity. If we now put v_{d} for the actual mean velocity of discharge, and c_{v} for its ratio to the theoretical velocity v, we shall get $v_{\mathrm{d}}=c_{\mathrm{v}} v$; and by substituting for v, its value $\sqrt{2 g h}$.

$$
\begin{equation*}
v_{\mathrm{d}}=c_{\mathrm{v}} \sqrt{2 g h}, \tag{2.}
\end{equation*}
$$

c_{v} is termed the coefficient of velocity; its numerical value at half the diameter from the orifice is about 974 , and, consequently,

$$
v_{\mathrm{d}}=-974 \sqrt{2 g h} .
$$

This for measures in inches becomes

$$
v_{\mathrm{d}}=27 \cdot 077 \sqrt{h},{ }^{*}
$$

and for measures in feet

$$
v_{\mathrm{d}}=7 \cdot 816 \sqrt{ } \bar{h} .
$$

* The velocities for different heights calculated from this formula, are given in the column numbered 2, Table II.

The orifice α, is termed an horizontal orifice in Fig. 1, and in Fig. 2 a vertical or lateral orifice. When small, each is found to have practically the same velocity of discharge, when the centres of the contracted sections are at the same depth, h, below the surface; but when lateral orifices are large, or rather deep, the velocity at the centre is not, even practically, the mean velocity; and in thick plates and modified forms of adjutage, the mean velocities are found to vary.

VENA-CONTRACTA AND CONTRACTION.
It has been found that the diameter of a column issuing from a circular orifice in a thin plate, is contracted to very nearly eight-tenths of the whole diameter at the distance of the radius from it, and that at this distance the contraction is greatest. The ratio of the diameter of the orifice to that of the contracted vein, vena-contracta, is not always found constant by the same or different experimentalists.
Newton makes it 1: 841, and, therefore, that of the areas as 1: 707

Bayer's value for the contraction has been determined on the hypothesis, that the velocities of the particles of water as they approach the orifice from all sides, are inversely as the squares of their distances from its centre; and the calculations made of the discharge from circular, square, and rectangular orifices, on this hypothesis, coincide pretty closely with experiments.

FORM OF THE CONTRACTED VEIN.

Let or $=d$, Fig. 3, be the diameter of an orifice; then at the distance $\mathrm{R} s=\frac{d}{2}$ the contraction is found to be greatest;
we shall assume the contracted diameter or $=7854 \mathrm{~d}$. If we suppose the fluid column between or and or to be so reduced, that the curve lines $\mathrm{R} r$ and $o o$ shall become arcs
 of circles, then it is easy to show from the properties of the circle, that the radius $\mathbf{c} r$ must be equal to $1 \cdot 22 \mathrm{~d}$. The mean velocity in the orifice, or, is to that in the venacontracta, or, as $\cdot 617: 1$; and the mouth piece, rroo, Fig. 4, in which $\mathrm{o} p=\frac{1}{2} \mathrm{or}$, and or $=617 \mathrm{or}$, will give for the velocity of discharge at o, r,

$$
v_{\mathrm{d}}=\cdot 974 \sqrt{2 g h}=7.816 \sqrt{\bar{h}}
$$

in feet very nearly. In speaking of the velocity of discharge from orifices in thin plates, we always take it to be the velocity in the vena-contracta, and not that in the orifice itself, unless in Table II., where the mean velocity in the latter, as representing $c_{\mathrm{d}} \sqrt{2 g h}$, is also given.

coefficients of contraction and discharge.

If we put a for the area of the orifice or, Fig. 3, and $c_{\mathrm{c}} \times \mathrm{A}$ for that of the contracted section at or, then c_{c} is called the coefficient of contraction. The velocity of discharge v_{d} is equal to $c_{\mathrm{v}} \sqrt{ } \overline{2 g h}$, equation (2). If we multiply this by the area of the contracted section $c_{c} \times A$, we shall get for the discharge

$$
\mathrm{D}=c_{\mathrm{v}} \times c_{\mathrm{c}} \times \mathrm{A} \sqrt{2 g h} . *
$$

* The expression $c_{\mathrm{v}} c_{\mathrm{c}} \sqrt{2 g h}=c_{\mathrm{d}} \sqrt{2 g h}$ is the coefficient of the area A, and, consequently, represents the mean velocity in the orifice, the coefficient of which is, therefore, equal to c_{d}. The values of $c_{\mathrm{d}} \sqrt{\overline{2 g h}}$ for different heights and coefficients, are given in TAble II,

It is evident $A \sqrt{2 g h}$ would be the discharge if there were no contraction and no change of velocity due to the height h; $c_{\mathrm{v}} \times c_{\mathrm{e}}$ is therefore equal to the coefficient of discharge. If we call the latter c_{d}, we shall have the equation

$$
\begin{equation*}
c_{\mathrm{d}}=c_{\mathrm{v}} \times c_{\mathrm{c}} \tag{3.}
\end{equation*}
$$

and hence we perceive that the coefficient of discharge is equal to the product of the coefficients of velocity and contraction. In the foregoing expression for the discharge m, h must be so taken, that the velocity at that depth shall be the mean velocity in the orifice A. In full prismatic tubes the coefficients of velocity and discharge are equal to each other.

MEAN AND CENTRAL VELOCITY.

In order to find the mean velocity of discharge from an orifice, it is, in the first instance, necessary to determine the velocity due to each point in its surface, and the discharge itself; after which, the mean velocity is found by simply dividing the area of the orifice into the discharge. The velocity due to the height of water at the centre of a circular, square, or rectangular orifice, is not the mean velocity, nor is the latter in these, or other figures, that at the centre of gravity. When, however, an orifice is small in proportion to its depth in the water, the velocity of efflux determined for the centre approaches very closely to the mean velocity; and, indeed, at depths exceeding four times the depth of the orifice, the error in assuming the mean velocity to be that at the centre of the orifice is so small as to be of little or no practical consequence. It is, therefore, for greater simplicity, the practice to determine the velocity from the depth h of the centre of the orifice; and the coefficients of discharge and velocity in the following pages have been calculated from experiments on this assumption, unless it be otherwise stated.

DISCHARGES THROUGH ORIFICES OF DIFFERENT FORMS IN THIN PLATES.

The orifices which we have to deal with in practice are square, rectangular, or circular; and sometimes, perhaps, triangular or quadrangular in form. It will be necessary to
give here the theoretical expressions for the discharge and velocity for each kind of form, but as the demonstrations are unsuited to our present purposes we shall omit them.

TRAPEZOIDAL ORIFICES WITH TWO HORIZONTAL SIDES.
Put d for the vertical depth of an orifice, h_{t} for the altitude of pressure above the upper side, and h_{b} for the altitude above the lower side, we then get

$$
h_{\mathrm{b}}-h_{\mathrm{t}}=d
$$

Let us also represent the upper side of the orifice A or c, Fig. 5 , by l_{t}, and the lower side by l_{b}, and put $\frac{l_{\mathrm{t}}+l_{\mathrm{b}}}{2}=l$.

Now, when $l_{\mathrm{t}}=l_{\mathrm{b}}$, the trapezoid becomes a parallelogram whose length is l and depth d; and putting h for the depth to the centre of gravity, we get the equation

$$
h_{\mathrm{t}}+\frac{d}{2}=h_{\mathrm{b}}-\frac{d}{2}=h .
$$

The general expression for the discharge, D , through a trapezoidal orifice, A, is

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{2}{3}\left\{l_{\mathrm{b}} h_{\mathrm{b}}^{\frac{3}{2}}-l_{\mathrm{t}} h_{\mathrm{t}}^{\frac{3}{4}}+\frac{2}{5}\left(l_{\mathrm{t}}-l_{\mathrm{b}}\right) \frac{h_{\mathrm{b}}^{\frac{5}{3}}-h_{\mathrm{t}}^{\frac{5}{2}}}{d}\right\} \tag{4.}
\end{equation*}
$$

in which c_{d} is the coefficient of discharge; and when the smaller side is uppermost as at \mathbf{c},

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{2}{3}\left\{l_{\mathrm{b}} h_{\mathrm{b}}^{\frac{1}{2}}-l_{\mathrm{t}} h_{\mathrm{t}}^{\frac{3}{3}}-\frac{2}{5}\left(l_{\mathrm{b}}-l_{\mathrm{b}}\right) \frac{h_{\mathrm{b}}^{\frac{5}{2}}-l_{\mathrm{t}}^{\frac{5}{2}}}{d}\right\} . \tag{5.}
\end{equation*}
$$

PARALLELOGRAMIC AND RECTANGULAR ORIFICES.

When $l_{\mathrm{t}}=l_{\mathrm{b}}=l$, the orifice becomes a parallelogram, or a rectangle,, , and we have for the discharge

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{2}{3} l\left\{h_{\mathrm{b}}^{\frac{3}{3}}-h_{\mathrm{t}}^{\frac{3}{2}}\right\} . \tag{6.}
\end{equation*}
$$

NOTCHES.

When the upper sides of the orifices \mathbf{A}, B, and \mathbf{c}, rise to the surface as at $\mathrm{A}_{0}, \mathrm{~B}_{0}$, and $\mathrm{C}_{0}, h_{\mathrm{t}}$ becomes nothing, and we get - as $h_{\mathrm{b}}=d$-: for the trapezoidal notch A_{o} with the larger side up,

$$
\begin{align*}
& \mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{2}{3} d^{\frac{3}{2}}\left\{l_{\mathrm{b}}+\frac{2}{5}\left(l_{\mathrm{t}}-l_{\mathrm{b}}\right)\right\} \tag{7.}\\
&=\frac{2}{15} c_{\mathrm{d}} \sqrt{2 g} d^{\frac{3}{2}}\left(2 l_{\mathrm{t}}+3 l_{\mathrm{b}}\right) ;
\end{align*}
$$

for the trapezoidal notch, c_{0}, with the smaller side up,

$$
\begin{align*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{2}{3} d^{\frac{1}{2}}\left\{l_{\mathrm{b}}-\frac{2}{5}\right. & \left.\left(l_{\mathrm{b}}-l_{\mathrm{t}}\right)\right\} \tag{8.}\\
& =\frac{2}{15} c_{\mathrm{d}} \sqrt{2 g} d^{\frac{2}{2}}\left(2 l_{\mathrm{t}}+3 l_{\mathrm{b}}\right)
\end{align*}
$$

and for a parallelogramic or rectangular notch, \mathbf{B}_{o},

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{2}{3} l d^{\frac{3}{2}}=\frac{2}{3} c_{\mathrm{d}} l d^{\frac{3}{2}} \sqrt{2 g} . \tag{9.}
\end{equation*}
$$

It is easy to perceive that the forms of equations (4) and (5), and also of equations (7) and (8), are identical. The values for the discharge in equations (6) and (9) are equally applicable, whether the form of the orifice be a parallelogram or a rectangle, the only difference being in the value of the coefficient of discharge, c_{d}, which becomes slightly modified for each form of orifice.

TRIANGULAR ORIFICES WITH HORIZONTAL BASES AND RECTILINEAL ORIFICES IN GENERAL.

When the length of the lower side, $l_{\mathrm{b}}=0$, the orifice becomes a triangle, d, Fig. 6, with the base upwards.

In this case, equation (4) becomes

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{2}{3} l_{\mathrm{t}}\left\{\frac{2}{-} \times \frac{h_{\mathrm{b}}^{\frac{5}{2}}-l_{\mathrm{t}}^{\frac{1}{2}}}{d}-h_{\mathrm{t}}^{\frac{3}{3}}\right\} ; \tag{10.}
\end{equation*}
$$

which gives the discharge through the triangular orifice, \mathbf{D}.
When $l_{t}=0$, in equation (5), the orifice becomes a triangle \mathbf{F}, with the base downwards; in this case, we find for the value of the discharge,

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{2}{3} l_{\mathrm{b}}\left\{h_{\mathrm{b}}^{\frac{3}{3}}-\frac{2}{5} \times \frac{h_{\mathrm{b}}^{\frac{5}{5}}-h_{\mathrm{t}}^{\frac{5}{5}}}{d}\right\} . \tag{11.}
\end{equation*}
$$

As any triangular orifice whatever can be divided into two others by a line of division through one of the angles parallel to the horizon; and as the discharge from the triangular orifice \mathbf{D} or \mathbf{F} is the same as for any other on the same base and between the same parallels, we can easily find, by such a division, the discharge from any triangle not having one side parallel to the horizon.

If the triangle F be raised so that the base shall be on the same level with the upper side of the triangular orifice \mathbf{D}; if, also, the bases be equal, and also the depths, we shall find, by adding equations (10) and (11), and making the necessary changes indicated by the diagram,

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{4 l}{15 d}\left\{h_{\mathrm{b}}^{\frac{5}{2}}+h_{\mathrm{t}}^{\frac{5}{t}}-2 \times\left.\overline{h_{\mathrm{t}}+d}\right|^{\frac{i}{2}}\right\} \tag{12.}
\end{equation*}
$$

for the discharge from a parallelogram e with one diagonal horizontal. If the orifices D, P, and E rise to the surface of the water, as at $\mathrm{D}_{0}, \mathrm{E}_{0}$, and F_{o}, we shall then have for the discharge from the notch D_{0},

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{4}{15} l_{\mathrm{t}} d^{\frac{3}{2}}: \tag{13.}
\end{equation*}
$$

for the discharge from the notch F_{0},

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{6}{15} l_{\mathrm{b}} d^{\frac{3}{2}}: \tag{14.}
\end{equation*}
$$

and for the discharge through the notch $\mathbf{E}_{\mathbf{o}}$,

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \frac{4 l}{15 d}\left\{h_{\mathrm{b}}^{\frac{5}{2}}-2 d^{\frac{5}{2}}\right\}=c_{\mathrm{d}} \sqrt{2 g} \times 9752 l d \tag{15.}
\end{equation*}
$$

When the parallelogram \mathbf{E}_{0} becomes a square $l=2 d$, and hence,
(16.) $\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g} \times \cdot 9752 l^{\frac{5}{2}} \times \sqrt{\frac{1}{8}}=c_{\mathrm{d}} \sqrt{2 g l} \times 3.4478 l^{2}$.

The foregoing equations will enable us to find an expression for the discharge from any rectilineal orifice whatever, as it can be divided into triangles, the discharge from each of which can be determined, as already shown in the remark following equation (11). The examples which we have given will be found to comprehend every form of rectilineal orifice which occurs in practice; but for the greater number of orifices, sunk to any depth below the surface, the discharge will be found with sufficient accuracy by multiplying the area by the velocity due to the centre.

CIRCULAR AND SEMICIRCULAR ORIFICES.

The discharge through circular and semicircular orifices in thin plates can only be represented by means of infinite series. Let us represent by s_{1} the sum of the series

$$
\begin{aligned}
&\left\{\frac{1}{2}-\left(\frac{1}{2} \cdot \frac{1}{4}\right)\left(\frac{1}{2} \cdot \frac{1}{4}\right) \frac{r^{2}}{h^{2}}-\left(\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{6} \cdot \frac{5}{8}\right)\left(\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{6}\right) \frac{r^{4}}{h^{4}}\right. \\
&\left.-\left(\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{6} \cdot \frac{5}{8} \cdot \frac{7}{10} \cdot \frac{9}{12}\right)\left(\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{6} \cdot \frac{5}{8}\right) \frac{r^{6}}{h^{6}}-\& c .\right\}:
\end{aligned}
$$

Let us also represent by s_{2} the sum of the series

$$
\begin{aligned}
\frac{2}{3 \cdot 1416}\left\{\left(\frac{1}{2} \cdot \frac{1}{3}\right) \frac{r}{h}+\right. & \left(\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{6}\right)\left(\frac{1}{3} \cdot \frac{2}{5}\right) \frac{r^{3}}{h^{3}} \\
& \left.+\left(\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{6} \cdot \frac{5}{8} \cdot \frac{7}{10}\right)\left(\frac{1}{3} \cdot \frac{2}{5} \cdot \frac{4}{7}\right) \frac{r^{5}}{h^{5}}+\& \mathrm{c} .\right\}:
\end{aligned}
$$

then the discharge from the semicircle \mathbf{G}, Fig. 7, with the diameter upwards and horizontal, is

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times 3.1416 r^{2}\left(s_{1}+s_{z}\right) . \tag{17.}
\end{equation*}
$$

And the discharge from the semicircle I , with the diameter downwards and horizontal, is

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times 3.1416 r^{2}\left(s_{1}-s_{2}\right) . \tag{18.}
\end{equation*}
$$

If we put a for the area, we shall also have for the discharge from a circle \mathbf{H},

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times 2 \mathrm{a} s_{1} . \tag{19.}
\end{equation*}
$$

In each of these three equations (17), (18), and (19), h is the depth of the centre of the circumference below the surface, and r the radius.

When the orifices rise to the surface, we have for the discharge from a semicircular notch G_{0}, with the diameter horizontal and at the surface,
(20.) $\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g r} \times 9586 r^{2}=c_{\mathrm{d}} \sqrt{2 g r} \times 6103 \mathrm{~A}$;
when the circumference of the semicircle is at the surface, and the diameter horizontal, as at I_{0},
(21.) $\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g r} \times \frac{4}{15}(\sqrt{128}-7) r^{2}=c_{\mathrm{d}} \sqrt{2 g r} \times 7324_{\mathrm{A}}$;
when the horizontal diameter of the semicircle is uppermost, and at the depth r below the surface,

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g r} \times 1.8667 r^{2}=c_{\mathrm{d}} \sqrt{2 g r} \times 1.1884_{\mathrm{A}} ; \tag{22.}
\end{equation*}
$$

and when the circumference of the entire circle is at the surface, as at H_{0},
(23.) $\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g r} \times 3 \cdot 6171 r^{2}=c_{\mathrm{d}} \sqrt{2 g r} \times 9604 \mathrm{~A}$.

If we desire to reduce equations (20), (21), and (22), to others in which the depth h of the centre of gravity from the surface is contained, we have only to substitute $\frac{h}{.4244}$ for r in equation (20), and we shall get, for the discharge from a semicircle with the diameter at the surface,

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times 9367 \mathrm{~A}: \tag{24.}
\end{equation*}
$$

also, by substituting $\frac{h}{5756}$ for r in equation (21), we get, for the discharge from a semicircle when the circumference is at the surface and the diameter horizontal,

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times 9653 \mathrm{~A} ; \tag{25.}
\end{equation*}
$$

and when the horizontal diameter is uppermost, and at the depth r below the surface $r=\frac{h}{1.4244}$ and

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times 9957 \mathrm{~A} . \tag{26.}
\end{equation*}
$$

As a stands for the area of the particular orifice in each of the preceding expressions for the discharge, it must be taken of double the value-in equation (23), for instance, where it stands for the area of a circle-to what it is in equations (20), (21), or (23), where it represents only the area of a semicircle.

MEAN VELOCITY.

The mean velocity is easily found by dividing the area into the discharge per second given in the preceding equations. For instance, the mean velocity in the example represented in equation (9) is equal $\frac{2}{3} c_{\mathrm{d}} \sqrt{2 g d}$, which is had by dividing the area $l d$ into the discharge; and in like manner the mean velocity in equation (23) is $9604 c_{\mathrm{d}} \sqrt{2 g r}$.

PRACTICAL REMARKS.-CIRCULAR ORIFICES.

It has been shown, equation (19), that, for the discharge from a circle, we have

$$
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times 2 \mathrm{~A} s_{\mathrm{l}}
$$

in which h is the depth of the centre, A the area, and s_{1} the sum of the series

$$
\left\{\frac{1}{2}-\left(\frac{1}{2} \cdot \frac{1}{4}\right)\left(\frac{1}{2} \cdot \frac{1}{4}\right) \frac{r^{2}}{h^{2}}-\left(\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{6} \cdot \frac{5}{8}\right)\left(\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{3}{6}\right) \frac{r^{4}}{h^{4}}-\& \mathrm{c} .\right\}:
$$

and it has also been shown, equation (23), that, when the circumference touches the surface, this value becomes

$$
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g r} \times 9604 \mathrm{~A} .
$$

Now when h is very large compared with r, it is easy to perceive that $2 s_{1}=1$, and hence

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times \mathrm{A} . \tag{27.}
\end{equation*}
$$

As this is the formula commonly used for finding the discharge, it is clear, if the coefficient c_{d} remain constant, that the result obtained from it for d would be too large. The differences, however, for depths greater than three times the diameter, or $6 r$, are practically of no importance; for, by calculating the values of the discharge at different depths, we shall find, when

These results show very clearly that, for circular orifices, the common expression for the discharge $c_{\mathrm{d}} \sqrt{2 g h} \mathrm{~A}$ is abundantly correct for all depths exceeding three times the diameter, and that for lesser depths the extreme error cannot exceed four per cent. in reduction of the quantity found by this formula. We shall show, hereafter, when discussing the value of c_{d}, that from the sinking of the surface, and perhaps other causes, the discharge at lesser depths is even larger than that exhibited by the expression $c_{\mathrm{d}} \sqrt{2 g h} \mathrm{~A}$, the value of c_{d} being found to increase as the depths h decrease.

RECTANGULAR ORIFICES.

It has been shown, equation (6), that the discharge from rectangular orifices with two sides parallel to the surface is expressed by the equation

$$
\mathrm{D}=c_{\mathrm{d}} \times 2 \sqrt{2 g} \times l\left\{h_{\mathrm{b}}^{\frac{3}{2}}-l_{\mathrm{t}}^{\frac{3}{2}}\right\},
$$

in which l is the horizontal length of the orifice, h_{b} the depth of water on the lower, and h_{t} the depth on the upper, side. As it is desirable in practice to change this form into a more simple one, in which the height h of the centre and depth d of the orifice only are included, we then have $h_{\mathrm{b}}=h+\frac{d}{2}$ and $h_{\mathrm{t}}=h-\frac{d}{2}$. By substituting these values of h_{b} and h_{t} in the foregoing equations, and developing the result into a series, the terms of which, after the third, may be neglected, and putting a for the area $l d$, we shall find
(29.) $\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times \mathrm{A}\left\{1-\frac{1}{96} \frac{d^{2}}{h^{2}}\right\}$ very nearly.

We have therefore for the accurate theoretical discharge

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times \frac{2}{3} \mathrm{~A}\left\{\frac{\left(h+\frac{1}{2} d\right)^{\frac{3}{2}}-\left(h-\frac{1}{2} d\right)^{\frac{3}{2}}}{d h^{\frac{1}{2}}}\right\} \tag{30.}
\end{equation*}
$$

for the approximate discharge

$$
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times \mathrm{A}\left\{1-\frac{1}{96} \frac{d^{2}}{\overline{h^{2}}}\right\} ;
$$

and for the discharge by the common formula

$$
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g h} \times \mathrm{A} .
$$

When the head (h) is large compared with (d) the height of the orifice, each of the three last equations gives the same value for the discharge; but as the common expression $c_{\mathrm{d}} \sqrt{2 g h} \mathrm{~A}$ is the most simple; and as the greatest possible error in using it for lesser depths does not exceed six per cent., viz. when the orifice rises to the surface and becomes a notch, it is evidently that formula best suited for practical purposes. The following Table will show more clearly the differences in the results as obtained from the true, the approximate and the common formulas, applied to lesser heads.

1				2				3
$h=\frac{d}{2}$				$\times \cdot 9428$ A.	D			$\times \cdot 9583 \mathrm{~A}$.
$h=\frac{5 d}{8}$	"	"	"	\times-9693A.	"	"	"	A.
$h=\frac{3 d}{4}$	"	"	"	$\times 9796$ a	"	"	"	A.
$h=\frac{7 d}{8}$	*	"	"	$\times \cdot 9854$ a.	"	"	"	
$h=d$,	"	"	"	989	"	"	"	
$=\frac{3 d}{2},$	"	"	"	995	"	"	"	$\times 9954 \mathrm{a}$.
$h=2 d$,	"	"	"	\times	"	"	"	$\times \cdot 9974 \mathrm{a}$.
$=\frac{5 d}{2}$	"	"	"	- 9988 a .	"	"	"	99
$h=3 d$,	"	"	"	$\times \cdot 998$	"	"	"	$\times 9988$ A
$=\frac{7 d}{2}$	"	"	"	9991	"	"	"	$\times \cdot 9991$
$h=4 d$,				$\times \cdot 9994$ a.	*	,	,	
$h=10 d$,			"	$\times \cdot 9999$ a.	"		"	-9999

In the foregoing Table the first column contains the head at the centre of the orifice expressed in parts of its height d; the second contains the values of the discharges according to equation (30); and the third column contains the approximate values determined from equation (29), the results in which are something larger than those in column 2, derived from the correct formula. The numerical coefficients of Δ, at every depth, are less in both than unity, the constant coefficient according to the common formula. The latter, therefore (as in circular orifices), gives results exceeding the true ones, but the excess is inappreciable at greater depths than $h=3 d$, and for lesser depths than this the error cannot exceed six per cent. It may be useful to remark here, that when the orifice rises to the surface the centre of mean velocity is at fourninths of the depth, and the centre of gravity at two-thirds of the depth from the surface. The former fraction is the square of the latter.

SECTION III.

EXPERIMENTAL RESULTS.—COEFFICIENTS OF DISCHARGE.

We have heretofore dwelt but very partially on the numerical values of the general coefficient of discharge $\boldsymbol{c}_{\mathrm{d}}$. In order to determine its value under different circumstances more particularly, it will be now necessary to consider some of the experiments which have been made from time to time. These do not always give the same results, even when conducted under the same circumstances and by the same parties, and there appears to exist a certain amount of error, more or less, inseparable from the subject. The experiments with orifices in thin plates afford the most consistent results; but even here the differences are sometimes greater than might be expected. In many of the earlier experiments the value of the coefficient c_{d} comes out too large, which arises, very probably, from the orifices experimented with not being in
thin plates, and partaking, more or less, of the nature of a short tube or mouth-piece with rounded arrisses, which we shall see gives larger coefficients thar simple orifices. When an orifice is in the bottom of a vessel, it would appear more correct to measure the head from the surface to the venacontracta than from the surface to the orifice itself; and as any error in measuring the head in any experiment must affect the value of the coefficient derived from such experiment, so as to increase it when the error is to make the head less, and vice versâ, it appears that heads measured to an orifice in the bottom of a vessel, and not to the vena-contracta, must give larger coefficients from the experimental results than, perhaps, the true ones. The coefficients in the following pages have been almost all arranged and calculated, by the writer, from the original experiments.

In 1739 Dr. Bryan Robinson made some experiments on the discharge through small circular orifices, from one-tenth to eight-tenths of an inch in diameter, with heads of two and four feet*, which give the following coefficients.

COEPFICIENTS FROM DR. B. ROBINSON'S EXPERIMENTS.

Heads.	$\begin{gathered} \frac{1}{1} \text { inch } \\ \text { diameter. } \end{gathered}$	$\begin{aligned} & \text { f. Inch } \\ & \text { diameter. } \end{aligned}$	$\begin{gathered} \frac{5}{6} \text { inch } \\ \text { diameter. } \end{gathered}$	$\frac{8}{\frac{8}{0} \text { inch }} \text { diameter. }$
2 feet head	$\cdot 768$	$\cdot 767$	$\cdot 761$	$\cdot 728$
4 feet head	$\cdot 768$	$\cdot 774$	$\cdot 765$	$\cdot 742$

These results are pretty uniform, and the values from which they are derived are said to be " means taken from five or six experiments;" as values of c_{d} they are, however, too high. The apparatus made use of is not described; but it is probable, from the results, that the plate containing the hole or orifice was of some thickness, and that the inner arriss was slightly rounded. There is here, however, a very perceptible increase in the coefficients for the smaller orifices, but none for the smaller depth.

[^9]In a paper in the Transactions of the Royal Irish Academy, vol. ii. p. 81, read March 1st, 1788, Dr. Mathew Young determines the value of the coefficient for an orifice $\frac{2}{10}$ inch in diameter, with a mean head of 14 inches, to be 623 . The manner in which this value is determined is very elegant, viz. by comparing the observed with the theoretical time of the water in the vessel sinking from 16 inches to 12 inches.

The following experiments by Michelotti, with circular orifices from 1 to about 3 inches diameter, and with from 6 to 23 feet heads, give for the mean value $c_{d}=613$; and for square orifices of from 1 to 9 square inches in area, at like depths, the mean value of $c_{\mathrm{d}}=\cdot 628$. The experiments are given in French feet and inches, according to which standard we have, in feet, $\mathrm{D}=7.77 \mathrm{~A} \sqrt{h} \times t, t$ being the time in seconds*. As the time of discharge in these experiments varies from ten minutes to an hour, and as the depths are considerable, the results must be looked upon as pretty accurate; and it is worthy of note that here the coefficients are larger for square than for circular orifices.

* The value of $\sqrt{2 g h}$, equation (1), for measures in French feet, is $7.77 \sqrt{h}$, and for measures in French inches, $26.9 \sqrt{h}, g$ being equal to $30 \cdot 2$ feet, or 362.4 inches, French measure. One French foot is equal to 1.06578 English feet, and the inches preserve the same proportion. The resulting coefficients must be the same, whatever standards we make our calculations from. Many of the most valuable formulæ and experiments in hydraulics are given in French measures of the old style. As our object, however, in the present section is simply to determine from experiment the relation of the experimental to the theoretical discharge, it is not necessary to reduce the experiments to other measures than those in the original; but the value of the force of gravity, g, must of course be taken in those measures with which the experiments were made. In the French decimal, or modern style, the metre is equal to 3.2809 English feet, or 39.371 inches. The tenth part of a metre is the decimetre, and the tenth part of the decimetre is the centimetre, as the names imply.
ooevficients from miohelottis experiments.

Description and size of orifice, in French inches.	Depth of the centre of the orifice, in French feet.	Quantity discharged, in cubic feet.	$\begin{gathered} \text { Time of } \\ \text { discharge, } \\ \text { in seconds. } \end{gathered}$	$\begin{gathered} \text { Theoretical } \\ \text { timee } \\ \text { caiculated } \\ \text { from } \end{gathered}$	$\begin{gathered} \text { Resuiting } \\ \text { coefficients } \\ \text { of discharge. } \end{gathered}$
Square orifice, $3^{\prime \prime} \times 3^{\prime \prime}$	6.613	463.604	600	$371 \cdot 3$	$\cdot 619$
	6.852	$566 \cdot 458$	720	$445 \cdot 6$	-619
	11.676	516.785	510	311.4	-610
	11.818	$612 \cdot 118$	600	366.6	- 611
	21.691	415.437	300	183.7	-612
	$21 \cdot 715$	$499 \cdot 222$	360	$220 \cdot 6$. 613
Mean value of the coefficient; square orifice $3^{\prime \prime} \times 3^{\prime \prime} \ldots \ldots \ldots \ldots \ldots$					
$\begin{aligned} & \text { Square orifice, } \\ & 2^{\prime \prime} \times 2^{\prime \prime} \end{aligned}$	6.625	329.806	900	594.	. 660
	$11 \cdot 426$	$423 \cdot 465$	900	$580 \cdot 4$. 645
	21.442	385.333	600	385.7	. 643
Mean value of the coefficient ; square orifice $2^{\prime \prime} \times 2^{\prime \prime}$. 649
$\begin{aligned} & \text { Square orifice, } \\ & 1^{\prime \prime} \times 1^{\prime \prime} \end{aligned}$	6.757	158.549	1800	1585.	-628
	11.889	163.792	1440	$880 \cdot 6$	-612
	21.507	$562 \cdot 944$	3600	$2249 \cdot 9$	-625
Mean value of the coefficient ; square orifice $1^{\prime \prime} \times 1^{\prime \prime}$..............					. 621
Circular orifice, $3^{\prime \prime}$ diameter	6.694	542.85	900	$550 \cdot 1$	- 611
	11.590	570.972	720	439.6	. 610
	21.611	521.299	480	293.8	-612
Mean value of the coefficient ; circular orifice $3^{\prime \prime}$ diameter 611
Circular orifice, $\mathbf{2}^{\prime \prime}$ diameter	6.785	488.687	1800	1108.1	$\cdot 616$
	11.722	589.535	1680	1016.4	$\cdot 605$
	$21 \cdot 903$	$575 \cdot 486$	1200	725.9	-605
Mean value of the coefficient; circular orifice $2^{\prime \prime}$ diameter					- 609
Circular orifice, $1^{\prime \prime}$ diameter	6.875	247.354	3600	2227 .	. 619
	11.743	324-11	3600	2233 .	$\cdot 620$
	22.014	444.535	3600	2237.2	-621
Mean value of the coefficient ; circular orifice $1^{\prime \prime}$ diameter 620					

The experiments made by the Abbé Bossut, contained in the following table, give the mean value of c_{d}, for both circular and square orifices, equal to ${ }^{\circ} 616$ nearly ; and it may be perceived that, for the small depth in the last experiment, the coefficient rises so high as 649 . These and other experiments

COEFFICIENTS FROM BOSSUT'S RXPERIMENTS

Description, position, and size of orifice, in French inches.	Depth of the centre of the orifice, in French inches.	Number of French cubical inches discharged per minute.	$\begin{gathered} \text { Theoretical } \\ \text { discharare } \\ \text { per minute } \\ \mathrm{D}=1614 \Delta \sqrt{h} . \end{gathered}$	Resulting coefficients.
Horizontal and circular, $\frac{1}{2}$ " diameter	140.832	2311	$3760 \cdot 8$	$\cdot 614$
Horizontal and circular, $1^{\prime \prime}$ diameter	140.832	9281	$15043 \cdot 3$. 617
Horizontal and circular, $2^{\prime \prime}$ diameter	140.832	37203	$60173 \cdot 1$. 618
Horizontal and rectangular, $1^{\prime \prime} \times \frac{1}{4}{ }^{\prime \prime}$	140.832	2933	$4788 \cdot 4$. 613
Horizontal and square, $1^{\prime \prime} \times 1^{\prime \prime} \ldots$	140.832	11817	$19153 \cdot 7$	-617
Horizontal and square, $2^{\prime \prime} \times 2^{\prime \prime} \ldots$	$140 \cdot 832$	47361	76614.6	. 618
Lateral and circular, $\frac{\frac{1}{2}^{\prime \prime}}{}$ diameter...	108.	2018	$3293 \cdot 3$	-613
Lateral and circnlar, $1^{\prime \prime}$ diameter...	108.	8135	$13173 \cdot 3$. 617
Lateral and circular, $\frac{1}{2 \prime \prime}$ diameter...	48.	1353	$2195 \cdot 5$	616
Lateral and circular, $1^{\prime \prime}$ diameter...	48.	5436	$8782 \cdot 2$	619
Lateral and circular, $1^{\prime \prime}$ diameter...	0.5833	628	968.	-649

led the Abbe to construct a table of the discharges, at different depths, from a circular orifice 1 inch in diameter, from which we have determined the following table of coefficients.

COEFFICIENTS DEDUCED FROM BOSSUT'S EXPRRIMENTS.

Heads, in feet.	Coefficients.	Heads, in feet.	Coefficients.	Heads, in feet.	Coefficients.
1	-621	6	$\cdot 620$	11	$\cdot 619$
2	-621	7	-620	12	. 618
3	-621	8	-619	13	-618
4	-620	9	. 619	14	-618
5	-620	10	-619	15	$\cdot 617$

These increase, as the orifice approaches the surface, from $\cdot 617$ to $\cdot 621$; and at lesser depths than 1 foot other experi-
ments show an increase in the coefficient up to $\cdot 650$. The experiments of Poncelet and Lesbros show, however, a reduction in the coefficients for square orifices $8^{\prime \prime} \times 8^{\prime \prime}$ as they approach the surface from $\cdot 601$ to $\cdot 572$.

Brindley and Smeaton's experiments, with an orifice linch square placed at different depths, give a mean value for c_{d} of
coeffiofents dalcolated from brindiey and smeaton's experiments.

```
1 foot head: orifice 1" }\times\mp@subsup{1}{}{\prime\prime}\mathrm{ : coefficient '639
2 feet head: orifice 1" }\times\mp@subsup{1}{}{\prime\prime}:\mathrm{ coefficient '635
3 feet head: orifice 1" }\times\mp@subsup{1}{}{\prime\prime}:\mathrm{ coefficient '648 }mean '637.
4 feet head: orifice 1" }\times\mp@subsup{1}{}{\prime\prime}:\mathrm{ :coefficient '632
5 feet head: orifice 1" }\times\mp@subsup{1}{}{\prime\prime}:\mathrm{ :ceefficient '632
6 feet head : orifice \frac{1/2}{\prime\prime}}\times\frac{\mp@subsup{\frac{1}{2}}{\prime\prime}{\prime\prime}}{\mathrm{ : coefficient '577}
```

$\cdot 637$. The last experiment, with an orifice only $\frac{1}{2}$ inch by $\frac{1}{2}$ inch, gives so small a coefficient as 557 placed at a depth of 6 feet!

For notches 6 inches wide and from 1 to $6 \frac{1}{2}$ inches deep, Brindley and Smeaton's experiments give the mean value of
coefficients for notches, calculated from brindley and smeaton's experiments.

Ratio of the length to the depth.	$\begin{gathered} \text { Slze of } \\ \text { noteches } \\ \text { in inches. } \end{gathered}$	Coefficients.	Ratio of the length to the depth.	$\begin{gathered} \text { Size of } \\ \text { notches } \\ \text { in inches. } \end{gathered}$	Coefficients.
. 92 to 1	$6 \times 6 \frac{1}{2}$	$\cdot 633$	3.7 to 1	6×13	$\cdot 638$
1.07 to 1	$6 \times 5 \frac{5}{8}$	$\cdot 571$	$4 \cdot 4$ to 1	$6 \times 1 \frac{13}{8}$	$\cdot 654$
1.2 to 1	6×5	-609	$4 \cdot 8$ to 1	$6 \times 1 \frac{1}{4}$	-681
1.92 to 1	6×31	-602	6. to 1	6×1	$\cdot 713$
$2 \cdot 4$ to 1	$6 \times 2{ }^{5}{ }^{*}$	$\cdot 636$	Mean	value.	$\cdot 637$

$c_{\mathrm{d}}=637$. The coefficient of discharge for notches and orifices appear to differ as little from each other as those for either do in themselves. The results also show a general though not uniform increase in the coefficients for smaller depths.

Du Buât's experiments with notches 18.4 inches long,

[^10]give the mean value of $c_{\mathrm{d}}=632$, which differs very little from the mean value determined from Brindley and Smeaton's experiments.

COEFFICIENTS FOR NOTCHES, OALCULATED FROM DU BUAT'S EXPERIMENTS.

Ratio of the length to the depth.	Size of notches in inches.	Coefficients.	Ratio of the length to the depth.	Size of nothes in inches.	Coefficients.
2.72 to 1	18.4×6.753	.630	5.75 to 1	18.4×3.199	.624
3.94 to 1	18.4×4.665	.627	10.3 to 1	18.4×1.778	-648

Poncelet and Lesbros' experiments give the coefficients in the following table, for notches 8 inches wide; the mean

COEFFICIENTS FOR NOTCHES, BY PONCKLET AND LESBROS.

Ratio of the length to the depth.	Size of notches in inches.	Coefficients.	Ratio of the length to the depth.	Size of notches in inches.	Coefficients.
-9 to 1	8×9	. 577	3.33 to 1	8×2.4	. 601
1 to 1	8×8	-585	5 to 1	8×1.6	-611
$1 \cdot 3$ to 1	8×6	-590	6.7 to 1	8×1.2	. 618
2 to 1	8×4	-592	10 to 1	8×0.8	. 625
2.5 to 1	8×3.2	-595	20 to 1	8×0.4	. 636

value of all the coefficient in these experiments is 603 . Here the coefficients increase in every instance as the depth decreases, or as the ratio of the length of the notch to its depth increases. We shall have to refer to the valuable experiments made at Metz, on the discharge from differentlyproportioned orifices immediately.

Rennie's experiments for circular orifices at depths from COEFPICIENTS FOR CIRCULAR ORIFICES, PROM RENMIE'S EXPERIMENTS.

Heads at the centre of the orifice in feet.	tinch diameter.	inch diameter.	4inch diameter.	linch diameter.	Mean values.
$\mathbf{1}$.671	.634	.644	.633	.645
2	.653	.621	.652	.619	.636
3	.660	.636	.632	.628	.639
4	.662	.626	.614	.584	.621
Means	.661	.629	.635	.616	.635

1 foot to 4 feet, and of diameters from $\frac{1}{4}$ inch to 1 inch, give the following coefficients. Here the increase in the coefficients for lesser orifices and at lesser depths exhibits itself very clearly, notwithstanding a few instances to the contrary. The mean value of the coefficient c_{d} derived from the whole, is 635 . For small rectilineal orifices the coefficients were as follows:-

COEFFICIENTS FOR REOTANGULAR ORIFICES, FROM BENNIE'S EXPERIMENTS.

1	. 617	$\cdot 617$	-663	"	-596
2	. 635	-635	-668	"	-577
3	-606	-606	-606	"	-572
4	-593	-593	- 593	-593	-593
Means	-613	-613	-632	-593	-585

The most valuable series of experiments of which we are possessed are those made at Metz, by Poncelet and Lesbros. These were made with orifices eight inches wide, nearly, and of different vertical dimensions placed at various depths down to 10 feet. The discrepancies as to any general law in the relation of the different values of the coefficient of discharge c_{d} to the size and depth of the orifice in the preceding experiments, have been remedied to a great extent by these. They give an increase of the coefficients for the smaller and very oblong orifices as they approach the surface, and a decrease under the same circumstances in those for the larger square and oblong orifices. There are a few depths where maximum and minimum values are obtained: we use the terms "maximum and minimum values" for those which are greater in the one case and less in the other than the coefficients immediately before and after them, and not as being numerically the greatest or least values in the column. We have marked with a^{*}, in the arrangement of
the coefficients, Table I., these maximum and minimum values. The heads given in this table are measured to the upper side of the orifices, and by adding half the depth (d) to any particular head, we obtain the head at the centre.

As a perceptible sinking of the surface takes place in heads less than from five to three times the depth of the orifice, the coefficients are arranged in pairs, the first column containing the coefficients for heads measured from the still water surface some distance back from the orifice, and the second those obtained when the lesser heads, measured directly at the orifice, were used. A very considerable increase in the value of the coefficients for very oblong and shallow small orifices, may be perceived as they approach the surface, and the mean value for all rectilinear orifices at considerable depths, seems to approach to $\cdot 605$ or $\cdot 606$.

We have shown, equation (29), that the discharge is

$$
\mathrm{p}=c_{\mathrm{d}} \times\left\{1-\frac{d^{2}}{96 h^{2}}\right\} \times \mathrm{A} \sqrt{2 g h}
$$

approximately, in which d is the depth of the orifice, and h the head at its centre. Now it is to be observed, that it is not the value of c_{d} simply, which is given in Table I., but the value of $c_{\mathrm{d}}\left\{1-\frac{d^{2}}{96 h^{2}}\right\}$, the coefficient of $A \sqrt{2 g h}$. The coefficients in the table are, therefore, less than the coefficient of discharge, strictly so called, by a quantity equal to $\frac{c_{\mathrm{d}} d^{2}}{96 h^{2}}$. The value of this expression is in general very small, and it is easy to perceive from the first of the expressions in equation (31), that it can never exceed $4 \frac{1}{5}$ per cent., or $\cdot 0417$ in unity. If we wish to know the discharge from an orifice 4 inches square $=4^{\prime \prime} \times 4^{\prime \prime}$, with its centre 4 feet below the surface, which is equivalent to a head of 3 feet 10 inches at the upper side, we find from the table the value of $c_{\mathrm{d}}\left\{1-\frac{d}{96 h^{2}}\right\}=601$; hence we get

$$
\begin{aligned}
& \mathrm{D}=601 \times \mathrm{A} \sqrt{2 g h}=601 \times \frac{1}{9} \times 8.025 \times 2= \\
& \cdot 601 \times \frac{1}{9} \times 16.05=\frac{1}{9} \times 9.646=1.072
\end{aligned}
$$

cubic feet per second. In the absence of any experiments with larger orifices, we must, when they occur, use the coefficients given in this table; and, in order to do so with judgment, it is only necessary to observe the relation of the sides and heads. For example, if the size of an orifice be $16^{\prime \prime} \times 4^{\prime \prime}$, we must seek for the coefficient in that column where the ratio of the sides is as four to one, and if the head at the upper side be five times the length of the orifice, we shall find the coefficient $\cdot 626$, which in this case is the same for depths measured behind, or at the orifice. For lesser orifices, the results obtained from the experiments of Michelotti and Bossut, pages 34 and 35, are most applicable; and also the coefficients of Rennie, pages 37 and 38 . It is almost needless to observe, that all these coefficients are only applicable to orifices in thin plates, or those having the outside arrises chamfered, as in Fig. 8. Very little dependance can be placed on calculations of the quantities of water discharged from other orifices, unless where the coefficients have been already obtained by ex-
 periment for them. If the inner arris next the water be rounded, the coefficient will be increased.

NOTCHES AND WEIRS.

We have already given some coefficients, pages 36 and 37, derived from the experiments of Du Buât, Brindley and Smeaton, and Poncelet and Lesbros, for finding the discharge over notches in the sides of large vessels; and it does not appear that there is any difference of importance between
these and those for orifices sunk some depth below the surface, when the proper formula for finding the discharge for each is used. If we compare Poncelet and Lesbros' coefficients for notches, page 37 , with those for an orifice at the surface, Table I., we perceive little practical difference in the results, the heads being measured back from the orifice, unless in the very shallow depths, and where the ratio of the length to the depth exceeds five to one. The depths being in these examples less than an inch, it is probable that the larger coefficients found for the orifice at the surface, arise from the upper edge attracting the fluid to it and lessening the effects of contraction. Indeed, the results obtained from experiments with very shallow weirs, or notches, have not been at all uniform, and at small depths the discharge must proportionably be more affected by movements of the air and external circumstances than when the depths are considerable. We shall see that in Mr. Blackwell's experiments the coefficient obtained for depths of 1 and 2 inches was 676 for a thin plate 3 feet long, while for a thin plate 10 feet long it increased up to 805 .

The experiments of Castel, with weirs up to about 30 inches long, and with variable heads of from 1 to 8 inches, lead to the coefficient 597 for notches extending over one-fourth of the side of a reservoir; and to the coefficient $\cdot 664$ when they extend for the whole width. For lesser widths than one-fourth, the coefficients decrease down to 584 ; and for those extending between one-third of, and the whole width, they increase from $\cdot 600$ to 665 and 680 . Bidone finds $c_{\mathrm{d}}=\cdot 620$, and Eytelwein $c_{\mathrm{d}}=635$. It will be perceived from these and the foregoing results, that the third place of decimals in the value of c_{d}, and even sometimes the second, is very uncertain; that the coefficient varies with the head and ratio of the notch to the side in which it is placed; and we shall soon show that the form and size of the weir, weir-basin, and approaches, still further modify its value.

When the sides and edge of a notch increase in thickness, or are extended into a shoot, the coefficients are found to reduce very considerably; and for small heads, to an extent
beyond what the increase of resistance, from friction alone, indicates. Poncelet and Lesbros found, for orifices, that the addition of a horizontal shoot, 21 inches long, reduced the coefficient from 604 to $\cdot 601$, with a head of 4 feet; but for a head of only $4 \frac{1}{2}$ inches, the coefficient fell from $\cdot 572$ to 483 , the orifice being $8^{\prime \prime} \times 8^{\prime \prime}$. For notches 8 inches wide, with a horizontal shoot 9 feet 10 inches long, the coefficient fell from $\cdot 582$ to $\cdot 479$, for a head of 8 inches; and from $\cdot 622$ to 340 , for a head of only 1 inch. Castel found also, for a notch 8 inches wide with a shoot 8 inches long attached and inclined at an angle of $4^{\circ} 18^{\prime}$, that the mean coefficient for heads from 2 to $4 \frac{1}{2}$ inches was only $\cdot 527^{*}$.

We have obtained the following table of coefficients from some experiments made by Mr. Ballard, on the river Severn, near Worcester, " with a weir 2 feet long, formed by a board standing perpendicularly across a trough." \dagger The

COEFFIOIENTS FOR SHORT WEIRS OVER BOARDS,
Heads measured on the crest.

Depths In inches.	Coefficients.	Depths in inches.	Coefficlents.	Depths in inches.	Coefficients.
1	$\cdot 762$	3	- 801	5	$\cdot 733$
14	-662	31	$\cdot 765$	$5 \frac{1}{4}$	$\cdot 713$
$1 \frac{1}{2}$	$\cdot 673$	$3 \frac{1}{2}$	$\cdot 748$	$5 \frac{1}{2}$	$\cdot 735$
1量	-692	$3 \frac{3}{4}$	$\cdot 740$	58	$\cdot 729$
2	-684	4	$\cdot 759$	6	$\cdot 727$
21	$\cdot 702$	$4 \frac{1}{4}$	$\cdot 731$	7	$\cdot 716$
$2 \frac{1}{2}$	$\cdot 756$	412	$\cdot 744$	8	$\cdot 726$
23	$\cdot 786$	$4 \frac{3}{4}$	$\cdot 745$	Mean	$\cdot 732$

heads or depths were here measured on the weir, and hence the coefficients are larger than those found from heads measured back to the surface of still water.

Experiments made at Chew Magna, in Somersetshire, by Messrs. Blackwell and Simpson, in $1850 \ddagger$, give the following coefficients.

[^11]COEFFICIENTS DERIVED FROM THE EXPERIMENTS OF BLACEWELL AND SIMPSON.

Heads in inches.	Coefficients.	Heads in inches.	Coefficients.	Heads in inches.	Coefficients.
1 to $\frac{7}{8}$. 591	41	$\cdot 743$	6	$\cdot 749$
1 to $1_{1 \frac{1}{16}}$	-626	$4 \frac{5}{16}$	$\cdot 760$	$6 \frac{3}{16}$	$\cdot 748$
$2 \frac{3}{16}$ to $2 \frac{1}{4}$	-682	43	$\cdot 741$	$6{ }_{16}^{3}$ to $6 \frac{1}{4}$	$\cdot 747$
$2 \frac{3}{4}$. 665	$4 \frac{7}{16}$	$\cdot 750$	615	$\cdot 772$
233	. 670	$4 \frac{1}{2}$	$\cdot 725$	$73 \frac{1}{32}$	$\cdot 717$
27	. 655	5	-780	8	-802
$2{ }^{29} 9$	-653	$5{ }_{16}{ }^{5}$. 781	8 to $8 \frac{13}{16}$	$\cdot 737$
215	-654	513	$\cdot 749$	815	$\cdot 750$
3 to $3 \frac{1}{16}$	$\cdot 725$	$5 \frac{7}{16}$ to 515	$\cdot 751$	9	.781
4	$\cdot 745$	$5 \frac{15}{16}$	$\cdot 728$	Mean	$\cdot 723$

"The overfall bar was a cast-iron plate 2 inches thick, with a square top." The length of the overfall was 10 feet. The heads were measured from still water at the side of the reservoir, and at some distance up in it. The area of the reservoir was 21 statute perches, of an irregular figure, and nearly 4 feet deep on an average. It was supplied from an upper reservoir, by a pipe 2 feet in diameter and of 19 feet fall; the distance between the supply and the weir was about 100 feet. The width of the reservoir as it ap-

proached the overfall was about 50 feet, and the plan and section, Fig. 9, of the weir and overfall in connection with it, will give a fair idea of the circumstances attending the experiments. For heads over 5 inches the velocity of approach to the weir was "perceptible to the eye," though its amount was not determined. We perceive that the coefficient (derived from two experiments) for a depth of 8 inches is 802 , while the coefficient (derived from three experiments) for a depth of $7 \frac{21}{32}$ inches is 717 , and for depths from 8 to $8 \frac{15}{16}$ inches the mean coefficient is 743 : as all the attendant circumstances appear the same, these discrepances and others must arise from the circumstances of the case: perhaps the supply, and, consequently, the velocity of approach, was increased while making one set of experiments, without affecting the still water near the side where the heads appear to have been taken. By comparing the results with those obtained by one of the same experimenters, Mr. Blackwell, on the Kennet and Avon Canal, we shall immediately perceive that the velocity of approach, and every circumstance which tends to alter and modify it, has a very important effect on the amount of the discharge, and, consequently, on the coefficient.

The experiments made by Mr. Blackwell, on the Kennet and Avon Canal, in 1850*, afford very valuable instruction as the form and width of the crest were varied, and brought to agree more closely with actual weirs in rivers than the thin plates or boards of earlier experimenters. We have calculated and arranged the coefficients in the following table from these experiments. The variations in the values for different widths of crest, other circumstances being the same, are very considerable; and the differences in the coefficients, at depths of 5 inches and under, for thin plates and crests 2 inches wide, are greater than mere friction can account for; and greater also than the differences at the same depths between the coefficients for crests 2 inches wide, and 3 feet wide.

[^12]CORFFIOIENTS FOR THE DISCHARGE OVER WEIRS, ARRANGED AND DERIVED FROM THE EXPERIMENTS OF MR BLACKWELL.
When more than one experiment was made with the same head, and the results were pretty uniform, the resulting coeficients are marked with a^{*}. The effect of the converging wing-boards is very strongly marked.

	Thin plates.		Planks 2 inches thick, square on crest.				Crests 3 feet wide.					
	3 feet long.	10 feet long.	3 feet long.	6 feet long.	10 feet long.	10 feet long, wing boards making an angle of 60°.	3 feet long,	3 feet long, fall 1 in 18.	3 feet long,	6 feet long, level.	10 feet long, level.	10 feet long, fall $1 \ln 18$.
1	. 677	-809	$\cdot 467$	-459	$\cdot 435+$	-754	-452	-545	-467	**	. 381	-467
2	. 675	. 803	-509*	-561	-585*	-675	-482	-546	-533	...	-479*	- $495{ }^{*}$
3	-630	-642*	-563*	-597*	-569*	...	-441	-537	-539	-492*	*-	...
4	. 617	-656	-549	$\cdot 575$	-602*	-656	-419	$\cdot 431$	-455	-497*	...	-515
5	-602	-650*	-588	-601*	-609*	-671	-479	. 516	...		-518	...
6	$\cdot 593$...	-593*	-608*	-576*	...	-501*	...	-531	-507	$\cdot 513$	-543
7	-617*	-608*	-576*	\cdots	-488	$\cdot 513$	-527	-497
8 581 *	-606*	-590*	-548*	...	-470	-491	-468	-507
9	...	$\cdot 530$. 600	-569*	-558*	...	-476	- 492 *	-498	- 480 *	-486	\cdots
10	-614*	-539	-534*	\cdots	...	$\cdot 465 *$	-455	...
12	...	\cdots	\cdots	- 525	-534*	*..	**	...	\cdots	- 467 *	\cdots	**
. 14	...	**	\cdots	-549*	\cdots

\dagger The discharge per second varied from 461 to 665 cubic feet in two experiments. The coefficient 435 is derived from the mean value.

The plan and section, Fig. 10, will give a fair idea of the approach to, and nature of the overfall made use of in these

experiments. The area of the reservoir was $2 \mathrm{~A} .1_{\mathrm{r}} .30 \mathrm{p}$., and the head was measured from the surface of the still water in it, which remained unchanged between the beginning and end of each experiment. The width of the approach ab from the reservoir was about 32 feet; the width at $a b$ about 13 feet, below which the waterway widened suddenly, and again narrowed to the length of the overfall. The depth in front of the dam appears to have been about 3 feet; the depth on the dam, next the overfall, about 2 feet; and the depth on the sunk masonry in the channel of approach, about 18 inches. Altogether, the circumstances were such as to increase the amount of resistances between the reservoir, from which the head was measured, and the overfall, particularly for the larger heads, and we accordingly see that the coefficients become less for heads over six inches, with a few exceptions. The measurements of the quantities discharged appear to have been made very accurately, yet the discharges per second, with the same head and same length of overfall, sometimes vary;
for instance, with the plank 2 inches thick and 10 feet long, the discharge per second for 4 inches head varies from 6.098 cubic feet to 6.491 cubic feet, or by about one-sixteenth of the whole quantity. Most of the results, however, are means from several experiments. The quantities discharged varied from one-tenth of a cubic foot to 22 cubic feet per second, and the times from 24 to 420 seconds. If we compare the coefficients for a plank 10 feet long and 2 inches thick in the foregoing table with those for the same overfall at Chew Magna, we shall immediately perceive how much the form of the approaches affects the discharge. Indeed, were the area of the reservoir at Chew Magna even larger than that for the Kennet and Avon experiments, it would be found, notwithstanding, that the coefficients in the former would still continue the larger, though not fully as large as those found under the particular circumstances.

HEAD, AND FROM WHENCE MEASURED.

By referring to Table I., we shall see that there is a difference in the coefficients as obtained from heads measured on or above the orifice. This difference is greater in notches, or weirs, than in orifices sunk below the surface; and when the crest of a weir is of some width, the depths upon it vary*. In the Kennet and Avon experiments, the heads measured from the surface of the water in the reservoir, and the depths at the "outer edge" (by which we understand the lower edge) of the crest were as follows:-

[^13]DIFFERENCE OF HEADS MEASURED ON AND ABOVR WEIRS．

	Heads on crests 2 inches thick．		Heads on crests 3 feet wide．					
1	$\frac{5}{8}$	．．．	76	．．．	$\frac{1}{4}$	$\frac{1}{2}$	76	${ }^{5} 8$
2	．．．	．．．	${ }_{6}^{7}$	．．．	．．．	．．．	${ }^{\text {7 }}$	${ }^{16}$
3	．．．	114	．．．	\ldots	．．．	$1 \frac{1}{8}$ to $1 \frac{1}{4}$	．．．	\ldots
4	3 to 2116	31	18	1星	112	．．．	．．．	$1 \frac{1}{2}$
5	31	38	218	$1{ }^{\frac{8}{4}}$	．．．	．．．	$1{ }^{8}$	．．．
6	4 $\frac{3}{8}$	43	2 23	．．．	．．．	$2{ }^{3}$	2 F	24
7	．．．	．．．	．．．	$2 \frac{1}{8}$	2 23	．．．	\ldots	．．．
8	6䨐	\ldots	．．．	．．．	．．．	．．．	3咅	$3 \frac{1}{2}$
9	．．．	．．．	\ldots	\ldots	\ldots	$4 \frac{1}{8}$	$3 \frac{1}{2}$	．．．
10	．．．	．．．	．．．	．．．	．．．	．．．	4	．．．

No intermediate heads are given，but those registered point out very clearly the great differences which often exist be－ tween the heads measured on a weir，or notch，and those measured from the still water above it；and how the form of the weir itself，as well as the nature of the approaches，alters the depth passing over．On a crest 2 feet wide，with $14 \frac{1}{2}$ inches depth on the upper edge，we have found that the depth on the lower edge is reduced to $11 \frac{1}{2}$ inches．The head taken from 3 to 20 feet above the crest，where the plane of the approaching water surface becomes curved，is that in general which is best suited for finding the discharge by means of the common coefficients，but a correct section of the channel and water－line，showing the different depths upon and for some distance above the crest，is necessary in all experiments for determining accurately by calculation the value of the coefficient of discharge c_{d} ．

Du Buât，finding the theoretical expression for the dis－ charge through an orifice of half the depth h ，

$$
\mathrm{D}=\frac{2}{3} \sqrt{2 g} \times l\left\{h^{\frac{3}{2}}-\left(\frac{h}{2}\right)^{\frac{3}{3}}\right\}
$$

equation (6)

$$
=\frac{2}{3} l h \sqrt{2 g h} \times\left\{1-\left(\frac{1}{2}\right)^{\frac{3}{3}}\right\}=646 \times \frac{2}{3} l h \sqrt{2 g h},
$$

to agree pretty closely with his experiments, seems to have assumed that the head h was reduced to $\frac{h}{2}$ in passing over. This is a reduction, however, which never takes place unless with a wide crest and at its lower edge, or where the head h is measured at a considerable distance above the weir, and a loss of head due to the distance, and obstructions in channel takes place. When there is a clear weir basin immediately above the weir, we have found that, putting h for the head measured from the surface in the weir basin and h_{w} for the depth on the upper edge of the weir, that

$$
\begin{equation*}
h-h_{\mathrm{w}}=\cdot 14 \sqrt{h}, \tag{32.}
\end{equation*}
$$

for measures in feet, and

$$
\begin{equation*}
h-h_{\mathrm{w}}=\cdot 48 \sqrt{\bar{h}} \tag{33.}
\end{equation*}
$$

for measures in inches. The comparative values of h and π_{w} depend, however, a good deal on the particular circumstances of the case. Dr. Robinson found ${ }^{*} h=1 \cdot 111 h_{\mathrm{w}}$, when h was about 5 inches. The expressions we have given are founded on the hypothesis, that $h-h_{\mathrm{w}}$ is as the velocity of discharge, or as the \sqrt{h} nearly. For small depths, there is a practical difficulty in measuring with sufficient accuracy the relative values of h and h_{w}. Unless for very small heads the sinking will be found in general to vary from $\frac{h}{10}$ to $\frac{h}{4}$, and in practice it will always be useful to observe the depths on the weir as well as the heads for some distances (and where the widths contract) above it.

In order to convey to our readers a more definite idea of the differences between the coefficients for heads measured

[^14]at the weir, or notch, and at some distance above it, we shall assume the difference of the heads $h-h_{\mathrm{w}}=\frac{h_{\mathrm{w}}}{r}$;
$$
\text { hence } h=\frac{r+1}{r} h_{\mathrm{w}} \text { and } h_{\mathrm{w}}=\frac{r}{r+1} h \text {. }
$$

Now the discharge may be considered as that through an orifice whose depth is h_{w} with a head over the upper edge equal to $h-h_{\mathrm{w}}=\frac{h_{\mathrm{w}}}{r}$; hence from equation (6) the discharge is equal to

$$
\frac{2}{3} l \sqrt{2 g} \times c_{\mathrm{d}}\left\{h^{\frac{3}{2}}-\left(\frac{h_{\mathrm{w}}}{r}\right)^{\frac{3}{7}}\right\}
$$

and substituting for $h^{\frac{3}{7}}$ its value $\left(\frac{r+1}{r} h_{\mathrm{w}}\right)^{\frac{3}{7}}$, we shall find the value of

$$
\begin{equation*}
\mathrm{D}=\frac{2}{3} l h_{\mathrm{w}} \sqrt{2 g h_{\mathrm{w}}} \times c_{\mathrm{d}}\left\{\left(1+\frac{1}{r}\right)^{\frac{3}{2}}-\left(\frac{1}{r}\right)^{\frac{3}{y}}\right\} . \tag{34.}
\end{equation*}
$$

As the value of the discharge would be expressed by

$$
\frac{2}{3} l h_{\mathrm{w}} \sqrt{2 g h_{\mathrm{w}}} \times c_{\mathrm{d}}
$$

if the head $h-h_{\mathrm{w}}$ were neglected, it is evident the coefficient is increased, under the circumstances, from c_{d} to

$$
c_{\mathrm{d}} \times\left\{\left(1+\frac{1}{r}\right)^{\frac{3}{2}}-\left(\frac{1}{r}\right)^{\frac{3}{r}}\right\} ;
$$

or, more correctly, the common formula has to be multiplied by $\left(1+\frac{1}{r}\right)^{\frac{3}{r}}-\left(\frac{1}{r}\right)^{\frac{3}{r}}$, to find the true discharge, and the value of this expression for different values of $\frac{1}{r}=n$ will be found in Table IV. If we suppose that

$$
h-h_{\mathrm{w}}=\frac{h_{\mathrm{w}}}{10}, \text { then } \frac{1}{r}=\frac{1}{10}=n ;
$$

and we find from the table $\left(1+\frac{1}{r}\right)^{\frac{3}{r}}-\left(\frac{1}{r}\right)^{\frac{3}{r}}=1 \cdot 1221$.

Now if we take the value of c_{d} for the full head h to be 628 , we shall find $1 \cdot 1221 \times 628=\cdot 705$, rejecting the latter figures, for the coefficient when the head is measured at the orifice; and if $\frac{1}{r}=\frac{2}{10}=n$, we should find in the same manner the new coefficient to be $1 \cdot 2251 \times \cdot 628=\cdot 769$ nearly. The increase of the coefficients determined, page 42 , from Mr. Ballard's experiments is, therefore, evident from principle, as the heads were taken at the notch; and it is also pretty clear that, in order to determine the true discharge, the heads both on, at, and above a weir should be taken.

SECTION IV.

VARIATIONS IN THE COEFFICIENTS FROM THE POSITION OF THE ORIFICE.-GENERAL AND PARTIAL CONTRACTION.-VELOCITY OF APPROACH.-CENTRAL AND MEAN VELOCITIES.

A glance at Table I. will show us that the coefficients increase as the orifices approach the surface, to a certain depth dependent on the ratio of the sides, and that this increase increases with the ratio of the length to the depth. Some experimenters have found the increase to continue uninterrupted for all orifices up to the surface, but this seems to hold only for depths taken at or near the orifice when it is square or nearly so. It has also been found that the coefficient increases as the orifice approaches to the sides or bottom of a vessel: as the contraction becomes imperfect the coefficient increases. The lateral orifices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}, \mathrm{G}$, H, I, and к, Fig. 11, have coefficients differing more or less from each other. The coefficient for Δ is found to be larger than either of those for $\mathrm{B}, \mathrm{c}, \mathrm{E}$, or D ; that for G or K larger than that for \mathbf{H} or I ; that for H larger than that for I ; and that for \mathbf{F}, where the contraction is general, least of all. The contraction of the fluid on entering the orifice F removed from the bottom and sides is complete; it is termed, therefore,

general contraction; that at the orifices $\mathbf{A}, \mathrm{E}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{x}$, and D , is interfered with by the sides; it is therefore incomplete, and termed partial contraction. The increase in the coefficients for the same-sized orifices at the same mean depths may be assumed as proportionate to the length of the perimeter at which the contraction is partial, or from which the lateral flow is shut off; for example, the increase for the orifice G is to that for \boldsymbol{H} as $c d+d e: d e$; and in the same manner the increase for G is to that for e as $c d+d e: c d$. If we put n for the ratio of the contracted portion $c d e$ to the entire perimeter, and, as before, c_{d} for the coefficient of general contraction, we shall find the coefficient of partial contraction to be equal to

$$
\begin{equation*}
c_{\mathrm{d}}+\cdot 09 n \tag{35.}
\end{equation*}
$$

for rectangular orifices. The value of the second term $\cdot 09 n$ is derived from experiments. If we assume 617 for the mean value of c_{d}, we may change the expression into the form $(1+\cdot 146 n) c_{\mathrm{d}}$. When $n=\frac{1}{4}$, this becomes $1 \cdot 036 c_{\mathrm{d}}$; when $n=\frac{1}{2}$, it becomes $1.073 c_{\mathrm{d}}$; and when $n=\frac{3}{3}$, contraction is prevented for three-fourths of the perimeter, and the coefficient for partial contraction becomes $1 \cdot 109 c_{d}$. The form which we have given equation (35) is, however, the simplest; but the value of n must not exceed $\frac{3}{4}$. If in this case $c_{\mathrm{d}}=617$, the coefficient for partial contraction becomes $617+{ }^{\circ} 09 \times \frac{3}{4}$ $=\cdot 617+\cdot 067=\cdot 684$. Bidone's experiments give for the coefficient of partial contraction $(1+\cdot 152 n) c_{\mathrm{d}}$; and Weisbach's $(1+\cdot 132 n) c_{\mathrm{d}}$.

VARIATION IN THE COEFFICIENTS FROM THE EFFECTS OF THE VELOCITY OF APPROACH.

Heretofore we have supposed the water in the vessel to be almost still, its surface level unchanged, and the vessel consequently large compared with the area of the orifice. When the water flows to the orifice with a perceptible velocity, the contracted vein and the discharge are both found to be increased, other circumstances being the same. If the area of the vessel or channel in front exceed thirty times that of the orifice, the discharge will not be perceptibly increased by the induced velocity in the conduit; but for lesser areas of the approaching channel corrections due to the velocity of approach become necessary. It is clear that this velocity may arise from either a surface inclination in the channel, an increase of head, or a small channel of approach.

We get equation (6) for the discharge from a rectangular

orifice a, Fig. 12, of the length l, with a head measured from still water

$$
\mathrm{D}=\frac{2}{3} c_{\mathrm{d}} l \sqrt{2 g} \times\left\{h_{\mathrm{b}}^{\frac{3}{2}}-h_{\mathrm{t}}^{\frac{3}{2}}\right\}
$$

in which h_{b} and h_{t} are measured at some distance back from the orifice, as shown in the section. The water here, however, must move along the channel towards the orifice with considerable velocity. If a be the area of the orifice, and cthe area of the channel, we may suppose with tolerable accuracy
that this velocity is equal to $\frac{\mathrm{A}}{\mathrm{C}} v_{0}$, in which v_{0} represents the mean velocity in the orifice. If we also represent by v_{a} the velocity of approach, we get the equation

$$
\begin{equation*}
v_{\mathrm{a}}=\frac{\mathrm{A}}{\mathrm{C}} \times v_{0} \tag{36.}
\end{equation*}
$$

and consequently the height $\left(\boldsymbol{h}_{\mathrm{a}}\right)$ due to it is

$$
\begin{equation*}
h_{\mathrm{a}}=\frac{\mathrm{A}^{2}}{\mathrm{c}^{2}} \times \frac{v_{o}^{2}}{2 g} . \tag{37.}
\end{equation*}
$$

The height h_{a} may be considered as an increase of head, converting h_{b} into $h_{\mathrm{b}}+h_{\mathrm{a}}$, and h_{t} into $h_{\mathrm{t}}+h_{\mathrm{a}}$. The discharge therefore now becomes

$$
\begin{equation*}
\mathrm{D}=\frac{2}{3} c_{\mathrm{d}} l \sqrt{2 g}\left\{\left(h_{\mathrm{b}}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-\left(h_{\mathrm{t}}+h_{\mathrm{a}}\right)^{\frac{3}{2}}\right\} ; \tag{38.}
\end{equation*}
$$

which, for notches or weirs, is reduced to

$$
\begin{equation*}
\mathrm{D}=\frac{2}{3} c_{\mathrm{a}} l \sqrt{2 g}\left\{\left(h_{\mathrm{b}}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-h_{\mathrm{a}}^{\frac{3}{3}}\right\}, \tag{39.}
\end{equation*}
$$

as h_{t} then vanishes. As D is also equal to $\mathrm{A} \times v_{\mathrm{o}}$, equation (37) may be changed into

$$
\begin{equation*}
h_{\mathrm{a}}=\frac{\mathrm{D}^{2}}{\mathrm{c}^{2}} \times \frac{1}{2 g} . \tag{40.}
\end{equation*}
$$

If this value for h_{a} be substituted in equations (38) and (39), the resulting equations will be of a high order and do not admit of a direct solution; and in (38) and (39), as they stand, h_{a} involves implicitly the value of d , which we are seeking for. By finding at first an approximate value for the velocity of approach, the height h_{3} due to it can be easily found, equation (37); this height, substituted in equation (38) or (39), will give a closer value of \mathbf{D}, from which again a more correct value of h_{a} can be determined; and by repeating the operation the values of D and $\boldsymbol{h}_{\mathrm{a}}$ can be had to any degree of accuracy. In general the values found at the second operation will be sufficiently correct for all practical purposes.

It has been already observed that, for orifices, it is advisable to find the discharge from a formula in which only one head, that at the centre, is made use of; and though Table IV., as we shall show, enables us to calculate the discharge with facility from either formula, it will be of use to reduce equation (38) to a form in which only the head (h) at the centre is used. The error in so doing can never exceed six per cent., even at small depths, equation (31), and this is more than balanced by the observed increase in the coefficients for smaller heads.

The formula for the discharge from an orifice, h being the head at the centre, is

$$
\mathbf{D}=c_{\mathrm{d}} \sqrt{2 g h} \times \mathbf{A} ;
$$

and when the additional head h_{a} due to the velocity of approach is considered,

$$
\mathrm{D}=c_{\mathrm{d}} \sqrt{2 g\left(h+h_{\mathrm{a}}\right)} \times \mathrm{A},
$$

which may be changed into

$$
\begin{equation*}
\mathrm{D}=\mathrm{A} \sqrt{2 g h} \times c_{\mathrm{d}}\left\{1+\frac{h_{\mathrm{a}}}{h}\right\}^{\frac{1}{2}} \tag{41.}
\end{equation*}
$$

Equation (39), for weirs, may be also changed to the form

$$
\begin{equation*}
\mathrm{D}=\frac{2}{3} \mathrm{~A} \sqrt{2 g h_{\mathrm{b}}} \times c_{\mathrm{d}}\left\{\left(1+\frac{h_{\mathrm{a}}}{h_{\mathrm{b}}}\right)^{\frac{3}{2}}-\left(\frac{h_{\mathrm{a}}}{h_{\mathrm{b}}}\right)^{\frac{3}{2}}\right\} ; \tag{42.}
\end{equation*}
$$

this is similar in every way to the equation

$$
\begin{equation*}
\mathrm{D}=\frac{2}{3} \mathrm{~A} \sqrt{2 g d} \times c_{\mathrm{d}}\left\{\left(1+\frac{h_{\mathrm{t}}}{d}\right)^{\frac{3}{2}}-\left(\frac{h_{\mathrm{t}}}{d}\right)^{\frac{3}{2}}\right\}, \tag{43.}
\end{equation*}
$$

for the discharge from a rectangular orifice whose depth is d, with the head h_{t} at the upper edge. Table III. contains the values of $\left\{1+\frac{h_{\mathrm{i}}}{h}\right\}^{\frac{1}{2}}$ in equation (41), and Table IV. the values of $\left(1+\frac{h_{\mathrm{a}}}{h_{\mathrm{b}}}\right)^{\frac{3}{2}}-\left(\frac{h_{\mathrm{a}}}{h_{\mathrm{b}}}\right)^{\frac{3}{2}}$ in equation (42), or the similar expression in (43); $\frac{h_{\mathrm{a}}}{\boldsymbol{h}_{\mathrm{b}}}$ or $\frac{h_{\mathrm{t}}}{d}$ being put equal to \bar{n}; and we perceive that the effect of the velocity of approach is such as to
increase the coefficient c_{d} to $c_{\mathrm{d}}\left\{1+\frac{h_{\mathrm{a}}}{h}\right\}^{\frac{1}{2}}$ for orifices sunk some distance below the surface, and into

$$
c_{\mathrm{d}}\left\{\left(1+\frac{h_{\mathrm{a}}}{h_{\mathrm{b}}}\right)^{\frac{3}{3}}-\left(\frac{h_{\mathrm{a}}}{h_{\mathrm{b}}}\right)^{\frac{3}{2}}\right\}
$$

for weirs when h_{2} is the height due to the velocity of approach, h the depth of the centre of the orifice, and h_{b} the head on the weir. A few examples, showing the application of the formulæ (41), (42), and (43), and the application of Tables I., II., III., and IV. to them, will be of use. We shall suppose, for the present, the velocity of approach v_{a} to be given.

Example I. A rectangular orifice, 12 inches wide by 4 inches deep, has its centre placed 4 feet below the surface, and the water approaches the head with a velocity of 28 inches per second; what is the discharge? For an orifice of the given proportions, and sunk to a depth nearly four times its length, we shall find from Table I.

$$
c_{\mathrm{d}}=\frac{\cdot 616+627}{2}=621 \text { nearly }
$$

As the coefficient of velocity, equation (2), for water flowing in a channel is about 956 , we shall find, column No. 3, Table II., the height $h_{\mathrm{a}}=1 \frac{1}{8}=1 \cdot 125$ inch, nearly corresponding to the velocity 28 inches. Equation (41),

$$
\mathrm{D}=\mathrm{A} \sqrt{2 g h} \times c_{\mathrm{d}}\left\{1+\frac{h_{\mathrm{a}}}{h}\right\}^{\frac{1}{2}},
$$

now becomes

$$
\mathrm{D}=12 \times 4 \sqrt{2 g h} \times 621\left\{1+\frac{1 \cdot 125}{48}\right\}^{\frac{1}{2}}
$$

We also find $\sqrt{2 g h}=192 \cdot 6$ inches when $h=48$ inches, Table II.; therefore

$$
\begin{gathered}
\mathrm{D}=12 \times 4 \times 192.6 \times \cdot 621\left\{1+\frac{1 \cdot 125}{48}\right\}^{\frac{1}{2}} \\
=9244 \cdot 8 \times \cdot 621\{1+\cdot 0234\}^{\frac{1}{2}}=9244 \cdot 8 \times \cdot 621 \times 1 \cdot 0116,
\end{gathered}
$$

(as $\{1.0234\}^{\frac{1}{2}}=1 \cdot 0116$ from Table 1 III.) $=9244 \cdot 8 \times \cdot 628$ nearly $=5805 \cdot 7$ cubic inches $=3 \cdot 306$ cubic feet per second. Or thus: The value of $621 \times(1.0234)$ being found equal $\cdot 628, \mathrm{~d}=\mathrm{A} \times 628 \sqrt{2 g \times 48}$. Now for the coefficient $\cdot 628$, and $h=48$ inches, Table II. gives us $628 \sqrt{2 g \times 48}$ $=120.96$ inches; hence we get $\mathrm{d}=12 \times 4 \times 120.96$ $=5806.08$ cubic inches $=3 \cdot 306$ cubic feet, the same as before, the difference 38 in the cubic inches being of no practical value. If the centre of the orifice were within 1 foot of the surface, the effect of the velocity of approach would be much greater; for then

$$
c_{\mathrm{d}} \times\left\{1+\frac{h_{\mathrm{a}}}{h}\right\}^{\frac{1}{2}}=\left(\text { from TABLE I.) } \cdot 623\left\{1+\frac{1 \cdot 125}{12}\right\}^{\frac{1}{2}}\right.
$$

$=$ (from Table III.) $\cdot 623 \times 1 \cdot 047=652$ instead of $\cdot 628$.
In this case the discharge is $\mathrm{D}=12 \times 4 \times 652 \sqrt{2 g \times 12}$ $=12 \times 4 \times 652 \times 96 \cdot 3$ (from Table II.) $=12 \times 4 \times 62 \cdot 8$
$=3014 \cdot 4$ cubic inches $=1.744$ cubic feet per second. Or we may find the value of $652 \sqrt{2 g h}$ directly from Table II. thus:

$$
\begin{aligned}
& \text { The value of } \cdot 628 \sqrt{2 g \times 12}=60 \cdot 48 \\
& \text { The value of } \cdot \frac{666 \sqrt{2 g \times 12}}{38}=\frac{64 \cdot 14}{3 \cdot 66}:: \frac{\cdot 652}{24}: 2 \cdot 31 \text {. }
\end{aligned}
$$

Hence $\cdot 652 \sqrt{2 g h}=60 \cdot 48+2 \cdot 31=62 \cdot 79$, and the discharge $=12 \times 4 \times 62.79=3013.92$ cubic inches $=1.744$ cubic feet per second, the same as before.

Example II. A rectangular notch, 7 feet long, has a head of 8 inches measured at about 4 feet above the orifice, and the water approaches the head with a velocity of $16 \frac{1}{4}$ inches per second; what is the discharge? For a still head we shall assume $c_{\mathrm{d}}=\cdot 628$ in this case, and we have from equation (42)

$$
\mathrm{D}=\frac{2}{3} \mathrm{~A} \sqrt{2 g h_{\mathrm{b}}} \times c_{\mathrm{d}}\left\{\left(1+\frac{h_{\mathrm{a}}}{h_{\mathrm{b}}}\right)^{\frac{3}{7}}-\left(\frac{h_{\mathrm{a}}}{h_{\mathrm{b}}}\right)^{\frac{3}{?}}\right\}
$$

As in the last example, we shall find from Table II. $\left(h_{\mathrm{a}}\right)$ the
height due to the velocity of approach ($16 \frac{1}{4}$ inches) to be $\frac{3}{8}=0.375$ inch, assuming the coefficient of velocity to be $\cdot 956$. We have, therefore, $h_{\mathrm{a}}=\cdot 375, h_{\mathrm{b}}=8, c_{\mathrm{d}}=\cdot 628$, and $\mathrm{A}=7 \times 12 \times 8$, or for measures in feet $\frac{h_{\mathrm{a}}}{h_{\mathrm{b}}}=\cdot 047, h_{\mathrm{b}}=\frac{2}{3}$, and $A=7 \times \frac{2}{3}$; hence

$$
\mathrm{D}=\frac{2}{3} \times 7 \times \frac{2}{3} \sqrt{2 g \times \frac{2}{3}} \times 628\left\{(1.047)^{\frac{3}{7}}-(\cdot 047)^{\frac{3}{3}}\right\}
$$

The value of $(1 \cdot 047)^{\frac{3}{7}}-(\cdot 047)^{\frac{3}{7}}$ will be found from Table IV. equal to 1.0612 ; the value of $\sqrt{2 g \times \frac{2}{3}}$ will be found from Table II. equal to $6 \cdot 552$, viz. by dividing the velocity $78 \cdot 630$, to be found opposite 8 inches, by 12 ; hence

$$
\begin{aligned}
\mathrm{D} & =\frac{2}{3} \times 7 \times \frac{2}{3} \times 6.552 \times \cdot 628 \times 1.0612 \\
& =\frac{2}{3} \times 7 \times 4.368 \times \cdot 628 \times 1.0612 \\
& =\frac{2}{3} \times 7 \times 4.368 \times \cdot 666 \text { nearly } \\
& =\frac{2}{3} \times 7 \times 2.909=7 \times 1.939
\end{aligned}
$$

$=13.573$ cubic feet per second $=814.38$ cubic feet per minute. Or thus: From Table VI. we find, when the coefficient is $\cdot 628$, the discharge from a weir 1 foot long, with a head of 8 inches, to be 109.731 cubic feet per minute. The discharge for a weir 7 feet long, when $\frac{h_{\mathrm{a}}}{h}=\cdot 047$ is therefore $109.731 \times 7 \times 1.0612=815.12$ cubic feet per minute. The difference between this value and that before found, 814.38 cubic feet, is immaterial, and has arisen from not continuing all the products to a sufficient number of places of decimals.

We have, in equations (36) and (37), pointed out the relations between the channel, orifice, velocity of approach, and velocity in the orifice, viz.
$v_{\mathrm{a}}=\frac{\mathrm{A}}{\mathrm{C}} \times v_{\mathrm{o}}$, and $h_{\mathrm{a}}=\frac{\mathrm{A}^{2}}{\mathrm{c}^{2}} \times \frac{v_{\mathrm{o}}^{2}}{2 g}=\frac{\mathrm{D}^{2}}{2 g \mathrm{c}^{2}}$, in which $h_{\mathrm{a}}=\frac{v_{\mathrm{a}}^{2}}{2 g}$ (neglecting the coefficient of velocity 974 or 956). As v_{0} is the velocity in the orifice, $\frac{v_{0}}{c_{\mathrm{d}}}$ must be the velocity due to the head $h+h_{\mathrm{a}}$, and therefore

$$
\begin{gathered}
h+h_{\mathrm{a}}=\frac{v_{\mathrm{o}}^{2}}{c_{\mathrm{d}}^{2} \times 2 g}, \text { and } h=\frac{v_{\mathrm{o}}^{2}}{c_{\mathrm{d}}^{2} \times 2 g}-\frac{v_{\mathrm{a}}^{2}}{2 g} ; \text { hence } \\
\frac{h_{\mathrm{a}}}{h}=\frac{1}{\frac{v_{\mathrm{o}}^{2}}{v_{\mathrm{a}}^{2} \times c_{\mathrm{d}}^{2}}-1}=\frac{c_{\mathrm{d}}^{2} v_{\mathrm{a}}^{2}}{v_{\mathrm{o}}^{2}+c_{\mathrm{d}}^{2} v_{\mathrm{a}}^{2}}=\frac{c_{\mathrm{d}}^{2} \mathrm{~A}^{2}}{\mathrm{C}^{2}-c_{\mathrm{d}}^{2} \mathrm{~A}^{2}}, \text { for } \frac{v_{\mathrm{o}}^{2}}{v_{\mathrm{a}}^{2}}=\frac{\mathrm{c}^{2}}{\mathrm{~A}^{2}} .
\end{gathered}
$$

We have hence

$$
\begin{equation*}
\frac{h_{\mathrm{a}}}{h}=\frac{c_{\mathrm{d}}^{2} \mathrm{~A}^{2}}{\mathrm{c}^{2}-c_{\mathrm{d}}^{2} \mathrm{~A}^{2}} ; \tag{44.}
\end{equation*}
$$

substituting this value in equations (41) and (42), there results

$$
\begin{equation*}
\mathrm{D}=\mathrm{A} \sqrt{2 g h} \times c_{\mathrm{d}}\left\{1+\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}\right\}^{\frac{1}{2}}, \tag{45.}
\end{equation*}
$$

in which $m=\frac{\mathbf{C}}{\mathrm{A}}$, for the discharge from an orifice at some depth, and for the discharge from a weir,

$$
\begin{equation*}
\mathrm{D}=\frac{2}{3} \mathrm{~A} \sqrt{2 g h_{\mathrm{b}}} \times c_{\mathrm{d}}\left\{\left(1+\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}\right)^{\frac{3}{2}}-\left(\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}\right)^{\frac{3}{5}}\right\} \tag{46.}
\end{equation*}
$$

The two last equations give the discharge when the ratio of the channel to the orifice $\frac{\mathbf{C}}{\mathbf{A}}=m$ is known, and also when the whole quantity of water passing through the orifice, that due to the velocity of approach as well as the pressure, suffers a contraction whose coefficient is c_{d}. When $c_{\mathrm{d}}=1$, equation (45) may be changed into

$$
\mathrm{D}=\mathrm{A}\left\{\frac{2 g h}{1-\left(\frac{1}{m}\right)^{2}}\right\}^{\frac{1}{2}}
$$

This is the equation of Daniel Bernoulli, which is only a particular case of the one we have given.

$$
\text { If we put } n=\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}} \text {, the values of }\left\{1+\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}\right\}^{\frac{1}{2}},
$$ and of $\left\{1+\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}\right\}^{\frac{3}{7}}-\left\{\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}\right\}^{\frac{3}{2}}$, can be easily had from Tables III. and IV. We have, however, calculated Table V. for different ratios of the channel to the orifice, and for different values of the coefficient of discharge. This table gives at once the values of

$c_{\mathrm{d}}\left\{1+\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}\right\}^{\frac{1}{2}}$ and $c_{\mathrm{d}}\left\{\left(1+\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}\right)^{\frac{3}{7}}-\left(\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}\right)^{\frac{3}{y}}\right\}$ as new coefficients, and the corresponding value of

$$
\frac{h_{\mathrm{a}}}{h}=\frac{c_{\mathrm{d}}^{2}}{m^{2}-c_{\mathrm{d}}^{2}}
$$

It is equally applicable, therefore, to equations (41) and (42) as to equations (45) and (46). For instance, we find here at once the value of $628\left\{(1 \cdot 047)^{\frac{3}{2}}-(\cdot 047)^{\frac{3}{2}}\right\}$ in Example II., p. 58 , equal to $\cdot 666$, as $\frac{h_{\mathrm{a}}}{h}=\cdot 047$, and the next value to it for the coefficient $\cdot 628$, in the table, is $\cdot 046$, opposite to which we find 666 , the new coefficient sought. The sectional area of the channel in this case, as appears from the first column, must be about three times that of the weir or notch.

Table V. is calculated from coefficients c_{d} in still water, which vary from $\cdot 550$ to 1 . Those from 606 to $\cdot 650$, and the mean value 628 are most suited to practice. When the channel is equal to the orifice, the supply must equal the discharge, and for open channels, with the mean coefficient $\cdot 628$, we find accordingly from the table the new coefficient 1.002 for weirs, or 1 very nearly as it should be. We also find, in the same case, viz. when $\mathrm{A}=\mathrm{c}$, and $c_{\mathrm{d}}=\cdot 628$, that for short tubes, Fig. 13, the resulting new coefficient becomes -807. This, as we shall afterwards see, agrees very closely with the experimental results. When the coefficients in still

water are less than $\cdot 628$, or more correctly $\cdot 62725$, the orifice, according to our formula, cannot equal the channel unless other resistances take place-as from friction in tubes longer than one and a half or two diameters, or in wide crested weirs; and for greater coefficients the junction of the short tube with the vessel must be rounded, Fig. 14, on one or more sides; and in weirs or notches the approaches must slope from the crest and ends to the bottom or sides, and the overfall be sudden. The converging form of the approaches must, however, increase the ve-
 locity of approach; and therefore v_{a} is greater than $\frac{\mathbf{A}}{\mathbf{C}} \times v_{\mathrm{o}}$ when \mathbf{c} is measured between ro and ro, Fig. 14, to find the discharge, or new coefficient of an orifice placed at $r o$.

As the coefficients in Table V. are calculated for orifices at the end of short cylindrical or prismatic tubes at right angles to the sides or bottom of a cistern, a correction is required when the junction is rounded off as at roro, Fig. 14. When the channel is equal to the orifice, the new coefficient in equation (45) becomes

$$
c_{\mathrm{d}}\left\{1+\frac{c_{\mathrm{d}}^{2}}{1-c_{\mathrm{d}}^{2}}\right\}^{\frac{1}{2}}=c_{\mathrm{d}} \times\left\{\frac{1}{1-c_{\mathrm{d}}^{2}}\right\}^{\frac{1}{2}} .
$$

The velocity in the tube Fig. 14 is to that in the tube Fig. 13 as 1 to $c_{\mathrm{d}}\left\{\frac{1}{1-c_{\mathrm{d}}^{2}}\right\}^{\frac{1}{2}}$ nearly, or for the mean value $c_{\mathrm{d}}=\cdot 628$, as 1 to 807 . Now, as $\frac{\mathrm{C}}{\mathrm{A}}$ is assumed equal to $\frac{v_{\mathrm{o}}}{v_{\mathrm{a}}}$ in the cylindrical or prismatic tube, Fig. $13, \frac{.807 \mathrm{c}}{\mathrm{A}}=\frac{v_{\mathrm{o}}}{v_{\mathrm{a}}}$ in the tube Fig. 14 with the rounded junction, for v_{a} becomes $\frac{v_{\mathrm{a}}}{807}$; hence, in order to find the discharge from orifices at the end of the short tube, Fig. 14, we have only to multiply the
numbers representing the ratio $\frac{\mathbf{C}}{\mathrm{A}}$ in the first column, Table V., by 807 , or more generally by $c_{\mathrm{a}}\left\{\frac{1}{1-c_{\mathrm{d}}^{2}}\right\}^{\frac{3}{3}}$, and find the coefficient opposite to the product. Thus if $c_{\mathrm{d}}=\cdot 628$, we find, when $\frac{\mathbf{c}}{\mathrm{A}}=1, c_{\mathrm{d}}\left\{\frac{1}{1-c_{\mathrm{d}}^{2}}\right\}^{\frac{1}{2}}=8807$ in the table. If, again, we suppose $\frac{\mathbf{C}}{\mathbf{A}}=3$, then $3 \times 807=2.421$, the value of $\frac{v_{0}}{v_{\mathrm{a}}}$ for the tube Fig. 14, and opposite this value of $\frac{\mathrm{C}}{\mathrm{A}}$, taken in column 1, we shall find 651 for the new coefficient. For the cylindrical or prismatic tube, Fig. 13, the new coefficient would be ${ }^{6} 642$.

DIFFERENT EFFECTS OF CENTRAL AND MEAN VELOCITIES.

There is, however, another circumstance to be taken into consideration, and which we shall have to refer to more particularly hereafter ; it is this, that the central velocity directly facing the orifice is also the maximum velocity in the tube, and not the mean velocity. The ratio of these is as $1:: 835$ nearly; hence, in the above example, where $\frac{\mathrm{C}}{\mathrm{A}}=3$, we get $3 \times 835=2.505$ for the value of $\frac{\mathrm{C}}{\mathrm{A}}$ in column 1, Table V., opposite to which we shall find 649 , the coefficient for an orifice of one-third of the section of the tube when cylindrical or prismatic, Fig. 13; and $3 \times 835 \times 807=2.02$ nearly, opposite to which we shall get 661 for the coefficient when the orifice is at the end of the short tube, Fig. 14, with a rounded junction. We have, therefore, $\frac{\mathbf{C}}{\mathbf{A}} \times 835$ equal to the new value of $\frac{C}{A}$ for finding the discharge from orifices at the end of cylindrical or prismatic tubes, and $\frac{\mathbf{C}}{\mathbf{A}} \times 835 \times \cdot 807$
$=\frac{\mathbf{C}}{\mathbf{A}} \times \cdot 67$ nearly for the new value of $\frac{\mathbf{C}}{\mathbf{A}}$ when finding the discharge from orifices at the end of a short tube with a rounded junction, nearly.

The ratio of the mean velocity in the tube to that facing the orifice cannot be less than 835 to 1 , and varies up to 1 to 1 ; the first ratio obtaining when the orifice is pretty small compared with the section of the tube, and the other when they are equal. If we suppose the curve DC , whose abscissæ (Ab) represent the ratio of the orifice to the section of the tube, and whose ordinates ($b c$) represent the ratio of the mean velocity in the
 tube to that facing the orifice, to be a parabola, we shall find the following values :-

Ratios	Values of	Values of
$\underline{A}-\frac{A b}{}$		
$\overline{\mathrm{c}}=\frac{\mathrm{AB}}{}$	$d c$.	$b c$.
0	-165	-835
$\cdot 1$	$\cdot 163$	-837
$\cdot 2$	$\cdot 158$	-842
$\cdot 3$	-150	-850
$\cdot 4$	$\cdot 139$	-861
$\cdot 5$	$\cdot 124$	-876
$\cdot 6$	-106	-894
$\cdot 7$	-084	$\cdot 916$
-8	-059	-941
$\cdot 9$	-031	-969
$1 \cdot 0$	$\cdot 000$	$1 \cdot 000$

These values of $b c$ are to be multiplied by the corresponding ratio $\frac{C}{A}$ in order to find a new value, opposite to which will be found, in the table, the coefficient for orifices at the ends of
short prismatic or cylindrical tubes; and this new value again multiplied by 807 , or more generally by $c_{\mathrm{d}}\left\{\frac{1}{1-c_{\mathrm{d}}}\right\}^{\frac{1}{4}}$, will give another new value of $\frac{\mathbf{C}}{\mathrm{A}}$, opposite to which, in the table, will be found the coefficient for orifices at the ends of short tubes with rounded junctions.

Example III. What is the discharge from an orifice A, Fig. 16, 2 feet long by 1 foot deep, the value of $\frac{\mathrm{C}}{\mathrm{A}}$ being 3 , and the depth of the centre of a 1 foot 6 inches below the surface? We have $\mathrm{D}_{\mathrm{t}}=2 \times 1 \times \frac{117.945}{12}$

(Table II.) $=2 \times 9.829=19.658$ cubic feet per second for the theoretical discharge. From the foregoing table the coefficient for the mean velocity, facing the orifice, is about 86 ; hence $\frac{\mathbf{C}}{\mathbf{A}} \times 86=3 \times 86=2 \cdot 58$. If we take the coefficient from Table I., we shall find it (opposite to 2 , the ratio of the length of the orifice to its depth) to be 617 ; and, for this coefficient, opposite to 2.58 , in Table V., or the next number to it, we find the required coefficient 636 ; hence the discharge is $\cdot 636 \times 19 \cdot 658=12 \cdot 502$ cubic feet per second. If we assume the coefficient in still water to be 628 , then we shall obtain the new coefficient $\cdot 647$, and the discharge would be $\cdot 647 \times 19 \cdot 658$ $=12.719$ cubic feet. If the junction of the tube with the cistern be rounded, as shown by the dotted lines, we have to multiply 2.58 by $\cdot 807$, which gives 2.08 for the new value of $\frac{\mathbf{C}}{\mathbf{A}^{\prime}}$, opposite which we shall find, in Table V., when the first coefficient is $\cdot 628$, the new coefficient $\cdot 659$; and the discharge in this case would be $659 \times 19 \cdot 658=12.955$ cubic feet per second.

It is not necessary to take out the coefficient of mean velocity facing the orifice to more than two places of decimals. For sluices in streams and mill races, Fig. 17, the mean coefficient 628 in still water
 may be assumed, and thence the new coefficient suited to the ratio $\frac{\mathrm{C}}{\mathrm{A}}$ may be found, as in the first portion of Example III.

Example IV. What is the discharge through the aperture A, equal 2 feet by 1 foot, when the channel is to the orifice as 3.375 to 1 , and the depth of the centre is 1.25 foot below the surface, taken at about 3 feet above the orifice? Here the coefficient of the approaching velocity is 85 nearly, whence the new value of $\frac{\mathbf{C}}{\mathbf{A}}$ is $3.375 \times 85=2.87$; and as $c_{\mathrm{d}}=\cdot 628$, we shall get from Table V . the new coefficient $\cdot 644$. Hence

D $=2 \times 1 \times \frac{107.669}{12} \times 644($ Table II. $)=2 \times 8.972 \times \cdot 644$
$=17.944 \times \cdot 644=11.556$ cubic feet per second.
Weisbach finds the discharge, by an empirical formula, to be 11.31 cubic feet. If the coefficient be sought in Table I., we shall find it 617 nearly, from which, in Table V., we shall find the new coefficient to be 632 ; hence $17.944 \times \cdot 632$ $=11 \cdot 341$ cubic feet per second. If the coefficient 6225 were used, we should find the new coefficient equals 638 , and the discharge 11.468 cubic feet. Or thus: The ratio of the head at the upper edge to the depth of the orifice is $\frac{9}{12}=\cdot 75$, and from Table IV. we find $(1 \cdot 75)^{\frac{3}{2}}-(75)^{\frac{3}{2}}=1 \cdot 6655$. Assuming the coefficient to be 644 , we find from Table VI. the discharge per minute over a weir 12 inches deep and 1 foot long to be $\frac{208 \cdot 650+205 \cdot 119}{2}=206.884$ cubic feet nearly;
and as the length of the orifice is 2 feet, we have $\frac{2 \times 206.884 \times 1.6655}{60}=11.482$ cubic feet per second, which is the correct theoretical discharge for the coefficient $\cdot 644$, and less than the approximate result, $11 \cdot 556$ cubic feet above found, by only a very small difference. The velocity of approach in this example must be derived from the surface inclination of the stream.

For notches or Poncelet weirs the approaching velocity is a maximum at or near the surface. If the central velocity at the surface facing the notch be 1 , the mean velocity from side to side will be $\cdot 914$. We may therefore assume the variation of the central to the mean velocity to be from 1 to $\cdot 914$; and hence the ratio of the mean velocity at the surface of the channel to that facing the notch or weir cannot be less than 914 to 1 , and varies up to 1 to l; the first ratio obtaining when the notch or weir occupies a very small portion of the side or width of the channel, and the other when the weir extends for the whole width. Following the same mode of calculation as at p. 63, Fig. 15, we shall find as follows:-

Ratio of the width of the notch to the width of the channel.	Values of de, Fig. 15.	Values of $b c$, Fig. 15.
0	-086	$\cdot 914$
$\cdot 1$. 085	. 915
$\cdot 2$	-083	-917
$\cdot 3$	-078	-922
-4	-072	-928
-5	-064	-936
-6	-055	-945
$\cdot 7$	-044	-956
-8	-031	-969
$\cdot 9$	-016	-984
$1 \cdot 0$	-000	$1 \cdot 000$

These values of $b c$ are to be used as before in order to find the value of $\frac{\mathbf{C}}{\mathbf{A}}$, opposite to which in the tables, and under the heading for weirs, will be found the new coefficient.

Example V. The length of a weir is 10 feet; the width of the approaching channel is 20 feet; the head, measured about 6 feet above the weir, is 9 inches; and the depth of the channel 3 feet: what is the discharge? Assuming the circumstances of the overfall to be such that the coefficient of discharge for heads, measured from still water in a deep weir basin or reservoir, will be 617 , we find from Table VI. the discharge to be $128.642 \times 10=1286.42$ cubic feet per minute; but from the smallness of the channel the water approaches the weir with some velocity, and $\frac{\mathbf{C}}{\mathbf{A}}=\frac{20 \times 3}{10 \times \frac{3}{4}}=8$. We have also the width of the channel equal to twice the width of the weir, and hence (small table, p. 30) $8 \times 936=7.488$ for the new value of $\frac{\mathrm{C}}{\mathrm{A}}$. From Table V. we now find the new coefficient $\frac{\cdot 622+624}{2}=\cdot 623$, and hence the discharge is

$$
\frac{1286 \cdot 42 \times 623}{617}=1298.93 \text { cubic feet per minute. }
$$

Or thus: As the theoretical discharge, Table VI., is 2084.96 cubic feet, we get $2084.96 \times \cdot 623=1298 \cdot 93$, the same as before. In this example, however, the mean velocity approaching the overfall bears to the mean velocity in the channel a greater ratio than $1: 936$, as, though the head is pretty large in proportion to the depth of the channel, the ratio of the sections $\frac{A}{C}=\frac{1}{8}$ is small. We shall therefore be more correct by finding the multiplier from the small table, p. 63. By doing so the new value of $\frac{\mathbf{C}}{\mathbf{A}}$ is $8 \times 838=6.704$. From this and the coefficient 617 we shall find, as before from Table V., the new coefficient to be $\cdot 627$; hence we get $2084.96 \times 627=1307 \cdot 27$ cubic feet per minute for the discharge.

The foregoing solution takes for granted that the velocity of approach is subject to contraction before arriving at the overfall or in passing through it; now, as this reduces the mean velocity of approach from 1 to $\cdot 784$, when the coeffi-
cient for heads in still water is 617 , we have to multiply the value of $\frac{C}{A}=6.704$, last found, by $\cdot 784$, and we get $6.704 \times \cdot 784=5.26$ for the value $\frac{\mathbf{C}}{\mathbf{A}}$ due to this correction, from which we find the corresponding coefficient in Table V. to be $\cdot 629$, and hence the corrected discharge is $2084 \cdot 96 \times \cdot 629$ $=1311 \cdot 44$ cubic feet.

It is to be remarked that the value of $\frac{\mathbf{C}}{\mathrm{A}}$ in Table V. is simply an approximate value for the ratio of the velocity in the channel facing the orifice to the velocity in the orifice itself; and the corrections applied in the foregoing examples were for the purpose of finding this ratio more correctly than the simple expression $\frac{\mathbf{C}}{\mathrm{A}}$ gives it. The following auxiliary table will enable us to find the correction, and thence the new coefficient, with facility. Thus, if the channel be five times the orifice, and a loss in the approaching velocity takes

AUXILIARY TABLE TO TABLE V.

		Multipliers for finding the new values of $\frac{\mathrm{C}}{\mathrm{A}}$ in Table V ., when the water approaches without contractlon or loss of velocity.						
		$\begin{aligned} & \text { Coeffict. } \\ & \hline 639 \end{aligned}$	$\begin{gathered} \text { Coeffict. } \\ -628 \end{gathered}$	$\begin{array}{\|l} \text { Coeffict. } \\ -617 \end{array}$	$\begin{array}{\|l\|} \hline \text { Coeffict. } \\ -606 \end{array}$	$\begin{aligned} & \text { Coeffict. } \\ & -595 \end{aligned}$	$\begin{aligned} & \text { Coeffict. } \\ & -584 \end{aligned}$	$\begin{aligned} & \text { Coeffict. } \\ & -573 \end{aligned}$
0	$\cdot 835$	-69	$\cdot 67$. 65	-64	- 62	-60	. 58
$\cdot 1$	-837	. 70	-68	-66	-64	$\cdot 62$	-60	-59
$\cdot 2$	-842	. 70	-68	-66	-64	-62	. 61	-59
$\cdot 3$	-850	71	-69	$\cdot 67$	$\cdot 65$	-63	. 61	-59
$\cdot 4$	$\cdot 861$	$\cdot 72$	-69	-68	-66	-64	. 62	-60
$\cdot 5$. 876	. 73	. 71	-69	. 67	-65	-63	-61
-6	-894	$\cdot 74$	$\cdot 72$	-70	$\cdot 68$. 66	-64	$\cdot 62$
$\cdot 7$. 916	$\cdot 76$	$\cdot 74$	$\cdot 72$	$\cdot 70$	$\cdot 68$	-66	-64
$\cdot 8$. 941	$\cdot 78$	$\cdot 76$	$\cdot 74$.72	70	. 68	$\cdot 66$
$\cdot 9$	-969	. 81	. 78	$\cdot 76$	$\cdot 74$.72	-70	-68
1.0	1.000	. 831	-807	$\cdot 784$	$\cdot 762$	$\cdot 740$	$\cdot 719$	$\cdot 699$

place equal to that in a short cylindrical tube, we get $5 \times 842=4.210$ for the new value of $\frac{\mathbf{C}}{\mathbf{A}}$, opposite to which, in Table V., will be found the coefficient sought. If the coefficient for still water be $\cdot 606$, we shall find it to be $\cdot 612$ for orifices and 623 for weirs. But when the water approaches without loss of velocity, we find from the auxiliary table 64 for the multiplier instead of 842 , and consequently the new value of $\frac{\mathbf{C}}{\mathbf{A}}$ becomes $5 \times \cdot 64=3 \cdot 2$, from which we shall find 617 to be the new coefficient for orifices and $\cdot 636$ for weirs. The auxiliary table is calculated by multiplying the numbers in column 2 (see p. 63) by $c_{\mathrm{d}}\left\{\frac{1}{1-c_{\mathrm{d}}^{2}}\right\}^{\frac{1}{2}}$, which will be found for the different values of c_{d} in the table, viz. $\cdot 639, \cdot 628, \cdot 617, \cdot 606, \cdot 595, \cdot 584$, and $\cdot 573$, to be $\cdot 831, \cdot 807$, $\cdot 784, \cdot 762, \cdot 740, \cdot 719, \cdot 699$ respectively, as given in the top and bottom lines of figures.

In weirs at right angles to channels with parallel sides, the sectional area can never equal that of the channel unless it be measured at or above the point A, where the sinking of the overfall commences; and unless also the bed cd and surface ab have the same inclination. In all open channels, as mill
 races, streams, rivers, the supply is derived from a surface inclination $\mathbf{A} \mathbf{B}$, and this inclination regulates itself to the discharging power of the overfall. When the overfall and channel have the same width, and it is considerable, we have, as shall appear hereafter, $91 \sqrt{h s}$ for the mean velocity in the channel, where h is the depth in feet and s the rate of inclination of the surface $\boldsymbol{A} \boldsymbol{B}$. We have also $\frac{2}{3} \sqrt{2 g h}$ for the theoretical velocity of discharge at the overfall, of equal depth with the channel, and, when both velocities are equal,

$$
\frac{2}{3} \sqrt{2 g h}=5.35 \sqrt{h}=91 \sqrt{h \delta} ;
$$

from which we find

$$
s=\frac{1}{289},
$$

the inclination of ba when the supply is equal to the theoretical discharge at the overfall. If the coefficient at the overfall were 628 , or, which is nearly the same thing, if a large and deep weir basin intervene between the weir and

channel, Fig. 19, the velocity of approach would be destroyed, and we should have

$$
5.35 \times \cdot 628 \sqrt{\bar{h}}=3.36 \sqrt{\bar{h}}=91 \sqrt{h s} ;
$$

and thence the inclination of $A B$

$$
s=\frac{1}{734}
$$

very nearly. When we come to discuss the surface inclination of rivers, we shall see that the conditions here assumed and the resulting surface inclinations would involve a considerable loss of head. If the quantity discharged under both circumstances be the same, and h be the depth in the first case, Fig. 18, we shall then have the head in the latter case, Fig. 19, equal $\left(\frac{5 \cdot 35}{3.36}\right)^{\frac{2}{3}} h=1 \cdot 36 h$ very nearly, from which and the surface inclination the extent of the backwater may be found with sufficient accuracy. When, in Fig. 19, the inclination of A B exceeds $\frac{1}{734}$, the head at a must exceed the depth of the river above A. We must refer to pages further on for some remarks on the backwater curve.

SECTION V.

SUBMERGED ORIFICES AND WEIRS.-CONTRACTED RIVER CHANNELS.

The available pressure at any point in the depth of the orifice a, Fig. 20, is equal to the difference of the pressures on each side. This difference is equal to the pressure due
 to the height h, between the water surfaces on each side of the orifice; in this case, the velocity is

$$
\begin{equation*}
v=c_{\mathrm{d}} \sqrt{2 g h} \tag{47.}
\end{equation*}
$$

and the discharge

$$
\begin{equation*}
\mathrm{v}=l d c_{\mathrm{d}} \sqrt{2 g h} \tag{48.}
\end{equation*}
$$

in which, as before, l is the length, and d the depth of the rectangular orifice a.

When the orifice is partly submerged, as in Fig. 21, we may put $h_{\mathrm{b}}-h=d_{2}$ for the submerged depth, and h $h_{\mathrm{t}}=d_{1}$, the remaining portion of the depth;
 whence $d_{1}+d_{2}=d$ is the entire depth. The discharge through the submerged depth d_{2} is $c_{\mathrm{d}} l d_{2} \sqrt{2 g h}$, and the discharge though the upper portion d_{1} is

$$
\frac{2}{3} c_{\mathrm{d}} l \sqrt{2 g}\left(h^{\frac{3}{2}}-h_{\mathrm{t}}^{\frac{3}{3}}\right)
$$

whence the whole discharge-assuming the coefficient of discharge c_{d} is the same for the upper and lower depths-is

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} l \sqrt{2 g}\left\{d_{2} \sqrt{h}+\frac{2}{3}\left(h^{\frac{3}{y}}-h_{\mathrm{t}}^{\frac{3}{3}}\right)\right\} . \tag{49.}
\end{equation*}
$$

We may, however, equation (31), assume that

$$
\frac{2}{3} c_{\mathrm{d}} l \sqrt{2 g}\left(h^{\frac{3}{2}}-h_{\mathrm{t}}^{2}\right)=c_{\mathrm{d}} d_{1} l \sqrt{2 g\left(h-\frac{d_{1}}{2}\right)}
$$

very nearly, and hence

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} l d_{2} \sqrt{2 g h}+c_{\mathrm{d}} l d_{1} \sqrt{2 g\left(h-\frac{d_{1}}{2}\right)} . \tag{50.}
\end{equation*}
$$

As $h_{t}+\frac{d_{1}}{2}=h-\frac{d_{1}}{2}$, this equation may be changed into

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} l d_{2} \sqrt{2 g h}+c_{\mathrm{d}} l d_{1} \sqrt{2 g\left(h_{\mathrm{t}}+\frac{d_{1}}{2}\right)} . \tag{51.}
\end{equation*}
$$

In either of these forms the values of

$$
c_{\mathrm{d}} \sqrt{2 g h}, c_{\mathrm{d}} \sqrt{2 g\left(h-\frac{d_{1}}{2}\right)}, \text { and } c_{\mathrm{d}} \sqrt{2 g\left(h_{\mathrm{t}}+\frac{d_{1}}{2}\right)}
$$

can be had from Table II., and the value of the discharge d thence easily found.

When the water approaches the orifice with a determinate velocity, the height h_{a} due to that velocity can be found from Table II., and the discharge is then found by substituting $h+h_{\mathrm{a}}$ and $h_{\mathrm{t}}+h_{\mathrm{a}}$ for h and h_{t} in the above equations.

In the submerged weir, Fig. 22, h becomes equal to d_{1}, and $h_{t}=0$; the discharge, equation (49), then becomes

$$
\begin{align*}
\mathrm{D}=c_{\mathrm{d}} l d_{2} \sqrt{2 g d_{1}}+\frac{2}{3} & c_{\mathrm{d}} l d_{1} \sqrt{2 g d_{1}} \tag{52.}\\
& =c_{\mathrm{d}} l \sqrt{2 g d_{1}}\left\{d_{2}+\frac{2}{3} d_{1}\right\} .
\end{align*}
$$

When the water approaches with a velocity due to the height h_{a}, then h becomes $h+h_{\mathrm{a}}, h_{\mathrm{t}}=h_{\mathrm{a}}$, and equation (49) becomes

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} l \sqrt{2 g}\left\{d_{2} \sqrt{d_{1}+h_{\mathrm{a}}}+\frac{2}{3}\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-h_{\mathrm{a}}^{\frac{3}{2}}\right\} . \tag{53.}
\end{equation*}
$$

In the improvement of the navigation of rivers, it is sometimes necessary to construct weirs so as to raise the upper waters by a given depth d_{1}. The discharge D is in such cases previously known, or easily determined, and from the values of d_{1} and D we can easily determine, equation (52), the value of

$$
\begin{equation*}
d_{2}=\frac{\mathrm{D}}{c_{\mathrm{d}} l \sqrt{2 g d_{1}}}-\frac{2}{3} d_{1} \tag{54.}
\end{equation*}
$$

or, by taking the velocity of approach into account,

$$
\begin{equation*}
d_{2}=\frac{\mathrm{D}}{c_{\mathrm{d}} l \sqrt{2 g\left(d_{1}+h_{\mathrm{a}}\right)}}-\frac{2}{3} \frac{\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-h_{\mathrm{a}}^{\frac{3}{3}}}{\sqrt{d_{1}+h_{\mathrm{a}}}} \tag{55.}
\end{equation*}
$$

This value of d_{2} must be the depth of the top of the weir below the original surface of the water, in order that this surface should be raised by a given depth d_{1}. When h_{a} is small compared with d_{2}, we may take

$$
\frac{2}{3}\left(d_{1}+h_{\mathrm{a}}\right)=\frac{2}{3} \times \frac{\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-\left(h_{\mathrm{a}}\right)^{\frac{3}{2}}}{\sqrt{d_{1}+h_{\mathrm{a}}}} \text { in equation (55). }
$$

Example VI.-A river whose width at the surface is 70 feet, whose hydraulic mean depth is 4.4 feet, and whose cross sectional area is 325 feet, has a surface inclination of 1 foot per mile; to what depth below, or height above the surface must a weir at right angles to the channel be raised, so that the depth of water immediately above it shall be increased by $3 \frac{1}{2}$ feet ?

When the hydraulic mean depth is $4 \cdot 4$ feet, and the fall per mile 1 foot, we find from Table V1II. that the mean velocity of the river is 29.98 or 30 inches very nearly per second. The discharge is, therefore, $325 \times 2 \frac{1}{2}=812.5$ cubic feet per second, or 48750 cubic feet per minute. Hence, $\frac{48750}{70}=696 \cdot 4$ cubic feet must pass over each foot in length of the weir per minute. Assuming the coefficient $c_{d}=628$ in the first instance, we find from Table VI. the head passing over a weir corresponding to this discharge to be 27.4 inches; but as the head is to be increased by $3 \frac{1}{2}$ feet, or

42 inches, it is clear that the weir must be perfect; that is, have a clear overfall, and rise $42-27 \cdot 4=14 \cdot 6$ inches over the original water surface. In order that the weir may be submerged, or imperfect, the head could not be increased by more than $27 \cdot 4$ inches. Let us, therefore, assume in the example, that the increase shall be only 18 instead of 42 inches; the weir then becomes submerged, and we have, from equation (54),

$$
d_{2}=\frac{696 \cdot 4}{\cdot 628 \sqrt{18^{\prime \prime} \times 2 g}}-\frac{2}{3} \times 18^{\prime \prime}(\text { as } l=1 \text { foot })
$$

The value of the first part of this expression is found from Table VI. or Table II. equal to
$\frac{696.4}{\frac{12}{18} \times \frac{3}{2} \times 370.341}=\frac{696.4}{370.341}=1.88$ feet $=22.56$ inches;
hence, $22.56-\frac{36}{3}=10.56$ inches is the values of d_{2}; that is, the submerged weir must be built within 10.56 inches of the surface to raise the head 18 inches above the former level. If, however, the velocity of approach be taken into account, we shall find this velocity equals $\frac{812 \cdot 5}{430}=2$ feet per second very nearly; and the height, or value of h_{a}, due to this velocity, taken from Table II., is $\frac{3}{4}=\cdot 75$ inches nearly; therefore, from equation (55),

$$
d_{2}=\frac{696 \cdot 4}{628 \sqrt{2 g \times 18 \cdot 75^{\prime \prime}}}-\frac{2}{3} \times \frac{(18 \cdot 75)^{\frac{3}{2}}-(\cdot 75)^{\frac{3}{2}}}{\sqrt{18 \cdot 75}}
$$

The value of $\frac{696 \cdot 4}{.628 \sqrt{2 g \times 18 \cdot 75^{\prime \prime}}}=$ (from Table VI.)
$\frac{696.4}{\frac{3}{2} \times \frac{12}{18.75} \times 393.75}=\frac{696.4}{378.8}=1.84$ feet $=22.08$ inches;

[^15]\[

also, $$
\begin{aligned}
\frac{2}{3} & \times \frac{(18.75)^{\frac{3}{2}}-(\cdot 75)^{\frac{3}{2}}}{\sqrt{18.75}}=\frac{2}{3} \times 18.75-\frac{2}{3} \times \frac{(\cdot 75)^{\frac{3}{2}}}{\sqrt{18.75}} \\
& =12.5-\frac{2}{3} \times \frac{.65}{4.33}=12.5-1=12.4
\end{aligned}
$$
\]

Hence $d_{2}=22.08-12.4=9.68$ inches, or about 1 inch less than the value previously found from equation (54). The mean coefficient of discharge was here assumed to be 628 . Experiments on submerged weirs show that the value of c_{d} varies up to 8 , but as this coefficient would reduce the value of d_{2}, or the depth of the top of the weir below the surface, it is safer (where a given depth above a weir must be obtained) to use the lesser and ordinary coefficients of perfect weirs, with a clear overfall, for finding the crest levels of submerged weirs, when it is necessary to construct them. If the coefficient 8 were used in the previous calculation, we should have found

$$
d_{2}=\frac{.628 \times 22.08}{\cdot 8}-12.4=17.33-12.4=4.93 \text { inches, }
$$

or not much more than half the previous value; but this would only increase the whole height of the weir by $9 \cdot 68-4 \cdot 93=4.75$ inches.

As $\mathrm{D}=\frac{2}{3} c_{\mathrm{d}} l \sqrt{2 g}\left\{\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-h_{\mathrm{a}}^{\frac{3}{3}}\right\}$ for a perfect weir with a free overfall, it is clear that when D is greater than

$$
\frac{2}{3} c_{\mathrm{d}} l \sqrt{2 g}\left\{\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-h_{\mathrm{a}}^{\frac{3}{2}}\right\},
$$

the weir is imperfect or submerged.

CONTRACTED RIVER CHANNELS.

When the banks of a river, whose bed has a uniform inclination, approach each other, and contract the width of

the channel in any way, as in Fig. 23, the water will rise at the contracted portion, A, until the increased velocity of discharge compensates for the reduced cross section. If we put, as before, d_{1} for the increase of depth at the contracted width, and d_{2} for the previous depth of the channel, we shall find the water passing through the lower depth, d_{2}, equal to $c_{\mathrm{d}} l d_{2} \sqrt{2 g d_{1}}$, in which l is the width of the contracted channel at A , and the water overflowing through d_{1} equal to $\frac{2}{3} c_{\mathrm{d}} l d_{1} \sqrt{2 g d_{1}}$; and hence the whole discharge through A is

$$
\begin{equation*}
\mathrm{D}=c_{\mathrm{d}} l \sqrt{2 g d_{1}}\left(d_{2}+\frac{2}{3} d_{1}\right) \tag{56.}
\end{equation*}
$$

When our object is to find the width l of the contracted channel, so that the depth of water in the upper stretch shall be increased by a given depth d_{1}, we have

$$
\begin{equation*}
l=\frac{\mathrm{D}}{c_{\mathrm{d}} \sqrt{2 g d_{1}}\left(d_{2}+\frac{2}{3} d_{1}\right)} \tag{57.}
\end{equation*}
$$

When the velocity of approach is large, or the height \hbar_{a} due to it a large portion of d_{1}, it must not be neglected. In this case, as before, we find the discharge through the depth d_{2} equal to $c_{\mathrm{d}} l d_{2} \sqrt{2 g\left(d_{1}+h_{\mathrm{a}}\right)}$; and the discharge through the depth d_{1} equal to $\frac{2}{3} c_{\mathrm{d}} l \sqrt{2 g}\left\{\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-h_{\mathrm{a}}^{\frac{3}{2}}\right\}$; and hence the whole discharge is
(58.) $\mathrm{D}=c_{\mathrm{d}} l \sqrt{2 g}\left\{d_{2}\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{1}{2}}+\frac{2}{3}\left[\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-l_{\mathrm{a}}^{\frac{3}{2}}\right]\right\}$;
from which we find
(59.) $l=\frac{\mathrm{D}}{c_{\mathrm{d}} \sqrt{2 g}\left\{d_{2}\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{1}{2}}+\frac{2}{3}\left[\left(d_{1}+h_{\mathrm{a}}\right)^{\frac{3}{2}}-l_{\mathrm{a}}^{3}\right]\right\}}$.

If the projecting spur or jetty at a be itself submerged, these formulæ must be extended; the manner of doing so, however, presents no difficulty, as it is only necessary to find the discharges of the different sections according to the preceding formulæ and add them together; but the resulting formula so found is too complicated to be of any practical value.

heads above bridges.

Equations (56), (57), (58), and (59), are applicable to the cases of contraction in river channels caused by the construction of bridge-piers and abutments, when the width l is put for the sum of the openings between them. The value of the coefficient c_{d} will depend on the peculiar circumstances of each case; we have seen that it rises as high as 8 , in some cases of submerged weirs, and for cases of contracted channels it rises sometimes as high as 956 , particularly when they are analogous to those for the discharge through mouthpieces and short tubes. When the heads of the piers are square to the channel, the coefficient may be taken at about -8; when the angles of the cut-waters or sterlings are obtuse, it may be taken at about 9 ; and when curved and acute, at 97 . With this coefficient, a head of $1 \frac{3}{4}$ inch will give a velocity of very nearly 36 inches, or 3 feet per second; but as a certain amount of loss takes place from the velocity of the tail-water being in general less than that through the arch, from obstructions in the passage, and from square-headed and very short piers, the coefficient may be so small in some cases as $\cdot 628$, which would require a head of $4 \frac{1}{4}$ inches to obtain the same velocity. This head is to the former as 17 to 7. The selection of the proper coefficient suited to any particular case is, therefore, a matter of the first importance in determining the effect of obstructions in river channels: we shall have to recur to this subject again, but it is necessary to observe here, that the form of the approaches, the length of the piers compared with the distance between them, or span, and the length and form of the obstruction compared with the width of the channel, must be duly considered before the coefficient suited to the particular case can be fixed upon. Indeed, the coefficients will always approximate towards those, given in the next section, for mouth-pieces, shoots, and short tubes similarly circumstanced. For some further remarks on contracted channels, see Section X.

SECTION VI.

SHORT TUBES, MOUTH-PIECES, AND APPROACHES.-COEFFICIENTS OF DISCHARGE FOR SIMPLE AND COMPOUND SHORT TUBES.- SHOOTS.

The only orifices we have heretofore referred to were those in thin plates or planks, with a few incidental exceptions. It has been shown, page 20, Fig. 4, that a rounding off, next the water, of the mouth-piece increases the coefficient; and when the curving assumes the form of the vena-contracta, the coefficient increases to 974 , or nearly unity. The discharge from a short cylindrical tube a, Fig. 24, whose length

is from one and a half to three times the diameter, is found to be very nearly an arithmetical mean between the theoretical discharge and the discharge through a circular orifice in a thin plate of the same diameter as the tube, or 814 nearly. If, however, the inner arris be rounded or chamfered off in any way, the coefficient will increase until, in the tube \mathbf{b}, Fig. 24, with a properly-rounded junction, the coefficient becomes unity very nearly. In the conical short tubes c and d the coefficients are found to vary according to some function of the converging or diverging angles 0,0 , and according as we take the lesser or greater diameter to calculate from. When the length of the tube exceeds three times the diameter, the friction of the water against the sides should be taken into account. As for orifices in thin plates, so also for short tubes, the coefficients are found to vary according to the depth of
the centre below the surface of the water, and to increase as the depths and diameter of the tube decrease. Poleni was the first who remarked that the discharge through a short tube was greater than that through a simple orifice of the same diameter, in the proportion of 133 to 100 , or as 617 to -821.
cylindrical short tubes, a, fig. 24.
The experiments of Bossût, as reduced by Prony, give the following coefficients, at the corresponding depths, for a cylindrical tube a, Fig. 24, 1 inch in diameter and 2 inches

COEFPIOIENTS FOR SHORT TUBES, FROM BOSSÔT.

Heads, in feet.	Coefficients.	Heads, in feet.	Coefficients.	Heads, in feet.	Coefficients.
1	.818	6	.806	11	.805
2	.807	7	.806	12	.804
3	.807	8	.805	13	.804
4	.807	9	.805	14	.804
5	.806	10	.805	15	.803

long. The depths are given in Paris feet in the original, but the coefficients remain the same practically for depths in English feet.

Venturi's experiments give a coefficient 823 for a short tube $A, 1 \frac{1}{2}$ inch in diameter and $4 \frac{1}{2}$ inches long, at a depth of 2 feet $8 \frac{1}{2}$ inches, the coefficient through an orifice in a thin plate of the same diameter and at the same depth being $\cdot 622$. We have calculated these coefficients from the original experiments. The measures in those were Paris feet and inches, from which the calculations were directly made; and as the difference in the coefficient for small changes of depth or dimensions is immaterial or vanishes, as may be seen by the foregoing small table, and as 1 Paris inch or foot is equal to 1.0658 English inches or feet, the former measures exceed the latter by only about $\frac{1}{15}$ th. We may therefore assume that the coefficient for any orifice, at any depth, is the same,
whether the dimensions be in Paris or English feet or inches. This remark will be found generally useful in the consideration of the older continental experiments, and will prevent unnecessary reductions from one standard to another where the coefficients only have to be considered.

The mean value derived from the experiments of Michelotti, at depths from 3 to 20 feet, and with short tubes a from $\frac{1}{2}$ inch to 3 inches in width, is $c_{\mathrm{d}}=8814$. Buff's experiments* give the following results for a tube $\frac{3}{10}$ of an
bupf's coeffictents for small short tubes.

Head in Inches.	Coefficient.	Head in inches.	Coefficient.	Head in inches.	Coefficient.
1$1 \frac{1}{4}$.855	6	.840	23	.829	
$2 \frac{1}{2}$.861	14	.840	32	.826

inch wide and $\frac{5}{10}$ of an inch long, nearly. The increase for smaller tubes and for lesser depths appears by comparing these results with the foregoing, and from the results in themselves, generally. Weisbach's experiments give a mean value for $c_{\mathrm{d}}=815$, and for depths of from 9 to 24 inches the coefficients $\cdot 843, \cdot 832, \cdot 821, \cdot 810$ respectively, for tubes $\frac{4}{10}, \frac{8}{10}, \frac{12}{10}$, and $\frac{16}{10}$ of an inch wide, the length of each tube being three times the diameter. D'Aubuisson and Castel's experiments with a tube 61 inch diameter and 1.57 inch long, give 829 for the coefficient at a depth of 10 feet.

We have calculated the coefficients in the following two short tables, from Rennie's experiments with glass orifices and tubes, Table 7, p. 435, Philosophical Transactions for 1831. The form of the orifices, or length of the shorter tubes is not stated, but it is probable, from the results, that the arrises of the ends were in some way rounded off; it is stated they were "enlarged." Indeed, the discharges from the short tube, or orifice of $\frac{1}{4}$ inch diameter exceed the theo-

[^16]retical ones in the proportion of 1.261 to 1 , and 1.346 to 1 . These results could not have been derived from a simple cylindrical tube, but might have arisen from the arrises being more or less rounded at both ends, and the orifice partaking of the nature of a compound tube, which may be constructed, as we shall hereafter shew, so as to increase the theoretical discharge from 1 up to $1 \cdot 553$. The resulting coefficients

COEFFICIENTS FOR SHORT TUBES, THE ENDS RNLARGED.

Head in feet.	tinch diameter.	inch diameter.	inch diamete.	I inch ameter.
1	1.231	.831	.766	.912
2	1.261	.839	.820	.920
3	1.346	.838	.821	.880
4	1.261	.831	.829	.991

for the $\frac{1}{2}$ and $\frac{3}{4}$ inch tubes, approach very closely to those obtained by other experimenters, but those for the inch tube are too high, unless the arris at the ends was also rounded. The coefficients derived from the experiments with a cylindrical glass tube 1 foot long, as here given, are very variable; like the others they are, however, valuable, as ex-

CORFFICIENTS DERIVED FROM EXPERIMENTS WITH A GLASS TUBE ONE FOOT LONG.

Heads in feet.	$\begin{aligned} & \frac{1}{4} \text { inch } \\ & \text { diameter. } \end{aligned}$	1 inch diameter.	anch diameter.	1 inch diameter.
1	-892	$\cdot 703$. 691	$\cdot 760$
2	. 914	$\cdot 734$	$\cdot 718$	$\cdot 749$
3	-931	$\cdot 723$	$\cdot 709$.777
4	. 914	$\cdot 725$. 677	. 815

hibiting the uncertainty attending "experiments of this nature," and the necessity for minutely observing and recording every circumstance which tends to alter and modify them. Indeed, for small tubes, a very slight difference in the measurement of the diameter must alter the result a good deal, particularly when it is recollected that measurements are seldom taken more closely than the sixteenth of an inch,
unless in special cases. As the anthor, however, states, p. 433 of the work referred to, that the "diameters of the tubes at their extremities were carefully enlarged to prevent wire edges from diminishing the sections;" this circumstance alone must have modified the discharges, and would account for most of the differences.

The coefficient for rectangular short tubes differs in no way materially from those given for cylindrical ones, and may be taken on an average at 814 or 815 .

SHORT TUBES WITH A ROUNDED MOUTH-PIECE, B, FIG. 24.
When the junction of a short tube with a vessel takes the form of the contracted vein, Figs. 3 and 4, page 20, the mean value of the coefficient $c_{\mathrm{d}}=956$, and the actual discharge is found to be from 93 to 98 per cent. of the theoretical discharge. Wiesbach, for a tube $1 \frac{1}{2}$ inch long and $\frac{9}{10}$ inch diameter, rounded at the junction, found at 1 foot deep $c_{\mathrm{d}}=958$, at 5 feet deep $c_{\mathrm{d}}=969$, and at 10 feet deep $c_{\mathrm{d}}=975$. These experiments shew an increase of coefficient in this particular case for an increase of depth. Any other form of junction than that of the contracted vein, will reduce the discharge, and the coefficients will vary from -807 to 974 , according to the change from the cylindrical to the properly curved form, beyond which the coefficient again decreases from 974 to 8807 . The coefficients derived from Venturi's experiments will be given hereafter.

SHORT CONICAL CONVERGENT TUBES, C, FIG. 24.
The experiments of D'Aubuisson and Castel lead to the following coefficients of discharge and velocity* from a conically convergent tube c at a depth of 10 feet. We have interpolated the original angles and coefficients so as to render the table more convenient to refer to for practical purposes than the original. The diameter of the tube at the smaller or discharging orifice in the experiments was 61 inches, and

[^17]COEFFICIENTS FOR CONIOAL OONVERGENT TUBES.

Converging angle o.	Coefficient of dlscharge.	Coefficient of velocity.	Converging angle o.	Coefficient of discharge.	Coefficient of velocity.
1°	.858	.858	14°	.943	.964
2°	.873	.873	16°	.937	.970
3°	.908	.908	18°	.931	.971
4°	.910	.909	20°	.922	.971
5°	.920	.916	22°	.917	.973
6°	.925	.923	26°	.904	.975
8°	.931	.933	30°	.895	.976
10°	.937	.950	40°	.869	.980
12°	.942	.955	50°	.844	.985

the length of the axis 1.57 inch; that is, the length was $2 \cdot 6$ times the smaller diameter of the tube. The coefficient was 829 for the cylindrical tube, i.e. when the angle at o was nothing. The angle of convergence o determines, from the proportions, the length of the inner and longer diameter of the tube. The coefficients of discharge increase up to 943 for an angle of $13 \frac{1}{2}$ or 14 degrees, after which they again decrease; but the coefficients of velocity increase as the angle of convergence o increases from 829 , when the angle is zero up to 985 for an angle of 50 degrees.

When D is the discharge and A the area of the section, we have, as before shown, $\mathrm{D}=c_{\mathrm{d}} \mathrm{A} \sqrt{2 g h}$; but as, in conically convergent or divergent tubes the inner and outer areas (or, as they may be called, the receiving and discharging sections) vary, it is clear that (the discharge being the same, and also the theoretical velocity $\sqrt{\overline{2 g h}}$) the coefficient c_{d} must vary inversely with the sectional area A, and that c_{d} a must be constant. For the coefficients tabulated, the sectional area used is that at the smaller end of a convergent tube c.

For a short tube c, whose length is 92 inch, lesser diameter 1.21 inch, and greater diameter 1.5 inch , we have found, from Venturi's experiments, that $c_{d}=\cdot 607$ if the larger diameter be used in the calculation, and $c_{d}=934$
when the lesser diameter is made use of, the discharge taking place under a pressure of 2 feet $8 \frac{1}{2}$ inches.

The earlier experiments of Poleni, when reduced, furnish us with the following coefficients: A tube $7 \cdot 67$ inches long, $2 \cdot 167$ inches diameter at each end, $c_{d}=854$; the like tube with the inner or receiving orifice increased to $2 \frac{3}{4}$ inches, $c_{\mathrm{d}}=903$; increased to 3.5 inches, $c_{\mathrm{d}}=898$; increased to 5 inches, $c_{\mathrm{d}}=888$; and increased to $9 \cdot 83$ inches, $c_{\mathrm{d}}=864$. The depth or head was 21.33 inches, the discharging orifice $2 \cdot 167$ inches diameter, and the length $7 \cdot 67$ inches, in each case.

In the conically divergent tube D, Fig. 24, the coefficient of discharge is larger than for the same tube c, convergent, when the water fills both tubes, and the smaller areas, or those at the same distances from the centres 0 o , are made use of in the calculations. A tube whose angle of convergence o is 5° nearly, with a head of from 1 to 10 feet, whose axial length is $3 \frac{1}{2}$ inches, smaller diameter 1 inch, and larger diameter 1.3 inch, gives, when placed as at $\mathrm{c}, 921$ for the coefficient; but when placed as at D , the coefficient increases to 948 . In the first case the smaller area, used in both calculations, being the receiving, and in the other the discharging, orifice. The coefficient of velocity is, however, larger for the tube \mathbf{c} than for the tube D , and the discharging jet of water has a greater amplitude in falling. The effects of conically diverging tubes will, however, be better perceived from the experiments on compound short tubes.

COMPOUND ADJUTAGES AND SHORT TUBES.
If the tube A, Fig. 24, be pierced all round with small holes at the distance of about half its diameter from the reservoir, the discharge will be immediately reduced in the proportion of 814 to 617 . Venturi found the reduction for a tube $1 \frac{1}{2}$ inch diameter and $4 \frac{1}{2}$ inches long, at a depth of 2 feet $10 \frac{1}{2}$ inches, as 41 to 31 , or as 823 to $\cdot 622$. As long as one hole remained open, the discharge continued at the same reduced rate; but when the last hole was stopped, the
discharge again increased to the original quantity. If a small hole be pierced in a tube 4 diameters long, at the distance of $1 \frac{1}{2}$ or 2 diameters at farthest from the junction, the discharge will remain unaffected. This shows that the contraction in the cylindrical tube extends only a short distance from the junction, probably $1 \frac{1}{4}$ or $1 \frac{1}{2}$ diameter, including the whole curvature of the contraction.

The contraction at the entrance into a tube from a reservoir accounts for the coefficients for a short tube a, Fig. 24, and the short tubes, diagrams 1 and 2, Fig. 25, being each the

same decimal nearly, when or $:$ or $:: 1: \cdot 8$, or when or is not less than $\mathrm{OR} \times \cdot 79$, and is at the distance of nearly $\frac{\mathrm{OR}_{\mathrm{R}}}{2}$ from or. The form of the junction oor r remaining as we have described it, the following coefficients will enable us to judge of the discharging powers of different short mouthpieces. They have been deduced and calculated principally from Venturi's experiments*.

These coefficients show very clearly that any calculations from the mere head and size of the orifice, without taking into consideration the form of the discharging tube and its connection with the reservoir, are very uncertain; and that the discharge can only be correctly obtained when all the circumstances of the case, including the form of the discharging orifice and its approaches, are duly considered.

[^18]
TABLE OF COEFFICIENTS FOR MOUTH-PIEOES AND SHORT TUBES.

Deseription of orifice, mouth-piece, or short tube.	Coefficient for the diameter 0 R.	Coefficients for the or.
1. An orifice $1 \frac{1}{4}$ inch diameter in a thin plate	$\cdot 622$	974
2. A cylindrical tube $1 \frac{1}{2}$ inch diameter and $4 \frac{1}{2}$ inches long, A, Fig. 24	-823	-823
3. A cylindrical tube, b, Fig. 24, having the junction rounded, as in Fig. 4, page 20	$\cdot 611$	$\cdot 956$
4. A short conical convergent mouth-piece, c, Fig. 24, of the proportions of oor R , Fig. 25	$\bullet 607$	-934
5. The like tube divergent, with the smaller diameter at the junction with the reservoir ; length 34 inches, lesser diameter 1 inch, and greater diameter $1 \cdot 3$ inch. \qquad	$\cdot 561$	-948
6. The tube, o ouvrf, diagram 2, Fig. 25, when $0 \mathrm{R}=1 \frac{1}{1}$ inch, or $=1.21$ inch, $u v=1.21$ inch, and $o u=r v=2$ inches, the cylindrical portion being shown by dotted lines	$\cdot 600$.923
7. The same tube when $0 u=11$ inches	-567	-873
The same tube when $o u=23$ inches	$\cdot 531$	$\cdot 817$
8. The tube, $008 \mathrm{st} \operatorname{tr} \mathrm{R}$, diagram 2, Fig. 25, in which $\mathrm{OR}=s t=\mathrm{sT}=1 \frac{1}{2}$ inch, from o to $1 \frac{3}{4}$ inch, and $s \mathrm{~s}=3$ inches, gives the same coeffcient as the cylindrical tube, result No. 2 (see No. 18), viz.	-823	$1 \cdot 266$
9. The tube, diagram 1, Fig. 25, or $=1 \frac{1}{2}$ inch	-804	$1 \cdot 23$
10. The same tube, having the spaces oso and $r t_{\mathrm{B}}$ between the mouth-piece oo $r \mathrm{r}$ and the cylindrical tube ostropen to the influx of the water	$\cdot 785$	1-209
11. The double conical tube, oostri, diagram 3, Fig. 25, when $0 \mathrm{R}=\mathrm{st}=1 \frac{1}{2}$ inch, or $=1.21$ inch, $00=92$ inches, and os $=4.1$ inch.........	. 928	1.428
12. The like tube when, as in diagram 4, Fig. 25, $o \operatorname{or}=\mathrm{R}=\mathrm{s} r$, and oos $=1.84$ inch	-823	$1 \cdot 26$
13. The like tube when $\mathrm{s} \mathrm{s}=1.46 \mathrm{inch}$, and os $=2 \cdot 17$ inches.	-823	$1 \cdot 266$
14. The like tube when $\mathrm{St}=3$ inches, and $\mathrm{os}=99$ inches \qquad	-911	$1 \cdot 400$
15. The like tube when $O S=6 \frac{1}{2}$ inches, and $s t$ enlarged to 1.92 inch \qquad	1.020	1.569
16. The like tube when $\mathrm{st}=24$ inches, and os $=12 \frac{1}{3}$ inches	1-215	1.855
17. A tube, diagram 5, Fig. 25, when os $=r t=3$ inches, or $=s t=1.21$ inch, and the tube ostr the same as described in No.11, viz. $8 \mathrm{~T}=1 \frac{1}{\frac{1}{3}}$ inch, and $s s=4 \cdot 1$ inches	-895	$1 \cdot 377$
18. The tube, diagram 2, Fig. 25, when $s T$ is enlarged to 1.97 inch, and $s s$ to 7 inches, the other dimensions remaining as in No. 8	-945	$1 \cdot 454$
19. When the junction of $\rho s r t$ with $88 \mathrm{t} t$, diagram 2, Fig. 25, is improved, the other parts remaining as described in No. 8	850	1.30
Another experiment gives	-847	$1 \cdot 303$

When a tube similar to diagram 5, Fig. 25, has the junction oor rounded, as in Fig. 4, page 20, the outer extremity $s t \mathrm{~s}$, such that $s t=o r, s \mathrm{~s}=9 s t$, and the diameter $\mathrm{st}=1.8$ times the diameter $s t$, with a short central cylindrical piece orst between, the coefficient of discharge corresponding to the diameter or $=r s$ will increase to 1.493 or 1.555 ; that is, the discharge is $\frac{1.493}{622}=2 \cdot 4$, or $\frac{1.555}{622}=2.5$ times as much as through an orifice (whose diameter is $o r$) in a thin plate, and $\frac{1.555}{822}=1.9$ times as much as through a short cylindrical tube A, Fig. 24, whose diameter is also or. Venturi was of opinion that this discharge continued even when the central cylindrical portion orst was of considerable length; but this was a mistake, as the maximum discharge is obtained when it is reduced so that oor ol and sst thall join, as in diagram 3, Fig. 25. We see from No. 15 of the foregoing coefficients that $\frac{1.569}{622}=2.52$ and ${ }^{1.569}-822=1.91$ are, perhaps, nearer to the maximum results obtainable in comparing the discharge from a compound tube oostrr, diagram 3, Fig. 25, with those through an orifice in a thin plate, and through a short cylindrical tube. When the form of the tube becomes curvilineal through-
 out, as in Fig. 26, st $=1.8$ or and os $=9$ ar, the coefficient suited to the diameter or will be 1.57 nearly, and the discharge will be $\frac{1.57}{622}=2.52$ times as much as through an orifice or in a thin plate.

The whole of the preceding coefficients have been determined from circumstances in which the coefficient for an orifice in a thin plate was 622 , and for a short cylindrical tube 822 or $\cdot 823$. When the circumstances of head and approaches in the reservoir are such as to increase or decrease those primary coefficients, the other coefficients for compound adjutages will have to be increased or decreased proportionately.

On examining the foregoing results, it appears sufficiently clear that the utmost effect produced by the formation of the compound mouth-piece oostrr, with the exception of No. 16, is simply a restoration of the loss effected by contraction in passing through the orifice $0 \mathbf{r}$ in a thin plate, and that the coefficient 2.5 applied to the contracted section at or is simply equal to the theoretical discharge, or the coefficient unity, applied to the primary orifice or ; for as, orifice or : orifice or :: 1: 64 , very nearly, when oorr takes the form of the rena-contracta, and the coefficient of discharge for an orifice or in a thin plate is 622 , we get the theoretical discharge through the orifice or to the actual discharge through an orifice $o r$, so is 1 to $\cdot 622 \times \cdot 64$, so is $1: 39808:: 1: 4$ very nearly; and as $\cdot 4 \times 2 \cdot 5=1$, it is clear that the form of the tube oostr r, when it produces the foregoing effect, simply restores the loss caused by contraction in the vena-contracta. Venturi's sixteenth experiment, from which we have derived the coefficients in No. 16, gives the coefficient $1 \cdot 215$ for the orifice or. This indicates that a greater discharge than the theoretical, through the receiving orifice, may be obtained. It is, however, observable that Venturi, in his seventh proposition, does not rely on this result, and Eytelwein's experiments do not give a larger coefficient than 2.5 applied to the contracted orifice or, which, we have above shown, is equal to the theoretical discharge through or.

SHOOTS.

When the sides and under edge of an orifice or notch increase in thickness, so as to be converted into a shoot or small channel, open at the top, the coefficients reduce very considerably, and to an extent beyond what the increased resistance from friction, particularly for small depths, indicates. Poncelet and Lesbros* found for orifices $8^{\prime \prime} \times 8^{\prime \prime}$, that the addition of a horizontal shoot 21 inches long reduced the coefficient from $\cdot 604$ to $\cdot 601$, with a head of about 4 feet; but for a head of $4 \frac{1}{2}$ inches the coefficient fell from ${ }^{5} 572$ to $\cdot 483$. For notches $8^{\prime \prime}$ wide, with the addition of an horizontal shoot $9^{\prime} 10^{\prime \prime}$ long, the coefficient fell from ${ }^{5} 58$ to $\cdot 479$ for a head of $8^{\prime \prime}$; and from 622 to ${ }^{\circ} 340$ for a head of $1^{\prime \prime}$. Castel also found for a notch $8^{\prime \prime}$ wide, with the addition of a shoot $8^{\prime \prime}$ long, inclined $4^{\circ} 18^{\prime}$, the mean coefficient for heads from $2^{\prime \prime}$ to $41^{\prime \prime}$, to be - 527 nearly.

[^19]
SECTION VII.

LATERAL CONTACT OF THE WATER AND TUBE.-ATMOSPHERIC PRESSURE. - HEAD MEASURED TO THE DISCHARGING ORI-FICE.-COEFFICIENT OF RESISTANCE.-FORMULA FOR TIIE DISCHARGE FROM A SHORT TUBE.-DIAPHRAGMS.-OBLIQUE JUNCTIONS.-FORMULA FOR THE TIME OF THE SURFACE SINKING A GIVEN DEPTH.

The contracted vein or is about 8 times the diameter or ; but it is found, notwithstanding, that water, in passing through a short tube of not less than $1 \frac{1}{2}$ diameter in length, fills the whole of the
 discharging orifice st. This is partly effected by the outflowing column of water carrying forward and exhausting a portion of the air between it and the tube, and by the external air then pressing on the column so as to enlarge its diameter and fill the whole tube. When once the water approaches closely to the tube, or is caused to approach, it is attracted and adheres with some force to it. The water between the tube and the vena-contracta is, however, rather in a state of eddy than of forward motion, as appears from the experiments, with the tube, diagram 2, Fig. 25, giving the same discharge as the simple cylindrical tube. If the entrance be even contracted by a diaphragm, as at or, Fig. 27, the water will generally fill the tube if it be only sufficiently long. Short cylindrical tubes do not fill when the discharge takes place in an exhausted receiver; but even diverging tubes, d, Fig. 24, will be filled, in the air, when the angle of divergence o does not exceed 7 or 8 degrees, and the length be not very great nor very short.

When a tube is fitted, with any inclination, to the bottom or side of a vessel, it is found that the discharge is that due to the head measured from the surface of the water to the
lower or discharging extremity of the tube. It must, however, be sufficiently long, and not too long, to get filled throughout. Guiglielmini was the first who referred this effect to atmospheric pressure, but the first simple explanation is that given by Dr. Mathew Young, in the Transactions of ${ }^{\circ}$ the Royal Irish Academy, vol. 7, p. 53. Venturi also, in his fourth proposition, gives a demonstration.

The values of the coefficients for short cylindrical tubes, which we have given above, have been derived from experiment. Coefficients which agree pretty closely with them, and which are derived from the coefficients for the discharge through an orifice in a thin plate, may, however, be calculated as follows: Let \mathbf{c} be the area of the approaching section, Fig. 27, a the area of the discharging short tube, and a the area of the orifice or which admits the water from the vessel into the tube: also put, as before, h for the head measured from the surface of the water to the centre of the tube, and diaphragm or; v for the velocity of discharge at $\mathrm{st} ; v_{\mathrm{a}}$ for the velocity of approach in the section \mathbf{c} towards the diaphragm Or; and c_{c} for the coefficient of contraction in passing from OR to or ; then we have $\mathrm{c} \times v_{\mathrm{a}}=\mathrm{A} v$, the contracted section or $=c_{\mathrm{c}} a$, and consequently the velocity at the contracted section $=\frac{\mathrm{A} v}{a c_{\mathrm{c}}}=\frac{\mathrm{C} v_{\mathrm{a}}}{a c_{\mathrm{c}}}$. Now a head equal to

$$
\frac{v^{2}-v_{\mathrm{a}}^{2}}{2 g}=\frac{v^{2}\left(1-\frac{\mathrm{A}^{2}}{\mathrm{c}^{2}}\right)}{2 g}
$$

is necessary to change the velocity v_{a} into v if there be no loss in the passage; but as the water at the contracted section or, moving with a velocity $\frac{A v}{a c_{\mathrm{c}}}$, strikes against the water between it and $\mathbf{T s}$, moving, from the nature of the case, with a slower velocity, a certain loss of effect takes place from the impact. If this be sudden (as it is generally supposed) it is then shown by writers on mechanics that a loss of head equal to that due to the difference of the velocities $\frac{\mathrm{A} v}{a c_{\mathrm{c}}}-v$, before
and after the impact must take place. This loss of head is therefore equal to

$$
\frac{\left(\frac{A}{a c_{\mathrm{c}}}-1\right)^{2} v^{2}}{2 g}
$$

whence we must have the whole head,

$$
\begin{equation*}
h=\frac{\left(1-\frac{A^{2}}{\mathrm{c}^{2}}\right) v^{2}+\left(\frac{A}{a c_{\mathrm{c}}}-1\right)^{2} v^{2}}{2 g} \tag{60.}
\end{equation*}
$$

from which we find the velocity

$$
\begin{equation*}
v=\sqrt{2 g h}\left\{\frac{1}{1-\frac{\mathrm{A}^{2}}{\mathrm{c}^{2}}+\left(\frac{\mathrm{A}}{a c_{\mathrm{c}}}-1\right)^{2}}\right\}^{\frac{1}{2}} \tag{61.}
\end{equation*}
$$

Now, as $v=\sqrt{ } \overline{2 g h}$ would be the velocity of discharge were there no resistances, or loss sustained, it is evident that $\left\{\frac{1}{1-\frac{A^{2}}{\mathrm{C}^{2}}+\left(\frac{\mathrm{A}}{a c_{c}}-1\right)^{2}}\right\}^{3}$ is the coefficient of velocity.
When the diameter of the diaphragm or becomes equal to the diameter st of the tube, $\mathrm{A}=a$, and as the coefficient of velocity becomes equal to the coefficient of discharge when there is no contraction, we get in this case the coefficient of discharge

$$
\begin{equation*}
c_{\mathrm{d}}=\left\{\frac{1}{1-\frac{\mathrm{A}^{2}}{\mathrm{c}^{2}}+\left(\frac{1}{c_{\mathrm{c}}}-1\right)^{2}}\right\} \tag{62.}
\end{equation*}
$$

and when the approaching section \mathbf{c} is very large compared with the area A ,

$$
\begin{equation*}
c_{\mathrm{d}}=\left\{\frac{1}{1+\left(\frac{1}{c_{\mathrm{c}}}-1\right)^{2}}\right\} \tag{63.}
\end{equation*}
$$

If $c_{\mathrm{c}}=64$, we shall find from the last equation $c_{\mathrm{d}}=872$; if $c_{\mathrm{c}}=\cdot 601, c_{\mathrm{d}}=\cdot 833$; if $c_{\mathrm{c}}=\cdot 617, c_{\mathrm{d}}=\cdot 847$; and if
$c_{\mathrm{c}}=621, c_{\mathrm{d}}=8566$. These results are in excess of those derived from experiment with cylindrical short tubes, perfectly square at the ends and of uniform bore. As some loss, however, takes place in the eddy between or and the tube, and from the friction at the sides, not taken into account in the above calculation, it will account for the differences of not more than from 4 to 6 per cent. between the calculation and experiment. If c_{c} be assumed for calculation equal 590 , then $c_{\mathrm{d}}=821$; and as this result agrees very closely with the experimental one, c_{c} should be taken of this value in using the above formulæ for practical purposes.

COEFFICIENT OF RESISTANCE. LOSS OF MECHANICAL POWER IN THE PASSAGE OF WATER THROUGH THIN PLATES AND PRISMATIC TUBES.

The coefficients of contraction, velocity, and discharge have been already defined. The coefficient of resistance is the ratio of the head due to the resistance, to the theoretical head due to the discharging or final velocity. If v be this velocity, the theoretical head due to it is $\frac{v^{2}}{2 g}$; and if c_{r} be the coefficient of resistance, then the head due to the resistance itself is, from our definition, $c_{\mathrm{r}} \times \frac{v^{2}}{2 g}$. Now if c_{v} be the coefficient of velocity, the theoretical velocity of discharge must be $\frac{v}{c_{\mathrm{v}}}$, and the head due to it is equal $\frac{v^{2}}{c_{\mathrm{v}}^{2} \times 2 g}$; but as the theoretical head due to v is $\frac{v^{2}}{2 g}$, we have

$$
\frac{v^{2}}{c_{v}^{2} \times 2 g}-\frac{v^{2}}{2 g}=\left(\frac{1}{c_{v}^{2}}-1\right) \frac{v^{2}}{2 g}
$$

for the height due to the resistance; and, therefore, from our definition

$$
\begin{equation*}
c_{\mathrm{r}}=\frac{1}{c_{\mathrm{v}}^{2}}-1 \tag{64.}
\end{equation*}
$$

from which we find

$$
\begin{equation*}
c_{\mathrm{v}}=\left\{\frac{1}{c_{\mathrm{r}}+1}\right\}^{4} \tag{65.}
\end{equation*}
$$

These equations enable us to calculate the coefficient of resistance from the coefficient of velocity, and vice versâ. If $c_{\mathrm{v}}=1, c_{\mathrm{r}}=0$, as it should be. The following short Table, calculated from equation (65), will be of use.

COEFFICIENTS OF VRLOCITY AND RESISTANCE *.

Coefficient of velocity.	Coefficient of resistance.	Coefficient of veloclty.	Coefficient of resistance.	Coefficient of velocity.	Coefficient of resistance.
.990	.020	.910	-208	.830	.452
.970	.063	.890	.263	.820	.488
.950	.109	.870	.320	.814	-508
.930	-156	.850	.383	.810	.525

The coefficient of velocity for an orifice in a thin plate, or for a mouth-piece, Fig. 4, is 974; while that for a short prismatic tube, a, Fig. 24, is 814 nearly. The coefficient of resistance in the former case is $\cdot 054$, and in the latter $\cdot 508$; there is, therefore, $9 \cdot 4$ times as great a loss of mechanical power in the passage through short prismatic tubes, as through orifices in thin plates or tubes with a rounded junction, as in Fig. 4, the quantities of water discharged and the discharging velocities being the same.

If the quantities discharged and the heads be the same in both cases, then we shall have

$$
\frac{v_{t}^{2}}{2 g \times \cdot 814^{2}}=\frac{v_{o}^{2}}{2 g \times \cdot 974^{2}} \text { equal the head }
$$

that is, $\frac{v_{\mathrm{t}}^{2}}{.663 \times 2 g}=\frac{v_{\mathrm{o}}^{2}}{.949 \times 2 g}$, or $\cdot 949 v_{\mathrm{t}}^{2}=\cdot 663 v_{\mathrm{o}}^{2}$;
whence we get $v_{\mathrm{t}}^{2}=698 v_{\mathrm{o}}^{2}$ and $v_{\mathrm{o}}^{2}=1 \cdot 431 v_{\mathrm{t}}^{2}$ for the relation of the discharging velocities, v_{0} from an orifice, and v_{t} from a short tube. The height due to the resistance is, therefore, $\left(\frac{1}{814^{2}}-1\right) \frac{v_{t}^{2}}{2 g}$ for short prismatic tubes, and

[^20]$$
\left(\frac{1}{.974^{2}}-1\right) \frac{1 \cdot 431 v_{t}^{2}}{2 g}
$$
for orifices in thin plates. These are to each other as $\cdot 508$ to $\cdot 054 \times 1 \cdot 431$, or as 5.08 to $\cdot 773$; that is to say, the loss of mechanical power arising from the resistance in passing through short tubes is $15 \frac{1}{2}$ times as great as when the water passes through thin plates or mouth-pieces, as in Fig. 4; and the discharging mechanical power in plates, is to that in tubes as $1 \cdot 431$ to 1 , or as $1: \cdot 698$, the heads and quantities discharged being the same.

The whole loss of mechanical power in the passage is $5 \cdot 4$ per cent. for the plates, and about 51 per cent. for short tubes. If the loss compared with the whole head be sought, we get, when v is the discharging velocity, $\frac{v}{.814}$ for the theoretical velocity due to the head in short tubes, and its square $\frac{v^{2}}{814^{2}}=\frac{v^{2}}{663}$ is as the whole head; therefore, the whole head is to the head due to the discharging velocity, as $\frac{v^{2}}{663}$ to v^{2}, or as 1 to $\cdot 663$, and as 508 is the coefficient of resistance* for the discharging velocity, $\cdot 508 \times \cdot 663$ $=\cdot 337$ is the coefficient of resistance due to the whole head; this is equal to a loss of 34 per cent. nearly, or about one-third. In like manner, we find $974^{2} \times \cdot 054=\cdot 0512$ for the coefficient when the discharge takes place through thin plates, or $5 \frac{1}{8}$ per cent. of the whole head.

DIAPHRAGMS.

When a diaphragm, o r, Fig. 27, is placed at the entrance of a short tube, we have shown, page 91, that a loss of head equal $\frac{\left(\frac{A}{a c_{\mathrm{c}}}-1\right)^{2} v^{2}}{2 g}$ takes place when v is the discharging velocity, whence the coefficient of resistance is

[^21]equal to $\left(\frac{\mathrm{A}}{a c_{\mathrm{c}}}-1\right)^{2}$,* according to our definition. The coefficient of construction, c_{c}, as we have before shown, page 92 , should be taken equal to 590 in the application of formula (63); and, as it must also be taken equal to about -621 when the area of the tube a is very large compared with the area a of the orifice or in the diaphragm, we may assume that when $\frac{a}{A}$ is equal to
$$
0, \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}, \frac{5}{10}, \frac{6}{10}, \frac{7}{10}, \frac{8}{10}, \frac{9}{10}
$$
and 1 successively, the coefficient c_{c} must be taken equal to $\cdot 621, \cdot 618, \cdot 615, \cdot 612, \cdot 609, \cdot 606, \cdot 603, \cdot 600, \cdot 597, \cdot 593$ and 590 , in the same order. As the approaching section c may be considered exceedingly large, the value of the coefficient of discharge or velocity, as the tube orst is supposed full, in equation (61), becomes
\[

$$
\begin{equation*}
c_{\mathrm{d}}=\left\{\frac{1}{1+\left(\frac{\mathrm{A}}{a c_{\mathrm{c}}}-1\right)^{2}}\right\}^{1} \tag{66.}
\end{equation*}
$$

\]

and the coefficient of resistance

$$
\begin{equation*}
c_{\mathrm{r}}=\left(\frac{\mathrm{A}}{a c_{\mathrm{c}}}-1\right)^{2} \tag{67.}
\end{equation*}
$$

from which equations and the above values of c_{c}, corresponding to $\frac{a}{A}$, we have calculated the following values of the coefficients of discharge and resistance through the tube orst, Fig. 27.

[^22]COEFFICIENTS OF OONTRACTION，DISCHARGE，AND RESISTANCE FOR DIAPHRAGMS．

$\begin{aligned} & \text { Ratio } \\ & \frac{a}{\mathrm{~A}} . \end{aligned}$	免		䔍 ${ }_{\text {¢ }}$	$\begin{aligned} & \text { Ratio } \\ & \frac{a}{\mathrm{~A}} . \end{aligned}$	碳	蔮	䔍
0.0	$\cdot 621$	． 000	infinite．	$0 \cdot 6$	． 603	－ 493	3－115
$0 \cdot 1$	－618	－066	231.	$0 \cdot 7$	－600	－ 587	1.907
$0 \cdot 2$	． 615	－139	50.8	$0 \cdot 8$	－597	－675	1－198
0.3	． 612	－219	19.8	0.9	． 593	$\cdot 753$	$\cdot 762$
$0 \cdot 4$	． 609	－307	$9 \cdot 6$	$1 \cdot 0$	－590	． 821	－483
0.5	－606	－399	$5 \cdot 3$	．．．	．．．	．．．	\ldots

In this table c_{c} is the coefficient of contraction，c_{d} the co－ efficient of discharge，suited to the larger section of the pipe a，at st；and c_{r} the coefficient of resistance．The discharge is found from equation（61），as \mathbf{c} is here very large compared with A ，to be
$\left(67_{\mathrm{A}}.\right) \mathrm{D}=\mathrm{A} v^{\prime} \overline{2 g h}\left\{\frac{1}{1+\left(\frac{\mathrm{A}}{a c_{\mathrm{c}}}-1\right)^{2}}\right\}^{\frac{2}{2}}$ $=\mathrm{A} \sqrt{2 g h}\left\{\frac{1}{1+c_{\mathrm{r}}}\right\}^{\frac{1}{2}}=c_{\mathrm{d}} \mathrm{A} \sqrt{2 g h}$.
The coefficient of resistance，c_{r} ，is here equal $\left(\frac{\mathrm{A}}{a c_{\mathrm{c}}}-1\right)^{2}$ ， and the coefficient of discharge $c_{d}=\frac{1}{\left(1+c_{\mathrm{r}}\right)^{3}} . *$

The tube must be so placed，that the water，after passing the diaphragm，shall fill it；for instance，between two cis－ terns，when the height h must be measured between the water surfaces，or when the tube is sufficiently long to be filled；in this case，however，the height must be determined from the discharging velocity，as a portion of the head is required to overcome the friction，which we shall have im－ mediately to refer to．

[^23]The table shows that the head due to the resistance is 5.3 times that due to the discharging velocity, when the area of the diaphragm is half the area of the tube; that is, the whole head required is 6.3 times that due to the velocity, and that the coefficient of discharge is reduced to 399 . In order to find the coefficients suited to the smaller area of the orifice in the diaphragm or, when it is to be used in calculations of the discharge, we have only to divide the numbers corresponding to $\frac{a}{A}$ into those of c_{d}, opposite to them in the table. Thus, when $\frac{a}{\mathrm{~A}}=8$, we have the coefficient of discharge suited to the area a, equal $\frac{\cdot 675}{\cdot 8}=\cdot 844$, and so of other values of the ratio $\frac{a}{A}$. The coefficients in the opposite page are for the larger orifice A.

TUBES OBLIQUE AT THE JUNCTION.

When a tube is attached obliquely, as in Fig. 28, we have found that if the number of degrees in the angle тоs, formed by the direction of the tube os, with the
 perpendicular от, be represented by φ, then $814-0016 \varphi$ will give the coefficient of discharge corresponding to the obliquely attached short tube in the Figure. This formula is, however, empirical, but it is simple, and agrees pretty closely with experimental results. As the coefficient of resistance is equal $\frac{1}{c_{\mathrm{v}}^{2}}-1$, equation (64), we have here $c_{\mathrm{r}}=\frac{1}{(.814-.0016 \varphi)^{2}}-1$; from these equations we have calculated the following Table:-

COEFHIOIENTS OF DISCHARGE AND RESIBTANGE FOR OBLIQUE JUNCTIONS.

In degrees.	Coefficient of discharge.	Coefficient of resistance.	In degrees.	Coefficient of discharge.	Coefficient of resistance.
0°	-814	-508	35°	$\cdot 758$	$\cdot 740$
5	-806	-539	40	$\cdot 750$. 778
10	$\cdot 798$	-569	45	$\cdot 742$	-816
15	$\cdot 790$	-602	50	$\cdot 734$	-856
20	-782	-635	55	$\cdot 726$	-897
25	$\cdot 774$	-669	60	$\cdot 718$. 940
30	$\cdot 766$. 704	65	$\cdot 710$. 984

The coefficient of resistance for a tube at right angles to the side, is to the like coefficient when it makes an angle of 45 degrees as $\cdot 508$ to 816 , or as 1 to $1 \cdot 6$ nearly; and the loss of head is greater in the same proportion. If the short tube be more than three or four diameters in length, friction will have to be taken into account.

FORMULA FOR FINDING THE TIME THE SURFACE OF WATER IN A CISTERN TAKES TO SINK A GIVEN DEPTH.

In experiments for finding the value of the coefficients of discharge, one of the best methods is to observe the time the water discharged from the orifice takes to sink the surface in
 a prismatic cistern a given depth; the ratio of the observed to the theoretical time will then give the coefficient sought. A formula for finding the theoretical time is, therefore, of much practical value. In Fig. 29, the time of falling from st to st , in seconds, is

$$
\begin{equation*}
t=\frac{A}{4 \cdot 0125 a}\left\{(h+f)^{\frac{1}{2}}-h^{4}\right\}, \tag{68.}
\end{equation*}
$$

in which a is the area of the orifice or, and a the area of
the prismatic vessel at st or st; this formula is for measures in feet. For measures in inches, we have

$$
\begin{equation*}
t=\frac{\mathrm{A}}{13 \cdot 9 a}\left\{(h+f)^{\frac{1}{2}}-h^{\frac{1}{2}}\right\} \cdot{ }^{*} \tag{69.}
\end{equation*}
$$

Example VII.-A cylindrical vessel 5.74 inches in diameter has an orifice $\cdot 2$ inch in diameter at a depth of 16 inches below the surface, measured to the centre; it is found that the water sinks 4 inches in 51 seconds; what is the coefficient of discharge?

The theoretical time, t, is found from equation (69), equal $\frac{5 \cdot 74^{2} \times \cdot 7854}{13 \cdot 9 \times \cdot 2^{2} \times \cdot 7854}\left\{16^{\frac{1}{2}}-12^{\frac{1}{2}}\right\}=\frac{32 \cdot 9476}{556}\{4-3 \cdot 4641\}$ $=\frac{17 \cdot 6566}{.556} \times \cdot 5359=31 \cdot 8$ seconds; hence, $\frac{31 \cdot 8}{51}=\cdot 624$ is the coefficient sought. When the orifice or and the horizontal section of the vessel are similar figures, $\frac{A}{a}$ is equal $\frac{\mathbf{S T}^{2}}{\mathbf{O R}^{2}}$; and therefore, for circular cisterns and orifices, it is unnecessary to introduce the multiplier 7854.

SECTION VIII.

FLOW OF WATER IN UNIFORM CHANNELS.-MEAN VELOCITY. -MEAN RADII AND HYDRAULIC MEAN DEPTHS.-BORDER. -TRAIN.-HYDRAULIC INCLINATION.-EFFECTS OF FRIC-TION.-FORMULE FOR CALCULATING THE MEAN VELOCITY. -APPLICATION OF THE FORMULE AND TABLES TO THE SOLUTIONS OF THREE USEFUL PROBLEMS.

In rivers the velocity is a maximum along the central line of the surface, or, more correctly, over the deepest part of the channel; and it decreases thence to the sides and bottom : but when backwater arises from any obstruction, either a

[^24]submerged weir, Fig. 22, or a contracted channel, Fig. 23, the velocity in the channel approaching the obstruction is a maximum at the depth of the backwater below the surface, and it decreases thence to the surface, sides, and bottom. When water flows in a pipe of any length, the velocity at the centre is greatest, and it decreases thence to the sides or circumference of the pipe. If the pipe be supposed divided into two portions in the direction of its length, the lower portion or channel will be analogous to a small river or stream, in which the velocity is greatest at the central line of the surface, and the upper portion will be simply the lower reversed. A pipe flowing full may, therefore, be looked upon as a double stream, and we shall soon see that the formulæ for the discharge from each kind are all but identical, though a pipe may discharge full at all inclinations, while the inclinations in rivers or streams, having uniform motion, never exceed a few feet per mile.

MEAN VELOCITY.

It is found, by experiment, that the mean velocity is nearly independent of the depth or width of the channel, the central or maximum velocity being the same. From a number of experiments, Du Buât derived empirical formulæ equivalent to
$v=\frac{\mathrm{v}_{\mathrm{b}}+\mathrm{v}}{2}=\mathrm{v}-\mathrm{v}^{\frac{1}{2}}+\frac{1}{2}, \mathrm{v}_{\mathrm{b}}=\left(\mathrm{v}^{\frac{1}{2}}-1\right)^{2}$, and $\mathrm{v}=\left(\mathrm{v}_{\mathrm{b}}^{\frac{1}{2}}+1\right)^{2} ;$
in these equations v is the mean velocity, v the maximum velocity, and \mathbf{v}_{b} the velocity at the sides, or bottom, expressed in French inches. Tables calculated from these formulæ do not give correct results for measures in English inches, though they are those generally adopted. Disregarding the difference in the measures, which are as 1 to 1.0678 , it will be found that, in the generality of channels, the mean velocity is not an arithmetical mean between the velocity at the central surface line and that at the bottom, though nearly so between the mean bottom and mean surface velocities. Dr. Young*, modifying Du Buât's formula, assumes for

[^25]English inches that $v+v^{\frac{1}{2}}=\mathrm{v}$, and hence $v=\mathrm{v}+\frac{1}{2}-\left(\mathrm{v}+\frac{1}{4}\right)^{1}$. This gives results very nearly the same as the other formula for v, but something less, particularly for small surface velocities. For instance, Du Buât's formula gives '5 inch for the mean velocity when the central surface velocity is 1 inch, whereas Dr. Young's makes it 38 inch. For large velocities both formulæ agree very closely, disregarding the difference between the measures, which is only 7 per cent. They are best suited to very small channels or pipes, but unless at mean velocities of about 3 feet per second, they are wholly inapplicable to rivers.

Prony found, from Du Buât's experiments, that for measures in metres $v=\left(\frac{2 \cdot 37187+\mathbf{v}}{3 \cdot 15312+\mathrm{v}}\right) \mathbf{v}$. This, reduced for measures in English feet, becomes

$$
\begin{equation*}
v=\left(\frac{7 \cdot 783+\mathrm{v}}{10 \cdot 345+\mathrm{v}}\right) \mathrm{v} \tag{70.}
\end{equation*}
$$

and for measures in English inches,

$$
\begin{equation*}
v=\left(\frac{93 \cdot 39+\mathrm{v}}{124 \cdot 14+\mathrm{v}}\right) \mathrm{v} \tag{71.}
\end{equation*}
$$

For medium velocities $v=81 \mathrm{v}$. The experiments from which these formulæ were derived were made with small channels. We have calculated the values of v from that of v , equation (71), and given the results in columns 3,6 , and 9 , in Table VII. Ximenes, Funk, and Brünnings' experiments in larger channels give the mean velocity at the centre of the depth equal 914 v , when the central surface velocity is v ; but as the velocity also decreases in nearly the same ratio from the centre to the sides of the channel, we shall get the mean velocity in the whole section equal $914 \times 914 \mathrm{v}=835 \mathrm{v}$; and hence we have, for large channels,

$$
\begin{equation*}
v=835 \mathrm{v} \tag{72.}
\end{equation*}
$$

We have also calculated the values of v from this formula, and given the results in columns 2,5 , and 8 of Table VII. This table will be found to vary considerably from those calculated from Du Buât's formula in French inches, hitherto generally used in this country, and much more applicable for all practical purposes.

MEAN RADIUS.-HYDRAULIC MEAN DEPTH.-BORDER.COEFFICIENT OF FRICTION.

If, in the diagrams 1 and 2, Fig. 30, exhibiting the sections of cylindrical and rectangular tubes filled with flowing water, the areas be divided respectively by the perimeters acbia and
 авыс只, the quotients are termed "the mean radii" of the tubes, diagrams 1 and 2, and the perimeters in contact with the flowing water are termed "the borders." In the diagrams 3 and 4 , the surface A_{B} is not in contact with the channel, and the length of the bed and sides acdi become "the border." "The mean radius" is equal to the area abdca divided by the length of the border acdi. "The hydraulic mean depth" is the same as "the mean radius," this latter term being perhaps most applicable to pipes flowing full, as in diagrams 1 and 2 ; and the former to streams and rivers which have a surface line a b, diagrams 3 and 4 . We shall, throughout the following equations, designate the value of the mean radius, hydraulic mean depth, or quotient, $\frac{\text { area AbdCA }}{\text { border } \mathbf{D D C A}}$, , by the letter r, only remarking here that for cylindrical pipes flowing full, or rivers with semicircular beds, it is always equal to half the radius, or one-fourth of the diameter.

Du Buât was the first to observe that the head due to the resistance of friction for water flowing in a uniform channel increased directly as the length of the channel l, directly as the border, and inversely as the area of the cross-flowing

[^26]section ${ }^{*}$, very nearly; that is, as $\frac{l}{r}$. It also increases as the square of the velocity, nearly; therefore the head due to the resistance must be proportionate to $\frac{v^{2} l}{2 g r}$. If $c_{f} \times \frac{v^{2} l}{2 g r}=l_{f}$, then c_{f} is the coefficient for the head due to the resistance of friction, as h_{f} is the head necessary to overcome the friction, c_{f} is therefore termed "the coefficient of friction."

HYDRAULIC INCLINATION.-TRAIN.

If l be the length of a pipe or channel, and h_{f} the height due to the resistance of friction of water flowing in it, then $\frac{h_{\mathrm{f}}}{l}$ is the hydraulic inclination. In Fig. 31 the tubes a b, c d, of

the same length l, and whose discharging extremities \boldsymbol{B} and D are on the same horizontal plane \boldsymbol{B}, will have the same hydraulic inclination and the same discharge, no matter what the actual inclinations or the depth of the entrances at A and c may be, so they be of the same kind and bore; and as the velocities in а в and cd are the same, the height h due to them must be the same when the circumstances of the orifices of entry A and \mathbf{c} are alike. We have the whole head $\mathrm{H}=\boldsymbol{h}+\boldsymbol{h}_{\mathrm{f}}$ (see pp. 89 and 90). The hydraulic inclination is not therefore the whole head н, divided by the length l of the pipe, as it is sometimes mistaken, but the height h_{f} (found by subtracting the height h, due to the entrance at a or c , and the velocity in the pipe, from the whole height) divided by the length l. When the height h is very small compared with the whole height \mathbf{H}, as it is in very long tubes with moderate heads,

[^27]$\frac{\mathrm{H}}{l}$ may be substituted for $\frac{h_{f}}{l}$ without error; but for short pipes up to 100 feet in length the latter only should be used in applying Du Buât's and some other formulæ; otherwise the results will be too large, and only fit to be used approximately in order to determine the height h from the velocity of discharge thus found. When the horizontal pipe c d, Fig. 32, is

equal in every way to the inclined pipe a_{B}, and the head at a is that due to the velocity in $\mathbf{C D}$, the discharge from the pipe AB will be equal to that from CD; but a peculiar property belongs to the pipe ab in the position in which it is here placed; for if we cut it short at any point e, or lengthen it to any extent, to E , the discharge will remain the same and equal to that through the horizontal pipe $\mathbf{c} \mathrm{D}$. The velocity in ав at the angle of inclination авс, when $\boldsymbol{A C}=h_{f}$, and $A B=c d$, is therefore such that it remains unaffected by the length at or a e, to which it may be extended or cut short; and at this inclination the water in the pipe а в is said to be "in train." In like manner a river or stream is said to be "in train" when the inclination of its surface bears such a relation to the cross section that the mean velocity is neither decreased nor increased by the length of the channel ; and we perceive from this that the acceleration caused by the inclination is exactly counterbalanced by the resistances to the motion when the moving water in a pipe or river channel is in train.

As $h=\left(1+c_{\mathrm{r}}\right) \frac{v^{2}}{2 g}$ where c_{r} is the coefficient of the height due to the resistance at the orifice of entry a or c, and $h_{f}=c_{f} \frac{v^{2} l}{2 g r}$, we therefore get
(73.) $\mathrm{H}=\left(1+c_{\mathrm{r}}\right) \frac{v^{2}}{2 g}+c_{\mathrm{f}} \times \frac{l v^{2}}{2 g r}=\left(1+c_{\mathrm{r}}+c_{\mathrm{r}} \frac{l}{r}\right) \frac{v^{2}}{2 g}$,
and hence we find the mean velocity of discharge

$$
\begin{equation*}
v=\left\{\frac{2 g \mathrm{H}}{1+c_{\mathrm{r}}+c_{\mathrm{f}} \frac{l}{r}}\right\}^{\frac{1}{2}} . \tag{74.}
\end{equation*}
$$

When h is small compared with h_{f}, or, which comes to the same thing, $1+c_{r}$ small compared with $c_{\mathrm{f}} \times \frac{l}{r}$,

$$
\begin{equation*}
\mathrm{H}=c_{\mathrm{i}} \times \frac{l v^{2}}{2 g r}, \tag{75.}
\end{equation*}
$$

and

$$
\begin{equation*}
v=\left\{\frac{2 g r \frac{\mathrm{H}}{l}}{c_{\mathrm{f}}}\right\}^{\frac{\mathrm{t}}{2}} . \tag{76.}
\end{equation*}
$$

If, in the last equation, we substitute s for $\frac{H}{l}$, equal the sine of the angle of inclination авс, we then have

$$
\begin{equation*}
v=\left\{\frac{2 g r s}{c_{f}}\right\}^{\frac{1}{2}} \tag{77.}
\end{equation*}
$$

An average value of c_{f} for all pipes with straight channels is $\cdot 0069914$, from which we find equation (77) becomes, for measures in feet,

$$
\begin{equation*}
v=96 \sqrt{\boldsymbol{r} s} \tag{78.}
\end{equation*}
$$

As the mean value of the coefficient of resistance c_{r} for the entrance into a tube is 508 , and as $2 g=64 \cdot 403$, and $c_{\mathrm{f}}=0069914$, equation (74), for measures in feet, becomes

$$
\begin{align*}
& v=\left\{\frac{64 \cdot 403 \mathrm{H}}{1 \cdot 508+\cdot 0069914 \frac{l}{r}}\right\}^{\frac{1}{2}}, \text { or } \\
& v=\left\{\frac{\mathrm{H} r}{0234 r+0001085 \imath}\right\}^{\frac{1}{2}} . \tag{79.}
\end{align*}
$$

This, nultiplied by the section, gives the discharge.

DU BUAT'S FORMULA.

The coefficient of friction c_{1} is not, however, constant, as it varies with the velocity. That which we have just given answers for pipes when the velocity is from 18 to 24 inches per second. For pipes and rivers it is found to increase as the velocity decreases; that is, the loss of head is proportionately greater for small than for large velocities. Du Buât found the loss of head to be also greater for small than large channels, and applied a correction accordingly in his formula. This, expressed in French inches, is

$$
\begin{equation*}
v=\frac{297\left(r^{2}-0 \cdot 1\right)}{\left(\frac{1}{s}\right)^{\frac{1}{2}}-\text { hyp. log. }\left(\frac{1}{s}+1 \cdot 6\right)^{3}}-3\left(r^{\frac{2}{2}}-0 \cdot 1\right), \tag{80.}
\end{equation*}
$$

maintaining the preceding notation, in which $s=\frac{h_{\mathrm{f}}}{l}$. In this formula $0 \cdot 1$, in the numerator of the first term, is deducted as a correction due to the hydraulic mean depth, as it was found that $297\left(r^{3}-0 \cdot 1\right)$ agreed more exactly with experiment than $297 r^{3}$ simply. The second term, hyp. log. $\left(\frac{1}{s}+1 \cdot 6\right)$, of the denominator is also deducted to compensate for the observed loss of head being greater for less velocities, and the last term $3\left(r^{1}-0 \cdot 1\right)$ is a deduction for a general loss of velocity sustained from the unequal motions of the particles of water in the cross section as they move along the channel. These corrections are empirical; they were, however, determined separately, and after being tested by experiment, applied, as above, to the radical formula $v=297 \sqrt{r s}$.

Du Buât's formula was published in his Principes d'Hydraulique, in 1786. It is, as we have seen, partly empirical, but deduced by an ingenious train of reasoning and with considerable penetration from about 125 experiments, made with pipes from the 19th part of an inch to 18 inches in diameter, laid horizontally, inclined at various inclinations, and vertical; and also from experiments on open channels with sectional areas from 19 to 40,000 square inches,
and inclinations of from 1 in 112 to 1 in 36,000 . The lengths of the pipes experimented with varied from 1 to 3 , and from 3 to 3600 feet.

In several experiments by which we have tested this formula, the resulting velocities found from it were from 1 to 5 per cent. too large for small pipes, and too small for straight rivers in nearly the same proportion. As the experiments from which it was derived were made with great care, those with pipes particularly so, this was to be expected. Experiments with pipes of moderate or short lengths should have the circumstances of the orifice of entry from the reservoir duly noted; for the close agreement of this formula with them must depend a great deal, in such pipes, on the coefficient due to the height h, which must be deducted from the whole head $н$ before the hydraulic inclination, $\frac{h_{f}}{l}=s$, can be obtained; but for very long pipes and uniform channels this is not necessary.

Under all the circumstances, and after comparing the results obtained from this and other formulæ, we have preferred calculating tables for the values of v from this formula reduced for measures in English inches, which is

$$
v=\frac{306 \cdot 596\left(r^{\frac{1}{2}}-\cdot 1032\right)}{\left(\frac{1}{s}\right)^{\frac{1}{4}}-\text { hyp. log. }\left(\frac{1}{s}+1 \cdot 6\right)}-\cdot 2906\left(r^{\frac{1}{4}}-\cdot 1032\right)
$$

or more simply,

$$
\begin{equation*}
v=\frac{307\left(r^{\frac{1}{2}}-\cdot 1\right)}{\left(\frac{1}{s}\right)^{\frac{1}{3}}-\text { hyp. } \log \cdot\left(\frac{1}{s}+1 \cdot 6\right)}-3\left(r^{4}-\cdot 1\right) \tag{81.}
\end{equation*}
$$

This gives the value of v a little larger than the original formula, but the difference is immaterial. For measures in English feet it becomes
(82.) $\quad v=\frac{88.51\left(r^{4}-03\right)}{\left(\frac{1}{s}\right)^{\frac{1}{2}}-\text { hyp. } \log \cdot\left(\frac{1}{s}+1 \cdot 6\right)}-84\left(r^{4}-.03\right)$.

The results of equation (81) are calculated for different
values of s and r, and tabulated in•Table VIII., the first eight pages of which contain the velocities for values of r varying from $\frac{1}{10}$ th inch to 6 inches; or if pipes, diameters from $\frac{1}{4}$ inch to 2 feet, and of various inclinations from horizontal to vertical. The five last pages contain the velocities for values of r from 6 iuches to 12 feet, and with falls from 6 inches to 12 feet per mile.

Example VIII.-A pipe, $1 \frac{1}{2}$ inch diameter and 100 feet long, has a constant head of 2 feet over the discharging extremity; what is the velocity of discharge per second?

The mean radius $r=\frac{1 \frac{1}{2}}{4}=\frac{3}{8}$ inches, and $\frac{100}{2}=50=\frac{1}{s}$, is the approximate hydraulic inclination. At page 2 of Table VIII., in the column under the mean radius $\frac{3}{8}$, and opposite to the inclination 1 in 50 , we find 30.69 inches for the velocity sought. This, however, is but approximative, as the head due to the velocity should be subtracted from the whole head of 2 feet, before finding the true hydraulic inclination. This head depends on the coefficient of resistance at the entrance orifice, or the coefficient of discharge for a short tube. In all Du Buât's experiments this latter was taken at 8125 , but it will depend on the nature of the junction, as, if the tube runs into the cistern, it will become as small as $\cdot 715$; and, if the junction be rounded into the form of the contracted vein, it will rise 974 , or 1 nearly. In this case, the coefficient of discharge may be assumed 815 *, from which, in Table II., we find the head due to a velocity of 30.69 inches to be $1 \frac{7}{8}=1.87$ inch nearly, which is the value of h; and hence, $\boldsymbol{н}-h=h_{\mathrm{f}}=24$ $-1 \cdot 87=22 \cdot 13$ inches; and $\frac{l}{h_{f}}=\frac{100 \times 12}{22 \cdot 13}=54.2=\frac{1}{8}$, the hydraulic inclination more correctly. With this new inclination and the mean radius $\frac{3}{8}$, we find the velocity by interpolating between the inclinations 1 in 50 and 1 in 60, given in the Table to be $30 \cdot 69-1 \cdot 34=29 \cdot 35$ inches per

[^28]second. This operation may be repeated until v is found to any degree of accuracy according to the formula; but it is, practically, unnecessary to do so. If we now wish to find the discharge per minute in cubic feet, we can easily do so from Table IX., in which for an inch and a half pipe we get

Inches. Cubic feet.

The discharge found experimentally by Mr. Provis, for a tube of the same length, bore, and head, was I•745 cubic foot per minute.

If we suppose the coefficient of discharge due to the orifice of entry and stop-cock in Mr. Provis's 208 experiments* with $1 \frac{1}{2}$ inch lead pipes of $20,40,60,80$, and 100 feet lengths, to be $\cdot 715$, the results calculated by the tables will agree with the experimental results with very great accuracy, and it is very probable from the circumstances described, that the ordinary coefficient 815 due to the entry was reduced by the circumstances of the stopcock and fixing to about $\cdot 715$; but even with 815 for the coefficient, the difference between calculation and experiment is not much, the calculation being then in excess in every experiment, the average being about 5 per cent., and not so much in the example we have given.

Table VIII. will give the velocity, and thence the discharge immediately, for long pipes, and Table X. enables us to calculate the cubic feet discharged per minute, with great facility. For rivers, the mean velocity, and thence the discharge, is also found with quickness. See also Tables XI., XII., and XIII.

Example IX.-A watercourse is 7 feet wide at the bottom, the length of each sloping side is $6 \cdot 8$ feet, the width at the surface is 18 feet, the depth 4 feet, and the inclina-

[^29]tion of the surface 4 inches in a mile; what is the quantity flowing down per minute?
$$
\text { Here } \frac{(18+7) \times \frac{4}{2}}{7+2 \times 6.8}=\frac{50}{20.6}=2.4272 \text { feet }=29.126 \text { inches }
$$
$=r$, is the hydraulic mean depth; and as the fall is 4 inches per mile, we find at the 11th page of Table VIII., the velocity $v=12.03-\cdot 16=11.87$ inches per second; the discharge in cubic feet per minute is, therefore,
$$
50 \times \frac{11 \cdot 87}{12} \times 60=2967 \cdot 5
$$

Watt, in a canal of the fall and dimensions here given, found the mean velocity about $13 \frac{1}{3}$ inches per second. This corresponds to a fall of 5 inches in the mile, according to the formula.

In one of the original experiments with which the formula was tested on the canal of Jard, the measurements accorded very nearly with those in this example, viz. $\frac{1}{8}=15360$, and $r=29 \cdot 1$ French inches; the observed velocity at the surface was $15 \cdot 74$, and the calculated mean velocity from the formula 11.61 French inches*. Table VII. will give $12 \cdot 29$ inches for the mean velocity, corresponding to a superficial velocity of 15.74 inches. This shews that the formula also gives too small a value for v in this case, by about $\frac{-1}{17}$ th of the result, it being about $\frac{1}{8 \cdot 3}$ part in the other. The probable error in the formula applied to straight clear rivers of about 2 feet 6 inches hydraulic mean depth is nearly $\frac{-1}{1}$ th or 8 per cent. of the tabulated velocity, and this must be added for the more correct result; the watercourse being supposed ncarly straight and free from aquatic plants.

Notwithstanding the differences above remarked on, we are of opinion that the results of this formula, which we

[^30]have calculated and tabulated, may be more safely relied on as applied to general practical purposes than most of those others which we shall proceed to lay before our readers. Rivers or watercourses are seldom straight or clear from weeds, and even if the sections, during any improvements, be made uniform, they will seldom continue so, as "the regimen," or adaptation of the velocity to the tenacity of the banks, must vary with the soil and bends of the channel, and can seldom continue permanent for any length of time unless protected. From these causes a loss of velocity takes place, difficult, if not impossible, to estimate accurately, but which may be taken at from 10 to 15 per cent. of that in the clear unobstructed direct channel; but, be this as it may, it is safer to calculate the drainage ormechanical results obtainable from a given fall and river channel, from formula which give lesser, than from those which give larger velocities. This is a principle engineers cannot too much observe.

We have before remarked, that for both pipes and rivers the coefficient of resistance increases as the velocity decreases. This is as much as to say, in the simple formula for the velocity, $v=m \sqrt{r s}$, that m must increase with v, and as some function of it. This is the case in Table VIII., throughout which the velocities increase faster than \sqrt{r}, the \sqrt{s}, or the $\sqrt{r s}$. In all formulæ with which we are acquainted but Du Buât's and Young's, the velocity found is constant when $\sqrt{r s}$ or $r \times s$ is constant. In Du Buât's formula for $r \times s$ constant, v obtains maximum values between $r=\frac{3}{8}$ inch and $r=1$ inch; the differences of the velocities for different values of r above 1 inch, $r \times s$ being constant, are not much. We may always find the maximum value, or nearly so, by assuming $r=\frac{3}{4}$ inch, and finding the corresponding inclination from the formula $\frac{4 r s}{3}$, which is equal to it. For example, if $r=12$ inches, and $s=\frac{1}{10560}$, the velocity is found equal 9.52 inches; but when $r s$ is constant, the inclination s corresponding to $r=\frac{3}{4}$ inch is $\frac{4 \times 12^{\prime \prime}}{3 \times 10560}=\frac{1}{660}$, from which
we find from the table $v=10 \cdot 25$ inches for the maximum velocity, making a difference of fully 7 per cent.

When $r=01$ of an inch, or a pipe is $\frac{1}{25}$ th part of an inch in diameter, Du Buât's formula fails, but it gives correct results for pipes $\frac{1}{8}$ th of an inch in diameter, and two of the experiments from which it was derived were made with pipes 12 inches long and only $\frac{1}{18}$ th part of an inch in diameter.

Coulomb having shown that the resistance opposed to a disc revolving in water increases as the function $a v+b v^{2}$ of the velocity v, we may assume that the height due to the resistance of friction in pipes and rivers is also of this form; and that

$$
\begin{equation*}
h_{\mathrm{f}}=\left(a v+b v^{2}\right) \frac{l}{r} \tag{83.}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
r s=a v+b v^{2} \tag{84.}
\end{equation*}
$$

Girard first gave values to the coefficients a and b. He assumed them equal, and each equal to 0003104 for measures in metres, and thence the velocity in canals,

$$
\begin{equation*}
v=(3221 \cdot 016 \boldsymbol{r} s+\cdot 25)^{\frac{1}{2}}-\cdot 5 ;^{*} \tag{85.}
\end{equation*}
$$

which reduced for measures in English feet becomes

$$
\begin{equation*}
v=(10567 \cdot 8 r s+2 \cdot 67)^{\frac{1}{2}}-1 \cdot 64 \tag{86.}
\end{equation*}
$$

The value of $a=b=\cdot 0003104$ was obtained by means of twelve experiments by Du Buât and Chezy. Of course the value is four times this in the original, as we use the mean radius in all the formulæ instead of the diameter. This formula is only suited for very small velocities in canals containing aquatic plants, and the velocity must be increased by 7 foot per second for clear channels.
$\mathbf{P}_{\text {rony }}$ found from thirty experiments on canals, that $a=\cdot 000044450$ and $b=\cdot 000309314, \uparrow$ for measures in metres, from which we find

$$
\begin{equation*}
v=(3232 \cdot 96 r s+\cdot 00516)^{\frac{1}{2}}-\cdot 0719 \tag{87.}
\end{equation*}
$$

* See Brewster's Encyclopedia, Article Hydrodynamics, p. 529.
\dagger Recherches Physico-Mathematiques sur la Théorie des Eaux Courantes.
this reduced for measures in English feet is,

$$
\begin{equation*}
v=(10607 \cdot 02 r s+\cdot 0556)^{\frac{3}{2}}-\cdot 236 ; * \tag{88.}
\end{equation*}
$$

the velocities did not exceed 3 feet per second in the experiments from which this was derived.

For pipes, Prony found, \uparrow from fifty-one experiments made by Du Buât, Bossut, and Couplet, with pipes from 1 to 5 inches diameter, from 30 to 17,000 feet in length, and one pipe 19 inches diameter and nearly 4000 feet long, that $a=\cdot 00001733$, and $b=\cdot 0003483$, from which values

$$
\begin{equation*}
v=(2871 \cdot 09 r s+\cdot 0006192)^{\frac{1}{2}}-\cdot 0249 \tag{89.}
\end{equation*}
$$

for measures in metres, and for measures in English feet,

$$
\begin{equation*}
v=(9419 \cdot 75 r s+\cdot 00665)^{\frac{1}{3}}-\cdot 0816 \tag{90.}
\end{equation*}
$$

Prony also gives the following formula applicable to pipes and rivers. It is derived from fifty-one selected experiments with pipes, and thirty-one with open channels :

$$
\begin{equation*}
v=(3041 \cdot 47 r s+\cdot 0022065)^{\frac{1}{2}}-\cdot 0469734, \ddagger \tag{91.}
\end{equation*}
$$

for measures in metres, which, reduced for measures in English feet, is

$$
\begin{equation*}
v=(9978 \cdot 76 r s+\cdot 02375)^{\frac{3}{2}}-\cdot 15412 . \tag{92.}
\end{equation*}
$$

Extelwein, following the method of investigation pursued previously by Prony, found from a large number of experiments, $a=\cdot 0000242651$, and $b=\cdot 000365543$ in rivers, for measures in metres; and, therefore,

* For canals containing aquatic plants, reeds, \&c., we must substitute $\frac{r}{1 \cdot 7}$ for r. See note, p. 102.
+ Recherches Physico-Mathématiques sur la Théorie du Mouvement des Eaux Courantes, 1804.
\ddagger Recherches Physico-Mathematiques sur la Théorie des Eaux Courantes. A reduction of this formula into English feet is given at page 6, Article Hydrodynamics, Encyclopedia Britannica; at page 164, Third Report, British Association, by Rennie; and at pages 427 and 533, Article Hydrodynamics, Brewster's Encyclopedia. This reduction, $v=-0.1541+(\cdot 02375+32806.6 r s)^{\frac{1}{2}}$ is entirely incorrect; and, being the same in each of those works, appears to have been copied one from the other.

$$
v=(2735 \cdot 66 r s+\cdot 001102)^{\frac{1}{2}}-\cdot 0332 . *
$$

This reduced for measures in English feet, is

$$
v=(8975 \cdot 43 r s+\cdot 0118858)^{\frac{1}{4}}-\cdot 1089 .
$$

He also shows, \dagger that $\frac{10}{11}$ ths of a mean proportional between the fall in two English miles and the hydraulic mean depth, gives the mean velocity very nearly. This rule for measures in inches is equivalent to

$$
\begin{equation*}
v=324 \sqrt{r s} ; \tag{95.}
\end{equation*}
$$

and for measures in feet

$$
\begin{equation*}
v=93.4 \sqrt{r s} . \tag{96.}
\end{equation*}
$$

For the velocity of water in pipes, he found, \ddagger from the fiftyone experiments of Du Buât, Bossut, and Couplet, that $a=\cdot 0000223$, and $b=\cdot 0002803$, from which we get for measures in metres,

$$
\begin{equation*}
v=(3567 \cdot 29 r s+\cdot 00157)^{\frac{1}{2}}-\cdot 0397 ; \tag{97.}
\end{equation*}
$$

which reduced for measures in English feet becomes

$$
\begin{equation*}
v=(11703 \cdot 95 r s+\cdot 01698)^{\frac{1}{2}}-\cdot 1303 . \tag{98.}
\end{equation*}
$$

Another formula given by Eytelwein for pipes, which includes the head due to the velocity for the orifice of entry, is

$$
\begin{equation*}
v=50\left(\frac{d h}{l+50 d}\right)^{\prime} \tag{99.}
\end{equation*}
$$

in which h is the head, l the length, and d the diameter of the pipe, all expressed in English feet. It must be here mentioned, that much of the valuable information presented by Eytelwein is but a modification of what Du Buât had previously given, and to whom for much that is attributed to the former we are primarily indebted.

Dr. Thomas Young§ also derives his formula from the supposition, that the head due to the resistance of friction

[^31]assumes the form of equation (83); calling the diameter of a pipe d, he takes
$$
h_{\mathrm{f}}=\left(a v+b v^{2}\right) \frac{l}{d}
$$
and the whole height $\mathrm{H}=h_{\mathrm{f}}+\frac{v^{2}}{586}$, expressed in inches. He found from some experiments of his own, those collected by Du Buât, and some of Gerstner's, that
(100.) $a=\cdot 0000002\left\{\frac{900 d^{2}}{d^{2}+1136}\right.$
$$
\left.+\frac{1}{d^{1}}\left(1085+\frac{13 \cdot 21}{d}+\frac{1 \cdot 0563}{d^{2}}\right)\right\} ;
$$
and
(101.) $b=\cdot 0000001\left\{413+\frac{75}{d}-\frac{1440}{d+12 \cdot 8}-\frac{180}{d+\cdot 355}\right\}$;
then as $\frac{1}{586}=\cdot 00171$, we get
(102.) $v=\left\{\frac{\mathrm{H} d}{b l+\cdot 00171 d}\right.$
$$
\left.+\left(\frac{a l}{2 b l+\cdot 00341 d}\right)^{2}\right\}^{\frac{1}{2}}-\frac{a l}{2 b l+\cdot 00341 d}
$$

When the length l of the pipe is very great compared with the head due to the orifice of entrance and velocity, $00171 v^{2}$, we have

$$
\begin{equation*}
v=\left\{\frac{\mathrm{H} d}{b l}+\frac{a^{2}}{4 b^{2}}\right\}^{4}-\frac{a}{2 b} ; \tag{103.}
\end{equation*}
$$

or by substituting for $\frac{H}{l}$ its value δ, equal the sine of the inclination,

$$
\begin{equation*}
v=\left\{\frac{s d}{b}+\frac{a^{2}}{4 b^{2}}\right\}^{\frac{1}{2}}-\frac{a}{2 b} \tag{104.}
\end{equation*}
$$

The values of a and b are for measures in inches. For most rivers, in which d must be taken equal $4 r$, he finds for French inch measures, $v=\sqrt{20000 d s}$; this reduced for English inches is

$$
\begin{equation*}
v=292 \sqrt{r s} ; \tag{105.}
\end{equation*}
$$

which again reduced for feet measures, becomes

$$
\begin{equation*}
v=84 \cdot 3 \sqrt{r s} \tag{106.}
\end{equation*}
$$

These latter values, for rivers, are even smaller than those found from Du Buât's formula; less than the observed velocities, and less than those found from any other formula, with the exception of Girard's. The values of the coefficients a and b vary in this formula with the value of $d=4 r$; they are expressed generally in equations (101) and (102), from which we have calculated the following Table for different values of d and r.

An examination of this Table will show that a obtains a minimum value when d is between 10 and 11 inches; and b when the diameter is between $\frac{1}{2}$ and $\frac{3}{4}$ of an inch. Now, it appears from equation (102), that v increases with $\sqrt{\frac{\mathrm{Hd}}{b l}}$ nearly, or, which is the same thing, as b decreases, there must, cateris paribus, be a maximum value of v for a given value of $\frac{\mathrm{H} d}{l}$, or $r \boldsymbol{r}$, when d is between $\frac{1}{\frac{1}{2}}$ and $\frac{3}{4}$ inch; but as $\frac{a}{2 b}$ has a minimum value when d is nearly 12 inches, the maximum value of v referred to will be found between values of d from $\frac{3}{4}$ inch to 12 inches; in fact, when $d=10$ inches nearly. We have already pointed out a similar peculiarity in Du Buât's general theorem, at page 111. It will not be necessary to take out the values of $\frac{a}{2 b}$ and $\frac{a^{2}}{4 b^{2}}$ to more than one place of decimals.

The values of $\frac{a}{2 b}$ are also given in the following Table, and may be used in equation (104) for finding the discharge from long pipes. It is, however, necessary to remark, that this equation is sometimes misapplied in finding the velocity from short pipes, and those of moderate lengths. It is necessary

9\%	
-10.	
\cdots	
$\dot{8}$	
gib	
010	
\cdots	
\checkmark	
듀ㅊㅠㅠ	

to use equation (102), which takes into consideration the head due to the velocity and orifice of entry for such pipes.

Sir John Leslie states,* that the mean velocity of a river in miles per hour, is $\frac{15}{1} \frac{5}{6}$ ths of the mean proportional between the hydraulic mean depth and the fall per mile, in feet. This rule is equivalent for measures in feet, to

$$
\begin{equation*}
v=100 \sqrt{r s} ; \tag{107.}
\end{equation*}
$$

and is most applicable to very large rivers and velocities.
D'Aubuisson, from an examination of the results obtained by Prony and Eytelwein, assumes \dagger for measures in metres that $a=\cdot 0000189$, and $b=\cdot 0003425$ for pipes substituting these in equation (84) and resolving the quadratic

$$
\begin{equation*}
v=(2919 \cdot 71 r s+\cdot 00074)^{3}-\cdot 027 ; \tag{108.}
\end{equation*}
$$

which reduced for measures in English feet becomes

$$
\begin{equation*}
v=(9579 r s+\cdot 00813)^{\frac{1}{2}}-\cdot 0902 \tag{109.}
\end{equation*}
$$

For rivers he assumes with Eytelwein, $\ddagger a=\cdot 0(0024123$, and $b=\cdot 0003655$, for measures in metres, and hence
(110.) $\quad v=(2735 \cdot 98 r s+\cdot 0011)^{\frac{1}{2}}-\cdot 033$;
which for measures in English feet is

$$
\begin{equation*}
v=(8976.5 r s+\cdot 012)^{\frac{1}{2}}-\cdot 109 \tag{111.}
\end{equation*}
$$

When the velocity exceeds two feet per second, he assumes, from the experiments of Couplet, $a=0$, and $b=\cdot 00035875$; these values give

$$
\begin{equation*}
v=\sqrt{2787 \cdot 46 r s} \tag{112.}
\end{equation*}
$$

for measures in metres, and

$$
\begin{equation*}
v=95 \cdot 6 \sqrt{r s}=\sqrt{9145 r s} \tag{113.}
\end{equation*}
$$

for measures in English feet. Equations (110) and (111) are the same as (93) and (94), found from Eytelwein's values of a and b, and it may be remarked that D'Aubuisson's equations for the velocity generally are but simple modifications of Prony's and Eytelwein's.

[^32]The values which we have found to agree best with experiments on clear straight rivers are $a=\cdot 0000035$, and $b=\cdot 0001150$ for measures in English feet, from which we find

$$
\begin{equation*}
v=(8695 \cdot 6 r s+\cdot 00023)^{\frac{1}{2}}-\cdot 0152, \tag{114.}
\end{equation*}
$$

which for an average velocity of $1 \frac{1}{2}$ foot per second will give $v=92 \cdot 3 \sqrt{r s}$ nearly, and for large velocities $v=93 \cdot 3 \sqrt{r s}$; for smaller velocities than $1 \frac{1}{2}$ foot per second, the coefficients of $\sqrt{r s}$ decrease pretty rapidly. This formula will be found to agree more accurately with observation and experiment than any other we know of. It is useful to remark in the preceding formula, that the second term and decimals both under the vinculum may be entirely neglected without error.

Weisbach is perhaps the only writer who has modified the form of the equation $r s=a v+b v^{2}$. In Dr. Young's formula, a and b vary with r, but Weisbach assumes that $h_{\mathrm{f}}=\left(a+\frac{b}{v^{\boldsymbol{j}}}\right) \frac{l}{a} \times \frac{v^{2}}{2 g}$, and finds from the fifty-one experiments of Couplet, Bossut and Du Buât, before referred to, one experiment by Guemard, and eleven by himself, all with pipes varying from an inch to five and a half inches in diameter, and with velocities varying from $1 \frac{1}{2}$ inch to 15 feet per second, that $a=\cdot 01439$, and $b=\cdot 0094711$ for measures in metres; hence we have for the metrical standard

$$
\begin{equation*}
h_{\mathrm{f}}=\left(.01439+\frac{.0094711}{v^{\frac{1}{2}}}\right) \frac{l}{d} \times \frac{v^{2}}{2 g} . \tag{115.}
\end{equation*}
$$

This reduced for the mean radius r is

$$
\begin{equation*}
h_{\mathrm{f}}=\left(.003597+\frac{.0023678}{v^{\frac{1}{2}}}\right) \frac{l}{r} \times \frac{v^{2}}{2 g} ; \tag{116.}
\end{equation*}
$$

from which we find for measures in English feet

$$
\begin{equation*}
h_{\mathrm{f}}=\left(\cdot 003597+\frac{.0042887}{v^{\frac{1}{2}}}\right) \frac{l}{r} \times \frac{v^{2}}{2 g}, \tag{117.}
\end{equation*}
$$

and thence

$$
\begin{equation*}
r s=\left(.003597+\frac{.0042887}{v^{\frac{1}{2}}}\right) \frac{v^{2}}{2 g} \tag{118.}
\end{equation*}
$$

and by substituting for $2 g$, its value $64 \cdot 403$,

$$
\begin{equation*}
r s=\left(\cdot 00005585+\frac{.00006659}{v^{\frac{1}{2}}}\right) v^{2} \tag{119.}
\end{equation*}
$$

In equation (117), $\left(\cdot 003597+\frac{.0042887}{v^{\frac{1}{2}}}\right)=c_{f}$ is the co-
efficient of the head due to friction. The equation does not admit of a direct solution, but the coefficient should be first determined for different values of the velocity v and tabulated, after which the true value of v can be determined by finding an approximate value and thence taking out the corresponding coefficient from the table, which does not vary to any considerable extent for small changes of velocity. In the following small table we have calculated the coefficients of friction, and also those of v^{2}, in equation (119), for different values of the velocity v.
table of the coeffioients of friotion in pipes.

Velocity in feet.	c_{1}	$\frac{c_{f}}{64 \cdot 4}$	Velocity in feet.	${ }^{\boldsymbol{f}}$	$\frac{c_{\mathrm{f}}}{64 \cdot 4}$
$\cdot 0$	Infinity.	Infinity.	175	-006839	-0001062
$\bullet 1$	-017159	-0002664	2	-006629	-0001029
$\cdot 2$	-013186	-0002047	$2 \cdot 5$	-006309	$\cdot 0000979$
-3	$\cdot 011427$	$\cdot 0001774$	3	-006073	-0000943
$\cdot 4$	$\cdot 010378$	$\cdot 0001611$	$3 \cdot 5$	-005890	-0000914
*5	-009662	$\cdot 0001500$	4	-005741	-0000891
-6	-009133	-0001418	5	-005514	-0000856
$\cdot 7$	-008723	$\cdot 0001354$	6	-005348	. 0000830
-8	$\cdot 008391$	$\cdot 0001303$	7	-005218	$\cdot 0000810$
$\cdot 9$	-008117	-0001260	8	-005113	-0000794
$1 \cdot 0$	$\cdot 007886$	-0001224	10	-004953	-0000769
$1 \cdot 25$	-007433	$\cdot 0001154$	16	-004669	$\cdot 0000725$
1.5	-007098	:0001102	20	-004556	$\cdot 0000707$

If the reciprocal of $\frac{c_{\mathrm{f}}}{64 \cdot 4}$, here found, be substituted in the equation $v=\sqrt{\frac{64 \cdot 4}{c_{s}} r s}$, we shall have the value of v. According to this table the coefficient of friction for a velocity of seven inches is more than twice that for a velocity of twenty feet. On comparing these coefficients and those for pipes in the preceding formulæ, with those for rivers of the same hydraulic depth, we perceive that the loss from friction is greatest in the latter, as might have been anticipated.

COEFFICIENTS DUE TO THE ORIFICE OF ENTRY.-PROBLEMS.
Unless where otherwise expressed, the head due to the velocity and orifice of entry is not considered in the preceding equations. In equation (74), where it is taken into calculation generally, $v=\left\{\frac{2 g \mathrm{H}}{1+c_{\mathrm{r}}+c_{\mathrm{r}} \times \frac{l}{r}}\right\}$ in which $1+c_{\mathrm{r}}$ is equal to $\left(\frac{1}{c_{\mathrm{v}}}\right)^{2}, c_{\mathrm{r}}$ being the coefficient of resistance due to the orifice of entry, and c_{v} the coefficient of velocity or discharge from a short tube. If the tube project into the reservoir, and be of small thickness, c_{v} will be equal $\cdot 715$ nearly, and therefore $c_{\mathrm{r}}=956$; if the tube be square at the junction, the mean value of c_{v} will be 814 , and therefore $c_{\mathrm{r}}=.508$; and if the junction be rounded in the form of the contracted vein, c_{V} is equal to unity very nearly, and $c_{\mathrm{r}}=0$. For other forms of junction the coefficients of discharge and resistance will vary between these limits, and particular attention must be paid to their values in finding the discharge from shorter tubes and those of moderate lengths, but in very long tubes $l+c_{r}$ becomes very small compared with $c_{\ell} \times \frac{l}{r}$, and may be neglected without practical error. These remarks are necessary to prevent the misapplication of the tables and formulæ, as the height due to the velocity and orifice of entry is an important element in short tubes.

We have considered it unnecessary to give any formulæ for finding the discharge itself, because, the mean velocity once determined, the calculation of the discharge from the area of the section is one of simple mensuration; and the introduction of this element into the three problems to which this portion of hydraulic engineering applies itself, renders the equations of solution complex, though easily derived; and presents them with an appearance of difficulty and want of simplicity which excludes them, nearly altogether, from practical application. The three problems are as follows :-
I. Given the fall, length, and diameter of a pipe or hydraulic mean depth of any channel, to find the discharge.

Here all that is necessary is to find the mean velocity of discharge, which, multiplied by the area of the section (equal $d^{2} \times \cdot 7854$ in a cylindrical pipe), gives the discharge sought. Table VIII. gives the velocity at once for long channels. Table IX. gives the discharge in cubic feet per minute for different diameters of pipes, and velocities in inches per second, when found from Table VIII. See also Tables XI. and XII.
II. Given the discharge, and cross section of a channel, to find the fall or hydraulic inclination.

If the cross section be circular, as in most pipes, the hydraulic mean depth is one-fourth of the diameter; in other channels it is found by dividing the water and channel line of the section, wetted perimeter, or border, into the area. The velocity is found by dividing the area into the discharge, and reducing it to inches per second; then in Table VIII., under the hydraulic mean depth, find the velocity, corresponding to which the fall per mile will be found in the first column, and the hydraulic inclination in the second.
III. Given the discharge, length, and fall, to find the diameter of a pipe, or hydraulic mean depth and dimensions of a channel.

This is the most useful problem of the three. Assume any mean radius r_{a} and find the discharge D_{a} by Problem I. We shall then have for cylindrical pipes

$$
r_{\mathrm{a}}^{\frac{5}{5}}: r^{\frac{5}{7}}:: \mathrm{D}_{\mathrm{a}}: \mathrm{D}:: 1: \frac{\mathrm{D}}{\mathrm{D}_{\mathrm{a}}} ;
$$

and as $\boldsymbol{r}_{\mathrm{a}}, \mathrm{D}$, and D_{a} are known, $\boldsymbol{r}^{\frac{5}{7}}$ becomes also known, and thence r. Table XIII. will enable us to find r with great facility. Thus, if we had assumed $r_{a}=1$ and found $\mathrm{D}_{\mathrm{a}}=15, \mathrm{o}$ being 33 , we then have

$$
1: r^{\frac{5}{7}}:: 1: \frac{33}{15}:: 1: 2 \cdot 2, \text { therefore } r^{\frac{5}{7}}=2 \cdot 2 ;
$$

and thence by Table XIII., $r=1 \cdot 37$, the mean radius required, four times which is the diameter of the pipe. For other channels, the quantity thus found must be the hydraulic mean depth; and all channels, however varied in the cross section, will have the same velocity of discharge when the fall, length, and hydraulic mean depth are constant.

In order to find the dimensions of any polygonal channel whatever, which will give a discharge equal to D , we may assume any channel similar to that proposed, one of whose known sides is s_{a}, and find the corresponding discharge, D_{a}, by Problem I., or from Tables XI. and XII.; then, if we call the like side of the required channel, s, we shall have $\mathrm{s}=s_{\mathrm{a}}\left(\frac{\mathrm{D}}{\mathrm{D}_{\mathrm{a}}}\right)^{\frac{3}{s}}$, and thence the numerical value from $\mathrm{T}_{\mathrm{AbLE}}$ XIII.

As it frequently happens that a deposit in, and encrustation of, a pipe takes place from the water passing through it, which diminishes the section considerably from time to time, it is always prudent, when calculating the necessary diameter, to take the largest coefficient of friction, c_{f}, or to increase its mean value by perhaps one half, when calculating the diameter from the formulæ. Some engineers, as D'Aubuisson, increase the quantity of water by one half to find the diameter; but much must depend on the peculiar circumstances of each case, as sometimes less may be sufficient, or more necessary. The discharge increases in similar figures, as $r^{\frac{5}{7}}$ or as $d^{\frac{5}{7}}$, and the corresponding increase in the diameter for any given or allowed increase in the discharge
can be easily found by means of Table XIII., as shown above. If we increase the dimensions by one-sixth, the discharge will be increased by one-half nearly.

For shorter pipes, we have to take into consideration the head due to the velocity and orifice of entry. Taking the mean coefficient of velocity or discharge, we find, from Table II., the head due to the velocity, if it be known; this subtracted from the whole head, \boldsymbol{H}, leaves the head, h_{f}, due to the hydraulic inclination, which is that we must make use of in the table. If the velocity be not given, we can find it approximately; the head found for this velocity, due to the orifice of entry, when deducted, as before, will give a close value of h_{f}, from which the velocity may be determined with greater accuracy, and so on to any degree of approximation. In general, one approximation to h_{f} will be sufficient, unless the pipes be very short, in which case it is best to use equation (74). Example VIII., page 108, and the explanation of the use of the tables, Section I., may be usefully referred to.

Tables XI., XII., and XIII. enable us to solve with considerable facility all questions connected with discharge, dimensions of channel, and the ordinary surface inclinations of rivers. The discharge corresponding to any intermediate channels or falls to those given in Tables XI. or XII., will be found with abundant accuracy, by inspection and simple interpolation; and in the same manner the channels from the discharges. Rivers have seldom greater falls than those given in Table XII., but in such an event we have only to divide the fall by 4 , then twice the corresponding discharge will be that required. Table XIII. gives the comparative discharging powers of all similar channels, whether pipes or rivers, and the comparative dimensions from the discharges. We perceive from it, that an increase of one-third in the dimensions doubles, and a decrease of one-fourth reduces the discharge to one-half. By means of this table, we can determine by a simple proportion, the dimensions of any given form of channel when the discharge is known. See Example 17, page 12.

The mean widths in Tables XI. and XII. are calculated for rectangular channels, and those having side slopes of $1 \frac{1}{3}$ to 1 . Both these tables are, however, practically, equally applicable to any side slopes from 0 to 1 up to 2 to 1 , or even higher, when the mean widths are taken and not those at top or bottom. A semihexagon of all trapezoidal channels of equal area has the greatest discharging power, and the semisquare and all rectangles exactly the same as channels of equal areas and depths with side slopes of $1 \frac{1}{3}$ to 1 . The maximum discharge is obtained between these for the semihexagon with side slopes, of nearly $\frac{1}{2}$ to 1 , but for equal areas and depths the discharge decreases afterwards as the slope flattens. The question of "How much?" is here, however, a very important one; for, as we have already pointed out in equations (28) and (31), the differences for any practical purposes may be immaterial. This is particularly so in the case of channels with different side slopes, if, instead of the top or bottom, we make use of the mean width to calculate from. We then have only to subtract the ratio of the slope multiplied by the depth to find the bottom, and add it to find the top. If the mean width be 50 feet, the depth 5 feet, and the side slopes 2 to 1, we get $50-(2 \times 5)$ $=40$ for the bottom, and $50+(2 \times 5)=60$ for the top width.

Side slopes of 2 to 1 present a greater difference from the mean slope of $1 \frac{1}{3}$ to 1 , than any others in general practice when new cuts are to be made. A triangular channel having slopes of 2 to 1 , and bottom equal to zero, differs more in its discharging power from the half square, equal to it in depth and area, than if the bottom in each was equally increased, yet even here it is easy to show that this maximum difference is only $5 \frac{1}{2}$ per cent. If the bottom be increased so as to equal the depth, it is only $4 \frac{1}{2}$ per cent.; when equal to twice the depth, 3.8 per cent. ; and when equal to four times the depth, to 2 per cent.; while the differences in the dimensions taken in the same order are only $2 \cdot 2,1 \cdot 8,1 \cdot 5$, and 0.8 per cent. For greater bottoms in proportion to the depth the differences become of no comparative value. It therefore appears pretty evident, that Tables XI. and XII. will
be found equally applicable to all side slopes from 0 to 1 up to 2 to 1 , by taking the mean widths. When new cuts are to be made, we see no reason whatever in starting from bottom rather than mean widths, to calculate the other dimensions; indeed, the necessary extra tables and calculations involved ought entirely to preclude us from doing so. Besides, the formulæ for finding the discharge vary in themselves, and for different velocities the coefficient of friction also varies.* Added to which the inequalities in every river channel, caused by bends and unequal regimen, precludes altogether any regularity in the working slopes and bottom, though the mean width would continue pretty uniform under all circumstances.

The quantities in Table XII. are calculated, from the velocities found from Table VIII., to correspond to a channel 70 feet wide and of different depths, the equivalents to which are given in Table XI. In order to apply these tables generally to all open channels, the latter are to be reduced to rectangular ones of the same depth and mean width, or the reverse, as already pointed out. If the dimensions of the given channel be not within the limits of Table XI., divide the dimensions of the larger channels by 4 , and multiply the corresponding discharge found in Table XII. by 32; for smaller channels, multiply the dimensions by 4 and divide by 32 . In like manner, if the discharge be given and exceed any to be found in Table XIII., divide by 32, and multiply the dimensions of the suitable equivalent channel found in Table XI. by 4. If we wish to find equivalent channels of less widths than 10 feet for small discharges, multiply the discharge by 32 and divide the dimensions of the corresponding equivalent by 4 . Many other multipliers

[^33]and divisors as well as 4 and 32 may be found from Table XIII., such as 3 and $15 \cdot 6,6$ and $88 \cdot 2,7$ and 130, 9 and 243 , 10 and 316,12 and $499, \& c$. The differences indicated at pages 111 and 112, must be expected in the application of these rules, which will give, however, dimensions for new channels which can be depended on for doing duty.

It will be seen from Table XIII. that a very small increase in the dimensions increases the discharging power very considerably. Table XII. also shows that a small increase in the depth alone adds very much to the discharge. If we express in this latter case a small increase in the depth, d, by $\frac{d}{n}$, then it is easy to prove that the corresponding increase in the velocity, v, will be $\frac{v}{2 n}$; and that in the discharge $D, \frac{3 D}{2 n}$, if the surface inclination continue unchanged; but as it is always observable in rivers that the surface inclinations increase with floods, the differences in practice will be found greater than these expressions make it. As in large rivers the surface inclinations are very small, four times the amount will add very little to the sectional areas, yet this increase will double fully the discharge, and we thence perceive how rivers may be absorbed into others without any great increase of the depths.

SECTION IX.

best forms of the channel.-REGImen.
We have seen above, that the determination of the hydraulic mean depth does not necessarily determine the section of the channel. If the form be a circle, the diameter is four times the mean radius; but, though this form be almost always adopted for pipes, the beds of rivers take almost
every curvilineal and trapezoidal-shape. Other things being the same, that form of a river channel, in which the area divided by the border is a maximum, is the best. This is a semicircle having the diameter for the surface line, and in the same manner, half the regular figures, an octagon, hexagon, and square, in Fig. 33, are better forms for the channel, the areas being constant, than any others of the same number of sides. Of all rectangular
 channels, Diagram 4, in which abcd is half a square, is the best cross section; and in Diagram 3, acdi, half a hexagon, is the best trapezoidal form of cross section. When the width of the bottom, cd, Diagram 3, is given, and the slope $\frac{\mathrm{Aa}}{\mathrm{ca}}=n$, then, in order that the discharge may be the greatest possible, we must have

$$
\mathrm{ca}=\left\{\frac{\mathrm{c}}{2\left(n^{2}+1\right)^{\frac{1}{2}}-n}\right\}^{3}, \text { and }
$$

$\mathrm{CD}=\frac{\mathrm{c}}{\mathrm{Ca}}-n \times \mathrm{ca}$

$$
=\left\{\left[2\left(n^{2}+1\right)^{3}-n\right] \times \mathrm{c}\right\}^{4}-n\left\{\frac{\mathrm{c}}{2(+1)^{3}-n}\right\}^{\prime},
$$

in which \mathbf{c} is the given area of the channel. As, however, we have never known a river in which the slope of the natural banks continued uniform, even though made so for any improvements, we consider it almost unnecessary to give tables for different values of n. If, notwithstanding, we put φ for the inclination of the slope ac, equal angle caa, we shall find, as $\cot \varphi=n$, and $\sqrt{n^{2}+1}=\frac{1}{\sin . \varphi}$, that the foregoing equations become

$$
\begin{equation*}
o \mathrm{a}=\left\{\frac{\mathrm{c} \sin . \varphi}{2-\cos . \varphi}\right\}^{\}}=\frac{\mathrm{CD}}{2\left\{\left(n^{2}+1\right)^{4}-n\right\}} \tag{120.}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{cd}=\frac{\mathrm{c}}{\mathrm{ca}}-\mathrm{ca} \times \cot . \varphi, \tag{121.}
\end{equation*}
$$

which will give the best dimensions for the channel when the angle of the slope for the banks is known.

When the discharge from a channel of a given area, with given side slopes, is a maximum, it is easy to show that the hydraulic mean depth must be half of the central or greatest depth. This simple principle enables us to construct the best form of channel with great facility. Describe any circle on the drawing-board; draw the diameter and produce it on both sides, outside the circle; draw a tangent to the lower circumference parallel to this diameter, and draw the side slopes at the given inclinations, touching the circumference also on each side and terminating on the parallel lines: the trapezoid thus formed will be the best form of channel, and the width at the surface will be equal to the sum of the two side slopes. It is easy to perceive that this construction may be, simply, extended for finding the best form of a channel having any polygonal border whatever of more sides than three and of given inclinations.

Commencing with the best form of channel, which in practice will have the mean width, about double the depth, an equal discharging section of double the width of the first will have the contents one-eleventh greater, and the depth less in the proportion of 1 to $1 \cdot 85$. A channel of double the mean width of the second must have the sectional area further increased by about one-fifth, and a further decrease in the depth from 1.67 to 1 nearly. The greater expense of the excavation at greater depths will, in general, more than counterbalance these differences in the contents of the channel. When the banks rise above the flood line, and are unequal in their section, the wider channel involves further upper extra cutting, but there is greater capacity to discharge extra and extraordinary flooding, the banks are less liable to slip or give way, the slopes may be less, and the velocity being also less, the regimen will, in general, be better preserved.
table of the relative dimensions of maximum disoharaing ohannels.

Angle of slope.	Engineering slope.	Depth in terms of the area.	Bottom in terms of the area.	Top in terms of the area.	Hydraulic mean depth in terms of the area.	Ratio of bottom to depth.	Ratlo of top to depth.	Area in terms of the depth α.
$90^{\circ} \quad 0^{\prime}$	0 to 1	$\cdot 707 \sqrt{\text { o }}$	$1.414 \sqrt{\text { o }}$	$1.414 \sqrt{\text { o }}$	$\cdot 354 \sqrt{ }$ o	2. to 1	2. to 1	$2 d^{2}$
6326	$\frac{1}{2}$ to 1	$\cdot 759 \sqrt{\text { o }}$	$\cdot 938 \sqrt{ }{ }^{\text {a }}$	$1.697 \sqrt{0}$	$\cdot 379 \sqrt{\text { o }}$	1236 to 1	$2-236$ to 1	$1.736 d^{2}$
$4834 \frac{1}{2}$	$\frac{3}{4}$ to 1	$\cdot 748 \sqrt{0}$	$.675 \sqrt{\text { o }}$	$1.996 \sqrt{\text { o }}$	$\cdot 374 \sqrt{0}$. 902 to 1	$2 \cdot 667$ to 1	$1.784 d^{2}$
450	1 to 1	$\cdot 740 \sqrt{0}$	$\cdot 613 \sqrt{0}$	$2.093 \sqrt{\text { o }}$	$\cdot 370 \sqrt{\text { o }}$	-828 to 1	2.828 to 1	$1.828 d^{2}$
3652	$1 \frac{1}{8}$ to 1	$\cdot 707 \sqrt{0}$	$\cdot 471 \sqrt{0}$	$2.357 \sqrt{\text { o }}$	$\cdot 354 \sqrt{\text { o }}$	-667 to 1	$3 \cdot 333$ to 1	$2 d^{2}$
33 41 $\frac{1}{2}$	$1 \frac{1}{2}$ to 1	. $689 \sqrt{\text { o }}$	$417 \sqrt{\text { o }}$	$2.484 \sqrt{ } 0$	$345 \sqrt{ }$	-605 to 1	$3 \cdot 605$ to 1	$2 \cdot 105 d^{2}$
3058	129 to 1	-671 $\sqrt{\text { o }}$	$.872 \sqrt{0}$	$2.608 \sqrt{0}$	$\cdot 336 \sqrt{\sigma}$	- 554 to 1	3.888 to 1	$2 \cdot 221 d^{2}$
2634	2 to 1	$\cdot 636 \sqrt{ }$ 0	$\cdot 300 \sqrt{\text { o }}$	$2.844 \sqrt{ }$	$\cdot 318 \sqrt{0}$.472 to 1	$4 \cdot 472$ to 1	$2 \cdot 472 d^{2}$
Semicircle	Curved	$\cdot 798 \sqrt{\mathrm{o}}$	-000	$1.596 \sqrt{0}$	$\cdot 399 \sqrt{\text { c }}$	$\cdot 000$ to 1	2 to 1	$1.571 d^{2}$
Circle	Curved	$1.128 \sqrt{\text { o }}$	-000	-000	$\cdot 282 \sqrt{0}$. 000 to 1	0 to d	$\cdot 785 d^{2}$

Nots.-Half the top will give the length of the side slope. The top itself is the sum of the side slopes, and the border the sum of the top and
bottom. The sum of the side slopes in any channel whatever is equal to the number corresponding to the slope in the eighth column multiplied by bottom. The sum of the side slopes in any channel whatever is equal to the number corresponding to the slope in the eighth column multiplied by
the depth; and the sum of the triangular side areas, corresponding to the slopes, is equal to the square of the depth multiplied by the numbers corresponding to the ratio in column 2. The bottom multiplied by the depth added to this gives the area of the section. The top of the best form of channel should be at the level of the extraordinary flood line, and not at that of the mean annual surface.

When the sectional area is given, the above table shows that the semicircle is the best discharging channel, and the complete circle the worst; the latter is so, however, only compared with the open channels given in the table, it being the very best form for an enclosed channel flowing full. The best form of channel is particularly suited for new cuts in flat, marsh, callow, and fen lands, in which it is also often advisable to cut them with a level bed, up from the discharging point, in order to increase the hydraulic mean depth, and consequently the velocity and discharge.

As the quantity of water coming down a river channel in a season varies very considerably,-we have observed it in one case to vary from one to thirty, and occasionally in the same channel from one to seventy-five,--the proportion of the water section to the channel itself must also vary, and those relations of the depth, sides, and width to each other, above referred to, cease to hold good and be the best under such circumstances. If the object be to construct a mill race, temporary drain for unwatering a river, or other small channel, in which the depth remains nearly constant, channels of the form of a half hexagon, diagram 3, Fig. 33, will be, perhaps, the best, if the tenacity of the banks permit the slope; but rivers, in which the quantity of water varies considerably, require wider channels in proportion to the depth; and also, that the velocity be so proportioned to the tenacity of the soil, or as it is termed "the regimen," that the banks and bed shall not vary from time to time to any injurious extent, and that any deposits made during their summer state, and during light freshes, shall be carried off periodically by floods. Another circumstance, also, modifies the effects of the water on the banks. It is this, that at curves, and turns, the current acts with greatest effect against the bank, concave to the direction in which it is moving; deepening the channel there; undermining also the bank, as at a, Fig. 34 ; and raising the

bed towards the opposite side в. The reflexion of the current to the opposite bank from A acts also in a similar manner, lower down, upon it; and this natural operation proceeds, until the number of turns, increased length of channel, and loss of head from reflexion and unequal depths, brings the currents into regimen with the bed and banks. At all bends it is, therefore, prudent to widen the channel on the convex side b, Fig. 34, in order to reduce the velocity of approach, and if the bed be here also sunk below its natural inclination, as we see it in most rivers at bends, the velocity will be farther reduced, and the permanence of the bed be better established.

The circumstances to be considered in deciding on the dimensions and fall of a new river course, after the depth to which the surface of the water is to be brought has been decided on, are the following:-

The mean velocity must not be too slow, or aquatic plants will grow, and deposits take place, reducing the sectional area until a new and smaller channel is formed within the first with just sufficient velocity to keep itself clear. This velocity should not in general be less than from ten to fourteen inches per second. The velocity in a canal or river is increased very considerably by cutting or removing reeds and aquatic plants growing on the sides or bottom*.

The mean velocity must not be too quick, and should be so determined as to suit the tenacity and resistance of the channel, atherwise the bed and banks will change continually, unless artificially protected; it should not exceed

[^34]| 25 | feet per minute in soft alluvial deposits. | |
| ---: | :--- | :--- |
| 40 | $"$ | $"$ | | clayey beds. |
| :--- |
| 60 |\gg sandy and silty beds.

The fall per mile should decrease as the hydraulic mean depth increases, and both be so proportioned that floods may have sufficient power to carry off the deposits, if any, periodically. The proportion of the width to the depth of the channel should not be derived, for new cuts or river courses, from any formula, but taken from such portions of the old channel as approximate in depth and in the inclination of the surface to that proposed. When the depth is nearly half the width, the formula shows, cateris paribus, that the discharge will be a maximum; but as (altogether apart from the question of expense) the quantity of water discharged daily, at different seasons, may vary from one to seventy, or more, and "the regimen" has to be maintained, the best proportion between the width and depth of a new cut should be obtained, as we have stated, from some selected portion of the old channel, whose general circumstances and surface inclination approximate to those of the one proposed; and the side slopes of the banks must be such as are best suited to the soil. The resistance of the banks to the current being in general less than that of the beds, which get covered with gravel, and the necessary provision required for floods, appears to be the principal reason why rivers are in general so very much wider than about twice the depth, the relation which gives the minimum of friction.

For enclosed channels, the circular form of sewer flowing full, will have the largest scouring power, at a given hydraulic inclination. For the area of the sections being the same, the velocity in the circular channel will be a maximum. When the supply is intermittent, and the channel too large, the egg-shaped form with the smaller end for the bottom, 一 or the sides vertical with an inverted ridge tile or \mathbf{V} bottom for drains,-will have a hydrostatic flushing power to remove
soil and obstructions, which a cylindrical channel, only partly full, does not possess; because a given quantity of water rises higher against the same obstruction, or obstacle, to the flow. It must be confessed, however, that for small drains and house-sewage, this gain is immaterial, and is at best but effected by a sacrifice of space, material, and friction in the upper part of drains, from 4 to 12 or 15 inches in diameter. Besides this, the mere hydrostatic pressure is only intermittent, and during an ordinary, or heavy, fall of rain, the hydrodynamic power is always more efficient in scouring properlyproportioned cylindrical drains; and the workmanship in the form and joints is less imperfect than for more compound forms, as those with egg-shaped and inverted tile bottoms. The moulds and joints of cylindrical stone-ware drains, exceeding 15 inches in diameter, are seldom, however, perfect; and the expense will exceed that of brick, stone, or other sufficient drains in most localities.

As to the increased discharging power which it is asserted by some, stone-ware cylindrical drains possess over other ordinary drains, no doubt it is true for small sizes, because the form, jointing, and surface are in general more smooth and circular; and for sewage matter ${ }^{*}$, the friction and adherence to the sides and bottom is less; any advantage from these causes becomes, however, immaterial for the larger sizes, as these can be constructed of brick abundantly perfect to any form, and sufficiently smooth for all practical purposes, for in the larger properly-proportioned sizes the same amount of surface roughness opposed to the sewage matter is, comparatively, of no effect. The judicious inclination and form of the bottom, and properly curved junctions, are the principal points to be attended to. Smaller drains tile-bottomed, with brick or stone sides, and flat-covered, have one great advantage over circular pipes \dagger. They can be opened up, for exa-

* Weisbach found the coefficient of resistance 1.75 times as great for small wooden as for metallic pipes. All permeable pipes present greater resistance than impermeable ones; hence the principal advantage derived from glazing.
\dagger Half-socket joints at bottom would remedy this imperfection in small pipes, and they could be better laid and cemented. A semicircular flange laid on at top would effectually protect the joint on the upper side.
mination and repairs at any time with facility, and at the smallest expense, but greater certainty must be attached to the working of small stone-ware drains than to equal sized small brick or stone drains, and they will be found, in general, also the cheaper. This, however, will depend on the locality.

In order that different sections should have the same discharging power, the inclination of the surface being the same, the areas must be inversely as the square roots of the hydraulic mean depths. The channel $\boldsymbol{a d c} \boldsymbol{c}$ в, Fig. 35, will have the same discharge as the channel adci if they be to each other as $\left\{\frac{\mathbf{A D C B}}{\mathbf{A D}+\mathbf{D C}+\mathbf{C B}}\right\}^{\frac{1}{2}}$ to $\left\{\frac{a d c \mathbf{B}}{a d+d c+c \mathbf{B}}\right\}^{\frac{1}{2}}$,

and hence the square root of the cube of the channel area, divided by the border, must be constant. With a fall of one or more feet to a mile, two channels, one 70 feet wide and 1 foot deep, and the other 20 feet wide and $2 \frac{1}{2}$ feet deep, will have the same discharge. If we put w for the width and d for the depth of any rectangular channel, then $\left\{\frac{w^{3} d^{3}}{w+2 d}\right\}^{\frac{1}{2}}=m$; we therefore have the cubic equation

$$
\begin{equation*}
d^{3}-\frac{2 m^{2}}{w^{3}} d=\frac{m^{2}}{w^{2}} \tag{122.}
\end{equation*}
$$

for finding the depth d of any other rectangular channel whose width is v, of the same discharging power. We have calculated the depths d for different widths of channel from this equation, assuming a width of 70 feet and different depths to find m from. This table will be found sufficiently accurate for all practical purposes, by taking a mean width, when the banks are sloped.

If the hydraulic inclinations vary, then the $\sqrt{r s}$ must be inversely as the areas of the channels when $\sqrt{r s} \times$ channel or the discharge is constant; and if the area of the channel
and discharge be each constant, r must vary inversely as $\boldsymbol{\varepsilon}$; and $r s$ be also constant. For instance, a channel which has a fall of four feet per mile, and a hydraulic mean depth of one foot, will have the same discharge as another channel of equal area, having a hydraulic mean depth of four feet and a fall per mile of only one foot.
table of beoda disoharging reotangular ohannels*.

$\begin{aligned} & \text { Values } \\ & \text { of } m . \end{aligned}$	The widths in feet are given in the top horizontal line, and the corresponding depths in feet in the other horizontal llines.									
	70	60	50	40	35	30	25	20	15	10
8.7	0.25	$\cdot 27$	-30	$\cdot 35$	$\cdot 40$	45	52	58	71	. 98
$24 \cdot 6$	0.5	$\cdot 55$	$\cdot 62$	73	-80	-89	$1 \cdot 02$	1•19	$1 \cdot 48$	2.04
45.0	$\cdot 75$	82	$\cdot 94$	$1 \cdot 10$	$1 \cdot 20$	$1 \cdot 35$	$1 \cdot 56$	$1 \cdot 82$	$2 \cdot 28$	$3 \cdot 22$
$69 \cdot 0$	1.0	$1 \cdot 10$	$1 \cdot 26$	$1 \cdot 48$	$1 \cdot 62$	1.81	$2 \cdot 10$	$2 \cdot 46$	$3 \cdot 11$	$4 \cdot 50$
96.9	1.25	$1 \cdot 39$	1.58	$1 \cdot 86$	$2 \cdot 04$	$2 \cdot 28$	$2 \cdot 65$	$3 \cdot 12$	3.98	$5 \cdot 89$
126	1.5	1.67	1.90	$2 \cdot 24$	$2 \cdot 46$	$2 \cdot 75$	$3 \cdot 20$	3.80	$4 \cdot 88$	7.31
158	1.75	$1 \cdot 95$	$2 \cdot 22$	$2 \cdot 62$	$2 \cdot 88$	3.23	3.75	$4 \cdot 50$	$5 \cdot 80$	8.86
193	2.0	$2 \cdot 23$	2.54	3.00	$3 \cdot 31$	3.72	4.32	$5 \cdot 22$	6.78	10.50
267	$2 \cdot 5$	$2 \cdot 79$	$3 \cdot 18$	$3 \cdot 76$	$4 \cdot 16$	$4 \cdot 70$	$5 \cdot 50$	$6 \cdot 68$	8.84	14.00
349	3.0	3.35	$3 \cdot 84$	4.54	$5 \cdot 04$	$5 \cdot 72$	6.69	8.22	11.03	17.68
437	$3 \cdot 5$	3.91	4.50	$5 \cdot 33$	5-95	6.75	$7 \cdot 93$	$9 \cdot 82$	13.32	$21 \cdot 68$
531	4.0	4.48	$5 \cdot 14$	$6 \cdot 13$	6.85	$7 \cdot 81$	$9 \cdot 21$	$11 \cdot 48$	15.75	26.00
629	4.5	$5 \cdot 05$	$5 \cdot 79$	6.95	7.75	$8 \cdot 90$	10.50	$13 \cdot 19$	18.22	$30 \cdot 36$
732	$5 \cdot 0$	$5 \cdot 62$	$6 \cdot 45$	7.75	$8 \cdot 66$	10.00	11.79	14.96	$20 \cdot 80$	$35 \cdot 00$
839	5.5	6.18	$7 \cdot 12$	8.57	$9 \cdot 62$	$11 \cdot 10$	13.24	16.77	$23 \cdot 47$	39.81
951	6.0	6.75	$7 \cdot 80$	9•40	$10 \cdot 60$	12.22	14.65	18.65	26.25	44.86

SECTION X.

EFFECTS OF ENLARGEMENTS AND CONTRACTIONS.-BACK WATER WEIR CASE.-LONG AND SHORT WEIRS.

When the flowing section in pipes or rivers expands or contracts suddenly, a loss of head always ensues; this is pro-

[^35]bably expended in forming eddies at the sides, or in giving the water its new section. A side current, moving slowly upwards, may be frequently observed in the wide parts of rivers, when the channel is unequal, though the downward current, at the centre, be pretty rapid; and though we may assume generally that the velocities are inversely as the sections, when the channels are uniform, we cannot properly do so where the motions are so uncertain as those referred to. When a pipe is contracted by a diaphragm at the orifice of entry, Fig. 27, we have seen (equation 60), that the loss of head is,

\[

$$
\begin{equation*}
h=\frac{\left(1-\frac{\mathrm{A}^{2}}{\mathrm{c}^{2}}\right) v^{2}+\left(\frac{\mathrm{A}}{a c_{\mathrm{d}}}-1\right)^{2} v^{2}}{2 g} \tag{123.}
\end{equation*}
$$

\]

When the diaphragm is placed in a uniform pipe, Fig. 36, then $\mathrm{A}=\mathrm{c}$, and we get the loss of head

$$
\begin{equation*}
h=\frac{\left(\frac{\mathrm{A}}{a c_{\mathrm{d}}}-1\right)^{2} v^{2}}{2 g} \tag{124.}
\end{equation*}
$$

and the coefficient of resistance

$$
\begin{equation*}
c_{\mathrm{r}}=\left(\frac{\mathrm{A}}{a c_{\mathrm{d}}}-1\right)^{2} \tag{125.}
\end{equation*}
$$

as in equation (67). The coefficient of discharge c_{d} is here equal to the coefficient of contraction c_{c}, or very nearly. Now we have shown in equation (45), and the remarks following $i t$, that the value of the coefficient of discharge, c_{d}, varies according to the ratio of the sections, $\frac{A}{a}$, and in Table V. we have calculated the new coefficients for different values of the ratios, and different values of the primary coefficient c_{d}. If we assume c_{d}, when A is very large compared with a, to be $\cdot 628$, we then find by attending to the remarks at pp. 61 and 62, that the different values of c_{d} corresponding to $807 \times \frac{\mathbf{A}}{\boldsymbol{a}}$, taken from Table V., are those in columns Nos. 2 and 5 of
table of ooefyiciknts for contraction, by a diaphragm in a pipe.

$\frac{\boldsymbol{a}}{\Delta}$	c_{d}	c_{r}	$\frac{a}{\Delta}$	c_{d}	c_{r}
.0	.628	infinite	.6	.713	$1 \cdot 790$
.1	.630	221.2	.7	.753	.807
.2	.636	47.1	.8	.807	.301
.3	.647	17.2	.85	.845	.154
.4	.661	7.7	.9	.890	.062
.5	.683	3.7	1	1.000	.000

the above small table, the values of the coefficient of resistance, in columns 3 and 6 , being calculated from equation (125) for the respective new values of the coefficient of discharge thus found. The table shows that when the aperture in a diaphragm is $\frac{2}{10}$ ths of the section of the pipe, that 47 times the head due to the velocity is lost thereby. If the aperture in the diaphragm be rounded, the loss will not be so great, as the primary coefficient c_{d} will then be greater than that due to an orifice in a thin plate: see coefficients, p. 96.

When there are a number of diaphragms in a tube, the loss of head for each must be found separately, unless the ratio $\frac{a}{A}$ be constant, and all added together for the total loss. If the diaphragms, however, approach each other, so that the water issuing from one of the orifices a, Fig. 36, shall pass into the next before it again takes the velocity due to the diameter of the pipe, the loss will not be so great as when the distance is sufficient to allow this change to take place. This view is fully borne out by the experiments of Eytelwein with tubes 1.03 inch in diameter, having apertures in the diaphragms of $\cdot 51$ inch in diameter.

Venturi's twenty-fourth experiment, with tubes varying from $\cdot 75$ inch to 934 inch in diameter at the junction with the cistern, so as to take the form of the contracted vein, and expanding and contracting along the length from 75 to 2 inches and from

2 inches to $\cdot 75$ inch alternately, shows the great loss of head sustained by successive enlargements and contractions of a channel, even when the junction of the parts is gradual. Calling the coefficient for the short tube, with a junction of nearly the form of the contracted vein, 1 , then the following coefficients are derivable from the experiment:-

$$
\begin{aligned}
& \text { Short tube with rounded junction } \\
& \text { One enlargement } \\
& \text { Three enlargements } \\
& 741 \\
& \text { Five enlargements } \\
& \text { Simple tube with a rounded junction of the same } \\
& \text { length, } 36 \text { inches, as the tube with the five en- } \\
& \text { larged parts }
\end{aligned}
$$

The head, in the experiment, was $32 \frac{1}{2}$ inches. Venturi states that no observable differences occurred in the times of discharge when the enlarged portions were lengthened from $3 \frac{1}{6}$ to $6 \frac{1}{3}$ inches.

With reference to this experiment, so often quoted, it is necessary to remark that the diameters of the enlarged portions were 2 inches each, while the lengths varied only from $3 \frac{1}{6}$ to $6 \frac{1}{3}$ inches, and consequently were at most only $3 \frac{1}{6}$ th times the diameter. Now with such a large ratio of the width to the length of the enlarged portions, $a_{\text {A }} b$, Fig. 37, it is pretty clear that a good deal of the head is lost by the impact of the moving water on the shoulders \boldsymbol{A} and \boldsymbol{b}.
 That this is so is evident from the fact, stated by the experimenter, of the time of discharge remaining the same when a_{A}, in five different enlargements, was increased from $3 \frac{1}{6}$ to $6 \frac{1}{3}$ inches; though this must have lengthened the whole tube from 36 to 50 inches*, thereby increasing the loss from friction proportionately, but which happened to be compensated for by the reduction in the resistances from

[^36]impact at \mathbf{A} and B , and in the eddies, by doubling the lengths from a to A.

If, however, the length from a to a be very large compared with the diameter, and the junctions at $a, \mathrm{~A}, \mathrm{~B}$, and b, be well grafted, less loss will arise from the enlargement than if the smaller diameter continued all along uniform. The explanation is clear, as the resistance from friction is inversely as the square roots of the mean radii; and the length being the same, the loss must be less with a large than a small diameter.

These remarks, mutatis mutandis, apply equally to rivers as to pipes. We have already, pp. 72 and 75 , pointed out the effects of submerged weirs and contracted river channels, and given formulæ for calculating them.

BACKWATER FROM CONTRACTIONS IN RIVERS.

A river may be contracted in width or depth by jetties or weirs; and when the quantity to be discharged is known, we have given, in formulæ (9), (55), and (57), equations from which the increase of head may be determined. The effect of a weir, jetty, or contracted channel of any kind, is to increase the depth of water above; and this is sometimes necessary for navigation purposes or to obtain a head for mill power. When a weir is to rise over the surface, we can easily find, from the discharge and length, the discharge per minute over each foot of length, with which, and the coefficient due to the ratio of the sections, on and above the weir, found from Table V., we can find the head from Table VI. For submerged weirs and contracted widths of channel, the head can be best calculated, by approximation, from the equations above referred to.

The head once determined, the extent of the backwater is a question of some importance. If fcod, Fig. 38, be the original surface of a river, and a ав $\overline{\text { f }}$ the raised surface by backwater from the weir at a, then extent $a \mathrm{~F}$ of this backwater, in a regular channel, will be from 1.5 to 1.9 times \boldsymbol{a} c drawn parallel to the horizon to meet the original surface

in c. This rule will be found useful for practical purposes; but in order to determine more accurately the rise for a given length, $\mathbf{B}_{1} \mathbf{B}_{2}$ or $\mathbf{B}_{1} \mathbf{B}$, of the channel, it is necessary to commence at the weir and calculate the heights from \mathbf{A} to \mathbf{B}, \mathbf{B} to \mathbf{B}_{1}, and from \mathbf{B}_{1} to \mathbf{B}_{2} separately, the distance from \mathbf{A} to $\mathbf{B}_{\mathbf{2}}$ being supposed divided into some convenient number of equal parts, so that the lengths A в, в $_{\mathbf{B}_{1}}$, \&c., may be considered free from curvature. Now, as the head $A D$ is known, or may be calculated by some of the preceding formulæ, the section of the channel at the head of the weir also becomes known, and thence the mean velocity in it, by means of the discharge over the weir. Putting A for the area of the channel at $A \boldsymbol{A}$, d for its depth $\mathbf{A H}$, and v for the mean velocity; also A_{1} for the area of the channel at в $1, d_{1}$ for its depth, and v_{1} for its mean velocity; b_{m} the mean border between the sections at Ан and ві $; r_{\mathrm{m}}$ the mean hydraulic depth; $\frac{v+v_{1}}{2}$ the mean velocity ; $\mathrm{AD}=h$; $\mathrm{B} 0=h_{1}$; the sine of angle $\mathrm{ODE}=s$; and the length $\mathrm{A}=\mathrm{D} \boldsymbol{0}$ nearly $=l$; we get $\mathrm{A} \times v=\mathrm{A}_{1} \times v_{1}$ and $r_{\mathrm{m}}=\frac{A+A_{1}}{2 b_{\mathrm{m}}}$; but as, in passing from B to A, the velocity changes from v_{1} to v, there is a loss of head equal $\frac{v_{1}^{2}-v^{2}}{2 g}$, and if c_{f} be the coefficient of friction, there is a loss of head from this cause equal $c_{\mathrm{f}} \times \frac{l}{r_{\mathrm{m}}} \times \frac{\left(\frac{v_{1}+v}{2}\right)^{2}}{2 g}$; hence the whole change of head in passing from B to A is equal to $c_{\mathrm{f}} \times \frac{l}{r_{\mathrm{m}}} \times \frac{\left(v_{1}+v\right)^{2}}{8 g}-\frac{v_{1}^{2}-v^{2}}{2 g}$. But this change of head is equal to $\mathrm{BE}-\mathrm{AD}=\mathrm{Bo}+\mathrm{oE}-\mathrm{AD}=h_{1}+l s-l$, whence we get
(126.) $h_{1}-h=d_{1}-d=c_{\&} \times \frac{l}{r_{\mathrm{m}}} \times \frac{\left(v_{1}+v\right)^{2}}{8 g}-\frac{v_{1}^{2}-v^{2}}{2 g}-l s$;
or as $v_{1}=\frac{\mathrm{A} v}{\mathrm{~A}_{1}}$, and $r_{\mathrm{m}}=\frac{\mathrm{A}+\mathrm{A}_{1}}{2 b_{\mathrm{m}}}$, we get, by a few reductions and change of signs,

$$
\text { (127.) } h-h_{1}=\left(s-c_{\mathrm{r}} \times b_{\mathrm{m}} \times \frac{\mathrm{A}+\mathrm{A}_{1}}{2 \mathrm{~A}_{1}^{2}} \times \frac{v^{2}}{2 g}\right) l+\frac{\mathrm{A}^{2}-\mathrm{A}_{1}^{2}}{\mathrm{~A}_{1}^{2}} \times \frac{v^{2}}{2 g} \text {; }
$$

and therefore we get

$$
\begin{equation*}
l=\frac{h-h_{1}-\frac{\mathrm{A}^{2}-\mathrm{A}_{1}^{2}}{\mathrm{~A}_{1}^{2}} \times \frac{v^{2}}{2 g}}{s-c_{\mathrm{f}} \times \frac{b_{\mathrm{m}} \times\left(\mathrm{A}+\mathrm{A}_{1}\right)}{2 \mathrm{~A}_{1}^{2}} \times \frac{v^{2}}{2 g},} \tag{128.}
\end{equation*}
$$

from which we can calculate the length l corresponding to any assumed change of level between \mathbf{A} and \mathbf{b}. Then, by a simple proposition we can find the change of level for any smaller length. To find the change of level directly from a given length does not admit of a direct solution, for the value of $h-h_{1}$ in equation (127) involves A_{1}, which depends again on $h-h_{1}$, and further reduction leads to an equation of a higher order; but the length corresponding to a given rise, h_{1}, is found directly by equation (128).

When the width of the channel, w, is constant, and the section equal to $w \times d$ nearly, the above equations admit of a further reduction for $\mathrm{A}_{1}=d_{1} w$ and $\mathrm{A}=d w$; by substituting these values in equation (127) it becomes, after a few reductions,

$$
\text { (129.) } \begin{aligned}
& h-h_{1}=d-d_{1} \\
= & \left(s-c_{\&} \times b_{\mathrm{m}} \times \frac{d \times d_{1}}{2 d_{1}^{2} w} \times \frac{v^{2}}{2 g}\right) l+\frac{d^{2}-d_{1}^{2}}{d_{1}^{2}} \times \frac{v^{2}}{2 g} ;
\end{aligned}
$$

or, as it may be further reduced,
(130.) $\quad h-h_{1}=\frac{s-c_{f} \times \frac{b_{\mathrm{m}}}{d_{1} w} \times \frac{d+d_{1}}{2 d_{1}} \times \frac{v^{2}}{2 g}}{1-\frac{d+d_{1}}{d_{1}^{2}} \times \frac{v^{2}}{2 g}} \times l$.

Now, we may take in this equation for all practical purposes,

$$
\frac{d+d_{1}}{2 d_{1}} \times \frac{b_{\mathrm{m}}}{d_{1} w}=\frac{b}{d w}
$$

approximately, b being the border of the section at $A H$; and also, $\frac{d+d_{1}}{d_{1}^{2}}=\frac{2}{d}$, approximately; therefore, we shall have

$$
\begin{equation*}
h-h_{1}=\frac{s-c_{i} \times \frac{b}{d w} \times \frac{v^{2}}{2 g}}{1-\frac{2}{d} \times \frac{v^{2}}{2 g}} \times l \tag{131.}
\end{equation*}
$$

and

$$
\begin{equation*}
l=\frac{\left(h-h_{1}\right) \times\left(1-\frac{2}{d} \times \frac{v^{2}}{2 g}\right)}{s-c_{\&} \times \frac{b}{d w} \times \frac{v^{2}}{2 g}} \tag{132.}
\end{equation*}
$$

Now, as $\frac{b}{d w}=\frac{1}{r}, 2 g=64 \cdot 4$, and the mean value of the coefficient of friction for small velocities $c_{\mathrm{q}}=\cdot 0078$, we shall get

$$
\text { (133.) } \quad h_{1}=h-\frac{64 \cdot 4 d s-\cdot 0078 \frac{d}{r} v^{2}}{64 \cdot 4 d-2 v^{2}} \times i
$$

and

$$
\begin{equation*}
l=\frac{\left(h-h_{1}\right) \times\left(64 \cdot 4 d-2 v^{2}\right)}{64 \cdot 4 d s-\cdot 0078 \frac{d}{r} v^{2}} \tag{134.}
\end{equation*}
$$

very nearly. Having by means of these equations found ав from во оr ве, and во from ав, we can in the same manner proceed up the channel and calculate $\mathbf{B}_{1} \mathbf{C}, \mathbf{B}_{2} \mathrm{C}_{1}$, \&c., until the points $\mathbf{B}, \mathbf{B}_{1}, \mathbf{B}_{2}$ in the curve of the backwater shall have been determined, and until the last nearly coincides with the original surface of the river. When $h_{1}=0$, we shall have

$$
h=\frac{64 \cdot 4 d s-\cdot 0078 \frac{d}{r} v^{2}}{64 \cdot 4 d-2 v^{2}} \times l
$$

If we examine equation (134) it appears that when $64 \cdot 4 d$ $=2 v^{2}, l$ must be equal to zero; or when $\frac{d}{2}=\frac{v^{2}}{64 \cdot 4}$, equal the height due to the velocity v. When l is infinite, $64 \cdot 4 d$ must exceed $2 v^{2}$, and $64 \cdot 4 d s$ equal to $0078 \frac{d}{r} v^{2}$;

$$
\text { or, } \frac{64 \cdot 4 r s}{\cdot 0078}=v^{2}, \text { and } v=90 \cdot 9 \sqrt{r s}
$$

This is the velocity due to friction in a channel of the depth d, hydraulic mean depth r, and inclination s; and, as in wide rivers $r=d$ nearly, $v=90.9 \sqrt{d s}$, but when the numerator was zero we had from it $v=\sqrt{\overline{32 \cdot 2 d}}$; equating these values of v, we get $s=\cdot 0039=\frac{1}{256}$ nearly : see p. 70 . Now, the larger the fraction s is, the larger will the velocity v become; and the larger v becomes, the more nearly, in all practical cases, will the terms

$$
64 \cdot 4 d-2 v^{2} \text { and } 64 \cdot 4 d s-\cdot 0078 \frac{d}{r} v^{2}
$$

in the numerator and denominator of equation (134), approach zero; when $64 \cdot 4 d-2 v^{2}$ becomes zero first, $l=0$; when $64 \cdot 4 d s-0078 \frac{d}{r} v^{2}$ becomes zero first, l equal infinity; and when they both become zero at the same time, $l=h-h_{1}$, and $s=\frac{1}{256}$, see p. 70 ; if s be larger than this fraction, the numerator in equation (134) will generally become zero before the denominator, or negative, in which cases l will also be zero, or negative; and the backwater will take the form $\mathrm{FC}_{2} b_{2} b_{1} b a_{1} a$, Fig. 38, with a hollow at c_{2}. Bidone first observed a hollow, as $\mathrm{FC}_{2} b_{2}$, when the inclination s was $\frac{1}{30}$. When the inclination of a river channel changes from greater to less, the velocity is obstructed, and a hollow similar to $\mathrm{FC}_{2} b_{2}$ sometimes occurs; when the difference of velocity is considerable, the upper water at b_{2} falls backwards towards C_{2} and F , and forms a bore, a splendid instance of which is the pororoca, on the Amazon, which takes place where the inclination of
the surface changes from 6 inches to $\frac{1}{5}$ th of an inch per mile, and the velocity from about 22 feet to $4 \frac{1}{2}$ feet per second.

WEIR CASE, LONG AND SHORT WEIRS.
When a channel is of very unequal widths, above a weir, we have found the following simple method of calculating the backwater sufficiently accurate, and the results to agree very closely with observation. Huving ascertained the surface fall due to friction in the channel at a uniform mean section, add to this fall the height which the whole quantity of water flowing down would rise on a weir having its crest on the same level as the lower weir, and of the same lerigth as the width of the channel in the contracted pass. The sum will be the head of water at some distance above such pass very nearly. A weir was recently constructed on the river Blackwater, at the bounds of the counties Armagh and Tyrone, half a mile below certain mills, which, it was asserted, were injuriously affected by backwater thrown into the wheel-pits. The crest of the weir, 220 feet long, was 2 feet 6 inches below the pit; the river channel between varied from 50 and 57 feet to 123 feet in width, from 1 foot to 14 feet deep; and the fall of the surface, with 3 inches of water passing over the weir and the sluices down, was nearly 4 inches in the length of half a mile. Having seen the river in this state in summer, the writer had to calculate the backwater produced by different depths passing over the weir in autumn and winter, which in some cases of extraordinary floods were known to rise to 3 feet. The width of the channel about 60 feet above the weir averaged 120 feet. The width, 2050 feet above the weir and 550 feet below the mills, was narrowed by a slip in an adjacent canal bank, to 45 feet at the level of the top of the weir, the average width at this place as the water rose being 55 feet. The channel above and below the slip widened to 80 and 123 feet. Between the mills and the weir there were, therefore, two passes ; one at the slip, averaging 55 feet wide; another above the weir, about 120 feet wide. Assuming as above, that the water rises to the heights due
to weirs 55 and 120 feet long, at these passes, we get, by an easy calculation, or by means of Table X., the heads in columns two and four of the following table, corresponding to the assumed ones on the weir, given in the first column.

TABLE OF CALCULATED AND OBSERVED HEIGHTS ABOVE M'KEAN'S WEIR ON THE RIVER BLAOKWATER.

Heights at M'Kean's weir 220 feet long, inInches. Inches.	Heights 60 feet above the weir channel 120 feet wide.		Heights 2050 feet above the weir channel 55 feet wide; average.	
	Calculated inches.	Observed inches.	Calculated inches.	Observed inches.
$1 \frac{1}{2}$	24	$2 \frac{1}{2}$	$4 \frac{1}{4}$	51
2
3	43	...	$7 \frac{1}{2}$	7
4	6	...	10	9
5	$7 \frac{1}{2}$	-...	121	114
6	9	9	15	$16 \frac{1}{4}$
7	101	101	173	183
8	12	...	20	$20 \frac{1}{2}$
9	131	121	221	204
10	15	...	24.4	20
11	161 ${ }^{1}$...	$27 \frac{3}{4}$	24
12	18	17	$30 \frac{1}{4}$	31
13	1913	181 ${ }^{1}$	327	33
15	$22 \frac{1}{2}$	21	$37 \frac{3}{4}$	40
18	27	25	454	46
21	$31 \frac{1}{2}$	2913	53	54
24	36	34	601	62

As the length of the river was short, and the hydraulic mean depth pretty large, the fall due to friction for 60 feet above the weir was very small, and therefore no allowance was made for it; even the distance to the slip was comparatively short, being less than half a mile, and as the water approached it with considerable velocity, this was conceived, as the observations afterwards showed, to be a sufficient compensation for the loss of head below by friction. The observations were made by a separate party, over whom the writer had no con-
trol, and it is necessary to remark, that with the same head of water on the weir, they often differed more from each other than from the calculation. This, probably, arose from the different directions of the wind and the water rising during one observation, and falling during another.

The true principle for determining the head at g, Fig. 39, apart from that due to friction, is that pointed out at pages 75 and 76 ; but when the passes are very near each other, or the depth d_{2}, Fig. 23, is small, the effect of the discharge through d_{3} is inconsiderable in reducing the head, as the contraction and loss of vis-viva are then large, and the head d_{1} becomes that due to a weir of the width of the contracted channel at A, nearly. The reduction in the extent of the backwater, by lowering the head on a longer weir, is found by taking the difference of the amplitudes due to the heads at g, Fig. 39, in both cases, as determined from equations (56,) (128), et seq. This will seldom exceed a mile up the river, as the surface inclination is found to be considerably greater than that due to mere friction and velocity, and hence the general failure of drainage works designed on the assumption that the lowering of the head below, by means of long weirs, extends its effects all the way up a channel. We must nearly treble the length of a weir before the head passing over can be reduced by one-half, Table \mathbf{X}., even supposing the circumstances of approach to be the same; surely several engineering appliances for shorter weirs, during periods of flood, would be found more effective and far less expensive than this alternative, with its extra sinking and weir basin.

The advocates for the necessity of weirs longer than the width of the channel, for drainage purposes, must show that the reduction of the head and extent of backwater above g, Fig 39, is not small, and that the effects extend the whole way up the channel, or at least as far as the district to be benefited. Practice has heretofore shown, that long weirs have failed (unless after the introduction of sluices or other appliances) in producing the expected arterial drainage results, notwithstanding the increased leakage from increased length, which must accompany their construction.

The deepening in the weir basin $a b$ bea is mostly of use in reducing the surface inclination between $a b$ and а в by increasing the hydraulic mean depth; but, thereby, the velocity of approach is lessened, and therefore the head at E increased. When the length of a weir basin a e exceeds that point where these two opposite effects balance each other, there will be a gain by the difference of the surface inclinations in favour of the long weir; but unless a e exceeds half a mile, this difference cannot amount to more than 3 or 4 inches, unless the river be very small indeed: and if the channel be sunk for the long weirs в а or bal , it should also be sunk to at least the same depth and extent for the short weirs в e, $b a$, otherwise there is no fair comparison of their separate merits. The effect of the widening between $a b$ and AB , the depth being the same, is also to reduce the surface inclination from a to E ; but, as before, unless $a \mathrm{E}$ be of considerable length, this gain will also be small. Now A B, at best, is but a weir the direct width of the new channel at а в, and if the length $a \mathrm{E}$ be considerable, we have an entirely new river channel with a direct weir at the lower end, and the saving of head effected arises entirely from the larger channel, with a direct transverse weir at the lower end.

By referring to Table VIII., it will be found that for a hydraulic mean depth of 5 feet a fall of $7 \frac{1}{2}$ inches per mile will give a velocity of 2 feet per second : if we double the depth, a fall of 4 inches will give the same velocity; and for a depth of only 2 feet 6 inches, a fall of $12 \frac{1}{2}$ inches is necessary. This is a velocity much larger than we have ever ob-
served in a weir basin, yet we easily perceive that the difference in the inclinations for a short distance, $\mathbf{\varepsilon} \boldsymbol{a}$ of a few hundred feet, must be small. If one section be double the other, the hydraulic mean depth remaining constant, the velocity must be one-half, and the fall per mile one-fourth, nearly. This would leave $7 \frac{1}{4}-2=5 \frac{1}{4}$ inches per mile, or 1 inch per 1000 feet nearly, as the gain with a hydraulic mean depth of 5 feet for a double water channel. For greater depths the gain would be less, and the contrary for lesser depths.

Is the saving of head and amplitude of backwater we have calculated worth the increased cost of long weirs and the consequent necessity and expense of sinking and widening the channels for such long distances? We think not; indeed, the sinking in the basin immediately at the weir is absolutely injurious, by destroying the velocity of approach, and increasing the contraction. The gradual approach of the bottom towards the crest, shown by the upper dotted line $b \mathrm{E}$ in the section, Fig. 39, and a sudden overfall, will be found more effective in reducing the head, unless so far as leakage takes place, than any depth of sinking for only 60 or 80 feet above long weirs.

In most instances, the extra head will be only perceived by an increased surface inclination, which may extend for a mile or so up the channel, according to the sinking and widening.

It is a general rule that, for shorter weirs, the coefficients of discharge decrease ; this arises from the greater amount of lateral contraction, and is more marked in notches or Poncelet weirs, than for weirs extending from side to side of the channel ; but for weirs exceeding 10 feet in length the decrease in the coefficients from this cause is immaterial, unless the head passing over bear a large ratio to the length; and we even see from the coefficients, page 45, derived from Mr. Blackwell's experiments, that with 10 inches head passing over a 2 -inch plank, the coefficient for a length of 3 feet is 614 ; for a length of 6 feet 539 ; and for a length of 10 feet $\cdot 534$; showing a decrease as the weir lengthens, but which may, in the particular cases, be accounted for. We have before referred to other circumstances which modify the coefficients, yet we may assume generally, without any error of practical
value, that the coefficients are the same for different weirs extending from side to side of a river. If, then, we put w and w_{1} for the lengths of two such weirs, we shall have the relation of the heads d and d_{1} for the same quantity of water passing over, as in the following proportion :-

$$
d: d_{1}:: w_{1}^{3}: w^{3} ;
$$

and therefore

$$
\begin{equation*}
d_{1}=\left(\frac{w}{w_{1}}\right)^{3} \times d \tag{135.}
\end{equation*}
$$

By means of this equation we have calculated Table X., the ratio $\frac{w}{w_{1}}$ being given in columns $1,3,5$ and 7 , and the value of $\left(\frac{w}{w_{1}}\right)^{\frac{3}{3}}$, or the coefficient by which d is to be multiplied, to find d_{1} in columns $2,4,6$, and 8 . It appears also, that if we take the heads passing over any weir in a river in an arithmetical progression, the heads then passing over any other weir in the same river must also be in arithmetical progression, unless the quantity fowing down varies from erogation or supply, such as drawing off by mill races, \&c.

SECTION XI.

BENDS AND CURVES. - BRANCH PIPES. - DIFFERENT LOSSES OF HEAD.—GENERAL EQUATION FOR FINDING THE VELO-CITY.-HYDROSTATIC AND HYDRAULIC PRESSURE.-PIËZO-METER.-CATCHMENT BASINS.--RAIN FALL PER ANNUM.WATER POWER.
The resistance or loss of head due to bends and curves has now to be considered. If we fix a bent pipe, fbcdeg, Fig. 40, between two cisterns, so as to be capable of revolving round in collars at F and G, we shall find the time the water takes to sink a given distance from f to F in the upper cistern the same, whether the tube

occupy the position shown in the figure or the horizontal position shown by the dotted line $\mathrm{F} b \boldsymbol{c} d e \mathrm{G}$. This shows that the resistances due to friction and to bends are independent of the pressure. If the tube were straight, the discharge would depend on the length, diameter, and difference of level between f and G , and may be determined from the mean velocity of discharge, found from Table VIII. or equation (79.) Here, however, we have to take into consideration the loss sustained at the bends and curves, and our illustration shows that it is unaffected by the pressure.

The experiments of Bossut, Du Buât, and others, show that the loss of head from bends and curves-like that from friction-increases as the square of the velocity; but when the curves have large radii, and the bends are very obtuse, the loss is very small. With a head of nearly 3 feet, Venturi's twenty-third experiment, when reduced, gives - for a short straight tube 15 inches long, and $1 \frac{1}{4}$ inch in diameter, having the junction of the form of the contracted vein, very nearly -873 for the coefficient of discharge. When of the same length and diamcter, but bent as in Diagram 1, Fig. 40, the coefficient is reduced to 785 ; and when bent at a right angle as at H , Fig. 40 , the coefficient is further reduced to 560 . In these respective cases we have therefore,

$$
\begin{aligned}
& \text { 1. } v=.873 \sqrt{2 g h}, \text { and } h=1.312 \times \frac{v^{2}}{2 g} ; \\
& \text { 2. } v=.785 \sqrt{2 g h}, \text { and } h=1.623 \times \frac{v^{2}}{2 g} ; \\
& \text { 3. } v=.560 \sqrt{2 g h}, \text { and } h=3.188 \times \frac{v^{2}}{2 g} ;
\end{aligned}
$$

showing that the loss of head in the tube m, Fig. 40, from the bend, is $1.876 \times \frac{v^{2}}{2 g}$, or nearly double the theoretical head due to the velocity in the tube. The loss of head by the circular bend is only $311 \frac{v^{2}}{2 g}$, or not quite one-sixth of the other.

Du Buât deduced, from about twenty-five experiments, that the head due to the resistance in any bent tube abcdefgh, Diagram 1, Fig. 41, depends on the number

of deflections between the entrance at \mathbf{A} and the departure at \mathbf{H}; that it increases at each reflection as the square of the sine of the deflected angle, авв for instance, and as the square of the velocity; and that if $\varphi, \varphi_{1}, \varphi_{2}, \varphi_{3}, \& c$., be the number of degrees in the angles of deflection at $\mathbf{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, \&c., then for measures in French inches the height h_{b}, due to the resistances from curves, is

$$
\begin{equation*}
h_{\mathrm{b}}=\frac{v^{2}\left(\sin .^{2} \varphi+\sin ^{2}{ }^{2} \varphi_{1}+\sin ^{2}{ }^{2} \varphi_{2}+\sin ^{2} \varphi_{3}+\& \mathrm{c} .\right)}{3000} \tag{136.}
\end{equation*}
$$

which for measures in English inches becomes
(137.) $\quad h_{b}=\frac{v^{2}\left(\sin .{ }^{2} \varphi+\sin .{ }^{2} \varphi_{1}+\sin .^{2} \varphi_{2}+\sin ^{2} \varphi_{3}+\& c \text {.) }\right.}{3197}$
and for measures in English feet,

$$
\begin{equation*}
h_{\mathrm{b}}=\frac{v^{2}\left(\sin . .^{2} \varphi+\sin ^{2} \varphi_{1}+\sin .^{2} \varphi_{2}+\sin ^{2} \varphi_{3}+\& \mathrm{c} .\right)}{266 \cdot 4} \tag{138.}
\end{equation*}
$$

or, as it-may be more generally expressed for all measures,
(139.) $h_{\mathrm{b}}=\left(\sin .{ }^{2} \varphi+\sin .{ }^{2} \varphi_{1}+\sin .{ }^{2} \varphi_{2}+\sin .{ }^{2} \varphi_{3}+\& \mathrm{c}.\right) \frac{v^{2}}{8 \cdot 27 g}$,
in which $\frac{v^{2}}{8 \cdot 27 g}=\frac{1}{266 \cdot 4}=\cdot 00375$ in feet.
The angle of deflection, in the experiments from which equation (136) was derived, did not exceed 36°. We have already shown the loss of head from the circular bend in
diagram 1, Fig. 40, where the angle of deflection is nearly 45°, to be $311 \frac{v^{2}}{2 g}=.00483 v^{2}$, but as the $\sin .45^{\circ}=\cdot 707$ $\sin .^{2} 45^{\circ}=\cdot 5$, we get $\cdot 00483 v^{2}=\cdot 00966 v^{2} \times \sin .^{2} 45^{\circ}$, or more than two and a half times as much as Du Buât's formula would give; and if we compare it with Rennie's experiments*, with a pipe 15 feet long, $\frac{1}{2}$ inch diameter, bent into fifteen curves, each $3 \frac{1}{4}$ inches radius, we should find the formula gives a loss of head not much more than one-half of that which may be derived from the observed change, $\cdot 419$ to $\cdot 370$ cubic feet per minute in the discharge. See p. 156.

Dr. Young \dagger first perceived the necessity of taking into consideration the length of the curve and the radius of curvature. In the twenty-five experiments made by Du Buât, he rejected ten in framing his formula, and the remaining fifteen agreed with it very closely. Dr. Young finds

$$
\begin{equation*}
h_{\mathrm{b}}=\frac{.0000045 \varphi \rho^{4} \times v^{2}}{\rho} \tag{140.}
\end{equation*}
$$

where φ is the number of degrees in the curve $\mathrm{N} P$, diagram 2, Fig. 41, equal the angle nop; $\rho=0 \mathrm{~N}$ the radius of curvature of the axis; h_{b} the head due to the resistance of the curve, and v the velocity, all expressed in French inches. This formula reduced for measures in English inches is

$$
\begin{equation*}
h_{\mathrm{b}}=\frac{.0000044 \varphi \rho^{\frac{1}{2}} \times v^{2}}{\rho} ; \tag{141.}
\end{equation*}
$$

and for measures in English feet,

$$
\begin{equation*}
h_{\mathrm{b}}=\frac{.000006 \varphi \rho^{\frac{1}{2}} \times v^{2}}{\rho} \tag{142.}
\end{equation*}
$$

Equation (140) agrees to $\frac{1}{25}$ th of the whole with twenty of Du Buât's experiments, his own formula agreeing so closely with only fifteen of them. The resistance must evidently increase with the number of bends or curves; but when they come close upon, and are grafted into, each other, as in

[^37]diagram 1, Fig. 41, and in the tube fbcieg, Fig. 40, the motion in one bend or curve immediately affects those in the adjacent bends or curves, and this law does not hold.

Neither Du Buât nor Young took any notice of the relation that must exist between the resistance and the ratio of the radius of curvature to the radius of the pipe. Weisbach does, and combining Du Buât's experiments with some of his own, finds for circular tubes,

$$
\begin{equation*}
h_{\mathrm{b}}=\frac{\varphi}{180} \times\left\{\cdot 131+1.847\left(\frac{d}{2 \rho}\right)^{\frac{7}{2}}\right\} \times \frac{v^{2}}{2 g} \tag{143.}
\end{equation*}
$$

and for quadrangular tubes,

$$
\begin{equation*}
h_{\mathrm{b}}=\frac{\phi}{180} \times\left\{\cdot 124+3 \cdot 104\left(\frac{d}{2 \rho}\right)^{\frac{\tau}{2}}\right\} \times \frac{v^{2}}{2 g} ; \tag{144.}
\end{equation*}
$$

in which φ is equal the angle NOP =NIR, diagram 2, Fig. 41 ; d the mean diameter of the tube, and ρ the radius no of the axis. When $\frac{d}{2 \rho}$ exceeds $\cdot 2$, the value of $\cdot 131+1 \cdot 847\left(\frac{d}{2 \rho}\right)^{\frac{7}{2}}$ exceeds $\cdot 124+3 \cdot 104\left(\frac{d}{2 \rho}\right)^{\frac{7}{2}}$, and the resistance due to the quadrangular tube exceeds that due to the circular one. We have arranged and calculated the following table of the numerical values of these two expressions for the more easy application of equations (143) and (144). This table will be found of considerable use in calculating the values of equations (143) and (144), as the second and fifth columns contain the values of $\cdot 131+1 \cdot 847\left(\frac{d}{2 \rho}\right)^{\frac{\gamma}{2}}$, and the third and sixth columns the values of $\cdot 124+3 \cdot 104\left(\frac{d}{2 \rho}\right)^{\frac{1}{2}}$, corresponding to different values of $\frac{d}{2 \rho}$; and it is carried to twice the extent of those given by Weisbach.

For bent tubes, diagrams 3, 4, and 5, Fig. 41, the loss of head is considerably greater than for rounded tubes. If, as before, we put the angle $\mathrm{NIR}=\varphi, \mathrm{r} \mathrm{r}$ being at right angles to ro the line bisecting the angle or bend, we shall find, by
table of the values or the expressions

$$
\cdot 131+1 \cdot 847\left(\frac{d}{2_{\varsigma}}\right)^{\frac{7}{2}} \text { and } \cdot 124+3 \cdot 104\left(\frac{d}{2_{\varsigma}}\right)^{\frac{7}{3}}
$$

$\frac{d}{2 f}$	Circular tubes.	Quadrangular tubes.	$\frac{d}{2 b}$	Circular tubes.	Quadrangular tubes.
$\cdot 1$	-131	-124	. 6	-440	-643
-15	-133	-128	$\cdot 65$	-540	. 811
$\cdot 2$	-138	-135	$\cdot 7$. 661	1.015
$\cdot 25$	-145	-148	$\cdot 75$	-806	1.258
$\cdot 3$	-158	-170	-8	. 977	1.545
$\cdot 35$	-178	-203	- 85	1.177	1.881
$\cdot 4$	-206	-250	$\cdot 9$	1.408	2.271
$\cdot 45$	-244	-314	.95	1.674	2.718
$\cdot 5 *$. 294	-398	1.00	1.978	3.228

decomposing the motion, that the head $\frac{v^{2}}{2 g}$ becomes $\frac{v^{2}}{2 g} \times \cos ^{2} 2 \varphi$ from the change of direction; and that a loss of head

$$
\begin{equation*}
h_{b}=\left(1-\cos ^{2} 2 \varphi\right) \frac{v^{2}}{2 g}=\sin ^{2} 2 \varphi \frac{v^{2}}{2 g} \tag{145.}
\end{equation*}
$$

must take place. When the angle is a right angle, as in diagram 4, cos. $2 \varphi=0$, and $h_{\mathrm{b}}=\frac{v^{2}}{2 g}$; that is to say, the loss of head is exactly equal to the theoretical head. When the angle or bend is acute, as in diagram 5 , the loss of head is $\left(1+\cos ^{2} 2 \varphi\right) \frac{v^{2}}{2 g}$, for then cos. 2φ becomes negative. Weisbach does not find the loss of head in a right angular bend greater than $984 \frac{v^{2}}{2 g}$; while Venturi's twenty-third experiment, made with extreme care, p. 151, shows the loss to be $1.876 \frac{v^{2}}{2 g}$. When the pipes are long, however, the value of

* The values corresponding to $\frac{d}{2_{\rho}}=\cdot 55$ are $\cdot 359$ and $\cdot 507$ for circular and quadrangular tubes.
$\frac{v^{2}}{2 g}$ is in general small, and this correction does not affect the final results in any material degree.

Rennie's experiments*, with a pipe 15 feet long, $\frac{1}{2}$ inch in diameter, and with 4 feet head, give the discharge per second

1. Straight 00699
2. Fifteen semicircular bends . . . 00617
3. One bend, a right angle $8 \frac{1}{2}$ inches
\quad from the end of the pipe . . . 00556
4. Twenty-four right angles . . . 00253

From these data we find consecutively, the theoretical discharge being 021885 cubic feet per second, and the theoretical head $\mathrm{H}=\frac{v^{2}}{2 g}$, that

1. $v=319 \sqrt{2 g \mathrm{H}}$, and therefore $\mathbf{H}=9.82 \times \frac{v^{2}}{2 g}$;
2. $v=\cdot 282 \sqrt{ } \overline{2 g \mathrm{H}}, \quad, \quad, \quad \mathrm{H}=12.58 \times \frac{v^{2}}{2 g}$;
3. $v=254 \sqrt{ } \frac{2 g \mathrm{H}}{2}, \quad, \quad, \quad \mathbf{H}=15.50 \times \frac{v^{2}}{2 g}$;
4. $v=\cdot 116 \sqrt{2 g \mathrm{H}}, \quad, \quad \because \quad \boldsymbol{н}=74.34 \times \frac{v^{2}}{2 g} ;$

The loss of head, therefore, by the introduction of 15 semicircular bends, is $2.76 \frac{v^{2}}{2 g}$; by the introduction of one right angle, $5 \cdot 68 \frac{v^{2}}{2 g}$; and by the introduction of 24 right angles, $64 \cdot 52 \frac{v^{2}}{2 g}$, or about 12 times the loss due to one right angle. This shows that the resistance does not increase as the number of bends, as we before remarked, p. 138, when they are close to each other. The loss of head from one right angle, $5 \cdot 68 \frac{v^{2}}{2 g}$, is more than double the loss from 15 semicircular bends, or

[^38]$2 \cdot 76 \frac{v^{2}}{2 g}$. The loss of head for a right angular bend, determined from Venturi's experiment, is $1.876 \frac{v^{2}}{2 g}$; formula (145) makes it $\frac{v^{2}}{2 g}$; and Weisbach's empirical formula, $(\cdot 9457 \sin . \varphi$ $\left.+2.047 \sin .^{4} \varphi\right) \frac{v^{2}}{2 g}$, makes it only $\cdot 984 \frac{v^{2}}{2 g}$. The formulæ now in use give, therefore, results considerably under the truth. It appears to us, that perhaps the quantity of water moving directly towards the bend must also be taken into consideration, and certainly the loss of mechanical effect from contraction, and eddies at the bend, as well as the loss arising from change of direction.

BRANCH PIPES.

When a pipe is joined to another, the quantity of water flowing below the junction B, diagram 1, Fig. 42, must be

equal to the sum of the quantities flowing in the upper branches in the case of supply; and when the branch pipe draws off a portion of the water, as in diagram 2, the quantity flowing above the junction must be equal to the quantities flowing in the lower branches. Both cases differ only in the motion being from or to the branches, which, in pipes, are generally grafted at right angles to the main, for practical convenience, as shown at $b b$, and then carried on in any given direction. The loss of head arising from change of direction, equation (145), is $\sin ^{2} 2 \varphi \frac{v^{2}}{2 g}$, in which 2φ $=$ angle аво; but as in general 2φ is a right angle for branches to mains, this source of loss becomes then simply
$\frac{v^{2}}{2 g}$. In addition to this, a loss of head is sustained at the junction, from a certain amount of force required to unite or separate the water in the new channel. In the case of drawing off, diagram 2, this loss was estimated by D'Aubuisson, from experiments by Génieys, to be about twice the theoretical head due to the velocity in the branch, or $\frac{2 v^{2}}{2 g}$, so that the whole loss of head arising from the junction is $\frac{v^{2}}{2 g}+\frac{2 v^{2}}{2 g}=\frac{3 v^{2}}{2 g}$, or three times the theoretical head due to the velocity. In the case of supply, the loss is probably nearly the same. The actual loss is, however, very uncertain; but, as was before observed when discussing the loss of head occasioned by bends, two or three times $\frac{v^{2}}{2 g}$ is in general so comparatively small, that its omission does not materially effect the final results. A loss also arises from contraction, \&c. See pp. 97, 98.

The calculations for mains and branches become often very troublesome, but they may always be simplified by rejecting at first any minor corrections for contraction at orifice of entry, bends, junctions, or curves. If, in diagram 2, Fig. 42, we put h for the head at b , or height of the surface of the reservoir over it; h_{a} for the fall from B to $\mathrm{A} ; h_{\mathrm{d}}$ for the fall from \boldsymbol{B} to $\mathrm{D} ; l$ equal the length of pipe from B to the reservoir; l_{a} equal the length $\mathbf{в а}$; l_{d} equal the length $\mathbf{~} \mathbf{d}$; r equal the mean radius of the pipe вс; r_{a} the mean radius of the pipe ва; $r_{\text {d }}$ the mean radius of $\mathbf{B D} \boldsymbol{d} \boldsymbol{v}$ the mean velocity in вс; v_{a} the velocity in ва; and v_{d} the velocity in в \mathbf{D}, we then find, by means of equation (73), the fall from the reservoir to a equal to
(146.) $h+h_{\mathrm{a}}=\left(c_{\mathrm{r}}+c_{\mathrm{f}} \times \frac{l}{r}\right) \frac{v^{2}}{2 g}+\left(1+c_{\mathrm{f}} \times \frac{l_{\mathrm{a}}}{r_{\mathrm{a}}}\right) \frac{v_{\mathrm{a}}^{2}}{2 g} ;$
the fall from the reservoir to D equal to
(147.) $h+h_{\mathrm{d}}=\left(c_{\mathrm{r}}+c_{\mathrm{f}} \times \frac{l}{r}\right) \frac{v^{2}}{2 g}+\left(1+c_{\mathrm{f}} \times \frac{l_{\mathrm{d}}}{r_{\mathrm{d}}}\right) \frac{v_{\mathrm{d}}^{2}}{2 g} ;$
and, as the quantity of water passing from c to B is equal to
the sum of the quantities passing from B to A and from в to D ,

$$
\begin{equation*}
v r^{2}=v_{\mathrm{a}} r_{\mathrm{a}}^{2}+v_{\mathrm{d}} r_{\mathrm{d}}^{\mathrm{s}} . \tag{148.}
\end{equation*}
$$

By means of these three equations we can find any three of the quantities $h, h_{\mathrm{a}}, h_{\mathrm{d}}, r, r_{\mathrm{a}}, r_{\mathrm{d}}, b, b_{\mathrm{a}}, b_{\mathrm{d}}$, the others being given. Equations (146) and (147) may be simplified by neglecting c_{r}, the coefficient due to the orifice of entry from the reservoir, and 1 , the coefficient of velocity. They will then become

$$
\begin{equation*}
h+h_{\mathrm{a}}=c_{\mathrm{f}} \times\left(\frac{l}{r} \times \frac{v^{2}}{2 g}+\frac{l_{\mathrm{a}}}{r_{\mathrm{a}}} \times \frac{v_{\mathrm{a}}^{2}}{2 g}\right) . \tag{148.}
\end{equation*}
$$

and

$$
\begin{equation*}
h+h_{\mathrm{d}}=c_{\mathrm{f}} \times\left(\frac{l}{r} \times \frac{v^{2}}{2 g}+\frac{l_{\mathrm{d}}}{r_{\mathrm{d}}} \times \frac{v_{\mathrm{d}}^{2}}{2 g}\right) . \tag{149.}
\end{equation*}
$$

The mean value of c_{f} for a velocity of 4 feet per second is $\cdot 005741$, and of $\frac{c_{f}}{2 g}, \cdot 0000891$. The values for any other velocities may be had from the table of coefficients of friction given at p. 120. When l, h, and r are given, the velocity v can be had from the equation, $v=\left(\frac{2 g}{c_{f}} \times \frac{r h}{l}\right)^{\frac{1}{2}}$, or more immediately from Table VIII.

GENERAL EQUATION FOR MEAN VELOCITY.

We are now enabled to give a general equation for finding the whole head \mathbf{H}, and the mean velocity \boldsymbol{v}, in any channel ; and to extend equations (73) and (74)* so as to comprehend the corrections due to bends, curves, \&c. Designating, as before, the height due to the resistance at the orifice of entry by h_{r}, and the corresponding coefficient by c_{r};
h_{f} the head due to friction, and c_{f} the coefficient of friction; h_{b} the head due to bends, and c_{b} the coefficient of bends; h_{c} the head due to curves, and c_{c} the coefficient of curves; h_{e} the head due to erogation, and c_{e} the coefficient of erogation; and
h_{x} the head due to other resistances, and c_{x} their mean coefficient; then we get

[^39]\[

$$
\begin{equation*}
\mathrm{H}=h_{\mathrm{r}}+h_{\mathrm{f}}+h_{\mathrm{b}}+h_{\mathrm{c}}+h_{\mathrm{e}}+h_{\mathrm{x}}+\frac{v^{2}}{2 g} \tag{150.}
\end{equation*}
$$

\]

that is to say, by substituting for h_{r}, h_{f}, \&c., their values as previously found,

$$
\begin{aligned}
\mathrm{I}=\left(1+c_{\mathrm{r}}\right) \frac{v^{2}}{2 g}+c_{\mathrm{f}} \frac{l}{r} & \times \frac{v^{2}}{2 g}+c_{\mathrm{b}} \times \frac{v^{2}}{2 g} \\
& +c_{\mathrm{c}} \times \frac{v^{2}}{2 g}+c_{\mathrm{e}} \times \frac{v^{2}}{2 g}+c_{\mathrm{x}} \times \frac{v^{2}}{2 g}
\end{aligned}
$$

or, more briefly,
(151.) $\mathrm{H}=\left(1+c_{\mathrm{r}}+c_{\mathrm{f}} \times \frac{l}{r}+c_{\mathrm{b}}+c_{\mathrm{c}}+c_{\mathrm{e}}+c_{\mathrm{x}}\right) \frac{v^{2}}{2 g}$;
from which we find

$$
\begin{equation*}
v=\left\{\frac{2 g \mathrm{H}}{1+c_{\mathrm{r}}+c_{\mathrm{f}} \times \frac{l}{r}+c_{\mathrm{b}}+c_{\mathrm{c}}+c_{\mathrm{e}}+c_{\mathrm{x}}}\right\}^{\frac{1}{2}} . \tag{152.}
\end{equation*}
$$

It is to be observed here, that for very long uniform channels, the value of the mean velocity will be found in general equal to $\left\{\frac{2 g r \mathrm{H}}{c_{\mathrm{f}} l}\right\}^{\frac{3}{3}}$, as the other resistances and the head due to the velocity are all trifling compared with the friction, and may be rejected without error; but, as we before observed, it is advisable in practice, when determining the diameter of pipes, p. 123, to increase the value of c_{f}, Table, p. 120, or to increase the diameter found from the formula by one-sixth, which will increase the discharging power by onehalf. (See Table XIII.)

hydrostatic and hydraulic pressure.-piëzometer.

When water is at rest in any vessel or channel, the pressure on a unit of surface is proportionate to the head at its centre*, measured to the surface, and is expressed in lbs. for

[^40]measures in feet, by $62 \frac{1}{2} \mathrm{Hs}$, in which H is the head, and s the surface exposed to the pressure, both in feet measures. This is the hydrostatic pressure. In the pipe abcdfe, Fig. 43, the pressures at the points $\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{f}$, and \mathbf{e}, on the sides of the tube will be respectively as the heads в $b, \mathbf{c} c, \mathrm{~d} d$, $\mathrm{F} f$, and $\mathrm{E} e$, if all motion in the tube be prevented by stopping

the discharging orifice at \mathbf{e}. In this case the pressure is a maximum and hydrostatic; but if the discharging orifice at e be partially or entirely open, a portion of each pressure at $\mathbf{B}, \mathbf{C}, \mathrm{D}, \mathrm{F}, \& \mathbf{c}$., is absorbed in overcoming the different resistances of friction, bends, \&c., between it and the orifice of entry at A, and also by the velocity in the tube, and the difference is the hydraulic pressure.

Bernouilli first showed that the head due to the pressure at any point, in any tube, is equal to the effective head at that point, minus the head due to the velocity. When the resistances in a tube are nothing, the effective head becomes the hydrostatic head, and by representing the former by $h_{e f}$ we shall have, adopting the notation in equation (150),

$$
h_{\mathrm{ef}}=\mathrm{H}-\left(h_{\mathrm{r}}+h_{\mathrm{f}}+h_{\mathrm{c}}+\& \mathrm{c} .\right),
$$

and consequently the head due to the hydraulic pressure equal

$$
\begin{equation*}
h_{\mathrm{p}}=h_{\mathrm{ef}}-\frac{v^{2}}{2 g}=\mathrm{H}-\left(h_{\mathrm{r}}+h_{\mathrm{f}}+h_{\mathrm{b}}+\& \mathrm{c} .\right)-\frac{v^{2}}{2 g} . \tag{153.}
\end{equation*}
$$

If small tubes be inserted, as shown in Fig. 43, at the points $\mathrm{B}, \mathrm{C}, \mathrm{D}$, and F , the heights $\mathrm{b} b^{1}, \mathrm{c} \boldsymbol{c}^{1}, \mathrm{D} d^{1}, \mathrm{~F} f^{1}$, which the water rises to in these, will be represented by the corresponding values of h_{p} in the preceding equation; and the difference between the heights $\mathrm{c} \boldsymbol{c}^{1}, \mathrm{~F} f^{1}$, at c and F , for instance, added
to the fall from c to F , will evidently express the head due to all the resistances between \mathbf{c} and f . When $\mathbf{н}=\mathrm{e} \boldsymbol{e}$, and the orifice at E is open, we have, from equation (150)

$$
\mathrm{H}=h_{\mathrm{r}}+h_{\mathrm{f}}+\mu_{\mathrm{b}}+h_{\mathrm{c}}+\& \mathrm{c} .+\frac{v^{2}}{2 g}, \text { and therefore } h_{\mathrm{p}}=0
$$

that is, the pressure at the discharging orifice is nothing.
The vertical tubes at $\mathbf{b}, \mathrm{c}, \mathrm{D}, \mathrm{F}$, when properly graduated, are termed piëzometers or pressure gauges; they not only show the actual pressure at the points where placed, but also the difference between any two, $\mathrm{D}^{1}-\mathrm{B} \mathrm{b}^{1}$, for instance, added to the difference of head between в and D , or $\mathrm{D} d^{2}$ will give $\mathrm{D} d^{1}-\mathrm{B} b^{1}+\mathrm{D} d^{2}$ for the head or pressure due to the resistances between \boldsymbol{B} and d . This instrument affords, perhaps, the very best means of determining the loss of head due to bends, curves; diaphragms, \&c. The loss of head due to friction, bend, diaphragms, \&c., between k and L , Fig. 43, is equal to $\mathrm{K} k-\mathrm{L} l+\mathrm{K} v$. If m be the same distance from L as K is, $\mathrm{L} l-\mathrm{m} m$ will be the height due to the friction (L and m being on the same level); therefore $\mathrm{\kappa} k-\mathrm{L} l+\mathrm{\kappa} v$ $-\mathrm{L} l+\mathrm{m} m=\mathrm{\kappa} k+\mathrm{\kappa} v+\mathrm{m} m-2 \mathrm{~L} l$ is the head due to the diaphragm and bend both together. If the diaphragm be absent, we get the head due to the bend, and if the bend be absent, the head due to the diaphragm in like manner.

When the discharging orifice, as at E , is quite open, we have seen that the pressure there is zero ; but when, as at G, it is only partly open, this is no longer the case, and the hydraulic pressure increases from zero to hydrostatic pressure, as the orifice decreases from the full section to one indefinitely small compared with it. A piëzometer, placed a short distance inside G, will give this pressure; and the difference between it and the whole head will be the head due to the resistances and velocity in the pipe; from which, and also the length and diameter, the discharge may be calculated as before shown. Again, by means of the head $\mathrm{m}^{1} \mathrm{~m}^{1}$, and that due to the velocity of approach, we can also find the discharge through the diaphragm G; see equation (45) and the remarks following it. This result must be equal to the other, and we
may in this way test the formulæ anew or correct them by the practical results.

The velocity of discharge of the tube acde, may be calculated by means of any piëzometric height cc^{1}; for, by putting the whole fall from \mathbf{c}^{1} to \mathbf{e} equal to $\mathrm{H}_{\mathrm{c}^{1}}$, we get, disregarding bends, $v=\left\{\frac{2 g r \dot{H}_{\mathbf{c}^{1}}}{c_{\mathrm{f}} l_{\mathrm{c}^{1}}}\right\}^{\frac{1}{2}}$, in which $l_{\mathrm{c}^{\prime}}=\mathrm{c}$ e. This is evident from equation (152), as we have supposed that no part of the head is absorbed in generating velocity, or in overcoming the resistance of bends. If the bend at d were taken into consideration, then $v=\left\{\frac{2 g \mathrm{H}_{\mathrm{c}^{1}}}{c_{\mathrm{f}} \times \frac{l_{\mathrm{c}^{1}}}{r}+c_{\mathrm{b}}}\right\}^{\frac{1}{2}}$.

CATCHMENT BASINS.-FALL OF RAIN.

A catchment basin is a district which drains itself into a river and its tributaries. It is bounded, generally, by the summits of the neighbouring hills, ridges, or high lands; and may vary in extent from a few square miles to many thousands; that of the Shannon is over 4500 square miles. The average quantity of water which discharges itself into a river will, ceteris paribus, depend on the extent of its catchment basin, and the whole quantity of rain discharged on the area of the catchment basin, including lakes and rivers. The quantity of rain which falls annually varies with the district and the year; and it also varies at different parts of the same district. The average quantity in Ireland may be taken at about 34 inches deep, that which falls in Dublin being 27 inches*, and that in Cork 41 inches nearly. The quantity

[^41]varies a good deal with the altitude of the district. In parts of Westmoreland it rises sometimes to 140 inches; in London, an average of 20 years' observations gives a fall of nearly 25 inches. In the district surrounding the Bann reservoirs in the County Down, the average fall has been found so high as 72 inches. Indeed, it is requisite to obtain the fall from observation for any particular district, when it is necessary to apply the results to scientific purposes.

The proportion between the quantity which falls, and that which passes from a catchment basin into its river, also varies very considerably. When the sides of a catchment basin are steep, and the water passes off rapidly into the adjacent river or tributaries, there is less loss by evaporation and percolation than when they are nearly flat. The soil, subsoil, and stratification have also considerable effect on the proportion. Reservoirs being generally constructed adjacent to steep side falls, give a much larger proportion of the quantity fallen than can be obtained from rivers in flatter districts; besides, the quantity of rain which falls on the high summits, near reservoirs, almost always exceeds the average fall, considerably. As 640 acres is equal to one square mile, and one acre is equal to 43,560 square feet, a fall of one inch of rain is equal to 3630 cubic feet per acre, and to 3630×640 $=2323200$ cubic feet per square mile: the proportion of this fall, for each acre, or square mile of the catchment basin, which enters the river, must depend entirely on the district and local circumstances, the full or maximum quantity being retained on lakes.

It is too often taken for granted that the discharge from a catchment basin takes place, into the conveying channels, in nearly the same time that a given quantity of rain falls. Perhaps the largest registry on record in Great Britain is a fall of 2 inches in an hour. The maximum fall in any hour of any year seldom exceeds half of this amount, and then perhaps only once in several years. The quantity which falls will not be discharged into the channels in the same time. The quantity discharged, and time, will depend a good deal

QUANTITY PER ACRE FOR A GIVEN DEPTH OR FALL.

| Fall in
 inches
 per hour. | Cubic feet
 per acre. | Fall in
 inches
 per hour. | Cubic feet
 per acre. | Fall in
 inches
 per hour. | Cubit feet
 per acre. | Fall in
 inches
 per hour. | Cubic feet
 per acre. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 7260 | $\frac{1}{2}$ | 1815 | $\frac{1}{8}$ | 454 | $\frac{1}{20}$ | 181 |
| $1 \frac{3}{4}$ | 6352 | $\frac{3}{8}$ | 1361 | $\frac{1}{8}$ | 403 | $\frac{1}{30}$ | 121 |
| $1 \frac{1}{2}$ | 5445 | $\frac{1}{4}$ | 907 | $\frac{1}{10}$ | 363 | $\frac{1}{\frac{1}{6}}$ | 91 |
| $1 \frac{1}{4}$ | 4537 | $\frac{1}{3}$ | 726 | $\frac{1}{12}$ | 302 | $\frac{1}{50}$ | 73 |
| 1 | 3630 | $\frac{1}{6}$ | 605 | $\frac{1}{16}$ | 259 | $\frac{1}{60}$ | 61 |
| $\frac{3}{4}$ | 2723 | $\frac{1}{7}$ | 519 | $\frac{1}{2}$ | 227 | $\frac{1}{70}$ | 52 |

on the season and district. The arterial channel receives the supply at different places and from different distances, and the water in passing into and from it does not encounter the same amount of resistance as if it all passed first into the upper end. Less sectional area is, therefore, necessary than if the whole discharge had to pass through the whole length of the channel. The relation of the quantity of rainfall to the portion which flows into the main channel, as well as the time which it takes to arrive at it, and the places of arrival, must be known before the proper size of a new channel can be determined, particularly sewers in urban districts. A pipe sufficient to discharge the water from 200 acres need not be 20 times the discharging power of one exactly suited to 10 acres of the same district, for the discharge from the outlying 190 acres will not arrive at the main in the same time as that from the adjacent 10 acres.

In the Holborn and Finsbury divisions Mr. Roe calculated that an 18-inch cylindrical pipe, laid at an inclination of 1 in 80 , is sufficient for 20 acres of house-sewage, while a 5 -inch pipe laid at an inclination of 1 in 20 is necessary for 1 acre, and a 3 -inch pipe, laid also at 1 in 20 , for $\frac{1}{4}$ acre. In each of these cases, however, the discharge must depend on the head and length of the pipe as well as the inclination at which it is laid. Assuming the inclination of those pipes to correspond with the hydraulic inclination, we have calculated
their discharging powers to be respectively 807,72 , and 20 cubic feet per minute, the areas to be drained being 20,1 , and $\frac{1}{4}$ acres. In all calculations of this kind it is necessary, for accuracy, to ascertain not only the maximum rainfall per hour, but also the proportions discharged per hour, according to the season and district, into the main channel, and also the junctions or places of arrival. In urban districts 1500,2100 , and sometimes 3600 cubic feet per hour per acre, have to be discharged after extraordinary rainfalls. These may be taken as maximum results.

In urban districts, however, a much larger quantity of water is conveyed more rapidly, cateris paribus, to the mains, than in suburban districts and catchment basins generally, in which the maximum discharge per acre per hour, even in the steeper and higher districts, seldom exceeds 700 cubic feet, and varies from about 20 cubic feet for the larger and flatter districts upwards. This arises from the impervious nature of the surfaces it falls upon in towns, and the lesser waste in passing to the drains, as well as a portion of the supply being often artificial. From 70 to 90 cubic feet* per acre per hour, is generally taken for the maximum discharge from the average number of catchment basins; this is equal to a supply of from $\frac{1}{50}$ th to $\frac{1}{40}$ th of an inch in depth from the whole area. Thorough drainage increases the supply and discharge. Every catchment basin has, however, its own peculiar data, and a knowledge of these is necessary before we can draw any correct conclusions for new waterworks in connection with it. It may be remarked, however, that any conclusions drawn from experiments on the supply of tributaries, particularly in high districts, are wholly inapplicable to the main channel into which they flow. The flow into tributaries and mountain streams, or rivers, is always more rapid than into main channels and rivers in flat districts, and the supply from

[^42]springs often forms a large portion of the water flowing in them.

The effects of evaporation are very variable; sometines 58 or 60 per cent. of the annual fall is carried off in this way from ordinary flat tillage soils, and other estimates are much higher; much, however, depends on the soil, subsoil, inclination, stratification, and season. The evaporation from water surfaces exceeds the annual fall in these countries by about one-third; and that from flat marsh and callow lands exceeds the evaporation from ordinary tillage, porous, and high lands. When the flat lands along the banks of rivers extend considerably on both sides, an extra fall is necessary into the main channel, along the normal drains, otherwise such lands must suffer from excessive eveporation as well as floods. Evaporation also varies with the climate.

HORSE POWER.

Taking the value of a horse's power at $33,000 \mathrm{lbs}$.* raised 1 foot high in one minute, the theoretical horse power of an overfall, or a given quantity of water, is expressed by the fall in feet, multiplied by the discharge in cubic feet per minute, multiplied by $62 \frac{1}{2}$ and divided by 33,000 . The effective power depends on the nature, circumstances, and construction of the machine to which the theoretical power is applied. For an overshot wheel, the ratio of the power to the effect may be taken as $3: 2$, and, therefore, the effective horse power will be $49,500 \mathrm{lbs}$. weight of water falling 1 foot in one minute \dagger. The maximum effect of overshot wheels is found to vary:-Smeaton found it 76 times the theoretical effect; D'Aubuisson also $\cdot 76$ times; and Weisbach found $\cdot 78$ times the theoretical effect in the wheel of a stamp mill, at Frieberg, which was 23 feet high, 3 feet wide, and contained 48 buckets. To find the effective horse power we

[^43]must divide these decimals, viz. 76 and $\cdot 78$, into 33,000 , which will give 43,300 and $43,600 \mathrm{lbs}$ nearly, falling 1 foot for a horse power.

For breast wheels, the ratio of the theoretical to the effective power must vary very considerably; the mean value may be taken at $1: 55$; and, therefore, the value of a horse power would be $66,000 \mathrm{lbs}$. falling 1 foot in a minute. M. Morin found the efficiency to vary from $1: \cdot 7$ to $1: \cdot 52$; and Egen, with a wheel 23 feet in diameter, $4 \frac{1}{3}$ feet wide, having 69 ventilated buckets exceedingly well constructed, found the ratio at best but as $1: 52$, and under ordinary circumstances as $1: \cdot 48$, the mean being as $1: 5$. Very wide wheels give a larger effect, sometimes as high as 73 in one, but a good deal depends on the manner of bringing on the water and the construction of the buckets.

For undershot wheels, the mean effect may be taken at $\cdot 33$ in one, or $100,000 \mathrm{lbs}$. falling 1 foot high in one minute, for the effective horse power. Here, however, the height must be (in general) determined from the velocity. A maximum effect of 5 in 1 is sometimes obtained, and a minimum effect of $\cdot 16$ in 1 .

Turbines may be said to give a useful effect of $\frac{2}{3}$ in 1 , or $49,500 \mathrm{lbs}$. falling 1 foot in a minute for the effective horse power, the same as for an overshot wheel. A maximum effect of 821 in 1 has been obtained*, and the efficiency varies from $\cdot 57$ to 80 , or less.

Poncelet wheels give a useful effect of from $\cdot 5$ to ${ }^{\circ}$ in 1 ; floating wheels 38 in 1 ; impact wheels from $\cdot 16$ to $\cdot 4$; and Barker's mill from $\cdot 15$ to $\cdot 35$ in 1 .

Corn mills will grind about a bushel of corn per horse power per hour, but a good deal depends on the state of the stones, and on the grain. The value of the work done in an hour being once known, the value of a horse power may be determined accordingly.

[^44]
NOTE A.

DISCHARGE FROM ONE VESSEL OR CHAMBER INTO ANOTHER.

-LOCK-CHAMBERS.
We have given, at pages 98 and 99, formulæ for the time water in a prismatic vessel takes to fall a given depth, when

discharged from an orifice at the side or bottom. The time the surface st, Diagram 1, Fig. 44, takes to rise to $s t$, when supplied through an orifice or tube or, from an upper large chamber or canal, whose surface $s^{\prime} t^{\prime}$ remains always at the same level, is $\frac{2 \mathrm{~A} f}{c_{\mathrm{d}} a \sqrt{2 g}}$, , and we thence get the time of rising from R to s for measures in feet.

$$
\begin{equation*}
t=\frac{\mathrm{A}}{4 \cdot 015 c_{\mathrm{d}} a}\left\{h_{\mathrm{1}}^{\frac{1}{4}}-f^{\mathrm{t}}\right\} \tag{А.}
\end{equation*}
$$

and for measures in inches

$$
\begin{equation*}
t=\frac{\mathrm{A}}{13 \cdot 9 c_{\mathrm{d}} a}\left\{h_{\mathrm{1}}^{\frac{1}{2}}-f^{\frac{1}{2}}\right\} \tag{в.}
\end{equation*}
$$

in which A is the area of the horizontal section at ST_{T}; a the sectional area of the communicating channel or orifice or;

[^45]c_{d} the coefficient of discharge suited to it, and h_{1} and f as shown in the diagram.

In order to find the time of filling the lower vessel to the level st, supposing it at first empty, we have the contents of the portion below or equal to $A h_{2}$, and the time of filling it equal to

$$
\begin{equation*}
\frac{\mathrm{A} h_{2}}{8 \cdot 025 c_{\mathrm{d}} a h_{1}^{\dagger}} ; \tag{c.}
\end{equation*}
$$

then the time of filling up to any level st , for measures in feet, is equal to the sum of (Λ) and (c); that is,

$$
\text { (D.) } \begin{aligned}
& \mathrm{T}=\frac{\mathrm{A} h_{1}^{\frac{1}{2}}}{8 \cdot 025 c_{\mathrm{d}} a}\left\{2+\frac{h_{2}}{h_{1}}-\frac{2 f^{\frac{1}{3}}}{h_{1}^{\frac{1}{2}}}\right\} \\
&=\frac{\mathrm{A}\left(2 h_{1}+h_{2}-2 f^{\frac{1}{3}} h_{1}^{4}\right)}{8 \cdot 025 c_{\mathrm{d}} a h_{1}^{\frac{1}{4}}},
\end{aligned}
$$

and for measures in inches
(Е.) $\quad \mathrm{T}=\frac{\mathrm{A} h_{1}^{\hat{1}}}{27 \cdot 8 c_{\mathrm{d}} a}\left\{2+\frac{h_{2}}{h_{1}}-\frac{2 f^{\frac{1}{2}}}{h_{1}^{\frac{1}{2}}}\right\}$

$$
=\frac{\mathrm{A}\left(2 h_{1}+h_{2}-2 f^{\frac{1}{3}} h_{1}^{\frac{1}{2}}\right)}{27 \cdot 8 c_{\mathrm{d}} a h_{1}^{\mathrm{L}}} .
$$

When st coincides with st

$$
\begin{equation*}
\mathrm{T}=\frac{\mathrm{A}\left(2 h_{1}+h_{2}\right)}{8 \cdot 025 c_{\mathrm{d}} a h_{1}^{\frac{1}{1}}}, \tag{ㄷ.}
\end{equation*}
$$

for measures in feet, and

$$
\begin{equation*}
\mathrm{T}=\frac{\mathrm{A}\left(2 h_{1}+h_{2}\right)}{27 \cdot 8 c_{\mathrm{d}} a h_{1}^{\mathbf{1}}} \tag{G.}
\end{equation*}
$$

for measures in inches. These equations are exactly suited to the case of a closed lock-chamber filled from an adjacent canal.

When the upper level $\mathrm{s}^{\prime} \mathrm{T}^{\prime}$ is also variable, as in Diagram 2, the time which the water in both vessels takes to come to the same uniform level $s^{\prime} t^{\prime} s t$, is
(н.) $t=\frac{2 \mathrm{AC}\left(h_{1}+f_{1}-h\right)^{\frac{1}{2}}}{c_{\mathrm{d}} a(\mathrm{~A}+\mathrm{c}) \sqrt{2 g}}=\frac{2 \mathrm{AC}\left(f+f_{1}\right)^{\frac{1}{2}}}{c_{\mathrm{d}} a(\mathrm{~A}+\mathrm{c}) \sqrt{2 g}}$;
in which $h_{1}+f_{1}-h=f+f_{1}$ is the difference of levels at the beginning of the flow; c the horizontal section of the upper chamber; and the other quantities as in Diagram 1. As $\mathrm{c} f_{1}=\mathrm{A} f$, we find

$$
f+f_{1}=\frac{\mathbf{c}+\mathrm{A}}{\mathbf{A}} f_{1}=\frac{\mathbf{c}+\mathbf{A}}{\mathbf{c}} f .
$$

Now, in order to find the time of falling a given depth d below the first level $s^{\prime} T^{\prime}$, we have the head above $s^{\prime} t^{\prime}$ st equal to $f_{1}-d$ in the upper vessel, and the depth below it in the lower vessel equal to $\frac{\mathrm{c}\left(f_{1}-d\right)}{\mathrm{A}}$; whence the difference of levels in the two vessels at the end of the fall d, is

$$
f_{1}-d+\frac{\mathrm{c}\left(f_{1}-d\right)}{\Delta}=\frac{\mathrm{A}+\mathrm{c}}{\mathrm{~A}}\left(f_{1}-d\right) .
$$

The time of falling through d is, therefore, from equation (H),
(1.) $t=\frac{2 \mathrm{Ac}\left(f+f_{1}\right)^{\frac{1}{2}}}{c_{\mathrm{d}} a(\mathrm{~A}+\mathrm{c}) \sqrt{2 g}}-\frac{2 \mathrm{Ac}\left\{\left(\frac{\mathrm{c}+\mathrm{A}}{\mathrm{A}}\right)\left(f_{1}-d\right)\right\}^{\frac{1}{2}}}{c_{\mathrm{d}} a(\mathrm{~A}+\mathrm{c}) \sqrt{2 g}}$

$$
=\frac{2 \mathrm{Ac}}{c_{\mathrm{d}} a(\mathrm{~A}+\mathrm{c}) \sqrt{2 g}}\left\{\left(f+f_{1}\right)^{4}-\left(\frac{(\mathrm{A}+\mathrm{c})\left(f_{1}-d\right)}{\mathrm{A}}\right)^{\frac{1}{2}}\right\}
$$

in which $\sqrt{2 g}=8.025$ for measures in feet and equal 27.8 for measures in inches. The whole time of filling to a level the lower empty vessel, is found by adding the time of filling the portion below r , determined in a manner similar to equations (68) and (69) to be
(к.) $\frac{2 \mathrm{c}}{c_{\mathrm{d}} a \sqrt{2 g}}\left\{\left(h_{1}+f_{1}\right)^{\frac{1}{2}}-\left(h_{1}+f_{1}-\frac{h_{2} \mathrm{~A}}{\mathrm{c}}\right)^{\frac{1}{2}}\right\}$,
to the time of filling above r , given in equation (H), when h is taken equal to zero. Equations (h), (i), and (к) are applicable to the case of the upper and lower chambers of a double lock, after making the necessary change in the diagrams.

The above equations require further extensions when water flows into the upper vessel while also flowing from it into the lower; such extensions are, however, of little practical value, and we therefore omit them. For sluices in flood-gates with square arrises, c_{d} may be taken at about $\cdot 545$, but with rounded arrises the coefficient will rise much higher. See Sections III. and VII.

NOTE B.

In equations (74) and (151), the coefficient of friction c_{f} depends on the velocity v, and its value can be found from an approximate value of that velocity from the small table, page 120. If, however, we use both powers of the velocity, as in equation (83), we shall get, when $\boldsymbol{н}$ is the whole head, and h the head from the surface to the orifice of entry $\left(a v+b v^{2}\right) \frac{l}{r}+\left(1+c_{\mathrm{r}}\right) \frac{v^{2}}{2 g}+h=\mathrm{H}$, a quadratic equation from which we find

$$
\begin{aligned}
& v=\left\{\frac{(\mathrm{H}-h) 2 g r}{\left(1+c_{\mathrm{r}}\right) r+2 g b l}+\left(\frac{g a l}{\left(1+c_{\mathrm{r}}\right) r+2 g b l}\right)^{2}\right\}^{\frac{1}{2}} \\
&-\frac{g a l}{\left(1+c_{\mathrm{r}}\right) r+2 g b l}
\end{aligned}
$$

or a more general value of the velocity than that given in equation (74). If now we put $c_{\mathrm{s}}=c_{\mathrm{r}}+c_{\mathrm{b}}+c_{\mathrm{c}}+c_{\mathrm{e}}+c_{\mathrm{x}}$ in equation (151) we shall find

$$
\begin{array}{r}
v=\left\{\frac{(\mathrm{H}-h) 2 g r}{\left(1+c_{\mathrm{s}}\right) r+2 g b l}+\left(\frac{g a l}{\left(1+c_{\mathrm{s}}\right) r+2 g \cdot b l}\right)^{2}\right\}^{\frac{1}{2}} \\
-\frac{g a l}{\left(1+c_{\mathrm{s}}\right) r-2 g b l}
\end{array}
$$

for a more general expression of equation (152), when the simple power of the velocity, as in equation (83), is taken into consideration. For measures in English feet, we may take $a=\cdot 0000223$ and $b=\cdot 0000854$, which correspond to those of Eytelwein, in equation (97). The value of \boldsymbol{a} is the same in English as in French measures, but the value of b in equation (83), for measures in metres, must be divided by $3 \cdot 2809$ to find its corresponding value for measures in English feet. In considering the head $\frac{v^{2}}{2 g} c_{r}$, due to contraction at the orifice of entry as not implicitly comprised in the primary values of a and b, equation (83), Eytelwein is certainly more correct than D'Aubuisson, Traité d'Hydraulique, pp. 223 et 224 , as this head varies with the nature of the junction, and should be considered in connection with the head due to the velocity, or separately. It can never be correctly considered as a portion of the head due to friction. In all Du Buât's experiments, this head was considered as a portion of that due to the velocity, and the whole head $\left(1+c_{r}\right) \frac{v^{2}}{2 g}$ deducted to find the hydraulic inclination.
values of a and b for measures in english feet.

		a.	b.
Equation	(88).	$\cdot 0000445$	$\cdot 0000944$
$"$	(90).	$\cdot 0000173$	$\cdot 0001061$
$"$	(94).	$\cdot 0000243$	$\cdot 0001114$
$"$	(98).	$\cdot 0000223$	$\cdot 0000854$
$"$	(109).	$\cdot 0000189$	$\cdot 0001044$
$"$	(111).	$\cdot 0000241$	$\cdot 0001114$
$"$,	(114).	$\cdot 0000035$	$\cdot 000115$

Mean values for all straight $\} \cdot 0000221 \cdot 0000892$ channels, pipes, or rivers

Table I.-Coeffioients of discharge from square and differently proportioned rectangular lateral orifices in THIN VERTICAL PLATES.

		$\left\lvert\, \begin{gathered} \text { Square orifice } \\ \text { 8q } \\ \text { Ratio of the sides } \\ \text { of to } \end{gathered}\right.$		Rectangular orifice $8^{\prime \prime} \times 4^{\prime \prime}$. Ratio of the sides 2 to 1.		Rectangular orifice $8^{8} \times 2^{\prime \prime}$. Ratio of the side 4 to 1.	
0.000			-619		-667		$\cdot 713$
$0 \cdot 197$. 025		- 597		-630		$\cdot 668$
$0 \cdot 394$	-050		- 595		- 618	-607	-642
0.591	$\cdot 075$		-594	-593	-615	-612	-639
$0 \cdot 787$	-100	-572	-594*	-596	- 614	-615	-638
1.181	-150	-578	- 593	-600	$\cdot 613$	-620	$\cdot 637$
1.575	-200	$\cdot 582$	-593*	-603	- 612	-623	$\cdot 636$
1.969	-250	$\cdot 585$	- 593	-605	612*	-625	-636
$2 \cdot 362$	-300	$\cdot 587$	-594	-607	$\cdot 613$	-627	-635
2.756	-350	-588	- 594	-609	$\cdot 613$. 628	-635
$3 \cdot 150$	-400	$\cdot 589$	-594	-610	-613	-629	-635
3.545	-450	$\cdot 591$	$\cdot 595$	-610	$\cdot 614$	-629	-634
3.937	-500	-592	- 595	. 611	-614	-630	-634
4.724	-600	$\cdot 593$	- 596	-612	- 614	-630	$\cdot 633$
$5 \cdot 512$	$\cdot 700$	- 595	- 597	-613	- 614	-630	-632
6.299	. 800	- 596	-597	-614	-615	-631*	-631
$7 \cdot 087$. 900	- 597	- 598	-615	$\cdot 615$	-6:30	-631
$7 \cdot 874$	1.000	- 598	- 599	-615	-615	-630	$\cdot 630$
9.843	1-250	$\cdot 599$	- 600	- 616	$\cdot 616$	-630	-630
11.811	$1 \cdot 500$	- 600	-601	-616	$\cdot 616$	$\cdot 6.9$	-629
$15 \cdot 748$	2.000	- 602	-602	-617	$\cdot 617$	-628	-629
19.685	2.500	-603	-603	-617*	-617*	- 628	-628
23.6.2	3.000	-604	-604	-617	617	-627	627
$27 \cdot 560$	3.500	-604	-604	-616	$\cdot 616$	- 627	$\cdot 627$
31.497	$4 \cdot 000$	-605	-605	-616	$\cdot 616$	$\cdot 627$	$\cdot 627$
35.434	$4 \cdot 500$	-605*	-605*	-615	. 615	-626	$\cdot 626$
39.371	5.000	-605	. 605	-615	. 615	. 626	-626
$43 \cdot 307$	5.500	-604	$\cdot 604$	$\cdot 614$	$\cdot 614$	-625	-625
47.245	6.000	-604	-604	-614	-614	-624	-624
51-182	6.500	-603	-603	$\cdot 613$	-613	-622	. 622
$55 \cdot 119$	$7 \cdot 000$	-603	-603	$\cdot 612$	$\cdot 612$	-621	-621
59.056	$7 \cdot 500$	-602	-602	-611	$\cdot 611$	-620	$\cdot 620$
62.993	$8 \cdot 000$	-602	-602	-611	-611	- 618	-618
66.930	8.500	-602	- 602	-610	$\cdot 610$	$\cdot 617$	-617
70.867	$9 \cdot 000$	-601	-601	-609	- 609	$\cdot 615$	-615
74.805	9.500	-601	-601	-608	-608	-614	-614
78.742	$10 \cdot 000$	-601	- 601	-607	-607	-613	-614
$118 \cdot 112$	15.000	-601	. 601	. 603	-603	- 606	- 606

Table I．－Coefficients of discharge from square and dif－ ferently proportioned rectangular lateral orifices in thin vertical plates．

Rectangular orifice $8^{\prime \prime} \times 1 \cdot 18^{\prime \prime}$ ． Ratio of the sides 7 to 1 nearly．		Rectangular orifice $8^{\prime \prime} \times 0.8^{\prime \prime}$ ． Ratio of the sides 10 to 1.		Rectangular orifice $8^{\prime \prime} \times 0^{\prime} 4^{\prime}$ ． Ratio of the sides 20 to 1.			
	$\cdot 766$		$\cdot 7$		－795		
	$\cdot 725$		$\cdot 750$	705	－778	025	$0 \cdot 197$
－630	－687	660	$\cdot 720$	701	－762	－050	$0 \cdot 394$
－632	$\cdot 674$	－660	－ 707	－697	$\cdot 745$	－ 075	0.591
－634	－668	－659	－697	－694	729	－100	0.787
－638	－659	659	－685	688	－708	－150	$1 \cdot 181$
－640	－654	－658	－678	－683	． 695	－200	1.575
－640＊	$\cdot 651$	－658	－672	－679	－686	－250	$1 \cdot 969$
－640	－647	－657	－668	－676	． 681	－300	$2 \cdot 362$
－639	－645	－656	－665	－673	． 677	$\cdot 350$	$2 \cdot 756$
－638	$\cdot 643$	－656	－662	． 670	－675	－400	3．150
． 637	$\cdot 641$	－655	－659	－668	－672	－ 450	$3 \cdot 543$
－637	640	－654	． 657	－666	－669	－500	3.937
－636	－637	－653	$\cdot 655$	$\cdot 663$	－665	－600	$4 \cdot 724$
－635	$\cdot 636$	－651	－653	－660	－661	$\cdot 700$	$5 \cdot 512$
－634	－635	－650	－651	－658	－659	－800	$6 \cdot 299$
－634	$\cdot 634$	－649	－650	－657	－657	$\cdot 900$	$7 \cdot 087$
－633	$\cdot 633$	－648	－649	－655	－656	$1 \cdot 000$	$7 \cdot 874$
－632	－632	$\cdot 646$	－646	－653	－653	$1 \cdot 250$	$9 \cdot 843$
－632	$\cdot 632$	$\cdot 644$	－644	－650	$\cdot 651$	1.500	11.811
－631	$\cdot 631$	$\cdot 642$	－642	－647	－647	$2 \cdot 000$	15.748
－630	$\cdot 630$	$\cdot 640$	－640	－644	－645	$2 \cdot 500$	$19 \cdot 685$
－630	－630	－638	－638	－642	． 643	$3 \cdot 000$	23.622
－629	－629	$\cdot 637$	． 637	－640	－640	$3 \cdot 500$	27.560
－629	－6：9	－636	$\cdot 636$	－637	－637	$4 \cdot 000$	31.497
－628	－628	－634	－634	－635	－635	$4 \cdot 500$	$\mathbf{3 5} \cdot 434$
－628	－628	－633	$\cdot 633$	－632	－632	$5 \cdot 000$	$39 \cdot 371$
－627	－627	－631	－631	－629	－629	$5 \cdot 500$	$43 \cdot 307$
－626	－6：6	－628	－628	－626	－626	$6 \cdot 000$	47－245
$\cdot 624$	－62 4	－625	－625	－622	． 622	$6 \cdot 500$	51．182
－622	－622	－622	－622	－618	． 618	$7 \cdot 000$	$55 \cdot 119$
－620	－620	－619	－619	－615	． 615	$7 \cdot 500$	59.056
． 618	－618	－617	617	$\cdot 613$	－613	8.000	62．993
$\cdot 616$	－616	－615	$\cdot 615$	－612	－612	$8 \cdot 500$	$66 \cdot 930$
615	－615	－614	． 614	－612	－612	9•000	$70 \cdot 867$
$\cdot 613$	$\cdot 613$	612	－612	$\cdot 611$	$\cdot 611$	$9 \cdot 500$	74.805
－612	－612	． 612	－612	$\cdot 611$	－611	10.000	$78 \cdot 742$
－608	－608	610	$\cdot 610$	$\cdot 609$	$\cdot 609$	15.000	118.112

Table II.-For finding the velocities from the altitudes and the altitudes from the velocities.

Altitudes 0 feet $0_{\text {IU }}{ }^{1}$ inch to 0 feet $3 \frac{7}{8}$ inches.

	Coefficients of velocity, and the corresponding velocities of discharge in inches per second.					
${ }_{0}{ }^{\circ}{ }^{\text {O }}$	$2 \cdot 78$	2.71	$2 \cdot 66$	$2 \cdot 39$	$2 \cdot 27$	$2 \cdot 22$
$0{ }_{0}^{067}$	$3 \cdot 48$	$3 \cdot 38$	$3 \cdot 32$	$2 \cdot 99$	$2 \cdot 83$	2.78
$00^{0} 0_{16}^{64}$	6.95	$6 \cdot 77$	$6 \cdot 64$	$5 \cdot 98$	$5 \cdot 66$	$5 \cdot 56$
0 0 $0^{\frac{1}{8}}$	9.829	9.57	$9 \cdot 40$	$8 \cdot 45$	$8 \cdot 01$	$7 \cdot 86$
$0{ }^{0} 0{ }^{3}$	12.038	11.72	11.51	$10 \cdot 35$	$9 \cdot 81$	$9 \cdot 63$
0 01	13.900	13.54	13.29	11.95	$11 \cdot 33$	$11 \cdot 12$
005	15.541	$15 \cdot 14$	$14 \cdot 86$	$13 \cdot 36$	12.67	$12 \cdot 43$
0 0 ${ }^{\text {g }}$	17.024	16.58	16.27	14.64	13.87	13.62
0076	18.388	17.91	17.58	15.81	14.99	14.71
$\begin{array}{ll}0 & 0 \frac{1}{3} \\ 0 & 0\end{array}$	19.658	$19 \cdot 15$	18.79	16.91	16.02	15.73
$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0\end{array}$	20.850 21.978	20.31 21.41	19.93 21.01	17.93 18.90	16.99 17.91	16.68
	23.051	$22 \cdot 45$	22.04	19.82	18.79	17.58
	24.076	$23 \cdot 45$	23.02	$20 \cdot 70$	19.62	18.44 19.26
0 013	$25 \cdot 059$	$24 \cdot 41$	24.00	21.55	$20 \cdot 42$	20.05
0 0 0 \%	26.005	$25 \cdot 33$	$24 \cdot 86$	$22 \cdot 36$	$21 \cdot 19$	$20 \cdot 80$
0 018	26.917	$26 \cdot 22$	$25 \cdot 73$	$23 \cdot 15$	$21 \cdot 94$	21.53
01	$27 \cdot 800$	27.08	26.58	23.91	$22 \cdot 66$	22.24
0 11	$29 \cdot 486$	28.72	$28 \cdot 19$	$25 \cdot 36$	24.03	$23 \cdot 59$
0 11	31.081	$30 \cdot 27$	29.71	26.73	$25 \cdot 33$	24.87
0 18	32.598	31.75	$31 \cdot 16$	28.03	26.57	26.08
0 1 $1 \frac{1}{2}$	34.048	$33 \cdot 19$	$32 \cdot 58$	$29 \cdot 30$	27.75	27.26
0 1咅	$35 \cdot 438$	$34 \cdot 52$	33.88	$30 \cdot 48$	28.88	28.35
0 1星	36.776	35.82	$35 \cdot 16$	31.63	29.97	$29 \cdot 42$
0 17	38.067	37.08	36.39	32.74	31.02	$30 \cdot 45$
02°	$39 \cdot 315$	38.29	37.59	33.81	32.04	31.45
0 21	$40 \cdot 525$	$39 \cdot 47$	$38 \cdot 74$	$34 \cdot 85$	33.03	$32 \cdot 42$
021	$41 \cdot 700$	40.62	39.87	35.86	33.99	$33 \cdot 36$
0 2 ${ }^{0}$	42.843	41.73	$40 \cdot 96$	36.84	34.92	$34 \cdot 27$
${ }_{0}^{0} 22 \frac{1}{2}$	43.956	$42 \cdot 81$	42.02	37.80	$35 \cdot 82$	$35 \cdot 16$
0 2 2	45.041	4387	43.06	38.74	36.71	36.03
$0_{0}^{0} 2{ }^{3}$	$46 \cdot 101$	44.90	44.07	39.65	37.57	36.88
${ }_{0}^{0}$ 27	$47 \cdot 137$	$45 \cdot 90$	45.06	$40 \cdot 54$	$38 \cdot 42$	37.71
03	$48 \cdot 151$	46.90	46.03	41.41	$39 \cdot 24$	38.52
0 31	$49 \cdot 144$	47.87	46.98	4226	40.05	$39 \cdot 32$
0 0 3	$50 \cdot 117$	48.81	47.91	$43 \cdot 10$	$40 \cdot 85$	40.09
$0{ }^{0} 3 \frac{8}{8}$	51.072	49.74	48.82	43.92	41.62	40.86
0	52.009	$50 \cdot 66$	49.72	44.73	$42 \cdot 39$	41.61
$0{ }^{0} 3$	52.930	51.55	50.60	$45 \cdot 52$	$43 \cdot 14$	42.34
$\begin{array}{ll}0 & 3 \\ 0 & 3 \frac{3}{8} \\ 0 & 3\end{array}$	53.834 54.725	$52 \cdot 43$ $53 \cdot 30$	$51 \cdot 47$ $52 \cdot 32$	$46 \cdot 30$ 47.06	$43 \cdot 88$ $44 \cdot 60$	$43 \cdot 07$ $43 \cdot 78$

Table II.-For finding the velocities from the altitudes, and the altitudes from the velocities.

Altitudes 0 feet $0 \frac{1}{100}$ inch to 0 feet $3 \frac{7}{8}$ inches.

Coefficients of velocity, and the corresponding velocities of discharge in inches per second.						$\begin{aligned} & \text { Altitudes } h \text { in feet and } \\ & \text { inches. } \end{aligned}$
1.95	1.85	1.75	1.72	1.68	$1 \cdot 62$	$0_{0}^{0}{ }_{0}^{\prime \prime}{ }_{0}^{100}$
$2 \cdot 43$	$2 \cdot 31$	2.18	$2 \cdot 15$	$2 \cdot 11$	$2 \cdot 03$	0 0 ${ }^{1}$
$4 \cdot 87$	$4 \cdot 63$	4.36	$4 \cdot 29$	4.21	$4 \cdot 06$	0 016
6.88	6.55	$6 \cdot 17$	6.06	$5 \cdot 96$	$5 \cdot 74$	0 018
$8 \cdot 43$	$8 \cdot 02$	7.56	$7 \cdot 43$	7.29	$7 \cdot 03$	0 03 16
$9 \cdot 73$	$9 \cdot 26$	$8 \cdot 73$	$8 \cdot 58$	$8 \cdot 42$	$8 \cdot 12$	0 0 0
10.88	10.35	9.76	$9 \cdot 59$	$9 \cdot 42$	9.08	0 0 0_{16}
11.92	11.24	10.69	10.50	10.32	9.94	0 0) ${ }^{\text {\% }}$
$12 \cdot 87$	12.25	11.55	11.35	11.14	$10 \cdot 74$	0 076
13.76	12.97	$12 \cdot 34$	$12 \cdot 13$	11.91	11.48	0 0 0
14.60	13.89	13.09	12.86	$12 \cdot 64$	$12 \cdot 18$	$00^{0} 9$
15.38	14.64	13.80	13.56	13.32	12.84	0 05
$16 \cdot 14$	15.35	14.48	14.22	13.97	$13 \cdot 46$	0 0 0
16.85	16.03	$15 \cdot 12$	14.85	14.59	14.06	0003
17.54	16.69	$15 \cdot 74$	15.46	$15 \cdot 19$	14.63	00013
18.20	17.32	16.33	16.04	15.76	$15 \cdot 09$	0 07
18.84	17.93	16.90	16.61	16.31	15.72	0 015
$19 \cdot 46$	18.51	17.46	$17 \cdot 15$	16.85	16.24	01°
$20 \cdot 64$	$19 \cdot 64$	$18 \cdot 52$	18.19	17.87	$17 \cdot 22$	0 118
21.76	$20 \cdot 70$	19.52	19.18	18.84	$18 \cdot 15$	011
22.82	21.71	20.47	20.11	19.75	19.04	0 1 1
23.85	$22 \cdot 69$	21.38	21.01	$20 \cdot 63$	19.88	0 1 $1 \frac{1}{2}$
24.81	$23 \cdot 60$	$22 \cdot 26$	21.87	21.48	20.70	0 1咅
25.74	$24 \cdot 49$	$23 \cdot 10$	22.69	22.29	21.48	0 1 ${ }^{1}$
26.65	$25 \cdot 35$	23.91	$23 \cdot 49$	23.07	$22 \cdot 23$	$0{ }^{0} 17$
27.52	$26 \cdot 18$	$24 \cdot 69$	24.26	23.82	22.96	02
28.37	26.99	$25 \cdot 45$	25.00	24.56	$23 \cdot 67$	0 21
$29 \cdot 19$	27.77	$26 \cdot 19$	$25 \cdot 73$	25.27	24.35	0 2 ${ }^{1}$
29.99	28.53	26.91	26.43	25.96	25.02	0 23
$30 \cdot 77$	29.27	$27 \cdot 60$	27.12	26.64	$25 \cdot 67$	0 21
31.53	30.00	$28 \cdot 29$	27.79	27.29	$26 \cdot 30$	0 2
$32 \cdot 27$	$30 \cdot 70$	28.95	28.44	27.94	26.92	0 23
33.00	31.39	$29 \cdot 60$	29.08	28.57	27.53	0 27
33.71	32.07	$30 \cdot 24$	$29 \cdot 71$	29.18	28.12	038
$34 \cdot 40$	32.73	$30 \cdot 86$	$30 \cdot 32$	29.78	28.70	0 32
35.08	33.38	31.47	30.92	$30 \cdot 37$	29.27	0 3
35.75	34.01	32.07	31.51	30.95	29.83	0 3 ${ }^{\text {a }}$
36.41	$34 \cdot 64$	$32 \cdot 66$	32.09	31.52	$30 \cdot 37$	0 31
37.05	35.25	$33 \cdot 24$	$32 \cdot 66$	32.08	$30 \cdot 91$	0 O 3 年
37.68	35.85	33.81	33.22	32.62	31.44	0 3 ${ }^{\text {a }}$
38.31	$36 \cdot 45$	$34 \cdot 37$	$33 \cdot 77$	33-16	31.96	0 3\%

Table II.-For finding the velocities from the altitudes, AND tHE ALTITUDES FROM THE VELOCITIES.

Altitudes 0 feet 4 inches to 1 foot.

Altitudes h in feet and inches.	Coefficients of velocity and the corresponding velocities of discharge in inches per second.					
	1. Values of $v=27.8 \sqrt{h}$, the theoretical velocity.	2. Coeffict. -974.	3. Coeffic ${ }^{t}$. $\cdot 956$.	4. Coeffit ${ }^{t}$. -86.	5. Coeffict. 815.	6. Coeffict. 8.
0 \% 4	$55 \cdot 60$	54-15	$53 \cdot 15$	47.82	45•31	$44 \cdot 48$
048	56.462	54.99	53.98	$48 \cdot 56$	$46 \cdot 02$	$45 \cdot 17$
0 4 4	$57 \cdot 311$	55.82	54.79	$49 \cdot 29$	$46 \cdot 71$	$45 \cdot 85$
0 4\%	$58 \cdot 148$	56.64	55.59	5001	$47 \cdot 39$	46.52
0 4 ${ }^{\frac{1}{2}}$	58.973	57.44	56.38	50.72	48.06	$47 \cdot 18$
0 4 ${ }^{\text {a }}$	$59 \cdot 786$	$58 \cdot 23$	$57 \cdot 16$	51.42	$48 \cdot 73$	$47 \cdot 83$
0 - $4 \frac{3}{4}$	$60 \cdot 589$	59.01	57.92	$52 \cdot 11$	49.38	48.47
$04 \frac{7}{8}$	$61 \cdot 368$	59.77	58.67	$52 \cdot 78$	50.02	49.09
05	62-163	$60 \cdot 55$	$59 \cdot 43$	$53 \cdot 46$	50.66	$49 \cdot 73$
0 51	$62 \cdot 935$	$61 \cdot 30$	$60 \cdot 17$	$54 \cdot 12$	51.29	$50 \cdot 35$
0 5 ${ }^{\frac{1}{4}}$	$63 \cdot 698$	62.04	$60 \cdot 90$	54.78	51.91	50.96
0 59 ${ }^{\text {a }}$	$64 \cdot 452$	$62 \cdot 78$	$61 \cdot 62$	$55 \cdot 43$	52.53	51.56
$05 \frac{1}{2}$	$65 \cdot 197$	$63 \cdot 50$	$62 \cdot 33$	56.07	$53 \cdot 14$	$52 \cdot 16$
0 5 ${ }^{\frac{5}{8}}$	$65 \cdot 933$	$64 \cdot 22$	$63 \cdot 03$	56.70	53.74	52.75
0 5 ${ }^{\text {a }}$	66.662	$64 \cdot 93$	63.73	57.33	$54 \cdot 33$	53.33
0 5\%	$67 \cdot 383$	$65 \cdot 63$	$64 \cdot 42$	57.95	54.92	53.91
06	68.096	66.33	$65 \cdot 10$	58.56	55.50	$54 \cdot 48$
0 6 ${ }^{4}$	69.50	$67 \cdot 69$	$66 \cdot 44$	$59 \cdot 77$	56.64	55.60
$06 \frac{1}{2}$	$70 \cdot 876$	69.03	67.76	60.95	$57 \cdot 24$	56.70
$00^{0} 6^{\frac{3}{4}}$	$72 \cdot 227$	70.35	$69 \cdot 05$	$62 \cdot 11$	58.86	57.78
07	$73 \cdot 55$	71.64	$70 \cdot 32$	63.25	59.95	58.84
$0 \quad 7 \frac{1}{4}$	74.854	72.91	71.56	$64 \cdot 37$	$61 \cdot 01$	$59 \cdot 88$
$07 \frac{1}{2}$	$76 \cdot 133$	$74 \cdot 15$	72.78	$65 \cdot 47$	62.05	60.91
078	77.392	$75 \cdot 38$	73.99	66.56	63.07	$61 \cdot 91$
08	78.630	76.59	$75 \cdot 17$	$67 \cdot 62$	64.08	$62 \cdot 90$
0881	79.849	$77 \cdot 77$	$76 \cdot 34$	68.67	65.08	63.88
$08 \frac{1}{2}$	$81 \cdot 050$	$78 \cdot 94$	$77 \cdot 48$	69.70	66.06	64.84
$08 \frac{8}{4}$	$82 \cdot 234$	$80 \cdot 10$	78.62	7072	$67 \cdot 02$	65.79
09	$83 \cdot 40$	$81 \cdot 23$	79.73	7172	67.97	66.72
$0 \quad 94$	$84 \cdot 550$	$82 \cdot 35$	80.83	72.71	68.91	$67 \cdot 64$
$09 \frac{1}{2}$	85.685	$83 \cdot 46$	81.92	73.69	69.83	68.55
$0 \quad 93$	86.805	84.55	82.99	74.65	70.75	6944
010	87.911	85.63	84.04	$75 \cdot 60$	71.65	$70 \cdot 33$
0101	$89 \cdot 004$	86.69	85.09	$76 \cdot 54$	72.54	$71 \cdot 20$
0104	90.082	$87 \cdot 74$	$86 \cdot 12$	77.47	$73 \cdot 42$	72.07
$010 \frac{3}{4}$	$91 \cdot 148$	$88 \cdot 79$	$87 \cdot 14$	78.39	$74 \cdot 29$	72.92
0.11	$92 \cdot 202$	$89 \cdot 80$	$88 \cdot 15$	$79 \cdot 29$	$75 \cdot 14$	73.76
0 111	$93 \cdot 244$	90.82	$89 \cdot 14$	$80 \cdot 19$	75.99	74.59
0 111	$94 \cdot 274$	91.82	90.13	81.08	76.83	$75 \cdot 42$
0118	$95 \cdot 294$	92.82	$91 \cdot 10$	81.95	7766	76.23
10	96.302	93.80	92.06	$82 \cdot 82$	78.49	77.04

Table II.-For finding the velocities from the altitudes, and the altitudes from the velocities.

Altitudes 0 feet 4 inches to 1 foot.

Coefficients of velocity and the corresponding velocities of discharge in inches per second.						
	8. Coeffict. $\cdot 666$.	9. Coeffict. -628.	10. Coeffict. - 617.	11. Coeffict. $\cdot 606$.	12. Coeffict. $\cdot 584$.	Altitudes h in feet and inches.
38.92	37.03	34.92	34.31	$33 \cdot 69$	$32 \cdot 47$	0 \% ${ }^{\prime \prime}$
39.52	37.60	$35 \cdot 46$	$34 \cdot 84$	$34 \cdot 22$	32.97	0 41
$40 \cdot 12$	$38 \cdot 17$	$35 \cdot 99$	$35 \cdot 36$	$34 \cdot 73$	$33 \cdot 47$	0 4 4
40.70	38.73	$36 \cdot 52$	35.88	$35 \cdot 24$	33.96	0 4 4
41.28	$39 \cdot 28$	37.03	36.39	$35 \cdot 74$	$34 \cdot 44$	0 0 $4 \frac{1}{2}$
41.85	$39 \cdot 82$	37.55	36.89	36.23	$34 \cdot 92$	0 4 4
$42 \cdot 41$	$40 \cdot 35$	38.05	37.38	$36 \cdot 72$	$35 \cdot 38$	$0{ }_{0} 4$
$42 \cdot 96$	$40 \cdot 87$	38.54	37.86	$37 \cdot 19$	35.84	0 47
$43 \cdot 51$	$41 \cdot 40$	39.04	38.35	$37 \cdot 67$	$36 \cdot 30$	05
44.05	41.91	$39 \cdot 52$	$38 \cdot 83$	$38 \cdot 14$	36.75	0 51
44.59	$42 \cdot 42$	$40 \cdot 00$	$39 \cdot 30$	$38 \cdot 60$	$37 \cdot 20$	05
$45 \cdot 12$	42.92	$40 \cdot 48$	$39 \cdot 77$	$39 \cdot 06$	37.64	0 59
$45 \cdot 64$	$43 \cdot 42$	40.94	40.23	$39 \cdot 51$	38.07	0 51
$46 \cdot 15$	43.91	$41 \cdot 41$	40.68	39.96	$38 \cdot 51$	0 5
$46 \cdot 66$	44.40	41.86	$41 \cdot 13$	$40 \cdot 40$	38.93	$0{ }^{0} 5$
$47 \cdot 17$	44.88	$42 \cdot 32$	41.58	$40 \cdot 83$	$39 \cdot 35$	0 5 ${ }^{\text {a }}$
$47 \cdot 67$	45.35	$42 \cdot 76$	42.02	41.27	$39 \cdot 77$	$0{ }^{0} 6$
$48 \cdot 65$	46.29	$43 \cdot 65$	$42 \cdot 88$	$42 \cdot 12$	40.59	064
49.61	47.20	$44 \cdot 51$	43.73	42.95	$41 \cdot 39$	0 6 ${ }^{\frac{1}{2}}$
50.56	$48 \cdot 10$	$45 \cdot 36$	$44 \cdot 56$	43.77	$42 \cdot 18$	0 63
51.49	48.99	$46 \cdot 19$	$45 \cdot 38$	44.57	42.95	07^{4}
$52 \cdot 40$	$49 \cdot 85$	47.01	$46 \cdot 18$	$45 \cdot 36$	$43 \cdot 71$	0 7 7
53.29	50.70	$47 \cdot 81$	46.97	$46 \cdot 14$	$44 \cdot 46$	071
$54 \cdot 17$	51.54	$48 \cdot 60$	47.75	46.90	$45 \cdot 20$	$0{ }^{0} 78$
55.04	52.37	$49 \cdot 38$	48.51	$47 \cdot 65$	45.92	08
$55 \cdot 89$	53.18	$50 \cdot 15$	$49 \cdot 27$	$48 \cdot 39$	46.63	0881
56.74	53.98	50.90	50.01	$49 \cdot 12$	47.33	088
57.56	54.77	51.64	50.74	$49 \cdot 83$	$48 \cdot 02$	0883
$58 \cdot 38$	55.54	52.38	$51 \cdot 46$	50.54	$48 \cdot 71$	09
$59 \cdot 19$	56.31	$53 \cdot 10$	$52 \cdot 17$	51.24	$49 \cdot 38$	0 914
59.98	57.07	53.81	52.87	51.93	50.04	0 91
$60 \cdot 76$	57.81	54.51	53.56	$52 \cdot 60$	50.69	0 0-93
61.54	58.55	55.22	54.24	53.27	51.34	010
62.30	$59 \cdot 28$	$55 \cdot 89$	54.92	53.94	51.98	0101
63.06	60.00	56.57	55.58	54.59	52.61	$010 \frac{1}{2}$
$63 \cdot 80$	60.70	57.24	56.24	55.24	53.23	$010{ }^{\text {a }}$
$64 \cdot 54$	61.41	57.90	56.89	55.87	$53 \cdot 85$	011
$65 \cdot 27$	$62 \cdot 10$	58.56	$57 \cdot 53$	56.51	$54 \cdot 45$	0 114
65.99	62.79	59.70	58.17	57.13	55.06	0 111
${ }_{66} 671$	$63 \cdot 47$	$59 \cdot 84$	58.80	57.75	55.65	$011 \frac{3}{4}$
$67 \cdot 41$	$64 \cdot 14$	$60 \cdot 48$	$59 \cdot 42$	58.36	56.24	10

Table II.-For finding the velocities from the altitudes, and the alititudes from the velocities.

Altitudes 1 foot $0 \frac{1}{2}$ inch to 5 feet 3 inches.

Altitudes h in feet and inches.	Coefficients of velocity and the corresponding velocities of discharge in inches per second.					
	1. Values of $v=27 \cdot 8 \sqrt{ } \bar{h}$, the theoretical velocity.	2. Coeffict. -974.	3. Coeffict. -956.	4. Coeffict. -860.	5. Coeffic ${ }^{ \pm}$. 815.	6. Coeffic ${ }^{\text {² }}$ -8.
$1{ }^{\prime \prime}{ }^{1}$	98.288	95.73	93.96	84.53	80.10	78.63
11	$100 \cdot 234$	$97 \cdot 63$	95.82	86.20	$81 \cdot 69$	$80 \cdot 19$
1 119	102.144	99.49	$97 \cdot 65$	$87 \cdot 84$	83.25	81.71
12	104.018	101.31	99.44	$89 \cdot 46$	$84 \cdot 77$	83.21
$1 \quad 2 \frac{1}{2}$	105.859	$103 \cdot 11$	101.20	$91 \cdot 04$	86.28	84.69
13	$107 \cdot 669$	$104 \cdot 87$	102.93	$92 \cdot 60$	$87 \cdot 75$	$86 \cdot 14$
$13 \frac{1}{2}$	$109 \cdot 449$	$106 \cdot 60$	104.63	$94 \cdot 13$	$89 \cdot 20$	$87 \cdot 56$
14	111.200	108.31	106.31	$95 \cdot 63$	90.63	88.96
$14 \frac{1}{2}$	112.924	109.99	$107 \cdot 96$	$97 \cdot 11$	92.03	$90 \cdot 34$
15	114.622	$111 \cdot 42$	$109 \cdot 58$	98.58	$93 \cdot 42$	91.70
$15 \frac{1}{2}$	116.296	$113 \cdot 27$	$111 \cdot 18$	$100 \cdot 01$	94.78	93.04
16	117.945	$114 \cdot 78$	$112 \cdot 76$	101.43	$96 \cdot 13$	$94 \cdot 36$
17	$121 \cdot 177$	118.03	115.85	104*21	98.76	96.94
18	124.325	121.09	118.86	106.92	$101 \cdot 33$	$99 \cdot 46$
19	$127 \cdot 396$	124.08	$121 \cdot 79$	109.56	$103 \cdot 83$	101.92
110	$130 \cdot 394$	127.00	$124 \cdot 66$	$112 \cdot 14$	$106 \cdot 27$	$104 \cdot 31$
111	$133 \cdot 324$	129.86	$127 \cdot 46$	$114 \cdot 66$	$108 \cdot 66$	106.66
20	$136 \cdot 192$	$132 \cdot 65$	$130 \cdot 20$	117.12	111.00	$108 \cdot 95$
2 11 ${ }^{2}$	$140 \cdot 383$	136.73	$134 \cdot 21$	$120 \cdot 73$	$114 \cdot 41$	112.31
23	144.453	$140 \cdot 70$	$138 \cdot 10$	124•23	$117 \cdot 73$	$115 \cdot 56$
2 41	$148 \cdot 411$	144.55	141.88	$127 \cdot 64$	$120 \cdot 96$	118.73
26	$152 \cdot 267$	$148 \cdot 31$	$145 \cdot 57$	$130 \cdot 95$	$124 \cdot 10$	121.81
$27 \frac{1}{2}$	156.027	151.97	$149 \cdot 16$	134•18	$127 \cdot 16$	124.82
29	159.699	155.55	$152 \cdot 67$	$137 \cdot 34$	$130 \cdot 15$	127.76
$210 \frac{1}{2}$	163.288	$159 \cdot 04$	156.10	$140 \cdot 43$	133.80	130.63
30	166.800	$162 \cdot 46$	$159 \cdot 46$	$143 \cdot 45$	$135 \cdot 94$	133.44
3 112	$170 \cdot 240$	$165 \cdot 81$	$162 \cdot 75$	$146 \cdot 41$	$138 \cdot 75$	$136 \cdot 19$
33	178.611	$169 \cdot 10$	165.97	$149 \cdot 31$	$141 \cdot 49$	138.89
3 4 ${ }^{1}$	176.918	172.32	169-13	$152 \cdot 15$	$144 \cdot 19$	$141 \cdot 53$
36	$180 \cdot 165$	$175 \cdot 48$	172.24	154.94	146.83	$144 \cdot 13$
3 71 ${ }^{\frac{1}{2}}$	183.854	$178 \cdot 59$	175-29	$157 \cdot 68$	$149 \cdot 43$	$146 \cdot 68$
39	186.488	181.64	$178 \cdot 28$	$160 \cdot 38$	151.99	$149 \cdot 19$
$310 \frac{1}{2}$	189.571	$184 \cdot 64$	181.23	163.03	154.50	$151 \cdot 66$
40	192.604	$187 \cdot 60$	$184 \cdot 13$	165.64	156.97	154.08
42	196.576	$191 \cdot 46$	187.93	$169 \cdot 06$	$160 \cdot 21$	$157 \cdot 26$
44	$200 \cdot 469$	195 26	$191 \cdot 65$	$172 \cdot 40$	$163 \cdot 38$	$160 \cdot 37$
46	204.287	198.98	$195 \cdot 30$	175.69	166.49	163.43
48	208.036	20263	198.88	178.91	169.55	$166 \cdot 43$
410	211.718	$206 \cdot 21$	$202 \cdot 40$	182.08	172.55	$169 \cdot 37$
50	$215 \cdot 338$	209-74	$205 \cdot 86$	185.19	175:50	172.27
53	220.656	214.92	210.95	$189 \cdot 76$	$179 \cdot 83$	17652

Table II.-For finding the velocities from the altitudes, and the altitudes from the velocities.

Altitudes 1 foot $0 \frac{1}{2}$ inch to 5 feet 3 inches.

Coefficients of velocity and the corresponding velocities of discharge in inches per second.						
7. Coeffict. 7.	8. Coeffic ${ }^{t}$. $\cdot 666$.	9. Cocffict. -628.	10. Coeffict. -617.	11. Coeffic ${ }^{t}$. $\cdot 606$.	12. Coeffic ${ }^{\text {t }}$. $\cdot 584$.	Altitudes h in feet and inches.
$68 \cdot 80$	$65 \cdot 46$	61.72	$60 \cdot 64$	59.56	57-40	$180 \frac{1}{2}$
$70 \cdot 16$	66.76	62.95	61.84	$60 \cdot 74$	$58 \cdot 54$	11
71.50	$68 \cdot 03$	$64 \cdot 15$	63.02	61.90	59.65	$1{ }^{1} \frac{1}{3}$
72.81	$69 \cdot 28$	65.32	$64 \cdot 18$	63.03	60.75	12
$74 \cdot 10$	$70 \cdot 50$	$66 \cdot 48$	65.32	$64 \cdot 15$	61.82	$1{ }^{1} 2 \frac{1}{1}$
$75 \cdot 37$	71.71	$67 \cdot 62$	66.43	65.25	62.88	13
76.61	72.89	$68 \cdot 73$	$67 \cdot 53$	66.33	63.92	$13 \frac{1}{2}$
$77 \cdot 84$	$74 \cdot 06$	$69 \cdot 83$	$68 \cdot 61$	$67 \cdot 34$	$64 \cdot 94$	14
79.05	75.21	70.92	$69 \cdot 67$	$68 \cdot 43$	65.95	$14 \frac{1}{2}$
80.24	$76 \cdot 34$	71.98	70.72	$69 \cdot 46$	$66 \cdot 94$	15
81.41	$77 \cdot 45$	73.03	71.75	$70 \cdot 48$	$67 \cdot 92$	$15 \frac{1}{2}$
82.56	78.55	$74 \cdot 07$	72.77	$71 \cdot 47$	$68 \cdot 88$	16
84.82	$80 \cdot 70$	$76 \cdot 10$	74.77	$73 \cdot 43$	70.77	17
$87 \cdot 03$	$82 \cdot 80$	78.08	$76 \cdot 71$	$75 \cdot 34$	72.61	18
$89 \cdot 18$	84.85	80.00	$78 \cdot 60$	$77 \cdot 20$	$74 \cdot 40$	19
91.28	$86 \cdot 84$	$81 \cdot 89$	$80 \cdot 45$	79.02	$76 \cdot 15$	110
$93 \cdot 33$	$88 \cdot 79$	83.73	82.26	$80 \cdot 79$	$77 \cdot 86$	111
$95 \cdot 33$	90.70	$85 \cdot 53$	84.03	$82 \cdot 53$	79.54	20
$98 \cdot 27$	93.50	$88 \cdot 16$	86.62	85.07	81.98	$2 \quad 1 \frac{1}{2}$
$101 \cdot 12$	96.21	90.72	$89 \cdot 13$	$87 \cdot 54$	84.36	23
$103 \cdot 89$	$98 \cdot 84$	93.20	91.57	$89 \cdot 94$	86.67	2 4 ${ }^{2}$
106.59	101.41	95.62	93.95	$92 \cdot 27$	88.92	26
109-22	103.91	97.99	$96 \cdot 27$	$94 \cdot 55$	$91 \cdot 12$	$27 \frac{1}{2}$
111.79	$106 \cdot 36$	$100 \cdot 29$	98.53	96.78	$93 \cdot 26$	29
114.30	108.75	102.54	100.75	98.95	$95 \cdot 36$	$210 \frac{1}{2}$
116.76	111.09	$104 \cdot 75$	102.92	101.08	$97 \cdot 41$	30
$119 \cdot 17$	113.38	106.91	105.04	$103 \cdot 17$	$99 \cdot 42$	$311 \frac{1}{2}$
$121 \cdot 53$	$115 \cdot 62$	109.03	$107 \cdot 12$	$105 \cdot 21$	$101 \cdot 39$	33
123.84	117.83	$111 \cdot 10$	$109 \cdot 16$	107.21	$103 \cdot 32$	3 41
$126 \cdot 12$	119.99	$113 \cdot 14$	$111 \cdot 16$	109•18	$105 \cdot 22$	36
128.35	$122 \cdot 11$	$115 \cdot 15$	$113 \cdot 13$	111.11	107.08	$3 \quad 7 \frac{1}{2}$
$130 \cdot 54$	$124 \cdot 20$	$117 \cdot 11$	115.06	$113 \cdot 01$	108.91	39
132.70	126.25	119.05	116.97	114.88	110.71	$310 \frac{1}{2}$
$134 \cdot 82$	$128 \cdot 27$	$120 \cdot 96$	118.84	116.72	$112 \cdot 48$	40
$137 \cdot 60$	130.92	123.45	$121 \cdot 29$	$119 \cdot 12$	114:80	42
140.33	$133 \cdot 51$	$125 \cdot 89$	$123 \cdot 69$	$121 \cdot 48$	117.07	44
143.00	136.06	128.29	126.05	123.80	119.30	46
145.63	138.55	$130 \cdot 65$	128.36	126.07	$121 \cdot 49$	18
148.20	141.00	132.96	$130 \cdot 63$	$128 \cdot 30$	123.64	410
$150 \cdot 74$	143.42	$135 \cdot 23$	$132 \cdot 86$	$130 \cdot 49$	$125 \cdot 76$	50
$154 \cdot 46$	146.96	13857	$136 \cdot 14$	$133 \cdot 72$	128.86	$5 \quad 3$

Table II.-For finding the velocities from the altitudes, and the altitudes from the velocities.

Altitudes 5 feet 6 inches to 17 feet.

Altitudes h in feet and inches.	Coefficients of velocity, and the corresponding velocities of discharge in inches per second.					
	1. Values of $v=27 \cdot 8 \sqrt{ } \bar{h}$, the theoretical velocity.	2. Coeffict. $\cdot 974$.	3. Coeffict. $\cdot 956$	$\begin{aligned} & 4 . \\ & \text { Coeffict. } \\ & 86 . \end{aligned}$	5. Coeffict. -815.	6. Coeffict. 8.
${ }_{5}{ }^{\prime \prime}$	225.848	219.98	215.91	194.23	184.07	$180 \cdot 68$
59	$230 \cdot 924$	$224 \cdot 92$	220.76	198.59	188.20	184.74
60	$235 \cdot 891$	$229 \cdot 76$	225.51	202.87	$192 \cdot 25$	188.71
63	$240 \cdot 755$	$234 \cdot 50$	$230 \cdot 16$	207.05	196.22	192.60
66	245.524	239•14	$234 \cdot 72$	$211 \cdot 15$	$200 \cdot 10$	196.42
69	$250 \cdot 200$	$243 \cdot 69$	239-19	$215 \cdot 17$	203.91	$200 \cdot 16$
70	254.791	$248 \cdot 17$	243.58	$219 \cdot 12$	$207 \cdot 65$	203.83
73	259.301	252.56	247.89	222.99	211.33	207-44
76	$263 \cdot 734$	256.88	252.13	226.81	214.94	210.99
79	268.093	$261 \cdot 12$	256.30	$230 \cdot 56$	218.50	214.47
80	$272 \cdot 383$	$265 \cdot 30$	$260 \cdot 40$	$234 \cdot 25$	221.99	217.91
83	$276 \cdot 607$	269•41	$264 \cdot 44$	237.88	$225 \cdot 43$	221.29
86	$280 \cdot 766$	$273 \cdot 47$	$268 \cdot 41$	$241 \cdot 46$	228.82	224.61
89	$284 \cdot 865$	$277 \cdot 46$	$272 \cdot 33$	$244 \cdot 98$	232-17	227.89
90	$288 \cdot 906$	$281 \cdot 39$	$276 \cdot 19$	$248 \cdot 46$	$235 \cdot 46$	231.12
93	$292 \cdot 891$	285.28	$280 \cdot 00$	$251 \cdot 89$	238.71	234.31
96	296.823	289.11	283.76	255.27	241.91	$237 \cdot 46$
99	$300 \cdot 703$	292.88	$287 \cdot 47$	$258 \cdot 60$	245.07	$240 \cdot 56$
100	304-534	$296 \cdot 62$	$291 \cdot 13$	$261 \cdot 90$	$248 \cdot 19$	$243 \cdot 63$
103	$308 \cdot 317$	$300 \cdot 30$	294.75	$265 \cdot 15$	251.28	$246 \cdot 65$
106	312.054	303.94	297.32	$268 \cdot 37$	254.32	$249 \cdot 64$
109	315.747	307.54	301•85	271-54	$257 \cdot 33$	$252 \cdot 60$
110	319.398	311.09	305.34	$274 \cdot 68$	$260 \cdot 31$	255.52
113	323.007	314.61	308.79	$277 \cdot 79$	$262 \cdot 25$	258.41
116	$326 \cdot 576$	318.09	312-21	$280 \cdot 86$	$266 \cdot 16$	261-26
119	$330 \cdot 107$	$321 \cdot 52$	315.58	$283 \cdot 89$	269.04	$264 \cdot 09$
120	$333 \cdot 600$	$324 \cdot 93$	318.92	286.90	271.88	266.88
123	337.057	328.29	322.23	289.87	$274 \cdot 70$	$269 \cdot 65$
126	$340 \cdot 479$	331.63	$325 \cdot 50$	292.81	$277 \cdot 49$	$272 \cdot 38$
129	$343 \cdot 867$	$334 \cdot 93$	328.74	295.73	$280 \cdot 25$	275.09
130	$347 \cdot 222$	$338 \cdot 19$	$331 \cdot 94$	298.61	$282 \cdot 99$	$277 \cdot 78$
133	$350 \cdot 545$	$341 \cdot 43$	$335 \cdot 12$	$301 \cdot 47$	285.69	$280 \cdot 44$
136	$353 \cdot 836$	$344 \cdot 64$	338.27	304.30	288.38	283.07
139	357.097	347.81	341.39	307•10	291.03	285.68
140	$360 \cdot 329$	350.96	$344 \cdot 47$	309.88	293.67	288.26
146	$366 \cdot 707$	$357 \cdot 17$	350.57	$315 \cdot 37$	298.87	$293 \cdot 37$
150	$372 \cdot 976$	363.28	356.57	$320 \cdot 76$	303.98	298.38
156	$379 \cdot 141$	$369 \cdot 28$	$362 \cdot 46$	326.06	309.00	$303 \cdot 31$
160	385.208	$375 \cdot 19$	$368 \cdot 26$	$331 \cdot 28$	313.94	$308 \cdot 17$
166	$391 \cdot 181$	381.01	373.97	336.42	318.81	312.94
170	397.063	386.74	$379 \cdot 59$	$341 \cdot 47$	$323 \cdot 61$	$317 \cdot 65$

Table ll.-For finding the velocities from the altitudes, AND THE ALTITUDES FROM THE VELOCITIES.

Altitudes 5 feet 6 inches to 17 feet.

Coefficients of velocity, and the corresponding velocities of discharge in inches per second.						
7. Coeffict. $\cdot 7$.	8. Coeffict. -666.	9. Coeffict. -628.	10. Coeffict. -617.	11. Coeffict. -606.	12. Coeffic ${ }^{t}$ $\cdot 584$.	Altitudes h in feet and inches.
158.09	$150 \cdot 41$	141.83	$139 \cdot 35$	136.86	131.90	56
$161 \cdot 65$	$153 \cdot 80$	145.02	$142 \cdot 48$	139.94	$134 \cdot 86$	59
$165 \cdot 12$	$157 \cdot 10$	148-14	145.55	$142 \cdot 95$	$137 \cdot 76$	60
168.53	$160 \cdot 34$	$151 \cdot 19$	148.55	$145 \cdot 90$	$140 \cdot 60$	63
$171 \cdot 87$	$163 \cdot 52$	$154 \cdot 19$	151.49	148.79	$143 \cdot 39$	66
$175 \cdot 14$	$166 \cdot 63$	$157 \cdot 13$	$154 \cdot 37$	$151 \cdot 62$	$146 \cdot 12$	$6 \quad 9$
$178 \cdot 35$	$169 \cdot 69$	160.01	$157 \cdot 21$	$154 \cdot 40$	148.80	70
181.51	$172 \cdot 69$	162.84	159.99	$157 \cdot 14$	151.43	73
$184 \cdot 61$	175.65	$165 \cdot 62$	162.72	$159 \cdot 82$	154.02	76
$187 \cdot 67$	178.55	168.36	$165 \cdot 41$	$162 \cdot 46$	156.57	79
190.67	$181 \cdot 41$	$171 \cdot 06$	168.06	$165 \cdot 06$	159.07	80
193.62	184.22	$173 \cdot 71$	170.67	$167 \cdot 62$	161.54	83
196.54	186.99	176.32	$173 \cdot 23$	$170 \cdot 14$	163.97	86
199.41	189.72	$178 \cdot 90$	$175 \cdot 76$	172.63	$166 \cdot 36$	89
$202 \cdot 23$	192-41	$181 \cdot 43$	$178 \cdot 26$	175.08	168•72	90
$205 \cdot 02$	195.07	183.94	$180 \cdot 71$	$177 \cdot 49$	171.05	93
207.78	$197 \cdot 68$	186.40	$183 \cdot 14$	179.87	173.34	96
$210 \cdot 49$	200.27	$188 \cdot 84$	185.53	182.23	175.61	$9 \quad 9$
$213 \cdot 17$	202.82	191.25	$187 \cdot 90$	184.55	177.85	100
$215 \cdot 82$	205.34	$193 \cdot 62$	$190 \cdot 23$	$186 \cdot 84$	180.06	$10 \quad 3$
$218 \cdot 44$	207.83	195.97	192.54	189-10	$182 \cdot 24$	106
221.02	$210 \cdot 29$	198.29	194.82	191.34	184.40	109
223.58	$212 \cdot 72$	200.58	$197 \cdot 07$	193.55	186.53	110
$226 \cdot 10$	$215 \cdot 12$	202.85	199.30	195.74	188.64	113
$228 \cdot 60$	$217 \cdot 50$	205.09	201-50	197.91	190.72	116
$231 \cdot 07$	219.85	$207 \cdot 31$	$203 \cdot 68$	$200 \cdot 04$	$192 \cdot 78$	119
233.52	222.18	209.50	$205 \cdot 83$	$202 \cdot 16$	$194 \cdot 82$	120
$235 \cdot 94$	$224 \cdot 48$	$211 \cdot 67$	207.96	$204 \cdot 26$	$196 \cdot 84$	123
238.34	226.76	213.82	$210 \cdot 08$	$206 \cdot 33$	$198 \cdot 84$	126
$240 \cdot 71$	229.02	215.95	$212 \cdot 17$	$208 \cdot 38$	$200 \cdot 82$	129
243.06	$231 \cdot 25$	$218 \cdot 06$	214.24	$210 \cdot 42$	$202 \cdot 78$	130
245.38	$233 \cdot 46$	$220 \cdot 14$	216.29	212.43	$204 \cdot 72$	13 3
$247 \cdot 69$	$235 \cdot 65$	$222 \cdot 21$	$218 \cdot 32$	$214 \cdot 42$	$206 \cdot 64$	136
249.97	237.83	224.26	$220 \cdot 33$	216.40	208.54	139
$252 \cdot 23$	239.98	226.29	222.32	$218 \cdot 36$	$210 \cdot 43$	140
256.70	244.23	$230 \cdot 29$	226.26	$222 \cdot 22$	$214 \cdot 16$	146
261.08	$248 \cdot 40$	234.23	$230 \cdot 13$	226.02	217-82	150
$265 \cdot 40$	252.51	$238 \cdot 10$	233.93	229.76	221.42	156
269.65	256.55	$241 \cdot 91$	237.67	233.44	$224 \cdot 96$	160
273.83	260.53	24566	$241 \cdot 36$	$237 \cdot 06$	228.45	166
277.94	$264 \cdot 44$	$249 \cdot 36$	244.99	$240 \cdot 62$	231.89	170

Table II.-For finding the velocities from the altitudes, and the altitudes from the velocities.

Altitudes 17 feet 6 inches to 40 feet.

Altitudes h in feet and inches.	Coefficients of velocity, and the corresponding velocities of discharge in inches per second.					
	$\left.\begin{gathered} 1 . \\ \text { Values of } \\ v=27.8 \sqrt{h}, \bar{h} \\ \text { the theoretical } \\ \text { velocity. } \end{gathered} \right\rvert\,$	$\stackrel{2 .}{\stackrel{2}{\text { Coeffict }} \text {. }}$ $\cdot 974$.	$\begin{gathered} 3 . \\ \text { Coeffict. } \\ \cdot 956 . \end{gathered}$	4. Coeffict. -86.	$\begin{gathered} 5 . \\ \text { Coeffict. } \\ 815 . \end{gathered}$	$\underset{\text { Coeffict. }}{6}$. - 8.
17 "	402.860	392.39	385.13	$346 \cdot 46$	328.33	322.29
180	408.575	$397 \cdot 95$	$390 \cdot 60$	$351 \cdot 37$	332.99	326.86
186	$414 \cdot 211$	$403 \cdot 44$	$395 \cdot 99$	356-22	337.58	$331 \cdot 37$
19	$419 \cdot 772$	408.86	$401 \cdot 30$	$361 \cdot 00$	342-11	$335 \cdot 82$
196	$425 \cdot 258$	414.20	406.55	$365 \cdot 72$	346.59	$340 \cdot 21$
20	$430 \cdot 676$	$419 \cdot 48$	411.73	370.38	$351 \cdot 00$	344.54
206	436.026	$424 \cdot 69$	416.84	374.98	$355 \cdot 36$	348.82
210	$441 \cdot 311$	429.84	421-89	379.53	359.59	353.05
216	446.534	$434 \cdot 92$	426.89	384.02	$363 \cdot 93$	357.23
22	451.697	439.95	$431 \cdot 82$	$388 \cdot 46$	$368 \cdot 13$	361-36
226	456.801	444.92	436.70	$392 \cdot 85$	372.29	$365 \cdot 44$
23	$461 \cdot 848$	$449 \cdot 84$	441:53	397-19	$376 \cdot 41$	$369 \cdot 48$
236	466.841	$450 \cdot 70$	$446 \cdot 30$	401.48	380.48	$373 \cdot 47$
240	471.782	459.52	451.02	$405 \cdot 73$	384.50	$377 \cdot 43$
246	476.671	$464 \cdot 28$	$455 \cdot 70$	409.94	388.49	$381 \cdot 34$
25	$481 \cdot 510$	468.99	$460 \cdot 32$	$414 \cdot 10$	392-43	385.21
256	486.301	$473 \cdot 66$	$464 \cdot 90$	418.22	396.34	389.04
260	491.046	$478 \cdot 28$	$469 \cdot 44$	422.30	$400 \cdot 20$	392.84
266	495.745	$482 \cdot 86$	$473 \cdot 93$	426.34	$404 \cdot 03$	396.60
270	$500 \cdot 40$	487.39	478.38	$430 \cdot 34$	407.83	$400 \cdot 32$
276	505.012	$491 \cdot 88$	482.79	434.31	411.58	$404 \cdot 01$
28	$509 \cdot 582$	496.33	$487 \cdot 16$	$438 \cdot 24$	415.31	$407 \cdot 67$
286	514-112	$500 \cdot 75$	$491 \cdot 49$	442-14	$419 \cdot 00$	$411 \cdot 29$
290	$518 \cdot 602$	505•12	495•78	$446 \cdot 00$	$422 \cdot 66$	414.88
296	523.054	$509 \cdot 45$	$500 \cdot 04$	$449 \cdot 83$	426.29	$418 \cdot 44$
300	$527 \cdot 468$	513.75	$504 \cdot 26$	$453 \cdot 62$	$429 \cdot 89$	$421 \cdot 97$
306	531.845	518.02	$508 \cdot 44$	457.39	$433 \cdot 45$	425-48
31.0	$536 \cdot 187$	522.25	512.59	$461 \cdot 12$	$436 \cdot 99$	$428 \cdot 95$
316	$540 \cdot 494$	526.44	516.71	$464 \cdot 82$	$440 \cdot 50$	432-40
320	$544 \cdot 767$	$530 \cdot 60$	$520 \cdot 80$	468.50	443.98	$435 \cdot 81$
326	549.006	$534 \cdot 73$	$524 \cdot 85$	472-15	447-44	$439 \cdot 20$
330	$553 \cdot 213$	538.83	528.87	475.76	$450 \cdot 87$	442.57
336	557.388	$542 \cdot 90$	$532 \cdot 86$	479.35	454.27	$445 \cdot 91$
340	$561 \cdot 532$	$546 \cdot 93$	536.83	$482 \cdot 92$	$457 \cdot 65$	449•23
346	$565 \cdot 646$	550.94	540.76	$486 \cdot 46$	$461 \cdot 00$	$452 \cdot 52$
350	$569 \cdot 730$	554.92	$544 \cdot 66$	$489 \cdot 97$	$464 \cdot 33$	$455 \cdot 78$
360	$577 \cdot 812$	562.79	552.39	496.92	$470 \cdot 92$	$462 \cdot 25$
370	585.782	$570 \cdot 55$	560.01	503.77	$477 \cdot 41$	$468 \cdot 63$
380	$593 \cdot 646$	578.21	567.53	510.54	$483 \cdot 82$	474.92
390	$601 \cdot 406$	585.77	574.94	517.21	$490 \cdot 15$	$481 \cdot 12$
400	609.067	593.23	$582 \cdot 27$	523.80	496.39	$487 \cdot 25$

Table II.-For finding the velocities from the altitudes, and the alititudes from the velocities.

Altitudes 17 feet 6 inches to 40 feet.

Coefficients of velocity, and the corresponding velocities of discharge in inches per second.						Altitudes h in feet and inches.
$\begin{gathered} 7 . \\ \text { Coeffict. } \\ .7 . \end{gathered}$	8. Coeffict. ${ }^{6} 666$.	9. Coeffict. -628.	$\begin{aligned} & 10 . \\ & \text { Coeffict. } \\ & \cdot 617 . \end{aligned}$	11. Coeffict. $\cdot 606$.	12. Coeffict. -584.	
$282 \cdot 00$	$268 \cdot 30$	253.00	$248 \cdot 56$	$244 \cdot 13$	$235 \cdot 27$	17
286.00	272-11	256.59	252.09	247.60	238.61	18
$289 \cdot 95$	$275 \cdot 86$	260.12	255.57	251.01	$241 \cdot 90$	186
293.84	$279 \cdot 57$	263.32	$259 \cdot 00$	254.38	$245 \cdot 14$	19
$297 \cdot 68$	283.22	267.06	$262 \cdot 38$	257.71	248.35	19
301-47	286.83	$270 \cdot 46$	265.73	$260 \cdot 99$	251.51	20
305.22	290.39	273.82	269.03	264.23	254.64	20
308.92	293.91	$277 \cdot 08$	272.23	267.37	257.67	21
312.57	297.39	$280 \cdot 42$	275.51	$270 \cdot 60$	$260 \cdot 78$	21
316-19	$300 \cdot 83$	283.67	278.70	273.73	263.79	22
319.76	304.23	286.87	$281 \cdot 85$	276.82	266.77	22
$323 \cdot 29$	$307 \cdot 59$	$290 \cdot 04$	284.96	279.88	269.72	23
326.79	310.92	$293 \cdot 18$	288.04	$282 \cdot 91$	$272 \cdot 64$	23
$330 \cdot 25$	314.21	296.28	291.09	285.90	$275 \cdot 52$	24
$333 \cdot 67$	$317 \cdot 46$	299.35	294-11	288.86	278.38	24
337.06	$320 \cdot 69$	302.39	$297 \cdot 09$	$291 \cdot 80$	281.20	25
$340 \cdot 41$	323.88	$305 \cdot 40$	$300 \cdot 05$	294.70	284.00	25
$343 \cdot 73$	$327 \cdot 04$	$308 \cdot 38$	302.98	$297 \cdot 57$	286.77	26
347.02	$330 \cdot 17$	311.33	305.87	$300 \cdot 42$	289.52	26
$350 \cdot 28$	$333 \cdot 13$	314.25	308.75	303.24	292.23	27
353.51	336.34	$317 \cdot 15$	$311 \cdot 59$	306.04	294.93	27
356.71	$339 \cdot 38$	320.02	$314 \cdot 41$	308.81	$297 \cdot 60$	28
$359 \cdot 88$	$342 \cdot 40$	$322 \cdot 86$	$317 \cdot 20$	$311 \cdot 55$	$300 \cdot 24$	28
363.02	$345 \cdot 39$	$325 \cdot 68$	319.98	314.27	302.86	29
366-14	348.35	328.48	$322 \cdot 72$	316.97	$305 \cdot 46$	29
369.23	$351 \cdot 29$	331.25	$325 \cdot 45$	319.65	308.04	30
$372 \cdot 29$	$354 \cdot 21$	$334 \cdot 00$	$328 \cdot 15$	$322 \cdot 30$	310.60	30
$375 \cdot 33$	357-10	336.73	$330 \cdot 83$	$324 \cdot 93$	$313 \cdot 13$	31
378.35	$359 \cdot 97$	$339 \cdot 43$	$333 \cdot 48$	327-54	315.60	31
381.34	362.81	342-11	$336 \cdot 12$	$330 \cdot 13$	$318 \cdot 14$	32
384-30	$365 \cdot 64$	344.78	338.74	$332 \cdot 70$	320.62	32
$387 \cdot 25$	368.44	$347 \cdot 42$	$341 \cdot 33$	$335 \cdot 25$	323.08	33
$390 \cdot 17$	371.22	350.04	343.01	337.78	325.51	336
393.07	373.98	$352 \cdot 64$	$346 \cdot 47$	$340 \cdot 29$	327.93	34
395.95	376.72	$355 \cdot 23$	349.00	$342 \cdot 78$	$330 \cdot 34$	346
398.81	379•44	$357 \cdot 79$	$351 \cdot 52$	$345 \cdot 26$	332.72	35
$404 \cdot 47$	384.82	362.87	356.51	$350 \cdot 15$	$337 \cdot 44$	360
410.05	390.13	367.87	$361 \cdot 43$	354.98	$342 \cdot 10$	37
415.55	395.37	372.81	$366 \cdot 28$	35975	346.69	38
420.98	$400 \cdot 54$	$377 \cdot 68$	$371 \cdot 11$	$364 \cdot 45$	$351 \cdot 22$	39
$426 \cdot 35$	$405 \cdot 64$	$382 \cdot 49$	$375 \cdot 79$	369.09	355.70	400

Tabie III.-Square roots for finding the effects of the velocity of approach when the orifice is small in proportion to the head. Also for finding the increase in the discharge from an increase of head. (See p. 55

No.	Square	No.	$\begin{aligned} & \text { Square } \\ & \text { root. } \end{aligned}$	No.	Square root.	No.	Square
1.000	$1 \cdot 0000$	$1 \cdot 115$	$1 \cdot 0559$	$1 \cdot 475$	1	1.975	3
1.001	$1 \cdot 0005$	$1 \cdot 120$	$1 \cdot 0583$	1.49	$1 \cdot 2207$	1.99	$1 \cdot 4107$
$1 \cdot 002$	$1 \cdot 0010$	$1 \cdot 125$	$1 \cdot 0607$	15	$1 \cdot 2247$	$2 \cdot 00$	$1 \cdot 4142$
1.004	1-0020	$1 \cdot 13$	1.0630	1.51	1.2288	2.01	$1 \cdot 4177$
1.005	1.0025	$1 \cdot 135$	$1 \cdot 0654$	1.525	1.2349	2.025	$1 \cdot 423$
1.006	1.0030	$1 \cdot 14$	1.0677	$1 \cdot 54$	$1 \cdot 2410$	2.04	$1 \cdot 4283$
1.008	1.0040	$1 \cdot 145$	1.0700	1.55	$1 \cdot 2450$	2.05	$1 \cdot 4318$
1.009	$1 \cdot 0044$	$1 \cdot 15$	1.0723	1.56	$1 \cdot 2490$	$2 \cdot 06$	1.4353
1.010	$1 \cdot 0050$	$1 \cdot 155$	1.0747	1.575	$1 \cdot 2550$	2.075	$1 \cdot 4405$
1.011	1.0055	$1 \cdot 16$	1.0770	$1 \cdot 58$	$1 \cdot 2570$	$2 \cdot 09$	$1 \cdot 4457$
1.012	$1 \cdot 0060$	1-165	1.0794	1.59	$1 \cdot 2610$	$2 \cdot 10$	$1 \cdot 4491$
1.014	1-0070	$1 \cdot 17$	1.0817	$1 \cdot 6$	$1 \cdot 2649$	$2 \cdot 11$	$1 \cdot 4526$
1.015	1.0075	1.175	1.0840	1.61	$1 \cdot 2639$	$2 \cdot 125$	1.4577
1.016	$1 \cdot 0080$	$1 \cdot 18$	1.0863	$1 \cdot 625$	$1 \cdot 2748$	$2 \cdot 14$	$1 \cdot 4629$
1.018	$1 \cdot 0090$	1.185	1.0886	$1 \cdot 64$	$1 \cdot 2806$	$2 \cdot 15$	$1 \cdot 4663$
1.019	1-0095	$1 \cdot 19$	1.0909	1.65	$1 \cdot 2845$	$2 \cdot 16$	$1 \cdot 4697$
1.020	1.0100	1.195	1.0932	$1 \cdot 66$	$1 \cdot 2884$	2.175	1.4748
1.0225	1.0112	$1 \cdot 2$	1.0954	1.675	$1 \cdot 2942$	$\stackrel{2}{ } 19$	$1 \cdot 4799$
1.025	1.0124	1.21	1-1000	1.69	$1 \cdot 3000$	$2 \cdot 2$	$1 \cdot 4832$
1.0275	1.0137	1-22	1-1045	$1 \cdot 7$	1.3038	$2 \cdot 21$	$1 \cdot 4866$
1.03	1.0149	1.23	1-1091	1.71	1-3077	2.225	1.4916
1.0325	1.0161	$1 \cdot 24$	1-1136	$1 \cdot 725$	1.3134	$2 \cdot 24$	$1 \cdot 4937$
1.035	1.0174	1.25	1.1180	1.74	1.3191	$2 \cdot 25$	1.5000
1.0375	1.0186	$1 \cdot 26$	1-1225	1.75	$1 \cdot 3229$	$2 \cdot 26$	$1 \cdot 5033$
1.04	1.0198	1.27	1-1269	1.76	$1 \cdot 3267$	2.275	1.5083
1.0425	$1 \cdot 0210$	1-28	$1 \cdot 1314$	1-775	$1 \cdot 3323$	$2 \cdot 29$	1.5133
1.045	1.0223	1.29	1-1358	1.79	1-3379	$2 \cdot 3$	1.5166
1.0475	1.0235	1.30	1-1402	1.80	$1 \cdot 3416$	$2 \cdot 31$	$1 \cdot 5199$
1.05	1.0247	1.31	1-1446	1.81	$1 \cdot 3454$	$2 \cdot 325$	1-5?48
1.055	$1 \cdot 0271$	$1 \cdot 325$	1-1511	1.825	$1 \cdot 3509$	$2 \cdot 34$	1-5297
1.06	1.0296	$1 \cdot 34$	1-1576	1.84	$1 \cdot 3565$	2-35	1.5330
1.065	1.0320	$1 \cdot 35$	$1 \cdot 1619$	1.85	$1 \cdot 3601$	$2 \cdot 36$	1-5362
1.07	1.0344	1•36	1-1662	1.86	13638	2.375	$1 \cdot 5411$
1.075	$1 \cdot 0368$	1.375	$1 \cdot 1726$	1.875	$1 \cdot 3693$	$2 \cdot 39$	1-5460
1.08	1.0392	$1 \cdot 39$	$1 \cdot 1790$	1.89	1-3748	$2 \cdot 4$	1.5492
1.085	$1 \cdot 0416$	1.40	1-1832	$1 \cdot 9$	$1 \cdot 3784$	$2 \cdot 41$	1.5524
1.09	1.0440	1.41	1-1874	1.91	$1 \cdot 3820$	$2 \cdot 425$	1.5572
1.095	1.0464	$1 \cdot 425$	1-1937	1.925	1-3875	$2 \cdot 44$	$1 \cdot 5621$
$1 \cdot 1$	1.0488	$1 \cdot 44$	$1 \cdot 2000$	194	1-3928	$2 \cdot 45$	1.5652
1.105	1.0512	$1 \cdot 45$	$1 \cdot 2042$	1.95	1.3964	$2 \cdot 46$	1.568.4
$1 \cdot 110$	1.0536	1.	1.2	$1 \cdot 96$	00	$2 \cdot 475$	1.5732

Table III.-Square roots for finding the effects of the velocity of approach when the orifice is small in proportion to the head. Also for finding the increase in the discharge from an increase of head. (See p. 55.)

No.	$\begin{gathered} \text { Square } \\ \text { root. } \end{gathered}$	No.	$\begin{array}{\|c} \text { Square } \\ \text { root. } \end{array}$	No.	$\begin{gathered} \text { Square } \\ \text { root. } \end{gathered}$	No.	$\begin{aligned} & \text { Square } \\ & \text { root. } \end{aligned}$
2.49	1.5780	3.0000	1.7321	$4 \cdot 5$	$2 \cdot 1213$	26	$5 \cdot 0990$
2.5	1.5811	3.025	$1 \cdot 7393$	$5 \cdot 0$	$2 \cdot 2361$	27	$5 \cdot 1962$
2.51	1.5843	$3 \cdot 05$	1.7464	$5 \cdot 5$	$2 \cdot 3452$	28	$5 \cdot 2915$
2.525	1.5890	3.075	$1 \cdot 7536$	6.0	$2 \cdot 4495$	29	$5 \cdot 3852$
2.54	1.5937	$3 \cdot 1$	1.7607	$6 \cdot 5$	2.5495	30	$5 \cdot 4772$
2.55	1.5969	3-125	1.7678	$7 \cdot 0$	$2 \cdot 6458$	31	5.56\%8
$2 \cdot 50$	1.6000	$3 \cdot 15$	1.7748	7.5	$2 \cdot 7386$	32	$5 \cdot 6569$
2.575	$1 \cdot 6047$	$3 \cdot 175$	1.7819	8.0	2.8284	33	5.7446
2.59	$1 \cdot 6093$	$3 \cdot 2$	1.7889	$8 \cdot 5$	2.9155	34	$5 \cdot 8310$
$2 \cdot 6$	1.6125	3.225	1.7958	$9 \cdot 0$	3.0000	35	$5 \cdot 9161$
$2 \cdot 61$	$1 \cdot 6155$	$3 \cdot 25$	1.8028	$9 \cdot 5$	$3 \cdot 0822$	36	6.0000
2.625	$1 \cdot 6202$	$3 \cdot 275$	1.8097	$10 \cdot 0$	$3 \cdot 1623$	37	6.08:28
$2 \cdot 64$	$1 \cdot 6248$	$3 \cdot 3$	$1 \cdot 8166$	$10 \cdot 5$	2-2404	38	$6 \cdot 1644$
$2 \cdot 65$	$1 \cdot 6279$	$3 \cdot 325$	1.8235	11.0	$3 \cdot 3166$	39	6.2450
$2 \cdot 66$	1.6310	$3 \cdot 35$	1.8303	11.5	$3 \cdot 3912$	40	$6 \cdot 3246$
2.675	$1 \cdot 6355$	$3 \cdot 375$	1.8371	$12 \cdot 0$	$3 \cdot 4641$	41	6.4031
$2 \cdot 69$	1.6401	3-1	$1 \cdot 8439$	12.5	$3 \cdot 5355$	42	6.4807
$2 \cdot 7$	1.6432	$3 \cdot 425$	1.8507	13.0	$3 \cdot 6056$	43	6.5574
2.71	$1 \cdot 6462$	$3 \cdot 45$	$1 \cdot 8574$	13.5	$3 \cdot 6742$	44	6.6332
2.725	$1 \cdot 6508$	3.475	$1 \cdot 8611$	$14 \cdot 0$	3.7417	45	6.7082
2.74	$1 \cdot 6553$	$3 \cdot 5$	$1 \cdot 8 ; 08$	14.5	$3 \cdot 8079$	46	6.7823
2.75	1.6583	3-5̃25	1.8775	$15 \cdot 0$	$3 \cdot 8730$	47	6.8557
$2 \cdot 76$	1.6613	3.55	1.8841	15.5	3.9370	48	6.9282
2.775	$1 \cdot 6658$	$3 \cdot 575$	1.8908	16.0	$4 \cdot 0000$	49	7.0000
$2 \cdot 79$	1.6703	$3 \cdot 6$	1.8974	16.5	$4 \cdot 0620$	50	7.0711
2.8	1.6733	$3 \cdot 625$	1.9039	$17 \cdot 0$	$4 \cdot 1.31$	51	$7 \cdot 1414$
2.81	1.6763	$3 \cdot 65$	1.9105	$17 \cdot 5$	$4 \cdot 1833$	52	$7 \cdot 2111$
2.825	1.6808	$3 \cdot 675$	1.9170	$18 \cdot 0$	$4 \cdot 2426$	53	$7 \cdot 2810$
$2 \cdot 84$	1.6852	$3 \cdot 7$	1.9235	18.5	$4 \cdot 3012$	54	$7 \cdot 3485$
$2 \cdot 85$	1.6882	3-725	$1 \cdot 9300$	$19 \cdot 0$	$4 \cdot 3589$	55	$7 \cdot 4162$
$2 \cdot 86$	1.6912	$3 \cdot 75$	1.9365	19.5	4.4159	56	$7 \cdot 4833$
$2 \cdot 875$	1.6956	3-775	$1 \cdot 9429$	20.0	$4 \cdot 4721$	57	$7 \cdot 5498$
$2 \cdot 89$	1.7000	$3 \cdot 8$	1.9494	2.05	$4 \cdot 5277$	58	76158
2.9	1.7029	$3 \cdot 825$	$1 \cdot 955$	21.0	$4 \cdot 5826$	59	$7 \cdot 6811$
2.91	1.7059	$3 \cdot 85$	$1 \cdot 9621$	21.5	$4 \cdot 6368$	60	7.7460
2.925	1.7103	3.8\%	1.9685	22.0	$4 \cdot 6904$	61	$7 \cdot 8102$
2.94	1.7146	3.9	$1 \cdot 9748$	22.5	$4 \cdot 7434$	62	7.8740
2.95	1.7176	3.925	1.9812	23.0	$4 \cdot 7958$	63	$7 \cdot 9373$
$2 \cdot 96$	1.7205	3.95	1.9875	23.5	4. 8477	64	$8 \cdot 0000$
2.975	1.7248	3.975	1.9938	24.0	$4 \cdot 8990$	65	8.06.3
2.99	1.7292	$4 \cdot 0$	$2 \cdot 0000$	25.0	5.0000	66	8. 240

Table IV.-For findina the discharge through rectangular orifices; in which $n=\frac{h}{d}$. Also for finding the effects of the velocity of approach to weirs, and the depression on the crest. (See p. 55.)

$1+n$	$n^{\frac{3}{2}}$	$(1+n)^{2}$	$(1+n)^{\frac{3}{2}}-n^{\frac{1}{2}}$	$1+n$.	$n^{\frac{1}{1}}$	$(1+n)^{2}$	$(1+x)^{\frac{3}{2}}-n^{\frac{3}{2}}$
1.000	. 00	1.0000	1.0000	$1 \cdot 115$	0390	1.1774	$1 \cdot 1384$
1.001	-0000	1.0015	1.0015	$1 \cdot 120$. 0416	$1 \cdot 1853$	$1 \cdot 1437$
1.002	-0001	1.0030	1.0029	$1 \cdot 125$. 0442	1.1932	1.1491
1.004	-0003	$1 \cdot 0060$	1.0058	1.13	-0469	$1 \cdot 2012$	1-1543
1.005	-0004	1.0075	1.0072	$1 \cdot 135$. 0496	1-2092	1-1596
1.006	-0005	$1 \cdot 0090$	1.0086	$1 \cdot 14$. 0524	12172	1-1648
1.008	-0007	$1 \cdot 0120$	1.0113	$1 \cdot 145$	-0552	1.2251	1-1700
1.009	-009	1.0135	$1 \cdot 0127$	1.15	. 0581	1-2332	1-1751
1.010	$\cdot 0010$	1.0150	1.0140	$1 \cdot 155$.0610	1.2413	$1 \cdot 1803$
1.011	-0012	1.0165	1.0154	$1 \cdot 16$. 0640	1.2494	1-1854
1.012	. 0013	1.0181	1.0167	$1 \cdot 165$. 0670	1.2574	1-1904
1.014	. 0017	1.0211	1.0194	$1 \cdot 17$	-0701	12655	$1 \cdot 1955$
1.015	-0018	1.0226	$1 \cdot 0207$	1.175	.0732	$1 \cdot 2737$	$1 \cdot 2005$
1.016	$\cdot 0020$	1.0241	$1 \cdot 0221$	$1 \cdot 18$. 0764	1-2818	$1 \cdot 2054$
1.018	$\cdot 0024$	1.0271	$1 \cdot 0247$	$1 \cdot 185$	${ }^{\cdot 0796}$	$1 \cdot 2900$	1.2104
1.019	-0026	1-0288	$1 \cdot 0260$	$1 \cdot 19$	-0828	1.2981	1.2153
1.020	-0028	1.0301	$1 \cdot 0273$	1-195	.0861	$1 \cdot 3063$	$1 \cdot 202$
1.0225	-0034	1.0339	$1 \cdot 0306$	$1 \cdot 2$. 0894	$1 \cdot 3145$	$1 \cdot 22.51$
1.025	-0040	1.0377	1.0338	$1 \cdot 21$	-0962	1-3310	$1 \cdot 2348$
$1 \cdot 0275$	-0046	1.0415	1.0370	$1 \cdot 22$	-1032	$1 \cdot 3475$	$1-2443$
1.03	. 0052	1.0453	1.0401	$1 \cdot 23$	-1103	1-3641	$1 \cdot 2538$
1.0325	. 0059	1.0491	1.0433	$1 \cdot 24$	$\cdot 1176$	1-3808	$1 \cdot 2632$
1.035	-065	1.0530	$1 \cdot 0464$	1.25	-1250	1-3975	1.2225
1.0375	. 0073	1.0568	1.0495	1.26	-1326	1.4143	1.2818
1.04	-0080	1.0606	$1 \cdot 0.526$	1.27	-1403	1.4312	$1 \cdot 2909$
1.0425	. 0088	1.0644	1.0557	1.28	- 1482	$1 \cdot 4482$	$1 \cdot 3000$
1.045	-0095	$1 \cdot 0683$	$1 \cdot 0587$	1.29	-1562	$1 \cdot 4652$	$1 \cdot 3090$
1.0475	. 0104	1.0721	1.0617	$1 \cdot 30$	$\cdot 1643$	1.4822	1.3179
1.05	. 0112	$1 \cdot 0759$	1.0648	$1 \cdot 31$	$\cdot 1726$	1-4994	1•3268
1.055	. 0129	1.0836	1.0707	1.32)	-1853	1.5252	1.3399
1.06	. 0147	1.0913	1.0766	$1 \cdot 34$	-1983	$1 \cdot 5.512$	1.3529
1.065	. 0166	1.0991	1.0825	$1 \cdot 35$	-2071	1-5686	$1 \cdot 3615$
1.07	$\cdot 0185$	1-1068	1.0883	$1 \cdot 36$	$\cdot 2160$	1.5860	$1 \cdot 3700$
1.075	-0205	1-1146	1.0940	1-375	$\cdot 2296$	1.6123	1.3827
1.08	-0226	1-1224	1.0997	$1 \cdot 39$	$\cdot 2436$	1.6388	1.3952
1.085	. 0248	1.1302	$1 \cdot 1054$	$1 \cdot 40$	-2530	1.6565	$1 \cdot 4035$
$1 \cdot 09$	$\cdot 0270$	1-1380	$1 \cdot 1110$	1.41	-2625	1.6743	$1 \cdot 4118$
1.095	. 0293	1-1458	1-1166	$1 \cdot 425$. 2771	$1 \cdot 7011$	1-4240
$1 \cdot 1$	-0316	$1 \cdot 1537$	1.1221	1.44	-2919	1.7280	$1 \cdot 4361$
$1 \cdot 105$.0340	1-1616	1-1275	$1 \cdot 45$	$\cdot 3019$	1.7460	1.4442
1.110	. 0365	$1 \cdot 1695$	$1 \cdot 1330$	$1 \cdot 46$	-3120	1.7611	$1 \cdot 4521$

Table IV.-For finding the discharge through rectangular ortfices; in which $n=\frac{h}{d}$. Also for finding the effects of the velocity of APPROACH TO WEIRS, \&c. (See p. 55.)

$1+n$	$n^{\frac{3}{2}}$	$(1+n)^{\frac{3}{2}}$	$(1+n)^{\frac{3}{2}}-n^{\frac{3}{2}}$	$1+n$	$n^{\frac{3}{2}}$	$(1+n)^{\frac{3}{2}}$	$(1+n)^{\frac{3}{2}}-n^{\frac{3}{2}}$
1.475	$\cdot 3274$	$1 \cdot 7914$	1.4640	1.975	-9627	2.7756	1.8128
1.49	$\cdot 3430$	1.8188	$1 \cdot 4758$	1.99	-9850	$2 \cdot 8072$	1.8222
1.5	$\cdot 3536$	1.8371	$1 \cdot 4836$	2.	1.0000	2.8284	1.8284
1.51	$\cdot 3642$	1.8555	$1 \cdot 4913$	2.01	$1 \cdot 0150$	$2 \cdot 8197$	$1 \cdot 8346$
$1 \cdot 525$	-3804	1.8832	1.5028	2.025	1.0377	$2 \cdot 8816$	1.8439
1.54	$\cdot 3968$	1.9111	1.5143	2.04	$1 \cdot 0606$	2.9137	1.8531
$1 \cdot 55$	-4079	1-9297	1.5218	2.05	$1 \cdot 0759$	$2 \cdot 9352$	$1 \cdot 8592$
1.56	$\cdot 4191$	$1 \cdot 9484$	$1 \cdot 5294$	2.06	1.0913	2-9567	$1 \cdot 8653$
1.575	-4360	$1 \cdot 9766$	$1 \cdot 5406$	2.075	$1 \cdot 1146$	$2 \cdot 9890$	1.8744
1.58	$\cdot 4417$	$1 \cdot 9860$	$1 \cdot 5443$	2.09	$1 \cdot 1380$	3.0215	1.8835
1.59	$\cdot 4532$	$2 \cdot 0049$	$1 \cdot 5517$	$2 \cdot 10$	1-1537	3.0432	1.8895
$1 \cdot 6$	-4648	20239	1.5591	$2 \cdot 11$	1•1695	$3 \cdot 0650$	1.8955
1.61	-4764	2.0429	$1 \cdot 5664$	$2 \cdot 125$	1-1932	3.0977	1.9045
1.625	$\cdot 4941$	2.0715	1.5774	$2 \cdot 14$	1-217:	3-1306	1.9134
1.64	$\cdot 5120$	2. 1002	1-5882	$2 \cdot 15$	$1 \cdot 2332$	3-1525	1.9193
$1 \cdot 65$	-5240	2-1195	$1 \cdot 5954$	$2 \cdot 16$	1.2494	3-1745	1.9252
1.66	. 5362	2-1388	$1 \cdot 6026$	$2 \cdot 175$	1.2737	$3 \cdot 2077$	1.9340
1.675	$\cdot 5546$	$2 \cdot 1678$	$1 \cdot 6132$	$2 \cdot 19$	1.2981	$3 \cdot 2409$	1.9428
1.69	-5732	2-1970	$1 \cdot 6238$	$2 \cdot 2$	$1 \cdot 3145$	$3 \cdot 2631$	$1 \cdot 9486$
1.7	-5857	$2 \cdot 2165$	1.6309	2-21	1.3310	3-2854	1.9544
$1 \cdot 71$	-5983	$2 \cdot 2361$	1.6379	2.2.25	$1 \cdot 3558$	$3 \cdot 3189$	1.9631
1.725	$\cdot 6173$	$2 \cdot 2656$	$1 \cdot 6483$	¢ 24	13808	$3 \cdot 352.5$	1.9717
$1 \cdot 74$	-6366	$2 \cdot 2952$	$1 \cdot 6586$	$2 \cdot 25$	$1 \cdot 3975$	$3 \cdot 3750$	1.9775
1.75	-6495	$2 \cdot 3150$	$1 \cdot 6655$	$2 \cdot 26$	$1 \cdot 4143$	$3 \cdot 3975$	1.9832
1.76	- 6626	2-3349	$1 \cdot 6724$	$2 \cdot 275$	$1 \cdot 4397$	3-4314	1.9917
1.775	-6823	$2 \cdot 3648$	1.6826	$2 \cdot 29$	$1 \cdot 16.52$	$3 \cdot 4654$	$2 \cdot 0002$
1.79	-7022	$2 \cdot 3949$	1.6927	$2 \cdot 3$	$1 \cdot 4822$	$3 \cdot 4881$	$2 \cdot 0059$
1.80	-7155	$2 \cdot 4150$	1.6994	$2 \cdot 31$	$1 \cdot 4994$	3.5109	2.0115
1.81	-7290	2. 1351	$1 \cdot 7061$	$2 \cdot 325$	$1 \cdot 5252$	$3 \cdot 5451$	$2 \cdot 0200$
1.825	- 7493	$2 \cdot 4651$	$1 \cdot 7161$	$2 \cdot 34$	$1 \cdot 5512$	3.5795	$2 \cdot 0284$
1.84	-7699	$2 \cdot 4959$	17260	$2 \cdot 35$	$1 \cdot 5686$	$3 \cdot 6025$	$2 \cdot 0339$
1.85	- 7837	2.5163	1.7326	$2 \cdot 36$	1.5860	3.6255	$2 \cdot 0395$
1.86	-7975	2.5367	$1 \cdot 7392$	2.375	1.612:3	$3 \cdot 6601$	$2 \cdot 0478$
1.875	-8185	$2 \cdot 5674$	$1 \cdot 7490$	$2 \cdot 39$	1.6388	3.6918	$2 \cdot 0561$
1-89	-8396	2.5983	$1 \cdot 7587$	$2 \cdot 4$	$1 \cdot 6565$	3.7181	$2 \cdot 0616$
1.9	-8538	$2 \cdot 6190$	1-7652	$2 \cdot 11$	1.6743	3-7413	$2 \cdot 0670$
1.91	-8681	$2 \cdot 6397$	1-7716	2.425	$1 \cdot 7011$	3.7763	$2 \cdot 6752$
1.925	-8896	2.6709	$1 \cdot 7813$	2.44	$1 \because 280$	3.8114	$2 \cdot 1834$
194	$\cdot 9114$	$2 \cdot 7021$	1.7907	$2 \cdot 45$	1-7460	3-8349	2.0888
1.95	-9259	2.7830	1.7971	$2 \cdot 46$	$1 \cdot 7641$	\| $3 \cdot 8584$	2.0942
1.9\%	$\cdot 9406$	$2 \cdot 7440$	1.8034	2.475	1.7914	$3 \cdot 8937$	2-1023

Table IV.-For finding the discharge through rectangular orifices; in which $n=\frac{h}{d}$. Also for finding the effects of the velocity of approach to weirs, \&c. (See p. 55.)

$1+n$.	$n^{\frac{3}{2}}$.	$(1+n)^{\frac{3}{2}}$.	$(1+n)^{\frac{3}{2}}-n^{\frac{3}{2}}$	$1+n$.	$n^{\frac{3}{2}}$.	$(1+n)^{\frac{3}{2}}$.	$(1+n)^{\frac{3}{2}}-n^{\frac{3}{2}}$
$2 \cdot 49$	$1 \cdot 8188$	$3 \cdot 9292$	$2 \cdot 1104$	3.	$2 \cdot 8.284$	5•1962	2:3677
$2 \cdot 5$	1.8371	$3 \cdot 9528$	$2 \cdot 1157$	3.025	$2 \cdot 8816$	$5 \cdot 2612$	$2 \cdot 3796$
$2 \cdot 51$	$1 \cdot 8555$	3-9766	$2 \cdot 1211$	3.05	2.9352	5-3266	$2 \cdot 3914$
$2 \cdot 525$	$1 \cdot 8832$	4.0123	2. 1291	3.075	$2 \cdot 9890$	5-3922	2-4032
$2 \cdot 54$	$1 \cdot 9111$	$4 \cdot 0481$	2.1370	$3 \cdot 1$	3.0432	$5 \cdot 4581$	$2 \cdot 4149$
2.55	1.9297	$4 \cdot 0720$	2.1423	3.125	3.0977	5.5243	$2 \cdot 4266$
$2 \cdot 56$	1.9484	$4 \cdot 0960$	$2 \cdot 1476$	$3 \cdot 15$	3.1525	5.5907	$2 \cdot 4382$
2.575	1.9766	$4 \cdot 1321$	$2 \cdot 1554$	3.175	$3 \cdot 2077$	5•6574	$2 \cdot 4497$
$2 \cdot 59$	$2 \cdot 0049$	$4 \cdot 1682$	2.163:3	$3 \cdot 2$	$3 \cdot 2631$	5.7243	$2 \cdot 4612$
$2 \cdot 6$	$2 \cdot 0239$	4-1924	$2 \cdot 1685$	3-225	$3 \cdot 3189$	5.7915	$2 \cdot 4726$
$2 \cdot 61$	$2 \cdot 0429$	$4 \cdot 2166$	$2 \cdot 1737$	3.25	$3 \cdot 3750$	$5 \cdot 8590$	$2 \cdot 4840$
2.625	$2 \cdot 0715$	$4 \cdot 2530$	2.1815	3-275	$3 \cdot 4314$	5.9268	$2 \cdot 4953$
$2 \cdot 64$	$2 \cdot 1002$	$4 \cdot 2895$	2.1893	$3 \cdot 3$	$3 \cdot 4881$	5.9947	$2 \cdot 5066$
$2 \cdot 65$	$2 \cdot 1195$	$4 \cdot 3139$	2-1944	3.325	$3 \cdot 5451$	6.0630	2.5179
$2 \cdot 66$	2-1388	$4 \cdot 3383$	2-1996	$3 \cdot 35$	$3 \cdot 6025$	$6 \cdot 1315$	2.5290
2.675	2. 1678	4-3751	$2 \cdot 2073$	$3 \cdot 375$	$3 \cdot 6601$	6.2003	$2 \cdot 5401$
$2 \cdot 69$	2-1970	$4 \cdot 4119$	$2 \cdot 2149$	$3 \cdot 4$	$3 \cdot 7181$	6.2693	$2 \cdot 5512$
$2 \cdot 7$	$2 \cdot 2165$	$4 \cdot 4366$	2.2200	$3 \cdot 425$	$3 \cdot 7763$	$6 \cdot 3386$	$2 \cdot 5623$
$2 \cdot 71$	2-2361	$4 \cdot 4612$	$2 \cdot 2251$	$3 \cdot 45$	$3 \cdot 8349$	6.4081	2.5732
$2 \cdot 725$	$2 \cdot 2656$	$4 \cdot 4983$	$2 \cdot 2327$	$3 \cdot 475$	$3 \cdot 8937$	$6 \cdot 4779$	2.5842
$2 \cdot 74$	$2 \cdot 2952$	$4 \cdot 5355$	$2 \cdot 2403$	3.5	3.9528	6.5479	2.5951
$2 \cdot 75$	$2 \cdot 3150$	$4 \cdot 5604$	$2 \cdot 2453$	3.525	4.()123	6.6182	$2 \cdot 6059$
$2 \cdot 76$	2-3349	$4 \cdot 5853$	$2 \cdot 2504$	3.55	$4 \cdot 0720$	6.6887	$2 \cdot 6167$
$2 \cdot 775$	$2 \cdot 3648$	$4 \cdot 6227$	$2 \cdot 2579$	3.575	$4 \cdot 1321$	6.7595	$2 \cdot 6274$
$2 \cdot 79$	$2 \cdot 3949$	$4 \cdot 6602$	$2 \cdot 2654$	$3 \cdot 6$	$4 \cdot 1924$	6.8305	2.6381
$2 \cdot 8$	$\bigcirc \cdot 4150$.f.6853	$2 \cdot 2703$	$3 \cdot 625$	$4 \cdot 2530$	6.9018	$2 \cdot 6488$
$2 \cdot 81$	$2 \cdot 1351$	$4 \cdot 7104$	$2 \cdot 2753$	3.65	$4 \cdot 3139$	6.9733	$2 \cdot 6594$
2.825	$2 \cdot 1654$	$4 \cdot 7482$	$\because \cdot 2827$	3.675	$4 \cdot 3751$	$7 \cdot 0451$	$2 \cdot 6700$
$2 \cdot 84$	$2 \cdot 4959$	$4 \cdot 7861$	$2 \cdot 2902$	$3 \cdot 7$	$4 \cdot 4366$	$7 \cdot 1171$	$2 \cdot 6805$
$2 \cdot 85$	$2 \cdot 5163$	$4 \cdot 8114$	$2 \cdot 2951$	3.7.25	$4 \cdot 4983$	$7 \cdot 1893$	$2 \cdot 6910$
$2 \cdot 86$	$2 \cdot 5367$	4-8367	$2 \cdot 3000$	3.75	$4 \cdot 5604$	$7 \cdot 2618$	$2 \cdot 7015$
$2 \cdot 875$	$2 \cdot 5674$	$4 \cdot 8748$	$2 \cdot 3074$	3.775	$4 \cdot 62 \cdot 7$	73346	$2 \cdot 7119$
$2 \cdot 89$	2.5983	$4 \cdot 9130$	$2 \cdot 3147$	$3 \cdot 8$	$4 \cdot 6853$	$7 \cdot 4076$	2.7223
$2 \cdot 9$	$2 \cdot 6190$	$4 \cdot 9385$	$2 \cdot 3196$	$3 \cdot 825$	4.7482	$7 \cdot 4808$	2.7326
$2 \cdot 91$	$2 \cdot 6397$	$4 \cdot 9641$	$2 \cdot 3244$	$3 \cdot 85$	4.8114	7.5542	$2 \cdot 7429$
2.925	$2 \cdot 6708$	$5 \cdot 0025$	$2 \cdot 3317$	3.875	$4 \cdot 8748$	$7 \cdot 6279$	$2 \cdot 7531$
$2 \cdot 94$	2.7021	$5 \cdot 0411$	2.3389	$3 \cdot 9$	$4 \cdot 9385$	$7 \cdot 7019$	$2 \cdot 7634$
2.95	$2 \cdot 7230$	5.0668	$2 \cdot 3438$	3.925	$5 \cdot 0025$	77761	2.7735
$2 \cdot 96$	$2 \cdot 7440$	5.0926	$2 \cdot 3486$	3.95	5.0668	$7 \cdot 8505$	$2 \cdot 7837$
2.975	2.7.56	5-1313	$2 \cdot 3558$	3.975	$5 \cdot 1313$	7.9251	$2 \cdot 7938$
$2 \cdot 99$	$2 \cdot 8072$	$5 \cdot 1702$	$2 \cdot 3630$	4.	5•1962	8.	$2 \cdot 8038$

Table IV.-For finding the discharge throvgh rectangular orifices; in which $n=\frac{h}{d}$. Also for finding the effects of the velocity of approach to weirs, \&c. (See p. 55.)

$1+n$.	$n^{\frac{3}{2}}$.	$(1+n)^{\frac{3}{2}}$.	$(1+n)^{\frac{3}{2}}-n^{\frac{3}{2}}$.	$1+n$.	$n^{\frac{3}{2}}$.	$(1+n)^{\frac{3}{2}}$.	$(1+n)^{\frac{3}{2}}-n^{\frac{3}{2}}$
4\%	6.5479	$9 \cdot 5459$	$2 \cdot 9980$	26.	125.0000	132.5745	7.5745
$5 \cdot 0$	$8 \cdot 0000$	$11 \cdot 1803$	3. 1803	27.	132.5745	140-2961	7.7216
$5 \cdot 5$	95459	$12 \cdot 8986$	$3 \cdot 3507$	28.	140.2961	148-1621	$7 \cdot 8660$
6.0	11.180:3	14.6969	$3 \cdot 5166$	29.	$143 \cdot 1621$	$156 \cdot 1698$	$8 \cdot 0077$
6.5	$12 \cdot 8986$	16.5718	3.6732	30.	156.1698	$164 \cdot 3168$	$8 \cdot 1470$
$7 \cdot 0$	14.6969	18.5203	3.8234	31.	$164 \cdot 3168$	$172 \cdot 6007$	8-2839
7.5	16.5718	20.5396	3.9678	32.	$172 \cdot 6007$	181.0193	8.4186
8.0	18.5203	22.6274	$4 \cdot 1071$	33.	181.0193	189.5706	$8 \cdot 5513$
8.5	20.5396	$\underline{24.7815}$	$4 \cdot 2419$	34.	189.5706	198: 524	$8 \cdot 6818$
$9 \cdot 0$	22.6274	27.0000	$4 \cdot 3726$	35.	198-2.524	20\%.0628	8.8104
$9 \cdot 5$	$24 \cdot 7815$	29.2810	$4 \cdot 4995$	36.	20\%.0628	216.0000	8.9372
10.0	27-0000	31.6228	$4 \cdot 6228$	37.	216.0000	2.25.062.2	$9 \cdot 0622$
10%	$29 \cdot 2810$	34.0239	4.7429	38.	$225 \cdot 0622$	$234 \cdot 2477$	9.1855
11.0	31.6228	$36 \cdot 4829$	$4 \cdot 8601$	39^{-}	$234 \cdot 2477$	$213 \cdot 5549$	9•307:
11.5	34.0239	38.9984	4.9745	40.	243.5549	$252 \cdot 9822$	9•4273
120	36.4829	$41 \cdot 5692$	$5 \cdot 0863$	41.	252.9822	262.5281	$9 \cdot 5459$
12.5	38.9984	44-1942	5•1958	42.	262.5281	272.1911	$9 \cdot 6630$
13.0	$41 \cdot 5692$	$46 \cdot 8722$	5•3030	43.	272.1911	$281 \cdot 9699$	$9 \cdot 7788$
13.5	$44 \cdot 1912$	$49 \cdot 6022$	$5 \cdot 4080$	44.	281.9699	$291 \cdot 8630$	9.8931
14.0	46.8722	52.3832	5.5110	45.	291-8630	$301 \cdot 8692$	10.0062
14.5	$49 \cdot 6022$	$55 \cdot 2144$	$5 \cdot 6122$	46.	301-8692	311.9872	$10 \cdot 1180$
15.0	52.3832	58.0947	$5 \cdot 7115$	47.	311.9872	$32 \cdot 2158$	$10 \cdot 2286$
15.5	55.2144	61.0236	$5 \cdot 8092$	48.	322-2158	332-5538	$10 \cdot 3380$
16.0	58.0947	64.	$5 \cdot 9053$	49	$332 \cdot 5538$	$343 \cdot 0000$	10.4462
16.5	61.0236	$67 \cdot 0247$	6.0011	50	343.0000	353.5534	$10 \cdot 5534$
17.0	64.	70.0928	$6 \cdot 0928$	51.	353.5.54	$364 \cdot 2128$	$10 \cdot 6594$
17.5	$67 \cdot 0247$	$73 \cdot 2078$	$6 \cdot 1831$	52.	364.2128	$374 \cdot 9773$	10.7645
18.0	$70 \cdot 0928$	76.3675	$6 \cdot 2747$	53.	374.9773	$385 \cdot 8458$	$10 \cdot 8685$
18.5	$73 \cdot 2078$	79.5715	6.3637	54.	$385 \cdot 8458$	396-8173	10.9715
19.0	76.3675	82.8191	6.4516	55.	396.8173	$407 \cdot 8909$	11.0736
19.5	79.5715	$86 \cdot 1097$	6.5382	56.	$40 \% \cdot 8909$	419.0656	11-1747
20.0	$82 \cdot 8191$	$89 \cdot 4427$	$6 \cdot 6.236$	57.	$419 \cdot 0656$	$430 \cdot 3406$	11.2750
20.5	$86 \cdot 1097$	92.8177	$6 \cdot 7080$	58.	$430 \cdot 3406$	$441 \cdot 7148$	11.3742
21.0	$89 \cdot 4427$	96.2341	$6 \cdot 7914$	59.	441.7148	$453 \cdot 1876$	$11 \cdot 4728$
21.5	92.8177	99.6914	$6 \cdot 8737$	60.	453-1876	$46+7580$	11.5704
$2 \cdot 0$	96.2341	103•1892	6.9551	61.	464.7580	476.4252	11.6672
2.5	99.6914	106.7269	$7 \cdot 0355$	62.	476.4252	$488 \cdot 1885$	$11 \cdot 7633$
23.	103.1892	$110 \cdot 3041$	$7 \cdot 1149$	63.	$488 \cdot 1885$	$500 \cdot 0470$	11.8585
23.5	$106 \cdot 7269$	$113 \cdot 9205$	$7 \cdot 1936$	64.	$500 \cdot 0470$	$512 \cdot 0000$	11.9530
$\because 4$.	$110 \cdot 3041$	117.5755	7 $\cdot 2714$	65	512.0000	524•0468	12.0468
25.	117.3755	125	$7 \cdot 424 \%$	66°	$524 \cdot 0168$	536. 1865	1-2•1397

Values of n from 3.5 to 66 .

Table V.-Coefficients of discharge for different rattos OF THE CHANNEL TO THE ORIFICE.

Coefficients for heads in still water $\cdot 550$ and $\cdot 573$.

Ratio of the channel to the orifice.	Coefficient $\cdot 550$ for heads in still water.			Coefficient $\cdot 573$ for heads in still water.		
	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices: the heads measured to the centres.	Coefficients for weirs: the heads measured the full depth.	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices : the heads measured to the centres.	Coefficients for weirs: the heads measured the full depth.
30.	-000	-550	-550	-000	$\cdot 573$	-573
20.	-001	-550	-551	-001	-573	-574
15.	-001	-550	-551	-001	-573	-574
10.	-003	-551	-552	-003	-574	$\cdot 576$
9.	-004	-551	-553	-004	-574	-576
8.	-005	-551	-554	-005	-574	$\cdot 577$
$7 \cdot$	-006	-552	-555	-007	-575	-578
6.	-008	-552	-557	-009	-576	-580
$5 \cdot 5$	-010	-553	-558	-011	-576	-582
$5 \cdot 0$	-012	-553	-559	-013	-577	-584
$4 \cdot 5$. 015	-554	-562	-016	-578	-586
4.0	-019	- 555	-565	-021	-579	-589
$3 \cdot 75$	-022	-556	-566	-024	-580	-592
$3 \cdot 50$	-025	-557	-569	-028	-581	-594
$3 \cdot 25$	-029	-558	-572	-032	-582	-598
30	-035	-559	-575	-038	-584	-602
2.75	-042	-561	-580	-045	-586	-607
2.50	-051	-564	-586	-055	-589	-614
$2 \cdot 25$	-064	-567	-594	-069	-593	-623
$2 \cdot 00$	-082	-572	-606	-089	-598	-636
1.95	-086	-573	-609	-094	-599	-639
$1 \cdot 90$	-091	-575	-612	-100	-601	-643
1.85	-097	-576	-615	-106	-603	$\cdot 647$
1.80	-103	-578	-619	-113	-604	$\cdot 651$
$1 \cdot 75$	-110	-579	-623	-120	-606	-655
$1 \cdot 70$	-117	-581	-627	-128	-609	-660
165	-125	-583	-632	$\cdot 137$	-611	-666
$1 \cdot 60$	-134	-586	$\cdot 637$	$\cdot 147$	-614	-671
1.55	-144	-588	-643	-158	-617	-678
1.50	-155	-591	-649	$\cdot 171$	-620	-685
$1 \cdot 45$	-168	-594	-656	-185	-624	-694
$1 \cdot 40$	-183	-598	-664	-201	-628	$\cdot 703$
$1 \cdot 35$	-199	-602	-673	-220	-633	$\cdot 713$
$1 \cdot 30$	-218	-607	-683	-241	-638	-724
$1 \cdot 25$	-240	-612	-695	-266	-645	$\cdot 737$
$1 \cdot 20$	-265	-619	$\cdot 707$	-295	-652	$\cdot 753$
$1 \cdot 15$	-297	-626	$\cdot 723$	-330	-661	$\cdot 770$
$1 \cdot 10$	$\cdot 333$	$\cdot 635$	$\cdot 741$	-372	-671	$\cdot 791$
1.05	-378	-646	$\cdot 762$	-424	-684	. 816
1.00	-434	$\cdot 659$	$\cdot 787$	-489	-699	.845

See the auxiliary table, p. 68.

Table V.-Coefficients of discharge for mifferent rattos of the channel to the orifice.

Coefficients for heads in still water $\cdot 584$ and $\cdot 595$.

Ratio of the channel to the orifice.	Coefficient $\cdot 584$ for heads in still water.			Coefficient $\cdot 595$ for heads in still water.		
	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices: the heads measured to the centres.	Coefficients for weirs: the heads measured the full depth.	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices: the heads measured to the centres.	Coefficients for weirs: the heads measured the full depth.
30.	-000	-584	-584	$\cdot 000$	-595	-595
20°	-001	-584	$\cdot 585$	-001	-595	-596
15°	-002	-584	-585	-002	-595	-596
10.	-003	-585	$\cdot 587$	-004	-596	-598
9.0	-004	-585	-588	-004	-596	-599
8.0	-005	-586	-588	-006	-597	-600
$7 \cdot 0$	-007	-586	- 590	-007	-597	-601
6.0	-010	-587	-592	-010	-598	-603
$5 \cdot 5$	-011	-587	-593	-012	-599	-605
$5 \cdot 0$	-014	-588	-595	-014	-599	-607
$4 \cdot 5$	-017	-589	-598	-018	-600	-610
$4 \cdot 0$	-022	-590	-601	-023	-602	-613
$3 \cdot 75$	-025	-591	-604	-026	-603	-616
$3 \cdot 50$	-029	-592	-606	-030	-604	-619
$3 \cdot 25$	-033	-594	$\cdot 610$	-035	-605	-622
$3 \cdot 0$	-039	-595	-614	-041	-607	-627
2.75	-047	-598	-620	-049	-609	-633
$2 \cdot 50$	-058	-601	-627	-060	-613	-641
$2 \cdot 25$	$\cdot 072$	$\cdot 605$. 637	-075	-617	$\cdot 651$
2.0	-093	-611	-651	-097	-623	-666
1.95	-099	-612	-654	-103	-625	-669
$1 \cdot 90$	-104	-614	-660	-109	-627	-673
1.85	-111	-615	-662	-115	-628	-678
$1 \cdot 80$	-118	-617	-666	-123	-630	-682
$1 \cdot 75$	$\cdot 125$	-620	$\cdot 671$	-131	-633	-687
1.70	-134	-622	$\cdot 676$	-140	-635	-693
1.65	-143	$\cdot 624$	-682	-149	-638	-699
1.60	-154	-627	-689	-160	-641	$\cdot 706$
1.55	-166	$\cdot 631$	$\cdot 696$	-173	-644	$\cdot 713$
$1 \cdot 50$	-179	-634	$\cdot 703$	-187	-648	$\cdot 721$
$1 \cdot 45$	-194	-638	-712	-202	-652	$\cdot 730$
$1 \cdot 40$	-211	-643	$\cdot 722$	-220	$\cdot 657$	-741
$1 \cdot 35$	-230	$\cdot 648$	$\cdot 732$	-241	-663	$\cdot 752$
$1 \cdot 30$	-253	-654	$\cdot 745$	-265	-669	$\cdot 765$
$1 \cdot 25$	-279	-661	$\cdot 759$	-293	-677	$\cdot 780$
$1 \cdot 20$	-310	-669	$\cdot 775$	-325	-685	.797
$1 \cdot 15$	-348	-678	$\cdot 794$	-366	-695	-818
$1 \cdot 10$	-393	-689	- 816	$\cdot 414$	$\cdot 707$	-842
1.05	-448	$\cdot 703$	-842	-473	$\cdot 722$	-870
$1 \cdot 00$	-518	$\cdot 719$	-874	-548	$\cdot 740$	-905

See the auxiliary table, p. 68.

Table V.-Coefficients of discharge for different ratios of the channel to the orifice.

Coefficients for heads in still water $\cdot 606$ and $\cdot 617$.

Ratio of the channel to the orifice.	Coefficient $\cdot 606$ for heads in still water.			Coefficient 617 for heads in still water.		
	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices: the heads measured to the centres.	Coefficients for weirs : the heads measured the full depth.	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices: the heads measured to the centres.	Coefficients for weirs: the heads measured the full depth.
$30 \cdot$	-000	-606	-606	-000	-617	-617
20°	-001	-606	-607	-001	-617	-618
15°	-002	-607	-607	-002	-618	-619
10°	-004	-607	-609	-004	-618	-620
9.0	-005	-607	-610	-005	-618	-621
$8 \cdot 0$	-006	-608	-611	-006	-619	-622
$7 \cdot 0$	-008	-608	-612	-008	-619	-624
$6 \cdot 0$	-010	-609	-615	-011	-620	-626
$5 \cdot 5$	-012	-610	-616	-013	-621	-628
$5 \cdot 0$	-015	$\cdot 611$	-619	-015	-622	-630
$4 \cdot 5$	-018	-612	-621	-019	-623	-633
$4 \cdot 0$	-023	-613	-625	-024	-624	-637
$3 \cdot 75$	-027	-614	-628	-028	-626	-640
$3 \cdot 50$	-031	-615	-631	-032	$\cdot 627$	-643
$3 \cdot 25$	-036	-617	-635	-037	-628	-647
$3 \cdot 00$	-043	-619	-640	-044	-630	-653
$2 \cdot 75$	-051	-621	-646	-053	-633	-660
$2 \cdot 50$	-062	$\cdot 625$	-654	-065	-637	-668
$2 \cdot 25$	$\cdot 078$	-629	-665	-081	-642	-679
$2 \cdot 00$	-101	-636	-681	-105	-649	-696
$1 \cdot 95$	-107	-638	-685	-111	-650	$\cdot 700$
$1 \cdot 90$	-113	-639	-689	-118	-652	$\cdot 704$
1.85	-119	-641	-693	-125	-654	$\cdot 709$
$1 \cdot 80$	-128	-644	-698	-133	-657	$\cdot 714$
$1 \cdot 75$	-136	-646	$\cdot 703$	-142	-659	$\cdot 720$
$1 \cdot 70$	-146	-649	$\cdot 709$	-152	-662	$\cdot 726$
1.65	$\cdot 156$	-652	$\cdot 716$	-163	-665	$\cdot 733$
1.60	-167	-655	$\cdot 723$	-175	-669	$\cdot 741$
1.55	-180	-658	$\cdot 731$	-188	-673	$\cdot 749$
$1 \cdot 50$	-195	-662	$\checkmark 739$	-204	$\cdot 677$	$\cdot 759$
$1 \cdot 45$	-212	-667	-749	:221	$\cdot 681$	$\cdot 768$
$1 \cdot 40$	-231	-672	$\cdot 760$	-241	-687	$\cdot 780$
$1 \cdot 35$	-252	-678	$\cdot 772$	-264	-694	$\cdot 793$
$1 \cdot 30$	-278	-685	$\cdot 786$	-291	$\cdot 701$	-808
$1 \cdot 25$	$\cdot 307$	-693	-803	-322	-709	-825
$1 \cdot 20$	-342	$\cdot 702$	-821	-359	$\cdot 719$	-845
$1 \cdot 15$	-384	$\cdot 713$	-843	-404	$\cdot 731$	-868
$1 \cdot 10$	-436	$\cdot 726$	-868	$\cdot 459$	$\cdot 745$	-895
1.05	$\cdot 499$	$\cdot 742$	-898	-527	$\cdot 763$	-928
1.00	-580	$\cdot 762$	$\cdot 936$	$\cdot 615$	$\cdot 784$	-969

See the auxiliary table, p. 68.

Table V.-Coefficients of discharge for different ratios of the channel to the orifice.

Mean Coefficient -628.
Coefficients for heads in still water •628 and •639.

Ratio of the channel to the orifice.	Coefficient 628 for heads in still water.			Coefficient $\cdot 639$ for heads in still water.		
	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices: the heads measured to the centres.	Coefficients for weirs : the heads measured the full depth.	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices : the heads measured to the centres.	Coefficients for weirs: the heads measured the full depth.
$30 \cdot$	$\cdot 000$	- 628	$\cdot 628$	$\cdot 000$	$\cdot 639$	-639
20°	$\cdot 001$	$\cdot 628$	-629	$\cdot 001$	-639	-640
15.	-002	-629	-630	-002	-640	$\cdot 641$
10.	-004	-629	$\cdot 632$	-004	$\cdot 640$	$\cdot 643$
$9 \cdot 0$	-005	-630	-632	-005	-641	$\cdot 644$
8.0	-006	-630	-634	-006	-641	-645
$7 \cdot 0$	-008	-631	$\cdot 635$	-008	-642	-647
6.0	. 011	-631	-638	-011	$\cdot 643$	-649
5.5	-013	-632	-640	-014	$\cdot 643$	$\cdot 651$
$5 \cdot 0$	-016	-633	-642	$\cdot 017$	-644	-654
$4 \cdot 5$	-020	-634	-645	-021	$\cdot 646$	-657
$4 \cdot 0$. 025	-636	-649	-026	$\cdot 647$	-662
3.75	-029	-637	-652	$\cdot 030$	-648	$\cdot 665$
$3 \cdot 50$	-033	-638	-656	-034	-650	-668
$3 \cdot 25$	-039	-639	-659	-040	-652	$\cdot 673$
3.0	-046	$\cdot 642$	-666	$\cdot 048$	-654	-678
2.75	-055	-645	-672	$\cdot 057$	$\cdot 657$	$\cdot 686$
$2 \cdot 50$	-067	-649	-682	$\cdot 070$	-661	$\cdot 695$
$2 \cdot 25$	-084	$\cdot 654$	-694	-088	-666	-708
$2 \cdot 0$	-109	$\cdot 661$	$\cdot 711$	$\cdot 114$	-674	$\cdot 727$
1.95	-116	-663	$\cdot 715$	-120	-676	-731
1.90	-123	-665	$\cdot 720$	-128	-679	-736
$1 \cdot 85$	-130	-668	-725	-135	-681	$\cdot 741$
1.80	-139	-670	$\cdot 731$	-144	-684	$\cdot 747$
$1 \cdot 75$	-148	-673	$\cdot 737$	-154	-686	-753
$1 \cdot 70$	-158	-676	$\cdot 743$	-165	-690	- 760
$1 \cdot 65$	-169	$\cdot 679$	$\cdot 750$	-176	-693	-768
$1 \cdot 60$	-182	-683	$\cdot 758$	-190	-697	$\cdot 776$
1.55	-196	$\cdot 687$	$\cdot 767$	-205	$\cdot 701$	-786
$1 \cdot 50$	-213	-692	$\cdot 777$	-222	-706	-796
$1 \cdot 45$	-231	-697	$\cdot 788$	-241	$\cdot 712$	-808
$1 \cdot 40$	-252	$\cdot 703$	-800	-262	-718	-820
$1 \cdot 35$	-276	$\cdot 709$	-814	-289	-725	-836
$1 \cdot 30$	-304	-717	-830	-319	$\cdot 734$	-853
$1 \cdot 25$	-338	$\cdot 726$	-846	-354	-743	-872
$1 \cdot 20$	$\cdot 377$	$\cdot 734$	-866	-396	$\cdot 755$	-895
$1 \cdot 15$	$\cdot 425$	$\cdot 750$	-894	-447	$\cdot 769$	-921
$1 \cdot 10$	$\cdot 484$	$\cdot 765$	-924	-509	-785	-953
1.05	$\cdot 557$	$\cdot 784$	-959	-588	-805	-991
$1 \cdot 00$	$\cdot 651$	-807	$1 \cdot 002$	-690	-830	$1 \cdot 038$

See the auxiliary table, p. 68.

Table V.-Coefficients of discharge for different ratios of the channel to the orifice.
Coefficients for heads in still water $\cdot 650$ and $\cdot 66 \%$.

Ratio of the channel to the orifice.	Coefficient $\cdot 650$ for heads in still water.			Coefficient $\cdot 667$ for heads in still water.		
	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices : the heads measured to the centres.	Coefficients for weirs: the heads measured the full depth.	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices : the heads measnred to the centres.	Coefficients for weirs : the heads measured the full depth.
30.	$\cdot 000$	-650	-650	-000	$\cdot 667$	-667
20°	.001	-650	-651	-001	$\cdot 667$	-668
15.	-002	-651	-652	-002	-667	-669
10.	-004	-651	-654	-004	-668	-671
9.	-005	-652	-655	-006	-669	-672
8.	$\cdot 007$	-652	-656	-007	-669	-673
$7 \cdot 0$	-009	-653	-658	-009	-670	-675
$6 \cdot 0$	-012	-654	-661	-012	-671	-678
$5 \cdot 5$	-014	-655	-663	-015	-672	-680
$5 \cdot 0$	-017	$\cdot 656$	-665	-018	-673	-682
$4 \cdot 5$	-021	-657	-669	-022	-674	-687
$4 \cdot 0$	-027	-659	-674	-029	-676	-692
$3 \cdot 75$.031	-660	-677	-033	-678	-696
$3 \cdot 50$	-036	-662	$\cdot 681$	-038	-679	$\cdot 700$
$3 \cdot 25$	-042	-663	-686	-044	-681	$\cdot 705$
$3 \cdot 0$	-049	-666	-692	-052	-684	$\cdot 711$
2.75	-059	-669	-699	-062	$\cdot 687$	-720
$2 \cdot 50$	-073	-673	$\cdot 709$	-077	-692	$\cdot 731$
$2 \cdot 25$	-091	-679	$\cdot 723$	-096	-698	$\cdot 745$
$2 \cdot 0$	-118	-687	$\cdot 742$	$\cdot 125$	$\cdot 707$	$\cdot 766$
1.95	-125	-689	$\cdot 747$	-132	$\cdot 709$	-771
1.90	$\cdot 133$	-692	$\cdot 752$	-140	$\cdot 712$	$\cdot 777$
1.85	-141	-694	$\cdot 758$	-149	$\cdot 715$	$\cdot 783$
1.80	-150	-697	$\cdot 764$	-159	$\cdot 718$	$\cdot 790$
$1 \cdot 75$	-160	$\cdot 700$	$\cdot 771$	-170	$\cdot 721$	$\cdot 797$
$1 \cdot 70$	-172	-704	$\cdot 779$	-182	$\cdot 725$	-805
$1 \cdot 65$	-184	$\cdot 707$	$\cdot 786$	-195	$\cdot 729$	-814
$1 \cdot 60$	-198	$\cdot 711$	$\cdot 795$	-210	$\cdot 733$	-823
1.55	-213.	$\cdot 716$	-805	-227	$\cdot 738$	-833
1.50	-231	$\cdot 721$	-816	-246	$\cdot 744$	-846
1.45	-251	$\cdot 727$	-828	-268	$\cdot 751$	-859
$1 \cdot 40$	-275	$\cdot 734$	-842	-293	-758	-874
$1 \cdot 35$	$\cdot 302$	$\cdot 742$	-858	-322	$\cdot 764$	-888
1.30	-333	$\cdot 751$	-876	-356	$\cdot 776$	-911
1.25	$\cdot 371$	$\cdot 761$	-896	-398	$\cdot 788$	-934
1.20	-415	$\cdot 773$	-920	-446	-802	-961
$1 \cdot 15$	-469	$\cdot 788$	-949	-506	-818	-992
$1 \cdot 10$	-537	-806	-983	-580	-838	1.030
1.05	$\cdot 621$	-828	1.024	$\cdot 675$	-863	1.076
1.00	$\cdot 732$	-855	1.074	-800	-894	1-133

See the auxiliary table, p. 68.

Table V.-Coefficients of discharge for different ratios of the channel to the obifice.
Coefficients for heads in still water $\sqrt{\cdot 5}=\cdot \tau 071$ and 1 .

Ratio of the channel to the orifice.	Coefficient $\cdot 7071$ for heads in still water.			Coefficient 1.000 for heads in still water.		
	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices : the heads measured to the centres.	Coefficients for weirs : the heads measured the full depth.	Ratio of the height due to the velocity of approach to the head.	Coefficients for orifices: the heads measured to the centres.	Coefficients for weirs: the heads measured the full depth.
$30 \cdot$	-001	$\cdot 707$	$\cdot 708$	-001	1.001	$1 \cdot 002$
20°	-001	$\cdot 708$	$\cdot 708$	-003	1.001	1.004
15°	-001	$\cdot 708$	$\cdot 709$	-005	1.002	1.006
10°	-005	$\cdot 709$	$\cdot 712$	-010	1.005	1.014
9.	-006	-709	$\cdot 713$	-013	1.006	1.017
8.	-008	$\cdot 710$	$\cdot 714$	-016	1.008	1.021
7.	-010	$\cdot 711$	$\cdot 717$.021	1.010	1.028
6.	-014	$\cdot 712$	$\cdot 721$	-029	1.014	1.038
$5 \cdot 5$	-017	$\cdot 713$	$\cdot 723$	-034	1.017	1.045
$5 \cdot 0$	-020	$\cdot 714$	$\cdot 727$	-041	1.021	$1 \cdot 055$
$4 \cdot 5$	-025	$\cdot 716$	$\cdot 731$	-052	1.026	1.067
$4 \cdot 0$	-032	$\cdot 718$	$\cdot 737$	-067	1.033	1.084
$3 \cdot 75$.037	\checkmark	$\cdot 742$	-07\%	1.038	1.096
$3 \cdot 50$	-043	$\cdot 722$	$\cdot 747$	-089	$1 \cdot 044$	$1 \cdot 110$
$3 \cdot 25$.050	$\cdot 724$	$\cdot 753$	$\cdot 105$	1.051	$1 \cdot 127$
3.00	-059	$\cdot 728$	$\cdot 760$	-125	1.061	1-149
2.75	-071	$\cdot 732$	$\cdot 770$	-152	1.073	$1 \cdot 178$
$2 \cdot 50$	$\cdot 087$	$\cdot 737$	$\cdot 783$	-190	1.091	$1 \cdot 216$
$2 \cdot 25$	-110	$\cdot 745$. 801	-246	$1 \cdot 116$	$1 \cdot 269$
$2 \cdot 00$	-143	$\cdot 756$	-826	-333	$1 \cdot 155$	$1 \cdot 347$
1.95	-151	$\cdot 759$	-832	-356	1-165	1-367
$1 \cdot 90$	-161	$\cdot 762$	-839	-383	$1 \cdot 176$	$1 \cdot 389$
1.85	-171	$\cdot 765$	-846	-412	1-188	$1 \cdot 413$
$1 \cdot 80$	-182	$\cdot 769$	-854	$\cdot 446$	$1 \cdot 203$	$1 \cdot 441$
$1 \cdot 75$	-195	$\cdot 773$	-863	-484	1.218	1.471
$1 \cdot 70$	-209	$\cdot 778$	-873	-529	1.237	$1 \cdot 505$
$1 \cdot 65$	-225	$\cdot 783$	-883	-579	$1 \cdot 257$	$1 \cdot 543$
$1 \cdot 60$	-243	$\cdot 788$	-895	-641	$1 \cdot 281$	$1 \cdot 589$
$1 \cdot 55$	-263	$\cdot 795$	-908	$\cdot 711$	$1 \cdot 308$	$1 \cdot 638$
1.50	-286	-802	-923	-800	$1 \cdot 342$	1.699
$1 \cdot 45$	-312	-810	-939	. 903	$1 \cdot 379$	1.767
$1 \cdot 40$	-342	-819	-958	$1 \cdot 042$	$1 \cdot 429$	$1 \cdot 854$
$1 \cdot 35$	$\cdot 378$.830	-980	1.216	1.489	1.958
$1 \cdot 30$	-421	-842	$1 \cdot 003$	1.449	$1 \cdot 565$	2.088
$1 \cdot 25$	$\cdot 471$	-857	1.033	1.778	$1 \cdot 667$	$2 \cdot 259$
$1 \cdot 20$	-532	-875	1.066	$2 \cdot 273$	1.810	$2 \cdot 499$
$1 \cdot 15$	-608	-897	$1 \cdot 107$	$3 \cdot 100$	2.025	2844
$1 \cdot 10$	-704	$\cdot 923$	1-155	$4 \cdot 762$	$2 \cdot 400$	$3 \cdot 440$
1.05	-830.	-957	$1 \cdot 216$	$9 \cdot 756$	$3 \cdot 280$	4.803
$1 \cdot 00$	1.000	1.000	1-293	infinite.	infinite.	infinite.

Table VI-The discharge over weirs or notches of one foot in length, in cubio feet per minute.

Depths $\frac{1}{4}$ inch to 10 inches. Coeficients $\cdot 667$ to $\cdot 617$.
GREATER COEFPICIENTS.

Heads in inches.	Theoretical discharge.	Coefficient $\cdot 667$.	Coefficient -650.	Coefficient -639.	Coefficient -628.	Coefficient -617.
$\cdot 25$.965	644	-627	$\cdot 617$	-606	$\cdot 596$
$\cdot 5$	$2 \cdot 730$	1.821	1.775	1.744	1.714	$1 \cdot 684$
$\cdot 75$	$5 \cdot 016$	$3 \cdot 345$	$3 \cdot 260$	$3 \cdot 205$	$3 \cdot 150$	$3 \cdot 095$
$\cdot 1$	$7 \cdot 722$	$5 \cdot 151$	$5 \cdot 019$	$4 \cdot 934$	$4 \cdot 849$	$4 \cdot 764$
1.25	10.792	7-198	7015	$6 \cdot 896$	$6 \cdot 777$	$6 \cdot 659$
1.5	$14 \cdot 186$	$9 \cdot 462$	$9 \cdot 221$	$9 \cdot 065$	$8 \cdot 909$	$8 \cdot 753$
$1 \cdot 75$	$17 \cdot 877$	11.924	$11 \cdot 620$	$11 \cdot 423$	$11 \cdot 227$	11.030
2.	21.842	$14 \cdot 569$	14.197	$13 \cdot 957$	13.717	$13 \cdot 477$
$2 \cdot 25$	$26 \cdot 062$	$17 \cdot 383$	16.940	$16 \cdot 654$	$16 \cdot 367$	16.080
$2 \cdot 5$	$30 \cdot 524$	$20 \cdot 360$	$19 \cdot 841$	$19 \cdot 505$	$19 \cdot 169$	18.833
2.75	$35 \cdot 215$	$23 \cdot 489$	$22 \cdot 890$	$22 \cdot 503$	$22 \cdot 115$	21.728
3 .	$40 \cdot 125$	$26 \cdot 763$	$26 \cdot 081$	$25 \cdot 640$	$25 \cdot 199$	24.757
$3 \cdot 25$	$45 \cdot 244$	30.178	$29 \cdot 408$	28.911	$\underline{28.413}$	27.915
3.5	$50 \cdot 563$	$33 \cdot 726$	$32 \cdot 866$	$32 \cdot 310$	31.754	$31 \cdot 197$
$3 \cdot 75$	56.077	$37 \cdot 403$	$36 \cdot 450$	35.833	$35 \cdot 216$	34.599
4.	$61 \cdot 777$	$41 \cdot 205$	$40 \cdot 155$	39.476	38.796	38-116
$4 \cdot 25$	$67 \cdot 658$	45•128	$43 \cdot 978$	43-233	$42 \cdot 489$	41.745
$4 \cdot 5$	$73 \cdot 714$	$49 \cdot 167$	$47 \cdot 914$	$47 \cdot 103$	$46 \cdot 292$	$45 \cdot 482$
$4 \cdot 75$	79.942	53•321	51.962	51.083	$50 \cdot 203$	49•324
5.	$86 \cdot 335$	$57 \cdot 585$	$56 \cdot 118$	$55 \cdot 168$	$54 \cdot 218$	53.269
$5 \cdot 25$	$92 \cdot 891$	61.958	$60 \cdot 379$	$59 \cdot 357$	58.335	57-314
$5 \cdot 5$	$99 \cdot 604$	66.436	64.743	$63 \cdot 647$	62.551	61-456
$5 \cdot 75$	106.472	71.017	$69 \cdot 207$	68.036	$66 \cdot 864$	$65 \cdot 693$
6.	$113 \cdot 491$	$75 \cdot 698$	$73 \cdot 769$	72.521	$71 \cdot 272$	$70 \cdot 024$
6.25	$120 \cdot 657$	80.478	$78 \cdot 427$	77-100	$75 \cdot 772$	74.445
6.5	$127 \cdot 969$	85:355	$83 \cdot 180$	81.772	$80 \cdot 365$	78.957
6.75	$135 \cdot 422$	$90 \cdot 326$	88.024	86:535	$85 \cdot 045$	- 83.555
7.	$143 \cdot 015$	95•391	$92 \cdot 960$	91.387	$89 \cdot 813$	$38 \cdot 240$
$7 \cdot 25$	150.744	$100 \cdot 546$	$97 \cdot 983$	96.325	$94 \cdot 667$	93.009
$7 \cdot 5$	$158 \cdot 608$	105•792	103.095	101.350	$99 \cdot 606$	97.861
$7 \cdot 75$	166.604	$111 \cdot 125$	108.292	$106 \cdot 460$	$104 \cdot 627$	102.795
8	174.731	116.546	$113 \cdot 575$	$111 \cdot 653$	$109 \cdot 731$	$107 \cdot 809$
$8 \cdot 25$	182.984	122.051	$118 \cdot 940$	116.927	$114 \cdot 914$	412.901
$8 \cdot 5$	$191 \cdot 365$	$127 \cdot 640$	$124 \cdot 387$	$122 \cdot 282$	$120 \cdot 177$	118.072
$8 \cdot 75$	$199 \cdot 869$	$133 \cdot 313$	$129 \cdot 915$	$127 \cdot 716$	$125 \cdot 518$	123.319
9	$208 \cdot 496$	$139 \cdot 067$	$135 \cdot 522$	$133 \cdot 229$	$130 \cdot 935$	128.642
$9 \cdot 25$	$217 \cdot 243$	144.901	141.207	$138 \cdot 818$	$136 \cdot 428$	134.039
$9 \cdot 5$	$226 \cdot 111$	$150 \cdot 816$	$146 \cdot 972$	$144 \cdot 485$	141-997	$139 \cdot 510$
9.75	235.093	156.807	152.810	$150 \cdot 225$	$147 \cdot(339$	145.053
10°	244•193	$162 \cdot 877$	158.725	156.039	$153 \cdot 353$	150.666

Table VI.-The discharge over weirs or notches of one foot in length, in cubic feet per minute.
Depths $10 \cdot 25$ inches to 32 inches. Coefficients $\cdot 667$ to $\cdot 617$.
GREATER COEFFICIENTS.

Heads in inches.	Theoretical discharge.	$\begin{gathered} \text { Coefficient } \\ \cdot 667 . \end{gathered}$	Coefficient -650.	$\begin{gathered} \text { Coefficient } \\ \cdot 639 . \end{gathered}$	Coefficient -628.	$\begin{gathered} \text { Coefficient } \\ \cdot 617 . \end{gathered}$
$10 \cdot 25$	253.407	169.023	$164 \cdot 715$	161.927	$159 \cdot 140$	$156 \cdot 352$
$10 \cdot 5$	262-734	175-244	170.777	167 -887	$164 \cdot 997$	$16 \cdot 107$
$10 \cdot 75$	$272 \cdot 173$	181.540	$176 \cdot 913$	173.919	$170 \cdot 925$	$167 \cdot 931$
11.	$281 \cdot 723$	187-909	$183 \cdot 120$	$180 \cdot 021$	$176 \cdot 922$	$173 \cdot 823$
11.25	291-382	$194 \cdot 352$	$189 \cdot 398$	$186 \cdot 193$	182.988	$179 \cdot 782$
11.5	301-148	$200 \cdot 866$	$195 \cdot 746$	192-434	$189 \cdot 121$	$185 \cdot 808$
11.75	$311 \cdot 024$	$207 \cdot 451$	202•164	$198 \cdot 743$	$195 \cdot 321$	$191 \cdot 900$
12.	321.	$214 \cdot 107$	208.650	$205 \cdot 119$	$201 \cdot 588$	$198 \cdot 057$
12.5	341-275	$227 \cdot 628$	221.826	$218 \cdot 072$	$214 \cdot 318$	$210 \cdot 564$
13.	$361 \cdot 950$	$241 \cdot 421$	235.268	$231 \cdot 286$	$227 \cdot 305$	$223 \cdot 323$
13.5	383-031	$255 \cdot 482$	248.970	$244 \cdot 757$	$240 \cdot 543$	$236 \cdot 330$
11	404.507	$269 \cdot 806$	262.930	258.480	$254 \cdot 030$	$249 \cdot 581$
14.5	$426 \cdot 368$	$284 \cdot 387$	277-139	272.449	267.759	$263 \cdot 069$
15.	$448 \cdot 611$	$299 \cdot 223$	291-597	$286 \cdot 662$	281-728	$276 \cdot 793$
$15 \cdot 5$	$471 \cdot 228$	314-309	306.298	$301 \cdot 115$	$295 \cdot 931$	$290 \cdot 748$
16	$494 \cdot 212$	329.639	321.238	$315 \cdot 801$	$310 \cdot 365$	$304 \cdot 929$
16.5	$517 \cdot 558$	345-211	336.413	$330 \cdot 720$	$325 \cdot 026$	$319 \cdot 333$
17	$541 \cdot 261$	361.021	351.820	$345 \cdot 866$	$339 \cdot 912$	$333 \cdot 958$
$17 \cdot 5$	$565 \cdot 315$	$377 \cdot 065$	367-455	361.236	$355 \cdot 018$	348•799
18.	$589 \cdot 715$	$393 \cdot 340$	$383 \cdot 315$	376.828	3\%0.341	$363 \cdot 854$
18.5	614.443	$409 \cdot 833$	$399 \cdot 388$	392-629	$385 \cdot 870$	$379 \cdot 111$
19.	$639 \cdot 533$	426.569	415.696	$408 \cdot 662$	$401 \cdot 627$	$394 \cdot 592$
$19 \cdot 5$	$664 \cdot 944$	$443 \cdot 518$	$432 \cdot 214$	424-899	$417 \cdot 585$	$410 \cdot 270$
20°	$690 \cdot 682$	$460 \cdot 685$	$448 \cdot 943$	$441 \cdot 346$	$433 \cdot 748$	$426 \cdot 151$
$20 \cdot 5$	716.737	478-064	465'879	$457 \cdot 995$	$450 \cdot 111$	442.227
21.	$743 \cdot 125$	$495 \cdot 664$	483*0:31	$474 \cdot 857$	$466 \cdot 633$	$458 \cdot 508$
21.5	$769 \cdot 823$	$513 \cdot 472$	$500 \cdot 385$	$491 \cdot 917$	$48: 349$	474:981
22.	$796 \cdot 832$	$531 \cdot 487$	517:941	509-176	$500 \cdot 410$	$491 \cdot 645$
22.5	$824 * 151$	$549 \cdot 709$	$535 \cdot 698$	$526 \cdot 632$	$517 \cdot 567$	$508 \cdot 501$
$23 \cdot$	$851 \cdot 775$	$568 \cdot 134$	$553 \cdot 654$	544*284	$534 \cdot 915$	$525 \cdot 545$
$23 \cdot 5$	$879 \cdot 700$	$586 \cdot 760$	$571 \cdot 805$	$562 \cdot 128$	$552 \cdot 452$	$542 \cdot 775$
24.	907•925	$605 \cdot 586$	$590 \cdot 151$	$580 \cdot 164$	$570 \cdot 177$	$560 \cdot 190$
25.	965 253	643-824	$627 \cdot 414$	616.797	$606 \cdot 179$	$595 \cdot 561$
26.	$1023 \cdot 748$	682-840	$665 \cdot 436$	$654 \cdot 175$	$642 \cdot 914$	$631 \cdot 653$
27.	1083-375	$722 \cdot 611$	$704 \cdot 194$	692.277	$680 \cdot 360$	668.442
28.	$1144 \cdot 116$	$763 \cdot 125$	743.675	731.090	718.505	$705 \cdot 920$
29.	1205.950	$804 \cdot 369$	$783 \cdot 868$	$770 \cdot 602$	$757 \cdot 337$	$744 \cdot 071$
30.	$1268 \cdot 864$	846-332	$824 \cdot 762$	$810 \cdot 804$	$796 \cdot 847$	$782 \cdot 889$
31.	$1332 \cdot 833$	$889 \cdot 000$	866.341	851.680	$837 \cdot 019$	822-358
32.	$1397 \cdot 842$	$932 \cdot 361$	9083.597	と93-221	$877 \cdot 845$	$862 \cdot 469$

Table VI.-the discharge over weirs or notches of one foot in length, in cubio feet per mindte.

Depths 33 inches to 72 inches. Coeficients $\cdot 667$ to • 617 .
GREATER COEFFICIENTS.

$\left\lvert\, \begin{gathered} \text { Heads in } \\ \text { inches. } \end{gathered}\right.$	Theoretical discharge.	Coefficient '667.	$\begin{gathered} \text { Coefficient } \\ \cdot 650 . \end{gathered}$	Coefficient	$\begin{aligned} & \text { Coefficient } \\ & .628 . \end{aligned}$	$\begin{array}{\|c} \text { Coefficient } \\ \cdot 617 . \end{array}$
33.	$1463 \cdot 875$	05		935.416	919:314	
34.	1530.917	$1021 \cdot 122$	995.096	978-256	961 -416	$944 \cdot 576$
35.	1598.951	1066 500	$1039 \cdot 318$	1021.730	1004.141	986.553
36.	$1667 \cdot 964$	1112-532	1084-177	$1065 \cdot 829$	1047481	1029 134
37.	$1737 \cdot 943$	1159'208	1129.663	$1110 \cdot 546$	1091-428	$1072 \cdot 311$
38.	1808.875	$1206 \cdot 520$	1175 \%69	1155.871	1135.9\%4	1116.076
39.	$1880 \cdot 746$	1254-458	1222-485	1201.797	1181.10	$1160 \cdot 420$
40.	$1953 \cdot 544$	1303.014	1269•804	1248:315	12268	$1205 \cdot 337$
41.	2027-258	1352-181	1317.718	$1295 \cdot 418$	$1273 \cdot 118$	$1250 \cdot 818$
42.	$2101 \cdot 876$	1401 951	$1366 \cdot 219$	$1343 \cdot 099$	1319.978	1296.857
43.	2177 387	1452.317	$1415 \cdot 302$	$1391 \cdot 350$	$1367 \cdot 39$	1343-448
44.	2253.78	$1503 \cdot 273$	$1464 \cdot 95$	$1440 \cdot 167$	$1415 \cdot 37$	$1390 \cdot 584$
45.	2331.052	$1554 \cdot 812$	1515.184	$1489 \cdot 542$	1463.901	$1438 \cdot 259$
46.	$2409 \cdot 183$	1606.925	1565.969	1539-468	1512.967	1486.466
47.	2488.170	$1659 \cdot 609$	$1617 \cdot 311$	$1589 \cdot 941$	1562.571	$1535 \cdot 201$
48.	2568.	1712:856	1669'200	1640.952	1612.70	1584-456
49.	$2648 \cdot 666$	1766.660	1721.633	1692.498	$1663 \cdot 362$	1634-227
50.	2730 160	1821.021	1774:604	1744.572	1714-540	1684.509
51.	$2812 \cdot 474$	$1875 \cdot 920$	1828.108	$1797 \cdot 171$	1766-234	1735-296
52.	2895.597	1931-363	1882. 138	$1850 \cdot 286$	1818	1786.583
53.	2979.525	1987*343	1936.691	1903.916	1871-142	1838.367
54.	3064-253	$2043 \cdot 857$	$1991 \cdot 764$	1958.058	1924•351	$1890 \cdot 644$
5	3149.755	$2100 \cdot 887$	2047 341	$2012 \cdot 693$	1978.046	1943.399
	3236	2158.445	2103-433	2067-836	2032	1996.643
57.	$3323 \cdot 117$	$2216 \cdot 519$	2160026	$2123 \cdot 472$	2086.917	2050.363
58	$3410 \cdot 946$	2275•101	2217115	$2179 \cdot 594$	2142.074	$2104 \cdot 554$
59.	3499.54	$2334 \cdot 19$	$2274 \cdot 702$	2236-207	2197712	$2159 \cdot 217$
60.	3588	2393.788	$2332 \cdot 778$	$2 \cdot 293 \cdot 300$	2253	2214.344
61.	3678.984	$2453 \cdot 882$	2391-340	$2350 \cdot 871$	2310 402	2269.933
62.	3769-825	2514.473	2450:386	2408.918	2367-450	23:25.982
63.	$3861 \cdot 393$	$2575 \cdot 549$	2509.905	2467-430	$2424 \cdot 955$	2382-479
64.	$3953 \cdot 694$	2637114	2569.901	2526.410	2482-920	$2439 \cdot 429$
65.	$4046 \cdot 720$	2699-162	$2630 \cdot 368$	${ }^{2585} \cdot 854$	2541-340	2496.826
66.	$4140 \cdot 465$	2761.690	2691.302	2645.757	2600-212	2554.667
67.	4234.92.	2824-693	$2752 \cdot 699$	2706-115	$2659 \cdot 531$	$2612 \cdot 947$
68.	4330.086	2888.167	2814-5.56	2766.925	2719 299	2671.663
69.	$4425 \cdot 954$	2952.111	2876.870	$2828 \cdot 185$	2779•499	$2730 \cdot 814$
70.	4522.516	3016.518	$2939 \cdot 635$	$2889 \cdot 888$	2840-140	$2790 \cdot 392$
71.	4619.774	3081-389	$3002 \cdot 853$	29.52.036	$2901 \cdot 218$	2850-401
72.	4717	31	3066.518	3014.622	2962.7	2910-832

Table VI.-The discharge over weirs or notches of one foot in length, in cubic feet per minute.
Depths $\frac{1}{4}$ inch to 10 inches. Coefficients $\cdot 606$ to 518 .
LESSER COEFFICIRNTS.

Heads in inches.	Coefficient $\cdot 606$.	Coefficient $\cdot 595$.	Coefficient -584.	Coefficient -562.	Coefficient -540.	Coefficient -518.
$\because 25$	$\cdot 585$	$\cdot 574$	$\cdot 564$	$\cdot 542$. 521	$\cdot 500$
$\cdot 5$	1.65-1	1.624	1.594	1.534	1.474	1.414
.75	$3 \cdot 039$	$2 \cdot 985$	$2 \cdot 929$	$2 \cdot 819$	2•708	$2 \cdot 598$
1.	$4 \cdot 680$	$4 \cdot 595$	$4 \cdot 510$	$4 \cdot 340$	$4 \cdot 170$	$4 \cdot 000$
$1 \cdot 25$	$6 \cdot 540$	6.421	$6 \cdot 303$	6.065	$5 \cdot 828$	$5 \cdot 590$
1.5	$8 \cdot 597$	$8 \cdot 441$	$8 \cdot 284$	$7 \cdot 973$	$7 \cdot 660$	$7 \cdot 348$
$1 \cdot 75$	$10 \cdot 833$	$10 \cdot 637$	$10 \cdot 440$	10.047	$9 \cdot 653$	$9 \cdot 260$
2.	12.236	12.996	$12 \cdot 756$	$12 \cdot 275$	11.795	$11 \cdot 314$
$2 \cdot 25$	$15 \cdot 794$	$15 \cdot 507$	$15 \cdot 220$	$14 \cdot 647$	14.073	13.500
2.5	$18 \cdot 498$	$18 \cdot 162$	$17 \cdot 826$	$17 \cdot 155$	$16 \cdot 483$	15.811
$2 \cdot 75$	$21 \cdot 340$	$20 \cdot 953$	$20 \cdot 566$	$19 \cdot 791$	$19 \cdot 016$	$18 \cdot 241$
3.	$24 \cdot 316$	$23 \cdot 874$	$23 \cdot 433$	$2 \cdot 2550$	21.668	20.785
$3 \cdot 25$	$27 \cdot 418$	$26 \cdot 920$	$26 \cdot 422$	$25 \cdot 4 \cdot 27$	$24 \cdot 432$	$23 \cdot 436$
$3 \cdot 5$	$30 \cdot 641$	30.085	$29 \cdot 5 \cdot 29$	$28 \cdot 416$	$27 \cdot 304$	$26 \cdot 102$
$3 \cdot 75$	33.982	$33 \cdot 366$	$32 \cdot 749$	31.515	$30 \cdot 281$	29.048
4.	$37 \cdot 437$	36.757	36.078	$34 \cdot 719$	$33 \cdot 360$	$32 \cdot 000$
$4 \cdot 25$	41.001	$40 \cdot 256$	$39 \cdot 512$	$38 \cdot 024$	36.535	$35 \cdot 047$
$4 \cdot 5$	$44 \cdot 671$	$43 \cdot 860$	$43 \cdot 049$	$41 \cdot 427$	$39 \cdot 806$	$38 \cdot 184$
$4 \cdot 75$	$48 \cdot 445$	$47 \cdot 565$	$46 \cdot 686$	44.927	$43 \cdot 169$	$41 \cdot 410$
5	$52 \cdot 319$	$51 \cdot 369$	$50 \cdot 420$	$48 \cdot 520$	$46 \cdot 621$	$44 \cdot 722$
5.2.5	$56 \cdot 292$	$55 \cdot 270$	$54 \cdot 248$	52.205	$50 \cdot 161$	$48 \cdot 117$
$5 \cdot 5$	60:360	$59 \cdot 264$	$58 \cdot 169$	55.977	$53 \cdot 786$	51.595
$5 \cdot 75$	64.522	$63 \cdot 351$	62-180	59.837	$57 \cdot 495$	$55 \cdot 153$
6.	68.776	67.527	66.279	$63 \cdot 782$	61-285	58.788
6.25	$73 \cdot 118$	71.791	$70 \cdot 464$	$67 \cdot 809$	$65 \cdot 155$	62.500
6.5	$77 \cdot 549$	$76 \cdot 142$	$74 \cdot 734$	71.919	$69 \cdot 103$	$66 \cdot 288$
$6 \cdot 75$	$82 \cdot 066$	$80 \cdot 576$	79.086	76.107	73-128	$70 \cdot 149$
7	$86 \cdot 667$	$85 \cdot 094$	83.521	80.374	$77 \cdot 228$	74.082
7.25	$91 \cdot 351$	$89 \cdot 693$	88.034	84.718	$81 \cdot 402$	$78 \cdot 085$
$7 \cdot 5$	96. 116	94:372	$9 \cdot 2 \cdot 627$	$89 \cdot 138$	85.648	82•159
$7 \cdot 75$	$10 \cdot 962$	99-129	$97 \cdot 297$	93.631	$89 \cdot 966$	$86 \cdot 301$
8.	$105 \cdot 887$	$103 \cdot 965$	$10 \div \cdot 043$	$98 \cdot 199$	94.355	90.511
$8 \cdot 25$	$110 \cdot 889$	108.876	$106 \cdot 863$	$102 \cdot 837$	98.812	94.786
$8 \cdot 5$	$115 \cdot 967$	$113 \cdot 862$	$111 \cdot 757$	$107 \cdot 507$	$103 \cdot 337$	99•127
$8 \cdot 75$	$121 \cdot 121$	$118 \cdot 922$	$116 \cdot 723$	$112 \cdot 326$	107.929	$103 \cdot 532$
9.	$126 \cdot 349$	124.055	$121 \cdot 762$	$117 \cdot 175$	112.588	$108 \cdot 001$
9.25	$131 \cdot 649$	$129 \cdot 259$	$126 \cdot 870$	$122 \cdot 090$	$117 \cdot 311$	$112 \cdot 532$
9.5	$137 \cdot 023$	134.535	$132 \cdot 048$	$127 \cdot 074$	122.100	$117 \cdot 125$
$9 \cdot 75$	$142 \cdot 467$	$139 \cdot 881$	$137 \cdot 294$	$132 \cdot 122$	126.950	121.778
10	$147 \cdot 981$	$145 \cdot 295$	$142 \cdot 609$	137.237	131:864	126.492

Table VI.-The discharge over weirs or notches of one FOOT IN LENGTH, IN CUBIC FEET PER MINUTE.

Depths $10 \cdot 25$ inches to 32 inches. Coeficients $\cdot 606$ to $\cdot 518$.
LRESER COEFFICIENTG.

$\begin{aligned} & \text { Heads } \\ & \text { in } \\ & \text { inches. } \end{aligned}$	$\begin{aligned} & \text { Coeffi } \\ & \cdot 606 \end{aligned}$	$\begin{aligned} & \text { Coeffi } \\ & \cdot 595 \end{aligned}$	Coeffici $\cdot 584$	Coefficient -562.	Coefficient $\cdot 540$.	Coefficient $\cdot 518$.
$10 \cdot 25$	$153 \cdot$	150	14	$142 \cdot 415$	0	65
10.5	$159 \cdot 217$	$156 \cdot 327$	$153 \cdot 437$	$147 \cdot 657$	$141 \cdot 876$	$136 \cdot 096$
$10 \cdot 75$	$164 \cdot 937$	$161 \cdot 943$	$158 \cdot 949$	$152 \cdot 961$	146:974	$140 \cdot 986$
11	170.724	$167 \cdot 625$	$164 \cdot 526$	$158 \cdot 328$	$152 \cdot 130$	145.933
$11 \cdot 25$	176.577	$173 \cdot 372$	$170 \cdot 167$	$163 \cdot 756$	$157 \cdot 346$	$150 \cdot 936$
11.5	$182 \cdot 496$	$179 \cdot 183$	$175 \cdot 870$	$169 \cdot 245$	$162 \cdot 620$	$155 \cdot 995$
$11 \cdot 75$	$188 \cdot 479$	$185 \cdot 058$	$181 \cdot 636$	174.794	167.952	$161 \cdot 109$
12.	$194 \cdot 526$	190.995	$187 \cdot 464$	$180 \cdot 402$	$173 \cdot 340$	$166 \cdot 278$
12.5	$206 \cdot 810$	$203 \cdot 056$	$199 \cdot 302$	$191 \cdot 794$	$184 \cdot 286$	176.778
13.	$219 \cdot 342$	$215 \cdot 360$	$211 \cdot 379$	$203 \cdot 415$	$195 \cdot 453$	$187 \cdot 490$
13.5	232.117	$227 \cdot 903$	$223 \cdot 690$	$215 \cdot 263$	$206 \cdot 837$	$198 \cdot 410$
1	245-131	$240 \cdot 682$	236.232	$227 \cdot 333$	$218 \cdot 434$	209.535
14.5	$258 \cdot 379$	$253 \cdot 689$	$248 \cdot 999$	$239 \cdot 619$	$230 \cdot 239$	$220 \cdot 859$
15.	271.858	$266 \cdot 924$	261.989	$252 \cdot 119$	$242 \cdot 250$	$232 \cdot 380$
15.5	285.564	$280 \cdot 381$	275-197	$264 \cdot 830$	$254 \cdot 163$	$244 \cdot 096$
16	$299 \cdot 492$	$294 \cdot 056$	$288 \cdot 620$	$277 \cdot 747$	$266 \cdot 875$	$256 \cdot 001$
$16 \cdot 5$	$313 \cdot 640$	307.947	$302 \cdot 253$	$290 \cdot 868$	$279 \cdot 481$	$268 \cdot 095$
17.	328.004	$322 \cdot 050$	$316 \cdot 096$	$304 \cdot 189$	$292 \cdot 281$	$280 \cdot 373$
$17 \cdot 5$	342.581	336-362	$330 \cdot 144$	317.707	$305 \cdot 270$	$292 \cdot 833$
18.	357-367	350-880	$344 \cdot 394$	$331 \cdot 420$	$318 \cdot 446$	$305 \cdot 472$
18.5	$372 \cdot 352$	$365 \cdot 594$	$358 \cdot 835$	34.517	$331 \cdot 799$	$318 \cdot 281$
19	$387 \cdot 557$	$380 \cdot 522$	373.487	$359 \cdot 418$	$\mathbf{3 4 5} \cdot 348$	$331 \cdot 278$
$19 \cdot 5$	$402 \cdot 956$	$395 \cdot 642$	$388 \cdot 327$	$373 \cdot 699$	$359 \cdot 070$	344.441
20	$418 \cdot 5.53$	$410 \cdot 956$	$403 \cdot 358$	$388 \cdot 163$	372.968	357•773
$20 \cdot 5$	$434 \cdot 343$	426.458	418.574	402.806	387-038	371.270
21.	$450 \cdot 334$	$442 \cdot 159$	433-985	$417 \cdot 636$	$401 \cdot 288$	384.939
21.5	$466 \cdot 513$	$458 \cdot 045$	449.577	432.641	$415 \cdot 704$	$398 \cdot 768$
22.	482-880	474-115	465.350	$447 \cdot 819$	$430 \cdot 289$	$412 \cdot 759$
$2 \cdot 2 \cdot 5$	$499 \cdot 436$	$490 \cdot 370$	481-304	$463 \cdot 173$	$445 \cdot 042$	$426 \cdot 910$
23.	$516 \cdot 176$	$506 \cdot 806$	$497 \cdot 437$	$478 \cdot 698$	4,9.959	$441 \cdot 219$
$23 \cdot 5$	533-098	$5 \cdot 3 \cdot 421$	$513 \cdot 745$	494.391	$475 \cdot 038$	$455 \cdot 685$
24.	$550 \cdot 203$	$540 \cdot 215$	530-228	$510 \cdot 254$	$490 \cdot 280$	$470 \cdot 305$
25.	$584 \cdot 943$	$574 \cdot 326$	563.708	$542 \cdot 472$	$521 \cdot 237$	$500 \cdot 001$
26.	$620 \cdot 391$	609.130	$597 \cdot 869$	$575 \cdot 346$	$552 \cdot 824$	$530 \cdot 301$
27.	$656 \cdot 525$	644.608	$632 \cdot 691$	$608 \cdot 857$	$585 \cdot 023$	$561 \cdot 188$
28.	693-334	$680 \cdot 749$	668-164	642.993	617-823	$592 \cdot 652$
29.	-30-806	$717 \cdot 540$	$704 \cdot 275$	$677 \cdot 744$	$651 \cdot 213$	$624 \cdot 682$
30.	768.932	754.974	$741 \cdot 017$	$713 \cdot 102$	685.187	$657 \cdot 272$
31.	$807 \cdot 697$	$793 \cdot 036$	$778 \cdot 374$	$749 \cdot 052$	719.730	$690 \cdot 407$
32.	847.092	$831 \cdot 716$	$816 \cdot 340$	785.587	$754 \cdot 835$	$724 \cdot 082$

Tabie VI.-The discharge over weirs or notches of one FOOT IN LENGTH, IN CUBIC FEET PER MINUTE.
Depths 33 inches to 72 inches. Coefficients $\cdot 606$ to $\cdot 518$.
LESSER COEFFICIENTS.

	Coefficient $\cdot 606$.	Coefficient -595.	Coefficient $\cdot 584$.	Coefficient $\cdot 562$.	Coefficient -540.	Coefficient -518.
33	887-108	6	03	82. $2 \cdot 698$	$790 \cdot 493$	758.287
34	927-736	910.896	894.056	860.375	826.695	793.015
35	968-964	951.376	933.787	$898 \cdot 610$	$863 \cdot 434$	828.257
36	1010-786	992.439	974-091	937-396	900.701	864.005
37	1053-193	1034.076	1014.959	976.724	$938 \cdot 489$	900-254
38	1096.178	1076-281	1056-383	1016.588	976.793	936-997
39	1139-732	1119.044	1098-356	1056.979	1015•603	974-226
40	$1183 \cdot 848$	1162 359	1140.870	1097.892	1054-914	1011.936
41	1228.518	$1206 \cdot 219$	1183.919	$1139 \cdot 319$	1094•719	1050•120
42	1273.737	1250.6।6	1227-496	1181.254	1135.013	1088-772
43	1319-497	129.5.545	1271 -594	1223.691	1175.789	$1127 \cdot 886$
44	1365•792	1341.001	1316.209	1266.626	$1217 \cdot 043$	$1167 \cdot 460$
45	$1412 \cdot 618$	1386.976	$1361 \cdot 334$	$1310 \cdot 051$	1258.763	1207 -485
46	1459-965	1433-464	1406.963	1353.961	$1300 \cdot 959$	$1247 \cdot 957$
47	$1507 \cdot 831$	$1480 \cdot 461$	1453.091	1398-352	1343.612	$1288 \cdot 872$
48	1556.208	1527.960	1499.712	$1443 \cdot 216$	$1386 \cdot 720$	1330-224
49	1605.092	1575.956	1546-821	1488.550	$1430 \cdot 280$	1372.009
50	$1654 \cdot 477$	$1624 \cdot 445$	$1594 \cdot 413$	1534-350	$1474 \cdot 286$	$1414 \cdot 223$
51	1704-359	$1673 \cdot 422$	1642-485	$1580 \cdot 610$	$1518 \cdot 736$	$1456 \cdot 862$
52	1754-732	$1722 \cdot 880$	1691.029	$1627 \cdot 326$	$1563 \cdot 622$	$1499 \cdot 919$
53	1805-592	$1772 \cdot 817$	$1740 \cdot 043$	$1674 \cdot 493$	$1608 \cdot 944$	$1543 \cdot 394$
54	1856-937	1823-231	1789.524	1722-110	$1654 \cdot 697$	$1587 \cdot 283$
55)	1908.751	1874-104	$1839 \cdot 457$	1770 162	1700.868	$1631 \cdot 573$
56	1961.046	$1925 \cdot 450$	1889-853	$1818 \cdot 660$	1747-467	1676-274
57	$2013 \cdot 809$	1977-25.5	$1940 \cdot 700$	1867-592	1794-183	$1721 \cdot 375$
58	$2067 \cdot 033$	2020.513	1991-992	1916.9.52	1841.911	1766-870
59	2120.722	2082-227	2043•733	1966.743	1889•753	$1812 \cdot 763$
60	$2174 \cdot 867$	$2135 \cdot 389$	$2095 \cdot 911$	2016-956	1938-000	$1859 \cdot 045$
61	$22.9 \cdot 464$	2188.995	$2148 \cdot 527$	$2067 \cdot 589$	19866.51	$1905 \cdot 714$
62	2284.514	$2243 \cdot 046$	2201-578	$2118 \cdot 642$	2035•706	$1952 \cdot 769$
63	2340-004	2297-529	$2255 \cdot 054$	2170-103	2085-152	2000-202
64	$2395 \cdot 939$	$235 \cdots$-448	$\bullet 308 \cdot 957$	22:21-976	2134.995	$2048 \cdot 013$
65	$2452 \cdot 312$	2407.798	2363-284	2274-257	$2185 \cdot 2292$	$2096 \cdot 201$
66	2509-122	$2463 \cdot 577$	$2418 \cdot 032$	2326-941	$2235 \cdot 851$	2144•61
67	2566-363	2519.779	2473-194	$2380 \cdot 026$	2286-858	2193.690
68	2624.032	2576-401	2528-770	$2433 \cdot 508$	2338-246	$2.242 \cdot 985$
69	2682-128	$2633 \cdot 443$	2584.757	$2487 \cdot 386$	$2390 \cdot 015$	$2292 \cdot 644$
70	$2740 \cdot 645$	2690.897	2611-149	2541-654	2442-159	$2342 \cdot 663$
71	2799.583	2748.766	$2697 \cdot 948$	2596.313	2494-678	2393.043
72	$\bullet 858.937$	2807.042	2755-147	$2651 \cdot 3.58$	2547.568	$2443 \cdot 778$

Table VII.-For finding the mean velocity from the maxi-
mum velocity at the surface, in mill races, btreams, and rivers with uniform channels; and the maximum velocity from the mean velocity. (See p. 101.)

For the velocity in feet per minute, multiply by 5.

					트룸 认ेँ 			
1	- 84	$\cdot 75$	41	34.24	$33 \cdot 37$	81	67.64	68.86
2	$1 \cdot 67$	1.51	42	$35 \cdot 07$	$34 \cdot 23$	82	$68 \cdot 47$	$69 \cdot 77$
3	2.51	$2 \cdot 27$	43	35.91	35.09	83	$69 \cdot 31$	70.68
4	3.34	$3 \cdot 04$	44	36.74	35.95	84	$70 \cdot 14$	71.59
5	$4 \cdot 18$	$3 \cdot 81$	45	$37 \cdot 58$	36.82	85	70.98	72.50
6	5.01	$4 \cdot 58$	46	38.41	$37 \cdot 69$	86	$71 \cdot 81$	$73 \cdot 42$
7	$5 \cdot 85$	$5 \cdot 36$	47	39.25	38.56	87	72.65	74.33
8	$6 \cdot 68$	$6 \cdot 14$	48	40.08	$39 \cdot 43$	88	$73 \cdot 48$	$75 \cdot 24$
9	$7 \cdot 52$	6.92	49	40.92	$40 \cdot 30$	89	$74 \cdot 32$	$76 \cdot 16$
10	$8 \cdot 35$	$7 \cdot 71$	50	41.75	$41 \cdot 17$	90	$75 \cdot 15$	77.08
11	$9 \cdot 19$	$8 \cdot 50$	51	$42 \cdot 59$	$42 \cdot 05$	91	75.99	77.99
12	10.02	$9 \cdot 29$	52	$43 \cdot 42$	42.92	92	76.82	78.91
13	10.86	10.09	53	$44 \cdot 26$	$43 \cdot 80$	93	$77 \cdot 66$	$79 \cdot 83$
14	$11 \cdot 69$	10.88	54	$45 \cdot 09$	$44 \cdot 68$	94	78.49	80.75
15	12.53	11.69	55	45.93	$45 \cdot 56$	95	79.33	$81 \cdot 67$
16	$13 \cdot 36$	$12 \cdot 49$	56	$46 \cdot 76$	$46 \cdot 44$	96	80.16	82.59
17	14.20	13.30	57	$47 \cdot 60$	47.32	97	$81 \cdot 00$	83.51
18	15.03	$14 \cdot 11$	58	$48 \cdot 43$	$48 \cdot 21$	98	81.83	84.43
19	15.87	14.92	59	$49 \cdot 27$	$49 \cdot 09$	99	$82 \cdot 67$	$85 \cdot 36$
20	16.70	15.73	60	$50 \cdot 10$	49.98	100	83.50	86.28
21	$17 \cdot 54$	16.55	61	50.94	50.87	101	$84 \cdot 34$	$87 \cdot 20$
22	18.37	17.37	62	51.77	51.76	102	$85 \cdot 17$	88.13
23	$19 \cdot 21$	$18 \cdot 19$	63	$52 \cdot 61$	$52 \cdot 65$	103	86.01	$89 \cdot 06$
24	20.04	19.02	64	53.44	53.54	104	$86 \cdot 84$	89.98
25	20.88	19.85	65	$54 \cdot 28$	$54 \cdot 43$	105	$87 \cdot 68$	90.91
26	$21 \cdot 71$	20.68	66	$55 \cdot 11$	$55 \cdot 33$	106	88.51	91-84
27	22.55	21.51	67	55.95	56. 22	107	89.35	92.77
28	23.38	$22 \cdot 34$	68	56.78	57-12	108	$90 \cdot 18$	93.69
29	$24 \cdot 22$	$23 \cdot 18$	69	$57 \cdot 62$	58.02	109	91.02	$94 \cdot 62$
30	25.05	24.02	70	58.45	58.91	110	91.85	95.55
31	$25 \cdot 89$	24.86	71	59.29	59.81	111	$92 \cdot 69$	96.49
32	26.72	$25 \cdot 70$	72	$60 \cdot 12$	60.71	112	93.52	$97 \cdot 42$
33	27.56	26.54	73	60.96	$61 \cdot 61$	113	$94 \cdot 36$	98.35
34	28.39	27.39	74	$61 \cdot 79$	62.52	114	$95 \cdot 19$	$99 \cdot 28$
35	$29 \cdot 23$	$28 \cdot 24$	75	$62 \cdot 63$	$63 \cdot 42$	115	96.03	$100 \cdot 21$
36	30.06	29.09	76	$63 \cdot 46$	$64 \cdot 32$	116	96.86	$101 \cdot 15$
37	$30 \cdot 90$	29.94	77	64-30	65.23	117	$97 \cdot 70$	$102 \cdot 08$
38	31.73	30.79	78	$65 \cdot 13$	$66 \cdot 13$	118	98.53	103.02
39	32.57	31.65	79	65.97	67.04	119	99.37	103.95
40	$33 \cdot 40$	32.51	80	66.80	67.95	120	$100 \cdot 20$	$104 \cdot 89$

Table VIII.-For finding the mean velocities of water FLOWING IN PIPES, DRAINS, STREAMS, AND RIVERS.
For a full cylindrical pipe, divide the diameter by 4 to find the hydraulic mean depth.
Diameters of pipes $\frac{1}{4}$ inch to 2 inches. Falls per mile 1 inch to 12 feet.

Falls per mile in feet and inches, and the hydraulic inclinations.		" Hydraulic mean depths," or " mean radii," and velocities in inches per second.				
Falls.	Inclinations one in	$\frac{1}{16}$ inch.	$\frac{1}{8}$ inch.	$\frac{1}{4}$ inch.	$\frac{3}{8}$ inch.	$\frac{1}{2}$ inch.
$\begin{array}{rl} \mathbf{F} . & \mathbf{I} . \\ 0 & 1 \end{array}$	63360	-14	-24	-38	-49	$\cdot 57$
02	31680	$\cdot 22$	$\cdot 37$	$\cdot 59$	$\cdot 76$	$\cdot 90$
03	21120	-28	$\cdot 48$	$\cdot 75$	$\cdot 97$	$1 \cdot 15$
04	15840	-34	$\cdot 57$	-89	$1 \cdot 15$	1.36
05	12672	-38	$\cdot 65$	$1 \cdot 02$	$1 \cdot 30$	1.55
06	10560	-42	$\cdot 72$	$1 \cdot 13$	$1 \cdot 45$	$1 \cdot 72$
07	9051	-46	$\cdot 78$	$1 \cdot 24$	$1 \cdot 58$	1.88
08	7920	- 50	-85	$1 \cdot 33$	$1 \cdot 71$	$2 \cdot 02$
$0 \quad 9$	7040	-53	-90	$1 \cdot 43$	$1 \cdot 83$	$2 \cdot 16$
010	6336	$\cdot 57$	-96	1.51	1.94	$2 \cdot 30$
011	5760	-60	1.01	$1 \cdot 60$	1.96	$2 \cdot 42$
10	5280	-63	1.06	1.68	$2 \cdot 15$	$2 \cdot 54$
13	4224	$\cdot 71$	$1 \cdot 20$	$1 \cdot 90$	$2 \cdot 43$	$2 \cdot 88$
16	3520	$\cdot 79$	$1 \cdot 33$	$2 \cdot 10$	$2 \cdot 69$	$3 \cdot 19$
19	3017	-87	$1 \cdot 45$	$2 \cdot 29$	$2 \cdot 94$	$3 \cdot 48$
20	2640	$\cdot 93$	1.56	$2 \cdot 47$	$3 \cdot 16$	$3 \cdot 75$
23	Interpolated.	$\cdot 99$	1.67	$2 \cdot 63$	$3 \cdot 37$	$3 \cdot 99$
26	2112	1.05	$1 \cdot 77$	$2 \cdot 79$	3.58	$4 \cdot 24$
29	Interpolated.	$1 \cdot 11$	1.87	$2 \cdot 94$	$3 \cdot 77$	$4 \cdot 47$
30	1760	$1 \cdot 16$	1.96	3.09	3.96	$4 \cdot 69$
33	Interpolated.	$1 \cdot 21$	2.05	$3 \cdot 23$	$4 \cdot 14$	$4 \cdot 91$
36	1508	$1 \cdot 26$	$2 \cdot 14$	$3 \cdot 37$	$4 \cdot 32$	$5 \cdot 12$
39	Interpolated.	$1 \cdot 31$	$2 \cdot 22$	3.50	$4 \cdot 48$	$5 \cdot 31$
40	1320	1.36	$2 \cdot 30$	$3 \cdot 63$	$4 \cdot 65$	$5 \cdot 51$
46	Interpolated.	1.45	$2 \cdot 45$	3.87	4.96	$5 \cdot 88$
50	1056	1.54	$2 \cdot 61$	$4 \cdot 11$	$5 \cdot 27$	$6 \cdot 24$
56	Interpolated.	1.62	2.75	$4 \cdot 33$	5.55	6.58
60	880	$1 \cdot 71$	$2 \cdot 89$	$4 \cdot 55$	$5 \cdot 83$	6.91
$6 \quad 6$	Interpolated.	1.78	3.02	$4 \cdot 76$	$6 \cdot 10$	$7 \cdot 22$
70	754	1.86	$3 \cdot 15$	4.97	6.36	7.54
76	Interpolated.	1.93	$3 \cdot 27$	$5 \cdot 16$	$6 \cdot 61$	7.83
80	660	2.01	$3 \cdot 39$	$5 \cdot 35$	$6 \cdot 86$	$8 \cdot 12$
86	Interpolated.	2.07	3.51	$5 \cdot 53$	7.09	$8 \cdot 40$
90	587	$2 \cdot 14$	3.62	$5 \cdot 72$	$7 \cdot 32$	$8 \cdot 68$
96	Interpolated.	$2 \cdot 20$	$3 \cdot 74$	5.89	7.55	$8 \cdot 94$
100	528	2.28	3.85	6.07	7.77	$9 \cdot 21$
106	Interpolated.	$2 \cdot 33$	3.95	6.24	7.99	$9 \cdot 47$
110	480	$2 \cdot 40$	$4 \cdot 06$	6.40	$8 \cdot 20$	$9 \cdot 72$
116	Interpolated.	2.46	$4 \cdot 16$	6.57	$8 \cdot 41$	$9 \cdot 97$
120	440	$2 \cdot 52$	$4 \cdot 27$	6.73	$8 \cdot 62$	10.21

Table VIII.-For finding the mean velocities of water FLOWING IN PIPES, DRAINS, STREAMS, AND RIVERS.
For a full cylindrical pipe, divide the diameter by 4 to find the hydraulic mean depth.
Diameters of pipes $\frac{1}{4}$ inch to 2 inches. Falls per mile 13 feet to 5280 feet.

Falls per mile in feet, and the hydranlic inclinations.		" Hydraulic mean depths," or " mean radii," and velocities in inches per second.				
Falls.	Inclinations one in	$\frac{1}{16}$ inch.	$\frac{1}{8}$ inch.	$\frac{1}{4}$ inch.	$\frac{8}{8}$ inch.	$\frac{1}{2}$ inch.
F. 13	400	$2 \cdot 66$	4.50	$7 \cdot 10$	$9 \cdot 10$	10.78
$13 \cdot 6$	Interpolated.	$2 \cdot 71$	$4 \cdot 59$	$7 \cdot 24$	$9 \cdot 27$	10.98
$14 \cdot 1$	375	$2 \cdot 76$	$4 \cdot 67$	$7 \cdot 37$	$9 \cdot 44$	$11 \cdot 18$
$14 \cdot 6$	Interpolated.	$2 \cdot 82$	$4 \cdot 76$	$7 \cdot 52$	$9 \cdot 63$	$11 \cdot 41$
$15 \cdot 1$	350	$2 \cdot 87$	$4 \cdot 85$	$7 \cdot 66$	$9 \cdot 82$	11.63
15.6	Interpolated.	$2 \cdot 94$	$4 \cdot 96$	$7 \cdot 83$	10.03	11.88
$16 \cdot 2$	325	$3 \cdot 00$	$5 \cdot 07$	$7 \cdot 99$	10.24	$12 \cdot 13$
$17 \cdot 6$	300	$3 \cdot 14$	5.30	$8 \cdot 37$	10.72	$12 \cdot 70$
$19 \cdot 2$	275	$3 \cdot 30$	5.58	$8 \cdot 80$	$11 \cdot 27$	13.35
$21 \cdot 1$	250	$3 \cdot 48$	5.89	$9 \cdot 39$	11.90	$14 \cdot 10$
$23 \cdot 5$	225	$3 \cdot 70$	$6 \cdot 26$	$9 \cdot 87$	$12 \cdot 65$	14.99
$26 \cdot 4$	200	$3 \cdot 96$	$6 \cdot 70$	10.57	13.54	16.04
$30 \cdot 2$	175	$4 \cdot 28$	$7 \cdot 24$	$11 \cdot 42$	$14 \cdot 63$	$17 \cdot 33$
$35 \cdot 2$	150	$4 \cdot 68$	$7 \cdot 92$	$12 \cdot 49$	16.00	$18 \cdot 96$
$37 \cdot 7$	140	$4 \cdot 88$	$8 \cdot 24$	$13 \cdot 00$	16.66	$19 \cdot 74$
$42 \cdot 2$	125	$5 \cdot 21$	$8 \cdot 81$	13.90	17.80	21.09
48.	110	$5 \cdot 62$	$9 \cdot 50$	14.98	$19 \cdot 19$	22.74
$52 \cdot 8$	100	$5 \cdot 94$	10.05	15.85	$20 \cdot 30$	$24 \cdot 06$
$58 \cdot 7$	90	$6 \cdot 33$	10.69	16.87	$21 \cdot 61$	$25 \cdot 60$
66	80	$6 \cdot 78$	11.47	$18 \cdot 10$	$23 \cdot 17$	$27 \cdot 46$
$75 \cdot 4$	70	$7 \cdot 35$	$12 \cdot 42$	19.59	$25 \cdot 09$	$29 \cdot 73$
88.	60	$8 \cdot 05$	$13 \cdot 61$	$21 \cdot 48$	$27 \cdot 51$	$32 \cdot 60$
$105 \cdot 6$	50	$8 \cdot 99$	$15 \cdot 19$	$23 \cdot 96$	$30 \cdot 69$	$36 \cdot 37$
$117 \cdot 3$	45	$9 \cdot 57$	$16 \cdot 18$	$25 \cdot 53$	$32 \cdot 70$	$38 \cdot 75$
132.0	40	10.28	$17 \cdot 37$	$27 \cdot 41$	$35 \cdot 11$	$41 \cdot 60$
$150 \cdot 8$	35	11.14	$18 \cdot 84$	29.71	38.06	$45 \cdot 10$
176.	30	12.23	$20 \cdot 68$	32.62	41.78	$49 \cdot 51$
$212 \cdot 2$	25	13.66	23.09	36.43	$46 \cdot 67$	$55 \cdot 30$
264	20	15.64	26.44	$41 \cdot 71$	53.43	$63 \cdot 30$
352.	15	$18 \cdot 61$	$31 \cdot 46$	$49 \cdot 63$	63.57	$75 \cdot 33$
528.	10	$23 \cdot 73$	$40 \cdot 11$	$63 \cdot 28$	81.06	96.05
586.7	9	$25 \cdot 26$	$42 \cdot 70$	$67 \cdot 37$	$86 \cdot 29$	102.25
660 -	8	27.08	$45 \cdot 78$	$72 \cdot 22$	92.51	$109 \cdot 61$
754.3	7	29.29	49.51	$78 \cdot 10$	$100 \cdot 04$	118.54
880.0	6	32.05	$54 \cdot 15$	85.43	$109 \cdot 43$	$129 \cdot 66$
1056	5	35.08	$60 \cdot 15$	$94 \cdot 89$	$121 \cdot 54$	144.02
$1320{ }^{\circ}$	4	$40 \cdot 40$	$68 \cdot 29$	$107 \cdot 73$	$137 \cdot 99$	163.51
1760°	3	$47 \cdot 48$	$80 \cdot 25$	126.61	162.17	192'16
2640^{*}	2	$59 \cdot 47$	$100 \cdot 53$	$158 \cdot 59$	$203 \cdot 14$	$240 \cdot 70$
5280',	1	$88 \cdot 13$	148.97	235.02	$301 \cdot 04$	356.70

Table VIII.-For finding the mean velocities of water FLOWING IN PIPES, DRAINS, STREAMS, AND RIVERS.
For a full cylindrical pipe, divide the diameter by 4 to find the hydraulic mean depth.
Diameters of pipes $2 \frac{1}{2}$ inches to 5 inches. Falls per mile 1 inch to 12 feet.

Falls per mile in feet and inches, and the hydraulic inclinations.		" Hydraulic mean depths," or " mean radii," and velocities in inches per second.				
Falls.	Inclinations one in	$\frac{5}{8}$ inch.	$\frac{8}{4} \mathrm{inch}$.	$\frac{7}{8}$ inch.	1 inch.	$1 \frac{1}{4} \mathrm{in} . \mathrm{in}-$ terpolated
$\begin{array}{rr}\text { F. } & \text { I. } \\ 0 & 1\end{array}$	63360	$\cdot 65$	$\cdot 73$	$\cdot 79$	-85	96
$0 \quad 2$	31680	1.02	1-13	$1 \cdot 23$	$1 \cdot 33$	$1 \cdot 49$
03	21120	$1 \cdot 30$	$1 \cdot 45$	$1 \cdot 58$	170	$1 \cdot 91$
04	15840	$1 \cdot 54$	1.71	$1 \cdot 87$	$2 \cdot 01$	$2 \cdot 26$
05	12672	$1 \cdot 76$	1.95	$2 \cdot 13$	$2 \cdot 29$	$2 \cdot 58$
06	10560	1.95	$2 \cdot 17$	$2 \cdot 36$	$2 \cdot 55$	$2 \cdot 86$
07	9051	$2 \cdot 13$	$2 \cdot 37$	$2 \cdot 58$	$2 \cdot 78$	$3 \cdot 13$
08	7920	$2 \cdot 30$	$2 \cdot 55$	$2 \cdot 78$	$3 \cdot 00$	$3 \cdot 37$
$0 \quad 9$	7040	$2 \cdot 46$	$2 \cdot 73$	$2 \cdot 98$	$3 \cdot 21$	$3 \cdot 61$
010	6336	$2 \cdot 61$	$2 \cdot 90$	$3 \cdot 16$	$3 \cdot 40$	$3 \cdot 83$
011	5760	$2 \cdot 76$	$3 \cdot 06$	$3 \cdot 33$	$3 \cdot 59$	$4 \cdot 04$
10	5280	$2 \cdot 89$	$3 \cdot 21$	$3 \cdot 50$	$3 \cdot 77$	$4 \cdot 24$
13	4224	$3 \cdot 28$	$3 \cdot 64$	$3 \cdot 97$	$4 \cdot 27$	$4 \cdot 81$
16	3520	$3 \cdot 63$	$4 \cdot 03$	$4 \cdot 39$	$4 \cdot 73$	$5 \cdot 32$
19	3017	$3 \cdot 96$	$4 \cdot 39$	$4 \cdot 79$	$5 \cdot 16$	$5 \cdot 80$
20	2640	$4 \cdot 26$	$4 \cdot 73$	$5 \cdot 16$	$5 \cdot 55$	6.25
23	Interpolated.	$4 \cdot 55$	$5 \cdot 04$	$5 \cdot 50$	$5 \cdot 92$	6.66
26	2112	$4 \cdot 83$	$5 \cdot 35$	$5 \cdot 84$	$6 \cdot 29$	$7 \cdot 07$
29	Interpolated.	$5 \cdot 09$	$5 \cdot 64$	$6 \cdot 15$	$6 \cdot 12$	$7 \cdot 46$
30	1760	$5 \cdot 34$	$5 \cdot 92$	$6 \cdot 46$	6.96	$7 \cdot 83$
33	Interpolated.	$5 \cdot 58$	$6 \cdot 19$	6.75	$7 \cdot 27$	$8 \cdot 18$
36	1508	$5 \cdot 82$	$6 \cdot 46$	$7 \cdot 04$	$7 \cdot 59$	$8 \cdot 53$
39	Interpolated.	6.05	$6 \cdot 71$	$7 \cdot 31$	7-88	8.86
40	1320	$6 \cdot 27$	6.95	$7 \cdot 58$	$8 \cdot 17$	$9 \cdot 19$
46	Interpolated.	$6 \cdot 69$	$7 \cdot 42$	$8 \cdot 09$	$8 \cdot 71$	9.80
50	1056	$7 \cdot 10$	$7 \cdot 88$	$8 \cdot 59$	$9 \cdot 25$	10.41
56	Interpolated.	$7 \cdot 48$	$8 \cdot 30$	$9 \cdot 05$	$9 \cdot 76$	10.97
60	880	7.86	$8 \cdot 72$	9.51	10.25	11.53
$6{ }^{6} 6$	Interpolated.	8.22	$9 \cdot 12$	$9 \cdot 94$	10.71	12.05
70	754	$8 \cdot 57$	$9 \cdot 51$	10.37	$11 \cdot 17$	12.57
76	Interpolated.	$8 \cdot 92$	9.89	10.78	11.62	13.06
80	660	$9 \cdot 24$	10.25	11.18	12.04	13.54
86	Interpolated.	$9 \cdot 55$	$10 \cdot 60$	11.56	12.45	14.01
90	587	9.87	10.95	11.94	12.86	14.47
96	Interpolated.	10.18	11.28	$12 \cdot 31$	13.26	14.91
100	528	10.48	11.62	$12 \cdot 67$	13.65	$15 \cdot 36$
106	Interpolated.	10.77	11.95	13.03	14.03	15.78
110	480	11.06	12.27	13.38	14.41	16.21
116	Interpolated.	11.34	$12 \cdot 58$	13.72	14.82	16.64
120	440	11.62	12.89	14.05	15.22	$17 \cdot 07$

Table Vili.-For finding the mean velocities of water flowing in pipes, drains, streams, and rivers.
For a full cylindrical pipe, divide the diameter by 4 to find the hydraulic mean depth.
Diameters of pipes $2 \frac{1}{2}$ inches to 5 inches. Falls per mile 13 feet to 5280 feet.

Falls per mile in feet, and the hydraulic inclinations.		" Hydraulic mean depths," or "mean radii," and velocities in inches per second.				
Falls.	Inclinations one in	${ }_{8}^{8} \mathrm{inch}$.	$\frac{3}{4}$ inch.	$\frac{7}{8}$ inch.	1 inch.	$1 \frac{1}{4} \mathrm{in} . \mathrm{in}-$ terpolated
$\begin{gathered} \text { F. } \\ 13 \cdot 2 \end{gathered}$	400	$12 \cdot 26$	$13 \cdot 60$	14.83	15.98	17.98
$13 \cdot 6$	Interpolated.	12.49	13.86	$15 \cdot 11$	16.28	18.31
$14 \cdot 1$	375	12.72	$14 \cdot 11$	15.39	16.58	$18 \cdot 65$
$14 \cdot 6$	Interpolated.	12.98	14.39	$15 \cdot 70$	16.91	19.02
$15 \cdot 1$	350	$13 \cdot 23$	$14 \cdot 68$	16.00	17.24	19.40
$15 \cdot 6$	Interpolated.	13.52	14.99	16.35	$17 \cdot 62$	19.81
$16 \cdot 2$	325	$13 \cdot 80$	$15 \cdot 31$	16.79	$17 \cdot 99$	20.23
$17 \cdot 6$	300	$14 \cdot 45$	16.02	$17 \cdot 48$	18.83	$21 \cdot 18$
$19 \cdot 2$	275	$15 \cdot 19$	16.85	18.37	$19 \cdot 79$	22.26
$21 \cdot 1$	250	16.04	$17 \cdot 80$	$19 \cdot 40$	20.91	23.52
23.5	225	$17 \cdot 05$	$18 \cdot 91$	$20 \cdot 62$	22.21	24.99
26.4	200	$18 \cdot 25$	$20 \cdot 24$	22.07	23.78	26.75
$30 \cdot 2$	175	$19 \cdot 71$	$21 \cdot 87$	$23 \cdot 85$	$25 \cdot 69$	28.90
$35 \cdot 2$	150	21.57	23.92	26.09	$28 \cdot 11$	$31 \cdot 62$
$37 \cdot 7$	140	$22 \cdot 45$	24.91	$27 \cdot 16$	29.26	32.92
$42 \cdot 2$	125	23.99	26.62	29.03	$31 \cdot 27$	$35 \cdot 18$
48.	110	$25 \cdot 87$	28.69	31.29	33.71	37.92
$52 \cdot 8$	100	$27 \cdot 36$	$30 \cdot 35$	$33 \cdot 10$	$35 \cdot 66$	$40 \cdot 11$
$58 \cdot 7$	90	$29 \cdot 12$	$32 \cdot 31$	$35 \cdot 23$	$37 \cdot 96$	$42 \cdot 69$
66.	80	$31 \cdot 23$	$34 \cdot 64$	37.78	$40 \cdot 70$	45.79
$75 \cdot 4$	70	33.82	$37 \cdot 51$	40.91	$44 \cdot 07$	$49 \cdot 58$
88.0	60	37.08	$41 \cdot 13$	$44 \cdot 86$	$48 \cdot 33$	54.36
$105 \cdot 6$	50	41.37	$45 \cdot 78$	$50 \cdot 04$	53.91	$60 \cdot 65$
$117 \cdot 3$	45	44.08	$48 \cdot 89$	53.32	$57 \cdot 44$	$64 \cdot 62$
132.	40	$47 \cdot 32$	52.49	57.25	61.67	$69 \cdot 37$
$150 \cdot 8$	35	$51 \cdot 30$	56.90	62.06	$66 \cdot 86$	$75 \cdot 20$
176	30	56.32	$62 \cdot 47$	$68 \cdot 13$	$73 \cdot 40$	$82 \cdot 56$
211.2	25	62.90	69.77	76.09	81.97	$92 \cdot 21$
264.	20	72.01	79.87	$87 \cdot 11$	93.84	105-56
352.	15	85.68	95.05	103.66	111.67	$125 \cdot 61$
528.	10	109.26	$121 \cdot 19$	$132 \cdot 17$	$142 \cdot 39$	160.17
586.7	9	116.31	129.01	$140 \cdot 70$	$151 \cdot 58$	170.50
660	8	124.68	$138 \cdot 30$	$150 \cdot 83$	$162 \cdot 49$	$182 \cdot 78$
$754 \cdot 3$	7	134.84	149.57	$163 \cdot 12$	175.73	$197 \cdot 67$
880°	6	$147 \cdot 69$	163.60	178.42	$192 \cdot 22$	216.22
1056	5	163.82	$181 \cdot 71$	198.17	213.50	$240 \cdot 15$
1320°	4	185.99	$206 \cdot 31$	225.00	$242 \cdot 39$	$272 \cdot 66$
1760.	3	$218 \cdot 58$	$242 \cdot 46$	264.42	$284 \cdot 86$	$320 \cdot 43$
2640°	2	$273 \cdot 79$	$303 \cdot 70$	$331 \cdot 22$	$356 \cdot 82$	$401 \cdot 37$
5280.	1	405.74	450.07	490.84	528.79	594.82

Table VIII.-For finding the mean velocities of water flowing in pipes, drains, streams, and rivers.
For a full cylindrical pipe, divide the diameter by 4 to find the hydraulic mean depth.
open drains and pipes.
Diameters of pipes 6 inches to 12 inches. Falls per mile 1 inch to 12 feet.

Falls per mile in feet and inches, and the hydraulic inclinations.		"Hydraulic mean depths," or " mean radii," and velocities in inches per second.				
Falls.	Inclinations, one in	1 $\frac{1}{2}$ inch.	$1 \frac{3}{3} \mathrm{in}$. interpolated	2 inches.	$2 \frac{1}{2}$ inches.	3 inches.
$\begin{array}{ll}\text { P. } & \text { I. } \\ 0 & 1\end{array}$	63360	1.07	$1 \cdot 15$	$1 \cdot 24$	$1 \cdot 40$	1.55
02	31680	$1 \cdot 66$	$1 \cdot 80$	$1 \cdot 94$	$2 \cdot 19$	$2 \cdot 41$
03	21120	$2 \cdot 12$	$2 \cdot 30$	$2 \cdot 48$	$2 \cdot 80$	3.08
04	15840	$2 \cdot 52$	$2 \cdot 73$	$2 \cdot 94$	$3 \cdot 34$	$3 \cdot 65$
05	12672	$2 \cdot 86$	$3 \cdot 11$	$3 \cdot 35$	$3 \cdot 77$	$4 \cdot 16$
06	10560	$3 \cdot 18$	$3 \cdot 45$	$3 \cdot 72$	$4 \cdot 19$	$4 \cdot 62$
07	9051	$3 \cdot 47$	3.77	$4 \cdot 06$	$4 \cdot 58$	$5 \cdot 04$
08	7920	$3 \cdot 75$	4.06	$4 \cdot 38$	$4 \cdot 94$	$5 \cdot 44$
$\begin{array}{ll}0 & 9\end{array}$	7040	$4 \cdot 01$	$4 \cdot 34$	$4 \cdot 68$	$5 \cdot 28$	$5 \cdot 81$
010	6336	$4 \cdot 25$	$4 \cdot 61$	$4 \cdot 97$	$5 \cdot 60$	$6 \cdot 17$
011	5760	$4 \cdot 49$	$4 \cdot 86$	$5 \cdot 24$	$5 \cdot 91$	6.51
10	5280	$4 \cdot 71$	$5 \cdot 11$	$5 \cdot 51$	$6 \cdot 21$	$6 \cdot 84$
13	4224	$5 \cdot 34$	$5 \cdot 79$	$6 \cdot 24$	$7 \cdot 03$	$7 \cdot 75$
16	3520	$5 \cdot 91$	$6 \cdot 41$	$6 \cdot 91$	$7 \cdot 79$	$8 \cdot 58$
19	3017	$6 \cdot 44$	6.99	$7 \cdot 53$	$8 \cdot 49$	$9 \cdot 35$
20	2640	6.94	$7 \cdot 53$	$8 \cdot 11$	$9 \cdot 14$	10.07
23	Interpolated.	$7 \cdot 40$	$8 \cdot 03$	$8 \cdot 65$	$9 \cdot 74$	10.74
26	2112	$7 \cdot 86$	8.52	$9 \cdot 18$	10.35	11.40
29	Interpolated.	$8 \cdot 28$	$8 \cdot 98$	9.67	10.90	12.01
30	1760	$8 \cdot 70$	$9 \cdot 43$	$10 \cdot 16$	11.45	12.62
33	Interpolated.	9.09	9.85	10.62	11.97	$13 \cdot 19$
36	1508	$9 \cdot 48$	10.28	11.08	12.48	13.76
39	Interpolated.	$9 \cdot 84$	10.67	11.50	12.96	14.29
40	1320	$10 \cdot 21$	11.07	11.93	$13 \cdot 44$	14.81
46	Interpolated.	10.89	11.80	$12 \cdot 72$	14.34	15.80
50	1056	11.56	12.54	13.51	15.23	16.78
56	Interpolated.	$12 \cdot 18$	13.21	14.24	16.04	$17 \cdot 68$
60	880	$12 \cdot 80$	13.88	14.96	16.86	18.58
66	Interpolated.	$13 \cdot 38$	14.51	$15 \cdot 64$	$17 \cdot 62$	$19 \cdot 42$
70	754	13.96	$15 \cdot 14$	16.32	$18 \cdot 59$	$20 \cdot 26$
76	Interpolated.	14.51	15.73	16.95	$19 \cdot 10$	21.05
80	660	15.05	16.32	$17 \cdot 58$	$19 \cdot 82$	21.84
86	Interpolated.	15.56	1687	$18 \cdot 18$	20.49	22.58
90	587	16.07	17-43	18.78	$21 \cdot 17$	23.32
$\begin{array}{rr}9 & 6 \\ 10 & 0\end{array}$	Interpolated.	16.57	17.97	$19 \cdot 36$	21.82	$24 \cdot 04$
10 10	528	17.06	$18 \cdot 50$	19.94	22.47	24.76
10 11	Interpolated.	17.54	$19 \cdot 01$	20.49	23.09	25.45
110	. 480	18.01	$19 \cdot 53$	21.04	2372	$26 \cdot 13$
11.6	Interpolated.	$18 \cdot 47$	20.02	21.57	24.32	26.79
120	440	18.92	20.51	$22 \cdot 11$	24.91	$27 \cdot 45$

T'able Vili.-For finding the mean veloctties of water flowing in pipes, drains, streams, and rivers.
For a full cylindrical pipe, divide the diameter by 4 to find the hydraulic mean depth.

Pipes.
Diameters of pipes 6 inches to 14 inches. Falls per mile 13 feet to 5280 feet.

Falls per mile in feet, and the hydraulic inclinations.		" Hydraulic mean depths," or "mean radii," and velocities in inches per second.				
Falls.	Inclinations, one in	$1 \frac{1}{2}$ inch.	2 inches.	$2 \frac{1}{2}$ inches.	3 inches.	$3 \frac{1}{2}$ inches.
F. 13.2	400	19.97	$23 \cdot 34$	26.30	28.98	$31 \cdot 44$
$13 \cdot 6$		$20 \cdot 34$	$23 \cdot 77$	26•79	$29 \cdot 52$	$32 \cdot 03$
$14 \cdot 1$	375	20.72	$24 \cdot 21$	$27 \cdot 28$	$30 \cdot 06$	$32 \cdot 62$
14.6		21.13	24.69	27.83	$30 \cdot 67$	$33 \cdot 27$
$15 \cdot 1$	350	21.55	$25 \cdot 18$	28.38	31.27	$33 \cdot 93$
$15 \cdot 6$		22.01	25.72	28.99	31.94	$34 \cdot 66$
16.2	325	$22 \cdot 48$	26.27	$29 \cdot 60$	$32 \cdot 62$	$35 \cdot 39$
$17 \cdot 6$	300	23.53	27.50	$30 \cdot 99$	$34 \cdot 15$	$37 \cdot 05$
$19 \cdot 2$	275	24.74	$28 \cdot 90$	32.57	$35 \cdot 89$	38.94
$21 \cdot 1$	250	$26 \cdot 13$	$30 \cdot 53$	$34 \cdot 41$	37.91	$41 \cdot 14$
$23 \cdot 5$	225	$27 \cdot 76$	$32 \cdot 44$	36.56	$40 \cdot 28$	$43 \cdot 71$
$26 \cdot 4$	200	29.72	34.72	$39 \cdot 13$	$43 \cdot 12$	46.79
$30 \cdot 2$	175	$32 \cdot 11$	37.52	42.28	$46 \cdot 59$	50.55
$35 \cdot 2$	150	$35 \cdot 13$	41.04	$46 \cdot 26$	$50 \cdot 97$	55.30
37.7	140	36.57	42.73	$48 \cdot 16$	53.07	57.58
$42 \cdot 2$	125	39.08	$45 \cdot 66$	$51 \cdot 46$	56.71	61.53
48.	110	$42 \cdot 13$	$49 \cdot 23$	$55 \cdot 48$	$61 \cdot 13$	66.33
$5 \because 8$	100	44.57	52.07	58.69	$64 \cdot 67$	$70 \cdot 17$
58.7	90	47.43	$55 \cdot 42$	$62 \cdot 46$	68.83	74.68
66.	80	$50 \cdot 87$	59.44	66.99	73.81	$80 \cdot 09$
$75 \cdot 4$	70	55.08	$64 \cdot 36$	72.50	79.92	86.72
88.	60	$60 \cdot 39$	70.57	79.53	87.63	$95 \cdot 09$
$105 \cdot 6$	50	67.38	78.73	88.73	97.77	106.08
$117 \cdot 3$	45	71.79	83.88	94.54	104.17	113.03
132	40	$77 \cdot 07$	$90 \cdot 06$	101.50	$118 \cdot 84$	$121 \cdot 35$
$150 \cdot 8$	35	83.55	$97 \cdot 63$	110.03	121.24	$131 \cdot 55$
176.	30	91.72	$107 \cdot 18$	$120 \cdot 79$	$133 \cdot 10$	$144 \cdot 41$
$211 \cdot 2$	25	$102 \cdot 44$	119.70	134.90	148.65	$161 \cdot 29$
264.	20	$117 \cdot 28$	137.03	154.44	$170 \cdot 18$	184.65
352.	15	139.56	163.06	$183 \cdot 78$	202.50	$219 \cdot 72$
528.	10	$177 \cdot 95$	$207 \cdot 92$	$234 \cdot 33$	$258 \cdot 21$	$280 \cdot 16$
$586 \cdot 7$ 660.	8	189.43	221.34 237	249.45	274.87	${ }_{319.72}^{298}$
660. $754 \cdot 3$	8	$203 \cdot 07$ 219.61	237.28 256.61	$267 \cdot 42$ 289.20	$294 \cdot 67$ 318.67	319.72 345.77
${ }_{880}{ }^{75}{ }^{\circ}$	7	$219 \cdot 61$ $240 \cdot 22$	$256 \cdot 61$ 281.36	$289 \cdot 20$ 316.33	$318 \cdot 67$ $348 \cdot 57$	$345 \cdot 77$ 378.20
1056.	5	$266 \cdot 81$	311.75	$3161 \cdot 35$ 351	$387 \cdot 15$	420.07
1320.	4	302.92	353.95	398.91	439.55	476.93
1760°	3	356.00	415.96	468.80	516.57	$560 \cdot 49$
2640°	2	445.93	521.04	$587 \cdot 22$	$647 \cdot 06$	702.08
5280°	1	$660 \cdot 84$	$772 \cdot 16$	$870 \cdot 23$	$958 \cdot 91$	$1040 \cdot 44$

Table VIII.-For finding the mean velocities of water flowing in pipes, drains, streams, and rivers.

For a full cylindrical pipe, divide the diameter by 4 to find the hydraulic mean depth.
Diameters of pipes 14 inches to 22 inches. Falls per mile 1 inch to 12 feet.

Falls per mile in feet and inches, and the hydraulic inclinations.		" Hydraulic mean depths," or " mean radii," and velocities in inches per second.				
Falls.	Inclinations, one in	$3 \frac{1}{2}$ inches.	4 inches.	$4 \frac{1}{2}$ inches.	5 inches.	$5 \frac{1}{2}$ inches.
F. 0 1	63360	1-68	$1 \cdot 80$	1-91	$2 \cdot 02$	$2 \cdot 13$
02	31680	$2 \cdot 61$	$2 \cdot 81$	$2 \cdot 98$	$3 \cdot 15$	$3 \cdot 32$
03	21120	$3 \cdot 34$	3-59	3.82	$4 \cdot 03$	$4 \cdot 24$
04	15840	$3 \cdot 96$	$4 \cdot 25$	$4 \cdot 52$	$4 \cdot 78$	$5 \cdot 02$
05	12672	$4 \cdot 51$	$4 \cdot 84$	5•15	$5 \cdot 44$	$5 \cdot 72$
06	10560	$5 \cdot 01$	$5 \cdot 37$	$5 \cdot 72$	6.04	$6 \cdot 35$
07	9051	$5 \cdot 47$	$5 \cdot 87$	$6 \cdot 24$	6.60	$6 \cdot 94$
08	7920	5.90	6.33	$6 \cdot 74$	$7 \cdot 12$	$7 \cdot 48$
$0 \quad 9$	7040	6.31	$6 \cdot 77$	$7 \cdot 20$	$7 \cdot 61$	$8 \cdot 00$
010	6336	$6 \cdot 70$	$7 \cdot 18$	$7 \cdot 64$	$8 \cdot 08$	$8 \cdot 49$
011	5760	$7 \cdot 06$	$7 \cdot 58$	$8 \cdot 06$	$8 \cdot 52$	$8 \cdot 96$
10	5280	$7 \cdot 42$	$7 \cdot 96$	$8 \cdot 47$	$8 \cdot 95$	$9 \cdot 41$
13	4224	8.41	9.02	$9 \cdot 60$	10.14	10.66
16	3520	$9 \cdot 31$	$9 \cdot 99$	10.63	11.23	11.80
19	3017	$10 \cdot 15$	10.89	11.58	$12 \cdot 24$	12.86
20	2640	10.93	11.73	$12 \cdot 47$	$13 \cdot 18$	13.86
23	Interpolated.	11.65	12.50	$13 \cdot 30$	14.05	$14 \cdot 77$
26	2112	12.37	$13 \cdot 28$	$14 \cdot 12$	14.93	15.69
29	Interpolated.	13.03	13.68	14.88	15.72	$16 \cdot 53$
30	1760	13.69	14.69	$15 \cdot 63$	16.52	$17 \cdot 36$
$3 \quad 3$	Interpolated.	14.31	15-35	16.33	17.26	$18 \cdot 14$
36	1508	14.92	16.01	17.03	$18 \cdot 00$	18.92
39	Interpolated.	15.50	16.63	17.69	$18 \cdot 70$	$19 \cdot 65$
40	1320	$16 \cdot 07$	$17 \cdot 25$	18.35	$19 \cdot 39$	$20 \cdot 38$
46	Interpolated.	$17 \cdot 14$	$18 \cdot 39$	19.56	20.68	21.73
50	1056	$18 \cdot 21$	19.53	20.78	21.96	23.08
56	Interpolated.	$19 \cdot 18$	20.58	21.90	$23 \cdot 14$	$24 \cdot 32$
60	880	$20 \cdot 16$	21.63	$23 \cdot 01$	$24 \cdot 32$	25.56
66	Interpolated.	21.07	22.61	24.05	$25 \cdot 42$	26.72
70	754	21.98	$23 \cdot 59$	$25 \cdot 09$	26.52	$27 \cdot 87$
76	Interpolated.	$22 \cdot 84$	$24 \cdot 50$	26.07	$27 \cdot 55$	28.96
80	660	$23 \cdot 69$	25.42	$27 \cdot 04$	$28 \cdot 58$	30.04
86	Interpolated.	$24 \cdot 50$	$26 \cdot 29$	$27 \cdot 97$	29.55	31.06
90	587	$25 \cdot 31$	$27 \cdot 54$	$28 \cdot 89$	30.53	32.09
96	Interpolated.	26.09	$27 \cdot 99$	29.78	$31 \cdot 47$	33.08
100	528	26.87	$28 \cdot 83$	30.67	$32 \cdot 41$	34.06
106	Interpolated.	$27 \cdot 61$	$29 \cdot 62$	31.52	$33 \cdot 31$	35.01
110	, 480	$28 \cdot 35$	$30 \cdot 42$	32.37	$34 \cdot 20$	$35 \cdot 95$
116	Interpolated.	$29 \cdot 07$	$31 \cdot 19$	$33 \cdot 18$	$35 \cdot 07$	36.86
120	440	$29 . \% 9$	31.96	$34 \cdot 00$	35.93	$37 \cdot 77$

Table Vili.-For finding the mean velocities of water FLOWING IN PIPES, DRAINS, STREAMS, AND RIVERS.

For a full cylindrical pipe, divide the diameter by 4 to find the hydraulic mean depth.
Diameters of pipes 16 inches to 2 feet. Falls per mile 13 feet to 5280 feet.

Falls per mile in feet, and the hydraulic inclinations.		" Hydraulic mean depths," or " mean radii," and velocities in inches per second.				
Falls.	Inclinations, one in	4 inches.	4.) inches.	5 inches.	5. 2 inches.	6 inches.
F. 13.2	400	$33 \cdot 74$	35.89	$37 \cdot 93$	$39 \cdot 87$	$41 \cdot 72$
$13 \cdot 6$	Interpolated.	$34 \cdot 37$	$36 \cdot 56$	$38 \cdot 64$	$40 \cdot 61$	$42 \cdot 50$
$14 \cdot 1$	375	$35 \cdot 00$	$37 \cdot 23$	$39 \cdot 35$	$41 \cdot 36$	$43 \cdot 28$
14.6	Interpolated.	$35 \cdot 70$	37.98	$40 \cdot 14$	$42 \cdot 19$	$44 \cdot 15$
$15 \cdot 1$	350	$36 \cdot 40$	$38 \cdot 73$	40.92	$43 \cdot 02$	$45 \cdot 01$
$15 \cdot 6$	Interpolated.	$37 \cdot 19$	39.56	41.81	$43 \cdot 94$	45.99
16.2	325	$37 \cdot 97$	$40 \cdot 40$	$42 \cdot 69$	$44 \cdot 87$	46.96
$17 \cdot 6$	300	39.75	$42 \cdot 29$	$44 \cdot 69$	46.97	$49 \cdot 16$
$19 \cdot 2$	275	41.78	$44 \cdot 45$	46.97	$49 \cdot 38$	$51 \cdot 67$
$21 \cdot 1$	250	$44 \cdot 14$	46.95	$49 \cdot 62$	52-16	54.58
23.5	225	46.90	$49 \cdot 90$	52.72	$55 \cdot 42$	58.00
26.4	200	$50 \cdot 20$	53.41	56.44	$59 \cdot 32$	62.08
$30 \cdot 2$	175	$54 \cdot 24$	$57 \cdot 71$	60.98	$64 \cdot 10$	$67 \cdot 07$
$35 \cdot 2$	150	59.34	$63 \cdot 13$	66.71	$70 \cdot 12$	$73 \cdot 37$
$37 \cdot 7$	140	$61 \cdot 78$	$65 \cdot 72$	$69 \cdot 45$	73.00	$76 \cdot 39$
$42 \cdot 2$	125	$66 \cdot 02$	$76 \cdot 23$	$74 \cdot 22$	78.01	81.64
48.	110	$71 \cdot 17$	$75 \cdot 72$	80.01	$84 \cdot 10$	$88 \cdot 00$
$52 \cdot 8$	100	$75 \cdot 29$	$80 \cdot 09$	84.64	88.97	$93 \cdot 10$
$58 \cdot 7$	90	$80 \cdot 13$	85.25	90.08	$94 \cdot 69$	99.09
66.	80	85.93	91.42	96.61	101.54	106.26
$75^{\circ} 4$	70	$93 \cdot 04$	98.98	$104 \cdot 60$	$109 \cdot 95$	115.05
88.	60	102.02	$108 \cdot 54$	114.70	$120 \cdot 56$	$126 \cdot 16$
$105 \cdot 6$	50	113.82	$121 \cdot 09$	$127 \cdot 96$	134.50	$140 \cdot 74$
$117 \cdot 3$	45	$121 \cdot 27$	129.01	136.34	$143 \cdot 30$	149.96
132.	40	$130 \cdot 20$	$138 \cdot 51$	146.38	$153 \cdot 86$	$161 \cdot 00$
$150 \cdot 8$	35	141•14	$150 \cdot 16$	$158 \cdot 68$	$166 \cdot 79$	174.53
176.	30	154.95	164.84	$174 \cdot 20$	$183 \cdot 10$	$191 \cdot 61$
211.2	25	173.05	184•10	194.56	$204 \cdot 50$	214.00
$264{ }^{\text {- }}$	20	$198 \cdot 12$	$210 \cdot 77$	$222 \cdot 73$	234-11	$244 \cdot 98$
352 .	15	235.75	$250 \cdot 80$	$265 \cdot 04$	278.58	291.52
528.	10	$300 \cdot 60$	$319 \cdot 80$	337-95	$355 \cdot 22$	$571 \cdot 71$
586.7	9	$320 \cdot 00$	$340 \cdot 43$	$359 \cdot 76$	$378 \cdot 14$	395.70
660	8	343.04	$359 \cdot 65$	$385 \cdot 67$	$405 \cdot 37$	$424 \cdot 20$
754.3	7	370.99	$394 \cdot 68$	$417 \cdot 08$	$438 \cdot 39$	$458 \cdot 76$
880.	6	$405 \cdot 79$	$431 \cdot 70$	$456 \cdot 21$	$479 \cdot 52$	$501 \cdot 79$
$1056{ }^{\circ}$	5	$450 \cdot 71$	$479 \cdot 49$	506.71	$532 \cdot 60$	557.34
1320°	4	511.72	544.39	$575 \cdot 30$	$604 \cdot 69$	$632 \cdot 78$
1760°	3	$601 \cdot 38$	$639 \cdot 78$	$676 \cdot 10$	$710 \cdot 64$	$743 \cdot 65$
2640°	2	$753 \cdot 29$	$801 \cdot 39$	846.89	$890 \cdot 16$	931.50
5280°	1	1116.35	$1187 \cdot 62$	1255.04	1319-17	$1380 \cdot 44$

Table ViII.-For finding the mean velocittes of water FLOWING IN PIPES, DRAINS, STREAMS, AND RIVERS.

The hydraulic mean depth is found for all channels, by dividing the wetted perimeter into the area.
Hydraulic mean depths 6 inches to 10 inches. Falls per mile 1 inch to 12 feet.

Falls per mile in feet and inches, and the hydraulic inclinations.		" Hydraulic mean depths," or "mean radii," and velocities in inches per second.				
Falls.	Inclinations, one in	6 inches.	7 inches.	8 inches.	9 inches.	10 inches.
$\begin{array}{rr}\text { F. } \\ 0 & 1 \\ 0\end{array}$	63360	$2 \cdot 23$	$2 \cdot 41$	$2 \cdot 58$	$2 \cdot 75$	$2 \cdot 90$
02	31680	$3 \cdot 47$	$3 \cdot 76$	$4 \cdot 03$	$4 \cdot 28$	$4 \cdot 52$
03	21120	$4 \cdot 43$	$4 \cdot 80$	$5 \cdot 15$	$5 \cdot 47$	$5 \cdot 78$
04	15840	$5 \cdot 26$	$5 \cdot 69$	$6 \cdot 10$	$6 \cdot 49$	6.85
05	12672	$5 \cdot 98$	6.48	6.95	$7 \cdot 39$	$7 \cdot 80$
06	10560	6.65	$7 \cdot 20$	$7 \cdot 72$	$8 \cdot 20$	$8 \cdot 66$
07	9051	$7 \cdot 26$	$7 \cdot 86$	$8 \cdot 43$	$8 \cdot 96$	$9 \cdot 46$
08	7920	$7 \cdot 83$	$8 \cdot 48$	$9 \cdot 09$	$9 \cdot 67$	10.21
$0 \quad 9$	7040	$8 \cdot 37$	$9 \cdot 07$	$9 \cdot 72$	10.33	10.91
010	6336	$8 \cdot 88$	$9 \cdot 63$	10.32	10.97	11.58
011	5760	$9 \cdot 37$	$10 \cdot 16$	10.89	11.57	$12 \cdot 22$
10	5280	$9 \cdot 84$	10.67	11.43	$12 \cdot 15$	$12 \cdot 83$
13	4224	$11 \cdot 16$	12.09	12.95	$13 \cdot 77$	14.54
16	3520	$12 \cdot 35$	$13 \cdot 38$	14.34	$15 \cdot 25$	$16 \cdot 10$
19	3017	$13 \cdot 46$	$14 \cdot 58$	$15 \cdot 63$	16.61	$17 \cdot 54$
20	2640	14.50	$15 \cdot 71$	16.84	$17 \cdot 90$	$18 \cdot 90$
23	Interpolated.	$15 \cdot 45$	16.75	$18 \cdot 24$	$19 \cdot 08$	$20 \cdot 15$
26	2112	16.42	$17 \cdot 79$	$19 \cdot 64$	$20 \cdot 26$	21.40
29	Interpolated.	17-29	$18 \cdot 74$	$20 \cdot 37$	$21 \cdot 34$	22.54
30	1760	$18 \cdot 17$	19.69	$21 \cdot 10$	$22 \cdot 42$	23.68
33	Interpolated.	$18 \cdot 99$	20.57	22.05	$23 \cdot 43$	24.75
36	1508	$19 \cdot 80$	21.46	23.00	$24 \cdot 44$	$25 \cdot 81$
39	Interpolated.	20.56	$22 \cdot 28$	23.88	$25 \cdot 38$.	26.80
40	1320	$21 \cdot 33$	$23 \cdot 11$	$24 \cdot 77$	26.32	$27 \cdot 80$
46	Interpolated.	$22 \cdot 74$	$24 \cdot 64$	26.41	$28 \cdot 07$	$29 \cdot 64$
50	1056	$24 \cdot 16$	$26 \cdot 17$	$28 \cdot 05$	$29 \cdot 81$	31.48
56	Interpolated.	$25 \cdot 45$	27.58	$29 \cdot 56$	$31 \cdot 42$	$33 \cdot 17$
60	880	26.75	28.98	$31 \cdot 06$	$33 \cdot 02$	$34 \cdot 86$
$6 \quad 6$	Interpolated.	27.96	$30 \cdot 29$	$32 \cdot 47$	34.51	36.44
70	754	$29 \cdot 17$	$31 \cdot 60$	33.87	36.00	$38 \cdot 02$
76	Interpolated.	$30 \cdot 30$	32.83	$35 \cdot 19$	$37 \cdot 40$	$39 \cdot 50$
80	-660	$31 \cdot 43$	34.06	36.50	$38 \cdot 80$	$40 \cdot 97$
86	Interpolated.	$32 \cdot 51$	$35 \cdot 22$	$37 \cdot 75$	$40 \cdot 12$	42.37
90	587	33.58	36.39	$38 \cdot 99$	$41 \cdot 45$	$43 \cdot 77$
96	Interpolated.	34.61	$37 \cdot 50$	$40 \cdot 20$	42.72	$45 \cdot 11$
100	528	$35 \cdot 65$	$38 \cdot 63$	$41 \cdot 40$	$44 \cdot 00$	46.46
106	Interpolated.	36.63	$39 \cdot 69$	42.54	$45 \cdot 22$	$47 \cdot 75$
110	480	$37 \cdot 62$	$40 \cdot 76$	43.69	$46 \cdot 44$	49.03
116	Interpolated.	$38 \cdot 57$	41.79	$44 \cdot 79$	$47 \cdot 61$	$50 \cdot 27$
120	440	$39 \cdot 52$	$42 \cdot 82$	$45 \cdot 90$	$48 \cdot 78$	$51 \cdot 51$

Table VIII.-For finding the mean velocities of water flowing in pipes, drains, streams, and rivers.
The hydraulic mean depth is found for all channels by dividing the wetted perimeter into the area.
Hydraulic mean depths 11 inches to 21 inches. Falls per mile 1 inch to 12 feet.

Falls per mile in feet and inches, and the hydraulic inclinations.		" Hydraulic mean depths," or "mean radii," and velocities in inches per second.				
Falls.	Inclinations, one in	11 inches.	12 inches.	15 inches.	18 inches.	21 inches.
$\begin{array}{cc}\text { F. } \\ 0 & \text { I. } \\ \text { cher }\end{array}$	63360	$3 \cdot 05$	$3 \cdot 19$	$3 \cdot 57$	$3 \cdot 92$	$4 \cdot 25$
02	31680	$4 \cdot 75$	$4 \cdot 97$	$5 \cdot 57$	$6 \cdot 12$	$6 \cdot 62$
03	21120	6.07	6.35	$7 \cdot 12$	$7 \cdot 82$	$8 \cdot 46$
04	15840	$7 \cdot 19$	$7 \cdot 53$	$8 \cdot 44$	$9 \cdot 27$	10.03
05	12672	$8 \cdot 19$	$8 \cdot 57$	$9 \cdot 61$	10.55	11.42
06	10560	$9 \cdot 10$	9.52	10.67	11.72	12.68
07	9051	$9 \cdot 94$	$10 \cdot 39$	11.66	$12 \cdot 80$	13.85
08	7920	$10 \cdot 72$	$11 \cdot 21$	12.57	13.81	14.94
09	7041	$11 \cdot 46$	11.99	$13 \cdot 44$	$14 \cdot 76$	15.97
010	6336	$12 \cdot 16$	12.72	14.27	15.66	16.95
011	5760	12.83	13.42	15.05	16.53	$17 \cdot 88$
	5280	$13 \cdot 48$	14.09	15.81	$17 \cdot 36$	18.78
13	4224	$15 \cdot 27$	15.97	17.91	19.67	$21 \cdot 28$
16	3520	16.91	17.68	19.83	21.78	23.56
19	3017	18.23	$19 \cdot 27$	$21 \cdot 62$	$23 \cdot 73$	25.68
20	2640	19.85	20.76	23.28	$25 \cdot 63$	27.66
23	Interpolated.	$21 \cdot 16$	$22 \cdot 13$	$24 \cdot 82$	27.29	$29 \cdot 49$
26	2112	22.48	23.51	$26 \cdot 36$	28.95	31.32
29	Interpolated.	23.68	24.76	27.77	$30 \cdot 49$	32.99
30	1760	24.88	26.02	29.18	32.04	$34 \cdot 67$
33	Interpolated.	25.99	$27 \cdot 18$	$30 \cdot 47$	$33 \cdot 48$	36.22
36	1508	$27 \cdot 11$	28.35	31.77	34.92	37.78
	Interpolated.	28.15	$29 \cdot 45$	33.01	$36 \cdot 26$	39.23
40	1320	$29 \cdot 20$	$30 \cdot 54$	$34 \cdot 25$	37.60	$40 \cdot 69$
46	Interpolated.	$31 \cdot 13$	$32 \cdot 56$	36.52	$40 \cdot 10$	$43 \cdot 39$
50	1056	33.07	$34 \cdot 59$	38.79	$42 \cdot 59$	46.09
56	Interpolated.	$34 \cdot 85$	$36 \cdot 44$	$40 \cdot 87$	44.88	48.56
	880	$36 \cdot 62$	38.30	$42 \cdot 95$	$47 \cdot 16$	51.03
66	Interpolated.	38.28	$40 \cdot 03$	44.90	$49 \cdot 30$	53.34
70	754	$39 \cdot 93$	$41 \cdot 76$	$46 \cdot 84$	$51 \cdot 43$	55.65
76	Interpolated.	41.48	$43 \cdot 39$	$48 \cdot 66$	53.43	57.81
80	660	43.04	45.01	$50 \cdot 48$	$55 \cdot 42$	59.97
86	Interpolated.	44.50	46.54	$52 \cdot 20$	57.32	$62 \cdot 02$
90	587	45.97	48.08	53.92	59.21	64.06
96	Interpolated.	$47 \cdot 39$	49.56	55.58	61.03	66.04
100	528	$48 \cdot 80$	51.04	57.24	$62 \cdot 85$	68.01
106	Interpolated.	$50 \cdot 15$	$52 \cdot 45$	58.83	$64 \cdot 59$	$69 \cdot 89$
110	480	51.51	53.87	$60 \cdot 41$	66.33	71.78
116	Interpolated.	$52 \cdot 81$	$55 \cdot 23$	$61 \cdot 94$	68.01	$73 \cdot 59$
12	440	54-11	56.59	$63 \cdot 47$	$69 \cdot 68$	$75 \cdot 40$

Table VIII.-For finding the mean velocities of water FLOWING IN PIPES, DRAINS, STREAMS, AND RIVERS.
The bydraulic mean depth is found for all channels by dividing the wetted perimeter into the area.
Hydraulic mean depths 24 inches to 4 feet. Falls per mile 1 inch to 12 feet.

Falls per mile in feet and inches, and the hydraulic inclinations.		" Hydraulic mean depths," or " mean radii," and velocities in inches per second.				
Falls.	Inclinations, one in	24 inches.	30 inches.	36 inches.	42 inches.	48 inches.
$\begin{array}{cc}\text { F. } & \text { I. } \\ 0 & 1\end{array}$	63360	$4 \cdot 54$	$5 \cdot 09$	$5 \cdot 59$	$6 \cdot 04$	$6 \cdot 47$
02	31680	7.09	$7 \cdot 94$	$8 \cdot 71$	$9 \cdot 42$	10.08
03	21120	$9 \cdot 06$	$10 \cdot 15$	$11 \cdot 14$	12.04	12.89
04	15840	10.73	12.03	$13 \cdot 20$	$14 \cdot 27$	$15 \cdot 27$
05	12672	$12 \cdot 22$	13.69	15.03	16.25	$17 \cdot 39$
06	10560	13.57	15-21	16.69	$18 \cdot 05$	$19 \cdot 31$
07	9051	14.83	16.61	$18 \cdot 23$	$19 \cdot 71$	21.09
08	7920	$15 \cdot 99$	$17 \cdot 92$	19.66	$21 \cdot 27$	22.76
$0 \quad 9$	7041	$17 \cdot 10$	$19 \cdot 16$	21.02	$22 \cdot 73$	$24 \cdot 33$
010	6336	$18 \cdot 15$	20.33	$22 \cdot 31$	$24 \cdot 13$	$25 \cdot 82$
011	5760	$19 \cdot 15$	21.45	23.54	$25 \cdot 46$	$27 \cdot 24$
10	5280	$20 \cdot 11$	22.53	$24 \cdot 72$	$26 \cdot 73$	$28 \cdot 61$
13	4224	$22 \cdot 78$	$25 \cdot 53$	28.01	$30 \cdot 29$	$32 \cdot 42$
16	3520	$25 \cdot 23$	28.27	31.02	33.54	$35 \cdot 90$
19	3017	$27 \cdot 49$	30.81	$33 \cdot 80$	36.55	$39 \cdot 12$
20	2640	$29 \cdot 62$	$33 \cdot 18$	36.41	$39 \cdot 38$	42-14
23	Interpolated.	$31 \cdot 57$	$35 \cdot 38$	$38 \cdot 82$	$41 \cdot 98$	$44 \cdot 92$
26	2112	33.53	$37 \cdot 57$	$41 \cdot 22$	44.58	$47 \cdot 71$
29	Interpolated.	$35 \cdot 32$	$39 \cdot 58$	$43 \cdot 43$	46.96	$50 \cdot 26$
30	1760	$37 \cdot 11$	$41 \cdot 58$	$45 \cdot 63$	$49 \cdot 34$	52.81
33	Interpolated.	38.78	43.45	$47 \cdot 68$	51.56	$55 \cdot 18$
36	1508	40.45	$45 \cdot 32$	49.73	53.78	57.55
39	Interpolated.	42.00	$47 \cdot 07$	51.64	55.85	$59 \cdot 77$
40	1320	$43 \cdot 56$	$48 \cdot 81$	53.56	$57 \cdot 92$	61.98
46	Interpolated.	$46 \cdot 45$	52.05	$57 \cdot 11$	61.76	66.09
50	1056	$49 \cdot 34$	$55 \cdot 28$	60.66	$65 \cdot 60$	$70 \cdot 20$
56	Interpolated.	51.99	$58 \cdot 25$	63.91	$69 \cdot 12$	$73 \cdot 97$
60	880	54.63	$61 \cdot 22$	$67 \cdot 17$	$72 \cdot 64$	77•74*
66	Interpolated.	$57 \cdot 11$	$63 \cdot 99$	$70 \cdot 21$	75.93*	$81 \cdot 25$
70	754	59.58	66.76	$73 \cdot 25$	$79 \cdot 21$	$84 \cdot 77$
76	Interpolated.	61.89	$69 \cdot 35$	76.09*	$87 \cdot 29$	88.06
80	660	$64 \cdot 21$	71.94	$78 \cdot 94$	$85 \cdot 37$	$91 \cdot 35$
86	Interpolated.	66.40	$74 \cdot 40$	81.63	$88 \cdot 26$	$94 \cdot 47$
90	587	$68 \cdot 59$	76.85*	$84 \cdot 32$	$91 \cdot 19$	97-59
96	Interpolated.	$70 \cdot 60$	79.22	86.92	94.00	100.59
100	528	72.81	81.58	$89 \cdot 52$	96.81	$103 \cdot 60$
106	Interpolated.	74.83	$83 \cdot 84$	91.99	99.49	$106 \cdot 47$
110	480	76.84*	86.10	94.47	$102 \cdot 17$	109.33
116	Interpolated.	78.78	$88 \cdot 28$	96.86	104.75	$112 \cdot 10$
120	440	80.72	$90 \cdot 45$	$99 \cdot 25$	107.33	$114 \cdot 86$

Table VIII.-For finding the mean velocities of water flowing in pipes, drans, streams, and rivers.
The hydraulic mean depth is found for all channels by dividing the wetted perimeter into the area.
Hydraulic mean depths 4 feet 6 inches to 7 feet. Falls per mile 1 inch to 12 feet.

Falls per mile in feet and inches, and the bydraulic inclinations.		" Hydraulic mean depths," or "mean radii," and velocities in inches per second.				
Falls.	Inclinations, one in	54 inches.	60 inches.	66 inches.	72 inches.	84 inches.
	63360	6.86	$7 \cdot 24$	$7 \cdot 60$	$7 \cdot 94$	8.58
02	31680	$10 \cdot 70$	$11 \cdot 29$	11.85	$12 \cdot 38$	13.39
03	21120	13.68	14.62	$15 \cdot 14$	15.83	$17 \cdot 11$
04	15840	16.21	$17 \cdot 10$	17.95	18.76	$20 \cdot 28$
05	12672	18.46	19.47	$20 \cdot 43$	$21 \cdot 35$	$23 \cdot 13$
06	10560	$20 \cdot 50$	21.63	$22 \cdot 70$	$23 \cdot 72$	$25 \cdot 64$
07	9051	$22 \cdot 39$	23.62	24.79	25.90	28.00
08	7920	$24 \cdot 16$	$25 \cdot 48$	26.74	$27 \cdot 95$	$30 \cdot 21$
	7041	25.83	$27 \cdot 24$	$28 \cdot 59$	29.88	$32 \cdot 30$
010	6336	$27 \cdot 41$	28.91	$30 \cdot 34$	31.71	$34 \cdot 28$
011	5760	28.92	$30 \cdot 51$	32.01	$33 \cdot 46$	36.17
10	5280	$30 \cdot 37$	$32 \cdot 03$	33.62	$35 \cdot 13$	37.98
13	4224	$34 \cdot 41$	$36 \cdot 30$	$38 \cdot 10$	39.81	43.04
16	3520	$38 \cdot 10$	$40 \cdot 19$	$42 \cdot 18$	44.08	47.65
1	3017	41.52	$43 \cdot 80$	45.97	48.04	51.93
20	2640	44.73	$47 \cdot 18$	$49 \cdot 52$	51.75	55.94
23	Interpolated.	$47 \cdot 69$	$50 \cdot 30$	52.79	$55 \cdot 17$	59.64
26	2112	$50 \cdot 65$	$53 \cdot 42$	56.07	58.59	$63 \cdot 34$
29	Interpolated.	53.35	56.28	59.06	$61 \cdot 72$	66.72
30	1760	56.06	59.13	62.05	$64 \cdot 85$	$70 \cdot 10$
33	Interpolated.	58.57	61.79	$64 \cdot 84$	$67 \cdot 76$	$73 \cdot 25$
36	1508	61.09	$64 \cdot 44$	67.63	70.67	76.40*
39	Interpolated.	$63 \cdot 44$	66.92	$70 \cdot 23$	$73 \cdot 39$	$79 \cdot 35$
40	1320	65.80	$69 \cdot 41$	$72 \cdot 84$	76.11*	82.29
46	Interpolated.	$70 \cdot 16$	74.01	$77 \cdot 67 *$	$81 \cdot 16$	87.74
50	1056	74.52	78.61*	$82 \cdot 50$	86.21	$93 \cdot 20$
	Interpolated.	78.52*	82.83	86.92	$90 \cdot 84$	$98 \cdot 20$
60	880	82.52	87.05	$91 \cdot 35$	$95 \cdot 46$	103.20
	Interpolated.	86.25	$90 \cdot 98$	$95 \cdot 58$	99.78	107.87
70	754	89.99	94.92	99.62	104•10	112.54
76	Interpolated.	$93 \cdot 48$	98.61	103.48	108.14	116.91
80	660	96.98	102.30	$107 \cdot 35$	112-19	$121 \cdot 28$
86	Interpolated.	$100 \cdot 29$	105.79	111.02	116.01	$125 \cdot 42$
90	587	103.59	$109 \cdot 27$	114.68	119.84	129-56
96	Interpolated.	106.78	$112 \cdot 64$	$118 \cdot 21$	123.53	$133 \cdot 55$
100	528	109.97	116.01	$121 \cdot 74$	127.22	137.54
106	Interpolated.	113.02	$119 \cdot 22$	$125 \cdot 11$	$130 \cdot 74$	141.34
11	480	116.06	$122 \cdot 43$	128.48	$134 \cdot 27$	$145 \cdot 15$
116	Interpolated.	119.00	125.52	131.73	$137 \cdot 66$	148.82
12	440	121.93	128.61	134.97	141.05	152.49

Table VIII.-For finding the mean velocities of water FLOWING IN PIPES, DRAINS, STREAMS, AND RIVERS.

The hydraulic mean depth is found for all channels by dividing the wetted perimeter into the area.
Hydraulic mean depths 8 feet to 12 feet. Falls per mile 1 inch to 12 feet.

Falls per mile in feet and inches, and the hydraulic inclinations.		" Hydraulic mean depths," or "mean radii," and velocities in inches per second.				
Falls.	Inclinations, one in	96 inches.	$\begin{gathered} 108 \\ \text { inches. } \end{gathered}$	$\begin{gathered} 120 \\ \text { inches. } \end{gathered}$	$\begin{gathered} 132 \\ \text { inches. } \end{gathered}$	$\begin{gathered} 144 \\ \text { inches. } \end{gathered}$
F. 0 r.	63360	$9 \cdot 18$	$9 \cdot 75$	10.28	$10 \cdot 79$	$11 \cdot 27$
02	31680	$14 \cdot 32$	$15 \cdot 20$	16.03	16.82	$17 \cdot 57$
03	21120	18.30	$19 \cdot 43$	$20 \cdot 49$	21.50	$22 \cdot 46$
04	15840	$21 \cdot 69$	23.02	$24 \cdot 28$	$25 \cdot 47$	26.62
05	12672	$24 \cdot 70$	26.21	$27 \cdot 64$	29.00	$30 \cdot 31$
06	10560	$27 \cdot 43$	$29 \cdot 11$	$30 \cdot 70$	32.21	$33 \cdot 66$
07	9051	$29 \cdot 96$	$31 \cdot 80$	33.53	$35 \cdot 18$	36.76
08	7920	$32 \cdot 32$	$34 \cdot 30$	$36 \cdot 18$	37.96	39.66
09	7041	$34 \cdot 55$	$36 \cdot 67$	38.67	40.58	$42 \cdot 40$
010	6336	36.67	$38 \cdot 92$	41.04	43.07	45.00
011	5760	$38 \cdot 69$	41.06	$43 \cdot 31$	$45 \cdot 44$	$47 \cdot 48$
10	5280	$40 \cdot 63$	$43 \cdot 12$	$45 \cdot 48$	$47 \cdot 72$	49.86
13	4224	46.04	48.87	51.54	54.07	56.50
16	3520	50.98	$54 \cdot 11$	57.06	59.87	62.56
19	3017	55.60	58.96	62.18	65.25	68.17
20	2640	59.85	63.52	66.98	70.28	73-44*
23	Interpolated.	63.80	67.72	71.41	74.93*	78.29
26	2112	67.76	71.91	75.84*	79.58	$83 \cdot 15$
29	Interpolated.	71.38	$75.75 *$	79.89	83.83	87.59
30	1760	75.00*	79.59	83.94	88.08	92.03
33	Interpolated.	78.37	$83 \cdot 17$	$87 \cdot 71$	92.03	$96 \cdot 16$
36	1508	81.74	86.75	$91 \cdot 48$	95.99	$100 \cdot 30$
39	Interpolated.	84.88	90.09	95.01	99.69	$104 \cdot 16$
40	1320	88.03	$93 \cdot 43$	98.53	103.38	108.02
46	Interpolated.	93.87	99.62	$105 \cdot 06$	$110 \cdot 24$	$115 \cdot 18$
50	1056	99.70	$105 \cdot 82$	111.59	117.09	122.34
56	Interpolated.	$105 \cdot 06$	111.49	$117 \cdot 58$	123.38	128.91
60	880	$110 \cdot 41$	117.17	123.57	129.66	$135 \cdot 48$
66	Interpolated.	$115 \cdot 40$	$122 \cdot 47$	129-16	$135 \cdot 53$	141.61
70	754	$120 \cdot 40$	127.76	134.75	141.39	14773
76	Interpolated.	$125 \cdot 07$	$132 \cdot 74$	$139 \cdot 99$	146.88	$153 \cdot 47$
80	660	129.75	137.70	$145 \cdot 22$	$152 \cdot 38$	159.21
86	Interpolated.	134-18	$142 \cdot 40$	$150 \cdot 18$	157.57	$164 \cdot 64$
90	587	138.60	$147 \cdot 10$	155•13	162.77	$170 \cdot 07$
96	Interpolated.	$142 \cdot 87$	151.63	159.91	167.78	$175 \cdot 31$
100	- 528	$147 \cdot 14$	$156 \cdot 16$	$164 \cdot 68$	$172 \cdot 80$	$180 \cdot 55$
106	Interpolated.	151.21	$160 \cdot 48$	169.24	$177 \cdot 58$	185.55
110	480	$155 \cdot 29$	$164 \cdot 80$	$173 \cdot 80$	$182 \cdot 36$	190.54
116	Interpolated.	159.21	168.97	$178 \cdot 19$	186.97	$195 \cdot 36$
120	440	$163 \cdot 13$	$173 \cdot 13$	182.59	$191 \cdot 58$	$200 \cdot 17$

Table IX.-For finding the discharge in cubic feet, per midute, when the diameter of a pipe, or orifice, and the VElOCITY OF DISCHARGE ARE KNOWN; AND VICE VERSA.

	Discharge in cubic feet per minute, for different velocities				
	Velocity of 100 inches per second.	Velocity of 200 inches per second.	Velocity of 300 inches per second.	Velocity of 400 inches per second.	Velocity of 500 inches per second.
	-170442	-3409	5113	6818	8522
	68177	1.3635	$2 \cdot 0453$	2.7271	3.4089
$\frac{3}{4}$	1.53398	3.0679	$4 \cdot 6019$	$6 \cdot 1359$	7.6699
1	$2 \cdot 727077$	$5 \cdot 4541$	-1812	10.9083	13.6354
111	4.26106	8.5221	12.7832	17.0442	$21 \cdot 3053$
$1 \frac{1}{2}$	$6 \cdot 13593$	12.2718	18.4080	24.5437	$30 \cdot 6797$
$1 \frac{3}{4}$	-35167	16.7033	25.0550	$33 \cdot 4067$	41.7584
2	10.90831	$21 \cdot 1817$	$32 \cdot 7249$	43.6332	54.5415
$2 \frac{1}{4}$	13.80583	27.6117	41.4175	55.2233	69.0291
$2 \frac{1}{2}$	17.04423	34.0885	51.1327	$68 \cdot 1769$	85.2212
$2 \frac{3}{4}$	$20 \cdot 62352$	41.2470	61.8706	82.4941	$103 \cdot 1176$
3	24.54369	49.0874	73.6311	98.174	121.7185
$3 \frac{1}{4}$	28.8047	57.6095	86.4143	$115 \cdot 2190$	144.0238
$3 \frac{1}{2}$	$33 \cdot 40669$	66.8134	100.2201	133.6268	167.0335
$3 \frac{3}{4}$	38.34952	76.6990	115.0486	$153 \cdot 3981$	191.7476
4	$43 \cdot 63323$	87.2665	$130 \cdot 8997$	174.532	$218 \cdot 1662$
$4 \frac{1}{4}$	49.25783	98.5157	147.7735	197-0313	$246 \cdot 2892$
$4 \frac{1}{2}$	55.22331	$110 \cdot 4466$	165.6699	220.8932	$276 \cdot 1166$
$4 \frac{3}{4}$	61.52968	123.0594	184.5890	$246 \cdot 1187$	307.6484
5	68.17692	136.3539	204.5308	272.7077	340.8846
$5 \frac{1}{4}$	$75 \cdot 16506$	$150 \cdot 3301$	225.495	$300 \cdot 6603$	$375 \cdot 825$
$5 \frac{1}{1}$	82.49408	164.9882	$247 \cdot 4822$	329.9763	$412 \cdot 4704$
$5 \frac{3}{4}$	$90 \cdot 16399$	$180 \cdot 3280$	$270 \cdot 4920$	$360 \cdot 6560$	450.8200
6	98.17478	196.3495	294.5243	392.6991	$490 \cdot 8739$
$6{ }_{4}^{1}$	10652645	$213 \cdot 0529$	319.5794	$426 \cdot 1058$	$532 \cdot 63$
	115.2190	$230 \cdot 4380$	$345 \cdot 6570$	460.8760	576.0950
$6 \frac{3}{4}$	124.25245	248.5049	372.7574	497.0098	21.2623
7	133.6263	267.2536	$400 \cdot 8804$	534.5072	$668 \cdot 1340$
$7 \frac{1}{4}$	$143 \cdot 34199$	286.6840	430.0260	573.3680	716.7100
71	$153 \cdot 39809$	306.7962	$460 \cdot 1943$	613.5924	766.9905
$7 \frac{3}{4}$	163.79507	$327 \cdot 5901$	$491 \cdot 3852$	$655 \cdot 1803$	818.9753
8	174.53293	349.0659	523.5988	698.1317	47
$8 \frac{1}{2}$	197.03132	394.0626	$591 \cdot 0940$	788.1253	985•1566
9	$220 \cdot 89325$	441.7865	662.6798	883.5730	$1104 \cdot 4663$
${ }_{9}{ }^{2}$	246-11871	492.2374	738.3561	${ }^{984} 4.4748$	1230.5936
10	272.70771	345-4154	818.1231	$1090 \cdot 8308$	$1363 \cdot 5386$
$10 \frac{1}{2}$	$300 \cdot 66025$	601-3205	901.9808	1202.6410	1503-3013
11	329.97633	659.9527	989.9290	1319.9053	1649.8817
$11 \frac{1}{2}$	360.65595	721.3119	1081.9679	1442.6238	1803.2798
12	392-6991	$785 \cdot 3982$	1178.0973	1570.7964	1963 -

TABLE IX.-For finding the discharge in cubic feet, per MINUTE, WHEN THE DIAMETER OF A PIPE, OR ORIFICE, AND THE VELOCITY OF DISCHARGE ARE KNOWN; AND VICE VERSA.

Discharge in cubic feet per minute, for different velocities.					
Velocity of 600 inches per second.	Velocity of 700 inches per second.	Velocity of 800 inches per second.	Velocity of 900 inches per second.	Velocity of 1000 inches per second.	
$1.02: 27$	$1 \cdot 1931$	$1 \cdot 3635$	$1 \cdot 5340$	$1 \cdot 7044$	$\frac{1}{4}$
$4 \cdot 0906$	$4 \cdot 7724$	$5 \cdot 4542$	$6 \cdot 1359$	6.8177	$\frac{1}{2}$
$9 \cdot 2039$	10.7379	12.2718	$13 \cdot 8058$	$15 \cdot 3398$	$\frac{3}{4}$
$16 \cdot 3625$	$19 \cdot 0895$	21.8166	24.5437	27.2708	1
$25 \cdot 5664$	$29 \cdot 8274$	$34 \cdot 0885$	$38 \cdot 3495$	$42 \cdot 6106$	$1 \frac{1}{4}$
$36 \cdot 8155$	42.9515	$49 \cdot 0874$	$55 \cdot 2234$	$61 \cdot 3593$	$1 \frac{1}{2}$
$50 \cdot 1100$	58.4617	$68 \cdot 8134$	$75 \cdot 1650$	83.5167	$1 \frac{3}{4}$
6.54499	76:3582	87-2665	98.1748	109.0831	2
82-8350	()6.6408	$110 \cdot 4466$	$124 \cdot 2525$	$138 \cdot 0583$	$2 \frac{1}{4}$
102.2654	$119 \cdot 3096$	$136 \cdot 3538$	$153 \cdot 3981$	$170 \cdot 4423$	$2 \frac{1}{2}$
$123 \cdot 7411$	$144 \cdot 3646$	164-9882	$185 \cdot 6117$	$206 \cdot 2352$	$2 \frac{3}{4}$
147-2621	171.8059	$196 \cdot 3496$	$220 \cdot 8933$	$245 \cdot 4369$	3
172-8:85	$201 \cdot 6333$	$230 \cdot 4380$	$259 \cdot 2428$	$288 \cdot 0475$	$3 \frac{1}{4}$
$200 \cdot 4401$	-233-8468	-267.2535	$300 \cdot 6602$	$334 \cdot 0669$	$3 \frac{1}{2}$
$230 \cdot 0971$	$268 \cdot 4467$	306.7962	$345 \cdot 1457$	383-4952	$3 \frac{3}{4}$
261.7994	305-4326	$349 \cdot 0659$	$392 \cdot 6991$	$436 \cdot 3323$	4
295.5470	344-8048	$394 \cdot 0626$	443.3205	492.5783	$4 \frac{1}{4}$
$331 \cdot 3399$	$386 \cdot 5632$	$441 \cdot 7865$	$497 \cdot 0098$	$552 \cdot 2331$	$4 \frac{1}{2}$
$369 \cdot 1781$	$430 \cdot 7077$	$492 \cdot 2374$	$553 \cdot 7671$	$615 \cdot 2968$	$4 \frac{3}{4}$
$409 \cdot 0615$	$477 \cdot 2384$	$545 \cdot 4154$	$613 \cdot 5923$	$681 \cdot 7692$	5
450.9904	$526 \cdot 1554$	$601 \cdot 3205$	$676 \cdot 4855$	$751 \cdot 6506$	$5 \frac{1}{4}$
$494 \cdot 9645$	577.4586	659-9526	$742 \cdot 4167$	$824 \cdot 9408$	$5 \frac{1}{2}$
540.9839	$631 \cdot 1479$	$721 \cdot 3119$	$811 \cdot 4759$	$901 \cdot 6399$	$5 \frac{3}{4}$
$589 \cdot 0486$	687.2235	$785 \cdot 3982$	$883 \cdot 5730$	981•7478	6
$639 \cdot 1587$	745.6852	$852 \cdot 2116$	958-7381	1065-2645	$6 \frac{1}{4}$
$691 \cdot 3141$	$806 \cdot 3330$	921.7520	$1036 \cdot 9710$	$1152 \cdot 1900$	$6 \frac{1}{2}$
745.5147	$869 \cdot 7672$	$994 \cdot 0196$	$1118 \cdot 2721$	$1242 \cdot 5245$	$6 \frac{3}{4}$
$801 \cdot 7608$	$935 \cdot 3876$	$1069 \cdot 0144$	$1202 \cdot 6412$	$1336 \cdot 2680$	7
$860 \cdot 0519$	$1003 \cdot 3939$	1146.7359	$1290 \cdot 0779$	$1433 \cdot 4199$	$7 \frac{1}{4}$
920.3885	$1073 \cdot 7866$	12:27-1847	$1380 \cdot 5828$	1533.9809	$7 \frac{1}{2}$
$982 \cdot 7704$	$1146 \cdot 5655$	$1310 \cdot 3605$	$1474 \cdot 1556$	1637-9507	$7 \frac{3}{4}$
1047-1976	$1221 \cdot 7305$	$1396 \cdot 2634$	$1570 \cdot 7964$	$1745 \cdot 3293$	8
1182-1879	$1379 \cdot 2192$	$1576 \cdot 2506$	$1773 \cdot 2819$	1970.3132	81
1325-3595	$1546 \cdot 2528$	$1767 \cdot 1460$	$1988 \cdot 0393$	$2208 \cdot 9325$	9
$1476 \cdot 7123$	1722.8310	$1968 \cdot 9497$	$2215 \cdot 0684$	$2461 \cdot 1871$	$9 \frac{1}{2}$
1636.2463	$1908 \cdot 9540$	$2181 \cdot 6617$	$2454 \cdot 3694$	$2727 \cdot 0771$	10
1803.9615	2104.6218	2405-2820	2705-9423	$3006 \cdot 6025$	$10 \frac{1}{2}$
1979.8580	$2309 \cdot 8343$	$2639 \cdot 8106$	$2969 \cdot 7870$	$3299 \cdot 7633$	11
2163.9357	$2524 \cdot 5917$	$2885 \cdot 2476$	3245-9936	3606.5595	$11 \frac{1}{2}$
2356.1946	$2748 \cdot 8937$	3141-5928	3534-2919	3926.9910	12

TABLE X.-For finding the depths on weirs of different lengths, the quantity discharged over each being supposed constant. (See pages 149 and 150.)

Ratios of lengths.	Coefficients.						
$\cdot 01$	-0464	-405	$\cdot 5474$	$\cdot 605$	7153	. 805	- 86.54
$\cdot 02$	$\cdot 0737$	$\cdot 410$	$\cdot 5519$	-610	$\cdot 7193$. 810	-8689
$\cdot 03$	-0965	$\cdot 415$	$\cdot 5564$	-615	-7232	. 815	-8725
$\cdot 04$	$\cdot 1170$	$\cdot 420$	- 5608	-620	-7271	-820	-8761
-05	- 1357	-425	-5653	-625	-7310	825	-8796
-06	. 1533	$\cdot 430$	-5697	-630	-7349	-830	-8832
$\cdot 07$. 1699	$\cdot 435$	- 5741	-635	- 7388	-835	-8867
-08	. 1857	-440	$\cdot 5785$	-640	-7427	-840	-8903
-09	. 2008	-445	$\cdot 5829$	-645	-7465	-845	-8938
$\cdot 10$. 2154	$\cdot 450$	- 5872	-650	-7504	. 850	-8973
-11	. 2296	-455	$\cdot 5916$	-655	-7542	-855	-9008
-12	. 2133	-460	- 5959	-660	-7580	-860	-9043
$\cdot 13$. 2566	-465	-6002	-66.5	-7619	-865	. 9078
$\cdot 14$	$\cdot 2696$	$\cdot 470$	-6045	-670	-7657	-870	-9113
-15	-2323	$\cdot 475$	-6088	-675	-76).5	. 875	-9148
-16	. 2947	$\cdot 480$	-6130	-680	- 7733	-880	-9183
$\cdot 17$	$\cdot 3069$	-435	$\cdot 6173$	-685	-7771	. 885	-9218
-18	- 3188	-490	-6215	-690	- 7808	-890	$\cdot 9253$
-19	$\cdot 3305$	-495	-6258	-695	$\cdot 7846$	-895	-9287
$\cdot 20$	-3420	-500	-6300	$\cdot 700$	-7884	- 300	-9322
$\cdot 21$	$\cdot 3533$	-505	-6342	. 705	-7921	-905	-9356
$\cdot 22$. 3614	-510	-6383	- 710	-7959	. 910	. 9391
$\cdot 23$	$\cdot 3754$. 515	-6425	-715	$\cdot 7996$	$\cdot 915$	-9425
$\cdot 24$	- 3862	. 520	-6466	. 720	-8033	$\cdot 920$	$\cdot 9459$
$\cdot 25$	-3969	. 525	$\cdot 6508$	-725	-80\%0	. 925	-9494
-26	-4074	-530	-6549	. 730	-8107	.930	-9528
-27	. 4177	-535	-6590	.735	$\cdot 8144$	-935	-9562
$\cdot 28$	- 4280	-540	-6631	-740	-8181	-940	-9596
$\cdot 29$. 4381	-545	-6672	. 745	-8218	. 945	-9630
$\cdot 30$	- 4481	-550	$\cdot 6713$	750)	- 8255	. 950	-9664
$\cdot 31$	$\cdot 4580$	- 555	-6754	-755	-8291	-955	-9698
$\cdot 32$	- 4678	. 560	-6794	-760	-8328	-960	-9732
$\cdot 33$	$\cdot 4775$	- 565	-6834	765	-8365	-965	$\cdot 9762$
$\cdot 34$	-4871	. 570	-6875	-770	- 8401	$\cdot 970$	-9799
$\cdot 35$	- 4966	-575	-6915	-775	$\cdot 8437$. 975	-9833
$\cdot 36$	$\cdot 5061$. 580	-6955	-780	-8474	$\cdot 980$	-9866
-37	$\cdot 5154$	-585	-6995	-785	-8510	. 985	. 9900
$\cdot 38$	- 5246	-590)	. 7035	790	$\cdot 8546$	-990	-9933
$\cdot 39$	-5338	. 595	-7074	-795	-8582	-995	-9967
- 40	$\cdot 5429$	$\cdot 600$	$\cdot 7114$	-800	-8618	$1 \cdot 000$	1.0000

Table XI.-Relative dimensions of equal discharging trapezoidal channels, with slopes from 0 to 1 , up to 2 то 1.
Half sum of the top and bottom is the mean width. The ratio of the slope, multiplied by the depth, subtracted from the mean width, will give the bottom; and if added, will give the top.
Table XII. gives the discharge in cubic feet per minute from the primary channel, 70 wide, and the corresponding depths taken in feet. For lesser or greater channels and discharges, see Rules, pp. 123, 124, 125, 126, and 135.

The mean widths are given in the top horizontal line, and the corresponding depths in the other horizontal lines. They may be taken in inches, feet, yards, fathoms, or any other measures whatever.									
70	60	50	40	35	30	25	20	15	10
-125	-13	$\cdot 15$	$\cdot 17$	-20	- 23	26	- 29	. 35	-48
$\cdot 25$	$\cdot 27$	$\cdot 30$	$\cdot 35$	$\cdot 40$	$\cdot 45$	$\cdot 52$. 58	-71	$\cdot 98$
-375	-41	$\cdot 46$	$\cdot 54$	-60	-67	$\cdot 76$	-88	$1 \cdot 09$	1.51
$\cdot 5$	$\cdot 55$	$\cdot 62$	$\cdot 73$	-80	-89	$1 \cdot 02$	$1 \cdot 19$	1-48	$2 \cdot 04$
$\cdot 625$	-68	$\cdot 78$.91	$1 \cdot 00$	$1 \cdot 12$	$1 \cdot 29$	$1 \cdot 50$	1.88	$2 \cdot 62$
$\cdot 75$	-82	$\cdot 94$	$1 \cdot 10$	$1 \cdot 20$	$1 \cdot 35$	$1 \cdot 56$	$1 \cdot 82$	$2 \cdot 28$	$3 \cdot 22$
-875	$\cdot 96$	1-10	$1 \cdot 29$	$1 \cdot 41$	1.58	1.83	$2 \cdot 14$	$2 \cdot 69$	$3 \cdot 86$
$1 \cdot$	$1 \cdot 10$	$1 \cdot 26$	$1 \cdot 48$	$1 \cdot 62$	1.81	$2 \cdot 10$	$2 \cdot 46$	$3 \cdot 11$	$4 \cdot 50$
$1 \cdot 125$	$1 \cdot 24$	$1 \cdot 42$	$1 \cdot 67$	1.83	$2 \cdot 04$	$2 \cdot 37$	$2 \cdot 79$	$3 \cdot 54$	5•19*
$1 \cdot 25$	$1 \cdot 39$	1.58	1.86	$2 \cdot 04$	$2 \cdot 28$	$2 \cdot 65$	$3 \cdot 12$	$3 \cdot 98$	$5 \cdot 89$
1.375	1.53	$1 \cdot 74$	2.05	2.25	$2 \cdot 51$	2.92	$3 \cdot 46$	$4 \cdot 43$	660
$1 \cdot 5$	1.67	$1 \cdot 90$	$2 \cdot 24$	$2 \cdot 46$	$2 \cdot 75$	$3 \cdot 20$	$3 \cdot 80$	$4 \cdot 88$	$7 \cdot 31$
$1 \cdot 625$	1.81	$2 \cdot 06$	$2 \cdot 43$	$2 \cdot 67$	2.99	$3 \cdot 47$	$4 \cdot 15$	$5 \cdot 34$	$8 \cdot 08$
175	$1 \cdot 95$	$2 \cdot 22$	$2 \cdot 62$	$2 \cdot 88$	$3 \cdot 23$	$3 \cdot 75$	$4 \cdot 50$	$5 \cdot 80$	$8 \cdot 86$
1.875	$2 \cdot 09$	$2 \cdot 38$	$2 \cdot 81$	$3 \cdot 09$	$3 \cdot 47$	$4 \cdot 03$	$4 \cdot 86$	6.29	$9 \cdot 68$
2.	$2 \cdot 23$	$2 \cdot 54$	$3 \cdot 00$	$3 \cdot 31$	$3 \cdot 72$	$4 \cdot 32$	$5 \cdot 22$	6.78	10.50
$2 \cdot 125$	$2 \cdot 37$	$2 \cdot 70$	-3.19	$3 \cdot 52$	$3 \cdot 96$	$4 \cdot 61$	$5 \cdot 58$	$7 \cdot 29$	11.37
$2 \cdot 25$	$2 \cdot 51$	$2 \cdot 86$	$3 \cdot 38$	$3 \cdot 73$	$4 \cdot 21$	$4 \cdot 91$	$5 \cdot 95$	7.81*	$12 \cdot 25$
$2 \cdot 375$	$2 \cdot 65$	$3 \cdot 02$	$3 \cdot 57$	$3 \cdot 94$	$4 \cdot 45$	$5 \cdot 20$	$6 \cdot 31$	8.32	$13 \cdot 12$
2.5	$2 \cdot 79$	$3 \cdot 18$	$3 \cdot 76$	$4 \cdot 16$	$4 \cdot 70$	$5 \cdot 50$	$6 \cdot 68$	$8 \cdot 84$	$14 \cdot 00$
$2 \cdot 625$	2.93	$3 \cdot 34$	$3 \cdot 95$	$4 \cdot 38$	$4 \cdot 95$	5•79	7.06	$9 \cdot 38$	14.92
2.75	3.07	$3 \cdot 51$	$4 \cdot 15$	$4 \cdot 60$	$5 \cdot 21$	$6 \cdot 09$	7.45	$9 \cdot 93$	15.84
2.875	$3 \cdot 21$	$3 \cdot 67$	$4 \cdot 34$	$4 \cdot 82$	$5 \cdot 46$	$6 \cdot 39$	$7 \cdot 83$	10.48	1676
3.	$3 \cdot 35$	$3 \cdot 84$	$4 \cdot 54$	$5 \cdot 04$	$5 \cdot 72$	$6 \cdot 69$	$8 \cdot 22$	1103	$17 \cdot 68$
$3 \cdot 125$	$3 \cdot 49$	$4 \cdot 00$	$4 \cdot 73$	$5 \cdot 26$	$5 \cdot 97$	$7 \cdot 00$	8.62	11.60	1868
3.25	3.63	$4 \cdot 17$	4.93	$5 \cdot 49$	$6 \cdot 23$	$7 \cdot 31$	$9 \cdot 02$	12.17	1968
$3 \cdot 375$	$3 \cdot 77$	$4 \cdot 33$	5•13	$5 \cdot 72$	6.49	$7 \cdot 62$	$9 \cdot 42$	12.74	2068
$3 \cdot 5$	3.91	$4 \cdot 50$	$5 \cdot 33$	5.95	6.75	$7 \cdot 93$	$9 \cdot 82$	13.32	21.68
3.625	4.05	$4 \cdot 66$	$5 \cdot 53$	$6 \cdot 17$	$7 \cdot 01$	$8 \cdot 25$	10.23*	13.92	2276
3.75	$4 \cdot 19$	4.82	$5 \cdot 73$	$6 \cdot 40$	7-28	$8 \cdot 57$	10.65	14.53	23.84
3.875	$4 \cdot 33$	4.98	$5 \cdot 93$	6.62	$7 \cdot 54$	$8 \cdot 89$	11.06	15-14	24.92
4.	$4 \cdot 48$	$5 \cdot 14$	$6 \cdot 13$	6.85	7.81	$9 \cdot 21$	11.48	15.75	26.00
$4 \cdot 25$	$4 \cdot 76$	$5 \cdot 46$	6.54	$7 \cdot 30$	8.35	$9 \cdot 85$	12.33	16.98	$28 \cdot 18$
$4 \cdot 5$	$5 \cdot 05$	$5 \cdot 79$	6.95	$7 \cdot 75$	$8 \cdot 90$	10.50	$13 \cdot 19$	$18 \cdot 22$	$30 \cdot 36$
$4 \cdot 75$	$5 \cdot 33$	$6 \cdot 12$	$7 \cdot 35$	$8 \cdot 20$	$9 \cdot 45$	11-14	14.07	1950	$32 \cdot 68$
5.	$5 \cdot 62$	$6 \cdot 45$	$7 \cdot 75$	866	10.00	11.79	14.96	20.80	$35 \cdot 00$
$5 \cdot 25$	$5 \cdot 90$	$6 \cdot 78$	$8 \cdot 16$	$9 \cdot 14$	10.55	12.51*	15.86	$22 \cdot 13$	$37 \cdot 40$
$5 \cdot 5$	$6 \cdot 18$	$7 \cdot 12$	$8 \cdot 57$	9.62	11.10	13.24	16.77	23.47	$39 \cdot 81$
$5 \cdot 75$	6.46	$7 \cdot 46$	8.98	$10 \cdot 11$	11.66	13.94	17.71	$24 \cdot 86$	$42 \cdot 33$
6.	6.75	$7 \cdot 80$	$9 \cdot 40$	10.60	$12 \cdot 22$	14.65	18.65	26.25	44.86

Table XII.-Discharges from the primary channel in the first column of Table XI.

If the dimensions of the primary channel be in inches, divide the discharges in this table by 500 ; if in yards, multiply by $15 \cdot 6$; and if in fathoms, by $88 \cdot 2$, \&c.: see pp. 126,127 . The final figures in the discharges may be rejected when they do not exceed one-half per cent., or 0.5 in 100. (See pages 123 to 126 .)

Depths of a channel whose mean width is 70 :-in feet.	Falls, inclinations, and discharges in cubic feet per minute. Interpolate for intermediate falls; divide greater falls by 4, and double the corresponding discharges.						
	1 inch per mile, 1 in 63360	2 inches per mile, I in 31680	3 inches per mile, in 21120	6 inches per mile, in 10560	9 inches per mile, 1 in 7040	12 inches per mile, 1 in 5280.	15 inches per mile, 1 in 4224.
-125	47	72	93	139	175	205	233
$\cdot 25$	136	210	268	403	506	596	675
$\cdot 375$	249	389	498	746	940	1105	1252
$\cdot 50$	387	603	770	1155	1454	1709	1935
-625	541	849	1078	1617	2036	2395	2714
$\cdot 75$	714	1112	1420	2128	2681	3153	3573
. 875	900	1401	1791	2685	3382	3978	4507
1.	1100	1714	2190	3283	4134	4862	5507
$1 \cdot 125$	1310	2042	2614	3909	4927	5792	6577
$1 \cdot 25$	1534	2384	3058	4581	5766	6780	7690
1.375	1767	2757	3521	5279	6661	7823	8863
$1 \cdot 50$	2013	3142	4006	6016	7588	8915	10099
1.625	2268	3540	4525	6781	8541	10044	11381
$1 \cdot 75$	2534	3950	5053	7570	9537	11210	12703
1.875	2812	4384	5599	8386	10570	12429	14083
2.	3090	4821	6161	9230	11628	13675	15513
$2 \cdot 125$	3377	5273	6738	10092	12718	14956	16943
$2 \cdot 25$	3674	5736	7331	10981.	13833	16281	18435
$2 \cdot 375$	3977	6210	7937	11889	14981	17645	19960
$2 \cdot 50$	4293	6699	8563	12829	16161	19045	21534
$2 \cdot 625$	4616	7203	9204	13800	17380	20434	23135
$2 \cdot 75$	4947	7716	9865	14782	18624	21886	24800
2.875	5280	8233	10525	15773	19887	23360	26473
$3 \cdot$	5621	8762	11204	16788	21165	24833	28176
$3 \cdot 125$	5972	9310	11900	17830	22454	26410	29925
$3 \cdot 25$	6329	9862	12614	18897	23780	27994	31714
$3 \cdot 375$	6689	10420	13320	19963	25145	29570	33507
$3 \cdot 50$	7049	10995	14048	21052	26509	31262	35329
$3 \cdot 625$	7418	11574	14785	22153	27906	32860	37186
$3 \cdot 75$	7794	12163	15526	23284	29321	34479	39080
3.875	8178	12753	16283	24416	30756	36170	41013
4.	8566	13354	17070	25592	32225	37898	42954
$4 \cdot 25$	9355	14582	18643	27936	35191	41368	46916
$4 \cdot 50$	10173	15849	20267	30366	38254	44982	50973
$4 \cdot 75$	11001	17140	21908	32818	41356	48630	55102
5.	11833	18454	23595	35355	44546	52378	59346
$5 \cdot 25$	12696	19802	25362	37939	47795	56209	63688
$5 \cdot 50$	13576	21172	27248	40564	51097	60079	68097
$5 \cdot 75$	14478	22580	29160	43253	54478	64058	72591
6.	15393	23995	31122	45969	57897	68082	77154

Table XII.-Discharges from the primary channel in the first column of Table XI.

If the dimensions of the primary channel be in inches, divide the discharges in this table by 500 ; if in yards, multiply by $15 \cdot 6$, and if in fathoms by $88 \cdot 2, \& \mathrm{c}$. : see pp. 126 and 127. The final figures in the discharges may be rejected when they do not exceed onehalf per cent., or 0.5 in 100 . (See pages 123 to 126 .)

Falls, inclinations, and discharges in cubic feet per minute. Interpolate for intermediate falls; divide greater falls by 4, and double the corresponding discharges.							Depths of a channel whose mean width is 70 :-in feet.
18 inches	21 inches	24 inches	27 inches	30 inches	33 inches	36 inches	
per mile,							
1 in 3520.	1 in 3017.	1 in 2640.	1 in 2347.	1 in 2112.	1 in 1920.	1 in 1760.	
258	281	303	323	343	362	380	-125
748	815	877	936	993	1049	1100	$\cdot 25$
1387	1511	1627	1736	1843	1952	2037	$\cdot 375$
2145	2336	2515	2684	2852	3023	3155	- 50
3004	3274	3527	3753	4021	4207	4414	-625
3957	4311	4645	4966	5287	5553	5817	$\cdot 75$
4991	5422	5859	6274	6650	6992	7342	-875
6097	6622	7159	7631	8107	8540.	8974	1.
7266	7920	8531	9124	9660	10200	10693	$1 \cdot 125$
8514	9284	9995	10658	11318	11923	12520	$1 \cdot 25$
9816	10697	11539	12307	13045	13741	14479	1.375
11182	12185	13152	14007	14862	15656	16448	$1 \cdot 50$
12601	13730	14821	15786	16750	17657	18552	$1 \cdot 625$
14069	15331	16525	17616	18700	19698	20696	$1 \cdot 75$
15593	16997	18306	19517	20728	21840	22944	1.875
17157	18697	20141	21469	22803	24017	25242	2.
18766	20446	22030	23480	24938	26269	27601	$2 \cdot 125$
20410	22247	23965	25547	27129	28578	30027	$2 \cdot 25$
22104	24087	25947	27662	29395	30934	32512	$2 \cdot 375$
23848	25988	27992	29841	31701	33381	35096	$2 \cdot 50$
25669	27953	30100	32069	34086	35910	37725	$2 \cdot 625$
27479	29933	32247	34384	36512	38471	40415	$2 \cdot 75$
29318	31947	34408	36697	38958	41055	43135	$2 \cdot 875$
31206	34002	36624	39050	41464	43680	45896	3.
33141	36112	38897	41482	44048	46398	48747	$3 \cdot 125$
35126	38266	41223	43954	46672	49174	51664	$3 \cdot 25$
37109	40438	43556	46438	49330	51951	54586	$3 \cdot 375$
39140	42631	45925	48963	51993	54775	57550	$3 \cdot 50$
41184	44872	48343	51537	54728	57659	50580	$3 \cdot 625$
43273	47158	50807	54162	57514	60585	63656	$3 \cdot 75$
45407	49468	53300	56840	60341	63560	66784	3.875
47551	51818	55832	59514	63200	66576	69951	4.
51911	56586	60973	64974	69013	72694	76383	$4 \cdot 25$
56448	61508	66176	70623	75017	79017	82994	$4 \cdot 50$
61014	66500	71625	76408	81097	85426	89767	$4 \cdot 75$
65713	71628	77140	82250	87351	92015	96653	5.
70509	76863	82779	88200	93731	98729	103745	$5 \cdot 25$
75383	82159	88434	94344	100200	105550	110905	$5 \cdot 50$
80379	87590	94348	100616	106823	112540	118254	$5 \cdot 75$
85407	93093	100275	106911	113505	119616	125664	6.

TABLE XIII.-The square roots of the fifth powers of numbers for finding the diameter of a pipe, or dimensions OF A CHANNEL EROM THE DISCHARGE, OR THE REVERSE; SHOWING THE RELATIVE DISCHARGING POWERS OF PIPES OF DIFFERENT DIAMETERS, AND OF ANY SIMILAR CHANNELS WHATEVER, CLOSED OR open. (See pages 13, 123, 124, \&c.)
If d be the diameter of a pipe, in feet, and D the discharge in cubic feet per minute, then for long straight pipes we shall have, for velocities of nearly 3 feet per second, $\mathrm{D}=2400\left(d^{5} s\right)^{\frac{1}{4}}$, and $d=\cdot 044\left(\frac{D^{2}}{s}\right)^{3}$; or if D be the discharge per second, $\mathrm{D}=40\left(d^{3} s\right)^{3}$, and $d=\cdot 228\left(\frac{D^{2}}{s}\right)^{3}$. (See pages 112 to 121.)

Relative dimensions or diameters of pipes.	Relative discharging powers.	$\|$Relatlve dimensions or diameters of pipes.	Relative discharging powers.	$\|$Relative dimensions or diameters of pipes.	Relative discharging powers.	$\|$Relative dimenslons or diameters of pipes.	Relative discharging powers.
$\cdot 25$. 031	10.5	357-2	$30 \cdot 5$	5138.	61.	29062 .
$\cdot 5$	$\cdot 177$	11.	$401 \cdot 3$	31.	5351 .	62.	30268 .
. 75	-485	11.5	$448 \cdot 5$	$31 \cdot 5$	5569.	63.	31503.
1.	1.	12.	$498 \cdot 8$	32.	5793 .	64.	32768.
$1 \cdot 25$	1.747	12.5	$552 \cdot 4$	$32 \cdot 5$	6022 .	65°	34063 .
1.5	$2 \cdot 756$	13.	$609 \cdot 3$	33.	6256	66.	35388.
1.75	$4 \cdot 051$	13.5	$669 \cdot 6$	33.5	6496.	67.	36744.
2.	$5 \cdot 657$	14.	$733 \cdot 4$	34.	6741 .	68.	38131 .
$2 \cdot 25$	$7 \cdot 594$	$14 \cdot 5$	$800 \cdot 6$	$34 \cdot 5$	6991 .	69.	39548.
$2 \cdot 5$	$9 \cdot 882$	15.	$871 \cdot 4$	35.	$7247^{\text {. }}$	70.	40996.
$2 \cdot 75$	12.541	15.5	945.9	$35 \cdot 5$	7509.	71.	42476.
3 .	15.588	16.	1024.	36.	7776.	72.	43988.
$3 \cdot 25$	19.042	16.5	$1105 \cdot 9$	36.5	8049.	73.	45531.
$3 \cdot 5$	22.918	17.	$1191 \cdot 6$	37.	8327°	74.	47106.
$3 \cdot 75$	$27 \cdot 232$	$17 \cdot 5$	$1281 \cdot 1$	$37 \cdot 5$	8611.	75.	$4871{ }^{\text {. }}$
4.	32.	18.	$1374 \cdot 6$	38.	8901.	76.	50354.
$4 \cdot 25$	$37 \cdot 24$	18.5	$1472 \cdot 1$	$38 \cdot 5$	9197 .	77.	52027.
$4 \cdot 5$	42.96	19.	$1573 \cdot 6$	39.	9498.	78.	53732 .
$4 \cdot 75$	$49 \cdot 17$	19.5	$1679 \cdot 1$	39.5	9806.	79.	55471 .
5.	$55 \cdot 90$	20.	$1788 \cdot 9$	40	$10119{ }^{\text {- }}$	80.	57243 .
$5 \cdot 25$. $63 \cdot 15$	20.5	$1902 \cdot 8$	41.	10764.	81.	59049 .
$5 \cdot 5$	$70 \cdot 94$	21.	$2020 \cdot 9$	42.	11432.	82.	60888 .
$5 \cdot 75$	$79 \cdot 28$	21.5	$2143 \cdot 4$	43.	12125°	83.	62762 .
6.	$88 \cdot 18$	22.	$2270 \cdot 2$	44.	12842 .	84.	64669 -
6.25	97.66	22.5	$2401 \cdot 4$	45.	$13584^{\text {. }}$	85.	66611 .
$6 \cdot 5$	107.72	23.	2537 .	46.	14351.	86.	68588.
6.75	$118 \cdot 38$	$23 \cdot 5$	2677-1	47.	$15144^{\text {. }}$	87.	70599.
7.	$129 \cdot 64$	24.	$2821 \cdot 8$	48.	15963 .	88.	72645°
$7 \cdot 25$	$141 \cdot 53$	24.5	2971 -1	49.	$1680{ }^{\text {c }}$	89.	$7472{ }^{\text {- }}$
$7 \cdot 5$	$154 \cdot 05$	25.	3125.	50.	17678.	90.	76843.
$7 \cdot 75$	$167 \cdot 21$	$25 \cdot 5$	$3283 \cdot 6$	51.	18575	91.	$78996{ }^{\circ}$
8.	$181 \cdot 02$	26.	$3446 \cdot 9$	52.	19499.	92.	81184.
$8 \cdot 25$	$195 \cdot 50$	26.5	$3615 \cdot 1$	53.	20450	93.	83408°
$8 \cdot 5$	210.64	27.	3788.	54.	21428.	94.	$85668{ }^{\circ}$
$8 \cdot 75$	$226 \cdot 48$	$27 \cdot 5$	$3965 \cdot 8$	55.	22434 .	95.	87965
9.	243.	28.	4148.5	56.	23468.	96.	$90298{ }^{\circ}$
$9 \cdot 25$	$260 \cdot 23$	28.5	4336.2	57.	24529.	97.	$92668 \cdot$
$9 \cdot 5$	$278 \cdot 17$	29°	$4528 \cdot 9$	58.	25620 .	98.	$95075{ }^{\circ}$
$9 \cdot 75$	296.83	$29 \cdot 5$	$4726 \cdot 7$	59.	$2673{ }^{\circ}$	99.	97519.
10.	316.23	30.	4929.5	60.	$2788{ }^{\text {. }}$	100.	$10000{ }^{\circ}$

Woodfall and Kinder, Printers, Angel Court, Skinner Street, London.

(n)

SOUTHERN BRANCH,

 IJNIVERSITY OF CALIFORNIA,LIBRARY,
LOS ANGELES, CALIF.

 (5 mand
 2

2the 4. 5共 (5)
 2

 F2
 4. 4 We

 (1) 2 (G) 20

[^0]: "What quantity of water would be discharged through a 3 -inch pipe on an inclination of 1 in 120 ?-Full at the head, it would discharge 100 gallons in three minutes, the pipe being 50 feet in length. This is with stone-ware pipe manufactured at Lambeth. This applies to a pipe receiving water only at the inlet, the water not being higher than the head of the pipe.
 " What water was this?-Sewage-water of the full consistency, and it was discharged so completely that the pipe was perfectly clean.

[^1]: * Transactions of the Institution of Civil Engineers, Vol. II., pp. 201 -210.
 + Minutes of Information with reference to Works for the removal of Soil, Water, or Drainage, \&c., \&c. Presented to both Houses of Parliament, 1852.

[^2]: * Adcock's Engineer's Pocket Book, 1852, pp. 261 and 262,

[^3]: * Adcock's Engineer's Pocket Book, 1852, pp. 261 and 262.
 \dagger The horizontal pipe would discharge equally at both ends, unless there was a head of water at either, or an equivalent in the velocity of approach. Of course, a smaller pipe with a fall, must be better than the larger one with none at all, in preventing deposits.

[^4]: * This is also true of the other formulæ, for finding the discharge from pipes, given in this work.

[^5]: Roden Place, Dundalk, January, 1853.

[^6]: * For greater hydraulic depths than 144 inches, the extent of the Table, divide by 9 , and find the corresponding velocity. This multiplied by 3 will be the velocity sought.

[^7]: * "Transactions of the Institution of Civil Engineers," vol. ii. p. 203. "Experiments on the Flow of Water through small Pipes." By W. A. Provis.
 + In a late work, "Researches in Hydraulics," the author is led into a series of mistakes as to the accuracy of Du Buât's and several other formulæ, from neglecting to take into consideration the head due to the velocity and orifice of entry when testing them by the experiments above referred to.

[^8]: * Section IX.

[^9]: * Helsham's Lectures, p. 390. Dublin, 1739.

[^10]: * This depth is misprinted $2 \frac{5}{10}$ inches in the Encyclopædias, the resulting coefficient for which would be $\cdot 568$ instead of $\cdot 637$, as above, for a depth of $2 \frac{5}{16}$ inches.

[^11]: * Traité Hydraulique, par D'Aubuisson, pp. 46, 94 et 95.
 † Civil Engineer and Architect's Journal for 1851, p. 647.
 \ddagger Civil Engineer and Architect's Journal for 1851, pp. 642 and 645

[^12]: * Civil Engineer and Architect's Journal, 1851, p. 642.

[^13]: * There is a very important omission in almost all the preceding experiments on weirs and notches. In Fig. 10, for instance, it would have been necessary to have obtained the heads at AB and $a b$ in each experiment, above the crest, and also the head on and a few feet above the crest itself. These would indicate the resistances at the different passages of approach, and enable us to calculate the coefficients correctly, and thereby render them more generally applicable to practical purposes. The coefficients in the table at page 45, are not as valuable as they otherwise would be from this omission. The level of still water near the banks is below that of the moving water in the current, therefore, heads measured from still water must give larger coefficients than if taken from the centre of the current. This may account, to some extent, for the larger coefficients in the table at p. 43.

[^14]: * Proceedings of the Royal Irish Academy, vol. iv. p. 212.

[^15]: * This is found from Table II. more readily.

[^16]: * Annalen der Physik und Chemie von Poggendorff, 1839. Band 46, p. 243.

[^17]: * Traité d'Hydraulique, Paris, p. 60.

[^18]: * See Nicholson's translation of Venturi's Experimental Inquiries, published in the "Tracts on Hydraulics," London, 1836. The coeffcients in the Table, next page, have been all calculated for the first time by us.

[^19]: * Traité d'Hydraulique, pp. 46 et 94.

[^20]: * See the Tables of resistances, discharge, and contraction, pp. 96 and 98.

[^21]: * Table, p. 93.

[^22]: * When the alteration in the velocity passing through a diaphragm is sudden, we must reject the hypothesis of D'Aubuisson, "Traité d'Hydraulique," p. 238, and adopt that of Navier, taking the loss of head to correspond to the square of the difference and not to the difference of the squares of the velocitics in and after passing the orifice. The coefficient of contraction must, however, be varied to suit the ratio of the channels, as in this and the following pages.

[^23]: ＊For the loss sustained by contraction in the bore of a pipe by a diaphragm，see further on．

[^24]: * See Note A for formulæ for finding the time of filling Lockchambers.

[^25]: * Philosophical Transactions, 1808, p. 487.

[^26]: * M. Girard has conceived it necessary to introduce the coefficient of correction 1.7 as a multiplier to the border for finding r, to allow for the increased resistance from aquatic plants; so that, according to his reduction,

 $$
 r=\frac{\text { area }}{1.7 \text { border }} .
 $$

 See Rennie's First Report on Hydraulics as a Branch of Engincering; Third Report of the British Association, p. 167. Also equation (85), p. 112.

[^27]: * Pitot had previously, in 1726, remarked that the diminution arising from friction in pipes is, cateris paribus, inversely as the diameters,

[^28]: * See Example 16, pp. 10. 12.

[^29]: * Proceedings of the Institution of Civil Engineers, pp. 201, 210, vol. ii.

[^30]: * These measures reduced to English inches, give $r=31 \cdot 014$, $v=12.374$; and the surface velocity 16.775 inches; reduced for mean velocity $13 \cdot 101$ inches.

[^31]: * Mémoires de l'Academie de Berlin, 1814 et 1815. See Equation (110).
 \dagger Handbuch der Mechanik und der Hydraulik, Berlin, 1801.
 \ddagger Mémoires de l'Academie des Sciences de Berlin, 1814 et 1815.
 § Philosophical Transactions for 1808.

[^32]: * Natural Philosophy, p. 423.
 \dagger Traité d'Hydraulique, p. 224.
 \ddagger Traité d'Hydraulique, p. 133. See Equation (93).

[^33]: * The coefficients of friction in rivers for velocities from 3 inches to 3 feet per second, varies from about 0082 to 0075 ; yet, strange to say, most tables are calculated from one cocfficient alone; or, rather, from a formula equivalent to $94 \cdot 17(r s)^{\frac{3}{2}}$, which gives larger results than either, see p.14. Dimensions of channels calculated by means of this formula are too small. In pipes the variation of the coefficients is shown in the small table, p. 120.

[^34]: * M. Girard a fait observer, avec raison, que les plantes aquatiques, qui croissent toujours sur le fond et sur les berges des canaux, augmentent considérablement le perimètre mouillé, et par suite la résistance; il a rapellé que Dubuat, ayant mesuré la vitesse de l'eau dans le canal du Jard, avant et après la coupe des roseaux dont il était garni, avait trouvé un resultat bien moindre avant qu'après. En conséquence, il a presque doublé la pente donnée par le calcul . . ."-Traité d'Hydraulique, p. 135. When the fall does not exceed a few inches per mile, the velocity, as determined from the inclination, is very uncertain, and for this reason it is always prudent to increase the depths and sectional areas of cbannels in flat lands, as far as the regimen will permit. In such cases the section of the channel should approximate towards the best form. See p. 130.

[^35]: * This table is enlarged in Table XI., and is as equally applicable to all other measures, inches, yards, fathoms, \&c., as to feet.

[^36]: * The dimensions throughout this experiment are given as in the original, viz. in French inches.

[^37]: * Philosophical Transactions for 1831, p. 438.
 + Philosophical Transactions for 1808, pp. 173-175.

[^38]: * Philosophical Transactions for 1831, p. 438.

[^39]: * See Note B.

[^40]: * This is only correct when the surface is small in depth compared with the head. If \boldsymbol{H} be the depth of a rectangular surface in feet, and also the head of water measured to the-lower horizontal edge, then the pressure in lbs. is expressed by $31 \frac{1}{4} \mathrm{H}^{2}$; and the centre of pressure is at ${ }_{3}^{2}$ rds of the depth.

[^41]: * The average yearly fall in Dublin for seven years, ending with 1849, was 26.407 inches; and the maximum fall in any month took place in April, 1846, being 5.082 inches. The average fall in inches per month for seven years, ending with 1849, was as follows:-October, 3.060 ; August, 2.936 ; January, 2.544 ; April, 2.503 ; November, 2.300 ; July, 2.116 ; June, 2.005 ; December, 1.938 ; September, 1.860 ; May, 1.814 ; March, $1 \cdot 739$; February, 1•534.-Proceedings of the Royal Irish Academy, vol. v. p. 18.

[^42]: * Some interesting observations on rainfall and flood discharges are given in the Transactions of the Institution of Civil Engineers, Ireland, for 1851, pp. 19-33 and pp. 44-52.

[^43]: * $22,000 \mathrm{lbs}$. is much nearer the average power of horses as their work for twelve hours is ordinarily performed through the country.
 + Small wheels are not so effective as larger ones under similar circumstances.

[^44]: * Proceedings Royal Irish Academy, vol. v. p. 214.

[^45]: * The time of rising from s to 8 is exactly double the time it would take if the pressure f remained uniform to fill the same depth below r.

