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PKEFACE.

THIS
book may be regarded as a third edition of a " Treatise on the

Mathematical Theory of the Motion of Fluids," which was published in

1879. The second edition, largely remodelled and extended, appeared under

the present title in 1895. In this issue no further change has been made in

the general plan and arrangement, but the work has been carefully revised,

occasional passages have been rewritten, and many interpolations and addi-

tions have been made, amounting in all to about one-fifth of the whole.

The numbering of the sections has consequently been somewhat disturbed.

The more important extensions will be found in the latter half of the book,

which deals mainly with physical applications.

One or two points from the preface of 1895 may be repeated.

I have persisted in the use of the reversed sign of the velocity-potential,

writing u =
d<f> dx, &c, in place of u =

c<f> dx, &c. The physical interpretation

of the function is thereby greatly improved, and the far-reaching analogy with

the magnetic potential is at the same time made more complete. It should

be remembered that the prevalent usage had a purely analytical origin, in

connection with the notion of '

perfect differentials.' From a physical point of

view jt is so much more natural to regard the state of motion of a dynamical

system, in any given configuration, as specified by the impulses which would

start it, rather than by those which would stop it, that the change here advo-

cated would seem to require no further justification. It is, moreover, not

wholly an innovation, for it may claim authority in the writings of Cauchy.
If he, instead of Poisson, had happened to write a text-book of Mechanics, the

convention would, I think, have been different.

Pains have been taken to give full and accurate references in the foot-

notes; but it will be understood that the original methods have not always
been followed in the text.

In the preceding edition I endeavoured, in the spirit of Poinsot's warning,
" Gardons nou de croire qu'une science soit faite quand on l'a reduite a des

formules analytiques," to render the analytical results as intelligible as
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possible, by numerical calculations, and by the insertion of a number of

diagrams of stream-lines and other curves, drawn to scale. This process of

illustration has been continued. For facilities in reproducing some of the new

diagrams I am indebted to the Councils of the London Mathematical Society
and the Manchester Literary and Philosophical Society, in whose publications

they first appeared.

I have had recourse to Professor A. E. H. Love's kind advice on various

points, and have to thank him for several valuable suggestions.

The officers and staff of the University Press have placed me under great

obligation by the constant consideration shewn in matters connected with

the printing.

I have ventured to inscribe on the fly-leaf the name of Mr H. M. Taylor,

whose kindly encouragement first led me to write on the subject, and whose

help in revision I had gratefully to record on the former occasions. I feel

that this edition is the poorer for want of the vigilant censorship which has

so often been exercised for the benefit of his friends, but which is unfortu-

nately no longer within his power.

HORACE LAMB.

January, 1906.

/
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ADDITIONS AND CORRECTIONS.

Page 149, Art. 116. A reference to the researches of C. A. Bjerknes on pulsating spheres has

unfortunately been omitted. A full account of these is given by V. Bjerknes, Vorlesungen iiber

hydrodynamische Fernkrafte, Leipzig, 1900-1902.

Page 261, first footnote. Add a reference to Chrystal, "On the Hydrodynamical Theory of

Seiches, with a Bibliographical Sketch," Trans. R. S. Edin., t. xli. p. 599 (1905).

Page 286, equation (36), for
' d ' read '

d<p'; for
'

ir - \n
'

read '

^v - fr;.'

,, 405, line 5, foi- 'minimum' read 'stationary.'

,, 413, footnote. A paper by Lord Kelvin on "
Deep Sea Ship-Waves," Proc. R. S. Edin.,

t. xxv. p. 1060 (1905), has appeared since this chapter was printed.

Page 418, first footnote. Reference should also have been made to papers by A. Basmussen

and G. Bota, respectively, Trans. Inst. Nav. Arch., t. xli. p. 12 (1899), and t. xlii. p. 239 (1900).

00

Page 512, equation (8), for '2' read '2.'

l

,, 513, equations (18), insert a comma after 'log /j..'



HYDRODYXAMIC S .

CHAPTER I.

THE EQUATION'S OF MOTION.

1. The following investigations proceed on the assumption that the

matter with which we deal may be treated as practically continuous and

homogeneous in structure : i.e. we assume that the properties of the smallest

portions into which we can conceive it to be divided are the same as those of

the substance in bulk.

The fundamental property of a fluid is that it cannot be in equilibrium in

a state of stress such that the mutual action between two adjacent parts is

oblique to the common surface. This property is the basis of Hydrostatics,

and is verified by the complete agreement of the deductions of that science

with experiment. Very slight observation is enough, however, to convince

us that oblique stresses may exist in fluids in motion. Let us suppose for

instance that a vessel in the form of a circular cylinder, containing water

(or other liquid), is made to rotate about its axis, which is vertical. If the

motion of the vessel be uuiform, the fluid is soon found to be rotating with

the vessel as one solid body. If the vessel be now brought to rest, the

motion of the fluid continues for some time, but gradually subsides, and at

length ceases altogether ;
and it is found that during this process the portions

of fluid which are further from the axis lag behind those which are nearer,

and have their motion more rapidly checked. These phenomena point to the

existence of mutual actions between contiguous elements which are partly

tangential to the common surface. For if the mutual action were everywhere

wholly normal, it is obvious that the moment of momentum, about the axis

of the vessel, of any portion of fluid bounded by a surface of revolution about

this axis, would be constant. We infer, moreover, that these tangential

stresses are not called into play so long as the fluid moves as a solid body,

but only whilst a change of shape of some portion of the mass is going on,

and that their tendency is to oppose this change of shape.

l. 1
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2. It is usual, however, in the first instance to neglect the tangential

stresses altogether. Their effect is in many practical cases small, and inde-

pendently of this, it is convenient to divide the not inconsiderable difficulties

of our subject by investigating first the effects of purely normal stress. The

further consideration of the laws of tangential stress is accordingly deferred

till Chapter xi.

If the stress exerted across any small plane area situate at a point P of

the fluid be wholly normal, its intensity (per

unit area) is the same for all aspects of the

plane. The following proof of this theorem

is given here for purposes of reference.

Through P draw three straight lines PA,

PB, PC mutually at right angles, and let

a plane whose direction-cosines relatively to

these lines are I, m, n, passing infinitely

close to P, meet them in A, B, C. Let p,

Pi> >2 , p3 denote the intensities of the

stresses* across the faces ABC, PBC, PCA, PAB, respectively, of the

tetrahedron PABC. If A be the area of the first-mentioned face, the areas

of the others are, in order, A, toA, mA. Hence if we form the equation of

motion of the tetrahedron parallel to PA we have p^.l&^pl . A, where we

have omitted the terms which express the rate of change of momentum, and

the component of the extraneous forces, because they are ultimately propor-

tional to the mass of the tetrahedron, and therefore of the third order of

small linear quantities, whilst the terms retained are of the second. We
have then, ultimately, p=Pi, and similarly p = p.2

= p3 ,
which proves the

theorem.

3. The equations of motion of a fluid have been obtained in two different

forms, corresponding to the two ways in which the problem of determining
the motion of a fluid mass, acted on by given forces and subject to given

conditions, may be viewed. We may either regard as the object of our

investigations a knowledge of the velocity, the pressure, and the density,

at all points of space occupied by the fluid, for all instants
;
or we may seek

to determine the history of every particle. The equations obtained on these

two plans are conveniently designated, as by German mathematicians, the

'Eulerian' and the 'Lagrangian' forms of the hydrokinetic equations, although
both forms are in reality due to Eulerf.

* Beckoned positive when pressures, negative when tensions. Most fluids are, however,

incapable under ordinary conditions of supporting more than an exceedingly slight degree of

tension, so that p is nearly always positive.

f
"
Principes generaux du mouvement des fluides." Hist, de VAcad. de Berlin, 1755.

" De principiis motus fluidorum." Novi Comm. Acad. Petrop. t. xiv. p. 1 (1759).

Lagrange gave three investigations of the equations of motion ; first, incidentally, in
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The Eulerian Equations.

4. Let u, v, w be the components, parallel to the co-ordinate axes, of the

velocity at the point (x, y, z) at the time t. These quantities are then

functions of the independent variables x, y, z, t. For any particular value of

t they express the motion at that instant at all points of space occupied by
the fluid

;
whilst for particular values of x, y, z they give the history of what

goes on at a particular place.

We shall suppose, for the most part, not only that u, v, w are finite and

continuous functions of x, y, z, but that their space-derivatives of the first

order (duldx, dv/dx, dwjdx, &c.) are everywhere finite*; we shall understand

bv the term ' continuous motion,' a motion subject to these restrictions.

Cases of exception, if they present themselves, will require separate examina-

tion. In continuous motion, as thus defined, the relative velocity of any two

neighbouring particles P, P' will always be infinitely small, so that the line

PP' will always remain of the same order of magnitude. It follows that if

we imagine a small closed surface to be drawn, surrounding P, and suppose
it to move with the fluid, it will always enclose the same matter. And any
surface whatever, which moves with the fluid, completely and permanently

separates the matter on the two sides of it.

5. The values of u, v, w for successive values of t give as it were a series

of pictures of consecutive stages of the motion, in which however there rs no

immediate means of tracing the identity of any one particle.

To calculate the rate at which any function F(x, y, z, t) varies for a

moving particle, we remark that at the time t + St the particle which was

originally in the position (x, y, z) is in the position (x + u8t, y + vht, z + wBt),

so that the corresponding value of F is

/)W riJi
1

rtF1

7)ir

F(x + u8t, y + v8t, z + tuot, t + 8t) = F+u8t =- +vot%- + wht%- + Bt% .J ox dy dz dt

If, after Stokes, we introduce the symbol DjDt to denote a differentiation

following the motion of the fluid, the new value of F is also expressed by
F+ DFDt.ot, whence

DF dF dF dF dF
Trr=^7 + *< ~- + t> + W -5- (1)Dt dt dx dy dz v '

connection with the principle of Least Action, in the Miscellanea Taurinensia, t. ii. (1760),

Oeurres, Paris, 1867-92, t. i. ; secondly in his " Memoire sur la Thorie du Mouvement des

Fluides," Nouv. mem. de VAcad. de Berlin, 1781, Oeuvres, t. iv. ; and thirdly in the Mecanique

Analytique. In this last exposition he starts with the second form of the equations (Art. 13,

below), but translates them at once into the ' Eulerian
'

notation.
*

It is important to bear in mind, with a view to some later developments under the head

of Vortex Motion, that these derivatives need not be assumed to be continuous.

12
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6. To form the dynamical equations, let p be the pressure, p the density,

X, Y, Z the components of the extraneous forces per unit mass, at tbe point

(x, y, z) at the time t. Let us take an element having its centre at (x, y, z),

and its edges hx, hy, 8z. parallel to the rectangular co-ordinate axes. The rate

at which the ^-component of the momentum of this element is increasing is

p&xSy&zDu/Dt; and this must be equal to the ^-component of the forces

acting on the element. Of these the extraneous forces give pSxSySzX. The

pressure on the yz-face which is nearest the origin will be ultimately

(P
~

\^>p\dx . 8x) BySz*,

that on the opposite face

(P + hdpfix ^x) % &z -

The difference of these gives a resultant dp/dx . 8x8y8z in the direction of

^-positive. The pressures on the remaining faces are perpendicular to x.

We have then

Du dj)

pSxSySz -jr-
= pSxSySzX ~-

SxSySz.

Substituting the value of Du/Dt from (1), and writing down the

symmetrical equations, we have

du du du du 1 dp
57 + Mr- +v +w^=X ^-,
at ox dy oz p ox

dv dv dv dv ,r 1 dp
-K. + UK- +v^- + w~- = Y--f, y (2)
dt ox oy oz p dy

dw dw dw dw 1 dp

ot ox dy dz p dz

7. To these dynamical equations we must join, in the first place, a

certain kinematical relation between u, v, w, p, obtained as follows.

If v be the volume of a moving element, we have, on account of the

constancy of mass,

in \
lDp lDv .,.

P K + vS = (1)

To calculate the value of 1/v .Dv/Dt, let the element in question be that

which at time t fills the rectangular space SxSyBz having one corner P at

{as, y, z), and the edges PL, PM, PN (say) parallel to the co-ordinate axes.

At time t + St the same element will form an oblique parallelepiped, and since !

*
It is easily seen, by Taylor's theorem, that the mean pressure over any face of the element

dx dy dz may be taken to be equal to the pressure at the centre of that face.
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the velocities of the particle L relative to the particle P are du/dx.Sx,

. Sx, dw/dx . Sx, the projections of the edge PL become, after the time St,

(l
+ *)** *.* g?*.*

respectively. To the first order in St, the length of this edge is now

and similarly for the remaining edges. Since the angles of the parallelepiped

differ infinitely little from right angles, the volume is still given, to the first

order in St, by the product of the three edges, i.e. we have

1 Dv du dv dw /a .

v Dt dx cy dz

Dp (du dv dw\ ,.

Hence (1) becomes

Dt
' r \dx^ dy^ dz)

This is called the 'equation of continuity.'

,
du dv dw

1 he expression z- + ^- + ^- ,1 dx dy dz

which, as we have seen, measures the rate of increase of volume of the fluid

at the point (x, y, z), is conveniently called the 'expansion' at that point.

8. Another, and now more usual, method of obtaining the above equation

is, instead of following the motion of a fluid element, to fix the attention on

an element SxSySz of space, and to calculate the change produced in the

included mass by the flux across the boundary. If the centre of the element

be at (:c, y, z), the amount of matter which per unit time enters it across the

yz-face nearest the origin is

{
pu " * i>*r

8
*)

hyhz '

and the amount which leaves it by the opposite face is

(/*
+ -^ &*) fyS*

The two faces together give a gain

-
'^BxSySz,

per unit time. Calculating in the same way the effect of the flux across the
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remaining faces, we have for the total gain of mass, per unit time, in the

space SxByBz, the formula

fd.pu 'd.pv d. pw\ , , 5

Since the quantity of matter in any region can vary only in consequence
of the flux across the boundary, this must be equal to

^(pSxSySz),

whence we get the equation of continuity in the form

! +8^ +3^ +a?_ (4)
ot ox oy oz

9. It remains to put in evidence the physical properties of the fluid, so

far as these affect the quantities which occur in our equations.

In an '

incompressible
'

fluid, or liquid, we have DpjDt = 0, in which case

the equation of continuity takes the simple form

M+tH m
It is not assumed here that the fluid is of uniform density, though this is

of course by far the most important case.

If we wished to take account of the slight compressibility of actual liquids,

we should have a relation of the form

P = *(p-po)/po, (2)

or p/Po =1+p/k, (3)

where k denotes what is called the 'elasticity of volume.'

In the case of a gas whose temperature is uniform and constant we have

the 'isothermal' relation

p/Po = p/po, (4)

where p0i p are any pair of corresponding values for the temperature in

question.

In most cases of motion of gases, however, the temperature is not constant,

but rises and falls, for each element, as the gas is compressed or rarefied.

When the changes are so rapid that we can ignore the gain or loss of heat

by an element due to conduction and radiation, we have the
'

adiabatic
'

relation

P/Po = (p/po)
y

> (5)

where p and p are any pair of corresponding values for the element con-

sidered. The constant 7 is the ratio of the two specific heats of the gas ;

for atmospheric air, and some other gases, its value is 1*408.
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10. At the boundaries (if any) of the fluid, the equation of continuity

is replaced by a special surface-condition. Thus at a fixed boundary, the

velocity of the fluid perpendicular to the surface must be zero, i.e. if /, m. n

be the direction-cosines of the normal,

lu + mv + nw = (1)

in at a surface of discontinuity, i.e. a surface at which the values ot

w change abruptly as we pass from one side to the other, we must have

I (, - t/2) + m (, t/,) + n (, w2)
= 0, (2)

where the suffixes are used to distinguish the values on the two sides.

The same relation must hold at the common surface of a fluid and a moving
Solid.

The general surface-condition, of which these are particular cases, is that

if F(x, y,
-

t) = be the equation of a bounding surface, we must have at

every point of it

I>F Dt = (3)

For the velocity relative to the surface of a particle lying in it must be

wholly taDgential (or zero), otherwise we should have a finite flow of fluid

sa it. It follows that the instantaneous rate of variation of F for a

surface-particle must be zero.

A fuller proof, given by Lord Kelvin*, is as follows. To find the rate

of motion ( v ) of the surface F(x, y, z, i)
= 0, normal to itself, we write

F{x + IvBt, y + mvSt, z + nvSt, t + $t)
= 0,

where I, m, n are the direction-cosines of the normal at (a?, y, z), whence

-m + n )+ =0
dx (>/ dz J ct

where M-\(^\\GF 'W
'(

wehaTC ' iw (4)

At every point of the surface we must have

v = lu + mv + nw,

which leads, on substitution of the above values of I, m, n, to the equation (3).

The partial differential equation (3) is also satisfied by any surface

moviug with the fluid This follows at once from the meaning of the operator

Thomson) ''Notes on Hydrodynamics," Camb. and Dub. Math. Journ. Feb. 1848.

Mathematical and Physical Papers, Cambridge, 1882..., t. i. p. 83.
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DJDt. A question arises as to whether the converse necessarily holds
;

i.e.

whether a moving surface whose equation F=0 satisfies (3) will always
consist of the same particles. Considering any such surface, let us fix our

attention on a particle P situate on it at time t. The equation (3) expresses

that the rate at which P is separating from the surface is at this instant

zero
;
and it is easily seen that if the motion be continuous (according to the

definition of Art. 4), the normal velocity, relative to the moving surface F,

of a particle at an infinitesimal distance from it is of the order
,
viz. it is

equal to G where G is finite. Hence the equation of motion of the particle

P relative to the surface may be written

D/Dt = G$

This shews that log increases at a finite rate, and since it is negative infinite

to begin with (when =
0), it remains so throughout, i.e. remains zero for

the particle P.

The same result follows from the nature of the solution of

dF dF dF dF .
,_,

dt
+U

dZ>
+V

ty
+W

Tz
=

> (5)

considered as a partial differential equation in F*. The subsidiary system of ordinary
differential equations is

7 dx dy dz ,_.dt= = -?- = -, (6)u v w

in which x, y, z are regarded as functions of the independent variable t. These are

evidently the equations to find the paths of the particles, and their integrals may be

supposed put in the forms

x=f1 (a, b, c, t), y=f2 (a,b,c,t), z=f3 (a, b, c, t), (7)

where the arbitrary constants a, b, c are any three quantities serving to identify a particle ;

for instance they may be the initial co-ordinates. The general solution of (5) is then found

by elimination of a, b, c between (7) and

F=yj,(a,b,c), (8)

where
y\r

is an arbitrary function. This shews that a particle once in the surface ^=0
remains in it throughout the motion.

Equation of Energy.

11. In most cases which we shall have occasion to consider the extraneous

forces have a potential; viz. we have

X Y Z=- d~ - -
. ...(1)' '

dx
'

dy' dz

The physical meaning of fi is that it denotes the potential energy, per unit

mass, at the point (x, y, z), in respect of forces acting at a distance. It will

*
Lagrange, Oeuvres, t. iv. p. 706.
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be sufficient for the present to consider the case where the field of extraneous

force is constant with respect to the time, i.e. dil ct = 0. If we now multiply

the equations (2) of Art. 6 by it, v, w, in order, and add, we obtain a result

which may be written

. D /tl . rt Dn I dp dp dp\

/ pt by BxByBz, and integrate over any region, we find

-

^._. ^--jj/(+4M9***
p (u- + v2 + w1

) dxdy dz, V= jjjilpdxdydz, (3)

r the kinetic energy, and the potential energy in relation
- - "= ineous force, of the fluid which at the moment occupies

./ /i\
; i n - The triple integral on the right-hand side of (2)

\r - o fl "^^Y^
l '

by a process which will often recur in our subject. Thus,^ ojM tion
>

/rKy cv-^Vf dxdydz - \ J [pit] dydz
-

fj \p dxdydz,

. 0o^~~*~ r*^
u~ ĉ x*} i0 indicate that the values of pit at the points where the

*iou is met by a line parallel to x are to be taken, with

m, n be the direction-cosines of the inwardly directed

ent BS of this boundary, we have ByBz = IBS, the signs

uccessive intersections referred to. We thus tind that

JJ [pit] dydz = ffpuldS,

ion extends over the whole bounding surface. Trans-

ing terms in a similar manner, we obtain

(hi + mm + nw) dS + 1 1 \p (=- + =- + x-J dxdydz. . ..(4)

q incompressible fluid this reduces to the form

^(T+ V)=fj(lu
+ mv + nw)pdS (5)

Since hi + mv + nw denotes the velocity of a fluid particle in the direction of

the normal, the latter integral expresses the rate at which the pressures pBS
exerted from without on the various elements BS of the boundary are doing
work. Hence the total increase of energy, kinetic and potential, of any

portion of the liquid, is equal to the work done by the pressures on its

surface.
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In particular, if the fluid be bounded on all sides by fixed walls, we have

lu + mv + nw =

over the boundary, and therefore

T+V= const (6)

A similar interpretation can be given to the more general equation (4),

provided p be a function of p only. If we write

=-M;) (7)

then E measures the work done by unit mass of the fluid against external

pressure, as it passes, under the supposed relation between p and p, from its

actual volume to some standard volume. For example, if the unit mass

were enclosed in a cylinder with a sliding piston of area A, then when the

piston is pushed outwards through a space Bx, the work done is pA . Bx, of

which the factor ABx denotes the increment of volume, i.e. of p~
x

. In the

case of the adiabatic relation we find

^--i-ft- (8)
y-l\p pj

We may call E the intrinsic energy of the fluid, per unit mass. Now,

recalling the interpretation of the expression

du dv dw

dx dy dz

given in Art. 7, we see that the volume-integral in (4) measures" the rate at

which the various elements of the fluid are losing intrinsic energy by

expansion* ;
it is therefore equal to JDW/Dt,

where W = jjjEpdxdydz (9)

Hence ~(T + V+ W)= fjp (lu + mv+ nw)dS (10)

The total energy, which is now partly kinetic, partly potential in relation to

a constant field of force, and partly intrinsic, is therefore increasing at a rate

equal to that at which work is being done on the boundary by pressure from

without.

(du dv dw s

*
Otherwise, p ( J^ + -^- + ^ )

dx du Sz
\Cx dy dz J

lDp
pDt

1 Dp s t . D /1\ , _ . BE . i

.dxdy 8z=p (

-J
. P 8x5ySz= -

. P dx dy dz.
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Impulsive Generation of Motion.

12. If at any instant impulsive forces act bodily on the fluid, or if the

boundary conditions suddenly change, a sudden alteration in the motion may
take place. The latter case may arise, for instance, when a solid immersed

in the fluid is suddenly set in motion.

Let p be the density, u, v, iv the component velocities immediately before,

u', v, w those immediately after the impulse, X', T', Z' the components of

the extraneous impulsive forces per unit mass, ta the impulsive pressure, at

the point (x, y, z). The change of momentum parallel to x of the element

denned in Art. 6 is then pSx&y&z (u u); the ^-component of the extraneous

impulsive forces is pSxSySzX', and the resultant impulsive pressure in the

same direction is cts cj: . SxBySz. Since an impulse is to be regarded as an

infinitely great force acting for an infinitely short time (t, say), the effects of

all finite forces during this interval are neglected.

Hence, pb\i-8y8z(u' u) = pBxSySzX' ^ SxBySz,

1 d*r \

> (!)

or u' u = X'
p ox

Similarly, v' v = Y' -z- ,

poy

, , ldzrW W = Z .

P CZ )

These equations might also have been deduced from (2) of Art, 6, by

multiplyiug the latter by 8t, integrating between the limits and t, putting

X' = (

T

Xdt, Y'=\
T

Ydt, Z = [Zdt, tb = f

T

pdt,
Jo Jo -o Jo

and then making t vanish.

In a liquid an instautaneous change of motion can be produced by the

action of impulsive pressures only, even when no impulsive forces act bodily
on the mass. In this case we have X', Y', Z' = 0, so that

(2)

u'
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add, and if we further suppose the density to be uniform, we find by Art. 9 (1)

that

32
-sr d2vr d

2vr
-\ + =0.

dx2

dy
2 dz2

The problem then, in any given case, is to determine a value of -& satisfying

this equation and the proper boundary conditions*
;
the instantaneous change

of motion is then given by (2).

The Lagrangian Equations.

13. Let a, b, c be the initial co-ordinates of any particle of fluid, x, y, z

its co-ordinates at time t. We here consider x, y, z as functions of the

independent variables a, b, c, t; their values in terms of these quantities give

the whole history of every particle of the fluid. The velocities parallel to

the axes of co-ordinates of the particle (a, b, c) at time t are dx/dt, dy/dt, dzjdt,

and the component accelerations in the same directions are d2

x/dt
2
, d2

y/dt
2
,

d2

z/dt
2

. Let p be the pressure and p the density in the neighbourhood of

this particle at time t
; X, Y, Z the components of the extraneous forces per

unit mass acting there. Considering the motion of the mass of fluid which

at time t occupies the differential element of volume SxSySz, we find by the

same reasoning as in Art. 6,

*^x Y * ^P
dt2

~
~pdx'

d2

y = r _ldp
dP p ~dy

'

. d*z _ ldp
dt2 p dz

'

These equations contain differential coefficients with respect to x, y, z,

whereas our independent variables are a, b, c, t. To eliminate these dif-

ferential coefficients, we multiply the above equations by dxjda, dy/da, dz/da,

respectively, and add; a second time by dxjdb,dyjdb,dzldb, and add; and again
a third time by dxjdc, dy/dc, dz/dc, and add. We thus get the three equations

{ )da
+

[dt
2 *)da

+
[dt

2 ^Jda^pda'^'

Kot
2

J do \dt
2

J db \dt
2 Jab pob

,d2x

\dt
2 ioc \cr j oc \ov / cc p

These are the '

Lagrangian
'

forms of the dynamical equations

*)l+@- r)l +(*-*)NI= ft

*
It will appear in Chapter in. that the value of rs is thus determinate, save as to an

additive constant.
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14. To find the form which the equation of continuity assumes in terms

of our present variables, we consider the element of fluid which originally

occupied a rectangular parallelepiped having its centre at the point (a, b, c),

pud its edges 8a, 8b, 8c parallel to the axes. At the time t the same element

forms an oblique parallelepiped. The centre now has for its co-ordinates

x, y, z; and the projections of the edges on the co-ordinate axes are

respectively

dydx

da

dx

db

dx

cc

ha,

8b,

8c,

da

dy
db

dy
dc

8a,

8b,

8c,

dz

da

dz

cb

8a
;

8b;

dz
5.

The volume of the parallelepiped is therefore

dx

da'

dx

db'

dx

dc'

dy
da'

dy

db'

dy
dc'

dz

da

dz

db

d_z

dc

8a8b8c,

or. as it is often written,
d {a, b, c)

Hence, since the mass of the element is unchanged, we have

3 (x, y,z) _ n
p
d(a,b,c)~

p0 '

where p is the initial density at (a, b, c).

In the case of an incompressible fluid p = p ,
so that (1) becomes

d (x, y, z) ^ 1

d{a, b, c)

(1)

(2)

Weber's Transformation.

15. If as in Ait. 11 the forces X
; Y, Z have a potential Q, the dynamical

equations of Art. 13 may be written

30 I dp .
,

, ^- , &c, &c.
da p da

Let us integrate these equations with respect to t between the limits and t.

We remark that

'; d'
2

ydy d'-z dz

dt* dci
+

dt*da
+

dt- da

/*' d2x dx . _ [dx dx~\ * [* dx

J o dt2 da dt da q J dt

"* dx d-x

J o dt cadt
dt

dxdx ,3
dtda~ U<i ~*daI'M dt,
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where u is the initial value of the as-component of velocity of the particle

(a, b, c). Hence if we write

X =

we find*

dp

U P
+ n-i +

'

dt,, (1)

dx dx dy dy dz dz dx
dt da dt da dt da da

dxdx dz dz

dt db
^
dtdb^ dt db

3y
V ~

db'

dx dx dy dy dz dz dx
dt dc

'

dt dc dt dc

These three equations, together with

(2)

he
dt

dp + I2-1
dx

Jt
+ + dz\-

dt)
.(3)

and the equation of continuity, are the partial differential equations to be

satisfied by the five unknown quantities x, y, z, p, x'i P being supposed

already eliminated by means of one of the relations of Art. 9.

The initial conditions to be satisfied are

b, z = c, % = 0.x = a, y

16. It is to be remarked that the quantities a, b, c need not be restricted

to mean the initial co-ordinates of a particle ; they may be any three quanti-
ties which serve to identify a particle, and which vary continuously from one

particle to another. If we thus generalise the meanings of a, b, c, the form

of the dynamical equations of Art. 13 is not altered
;
to find the form which

the equation of continuity assumes, let x
, y ,

z now denote the initial

co-ordinates of the particle to which a, b, c refer. The initial volume of the

parallelepiped, whose centre is at (x , y ,
z ) and whose edges correspond to

variations 8a, &b, 8c of the parameters, a, b, c, is

d(
f;'

y '
Z )

8a8b8c,
(a, 0, c)

so that we have d(x, y,z) _ d (x,
P
a(a,"6,c)

_fJo
y , zo)

or, for an incompressible fluid,

9 (x, y, z)

d (a, b, c)

d(x0> y0; z )

(1)

d (a, b, c) d (a, b, c)
(2)

* H. Weber, " TJeber eine Transformation der hydrodynamischen Gleichungen," Crelle,

t. lxviii. (1868).



CHAPTER II.

INTEGRATION OF THE EQUATIONS IN SPECIAL CASES.

17. In a large and important class of cases the component velocities

u, v, w can be expressed in terms of a single function
<f>,

as follows :

=
-t--ty-l <

Such a function is called a '

velocity-potential,' from its analogy with the

potential function which occurs in the theories of Attractions, Electro-

statics, &c. The general theory of the velocity-potential is reserved for the

next chapter; but we give at once a proof of the following important
theorem :

If a velocity-potential exist, at any one instant, for any finite portion of

a perfect fluid in motion under the action of forces which have a potential,

then, provided the density of the fluid be either constant or a function of the

pressure only, a velocity-potential exists for the same portion of the fluid at

all instants before or afterj.

In the equations of Art. 15, let the instant at which the velocity-

potential <f>
exists be taken as the origin of time

;
we have then

u da + v db + w dc = dxf> ,

throughout the portion of the mass in question. Multiplying the equations

(2) of Art. 15 in order by da, db, dc, and adding we get

^-
dx +

^- dy + *- dz (u da + v db + w dc) = dx,

* The reasons for the introduction of the minus sign are stated in the Preface.

t Lagrange, "Memoire sur la Theorie du Mouvement des Fluides," Kouv. mem. de FAcad. de

Berlin, 1781; Oeuvres, t. iv. p. 714. The argument is reproduced in the Mecanique Analytique.

Lagrange's statement and proof were alike imperfect ;
the first rigorous demonstration is due

to Cauchy, "Memoire sur la Theorie des Ondes," Mem. de VAcad. roy. des Sciences, t. i. (1827);
Oeuvres Completes, Paris, 1882..., 1 Sene, t. i. p. 38; the date of the memoir is 1815. Another

proof is given by Stokes, Comb. Trans, t. viii. (1845) (see also Math, and Phys. Papers, Cam-

bridge, 1880..., t. i. pp. 106, 158, and t. ii. p. 36), together with an excellent historical and
critical account of the whole matter.
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or, in the ' Eulerian
'

notation,

udx + vdy + wdz = d
(<f> + %) = dcf>, say.

Since the upper limit of t in Art. 15 (1) may be positive or negative, this

proves the theorem.

It is to be particularly noticed that this continued existence of a velocity-

potential is predicated, not of regions of space, but of portions of matter.

A portion of matter for which a velocity-potential exists moves about and

carries this property with it, but the part of space which it originally occupied

may, in the course of time, come to be occupied by matter which did not

originally possess the property, and which therefore cannot have acquired it.

The class of cases in which a velocity-potential exists includes all those

where the motion has originated from rest under the action of forces of the

kind here supposed ;
for then we have, initially,

u da + v db + w dc = 0,

or
<f>
= const.

The restrictions under which the above theorem has been proved must
be carefully remembered. It is assumed not only that the extraneous forces

X, Y, Z, estimated at per unit mass, have a potential, but that the density p
is either uniform or a function of p only. The latter condition is violated

for example, in the case of the convection currents generated by the unequal

application of heat to a fluid
;
and again, in the wave-motion of a hetero-

geneous but incompressible fluid arranged originally in horizontal layers

of equal density. Another case of exception is that of
'

electro-magnetic
rotations

'

;
see Art. 29.

18. A comparison of the formulae (1) with the equations (2) of Art. 12

leads to a simple physical interpretation of
<j>.

Any actual state of motion of a liquid, for which a (single-valued)

velocity-potential exists, could be produced instantaneously from rest by the

application of a properly chosen system of impulsive pressures. This is

evident from the equations cited, which shew, moreover, that
<p
=

-or/p + const.
;

so that '& =
p<f> + C gives the requisite system. In the same way ts = p<p + C

gives the system of impulsive pressures which would completely stop the

motion. The occurrence of an arbitrary constant in these expressions shews,

what is otherwise evident, that a pressure uniform throughout a liquid mass

produces no effect on this motion*.

In the case of a gas, <f> may be interpreted as the potential of the extraneous

impulsive forces by which the actual motion at any instant could be produced

instantaneously from rest.

* This interpretation was given by Cauchy, loc. cit., and by Poisson, Mem. de VAcad. roy.

des Sciences, t. i. (1816).
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A state of motion for which a velocity-potential does not exist cannot be

generated or destroyed by the action of impulsive pressures, or of extraneous

impulsive forces having a potential.

19. The existence of a velocity-potential indicates, besides, certain

kiaematical properties of the motion.

A '

line of motion
'

or ' stream-line
' *

is defined to be a line drawn from

point to point, so that its direction is everywhere that of the motion of the

fluid. The differential equations of the system of such lines are

dx = dy = dz

a v iv

The relations (1) shew that when a velocity-potential exists the lines of

motion are everywhere perpendicular to a system of surfaces, viz. the
'

equipotential
'

surfaces
cf>
= const.

Again, if from the point (x, y, z) we draw a linear element 8s in the

direction (I, m, n), the velocity resolved in this direction is lu + mv -t niv, or

d(f>dx d<f)dy d<f> dz ,. , _ d<f>

dx ds dy ds dz ds
'

ds
'

The velocity in any direction is therefore equal to the rate of decrease of

<j>
in that direction.

Taking 8s in the direction of the normal to the surface
<f>
= const., we see

that if a series of such surfaces be drawn corresponding to equidistant values

of <, the common difference being infinitely small, the velocity at any point
will be inversely proportional to the distance between two consecutive surfaces

in the neighbourhood of the point.

Hence, if any equipotential surface intersect itself, the velocity is zero

at the intersection. The intersection of two distinct equipotential surfaces

would imply an infinite velocity.

20. Under the circumstances stated in Art. 17, the equations of motion

are at once integrable throughout that portion of the fluid mass for which
a velocity-potential exists. For in virtue of the relations

dv _ dw dw _du du _ dv

dz dy' dx dz' dy dx'

which are implied in (1), the equations of Art. 6 may be written

?-< du dv dw _ dfl ldp
dxdt dx dx dx dx pdx'

'

* Some writers prefer to restrict the use of the term stream-line '

to the case of steady
motion, as defined in Art. 21.

33
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These have the integral

d

jJft
-n- hq^F (t), (3)

where q denotes the resultant velocity (ic
2 + v2 + w2

)*, and F(t) is an arbitrary
function of t. It is often convenient to suppose this arbitrary function to be

incorporated in the value of d<f>/dt; this is permissible since, by (1), the

values of u, v, w are not thereby affected.

Our equations take a specially simple form in the case of an incompressible
fluid ;

viz. we then have

E
p
=ft

-n-w + F(t), (4)

with the equation of continuity

which is the equivalent of Art. 9 (1). When, as in many cases which we
shall have to consider, the boundary conditions are purely kinematical, the

process of solution consists in finding a function which shall satisfy (5) and

the prescribed surface-conditions. The pressure p is then given by (4), and
is thus far indeterminate to the extent of an additive function of t. It

becomes determinate when the value of p at some point of the fluid is given
for all values of t.

Suppose, for example, that we have a solid or solids moving through a liquid com-

pletely enclosed by fixed boundaries, and that it is possible {e.g. by means of a piston) to

apply an arbitrary pressure at some point of the boundary. Whatever variations are made
in the magnitude of the force applied to the piston, the motion of the fluid and of the

solids will be absolutely unaffected, the pressure at all points instantaneously rising or

falling by equal amounts. Physically, the origin of the paradox (such as it is) is that the

fluid is treated as absolutely incompressible. In actual liquids changes of pressure are

propagated with very great, but not infinite, velocity.

Steady Motion.

21. When at every point the velocity is constant in magnitude and

direction, i.e. when

dt
'

dt
u

'

dt
' {L)

everywhere, the motion is said to be '

steady.'

In steady motion the lines of motion coincide with the paths of the

particles. For if P, Q be two consecutive points on a line of motion,
a particle which is at any instant at P is moving in the direction of the

tangent at P, and will, therefore, after an infinitely short time arrive at Q.

The motion being steady, the lines of motion remain the same. Hence the
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direction of motion at Q is along the tangent to the same line of motion,

i.e. the particle continues to describe the line.

In steady motion the equation (3) of the last Art. becomes

dp
I

= H ^q- + constant (2)

The law of variation of pressure along a stream-line can however in this case

be found without assuming the existence of a velocity-potential. For if 8s

denote an element of a stream-line, the acceleration in the direction of

motion is qdqjds, and we have

dq _ _an _\dp
^

ds ds pds'

whence, integrating along the stream-line,

/
* n-#+a (3)

This is similar in form to (2), but is more general in that it does not assume

the existence of a velocity-potential. It must however be carefully noticed

that the
'

constant
'

of equation (2) and the ' C of equation (3) have different

meanings, the former being an absolute constant, while the latter is constant

along any particular stream-line, but may vary as we pass from one stream-

line to another.

22. The theorem (3) stands in close relation to the principle of energy.
If this be assumed independently, the formula may be deduced as follows*.

Taking first the particular case of a liquid, let us consider the portion of an

infinitely narrow tube, whose boundary follows the stream-lines, included

between two cross sections A and B, the direction of motion being from A
to B. Let p be the pressure, q the velocity. D. the potential of the extraneous

forces, a the area of the cross section, at A, and let the values of the same

quantities at B be distinguished by accents. In each unit of time a mass

pqa at A enters the portion of the tube considered, whilst an equal mass

pqa leaves it at B. Hence qcr
= qa. Again, the work done on the

mass entering at A is pqa per unit time, whilst the loss of work at B is

p'q'cr'. The former mass brings with it the energy pqa {^q
1

-f-O), whilst the

latter carries off energy to the amount pqa'tyq'
1 + H'). The motion being

steady, the portion of the tube considered neither gains nor loses energy on

the whole, so that

pqa + pqa(q* + H) =pq'a + pqa (hq'
3 + fi').

Dividing by pqa (= pqa'), we have

p p

* This is really a rerersion to the methods of Daniel Bernoulli, Hydrodynamica, Aigentorati,
1738.

22
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or, using G in the same sense as before,

P = -n-)ztf + c, (4)
p

which is what the equation (3) becomes when p is constant.

To prove the corresponding formula for compressible fluids, we remark

that the fluid entering at A now brings with it, in addition to its energies

of motion and position, the intrinsic energy

'"
P , [dpor - + '

\PJ p J p

per unit mass. The addition of these terms to (4) gives the equation (3).

The motion of a gas is as a rule subject to the adiabatic law

P/Po = (plPo)
y

, (5)

and the equation (3) then takes the form

-^P = -n-\f+c (6)y-lp

23. The preceding equations shew that, in steady motion, and for points

along any one stream-line*, the pressure is, cceteris paribus, greatest where

the velocity is least, and vice versa. This statement, though opposed to

popular notions, becomes evident when we reflect that a particle passing

from a place of higher to one of lower pressure must have its motion

accelerated, and vice versd\.

It follows that in any case to which the equations of the last Art. apply
there is a limit which the velocity cannot exceed

\.
For instance, let us

suppose that we have a liquid flowing from a reservoir where the velocity

may be neglected, and the pressure is p ,
and that we may neglect extraneous

forces. We have then, in (4), C=p /p, and therefore

P=p -hpq
2

(?)

Now although it is found that a liquid from which all traces of air or other

dissolved gas have been eliminated can sustain a negative pressure, or tension,

of considerable magnitude ,
this is not the case with fluids such as we find

them under ordinary conditions. Practically, then, the equation (7) shews

that q cannot exceed (2pjp)$. This limiting velocity is of course that with

which the fluid would escape from the reservoir into a vacuum. In the case

of water at atmospheric pressure it is the velocity 'due to' the height of the

water-barometer, or about 45 feet per second.

* This restriction is unnecessary when a velocity-potential exists.

+ Some interesting practical illustrations of this principle are given by Froude, Nature,
t. xiii., 1875.

X Cf. Helmholtz,
" TJeber discontinuirliche Flussigkeitsbewegungen," Berl. Monatsber., April,

1868; Phil. Mag., Nov. 1868; Gesammelte Abhandlungen, Leipzig, 1882-3, t. i. p. 146.

0. Beynolds, Hanch. Mem., t. vi. (1877); Scientific Papers, Cambridge, 1900..., t. i. p. 231.
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If in any case of fluid motion of which we have succeeded in obtaining

the analytical expression, we suppose the motion to be gradually accelerated

until the velocity at some point reaches the limit here indicated, a cavity will

be formed there, and the conditions of the problem are more or less changed.

It will be shewn, in the next chapter (Art. 44), that in irrotational motion

of a liquid, whether 'steady' or not, the place of least pressure is always at

some point of the boundary, provided the extraneous forces have a potential O

satisfying the equation
a-n c-n o2H n

"da? dy* dz~

This includes, of course, the case of gravity.

In the general case of a fluid in which p is a given function of p we have,

putting H = in (3),

-*/** (8)
J p p

For a gas subject to the adiabatic law, this gives

*-,.VrM#1 W
7 - 1 p { \p J

.? (tf-4b (10)
7-1

if c,
=

(yp/p)K
= (dpjdpf, denote the velocity of sound in the gas when at

pressure p and density p, and c the corresponding velocity for gas under the

conditions which obtain in the reservoir. (See Chap, x.) Hence the limiting

velocity is

fe=i)%
or, 2 214c

,
if 7 =1408.

24. We conclude this chapter with a few simple applications of the

equations.

Etfiux of Liquids.

Let us take in the first instance the problem of the efflux of a liquid from

a small orifice in the walls of a vessel which is kept filled up to a constant

level, so that the motion may be regarded as steady.

The origin being taken in the upper surface, let the axis of z be vertical,

and its positive direction downwards, so that H = gz. If we suppose the

area of the upper surface large compared with that of the orifice, the velocity

at the former may be neglected. Hence, determining the value of C in

Art. 22 (4) so that p = P (the atmospheric pressure), when z = 0, we have*

f-f+f-w- w
* This result is due to D. Bernoulli, I. c. ante, p. 19.



22 Integration of the Equations in Special Cases [chap, ii

At the surface of the issuing jet we have p = P, and therefore

q
2 =

%gz> (2)

i.e. the velocity is that due to the depth below the upper surface. This is

known as Torricelli's Theorem*.

We cannot however at once apply this result to calculate the rate of efflux

of the fluid, for two reasons. In the first place, the issuing fluid must be

regarded as made up of a great number of elementary streams converging
from all sides towards the orifice. Its motion is not, therefore, throughout
the area of the orifice, everywhere perpendicular to this area, but becomes

more and more oblique as we pass from the centre to the sides. Again, the

converging motion of the elementary streams must make the pressure at the

orifice somewhat greater in the interior of the jet than at the surface, where

it is equal to the atmospheric pressure. The velocity, therefore, in the interior

of the jet wall be somewhat less than that given by (2).

Experiment shews however that the converging motion above spoken of

ceases at a short distance beyond the orifice, and that (in the case of a circular

orifice) the jet then becomes approximately cylindrical. The ratio of the area

of the section S' of the jet at this point (called the 'vena contracta') to the

area S of the orifice is called the '

coefficient of contraction.' If the orifice be

simply a hole in a thin wall, this coefficient is found experimentally to be

about '62.

The paths of the particles at the vena contracta being nearly straight,

there is little or no variation of pressure as we pass from the axis to the outer

surface of the jet. We may therefore assume the velocity there to be uniform

throughout the section, and to have the value given by (2), where z now

denotes the depth of the vena coutracta below the surface of the liquid in the

vessel. The rate of efflux is therefore

Vg^-pS' (3)

The calculation of the form of the issuing jet presents difficulties which

have only been overcome in a few ideal cases of motion in two dimensions.

(See Chapter IV.) It may however be shewn that the coefficient of con-

traction must, in general, lie between \ and 1. To put the argument in its

simplest form, let us first take the case of liquid issuing from a vessel the

pressure in which, at a distance from the orifice, exceeds that of the external

space by the amount P, gravity being neglected. When the orifice is closed

by a plate, the resultant pressure of the fluid on the containing vessel is of

course nil. If when the plate is removed, we assume (for the moment) that

the pressure on the walls remains sensibly equal to P, there will be an un-

balanced pressure PS acting on the vessel in the direction opposite to that of

* " De motu gravium naturaliter accelerato," Firenze 1643.
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the jet, and tending to make it recoil. The equal and contrary reaction on

the fluid produces in unit time the velocity q in the mass pqS' flowing through
the

' vena contracta,' whence

PS = pq
2S' (4)

The principle of energy gives, as in Art. 22,

P =
p<i\ (5)

so that, comparing, we have S' = ^S. The formula (1) shews that the

pressure on the walls, especially in the neighbourhood of the orifice, will in

reality fall somewhat below the static pressure P, so that the left-hand side

of (4) is an under-estimate. The ratio S'/S will therefore in general be >|.

In one particular case, viz. where a short cylindrical tube, projecting

inwards, is attached to the orifice, the assumption above made is sufficiently

then agrees with

f f gravity (or other
k

"S

X-

JJ)

X*

excess of the static

.e. The difference

3 neglected*.

to flow through a

^ d density p into a

lotion has become

3 adiabatic law.

o not exceed a certain

wn s same manner as in

i U gp=p1
in Art. 23(9),

/ "~ .'ontracta. This gives

;i

ty of this result; for

l
=

0, i.e. the discharge

this point is due to

\2 1766), who also made

1 S/S'= 1-942. It was

be question is further

>ude and J. Thomson,

tzel, Journ. de VEcole

Polyt., t. xvi. p.
lJ2 (ISijy).
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Prof. Osborne Reynolds*. It is easily found by means of Art. 23 (8), that qp is a maximum,
i.e. the section of an elementary stream is a minimum, when q

2
=dp/dp, that is, the velocity

of the stream is equal to the velocity of sound in gas of the pressure and density which

prevail there. On the adiabatic hypothesis this gives, by Art. 23 (10),

HM> v
and therefore, since c2 oc p

y
,

^G+v"
1

' *H^v 1? (3)

or, if y= l-408, p = -634Po , p = -527p (4)

If px
be less than this value, the stream after passing the point in question widens out

again, until it is lost at a distance in the eddies due to viscosity. The minimum sections

of the elementary streams will be situate in the neighbourhood of the orifice, and their sum
S may be called the virtual area of the latter. The velocity of efflux, as found from (2), is

2-=-911c .

The rate of discharge is then =qpS, where q and p have the values just found, and is there-

fore approximately independent of the external pressure pt
so long as this falls below

527f . The physical reason of this is (as pointed out by Reynolds) that, so long as the

velocity at any point exceeds the velocity of sound under the conditions which obtain

there, no change of pressure can be propagated backwards beyond this point so as to affect

the motion higher up the stream.

These conclusions appear to be in good agreement with experimental results.

Under similar circumstances as to pressure, the velocities of efflux of different gases are

(so far as y can be assumed to have the same value for each) proportional to the corre-

sponding velocities of sound. Hence (as we shall see in Chap, x.) the velocity of efflux will

vary inversely, and the rate of discharge of mass will vary directly, as the square root of

the density t.

Rotating Liquid.

26. Let us next take the case of a mass of liquid rotating, under the

action of gravity only, with constant and uniform angular velocity to about

the axis of z, supposed drawn vertically upwards.

By hypothesis, u, v, w =
cot/, cox, 0,

X, Y,Z= 0, 0, -g.

The equation of continuity is satisfied identically, and the dynamical equations

obviously are

- co
2x = - -

,

_ &)^ = __^ o = --^-<7 (1)
pox pdy p oz

* "On the Flow of Gases," Proc. Manch. Lit. and Phil. Soc, Nov. 17, 1885; Phil. Mag.,

March, 1886. A similar explanation was given by Hugoniot, Comptes Rendus, June 28, July 26,

and Dec. 13, 1886. I have attempted, above, to condense the reasoning of these writers.

t Cf. Graham, Phil. Trans., 1846.
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These have the common integral

- = ^or {x* + y
s
) gz + const

The free surface, p = const., is therefore a paraboloid of revolution about the

axis of z, having its concavity upwards, and its latus rectum = 2g!tar.

(2)

Since
dv du -

5 s~
= -w -

ex oy
'

t. A motion of this kind could not therefore

id, i.e. in one unable to sustain tangential

- he angular velocity &> to be uniform, let us

I le distance r from the axis, and let us inquire

this function in order that a velocity-potential

I find

du . da

iniah we must have &>;
-2 =

/a,
a constant. The

i =
fi r, so that the equation (2) of Art. 21

(1)
- = const. h -

,

p
-

r*

To find the value of
<f>
we have, using polar

= 0,
7$0 r

i

const. = - u. tan-1 - + const (2)x

i e of a '

cyclic
'

fuuetion. A function is said to be

toy region of space when we can assign to every

te value of the function in such a way that these

us system. This is not possible with the function

vary continuously, changes by lirp. as the point

a complete circuit round the origin. The general

;entials will be given in the next chapter.

If gravity act, au... .. ,_ie axis of z be drawn vertically upwards, we must

add to (1) the term gz. The form of the free surface is therefore that

generated by the revolution of the hyperbolic curve a?z const, about the

axis of z.

By properly fitting together the two preceding solutions we obtain the

case of Rankine's ' combined vortex.' Thus the motion being everywhere in
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coaxial circles, let us suppose the velocity to be equal to cor from r = to

r = a, and to coa2/r for r>a. The corresponding forms of the free surface are

then given by

and

these being continuous when r = a. The depth of the central depression

below the general level of the surface is therefore ay*a?/g.

28. To illustrate, by way of contrast, the case of extraneous forces not

having a potential, let us suppose that a mass of liquid filling a right circular

cylinder moves from rest under the action of the forces

X = Ax + By, Y=B'x + Cy, Z=0,

the axis of z being that of the cylinder.

If we assume u= coy, v= tox, w=0, where a> is a function of t only, these values satisfy

the equation of continuity and the boundary conditions. The dynamical equations are

evidently

dt
o
2y=B'x+Cy--

d

^.

(1)

Differentiating the first of these with respect to y, and the second with respect to x and

subtracting, we eliminate^, and find

!-*<*'-*)
The fluid therefore rotates as a whole about the axis of z with constantly accelerated

angular velocity, except in the particular case when B= B'. To find p, we substitute the

value of dcofdt in (1) and integrate; we thus get

P

where 2fi=B+ B'.

= \ g>
2
(x

2+y2
) + % (

Ax2+ 2pxy + Cy
2
) + const.

,
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29. As a final example, we will take one suggested by the theory of

4

electro-magnetic rotations.'

If an electric current be made to pass radially from an axial wire, through a conduct-

ing liquid, to the walls of a metallic containing cylinder, in a uniform magnetic field, the

extraneous forces will be of the type*

r- r-

Assuming u= a>y, v= o*r, w=0, where a is a function of r and t only, we have

(1)
Co) UX 1 CD

ct
" r1 p cy

. . . Co) C"u>

Eliminating p. we obtain 2 + r 5-5-= 0.
ct crct

The solution of this is w = F(t);t +/(r\

where /'and /denote arbitrary functions. Since =0 when t= 0, we have

F(0)lr*+f(r) = 0,

and therefore B=^' f(Q) = \ , (2)

where X is a function of t which vanishes for t=0. Substituting in (1), and integrating, we
find

5-Hf)*--**-***
Since jd is essentially a single-valued function, we must have d\/dt=p, or \=pj. Hence
the Huid rotates with an angular velocity which varies inversely as the square of the

distance from the axis, and increases constantly with the time

*
If C denote the total flux of electricity outwards, per unit length of the axis, and y the

component of the magnetic force parallel to the axis, we have p = yC/2rp. For the history of

such experiments see Winkelmann, Handbu'ch d. Physik, t. iii. (2), p. 315. The above case ia

specially simple, in that the forces X, Y, Z. have a potential (0= -
p. tan

-1
y/x), though a

'

cyclic
'

one. As a rule, in electro-magnetic rotations, the mechanical forces A", F, Z have not

a p 'tential at all.



CHAPTER III.

IRROTATIONAL MOTION.

30. The present chapter is devoted maiuly to an exposition of some

general theorems relating to the kinds of motion already considered in Arts.

17 20; viz. those in which udx + vdy + wdz is an exact differential through-
out a finite mass of fluid. It is convenient to begin with the following

analysis, due to Stokes*, of the motion of a fluid element in the most general
case.

The component velocities at the point (x, y, z) being u, v, w, the relative

velocities at an infinitely near point (x + 8x, y + 8y, z + 8z) are

~ du _ du -. du ~

k-S&+|**+ s**' > (1)

,. dw . dw
5.

dw ~
bw = bx + ^ o V + r- oz.

ox oy oz

If we write
du

ox dy
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The first part, whose components are u, v, w, is a motion of translation

of the element as a whole.

The second part, expressed by the first three terms on the right-hand
sides of the equations (2), is a motion such that, if 8x, 8y, 8z be regarded as

current co-ordinates, every point is moving in the direction of the normal to

that quadric of the system

a (6\r)
2 + b (8yf + c (8z)

n- + 2/8y8z + 2g8z8x + 1h 8x8y = const., . . .(3)

on which it lies. If we refer these quadrics to their principal axes, the

corresponding parts of the velocities parallel to these axes will be

6V = a'6V, 8v =b'hy', 8w' = c'8z, (4)

if a {8xJ + b' (8yJ + c {8zJ = const.

is what (3) becomes by the transformation. The formulae (4) express that

the length of every line in the element parallel to x is being elongated at

the (positive or negative) rate a, whilst lines parallel to y and / are being

elongated in like manner at the rates b' and c respectively. Such a motion is

called one of pure strain and the principal axes of the quadrics (3) are called

the axes of the strain.

The last two terms on the right-hand sides of the equations (2) express a

rotation of the element as a whole about an instantaneous axis; the com-

ponent angular velocities of the rotation being , v, *.

This analysis may be illustrated by the so-called 'laminar' motion of a liquid in

which

u= 2fiy, ?=0, w=0,

so that a, b, c,f, g, fe 17=0, A=
/x, f= - M.

If A represent a rectangular fluid element bounded by planes parallel to the co-ordinate

planes, then B represents the change produced in this in a short time by the strain, and C
that due to the strain plus the rotation.

It is easily seen that the above resolution of the motion is unique. If

we assume that the motion relative to the point (x, y, z) can be made up of a

strain and a rotation in which the axes and coefficients of the strain and the

* The quantities corresponding to
, 77, f in the theory of the infinitely small displacement*

of a continuous medium had been interpreted by Cauchy as expressing the ' mean rotations
'

of an element, Exercices cCAnalyse et de Physique, t. ii. (Paris, 1841), p. 302.
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axis and angular velocity of the rotation are arbitrary, then calculating the

relative velocities Bu, Bv, Bw, we get expressions similar to those on the right-

hand sides of (2), but with arbitrary values of a, b, c,f, g, h, f, t], . Equating
coefficients of Bx, By, Bz, however, we find that a, b, c, &c. must have respec-

tively the same values as before. Hence the directions of the axes of the

strain, the rates of extension or contraction along them, and the axis and the

angular velocity of rotation, at any point of the fluid, depend only on the

state of relative motion at that point, and not on the position of the axes of

reference.

When throughout a finite portion of a fluid mass we have
, 77, all zero,

the relative motion of any element of that portion consists of a pure strain

only, and is called 'irrotational.'

31. The value of the integral

f(udx + vdy + wdz),

/(

taken along any line ABCD, is called* the 'flow' of the fluid from A to D
along that line. We shall denote it for shortness by / {ABCD).

If A and D coincide, so that the line forms a closed curve, or circuit, the

value of the integral is called the
'

circulation
'

in that circuit. We denote

it by I {ABCA). If in either case the integration be taken in the opposite

direction, the signs of dxjds, dyjds, dzjds will be reversed, so that we have

I(AD) = -I(DA), and I (ABCA) = - I (A CBA).

It is a'so plain that

/ (ABCD) = I(AB) + I (BC) + I (CD).

Again, any surface may be divided, by a double series of lines crossing

it, into infinitely small elements. The sum of the circulations round

the boundaries of these elements, taken all in the

same sense, is equal to the circulation round the ,

original boundary of the surface (supposed for the

moment to consist of a single closed curve). For,

in the sum in question, the flow along each side

common to two elements comes in twice, once for

each element, but with opposite signs, and there-

fore disappears from the result. There remain then

only the flows along those sides which are parts of

the original boundary; whence the truth of the

above statement.

From this it follows, by considerations of continuity, that the circulation

Sir W. Thomson, " On Vortex Motion." Edin. Trans., t. xxv. (1869).
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round the boundary of any surface-element BS, having a given position and

aspect, is ultimately proportional to the area of the element.

If the element be a rectangle ByBz having its centre at the point (x, y, z),

then calculating the circulation round it in the direction shewn by the arrows

in the annexed figure, we have
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co-ordinates form a right-handed system ;
thus if the axes of x and y point E.

and N. respectively, that of z will point vertically upwards*. The sense in

which the circulation, as given by (2) is estimated, is then related to the

direction of the normal (I, m, n) in the manner typified by a right-handed
screw

-j-.

A distinction is now generally recognized between two classes of vectors. If we
transform to another system of rectangular axes Ox', 0y\ Oz' whose

positions are indicated in the usual manner by the annexed scheme

of direction-cosines, we have
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which we may term the positive side
;
the direction of integration in the

first member is then that in which a man walking on the surface, on the

positive side of it, and close to the edge, must proceed so as to have the

surface always on his left hand.

The theorem (5) or (6) may evidently be extended to a surface whose

boundary consists of two or more closed curves, provided the integration in

the first member be taken round each of these in the

proper direction, according to the rule just given. ^^
Thus, if the surface integral in (6) extend over the

shaded portion of the annexed figure, the directions /
v

i

\; \

in which the circulations in the several parts of the
fl|

v ^
\

boundary are to be taken are shewn by the arrows, H
the positive side of the surface being that which ^H /

faces the reader. *\ ^*~? /
The value of the surface-integral taken over a

closed surface is zero.

It should be noticed that (6) is a theorem of pure mathematics, and is

true whatever functions u, v, w may be of x, y, z, provided only they be

continuous and differentiable at all points of the surface*.

33. The rest of this chapter is devoted to a study of the kinematical

properties of irrotational motion in general, as defined by the equations

fc*.Co, (i)

i.e. the circulation in every infinitely small circuit is assumed io be zero.

The existence and properties of the velocity-potential in the various cases

that may arise will appear as consequences of this definition.

The physical importance of the subject rests on the fact that if the

motion of any portion of a fluid mass be irrotational at any one instant it

will under certain very general conditions continue to be irrotational.

Practically, as will be seen, this has already been established by Lagrange's

theorem, proved in Art. 17, but the importance of the matter warrants a

repetition of the investigation, in the Eulerian notation, in the form given by
Lord Kelvin f.

Consider first any terminated line AB drawn in the fluid, and suppose

every point of this line to move always with the velocity of the fluid at that

point. Let us calculate the rate at which the flow along this line, from A to

B, is increasing. If Bx, By, Bz be the projections on the co-ordinate axes of

an element of the line, we have

D .

fi
. Du DBx

*
It is not necessary that their differential coefficients should be continuous,

t l.c. ante, p. 30.
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Now DhxjDt, the rate at which 8x is increasing in consequence of the motion

of the fluid, is equal to the difference of the velocities parallel to x at its

two ends, i.e. to Bu
;
and the value of Du/Dt is given in Art. 6. Hence, and

by similar considerations, we find, if p be a function of p only, and if the

extraneous forces X, Y. Z have a potential H,

jr- (uBx + vBy+ wBz) = - 8l + uBu + vBv + wBw.

Integrating along the line, from A to B, we get

f [dp
\ (udx + vdy + wdz) = I fl +^ (2)

I) f*

Dt] A

or, the rate at which the flow from A to B is increasing is equal to the excess

of the value which fdp/p l + ^q
2 has at B over that which it has at A.

This theorem comprehends the whole of the dynamics of a perfect fluid. For

instance, equations (2) of Art. 15 may be derived from it by taking as the

line AB the infinitely short line whose projections were originally Ba, 8b, Be,

and equating separately to zero the coefficients of these infinitesimals.

If 1 be single-valued, the expression within brackets on the right-hand

side of (2) is a single-valued function of x, y, z. Hence if the integration on

the left-hand be taken round a closed curve, so that B coincides with A,

we have

jr-
I (udx + vdy + wdz) = 0, (3)

or, the circulation in any circuit moving with the fluid does not alter with

the time.

It follows that if the motion of any portion of a fluid mass be initially

irrotational it will always retain this property ;
for otherwise the circulation

in every infinitely small circuit would not continue to be zero, as it is initially

by virtue of Art. 32 (5).

34. Considering now any region occupied by irrotationally-moving fluid,

we see from Art. 32 (5) that the circulation is zero in every circuit which

can be filled up by a continuous surface lying wholly in the region, or which

in other words is capable of being contracted to a point without passing out

of theregion. Such a circuit is said to be 'reducible.'

Again, let us consider two paths AGB, ADB, connecting two points A, B
of the region, and such that either may by continuous variation be made to

coincide with the other, without ever passing out of the region. Such paths

are called 'mutually reconcileable.' Since the circuit ACBDA is reducible,

we have I(ACBDA) = 0, or since I (BDA) = - I(ADB),

I (AGB) = I (ADB);

i.e. the flow is the same along any two reconcileable paths.
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A region such that all paths joining any two points of it are mutually
reconcileable is said to be 'simply-connected.' Such a region is that enclosed

within a sphere, or that included between two concentric spheres. In what

follows, as far as Art. 46, we contemplate only simply-connected regions.

35. The irrotational motion of a fluid within a simply-connected region

is characterized by the existence of a single-valued velocity-potential. Let

us denote by <f>
the flow to a variable point P from some fixed point A, viz.

<f>
=

I (udx + vdy + wdz). (1)

The value of
<f>

has been shewn to be independent of the path along which

the integration is effected, provided it lie wholly within the region. Hence

<f>
is a single-valued function of the position of P; let us suppose it expressed

in terms of the co-ordinates {x, y, z) of that point. By displacing P through
an infinitely short space parallel to each of the axes of co-ordinates in

succession, we find

d<f> d<f> dd> . .

"""S'
"=
-^'

" S <2)

i.e.
<f)

is a velocity-potential, according to the definition of Art. 17.

The substitution of any other point B for A, as the lower limit of the

integral in (1), simply adds an arbitrary constant to the value of
<f>,

viz. the

flow from A to B. The original definition of
<f>

in Art. 17, and the physical

interpretation in Art. 18, alike leave the function indeterminate to the extent

of an additive constant.

As we follow the course of any line of motion the value of
<f> continually

decreases; hence in a simply-connected region the lines of motion cannot

form closed curves.

36. The function
<f>

with which we have here to do is, together with its

first differential coefficients, by the nature of the case, finite, continuous, and

single-valued at all points of the region considered. In the case of incom-

ible fluids, which we now proceed to consider more particularly, <\>
must

also satisfy the equation of continuity, (5) of Art. 20, or as we shall in future

write it, for shortness,

Va
< = 0, (1)

at every point of the region. Hence
<f>

is now subject to mathematical

conditions identical with those satisfied by the potential of masses attracting
or repelling according to the law of the inverse square of the distance, at all

points external to such masses
;
so that many of the results proved in the

theories of Attractions, Electrostatics, Magnetism, and the Steady Flow of

Heat, have also a hydrodynamical application. We proceed to develope those

which are most important from this point of view.

32
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In any case of motion of an incompressible fluid the surface-integral of

the normal velocity taken over any surface, open or closed, is conveniently

called the 'flux' across that surface. It is of course equal to the volume of

fluid crossing the surface per unit time.

When the motion is irrotational, the flux is given by

-//
where BS is an element of the surface, and Bn an element of the normal to it,,

drawn in the proper direotion. In any region occupied wholly by liquid, the

total flux across the boundary is zero, i.e.

J/S*-* <2>

the element 8n of the normal being drawn always on one side (say inwards),

and the integration extending over the whole boundary. This may be

regarded as a generalized form of the equation of continuity (1).

The lines of motion drawn through the various points of an infinitesimal

circuit define a tube, which may be called a tube of flow. The product of

the velocity (q) into the cross-section (a-, say) is the same at all points of such

a tube.

We may, if we choose, regard the whole space occupied by the fluid as

made up of tubes of flow, and suppose the size of the tubes so adjusted that

the product qa is the same for each. The flux across any surface is then

proportional to the number of tubes which cross it. If the surface be closed,

the equation (2) expresses the fact that as many tubes cross the surface

inwards as outwards. Hence a line of motion cannot begin or end at a point

of the fluid.

37. The function
<f>

cannot be a maximum or minimum at a point in the

interior of the fluid
; for, if it were, we should have dcjj/dn everywhere positive,

or everywhere negative, over a small closed surface surrounding the point in

question. Either of these suppositions is inconsistent with (2).

Further, the square of the velocity cannot be a maximum at a point

in the interior of the fluid. For let the axis of x be taken parallel to the

direction of the velocity at any point P. The equation (1), and therefore

also the equation (2), is satisfied if we write d<f>/dx for
<j>.

The above

argument then shews that d(f)/dx cannot be a maximum or a minimum at P.

Hence there must be points in the immediate neighbourhood of P at which

(d<f>jdxy and therefore a fortiori

is greater than the square of the velocity at P*.

* This theorem was enunciated, in another connection, by Lord Kelvin, Phil. Mag., Oct.
'
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On the other hand, the square of the velocity may be a minimum at

some point of the fluid. The simplest case is that of a zero velocity; see,

for example, the figure of Art. 69, below.

38. Let us apply (2) to the boundary of a finite spherical portion of the

liquid. If r denote the distance of any point from the centre of the sphere,

Ssr the elementary- solid angle subtended at the centre by an element SS of

the surface, we have

d<f>fdn
=

d<j>/dr,

and 8S = rtfcr. Omitting the factor ?*, (2) becomes

or

//

JJ*hr
= (3)

Since 1 \ir .
\\<fxitff

or l/4irr*.ff<f>dS measures the mean value of
<f>

over

the surface of the sphere, (3) shews that this mean value is independent of

the radius. It is therefore the same for any sphere, concentric with the

former one, which can be made to coincide with it by gradual variation of the

radius, without ever passing out of the region occupied by the irrotationally

moving liquid. We may therefore suppose the sphere contracted to a point,

and so obtain a simple proof of the theorem, first given by Gauss in his

memoir* on the theory of Attractions, that the mean value of
<f>

over any

spherical surface throughout the interior of which (1) is satisfied, is equal to

ue at the centre.

The theorem, proved in Art. 37, that
<f>

cannot be a maximum or a

minimum at a point in the interior of the fluid, is an obvious consequence of

the above.

The above proof appears to be due, in principle, to Frostf. Another

demonstration, somewhat different in form, has been given by Lord Rayleigh J.

The equation (1), being linear, will be satisfied by the arithmetic mean of any
number of separate solutions fa.cb-^fa Let us suppose an infinite number
of systems of rectangular axes to be arranged uniformly about any point Pas

origin, and let
<f> lt <f).,, <f>3 , ... be the velocity-potentials of motions which are

the same with respect to these systems as the original motion
<f>

is with

1850 [Reprint of Papers on Electrostatics, dtc, London, 1872, Art. 665]. The above demon-
stration is due to Kirchhoff, Vorlesungen iiber mathematische Physik, Mechanik, Leipzig, 1876,

p. 186. For another proof see Art. -14 below.
*
"AUgemeine Lehrsatze, u. s. w.," Resultate aus den Beobachtungen des magnetischen

Vereins, 1839 [Werke, Gottingen, 187080, t. v. p. 199].

t Quarterly Journal of Mathematics, t. xii. (1873).

X Messenger of Mathematics, t. vii. p. 69 (1878) ; Sc. Papers, t. i. p. 347.
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respect to the system x, y, z. In this case the arithmetic mean

(</>, say) of the

functions
<jylf <f>2 , cf>3 ,... will be a function of r, the distance from P, only.

Expressing that in the motion (if any) represented by <\>,
the flux across any

spherical surface which can be contracted to a point, without passing out of

the region occupied by the fluid, would be zero, we have

47rr2
. ^ = 0,
dr

or
<f>
= const.

39. Again, let us suppose that the region occupied by the irrotationally

moving fluid is
'

periphractic,'
*

i.e. that it is limited internally by one or more

closed surfaces, and let us apply (2) to the space included between one (or

more) of these internal boundaries, and a spherical surface completely

enclosing it (or them) and lying wholly in the fluid. If M denote the total

flux into this region, across the internal boundary, we find, with the same

notation as before,

// dr

the surface-integral extending over the sphere only. This may be written

whence ^ll*ds=
LI!* dr!T=^ +G (4)

That is, the mean value of
<f>

over any spherical surface drawn under the

above-mentioned conditions is equal to M/^irr + G, where r is the radius, M
an absolute constant, and G a quantity which is independent of the radius

but may vary with the position of the centre f.

If however the original region throughout which the irrotational motion

holds be unlimited externally, and if the first derivative (and therefore all the

higher derivatives) of
<f>

vanish at infinity, then G is the same for all spherical
surfaces enclosing the whole of the internal boundaries. For if such a sphere
be displaced parallel to x*, without alteration of size, the rate at which G
varies in consequence of this displacement is, by (4), equal to the mean value

of dfyfix over the surface. Since d(j>jdx vanishes" at infinity, we can by taking
the sphere large enough make the latter mean value as small as we please.

* See Maxwell, Electricity and Magnetism, Arts. 18, 22. A region is said to be '

aperiphractic
'

when every closed surface drawn in it can be contracted to a point without passing out of the

region.

t It is understood, of course, that the spherical surfaces to which this statement applies are

reconcileable with one another, in a sense analogous to that of Art. 34.

X Kirchhoff, Mechanik, p. 191.
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Hence G is not altered by a displacement of the centre of the sphere parallel

to x. In the same way we see that C is not altered by a displacement parallel

to y or z
;

i.e. it is absolutely constant.

If the internal boundaries of the region considered be such that the total

flux across them is zero, e.g. if they be the surfaces of solids, or of portions of

incompressible fluid whose motion is rotational, we have M = 0, so that the

mean value of
(f>

over any spherical surface enclosing them all is the same.

40. (a) If
</>

be constant over the boundary of any simply-connected

region occupied by liquid moving irrotationally, it has the same constant

value throughout the interior of that region. For if not constant it

would necessarily have a maximum or a minimum value at some point

of the region.

Otherwise : we have seen in Arts. 35, 36 that the lines of motion cannot

begin or end at any point of the region, and that they cannot form closed

curves lying wholly within it. They must therefore traverse the region,

beginning and ending on its boundary. In our case however this is impossible,

for such a line always proceeds from places where
<f>

is greater to places where

it is less. Hence there can be no motion, i.e.

d<f> d<f> d<f> _ _

dx
'

dy
'

dz

and therefore
<f>

is constant and equal to its value at the boundary.

(/9) Again, if d<f>/dn be zero at every point of the boundary of such a

region as is above described, <f> will be constant throughout the interior. For

the condition d<f>/dn
= expresses that no lines of motion enter or leave the

region, but that they are all contained within it. This is however, as we

have seen, inconsistent with the other conditions which the lines must

conform to. Hence, as before, there can be no motion, and
<f>

is constant.

This theorem may be otherwise stated as follows : no continuous irrota-

tional motion of a liquid can take place in a simply-connected region bounded

entirely by fixed rigid walls.

(7) Again, let the boundary of the region considered consist partly of

surfaces S over which
<f>

has a given constant value, and partly of other

surfaces 2 over which d<f>/&n
= 0. By the previous argument, no lines of

motion can pass from one point to another of S, and none can cross 2. Hence

no such lines exist
; <f>

is therefore constant as before, and equal to its value

at &
It follows from these theorems that the irrotational motion of a liquid in

a simply-connected region is determinate when either the value of
<f>,

or the

value of the inward normal velocity d<f>/dn,
is prescribed at all points of the

boundary, or (again) when the value of
<f>

is given over part of the boundary,
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and the value of d<j>Jdn over the remainder. For if < l5 <f>2
be the velocity-

potentials of two motions each of which satisfies the prescribed boundary-

conditions, in any one of these cases, the function <^ <f>2
satisfies the condition

(a) or (/3) or (y) of the present Article, and must therefore be constant

throughout the region.

41. A class of cases of great importance, but not strictly included in the

scope of the foregoing theorems, occurs when the region occupied by the

irrotationally moving liquid extends to infinity, but is bounded internally by

one or more closed surfaces. We assume, for the present, that this region is

simply-connected, and that
<j)

is therefore single-valued.

If
(f>
be constant over the internal boundary of the region, and tend every-

where to the same constant value at an infinite distance from the internal

boundary, it is constant throughout the region. For otherwise < would be a

maximum or a minimum at some point.

We infer, exactly as in Art. 40, that if
</>

be given arbitrarily over the

internal boundary, and have a given constant value at infinity, its value is

everywhere determinate.

Of more importance in our present subject is the theorem that, if the

normal velocity be zero at every point of the internal boundary, and if the

fluid be at rest at infinity, then
(f>

is everywhere constant. We cannot how-

ever infer this at once from the proof of the corresponding theorem in Art. 40.

It is true that we may suppose the region limited externally by an infinitely

large surface at every point of which d(j>/d7i is infinitely small
;
but it is

conceivable that the integral jjdtpjdn . dS, taken over a portion of this surface,

might still be finite, in which case the investigation referred to would fail.

We proceed therefore as follows.

Since the velocity tends to the limit zero at an infinite distance from the

internal boundary (S, say), it must be possible to draw a closed surface 2,

completely enclosing S, beyond which the velocity is everywhere less than a

certain value e, which value may, by making 2 large enough, be made as

small as we please. Now in any direction from S let us take a point P at

such a distance beyond 2 that the solid angle which 2 subtends at it is

infinitely small
;
and with P as centre let us describe two spheres, one just

excluding, the other just including S. We shall prove that the mean value

of
<f>

over each of these spheres is, within an infinitely small amount, the

same. For if Q, Q' be points of these spheres on a common radius PQQ', then

if Q, Q' fall within 2 the corresponding values of
</> may differ by a finite

amount
;
but since the portion of either spherical surface which falls within 2

is an infinitely small fraction of the whole, no finite difference in the mean
values can arise from this cause. On the other hand, when Q, Q' fall without

2, the corresponding values of
<f>

cannot differ by so much as^ e . QQ', for e is
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by definition a superior limit to the rate of variation of
<j>. Hence, the mean

values of
<f>

over the two spherical surfaces must differ by less than'e.QQ'.

Since QQ' is finite, whilst e may by taking X large enough be made as small

as we please, the difference of the mean values may, by taking P sufficiently

distant, be made infinitely small.

Now we have seen in Arts. 38, 39 that the mean value of
<f>

over the

inner sphere is equal to its value at P, and that the mean value over the

outer sphere is (since J/=0) equal to a constant quantity C. Hence,

ultimately, the value of (> at infinity tends everywhere to the constant

valut

The same result holds even if the normal velocity be not zero over the

internal boundary ;
for in the theorem of Art. 39 M is divided by r, which is

in our case infinite.

It follows that if dcfijdn
= at all points of the internal boundary, and if

the fluid be at rest at infinity, it must be everywhere at rest. For no lines

of motion can begin or end on the internal boundary. Hence such lines, if

they existed, must come from an infinite distance, traverse the region occupied

by the fluid, and pass off again to infinity ;
i.e. they must form infinitely long

courses between places where
<f> has, within an infinitely small amount, the

same value C, which is impossible.

The theorem that, if the fluid be at rest at infinity, the motion is deter-

minate when the value of
d<f>

dn is given over the internal boundary, follows

by the same argument as in Art. 40.

Greens Theorem.

42. In treatises on Electrostatics, &c, many important properties of

the potential are usually proved by means of a certain theorem due to Green.

Of these the most important from our present point of view have already

been given ;
but as the theorem in question leads, amongst other things, to a

useful expression for the kinetic energy in any case of irrotational motion,

some account of it will properly find a place here.

Let U, V, W be any three functions which are finite, single-valued and

differentiable at all points of a connected region completely bounded by one

or more closed surfaces S; let BS be an element of any one of these surfaces,

and I, m, n the direction-cosines of the normals to it drawn inwards. We
shall prove in the first place that

ffV
u+mr+nW)aa--fJj$ +% +

)*.d!l
d, <i>

where the triple-integral is taken throughout the region, and the double-

integral over its boundary.
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If we conceive a series of surfaces drawn so as to divide the region into

any number of separate parts, the integral

Jf(lU+mV + nW)dS, (2)

taken over the original boundary, is equal to the sum of the similar integrals

each taken over the whole boundary of one of these parts. For, for every
element Bcr of a dividing surface, we have, in the integrals corresponding to

the parts lying on the two sides of this surface, elements (IU + mV+ n W) Bcr,

and (I'U+m'V+n'W) Ba, respectively. But the normals to which I, m, n,

and V, m, n' refer being drawn inwards in each case, we have l'= I, m'= m,

n'= n; so that, in forming the sum of the integrals spoken of, the elements

due to the dividing surfaces disappear, and we have left only those due to

the original boundary of the region.

Now let us suppose the dividing surfaces to consist of three systems of

planes, drawn at infinitesimal intervals, parallel to yz, zx, xy, respectively. If

x, y, z be the co-ordinates of the centre of one of the rectangular spaces thus

formed, and Bx, By, Bz the lengths of its edges, the part of the integral (2) due

to the t/2-face nearest the origin is

dU
(U-^8x)By8z,

and that due to the opposite face is

-(u+^-gBx^ByBz,

The sum of these is dUJdx.BxByBz. Calculating in the same way the

parts of the integral due to the remaining pairs of faces, we get for the final

result

-U +
6y

+
Tz)

*"%**

Hence (1) simply expresses the fact that the surface-integral (2), taken over

the boundary of the region, is equal to the sum of the similar integrals taken

over the boundaries of the elementary spaces of which we have supposed it

built up.

It is evident from (1), or it may be proved directly by transformation of

co-ordinates, that if ( U, V, W) be a polar vector, the expression

dUdVdW
dx dy dz

is a
'

scalar
'

quantity, i.e. its value is unaffected by any such transformation.

It is now usually called the '

divergence
'

of the vector-field at the point

to y> z\
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The interpretation, when ( U, V, W) is the velocity of a continuous sub-

stance, is obvious. In the particular case of irrotational motion we obtain

ff^dS^-Jjj^-cpdxdydz, (3)

where Sn denotes an element of the inwardly-directed normal to the surface S.

Again, if we put U, V, W = pu, pv, pic, respectively, we reproduce in

substance the investigation of Art. 8.

Another useful result is obtained by putting U, V, W=if>, v<f>, w<f>,

respectively, where u, v, w satisfy the relation

du dv dw _ -

dx dy dz

throughout the region, and make

lu + mv + nw =

over the boundary. We find

/J/(
+'fHW*- <*>

The function
<f>

is here merely restricted to be finite, single-valued, and con-

tinuous, and to have its first differential coefficients finite, throughout the

region.

43. Now let
<p, <p' be any two functions which, together with their first

and second derivatives, are finite and single-valued throughout the region

considered
;
and let us put

respectively, so that IU + mV+nW= <f>-9- .

Substituting in (1) we find

-ffj<pV*-<p'dxdydz (5)

By interchanging <f>
and

<p'
we obtain

-fffo'Vtycbcdydz (6)

Equations (5) and (6) together constitute Green's theorem*.

*
G. Green, Essay on Electricity and Magnetism, Nottingham, 1828, Art. 3 [Mathematical

Papers (ed. Ferrers), Cambridge, 1871, p. 23].
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44. If
<j>,

<' be the velocity-potentials of two distinct modes of irrotational

motion of a liquid, so that

v 2<=o, vy = o, (1)

we obtain
j
7
</>^'

dS -
jf

<f>'
'|*

dS (2)

If we recall the physical interpretation of the velocity-potential, given in

Art. 18, then, regarding the motion as generated in each case impulsively

from rest, we recognize this equation as a particular case of the dynamical

theorem that

where pr , qr and pr', qr
'

are generalized components of impulse and velocity,

in any two possible motions of a system*.

Again, in Art. 43 (6) let
<f>'
=

<f>,
and let $ be the velocity-potential of a

liquid. We obtain

S!Sm +(Sh^)h^-ii^ dS (3)

To interpret this we multiply both sides by p. Then on the right-hand

side d(f>/dn denotes the normal velocity of the fluid inwards, whilst
pcf) is, by

Art. 18, the impulsive pressure necessary to generate the motion. It is a

proposition in Dynamicsf that the work done by an impulse is measured by
the product of the impulse into half the sum of the initial and final velocities,

resolved in the direction of the impulse, of the point to which it is applied.

Hence the right-hand side of (3), when modified as described, expresses the

work done by the system of impulsive pressures which, applied to the surface

S, would generate the actual motion
;

whilst the left-hand side gives the

kinetic energy of this motion. The formula asserts that these two quantities

are equal. Hence if T denote the total kinetic energy of the liquid, we have

the very important result

**--'//*&* w
If in (3), in place of $, we write dcp/dx, which will of course satisfy V 2

9</3j;= 0, and

apply the resulting theorem to the region included within a spherical surface of radius r

having any point (x, y, z) as centre, then with the same notation as in Art. 39, we have

^ff^-fj^s-jpii^ys

=///{(;dhmA&)>*
* Thomson and Tait, Natural Philosophy, Art. 313, equation (11).

t Ibid., Art. 308.
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Hence, writing q
2= u2+ v2 + u2

,

Since this latter expression is essentially positive, the mean value of q
2
,
taken over a

sphere having any given point as centre, increases with the radius of the sphere. Hence

q
2 cannot be a maximum at any point of the fluid, as was proved otherwise in Art. 37.

Moreover, recalling the formula for the pressure in any case of irrotational motion of a

liquid, viz.

?JS
(
-Q-hq2+ F(t), (6)

we infer that, provided the potential Q of the external forces satisfy the condition

V*a= 0, (7)

the mean value ofp over a sphere described with any point in the interior of the fluid as

centre will diminish as the radius increases. The place of least pressure will therefore be

somewhere on the boundary of the fluid. This has a bearing on the point discussed in

Art. 23.

45. In this connection we may note a remarkable theorem discovered by
Lord Kelvin*, and afterwards generalized by him into an universal property
of dynamical systems started impulsively from rest under prescribed velocity-

conditions f.

The irrotational motion of a liquid occupying a simply-connected region
has less kinetic energy than any other motion consistent with the same

normal motion of the boundary.

Let T be the kinetic energy of the irrotational motion to which the

velocity-potential <f> refers, and Tx that of another motion given by

dd> d<b dd> ,,+* v = ~^ + v- w =
-fz

+ Wo (8)

where, in virtue of the equation of continuity, and the prescribed boundary-

condition, we must have

du dv dwpn
dx dy dz

throughout the region, and lu + mv + nw =

over the boundary. Further let us write

To = \pjjj(uS+vS + wf)dxdydz (9)

*
(W. Thomson) "On the Yis-Viva of a Liquid in Motion," Camb. and Dub. Math. Journ.,

1849 [Mathematical and Physical Papers, t. i. p. 107].

t Thomson and Tait, Xatural Philosophy, Art. 312.
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We find T, = T+ T
-pfjj(

uo^ + v
d

^-
+ w -) dxdydz.

Since the last integral vanishes, by Art. 42 (4), we have

T^T + T,, (10)

which proves the theorem.

46. We shall require to know, hereafter, the form assumed by the ex-

pression (4) for the kinetic energy when the fluid extends to infinity and is

at rest there, being limited internally by one or more closed surfaces S. Let

us suppose a large closed surface 2 described so as to enclose the whole of S.

The energy of the fluid included between S and X is

-i,//*gH-*,//*g.S (11)

where the integration in the first term extends over S, that in the second

over 2. Since we have, by the equation of continuity,

(8) may be written

-iP
ff(4>-G)

d

^dS-yfj(<f>-C)
d

^dX, (12)

where G may be any constant, but is here supposed to be the constant value

to which
cj)

was shewn in Art. 39 to tend at an infinite distance from S.

Now the whole region occupied by the fluid may be supposed made up of

tubes of flow, each of which must pass either from one point of the internal

boundary to another, or from that boundary to infinity. Hence the value of

the integral

d(j>

//on

taken over any surface, open or closed, finite or infinite, drawn within the

region, must be finite. Hence ultimately, when 2 is taken infinitely large

and infinitely distant all round from S, the second term of (12) vanishes, and

we have

2T=-pjj(<f>-C)
d

^dS, (13)

where the integration extends over the internal boundary only.

If the total flux across the internal boundary be zero, we have

so that (13) may be written 2T=-p!U
d

^dS, (14)

simply.
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On Multiply-connected Regions.

47. Before discussing the properties of irrotational motion in multiply-

connected regions we must examine more in detail the nature and classification

of such regions. In the following synopsis of this branch of the geometry of

position we recapitulate for the sake of completeness one or two definitions

already given.

We consider any connected region of space, enclosed by boundaries.

A region is
' connected

'

when it is possible to pass from any one point of

it to any other by an infinity of paths, each of which lies wholly in the

region.

Any two such paths, or any two circuits, which can by continuous

variation be made to coincide without ever passing out of the region, are said

to be '

mutually reconcileable.' Any circuit which can be contracted to

a point without passing out of the region is said to be 'reducible.' Two
reconcileable paths, combined, form a reducible circuit. If two paths or two

circuits be reconcileable, it must be possible to connect them by a continuous

surface, which lies wholly within the region, and of which they form the

complete boundary ;
and conversely.

It is further convenient to distinguish between 'simple' and 'multiple'
irreducible circuits. A '

multiple
'

circuit is one which can by continuous

variation be made to appear, in whole or in part, as the repetition of another

circuit a certain number of times. A '

simple
'

circuit is one with which this

is not possible.

A 'barrier,' or 'diaphragm,' is a surface drawn across the region, and

limited by the line or lines in which it meets the boundary. Hence a barrier

is necessarily a connected surface, and cannot consist of two or more detached

portions.

A '

simply-connected
'

region is one such that all paths joining any two

points of it are reconcileable, or such that all circuits drawn within it are

reducible.

A '

doubly-connected
'

region is one such that two irreconcileable paths,
and no more, can be drawn between any two points A, B of it

;
viz. any other

path joining AB is reconcileable with one of these, or with a combination of

the two taken each a certain number of times. In other words, the region is

such that one (simple) irreducible circuit can be drawn in it, whilst all other

circuits are either reconcileable with this (repeated, if necessary), or are

reducible. As an example of a doubly-connected region we may take that

enclosed by the surface of an anchor-ring, or that external to such a ring and

extending to infinity.

Generally, a region such that n irreconcileable paths, and no more, can be

drawn between any two points of it, or such that n 1 (simple) irreducible
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and irreconcileable circuits, and no more, can be drawn in it, is said to be
'

n-ply-connected.'

The shaded portion of the figure on p. 33 is a triply-connected space of

two dimensions.

It may be shewn that the above definition of an n-ply-connected space

is self-consistent. In such simple cases as n = 2, n = 3, this is sufficiently

evident without demonstration.

48. Let us suppose, now, that we have an n-ply-connected region, with

n 1 simple independent irreducible circuits drawn in it. It is possible to

draw a barrier meeting any one of these circuits in one point only, and not

meeting any of the n 2 remaining circuits. A barrier drawn in this manner

does not destroy the continuity of the region, for the interrupted circuit

remains as a path leading round from one side to the other. The order of

connection of the region is however diminished by unity ;
for every circuit

drawn in the modified region must be reconcileable with one or more of the

n 2 circuits not met by the barrier.

A second barrier, drawn in the same manner, will reduce the order of

connection again by one, and so on
;
so that by drawing n 1 barriers we can

reduce the region to a simply-connected one.

A simply-connected region is divided by a barrier into two separate

parts; for otherwise it would be possible to pass from a point on one side

the barrier to an adjacent point on the other side by a path lying wholly
within the region, which path would in the original region form an irreducible

circuit.

Hence in an n-ply-connected region it is possible to draw n 1 barriers,

and no more, without destroying the continuity of the region. This property
is sometimes adopted as the definition of an n-ply-connected space.

Irrotational Motion in Multiply-connected Spaces.

49. The circulation is the same in any two reconcileable circuits ABCA,
A'B'G'A' drawn in a region occupied by fluid moving irrotationally. For the

two circuits may be connected by a continuous surface lying wholly within

the region ;
and if we apply the theorem of Art. 32 to this surface, we have,

remembering the rule as to the direction of integration round the boundary,

/ {ABCA) + I {A'C'B'A') = 0,

or / {ABCA) = I {A'B'C'A').

If a circuit ABCA be reconcileable with two or more circuits A'B'C'A
', j

A"B"C"A", &c, combined, we can connect all these circuits by a continuous i
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surface which lies wholly within the region, and of which they form the com-

plete boundary. Hence

I {ABCA) + I (A'C'RA') + I (A"C"B"A") + &c. = 0,

or / (ABCA) = / (A'B'C'A') + I (A"B"C"A") + &c.
;

i.e. the circulation in any circuit is equal to the sum of the circulations in the

several members of any set of circuits with which it is reconcileable.

Let the order of connection of the region be n + 1, so that n independent

simple irreducible circuits a
2 ,

a.2 ,
... a rt can be drawn in it

;
and let the circu-

lations in these be xlt k.2) ... /cn , respectively. The sign of any tc will of course

depend on the direction of integration round the corresponding circuit; let

the direction in which k is estimated be called the positive direction in the

circuit. The value of the circulation in any other circuit can now be found

at once. For the given circuit is necessarily reconcileable with some com-

bination of the circuits a lt a*, ... a n ; say with ax taken px times, a2 taken p2

times and so on, where of course any p is negative when the correspond-

ing circuit is taken in the negative direction. The required circulation

then is

p1K1 +puK2 +...+pn Kn .(1)

Since any two paths joining two points A, B of the region together form

a circuit, it follows that the values of the flow in the two paths differ by
a quantity of the form (1), where, of course, in particular cases some or all of

the p'e may be zero.

50. Let us denote by </>
the flow to a variable point P from a fixed

point A, viz.

<f>
=

l (udx + vdy + wdz) (2)
J A

So long as the path of integration from A to P is not specified, <f>
is indeter-

minate to the extent of a quantity of the form (1).

If however )i barriers be drawn in the manner explained in Art. 48, so as

to reduce the region to a simply-connected one, and if the path of integration
in (2) be restricted to lie within the region as thus modified (i.e. it is not to

cross any of the barriers), then
<f>

becomes a single-valued function, as in

Art. 35. It is continuous throughout the modified region, but its values at

two adjacent points on opposite sides of a barrier differ by + k. To derive

the value of
<f>
when the integration is taken along any path in the unmodified

region we must subtract the quantity (1), where any p denotes the number of

times this path crosses the corresponding barrier. A crossing in the positive

direction of the circuits interrupted by the barrier is here counted as positive,,

a crossing in the opposite direction as negative.

l. 4
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By displacing P through an infinitely short space parallel to each

co-ordinate axis in succession, we find

dd> dd> d<b

ox dy dz

so that
<f>

satisfies the definition of a velocity-potential (Art. 17). It is now

however a many-valued or cyclic function ; i.e. it is not possible to assign to

every point of the original region a unique and definite value of <, such

values forming a continuous system. On the contrary, whenever P describes

an irreducible circuit, <f>
will not, in general, return to its original value, but

will differ from it by a quantity of the form (1). The quantities tclf /e2 ,
... Kn ,

which specify the amounts by which
</>

decreases as P describes the several

independent circuits of the region, may be called the '

cyclic constants
'

of
</>.

It is an immediate consequence of the ' circulation-theorem
'

of Art. 33

that under the conditions there presupposed the cyclic constants do not alter

with the time. The necessity for these conditions is exemplified in the

problem of Art. 29, where the potential of the extraneous forces is itself

a cyclic function.

The foregoing theory may be illustrated by the case of Art. 27 (2), where the region (as

limited by the exclusion of the origin, where the formula would give an infinite velocity)

is doubly-connected ; since we can connect any two points A, B of it by two irreconcileable

paths passing on opposite sides of the axis of z, e.g.

ACB, ABB in the figure. The portion of the plane
zx for which x is positive may be taken as a barrier,

and the region is thus made simply-connected. The
circulation in any circuit meeting this barrier once

only, e.g. in ACBDA, is

'2tt

HJr.rdd, or 27r/t.
o

That in any circuit not meeting the barrier is zero. In the modified region $ may be put
equal to a single-valued function, viz. -

fid, but its value on the positive side of the barrier

is zero, that at an adjacent point on the negative side is -
2vfi.

More complex illustrations of irrotational motion in multiply-connected spaces of two
dimensions will present themselves in the next chapter.

51. Before proceeding further we may briefly indicate a somewhat
different method of presenting the above theory.

Starting from the existence of a velocity-potential as the characteristic

of the class of motions which we propose to study, and adopting the second

definition of an n+ 1-ply-connected region, indicated in Art. 48, we remark
that in a simply-connected region every equipotential surface must either be

a closed surface, or else form a barrier dividing the region into two separate

parts. Hence, supposing the whole system of such surfaces drawn, we see

that if a closed curve cross any given equipotential surface once it must cross

J
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it again, and in the opposite direction. Hence, corresponding to any element

of the curve, included between two consecutive equipotential surfaces, we
have a second element such that the flow along it, being equal to the

difference between the corresponding values of
(f>,

is equal and opposite to

that along the former
;
so that the circulation in the whole circuit is zero.

If however the region be multiply-connected, an equipotential surface

may form a barrier without dividing it into two separate parts. Let as

many such surfaces be drawn as is possible without destroying the

continuity of the region. The number of these cannot, by definition, be

greater than n. Every other equipotential surface which is not closed will

be reconcileable (in an obvious sense) with one or more of these barriers.

A curve drawn from one side of a barrier round to the other, without meeting

any of the remaining barriers, will cross every equipotential surface recon-

cileable with the first barrier an odd number of times, and every other

equipotential surface an even number of times. Hence the circulation in the

circuit thus formed will not vanish, and
<j>

will be a cyclic function.

In the method adopted above we have based the whole theory on the

equations

dw dv _ , du _ dw dv du _ . .

dy dz
'

dz dx
'

dx dy

and have deduced the existence and properties of the velocity-potential in

the various cases as necessary consequences of these. In fact, Arts. 34, 35,

and 49, 50 may be regarded as a treatise on the integration of this system of

differential equations.

The integration of (3), when we have, on the right-hand side, instead of

zero, known functions of x, y, z, will be treated in Chapter vn.

52. Proceeding now, as in Art. 36, to the particular case of an incom-

pressible fluid, we remark that whether
<f>

be cyclic or not, its first derivatives

d<f>jdx. d<f>/dy, d<f>/dz, and therefore all the higher derivatives, are essentially

single-valued functions, so that
<f>

will still satisfy the equation of continuity

V^ = 0, (1)

or the equivalent form
jj

d

^dS
= 0, (2)

where the surface-integration extends over the whole boundary of any

portion of the fluid.

The theorem (a) of Art. 40, viz. that
<j>
must be constant throughout the

interior of any region at every point of which (1) is satisfied, if it be constant

over the boundary, still holds when the region is multiply-connected. For <,

being constant over the boundary, is necessarily single-valued.

42



52 Irrotational Motion [chap, m
The remaining theorems of Art. 40, being based on the assumption that

the stream-lines cannot form closed curves, will require modification. We
must introduce the additional condition that the circulation is to be zero in

each circuit of the region.

Removing this restriction, we have the theorem that the irrotational

motion of a liquid occupying an n-ply-connected region is determinate when
the normal velocity at every point of the boundary is prescribed, as well as

the value of the circulation in each of the n independent and irreducible

circuits which can be drawn in the region. For if
</>,, </>2

be the (cyclic)

velocity-potentials of two motions satisfying the above conditions, then

<f>
=

(f>i 4>2 is a single-valued function which satisfies (1) at every point of

the region, and makes d<))/dn
= at every point of the boundary. Hence

by Art. 40, cf>
is constant, and the motions determined by fa and fa are

identical.

The theory of multiple connectivity seems to have been first developed by Riemann*
for spaces of two dimensions, a propos of his researches on the theory of functions of a

complex variable, in which connection also cyclic functions, satisfying the equation

dx2
dy

2

through multiply-connected regions, present themselves.

The bearing of the theory on Hydrodynamics, and the existence in certain cases of

many-valued velocity-potentials were first pointed out by von Helmholtzt. The subject
of cyclic irrotational motion in multiply-connected regions was afterwards taken up and

fully investigated by Lord Kelvin in the paper on vortex-motion already referred to j.

Lord Kelvin's Extension of Green's Theorem.

53. It was assumed in the proof of Green's Theorem that
cf>
and fa were

both single-valued functions. If either be a cyclic function, as may be the

case when the region to which the integrations in Art. 43 refer is multiply-

connected, the statement of the theorem must be modified. Let us suppose,
for instance, that < is cyclic ;

the surface-integral on the left-hand side of

Art. 43 (5), and the second volume-integral on the right-hand side, are then

indeterminate, on account of the indeterminateness in the value of
<f>

itself.

To remove this indeterminateness, let the barriers necessary to reduce the

region to a simply-connected one be drawn, as explained in Art. 48. We
may now suppose </>

to be continuous and single-valued throughout the

*
Grundlagen fiir eine allgemeine Theorie der Functxonen einer veranderlichen complexen

Grosse, Gottiugen, 1851 [Mathematische Werke, Leipzig, 1876, p. 3]. Also: " Lehrsatze aus

der Analysis Situs," Crelle, t. liv. (1857) [Werke, p. 84].

+ Crelle, t. lv., 1858.

J !See also Kirchhoff,
" Ueber die Krafte welche zwei unendlich diinne starre Einge in einer

Fliissigkeit scheinbar auf einander ausiiben konnen," Crelle, t. lxxi. (18G9) [Ges. Abh., p. -104].
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region thus modified
;
and the equation referred to will then hold, provided

the two sides of each barrier be reckoned as part of the boundary of the

region, and therefore included in the surface-integral on the left-hand side.

Let S&x be an element of one of the barriers, *j the cyclic constant corre-

sponding to that barrier, d<f>'jdn the rate of variation of
<f>'

in the positive

direction of the normal to So-j. Since, in the parts of the surface-integral

due to the two sides of oVj , d<f>'
en is to be taken with opposite signs, whilst

the value of
<f>

on the positive side exceeds that on the negative side

by r,, we get finally for the element of the integral due to Ba-lt the value

/c, c<f>'/dn . oV, . Hence Art. 43 (5) becomes, in the altered circumstances,

where the surface-integrations indicated on the left-hand side extend, the

first over the original boundary of the region only, and the rest over the

ral barriers. The coefficient of any k is evidently minus the total flux

across the corresponding barrier, in a motion of which
<f>'

is the velocity-

potential. The values of
<f>

in the first and last terms of the equation are to

be assigned in the manner indicated in Art. 50.

If <' also be a cyclic function, having the cyclic constants /, *,', &c,
then Art. 43 (6) becomes in the same way

-///ffi^ + !5
+55S***-f*^*** (2)

Equations (1) and (2) together constitute Lord Kelvin's extension of Green's

theorem.

54. If
<f>, <f>'

are both velocity-potentials of a liquid, we have

V
4>
= 0, V^' = 0, (8)

and therefore 1 1
<f>

-$- dS + ^ 1 1
--d<rx 4- k2 II ?- da, + ...

-f/f*WJ2*^'J/2M- W
To obtain a physical interpretation of this theorem it is necessary to

explain in the first place a method, imagined by Lord Kelvin, of generating

any given cyclic irrotational motion of a liquid in a multiply-connected

space.
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Let us suppose the fluid to be enclosed in a perfectly smooth and flexible

membrane occupying the position of the boundary. Further, let n barriers

be drawn, as in Art. 48, so as to convert the region into a simply-connected

one, and let their places be occupied by similar membranes, infinitely thin,

and destitute of inertia. The fluid being initially at rest, let each element

of the first-mentioned membrane be suddenly moved inwards with the given

(positive or negative) normal velocity dcp/dn, whilst uniform impulsive

pressures K^p, K2p, ... Knp are simultaneously applied to the negative sides of

the respective barrier-membranes. The motion generated will be characterized

by the following properties. It will be irrotational, being generated from

rest
;
the normal velocity at every point of the original boundary will have

the prescribed value
;
the values of the impulsive pressure at two adjacent

points on opposite sides of a membrane will differ by the corresponding value

of Kp, and the values of the velocity-potential will therefore differ by the

corresponding value of k
; finally, the motion on one side of a barrier will be

continuous with that on the other. To prove the last statement we remark,

first, that the velocities normal to the barrier at two adjacent points on

opposite sides of it are the same, being each equal to the normal velocity of

the adjacent portion of the membrane. Again, ifP, Q be two consecutive

points on a barrier, and if the corresponding values of <p be on the positive
side

<pP , <pQ ,
and on the negative side

<f> P , <$>q, we have

<pp-<pP = /c =
<pQ <p

s

Q ,

and therefore (pQ <pp = <p

v

Q <

V

P)

i.e., if PQ = 8s, d(f>jds
=

dfi/ds.

Hence the tangential velocities at two adjacent points on opposite sides of

the barrier also agree. If then we suppose the barrier-membranes to be

liquefied immediately after the impulse, we obtain the irrotational motion

in question.

The physical interpretation of (4), when multiplied by p, now follows

as in Art. 44. The values of pic are additional components of momentum,
and those of jj d<p/dn . da, the fluxes through the various apertures of the

region, are the corresponding generalized velocities.

55. If in (2) we put cp'
=

<p, and suppose <f>
to be the velocity-potential

of an incompressible fluid, we find

-~ P S! 4'fn
dS

-'""Jl

d

i d^-^llf d'T'- (5 >

The last member of this formula has a simple interpretation in terms of the

artificial method of generating cyclic irrotational motion just explained. The
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first term has already been recognised as equal to twice the work done by
the impulsive pressure p<}> applied to every part of the original boundary of

the fluid. Again, pKx is the impulsive pressure applied, in the positive

direction, to the infinitely thin massless membrane by which the place of the

first barrier was supposed to be occupied ;
so that the expression

-ifh-te***

denotes the work done by the impulsive forces applied to that membrane
;

and so on. Hence (5) expresses the fact that the energy of the motion is

equal to the work done by the whole system of impulsive forces by which we

may suppose it generated.

In applying (5) to the case where the fluid extends to infinity and is at

rest there, we may replace the first term of the third member by

->>//<*
><*. <6>

where the integration extends over the internal boundary only. The proof
is the same as in Art. 46. When the total flux across this boundary is zero,

this reduces to

d<f>

-,//* u dS- <7>

The minimum theorem of Lord Kelvin, given in Art. 45, may now be

extended as follows :

The irrotational motion of a liquid in a multiply-connected region has

less kinetic energy than any other motion consistent with the same normal

motion of the boundary and the same value of the total flux through each

of the several independent channels of the region.

The proof is left to the reader.

Sources and Sinks.

56. The analogy with the theories of Electrostatics, the Steady Flow

of Heat, &c., may be carried further by means of the conception of sources

and sinks.

A simple source' is a point from which fluid is imagined to flow out

uniformly in all directions. If the total flux outwards across a small closed

surface surrounding the point be m, then m is called the 'strength' of the

aartrce. A negative source is called a 'sink.' The continued existence of

j source or a sink would postulate of course a continual creation or annihi-

mtion of fluid at the point in question.
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The velocity-potential at any point P, due to a simple source, in a liquid

at rest at infinity, is

<f)
= m/4nrr, (1)

where r denotes the distance of P from the source. For this gives a radial

flow from the point, and if 8S, = r^Szj, be an element of a spherical surface

having its centre at the source, we have

a constant, so that the equation of continuity is satisfied, and the flux

outwards has the value appropriate to the strength of the source.

A combination of two equal and opposite sources + rri, at a distance 8s

apart, where, in the limit, 8s is taken to be infinitely small, and rri infinitely

great, but so that the product m'8s is finite and equal to fi (say), is called

a ' double source
'

of strength jj,,
and the line 8s, considered as drawn in the

direction from rri to + m ,
is called its axis.

To find the velocity-potential at any point (x, y, z) due to a double

source
/u,

situate at (x, y', z), and having its axis in the direction (I, m, n), we

remark that,f being any continuous function,

fix + 18s, y' + m8s, z' + n8s) fix , y , z)

d
d_

d

y
ultimately. Hence, putting /(#', y', z) = m'l^irr, where

r = {(x- xj + (y- yj + (z- z'f)\

wefind
+*&{{i?+

m
w+*h)h (2)

fi f, d d d \ 1=
-TAl

d-x
+m

By-

+n
te)-r>

_ A cos_^
~4tt r2 ' W

where, in the latter form, ^ denotes the angle which the line r, considered

as drawn from (x\ y', z') to (x, y, z), makes with the axis
{I, m, n).

We might proceed, in a similar manner (see Art. 83), to build up sources

of higher degrees of complexity, but the above is sufficient for our immediate

purpose.

Finally, we may imagine simple or double sources, instead of existing at

isolated points, to be distributed continuously over lines, surfaces, or volumes.

57. We can now prove that any continuous acyclic irrotational motion of

a liquid mass may be regarded as due to a distribution of simple and double

sources over the boundary. e

\

i
i

;>
+m w +n ^) f{a:'' y'' z,yBs '
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This depends on the theorem, proved in Art. 44, that if
<f>, <f>

be any two

single-valued functions which satisfy V2
< = 0, V2

<f>'
= throughout a given

region, then

//*^HK> (5)

where the integration extends over the whole boundary. In the present

application, we take
<f>

to be the velocity-potential of the motion in question,

and put <f>'
=

1/r, the reciprocal of the distance of any point of the fluid from

a fixed point P.

We will first suppose that P is in the space occupied by the fluid. Since

<f>'
then becomes infinite at P, it is necessary to exclude this point from the

region to which the formula (5) applies ;
this may be done by describing a

small spherical surface about P as centre. If we now suppose 82 to refer to

this surface, and BS to the original boundary, the formula gives

JK(W4(>=//t4W/^> <>

At the surface 2 we have d/dn (1/r)
= 1/r* ;

hence if we put 82 = i^d-ar, and

finally make r = 0, the first integral on the left-hand becomes =
4ir(f>P ,

where <pP denotes the value of
<f>

at P, whilst the first integral on the right

vanishes. Hence

^-W>+llhl(>
:

*
This gives the value of

<f>
at any point P of the fluid in terms of the

values of <p and d(f);

!

dn at the boundary. Comparing with the formulae (1) and

(2) we see that the first term is the velocity-potential due to a surface

distribution of simple sources, with a density d<f>fdn per unit area, whilst

the second term is the velocity-potential of a distribution of double sources,

with axes normal to the surface, the density being <. It will appear from

equation (10), below, that this is only one out of an infinite number of

surface-distributions which will give the same value of
<f> throughout the

interior.

When the fluid extends to infinity and is at rest there, the surface-

integrals in (7) may, on a certain understanding, be taken to refer to the

internal boundary alone. To see this, we may take as external boundary an

infinite sphere having the point P as centre. The corresponding part of the

first integral in (7) vanishes, whilst that of the second is equal to C, the

constant value to which, as we have seen in Art. 41
, <f>

tends at infinity. It

is convenient, for facility of statement, to suppose (7=0; this is legitimate

since we may always add an arbitrary constant to
<f>.

When the point P is external to the surface, <' is finite throughout the

original region, and the formula (5) gives at once

--sJJ&"*//*4(f)'* <8>
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where, again, in the case of a liquid extending to infinity, and at rest there,

the terms due to the infinitely distant part of the boundary may be omitted.

58. The distribution expressed by (7) can, further, be replaced by one of

simple sources only, or of double sources only, over the boundary.

Let
<f>

be the velocity-potential of the fluid occupying a certain region,

and let <' now denote the velocity-potential of any possible acyclic irrotational

motion through the rest of infinite space, with the condition that
<j>,

or cf>',
as

the case may be, vanishes at infinity. Then, if the point P be internal to the

first region, and therefore external to the second, we have

where 8n, hn' denote elements of the normal to dS, drawn inwards to the

first and second regions respectively, so that d/dri
= -

d/dn. By addition, we
have

The function
<f>'

will be determined by the surface-values of
<$>'

or
d<j>''/dn't

which are as yet at our disposal.

Let us in the first place make <f>'= <f>.
The tangential velocities on the

two sides of the boundary are then continuous, but the normal velocities are

discontinuous. To assist the ideas, we may imagine a liquid to fill infinite

space, and to be divided into two portions by an infinitely thin vacuous sheet

within which an impulsive pressure p(f>
is applied, so as to generate the given

motion from rest. The last term of (10) disappears, so that

f--fj/se+
(11)

that is, the motion (on either side) is that due to a surface-distribution of

simple sources, of density

\dn dn' J

Secondly, we may suppose that d<f>'/dn
=

d(j>/dn.
This gives continuoua

normal velocity, but discontinuous tangential velocity, over the original

boundary. The motion may in this case be imagined to be generated by
giving the prescribed normal velocity

-
dcf>/dn to every point of an infinitely

thin membrane coincident in position with the boundary. The first term of

(10) now vanishes, and we have

*'-*//<*-*'>&(;) ** (12 >

* This investigation was first given by Green, from the point of view of Electrostatics,

I.e. ante, p. 43.
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shewing that the motion on either side may be conceived as due to a surface-

distribution of double sources, with density

It may be shewn that the above representations of
cf>

in terms of simple
sources alone, or of double sources alone, are unique ; whereas the repre-

sentation of Art. 57 is indeterminate*.

It is obvious that cyclic irrotational motion of a liquid cannot be reproduced by any

arrangement of simple sources. It is easily seen, however, that it may be represented by
a certain distribution of double sources over the boundary, together with a uniform distri-

bution of double sources over each of the barriers necessary to render the region occupied

by the fluid simply-connected. In fact, with the same notation as in Art. 53, we find

*- //<- G)
dS+t Sjl Q) **+ jjL ** <13 >

where
<f>

is the single-valued velocity-potential which obtains in the modified region, and

<f>'
is the velocity-potential of the acyclic motion which is generated in the external space

when the proper normal velocity d<f>jdn is given to each element 8S of a membrane
coincident in position with the original boundary.

Another mode of representing the irrotational motion of a liquid, whether

cyclic or not, will present itself in the chapter on Vortex Motion.

We here close this account of the theory of irrotational motion. The
mathematical reader will doubtless have noticed the absence of some im-

portant links in the chain of our propositions. For example, apart from

physical considerations, no proof has been offered that a function
<f>

exists

which satisfies the conditions of Art. 3G throughout any given simply-
connected region, and has arbitrarily prescribed values over the boundary.
The formal proof of ' existence-theorems

'

of this kind is not attempted in

the present treatise. For a review of the literature of this part of the

subject the reader may consult the authors cited below +.

Cf. Larmor, " On the Mathematical Expression of the Principle of Huyghens," Proc. Lond.
Math. Soc. (2) t. i. p. 1 (1903).

t H. Burkhardt and W. F. Meyer,
"
Potentialtheorie,

" and A. Sommerfeld,
" Randwerth-

aufgaben in der Theorie d. part. Diff.-Gleichungen," Encycl. d. math. Wiss., t. ii. (1900).



CHAPTER IV.

MOTION OF A LIQUID IN TWO DIMENSIONS.

59. If the velocities u, v be functions of x, y only, whilst w is zero, the

motion takes place in a series of planes parallel to xy, and is the same in each

of these planes. The investigation of the motion of a liquid under these

circumstances is characterized by certain analytical peculiarities ;
and the

solutions of several problems of great interest are readily obtained.

Since the whole motion is known when we know that in the plane z = 0,

we may confine our attention to that plane. When we speak of points and

lines drawn in it, we shall understand them to represent respectively the

straight lines parallel to the axis of z, and the cylindrical surfaces having
their generating lines parallel to the axis of z, of which they are the traces.

By the flux across any curve we shall understand the volume of fluid

which in unit time crosses that portion of the cylindrical surface, having the

curve as base, which is included between the planes z = 0, z = 1.

Let A, P be any two points in the plane xy. The flux across any two

lines joining AP is the same, provided they can be reconciled without passing

out of the region occupied by the moving liquid ;
for otherwise the space

included between these two lines would be gaining or losing matter. Hence

if A be fixed, and P variable, the flux across any line AP is a function of

the position of P. Let
yjr

be this function
;
more precisely, let

yfr
denote the

flux across APfrom right to left, as regards an observer placed on the curve,

and looking along it from A in the direction of P. Analytically, if I, m be

the direction-cosines of the normal (drawn to the left) to any element 8s of

the curve, we have

yjr
= I (lu

J A
+ mv) ds (1)

If the region occupied by the liquid be aperiphractic (see p. 38), i/r
is

necessarily a single-valued function, but in periphractic regions the value of
yfr

may depend on the nature of the path AP. For spaces of two dimensions,

however, periphraxy and multiple-connectivity become the same thing, so that
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the properties of
-v/r,

when it is a many-valued function, in relation to the

nature of the region occupied by the moving liquid, may be inferred from

Art. 50, where we have discussed the same question with regard to
</>.

The

cyclic constants of
yjr,

when the region is periphractic, are the values of the

flux across the closed curves forming the several parts of the internal

boundary.

A change, say from A to B, of the point from which
yfr

is reckoned has

merely the effect of adding a constant, viz. the flux across a line BA, to the

value of
i/r ;

so that we may, if we please, regard yfr
as indeterminate to the

extent of an additive constant.

If P move about in such a manner that the value of
-*fr

does not alter, it

will trace out a curve such that no fluid anywhere crosses it, i.e. a stream-line.

Hence the curves $ = const, are the stream-lines, and yfr
is called the ' stream-

function.'

If P receive an infinitesimal displacement PQ(=8y) parallel to y, the

increment of
-v/r

is the flux across PQ from right to left, i.e. 8-^
= u . PQ, or

8 <2>

Again, displacing P parallel to x, we find in the same way

-t <3>

The existence of a function
yfr

related to u and v in this manner might also

have been inferred from the form which the equation of continuity takes in

this case, viz.

dx dy
' ^ '

which is the analytical condition that udy vdx should be an exact

differential *.

The foregoing considerations apply whether the motion be rotational or

irrotational. The formulae for the component angular velocities, given in

Art. 30, become

f = 0;
, = 0, f-ig* +f$; (5)

so that in irrotational motion we have

^3-
The function \p was introduced in this way by Lagrange, Xouv. mem. de VAcad. de Berlin,

1781 [Oeuvres, t. iv. p. 720]. The kinematical interpretation is due to Eankine, "On Plane

Water-Lines in Two Dimensions," Phil. Trans. 1864 [Miscellaneous Scientific Papers, London,
1881, p. 495].
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60. In what follows we confine ourselves to the case of irrotational

motion, which is, as we have already seen, characterized by the existence, in

addition, of a velocity-potential <f>,
connected with u, v by the relations

,, = -5' 5 (l)

and, since we are considering the motion of incompressible fluids only,

satisfying the equation of continuity

daf
+
df~

() {Z)

The theory of the function <, and the relation between its properties and

the nature of the two-dimensional space through which the irrotational

motion holds, may be readily inferred from the corresponding theorems in

three dimensions proved in the last chapter. The alterations, whether of

enunciation or of proof, which are requisite to adapt these to the case of two

dimensions are for the most part purely verbal.

An exception, which we will briefly examine, occurs however in the case of the theorem

of Art. 38 and of those which depend on it.

If 8s be an element of the boundary of any portion of the plane xy which is occupied

wholly by moving liquid, and if 8n be an element of the normal to ds drawn inwards, we

have, by Art. 36,

/&*-* <3>

the integration extending round the whole boundary. If this boundary be a circle, and if

r, 8 be polar co-ordinates referred to the centre P of this circle as origin, the last equation

may be written

F%.rM-0, or IF**-*
1 I"

2 "-

Hence the integral I <frdd,A* Jo

i.e. the mean value of
<f>

over a circle of centre P and radius r, is independent of the value

of r, and therefore remains unaltered when r is diminished without limit, in which case it

becomes the value of
<f>

at P.

If the region occupied by the fluid be periphractic, and if we apply (3) to the space

enclosed between one of the internal boundaries and a circle with centre P and radius r

surrounding this boundary, and lying wholly in the fluid, we have

where the integration in the first member extends over the circle only, and M denotes the

flux into the region across the internal boundary. Hence

r
.'

dr
.rdd=-M; (4)

A 1 P
dr'27rj

2n- M

1 f
2n M

which gives on integration I <f>dd= \ogr+C; (5)
Z7T J Z7T

i.e. the mean value of
cf>

over a circle with centre P and radius r is equal to - Mj2v . log r+ C,
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where C is independent of r but may vary with the position of P. This formula holds of

.course only so far as the circle embraces the same internal boundary, and lies itself wholly

in the fluid.

Lf the region be unlimited externally, and if the circle embrace the whole of the

internal boundaries, and if further the velocity be everywhere zero at infinity, then C

is an absolute constant ;
as is seen by reasoning similar to that of Art. 41. It may then

be shewn that the value of
<f>

at a very great distance r from the internal boundary tends

to the value -M -2tt . log r+ C. In the particular case of M=0 the limit to which
<f>

tends

at infinity is finite ;
in all other cases it is infinite, and of the opposite sign to M. We

infer, as before, that there is only one single-valued function
<f>
which 1 satisfies the equa-

tion (2) at every point of the plane xy external to a given system of closed curves,

2 makes the value of d<f>Jdn equal to an arbitrarily given quantity at every point of

these curves, and 3 has its first differential coefficients all zero at infinity.

If we imagine point-sources, of the type explained in Art. 56, to be distributed uni-

formly along the axis of z, it is readily found that the velocity at a distance r from this

axis will be in the direction of r, and equal to mj2irr, where m is a certain constant. This

arrangement constitutes what may be called a 'line-source,' and its velocity-potential may
be taken to be

7)1

<t>= ~2^
l S r'

(6)

The reader who is interested in the matter will have no difficulty in working out a theory
of two-dimensional sources and sinks, similar to that of Arts. 56 58*.

61. The kinetic energy T of a portion of fluid bounded by a cylindrical

surface whose generating lines are parallel to the axis of z, and by two

planes perpendicular to the axis of z at unit distance apart, is given by the

formula

MJl+fl0)**~'J*8* w
where the surface-integral is taken over the portion of the plane xy cut off

by the cylindrical surface, and the line-integral round the boundary of this

portion. Since
d<f>/d-n

=
dyfr/ds, the formula (1) may be written

2T=pj<f>dylr, (2)

the integration being carried in the positive direction round the boundary.

If we attempt by a process similar to that of Art 46 to calculate the energy in the case

where the region extends to infinity, we find that its value is infinite, except when the total

flux outwards (J/) is zero. For if we introduce a circle of great radius r as the external

boundary of the portion of the plane xy considered, we find that the corresponding part
of the integral on the right-hand side of (1) increases indefinitely with r. The only

exception is when J/=0, in which case we may suppose the line-integral in (1) to extend

over the internal boundary only.

If the cylindrical part of the boundary consist of two or more separate

portions one of which embraces all the rest, the enclosed region is multiply-

This subject has been treated very fully by C. Neumann, Ueber da logarithmische und
Newton'sche Potential, Leipzig, 1877.
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connected, and the equation (1) needs a correction, which may be applied

exactly as in Art. 55.

62. The functions
<f>
and ty are connected by the relations

3< _ 9^ d(f> _ d-yjr

dx dy
'

dy dx ^

These conditions are fulfilled by equating </>
+ iyjr,

where i stands as usual

for V( _ 1)> to any ordinary algebraic or transcendental function of x + iy, say

<f>
+ if=f(x + iy) (2)

7h 7)

For then ^ (0 + %+)- */' (a? + iy}
- 1:^ (0 + ty), (3)

whence, equating separately the real and the imaginary parts, we see that

the equations (1) are satisfied.

Hence any assumption of the form (2) gives a possible case of irrotational

motion. The curves
<f>
= const, are the curves of equal velocity-potential,

and the curves
-|r
= const, are the stream-lines. Since, by (1),

dx dx dy dy

we see that these two systems of curves cut one another at right angles, as

already proved. Since the relations (1) are unaltered when we write
yfr

for

<f>,
and

<f>
for ty, we may, if we choose, look upon the curves

yfr
= const, as the

equipotential curves, and the curves < = const, as the stream-lines
;
so that

every assumption of the kind indicated gives us two possible cases of

irrotational motion.

For shortness, we shall through the rest of this chapter follow the usual

notation of the Theory of Functions, and write

z = x +iy, (4)

w =
<f3
+ iyjr (5)

From a modern point of view, the fundamental property of a function

of a complex variable is that it has a definite differential coefficient with

respect to that variable*. If
<j>, -ty

denote any functions whatever of x and y,

then corresponding to every value of x + iy there must be one or more

definite values of (f>+iyfr; but the ratio of the differential of this function

to that of x + iy, viz.

&fr + H- or
(|;

+ ,

'te)
8* +

lt5
+,

'l?)fr
|

Bx + iSy
'

8x -f i8y

*
See, for example, Forsyth, Theory of Functions, 2nd ed., Cambridge, 1900, cc. i., ii.
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depends in general on the ratio Sx : By. The condition that it should be the

same for all values of the latter ratio is

dl + i
d

=i i(
dl + i

d
) ; (6)

dy dy \dx dxj
' v

which is equivalent to (1) above. This property was adopted by Riemann

as the definition of a function of the complex variable x + iy; viz. such

a function must have, for every assigned value of the variable, not only a

definite value or system of values, but also for each of these values a definite

differential coefficient. The advantage of this definition is that it is quite

independent of the existence of an analytical expression for the function.

If the complex quantities z and w be represented geometrically after

the manner of Argaud and Gauss, the differential coefficient dwjdz may be

interpreted as the operator which transforms an infinitesimal vector 8z into

the corresponding vector Bw. It follows then, from the above property, that

corresponding figures in the planes of z and w are similar in their infinitely

small parts.

For instance, in the plane of w the straight lines
(f>
= const., y{r

= const.,

where the constants have assigned to them a series of values in arithmetical

progression, the common difference being infinitesimal and the same in each

case, form two systems of straight lines at right angles, dividing the plane

into infinitely small squares. Hence in the plane xy the corresponding
curves

<f>
= const., yfr

= const., the values of the constants being assigned as

before, cut one another at right angles (as has already been proved otherwise)

and divide the plane into infinitely small squares.

Conversely, if
<j>, >//

be any two functions of x, y such that the curves
<f>
= nu, yjr

= nt,

where e is infinitesimal, and m, n are any integers, divide the plane xy into elementary

squares, it is evident geometrically that

lx ';/ dx _ _ 8y

If we take the upper signs, these are the conditions that x+iy should be a function of

+ i\^. The case of the lower signs is reduced to this by reversing the sign of
y\r.

Hence
the equation (2) contains the complete solution of the problem of orthomorphic projection
from one plane to another *.

The similarity of corresponding infinitely small portions of the planes w
and z breaks down at points where the differential coefficient dtujdz is zero

or infinite. Since

dw = d^ +
.d

dz dx dx
'

the corresponding value of the velocity, in the hydrodynamical application,
is zero or infinite.

Lagrange,
" Sur la construction des cartes geographiques," Nouv. mem. de VAcad. de Berlin,

1779 [Oeuvre.<, t. iv. p. 636]. For the further history of the problem, see Forsjth, Theory of

Functions, c. xix.
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In all physical applications, w must be a single-valued, or at most

a cyclic function of z, in the sense of Art. 50, throughout the region

with which we are concerned. Hence in the case of a ' multiform
'

function,

this region must be confined to a single sheet of the corresponding Riemann's

surface, and '

branch-points
'

therefore must not occur in its interior.

63. We can now proceed to some applications of the foregoing method.

First let us assume w = Azn
,

A being real. Introducing polar co-ordinates r, 6, we have

<f>
= Arn cos nO,

yjr
= AiM sin?i6.

;

The following cases may be noticed.

1. If n = 1, the stream-lines are a system of straight lines parallel to xT

and the equipotential curves are a similar system parallel to y. In this case

any corresponding figures in the planes of w and z are similar, whether they
be finite or infinitesimal.

2. If n = 2, the curves
<j>

const, are a system of rectangular hyperbolas

having the axes of co-ordinates as their principal axes, and the curves

yfr
= const, are a similar system, having the co-ordinate axes as asymptotes.

The lines 0=0, 6 = \ir are parts of the same stream-line
i/r
= 0, so that we

may take the positive parts of the axes of x, y as fixed boundaries, and thus

obtain the case of a fluid in motion in the angle between two perpendicular
walls.

3. If n = 1, we get two systems of circles touching the axes of

co-ordinates at the origin. Since now
<j>
= Ajr .cos 6, the velocity at the

origin is infinite
;
we must therefore suppose the region to which our formulae

apply to be limited internally by a closed curve.

4. If n= 2, each system of curves is composed of a double system of

lemniscates. The axes of the system <f>
= const, coincide with x or y; those

of the system -\/r
= const, bisect the angles between these axes.

5. By properly choosing the value of n we get a case of irrotational

motion in which the boundary is composed of two rigid walls inclined at any

angle a. The equation of the stream-lines being

rn sinn8 const., (2)

we see that the lines 6 = 0, $ = irjn are parts of the same stream-line.

Hence if we put n = rr/a, we obtain the required solution in the form

d> = Ar cos , ylr = Ar sin (3)
a.

T a
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The component velocities along and perpendicular to r, are

. 7T a"
-1 TT0 j ,

7T
--1

. TT0Ar cos ,
ana Ar sin :

a a a a

and are therefore zero, finite, or infinite at the origin, according as a is less

than, equal to, or greater than ir.

64. We take next some cases of cyclic functions.

1. The assumption w = filogz, (1)

where /* is real, gives </>
=

/i log r, ^r
=

/j,0 (2)

The velocity at a distance r from the origin is p/r ;
this point must therefore

be isolated by drawing a closed curve round it.

If we take the radii = const, as the stream-lines we get the case of

a (two-dimensional) source at the origin. (See Art. 60.)

If the circles r = const, be taken as stream-lines we have the case of

Art. 27
;
the motion is now cyclic, the circulation in any circuit embracing

the origin being 2-777*.

Z ~" it

2. Let us take w =
/* log (3)

If we denote by rlf r2 the distances of any point in the plane xy from the

points ( + a, 0), and by lt #,, the angles which these distances make with

the positive direction of the axis of x, we have

z a=r^ eie
\ z + a = r2e*,

whence
</>
=

/* log ry'r,, yfr
= p{0\ 0>) (4)

The curves
<f>
= const., yfr

= const, form two orthogonal systems of 'coaxal'

circles.

Either of these systems may be taken as the equipotential curves, and

the other system will then form the stream-lines. In either case the velocity

at the points ( + a, 0) will be infinite. If these points be accordingly isolated

by drawing closed curves round them, the rest of the plane xy becomes

a triply-connected region.

If the circles X 2
= const, be taken as the stream-lines we have the

case of a source and a sink, of equal intensities, situate at the points ( a, 0).

If a is diminished indefinitely, whilst /xa remains finite, we reproduce the

assumption of Art. 63, 3, which therefore corresponds to the case of a double

line-source at the origin. (See the first diagram of Art. 68.)

If, on the other hand, we take the circles r^r^ = const, as the stream-lines

we get a case of cyclic motion, viz. the circulation in any circuit embracing
the first (only) of the above points is lir/x, that in a circuit embracing the

52
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second is 2tt/j, ;
whilst that in a circuit embracing both is zero. This

example will have additional interest for us when in Chap. vn. we come

to treat of ' Rectilinear Vortices.'

65. If w be a function of z, it follows at once from the definition of

Art. 62 that z is a function of w. The latter form of assumption is some-

times more convenient analytically than the former.

The relations (1) of Art. 62 are then replaced by

dx _ dy dx dy

d(j> d^jr

'

d^r dcf>

dw
dz

(1)

Also since
d(b . d^lr

^- + i~- =- it+iv,
dx ox

we have
dz

dw u iv

u- + t

q qq)'

where q is the resultant velocity at (x, y). Hence if we write

g dw'
(2)

and imagine the properties of the function to be exhibited graphically in

the manner already explained, the vector drawn from the origin to any point

in the plane of will agree in direction with, and be in magnitude the

reciprocal of, the velocity at the corresponding point of the plane of z.
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Again, since liq is the modulus of dz/dw, i*. of ftr/tty+tdy/cty, we have

-'+) (3)

which may, by (1), be put into the equivalent forms

1 {fey ^(te\*-(ox (*}* -(?mx +(*\*-*z i^_-^-^

(*)

1 d 6r, y) /KX
-

The last formula, viz. -^ -^n Tv > (**)

expresses the fact that corresponding elementary areas in the planes of z

and w are in the ratio of the square of the modulus of dzfdw to unity.

66. The following examples of this procedure are important.

1. Assume *= ccoshw, (1)

or *= c cosh < cos ^0
y= csinh

<f>
sin

tfr.)

The curves
<f>
= const, are the ellipses

*
+ f =1, (3)

c* cosh*
<f>

e4 sinhs
<f>

and the curves ^ = const, are the hyperbolas

^ t =
1, (4)

cs cos1 t c*sin3^ ' v '

these conies having the common foci (+ c, 0). The two systems of curves are

shewn on the next page.

Since at the foci we have
<f>
= 0, yjr

= nir, being some integer, we see by
- : the preceding Art. that the velocity there is infinite. If the hyperbolas

ken as the stream-lines, the portions of the axis of x which lie outside

the points (c, 0) may be taken as rigid boundaries. We obtain in this

manner the case of a liquid flowing from one side to the other of a thin plane

partition, through an aperture of breadth 2c; the velocity at the edges is

however infinite.

If the ellipses be taken as the stream-lines we get the case of a liquid

circulating round au elliptic cylinder, or, as an extreme case, round a rigid

lamina whose section is the line joining the foci (+ c, 0).

At an infinite distance from the origin <f>
is infinite, of the order logr,

where r is the radius vector; and the velocity is infinitely small of the

order 1 r.
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2. Let z = w + ew
,

or

.(5)

.(6)x =
cf>
+ e* cos

yjr, y = yjr + e* sin
-v/r

The stream-line
\|r
= coincides with the axis of x. Again the portion of

the line ?/
= 7r between x= oo and x = 1, considered as a line bent back

on itself, forms the stream-line ty
=

ir; viz. as
<f>

decreases from + oo through
to - oo

,
x increases from x to 1 and then decreases to x again.

Similarly for the stream-line
i/r
= 77-.

Since = dz/dw = 1 e* cos -^ ie* sin
-/r,

It appears that for large negative values of
<f)

the velocity is in the direction

of ^-negative, and equal to unity, whilst for large positive values it is zero.

The above formulae therefore express the motion of a liquid flowing into

a canal bounded by two thin parallel walls from an open space. At the ends

of the walls we have
<f>
= 0, yjr

=
tt, and therefore =0, i.e. the velocity is

infinite. The direction of the flow will be reversed if we change the sign of

w in (5). The forms of the stream-lines, drawn, as in all similar cases in this

chapter, for equidistant values of
yjr,

are shewn on the opposite page*.

* This example was given by Helmholtz, Berl. Monatsber., April 23, 1868 [Phil. Mag.,
Nov. 1868, Ges. Abh., t. i. p. 154].
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67. It is known that a function f{z) which is finite, continuous, and

single-valued, and has its first derivative finite, at all points of the space
included between two concentric circles about the origin, can be expanded
in the form

f(z) = A + A 1 z + A 2 z* + ... + B1
z-l +Bo2T* + (1)

If the above conditions be satisfied at all points within a circle having the

origin as centre, we retain only the ascending series
;

if at all points without

such a circle, the descending series, with the addition of the constant A ,
is

sufficient. If the conditions be fulfilled for all points of the plane xy without

exception,/^) can be no other than a constant A .

Putting f(z) = <f> 4- iyfr, introducing polar co-ordinates, and writing the

complex constants An ,
Bn . in the forms Pn + iQ, Rn + iSn , respectively,

we obtain

= P + 2" rn (P ens nO - Qn sin nd) + 2? >-' (Rn cos nd + Sn sin nd),

f = Qt + i; rn (Qn cos nd + Pn sin nd) + S,
x
r"" (Sn cos n$ - Rn sin nd).:

(2)

These formulae are convenient in treating problems where we have the

value of
<f>,

or of
d<f> dn, given over the circular boundaries. This value may

be expanded for each boundary in a series of sines and cosines of multiples

of 6, by Fourier's theorem. The series thus found must be equivalent to

those obtained from (2); whence, equating separately coefficients of sin nd

and cosn#, we obtain equations to determine Pn , Qn ,
Rn ,

Sn .
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68. As a simple example let us take the case of an infinitely long circular

cylinder of radius a moving with velocity U perpendicular to its length, in an

infinite mass of liquid which is at rest at infinity.

Let the origin be taken in the axis of the cylinder, and the axes of x, y
in a plane perpendicular to its length. Further let the axis of x be in the

direction of the velocity U. The motion, having originated from rest, will

necessarily be irrotational, and <f>
will be single-valued. Also, since fd(f>jdn . ds,

taken round the section of the cylinder, is zero, ty is also single-valuec

(Art. 59), so that the formulae (2) apply. Moreover, since d<f>/dn is given at

every point of the internal boundary of the fluid, viz.

- d

Jj.=
Ucosd, forr = a, (3)

and since the fluid is at rest at infinity, the problem is determinate, by
Art. 41. These conditions give Pn = 0, Qn = 0, and

U cos 0=2" na~',l~x

(Rn cos nd + Sn sin v0),

which only can be satisfied by making i2j = Ua2
,
and all the other coefficients

zero. The complete solution is therefore

<p
= cost', y = sin 6 (4)

The stream-lines
i/r
= const, are circles, as shewn on the opposite page.

The kinetic energy of the liquid is given by the formula (2) of Art. 61, viz.

2T = p Ud-f = PU2a2 [^ cos2 6 d6 = M'U2
, (5)

if M', = Tra2

p, be the mass of fluid displaced by unit length of the cylinder.

This result shews that the whole effect of the presence of the fluid may be

represented by an addition M' to the inertia per unit length of the cylinder.

Thus, in the case of rectilinear motion, if we have an extraneous force X per

unit length acting on the cylinder, the equation of energy gives

~{\MU2 + l2M'U 2

)
= XU,

or (M+M')^
= X, (6)

where M represents the mass of the cylinder itself.

Writing this in the form

dt dt

we learn that the pressure of the fluid is equivalent to a force M'dUjdt

per unit length in the direction of motion. This vanishes when U is constant.
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The above result must of course admit of verification by direct calculation. The

pressure is given by the formula

(7)Pj_-W+F^a

where we have omitted the term due to the extraneous forces (if any) acting on the fluid,

the effect of which can be found by the rules of Hydrostatics. The term c<f>;ct
here

expresses the rate at which
<j>

is increasing at a fixed point of space, whereas the value of

d> in (4) is referred to an origin which is in motion with the velocity U. In consequence

of this the value of r for any fixed point is increasing at the rate U cos 6, and that of 6 at

the rate U;r . sin 6. Hence we must put

cd> dUa* . TT .0$ , Usindty dU a2
a ,

tf2 a*
^-= -i costf - / costf V -\ -si "37 cos + j- cos 2 ^-
Ot dt r or r c6 dt r r-

Since, also, q
2= U2

a*/r*, the pressure at any point of the cylindrical surface (r=a) is

dU
p=p[a coad+Ui cos2d-hUi+

F(t)j,
(8)

The resultant force on unit length of the cylinder is evidently parallel to the initial line

0=0; to find its amount we multiply by -add. cos 6 and integrate with respect to 6

between the limits and tt. The result is -M'dUjdt, as before.*

If in the above example we impress on the fluid and the cylinder a

velocity U we have the case of a current flowing with the general velocity
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U past a fixed cylindrical obstacle. Adding to
cf>
and ty the terms Ur cos

and Ur sin 6, respectively, we get

.(9)</>= U (r +
Jcos0, -*lr=u( r -) sin 6

If no extraneous forces act, and if U be constant, the resultant force on the

cylinder is zero. Cf. Art. 92.

69. To render the formula (1) of Art. 67 capable of representing any
case of continuous irrotational motion in the space between two concentric

circles, we must add to the right-hand side the term

A\ogz (1)

If A = P + iQ, the corresponding terms in
<fi, i/r

are

Plogr-Q0, P0 + Qlogr, (2)

respectively. The meaning of these terms is evident
;

viz. 2ttP, the cyclic

constant of
yjr,

is the flux across the inner (or outer) circle
;
and 27rQ, the

cyclic constant of
</>,

is the circulation in any circuit embracing the origin.

For example, returning to the problem of the last Art., let us suppose that

in addition to the motion produced by the cylinder we have an independent
circulation round it, the cyclic constant being k. The boundary-condition is

then satisfied by

d>= U^-cosd-^ 6 (3)
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The effect of the cyclic motion, superposed on that due to the cylinder,

will be to augment the velocity on one side, and to diminish (and, it may be,

to reverse) it on the other. Hence when the cylinder moves in a straight

line with constant velocity, there will be a diminished pressure on one side,

and an increased pressure on the other, so that a constraining force must be

applied at right angles to the direction of motion.

The figure shews the lines of flow. At a distance from the origin they approximate to

the form of concentric circles, the disturbance due to the cylinder becoming small in com-

parison with the cyclic motion. When, as in the case represented, U>K/2ira, there is a

point of zero velocity in the fluid. The stream-line system has the same configuration in

all cases, the only effect of a change in the value of U being to alter the scale, relative to

the diameter of the cylinder.

To calculate the effect of the fluid pressures on the cylinder when moving in any
manner we write

J Ua*
'<'-x>-4

where x is the angle which the direction of motion makes with the axis of x.

formula for the pressure [Art. 68 (7)] we must put, for r=a,

dt dt

...(4)

In the

l5 cos(0- x) +atf^sin(0- x)+tf
s cos2(0- x)-^- Uain(6- X ), ..-(5)

dt dt 2ira

and i?
a
=-i V*+l -ib + .-rr,

rsiu W-x)
2ira

.(6)
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The resultant force on the cylinder is found to be made up of a component

n dU
dt

'-*-*
(7)

in the direction of motion, and a component

Kp U-M'U
d
ft

, (
8

)

.(9)

at right angles, where M'= irpa
2 as before. Hence if P, Q denote the components of the

extraneous forces, if any, acting on the cylinder in the directions of the tangent and the
normal to the path, respectively, the equations of motion of the cylinder are

(M+M')U
d = KP U+Q.

If there be no extraneous forces, U is constant, and writing d%/dt= (7/R, where R is the
radius of curvature of the path, we find

R={M+M') UJKP (10)

The path is therefore a circle, described in the direction of the cyclic motion*.

If
, r]

be the rectangular co-ordinates of the axis of the cylinder, the equations (9) are

equivalent to

\+rJ
( )

(M+3f')rj = Kp$-

where X, Y are the components of the extraneous forces. To find the effect of a constant

force, we may put
X=(M+M') 9\ F=0 (12)

The solution then is = a + c cos (nt+e), ~|

a' \ (13)

where a, $, c, e are arbitrary constants, and

n= KP/(M+M') (14)

This shews that the path is a trochoid, described with a mean velocity g'/n perpendicular
to xf. It is remarkable that the cylinder has on the whole no progressive motion in the

direction of the extraneous force. In the particular case c its path is a straight line

perpendicular to the force. The problem is an illustration of the theory of 'gyrostatic

systems,' to be referred to in Chap. vi.

70. The formula (1) of Art. 67, as amended by the addition of the term

A log z, may readily be generalized so as to apply to any case of irrotational

motion in a region with circular boundaries, one of which encloses all the

rest. In fact, for each internal boundary we have a series of the form

z c (z cf

where c, =a + ib say, refers to the centre, and the coefficients A, A 1 ,
A 2 ,

...

* Lord Rayleigh,
" On the Irregular Flight of a Tennis Ball," Mess, of Math., t. vii. (1878)

[Sc. Papers, t. i. p. 344]; Greenhill, Mess, of Math., t. ix. p. 113 (1880).

t Greenhill, I.e.
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are in general complex quantities. The difficulty however of determining
these coefficients so as to satisfy given boundary conditions is now so great

as to render this method of very limited application.

Indeed the determination of the irrotatioual motion of a liquid subject to

given boundary conditions is a problem whose exact solution can be effected

by direct processes in only a very few cases*. Most of the cases for which we

know the solution have been obtained by an inverse process ;
viz. instead of

trying to find a value of
<f>

or
y(r

which satisfies V 2
<
= or V 2

\Jr
= and given

boundary conditions, we take some known solution of the differential equations

and enquire what boundary conditions it can be made to satisfy. Examples
of this method have already been given in Arts. 63, 64, and we may carry it

further in the following two important cases of the general problem in two

dimensions.

71. Case I. The boundary of the fluid consists of a rigid cylindrical

surface which is in motion with velocity U in a direction perpendicular to its

length.

Let us take as axis of x the direction of this velocity U, and let hs be an

element of the section of the surface by the plane xy.

Then at all points of this section the velocity of the fluid in the direction

of the normal, which is denoted by dyfr/ds, must be equal to the velocity of

the boundary normal to itself, or Udyjds. Integrating along the section,

we have

/r
= Uy+ const (1)

If we take any admissible form of
sjr,

this equation defines a system of curves

each of which would by its motion parallel to x give rise to the stream-lines

^ =
const.-f- We give a few examples.

1. If we choose for \fr the form Uy, (1) is satisfied identically for all

forms of the boundary. Hence the fluid contained within a cylinder of any

shape which has a motion of translation only may move as a solid body.

If, further, the cylindrical space occupied by the fluid be simply-connected,
this is the only kind of motion possible. This is otherwise evident from

* A very powerful method of transformation, applicable to cases where the boundaries of

the fluid consist of fixed plane walls, has however been developed by Schwarz,
" Ueber einige

Abbildungsaufgaben," Crelle, t. lxx. [Gesammelte Abhandlungen, Berlin, 1890, t. ii. p. 65];

Christoffel,
" Sul problema delle temperature staziouarie e la rappresentazione di una data

superncie," Annali di Matetnatica, Serie il t. i. p. 89, and Kirchhoff,
" Zur Theorie des

Condensators," Berl. Monatsber., March 15, 1877 [Ges. Abh., p. 101]. Many of the solutions

which can be thus obtained are of great interest iu the mathematically cognate subjects of

Electrostatics, Heat-Conduction, &c. See, for example, J. J. Thomson, Recent Researches in

Electricity and Magnetism, Oxford, 1893, c. iii.

t Cf. Rankine, I. c. ante, p. 61, where the method is applied to obtain curves resembliug the

lines of ships.
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Art. 40; for the motion of the fluid and the solid as one mass evidently
satisfies all the conditions, and is therefore the only solution which the problem
admits of.

2. Let
y\r
= A/r . sin 6

;
then (1) becomes

A
r
sin # = Ur sin 6 + const (2)

In this system of curves is included a circle of radius a, provided Aja = Ua.

Hence the motion produced in an infinite mass of liquid by a circular cylinder

moving through it with velocity IT perpendicular to its length, is given by

Ua2

--^in*. (3)

which agrees with Art. 68.

3. Let us introduce the elliptic co-ordinates
, rj, connected with x, y

by the relation

x + iy = c cosh ( + it}), (4)

or x = c cosh cos 77,

y = c sinh sin 77, j

^ '

(cf. Art. 66), where may be supposed to range from to 00
,
and

77 from

to 2-7T. If we now put

<f>
+ i^ = Ce-^+ ir

i\ (6)

where C is some real constant, we have

ty-
= Ce~* sin 77, (7 j

so that (1) becomes Ce~* sin 77
= Uc sinh sin

77 + const.

In this system of curves is included the ellipse whose parameter is

determined by
(?e
_f = Uc sinh .

If a, b be the semi-axes of this ellipse we have

a = c cosh
,

6 = c sinh
,

so that o.i?l=CTf|Va \a bl

Hence the formula
yfr
=

Ub^ y
J

e_f sin
77 (8)

gives the motion of an infinite mass of liquid produced by an elliptic

cylinder of semi-axes a, b, moving parallel to the greater axis with velocity U.

That the above formulae make the velocity zero at infinity appears from

the consideration that, when f is large, Bx and Sy are of the same order as

e^Si; or e^Bt], so that dyfr/dx, dyfr/dy are of the order e~2* or 1/r
2
, ultimately,

where r denotes the distance of any point from the axis of the cylinder.
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If the motion of the cylinder were parallel to the minor axis the formula

would be

'a + b\*
fy=.Va{ y )

e~* cos 7). .(9)

The stream-lines are in each case the same for all confocal elliptic forms

of the cylinder, so that the formulae hold even when the section reduces to

the straight line joining the foci. In this case (9) becomes

yfr
= Vc e~* cos r), .(10)

which would give the motion produced by an infinitely long lamina of

breadth 2c moving
' broadside on

'

in an infinite mass of liquid. Since

however this solution makes the velocity infinite at the edges, it is subject

to the practical limitation already indicated in several instances*.

* This investigation was given in the Quart. Journ. of Math., t. xiv. (1875). Eesults

equivalent to (8), (9) had however been obtained, in a different manner, by Beltrami,
" Sui

principii fondamentali dell' idrodinamica razionale," Mem. delV Accad. delle Scienze di Bologna,

1873, p. 394.
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The kinetic energy of the fluid is given by

2T = p\ <pdf = p&er*** I

*

cos2
v dv

J Jo

= 7TPb*U\ (11)

where b is the half-breadth of the cylinder perpendicular to the direction of

motion.

If the units of length and time be properly chosen we may write

x+iy=cosh.(g+ iT)), (f}
+ iyJA

= e~^+t7
'\

whence
*"*(

1+
*rR?)'

y=K1-
^T*2

)-

These formulae are convenient for tracing the curves = const., >//
= const., which are

figured on the preceding page.

By superposition of the results (8) and (9) we obtain, for the case of an elliptic cylinder

having a velocity of translation whose components are U, V,

f.-l*|j e-t(Ubmnii~ Vacosr,) (12)

To find the motion relative to the cylinder we must add to this the expression

Uy Vx=c (6
r
sinh sin

rj

- Fcosh cos
rj) (13)

For example, the stream-function for a current impinging at an angle of 45 on a plane
lamina whose edges are at x= c is

^=- -^ q<>c sinhg (cost)- sin n ), (14)

where q is the velocity at infinity. This immediately verifies, for it makes
\js
= for $=0,

and gives

for oo . The stream-lines for this case are shewn in the annexed figure (turned through

45 for convenience)*. This will serve to illustrate some results to be obtained later in

Chap. vi.

*
Prof. Hele Shaw has made a number of beautiful experimental delineations of the forms

of the stream-lines in cases of steady irrotational motion in two dimensions, including those

figured on pp. 74, 80; see Trans. Inst. Nav. Arch., t. xl. (1898). The theory of his method

will find a place in Chap. xi.
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If we trace the course of the stream-line
yfr
=0 from <=+ooto</>=-ao,we find that it

consists in the first place of the hyperbolic arc
17
=

^71-, meeting the lamina at right angles;

it then divides into two portions, following the faces of the lamina, which finally re-unite

and are continued as the hyperbolic arc
77
=

J7r. The points where the hyperbolic arcs

abut on the lamina are points of zero velocity, and therefore of maximum pressure. It is

plain that the fluid pressures on the lamina are equivalent to a couple tending to set it

broadside on to the stream ; and it is easily found that the moment of this couple, per

unit length, is ^irpg^c
2

. Compare Art. 124.

72. Case II. The boundary of the fluid consists of a rigid cylindrical

surface rotating with angular velocity <u about an axis parallel to its length.

Taking the origin in the axis of rotation, and the axes of x, y in a per-

pendicular plane, then, with the same notation as before, dyfr/ds will be equal

to the normal component of the velocity of the boundary, or

dyjr _ dr

ds ds'

if / denote the radius vector from the origin. Integrating we have, at all

points of the boundary,

yjr
= ^wr

2 + const (1)

If we assume any possible form of
yjr,

this will give us the equation of a

series of curves, each of which would, by rotation round the origin, produce
the system of stream-lines determined by yfr.

As examples we may take the following :

1. If we assume
yfr
= Ar* cos 20 = A (a?-y

3
), (2)

the equation (1) becomes

(fa-A)x* + (fa + A)y'=C,

which, for any given value of A, represents a system of similar conies. That

this system may include the ellipse

^ + ^=1
62

we must have (o> A ) a
2 = (a> + A)b\

a 1

2 ~ ^

Hence + =
^.^^(^-y

!
) (3)

gives the motion of a liquid contained within a hollow cylinder whose section

is an ellipse with semi-axes a, b, produced by the rotation of the cylinder

about its longitudinal axis with angular velocity to. The arrangement of

the stream-lines
>/r
= const, is shewn in the figure on p. 84.

l. 6
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The corresponding formula for
(f>

is

^-STF*;;.
-* (4>

The kinetic energy of the fluid, per unit length of the cylinder, is given by

->/flW+(^-^*"^ <*>

This is less than if the fluid were to rotate with the boundary, as one rigid

mass, in the ratio of

'a2 - b2Y
Ka? + b-

to unity. We have here an illustration of Lord Kelvin's minimum theorem,

proved in Art. 45.

2. Let us assume

yfr
= Ar3 cos 30 = A (x

3 -
Sxy

2

).

The equation (1) of the boundary then becomes

A (x
3 -

Sxy
2

)
- o> (x

2 + f')
= C. (6)

We may choose the constants so that the straight line x a shall form part
of the boundary. The conditions for this are

Aa3
-%a)a

2 =C, 3Aa + ^co
= 0.

Substituting the values of A, C hence derived in (6), we have

Xs -a'- Sxy
2 + Sa(x

2 - a2 + y
2

)
m 0.

Dividing out by x a, we get

x2 + 4fax + 4a2 = Sy
2

,

or x + 2a = V3 . y.

The rest of the boundary consists therefore of two straight lines passing

through the point ( 2a, 0), and inclined at angles of 30 to the axis of x.

We have thus obtained the formulae for the motion of the fluid contained

within a vessel in the form of an equilateral prism, when the latter is rotating
with angular velocity a> about an axis parallel to its length and passing

through the centre of its section
;

viz. we have

yjr
= -^-r3

cosS6, < = a - r3 sin 30, (7)
it a

where 2 sj'&a is the length of a side of the prism*.

* The problem of fluid motion in a rotating cylindrical case is to a certain extent mathe-

matically identical with that of the torsion of a uniform rod or bar. The above examples are

mere adaptations of two of de Saint -Venant's solutions of the latter problem. See Thomson and

Tait, Natural Philosophy, Art. 704, ct seq.
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3. In the case of a liquid contained in a rotating cylinder whose section

is a circular sector of radius a and angle 2a, the axis of rotation passing

through the centre, we may assume

, ,
cos 20 -., /ry+-fl- 770 /Q .

the middle radius being taken as initial line. For this makes
yfr
=

^<w/-
2 for

6 = a, and the constants Am+1 can be determined by Fourier's method so as

to make
-ty-
=

\a>ar for r = a. We find

1

=
(
~

)H+1 "*
|(2n + l)7r-4a

"
(2n + l)w

+
(2n + l)w+4aj

' (9>

The conjugate expression for
<f>

is

The kinetic energy is given by

2T=-pU^d8
=
-2pwj

a

^rdr, (11)

where $tt
denotes the value of

<f>
for =

a, the value of d<f>/dn being zero over

the circular part of the boundary*.

The case of the semicircle a = \tt will be of use to us later. We
then have

1 ( }
7T J2n-1 2n+l +

2n + 3}'
(12)

and therefore

Jo
y

tt "2n + 3(2n-l 2 + 1 2 + 3J tt V 8 J

Hence 4- 2 7
T =

^Trptfa* (
a
-

$\ = -3106a2 x %irptfa*. (13)

This is less than if the fluid were solidified, in the ratio of "6212 to 1. See

Art. 4.").

4. With the same notation of elliptic coordinates as in Art. 71, 3, let

us assume

<p + iyfr
= Cfe~*+** (14)

Since ar + y*
=

\t? (cosh 2 + cos 2rj),

This problem was iirst solved by Stokes,
" On the Critical Values of the Sums of Periodic

Series," Camb. Trans., t. viii. (1847) [Math, and Phys. Paper*, t. i. p. 305]. See also Hicks,
Mot. of Math., t. viii. p. 42 (1878); Greenhill, ibid. t. viii. p. 89, and t. x. p. 83.

t Greenhill, I. c.
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the equation (1) becomes

Ce~2* cos 2ij <uc
2

(cosh 2 -f- cos 2r))
= const.

This system of curves includes the ellipse whose parameter is
, provided

Ce-*t -l(oc
2 = 0,

or, using the values of a, b already given,

C=lco(a+b)2
,

so that
i/r
=

\(o (a + b)
2 e~^ cos 2rj, )

<f>
=

\<o (a + by e-* sin 2V .
J

^ io)

At a great distance from the origin the velocity is of the order 1/r
3
.

The above formulae, therefore give the motion of an infinite mass of liquid,

otherwise at rest, produced by the rotation of an elliptic cylinder about its

axis with angular velocity &>*. The diagram shews the stream-lines both

inside and outside a rigid elliptical cylindrical case rotating about its axis.

The kinetic energy of the external fluid is given by

2T = ivrpc
4

. a)
2

(16)

It is remarkable that this is the same for all confocal elliptic forms of the

section of the cylinder.

*
Quart. Journ. Math., t. xiv. (1875) ;

see also Beltrami, I.e. ante p. 79.
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Combining these results with those of Arts. 66, 71 we find that if an

elliptic cylinder be moving with velocities U, V parallel to the principal axes

of its cross-section, and rotating with angular velocity a>, and if (further) the

fluid be circulating irrotationally round it, the cyclic constant being *, then

the stream-function relative to the aforesaid axes is

^r
= I I r

)
e-f ( &> sin 77

- Va cos 17) + \m (a + 6)
2 e~** cos 2ij + f.

Steady Motions unth a Free Surface.

73. The first solution of a problem of two-dimensional motion in which

the fluid is bounded partly by fixed plane walls, and partly by surfaces of

constant pressure, was given by von Helmholtz*. Kirchhoff-f- and others

have since elaborated a general method of dealing with such questions. If

the surfaces of constant pressure be regarded as free, we have a theory of

jets, which furnishes some interesting results in illustration of Art. 24.

Again, since the space beyond these surfaces may be filled with liquid at

rest, without alteriug the conditions of the problem, we obtain also a number

of cases of
' discontinuous motion,' which are mathematically possible with

perfect fluids, but whose practical significance is less easily estimated. We
shall return to this point presently (Art. 79) ;

in the meantime we shall

speak of the surfaces of constant pressure as
'

free.' Extraneous forces,

such as gravity, being neglected, the velocity must be constant along any
such surface, by Art. 21 (2).

The method in question is based on the properties of the function

introduced in Art. 65. The moving fluid is supposed bounded by stream-

lines
i|r
= const., which consist partly of straight walls, and partly of lines

along which the resultant velocity (q) is constant. For convenience, we may
in the first instance suppose the units of length and time to be so adjusted

that this constant velocity is equal to unity. Then in the plane of the

function the lines for which q
= 1 are represented by arcs of a circle of unit

radius, having the origin as centre, and the straight walls (since the direction

of the flow along each is constant) by radial lines drawn outwards from the

circumference. The points where these lines meet the circle correspond to

the points where the bounding stream-lines change their character.

Consider, next, the function log In the plane of this function the

circular arcs for which q = l become transformed into portions of the imaginary

*
Loc. cit. ante pp. 20, 52.

t "Zur Theorie freier Fliissigkeitsstrahlen," Crelle, t. lxx. (1869) [Get. Abh. p. 416]. See also

his Mechanik, cc. xxi., xxii.
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axis, and the radial lines into lines parallel to the real axis, since if %=q~^e
id

we have

log=logi + i0 (1)

It remains, then, to determine a relation of the form*

log?-/(0, (2)

where w =
<f>
+ i^, as usual, such that the rectilinear boundaries in the plane

of log shall correspond to straight lines
yjr
= const, in the plane of w.

There are further conditions of correspondence between special points, one

on the boundary, and one in the interior, of each region, which render the

problem determinate.

When the correspondence between the planes of and w has been

established, the connection between z and w is to be found, by integration,

from the relation

--.*
<3>

The arbitrary constant which appears in the result is due to the arbitrary

position of the origin in the plane of z.

The problem is thus reduced to one of conformal representation between

two areas bounded by straight lines-f". This is resolved by the method of

Schwarz and Christoffel, already referred to
J,

in which each area is repre-

sented in turn on a half-plane. Let Z(=X + iY) and t be two complex
variables connected by the relation

^ = A(a-t)-^ (b-t)-M (c-t)-yi'... f (4)

where a,b, c, ... are real quantities in ascending order of magnitude, whilst

a, /3, 7, ... are angles (not necessarily all positive) such that

a + /3 + 7 + ... = 27r; (5)

and consider the line made up of portions of the real axis of t with small

semi-circular indentations (on the upper side) about the points a, b, c,

If a point describe this line from t = oo to t = + x>, the modulus only

of the expression in (4) will vary so long as a straight portion is being

described, whilst the effect of the clock-wise description of the semi-circular

portions is to introduce factors e*", e</3
,
eiy

,
... in succession. Hence, regarding

dZ/dt as an operator which converts Bt into BZ, we see that the upper half

of the plane of t is conformably represented on the area of a closed polygon
whose exterior angles are a, /3, 7, . . .

, by the formula

Z = Af(a-t)-'" (b-t)-** (c-tyi*... dt + B, (6)

* The use of log f, in place of f, is due to Planck, Wied. Ann., t. xxi., 1884.

t See Forsyth, Theory of Functions, c. xx.

X See the first footnote on p. 77 ante.
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connect the areas in the planes of log f and w each with the upper half-

plane of an intermediate variable t. It appears from equations (8) and (10)
of the preceding Art. that this is accomplished by the substitutions

log =^1 cosh"1 + , w=C\ogt + D (1)

We have here made the corners A, A' in the plane of log
*

correspond to

t = 1, and we have also assumed that t = corresponds to w = oo
,
as is

evident on inspection of the figures. To specify more precisely the values of

the cyclic functions cosh-1 1 and log t we will assume that they both vanish

at t = 1, and that their values at other points in the positive half- plane are

]}
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The relation between w and t is exactly as before, viz. :

w = log t- ib, (8)

where 2b is the final breadth of the stream, between the free boundaries.

( KZ
B_

A'

M A A' B'

log

i

A'
A 1 A'

W
A

For the stream-line AI, t is real, and ranges from 1 to 0. Since, also,

iO = cosh-1 1 iir we may put t = cos (6 + ir), where 6 varies from to $tt.

Hence, from (8), with <f>
= -s,we have, for the intrinsic equation of the stream-

line,

s = log ( sec 6).
7T

(9)

Line of Symmetry.
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From this we find

a; = _sinH0, y = (log tan (77 + ^9)- sin 0}, (10)
77 7T *

if the point A in the first diagram be taken as origin*. The curve is shewn

(in an altered position) at the foot of the opposite page.

The asymptotic value of x, corresponding to =
^ir, is 26/tt, the half

width of the aperture is therefore (ir + 2) bjir. and the coefficient of con-

traction is

irli-ir + 2) = '611.

76. In the next example a stream of infinite breadth is supposed to

impinge directly on a fixed plane lamina, and thence to divide into two

portions bounded internally by free surfaces.

The middle stream-line, after meeting the lamina at right angles, branches

off into two parts, which follow the lamina to the edges, and thence form the

free boundaries. Let this be the line
yfr
= 0, and let us further suppose that

at the point of divergence we have <f>=0. The forms of the boundaries in

the various planes are shewn in the figures. The region occupied by the

, K

c 1 i c
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The correspondence between the planes of w and t is best established by

considering first the boundary in the plane of w~ l
. The method of Schwarz

and Christoffel is then at once applicable. Putting a = ir, (3 = y= . .. = 0,

in Art. 73 (4), we have

not) *

-^=At, w-' = \AV + B (3)

At / we have t = 0, w-1 = 0, so that B = 0, or (say)

$ (4)

To connect C (which is easily seen to be real) with the breadth (I) of the

lamina, we notice that along GA we have = q-
1
,
and therefore, from (2)

'

l{j
+
i). q=~t-^-l), (5)

the sign of the radical being determined so as to make q = for t = oo I

Also, docjdfy 1/q. Hence, integrating along GA in the first figure

we have

whence C = (7)
tt + 4 f

Line of Symmetry.

Along the free boundary AI, we have log %= i6, and therefore, from ('

and (4),

t = -cos0, <f>
= -Csec2

(8)
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The intrinsic equation of the curve is therefore

..(9)

.(10)

on the

>- Art. 23&

G. (11)

ailarity

vary as

e
J

tor an

.(12)

,y,
with

lag., Dec.
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The equations (1) and (2) of the preceding Art. still apply ; but at the point / we now
have (e~ i

i
n ~ a

),
and therefore t = cosa. Hence, in place of (4)*,

w=s ~
(t-!Ly <

13 )

At points on the front face of the lamina, we have, since q~ 1=
=\ |,

^=t+ J{P-l), q=t- sf^-\\ (14)

where the upper or the lower signs are to be taken, according as t% 0, i.e. according as the

point referred to lies to the left or right of C in the first figure. Hence

dx 1 dd> 2G
dt
= -

q i =^7^V(<2
-l)} (15)

Between A' and C, t varies from 1 to oc
,
whilst between A and C the range is from

- oo to 1. If we put

_ 1 cos a cos o>

COS a COS O)
'

the corresponding ranges of a will be from n to a, and from a to 0, respectively ;
and we

find

dt cos a cos o) . 7 ... ,, sin a sin o>

(t
- COS aY Sin4 a

> \ /
cog fl

_ cog w

dx 2C .

'

. v .

-Hence -j-= ^-r (1 cos a cos &> + sin asm <u)sincu, (161
da> sin4 a v '

and therefore

x= . {2 cos a> +cos a sin2 a> -fsin a sin w cos a>+ (In a>) sin a), (17)
sin4 a ...

where the origin has been adjusted so that x shall have equal and opposite values when
o)=0 and g>= 7t, respectively; i.e. it has been taken at the centre of the lamina. Hence, in

terms of C, the whole breadth is

i*p\ a (is)
sin4 a v '

The distance, from the centre, of the point (a>
=

a) at which the stream divides is

2cosa(l+sin2
a) + (|7r-a)sinqX~

4+Trfcfta
* (li,J

To find the total pressure on the front face, we have

= -^f-.sm* a>d<o (20)sin3 a '

Integrated between the limits ir and 0, this gives 7rpC/sin
3
a. Hence, in terms of I, and of

an arbitrary velocity q of the stream, we find

^ina_4+7rsma H* '

* The solution up to this point was given by Kirchhoff (Crelle, I. c.) ; the subsequent discus-

sion is taken, with merely analytical modifications, from the paper by Lord Eayleigh.
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To find the centre of pressure, we take moments about the centre of the lamina. Thus

\p\ C 1
"
?
2
) xdx= ~^Ta / * sin* *

irpC , Ccosa
sin3 a xf 8in4 a

' .(22)

on substituting the value of x from (17). The first factor represents the total pressure ;

the abscissa x of the centre of pressure is therefore given by the second, or, in terms of

the breadth
_ .. cos a j .:

x=|t- : .1 (23)*4+n-sina v '

In the following table, derived from Lord Rayleigh's paper, the column I gives the

- of pressure on the anterior face, in terms of its value when a= 90
D

; whilst columns

II and III give respectively the distances of the centre of pressure, and of the point where

the stream divides, from the middle point of the lamina, expressed as fractions of the total

breadth *.

a
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These can be reduced to known forms by the substitution

where &> ranges from to 1. We thus find

We have here used the formulae

.(25)

.(26)

/|

4 /-J fc-1

(1+co)
2 "

jo 1+0)

where 1>>0.

Since, along the stream-line,

breadth of the lamina,

-
l/q, we have from (25), if b denote the half-

- a In
, _ f 2a 4a2 P ffl

" a". )

/

The definite integral which occurs in this expression can be calculated from the formula

*
1

^ da=
(l-k)(2-t)

+^ (̂ l ~^ k)~^^~^ ^
28

)

where (m), = d/dm . log n (m), is the function introduced and tabulated by Gauss*.

The normal pressure on either half is, by the method of Art. 76,

**
J -^Xq

*
J dt z r

J I + o)
2 K

sin^TiTr
H

The resultant pressure in the direction of the stream is therefore

4a'2= P C.

2a2

...(29)

.(30)

Hence, for any arbitrary velocity q of the stream, the resultant pressure is

4a2

P=-f .pqo
2
b, .(31)

where L stands for the numerical factor in (27).

For a=^n, we have Z= 2+ tt, leading to the same result as in Art. 76 (12).

In the following table, taken (with a slight modification) from Bobyleff's paper, the

second column gives the ratio P/P of the resultant pressure to that experienced by a

plane strip of the same area. This ratio is a maximum when a = 100, about, the lamina

being then concave on the up-stream side. In the third column the ratio of P to the dis-

tance (26 sin a) between the edges of the lamina is compared with %pq
2

. For values of a

nearly equal to 180, this ratio tends to the value unity, as we should expect, since the fluid

within the acute angle is then nearly at rest, and the pressure-excess therefore practically

"
Disquisitiones generales circa seriem iufinitam...," IVerke, Gottingen, 1870..., t. iii. p. 161.
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equal to \pq$- The last column gives the ratio of the resultant pressure to that experi-

enced by a plane strip of breadth 2&sin a, as calculated from (12).

a
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In order that the motion of a fluid may conform to such conditions, it is

necessary that the pressure at a distance should greatly exceed that at the

edge. This excess of pressure is demanded by the inertia of the fluid, which

cannot be guided round a sharp curve, in opposition to centrifugal force,

except by a distribution of pressure increasing with a very rapid gradient
outwards.

Hence, unless the pressure at a distance be very great, the maintenance of

the motion in question would require a negative pressure at the corner, such

as fluids under ordinary conditions are unable to sustain.

To put the matter in as definite a form as possible, let us imagine the

following case. Let us suppose that a straight tube, whose length is large

compared with the diameter, is fixed in the middle of a large closed vessel

filled with frictionless liquid, and that this tube contains, at a distance from

the ends, a sliding plug, or piston, P, which can be moved in any required
manner by extraneous forces applied to it. The thickness of the walls of the

tube is supposed to be small in comparison with the diameter; and the edges,
at the two ends, to be rounded off, so that there are no sharp angles. Let us

further suppose that at some point of the walls of the vessel there is a lateral

tube, with a piston Q, by means of which the pressure in the interior can be

adjusted at will.

Everything being at rest to begin with, let a slowly increasing velocity be

communicated to the plug P, so that (for simplicity) the motion at any

instant may be regarded as approximately steady. At first, provided a

sufficient force be applied to Q, a continuous motion of the kind indicated in
!

the diagram on p. 71 will be produced in the fluid, there being in fact only
one type of motion consistent with the conditions of the question. As the !

acceleration of the piston P proceeds, the pressure on Q may become '
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enormous, even with very moderate velocities of P, and if Q be allowed to

yield,
an annular cavity will be formed at each end of the tube.

It is not easy to make out the further course of the motion in such a case

ln>m a theoretical stand-point, even in the case of a '

perfect
'

fluid. In actual

liquids the problem is modified by viscosity, which prevents any slipping of

the fluid immediately in contact with the tube, and must further exercise

a considerable influence on such rapid differential motions of the fluid as are

here in question.

As a matter of observation, the motions of fluids are often found to

differ widely, under the circumstances supposed in each case, from the types

represented in such diagrams as those of pp. 70, 71, 79, 80. In such a case

have just described, the fluid issuing from the mouth of the tube does

not immediately spread out in all directions, but forms, at all events for some

distance, a more or less compact stream, bounded on all sides by fluid nearly
st. A familiar instance is the smoke-laden stream of gas issuing from a

chimney. In all such cases, however, the motion in the immediate neighbour-
hood of the boundary of the stream is found to be wildly irregular*.

It was the endeavour to construct types of steady motion of a frictionless

liquid, in two dimensions, which should resemble more closely what is

: ved in such cases as we have referred to, that led von Helmholtz+ and

Kirchhoff+ to investigate the theory of free stream-lines. It is obvious that

we may imagine the space beyond a free boundary to be occupied, if we

se, by liquid of the same density at rest, since the condition of constant

sure along the stream-line is not thereby affected. In this way the

problems of Arts. 76, 77, for example, give us a theory of the pressure
ted on a fixed lamina by a stream flowing past it, or (what comes to the

thing) the resistance experienced by a lamina when made to move with

ant velocity through a liquid which would otherwise be at rest.

A- to the practical value of this theory opinions have differed. One obvious criticism

is that the unlimited mass of ' dead-water
'

following the disk implies an infinite kinetic

: but this only means that the type of motion in question could not be completely
ished in a finite time from rest, although it might (conceivably) be approximated

jymptotically. Another objection is that, as will appear in Chap, ix., surfaces of

discontinuity between fluids of comparable density are as a rule highly unstable. It has

been urged, however, by Lord Rayleigh that this instability may not seriously affect the

character < >f the motion for some distance from the place of origin of the surfaces in question.

Lord Kelvin, on the other hand, maintains that the types of motion here contemplated,
with surfaces of discontinuity, have no resemblance to anything which occurs in actual

fluids; and that the only legitimate application of the methods of von Helmholtz and

Kirchhoff is to the case of free surfaces, as of a jet J.

Recent experiments would indicate that jets may be formed be/ore the limiting velocity of

Helmholtz is reached, aud that viscosity plays an essential part in the process. Smoluchowski,
Sur la formation des veines d'efflux dans les liquides," Bull, de VAcad. de Cracovie, 1904.

T V. c. ante pp. 20. 85. t Nature, t. 1. pp. 524, -549, 573, 597 (1894).

72
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Flow in a Curved Stratum.

80. The theory developed in Arts. 59, 60, may be readily extended to

the two-dimensional motion of a curved stratum of liquid, whose thickness is

small compared with the radii of curvature. This question has been discussed,

from the point of view of electric conduction, by Boltzmann*, Kirchhofff,

ToplerJ, and others.

As in Art. 59, we take a fixed point A, and a variable point P, on the

surface defining the form of the stratum, and denote by yfr
the flux across any

curve AP drawn on this surface. Then
yfr

is a function of the position of P,

and by displacing P in any direction through a small distance 8s, we find that

the flux across the element 8s is given by dyfr/ds . 8s. The velocity perpen-

dicular to this element will be 8yfr/h8s, where h is the thickness of the

stratum, not assumed as yet to be uniform.

If, further, the motion be irrotational, we shall have in addition a velocity-

potential <f>,
and the equipotential curves

<f>
= const, will cut the stream-lines

yfr
= const, at right angles.

In the case of uniform thickness, to which we now proceed, it is convenient

to write
yfr

for ty/h, so that the velocity perpendicular to an element 8s is now

given indifferently by d\fr/ds and
d<f>/dn,

8n being an element drawn at right

angles to 8s in the proper direction. The further relations are then exactly as

in the plane problem ;
in particular the curves

cf>
= const., ty

= const., drawn

for a series of values in arithmetic progression, the common difference being

infinitely small and the same in each case, will divide the surface into

elementary squares. For, by the orthogonal property, the elementary spaces
'

in question are rectangles, and if 8su 8s2 be elements of a stream-line and
j

an equipotential line, respectively, forming the sides of one of these
\

rectangles, we have dijr/ds2
=

d<l>/ds1 ,
whence 8s1 =8s2 ,

since by constriction
(

8yfr
=

8(j>.

Any problem of irrotational motion in a curved stratum (of uniform

thickness) is therefore reduced by orthomorphic projection to the corre-

sponding problem in piano. Thus for a spherical surface we may use, among
J

an infinity of other methods, that of stereographic projection. As a simple i

example of this, we may take the case of a stratum of uniform depth covering;

the surface of a sphere with the exception of two circular islands (which may
be of any size and in any relative position). It is evident that the only (two-i

dimensional) irrotational motion which can take place in the doubly-connected*

space occupied by the fluid is one in which the fluid circulates in opposite j

* Wiener Siizungsberichte, t. lii. p. 214 (1865).

t Berl. Monatsber., July 19, 1875 [Ges. Abh. p. 56].

X Pogg. Ann., t. clx. p. 375 (1877).
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directions round the two islands, the cyclic constant being the same in each

case. Since circles project into circles, the plane problem is that solved in

Art. 64, 2, viz. the stream-lines are a system of coaxal circles with real

'limiting points' (A, B, say), and the equipotential lines are the orthogonal

system passing through A, B. Returning to the sphere, it follows from well-

known theorems of stereographic projection that the stream-lines* (including

the contours of the two islands) are the circles in which the surface is cut by
a system of planes passing through a fixed line, viz. the intersection of the

tangent planes at the points corresponding to A and B, whilst the equipotential

lines are the circles in which the sphere is cut by planes passing through

these points*.

In any case of transformation by orthomorphic projection, whether the

motion be irrotational or not, the velocity (8i|r/9n) is transformed in the

inverse ratio of a linear element, and therefore the kinetic energies of the

portions of the fluid occupying corresponding areas are equal (provided, of

course, the density and the thickness be the same). In the same way the

circulation (Jd^/dn . ds) in any circuit is unaltered by projection.

* This example is given by Kirchhoff, in the electrical interpretation, the problem considered

being the distribution of current in a uniform spherical conducting sheet, the electrodes being

situate at any two points A, B of the surface.



CHAPTER V.

IRROTATIONAL MOTION OF A LIQUID: PROBLEMS IN

THREE DIMENSIONS.

81. Of the methods available for obtaining solutions of the equation

V 2

</>
=

...(1)

in three dimensions, the most important is that of Spherical Harmonics.

This is especially suitable when the boundary conditions have relation to

spherical or nearly spherical surfaces.

For a full account of this method we must refer to the special treatises*,

but as the subject is very extensive, and has been treated from different

points of view, it may be worth while to give a slight sketch, without formal

proofs, or with mere indications of proofs, of such parts of it as are most

important for our present purpose.

It is easily seen that since the operator V-' is homogeneous with respect

to x, y, z, the part of
(j>
which is of any specified algebraic degree must satibfy

(1) separately. Any such homogeneous solution of (1) is called a 'spherical

solid harmonic
'

of the algebraic degree in question. If
(f>n be a spherical

solid harmonic of degree n, then if we write

4>n
= rnSn , (2)

Sn will be a function of the direction (only) in which the point (x, y, z) lies

with respect to the origin ;
in other words, a function of the position of the

point in which the radius vector meets a unit sphere described with the origin

as centre. It is therefore called a '

spherical surface harmonic' of order ?if.

*
Todhunter, Functions of Laplace, Lame, and Bessel, Cambridge, 1875. Ferrers, Sjriterical

Harmonics, Cambridge, 1877. Heine, Handbuch der Kugelfunctionen, 2nd ed., Berlin, 1878.

Thomson and Tait, Natural Philosophy, 2nd ed., Cambridge, 1879, t. i. pp. 171 218. Byerly,

Fourier's Series and Spherical, Cylindrical, and Ellipsoidal Harmonics, Boston, U.S.A., 1893.

Whittaker, Modern Analysis, Cambridge, 1902.

For the history of the subject see Todhunter, History of the Theories of Attraction, die,

Cambridge, 1873, t. ii. Also Wangerin,
" Theorie d. Kugelfunktionen, u. s. \v.," Encycl. d.

j

math. Witt., t. ii. (1) (1904).

t The symmetrical treatment of spherical solid harmonics in terms of Cartesian co-ordinates

was introduced by Clebsch, in a much neglected paper, Crelle, t. lxi. p. 195 (1863). It was

adopted independently by Thomson and Tait as the basis of their exposition.
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To any solid harmonic
<f>n of degree n corresponds another of degree

// 1, obtained by division by j-
2""1

"1
;

i.e.
<f>
= *-2n_1

^ is also a solution of

( ] i. Thus, corresponding to any spherical surface harmonic Sn , we have the

spherical solid harmonics rnSn and ?-
-),-1$.

82. The most important case is when n is integral, and when the surface-

harmonic Sn is further restricted to be finite over the unit sphere. In the

form in which the theory (for this case) is presented by Thomson and Tait,

and by Maxwell*, the primary solution of (1) is

*_=J r (3)

This represents as we have seen (Art. 56) the velocity-potential due to

a point-source at the origin. Since (1) is still satisfied when
<f>

is differ-

entiated with respect to x, y, or z, we derive a solution

^-Alll+ml+npll (4)^ "

\ ox dy cz) r v '

This is the velocity-potential of a double-source at the origin, having its axis

in the direction (/, //*, n); see Art. 56 (3). The process can be continued,

and the general type of spherical solid harmonic obtainable in this way is

+-'" = A
dhjlt...dh n r' <5>

where _^_+^_ +ll- _,

, , nt being arbitrary direction-cosines.

This may be regarded as the velocity-potential of a certain configuration
of simple sources about the origin, the dimensions of this system being small

compared with r. To construct this system we premise that from any given
m of sources we may derive a system of higher order by first displacing

it through a space hh s in the direction (lt , to,, ?j,), and then superposing the

reversed system, supposed displaced from its original position through a space

|Aj in the opposite direction. Thus, beginning with the case of a simple
source at the origin, a first application of the above process gives us two

sources +> 0_ equidistant from the origin, in opposite directions. The same

process applied to the system 0+, 0_ gives us four sources ++ , 0-+, +_,

0__ at the corners of a parallelogram. The next step gives us eight sources

at the corners of a parallelepiped, and so on. The velocity-potential, at

a distance, due to an arrangement of 2n sources obtained in this way, will be

given by (5), if 4ttA = m'hjit ... h*, to' being the strength of the original

source at 0. The formula becomes exact, for all distances r, when

it, /',. .. h n are diminished, and m increased, indefinitely, but so that

- finite.

*
Eltctricity and Magnetism, c. ix.
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The surface-harmonic corresponding to (5) is given by

dn 1

and the complementary solid harmonic by

<f>n
= rnSn =7-^cf>_n., (7)

By the method of 'inversion*,' applied to the above configuration of

sources, it may be shewn that the solid harmonic (7) of positive degree
n may be regarded as the velocity-potential due to a certain arrangement of

2n simple sources at infinity.

The lines drawn from the origin in the various directions (lg ,
m s ,

ns) are

called the ' axes
'

of the solid harmonic (5) or (7), and the points in which

these lines meet the unit sphere are called the 'poles' of the surface harmonic

Sn . The formula (5) involves 2n + 1 arbitrary constants, viz. the angular
co-ordinates (two for each) of the n poles, and the factor A. It can be

shewn that this expression is equivalent to the most general form of

spherical surface harmonic which is of integral order n and finite over the

unit sphere f.

83. In the original investigation of Laplace* the equation V-<f>
= is

first expressed in terms of spherical polar co-ordinates r, 6, co, where

$ = r cos 0, y = r sin 6 cos to, z r sin 6 sin co.

The simplest way of effecting the transformation is to apply the theorem of

Art. 36 (2) to the surface of a volume-element rh6 . r sin 88(o . 8?\ Thus the

difference of flux across the two faces perpendicular to r is

(
. rh9 . r sin 08<o ) Br.

or\dr j

Similarly for the two faces perpendicular to the meridian (co
=

const.) we find

and for the two faces perpendicular to a parallel of latitude (6 = const.)

d
( a</>

dto \r sin 6dco
.rhe.hr) hay.

Hence, by addition,

This might of course have been derived from Art. 81 (1) by the usual method
of change of independent variables.

*
Explained by Thomson and Tait, Natural Philosophy, Art. 515.

t Sylvester, Phil. May., Oct. 1876.

X
" Theorie de l'attraction des sph^roides et de la figure des planetes," Mem. de VAcad. roy.

des Sciences, 1782 [Oeuvres Completes, Paris, 1878..., t. x. p. 341]; Mecanique Celeste, Livre 2me ,

c. ii.
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If we now assume that
<f>

is homogeneous, of degree n, and put

cf>=rSn ,

weobtain J-*(miO^) +-^^ + n(n+l)Sa = 0, (2)
sin 00 \ 00 J sin- dor

which is the general differential equation of spherical surface harmonics.

Since the product n (n + 1) is unchanged in value when we write n 1 for

n, it appears that

will also be a solution of (1), as already stated.

84. In the case of symmetry about the axis of x, the term d^SnCar

disappears, and putting cos =
ft we get

{a-*>$}+<+*? a)

the differential equation of spherical 'zonal' harmonics*. This equation,

containing only terms of two different dimensions in fi, is adapted for in-

tegration by series. We thus obtain

J n(n-fl) , , (n-2)n(w + l)(n + 3) 4
)

^"^j
1 TTV^ +

T72T3T4 **-
J

f (>, -!)(+ 2 ) (n-3)(n-l)(n + 2)(n+4 ) )

(^ 1.2.8 ^ +
1.2.3.4.5 *

}
^

The series which here present themselves are of the kind called -

hyper-

geometric
'

;
viz. if we write, after Gauss +,

. a +l. g + 2.fl.fl + l.fl+ 2
+
^T7273~:^vT7 + i. 7 + 2

^ + -' *a;

we have

^ = ^(-1,1,1 + 1", I tf + BpFQ-K i +K i /*
2
) (4)

The series (3) is of course essentially convergent when x lies between and 1 ;
but

when .>;= 1 it is convergent if, and only if

y-a-p>0.
In this case we have

n(y-l).n(y-a-3-l) ,*x^ A % ^-nfr-.-iInCyJ-ir
(5)

where n (m) is in Gauss's notation the equivalent of Euler's r (m+1).

* So called by Thomson and Tait, because the nodal lines (S'=0) divide the unit sphere into

parallel belts.

t I. c. ante p. 96.
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The degree of divergence of the series (3) when

y-a-/3<0,

as x approaches the value 1, is given by the theorem*

F{a, ft y, *) = (! -v)y
-a-,i

F(y-a, y-.ft y, x) (6)

Since the latter series will now be convergent when x= l, we see that F(a, ft y, x) becomes

divergent as (1 x)
y
~a~^

;
more precisely, for values of x infinitely nearly equal to unity,

we have

JP( R ,.n
n(y-l).n( +-y-l) TAY--gF(,A y,*) n(-i).n03-i)

t1-*)7 ft

ultimately.

For the critical case where y
- a - y3=0,

we may have recourse to the formula

~F(a, ft y, *)-^ J(
+ l, 0+1, y+1, of) (8)

which, with (6), gives in the case supposed

~F(a, ft y, .r)
=
^(l

-.r)"
1

. F(y -a, y-ft y + 1, )

= a
^(l-.r:-i. JP(,fta+ i

3+ l, .r) (9)

The last factor is now convergent when x=l, so that /^(a, ft y, #) is ultimately divergent

as log (1 x). More pi-ecisely we have, for values of x near this limit,

*h ft +ft 'i-n^n'J-D log
i =s

;

(l0)

85. Of the two series which occur in the general expression Art. 84 (2)

of a zonal harmonic, the former terminates when n is an even, and the latter

when n is an odd integer. For other values of n both series are essentially-

convergent for values of \x between + 1, but since in each case we have

7 a /3
= 0, they diverge at the limits /n=l, becoming infinite as

log (1
-

p).

It follows that the terminating series corresponding to integral values of

n are the only zonal surface harmonics which are finite over the unit sphere.

If we reverse the series we find that both these cases (n even, and n odd) are

included in the formula f

1.3 y..(2n-l) f *(-!) ._,

mL -
, (-l)(-2)(n-3)

'

} ,rs
This might of course have + 2 .4.(2n- l)(2n -3)

* ~-J
' (1)

ot change of independent a

*
Explained by Thomson and Ins, 3rd. ed., London, 1903, c. vi.

t Sylvester, Phil. Mag., Oct. 187 .13 5 In - 1)

X
" Theorie de l'attraction des

to A = (~ >

'

2.4... n
'
Z^ 0; wM1St f r " dd W6 haV6

des Sciences, 1782 [Ocuwrc* CofltpR
c. ii.

See Heine, t. i. pp. 12, 147.

i



84-85] Zonal Harmonics 107

where the constant factor has been adjusted so as to make Pn (/x)
= 1 for

fi
= l* The formula may also be written

*.&>-jr^V-V. (*)

The series (1) may otherwise be obtained by development of Art. 82 3),

which in the case of the zonal harmonic assumes the form

i-^&l <3)

As particular cases of (2) we have

P.G*)-1, P,0*)=* P2 (/x)
= H3^-l), P3 (/0 = HV-3/4

Expansions of Pn in terms of other functions of 6 as independent

variables, in place of /a, have been obtained by various writers. For

example, we have

d , d > i "(n+1) . a (n-l)n(n + l)(n + 2) a ,

This may be deduced from (2)t, or it may be obtained independently by

putting fi
= 1 - m2z in Art. 84 (1), and integrating by a series.

The function Pn (ji) was first introduced into analysis by Legendref as the coefficient

of//" in the expansion of

(1-2/iA+A*)-*.

The connection of thi.s with our present point of view is that if be the velocity-potential
of a unit source on the axis of x at a distance c from the origin, we have, on Legendre's

definition, for values of r less than c,

4tnf>
=

(c
2 -

-Ificr+ r-)-i

-j+i5+*.S+ <s>

Each term in tl sion must separately satisfy v'-<p
=

0, and therefore the coefficient

PR must be a solution of Art. 84 (1). Since Pn , as thus defined, is obviously finite for all

values of
/i, and becomes equal to unity for /*=!, it must be identical with (1).

The functions I\. I'.,, ... P. were tabulated by Glaisher, for values of fi at intervals of -01,

Brit. Ass. Report. 1879. A table of the same functions for every degree of the quadrant,
calculated under the direction of Prof. Perry, was published in the Phil. Mag. for Dec. 1891.

Both tables are reproduced by Byerly, who also gives graphs of the functions. The values of the

first 20 zonal harmonics, at intervals of 5, have recently been published by Prof. A. Lodge, Phil.

Trans., A, t. cciii. (1904).
+ Murphy, Elementary Principles of the Theories of Electricity, dtc, Cambridge, 1833, p. 7.

[Thomson and Tait, Art. 782.]

%
" Sur l'attraction des spheroides homogenes," Mem. des Saram Etrangers, X. x., 1785.
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For values of r greater than c, the corresponding expansion is

4rr<t>
=
l
+P/?+P^+ W

We can hence deduce expressions, which will be useful to us later, Art. 98, for the

velocity-potential due to a double-source of unit strength, situate on the axis of x at a dis-

tance c from the origin, and having its axis pointing from the origin. This is evidently

equal to d<f>/dc, where (f>
has either of the above forms

;
so that the required potential is,

for r<c,

-1& 2P
>'?
+3P4-) m

and for r>c,

i(
p4+2P4 +

-) w

The remaining solution of Art. 84 (1), in the case of n integral, can be

put into the more compact form *

Q*(ji) =iPn<j*)l<>g\-Znt (9)

i n 2?l 1 r. 2/1-5 n ,.,where Z= Pn_l + r.PM+ (10)1 . n 6 (n 1)
v '

This function Qn (/Ji)
is sometimes called the zonal harmonic 'of the second

kind.'

Thus

Qo 0*) = 4 log ^ , &G0 -i (<V - 1) log
i -

{ft

Q, 0*) =^ logf
- 1

, Q8 (/*)
- J (o/,

2 -
3/x) log

l - 1^ + 1.

86. When we abandon the restriction as to symmetry about the axis

of x, we may suppose Sn ,
if a finite and single-valued function of to, to be

expanded in a series of terms varying as cos sco and sin sco respectively. If

this expansion is to apply to the whole sphere (i.e. from co = to co = 2tt), we

may further (by Fourier's theorem) suppose the values of s to be integral.

The differential equation satisfied by any such term is

* This is equivalent to Art. 84 (4) with, for n even, ^4=0, ?? = (
-

)^
>l

,-^' ^ =- ; whilst for
' v 1.3 ...(n-1)

n odd we have A = (- )*<*+*)
2.4 (re- 1) = Q gee Hflin

.

14 14^
v '

3 . 5 . . . n *
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If we put Sn = (1
-

fi?)**v,

this takes the form

which is suitable for integration by series. We thus obtain

(n-s)(n + s + l)
J$n

= A(l-^']l- 1.2 r

+
1.2.3.4 l*-'"\

, (n-s-3)(n-g-l)(n + g + 2)(w + s + 4) )

1.2.3.4.5 ** r"T ^
the factor cos s<o or sin sco being for the moment omitted. In the hyper-

geometric notation this may be written

1 - fi')i' {AFQs-KHi'+K 2, M2
)

+ BfiF(h + is- |m 1 + 4 + u, |, M )}. ...(3)

These expressions converge when
jj," < 1, but since in each case we have

7 a y9=-s,
the series become infinite as (1 /**)"* at the limits f=l, unless they
terminate*. The former series terminates when n s is an even, and the

latter when it is an odd integer. By reversing the series we can express
both these finite solutions by the single formulai*

w
2(n-s)!nP

^ ' ^ 2.(2n-l)
**

(w
. g)(w - g . 1)(w

_ g _2)(n-s-3)
}

2.4.(2n-l)(2-3)
^

"J
v '

On comparison with Art. 85 (1) we find that

Pn^) =(l-^^^ (5)

That this is a solution of (1) may of course be verified independently.

In terms of sin \6, we have

P.. (cos 8) = ,
<" + S

>; ,
sin- Oil- ( >( + ' + !)

sin.M
2*(-*)!*] J 1.(5 + 1)

2

(n-s-l)(n-g)(n + s+l)(n + s+2) )
fi

1.2(. + l)(. + 2)

" Sm ^ --} (6)

This corresponds to Art. 85 (4), from which it can easily be derived.

* Lord Rayleigh, Theory of Sound, London, 1877, Art. 338.

t There are great varieties of notation in connection with these 'associated functions,' as

they have been called. That chosen in the text was proposed by F. Neumann ; and is adopted

by Whittaker, p. 231.
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Collecting our results we learn that a surface harmonic which is finite

over the unit sphere is necessarily of integral order, and is further expressible,
if n denote the order, in the form

*=

8n = A nPn O) + X (A s cos so + Bg sin sa>) Pn
g
(/*), (7)

containing 2n + 1 arbitrary constants. The terms of this involving w are

called
'

tesseral
'

harmonics, with the exception of the last two, which are

given by the formula

(1 fi-)*
n
(An cos na> + Bn sin nw),

and are called 'sectorial' harmonics*; the names being suggested by the

forms of the compartments into which the unit sphere is divided by the nodal

lines 8n = 0.

The formula for the tesseral harmonic of rank s may be obtained otherwise

from the general expression (6) of Art. 82 by making n s out of the n poles

of the harmonic coincide at the point 6 = of the sphere, and distributing
the remaining s poles evenly round the equatorial circle 6 = ^tt.

The remaining solution of (1), in the case of n integral, may be put in

the form

8n = (A s cos soy + Bs sin so)) Qn* (/*), (8)

wheret WW-(1-^^ (9)

This is sometimes called a tesseral harmonic 'of the second kind.'

87. Two surface harmonics #, S' are said to be 'conjugate' when

ffSS'dv = Q, (1)

where Bxu is an element of surface of the unit sphere, and the integration

extends over this sphere.

It may be shewn that any two surface harmonics, of different orders,

which are finite over the unit sphere, are conjugate, and also that the 2n + 1

harmonics of any given order n, of the zonal, tesseral, and sectorial types

specified in Arts. 85, 86 are all mutually conjugate. It will appear, later,

that the conjugate property is of great importance in the physical applications

of the subject.

Since Sot = sin 086B(o = S/jlS(o, we have, as particular cases of this

theorem,
1

Pm Qi)dp-Q, (2)

* The prefix
'

spherical
'

is implied ;
it is often omitted for brevity.

t A table of the functions Qn (n), Qn
s
(m), for various values of n and *, is given by Bryan,

Proc. Camb. Phil Soc, t. vi. p. 297.
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f P.GO.P.GO^G, (3)

and f Pm (n)-Pn
g
(ridfi = 0, (4)

provided m, n are unequal.

For m = n, it may be shewn* that

/>i' d* = 2nTl

/y.W!^=| 2n^ (6)

88. We may also quote the theorem that any arbitrary function

f(fi, ) of the position of a point on the unit sphere can be expanded in

ries of surface-harmonics, obtained by giving n all integral values from

to x
,
in Art. 86 (7). The formulae (5) and (6) are useful in determining

the coefficients in this expansion.

Thus, in the case of symmetry about an axis, the theorem takes the form

/V> = ''o + C1P1 (/4)+C^2 (/x)-r... + CnPn (M)+ (7)

If we multiply both sides by Pn (fi)dfi, and integrate between the limits + 1,

we find

lr/^/004* (8)

and, generally,

Cm ?^JV0*)P.<*)d^ (9)

For the analytical proof of the theorem recourse must be had to the

ial treatises "f* ;
the physical grounds for assuming the possibility of this

and other .similar expansions will appear, incidentally, in connection with

various problems.

89. Solutions of the equation V2
< = may also be obtained by the usual

method of treating linear equations with constant coefficients^:. Thus, the

equation is satisfied by

or, more generally, by <f>
=f (ax + @y + yz), (1)

provided cr + #J + r = (2)

*
Ferrers, p. 86 ; Whittaker, pp. 208, '232.

t For an account of the more recent investigations of the question, see Wangerin, I.e.

X Forsyth, p. 444.



112 Irrotational Motion of a Liquid [chap, v

For example, we may put

a, /3, 7=1, i cos ^, t'sinS-, (3)

or, again, a, ft, 7 = 1, i cosh u, sinh u (4)

It may be shewn* that the most general solution possible can be obtained

by superposition of solutions of the type (1).

Using (3), and introducing the cylindrical co-ordinates x, vr, a, where

2/
= to- cos <w, 2 = or sin &>, (5)

we build up a solution symmetrical about the axis of x if we take

1 [-"
<f>
= ~- I / [a + i-ur cos (^ a))} cfe.

Alt J

For, since the integration extends over a whole circumference, it is immaterial

where the origin of ^ is placed, and the formula may therefore be writtenf

1 f-
w 1 [

n

= _-| f(x + ivrcos^)d^ = -
I f(x + ivr cos %)d% (6)

Z7TJo ""Jo

This is remarkable as giving a value of
(f>, symmetrical about the axis

of x, in terms of its valuesf (x) at points of this axis}. It may be shewn,

by means of the theorem of Art. 38, that the form of
cf>

is in such a case

completely determined by the values over any finite length of the axis.

As particular cases of (6) we have the functions

-
[ "{x + i-a cos ^)" d&, -(*(>+^ cos ^)~

n-1
d%,

ttJo Wo

where n will be supposed to be integral. Since these are solid harmonics

finite over the unit sphere, and since, for vx = 0, they reduce to rn and r~ n~l

,

they must be equivalent to Pn (p)r*f
and Pn (/m) r

-n_1
, respectively. We

thus obtain the forms

P,l ( yu)=-(V + ;V(l-/*
2

)cos^jc^, (7)
TTJ o

Pnif*)^-]^ If. +i^l-^co^+i' (8)

due originally to Laplace ||
and Jacobi^j, respectively.

*
Whittaker, Month. Not. R. Ast. Soc, t. lxii. (1902).

+ Whittaker, Modem Analysis, c. xiii.

J Whittaker, p. 321.

Thomson and Tait, Art. 498.

||
Mec. Cel., Livre llme

,
c. ii.

If Crelle, t. xxvi. (1843) [Gesammelte Werke, Berlin, 1881..., t. vi, p. 148].
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90. As a first application of the foregoing theory let us suppose that an

arbitrary distribution of impulsive pressure is applied to the surface of a

spherical mass of fluid initially at rest. This is equivalent to prescribing an

arbitrary value of
<f>

over the surface
;
the value of

<f>
in the interior is thence

determinate, by Art. 40. To find it, we may suppose the given surface value

to be expanded, in accordance with the theorem quoted in Art. 88, in a series

of surface-harmonics of integral order, thus

<f>
= S + S1 + S.2 +...+Sn + (1)

The required value is then

4 = S.+lsl + st +...+ n Sa + ..., (2)

for this satisfies V i
< = 0, and assumes the prescribed form (1) when r = a, the

radius of the sphere.

The corresponding solution for the case of a prescribed value of
(f>

over

the surface of a spherical cavity in an infinite mass of liquid initially at rest

is evidently

-;!*+*+*+ +;!*+ 0)

mbining these two results we get the case of an infinite mass of fluid

whose continuity is interrupted by an infinitely thin vacuous stratum, of

spherical form, within which an arbitrary impulsive pressure is applied. The
values (2) and (3) of

<f>
are of course continuous at the stratum, but the

values of the normal velocity are discontinuous, viz. we have, for the internal

fluid.

dr a

and for the external fluid

or
v ' a

The motion, whether internal or external, is therefore that due to a

distribution of simple sources with surface-density

2(2n + l)^ (4)

over the sphere ;
see Art. 58.

91. Let us next suppose that, instead of the impulsive pressure, it is the

normal velocity which is prescribed over the spherical surface
;
thus

*-*+ *'+... +* + .... (1)

l. 8
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the term of zero order being necessarily absent, since we must have

r

d<p

// *.<*"<>> (2)

on account of the constancy of volume of the included mass.

The value of
<j>

for the internal space is of the form

<f>
= A.rS, + A 2r'8.2 + ... + A nr

nSn + ..., (3)

for this is finite and continuous, and satisfies V 2
< = 0, and the constants can

be determined so as to make d<f)/dr assume the given surface-value (1); viz.

we have nA na
n~1 = l. The required solution is therefore

</>
= aXi^/Sfn (4)r

ti a11 v 7

The corresponding solution for the external space is found in like manner

to be

* = - aSnh^ S" <5>

The two solutions, taken together, give the motion produced in an

infinite mass of liquid which is divided into two portions by a thin spherical

membrane, when a prescribed normal velocity is given to every point of the

membrane, subject to the condition (2).

The value of < changes from a%Sn/n to a1Sn/(n + 1), as we cross the

membrane, so that the tangential velocity is now discontinuous. The motion,

whether inside or outside, is that due to a double-sheet of density

at , 7T#n ; (6)
n(n + 1)

' v '

see Art. 58.

The kinetic energy of the internal fluid is given by the formula (4) of

Art. 44, viz.

2T= P
ff<j>

d

Jj;dS
=
pa*2,ffs

n*d*,, (7)

the parts of the integral which involve products of surface-harmonics of

different orders disappearing in virtue of the conjugate property of Art. 87.

For the external fluid we have

2T =
-pff<l>

d
dS = pa>t

; :i ffs
n*d*r (8)

92. A particular, but very important, case of the problem of the

preceding Article is that of the motion of a solid sphere in an infinite

mass of liquid which is at rest at infinity. If we take the origin at the
j

centre of the sphere, and the axis of x in the direction of motion, the,
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normal velocity at the surface is Ujc r,
= U cos 0, where U is the velocity

of the centre. Hence the conditions to determine
<p are (1) that we must

have V 2

^ = everywhere, (2) that the space-derivatives of
<f>
must vanish at

infinity, and (3) that at the surface of the sphere (r= a), we must have

- d = Ucos0 (1)

The form of this suggests at once the zonal harmonic of the first order
;
we

therefore assume

. ,31 . cos
<p
= A ^-

- = -A .

ox r r~

The condition (1) gives 2A/a
3= U, so that the required solution is*

<t>
=
$U^cos0 (2)

It appears on comparison with Art. 56 (4) that the motion of the fluid is

the same as would be produced by a double-source of strength lirUa3
, situate

at the centre of the sphere. For the forms of the stream-lines see p. 121.

To find the energy of the fluid motion we have

2T = -p
jj<t> |^

dS = \paU*f cos* . "Lira sin . add

=
lTrpa

s U- = M'U\ (3)

if AT = 7rpa
s

. It appears, exactly as in Art. 68, that the effect of the fluid

pressure is equivalent simply to an addition to the inertia of the solid, the

increment being now half the mass of the fluid displacedf.

Thus in the case of rectilinear motion of the sphere, if no external forces

act on the fluid, the resultant pressure is equivalent to a force

-*?
in the direction of motion, vanishing when U is constant. Hence if the

sphere be set in motion and left to itself, it will continue to move in a

straight line with constant velocity.

The behaviour of a solid projected in an actual fluid is of course quite

different; a continual application of force is necessary to maintain the

motion, and if this be not supplied the solid is gradually brought to rest.

*
Stokes,

" On some cases of Fluid Motion," Camb. Tram., i. viii. (1843) [Math, and Phys.
Papers, t. i. p. 17].

Dinchlet,
" Ueber die Bewegung eines festen Korpers in einem incompressibeln fliissigen

Medium,'' Berl. Monatsber., 1852 [Werke, Berlin, 188997, t. ii. p. 115].
T Stokes, I. e. The result had been obtained otherwise, on the hypothesis of infinitely

small motion, by Green,
" On the Vibration of Pendulums in Fluid Media," Edin. Trans., 1833

[Math. Papers, p. 315].

82



116 Irrotational Motion of a Liquid [chap, v

It must be remembered however, in making this comparison, that in a

'perfect' fluid there is no dissipation of energy, and that if, further, the fluid

be incompressible, the solid cannot lose its kinetic energy by transfer to the

fluid, since, as we have seen in Chapter in., the motion of the fluid is entirely

determined by that of the solid, and therefore ceases with it.

?--ttM.#<ft <)

If we wish to verify the preceding results by direct calculation from the formula

p_d<j>

P

we must remember, as in Art. 68, that the origin is in motion, and that the values of r

and 6 for a fixed point of space are therefore increasing at the rates 7cos#, and

(
Unm 6)jr, respectively. We thus tind, for r= a,

P
Hk^f cos 6 + ,%U- cos 20 -foC*+ F(t) (6)

The last three terms are the same for surface-elements in the positions 6 and n - 6
;
so

that, when U is constant, the pressures on the various elements of the anterior half of the

sphere are balanced by equal pressures on the corresponding elements of the posterior half.

But when the motion of the sphere is being accelerated there is an excess of pressure on

the anterior, and a defect on the posterior half. The reverse holds when the motion is

being retarded. The resultant effect in the direction of motion is

,dU

as before.
/;

2na sin 6 . ad0 . p cos 6= -
^rrpa

3
,

93. The same method can be applied to find the motion produced in a

liquid contained between a solid sphere and a fixed concentric spherical

boundary, when the sphere is moving with given velocity U.

The centre of the sphere being taken as origin, it is evident, since th

space occupied by the fluid is limited both externally and internally, that

solid harmonics of both positive and negative degrees are admissible
; they

are in fact required, in order to satisfy the boundary conditions, which are

-d<j>/dr= Ucos0,

for r = a, the radius of the sphere, and

d<f>/dr
= 0,

for r= b, the radius of the external boundary, the axis of x being as before i

the direction of motion.

B
We therefore assume

<]>
= (Ar + A cos 0, (1)

and the conditions in question give

or o3
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The kinetic energy of the fluid motion is given by

IT
,//?**,

the integration extending over the inner spherical surface, since at the outer

we have d<j>!dr
= 0. We thus find

2T = ^^raF pa3U
'2

(3)

*
It appears that the effective addition to the inertia of the sphere is now

**-&-#& (4 >

A> b diminishes from x to a, this increases continually from $vpa? to oc
,
in

accordance with Lord Kelvin's minimum theorem (Art. 45). In other words,

the introduction of a rigid spherical partition in the problem of Art. 92 acts

constraint increasing the kinetic energy for any given velocity of the

sphere, and so virtually increasing the inertia of the system. .

94. In all cases where the motion of a liquid takes place in a series of

planes passing through a common line, and is the same in each such plane,

there exists a stream-function analogous in some of its properties to the two-

dimensional stream-function of the last Chapter. If in any plane through
the axis of symmetry we take two points A and P, of which A is arbitrary,

but fixed, while P is variable, then considering the annular surface generated

by any line AP, it is plain that the flux across this surface is a function of

the position of P. Denoting this function by 27n/r, and taking the axis of x

to coincide with that of symmetry, we may say that
yfr

is a function of x and

-or, where x is the abscissa of P, and w, =
(y- + 22

)*,
is its distance from the

axis The curves
yfr
= const, are evidently stream-lines.

If P' be a point infinitely near to P in a meridian plane, it follows from

the above definition that the velocity normal to PR is equal to

'Ittvt.PP"

whence, taking PP' parallel first to cr and then to x,

1 dylr 1 dylr ,,>.= - - T
,

v =~^ 1 (1)
or cts -or OX

where u and v are the components of fluid velocity in the directions of x and

w
respectively, the convention as to sign being similar to that of Art. 59.

These kinematical relations may also be inferred from the form which the

equation of continuity takes under the present circumstances. If we express

*
Stokes, I.e. ante p. 115.
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that the total flux into the annular space generated by the revolution of an

elementary rectangle BxBtb is zero, we find

=- (u . IttisBtx) Bx + = (v . 2-jtztBx) B-gt = 0,
OX OVS

or -(ot)+.-(ot) = 0, (2)OX CIS

which shews that tsv . dx vru . d-ur

is an exact differential. Denoting this by dyfr we obtain the relations (1)*.

So far the motion has not been assumed to be irrotational
;
the condition

that it should be so is

dv du _ _

dx ora
'

which leads to fc +*fc_Ij*_o (3)oar dcr2 is our v '

The differential equation of
<f>

is obtained by writing

d<f> dd>

ox dm

in (2), viz. it is g+ <j2 +I|*_o (4)OX2 dm 2 THOtS
x '

It appears that the functions
<f>
and ty are not now (as they were in Art. 62)

j

interchangeable. They are, indeed, of different dimensions.

The kinetic energy of the liquid contained in any region bounded by
surfaces of revolution about the axis is given by

ir //**

=
lirp I

cf)dy}r, (5)

Bs denoting an element of the meridian section of the bounding surfaces, andj
the integration extending round the various parts of this section, in the}

proper directions. Compare Art. 61 (2).

* The stream-function for the case of symmetry about an axis was introduced in this mannei

by Stokes, "On the Steady Motion of Incompressible Fluids," Camb. Trans., t. vii. (1842) [Math
and Phys. Papers, t. i. p. 1]. Its analytical theory has been treated very fully by Sampson, "Or,-

Stokes' Current-Function," Phil. Trans. A. t. clxxxii. (1891).
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95. The velocity-potential due to a point-source at the origin is of the

form

*-\ a)

The flux through any closed curve is in this case numerically equal to the

solid angle which the curve subtends at the origin. Hence for a circle with

0.' as axis, whose radius subtends an angle at 0, we have, attending to the

sign,

27rVr
= -27r(l-eos0).

Omitting the constant term we have

*-M <2>

The solutions corresponding to any number of simple sources situate at

various points of the axis of x may evidently be superposed ;
thus for the

double-source

3 1 cosfl

*"-**- (3)

.
,

&r v- sin2
...

we have + = --=-- = -
(4)

And, generally, to the zonal solid harmonic of degree n 1, viz. to

*=A
>~r

<5>

dn+1 r
corresponds* -*fr

= A
? .l+1 (6)

A more general formula, applicable to harmonics of any degree, fractional

or not, may be obtained as follows. Using spherical polar co-ordinates r, 0,

the component velocities along r, and perpendicular to r in the plane of the

meridian, are found by making the linear element PP' of Art. 94 coincide

successively with r&0 and 6V, respectively, viz. they are

f t } H. ...(7)
/ sin rdd

'

r sin dr

Hence in the case of irrotational motion we have

sin 0c0 dr dr d0

Thus if
</>
=rSn , (9)

where Sn is a zonal harmonic of order n, we have, putting /z,
= cos 0,

dfi dr cifj,

*
Stefan, "Ueber die Kraftlinien eines urn eine Axe symmetrisclien Feldes," Wied. Ann.,

t. xvii. (1882).
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The latter equation gives
1 d^

* i^ 1-^ (10)

which must necessarily also satisfy the former; this is readily verified by
means of Art. 84 (1).

Thus in the case of the zonal harmonic Pn , we have as corresponding
values

-? *-i**Q-*>j?' <u >

1 dP
and

</>
= r-"->Pn (/,), * = - - r* fl

-
#*) ^f (12)

of which the latter must be equivalent to (5) and (6). The same relations

hold of course with regard to the zonal harmonic of the second kind, Qn .

96. We saw in Art. 92 that the motion produced by a solid sphere in

an infinite mass of liquid may be regarded as due to a double-source at

the centre. Comparing the formulae there given with Art. 95 (4), it appears
that the stream-function due to the sphere is

^ = -itf^sin
2

(1)

The forms of the stream-lines corresponding to a number of equidistant
values of

\{r
are shewn on the opposite page. The stream-lines relative to

the sphere are figured in a diagram near the end of Chapter VII.

Again, the stream-function due to two double-sources having their axes

oppositely directed along the axis of x, will be of the form

+--. <>
'1 '2

where r
x ,
r2 denote the distances of any point from the positions, Pr and P.,,

say, of the two sources. At the stream-surface ty
= we have

rilr2
= (A/B)K

i.e. the surface is a sphere in relation to which Px and P2 are inverse points.

If be the centre of this sphere, and a its radius, we find

AIB = 0P1
3
/a

3 = a*/0P2
3

(3)

This sphere may be taken as a fixed boundary to the fluid on either side, and

we thus obtain the motion due to a double-source (or say to an infinitely

small sphere moving along Ox) in presence of a fixed spherical boundary,
j

The disturbance of the stream-lines by the fixed sphere is that due to a

double-source of the opposite sign placed at the ' inverse
'

point, the ratio of
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the strengths being given by (3)*. This fictitious double-source may be

called the 'image' of the original one.

97. Hankine+ employed a method similar to that of Art. 71 to discover

forms of solids of revolution which will by motion parallel to their axes

generate in a surrounding liquid any given type of irrotational motion

symmetrical about an axis.

The velocity of the solid being U, and 8s denoting an element of the

meridian, the normal velocity at any point of the surface is Udta'ds, and that

* This result was given by Stokes,
" On the Resistance of a Fluid to two Oscillating Spheres,"

Brit. Ass. Report, 1847 [Math, and Phys. Papers, t. i. p. 230].

t '-On the Mathematical Theory of Stream-Lines, especially those with Four Foci and

upwards," Phil. Trans., 1871, p. 267.
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of the fluid in contact is given by dyjr/sTds. Equating these and integrating

along the meridian, we have

^ = -7ot 2 + const (1)

If in this we substitute any value of
yfr satisfying Art. 94 (3), we obtain the

equation of the meridian curves of a series of solids, each of which would by
its motion parallel to a; give rise to the given system of stream-lines.

In this way we may readily verify the solution already obtained for the

sphere ; thus, assuming
yfr^A^/i-

3
, (2)

we find that (1) is satisfied for r = a, provided

A=-\TTa*t (3)

which agrees with Art. 96 (1).

98. The motion of a liquid bounded by two spherical surfaces can be

found by successive approximations in certain cases. For two solid spheres

moving in the line of centres the solution is greatly facilitated by the result

given at the end of Art. 96, as to the '

image
'

of a double-source in a fixed

sphere.

Let a, b be the radii, and c the distance between the centres A, B. Let U be the

velocity of A towards B, V that of B towards A. Also, P being any point, let AP=i\

BP=r\ PAB= 6, PBA=6'. The velocity-potential will be of the form

U<f>+U'(t>', (1)

where the functions
<f>
and

cf>'
are to be determined by the conditions that

v 2
( = 0, V 2<'=0, (2)

r

throughout the fluid, that their space-derivatives vanish at infinity, and that

d<fi

over the surface of A
,
whilst

dr
- 00,6, -^

=
0, (3)

_o
S<

'=-cos0' (4)

over the surface of B. It is evident that
cf>

is the value of the velocity-potential when A

moves with unit velocity towards B, while B is at rest
;
and similarly for <'.
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To find 0, we remark that if B were absent the motion of the fluid would be that due

to a certain double-source at A having its axis in the direction AB. The theorem of Art. 96

shews that we may satisfy the condition of zero normal velocity over the surface of B
by introducing a double-source, viz. the c

image
'

of that at A in the sphere B. This image
is at H

x ,
the inverse point of A with respect to the sphere B ; its axis coincides with AB,

and its strength is nJ^/c
3
,
where

ft is the strength of the original source at A, viz.

/x
= 2na3

.

The resultant motion due to the two sources at A and H
x
will however violate the condi-

tion to be satisfied at the surface of the sphere A, and in order to neutralize the normal

velocity at this surface, due to H
x ,
we must superpose a double-source at H.2 ,

the image
of Hj in the sphere A. This will introduce a normal velocity at the surface of B, which

may again be neutralized by adding the image ofH
2 in B, and so on. If

/ij, /x.,, fi3 ,
... be

the strengths of the successive images, and/j,/2 , /3 ,
... their distances from A, we have

.(5)13 ' U U
/' ft (c-/*)

3 '

ft /a
3

/6
/*'

/6"A' ft C^)3 '

ft ./?'J

and so on, the laws of formation being obvious. The images continually diminish in

intensity, and this very rapidly if the radius of either sphere is small compared with the

shortest distance between the two surfaces.

The formula for the kinetic energy is

2T= -
p f

I (U<p+C<p')
(^U

C

^ + U'
C

^\dS=LU
i+2MUU'+ XUi (6)

provided

where the suffixes indicate over which sphere the integration is to be effected. The

equality of the two forms ofM follows from Green's Theorem (Art. 44).

The value of <p near the surface of A can be written down at once from the results (7)

and (8) of Art. 85, viz. we have

.(8)4^= (^+ M,+^-r...)^-2(^3
+|3-f...)rcos5

+ &c,,

the remaining terms, involving zonal harmonics of higher orders, being omitted, as they
will disappear in the subsequent surface-integration, in virtue of the conjugate property of

Art. 87. Hence, putting d<f>[dn= -cos 6, we find with the help of (5)

Z-ipOi + 3A4 + 3M4+ ...)
=
S-p'(l

+3^+3^ (^^+...). .(9)

It appears that the inertia of the sphere A is in all cases increased by the presence of

a fixed sphere B. Compare Art. 93.

The value of N may be written down from symmetry, viz. it is

^s^(1+3^+3^ww+
-)

(I0)
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where /l= C-T

J 3 C
f '1

f-=c
'/*"

ft ~~.fi

f'~
b-

Ji fii
J3

f'JlJiif )

J- J

.(11)

and so on.

To calculate M we require the value of
<p'

near the surface of the sphere A ; this is due

to double-sources /x ', /x/, /x2', p3', ... at distances c, cf(, c-fj, c f3',
... from A, where

fx

' = - 2nbs
,
and

.(12)

Mi'_
3

M? ^ '
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Let the spheres be moving with velocities V, V in parallel directions at right angles to

A . B, and let r, 0, a> and >', 6',

'

be two systems of spherical polar co-ordinates having their

origins at A and B respectively, and their polar axes in the directions of the velocities

r, 1". The velocity-potential will be of the form

with the surface conditions

C
j=-cos0, 5=0, for r=a, (1)

and -^=0, ^ = -cosff, for r'= b (2)

If the sphere B were absent the velocity-potential due to unit velocity of A would be

a

^ cos A

Since ; cos 6= r' cos ff, the value of this in the neighbourhood of B will be

u3

i^r'cosfl',

approximately. The normal velocity at the surface of B, due to this, will be cancelled by
the addition of the term

,
atb3 cos ff

which, in the neighbourhood of A becomes equal to

. a3b3

i-^-rcos0,

nearly. To rectify the normal velocity at the surface of A, we add the term

cflb3 COS0

Stopping at this point, and collecting our results, we have, over the surface of A,

<j>
=$a(l+$?-jr \cos6, (3)

a3

and at the surface of B, <f>
=

$ b. -jCostf'. (4)

Hence if we denote by P, 0, R the coefficients in the expression for the kinetic energy,,

viz.

2T=PVt+2QVV'+RVi
, (5)

we have 1>= -
p
ff ^dS^^npa

3

(l+l^) >

j

-'H*%'" I
<6>
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The case of a sphere moving parallel to a fixed plane boundary, at a distance h, is

obtained by putting 6= a, V= V, c=2h, and halving the consequent value of T
; thus

2r=i^(i+yvp)
v*

(7)

This result, which was also given by Stokes, may be compared with that of Art. 98 (16)*.

Cylindrical Harmonics.

100. In terms of the cylindrical co-ordinates x, m, w introduced in

Art. 89, the equation V 2
< = takes the form

9a;
2 bur2 indrs or

2
9a>

2 ^ '

This may be obtained by direct transformation, or more simply by expressing
that the total flux across the boundary of an element Sx . Stzr . tshw is zero,

after the manner of Art. 83.

In the case of symmetry about the axis of x, the equation reduces to the

form (4) of Art. 94. A particular solution is then
</>
= e kx

% (tsr), provided

x''(OT)+ix'0*) + %(*0 =
(2)

This is the differential equation of '

Bessel's Functions
'

of zero order. Its

complete primitive consists, of course, of the sum of two definite functions

of or, each multiplied by an arbitrary constant. That solution which is finite

for or = is easily found in the form of an ascending series
;

it is usually

denoted by CJ (knj), where

^o(?) = l-f2

2

+^2
-

(3)

We have thus obtained solutions of V 2

^> =0 of the typesf

<f>
= e

kx J (knr) (4)

It is easily seen from Art. 94 (1) that the corresponding value of the

stream-function is

yfr
= + *re kx

Jo (Jcvt) (5)

The formula (4) may be recognized as a particular case of Art. 89

(6); viz. it is equivalent to

<b = - fe^'+^^^d^, (6)
tt./o

* For a fuller analytical treatment of the problem of the motion of two spheres we refer to

the following papers : W. M. Hicks,
" On the Motion of two Spheres in a Fluid," Phil. 'Trans.,

1880, p. 455; B. A. Herman, "On the Motion of two Spheres in Fluid," Quart. Journ. Math.,

t. xxii. (1887); Basset, "On the Motion of Two Spheres in a Liquid, &c.,"Proc. Loud. Math.

Soc, t. xviii. p. 369 (1887). See also C. Neumann, Hydrodynamische Untersuchungen, Leipzig,

1883; Basset, Hydrodynamics, Cambridge, 1888, t. i.

t Except as to notation these solutions are to be found in Poisson, I. c. ante p. 16.
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since /.($)=- few (C cos *)< = - (Vcos*^, (7)

as may be verified by developing the cosine, and integrating term by term.

Again, (4) may also be identified as the limiting form assumed by a

spherical solid zonal harmonic when the order (n) is made infinite, provided

that at the same time the distance of the origin from the point considered be

made infinitely great, the two infinities being subject to a certain relation*.

Thus we may take

<M^(/*)=(l+^f #(<*) (8)an nvrv
V a)

where we have temporarily changed the meanings of x and &, viz.

r = a + x, zr = 2a sin \6,

L;it IT (~\ 1
"(n + l)^ (n-l)n( + l)( + 2). .

whilst #n (ra)
= l--

jj

- + y ^ 'a
1 '"' "

see Art, 85 (4). If we now put k = n/a, and suppose a and n to become

infinite, whilst k remains finite, the symbols x and & will regain their former

meanings, and we reproduce the formula (4) with the upper sign in the

exponential. The lower sign is obtained if we start with

an+i

The same procedure leads to an expression of an arbitrary function of ra-

in terms of the Bessel's Function of zero orderf. According to Art. 88, an

arbitrary function of latitude on the surface of a sphere can be expanded in

spherical zonal harmonics, thus

JP(/i)
= S(n + i)P(/x)fV(/i')Pn (/i')^' (10)

J -i

If we denote by w the length of the chord drawn to the variable point
from the pole (0 = 0) of the sphere, we have

w = 2a sin 0, cjBst = a'-Bfi,

where a is the radius, so that the formula may be written

f(i*)=
l

a(n + i)Hn (*r) FfWHnWw'dm* (11)
Q>~ JO

This process was indicated, without the restriction to symmetry, by Thomson and Tait,

Art. 783 (1867).

t The procedure appears to be due substantially to C. Neumann (1862) ; for the history of the

theorem (12) see Heine, t. i. p. 442, and Nielsen {op. cit. p. 128) p. 360.
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If we now put k = -
, Bk = -

,

a a

and finally make a infinite, we obtain the important theorem :

/ (w) = ^ J (far) kdk f/ (') J (W) m'dm' (12)
J Jo

101. If in (1) we suppose <f>
to be expanded in a series of terms varying

as cos sco or sin sco, each such term will be subject to an equation of

the form

d2
d> d2

<b ld<b f . n

GOT OUT- VT dUT TO 2 T V '

This will be satisfied by <f>
=e !cx

x (w), provided

X () + I X W + (^-^XW = 0, (14)

which is the differential equation of Bessel's Functions of order s*. The
solution which is finite for ta = may be written ^ (-ct)

= CJg (&sr), where

Js^ =
7il\

1

~'2(2s+2)
+
2.4> (2s + '2)(2s + i)~'''\

(lo)

The complete solution of (14) involves, in addition, a Bessel's Function
1 of the second kind

'

with whose form we shall be concerned at a later period
in our subject f.

We have thus obtained solutions of the equation V 2
< = 0, of the types

f*^J,(ih*>^Jaa,
(16)

These may also be obtained as limiting forms of the spherical solid harmonics
\

** V st \
C0K aH+1

T> st \
C0S

lPn
s
(jl) . SO), -r- Pn

*

(ji) .

\ SCO,
a 1

sin) rn+1 sin)

with the help of the expansion (6) of Art. 86^.

*
Forsyth, Art. 100; Whittaker, c. xii.

+ For the further theory of the Bessel's Functions of both kinds recourse may be had to

Lommel, Studien ueber die BesseVschen Funktionen, Leipzig, 1868; Gray and Mathews, Treatise
|

on Bessel Functions, London, 1895; H. Weber, Partielle Differentialgleichungen d. math. Physik,
j

Braunschweig, 1900 01
; Nielsen, Handbuch d. Theorie d. Cylinderfunktionen, Leipzig, 1904;

and to the treatises of Heine, Todhunter, Forsyth, Byerly, and Whittaker, already cited. An

ample account of the subject, from the physical point of view, will be found in Lord Kayleigh's
j

Theory of Sound, cc. ix., xviii., with many important applications.

Numerical tables of the functions have been constructed by Bessel and Hansen, and more i

recently by Meissel (Berl. Abh. 1888). Hansen's tables are reproduced by Lommel, and (partially)

by Lord Bayleigh and Byerly ;
whilst Meissel's tables have been reprinted by Gray and Mathews.

The connection between spherical surface-harmonics and Bessel's Functions was noticed by

Mehler " Ueber die Vertheilung d. statischen Elektricitiit in einem v. zwei Kugelkalotten begrenzten
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102. The formula (12) of Art. 100 enables us to write down expressions,

which are sometimes convenient, for the value of
<f>
on one side of an infinite

plane (x = 0) in terms of the values of
<f>

or c<f>en at points of this plane, in

the case of symmetry about an axis (Ox) normal to the plane*. Thus if

4>=F(tb), for x=0, (1)

we have, on the side x >

< =
j

X

e
~kx J (k-v) kdk \

X
F (') J (km') vt'dm (2)

Jo Jo

Again, if -^=/(r), for # = 0, (3)

we have
<f>
= I e"to J (km) dk f/ (tsr') J (km) m'dm (4)
Jo Jo

The exponentials have been chosen so as to vanish for x r. .

Another solution of these problems has already been given in Art. 58,

from equations (12) and (11) of which we derive

*'llS*l^) dS- <5>

ctively, where r denotes distance from the element BS of the plane to

the point at which the value of
<f>

is required.

We proceed to a few applications of the general formulae (2) and (4).

1. If, in (4), we assume /(&) to vanish for all but infinitesimal values

of r, and to become infinite for these in such a way that

I _/(r) ^.irradm = ^.
Jo

we obtain

47r<=(
Jo

e~ixJ (km)dk, (7)

Korper," Crelle, t. lxviii. (1868). It was investigated independently by Lord Rayleigh, "On the

Relation between the Functions of Laplace and Bessel," Proc. Lond. Math. Soc., t. ix. p. 61
-

[Sc. Papers, t. i. p. 338]; see also Theory of Sound, Arts. 336, 338.

There are also methods of deducing BesseFs Functions ' of the second kind '
as limiting

forms of the spherical harmonics Qn (/t), <? (/t) ?
8

I *w; for these see Heine, t. i pp. 184, 232.

The method may be extended so as to be free from this restriction.

L. 9
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and therefore, since JQ

' = Jx ,

47n/r
= --Gr r e

-kx J^kn) dk, (8)
.'o

by Art. 100 (5).

By comparison with the primitive expressions for a point-source at the

origin (Art. 95), we infer that

T e-te J (far) dk=-, I" tr** J, (kvr) dk =
"

.
,

. . .(9)
Jo

v '
r' Jo

1V '

r(r + x)'

where r = ^/(x^ + w-); these are in fact known results*.

2. Let us next suppose that sources are distributed with uniform

density over the plane area contained by the circle -or = a, x = 0. Using the

series for J
,
J1? or otherwise, we find

[

a

j (kv)*rdvr =
(

j;J
1 (ka) (10)

Hencef
1 r dk t~t Cx rJh

= -i- e-^Mk^Mka)^, *-~ e^M^Mka)^,...^)TTCL J o K TTCI Jo rC

where the constant factor has been chosen so as to make the total flux

through the circle equal to unity.

3. Again, if the density of the sources, within the same circle, vary
as 1/V(tt" c")> we nave to deal with the integral:);

I Jo (kur) -jT-i rr = a I J (ka sin S-) sin ^e^ = -

7 ,
. . .(12)

J o w\a ~ w
) J o k

where the evaluation is effected by substituting the series form of J
,
and

treating each term separately. Hence

d> = = I e~kx Jn (k^r) sin ka -y- ,
\lr = - e~kx Jj (k-ur) sin ka -y- ,r

ziraJo k T
2-rraJo k

(13)

if the constant factor be determined by the same condition as before .

It is a known theorem of Electrostatics that the assumed law of density

makes
<f>

constant over the circular area. It may be shewn independently

* The former is due to Lipschitz, Crelle, t. lvi. p. 189 (1859) ;
see Gray and Mathews, p. 72.

The latter follows by differentiation with respect to w and integration with respect to x.

t Cf. H. Weber, Crelle, t. lxxv. p. 88
; Heine, t. ii. p. 180.

% The formula (12) has been given by various writers; see Rayleigh, Sc. Papers, t. iii. p. 98;

Hobson, Proc. Lond. Math. Soc, t. xxv. p. 71 (1893).

Cf. H. Weber, Crelle, t. lxxv. (1873) ; Heine, t. ii. p. 192.
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dk
that I J (kvr) sin ka^f- = ^ir, or sin-1

Jo * **"

f* eta a- V(a
2-g2

) a
| Ji() sin a -p = J

-, or ,

according as ts >a*. The formulae (13) therefore express the flow of a liquid

through a circular aperture in a thin plane rigid wall. Another solution will

be obtained in Art. 108. The corresponding problem in two dimensions was

solved in Art. 66, 1.

4. Let us next suppose that when x=0, we have < = C \/(a
"

ot-)

fur ts < a, and <p
= Q for ta>a. We find

fa ft*

J ( kta) v(a
2

*) tsdvr = a3 J (ka sin ^) sin ^ cos2 ^d^ = a3

fa {ka),
. o Jo

(15)

provided ^ (0 . i(l-i +_^-...)--^-t- (16)

Hence, by (2), < = - C (V** J (*)j^
1

^) d* (17)

This gives, for a; = 0,

~(1*)
= C

/"
^o (^) sin

^a^"
+ Cr f /' (fctsr) sin /fcatta, ...(18)

after a partial integration. -The value of the former integral is given in (14),

and that of the latter can be deduced from it by differentiation with respect
to or. Hence

according as w > a. It follows that if C=2/tt. U, the formula (17) will
'

relate to the motion of a thin circular disk with velocity U normal to its

plane, in an infinite mass of liquid. The expression for the kinetic energy is

2T=-p\U |
dS=7rpCF

J"
V(

2 - t*2
) 2irvd*r = \irpa?&,

w 2T=%pa
3U- (20)

The effective addition to the inertia of the disk is therefore 2/7r (= *6366)
times the mass of a spherical portion of the fluid, of the same radius. For

another investigation of this question, see Art. 108.

* H. Weber, Crelle, t. lxxv.
;
Part. Diff.-GL, t. i. p. 189 ; Gray and Mathews, p. 126. See

also Proc. Lond. Math. Soc., t. xxxiv. p. 282.

92
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Ellipsoidal Harmonics.

103. The method of Spherical Harmonics can also be adapted to the

solution of the equation
V 2

</>
= 0, (1)

under boundary-conditions having relation to ellipsoids of revolution *.

Beginning with the case where the ellipsoids are prolate, we write

x = & cos # cosh i)
=

Jc/jl%, y = rjr cos &), z = ct sin
,]

(2)
where ot = h sin 6 sinh r)

= k
(
1 - L?f (

2 - 1 )K I

The surfaces = const., ll = const., are confocal ellipsoids, and hyperboloids
of two sheets, respectively, the common foci being the points (+ k, 0, 0). The

value of may range from 1 to cc
,
whilst ll lies between + 1. The coordinates

jx, ,
a form an orthogonal system, and the values of the linear elements

SsM , $S, Bsu described by the point (x, y, z) when /x, , to separately vary, are

(3)

To express (1) in terms of our new variables we equate to zero the total

flux across the walls of a volume element Ss^Bsfis,,,, and obtain

or, on substitution from (3),

d
in un

d
+\ +

d
l(P lW + __t^!___ a^ =0 .

(i-M2

)(r
2

-i)a
2

This may also be written

1 Id _ .)

d
J>] + J- dJi = A ia _ p) ?*l + J-1?S (4)

a^l
(1 M Vi i-^3 !

9irr
?,

aj) l-f2^2 w
104. If

</>
be a finite function of /m and eo, from /*

= 1 to /*
= +l and

from co = to to = 27r, it may be expanded in a series of surface harmonics of
j

integral orders, of the types given by Art. 86 (7), where the coefficients are !

functions of
;
and it appears on substitution in (4) that each term of the

j

expansion must satisfy the equation separately. Taking first the case of the
j

zonal harmonic, we write

<l>
= Pn (ji).Z, (5)

J*
Heine,

" Ueber einige Aufgaben, welche auf partielle Differentialgleichungen fiihreu,

Crelle, t. xxvi. p. 185 (1843), and Kugelfimktionen, t. ii. Art. 38. See also Ferrers, c. vi.
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and on substitution we find, in virtue of Art. 84 (1),

|{(
1 - ri

>f}
+n( '!+1)Z=0 ' <6>

which is of the same form as the equation referred to. We thus obtain the

solutions

<f>
= Pn (fj,,).Pn (0, (7)

and 4>
= Pn (n).Qn (0, (8)

where Qn () = Pn (
j Tp~7Fp7t*~l)

'

i

fy--i + ( + !) ( +1) f
1.3...(2 + l)r 2(2n + 3)

*
n s

(-H)(n + 2)(n + 3)(+4) |

2.4(2n + 3)(2n + 5)
*

J*

""w
The solution (7) is finite when =1, and is therefore adapted to the

space ivithin an ellipsoid of revolution; whilst (8) is infinite for =
1, but

vanishes for = oc
,
and is therefore appropriate to the external region. As

particular cases of the formula (9) we note

&(0 = i(3t
2

-l)]ogj^-it.

The definite-integral form of Qn shews that

p.(0^B_-^)<wd-_f
I
1 do

The corresponding expressions for the stream-function are readily found
;

thus, from the definition of Art. 94,

a0 = _iyr <ty = !<? (id

S*~*<p-i> Sf-*a-^J a*>

Thus, in the case of (7), we have

*
Ferrers, c. v.

; Todhunter, c. vi. ; Forsyth, Arts. 96 99.
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whence t._^a_^^.._i)!^ (13>

The same result will follow of course from the second of equations (12).

In the same way, the stream-function corresponding to (8) is

,

k dPn (fi) .sdQniO^ =
rr^TT)

(1 -^ ) -^-- (?
"-

1)
-rfr"

(14)

105. We can apply this to the case of an ovary ellipsoid moving parallel

to its axis in an infinite mass of liquid. The elliptic co-ordinates must be

chosen so that the ellipsoid in question is a member of the confocal family,

say that for which =
. Comparing with Art. 103 (2) we see that if a, c

be the polar and equatorial radii, and e the eccentricity of the meridian

section, we must have

k = as, , 1/*j k (7 - 1 )*
= c.

The surface condition is given by Art. 97 (1), viz. we must have

^ = -^(l-/*2
)(t

2 -l) + const., (1)

for =
Xo- Hence putting n = 1 in Art. 104 (14), and introducing an arbitrary

multiplier A, we have

+ =
$Ak-(l-^)(C--l)^\og^-^^

) (2 )

with the condition

The corresponding formula for the velocity-potential is

< = .V
j^logj^-lj (4)

The kinetic energy, and thence the inertia-coefficient due to the fluid,

may be readily calculated, if required, by the formula (5) of Art. 94.

106. Leaving the case of symmetry, the solutions of V2
< = when

(j>
is a tesseral or sectorial harmonic in

/j,
and &> are found by a similar

method to be of the types

*.Pn
'(^).P,'(0^*,

(1)

<l>
= Pn'(ri.Qn

S

(0lZ\ S(O
> (2 )

fain
j

where, as in Art. 86, P*(>)(1 -^)j-*^|^) > (3)
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whilst (to avoid imaginaries) we write

iV(D =
(r-i)*^p\ (4)

and Qn(l;)=(?-W
d^)

(5)

It may be shewn that

*<*>-<-*$$*'> {p,J^-D (6)

w Pl, )-^a-jpa.)-(-)-gJ{^1
m

As examples we may take the case of an ovary ellipsoid moving parallel

to an equatorial axis, say that of y, or rotating about this axis.

1. In the former case, the surface-condition is

for f= f where V is the velocity of translation, or

% y-jg&r*-'~ (8)

This is satisfied by putting n = 1, 5 = 1, in (2), viz.

</,= ^(l-^)Mr2 -l)i

.{ilog^-^}cosa,
) (9)

the constant A being given by

4 lo8t^&)}=-*r- (10)

2. In the case of rotation about Oy, if fl v be the angular velocity, we

must have

d<f> _ n / due dz

dt;

/ dx dz\

for^roor ^
= kmy .

(^LYYi
.
f,(l-^smo> (11)

Putting n = 2, s = 1, in the formula (2) we find

/>
=
^(l-^)^^_l)i|^log|^--3-^~1|sin

G,, ...(12)

A being determined by comparison with (11).
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107. When the ellipsoid is of the oblate or '

planetary
'

form, the

appropriate co-ordinates are given by

x = k cos 6 sinh t]
=

k/j,%, y = -cr cos <o, z = tb sin
ay,}

where tsr = k sin 6 cosh rj
= & (1 /x

2

)* (
2
-f 1)*. )

Here may range from to oo (or, in some applications from oc through
to + oo

),
whilst fi lies between 1. The quadrics = const., /x= const,

are planetary ellipsoids, and hyperboloids of revolution of one sheet, all

having the common focal circle x = 0, ts k. As limiting forms we have the

ellipsoid =0, which coincides with the portion of the plane x = for which

zr <k, and the hyperboloid /x
=

coinciding with the remaining portion of

this plane.

With the same notation as before we find

K=*(y^)V ^-'^(p^x)
1* ^.-*<ir-y)W + i**i;

(2)

and the equation of continuity becomes

d in n a*l j.
a \mxn^lx ^ +^ ^ o

ft l^

1 - *>
87}

+
SEF + }m + (W)(+l) fc

=
'

This is of the same form as Art. 103 (4), with i% in place of
,
and the like

correspondence will run through the subsequent formulae.

In the case of symmetry about the axis we have the solutions

<{>=Pn (ri.pn (0, (4)

and <f}=Pn (fj.).qn (), (6)

where pn (0 = ^ '

|*
+
2(2w _ 1}

t"
'

and () = ^(o/'

n (n-l)(n-2)(n-3 ) ) ,.
+
2.4(2-l)(2n-3)

b
)""

V ;

{^(Oj-cr + i)'

= (-)*
{
J4 (0 cot- J

- *LJ j^ () +3^f}
/>_

(?)-..},

_ nl W. - (n + 1 )(n + 2 )
f-n-3

1.3.5...(2n + l)r 2(2rc + 3)
b

(,l + l)( + 2)0 + 3)(n+4)
} ?+

2.4(2n + 3)(2w+5)
b

'"{'
*
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the latter expansion being however convergent only when > 1*. As before,

the solution (4) is appropriate to the region included within an ellipsoid of

the family
= const., and (5) to the external space.

We note that pA0^-^^ qn (0=~^ (8)

As particular cases of the formula (7) we have

q (C) = cot"1 & $ (C) - 1 - Ccot"
1

fc () = (3^ + 1) cot"
1

f-fr.

The formulae for the stream-function corresponding to (4) and (5) are

ind

^%-(^T)<
1 -'4S

>^f'-<f, + 1

>"5f' (9)

+__* <l-,)^*W.({.+l)% (10)

108. 1. The simplest case of Art. 107 (5) is when n = 0, viz.

<f)
= Acot-i

(1)

where is supposed to range from oc to + . The formula (10) of the

last Art. then assumes an indeterminate form, but we find by the method

of Art. 104,

t-**P (2)

This solution represents the flow of a liquid through a circular aperture in

an infinite plane wall, viz. the aperture is the portion of the plane yz for

which ts < k. The velocity at any point of the aperture (= 0) is

1 ety =
dm (A-

2 -
bt')*

'

since, when x = 0, kfi
=

(A? or2
)*. The velocity is therefore infinite at the

l ompare Art. 102, 3.

2. Again, the motion due to a planetary ellipsoid (= <>) moving with

velocity U parallel to its axis in an infinite mass of liquid is given by

+~ApQ -fcot-1

?), ^=*^(l- /,
2

)(^+l)|r ^I
-cot-i

r},...(3)

where A = - kU -s- \y^i ~ cot_1 &1 .

(Co" + A J

Denoting the polar and equatorial radii by a and c, and the eccentricity

of the meridian section by e, we have

=
,, c = k(tt+l)*, (C.+l)r*.

* The reader may easily adapt the demonstrations referred to in Art. 10-1 to the present case.
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In terms of these quantities

A = - Uc -r- 1(1
- e

2
)*
- - sin-1 el

The forms of the lines of motion, for equidistant values of ty, are shewn
below. Cf. Art. 71, 3.

.(4)

x'

The most interesting case is that of the circular disk, for which e = l,

and A =
2UcJ7r. The value of

<f> given in (3) becomes equal to + Afi, or
j

A (1
-

ta-'Yc
2

)*, for tne two sides of the disk, and the normal velocity
'

to U. Hence the formula (4) of Art. 44 gives

2T=pc*U-\ (5)

as in Art. 102 (20).
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109. The solutions of the equation Art. 107 (3) in tesseral harmonics

are

<t>
= Pn (,*).pn (0.

C

}s<o,
(1)

and
<f>
= Pn'(l*).qn'(l;).**\* t (2)

where ^(^ = (^ + 1)^^^^, (3)

and
^(fl-Cfr+l)*^.

-
{

>(n-,)r*to'} ( {p/<B}'<r + l)
(4)

These functions possess the property

v s
( y)

dJn^ _dPn
g (0

g(t) _ (_y+An + S) 1

\ -

(5)* lW
dS d?

9n(0-{-y J^sy^+i (>

We may apply these results as in Art. 108.

1. For the motion of a planetary ellipsoid (f= ) parallel to the axis

of y we have n = 1, s = 1, and thence

<^=^(i-^) i (r+i)i

|?r^I -cot->rjcos
ft,

) (6)

with the condition = - V
,

for =
0) V denoting the velocity of the solid. This gives

AWh~^ i}
\

kV- (7)

In the case of the disk (
=

0), we have A = 0, as we should expect.

2. Again, for a planetary ellipsoid rotating about the axis of y with

angular velocity fi,,, we have, putting n = 2,s = l,

* = 4/* (1 -/*)*(*+!)*
J3rcot-C-3+ ~^|

sin
, (S)

with the surface condition

d<j> _ / dec dz

=
-(M

y

iy-
fl(1 - ĴSin(0 (9)
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For the circular- disk (
=

0) this gives

farA = -
frO, (10)

At the two surfaces of the disk we have

(f>
= + '2A/J, (1 yu,

2
)* sin a, q + kly (1 /i

2

)
i sin w,

and substituting in the formula

we obtain 2T = \^pc
5

. l
2

y (11)

110. In questions relating to ellipsoids with three unequal axes we may-

employ the more general type of Ellipsoidal Harmonics, usually known by the

name of ' Lame's Functions*.' Without attempting a formal account of these

functions, we will investigate some solutions of the equation

V2

</>
=

0, (1)

in ellipsoidal co-ordinates, which are analogous to spherical harmonics of the

first and second orders, with a view to their hydrodynamical applications.

It is convenient to prefix an investigation of the motion of a liquid

contained in an ellipsoidal envelope, which can be treated at once by
Cartesian methods.

Thus, when the envelope is in motion parallel to the axis of x with

velocity U, the enclosed fluid moves as a solid, and the velocity-potential id

simply <j>
= Ux.

Next let us suppose that the envelope is rotating about a principal axftj

(say that of x) with angular velocity Qx . The equation of the surface
bein^j

Z +t+Z^l, (2)
a2 62

c-

the surface condition is

xd$ yd$ z_dj>_ ry..*n
~a*dx b*dy c>dz~~ iLxZ +

c*
xJ -

We therefore assume
cf>
= Ayz, which is evidently a solution of (1), an

obtain, on determining the constant by the condition just written,

b'
2 - c

2

Hence, if the centre be moving with a velocity whose components a:

*
See, for example, Ferrers, Spherical Harmonics, c. vi. ; W. D. Niven, "On Ellipsoid

Harmonics," Phil. Tram., A. t. clxxxii. (1891) ; Poincare, Figures d'Equilibre d'une Masse Flui*

Paris, 1902, c. vi. An outline of the theory is given by Wangerin, I.e. ante, p. 102.
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r, V, W and if lx ,
ly ,
Hz be the angular velocities about the principal axes,

we have by superposition*

rr ir TO & ~ C~ n C~ ~ <*? r\ d* 62 ..
<A = _ t/x - Vy - Wz - .

, 12a,w -
: 12sa; -T- 122#y. . . .(3)r ^

6J + C-
a

C
2 + OL tf + O2 3 V

We may also include the case where the envelope is changing its form

as well as position, but so as to remain ellipsoidal. If the axes are changing

at the rates a, b, 6, respectively, the general boundary condition, Art. 10 (3),

becomes

a? . y
2

1 z- . x d<f> y cd> z dd> _ /A .

a* o3 c3 a1 dx b2

ay c2 oz w

which is satisfied f by <f>
= (-* + yy

2 + -z2
\ (5)

The equation (1) requires that

a b c

ci
+it=-0 (6)

which is in fact the condition which must be satisfied by the changing

ellipsoidal surface in order that the enclosed volume (^rrabc) may be constant.

111. The solutions of the corresponding problems for an infinite mass

of fluid bounded internally by an ellipsoid involve the use of a special system
of orthogonal curvilinear co-ordinates.

If x, y, z be functions of three parameters \, /n, v, such that the surfaces

\ = const., fi const., v = const (1)

are mutually orthogonal at their intersections, and if we write

MINING
(2)

* This result appears to have been published independently by Beltrami, Bjerknes, and

Maxwell, in 1873. See Hicks,
"
Report on Recent Progress in Hydrodynamics," Brit. Ass. Rep.,

t Bjerknes,
"
Verallgemeinerung des Problems von den Bewegungen, welche in einer

ruhenden unelastischen Flussigkeit die Bewegung eines Ellipsoids hervorbringt," Gottinger

Nachrichten, 1873.



142 Irrotational Motion of a Liquid [chap, v

the direction-cosines of the normals to the three surfaces which pass through

(x, y, z) will be

, dx . dy , dz\ /, dx dy . dz\ /, dx . dy , dz\ /ov
* *

.* l^S'^-*"^' rs- * *] -(3)

respectively. It follows that the lengths of linear elements drawn in the

directions of these normals will be

B\/h1} Bfi/h2 , Bv/h s .

Hence if
<j)

be the velocity-potential of any fluid motion, the total flux

into the rectangular space included between the six surfaces X ^>X, (jl IB^i,

v ^Bv will be

d_

\
*

3X
'

h2

'

h3 J dfi\ *dfi' hz

'

hx ) dv \ dv
'

hx

'

h 2 J

It appears from Art. 42 (3) that the same flux is expressed by V2
< multiplied

by the volume of the space, i.e. by BxBfiBv/IhhJi... Hence*

v** = IhhJls
|ax [hjs ax)

+
a^ [hfc djL)

+
d~v vffi av) j

(4)

Equating this to zero, we obtain the general equation of continuity in

orthogonal co-ordinates, of which particular cases have already been investi-

gated in Arts. 83, 103, 108.

The theory of triple orthogonal systems of surfaces is very attractive

mathematically, and abounds in interesting and elegant formulae. We may
note that if X, fi, v be regarded as functions of x, y, z, the direction-cosines of

the three line-elements above considered can also be expressed in the forms

/i ax iax id\\ /i^ 1^ 1 a^\ /i;.a ia* i_ari
lA dm

'

kdy
' K dz)

'

\h 2 dx
'

h2 dy
'

h2 dz)
'

[h, dx
'

h3 dy
'

h, dz)
'
'" yo)

from which, and from (3), various interesting relations can be inferred. The

formulae already given are, however, sufficient for our present purpose.

112. In the applications to which we now proceed the triple orthogonal

system consists of the confocal quadrics

x2
y- z-

* The above method was given in a paper by W. Thomson,
" On the Equations of Motion of

Heat referred to Curvilinear Co-ordinates," Camb. Math. Jonrn., t. iv. (1843) [Moth, and Phys.

Papers, t. i. p. 25]. Eeference may also be made to Jacobi,
" Ueber eine particuliire Losung der

paitiellen Differentialgleichung ," Crelle, t. xxxvi. (1847) [Werke, t. ii. p. 198].

The transformation of V-<j> to general orthogonal co-ordinates was first effected by Lame,
" Sur

les lois de l'equilibre du fluide 6there," Journ. de VEcole Polyt., t. xiv. (1834). See also Lecons

sur les Coordonnees Curvilignes, Paris, 1859, p. 22.
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wh<>se properties are explained in books on Solid Geometry. Through any

given point (x, y, z) there pass three surfaces of the system, corresponding

ro the three roots of (1), considered as a cubic in 0. If (as we shall for the

most part suppose) a>b > c, one of these roots (X, say) will lie between x
and c-, another (//-)

between c- and lr, and the third (v) between - 62

and - a 2
. The surfaces X, //., v are therefore ellipsoids, hyperboloids of one

sheet, and hyperboloids of two sheets, respectively.

It follows immediately from this definition of X, /x, v, that

(\-0){fi-0){v-0)a?
+ + - 1 = .(2)

tf + b- + <? + (d*+0)(b*+0)(<? + 0)'
'"

identically, for all values of 0. Hence multiplying by
"- + 0, and afterwards

putting
= a?, we obtain the first of the following equations :

(a* + X) (a
2 + fi) (a

2 + v) )*-

!/'
=

z* =

r./

These give ^=Wx dX

and thence, in the notation of Art. Ill (2),

V I
|(a

, + A):

(a-
- 6s) (a

2 - c3)

(fr + X) (6
s + p) (6

2 + v)

(6
2 - c2) (&

- a2
)

(c
2 + X) {cr + ft) (c

2 + v)

(c
2 -

a-) (c
2 - 6s)

2
62 + X' 8X V+ X'

.(3)

(*)

+ Sf"

i +
(6

s
-f X)

2

(c
2 + X)

2
f

(5)

If we differentiate (2) with respect to and afterwards put = X, we deduce

the first of the following three relations :

kf = 4 (a
2 + X) (fr + X) (c

2 + X)

(X-/.MX-1/)

.(6)/,.-. m 4
(a* + g)(fr + ji) (* + /*)

(jj, -v)(/i -X)

1 , = 4 (a
3 + y)(fr + y)(c + iO

(i/-X)(i/-/a)

The remaining relations of the sets (3) and (6) have been written down from

symmetry*.

*
It will be noticed that

ft,, ft,,
/*3 are double the perpendiculars from the origin on the

tangent planes to the three quadrics X, n, v.



4
V 2

< = -
(fi
-

v) (v
- \) (X

-
fi)
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Substituting in Art. Ill (4), we find*

(fi
-

v)
|(a

+ \? (b* + \)i (c + X)* Ij

2

+ {v-\)
|(a

+ /*)* (V +& (* + tf I!'

+ (X
-

/x)
|(a

+ )* (6
2 + *)* (* + )*

11"
</,

(7)

113. The particular solutions of the transformed equation V 2
< = which

first present themselves are those in which
</>

is a function of one (only) of

the variables X, ja, v. Thus
<j> may be a function of X alone, provided

(a
2 + X)* (6

2 + X)* (c
2 + \)i^ = const.,

whence
ty
= C\ -r-

, (1)

if A = {(a
2 + X)(6

2 + X)(c
2 + X)}i, (2)

the additive constant which attaches to
<f> being chosen so as to make

<j>

vanish for X = oo .

In this solution, which corresponds to
<f>
= Ajr in spherical harmonics,

the equipotential surfaces are the confocal ellipsoids, and the motion in the

space external to any one of these (say that for which X = 0) is that due to a

certain arrangement of simple sources over it. The velocity at any point is

given by the formula

, d<f> _ fi
K /Q x

At a great distance from the origin the ellipsoids X become spheres of
j

radius X*, and the velocity is therefore ultimately equal to 2G/r
2
, where r

I

denotes the distance from the origin. Over any particular equipotential !

surface X, the velocity varies as the perpendicular from the centre on the
|

tangent plane.

To find the distribution of sources over the surface X = which would

produce the actual motion in the external space, we substitute for
(f>

the '

value (1), in the formula (11) of Art. 58, and for <' (which refers to the
j

internal space) the constant value

*'=f w
*

Cf. Lame, "Sur les surfaces isothermes dans les corps solides hornogenes en equilibre de <

temperature," Liouville, t. ii. (1837).
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The formula referred to then gives, for the surface-density of the required

distribution,

!> <5 >

The solution (1) may also be interpreted as representing the motion due

to a change in the dimensions of the ellipsoid, such that the surface remains

similar to itself, and retains the directions of its principal axes unchanged.
If we put

d/a
=

b/b
=

c/c,
= k, say,

the surface-condition Art. 110 (4) becomes

d<f>jdn
= ^khlt

which is identical with (3), if we put C = ^kabc.

A particular case of (5) is where the sources are distributed over the

elliptic disk for which X = c2
, and therefore z2 = 0. This is important in

Electrostatics, but a more interesting application from the present point of

view is to the flow through an elliptic aperture, viz. if the plane xy be

occupied by a thin rigid partition with the exception of the part included by
the ellipse

a2 oa

we have, putting c = in the previous formulae,

+ = TA I (a + X)*< + X)X*'
(6)

where the upper limit is the positive root of

+i^ + ^ = 1 > (7 )
ar + \ b- + \ X

and the negative or the positive sign is to be taken according as the point
for which < is required lies on the positive or the negative side of the plane

xy. The two values of
<f>

are continuous at the aperture, where X = 0. As

before, the velocity at a great distance is equal to 2A/r
s
, nearly. For points

in the aperture the velocity may be found immediately from (6) and (7) ;
thus

we may put

approximately, since X, is small, whence

-i^-K-r ^
This becomes infinite, as we should expect, at the edge. The particular case

of a circular aperture has already been solved otherwise in Arts. 102, 108.

L. 10
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114. We proceed to investigate the solution of V 2
< = 0, finite at infinity,

which corresponds, for the space external to the ellipsoid, to the solution

< = x for the internal space. Following the analogy of spherical harmonics

we may assume for trial

<I>
=

XX> C1 )

which gives V 2

% + ?^ = 0, (2)8 *- xdx v '

and inquire whether this can be satisfied by making ^ equal to some function

of A- only. On this supposition we shall have, by Art. Ill,

dx_ h
(bc jfa

dx~ ni dx
h
dx'

and therefore, by Art. 112 (4), (6),

xdx (X fi) (X v) dX

On substituting the value of V2

^ in terms of X, the equation (2) becomes

j(a

2 + \)i (i
2 + X) (c

2 + X)i
j^J'

x = - (6
2 + X) (c

2 + X)

log
{(a

2 + X) (6
2 + \)i (c

2 + X)* &]
- -

^i

which may be written

HenCe * = L (a
.+ X)t(f + X)t(o + X)*

- (3)

the arbitrary constant which presents itself in the second integration being!

chosen as before so as to make % vanish at infinity.

The solution contained in (1) and (3) enables us to find the motion of i,

liquid, at rest at infinity, produced by the translation of a solid ellipsoid

through it, parallel to a principal axis. The notation being as before, ancj

the ellipsoid

s+t+Z-i wa2
o* c

2

being supposed in motion parallel to x with velocity U, the surface

condition is

--*! *-*-<> <5 >

Let us write, for shortness,

dX , f* dk ,'f" d\

^-^Vot- 1 P = abG
J"wfhA> *-*/. (c

2 + \) A
'

(6>
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where A =
{{a- + X) (b- + X) (c

2 + X)}* ; (7)

it will be noticed that these quantities a*,, /3 , y are purely numerical. The

conditions of our problem are satisfied by

<f>
=
CxjA (a* + X)A'

(8)

provided C = <^- U. (9)

The correspondiug solution when the ellipsoid moves parallel to y or z

can be written down from symmetry, and by superposition we derive the

case where the ellipsoid has any motion of translation whatever*.

At a great distance from the origin, the formula (8) becomes equivalent to

*=&% (10)

which is the velocity-potential of a double source at the origin, of strength

7rO, or

_ abcU
;

compare Art. 92.

The kinetic energy of the fluid is given by

where I is the cosine of the angle which the normal to the surface makes

with the axis of x. Since the latter integral is equal to the volume of the

ellipsoid, we have

2T=
2 ^< $7rabcp.U* (11)

The inertia-coefficient is therefore equal to the fraction a /(2 a ) of the

mass displaced by the solid. For the case of the sphere (a = b = c) we find

oto
=

;
this makes the fraction equal to \ ,

in agreement with Art. 92. If

we put b = c, we get the case of an ellipsoid of revolution, including (for a = 0)

that of a circular disk. The identification with the results obtained by the

methods of Arts. 105, 106, 108, 109 for these cases may be left to the reader.

*
This problem was first solved by Green,

" Researches on the Vibration of Pendulums in

Fluid Media," Tram. II. S. Edin., 1833 [Math. Papers, p. 315]. The investigation is much

shortened if we assume at once from the Theory of Attractions that (8) is a solution of V2
<p-0,

being in fact (except for a constant factor) the x-component of the attraction of a homogeneous

ellipsoid at an external point.

102



148 Irrotational Motion of a Liquid [chap, v

115. We next inquire whether the equation V
2

</>
= can be satisfied by

i~y*% (!)

where % is a function of X only. This requires

v x +
2

^ + ?fx
= o (2)^

y By z oz

Now, from Art. 112 (4), (6),

23% 23^ = /l^ia^Wx
ydy z dz

1

\y dX z dXJ dX

(a* + X)(b* + X)(c* + x) / 1 1 \dx
(X-fj,)(X-v) \b

2 + X C- + XJ dX'(X-n){X-v)

On substitution in (2) we find, by Art. 112 (7),

^logj^
+x^ +x^ +x)^-^-^,

whence X . J-
_

> + x)^ +
._

, (3)

the second constant of integration being chosen as before.

For a rigid ellipsoid rotating about the axis of x with angular velocity

lx ,
the surface-condition is

-*(*-)
for X = 0. Assuming

Too ^^
f>
=
Cy\! y (4, + x)(tf + X)A

(5)

we find that the surface-condition (4) is satisfied, provided

a&V
+ 2 U2

c
2
J a6c (6

2 - c
2

)

"
2 *

\b> cV
'

^w^w^m^^f^ (6)

The formulae for the cases of rotation about y or z can be written down fromj

symmetryf".

* The expression (5) differs only by a factor from

o<i> 6<i>

y n z ,

where $ is the gravitation-potential of a uniform solid ellipsoid at an external point (x, y, z)
]

Since V'-'<f>= it easily follows that the above is also a solution of the equation V2
< = 0.

t The solution contained in (5) and (6) is due to Clebsch,
" Ueber die Bewegung eine

Ellipsoides in einer tropfbaren Fliissigkeit," Crelle, tt. lii., liii. (1856 7).
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The formula for the kinetic energy is

-pen,'.}, (a
, + x)) (t

, + xy {<f + x)i jj
(

- ).dft

if (/. //(. h) denote the direction-cosines of the normal to the ellipsoid. The

latter integral

=
Jjf(y

2

z-)dxdydz = {b- c-) . ^irabc.

Hence we find

The two remaining types of ellipsoidal harmonic of the second order, finite at the origin,

;ire given by the expression

-^L + _J^- +^2

__ 1 . (8)
a*+0

+
b*+

+
(?+0

l
' w

where 6 is either root of -= n + n - + -
i=*0, (9)

this being the condition that (8) should satisfy v2$=0.

The method of obtaining the corresponding solutions for the external space is explained
in the treatise of Ferrers. These solutions would enable us to express the motion produced
in a surrounding liquid by variations in the lengths of the axes of an ellipsoid, subject to

the condition of no variation of volume :

-/, b+i <*= (10)

We have already found, in Art. 113, the solution for the case where the ellipsoid expands
(or contracts) remaining similar to itself; so that by superposition we could obtain the

case of an internal boundary changing its position and dimensions in auy manner what-

ever, subject only to the condition of remaining ellipsoidal. This extension of the results

arrived at by Green and Clebsch was first treated, though in a different manner from

that here indicated, by Bjerknes*.

116. The investigations of this chapter have related almost entirely
to the case of spherical or ellipsoidal boundaries. It will be understood

that solutions of the equation V 2
<
= can be carried out, on lines more

or less similar, which are appropriate to other forms of boundary. The
surface which comes next in interest, from the point of view of the present

subject, is that of the anchor-ring, or 'torus'; this case has been very ably

treated, by distinct methods, by Hicks, and Dysonf. We may also refer to

the
analytically remarkable problem of the spherical bowl, which has been

investigated by Basset^.
*

l. c. ante p. 141.

t Hick*, "On Toroidal Functions," Phil. Trans., 1881; Dyson, "On the Potential of an

Anchor-King," Phil. Tram., 1893 ; see also C. Neumann, I. c. ante p. 126.

X "On the Potential of an Electrified Spherical Bowl, &c," Proc. Lond. Math. Soc., t. xvi.

5); Hydrodynamics, t. i. p. 149.



CHAPTER VI.

ON THE MOTION OF SOLIDS THROUGH A LIQUID:
DYNAMICAL THEORY.

117. In this Chapter it is proposed to study the very interesting

dynamical problem furnished by the motion of one or more solids in a

frictionless liquid. The development of this subject is due mainly to

Thomson and Tait* and to Kirchhoff f. The cardinal feature of the methods

followed by these writers consists in this, that the solids and the fluid

are treated as forming one dynamical system, and thus the troublesome

calculation of the effect of the fluid pressures on the surfaces of the solids

is avoided.

To begin with the case of a single solid moving through an infinite mass

of liquid, we will suppose in the first instance that the motion of the fluid is

entirely due to that of the solid, and is therefore irrotational and acyclic.

Some special cases of this problem have been treated incidentally in the

foregoing pages, and it appeared that the whole effect of the fluid might be

represented by an addition to the inertia of the solid. The same result will

be found to hold in general, provided we use the term '

inertia
'

in a somewhat

extended sense.

Under the circumstances supposed, the motion of the fluid is characterized

by the existence of a single-valued velocity-potential cf> which, besides

satisfying the equation of continuity

V*0 = O, (1)

fulfils the following conditions: (1) the value of d(j>/dn, where 8n denotes

as usual an element of the normal at any point of the surface of the solid,

drawn on the side of the fluid, must be equal to the velocity of the surface

at that point normal to itself, and (2) the differential coefficients d<f>ldx,
:

* Natural Philosophy, Art. 320. Subsequent investigations by Lord Kelvin will be referred

to later.

t
" Ueber die Bewegung eines Rotationskorpers in einer Flussigkeit," Crelle, t. lxxi. (1869)

[Ges. Abh., p. 376] ; Mechanik, c. xix.
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30 cy, d<f>!dz must vanish at an infinite distance, in every direction, from the

solid. The latter condition is rendered necessary by the consideration that

a finite velocity at infinity would imply an infinite kinetic energy, which

could not be generated by finite forces acting for a finite time on the solid.

It is also the condition to which we are led by supposing the fluid to be

enclosed within a fixed vessel infinitely large and infinitely distant, all round,

from the moving body. For on this supposition the space occupied by the

fluid may be conceived as made up of tubes of flow which begin and end on

the surface of the solid, so that the total flux across any area, finite or

infinite, drawn in the fluid must be finite, and therefore the velocity at

infinity zero.

It has been shewn in Art. 41 that under the above conditions the motion

of the fluid is determinate.

118. In the further study of the problem it is convenient to follow the

method introduced by Euler in the dynamics of rigid bodies, and to adopt a

system of rectangular axes Ox, Oy, Oz fixed in the body, and moving with it.

If the motion of the body at any instant be defined by the angular velocities

p, q, r about, and the translational velocities u, v, w of the origin parallel

to, the instantaneous positions of these axes*, we may write, after Kirchhoff,

(f>
=

u(f) l + v<t>2 +iv<f>3 + pxi + qXi+ rX3> (2 )

where, as will appear immediately, <f>lt 2 , <f>3 , X\> X^ X* are certain functions

of x, y, z determined solely by the configuration of the surface of the solid,

relative to the co-ordinate axes. In fact, if I, m, n denote the direction-cosines

of the normal, drawn towards the fluid, at any point of this surface, the

kinematical surface-condition is

z - = I (u + qz ry) + m (v + rx pz) + n {w +py qx),

whence, substituting the value (2) of
<f>,

we find

.(3)

_ 90i - _ d<f>., _ d<f>3 _
dn

'

dn dn

- -& = mi mz, ~ = lz nx, -^ = mx ly.
dn J dn dn

Since these functions must also satisfy (1), and have their derivatives zero at

infinity, they are completely determinate, by Art. 41 -f\

* The symbols u, v, w, p, q, r are not at present required in their former meanings.

t For the particular case of an ellipsoidal surface, their values may be written down from

the results of Arts. 114, 115.
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119. Now whatever the motion of the solid and fluid at any instant, it

might have been generated instantaneously from rest by a properly adjusted

impulsive
' wrench

'

applied to the solid. This wrench is in fact that which

would be required to counteract the impulsive pressures p<j)
on the surface,

and, in addition, to generate the actual momentum of the solid. It is called

by Lord Kelvin the
'

impulse
'

of the system at the moment under con-

sideration. It is to be noted that the impulse, as thus defined, cannot be

asserted to be equivalent to the total momentum of the system, which is

indeed in the present problem indeterminate*. We proceed to shew

however that the impulse varies, in consequence of extraneous forces acting

on the solid, in exactly the same way as the momentum of a finite dynamical

system.

Let us in the first instance consider any actual motion of a solid, from

time t to time ^, under any given forces applied to it, in a finite mass

of liquid enclosed by a fixed envelope of any form. Let us imagine the

motion to have been generated from rest, previously to the time t
, by forces

(whether continuous or impulsive) applied to the solid, and to be arrested, in

like manner, by forces applied to the solid after the time ,. Since the

momentum of the system is null both at the beginning and at the end of this

process, the time-integrals of the forces applied to the solid, together with

the time-integral of the pressures exerted on the fluid by the envelope, must

form an equilibrating system. The effect of these latter pressures may be

calculated, by Art. 22, from the formula

?-&:*+*<* (1)

A pressure uniform over the envelope has no resultant effect
; hence, since

<j>

is constant at the beginning and end, the only effective part of the integral

pressure fpdt is given by the term

-hpjfdt (2)

Let us now revert to the original form of our problem, and suppose the

containing envelope to be infinitely large, and infinitely distant in every
direction from the moving solid. It is easily seen by considering the

arrangement of the tubes of flow (Art. 36) that the fluid velocity q at a great
distance r from an origin in the neighbourhood of the solid will ultimately

be, at mostf, of the order 1/r*, and the integral pressure (2) therefore of the

order 1/r
4

. Since the surface-elements of the envelope are of the order r-Bvr,

where Sot is an elementary solid angle, the force- and couple-resultants of

the integral pressure (2) will now both be null. The same statement

*
Viz., the attempt to calculate it leads to 'improper' or 'indeterminate' integrals.

t It is really of the order 1/r
3
when, as in the case considered, the total rlux outwards is zero.
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therefore holds with regard to the time-integral of the forces applied to

the solid.

If we imagine the motion to have been started instantaneously at time

,
and to be arrested instantaneously at time t1} the result at which we have

arrived may be stated as follows :

The '

impulse
'

of the motion (in Lord Kelvin's sense) at time tx differs

from the
'

impulse
'

at time t by the time-integral of the extraneous forces

acting on the solid during the interval ^ t *.

It will be noticed that the above reasoning is substantially unaltered

when the single solid is replaced by a group of solids, which may moreover

be flexible instead of rigid, and even when these solids are replaced by
masses of liquid which are moving rotationally.

120. To express the above result analytically, let
, 17, ,

X. fi, v be the

components of the force- and couple-constituents of the impulse ;
and let

A\ Y. Z, L. M, N designate in the same manner the system of extraneous

forces. The whole variation of
, 17, , \, fi, v, due partly to the motion of the

axes to which these quantities are referred, and partly to the action of the

extraneous forces, is then given by the formulaej
dP v d\ u T

(

= rr)-q + X,
-^

=wtf - v+ rfi-qp + L,

dt dv

For at time t+ St the moving axes make with their positions at thnf> t

angles whose cosines are

(1, ?oY,
-

qSt), (- r&, 1, pht), (qSt, -pU, 1),

respectively. Hence, resolving parallel to the new position of the axis of x,

% + g = ^ + v . r8t -S.qSt+ XBt.

Again, taking moments about the new position of Ox, and remembering
that has been displaced through spaces uSt, vBt, w&t parallel to the

axes, we find

X+ B\ = \ + 7j . wBt . v&t + fi . rSt v . qSt + LBt.

These, with the similar results which can be written down from symmetry,

give the equations ( 1 ).

*
Sir W. Thomson, I.e. ante p. 30. The form of the argument given above was kindly

suggested to the author by Prof. Larmor.
t Cf. Hayward, "On a Direct Method of Estimating Velocities, Accelerations, and all

similar Quantities, with respect to Axes moveable in any manner in space." Camb. Trans.,

t. x. (18

.(1)
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When no extraneous forces act, we verify at once that these equations
have the integrals

!? + *? + * = const., A + fiv + vg = const., (2)

which express that the magnitudes of the force- and couple-resultants of tin

impulse are constant.

121. It remains to express , v , \, M , v in terms of u, v, w, p, q, r. In
the first place let T denote the kinetic energy of the fluid, so that

!* .(1)

where the integration extends over the surface of the moving solid.

Substituting the value of
</>

from Art. 118 (2), we get

2T = Au- + Bv2 + Cm/2 + 2A'viv + 2B'wu + 2C'uv

+ Pp
2 + Q9

2 + Rr2 + 2P'qr + 2Q'rp + 2Kpq

+ 2p (Fu + Gv + Hiv) + 2q (F'u + Q'v + H'w) + 2r (F"u + G"v + H"w),

(2)

where the 21 coefficients A, B, C, &c. are certain constants determined by
the form and position of the surface relative to the co-ordinate axes. Thus,
for example,

3^

T II^/Oib.,

-p/^^-p//^^^ y
(3)

= p\\ cf).2
7idS= p\\ cf)3mdS,

* = ~P (I*
d

-dS=p\\ Xl {ny-mz)dS,dn

the transformations depending on Art. 118 (3) and on a particular case of

Green's Theorem (Art. 44 (2)). These expressions for the coefficients were

given by Kirchhoff.

The actual values of the coefficients in the expression for 2T have been found in the:

preceding chapter for the case of the ellipsoid, viz. we have from Arts. 114, 115

A= ^*- . fapdbc, P= l
l a

(fr
2 -c2

)
2
(yo-/3 )

2(ftS- C2
) + (62+ c2

)(/3()
_

yo)

. iirpabc, (4)
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with similar expressions for B, C. Q. R- The remaining coefficients, as will appear pre-
. in this case all vanish. We note that

^--(.!SA)--^-": (5)

so that if a>b>c, then A<B<C, as might have been anticipated.

The formulae for an ellipsoid of revolution may be deduced by putting b=e ; they may
also be obtained independently by the method of Arts. 104 109. Thus for a circular disk

b=e) we have

A. B,G=%pc*, 0,0; P.Q.E^H^H^ ()

The kinetic energy, Tj say, of the solid alone is given by an expression of

the form

2T
I
= m(t*

s + + i0)

+ Pi/>*+ Qtf
2+ R,r* + 2P/?r + 2Q1'rp + ZELfpq

- 2m{a(vr wq)+ /3(wp ur)+ f(uq ty)} (7)

Hence the total energy T + T of the system, which we shall denote by T, is

given by an expression of the same general form as (2), say

2T= Av* + Bv>+ CW+ 2A'vw+ 2&vm+ 2G'vm

+ Pp* + Qq> + Rr> + 2P'qr+ 2<?rp + 2Kpq
+ 2p(Fu + Gv+ Hw) + 2q(F'u+ G'v+ H'w)+ 2r(F"u + G"v+ H"w),

(8)

where the coefficients are printed in uniform type, although six of them have
of course the same values as in (2).

122. The values of the several components of the impulse in terms of

the velocities tc, tr, wtpy q, r can now be found by a well-known dynamical
method*. Let a system of indefinitely great forces (X, Y, Z, L, if, N) act

for an indefinitely short time t on the solid, so as to change the impulse from

(fc V,Z,\fi,v)to(Z+S,r, + Sri, C+ S X + Sx, /*+ 8/*, v+ Sv). The work
done by the force X, viz.

fxudt,

between Uy] Xdt and u^iXdt,

where u, and w, are the greatest and least values of u during the time t,

i.e. it lies between Ui&g and UjS^. If we now introduce the supposition that

$ &V, o" oX /*> 8" are infinitely small, m, and s are each equal to u, and

the work done is uSf. In the same way we may calculate the work done by
the remaining forces and couples. The total result must be equal to the

8ee Thomson and Tait, Natural PMJompAy, Art. 313, or Harwell, Eketrieitw a*d

Magnetism, Part it., c. v.
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increment of the kinetic energy, whence

wS + vBt] + w8%+p8\ + qBfx, + r8v

= STJ^8u +f8v + l

T
8w + f-8P + ^8q +

d

^8r (1)
ou ov dw dp

x
oq or

Now if the velocities be all altered in any given ratio, the impulses will

be altered in the same ratio. If then we take

8u _ 8v _ 8iu _ 8p _ 8q _ Sr* _ ,

u v iv p q r

it will follow that *4 = ~ = - ^ = ~ = - = *

Substituting in (1), we find

u% + vrj + w+p\ + qfM + rv

dT dT dT dT dT dT _, ...= M,-+r-+wr + i)- + g,-+r^=22' (2)
ou ov ow op oq or

since I
7
is a homogeneous quadratic function. Now performing the arbitrary

variation 8 on the first and last members of (2), and omitting terms which

cancel by (1), we find

%8u + r]8v + 8w + \8p + fi8q + v8r 8T.

Since the variations 8u, 8v, 8w, 8p, 8q, 8r are all independent, this gives the

required formulae

y dT dT dT , dT dT dT ,_,
* * S=

du
,

Jv
,

dw
, \ * v =

^,
~

d
~,

Yr (3)

It may be noted that since
, rj, f, . . . are linear functions of u, v, w, ...,

the latter quantities may also be expressed as linear functions of the former,

and thence T may be regarded as a homogeneous quadratic function of

, 7j, , \, /L6,
v. When expressed in this manner we may denote it by T\

The equation (1) then gives at once

118% + v8t] + iv8 + p8\ + q8fx + r8v

dr _ dr
fi

ar . or . ar s
ar .

ar dr dr ar dr ar ,..*whence n, v, w = ^ , -, -
p, q, r =

^- , ^ , ^ (4)

These formulae are in a sense reciprocal to (3).

We can utilize this last result to obtain, when no extraneous forces act,

another integral of the equations of motion, in addition to those found in !

Art. 120. Thus
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dT__dT^d%
dt d dt

+

d

+
dTdX

+
8\ dt

+ ' +

+
d\

+

which vanishes identically, by Art. 120 (1). Hence we have the equation

of energy
T= const (5)

123. If in the formulae (3) we put, in the notation of Art. 121,

it is known from the dynamics of rigid bodies that the terms in Tj represent

the linear and angular momentum of the solid by itself. Hence the remaining

terms, involving T, must represent the system of impulsive pressures exerted

bv the surface of the solid on the fluid, in the supposed instantaneous

generation of the motion from rest.

This is easily verified. For example, the ^-component of the above

system of impulsive pressures is

jjptldS^-pfji^dS
= Am + C'v + B'w + Fp + T'q + F'V =

dT
du' .(6)

by the formulae of Arts. 118, 121. In the same way, the moment of the

impulsive pressures about Ox is

lJp<P(ny-mz)dS=-pJI<p

d*dS

= Fu + Gv + Hw + P/> + B.'q + QV =

124. The equations of motion may now be written *

ddT dT dT v

dT

dp
(7)

dtdu

ddT
dv

dT

dw

dT
dt dv dw du

d^dT
dtdw

dT
du

dT

p Tv
+Z>

dT
dv

dTd/dT_ dT_
dt dp dv dw dq

5- + L,2 or

dt dq

dLdT
dtdr

dT_ dT dT_
dw du dr dp

dT
r

dr

dT

dp

dT

\

,- .(1)

dT dT dT
Uw-+q~ p^ I- A.
dv a

op dqdu

*
See Kirchhoff, I.e. ante p. 150; also Sir W. Thomson, "

Hydrokinetic Solutions and Obser-

vations," Phil. Mag., Nov. 1871 [reprinted in Baltimore Lectures, Cambridge, 1904, p. 584].
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If in these we write T=T + T1} and isolate the terms due to T,

we obtain expressions for the forces exerted on the moving solid by the

pressure of the surrounding fluid
;
thus the total component (X, say) of the

fluid pressure parallel to acis

tf8T dT dTX =
--ji

-- + r~--q s-, (2)at ou ov ow

and the moment (L) of the same pressures about x is

_d_dT dT _^dT dT_ dT

dtdp dv dw dq dr
^ '

For example, if the solid be constrained to move with a constant velocity

(u, v, w), without rotation, we have

X, Y, Z = 0,
]

T m. 3T dT dT dT dT 8T I (4)

9y ow civ ou ou dv J

where 2T = Att2 + Bv1 + Cw2 + 2A'vw + 2B'w u + 2CTw.

The fluid pressures thus reduce to a couple, which moreover vanishes if

dT dT dT
^ dv ow

t.e. provided the velocity (u, v, w) be in the direction of one of the principal

axes of the ellipsoid

Ax2 + By2 + Cz2 + IK'yz + 2B'zx + 2C'xy
= const (5)

Hence, as was first pointed out by Kirchhoff, there are, for any solid,

three mutually perpendicular directions of permanent translation; that is

to say, if the solid be set in motion parallel to one of these, without

rotation, and left to itself, it will continue to move in this manner. It

is evident that these directions are determined solely by the configuration

of the surface of the body. It must be observed however that the impulse

necessary to produce one of these permanent translations does not in general
(

reduce to a single force
;

thus if the axes of co-ordinates be chosen, for i

simplicity, parallel to the three directions in question, so that A', B', C = 0,
j

we have, corresponding to the motion u alone,
-

77,
= Au, 0, 0; X, fi, v = Fu, F'u, F"u,

so that the impulse consists of a wrench of pitch FjA.

With the same choice of axes, the components of the couple which is the

* The forms of these expressions being known, it is not difficult to verify them by direct

calculation from the pressure-equation, Art. 20 (4). See a paper
" On the Forces experienced by

a Solid moving through a Liquid," Quart. Jaunt, Math., t. xix. (1883).
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equivalent of the fluid pressures on the solid, in the case of any uniform

translation (u, v, w), are

L, M, N = (B-C)ivf, (C-A)wu t (A-B)uv (6)

Hence if in the ellipsoid

Kx- + By- + Cz- = const., (7)

we draw a radius-vector r in the direction of the velocity (u, v, w) and erect

the perpendicular h from the centre on the tangent plane at the extremity
of r, the plane of the couple is that of h and r, its magnitude is proportional
to sin (h, r)!h, and its tendency is to turn the solid in the direction from h to

r. Thus if the direction of (u, v, w) differs but slightly from that of the axis

of x, the tendency of the couple is to diminish the deviation when A is the

greatest, and to increase it when A is the least, of the three quantities A. B, C,

whilst if A is intermediate to B and C the tendency depends on the position
of r relative to the circular sections of the above ellipsoid. It appears then

that of the three permanent translations one only is thoroughly stable, viz.

that corresponding to the greatest of the three coefficients A, B, C. For

example, the only stable direction of translation of an ellipsoid is that of its

least axis; see Art. 121*.

125. The above, although the simplest, are not the only steady motions

of which the body is capable, under the action of no extraneous forces. The
instantaneous motion of the body at any instant consists, by a well-known

theorem of Kinematics, of a twist about a certain screw
;
and the condition

that this motion should be permanent is that it should not affect the

configuration of the impulse (which is fixed in space) relatively to the body.
This requires that the axes of the screw and of the corresponding impulsive
wrench should coincide. Since the general equations of a straight line

involve four independent constants, this gives four linear relations to be

satisfied by the five ratios u : v : w : p : q : r. There exists then for every

body, under the circumstances here considered, a singly-infinite system of

possible steady motions.

The steady motions next in importance to the three permanent translations are those

in which the impulse reduces to a couple. The equations (1) of Art. 120 shew that we

may have
, 17, f=0, and X, p, v constant, provided

X/p=M? = v>, =1; say (1)

If the axes of co-ordinates have the special directions referred to in the preceding Art., the

conditions
, q, =0 give us at once u, v, w in terms of/), q, r, viz.

= Fp + F.j+ F'r Gp+ G'q+ G"r Hp+ ff'q+ S"r"
A '

V~ ~
B >

W ~
C

"
( ;

The physical cause of this tendency of a flat-shaped body to set itself broadside-on to the

relative motion is clearly indicated in the diagram on p. 80. A number of interesting practical

illustrations are given by Thomson and Tait, Art 325.
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Substituting these values in the expressions for X, p, v obtained from Art. 122 (3), we find

de de deV*- ^ y (
3

)

provided 20 Qo, q, r)
= $p2+ <&q

2+Kr2+ 2Wqr+ 2i&'rp + 2U'pq, (4)

the coefficients in this expression being determined by formulae of the types

pi Ql ff2 J?']?" Q'QK ff'ff"

These formulae hold for any case in which the force-constituent of the impulse is zero.

Introducing the conditions (1) of steady motion, the ratios p : q : r are to be determined

from the three equations

Wp + <Qq + Wr=kq\ (6)

<n'p+Wq + Mr=kr.)

The form of these shews that the line whose direction-ratios are p : q : r must be parallel

to one of the principal axes of the ellipsoid

e(x, y, 2)
= const (7)

There are therefore three permanent screw-motions such that the corresponding impulsive

wrench in each case reduces to a couple only. The axes of these three screws are mutually
at right angles, but do not in general intersect.

It may now be shewn that in all cases where the impulse reduces to a couple only, the

motion can be completely determined. It is convenient, retaining the same directions of

the axes, to change the origin. Now the origin may be transferred to any point (x, y, z)

by writing

ic+ry-qz, v+pz-rx, w+qx-py,

for u, v, w respectively. The coefficient of 2vr in the expression for the kinetic energy, Art.

121 (8), becomes Bx+G", that of 2wq becomes Cx+ H', and so on. Hence if we take

.(8)
JG" H'\ JH F"\

X (F' G\

the coefficients in the transformed expression for 2 T will satisfy the relations

B~C> C~A' A~B ()

If we denote the values of these pairs of equal quantities by a, /3, y respectively, the

formulae (2) may be written

d* d^r d* ,.n.

U
=~dp>

V
=-Tq>

W
=-fr> (10)

where 2<t (p, q, r)
=-p2 +

-^q
2+ ~-T r2+ 2aqr+ 2l3rp+ 2ypq (11)

The motion of the body at any instant may be conceived as made up of two parts ;
viz. a

motion of translation equal to that of the origin, and one of rotation about an instantane-

ous axis passing through the origin. Since
, ij,

=--0 the latter part is to be determined

by the equations

dX du dv

5-t*-*k i=/*-^ #=&-p
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which express that the vector (A, p, v) is constant in magnitude and has a fixed direction

in space. Substituting from (3),

rf de_ 8e_ ce \

dt cp~ cq
"

cr'

.(12)
d ce_ ce ce

dicq
~~p a:

~ r
Tp'

d_ ce_ ce_ ?e

d4dr~ q
dp

P
dq'J

These are identical in form with the equations of motion of a rigid body about a fixed

point, so that we may make use of Poinsot's well-known solution of the latter problem.

The angular motion of the body is obtained by making the ellipsoid (7), which is fixed in

the body, roll on a plane

\x+py+ vz =const.,

which is fixed in space, with an angular velocity proportional to the length 01 of the

radius vector drawn from the origin to the point of contact I. The representation of the

actual motion is then completed by impressing on the whole system of rolling ellipsoid

and plane a velocity of translation whose components are given by (10). This velocity is

in the direction of the normal OM to the tangent plane of the quadric

*(*, ft *)- -, (13)

at the point P where 01 meets it, and is equal to

3

np n vx apgu^ar velocity of body. (14)

When 01 does not meet the quadric (13), but the conjugate quadric obtained by changing
the sign of e, the sense of the velocity (14) is reversed*.

126. The problem of the integration of the equations of motion of a solid

in the general case has engaged the attention of several mathematicians, but,

as might be anticipated from the complexity of the question, the physical

meaning of the results is not easily graspedf.

In what follows we shall in the first place inquire what simplifications

occur in the formula for the kinetic energy, for special classes of solids, and

then proceed to investigate one or two particular problems of considerable

interest which can be treated without difficult mathematics.

The general expression for the kinetic energy contains, as we have seen,

twenty-one coefficients, but by the choice of special directions for the

co-ordinate axes, and a special origin, these can be reduced to fifteen^.

* The substance of this Art. is taken from a paper,
" On the Free Motion of a Solid through

an Infinite Mass of Liquid," Proc. Lond. Math. Soc., t. viii. (1877). Similar results were

obtained independently by Craig, "The Motion of a Solid in a Fluid," Amer. Journ. of Math.,

+ For references see Wien, Lehrbuch d. Hydrodynamik, Leipzig, 1900, p. 164.

t Cf. Clebsch,
" Ueber die Bewegung eines Korpers in einer Flussigkeit," Math. Ann.i t. hi.

p. "238 (1870). This paper deals with the 'reciprocal
' form of the dynamical equations, obtained by

substituting from Art. 122 (4) in Art. 120 (1).

L. 11
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The most symmetrical way of writing the general expression is

2T= Au2 + Bv2 + do- + 2A'vw + 2B'wu + 2C'uv

+ Pp2 + Qq
2 + Br2 + 2P'qr + 2Q'rp + 2R'pq

+ 2Lup + 2Mvq + 2Nwr
+ 2F{vr + wq) + 2G (wp + ur) + 2H(uq + vp)

+ 2F' (vr
-
wq) + 2G' (tup

-
ur) + 2H' (uq -vp) (1)

It has been seen that we may choose the directions of the axes so that

A', B', C = 0, and it may easily be verified that by displacing the origin we

can further make F', G', H' = 0. We shall henceforward suppose these

simplifications to have been made.

1. If the solid has a plane of symmetry, it is evident from the con-

figuration of the relative stream-lines that a translation normal to this plane
must be one of the permanent translations of Art. 124. If we take this

plane as that of xy, it is further evident that the energy of the motion must

be unaltered if we reverse the signs of w, p, q. This requires that P', Q'}

L, M, N, H should vanish. The three screws of Art. 125 are now pure

rotations, but their axes do not in general intersect.

2. If the body has a second plane of symmetry, at right angles to the

former one, we may take this as the plane xz. We find that in this case

K and G must also vanish, so that

2T= A u1 + Bv2 + Cw2 + Pp2 + Qq
2 + Br2 + 2F (vr + wq) (2)

The axis of x is the axis of one of the permanent rotations, and those of the

other two intersect it at right angles, though not necessarily in the same point.

3. If the body has a third plane of symmetry, say that of yz, at right

angles to the two former ones, we have

2T = Au 2 + Bv2 +Ow2 + Pp2 + Qq
2 + Rr2

(3)

4. Returning to (2), we note that in the case of a solid of revolution

about Ox, the expression for 2T must be unaltered when we write v, q, w, r

for w, r, v, q, respectively, since this is equivalent to rotating the axes of y, z

through a right angle. Hence B = C, Q = R, F=0 ;
and therefore

2T=Aii2 + B{v
2 + iv

2

) + Pp2 + Q(q
2 + r2

) (4)

The same reduction obtains in some other cases, for example when the

solid is a right prism whose section is any regular polygon*. This is seen at

once from the consideration that, the axis of x coinciding with the axis of the

prism, it is impossible to assign any uniquely symmetrical directions to the

axes of y and z.

* See Larmor, " On Hydrokinetic Symmetry," Quart. Journ. Math., t. xx. (1885).

I
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5. If, in the last case, the form of the solid be similarly related to each

of the co-ordinate planes (for example a sphere, or a cube), the expression (3)

takes the form

2T=A(u* + tf + w*)+P(pt
+q'+t*) (5)

This again may be extended, for a like reason, to other cases, for example

any regular polyhedron. Such a body is practically for the present purpose

isotropic,' and its motion will be exactly that of a sphere under similar

conditions.

6. We may next consider another class of cases. Let us suppose that

the body has a sort of skew symmetry about a certain axis (say that of x),

viz. that it is identical with itself turned through two right angles about this

axis, but has not necessarily a plane of symmetry*. The expression for 2T
must be unaltered when we change the signs of v, w, q, r, so that the

coefficients Q', R\ G, H must all vanish. We have then

2T= A u- + Bv* + Civ1 + Pp* + Qq* + Br- + 2Fqr

+ 2Lup + 21fvq + 2Nwr + 2F(vr + wq). (6)

The axis of .> is one of the directions of permanent translation
;
and is also

the axis of one of the three screws of Art. 125, the pitch being LA. The
axes of the two remaining screws intersect it at right angles, but not in

general in the same point.

7 If, further, the body be identical with itself turned through one

right angle about the above axis, the expression (6) must be unaltered when

v, q, w, r are written for w, r, v, q, respectively. This requires that

B = C, Q = R, P' = 0, M= N, F= 0. Hencef

2T = A w2 + B (V
s + w) + Pp> + Q (q- + r2

) + 2Lup + 2M(vq+ wr). . . .(7)

The form of this expression is unaltered when the axes of y, z are turned

in their own plane through any angle. The body is therefore said to possess
helicoidal symmetry about the axis of x.

8. If the body possess the same properties of skew symmetry about an
axis intersecting the former one at right angles, we must evidently have

2T = A (u*+ v* + w*) + P(p* + q* + r>) + 2L(pu + qv+ i-w). ...(8)

Any direction is now one of permanent translation, and any line drawn

through the origin is the axis of a screw of the kind considered in Art. 125,
of pitch LiA. The form of (8) is unaltered by any change in the directions

f the axes of co-ordinates. The solid is therefore in this case said to be
'

helicoidally isotropic'

A two-b!aded screw-propeller of a ship is an example of a body of this kind.

+ This result admits of the same kind of generalization as (4), e.g. it applies to a body
shaped like a screw-propeller with three symmetrically-disposed blades.

112
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127. For the case of a solid of revolution, or of any other form to which

the formula

2T=Au2 + B(v* + w2

) + Pp2 +Q(q2 + r*) (1)

applies, the complete integration of the equations of motion was effected by
Kirch hoff* in terms of elliptic functions.

The particular case where the solid moves without rotation about its axis,

and with this axis always in one plane, admits of very simple treatment f,

and the results are very interesting.

If the fixed plane in question be that of xy we have p, q, w = 0, so that

the equations of motion, Art. 124 (1), reduce to

(2)

A j-
= rBv, B -

7
- = rAu, )

at at

Q^ = (A-B)uv.

Let x, y be the co-ordinates of the moving origin relative to fixed axes in

the plane (xy) in which the axis of the solid moves, the axis of x coinciding
with the line of the resultant impulse (/, say) of the motion

;
and let be the

angle which the line Ox (fixed in the solid) makes with x. We have then

Au = I cos 6, Bv = Isin0, r = 6.

The first two of equations (2) merely express the fixity of the direction of the

impulse in space ;
the third gives

Qd +
A
~j- I 2

siri cos 6 = (3)

We may suppose, without loss of generality, that A > B. If we write

20 = ^, (3) becomes

(A - B) T% .

*.
+ amt^'* (4)

which is the equation of motion of the common pendulum. Hence
thej

angular motion of the body is that of a '

quadrantal pendulum,' i.e. a bodjj

whose motion follows the same law in regard to a quadrant as the ordinarjj

pendulum does in regard to a half-circumference. When has beer
J

determined from (3) and the initial conditions, x, y are to be found fron!

the equations

x = u cos 6 v sin 6 = -.- cos2 6 + ^ sin2
0,A B

Q
.(5)

y = u sin 6 + v cos =
( j -^ J

sin cos =
y

*
I.e. ante p. 150.

t See Thomson and Tait, Natural Philosophy, Art. 322; Greenhill, "On the Motion of

Cylinder through a Frictionless Liquid under no Forces," Mess, of Math., t. ix. (1880).
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the latter of which gives

y-p. .(6)

as is otherwise obvious, the additive constant being zero since the axis of x
ken to be coincident with, and not merely parallel to, the line of the

impulse /.

Let us first suppose that the body makes complete revolutions, in which

case the first integral of (3) is of the form

2 =a>2 (l-^sin2
0), (7)

where =AaM (8)

Hence, reckoning t from the position = 0, we have

dd
at
-i (i-*. **eji=

F(k- e) (9)

in the usual notation of elliptic integrals. If we eliminate t between (5) and

\nd then integrate with respect to 0, we find

-(= + )'<*.*-$*<** |
.(10)

the origin of x being taken to correspond to the position = 0. The path
can then be traced, in any particular case, by means of Legendre's Tables.

See the curve marked I on the next page.

If, on the other hand, the solid does not make a complete revolution, but

oscillates through an angle o on each side of the position 0, the proper
form of the first integral of (3) is

*_.(i-if) (id
V sin2 a!

where sin2 * =^..A B 1-

If we put sin = sin a sin
yfr,

this gives

.(12)

-4f* = . . (1 sin2 a sin2
sir),T

sin2 a

whence
(Ot

-in i
= F(sma, yfr) (13)

Transforming to
yfr

as independent variable, in (5), and integrating, we find

x =
jj-

sin a . .F(sin a, yfr)
-^ cosec a . 2? (sin a, yfr),

y = COS
yfr.

.(14)
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The path of the point is now a sinuous curve crossing the line of the

impulse at intervals of time equal to a half-period of the angular motion.

This is illustrated bv the curves III and IV of the figure.

There remains a critical case between the two preceding, where the sob

just makes a half-revolution, 6 having as asymptotic limits the two valu
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\tt. This case may be obtained by putting h = 1 in (7), or a = ^ir in (11) ;

and we find

6 = to cos 9, (15)

cat = log tan (lir+0), (16)

x =
-^- log tan (|^7r + \6) ^y sm &

y = ^y-
cos o.

.117:

the curve II of the figure*.

It is to be observed that the above investigation is not restricted to

the case of a solid of revolution
;

it applies equally well to a body with

two perpendicular planes of symmetry, moving parallel to one of these

planes, provided the origin be properly chosen. If the plane in question be

that of xy, then on transferring the origin to the point (F/B, 0, 0) the last

term in the formula (2) of Art. 126 disappears, and the equations of motion

take the form (2) above. On the other hand, if the motion be parallel to zx

we must transfer the origin to the point ( F/C, 0, 0).

The results of this Article, with the accompanying diagrams, serve to

exemplify the statements made near the end of Art. 124. Thus the curve IV

illustrates, with exaggerated amplitude, the case of a slightly disturbed stable

steady motion parallel to an axis of permanent translation. The case of

a slightly disturbed unstable steady motion would be represented by a curve

contiguous to II, on one side or the other, according to the nature of the

disturbance.

128. The mere question of the stability of the motion of a body parallel

to an axis of symmetry may of course be more simply treated by approximate
methods. Thus, in the case of a body with three planes of symmetry, as in

Art. 126, 3, slightly disturbed from a state of steady motion parallel to x, we

find, writing u = u + u, and assuming u, v, w, p, q, r to be all small,

*
111 order to bring out the peculiar features of the motion, the curves have been drawn for

the somewhat extreme case of A = 5B. In the case of an infinitely thin disk, without inertia of

its own, we should have A\B = x.
;
the curves would then have cmps where they meet the

axis of y. It appears from (5) that x has always the same sign, so that loops cannot occur in

any case.

In the various cases figured the body is projected always with the same impulse, but with

different degrees of rotation. In the curve I, the maximum angular velocity is N/2 times what

it is in the critical case II; whilst the curves III and IV represent oscillations of amplitude 45

and 18 :

respectively.
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Hence B
-^

+ >

^~
'
n<? v = 0,

with a similar equation for r, and

n d?w A(A-C) ,
. ...

with a similar equation for q. The motion is therefore stable only when A
is the greatest of the three quantities A, B, G.

It is evident from ordinary Dynamics that the stability of a body moving parallel to an

axis of symmetry will be increased, or its instability (as the case may be) will be diminished,

by communicating to it a rotation about this axis. This question has been examined by
Greenhill*.

Thus, in the case of a solid of revolution slightly disturbed from a state of motion in

which u and p are constant and the remaining velocities are zero, if we neglect squares
and products of small quantities the first and fourth of equations (1) of Art. 124 give

du/dt=0, dp/dt= 0,

whence u= u
, P=Poi (*)

say, where u
, p are constants. The remaining equations then take, on substitution from

Art. 126 (3), the forms

B
\^~P^

w
)

ss ~ Av^ B
(- +Pov

J
=Auo9, (4)

Q%+(P-Q)p<f=-{A-B)utv, Q^-(P-Q)p q=(A-B)u v (5)

If we assume that v, w, q, r vary as e
l(rt

,
and eliminate their ratios, we find

Q<T*(P-2Q,)p <T-!
[

(P-Q)p >+^(A-B)u ^
= (6)

The condition that the roots of this should be real is that

l*p<?+^(A-B)Qi^
should be positive. This is always satisfied when A>B, and can be satisfied in any case

J

by giving a sufficiently great value to p .

This example illustrates the steadiness of flight which is given to an elongated projectile i

by rifling.

129. In the investigation of Art. 125 the term 'steady' was used to

characterize modes of motion in which the 'instantaneous screw
'

preserved!

a constant relation to the moving solid. In the case of a solid of revolution

however, we may conveniently use the term in a somewhat wider sense.;

extending it to motions in which the vectors representing the velocities'

of translation and rotation are of constant magnitude, and make constam)

angles with the axis of symmetry and with each other, although their relatioi

to points of the solid not on the axis may continually vary.

* "Fluid Motion between Confocal Elliptic Cylinders, <ftc." Quart. Journ. Math., t. xvi. (1879).



128-130] Stability 169

The conditions to be satisfied in this case are most easily obtained from the equations

of motion of Art. 124, which become, on substitution from Art. 126 (4),

B~=Bpw- Ant, Q^=-(A-B)uw-(P-Q)pr, \ (1)

B~=Aqu-Bjn. Q% =
I

dt -~i ~r, <*
dt

-

It appears that/* is in any case constant, and that g
,2+ r2 will also be constant provided

\

vjq=wjry =*, say (2)

This makes da dt= Q, and c2+ 'C
2= const. It follows that l will also be constant; and it

only remains to satisfy the equations

lB
C

d
?= l-Bp-Au)r, Q<k=-{(A-Br)ku+ {P-Q)p}r.

These will be consistent provided

lcB {{A
- B) ku+(P -Q)p}+ Q (IBp

- Au)=0,

. u kBP
._,Wh6UCe

p-AQ-VlHA-B) (3)

Hence by variation of i- we obtain an infinite number of possible modes of steady motion,

of the kind above defined. In each of these the instantaneous axis of rotation and the

direction of translation of the origin are in one plane with the axis of the solid. It is

easily seen that the origin describes a helix about the line of the impulse.

These results are due to Kirchhoflf.

130. The only case of a body possessing helicoidal property, where

simple results can be obtained, is that of the '

isotropic helicoid
'

defined by
Ait. 126 (8). Let be the centre of the body, and let us take as axes of

co-ordinates at any instant a line Ox parallel to the axis of the impulse,
a line Oy drawn outwards from this axis, and a line Oz perpendicular to the

plane of the two former. If / and K denote the force- and couple-constituents

of the impulse, we have

Au+Lp=%=I, Au + Lq=r) = 0, Atu + Lr= = 0, \

Pp + Lu=\ = K, Pq + Lv = fi
= 0, Pr + Lw= v = Ivr > )

where vs denotes the distance of from the axis of the impulse.

Since AP L2

4= 0, the second and fifth of these equations shew that v = 0,

9
= 0. Hence vr is constant throughout the motion, and the remaining

quantities are also constant; in particular

PI-LK LIt* /ox
U =

AP^L*> W = -AP-1? (2)
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The origin therefore describes a helix about the axis of the impulse,

of pitch

K_P
I L-

This example is due to Lord Kelvin*.

131. Before leaving this part of the subject we remark that the

preceding theory applies, with obvious modifications, to the acyclic motion

of a liquid occupying a cavity in a moving solid. If the origin be taken at

the centre of inertia of the liquid, the formula for the kinetic energy of the

fluid motion is of the type

2T = m [u* + v- + w2

) + Pp
2 + Qq- + Rr2 + 2P'</r + 2Q'rp + 2R'pq. . . .(1 )

For the kinetic energy is equal to that of the whole fluid mass (m), supposed
concentrated at its centre of inertia and moving with this point, together with

the kinetic energy of the motion relative to the centre of inertia. The latter

part of the energy is easily proved by the method of Arts. 118, 121 to be

a homogeneous quadratic function of p, q, r.

Hence the fluid may be replaced by a solid of the same mass, having the

same centre of inertia, provided the principal axes and moments of inertia be

properly assigned.

The values of the coefficients in (1), for the case of an ellipsoidal cavity, may be calcu-

lated from Art. 110. Thus, if the axes of x, y, z coincide with the principal axes of the

ellipsoid, we find

P, Q, R-i*fc, tmM\ im<4=^; F, Q', E'=0.

Case of a Perforated Solid.

132. If the moving solid have one or more apertures or perforations, so

that the space external to it is multiply-connected, the fluid may have

a motion independent of that of the solid, viz. a cyclic motion in which the

circulations in the several irreducible circuits which can be drawn through;

the apertures may have any given constant values. We will briefly indicate!

how the foregoing methods may be adapted to this case.

*
I.e. ante p. 157. It is there pointed out that a solid of the kind here in question may b<

constructed by attaching vanes to a sphere, at the middle points of twelve quadrantal arcs drawi
j

so as to divide the surface into octants. The vanes are to be perpendicular to the surface, anci

are to be inclined at angles of 45 to the respective arcs. Prof. Larmor (I.e.
ante p. 162) give

another example: "If...we take a regular tetrahedron (or other regular solid), and replace th I

edges by skew bevel faces placed in such wise that when looked at from any corner they all slop

the same way, we have an example of an isotropic helicoid."

For some further investigations in the present connection see a paper by Miss Fawcett, "0
the Motion of Solids in a Liquid," Quart. Journ. Math., t. xxvi. (1893).
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Let k, k, k", ... be the circulations in the various circuits, and let oV, So-',

oV', ... be elements of the corresponding barriers, drawn as in Art. 48.

Further, let /, m, n denote the direction-cosines of the normal, drawn towards

the fluid at any point of the surface of the solid, or drawn on the positive

side at any point of a barrier. The velocity-potential is then of the form

<f> + <l>o,

where
</>
= ufa + v<f>2 + wfa + pxi + qx-2 + 1

10'\

<p
= KCO 4" IC (O + K (O + ... . J

The functions
<j>1}

<.2) <f>3 , ;, ^2 X are determined by the same conditions as

in Art. 118. To determine a, we have the conditions: (1) that it must

: v V-&) = at all points of the fluid
; (2) that its derivatives must vanish

at infinity; (3) that dto/dn must = at the surface of the solid
;
and (4) that

a must be a cyclic function, diminishing by unity whenever the point to which

it refers completes a circuit cutting the first barrier once (only) in the positive

direction, and recovering its original value whenever the point completes a

circuit not cutting this barrier. It appears from Art. 52 that these conditions

determine a> save as to an additive constant. In like manner the remaining
functions a>', &>",... are determined.

By the formula (5) of Art. 55, twice the kinetic energy of the fluid is

equal to

-pff(<f>
+

4>o)^-n (<t> + <f>t)dS

-p^ff n̂ (<f>+<t>o)d<r- P
K'j^(<l>

+
<f> )da- (2)

Since the cyclic constants of
<f>

are zero, and since d<p /dn vanishes at the

surface of the solid, we have, by Art. 54 (4),

Hence (2) reduces to

-pjf*% dS - P.(f%4,- Ps{(%*o>- (3)

Substituting the values of
<f>,

< from (1) we find that the kinetic energy
of the fluid is equal to

T+A', (4)

where T is a homogeneous quadratic function of u, v, w, p, q, r, of the form

defined by Art. 121 (2) (3), and

2A'= (*, k) k- + (*', k) k'
9- + ... + 2 (*, k) kk' + .... (5)
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where, for example,

(K,K) = -pfjd<T,

The identity of the different forms of (k, k) follows from Art. 54 (4).

Hence the total energy of fluid and solid is given by

T = + K, (7)

where H& is a homogeneous quadratic function of u, v, w, p, q, r of the same
form as Art. 121 (8), and iTis defined by (5) and (6) above.

133. The 'impulse' of the motion now consists partly of impulsive forces

applied to the solid, and partly of impulsive pressures p/c, pic', pic' ,
. . . applied

uniformly (as explained in Art. 54) over the several membranes which are

supposed for a moment to occupy the positions of the barriers. Let us

denote by 2 , rj 1 , ,, \1} p,ly v^ the components of the extraneous impulse

applied to the solid. Expressing that the ^-component of the momentum of

the solid is equal to the similar component of the total impulse acting on it,

we have

aT2

s 1 -*-'//^ IdS

= & + P
ff(u<f>x

+ ... +PXi + + + )^ dS

where, as before, T2 denotes the kinetic energy of the solid, and T that part

of the energy of the fluid which is independent of the cyclic motion. Again,

considering the angular momentum of the solid about the axis of x,

g^
= \ ~

P
jj(<P

+ <po) (ny
- mz) dS

= \ + p
jiufr

+ ... + pXl + ... + kco + ...)
-X* dS

= \
dT

dp
+
pKJjco

d

^dS +
pic'fjo

i
' d

^dS+ (2)
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Hence, since 2T = T + Tu we have

.(5)

(3)

Bv virtue of Lord Kelvin's extension of Green's theorem, already referred

to. these may be written in the alternative forms
"

ft-SWft-'Mft^t-.] (4)

Adiiiug to these the terms due to the impulsive pressures applied to the

barriers, we have, finally, for the components of the total impulse of the

motion *,

<Z
,

cZ
,

dt&
,

where, for example,

6
-p.//(i

+^)* +
^//(

J+
|fe)^

+ :...

X, = Pk
fj
(ny

- mz +
-&j

d<r + Pk
jj

ny
- mz +

-%fj
d

It is evident that the constants
, 7/ , ,

X
, /*<>,

v are the components
of the impulse ot the cyclic fluid motion which would remain if the solid

were, by forces applied to it alone, brought to rest.

By the argument of Art. 119, the total impulse is subject to the same
laws as the momentum of a finite dynamical system. Herce the equations
of motion of the solid are obtained by substituting from (5) in the equations

(1) of Art. 120f.

134. As a simple example we may take the case of an annular solid of

revolution. If the axis of x coincide with that of the ring, we see by

reasoning of the same kind as in Art. 126, 4 that if the situation of the

origin on this axis be properly chosen we may write

2T=Au i + B(v
1 + wi

) + Pp> +Q(q* + r*) + (*, ) (1)

Hence
fc ,, Z=Au + 0> Bv, Bw; X, fi,

v = Pp, Qq, Qr (2)

*
Cf. Sir W. Thomson, I.e. ante p. 157.

t This conclusion may be verified by direct calculation from the pressure-formula of Art. 20
;

see Bryan,
"
Hydrodynamical Proof of the Equations of Motion of a Perforated Solid, ,"

Phil. Mag., May, 1893.

()
a- +
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Substituting in the equations of Art. 120, we find dp/dt0, or p = const.,

as is otherwise obvious. Let us suppose that the ring is slightly disturbed

from a state of motion in which v, w, p, q, r are zero, i.e. a steady

motion parallel to the axis. In the beginning of the disturbed motion

v, vj, p, q, r will be small quantities whose products we may neglect. The

first of the equations referred to then gives dujdt = 0, or u = const., and the

remaining equations become

Bft =-(Au + ^)r,
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Now let + A, r} + A77, f+ Af be the co-ordinates of the same particle, at

time t, in any arbitrary motion of the system differing infinitely little from

the actual motion, and let us form the equation

SmXfA^H&Ai|+A)=2(XA+rA?+At), (2)

where the summation 2 embraces all the particles of the system. This

follows at once from the equations (1), and includes these, ou account of the

arbitrary character of the variations A, A77, A. Its chief advantages, how-

ever, consist in the extensive elimination of internal forces which, by imposing
suitable restrictions on the values of A, A77, A we are able to effect, and in

the facilities which it affords for transformation of co-ordinates. It is to be

noticed that

^A?
=
|( (f + A?)- = AMc., &c,

bo that the symbols d and A are commutative.

The systems ordinarily contemplated in Analytical Dynamics are of

finite freedom
;

i.e. the position of every particle is completely determined

when we know the values of a finite number of independent variables or

'generalized co-ordinates' q1} q2 ,
... qn ,

so that, for example,

^i q' +i q- + - + ij- '

(3)

*-g**+**+--+SH
The kinetic energy can then be expressed as a homogeneous quadratic
function of the 'generalized velocity-components' j,, q,, ... qn ;

thus

2T=A nqx

2 + A.;4r+...+2A i
.2q1qi + ...

> (4)

where

kM(t)'+
(|)*+()}- ^=MSI ,ddv +

d d

dqr dqs dqr dqs

(5)

The quantities A rr ,
A re are called the 'inertia-coefficients' of the system;

they are in general functions of the co-ordinates q1} q2 ,
... qn .

Again, we have

2 ( XA + YAV + ZA?) = QAqi + QAq, + ... + &A?n> (6)

where Qr = v (x |* + Yp- + Z^~) (7)
V dqr dqr dqr

' v

The quantities Qr are called the '

generalized components of force.' In the
case of a conservative system we have

*~g w
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Also, from (3) and (5),

Sot (A + r)k>n + fA) = {An q^ + Aa$, + ...+ Am qn) A?1

+ (A 21 q1 + A 22 q2 + ... + A 2nqn)Aq2

+
+ {Am qx + A n2q2 + ... + A nn qn) Aqn

W A dT . dT A

Ta
A
?
k+S A* +:"

-h
aE

A - (9)

or SmCiA^ + ^A^ + ^A^^^A^+^A^+.-.+^A^, (10)

where Pr = ^r (11)

The quantities pr are called the 'generalized components of momentum' of

the system. When T is expressed as in (4) as a homogeneous quadratic

function of qu q\, ... qn ,
we have

2T=piqi +p.2 q2 + ...+pn qn (12)

Since 2m (gA^ + ijAi; + A) =
j %m (A| + r,AV +^) - AT, ...(13)

the transformation of (2) to generalized co-ordinates is easily completed by
substitution from (9) and (6). The variations Agy of the velocities cancel;

and, equating coefficients of the independent variations Aqr of the co-ordinates

we obtain n equations of the type*

ddT_dT = Q (14)
dt dqr dqr

From (12) and (14) we derive

n dT
2-^ =Piqi+Piqi+P2q2+p-2q>2+ +pnqn+pn qn

(dT \ . (dT A \ .
, (dT n \ .

dT .. dT .. dT ..

dqx

a
Bg2 o^n

=
~di

+ ^' + 2<*2 + ' ' ' + n<in '

dT
whence -=- = Qitfi + Q8& + ... + Qnqn , (15) I

or, in the case of a conservative system

jt
(T+V) =

: (16)

which is the equation of energy.
* This summary of Lagrange's proof is introduced merely to facilitate reference to

If

various steps, in the hydrodynamical investigation of the next Art. A proof by direct transforr

tion of co-ordinates, not involving the method of '

variations,' has been given by Hamilton (Pi

Trans., 1835, p. 96), Jacobi, Bertrand, and Thomson and Tait; see also Whittaker, Ana

Dynamics, Cambridge, 1904, p. 33.
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If we multiply (2) by St, and integrate between the limits t and t*, we

find, having regard to (13),

f
'

[AT+ 2 (XAf + YAV + ZA)} dt = 2m (fA + t,&v + A)T' .

Jtt _ J/.

(17)

If we now introduce the additional condition that in the varied motion

the initial and final positions shall be respectively the same for each particle

as in the actual motion, the quantities A, A
77,
A will vanish at both limits,

and the equation reduces to

',

{AT + 2(ZA+ FAr? + ZAO; dt = 0, (18)A
r a conservative system*,

A T(T- V)dt = (19)

In words, if the actual motion of the system between any two configura-
tions through which it passes be compared with any slightly varied motion,

between the same configurations, which the system is (by the application of

suitable forces) made to execute in the same time, the time-integral of the

'kinetic potential'"!* V T is stationary.

In terms of generalized co-ordinates, the equation (18) takes the form

tl

(AT+QAqi + QAq> + -.. + Qn&qn)dt = (20)
to

This embraces the whole dynamics of the system in a mathematically

compact form. From it Lagrange's equations can immediately be deduced
;

cf. Art. 139.

136. Proceeding now to the hydrodynamical problem, let qu q, ... qn

be a system of generalized co-ordinates which serve to specify the configuration
of the solids. We will suppose, for the present, that the motion of the fluid

is entirely due to that of the solids, and is therefore irrotational and acyclic.

In this case the velocity-potential at any instant will be of the form

</>
=

q\<f>i + q<f>2 + +qn<t>n, (1)

where
<f) 1 , <,, ... are determined in a manner analogous to that of Art. 118.

The formula for the kinetic energy of the fluid is then

2T =
-pjJ<f>^dS

= Autf + A.^+...+2A12q42 +..., (2)

*
Sir W. R. Hamilton,

" On a General Method in Dynamics," Phil. Trans., 1834, 1835.

t The name was introduced hy v. Helmholtz, ''Die physikalische Bedeutnng des Principa der

kleinsten "Wirkung," Crelle, t. c. p. 137 (1886) [Ges. Abh. t. iii. p. 203]. Whittaker, Analytical

Dynamics, p. 38, reverses the sign.

L. 12
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where

Arr
= - P

ff<f>
r

d

^dS,
Arg

= - P
jf<p

r

d

^dS
=

-pjfcf>
s

d

^dS, ...(3)

the integrations extending over the instantaneous positions of the bounding
surfaces of the fluid. The identity of the two forms of Ars follows from

Green's Theorem. The coefficients Arr ,
Arg will in general be functions of

the co-ordinates qlf q2 ,
... qn .

If we add to (2) twice the kinetic energy, T1} of the solids themselves, we

get an expression of the same form, with altered coefficients, say

2T=A nq* + Anq.S+ ... + 2A 12q1q2 + (4)

It remains to shew that, although our system is one of infinite freedom,

the equations of motion of the solids can, under the circumstances pre-

supposed, be obtained by substituting this value of T in the Lagrangian

equations, Art. 135 (14). We are not at liberty to assume this without

further examination, for the positions of the various particles of the fluid are

not determined by the instantaneous values q1} q2 ,
... qn of the co-ordinates

of the solids. For instance, if the solids, after performing various evolutions,

return each to its original position, the individual particles of the fluid will

in general be found to be finitely displaced*.

Going back to the general formula (2) of Art. 135, let us suppose that in

the varied motion, to which the symbol A refers, the solids undergo no

change of size or shape, and that the fluid remains incompressible, and has,

at the boundaries, the same displacement in the direction of the normal as

the solids with which it is in contact. It is known that under these

conditions the terms due to the internal reactions of the solids will disappear

from the sum

The terms due to the mutual pressures of the fluid elements are equivalent to i

or
lfp

(JAf + A, + AJ) dS+fjjp(^ +^ +
d

-) dx&ydz,

where the former integral extends over the bounding surfaces, and I, to, i<

denote the direction-cosines of the normal, drawn towards the fluid. The

volume-integral vanishes by the condition of incompressibility

f+fS + f_ (5) j

doc dy oz

* As a simple example, take the case of a circular disk which is made to move, withoi

rotation, so that its centre describes a rectangle two of whose sides are normal to its plane; an;

examine the displacements of a particle initially in contact with the disk at its centre.
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The surface-integral vanishes at a fixed boundary, where

/Af + mA77 +wA=0;
and in the case of a moving solid it is cancelled by the terms due to the

pressure exerted by the fluid on the solid. Hence the symbols X, Y, Z may
be taken to refer only to the extraneous forces acting on the system, and we

may write

2(XA+ YAv + ZU;) = Qiqi + QAqz+... + Qn&qn, (6)

where Q1} Q.2 , Qn denote the generalized components of extraneous force.

The varied motion of the fluid has still a high degree of generality. We
will now further limit it by supposing that while the solids are, by suitable

forces applied to them, made to execute an arbitrary motion, the fluid is left

to take its own course in consequence of this. The varied motion of the

fluid may accordingly be taken to be irrotational, in which case the varied

kinetic energy T + AT of the system will be the same function of the

varied co-ordinates qr + Aqr ,
and the varied velocities qr + Aqr ,

that the actual

energy T is of qT and qr .

Again, considering the particles of the fluid alone, we shall have, on the

same supposition,

1m (A| + vAv + fcf) = - p jff(^
Ax + ?* Ay + 1* A*) dxdydz

=
pll<p(lA%

+ mArj + nA) dS,

where use has again been made of the condition (5) of incompressibility. By
the kinematical condition to be satisfied at the boundaries, we have

and therefore

2m(|A^ +^ + ?AO =-p//^(^A9l +^A?,+ ...+
a

^Agn)^
=

(A,^ + Aug, + ...+ Alnqn ) Aq1 + (A^ + A^q.2 + ... + Aqn) Aq2+ ...

+ (An^x + An,q, + . . . + Annqn) Aqn

dT A dT . dT . /n .

-i*
A* +

i>*

A*+ - +m Aq" (7>

by (1) ; (2), (3) above. If we add the terms due to the solids, we find that

the relation (9) of Art. 135 still holds; and the deduction of Lagrange's

equations

dtdqr dqr
~^r W

then proceeds exactly as before 5

* This investigation was briefly indicated in the last edition.

122
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As in Art. 135, these equations lead to

dT
-57 = QAi + Qfl* + + Qnqn ,

or, in the case of a conservative system,

T+ F=const (9)

137. As a first application of the foregoing theory we may take an

example given by Thomson and Tait*, where a sphere is supposed to move

in a liquid which is limited only by an infinite plane wall.

Taking, for simplicity, the case where the centre moves in a plane

perpendicular to that of the wall, let us specify its position at time t by

rectangular co-ordinates x, y in this plane, of which y denotes distance from

the wall. We have

2T=Ax> + Bf-, (1)

where A and B are functions of y only, it being plain that the term ,by

cannot occur, since the energy must remain unaltered when the sign of x is

reversed. The values of A, B can be written down from the results of

Arts. 98, 99, viz. if m denote the mass of the sphere, and a its radius,

we have

A=m+frf**(l+&), B^m+^rpa*
(l +f^)

, (2)

approximately, if y be great in comparison with a.

The equations of motion give

d , t . x t^ d /rt .. , (dA ,. dB . \

^Ai) 'x- a^-HsrWv ' <3

I_
where X, Y are the components of extraneous force, supposed to act on th(

sphere in a line through the centre.

If there be no extraneous force, and if the sphere be projected in j

direction normal to the wall, we have x 0, and

By
2 = const (4)

Since B diminishes as y increases, the sphere experiences an acceleratiol

from the wall.

Again, if the sphere be constrained to move in a line parallel to the wall

we have y = 0, and the necessary constraining force is

F=-i~^ (5)

*
l. c. ante p. 174.



136-138] Mutual Influence of Tico Spheres 181

Since dAjdy is negative, the sphere appears to be attracted by the wall. The

reason of this is easily seen by reducing the problem to one of steady motion.

The fluid velocity will evidently be greater, and the pressure therefore less,

on the side of the sphere next the wall than on the further side; see

Art. 23.

The above investigation will also apply to the case of two spheres

projected in an unlimited mass of fluid, in such a way that the plane y =

is a plane of symmetry in all respects.

138. Let us next take the case of two spheres moving in the line

of centres.

The kineniatical part of this problem has been treated in Art. 98. If we now denote

y the distances of the centres of the spheres J, B from some fixed origin in the line

joining them, we have

2T=LJ*-2Mxy + Xy\ (1)

where the coefficients L, M, N are functions of y-x, or c, the distance between the

centres. Hence the equations of motion are

d
dt

[

(2)

/ t i,r.v i (dL ., dM . . dX .A v \

,(Lx-My)+i(^.r*-2^xy+wf)=X^
d , -.,. ,., , (dL . n dM .. dN .A .

[

Jt{
-Ms+W-^x*-2w xy+wf-yr,)

where X, Y are the forces acting on the spheres along the line of centres. If the radii a, b

are both small compared with c, we have, by Art. 98 (15), keeping only the most important

terms,

a33
Z =m + 37rp

3
, J/=2-p 3- , N=m'+$irpb3, (3)

approximately, where m, m! are the masses of the two spheres. Hence to this order of

approximation

dL dM _ aW dX A

If each sphere be constrained to move with constant velocity, the force which must be

applied to ,1 to maintain its motion is

\ =
-^y(2,-x)--^xy=Sp-r y* (4)

This tends towards B, and depends only on the velocity of B. The spheres therefore

appear to repel one another ; and it is to be noticed that the apparent forces are not equal
and opposite unless =

y.

- .in, if each sphere make small periodic oscillations about a mean position, the period

being the same for each, the mean values of the first terms in (2) will be zero, and the

spheres therefore will appear to act on one another with forces equal to

6-P^Hiy], (5)

where [xy] denotes the mean value of xy. If x, y differ in phase by less than a quarter-

period, this force is one of repulsion, if by more than a quarter-period it is one of attraction.
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Next, let B perform small periodic oscillations, while A is held at rest. The mean force

which must be applied to A to prevent it from moving is

*-*?t <>

where [y
2
]
denotes the mean square of the velocity of B. To the above order of approxi-

mation dN\dc is zero
;
on reference to Art. 98 we find that the most important term in it

is 12jrpa
3b6/c

7
,
so that the force exerted on A is attractive, and equal to

a 3 b6

G*P^W1 (7)

This result comes under a general principle enunciated by Lord Kelvin. If we have

two bodies immersed in a fluid, one of which (A) performs small vibrations while the other

(B) is held at rest, the fluid velocity at the surface of B will on the whole be greater on the

side nearer A than on that which is more remote. Hence the average pressure on the

former side will be less than that on the latter, so that B will experience on the whole an

attraction towards A. As practical illustrations of this principle we may cite the apparent
attraction of a delicately-suspended card by a vibrating tuning-fork, and other similar

phenomena studied experimentally by Guthrie* and explained in the above manner by
Lord Kelvin t.

Modification of Lagrange s Equations in the case of Cyclic Motion.

139. We return to the investigations of Art. 135, with the view of

adapting them to the case where the fluid has cyclic irrotational motion

through channels in the moving solids, or (it may be) in an enclosing

vessel, independently of the motion due to the solids themselves.

Let us imagine barrier-surfaces to be drawn across the several apertures.

In the case of channels in a containing vessel we shall suppose these ideal

surfaces to be fixed in space, and in the case of channels in a moving solid

we shall suppose them to be fixed relatively to the solid. Let ^, ^', %", ...

be the fluxes at time t across, and relative to, the several barriers
;
and let

%, %', %", ... be the time-integrals of these fluxes, reckoned from some

arbitrary epoch, these quantities determining (therefore) the volumes of

fluid which have up to the time t crossed the respective barriers. It will

appear that the analogy with a dynamical system of finite freedom is still

conserved, provided the quantities %, %', %", ... be reckoned as generalized

co-ordinates of the system, in addition to those (q1} q2 ,
... qn) which specify

the positions of the moving solids. It is obvious already that the absolute

values of ^, ^', %", ... will not enter into the expression for the kinetic

energy, but only their rates of variation.

* "On Approach caused by Vibration," Proc. Roy. Soc, t. xix. (1869) [Phil. Mag., Nov. 1870}

+ Reprint of Papers on Electrostatics, &c, Art. 741. For references to further investigations.

both experimental and theoretical, by Bjerknes and others, on the mutual influence of oscillating

spheres in a fluid, see Hicks, "Eeport on Eecent Eesearches in Hydrodynamics," Brit. Ass. Rep. .

1882, pp. 52...; Love, Encycl. d. math. Wiss., t. iv. (2) pp. Ill, 112.
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In the first place, we may shew that the motion of the fluid, in any given

configuration of the solids, is completely determined by the instantaneous

values of q1} q.2 , ... qn , %, x, X> For if there were two modes of

irrotational motion consistent with these values, then, in the motion which

is the difference of these, the boundaries of the fluid would be at rest, and

the flux across each barrier would be zero. The formula (5) of Art. 55 shews

that under these conditions the kinetic energy must vanish.

It follows that the velocity-potential can be expressed in the form

-&&+4*fc+ +qn<f>n + Xa + X n'+ (!)

Here <pr is the velocity-potential of a motion in which qr alone varies and

the flux across each barrier is accordingly zero. Again H is the velocity-

potential of a motion in which the solids are all at rest, whilst the flux

through the first aperture is unity, and that through every other aperture is

zero. It is to be observed that
(f>l , <f>.2 ,

...
<f>n , O, H', ... are in general all of

them cyclic functions, which may however be treated as single-valued, on the

conventions of Art. 50.

The kinetic energy of the fluid is given by the expression

2T-'JM'*H}*^ <2 >

where the integral is taken over the region occupied by the fluid at the

instant under consideration. If we substitute from (1) we obtain T as a

homogeneous quadratic function of q1} q, ... qn , ^, x,, X> w^n coefficients

which depend on the instantaneous configuration of the solids, and are there-

fore functions of qlt q.2t
... qn only. Moreover, we find, by Art. 53 (1),

ox JJJ{dxdx dy dy dz dz)
*

= -
p\\^ dS - pK\\wi

da - pK
'\\

c
d<T'----'

where k, k, ... are the cyclic constants of
<f>,

and the first surface-integral is

to be taken over the surfaces of the solids, and the remaining ones over the

several barriers. By the conditions which determine O, this gives the first

equation of the system :

w9* w =9K > (8)

These shew that p/c, pic', ... are to be regarded as the generalized components
of momentum corresponding to the velocity-components X'X> > respectively.

We have recourse to the general Hamiltonian formula* (17) of Art. 135.

It is possible to arrange an investigation on the Lagrangian plan, parallel to that of

Art. 136. but the proof of the formulae corresponding to (5) below involves some rather delicate

considerations.
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We will suppose that the varied motion of the solids is subject only to the

condition that the initial and final configurations are to be the same as in

the actual motion
;
also that the initial position of each particle of the fluid

is the same in the two motions. The expression

will accordingly vanish at time t
,
but not in general at time t1} in the

absence of further restrictions.

We will now suppose that the varied motion of the fluid is irrotational,

and accordingly determined by the instantaneous values of the varied

generalized co-ordinates and velocities. Considering the particles of the

fluid alone, we have

2m (A + v&v + A0 = -
p///(j*

A +
d &v +fz A?) dxdydz

= p fU (7A + mArj + nA$) dS + pK ff(l&%
+ mAv + wA) da

+ pK j7(JAf
+ rnAr) + wA) da + ..., .(4)

where I, m, n are the direction-cosines of the normal to an element of the

bounding surface, drawn towards the fluid, or (as the case may be) of the

normal to an element of a barrier, drawn in the direction in which the

corresponding circulation is estimated.

At time tx we shall have

A+mA77 + ftA=0,

at the surfaces of the solids, as well as at the fixed boundaries. Again,
if AB represent one of the barriers in its position

at time ,, and if A'B' represent the locus at the

same instant, in the varied motion, of those particles

which in the actual motion occupy the position AB,
the volume included between AB and A'B' will be

equal to the corresponding A^;, whence

.(5)

(A + mAi) + nAf) da = A^,

[[(ZA
+ m&v + Af) da = A% ',

The varied circulations are, from instant to instant, still at our disposal.

We may suppose them to be so adjusted as to make A^, A%', ... vanish at

time tx
. The right-hand member of Art. 135 (17) will accordingly vanish,

and if we further suppose that the extraneous forces do on the whole no
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work when the boundary of the fluid is at rest, whatever relative displace-

ments be given to the parts of the fluid, the formula reduces to

/,

1

{AT+Q1Aq1 + Q.2 Aq, + + Qn&qn }
dt=0 (6)

to

From this Lagrange's equations follow by a known process. We have

. m dT . . dT . . dT . .Ar=
jp- A^ + jp- Aq, + ... + ^- Aqn
dqx

*
dq,

*
dqn

*

dT
,, . dT A .,

dT . dT . dT .

+^ A*+
9^

A*+- +^A - <7 >

Hence, by a partial integration, and remembering that by hypothesis

A^, A^.., ... Aqn , Ax, &x, vanisn at the limits *
, U, we find

f^ifddT dT n \ . /ddT dT n \.

IA^-^r Qi
)
Aq * +

{dtdi-dqr
Q
*)
Aq>

(ddT dT \ K d dT A ddT K , )
.

(8)

Since the values of Aq1} Aq2 , ... Aqn , A%, A^;', ... within the range of

integration are still arbitrary, their coefficients must separately vanish.

We thus obtain n equations of the type^ W-O (9)
dtdqr dqr

-*r ' W

together with

*|=0,

*

g = 0, (10)

140. Equations of the types (9) and (10) present themselves in various

problems of ordinary Dynamics, e.g. in questions relating to gyrostats, where
the co-ordinates x> X> whose absolute values do not affect the kinetic or

the potential energy of the system, are the angular co-ordinates of the

gyrostats relative to their frames. The general theory of such systems has

been treated by Routh*, Thomson and Taitf, and other writers.

On the Stability of a Given State of Motion (Adams Prize Essay), London, 1877; Advanced

Rigid Dynamics, 5th ed., London, 1892.

t Natural Philosophy, 2nd ed., Art. 319 (1879). See also von Helmholtz, "Principien der

Statik monocyelischer Systeme," Crelle, t. xcvii. (1884) [Ges. Abh., t. iii. p. 179]; Larmor,
" On the Direct Application of the Principle of Least Action to the Dynamics of Solid and Fluid

Systems," Proc. Lond. Math. Soc, t. xv. (1884); Lamb, Art. "Dynamics, Analytical," Encyc.
Brit., t. xxvii. p. 566 (1902); Whittaker, Analytical Dynamics, c. iii.
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We have seen that ^ pic, ~-r, = pic,..., (11)

and the integration of (10) shews that the quantities k, k , ... are constants

with regard to the time, as is otherwise known (Art. 50). Let us write

R=T-pKx-p^x- (12)

The equations (11), when written in full, determine %, %, ... as linear functions

of k, k, ... and q1} q2 , ... qn ;
and by substitution iu (12) we can express R as

a homogeneous quadratic function of the same quantities, with coefficients

which of course in general involve the co-ordinates q1} q% ,
... qn . On this

supposition we have, performing the arbitrary variation A on both sides of

(12), and omitting terms which cancel by (11),

dR . . dR A dR .

-sA*+~+jjAft+--eA--. -<13>

where, for brevity, only one term of each kind is exhibited. Hence we obtain

2n equations of the types

dR_dT dR_dT
dqr dqr

'

dqr dqr
'

together with ^-fa &?
= "?*' (15)

Hence the equations (9) may be written

d dR dR n /1flN

dtgjr -^r Q" <16)

where the velocities
, <fc\

... corresponding to the 'ignored' co-ordinates;

%, x', have now been eliminated*.

141. In order to shew more explicitly the nature of the modification'

introduced by the cyclic motions into the dynamical equations, we proceed as I

follows.

If we substitute in (12) from (15), we obtain

T =E-(^ +
*'^+...)

(17)
:

Now, remembering the composition of R, we may write for a moment

R = R20 + Rhl + R0>2 , (18)

where R
2t0

is a homogeneous quadratic function of qlt q2> ... qn , -^0,2
is

* This investigation is due to Routh, I.e.; cf. Whittaker, Analytical Dynamics, Art. 38.

I
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homogeneous quadratic function of k, k, ..., and B^^ is bilinear in these two

sets of variables. Hence (17) takes the form

T=R
2tQ
-R ,2 , (19)

or, as we shall henceforth write it,

T = '& + K, (20)

where and K are homogeneous quadratic functions of qlt q2 ,
... qn ,

and of

k, k
, ..., respectively. It follows also from (18) that

R = - K - fab- ftfc- ...- f3nqn , (21)

where Bl} /32 ,
... are linear functions of k, k, ..., say

1
= a

1 * + 3 1V+...,
j

& = ouk + a2V + ..., I ,^\

fin
= an K + an ic + ....

The meaning of the coefficients a (in the hydrodynamical problem) appears

from (15) and (21). We find

dK . x

.(23)dK
PX =

-fa
+ ai?i + '* + + a'?n,

which shew that ar is the contribution to the flux of matter across the first

barrier due to unit rate of variation of the co-ordinate qr ,
and so on.

If we now substitute from (21) in the equations (1G) we obtain the general

equations of motion of a 'gyrostatic system/ in the form*

If-f +<i.*+a.>*+-+a>*+f-<fc.

sS-f+ft 1)* + (.>* + ... +
.)*.+g-<fc,

d M M , , x . , . . ox . dK n

(24)

where (r,
s)
=P_^r (25)
dqr dqs

It is important to notice that (r, s)
=

(s, r), and (r, r)
= 0.

*
These equations were first given in a paper by Sir W. Thomson,

" On the Motion of Rigid

Solids in a Liquid circulating irrotationally through perforations in them or in a Fixed Solid,"

Phil. Mag., May 1873. See also C. Neumann, Hydrodynamische Untersuchungen (1883).
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If in the equations of motion of a fully-specified system of finite freedom

(Art. 135 (14)) we reverse the sign of the time-element St, the equations are

unaltered. The motion is therefore reversible
;
that is to say, if as the system

is passing through any assigned configuration the velocities qly q2 ,
... qn be

all reversed, it will (if the forces be always the same in the same configuration)
retrace its former path. It is important to observe that this statement does

not in general hold of a gyrostatic system ; thus, the terms in (24) which are

linear in qu q2 ,
... qn change sign with St, whilst the others do not. Hence,

in the present application, the motion of the solids is not reversible, unless

indeed we imagine the circulations k, k, ... to be reversed simultaneously
with the velocities q1} q2 ,

... qn *.

If we multiply the equations (24) by qlt q\, ..., qn in order, and add, we

find, by an obvious adaptation of the method of Art. 135,

jt
C& + K) = Qiqi + Q,q>+ + Qnqn, (26)

or, if the system be conservative,

+K+ T=const (27)

142. The results of Art. 141 may be applied to find the conditions of

equilibrium of a system of solids surrounded by a liquid in cyclic motion.

This problem of Kineto-Statics,' as it may be termed, is however more

naturally treated by a simpler process.

The value of < under the present circumstances can be expressed in the

alternative forms

4>
= xn+ x'n' + ..., (i)

</>
= KQ) + K(o' + . . .

; (2)

and the kinetic energy can accordingly be obtained as a homogeneous quad-
ratic function either of %, %', ..., or of k, k, ..., with coefficients which are in

each case functions of the co-ordinates qlf q2 ,
... qn which specify the con-

figuration of the solids. These two expressions for the energy may be

distinguished by the symbols T and K, respectively. Again, by Art. 55 (5)

we have a third formula

2T==PKX + PK'X + (3 )

The investigation at the beginning of Art. 139, shortened by the omission

of the terms involving q1} q2 ,
... qn , shews that

pK=w pK =w (4)

* Just as the motion of the axis of a top cannot be reversed unless we reverse the spin.
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Again, the explicit formula for K is

= (K,K),r + (K,K
,

)K*+... + 2(K,K')KK+..., (5)

where

(*>--,//*. (,<)=-,>//*,--,,//*, (6)

and so on. Hence

^=(/c, *)*4-(*, *0 *' + .

=-p\\^d<r.

We thus obtain ^ =
ik' ^'= a?' (7>

Again, writing T +K for 2T in (3), and performing a variation A on both

of the resulting identity, we find, on omitting terms which cancel in

virtue of (4) and (7)*,

dqr
+
dqr

-
(8)

This completes the requisite analytical formulae 4-
.

If we now imagine the solids to be guided from rest in the configuration

7t <?n) to rest in an adjacent configuration

(}, + Ag, , q,+ Aqu, ... qH + Aqrn),

the work required is Q, Ag^ + Q2Ag2+ . . . + Q Aqn ,

where Qu Q2 Qn are the components of extraneous force which have to be

applied to neutralize the pressures of the fluid on the solids. This must
be equal to the increment AK of the kinetic energy, calculated on the

supposition that the circulations *, ', ... are constant. Hence

*- <9>

The forces representing the pressures of the fluid on the solids (when these

are held at rest) are obtained by reversing the signs, viz. they are given by

*~i= <l0>

the solids therefore tend to move so that the kinetic energy of the cyclic
motion diminishes.

*
It would be sufficient to assume either (4) or (7) ; the process then leads to an independent

proof of the other set of formulae.

t It may be noted that the function R of Art. 140 now reduces to - K.
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In virtue of (8) we have, also,

e-'-g <>

143. A simple application of the equations (24) of Art. 141 is to the case

of a sphere moving in a liquid which circulates irrotationally in a cyclic space

with fixed boundaries.

If the radius a, say, of the sphere be small compared with its least distance from the

fixed boundary, the formula (20) of Art. 141 becomes

2T=m(x*+f+z2
) + K, (1)

where x, y, z are the co-ordinates of the centre, and m denotes the mass of the sphere to-

gether with half that of the fluid displaced by it ; see Art. 92. To find A", the energy of

the cyclic motion when the sphere is held at rest in its actual position, we note that if we

equate x, y, z to the components u, c, c; respectively, of the fluid velocity which would

obtain at the point (x, y, z) if the sphere were absent, and at the same time put
m = 2npa

3
,
the resulting energy will be practically the same as that of the fluid when

filling the region, whence

2irpa
3
(u

2+ v'
2+ w2

) +K= const.,

or K=cor\st.-W, (2)

where W=2irpa
3
(u

2+ v2+ iv2 ) (3)

Again the coefficients al5 a2 ,
a3 of Art. 141 (22) denote the fluxes across the first barrier,

when the sphere moves with unit velocity parallel to x, y, z, respectively. If we denote by
a the flux across this barrier due to a unit simple-source at (x, y, z\ then remembering the

equivalence of a moving sphere to a double-source (Art. 92), we have

au a 2 , 3
=i

3

^, \o?
Ty

, \o? Tz
, (4)

so that the quantities denoted by (2, 3), (3, 1), (1, 2) in Art. 141 (24) vanish identically.

The equations therefore reduce in the present case to

mx=X+^, my=F+g-, mz=Z+^, (5)

where X, Y, Z are the components of extraneous force applied to the sphere.

When X, Y, Z=0, the sphere tends to move towards places where the undisturbed

velocity of the fluid is greatest.

For example, in the case of cyclic motion round a fixed circular cylinder (Arts. 27, 64),

the fluid velocity varies inversely as the distance from the axis. The sphere will therefore

move as if under the action of a force towards this axis varying inversely as the cube of

the distance. The projection of its path on a plane perpendicular to the axis will therefore

be a Cotes' spiral*.

144. We may also notice one or two problems of Kineto-Statics, in

illustration of the theory of Art. 142.

*
Cf. Sir W. Thomson, I.e. ante p. 187.
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It will be shewn in Art. 153 that the energy K of the cyclic fluid motion is propor-

tional to the energy of a system of electric current-sheets coincident with the fixed

boundaries, the current-lines being orthogonal to the stream-lines of the fluid.

The electromagnetic forces between conductors carrying these currents are proportional*

to the expressions on the right-hand of Art. 142 (10) with the signs reversed. Hence in

the hydrodynamical problem the forces on the solids are opposite to those which obtain in

the electrical analogue. In the particular case where the fixed solids reduce to infinitely

thin cores, round which the fluid circulates, the current-sheets in question are practically

equivalent to a system of electric currents flowing in the cores, regarded as wires, with

strengths k, k\ ... respectively. For example, two thin circular rings, having a common

ill repel or attract one another according as the fluid circulates in the same or in

opposite directions through themt. This might have been foreseen of course from the

principle of Art. 23.

Another interesting case is that of a number of open tubes, so narrow as not sensibly

to impede the motion of the fluid outside them. If streams be established through the

. then as regards the external space the extremities will act as sources and sinks.

The energy due to any distribution of positive or negative sources tnx , m^, ... is given, so

it depends on the relative configuration of these, by the integral

-yff*
QdS. (6)

taken over a system of small closed surfaces surrounding m,, m,, ... respectively. If

<p1? < 2 ,
... be the velocity-potentials due to the several sources, the part of this expression

which is due to the simultaneous presence of nij, m, is

-.-//(.&+*)** m
which is by Green's Theorem equal to

I;..-pffti
dS. (8)

Since the surface-integral of ddt^/on is zero over each of the closed surfaces except the

one surrounding m2 ,
we may ultimately confine the integration to this, and so obtain

-P+iff^dS2=f>h<t>i
()

Since the value of <pt
at mt is m-JAirr^, where r

lg denotes the distance between i1 and ,,

we obtain, for the part of the kinetic energy which varies with the relative positions of the

sources, the expression

JLsMs (10)
4ir r12

The quantities mu nu, ... are in the present problem equal to the fluxes j , x ', ... across

the sections of the respective tubes, so that (10) corresponds to the form T of the kinetic

*
Maxwell, Electricity and Magnetism, Art. 573.

t The theorem of this paragraph was given by Kirchhoff, l.c. ante. p. 52. See also Sir W.

Thomson,
' On the Forces experienced by Solids immersed in a Moving Liquid," Proc. R. S.

Edin., 1870 [Reprint, Art. xli.]; Boltzmann, "Ueber die Druckkrafte welche auf Binge wirksam

sind die in bewegte Flussigkeit tauchen," Crelle, t. Ixxiii. (1871).
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energy. The force apparently exerted by mx
on m

2 , tending to increase r12 , is therefore,

by Art. 142(11),

p' d m
l
m2_ p m

x
m2

4tt drn
'

rn
~

An' rn2

Hence, two sources of like sign attract, and two of unlike sign repel, with forces varying

inversely as the square of the distance*. This result, again, is easily seen to be in accord-

ance with general principles. It also follows independently from the electric analogy, the

tubes corresponding to Ampere's
'

solenoids.'

We here take leave of this branch of our subject. To avoid, as far as may
be, the suspicion of vagueness which sometimes attaches to the use of
'

generalized co-ordinates,' an attempt has been made in this Chapter to put
the question on as definite a basis as possible, even at the expense of some

degree of prolixity in the methods.

To some writers-f- the matter has presented itself as a much simpler one.

The problems are brought at one stroke under the sway of the ordinary

formulae of Dynamics by the imagined introduction of an infinite number of

'

ignored co-ordinates,' which would specify the configuration of the various

particles of the fluid. The corresponding components of momentum are

assumed all to vanish, with the exception (in the case of a cyclic region)

of those which are represented by the circulations through the several

apertures.

From a physical point of view it is difficult to refuse assent to such

a generalization, especially when it has formed the starting-point of all the

development of this part of the subject ;
but it is at least legitimate, and

from the hydrodynamical standpoint even desirable, that it should be

verified a posteriori by independent, if more pedestrian, methods.

Whichever procedure be accepted, the result is that the systems con-

templated in this Chapter are found to comport themselves (so far as the

'palpable' co-ordinates q1} q,, ... qn are concerned) exactly like ordinary

systems of finite freedom. The further development of the general theory

belongs to Analytical Dynamics, and must accordingly be sought for in books

and memoirs devoted to that subject. It may be worth while, however, to i

remark that the hydrodynamical systems afford extremely interesting and i

beautiful illustrations of the Principle of Least Action, the Reciprocal ;

Theorems of von Helmholtz, and other general dynamical theories.

*
Sir W. Thomson, I.e.

+ See Thomson and Tait, and Larmor, 11. cit. ante p. 185.



CHAPTER VII.

VORTEX MOTION.

145. Our investigations have thus far been confined for the most part
to the case of irrotational motion. We now proceed to the study of

rotational or
' vortex

'

motion. This subject was first investigated by von

Helmholtz*; other and simpler proofs of some of his theorems were after-

wards given by Lord Kelvin in the paper on vortex motion already cited in

Chapter III.

We shall, throughout this Chapter, use the symbols , ij, f to denote, as

in Chap, in., the components of the instantaneous angular velocity of a fluid

element, viz.

f=% _
aJ- -Hs-s> f_*lai-^ <1>

A line drawn from point to point so that its direction is everywhere
that of the instantaneous axis of rotation of the fluid is called a 'vortex-line.'

The differential equations of the system of vortex-lines are

dx _dy _dz .

T"V"T (1)

If through every point of a small closed curve we draw the corresponding
vortex-line, we mark out a tube, which we call a '

vortex-tube.' The fluid

contained within such a tube constitutes what is called a '

vortex-filament,'

or simply a '

vortex.'

Let ABC, A'B'C be any two circuits drawn on the surface of a vortex-

tube and embracing it, and let AA' be a connecting line

also drawn on the surface. Let us apply the theorem c<>
~^B

>

Art. 32 to the circuit ABCAA'C'B'A'A and the part jlpj
of the surface of the tube bounded by it. Since

I II I

l + mt) + n = / //-._/
at every point of this surface, the line-integral a.

J(udx + vdy + wdz),

*
"Ueber Integrate der hydrodynamischen Gleichungen welche den Wirbelbewegnngen

entsprechen," Crelle, t. lv. (1858) [Ges. Abh., t. i. p. 101].

L. 13
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taken round the circuit, must vanish
;

i.e. in the notation of Art. 31

/ {ABCA) + I(AA') + I {A'C'B'A') + I (A'A) = 0,

which reduces to I(ABCA) = I(A'FCA').

Hence the circulation is the same in all circuits embracing the same vortex-

tube.

Again, it appears from Art. 31 that the circulation round the boundary
of any cross-section of the tube, made normal to its length, is 2&)cr, where

to,
=

(
2 + 7

2 + *)*> is tne angular velocity of the fluid, and a the infinitely

small area of the section.

Combining these results we see that the product of the angular velocity

into the cross-section is the same at all points of a vortex. The doubled

product is conveniently taken as a measure of the 'strength' of the vortex*.

The foregoing proof is due to Lord Kelvin
;
the theorem itself was first

given by von Helmholtz, as a deduction from the relation

?f+ ?2 +?f_o (.3)
dx dy dz v '

which follows at once from the values of
, v> K given by (1). In fact writing,

in Art. 42 (1), f, i),
for U, V, W, respectively, we find

ff(lZ+n, + nOdS = 0, (4)

where the integration extends over any closed surface lying wholly in the

fluid. Applying this to the closed surface formed by two cross-sections of a

vortex-tube and the part of the walls intercepted between them, we find

(o 1a-1
= co2(r2> where tolt g>2 denote the angular velocities at the sections alf <x2 ,

respectively.

Lord Kelvin's proof shews that the theorem is true even when f, 77, are

discontinuous (in which case there may be an abrupt bend at some point of a
j

vortex), provided only that u, v, w are continuous.

An important consequence of the above theorem is that a vortex-lint

cannot begin or end at any point in the interior of the fluid. Any vortex-,

lines which exist must either form closed curves, or else traverse the fluid;

beginning and ending on its boundaries. Compare Art. 36.

The theorem of Art. 32 (5) may now be enunciated as follows: Th

circulation in any circuit is equal to the sum of the strengths of all th

vortices which it embraces.

146. It was proved in Art. 33 that in a perfect fluid whose densiti

is either uniform or a function of the pressure only, and which is subje"

There is here a divergence from prevalent usage; but the circulation round a vortex woi

seem to be the most natural measure of its intensity.
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to forces having a single-valued potential, the circulation in any circuit

moving with the fluid is constant.

Applying this theorem to a circuit embracing a vortex-tube we find that

the strength of any vortex is constant.

If we take at any instant a surface composed wholly of vortex-lines,

the circulation in any circuit drawn on it is zero, by Art. 32, for we have

1%-t mr} + n=0 at every point of the surface. The preceding Art. shews

that if the surface be now supposed to move with the fluid, the circulation

will always be zero in any circuit drawn on it, and therefore the surface wiD

always consist of vortex-lines. Again, considering two such surfaces, it is

plain that their intersection must always be a vortex-line, whence we derive

the theorem that the vortex-lines move with the fluid.

This remarkable theorem was first given by von Helmholtz for the case

of incompressibility ;
the preceding proof, by Lord Kelvin, shews that it

holds for all fluids subject to the conditions above stated.

The theorem that the circulation in any circuit moving with the fluid is

invariable constitutes the sole and sufficient appeal to Dynamics which it

cessary to make in the investigations of this Chapter. It is based on

the hypothesis of a continuous distribution of pressure, and (conversely)

implies this. For if in any problem we have discovered functions u, v, w of

x, y, z, t, which satisfy the kinematical conditions, then, if this solution is

to be also dynamically possible, the relation of the pressures about two

moving particles A, B must be given by the formula (2) of Art. 33, viz.

[
j^+ n -

hq^Y^-^j* (udx + vdy + wdz) (1)

It is therefore necessary and sufficient that the expression on the right hand

should be the same for all paths of integration (moving with the fluid) which

can be drawn from A to B. This is secured if, and only if, the assumed

values of u, v, w make the vortex-lines move with the fluid, and also make
the strength of every vortex constant with respect to the time.

easily seen that the argument is in no way impaired if the assumed

values of u, v, w make f, 77, discontinuous at certain surfaces, provided

only that u, v, w are themselves everywhere continuous.

On account of their historical interest, one or two independent proofs of the preceding
theorems may be briefly indicated, and their mutual relations pointed out.

Of these perhaps the most conclusive is based upon a slight generalization of some

equations given originally by Cauchy in the introduction to his great memoir on "Waves*,
and employed by him to demonstrate Lagrange's velocity-potential theorem.

*
I.e. ante p. 15.

132
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The equations (2) of Art. 15, yield, on elimination of the function x by cross-differentia-

tion,

du dx du dx dv dy do dy dw dz dw dz _ dw dv

db do dc db db dc dc db db dc dc db 96 dc
'

(where u, v, w have been written in place of dx/dt, dyfdt, dz/dt, respectively), with two

symmetrical equations. If in these equations we replace the differential coefficients of

u, v, w with respect to a, b, c, by their values in terms of differential coefficients of the

same quantities with respect to x, y, z, we obtain

> d(y>*) . dfes) - J{x,y) _t \

*d(b,c)
+v

d(b,c)
+i

d(b,c)~*
0,

\

^d{c~^)
+V

dJc^)
+C

d(c, a)-^\
l '

> d(y g)
,

dfes) d(x,y)_
*
d (a, b)

+v
8 (a, b)

+i
d (a, b)~

W
)

If we multiply these by dxfda, dx/db, dx/dc, in order, aud add, then, taking account of

the Lagrangian equation of continuity (Art. 14 (1)) we deduce the first of the following

three symmetrical equations :

p Po 8a p db p dc
'

r
L = io

di + jio^j + Co di (

(3)
P Po 9 Po 8& Po 8c

'[

= k ^. + i
dl + k^

p p da p db p dc' )

In the particular case of an incompressible fluid (p
= p ) these differ only in the use of I

the notation
, 77,

from the equations given by Cauchy. They shew at once that if the
]

initial values
,

j?
, f f the component rotations vanish for any particle of the fluid, then I

, 77, f are always zero for that particle. This constitutes in fact Cauchy's proof of Lagrange's j

theorem.

To interpret (3) in the general case, let us take at time t=0 a, linear element coincident

with a vortex-line, say

8a, 86, Sc=^, f3, 6^,
Po Po Po

where e is infinitesimal. If we suppose this element to move with the fluid, the equations

(3) shew that its projections on the co-ordinate axes at any other time will be given by

8x, 8y, 8z=A, r*. S,' y
P P P

i.e. the element will still form part of a vortex-line, and its length (8s, say) will vary 1

co/p, where co is the resultant angular velocity. But if <r be the cross-section of a vorte;j

filament having 8s as axis, the product p<r8s is constant with regard to the time. Hen<
j

the strength 2coo- of the vortex is constant*.

The proof given originally by von Helmholtz depends on a system of three equatioi

* See Nanson, Mess, of Math., t. iii. p. 120 (1874); Kirchhoff, Mechanik, c. xv. (187(

Stokes, Math, and Phys. Papers, t. ii. p. 47 (1883).
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which, when generalized so as to apply to any fluid in which p is a function of p only,

become*

Z) \pj p c.r p cy p cz
'

# / Y_1 3w 5 3w dtp

2)2 \p/ p 8^ p dy p cz
'

1 (4)

These may be obtained as follows. The dynamical equations of Art. 6 may be written,

when a force-potential Q exists, in the forms

dw
ot

.(5)

=
2ur) + 2v| 1

provided x
.=
ff+w+a , .(6)

and y
s=tt2+w2

+tp*. From the second and third of these we obtain, eliminating x Dv

cross-differentiation,

'3p dw\8|^ a r

3*

3 ai /a aA a M du jiv
dz)

Remembering the relation

and the equation of continuity

dl +h + dJ- (7)

Dp /a dv dw
Dt +p

\dx
+

dy'

+
dz~)=o,

.(8)

we easily deduce the first of equations (4).

To interpret these equations we take, at time t,
a linear element whose projections on

the co-ordinate axes are

&r, by, 8z=J, f^, S,
P P P

.(9)

where e is infinitesimal. If this element be supposed to move with the fluid, the rate at

which bx is increasing is equal to the difference of the values of at the two ends, whence

Dbx du ndu t Ci(

Dt p ex p cy p cz

It follows, by (4), that

(*-*)-* (*-?)-* (--9- (10>

Von Helmholtz concludes that if the relations (9) hold at time t, they will hold at time

t+8t, and so on, continually. The inference is, however, not quite rigorous; it is in fact

Nanson, I.e.
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open to the criticisms which Stokes* directed against various defective proofs of Lagrange's

velocity-potential theorem t.

By way of establishing a connection with Lord Kelvin's investigation we may notice

that the equations (2) express that the circulation is constant in each of three infinitely

small circuits initially perpendicular, respectively, to the three co-ordinate axes. Taking,
for example, the circuit which initially bounded the rectangle 8b 8c, and denoting by A, B,C
the areas of its projections at time t on the co-ordinate planes, we have

A J^8b8c, BJ^\8b8c, C=l%V8b8c,c (o, c) o (b, c) d (b, c)

so that the first of the equations referred to is equivalent! to

^A+r,B+ CC=^8b8c (11)

147. It is easily seen by the same kind of argument as in Art. 41 that

no continuous irrotational motion is possible in an incompressible fluid filling

infinite space, and subject to the condition that the velocity vanishes at

infinity. This leads at once to the following theorem :

The motion of a fluid which fills infinite space, and is at rest at infinity,

is determinate when we know the values of the expansion (0, say) and of the

component angular velocities
, 77, ,

at all points of the region.

For, if possible, let there be two sets of values, u1} vlt w1} and u2 ,
v2 ,

w.2>

of the component velocities, each satisfying the equations

'du dv dw /n ,

Tx +Ty + Yz
= e

dw dv af. du dw dv du ., ...

d^~dz
=^ dz~Yx

=^
dx~dy

=^ (2)

throughout infinite space, and vanishing at infinity. The quantities

u' = v 1 u.2 ,
v' = v1 v2 ,

w = iv
l

w2 ,

will satisfy (1) and (2) with 0, ^,f= 0, and will vanish at infinity. Hence

in virtue of the result above stated, they will everywhere vanish, and ther<

is only one possible motion satisfying the given conditions.

*
I.e. ante p. 15.

t It may be mentioned that, in the case of an incompressible fluid, equations somewhf

similar to (4) had been established by Lagrange, Miscell. Taur., t. ii. (1760) [Oenvres, t. i. p. 412

The author is indebted for this reference, and for the above remark on von Helmholtz' invest

gation, to Prof. Larmor. Equations equivalent to those given by Lagrange were obtain*

independently by Stokes, I.e., and made the basis of a rigorous proof of the velocity-potenti ,

theorem.

J Nanson, Mess, of Math., t. vii. p. 182 (1878). A similar interpretation of von Helmhol i

equations was given by the author of this work in the Mess, of Math., t. vii. p. 41 (1877).

Finally it may be noted that another proof of Lagrange's theorem, based on elements

dynamical principles, without special reference to the hydrokinetic equations, was indicated I"

Stokes, Camb. Trans., t. viii. [Math, and Phys. Papers, t. i. p. 113], and carried out by Li I

Kelvin in his paper on Vortex Motion.
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In the same way we can shew that the motion of a fluid occupying any
United simply-connected region is determinate when we know the values of

the expansion, and of the component rotations, at every point of the region,

and the value of the normal velocity at every point of the boundary. In the

case of a multiply-connected region we must add to the above data the values

of the circulations in the several independent circuits of the region.

148. If, in the case of infinite space, the quantities 0, , rj,
all vanish

beyond some finite distance of the origin, the complete determination of

to in terms of them can be effected as follows*.

The component velocities due to the expansion can be written down at

once from Art. 56 (1), it being evident that the expansion & in an element

hc'hy'Zz is equivalent to a simple source of strength ffhx'hy'hz'. We thus

obtain

d d$> 3<I>""
S?

V=
-ty>

W =
-dI> (1)

where 0=
LSil~r

d^d"'d/ (2)

r denoting the distance between the point {xf, y , z') at which the volume-

element of the integral is situate and the point (x, y, z) at which the values

, w are required, viz.

r={(x-x'Y + (y-yy + (z-zy}i,

and the integration including all parts of space at which ff differs from zero.

To find the velocities due to the vortices, we note that when there is no

expansion, the flux across any two open surfaces bounded by the same curve

as edge will be the same, and will therefore be determined solely by the

configuration of the edge. This suggests that the flux through any closed

curve may be expressed as a line-integral taken round the curve, say

f(Fdx + Gdy + Hdz) (3)

On this hypothesis we shall have, by the method of Art. 31,

dy dz
'

dz dx
'

~
dx dy

To test the assumption, we must have

dw_d = l(dF+
dG

+
dH\

VtF
cy dz dx\dx dy dz )

'

The investigation which follows is substantially that given by Helmholtz. The kine-

matical problem in question was first solved, in a slightly different manner, by Stokes,
" On

the Dynamical Theory of Diffraction," Camb. Tram., t. ix. (1849) [Math, and Phys. Papers, t. ii.

PP. 2-54...].
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with two similar equations. The quantities F, G, H will in any case be

indeterminate to the extent of three additive functions of the forms

dx/dx, dx/dy, dx/dz, respectively ;
and we may, if we please, suppose x to

be chosen so that

dF dG dH ,. ..

35
+

ay
+^ =

<5 >

in which case V 2F=-2^, V*~G = -2V ,
V 2 T=-2 (6)

Particular solutions of these equations are obtained by equating F, G, H to

the potentials of distributions of matter whose volume-densities are /27r,

77/2-77-, "/27r, respectively ;
thus

0)

where the accents attached to , 77, are used to distinguish the values of

these quantities at the point (x, y', z). The integrations are to include,

of course, all places where
, 77, differ from zero.

Moreover, since d/dx .r~
1 = d/dx' . r_1

,
the formulae (7) make

dF dG dH_
ox dy dz 2ttJJJ V

s dx r
' ''

dy'

The right-hand member vanishes, by the theorem of Art. 42 (4), since

dx dy dz

everywhere, whilst 1% + mr) +n=
at the surfaces of the vortices (where , 77, may be discontinuous), and

, 77, vanish at infinity. Hence no additions to the values (7) of F, G, H
are necessary in order that (5) may be satisfied.

The complete solution of our problem is obtained by superposition of the

results contained in (1) and (4), viz.

== _d dH_dG \

dx dy dz
'

a$ dF dH

dz dx dy
''

where <!>, F, G, H have the values given in (2) and (7).

When the region occupied by the fluid is not unlimited, but is bounded

(in whole or in part) by surfaces at which the normal velocity is given, and

1 [[[(, 3 1
/ 3 1 3 1\.m U/
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when further (in the case of a cyclic region) the value of the circulation

in each of the independent circuits is prescribed, the problem may by a

similar analysis be reduced to one of irrotational motion, of the kind

considered in Chap, in., and there proved to be determinate. This may be

left to the reader, with the remark that if the vortices traverse the region,

beginning and ending on the boundary, it is convenient to imagine them

continued beyond it, or along the boundary, in such a manner that they form

re-entrant filaments, and to make the integrals (7) refer to the complete

system of vortices thus obtained. On this understanding the condition (5)

will still be satisfied.

There is an exact correspondence between the analytical relations above developed and

those which obtain hi the theory of Electro-magnetism. If, in the equations (1) and (2)

of Art. 147, we write

o> ft y, pi p, ? r

for , v, w, 6, 2, 2* 2

respectively, we obtain

?a
,
?

,

;~y

.(9)

dx dy

8/3 da Cy ?/3 Ca

'"'/ dz
^'

dz ex "' ex ey
'

which are the fundamental relations of the theory referred to ; viz. a, , y are the compo-
nents of magnetic force, p, q, r those of electric current, and p is the volume-density of the

imaginary magnetic matter by which any magnetization present in the field may be repre-

sented*. Hence, the vortex-filaments correspond to electric circuits, the strengths of the

vortices to the strengths of the currents in these circuits, sources and sinks to positive and

negative magnetic poles, and, finally, fluid velocity to magnetic force t.

The analogy will of course extend to all results deduced from the fundamental relations ;

thus, in equations (8) * corresponds to the magnetic potential and F, G, H to the com-

ponents of '

electro-magnetic momentum.'

149. To interpret the result contained in Art. 148 (8), we may calculate

the values of u, v, w due to an isolated re-entrant vortex-filament situate in an

infinite mass of incompressible fluid which is at rest at infinity.

Since = 0, we shall have <E> = 0. Again, to calculate the values of

F, G, H, we may replace the volume-element Sx'By'Sz' by <r'8s', where 8s' is

an element of the length of the filament, and a' its cross-section. Also

m ,daf , ,dy yi ,dz

r;gM ^"W r=w
rf?'

Cf. Maxwell, Electricity and Magnetism, Art. 607. The comparison has been simplified by
the adoption of the ' rational' system of electrical units advocated by Heaviside, Electrical Papers,

London, 1892, t. i. p. 199.

+ This analogy was first pointed out by Heimholtz
;

it has been extensively utilized by Lord
Kelvin in his papers on Electrostatics and Magnetism (cited ante p. 36).
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where a> is the angular velocity of the fluid. Hence the formulae (7) of

Art. 148 become

/w _[*; B-2-12- (i)
4ttJ r 4ttJ r 4ttJ r

where k,
=

2&>'cr', measures the strength of the vortex, and the integrals are

to be taken along the whole length of the filament.

Hence, by Art. 148 (4), we have

k f/8' 1 ,, d 1 A=
4^JW,r--^-^r-^j'

with similar results for v, w. We thus find*

k Udy z z' dz y y'\ ds '

/c f/^' * dx z z'\ ds' \

V
"47rJW"^ ds

y ~T~)~?:, [

k Udx'y y dy'x x'\ds~
4nrJ\ds' r ds' r J r*

If An, Av, Aw denote the parts of these expressions which involve the

element 8s of the filament, it appears that the resultant of Am, Av, Aw isj

perpendicular to the plane containing the direction of the vortex-line
atj

(x', y', z) and the line r, and that its sense is that in which the point (x, y, z)\

would be carried if it were attached to a rigid body rotating with the fluid

element at (x, y', z'). For the magnitude of the resultant we have

{(AiiY + (Avy + (Awy}l =^
S

-^^, (3)
j

where % is the angle which r makes with the vortex-line at (x', y', z').

With the change of symbols indicated in the preceding Art. this result becomes identic;

with the law of action of an electric current on a magnetic polet.

Velocity-Potential due to a Vortex.

150. At points external to the vortices there exists a velocity-potenti;:

whose value may be obtained as follows. Taking for shortness the case of

single re-entrant vortex, we have from the preceding Art., in the case of ;

incompressible fluid,

-*l<iV-b\-) (1)l
dy'r

* These are equivalent to the forms obtained by Stokes, I.e. ante p. 199.

t Amp&re, Theorie mathematique des phenombies electro-dynamiques, Paris, 1826.

!
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By Stokes' Theorem (Art. 32 (6)) we can replace a line-integral extending
round a closed curve by a surface-integral taken over any surface bounded

bv that curve : viz. we have, with a slight change of notation,

If we put P = 0, Q = ^7-, R = -~-,r oz r cy r

we find

cy cz cj "dz" dx' dx'dy' r
'

8-c' dy dx'dz' r
'

so that ( 1 ) may be written

=jl [[(i J_ + mA + JL\A 1 d'
47TJJ \ 8x' By' 8// ckc' r

Hence, and by similar reasoning, we have, since d/dx' . r-1 = d/dx . r-1 ,

a</> a<f> 8<

ox cy oz

where * =s//(4 + | + I)?
*' <*>

Here /, m, n denote the direction-cosines of the normal to the element BS' of

a surface bounded by the vortex-filament.

The formula (3) may be otherwise written

"cosS^

-cff dS', (4)

where ^ denotes the angle between r and the normal (7, m, n). Since

cos#8,S" r3 measures the elementary solid angle subtended by S' at (x, y, z\
see that the velocity-potential at any point, due to a single re-entrant

vortex, is equal to the product of k tt into the solid angle which a

surface bounded by the vortex subtends at that point.

Since this solid angle changes by -hr when the point in question describes

a circuit embracing the vortex, we verify that the value of
<f> given by (4) is

cyclic, the cyclic constant being k. Cf. Art. 145.

It may be noticed that the expression in (4) is equal to the flux (in the

negative direction) through the aperture of the vortex, due to a point-source
of

strength k at the point (x, y, z).

Comparing (4) with Art. 56 (4) we see that a vortex is, in a sense,

equivalent to a uniform distribution of double sources over any surface

bounded by it. The axes of the double sources must be supposed to be

everywhere normal to the surface, and the density of the distribution to be
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equal to the strength of the vortex. It is here assumed that the relation

between the positive direction of the normal and the positive direction of

the axis of the vortex-filament is of the 'right-handed' type. See Art. 31.

Conversely, it may be shewn that any distribution of double sources over

a closed surface, the axes being directed along the normals, may be replaced

by a system of closed vortex-filaments lying in the surface *. The same thing
will appear independently from the investigation of the next Art.

Vortex-Sheets.

151. We have so far assumed u, v, w to be continuous. We may now

shew how cases where surfaces of discontinuity present themselves may be

brought within the scope of our theorems.

The case of a discontinuity in the normal velocity alone has already

been treated in Art. 58. If u, v, w denote the component velocities on one

side, and u', v', w those on the other, it was found that the circumstances

could be represented by imagining a distribution of simple sources, with

surface-density

I (u u) + m (?/ v) + n (w' w),

where I, m, n denote the direction-cosines of the normal drawn towards the

side to which the accents refer.

Let us next consider the case where the tangential velocity (only) is

discontinuous, so that

I {u! u) + m(v'v) + n(w'-w) = (1)

We will suppose that the lines of relative motion, which are defined by the

differential equations

dx dy dz ,

u' u v' v w' w'

are traced on the surface, and that the system of orthogonal trajectories to

these lines is also drawn. Let PQ, P'Q' be linear elements drawn close to

the surface, on the two sides, parallel to a line of the system (2), and let PP'

and QQ' be normal to the surface and infinitely small in comparison with PQ
or P'Q'. The circulation in the circuit P'Q'QP will then be equal to

(q' q) PQ, where q, q' denote the absolute velocities on the two sides. This

is the same as if the position of the surface were occupied by an infinitely

thin stratum of vortices, the orthogonal trajectories above-mentioned being

the vortex-lines, and the angular velocity co and the (variable) thickness 8n
\

of the stratum being connected by the relation

2a)8n = q'-q (3)

*
Cf. Maxwell, Electricity and Magnetism, Arts. 485, 652.



150-151] Vortex-Sheets 205

The same result follows from a consideration of the discontinuities which

occur in the values of u, v, w as determined by the formulae (4) and (7) of

Art. 148, when we apply these to the case of a stratum of thickness hn within

which
, t),

are infinite, but so that g&n, rj&n, $n are finite*.

It was shewn in Arts. 147, 148 that any continuous motion of a fluid

filling infinite space, and at rest at infinity, may be regarded as due to

a suitable arrangement of sources and vortices distributed with finite density.

We have now seen how by considerations of continuity we can pass to the

case where the sources and vortices are distributed with infinite volume-

density, but finite surface-density, over surfaces. In particular, we may take

the case where the infinite fluid in question is incompressible, and is divided

into two portions by a closed surface over which the normal velocity is

continuous, but the tangential velocity discontinuous, as in Art. 58 (12).

This is equivalent to a vortex-sheet; and we infer that every continuous

irrotational motion, whether cyclic or not, of an incompressible substance

occupying any region whatever, may be regarded as due to a certain

distribution of vortices over the boundaries which separate it from the rest

of infinite space. In the case of a region extending to infinity, the distri-

bution is confined to the finite portion of the boundary, provided the fluid be

at rest at infinity.

This theorem is complementary to the results obtained in Art. 58.

The foregoing conclusions may be illustrated by means of the results of Art. 91. Thus
when a normal velocity SH was prescribed over the sphere r=a, the values of the velocity-

potential for the internal and external space were found to be

-2(0-4,
and ~

;fi(*r*,
respectively. Hence if df be the angle which a linear element drawn on the surface

subtends at the centre, the relative velocity estimated in the direction of this element

will be

2m+ 1 cS

n (n+ 1) n

The resultant relative velocity is therefore tangential to the surface, and perpendicular to

the contour lines (Sn= const.) of the surface-harmonic , which are therefore the vortex-

lines.

For example, if we have a thin spherical shell filled with and surrounded by liquid,

moving as in Art. 92 parallel to the axis of x, the motion of the fluid, whether internal or

external, will be that due to a system of vortices arranged in parallel circles on the sphere ;

the strength of an elementary vortex being proportional to the projection, on the axis of x,
of the breadth of the corresponding zone of the surface t.

*
Helmholtz, I.e. ante p. 193.

t The same statements hold also for an ellipsoidal shell moving parallel to one of its

principal axes. See Art. 114.
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Impulse and Energy of a Vortex-System.

152. The following investigations relate to the case of a vortex-system
of finite dimensions in an incompressible fluid which fills infinite space and

is at rest at infinity.

If X', Y', Z' be components of a distribution of impulsive force (in

general cyclic) which would generate the actual motion {u, v, w) instan-

taneously from rest, we have by Art. 12 (1)

X ^-u, Y ^~=v, Z = w, (1)
p dx p dy p 6z

where tsr is the impulsive pressure. The problem of finding X', Y', Z', and

-GJ-,
in terms of u, v, iu, so as to satisfy these three equations, is to a certain

extent indeterminate
;
but a sufficient solution for our purpose may be

obtained as follows.

Let us imagine a simply-connected surface S to be drawn enclosing

all the vortices. Over this surface, and through the external space,

let us put
=^ (2)

where
(f>

is the velocity-potential of the vortex-system, determined as in

Art. 150. Inside S let us take as the value of ct any single-valued function

which is finite and continuous, coincides with (2) at S, and also satisfies the]

equation
for d<f>

^-=p^~, (3)dn r on v '

at S, where Bn denotes as usual an element of the normal. It follows from

these conditions, which can evidently be satisfied in an infinite number o)

ways, that the space-derivatives dsr/dx, d^jdy, d^rjdz will be continuous at th<

surface 8. The values of X', Y', Z' are now given by the formulae (1); the;i

vanish at the surface S, and at all external points.

The force- and couple-equivalents of the distribution (X' , Y', Z') constitute

the '

impulse
'

of the vortex-system. We are at present concerned only wit

the instantaneous state of the system, but it may be recalled that, when n

extraneous forces act, this impulse is, by the argument of Art. 119, constar

in every respect.

Now, considering the matter inclosed within the surface S, we fin-

resolving parallel to x,

jjjpX'dxdydz = pffudxdydz pffl<f)dS, (4) J

if I, m, n be the direction-cosines of the inwardly-directed normal to i

element 8S of the surface. Let us first take the case of a single vorte

filament of infinitely small section. The fluid velocity being everywhe,
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finite and continuous, the parts of the volume-integral on the right-hand

side of (4) which are due to the substance of the vortex itself may be

neglected in comparison with those due to the remainder of the space

included within S. Hence we may write

{ffudxdydz
=
-jff

d

^dxdydz
=

jfl<f>dS+
k

ffldS',
(5)

where <p
has the value given by Art. 150 (4), k denoting the cyclic constant

of
<j>.

and BS' an element of any surface bounded by the vortex. Sub-

stituting in (4), we infer that the components of the impulse parallel to the

co-ordinate axes are

KpjfldS', KpijmdS', KpjjndS' (6)

Again, taking moments about Ox,

jij p(yZ' zY') dxdydz = pfjjiyw zv) dxdydz pjj(ny mz) <f>dS. (7)

For the same reason as before, we may substitute, for the volume-integral on

the right-hand side,

|*
- *

!*) dxdydz = fj(ny
- mz) <pdS + k

jj(ny
- mz) dS'. . . .(8)

Hence, and by symmetry, we find, for the moments of the impulse about the

co-ordinate a\

Kpjj(ny-mz)dS', Kpjj(lz
- nx)dS\ KPjj(mx-ly)dS'. ...(9)

The surface-integrals contained in (6) and (9) may be replaced by

line-integrals taken along the vortex. In the case of (6) it is obvious that

the coefficients of icp are the projections on the co-ordinate axes of any
area bounded by the vortex, so that the components in question take

the forms

*/('-'* *-/('-'S*- H(^-^h'-
(10)

the similar transformation of (9) we must have recourse to Stokes'

Theorem : we obtain without difficulty the forms

t'pjw+^^M, hKpj(z
,2

+^)^<K> to/^+y*)^. ...(id

From (10) and (11) we can derive by superposition the components of the

force- and couple-resultants of any finite system of vortices. Denoting these

by P. Q, R, and L, M, N, respectively, we find, putting

k = 2<o'a,

,dx' w ,dy' , ,dz' w



208 Vortex Motion [chap, vii

and replacing the volume-element a'Bs' by Bx'By'Bz,

P = P JJJ(y?
-

*i) dxdydz, L = p \tittf + z*) dxdydz, \

Q = pfff(z%-xO dxdydz, M= p $jj(z* +x*)>n dxdydz, I ...(12)

X = P J!KI - y%) dxdydz, N=p JXJV + y*) $dxdydz, j

where the accents have been dropped as no longer necessary*

153. Let us next consider the energy of the vortex-system. It is easily

proved that under the circumstances presupposed, and in the absence of

extraneous forces, this energy will be constant. For if T be the energy
of the fluid bounded by any closed surface S, we have, putting V=0 in

Art. 11 (5),

DT
-y

=
jj(lu + mv + nw) pdS (1)

If the surface S enclose all the vortices, we may put

*-f*-w+ (2)

and it easily follows from Art. 150 (4) that at a great distance R from the

vortices p will be finite, and lu + mv + nw of the order R~3
, whilst when the

surface S is taken wholly at infinity, the elements BS vary as R2
. Hence,

ultimately, the right-hand side of (1) vanishes, and we have

T = const (3)

We proceed to investigate one or two important kinematical expressions
for T, still confining ourselves, for simplicity, to the case where the fluid

(supposed incompressible) extends to infinity, and is at rest there, all the

vortices being within a finite distance of the origin.

The first of these expressions is indicated by the electro-magnetic analogy

pointed out in Art. 148. Since 0=0, and therefore <3> = 0, we have

2T= p j*jj(w
2 + v-+ w2

) dxdydz

by Art. 148 (4). The last member may be replaced by the sum of a surface-]

integral

p jj{F(mw nv) + G (nu Iw) +H(lv mu)} dS,

and a volume-integral

* These expressions were given by J. J. Thomson, On the Motion of Vortex Rings (Adam

Prize Essay), London, 1883, pp. 5, 6.
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At points of the infinitely distant boundary, F, G, H are ultimately of the

order R~2
,
and u, v, w of the order R~3

,
so that the surface-integral vanishes,

and we have

T=plJj(Fg+Gy + Hr)da:dydz, (4)

or, substituting the values of F, G, H from Art. 148 (7),

T =
Ifjjff&-2?LK dxdydzdx'dy'dz', (5)

where each volume-integration extends over the whole space occupied by
the vortices.

A slightly different form may be given to this expression as follows.

Regarding the vortex-system as made up of filaments, let 8s, 8s' be elements

of length of any two filaments, a, a' the corresponding cross-sections, and

to. w the corresponding angular velocities. The elements of volume may be

taken to be o8s and o-'oV, respectively, so that the expression following the

integral signs in (5) is equivalent to

cos e s ,
/J}

,

T

where e is the angle between 8s and 8s'. If we put 2a>a = K, 2(d'<t' = k,

we have

r-w/J^** (6)

where the double integral is to be taken along the axes of the filaments,

and the summation S includes (once only) ever)" pair of filaments which

are present.

The factor of p iu (6) is identical with the expression for the energy of a system of

electric currents flowing along conductors coincident in position with the vortex-filaments,

with strengths k, k', ... respectively*. The above investigation is in fact merely an

inversion of the argument given in treatises on Electro-magnetism, whereby it is proved
that

_L 2ii'
j j

-~
dsds'=$ [[[(cP +p+tfdxdydz,

i,
i' denoting the strengths of the currents in the linear conductors whose elements are

denoted by 8s, 8s', and a, $, y the components of magnetic force at any point of the field.

The theorem of this Art. is purely kinematical, and rests solely on the assumption that

the fimctions u, v, w satisfy the equation of continuity,

<ht dv <he ^
~- + ~r + =0,ex cy cz

throughout infinite space, and vanish at infinity. It can therefore by an easy generaliza-

tion be extended to a case considered in Art. 143, where a liquid is supposed to circulate

* The ' ratioual
'

system of electrical units being understood ; see ante, p. 201.

L. 14
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irrotationally through apertiires in fixed solids, the values of zi, v, w being now taken to be

zero at all points of space not occupied by the fluid. The investigation of Art. 151 shews

that the distribution of velocity thus obtained may be regarded as due to a system of

vortex-sheets coincident with the bounding surfaces. The energy of this system will be

given by an obvious adaptation of the formula (3) above, and will therefore be proportional
to that of the corresponding system of electric current-sheets. This proves a statement

made by anticipation in Art. 144.

Under the circumstances stated at the beginning of Art. 152, we have

another useful expression for T; viz.

T= 2p /J] [u (y^-zv ) + v -
ar) + w (xV

- y)) dxdydz (7)

To verify this, we take the right-hand member, and transform it by the

process already so often employed, omitting the surface-integrals for the same

reason as in the preceding Art. The first of the three terms gives

[[[ { fdv du\ fdu dw\) , . .

p )ir V \s> -%)-' U"j
-
s)\***

= p I \\\ (vy + wz) ^
w2

[ dxdydz.

Transforming the remaining terms in the same way, adding, and making use

of the equation of continuity, we obtain

9
JJj \

+l,2 + w2 + XU: + yv

dy-

+ zw
^z)

dxdVdz>

or, finally, on again transforming the last three terms,

2p IfK^
2 + v~ + w*) dxdydz.

In the case of a finite region the surface-integrals must be retained*

This involves the addition to the right-hand side of (7) of the term

P II i(l
u + mv + nw) (xu + yv + zw) %(lx + my + nz) q-\ dS, (8)

where q*
= v? + v2 + w'-. This simplifies in the case of a fixed boundary.

The value of the expression (7) must be unaltered by any displacement

of the origin of co-ordinates. Hence we must have

JjJ"(fl W7)) dxdydz = 0, jjj(w^ wf) dxdydz = 0, jjj(ur] v%) dxdydz = 0.

(9)

These equations, which may easily be verified by partial integration, follow also fromj

the consideration that the components of the impulse parallel to the co-ordinate axes must
j

be constant. Thus, taking first the case of a fluid enclosed in a fixed envelope of finite

size, we have, in the notation of Art. 152,

P= p \\\udxdydz- p jftydS, (10)

*
J. J. Thomson, I.e.
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whence ^=p Jj^dxdydz-pjJ ig
dS

= ~P
J jf

C

dxdydz+2pjj^-v^dxdydz-pjfl^dS, (11)

:. 146 (5). The first and third terms of this cancel, since at the envelope we have

X=c<p ci - Hence f r an7 re-entrant system of vortices enclosed in a fixed vessel, we have

jj^ZpJHivC-^dxdydz, (12)

with two similar equations. It has been proved in Art. 119 that if the containing vessel

be infinitely large, and infinitely distant from the vortices, P is constant. This gives the

first of equations (9).

Conversely from (9), established otherwise, we could infer the constancy of the com-

ponents P, Q, R of the impulse*.

Rectilinear Vortices.

154. When the motion is in two dimensions x, y we have w = 0, whilst

re functions of x, y, only. Hence =0, 17
= 0, so that the vortex-lines

-rraigbt lines parallel to z. The theory then takes a very simple form.

The formulae (8) of Art. 148 are now replaced by

JJ d d

dx dy' dy dx
' {1>

the functions
<f>, yfr being subject to the equations

Vfc/>
= -0, V^2C (2)

where V *=^ + 7T*>oar oy
3

and to the proper boundary-conditions.

In the case of an incompressible fluid, to which we will now confine our-

jlves, we have

<hjr (fy ._.

where
-fy

is the stream-function of Art. 59. It is known from the theory
:ractions that the solution of

V^ =
2r, (4)

v being a given function of x, y, is

^ = ~jj^\ogrdxdy'
+ yfr0f (5)

where f denotes the value of at the point (x\ y), and r stands for

{(x-xy+ (y- yy}i.
*

Cf. J. J. Thomson, Motion of Vortex Rings, p. 5.

142
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The 'complementary function'
yfr may be any solution of

^0 = 0; (6)

it enables us to satisfy the boundary-conditions.

In the case of an unlimited mass of liquid, at rest at infinity, \Jr
is con-

stant. The formulae (3) and (5) then give

u=-lfj?^dx'dy, v-ljfc^-dx'dy' (7)
I

Hence a vortex-filament whose co-ordinates are x, y and whose strength is k

contributes to the motion at (x, y) a velocity whose components are

k y y , k x x
o -*-zr-' and - -
Z7T r- Zir r-

This velocity is perpendicular to the line joining the points (x, y), (x , y'\

and its amount is c/2nr.

Let us calculate the integrals jfu^dxdy, and jjv^dxdy, where the integra-

tions include all portions of the plane xy for which does not vanish. We
have

ffutdxdy
= -

IjfjJK'
V
~/- dxdydx'dy',

where each double integration includes the sections of all the vortices. Now,}

corresponding to any term

& Vf- dxdydx'dy'

of this result, we have another

^y^ dxdydx'dy',

and these two neutralize each other. Hence, and by similar reasoning,

jju^dxdy=0, tfvdxdy = (8) J

If as before we denote the strength of a vortex by tc, these results me
J

be written

1ku=(), %kv = (9)

Since the strength of each vortex is constant with regard to the time,

equations (9) express that the point whose co-ordinates are

_ %kx _ 2,/cy nAJ
Zk Zk

is fixed throughout the motion.

i

!

i
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This point, which coincides with the centre of inertia of a film of matter

distributed over the plane xy with the surface-density , may be called the
' centre

'

of the system of vortices, and the straight line parallel to z of which

it is the projection may be called the 'axis' of the system. If 1k = 0, the

centre is at infinity, or else indeterminate.

<- M **

155. Some interesting examples are furnished by the case of one or

more isolated vortices of infinitely small section. Thus:

1. Let us suppose that we have only one vortex-filament present, and

that the rotation has the same sign throughout its infinitely small

section. Its centre, as just defined, will lie either within the substance of

the filament, or infinitely close to it. Since this centre remains at rest, the

filament as a whole will be stationary, though its parts may experience

relative motions, and its centre will not necessarily lie always in the same

element of fluid. Any particle at a finite distance r from the centre of the

filament will describe a circle about the latter as axis, with constant velocity

/27rr. The region external to the vortex is doubly-connected; and the

circulation in any (simple) circuit embracing it is of course *. The

irrotational motion of the surrounding fluid is the same as in Art. 27 (2).

2. Next suppose that we have two vortices, of strengths k1; k?, respec-

tively. Let A, B be their centres, the centre of the system. The motion

of each filament as a whole is entirely due to the other, and is therefore

always perpendicular to AB. Hence the two filaments remain always at the

same distance from one another, and rotate with constant angular velocity

about 0, which is fixed. This angular velocity is easily found
;
we have

only to divide the velocity of A (say), viz. ^{Zir . AB), by the distance A0,
where

A0 = *^-AB,
*1 + *S

and so obtain ~ ^- .

If Klt k be of the same sign, i.e. if the directions of rotation in the two

vortices be the same, lies between A and B; but if the rotations be of

opposite signs, lies in AB, or BA, produced.

If *! = k*, is at infinity; but it is easily seen that A, B move with

equal velocities /c
1/(27r .AB) at right angles to AB, which remains fixed in

direction. Such a combination of two equal and opposite vortices may be

called a '

vortex-pair.' It is the two-dimensional analogue of a circular

vortex-ring (Art. 160), and exhibits many of the properties of the latter.

The stream-lines of a vortex-pair form a system of coaxal circles, as shewn
n

p. 68, the vortices being at the limiting points ( a, 0). To find the



214 Vortex Motion [chap. VII

relative stream -lines, we superpose a general velocity equal and opposite to

that of the vortices, and obtain, for the relative stream-function

\jr
=

2tt 2a
+ l0^ (1)

in the notation of Art. 64, 2. The annexed figure (which is turned through
90 for convenience) shews a few of the lines. The line ty

= Q consists partly
of the axis of y, and partly of an oval surrounding both vortices.

It is plain that the particular portion of fluid enclosed within this oval
J

accompanies the vortex-pair in its career, the motion at external
pointfj

being exactly that which would be produced by a rigid cylinder having!

the same boundary; cf. Art. 71. The semi-axes of the oval are 2*09 a and

T73 a, approximately*.

A difficulty is sometimes felt, in this as in the analogous instance of a vortex-rin

in understanding why the vortices should not be stationary. If in the figure on p. 6

the filaments were replaced by solid cylinders of small circular section, the latter migh
indeed remain at rest, provided they were rigidly connected by some contrivance whic-

did not interfere with the motion of the fluid; but in the absence of such a connectio!

they would in the first instance be attracted towards one another, on the princip

explained in Art. 23. This attraction is however neutralized if we superpose a generf

velocity V of suitable amount in the direction opposite to the cyclic motion half-w;;

between the cylinders. To find V, we remark that the fluid velocities at the two poinj

(ac, 0), where c is small, will be approximately equal in absolute magnitude, provided

V+
2irC 4n- 2ttc 4tt

'

*
Cf. Sir W. Thomson, "On Vortex Atoms," Phil. Mag. (4), t. xxxiv. p. 20 (1867); ai

Eiecke, Gott. Nachr., 1888, where paths of fluid particles are also delineated.
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where < is the circulation. Hence

r=
47ra'

which is exactly the velocity of translation of the vortex-pair, in the original form of the

problem *.

Since the velocity of the fluid at all points of the plane of symmetry is

wholly tangential, we may suppose this plane to form a rigid boundary of

the fluid on either side of it, and so obtain the case of a single rectilinear

vortex in the neighbourhood of a fixed plane wall to which it is parallel.

The filament moves parallel to the plane with the velocity kJ^ttJi, where h is

the distance from the wall.

Again, since the stream-lines are circles, we can also derive the solution

of the case where we have a single vortex-filament in a space bounded, either

internally or externally, by a fixed circular cylinder.

Thus, in the figure, let EPD be the section of the cylinder, A the position of the vortex

(supposed in this case external), and let B be the '

image
'

of A with respect to the circle

EPD. viz. C being the centre, let

CB.CA=<?,

where c is the radius of the circle. If P be any point on

the circle, we have

A I' AE AD
BP

=
BE

=
BD

= COTiiit;

so that the circle occupies the position of a stream-line due

to a vortex-pair at A, B. Since the motion of the vortex A would be perpendicular to AB,
it is plain that all the conditions of the problem will be satisfied if we suppose A to

describe a circle about the axis of the cylinder with the constant velocity

* k . CA
2rr.AB~ 2n{CA i -<^y

where < denotes the strength of .,4.

In the same way a single vortex of strength k, situated inside a fixed circular cylinder,

say at B, would describe a circle with constant velocity

k.CB

2*{<?-CB?-)'

It is to be noticed, however t, that in the case of the external vortex the motion is not

completely determinate unless, in addition to the strength k, the value of the circulation

in a circuit embracing the cylinder (but not the vortex) is prescribed. In the above

solution, this circulation is that due to the vortex-image at B and is - k. This may be

annulled by the superposition of an additional vortex 4- k at C, in which case we have, for

the
velocity of A

,

< .CA K (CC2"
2n {CA*- c-)

+
%n.OA

= ~
2tt . CA(CA*-&)

'

For a prescribed circulation k' we must add to this the term k'/2tt . CA.

A more exact investigation is given by Hicks,
" On the Condition of Steady Motion of Two

Cylinders in a Fluid," Quart. Journ. Math., t. xvii. p. 194 (1881).
t F. A. Tarleton,

" On a Problem in Vortex Motion," Proc. R. I. A., December 12, 1892.
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3. If we have four parallel rectilinear vortices whose centres form a

rectangle ABB'A', the strengths being k for the vortices A', B, and k for the

vortices A, B', it is evident that the centres will always form a rectangle.

Further, the various rotations having the directions indicated in the figure,

-!^J-
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156. When, as in the case of a vortex-pair, or a system of vortex-pairs,
the algebraic sum of the strengths of all the vortices is zero, we may work

out a theory of the '

impulse,' in two dimensions, analogous to that given in

Arts. 119, 152 for the case of a finite vortex-system. The detailed exami-

nation of this must be left to the reader. If P, Q denote the components of

the impulse parallel to x and y, and N its moment about Oz, all reckoned per
unit depth of the fluid parallel to z, it will be found that

p = P tiytdxdy, Q = ~
pjj^dxdy, ^

N=pjj(x*+y>)dxdy. J

'

For instance, in the case of a single vortex-pair, the strengths of the two

vortices being + tc, and their distance apart c, the impulse is kc, in a line

bisecting c at right angles.

The constancy of the impulse gives

1/cx = const., 2/cy = const., )J
\ (2)

Sac (x* + y-)
= const. J

It may also be shewn that the energy of the motion in the present case

is given by
T = -pjj^dxdy = -h P2 t

cyfr (3)

When Ik is not zero, the energy and the moment of the impulse are both

infinite, as may be easily verified in the case of a single rectilinear vortex.

The theory of a system of isolated rectilinear vortices has been put in a very elegant
form by Kirchhoff*.

Denoting the positions of the centres of the respective vortices by (xlt yt ), (x2 , y2),

and their strengths by k
1s

k 2 , ..., it is evident from Art. 154 that we may write

dxi__^W dyjdW
Cl dt~ fy,

' Kl dt
~

ftt!
'

dxt dW dy* dW
*2 i,

~ E ' *2dt cy2
' 2 dt ex,

(4)

WDere ^=^:
2K 1

<2 logr12 , (5)

if ra donote the distance between the vortices k1} k2 .

Since W depends only on the relative configuration of the vortices, its value is unaltered

when xu .r.,, ... are increased by the same amount, whence 28TF/9.r1 =0, and, in the same

way. tcW/cyl
=0. This gives the first two of equations (2), but the proof is not now

limited to the case of 2 k =0. The argument is in fact substantially the same as in

Art. 154.

*
Mechanik, c. xx.
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Again, we obtain from (4)

. / dx dy\ ( dW dW\

or if we introduce polar co-ordinates (rx , 0{), (r2 , 2 ), ... for the several vortices,

dr 3 W^r
dt
= -*W ()

Since W is unaltered by a rotation of the axes of co-ordinates in their own plane about the

origin, we have 2,dW[d0= O, whence

2k?-2 = const., (7)

which agrees with the third of equations (2), but is free from the restriction there implied.

An additional integral of (4) is obtained as follows. We have

/ dy dx\ ( d W dW\

de bw
or 2k?-2 -j-

= 2r (8)
dt cr w

If every r be increased in the ratio l+e, where e is infinitesimal, the increment of IT is

equal to 2fr . 3 W/dr. But since the new configuration of the vortex-system is geometrically
similar to the former one, the mutual distances r

12
are altered in the same ratio 1 + 6, and

therefore, from (5), the increment of W is /2r . 2k
x
k.
2

. Hence (8) may be written in the form

d6 1
2 r! * Bs^ w

157. The results of Art. 155 are independent of the form of the sections

of the vortices, so long as the dimensions of these sections are small compared
with the mutual distances of the vortices themselves. The simplest case

is of course when the sections are circular, and it is of interest to inquire
whether this form is stable. This question has been examined by Lord

Kelvin*.

When the disturbance is in two dimensions only, the calculations are very simple. Let

us suppose, as in Art. 27, that the space within a circle r= a, having the centre as origin,

is occupied by fluid having a uniform rotation
,
and that this is surrounded by fluid

moving irrotationally. If the motion be continuous at this circle we have, for r< a,

^=-K( 2 ->-2
), (i)

while for r > a, \J/-
= - (a

2
log ajr (2)

To examine the effect of a slight irrotational disturbance, we assume, for r< a,

!f
- "iC(*- )+A -, cos (s0 -at),

j a*
(3)

and, for r>a, yjr
= -

(a
2
log

- + A cos (s0
-

at),

where s is integral, and a is to be determined. The constant A must have the same

value in these two expressions, since the radial component of the velocity, d^rjrdd, must

* Sir W. Thomson, " On the Vibrations of a Columnar Vortex," Phil. Mag. (5), t. x. p. 155;

(1880).
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be continuous at the boundary of the vortex, for which r=a, approximately. Assuming
for the equation to this boundary

r=a+ a cos (s8 at), (4)

we have still to express that the tangential component (fhfrjdr) of the velocity is continuous.

This gives

A a2 A
tr+8 cos (s8 at) = C s cos ($0 at ).a r a

Substituting from (4), and neglecting the square of a, we find

C=-*^ (5)

So far the work is purely kinematical ; the dynamical theorem that the vortex-lines move

with the fluid shews that the normal velocity of a particle on the boundary must be equal

to that of the boundary itself This condition gives

where / has the value (4), or

8r_ C-fy ?t^ dr

Tt~ ~7V0~~dr rd$'

<ra= s -+ fa.- (6)a a

Eliminating the ratio Ala between (5) and (6) we find

<r=(*-l)f. (7)

Hence the disturbance represented by the plane harmonics in (3) consists of a system
of corrugations travelling round the circumference of the vortex with an angular velocity

-- -f- (8)

This is the angular velocity in space ;
relative to the rotating fluid the angular

velocity is

H-4 <9>

the direction being opposite to that of the rotation.

When 5= 2, the disturbed section is an ellipse which rotates about its centre with

angular velocity if.

The transverse and longitudinal oscillations of an isolated rectilinear vortex-filament

have also been discussed by Lord Kelvin in the paper cited.

158. The particular case of an elliptic disturbance can be solved without

approximation as follows*.

Let us suppose that the space within the ellipse

^+=i a)
a3 o2

is occupied by liquid having a uniform rotation f, whilst the surrounding fluid is moving

*
Kirchhoff, Mechanik, c. xx. p. 261; Basset, Hydrodynamics, t. ii. p. 41.
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irrotationally. It will appear that the conditions of the problem can all be satisfied if we

imagine the elliptic boundary to rotate, without change of shape, with a constant angular

velocity (n, say), to be determined.

The formula for the external space can be at once written down from Art. 72, 4
; viz.

we have

^=|w(a+ 6)
2 e" 2f

cos2r)+ (ab, (2)

where |, r)
now denote the elliptic co-ordinates of Art. 71, 3, and the cyclic constant < has

been put = 1irab.

The value of
//

for the internal space has to satisfy

d^ + dp
=2^ (3)

with the boundary-condition -= + jm -ny.^+nx.^ (4)

These conditions are both fulfilled by

^= C(^2+%2
), (5)

provided .1 + 5= 1, Aa*-Bb*= ~(a?-b*) (6)

It remains to express that there is no tangential slipping at the boundary of the

vortex
;

i.e. that the values of dyjs/dg obtained from (2) and (5) there coincide. Putting

^= c cosh cos
rj, ^= csinhsin7, where c= (a

2 b2f, differentiating, and equating coeffi-

cients of cos 2r), we obtain the additional condition

-
\n (a+ by e

" 2*= c2 (A - B) cosh sinh
,

where is the parameter of the ellipse (1). This is equivalent to

*-*--k^< (7)

since, at points of the ellipse, cosh =
a/c, sinh =

6/c.

Combined with (6) this gives Aa= Bb T , (8)
a+b

and n=. r^ t. (9)
(a+ 6)

2 '

When a= b, this agrees with our former approximate result.

The component velocities x, y of a particle of the vortex relative to the principal axes

of the ellipse are given by

whence we find -= n~, r = n (10)
a b b a

Integrating, we find x=ka cos (nt+ e), y= kb sin (nt+ e), (11)

where i, e are arbitrary constants, so that the relative paths of the particles are ellipses

similar to the boundary of the vortex, described according to the harmonic law. If x', y'

be the co-ordinates relative to axes fixed in space, we find
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x,

=xcosnt-ysmnt=k(a+ b)cos(2nt+ ()+ jsi; (a b) cos
e,")

y'
= x sin nt+y cos nt \h(a+ b) sin (2nt+ e)

- \k (a b) sin e. j

The absolute paths are therefore circles described with angular velocity 2ti*.

.(12)

159. It was pointed out in Art. 80 that the motion of an incompressible

fluid in a curved stratum of small but uniform thickness is completely defined

by a stream-function yfr,
so that any kinematical problem of this kind may be

transformed by projection into one relating to a plane stratum. If, further,

the projection be '

orthomorphic,' the kinetic energy of corresponding portions

of liquid, and the circulations in corresponding circuits, are the same in the

two motions. The latter statement shews that vortices transform into vor-

tices of equal strengths. It follows at once from Art. 145 that in the case of

a closed simply-connected surface the algebraic sum of the strengths of all

the vortices present is zero.

Let us apply this to motion in a spherical stratum. The simplest case is

that of a pair of isolated vortices situate at antipodal points; the stream-lines

are then parallel small circles, the velocity varying inversely as the radius

of the circle. For a vortex-pair situate at any two points A, B, the stream-

lines are coaxal circles as in Art. 80. It is easily found by the method of

stereographic projection that the velocity at any point P is the resultant of

two velocities KJ2ira. cot^ and KJ2fra . cot \62 , perpendicular respectively to

the great-circle arcs AP, BP, where lf 2 denote the lengths of these arcs,

a the radius of the sphere, and + k the strengths of the vortices. The centref

(see Art. 154) of either vortex moves perpendicular to AB with a velocity

/27ra . cot \AB. The two vortices therefore describe parallel and equal small

circles, remaining at a constant distance from each other.

Circular Vortices.

160. Let us next take the case where all the vortices present in the

liquid (supposed unlimited as before) are circular, having the axis of a; as a

common axis. Let rn denote the distance of any point P from this axis, v the

velocity in the direction of ct, and to the angular velocity of the fluid at P.

It is evident that u, v, <o are functions of x, -nr only.

* For further researches in this connection see Hill, "On the Motion of Fluid part of which
is moving rotationally and part h rotationally," Phil. Trans., 1884; Love, "On the Stability of

certain Vortex Motions," Proc. Lond. Math. Soc, t. xxv. p. 18 (1893).

t To prevent possible misconception it may be remarked that the centres of corresponding
vortices are not necessarily corresponding points. The paths of these centres are therefore not
in general projective.
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Under these circumstances there exists a stream-function
\/r,

defined as in

Art. 94, viz. we have

1 d-^r 1
dyjr

-nr d-ur
'

vr dx
'

v = z-tL> (i)

whence 2*-jT;-5="=( +S"-E (2)
3a; 8ct -st \9#2

3"5T
2

-nr B-bt;

It is easily seen from the expressions (7) of Art. 148 that the vector

(F, G, H) will under the present conditions be everywhere perpendicular to

the axis of x and the radius -ox. If we denote its magnitude by 8, the flux

through the circle (x, bt) will be 27tct$, whence

yfr
= -^S (3)

To find the value of
-\Jr

at (x, -a) due to a single vortex-filament of cir-

culation k, whose co-ordinates are x'
y or', we note that that element which

makes an angle 8 with the direction of 8 may be denoted by m'SO, and there-

fore by Art. 149 (1)

k-osss'
['
ln cos ,a

ilr = -'BT*S'= -
dd, (4)T

4>tt Jo r v

where r = {(x x'y + ts1 + -or'
2

2'bt'ot' cos 6}- (5)

If we denote by rly r2 the least and greatest distances, respectively, of the

point P from the vortex, viz.

rf = (x -x'y + (vr- *t')\ r2
2 = (x

- xj + ( + ot')
2
, (6)

we have r2 = rx

- cos2 + r2
2 sin2

$6, ktzin' cos = r
}

- + r2
~ - 2?-

2
, (7)

and therefore

dd
^

8tt

.(8)

(n + r2 }
J o V(n

2 cos2 + ri sin2
0)

- 2 f

""

VO^cos
2

|0+r2
2 sin2

\6)d6
Jo

The integrals are of the types met with in the theory of the '

arithmetico-

geometrical mean.' * In the ordinary, less symmetrical, notation of ' com-

plete
'

elliptic integrals we have

* =
-{^(y\(j-

k
)
F^-l E

^}> (9)

provided ^l^__^__ (10)

The value of
\|r

at any assigned point can therefore be computed with the

help of Legendre's tables.

* See Cayley, Elliptic Functions, Cambridge, 1876, c. xiii.
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A neater expression may be obtained by means of
' Landen's trans-

formation'*: thus

t-c^+^WW-W (ii)
2tt

provided \ =
'
-

r,

''2 + >\
.(12)

To verify this, let Jfi be a straight line divided at P into two segments PA, PB of

lengths r
1 , r.,, respectively ; and describe the circle on AB as diameter. C being the centre,

and Q any point on the circumference, let the angles QCA, QPA be denoted by 6, $, respec-

tively ;
and draw CN perpendicular to QP. If PQ=r, we have

r'.rj
1 cos2 0+r2

2 sin2
0, rbS=C'Qh6. cos CQS=QNbd (13)

_ D cos* cq nn .r oq qs

and therefore

nD cos 080 _. 8$ PQbS _n W &VM
,

P.VdS
vJr. =CV- ttv /->/ 1

= t/ V 77\r t>tt~ +"
iV (7$ ^V C T

CQ
'

B

Hence

r

J o r-=^+
^J qs-wJ. ^ A " (14)

since f''PiV^ = CP (* cos 3 tf3= 0.

Now

if

QN=J(CQi -CP*-Bin2
$)=$(r1 + rJ >,f(l-\*sm

i
3), (15)

(16)}L
_CP_r2 -rl

The formula (14) may therefore be written

cos 6

w%-*j\\
dd= 2{F1 (\)-E1 (\)}, (17)

which brings (4) into the required form (11).

The forms of the stream-lines corresponding to equidistant values of
yfr

are

shewn on the next page. They are traced by a method devised by Maxwell,

to whom the formula (11) is also duef.

Expressions for the velocity-potential and the stream-function can also be

obtained in the form of definite integrals involving Bessel's Functions.

Thus, supposing the vortex to occupy the position of the circle x = 0,

w =
,
it is evident that the portions of the positive side of the plane x=

which lie within and without this circle constitute two distinct equipotential

*
See Cayley, I.e.

t Electricity and Magnetism, Arts. 704, 705. See also Minchin, Phil. Mag. (5), t. xxxv.

(1893); Xagaoka, Phil. Mag. (6), t. vi. (1903).
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surfaces. Hence, assuming that we have
</>
=

^/e for x = 0, -ar < a, and < =
for x = 0, -or > a, we obtain from Art. 102 (2)

/ 00

< = --* e~te Jo (&<*) Ji (fca) dfc, (18)
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and therefore, in accordance with Art. 100 (5),

yjr=-$icavrf e~kx J, (kvr) J, (ha) dk (19)
Jo

These formulae relate of course to the region x>0*.

It was shewn in Art. 150 that the value of
</>

is that due to a system of

double-sources distributed with uniform density k over the interior of the

circle. The values of
(f>
and

i/r
for a uniform distribution of simple sources

over the same area have been given in Art. 102 (11). The above formulae

(18) and (19) can thence be derived by differentiating with respect to x, and

adjusting the constant factor f.

161. The energy of any system of circular vortices having the axis of x

as a common axis, is

T= irp jj(u
2 + v1

) vrdxd-a = irp jj(v j
u ^M dxdta

277-/9 I I
yfrt

idxdvr =
7rp2/c^r, (1)

by a partial integration, the integrated terms vanishing at the limits. We
have here used k to denote the strength 2whxhts of an elementary vortex-

filament.

Again the formula (7) of Art. 153 becomes \

T = 4nrp jj (vru xv) -srasdxdy
=

27rpS/cr (trit- xv) (2)

The impulse of the system obviously reduces to a force along Ox.

By Art. 152 (12),

P = p jj" (y zrj) dxdydz = 2irp jj -a-atdxd'ST
=

irpX/cvr- (3)

If we introduce two symbols x
,

sr defined by the equations

xo= v r v = ^f i (4)

these determine a circle whose position evidently depends on the strengths
and the configuration of the vortices, and not on the position of the origin on

the axis of symmetry. It may be called the '

circular axis
'

of the whole

system of vortex-rings.

The formula for
\f/

occurs in Basset, Hydrodynamics, t. ii. p. 93. See also Nagaoka, I. c.

+ Other expressions for <p and \p can be obtained in terms of zonal spherical harmonics.

Thus the value of <p is given in Thomson and Tait, Art. 546 ; and that of
\J/
can be deduced by

the formulae (11), (12) of Art. 95 ante. The elliptic-integral forms are however the most useful

for purposes of interpretation.

X At any point in the plane z we have y = i*r, =0, t?
= 0, f=w, v = v ; the rest follows by

symmetry.

L. 15
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Since k is constant for each vortex, the constancy of the impulse shews,

by (3) and (4), that the circular axis remains constant in radius. To find its

motion parallel to x, we have, from (4),

Ik . r
2

~tt = 2w2
-j- + 2Ztcxzx -j-

= 2ct (sni + 2xv) (5)
at at at

With the help of (2) this can be put in the form

dx T
Ik . -ar

2 ~n =
*" 3~* (x ~ xo) *> (6)

where the added term vanishes, since Sacbtu = on account of the constancy

of the mean radius (w ).

162. Let us now consider, in particular, the case of an isolated vortex- h

ring the dimensions of whose cross-section are small compared with the

radius
(-nr,,).

It has been shewn that

where rlt r2 are defined by Art. 160 (6). For points (x, -or) in or near
th(J

substance of the vortex, the ratio i\/r2 is small, and the modulus (\) of
th<|j

elliptic integrals is accordingly nearly equal to unity. We then have

^(M-iiogl^, ^(V) = l, (2)

approximately*, where X' denotes the complementary modulus, viz.

V5=1 -^ =(^ (3)

or A,'
2 = 4r1/?

,

2 , nearly,

Hence at points within the substance of the vortex the value of -^ is

the order /rsr log -sr
/e, where e is a small linear magnitude comparable will

the dimensions of the section. The velocity at the same point, dependir

(Art. 94) on the differential coefficients of ^, will be of the order k/c.

We can now estimate the magnitude of the velocity dx /dt of translate 1,

of the vortex-ring. By Art. 161 (1), T is of the order pK
2vr log r

/e, and v I

as we have seen, of the order k/c ;
whilst x x is of course of the orderl

Hence the second term on the right-hand side of the formula (6) of ti

preceding Art. is, in the present case, small compared with the first, and tl

velocity of translation of the ring is of the order K/vr . log ny
/e,

and appro ft

mately constant.

I

* See Cayley, Elliptic Function*, Arts. 72, 77; and Maxwell (I.e.).
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An isolated vortex-ring moves then, without sensible change of size,

parallel to its rectilinear axis with nearly constant velocity. This velocity

is small compared with that of the fluid in the immediate neighbourhood of

the circular axis, but may be greater or less than ^k st ,
the velocity of the

fluid at the centre of the ring, with which it agrees in direction.

For the case of a circular section more definite results can be obtained as follows. If

we neglect the variations of cr and w over the section, the formulae (1) and (2) give

e introduce polar co-ordinates (*, %) in the plane of the section,

+=~*oflf"(loS
8

-?f-2)s'<Hd
x ', (4)

e a is the radius of the section. Now

f* log^x'-/^ log^+^-^cosU-x')}*
dx ',

lis definite integral is known to be equal to 2ir log/, or 2-log, according as s'%s.

.for points within the section,

f=-2a,^ J^log^ -2)*'A'-2
ar

j'"(log^- -2)^'

= -^
a*{log^>-f-^}

(5)

hly variable part of this is the term -^<a-sj tr; this shews that to our order of
fion the stream-lines within the section are concentric circles, the velocity at a

from the centre being us. Substituting in Art. 161 (1) we find

^=-i-/:/>^=^h
8

-?-i}

term in Art. 161 (6) is equivalent to

o>2k (x x )
2

;

in our present notation, a denoting the strength of the whole vortex, this is equal to
- Hence the formula for the velocity of translation of the vortex becomes*

dx
dt =r -K -il (7)

47rar { a *)

The vortex-ring carries with it a certain body of irrotationally moving fluid in its

career; cf. Art. 155, 2. According to the formula (7) the velocity of translation of the

vortex will be equal to the velocity of the fluid at its centre when sr /a= 86, about. The

accompanying mass will be ring-shaped or not, according as O7 /a exceeds or falls short of

ritical value t.

The ratio of the fluid velocity at the periphery of the vortex to the velocity at the centre

! of the ring is 2&>aur /ic, or xs jira. For a=TfaJ oP , this is equal to 32, about.

This result was given by Sir W. Thomson in an appendix to a translation of Helmholtz'

paper, Phil. Mag. (4), t. xxxiii. p. 511 (1867).
t Cf. Sir W. Thomson, I.e. ante p. 214.

152



228 Vortex Motion [chap, vii

163. If we have any number of circular vortex-rings, coaxial or not, the

motion of any one of these may be conceived as made up of two parts, one

due to the ring itself, the other due to the influence of the remaining rings.

The preceding considerations shew that the second part is insignificant

compared with the first, except when two or more rings approach within

a very small distance of one another. Hence each ring will move, without

sensible change of shape or size, with nearly uniform velocity in the

direction of its rectilinear axis, until it passes within a short distance

of a second ring.

A general notion of the result of the encounter of two rings may, in

particular cases, be gathered from the result given in Art. 149 (3). Thus, let

us suppose that we have two circular vortices having the same rectilinear axis.

If the sense of the rotation be the same for both, the two rings will advance,

on the whole, in the same direction. One effect of their mutual influence

will be to increase the radius of the one in front, and to contract the radius

of the one in the rear. If the radius of the one in front become larger than

that of the one in the rear, the motion of the former ring will be retarded,

and that of the latter accelerated. Hence if the conditions as to relative-

size and strength of the two rings be favourable, it may happen that the

second ring will overtake and pass through the first. The parts played by

the two rings will then be reversed
;
the one which is now in the rear will ir

turn overtake and pass through the other, and so on, the rings alternatel)

passing one through the other*.

If the rotations be opposite, and such that the rings approach on<j

another, the mutual influence will be to enlarge the radius of each. If th

two rings be moreover equal in size and strength, the velocity of approac
j

will continually diminish. In this case the motion at all points of the plan

which is parallel to the two rings, and half-way between them, is tangentif

to this plane. We may therefore, if we please, regard the plane as a fixe I

boundary to the fluid on. either side, and so obtain the case of a sing

vortex-ring moving directly towards a fixed rigid wall.

The foregoing remarks are taken from von Helmholtz' paper. He adc

in conclusion, that the mutual influence of vortex-rings may easily be studi*

experimentally in the case of the (roughly) semicircular rings produced I

drawing rapidly the point of a spoon for a short space through the suri;

a liquid, the spots where the vortex-filaments meet the surface being mark!

by dimples. (Cf. Art. 27.) The method of experimental illustration f

means of smoke-ringst is too well-known to need description here. A beauti 1

* The corresponding case in two dimensions was worked out and illustrated graphically J

Grobli, I.e. ante p. 216; see also Love,
" On the Motion of Paired Vortices with a Common Ax

"

Proc. Lond. Math. Soc., t. xxv. p. 185 (1894).

t Reusch, "Ueber Eingbilduug der Fliissigkeiten," Pogg. Ann., t. ex. (1860); Tait, Bent

Advances in Physical Science, London, 1876, c. xii.
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variation of the experiment consists in forming the rings in water, the

substance of the vortices being coloured*.

The motion of a vortex-ring in a fluid limited (whether internally or externally) by a

fixed spherical surface, in the case where the rectilinear axis of the ring passes through
the centre of the sphere, has been investigated by Lewis t, by the method of 'images.'

The following simplified proof is due to Larmor
J. The vortex-ring is equivalent (Art. 148)

to a spherical sheet of double-sources of uniform density, concentric with the fixed sphere.
The 'image' of this sheet will, by Art. 96, be another uniform concentric double-sheet,

which is, again, equivalent to a vortex-ring coaxial with the first. It easily follows from

the Art. last cited that the strengths (k, k) and the radii (57, ts') of the vortex-ring and

its image are connected by the relation

<ct7
i
+ic'or'

i=0
(i)

The argument obviously applies to the case of a re-entrant vortex of any form, provided
it lie on a sphere concentric with the boundary.

On the Conditions for Steady Motion.

164. In steady motion, i.e. when

dt
u '

dt
'

dt
u>

the equations (2) of Art. 6 may be written

011 dv dw . y 8H 1 dp .- .

Hence, if as in Art. 146 we put

x'=/f
+ W + n, (2)

we have
g-'

= 2K - ^),
||

= 2 (f -
>, ||

= 2 (^ - if). ...(3)

It follows that u ?r- + v^ + w -- = 0,
ox oy oz

Sdx-
+ V

dy~

+ Z^-Q,
so that each of the surfaces ^'

= const, contains both stream-lines and

*
Reynolds, "On the Resistance encountered by Vortex Rings &c," Brit. Ass. Rep., 1876,

Nature, t. xiv. p. 477.

"On the Images of Vortices in a Spherical Vessel," Quart. Journ. Math., t. xvi. p. 358

(1879).
* '

Electro-magnetic and other Images in Spheres and Planes," Quart. Journ. Math., t. xxiii.

P- 91
(1889).
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vortex-lines. If further Bn denote an element of the normal at any point

of such a surface, we have

-^
=

2qco sin
, (4)

where q is the current- velocity, a> the rotation, and /3 the angle between the

stream-line and the vortex-line at that point.

Hence the conditions that a given state of motion of a fluid may be

a possible state of steady motion are as follows. It must be possible to draw

in the fluid an infinite system of surfaces each of which is covered by
a network of stream-lines and vortex-lines, and the product qco sin /3 Bn must

be constant over each such surface, Bn denoting the length of the normal

drawn to a consecutive surface of the system*.

These conditions may also be deduced from the considerations that the

stream-lines are, in steady motion, the actual paths of the particles, that the

product of the angular velocity into the cross-section is the same at all points

of a vortex, and that this product is, for the same vortex, constant with

regard to the time.

The theorem that the function ^, defined by (2), is constant over each

surface of the above kind is an extension of that of Art. 21, where it was

shewn that % 1S constant along a stream-line.

The above conditions are satisfied identically in all cases of irrotational

motion, provided of course the boundary-conditions be such as are consistent

with the steady motion.

In the motion of a liquid in two dimensions (xy) the product qBn is

constant along a stream-line
;
the conditions in question then reduce to this,

that the angular velocity must be constant along each stream-line, or, by

Art. 59 (5),

^+f'-/<*> ^
where/ (yfr)

is an arbitrary function of
yjr j\

This condition is satisfied in all cases of motion in concentric circles about the
originj

Another obvious solution of (5) is

+-\(Ax*+ZBxy+Cy*\

in which case the stream-lines are similar and coaxial conies. The angular velocity at an

point is %(A + C), and is therefore uniform.

* See a paper
" On the Conditions for Steady Motion of a Fluid," Proc. Lond. Math. S<h

t. ix. p. 91 (1878).

t Cf. Lagrange, Nouv. Mem. de VAcad. de Berlin, 1781 [Oeuvres, t. iv. p. 720]; and Stob

"On the Steady Motion of Incompressible Fluids," Camb. Trans., t. vii. (1842) [Math, and Ph.

Papers, t. i. p. 15].
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Again, if we put/ (^r)
=

Jfrjr, where k is a constant, and transform to polar co-ordinates

r, 6, we get

3+Ut+iSt***^ (7>dr3 r cr r2 dp r ' v '

which is satisfied (Art. 101) by +=CJt (kr)
<*\ s6 (8)

This gives various solutions consistent with a fixed circular boundary of radius a, the

admissible values of k being determined by

J,{ka)=0. (9)

Suppose, for example, that in an unlimited mass of fluid the stream-function is

Vr-tt/i(irr)8in0, (10)

within the circle r = a, whilst outside this circle we have

= u(r-
<

^\aine (11)

These two values of ^ agree for r=a, provided Jx (Jta)
= 0. Moreover, the tangential velocity

at this circle will be continuous, provided the two values of cty cr are equal, i.e. if

n_ IK*
bJ{{ha) kJ (ka)

<"'

If we now impress on everything a velocity U parallel to Ox, we get a species of cylindrical

vortex travelling with velocity U through a liquid which is at rest at infinity. The
smallest of the possible values of / is given by jfca/ir

= r2197; the relative stream-lines

inside the vortex are then given by the diagram on p. 272, provided the dotted circle be

taken as the boundary (r=a). It is easily proved, by Art. 156 (1), that the 'impulse' of

the vortex is represented by 2npa-C

In the case of motion symmetrical about an axis (x), we have q . 2imrBn

ant along a stream-line, r denoting as in Art. 94 the distance of any

point from the axis of symmetry. The condition for steady motion then is

thar the ratio o>/w must be constant along any stream-line. Hence, if
i/r

be

the stream-function, we must have, by Art. 160 (2),

dz>
+ d^-vfa-^f{+>> (13)

where /(^r) denotes an arbitrary function of yjr*.

An interesting example is furnished by Hill's '

Spherical Vortex t.' If we assume

*=U=rs
(a-r*), (14)

where ri=x2+ sj\ for all points within the sphere r=a, the formula (2) of Art. 160 makes

u>= -

Jar,

that the condition of steady motion is satisfied. Again it is evident, on reference to

* This result is due to Stokes, l.c.

+ " On a Spherical Vortex," Phil. Tram., A, t. clxxxv. (1894).
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Arts 96, 97, that the irrotational flow of a stream with the general velocity
-- U parallel to

the axis, past a fixed spherical surface r=a, is given by

*iw(i-) (is)

The two values of
// agree when r= a

;
this makes the normal velocity zero on both sides.

In order that the tangential velocity may be continuous, the values of
3\|/-/9r

must also

agree. Remembering that ar = r sin 0, this gives A = -$U/a
2
,
and therefore

a=Uar/a* (16)

The sum of the strengths of the vortex-filaments composing the spherical vortex is 5 Ua.

The figure shews the stream -lines, both inside and outside the vortex
; they are drawn,

as usual, for equidistant values of
yfr.

If we impress on everything a velocity U parallel to x, we get a spherical vortex

advancing with constant velocity U through a liquid which is at rest at infinity.

By the formulae of Art. 161, we readily find that the square of the ' mean-radius ' of the

vortex is fa
2

,
the 'impulse

'

is 2irpa
3
U, and the energy is tyirpaPU

2
.

As explained in Art. 146, it is quite unnecessary to calculate formulae for the pressure,

in order to assure ourselves that this is continuous at the surface of the vortex. The con-

tinuity of the pressure is already secured by the continuity of the velocity, and the constancy

of the circulation in any moving circuit.

165. As already stated, the theory of vortex motion was originated by

von Helmholtz in 1858. It acquired additional interest when, in 1867, Lord

Kelvin suggested* the theory of vortex atoms. As a physical theory, this
j

lies outside our province, but it has given rise to a great number of interesting)

investigations, to which some reference should be made. We may mention

the investigations as to the stability and the periods of vibration of recti-;

linearf and annular]: vortices; the similar investigations relating to hollow;

*
I.e. ante p. 214.

t Sir W. Thomson, I.e. ante p. 218.

J J. J. Thomson, I.e. ante p. 208; Dyson, Phil. Trans. A., t. clxxxiv. p. 1041 (1893).
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vortices (where the rotationally moving core is replaced by a vacuum*); and

the calculations of the forms of boundary of a hollow vortex which are con-

sistent with steady motion 4
". A summary of some of the leading results has

been given by Love^.

Clebsch's Transformation.

166. Another matter of some interest, which can only be briefly touched

upon, is Clebsch's transformation of the hydrodynamical equations^.

It is easily seen that the component velocities at any one instant can be expressed in

the forms

W= _^ +X ^, v=Jj>+x, *r=3 +X^, (1)ex ox cy cy
1

cz cz
1 v

where
<f>, X, /* are functions of x, y, z, provided the component rotations can be put in the

forms

9
5 (X M) an_ 5(X, m) _c (X, p)

2|=
?(y~r;'

2
'-e(^r)' ^-dtxTV)

(2)

Now if the differential equations of the vortex-lines, viz.

dxdydz
?"* 7'

(3)

be supposed integrated in the form

a = const., =const., (4)

where a, are functions of x, y, z, we must have

5
o(y, zV c&xy d(*,y)

w
where P is some function of x, y, z\. Substituting these expressions in the identity

ex cy cz

we find
a(P,a,fl)

3(*,y, z)

which shews that P is of the form /(a, /3). If X, /* be any two functions of a, ft we have

c(y,*)-a(a,0)
X

c(y,*)'
** "B"

*
Sir W. Thomson, I.e. ; Hicks, "On the Steady Motion and the Small Vibrations of a

Hollow Vortex," Phil. Tram., 1884; Pocklington, "The Complete System of the Periods of

a Hollow Vortex Ring," Phil. Tram., A, t. clxxxvi. p. 603 (1895); Carslaw, "The Fluted

Vibrations of a Circular Vortex-Ring with a Hollow Core," Proc. Lond. Math. Soc., t. xxviii.

p. 97 (1896).

t Hicks, I.e. ; Pocklington,
" Hollow Straight Vortices," Camb. Proc., t. viii. p. 178 (1894).

*
I.e. ante p. 182.

Ueber eine allgemeine Transformation d. hydrodynamischen Gleichungen," Crelle, t. liv.

and t. lvi. (1859). See also Hill, Quart. Journ. Math., t. xvii. (1881), and Camb. Tram.,
t. xiv. (1883).

"
Cf. Forsyth, Differential Equations, Art. 174.
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and the equations (5) will therefore reduce to the form (2), provided X, u be chosen so that

l$-/<0 m
which can obviously be satisfied in an infinity of ways.

It is evident from (2) that the intersections of the surfaces X= const., u= const, are the

vortex-lines. This suggests that the functions X, a which occur in (1) may be supposed to

vary continuously with t in such a way that the surfaces in question move with the fluid*.

Various analytical proofs of the possibility of this have been given ; the simplest, perhaps,

is by means of the equations (2) of Art. 15, which give (as in Art. 17)

udx+ vdy+wdz=u da+ v db+ iv
()
dc dx (8)

It has been proved that we may assume, initially,

u da+ v db+ w dc= d<p +\da (9)

Hence, considering space-variations at time t, we shall have

udx+ vdy+ tadz= d(p + \da, (10)

where $ = < +x> an^ ^> u have the same values as in (9), but are now expressed in terms

of x, y, z, t. Since, in the '

Lagrangian
' method the independent space-variables relate to

the individual particles, this proves the theorem.

On this understanding the equations of motion can be integrated, provided the

extraneous forces have a potential, and that p is a function of p only. We have

du ' du / c\ 3X 3X\ 9a / da da
,

du\ 3X

-1 ( _ ^4.> d \ +^X fr _ Se ^ . nn
~dx\ ct^ vt)^ Dtdx Dtdx K '

/'

*r/

+f+-l-xi W
and therefore, on the present assumption that D\!Dt= 0, DajDt= 0,

P

by Art. 146 (5), (6). An arbitrary function of t is here supposed incorporated in d<pjdt.

If the above condition be not imposed on X, a, we have, writing

*+*+-$+*! <
13>

D\dji_D}id\__?H D\djL_Diid\= _dH B\dji_DadX= _cH
Dt dx Dt dx~ ex

' Dt dy Dt dy~ dy
' Dt dz Dt dz~ dz

' '"* '

Hence ^^-0, (15)
d (x, y, z)

shewing that 77 is of the form/(X, a, t) ;
and

Dk _dff Bfi_dH . .

/tt da
' Zfc~SX ( ;

j

*
It must not be overlooked that on account of the insufficient determinacy of X, a fches

functions may vary continuously with t without relating always to the same particles of fluid.



CHAPTER VIII.

TIDAL WAVES.

167. One of the most interesting and successful applications of hydro-

dynamical theory is to the small oscillations, under gravity, of a liquid having
a free surface. In certain cases, which are somewhat special as regards the

theory, but very important from a practical point of view, these oscillations

may combine to form progressive waves travelling with (to a first approxi-

mation) no change of form over the surface.

The term '

tidal,' as applied to waves, has been used in various senses, but

it seems most natural to confine it to gravitational oscillations possessing the

characteristic feature of the oceanic tides produced by the action of the sun

and moon. We have therefore ventured to place it at the head of this

Chapter, as descriptive of waves in which the motion of the fluid is mainly
horizontal, and therefore (as will appear) sensibly the same for all particles

in a vertical line. This latter circumstance greatly simplifies the theory.

It will be convenient to recapitulate, in the first place, some points in the

general theory of small oscillations which will receive constant exemplification
in the investigations which follow*. The theory has reference in the first

instance to a system of finite freedom, but the results, when properly inter-

preted, hold good without this restriction f.

Let qu q2 ,
... qn be n generalized co-ordinates serving to specify the con-

figuration of a dynamical system, and let them be so chosen as to vanish in

the configuration of equilibrium. The kinetic energy T will be a homogeneous
quadratic function of the generalized velocities qu <fa,

... qn , say

2T = cinq,- + aq.? + . . . + 2aV2 q\q, + (1)

where the coefficients are in general functions of the co-ordinates qx , q.2 , ...qn ',

For a fuller account of the general theory see Thomson and Tait, Natural Philosophy,
Arts. 337, ...; Lord Rayleigh, Theory of Sound, c. iv.; Ronth, Elementary Rigid Dynamics
(6th ed.), London, 1897, c. ix.

; Whittaker, Analytical Dynamics, c. vii.

t The steps by which a rigorous transition can be made to the case of infinite freedom have

recently been investigated by Hilbert, Gott. Nachr., 1904, p. 49.
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but may in the application to small motions, be supposed constant, and to

have the values corresponding to qly q2 , ...qn
= 0. Again, if (as we shall

suppose) the system is 'conservative,' the potential energy V of a small

displacement is a homogeneous quadratic function of the component

displacements qlt q2 ,
... qn ,

with (on the same understanding) constant

coefficients, say
ZV = cn qx

- + c^q,? + . . . 4- 2cl2qx q2 + (2)

By a real* linear transformation of the co-ordinates qx , q2 , ...qn it is

possible to reduce T and V simultaneously to sums of squares ;
the new

variables thus introduced are called the
' normal co-ordinates

'

of the system.

In terms of these we have

2T = a, qi
2 + atqt

* +...+ anqn", (3)

2V=c 1 q,
2 + c,q2

- + ... + cn qn
2

(4)

The coefficients al ,
a.2 ,

... an are called the 'principal coefficients of inertia';

they are necessarily positive. The coefficients c1} c2 , ... cn may be called the
'

principal coefficients of stability
'

; they are all positive when the undisturbed

configuration is stable.

When given extraneous forces act on the system, the work done by these

during an arbitrary infinitesimal displacement Aqlt Aq2 , ...Aqn maybe ex-

pressed in the form

QiAft+ QAq2 + ... +Qn&qn (5)

The coefficients Q 1} Q2 , ...Qn are then called the 'normal components of

disturbing force.'

In terms of the normal co-ordinates, the equations of motion are given by

Lagrange's equations
d dT dT dV ~

r
_ a , /cxmrWr"^ 9" [r=1 '

2-- re] - (6)

In the present application to infinitely small motions, these take the form

arqr +crqr= Qr (7)

It is easily seen from this that the dynamical characteristics of the normal

co-ordinates are (1) that an impulse of any normal type produces an initial

motion of that type only, and (2) that a steady disturbing force of any type

maintains a displacement of that type only.

To obtain the free motions of the system we put Qr
= 0. Solving, we find

q r
= A r cos (<rr t-\- r) (8)

Wh-
'r-(f> W

I

* The algebraic proof of this involves the assumption that one at least of the functions T, I

is essentially positive. In the present case T of course fulfils this condition.
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and Ar ,
er are arbitrary constants*. Hence a mode of free motion is possible

in which any normal co-ordinate qr varies alone, and the motion of any particle

of the system, since it depends linearly on qr ,
will be simple-harmonic, of

period 2ir/a-r ',

moreover the particles will pass simultaneously through their

equilibrium positions. The several modes of this character are called the
' normal modes

'

of vibration of the system ;
their number is equal to that of

the degrees of freedom, and any free motion whatever of the system may be

obtained from them by superposition, with a proper choice of the 'amplitudes'

(A r) and
'

epochs
'

(er).

In certain cases, viz. when two or more of the free periods (27r/cr) of the

system are equal, the normal co-ordinates are to a certain extent indeterminate,

i.e. they can be chosen in an infinite number of ways. An instance of this is

the spherical pendulum. Other examples will present themselves later
;
see

Arts. 189, 198.

If two (or more) normal modes have the same period, then by compounding

them, with arbitrary amplitudes and epochs, we obtain a small oscillation

in which the motion of each particle is the resultant of simple-harmonic

vibrations in different directions, and is therefore, in general, elliptic-harmonic,

with the same period. This is exemplified in the conical pendulum ;
an

important instance in our own subject is that of progressive waves in deep
water (Chap. ix.).

If any of the coefficients of stability (cr) be negative, the value of ar is

pure imaginary. The circular function in (8) is then replaced by real ex-

ponentials, and an arbitrary displacement will in general increase until the

assumptions on which the approximate equation (7) is based become untenable.

The undisturbed configuration is then reckoned as unstable. The necessary

and sufficient condition of stability (in the present sense) is that the potential

energy V should be a minimum in the configuration of equilibrium.

To find the effect of disturbing forces, it is sufficient to consider the case

where Qr varies as a simple-harmonic function of the time, say

Qr=Cr cos(<rt + e), (10)

where the value of a is now prescribed. Not only is this the most interesting

case in itself, but we know from Fourier's Theorem that, whatever the law of

variation of Q r with the time, it can be expressed by a series of terms such as

(10). A particular integral of (7) is then

9r
= -

hz-cos(a*+ e) (11)

This represents the '

forced oscillation
'

due to the periodic force Qr . In it

* The ratio <r/2ir measures the '

frequency
' of the oscillation. It is convenient to have a

name for the quantity a itself; the term 'speed' has been used in this sense by Lord Kelvin and

Prof. G. H. Darwin in their researches on the Tides.
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the motion of every particle is simple-harmonic, of the prescribed period

27r/o-, and the extreme displacements coincide in time with the maxima and

minima of the force.

A constant force equal to the instantaneous value of the actual force (10)

would maintain a displacement

qr
= _r cos (at + e), (12)

cr

the same, of course, as if the inertia-coefficient ar were null. Hence (11) may
be written

*- ^9r. (13)

<Tr
-

where ar has the value (9). This very useful formula enables us to write

down the effect of a periodic force when we know that of a steady force of the

same type. It is to be noticed that
q,.

and Qr have the same or opposite

phases according aso-> ar ,
that is, according as the period of the disturbing

force is greater or less than the free period. A simple example of this is

furnished by a simple pendulum acted on by a periodic horizontal force.

Other important illustrations will present themselves in the theory of the

tides*.

When a is very great in comparison with a,., the formula (11) becomes

Q
q,.
= ~

cos(at + e): (14)
0"(l r

the displacement is now always in the opposite phase to the force, and

depends only on the inertia of the system.

If the period of the impressed force be nearly equal to that of the normal

mode of order r, the amplitude of the forced oscillation, as given by (13), is,

very great compared with qr . In the case of exact equality, the solution (11)

fails, and must be replaced by

qr
= Bt sin (at + e), (15)

where, as is verified immediately on substitution, B = Cr/2aar . This gives

an oscillation of continually increasing amplitude, and can therefore only

be accepted as a representation of the initial stages of the disturbance.

Another very important property of the normal modes may be noticed. If by th

introduction of constraints the system be compelled to oscillate in any other prescribed

manner, the configuration at any instant can be specified by one variable, which Ave wil

denote by 8. In terms of this we shall have

qr=Br 8,

*
Cf. T. Young, "A Theory of Tides," Nicholson's Journal, t. xxxv. (1813) [Miscellaneou

Works, London, 1854, t. ii. p. 262].
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where the quantities Br are certain constants. This makes

2T=(B1
ial+Bi*ai+ ...+Bn*an)&, (16)

2r=(B*c1 +B.?c2 + ...+BJCJ0*. ....: (17)

If 6 x cos (at+e), the constancy of the energy (T+ V) requires

B
l
*c

l +B,*ci + ...+Bm*cnr
B*a

l+ B*-ai+...+Bfan
( }

Hence <t- is intermediate in value between the greatest and least of the quantities c^/a,. ; in

other words, the frequency of the constrained oscillation is intermediate between the

greatest and least frequencies corresponding to the normal modes of the system. In par-

ticular, when a system is modified by the introduction of a constraint, the frequency of

the slowest natural oscillation is increased.

Moreover, if the constrained type differ but slightly from a normal type (r), a3 will

differ from cr ar by a small quantity of the second order. This gives a valuable method of

estimating approximately the frequency in cases where the normal types cannot be

accurately determined*.

It may further be shewn that in the case of a partial constraint, which merely reduces

the degree of freedom from n to n -
1, the periods of the modified system separate those of

the original ouet.

The modifications which are introduced into the theory of small oscillations

by the consideration of viscous forces will be noticed in Chapter XI.

Long Waves in Canals.

168. Proceeding now to the special problem of this Chapter, let us begin
with the case of waves travelling along a straight canal, with horizontal bed,

and parallel vertical sides. Let the axis of ar be parallel to the length of the

canal, that of y vertical and upwards, and let us suppose that the motion

takes place in these two dimensions x, y. Let the ordinate of the free surface,

corresponding to the abscissa x, at time t, be denoted by y + 17, where y is

the ordinate in the undisturbed state.

lready indicated, we shall assume in all the investigations of this

Chapter that the vertical acceleration of the fluid particles may be neglected,

or, more precisely, that the pressure at any point {x, y) is sensibly equal to

atical pressure due to the depth below the free surface, viz.

p-Po = 9p(yo + v-y), (!)

where p is the (uniform) external pressure.

*
Lord Rayleigh,

" Some General Theorems relating to Vibrations," Proc. Lond. Math. Soc,
t. iv. p. 3.37 (1873) [Sc. Papers, t. i. p. 170], and Theory of Sound, c. iv.

t Routh, Elementary Rigid Dynamics, Art. 67; Rayleigh, Theory of Sound (2nd ed.), Art. 92a;

Whittaker, Analytical Dynamics, Art. 81.
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fc-*S <2 >

This is independent of y, so that the horizontal acceleration is the same for

all particles in a plane perpendicular to x. It follows that all particles which

once lie in such a plane always do so
;
in other words, the horizontal velocity

u is a function of x and t only.

The equation of horizontal motion, viz.

du du _ 1 dp
dt dx pdx'

is further simplified in the case of infinitely small motions by the omission of

the term u du/dx, which is of the second order, so that

di
= ~ g dx <3 >

Now let =
judt ;

i.e. f is the time-in tegral of the displacement past the plane x, up to the

time t. In the case of small motions this will, to the first order of small

quantities, be equal to the displacement of the particles which originally

occupied that plane, or again to that of the particles which actually occupy it

at time t. The equation (3) may now be written

3 ,!l (4)
fc

9 dx W
The equation of continuity may be found by calculating the volume of

fluid which has, up to time t, entered the space bounded by the planes x and

x + Bx
; thus, if h be the depth and b the breadth of the canal,

=r (%hb) Bx = ijbBx,

"=- Al <5 >

The same result comes from the ordinary form of the equation of con

tinuity, viz. ^ = (6)
ox oy

*-- (7)

j

if the origin be (for the moment) taken in the bottom of the cana !

This formula is of interest as shewing that the vertical velocity of an

particle is simply proportional to its height above the bottom. At th;
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free surface we have y = h + rj, v = drj'dt, whence (neglecting a product of

small quantities)

dt-~
h
dxdt

(8)

From this (5) follows by integration with respect to t.

Eliminating rj between (4) and (5), we obtain

d-*-ah^ (9)

The elimination of gives an equation of the same form, viz.

W =9h d* (10)

The above investigation can readily be extended to the case of a

uniform canal of any form of section*. If the sectional area of the un-

disturbed fluid be S, and the breadth at the free surface b, the equation of

continuity is

-jt(S)8x = vbBx, (11)

whence
rj
= h^, (12)ox

as before, provided h = S/b, i.e. h now denotes the mean depth of the canal.

The dynamical equation (4) is of course unaltered.

169. The equation (9) is of a well-known type which occurs in several

physical problems, e.g. the transverse vibrations of strings, and the motion of

sound-waves in one dimension.

To integrate it, let us write, for shortness,

<? = gh, (13)

and x ct = xl ,
x + ct=x.2 .

In terms of xx and x.2 as independent variables, the equation takes the form

*L-o.
dx^dxo

The complete solution is therefore

=F(x-ct)+f(x + ct), (14)

where F,/are arbitrary functions.

*
Kelland, Trans. II. S. Edin., t. xiv. (1839).

L. 16
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The corresponding values of the particle-velocity and of the surface-

elevation are given by

%=-F'(x-ct)+f'(x + ct),)

\
(15)

^
= -F'{x-ct)-f'{x +

ct).}

The interpretation of these results is simple. Take first the motion

represented by the first term in (14), alone. Since F(x ct) is unaltered

when t and x are increased by t and cr, respectively, it is plain that the dis-

turbance which existed at the point x at time t has been transferred at time

t + t to the point x + ct. Hence the disturbance advances unchanged with a

constant velocity c in space. In other words we have a '

progressive wave
'

travelling with constant velocity c in the direction of ^-positive. In the same

way the second term of (14) represents a progressive wave travelling with

velocity c in the direction of ^-negative. And it appears, since (14) is the

complete solution of (9), that any motion whatever of the fluid, which is

subject to the conditions laid down in the preceding Art., may be regarded as

made up of waves of these two kinds.

The velocity (c) of propagation is, by (13), that 'due to' half the depth of

the undisturbed fluid*.

The following table, giving in round numbers the velocity of wave-propagation for

various depths, will be of interest, later, in connection with the theory of the tides.

/*
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The functions F',f which occur in (15) are then given by

f'(x) = *{*(*)-*(*)}.}
KU)

Hence if we draw the curves y = Vit y = V2, where

Vl = h{+(x)+<f>(x)},l

the form of the wave-profile at any subsequent instant t is found by displacing

these curves parallel to x, through spaces + ct, respectively, and adding (alge-

; braically) the ordinates. If, for example, the original disturbance be confined

to a length I of the axis of x, then after a time l
!

'2c it will have broken up
into two progressive waves of length I, travelling in opposite directions.

In the particular case where in the initial state = 0, and therefore

= 0, we have 7/1=7/2; the elevation in each of the derived waves is then

exactly half what it was, at corresponding points, in the original disturbance.

It appears from (16) and (17) that if the initial disturbance be such that

= + 7/ h . c, the motion will consist of a wave system travelling in one

direction only, since one or other of the functions F' and/' is then zero.

It is easy to trace the motion of a surface-particle as a progressive wave

of either kind passes it. Suppose, for example, that

= F(x-ct), (19)

:
and therefore %

= C T (~^)

The particle is at rest until it is reached by the wave
;

it then moves forward

with a velocity proportional at each instant to the elevation above the mean

level, the velocity being in fact less than the wave-velocity c, in the ratio of

the surface-elevation to the depth of the water. The total displacement at

any time is given by

*-$/**
TLis integral measures the volume, per unit breadth of the canal, of the

portion of the wave which has up to the instant in question passed the

particle. Finally, when the wave has passed away, the particle is left at rest

in advance of its original position at a distance equal to the total volume of

the elevated water divided by the sectional area of the canal.

171. We can now examine under what circumstances the solution ex-

pressed by (14) will be consistent with the assumptions made provisionally
in Art, 168.

162
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The exact equation of vertical motion, viz

dz

Dv dp

gives, on integration with respect to y,

p-Po = gp{yo+n-y)-p) -jyt
dy (21)

This may be replaced by the approximate equation (1), provided /3 (h + rj) be

small compared with gij, where ft denotes the maximum vertical acceleration.

Now in a progressive wave, if X denote the distance between two consecutive

nodes {i.e. points at which the wave-profile meets the undisturbed level), the

time which the corresponding portion of the wave takes to pass a particle is

X/c, and therefore the vertical velocity will be of the order rjcjX*, and the

vertical acceleration of the order rjc
2
/\

2
,
where rj is the maximum elevation

(or depression). Hence the neglect of the vertical acceleration is justified,

provided h-jX- is a small quantity.

Waves whose slope is gradual, and whose length X is large compared with

the depth h of the fluid, are called
'

long waves.'

Again, the restriction to infinitely small motions, made in equation (3),

consisted in neglecting udu/dx in comparison with dujdt. In a progressive

wave we have dujdt
= cdu/dx ;

so that u must be small compared with c, and

therefore, by (20), rj
must be small compared with h, It is to be observed

that this condition is altogether distinct from the former one, which may be

legitimate in cases where the motion cannot be regarded as infinitely small.
j

See Art. 185.

The preceding conditions will of course be satisfied in the general cast)

represented by equation (14), provided they are satisfied for each of the tw(j

progressive waves into which the disturbance can be analysed.

172. There is another, although on the whole a less convenient, metho<

of investigating the motion of
'

long' waves, in which the Lagrangian plan i

adopted, of making the co-ordinates refer to the individual particles of th

fluid. For simplicity, we will consider only the case of a canal of rectangula

section f. The fundamental assumption that the vertical acceleration may b

neglected implies as before that the horizontal motion of all particles in

plane perpendicular to the length of the canal will be the same. We ther*

*
Hence, comparing with (20), we see that the ratio of the maximum vertical to the maximut

horizontal velocity is of the order h/\.

+ Airy, Encyc. Metrop., "Tides and Waves," Art. 192 (1845); see also Stokes, "On Wave;

Camb. and Dub. Math. Journ., t. iv. (1849) [Math, and Phys. Papers, t. ii. p. 222]. The case o

canal with sloping sides has been treated by McCowan, "On the Theory of Long Waves...," I'l

Mag. (5), t. xxxv. p. 250 (1892).
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fore denote by x+ | the abscissa at time t of the plane of particles whose

undisturbed abscissa is x. If ij denote the elevation of the free surface, in

this plane, the equation of motion of unit breadth of a stratum whose thick-

ness (in the undisturbed state) is Bx, will be

phhx^=-fjx{h + r
1\

where the factor (dp/dx) . 8x represents the pressure-difference for any two

opposite particles x and x + 8x on the two faces of the stratum, while the

factor h+rj represents the area of the stratum. Since we assume that the

pressure about any particle depends only on its depth below the free surface

we may write

dp dn

dx-^dx*

so that our dynamical equation is

dt- -'{i+m w
The equation of continuity is obtained by equating the volumes of a stratum,

consisting of the same particles, in the disturbed and undisturbed conditions

respectively, viz.

H
(8x+^Sx\(k + v)

= h8x,

**H*+2T (2)

Between equations (1) and (2) we may eliminate either t\ or
;
the result in

terms of is the simpler, being

This is the general equation of '

long
'

waves in a uniform canal with vertical

sides*.

So far the only assumption is that the vertical acceleration of the particles

may be neglected in calculating the pressure. If we now assume, in addition,

that
??

h is a small quantity, the equations (2) and (3) reduce to

*I (4)

*-* &
*

Airy, I.e.
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The elevation 77 also satisfies the equation

1?-**P W
These are in conformity with our previous results; for the smallness of dfjjdx

means that the relative displacement of any two particles is never more than

a minute fraction of the distance between them, so that it is (to a first

approximation) now immaterial whether the variable x[he supposed to refer

to a plane fixed in space, or to one moving with the fluid.

173. The potential energy of a wave, or system of waves, due to the

elevation or depression of the fluid above or below the mean level is, per unit

breadth, gp jjydxdy, where the integration with respect to y is to be taken

between the limits and 77, and that with respect to x over the whole length

of the waves. Effecting the former integration, we get

\9pWdx (1)

The kinetic energy is ^phjjpdx (2)

In a system of waves travelling in one direction only we have

so that the expressions (1) and (2) are equal; or the total energy is half;

potential, and half kinetic.

This result may be obtained in a more general manner, as follows*. Any

progressive wave may be conceived as having been originated by the splitting

up, into two waves travelling in opposite directions, of an initial disturbance

in which the particle-velocity was everywhere zero, and the energy therefore

wholly potential. It appears from Art. 170 that the two derived waves arc

symmetrical in every respect, so that each must contain half the origina

store of energy. Since, however, the elevation at corresponding points is fo.

each derived wave exactly half that of the original disturbance, the potentia

energy of each will by (1) be one-fourth of the original store. The remainin

(kinetic) part of the energy of each derived wave must therefore also be one!

fourth of the original quantity.

174. If in any case of waves travelling in one direction only, withoij

change of form, we impress on the whole mass a velocity equal and opposil,

to that of propagation, the motion becomes steady, whilst the forces acting c

any particle remain the same as before. With the help of this artifice, tl

* Lord Eayleigh,
" On Waves," Phil. Mag. (5), t. i. p. 257 [Sc. Papers, t. i. p. 251].
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laws of wave-propagation can be investigated with great ease*. Thus, in the

present case we shall have, by Art. 22 (4), at the free surface,

= const. -gQi + rj)- q-, (1)

where q is the velocity. If the slope of the wave-profile be everywhere

gradual, and the depth h small compared with the length of a wave, the

horizontal velocity may be taken to be uniform throughout the dejpth, and

approximately equal to q. Hence the equation of continuity is

q(h + T})
=

ch,

c being the velocity, in the steady motion, at places where the depth of the

stream is uniform and equal to h. Substituting for q in (1), we have

*- const, -gk^i+iy^i+iy.
Hence if 77/A be small, the condition for a free surface, viz. p = const., is

satisfied approximately, provided

c- = gh,

which agrees with our former result.

175. It appears from the linearity of our equations that, in the case of

sufficiently low waves, any number of independent solutions may be super-
For example, having given a wave of any form travelling in one

direction, if we superpose its image in the plane x = 0, travelling in the

opposite direction, it is obvious that in the resulting motion the horizontal

velocity will vanish at the origin, and the circumstances are therefore the

same as if there were a fixed barrier at this point. We can thus understand

the reflexion of a wave at a barrier; the elevations and depressions are

reflected unchanged, whilst the horizontal velocity is reversed. The same

results follow from the formula

% = F(ct-x)-F(ct + x), (1)

which is evidently the most general value of subject to the condition that

= fora?=0.

We can further investigate without much difficulty the partial reflexion of a wave at a

point where there is an abrupt change in the section of the canal. Taking the origin at

the point in question, we may write, for the negative side,

-4-^K> -=?/KK'K> (2>

and for the positive side

*=*(<-*> <*-%*(*-$
(S>

* Lord Rayleigh, I.e.
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where the function F represents the original wave, and /, <f>
the reflected and transmitted

portions respectively. The constancy of mass requires that at the point i=Owe should

have b
l
h

l
u

1
= b

2
h2
u

2 ,
where 6

X ,
b2 are the breadths at the surface, and h

x ,
h
t
are the mean

depths. We must also have at the same point r) x
=

r)% ,
on account of the continuity of

pressure*. These conditions give

h

-^{F{t)-f{t)}J^^{t), F{t)+f{t) = <t>{t).
c
i i

We thence find that the ratios of the elevations in corresponding parts of the reflected and

incident waves, and of the transmitted and incident waves, are

/ = Vi-62 c2 < _ 26^ .^F b
1
c
l + b

2
c2

i F 6
1
c
1+62c2

' v

respectively. The reader may easily verify that the energy contained in the reflected and

transmitted waves is equal to that of the original incident wave.

176. Our investigations, so far, relate to cases of free waves. When, in

addition to gravity, small disturbing forces X, Y act on the fluid, the equation

of motion is obtained as follows.

We assume that within distances comparable with the depth h these

forces vary only by a small fraction of their total value. On this under-

standing we have, in place of Art. 168 (1),

p
-^ = (9-Y) (yo + v-y), (i)

and therefore - =
(g
- F)^ -

(y + r,
-

y)
g

19p_^ v^7
! /- _l. ,\^

P

The last term may be neglected for the reason just stated, and if we

further neglect the product of the small quantities Y and drj/dx, the equation

reduces to

l^-ah (2)

pdx~
9 dx'

K '

as before. The equation of horizontal motion then takes the form

f~*!+x, (>

where X may be regarded as a function of x and t only. The equation o:

continuity has the same form as in Art. 168, viz

'* (4)
,

* It will be understood that the problem admits only of an approximate treatment, on accoun

of the rapid change in the character of the motion near the point of discontinuity. The natur

of the approximation implied in the above assumptions will become more evident if we suppos

the suffixes to refer to two sections S
1
and S2 ,

one on each side of the origin 0, at distances fror!

O which, though very small compared with the wave-length, are yet moderate multiples of th ]

transverse dimensions of the canal. The motion of the fluid will be sensibly uniform over eaci

of these sections, and parallel to the length. The condition in the text then expresses that thei

is no sensible change of level between S
1
and S'

2 .
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Hence, on elimination of 77,

1-*S+X (5)

177. The oscillations of water in a canal of uniform section, closed at

both ends, may, as in the corresponding problem of Acoustics, be obtained by

superposition of progressive waves travelling in opposite directions. It is

more instructive, however, with a view to subsequent more difficult investi-

gations, to treat the problem as an example of the general theory sketched in

Art, 167.

We have to determine f so as to satisfy

3-*3+*
;-

together with the terminal conditions that = for x = and x = I, say.

To find the free oscillations we put X = 0, and assume that

x cos {at + e),

where a is to be found. On substitution we obtain

U+7*t* 00

whence, omitting the time-factor,

t = A sin h B cos .

c c

The terminal conditions give B = 0, and

7- (3)

where r is integral. Hence the normal mode of order r is given by

. . nr.r (rirct \ ...

f = 4 r sin
-j-coe (-p + r) (4)

where the amplitude A r and epoch er are arbitrary.

In the slowest oscillation (r=l), the water sways to and fro, heaping
itself up alternately at the two ends, and there is a node at the middle

(
=

^Z). The period (2l/c) is equal to the time a progressive wave would
take to traverse twice the length of the canal.

The periods of the higher modes are respectively $,,, ...of this, but
it must be remembered, in this and in other similar problems, that our theory
ceases to be applicable when the length l/r of a semi-undulation becomes

comparable with the depth h.
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On comparison with the general theory of Art. 167, it appears that the

normal co-ordinates of the present system are quantities q1} q2f-qn such that

when the system is displaced according to any one of them, say qrt we have

=
qr sm -j- ;

and we infer that the most general displacement of which the system is

capable (subject to the conditions presupposed) is given by

V7TCC

=2gr sin -p, (5)

where qx ,q^, ... qn are arbitrary. This is in accordance with Fourier's Theorem.

When expressed in terms of the normal velocities and the normal co-ordi-

nates, the expressions for T and V must reduce to sums of squares. This is

easily verified, in the present case, from the formula (5). Thus if S denote

the sectional area of the canal, we find

2T=psf
l

dx = %arqr\ 2V=gp^f ifda?= 2crgv
s
, (6)

where ar
= ^p8l, cr = ^'>'

2
7r

2

gphj (7)

It is to be noted that, on the present reckoning, the coefficients of stability

(cr) increase with the depth.

Conversely, if we assume from Fourier's theorem that (5) is a sufficiently'

general expression for the value of at any instant, the calculation juslj

indicated shews that the coefficients qr are the normal co-ordinates; and th(;

frequencies can then be found from the general formula (9) of Art. 167
;
viz

J

we have

\ar)
'-nr&J*. (8)

in agreement with (3).

178. As an example of forced waves we take the case of a unifon

horizontal force

X=fcos(at+e) (9) i

This will illustrate, to a certain extent, the generation of tides in a lanii

locked sea of small dimensions.

Assuming that varies as cos {at + e), and omitting the time-factor, tl

equation (1) becomes

da? c
8 s

c
5 '



177-178] Waves in a Finite Canal 251

the solution of which is

v f ^ . ax ax= - ^- + Dsin + 2? cos .* a2
c c

.(10)

The terminal conditions give

eJ-_. I) sin = 1 cos
;

c V c J a2 .(11)

Hence, unless sin al/c
= 0, we have D =fja" . tan al/2c, so that

2/
1 =

crcos
2c

o\e . a (I x) , . x
\

a^ sin - . cos (at + e),
2c '2c

and 77
= sin

a(x-^l)
.(12)

cos (o-tf + e).

ac cos
2c

If the period of the disturbing force be large compared with that of the

slowest free mode, al/2c will be small, and the formula for the elevation

becomes

.(13)
f

7}
= -(x ^l) cos (at + e),

approximately, exactly as if the water were devoid of inertia. The horizontal

displacement of the water is always in the same phase with the force, so long
as the period is greater than that of the slowest free mode, or al/c < tt. If

the period be diminished until it is less than the above value, the phase is

reversed.

When the period is exactly equal to that of a free mode of odd order

(s=l, 3, 5,...), the above expressions for and 77 become infinite, and the

solution fails. As pointed out in Art. 167, the interpretation of this is that,

in the absence of dissipative forces, the amplitude of the motion becomes so

great that our fundamental approximations are no longer justified.

If, on the other hand, the period coincide with that of a free mode of

even order (s= '2, 4-, 6, ...), we have sincr/c = 0, cos al/c
= 1, and the terminal

conditions are satisfied independently of the value of D. The forced motion

may then be represented by*

2/ . ax= SIT= sm-
2c

cos(at + e) (14)

This example illustrates the fact that the effect of a disturbing force may
often be conveniently calculated without resolving the force into its 'normal

components' (Art. 167).

In the language of the general theory, the impressed force has here no component of the

particular type with which it synchronizes, so that a vibration of this type is not excited at all.

In the same way a periodic pressure applied at any point of a stretched string will not excite any
fundamental mode which has a node there, even though it synchronize with it.
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Another very simple case of forced oscillations, of some interest in

connection with tidal theory, is that of a canal closed at one end and

communicating at the other with an open sea in which a periodic oscillation

7} a cos (at + e) (15)

is maintained. If the origin be taken at the closed end, the solution is

obviousty

ax
cos

Q
7]
= a r . cos (at + e) (16)

al
cos

I denoting the length. If al/c be small the tide has sensibly the same

amplitude at all points of the canal. For particular values of I, (determined

by cos al/c
=

0), the solution fails through the amplitude becoming infinite.

Canal Theory of the Tides.

179. The theory of forced oscillations in canals, or on open sheets of

water, owes most of its interest to its bearing on the phenomena of the tides.

The 'canal theory,' in particular, has been treated very fully by Airy*. We
will consider one or two of the more interesting problems.

The calculation of the disturbing effect of a distant body on the waters

of the ocean is placed for convenience in an Appendix at the end of this

Chapter. It appears that the disturbing effect of the moon, for example,

at a point P of the earth's surface, may be represented by a potential fl

whose approximate value is

O=|^(i-cos^)j (1)

where M denotes the mass of the moon, D its distance from the earth's

centre, a the earth's radius, y the ' constant of gravitation,' and S- the moon's

zenith distance at the place P. This gives a horizontal acceleration dl/ad%
or

/sin2*3 (2)

towards the point of the earth's surface which is vertically beneath the moon,

where

/=fy^ (3)
J

Encycl. Metrop., "Tides and Waves," Section vi. (1845). Several of the leading features o\

the theory had been made out, by very simple methods, by Young, in 1813 and 1823 [Miteel

laneous Works, t. ii. pp. 262, 291].
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If E be the earth's mass, we may write g = yE a-, whence

f ? * (*\*
g 2'E-{d)'

Putting M/E = Jj-, a/D = ^, this gives fjg = 8*57 x 10~8
. When the sun is

the disturbing body, the corresponding ratio isfg = 3*78 x 10~8
.

It is convenient, for some purposes, to introduce a linear magnitude H,
defined by

*= wa g

If we put a = 21 x 10' feet, this gives, for the lunar tide, i?= r80 ft., and

for the solar tide H = "79 ft. It is shewn in the Appendix that H measures

the maximum range of the tide, from high water to low water, on the '

equi-

librium theory/

180. Take now the case of a uniform canal coincident with the earth's

equator, and let us suppose for simplicity that the moon describes a circular

orbit in the same plane. Let f be the displacement, relative to the earth's

surface, of a particle of water whose mean position is at a distance x, measured

eastwards, from some fixed meridian. If n be the angular velocity of the

earth's rotation, the actual displacement of the particle at time t will be

so that the tangential acceleration will be (Fff/JM*. If we suppose the

'centrifugal force' to be as usual allowed for in the value of g, the processes
of Arts. 168, 176 will apply without further alteration.

If n' denote the angular velocity of the moon relative to the fixed meridian*,
we may write

a

so that the equation of motion is

j
= <? n̂-fsm 2 (n't + - + e) (1)

dt- dx*
J

\ a J
K

The free oscillations are determined by the consideration that is

warily a periodic function of x, its value recurring whenever x increases

by 27ra. It may therefore be expressed, by Fourier's Theorem, in the form

=i(Pr cos- + Qr sin-) (2)
o \ & ft/

Substituting in (1), with the last term omitted, it is found that Pr and Qr

must satisfy the equation

flip >J^3

^-
r +^Pr

= (3)
at* a-

* That is, n' = h -
j , if Mj be the angular velocity of the moon in her orbit.
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The motion, in any normal mode, is therefore simple-harmonic, of period

27ra/rc.

For the forced waves, or tides, we find

*=-ira sin2
('

!'< +H' <

whence

The tide is therefore semi-diurnal (the lunar day being of course understood),

and is
'

direct
'

or
'

inverted,' i.e. there is high or low water beneath the moon,

according as c^n'a, in other words according as the velocity, relative to the

earth's surface, of a point which moves so as to be always vertically beneath

the moon, is less or greater than that of a free wave. In the actual case of

the earth we have

c' .9 ^_oii *

n -a- n -a a a

so that unless the depth of the canal were to greatly exceed such depths as

actually occur in the ocean, the tides would be inverted.

This result, which is sometimes felt as a paradox, comes under a general

principle referred to in Art. 167. It is a consequence of the comparative
slowness of the free oscillations in an equatorial canal of moderate depth.

It appears from the rough numerical table on p. 242 that with a depth
of 11250 feet a free wave would take about 30 hours to describe the earth's

semi-circumference, whereas the period of the tidal disturbing force is only a

little over 12 hours.

The formula (5) is, in fact, a particular case of Art. 167 (13), for it may
be written

*-iZ^s?* < 6 >

where rj is the elevation given by the '

equilibrium theory,' viz.

V = hHcos2 (n't
+
^
+

e^,
(7)

and a = 2n, <r = 2cfa.

For such moderate depths as 10000 feet and under, n'2a2
is large com-

pared with gh ;
the amplitude of the horizontal motion, as given by (4), is

then fj4m'\ or gj4tn'-a . H, nearly, being approximately independent of the

depth. In the case of the lunar tide this amplitude is about 140 feet. The

maximum elevation is obtained by multiplying by 2h/a; this gives, for a

depth of 10000 feet, a height of only '133 of a foot.

For greater depths the tides would be higher, but still inverted, until

we reach the critical depth n'2

a?jg, which is about 13 miles. For depths
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beyond this limit, the tides become direct, and approximate more and more

to the value given by the equilibrium theory*.

181. The case of a circular canal parallel to the equator can be worked

out in a similar manner. If the moon's orbit be still supposed to lie in the

plane of the equator, we find by spherical trigonometry

cos ^ = sin cos (n't+^. + e), (1)
\ a sin J

v '

where is the co-latitude, and x denotes the distance of any point P of the

canal from the zero meridian. This leads to

X = - d^ = -fsm0sm2(n't + Z-*+ e), (2)Ox \ asm 6 J
7

i i .
c2H sin2

ex ( , x \
and thence to 77

= A . cos 2 nH r Q + e (3)-
c
2 n -a2 sin2

\ a sin )
x '

Hence if n'a > c the tide will be direct or inverted according as &> sin-1 c/n'a.

If the depth be so great that on a, the tides will be direct for all values

of0.

If the moon be not in the plane of the equator, but have a co-declination

A, the formula (1) is replaced by

cos ^ = cos cos A + sin sin A cos a, (4)

where a is the hour-angle of the moon from the meridian of P. For

simplicity, we will neglect the moon's motion in her orbit in comparison with

the earth's angular velocity of rotation (n) ;
thus we put

CO

a = nt + ^ + e,asm

and treat A as constant. The resulting expression for the component X of

the disturbing force is found to be

3H / x \X = -7T- = /cos sin 2A sin
(
nt H : = + e )

ox J
V a sin /

/sin sin5 A sin 2 \nt-\ : ^ + 6) (5)J
\ a sin j

v ;

We thence obtain

^ = 2 * a 2
-

2 ^sia 20 sin 2A cos (-nt -\ a + e
)

c- n-a* sin- \ a sm J

+ 1
'~

.^-r.5 sin
2 0sin2 Acos2fwi+ ?- + e). ...(6)z

c- n-a- sin- \ a sm J

*
Cf. Young, I.e. ante p. 252.
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The first term gives a '

diurnal
'

tide of period 2trjn ;
this vanishes and

changes sign when the moon crosses the equator, i.e. twice a month. The

second term represents a semi-diurnal tide of period irfn, whose amplitude is

now less than before in the ratio of sin2 A to 1.

182. In the case of a canal coincident with a meridian we should have

to take account of the fact that the undisturbed figure of the free surface

is one of relative equilibrium under gravity and centrifugal force, and is

therefore not exactly circular. We shall have occasion later on to treat the

question of displacements relative to a rotating globe somewhat carefully;

for the present we will assume by anticipation that in a narrow canal the

disturbances are sensibly the same as if the earth were at rest, and the

disturbing body were to revolve round it with the proper relative motion.

If the moon be supposed to move in the plane of the equator, the hour-

angle from the meridian of the canal may be denoted by n't 4- e, and if x be

the distance of any point P on the canal from the equator, we find

cos S- = cos - . cos (n't 4- e) (1)

Hence

X = - "p = -/sin 2 - . cos2
{n't + e)

= - \fsm 2 -
. {1+ cos 2 (n't + e)}. . . .(2)

Substituting in the equation (5) of Art. 176, and solving, we find

77 = i Jff'cos2- + i - - cos 2 ~.cos 2 (n't + e) (3)* a c- n -a2 a '

The first term represents a permanent change of mean level to the extent

v = lHcos2- (4)* a

The fluctuations above and below the disturbed mean level are given by
the second term in (3). This represents a semi-diurnal tide

;
and we notice

that if, as in the actual case of the earth, c be less than n'a, there will be

high water in latitudes above 45, and low Avater in latitudes below 45, when

the moon is in the meridian of the canal, and vice versa when the moon is

90 from that meridian. These circumstances would be all reversed if c were

greater than n'a.

When the moon is not on the equator, but has a given declination, the

mean level, as indicated by the term corresponding to (4), has a coefficient!

depending on the declination, and the consequent variations in it indicate a

fortnightly (or, in the case of the sun, a semi-annual) tide. There is alsc

introduced a diurnal tide whose sign depends on the declination. The readeij

will have no difficulty in examining these points, by means of the genera
'

value of fl given in the Appendix.
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Wave-Motion in a Canal of Variable Section.

183. When the section (S, say) of the canal is not uniform, but varies

Gradually from point to point, the equation of continuity is, as in Art.

168 (il),

i=-\ks (1)

where b denotes the breadth at the surface. If h denote the mean depth

over the width b, we have S= bh, and therefore

"=-sJ>?>' (2)

where h, b are now functions of x.

The dynamical equation has the same form as before, viz.

dt>

= - 9 dx
(3)

Between (2) and (3) we may eliminate either rj or
;
the equation in tj is

S-fs(B
The laws of propagation of waves in a canal of gradually varying rect-

angular section were investigated by Green*. His results, freed from the

restriction to the special form of section, may be obtained as follows.

If we introduce a variable 6 defined by

-<**>. <5>

v+G+Sj)*

in place of x, the equation (4) transforms into

(Pi)

W
where the accents denote differentiations with respect to 8. If 6 and h were constants, the

equation would be satisfied by n = F(6-t), as in Art. 169; in the present case we assume,
for trial,

r,
= Q.F(0-t), (7)

where e is a function of 8 only. Substituting in (6), we find

S-M+G +
i?)(

+S)"
The terms of this which involve F will cancel provided

, e' V H' A
2
e +

6
+ 2l=0'

or e=C6- iA- i
, (9)

C being a constant. Hence, provided the remaining terms in (8) may be neglected, the

equation (4) will be satisfied.

"On the Motion of Waves in a Variable Canal of small depth and width," Camb. Trans.
t- vi. (1837) [Math. Papers, p. 225]; see also Airy, "Tides and Waves," Art 260.

L. 17
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The above approximation is justified, provided we can neglect 0"/' and
'/

in com-

parison with F'/F. As regards 0'/, it appears from (9) and (7) that this is equivalent to

neglecting b
~ 1

. dbjdx and h~ l
. dh\dx in comparison with i)~

x
. drj/dx. If, now, X denote a

wave-length, in the general sense of Art. 171, dij/dx is of the order t)/\, so that the assump-
tion in question is that \dbjdx and \dhjdx are small compared with b and h, respectively.

In other words, it is assumed that the transverse dimensions of the canal vary only by
small fractions of themselves within the limits of a wave-length. It is easily seen,' in like

manner, that the neglect of 0"/' in comparison with F'/F implies a similar limitation to

the rates of change of dbjdx and dh/dx.

Since the equation (4) is unaltered when we reverse the sign of
t,
the complete solution,

subject to the above restrictions, is

v
=b-lh-l{F(d-t)+f(d + t)}, (10)

where F and / are arbitrary functions.

The first term in this represents a wave travelling in the direction of .r-positive ; the

velocity of propagation is determined by the consideration that any particular phase is

recovered when 80 and dl have equal values, and is therefore equal to {ghy, by (5), exactly

as in the case of a uniform section. In like manner the second term in (10) represents a

wave travelling in the direction of .^-negative. In each case the elevation of any particular

part of the wave alters, as it proceeds, according to the law b~ *h~*.

The reflection of a progressive wave at a point where the section of a

canal suddenly changes has been considered in Art. 175. The formulae there

given shew, as we should expect, that the smaller the change in the

dimensions of the section, the smaller will be the amplitude of the reflected

wave. The case where the change from one section to the other is

continuous, instead of abrupt, has been investigated by Lord Rayleigh for a

special law of transition*. It appears that if the space within which the

transition is completed be a moderate multiple of a wave-length there is

practically no reflection
;
whilst in the opposite extreme the results agree

with those of Art. 175.

If we assume, on the basis of these results, that when the change oi

section within a wave-length may be neglected a progressive wave suffers

no appreciable disintegration by reflection, the law of amplitude easily follows
|

from the principle of energyj-. It appears from Art. 173 that the energy o.

the wave varies as the length, the breadth, and the square of the height, and

it is easily seen that the length of the wave, in different parts of the canal i

varies as the corresponding velocity of propagation, and therefore as the squan \

root of the mean depth. Hence, in the above notation, rfbh* is constant, or
j

7)
oc b-tfi-t,

which is Green's law above found.

* " On Eeflection of Vibrations at the Confines of two Media between which the Transition :

gradual," Proc. Lond. Math. Soc, t. xi. p. 51 (1880) [Sc. Papers, t. i. p. 460]; Theory of Souru

2nd ed., London, 1894, Art. 148 b.

t Lord Kayleigh, I.e. ante p. 246.
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184. In the case of simple harmonic motion, where 77
x cos {at + e), the

equation (4) of the preceding Art., becomes

fsM9+*-
Some particular cases of considerable interest can be solved with ease.

1. For example, let us take the case of a canal whose breadth varies as

the distance from the end x = 0, the depth being uniform; and let us suppose
that at its mouth (x = a) the canal communicates with an open sea in which

a tidal oscillation

v = Ccos{at + e), (2)

is-maintained. Putting h = const., b x x, in (1), we find

+5S +*-* JO

provided k- = . (4)

Hei r = C^}cos(^
+ 6) (5)

The curve y = J (x) is figured on p. 269
;

it indicates how the amplitude
of the forced oscillation increases, whilst the wave-length is practically

-
ant, as we proceed up the canal from the mouth.

Let us suppose that the variation is in the depth only, and that this

increases uniformly from the end x = of the canal to the mouth, the remain-

ing circumstances being as before. If, in (1), we put h=h xfa, /c = a*a/gh ,

tain

s(-)+-'- <6>

The solution of this which is finite for x = is

i-^-F + iS--)' -(7)

f,=AJ,(%M), (8)

whence finally, restoring the time-factor and determining the constant,

'- o$SSH<*+ *> (9)

The annexed diagram of the curve y = J (V#)> where, for clearness, the

scale adopted for y is 200 times that of x, shews how the amplitude continually

ncreases, and the wave-length diminishes, as we travel up the canal.

172
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These examples may serve to illustrate the exaggeration of oceanic tides

which takes place in shallow seas and in estuaries.

We add one or two simple problems of free oscillations.

3. Let us take the case of a canal of uniform breadth, of length 2a, whose

bed slopes uniformly from either end to the middle. If we take the origin at
J

one end, the motion in the first half of the canal will be determined, as

above, by
V = AJ (2M), (10)

where K = cr
2

a/gh ,
h denoting the depth at the middle.

It is evident that the normal modes will fall into two classes. In the first

of these rj
will have opposite values at corresponding points of the two halves

J

of the canal, and will therefore vanish at the centre (cc
=

a). The values of fl-

are then determined by
J" (2kM) = 0, (11)

viz. k being any root of this, we have

i~(t*.iKd? (12)a K '

In the second class, the value of 77 is symmetrical with respect to tht

centre, so that drj/dx
= at the middle. This gives

J '(2Khil) = (13)

It appears that the slowest oscillation is of the asymmetrical class, an<

corresponds to the smallest root of (11), which is 2/e*a* = '7655^, whence

27r
n .qap w 4a= l'30o x .

7 ., .

0- {ghr

4. Again, let us suppose that the depth of the canal varies according t

the law
a?

h = h n 1- .(14)
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where x now denotes the distance from the middle. Substituting in (1), with

b = const., we find

sfr-sB}-*** -

If we put <7-- = n(n + l)^\ (16)
CL

this is of the same form as the general equation of zonal harmonics, Art.

84 (1).

In the present problem n is determined by the condition that must be

finite for xja= 1. This requires (Art. 85) that n should be integral; the

normal modes are therefore of the types

V = CPn (?\.
cos (at + e), (17)

where Pn is a zonal harmonic, the value of a being determined by (16).

In the slowest oscillation (n = 1), the profile of the free surface is a

straight line. For a canal of uniform depth h
,
and of the same length (2a),

the corresponding value of er would be 7rc/2a, where c = (gh )*. Hence in the

present case the frequency is less, in the ratio 2 *J2tt, or *9003*.

The forced oscillations due to a uniform disturbing force

X=f cos (<rt + e), (18)

can be obtained by the rule of Art. 167 (13). The equilibrium form of the

free surface is evidently

f
fj=

J
-zcos(<rt + e), (19)

and, since the given force is of the normal type n= l, we have

V=
g {l-o*M XCOs(<rt + el <20)

where oy = ?^-
.

a2

Waves of Finite Amplitude.

185. When the elevation
77 is not small compared with the mean depth

h, waves, even in an uniform canal of rectangular section, are no longer

propagated without change of type. The question was first investigated by
Airv*f-, by methods of successive approximation. He found that in a pro-

Other cases of free oscillation in canals of varying section are discussed by Chrystal,
" Some Eesults in the Mathematical Theory of Seiches," Proc. R. S. Edin., t. xxv. p. 328 (1904).

t
"
Tides and Waves," Art. 198.
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gressive wave different parts will travel with different velocities, the wave-

velocity corresponding to an elevation rj being given approximately by

where c is the velocity corresponding to infinitely small amplitude.

A more complete view of the matter can be obtained by the method

employed by Riemann in treating the analogous problem in Acoustics, to

which reference will be made in Chapter x.

The sole assumption on which we are now proceeding is that the vertical

acceleration may be neglected. It follows, as explained in Art. 168, that

the horizontal velocity may be taken to be uniform over any section of the

canal. The dynamical equation is

du du dri ,,.

W +tt te"-'5 (1)

as before, and the equation of continuity, in the case of a rectangular section,

is easily seen to be

f<*+)l~% w
where h is the depth. This may be written

9*7 . drj . du . .

S +"5 <* +,)5 (3)

Let us now write

P=f{v) + u, Q=f(v)-u, (4)

where the function /(17) is as yet at our disposal. If we multiply (3) by

f'(v)> and add to (1), we get

dP dP ., . j., , . du dri

If we now determine f{rj) so that

(h + v){f'(v)Y=g, (5)

this may be written

w+
a

|=-<A+ ">/'wf (6)

In the same way we find

B+-B- ^ + ">/'w| <7)
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The condition (5) is satisfied by

/(,)=^(l+2)*-l},
(8)

where c = (gh)K The arbitrary constant has been chosen so as to make

P and Q vanish in the parts of the canal which are free from disturbance,

but this is not essential.

Substituting in (6) and (7) we find

dP
dP = dx-

|c(l+?)
+uY dt

dQ=ldx+\c(l+^y-u\dt

dx'

dQ
dx

'

.(9)

It appears, therefore, that dP = 0, i.e. P is constant, for a geometrical point

moving with the velocity

-(+#+* <10>

whilst Q is constant for a point moving with the velocity

5 (*+ff
+ - (11 >

Hence any given value of P travels forwards, and any given value of Q travels

backwards, with the velocities given by (10) and (11) respectively. The

values of P and Q are determined by those of rj and u, and conversely.

As an example, let us suppose that the initial disturbance is confined

to the space for which a < x < b, so that P and Q are initially zero for

x<a and x > b. The region within which P differs from zero therefore

advances, whilst that within which Q differs from zero recedes, so that after

a time these regions separate, and leave between them a space within which

P = 0, Q = 0, and the fluid is therefore at rest. The original disturbance

has now been resolved into two progressive waves travelling in opposite

directions.

In the advancing wave we have *

Q = 0, *P--2c
{(l

+
j)*- *].

(12)

so that the elevation and the particle-velocity are connected by a definite

relation (cf. Art. 170). The wave-velocity is given by (10) and (12), viz. it is

cMi+ D'-
2
}

< i3>

To the first order of rj/h, this is in agreement with Airy's result.

Similar conclusions can be drawn in regard to the receding wave*.

* The above results can also be deduced from the equation (3) of Art. 172, to which Kiemann's

method can readily be adapted.
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Since the wave-velocity increases with the elevation, it appears that in

a progressive wave-system the slopes will become continually steeper in front,

and more gradual behind, until at length a state of things is reached in

which we are no longer justified in neglecting the vertical acceleration. As
to what happens after this point we have at present no guide from theory;
observation shews, however, that the crests tend ultimately to curl over and

break.

186. In the detailed application of the equations (1) and (3) to tidal

phenomena, it is usual to follow the method of successive approximation.
As an example, we will take the case of a canal communicating at one end

(% = 0) with an open sea, where the elevation is given by

t)
= a cos at. (14)

For a first approximation we have

du

di'~

dr,

~9&
dt]_ , du

dt dx' .(15)

the solution of which, consistent with (14), is

77=acos <r I t
qa

u= cos
c K) .(16)

For a second approximation we substitute these values of
rj
and u in (1) and (3), and obtain

du _ dr, g
2aa? _f ft\ dy

**" nrmi

dt

dn q'aa' . / x , du go-a*

dx c2
sin 2-H): < 17)

t-z)-i

(18)

dx V c)' dt

Integrating these by the usual methods, we find, as the solution consistent with (14),

q
2 aa2

. / x\
-

-. #sin a- \t ) .

The annexed figure shews, with, of course, exaggerated amplitude, the profile of the

waves in a particular case, as determined by the first of these equations. It is to be noted

that if we fix our attention on a particular point of the canal, the rise and fall of the

water do not take place symmetrically, the fall occupying a longer time than the rise.

rja coso-

qa= coso-
c

The occurrence of the factor x outside trigonometrical terms in (18) shews that there is

a limit beyond which the approximation breaks down. The condition for the success of

the approximation is evidently that gaax/c
3 should be small. Putting c2 =gh, \= 2ttc/o;

this fraction becomes equal to 2tt (a/h) . (x/X). Hence however small the ratio of the

original elevation (a) to the depth, the fraction ceases to be small when x is a sufficient

multiple of the wave-length (X).
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It is to be noticed that the limit here indicated is already being overstepped in the

right-hand portions of the figure; and that the peculiar features which are beginning
to shew themselves on the rear slope are an indication rather of the imperfections

of the analysis than of any actual property of the waves. If we were to trace the

curve further, we should find a secondary maximum and minimum of elevation developing
themselves on the rear slope. In this way Airy attempted to explain the phenomenon
of a double high-water which is observed in some rivers ; but, for the reason given, the

argument cannot be sustained*.

The same difficulty does not necessarily present itself in the case of a canal closed by a

fixed barrier at a distance from the mouth, or, again, in the case of the forced waves due to

a periodic horizontal force in a canal closed at both ends (Art. 178). Enough has, however,
been given to shew the general character of the results to be expected in such cases. For

further details we must refer to Airy's treatise t.

"When analysed, as in (18), into a series of simple-harmonic functions of the time, the

expression for the elevation of the water at any particular place (x) consists of two terms,
of which the second represents an '

over-tide,' or ' tide of the second order,' being propor-
tional to a2

; its frequency is double that of the primary disturbance (14). If we were to

continue the approximation we should obtain tides of higher orders, whose frequencies are

3, 4, . . . times that of the primary.

If, in place of (14), the disturbance at the mouth of the canal were given by
= a cos crt+ a' cos (a't+ c),

it is easily seen that in the second approximation we should in like manner obtain tides of

periods 2jr.'((r+<r') and 2n/(a- <r') ; these are called 'compound tides.' They are analogous
to the 'combination-tones' in Acoustics which were first investigated by von HelmholtzJ.

Propagation in Two Dimensions.

187. Let us suppose, in the first instance, that we have a plane sheet of

water of uniform depth h. If the vertical acceleration be neglected, the

horizontal motion will as before be the same for all particles in the same
vertical line. The axes of x, y being horizontal, let u, v be the component
horizontal velocities at the point (x, y), and let be the corresponding
elevation of the free surface above the undisturbed level. The equation of

continuity may be obtained by calculating the flux of matter into the

columnar space which stands on the elementary rectangle BxBy ;
viz. we have,

neglecting terms of the second order,

^ (uhBy) &c +
fT

(vhBx) By = - ^ {( + h) BxBy],

!--*(+ (1 >

*
McCowan, I.e. ante p. 244.

+ "Tides and Waves," Arts. 198, ... and 308. See also G. H. Darwin, "Tides," Eneyc.
Britann. (9th ed.) t. xxiii. pp. 362, 363 (1888).

* "Ueber Combinationstdne," Bed. Monatsber., May 22, 1856 [Ges. Abh., t. i. p. 256]; and

"Theorie der Luftschwingungen in Rohren mit offenen Enden," Crelle, t. Mi. p. 14 (1859)

IGes. Abh., t. i. p. 318].
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du _ dp dv _ dp
P
Jt

=
~dx' p

Wt~~dy'

The dynamical equations are, in the absence of disturbing forces,

where we may write

p-Po = gp(zo + Z-z),

if z denote the ordinate of the free surface in the undisturbed state. We
thus obtain

du dt dv dt /ftX

*".*. dt
= - 9

dy
(2)

If we eliminate u and v, we find

dt*- Kdx^df)
{S)

where c
2 = gh as before.

In the application to simple-harmonic motion, the equations are shortened

if we assume a 'complex' time-factor ei(-(rt+t\ and reject, in the end, the

imaginary parts of our expressions. This is legitimate so long as we have

to deal solely with linear equations. We have then, from (2),

.-iff ,-4ff (4)a dx a dy

whilst (3) becomes

g+g+n=o, (5)

where &2
=-.r (6)

The condition to be satisfied at a vertical bounding wall is obtained at

once from (4), viz. it is

f=. <
7 >

if Bn denote an element of the normal to the boundary.

When the fluid is subject to small disturbing forces whose variation

within the limits of the depth may be neglected, the equations (2) are

replaced by

dt~ 9 dx dx' dt~ 9
dy dy'

'" U
where D, is the potential of these forces.

If we put ?= --, (9)
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so that denotes the equilibrium-elevation corresponding to the potential O,

these may be written

du 3 /tt n. dv 3 /f, t;. /im
=-.*ai<

?-0'
S-T'fr^

( }

In the case of simple-harmonic motion, these take the forms

-&-& -H(f^ (11)

whence, substituting in the equation of continuity (1), we obtain

(V 1
' + ^)f=V,f, (12)

if "-+ '

(13)

and ife* = o-
2

/#A, as before. The condition to be satisfied at a vertical boundary
is now

s (f-&- (14)

188. The equation (3) of Art. 187 is identical in form with that which

presents itself in the theory of the transverse vibrations of a uniformly

stretched membrane. A still closer analogy, when regard is had to the

boundary conditions, is furnished by the theory of cylindrical waves of

sound*. Indeed many of the results obtained in this latter theory can be

at once transferred to our present subject.

Thus, to find the free oscillations of a sheet of water bounded by vertical

walls, we require a solution of

(Vr+m=o, a)

subject to the boundary condition

l =
<2 >

Just as in Art. 177 it will be found that such a solution is possible only for

certain values of k, which accordingly determine the periods (27r/kc) of the

various normal modes.

Thus, in the case of a rectangular boundary, if we take the origin at one

corner, and the axes of x, y along two of the sides, the boundary conditions

are that d/dx = for x = and x = a, and d/dy = for y = and y = b, where

a, b are the lengths of the edges parallel to x, y respectively. The general
value of f subject to these conditions is given by the double Fourier's series

^=2z4wlin cos cos-r^, (a)

* Lord Rayleigh, Theory of Sound, Art. 339.
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where the summations include all integral values of m, n from to x .

Substituting in (1) we find

HrStS w
If a > b, the component oscillation of longest period is got by making m 1,

ii= 0, whence ka = ir. The motion is then everywhere parallel to the longer
side of the rectangle. Cf. Art. 177.

189. In the case of a circular sheet of water, it is convenient to take

the origin at the centre, and to transform to polar co-ordinates, writing

x = r cos 0, y = r sin 0.

The equation (1) of the preceding Art. becomes

dr*
+
rdr

+
r*dP

+ Li;- I
1 )

This might of course have been established independently.

As regards dependence on 0, the value of may, by Fourier's Theorem,
be supposed expanded in a series of cosines and sines of multiples of

;
we

thus obtain a series of terms of the form

'KinH <2 >

It is found on substitution in (1) that each of these terms must satisfy the

equation independently, and that

r(r) +lf(r)+^-
S

^f(r)
=

(3)

This is of the same form as Art. 101 (14). Since must be finite for

r = 0, the various normal modes are given by

= A sJs (kr)
C S

is0 . cos (at + e), (4)

where s may have any of the values 0, 1, 2, 3, ..., and A s is an arbitrary
constant. The admissible values of k are determined by the condition that

dfydr = at the boundary r = a, say, or

Js'(ka) = (5)

The corresponding 'speeds' (<r) of the oscillations are then given by

<r=k{ghf.

In the case s = 0, the motion is symmetrical about the origin, so that the

waves have annular ridges and furrows. The lowest roots of

are given by
Jo(ka) = 0, or J1 (ka) = 0, (6)

= 1-2197, 2-2330, 32383, ..., (7)
7T
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these values tending ultimately to the form kajir
= m + J, where m is

integral*. In the ?nth mode of the symmetrical class there are m nodal

circles whose radii are given by =0 or

J (kr)=0 (8)

The roots of this
*f"

are

kr

ir

= 7655, 1-7571, 27546, (9)

For example, in the first symmetrical mode there is one nodal circle r = '628a.

The form of the section of the free surface by a plane through the axis of z,

in any of these modes, will be understood from the drawing of the curve

y = Ja {%), which is given on the preceding page.

When s > there are s equidistant nodal diameters, in addition to the

nodal circles

/,(*r)-0 (10)

It is to be noticed that, owing to the equality of the frequencies of the two

modes represented by (4), the normal modes are now to a certain extent

indeterminate; viz. in place of cos s0 or sin sO we might substitute cos s (6 ag),

where aH is arbitrary. The nodal diameters are then given by

a 2m + 1
d ~ a*

=z

~~2i~
7r

' ^ ^

where m = 0, 1, 2,..., s 1. The indeterminateness disappears, and the

frequencies become unequal, if the boundary deviate, however slightly, from

the circular form.

In the case of the circular boundary, we obtain by superposition of two

fundamental modes of the same period, in different phases, a solution

=C,J8 (kr).cos(<rt + s0 + e) (12)

This represents a system of waves travelling unchanged round the origin

with an angular velocity a/s in the positive or negative direction of 6. The

motion of the individual particles is easily seen from Art. 187 (4) to be

elliptic-harmonic, one principal axis of each elliptic orbit being along the

radius vector. All this is in accordance with the general theory referred to

in Art. 167.

The most interesting modes of the unsymmetrical class are those corre-

sponding to s = 1, e.g.

Z = AJ1 (kr) cos 6. co&{vt + e), (13)

*
Stokes,

" On the Numerical Calculation of a class of Definite Integrals and Infinite Series,"

Camb. Trans., t. ix. (1850) [Math, and Phys. Papers, t. ii. p. 355].

It is to be noticed that kajir is equal to t /t, where r is the actual period, and t is the time a

progressive wave would take to travel with the velocity (gh)* over a space equal to the diameter 2a.

t Stokes, I.e.
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where k is determined by

The roots of this are*

ka

77

J1'(ka)
= (14)

= 586, 1-697, 2717, (15)

We have now one nodal diameter {6=^ir), whose position is, however,

indeterminate, since the origin of 6 is arbitrary. In the corresponding modes

for an elliptic boundary, the nodal diameter would be fixed, viz. it would

coincide with either the major or the minor axis, and the frequencies would

be unequal.

The diagrams on this and on the next page shew the contour-lines of the

free surface in the first two modes of the present species. These lines meet

the boundary at right angles, in conformity with the general boundary
condition (Art. 188 (2)). The simple-harmonic vibrations of the individual

particles take place in straight lines perpendicular to the contour-lines,

by Art. 187 (4). The form of the sections of the free surface by planes

through the axis of z is given by the curve y = Jx (x) on p. 269.

The first of the two modes here figured has the longest period of all the

normal types. In it, the water sways from side to side, much as in the

See Lord Kayleigh's treatise, Art. 339. A general formula for calculating the roots of

J
i'(ku) = Q, due to Prof. J. M<-Mahon, is given by Gray and Mathews (Lc. ante p. 128), p. 241.
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slowest mode of a canal closed at both ends (Art. 177). In the second mode
there is a nodal circle, whose radius is given by the lowest root of Jx (kr) = ;

this makes r = "719 a*.

A comparison of the preceding investigation with the general theory of small oscilla-

tions referred to in Art. 167 leads to several important properties of Bessel's Functions.

In the first place, since the total mass of water is unaltered, we must have

/2ir

fa
\ CrdOdr=Q, (16)

where has any one of the forms given by (4). For s> this is satisfied in virtue of the

trigonometrical factor cos s6 or sin s6
;
in the symmetrical case it gives

/;
J (kr)rdr=0 (17)

Again, since the most general free motion of the system can be obtained by superposi-

tion of the normal modes, each with an arbitrary amplitude and epoch, it follows that any

* The oscillations of a liquid in a circular basin of any uniform depth were discussed by
'

Poisson,
" Sur les petites oscillations de l'eau contenue dans un cylindre," Ann. de Gergonne,

t. xix. p. 225 (1828-9) ; the theory of Bessel's Functions had not at that date been worked out, ,

and the results were consequently not interpreted. The full solution of the problem, with

numerical details, was given independently by Lord Rayleigh, Phil. Mag. (5), t. i. p. 257 (1876)
|

[Sc. Papers, t. i. p. 25].

The investigation in the text is limited, of course, to the case of a depth small in comparison

with the radius a. Poisson's and Lord Eayleigh's solution for the case of finite depth will be i

noticed in Chap. ix.
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value whatever of (, which is subject to the condition (16), can be expanded in a series of

the form

=22 (A t cossd+Bt sins8) J,(kr), (18)

where the summations embrace all integral values of s (including 0) and, for each value of

*, all the roots k of (5). If the coefficients A,, Bs be regarded as functions of t, the equa-

tion (18) may be regarded as giving the value of the surface-elevation at any instant. The

quantities A Bt are then the normal co-ordinates of the present system (Art. 167) ; and in

terms of them the formulae for the kinetic and potential energies must reduce to sums of

squares. Taking, for example, the potential energy

r=\9pti?dxdy, (19)

/2

fa
I w

l
wr,rd6dr=0, (20)

o Jo

where ic
1} <r.> are any two terms of the expansion (18). If wlt w2 involve cosines or sines of

different multiples of 8, this is verified at once by integration with respect to 8
;
but if

we take

w
x
oc Jt (l\ r) cos s8, tr2 J, far) cos s8,

where k
t ,

k2 are any two distinct roots of (5), we get

/:
Jt far).Jt far)rdr=0. (21)

The general results of which (17) and (21) are particular cases, are

jJ (kr)rdr=-^J '{ka) (22)

(cf. Art. 102 (10)), and

jyt (t1r)Jt {kir)rdr=n^s {kaaJ;(kia)Jt (tla)-i1^ ...(23)

In the case of k
l
= k., the latter expression becomes indeterminate; the evaluation in the

usual manner gives

jjJt(ka)}*rdr=[k*a^J;(ka)}*HPa*-*){Mi)W (24)

For the analytical proofs of these formulae we must refer to the treatises cited on p. 128.

The small oscillations of an annular sheet of water bounded by concentric

circles are easily treated, theoretically, with the help of Bessel's Functions ' of

the second kind.' The only case of any special interest, however, is when the

two radii are nearly equal ;
we then have practically a re-entrant canal, and

the solution follows more simply from Art. 180.

The analysis can also be applied to the case of a circular sector of any

angle*, or to a sheet of water bounded by two concentric circular arcs and

two radii.

* See Lord Rayleigh, Theory of Sound, Art. 339.

L. 18
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190. As an example of forced vibrations, let us suppose that the dis-

turbing forces are such that the equilibrium elevation would be

f=C(-J cos s0 . cos (at + e) (25)

This makes Vx
*

0, so that the equation (12) of Art. 187 reduces to the form

(1), above, and the solution is

f = AJS (kr) cos sO . cos (at + e), (26)

where A is an arbitrary constant. The boundary-condition (Art. 187 (14))

gives

AkaJg (ka) = sC,

sJ (kr)
whence = C -. I ) ., cos s6 . cos (<rt + e) (27)

The case s = 1 is interesting as corresponding to a uniform horizontal

force
;
and the result may be compared with that of Art. 178.

From the case s = 2 we could obtain a rough representation of the semi-

diurnal tide in a polar basin bounded by a small circle of latitude, except that

the rotation of the earth is not as yet taken into account.

We notice that the expression for the amplitude of oscillation becomes

infinite when Jg

'

(ka) = 0. This is in accordance with a general principle, of
j

which we have already had several examples ;
the period of the disturbing

force being now equal to that of one of the free modes investigated in the

preceding Art.

191. When the sheet of water is of variable depth, the investigation at

the beginning of Art. 187 gives, as the equation of continuity,

d_ B(hu) d(hv)

dt~ dx dy
( }

The dynamical equations (Art. 187 (2)) are of course unaltered. HenceJ

eliminating ,
we find, for the free oscillations,

3-'(*2K(*} H
If the time-factor be e i(vt+t)

,
we obtain

mK(*fyi^ <3>

:

When A, is a function of r, the distance from the origin, only, this may b<

written

hVH+ff+-*;=o (4)
dr or g
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As a simple example we may take the case of a circular basin which shelves gradually

froni the centre to the edge, according to the law

h=k
(l-^

. (5)

Introducing polar co-ordinates, and assuming that f varies as cossd or sinsd, the equation

ikes the form

\ a-)\cr- r cr r-
h
J a 2 cr gh^

.(6)

That integral of this equation which is finite at the origin is easily found in the form

sending series. Thus, assuming

I <-**-($)">
<7)

the trigonometrical factors are omitted, for shortness, the relation between consecu-

tive coefficients is found to be

(m
2 - a2) 4* i* (m - 2)

- a2 -
^-j J,,,..,

or, if we write j
=n(n-2) a2

, (8)

where n is not as yet assumed to be integral,

(m
2 - 2Mm=(m-n)(i+-2).4 TO _ 2 (9)

i
The equation is therefore satisfied by a series of the form (7), beginning with the term

the succeeding coefficients being determined by putting m=s+ 2, a+ 4, ... in (9).

We thus find

t- A (
r-\ Ji _ " " " ~ " H+

*-)
*

4- (n~*- 4> (n-s-2) (n+s) (n+ + 2) r* _ 1

W 1
2 2.4(2+S B+4) a* '"J'

k ;

- >r in the usual notation of hypergeometric series

m.>(.a4). <">

where a = i + ^, /9
= l+ia-A, 7=3+ 1.

Since these make y a -3=0, the series is not convergent for r= a, unless it terminate.

This can only happen when n is integral, of the form 3+ 2/. The corresponding values of

o- are then given by (8).

In the symmetrical modes (3=0) we have

r-4^1- lt
-
8 + j^^ ^ /'

caj

where y may lie any integer greater than unity. It may be shewn that this expression
vanishes for j - 1 values of r between and a, indicating the existence of/ 1 nodal circles.

The value of a is given by

-=4/C/-l)^ .....(13)

Thus the gravest symmetrical mode (j= 2) has a nodal circle of radius "707a; and its

frequency is determined by <r-= 8gh /a
2
.

182
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Of the unsymmetrical modes, the slowest, for any given value of s, is that for which
n-s+ 2, in which case we have

t*

C=A t cos sO cos (a-t+ 1
),

the value of or being given by a2=2s.^~ (14)

The slowest mode of all is that for which =1, n= 3; the free surface is then always

plane. It is found on comparison with Art. 189(15) that the frequency is '768 of that of

the corresponding mode in a circular basin of uniform depth h
,
and of the same radius.

As in Art. 190 we could at once write down the formula for the tidal motion produced

by a uniform horizontal periodic force
; or, more generally, for the case when the disturbing

potential is of the type

Q oc }*cossdcos((rt+t).

192. We may conclude this discussion of '

long
'

waves on plane sheets

of water by an examination of the mode of propagation of disturbances from i

a centre in an unlimited sheet of uniform depth. For simplicity, we will

consider only the case of symmetry, where the elevation is a function of
J

the distance r from the origin of disturbance. This will introduce us to some
|

peculiar and rather important features which attend wave-propagation in two!

dimensions.

The investigation of a periodic disturbance involves the use of a Bessel's

Function (of zero order) 'of the second kind,' as to which some preliminary
notes may be useful.

To solve the equation 1^"^ 7r
+ ^=0 (!)

by definite integrals, we assume* <f>= I e~ zt
Tdt, (2)

where T is a function of the complex variable t
,
and the limits of integration are constant:

as yet unspecified. This makes

iw +S+2*=-t(1+ '
!
'
e""^ +/(l

1+ '2):r -'r
)

<!
-,

*>

by a partial integration. The equation (1) is accordingly satisfied by

. f e-*dt .. !

-JJP+J?'
(3)

|

provided the expression x/(l + 2
)e~

f<

vanish at each limit of integration. Hence, on the supposition that z is real and positiv<

or at all events has its real part positive, the integral in (3) may be taken along a pat
j

joining any two of the points i, i, +ao in the plane of the variable t; but two distim

paths joining the same points will not necessarily give the same result if they incluc

between them one of the branch-points (t= i) of the function under the integral sign.

*
Forsyth, Differential Equations, c. vii. The systematic application of this method to tl

theory of Bessel's Functions is due to Hankel,
" Die Cylinderfunktionen erster u. zweiter Art

Math. Ann., t. i. p. 467 (1869). See Gray and Mathews, c. vii.
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Thus, for example, we have the solution

*"/'

where the path is the portion of the imaginary axis which lies between the limits, and that

value of the radical is taken which becomes =1 for =0. If we write t= + i>7, we obtain

(4)<t>i
= i

I

e

~Jn i
=2i

I cos(zcosB)dS=t7rJ (z\
J _i vv 1 V ) .'0

which is the solution already known (Art. 100).

An independent solution is obtained if we take the integral (3) along the axis of n from

the point (0, i) to the origin, and thence along the axis of to the point (ao , 0). This

vith the same determination of the radical,

*2

Ji v'ci-v
2
) Jo v(i+ Jo j{i+e) Vo .(5)

By adopting other pairs of limits, and other paths, we can obtain other forms of
<f>,

but

must all be equivalent to fa or fa, or to linear combinations of these. In particular,
some other forms of fa are important. It is known that the value of the integral (3) taken

round any closed contour which excludes the branch points (t= i) is zero. Let us first

take as our contour a rectangle, two of whose sides

coincide with the positive portions of the axes of

and 7, except for a small semicircular indentation

about the point t= i, whilst the remaining sides are at

infinity. It is easily seen that the parts of the inte-

gral due to the infinitely distant sides will vanish,

either through the vanishing of the factor e~** when |
is infinite, or through the infinitely rapid fluctuation V.
of the function e'^/n when n is infinite. Hence for

the path which gave us (5) we may substitute that

which extends along the axis of n from the point (0, t)

to (0, ix.
}, provided the continuity of the radical be

attended to. Now as the variable t travels counter-

clockwise round the small semicircle, the radical

changes continuously from V(l - T
2
) to i Jin* - 1). "We have therefore

wro^-irs^-i:-^-*
This solution is the one which is specially appropriate to the case of diverging waves.

Another method of obtaining it will be given in Chap. x.

If we equate the imaginary parts of (5) and (6) we obtain

J (z)
= I sin (z cosh w)efo, (7)
ffJO

a form due to Mehler*.

It is convenient to have a special notation for the function in (6) ; we write

A (*)-- f" e-izcoshu du. (8)
*/

* Math. Ann., t. v. (1872).
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This is equivalent to D (z)
=K (z)-iJ (z), (9)

where* K (z)
= -

I cos (z cosh u) die (10)
7T J

Equating the real parts of (5) and (6) we have, also,

K (z)
=- r e

- zs[nhu du-- [*"sin(zcos$)d$ (11)

For a like reason, the path adopted for < 2 may be replaced by the line drawn from the

point (0, i) parallel to the axis of (viz. the dotted line in the figure). To secure the con-

tinuity of ^(1 +t
2
), we note that as t describes the lower quadrant of the small semicircle,

the value of the radical changes from ^(1 - rf) to e*
ln

\f(2), approximately. Hence along
the dotted line we have, putting t= i+ g,

where that value of the radical is to be chosen which is real and positive when is infini-

tesimal. Thus

the binomial, and integrate term by term, we find

^H(l)*.-->{1+li(i) +i^(i)%...}, m
where use has been made of the formulae

.-*r*.&dim$;
U(m-h) 1.8...(fim-l)*

.(14)

2mH 2
m

z"
1

+'}
If we isolate the imaginary part of (13) we have, on comparison with (9),

J^=
{~z) iRii (

z+ i*)- Scos (z +k")}, (15)

.(16)

, ,
1 2 .32 1 2 .32 .52 .72

where Bwml'm^*- 4!(B,y

l 2

_ 1 2 .32 .52

l!(8z) S\(8z)
3 + ""

A similar expression for K (z) can easily be written down.

* As regards A'
,
this is the notation employed by Heine (except as to the constant factor),

and H. Weber. The reader should be warned, however, that the same symbol has been employed
in at least two other distinct senses in connection with the theory of Bessel's Functions.

The choice of a standard solution ' of the second kind '

is largely a matter of convention,

since the differential equation (1) is still satisfied if we add any constant multiple of J (z).
In

terms of the more usual notation,

K
(z)=^{-Y (z) + (log2-y)J (z)},

where 7 = -5772... (Euler's constant).

A table of the function \wK {z) has been constructed by B. A. Smith; see Phil. Mag. (5),

t. xlv. p. 122 (1898).
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The series in (13) and (16) are of the kind known as 'semi-convergent,' or 'asymptotic,'

expansions ;
i.e. although for sufficiently large values of z the successive terms may for a

while diminish, they ultimately increase again indefinitely, but if we stop at a small term

we get an approximately correct result*. This may be established by an examination of

the remainder after m terms in the process of evaluation of (12).

It follows from (15) that the large roots of the equation J (z)
= approximate to those of

sin(2+j7r)=0 (17)

The series in (13) gives ample information as to the demeanour of the function D (z)

when z is large. When z is small, D (z) is very great, as appears from (9) and (11). A
complete formula suitable for this case can only be obtained by a somewhat indirect

process; but an approximation may be conducted as follows. Keferring to (11), we have

-fl{l+a+h($*-} ** (18)

The first term gives t

to
e
-dw=-y-\ogU+..., (19)

and the remaining ones are small in comparison. Hence, by (9) and (11),

A>(*)---(iogi*+y+!*ir+...) (20)

It follows that \im zD '(z)=--X (21)
=o ""

193. We can now proceed to the wave-problem stated at the beginning
of Art. 192. For definiteness we will imagine the disturbance to be caused

by a variable pressure p applied to the surface. On this supposition the

dynamical equations near the beginning of Art. 187 are replaced by

dt
y dx - a- J ** -^ - s- ' K}

I

ldjh
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If we introduce the velocity-potential in (1), we have, on integration,

&->*? <3>

We may suppose that p refers to the change of pressure, and that the arbi-

trary function of t which has been incorporated in
<p is chosen so that d(f>/dt

=
in the regions not affected by the disturbance. Eliminating by means of

(2), we have

3*w*J1?
When < has been determined, the value of is given by (3).

We will now assume that p is sensible only over a small* area about the

origin. If we multiply both sides of (4) by 8x8y, and integrate over the area

in question, the term on the left-hand may be neglected (relatively), and we

find

-!
d

i ds=
ihJtJS

p"dxd^ (5)

where 8s is an element of the boundary of the area, and 8n refers to the hori-

zontal normal to 8s, drawn outwards. Hence the origin may be regarded as

a two-dimensional source, of strength

*-&w <6 >

where P is the integral disturbing pressure.

Turning to polar co-ordinates, we have to satisfy

S_*/!!M?a (7 )
dt- \dr--rdr) K >

where c'- = gh, subject to the condition

U.m(-2
w
r^)=/(0, (8)

where f(t) is the strength of the source, as above defined.

In the case of a simple-harmonic source e i<Tt the equation (7) takes the

form

*t + l*k+ +0. (9)
or2 r or r

where k = cr/c, and a solution is

</>
= iD (r)e^, (10)

* That is, the dimensions of the area are small compared with the '

length
'

of the waves

generated, this term being understood in the general sense of Art. 171. On the other hand,

the dimensions must be supposed large in comparison with h.
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where the constant factor has been determined by Art. 192 (21). Taking the

real part we have

<f>
= I {K (kr) cos at + Jo (jtr) sin at

}, (11)

corresponding to f (t)
= cos at.

For large values of kr the result (10) takes the form

1 ux(t--) -JiV*=* (12)

The combination t r/c indicates that we have, in fact, obtained the solution

appropriate to the representation of diverging waves.

It appears that the amplitude of the annular waves ultimately varies

inversely as the square root of the distance from the origin.

194. The solution we have obtained for the case of a simple-harmonic
source eivt may be written

27r<f>= e
v ' du (13)

Jo

This suggests generalization by Fourier's theorem ; thus the formula

2tt< =
[ f(t--coshu)du (14)

should represent the disturbance due to a source f(t) at the origin*. It is of

course implied that the form of f(t) must be such that the integral is con-

vergent ;
this condition will as a matter of course be fulfilled whenever the

source has been in action only for a finite time. A more complete formula,

embracing both converging and diverging waves, is

27r<f>=l fit
- cosh ujdu+ I F (t + - cosh u

J
du (15)

The solution (15) may be verified, subject to certain conditions, by substitution in the

differential equation (7). Taking the first term alone, we find

1 \ort ^rdrJ d(*f

= I }smh2 u ./" (t
coshtt) coshu.f (t coshttUtfa

= -5/ = ;/( *-~coshw ) du= \smhu.f(t coshw)
^Jo cu*J \ c J r[_

J
\ c ;ju=0

This
obviously vanishes whenever f(t)=0 for negative values of t exceeding a certain

limit t.

* The substance of Arts. 194 196 is adapted from a paper
" On "Wave-Propagation in Two

Dimensions," Proc. Lond. Math. Soc., t. xxxv. p. 141 (1902). A result equivalent to (14) was
obtained (in a different manner) by Levi-Civita, Nuovo Cimento (4), t. vi. (1897).

T The verification is very similar to that given by Levi-Civita.
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Again, - 2-r ^- = -
f cosh u.flt cosh u ) du

dr cjo \ c )

= -
I (smh u+ e~ u)f It cosh w left*

-
-[/ ('-?

oo8htt
)I_

"

+
^!I

e
~
wf

'

(Hf
00**1

*)
rfw

under the same condition. The limiting value of this when r=0 is /(C); and the state-

ment made above as to the strength of the source in (14) is accordingly verified.

A similar process will apply to the second term of (15) provided F (t) vanishes for

positive values of t exceeding a certain limit.

195. We may apply (14) to trace the effect of a temporary source varying

according to some simple prescribed law.

If we suppose that everything is quiescent until the instant t 0, so that

f(t) vanishes for negative values of t, we see from (14) or from the equivalent
form

-ry/ff>"-, (i6)

that
<j>

will be zero everywhere so long as t < rjc. If, moreover, the source

acts only for a finite time t, so that/() = for t > r, we have, for t > t + rjc,

^rjW" (4

This expression does not as a rule vanish
;
the wave accordingly is not sharply

j

defined in the rear, as it is in front, but has, on the contrary, a sort of 'tail'f

whose form, when t rjc is large compared with r, is determined by

27nft=
1

[

T

f(d)d0 (18)
o%

*
Analytically, it may be noticed that the equation (4), when p = 0, may be written

ay ay c"<p

dx*
+

dy*
+
d(ictf~

'

and that (17) consists of an aggregate of solutions of the known type

\x
2 + y- + (ict)-}~K

t The existence of the ' tail
'

in the case of cylindrical electric waves, was noted by Heaviside,

Phil. Mag. (5), t. xxvi. (1888) [Electrical Papers, t. ii.].
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The elevation at any point is given by (3), viz.

r-J
<19>

It follows that

f<fc
= 0, (20)

/:

provided the initial and final values of
<f>

vanish. It may be shewn that this

will be the case wheneverf(t) is finite and the integral

/:
f(t)dt (21)

is convergent. The meaning of these conditions appears from (6). It

follows that even when P is always positive, so that the flux of liquid

in the neighbourhood of the origin is altogether outwards, the wave which

s any point does not consist solely of an elevation (as it would in the

corresponding one-dimensional problem) but, in the simplest case, of an

elevation followed by a depression.

196. 1. The simplest assumption we can make, free from awkward

infinities, is that P increases, during the interval from t = t to i = + t, from

one constant value to another, according to the parabolic law

P = A+B (*_)
where the upper or lower sign is to be taken according as t is negative or

positive. This makes f'(t) = 1, if a constant factor be omitted. The

reduction of the formula

fayf- [>(<-;<*>_) <*-[''
/W (22)

is now very simple ;
we find

27r<7t=0, for *<--t;*
c

.
,
c (t + t) . r r= cosh-1

,
for t < t < -

;

r c c

= cosh-1 - -2cosh-1 -, for -<t<- + r;
r r c c

= cosh * -^ 2 cosh-1 + cosh '
,
for t > - + r.

r r r c

(23)

The annexed figure, constructed with as ordinate and t as abscissa, exhibits

the variation of at a particular point (?
= IOOct) as the wave passes over it.
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Within the range shewn, the same curve also indicates very fairly the profile
of the wave after a time t which is about equal to IOOt, it being understood,
of course, in this interpretation, that the direction of propagation is from right
to left. The change of sign, and the indefinite prolongation of the '

tail
'

will

be observed. >-

2. The diagram shews certain peculiarities due to the abrupt changes in

the rate of variation of the source. A solitary wave, free from discontinuity

of every degree, is obtained if we assume

f(t) =
t
2 + T2 ' .(24)

which makes P increase from one constant value to another according to the

law

P = A + B tan" 1 -
. (25)

The disturbing pressure has now no definite epoch of beginning or ending,
but the range of time within which it is sensible can be made as small as we

please by diminishing t. For purposes of calculation it is convenient to

assume

1

/(0 =
t lT

.(26)

in place of (24), and to retain in the end only the imaginary part. We have

then

2tt< = du = 2

t cosh u it
o c

dz

r v
t IT \t-\ IT

)
22

c \ c

, (27)

where z = tanh \u. We now write

t it = are--ia ,
t + --iT = b-e-*,

c c
.(28)
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where we may suppose that a, b are positive, and that the angles a, /S lie

between and \ir. Since

a4=H)a+T '
64=

(
(+

-oJ
+T

']
.(29)

it appears that a $. b according as t < 0, and that a > /? always. With this

notation, we find

*-*-**
<fe

log
e-**- b2e--*z- ab a

., m
*

6
e

.(30)

To interpret the logarithms, let us mark, in the plane of a complex variable z,

the points

I= + \, P----, Q = ^
e--'- .

Since the integrals in the second member of (30) are to be taken along the

path 01, the proper value of the third member is

^ {(wg^ + .-.

on)
-

(log$_,. o/)(.

where real logarithms and positive values of the angles are to be understood.

Hence, rejecting all but the imaginary part, we find

sin(a + ), IP cos(a+/3) / Diyv . -..v
27r</>= a6 l0g

7Q
+

ab
("- PI <31 >

as the solution corresponding to a source of the type (24). Here

IP _ (cl
1 + 2ab cos (a + /3) + 62

\*

y.
tan PIQ =

2ab sin (a
-

/3)

IQ \a- - 2ab cos (a-/3) + b")
' """ * * *

62 - a*

and the values of a, 6, a, in terms of r and t are to be found from (29).

(32)
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It will be sufficient to trace the effect of the most important part of the

wave as it passes a point whose distance r from the origin is large compared
with ct. If we confine ourselves to times at which tr/c is small com-

pared with r/c, a will be small compared with b, PIQ will be a small angle,
and IPjIQ will = 1, nearly. If we put

t = - + r tan 77,
c .(33)

we shall have

a =lTT-^7), a = V(t sec 77), /3
= \

CT
.(*?' (Si)

approximately; and the formula (31) will reduce to

77" 7T /Ct\~
2ir(f>

=
d)

C0Sa =
^/2T \T)

C0S^ "^ v/(cos v) (85)

The elevation is then given by

2^ - **
mM^,)

-
4h* (?)'

sin * -w cos!"> -<86>

approximately. The annexed diagram shews the relation between and i,

as given by this formula*. The comparison with that on p. 284 shews how the

crudities have disappeared in consequence of the more natural suppositions
now made as to the law of* variation of the source.

197. We proceed to consider the case of a spherical sheet, or ocean, of

water, covering a solid globe. We will suppose for the present that the globe

does not rotate, and we will also in the first instance neglect the mutual

attraction of the particles of the water. The mathematical conditions of the

The points marked -
1, 0, + 1 on the diagram correspond to the times rfc

-
r, rjc, r/c + r,

respectively.
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question are then exactly the same as in the acoustical problem of the

vibrations of spherical layers of air*.

Let a be the radius of the globe, h the depth of the fluid
;
we assume

that h is small compared with a, but not (as yet) that it is uniform. The

position of any point on the sheet being specified by the angular co-ordinates

6, co, let u be the component velocity of the fluid at this point along the

meridian, in the direction of increasing, and v the component along the

parallel of latitude, in the direction of co increasing. Also let denote the

elevation of the free surface above the undisturbed level. The horizontal

motion being assumed, for the reasons explained in Art. 171, to be the same

at all points in a vertical line, the condition of continuity is

^.{uha sin 08co) 80 + =- ( vlia80) 8co = a sin 08co . a80 . rj ,

00 ceo ot

where the left-hand side measures the flux out of the columnar space

standing on the element of area a sin 08co . a80, whilst the right-hand member

expresses the rate of diminution of the volume of the contained fluid, owing
to fall of the surface. Hence

3 1 ic(/<Ksinfl) d(hv))

dt asintfj C0 dco J

W
If we neglect terms of the second order in u, v, the dynamical equations

are, on the same principles as in Arts. 168, 187,

dt~ 9 db0 ad0' dt~ 9 asin0dco asin0dco' **'

where 12 denotes the potential of the extraneous forces.

If we put f-S, (3)
if

these may be written

dt~ ad0 Kq ** dt~ asin0dco^ *> W
Between (1) and (4) we can eliminate u, v, and so obtain an equation in

only.

In the case of simple-harmonic motion, the time-factor being eii(Tt+f)
,
the

equations take the forms

, i (9 (Am sin 0) d(hv)\
g
~*asm0\ W~

~ +
lho~}

' (o)

"-iatf-'B. v=i i-.i(c-f) (6)<rad0 K s/
era sin dco

vs 5/ v '

*
Discussed in Lord Rayleigh's Theory of Sound, c. xviii.
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198. We will now consider more particularly the case of uniform depth.
To find the free oscillations we put =0; the equations (5) and (6) of the

preceding Art. then lead to

1 d ( . a dt\ 1 o% (i
n
-o?

Ha)+a?e+3f-sin 080 V 90/ sin-08cr gh

This is identical in form with the general equation of spherical surface-

harmonics (Art. 83 (2)). Hence, if we put

jj
n<n+1>' ( 2 )

a solution of (1) will be = Sn , (3)

where Sn is the general surface-harmonic of order n.

It was pointed out in Art. 86 that Sn will not be finite over the whole

sphere unless n be integral. Hence, for an ocean covering the whole globe,

the form of the free surface at any instant is, in any fundamental mode, that

of a ' harmonic spheroid
'

r = a + h + Sn cos (at + e), (4)

and the speed of the oscillation is given by

a n(n + l))*.^, (5)
a

the value of n being integral.

The characters of the various normal modes are best gathered from a

study of the nodal lines (Sn = 0) of the free surface. Thus, it is shewn in

treatises on Spherical Harmonics * that the zonal harmonic Pn (p) vanishes

for n real and distinct values of /a lying between + 1, so that in this case

we have n nodal circles of latitude. When n is odd one of these coincides

with the equator. In the case of the tesseral harmonic

u dsPn (fi) cos)

(1
-

/i-)*
s

-j
.

\ sco,v ~ J

dfi
b

sin)

the second factor vanishes for n s values of u, and the trigonometrical |

factor for 2s equidistant values of co. The nodal lines therefore consist of
J

n s parallels of latitude and 2s meridians. Similarly the sectorial harmonic
|

/-. o\U, cos )

(1
-

fi
2

)^ .

\v n '
smj

110)

has as nodal lines 2?i meridians.

These are, however, merely special cases, for since there are In + 1

independent surface-harmonics of any integral order n, and since the 1

* For references, see p. 102.
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frequency, determined by (5), is the same for each of these, there is a

corresponding degree of indeterminateness in the normal modes, and in the

configuration of the nodal lines.

We can also, by superposition, build up various types of progressive

waves
; e.g. taking a sectorial harmonic we get a solution in which

foe (1
-

/a
2
)^ cos (wo) -at + e): (6)

this gives a series of meridional ridges and furrows travelling round the

globe, the velocity of propagation, as measured at the equator, being

aa fn+l\* , .W (7)n \ n

It is easily verified, on examination, that the orbits of the particles are now

ellipses having their principal axes in the directions of the meridians and

parallels, respectively. At the equator these ellipses reduce to straight
lines.

In the case w=l, the harmonic is always of the zonal type. The
harmonic spheroid (4) is then, to our order of approximation, a sphere
excentric to the globe. It is important to remark, however, that this case

is, strictly speaking, not included in our dynamical investigation, unless we

imagine a constraint applied to the globe to keep it at rest
;

for the de-

formation in question of the free surface would involve a displacement of

the centre of mass of the ocean, and a consequent reaction on the globe.
A corrected theory for the case where the globe is free could easily be

investigated, but the matter is hardly important, first because in such a

case as that of the Earth the inertia of the solid globe is so enormous

compared with that of the ocean, and secondly because disturbing forces

which can give rise to a deformation of the type in question do not as a

rule present themselves in nature. It appears, for example, that the first

term in the expression for the tide-generating potential of the sun or moon
is a spherical harmonic of the second order (see the Appendix to this

Chapter).

When n = 2, the free surface at any instant is approximately ellipsoidal.

The corresponding period, as found from (5), is then *816 of that belonging
to the analogous mode in an equatorial canal (Art. 180).

For large values of n the distance from one nodal line to another is

small compared with the radius of the globe, and the oscillations then take

place much as on a plane sheet of water. For example, the velocity, at the

equator, of the sectorial waves represented by (6) tends with increasing n to

the value (gh)*, in agreement with Art. 169.

l. 19
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From a comparison of the foregoing investigation with the general theory of Art. 167

we are led to infer, on physical grounds alone, the possibility of the expansion of any

arbitrary value of in a series of surface harmonics, thus

C=2,
o

the coefficients of the various independent harmonics being the normal coordinates of the

system. Again, since the products of these coefficients must disappear from the expressions
for the kinetic and potential energies, we are led to the 'conjugate' properties of spherical

harmonics quoted in Art. 87. The actual calculation of the energies will be given in the

next Chapter, in connection with an independent treatment of the same problem.

The effect of a simple-harmonic disturbing force can be written down at

once from the formula (13) of Art. 167. If the surface value of Q be

expanded in the form

n=2Hn , (8)

where D.n is a surface-harmonic of integral order n, the various terms are

normal components of force, in the generalized sense of Art. 135
;
and the

equilibrium value of corresponding to any one term fin is

r |o (9)

Hence, for the forced oscillation due to this term, we have

f.-,-7F (10)

where cr measures the
'

speed
'

of the disturbing force, and <rn that of the

corresponding free oscillation, as given by (5). There is no difficulty, of

course, in deducing (10) directly from the equations of the preceding Art.

199. We have up to this point neglected the mutual attraction of the

parts of the liquid. In the case of an ocean covering the globe, and with

such relations of density as we meet with in the actual earth and ocean, this

is not insensible. To investigate its effect in the case of the free oscillations,

we have only to substitute for ln ,
in the last formula, the gravitation-

potential of the displaced water. If the density of this be denoted by p, j

whilst p represents the mean density of the globe and liquid combined, we
J

have*

.~nfc <>

and g = $rnUpo> (12)

7 denoting the gravitation-constant, whence

* STI^-t (13)

j

*
See, for example, Bouth, Analytical Statics, 2nd ed., Cambridge, 1902, t. ii. pp. 146-7.
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Substituting in (10) we find

S-C'-raS- (14)

where on is now used to denote the actual speed of the oscillation, and on
'

the speed calculated on the former hypothesis of no mutual attraction. Hence

the corrected speed is given* by

'.-O +^-ETlSS (15)

For an ellipsoidal oscillation (n = 2), and for p/p
= "18 (as in the case of

the Earth), we find from (14) that the effect of the mutual attraction is to

the frequency in the ratio of '94 to 1.

The slowest oscillation would correspond to n = 1, but, as already indicated,

uld be necessary, in this mode, to imagine a constraint applied to the

globe to keep it at rest. This being premised, it appears from (15) that if

p> p<,
the value of of is negative. The circular function of t is then replaced

by real exponentials ;
this shews that the configuration in which the surface

of the sea is a sphere concentric with the globe is one of unstable equilibrium.

Since the introduction of a constraint tends in the direction of stabilitv, we

infer that when p > p the equilibrium is a fortiori unstable when the globe
is free. In the extreme case where the globe itself is supposed to have no

gravitative power at all, it is obvious that the water, if disturbed, would tend

ultimately, under the influence of dissipative forces, to collect itself into

a spherical mass, the nucleus being expelled.

It is obvious from Art. 167, or it may easily be verified independently,
that the forced vibrations due to a given periodic disturbing force, when the

gravitation of the water is taken into account, will be given by the formula

provided fln now denote the potential of the extraneous forces only, and

I

on have the value given by (15).

200. The oscillations of a sea bounded by meridians, or parallels of

latitude, or both, can also be treated by the same method +. The spherical

harmonics involved are however, as a rule, no longer of integral order, and it

is accordingly difficult to deduce numerical results.

In the case of a zonal sea bounded by two parallels of latitude, we assume

C-Mj>G0+Bf<M)>2U}*,
CD

*
This result was given by Laplace, Mecanique Celeste, Livre 1* Art. 1 (1799). The free and

the forced oscillations of the type n= 2 had been previously investigated in his "Becherches sor

quelques points du systeme du monde," Mem. de VAcad. roy. des Sciences, 1775 [1778] [Oeuvres

Completes, t. is. pp. 109, ...].

t Cf. Lord Rayleigh, I.e. ante p. 287.

192
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where
/x
= cos 6, and p(p), q (p) are the two functions of p, containing (1 fi

2
y

s
as a factor,

which are given by the formula (2) of Art. 86. It will be noticed that p (p) is an even, and

q (fx) an odd function of
yx.

If we distinguish the limiting parallels by suffixes, the boundary conditions are that

u=0 for /i=/xj and /i=ft2 - For the free oscillations this gives, by Art. 197 (6),

Ap'(n1) + Bq'(n1 )
= 0, Ap'(n2)+ Bq'(n2)=0, (2)

whence P' 0*i). 4 0*i)

P' M, ?' (/*a)

=
0, (3)

which is the equation to determine the admissible values of n. The speeds (o-) correspond-

ing to the various roots are given as before by Art. 198 (5).

If the two boundaries are equidistant from the equator, we have
/i2
=

y^. The above

solutions then break up into two groups ;
viz. for one of these we have

B= 0, y(/x1 )
= 0, (4)

and for the other A=0, 9
/
(Mi)

=
(5)

In the former case C has the same value at two points symmetrically situated on opposite

sides of the equator ;
in the latter the values at these points are numerically equal, but

opposite in sign.

If we imagine one of the boundaries to be contracted to a point (say /*2
=

1), we pass to

the case of a circular basin. The values of p' (1) and q' (1) are infinite, but their ratio can

be evaluated by means of formulae given in Art. 84. This gives, by (3), the ratio A : B,

and substituting in (2) we get the equation to determine n. A simpler method of treating

this case consists, however, in starting with a solution which is known to be finite, what-

ever the value of
,
at the pole /*=1. This involves a change of variable, as to which there

is some latitude of choice.

We might take, for instance, the expression for Pn
8
(cos 6) in Art. 86 (6), and seek to

determine n from the condition that

^Pn (cos0)=O (6)

for 8=8X
*.

By making the radius of the sphere infinite, we can pass to the plane problem of
|

Art. 189 1. The steps of the transition will be understood from Art. 100.

If the sheet of water considered have as boundaries two meridians (with or without
J

parallels of latitude), say <a = and <u= a, the condition that v=0 at these restricts us to

the factor cossw, and gives sa mir, where m is integral. This determines the admissible
|

values of s, which are not in general integral J.

* This question has been discussed by Maedorald, Proc. Lond. Math. Soc, t. xxxi. p. 264
j

(1899).

t Cf. Lord Eayleigh, Theory of Sound, Arts. 336, 338.

X The reader who wishes to carry the study of the problem further in this direction if

referred to Thomson and Tait, Natural Philosophy (2nd ed.), Appendix B,
"
Spherical Harmonic

Analysis."
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Tidal Oscillations of a Rotating Sheet of Water.

201. The theory of the tides on an open sheet of water is seriously

complicated by the fact of the earth's rotation. If, indeed, we could assume

that the periods of the free oscillations, and of the disturbing forces, were

small compared with a day, the preceding investigations would apply as

a first approximation, but these conditions are far from being fulfilled in the

actual circumstances of the Earth.

The difficulties which arise when we attempt to take the rotation into

account have their origin in this, that a particle having a motion in latitude

tends to keep its angular momentum about the earth's axis unchanged, and

so to alter its motion in longitude. This point is of course familiar in

connection with Hadley's theory of the trade-winds*. Its bearing on tidal

theory seems to have been first recognised by Maclaurin-f-.

Owing to the enormous inertia of the solid body of the earth compared
with that of the ocean, the effect of tidal reactions in producing periodic

changes of the angular velocity is quite insensible. This angular velocity

will therefore for the present be treated as constant}:.

The theory of the small oscillations of a dynamical system about a state

of equilibrium relative to a solid body which rotates with constant angular

velocity about a fixed axis differs in some important particulars from the

theory of small oscillations about a state of absolute equilibrium, of which

some account was given in Art. 167. It is therefore worth while to devote

a little space to it before entering on the consideration of special problems.

202. Let us take rectangular axes x, y, z fixed relatively to the solid, of

which the axis of z coincides with the axis of rotation, and let a> be the angular

velocity of the rotation. The equations of motion of a particle m relative to

these moving axes are known to be

m (x 2coy
- a>

2
x) = X, m (y + 2wx co-y)

= T, mz = Z, (1)

where X, Y, Z are the impressed forces. From these we derive

-w (xAx + y&y + zAz) + 2co1m (xAy yAx)

- a,
22m (xAx+ y&y) = 2 (XAx + YAy + ZAz), . . .(2)

where the symbol A has the same meaning as in Art. 135.

* " The Cause of the General Trade Winds," Phil. Trans., 1735.

t De Causa Physica Fluxus et Rejiuxus Maris, Prop. vii. :
" Motus aquae turbatur ex inaequali

velocitate qua, corpora circa axem Terne motu diurno deferuntur" (1740).

+ The secular effect of tidal friction in this respect will be noticed later (Chap. xi.).
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Let us now suppose that the relative coordinates (x, y, z) of each particle
can be expressed in terms of a certain number of independent quantities

q1} q2 ,
... qn ,

and let us write

= %Xm(x*+y2 + z 2

), T = $co*%m(x
2 + y

n

-) (3)

Here @T denotes the energy of the relative motion, which we shall suppose

expressed as a homogeneous quadratic function of the generalized velocities

qr ,
with coefficients which are functions of the generalized coordinates qr ;

whilst T denotes the energy of the system when rotating with the solid,

without relative motion, in the configuration (qlt q2 , ... qn). As in the

proof of Lagrange's equations (cf. Art. 135) we find

2m (4 + y*y + *,) -for
-
gr) A*

+
(a^ -

^) A*

whilst

^2m(a;A^ + yA2/)
=
||

A?1 +|^Ag
2 + ... +

|f
A?n (5)

Also 2o)Sm (My - yAx) = (/3n ?i + ft2?2 + . . . +&j) A^
+ (&i?i + ^^2 + + /3mqn) Aq2

+

+ (&u?i + /32?2 + + Am?n) A^n , . . .(6)

where = 22m *

,

(x * y)
^ (7)

and it is particularly to be noticed that

Prs = -/3gr , /3rr=0 (8)

Finally, we put

2 (XAx + YLy+ZAz) = -AV+ Q.Aq, + Q,Aq* + ... + QAgn> ...(9)

where V is the potential energy, and Qlt Q.2 , ... Qn are the generalized

components of disturbing force.

If we substitute from (4), (5), (6) and (9) in (2), and equate separately to

zero the coefficients of Aq1} Aq2 ,
... Aqn , we obtain n equations of the type*

sM-
d

S +0nil+Mi+ - +0r" i"
=
-i (r- T')+Q (10)

J

It may be noticed that these equations may be obtained as a particular

case of Art. 141 (24), with the help of Art. 142, by supposing the rotating!

solid to be free, but to have an infinite moment of inertia.

*
Cf. Thomson and Tait, Natural Philosophy (2nd ed.), Part i. p. 319.
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The conditions for relative equilibrium, in the absence of disturbing

forces, are found by putting q1} q\, ... qn = in (10), or more simply from (2).

In either way we obtain

^(F-r.)=o (id

which shews that the equilibrium value of the expression V T is

stationary.'

If T denote the total kinetic energy of the system, we have

T = \lm {{x
- wyf + (y + <*xf + i*}

= 1& + T + eoSm (xy
- yx\ . . .(12)

whence, on reference to (1),

^(T+V)
=
jt ( + T +V) + co2m(xy-yx)

=
jtC+V-T ) + a>S(xY-yX) (13)

This is to be equated to the rate at which the disturbing forces do work,

i.e. to

coS(xY-yX)+Qlq1 + Q#i + ... +Qnqn .

Hence ^(& + V- T )= Q&+ <&,+ ... +Qnqn (14)

This might also be deduced from the equations (10).

When there are no disturbing forces, we have

1&+V-T = const (15)

203. We will now suppose the coordinates qr to be chosen so as to vanish

in the undisturbed state. In the case of a small disturbance, we may then

write

-<r = Oii5
f

i
2 + a^92

2 + +2a12<7i#!+ -, (1)

2(V-T )= 0^+ cu tf + ... + 2cuqlqt + ..., (2)

where the coefficients may be treated as constants. The terms of the

first degree in V- T have been omitted, on account of the 'stationary'

property.

In order to simplify the equations as much as possible, we will further

suppose that, by a linear transformation, each of these expressions is reduced,
as m Art. 167, to a sum of squares ;

viz.

2& = a1q1

2 + a?qs
2 +...+anqn*, (3)

2(V- T )
=

ctf,
2 + c^qi + ... + cnqn\ (4)
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The quantities qu q2 ,
... qn may be called the 'principal coordinates' of the

system, but we must be on our guard against assuming that the same

simplicity of properties attaches to them as in the case of no rotation. The
coefficients aly a2 ,... an and clt ca ,

... cn may be called the 'principal coefficients'

of inertia and of stability, respectively. The latter coefficients are the same
as if we were to ignore the rotation, and to introduce fictitious 'centrifugal'
forces (maPx, ma>2

y, 0) acting on each particle in the direction outwards from
the axis.

The equations (10) of the preceding Art. become, in the case of infinitely
small motions,

i& + <hqi + &<#2 + &3?3 + + lnqn = Q, ,

a2 <72 + Cfl2 + @21qx + #3$, + ... + # = Q2 ,

.(5)

anqn + cnqn + /3nl^ + @n2q2 + fin3qs + ... =Q r

If we multiply these by q1} q2 , ... qn in order and add, we find, taking
account of the relation ^rs

= ^sr ,

j

jt
( +V-T )

= Q& + Q2q2 + ... + Qnqn ,

as has already been proved without approximation.

.(6)

204. To investigate thefree motions of the system, we put Qly Q2 , ...Qn = 0,

in (5), and assume, in accordance with the usual method of treating linear

equations,

q1
= A

1e
K
t, q,

= A 2e
K
t, ... qn = AneH (7)

Substituting, we find

(OiV + c1)A 1 + @12\A 2 + ... + /3lnXi n - 0,
*

PzXAi + (o^
2 + c2)A 2 + ... + m\An = 0,

fimXAj, + @n2\A 2 + ...+ (an\
2 + cn ) An = 0.

Eliminating the ratios A 1 :A 2 : ... :An ,
we get the equation

iA,
2 + Cj , P12A >.. Pin^

(321\, a2\
2 + c2 ,

... fim\

PitA 1 P,i2A, ,
. . . CLn\ + Cn

or, as we shall occasionally write it, for shortness,

A(\) =

= 0,

.(8)

.(9)

(10)
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The determinant A (A.) comes under the class called by Cayley 'skew-

determinants/ in virtue of the relations (8) of Art. 202. If we reverse the

sign of X, the rows and columns are simply interchanged, and the value of the

determinant is therefore unaltered. Hence, when expanded, the equation (9)

will involve only even powers of X, and the roots will be in pairs of the form

X=(/> + tV).

In order that the configuration of relative equilibrium should be stable

it is essential that the values of p should all be zero, for otherwise terms of

the forms e p< cos at and e**1 sin at would present themselves in the realized

expression for any coordinate qr . This would indicate the possibility of an

oscillation of continually increasing amplitude.

In the theory of absolute equilibrium, sketched in Art. 167, the necessary

and sufficient condition of stability (in the above sense) was simply that the

potential energy must be a minimum in the configuration of equilibrium. In

the present case the conditions are more complicated*, but it is easily

seen that if the expression for V T be essentially positive, in other words

if the coefficients d, Cj, ... cn in (4) be all positive, the equilibrium must be

stable. This follows at once from the equation

Z+(V-T )
= const., (11)

proved in Art. 202, which shews that under the present supposition neither

B lor V T can increase beyond a certain limit depending on the initial

circumstances. It will be observed that this argument does not involve

the use of approximate equations -f\

Hence stability is assured if V T is a minimum in the configuration
of relative equilibrium. But this condition is not essential, and there may
even be stability (from the present point of view) with VT & maximum,
as will be shewn presently in the particular case of two degrees of freedom,

to be remarked, however, that if the system be subject to dissipative

forces, however slight, affecting the relative coordinates qlf qt , ... qn ,
the equi-

librium will be permanently or 'secularly' stable only if V T is a minimum.
I" is the characteristic of such forces that the work done by them on the

m is always negative. Hence by (6) the expression ^T + (V T ) will, so

long as there is any relative motion of the system, continually diminish, in

the algebraical sense. Hence if the system be started from relative rest in a

configuration such that V Tt is negative, the above expression, and therefore

*
They have been investigated by Booth, On the Stability of a Given State of Motion ; see

also his Advanced Rigid Dynamic*, c. vi.

t The argument was originally applied to the theory of oscillations about a configuration of

absolute equilibrium (Art. 167) by Dirichlet, "Ueber die Stabilitat des Gleichgewichts," Crelle,

an. (1846) [Werke, Berlin, 1889-97, t. ii. p. 3].
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a fortiori the part V T
,
will assume continually increasing negative values,

which can only take place by the system deviating more and more from its

equilibrium-configuration.

This important distinction between 'ordinary' or kinetic, and 'secular'

or practical stability was first 'pointed out by Thomson and Tait*. It is to

be observed that the above investigation presupposes a constant angular

velocity (co) maintained, if necessary, by a proper application of force to the

rotating solid. When the solid is free, the condition of secular stability takes

a somewhat different form, to be referred to later (Chap. xn.).

To examine the character of a free oscillation, in the case of stability, we

remark that if X be any root of (10), the equations (8) give

"l -"a -"-s -^-n H (~\9\
An (X) &n{\) A(X) Am (X)

where An , A^, A^, ... Aru are the minors of any row in the determinant A,

and G is arbitrary. It is to be noticed that these minors will as a rule involve

odd as well as even powers of X, and so assume unequal values for the two

oppositely signed roots
(
+ X) of any pair. If we put X = ia, the general

symbolical value of qs corresponding to any such pair of roots may be

written

qs
= CArg (i<r) e** + C'Xs (- io) e~i<Tt

.

If we put 2AM (ia) = Fs (a
2
) + iaf (o-

2

),

C = Keu,
C' = Ke-u ,

we get a solution of our equations in real form, involving two arbitrary

constants K, e; thusf

<fr
=

i^i (o-
2
) . K cos {at + e)

- af (a
2

) . K sin (at + e),

q2
= Fo (<r

2
) . K cos (at + e)

- af (o-
2

) . K sin (at + e),

qs
= F3 (a

2
) . K cos (at + e)

- af (a
2

) . K sin (at + e), (13)

qn
= Fn (a

2
) . iTcos (at + e)

- afn (a
2

) . K sin (at + e).

These formulae express what may be called a '

natural mode' of oscillation

of the system. The number of such possible modes is of course equal to the

number of pairs of roots of (10), i.e. to the number of degrees of freedom of

the system.

* Natural Philosophy (2nd ed.), Part i. p. 391. See also Poincare,
" Sur l'equilibre d'une

masse fluide animee d'un mouvement de rotation," Acta Mathematica, t. vii. (1885), and op. cit.

ante p. 140.

f We might have obtained the same result by assuming, in (5),

a A e
i (<Ti +^

where A is real, and rejecting, in the end, the imaginary parts.
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If
: V> denote the component displacements of any particle from its

equilibrium position, we have

. dx dx

3?i 3fc

3y 3y

3^ .3*

3gi 3g2

3a;

3?n

dz

as*-

.(14)

Substituting from (13), we obtain a result of the form

=P . 7v cos (at + e) + P'.K sin (o + e), 1

t?
= Q . if cos (<rf + e) + Q' . K sin {at + e), > (15)

f= E . if cos (<rf + e) + R' . K sin (at + e), J

where P, P', Q, Q', R, R' are determinate functions of the mean position of

the particle, involving also the value of a, and therefore different for the

different normal modes, but independent of the arbitrary constants K, e.

These formulae represent an elliptic-harmonic motion of period 2ir/a, the

directions

P'Q-R'
ana

F~Q'~R" * 10 '

being those of two conjugate semi-diameters of the elliptic orbit, of lengths

(P2 + Q2 + B*} . K, and (F 3 + Q'
2 + R'*)* . K,

respectively. The positions and forms and relative dimensions of the elliptic

orbits, as well as the relative phases of the particles in them, are accordingly
in each natural mode determinate, the absolute dimensions and epochs being
alone arbitrary*.

205. The symbolical expressions for the forced oscillations due to a

periodic disturbing force can easily be written down. If we assume that

Qi Q-2, Qn all vary as e**', where a is prescribed, the equations (5) give,
if we omit the time-factors,

fr-^ft+^i*
'h=

A (ia)

A
A (ia)

+ (
">QL.

!

r*r) G + ^#2ft +A (ia) A (ia)
+

A(ur)

4>n (to)

A (to)
Qn, .(17)

Am(lO-) ^ (iff)

A (ia)
Qx +

(ia^l+...+^ (Wr)
Q.

* The theory of the free modes has been further developed by Lord Eayleigh,
" On the Free

Vibrations of Systems affected with Small Botatory Terms," Phil. Mag. (6), t. v. p. 293 (1903),
for the ease where the rotatory coefficients /3Pg are relatively small.
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The most important point of contrast with the theory of the 'normal

modes '

in the case of no rotation is that the displacement of any one type is

no longer affected solely by the disturbing force of that type. As a con-

sequence, the motions of the individual particles are, as is easily seen from

(14), now in general elliptic-harmonic. Again, there are in general differences

of phase, variable with the frequency, between the displacements and the force.

As in Art. 167, the displacement becomes very great when A (icr) is very

small, i.e. whenever the '

speed
'

<r of the disturbing force approximates to

that of one of the natural modes of free oscillation.

When the period of the disturbing forces is infinitely long, the displace-

ments tend to the '

equilibrium-values
'

Vi V2 Vw / 1 o \

?i
=

7- > &-?-' - fr*7"' (18)

as is found by putting er = 0in (17), or more simply from the fundamental

equations (5). This conclusion must be modified, however, when one or

more of the coefficients of stability cly c2 , ... cn is zero. If, for example, cx
=

0,

the first row and column of the determinant A (\) are both divisible by \, so

that the determinantal equation (10) has a pair of zero roots. In other words

we have a possible free motion of infinitely long period. The coefficients of

Q2, Qs, Qn on the right-hand side of (17) then become indeterminate for

a = 0, and the evaluated results do not as a rule coincide with (18). This

point is of some importance, because in the hydrodynamical applications, as

we shall see, steady circulatory motions of the fluid, with a constant deforma-

tion of the free surface, are possible when no extraneous forces act
;
and as

a consequence forced tidal oscillations of long period do not necessarily

approximate to the values given by the equilibrium theory of the tides.

Cf. Arts. 213, 216.

In order to elucidate the foregoing statements we may consider more in detail the case

of two degrees of freedom. The equations of motion are then of the forms

i?i + ci?i + /
3?2
= ^n a2?2 + c2?2-^i = 2 (

19 )

The equation determining the periods of the free oscillations is

a
l
a
2\

i+ (a1ca + a
2
c
1 + ^2

)X
2+ c

1
c2=0 (

20
)

For '

ordinary
'

stability it is sufficient that the roots of this quadratic in X 2 should be real

and negative. Since a
x ,
a
2
are essentially positive, it is easily seen that this condition is

in any case fulfilled if c
x ,

c2 are both positive, and that it will also be satisfied even when

c
x ,

c
2
are both negative, provided /3

2 be sufficiently great. It will be shewn later, however,

that in the latter case the equilibrium is rendered unstable by the introduction of

dissipative forces.

To find the forced oscillations when Qlt Q2 vary as e^t, we have, omitting the

time-factor,

(c1 -o-
2a

1 )5'1 -i-/cr/3j 2
= $1 , -i(rfiq1+ (c.2 -(T

2a.
2)q2

= Q2 , (21)
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. (c2
- (r

2a.
2)Q1 -i<T&Q2 iar^Ql+ {cl -aiax)Qi

whence q,
=

-, -^ 77 5 \ 2^9) ?2
=

7 5 w 5 l 555 (22)

Let us now suppose that c2 =0, or, in other words, that the displacement q2 does not

afi'ect the value of V T . We will also suppose that Q2 0, i.e. that the extraneous

forces do no work during a displacement of the type q.2 . The above formulae then give

qi=a2 (c1-Xi)+^ QlJ ^=a
2 (c1 -a3a1)+^ Ql (23)

In the case of a disturbance of long period we have <r=0, approximately, and therefore

*-dk*- *-*&** <24)

The displacement ql
is therefore less than its equilibrium-value, in the ratio 1 : 1 +^/a2 c1 ;

and it is accompanied by a motion of the type q.2 although there is no extraneous force of

the latter type (cf. Art. 216). We pass, of course, to the case of absolute equilibrium,

considered in Art. 167, by putting $=0.

It should be added that the determination of the '

principal coordinates
'

of Art. 203 depends on the original forms of {& and V T
,
and is therefore

affected by the value of or, which enters as a factor of T . The system of

equations there given is accordingly not altogether suitable for a discussion

of the question how the character and the frequencies of the respective

principal modes of free vibration vary with <o. One remarkable point which

is thus overlooked is that types of circulatory motion, which are of infinitely

long period in the case of no rotation, may be converted by the slightest

degree of rotation into oscillatory modes of periods comparable with that of

the rotation. Cf. Arts. 211, 221.

To illustrate the matter in its simplest form, we may take the case of two degrees of

freedom. If c, vanishes for =
0, and so contains <a

2 as a factor in the general case, the

two roots of equation (20) are

"1 a
i

approximately, when &>
2 is small. The latter root makes X oc

, ultimately.

206. Proceeding to the hydrodynamical examples, we begin with the

case of a plane horizontal sheet of water having in the undisturbed state a

motion of uniform rotation about a vertical axis*. The results will apply

without serious qualification to the case of a polar or other basin, of not too

great dimensions, on a rotating globe.

Let the axis of rotation be taken as axis of z. The axes of x and y being

now supposed to rotate in their own plane with the prescribed angular

velocity 0), let us denote by u, v, w the velocities at time t, relative to these axes,

*
Sir W. Thomson, "On Gravitational Oscillations of Rotating Water," Proc. B. S. Edin.,

t. x. p. 92 (1879) [Phil. Mag., (5) t. x. p. 109 (1880)].
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of the particle which then occupies the position (x, y, z). The actual velocities

of the same particle, parallel to the instantaneous positions of the axes, will

be u coy, v + cox, w, and the accelerations in the same directions will be

Du Dv Dw
Wt -2C0V-C0% ^+2U ty -jyt

.

In the present application, the relative motion is assumed to be infinitely

small, so that we may replace D/Dt by d/dt

Now let z be the ordinate of the free surface when there is relative

equilibrium under gravity alone, so that

CO
2

z = \ O2 + y") + const., (1)

as in Art. 26. For simplicity we will suppose that the slope of this surface

is everywhere very small, in other words, if r be the greatest distance of any

part of the sheet from the axis of rotation, ecPr/g is assumed to be small.

If z + denote the ordinate of the free surface when disturbed, then on

the usual assumption that the vertical acceleration of the water is small

compared with g, the pressure at any point (x, y, z) will be given by

P~Po = 9p(zo+Z-z) (2)

u 1 dp . d 1 dp 3
whence ;*- = - co

2x q , ^- = co
2
y - q ^- .

pdx
* dx p &y dy

The equations of horizontal motion are therefore

--2cov =-g^-^,
- + 2cou =

-g^- w , (3)

where O denotes the potential of the disturbing forces.

If we write =
, (4)

9

these become

ST"" '-& S +s -4(t-B < 5 >
I

The equation of continuity has the same form as in Art. 191, viz.

dj= _djhu)_djhv)
dt dx dy

' W
where h denotes the depth, from the free surface to the bottom, in the,

undisturbed condition. This depth will not, of course, be uniform unless the
j

bottom follows the curvature of the free surface as given by (1).



206] Rotating Sheet of Water 303

If we eliminate ( f from the equations (5), by cross-differentiation, we find

3 (ov ou\ /du dv\

dt (r*-ry)
+Hte +

tyr > (7)

or, writing u=d/dt, v=dijfdt, and integrating with respect to t,

> ou a fb dn\3s 3a

This is merely the expression of von Helmholtz5 theorem that the product of the angular

velocity

<a+(s =-) and the cross-section (l+Jt- + ^-\dzfy,

of a vortex-filament, is constant.

In the case of a simple-harmonic disturbance, the time-factor being e**',

the equations (5) and (6) become

d d -
i<TU-2<ov =

-g^(Z-Z),
iav + 2a>u =

-g^-(^-^)t (9)

, . y d(hu) d(hv)

From (9) we tind

(ii)

and if we substitute from these in (10), we obtain an equation in only.

In the case of uniform depth the result takes the form

a3 4/b5

**+^p r-v/j (12)

where V* = fr/dx* + fr/dy*, as before.

When (=0, the equations (5) and (6) can be satisfied by constant values of , v, f
provided certain conditions are fulfilled. We must have

"- _
2i 2y"'

V
~2^ ? (13)

and therefore "(^ _q /J4x

3 (*i y)

The latter condition shews that the contour-lines of the free surface must be everywhere
parallel to the contour-lines of the bottom, but that the value of f is otherwise arbitrary.
The flow of the fluid is everywhere parallel to the contour-lines, and it is therefore

further necessary for the possibility of such steady motions that the depth should be

uniform along the boundary (supposed to be a vertical wall). When the depth is every-
where the same, he condition (14) is satisfied identically, and the only limitation on the
value of f is that it should be constant along the boundary.
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207. A simple application of these equations is to the case of free waves

in an infinitely long uniform straight canal*.

Ifweassume f-a****-*-*"*, v = 0, (1)

the axis of x being parallel to the length of the canal, the equations (9) of

the preceding Art., with the terms in omitted, give

cu=g%, 2a>u = gm, (2)

whilst, from the equation of continuity (Art. 206 (6)),

c = hu (3)

2&)
We thence derive c

2 =
gh, m =

(4)c

The former of these results shews that the wave-velocity is unaffected by the

rotation.

When expressed in real form, the value of is

Z = ae-2a>y'c cos {k(ct-cc) + e} (5)

The exponential factor indicates that the wave-height increases as we

pass from one side of the canal to the other, being least on the side which

is forward, in respect of the rotation. If we take account of the directions

of motion of a water-particle, at a crest and at a trough, respectivelj
r
,
this

j

result is easily seen to be in accordance with the tendency pointed out in

Art. 201 1-

The problem of determining the free oscillations in a rotating canal off

finite length, or in a rotating rectangular sheet of water, has not yet been
i

solved J.

208. We take next the case of a circular sheet of water rotating about

its centre .

If we introduce polar coordinates r, 0, and employ the symbols R, to

denote displacements along and perpendicular to the radius vector, then since
j

R ss iaR, = i<r, the equations (9) of Art. 206 are equivalent to

^R + 2icoaS = g~^-0, *> -2ico*R =g^tf-& ...(1)

* Sir W. Thomson, I.e. ante p. 301.

t For applications to tidal phenomena see Sir W. Thomson, Nature, t. xix. pp. 154, 571 (1879).

X Except in the case where the angular velocity of rotation is relatively small. For this set
i

Lord Eayleigh,
" On the Vibrations of a Eectangular Sheet of Eotating Liquid," Phil. Mag. (6).!

t. v. p. 297 (1903).

The investigation which follows is a development of some indications given by Lord Kelvir ,

in the paper referred to.
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whilst the equation of continuity (10) becomes

d(hRr) d{hS)
&

rdr rdd w
Hence

(3)

and substituting in (2) we get the differential equation in .

In the case of uniform depth we find

ft'+OO-V^ (4>

where Vl= a^
+ ra^^' (o)

and *-=! (6)
gh

This might have been written down at once from Art. 206 (12).

The condition to be satisfied at the boundary (r = a, say) is R = 0, or

(*i-v*<

209. In the case of the free oscillations we have =0. The way in

which the imaginary i enters into the above equations, taken in conjunction

with Fourier's theorem, suggests that occurs in the form of a factor e,
where s is integral. On this supposition, the differential equation (4) becomes

8'?+ i?-
f + |>^. r9r

. r
-
P)r-o (8)

and the boundary-condition (7) gives

-2+vf* <9>

for r = a.

The equation (8) is of Bessel's form, and the solution which is finite for

r = may therefore be written

S = AJt (icr) **"+"> ; (10)

but it is to be noted that /c
2

is not, in the present problem, necessarily

positive. When k2
is negative, we may replace J, (r) by Is ('r), where

k is the positive square root of (4g>
2

a*)jgh, and

*^~2'.s!
j

+
2(2s+2)

+
2.4(2s + 2)(2s + 4)

+
*'*J

* ' ( '

* The functions I, (z) have been tabulated by Prof. A. Lodge, Brit. Ass. Rep. 1889.

L- 20
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In the case of symmetry about the axis (s
=

0), we have, in real form,

= AJ (kv) . cos (<rt + e), (12)

where k is determined by
J '(Ka) = (13)

The corresponding values of a are then given by (6). The free surface has,

in the various modes, the same forms as in Art. 189, but the frequencies are

now greater, viz. we have

a2 = (T
' + 4>to\ (14)

where <r is the corresponding value of a when there is no rotation. It is

easily seen, moreover, on reference to (3), that the relative motions of the fluid

particles are no longer purely radial
;
the particles describe, in fact, ellipses

whose major axes are in the direction of the radius vector.

For s > we have

= AJt (ier) cos (<rt + s0 + e), (15)

where the admissible values of k, and thence of o-, are determined by (9),

which gives

/caJg' (/ca)+- Js {kcl)
=

(16)

The formula (15) represents a wave rotating relatively to the water with

an angular velocity a/s, the rotation of the wave being in the same direction

with that of the water, or the opposite, according as a/co is negative or

positive.

Some indications as to the values of <r may be gathered from a graphical construction.

If we write n2a2=
x, we have, from (6),

B-*(1+a)'- <17)

where /3
= ? (18)

gh

If we further put
sJs (<a)
koJs (na)

the equation (16) may be written

*<)(l+!)*-0
(19)

The curve y=-${x) (20)

can be readily traced by means of the tables of the functions Jt (z), Is (z) ;
and its inter-

j

sections with the parabola

3/
2=

l+|
(
21

)
!

will give, by their ordinates, the values of o-/2co.
The constant /3, on which the position^

of the roots depend, is equal to the square of the ratio 2a>a/(gh)^ which the period o
'
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a wave travelling round a circular canal of depth k and perimeter 2-rra bears to the

half-period (ir/a) of the rotation of the water.

The accompanying figures indicate the relative magnitudes of the lower roots, in the

cases =1 and s=2, when ft has the values 2, 6, 40, respectively*.

[*
= 1]

With the help of these figures we can trace, in a general way, the changes in the

character of the free modes as ft increases from zero. The results may be interpreted as

due either to a continuous increase of a, or to a continuous diminution of h. We will use

the terms 'positive' and 'negative' to distinguish waves which travel, relatively to the

water, in the same direction as the rotation and the opposite.

When ft is infinitely small, the values of x are given by /,' (#*)
=

; these correspond
to the vertical asymptotes of the curve (20). The values of er then occur in pairs of

equal and oppositely-signed quantities, indicating that there is now no difference between

the velocity of positive and negative waves. The case is, in fact, that of Art. 189 (12).

As ft increases, the two values of a forming a pair become unequal in magnitude, and
the corresponding values of x separate, that being the greater for which o-/2o> is positive.

When S=( + l) the curve (20) and the parabola (21) touch at the point (0, -1),
the corresponding value of a being -2<o. As ft increases beyond this critical value,

one value of x becomes negative, and the corresponding (negative) value of <r/2c becomes

smaller and smaller.

Hence, as ft increases from zero, the relative angular velocity becomes greater for a

negative than for a positive wave of (approximately) the same type ; moreover the value

of a- for a negative wave is always greater than 2. As the rotation increases, the two

* For clearness the scale, of y has been taken to be 10 times that of x.

202
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kinds of wave become more and more distinct in character as well as in 'speed.' With a

sufficiently great value of /3 we may have one, but never more than one, positive wave for

which o- is numerically less than 2<o. Finally, when /3 is very great, the value of cr

corresponding to this wave becomes very small compared with a, whilst the remaining
values tend all to become more and more nearly equal to 2o>.

[-2]

If we use a zero suffix to distinguish the case of <o= 0, we find

o-
2 _ K 2+ A<*2lgh x+p

.(22)

where x refers to the proper asymptote of the curve (20). This gives the 'speed' of ami

free mode in terms of that of the corresponding mode when there is no rotation.

210. As a sufficient example of forced oscillations we may assume

=0 (-)%*<**+*+>, (23)

where the value of a is now prescribed.

This makes V 2 = 0, and the equation (4) then gives

f = AJ, (*r) ei^t+a9+
'\ .(24)



209-210] Forced Oscillations 309

where A is to be determined by the boundary-condition (7), viz.

/_ 2g>>

s(l +a= : g^ .a (25)

icaJg (/ca) H Js {ko)
<j

This becomes very great when the frequency of the disturbance is nearly

coincident with that of a free mode of corresponding type.

From the point of view of tidal theory the most interesting cases are those of =1
with <r = &>, and 8=2 with a=2a>, respectively. These would represent the diurnal

and semidiurnal tides due to a distant disturbing body whose proper motion may be

neglected in comparison with the rotation a.

In the case of s= l we have a uniform horizontal disturbing force. Putting, in

addition, a= a, we find without difficulty that the amplitude of the tide-elevation at the

edge (r=a) of the basin has to its
'

equilibrium-value
'

the ratio

3/i(*) (26)

where 2=^(3/3). With the help of Lodge's tables we find that this ratio has the values

1000, -638, -396,

for 0= 0, 12, 48, respectively.

When o- =2, we have *=0, and thence, by (23), (24), (25),

C=l (27)

i.e. the tidal elevation has exactly the equilibrium-value.

This remarkable result can be obtained in a more general manner ; it holds whenever

the disturbing force is of the type

c=x {r) eiQt+>e+t)
(28)

provided the depth A be a function of r only. If we revert to the equations (1), we notice

that when <r= 2a they are satisfied by =f, Q= iR. To determine R as a function

of r, we substitute in the equation of continuity (2), which gives

d

-^-
8

-=^hR=- x (r) (29)

The arbitrary constant which appears on integration of this equation is to be determined

by the boundary-condition.

In the present case we have x (
r
)
=

Or*/a*. Integrating, and making i=0 for r= a,

we find

hR=^
(a2_ r2) e

i(2^++*)
(30

2t(X

The relation e = iR shews that the amplitudes of R and are equal, while their phases
differ by 90

; the relative orbits of the fluid particles are in fact circles of radii

^'("'-^ (81)

described each about its centre with angular velocity 2a in the negative direction. We
may easily deduce that the path of any particle in space is an ellipse of semi-axes rr
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described about the origin with harmonic motion in the positive direction, the period

being 2tt/(o. This accounts for the peculiar features of the case. For if ( have always the

equilibrium-value, the horizontal forces due to the elevation exactly balance the disturbing

force, and there remain only the forces due to the undisturbed form of the free surface

(Art. 206 (1)). These give an acceleration gdzjdr, or co
2
r, to the centre, where r is

the radius-vector of the particle in its actual position. Hence all the conditions of the

problem are satisfied by elliptic-harmonic motion of the individual particles, provided the

positions, the dimensions, and the 'epochs' of the orbits can be adjusted so as to satisfy

the condition of continuity, with the assumed value of . The investigation just given

resolves this point.

211. We may also briefly notice the case of a circular basin of variable

depth, the law of depth being the same as in Art. 191, viz.

h = h
>{

l -
r

i) 0)

Assuming that R, e, all vary as e
l (<Tt+ e+t

)

}
au(j that A is a function of r only,

we find, from Art. 208 (2), (3),

[*-^tt'*(s+)<f-?>+'*( +
? i-$c-lH>

Introducing the value of h from (1), we have, for the/ree oscillations

/ r2 \ fd
2
C lSf s2 A 2 / dC ,

2<* A
,

o-
2 -4< 2 _ ._.

This is identical with Art. 191 (6), except that we now have

o-
2 - 4o>2 4<aS

in place of <r
2
/gk . The solution can therefore be written down from the results of that

Art., viz. if we put

(<r
2 -4a>2

)a
2 Aas . oN o , A \x

j
=n(n-2)-s% (4)

gh a

we have (=A s (
r
->) f(o, ft y, \J {at+"+

'\ (5)
Kaj \

' a
r

where a= \n + ^s, $= \+\s \n, y=s+ l
;

and the condition of convergence at the boundary r= a requires that

n=s + 2j, (6)

where j is some positive integer. The values of a- are then given by (4).

The forms of the free surface are therefore the same as in the case of no rotation, but

the motion of the water-particles is different. The relative orbits are in fact now ellipses

having their principal axes along and perpendicular to the radius vector
;

this follows

easily from Art. 208 (3).

In the symmetrical modes (s
=

0), the equation (4) gives

0-2= ^2+4^ (7)

where o- denotes the 'speed' of the corresponding mode in the case of no rotation, as

found in Art. 191.
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For any value of s other than zero, the most important modes are those for which

n=s+2. The equation (4) is then divisible by <r+ 2a>, but this is an extraneous factor ;

discarding it, we have the quadratic

-*Hr-*fk, (8)

whence o-= o> (co2+2s^y (9)

This gives two waves rotating round the origin, the relative wave-velocity being greater

for the negative than for the positive wave, as in the case of uniform depth (Art 209).

With the help of (8) the formulae reduce to

C-J.Q*. *=*^.(;)'~', e-*tj4.gp, (10)

the factor e
t ^<rt+*e+t)

being of course understood in each case. Since e=i72, the relative

orbits are all circles. The case s= 1 is noteworthy ; the free surface is then always plane,

and the circular orbits have all the same radius.

When n > *+ 2, we have nodal circles. The equation (4) is then a cubic in o72< ;
it is

easily seen that its roots are all real, lying between ac and 1, 1 and 0, and + 1

and + x , respectively. As a numerical example, in the case of =
1, n= 5, corresponding

to the values

2, 6, 40

of 4or"- >jh 0> we find

[
+ 2-889 +1-874 +1-180,

125 -0100 -0-037,

r+jrw
= J-01!

(-2-7(
2co

~764 -1774 -1143.

The first and the last root of each triad give positive and negative waves of a somewhat

similar character to those already obtained in the case of uniform depth. The smaller

negative root gives a comparatively slow oscillation which, when the angular velocity o> is

infinitely small, becomes a steady rotational motion, without elevation or depression of the

surface*.

The most important type of forced oscillations is such that

~

C=c(^je
ii<rt+ge+t)

(11)

We readily verify, on substitution in (3), that

i
~2sgh -(o*-2oa)a*

i K J

We notice that when <r= 2w the tide-height has exactly the equilibrium-value, in agree-

ment with Art. 210.

If
ffj, o-2 denote the two roots of (8), the last formula may be written

f=
(l-r/r1)(l-ir/ra)

(13)

* The possibility of oscillations of this type has been pointed out in Art. 205, ad fi
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Tides on a Rotating Globe.

212. We proceed to give some account of Laplace's problem of the tidal

oscillations of an ocean of (comparatively) small depth covering a rotating

globe*. In order to bring out more clearly the nature of the approximations
which are made on various grounds, we adopt a method of establishing the

fundamental equations somewhat different from that usually followed.

When in relative equilibrium, the free surface is of course a level-surface

with respect to gravity and centrifugal force
;
we shall assume it to be

a surface of revolution about the polar axis, but the ellipticity will not in

the first instance be taken to be small.

We adopt this equilibrium-form of the free surface as a surface of

reference, and denote by and
<j>

the co-latitude (i.e. the angle which the

normal makes with the polar axis) and the longitude, respectively, of any

point upon it. We shall further denote by z the altitude, measured outwards

along a normal, of any point above this surface.

The relative position of any particle of the fluid being specified by
the three orthogonal coordinates 6, <f>, z, the kinetic energy of unit mass

is given by
2T = (# + )

2 #2

+w-(a> + <)
2 + i2

, (1)

where R is the radius of curvature of the meridian-section of the surface of

reference, and w is the distance of the particle from the polar axis. It is to

be noticed that R is a function of 6 only, whilst is is a function of both and

z
;
and it easily follows from geometrical considerations that

= cos #, = sin 6 (2)
(R + z)dd

'

dz

The component accelerations are obtained at once from (1) by Lagrange's
formula. Omitting terms of the second order, on account of the restriction

to infinitely small motions, we have

1 fddT dT\ ,_ ., 1 . a .. dvr
(

-r
}

= (R + z)d (g>
2 + 2co6) m

R+z\dtd0 ddJ R + z
y y

d0

1 fddT dT\ -.' }dv A d A

ddT dT ..
. dv

dm-Yz = z - {<
' + 2w<l)) ^Yz

* " Kecherches sur quelques points du systeme du monde," Mem. de VAcad. roy. des Sciences,

1775 [1778] and 1776 [1779]; Oeuvres Completes, t. ix. pp. 88, 187. The investigation is repro-

duced, with various modifications, in the Mecanique Celeste, Livre 4me
,
c. i. (1799).

!
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Hence, if we write u, v, w for the component relative velocities of a

particle, viz.

u = (R + z) 0, v = sr<, w = z, (4)

and make use of (2), the hydrodynamical equations may be put in the forms

^-2.cos0
=-__^ +*_^2 +

n),

^+2amcos0
+ 2f0sin0 = - -

( + V -
$co

2
*r- + flV I ...(5)

^-2t>sin0
=

-^(l + V-^.^ + n)

where is the gravitation-potential due to the earth's attraction, whilst fi

denotes the potential of the disturbing forces.

So far the only approximation has consisted in the omission of terms of

the second order in u, v, w. In the present application, the depth of the sea

being small compared with the dimensions of the globe, we . may replace
R + z by R. We will further assume that the effect of the relative vertical

acceleration on the pressure may be neglected, and that the vertical velocity
is small compared with the horizontal velocity. The last of the equations (5)
then reduces to

lKp
+ *~ i&>2CT2 + n

)
=0 (6)

Let us integrate this between the limits z and where denotes the

elevation of the disturbed surface above the surface of reference. At the

surface of reference (z
= 0) we have

\aria- = const.,

by hypothesis, and therefore at the free surface (z= )

- &>- m- = const. + g%,

provided
'-[b<*-***L (7>

Here g denotes the value of apparent gravity at the surface of reference
;

it is of course, in general, a function of 0. The integration in question
then gives

- + -<u2*r2 +n = const.+#'+n j (8)
r

the variation of fl with z being neglected. Substituting from (8) in the
first two of equations (5), we obtain, with the approximations above

indicated,

*-**' 9m K-<\ s +2-co. ^(f-tt ...(9)
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where ?= (10)

These equations are independent of z, so that the horizontal motion may be

assumed to be sensibly the same for all particles in the same vertical line.

As in Art. 197, this last result greatly simplifies the equation of continuity.

In the present case we find without difficulty

d_ 1 \d{hmu)
t

d(hv))

dt -ex
(
Rd0

dcf>

It is important to notice that these equations involve no assumptions

beyond those expressly laid down
;
in particular, there is no restriction as to

the ellipticity of the meridian, which may be of any degree of oblateness.

213. In order, however, to simplify the question as far as possible,

without sacrificing any of its essential features, we now take advantage
of the circumstance that in the actual case of the earth the ellipticity is

a small quantity, being in fact comparable with the ratio (o>
2

a/g) of centrifugal

force to gravity at the equator, which ratio is known to be about ^g. Subject

to an error of this order of magnitude, we may put R = a, -ar = a sin 6, g = const.,

where a is the earth's mean radius. We thus obtain*

S-^P8**^ ^
this last equation being identical with Art. 197 (1).

Two conclusions of some interest in connection with our previous work

follow at once from the form of the equations (1). In the first place, if u, v

denote the velocities along and perpendicular to any horizontal direction s,

we easily find, by transformation of coordinates

ft -2covcosd=-gl(t;-0 (3)

In the case of a narrow canal, the transverse velocity v is zero, and the,!

equation (3) takes the same form as in the case of no rotation
;
this has beer!

assumed by anticipation in Art. 182. The only effect of the rotation in such!

cases is to produce a slight slope of the wave-crests and furrows in
th|

direction across the canal, as investigated in Art. 207.

Again, by comparison of (1) with Art. 206 (5), we see that the oscillation

of a sheet of water of relatively small dimensions, in colatitude 6, will tak

*
Laplace, I.e. ante p. 312.



212-214] General Equations 315

place according to the same laws as those of a plane sheet rotating about

a normal to its plane with angular velocity co cos 6.

As in Art. 206, free steady motions are possible, subject to certain

conditions. Putting =0, we find that the equations (1) and (2) are

satisfied by constant values of u, v, , provided

u = l_^ 9 9 as
2<>asin0cos0a<' 2a>acos<980' K }

, d(hsecd,Z) ...
and \. a ,. =0 (o)

a ((9, <)
v '

The latter condition is satisfied by any assumption of the form

t=/(/*sec0), (6)

and the equations (4) then give the values of u, v. It appears from (4) that

the velocity in these steady motions is everywhere parallel to the contour-

lines of the disturbed surface.

If h is constant, or a function of the latitude only, the only condition

imposed on is that it should be independent of <; in other words the

elevation must be symmetrical about the polar axis.

214. We shall suppose henceforward that the depth h is a function of 6

only, and that the barriers to the sea, if any, coincide with parallels of

latitude.

We take first the cases where the disturbed form of the water-surface

is one of revolution about the polar axis. When the terms involving <f>
are

omitted, the equations (1) and (2) of the preceding Art. take the forms

^-2<ovcosd = -2-!b($-Z), ^+2a>MCOS0 = O, (1)
ot add y '

ot
v /

With dj= _d(husmd)
Ot asinddd v }

Assuming a time-factor e{ai
,
and solving for u, v, we find

u =
ia9 9

(t ^ 2<^cosfl d
^

<r>-4Grcos20oa0^ *h ot-^co&dadd^ *h "K&)

~'-25S$
The formulae for the component displacements (, rj, say) can be written

down from the relations u =
, v = 77, or u = ia%, v = ian. It appears that the

fluid particles describe ellipses having their principal axes along the meridians

and the parallels of latitude, respectively, the ratio of the axes being
o" 2oj.sec#. In the forced oscillations of the present type the ratio o-/2g> is
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very small
;
so that the ellipses are very elongated, with the greatest length

from E. to W., except in the neighbourhood of the equator.

Eliminating u and v between (3) and (4), and writing, for shortness,

f-r-F- &-/. -j
(o)

we find _3
(J Si" $

. %) +*< *? ()asm 090 v/
2 cos2

80/

In the case of uniform depth, this becomes

(5$+*'7-f? (7)

where a = cos 0, and @ = t- = r- (8)
h gk

215. First, as regards the free oscillations. Putting =
0, we have

fe($g)+*-* <9 >

and we notice that in the case of no rotation this is included in (1) of Art. 198,

as may be seen by putting /3/
2 = <T-a

2

jgh,f= oo . The general solution of (9)

is necessarily of the form

Z=AFQi,) + BfQi) (10)

where F(fi) is an even, and f(fi) an odd, function of
fi,

and the constants

A
,
B are arbitrary. In the case of a zonal sea bounded by two parallels of

latitude, the ratio A : B, and the admissible values of / (and thence of the

frequency cr/27r) are determined by the conditions that u = at each of these

parallels. If the boundaries are symmetrically situated on opposite sides

of the equator, the oscillations fall into two classes
;

viz. in one of these

5 = 0, and in the other A = 0. By supposing the boundaries to contract to

points at the poles, we pass to the case of an unlimited ocean, and the

admissible values of f are now determined by the condition that u must be

finite for yu-= + 1. The argument is, in principle, exactly that of Art. 200,

but the application of the last-mentioned condition is now more difficult,

owing to the less familiar form in which the solution of the differential

equation is obtained.

In the case of symmetry with respect to the equator, we assume,

following the method of Lord Kelvin* and Prof. G. H. Darwinf ,

i ar

/*-/ 3/*

= B
lf
i + B3^ + ...+B2j+1^+l + (11)

* Sir W. Thomson, "Note on the 'Oscillations of the First Species' in Laplace's Theory of

the Tides," Phil. Mag. (i), t. 1. p. 279 (1875).

t "On the Dynamical Theory of the Tides of Long Period," Proc. Roy. Soc, t. xli. p. 337

(1886); Encyc. Britann., Art. "Tides."
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This leads to

? A - */*JBy + 1 (5, -/,)^+ ...+i (*_. -/2^0^+ ...

(12)

where A is arbitrary ;
and makes

|-(i^^)
=^+ 3(i^-^)^+...+(%>l)(^,-AM)^+.---

(13)

Substituting in (9), and equating coefficients of the several powers of /*,

we find

A-^=0, (14)

3 -(l-f^)*i
= 0, (15)

and thenceforward

JM1
-w$b)**-f?ln>*-"*' (16)

These equations determine Bly Bs , ...By+1 , ... in succession, in terms of

J . and the solution thus obtained would be appropriate, as already explained,

to the case of a zonal sea bounded by two parallels in equal N. and S. latitudes.

In the case of an ocean covering the globe, it would, as we shall prove, give

infinite velocities at the poles, except for certain definite values ofy!

Let us write B^B^X
=N^ ; (17)

we shall shew, in the first place, that as j increases Nj must tend either to

the limit or to the limit 1. The equation (16) may be written

fif* 1

^+1=1
~2j(2j + l)

+
2jW+l)^ (18)

Hence, when j is large, either

^ =
-2j(2j+l)'

(19)

approximately, or Nj+1 is not small, in which case JV}+2 will be nearly equal
to 1, and the values of Nj+S , Nj+i , ... will tend more and more nearly to 1,

the approximate formula being

Hence, with increasing^', Nj tends to one or other of the forms (19) and (20).

In the former case (19), the series (11) will be convergent for fi= 1, and

the solution is valid over the whole globe.
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In the other event (20), the product NsN4...Nj+1 ,
and therefore the

coefficient B2j+1 ,
tends with increasing j to a finite limit other than zero.

The series (11) will then, after some finite number of terms, become comparable

with 1 + /j? + /a
4 + . . .

,
or (1 /u-

2
)
-1

,
so that we may write

^-f*df*
= L +

T^S' (21)

where L and M are functions of fi which remain finite when fi
= 1. Hence..

from (3),

^Z^%--^rtW-'rm ..-(22)

which makes u infinite at the poles.

It follows that the conditions of our problem can be satisfied only if in-

tends to the limit zero
;
and this consideration, as we shall see, restricts us to

a determinate series of values of/.

The relation (18) may be put in the form

Nj ~gfa> , (23)
1 _ Bl AT.

2j(2j+l)
**

and by successive applications of this we obtain iV} in the form of a

convergent continued fraction

fi fi fi

2j(2j + l) (2j + 2)(2j + 3) (2j + 4)(2j + 5)

fif'
2

fif
2

fif'
2

1

~2JW+1)
+ 1

"(2j+2)(2i + 3)
+ 1_

(2j + 4)(2j + 5)
+ -

(24)

on the present supposition that iV}+Jfc
tends with increasing k to the limit 0,

in the manner indicated by (19). In particular, this formula determines the

value of JV2 . Now from (15) we must have

ft-l-ffg. (25 )

_fi_ fi_

u -i fif
2 4 - 5 6.7 A /omwhence " +
7~STi'HE "* (26)

4.5
+

6.7
+ "

which is equivalent to iV^ = oo . This equation determines the admissible

value of/ (= a/2m). The constants in (11) are then given by

B1
= fiA, Bs

= F2fiA, B5
= N,N3fiA,..., (27)

where A is arbitrary.
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It is easily seen that when ft is infinitesimal the roots of (26) are given by

^ =
/3r-

= n(n+l), (28)

where n is an even integer ;
cf. Art. 198.

One arithmetically remarkable point remains to be noticed. It might

appear at first sight that when a value off has been found from (26) the

coefficients B3 ,
B5 ,

BT ,
... could be found in succession from (15) and (16), or

by means of the equivalent formula (18). But this would require us to start

with exactly the right value of /* and to observe absolute accuracy in the

subsequent stages of the work. The above argument shews, in fact, that any
other value, differing by however little, if adopted as a starting point for the

calculation will inevitably lead at length to values of Nj which approximate
to the limit 1 *.

216. It is shewn in the Appendix to this Chapter that the tide-

generating potential, when expanded in simple-harmonic functions of the

time, consists of terms of three distinct types.

The first type is such that the equilibrium tide-height would be given by

f=J3"(-cos8
0).cos(a* + e)+ (29)

The corresponding forced waves are called by Laplace the '

Oscillations of the

First Species
'

; they include the lunar fortnightly and the solar semi-annual

tides, and generally all the tides of long period. Their characteristic is

symmetry about the polar axis, and they form accordingly the most important
case of forced oscillations of the present type.

If we substitute from (29) in (7), and assume for

. 7, a
and

I*-fop
expressions of the forms (11) and (12), we have, in place of (14), (15),

B1 -i0H'-f3A=O, (30)

B3-{l-f^B1 + ^H' = 0, (31)

whilst (16) and its consequences hold for all the higher coefficients. It may
be noticed that (31) may be included under the general formula (16), provided
we write B_x

= 227*. It appears by the same argument as before that the

only admissible solution for an ocean covering the globe is the one that makes

*
Sir W. Thomson, I.e. ante p. 316.

t In strictness, 6 here denotes the geocentric latitude, but the difference between this and the

geographical latitude may be neglected consistently with the assumptions introduced in Art. 213.
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N^ = 0, and that accordingly Nj must have the value given by the continued

fraction in (24), where/* is now prescribed by the frequency of the disturbing
forces.

In particular, this formula determines the value of Nx . Now

B^N.B^ = -2N1H',

and the equation (30) then gives

A=-^H'-^N1H'; (32)

in other words, this is the only value of A which is consistent with a zero

limit of Nj, and therefore with a finite velocity at the poles. Any other value

of A, if adopted as a starting point for the calculation of B1} B3 ,
B5 ,

... in

succession, by means of (30), (31), and (16), would lead ultimately to values

of Nj approximating to the limit 1. Moreover, since absolute accuracy in the

initial choice of A and in the subsequent computations would be essential to

avoid this, the only practical method of calculating the coefficients is to use

the formulae

B1/H' = -2N1 ,
B3
=N2BU B5

=N3B3 , ...,

or BX\E' = - 2Nlt B3/H' = - 2JS,N2 , B5/H' = - 2N1NJfs ,
. . .

(33)

where the values of Nlf N2> N3 ,
... are to be computed from the continued

fraction (24). It is evident a posteriori that the solution thus obtained will

satisfy all the conditions of the problem, and that the series (12) will converge
with great rapidity. The most convenient plan of conducting the calculation

is to assume a roughly approximate value, suggested by (19), for one of the

ratios Nj of sufficiently high order, and thence to compute

in succession by means of the formula (23). The values of the constants

A,B1} B3 , ..., in (12), are then given by (32) and (33). For the tidal elevation

we find

r/JT = - 2i\y/3
-

(1 -f*Nx) f _
jj ( i

_
/2 2̂ ) tf

_ ...

-iN^... Nj^il-fWj)^- (34)

In the case of the lunar fortnightly tide, / is the ratio of a sidereal day
to a lunar month, and is therefore equal to about -%, or more precisely "0365.

'

This makes f2 = '00133. It is evident that a fairly accurate representation I

of this tide, and a fortiori of the solar semi-annual tide, and of the remaining
tides of long period, will be obtained by putting /=0; this materially i

shortens the calculations.
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The results will involve the value of /S,
= 4<(o

2

a-igh. For /S
= 40, which

corresponds to a depth of 7260 feet, we find in this way

QH' = 1515 1-0000//- + 1-5153/A
4 -

12120/*
6 + 6063//

-
-2076/t

10

+ 0516/i
12 -

0097/x
14
+0018/z

16 -
0002/i

18
, (35)*

whence, at the poles (/t
=

1),

=-#' x 154,

and, at the equator (/t
=

0),

l^'x-455.

Again, for /3
= 10, or a depth of 29040 feet, we get

/#= 2359 - 1-0000/** + -5898//
-

1623/*
6

+ -0258/i
8 -

-0026/t
10 + -0002/i

12
(36)

This makes, at the poles,

and, at the equator,

=-#' x -470,

P- #' x -708.

For /?
= 5, or a depth of 58080 feet, we find

qH' = -2723 - 1-0000/A
8 + 340V

-
-0509/i

6 + -0043/*
8 -

-0004/a
10

(37)

This gives, at the poles,

=-#' x-651,

and, at the equator,

f = fl"x-817.

Since the polar and equatorial values of the equilibrium tide are \H'
and \R ', respectively, these results shew that for the depths in question
the long-period tides are, on the whole, direct, though the nodal circles will,

of course, be shifted more or less from the positions assigned by the equi-
librium theory. It appears, moreover, that, for depths comparable with the

actual depth of the sea, the tide has less than half the equilibrium value.

It is easily seen from the form of equation (5) that with increasing depth,
and consequent diminution of /9, the tide height will approximate more and

more closely to the equilibrium value. This tendency is illustrated by the

above numerical results.

The coefficients in (35) and (36) differ only slightly from the numerical values obtained by
Prof. Darwin for the case /= -0365.

l. 21



322 Tidal Waves [chap, vni

It is to be remarked that the kinetic theory of the long-period tides was

passed over by Laplace, under the impression that practically, owing to the

operation of dissipative forces, they would have the values given by the

equilibrium theory. He proved, indeed, that the tendency of frictional forces

must be in this direction, but it has been pointed out by Darwin* that in

case of the fortnightly tide, at all events, it is doubtful whether the effect

would be nearly so great as Laplace supposed. We shall return to this point

later.

217. When the disturbance is no longer restricted to be symmetrical
about the polar axis, we must recur to the general equations (1) and (2) of

Art. 213. We retain, however, the assumptions as to the law of depth and

the nature of the boundaries introduced in Art. 214.

If we assume that ft, u, v, ^ all vary as ei{<rt+**+e)
,
where s is integral, the

equations referred to give

Q 7) ISO ~

iau - 2(ov cos = - -^ (?
-

i), ia-v + 2au cos - .

J
a {

-
f ),a ou a sin tf

(1)

1 [d (hu sin 0) . , )
with %a^= .__J_!___/+wfa;L (2)a sin [o0
Solving for u, v, we find

(K" =
4m(/'-cos'M^V rCOt ^'

o- /cos 09" , a\

v = -. T-* 7T, sr- -^77 + sc cosec
,4w (/

2 - cos2
0) \ f dO

*

J'}

.(3)

where we have written

as before.

M-P. & T= m
- (4)

It appears that in all cases of simple-harmonic oscillation the flui

particles describe ellipses having their principal axes along the meridian

and parallels of latitude, respectively.

Substituting from (3) in (2) we obtain the differential equation in %' :

^wo ir-co&o \d0
+
/
c cot

>

_ h
.
(
! cot % + s^' cosec2

o) + 4,ma? = - 4ma . . .(5)

/
- cos2 a \j ov I

I.e. ante p. 316.
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218. The case s = 1 includes, as forced oscillations, Laplace's 'Oscillations

of the Second Species,' where the disturbing potential is a tesseral harmonic

of the second order
;

viz.

I = H" sin 6 cos . cos {at + <f>
+ e), (1)

where a- differs not very greatly from to. This includes the lunar and solar

diurnal tides.

In the case of a disturbing body whose proper motion could be neglected,

we should have <r = (o, exactly, and thereforef=\. In the case of the moon,

the orbital motion is so rapid that the actual period of the principal lunar

diurnal tide is very appreciably longer than a sidereal day*; but the sup-

position that f \ simplifies the formulae so materially that we adopt it in

the following investigation
-

!".
We find that it enables us to calculate the

forced oscillations wThen the depth follows the law

h=(l -qcos*d)h0> (2)

where q is any given constant.

Taking an exponential factor g <<+*+>, and therefore putting s = l,f=\,
in Art. 217 (3), and assuming

= C sin 6 cos 6, (3)

C C
we find u = ia

,
v = a . cos # (4)mm

Substituting in the equation of continuity (Art. 217 (2)), we get

x? C dh

which is consistent with the law of depth (2), provided

C =
-l-2qhlma

S"
(6)

Thisgives C-- T

J
flT I 0)

1 2qh jma
s v '

One remarkable consequence of this formula is that in the case of uniform

depth (q
= 0) there is no diurnal tide, so far as the rise and fall of the surface

is concerned. This result was first established (in a different manner) by
Laplace, who attached great importance to it as shewing that his kinetic

theory was able to account for the relatively small values of the diurnal tide

which are given by observation, in striking contrast to what would be

demanded by the equilibrium-theory.
*

It is to be remarked, however, that there is an important term in the harmonic develop-
ment of for which <r=u exactly, provided we neglect the changes in the plane of the disturbing

body's orbit. This period is the same for the sun as for the moon, and the two partial tides thus

produced combine into what is called the ' luni-solar
' diurnal tide.

t Taken with very slight alteration from Airy (" Tides and Waves," Arts. 95..!), and Darwin

(Encyc. Brit., t. xxiii. p. 359).

212
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But, although with a uniform depth there is no rise and fall, there are

tidal currents. It appears from (4) that every particle describes an ellipse

whose major axis is in the direction of the meridian, and of the same length
in all latitudes. The ratio of the minor to the major axis is cos 6, and so

varies from 1 at the poles to at the equator, where the motion is wholly
N. and S.

219. In the case s 2, the forced oscillations of most importance are

where the disturbing potential is a sectorial harmonic of the second order.

These constitute Laplace's
'

Oscillations of the Third Species,' for which

f=# ,

"sin2
<9.cos(o- + 2( + e), (1)

where a is nearly equal to 2<w. This includes the most important of all the

tidal oscillations, viz. the lunar and solar semi-diurnal tides.

If the orbital motion of the disturbing body were infinitely slow we should

have o- = 2w, and therefore/= 1
;
for simplicity we follow Laplace in making

this approximation, although it is a somewhat rough one in the case of the

principal lunar tide*.

A solution similar to that of the preceding Art. can be obtained for the

special law of depth f
h = h sin2 d (2)

Adopting an exponential factor ei(2wt+2*+e) ,
and putting therefore /= 1, s = 2,

we find that if we assume
' = Csin2

0, (3)

the equations (3) of Art. 217 give

icr n a <t n sin 6

m 2m 1 + cos2 6

whence, substituting in Art. 217 (2),

C=
2
-.Csin2

(5)ma

Putting = f + , and substituting from (1) and (3), we find

C~~ .
*

H'", (6)
1 2h /ma

and therefore = -
^r, f. (7)

1 2h /ma

For such depths as actually occur in the ocean 2h < ma, and the tide is

therefore inverted. It may be noticed that the formulae (4) make the velocity

infinite at the poles, as was to be expected, since the depth there is zero.

* There is, however, a ' luni-solar
'

semi-diurnal tide whose speed is exactly 2w if we neglec

the changes in the planes of the orbits. Cf. p. 323, first footnote.

t Cf. Airy and Darwin, 11. cc.
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220. For any other law of depth a solution can only be obtained in the

form of a series. In the case of uniform depth we find, putting s = 2, f= 1,

4malh = fi in Art. 217 (5),

(1_ ^2)2S +{/9(1 ~^)2
"

2/i2
~ 6lr = ~^ (1

"
/a2)2?' (8)

where /x.
is written for cos 0. In this form the equation is somewhat intract-

able, since it contains terms of four different dimensions in
ft. It simplifies

a little, however, if we transform to

v, =(l-fi% = sin<9,

as independent variable
;

viz. we find

vHl-v-)^-v
C

/̂
-(8-2vz-j3v

i
)

, = -Pv^=-0H'''v6
, ...(9)

which is of three different dimensions in v.

To obtain a solution for the case of an ocean covering the globe, we assume

" = BQ + By + By + ... + Brf + (10)

Substituting in (9), and equating coefficients, we find

B = 0, B2
= 0, O.B4

= 0, (11)

16B6 -10Bi + /3H'" = 0, (12)

and thenceforward

2j (2j + 6) Bv+i
-

2j (2j + 3) Bv+2 4-/3^ = (13)

These equations give B6 , Bs ,
... By, ... in succession, in terms of Bit which is

so far undetermined. It is obvious, however, from the nature of the problem,

that, except for certain special values of h (and therefore of yS), which are

such that there is a free oscillation of corresponding type (s
= 2) having the

speed 2o), the solution must be unique. We shall see, in fact, that unless B
have a certain definite value the solution above indicated will make the

meridian component (u) of the velocity discontinuous at the equator*.

The argument is in some respects similar to that of Art. 216. If we
denote by Nj the ratio Bv+2fB.>j of consecutive coefficients, we have, from (13),

JS

^~2j + 6 2j(2j + 6)Kj'
^

from which it appears that, with increasing j, Nj must tend to one or other

of the limits and 1. More precisely, unless the limit of Nj be zero, the

limiting form of Nj+1 will be

(2j + 3)/(2j+6), or
1-|,

In the case of a polar sea bounded by a small circle of latitude whose angular radius is

< ^t, the value of B4 is determined by the condition that u= 0, or ?fjdv 0, at the boundary.
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approximately. The latter is identical with the limiting form of the ratio

of the coefficients of i# and v2i~2 in the expansion of (1 v2

)K We infer that,

unless B4 have such a value as to make N^ = 0, the terms of the series (10)
will become ultimately comparable with those of (1 i/

2

)*, so that we may
write

? = L + (l-v*)iM, (15)

where L, M are functions of v which do not vanish for v1. Near the

equator (v=l) this makes

S-*0-^g-Jf. (16)

Hence, by Art. 217 (3), u would change from a certain finite value to an

equal but opposite value as we cross the equator.

It is therefore essential, for our present purpose, to choose the value of Bt

so that Nx = 0. This is effected by the same method as in Art. 216. Writing

(13) in the form

*-$h- (i7>

2/+6" i+1

we see that Nj must be given by the converging continued fraction

P_
2j(2j + 6) (2y + 2)(2j+8) (2j -f 4) (2j + 10)

j
~

2j + S 2j + 5 2j + 7
U ;

2j + 3 2j + 5 2j

2j + 6 2j + 8 2j + 10
-&c.

This holds fromj = 2 upwards, but it appears from (12) that it will give also

the value of Nj (not hitherto denned), provided we use this symbol for B4/H'".

We have then

B4
=NXH,U

,
Bs
= N,B4 ,

B8
=N3BS> ....

Finally, writing = f+ f', we obtain

yH'" = v* + N1 v
i + N1K2 v

6 +N1N2Ni v + (19)

As in Art. 216, the practical method of conducting the calculation is tc

assume an approximate value for JV}+1 , where j is a moderately large number!

and then to deduce iV}, Nj_1} ... N2 ,
Nx in succession by means of the

formula (17).
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The above investigation is taken substantially from the very remarkable paper written

by Lord Kelvin* in vindication of Laplace's treatment of the problem, as given in the

Micanique Celeste. In the passage more especially in question, Laplace determines the

constant Bi by means of the continued fraction for NX1 without, it must be allowed,

giving any adequate justification of the step ;
and the soundness of this procedure

had been disputed by Airyt, and after him by FerrelJ.

Laplace, unfortunately, was not in the habit of giving specific references, so that few of

his readers appear to have become acquainted with the original presentment of the

kinetic theory, where the solution for the case in question is put in a very convincing,

though somewhat different, form. Aiming in the first instance at an approximate

solution by means of a finite series, thus :

C= Bv*+ Br*+ ... +B2k+2^ + i
, (20)

Laplace remarks
'

that in order to satisfy the differential equation, the coefficients would

have to fulfil the conditions

l6B6-\0Bi+pH'"= 0,

n
40 8 -2&B6+ /aB4= 0,

L (21)
(2L--2)(2k+4:)B.ik+ .2-(2k-2)(2i+l)B.2i+pB<Ue _ 2=0,

-2k(2i-+3)B2k+2+0Bik =0,

as is seen at once by putting BikJri
=

0, 2?2fc+6=0> ... in the general relation (13).

We have here k+l equations between constants. The method followed is to

determine the constants by means of the first k relations ; we thus obtain an exact

solution, not of the proposed differential equation (9), but of the equation as modified by
the addition of a term fSB-* + 2 v*

+ 6 to the right-hand side. This is equivalent to an

alteration of the disturbing force, and if we can obtain a solution such that the required

alteration is very small, we may accept it as an approximate solution of the problem
in its original form IT.

Now, taking the first k relations of the system (21) in reverse order, we obtain .Sat + 2

in terms of B^, thence B^ in terms of i?2*-i> and so on, until, finally, Bt is expressed in

terms of H"' ; and it is obvious that if Ic be large enough the value of 2?2i + 2> and the

consequent adjustment of the disturbing force which is required to make the solution

exact, will be very small. This will be illustrated presently, after Laplace, by a numerical

example.

The process just given is plainly equivalent to the use of the continued fraction (17)

in the manner already explained, starting with j+l=k, and Nk =fij2k(2k+3>). The

continued fraction, as such, does not, however, make its appearance in the memoir here

referred to, but was introduced in the ilecanique Celeste, probably as an after-thought, as a

condensed expression of the method of computation originally employed.

*
Sir W. Thomson, "On an Alleged Error in Laplace's Theory of the Tides," Phil. Mag.

(4), t. 1. p. 227 (1875).

t " Tides and Waves," Art. 111.

X
" Tidal Researches," U.S. Coast Survey Rep., 1874, p. 154.

"Recherches sur quelques points du systeme du monde," Mem. de VAcad. roy. des Sciences,

1776 [1779] [Oeuvres Completes, t. ix. pp. 187...].

II Oeuvres, t. ix. p. 218. The notation has been altered.

If It is remarkable that this argument is of a kind constantly employed by Airy himself in

his researches on waves.



328 Tidal Waves [chap, vin

The following table gives the numerical values of the coefficients of the

several powers of v in the formula (19) for f/T'", in the cases = 40, 20, 10,

5, 1, which correspond to depths of 7260, 14520, 29040, 58080, 290400, feet,

respectively*. The last line gives the value of f/ZT" for v= 1, i.e. the ratio

of the amplitude at the equator to its equilibrium-value. At the poles

(v
=

0), the tide has in all cases the equilibrium-value zero.
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changes from direct to inverted. The largeness of the second coefficient in

the case # = 40 indicates that the depth could not be reduced much below

7260 feet before reaching a second critical value.

Whenever the equatorial tide is inverted, there must be one or more pairs

of nodal circles (f=0), symmetrically situated on opposite sides of the

equator. In the case of /? = 40, the position of the nodal circles is given by
v= - (

J5, or = 90' + 18, approximately*.

221. The dynamical theory of the tides, in the case of an ocean covering
the globe, with depth uniform along each parallel of latitude, has in recent

times been greatly improved and developed by Hough f, who, taking up an

abandoned attempt of Laplace, has substituted expansions in spherical

harmonics for the series of powers of ji (or v). This has the advantage
of more rapid convergence, especially, as might be expected, in cases where

the influence of the rotation is relatively small
;
and it also enables us to take

account of the mutual attraction of the particles of water, which, as we have

seen in the simpler problem of Art. 199, is by no means insignificant.

If the surface-elevation ,
and the conventional equilibrium tide-height f

(in which the effect of mutual attraction is not included), be expanded in

series of spherical harmonics, thus

= 2 n , =2?n , (1)

the complete expression for the disturbing potential will be

cf. Art. 199. The factor g is to be substituted for in the equations of

Arts. 213...; this will be allowed for if we write

r'
= 2(an r-?n), (2)

where a = 1 -5 -= , (3)
In + 1 p9

in modification of the notation of Art. 214 (5) or Art. 217 (4).

In the oscillations of the ' First Species,' the differential equation may be

written

AfW^W^ w
If we assume

t=2CnPn (/*), J=27nPn(/*), (3)

^have r-2(*4i-*)PG0 <6)

* For a fuller discussion of these points reference may be made to the original investigation

of Laplace, and to Lord Kelvin's papers.

t "On the Application of Harmonic Analysis to the Dynamical Theory of the Tides," Phil.

Trans., A. t. clxxxix. p. 201, and t. cxci. p. 139 (1897).
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Substituting in (4), and integrating between the limits 1 and fi, we find

X (OnCn
~

7n) (1
"^)^+ SWl {(/

2 " D + (1
~

/*')) **^ = 0. . . .(7)

Now, by known formulae of zonal harmonics*,

ly-n^) (l -^)di W

and I P,^yLt
=

2??r+l
^n+1

" Pn~1^

1
[

I /<*Pw+2 _ ^PnA 1_ (dPn _
^Pn-2

\|
2w + 1 (2w + 3 \ dfi dfi J 2n-l\dfi dfi J)

1 dPn+2 2 rfPw~
(2 + 1) (2n + 3)

"

dfi (2n
-

1) (2n 4- 3) cfyt

. i aPn-2 /qv

^(2w-l)(2n + l) <Z/u

v ;

Substituting in (7), and equating to zero the coefficient of (1 fi
2
)
-~-

,

we find

In
C^n+2 LnCn + r= -.

/SJ JT C/n_2 -5- , (10)
(2n + 3) (2n + 5)

n+2 n " '

(2n
-

3) (2
-

1)
n~J

f3
'

Where
^%fell)

+
(an-l)

2

(2n+3) "| (11)

The relation (10) will hold from n 1 onwards, provided we put

cu = 0, c = 0.

The farther theory is based substantially on the argument of Laplace,

given in Art. 220
;
and the work follows much the same lines as in

Arts. 215, 216, 220.

In the free oscillations we have
<yn
= 0, and the admissible values of /

are determined by the transcendental equation

T
5.7 2 .9 9. 11'. 13 A n9 ,

L
*--T^r z8 -&c.

=0
' (12)

1 1

, 3.5.7 7.9M1
ft m x

* See Todhunter, Functions of Laplace, <&c, c. v. ; Whittaker, Modern Analysis, Art. 117.

I
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according as the mode is symmetrical or asymmetrical with respect to the

equator. Alternative forms of the period equations are given by Hough,
suitable for computation of the higher roots, and it is shewn that close

approximations are given by the equations Ln = or

3 p\ gh 2
l (U)4ar

l + n (U + 1
^\V 2n + l pj 4&>2a2

{In
-

1) (2n + 3)

except for the first two or three values of n.

The following table gives the periods (in sidereal time) of the slowest

symmetrical oscillation {i.e. the one in which the surface-elevation would

vary as P2 (fi) if there were no rotation), corresponding to various depths*.

Depth
p

(feet)
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222. In the more general case, where symmetry about the axis is not

imposed, the surface-elevation is expanded by Hough in a series of tesseral

harmonics of the type
Pn

s
(ft) e*(rf+*+) (1)

In relation to tidal theory the most important cases are where the disturbing

potential is of the form (1), with n= 2 and s = 1 or s = 2.

The calculations are necessarily somewhat intricate, and it must suffice

here to mention a few of the more interesting results, which will indicate

how the gaps in the previous investigations have been filled.

To understand the nature of the free oscillations, it is best to begin with

the case ofno rotation (o>
=

0). As co is increased, the pairs of numerically equal,

but oppositely-signed, values of a which were obtained in Art. 198 begin to

diverge in absolute value, that being the greater which has the same sign

with co. The character of the fundamental modes is also gradually altered.

These oscillations are distinguished as
' of the First Class.'

At the same time certain steady motions which are possible, without

change of level, when there is no rotation, are converted into long-period

oscillations with change of level, the speeds being initially comparable with

co. The corresponding modes are designated as 'of the Second Class'*;

cf. Art. 205.

The following table gives the speeds of those modes of the First Class

which are of most importance in relation to the diurnal and semi-diurnal

tides, respectively, and the corresponding periods, in sidereal time. The last

column repeats the corresponding periods in the case of no rotation, as

calculated from the formula (15) of Art. 199.
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The quickest oscillation of the Second Class has in each case a period of

over a day; and the periods of the remainder are very much longer.

As regards the forced oscillations of the ' Second Species,' Laplace's

conclusion that when a= co, exactly, the diurnal tide vanishes in the case of

uniform depth, still holds. The computation for the most important lunar

diurnal tide, for which a <u = '92700, shews that with such depths as we have

considered the tides are small compared with the equilibrium heights, and

are in the main inverted.

Of the forced oscillations of the ' Third Species/ we may note first the

case of the solar semi-diurnal tide, for which a = lay with sufficient accuracy.

For the four depths given in our tables, the ratio of the dynamical tide-height

to the conventional equilibrium tide-height at the equator is found to be

+ 7-9548, -15016, -23487, +21389,

respectively.

" The very large coefficients which appear when hgl^ora
3 =

-fa indicate

that for this depth there is a period of free oscillation of semi-diurnal type
whose period differs but slightly from half-a-day. On reference to the

tables... it will be seen that we have, in fact, evaluated this period as

12 hours 1 minute, while for the case A<7/4a>
2a2 =^ we have found a period

of 12 hours 5 minutes*. We see then that though, when the period of

forced oscillation differs from that of one of the types of free oscillation by as

little as one minute, the forced tide may be nearly 250 times as great as the

corresponding equilibrium tide, a difference of 5 minutes between these

periods will be sufficient to reduce the tide to less than ten times the

corresponding equilibrium tide. It seems then that the tides will not tend

to become excessively large unless there is very close agreement with the

period of one of the free oscillations.

"The critical depths for which the forced tides here treated of become
infinite are those for which a period of free oscillation coincides exactly with

1 2 hours. They may be ascertained by putting [<r
=

2o>] in the period-

equation for the free oscillations and treating this equation as an equation
for the determination of h The two largest roots are..., and the corre-

sponding critical depths are about 29,182 feet and 7375 feet

"
It will be seen that in three cases out of the four* here considered the

effect of the mutual gravitation of the waters is to increase the ratio of the

tide to the equilibrium tide [cf. Art. 220]. In two of the eases the sign is

also reversed. This of course results from the fact that when [p/p1
= 01 8093]

one of the periods of free oscillation is rather greater than 12 hours, when

[p Pi
=

0] the corresponding period will be less than 12 hours+."

[Belonging to a mode which comes next in sequence to the one having a period of 17h. 59 m.]
t Hough, Phil. Trans., A. t. cxci. pp. 178, 179.
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Hough has also computed the lunar semi-diurnal tides for which

-- = 0-96350.

For the four depths aforesaid the ratios of the equatorial tide-heights to their

equilibrium values are found to be

-2-4187, -1-8000, +11-0725, +1-9225,

respectively.

" On comparison of these numbers with those obtained for the solar

tides..., we see that for a depth of 7260 feet the solar tides will be direct

while the lunar tides will be inverted, the opposite being the case when the

depth is 29,040 feet. This is of course due to the fact that in each of these

cases there is a period of free oscillation intermediate between twelve solar

(or, more strictly, sidereal) hours and twelve lunar hours. The critical depths

for which the lunar tides become infinite are found to be 26,044 feet and

6448 feet.

"
Consequently this phenomenon will occur if the depth of the ocean be

between 29,182 feet and 26,044 feet, or between 7375 feet and 6448 feet.

An important consequence would be that for depths lying between these

limits the usual phenomena of spring and neap tides would be reversed, the

higher tides occurring when the moon is in quadrature, and the lower at new
and full moon*."

223. It is not easy to estimate, in any but the most general way, the

extent to which the foregoing conclusions of the dynamical theory would

have to be modified if account could be taken of the actual configuration of

the ocean, with its irregular boundaries and irregular variation of depth f.

One or two points may however be noticed.

In the first place, the formulae (17) of Art. 205 would lead us to expect

for any given tide a phase-difference, variable from place to place, between

the tide-height and the disturbing force. Thus, in the case of the lunar

semi-diurnal tides, for example, high-water or low-water need not synchronize

with the transit of the moon or
' anti-moon '\ across the meridian. More

precisely, in the case of a disturbing force of given type for which the

equilibrium tide-height at a particular place would be

= a COS <rt, (1)

the dynamical tide-height will be

= A cos (<rt
-

e), (2)

where the ratio A/a, and the phase-difference e, will be functions of* the

speed a.

*
Hough, I.e., where reference is made to Lord Kelvin's Popular Lectures and Addresses,

London, 1894, t. ii. p. 22 (1868).

t As to the general mathematical problem reference may be made to Poincare',
" Sur l'equi-

libre et les mouvements des mers," Liouville (5), t. ii. pp. 57, 217 (1896).

$. This term is explained in the Appendix to this Chapter (p. 340).
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Again, consider the superposition of two oscillations of the same type but

of slightly different speeds, e.g. the lunar and solar semi-diurnal tides. If the

origin of t be taken at a syzygy, we have

= a cos at + a' cos <r't, (3)

and = A cos (at e) + A' cos (at e) (4)

This may be written

= (A + A' cos
<f>)

cos (at e) + A' sin
<f>

sin (at e), (5)

where
<f>
= (a a') t e + e'. (6)

If the first term in the second member of (4) represents the lunar, and the

second the solar tide, we shall have a < a', and A > A'. If we write

A + A' cos
<f>
= C cos a, A' sin

<f>
= C sin a (7)

we get
= Ccos(at e a), (8)

where C = (4
s + 24^'cos

<j>
+ A'*)*, a = tan" 1 .f !?*^ ^ . ...(9)

^i t -" cos d>

This may be described as a simple-harmonic vibration of slowly varying

amplitude and phase. The amplitude ranges between the limits A A',

whilst a may be supposed to lie always between + 77-. The '

speed
' must

be regarded as variable, viz. we find

rfg aA* + (a + a) AA' cos
<f> + <r 4'

"

dt~~ A* + 2AA'cos<l> + A'*
~~

(10'

This ranges between*

Aa + A'a' , Aa A'a' ,__,

^-m-
and ^-^ (11 >

The above is the well-known explanation of the phenomena of the spring-
and neap-tidesf : but we are now concerned further with the question of

phase. On the equilibrium theory, the maxima of the amplitude C would

occur whenever

(a' a)t = 2mr,

where n is integral. On the dynamical theory the corresponding times of

maximum are given by

(a'-a)t-(-e) = 2mr,

i.e. the dynamical maxima follow the statical by an interval*

(e'-e)/(</-<r).

If the difference between a' and a were infinitesimal, this would be equal to

dijda.

*
Helmholtz, Lekre von den Tonempfindungen (2" Aufl.), Braunschweig, 1870, p. 622.

+ Cf. Thomson and Tait, Natural Philosophy, Art. 60.

Z This interval may of course be negative.
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The fact that the time of high-water, even at syzygy, may follow or

precede the transit of the moon or anti-moon by an interval of several hours

is well known *. The interval, when reckoned as a retardation, is, moreover,

usually greater for the solar than for the lunar semi-diurnal tide, with the

result that the spring-tides are in many places highest a day or two after

the corresponding syzygy. The latter circumstance has been usually ascribed

to the operation of Tidal Friction (for which see Chap. XI.), but it is evident

that the phase-differences which are incidental to a complete dynamical

theory, even in the absence of friction, cannot be ignored in this connection.

There is reason to believe that they are, indeed, far more important than

those due to friction.

Lastly, it was shewn in Arts. 205, 216, that the long-period tides may
deviate very considerably from the values given by the equilibrium theory,

owing to the possibility of certain steady motions in the absence of disturbance.

It has been pointed out by Lord Rayleighf that these steady motions may
be impossible in certain cases where the ocean is limited by perpendicular

barriers. Referring to Art. 213 (6), it appears that if the depth h be

constant, must (in the steady motion) be a function of the co-latitude

only, and therefore by (4) of the same Art., the eastward velocity must

be a function of the latitude. This is inconsistent with the existence of

a perpendicular barrier extending along a meridian. The objection would

not apply to the case of a sea shelving gradually from the central parts

to the edge.

224. We may complete the investigation of Art. 199 by a brief notice

of the question of the stability of the ocean, in the case of rotation.

It has been shewn in Art. 204 that the condition of secular stability is

that V T should be a minimum in the equilibrium configuration. If we

neglect the mutual attraction of the elevated water, the application to the

present problem is very simple. The excess of the quantity V T over its

undisturbed value is evidently

y\v-ute*)dz\ds,
(i)

where ^ denotes the potential of the earth's attraction, 88 is an element of

the oceanic surface, and the rest of the notation is as before. Since "^ \aris-

is constant over the undisturbed level (z = 0), its value at a small altitude z

may be taken to be gz+ const., where, as in Art. 212,

d
9 = ><*-^U=o (

2 >

* The values of the retardations (which we have denoted by e)
for the various tidal com-

ponents, at a number of ports, are given by Baird and Darwin,
" Results of the Harmonic

Analysis of Tidal Observations," Proc. R. S., t. xxxix. p. 135 (1885), and Darwin, "Second

Series of Results...," Proc. R. S., t. xlv. p. 556 (1889).

f "Note on the Theory of the Fortnightly Tide," Phil. Mag. (6), t. v. p. 136 (1903).
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Since JfdS = 0, on account of the constancy of volume, we find from (1) that

the increment of V T is

iffg&s. (3)

This is essentially positive, and the equilibrium is therefore secularly stable*.

It is to be noticed that this proof does not involve any restriction as to

the depth of the fluid, or as to smallness of the ellipticity, or even as to

symmetry of the undisturbed surface with respect to the axis of rotation.

If we wish to take into account the mutual attraction of the water, the

problem can only be solved without difficulty when the undisturbed surface

is nearly spherical, and we neglect the variation of g. The question (as to

secular stability) is then exactly the same as in the case of no rotation.

The calculation for this case will find an appropriate place in the next

chapter. The result, as we might anticipate from Art. 199, is that the

necessary and sufficient condition of stability of the ocean is that its density
should be less than the mean density of the earth*.

225. This is perhaps the most suitable occasion for a few additional

remarks on the general question of stability of dynamical systems. We
have in the main followed the ordinary usage which pronounces a state of

equilibrium, or of steady motion, to be stable or unstable according to the

character of the solution of the approximate equations of disturbed motion.

If the solution consist of series of terms of the type Ge kt
, where all the

values of X are pure imaginary (i.e. of the form icr), the undisturbed state is

usually reckoned as stable
;
whilst if any of the Vs are real, it is accounted

unstable. In the case of disturbed equilibrium, this leads algebraically to

the usual criterion of a minimum value of V as a necessary and sufficient

condition of stability.

It has in recent times been questioned whether this conclusion is, froni

a practical point of view, altogether warranted. It is pointed out that since

Lagrange's equations become less and less accurate as the deviation from the

equilibrium configuration increases, it is a matter for examination how far

rigorous conclusions as to the ultimate extent of the deviation can be drawn

from themf.

The argument of Dirichlet, which establishes that the occurrence of

a minimum value of V is a sufficient condition of stability, in any practical

sense, has already been referred to. No such simple proof is available to

shew without qualification that this condition is necessary. If, however, we

recognize the existence of dissipative forces, which are called into play by
any motion whatever of the system, the conclusion can be drawn as in

Art. 204.

*
Cf. Laplace, Mecanique Celeste, Livre 4*, Arts. 13, 14.

t See papers by Liapounoff and Hadamard, Liouville (5), t. iii. (1897).

L. 22
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A little consideration will shew that a good deal of the obscurity which

attaches to the question arises from the want of a sufficiently precise

mathematical definition of what is meant by
'

stability.' The difficulty

is encountered in an aggravated form when we pass to the question of

stability of motion. The various definitions which have been propounded

by different writers are examined critically by Klein and Sommerfeld in

their book on the theory of the top*. Rejecting previous definitions, they
base their criterion on the character of the changes produced in the path of

the system by small arbitrary disturbing impulses. If the undisturbed path
be the limitingform of the disturbed path when the impulses are indefinitely

diminished, it is said to be stable, but not otherwise. For instance, the

vertical fall of a particle under gravity is reckoned as stable, although for

a given impulsive disturbance, however small, the deviation of the particle's

position at any time t from the position which it occupied in the original

motion increases indefinitely with t. Even this criterion, as the writers

referred to themselves recognize, is not free from ambiguity unless the phrase
1

limiting form,' as applied to a path, be strictly defined. It appears moreover

that a definition which is analytically precise may not in all cases be easy to

reconcile with geometrical prepossessions^.

The foregoing considerations have reference, of course, to the question of

'ordinary' stability. The more important theory of 'secular' stability (Art. i04)

is not affected. We shall meet with the criterion for this, under a somewhat

modified form, at a later stage in our subject ;\

* Ueber die Theorie des Kreisete, Leipzig, 1897..., p. 342.

+ Some good illustrations are furnished by Particle Dynamics. Thus a particle moving in a

circle about a centre of fofce varying inversely as the cube of the distance will if slightly disturbed

either fall into the centre, or recede to infinity, after describing in either case a spiral with an

infinite number of convolutions. Each of these spirals has, analytically, the circle as its

4

limiting form,' although the motion in the latter is most naturally described as unstable,
j

Cf. Korteweg, Wiener Ber., May 20, 1886.

A narrower definition has been given by Love, and applied by Bromwich to several dynamical

and hydrodynamical problems ; see Proc. Loud. Math. Soc, t. xxxiii. p. 325 (1901).
+ This summary is taken substantially from the Art. "Dynamics, Analytical," in Encye.

Brit., t. xxvii. (1902).
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The reader will easily verify that, to the order of approximation adopted, Q is equal to

the joint potential of two masses, each equal to \M, placed, one at C, and the other at a

point C in CO produced such that OC = OC*.

b. In the 'equilibrium-theory' of the tides it is assumed that the free surface takes

at each instant the equilibrium-form which might be maintained if the disturbing body
were to retain unchanged its actual position relative to the rotating earth. In other

words, the free surface is assumed to be a level-surface under the combined action of

gravity, of centrifugal force, and of the disturbing force. The equation to this level-

surface is

-a>2o; 2
-|-G = const., (3)

where a> is the angular velocity of the rotation, vs denotes the distance of any point from

the earth's axis, and is the potential of the earth's attraction. If we use square
brackets

[ ] to distinguish the values of the enclosed quantities at the undisturbed level,

and denote by f the elevation of the water above this level due to the disturbing

potential Q, the above equation is equivalent to

O- \<*
2 or2

]+
f~;|

(*- a>
2 G72)l C+ Q= const., (4)

approximately, where djdz is used to indicate a space-differentiation along the normal

outwards. The first term is of course constant, and we therefore have

*+*. (5)

where, as in Art. 212, #=U-(-a>2
ra-

2
)
1 (6)

Evidently, g denotes the value of 'apparent gravity' ;
it will of course vary more or less

j

with the position of P on the earth's surface.

It is usual, however, in the theory of the tides, to ignore the slight valuations in tht|

value of
cf,

and the effect of the ellipticity of the undisturbed level on the surface-valm
j

of O. Putting, then, r= a, g=yB/a
2
,
where E denotes the earth's mass, and a the meaij

radius of the surface, we have, from (2) and (5),

C=H(cos*3-i)+ C, (7)
l

where ff tf (^J

'

> (
8

)

as in Art. 179. Hence the equilibrium-form of the free surface is a harmonic spheroid cj

the second order, of the zonal type, having its axis passing through the disturbing body.

C. Owing to the diurnal rotation, and also to the orbital motion of the disturbh
j

body, the position of the tidal spheroid relative to the earth is continually changin
'

so that the level of the water at any particular place will continually rise and fa;

To analyse the character of these changes, let 8 be the co-latitude, and
cj)

the longitud

measured eastward from some fixed meridian, of any place P, and let A be the north-pola

distance, and a the hour-angle west of the same meridian, of the disturbing bod 1

We have, then,

cos 5 = cos A cos + sin A sin 0cos(a+ <), .-.(9)

* Thomson and Tait, Art. 804. These two fictitious bodies are designated as ' moon '

a

'

anti-moon,' respectively.
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and thence, by (7),

C=\H (cos* A- \) (cos
2 6- i)

+\H sin 2A sin 28 cos (a + <)

-r^sin2 Asin2 0cos2(a+ <) + C. (10)

Each of these terms may be regarded as representing a partial tide, and the results

superposed.

Thus, the first term is a zonal harmonic of the second order, and gives a tidal spheroid

symmetrical with respect to the earth's axis, having as nodal lines the parallels for which

cos2 6 = J, or 8 = 90 + 35 16'. The amount of the tidal elevation in any particular latitude

varies as cos2 A - . In the case of the moon the chief fluctuation in this quantity has

a period of about a fortnight ; we have here the origin of the ' lunar fortnightly
'

or

'declinational' tide. When the sun is the disturbing body, we have a 'solar semi-annual'

tide. It is to be noticed that the mean value of cos2 A J with respect to the time is not

so that the inclination of the orbit of the disturbing body to the equator involves as

a consequence a permanent change of mean level. Cf. Art. 182.

The second term in (10) is a spherical harmonic of the type obtained by putting n=2,
*=1 in Art. 86 (7). The corresponding tidal spheroid has as nodal lines the meridian

which is distant 90 from that of the disturbing body, and the equator. The disturbance

of level is greatest in the meridian of the disturbing body, at distances of 45 X. and S. of

the equator. The oscillation at any one place goes through its period with the hour-

angle a, i.e. in a lunar or solar day. The amplitude is, however, not constant, but varies

slowly with A, changing sign when the disturbing body crosses the equator. This term

accounts for the lunar and solar 'diurnal' tides.

The third term is a sectorial harmonic (
= 2, *= 2), and gives a tidal spheroid having

as nodal lines the meridians which are distant 45 E. and W. from that of the disturbing

body. The oscillation at any place goes through its period with 2a, i.e. in half a (lunar or

solar' day, and the amplitude varies as sin2 A, being greatest when the disturbing body is

on the equator. We have here the origin of the lunar and solar ' semi-diurnal
'

tides.

The ' constant ' C is to be determined by the consideration that, on account of the

invariability of volume, we must have

JJC<w=o, (ii)

where the integration extends over the surface of the ocean. If the ocean cover the

whole earth we have (7=0, by the general property of spherical surface-harmonics quoted
in Art. 57. It appears from (7) that the greatest elevation above the undisturbed level is

then at the points 9=0, 5 = 180, i.e. at the points where the disturbing body is in

the zenith or nadir, and the amount of this elevation is \H. The greatest depression is at

places where 5= 90, i.e. the disturbing body is on the horizon, and is \H. The greatest

possible range is therefore equal to H.

In the case of a limited ocean, C does not vanish, but has at each instant a definite

value depending on the position of the disturbing body relative to the earth. This value

may be easily written down from equations (10) and (11) ; it is a sum of spherical

harmonic functions of A, a, of the second order, with constant coefficients in the form of

surface-integrals whose values depend on the distribution of land and water over the

globe. The changes in the value of C, due to relative motion of the disturbing body,

give a general rise and fall of the free surface, with (in the case of the moon) fortnightly,

diurnal, and semi-diurnal periods. This ' correction to the equilibrium-theory
' as usually
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presented, was first fully investigated by Thomson and Tait*. The necessity for a

correction of the kind, in the case of a limited sea, had however been recognized by
D. Bernoulli +.

d. We have up to this point neglected the mutual attraction of the particles of the

water. To take this into account, we must add to the disturbing potential O the

gravitation-potential of the elevated water. In the case of an ocean covering the earth,

the correction can be easily applied, as in Art. 199. If we put n= 2 in the formulae of

that Art., the addition to the value of Q is ip/po-ffC> and we thence find without

difficulty

f-ltfR'""-" (12)

It appears that all the tides are i?icreased, in the ratio (l-3p/p )
_1

. ^ we assume

p/p
=

*18, this ratio is 1
-

12.

e. So much for the equilibrium-theory. For the purposes of the kinetic theory
of Arts. 212 223, it is necessary to suppose the value (10) of f to be expanded in a

series of simple-harmonic functions of the time. The actual expansion, taking account of

the variations of A and a, and of the distance D of the disturbing body, (which enters

into the value of H), is a somewhat complicated problem of Physical Astronomy, into

which we do not enter J.

Disregarding the constant C, which disappears in the dynamical equations (1) of

Art. 214, the constancy of volume being now secured by the equation of continuity (2), it

is easily seen that the terms in question will be of three distinct types.

First, we have the tides of long period, for which

t=H'(co&6-\).Goa(at + e) (13)

The most important tides of this class are the ' lunar fortnightly
'

for which, in degrees

per mean solar hour, o-= l
o,
098, and the 'solar semi-annual' for which <7=0*082.

Secondly, we have the diurnal tides, for which

C=H"smdcosd.cos(crt+ (p + f
), (14)

where o- differs but little from the angular velocity a> of the earth's rotation. These
j

include the 'lunar diurnal' (o-=13-943), the 'solar diurnal' (o-
= 14 0,

959), and the 'luni-

solar diurnal' (o-
= = 15-041).

* Natural Philosophy, Art. 808; see also Prof. G. H. Darwin, "On the Correction to the;

Equilibrium Theory of the Tides for the Continents," Proc. Roy. Soc, April 1, 1886. It appears

as the result of a numerical calculation by Prof. H. H. Turner, appended to this paper, that

with the actual distribution of land and water the correction is of little importance.

t Traite sur le Flux et Reflux de la Mer, c. xi. (1740). This essay, as well as the one by

Maclaurin cited on p. 293, and another on the same subject by Euler, is reprinted in Le Seur and

Jacquier's edition of Newton's Principia.

J Reference may be made to Laplace, Mecanique Celeste, Livre 13me
,
Art. 2

;
to the investiga

tions of Lord Kelvin and Prof. G. H. Darwin in the Brit. Ass. Reports for 1868, 1872, 1876, 1883,,

1885 ; and to the Arts, on "
Tides," by the latter author, in the Encyc. Britann. (9th ed.), tt. xxiii.

:

xxxiii.
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Lastly, we have the semi-diurnal tides, for which

C=H'" sin2 .cos(<rf+2< + e), (15)*

where <r differs but little from 2. These include the 'lunar semi-diurnal' (o-=28-984),
lar semi-diurnal' (o-=30

;

), and the 'luni-solar semi-diurnar (o-=2o>= 30-082).

For a complete enumeration of the more important partial tides, and for the values

of the coefficients 27', H", H'" in the several cases, we must refer to the papers by
Lord Kelvin and Prof. G. H. Darwin, already cited. In the Harmonic Analysis of Tidal

Observations, which is the special object of these investigations, the only result of

dynamical theory which is made use of is the general principle that the tidal elevation at

any place must be equal to the sum of a series of simple-harmonic functions of the time,

whose periods are the same as those of the several terms in the development of the

disturbing potential, and are therefore known d priori. The amplitudes and phases
of the various partial tides, for any particular port, are then determined by comparison
with tidal observations extending over a sufficiently long period t. We thus obtain

a practically complete expression which can be used for the systematic prediction of the

tides at the port in question.

f. One point of special interest in the Harmonic Analysis is the determination of the

long-period tides. It has been already stated that owing to the influence of dissipative

forces these must tend to approximate more or less closely to their equilibrium values.

Unfortunately, the only long-period tide, whose coefficient can be inferred with any

certainty from the observations, is the lunar fortnightly, and it is at least doubtful whether

the dissipative forces are sufficient to produce in this case any great effect in the direction

indicated. Hence the observed fact that the fortnightly tide has less than its equilibrium
value does not entitle us to make any inference as to elastic yielding of the solid body of

the earth to the tidal distorting forces exerted by the moon J.

*
It is evident that over a small area, near the poles, which may be treated as sensibly plane,

the formulae (14) and (15) make

fx r cos (vt + <t> + t) , and f x r* cos (at + 2$+ 1),

respectively, where r, u are plane polar coordinates. These forms have been used by anticipation
in Arts. 190, 210.

+ It is of interest to note, in connection with Art. 185, that the tide-gauges, being situated

in relatively shallow water, are sensibly affected by certain tides of the second order, which there-

fore have to be taken account of in the general scheme of Harmonic Analysis.
*

Prof. G. H. Darwin, I.e. ante p. 316. See, however, the paper by Lord Rayleigh cited on

p. 336 ante.



CHAPTER IX.

SURFACE WAVES.

226. We have now to investigate, as far as possible, the laws of wave-

motion in liquids when the vertical acceleration is no longer neglected. The

most important case not covered by the preceding theory is that of waves

on relatively deep water, where, as will be seen, the agitation rapidly

diminishes in amplitude as we pass downwards from the surface
;
but it

will be understood that there is a continuous transition to the state of

things investigated in the preceding chapter, where the horizontal motion

of the fluid was sensibly the same from top to bottom.

We begin with the oscillations of a horizontal sheet of water, and we will

confine ourselves in the first instance to cases where the motion is in two

dimensions, of which one (x) is horizontal, and the other (y) vertical. The

elevations and depressions of the free surface will then present the appearance
of a series of parallel straight ridges and furrows, perpendicular to the

plane xy.

The motion, being assumed to have been generated originally from rest

by the action of ordinary forces, will necessarily be irrotational, and the

velocity-potential (f>
will satisfy the equation

?S + ?*.o . ... (i)

pi
with the condition ^r- = (2)

on

at a fixed boundary.

To find the condition which must be satisfied at the free surface

0? = const.), let the origin be taken at the undisturbed level, and let Oy
be drawn vertically upwards. The motion being assumed to be infinitely

small, we find, putting 1 = gy in the formula (4) of Art. 20, and neglecting
i

the square of the velocity (q),

;-$-+'< <>
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Hence if
77
denote the elevation of the surface at time t above the point (x, 0),

we shall have, since the pressure there is uniform,

dt
(4)

provided the function F(t), and the additive constant, be supposed merged
in the value of d<f>jdt. Subject to an error of the order already neglected,

this may be written

= 111*1 ... (5)

Since the normal to the free surface makes an infinitely small angle

(ct) dx) with the vertical, the condition that the normal component of the

fluid velocity at the free surface must be equal to the normal velocity of the

surface itself gives, with sufficient approximation,

dv d<f>
(6)

y=0dt Idyj

This is in fact what the general surface condition (Art. 10 (3)) becomes, if

we put F (x, y, z, t)
=
y r), and neglect small quantities of the second order.

Eliminating 77 between (5) and (6), we obtain the condition

&<t> d(
f> A

a!
+*!= ' <7 >

to be satisfied when y = 0.

In the case of simple-harmonic motion, the time-factor being ei{-vt+f) ,
this

condition becomes

"* =
'% <8>

227. Let us apply this to the free oscillations of a sheet of water, or

a straight canal, of uniform depth h, and let us suppose for the present that

there are no limits to the fluid in the direction of x, the fixed boundaries, if

any, being vertical planes parallel to xy.

Since the conditions are uniform in respect to x, the simplest supposition
we can make is that

<f>
is a simple-harmonic function of x

;
the most general

case consistent with the above assumptions can be derived from this by
superposition, in virtue of Fourier's Theorem.

We assume then

<f>
= Pcoskx.eiW+<K (1)

where P is a function of y only. The equation (1) of Art. 226 gives

%- k>p =

whence P =* Ae& + Ber* (3)
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The condition of no vertical motion at the bottom is d<f>Jdy
= for y = h,

whence
Ae-kh = Bekh

, =\G, say.

This leads to
<f>
= C cosh k (y + h) cos kx . ei(,rt+e) (4)

The value of a is then determined by Art. 226 (8), which gives

a- = gk tanh kh (5)

Substituting from (4) in Art. 226 (5), we find

77=- cosh kh cos kx . ei(<Tt+e\ (6)
9

or, writing a = . cosh kh,

and retaining only the real part of the expression,

77
= a cos kx . sin (at + e) (7)

This represents a system of '

standing waves,' of wave-length X = lirfk,

and vertical amplitude a. The relation between the period (2ir/a-) and the

wave-length is given by (5). Some numerical examples of this dependence
are given on p. 350.

In terms of a we have

. qa cosh k (y + h) . .
,

. /ON6 = - ^ t^t cos kx . cos (at + e), (8)T
o- cosh Aw

and it is easily seen from Art. 62 that the corresponding value of the stream- i

function is

ga sinh k (y + h) .
,

. . //vv

+ =^^1.1 Z sm kx. cos (at + e) (9)a cosh kh

If x, y be the co-ordinates of a particle relative to its mean position

(x, y), we have

dt das' dt dy'
K '

if we neglect the differences between the component velocities at the points |

(x, y) and (x + x, y + y), as being small quantities of the second order.

Substituting from (8), and integrating with respect to t, we find

cosh k(y + h). , . ,

'

x = <x . , , ,
- sin kx . sin (at + e),

sinhk(y + h) ,
. ,

,
.

y = a .
,

.
,

- cos kx . sin (at + e),
sinh kh

(11)

where a slight reduction has been effected by means of (5). The motion 0,

each particle is rectilinear, and simple-harmonic, the direction of motioi

varying from vertical, beneath the crests and hollows (kx = rmr), to horizonta
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beneath the nodes (kx = (m + )7r). As we pass downwards from the surface

to the bottom the amplitude of the vertical motion diminishes from a cos kx

to 0, whilst that of the horizontal motion diminishes in the ratio cosh kh : 1.

When the wave-length is very small compared with the depth, kh is large,
and therefore tanh kh = 1*. The formulae (11) then reduce to

x = ae?* sin kx . sin (at + e), y = ae^ cos kx . sin (at + e), (12)

with <r = gk (13)

The motion now diminishes rapidly from the surface downwards
;
thus at

a depth of a wave-length the diminution of amplitude is in the ratio e~2' or

1 535. The forms of the lines of (oscillatory) motion
(yfr

= const.), for this

case, are shewn in the annexed figure.

RtW'S***..

In the above investigation the fluid is supposed to extend to infinity in

the direction of x, and there is consequently no restriction to the value of k.

The formulae also, give, however, the longitudinal oscillations in a canal of

finite length, provided k have the proper values. If the fluid be bounded by
the vertical planes x = 0, x = I (say), the condition d<f>jdx

= is satisfied at

both ends provided sin kl = 0, or kl = rrnr, where m = 1, 2, 3 The wave-

lengths of the normal modes are therefore given by the formula X = 2l/m.
Cf. Art. 177.

228. The investigation of the preceding Art. relates to the case of
'

standing
'

waves
;
it naturally claimed the first place, as a straightforward

application of the usual method of treating the free oscillations of a system
about a state of equilibrium.

In the case, however, of a sheet of water, or a canal, of uniform depth,

extending horizontally to infinity in both directions, we can, by super-

position of two systems of standing waves of the same wave-length, obtain

-tern of progressive waves which advance unchanged with constant

velocity. For this, it is necessary that the crests and troughs of one

component system should coincide (horizontally) with the nodes of the other,

* This case may of course be more easily investigated independently.
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that the amplitudes of the two systems should be equal, and that their

phases should differ by a quarter-period.

Thus if we put V = V\ ~t Vi^

where Vi = a sm kx cos at, 77,
= a cos kx sin at,

we get 7]
= a sin (kx at),

(1)

(2)

.(3)

which represents an infinite train of waves travelling in the negative or

positive direction of x, respectively, with the velocity c given by

9
.(4)c=j = I

j,
tanh kh

)

where the value of a has been substituted from Art. 227 (5). In terms of

the wave-length (\) we have

_(9hSW .(5)

When the wave-length is anything less than double the depth, we have

tanh kh = 1, sensibly, and therefore

c =
2tt/

.(6)

On the other hand when \ is moderately large compared with h we have

tanh kh = kh, nearly, so that the velocity is independent of the wave-length,

being given by
c = (gh)K (7)

as in Art. 169. This result is here obtained on the assumption that the

wave-profile is a curve of sines, but Fourier's theorem shews that the

restriction is now to a great extent unnecessary.

It appears, on tracing the curve y = (tanh x)/x, or from the numerical

table to be given presently, that for a given depth h the wave-velocity

increases constantly with the wave-length, from zero to the asymptotic
value (7).

Let us now fix our attention, for definiteness, on a train of simple-harmonic
waves travelling in the positive direction, i.e. we take the lower sign in (1)

and (3). It appears, on comparison with Art. 227 (7), that the value of rj 1
is

deduced by putting e=^ir, and subtracting \ir from the value of kxf ,
and

that of
t] 2 by putting e = 0, simply. This proves a statement made above as

to the relation between the component systems of standing waves, and also

enables us to write down at once the proper modifications of the remaining

formulae of the preceding Art.

*
Green,

" Note on the Motion of Waves in Canals," Camb. Trans., t. vii. (1839) [Math.

Papers, p. 279].

f This is merely equivalent to a change of the origin from which x is measured.
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Thus, we find, for the component displacements of a particle,

cosh k(y + h) ..

x = x, X-2 = a . '. . cos (kx at),
sinh Aw

.(8)
sinh k(y + h) .

y - y'

- * "
rinht*

Sm (kx ~ *

This shews that the motion of each particle is elliptic-harmonic, the

period (lirla,
= \/c) being that in which the disturbance travels over a wave-

length. The semi-axes, horizontal and vertical, of the elliptic orbits are

cosh k (y + h) . sinh k (y + h)a . , and a .
, ,

sinh kh sinh kh

respectively. These both diminish from the surface to the bottom (y = h),

where the latter vanishes. The distance between the foci is the same for all

the ellipses, being equal to a cosech kh. It easily appears, on comparison
of (8) with (3), that a surface-particle is moving in the direction of wave-

propagation when it is at a crest, and in the opposite direction when it is in

a trough*.

When the depth exceeds half a wave-length, e~kh is very small, and the

formulae (8) reduce to

x = ae** cos (kx at), y = ae^ sin (kx at), (9)

so that each particle describes a circle, with constant angular velocity

a, = (2irgl\)
i
f. The radii of these circles are given by the formula ae*",

and therefore diminish rapidly downwards.

In the first table on the next page, the second column gives the values

of sech kh corresponding to various values of the ratio h/\. This quantity
measures the ratio of the horizontal motion at the bottom to that at the

surface. The third column gives the ratio of the vertical to the horizontal

diameter of the elliptic orbit of a surface particle. The fourth and fifth

columns give the ratios of the wave-velocity to that of waves of the same

length on water of infinite depth, and to that of '

long
'

waves on water of

the actual depth, respectively.

The tables of absolute values of periods and wave-velocities, which are also

given on p. 350, are abridged from Airy's treatise^. The value of g adopted

by him is 3216 f.s.s.

The possibility of progressive waves advancing with unchanged form is

limited, theoretically, to the case of uniform depth ;
but the numerical

results shew that a variation in the depth will have no appreciable influence,

provided the depth everywhere exceeds (say) half the wave-length.

* The results of Arts. 227, 228, for the case of finite depth, were given, substantially, by Airy,

"Tides and Waves," Arts. 160... (1845).

t Green, I.e. ante p. 348. J
" Tides and Waves," Arts. 169, 170.
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The conditions to be satisfied by P are exactly the same as before, and we

easily find, in real form,

77
= a sin (kx at), (11)

qa cosh k(y + h) ., ._ ^M

with the same determination of a as before. From (12) all the preceding
results as to the motion of the individual particles can be inferred without

difficulty.

229. The energy of a system of standing waves of the simple-harmonic

type is easily found. If we imagine two vertical planes to be drawn at unit

distance apart, parallel to xy, the potential energy per wave-length of the

fluid between these planes is, as in Art. 173,

ldx.hgp\ v*(
Jo

Substituting the value of 17 from Art. 227 (7), we obtain

\gpa-X . sin2
(at + e) (1)

The kinetic energy is, by the formula (1) of Art. 61,

dm.^[ay=o

Substituting from Art. 227 (8), and remembering the relation between a and

k, we obtain

\gpa?K. cos2
(<rt + e) (2)

The total energy, being the sum of (1) and (2), is constant, and equal to

Igpa^K. We may express this by saying that the total energy per unit area

of the water-surface is \gpa-.

A similar calculation may be made for the case of progressive waves, or

we may apply the more general method explained in Art. 173. In either

way we find that the energy at any instant is half potential and half kinetic,

and that the total amount, per unit area, is \gpa-. In other words, the

energy of a progressive wave-system of amplitude a is equal to the work

which would be required to raise a stratum of the fluid, of thickness a,

through a height \a.

230. The theory of progressive waves may be investigated, in a very

compact manner, by the method of Art. 174*.

Thus if
<f>, -^r

be the velocity- and stream-functions when the problem has

been reduced to one of steady motion, we assume

i^t=-(x+ iy) + iae***^ + t/fcr*****,
c

* Lord Rayleigh, Lc. ante p. 246.
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(1)

whence - = x (ae~
ky

/3e^) sin kx,
'

c

= y + (a.e~
ky + fie

ky
) cos kx.

This represents a motion which is periodic in respect to x, superposed on

a uniform current of velocity c. We shall suppose that ka and &/3 are small

quantities ;
in other words, that the amplitude of the disturbance is small

compared with the wave-length.

The profile of the free surface must be a stream -line
;
we will take it to

be the line
i/r
= 0. Its form is then given by (1), viz. to a first approximation

we have

y = (a 4- #) cos kx, (2)

shewing that the origin is at the mean level of the surface. Again, at the

bottom (y = h) we must also have
\/r
= const.

;
this requires

aekh -I- /Se-** = 0.

The equations (1) may therefore be put in the forms

^
= x + C cosh k(y + h) sin kx,

(3)
= y + C sinh k(y + h) cos kx.

The formula for the pressure is

c
2

= const. - gy
- -

{1
- 2kC cosh k (y + h) cos kx},

if we neglect k2C\ Since the equation to the stream-line
i/r
= is

y = G sinh kh cos kx, (4)

approximately, we have, along this line,

P- = const. + (kc
2 coth kh g) y.

The condition for a free surface is therefore satisfied, provided

, tanh kh ..
c=sh -^k~ (0)-

This determines the wave-length (2ir/k) of possible stationary undulations on

a stream of given uniform depth h, and velocity c. It is easily seen that the

value of kh is real or imaginary according as c is less or greater than (gh)K

If we impress on everything the velocity c parallel to x, we get

progressive waves on still water, and (5) is then the formula for the wave-

velocity, as in Art. 228.
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When the ratio of the depth to the wave-length is sufficiently great, the

formulae (1) become

- = x + Befy sinfor, = y + fie
1* cos kx, (6)

c c

leading to ^ = const. - gy - | {1
- 2&e** cos kx + {&**) (7)

P ^

If we neglect fc/3
2
,
the latter equation may be written

^ = const. +(kc
3
-g)y + kcyfr (8)

r

Hence if c
2 =

|, (9)

the pressure will be uniform not only at the upper surface, but along every

stream-line yp-
= const.* This point is of some importance ;

for it shews that

the solution expressed by (6) and (9) can be extended to the case of any
number of liquids of different densities, arranged one over the other in

horizontal strata, provided the uppermost surface be free, and the total depth
infinite. And, since there is no limitation to the thinness of the strata, we

may even include the case of a heterogeneous liquid whose density varies

continuously with the depth.

231. The method of the preceding Art. can be readily adapted to a

number of other problems.

1. For example, to find the velocity of propagation of waves over the

common horizontal boundary of two masses of fluid which are otherwise

unlimited, we may assume

= y + fie** cos kx, = y + /9e
_ty cos kx, (1)

c c

where the accent relates to the upper fluid. For these satisfy the condition

of irrotational motion, V 2

yfr
=

;
and they give a uniform velocity c at a great

distance above and below the common surface, at which we have
-/r
=

ty',
= 0,

say, and therefore y = yS cos kx, approximately.

The pressure-equations are

c
2

\
' 9V ~ 9 (1

~
2^/Se*

y cos kx),

(2)

- = const. gy -_- (1 2A?/Se*
y cos kx),

p c-

,
= const. gy a (1 + 2kfie~

ky cos kx),
p

' 2 '

This conclusion, it must be noted, is limited to the case of infinite depth. It was first

remarked by Poisson, I.e. post p. 364.

l. 23
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which give, at the common surface,

- = const, (g kc2

) y,

.(3)
v

,
= const. (g + kc2

) y,
r

the usual approximations being made. The condition p =
p' thus leads to

*-{.tz (4)k p+p"
v '

a result first obtained by Stokes.

The presence of the upper fluid has therefore the effect of diminishing
the velocity of propagation of waves of any given length in the ratio

{(1 s)/(l +*)}*, where s is the ratio of the density of the upper to that of

the lower fluid. This diminution has a two-fold cause
;
the potential energy

of a given deformation of the common surface is diminished in the ratio

1 s, whilst the inertia is increased in the ratio 1+s*. As a numerical

example, in the case of water over mercury (s
-1 = 13'6) the wave-velocity

is diminished in the ratio "929.

It is to be noticed, in this and in other problems of the kind, that there

is a discontinuity of motion at the common surface. The normal velocity

(dyjr/dx) is of course continuous, but the tangential velocity ( dyjr/dy) changes
from c (1 k$ cos hoc) to c(l +k/3 cos kx) as we cross the surface; in other

words we have (Art. 151) a vortex-sheet of strength 2kc/3 cos kx. This is

an extreme illustration of the remark, made in Art. 17, that the free oscil-

lations of a liquid of variable density are not necessarily irrotational.

If p < p ,
the value of c is imaginary. The undisturbed equilibrium-

arrangement is then unstable.

2. The case where the two fluids are confined between rigid horizontal

planes y = h, y = ti
',

is almost equally simple. We have, in place of (1),

dr n sinh k (y + h) T yjr' n sinh k(y h') 7= - y + 8 . ,%, - cos kx. = - y
- 6 . ,,,,

- cos kx,
c

v sinhM c
v smhkh

(5)

leading to c
2 = f. -z -, . . ,, (6)6 k pcothkh + p'coth kh

* This explains v/hj the natural periods of oscillation of the common surface of two liquids

of very nearly equal density are very long compared with those of a free surface of similar extent.

The fact was noticed by Benjamin Franklin in the case of oil over water; see a letter dated .

1762 {Complete Works, London, n. d., t. ii. p. 142).

Again, near the mouths of some of the Norwegian fiords there is a layer of fresh over salt

water. Owing to the comparatively small potential energy involved in a given deformation of the
j

common boundary, waves of considerable height in this boundary are easily produced. To this
;

cause is ascribed the abnormal resistance occasionally experienced by ships in those waters. See

Ekman, " On Dead-Water," Scientific Results of the Norwegian North Polar Expedition, pt. xv.,
|

Christiania, 1904.



.(8)

231] Oscillations of Superposed Liquids 355

When kh and kh' are both very great, this reduces to the form (2). When
kh' is large, and kh small, we have

c2=
(
i-

pV' (7)

the main effect of the presence of the upper fluid being now the change in

the potential energy of a given deformation.

3. When the upper surface of the upper fluid is free, we may assume

jr sinhk(y + h) )

c~ y + P sinh kh
C08 **'

^r = y + (ft cosh ky + y sinh ky) cos kx,
c

> and the conditions to be satisfied at the common boundary, and at the free

surface, then lead to the equation

c* {p coth kh coth kh' + p) - c-p (coth kh' + coth M)| + (p
- p) ^ = 0. . . .(9)

Since this is a quadratic in c2
,
there are two possible systems of waves of any

given length (lirjk). This is as we should expect, since when the wave-

length is prescribed the system has virtually two degrees of freedom, so that

there are two independent modes of oscillation about the state of equilibrium.

For example, in the extreme case where p'/p is small, one mode consists

mainly in an oscillation of the upper fluid which is almost the same as if

the lower fluid were solidified, whilst the other mode may be described as an

oscillation of the lower fluid which is almost the same as if its upper surface

free.

The ratio of the amplitudes at the upper and lower surfaces is found to be

kc-

.(10)h& cosh kh' g sinh kh'
'

Of the various special cases that may be considered, the most interesting
is that in which kh is large ;

i.e. the depth of the lower fluid is great compared
with the wave-length. Putting coth kh = 1, we see that one root of (9) is now

*-f, (ii)

exactly as in the case of a single fluid of infinite depth, and that the ratio of

the amplitudes is ekh . This is merely a particular case of the general result

stated at the end of Art. 230
;

it will in fact be found on examination that

there is now no slipping at the common boundary of the two fluids. The
second root of (9) is

*= 7' > -h (12>
pcothM +p k' v '

and for this the ratio (10) assumes the value

P

P(^,-lJe-**'
(13)

232
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If in (12) and (13) we put kh' = oo
,
we fall back on a former case

;
whilst if

we make kh' small, we find

1-^W', (14)
r '

and the ratio of the amplitudes is

4-1] (15)
P

These problems were first investigated by Stokes*. The case of any

number of superposed strata of different densities has been treated by Webbf
and GreenhillJ. For investigations of the possible rotational oscillations in !

a heterogeneous liquid the reader may consult the papers cited below.

232. As a further example of the method of Art. 230 let us suppose that

two fluids of densities p, p ,
one beneath the other, are moving parallel to x

with velocities U, U'
, respectively, the common surface (when undisturbed)

being of course plane and horizontal. This is virtually a problem of small

oscillations about a state of steady motion.

The fluids being supposed unlimited vertically, we assume, for the lower

fluid

yfr
= - U{y-pe

h
Jcoskx}, (1)

and for the upper fluid

^' =- U'{y-/3e-*vcoaka:}, (2)

the origin being at the mean level of the common surface, which is assumed

to be stationary, and to have the form

y = y3 cos kx (3)

The pressure-equations give

^ = const. -gy-hU 2

(l- 2&e^ cos kx),

.(4)

j
= const, -gy-h U' (1 + 2k/3e~

ky cos kx),
P

* "On the Theory of Oscillatory Waves," Camb. Trans., t. viii. (1847) [Math, and Phys

Papers, t. i. p. 212].

f Math. Tripos Papers, 1884.

+ -'Wave Motion in Hydrodynamics," Amer. Journ. Math., t. ix. (1887).

Lord Eayleigh,
"
Investigation of the Character of the Equilibrium of an Incompressibl

Heavy Fluid of Variable Density," Proc. Lond. Math. Soc, t. xiv. p. 170 (1883) [Sc. Papers, t. ii

p. 200] ; Burnside,
" On the small Wave-Motions of a Heterogeneous Fluid under Gravity,

Proc. Lond. Math. Soc, t. xx. p. 392 (1889); Love, "Wave-Motion in a Heterogeneous Heav

Liquid," Proc. Lond. Math. Soc, t. xxii. p. 307 (1891).
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whence, at the common surface,

= const. + (kU2

-g)y,
]

f (5)

S = const. -(kU'2

+g)y.
j

Since we must have p= p over this surface, we get

pU^ + p'U'^lip-p') (6)

This is the condition for stationary waves on the common surface of the

two currents U, U'. It may be written

I p+p' ) k-p + p (P + Py {U uy (7)

The quantity
p

P + p

may be called the mean velocity of the two currents
;
and it appears that

relatively to this the waves have velocities + c, given by

c^Co'-T-^Ctf-tf')
2
, (8)

Kp+py
where c denotes the wave-velocity in the absence of currents (Art. 231).

If the relative velocity U U'\ of the currents exceed a certain limit,

given by

^-^=1^ w
the value of c is imaginary, indicating instability. This upper limit diminishes

indefinitely with the wave-length.

This result would indicate that, if there were no modifying circumstances,

the slightest breath of wind would be sufficient to ruffle the surface of water.

shall give, later, a more complete investigation of the present problem,

taking account of capillary forces, which act in the direction of stability.

It appears from (7) that if p = p\ or if g = 0, the plane form of the

surface is unstable for all wave-lengths. This result illustrates the state-

ment, as to the instability of surfaces of discontinuity in a liquid, made in

Art. 79*.

"V\ hen the currents are confined by fixed horizontal planes y= h, y=h', we assume

(10)

* The instability was first remarked by Helmholtz, I.e. ante p. 20.
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The condition for stationary waves on the common surface is then found to be

ptf
2 coth M+p'*7'

2 coth
M'=|(p-p') (11)*

It appears on examination that the undisturbed motion is stable or unstable, according
as

|

U- U'\
< PCothH+p'cothM'

cp> (12)>
{pp coth kh coth kh'y

where c is the wave-velocity in the absence of currents. When h and h' both exceed half

the wave-length, this reduces practically to the former result (9).

233. These questions of stability are so important that it is worth while

to give the more direct method of treatment f.

If
<f>
be the velocity-potential of a slightly disturbed stream flowing with

the general velocity U parallel to x, we may write

<p
= -Ux + <pu (1)

where fa is small. The pressure-formula is, to the first order,

*-%-*+*%+-: w
and the condition to be satisfied at a bounding surface y = 77, where 77 is small,

is

*i + up = -.*jh
(3)

ot ox dy

To apply this to the problem stated at the beginning of Art. 232, we

assume, for the lower and upper fluids, respectively,

fa = Ceky+i {kx-at)
, fa'

= C'e-ky+i (fca5-0
'

()
; (4)

with, as the equation of the common surface,

77
= aet(**-<r<>

(5)

The continuity of the pressure at this surface requires, by (2),

P {i(a-kU)C+ ga}= P'{i(<r-kU
,

)C' + ga}; (6)

whilst the surface-condition (3) gives

i(a-kU)a = W, i{<r-kU')a = -kC (7)

Eliminating a, C, C", we get

p (*-kUy + p'(a-kUy=gk(P -p'), (8)

whence \ =
pU + *?' + A /If.^ --^(U- Uj\ , (9)k P + P ~V \k p + p' (p + p'Y

K ry
*

Greenhill, I.e. ante p. 356.

t Sir W. Thomson, "
Hypokinetic Solutions and Observations," Phil. Mag. (4), t. xli. (1871'

[Baltimore Lectures, p. 590]; Lord Rayleigh, "On the Instability of Jets," Proc. Lond. Math.

Soc., t. x. p. 4 (1878) [Sc. Papers, t. i. p. 361].
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leading to the same conclusions as in Art. 232. If

(17- UJ>^^c,\ . (10)
PP

where c is the wave-velocity in the absence of currents, <r is imaginary, of

the form a i/3. The complete solution then contains a term with &* as

a factor, indicating indefinite increase of amplitude.

If p = p, it is evident from (8) that a will be imaginary for all values of k.

Putting V = U, we get

a=ikU. (11)

Hence, taking the real part of (5), we find

v = a**n cos A\r
j (12)

The upper sign gives a system of standing waves whose height continually
increases with the time, the rate of increase being greater, the shorter the

wave-length.

The case of p = p ,
with U'= U\ is of some interest, as illustrating the

flapping of sails and flags*. We may conveniently simplify the question by

putting U = U' =
; any common velocity may be superposed afterwards if

desired. On these suppositions, the equation (8) reduces to <r = 0. On
account of the double root the solution has to be completed by the method

explained in books on Differential Equations. In this way we obtain the

two independent solutions

v =aeikx
, <k = 0, <k'

=
0, (13)

and r} = ateUac, <f>1
= -?** ***, <l>i

= t e_iy ete (14)

The former solution represents a state of equilibrium ;
the latter gives a

m of stationary waves with amplitude increasing proportionally to the

time. In this form of the problem there is no physical surface of separation
to begin with

;
but if a slight discontinuity of motion be artificially produced,

e.g. by impulses applied to a thin membrane which is afterwards dissolved,

the discontinuity will persist, and, as we have seen, the height of the cor-

rugations will continually increase.

The above method, when applied to the case where the fluids are confined between two

rigid horizontal planes y= -k,y=h', leads to

P (<r-k(Tfcothih+p' (a-iUycothik' =gk{p- p'), (15)

which is equivalent to Art. 232 (11).

* Lord Rayleigb, I.e.
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234. The investigations of the preceding Arts, relate to a special

type of waves; the profile is simple-harmonic, and the train extends to

infinity in both directions. But since all our equations are linear (so long
as we confine ourselves to a first approximation), we can, with the help of

Fourier's theorem, build up by superposition a solution which shall represent
the effect of arbitrary initial conditions. Since the subsequent motion is in

general made up of systems of waves, of all possible lengths, travelling in

either direction, each with the velocity proper to its own wave-length, the

form of the free surface will continually alter. The only exception is when
the wave-length of every system which is present in sensible amplitude is

large compared with the depth of the fluid. The velocity of propagation

{ghy* is then independent of the wave-length, so that in the case of waves

travelling in one direction only, the wave-profile remains unchanged in form

as it advances (Art. 169).

The effect of a local disturbance of the surface, in the case of infinite

depth, will be considered presently; but it is convenient to introduce in

the first place the very important conception of '

group-velocity,' which has

application, not only to water-waves, but to every case of wave-motion

where the velocity of propagation of a simple-harmonic train varies with the

wave-length.

It has often been noticed that when an isolated group of waves, of sensibly

the same length, is advancing over relatively deep water, the velocity of the

group as a whole is less than that of the waves composing it. If attention

be fixed on a particular wave, it is seen to advance through the group,

gradually dying out as it approaches the front, whilst its former place in

the group is occupied in succession by other waves which have come forward

from the rear*.

The simplest analytical representation of such a group is obtained by the

superposition of two systems of waves of the same amplitude, and of nearly

but not quite the same wave-length. The corresponding equation of the

free surface will be of the form

r)
= a sin (kx at) + a sin (k'x a't)

= 2a cos
{ (k

-
k') x - \ (a

- a') t]
sin

{ (k + k') x - \ {a + a') t).

(1)

If k, k' be very nearly equal, the cosine in this expression varies very slowly

with x; so that the wave-profile at any instant has the form of a curve o

sines in which the amplitude alternates gradually between the values and

2a. The surface therefore presents the appearance of a series of groups 0;

waves, separated at equal intervals by bands of nearly smooth water. Th

motion of each group is then sensibly independent of the presence of th

* Scott Eussell, "Keport on Waves," Brit. Ass. Rep. 1844, p. 369.
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others. Since the distance between the centres of two successive groups is

2-77 (k k'), and the time occupied by the system in shifting through this

space is 2tt (a a), the group-velocity ( U, say) is = (o- cr')j{k k'), or

*- <2>

ultimately. In terms of the wave-length X (= 2ir;k), we have

"-*** <3>

where c is the wave-velocity.

This result holds for any case of waves travelling through a uniform

medium. In the present application we have

c = @t&nhkh\
i

, (4)

and therefore, for the group-velocity,

d(kc) , /, sinh2M ,. x

The ratio which this bears to the wave-velocity c increases as kh diminishes,

being h when the depth is very great, and unity when it is very small,

compared with the wave-length.

The above explanation seems to have been first given by Stokes*. The

extension to a more general type of group was made by Rayleighf" and

GouyJ. The argument of these writers admits of being put very concisely.

Assuming a disturbance

y = 2(7 cos (at kx + e), (6)

where the summation (which may of course be replaced by an integration)

embraces a series of terms in which the values of a, and therefore also of k,

vary very slightly, we remark that the phase of the typical term at time

t + St and place x + Ax differs from the phase at time t and place x by the

amount crAt kAx. Hence if the variations of a and k from term to term

be denoted by 8a- and 8k, the change of phase will be sensibly the same for

all the terms, provided

8<rAt-8kAx = (7)

The group as a whole therefore travels with the velocity

{7 =^ =^ (8)
At dk

*
Smith's Prize Examination, 1876 [Math, and Phyt. Papers, U v. p. 362]. See also Lord

Kayleigh, Theory of Sound, Art. 191.

Nature, t. xxv. p. 52 (1881) [Se. Papers, t. i. p. 540].

Sor la vitesse de la lamiere," Ann. de Chim. et de Phys., t. xri. p. 262 (1889).
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Another derivation of (3) can be given which is, perhaps, more intuitive.

In a medium such as we are considering, where the wave-velocity varies with

the frequency, a limited initial disturbance gives rise in general to a wave-

system in which the different wave-lengths, travelling with different velocities,

are gradually sorted out (Arts. 236, 237). If we regard the wave-length X
as a function of x and t, we have

dt
+

dx
U

' .(9)

since \ does not vary in the neighbourhood of a geometrical point travelling

with velocity U ;
this is, in fact, the definition of U. Again, if we imagine

another geometrical point to travel with the waves, we have

d\ d\ _ dc _ dc d\

dt dx dx d\ dx
' .(10)

the second member expressing the rate at which two consecutive wave-crests

are separating from one another. Combining (9) and (10), we are led, again,

to the formula (3)*.

The formula (3) admits of a simple geometrical representation -f\
If

a curve be constructed with A. as abscissa and c as ordinate, the group-

velocity will be represented by the intercept made by the tangent on the

axis of c. Thus, in the figure, PiV represents the wave-velocity for the wave-i

length ON, and OT represents the group-velocity. The frequency ol

vibration, it may be noted, is represented by the tangent of the angle PON

In the case of gravity-waves on deep water, c oc A*; the curve has th^
form of the parabola y

2 = 4<ax, and OT=^PN, i.e., the group-velocity is
one-j

half the wave-velocity.

* See a paper
" On Group-Velocity," Proc. Lond. Math. Soc. (2), t. i. p. 473 (1904).

t Manch. Mem., t. xliv. No. 6 (1900).
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235. The group-velocity has moreover a dynamical, as well as a geo-

metrical, significance. This was first shewn by Prof. Osborne Reynolds*, in

the case of deep-water waves, by a calculation of the energy propagated
across a vertical plane. In the case of infinite depth, the velocity-potential

corresponding to a simple-harmonic train

tj
= a sin k(x ct), (11)

is
<f>
= ac e** cos k (x ct), (12)

as may be verified by the consideration that for y = we must have

=
d<f>jdy.

The variable part of the pressure is pdtpidt, if we neglect

terms of the second order, so that the rate at which work is being done on

the fluid to the right of the plane x is

-\ p^dy =
pa-k^c

3
s\ii

i

k(x-ct)j
eP* dy

= ^gpa-c sin-k (x ct) (13)

since c* = g/k. The mean value of this expression is \gparc. It appears on

reference to Art. 229 that this is exactly one-half of the energy of the waves

which cross the plane in question per unit time. Hence in the case of an

isolated group the supply of energy is sufficient only if the group advance

with half the velocity of the individual waves.

It is readily proved in the same manner that in the case of a finite depth
h the average energy transmitted per unit time isf

*w"*(
1 +

5arsH)' (14)

which is, by (4), the same as

to-fx^ W)

Hence the rate of transmission of energy is equal to the group-velocity,

dike) dk, found independently by the former line of argument

This identification of the kinematical group-velocity of the preceding
Art. with the rate of transmission of energy has been extended to all kinds

of waves by Lord Rayleigh (I.e.).

From a physical point of view the group-velocity is perhaps even more

* "On the Rate of Progression of Groups of Waves, and the Rate at which Energy is

Transmitted by Waves,'' Nature, t. xvi. p. 343 (1877) [Sc. Papers, t. i. p. 198]. Professor

Reynolds has also constructed a model which exhibits in a very striking manner the distinction

between wave-velocity and group-velocity in the case of the transverse oscillations of a row of

equal pendulums whose bobs are connected by a string.
t Lord Rayleigh,

" On Progressive Waves," Proc. Load. Math. Soe., t. ix. p. 21 (1877)

[Sc. Papers, t. i. p. 322]; Theory of Sound, t. i., Appendix.
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important and significant than the wave-velocity. The latter may be greater

or less than the former, and it is even possible to imagine mechanical media

in which it would have the opposite direction
;

i.e. a disturbance might be

propagated outwards from a centre in the form of a group, whilst the in-

dividual waves composing the group were themselves travelling backwards,

coming into existence at the front, and dying out as they approach the

rear*. Moreover, it may be urged that even in the more familiar pheno-

mena of Acoustics and Optics the wave-velocity is of importance chiefly

so far as it coincides with the group-velocity.

236. The theory of the waves produced in deep water by a local

disturbance of the surface was investigated in two classical memoirs by

Cauchy-f- and Poisson^. The problem was long regarded as difficult, and

even obscure, but in its two-dimensional form, at all events, it can be pre-

sented in a comparatively simple aspect.

It appears from Arts. 40, 41 that the initial state of the fluid is deter-

minate when we know the form of the boundary, and the boundary-values of the

velocity-potential </>,
or of the normal velocity d<f>/dn. Hence two forms of

the problem naturally present themselves
;
we may start with an initial

elevation of the free surface, without initial velocity, or we may start with

the surface undisturbed (and therefore horizontal) and an initial distribution

of surface-impulse (pcf> ).

If the origin be in the undisturbed surface, and the axis of y be drawn

vertically upwards, the typical solution for the case of initial rest is

?7
= cos at cos kx, (1)

(f)
= g eky cos kx, (2)

provided a- =
gk, (3)

in accordance with the ordinary theory of "standing" waves of simple-

harmonic profile (Art. 227).

If we generalize this by Fourier's double-integral theorem

f(x) = - f
X

dk r f(a) cos k(x- a) da, (4)
7T J o J -ao

then, corresponding to the initial conditions

V=f{x), <o = 0, (5)

*
Proc. Lond. Math. Soc. (2), t. i. p. 473.

t I.e. ante, p. 15.

$ "Meinoire sur la theorie des oncles," Men. de VAcad. Roy. des Sciences, t. i. (1816).
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where the zero suffix indicates surface-value (y = 0), we have

r)
= l cos atdk

\ /(a) cos k (x a) da, (6)
TTJo J _ x

^fpsin^^^p f(a)cosk(x-a)da (7)
TTJ O" J -x

If the initial elevation be confined to the immediate neighbourhood of

the origin, so that /(a) vanishes for all but infinitesimal values of a, we have,

assuming

/()<*= 1, (8)

sin at
efr cos kx dk (9)a v '

This may be expanded in the form

$ =^f" il-^k + (-^ k*
-...]<** coskxdk, ..' (10)

ir.l (
3:

where use is made of (3). If we write

y = rcos0, x = rsin0, (11)

we have, y being negative*,

/
e* cos kx kndk= t̂

cos (n + 1)0, (12)

so that (10) becomes

a result which is easily verified. From this the value of rj is obtained by
Art. 220(5), putting

= + tt. Thus, for x> 0,

1
[gt*

1
/gfy

1
('g<y

)

7

ira?(2a? 3. 5 V2x/
^
3 . 5 .7 . 9 \2x)

'"
)

v ;

It is evident at once that any particular phase of the surface disturbance,

e.g., a zero or a maximum or a minimum of 77, is associated with a definite

value of gt-j2x, and therefore that the phase in question travels over the

surface with a constant acceleration. The meaning of this somewhat

remarkable result will appear presently (Art. 238).

This formula may be dispensed with. It is sufficient to calculate the value of <p at points
on the vertical axis of symmetry ;

its value at other points can then be written down at once by a

property of harmonic functions (cf. Thomson and Tait, Art. 498).
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The series in (14) is virtually identical with one (usually designated by M*) which

occurs in the theory of Fresnel's diffraction-integrals. In its present form it is convenient

only when we are dealing with the initial stages of the disturbance
;

it converges very

slowly when gt
2
/2x is no longer small. The series may, however, be summed as follows.

Writing, with a slight change from the usual convention,

+
3.5 3.5.7.9

2 o
4 .(15)

and

we find

1.3 1.3.5.7 1.3.5.7.9.11

*=^-^=T +
i73

+
iT3T5

+ n375T7+
-- .(16)

2<->jl
= X + i"(l+x),

do) \\/<a/
" W&)/

I

.(1>

The solution of this equation, subject to the condition that x must ultimately vary as &>,

when a> is small, is

du (18)

Hence, equating separately imaginary and real parts, we obtain

J/= ))Ja> I cos ico I cos hi r + sin A&> I sin hi -r- \ ,

{ Jo
"

*Ju "Jo s/uj

cos hi -j cos" V
xV=lN/w \ sin^co I

which are, virtually, well-known results t.

The equation (14) is equivalent to

Ja> [ . /"
,

du . . f
w

.
,

du
rj
=

-J

cos \w I

cos \u -j-t + sin \co I sin fu

.(19)

2ttx

where

\fu

= g_l

2x

\Ju
(20)

.(21)

This agrees with a result given by Poisson. The definite integrals are

practically of Fresnel's forms, and may be considered as known functions
;
so

that the present problem may be regarded as completely solved. Moreover,

Lommel, in his researches on Diffraction^:, has given a table of the function

Mjo). We are thus enabled to delineate the first nine or ten waves with great

ease. The fig.
on the next page shews the variation of 77 with the time, at a

particular place ;
for different places the intervals between assigned phases

* Cf. Rayleigh, Sc. Papers, t. iii. p. 129.

t Cf. Rayleigh, I.e.

X "Die Beugungserscheinungen geradliniger begrenzter Schirme," Abh. d. k. Bayer. Akad. d.

Wiss., 2 CI., t. xv. (1886).
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vary as y/x, whilst the corresponding elevations vary inversely as x. The

diagrams on p. 368, on the other hand, shew the wave-profile at a particular

instant
;
at different times, the horizontal distances between corresponding

points vary as the square of the time that has elapsed since the beginning
of the disturbance, whilst corresponding elevations vary inversely as the

square of this time.

[The unit of the horizontal scale is sf(2x'g). That of the vertical scale is Qjirx,

if Q be the sectional area of the initially elevated fluid.]

When gP\1x is large, the definite integrals in (19) approximate to the

limit \Jir* , and we then have

V- 2M*U 4*cos*;- + sin
4tx)

' .(22)

in agreement with a result of Poisson and Cauchy.

Expressions for the remainder are also given by these writers. Thus

Poisson obtains (virtually) the semi-convergent expansion

r i // w i i x fl !- 3 - 5 1.3.5.7.9
)

....
If =>/(<) (cos <o + sin )- \ + = ...

\. (23)
[o) at

3 or J

This is readily obtained from (18). Thus

Jo V J m V*

=(l-V"-+ 2e
ti

-Jil . 1.31-2
.
1.3.513

or1
o>
"r- +^r- +

...},
.(24)

by a series of partial integrations. Since M is the real part of - ix, the result (23) follows.

*
Thus

/ cositi ^=2*/2 / cosvidv=J*.
JO / Jo
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-50

-100

-400

[The unit of the horizontal scales is \gt
2

. That of the vertical scales is 2Q/wgt
2
.]
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237. In the case of initial impulses applied to the surface, supposed

horizontal, the typical solution is

p<p
= cos at& cos kx, (25)

17
= a sin at cos kx, (26)

with a-
2 = gk as before. Hence, if the initial conditions be

p<f>
= F(x), 7,

= 0, (27>

we have <= -
I cosate^dkl F (a) cos k (x a) da, (28)

7T/5 J J - 00

If". f
00

17
= a sin at dk I ^ (a) cos k (x a) da (29)

TrgpJ J -

For a concentrated impulse acting at the point x = of the surface, we

have, putting
'

F(a)da = l, (30)
/:

-rrp J
cos at e** cos kx dk (31)

This integral may be treated in the same manner as (9); but it is evident

that the results may be obtained immediately by performing the operation
1 gp.d/dt upon those of Art. 236. Thus from (13) and (14) we derive

<P
=

V =

TTp

cosO
,

cos 20 1 ., ^ cos 30

II-
irpa? (1 1.3.5 \2xJ 1.3.5*7+ fo(0-}-

[The unit of the horizontal scale is J(2x/g). That of the vertical scale is

P /2
, / , where P represents the total initial impulse.]

24
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-5000--

-10000

[The unit of the horizontal scales is \g&. That of the vertical scales is

rpgW

The upper curve, if continued to the right, would cross the axis of x and would

thereafter be indistinguishable from it on the present scale.]
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The formula (33) may also be written

t dM t /, M
V =

(
1 +

^,-^). <3*>
irpa? dco lirpx*

where M and N are denned by (15), and <o = gt*/2x, as before. The function

X 0) has also been tabulated by Lommel, so that the forms of the first few

waves can be traced without difficulty. The fig. on p. 369 shews the rise and

fall of the surface at a particular place ;
for different places the time-intervals

between assigned phases vary as Jx, as in the former case, but the corre-

sponding elevations now vary inversely as x*. In the diagrams on p. 370,

which give an instantaneous view of the wave-profile, the horizontal distances

between corresponding points vary as the square of the time, whilst corre-

sponding ordinates vary inversely as the cube of the time.

For large values of gt?/2x, we find, performing the operation 1/gp . d/dt

upon (22),

9^ ( ^9? -g*\
6 1 1 I

C0S A S111 A

2Mp* V 4ar 4x;

approximately.

T^)> (35)

238. It remains to examine the meaning and the consequences of the

results above obtained. It will be sufficient to consider, chiefly, the case of

Art. 236, where an initial elevation is supposed to be concentrated in a line

of the surface.

At any subsequent time t the surface is occupied by a wave-system whose

advanced portions are delineated on p. 368. For sufficiently small values of

x the form of the waves is given by (22); hence as we approach the origin
the waves are found to diminish continually in length, and to increase

continually in height, in both respects without limit.

increases, the wave-system is stretched out horizontally, proportionally
to the square of the time, whilst the vertical ordinates are correspondingly

(diminished, in such a way that the area

/
vdx

included between the wave profile, the axis of x, and the ordinates corre-

sponding to any two assigned phases (i.e., two assigned values of a>) is

constant*. The latter statement may be verified immediately from the

nere form of (14) or (20).

This statement does not apply to the case of an initial impulse. The corresponding pro-
n then is that

j<p
dx,

iken between assigned values of w, is constant. This appears from (32).

242
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The oscillations of level, on the other hand, at any particular place, are

represented on p. 367. These follow one another more and more rapidly, with

ever increasing amplitude. For sufficiently great values of t, the course

of these oscillations is given by (22).

In the region where this formula holds, at any assigned epoch, the

changes in length and height from wave to wave are very gradual, so that

a considerable number of consecutive waves may be represented approxi-

mately by a curve of sines. The circumstances are, in fact, all approximately

reproduced when

*
2

= 2tt (36)

Hence, if we vary t alone, we have, putting At = t, the period of oscillation,

T=
^' (37)

whilst, if we vary x alone, putting Ax = \, where X is the wave-length,

we find

>-? <38 >

The wave-velocity is to be found from

ag= 0; <39>

Vt' <40)
... A 2
this gives

- =
At t

by (38), as in the case of an infinitely long train of simple harmonic waves

of length \.

We can now see something of a reason why each wave should be con-

tinually accelerated. The waves in front are longer than those behind, and

are accordingly moving faster. The consequence is that all the waves are

continually being drawn out in length, so that their velocities of propagation

continually increase as they advance. But the higher the rank ofa wav e in

the sequence, the smaller is its acceleration.

So far, we have been considering the progress of individual waves. But,

if we fix our attention on a group of waves, characterized as having (approxi- !

mately) a given wave-length X, the position of this group is regulated
1

according to (40) by the formula

x

1

i.e., the group advances with a constant velocity equal to half that of thej

component waves. The group does not, however, maintain a constant

amplitude as it proceeds; it is easily seen from (22) that for a given value

of X the amplitude varies inversely as ^/x.

-u& <
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It appears that the region in the immediate neighbourhood of the origin

may be regarded as a kind of source, emitting on each side an endless

succession of waves of continually increasing amplitude and frequency, whose

subsequent careers are governed by the laws above explained. This persistent

activity of the source is not paradoxical ;
for our assumed initial accumulation

of a finite volume of elevated fluid on an infinitely narrow base implies an

unlimited store of energy.

In any practical case, however, the initial elevation is distributed over

a band of finite breadth
;
we will denote this breadth by I. The disturbance

at any point P is made up of parts due to the various elements, Ba, say, of

the breadth I; these are to be calculated by the preceding formulae, and

integrated over the breadth of the band. In the result, the mathematical

infinity and other perplexing peculiarities, which we meet with in the case

of a concentrated line-source, disappear. It would be easy to write down the

requisite formulae, but, as they are not very tractable, and contain nothing
not implied in the preceding statement, they may be passed over. It is

more instructive to examine, in a general way, how the previous results will

be modified.

The initial stages of the disturbance at a distance x, such that l/x is

small, will evidently be much the same as on the former hypothesis ;
the

parts due to the various elements 8a will simply reinforce one another, and

the result will be sufficiently expressed by (14) or (22) provided we multiply

by

/(a) da,
/:

i.e., by the sectional area of the initially elevated fluid. The formula (22),

in particular, will hold when gt
2

/2x is large, so long as the wave-length A,

at the point considered is large compared with I, i.e., by (38), so long as

2 c . l/x is small. But when, as t increases, the length of the waves at x

becomes comparable with or smaller than I, the contributions from the

different parts of I are no longer sensibly in the same phase, and we have

something analogous to 'interference' in the optical sense. The result

will, of course, depend on the special character of the initial distribution of

the values of /(a) over the space I*, but it is plain that the increase of

amplitude must at length be arrested, and that ultimately we shall have

a gradual dying out of the disturbance.

There is one feature generally characteristic of the later stages which

must be more particularly adverted to, as it has been the cause of some

i perplexity ;
viz. a fluctuation in the amplitude of the waves. This is readily

accounted for on '

interference
'

principles. As a sufficient illustration, let

Cf. Burnside,
" On Deep-water Waves resulting from a Limited Original Disturbance,"

Proc. Lond. Math. Soc, t. xx. p. 22 (1888).
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us suppose that the initial elevation is uniform over the breadth I, and that

we are considering a stage of the disturbance so late that the value of \ in

the neighbourhood of the point x under consideration has become small

compared with I. We shall evidently have a series of groups of waves

separated by bands of comparatively smooth water, the centres of these bands

occurring whenever I is an exact multiple of X, say I = n\. Substituting in

(38), we find

- <42>t~W*
i.e., the bands in question move forward with a constant velocity, which is, in

fact, the group-velocity corresponding to the average wave-length in the

neighbourhood *.

The ideal solution of Art. 236 necessarily fails to give any information as to what

takes place at the origin itself. To illustrate this point in a special case, we may assume

/w-*5i?' <43 >

the formula (6) then gives

^ =gQ
[svt

ek(v
-
h)c0Hkxdk (44)

IT J O"

The surface-elevation at the origin is

V = Q
/"" cos <rte- kb dk =^ I cos at e-^^cr da (45)tJo itg J o

The definite integral cannot be expressed in finite terms, but its form shews that
rj

is

always less than the initial value Q/nb, and tends with increasing t to the limit 0. It may
be proved without difficulty that

tj passes once only through the value zero, and that its

asymptotic value is

gt
2 '

approximately t.

239. From the effects of an instantaneous impulse we might by super-

position pass to the case of a surface-pressure varying with the time according ,

to any assigned law. The case of a periodic (simple-harmonic) pressure

possesses a certain interest, but is more easily treated independently, as

follows.

It is to be noted that the problem is to a certain extent indeterminate,

for on any motion satisfying the prescribed pressure-conditions we mayi

superpose any system of free waves. To isolate that part of the solution.

* This fluctuation was first pointed out by Poisson, in the particular case where the initial

elevation (or rather depression) has a parabolic outline.

t The preceding investigations have an interest extending beyond the present subject, as

shewing how widely the effects of a single initial impulse in a dispersive medium (i.e.
one u

which wave-velocity varies with wave-length) may differ from what takes place in the case o
'

sound, or in the vibrations of an elastic solid.
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which is due solely to the given disturbing force, we may avail ourselves of

an artifice due to Lord Eayleigh ;
viz. we introduce a small frictional force

proportional to the velocity. This law of resistance does not profess to be

altogether a natural one, but it serves to represent in a rough way the effect

of small dissipative forces
;
and it has the great mathematical convenience

that it does not interfere with the irrotational character of the motion. For

if we write, in the equations of Art. 6,

X =
fiu, Y= g fiv, Z = /AW, (1)

the investigation of Art. 33, when applied to a closed circuit, gives

(jyf
+ hA\ (udx + vdy + wdz) = 0, (2)

whence I {udx + vdy + wdz) = Ce
-**

(3)

Hence the circulation in a circuit moving with the fluid, if once zero, is

always zero.

If
</>

be the velocity-potential, the equations of motion have now the

integral

p = p{^-9y+^); (4)

thisgives , = I|. +^ _&
(5)

where the suffixes indicate surface-values, as before. The kinematical relation

(6) of Art. 226 holds as always.

Hence, corresponding to an applied surface-pressure

p = eiat cos k (x a), (6)

we find gpy = r ^ s ei<rt cos k (x a), (7)

or, writing"! k=
t fi1

= ^-, (8)

M'- h-iK-iK)
**""^-*) (9)

It will be noticed that 2tt/k would be the length of free waves having
the imposed period 27r/o\

Generalizing (9) by Fourier's method, we find that a surface-pressure

p, =/(*) (10)

produces a surface-elevation given by

kdk
9PV = _ I eM [

w kdk
. [* f (a) cos k(x- a) da, (11)

7T Jo *-(*-*/*i)./-i
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or, as it may conveniently be written,

gpv = - -U ei*
3 r dk

.
r

{,<*<*
> - e-ik(x-4)\f(a) fa . . .(12)W

2tti dxj o k-itc-inJJ-J
u w v }

We shall suppose, for the most part, that /(a) is sensible only for values

of a lying between certain finite limits. At points of the surface beyond

these limits, to the right of the origin, x a will be positive, and we then

have

/oo

p-ik(x-a) fjh f g-m(x-a) Ayn

i-7 ^-_27r;e-*(-^(*-">+ - r , (13)
o k (k ifja) Jo m iic fr

J k {K- ifa) J o m +ik + fa'

as will be shewn presently (Art. 241) in connection with a related problem.

Substituting in (12), and putting fi s
= 0, since the frictional term in (4)

has now served its purpose, we find

w-^fcL r"'"'-^io .*+ }
/(B)<fa - - (lo)

At distances from the seat of the applied pressure which are great

compared with 2tt/k, the definite integral with respect to m is negligible,

and we have

gpv = %k J" e*^-(*-)]/(a)da = i(A+ iB) &*-<*), ...(16)
J 00

provided
roo r<*>

A=k\ /(a) cos k* da, B = k\ /(a) sin kol da. ...(17)
J ao ^ oo

Hence, taking the real parts of our expressions, we find that the waves

produced by an applied surface-pressure

p =f(x) cos at (18)

are represented, at a sufficiently great distance on the positive side of the

origin, by

gpv = A sin {at kx) Bcos{at kx) (19)*

This represents a train of progressive waves whose wave-length and wave-

velocity are related in the usual way to the imposed period. If the pressure

p be symmetrical with respect to the origin, B = 0.

When the surface-pressure (18) is concentrated at the origin, so that /(a

vanishes for all but infinitesimal values of a, we write

/:
f(a)da = P, (20)
00

Cambridge Mathematical Tripos, Part II., 1901.
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and obtain from (15)

-r> ( , - kP e i<rt

[* e-^mdm
gpV = %<P e (*'-*) -

= iieP *(*-*) - J_i_ _i + _^i
_ ... i

(21)

where the series in
{ }

is semi-convergent.

In the case of an integral pressure PeUrt
uniformly distributed over the

space between x= a, we should obtain

.^sin/ca ... . kP . , f" e
-*"* sinh ma , /nox

crp?7
= tP e (<rf-0 e**t . dm. . . .(22)ar a ira J m% + k-

This is on the supposition that x is positive and greater than a. If x lie

between and a, the details of the work require some modification
;

it will

be found that

P .. .
,

*P .
,

fx e
- 8 cosh mx , /nox

flfOTi = e (<rt-a) cog^ H gwrt | j^w ...(23)
a ira J m- + tc-

At the point # = a the values of 77 given by (22) and (23) differ by

P
2#>a

'

the amplitude of this discontinuity being exactly that which would be caused

by a statical difference of pressure P/2a.

Again, if

P b P f"=
ri ,6***= c**

1

/ e-Mcoskxdk, (24)
7T 0*4* X3

IT J

we should find

r a , , ^ -P -, r * cos m& -I-m sin mb _m/r , .,_,.= i/cPe-'b
e,<rt

- KX) e,<r<
/ e^^mdm. ...(2o)

7r j m2
4-

-

It is of some interest to calculate the mean rate at which an integral

pressure P cos at does work in generating waves. In the case of a con-

centrated pressure, taking the real part of (21), we have, at the origin (x = 0),

^ = cos <ri + a term in sin at (26)
dt gp

The required mean rate is therefore

KaP> a*P* m ,
-5 or 5-3-, (27)
2gp 2g*p

varying as the cube of the frequency. The circumstance that the ineffectual

term
involving sin at, in (26), is infinite need not dismay us. The difficulty

does not occur when the pressure is diffused. Thus, in the case of a uniform

9PV
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pressure distributed over the space between x = a, we easily find from

(23) that the mean rate of work is

ST4f)
8 w

This agrees with (27) when tea is infinitely small*.

240. We may next calculate the effect of an arbitrary, but steady,

application of pressure to the surface of a stream. We shall consider only
the state of steady motion which, under the influence of dissipative forces,

however small, will ultimately establish itselff.

In the absence of such forces, the problem is, like that of Art. 239,

indeterminate, for we can always superpose a train of free waves, of arbitrary

amplitude, and of wave-length such that their velocity relative to the water

is equal and opposite to that of the stream, in which case they will maintain

a fixed position in space.

To avoid this indeterminateness, we will assume that the deviation of any

particle of the fluid from the state of uniform flow is resisted by a force

proportional to the relative velocity, so that

X = /a(u c), Y=gfiv, (1)

where c denotes the velocity of the stream in the direction of ^-positive.

We now have

^
= const. -gy + i*{cx + <)- \q\ (2)

r

this being, in fact, the form assumed by Art. 21 (2) when we write

ft=gy-v(cx + (f>), (3)

in accordance with (1) above.

To calculate, in the first place, the effect of a simple-harmonic distribution

of pressure we assume

- = x + /3e
fc2/ sin kx,

- = y+ fie
ky cos kx (4)

c c

* The substance of Arts. 236239 is taken from a paper
" On Deep-Water Waves," Proc.

Lond. Math. Soc. (2), t. ii. p. 371 (1904).

f The first steps of the following investigation are adapted from a paper by Lord Kayleigh,
"The Form of Standing Waves on the Surface of Kunning Water," Proc. Lond. Math. Soc,

t. xv. p. 69 (1883) [Sc. Papers, t. ii. p. 258], being simplified by the omission, for the present, of

all reference to Capillarity. The definite integrals involved are treated, however, in a somewhat

more general manner, and the discussion of the results necessarily follows a different course.

The problem had been treated by Popoff,
" Solution d'un probleme sur les ondes permanentes,"

Liouville (2) t. iii. p. 251 (1858); his analysis is correct, but regard is not had to the inde-

terminate character of the problem (in the absence of friction), and the results are consequently

not pushed to a practical interpretation.
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The equation (2) becomes, on neglecting the square of kB,

- = ... gy + ftePi (kc" cos kx + fxc sin kx) (5)
P

This gives for the variable part of the pressure at the upper surface (i/r
= 0)

p =
pft {(Arc

2

g) cos kx + fie sin far}, (6)

which is equal to the real part of

p$ (kc?
- g - ipc) e***.

If we equate the coefficient to C, we may say that to the pressure

Po=Ce** (7)

corresponds the surface-form

"-f=^ ftfc' <8>

where we have written k for g/c
2
,
so that 2-7r/* is the wave-length of the free

waves which could maintain their position against the flow of the stream.

We have also put fi/c
=

filt for shortness.

Hence, taking the real parts, we find that the surface-pressure

p ~C cos kx (9)

produces the wave-form

.- (k k) cos kx u^ sin kx .,..m = "c -

(t-y +lh
.

-
(10)

This shews that if
/z,

be small the wave-crests will coincide in position

with the maxima, and the troughs with the minima, of the applied pressure,

when the wave-length is less than 2tt/k; whilst the reverse holds in the

opposite case. This is in accordance with a general principle. If we impress
on everything a velocity c parallel to x, the result obtained by putting

fi x
= in (10) is seen to be merely a special case of Art. 167 (13).

In the critical case of k = k, we have

9PV = .rinfat, (11)
fh

shewing that the excess of pressure is now on the slopes which face down the

stream. This explains roughly how a system of progressive waves may be

maintained against our assumed dissipative forces oy a properly adjusted
distribution of pressure over their slopes.

241. The solution expressed by (10) may be generalized, in the first

place by the addition of an arbitrary constant to x, and secondly by a sum-
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mation with respect to k. In this way we may construct the effect of any

arbitrary distribution of pressure, say

Po=/(*), (12)

with the help of Fourier's theorem (Art. 236 (4)).

We will suppose, in the first instance, that f(x) vanishes for all but

infinitely small values of x, for which it becomes infinite in such a way that

(" f(x)dx
= P; (13)

J <x>

this will give us the effect of an integral pressure P concentrated on an

infinitely narrow band of the surface at the origin. Replacing G in (10) by

P/ir . 8k, and integrating with respect to k between the limits and oo
,

we obtain

kP f x (k k)cos kx u,sin kx , ,m= ^-L w^*$k>
~M (14)

If we put (=k+ im, where k, m are taken to be the rectangular coordinates of a variable

point in a plane, the properties of the expression (14) are contained in those of the complex

integral

7dC (15)
/

It is known that the value of this integral, taken round the boundary of any area

which does not include the singular point (f= c), is zero. In the present case we have

c=K+ ipl ,
where k and px are both positive.

Let us first suppose that x is positive, and let us apply the above theorem to the region
which is bounded externally by the line m= and by an infinite semicircle, described with

the origin as centre on the side of this line for which m is positive, and internally by
a small circle surrounding the point (k, pj). The part of the integral due to the infinite

semicircle obviously vanishes, and it is easily seen, putting (
- c = re

19

,
that the part due

to the small circle is

if the direction of integration be chosen in accordance with the rule of Art. 32. We thu3

obtain

/"0 pikx fee pikx , t , . ,

J _ k-^K + lpi) Jok-U+ lp!)

which is equivalent to

/"oo pikx ., . . /"oo p ikx

, , . N
<a= 2irig,(

"+t^)g + 7-4 ^xdk (16)
J o k-(K+lflj) J o A + (k+1/Xi)

On the other hand, when x is negative we may take the integral (15) round the contour

made up of the line w=0 and an infinite semicircle lying on the side for which m is

negative. This gives the same result as before, with the omission of the term due to the

singular point, which is now external to the contour. Thus, for x negative,

f oo pikx f oo p ikx

,

*

,dk=
*

dk (17)
J o A-Oe+ i/ii) J o * + (K+ ^/*^)
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An alternative form of the last term in (16) may be obtained by integrating round the

contour made up of the negative portion of the axis of k, and the positive portion of the

axis of to, together with an infinite quadrant. We thus find

/"o gfac /" e~mx

I 1 7 r-s dk + I . .

,
. . M*OT= 0,

J -x Ar-(c + i/x,) J o wi - (e+ 1/^)

which is equivalent to

/
p -ikx f x p-mx

r-i r-x *tt- =-rfm (18)

This is for x positive. In the case of x negative, we must take as our contour the

negative portions of the axes of k, to, and an infinite quadrant. This leads to

/<*> fi -Vex / pmx ,

kJ( 4-,- ^
dl'= :r r dm

> <19>

J k+^K + ifi^ J m + ^-iK

as the transformation of the second member of (17).

In the foregoing argument ^ is positive. The corresponding results for the integral

/fw*
;

(20>

are not required for our immediate purpose, but it will be convenient to state them for

future reference. For x positive, we find

/*>

pUa Too fi-Uac foo p -mx
,

,
.

,
dk= t-4 xtt=| r-dm; (21)

whilst, for x negative,

/ dk= - 2irie
i ^*~ i*^x+ \

g
dk

o *-(k-/i) JoH(ic-J>i)

= -2,riV (' -*'>* + /""
e^^dm (22)

J o to-Mi- **

The verification is left to the reader*.

If we take the real parts of the formulae (16), (18), and (17), (19), respectively, we
obtain the results which follow.

The formula (14) is equivalent, for x positive, to

Trap _ . f* (Jc + tc) cos Jcx /^sin kx

**~+Jt (m - IHf +K> (23)

and, for x negative, to

irgp _ f
x
(m + Ah) e dm

The interpretation of these results is simple. The first term of (23)

represents a train of simple-harmonic waves, on the down-stream side of the

For another treatment of these integrals, see Dirichlet, Vorlesungen ueber d. Lehre v. d.

einfachen u. mehrfachen bestimmten Integralen (ed. Arendt), Braunschweig, 1904, p. 170.
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origin, of wave-length 2irc2

Jg, with amplitudes gradually diminishing according
to the law e~^x. The remaining part of the deformation of the free-surface,

expressed by the definite integrals in (23) and (24), though very great for

small values of x, diminishes very rapidly as x increases, however small the

value of the frictional coefficient fi 1 .

When
/Ltj

is infinitesimal, our results take the simpler forms

cos kx

k + k

f
00 ,me~inx

= 2-7T sin kx +\ Am, (25)
Jo m2 + /c

2

rr (if) f f(~\G Icy-~
. y = 2-7T sin kx + I -r-- - dk

for x positive, and

if-''). t+ <H. ;*?+**" (26)

for x negative. The part of the disturbance of level which is represented

by the definite integrals in these expressions is now symmetrical with respect

to the origin, and diminishes constantly as the distance from the origin

increases. When kx is moderately large we have, as in Art. 239, the semi-

convergent expansion

/,

00 me~7nx

J_ SJ_ _5_!_

o m2 +/e2 k-x- k^x* K6af

It appears that at a distance of about half a wave-length from the origin,

on the down-stream side, the simple-harmonic wave-profile is fully

established.

The definite integrals in (25) and (26) can be reduced to known functions as follows.

If we put (k+ K)x=u, we have, for x positive,

f coskx _., _ [ cos (kx-u),
J o k \-k ~J KX u

= -Ci kx cos kx+ (%tt
- Si Kx)smnx, (28)

where, in conformity with the usual notation,

i cos it, f ^ sin ?/

Ciit=- I du, Siit= / du (29)
J U u J o u v '

The functions Ci it and Si it have been tabulated by Glaisher*. It appears that as u

* "Tables of the Numerical Values of the Sine-Integral, Cosine-Integral, and Exponential-

Integral," Phil. Trans., 1870. The expression of the last integral in (26) in terms of the sine-

and cosine-integrals, was obtained, in a different manner from the above, by Schlomilch,
" Sur

. e
-xe

Qrelle, t. xxxiii. (1846); see also De Morgan, Differential and

Integral Calculus, London, 1842, p. 654, and Dirichlet, Vorlesungen, p. 208.
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increases from zero they tend very rapidly to their asymptotic values and ir, respectively.

For small values of u we have

.(30)

Ci = y + logtt-2T2 T + rT! -...

~. u3 tt
5

where y is Eider's constant -5772....

It is easily found from (23) and (24) that when /l^ is infinitesimal, the

integral depression of the surface is

-/-"*- (3l)
9P

exactly as if the fluid were at rest.

242. The expressions (23), (24) and (25), (26) alike make the elevation

infinite at the origin, but this difficulty disappears when the pressure, which

we have supposed concentrated on a mathematical line of the surface, is

diffused over a band of finite breadth.

To calculate the effect of a distributed pressure

/><>=/(*), (32)

only necessary to write x a for x in (25) and (26), to replace P by

/< a ) 8a, and to integrate the resulting value of y with respect to a between

the proper limits. It follows from known principles of the Integral Calculus

that if p be finite the integrals will be finite for all values of x.

In the case of a uniform pressure pQ , applied to the part of the surface

extending from oo to the origin, we easily find by integration of (23), for

x>0,

_ tcp f* e-* dm

where /^ has been put = 0. Again, if the pressure p be applied to the part
of the surface extending from to + oc

,
we find, for x < 0,

**-?J. sq^ (34)

From these results we can easily deduce the requisite formulae for the case

of a uniform pressure acting on a band of finite breadth. The definite

integral in (33) and (34) can be evaluated in terms of the functions Ciw,
Si h

;
thus in (33)

pe-^dm /""sin&a;,.
, n- /q-\K

I , ,
.
=

I -r dk = (tfr Si kx) cos kx + Cikxsw kx. ...(do)
Jo Tto -r I? Jo K -j- K
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In this way the diagram on p. 384 was constructed
;

it represents the

case where the band (AB) has a breadth *r* or "159 of the length of a

standing wave.

The circumstances in any such case might be realized approximately by

dipping the edge of a slightly inclined board into the surface of a stream,

except that the pressure on the wetted area of the board would not be uniform,

but would diminish from the central parts towards the edges. To secure

a uniform pressure, the board would have to be curved towards the edges, to

the shape of the portion of the wave-profile included between the points

A. B in the figure.

It will be noticed that if the breadth of the band be an exact multiple
of the wave-length (2ttIk), we have zero elevation of the surface at a distance,

on the down-stream as well as on the up-stream side of the source of

disturbance.

The diagram shews certain peculiarities at the points A, B due to the

ntinuity in the applied pressure. A more natural representation of a

local pressure is obtained if we assume

p^^h- <36>

We may write this in the form

P 1 P i"
x

p9
= -.j-^ = - e-***dk, (37)

provided it is understood that, in the end, only the real part is to be

retained. On reference to Art. 240 (7), (8) we" see that the corresponding
elevation of the free surface is given by

=
,

. dk. (38)
' K-K-Xfr

By the method of Art. 241, we find that this is equivalent, for

> 0. to

icP { ....... f
x e-t*-

gpy =
tr

2irte< +*'> <*"*> + ^dm\, (39)
Jo m-jth+w J

and. for x < 0, to

kP f
x oimb+mx

qpy = I dm (40)9r!f
7T J m + ft-lK

v 7

Hence, taking real parts, and putting y^ = 0, we find

an h P [* m cos mb k sin mb _ , r M ,., x
g py = - 2*Pe-*6 sm kx + e-*dm, [ar>0], ...(41)

kP f'm cos mb K sin mb mmm 7 r m /^n\= -T ZJTZi e^dm, [*<0]....(42)
TT Jo wt+ k-

9py

L.
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The factor e~Kb in the first term of (41) shews the effect of diffusing the

pressure. It is easily proved that the values of y and dy/dx given by these

formulae agree when x = 0*.

243. If in the problem of Art. 240 we suppose the depth to be finite

and equal to h, there will be, in the absence of dissipation, indeterminateness

or not, according as the velocity c of the stream is less or greater than (gh)l,

the maximum wave-velocity for the given depth; see Art. 230. The difficulty

presented by the former case can be evaded by the introduction of small

frictional forces
;
but it may be anticipated from the preceding investigation

that the main effect of these will be to annul the elevation of the surface

at a distance on the up-stream side of the region of disturbed pressure, ,

and if we assume this at the outset we need not complicate our equations

by retaining the frictional termsf.

For the case of a simple-harmonic distribution of pressure we assume

*- x + ft cosh k(y + h) sin kx,

(1)

= y + ft sinh k(y + h) cos kx,
c

as in Art. 230 (3). Hence, at the surface

y = ft sinh kh cos kx, (2)

we have

= gy % (q'~
c
2
)
=

ft (kc
2 cosh kh g sinh kh) cos kx, (3) j

P

so that to the imposed pressure

p =Ccoskx, (4)
l

will correspond the surface-form

G sinh kh
,

..
y = .7-^ , ? , r-r-;,-r cos kx (o)17

p k& cosh kh g sinh kh
\

As in Art. 240, the pressure is greatest over the troughs, and least over th

crests, of the waves, or vice versa, according as the wave-length is greater c

less than that corresponding to the velocity c, in accordance with gener;

theory.

The generalization of (5) by Fourier's method gives

_P /" sinh kh cos lex ,.
"

irp J o kc2 cosh kh - g sinh kh '

* A different treatment of the problem of Arts. 241, 242, is given in a recent paper by Lo

Kelvin,
" Deep Water Ship-Waves," Proc. B. S. Edin., t. xxv. p. 562 (1905) [Phil. Mag. (6),

t. i

p. 733].

t There is no difficulty in so modifying the investigation as to take the frictional forces in

account, when these are very small.
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as the representation of the effect of a pressure of integral amount P applied to a narrow

band of the surface at the origin. This may be written

irpc
2

f" cos {xujh) . _
-f^-Jo u coth u-gh/c*

du <7)

Now consider the complex integral

/ ( coth {-gh/c*^'
(8)

where (=u + iv. The function under the integral sign has a singular point at (= + joc,

according as x is positive or negative, and the remaining singular points are given by the

roots of

^-5 <9>

Since (6) is an even function of x, it will be sufficient to take the case of x positive.

Let us first suppose that c3>gh\ The roots of (9) are then all pure imaginaries ; viz.

they are of the form i/3, where is a root of

^-H ('<

The smallest positive root of this lies between and |w, and the higher roots approximate
with increasing closeness to the values (+) w, where * is integral. We will denote these

roots in order by /3, /3a , .... Let us now take the integral (8) round the contour made

up of the axis of u, an infinite semicircle on the positive side of this axis, and a series of

small circles surrounding the singular points f=i/3 , iJSj, t/32 ,.... The part due to the

infinite semicircle obviously vanishes. Again, it is known that if a be a simple root of

=0 the value of the integral

I :)

dC

taken in the positive direction round a small circle enclosing the point (=a is equal to*

*rg (ID

Now in the case of (8) we have

/'(a)=cotha-a(coth*a-l)=^ j^(l-^) + a*l, (12)

whence, putting a =t'/3 the expression (11) takes the form

2nBf-Wh
, (13)

^>ere B,= J rr (14)

"-S(i-S)
The theorem in question then gives

(' f du+ (
-

.-i.S>-*-a (,5)
J _* u coth ugh/c* J o coth ugh/c3 o

If in the former integral we write for u, this becomes

" G

VJ'
Ulh

\M *'-*2"B,-**l
h

. (16)
o coth u-gh/cr o

rs

Forsyth, Theory of Functions, Art. 24.

252
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The surface-form is then given by

P
P.x/h

*?*. *'"'" < 17 >

It appears that the surface-elevation (which is symmetrical with respect to the origin)

is insensible beyond a certain distance from the seat of disturbance.

When, on the other hand, c2<gh, the equation (9) has a pair of real roots (a, say), the

lowest roots
( )

of (10) having now disappeared. The integral (7) is then indeterminate,

owing to the function under the integral sign becoming infinite within the range of

integration. One of its values, viz. the '

principal value,' in Cauchy's sense, can however

be found by the same method as before, provided we exclude the points (= a from the,

contour by drawing semicircles of small radius * round them, on the side for which v
isji

positive. The parts of the complex integral (8) due to these semicircles will be

where/' (a) is given by (12) ; and their sum is therefore equal to

. . ax
2ttA sin -r, (18) 1

where A = . . , r- (19)<

The equation corresponding to (16) now takes the form

r ra-t Too
-J

cos xu/h , , . ax v> -a wa ,-;

{jo
+
j aJv^^^w du=- irAsm X + *2

,

B<e v/
*. <

2
)

so that, if we take the principal value of the integral in (7), the surface-form on the sid

of .^-positive is

j^-"^ *;*-*. <wj

Hence at a distance from the origin the deformation of the surface consists of tl|

simple-harmonic train of waves indicated by the first term, the wave-length 2irh/a heir:

that corresponding to a velocity of propagation c relative to still water.

Since the function (7) is symmetrical with respect to the origin, the corresponds
result for negative values of x is

y^ A sin t +^K B-A"h (22;
i

The general solution of our indeterminate problem is completed by adding to (21) ar'

(22) terms of the form

Ccos^+Dsin^ A
n a

The practical solution, including the effect of infinitely small dissipative forces, is obtain

by so adjusting these terms as to make the deformation of the surface insensible

a distance on the up-stream side. We thus get, finally, for positive values of x,

y=-
2
-l.Asin

a4 +^t
X
Bae-^l\ (24) ;

pc
2 h pc i
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and, for negative values of x,

y=-^BtW (25)

For a different method of reducing the definite integral in this problem we must refer

to the paper by Lord Kelvin cited below.

244. The same method can be employed to investigate the effect on a

uniform stream of slight inequalities in the bed*.

Thus, in the case of a simple-harmonic corrugation given by

y = h + y cos kx, (1)

the origin being as usual in the undisturbed surface, we assume

- = x + (a cosh ky + ft sinh ky) sin kx,

(2)

c

-~ = y + (a sinh ky -f ft cosh ky) cos kx

The condition that (1) should be a stream-line is

7 = a sinh kh + & cosh kh (3)

The pressure-formula is

- = const. gy + kc* (a cosh ky + ft sinh ky) coskx, (4)

approximately, and therefore along the stream-line
ifr
=

- = const. + (kc
1* gft) cos kx,

P

so that the condition for a free surface gives

kc*a-gft = (5)

The equations (3) and (5) determine a and ft. The profile of the free surface

is given by

y = ft cos kx

7

cosh kh g\k<? . sinh kh
cos kx. (6)

If the velocity of the stream be less than that of waves in still water
of uniform depth h, of the same length as the corrugations, as determined by
Art. 228 (4), the denominator is negative, so that the undulations of the free

surface are inverted relatively to those of the bed. In the opposite case, the

undulations of the surface follow those of the bed, but with a different vertical

*
Sir W. Thomson, "On Stationary Waves in Flowing Water," Phil. Mag. (5), t. xxii. pp. 358,

445, 517 (1886), and t. xxiii. p. 52 (1887).
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scale. When c has precisely the value given by Art. 228 (4), the solution

fails, as we should expect, through the vanishing of the denominator. To

obtain an intelligible result in this case we should be compelled to take special

account of dissipative forces.

The above solution may be generalized, by Fourier's Theorem, so as to apply to the

case where the inequalities of the bed follow any arbitrary law. Thus, if the profile of

the bed be given by

y _*+/(*). -A +- ("dkf /(f) cos i{x-$)d$,T J J -oo
(7)

that of the free surface will be obtained by superposition of terms of the type (6) due to

the various elements of the Fourier-integral ;
thus

/(f) cos (*-) ,t
y ~-n j o

dk
j ooeh kh-gfkc* . sinh kh ** (8 '

In the case of a single isolated inequality at the point of the bed vertically beneath

the origin, this reduces to

it J o cosh khg/kc2
. sinh kh

_Q /*" u cos (xu/h) ,
/q

.

ith J o u cosh u - ghjc
2

. sinh u '

where Q represents the area included by the profile of the inequality above the general

level of the bed. For a depression Q will of course be negative.

The discussion of the integral

Ce
ixilh

dC
I C cosh C-gh/cK sinh

^
can be conducted exactly as in Art. 243. The function to be integrated differs only by

j

the factor f/(sinh ) ; the singular points therefore are the same as before, and we can at
j

once write down the results.

Thus when c2>gh we find, for the surface-form,

y=jK B^^>x!h
^ (11)no sin pe

the upper or the lower sign being taken according as x is positive or negative.

When c2<gh, the 'practical' solution is, for x positive,

y^-^i-ain^+.ls-i*,
A

,-**/*, (12)* h sinh a h h x

*
sin j3s

and, for x negative, y=% 2 Bt-^e^x,h
(13)

h ! "sinft,

The symbols a, &, A, Ba have here exactly the same meanings as in Art. 243*.

* A very interesting drawing of the wave-profile produced by an isolated inequality in tbe be

is given in Lord Kelvin's paper, Phil. Mag. (5), t. xxii. p. 529. The effect of an abrupt change (

level in the bed has been discussed by Wien, Hydrodynamik, p. 201.
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245. If in the problems of Arts. 241, 243 we impress on everything a

velocity c parallel to x, we get the case of a pressure-disturbance advancing
with constant velocity c over the surface of otherwise still water. In this

form of the question it is not difficult to understand, in a general way, the

origin of the train of waves following the disturbance.

If, for example, equal impulses be applied in succession to a series of

equidistant parallel lines of the surface, at equal intervals of time, each

impulse will produce on its own account a system of waves of the character

investigated in Art. 237. The systems due to the different impulses will

be superposed, with the obvious result that the only parts which reinforce

one another will be those which have the wave-length appropriate to the

velocity c with which the disturbing influence advances over the surface,

and which are (moreover) travelling in the direction of this advance. And

the investigations of Arts. 234, 238 shew that the groups of waves, of this

particular length, which are produced, are continually being left behind.

These results have a bearing on such questions as the * wave-resistance
'

of ships. It appears from Art. 243, in the two-dimensional form of the

problem, that a local disturbance of pressure advancing with velocity

c[<(gh)l] over still water of depth h is followed by a simple-harmonic train

of waves of the length (2ir/tc) appropriate to the velocity c, and determined

therefore by Art. 228 (4) ;
whilst the water in front of the disturbance is

sensibly at rest. If we imagiue a fixed vertical plane to be drawn in the rear

of the disturbance, the space in front of this plane gains, per unit time, the

additional wave-energy ^gpa'c, where a is the amplitude of the waves gene-
rated. The energy transmitted across the plane is given by Art. 235 (14).

The difference represents the work done by the disturbing force. Hence if

R denote the horizontal resistance experienced by the disturbing body,
we have

R-^-sra) <x >

increases from zero to (gh)*, k)i diminishes from oo to 0, and therefore

R diminishes from \gpa? to 0*.

When c>(gh)l, the water is unaffected beyond a certain small distance

on either side, and the wave-resistance R is then zerof.

An interesting variation of the question is presented when we have a

layer of fluid on the top of another fluid of somewhat greater density. If

*
It most be remarked, however, that the amplitude a due to a disturbance of given character

will also vary with c. This is exemplified in Art. 242 (41), in the case of infinite depth. It

appears that, if P be given, a a. Ke~Kb, where K=glc*.
t Cf. Sir W. Thomson " On Ship Waves," Proc. Inst. Mech. Eng., Aug. 3, 1887 [Popular

Lectures and Addresses, London, 1889-94, t. iii. p. 450]. A formula equivalent to (1) was given
in a paper by the same author, Phil. Mag. (5), t. xxii. p. 451.
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p, p be the densities of the lower and upper fluids, respectively, and if the

depth of the upper layer be h', whilst that of the lower fluid is practically

infinite, the results of Stokes quoted in Art. 231 shew that two wave-systems

may be generated, whose lengths (2tt/k) are related to the velocity c of the

disturbance by the formulae

<* c
? = P-P[ 9

(2)
K

'

p COth K.ti + p K

It is easily proved that the value of k determined by the second equation is

real only so long as

c*< p
-^-gh' (8)

If c exceeds the critical value thus indicated, only one type of waves

will be generated, and if the difference of densities be slight the wave-

resistance will be practically the same as in the case of a single fluid, the

circumstances being similar to those of Art. 241. But if c fall below the

critical value, a second type of waves may be produced, in which the amplitude
at the common boundary greatly exceeds that at the upper surface

;
and it

is to these waves that the 'dead-water resistance' referred to in Art. 231 is

attributed*.

Waves of Finite Amplitude.

246. The restriction to
'

infinitely small
'

motions, in the investigations

of Arts. 226,... implies that the ratio (a/\) of the maximum elevation to the

wave-length must be small. The determination of the wave-forms which

satisfy the conditions of uniform propagation without change of type, when

this restriction is abandoned, forms the subject of a classical research by

Stokes f.

The problem is most conveniently treated as one of steady motion. If

we neglect small quantities of the order a3

/\
3

,
the solution of the problem in

the case of infinite depth is contained in the formulae \

- = - x + fie** sin kx,
* = -

y + fiepy cos kx (1)
c c

*
Ekman, I.e. ante p. 354.

t "On the theory of Oscillatory Waves," Camb. Trans., t. viii. (1847) [reprinted, with a

"
Supplement," Math, and Phys. Papers, t. i. pp. 197, 314].

The outlines of a more general investigation, including the case of permanent waves on the

common surface of two horizontal currents, have been given by von Helmholtz,
" Zur Theorie

von Wind und Wellen," Berl. Monatsber., July 25, 1889 [Ges. Abh. , t. iii. p. 309]. See also Wien,

Hydrodynamik, p. 169.

X Lord Bayleigh, I.e. ante p. 246.



245-246] Finite Waves of Permanent Type 393

The equation of the wave-profile yjr
= is found by successive approxi-

mations to be

y = fie^ cos kx = /? (1 -I- ky + ^y- + . . . ) cos kx

= * + (1 + f^/9
2

) cos fca; + \kp cos 2for + f^/9
3 cos Skx + . . .

;
. . .(2)

or, if we put @ (1 + k?fi*)
= a,

3/ \kar = a cos kx + |&a
2 cos 2&# + f^a

3 cos 3foc + (3)

So far as we have developed it, this coincides with the equation of a trochoid,

in which the circumference of the rolling circle is 2ir/k, or \, and the length

of the arm of the tracing point is a.

We have still to shew that the condition of uniform pressure along this

stream-line can be satisfied by a suitably chosen value of c. We have, from

<1), without approximation

= const. -gy-\& {Y-lkfr&v cos kx + frpe/**}, (4)

and therefore, at points of the line y = y9e*
y cos kx,

= const. + (kc
1 -g)y- $JfcVW*

= const. + (kc*
- g - fcc2/?) y + (5)

Hence the condition for a free surface is satisfied, to the present order of

approximation, provided

c =
!+JfcV*=!(l+Jl*a) (6)

This determines the velocity of progressive waves of permanent type, and

shews that it increases somewhat with the amplitude a.

For methods of proceeding to a higher approximation, and for the

treatment of the case of finite depth, we must refer to the original in-

vestigations of Stokes.

The figure shews the wave-profile, as given by (3), in the case of ka = ,

or a/X = -0796.

The approximately trochoidal form gives an outline which is sharper near

the crests, and flatter in the troughs, than in the case of the simple-harmonic
waves of infinitely small amplitude investigated in Art. 228, and these

features become accentuated as the amplitude is increased. If the trochoidal

form were exact, instead of merely approximate, the limiting form would
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have cusps at the crests, as in the case of Gerstner's waves to be considered

presently.

In the actual problem, which is one of irrotational motion, the extreme

form has been shewn by Stokes*, in a very simple manner, to have sharp

angles of 120. The question being still treated as one of steady motion,

the motion near the angle will be given by the formulae of Art. 63
;

viz. if

we introduce polar coordinates r, 6 with the crest as origin, and the initial

line of 6 drawn vertically downwards, we have

^ = Crm cos m0, (7)

with the condition that
yjr
= when 6 = a (say), so that ma = \ir. This

formula leads to

q
= mCrm-\ (8)

where q is the resultant fluid velocity. But since the velocity vanishes at

the crest, its value at a neighbouring point of the free surface will be given by

q
2 = 2gr cos a, (9)

as in Art. 24 (2). Comparing (8) and (9), we see that we must have ra = ,

and therefore a = Ju f.

In the case of progressive waves advancing over still water, the particles

at the crests, when these have their extreme forms, are moving forwards with

exactly the velocity of the wave.

Another point of interest in connection with these waves of permanent

type is that' they possess, relatively to the undisturbed water, a certain

momentum in the direction of wave-propagation. The momentum, per wave-

length, of the fluid contained between the free surface and a depth h (beneath

the level of the origin) which we will suppose to be great compared with \, is
j

-p jj

d

^dxdy
= pch\, (10)

since
yjr
= 0, by hypothesis, at the surface, and = ch, by (1), at the great depth

h. In the absence of waves, the equation to the upper surface would be
|

y = ^ka
2
, by (3), and the corresponding value of the momentum would

j

therefore be

pc(h + ^ka
2
)X (11)

The difference of these results is equal to

irpa% (12)

* Math, and Phys. Papers, t. i. p. 227.

t The wave-profile has been investigated and traced by Michell,
" The Highest Waves ii

Water," Phil Mag. (5), t. xxxvi. p. 430 (1893). He finds that the extreme height is -142 \, anc

that the wave-velocity is greater than in the case of infinitely small height in the ratio of 1*2 to 1
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which gives therefore the momentum, per wave-length, of a system of

progressive waves of permanent type, moving over water which is at rest at

a great depth.

To find the vertical distribution of this momentum, we remark that the

equation of a stream-line
yfr
= ch' is found from (2) by writing y + h' for y,

and /Se
-Wi for /?. The mean-level of this stream-line is therefore given by

y = -h' + $k&-e-*
h'

(13)

Hence the momentum, in the case of undisturbed flow, of the stratum of

fluid included between the surface and the stream-line in question would

be, per wave-length,

pcXlh' + lkpil-e-**')} (14)

The actual momentum being pch'X, we have, for the momentum of the same

stratum in the case of waves advancing over still water,

7rpa
ac (1

- e"2**') (15)

It appears therefore that the motion of the individual particles, in these

progressive waves of permanent type, is not purely oscillatory, and that there

is, on the whole, a slow but continued advance in the direction of wave-

propagation*. The rate of this flow at a depth K is found approximately by

differentiating (15) with respect to h', and dividing by p\, viz. it is

^a'ce"2**'
(16)

This diminishes rapidly from the surface downwards.

247. A system of exact equations, expressing a possible form of wave-

motion when the depth of the fluid is infinite, was given so long ago as 1802

by Gerstnerf, and at a later period independently by Rankine* The

circumstance, however, that the motion in these waves is not irrotational

detracts somewhat from the physical interest of the results.

If the axis of x be horizontal, and that of y be drawn vertically upwards,
the formulae in question may be written

x = a+ je
kb smk(a + ct), y = b j

** cos k (a + ct), (1)

where the specification is on the Lagrangian plan (Art. 16), viz., a, b are two

parameters serving to identify a particle, and x, y are the coordinates of this

particle at time t The constant k determines the wave-length, and c is the

velocity of the waves, which are travelling in the direction of ^-negative.

*
Stokes, l.c. ante p. 392. Another very simple proof of this statement has been given by-

Lord Rayleigh, l.c. ante p. 246.

+ Professor of Mathematics at Prague, 1789-1823. His paper,
" Theorie der Wellen," was

published in the Abh. d. k. bohm. Get. d. Wus., 1802 [Gilbert's Annalen d. Physih, t. xxxii. (1809)].

; "On the Exact Form of Waves near the Surface of Deep Water," Phil. Trans., 1863

[Sc. Papers, p. 481].
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To verify this solution, and to determine the value of c, we remark, in

the first place, that

|f|-l-*- (2)o (a, o)
'

so that the Lagrangian equation of continuity (Art. 16 (2)) is satisfied. Again,

substituting from (1) in the equations of motion (Art. 13), we find

da[p >

\
(3)

oi (-
+
9y)

= - *cSeW cos * ( '+ c*) + kc*
e2kb

;

whence

^ = const. - g
|
b - 1 e*

6 cos k (a + ct)
[

- c2e*6 cos & (a + c) + c*6
. . . .(4)

For a particle on the free surface the pressure must be constant; this

requires

c2 =
f> (5)

as in Art. 228. This makes

= const. - gb + ^c
2
*?
2*6

(6)

It is obvious from (1) that the path of any particle (a, b) is a circle of

radius k~ le^b.

The figure shews the forms of the lines of equal pressure b = const., for
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a series of equidistant values of 6*. These curves are trochoids, obtained by

rolling circles of radii k~* on the under sides of the lines y = b + 1e~\ the

distances of the tracing points from the respective centres being k^e**1
. Any

one of these lines may be taken as representing the free surface, the extreme

admissible form being that of the cycloid. The dotted lines represent the

successive forms taken by a line of particles which is vertical when it passes

through a crest or a trough.

It has already been stated that the motion of the fluid in these waves is

rotational. To prove this, we remark that

= -8{e
kb

siiik(a + ct)} + ce*b 8a, (7)

which is not an exact differential.

The circulation in the boundary of the parallelogram whose vertices

coincide with the particles

(a, b), (a + 8a, b), (a, b + 8b), (a + 8a,b + 8b)

is, by (7), -!{<* 8a) to,

and the area of the circuit is

|^4\ Ba *b = (1
~O Sato.

d (a, 6)

Hence the angular velocity (to) of the element (a, b) is

w=-lT^ (8>

This is greatest at the surface, and diminishes rapidly with increasing depth.
Its sense is opposite to that of the revolution of the particles in their circular

orb/

A system of waves of the present type cannot therefore be originated
from rest, or destroyed, by the action of forces of the kind contemplated in

the general theorem of Arts. 17, 33. We may however suppose that by
properly adjusted pressures applied to the surface of the waves the liquid is

gradually reduced to a state of flow in horizontal lines, in which the velocity

(u') is a function of the ordinate (y) onlyf. In this state we shall have

dx'jda
=

1, while y is a function of 6 determined by the condition

d(x',y') d{x,y)

d(a,b) 3 (a, 6)'
.(9)

The diagram is very similar to the one given originally by Gerstner, and copied more or

osely by subsequent writers. A version of Gerstner's investigation, including in one

respect a correction, was given in the preceding edition of this work, Art. 233.

t For a fuller statement of the argument see Stokes, Math, and Pkys. Papers, t. i. p. 222.
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or
d

^ = l-e2kb
(10)

This makes | *%% --U>% Sfa* (11)

and therefore uf = ce2kb (12)

Hence, for the genesis of the waves by ordinary forces, we require as a

foundation an initial horizontal motion, in the direction opposite to that of

propagation of the waves ultimately set up, which diminishes rapidly from

the surface downwards, according to the law (12), where 6 is a function of y'

determined by

y'
= b-\k-ie*

b
(13)

It is to be noted that these rotational waves, when established, have zero

momentum.

248. Scott Russell, in his interesting experimental investigations *, was

led to pay great attention to a particular type which he calls the '

solitary

wave.' This is a wave consisting of a single elevation, of height not necessarily

small compared with the depth of the fluid, which, if properly started, may
travel for a considerable distance along a uniform canal, with little or no

change of type. Waves of depression, of similar relative amplitude, were

found not to possess the same character of permanence, but to break up into

series of shorter waves.

The solitary type may be regarded as an extreme case of Stokes'

oscillatory waves of permanent type, the wave-length being great compared
with the depth of the canal, so that the widely separated elevations are

practically independent of one another. The methods of approximation

employed by Stokes become, however, unsuitable when the wave-length
much exceeds the depth ;

and subsequent investigations of the solitary

wave have proceeded on different lines.

The first of these was given independently by Boussinesqf and Lord

Rayleigh J,
The latter writer, treating the problem as one of steady motion,

starts virtually from the formula

A
<f> -M> - F (x + iy)

= e Vdx F'(x), (1)

where F{x) is real. This is especially appropriate to cases, such as the

*
"Beport on Waves," Brit. Ass. Rep., 1844.

t Comptes Rendus, June 19, 1871.

X I.e. ante p. 246.
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present, where one of the family of stream-lines is straight. We derive

from (1)

4>
=
F-f,F"+f,F*-..., ^^yF'-^F-' + ^F*-..., ...(2)

where the accents denote differentiations with respect to x. The stream-line

yjr
= here forms the bed of the canal, whilst at the free surface we have

yfr
= ch, where c is the uniform velocity, and h the depth, in the parts of

the fluid at a distance from the wave, whether in front or behind.

The condition of uniform pressure along the free surface gives

v? + v2 = c*-2g(y-h), (3)

or, substituting from (2),

F'n

--y*F'F"'+y*F"
i +...=c--2g(y-h) (4)

But, from (2) we have, along the same surface,

yF'-F'" + ...=-ch ; (5)

It remains to eliminate F between (4) and (5) ;
the result will be a differential

equation to determine the ordinate y of the free surface. If (as we will

suppose) the function F' (x) and its differential coefficients vary so slowly
with x that they change only by a small fraction of their values when x

increases by an amount comparable with the depth h, the terms in (4) and

(5) will be of gradually diminishing magnitude, and the elimination in

question can be carried out by a process of successive approximation.

Thus, from (5)

r~*+J^+
...--*g

+
$,gJVi}i .(6)

and if we retain only terms up to the order last written, the equation (4)

becomes

y* Z y \y)
^ y

\y) h? <?h?
'

or, on reduction,

1 2y" ly = l 2g(y-h)
y* 3 y 3 f h* cVi3 K)

If we multiply by y, and integrate, determining the arbitrary constant so

as to make y'
= for y = h,we obtain

1
, iyy i

,

y-h g(y-hy
y-3 y

'

h h* &h?
'

*"=3^"(l-f) (8)
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Hence y vanishes only for y = h and y = c
2

/g, and since the last factor

must be positive, it appears that d*/g is a ihcucimum value of y. Hence the

wave is necessarily one of elevation only, and, denoting by a the maximum

height above the undisturbed level, we have

c
2 = g(h + a), .(9)

which is exactly the empirical formula for the wave-velocity adopted by
Russell.

The extreme form of the wave must, as in Art. 246, have a sharp crest of

120; and since the fluid is there at rest we shall have c
2
=2^a. If the

formula (9) were applicable to such an extreme case, it would follow that

a = h.

If we put, for shortness,

h?(h+a)
y-l-n, g^

= &> (io)

we find, from (8)

<r*\i
l -$- (11)

the integral of which is

77
= aSech2

^, (12)

if the origin of x be taken beneath the summit.

There is no definite
'

length
'

of the wave, but we may note, as a rough
indication of its extent, that the elevation has one-tenth of its maximum

j

value when x/b
= 3636.

The annexed drawing of the curve

y = 1 + \ sech2

\x

represents the wave-profile in the case a = ^h. For lower waves the scale

of y must be contracted, and that of x enlarged, as indicated by the annexed

table giving the ratio b/h, which determines the horizontal scale, for various

values of a/h.
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a/A
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satisfies the conditions very approximately, provided

c2= ^tanmA, (17)M
and ma=\ sin2

ra(^+a), a = atan|m (h+ a), (18)

where a denotes the maximum elevation above the mean level, and a is a subsidiary

constant. In a subsequent paper* the extreme form of the wave when the crest has a

sharp angle of 120 was examined. The limiting value of the ratio ajh was found to be -78,

in which case the wave-velocity is given by c2= V56gh.

249. By a slight modification the investigation of Rayleigh and

Boussinesq can be made to give the theory of a system of oscillatory waves

of finite height in a canal of limited depth y. In the steady-motion form of

the problem the momentum per wave-length (A.) is represented by

llpudxdy = p \\
^ dxdy = pfaX, (19)

where fa corresponds to the free surface. If h be the mean depth, this

momentum may be equated to pchX, where c denotes (in a sense) the mean

velocity of the stream. On this understanding we have, at the surface,

fa = ch, as before. The arbitrary constant in (3), on the other hand, must

be left for the moment undetermined, so that we write

u*+v2 = C-2gy (20)

We then find, in place of (8),

y''=%(y-i){^-y){y-h) (21)

where h1} A2 are the upper and lower limits of y, and

r2h 2

ghju

It is implied that I cannot be greater than h 2 .

If we now write y = A, cos2

% + h2 sin
2

^, (23)

we find /S

C

^ = V{l-^
2 sin2

% }, (24)

^/{iS}- *=U <25)

j

* " On the Highest Wave of Permanent Type," Phil. Mag. (5), t. xxxviii. p. 351 (1894).

t Korteweg and De Vries,
" On the Change of Form of Long Waves advancing in a Beet

angular Canal, and on a New Type of Long Stationary Waves," Phil. Mag. (5), t. xxxix. p. 42!
;

(1895). The method adopted by these writers is somewhat different. Moreover, as the titl!

indicates, the paper includes an examination of the manner in which the wave-profile is chang

ing at any instant, if the conditions for permanency of type are not satisfied.

For other modifications of Lord Eayleigh's method reference may be made to Gwyther, Phh

Mag. (5), t. 1. pp. 213, 308, 349 (1900).
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Hence, if the origin of x be taken at a crest, we have

JO !-**-**<* V (26)

and y = h 2 + (h^-h2)cn
2 -. [mod. k] (27)*

The wave-length is given by

x=2C v(i-t?siP
-

xr 2^<*> <28>

Again, from (23) and (24),

(29)
Since this must be equal to hX, we have

(h-l)F1 (k) = (h 1 -l)E1 (k) (30)

In equations (25), (28), (30) we have four relations connecting the six

quantities hu h2 , I, k, X, yS, so that if two of these be assigned the rest are

analytically determinate. The wave-velocity c is then given by (22)f. For

example, the form of the waves, and their velocity, are determined by the

length X, and the height h^ of the crests above the bottom.

The solitary wave of Art. 248 is included as a particular case. If we

put l = h 2 ,
we have k= 1, and the formulae (28) and (30) then shew that

X = x
, /;._>

= h.

250. The theory of waves of permanent type has been brought into

relation with general dynamical principles by von HelmholtzJ.

If in the equations of motion of a '

gyrostatic
'

system, Art. 141 (24), we

put

where V is the potential energy, it appears that the conditions for steady

motion, with q1} q.iy ...qn constant, are

S7/
F+*)=0 ' k(V+K)=0 ' -

ai
(F+Jr)=0'-(2)

* The waves represented by (27) are called ' cnoidal waves '

by the authors cited. For the

method of proceeding to a higher approximation we must refer to the original paper.

t When the depth is finite, a question arises as to what is meant exactly by the 'velocity of

propagation.' The velocity adopted in the text is that of the wave-profile relative to the centre

of inertia of the mass of fluid included between two vertical planes at a distance apart equal to

the wave-length. Cf. Stokes, Math, and Phijs. Papers, t. i. p. 202.

t "Die Energie der Wogen und des Windes," Berl. Monatsber. July 17, 1890 [Ges. Abh.,
t. hi. p. 333].

262
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where K is the energy of the motion corresponding to any given values of

the coordinates qlf q2,...qn when these are prevented from varying by the

application of suitable extraneous forces.

This energy is here supposed expressed in terms of the constant momenta

corresponding to the ignored coordinates x> %',..., and of the palpable

coordinates qlf q2 ,
... qn . It may however also be expressed in terms of the

velocities ^, x',--- an(^ ^he coordinates qx , q2 ,
... qn ;

in this form we denote it

by T . It may be shewn, exactly as in Art. 142, that dTGjdqr
= dK/dqr ,

so

that the conditions (2) are equivalent to

1(F-T )
= 0, *L(F-r,)0, ..., -(V-T )

= 0. ...(3)
dqx

K

dq2 dqn

Hence the condition for free steady motion with any assigned constant

values of q1 , q2 ,
... qn is that the corresponding value of V+ K, or of V T ,

should be stationary. Cf. Art. 202 (11).

Further, if in the equations of Art. 141 we write dV/dqr + Q, for Q r ,
so

that Qr now denotes a component of extraneous force, we find, on multiplying

by <?i, <j2 . Qn in order, and adding,

%(+V+K)=Qlql + Q4a +...+Qnqn , (4)

where ^ is the part of the energy which involves the velocities qx , q2 ,
... qn .

It follows, by the same argument as in Art. 204, that the condition for

'

secular
'

stability, when there are dissipative forces affecting the coordinates

q1} q2 ,
... qn ,

but not the ignored coordinates %, %, ,
is that V+K should

be a minimum.

In the application to the problem of stationary waves, it will tend to

clearness if we eliminate all infinities from the question by imagining that

the fluid circulates in a ring-shaped canal of uniform rectangular section (the i

sides being horizontal and vertical), of very large radius. The generalized

velocity x corresponding to the ignored coordinate may be taken to be the I

flux per unit breadth of the channel, and the constant momentum of the
j

circulation may be replaced by the cyclic constant k. The coordinates
j

qlt q2 , ...qn of the general theory are now represented by the value of the

surface-elevation {rj) considered as a function of the longitudinal space- j

coordinate x. The corresponding components of extraneous force are repre-

sented by arbitrary pressures applied to the surface.

If I denote the whole length of the circuit, then considering unit breadth

of the canal we have

V=Wp\ V
2
dx, (5)
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where 77 is subject to the condition

n
rjdx = (6)/

If we could with the same ease obtain a general expression for the kinetic

energy of the steady motion corresponding to any prescribed form of the

surface, the minimum condition in either of the forms above given would, by
the usual processes of the Calculus of Variations, lead to a determination of

the possible forms, if any, of stationary waves*.

Practically, this is not feasible, except by methods of successive approxi-

mation, but we may illustrate the question by reproducing, on the basis of

the present theory, the results already obtained for
'

long' waves of infinitely

small amplitude.

If h be the depth of the canal, the velocity in any section when the surface is maintained

at rest, with arbitrary elevation
j],

is x/(h+ r}), where x is the flux. Hence, for the cyclic

constant,

=*/>
+,>-'^4(i +i/W) to

approximately, where the term of the first order in
rj
has been omitted, in virtue of (6).

The kinetic energy, p<x, may be expressed in terms of either x or < We thus obtain

the forms

^-iT-'KV/*) (8)

*-** (-)>*) <9>

The variable part of V T is

*'('-) Js**' (10)

and that of V+K is

*'('-)/!''* (n)

It is obvious that these are both stationary for
17 0; and that they will be stationary

for any infinitely small values of
17, provided jf=gh

3
, or K 2

=gkl
2

. If we put x= cA, or

r = rf, this condition gives

c^A, (12)

in agreement with Art. 174.

It appears, moreover, that
17
=0 makes V+K a maximum or a minimum according as

c2 is greater or less than gh. In other words, the plane form of the surface is secularly

For some general considerations bearing on the problem of stationary waves on the common
surface of two currents reference may be made to von Helmholtz' paper. This also contains, at

the end, some speculations, based on calculations of energy and momentum, as to the length of

the waves which would be excited in the first instance by a wind of given velocity. These appear
to involve the assumption that the waves will necessarily be of permanent type, since it is only
on some such hypothesis that we get a determinate value for the momentum of a train of waves
of small amplitude.
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stable if, and only if, c < -J(gh). It is to be remarked, however, that the dissipative forces

here contemplated are of a special character, viz. they affect the vertical motion of the

surface, but not (directly) the flow of the liquid. It is otherwise evident from Art. 174

that if pressures be applied to maintain any given constant form of the surface, then if

c2 >ffh these pressures must be greatest over the elevations and least over the depres-

sions. Hence if the pressures be removed, the inequalities of the surface will tend to

increase.

Wave-Propagation in Two Dimensions.

251. We may next consider some cases of wave-propagation in two

horizontal dimensions x, y. The axis of z being drawn vertically upwards,
we have, on the hypothesis of infinitely small motions,

Ht-^ (() (1)

where < satisfies V 2<=0 (2)

The arbitrary function F(t) may be supposed merged in the value of
d(f>/dt.

If the origin be taken in the undisturbed surface, and if denote the

elevation at time t above this level, the pressure-condition to be satisfied at

the surface is

dt9
(3)

2=0

and the kinematical surface-condition is

chl

(4)dt dz

**
= 9iz (6)

z=0

cf. Art. 226. Hence, for z = 0, we must have

5J*'i?-*
(5 >

or, in the case of simple-harmonic motion,

dz

if the time-factor be e*(^+ e
).

The fluid being supposed to extend to infinity, horizontally and down-

wards, we may briefly examine, in the first place, the effect of a local initial

disturbance of the surface, in the case of symmetry about the origin.

The typical solution for the case of initial rest is easily seen, on reference

to Art. 100, to be

<
f
> = g ^V~ &kZ J (k^>

I (7)

= cos at J (k^r),
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provided
c2 =

<jr&, (8)

as in Art. 227.

To generalize this, subject to the condition of symmetry, we have

recourse to the theorem

/(*)={* J (k*)kdk ("f(a)J (Jca)ada (9)
-o -o

of Art. 100 (12). Thus, corresponding to the initial conditions,

*/(* </>
= o, (10)

.(li)

we have <f>
= g \

Sm ^
e* J (A-w) kdk /(a) Jo (ka) ada,

Jo
"

Jo

=
[ cos o-f J (&*0 & d&

I /() Jo (&*) a da.

Jo Jo '

If the initial elevation be concentrated in the immediate neighbourhood

of the origin, then, assuming

P/(3)27racfa
= l, (12)

Jo

we have <f>= #- f ^^fJ.(k*)kdk (13)
27tJ a-

Expanding, and making use of (8), we get

^.^"||.-tffti
+
^i--...J^/.(*-)dt

(14)

Ifweput z = rcosd, r = rsin0, (15)

we have P eFJ (kv)dk = - (16)
Jo r

by Art. 102 (9), and thence*

Jlw.WM-g'i-.l^ ()

where /x
= cos (cf. Art. 85). Hence

. gtiPA*) &*PM ,(9*Y*1JW) _ \ (18 )

2tt\ r* 3! r 5! r*

From this the value of is to be obtained by (3). It appears from

Arts. 84, 85 that

1.3...(2n-l)Pm+* (0) = 0, Pm (0)
=

(
-

)-
2 4

,2n
(19)

*
Hobson, Proc. Zand. J/aM. Soc, t. xxv. pp. 72, 73. This formula may, however, be

dispensed with ; see the foot-note on p. 365 ante.



408 Surface Waves [chap, ix

whence

t_
27rOT2 l2!^ 6! W +

10! VW '"
J

^ '

It follows that any particular phase of the motion is associated with

a particular value of gt*/nr, and thence that the various phases travel radially
outwards from the origin, each with a constant acceleration.

No exact equivalent for (20), analogous to the formula (20) of Art. 236 which was
obtained in the two-dimensional form of the problem, and accordingly suitable for dis-

cussion in the case where gfi\-m is large, has as yet been discovered. Cauchy and Poisson

have, however, given processes of approximation. The method of the latter writer is

substantially as follows. Since, by Art. 100(7),

rr J (

cos (kvj cos ft) rfft, (21)
o

the second of the equations (11) may be written, under the present circumstances,

r~~
i 'jo r oo r i I

f=lim ---_ / cos atet'dk
J

'cos (km cos ft) rfft , (22)

where z is supposed to be negative before the limit. It may be shewn, exactly as in

Art. 236, that when g&jZw, and therefore, a fortiori, gt
2
/(2xs cos ft) is large,

r
It '\

lim I cos <rt cos (km cos ft) g* dk^ ,?
;

, (cos lo>'+ sin &>'), (23)
z=o Jo 2arcosft

v z z ' v '

where m =gt
2
j(2-m cos ft). Hence

f= ~/o UPM {cos (^0, sec ft) + sin (Usee ft)} f-, (24)
(2nwy

t

g
<iat Jo cos4

ft

where co = |^- (25)
2ar v

The definite integral in (24) is equivalent to

/ {cos (^o) cosh ) + sin (< cosh
)} ^(cosh w) ofo, (26)

or / {cos(^o) + o)sinh2
^w)-|-sin (|w + cosinh2 ^)}

\oi, i i \ . 2tanh^a?(sinh2
iw)) ,__-x ^2rf(smh $)+ 77 f .

v

t-r-^r (
27 )

I
x J '

^/(cosh w)+coshw J

Since

I cos(casinh
2
^w)c?(sinhi^)= / sin(<osinh

2
|w)c?(sinhw)= /j^, .(28)

the first part of the integral (27) reduces to

'2/ cos^o) (29)

The coefficient of d (sinh
2
\ u), in the second part, vanishes for u= and u = oo

;
and Poisson

* This result was given by Cauchy and Poisson.
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proceeds to shew by a series of partial integrations that, when a> is large, this second part

may be neglected. Hence, substituting the form (29) in (24), we find

1 c2 at2

C= T ^cosf-, (30)

or keeping, for consistency, only the most important term,

^-J^cosf , i (31)
2 i n -s3 4cr'

a result given by Cauchy and Poisson.

It is not necessary to dwell on the interpretation, which will be readily understood

from what has been said in Art. 238 -with respect to the two-dimensional case. The

consequences were worked out in some detail by Poisson on the hypothesis of an initial

paraboloidal depression.

When the initial data are of impulse, the typical solution is

(f>
= cos at e^ J {kxar), \

q = a sin at J (&),

which, being generalized, gives, for the initial conditions

p<t>
= F(*r), f=0, (33)

the solution

If" f*
<p
= -

|
cos at e**J (M k dk F (a) J (ka) a di,

pJo Jo

=
/

a sin at J (ki*)kdk I F (a) J (ka) ada.
\

9PJo Jo J

In particular, for a concentrated impulse at the origin, such that

J
F(a)2irada=l, (35)

1 C
m

we find <f>=- I cos at e^J (k*r) kdk (36)

Since this may be written

^rsf'^W** (37>
z-rrp 0tJ Q a v '

we find, performing l/gp.d/dt on the results contained in (18) and (20),

*
Zirpl r 2! r 4! f* '"]'

S

2irp-n*\ 5! VW 9! \vr)
'"

)'

Again, when g^j2m is large, we have, in place of (31),

(= - .9* sin (39)

2*7rpt3r
4 4^

(34)

(38)
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252. We may next investigate the effect of a local periodic pressure

applied to the surface, following the method of Art. 239.

In the three-dimensional form of the problem, we have, in place of

Art. 239 (4),

-~fiP = P[ft -9* + W>) (1)

This gives r= !*fe + ^_& f (2)6
9 M 9 9P

subject to the kinematical condition (4) of Art. 251.
g

In the case of symmetry about the axis of z> assuming

p = J (km) +*, </>
= Ce^te J (knr), (3)

we find (gk
2 - a- + ifia) C = - , (4)

k
and thence 9P% = ~ k-U-i )

J (k ) et<Tt
> (5 '

where K =
~a' /Xl=

~a
' ^

as in Art. 239.

Hence, corresponding to a symmetrical surface-pressure

pQ =f^)e^, (7)

we find (see Art. 251 (9))

gp^- ei<rtr^}^ r
f(a) Jo(ka)ada (8)

Thus, for an integral pressure Pei,Tt distributed uniformly over a circl<

of radius a, we have

\ f(<x)Jo(koL)d*= f J*(k*)adoL= -j-Jx (ka\ (9) !

J o
* "n"a J TTKQj

and thence mt- * I'^^ftdk (10)

Returning to the general case, since

&J9(k*)=-- v~J (k^), (11)
-or cot vts

by the differential equation of J0) we have

fff,i|4 r.^/v<.)j.<*.).* (12)
,7r

-ex d-or ocrj k (K tfli) Jo
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For a concentrated pressure Pe i<Tt at the origin, this becomes

^ =
"2^"w^ W ^,' *-(*-/*,)'.

( }

Now, since J (&)= / sin (&w cosh u) du, (14)
"TTJq

by Art. 192 (7), we have

f* J (knr)dk [*d r e'*WC06hM ~ e-'*WC09hw

.' k-(K-ifj^) ttJo Jo *(* /*,)

= -- 27rte-'<'->'^^h "-2(/
x1 + i'/c)

1- -^~[du, ...(15)
7tJ ( Jo m2 - (^ + i/c^J

where the definite integral with respect to k has been transformed by the

method of Art. 241.

We may now put fix =0 without inconvenience; thus

..
/

J (kvr)dk 2* r- re-^*ht rfw

where D is the function defined in Art. 192. Hence (13) becomes*

where the series in
{ }

is of the semi-convergent kind. At distances w
which are great compared with 2tt/k, the first term only is sensible, and we
have

g9* = "WP^A (*) = 77^ -1 *-, (18)
VV-Tr/corj

approximately. This gives a system of annular waves whose amplitude
varies inversely as the square root of the distance from the origin.

Taking the real part of our expressions, we find, from (17),

-J;
= -= J (kts) cos at + terms in sin at (19)

ot Igp

Hence the mean rate at which the concentrated pressure P cos at does

work in generating waves is

arVP2 a*!* /9mor tt-1 (20)

Use is here made of the identity

*L J_ e
- m-ar cosh =m2e

-iw cosh M_^. 0_ , -mv cosh u ginh *

57 r?zr etc or Su
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varying as the fifth power of the frequency. The contrast with the case of

a periodic force acting at a point in an infinite elastic solid, and other similar

problems, where the rate of work varies as the square of the frequency, is
j

interesting from the point of view of the dynamics of dispersive media*.

253. We proceed to consider the effect of a local disturbance of pressure i

advancing with constant velocity over the surface. This will give us, at all

events as to the main features, an explanation of the peculiar system of waves

which is seen to accompany a ship moving through sufficiently deep water.

A complete investigation, after the manner of Arts. 240, 241, would

appear to be somewhat difficult; but the general characteristics can readily

be made out with the help of preceding results.

Let us suppose that we have a pressure -point moving with velocity c

along the axis of x, in the negative direction, and that at the instant under

consideration it has reached a point 0. The elevation at any point P may
}

be regarded as due to a series of infinitely small impulses applied at equal!

infinitely short intervals at points of the axis of x to the right of 0. Of the;

annular wave-systems thus successively generated, those only will combine

to produce a sensible effect at P which had their origin in the neighbourhood
of a certain point Q, determined by the consideration that the phase at P h

'stationary' for variations in the position of Q. Now if t is the time which

the source of disturbance has taken to travel from Q to 0, the phase of th(

waves at P, originated at Q, is

t+^ w
i

where or = QP (Art. 251 (39)). Hence the condition for stationary phase is

2ct

*"T (2)

Since, in this differentiation, and P are regarded as fixed, we have is = c cos <;

where 6 = 0QP; hence

0Q = ct = 2>GT seed (3)

*
Arts. 251, 252 are taken from a paper cited on p. 378 ante.
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It is further evident that the points in the immediate neighbourhood
of P, for which the resultant phase is the same as at P, will lie in a line

perpendicular to QP. A glance at the figure on the opposite page then shews

that the curve of the wave-ridges is characterized by the property that the

tangent bisects the interval between the origin and the foot of the normal.

If p denote the perpendicular from the origin to the tangent, and the angle
which p makes with the axis of x, we have, by a known formula,

P7- dP.

whence 2p
dp
de COt0,

p = a cos1 0. (5)

onsecutive wave-ridges the values of the arbitrary constant a differ by
_- g. This is easily seen by considering the parts of the curves for which

all.

The forms of the curves are shewn in the annexed figure*, traced from
the equations

x= pcos0 -^sin0= la (5 cos cos 30), Jdo

y =p sin + - cos = la (sin + sin 30).

.(6)

*
Cf. Sir W. Thomson, " On Ship Waves," Proe. Inst. Mech. Eng., Aug. 3, 1887 [Popular

Lectures, t. iii. p. 482] where a similar drawing is given. The investigation there referred to,



414 Surface Waves [chap. IX

The values of x and y are stationary when sin2 6
;
this gives a series

of cusps lying on the straight lines

1= +
2V2

= + tan 19 28'. (7)

Although the mode of disturbance is different, the action of the bows of

a ship may be roughly compared to that of a pressure-point of the kind we

have been considering. The preceding figure accounts clearly for the two

systems of transverse and lateral waves which are in fact observed, and

for the specially conspicuous
' echelon

'

waves at the cusps, where these two

systems coalesce. These are well shewn in the annexed drawing* by
Mr It. E. Froude of the waves produced by a model.

A similar system of waves is generated at the stern of the ship, whicl!

may roughly be regarded as a negative pressure-point. With varying speedr

of the ship the stern-waves may tend partially to annul, or to reinforce!

the effect of the bow-waves, and consequently the wave-resistance to th(

based apparently on the theory of group-velocity,' has unfortunately not been published. Se

also R. E. Froude, "On Ship Resistance," Papers of the Greenock Phil. Soc, Jan. 19, 1894.

In the preceding edition of this work it was assumed that the effect of a pressure concentrate

at a point might be inferred by superposing lines of pressure (through O) uniformly in a

azimuths, and using the results of Art. 241. It is easily seen, however, that such a distributio

of lines of pressure is equivalent to a pressure-intensity varying inversely as the distance from C

This is not an adequate representation of a localized pressure, since it makes the total pressui

on a circular area having its centre at increase indefinitely with the radius of the
circltj

(Phil. Trans., A, t. cciii. p. 33.) The assumption in question leads to the same configuration (

the wave-ridges as in the text, but would give a different distribution of the elevation f i|

the system.
*

Copied, by permission of Mr Froude and the Council of the Institute of Naval Architect,

from a paper by the late W. Froude,
" On the Effect on the Wave-Making Resistance of Ships <l

Length of Parallel Middle Body," Trans. Inst. Nav. Arch., t. xvii. (1877).
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ship as a whole for a given speed may fluctuate up and down as the length
of the ship is increased*. Cf. Art. 242.

To obtain an approximate estimate of the actual height of the waves, in

our special form of the problem, in the different parts of the system, we have

recourse to the formula (39) of Art. 251. If PQ denote the total disturbing

pressure, the elevation at P due to the annular wave-system started at

a point Q' to the right of may be written

! tsSj^-^Sp-**- <>

where tz'^PQi, t' = ^- .

c

This is to be integrated with respect to If, but (as already explained) the only

parts of the integral which contribute appreciably to the final result will be

those for which if has very nearly the value (t) corresponding to the special

point Q above determined.

As regards the phase, we have, writing t' t + t,

4w'"4ff
f dW 1.2'^lW ^ '

The second term vanishes by hypothesis, since the phase at P for waves

started near Q is
'

stationary.' Again, we find

dt* VW 2r *r* 4 V
* *rV

"

sk /i
^sin2 ^ ,,

*

omce r=ccos0, ct =
, (10)

this reduces, with the help of (2), to

dt ()-*<* -*"> ()

Owing to the fluctuations of the trigonometrical term no great error

will be committed if we neglect the variation of the first factor in (8), or if,

further, we take the limits of integration with respect to t to be + oo .

Hence at a point P on a wave-ridge, where

f- = 2S7T i7T,
4sr

l

See W. Froude, l.c, and R. E. Froode, "On the Leading Phenomena of the Wave-Making
Besistance of Ships," Trans. Inst. Nav. Arch., t. rxii. (1881), where drawings of actual wave-

patterns under varied conditions of speed are given, which are, as to their main features, in

striking agreement with the results of the above theory. Some of these drawings are reproduced
in Lord Kelvin's paper in the Proc. Inst. Mech. Eng., above cited.

For a discussion of the wave-resistance encountered by an ideal form of ship see Michell,
Phil. Mag. (5), t. xlv. p. 106 (1898).
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s being integral, we have

^s^SjosmVdT
' (12)

approximately, provided

m2 = ^||-tan2

0j (13)

The definite integral in (12) is equal to \I{\tt) . m-1
,
the positive value of m

being understood. Hence, the elevation along the wave-ridge whose parameter
is a is found to be

t= glP sec3 e
H4Y*b

7ri/>c
3

a*V|l-3sin
2

(9|

y }

The formula makes infinite at a cusp, where sin2

0=^, but this is

merely an indication of the failure of our approximation. That the elevation

at a point P in the neighbourhood of a cusp would be relatively great might
have been foreseen, since, as appears from (9) and (11), the range of points

on the axis of x which have sent waves to P in sensibly the same phase is

then abnormally extended.

The infinity which occurs when 6 = \ir is of a somewhat different

character, being due to the artificial nature of the assumption we have made,

of a pressure concentrated at a point. With a diffused pressure this difficulty

would disappear.

It is to be noticed, moreover, that the whole of this investigation applies

only to points for which gt
%

\^ts is large ;
cf. Arts. 238, 251. It will be

found on examination, that this restriction is equivalent to an assumption

that the parameter a is large compared with 2jrc2/g. The argument there-

fore does not apply without reserve to the parts of the wave-pattern near the

origin.

To examine the modification produced in the wave-pattern when the

depth of the water has to be taken into account, the preceding argument
must be put in a more general form. If, as before, t is the time the

pressure-point has taken to travel from Q to 0, it may be shewn that the

phase of the disturbance at P, due to the impulse delivered at Q, will differ

only by a constant from

k(Vt-*r), (15)

if 2ir/k be the predominant wave-length in the neighbourhood of P, and

V the corresponding wave-velocityf. This predominant wave-length is

* The reader may test the above method by applying it to find the amplitude of the waves in

the two-dimensional problem of Art. 241, assuming the formula (35) of Art. 237 for the effect of a !

single impulse.

f The symbol c, which was previously employed in this sense, now denotes the velocity of I

the pressure-point over the water.



253] Effect of Finite Depth 417

determined by the condition that the phase is stationary for variations of

the wave-length only, i.e.

^.k(Vt-*T) = 0, or v=Ut, .. (16)OK

where V, = d (kV)/dk, is the group-velocity (Art. 234)*.

For the effective part of the disturbance at P, the phase (15) must

further be stationary as regards variations in the position of Q; hence,

differentiating partially with respect to t, we have

*=F, or F=ccos0, (17)

since is = c cos 6. Now, referring to the figure on p. 412, we have

p = ctcos0-sy= Vt-vr (18)

Hence for a given wave-ridge p will bear a constant ratio to the wave-

length X, and in passing from one wave-ridge to the next this ratio will

, increase (or decrease) by unity. Since X is determined as a function of

by (17), this gives the relation between p and 6.

Thus in the case of infinite depth, the formula (17) gives

ccos2 (?=F2 =
^, (19)

and the required relation is of the form

p = aco&0, (20)
as above.

When the depth (h) is finite, we have

<*co80 = F = g*'tanh ~, (21)
Ztt X

and the relation is

tanh- = 4cos2
0, (22)a p gn

v y

i where the values of a for successive wave-ridges are in arithmetic pro-

gression. The forms of the curves in various cases have been sketched by

Ekmanf. Since the expression on the left-hand side cannot exceed unity,

it appears that if c2 > gh there will be an inferior limit to the value of 6,

determined by

cos' = 2*
(23)

It follows that when the speed of the disturbing influence exceeds J(gh)

*
Cf. Sir W. Thomson, "On the Waves produced by a Single Impulse in Water of any Depth,

or in a Dispersive Medium," Proc. R. S., t. xlii. p. 80 (1887), where the argument (which is easily

', extended) is given for the two-dimensional case.

t I.e. ante p. 354.

L. 27
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the transverse waves disappear, and we have only the lateral waves.

This tends to diminish the wave-making resistance (cf. Art. 245)*.

Standing Waves in Limited Masses of Water.

254. The problem of free oscillations in two horizontal dimensions (%, y),

in the case where the depth is uniform and the fluid is bounded laterally by

vertical walls, can be reduced to the same analytical form as in Art. 187.,

If the origin be taken in the undisturbed surface, and if denote the

elevation at time t above this level, the conditions to be satisfied at the free

surface are as in Art. 251 (3), (4).

The equation of continuity, V
2

<f>
= 0, and the condition of zero vertical

motion at the depth z = h, are both satisfied by

<f>
=

<j>i
cosh k (z + h), (1)

where ^ is a function of x, y, such that

*|+*A-o
The form of < x and the admissible values of k are determined by this

equation, and by the condition that

- m i

at the vertical walls. The corresponding values of the '

speed
'

(<x) of the

oscillations are then given by the surface-condition (6), of Art. 251
;

viz. we
\

have
a* = gk t&nh kh (4)

This makes = sinhM.^ (5)
O"

The conditions (2) and (3) are of the same form as in the case of small

depth, and we could therefore at once write down the results for a rectangular

or a circular
j-

tank. The values of k, and the forms of the free surface, in the

Various fundamental modes, are the same as in Arts. 188, 189 j, but the
j

*
It is found that the power required to propel a torpedo-boat in relatively shallow water :

increases with the speed up to a certain critical velocity, dependent on the depth, then decreases, ;

and finally increases again. See papers by Yarrow and Marriner, Trans. Inst. Nav. Arch. t. xlvii.

pp. 339, 344 (1905).

f For references to the original investigations by Poisson and Lord Rayleigh of waves in a

circular tank see p. 272. The problem was also treated by Merian, Ueber die Bewegung

tropfbarer Flussigkeiten in Gefdssen, Basel, 1828 [see VonderMiihll, Math. Ann., t. xxvii.

p. 575] and by Ostrogradsky,
" Memoire sur la propagation des ondes dans un bassic

cylindrique," Mem. des Sav. Etrang., t. iii. (1832).

X It may be remarked that either of the two modes figured on pp. 271, 272, may be easilj

excited by properly-timed horizontal agitation of a tumbler containing water.
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amplitude of the oscillation now diminishes with increasing depth below the

surface, according to the law (1) ;
whilst the speed of any particular mode is

given by (4).

When kh is small, we have er
2 =Jcsgh, as in the Arts, referred to.

255. The number of cases of motion with a variable depth, of which the

solution has been obtained, is very small.

1. We may notice, first, |the two-dimensional oscillations of water across a channel

whose section consists of two straight lines inclined at 45 to the vertical*.

The axes of y, z being respectively horizontal and vertical, in the plane of a cross-

section, we assume

<f)+ty= A {cosh, k (y+ iz) + cos k
(1/+ iz)}, (1)

the time-factor cos (at+ e) being understood. This gives

<(>
=A (cosh Icy cos kz+ cos ley cosh kz), ^r

=A (sinh ley sin lcz sin ley sinh lez). . . .(2)

The latter formula shews at once that the lines y= z constitute the stream-line ^=0,
and may therefore be taken as fixed boundaries.

The condition to be satisfied at the free surface is, as in Art. 226,

^-*5 <3>

Substituting from (2) we find, if A denote the height of the surface above the origin,

(7
s
(cosh ley cos leh+ cos ley cosh lek) =gk (

cosh ley sin kh + cos ley sinh kh).

This will be satisfied for all values of y, provided

a3 cos kh= gk sin kh, a2 cosh kh=gk sinh kh, (4)

whence tanhH=-tanM (5)

This determines the admissible values of k; the corresponding values of a are then given

by either of the equations (4).

Since (2) makes (f>
an even function of y, the oscillations which it represents are sym-

metrical with respect to the medial plane y=0.

The asymmetrical oscillations are given by

(f} + iijr=ziA {cosh k(y+ iz)- cos k(y+ iz)}, (6)

Mr
<j>

~ A (sinh ley sin kz+ sin ky sinh kz), ^=A (cosh ley cos kz
- cos ky cosh kz). . . .(7)

The stream-line ^= consists, as before, of the lines y= z; and the surface-condition (3)

i?ives

o-
2
(sinh ky sin kh+ sin ky sinh kh)gk (sinh ky cos kh+sin ky cosh kh).

This requires

a-
2 sin kh=gk cos kh, <r

2 sinh kh =gk cosh kh, (8)

whence tanh*A=tanX-A (9)

Kirchhoff,
" Ueber stehende Schwingungen einer schweren Flussigkeit," Berl. Monatsber.,

toy 15, 1879 [Ges. Abh., p. 428]; Greenhill, I.e. ante p. 356.

272
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The equations (5) and (9) present themselves in the theory of the lateral vibrations of

a bar free at both ends
; viz. they are both included in the equation

cos m cosh m=l, (10)*

where m= 2kh.

The root M=0, of (9), which is extraneous in the theory referred to, is now important;
it corresponds in fact to the slowest mode of oscillation in the present problem. Putting
Ak2= B, and making k infinitesimal, the formulae (7) become, on restoring the time-factor,

and taking the real parts,

(f> =-2Byz. COS {at+ e), V=.g(#
2 -z2

). cos(<ri!+ e), (11)

whilst from (8) o-
2

=| (12)

The corresponding form of the free surface is

H[^l=r 2^- sin(*'+) (13)

The surface in this mode is therefore always plane. The annexed figure shews the lines of

motion (<//= const.) for a series of equidistant values of
>//-.

The next gravest mode is symmetrical, and is given by the lowest finite root of (5)

which is M= 2"3650, whence a= P5244 (g/h)^. The profile of the surface has now two nodes

whose positions are determined by putting 0=0, z=h, in (2); whence it is found that

|=-5516t.n

The next mode corresponds to the lowest finite root of (9), and so on \.

2. Greenhill, in the paper already cited, has investigated the symmetrical oscillatior

* Cf. Lord Kayleigh, Theory of Sound, t. i., Art. 170, where the numerical solution of tl
1

equation is fully discussed.

t Lord Kayleigh, Theory of Sound, Art. 178.

% An experimental verification of the frequencies, and of the positions of the loops (places

maximum vertical amplitude), in various fundamental modes, was made by Kirchhoff ai

Hansemann,
" Ueber stehende Schwingungen des Wassers," Wied. Ann., t. x. (1880) [Kircbho

Ges. Abh., p. 442].
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of the water across a channel whose section consists of two straight lines inclined at 60 to

the vertical. In the (analytically) simplest mode of this kind we have, omitting the time-

factor,

(f>+i+=iA (y+izf+B, (14)

or 4>=Az(*-3f) + B, ^=Jy(y2-322
;, (15)

the latter formula making ty
= along the boundaryy=*/3.z. The surface-condition (3)

is satisfied for z= h, provided

a2 =g/h J
B=2Ah3

(16)

The corresponding form of the free surface is

*4KL" -<*-^"to <''+ '> <17 '

;

a parabolic cylinder, with two nodes at distances of *5774 of the half-breadth from the

centre. The slowest mode, which must evidently be of asymmetrical type, has not yet
been determined.

3. If in any of the above cases we transfer the origin to either edge of the canal, and

then make the breadth infinite, we get a system of standing waves on a sea bounded by a

sloping bank This may be regarded as made up of an incident and a reflected system.
The reflection is complete, but there is in general a change of phase.

When the inclination of the bank is 45 the solution is

<f>
=H {e* (cosily- sin hy)+e~

lc*
(cos kz+ sin kz)} cos (<rt+ e) (18)

For an inclination of 30 to the horizontal we have

<f>
-H {e** sin ley+ e

~**(^+*> sin \k (y
-
J3z)

-V^'^^^-^cos^^+V^cos^+c) (19)

I In each case a2 =gl; as
#
in the case of waves on an unlimited sheet of deep water.

These results, which may easily be verified ab initio, were given by Kirchhoff (I.e.).

256. An interesting problem which presents itself in this connection is

that of the transversal oscillations of water contained in a canal of circular

section. This has not yet been solved, but it may be worth while to point
out that an approximate determination of the frequency of the slowest mode,
in the case where the free surface is at the level of the axis, can be effected

by Lord Rayleigh's method, explained in Art. 167.

If we assume as an '

approximate type
'

that in which the free surface

remains always plane, making a small angle (say) with the horizontal, it

appears, from Art. 72, 3, that the kinetic energy T is given by

2r=
(!-?)"**

where a is the radius, whilst for the potential energy V we have

2V=yPa>F (2)
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If we assume that 6 <x cos (at + e), this gives

*2 = 48^k4 (3)

whence <r = 1169 (g/a)**.

In the case of a rectangular section of breadth 2a, and depth a, the speed

is given by Art. 254 (4), where we must put k = ir\2a from Art. 188, and

h = a. This gives

a2 =
\ir tanh \-k .

^
, (4)

or a= 1*200 (g/a)*. The frequency in the actual problem is less, since the

kinetic energy due to a given motion of the surface is greater, whilst the

potential energy for a given deformation is the same. Cf. Art. 45.

257. We may next consider the free oscillations of the water included

between two transverse partitions in a uniform horizontal canal. Before

proceeding to particular cases, we may examine for a moment the nature of

the analytical problem.

If the axis of x be parallel to the length, and the origin be taken in one

of the ends, the velocity potential in any one of the fundamental modes

referred to may, by Fourier's theorem, be supposed expressed in the form

(f)
= (P + Px cos kx + P2 cos 2kx + . . . + P cos skx + . . .) cos (at + e), . . .(1)

where k = tt/1, if I denote the length of the compartment. The coefficients

Ps are here functions of y, z. If the axis of z be drawn vertically upwards,

and that of y be therefore horizontal and transverse to the canal, the forms

of these functions, and the admissible values of a, are to be determined from

the equation of continuity

V0 =
O, (2)

7)rk

with the conditions that -^- = (3)
on

at the sides, and that a 2

(f>
= g

~- (4)

at the free surface. Since d(f>/dx must vanish for #=0and x = l, it follows

from known principlesf that each term in (1) must satisfy the conditions

(2), (3), (4) independently ;
viz. we must have

"
+^-;>. .o. (5j

oy
2

az-

* Lord Rayleigh finds, as a closer approximation, <r= 1-1644 (g/a)^; see Phil. Mag. (5), t. xlvn

p. 566 (1899) [Sc. Papers, t. iv. p. 407].

t See Stokes,
" On the Critical Values of the Sums of Periodic Series," Camb. Trans., t. via

(1847) [Math, and Phys. Papers, t. i. p. 236].
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"th liH ()

at the lateral boundary, and

dP,-p<=^ <7>

at the free surface.

The term P gives purely transverse oscillations such as have been

discussed in Art. 255. Any other term Ps os skx gives a series of fundamental

modes with s nodal lines transverse to the canal, and 0, 1, 2, 3, ... nodal lines

parallel to the length.

It will be sufficient for our purpose to consider the term P1 cos kx. It is

evident that the assumption

<f>
= Pi cos kx . cos {at + e), (8)

with a proper form of Px and the corresponding value of a determined as

above, gives the velocity-potential of a possible system of standing waves, of

arbitrary wave-length 1ir\k, in an unlimited canal of the given form of

section. Now, as explained in Art. 228, by superposition of two properly

adjusted systems of standing waves of this type we can build up a system of

progressive waves

<f>
= P1 cos(kx+at) (9)

infer that progressive waves of simple-harmonic profile, of any assigned

wave-length, are possible in an infinitely long canal of any uniform section.

We might go further, and assert the possibility of an infinite number of

types, of any given wave-length, with wave-velocities ranging from a certain

st value to infinity. The types, however, in which there are longitudinal
nodes at a distance from the sides are from the present point of view of

subordinate interest.

Two extreme cases call for special notice, viz. where the wave-length is

very great or very small compared with the dimensions of the transverse

section.

The most interesting types of the former class have no longitudinal nodes,

and are covered by the general theory of
'

long
'

waves given in Arts. 168, 169.

The only additional information we can look for is as to the shapes of the

wave-ridges in the direction transverse to the canal.

In the case of relatively short waves, the most important type is one in

which the ridges extend across the canal with gradually varying height,
and the wave-velocity is that of free waves on deep water as given by
Art. 228 (6).

There is another type of short waves which may present itself when the

banks are inclined, and which we may distinguish by the name of '

edge-
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waves,' since the amplitude diminishes exponentially as the distance from the

bank increases. In fact, if the amplitude at the edges be within the limits

imposed by our approximations, it will become altogether insensible at

a distance whose projection on the slope exceeds a wave-length. The wave-

velocity is less than that of waves of the same length on deep water. It

does not appear that the type of motion here referred to is very important.

A general formula for these edge-waves has been given by Stokes*.

Taking the origin in one edge, the axis of z vertically upwards, and that of y
transverse to the canal, and treating the breadth as relatively infinite, the

formula in question is

<)
) = He-k ^ C0^- zs[n^ cos k(x-ct), (10)

where ft is the slope of the bank to the horizontal, and

c =
(fsin/3)*

(11)

The reader will have no difficulty in verifying this result.

258. We proceed to the consideration of some special cases. We shall

treat the question as one of standing waves in an infinitely long canal, or in

a compartment bounded by two transverse partitions whose distance apart is

a multiple of half the arbitrary wave-length (2ir/k), but the investigations
can easily be modified as above so as to apply to progressive waves, and we

shall occasionally state results in terms of the wave-velocity.

1. The solution for the case of a rectangular section, with horizontal bed and vertical

sides, could be written down at once from the results of Arts. 188, 254. The nodal lines

are transverse and longitudinal, except in the case of a coincidence in period between two

distinct modes, when more complex forms are possible. This will happen, for instance, in

the case of a square tank.

2. In the case of a canal whose section consists of two straight lines inclined at 45

to the vertical we have, first, a type discovered by Kellandt : viz. if the axis of x coincide

with the bottom line of the canal,

<f>
=A cosh

-j-
cosh

-7=
cos kx . cos(<r + e) (1)

This evidently satisfies v2$ = 0, and makes

*_^ (2 )

for y=z, respectively. The surface-condition (Art. 257 (4)) then gives

*-*"* (3)

*
"Beport on Kecent Researches in Hydrodynamics," Brit. Ass. Rep., 1846 [Math, and Phys.

Papers, t. i. p. 167].

t "On Waves," Trans. R. S. Edin., t. xiv. (1839).



257-258] Canal of Triangular Section 425

where h is the height of the free surface above the bottom Una If we put a=kc, the wave-

velocity c is given by

+-&**%>
where k=2irf\, if X be the wave-length.

When A/X is small, this reduces to

c={\gh)\ (5)

in agreement with Art. 169 (13), since the mean depth is now denoted by \h.

When, on the other hand, A/X is moderately large, we have

*-i5i (6)

The formula (1) indicates now a rapid increase of amplitude towards the sides. We
have here, in fact, an instance of 'edge-waves,' and the wave-velocity agrees with that

obtained by putting =45 in Stokes' formula.

The remaining types of oscillation which are symmetrical with respect to the medial

plane y=0 are given by the formula

<f>
= C(coshay cos (3z+cos fiy cosh az) cos kx . cos (<r<+e), (7)

provided a, 3, <r are properly determined. This evidently satisfies (2), and the equation of

continuity gives
o2 -/3=it. (8)

The surface-condition, Art. 257 (4), to be satisfied for 2= A, requires

a3 cosh ah=ga sinh ah, a2 cosfih=g^sinffh. (9)

Hence oAtanh aA+/9A tan/3A=0. (10)

The values of a, )3 are determined by (8) and (10), and the corresponding values of a are

then given by either of the equations (9). If, for a moment, we write

x=ah, y=0A, (11)

the roots are given by the intersections of the curve

xtanhx+ytany=0, (12)

whose general form can be easily traced, with the hyperbola

x-y=itsA2
. (13)

There are an infinite number of real solutions, with values of A lying in the second, fourth,

sixth, ... quadrants. These give respectively 2, 4, 6, ... longitudinal nodes of the free

surface. When A/X is moderately large, we have tanhaA=l, nearly, and /3A is (in the

simplest mode of this class) a little greater than \ n. The two longitudinal nodes in this

case approach very closely to the edges as X is diminished, whilst the wave-velocity becomes

practically equal to that of waves of length X on deep water. As a numerical example,

assuming &h= \-\ x^n-, we find

(9\*
oA=10-910, M= 10772, c=

l-0064(|

The distance of either nodal line from the nearest edge is then *12A.

We may next consider the asymmetrical modes. The solution of this type which is

analogous to Kelland's was noticed by Greenhill (l.c). It is

<f>=A sinh -jr sinh -^ cos kx. cos (<rt+c\ (14)
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with (r2=% C0th^ (15)

When kh is small, this makes <r
2
=glh, so that the 'speed' is very great compared with

that given by the theory of '

long
' waves. The oscillation is in fact mainly transversal,

with a very gradual variation of phase as we pass along the canal. The middle line of the

surface is of course nodal. When kh is great, we get
'

edge-waves,' as before.

The remaining asymmetrical oscillations are given by

<f>
=A (sinh ay sin /3z+ sin j3y sinh az) cos kx . cos(<rt+() (16)

This leads in the same manner as before to

a2 -02= F, (17)

and o-
2 sinh ah=ga cosh ah, a2 sin fih=g@ cos fih, (18)

whence ah cothah=fih cot jSA (19)

There are an infinite number of solutions, with values of fih in the third, fifth, seventh, ...

quadrants, giving 3, 5, 7, ... longitudinal nodes, one of which is central.

3. The case of a canal with plane sides inclined at 60 to the vertical has been treated

by Macdonald*. He has discovered a very comprehensive type, which may be verified as|

follows.

The assumption q>
= P cos kx . cos (a-t+ t), (20)

kv */3 / kz kz\
where P=A cosh kz+B sinh kz+cosh-^ (C cosh + Bsinh-j , (21)

evidently satisfies the equation of continuity ;
and it is easily shewn that it makes

for y=s/3*, provided C=2A, D=-2B (22)

The surface-condition, Art. 257 (4), is then satisfied, provided

<r
2

-t (A cosh kh+B sinh kh) = A sinh kh+B cosh kh,
gk

A cosh -^-B sinh
j
= A sinh - B cosh .

The former of these is equivalent to

A=ff (cosh kh ^r sinh kh
)

,
BH ( r coshM - sinhM

J
,

.(23)

(24)

and the latter then leads to

(^Y- 3
gcoth3f

+ l=0 (25)
|

Also, substituting from (22) and (24) in (21), we find

P=H icosh k (z
-
h) + sinh k (z

-
h)\

+ 25
r

cosh'^^|cosh>(;(|+A)-^sinh/&('|
+
^|.

...(26)

* " Waves in Canals," Proc. Lond. Math. Soc, t. xxv. p. 101 (1894).
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The equations (25) and (26) were arrived at by Macdonald, by a different process.

The surface-value of P is

P=
5-|l+2cosh^-(^cosh --^sinh J|

(27)

The equation (25) is a quadratic in <r
2
/gk. In the case of a wave whose length (2ir/k)

is great compared with k, we have
' 3M 2

00111
irrsa*

nearly, and the roots of (25) are then

-*, and
p=l/*A,

(28)

approximately. If we put <r kc, the former result gives c2= \gh, in accordance with the

usual theory of 'long' waves (Arts. 168, 169). The formula (27) now makes P=2H,
approximately ;

this is independent of y, so that the wave-ridges are nearly straight. The

second of the roots (28) makes c?=g h, giving a much greater wave-velocity ;
but the con-

siderations adduced above shew that there is nothing paradoxical in this. It will be found

on examination that the cross-sections of the waves are parabolic in form, and that there

are two nodal lines parallel to the length of the canal. The period is, in fact, almost

exactly that of the symmetrical transverse oscillation discussed in Art. 255.

When, on the other hand, the wave-length is short compared with the transverse

dimensions of the canal, kh is large, and coth fkh=\, nearly. The roots of (25) are then

-> *
$-*>

<29>

approximately. The former result makes P=H, nearly, so that the wave-ridges are

straight, experiencing only a slight change of altitude towards the sides. The speed,

<r={gky, is exactly what we should expect from the general theory of waves on relatively

deep water.

If in this case we transfer the origin to one edge of the water-surface, writing z+h for z,

and y - V'3A for y, and then make h infinite, we get the case of a system of waves travelling

parallel to a shore which slopes downwards at an angle of 30 to the horizon. The result is

^= J9'{e*
z + e- i* {V8j' +z)-3e- i4(v

'

3j'~ z)
}cos^.cos((r + > (30)

where c=:{glkf. This admits of immediate verification. At a distance of a wave-length
or so from the shore, the value of

<j>,
near the surface, reduces to

<j>=He?" cos kx. cos(o-+f), (31)

practically, as in Art. 227. Near the edge the elevation changes sign, there being a

longitudinal node for which

^=log<2, (32)

yA'127.

The second of the two roots (29) gives a system of edge-waves, the results being equi-

valent to those obtained by making ,3
= 30 in Stokes' formula.
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Oscillations of a Spherical Mass of Liquid.

259. The theory of the gravitational oscillations of a mass of liquid

about the spherical form is due to Lord Kelvin*.

Taking the origin at the centre, and denoting the radius vector at any

point of the surface by a + ,
where a is the radius in the undisturbed state,

we assume

=2?n (1)
1

where n is a surface-harmonic of integral order n. The equation of con-

tinuity V 2
< = is satisfied by

oo v,n

* = 2
r-Sn , (2)

i an

where Sn is a surface-harmonic, and the kinematical condition

dt~ dr'
W

to be satisfied when r = a, gives

I > <*>

The gravitation-potential at the free surface is, by Art. 199,

where 7 is the gravitation-constant. Putting

9 = l7r7Pa r = a + 2,

we find XI = const. + ^S -5 ^ n (6)

Substituting from (2) and (6) in the pressure-equation

=|-n+const., (7)
p ot

we find, since p must be constant over the surface,

8g. 2(n-l)
}

Eliminating Sn between (4) and (8), we obtain

d% + 2Mn-l)g
at2 zn + 1 a

* Sir W. Thomson, "Dynamical Problems regarding Elastic Spheroidal Shells and SpheroidM

of Incompressible Liquid," Phil. Trans., 1863 [Math, and Phys. Papers, t. iii. p. 384].
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This shews that x cos (ant + e), where

2n(n 1) g"

n = 2n+l a .(10)

For the same density of liquid, g oc a, and the frequency is therefore

independent of the dimensions of the globe.

The formula makes o-j
= 0, as we should expect, since in the deformation

expressed by a surface-harmonic of the first order the surface remains

spherical, and the period is therefore infinitely long.

" For the case n = 2, or an ellipsoidal deformation, the length of the

isochronous simple pendulum becomes fa, or one and a quarter times the

earth's radius, for a homogeneous liquid globe of the same mass and diameter

as the earth
;
and therefore for this case, or for any homogeneous liquid globe

of about o\ times the density of water, the half-period is 47 m. 12 s."

" A steel globe of the same dimensions, without mutual gravitation of its

parts, could scarcely oscillate so rapidly, since the velocity of plane waves of

:tion in steel is only about 10,140 feet per second, at which rate a

space equal to the earth's diameter would not be travelled in less than

lh. 8 m. 40 s.*"

*
Sir W. Thomson, I.e. The exact theory of the vibrations of an elastic sphere gives, for the

slowest oscillation of a steel globe of the dimensions of the earth, a period of lh. 18m. See a

paper "On the Vibrations of an Elastic Sphere," Proc. Lond. Math. Soc., t. xiii. p. 212 (1882).

The vibrations of a sphere of incompressible substance, under the joint influence of gravity and

elasticity, have been discussed by Bromwich, Proc. Lond. Math. Soc., t. xxx. p. 98 (1898).
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When the surface oscillates in the form of a zonal harmonic spheroid of the second

order, the equation of the lines of motion is #nr 2= const., where zsr denotes the distance of

any point from the axis of symmetry, which is taken as axis of x (see Art. 95 (11)). The

forms of these lines, for a series of equidistant values of the constant, are shewn in the

figure.

260. This problem may also be treated very compactly by the method

of normal coordinates' (Art. 167).

The kinetic energy is given by the formula

d<f>

T-lpff* }r
dS, (11)

where BS is an element of the surface r = a. Hence, when the surface

oscillates in the form r = a + n >
we find, on substitution from (2) and (4),

T=^ff&dS. (12)

To find the potential energy, we may suppose that the external surface

is constrained to assume in succession the forms r = a + n ,
where 6 varies

from to 1. At any stage of this process, the gravitation potential at the

surface is, by (6),

n = const. +
2

|^fW (13)

Hence the work required to add a film of thickness %n8d is

m^^T9P^^dS. (14)

Integrating this from = to 0= 1, we find

V= =
gpfKn*dS (15)

The results corresponding to the general deformation (1) are obtained by

prefixing the sign S of summation with respect to n, in (12) and (15); since

the terms involving products of surface-harmonics of different orders vanish,

by Art. 87.

The fact that the general expressions for T and V thus reduce to sums

of squares shews that any spherical-harmonic deformation is of a ' normal

type.' Also, assuming that n oc cos (ant + e), the consideration that the

total energy T+ V must be constant leads us again to the result (10).

In the case of the forced oscillations due to a disturbing potential |

12' cos (at + e) which satisfies the equation V
2fT = at all points of the fluid,

we must suppose XI' to be expanded in a series of solid harmonics. If n be
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the equilibrium-elevation corresponding to the term of order n, we have, by
Art. 167 (13), for the forced oscillation,

f-nrPw 6" <16>

where a is the imposed speed, and an that of the free oscillations of the same

type, as given by (10).

The numerical results given above for the case n = 2 shew that, in a non-

rotating liquid globe of the same dimensions and mean density as the earth,

forced oscillations having the characters and periods of the actual lunar and

solar tides, would practically have the amplitudes assigned by the equilibrium-

theory.

261. The investigation is easily extended to the case of an ocean of any
uniform depth, covering a symmetrical spherical nucleus.

Let b be the radius of the nucleus, a that of the external surface. The surface-form

being

r=a+2f, (1)
l

we assume, for the velocity-potential,

*-{(+D 5i+j=7i}^.
(2)

where the coefficients have been adjusted so as to make d<f>/cr=0 for r=6.

The condition that ^= -^r , (3)

*,-**. -
( + {(-)--(*p! M

For the gravitation-potential at the free surface (1) -we have

4wypoa
3 "4rypa ..

Q "
37 f 2,7Tl

f"' (B)

where p is the mean density of the whole mass. Hence, putting <7=7p a, we find

O-co^+^l-jJL )
f. (6)

The pressure-condition at the free surface then gives

The elimination of Sn between (4) and (7) leads to

^f"WC=0, (8)

where IW W J A 3_ p\g
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If p= p ,
we have ^= as we should expect. When p> p the value of

o-j
is imagin-

ary ;
the equilibrium configuration in which the external surface of the fluid is concentric

with the nucleus is then unstable. (Cf. Art. 198.)

If in (9) we put 6=0, we reproduce the result of the preceding Art. If, on the other

hand, the depth of the ocean be small compared with the radius, we find, putting b=ah,
and neglecting the square of h/a,

'.*-<-+1
)(

1
-s^i )

<

provided n be small compared with ajh. This agrees with Laplace's result, obtained in a

more direct manner in Art. 198.

But if n be comparable with a/h, we have, putting n=ka,

h\~ ka

*-H) -*

so that (9) reduces to <r
2
=gkta.nhkh, (11)

as in Art. 227. Moreover, the expression (2) for the velocity-potential becomes, if we

write r=a+ z,

<t>
=

<p 1 coshk(z+h), (12)

where <p x
is a function of the coordinates in the surface, which may now be treated as

plane. Cf. Art. 254.

The formulae for the kinetic and potential energies, in the general case, are easily found

by the same method as in the preceding Art. to be

<~(f)Mr'
,

<+i>{(5 ) -(5;

d v-i^(1-^p) SUJd& (14>

The latter result shews, again, that the equilibrium configuration is one of minimum

potential energy, and therefore thoroughly stable, provided p<p .

In the case where the depth is relatively small, whilst n is finite, we obtain, putting

b= a h,

whilst the expression for V is of course unaltered.

If the amplitudes of the harmonics (n be regarded as generalized coordinates, the

formula (15) shews that for relatively small depths the 'inertia-coefiicients' vary inversely

as the depth. We have had frequent illustrations of this principle in our discussions of

tidal waves.

Pa \ ff/ 2,7.?
(15)
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Capillarity.

262. The part played by Cohesion in certain cases of fluid motion has

long been recognized in a general way, but it is only within comparatively
recent years that the question has been subjected to exact mathematical

treatment. We proceed to give some account of the remarkable investi-

gations of Lord Kelvin and Lord Rayleigh in this field.

It is beyond our province to discuss the physical theory of the matter*.

It is sufficient, for our purpose, to know that the free surface of a liquid, or,

more generally, the common surface of two fluids which do not mix, behaves

it were in a state of uniform tension, the stress between two adjacent

portions of the surface, estimated at per unit length of the common boundary-

line, depending only on the nature of the two fluids and on the temperature.
We shall denote this 'surface-tension/ as it is called, by the symbol Tx . Its

value in c.G.s. units (dynes per linear centimetre) appears to be about 74 for

a water-air surface at 20C.f; it diminishes somewhat with rise of tem-

perature. The corresponding value for a mercury-air surface is about 540.

An equivalent statement is that the potential energy of any system, of

which the surface in question forms part, contains a term proportional to the

area of the surface, the amount of this
'

superficial energy
'

per unit area

being equal to Tx \.
Since the condition of stable equilibrium is that the

energy should be a minimum, the surface tends to contract as much as is

consistent with the other conditions of the problem.

The chief modification which the consideration of surface-tension will

introduce into our previous methods is contained in the theorem that the

fluid pressure is now discontinuous at a surface of separation, viz. we have

p-p'^ih^)-
where p, p' are the pressures close to the surface on the two sides, and R^ , R^
are the principal radii of curvature of the surface, to be reckoned negative
when the corresponding centres of curvature lie on the side to which the

accent refers. This formula is readily obtained by resolving along the normal

the forces acting on a rectangular element of a superficial film, bounded by
lines of curvature

;
but it seems unnecessary to give here the proof, which

may be found in most modern treatises on Hydrostatics.

* For this, see Maxwell, Encyc. Britann., Art. "Capillary Action" [Sc. Papers, Cambridge,

1890, t. ii. p. 541], where references to the older writers are given. Also, Lord Rayleigh,
" On

the Theory of Surface Forces," Phil. Mag. (5), t. xxx. pp. 285, 456 (1890) [Sc. Papers, t. iii.

p. 397].

t Lord Rayleigh,
" On the Tension of Water- Surfaces, Clean and Contaminated, investigated

by the method of Ripples," Phil. Mag. (5), t. xxx. p. 386 (1890) [Sc. Papers, t. iii. p. 394].

t See Maxwell, Theory of Heat, London, 1871, c. xx.

L. 28
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263. The simplest problem we can take, to begin with, is that of waves

on a plane surface forming the common boundary of two fluids at rest,

If the origin be taken in this plane, and the axis of y normal to it, the

velocity-potentials corresponding to a simple-harmonic deformation of the

common surface may be assumed to be

<f)
= C^v cos kx . cos (at + e), )

0'
= e'er*" cos kx . cos (at + e),

)

where the former equation relates to the side on which y is negative, and

the latter to that on which y is positive. For these values satisfy V 2

</>
=

0,

V2<' = 0, and make the velocity zero for y = + oo
, respectively.

The corresponding displacement of the surface in the direction of y will

be of the type

7]
= a cos kx . sin (at + e) ; (2)

and the conditions that

dt) _ d<f> _ d<p'

dt dy dy
'

for y = 0, give

aa=-kC = kC (3)

If, for the moment, we ignore gravity, the variable part of the pressure

is given by

p dd> a2a ,
7

. . .
.

^= TTT = -t e*y cos kx . sin (at + e),

p dt k '

P' W a*a , .
, , , ,

*-7
= -Jt = r- e y cos kx . sin ( at + e).

p dt k

To find tne pressure-condition at the common surface, we may calculate

the forces which act in the direction of y on a strip of breadth 8x. The

fluid pressures on the two sides have a resultant (p' p) Sx
y
and the difference

of the tensions parallel to y on the two edges gives 8(T1 dr)/dx). We thus

get the equation

J>-J>' + Ti0-O. (5)

to be satisfied when y = approximately. This might have been written

down at once as a particular case of the general surface condition (Art. 262).

Substituting in (5) from (2) and (4), we find

.(4)

<r
2 = Tx

P + p"

which determines the speed of the oscillations of wave-length 27r/k.

.(6)
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The energy of motion, per wave-length, of the fluid included between two planes

parallel to xy, at unit distance apart, is

r-*'/:[*L*-w:[>$L* <"

If we assume r)
= acoskx, (8)

where a depends on t only, and therefore, having regard to the kinematical conditions,

<= -k~ld&coskx, (f>'
=k~1 de-k* cos lb;, (9)

we find T=i(p+p')it-
1 d2.X (10)

Again, the energy of extension of the surface of separation is

f
-''/;{

i+ )?*-^-*''/:v (n)

dtuting from (8), this gives

P=iZVfcV.A (12)

To find the mean energy, of either kind, per unit length of the axis of x, we must omit

the factor A.

If we assume that a cos(<r*+ ), where <r is determined by (6), we verify that the

total energy T+ V is constant.

Conversely, if we assume that

?7
= 2(acosifor+/3sin/kr), (13)

Iit

is easily seen that the expressions for T and V will reduce to sums of squares of a, /8

and a, /S, respectively, with constant coefficients, so that the quantities a, /3 are ' normal

coordinates.' The general theory of Art. 167 then leads independently to the formula (6)

for the speed.

By compounding two systems of standing waves, as in Art. 228, we obtain

a progressive wave-system

r}
= acos(kx + at), (14)

travelling with the velocity

a ( TJc \*

i
=WJ' (lo)

>r, in terms of the wave-length,

-es)'^ ^
The contrast with Art. 228 is noteworthy; as the wave-length is

diminished, the period diminishes in a more rapid ratio, so that the wave-

velocity increases.

Since c varies as X-*, the group-velocity is, by Art. 234 (3),

dc

d\
X~ = fc (17)

282
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The fact that the group-velocity for capillary waves exceeds the wave-

velocity helps to explain some interesting phenomena to be referred to later

(Arts. 266, 268).

For numerical illustration we may take the case of a free water-surface
;

thus, putting p
=

1, p = 0, Tx
= 74, we have the following results, the units

being the centimetre and second*.

Wave-length
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a certain minimum, begins to increase again. This minimum value (cm , say)

is given by

i?-[||.^ , (5)

and corresponds to a wave-length

^=fW(?) r
In terms of Xm and cm the formula (3) may be written

=<t + T) m
shewing that for any prescribed value of c, greater than cm , there are two

admissible values (reciprocals) of X/Xn,. For example, corresponding to

= 1-2 1-4 16 1-8 20
Cm

we have

X
L _ (2-476 3-646 4917 6322 7-873

Xm ( 404 -274 -203 158 '127,

to which we add, for future reference,

sin-1 ^5 = 56 26' 45 35' 38 41' 33 45' 30.
c

For sufficiently large values of X the first term in the formula (3) for c2

is large compared with the second
;
the force governing the motion of the

waves being mainly that of gravity. On the other hand, when X is very

small, the second term preponderates, and the motion is mainly governed by
cohesion, as in Art. 263. As an indication of the actual magnitudes here in

question, we may note that if X/Xm > 10, the influence of cohesion on the

wave-velocity amounts only to about 5 per cent., whilst gravity becomes

relatively ineffective to a like degree if X/X < -^
It has been proposed by Lord Kelvin to distinguish by the name of

'ripples' waves whose length is less than Xm .

The relative importance of gravity and cohesion, as depending on the value of X, may
be traced to the form of the expression for the potential energy of a deformation of the

type

T)
= acoskx. , (8)

The part of this energy due to the extension of the bounding surface is, per unit area,

fV (9)

The theory of the minimum wave-velocity, together with most of the substance of Arts. 263,

264, was given by Sir W. Thomson, "
Hypokinetic Solutions and Observations," Phil. Mag. (4),

t xlii. p. 374 (1871) [Baltimore Lectures, p. 598]; see also Nature, t. v. p. 1 (1871).
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whilst the part due to gravity is

<7(P-P>2
(10)

As X diminishes, the former becomes more and more important compared with the latter.

For a water-surface, using the same data as before, with #= 981, we find from (5)

and (6),

Xm= 173, cm= 23-2,

the units being the centimetre and the second. That is to say, roughly, the minimum

wave-velocity is about nine inches per second, or *45 sea-miles per hour, with a wave-

length of two-thirds of an inch. Combined with the numerical results already obtained,

this gives,

for c= 27-8 325 37'1 41-8 46-4

.. , ( 4-3 6'3 8-5 10-9 136
the values X

70 -47 -35 -27 -22

in centimetres and seconds.

If we substitute from (7) in the general formula (Art. 234 (3)) for the

group-velocity, we find

r-.-x*-.(i-ig) (id

Hence the group-velocity is greater or less than the wave-velocity, according

as X^ Xm . For sufficiently long waves the group-velocity is practically equal

to \c, whilst for very short waves it tends to the value c*.

The relations between wave-length and wave-velocity are shewn

graphically in the figure on the opposite page, where the dotted curves refer

to the cases where gravity and capillarity act separately, whilst the full curve

exhibits the joint effectf. As explained in Art. 234, the group-velocity is

represented by the intercept made by the tangent on the axis of ordinates.

Since two tangents can be drawn to the curve from any point on this axis

(beyond a certain distance from 0), there are two values of the wave-length

corresponding to any prescribed value of the ^rrowp-velocity U. These two

values of A, coincide when U has a certain (minimum) value, indicated by

the point where the tangent to the curve at the point of inflexion cuts Oc
;

and it may be easily shewn that we then have

^ = V(3 + 2 V3) = 2-542, U=-767cm

where cm is the minimum wave-velocity as above.

A further consequence of (2) is to be noted. We have hitherto tacitly supposed that

the lower fluid is the denser (i.e. p>p'), as is indeed necessary for stability when T
x

is :

neglected. The formula referred to shews, however, that there is stability even when

p<p', provided

\<2*(^-)\ (12)

* Cf. Lord Rayleigh, 11. cc. ante p. 361. t Cf. Art. 234.
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Le. provided X be less than the wave-length Xm of minimum velocity when the denser fluid

is below. Hence in the case of water above and air below the maximum wave-length con-

sistent with stability is 1-73 cm. If the fluids be included between two parallel vertical

s

walls, this imposes a superior limit to the admissible wave-length, and we learn that there

is stability (in the two-dimensional problem) provided the interval between the walls does

not exceed -86 cm. We have here an explanation, in principle, of a familiar experiment in

which water is retained by atmospheric pressure in an inverted tumbler, or other vessel,

whose mouth is covered by a gauze with sufficiently fine meshes*

265. We next consider the ease of waves on a horizontal surface forming
the common boundary of two parallel currents U, U'f.

If we apply the method of Art. 232, we find without difficulty that the

condition for stationary waves is now

pU* + p'U'>=(p-p') + kTl , (1)

* The case where the fluids are contained in a cylindrical tube was solved by Maxwell,

Encyc. Britann.. Art. "
Capillary Action,

"
t. v. p. 69 [Sc. Papers, t. ii p. 585], and compared

with some experiments of Duprez. The agreement is better than might have been expected when

we consider that the special condition to be satisfied at the line of contact of the surface with the

wall of the tube has been left out of account.

t Cf. Sir W. Thomson, Phil. Mag. (4), t. xlii. p. 368 (1871) [Baltimore Lectures, p. 590].
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the last term being due to the altered form of the pressure-condition which

has to be satisfied at the surface.

This may be written

(&gTf-l.*=+ *M^w- uy. (2)
v p + p i k p + p p+p {p+ py

The relative velocity of the waves, which is superposed on the mean

velocity of the currents (Art. 232), is c, provided

c^ c

'-(p^py(
u - u^ (3 >

where c denotes the wave-velocity in the absence of currents.

The various inferences to be drawn from (3) are much as in the Art.

cited, with the important qualification that, since c has now a minimum

value, viz. the cm of Art. 264 (5), the equilibrium of the surface when plane
is stable for disturbances of all wave-lengths so long as

\U-U'\<^.cm , (4)

where s = p'jp.

When the relative velocity of the two currents exceeds this value, c

becomes imaginary for wave-lengths lying between certain limits. It is

evident that in the alternative method of Art. 233 the time-factor e
i(Tt will

now take the form e at+ipt
, where

a
={(TTsr

{U- UJ - c
2

}
ik

' ^ih klu- u
'

1

- -(5)

The real part of the exponential indicates the possibility of a disturbance of

continually increasing amplitude.

For the case of air over water we have s= "00129, cm= 23*2 (as.), whence the maximum I

value of
|

U U'
|

consistent with stability is about 646 centimetres per second, or (roughly) ,'

12-5 sea-miles per hour*. For slightly greater values the instability will manifest itself by
J

the formation, in the first instance, of wavelets of about two-thirds of an inch in length,

which will continually increase in amplitude until tbey transcend the limits implied in our

approximation.

266. We resume the investigation of the effect of a steady pressure-

disturbance on the surface of a running stream, by the methods of Arts. 240..

241, including now the effect of capillary forces. This will give, in addition,

to the former results, the explanation (in principle) of the fringe of ripples

* The wind-velocity at which the surface of water actually begins to be ruffled by the forma-

tion of capillary waves, so as to lose the power of distinct reflection, is much less than tbis, anc,

is determined by other causes. We shall revert to this point later (Chap. xi.).
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which is seen in advance of a solid moving at a moderate speed through still

water, or on the up-stream side of any disturbance in a uniform current.

Beginning with a simple-harmonic distribution of pressure, we assume

* = x + fte
1* sin kx,

^ = y + ft^v cos kx, (1)
c c

the upper surface coinciding with the stream-line
yfr
= 0, whose equation is

y = ft cos kx, (2)

approximately. At a point just beneath this surface we find, as in Art. 240 (5),

for the variable part of the pressure,

pQ
=

ftp [(&C
2

g) cos kx + fie sin kx), (3)

where p. is the fractional coefficient. At an adjacent point just above the

surface we must have

p
' = p + T1 -^1

=
ftp {(kc? -g- k?T) cos kx + tic sin kx), (4)

where T' is now written for TJp. This is equal to the real part of

ftp (&c
2 -

g
- fcT - iuc) e**

We infer that to the imposed pressure

p = Ccos kx (5)

will correspond the surface-form

n (kc? g k?T') cos kx fie sin kx /R .

py=C
{kc*-g-I<?Ty + p.V

(b)

Let us first suppose that the velocity c of the stream exceeds the

minimum wave-velocity (cm) investigated in Art. 264. We may then write

kc*-g-l<?r=r(k-K,)(K,-k), (7)

where /cT ,
k are the two values of k corresponding to the wave-velocity c on

still water; in other words, 2-^/^, 2^//^ are the lengths of the two systems

of free waves which could maintain a stationary position in space, on the

surface of the flowing stream. We will suppose that k2 > kx .

In terms of these quantities, the formula (6) may be written

G (k k^) (*2 k) cos kx pf sin kx ..
py = T" (k-K1y(K2 -ky+^ ' K )

where pi = fic/T'. This shews that if pf be small the pressure is least over

the crests, and greatest over the troughs of the waves when k is greater

than k2 or less than k1} whilst the reverse is the case when k is intermediate

to k
x ,

k2 . In the case of a progressive disturbance advancing over still water,

these results are seen to be in accordance with Art. 167 (13).
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267. From (8) we can infer as in Art. 241 the effect of a pressure of

integral amount P concentrated on a line of the surface at the origin, viz.

we find

P f
^
(k /Cj) (k2 k) cos kx fi sin kx ,,

y -^TJo~ (k- Klf(K2-ky +^ dlc (9)

The definite integral is the real part of

/,

e**dk

o (k
-

k{) (k 2
-

k)
-

ifi'

The dissipation-coefficient p' has been introduced solely for the purpose of making the

problem determinate; we may therefore avail ourselves of the slight gain in simplicity

obtained by supposing p to be infinitesimal. In this case the two roots of the denomi-

nator in (10) are

k=K
1 +iv, k= K2 iv,

where v= .

k2 <i

The integral (10) is therefore equivalent to

1 U e**dk f
x

e**dk \

K2 -K1 -2ip\J o k-(K l +iv) J k-{K2 -iv)]

These integrals are of the forms discussed in Art. 241. Since k 2 >'c
i>

" is positive,

and it appears that when x is positive the former integral is equal to

2nie
tK>*+JTC* (12)

/;
and the latter to I 1 1

dk (13)
o *+k 2

On the other hand, when x is negative, the former reduces to

/,

00 p-ikx

K+ K
1

and the latter to - 2iri^ +
/*

P -ikxTdk (15)K+K 2

We have here simplified the formulae by putting v= after the transformations.

If we now discard the imaginary parts of our expressions, we obtain the results which

immediately follow.

When
//,'

is infinitesimal, the equation (9) gives, for x positive,

and, for x negative,

7TJi 27T . ,-. . /i /\

~^p
i .y= SinK1X + F(x), (16)

JL rCo ~ K-\

TT-Zi 27T . 7-r/ \ /i >7\

-p- -y= smK2x + M (x), (17)
JL fC% ^1

where F(x)=^sr<^ dk_r^ dlx (18)
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This function F(x) can be expressed in terms of the known functions Ci iCyX,

Si k^x, Ci k^x, Si k^x, by Art. 241 (28). The disturbance of level represented

by it is very small for values of x, whether positive

or negative, which exceed, say, half the greater

wave-length (2^/^).

Hence, beyond some such distance, the surface

ered on the down-stream side by a regular
train of simple-harmonic waves of length 1ttJkx , and

on the up-stream side by a train of the shorter

-length 27r/Ac2 . It appears from the numerical

results of Art. 264 that when the velocity c of the

;n much exceeds the minimum wave-velocity
(cm) the former system of waves is governed mainly

by gravity, and the latter by cohesion.

- worth notice that, in contrast with the case

it. '2-il, the elevation is now finite when x = 0,

viz. we have

Q y .(19)

This follows easily from (16) and (18).

The figure shews the transition between the two

of waves, in the case of *a
= 5*j .

The general explanation of the effects of an

isolated pressure-disturbance advancing over still

water, indicated near the end of Art. 241, is now
modified by the fact that there are two wave-

lengths corresponding to the given velocity c. For
one of these (the shorter) the group-velocity is

greater, whilst for the other it is less, than c. We
can thus understand why the waves of shorter

wave-length should be found ahead, and those of

longer wave-length in the rear, of the disturbing

pressure.

It will be noticed that the formulae (16), (17)
make the height of the up-stream capillary waves

the same as that of the down-stream gravity-waves ;

but this result will be greatly modified when the

are is diffused over a band of sensible breadth,

instead of being concentrated on a mathematical

line. If, for example, the breadth of the band do

not exceed one-fourth of the wave-length on the
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down-stream side, whilst it considerably exceeds the wave-length of the up-
stream ripples, as may happen with a very moderate velocity, the different

parts of the breadth will on the whole reinforce one another as regards

their action on the down-stream side, whilst on the up-stream side we shall

have '

interference,' with a comparatively small residual amplitude.

This point may be illustrated by assuming that the integral surface-pressure P has

the distribution

*-*&&' (20)

which is more diffused, the greater the value of b.

The method of calculation will be understood from Art. 242. The result is that on the

down-stream side

and on the up-stream side

2P
y=~ nT(< *\

e 8in i*+-> (81)

2P .

y
,,*"(,-,)

-+**'*+- w
where the terms which are insensible at a distance of half a wave-length or so from the

origin are omitted. The exponential factors shew the attenuation due to diffusion
;
this is

greater on the side of the capillary waves, since k2 >k1
.

When the velocity c of the stream is less than the minimum wave-

velocity, the factors of

k&-g-k*T

are imaginary. There is now no indeterminateness caused by putting /*
=

ab initio. The surface-form is given by

y pL vr-kt+g
* (23)

The integral might be transformed by the previous method, but it is evident

a priori that its value tends rapidly, with increasing x, to zero, on account

of the more and more rapid fluctuations in sign of cos kx. The disturbance

of level is now confined to the neighbourhood of the origin. For = 0we
find

'--s&rfi+^B (*>
:

Finally we have the critical case where c is exactly equal to the minimum

wave-velocity, and therefore k2
= k1 . The first term in (16) or (17) is now I

infinite, whilst the remainder of the expression, when evaluated, is finite.

To get an intelligible result in this case it is necessary to retain the
|

frictional coefficient
/u,'.
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If we put ft'
= 2s:-, we have

(k-Kf+ i
f
i'= {t-(K + sT-txs)}{t-(K-'!s+ im)}1 (25)

so that the integral (10) may now be equated to

ytjir ,

-
.
-_ r .

,

*
. ,4 (26)

4ar (jo *-(-st+m) Jo *-(+ -war) J

The formulae of Art. 241 shew that when nr is small the most important part of this

expression, for points at a distance from the origin on either side, is

^t 1" (>

It appeal's that the surface-elevation is now given by

^y=- ^cos(KX-iTr) (28)

The examination of the effect of inequalities in the bed of a stream, by
the method of Art. 244, must be left to the reader.

268. The investigation by Lord Rayleigh*, from which the foregoing
differs principally in the manner of treating the definite integrals, was

undertaken with a view to explaining more fully some phenomena described

by Scott Russell 4- and Lord Kelvin
J.

' When a small obstacle, such as a fishing line, is moved forward slowly

through still water, or (which of course comes to the same thing) is held

stationary in moving water, the surface is covered with a beautiful wave-

pattern, fixed relatively to the obstacle. On the up-stream side the

wave-length is short, and, as Thomson has shewn, the force governing the

vibrations is principally cohesion. On the down-stream side the waves are

longer, and are governed principally by gravity. Both sets of waves move
with the same velocity relatively to the water; namely, that required in

order that they may maintain a fixed position relatively to the obstacle.

The same condition governs the velocity, and therefore the wave-length, of

those parts of the pattern where the fronts are oblique to the direction of

motion. If the angle between this direction and the normal to the wave-

front be called 6, the velocity of propagation of the waves must be equal
to v cos 6, where t' represents the velocity of the water relatively to the fixed

obstacle.

"Thomson has shewn that, whatever the wave-length may be, the

velocity of propagation of waves on the surface of water cannot be less than

about 23 centimetres per second. The water must run somewhat faster than

l.e. ante p. 378.

t " On Waves," Brit. Ass. Rep., 1844.

% I.e. ante p. 437.
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this in order that the wave-pattern may be formed. Even then the angle 6

is subject to a limit defined by w cos = 23, and the curved wave-front

has a corresponding asymptote.
" The immersed portion of the obstacle disturbs the flow of the liquid

independently of the deformation of the surface, and renders the problem in

its original form one of great difficulty. We may however, without altering

the essence of the matter, suppose that the disturbance is produced by the

application to one point of the surface of a slightly abnormal pressure, such

as might be produced by electrical attraction, or by the impact of a small

jet of air. Indeed, either of these methods the latter especially gives

very beautiful wave-patterns*."

The character of the wave-pattern can be made out by the method

explained near the end of Art. 253.

If we take account of capillarity alone, the formula (17) of the Art. cited

gives

c
2 cos2 = V2 = -^-, (1)

A,

by Art. 263, and the form of the wave-ridges is accordingly determined by
the equation

p = a sec2 6 (2)f
This leads to

x = asec6 (1 2 tan2
0), y = 3a sec 6 tan 6 (3)

When gravity and capillarity are both regarded, we have, by Art. 264,

c
2 cos2 0=F2 =f- + ^-' (4)

Z7T A.

Hence, if we put

cm =(4^r)i, b = 2Tr f^)\ (5)
91

, cos2
. (\ b\ ...

we have = \ T + -
, (6)

cos2 a
l
\b \J

v '

where cosa = (7)
c

The relation between p and 6 is therefore of the form

cos2
. / p acos2 a\ /0 ,

;
= ^^ + , (8)

cos2 a \a cos- a p J

or ^ = cos2 + V(cos
4 - cos4

a) (9)

The four straight lines for which 6 = a are asymptotes of the curve thus

determined. The values of ^tt a for several values of the ratio cjcm have

been given in Art. 263.

* Lord Kayleigh, I.e.

f Since U is now > V, it appears from Art. 253 (18) that the constant a must be negative.



268] Wave-Patterns 447



448 Surface Waves [chap, ix

When the ratio c/cm is at all considerable, a is nearly equal to \ir, and the

asymptotes make very acute angles with the axis of x. The upper figure on

the preceding page gives the part of the curve which is relevant to the

physical problem in the case of c = 10cm*. The ratio of the wave-lengths of

the ' waves ' and the '

ripples
'

in the line of symmetry is then, of course,

very great. The curve should be compared with that which forms the basis

of the figure on p. 413.

As the ratio c/cm is diminished, the asymptotes open out, whilst the two

cusps on either side of the axis approach one another, coincide, and finally

disappear^. The wave-system has then a configuration of the kind shewn in

the lower diagram, which is drawn for the case where the ratio of the wave-

lengths in the line of symmetry is 4:1. This corresponds to a = 26 34', or

c=ri2cm +.

When c<cm> the wave-pattern disappears.

269. Another problem of great interest is the determination of the

nature of the equilibrium of a cylindrical column of liquid, of circular section.

This contains the theory of the well-known experiments of Bidone, Savart,

and others, on the behaviour of a jet issuing under pressure from a small

orifice in the wall of a containing vessel. It is obvious that the uniform

velocity in the direction of the axis of the jet does not affect the dynamics

of the question, and may be disregarded in the analytical treatment.

We will take first the two-dimensional vibrations of the column, the

motion being supposed to be the same in each section. Using polar

coordinates r, 6 in the plane of a section, with the origin in the axis, we may

write, in accordance with Art. 63,

</>
= A cos s6 . cos (at + e), (1)

where a is the mean radius. The equation of the boundary at any instant
j

will then be

r=a + (2)

sA
where = cos s6 . sin (at + e), (3)ad

the relation between the coefficients being determined by

?= _ d-i (4)

* The necessary calculations were made by Mr H. J. Woodall. The scale of the figure does

not admit of the asymptotes being shewn distinct from the curve.

t A tentative diagram shewed that they were nearly coincident for c= 2cm (a= 60).

X The figure may be compared with the drawing, from observation, given by Scott Eussell, I.e. ,
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for ? = a. For the variable part of the pressure inside the column, close to

the surface, we have

- =
7T7

= aA cos sd . sin (at + e). (5)
p at

The curvature of a curve which differs infinitely little from a circle having
its centre at the origin is found by elementary methods to be

1_
1 1 <&r

R~ r r*dffi'

or, in the notation of (2),

Hence the surface condition

~i-(c+a <

T
P=

-^
+ const. (7)

-e*- 1^ w
-. on substitution from (5),

<

For s = 1, we have a = 0; to our order of approximation the section remains

circular, being merely displaced, so that the equilibrium is neutral. For all

other integral values of 8, a* is positive, so that the equilibrium is thoroughly
stable for two-dimensional deformations. This is evident a priori, since the

circle is the form of least perimeter, and therefore least potential energy, for

given sectional area.

In the case of a jet issuing from an orifice in the shape of an ellipse, an

equilateral triangle, or a square, prominence is given to the disturbance of

the type s = 2. 3, or 4, respectively. The motion being steady, the jet

exhibits a system of stationary waves, whose length is equal to the velocity
of the jet multiplied by the period (2Tr/<r)f.

270. Abandoning now the restriction to two dimensions, we assume

that

<f>
=

fa cos kz . cos (at + e), (9)

where the axis of z coincides with that of the cylinder, and fa is a function

of the remaining coordinates x, y. Substituting in the equation of continuity,
^':

4>
= 0. we get

(VS-k?)fa = 0, (10)

For the original investigation, by the method of energy, see Lord Rayleigh,
" On the In-

stability of Jets," Proc. Lond. Math. Soc, t. x. p. 4 (1878), and
" On the Capillary Phenomena of

Proc. Roy. Soc., t. xxix. p. 71 (1879) [Sc. Papers, t. i. pp. 361, 377 ; Theory of Sound,
2nd ed. c. xx.]. The latter paper contains a comparison of the theory with experiment.

t It is assumed that this wave-length is large compared with the circumference of the jet.

Otherwise, the formula (18) must be employed, with <r= kc, where c is the velocity of the jet.

L. 29
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where V,
2 = o2

jdcc
2 + d2

/dy
2

. If we put x = r cos 6, y = r sin 0, this may be

written

This equation is of the form considered in Arts. 101, 189, except for the sign
of k'

2
;
the solutions which are finite for r = are therefore of the type

h-BI.&r^sd, (12)

where, as in Art. 209 (11),

2s
( Z2

Z* \
Is {Z)

=
2".7l I

1 +
Y(2s + 2)

+
2.4(2s + 2)(2s + 4)

+ -
j

' (13)

Hence, writing

(j>
= BT,, (kr) cos sd cos kz . cos (at + e), (14)

we have, by (4),

u n kal/ (ka) *..,'=-B ^ '- cos s6 cos kz . sin (<rt + e) (15)
era

' y '

To find the sum of the principal curvatures, we remark that, as an obvious

consequence of Euler's and Meunier's theorems on curvature of surfaces,

the curvature of any section differing infinitely little from a principal normal

section is, to the first order of small quantities, the same as that of the

principal section itself. It is sufficient therefore in the present problem

to calculate the curvatures of a transverse section of the cylinder, and

of a section through the axis. These are the principal sections in the

undisturbed state, and the principal sections of the deformed surface will

make infinitely small angles with them. For the transverse section the
;

formula (6) applies, whilst for the axial section the curvature is - d2

^/dz
2

;
so

|

that the required sum of the principal curvatures is

1_ 1_ l_l/ ?4.

E,
+
R, a a?V dp) dz*

= 1 _J5^L_M}

(k
2a2 + s

2

-1) cos s9 cos kz. sin (at + e). ...(16)
a aa3

Also, at the surface,

= ~ = aBIg (ka) cos sd cos kz . sin (at + e) (17)
p ot

The surface-condition of Art. 262 then gives

,

-^^<*w+'- 1

)-^-
<18>

j

For s > 0, a2
is positive ;

but in the case (s
= 0) of symmetry about the axi.'

a 2 will be negative if ka < 1
;

that is, the equilibrium is unstable for



270-271] Instability of a Jet . 451

disturbances whose wave-length (2irjk) exceeds the circumference of the jet.

To ascertain the type of disturbance for which the instability is greatest, we

require to know the value of ka which makes

hal '

(ka)

I (ka)
(k^a--l)

a maximum. For this Lord Rayleigh finds fed* = '4858, whence, for the wave-

length of maximum instability,

2tt=- = 4-508 x 2a.
A;

There is a tendency therefore to the production of bead-like swellings

and contractions, of this wave-length, with continually increasing amplitude,

until finally the jet breaks up into detached drops*.

271. This leads naturally to the discussion of the small oscillations of

a drop of liquid about the spherical formf. We will slightly generalize the
1

question by supposing that we have a sphere of liquid, of density p,

\
surrounded by an infinite mass of other liquid of density p.

Taking the origin at the centre, let the shape of the common surface at

: any instant be given by

r = a+ = a + Sn . sin (<rt + e), (1)

;
where a is the mean radius, and Sn is a surface-harmonic of order n. The

corresponding values of the velocity-potential will be, at internal points,

<f>
=-^^Sn .coa(trt + e), (2)

74 (Jb

and, at external points,

^' =^Ti^^- cos(^ + e)' (3>

>ince these make -* = -? = --
dt dr or

The argument here is that if we have a series of possible types of disturbance, with time-

factors e
a

'

, e"**, ea}t
, ..., where a

1
>o.J >a3 >..., and if these be excited simultaneously, the

amplitude of the first will increase relatively to those of the other components in the ratios

t
ai-<h>

;
e^\-a3

)t^ The component with the greatest a will therefore ultimately predominate.
The instability of a cylindrical jet surrounded by other fluid has been discussed by Lord

Rayleigh, "On the Instability of Cylindrical Fluid Surfaces," Phil. Mag. (5), t. xxxiv. p. 177

(1892) [Sc. Papers, t. iii. p. 594]. For a jet of air in water the wave-length of maximum in-

stability is found to be 6-48 x 2a.

+ Lord Rayleigh, I.e. ante p. 449; Webb, Mess, of Math., t. ix. p. 177 (1880).

292
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for r = a. The variable parts of the internal and external pressures at the

surface are then given by

V
pa

2a p'a-a+ t - Sn . sin (<rt+e), p = ... - < Sn . sin (at + e). ...(4)

To find the sum of the curvatures we make use of the theorem of Solid

Geometry, that if X, fi, v be the direction-cosines of the normal at (x, y, z) to

that surface of the family

F (x, y, z) const,

which passes through the point, viz.

Fx ,
Fv ,

Fz
X, fi, v =

*J{FJ + Fy
* + F>y

then
1 1 d\ du dv

1
=

1- H
B,! R2 dx dy dz

.(5)

Since the square of is to be neglected, the equation (1) of the harmonic

spheroid may also be written

r = a + ^n , (6)

where &=-& sin O* + )> 0)

i.e. n is a solid harmonic of degree n. We thus find

x d nX= r-dx +n r^>

r dy r- .(8)

whence

1 1 2 w(n+l) 2 0i-l)(n+2) . . _\ x

Substituting from (4) and (9) in the general surface-condition of Art. 262
j

we find

o-a = n (n + 1) (n
-

1) (n + 2)

If we put p = 0, this gives

{(n + l)p + np'} a
3

Tx

.(10)

.(11)<r* = n(n-l)(n + 2)^-
pa

3

The most important mode of vibration is that for which n = 2
;
we then hav
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Hence for a drop of water, putting Tx
= 74, p = 1, we find, for the frequency,

- = 3*87a_i vibrations per second,

if a be the radius in centimetres. The radius of the sphere which would

vibrate seconds is a = 247 cm. or a little less than an inch.

The case of a spherical bubble of air, surrounded by liquid, is obtained

by putting p
= in (10), viz. we have

^ = (n + l)(-l)(n + 2)A (12)
p a,

For the same density of the liquid, the frequency of any given mode is

greater than in the case represented by (11), on account of the diminished

inertia: cf. Art. 91 (7), (8).



CHAPTER X.

WAVES OF EXPANSION.

272. A treatise on Hydrodynamics would hardly be complete without

some reference to this subject, if merely for the reason that all actual fluids

are more or less compressible, and that it is only when we recognize this

compressibility that we escape such apparently paradoxical results as that of

Art. 20, where a change of pressure was found to be propagated instantaneously

through a liquid mass.

We shall accordingly investigate in this Chapter the general laws of

propagation of small disturbances, passing over, however, for the most part,

such details as belong more properly to the Theory of Sound.

In most cases which we shall consider, the changes of pressure are small,

and may be taken to be proportional to the changes in density, thus

A = k .
f-

,

P

where k(= pdpjdp) is a certain coefficient, called the 'elasticity of volume.'

For a given liquid the value of k varies with the temperature, and (very

slightly) with the pressure. For water at 15 C, tc = 222 x 1010

dynes per

square centimetre
;

for mercury at the same temperature k = 5
-42 x 1011

.

The case of gases will be considered presently.

Plane Waves.

273. We take first the case of plane waves in a uniform medium.

The motion being in one dimension (x), the dynamical equation is, in the

absence of extraneous forces,

du du _ 1 dp _ 1 dp dp ,, s

dt dx pdx pdp dx'

whilst the equation of continuity, Art. 8 (4), reduces to

!+5<">- (2)
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If we put p = p (l+s), (3)

where p is the density in the undisturbed state, s may be called the 'con-

densation
'

in the plane x. Substituting in (1) and (2), we find, on the

supposition that the motion is infinitely small,

du _ k ds ...

dt p<,dx'

,
ds du ...

and *& (0>

(6)if
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In the case of a gas, if we assume that the temperature is constant, the

value of k is determined by Boyle's Law

*-*, (1)
Po Po

viz. K =p , (2)

so that c =tJ(&\ (3)

This is known as the 'Newtonian' velocity of sound*. If we denote by
H the height of a '

homogeneous atmosphere
'

of the gas, we have p = gp H,
and therefore

c = (gH)K (4)

which may be compared with the formula (13) of Art. 169 for the velocity of
'

long
'

gravity-waves in liquids. For air at C. we have as corresponding
values

^0
= 76x1360x981, p = 00129,

in absolute C.G.S. units
;
whence

c = 280 metres per second.

This is considerably below the value found by direct observation.

The reconciliation of theory and fact is due to Laplace f. When a gas is

suddenly compressed, its temperature rises, so that the pressure is increased

more than in proportion to the diminution of volume
;
and a similar state-

ment applies of course to the case of a sudden expansion. The formula (1) is

appropriate only to the case where the expansions and rarefactions are so

gradual that there is ample time for equalization of temperature by thermal

conduction and radiation. In most cases of interest, the alternations of

density are exceedingly rapid ;
the flow of heat from one element to another

has hardly set in before its direction is reversed, so that practically each

element behaves as if it neither grained nor lost heat.O"

On this view we have, in place of (1), the 'adiabatic' law

., (5)
P _fP^ y

Po \/V

where, as explained in books on Thermodynamics, y is the ratio of the two

specific heats of the gas. This makes

k=VPo, (6 )

*
Principia, Lib. ii., Sect, viii.. Prop. 48.

t The usual reference is to a paper
" Sur la vitesse du son dans Pair et dans l'eau," Ann. de

Chim. et de Phys., t. iii. p. 238 (1816) [Mecanique Celeste, Livre 12me , c. iii. (1823)]. But Poisson

in a memoir of date 1807 (see p. 463) refers to this explanation as having been already given by

Laplace.
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and therefore c=
/( )

(7)

If we put 7 = 1410*, the former result is to be multiplied by 1*187, whence

c = 332 metres per second,

which agrees very closely with the best direct determinations.

The confidence felt by physicists in the soundness of Laplace's view is so complete that

it is now usual to apply the formula (7) in the inverse manner, and to infer the values of y

for various gases and vapours from observation of wave-velocities in them.

In strictness, a similar distinction should be made between the adiabatic' and
' isothermal

'

coefficients of elasticity of a liquid or a solid, but practically the difference

is unimportant. Thus in the case of water the ratio of the two volume-elasticities

.culated to be lO012t.

The effects of thermal radiation and conduction on air-waves have been studied

theoretically by Stokes J and Lord Eayleigh. When the oscillations are too rapid for

equalization of temperature, but not so rapid as to exclude communication of heat between

adjacent elements, the waves diminish in amplitude as they advance, owing to the dissipa-

tion of energy which takes place in the thermal processes. The effect of conduction will

be noticed, along with that of viscosity, in the next Chapter.

According to the law of Charles and Dalton

ac 1 + -003660,
Po

where 6 is the temperature centigrade. Hence the velocity of sound will

vary as the square root of the absolute temperature. For several of the

more permanent gases, which have sensibly the same value of y, the formula (7)

shews that the velocity varies inversely as the square root of the density,

provided the relative densities be determined under the same conditions of

pressure and temperature.

275. The theory of plane waves can also be treated very simply by the

Lagrangian method (Arts. 13, 14).

If denote the displacement at time t of the particles whose undisturbed

abscissa is x, the stratum of matter originally included between the planes x

and x + Bx is at the time t + St bounded by the planes

x + % and x + ^+(l + ~j Bx,

* The value found by direct experiment.
+ Everett. Units and Physical Constants.

X
" An Examination of the possible effect of the Radiation of Heat on the Propagation of

Sound," Phil. Mag. (4), t. i. p. 305 (1851) [Math, and Phys. Papers, t. iii. p. 142].

Theory of Sound, Art. 247. In a recent paper
" On the Cooling of Air by Radiation and

Conduction, and on the Propagation of Sound," Phil. Mag. (5), t. xlvii. p. 308 (1899) [Sc. Papers,

t. iv. p. 376], Lord Rayleigh concludes on experimental grounds that conduction is much more

effective in this respect than radiation.
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so that the equation of continuity is

'(
1+

s9-*- (1)

where p is the density in the undisturbed state. Hence if s denote the

'condensation' (p p )/p ,
w have

^-^w (2)

dx

The dynamical equation, obtained by considering the forces acting on

unit area of the above stratum, is

Po dr~ dx W
These equations are exact, but in the case of small motions we may write

p=p + tcs, (4)

and * =-| (5)

Substituting in (3) we find

dt* dx*' (b)

where c
2 =

ic/p . The solution of (6) is the same as in Arts. 169, 273.

276. The kinetic energy of a system of plane waves is given by

T=yo jjju*dxdydz, (1)

where u is the velocity at the point (x, y, z) at time t.

The calculation of the intrinsic energy requires a little care. If v be the

volume of unit mass, the work which this gives out in expanding from its

actual volume to the normal volume vQ is

"pdv (2)fJ V

Putting v = v /(l+s), p = p + /cs, we find, for the intrinsic* energy (E) of

unit mass
E = {p s + (^>c-p )s*}v , (3)

if we neglect terms of higher order. Hence, for the intrinsic energy of the

fluid which in the disturbed condition occupies any given region, we have

the expression

W = jjjEpdxdydz = p JJJE(l + s) dxdydz = fff(p s + %ks
2

) dxdydz, . . .(4)

*
According to strict thermodynamic usage this name is not appropriate unless the expan-

sions and contractions are adiabatic. In the case of the isothermal relation the expression (3)

gives the increment of what is known as the '

free energy.'
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since /V'o
= 1- If we consider a region so great that the condensations and

rarefactions balance, we have

fffsdxdydz = 0, (5)

and therefore W = ^kJJJ s*dxdydz (6)

In a progressive plane wave we have cs = u, and therefore T= W. The

equality of the two kinds of energy, in this case, may also be inferred from

the more general line of argument given in Art. 173.

In the Theory of Sound special interest attaches, of course, to the case of

simple-harmonic vibrations. If a be the amplitude of a progressive wrave

of period 27r/o-, we may assume, in conformity with Art. 275 (6),

= a cos (kx at + e), (7)

where k <r/c, and the wave-length is accordingly \ = 27r/k. The formulae

i (1) and (6) then give, for the energy contained in a prismatic space of

sectional area unity and length X (in the direction x),

T+ W=p<p*a*K , (8)

the same as the kinetic energy of the whole mass when animated with the

maximum velocity aa.

The rate of transmission of energy across unit area of a plane moving with the particles

situate in it is

p ^=paa sin (ix - at + c) (9)

The work done by the constant part of the pressure in a complete period is zero. For the

variable part we have

Ap= KS= k ~- = Kkasin (kx-at+ t) (10)

Substituting in (9), we find, for the mean rate of transmission of energy,

^Kvka
2= %p a2ai x c (11)

Hence the energy transmitted in any number of complete periods is exactly that cor-

responding to the waves which pass the plane in the same time, as we should expect, since,

c being independent of X, the group-velocity is identical with the wave-velocity (cf. Art. 235).

Waves of Finite Amplitude.

277. If p be a function of p only, the equations (1) and (3) of Art. 275,

give, without approximation,

c^ = ?dp S2

! ^
at

2

po dp
'

dx2
'

On the
'

isothermal
'

hypothesis that

E = P-, (2)
Po po'
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this becomes *=* - ir, (3)

In the same way, the '

adiabatic
'

relation

wy, (4)

leads to ?I-W Za?
lead* t0

8^-/>o71+ a|y
+1 (5)

\ dx)

These exact equations (3) and (5) may be compared with the similar equation for
'

long
'

waves in a uniform canal, Art. 172 (3).

It appears from (1) that the equation (6) of Art. 275 could be regarded as exact if the

relation between p and p were such that

P*fp =P<?<? (
6

)

Hence plane waves of finite amplitude can be propagated without change of type if,
and

only if,

P-Po^P^{\-^)
(7)

A relation of this form does not hold for any known substance, whether at constant

temperature or when free from gain or loss of heat by conduction and radiation*. Hence

sound-waves of finite amplitude must inevitably undergo a change of type as they proceed.

278. The laws of propagation of waves of finite amplitude have been

investigated, independently and by different methods, by Earrjshaw and

Riemann. It is proposed to give here a brief account of these investigations,

referring for further details to the original papers, and to the very full

discussion of the matter by Lord Rayleighf.

Riemann's method \ has already been applied in this treatise to the

discussion of the corresponding question in the theory of '

long
'

gravity-waves

on liquids (Art. 185). He starts from the Eulerian equations of Art. 273,

which may be written

du du _ 1 dp dp ,, v

dt dx pdpdx
'

dp dp du ,aV

si
+u

S-^- p di
(2)

* The relation would make p negative when p falls below a certain value.

t Theory of Sound, c. xi.

X
" Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite," Gott. Abh.,

t. viii. p. 43 (1858-9) [Werke, 2te
Aufl., Leipzig, 1892, p. 157]. See also H. Weber, Part.

Dif.-Gl. d. math. Phys., t. ii. p. 469.
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If we put P=f(p) + u, Q=f(p)-u, (3)

where f(p) is as yet undetermined, we find, multiplying (2) by /' (/>),
and

adding to (1),

If we now determine f(p) so that

this may be written

dP dP ldpdp .,, x du

ww-?%- w

In the same way we obtain

m +u
dx
=

*fV>te (6)

The condition (4) is satisfied by

/<=/:'? <7 >

Substituting in (5) and (6), we find

dP =

dQ =

H ,+-M&)
iM'-MS-}

.(8)

Hence dP = 0, or P is constant, for a geometrical point moving with the

velocity

-*+ <9>

\dpj

whilst Q is constant for a point whose velocity is

t=-'+ <10>

Hence, any given value of P moves forward, and any value of Q moves

backward, with the velocity given by (9) or (10), as the case may be.

These results enable us to understand, in a general way, the nature of

the motion in any given case. Thus if the initial disturbance be confined

to the space between the two planes x = a, x = b, we may suppose that P
and Q both vanish for x > a and for x < b. The region within which P is

variable will advance, and that within which Q is variable will recede, until

after a time these regions separate and leave between them a space for

which P =
0, Q = 0, and in which the fluid is therefore at rest. The original
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disturbance has thus been split up into two progressive waves travelling in

opposite directions. In the advancing wave we have Q = 0, and therefore

u=f(p), (11)

so that both the density and the particle- velocity are propagated forwards at

the rate given by (9). Whether we adopt the isothermal or the adiabatic

law of expansion, this velocity of propagation will be found to be greater, the

greater the value of p. The law of progress of the wave may be illustrated

by drawing a curve with x as abscissa and p as ordinate, and making each

point of this curve move forward with the appropriate velocity, as given by

(9) and (11). Since those parts move faster which have the greater ordinates,

the curve will eventually become at some point perpendicular to x. The

quantities du/dx, dp/dx are then infinite
;
and the preceding method fails to

yield any information as to the subsequent course of the motion. Cf. Art. 185.

279. Similar results can be deduced from Earnshaw's investigation*
which is, however, somewhat less general in that it applies only to a pro-

gressive wave supposed already established.

For simplicity we will suppose p and p to be connected by Boyle's Law

P= c2P (1)

If we write y=# + ,
so that y denotes the absolute coordinate at time t of the particle

whose undisturbed abscissa is x, the equation (3) of Art. 277 becomes

M/Gtf (2)

This is satisfied by || =/(|-), (3)

MDF-'/d)'
Hence a first integral of (2) is -^-= C+clog J?- (5)K '

ct
-

OX W
To obtain the '

general integral
'

of (5) we must eliminate a between the equations

y= ax+ (C c log a) t+ cf> (a),

= axct+ a(p'(a\ f

^ +

where
(p

is arbitrary. Now =
,

so that, if u be the velocity of the particle x, we have

-|^olog^ (7)

On the outskirts of the wave we shall have it=0, p=p . It follows that (7=0, and therefore

P =P^U,
(8)

* " On the Mathematical Theory of Sound," Phil. Trans., t. cl. p. 133 (1858).

+ See Forsyth, Differential Equations, c. ix.



278-280] Waves of Finite Amplitude 463

Hence in a progressive wave p and u must be connected by this relation. If this be

satisfied initially, the function
<f>
which occurs in (6) is to be determined from the conditions

at time t= by the equation

<p'(Po'p)
= ~* > (9)

To obtain results independent of the particular form of the wave, consider two particles

(which we will distinguish by suffixes) so related that the value of p which obtains for the

first particle at time t
x
is found at the second particle at time f2 .

The value of a ( =po/p) is the same for both, and therefore by (6), with (7=0,

0=a(xi -x1)c{ti-t1). }
(10)

Ax p
The latter equation may be written = +c , (11)At Po

shewing that the value of p is propagated from particle to particle at the rate p/p . c. The

rate of propagation in space is given by

Av
-|=+ccloga=+c+u (12)

This is in agreement with Riemann's results, since on the present
' isothermal '

hypothesis
! = c.

For a wave travelling in the positive direction we must take the lower signs. If it be

one of condensation (p>po), u is positive, by (8). It follows that the denser parts of the

wave are continually gaining on the rarer, and at length overtake them
;
the subsequent

motion is then beyond the scope of our analysis.

Eliminating x between the equations (6), and writing for c log a its value -
m, we find

for a wave travelling in the positive direction,

y= (c+u)t+F(a), (13)

where F is an arbitrary function. In virtue of (8) this is equivalent to

u=f{y-(c+u)t} (14)

This formula is due to Poisson*. Its interpretation, leading to the same results as above,

for the mode of alteration of the wave as it proceeds, forms the subject of a paper by
Stokes +.

280. The conditions for a wave of permanent type have been investigated

in a very simple manner by Rankine J.

Let A, B be two points of an ideal tube of unit section drawn iu the

direction of propagation, which is (say) that of <r-positive, and let the values

of the pressure, the density, and the particle-velocity at A and B be

denoted by pu px , w, and p., p, u2 , respectively.

* " Memoire sur la Theorie du Son," Journ. de I'Ecole Polytechn., t. vii. p. 367 (1807).

t -On a Difficulty in the Theory of Sound," Phil. Mag. (3), t. xiiii. p. 349 (1848) [Math, and

Phy$. Papers, t. ii. p. 51].

t "On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbance," Phil.

Trans., t. clx. p. 277 (1870) [Misc. Sc. Papers, p. 530].
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If, as in Art. 174, we impress on everything a velocity c equal and opposite

to that of the wave, we reduce the problem to one of steady motion. Since

the same amount of matter now crosses in unit time each section of the

tube, we have

(h (c
-

Wi)
=

P2 (c
- u2),

= m, (1)

say ;
where m denotes the mass swept past in unit time by a plane moving

with the wave, in the original form of the problem. This quantity m is called

by Rankine the '

mass-velocity
'

of the wave.

Again, the total force acting on the mass included between A and B is

PiPi> m the direction BA, and the rate at which this mass is gaining
momentum in the same direction is

m (c Ui) m(c u2).

Hence p2 p = ?n(u 2 Mj) (2)

Combined with (1) this gives

m2 m2
....

p1+ =p2 + (3)
Pi P%

Hence a wave of finite amplitude could not be propagated unchanged except
in a medium such that

p -\
= const (4)

P

This conclusion has already been arrived at, in a different manner, in Art. 277.

It may be noticed that, if we write v= 1/p, the relation (4) is represented on
' Watt's Diagram

'

by a straight line.

If the variation of density be slight, the relation (4) may, however, be

regarded as holding approximately for actual fluids, provided m have the

proper value. Putting

p
=

p (l+s), p=p +KS, m = p c, (5)

we find c
2 =

, (6)

as in Art. 273.

The fact that in actual fluids a progressive wave of finite amplitude

continually alters its type, so that the variations of density towards the front

become more and more abrupt, has led various writers to speculate on the

possibility of a wave of discontinuity, analogous to a ' bore
'

in water-waves.

It has been shewn, first by Stokes*, and afterwards by several other

writers, that the conditions of constancy of mass and of constancy of

momentum can both be satisfied for such a wave. The simplest case is

when there is no variation in the values of p and u except at the plane of

*
I.e. ante p. 463.
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discontinuity. If, in the preceding argument, the sections A, B be taken,

one behind, and the other in front of this plane, we have, by (3),

2

w0*. (7)

tt. =

Pl-P

l'Pl-P-2 Pl\
k

.(8)
Pi \p\pi Pi>

and .......g.g-Wfo-ft)<"->)' (9)
Pi Pi V Plp2 J

The upper or the lower sign is to be taken according as p, is greater or less

than
p.,,

i.e. according as the wave is one of condensation or of rarefaction.

The results involve differences of velocity, as we should expect, since any
uniform velocity of the whole medium may be superposed.

We may assume, for instance, that the quantities p.,, p2 ,
u2 ,

which define

the condition of the medium ahead of the wave, are given arbitrarily ;
also

that the density p^ of the air in the advancing wave is prescribed. Further,

some definite relation between^?,, px and
p.,, p.,,

based on physical considera-

tions, is presupposed. The remaining quantities in, c, i/2 are then determined

by (7), (8), (9).

These results have, however, lost some of their interest since it has been

pointed out by Lord Rayleigh* that in actual fluids the equation of energy
cannot be satisfied consistently with (1) and (2). Calculating the excess of

the work done per unit time on the fluid entering the space AB at B over

that done by the fluid leaving at A, and subtracting the gain of kinetic

energy, we obtain

Pi (c
- N) -pi. (c

-
m,)

- w {(c
-
ihY - (c

-
Wo)

2

},

or plUl
- pau2

- m (u? - u2
2
),

or i0>i+p2)(tti-O, (10)

these forms being equivalent in virtue of the dynamical equation (2). The
;

corresponding result per unit mass is obtained by dividing by m. If we
substitute for if, u., from (1) or (9), we obtain

biPi+pJiv-t-vJ, (11)

,

where v is written for 1/p.

If the two states of the medium be represented by two points A, B on

Watt's diagram, the expression (11) is equal to the area included between

the straight line AB, the axis of v, and the ordinates of A, B. If the

: transition from B to A be effected without gain or loss of heat, the points
in question will lie on the same ' adiabatic curve,' and the gain of intrinsic

Thtory of Sound, Art. 253.

L. 30
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energy will be represented by the area included between this curve, the

axis of v, and the extreme ordinates. For an actual gas, the adiabatic is

concave upwards ;
and the latter area is accordingly less (in absolute value)

than the former. If we have regard to the signs to be attributed to the

areas, we find that for a wave of condensation {vx < v2) the work done on the

medium is more than is accounted for by the increase of the kinetic and

intrinsic energies; whilst in a wave of rarefaction (v1 >v2 ) the work given

out is more than the equivalent of the apparent loss of energy.

It appears that the equation of energy cannot be satisfied for
discon-j

tinuous waves, except in the case of a hypothetical medium whose adiabatic

lines are straight. This is identical with the condition already obtained foi

permanency of type in continuous waves.

In the above investigation no account has been taken of dissipativr

forces, such as viscosity and thermal conduction and radiation. Practicall)!

a wave of discontinuity would imply a finite difference of temperaturj
between the portions of the fluid on the two sides of the plane of discontinuity

so that, to say nothing of viscosity, there would necessarily be a dissipatio;

of energy due to thermal action at the junction. Whether, when this
ij

allowed for, the relation between the two states can be reconciled with thj

equation of energy is a physical question into which we do not enter*. L

would appear that the possibility of a discontinuous wave of rarefactio;

is in any case excluded, since (as may easily be shewn graphically) thi

would involve a loss of 'entropy' in an irreversible process.

Spherical Waves.

281. Let us next suppose that the disturbance is symmetrical witj

respect to a fixed point, which we take as origin. The motion is necessarilj

*
It is discussed to some extent by Kankine, who points out that the integral amouij

of heat absorbed by any portion of the medium, in its passage from one state to the other, mu

be zero.

In some investigations by Hugoniot, which are expounded by Hadamard in his Lecons sur

propagation des ondes et les equations de Vhydrodynamique, Paris, 1903, the argument given

the text is inverted, ihe possibility of a wave of discontinuity being assumed, it is pointed o

that the equation of energy will be satisfied if we equate the expression (10) to the increment

the intrinsic energy (for which see Art. 11 (8)). On this ground the formula

1

h (Pi+P2)iv2- Vi)=
~

T (Pivi-P&a)
7-1

is propounded, as governing the transition from one state to the other :
" Telle est la relati.;

qu'Hugoniot a substitute a [pv7= const.] pour exprimer que la condensation ou dilatation brusq

se fait sans absorption ni degagement de chaleur. On lui donne actuellemeht le nom de loi adi

batique dynamique, la relation [ pv*= const.], qui convient aux changements lents, 6tant design

sous le nom de loi adiabatique statique" (Hadamard, p. 192). But no physical evidence

adduced in support of the proposed law.

For another discussion of the matter, reference may be made to H. Weber, Part. Diff.-G

t. ii. c. xxii.
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irrotational, so that a velocity-potential <f> exists, which is here a function

of r, the distance from the origin, and t, only. If as before we neglect the

squares of small quantities, we have by Art. 20 (3)

'dp _ d<f>

In the notation of Arts. 272, 273 we may write

f dp _ f kcIs _
J P J Pa

!'

cs,
p J po

pi
whence crs =~ (1)

To form the equation of continuity we remark that, owing to the difference

of flux across the inner and outer surfaces, the space included between the

spheres r and r + Br is gaining mass at the rate

Since the same rate is also expressed by dp/dt . iirr2 Br we have

-M("g) v
This might also have been arrived at by direct transformation of the general

equation of continuity, Art. 8 (4). In the case of in6nitely small motions, it

becomes

&~*PK*r) (3)

whence, substituting from (1),

dt> r*fr{ fr)
W

This may be put into the more convenient form

d3 .
r<f> _ n d* .

r<f>

~W~"~dr^' (0)

so that the solution is

r<f>=f(r-ct) + F(r + ct) (6)

Hence the motion is made up of two systems of spherical waves, travelling,
one outwards, the other inwards, with velocity c. Considering for a moment
the first system alone, we have

cs = --f'(r-ct),

302
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which shews that a condensation is propagated outwards with velocity c, but

diminishes as it proceeds, its amount varying inversely as the distance from

the origin. The velocity due to the same train of waves is

-f \/'i'-<*)
+
l/(r-ct).

As r increases the second term becomes less and less important compared
with the first, so that ultimately the velocity is propagated according to the

same law as the condensation.

We notice that whenever diverging or converging waves are alone present

we have

-^W = + cs
; 0)

this corresponds to Art. 273 (11).

For some purposes the formula for a system of divergent waves is mon

conveniently written

4*r* =/(*-) (8)

Since this makes

limr=0
or

=/(*), (9)

the system in question may be regarded as due to a source of strength f{\
at the origin ;

cf. Art. 194.

It follows from (1) that

sdt = Q, (10)i

provided the initial and final values of
<f>

both vanish. This will be the caei

whenever the source f(t) is in action only for a finite time. The fact th;

a diverging spherical wave must necessarily contain both condensed air

rarefied portions was first remarked by Stokes*. Cf. Art. 195.

As in the case of plane progressive waves (Art. 276), the energy >

a system of divergent spherical waves is half kinetic and half potentit

This follows from the general argument of Art. 173, and may be verifi<

independently as follows. We have, identically,

)'-CT-|w
If we write ? = -

Ir . c
25 = ^, (11)

or ot

* " On Some Points in the Received Theory of Sound," Phil. Mag. (3), t. xxxiv. p. 52 (18 )

[Math, and Phys. Papers, t. ii. p. 82]. See also Lord Rayleigh, Theory of Sound, Art. 279.
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this gives, by (7), in the case of a divergent wave-system,

rY = cW-^-(r4>-).

/*oo /"oo

Hence
/ \pq- . 4nrr*dr = hptfs

2
>4m*dr, (12)

Jo Jo

if r<f)

2 vanishes at the inner and outer boundaries of the system *.

282. The determination of the functions/
-

and Fin (6), in terms of the

initial conditions, for an unlimited space, can be effected as follows.

Let us suppose that the distributions of velocity and condensation at

time t = are determined by the formulae

f->(r), *~xh (13)

where
>]r, x are arbitrary functions. Comparing with (6), we have

f(z) + F(z) = z+(z), (14)

-f'(z) + F'(z) =
Z
- x (z),

the latter of which gives on integration

-f(z) + F(z)=
]

-j

Z

zX (z) + a (15)W

Again, the condition that there is no creation or annihilation of fluid at the

origin gives

f(-z) + F(z) = (16) .

The formulae (14) and (15) determine the functions/ and F for positive values

of z; and (16) then determines /for negative values of z\.

The final result may be written

r<f>
= (r-ct)1r(r-ct) + (r + ct)f{r + ct)+-^j _

zX (z)dz, ...(17)

or

1 Cct+r

r$ = -\{ct-r),\r{ct-r) + \{ct + r)^{ct + r)+ 1
c] _

zX {z)dz, ...(18)

according as r is greater or less than ct.

As a very simple example we may suppose that the air is initially at rest, and that the

initial disturbance consists of a uniform condensation s extending through a sphere of

radius a. We have then
yj, (2)

=
0, whilst x (?)=<?** or according as z<a. At a distance-

* Proc. Lond. Math. Soc., t. xxxv. p. 160 (1902).

t Lord Rayleigh, Theory of Sound, Art. 279.
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r(>a) from the origin, the motion will not begin until t= (r a)jc, and will cease when
t= (r+a)/c. For intermediate instants we shall have

rtf>
= ics {a

2
-(r-cO}

2
, (19)

and thence - =
^ (20)s ir

The disturbance is now confined to a spherical shell of thickness 2a
; and the condensation

s is positive through the outer half, and negative through the inner half, of the thickness.

We shall require, shortly, an expression for the value of
<p

at the origin,

for all values of t, in terms of the initial circumstances. We have, by (6)

and (16),

vx\ r f(r-ct) + F(r + ct)

.. F(ct + r)-F(ct-r) -,.,*= hm r=0 s = 2F (ct) ;

or, by (14) and the consecutive equation,

d

dt[i>]r=o
=

i.tyjr(ct) + tx (ct) (21)

General Equation of Sound-Waves.

283. We proceed to the general case of propagation of expansion-waves.
We neglect, as before, small quantities of the second order, so that the!

dynamical equation is as in Art. 281,

"- d>
;

Also, writing p = p (l + s) in the general equation of continuity, Art. 8 (4)J

we have, with the same approximation,

dt dx*^df^dz*
K }

The elimination of s between (1) and (2) gives

or, in our former notation,

dt*

~ c
{dtf

+
df

+
dz*

] '

%<**
|

Since this equation is linear, it will be satisfied by the arithmetic mean
oj

any number of separate solutions fa, </>2 , <f>3 ,
.... As in Art. 38, let us imagin

an infinite number of systems of rectangular axes to be arranged uniformly

about any point P as origin, and let fa, fa, fa, ... be the velocity-potential
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of motions which are the same with respect to these systems as the original

motion
(f>

is with respect to the system x, y, z. In this case the arithmetic

mean (<, say), of the functions < 1; <f>2 , <f>3 , ... will be the velocity-potential of

a motion symmetrical with respect to the point P, and will therefore come

under the investigation of Art. 282, provided r denote the distance of any

point from P. In other words, if
<f>

be a function of r and t, denned by the

equation

*-^jj*
d' <5>

where
<f>

is any solution of (4), and B-ar is the solid angle subtended at P by
an element of the surface of a sphere of radius r having this point as centre,

then

d2 . r<j> d2
. r<j> _

Hence r<j>=f(r-ct) + F(r + ct) (7)

The mean value of
<f>

over a sphere having any point P of the medium

as centre is therefore subject to tbe same laws as the velocity-potential of

a symmetrical spherical disturbance. We see at once that the value of
</>

at P at the time t depends on the means of the values which < and d<f>/dt

originally had at points of a sphere of radius ct described about P as centre,

so that the disturbance is propagated in all directions with uniform velocity c.

Thus if the original disturbance extend only through a finite portion 2 of

space, the disturbance at any point P external to 2 will begin after a time

will last for a time (r^r^/c, and will then cease altogether; r r2

denoting the radii of two spheres described with P as centre, the one just

excluding, the other just including 2.

To express the solution of (4), already virtually obtained, in an analytical

form, let the values of
<f>
and d<j>/dt,

when t = 0, be

<f>
=

yfr(x,y,z), ^ = X(X>V> Z) (8)

The mean values of these functions over a sphere of radius r described about

(x, y, z) as centre are

< = ^ I

yfr (x + Ir, y + mr, z + nr) clsr,

=
j- 11 % (x + ^r

> V + mr >
z + nr) d**,

*
This result was obtained, in a different manner, by Poisson,

" Memoire sur la theorie du

son," Journ. de VEcole Polytechn., t. vii. pp. 334338 (1807). The remark that it leads at once

to the complete solntion of (4) is due to Liouville, Journ. de Math., t. i. p. 1 (1856).
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where I, in, n denote the direction-cosines of any radius of this sphere, and

Bur the corresponding elementary solid angle. If we put

I = sin cos to, to = sin sin to, n = cos 0,

we shall have B-sr = sin B0Bo).

Hence, comparing with Art. 282 (21), we see that the value of
<f>

at the point

(x, y, z), at any subsequent time t, is

<f>
= --

^.
t 1 1 yfr (<v + ct sin cos o, y + ct sin sin a>, z + ct cos 0) sin Odddw

+ -T-- 1 1 x( + ct sin cos m, y + ct sin 0siu <u, z + c^cos 0) sin d0da>, ...(9)

which is the form given by Poisson *.

284. The expression for the kinetic energy of the fluid contained in any

given region is

*r f^JJ/S2+S&+3S)***
where

<|>
stands for 9</8. By Green's Theorem (Art. 43), this may be put

in the form

-fa=
~
Pojjtfa dS-pojjj^V^dxdydz

= -
Po

ff<j>^ dS -
kffftf dxdydz.

Hence if W =\k !
f(

s* dxdydz = %
^!ff<j>-

dxdydz, (2)

we have ^(T + W) = - Po
ffcj>

d

^dS (3)

We have seen (Art. 276) that, subject to a certain condition, W represents

the intrinsic energy -f*.

The complete interpretation of (3) may be left to the reader. In various

important cases, e.g. when the boundary is fixed (d<p/dn
=

0), or free (0
=

0),

the surface-integral vanishes, and we have

T+ IT = const (4)

* " Memoire sur l'integration de quelques Equations lineaires aux differences partielles, et.

particulierement de l'equation generale du mouvement des fluides elastiques," Mem. de VAcad.

des Sciences, t. iii. p. 121 (1819).

For other proofs see Kirchhoff, Mechanik, c. xxiii., and Rayleigh, Theory of Sound, Art. 273.
|

t See, however, the footnote on p. 458.
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This leads to a proof of the determinateness of the motion consequent on

a given initial distribution of velocity and condensation. For if
<f> 1 , <f>2

were

two distinct forms of the velocity-potential satisfying the prescribed initial

conditions, then, in the motion for which $=<>! </>,,
T+ W would be

constantly null, since it vanishes initially. Since every element of T and W
is essentially positive, this requires that the derivatives of

<f>
with respect to

x, y, z. t should all vanish
;

i.e. ^ and < 2 can only differ by an absolute

constant*. The argument applies, of course, to all cases where we can

predicate the vanishing of the surface-integral in (3).

Simple-Harmonic Vibrations.

285. In the case of simple-harmonic motion, the time-factor being eM
,

the equation (4) of Art. 283 takes the form

(V* + &*)< =
<), (1)

provided k=- : (2)

It appears on comparison with Art. 276 that 27r/A: is the wave-length of

plane waves of the assumed period (27r/o-).

In the case of symmetry with respect to the origin, we have by
Art. 281 (5), or by transformation of (1),

^ +^ = (3)

The solution of this may be written
"f"

. sin&r _ cos At ,..

* = i TT+B-F (4)

If the motion is finite at the origin we must have B = 0, and (4) reduces to

, . sin At / ..

* = 4 TT" (0)

It may be noticed that this solution may be obtained by superposition of

systems of plane waves, the directions of propagation being distributed

uniformly. Thus, for a system of plane-waves whose direction of propagation
makes an angle 6 with the axis of x, we have

(f)
= e-ikrcOi } (6)

and the mean-value of this for all directions through the origin is

*-H e-^eos.^Tr sin ddO^*^ (7)
fcr

*
Kirchhoff, Mechanik, c. xxiii.

t The time-factor is omitted here and elsewhere for shortness.
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We can draw from (5) a conclusion applicable to the general case, to

which the equation (1) refers. We have seen (Art. 283) that the mean value

of < over a sphere of radius r, described with any point as centre, satisfies

an equation of the form (3). Hence in the notation of the Art. quoted, we

have
- sin kr .

^ = -^r--^o, (8)

where < denotes the value of
<f>

at 0. This assumes that
<f>
has no singularities

within the sphere to which r refers*. Cf. Art. 38.

Returning to the case of symmetry, we note that the solution (4) may
also be written

* = C
e +D e

T (9)

It is evident on reference to Art. 281 (8) that the formula

pikr

+ =^Tr < 10>

represents the system of diverging waves due to a unit source at the origin.

286. The general theory of functions satisfying the equation

(V + #)< =
(1)

has been developed by Helmholtzf, Lord Rayleighj, and others. It has

many points of analogy with that of Laplace's equation V2

<f>
= 0, which is,

indeed, a particular case, obtained by making either c = oo
,
or a = 0.

The typical solution of (1) from which all others can be derived, is that

which corresponds to a unit source, viz.

c
-ikr

*"w- <2)

where r denotes distance from the source.

It appears from Green's Theorem (Art. 43) that if
<p,

<' be any two

functions which, together with their first and second derivatives, are finite

and single-valued throughout any finite region, we have

//(* tot-+'to)
d8 = IIJ <*'V>* ~^' ] dxdydz * - (3)

* The theorem was given by H. Weber, Crelle, t. lxix. (1868).

f
" Theorie der Luftschwingungen in Rohren mit offenen Enden," Crelle, t. lvii. p. 1 (1859)

[Wiss. Abh., t. ii. p. 303].

J Theory of Sound, t. ii.

For an account of the more recent mathematical theory, see Pockels,
" Ueber die partielle

Differentialgleichung Au + k?u = 0," Leipzig, 1891, and Sommerfeld, I.e. ante p. 59.
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If, in addition, <f>
and <' both satisfy (1), the right-hand member vanishes,

and we have

//**'-//'** w
From this we deduce, by exactly the same process* as in Art. 57, the

formula

*>~l!!^^!f*U^ <>

giving the value of
<f>

at any point P of a region in terms of the values of
<f>

and d<f>jdn at the boundary. The symbol r here denotes the distances of the

respective surface-elements from P, and we see that the value of
<f> may be

regarded as due to a certain distribution of simple and double sources over

the boundary -f*.

Again, if r denote distance from a point P' external to the region, we

have

~5jJ^'+cK(?) <>

It is to be noticed that, as in Art. 58, the particular distribution of sources

over the boundary which is exhibited in (5) is only one out of an infinite

number which would give exactly the same value of
<f>

at points within

the region. For instance, by addition of (5) and (6) we get another such

distribution, which may, moreover, be varied indefinitely by varying the

position of P'*.

The theorems (5) and (6) will apply to the case of an infinite region

bounded internally by one or more closed surfaces, provided that at an infinite

distance R from the origin <f>
tends to the form

P-ikR

*= c-w (7)

We may express this by saying that there are no sources of sound at infinity.

We can carry the analogy with the theory of the ordinary potential one

step further, and express the value of
<f>

at any point of a finite region in

terms of simple sources only, or double sources only, distributed over the

boundary ;
thus

--iJ/^GMS)* (8)

*- //<-'> (*r)
(9)

*
Viz. we put <t>

=e-ar\r, where r denotes distance from a fixed point, and isolate this point

(when it falls within the region considered), by drawing a small spherical surface about it.

t Helmholtz, I.e.

*
Larmor, I.e. ante p. 59.
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where the auxiliary function
<f>'

is subject to the conditions that it must

satisfy

(V
2 + &) <' = 0, (10)

throughout the rest of infinite space, and must tend to the form (7) at infinity,

whilst at the boundary

*'- - %Jl <")

as the case may be. The proof is as in Art. 58.

It would be wrong, however, to assume that, as in the case of the ordinary

potential, a function
(f> necessarily exists which satisfies (1) throughout a given

region, and also fulfils the condition that
<f>

or d<f>/dn shall assume arbitrarily

prescribed values over the boundary. The supposed existence-theorem holds,

it is true, as a rule, but it fails for a series of definite values of k, which

correspond to the normal modes of vibration of the mass of air occupying the

region, when the boundary-condition is <
= 0, or d(f>/dn

= 0, respectively.

For the same reason, the formulae (8) and (9) cannot be applied without

reservation to the case of an infinite region, since the determination of the

auxiliary function
<f>' may be impossible.

To illustrate these points, let us suppose that throughout a sphere of radius a, having
its centre at the origin 0, we have

, sin kR ,,M^ R (
12

)

where R now denotes distance from 0. If we put

.-ik(R a)

(f)'
= sinka. ^ -, (13)

in the external space, the conditions of validity of the formula (8) are satisfied, and we find

. keika [ f
-ikr

dS. (14)
r

It is not difficult to verify, a posteriori, that this is equivalent to (12) for R<a and to (13)

for R>a.

Again, let us seek a surface-distribution of simple sources which will make

-ikR

<*>=Sr~' (
15

)

in the space external to the sphere. The value of
</>'

for the internal space, which coincides

with this at the boundary, is

,, e~
ika

sin kR .

* =
ira- R-> (16)

h r r P
-ikr

and we get 0= 'L-j- dS. (17)Ana sin ka J J r

But the determination of <' fails whenever k is a root of sina= 0. It appears in fact that

when this condition is satisfied a uniform distribution of simple sources over a sphere of

radius a produces no effect at external points.
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If all the dimensions of the region referred to are small compared with

the wave-length, we may put e~ikr = 1, approximately, in (5), and the formula

assumes the shape

**--llll%+W* (18>

as in Art. 57. Hence, within distances small compared with the wave-length,

the variations of
</> may be calculated as if it satisfied the, equation ^"-<f)

= 0.

This principle is of great service in the approximate treatment of various

acoustical questions (cf. Arts. 293, 294).

Finally, we may remark that, if we restore the time-factor, the formula

(8) may be written

This may be generalized by Fourier's double-integral theorem, which may be

written in the form

<(*) = ^;(*
da

J" $(t) *-*> <*t. (20)

If we denote by <f> (t) the value which
<f>

has at the point (x, y, z) at the

instant t, whether this point be within the region or on its boundary, and by

f(t) the value which d<f>/dn has at a point of the boundary, we obtain

provided that in the last term the space-differentiation applies only to r as

it appears explicitly. This remarkable formula, which gives the value of
<f>

at any instant, at a point P, in terms of antecedent values of
<j>

and d<f>/dn at

points of a closed surface surrounding P, was first obtained by Kirchhoff *,

in a different manner, from the general equation (4) of Art. 283. It has been

supposed by various writers to contain the precise mathematical formulation

of '

Huygens' principle
'

in Acoustics
;
but as has been already pointed out,

in connection with the special case (5), the representation of
<f>

in this manner

is largely arbitrary and indeterminate.

* " Zur Theorie der Lichtstrahlen," Berl. Ber., 1882, p. 641 [Get. Abh., t. ii. p. 22]. Various

other proofs have been given; cf. Larmor, I.e. ante p. 59, and Love, Proc. Lond. Math. Soc. (2),

t. i. p. 37 (1903).
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Applications of Spherical Harmonics.

287. The solution of the equation

(V+jfc) = 0, (1)

when the boundary-conditions have reference to spherical surfaces, may be

conducted as follows.

We may suppose the value of
<f>

over any sphere of radius r, having its

centre at the origin, to be expanded in a series of spherical surface-harmonics

whose coefficients are functions of r. We therefore write

4>
= 2Rn <f>n , (2)

where
<j)n is a solid harmonic of degree n, and Rn is a function of r only.

Now

7.(^-^.^+1^ +^+^^)+*,^

-^*> +'*(-^ +^ +'^) + .^.- -<)

And, by the definition of a solid harmonic, we have

V 2

4>=0,

Hence

If we substitute in (1), the terms in
<f>n must satisfy the equation inde-

pendently, whence

^+jUIi +M,_
(5)

This can be integrated by series. Thus, assuming that

Rn = ZAm (kr),

the relation between consecutive coefficients is found to be

m (2w + 1 + m) Am + Am_2
= 0.

This gives two ascending series, one beginning with m =
0, and the other

with m = 2n 1
;
thus

2 (2n + 3)
+

2 . 4 (2n + 3) (2n + 5)

k2r
n-

frr*

2(l-2n) 2.4(1 -2n) (3 -2n)
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where A, B are arbitrary constants. Hence if we put <f>n
= rnSn , so that Sn

is a surface-harmonic of order n, the general solution of (1) may be written

<j>=S{Aylrn (kr) + BVn (kr)}rSn , (6)

where

^n^ =
1 . 3. . .(2n + 1) V

1 ~
2 (2ti + 3)

+
2 . 4 (2n + 3) (2n + 5)

~
"V'

1.3...(2n-l) / ?_ ^_ -Yl*U;
j ^ 2(l-2w)

+
2.4(l-2n)(3-2w) / J

(7)*

The first term of (6) is alone to be retained when the motion is finite at

the origin.

The functions ^n (), ^(f) can also be expressed in finite terms, as

follows :

*>-(-) -(-). <8)

These are readily identified with (7) by expanding sin cos
,
and performing

the differentiations. As particular cases we have

sin? sing" cos f ^
^o (0 =

-jr-
, Yi (?) - -= =- i

The formulae (6) and (8) shew that the general solution of the equation

^ + fe+i)* + Jt .O (10)

which is obtained by writing for Av in (5), is

*-<m)'**T* (11)

This is easily verified
;
for if Rn be any solution of (10) we find that the corresponding

equation for i? +1 is satisfied by

_dRn
Kn + x~tdC

and by repeated applications of this result it appears that (10) is satisfied by

*-()** (12)

*
There is a slight deviation here from the notation adopted by Heine, Kugelfunhtionen, t. i.

P- 82. It may be noted that the formula (6) gives an immediate proof of the theorem (8) of

Art. 285.

.(9)
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where R is the solution of -4 r^ + 7? =0,

that is Ro=
+

(13)*

It will be convenient to have a special notation for that combination

of the functions ^n {t), WniO which is appropriate to the expression

of diverging waves. We write

Mto-(-jj$^-*W-ty*iQ (14)

As particular cases :

MO = e

-^, /(0-(p
+
p)^*. /.(0=(-f-,

+| +
|)^....(i5)

The general formula is

,
(p

. _i
ner*L n(ra + l) (w-l)w(n + l)(w + 2) 1.2.3...2n

|

+1
(

2i 2.4.(tf)
a

2.4.6....2ra(t)
B
J'

(16)

This may be proved by
' mathematical induction,' or by means of the

differential equation satisfied by/n (")f. If we equate, separately, real and

imaginary parts, expressions for
yfrn (), ^n (), in terms of cos f, sin f, and

finite algebraical series, can be deduced by (14).

The functions
yfrn (^), ^n (D> fn() all satisfy recurrence-formulae of the

types

#*) ***) (17)

r^
/

(o+(2^+i)^(r)=t-i(r); (is)

these are frequently useful in reductions.

288. A simple application of the foregoing analysis is to the vibrations

of air contained in a spherical envelope.

1. Let us first consider the free vibrations when the envelope is rigid. Since the

motion is finite at the origin, we have

<f>
=A+n (kr)rSn .e

i t
, (1)

with the boundary-condition >//' (ka) + nyjrn (ka)
=

0, (2)

a being the radius. This determines the admissible values of k and thence of <r (=kc).

* The above analysis, which has a wide application in mathematical physics, has been given,

in one form or another, by various writers, from Laplace,
" Sur la diminution de la duree du

jour par le refroidissement de la Terre," Conn, des Terns pour l'An 1823, p. 245 (1820) [M(c.
j

Celeste, Livre llme
,

c. iv.] downwards. For references to the history of the matter, considered as

a problem in Differential Equations, see Glaisher, "On Riccati's Equation and its Transforma-

tions," Phil, Trans., 1881.

t Stokes, I.e. post p. 483. The notation is different.
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It is evident from Art. 287 (8) that this equation reduces always to the form

tan ka=F (ka), (3)

where F{ka) is a rational algebraic function. The roots can then, be calculated without

difficulty, either by means of a series, or by a method devised by Fourier*.

In the case of the purely radial vibrations (=0), we have

. am kr iat , ,

* = A -JT e
> (4)

with the boundary condition

tan ka= ka, (5)

which determines the frequencies of the normal modes. The roots of this equation, which

presents itself in various physical problems, can be calculated most readily by means of a

seriest. The values obtained by Schwerd* for the first few roots are

ka= 1-4303, 24590, 34709, 4-4774, 54818, 6*4844, (6)
7T

approximating to the form m+ ,
where m is integral. These numbers give the ratio

of the diameter of the sphere to the wave-length. Taking the reciprocals we find

^= 6992, -4067, '2881, -2233, -1824, 1542 (7)

In the case of the second and higher roots of (5) the roots of lower order give the positions
of the spherical nodes (8$/cr=0). Thus in the second mode there is a spherical node

whose radius is given by

r 14303
a
=
2l590

=5817-

In the case =1, if we take the axis of x coincident with that of the harmonic Sx ,
and

write x=rcos 6, we have

. . /sin/r cos kr\ . itT ,

<t>= A {-kh*-^r)
cosd - e

5 (8)

2ka
and the equation (2) becomes tana= -

tj j (9)

The zero root is irrelevant. The next root gives, for the ratio of the diameter to the wave-

length,

= 6625,

and the higher values of this ratio approximate to the successive integers 2, 3, 4.... In the

case of the lowest root, we have, inverting,

^= 1-509.

In this, the gravest of all the normal modes, the air sways to and fro much in the same
manner as in a doubly-closed pipe. In the case of any one of the higher roots, the roots of

*
Theorie anahjtique de la Chaleur, Paris, 1822, Art. 286.

t Euler, Tntroductio in Analysin Innnitorum, Lausannae, 1748, t. ii. p. 319; Rayleigh, Theory
of Sound, Art. 207.

t Quoted by Verdet, Lemons d'Optique Physique, Paris, 1869-70, t. i. p. 266.

L. 31
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lower order give the positions of the spherical nodes (3</3r= 0). For the further discussion

of the problem we must refer to the investigation by Lord Eayleigh*.

2. To find the motion of the enclosed air due to a prescribed normal vibration of the

boundary, say

a^='
s - e

> U)

we have
<f>
=

Ayfrn (kr)t
MSn . e

i<Tt

, (11)

with the condition A {kayjfn
'

(ka) + ny^n (ka)} a
n~ 1= 1

,

and therefore 0= .

,
'tt*^ , ,v \

- a
(*-)* S* e

( 12 )

This expression becomes infinite, as we should expect, whenever ka is a root of (2) ; i.e.

whenever the period of the imposed vibration coincides with that of one of the natural

periods, of the same spherical-harmonic type.

By putting ka= we pass to the case of an incompressible fluid. The formula (12)

then reduces to

-stsT*-''" <
I3 >

as in Art. 91. It is important to notice that the same result holds approximately, even in

the case of a gas, whenever ka is small, i.e. whenever the wave-length (iirjk) corresponding
to the actual period is large compared with the circumference of the sphere. We have

here an illustration of a general principle stated in Art. 286, of which considerable use

will be made presently (Arts. 293, 294).

3. To determine the motion of a gas within a space bounded by two concentric

spheres, we require the complete formula (6) of Art. 287. The only interesting case, how-

ever, is where the two radii are nearly equal ;
and this can be solved more easily by an

independent process t.

In terms of polar coordinates r, 6, a>, the equation (v
2+ &2

)
= becomes

where
/x
= cos 6. If, now, 90/3r=O for r= a and r= b, where a and b are nearly equal, we

may neglect the radial motion altogether, so that the equation reduces to

d

Sfr-rtSH&S4***- (l5)

It appears, exactly as in Art. 198, that the only solutions which are finite over the whole

spherical surface are of the type

<t>*Sn, (16)

where #n is a surface-harmonic of integral order n, and that the corresponding values of k

are given by
2a2 = 7i(n+l) (17)

* " On the Vibrations of a Gas contained within a Rigid Spherical Envelope," Proc. Lond.

Math. Soc, t. iv. p. 93 (1872); Theory of Sound, Art. 331.

t Lord Eayleigh, Theory of Sound, Art. 333. The direct solution is given by Chree, Mess, of

Math., t. xv. p. 20 (1886).

|
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In the gravest mode (n= 1) the gas sways to and fro across the equator of the harmonic

Si, being, in the extreme phases of the oscillation, condensed at one pole and rarefied at

the other. Since ka= s'2 in this case, we have for the equivalent wave-length X/2<z= 2'221

In the next mode (n2) the type of the vibration depends on that of the harmonic S>.

If this be zonal, the equator is a node. The frequency is determined by ka= J6, or

X 2'/ = 1-283.

289. We may next consider the propagation of waves outwards from

a spherical surface in an unlimited medium *.

If at the surface (r=a) we have a prescribed normal velocity

r=Sn .e^, (1)

the appropriate solution of (v
2+*) <p=0 is, in the notation of Art. 287,

+-Qmf.<M.*B*.'J* (2)

The condition - ^^S^, (3)

which is to be satisfied at the surface of the sphere (ra), gives

C =
-{kafn'(L-a)+nfn (ka)}a-i

^
At distances r which are large compared with the wave-length (2jt/), we have

A(^)=
(̂ ^ (5)

approximately, so that (2) becomes

*-*r*i r~~ * (6)

,, |
Cn \ coak(ct-r+t) a

or, in real form
<fi jjti

~ ~ s
(7)

The rate of propagation of energy outwards is

-fjp^***' "<*)

where Sar is an elementary solid angle, and r may conveniently be taken to be very great.
Since

P=Po+POfa, (9)

we find, for the mean value of (8)

*j\ c*1
\-ff

s*tdv do)

This might have been written down at once from the results of Art. 276, since the waves

propagated in any assigned direction tend to become ultimately plane.

*
This problem was solved, in a somewhat different manner, by Stokes,

" On the Communi-
cation of Vibrations from a Vibrating Body to a surrounding Gas," Phil. Trans., 1868 [Math, and
Phys. Papers, t. iv. p. 299].

312
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When w>0, the normal velocity is in opposite phases over any two regions of the

spherical surface r= a which are separated by a nodal line Sn= 0. The lateral motion of

the air near the sphere, from places which are moving outwards to others which are moving
inwards will consequently, if the wave-length be not too small, have the effect of diminish-

ing the intensity of the disturbance propagated to a distance, as compared with what it

would have been if the normal velocity had been everywhere in the same phase ; and this

effect will be more marked the higher the order n of the harmonic involved, owing to the

greater number of compartments into which the surface of the sphere is divided by the

nodal lines. Moreover, for the same harmonic Sn ,
and for an assigned frequency (o-/2ir),

the influence of the lateral motion will increase with great rapidity as the wave-velocity c,

and (consequently) the wave-length 2ir/k, is increased. This accounts for the feeble

character of the sound emitted by a bell in an atmosphere of hydrogen, as compared with

what is observed in the case of air*.

To verify these statements, we note that if the lateral motion of the air had been

prevented by a multitude of conical partitions extending indefinitely outwards in the

directions of the radii of the sphere, the expression (10) would have been replaced by

iPoclCol
2

-//^'^ (11)

The ratio (/, say) which this bears to (10) is equal to the 'absolute value' of the ex-

pression

(ka)*{kafn'(ka) + nfn (ka)}*

{kaf '(ka)}*
{lZ)

From the values of/ ,/i,/2 given in Art. 287 (15), we easily obtain

4 + /fc
4 4 81 + 9 2a2 - 2k*a*+ Jficfi

J -l, yi~
itaas(1+i^a )>

y2-
-fra*(l+Pa*)

(I3

The following numerical examples are given (with others) by Stokes :

ka
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the frequency being taken to be the same in the two cases*. For n=2, the ratio conies

out equal to

(fay (81 +9t*a*-2}*ai
+i*ae)

' "" ( '

Thus, supposing the two gases to be oxygen and hydrogen, and taking ia= -5, k'a=-\25,

we find that the rates of propagation of energy outwards are as 16000 : 1, nearly.

290. The case n = l of the preceding Art. is specially interesting from

the point of view of the theory of the pendulum, since it corresponds to an

oscillation of the sphere, as rigid, to and fro in a straight line. It should be

noticed, however, that the neglect of the terms of the second order in the

dynamical equations involves the assumption that the amplitude of vibration

of the sphere is small compared with the radius.

Putting Sl =acoae, (16)

where 8 is the angle which r makes with the line in which the centre oscillates, the formula

luces to

<i>
=C^^e

i ^- kr) acose. (17)

The value of C, as determined by the surface-condition, is

*3q3(2-**q*-2a-a)
4+ **a*

C KM)

The resultant pressure on the sphere is

X=-
jApcoa6.2ira

i
aindd6, (19)

where Ap=ct
p s=p ^-=tap <f> (20)

Substituting from (17) and (18), and performing the integration, we find

_ 2 +i?q*-i*3q3
. urt .,A = -$7rpoq3. 4+ L*ai
w* (21)

This may be written in the form

r , 2 + **q dU . , Pa* ,.J--*^-4+F5- A'^^-i+FSi-*^ (22)

where U(= ae
tai

) denotes the velocity of the sphere t. If we reverse the sign of X, we get
the extraneous force which must be applied to the sphere in order to maintain the assumed

simple-harmonic vibration.

The first term of the expression in (22) is the same as if the inertia of the sphere were

increased by the amount

!tfS
x"w3

; (23)

*
It is assumed that the ratio y of the specific heats is the same for the two gases.

t This formula is given by Lord Rayleigh, Theory of Sound, Art. 32-5. For another treatment

of the problem of the vibrating sphere, see Poisson,
" Sur les mouvements simultanes d'un

pendule et de l'air environnant," Mem. de VAcad. des Sciences, t. xi. p. 521 (1832), and Kirchhoff,

Mechanik, c. xxiii.
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whilst the second is the same as if the sphere were subject to a frictional force varying as

the velocity, the coefficient being

4+^a4
xWo 3

o-. (24)

In the case of an incompressible fluid, and, more generally, whenever the wave-length

2irjk is large compared with the circumference of the sphere, we may put ka= 0. The
addition to the inertia is then half that of the fluid displaced; whilst the frictional

coefficient vanishes*. Cf. Art. 92.

The frictional coefficient is in any case of high order in ha, so that the vibrations of a

sphere whose circumference is moderately small compared with the wave-length are only

slightly affected in this way. To find the energy expended per unit time in generating
waves in the surrounding medium, we must multiply the frictional term in (22), now

regarded as an equation in real quantities, by U, and take the mean value
; this is found

to be

Pa3

^7rp a3
*4+F^-

<ra2 (25)

In other words, if pj be the mean density of the sphere, the fraction of its energy which is

expended in one period is

"2 M

291. The same analysis can be applied to calculate the scattering of

waves by a spherical obstacle. In particular we shall consider the case of an

incident system of plane waves, travelling in the direction of ^-negative, and

represented, apart from the time-factor, by

(f>
=e^x

(1)

Since this satisfies (V
2 + Jc

2

) <j>
=

0, and has no singularities in the neigh-

bourhood of the origin, and is (further) symmetrical about the axis of x, it

must admit of being expanded in a series of terms of the type

+n(kr)i.Pn (cos 0), (2)

provided x = r cos 6 = r/x, say.

The requisite formula is, in fact,

e^ = Z(2n + l)(iO
n
irn(OPn(f*) (3)

This can be established in various ways. One method is to expand e
l& in

j

powers of
/a,

and to substitute for these powers their equivalents in terms of;

zonal harmonics, by means of the formula

^ {(2
+ l)P. + (&,-8)?=ip.

1.3.5.

+ (2-7) (2'i + 1

2>(f-
1)

P,-. +
...}....(4)

*
Poisson, I.e.
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If we pick out the coefficient of Pn in the result, we obtain the general term

of the series in (3)*.

Another method consists in proving the theorem

L_&pn <jL)dii=2{i$r+n {Z), (5)

which is implied in (3). Since the general form of the required expansion is

known a priori, the numerical factor on the right-hand of (5) alone remains

to be determined
;
for this it is sufficient to compare the coefficients of f1

on the two sidesf.

Again, we might shew that ^n {X), considered for a moment as defined

by (5), satisfies the recurrence-formula (17) of Art. 287; this follows easily

by known formulae of zonal harmonics. The identification of the two forms

of
\frn () is then completed by the obvious relation

/

1
,, T _ sin K

-l C

Consider now a constituent

<j>
=BH+n (lT)r*Sn , (6)

of an incident wave-system, and let the corresponding constituent of the scattered waves be

f-KMirifS. (7)

If the spherical obstacle be fixed, the condition

(*+*')=(>, (8)

to be satisfied for r=a, gives

B; la+m
'

(ka)+n+n (ka)
*." kafn'(ta)+nMka)

l ;

This result can only be interpreted with facility when the wave-length is large compared
with the perimeter of the sphere, Le. when ta is small. Now for small values of we have,

bv Art. 287 (7), (16),

->
1.3...(.+ l)

- / ( = '- 3

C-"
1>

(10>

approximately, whence, for n> 0,

Bji_jn (iar
+ l

(11)
Bn + r{1.3...(2-l)}2

(2 + l)

The case n = is exceptional ; we find

approximately.

f^-iW. <12)

*
Heine, Kugelfunktionen, t. i. p. 82 (1878). A theorem equivalent to (3) had been given by

Lord Rayleigh in a paper entitled "
Investigation of the Disturbance produced by a Spherical

Obstacle on the Waves of Sound," Proc. Lond. Math. Soc., t. iv. p. 253 (1873) [Theory of Sound,

Art. 334]. The corresponding formula for a source at a finite distance was obtained by Clebsch,

in the paper 'Ueber die Reflexion an einer Kugelfiache," Crelle, t. lxi. p. 195 (1863), referred to

on p. 102 ante. The formula (4) is due to Legendre ;
see Heine, I.e.

t Lord Rayleigh, I.e.
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In the case of the plane wave-system (1), we have by (3)

Bn= (2?i+ l)i
nkn

, (13)

and the most important part of the scattered waves, at a distance r which is large com-

pared with the wave-length, is accordingly represented by

$=o /o {Jer) +Bjf\ (kr)r cos 0=-(*a)3 (Hi cos
0)*-^r (

14
)

The physical origin of the two terms is explained near the end of Art. 294.

As in Art. 289, the rate at which energy is propagated outwards in the scattered waves is

k*n B,;\z.Jjs
n*dv (15)

The proper standard of comparison here is the energy-flux across unit area of a wave-front

in the incident system (1). On the present scale, this is %p k2
c, by Art. 276, and the ratio

of (15) to this is, in the present case,

4rr

(2+l)jfe
+ "'

5**l (16)

The terms of lowest order, when ha is small, are those for which =0, n= l. The sum of

these gives

l{kaY. nd* (17)

The rate at which energy is scattered varies therefore inversely as the fourth power of

the wave-length*.

As a numerical example, a spherule ^^ of an inch in diameter scatters only 1*43 x 10 _ir

of the incident energy, if the wave-length be four feet. There is therefore no difficulty in

understanding how a fog which is quite opaque optically may transmit ordinary sounds
with great freedom.

292. We will next take the case where the sphere is moveable, but is

urged towards a fixed position by a force varying as the displacement.

Its equation of motion, parallel to x, will then be of the form

M (i+ (rf?i\= -
f fpcosdatdn (18)

If the time-factor be e^ 1

,
we have

P=po+ p02-t (<l>+<P)=Po
+ ttcpo(<t> + <t>) (19)

Hence, substituting in (18),

(o-
2-FC2)if|= -iiciBfa (l)+AVi {ka)} . |7rp a3

, (20)

since the products of harmonics of different orders vanish when integrated over the sphere.

Again, the kinematic-surface condition

-fc(<P+V)
=

t̂

cos = ikc cosO, (21)

* The above problem was investigated, by a somewhat different analysis, by Lord Eayleigh,
"
Investigation of the Disturbance produced by a Spherical Obstacle on the Waves of Sound," !

Proc. Lond. Math. Soc., t. iv. p. 253 (1872); see also his Theory of Sound, Arts. 296, 334, 335.

The formula (17) is given by him in a paper
" On the Transmission of Light through an

Atmosphere containing Small Particles in Suspension,' Phil. Blag. (5), t. xlvii. p. 375 (1899)

[Sc. Papers, t. iv. p. 397].
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requires that (9) should hold as before, except in the case n=l, when we have

-Uc^=B1 {kaf1'(la)+ yf,1 (ta)}+B1

s

{kaf1'(ka)+f1 (ia)} (22)

Eliminating between (20) and (22) we find

wf-V* B^W +BlMia)
J M B

x {leaW (*) + *i (*)} + B{ {kaft (to) +/, (4a)}
' *""^ K '

When there are no extraneous sources, 2?i=0, and

<r<?-i?c* rf Mia) 3

~1W-M= -
kafi-M+fi [ta)

*'""' (24)

This is an equation to determine k, and thence the character of the ' free
' motion of the

sphere, as influenced by the surrounding medium. When reduced to an algebraical form

it is found to be a biquadratic*; but the two smaller roots are alone important from the

present point of view. These are given approximately by

A _ 2-2^ X=frw\ (25)

or, if we write P=%7rpi/i
3
/M, as before,

Fr2 1

jy-rsi <26 >

We recognize that the main effect of the presence of the fluid is to increase the inertia of

the sphere by half that of the fluid displaced ; cf. Arts. 92, 290. To find the rate of decay
; of the oscillations it would be necessary to carry the approximations further. It will be
'

found, in agreement with the investigation of Art. 290, that the '
free

'

oscillations are of

the type

|= <7e"^cos(o-'<+ e), (27)

where, if we retain only the most important parts,

'-_ f* - <r<a3
roa\a

-j{i+py '"4(1+0) c3
(28)

In the forced oscillations, where the value of i is prescribed, we have from (23)

** {4a^1

,

(4a)+^1 (4a)}((ro-^)-f2^F^Vr1 (4a)

B
l

'

{/a/1'(ira)+/1 (4a)}( <r --t2ca)+2^Pc2/1 (ita)
W

If lea be small, the approximate values of ^t {lea) and/x (ia) given in Art. 291 (10) make

Jf-3=fcSS?-** w
bat the approximation is plainly illusory when he is nearly equal to <r /(l+/9)*, i.e. when
the frequency of the sources is nearly coincident with that of the free vibration.

To examine more closely the case of approximate synchronism, we write, in the exact

formula (29),

/,(**)-*,(**)-**!(**), (31)

.and obtain
B
j=- 9x^1 (32)Bx G1 {ka)-ig1 (tay

K

* An equivalent result is obtained by putting

in Art. 290 (21).
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where gx {lea)
= {ka^ (ka) +^ {ka)} f^-

-kw\ + 2/3Pa
2
^i (ka),

[
(33)

Gi (ka) = {ka *i' (ka) + : (ka)}(^ - k*aA + 2/3/fc
2a2

1 (ka).

The modulus of the right-band member of (32) is never greater than unity, but it attains

the value unity, and the amplitude of the scattered waves is therefore a maximum, when

Gl (ka) = 0, (34)

in which case Bi iBi (35)

If we substitute for x (ka) from Art. 287 (7), the equation (34) takes the form

-(2+tk*a*+...)(^-k*a2\
+ 2pkW(l+tkW+...) = 0, (36)

and it is easily ascertained that when <r a/c is small this is satisfied by a real value of ka

which is a very little less than that corresponding to the free vibratious, viz.

* 32L.
(37)

!

In the case of the plane system of waves represented by Art. 291 (1) we have

B;='3k, (38)

by (13) and (35), and the velocity-potential of the scattered waves is, in real form,

, y _ siu k (ct r) . ..,
* kr

s6, ( 9)

corresponding to the incident waves

$= cos k(ct+x) (40)

Again, on reference to (21), or directly from (22) and (40), we find

=
PaJ-c

8inkct
(
41

)

The amplitude of vibration of the air-particles in the original wave is 1/c on the presenj

scale. The amplitude of the sphere exceeds this in the ratio 6/Pa
3

. Moreover it appear !

from (15) that the dissipation of energy in the scattered waves, when a maximum, is 6n-po (
!

or, in terms of the energy-flux in the primary waves,

-.X2
(42)

The ratio of this to the dissipation (17) produced by a fixed sphere is i^
a
(ka)~

6
.

On the other hand, it is to be noticed that the wave-length of maximum dissipation

very sharply defined. It may be shewn without much difficulty that the dissipation sinl

to one-half the maximum when the wave-length of the incident vibration deviates from tl

critical value by the fraction

pfca
3

4(l+/3)

of itself. In any acoustical application this will be an exceedingly minute fraction. I

practice, massive bodies are not usually set into vigorous sympathetic vibration by w

direct impact of air-waves, but rather through the intermediary of resonance-boxes
ar|

sounding boards.

The occurrence of the factor 3 in (42) calls for some remark. The result is independei

of the direction of the incident waves, owing to the three degrees of freedom which tl
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sphere possesses. If the sphere were restricted to vibration in a definite straight line, the

amount' of scattering would depend on the direction of incidence, and the mean for all

such directions would be X2/V *.

293. The diffraction of plane waves of sound by a lamina, or by an

aperture in a plane screen, can be treated by approximate methods provided

the dimensions of the obstacle or of the aperture be small compared with

the wave-length f. This relation is of course the exact opposite of that

which usually prevails in Optics, and the results are accordingly quite

different in character. Tn particular we meet with nothing of the nature

-ound-shadows or sound-rays under the present condition.

1. Let us first take the case where a train of waves, travelling in the

direction of ^-negative, impinges on a flat disk in the plane x = 0. If the

disk were absent the motion would be represented by

-** (1)

everywhere. This gives a normal velocity ik at the surface of the disk
;

and the complete solution is therefore

4>
= e** + X , (2)

where x represents the motion which would be produced in the surrounding

air by the oscillation of the disk normal to its plane with the velocity ik.

The formula (5) of Art. 286, when applied to the region bounded internally

by the two surfaces of the disk, gives

*-r//4G> <3>

provided the integration extends over the positive side only of the disk.

In the reduction, advantage has been taken of the fact that the values of

X and of dxfin, at adjacent points on opposite sides of the disk, are evi-

dently equal and opposite. If x, y, z be the coordinates of P relative to

an origin in the disk, we may write 9/cto = 9/9#; and if the distance of

P from any point of the disk be large compared with the linear dimensions

of the latter, we have further

*~s/W(^) <*>

where r may now be taken to denote distance from the origin. The

scattered waves are therefore such as would be produced by a double-source

of suitable strength.

* The investigations of this Art. are taken from a paper entitled " A Problem in Resonance,

illustrative of the Theory of Selective Absorption of Light," Proc. Lond. Math. Soc, t. xxxii.

p. 11 (1900). The concluding remark is due to Lord Rayleigh,
" Some General Theorems con-

cerning Forced Vibrations and Resonance," Phil. Mag. (6), t. hi. p. 97 (1902).

t Lord Rayleigb,
" On the Passage of Waves through Apertures in Plane Screens, and Allied

Problems," Phil. Mag. (5), t. xliii. p. 259 (1897) [Sc. Papers, t. iv. p. 283].
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Under the fundamental condition above stated, the variation of % in the

immediate neighbourhood of the disk is very approximately the same as if

the fluid were incompressible (Art. 286). In the latter case, if the density
of the fluid, and the velocity of the disk normal to its plane, were each taken

equal to unity, the expression 2jJxdS would be equal to the '

inertia-coeffi-

cient' of the disk (Art. 121 (3)). Denoting this coefficient, which is determined

solely by the size and shape of the disk, by M, we have, in the present case,

SfxdS = likM, (5)

and therefore

ikM d (e-^
kr

\ MM e~ikr

^ =
--w-^l-H

= -^--^ cos *' (6 >

approximately, where 6 is the angle which OP makes with Ox.

For a circular disk of radius a, we have, by Arts. 102, 108,

M=%a\ (7)
J

and therefore Xp
=

-ry cos# (8)

2. When plane waves are incident directly upon a screen occupying tht

plane x = 0, we should have, if the screen were complete,

(
f>
= eikx + e-ikx

>
or =0j (9)

according as x ^ 0, the term e~ikx representing the reflected waves. Whei

there is an aperture, we assume

(f>
= e** + e-ikx + x ,

and
<f>
= x> (10)

for the two sides, respectively. The continuity of pressure and velocity require

over the aperture, whilst

2+ *=*' - H
1-- 1=' <i2>

over the rest of the plane x = 0.

These conditions are all fulfilled if we take % and % to be the potentia
of the distributions of simple sources over the area of the aperture whic

will make

x=-i> %'=+i> a*)

respectively, over this area.

Now if we apply the formulae (5) and (6) of Art. 286 to the region whic

lies to the right of the plane x = 0, and further take P' to be the image of
i

with respect to this plane, we obtain by addition

*~k//^h H
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since r = r for x = 0. In the present case the integration may be confined to

the area of the aperture, in virtue of (12). At distances r which are great

compared with the dimensions of the latter, this reduces to

Xp**/***? <15 >

If k were = 0, the determination of % in accordance with (13) would be

identical with the electrostatic problem of finding the field due to a charged
and insulated metal disk having the shape of the aperture ;

and for points
in the immediate neighbourhood the field will in the actual problem have

sensibly the same configuration. Hence we may write

//

d
dS=^G> (16)

arhere C is the 'electrostatic capacity' of the metal disk*. Thus (15) becomes

-i*r

Xp <* i (17)

approximately. From this the value of % follows by the obvious relation

y[ (-*, y, z) = - X {x, y, z) (18)

It appears that the transmitted waves are such as would be produced by a

simple source of suitable strength.

In the case of a circular aperture

C=-.a (19)

, 2ae~ Urr

and Xp--- (20)

Comparison with (8) shews that, under the assumed condition, the amplitude of the

waves scattered by a disk is, at like distances, much less than that of the waves trans-

mitted by an aperture of the same size and shape. It is readily seen that the total energy
transmitted per second through the circular aperture bears to the energy-flux in the

primary waves the ratio

-.a2 or -816n-a2
(21)

The ratio of the amplitude of the scattered waves, at any distant point, to that of the

primary waves, is independent of the wave-length, so long as this is large compared with
the greatest breadth of the aperture.

294. A similar calculation can be applied to the scattering of sound-

waves by an obstacle of any form, under the same fundamental condition that

the dimensions of the obstacle are all small compared with the wave-length f.

For small values of kr the two functions x. x' together express the flow of an incompressible
fluid through the aperture. Cf. Arts. 102, 3; 108, 1; and 113.

t Lord Rayleigh,
" On the Incidence of Aerial and Electric Waves upon Small Obstacles in

the Form of Ellipsoids or Elliptic Cylinders...," Phil. Mag. (5), t. xliv. p. 28 (1897) [Sc. Papers,
t- iv. p. 305].
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The origin being taken in or near the obstacle, we assume

<p
= eik

* + x , (1)

where the first term represents the incident, and the second the scattered

waves. At the surface of the obstacle, supposed rigid and fixed, we must

have

dn~ dn
6 ~ lkle

' (2)

provided I, m, n be the direction-cosines of the normal, drawn outwards.

The formula (5) of Art. 286 gives

*r-//^af + /j4K> ^
where the integrations extend over the surface of the obstacle. We proceed

to obtain an approximate value of the expression on the right-hand when

the distances r are large compared with the dimensions of the obstacle. The

coordinates of any point on the surface will be denoted by x, y, z, whilst those

of the point P are distinguished as xit y1} zx .

Taking the first term, we write

e
-ikr /e-ikr\ /g g-ikr-,

, g g-Orv ,9 g-iirx

t rr)*'{* 1*'\& ).*'& ).*-
where the zero-suffix implies that x, y, z are to be put =0 in the expressions;

to which it is attached. This may also be written

e~ikr
/, 3 3 3 \ e~ikr<>
(. d d d \ e-^o

i-V-^'Bi-'S**") ' (4)
r \ dx1 dyx

where r denotes the distance of P from the origin. Again, from (2),

^=-ikl + Jc
2xl+ (5)dn '

Taking the product of (4) and (5), and integrating over the surface, we obtairi

//

e XdS= k>Q
e

+ikQ^-
e
-

, (6)
r dn r dx^ r

approximately, where Q is the volume of the obstacle. We have here mad(

use of the obvious relations

jjldS = 0, jjxldS^Q, jjyldS=0, jjzldS
= (7)

The terms retained on the right-hand of (6) are of the same order
oj

magnitude, whilst those which are omitted are small in comparison.

As regards the second term in (3), we have

on r \ dx oy ozj r \ dxx oyx ozj r
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We may, consistently with our former approximation, write r for r, and

remove the space-derivatives of e~Utr<>/rQ outside the signs of integration. The

result then involves the surface-integrals

JflxdS, JJmXdS, ffnXdS. (9)

It appears from (2) or (5), and from a general principle stated in Art. 286,

that the function x is >
in tne immediate neighbourhood of the obstacle,

sensibly identical with the velocity-potential of the motion of a liquid

produced by a translation of the obstacle through it with the velocity ik

parallel to x. Hence the integrals (9) are recognized as components of

'impulse' under the imagined circumstances; and we may write, in con-

formity with Arts. 121, 123,

jjlxdS = ikA, jjmxdS = ikC', jjnXdS = ikB'
', (10)

provided the density of the hypothetical liquid be taken to be unity. Hence

K(?)*~*(**&*?: cuj

The final approximate formula is therefore

**~-^~-^l(A+Q)^+c ^+B
fc;j~T-'

(12)

where the zero-suffix attached to r has been omitted, as no longer necessary.

When kr is large, this may be written

Xp=-^^-ka+Q)x 1 + cv, +b'}^ (13)

where \1: /Zj, v
x
are the direction-cosines of r.

The scattered waves may be regarded as due to the combination of a

simple and a double source. The axis of the latter is not in . general

coincident with the direction of the incident waves.

A more symmetrical formula is obtained if we suppose the primary
waves to come from any arbitrary direction (X, fi, v), so that (1) is replaced

by

<fi
= e*{Xx+M+vz) + ^ ..(14)

On reviewing the steps of the preceding investigation, we find without

difficulty

k*Q e-,'*r
k*Q , ,

e-,'*r

{AXXj + Bfifi! + Ovvx

47T

gikr
+ A' (fiVl + ftp) + B' (v\ + Vl\) + C (X^ + X,/i)} , ...(15)
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in place of (13). As in Art. 124, the directions of the coordinate axes can

be chosen so that A', B', C = 0, and the formula then reduces to

k2 p-ikr h2 p ikr

Xp =-^~-^l( + Q)^ + (* + Q)w + (C + Q)vv1 }

e

ir . (16)

In the case of an ellipsoid of semi-axes a, b, c, we have by Art. 121 (4),

A+ =2^> B+ =diro e. c+
e=dVo ft <17)

where a
, /3 , 7o are defined by Art. 114 (6). In the case of the sphere a =j3o=yo= )

and if

we substitute in (13) we reproduce the result (14) of Art. 291. In the case of the circular

disk (a= b, c = 0), we have Q=0, A=|a3
,
B = 0, C=0; and (16) reduces to

v- 1 **i (18 )

The effect of obliquity of the disk to the incident waves is to diminish the amplitude of the

scattered waves in the ratio of the cosine (X) of the obliquity.

The explanation of the two types of disturbance in (13) or (16) may
be easily given in general terms. In the first place, if the obstacle were

absent, the space which it occupies would be the seat of alternate condensa-

tions and rarefactions. By its resistance to these, the obstacle exerts a

certain reaction on the medium; the waves at a great distance, thus produced,

are in fact such as would be caused in an otherwise quiescent medium by a

periodic variation in the volume of the obstacle, just sufficient to compensate
the variations of density referred to. The result is equivalent to a '

simple
source' of sound. Superposed on this disturbance, we have a second wave-

j

system due to the immobility of the obstacle. If the latter were freely moveable,

and had (moreover) the same inertia as the air which it displaces, it would i

sway backwards and forwards in the sound vibrations, and this second wave-

system would be absent. This system is, in fact, that which would be i

produced if the obstacle were to vibrate to and fro in a straight line, with a !

motion equal and opposite to that of the air-particles in the undisturbed
|

waves. This is equivalent to a 'double source' of sound.

The problem of Diffraction, when the wave-length is small (instead of

large) compared with the dimensions of the obstacle, presents difficulties

which have not yet been altogether overcome even in the case of the sphere.

Lord Rayleigh has, however, in a recent paper* investigated the incipient

formation of a sound-shadow in the particular case where the wave-length is

one-tenth of the circumference.

.

295. If, no longer restricting ourselves to simple-harmonic vibrations, we

seek to integrate the equation

g--** w
;

* " On the Acoustic Shadow of a Sphere," Phil. Trans., A, t. cciii. p. 87 (1904).
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in a series of spherical harmonics, say

<f>=SRnd>n , (2)

where
<f)n is a solid harmonic of order n, we have by Art 287 (4)

&Bn - pR* 2 (n + l)dR\ ,QX^ =(r
V^-

+ r aF[
(3)

If i? be a solution of this, it is easily verified that the corresponding equation

for Rn+i is satisfied by

^^rV' (4)

and hence that (3) is satisfied by

*-(&'-<&' *=**** <5>*

In the case n = 1, we have the solution

,a/(-HJ
,

(r+O
ec. ft (6)

This has been employed by Kirchhoff. and more fully by Love, to examine

the rather interesting question how the front of a system of waves, started

bv the motion of a sphere, is propagated through the surrounding medium.

In KirehhofFs investigation + the motion of the sphere is prescribed, its velocity being

a given function of the time, and the solution is comparatively simpla

Love discusses* the waves started by an instantaneous impulse given to a ball-pendu-

lum. The equation of motion of the pendulum being

x(j
+
*.*i)=-ffp**l*, (7)

as in Art. 292, we assume

-l^--* w
the term in (6) which corresponds to waves travelling inwards being omitted This leads to

P+<ro
2

l=^{/"(cf-a)
+
I/'(rt-a)}

J (9)

where ^I^gf* (10)

The kinematical condition to be satisfied at the surface of the sphere (r=a) gives

f= -^/"^-)-|/'(^-)-|3/^-) (ID

To solve the simultaneous equations (9), (11), we assume

f{ct-r)=A^
et-r+a

\ =3^, (12)

*
Cf. Clebsch, l.e. ante pp. 102, 487; C. Xiven, Solutions of the Senate House Problems...for

-
P- 1-58. t l.e. ante p. 485.

Some Illustrations of Modes of Decay of Vibratory Motions," Proe. Lond. Math. Soe. (2),
t- ii. p. 88 (1904).

I~ 32
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whence (X
2c2+ <r

2
)
B= 2

^(Xa+ l) XA, \cB= - \ (X
2a2+ 2Xa+ 2) A (13)

Eliminating the ratio AjB, we obtain the biquadratic* in X :

(X
2 c2+ (r

2
)(X

2a2+2X+2)+ 2/3c
2X2

(Xa + l)=0 (14)

Distinguishing the several roots by suffixes, we have

-
!

x

'-^-
2^< (15)

<t>=-i(\gr+l)^e^
ct - r+a)cosd

/- .(16)

If we start with arbitrary values of and dg/dt, the medium being previously at rest,

this solution presupposes that t> and r< ct + a. The initial circumstances supply two

conditions to be satisfied by the four constants A g . Thus, assuming that for t=0

-* - u <>

we have 2 (
X8a+ 2 +

) 4,=0, 2(X8
2a2+ 2X ga+ 2) A a

= U a3
(18)

i \ X sa/ i

The remaining conditions result from a consideration of the discontinuity at the

spherical boundary of the advancing wave. Let 8S be an element of this boundary, and

through the contour of 8S draw normals outwards to meet a parallel surface at a

distance c8t ;
we thus mark out an element of volume 8S . c8t. In time 8t the fluid

contained in this element has its normal velocity changed from to dcfrjdr, the normal

velocity just within the boundary, by the action of the excess of pressure c2p s on the inner

face. Hence

- -
. p 8S. c8t= c2Po s . 8S. 8t,

or, since <?3=d(f>fdt,
~ = c ~-

, (19)

which is to be satisfied for r=ct + ai. Substituting from (16) we find

2(X 8 r+ 2)^,= 0.

This equation cannot hold generally unless

2\8A 8 =0, 2A S
=

0, (20)

which (it will be noticed) at the same time secure the continuity of (p, and thence of the
j

velocity-components tangential to the wave-front.

The four conditions (18), (20) may now be written

2\Ms=U a, 2A.J,= 0, 2.4 g
=

0, 2^=0, (21)

whence Al=
{*i-MK*i\x*i-*iy

Uoa'---' -' {22)

The motion of the air is accordingly given by

4>
= li-'e

x {et
- r+a) cos6 [r<ct+ a],)cr i r \ (23)

(p=0 [r>ct+a]. I

*
If we put \ = ik, \cia, this becomes identical with the biquadratic referred to in Art. 292.

+ The theory of discontinuities at wave-fronts has been treated systematically by Christoffel,

" Untersuchungen iiber die mit dem Fortbestehen linearer partieller Differential-Gleichungen

vertraglichen TJnstetigkeiten," Ann. di Matemat., t. viii. p. 81 (1876); and by Love, "Wave-

Motions with Discontinuities at Wave-Fronts," Proc. Lond. Math. Soc. (2), t. i. p. 37 (1903).
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In practice fi is a very minute fraction, and the roots of (14) are, to a first approxima-

tion,

tV . io-o . -l + i . 1 *
.,,...X1

= -, X,
-r , V J--, *4 (24)

If the distance travelled by a sound-wave in the period of vibration be a considerable

multiple of the circumference of the sphere, X3 ,
X 4 will be large compared with Xi, X2 .

Hence, substituting in (22) and (23), we find, for r<ct+<t,

(25)

, The first part of this expression is the same as if the sphere had been executing simple-

harmonic vibrations of period 27o- and amplitude Co/co for an indefinite time. The

second part is insensible at a distance of several diameters of the sphere from the inner

side of the boundary of the advancing wave
;
but near this boundary it becomes com-

: parable with the first part. To trace the decay of the oscillations, it would be necessary

to proceed to a second approximation ;
but this part of the question has been already

; dealt with in Arts. 290, 292. It will be sufficient to remark that the most important

part of the disturbance, well within the advancing wave, will be given by an expression of

; the form

<f>
=- e- TO (<*- r

) cos <r (t
hf).

cos 6. (26)

The factor e~ met exhibits the decay of the vibration at any place as the original energy of

the pendulum is gradually spent in the generation of waves. To account for the factor

&**, we note that within the region occupied by the waves the amplitude at any point Q
will (except for spherical divergence) be greater than that at a point P, nearer to the

centre on the same radius-vector, in the ratio e
m ' p

,
for the reason that it represents a

disturbance which started earlier by an interval PQ e, during which the vibration of the

pendulum has been decaying according to the law e
-
****.

Sound- Waves in Two Dimensions.

296. When
<f>

is independent of z, we have

%"** w
*re V

==J>|-.
v

In the case of symmetry about the origin this becomes

-'+$) <3>

where r = y/(x
2 +y2

). The general solution has been obtained in Art. 194, in

the form

2-7T(f>= I /U--cosh jdu+ I F It + - cosh
ujdu; (4)

*
Cf. a paper

" On a Peculiarity of the Wave-System due to the Free Vibrations of a Nucleus

in an Extended Medium," Proc. Lond. Math. Soc, t. xxxii. p. 208 (1900).

322
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and it was further shewn that the solution

27T(f>=l fit cosh u) du (5)

represents the system of diverging waves produced by a source f(t) at the

origin.

We are now able to give another derivation of these results. It appears

from Art. 281 (8) that if a point-source f(t) Zz be situate at the point (0, Q,z)

its effect at a point in the plane xy at a distance r from the origin is

represented by

w^+^rv c )
6Z-

If we integrate this with respect to z between the limits + oo
,
we get the

effect of a system of point-sources distributed over the axis of z with unifor

line-density f(t); thus

^Wi - 5fi^^-sJr/
(
i -!-*") fc

The same method can of course be applied to obtain the second term in (4).

The equations of sound-motion in one, two, or three dimensions, subject to the restric-

tion of symmetry, are all included in the form

dt*~
C

\dr*
+

r dr)
{i)

The complicated and somewhat intractable form in which the solution for the case

m=F% has been obtained is in striking contrast to the analytical simplicity, and outward,

formal resemblance, of the solutions for the cases m= l, m= 3; but this circumstance must

Dot be allowed to mislead us as to the true physical relations. For the sake of a definite

comparison between the three cases, we may examine the effect (A) of a plane-source, j

(B) of a line-source, and (C) of a point-source, whose 'strength
'

is in each case

/-??? (8)
[

This gives a convenient representation of a source of a more or less transient character,)

since the time during which it is sensible can be made as short as we please by diminish-

ing r, whilst the time-integral is unaffected.

The results may be conveniently expressed in terms of the condensation s.

(A) In the case m= 1, we find, for x> 0,

T 1

"-$V
(9)

(B) When m= 2, the analytical work is similar to that of Art. 196, 2. The result is

for the most important part of the wave,

s=rv72^V\/(7) sina7r
"
i '7)cosl '

7 ' 0)

where
rj

is determined by

= - + rtan n.
c

'
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A
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(C) In three dimensions we have
r-t

T C

2ttc2

r{HM
The three cases are represented, with s as ordinate and t as abscissa, on p. 501. The

scale of t is the same in each case, but there is, of course, no relation between the vertical

scales. In (A) we have a wave of pure condensation
;
in (B) the primary condensation is

followed by a rarefaction of less amount, but lasting for a longer time
;
whilst in (C) the

condensation and rarefaction are anti-symmetrical. In (B) and (C) alike we necessarily

have, at any point,

sdt=0, (12)

/oo

J-oe

cf. Arts. 195, 281. If the source had been strictly limited in duration, the medium, in the

case of three dimensions, would have remained absolutely at rest after the passage of the

wave, as in the case of one dimension, although for a different reason. In the intermediate

case of two dimensions, the wave has an indefinitely extended '

tail,' and there is only an

asymptotic approach to rest.

It appears that from a physical stand-point the cases m= l, m % m= 3 form a sequence
with a regular gradation of properties due to the increasing mobility of the medium.

When we abandon the restriction to symmetry, the general solution of (1)

is, in polar coordinates,

$ = X (Qsr* cos s6 + Rsr* sin s0), (13)

where Q8> Rs are functions of r and t satisfying

t-^^i)' (">
|

and the corresponding equation in Rg . The solution of (14) is

e=(J-Jft as)

where

Q =
I fit cosh ujdu+j F (t + - cosh u ) du (16)

The proof is similar to that of Art. 295 (5)*.

297. In the case of simple-harmonic motion (e
i<Tt

), we have, in polar

coordinates,
d2

d> ia0 ia2
<6 lt>J A /1X

where k=a/c. The solution of this equation, subject to the condition oli

finiteness at the origin is, as in Art. 189,

4>
= X (A s cos s0 + Bs sin sd) Js (kr), (2)

where s may have all integral values from to oo .

* This Art. is taken, with slight alterations, from a paper cited on p. 281 ante.
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From this we derive at once the theorem that the mean value (^>) of
<f>,

over a circle of radius r described with the origin as centre, is

4>
= J (kr).<f> , (3)

where
</>

is the value at the origin* This theorem (which is subject, of

course, to the condition above stated), is analogous to that of Art. 285 (8),

and might have been proved in a similar manner.

In the transverse oscillations of the air contained in a cylindrical vessel of radius a, the

normal modes are given by the several terms of (2), where the admissible values of I; and

thence of a, are determined by
Jt'(ta) = 0, (4)

a being the radius. The interpretation of the results will be understood from Art. 189,

where tbe mathematical problem is identical. The figures on pp. -271, 272 shew the forms

of the lines of equal pressure, to which the motions of the particles are orthogonal, in two

of the more important modest.

The Bessel's Functions Jt (0 are subject to the recurrence-formula

(f? f ?
* K >

which corresponds to Art. 287 (17). This easily follows from the series-

expression for J, (), given in Art. 101. From (4), and from the differential

equation of /,(), viz.

r<0+^<o+(i-)/(0o, (6)

various other recurrence-formulae may be derived, e.g.

t//(t) + */.(D = /,-i(?), (7)

corresponding to Art. 287 (18).

By successive applications of (5) we obtain

*-**(-jSj)v.<B (8)

It is easily verified, by the method of ' mathematical induction,' that the

expression on the right-hand of (8) is in fact a solution of the differential

equation (6) provided J (O is a solution of the same equation with s put= 0.

This suggests a convenient choice, for our purposes, of the Bessel's Functions
1

of the second kind.' *We write

A (?)
= ? (-^)'

A (0, (9)

where Dc (f) is tne function introduced in Art. 192* viz.

!)()= -(%-^shw^ (10)
TTJo

* H. Weber, Math. Ann., t. i. (1868).

t The problem is fully discussed by Lord Kayleigh, Theory of Sound, Art. 339.

t It may be shewn, by the method of Art. 296, that D (kr) is the potential of a uniform
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It is evident without further proof that Dg {) will satisfy the differential

equation (6), and have the same system of recurrence-formulae as /().
As an important special case of (9), we have

ft< xv) (ii)

The following approximations are useful. When is small, we have, by
Arts. 100, 192,

J (D = i-|+..., A(?) = -^(iogK+7 + iMr+. ..)..., ...(12)

and thence, by (8) and (9), for s > 0,

Jg ^)
=
^Vi + -' D'^^~^Jl+ < 13 >

Again, for large values of
,

^(D=(^.)

i

sin(?-i7r-^7r)+..., 2W0-^**r*W + ....

(14)

The formulae may be used to investigate the communication of vibrations from an

oscillating cylinder (e.g. a piano string) to the surrounding air. The velocity of translation

of the cylinder being
U=aei,Tt

, (15)

the radial velocity at the surface r= a will be

-|=ae
tV< .cos0 (16)

The corresponding value of
</>

is

4>
=ADl (kr)co&6.e

i'Tt
, (17)

with the condition kDt

'

(ka).A = a (18)

If, as we will suppose, the circumference of the cylinder is very small compared with

the wave-length of the sound, ka will be a small fraction, and we find from (13)

A=\irkoPa.

Hence at distances r which are large compared with k~\ we have, by (14),

*V(W.^OOB*' ('*-*H*
(
19

)

If the velocity at the boundary ra had been everywhere radial, with the amplitude a,

the value of at a distance would have been

$-*/(*). -
s ** ("-*f"'*,r)

. .... (20)

In the actual case the intensity, as measured by the square of the amplitude, is less in the

ratio k2a 2
,
which is by hypothesis very small. This illustrates the effect of lateral motion

near the surface of the cylinder, in reducing the amplitude of the waves propagated to a dis-

tance
;

cf. Art. 289. For example, by far the greater part of the sound due to a piano

string comes, not directly from the wire, but from the sounding-board, which is set into

forced vibration by the alternating pressures at the supports.

distribution of simple-harmonic point-sources along the axis of z. See Lord Eayleigb, "On

Point-, Line-, and Plane-Sources of Sound," Proc. Lond. Math. Soc, t. xix. p. 504 (1888)

[Sc. Papers, t. hi. p. 44; Theory of Sound, Art. 342].
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The reaction of the air on the vibrating cylinder is

/

27r f^dd) t

p cos 6 . add= -pa f
-3 cos 6= -

iro^a . io-ADt (ka) e,<n

o J o M

2 A (ka) dU ,.
:

^-kA^)"*' (21)

.(22)

I 8). When ka is small, this reduces to

-"*'-*>

approximately. The most important part of the effect is that the inertia of the cylinder is

increased by an amount equal to that of the air displaced ;
cf. Art. 68 *.

298. We may also investigate the scattering of a system of plane waves

by a fixed cylindrical obstacle whose axis is parallel to the wave-fronts.

Assuming, for the potential of the incident waves,

4>=e
ikx

, (1)

as in Art. 291, we require in the first place to expand this in a series of the

type (2) of Art. 297. The requisite formula is

e** m J (kr) + 2tJ, (At) cos 6 + . . . + 2iV, (kr) coss0+ (2)

This may be proved directly "f, by expanding eikrcose, making use of the

formula

cos" 6 =
9 j

\ cos nd +
y
cos (n -2)0 +

W ^ ?*~
cos (w

-
4) + . . .

[
,

(3)

and picking out the coefficient of cos s0 in the result.

The expansion (2) involves the equality

- !'eikrcos0 cos s0d0 = i'Jt (kr), (4)
TTJO

which is a known formula in Bessel's Functions . Conversely, if we assume

this, as otherwise established, we have another proof of (2).

The scattered waves being represented by

(f>
=2BtDt (kr) cos sd, (5)

the surface-condition (<p+ <f))=0 [r=a], (6)

* A fuller investigation is given by Stokes, I.e. ante p. 483.

+ Heine. Kugelfunktionen, t. i. p. 82.

X Gray and Mathews, p. 18; Whittaker, Modern Analysis, Art. 153. The case s = has

already been met with in Art. 100; it may be interpreted as shewing how the potential J (kr)

can be obtained by superposition of systems of plane waves travelling in directions uniformly

distributed about the origin in the plane xy ;
cf . Art. 285 (7).
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2i' J: (fa)
glves ^=-AW' (7)

except in the case s= 0, when the factor 2 is to be omitted.

If ka be small, we have, approximately,

J '(ka)=-$ka, D '

(ka) = -
j- , (8)

and,fors>0, //(fa)-J&l f D;(fa) _^_ (9)

Hence 2fe- -* W, ^=
2^!^!)! [S> ] (10)

The most important terms correspond to =
0, 8= 1. Neglecting the rest, we have, for

the scattered waves,

<F
=

-lirtfia* {DoW-ZiD^kr) cobB} (11)

For large values of kr this becomes, on restoring the time-factor,

0--W(**)^(l + 2cos*)
<(*'"*r~ i,r)

(12)*
r-

The rate (per unit length of the cylinder) at which energy is carried outwards by the

scattered waves is

where r may conveniently be taken very great. If we substitute the real part of
<f>

from

(12), the mean value is found to be

Vo<r(fa) (13)

The energy-flux in the primary waves is, as in Art. 291, \pjc
2
c. The ratio of (13) to this in

(since a=kc)
fir*(fa)*.2a (14)

Thus a wire jfe of an inch in diameter scatters only 6-63 x 10 -8 of the incident energy;
when the wave-length is four feet.

299. The approximate methods of Arts. 293, 294 can be applied to th<

corresponding problems in two dimensions f. The formula (5) of Art. 28a

is now replaced by

<Ps>=-ljD (h-)
d

^ds + 1Jt^ik^ds, (1)

which is established in a manner analogous to that indicated on p. 475. Ii

the case of a region extending to infinity the line-integrals can be restricte*

to the internal boundary, provided that at a great distance R from the origi)

<f>
is comparable with e~

tkB
/R .

In the same way we have

ifD (k^)^ds
+
ij<p^B (kr')ds, (2)

[

where r' denotes distance from a point P' external to the region considered. !

*
Cf. Lord Kayleigh, Theory of Sound, Art. 343.

+ Lord Bayleigh, 11. cc. ante pp. 491, 493.



298-299] Impact of Waves on a Lamina 507

Within a region whose dimensions in the plane xy are small compared
with the wave-length At will be small, and the formula (1) reduces to

** =s/los r
s

<fe-^/*! l0*r* m
where a constant term has been omitted. This satisfies the equation

**-- 6 (4)

appropriate to the case of an incompressible fluid.

1. Taking first the direct impact of waves on a plane lamina, we write

*=**+* (5)

where x is the potential of the scattered waves. If the lamina be supposed to occupy that

portion of the plane #=0 which lies between the lines y= +b, the condition to be satisfied

by x is

||=-tf, [*=0, b>y>-b] (6)

The formula (1) gives Xp=l /',*!;
A (*r)<ty> (7)

where the values of x and cD /cn on the positive face of the lamina are to be understood.

If x, y refer to the position of P we may write Cjdn= -
c/dx ;

and at a distance r from the

origin, large compared with 26, we have

XP=-hf
b

_ bXdy^D (kr). .(8)

The definite integral is one-half the 'impulse' of the lamina (per unit length) when

moving broadside-on with velocity ik in an incompressible fluid of unit density; hence

by Art. 71 (11)
*

x4r-J**-*. (9)
II-

and therefore Xp
= -&*& - Do (*r) =iV/t

262A (ir) . cos $ (10)

When Icr i.s large this reduces to

*,--,-}* =7*
V ',,rtW~. (11)

by Art. 207 (14).

The ratio of the energy scattered per second to the energy-flux in the primary waves is

easily found to be

^r2
(M)3

.26, (12)

which is exactly one-sixth of the corresponding ratio in the case of a circular cylinder of

radius 6 (Art. 298 (14)).

2. In the case of an aperture bounded by parallel straight edges (y=b) in a plane

screen (x=0), we assume as in Art. 293, 2

<f
)= eikx+ e- itz

+x, and </>=*'> (13)

for the two sides respectively, and seek to determine x, X so tnat

x=-h xV+l (14)
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over the aperture, whilst ~^ =0, J^ =0 (15)

over the screen. Now if we apply (1) and (2) to the part of the plane lying to the right of

the axis of y, and if we further take P' at the image of P, we have by addition

Xp" -*/* fc
D,{kr)n̂ dy, (16)

where S is drawn from the positive face. At distances r from the origin which are large

compared with 26, this becomes

XP*-*/!,l*-^ <i7 >

In the immediate neighbourhood of the aperture the motion represented by the
j

functions x, %' must resemble the flow of a liquid through the same aperture, and an

approximate value of the definite integral in (17) is accordingly obtained by comparison j

with the results of Art. 66, 1. It appears that corresponding to a flux unity through the I

aperture the increment of x in passing from the aperture itself to a distance r which is

large compared with 26 is

1 . 2r

We may still suppose r to be small compared with the wave-length, and the formulae (14)
j

and (17) then shew that the corresponding increment of x in the actual problem is

1+
lf[b

d
dy-(l 8$kr+y+hiir)> (

18)

by Art. 297 (12). Equating this to

7T J - b dn
v log^, (19)

we find (

6 d

^dy=- 1 rTT^ ^- (20)
J -b dn

s
log^6+-y+ ^7r

v

Hence when kr is large, we have from (17)

Y *"" D thr\ L (^\ h
e-i(kr+\*) m)

XP'logikb+ y+fa^W-logtkb+y+iin^krJ
K

\

The value of %' at any point P on the negative side of the plane x=0 is equal anc

opposite to the value of x at the image of P with respect to the plane.

The ratio of the energy transmitted through the aperture to the energy-flux in th(

primary waves is found to be

i-2

kb{(log%kb+ y)*+ in*}
2b (22)

If the wave-length be 10, or 100, or 1000 times the breadth of the aperture, the facto

of 26 comes out equal to 1-240, or 3795, or 17"20, respectively.

3. The two-dimensional problem of the diffraction of plane waves by a cylindria

obstacle of any form of cross-section can be treated by the method of Art. 294*
th;

formula (1) above taking the place of Art. 286 (5). As no new point arises, it will b

* Cf. Lord Rayleigh, I.e. ante p. 493.
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sufficient to state the chief result. The wiives are supposed to be incident from the

direction (X, /x, 0), and we write, accordingly,

$W*C*+r)+x .

(23)

where x *s * represent the scattered waves. We assume also that the axes of x, y have

special directions in the plane of the cross-section, such that the kinetic energy (per unit

length parallel to z) of an incompressible fluid of unit density, when the cylinder moves

through it with velocity (u, v, 0), would be given by an expression of the form

$ (A
2+BO, (24)

the term in uv being absent. The dimensions of the section being supposed small com-

pared with the wave-length, the waves scattered in the direction (A1? m, 0) are given by

*" -(^ e
"' i''+W

-(-i^^
!(A+5>xx ' +(B+S)^ e

-,(ir+1" , -(25>

where S is the area of the cross-section.

For an elliptic section whose semi-axes in the directions of x, y are a, b, we have

(see Art. 71 (11))

S=irab, A=nb2
, B= 7ra2 (26)

In the cases of a circular cylinder (a= 6), and of a flat lamina (a=0), we reproduce results

already obtained.

300. We may also investigate the disturbance produced in a train of

plane waves by a thin screen which is interrupted by a series of parallel,

equal, and equidistant slits. As before, the treatment is approximate, and

involves the assumption that the wave-length is large compared with the

distance between the centres of successive apertures.

As a subsidiary questioD, we require to determine the flow of an incom-

pressible fluid through a fixed rigid grating of the above kind. This can be

solved by Schwarz' method (Art. 73); but for the present purpose it will be

sufficient to state, and verify, the result. The axis of x being taken normal

to the plane of the grating, and that of y in this plane, at right angles to the

lengths of the apertures, we write

cosh w =
fi cosh z, (1)

where, for the moment,

w=<fi + i-^r,
z = x + iy, (2)

and the constant
/x.

is supposed greater than unity. This makes w a cyclic

function
;

but we avoid all indeterminateness if in the first instance we

confine ourselves to that half of the plane xy for which x > 0, and if further

we fix the value of w at any one point. We will assume that at the origin

^ =
0, whilst

<f>
is equal to the real positive value wf cosh-1 /*.

The formula (1) gives

cosh
</>

cos
yfr
=

fi cosh x cos y, sinh
<f>

sin
i/r
=

fi sinh x sin y. ...(3)
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The locus <p
= consists of those portions of the axis of y for which

1 > fi cos y > 1
;

these represent the apertures, so that on the scale of our formulae the half-

breadth of an aperture is sin-1 (l/fi). For other portions of the region x > 0,

<f>
will be positive. Again, the lines

yfr
= 0, yfr

= + ir, yjr
=

2ir, . . . will consist

partly of the lines y = 0, y=ir, y = -it, ..., respectively, and partly of

those portions of the axis of y for which

fi cos y > 1
;

these correspond to the parts of the screen between the apertures.

The curves
<f>
= const., yjr

= const, are traced, for a particular case, on the

opposite page, the value of
//, adopted for convenience of calculation being

fM
= cosh 1tt = 1-2040,

whence sin-1 - = '3127T, cos-1 - = -1887T.
fM ft

iatter numbers give the relative breadths of the apertures and of the

intervening portions of the screen.

The formulae (3), and the diagram*, admit of a variety of interpretations
in Electrostatics and other mathematically cognate subjects. In the present

application we must suppose that, at two points symmetrically situated on

site sides of the axis of y, the values of
yfr

are identical, whilst those of

<f>
are equal in magnitude but of opposite signs.

It appears from (3), or by inspection of the figure, that the function
<f>

in (3) is a periodic even function of y, the period being ir. It can therefore

be expanded by Fourier's Theorem in a series of cosines of multiples of 1y,

the coefficients being functions of x whose general form is to be determined

'Stitution in the equation

V
1

2

^ = (4)

Thus, for .' positive we find, having regard to the condition to be satisfied for

large values of x,
m

<f> log fi + x + 2 Ce_2sa; cos 2sy (5)f
i

* Taken from a paper cited on p. 516 below. A formula equivalent to (1) was given by
Larnior in the Mathematical Tripos, Part II, 1895.

t The precise values of the coefficients Ct are not required for our purpose. It may be shewn

that

c.<^'(--.^)-^(-J)'(^'-^).
in the hypergeometric notation. See the paper cited.
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If we introduce a more general linear unit, and denote the breadth of each

aperture by a, and that of each intervening strip by b, we may write

cosh d> cos \Jr
= a cosh T cos - ~

,
sinh 6 sin y}r

= a sinh ^ sin ~
.r T a + 6 a + 6

^ r .r a + ^ a + b'

(6)

where /x
= sec

(S-; -^-^cosec^ p- (7)r 2 (a + 6) 2 (a + 6)
w

The expansion (5) is now replaced by

where k, = r (9)a + b v '

We turn now to the acoustical problem. Corresponding to a train of

incident waves whose potential is eikx,
we assume*

< = e
ikx + e~ikx + x, or <& = %', (10)

according as x < 0. As in Arts. 293, 2, and 299, 2, we must have

X = -l> %'
= + !> (11)

over the apertures, and z~' 2
=

' (^

over the rest of the plane x = 0. Since ^ must satisfy

(Vs
' + *0x-0, (13)

and must further be periodic with respect to y, with the period a + b, it must

admit of being expanded in a Fourier's series of the form

>

x = B e-ikx + 2Bse-\*cos^^, (14)
i a + b'

provided Xs
* =

(a + bf
~^ (15)

Since, by hypothesis, a + b is small compared with the wave-length lirfk

the right-hand side of (15) is positive. Hence the quantities \s are real

and, moreover, differ respectively very little from ks . Terms involving e\-

are excluded by the condition of finiteness for x = oc
,
so that the wave:

represented by ^ are ultimately plane. The fact that they must trave

outwards from the grating justifies the omission of the term in eikx .

If k were zero, the conditions determining ^ would be the same as if th<

fluid were incompressible, and we should have

x 1 + Cft (16) I

* The symbol $ is here used for the acoustic velocity-potential, as
<f>

at present bears a specis'

meaning.
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where
<f>

is the function determined (in the manner above explained) by (6),

and G is some constant
;
and we may anticipate that the same expression

will hold approximately in the actual case for the immediate neighbourhood

of the grating. Again, for small values of kx, the expansion (14) takes the

form

x = B (l-ikx) + iB,e-<,*cos^, (17)

where the substitution of *, for \, in the exponential involves an error of the

order k2
(a + by/tir*. Hence, substituting from (8) in (16), we find that (16)

and (17) are in fact identical, provided

B = -l + C\ogp-ikB =
-^-b , (18)

and, fors>0, B,= CC, (19)

Hence B>=-ihkv (20)

where l =^ ]0^ sec
2^Tb) (21)

As regards %', all the conditions are satisfied if we suppose that its value

at any point P' on the negative side of the grating is equal in absolute

magnitude, but opposite in sign, to that of % at the image P of F on the

positive side. Hence

X=-B e**-iB,,(*.*cos?^ (22)

At a distance of several wave-lengths from the grating the last terms in

<14) and (22) may be neglected, and the waves are sensibly plane. On
reference to (10) we see that the coefficients of the reflected and transmitted

waves are 1+B and B
,
or

=4^L and r-i- (23)
1 + ikl 1+ikl v '

respectively, that of the primary waves being taken as unit. Hence the

intensities /, /' of these waves are given by

)H- 1
I =

f+W' r = TTw (24)

For sufficiently great wave-lengths there is very little reflection, even

when the apertures occupy only a small fraction of the area of the screen.

As
corresponding numerical values we have

^ = 0, -1, -2, 3, -4, -5, -6, -7, -8, -9, 10,

^j-b
=

, -590, 374, -251, 169, '110, -067, 037, 016, "004, 0.

l. 33
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Let us suppose, for example, that the wave-length is ten times the interval

a + b, and that the apertures occupy one-tenth of the area of the grating.

It will be found that the reflected and transmitted intensities are

/= 121, J' =-879,

respectively. Notwithstanding the comparative narrowness of the openings,

88 per cent, of the sound gets through.

301. A similar method applies to the case of a grating composed of

parallel equidistant wires.

We note in the first place that the potential- and stream-functions of an incom-

pressible fluid, due to a system of equal and equidistant line-sources cutting the plane xy
j

perpendicularly at the points (0, 0), (0, a), (0, 2a), ..., are given (Art. 64) by the

formula

waL\ogz+log(z-ia)+ \og(z+ia)+\og(z-2ia)+ \og(z+ 2ia) + ..., (1)

where w= <\>+fy, z= x+iy, (2)

or, say, w= logsinh (3)

This makes

2 2 f

tan?)=
^ log*

(cosh -^-cos-J'j,
*= tan-i ^ , (4)

in agreement with a result given by Maxwell*.

The case of a row of double sources having their axes parallel to x is obtained by

differentiating (3) with respect to z
;
we thus find

w= - coth , (5)
a a

. . 2nx . 2ny
sinh sin i

whence $=\
*

, * = -\ ~
2

(V

cosh cos - cosh cos
a a a a

These results enable us to solve very simply a number of problems in Hydrodynamics

Magnetic Induction, and so on. In particular, the potential- and stream-functions for ;

liquid flowing through a grating of parallel cylindrical bars of radius b are given by

irb
2

, ttz /n s Iw= z-\ coth
, (7)

a a

. . 2rrx . 2iry
sinh , sin

nb2 a . irb- a ,R ,

<t>=X+-oT2^ ' + =y --a x 2~Ty>
(8'

cosh cos - cosh cos -

a a a a

*
Electricity and Magnetism, Art. 203.
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if the velocity at infinity is unity, in the direction of x negative. This follows from the

periodicity
with respect to

jr,
and from the fact that for small values of x, y we have

+=Kl_
i^?)'

.9

approximately. It is assumed that the radius 6 of a bar is small compared with the

distance a between the axes of consecutive bars.

If the real part of 2 be positive, we have from (7)

A* /
***8

\
w=z+ U+22 V (10)

whence <f>=x+^ (l+22e~~^~co&?^\ (11)

Similarly if x be negative, we find

*=*- (i+*f "*-r) <12>

In the acoustical problem the velocity-potential will be of the form

*=e*z+^- fa-rio-A rcos^f

, (13)

= Af^-io-Vcos ,

1

according as x > 0, where A, is the positive quantity defined by

. U

tf-=Sr-* (w></-

r values of x which are small compared with the wave-length we may ignore the
difference between X, and 2#/a, provided the wave-length be large compared with o.

Under these circumstances the formulae (13), (14) reduce to

2sn

*=l+A+iJb(l-A)x+lcte cos^',
1

"i *- B+XBx-2C,e cos=^,

(16)

(17)

irrx
z

cos-
a

respectively. The function * accordingly assumes the form

*=a^+3, (18)

;
where

<f>
is determined by (11) and (12), and a, are constants, provided

l+A=a ~+fr #=-a^+0, l*(l-^)= a, itB= a, C,= 2a . ...(19)

These make J= _^* #=_L^ (20)

whei |= (21)a

The intensities of the reflected and transmitted waves are therefore

i3/2 1

l+i3/*' l+i3**

332
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If the half-wave-length be large compared with b2/a, we have free transmission, with hardly
any reflection. This further illustrates the " extreme smallness of the obstruction offered

by fine wires or fibres to the passage of sound*."

The diffraction of plane waves of sound by the straight edge of a '

semi-

infinite' plane screen, and the formation of a sound-shadow, have been

investigated by Sommerfeldf, and (with some extensions) by Carslaw*.

The data here involve no special linear magnitude except the wave-length,
and the general character of the results is accordingly independent of the latter.

Atmospheric Waves.

302. The theory of such questions as the large-scale oscillations of the

earth's atmosphere, where the equilibrium-density cannot be taken to be

uniform, is still very imperfect. One special difficulty is that of taking into

account the physical conditions which are imposed in the upper regions
of the atmosphere. It will be seen that the formulae indicate in certain

cases an indefinite increase of amplitude with height. This not only tends

to violate the restriction to
'

infinitely small
'

motions
;

it also indicates

that in neglecting viscosity, whose retarding effect varies inversely as the

density, and therefore increases continually upwards, we are ignoring an

important factor in the phenomena.

Let us suppose that we have a gas in equilibrium under certain constant

forces having a potential 12, and let us denote by p and p the values of p
and p in this state, these quantities being in general functions of the co-

ordinates x, y, z. We have, then,

dp<>
= - podl (1)

The equations of small motion, under the influence (it may be) of disturbing
forces having a potential Cl', may therefore be written

du _ dp p dp 3fT

Po
P

dt dx pn dx dx

(2)
dv dp p dp 3H'

p0
di--dy

+
po dI/

-
p0 W

dw _ dp p dp dQ'
p0 ~di~~dz"

h
p~te~

P
'dz~'!

* Lord Rayleigh, Theory of Sound, t. ii. Art. 343.

The investigations of Arts. 300, 301 are adapted from a paper
" On the Reflection and Trans-

mission of Electric Waves by a Metallic Grating," Proc. Lond. Math. Soc, t. xxix. p. 523 (1898).

t " Mathematische Theorie der Diffraction," Math. Ann., t. xlvii. p. 317 (1895). A verification

of Sommerfeld's result is given by Drude, Lehrbuch der Optik, Leipzig, 1900, p. 188.

J "Some Multiform Solutions of the Partial Differential Equation of Physics and their
;

Applications,'
1

Proc. Lond. Math. Soc, t. xxx. p. 121 (1899); "Oblique Incidence of a train of

Plane Waves on a Semi-Infinite Plane," Proc. Edin. Math. Soc, t. xix. (1901).
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The general equation of continuity, Art. 8 (4), gives, with the same

approximation,

p4r-fo {p u)
-ly

{p v) -te {p>w): (3)

The case that lends itself most readily to mathematical treatment is

where the equilibrium-temperature is uniform*, and the expansions and

contractions are assumed to follow the 'isothermal' law, so that

P =
<?P> (4)

c denoting the Newtonian velocity of sound. If we write

P = Po (l+s), p=p (l+s),

the equations (2) reduce to the forms

dv , a .= -c- (s-s),

_ = _<,_ (s
_

s)>

ft'
where s=

, (6)

that is, s denotes the '

equilibrium-value
'

of the condensation due to the

disturbing-potential ft'.

We find, by elimination of u, v, w between (3) and (5),

I -^(-*+5s +
fei

+^S- (7)

303. If we neglect the curvature of the earth, and suppose the axis

of z to be drawn vertically upwards, p will be a function of z only,

determined by

%-- (1)

On the present hypothesis of uniform temperature, we have, by Boyle's Law,

p = gPoH, (2)

where H denotes as in Art. 274 the height of a '

homogeneous atmosphere
'

at the given temperature. Hence

Po xe-*
H

. (3)

* The motion is in this case irrotational, and might have been investigated in terms of the

velocity-potential.
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Substituting in Art. 302 (7), and putting s = 0, we find, in the case of no

disturbing forces,

S-'fc-iS w *

For plane waves travelling in a vertical direction, s will be a function of z

only, and therefore

82

s_ ttfs 1 ds\

w~ c W'Hdz) {0)

If we assume a time-factor eivi ,
this is satisfied by

<f>
= Aemz

, (6)

provided TOt ~"
~3-+ Ti

=
> CO

1

2Hor m =^jrik', (8)

where k
'=-c{

1-^- w
The lower sign in (8) gives the case of waves propagated upwards. Expressed
in real form the solution for this case is

s = Cezl2H cos (at -k'z) (10)

The wave-velocity (<r/k') varies with the frequency, but so long as a is large

compared with c/2H it is approximately constant, differing from c by a small

quantity of the second order. The main effect of the variation of density is

on the amplitude, which increases as the waves travel upwards into the rarei

regions, according to the law indicated by the exponential factor. Thi?

increase might have been foreseen without calculation; for when the variatior.

of density within the limits of a wave-length is small, there is no sensible

reflection, and the energy per wave-length, which varies as a2

p (a being the

amplitude), must therefore remain unaltered as the waves proceed. Since
j

pQ oc e~z/H
,
this shews that a oc e*1*3

. As already indicated, this result must ii

reality be greatly modified by viscosity.

When a < cj'lH, the form of the solution is changed, viz. we have

s = (A^2 + A 2e
m
^) cos at, (11)

where mx ,
m2 (the two roots of (7)) are real and positive. This represents i

standing oscillation, with one nodal and one 'loop' plane. For example,]'
1

* This equation was given by Poisson, I.e. ante p. 463, and integrated (by series) for the oaf

of spherical waves. Poisson also treats (less fully) the case where (in the equilibrium conditioi

he temperature diminishes uniformly upwards, and the oscillations of pressure and density a"

connected by the adiabatic law.
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the nodal plane be that of z 0, we have m^A x + rn^A^ = 0, and the position of

the loop (s
= 0) is given by

1 i w*i , -.>

z = log (12)

When the motion is in two dimensions, one horizontal and one vertical, we have

dt*
=di

{d&
+ w~ 5dz)

(13)

If we assume that x e<(- **>+
(14)

we find mi--^+a2 -k2c2=0 (15)
it

If the roots of this equation in m are real, one of them at least will be positive ;
if they are

imaginary, their real part is positive.

If the vibrations are wholly horizontal, we have m=0, and <r=kc. The waves are

therefore propagated unchanged with velocity c, as we should expect, since on the present

hypothesis of uniform equilibrium-temperature the wave-velocity is independent of the

amplitude*.

304. This leads to the consideration of the slow horizontal oscillations of

an atmosphere of uniform temperature covering a globe at rest.

If we introduce angular coordinates 6, <o as in Art. 197, and denote by u,

v the velocities along and perpendicular to the meridian, the equations (5)

of Art. 302 give

8u_ c* 3 , . dv _ c
3 d , _. ,,*

dt~~ad0 {S
~

S) '

dt tTsTn^a^
- ^' {L)

1 (d(usin0) dv] ,9x

mi^t M H

where a is the radius. If we neglect the vertical motion (w), the equation
of continuity, Art. 302 (3), becomes

dt a siu 6

The equations (1 ) and (2) shew that u, v, s may be regarded as independent
of the altitude. The formulae are in fact the same as in Art. 197, except
that s takes the place of %/h, and c2 of gh. Since, in our present notation, we

have <? = gH, it appears that the free and the forced oscillations will follow

exactly the same laws as those of a liquid of uniform depth H covering the

same globe.

Thus for the free oscillations we shall have

s = Sn . cos {at + e), (3)

*
This Art. is derived mainly from a paper by Lord Rayleigh,

" On Vibrations of an Atmo-

sphere,
-
'

Phil. Mag. (4), t. xxix. p. 173 (1890) [Sc. Papers, t. iii. p. 335]. For a discussion of the

effects of upward variation of temperature on propagation of sound-waves, see Reynolds,
" On

the Refraction of Sound by the Atmosphere," Proe. R. S. t. xxii. p. 531 (1874) [Sc. Papers, t. i.

p. 89], and Lord Rayleigh, Theory of Sound, Art. 288.
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where Sn is a surface-harmonic of integral order n, and

*- = n(n + l)- (4)

As a numerical example, putting c = 2 -80 x 104
, 27ra = 4 x 109

[c. s.], we find,

in the cases n = 1, n = 2, periods of 28" 1 and 16*2 hours, respectively.

The tidal variations of pressure due to the gravitational action of the sun

and moon are very minute. It appears from the above analogy that the

equilibrium value s of the condensation will be comparable with af/gll, where

/ is the quantity defined in Art. 179. Taking afjg = V80 ft. (for the lunar

tide), and #=25000 feet, this gives for the amplitude of s the value 7
-2 x 10-5.

If the normal height of the barometer be 30 inches, this means an oscillation

of only -00216 of an inch.

It will be seen on reference to Art. 212 that the analogy with the oscil-

lations of a liquid of depth H is not disturbed when we proceed to the tidal

oscillations on a rotating globe. The height H of the homogeneous atmo-

sphere does not fall very far short of one of the values (29040 ft.) of the

depth of the ocean for which the semi-diurnal tides were calculated by

Laplace*. The tides in this case were found to be direct, and to have at the

equator 11267 times their equilibrium value. Even with this factor the

corresponding barometric oscillation would only amount to "0243 of an inch j\

The most regular oscillations of the barometer have solar diurnal and semi-diurnal

periods, and cannot be due to gravitational action, since in that case the corresponding
lunar tides would be 2"28 times as great, whereas they are practically insensible.

The observed oscillations must be ascribed to the daily variation in temperature, which,

when analysed into simple-harmonic constituents, will have components whose periods are

respectively 1, , J, j, ... of a solar day. It is very remarkable that the second (viz. the

semi-diurnal) component has a considerably greater amplitude than the first. It has been

suggested by Lord Kelvin that the explanation of this peculiarity is to be sought for in the

closer agreement of the period of the semi-diurnal component with a free period of the

earth's atmosphere than is the case with the diurnal component. This question has been

made the subject of an elaborate investigation by MargulesJ, taking into account the

earth's rotation.

* See the table on p. 328, above.

t Cf. Laplace, "Becherches sur plusieurs points du systeme du monde," Mem. de VAcad. roy.

des Sciences, 1776 [1779] [Oeuvres, t. ix. p. 283]. Also Mecanique Celeste, Livre 4me
, chap. v.

J Wiener Ber., t. xcix. p. 204 (1890). This paper, with several others cited in the course of

this work, is included in a very useful collection edited and (where necessary) translated by

Prof. Cleveland Abbe, under the title: "Mechanics of the Earth's Atmosphere," Smithsonian

Miscellaneous Collections, Washington, 1891.

i



CHAPTER XL

VISCOSITY.

305. The main theme of this Chapter is the resistance to distortion,

known as '

viscosity
'

or
'

internal friction,' which is exhibited more or less by
all real fluids, but which we have hitherto neglected.

It will be convenient, following a plan already adopted on several occasions,

to recall briefly the outlines of the general theory of a dynamical system

subject to dissipative forces which are linear functions of the generalized
velocities*. This will not only be useful as tending to bring under one point
of view most of the special investigations which follow

;
it will sometimes

indicate the general character of the results to be expected in cases which

are as yet beyond our powers of calculation.

We begin with the case of one degree of freedom. The equation of motion

is of the type

aq + bq + cq
= Q (1)

Here q is a generalized coordinate specifying the deviation from a position
of equilibrium ;

a is the coefficient of inertia, and is necessarily positive ;
c is

the coefficient of stability, and is positive in the applications which we shall

consider
;
b is a coefficient of friction, and is positive. Since the terms on

the left-hand of (1) are differently affected by changing the sign of t, the

motion of a system subject to an equation of this type is not reversible.

If we put T=%aq\ V=\cq\ F=\bc, (2)

the equation may be written

ft(T+V)=-2F+Qq (3)

This shews that the energy T+ V is increasing at a rate less than that at

which the extraneous force is doing work on the system. The difference 2F

represents the rate at which energy is being dissipated ;
this is always

positive.

For a fuller account of the theory reference may be made to Lord Eayleigh, Theory of

Sound, cc. iv., v.; Thomson and Tait, Natural Philosophy (2nd ed.), Arts. 34034-5; Routh,
Advanced Rigid Dynamics, cc. vi., vii.
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In free motion we have

aq + bq + cq (4)

If we assume that q oc eKt
,
the solution takes different forms according to the

relative importance of the frictional term. If b2 < 4ac, we have

X jUift-.j!')
1

(5)a \a a?)
v '

or, say, \ = --ia (6)T

Hence the full solution, expressed in real form, is

q = Ae~tlT cos (at + e), (7)

where A, e are arbitrary. The type of motion which this represents may
be described as a simple-harmonic vibration, with amplitude diminishing

asymptotically to zero, according to the law e~ t/T
. The time t in which the

amplitude sinks to 1/e of its original value is sometimes called the
' modulus

of decay
'

of the oscillations.

If b/2a be small compared with (cjdf, b2

/4>ac is a small quantity of the

second order, and the 'speed' a is then practically unaffected by the friction.

This is the case whenever the time (2ttt) in which the amplitude sinks to

e~2"
(= -^-g) of its initial value is large compared with the period (27r/<r).

When, on the other hand, 62 > 4>ac, the values of X are real and negative.

Denoting them by aX) ct2 ,
we have

q
= A xe~

at + A 2e~
a^

(8)

This represents 'aperiodic motion'; viz. the system never passes more thai!

once through its equilibrium position, towards which it finally creeps)

asymptotically.

In the critical case b2 = 4ac, the two values of X are equal ;
we then fine

by usual methods

q = (A+Bt)e t
, (9) |

which may be similarly interpreted.

As the frictional coefficient b is increased, the two quantities a1} a2 becom
J

more and more unequal; viz. one of them (a2 , say) tends to the value bfol

and the other to the value c/b. The effect of the second term in (8) the
'

rapidly disappears, and the residual motion is the same as if the inertia,

coefficient (a) were zero.

306. We consider next the effect of a periodic extraneous fore* 1

Assuming that

Qoce<rf+), (10) |
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the equation (1) gives q = _-_5__ (11)

If we put

1 = Rcoseu =Rsin ly (12)c c

where ej lies between and 180, we have

*=s e"" <13>

Taking real parts, we may say that the force

Q = Ccos(<rt+e) (14)

will maintain the oscillation

Q
q = jk

cos (at + e- e,) (15)

Since *-(!-*) +
*

(16)

asily found that if 6*< 4ac the amplitude is greatest when

-@l*-*2t wV

its value then being ^?| (
1_ i ) (18)

In the case of relatively small friction, where /4ac may be treated as

of the second order, the amplitude is greatest when the period of the

imposed force coincides with that of the free oscillation (cf. Art. 167). The
formula (18) then shews that the amplitude when a maximum bears to its

'equilibrium-value' (Cjc) the ratio (oc^/6, which is by hypothesis large.

On the other hand, when b* > 4ac the amplitude continually increases as

the speed a diminishes, tending ultimately to the 'equilibrium-value' Cjc.

It also appears from (15) and (12) that the maximum displacement follows

the maximum of the force at an interval of phase equal to elt where

tane^-^r (19)
c a^a

If the period be longer than the free-period in the absence of friction this

difference of phase lies between and 90; in the opposite case it lies

between 90 and 180. If the frictional coefficient b be relatively small, the

interval differs very little from or 180, as the case may be, unless a- be

very nearly equal to the critical speed (c/a)K For the critical speed the

phase-difference is 90.
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The rate of dissipation is bq
2

,
the mean value of which is easily found

to be
bC 2

^(*a-c/<r)
2 + (20)

This is greatest when a = (cfa)K

As in Art. 167, when the oscillations are very rapid the formula (11)

gives

approximately ;
the inertia only of the system being operative.

On the other hand when a is small, the displacement has very nearly
the equilibrium-value

q = (22)

307. An interesting example is furnished by the tides in an equatorial
canal*.

The equation of motion, as modified by the introduction of a fractional
j

term, is

!f=-*I+ 4J+x' w
where the notation is as in Art. 180f.

In the case offree waves, putting X = and assuming that

foe eKt+ikz
, (2)

we find X2 + fi\ + k2
c2 = 0,

whence X =
\p, % (ifcV

-
/*) (3)

If we neglect the square of fi/kc, this gives, in real form,

g = Ae-W cos {k (ct as) + e} (4)

The modulus of decay is 2/i
-1

,
and the wave-velocity is (to the first order)

unaffected by the friction.

To find the forced waves due to the attraction of the moon we write, in

conformity with Art. 180,

X =
ife

2i{n
'

t+xla+e)
, (5)

where n' is the angular velocity of the moon relative to a fixed point on the

canal, and a is the earth's radius. We find, assuming the same time-factor,

jfa
2

c
2

n' 2a2 + ^ijxn'a

t l l
lTL Pii (n't+zla+e) ( \

5 4
/-2 _ n '2/1,2 . l-\.'2 e \UJ

*
Airy,

" Tides and Waves," Arts. 315....

t In particular, c- now stands for gh, where h is the depth.
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Hence, for the surface-elevation, we have

" = - *|- *
, - -J+w*** (7)

where H= afjg, as in Art. 179.

To put these expressions in real form, we write

tan2y = j ^ , (8)

where < x < 90. We thus find that to the tidal disturbing force

X =
-/sin2fn'+^+e) (9)

, corresponds the horizontal displacement

!

? = ~
*
{(o

- -Jr'+ frw)*
siD 2

("''
+
1
+ ' ~

x) -do)

and the surface-elevation

H -

( x \
'" *

.;(*
- vy + ^V]*

608 9
-[

n
'

t +
i
+ <-

x) <11)

Since in these expressions n' + #/a + e measures the hour-angle of the

I

moon past the meridian of any point (z) on the canal, it appears that high-
water will follow the moon's transit at an interval ^ given by n% = x-

If c
2 < n"-a?, or h/a<n*a/g, we should in the case of infinitesimal friction

have x = 90
=

,
i.e. the tides would be inverted (cf. Art. 180). With sensible

friction, x wiH He between 90 and 45, and the time of high-water is

;

accelerated by the time-equivalent of the angle 90 x-

On the other hand, when h/a>ri*a/g, so that in the absence of friction

the tides would be direct, the value of x lies between and 45, and the

time of high-water is retarded by the time-equivalent of this angle.

The figures on the next page shew the two cases. The letters M, M'
indicate the positions of the moon and 'anti-moon' (see p. 340) supposed
situate in the plane of the equator, and the curved arrows shew the direction

of the earth's rotation.

It is evident that in each case the attraction of the disturbing system
on the elevated water is equivalent to a couple tending to diminish the

angular momentum of the system composed of the earth and sea.

In the present problem the amount of the couple can be easily calculated.

We find, from (9) and (11), for the mean tangential force on the elevated

water, per unit area of the surface,

2^J^ pX^ = -^h/sin2x, (12)

where h is the vertical amplitude. Since the positive direction of X is east-
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wards, this shews that there is on the whole a balance of westward force.

If we multiply by the area of the water-surface and by the radius a we get
the amount of the retarding couple.

The effect of phase-differences in the composition of two tides of slightly

different speeds has been already discussed in Art. 223. To apply the

formulae there given to the present case we must write a = 2n, e = 2%.

We find, from (8), above,

^e _ dx _ P
2

(c2 + n'2a2
)

da .(13)*
dri 4 (c

2 - w'2a2

)
2 + yuV

2a4

If we have two tide-generating bodies with very nearly equal periods, this

expression gives the interval of time at which the spring-tides will follow the

instant of conjunction (or opposition).

The above investigation is reproduced on account of its theoretic interest ;
but if we

apply it to the actual circumstances of the earth, the phase-differences which it is
;

capable of explaining appear to be quite insignificant in comparison with such as actually

occur. Thus if we imagine a broad equatorial oceanic belt 11250 feet deep, we have

from (8), and from Art. 180,

tan 2\ =*

a

-191x

Cf. Airy,
" Tides and Waves," Arts. 328....
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where t= 2 p, the modulus of decay of free oscillations. It seems rational to suppose that

the modulus of decay in such a case would be a considerable multiple of the lunar day
),

in which event the change produced by friction in the time of high water would be

comparable with

x 22 minutes.
T

Hence we cannot account in this way for a phase-acceleration of more than a few minutes.

There is a similar limit to the amount of lagging of the spring-tides as calculated from

the formula (13).

It may be conceded that the introduction of the frictional term ftd^fdt in (1) is only
a rough expedient, designed to represent generally the effect of small dissipative forces ;

but the preceding calculation at all events suggests the question whether the large phase-
differences which actually occur in the tides are not to be attributed to the inertia of the

ocean as affected by the configuration of its boundaries, rather than to frictional causes.

Cf. Art. 223.

It is perhaps worth while to carry the numerical illustration a step further, and to

estimate the effect of the retarding couple on the Earth's rotation. "We have

np a3 . a 2
.

-^
= - 2npha

3
f sin 2X . 6,

where p is the Earth's mean density, a is its radius of gyration, n is its angular velocity

of rotation, and 6 is the fraction of the surface which is occupied by the water. We may
write this

---* \P 9a 8in2v a

If we assume p/p = -

18, h/#=10, f/g=8-57x 10" 8
, a^=\a\ a=2-09xl07

, #=322, this

gives, with sufficient approximation,

^=-917xl0-
22 sin2x .^,

or, if we ignore the difference between sin 2^ and - tan 2^,

^=- 1-75x10-*.^.*.
at t

This gives the retardation in radians per second per second. Expressed in seconds of arc

per century per century it becomes

^=-359*.
2
-^'.

at r

According to this the Earth would lose in a century about

12 . seconds of time,
r

as compared with an accurately going time-piece with which it kept time at the beginning
of the century. Even if we take 6 as large as | (which would represent very roughly the

case of an equatorial ocean bounded by the parallels of 30 N. and S. latitude), this gives,

with any admissible value of t, a loss of only a fraction of a second*.

* For estimates of the amount of tidal retardation of the earth's rotation, on various sup-

positions as to height and phase of the tides, reference may be made to Delaunay,
" Sor l'existence

d'une cause nouvelle ayant one influence sensible sur la valeur de l'equation seculaire de la
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It is at least questionable whether frictional forces such as we can suppose to be

at present operative are sufficient to produce any appreciable general tidal lagging, or any-

such retardation of the earth's rotation as is sometimes asserted on astronomical evidence.

But the investigation of the tides in some case where gyrostatic as well as frictional terms

would have an effect would be desirable before one could pronounce with confidence on

such a point.

308. Returning to the general theory, let q1} q2 ,
... qn be the coordinates

of a dynamical system, which we will suppose subject to conservative forces

depending on its configuration, to 'motional' forces varying as the velocities,

and to given extraneous forces. The equations of small motion of such a

system, on the most general assumptions we can make, will be of the type

ddT D . D . dV n
dtBjr

+B^ + B^ + - =
-dq-r

+Qr ' (1)

where the kinetic and potential energies T, V are given by expressions of

the forms

2T = anq? + a^qi + ... + 2a
1&qs + ..., (2)

2V= cnq? +Cvq2
2 + ... + Zcr&q, + (3)

It is to be remembered that

drg (Igfy Crs = Cgr , (
4? )

but we do not assume the equality of Br8 and Bgr.

If we now write brs = bsr = ^(Brg + Bsr ), (5)

^nd firg
= -

fisr
= :k(Brs- B8r), (6)

the typical equation (1) takes the form

ddT dF . _ . dV
,

_ _
dtWr

+
Hr

+^ +^ + - =
-dqr

+ Q '' (7)

provided 2F= 6^2 + b.^q? + ... + 2612^2 + (8)

From the equations in this form we derive

(T+V) + 2F=%Qrq t (9)

The right-hand side expresses the rate at which the extraneous forces are

doing work. Part of this work goes to increase the total energy T+ V of

the system ;
the remainder is, from the present point of view, dissipated, at

the rate 2F. In the application to natural problems the function F is

essentially positive; it is called by Lord Rayleigh*, by whom it was first;

formally employed, the '

Dissipation-Function.'

Lune," Comptes Bendus, t. lxi. (1865), and Sir W. Thomson,
" On the Observations and Calcu-

lations required to find the Tidal Retardation of the Earth's Rotation," Phil. Mag. (4), t. xxxij

p. 533 (1866) [Math, and Phys. Papers, t. hi. p. 337]. The first estimate of the kind appears to

have been made by Ferrel, in 1853.
* "Some General Theorems relating to Vibrations," Proc. Lond. Math. Soc, t. iv. p. 357

{1873) [Sc. Papers, t. i. p. 170]; Theory of Sound, Art. 81.
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The terms in (7) which are due to F may be distinguished as the

'frictional terms.' The remaining terms in qx , q.2 ,
... qn , with coefficients

subject to the relation yS
= $sr ,

are of the type we have already met with

in the general equations of a 'gyrostatic' system (Art. 141); they may there-

fore be referred to as the 'gyrostatic terms.'

309. When the gyrostatic terms are absent, the equation (7) reduces to

ddT dF dV n
dt^ r̂

+^r Qr (10)

As in Art. 167, we may suppose that by transformation of coordinates

the expressions for T and V are reduced to sums of squares, thus :

2T = a1q1

* + a4*+ ...+anqn\ (H)

2F=c1fc
l
+ctf2

2 +... + cn?n
2
. (12)

It frequently, but by no means necessarily, happens that the same trans-

formation also reduces F to this form, say

2F=b
lql

* + b3qf+...+bnqn
*

(13)

The typical equation (10) then assumes the simple form

a^fr + b,qr + Crqr
= Qr, (14)

which has been discussed in Art. 305. Each coordinate qr now varies

independently of the rest.

When Fin not reduced by the same transformation as 7* and V, the equations of small

motion are

ai'<ii+ bnqi+bViq2 + ... + blHqH + Ctq^Qt,
'

02?2 + &21 jl + &22 q- + + hnq* + ^2?2
= Q> ,

anqn+ bniqi + bn2qi+...+bHHqK +cnqn=QH , J

.(15)

where brl=b,r .

The motion is now more complicated ;
for example, in the case of free oscillations about

'

stable equilibrium, each particle executes (in any fundamental type) an elliptic-harmonic

vibration, with the axes of the orbit contracting according to the law
-a

*.

The question becomes somewhat simpler when the frictional coefficients bn are small,

since the modes of motion will then be almost the same as in the case of no friction. Thus
it appears from (15) that a mode of free motion is possible in which the main variation is

in one coordinate, say qr . The rth equation then reduces to

o.rqr+ brrqr+crqr =0, (16)

where we have omitted terms in which the relatively small quantities qlt q.2 ,
... qn (other

than qr) are multiplied by the small coefficients brl , b^, ... &,. We have seen in Art. 305

that if brr be small the solution of (16) is of the type

qr=Ae- t;T cos (at+ *), (17)

*here r^-*^", <r= (-
rY (18)- a rr \arJ

L. 34
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The relatively small variations of the remaining coordinates are then given by the remain-

ing equations of the system (15). For example, with the same approximations,

a?.+&r?r+c,g',=0, (19)

whence qt
= hr

\
Ae~ tlr sin (at+ ) ...(20)

Ct a (Xg

Except in the case of approximate equality of period between two fundamental modes,
the elliptic orbits of the particles will on the present suppositions be very flat.

If we were to assume that gv
= aCOS (at+e), (21)

where a has the same value as in the case of no friction, whilst a varies slowly with the

time, and that the variations of the other coordinates are relatively small, we should find

T+ F=K?r2+H?r2=W2
>-a

2
> (22)

nearly. Again, the dissipation is 2F=brrqr
2
,

the mean value of which is \a
2 brra

2
, (23)

approximately. Hence equating the rate of decay of the energy to the mean value o:

the dissipation, we get

da
,
brr . .

dt
=
--tvr

a
> (24)

whence a= a e~ t/T
, (25)

if T
- 1=^> <

26
)urr

as in Art. 305. This method of ascertaining the rate of decay of the oscillations is some

times useful when the complete determination of the character of the motion, as affecte

by friction, woidd be difficult (cf. Arts. 331, 338).

When the frictional coefficients are relatively great, the inertia of the system become

ineffective ;
and the most appropriate system of coordinates is that which reduces F and

simultaneously to sums of squares, say

2F=b l q1
2 + b,q2

2 +...+bn q,
2

,^ (2?)

2V=c1 q1
2+c2 q.? + ...+cnqn

2
.}

The equations of free-motion are then of the type

brqr+ crqr= 0, (28)

whence ?r=CiT<
/r

, (29)

if r= -r (30)
cr

310. When gyrostatic as well as frictional terms are present in tl

fundamental equations, the theory is naturally more complicated. It will 1

sufficient here to consider the case of two degrees of freedom, by way
further elucidation of a point discussed in Art. 205.

The equations of motion are now of the types

aiq\+ bn qi + {bi2+ P) q<i+ Ciqi
= Qi,}
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To determine the modes of free motion we put Qi=0, Q>=0, and assume that qx and q%

vary as e
kt

. This leads to the biquadratic in X :

+ (bn ci+bnci)\+ c1c2=0 (2)

There is no difficulty in shewing, with the help of criteria given by Routh*, that if, as in

our case, the quantities

1, 2, &11 &22> &11&22-&12
2

are all positive, the necessary and sufficient conditions that this biquadratic should have

the real parts of its roots all negative are that et ,
c> should both be positive.

If we neglect terms of the second order in the frictional coefficients, the same conclusion

may be attained more directly as follows. On this hypothesis the roots of (2) are, approxi-

mately,

X= aiia-i, -a2 i(r-2 (3)

where o-j, a--> are, to the first order, the same as in the case of no friction, viz. they are the

roots of

aia1a*-((hCi+a l
ci+^) <r

2
-f-c1 c2=0, (4)

whilst ai, a> are determined by

.(5)

vident that, if <tx and o*2 are to be real, Cj ,
c2 must have the same sign, and that if

d], a> are to be positive, this sign must be + . Conversely, if c1? c2 are both positive, the

values of a-{\ rrJ are real and positive, and the quantities Ci/al5 c-jja^ both lie in the interval

between them. It then easily follows from (5) that aly a2 are both positive t.

If one of the coefficients cly c2 (say c2) be zero, one of the values of <r (say o-2) is zero,

indicating a free mode of infinitely long period. We then have

2_ c
4.
& n - ^ tits<Ti=-i ,

a2= -^ (b)

As in Art. 205 we could easily write down the expressions for the forced oscillations in

the general case where Qi , <J-> vary as '"*, but we shall here consider more particularly
the case where e2=0 and <22=0. The equations (1) then give

(Ci-a
ia l + urbn)ql+ (bli+^) q>>=Qu )

\ (7)
,=0. )i<r (6,2

-
) qx+ (iW,+ bn) qt

--

* Advanced Rigid Dynamics, Art. 287.

t A simple example of the above theory is supplied by the case of a particle in an ellipsoidal

bowl rotating about a principal axis, which is vertical. If the bowl be frictionless. the equili-

brium of the particle when at the lowest point will be stable unless the period of the rotation lie

between the periods of the two fundamental modes of oscillation (one in each principal plane) of

the particle when the bowl is at rest. But if there be friction of motion between the particle and
the bowl, there will be ' secular

'

stability only so long as the speed of the rotation is less than

that of the slower of the two modes referred to. If the rotation be more rapid, the particle will

gradually work its way outwards into a position of relative equilibrium in which it rotates with

the bowl like the bob of a conical pendulum. In this state the system made up of the particle

and the bowl has less energy for the same angular momentum than when the particle was at

the bottom. Cf. Art. 250.

342
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tt l'(T2+ &22 q ,,
^ 1 -a

1
a2 i(T

3 -(a2bu + a 1 b22)(T
2+ (a2Cl+^+bn b22-bl2

2
)i(r+ b22Ci

^

This may also be written q x
= tt-.

-

r|
*

.. -. <?i (9)
i2 {(i^+^^+ o-x

2
} (to-+ a2)

Our main object is to examine the case of a disturbing force of long period, for the sake

of its bearing on Laplace's argument as to the fortnightly tide (Art. 216). We will there-

fore suppose that the ratio ai/tr, as well as <ri/aly is large. The formula then reduces to

i(ra2+ bn = iaa2+ bn Q
qi

a^o-j^tV+aa)^ b^c^ia/^+l)
Vl { '

Everything now turns on the values of the ratios a/a2 and a-a2/bi2 . If o- be so small that

these may be both neglected, we have

ft-J. (11)

in agreement with the equilibrium theory. The assumption here made is that the period

of the imposed force is long compared with the time in which free motions would, owing

to friction, fall to e~ 2v
of their initial amplitudes. This condition is evidently far from

j

being fulfilled in the case of the fortnightly tide. If, as is more in agreement with the i

actual state of things, we assume cr/a2 and o-a2/622 to be large, we obtain

as in Art. 205 (24).

9l
=^ Ql = <*QU (12)

&22CJ dzCx+pP

Viscosity.

311. We proceed to consider the special kind of resistance which is metj

with in fluids. The methods we shall employ are of necessity the same as'

are applicable to the resistance to distortion, known as '

elasticity/ which if

characteristic of solid bodies. The two classes of phenomena are of course
j

physically distinct, the latter depending on the actual changes of shap(

produced, the former on the rate of change of shape, but the mathematica

methods appropriate to them are to a great extent identical.

If we imagine three planes to be drawn through any point P perpen
dicular to the axes of x, y, z, respectively, the three components of the stress

per unit area, exerted across the first of these planes may be denoted b;

Pxx, Pxy, Pxz> respectively; those of the stress across the second plane b

Pyx,Pyy> Pyz\ and those of the stress across the third plane by pzx , pzy , pzz*^

If we fix our attention on an element BocByS2 having its centre at P, we Adc

on taking moments, and dividing by BxBySz,

Pyz
=

Pzy > Pzx = Pxz > Pxy = Pyx >

* In conformity with the usual practice in the theory of Elasticity, we reckon a tension <

positive, a pressure as negative. Thus in the case of a frictionless fluid we have



310-312] Oblique Stresses 533

the extraneous forces and the kinetic reactions being omitted, since they are

of a higher order of small quantities than the surface tractions. These

equalities reduce the nine components of stress to six
;

in the case of a

viscous fluid they will also follow independently from the expressions for

pyz, Pzx, Pxy in terms of the rates of distortion, to be given presently

(Art. 313).

312. It appears from Arts. 1, 2 that in a fluid the deviation of the state

of stress denoted by pxx, pry,... from one of pressure uniform in all directions

depends entirely on the motion of distortion in the neighbourhood of P, Le.

on the six quantities a, b, c,/,g, h by which this distortion was in Art. 30

shewn to be specified. Before endeavouring to express Pxx,Pxy, as functions

of these quantities, it will be convenient to establish certain formulae of

transformation.

y
Let us draw Px', Py', Pz in the directions of the

principal axes of distortion at P, and let a', 6', c' be the 1

rates of extension along these lines. Further let the mutual x h, m^, nls

configuration of the two sets of axes, x, y, z and x
', y', z', be y

j

4> *ai fh>

specified in the usual manner by the annexed scheme of z' l3 , m,, nz .

direction-cosines. We have, then,

du /, 3 ,3 , 3 \ y , , , , , /v , a du' la dv , a dw'

Hence

a = l?a' + l^b' + ls*c, 1

b = mfd + mfb' + m,
2
c', > (1)

c = nfd + n.?b' + njc', J

the last two relations being written down from symmetry. We notice that

a + b + c = d + b' + c\ (2)

as we should expect, since either side measures the 'expansion' (Art. 7).

Again

dw dv ( 3 3 3 \ , ,
,

,
,

/ x

3y
+

3^
=

(
mi 3^

+ W2
37

+ m
'3?j

(WlW+^ +^ )

+ (rii =-} + n.2
g->

+ n,^J
(nhu + rruv' + rr^w') ;

and this, with the two corresponding formulae, gives

f = m^a' + niinj)' + m%r\t', \

g = n1 l1d +n2lj>' +nj^p', > (3)

h = hm^a' + LmJb' + l3mjc'. J
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313. From the symmetry of the circumstances it is plain that the

stresses exerted at P across the planes y'z ', z'x, x'y' must be wholly perpen-
dicular to these planes. Let us denote them by pi,p2,p3 respectively. In

the figure of Art. 2 let ABC now represent a plane drawn perpendicular to x,

infinitely close to P, meeting the axes of x, y', z' in A, B, C, respectively;

and let A denote the area ABC. The areas of the remaining faces of the

tetrahedron PABC will then be Z]A, Z2A, Z3A. Resolving parallel to x the

forces acting on the tetrahedron, we find

pxx& =p^A . lx + p2Z2A . l2 + p3l3& . I,
,

the external impressed forces and the resistances to acceleration being:
omitted for the same reason as before. Hence, and by similar reasoning,

Pxx=Pik
2

+ihh* +pJ3-, )

Pyy = Pimi

2 + P*m*
2 + Psm*>

\
C 1 )

Pzz mPl*l* + P&* +PJh
2

- J

We notice that

Pxx + Pyy + Pzz
=

Pi + Pi + Ps (2)

Hence the arithmetic mean of the normal pressures on any three mutually

perpendicular planes through the point P is the same. We shall denote

this mean pressure by p*.

Again, resolving parallel to y, we obtain the third of the following sym
metrical system of equations :

Pyz =Pim 1
n1 +pjnn, +pgm&t, \

Pzx=Pin 1h +pjiA +psn3ls , > (3)

Pxy^pAm^ +p.ilm 2 +p3l3m3 . J

These shew that

Pyz
=

P*y i P^x
=

Pxzt Pxy
== pyx >

as was proved independently in Art. 311.

If in the same figure we suppose PA, PB, PC to be drawn parallel t

x, y, z respectively, whilst ABC is any plane drawn near P, whose direction

cosines are I, m, n, we find in the same way that the components {phx,Phy,Ph<

of the stress exerted across this plane are

Phx = Ipxx + mpxy + np, \

Phy = lpyx + mpyy + npyz ,
I (4)

Phz
=

Ipzx + mpzy + npzz .
J

* The question of course remains open as to whether, in the case of a gas, the mean pressu
is a function of the density and temperature only (as in the statical condition to which Boyle

and Dalton's laws in the first instance relate), or whether it depends also on the rate
j

expansion at the point (x, y, z). See Art. 341 infra.
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314. Now p1} p.2 , p3 differ from p by quantities depending on the

motion of distortion, which must therefore be functions of a', b', d , only.

The simplest hypothesis we can frame on this point is that these functions

are linear. We write therefore

(1)

p 1
= -p + \(a +b' + c) + 2fia',

}h
= -p+\ (' + b' + c) + 2fib',

pz
= -p + \(d + b' + c') + 2fic', J

where X, /a are constants depending on the nature of the fluid, and on its

physical state, this being the most general assumption consistent with the

above suppositions, and with symmetry. Substituting these values of pi,p-2 , pz

in (1) and (3) of Art. 313, and making use of the results of Art. 312, we find

pxx = -p + *^(a + b + c) + 2fj.a, \

pw = - p + \ (a + b + c) + 2fib, \ (2)

pa =
/) + X (a +b + c) + 2fic, J

pyz
=

2ftf, pzx
=

2fig, pxy
= 2fih (3)

The definition ofp adopted in Art. 313 implies the relation

3X + 2/4
= 0, (4)

whence, finally, introducing the values of a, b, c,f,g,h from Art. 30

du
\

dx'

fdu dv ,dw\ dv

fdu dv dw\ dw

fou dv dw\
P" =

-P-^{dx +
dy

+
dz)

+ 2fl
dy

dv

ay
(5)

:Pw

.(6)

fdiv dv\

fdu dw\
P" =

^[dz
+ ^)

= PX2 '

(dv du\
P^ = tl

\dx
+

y)
=P^

The constant fi is called the 'coefficient of viscosity.' Its physical meaning

may be illustrated by reference to the case of a fluid in what is called

'laminar' motion (Art. 30); i.e. the fluid moves in a system of parallel planes,

the velocity being in direction everywhere the same, and in magnitude

proportional to the distance from some fixed plane of the system. Each

stratum of fluid will then exert on the one next to it a tangential traction,

opposing the relative motion, whose amount per unit area is fi times the
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variation of velocity per unit distance perpendicular to the planes. In

symbols, if u = ay, v = 0, w = 0, we have

Pxx=pyy =Pzz = -p, P?/z
= 0> Pzx = 0, pxy

=
fia.

If [M], [L], [T] denote the units of mass, length, and time, the dimensions

of them's are [ML~
XT~2

\ and those of the rates of distortion (a, b, c, ...) are

\T~
V
\,

so that the dimensions of
//,

are [ML'
1!'1

].

The stresses in different fluids, under similar circumstances of motion, will

be proportional to the corresponding values of ft; but if we wish to compare
their effects in modifying the existing motion we have to take account of

the ratio of these stresses to the inertia of the fluid. From this point of

view, the determining quantity is the ratio fi/p ;
it is therefore usual to

denote this by a special symbol v, called by Maxwell the 'kinematic coefficient'

of viscosity. The dimensions of v are [Z
2^7-1]*.

It will be noticed that the hypothesis made above that the stresses

Pxx> Pxy, are linear functions of the rates of strain a, b, c, ... is of a purely
tentative character, and that although there is considerable a priori proba-

bility that it will represent the facts accurately in the case of infinitely small

motions, we have so far no assurance that it will hold generally. It has

however been pointed out by Prof. Osborne Reynoldsf that the equations
based on this hypothesis have been put to a very severe test in the experi-

ments of Poiseuille and others, to be referred to presently (Art. 319).

Considering the very wide range of values of the rates of distortion over

which these experiments extend, we can hardly hesitate to accept the

equations in question as a complete statement of the laws of viscosity. In

the case of gases we have additional grounds for this assumption in the

investigations of the kinetic theory by Maxwellj.

The practical determination of p (or v) is a matter of some difficulty. Without entering

into the details of experimental methods, we quote a few of the best-established results.

The calculations of von Helmholtz
,
based on Poiseuille's observations, give for water

0178
P"

1 + -03375+ -00022 102 '

in c. G. s. units, where 6 is the temperature Centigrade. The viscosity, as in the case of all

liquids as yet investigated, diminishes rapidly as the temperature rises ; thus at 17 C. the

value is
/i17

= -0109.

* In compressible fluids there may, on a certain view, be a second coefficient of viscosity,

involved in the expression for the mean pressure p as depending on the physical state, and the

rate of expansion. See Arts. 313, 341.

t "On the Theory of Lubrication, &c," Phil. Trans., t. clxxvii. p. 157 (1886) [Sc. Papers,

t. ii. p. 228].

J
" On the Dynamical Theory of Gases," Phil. Trans., t. clvii. p. 49 (1866) [Sc. Papers, t. ii.

p. 26].

"Ueber Reibung tropfbarer Fliissigkeiten," Wien. Sitzungsber., t. xl. p. 607 (1860) [Ges. Abh.

t. i. p. 172].
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For mercury Koch* found

/xo= -01697, and /z10
= -01633,

respectively.

In gases, the value of
/x is found to be sensibly independent of the pressure, within very

wide limits, but to increase somewhat with rise of temperature. Maxwell found as the

result of his experiments on vibrating diskst,

p = -0001878 (1 + -00366 6) ;

this makes p proportional to the absolute temperature as measured by the air-thermometer.

Subsequent observers have found a somewhat smaller value for the first factor, and a less

rapid increase with temperature. We may take perhaps as a fairly approximate value

iio
= -000170

for the temperature C. For air at atmospheric pressure, assuming p= -00129 this gives

v,= 132.

rhe value of v varies inversely as the pressure %.

315. We have still to inquire into the dynamical conditions to be

satisfied at the boundaries.

At a free surface, or at the surface of contact of two dissimilar fluids,

he three components of stress across the surface must be continuous . The

esulting conditions can easily be written down with the help of Art. 313 (4).

A more difficult question arises as to the state of things at the surface

>f contact of a fluid with a solid. It appears probable that in all ordinary
ases there is no motion, relative to the solid, of the fluid immediately in

ontact with it. The contrary supposition would imply an infinitely greater
esistance to the sliding of one portion of the fluid past another than to the

liding of the fluid over a solid
[|.

If however we wish, temporarily, to leave this point open, the most natural supposition
o make is that the slipping is resisted by a tangential force proportional to the relative

elocity. If we consider the motion of a small film of fluid, of thickness infinitely small

ompared with its lateral dimensions, in contact with the solid, it is evident that the

angential traction on its inner surface must ultimately balance the force exerted on its

uter surface by the solid. The former force may be calculated from Art. 313 (4); the

itter is in a direction opposite to the relative velocity, and proportional to it. The
onstant (, say) which expresses the ratio of the tangential force to the relative velocity

lay be called the '

coefficient of sliding friction.'

* Wied. Ann., t. xiv. (1881).

t "On the Viscosity or Internal Friction of Air and other Gases," Phil. Trans., t. clvi. p. 249

L866) [Sc. Papers, t. ii. p. 1]. See also Tonilinson, "The Coefficient of Viscosity of Air,"

ML Trans., t. clxxvii. p. 767 (1886) [Stokes' Math, and Phys. Papers, t. v. p. 180].

J A very full account of the results obtained by various experimenters is given in Winkel-

iann :

s Handbuch der Phi/sik. t. i., Art. 'Eeibung.'
This statement requires an obvious modification when capillarity is taken into account.

f. Art. 332.

Stokes, I.e. post p. 539.
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316. The equations of motion of a viscous fluid are obtained by con-

sidering, as in Art. 6, a rectangular element BxByBz having its centre at P.

Taking, for instance, the resolution parallel to x, the difference of the normal

tractions on the two y^-faces gives (dpxxjdx)Bx .ByBz. The tangential
tractions on the two 2#-faces contribute (dpyx/dy)By .BzBx, and the two

xy-faces give in like manner (dpzx/dz) Bz . So; By. Hence, with our usual

notation,

p Di- pX +
-dx

+
-di

+
-dz->)

n
Dv _ ny ,

dP* ,

dPvu .tyzit { mp Di
~

p * + Tx +
"a7

+ 17- (1)

Dw dpxz dpyz dpzz

p Di
= pZ+ -^ +

~d^
+
Jz'->

Substituting the values ofpxx , pxy ,... from Art. 314 (5), (6), we find

Du dp . dO -.. %

p nt =pX -dx
+ ^dx + ^Vu '

\

JDv v dp . d$
'

p jrt= pY -dy
+
^dy

+ flV%
t

(2)

Dw dp . d0 _.

i n du dv dw
where e

-te
+% +m <3>

and V2 has its usual meaning.

When the fluid is incompressible, these reduce to

Du y dp
p m =px -dx

+ p* u
>

p Wt= pYJi +^v
> (4)

Dw dp _

These dynamical equations were first obtained by Navier* and Poissonf
on various considerations as to the mutual action of the ultimate molecules

of fluids. The method above adopted, which is free from all hypothesis

* " MSmoire sur les Lois du Mouvement des Fluides," Mem. de VAcad. des Sciences, t. vi.

p. 389 (1822).

t " M^moire sur les Equations generates de l'Equilibre et du Mouvement des Corps solides

elastiques et des Fluides," Journ. de VEcoh Polytechn., t. xiii. p. 1 (1829).
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of this kind, appears to be due in principle to de Saint-Venant * and

Stokes f.

The equations (4) admit of an interesting interpretation. The first of them, for

example, may be written

7^=A-~^+w-u (5)
JJt p ox

The first two terms on the right hand express the rate of variation of u in consequence of

the external forces and of the instantaneous distribution of pressure, and have the same

forms as in the case of a frictionless liquid. The remaining term rVaw, due to viscosity,

gives an additional variation following the same law as that of temperature in Thermal

Conduction, or of density in the theory of Diffusion. This variation is in fact proportional

to the (positive or negative) excess of the mean value of u through a small sphere of given
radius surrounding the point (x, y, z) over its value at that point J. In connection with

this analogy it is interesting to note that the value of v for water is of the same order of

magnitude as that (-01249) found by Dr Everett for the thermometric conductivity of the

Greenwich graveL

When the forces X, F, Z have a potential Q, the equations (4) may be written

|-2^+2f=-|W )
(6)

*?-2ur, + 2v= -*- + **,
)

*here x =2+i?2+ Q, (7)

q denoting the resultant velocity, and , 17, C the components of the angular velocity of the

fluid. If we eliminate x by cross-differentiation, we find

.(8)
Dn .cv cv & .

The first three terms on the right hand of each of these equations express, as in Art. 146,

the rates at which
, 17, C vary for a given particle, when the vortex-lines move with the

fluid, and the strengths of the vortices remain constant. The additional variation of these

quantities, due to viscosity, is given by the last terms, and follows the law of conduction of

heat. It is evident from this analogy that vortex-motion cannot originate in the interior

of a viscous liquid, but must be diffused inwards from the boundary.

*
Compte* Rendu*, t. xvii. p. 1240 (1843).

t " On the Theories of the Internal Friction of Fluids in Motion, Ac.," Camb. Trans., t. viii

1 845) [Math, and Phys. Paper*, t i. p. 75].

% Maxwell,
' On the Mathematical Classification of Physical Quantities," Proc. Lond. Math.

Soc., t. hi. p. 224 (1871) [Sc. Paper*, t. ii. p. 257]; Electricity and Magnetism, Art. 26.
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317. To compute the rate of dissipation of energy, due to viscosity,

we consider first the portion of fluid which at time t occupies a rectangular

element SxByBz having its centre at (x, y, z). Calculating the rates at

which work is being done by the tractions on the pairs of opposite faces, we

obtain

I dx (P
xxU + PzyV + P*zW^ +

dv^yxU + PyyV +PyzW^ +
dz

(PzxU +pzyV+P*zW^
\

^x^ ^z'

(1)

The terms

(2)

express, by Art. 316 (1), the rate at which the tractions on the faces are

doing work on the element as a whole, in increasing its kinetic energy and

in compensating the work done against the extraneous forces X, Y, Z. The

remaining terms express the rate at which work is being done in changing
the volume and shape of the element. They may be written

(pzxa +pyyb +p2Zc + 2pyzf+ 2pzxg + 2pxyh) SxByBz, (3)

where a, b, c,f, g, h have the same meanings as in Arts. 30, 314. Substituting
from Art. 314 (2), (3), we get

- p (a + b + c) SxSySz

+ {- |/i (a + b + c)
2 + 2fx (a

2 + b- + c
2 + 2/

2 + 2g
2 + 2h2

)} BxBySz. . . .(4)

It will be sufficient for the present to consider the case where there is

no variation of density, so that

a + b + c = (5)

The expression (4) then reduces to

2p(a* + b2 + c'
2

+2f* + 2g
2 +2h ;i

)Sx8y$z, (6)

which accordingly represents the rate at which mechanical energy is dis-
'

appearing. On the principles established by Joule, the energy thus i

apparently lost takes the form of heat, developed in the element.

!

If we integrate over the whole volume of the liquid, we find, for the

total rate of dissipation,

2F = jjfdxdydz, (7)
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If we subtract from this the expression

which is zero on the present hypothesis, we obtain

i/cic dv\* . (hi 8k?\ 2
("bv du\s

i

/8p 9w 8v 8w 8w 3w ci0 9w 3m 8v 8m dv\ . .

\fy ?z 82 8y 8s 8x dz dz dzcy cydz)'
***

If we integrate this over a region such that u, v, w vanish at every point of the

boundary, as in the case of a liquid filling a closed vessel, on the hypothesis of no slipping,

the terms due to the second line vanish (after a partial integration), and we obtain

2F=tfj*dxdydz= 4rfjj(Z
i
+ti*+(*)dxdydz. (I0)t

In the general case, when no limitation is made as to the boundary conditions, the

formula (9) leads to

r r r r r? i r r r I

^ w
'
n '

2F=4rlJI(?+t
r
'+C*)dxdydz-rjj^LdS+*rjjj\v,

v, w dS, (11)

where, in the former of the two surface-integrals, 8n denotes an element of the normal, and,
in the latter, I, m, n are the direction-cosines of the normal, drawn inwards in each case

from the surface-element US.

When the motion considered is irrotational, this formula reduces to

2F
=-^IJ

d

-iT^ <
12>

simply. In the particular case of a spherical boundary this expression follows independ-

ently from Art. 44 (5).

It appears from (8) that F cannot vanish unless

a = b= c=0, and f=g=h = 0,

at every point of the fluid. It follows, on reference to Art. 30, that the only condition

under which a liquid can be in motion without dissipation of energy by viscosity is that

there must be nowhere any extension or contraction of linear elements ; in other words,

the motion must consist of a translation and a rotation of the mass as a whole, as in the

case of a rigid body.

*
Stokes, "On the Effect of the Internal Friction of Fluids on the Motion of Pendulums,"

Camb. Tram., t. ix. p. [8] (1851) [Sc. Papers, t. iii. p. 1].

t Bobyleff,
"
Einige Betrachtungen iiber die Gleichungen der Hydrodynamik," Math. Ann.,

t. vi. p. 72 (1873); Forsyth,
" On the Motion of a Viscous Incompressible Fluid," Mess, of Math.,

t. ix. (1880).



542 Viscosity [chap, xi

Problems of Steady Motion.

318. The first application which we shall consider is to the steady
motion of liquid, under pressure, between two fixed parallel planes.

Let the origin be taken half-way between the planes, and the axis of z

perpendicular to them. We assume, in the first instance, that u is a

function of z only, and that v, w = 0. Since the traction parallel to x on any

plane perpendicular to y is equal to p,dujdz, the difference of the tractions

on the two faces of a stratum of unit area and thickness Sz gives a resultant

fid
2

itfdz* . 8z. This must be balanced by the normal pressures, which give a

resultant dp/dx per unit volume of the stratum. Hence

d2u dp
*d*

=
dx (1)

Also, since there is no motion parallel to y, dp/dz must vanish. These results

might of course have been obtained immediately from the general equations

of Art. 316.

It follows that the pressure-gradient dp/dx is an absolute constant.

Hence (1) gives

" = ^ + & +2^l < 2>

and determining the constants so as to make u = for z= h, we find

u /h'-^

Hence />HM5
When, as in Prof. Hele Shaw's experiments*, a liquid flows in two dimensions between

close parallel plates, we may write

6% _ dp d'
2v _ dp . .

M cP~~aP M
cP~fy'

k)

provided we neglect the rates of variation of u, v with respect to x, y in comparison with

their rates of vai-iation with respect to z. Also, assuming that w everywhere, we have

dp/dz=Q, i.e. p is a function of .v and y only. The conditions of no slipping at the
planesj

z=h are satisfied if we write

u=
i(l-^)uf, *-i(l'-|)V.

(6)
|

The quantities ',
v' here denote the mean velocities along a line parallel to z, and an

assumed to be functions of x, y only. Substituting in (5) we find

* Eeferred to in the footnote on p. 80.
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Hence
',

v' may be regarded as the components of an irrotational motion of a liquid in

two dimensions, in which the velocity-potential is

*-V* W
The kinematical conditions, when the liquid is forced by pressure past an obstacle

having the form of a lamina of thickness 2h placed between the plates, are accordingly

identical, for the most part, with those relating to the two-dimensional flow of a friction-

lets fluid past a cylinder whose section has the shape of the lamina. The statement is

made with a slight qualification, since the equations (5) must cease to hold at distance

from the obstacle comparable with h, owing to the fact that the viscous liquid cannot glide

pa-st the surface of the obstacle, as a perfect fluid would do. But the configurations of the

stream-lines in the two problems can be made as nearly the same as we choose by taking
the plates sufficiently close together*.

319. The investigation of the steady flow of a liquid through a straight

pipe of uniform circular section is equally simple, and physically more

important.

If we take the axis of z coincident with the axis of the tube, and assume

that the velocity is everywhere parallel to z, and a function of the distance

(r) from this axis, the tangential stress across a plane perpendicular to r will

be /xdw/dr. Hence, considering a cylindrical shell of fluid, whose bounding
radii are r and r + Br, and whose length is I, the difference of the tangential

tractions on the two curved surfaces gives a retarding force

-H'*Tr
M

)
!ir-

On account of the steady character of the motion, this must be balanced by
the normal pressures on the ends of the shelL Since dw/dz= 0, the difference

of these normal pressures is equal to

where plt p2 are the values of p (the mean pressure) at the two ends. Hence

('$"*?'
Again, if we resolve along the radius the forces actiug on a rectangular

element, we find dp/dr = 0, so that the mean pressure is uniform over each

section of the pipe.

The equation (1) might have been obtained from Art. 316 (4) by direct

transformation of coordinates, putting

*
Stokes,

" Mathematical Proof of the Identity of the Stream-Lines obtained by means of a
Viscous Film with those of a Perfect Fluid moving in Two Dimensions," Brit. Ass. Rep., 1898,.

P. 143 [Math, and Phys. Papers, t. v. p. 278].
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The integral of (1) is

w = -^~pr
2 + A \ogr + B (2)

Since the velocity must be finite at the axis, we must have -4=0; and if we
determine B on the hypothesis that there is no slipping at the wall of the

pipe (r = a, say), we obtain

* =^< ! -'J) W
This gives, for the flux across any section,

\\v.^rdr^.Pi=i (4)
.'0 OfM I

V

It has been assumed, for shortness, that the flow takes place under

pressure only. If we have an extraneous force X acting parallel to the

length of the pipe, the flux will be

t^'+ "x
)

(5)

In practice, X is the component of gravity in the direction of the length.

The formula (4) contains exactly the laws found experimentally by I

Poiseuille* in his researches on the flow of water through capillary tubes
;

viz. that the time of efflux of a given volume of water is directly as the

length of the tube, inversely as the difference of pressure at the two ends,

and inversely as the fourth power of the diameter.

This last result is of great importance as furnishing a conclusive proof that there is in

these experiments no appreciable slipping of the fluid in contact with the wall. If we were

to assume a slipping-coefficient /3, as explained in Art. 315, the surface-condition would be

dw

r W= - X
fc>

()

if X=/x//3. This determines B, in (2), so that

w=fcp(a2-r
2+ 2Xa) (7)

If A/a be small, this gives sensibly the same law of velocity as in a tube of radius a+ \, on

the hypothesis of no slipping. The corresponding value of the flux is

<* fr-J f1+4 X\
(8)

8/i I
'

\ aj

If X were more than a very minute fraction of a in the narrowest tubes employed by
j

Poiseuille [a
= 0015 cm:] a deviation from the law of the fourth power of the diameter,

* " Eecherches experimentales sur le mouvement des liquides dans les tubes de tres petitS'

diametres," Comptes Rendus, tt. xi., xii. (1840-1), Mem. des Sav. Strangers, t. ix. (184G).
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which was found to hold very exactly, would become apparent. This is sufficient to

exclude the possibility of values of X such as *235 cm., which were inferred by Helmholtz

and Piotrowski from their experiments on the torsional oscillations of a metal globe filled

with water, described in the paper already cited*.

The assumption of no slipping being thus justified, the comparison of the formula (4)

with experiment gives a very direct means of determining the value of the coefficient
ft

for

various fluids.

It is easily found from (3) and (4) that the rate of shear close to the wall

of the tube is equal to 4>tv 'a, where w is the mean velocity over the cross-

section. As a numerical example, we may take a case given by Poiseuille,

where a mean velocity of 126'6 c.s. was obtained in a tube of '01134 cm.

diameter. This makes 4sw /a = 89300, if the unit of time be the second.

320. Some theoretical results for sections other than circular may be

briefly noticed.

1. The solution for a channel of annular section is readily deduced from equation (2)

of the preceding Art., with A retained. Thus if the boundary-conditions be that w=0 for

r=a and r= b, we find

"W"-+<} w

gi^aflux /Vwr-.^. {*-'-
(^}

2. It has been pointed out by Greenhillt that the analytical conditions of the present

problem are similar to those which determine the motion of a frictionless liquid in a

rotating prismatic vessel of the same form of section (Art. 72). If the axis of z be parallel

: to the length of the pipe, and if we assume that w is a function of x, y only, then in the
1 case of steady motion the equations reduce to

^=0 ^ =
dx

'

cy
'

, dp

where vr =o1
/dx

2+ct
/dy

i
. Hence, denoting by P the constant pressure-gradient ( dp/dz),

we have

V,*tf=--, (4)

with the condition that ir=0 at the boundary. If we write
i/r

<o (iP+y
2
) for w, and 2o>

for P
ft, we reproduce the conditions of the Art. referred to. This proves the analogy in

question.

In the case of an elliptic section of semi-axes a, b, we assume

I

~- a
(?-i-$ (5)

For a fuller discussion of this point see Whetham, "On the alleged Slipping at the

| Boundary of a Liquid in Motion," Phil. Trans., A. t. clxxxi. p. 559 (1890).
" On the Flow of a Viscous Liquid in a Pipe or Channel," Proc. Lond. Math. Soc., t. xiii.

P- (1881).

l. 35

(3)
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P a2 b2
which will satisfy (4) provided ^= o" 1 m- (6)

The discharge per second is therefore

// lxdy=h^ (7)
*

This bears to the discharge through a circular pipe of the same sectional area the ratio

2ab/(a
2+ b2). For small values of the eccentricity (e) this fraction differs from unity by a

quantity of the order e4 . Hence considerable variations may exist in the shape of the

section without seriously affecting the discharge, provided the sectional area be unaltered.

Even when a : 6= 8 : 7, the discharge is diminished by less than one per cent.

321. We consider next some simple cases of steady rotatory motion.

The first is that of two-dimensional rotation about the axis of z, the

angular velocity being a function of the distance (r) from this axis.'

Writing
u = ay, v=(ox, (1)

we find that the rates of extension along and perpendicular to the radius
|

vector are zero, whilst the rate of shear in the plane xy is rdco/dr. Hence
j

the moment, about the axis, of the tangential forces on a cylindrical surface!

of radius r, is per unit length of the axis, = firdco/dr . 27rr.r. On account
o:,

the steady motion, the fluid included between two coaxial cylinders is neithei;

gaining nor losing angular momentum, so that the above expression musij

be independent of r. This gives

"=i+B (2) !

/-

If the fluid extend to infinity, while the internal boundary is that of a solid

cylinder of radius a, whose angular velocity is a>
,
we have

a2
/Q\W = G,

<V ( '
j

The frictional couple on the cylinder is therefore

4nr/jia-a) (4)
j

If the fluid were bounded externally by a fixed coaxial cylindrical surfacj

of radius b we should find

a2 b2 -r2
. \

w=V'6^- ft,
' (o)

\

which gives a frictional couple

- 47r
^-^Lr^-

wo
(6)1|

*
This, with corresponding results for some other forms of section, appears to have bet

obtained by Boussinesq in 1868; see Hicks, Brit. Ass. Rep., 1882, p. 63.

t This problem was first treated, not quite accurately, by Newton, Principia, Lib. n., Prop. 5

The above results were given substantially by Stokes, 11. cc. ante pp. 539, 541.
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322. A similar solution, restricted however to the case of infinitely small

motions, can be obtained for the steady motion of a fluid surrounding a solid

sphere which is made to rotate uniformly about a diameter. Taking the

centre as origin, and the axis of rotation as axis of x, we assume

u = (oy, v = a)X, w = 0, (1)

where to is a function of the radius vector r, only. If we put

P=f(ordr, (2)

these equations may be written

M =
"^'

v== ^' w =
> (3)

and it appears on substitution in Art. 316 (4) that, provided we neglect the

terms of the second order in the velocities, the equations are satisfied by

p = const., V*P = const (4)

The latter equation may be written

d-P 2dP d<o _ . ...
-t H r- = const., or r -,- + 3a> = const., (o)
dr2 r dr dr

whence <u = + 2? (6)

If the fluid extend to infinity and is at rest there, whilst <aQ is the

angular velocity of the rotating sphere (r
=

a), we have

a
<w =

/
5o (7)

If the external boundary be a fixed concentric sphere of radius b the

solution is

^ = ^-^^s-o (8)

The retarding couple on the sphere may be calculated directly by means

of the formulae of Art. 314, or, perhaps more simply, by means of the Dissi-

pation Function of Art. 317. We find without difficulty that the rate of

dissipation of energy is

M
///(^

+
0(^)

,

4Jy&-hr/.''(y)
,

*-fti^<. O)

If N denote the couple which must be applied to the sphere to maintain

the rotation, this expression must be equivalent to Nto ,
whence

n3h3

JV = 8^ij ,., .....(10)
tr a*

or, in the case corresponding to (7), where b = x ,

N=87rfia
3
a> (11)*

*
Kirchh'jff, Mechanik, c. xxvi.

352
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The neglect of the terms of the second order in this problem involves a

more serious limitation of its practical value than might be expected. It is

not difficult to ascertain that the assumption virtually made is that the ratio

co a?/v is small. If we put i> = '018 (water), and a =10, we find that the

equatorial velocity co a must be small compared with "0018 (as.)*.

When the terms of the second order are sensible, no steady motion of the above kind is

possible. The sphere then acts like a centrifugal fan, the motion at a distance from the

sphere consisting of a flow outwards from the equator and inwards towards the poles,

supei-posed on a motion of rotation t.

It appears from Art. 316 that the equations of motion may be written

d

t̂
-2vC+2wr)

=X- d

^ + vV2
u, ..., ..., (12)

where X=-+k2
(
13)

P

Hence a steady motion which satisfies the conditions of any given problem, when the

terms of the second order are neglected, will hold when these are retained, provided we

introduce the constraining forces

X=2(wr,-vC\ r2(f-*& Z=2(vt-ur,) (14)+

The only change is that the pressure p is diminished by \pq
2

. These forces are everywhere

perpendicular to the stream-lines and to the vortex-lines, and their intensity is given by I

the product 2qa> sin x, where a is the angular velocity of the fluid element, and x is the
|

angle between the direction of the velocity q and the axis of the rotation <o.

In the problem investigated in this Art. it is evident & priori that the constraining I

forces

X=-o>%, Y=-c^y, Z=0 (15)

would make the solution rigorous. It may easily be verified that these expressions differ I

from (14) by terms of the forms -dQ/dx, -dQ/dy, -da/dz, respectively, which will only 9

modify the pressure.

323. The motion of a viscous incompressible fluid, when the effects ofa

inertia are insensible, csi be treated in a very general manner, in terms ofi

spherical harmonic functions.

It will be convenient, in the first place, to investigate the general solution 1

of the following system of equations :

VV = 0, VV = 0, W = 0, (1)
|

dx -ty
+ te- (2)

The functions u', v', w' may be expanded in series of solid harmonics, anc, I

*
Cf. Lord Bayleigh,

" On the Flow of Viscous Liquids, especially in two Dimensions/' ^Wjl
Mag. (4), t. xxxvi. p. 354 (1893) [Sc. Papers, t. iv. j, 7$],

t Stokes, I.e. ante p. 539. + Lord Eayleigh, I.e.
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it is plain that the terms of algebraical degree n in these expansions, say

n'> Vn, wn', must separately satisfy (2). The equations (1) may therefore

be put in the forms

d_
fdvn _ 3m'\ _ d_ /du^_ _ dwn

'
\ ,

dy\dx dy J dz\cz ex

d_ f
dwn

'

_dv^\_d_ (OVj!_ _ du^\ I

dz\dy dz J dx\dx dy )
'

[

{S)

d_
fdu-n _ dWn\ _ d

fdWn
dvn

'

\

dx \dz dx J dy\ dy Iz

Hence

dwr[ _dv^_ = dxn du^ _<W _ dxn OU^ _dUj[ _d\n ,4x

dy cz ex
'

dz dx dy
'

dx dy
~

dz
' "*** *

where % n is some function of x, y, z; and it further appears from these

relations that V2

^n = 0, so that ^n is a solid harmonic of degree n.

From (4) we also obtain

dyn dyn dun
'

dun
'

dun
'

, d . , .

with two similar equations. Now it follows from (1) and (2) that

V*(xun' + yvn
' + zwn') = 0, (6)

so that we may write

*< + y*n + ZWn =
<f>n+i, (7)

where
<f>n+l is a solid harmonic of degree n + 1. Hence (5) may be written

(n+1)<^ +
,^_,*g (8)

The factor n+1 may be dropped without loss of generality ;
and we obtain

as the solution of the proposed system of equations :

dy
**( + '%-'%)'>

()

vhere the harmonics
<f>n , %n are arbitrary*.

Cf. Borchardt,
"
Untrsuchungen iiber die Elasticitat fester Korper unter Beriicksichtigung

er Warme," Berl. Monatsber., Jan. 9, 1873 [Gesammelte Werke, Berlin, 1888, p. 245]. The in-

stigation in the text is from a paper
" On the Oscillations of a Viscous Spheroid," Proc. Lond.

lath. Soc, t. xiii. p. 51 (1881).
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324. If we neglect the inertia terms, the equations of motion of a

viscous liquid reduce, in the absence of extraneous forces, to the forms

fiV*u =
dp
dx'

/iV
2
y =

with

dp

dw

fiV
2w = dp

dz'

du
dv_

dx dy dz

By differentiation we obtain

V 2

^ = 0,

so that p can be expanded in a series of solid harmonics, thus

p = 2pn

The terms of the solution which involve harmonics of different algebraical

degrees will be independent. To obtain the terms in pn we assume

(1)

(2)

.(3)

.(4)

^ A d ? . #-2*1+3 . _Vn
rs >

u = Ar2

dx far"1* 1 '

d pn
.(5)v = Ar2 -^+ Bi*n+3

dz dz r2""1
" 1 '

where r2 = x- + y
2 + z2

. The terms multiplied by B are solid harmonics of

degree n + 1, by Arts. 81, 83. Now

\ dx J dx \ dx

Hence the equations (1) are satisfied, provided

A= 1

Also, substituting in (2), we find

2nA -(n + l)(2n + 2) B = 0,

n

(6)

whence B =

Hence the general solution of the system (1) and (2) is

(7)

r- dpn
+

m ,2n+3

U = S ^

ft \2(2n+l) dx (n + l)(2n+l)(2n + S)dxr
2n+1

\

dpn
,,2*1+3

V ~
fi \2(2n+l)dy (n+ I) {2a + l)(2n + S)dyr

2n+1
\

,.(8)

w = *2 dpn +
nr*

+ w',
fi \2(2n+l) dz (n + l)(2n + l)(2n + S)dzr

2n+1
\

where u', v', w have the forms given in (9) of the preceding Art.*

* This investigation is derived, with some modifications, from various sources. Cf. ThomsoE

and Tait, Natural Philosophy, Art. 736; Borchardt, I.e.
; Oberbeck, "Ueber stationare Fliissig

|

keitsbewegungen mit Beriicksichtigung der inneren Reibung," Crelle, t. lxxxi. p. 62 (1876).
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.(9)

324-325] Solution in Spherical Harmonics

The formulae (8) make

Also, if we denote by , rj, f the components of the angular velocity of

the fluid (Art. 30), we find

-^^(fc-'t)***^-
{

<10>

fi (n + l)\ dy
a dxj v '

dz

These make 2 (xg+ yrj + z%) = 2n(n + l)xn (11)

325. The results of Arts. 323, 324 can be applied to the solution of a

number of problems where the boundary conditions have relation to spherical
surfaces. The most interesting cases fall under one or other of two classes

;

viz. we either have

xu + yv + zw = 0, (1)

everywhere, and therefore pn = 0, <f>n
= 0, or

x + yv + zS=o, (2)

and therefore %n = 0.

1. Let us investigate the steady motion of a liquid past a fixed spherical obstacle. If

we take the origin at the centre, and the axis of x parallel to the flow, the boundary con-

ditions are that =0, v=0, v=0 for r=a (the radius), and u= U, v=0, ?r=0 for r=oo . It

is obvious that the vortex-lines will be circles about the axis of x, so that the relation (2)

will be fulfilled. Again, the equation (9) of Art. 324, taken in conjunction with the con-

dition to be satisfied at infinity, shews that as regards the functions pn and
<f>n we are

limited to surface-harmonics of the first order, and therefore to the cases n=l, n= 2.

Also, we must evidently have pi=0. Assuming, then,

we find

A 35

A ZB
>c= XZ t-XZ.

2/xr
3 r

.(3)

(4)

The condition of no slippiug at the surface r=a gives

2/xa a3

or A= -i?Ua, B=-$Ua\

""*

.(5)
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Hence

Viscosity

*"--*7?(

These make xu +yv+ z>w= U( !-%-+$ \ x
,

[CHAP. XI

.(6)

1= 0, , =
6ra

73-'

(7)

.(8)

The components of stress across the surface of a sphere of radius r are, by Art. 313,

x 1/ z

Prx= -Pxx + -Pzy + -Pxz,\

_x y z

Pry ~Pvx+ Pyy ~t~Pv*' .(9)

x y z

Pr = zP*x+ zPz + -P*

If we substitute the values ofpxx , pxy , pX2 , ..., from Art. 314, we find

'Wvx+yPyV + ^PVi
= - ^P + ^ U r̂

-l\v
+fi^(xii+yv+zw),\

(10)

xj>zx +yp*v + zPtz=
- zp+ f ( rfr

- w+ n^xu+yv+zw)^
In the present case we have

P=Po+P-2=Po-%' .(11)

We thus obtain, for the component tractions on the surface r= a,

Prx=- aPo
+r-, y

Pr,= --P0- .(12)

.(13)

Pry
_
^^0'

If 8S denote an element of the surface, we find

jjPrxdS=6VfiUa t \\prydS=0, \\przdS=Q.

The resultant force on the sphere is therefore parallel to x, and equal to Qir^a U.

The character of the motion may be most concisely expressed by means of the stream-

function of Art. 94. If we put x= r cos 6, the flux (Zir-ty) through a circle with Ox as axis,

whose radius subtends an angle 6 at 0, is given by

v/,= -^(l-f^+^)rW0, (14)

as is evident at once from (7).

If we impress on everything a velocity U in the direction of x, we get the case of a

sphere moving steadily through a viscous fluid which is at rest at infinity. The stream-

function is then

+=lUar (l-J^)sin
2

(15)*

This problem was first solved by Stokes, in terms of the stream-function, I.e. ante p. 541.
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The following diagram shews the stream-lines \//-=const., in this case, for a series of

equidistant values of ^. The contrast with the case of a frictionless liquid, delineated on

p. 121, is remarkable, but it must be remembered that the fundamental assumptions are

very different. In the former case inertia was predominant, and viscosity neglected ;
in

the present problem these circumstances are reversed.

If X be the extraneous force acting on the sphere, this must balance the resistance,

whence

X=nfxaU. (16)

It is to be noticed that the formula (15) makes the momentum and the energy of the fluid

both infinite*. The .steady motion here investigated could therefore only be fully estab-

lished by a constant force X acting on the sphere through an infinite distance.

The whole of this investigation is based on the assumption that the inertia-terms

udu/'dx, ... in the fundamental equations (4) of Art. 316 may be neglected in comparison
with i/y'

2
, .... It easily follows from (6) above that Ua must be small compared with v.

This condition can always be realized by making U or a sufficiently small, but in the case

of mobile fluids like water this restricts us to velocities or dimensions which are, from a

practical point of view, exceedingly minute. Thus even for a sphere of a millimetre radius

*
Lord Rayleigh, Phil. Mag. (5), t. xxi. p. 374 (footnote) (1886) [Sc. Papers, t. ii. p. 480].
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moving through water
(i/
= -

018), the velocity must be considerably less than '18 cm.

per sec*

We may employ the formula (16) to find the ' terminal velocity
'

of a sphere falling

vertically in a fluid t. The force X is then the excess of the gravity of the sphere over

its buoyancy, viz.

X=tin{Pl -p)a?g, (17)

where p denotes the density of the fluid, and p Y the mean density of the sphere. This gives

*-**-*** (18)

This will only apply, as already stated, provided Uajv is small. For a particle of sand

descending in water, we may put (roughly)

pi
=

2p, r-OIS, = 981,

whence it appears that a must be small compared with "0114 cm. Subject to this condition,
the terminal velocity is U= 12000a2

.

For a globule of water falling through the air, we have

p,
= l, p= -00129, ^= -00017.

This gives a terminal velocity U= 1280000a2
, subject to the condition that a is small com-

pared with -006 cm.

2. The problem of a rotating sphere in an infinite mass of liquid is solved by assuming

u- z
dJLzl_ vh^ v- xh^_ z

dJ(^l w- y
dJL=?_Jx=2 nqs* *

dy
y

dz
'

V~X
dz

Z
dx '

W~y dx
X

dy
' (19)

where
X-2=^, (20)

the axis of z being that of rotation. At the surface r=awe must have

u= -
a>y, v= cox, w=0,

if a be the angular velocity of the sphere. This gives A=a>a3
;

cf. Art. 322.

326. The solutions of the corresponding problems for an ellipsoid can

be obtained in terms of the gravitation-potential of the solid, regarded as

homogeneous and of unit density.

The equation of the surface being

rpL riii, &

3+&+3T 1
' W

the gravitation-potential is given, at external points, by Dirichlet's formula %

nabc I
(

7 a \
^ h2j-\^ ,.2,-v Ma' \

Z
)a2+ X b* + \ c2+ X ) A '

* Lord Kayleigh, I.e. ante p. 548. For an experimental inquiry into the law of resistance

and the terminal velocity, when the above condition is violated, see Allen, "The Motion of a
|

Sphere in a Viscous Fluid," Phil. Mag. (5), t. 1. pp. 323, 519 (1900).

t Stokes, I.e. ante p. 541.

X Crelle, t. xxxii. p. 80 (1846) [Werke, t. ii. p. 11]; see also Kirchhoff, Mechanik, c. xviii.,
I

and Thomson and Tait, Natural Philosophy (2nd ed.), Art. 494 m.
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where A={(
f
+*)(6*+*)(c+X)}*, , (3)

and the lower limit is the positive root of

a? y
2 22

^+k + +\ + d*+\
= l

<4>

This makes ^ = 2rrax,
g-
=

2rr/3y,

C^= 2iryz, (5)

where a=abc l 9 , fr=abc \ -^ , y= I . . (6)
J A (a

2+ X)A'
H

y A (fe2+ X)A'
7

]x (c*+X)A
W

We will also write x=a^ I ; (7)

it has been shewn in Art. 1 13 that this satisfies v2
x=0.

If the fluid be streaming past the ellipsoid, regarded as fixed, with the general velocity
U in the direction of x, we assume*

.-^S+Jj(#-*)+ F, '~aL+Zs% --iS+ArS|. ...(8)cr2
V * A

/ , cy
'

&rc2 fe
v '

These satisfy the equation of continuity, in virtue of the relations

V 2Q=0, V2
x=0;

and they evidently make u= U, v=0, w0 at infinity. Again, they make

v*.ug. *-, -&, (9)

so that the equations (1) of Art. 324 are satisfied by

p= 2Bfji

C

^+ const .,..(10)

It remains to shew by a proper choice of A, B we can make u, v, w=0 at the surface (1).

The conditions v=0, w=0 require

2^t+sSL=- s-+*-a p

With the help of this relation, the condition w = reduces to

2^00-^0+^=0, (12)

where the suffix denotes that the lower limit in the integrals (6) and (7) is to be replaced

by zero. Hence

U_
Xo+aoct

2

At a great distance r from the origin we have

L

irA = -Ba2
,

B=*
, t (13)

inabc 2abc

r A r

whence it appears, on comparison with the equations (4) of the preceding Art., that the

disturbance is the same as would be produced by a sphere of radius R, determined by

abc

Xo+ao
a\CR=2abcB, or R= %

~~ (14)

Oberbeck, I.e. ante p. 550.
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The resistance experienced by the ellipsoid will therefore be

QtthRU. (15)

In the case of a circular disk moving broadside-on, we have a= 0, b= c; whence

ao= 2, xo
=

7rac, so that

Sir

We must not delay longer over problems which, for reasons already

given, have hardly any real application except to fluids of extremely great

viscosity. We can therefore only advert to the mathematically very elegant

investigations which have been given of the steady rotation of an ellipsoid*,

and of the flow through a channel bounded by a hyperboloid of revolution

of one sheet f.

Some examples of a different kind, relating to two-dimensional steady

motions in a circular cylinder, due to sources and sinks in various positions

on the boundary, have been discussed by Lord RayleighJ.

327. We may however notice some general theorems, relating to the

dissipation of energy in the steady motion of a liquid under constant extra-

neous forces, which have been given by von Helmholtz and Korteweg. They
involve the assumption that the inertia-terms in the dynamical equations

may all be neglected.

1. Considering the motion in a region bounded by any closed surface 2, let u, v, w be

the component velocities in the steady motion, and u+ u', v+o', w+ w' the values of the

same components in any other motion subject only to the condition that u', v', w' vanish at

all points of the boundary 2. By Art. 317 (3), the dissipation in the altered motion is

equal to

\\\{{Pxx+p'xx)(a + a') + ... + ... + 2{pyz +p'yz)(j+f') + ... + ...}dxdydz, (1)

where the accent attached to any symbol indicates the value which the function in ques-

tion assumes when u, v, w are replaced by u', v', w'. Now the formulae (2), (3) of Art. 314

shew that, in the case of an incompressible fluid,

Pxx
'

+Pw h
'

+P*iC
'+ 2PvJ' + 2Pzx9' + 2P*vh

'

=p'xxa+p'yyb+p'Z2c+2p'yzf+2p'2Xff+2p'xu h, (2)

each side being a symmetric function of a, b, c, f, g, h and a', b', c', /', g', h'. Hence, and

by Art. 317, the expression (1) reduces to

^dxdydz+2^{pxxa'+pyyb'+pzzc'+2pyJ'+2p2Xg'+ 2pxyh')dxdydz+ \\\^'dxdydz.

The second integral may be written

///(
du' . du' . du .

\

Pxxfa+pXV fy+Px^
+ - +

-)dxdydz;

*
Edwardes, Quart. Journ. Math., t. xxvi. pp. 70, 157 (1892).

f Sampson, I.e. ante p. 118.

X
" On the Flow of Viscous Liquids, especially in Two Dimensions," Phil. Mag. (5), t. xxxvi.

p. 354 (1893) [Sc. Papers, t. iv. p. 78].



326-327] General Theorems on Dissipation 557

and by a partial integration, remembering that >/', v', w' vanish at the boundary, this

becomes

"/(]{"' (& +
l*

+Sw) + "'+
"] ****** or /JfrC+w+Jb!)A4r*i

by Art. 316. If the extraneous forces X, Y, Z have a single-valued potential, this vanishes,
in virtue of the equation of continuity, by Art. 42 (4).

Under these conditions the dissipation in the altered motion is equal to

)\\*dxdydz+\\\*'dxdydz, (3)

- F+F'). That is, it exceeds the dissipation in the steady motion by the essentially

positive quantity 2F' which represents the dissipation in the motion u\ i/, vf.

In other words, provided the inertia-terms may be neglected, the steady motion
of a liquid under constant forces having a single-valued potential is characterized by
the property that the dissipation in any region is less than in any other motion consistent

with the same values of a, v, w at the boundary of this region.

It follows that, with prescribed velocities over the boundary, there is only one typa of

steady motion in the region *.

refer to any motion whatever in the given region, we have

2F=jjfadxdydz=2jjj(pxxd+pb+ptj+2pr,f+2pag+2pxrh)dxdydz, (4)

since the formula (2) holds when dots take the place of accents.

The treatment of this integral is the same as before. If we suppose that u, ,
w

vanish over the bounding surface 2, we find

= -pjJKu
t+ifi+wi

)dj;dydz+pjjj(Xu+rv+Zw)dxdydz (5)

The latter integral vanishes when the extraneous forces have a single-valued potential,
so that

F= -
p J/K^+^+ir2

) dxdydz (6)

This is essentially negative, so that F continually diminishes, the process ceasing only
when u = 0, t"=0, w=Q, that is, when the motion has become steady.

Hence when the velocities over the boundary 2 are maintained constant, the motion in

the interior will tend to become steady. The type of steady motion ultimately attained is

therefore stable, as well as unique t.

It has been shewn by Lord Rayleigh \ that the above theorem can be extended so as to

apply to any dynamical system devoid of potential energy, in which the kinetic energy {T)
and the dissipation-function (F) can be expressed as quadratic functions of the generalized

velocities, with constant coefficients.

If the extraneous forces have not a single-valued potential, or if instead of given
velocities we have given tractions over the boundary, the theorems require a slight modi-

*
Helmholtz,

" Zur Theorie der stationaren Strome in reibenden Fltissigkeiten," Verh. d.

naturhist.-med. Vereins, Oct. 30, 1868 [Wiss. Abh., t. i. p. 223].

t Korteweg,
" On a General Theorem of the Stability of the Motion of a Viscous Fluid,"

Phil. Mag. (5), t. xvi. p. 112 (1883).

X l-c. ante p. 548.
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fication. The excess of the dissipation over double the rate at which work is being done

by the extraneous forces (including the tractions on the boundary) tends to a unique

minimum, which is only attained when the motion is steady*.

Periodic Motion.

328. We next examine the influence of viscosity in various problems
of small oscillations.

We begin with the case of 'laminar' motion, as this will enable us to

illustrate some points of great importance, without elaborate mathematics.

If we assume that v = 0, w =
0, whilst u is a function of y only, the equations

(4) of Art. 316 require that p = const., and

du d*u ,_ .

dt
= V

df
(1)

This has the same form as the equation of linear motion of heat. In

the case of simple-harmonic motion, assuming a time-factor ei{(rt+e)
,
we have

dhi ia

ap
=
7 M (2)

the solution of which is

u = Ae {1+i)M + Be-^to, (3)

provided
=
(j (4)

Let us first suppose that the fluid lies on the positive side of the plane

xz, and that the motion is due to a prescribed oscillation

u = aei(,rt+e)
(5)

of a rigid surface coincident with this plane. If the fluid extend to infinity

in the direction of ^/-positive, the first term in (3) is excluded, and, deter-

mining B by the boundary-condition (5), we have

u = ae-a+i)fiy+i(<rt+e)

} (6 )

or, taking the real part,

u = ae-to cos {at
-

fiy + e), (7)

corresponding to a prescribed motion

u = a cos (at + e) (8)

at the boundary f.

The formula (7) represents a wave of transversal vibrations propagated
inwards from the boundary with the velocity a)ft, but with rapidly diminishing

amplitude, the falling off within a wave-length being in the ratio e~2n
,
or 3^.

* Cf. Helmholtz, I.e.

t Stokes, he. ante p. 541.
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The linear magnitude

is of great importance in all problems of oscillatory motion which do not

involve changes of density, as indicating the extent to which the effects of

viscosity penetrate into the fluid. In the case of air (v
= *13) its value is

128P* centimetres, if P be the period of oscillation in seconds. For water

the corresponding value is 47P*. We shall have further illustrations,

presently, of the fact that the influence of viscosity extends only to a

short distance from the surface of a body performing small oscillations with

sufficient frequency.

The retarding force on the rigid plane is, per unit area,

/* =- = nfia {cos (at + e) sin (at + e)}

= pv^a^a cos (at + e + {ir) (9)

The force has its maxima at intervals of one-eighth of a period before the

oscillating plane passes through its mean position.

On the forced oscillation above investigated we may superpose any of the normal modes

of free motion of which the system is capable. If we assume that

u oc A cos my+B sin my, (10)

and substitute in (1), we find *-= -vm2
u, (11)

whence we obtain the solution

w=2(J cos my+B sin 7ny)e~
rmH

(12)

The admissible values of m, and the ratios A : B are as a rule determined by the

boundary conditions. The arbitrary constants which remain are then to be found in

terms of the initial conditions, by Fourier's methods.

In the case of a fluid extending from y= x to y= +ac ,
all real values of m are

admissible. The solution, in terms of the initial conditions, can in this case be immedi-

ately written down by Fourier's Theorem (Art. 236 (4)). Thus

u=- f~ dm (~ f(\)cosm(y-\)e-
ymit

d\, (13)
*" J J ->

if u=f(y) (14)

be the arbitrary initial distribution of velocity.

The integration with respect to m can be effected by the known formula

f"
- a

coB/Srdr=i(^Y-'
,,/4a

(15)

We thus find . r e- {y-x)ilivt
f(\)d\ (16)

As a particular case, let us suppose that f(i/)=U, where the upper or lower sign is

to be taken according as y is positive or negative. This will represent the case of an
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initial surface of discontinuity coincident with the plane y = 0. After the first instant, the

velocity at this surface will be zero on both sides. We find

u r
{e
-to-w*t_ e

-<+w*t
}dK (17)

)* J2 (wvt)

By a change of variables, and easy reductions, this can be brought to the form

M=2
-*

Erf
^b> < 18)*

IT' Av2 V
where in Glaisher's (revised) notation t

Erf x= (
X
e-xl

dx. (19)

The function 2rr
_
*Erf.r was tabulated by EnckeJ. It appears that u will equal \V

when y/2/M= "4769. For water, this gives, in seconds and centimetres,

The corresponding result for air is = 8-3y
2

.

These results indicate how rapidly a surface of discontinuity in a viscous fluid would be

obliterated, if indeed it could ever be formed.

The angular velocity ( ) of the fluid is given by

2C= - = _-JL e-*W (
20)

fy (*)*

This represents the diffusion of the angular velocity, which is initially confined to a vortex-

sheet coincident with the plane g= 0, into the fluid on either side.

329. When the fluid does not extend to infinity, but is bounded by a

fixed rigid plane y = h, then, in determining the motion due to a forced

oscillation of the plane y = 0, both terms of (3) are required, and the boundary

conditions give

A+B = a, Ae<l+i) *h + Beri1+i*h = 0, (21)

, sinh (1 + i) /3 (h y) ..,, , ,aa.

whence u = a .\ ,. ,
.) a ,

*'
.et(<rt+t) , (22)

sinh(l+t)/iw

as is easily verified. This gives for the retarding force per unit area on the

oscillating plane

-/* ~ = p (1 +i) /3a coth (1 +i)/3h.e^+<) (23)

The real part of this expression may be reduced to the form

sinh 2/3h cos (at + e + |-7r) 4- sin 2/3h sin (at + e + \tt) ._

VWto
cosh 2/3A- cos 2/3/*

' "(Z*>

* Lord Rayleigh,
" On the Stability, or Instability, of certain Fluid Motions," Proc. Lond.

Math. Soc, t. xi. p. 57 (1880) [Sc. Papers, t. i. p. 474].

t See Phil. Mag. (4), t. xlii. p. 294 (1871), and Encyc. Britann., 9th ed., Art. " Tables."

% Berl. Ast. Jahrbuch, 1834. The table has been reprinted by De Morgan, Encyc. Metrop.,

Art. "
Probabilities," and Lord Kelvin, Math, and Phys. Papers, t. iii. p. 434.
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When j3h is moderately large this is equivalent to (9) above
;
whilst for

small values of fih it reduces to

fia

as might have been foreseen.

j-
. cos (at + e), (25)

This example contains the theory of the modification introduced by Maxwell* into

Coulomb's method + of investigating the viscosity of fluids by the rotational oscillation of

a circular disk in its own (horizontal) plane. The addition of fixed parallel disks at a

short distance above and below greatly increases the effect of viscosity.

The free modes of motion are expressed by (12), with the conditions that u= for y=
and y= h. This gives A=0 and mh= sir, where * is integral. The corresponding moduli

of decay are then given by T=ljvm2
.

330. Asa further example, let us take the case of a horizontal force

X =/cos (at + e), (1)

acting uniformly on an infinite mass of water of uniform depth h.

The equation (1) of Art. 328 is now replaced by

du d*u ...

-V+x- <2>

If the origin be taken in the bottom, the boundary-conditions are u =
for y = 0, and du/dy = for y = h, this latter condition expressing the absence

mgential force on the free surface. Replacing (1) by

X =fei<rt^ f (3)

U
a\

L

cosh(l+i)/3h I
6

' W
if /9

=
(<7-/2i/)*,

as before.

When fth is large, the expression in
{ }

reduces practically to its first

term for all points of the fluid whose height above the bottom exceeds a

moderate multiple of /S
_1

. Hence, taking the real part,

f
u = - sin (at + e) (5)a

This shews that che bulk of the fluid, with the exception of a stratum at

the bottom, oscillates exactly like a free particle, the effect of viscosity

being insensible. For points near the bottom the formula (4) becomes

u = -
i

f(l- e-<1+iM)eii*t+t)
, (6)a

*
I.e. ante p. 537. t Mem. de Vlnst., t. iii. (1800).

l. 36
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or, on rejecting the imaginary part,

[chap. XI

(*)

f f
u = J- sin {at + e)

- J- e~to sin (<rt-/3y + e)
(7 O"

This might have been obtained directly, as the solution of (2) satisfying the

conditions that u = for y = 0, and

f .

u = -. sin(o- + e)a

for large values of /3y.

The curves A, B, G, D, E, F in the accompanying figure represent

successive forms assumed by the same line of particles at intervals o

one-tenth of a period. To complete the series it would be necessary to adc

the images of E, D, C, B with respect to the vertical through 0. The whol<

system of curves may be regarded as successive aspects of a properly shapec

spiral revolving uniformly about a vertical axis through 0. The vertical rang*

of the diagram is one wave-length (27r//3) of the laminar disturbance.

As a numerical illustration we note that if v = "0178, and 27r/o-
= 12 hourl

we find /3
-1 = 15*6 centimetres. This indicates how utterly insensible mu

be the direct action of viscosity on oceanic tides. There can be littj

doubt that such dissipation of energy by 'tidal friction' as at present tak<;
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place is to be attributed mainly to the eddying motion produced by the

.eration of tidal currents in shallow water*. Cf. Art. 344.

When fth is small the real part of (4) gives

f
u=

^y(2h-y).cos(<rt
+ e), ... (8)

elocitv being in the same phase with the force, and varying inversely

as v.

331. To find the effect of viscosity on free waves on deep water we may
make use of the Dissipation-Function of Art. 317, in any of the forms there

:. the simplest for our purpose being

i.,f

>--,//' in
dS' W

by Art. 309, the dissipation may, under a certain restriction, be

calculated as if the motion were irrotational.

To put the calculation in a form which shall apply at once to the case

where capillar}' as well as gravitational forces are taken into account, we
recall that, corresponding to the surface-elevation

i)
= a sin k (x ct), (2)

we have
<f>
= ace** cos k (x ct), (3)

Bee this makes brj ct = d<f>/dy for y = 0. Hence

tf
= u'+v*= &<?/** (4 i

and the dissipation is, by (1),

^IW, (5)

per unit area of the surface. The kinetic energy,

Ipjfo^M'
(6>

has a mean value ^pktfa- per unit area. The total energy, being double of

thi-.

^pA-c-'a
2

(7)

Hence, equating the rate of decay of the energy to the dissipation,

we have

^ftpe*)=-2fiW, (8)

* The feeble influence of viscosity on 'regular' motions of water on a large scale Las been

farther emphasized by Hough, "On the Influence of Viscosity on Waves and Currents,"

Proc. Lond. Math. Soc., t. xxviii. p. 264 (1896). We may also refer to Zdppritz' discussion of

drift-currents (" Hydrodynamische Probleme in Beziehung zur Theorie der ifeeresstromungen,"

Amu, t. iii. p. 58*2(1878).

362
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or =-2vk2
a, (9)

whence a = a e-2vkit
(10)

The modulus of decay, t, is therefore given by t = 1/2vJc
2
, or, in terms

of the wave-length (X),

X2

T =8^ ("

In the case of water, this gives

t = *712\2
seconds,

if X be expressed in centimetres. It follows that capillary waves are ver}

rapidly extinguished by viscosity ;
whilst for a wave-length of one metre

would be about 2 hours.

The above method rests on the assumption that ar is moderately largt

where a (= kc) denotes the '

speed.' In mobile fluids such as water thi

condition is fulfilled for all but excessively minute wave-lengths.

The method fails for another reason when the depth is less than (say

half the wave-length. Owing to the practically infinite resistance to slippin:

at the bottom, the dissipation can no longer be calculated as if the motio

were irrotational.

332. The direct calculation of the effect of viscosity on water waves ca

be conducted as follows.

If the axis of y be drawn vertically upwards, and if we assume that th

motion is confined to the two dimensions x, y, we have

du 1 dp _. dv 1 dp _
dt pdx dt pdy

,
du dv _ .-

with + =0 (2)
dx dy

These are satisfied by

dx dy
'

dy dx
'

and l
p
J
dt- giJ > (4)

provided V
1

2

cj)
= 0,

-^-
= i/V^, (5)

d 2 d2

where ^=
3-+^,

*
Stokes, I.e. ante p. 541. (Through an oversight in the calculation the value obtained fo.

was too small by one-half.)
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To determine the ' normal modes '

which are periodic in respect of x

with a prescribed wave-length 2ir\k, we assume a time-factor e*' and a

space-factor eikx. The solutions of (5) are then

< = {AeP> + Be-**) eikx+at
, -^

= (Ce
m + D*-*) e'**+ f

, (6)

with m*=J?+- (7)
v

'

The boundary-conditions will supply equations which are sufficient to deter-

mine the nature of the various modes, and the corresponding values of a.

In the case of infinite depth one of these conditions takes the form that

the motion must be finite for y = x . Excluding for the present the cases

where m is pure-imaginary, this requires that i? = 0,D = 0, provided m denote

that root of (7) which has its real part positive. Hence

tt=- (ikAe* + mCe*) e**+, v = - (kAe* - ikCemy) eikx+at . . . .(8)

If rj denote the elevation at the free surface, we must have drj/dt
= v. If

the origin of y be taken in the undisturbed level, this gives

v = --(A-iG)e**+* (9)

If I\ denote the surface-tension, the stress-conditions at the surface are

evidently

Pyy= T^> **, (10)

to the first order, since the inclination of the surface to the horizontal is

assumed to be infinitely small.

v . o <** (dv t du\ , xNOW Pyy=-p + ^2-y
, IW-A^+^J, (H)

whence, by (4) and (6) we find, at the surface,

-
{(a

* + fefta + gk + T'k*) A - i (gk + T'k* + 2pkma) C\, . . .(12)
a

^ = -{2ivL*A+(a+2vk?)C}, (13)
r

where T' = TJp, the common factor eikx+at being understood.

Substituting in (10), and eliminating the ratio A : C, we obtain

(a+ lvktY+gk+T'&-4 tfrm (14)

If we eliminate ra by means of (7), we get a biquadratic in a, but only those

roots are admissible which give a positive value to the real part of the left-

hand member of (14), and so make the real part of m positive.
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If we write, for shortness,

gk + T't? = o-
2
,

= 0, a + 2vk2 = xa; (15)

the biquadratic in question takes the form

(tf
2 +l)2 = 16<93 0-<9) (1G)

It is not difficult to shew that this has always two roots (both complex)
which violate the restriction just stated, and two admissible roots which may
be real or complex according to the magnitude of the ratio 6. If A, be the

wave-length, and c{=<rjk) the wave-velocity in the absence of friction, we

have

-T-5 <17>

Now, for water, if cm denote the minimum wave-velocity of Art. 264,

we find 2irv/cm = "0048 cm., so that except for very minute wave-lengths 6

is a small number. Neglecting the square of 6, we have x=i, and

a = -2vk*ia (18)

The condition pxy
= shews that

-2ivJ^_ __2vfc
A~ a + 2vk*~

+
a ' (iJ)

which is, under the same circumstances, very small. Hence the motion is

approximately irrotational, with a velocity-potential

< = A e-2VkH+ky+i{kx<xt)
(20)

If we put a = + kAJa, the equation (9) of the free surface becomes,!

approximately, on taking the real part,

v = ae--vm sin (lex at) (21)

The wave-velocity is cr/k, or (g(k + T'k)*, as in Art. 264, and the law of

decay is that investigated independently in the last Art.*

To examine more closely the character of the motion, as affected by viscosity, we may
calculate the angular velocity (w) at any point of the fluid. This is given by

dv du a .

2w = ^ = Vi
2V= - V

ox cy
T

v

? (femy+ikx+at (22)
v

Now, from (7) and (18), we have, approximately,

m=(li)l3, where fi=(Y
\i

* Similar results were obtained by Basset, Hydrodynamics, t. ii., Arts. 520522 (1888), who,

also treats the case of finite depth. Reference may also be made to Hough, I.e. ante p. 563,

where the case of a spherical sheet of water is considered.
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With the same notation as before, we find

<*=+<rkae-*,kH+fiy s,in{kx{<Tt+fy)} (23)

This diminishes rapidly from the surface downwards, in accordance with the thermal

analogy pointed out in Art. 316. Owing to the oscillatory character of the motion, the

sign of the vorticity which is being diffused inwards from the surface is continually

being reversed, so that beyond a stratum of thickness comparable with S*-//9 the effect is

insensible, just as the fluctuations of temperature at the earth's surface cease to have

any sensible influence at a depth of a few yards.

In the case of a very viscous fluid, such as treacle or pitch, 6 may be

large even when the wave-length is considerable. The admissible roots of

(16) are then both real. One of them is evidently nearly equal to 20, and

continuing the approximation we find

whence, neglecting capillarity, we have, by (15),

4 <24>

The remaining real root is 1*090, nearly, which gives

a = -'91vfc (25)

The former root is the more important. It represents a slow creeping
of the fluid towards a state of equilibrium with a horizontal surface. The

rate of recovery depends on the relation between the gravity of the fluid

(which is proportional to gp) and the viscosity (/z), the influence of inertia

being insensible. It appears from (7) and (15) that m = k, nearly, so that

the motion is approximately irrotational *.

The type of motion corresponding to (25), on the other hand, depends,
as to its persistence, on the relation between the inertia (p) and the viscosity

(ji), the effect of gravity being unimportant. It dies out very rapidly.

The above investigation gives the most important of the normal modes, of the prescribed

wave-length, of which the system is capable. We know a priori that there must be an

infinity of others. These correspond to pure-imaginary values of >n, and are of a less

"

ent character. If in place of (6) we assume

cp
=A kl>.eikj:+at

, y\,=(Ccmm'y+Dsmm'y)e
lkj:+a

\ (26)

with m"~=-F-, (27)
V

and carry out the investigation as before, we find

{a?+ 2 vVa+gk+ T'k3
) A-iigi+TP) C- 2ivkm'aD=Q, )

2ik-A + (k
2 -m'i

)C=0.)

*
Cf. Tait, "Note on Ripples in a Viscous Liquid,

7 '

Proc. E. S. Edin. t. xvii. p. 110 (1890)

fee. Papers, Cambridge, 1898-1900, t. ii. p. 313].
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Any real value of ml is admissible, these equations determining the ratios A : C : D
j

and the corresponding value of a is

a- -(#+ m'2
) , (29)

In any one of these modes the plane xy is divided horizontally and vertically into a series

of quasi-rectangular compartments, within each of which the fluid circulates, gradually

coming to rest as the original momentum is spent against viscosity.

By a proper synthesis of the various normal modes it must be possible to represent the

decay of any arbitrary initial disturbance.

333. The equations (12) and (13) of the preceding Art. enable us to

examine a related question of some interest, viz. the generation and main-

tenance of waves against viscosity, by suitable forces applied to the surface.

If the external forces p'yy,p'Xy be given multiples of eikx+at
,
where k and <x

are prescribed, the equations in question determine A and G, and thence, by

(9), the value of rj. Thus we find

p\M _ (a
2 + Ivtea + a3) A - i {a

2 + 2vkma.) G ,

gpt,

m
gk{A-iC)

' (i)

gPV gk' A-iC ' W
where a- has been written for gk + T'k3 as before.

Let us first examine the effect of a purely tangential force. Assuming

p'yy as 0, we find

Pw^ia ( + 2z/fc
2
)
2 + o-

a - Wfcm
gprj gk' a + Zvfc 2vkm

If, as we shall suppose for reasons already indicated, vk2

/a and vkmjo- are

small, the elevation will be greatest when a = + ia, nearly. To find the force

necessary to maintain a train of waves of given amplitude, travelling in the

direction of ^-positive, we put a = ia. This makes

fpi}
'= ~

9
~> r Vxy^^kan], (4)

approximately. Hence the force acts forwards on the crests of the waves,

and backwards at the troughs, changing sign at the nodes. A force having

the same distribution, but less intensity in proportion to the height of the

waves than that given by (4), would only retard, without preventing, the

decay of the waves by viscosity. A force having the opposite sign would

accelerate this decay.

The case of purely normal force can be investigated in a similar manner.

If p Xj/
= 0, we have

p'yy _ (a + 2vk?f + a2 - 4<v
2k3m

(
.,

9PV
~

gk
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The reader may easily satisfy himself that when there is no viscosity this

coincides with the result of Art. 240. If we put a = ia, we obtain, with

the same approximations as before,

Pyy = -iH-k<ril (6)
Hence the wave-system

ij
= asin (kx at) (7)

will be maintained without increase or decrease by the pressure-distribution

p = const. + 4fikaa cos (kx at), (8)

applied to the surface. It appears that the pressure is greatest on the rear

and least on the front slopes of the waves*.

If we call to mind the phases of the particles, revolving in their circular

orbits, at different parts of a wave-profile, it is evident that the forces above

investigated, whether normal or tangential, are on the whole urging the

surface-particles in the directions in which they are already moving.

Owing to the irregular, eddying, character of a wind blowing over a

roughened surface, it is not easy to give more than a general explanation
of the manner in which it generates and maintains waves. It is not difficult

to see, however, that the action of the wind will tend to produce surface

forces of the kinds above investigated. When the air is moving in the

direction in which the wave-form is travelling, but with a greater velocity,

there will evidently be an excess of pressure on the rear-slopes, as well as a

tangential drag on the exposed crests. The aggregate effect of these forces

will be a surface drift, and the residual tractions, whether normal or tangential,

will have on the whole the distribution above postulated. Hence the

tendency will be to increase the amplitude of the waves to such a point that

the dissipation balances the work done by the surface forces. In like

manner waves travelling faster than the wind, or against the wind, will have

their amplitude continually reduced f.

It has been shewn (Art. 264) that, under the joint influence of gravity
and capillarity, there is a minimum wave-velocity of 232 cm. per sec., or

"45 miles per hour. Hence a wind of smaller velocity than this is incapable

of reinforcing waves accidentally started, which, if of short wave-length,
must be rapidly extinguished by viscosity*. This is in accordance with

the observations of Scott Russell, from whose paper we make the following

extract :

" Let [a spectator] begin his observations in a perfect calm, when the surface of the

*
This agrees with the result given at the end of Art. 240, where, however, the dissipative

forces were of a different kind.

t Cf. Airy, "Tides and Waves," Arts. 265272; Stokes, Camb. Trans., t. ix. p. [62] [Math,

and Phys. Papers, t. iii. p. 74] ;
Lord Rayleigh, I.e. ante p. 54a

t Sir W. Thomson, I.e. ante p. 437 [Baltimore Lectures, p. 594].

I.e. ante p. 44-5.
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water is smooth and reflects like a mirror the images of surrounding objects. This appear-
ance will not be affected by even a slight motion of the air, and a velocity of less than half

a mile an hour (8i in. per sec.) does not sensibly disturb the smoothness of the reflecting

surface. A gentle zephyr flitting along the surface from point to point, may be observed

to destroy the perfection of the mirror for a moment, and on departing, the surface remains

polished as before
;

if the air have a velocity of about a mile an hour, the surface of the

water becomes less capable of distinct reflexion, and on observing it in such a condition, it

is to be noticed that the diminution of this reflecting power is owing to the presence of

those minute corrugations of the superficial film which form waves of the third order

[capillary waves].... This first stage of disturbance has this distinguishing circumstance,
that the phenomena on the surface cease almost simultaneously with the intermission of

the disturbing cause so that a spot which is sheltered from the direct action of the wind

remains smooth, the waves of the third order being incapable of travelling spontaneously
to any considerable distance, except when under the continued action of the original dis-

turbing force. This condition is the indication of present force, not of that which is past.

While it remains it gives that deep blackness to the water which the sailor is accustomed

to regard as the index of the presence of wind, and often as the forerunner of more.

" The second condition of wave motion is to be observed when the velocity of the wind

acting on the smooth water has increased to two miles an hoiu*. Small waves then begin

to rise uniformly over the whole surface of the water
;
these are waves of the second order,

and cover the water with considerable regularity. Capillary waves disappear from the

ridges of these waves, but are to be found sheltered in the hollows between them, and on

the anterior slopes of these waves. The regularity of the distribution of these secondary
waves over the surface is remarkable ; they begin with about an inch of amplitude, and a

couple of inches long ; they enlarge as the velocity or duration of the wave increases
; by

and by the coterminal waves unite
;
the ridges increase, and if the wind increase the waves

become cusped, and are regular waves of the second order [gravity waves]*. They continue

enlarging their dimensions, and the depth to which they produce the agitation increasing

simultaneously with their magnitude, the surface becomes extensively covered with waves

of nearly uniform magnitude."

It will be seen that our theoretical investigations give considerable

insight into the incipient stages of wave-formation.

334. The calming effect of oil on water waves appears to be due to the

variations of tension caused hy the extensions and contractions of the

contaminated surface f. The surface-tension of pure water is less than the

sum of the tensions of the surfaces of separation of oil and air, and oil and

water, respectively, so that a drop of oil thrown on water is gradually drawn

out into a thin film. When the film is sufficiently thin, say not more than

two millionths of a millimetre in thickness, it is found that the tension is no

longer constant but is increased when the thickness is reduced by stretching,

and conversely. It is evident at once from the figure on p. 347 that in

* Scott Kussell's wave of the first order is the '

solitary wave ' discussed ante Art. 248.

t Reynolds,
" On the Effect of Oil in destroying Waves on the Surface of Water," Brit. Ass.

Rep., 1880 [Sc. Papers, t. i. p. 409]; Aitken,
" On the Effect of Oil on a Stormy Sea," Proc. Hoy.

Soc. Edin., t. xii. p. 56 (1883).
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oscillatory waves the tendency is for any portion of the surface to be

alternately contracted and extended, according as it is above or below the

mean level. The consequent variations in tension produce an alternating

tangential drag on the water, with a consequent increase in the rate of

dissipation of energy.

The preceding formulae enable us to submit this explanation, to a certain extent, to the

te.st of calculation.

It is evident beforehand that the effect of the quasi-elasticity of the oil-film will be

greater the shorter the wave-length ; and that if the wave-length be sufficiently small the

surface will be practically inextensible, and the horizontal velocity at the surface will be

annulled. We will assume this condition to be fulfilled.

The internal motion of the water will be given by the formulae (8) of Art. 332, but the

determination of the constants is different. The condition to be satisfied by the normal
stress is the same as in the Art. cited, and gives

(a
2+ 2vk2a + <T

2
) A-i((r2

+2A-ma) C=0, (1)

where (r2 =gl-+T'L
:i

, (2)

T' referring now to the total tension of the oil-film. In place of the condition of vanishing

tangential stress, we have the condition

u= for y=0, (3)

which gives ikA +mC=0 (4)

Eliminating the ratio A : C, we find

m (a
2+a2

)-i(r
i
=Q, (5)

or, on eliminating m by means of the equation

*-**+-, (6)

(JJ
+ *2

)
(a + <r*)

3-V= 0. (7)

This equation has an extraneous root a= 0, and other roots are inadmissible as' giving,

when substituted in (5), negative values to the real part of m. If vl-2f<r is small, the

relevant roots are, to a first approximation, a= i<r, and to a second

hi i

a=r-
-5-J3- , (8)
- \ -

where the correction to the '

speed
'

o- of the oscillations is neglected. The modulus of

decay is therefore

*-35 <9>

vkcr-

The ratio of this to the modulus obtained on the hypothesis of constant surface-tension

(viz. 1 -Ivk-) is 4v/2 (vF/o-)*, which is by hypothesis small*.

335. Problems of periodic motion in three dimensions, having special

relation to spherical surfaces, may be treated in a general manner, as follows.

* This investigation is abbreviated from that given in the preceding edition.
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It is convenient to give, first, the general solution of the system of

equations :

(V
2 + A2

)w' = 0, (V
2 + A2

) */ = 0, (V
2 + A2

)w' = 0, (1)

du' dv' dw'
+ a

~ + IT =ox oy 02
(2)

in terms of spherical harmonics. This is an extension of the problem
considered in Art. 323. We will consider only, in the first instance, cases

where u, v', w' are finite at the origin.

The solutions fall naturally into two distinct classes. If r denote the

radius vector, the typical solution of the First Class is

u'=^n
(hr)(y^-z^ Xn^

(3)

where Xn is a solid harmonic of positive degree n, and -^n is defined as in

Art. 287 (7). It is easily verified, on reference to Arts. 286, 287, that the

above expressions do in fact satisfy (1) and (2).

It is to be noticed that this solution makes

xu' + yv' + zvf = (4)

The typical solution of the Second Class is

u =
( + 1) fa (*)?- nirn+1 (hr) &**"+! ,

v' =(n + 1)^ (hr)
d-& - nfa (hr)

i*-**^-**-
,

w' = (n + l) fa (hr)^ - n^n+1 (hr) A
2r2*+3A 4

.(5)

,271+1 ' J

where
cf)n is a solid harmonic of positive degree n. The coefficients of

tyn-i(hr) and
yfrn+1 (hr) in these expressions are solid harmonics of degrees

Ti 1 and n + 1 respectively, so that the equations (1) are satisfied. To

verify that (2) is also satisfied we need the formulae of reduction

*'(0--wUtt)i (C)

W^'(P + (8+'l)t.j(ft-^^(0, (7)

which are repeated from Art. 287.

The formulae (5) make

xu' + yv' + zw' = n(n + 1) (In + 1) ^r (hr) <j>n , (8)

the reduction being effected by means of (6) and (7).
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If we write

m> ^ dtf
K

dy dz
' V

dz dx
'

9w_9' du'

~\ ~dx~~dy~'

573

.(9)

we find, in the solutions of the First Class,

^' = "
2nVi {

(n + 1} +~ |^ **" <*'>^l^}
2??

' = "
2nVl {

(W + 1}*~ (Ar)
If

~ ***" <* r) AS,"+,

4^}^-<10)

These make 2 (*f + yy + z) = - n (n + 1) -^n (hr) Xn (11)

In the solutions of the Second Class, we have

If = - (2 + 1) h-+n (hr) (y lz
- t *\

<f>n ,
\

2V
' = -(2n + l)h"-irn (hr) [z^-x^j <f>n>

2? = -
(2n + l)hhjrH (hr) (x|

-
y1) <f>n ,

.(12)

and therefore .(13)

In the derivation of these results use has been made of (6), and of the

formulae

XXn ~2n + l[dx
?

dx /'-""0-1

yXn 2n + lUy

~*" 2n + l{ dz

a

9 x

x_
] .(14)

a2 r^y '

which are easily seen to hold, whatever the form of %n .

To shew that the aggregate of the solutions of the types (3) and (5),

with all integral values of n, and all possible forms of the harmonics <, y,
constitutes the complete solution of the proposed system of equations (1) and

(2), we remark in the first place that the equations in question imply

(V
2 + h2

) (xu + yv + zw) = 0, (15)

and (V- + h-)(x' + yv
'

+ z?) = (16)

It is evident from Arts. 286, 287, that the complete solution of these, subject

to the condition of finiteness at the origin, is contained in the equations (8)

and (11), above, if these be generalized by prefixing the sign 2 of summation

with respect to n. Now when xu' + yv' + zw' and x%' + y-q' + z% are given

throughout any space, the values of u, v, w are rendered by (2) completely
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determinate. For if there were two sets of values, say u, v', w' and u", v", w" ,

both satisfying the prescribed conditions, then, writing

Ul = u u", v1
= v' v", wl

= w' w",

we should have xu x + yi\ + zwx
= 0, \

vZi + VVi + *i = 0,
.(17)

dx dy dz

If tij, v1} w1 be regarded as the component velocities of a liquid, the first of

these shews that the lines of flow are closed curves lying on a system of con-

centric spherical surfaces. Hence the 'circulation' (Art. 31) in any such line

has a finite value. On the other hand, the second equation shews, by Art. 32,

that the circulation in any circuit drawn on one of the above spherical surfaces

is zero. These conclusions are irreconcileable unless ult v1} wx are all zero.

Hence, in the present problem, whenever the functions
<pn and Xn have

been determined by (8) and (11), the values of u', v', w' follow uniquely as in

(3) and (5).

When the region contemplated is bounded internally by a spherical

surface, the condition of finiteness when r = is no longer imposed, and we

have an additional system of solutions in which the functions
yjrn (0 are

replaced by ^n (), in accordance with Art. 287*.

336. The equations of small motion of an incompressible fluid are, in

the absence of extraneous forces,

du ldp _, dv ld _- dw I dp _. ...

dt pdx dt poy ot poz
v '

Wlth
S+sy

+ a- (2)

*
Advantage is here taken of an improvement introduced by Love,

" The Free and Forced

Vibrations of an Elastic Spherical Shell containing a given Mass of Liquid," Proc. Lond. Math.

Soc, t. xix. p. 170 (1888).

The foregoing investigation is taken, with slight changes of notation, from the following

papers: "On the Oscillations of a Viscous Spheroid," Proc. Lond. Math. Soc, t. xiii. p. 51 (1881);

"On the Vibrations of an Elastic Sphere," Proc. Lond. Math. Soc, t. xiii. p. 189 (1882); "On

the Motion of a Viscous Fluid contained in a Spherical Vessel," Proc. Lond. Math. Soc, t. xvi.

p. 27 (1884). The method has since been applied by the author, and by other writers, to a great

variety of physical problems. It has until recently been overlooked that substantially the same

analysis had been given by Clebsch in the paper "Ueber die Eeflexion an einer Kugelflacbe," to

which reference has already been made on pp. 102, 487, of this edition. The fact that Clebsch

failed (confessedly) in the primary object of his investigation, which was to treat a problem of

Physical Optics independently of the assumptions of the 'geometrical' theory, has perhaps

contributed to tbe unjust neglect into which his paper has fallen. The analytical difficulties

which he found insuperable, when the wave-length is small compared with the circumference of

the sphere, are identical with those alluded to on p. 496 ante.
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If we assume that u, v, w all vary as e"*, the equations (1) may be written

(*+*)-!* (*+*),.lft (V + h*-)w =^, ...(3)

where h- = (4)

From (2) and (3) we deduce

V^ =
(5)

Hence a particular solution of (3) and (2) is

= J_^> . = J_ d_P -J_ d
.

h-pdx' h-fidy'

~
hrpdz'

and the general solution is

(6)

= J_dp ,

h-fi dx

1 dp

h-fidy
-+ <"

where u, v', w are determined by the conditions of the preceding Art.

Hence the solutions in spherical harmonics, subject to the condition of

fmiteness at the origin, fall into two classes.

In the First Class we have

p = const.,

u =
yfrn (hr) (y ^
, n ,( d d\

\>
(8)

v+.(ftr)(^-ys)*J
and therefore xu+yv + ztr = (9)

In the Second Class we have

*%)*

P = Pn,

^ + (n + 1) **_, (hr)
d

-p - nfn+1 (hr) ^r*+3
3

<f>n

hr/j, dx

1 dpn

dx dxr*1-"'

-
AV% + (" + X)*-^-ti

- "*- <W** |jfe
>

10

..(10)

and xg + yrj + z% = 0, (11)

where
, rj, denote the component rotations of the fluid at the point

{x, y,z). The symbols , <\>n ,pn stand for solid harmonics of the degrees
indicated.
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The component tractions on the surface of a sphere of radius r are given
as in Art. 325 by

rprx
= - xp + fi [r^

- 1
j
u +

Pfaixu
+ yv + zw), \

rpry =-yp + H'(r2r -l)v
+ n ^-{xu

+ yv + zw), I
(12)

rprz
= -

zp + f* (r^- 1)
w + ft^ (xu + yv + zw). }

In the solutions of the First Class we find without difficulty

i*--+M-$^ ).';
(13)

where Pn = /* {/tri/r,/ (/tr) + (n
-

1) >/rn (hr)} (14)

To obtain the corresponding formulae for the solutions of the Second

Class, we remark first that the terms in pn give

j.1/ d
1 ^

dP
i

n dPn = (
2 <n

~ 1 ) r"'

\
dPn

i

rm+S d Pn
xPn + h2 \r dr

i
J dx

+
h2dx y h, 2n + l) dx

+ 2n+l dx r2 'l+1 '

(15)

The remaining terms involve

(r
I -

l)
u = (n + 1) {Ar^Vx (*r) + (n

-
2) ^n_> (&r))^

- (fcfw (Ar) + nfn+1 (hr)} hh-"^^ , . . . (16)

and

(V (a?it' + yu' + zw')
= n (n + 1) (2w + 1) ~- ^ (Ar) </>n

-
( + 1) jfw ihr)^ + tn+1 (*r) **"* | ,}

(17)

Various reductions have here been effected by means of Art. 335 (6) (7) (14).

Hence, and by symmetry, we obtain

.2n+idx
r n

dxr*n+1
' n

dx
' n

far*

rr) -i ^ + jB r +ili!L + (/^ + i) r2 +iiA I (18)iPry
- ^ w

dy
+ Dnr

dy r2n+1
+<-n

dy
+ vr

dy r
.2n+1 , f
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where

Formulae for Surface Tractions

2(n-l) r2

In + 1
'

Bn=
2n + 1'

Cn = fi (n + 1) [hr^'n_, (hr) + 2 (n
- l)+_, (k*)l

2) - - ^nto* {ArfM+1 (hr)
- ^+i (Ar)).

577

.(19)

337. The general formulae being once established, the application to-

special problems is easy.

1. "We may first investigate the decay of the motion of a viscous fluid contained in a

spherical vessel which is at rest.

The boundary conditions are that

=0, r=0, w=0, (1)

for r a, the radius of the vessel. In the modes of the First Class, represented by
Art. 336 (8), these conditions are satisfied by

+*(fa)= (2)

The roots of this are all real, and the corresponding values of the modulus of decay (r) are

given by
1 a* _ .

(3)a v

The modes ?i= l are of a rotatory character; the equation (2) then takes the form

tanAa= Ao, (4)

the lowest root of which is ha= 4-493. Hence

t=-0495 .

V

In the case of water, we have v= -018 c. 8., and

r=2'75a2
seconds,

if a be expressed in centimetres.

The modes of the Second Class are given by Art. 336 (10). The surface conditions may
be expressed by saying that the following three functions of x, y, z, viz.

/('-'/x
OX

.(5>

must severally vanish when ra. Now these functions, as they stand, are sums of
solid harmonics, and so satisfy the equations

V2U=0, v!v= 0, v 2W=0; (6)

l. 37
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and since they are finite throughout the sphere, and vanish at the boundary, they must

everywhere vanish, by Art. 40. Hence, forming the equation

3u 3v 3w
a^
+^ + ^-' W

we find ^n + i(^) = (8)

Again, since xxL+yv+ zv?= 0, (9)

for r= a, we find

^pn+ (n+ l)(2ji+ l)>MAa)<K= 0, (10)

where use has been made of Art. 335 (6) (7). This determines the ratio pn : $.

In the case n= l, the equation (8) becomes

ZhaUnha=
k,a2

, (11)

the lowest root of which is / = "r764, leading to

a'
r=-0301 -.

v

For the method of combining the various solutions so as to represent the decay of any

arbitrary initial motion we must refer to a paper cited on p. 574.

2. We take next the case of a hollow spherical shell containing liquid, and oscillating

by the torsion of a suspending wire*.

The forced oscillations of the liquid will evidently be of the First Class, with n= l. If

the axis of z coincide with the vertical diameter of the shell, we find, putting \i
= ẑ m

Art. 336 (8),

u^=C^{hr)y, v=-Ctyl {hr)x, w=0 (12)

If o) denote the angular velocity of the shell, the surface-condition gives

6> 1 (Aa)=-o) (13)

It appears that at any instant the particles situate on a spherical surface of radius r

concentric with the boundary are rotating together with an angular velocity

*l {hr) , ,

iTjus" (14)

If we assume that o> = aeHcrt+ '\ (15)

and put h*-= -*-"= (l-i)
2
/3*, (16)

where, as in Art. 328, ^S' ^ 17)

the expression (14) for the angular velocity may be separated into its real and imaginary

parts with the help of the formula

* This was first treated, iu a different manner, by Helmholtz, I.e. ante p. 536.
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If the viscosity be so small that /3a is considerable, then, keeping only the most

important term, we have, for points near the surface,

"KW-^H'lr
. (19J

and therefore, for the angular velocity (14),

a
<*

e -P(a-r) ei{*t-IHr-a)+<l
f (20)

the real part of which is

3"* (a~r)
.*{<r*-^(r-a)+e} (21)

As in the case of laminar motion (Art. 328), this represents a system of waves travelling

inwards from the surface with rapidly diminishing amplitude.

When, on the other hand, the viscosity is very great, /3a is small, and the formula (14)

reduces t<>

(ocos(<rt+(), (22)

nearly, when the imaginary part is rejected. This shews that the fluid now moves almost

bodily with the sphere.

The stress-components at the surface of the sphere are given by Art. 336 (13). In the

the formulae reduce to

Prx=-
X
-p+nCtyi'{.h)y, PrV=-^p-f^Ch^l'(ha)x, Prz^-^P- (23)

If bS denote an element of the surface, these give a couple

\'= -jj(xpri)

-mx)dS=C^ i\/la) \\(^+ >r) d8~i*^
kt

ffiW* ...(24)

I ky (13) and Art. 335 (6).

In the case of small viscosity, where /3a is large, we find, on reference to Art. 287 (8),

! putting /<a= (l-i)/3a, that

2
^-^)=(-Jc)

n

T'
<25 >

^proximately, where f= (1 i) /3a. This leads to

X= -^^(l + O/Saco (26)

)|
If we take account of the time-factor in (15), this is equivalent to

S=-^pa'{fia)-^~- 3^3 (0a) w (27)

The first term has the effect of a slight addition to the inertia of the sphere ;
the second

s a frictional force varying as the velocity.

338. The general formulae of Arts. 335, 336 may be further applied to

discuss the effect of viscosity on the oscillations of a mass of liquid about

the spherical form. The principal result of the investigation can, however,

be obtained more simply by the method of Art. 331.

372
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It was shewn in Art. 259 that when viscosity is neglected, the velocity-potential in

any fundamental mode is of the form

<p
=A n̂ Sn .co*{o-t + e\ (1)

where Sn is a surface harmonic. This gives for twice the kinetic energy included within a

sphere of radius r the expression

(2)p I lep -*r r2dxn=pna I -
)

/ [S^d-ss. A 2 cos2
(at+ t),

if Stzr denote an elementary solid angle, and therefore for the total kinetic energy

T=\pna jjSn
2d& . A 2 cos2

(at+ c) (3)

The potential energy must therefore be

V= \pna\\Sn
2dvs . A 2 sin2

(rf + ), (4)

and the total energy is

T+ V=\pna^Sn
2d-JS.A2

(5)

Again, the dissipation in a sphere of radius r, calculated on the assumption that the

motion is irrotational, is, by Art. 317 (12),

PJf*- +**-**&!j#dm (6)

Now **
jjq*dv=fcj ]<!>-

r*dvr, (7)

each side, when multiplied by p8r being double the kinetic energy of the fluid containec

between two spheres of radii r and r + 8r. Hence, from (2),

Substituting in (6), and putting r=a, we have, for the total dissipation,

2F=2n(n-\)(2n+l)^ I \ Sn2dv. A 2 COS2 (at+ ), (8> I

the mean value of which, per unit time, is

2F=n(n-l)(2n+ l) ffsjdar.A* (9)

If the effect of viscosity be represented by a gradual variation of the coefficient A, w

must have

^L(T+V)=-2F, (10)

whence, substituting from (5) and (9),

~e-i><i.+i)^ 01)1

This shews that A a e"
'*",

where

T= I t l2)*
(n-l)(2 + l) v

'

.

The most remarkable feature of this result is the excessively minute extent to whicj

the oscillations of a globe of moderate dimensions are affected by such a degree of viscosit
;

Proc. Loud. Math. Soc, t. xiii. pp. 61, 65 (1881).
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as is ordinarily met with in nature. For a globe of the size of the earth, and of the same
kinematic viscosity as water, we have, on the c.G.s. system, --=6'37x 108

,
y = -0178, and

the value of t for the gravitational oscillation of longest period (n = 2) is therefore

t= 144 x 10u years.

Even with the value found by Darwin* for the viscosity of pitch near the freezing tempera-
ture, viz. /i= T3 x 108 xg, we find, taking <7

= 980, the value

t=180 hours

for the modulus of decay of the slowest oscillation of a globe of the size of the earth,

having the density of water and the viscosity of pitch. Since this is still large compared
with the period of 1 h. 34 m. found in Art. 259, it appears that such a globe wotdd oscillate

almost like a perfect fluid.

The above investigation does not involve any special assumption as to the nature of

the forces which produce the tendency to the spherical form. The result applies, there-

fore, equally well to the vibrations of a liquid globule under the surface-tension of the

bounding film. The modulus of decay of the slowest oscillation of a globule of water is. in

seconds, t= 11-2 2
,
where the unit of a is the centimetre.

The same method, applied to the case of a spherical bubble, gives

1 - ns\
(j+2)(2*+l)

' K }

where v is the viscosity of the surrounding liquid. If this be water we have, for n = 2,

r=2-8a*

The formula (12) includes of course the case of waves on a plane surface. When n is

very great we find, putting X = 2jt n,

r=r, (14)
OTT-J'

in agreement with Art. 331.

The above results all postulate that 2-t is a considerable multiple of the period. The

ppposite extreme, where the viscosity is so gVeat that the motion is aperiodic, can be

igated by the method of Arts. 323, 324, the effects of inertia being disregarded. In

the case of a highly viscous globe returning to the spherical form under the influence of

gravitation, it appears that

2( + l)+lT= |
i '

N ga

a result first given by Darwin (L c). Cf. Art. 332 (24).

339. Problems of periodic motion of a liquid in the space between two

concentric spheres require for their treatment additional solutions of the

equations of Art. 336, in which p is of the form p--x ,
and the functions

"^nihr) which occur in the complementary functions u, v', w are to be

replaced by Vn (hr).

The question is simplified, when the radius of the second sphere is

* " On the Bodily Tides of Viscous and Semi-Elastic Spheroids,...," Phil. Trans., t. clxx. p. 1

(1878).
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infinite, by the condition that the fluid is at rest at infinity. It was shewn

in Art. 287 that the functions ^()> ^n(0 are both included in the form

(JLV AeX + Ber*

Km) r
( '

In the present applications, we have =
/*r, where h is defined by

Art. 336 (4), and we will suppose, for definiteness, that that value of h

is adopted which makes the real part of ih positive. The condition of zero

motion at infinity then requires that A = 0, and we have to deal only with

the function

MZ)-[-yIy) ~J>
(2)

introduced in Art. 287. It was there pointed out that the formulae of

reduction for fn (K) are exactly the same as for ^H (0 and ^(Di an(^ the

general solution of the equations of small periodic motion of a viscous liquid,

for the space external to a sphere, is therefore given at once by Art. 336 (8),

(10), with p-n-i written for pn ,
andfn (hr) for

yjrn (hr).

1. The rotatory oscillations of a sphere surrounded by an infinite mass of liquid are

included in the solutions of the First Class, with n1. As in Art. 337, 2, we put xi
= ẑ

t

and find

u= Cfx (hr)y, v=-Cfx (hr)x; w=0, (3)

with the condition Cfx {ha) -co, (4)

a being the radius, and a the angular velocity of the sphere, which we suppose given by
the formula

<o = ae v
'. {))

Putting k= (l i)fi, where /3
=

(o-/2j<)*, we find that the particles on a concentric sphere

of radius r are rotating together with the angular velocity

fjJM) _" 3 1+ihr -p(r-g) M<rt-Hr-a)+*\ fR \

fx (ha)
a~

r l+iha
e

' W
where the values of/i (hr),fx (ha) have been substituted from Art. 287 (15). The real part

of (6) is

l+2^i^2 a2 ^""
( ''" a)

[{l+^( + '-) + 2/3
2
ar}cos{^-^(r-a) + e}

-
/3 (/

-
a) sin {at

- (r- a)+ e}], (7)

corresponding to an angular velocity

(a = a cos (at + e) (8)

of the sphere.

The couple on the sphere is found in the same way as in Art. 337 to be

, 7 B . h?a2f2 (ha) . 3 + Siha-h'2 a'2 ,Q>

fi(ka) I + ilia

Putting ha = (\~ i) /3a, and separating the real and imaginary parts we find

(3+ 6/3a+6^a2+ 2/33a3)+2^
2 a2

(l+/3a) . ,

,} r
l+2fta+ 2ft

2 a 2
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This is equivalent to

. 8
. 1+fia dw a ,3+ 6^a + 6

i
32a8 + ^as3 - ~^pa

l+2fia+2fP* *-**** i+Va+2Pa*
m (U)

The interpretation is similar to that of Art. 337 (27)*.

"When the period (2ir/<r) is infinitely long, this reduces to

AT= -87r^a
3
<a, (12)

in agreement with Art. 322 (11).

2. In the case of a ball pendulum oscillating in an infinite mass of fluid, which we

treat as incompressible, we take the origin at the mean position of the centre, and the axis

of x in the direction of the oscillation.

The conditions to be satisfied at the surface are then

n=U, r=0, ?= 0, (13)

for r= a (the radius), where U denotes the velocity of the sphere. It is evident that we

are concerned only with a solution of the Second Class ; and the formulae (10) of Art. 336,

when modified as aforesaid, make

xu+yv+zw= - 1

^p_ n_ 1 +n(n+\)(2n+ l)fm (hr)<f>H. (14)

By comparison with (13), it appears that this must involve surface harmonics of the first

order only. We therefore put n \, and assume

x
p_ 2=A-^, <j=#r (15)

A 3 X ^ * , , s .. , , x , a . 3 A'

Hence -^ & jJ
+2*/ (Ar)-^(Ar) A* s ^

"AW -^W*V|,

-aw -m^^r

.(16)

The conditions (13) are therefore satisfied if

A=pA*a*ft (ha)B, 2f (ka)B=U. (17)

The character of the motion, which is evidently symmetrical about the axis of x, can be

most concisely expressed by means of the stream-function. From (14) or (16) we find

xu+yv+ zw= -M +62?/, (*)*--^- {/,(*) -3/,
(Ar)}

, (18

or, substituting from Art. 287 (15),

+JW+ _{(,_|_^)^+,(^+^J)!.-^} Um. (19)

If we put x=r cos 6, this leads, in terms of the stream-function
y\r

of Art. 94, to

\
+-iw..{(1--^)!^(.^),-.^} ()

* Another solution of this problem is given by Kirchhoff, Mechanih, c. xxvi.
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Writing U=aei{,Tt+e
\ (21)

and therefore h= {\ -i) /3, where j8
=

(o-/2i/)*, we find, on rejecting the imaginary part of (20),

^=-^sin^[{(l
+
^)cos(^

+ e) +^(l +
^)sin(C

+
e)}^

"2^{COS{^~ /3(r_a) + e} +
(
1+
^) sin{^"^ (/

'

_f0 + }
}

e
" 3(r " a)

...(22)

At a sufficient distance from the sphere, the part of the disturbance which is expressed

by the terms in the first line of this expression is predominant. This part is irrotational,

and differs only in amplitude and phase from the motion produced by a sphere oscillating

in a frictionless liquid (Arts. 92, 96). The terms in the second line are of the type we have

already met with in the case of laminar motion (Art. 328).

To calculate the resultant force (X) on the sphere, we have recourse to Art. 336 (18).

Substituting from (15), and rejecting all but the constant terms in prx ,
since the surface-

harmonics of other than zero order will disappear when integrated over the sphere, we find

X=
f
LrxdS=47r (B.^ + dBcA, (23)

where B_ 2=-\a% C\ = '2nhaf
'

(ha), (24)

by Art. 336 (19). Hence, by (17),

^r-^?W(*)-**,''V4(*-i)r(,Wa(i-|-^)

*"*'u
{(*

+
ik)

i+
i{
1+
k)}

<25>

This is equivalent to

i
i<**{i+)f-**(+jy u- <2e)

The first term gives the correction to the inertia of the sphere. This amounts to the

fraction

of the mass of fluid displaced, instead of \ as in the case of a frictionless liquid (Art. 92).

The second term gives a frictional force varying as the velocity*.

When the period 2n/cr is made infinitely long, the formula (26) reduces to

X=-irPvaU, (27)

in agreement with Art. 325 (16), since /3
2=

o-/2i>.

340. A few notes may be appended on the two-dimensional problems
which are analogous to those of Arts. 337-339.

* This problem was first solved, in a different manner, by Stokes, I.e. ante p. 541. For other

methods of treatment see 0. E. Meyer,
" Ueber die pendelnde Bewegung einer Kugel unter dem

Einflusse der inneren Eeibung des umgebenden Mediums," Crelle, t. lxxiii. (1871) ; Kirchhoff,

Mechanik, c. xxvi. The more general case where the velocity of the sphere is an arbitrary

function of the time has been discussed by Basset, "On the Motion of a Sphere in a Viscous

Liquid," Phil. Trans., t. clxxix. p. 43 (1887); Hydrodynamics, c. xxii.
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Terms of the second order being neglected, the equations are

du 1 dp , dv 1 dp _
,

fit nrix dt 0/ 7

j
-

A/ A^ -/*

<2>

t-t
W

t**

-& {+**-f*^
tial motion of a liquid

(5)

i / idition of zero normal
- / / Ia** j, tial velocity ofrldr will

(6)

f the moduli of decay

\(ka)0 is ia= 3832,

ded a be expressed in

ave, from (4),

(7)

(8)

* This result is from the paper
" On the Motion of a Viscous Fluid contained in a Spherical

Vessel," cited on p. 574. The case s = was discussed by Steam, "On some Cases of the Varying
Motion of a Viscous Fluid," Quart. Joum. Math., t. xvii. p. 90 (1880).
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The solution of (7) in polar coordinates involves Bessel's Functions with the complex

argument (1 i)/3?\ The selection of suitable functions for the various cases, and the

working out of results in a practical form, involve some points of delicacy*. In view of

the length of the necessary investigations, and of the fact that the problems in question

are inferior in interest to those which relate to a spherical boundary, we must content our-

selves with a reference to the original papers by Stokes t.

One remarkable result may, however, be mentioned. When the period of a cylinder

oscillating in an infinite liquid is made infinitely long, or (what comes to the same thing)

if we attempt to find the steady motion produced by the translation of such a cylinder

with constant velocity, we find ourselves unable to satisfy all the conditions. The physical

explanation may be given in the words of Stokes :

" The pressure of the cylinder on the

fluid continually tends to increase the quantity of fluid which it carries with it, while the

friction of the fluid at a distance from the cylinder continually tends to diminish it. In

the case of a sphere, these two causes eventually counteract each other, and the motion

becomes uniform. But in the case of a cylinder, the increase in the quantity of fluid

carried continually gains on the decrease due to the friction of the surrounding fluid, and

the quantity carried increases indefinitely as the cylinder moves on."

Viscosity in Gases.

341. When variations of density have to be taken into account, the most

general supposition we can make with regard to the
' mean pressure

'

p,

consistently with our previous assumptions, is, in the case of a '

perfect
'

gas,

p^Rpd-M.'ia+b + c), (1)

where is the absolute temperature, R is a constant depending on the

nature of the gas, and /jf is a second coefficient of viscosity +. There does not

appear to be any experimental evidence as to the precise value to be attributed

to fi ;
but according to the kinetic theory of gases p 0, and we shall for

simplicity adopt this hypothesis. If it is desired to retain // in the formulae,

the necessary corrections can be easily made.

It was shewn in Art. 317 that the work done in time 8t by the tractions

on the faces of an element 8x8y8z, in changing the volume and shape of the

element, is

-p(a+b + c)8x8y8z.8t + 8a:8y8z.8t, (2)

where <I> = -
$ /i (a + b + c)- + 2/i (a- + b2 + c

2 + 2f
2 + 2g

2 + 2h2

) (3)

* The investigations of Art. 192 require revision when the argument is complex. The

formulae (4), (5), (6), are valid, provided the real part of the argument be positive (as is secured

by the choice of h in (8) above) ; but the derivation of the descending and ascending series (13)

and (20) presents new points. Incidentally, the results obtained by equating separately real and

imaginary parts would call for examination.

+ I.e. ante p. 541.

X Cf. Kirchhoff, Vorlesungen fiber die Theorie der WUrme, Leipzig, 1894, c. xi.; Stokes, Math.

and PJiys. Papers, t. hi. p. 136.

Maxwell, I.e. ante p. 536.
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Now, by Art, 7 (3),

. I Do Dv
a + b + C =

pDt
=
PDi> <4)

where v denotes the volume of unit mass. Hence if E be the intrinsic

energy per unit mass, and BQ . BxByBz the heat given out by the element in

time St, we have the equation of energy :

Dv DE
p -jr- pBxByBz . Bt + <&8x8yBz . Bt = -~- pBxByBz .Bt + BQ. BxByBz. . . .(5)

If the same changes of density and temperature were made with infinite

slowness, the amount of heat given out, say BQ' . BxByBz, would be

determined by

Dv DE
p n pBxSyBz . Bt =

-jj7 pBxSyBz .Bt + BQ' .BxByBz (6)

Comparing, we have

8Q = 8Q' + <3>8t (7)

Hence when viscosity is in operation an additional amount of heat,

measured by 4> per unit volume and per unit time, must be conveyed away
from the element. If this additional flow of heat cannot be effected, there

will be additional expansion or rise of temperature. The conclusion is that

the viscosity of the gas involves the generation of heat at the rate <E> per
unit volume, at the expense of other forms of energy.

If we write (3) in the fonu

*= g/*{(6- C)*+(c-a)*+(a-6)*}+4/i(/*+^+ ^) J (8)

it Lb seen that * is essentially positive, and (moreover) that it cannot vanish unless

a = b= e, and f=g= h= 0,

i.e. unless the distortion of the fluid element consists of an expansion or contraction which

is the same in all directions. The conclusion that there is no dissipation of energy in this

case rests of course on the assumption that the value of p.'
in (1) is zero.

342. We may briefly notice the effect of viscosity on sound-waves. For

consistency it is necessary to take account at the same time of heat-con-

duction, whose influence is of the same order of importance*; but in the

first instance we follow Stokes+ in examining the effect of viscosity alone.

In the case of plane waves in a laterally unlimited medium, we have,

if w e take the axis of x in the direction of propagation, and neglect terms of

the second order in the velocity,

du 1 dp . d-u ,- x

dt=-j9di
+ tVd*> (1)

* This was first remarked by Kirchhoff,
" Ueber den Einfluss der Warmeleitung in einem

Gase auf die Schallbewegung," Pogg. Ann., t. exxxiv. p. 177 (1868) [Ges. Abh., t. i. p. 540].

t I.e. ante p. 457.
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by Art. 316 (2), (3). If* denote the condensation, the equation of continuity

is, as in Art. 273,

dt dx' w
and the physical equation is, if the transfer of heat be neglected,

p=2)o + c-p s
> (3)

where c is the velocity of sound in the absence of viscosity. Eliminating p
and s, we have

sp-'s^+fr'ss (4)

To apply this to the case of forced waves, we may suppose that at the

plane =0a given vibration

u = aei<Tt
(5)

is kept up. Assuming as the solution of (4)

= aei,Tt+mx
, (6)

we find m"(c- + %ivcr)
=

a'-, (7)

, icr /_, . .vcr\~- /ri .

whence m = il%i~\ (8)

If we neglect the square of va/c-, and take the lower sign, this gives

*'-*? (9)

Substituting in (6), and taking the real part, we get, for the waves propa-

gated in the direction of ^-positive

= ae~x!1

_*(*-).
0)u = ae *'* cos

where l = % (H)"
vcr-

The amplitude of the waves diminishes exponentially as they proceed, the

diminution being more rapid the greater the value of a. The wave-velocity

is, to the first order of vcr/c
2

,
unaffected by the friction.

The linear magnitude I measures the distance in which the amplitude
falls to 1/e of its original value. If X denote the wave-length (2ttc/o),

we have

i
ycr =A. . (i 2 )

it is assumed in the above calculation that this is a small ratio.
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In the case of air-waves we have c= 3"32 x 104
,
v= -132, c. G.S., whence

*^'
=^= 2-50\- 1 xl0- 5

,
l= 9b6\2

xl(fi,
c* Xc

if X be expressed in centimetres.

To find the decay of free waves of any prescribed wave-length (2tt;k), we

assume

u = aeacx+at
; (13)

and, substituting in (4), we obtain

a2 + ^vfca = k-c2

(14)

If we neglect the square of vkc, this gives

a =
fi/A,-

2 ike (15)

Hence, in real form,

u = ae~ tlT cos k (x ct), (16)

where T = 2^ = ( 17>*

343. When conductivity is to be allowed for, the dynamical equation

(1), and the equation of continuity (2) are unaffected, but the physical

relations must be modified.

The amount of heat required to produce small changes in the volume v

and (absolute) temperature of unit mass of a gas is

Mdv + XBd,

where JV is the specific heat at constant volume, and

M = (y-l)X. (18)

Multiplying this by p 8x, the mass per unit area of a thin stratum, and

equating to qd-dda? . 8x, where q is the thermal conductivity, we findf

w e dv ,d>d

dt
+^- 1) 7 di

= v
d^' (19)

where V
' = .JL

(9Q)

i.e. v is the
' thermometric

'

conductivity^.

* For a calculation, on the same assumptions, of the effect of viscosity in damping the

vibrations of air contained within spherical and cylindrical envelopes reference may be made to

the paper
M On the Motion of a Viscous Fluid contained in a Spherical Vessel," cited on p. 574.

t The heat generated by internal friction is here neglected, as being of the second order

of small quantities. The system of exact equations is given by Kirchhoff, Vorlesungen Hber

die Theorie der Wcirme, c. xi.

X Maxwell, Theory of Heat, c. xviii.



590 Viscosity [chap, xi

The relation between p, p, 6 is

P=Po~l (21 >

If we put p=p (l+s), e = 6 (l+ v ), (22)

and neglect terms of the second order in s and rj, the equations (19) and (21)

may be written

__(,y-!)_,,__ (23)

and p-=2\,(\-\-s-\-T]) (24)

Substituting this value ofp in (1), we have

d'u ,,fe 1n dri . d-u _
bs~ i-s-*

,s + * ,

'i* < 25 )

where &,
= (p /po)K is the Newtonian velocity of sound (Art. 274). Eliminating

s by (2), we find

d-u -. . 9* , ,
o-ri . 9*w

-*-*5S+*'s < 2C)

and s*(*^wK- /& <27 >

which are two simultaneous equations to determine i< and 77.

If we now assume that u and
rj both vary as

gat
+ MX

we find (a- b'-iri- |i/am
3
) u + b-otmr/

= 0,
]

(7 -l)wiM + (a-i/
/w2

)i7
=

0, j"

^
whence a :!

[c'-a + (|i> + z/) a
2

}
m- + v (6

2 + 4i>a) ??i
4 = 0, (29)

where we have written c2 for yb'
1

.

We verify that if v = 0, v 0, we have a= mc. Also that if v = 0,

roo, we have a = mb, as we should expect, since the conditions are now
'

isothermal.'

According to Maxwell's kinetic theory of gases

v =p: (30)

but we shall only assume that v and v are of the same order of magnitude.

In the case of simple-harmonic motion we have a = ia, where 27r/cr is the

period. We have seen that for ordinary sound-waves the ratio va/c- is small.

The equation (29) is a quadratic in m'-, whose roots are

a"

o c
2a

mr= , ni^ = "
iTn , (31)

c- v b-
y/
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approximately. A more accurate value of the former root is

-*(N <
3*>whence m.

The complete solution for x > is found to be, approximately,

u = A xe
iat+ '"* + Ajf*+m+ ,

\

ry-l . m \ (35)
v = l A 1e"

Tt+m
'
x + . '-AeM+'"*,

provided m,, m., are chosen so as to have their real parts negative. The arbi-

trary constants A l} A 2 enable us to represent the effect of prescribed periodic
variations of u and t\ at the plane ^ = 0. For ordinary frequencies the ratio

//// a is large, and the ratio AojA x accordingly usually small. The second

term in the value of u is then unimportant, even near the origin, and in any
case it becomes insignificant in comparison with the first term for sufficiently

great values of x. Its use is to represent the purely local effect of a periodic

Bource of heat at the origin.

If we adopt the value (30) of v, and take c
2

/6
2 = 7= 1'410, we find from

(34) that the value of I is diminished by conductivity in the ratio 647.

The investigation of this Art. is due substantially to Kirchhoff *, who
further examined the effect on the propagation of sound-waves in a narrow

tube. This problem is important for its bearing on the well-known experi-

ments of Kundt. Lord Rayleigh has applied the same principles to explain
the action of porous bodies in absorption of sound

"f".

Turbulent Motion.

344. It remains to call attention to the chief outstanding difficulty of

our subject.

It has already been pointed out that the neglect of the terms of the

second order (ududx, &c.) seriously limits the application of many of the

preceding results to fluids possessed of ordinary degrees of mobility. Unless

the velocities be very small, the actual motion in such cases, so far as it

*
I.e. ante p. 587. The investigation is given in Lord Rayleigk's Theory of Sound, 2nd ed.,

Arts. 348-350.

t "On Porous Bodies in relation to Sound," Phil. Mag. (5), t. xvi. p. 181 (1883) [Sc. Paper*,
t. ii. p. -2-20

; Theory of Sound, Art. 351].
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admits of being observed, is found to be very different from that represented

by our formulae. For example, when a solid of 'easy' shape moves through
a liquid, an irregular, eddying, motion is produced in a layer of the fluid

next to the solid, and a widening trail of eddies is left behind, whilst the

motion at a distance laterally is comparatively smooth and uniform.

The mathematical disability above pointed out does not apply to cases

of rectilinear flow, such as have been discussed in Arts. 318, 319
;
but even

here observation shews that the types of motion above investigated, though

always theoretically possible, become under certain conditions unstable.

The case of flow through a pipe of circular section has been made the

subject of a very careful experimental study by Reynolds*, by means of

filaments of coloured fluid introduced into the stream. So long as the mean

velocity (tu ) over the cross-section falls below a certain limit depending on

the radius of the pipe and the nature of the fluid, the flow is smooth, and

in accordance with Poiseuille s laws ; but when this limit is exceeded the

motion becomes wildly irregular, and the tube appears to be filled with

interlacing and constantly varying streams, crossing and recrossingthe pipef.

It was inferred by Reynolds, from considerations of dimensions, that the

aforesaid limit must be determined by the ratio of w a to v, where a is the

radius, and v the (kinematic) viscosity. This was verified by experiment,

the critical ratio being found to be, roughly,

^=1000 (1)+
v

Thus for a pipe one centimetre in radius the critical velocity for water

(i/
= -018) would be 18 cm. per sec.

Simultaneously with the change in the character of the motion, when

the critical ratio is passed, theje is a change in the relation between the

pressure-gradient (dp/dz) and the mean velocity wQ . So long as w a/v falls

below the above limit, dp/dz varies as w ,
as in Poiseuille's experiments, but

when the irregular mode of flow has set in, dp/dz varies more nearly as w 2
-

The practical formula adopted by writers on Hydraulics, for pipes whose

diameter exceeds a certain limit, is

R = bfpw ; (2)

where R is the tangential resistance per unit area, w is the mean velocity

relative to the wetted surface, and / is a numerical constant depending on

the nature of the surface. As a rough average value for the case of water

"An Experimental Investigation of the Circumstances which determine whether the Motion

of Water shall be Direct or Sinuous, and of the Law of Resistance in Parallel Channels," Phil.

Trans., t. clxxiv. p. 935 (1883) [Sc. Papers, t. ii. p. 51].

t Somewhat similar observations were made by Hagen, Berl. Abh., 1854, p. 17.

J The dependence on v was tested by varying the temperature. The result is confirmed, for a

wider range of temperature, by Coker and Clement, Phil. Trans., A, t. cci. p. 45 (1902). See also

Barnes and Coker, Proc. Roy. Soc, t. lxxiv. p. 341 (1904).
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moving over a clean iron surface, we may take f= 005 *. A more complete

expression for R, taking into account the influence of the diameter, was given

by Darcy, as the result of very extensive observations on the flow of water

through conduits +.

The resistance, in the case of turbulent flow, is found to be sensibly

independent of the temperature, and therefore of the viscosity of the fluid.

This is what we should anticipate from considerations of 'dimensions,' if it be

assumed that R x wf%.

If we accept the formula (2) as the expression of observed facts, a

conclusion of some interest may at once be drawn. Taking the axis of z

in the general direction of the flow, if w denote the mean velocity (with

respect to the time) at any point of space, we have, at the surface,

n //. denote the general velocity of the stream, and 8n an element of the

normal. If we take a linear magnitude I such that

w, _dw
J~dn~'

then / measures the distance between two planes moving with a relative

velocity w in the regular 'laminar' flow which would give the same tangential

>. We find

Wj (3)

For example, putting v = "018, iv = 300 [c.s.],/= "005, we obtain I = 024 cm.

The smallness of this result suggests that in the turbulent flow of a fluid

through a pipe of not too small diameter the value of w is nearly uniform over

the section, falling rapidly to zero within a very minute distance of the walls".

Applied to pipes of sufficient width, the formula (2) gives

ira%
-j-
= 2iraR = irfpawf,dz

_}_dp_ f^o
pdz a

* See Rankine, Applied Mechanics, Art. 638; Unwin, Encyc. Britann., 9th ed., Art. "Hydro,
mechanics."

t Recherches experimentales relatives au mouvement de Veau dang les tuyaux, Paris, 185-5.

The formula is quoted by Rankine and Unwin.

{ Lord Rayleigh,
" On the Question of the Stability of the Flow of Fluids," Phil. Mag. (5),

t. xxsiv. p. 59 (1892) [Sc. Papers, t. iii. p. 575].

Cf. Sir W. Thomson, Phil. Mag. (5), t. xxiv. p. 277 (1887).

This was in fact found experimentally by Darcy, Lc. See also Morrow, " On the Dis

tribution of Velocity in a Viscous Fluid over the Cross-Section of a Pipe, and on the Action

at the Critical Velocity," Proc. Roy. Soc. A, t. lxxvi p. 205 (1905).

L. 38



594 Viscosity [chap, xi

The form of the relation which was found to hold by Reynolds, in his

experiments, was
1 dp v*-mw m

pdz
X

a?~m
'

'

where m = 17 23*.

The increased resistance, for velocities above a certain limit, represented

by the formula (2) or (4), is no doubt due to the action of the eddies in

continually bringing fresh fluid, moving with a considerable relative velocity,

close up to the boundary, and so increasing the distortion-rate (dw/dn) greatly

beyond that which would obtain in regular 'laminar' motion-f*.

The frictional or 'skin-resistance 'J experienced by a solid of 'easy' shape

moving through a liquid is to be accounted for on the same principles.

The circumstances are however more complicated than in the case of a pipe.

The friction appears to vary roughly as the square of the velocity ;
but it is

different in different parts of the wetted area, for a reason given by
W. Froude, to whom the most exact observations on the subject are due.

Another interesting case of turbulent motion has been investigated

experimentally by Mallock||.

345. It must unfortunately be confessed that the theoretical explanation
of the instability of linear flow under the conditions stated, and of the

manner in which eddies are maintained against viscosity, is still somewhat

obscure. We can only offer a brief account of the various attempts which

have been made to elucidate the question.

Lord Itayleigh, in several papers IF, has set himself to examine the

stability of various arrangements of vortices, such as might be produced by

viscosity. The fact that, in the disturbed motion, viscosity is ignored does

not seriously affect the physical value of the results except perhaps in cases

where these would imply slipping at a rigid boundary.

* Cf. Hagen, I.e. An interesting historical account of the whole matter is given by Knibbs,

Proc. Roy. Soc. N.S.W., t. xxxi. p. 314 (1897).

t Stokes, Math, and Phys. Papers, t. i. p. 99.

X So called by writers on naval architecture, to distinguish it from the ' wave-resistance '

referred to in Arts. 245, 253.

"Experiments on the Surface-friction experienced by a Plane moving through Water," Brit.

Ass. Rep., 1872, p. 118. "The portion of the surface that goes first in the line of motion, in

experiencing resistance from the water, must in turn communicate to the water motion, in the

direction in which it is itself travelling. Consequently the portion of the water which succeeds

the first will be rubbing, not against stationary water, but against water partially moving in its

own direction, and cannot therefore experience as much resistance from it."

|| "Experiments on Fluid Viscosity," Phil. Trans. A., t. clxxxvii. p. 41 (1895).

If
" On the Stability or Instability of certain Fluid Motions," Proc. Lond. Math. Soc., t. xi.

p. 57 (1880); t. xix. p. 67 (1887); t. xxvii. p. 5 (1895);
" On the Question of the Stability of the

Flow of Fluids," Phil. Mag. (5), t. xxxiv. p. 59 (1892) ;

" On the Instability of Cylindrical Fluid

Surfaces," Phil. Mag. (5), t. xxxiv. p. 177 (1892) [Sc. Papers, t. i. p. 474; t. iii. pp. 575, 594; t. iv.

p. 203].



344-345] Theoretical Investigations 595

As the method is simple, and as the results have an independent interest, we may
briefly notice the two-dimensional form of the problem.

Let ns suppose that in a slight disturbance of the steady laminar motion

u C, ( = 0, v = 0,

where Ui& a function of y only, we have

u=C+u', i'=f', ir= (1)

The equation of continuity is

cit' of
ex dy

^

The dynamical equations reduce, by Art. 146, to the condition of constant angular

velocity DC, Dt=0, or

7

tH U+u')'
C +^ = 0, (3)

ct ex cy
v

where C=*(^ - -W<^ W-
\cx cy J -ay

'

Hence, neglecting terms of the second order in u', >',

(o a\(cif cu'\ <PU
,

'

Contemplating now a disturbance which is periodic in respect to .r, we assume that

k',
/ vary as e

ikx+iat
. Hence, from (2) and (5),

M+%- (6)

and {{,+iU) (&-j)
-^* =

(7)

Eliminating u', we find

(<r + /:r) (p-^')-^'=0
' (8)

which is the fundamental equation.

If, for any value of y, dU dy is discontinuous, the equation (8) must be replaced by

(. +*OA(|)-.(f)^0, (9)

where A denotes the difference of the values of the respective quantities on the two sides

of the plane of discontinuity. This is obtained from (8) by integration with respect to y,
the discontinuity being regarded as the limit of an infinitely rapid variation. The
formula (9) may also be obtained as the condition of continuity of pressure, or as the

condition that there should be no tangential slipping at the (displaced) boundary.

At a fixed boundary, we must have v'=0.

1. Suppose that a layer of fluid of uniform vorticity bounded by the planes y= h, is

interposed between two masses of fluid moving irrotationally, the velocity being everywhere

continuous. This forms an interesting variation of a problem discussed in Art. 233.

Assuming, then, C=u for y > h, U=Viyh for h>y>-h, and U= -u for y<-h,
we notice that di L

T

dy
2= 0, everywhere, so that (8) reduces to

S-JV-0 (10)
cy*

382
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The appropriate solutions of this are :

v'= Ae~ k
,

for y > h
;

v'^Be-^+ Cd'v, for h>y>-h
v'Deky

,
for y < h.

The continuity of t>' requires

Ae~ kh= Be- kh + Cekh
,

JDe- kh= B(*h+ Ce-

With the help of these relations, the condition (9) gives

(11)

0*
| .(12)

2 (r +Xni) ta*ft -
^ (.Be

~ *ft+ <?e*
A
)
- 0,

2 (o ifcu)e**+jj[cffe+ Cfc"*) =0.
.(13)

Eliminating the ratio B : C, we obtain

a2=
^{(2hk-l)

2 -e-}. .(14)

For small values of hh this makes <r
2= -Fu2

,
as in the case of absolute discontinuity

(Art. 233). For large values of kh, on the other hand, cr= /m, indicating stability. Hence
the question as to the stability for disturbances of wave-length X depends on the ratio X/2A.
The values of the function in { } on the right-hand of (14) have been tabulated by
Lord Rayleigh. It appears that there is instability if X/2A > 5, about

;
and that the

instability is a maximum for X/2^= 8.

2. In the papers referred to, Lord Rayleigh has further investigated various cases of

How between parallel walls, with the view of throwing light on the conditions of stability

of linear motion in a pipe. The main result is that if d2
U/dy

2 does not change sign,

in other words, if the curve with y as abscissa and U as ordinate is of one curvature

throughout, the motion is stable. Since, however, the disturbed motion involves slipping

at the walls, it remains doubtful how far the conclusions apply to the question at present,

under consideration, in which the condition of no slipping appears to be fundamental.

3. The substitution of (10) for (8), when d2
U/dy

2=
0, is equivalent to assuming that

the rotation f is the same as in the undisturbed motion
; since on this hypothesis we

have

ou' dv' ., ,

dx (15)

which, with (6), leads to the equation in question.

It is to be observed, however, that when d2
U/dy

2=0, the equation (8) may be satisfied,

for a particular value of y, by a + kU=0. For example, we may suppose that at the plane

y= a thin layer of (infinitely small) additional vorticity is introduced. We then have, on

the hypothesis that the fluid is unlimited,

v'= Ae^ hy
, (16)

the upper or the lower sign being taken according as y is positive or negative. The

condition (9) is then satisfied by

<r + kU =
0, (17)

*(fH (18)
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where C denotes the value of V for y 0. Since the superposition of a uniform velocity
in the direction of x does not alter the problem, we may suppose C =0, and therefore

<r=0. The disturbed motion is steady ; in other words, the original state of flow is (to the

first order of small quantities) neutral for a disturbance of this kind *

Lord Kelvin has attacked directly the very difficult problem of determining
the stability of laminar motion when viscosity is taken into account +. He
concludes that the linear flow of a fluid through a pipe, or of a stream over

a plane bed, is stable for infinitely small disturbances, but that for disturbances

of more than a certain amplitude the motion becomes unstable, the limits of

stability being narrower the smaller the viscosity^.

346. Reynolds, in a remarkable paper, has attacked the question from

a different point of view. Taking the turbulent motion as already existing,

he seeks to establish a criterion which shall decide whether the turbulent

character will increase or diminish or be stationary.

For this purpose the velocity (m, r, ) is resolved into two components. We may, for

instance, write

v = -
I udt, i-= -

j vat, v=- I wdt : (1)
rjt-ir Tjt-ir Tjt-kr

so that u, v, w are the mean values of
, v, -a at the point (.r, y, z), taken over an interval

of time extending from t- t to *+ r. Again, we might consider the mean values at the

instant t over a space S (e.g. a sphere) surrounding the point {x, y, z) ; thus

I- / / / udxdydz, ? = -, / I Ivdxdydz, =
^.

/ / / >ccbdydz (2)

Or, again, we might take a double mean, for times ranging over an interval t, and points

ranging over a 'f ace .S'. The actual velocities are in each case denoted by

'= + ', v=v+ v\ tc=w+w', (3)

where >i', v', u/ may be called the components of the turbulent motion. This implies

that

S'=0, p'=0, #=0, (4)

where the bar placed over a symbol denotes the mean value, taken according to the

particular convention adopted.

For simplicity we will adopt the definition of mean value which is embodied in the

formulae (1).

*
Cf. Sir W. Thomson. " On a Disturbing Infinity in Lord Rayleigh's solution for Waves in a

plane Vortex Stratum," Brit. Ass. Rep., 1880, p. 492. For a mathematical discussion of the

differential equation (8), and of the singularities which may occur in its solution, reference may
be made to Love, Proe. Lond. Math. Soc., t. xxvii. p. 199 (1896).

t " Rectilinear Motion of Viscous Fluid between two Parallel Planes," Phil. Mag. (5). t. xxiv.

p. 188 (1887);
" Broad River flowing down an Inclined Plane Bed," Phil. Mag. (5), t. xxiv. p. 272

% A portion of the investigation has been criticised by Lord Rayleigb, I.e. ante p. 593.

| On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the

Criterion," Phil. Trans. A., t. clxxxvi. p. 123 (1394) [Sc. Papers, t. ii. p. 535].
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Reynolds starts from the dynamical equations in the forms

pfa=pX+^(pxx -puu)+~
;
-(pyx -puv)+^(p,x -puw), ..., ..., (5)

which are seen to be equivalent to Art. 316 (1) in virtue of the equation of continuity

3m dv dw _ .

3.r dy dz

These forms are not essential to the argument, but are interesting as an application of the

method employed by Maxwell* in the kinetic theory of gases. They express the rate

of variation of the momentum contained in a fixed rectangular space 8x8y8z, as a

consequence partly of the forces acting on the substance which at the moment occupies

this space, and partly of the flux of matter across the boundary, carrying its momentum
with it. Thus the fluxes of ^'-momentum across unit areas perpendicular to Ox, Oy, Oz,

are pu.u, pv . u, and pw . u, respectively ;
and taking the difference of the fluxes across

opposite faces of the elementary space 8x8y8z, we obtain a gain of .^-momentum equal to

*- (pu 8y 8z . u) 8x 7T- (pv 8z 8x . u) 8y _ (pw8x8y . u) 8z

per unit time.

We now take the mean value of each member of the equations (5), using the sub-

stitutions (3). It is assumed that we may, without sensible error, take the mean values of

u, uu', uv', uw', ... to be u, 0, 0, 0, ..., respectively. This is not exact, but is permissible

provided the fluctuations of u, v, w about their mean values are sufficiently numerous

within the time-interval r. It follows that

uu= uu+ u'u', uv= uv+ u'v', uw= uic-\-u'u-', (7)

In this way we obtain

du v d ._ 3 ._ -5-= 3 ,- -- -T-%. ,,
p

dt
=pX+^P^~Puu~Pwu ) +^Pv^~P

uv ~Puv ) +^P^~Puw -Pnw h----> .(8)

whilst the equation of continuity gives L

3m 3v 3m? n u ,,
rx
+

dy
+ Tz= (9)

These are the equations of mean motion t. It is to be noticed that the dynamical

equations have the same form as the exact equations (5), provided we introduce additional

stress-components

Pxx=~pu'u', Pyx
=

-ptt'v', Pzx =-pu'w', (10)

This recalls the explanation of gaseous viscosity by Maxwell J.

The equations (8) may be written, in virtue of (9),

dt
+

Tx
+
"ty

+r
Zz)

pTl
=px+dx^xx

~
p^ "

(11)

*
I.e. ante p. 536.

f Or rather 'mean-mean-motion,' in the phraseology of Prof. Reynolds. He applies the

term 'mean-motion' to the system of velocities (w, v, w), to distinguish it from 'molecular

motion.' The turbulent motion (u', v'
, w') is called by him ' relative-mean-motion.'

I I.e.
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If we multiply these by , r, id in order, arid add, we obtain

(|
+i4+5|+*5)^ (5,+f,+tf,)

- p {Xu+ Yv+Zw)+u {/ (p
-
fW)+^ {prx

-
P^)+5 (Psx-p^'Yj

+ S
j^.

(ft.
- p**)+^ (ft,

-/V) +g(ft#
-
P^)}

+5
{^(P-p^+^(ft.-p^)+|z (p-/i^V)}. -..(12)

Let us first suppose that there are no extraneous forces A, T, Z ; and let us apply (12)

to the case of a region bounded by fixed walls at which u, v, w, and therefore also u, c, tr,

all vanish. If we write

T =hp fff (u*+v*+&)djcdi,dz, (13)

we obtain, after some partial integrations,

gp-
-

/ /

'

f*
vdJL-dydz+jj Udxdydz, (14)

where

_ ba _ <fv - cw few , dv\ ,
_ /du ow\ _ fbv bu\

^<s^-*(srcsr*<5+ar*(s+r*(+sn
and

The formula (14) gives the rate of variation of the energy of the mean motion (, v, w).

The first term on the right-hand represents the dissipation due to the mean motion

alone, and is essentially negative. The second term represents the rate at which work is

being done by the fictitious stresses (10).

if The the true kinetic energy, we may write, in virtue of assumptions already
ni-ide,

T=T +T', (17)

where T'=
hp\ f [(**+**+**) dxefydx, (18)

i.e. 7" is the kinetic energy of the eddying motion. And, as in Art. 327, it may be shewn

that on the present supposition of fixed boundaries at which there is no slipping, the total

dissipation is, on the average, equal to the sum of the dissipations due to the mean-

motion and the eddying motion respectively. Thus

^- -
jff*

t>dxd!
f<h-jjj*'<L.d#dz,

(19)*

where

*
It should be noticed that we are here virtually taking the differential time-element 6t to

be of the order of magnitude of the interval r employed in the definitions (1). The procedure in

the text avoids the use of some very lengthy equations which appear in the original.
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Comparing with (14), we have ,

d
-^=- f f f&dxdydz- f f Udxdydz (21)

The sign of the expression on the right-hand determines whether the mean energy T'

of the eddying motion (', v\ w') will increase or diminish. The first part, which alone

involves the viscosity fi,
is essentially negative ; the second part depends on the inertia of

the fluid, and may be positive or negative according to circumstances.

When there are extraneous forces X, Y, Z to be taken into account, and when the

velocities u, v, w do not necessarily vanish at the boundary of the region considered, the

equation (14) requires to be amended by the addition of terms which represent partly the

convection of kinetic energy of mean motion into the region, partly the work done by
the forces X, Y, Z, and partly the work done at the boundary by the mean stresses

Pxx,Pvx , pzx, ,
and by the fictitious stresses P^, Pyx , P,....

The equation (21), on the other hand, requires only the addition of a term representing

the convection of the energy of turbulent motion across the boundary.

The derivation of the remarkable formulae (19) and (21), and of the modifications just

referred to, appears to be free from objection, on the conventions adopted. But, in apply-

ing these formulae to actual conditions, the restrictions and assumptions which have been

introduced as to the character of the turbulent motions must be borne in mind.

One or two consequences of the formula (21) may be noted*. In the first place, the

relative magnitude of the two terms on the right-hand is unaffected if we reverse the signs

of u', v\ w\ or if we multiply them by any constant factor. The stability of a given state

of mean motion should not therefore depend on the scale of the disturbance. On the other

hand, certain combinations of
', v', w' appear to be more favourable to stability than

others. Thus, in the case of disturbed laminar motion parallel to Ox, between two rigid

planes y=+b, the formula (16) reduces to

*=
K"'f>

(22)

so that the types of disturbance which tend to increase are those in which (for y>0)
combinations of u', v' with the same sign preponderate. This indicates a tendency to

equalization of the velocity in the different strata. Again, the relative importance of the

second term in (21), which alone can contribute to the increase of T', is greater the greater

the rates of strain du/cx, ..., in the mean motion. This suggests a reason why a given

type of mean motion does not begin to break down until a certain critical velocity is

reached.

If we apply the (modified) formulae to the case of flow in a uniform cylindrical pipe, on

the supposition that the pressure gradient (
-
dp/dz) is zero, we find

dT /" fa= pZwna2

-2ir\ ^rdr + 2ir Vrdr, (23)
Jo Jo

= -
jdxdy-2irj'irrdr, (24)

where *0=/i
(^)' *=^aJ (25)

* Cf. Lorentz,
" Over den weerstand dien een vloeistofstroom in eene cylindrische buis

ondervindt," Amst. Versl., t. vi. p. 28 (1897). This paper gives a very clear account of the

whole method. Some terms are accidentally omitted from the rather complicated system of

equations, but this does not affect the main conclusions.

dt

dT
and r-

dt
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The region here considered is that contained between two cross-sections (of area was
) at

unit distance apart, the axis of z coincides with that of the pipe, and q denotes the

velocity at right angles to this axis. It is assumed of course that ^=0 and cwfcz=Q ; also

that the mean state of things is in all respects the same at each section. The conditions

of steady motion are obtained by equating the right-hand members of (23) and (24) to zero.

Reynolds discusses in detail the two-dimensional form of the problem, where there is a

flow parallel to x between two fixed plane walls y= b. Assuming that u varies as hr y2,

as in Art. 318, he seeks to determine a minimum value of the flux consistent with the

condition dT"d(=0; but for this we must refer to the original paper. The result

obtained is that the critical ratio Uyjb.r, where o is the mean value of u between the limits

t/= b, mast exceed 258*.

* A different result is obtained by Sharpe,
" On the Stability of the Motion of a Viscous

Liquid,"' Trans. Amer. Math. Soc., t. vi. p. 496 (1905).



CHAPTER XII.

ROTATING MASSES OF LIQUID.

347. This subject had its origin in the investigations on the theory of

the Earth's Figure which began with Newton and Maclaurin, and were

continued by the great French school of mathematicians which flourished

near the end of the eighteenth and the beginning of the nineteenth century.

It has in recent times undergone great development, at the hands, notably,

of Thomson and Tait, Poincare, and Darwin.

The problem is to ascertain the possible forms of relative equilibrium of

a homogeneous gravitating mass of liquid, when rotating about a fixed axis

with constant angular velocity, and to determine the stability or instability

of such forms.

We begin with the case where the external boundary is ellipsoidal. We
write down, in the first place, some formulae relating to the attraction

of ellipsoids.

If the density p be expressed in
' astronomical

'

measure, the gravitation-

potential, at internal points, of a uniform mass enclosed by the surface

x- y" z'
2

., ,,.- + fe + -,
= l (1)

a- o- c

IS a-rptbcf" (-* +iX- +-^. T.l)' (2)r
Jo \a

2 +\ b2 + \ c- + \ /A'
where A =

[(a- + X) (b- + \) (c
2 + X)}* (3)

This may be written

H =
-rrp (a x- + fay" + y z2 - % ), (4)

where, as in Art. 114,

7
T

00 d\ Q , f" dk . f
00 dX

***>}, (rf+SjA'
& = aH (&' + X)A'

^ abc
j (cM^)A'

(5)

and Xo
=
abcj -^ (6)

For references see p. 554. The sign of ft has been changed from the usual reckoning.

*
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The potential energy of the mass is given by

V =
\\jnPdxdydz, (7)

where the integrations extend over the volume. Substituting from (4) we
find

V = liry-abc [1 (o^
2 + #,6

2 + 7oc
2
)
-

X#j

This expression is negative because the zero of reckoning corresponds to

a state of infinite diffusion of the mass. If we adopt as zero of potential

energy that of the mass when collected into a sphere of radius R, = {abcf*,

we must add the term

ttV# (9)

If the ellipsoid be of revolution, the integrals reduce. If it be of the

planetary form we may put, in the notation of Art. 107,

-l-p. (16)

and obtain*

7o =2(r+i)(i-?cot->r),J
^ }

F-
Hyjfr{i

-
(^)* *-**},

(12)

provided the zero of V correspond to the spherical form. If e be the

eccentricity of the meridian, we have

'-^S-pTi (13)

and the formulae may be written

*-|{i-v<i-->^}. j

(14)

F-H'/),

*{l -(!-<)*^P] (15)

For an ovary ellipsoid we put (Art. 103)

a = 6 =
<^l>'o

(16)

* Most simply by writing c2 + X = (a
2 -

c-) u2.
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and obtain

o
=

/S =r2 -(r2

-l)rcoth-^,

7o =2(r-i)(?coth-r-i),i
(17)

F=|f7ry^|l-(^)
i

rcoth-^|
(18)

The case of an infinitely long elliptic cylinder may also be noticed. Putting c= cc

in (5), we find

*-,. A-I&. v.=o. (W)

The energy per unit length of the cylinder is

r^iVWhj^ (20)

Maclaurins Ellipsoids.

348. If the ellipsoid rotate in relative equilibrium about the axis of z,

with angular velocity to, the component accelerations of the particle (x, y, z)

are co
2
x, e^y, 0, so that the dynamical equations reduce to

i dp dn
,

i dp an A 1 dp da ,_ ,

pdx ox p oy dy p dz dz

Hence - = &>
2

(x
2 + y-) H + const (2)

The surfaces of equal pressure are therefore given by

/ w2
\ / _ <w

2
\ ,_.

l

a
-2^j^

+
l
A
-2^)2/

+^2 = COnst (3)

In order that one of these may coincide with the external surface

we must have

a=
+ F + ?

= 1 <*>

("- 2^)
a5=

(
A -2^)

61 = 1"cJ (5)

In the case of an ellipsoid of revolution (a = 6), these conditions reduce

to one, viz.

(
ao
-2^p)

a2 = 7oC2 (6)
*irp)

Since a"/(a? + X) is greater or less than C'/(c
2 + \), according as a is greater or

less than c, it follows from the forms of a
, y given in Art. 347 (5) that the

above condition can be fulfilled by a suitable value of a> for any assigned
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planetary ellipsoid, but not for the ovary form. This important result is due

to Maclaurin *.

If we substitute from Art. 347 (11), the condition (6) takes the form

-

p
= (3(?+ 1) cot- C- K; (7)

or, in the notation of Art. 107,

ejr&>) <8>

It will be noticed that the value of o> corresponding to any prescribed

ellipticity depends on the density p, and not on the actual size of the ellipsoid.

It is easily seen that this is in accordance with the theory of ' dimensions.'

If M be the total mass, H its angular momentum about the axis of

rotation, we have

M=
$Trpa

2
c, iT= |ifa

2
6>, (9)

whence ^ = & (^) {(3(7 + 1) tcot- ?-3(?} (10)

The formula (7) has been discussed, under different forms, by Simpson.

d'Alembert, and (more fully) by Laplace t. It is easily seen that the right-

hand side of (7) vanishes for f=0 and = x
,
but is otherwise finite and

positive ; consequently that it has a greatest value for some intermediate

value of There is thus, for given density p, an upper limit to the angular
velocities for which an ellipsoid of revolution is a possible form of relative

equilibrium. A more detailed investigation is required to shew that there

is only one maximum, and consequently no minimum, value of the function

on the right-hand of (7) or (8).

Laplace also examined, from the same point of view, the formula for the

angular momentum. It appears that the right-hand side of (10) increases

continually from to oo as f decreases from oo to 0. Hence for a given
volume of given fluid there is one, and only one, form of Maclaurin's

ellipsoid having a prescribed angular momentum.

These questions may also be investigated by actual computation of the

functions on the right-hand sides of (7) and (10). The table on the next page,

giving numerical details of a series of Maclaurin's ellipsoids, is adapted from

Thomson and Tait. The unit of angular momentum in the last column

is M*R\ where ' astronomical
'

units are of course implied.

*
I.e. ante p. 293.

t Mecanique Celeste, Livre 3me , c. iii. For other references see Todhunter, Hist, of the

Theories of Attraction..., cc. x., xvi.

X Natural Philosophy, Art. 772.
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The maximum value of (crj^irp is -2247, corresponding to e = "9299,

ajc = 2*7198. For any smaller value of aP-llirp there are two possible

e
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Jacobi's Ellipsoids.

349. To ascertain whether an ellipsoid with three unequal axes is a

possible form of relative equilibrium, we return to the conditions (5) of

Art. 348. These are equivalent to

(ai> -fo)a
a
-b' + yvcHa'-) = 0, (1)

a- cut-
- fob-

and s = -= ,--- (2)
zirp a- b-

If we substitute from Art. 347, the condition (1) may be written

, ... f" f arb2 c
2

} d\ A
(ai-*U |(;?WTT)-cFTx} A =0 (3>

The first factor, equated to zero, gives Maclaurin's ellipsoids, discussed in the

preceding Art. The second factor gives

Xd\
A5f"&l?-(a>+lr +\)c^ = Q, (4)

which may be regarded as an equation determining c in terms of a, b.

When c?=0, every element of the integral is positive, and when c
2 = a-b2J(a- + b*)

every element is negative. Hence there is some value of c, less than the

smaller of the two semiaxes a, b, for which the integral vanishes.

The corresponding value of a> is given by (2), which takes the form

or _ ; /"

x \d\ .,.

so that a> is real. It will be observed that as before the ratio &>-/27rp depends

only on the shape of the ellipsoid, and not on its absolute size*.

The equations (4) and (5) were carefully discussed by C. O. Meyerf, who

shewed that when a, b are given there is only one value of c satisfying (4),

and that, further, a maximum value (viz. "187l)J of ar/27rp occurs for

a=6 = l'71Glc. The Jacobian ellipsoid then coincides with one of Mac-

laurin's forms. This limiting form, which is shewn on the next page, may
be determined by putting

a = b, c- + \ = (a- c"
|

c- = (a
2 c2) -,

* The possibility of an ellipsoidal form with three unequal axes was first asserted by Jaeobi,
" Ueber die Figur des Gleichgewichts," Fogg. Ann., t. xxxiii. p. 229 (1834) [Ges. Werke, t. ii.

p. 17]; see also Liouville,
" Sur la figure d'une masse fluide homogene, en equilibre, et douee

d'un mouvement de rotation," Journ. de VEcole Polytechn., t. xiv. p. 290 (1834).

+ "De aequilibrii formis ellipsoidicis," Crelle, t. xxiv. (1842).

J According to Thomson and Tait this should be -1868. See the table on the opposite page.
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in the second factor of (3). We find

re
whence

1 + 2y _ T! du

vr) 1 + u

13? + 3 3

+ u

cot-^=

= 0,

[chap. XII

(6)

(7)*3 + 14 2 + 3 4

There is only one finite root, viz. = "7171
;
this gives, for the eccentricity

of the meridian, e = *8127.

Since, in the general case, the two ratios a:b :c are subject to the con-

dition (4), there is virtually only one variable parameter, and the Jacobian

ellipsoids form what may be called a '

linear
'

series. The sequence of figures

in the series is illustrated by the following table, computed by Darwin^f*. As
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6oj

a~2.346

39
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It may be noticed that an infinitely long elliptic cylinder may rotate in

relative equilibrium about its longitudinal axis. It is easily proved, with

the help of the formulae (19) of Art. 347 that the angular velocity is

given by

^_ = Job
2ttP (a + by

W

Other Special Forms.

350. The problem of relative equilibrium, of which Maclaurin's and

Jacobi's ellipsoids are only particular cases, has been the subject of many
remarkable investigations, to which only slight reference can here be made.

The case of the annulus was first treated by Laplace f, with special

reference to the theory of Saturn's rings.

The annulus is supposed to be a figure of revolution about the axis of z,

and to possess an equatorial plane of symmetry passing through the origin.

Further, the cross-section is taken to be an ellipse whose semiaxes parallel

to Ox and Oz are a and c respectively. If C be the centre of this section,

we write OC = D
;
and it is assumed that the ratios a/D, c/D are both

small.

Under these conditions, the component attractions at any point in the

substance of the ring are, to a first approximation, the same as if the radius

D were infinite, so that we may write, in accordance with Art. 347 (19),

12 = irp (<z
x- + 7 -) + const., (1)

where a =
oTV ^ =

T"c' (2)

provided the origin of x be now transferred to C. The pressure-equation is,

accordingly, for points of the cross-section,

* =
j * (D + ,y - a +^(j4y+^ + -. (3)

where S denotes the mass of the central attracting body at 0. This may be

expanded in the form

r> S / x ^x2 z2

= (o
2 (D

2 + 2Dx + x2
)
-

irp (a x
2 + j z2

) +
j)\

1 +j)
+

-^]yi~
r

.(4)

*
Matthiessen, "Neue TJntersuchungen liber frei rotirende Flussigkeiten,

"
Schriften tier

Univ. zu Kiel, t. vi. (1859). This paper contains a very complete list of previous writings on the

subject.

t " Memoire sur la theorie de l'anneau de Saturne," Mem. de I'Acad. des Sciences, 1789 [1787]

[Mecanique Celeste, Livre 3me , c. vi.].
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Up is to be approximately constant over the circumference of the section

X2 z~

, + - = \, , (5)
a- c-

the terms in x must cancel, and the coefficients of a? and z- must be in the

ratio of & to a'-. Hence
(o'I> = S, (6)

aud
*fe-s9-*(*

+S ,7>

The former of these equations shews that the period of revolution of the ring
must be that proper to a satellite at the same distance; and the latter may
be written

a>- 2ac(a-c)

2irp (3a-+ c-)(a + c)'
l '

whence it appears that the equatorial diameter of the section must be the

greater.

The expression on the right-hand has a maximum value '1086, cor-

responding to a c = 2*594. Hence for a fluid ring at a given distance from

the central body there is an inferior limit to the density.

Laplace points out that a ring such as we have imagined would be

unstable even if rigid, and must a fortiori be unstable when fluid. It is now

generally held that the constitution of the Saturnian rings is meteoric.

When the central body is absent, or its mass relatively small, the

attraction of the ring at points of its substance must be calculated to

a higher degree of approximation. It easily appears that the cross-section

must be nearly circular, and that the angular velocity must be much less

than in the previous case. It is found that, when S=0,

or a2 /. 8D 5\ ^
2ttP

nearly, provided ajD be small. This may be verified by a method similar

to that of Art. 162.

It has been shewn by Dyson that a ring of this kind would be unstable

for types of disturbance in which the sectional area varies with the longi-

tude, and for such types only. Its tendency would therefore be to break up
int" detached masses.

Darwin has investigated*!
-
in great detail the case of two detached masses

* A slightly different result was given by Matthiessen, I.e. The formula (9) was obtained by

Mme Sophie Kowalewsky, A$tr. Nachr., t. cxi. p. 37 (1885); Poincare, I.e. infra; Dyson, I.e. ante

p. 149. See also Basset, liner. Journ. Math., t. xi. (1888).

t "On Figures of Equilibrium of Rotating Masses of Fluid," Phil. Trans., A, t. clxxviii.

p. 379 (1887).

392
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of liquid rotating in relative equilibrium about their common centre of

gravity like the components of a double star. When the distance between

the masses is large compared with the dimensions of either, the series of

spherical harmonics in which the solution is expressed are rapidly convergent;
but in other cases the approximations become very laborious *.

General Problem of Relative Equilibrium.

351. The question as to the possible configurations of relative equilibrium

of a rotating homogeneous liquid was taken up from a more general point of

view by Poincare, in a celebrated paper-f.

Consider in the first place an ordinary dynamical system of n degrees of

freedom, whose constitution depends on a variable parameter X, the potential

energy V being accordingly a function of the n generalized coordinates

qi,q-2 ,
... qn and of X. The possible configurations of equilibrium corresponding

to a prescribed value of X are determined by n equations of the type

-

;-; ;:T >

and by varying X we get one or more ' linear series
'

of equilibrium con-

figurations. Such a series may be represented by a curve in an n-dimensional

space, of which q1} q2 , ...qn are the Cartesian coordinates.

Again considering small deviations from any equilibrium configuration,

we have
V = cn $qi

2 + CooSqf + ... + 2cl2 hqx% + > ( 2 )

where cu , c^, c12 ,
... are ' coefficients of stability

'

(Art. 167) defined by

Crr
-dq,r

Crs

-~dqrdq8
W

By a linear transformation of the variations 8q1} Bq.2) ...Sqn ,
the ex-

pression (2) can be reduced, in an infinite number of ways, to a sum of

squares ;
but whatever mode of reduction be adopted, the number of positive

as well as of negative coefficients is, by a theorem due to Sylvester,

invariable. The coefficients in the transformed expression may be called

principal coefficients of stability. In order that the configuration in question

may be stable, it is necessary and sufficient that these should all be positive.

As we vary X, the several linear series will remain distinct so long as the

discriminant A of the quadratic form (2) does not vanish, i.e. so long as no

principal coefficient of stability vanishes. But if, as we follow a linear series,

* For a fuller investigation of the problems of Arts. 347-350 reference may be made to

Tisserand, Traite de Mecanique Celeste, Paris, 1889-1896, t. ii.

t " Sur Pequilibre d'une masse fluide animee d'un mouvement de rotation," Acta Math.,

t. vii. p. 259 (1885). See also his treatise: Figures d'equilibre d'une masse fluide, Paris, 1902.
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A vanishes and changes sign for a particular value of \, it appears that the

configuration in question is a 'form of bifurcation,' i.e. it is (as it were) the

meeting point with another linear series. The case may also arise where, as

A, passes through a particular value, two linear series coalesce and then

become imaginary. If the configuration in question does not belong to any
other linear series, we have what is called a '

limiting form
'

of equilibrium,
and it may be shewn that A has different signs in the two series, in the

neighbourhood of the junction. A specially important case is where two

series coalesce and afterwards become imaginary, whilst a third series passes

continuously through the common point.

The foregoing statements may be illustrated by the case of a system of one degree
of freedom*. The positions of equilibrium are given by

IV

a-,=
' ' <4)

which determines one or more values of q in terms of X. If we differentiate with respect
to X, we obtain

.(5)
VVdq c*V

dq* dX^cqcX
This gives, for each linear series, a unique value of dq dX, and so determines the succession

of equilibrium configurations, unless c2
Vcq2 =0. The several series therefore remain

distinct so long as the coefficient of stability does not vanish; but if c-Vcq
2= 0, dq dX is

infinite or indeterminate according as di V/dqc\ is or is not different from zero. In the

former case, two series in general coalesce.

Let us write
3

=*<*,), .(6)

and consider the surface z=<f>(x, y), (7)

where .r, y, z are ordinary Cartesian coordinates. The curve
<f> (x, y) =0 which separates

'J

the parts of the plane xy for which z is positive from those for which z is negative, repre-

sents the various linear series of equilibrium forms. Also the parts of the curve for which

* As a simple example, take the case of a particle free to move in a smooth rigid tube in a

vertical plane, the tube being capable of being set in different positions by rotation about an axis

perpendicular to this plane.
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the gradient dz/dy is positive correspond to stable, and those for which czjdy is negative
to unstable configurations.

The critical points (c
2 V

/ dq
2= 0) correspond to dzicy=0; the tangent-line to the curve

is then parallel to y, or else the point in question is a singular point on the curve. In

the former case, if no other branch of the curve goes through the point of contact, we have

a '

limiting form '

;
and it is evident that there is a change from stability to instability at

this point. This case is represented in the preceding figure, where the two series PA
and QA coalesce in the limiting form A.

If however we have also d2 V/dq d\= 0, or dzjd.v
=

0, we have a singular point. The case

where two series (PA and QA) coalesce and become imaginary, whilst a third series (HAK)
passes through the common point and remains real, is shewn in the following diagram. In

the latter series we have a transition from stability to instability, or vice versa, whilst

the other series are both stable or both unstable in the neighbourhood of A *.

When there are n degrees of freedom, the equations of equilibrium are

dV cV dVc

*=0, S0, ..., ^=0 (8

We may utilize the n-\ equations following the first to determine q 2 ,
... qn in terms

of qx and X. Let us denote the result of substituting these values in the general expression

for Fby ^(^i, X). We have then,

^ = 8Z+ .

ST 8
2?+ +

d_I d^JI (9)

by (8), so that the remaining condition of equilibrium may be written

!-* w
From this we derive

lH<ki + _3V =0 (11)

which shews that the sequence of equilibrium configurations is unique unless d2
\lr/cq{~

= 0.

The rest of the argument is then as before, with
\js

substituted for V. It is easily proved
that the condition d2

ylr/dq1
2= is analytically equivalent to A=0t.

* The case of a simple crossing between two series, both of which are real on either side of

the intersection, may be illustrated in a similar manner.

t The argument is taken, with little alteration, from PoincarS's treatise.
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352. The bearing of these considerations on the theory of relative

equilibrium of a rotating system will be apparent.

In the case of equilibrium relative to a rigid frame which is constrained

to rotate with constant angular velocity a> about a fixed axis, the conditions

are most conveniently considered under the type

4-/
f- t )=o w

where V is the potential energ}-, and T is the kinetic energy of the system
when rotating as rigid in any assigned configuration (qlt q.z , ... qn) : cf. Art. 202.

By varying o> we get the various linear series of equilibrium configurations.

Moreover, if the system be subject to dissipative forces affecting all relative

motions, the condition of secular stability is that V T should be a

minimum.

When, on the other hand, the system is free, the case comes under the

general theory of gyrosteitic systems, and the more appropriate form of the

conditions is

ai<
K+A'>=- <2>

where K is the kinetic energy of the system when rotating, as rigid, in the

configuration (qlf q.2 , ... qH) with the component momenta corresponding to

the ignored coordinates unaltered (Art. 250) ;
and the condition of secular

stability is that V+K should be a minimum. From the present point of

view the only ignored coordinate which we need consider is an angular
coordinate specifying the position in space of a plane of reference in the

system, passing through the axis of rotation and therefore also through the

centre of inertia. The corresponding component of momentum is the angular
momentum about the axis : we shall denote this by k. By varying k we get
the various linear series of equilibrium configurations.

In the case of a rotating liquid, the generalized coordinates q1} q2: ... are

infinite in number, but the theory is otherwise unaltered. Let us suppose,
for a moment, that we have a liquid covering a rigid rotating nucleus. If

the nucleus be constrained to rotate with constant angular velocity, or (what
comes to the same thing) if it be of preponderant inertia, we have the first

form of the problem ;
whereas if the nucleus be free, the second form applies.

The distinction between the two forms disappears when we confine ourselves

to disturbances which do not affect the moment of inertia of the system with

respect to the axis of rotation.

The second form of the problem is from the present point of view the

more important. We pass to the case of a homogeneous rotating liquid by

imagining the nucleus to become infinitely small. In this case the solution

of the problem of relative equilibrium is partially known. We have, first, the
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linear series of Maclaurin's ellipsoids in which, as k ranges from to oo
, a/R

ranges from 1 to oo (Art. 348). Again, we have the two* series of Jacobian

ellipsoids in which, as k ranges from '3Q4tM%R$ to oo
, a/b ranges in one case

from 1 to x
,
and in the other from 1 to 0, where a, b denote the two

equatorial semi-axes (Art. 349). When /c=3Q4<M%Ri
, we have a form of

bifurcation, and accordingly a change in the character of the stability.

353. As a simple application of the preceding theory we may examine

the secular stability of Maclaurin's ellipsoid for those types of ellipsoidal

disturbance in which the axis of rotation remains a principal axisf.

Let a> be the angular velocity in the state of equilibrium, and * the angular momentum.
If /denote the moment of inertia of the disturbed system, the angular velocity, if this were

to rotate, as rigid, would be k'I. Hence

V+K=V+hj(jf=V+^j, (1)

and the condition of secular stability is that this expression should be a minimum. We
will suppose for definiteness that the zero of reckoning of 7 corresponds to the state of

infinite diffusion. Then in any other configuration 7 will be negative.

In our previous notation we have #

I=lM(a*-+ V), (2)

c being the axis of rotation. Since abc= IP, we may write

V+*M(f+b^a
> *

where /(a, b) is a symmetric function of the two independent variables a, b. If we con-

sider the surface whose ordinate is /(a, 6), where a, b are regarded as rectangular coordi-

nates of a point in a horizontal plane, the configurations of relative equilibrium will

correspond to points whose altitude is stationary, whilst for secular stability the altitude

must further be a minimum.

For a= cc, or b= <x>
,
we have f{a, 6) = 0. For =

0, we have 7=0, and/(a, b) x 1/6
2
,

and similarly for 6=0. For a=0, 6= 0, simultaneously, we have /(a, b)
= cc . It is known

that, whatever the value of k, there is always one and only one possible form of Maclaurin's

ellipsoid. Hence as we follow the section of the above-mentioned surface by the plane of

symmetry (a= b), the ordinate varies from oc to 0, having one and only one stationary

value in the interval. It is evident that this value is negative, and a minimum J.
Hence

the altitude at this point of the surface cannot be a maximum. Moreover, since there is a

limit to the negative value of 7, viz. when the ellipsoid becomes a sphere, there is always

at least one finite point of minimum (and negative) altitude on the surface.

* The two series include the same succession of geometrical forms, but are from the present

point of view to be regarded as analytically distinct.

t Poincare\ I.e. For a more analytical investigation see Basset,
" On the Stability of

Maclaurin's Liquid Spheroid," Proc. Camb. Phil. Soc, t. viii. p. 23 (1892).

X It follows that Maclaurin's ellipsoid is always stable for a deformation such tbat the

surface remains an ellipsoid of revolution. Thomson and Tait, Natural Philosophy (2nd ed.),

Art. 778".
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Xow it appears, on reference to the tables on pp. 606, 608, that when <c< -304J/- $, there

is one and only one ellipsoidal form of equilibrium, viz. one of revolution. The preceding

considerations shew that this corresponds to a point of minimum altitude, and is therefore

secularly stable (for symmetrical ellipsoidal disturbances).

When k > - 304i/ L
i?'-, there are three points of stationary altitude, viz. one in the plane

of symmetry, corresponding to a Maclaurins ellipsoid, and two others symmetrically
situated on opposite sides of this plane, corresponding to Jacobian forms. It is evident

from topographical considerations that the altitude must be a minimum at the two

last-named points, and neither maximum nor minimum at the former. Any other

arrangement would involve the existence of additional points of stationary altitude.

The result of the investigation is that Maclaurin's ellipsoid is secularly

stable or unstable, for ellipsoidal disturbances, according as the eccentricity e is

less or greater than 8127, the eccentricity of the ellipsoid of revolution which

is the starting point of Jacobi's series
;
whilst the Jacobian ellipsoids are all

stable for such disturbances*.

The further discussion of the stability of Maclaurin's ellipsoid would carry

us too far. It was shewn by Poincare that the equilibrium is secularly stable

for deformations of all types so long as e falls below the above-mentioned

limit. This is established by shewing that there is no form of bifurcation for

any ellipsoid of revolution of smaller eccentricity. It follows, from the con-

sideration of 'exchange of stabilities,' that Jacobi's series begin by being

thoroughly stable.

354. Poincare has further examined the coefficients of stability of the

series of Maclaurin's and Jacobi's ellipsoids, by the method of Lame's

functions, with the view of ascertaining what members are forms of

bifurcation. He finds that there are an infinite number of such forms, and

consequently an infinite number of other linear series of equilibrium

configurations. In each case it is possible to assign the form of the members

of the new series in the neighbourhood of the bifurcation. The question has

been further discussed by Darwin+
,
and by Poincare himself in a subsequent

paper^.

The case which has attracted most interest is the first bifurcation which

occurs in the series of Jacobi's ellipsoids. According to Darwin t, the critical

ellipsoid is that for which a/R = 1*8858, b R = 8150, c/R - 6507. After this

point Jacobi's ellipsoids are unstable.

* This result was stated, without proof, by Thomson and Tait, I.e.

t
" On the Pear-shaped Figure of Equilibrium of a Rotating Mass of Liquid," Phil. Trans. A,

t. exeviii. p. 301 (1901).

t
" Sur la Stabilite des Figures Pyriformes affectes par une Masse Fluide en Rotation," Phil.

Trans. A, t. exeviii. p. 333 (1901).
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In the annexed figure*, in which the ratios a/c and b/c are taken as

coordinates, the straight line IIAK represents the series of Maclaurin's

ellipsoids corresponding to different values of k; whilst the branches AR,
AS represent those of the Jacobian figures. The point H corresponds to

the case of the sphere, when k ; and the Maclaurin series is stable from

H to A, and afterwards unstable. The points P, Q indicate the stage at

which the Jacobian ellipsoids become unstable. At these points new series

branch off; which are probably in the first instance stable f. The first

* = Siso
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members of these new series have the form shewn in the lower diagrams,,
which are taken from the paper by Darwin just referred to.

The corresponding two-dimensional problem has been discussed by
Jeans*, by a special method.

Small Oscillations.

355. The small oscillations of a rotating ellipsoidal mass have been

discussed by various writers.

The simplest types of disturbance which we can consider are those in

which the surface remains ellipsoidal, with the axis of revolution as a

principal axis. In the case of Maclaurin's ellipsoid, there are two distinct

types of this character
;
in one of these the surface remains an ellipsoid

of revolution, whilst in the other the equatorial axes become unequal, one

increasing and the other decreasing, whilst the polar axis is unchanged. It

was shewn by Riemann-f- that the latter type is unstable when the eccentricity

(e) of the meridian section exceeds '9529. In this investigation frictional

forces are not contemplated, and the criterion is one of
'

ordinary
'

stability.

We have seen (Art. 353) that practically the equilibrium is unstable when e

exceeds "8127. The periods of Riemann's two types of oscillation (when

e<*9529) have been calculated by Love*, who has also discussed the two-

dimensional oscillations (of elliptic type) of a rotating elliptic cylinder.

The problem of small oscillations was treated in a more general manner

by Poincareij. It appears from Art. 206 that the equations of small motion

relative to rotating axes may be written

(1)
du d\fr dv dty dw_ dyfr

dt dx
'

dt
"

dy
'

dt dz
'

where
yjr
= + H - h &r (tf

3 + y% (2)

* " On the Eqnilibrinm of Rotating Liquid Cylinders," Phil. Trans. A, t. cc. p. 67 (1902).

t "
Beitrag zu den Untersuchungen iiber die Bewegung eines fliissigen gleichartigen Ellip-

soides," Gntt. Abh., t. ix. p. 3 (1860) [Math. Werke, p. 192]. See also Basset, Hydrodynamics,
Art. 367. Riemanu also shews that Jacobi's ellipsoids are stable (in the above restricted sense)

for ellipsoidal disturbances.

t
" On the Oscillations of a Rotating Liquid Spheroid, and the Genesis of the Moon," Phil.

Mag. (5), t. xxvii. p. 254 (1889).
" On the Motion of a Liquid Elliptic Cylinder under its own Attraction," Quart. Joum.

Math., t. xxiii. p. 153 (1888).

|j
l.c. ante p. 612.
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if O denote the gravitation potential of the liquid mass. From these, and

from the equation of continuity

du dv dw . ,_.

a5+^
+ &= <3 >

we deduce ^ V-'i/r + 4&>2 ^V = (4)
d 2 T

dz2

If we assume that u, v, w vary as e i<Tt
,
we find

l<r -^- + 2ft) -5*- 2ft) -^- + 1<T -- . - .

da? dv da; dv i d^ ,_ N

o-
2 4&) 2

o-
2 4&)- a oz

and therefore from (3), or immediately from (4),

S +3*^S3- (6)

If we write 1 = t2
, j^t/, (7)

O"-

this takes the form ^ + f^ + ?^ =
(8)

oar oy- oz-

If the equation of the undisturbed ellipsoid be

++$= 1 .' (9)
a- b- c-

the appropriate solutions of (8) are those which involve the ellipsoidal

harmonics corresponding to the surface

ar\ tf- sP
~

/'

which is obtained from (9) by homogeneous strain*.

At the surface (9) we must have p = const., and therefore

"</r
= n-lft)2 2 + 2/

2
) (11)

The potential O of the disturbed form depends on the normal displacement

() at the surface
;
this is connected with

yjr by a relation of the form

7)}"

la + mv + nw = ^ = io-> (12)

where the surface-values of u, v, w are to be taken from (5).

The procedure is then as follows. Assuming that is an ellipsoidal

surface-harmonic relative to (9), the surface-value of 1 is calculated, and

substituted in (11). The resulting surface-value of
yfr

is then expressed in

* It appears that for some types of free oscillation r is imaginary, and the surface (9) con-

sequently a hyperboloid.

3 + 6+35*1. ( 10 )
a- b- c- t
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terms of harmonics relative to the auxiliary surface (10); the corresponding

expression of
yfr

in the interior can then be written down in ellipsoidal solid

harmonics. The condition (12) then gives an equation to determine a
;

it

appears that this equation is always algebraic.

In the case of Maclaurin's ellipsoid the process is somewhat simplified,

the harmonics involved being of the types studied in Arts. 104, 107. This

problem has been fully worked out by Bryan*, who has in particular com-

pleted Riemann's investigation by shewing that the equilibrium is 'ordinarily'

stable for all types of disturbance so long as the eccentricity of the meridian

is less than "9529.

Dirichlet's Ellipsoids.

356. The motion of a liquid mass under its own gravitation, with

a varying ellipsoidal surface, was first studied by Dirichlet+. Adopting
the Lagrangian method of Art. 13, he proposes as the subject of investigation

the whole class of motions in which the displacements are linear functions of

the coordinates. This was carried further, on the same lines, by Dedekind^
and Riemann. More recently, it has been shewn by Greenhill;'. and others

that the problem can be treated with some advantage by the Eulerian

method.

We will take first the case where the ellipsoid does not change the

directions of its axes, and the internal motion is irrotational. This is

interesting as an example of finite oscillation of a liquid mass about the

spherical form.

The expression for the velocity-potential has been given in Art. 110; viz.

we have

*~*$*+\*+\*) <x>

with the condition of constant volume

a b c

* " The Waves on a Rotating Liquid Spheroid of Finite Ellipticity," Phil. Tran*. A, t. clxxx.

p. 187 (1888).

t "
Untersuchungen fiber ein Problem der Hydrodynamik," Gott. Abh., t. viii. p. 3 (1860);

Crelle, t. lviii. p. 181 [Werkc, t. ii. p. 263]. The paper was posthumous, and was edited and

amplified by Dedekind.

X CrelU, t. lviii. p. 217 (1861).

i I.e. ante p. 619.

11

" On the Rotation of a liquid Ellipsoid about its Mean Axis," Proc. Camb. Phil. Soc., t. iii.

p. 233 (1879); "On the general Motion of a liquid Ellipsoid under the Gravitation of its own

parts," Proc. Camb. Phil. Soc., t. iv. p. 4 (1880).
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The pressure is then given by

*-|-o-itf+-#<*x (3)

by Art. 20 (4) ;
and substituting the value of fi from Art. 347 we find

" = ~
* (a

* +
b
y2 +

1 **)

~
7rp (a '^ +^ + 7o*2) + F - ' (4)

The conditions that the pressure may be uniform over the external

surface

& V" z%- + f2
+ ^ = l, (5)

a- b- c-

are therefore

g + 2^) a -
(|
+ 2tt^

)
6* -

(l
+ 27rp7o

)
c
2

(6)

These equations, with (2), determine the variations of a, 6, c. If we multiply
the three terms of (2) by the three equal magnitudes in (6), we obtain

aa + bb + cc + 2irp (a aa + fi bb + y cc) = (7)

If we substitute the values of a
, j3 , y from Art. 347, this has the integral

o ,, .. t ["dX.
a- + o- + c- *irpabc \ j-

= const (8)
J o A

It has already been proved that the potential energy is

F= const. f^TT-p-a-b-c
1

\
.

, (9)

and it easily follows from (1) that the kinetic energy is

T=j%rTrpabc (&* + & + c2
) (10)

Hence (8) is recognized as the equation of energy

T+ F=const (11)

When the ellipsoid is of revolution (a = b), the equation (8), with a?c R\
is sufficient to determine the motion. We find

R
^pjB(l

+
g)d+F=coii8t (12)

The character of the motion depends on the total energy. If this be less

than the potential energy in the state of infinite diffusion, the ellipsoid will

oscillate regularly between the prolate and oblate forms, with a period

depending on the amplitude ;
whilst if the energy exceed this limit it will

not oscillate, but will tend to one or other of two extreme forms, viz. an
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infinite line of matter coinciding with the axis of z, or an infinite film

coincident with the plane xy*.

If, in the case of an ellipsoid of revolution, we superpose on the irrotational motion

given by (1) a uniform rotation f about the axis of ;. the component velocities (relative

to fixed axes) are

The EiUerian equations (Art 6 (2)) then reduce to

w= -
z.

c .(13)

- x ty - 2 - 0/ C'-'
- ~

* 5 ia ^ aw k
p (to dx'

-y+tx+2- Cx-C-y-a-5 k a* * 9
p oy dy

1
ft-_I 9'_

e
(14)

c _ 1 f^i ?Q

c p c:

The first two equations give, by cross-differentiation,

H-*
t

2 = too2
, (16)

which is simply the expression of von Helmholtz' theorem that the '

strength' of a vortex

is constant (Art. 146). In virtue of (15), the equations (14) have the integral

.(15)

--i^-C'W+rVi^-Q+const
17

Introducing the value of Q from Art. 347 (4 ,
we find that the pressure will be constant

over the surface

a*
iV- .(18)

provided (^+
a
*pa -(i

\a*=(*-+2irpyAc
i
. (19)

In virtue of the relation (15), and of the condition of constancy of volume

2- + -= 0, (20)a c
'

this may be put in the form

2da+cc+ 2(f
2 a+fC*)+ 4-pa),d-r2irpyoec=0, (21)

whence 2d2+c2+ 2f
s : -

4jrpa
2c

/

d\

(a*+X) (e+X)

This, again, may be identified as the equation of energy.

In terms of c as dependent variable, (22) may be written

i
=const (22)

^p^{(l+g)^+
2

^
a

%j-rr
= const (23)

*
Dirichlet, I.e. When the amplitude of oscillation is small, the period must coincide with

that obtained by putting n = 2 in the formula (10) of Art. 259. This has been verified by Hick?,

I'roc. Camb. Phil. Soc., t. iv.p. 309 (1883).
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If the initial circumstances be favourable, the surface will oscillate regularly between

two extreme forms. Since, for a prolate ellipsoid, V increases with c, it is evident that,

whatever the initial conditions, there is a limit to the elongation in the direction of

the axis which the rotating ellipsoid can attain. On the other hand, we may have

an indefinite spreading out in the equatorial plane*.

357. For the further study of the motion of a fluid mass bounded by a

varying ellipsoidal surface we must refer to the paper by Riemann already

quoted, and to other memoirs cited below f. We may, however, briefly

notice the case where the ellipsoidal boundary is invariable in form, but

rotates about a principal axis {0z)\.

If u, v, w denote the velocities relative to axes x, y rotating in their own plane with

constant angular velocity a, the equations of motion are, by Art. 206,

Du
Dt a dx dx 1

(1)

1 dp dQ

P

Dv , 1 dp dQ
Dt J

p dy dy'

Dw 1 dp dQ

Dt p dz dz
'

If the fluid have an angular velocity about lines parallel to z, the actual velocities

parallel to the instantaneous positions of the axes will be

a2 -b2

a?-b2

V+ >X"
^2+p (<

~
C) X+ fa

V =0, )

since the conditions are evidently satisfied by the superposition of the irrotational motion

which would be produced by the revolution of a rigid ellipsoidal envelope with angular

velocity < on the uniform rotation f (cf. Art. 110). Hence

(2)

2a2

(-C)y
262

'a2 + 62
(w ()x, w= 0. (3)

*
Dirichlet, I.e.

+ Brioschi,
"
Developpements relatifs au 3 des Recherches de Dirichlet sur un probleme

d'Hydrodynamique," Crelle, t. lix. p. 63 (1861); Lipschitz, "Reduction der Bewegung eines

fliissigen homogenen Ellipsoids auf das Variations-problem eines einfachen Integrals, ...,"

Crelle, t. lxxviii. p. 245 (1874); Greenhill, I.e. ante p. 621; Basset, "On the Motion of a Liquid

Ellipsoid under the Influence of its own Attraction," Proc. Lond. Math. Soc., t. xvii. p. 255 (1886)

[Hydrodynamics, c. xv.] ; Tedone, II moto di un ellissoide Jluido secondo Vipotesi di Dirichlet,

Pisa, 1894.

X Greenhill,
" On the Rotation of a Liquid Ellipsoid about its Mean Axis," Proc. Camb. Phil.

Soc., t. iii. p. 233 (1879).

A more general system of equations relative to moving axes was given by Greenhill, Proc.

Camb. Phil. Soc, t. iv. p. 4 (1880).



356-357] Dedekinds Ellipsoid 625

Substituting in (1), and integrating, we find

p

=(aW (a
-

fj3(^+^+^ (^+^)
- 2^^^ w(f- w)

- Q+WnSt -(4)

Hence the conditions for a free surface are

f 2a262 . . , 2a2
., 1 ,.

= -jrpy c2 (5)

This includes a number of interesting cases.

1. If we put a> = f, we get the conditions of Jacobi's ellipsoid (Art. 349).

2. If we put to= 0, so that the external boundary is stationary in space, we get

{
n^-^w^) ai=

\
vp^~{^W^^^^ (6)

These conditions are equivalent to

(o -/3(,)a'6
2+ >toC (a*-6

2
)=0, (7)

&nd
2Tp

=l^- a-6 (8)

It is evident, on comparison with Art. 349, that c must be the least axis of the ellipsoid,

and that the value (8) of <^,%np is positive.

The paths of the particles are determined by

2a* , . 2ft2 , ...
x
"-5*+pC* *"*+**' z=0

' (9'

whence -r=*a cos <>/+ ), y=l:0 8in(<r*+ c), z=0, (10)

'-rat <>
and X-, c are arbitrary constants.

These results are due to Dedekind*. It is remarked by Prof. Love that as regards

the external form the series of Dedekind's and of Jacobi's ellipsoids are identical.

3. Let C=0, so that the motion is irrotational. The conditions (5) reduce to

f (a*-6*)(
2+36) *\ f (6

2-a)(3a2+62
) ^}r w+w 2^r r w^w ^r -*^ (12)

These may be replaced by

{a (3
2+6)+A(36i+a2

)}a
263 -yo(a

4+6a262+6*)c
2
=0, (13)

and J*. ('+*>' ^-W*
(14)

The equation (13) determines c in terms of a, b. Let us suppose that a>b. Then
the left-hand side is easily seen to be positive for c=cu, and negative for c=b. Hence

*
l.e. ante p. 621. See also Love,

" On Dedekind's Theorem,...," Phil. Mag. (5), t. xxv. p. 40

(1888).

L. 40
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there is some real value of c, between a and b, for which the condition is satisfied
;
and

the value of o> given by (14) is then real, for the same reason as in Art. 349.

4. In the case of an elliptic cylinder rotating about its axis (Art. 349), the condi-

tion (5) takes the form

4a262
, 2

Airpub ,,.,*W+
(^TP?^" C) &TW (1)

If we put co =
,
we get the case of Art. 349 (8).

If w=0, so that the external boundary is stationary, we have

C
"=np

ri(a+ b)>
(l6)

If =o, i.e. the motion is irrotational, we have

, , 6(a'+6)
a

(l7 )

Greenhill, I.e. ante p. 621
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Air-waves, plane, 454, 457 ; spherical, 466 ;

general, 470 ; in two dimensions, 499

due to a vibrating sphere or cylinder, 483,

485, 504

of finite amplitude, 459

effect of viscosity and heat-conduction on,

587, 589

incidence of, on narrow obstacles, or on

screens with narrow apertures, 486,

491, 493, 505

Annulus, liquid, rotating, 610

Apertures, irrotational flow of a liquid through

rectilinear, circular, and elliptic, 69, 130,

137, 145

transmission of sound-waves through small,

492, 507

Atmospheric oscillations, 516

Basin, tidal oscillations in a circular, 268, 275

tides in a rotating, 304, 310

Bessel's Functions, 126, 128, 268, 450, 503 ; of

the ' second kind,' 276, 503

Bifurcation, forms of, 613, 617

Bobyleff's problem, 95

Borda's mouthpiece, 23, 87

Bubble, vibrations of a, 453, 581

Canal, uniform, theory of 'long' waves in,

239, 244, 248
;
waves of finite amplitude,

261 ;
effect of friction, 524

of variable section, 257

Canal-theory of the tides, 252 ;
effect of fric-

tion, 524

Capillarity, 433

Capillary waves, 434

Circular sheet of water, tidal oscillations in,

268; case of variable depth, 274; in-

fluence of rotation, 304, 310

Circulation, defined, 30
; constancy of, in

moving circuit, 195

Clebsch's transformation, 233

Coaxal circles, flow in, 67

Complex variable, 64

Conduction of heat, effect on sound-waves,

589

Confocal conies, flow in, 69

Continuity, general equation of (Eulerian),

4
; (Lagrangian), 13 ; in cylindrical

coordinates, 118 ; in spherical polar

coordinates, 104
;
in general orthogonal

coordinates, 142
;

in ellipsoidal coor-

dinates, 144

Critical velocity in turbulent motion, 592, 601

Curved stratum of liquid, irrotational flow,

100

Curvilinear coordinates, 78, 141

Cyclic motion in multiply-connected spaces, 48

Cylinder (circular) moving in a frictionless

liquid, without and with circulation

round it, 72, 75 ; rotating in viscous

liquid, 546

(elliptic) moving in frictionless liquid, trans-

lation and rotation, 78, 84

Cylindrical harmonics, 126, 128
; expansions

in terms of, 127

Dead-water resistance, 354, 392

Dedekind's ellipsoid, 625

Determinateness, conditions of, 39, 198, 473

Diffraction or scattering of sound-waves, 486,

491, 505, 509, 514

Dirichlet's ellipsoids, 621

Discontinuities at wave-fronts, 498

Discontinuous motions, 97 ; instability of, 358 ;

obliterated in a viscous fluid, 560

Disk (circular), moving in a frictionless liquid,

131, 137; steady motion of, in a viscous

liquid, 556

(elliptic) moving in a frictionless liquid, 147

Dissipation a minimum in slow steady motion

of viscous liquid, 556

Dissipation -function, 528, 541
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Dissipation of energy by viscosity, 540, 556,

586

Dissipative systems, general theory of, 521,

528

Distortion of a fluid element, 29

Divergence of a vector-field, 42

Eddies, 592

Edge-waves, 423

Efflux, of liquids, 21; of gases, 23

Elasticity of volume, 454

Electromagnetic analogies, 191, 209

Electromagnetic rotation, 27

Ellipsoid, Maclaurin's, 604; Jacobis, 607;

Dirichlet's, 621; Dedekind's, 625

Ellipsoid moving in a frictionless liquid, 134,

135, 137, 139, 140, 146, 14S ; in a vis-

cous liquid, o')i

Ellipsoidal harmonics, 132, 136, 140

Ellipsoidal mass of liquid rotating under its

own gravitation, 604

Ellipsoidal shell, irrotational motion of liquid

in a rotating, 140

Elliptic coordinates, 78

Elliptic cylinder in frictionless liquid, circula-

tion round, 69

motion due to an. 78, 84

Energy, equation of, 8, 19 ; dissipation of, 540,

556, 586

Energy, of irrotationally moving liquid, 44

of long waves, 246; of vortex-systems
of surface waves, 351; of air-waves, 458,

468, 472

dissipation of, see Dissipation

Equation of continuity, see Continuity

Equations of motion, of frictionless fluid, 3,

12 : of viscous fluid, 538

of solids in a frictionless liquid, 157, 176,

185, 187

Equilibrium (relative) of a rotating mass of

liquid, 602

Exchange of stabilities, 614

Expansion, denned, 5

and rotation, velocities expressed in terms

of, 199

Expansion, waves of, see Air-waves

Finite amplitude, waves of, on water, 261, 392,

395, 398, 402; in air, 459

Finite oscillations of a liquid mass about the

spherical form, 621

Fish-line problem, 445

Flapping of sails and flags, 359

Flow, defined, 30

Flux, defined, 36

Forced oscillations, 237 ; of a rotating system,
299

Fourier's theorem, 364

Free oscillations, 236; of a totating system,

298

Friction, effect of, on tides, 524

Generalized coordinates, 174

Gerstner's waves, 395

Globe, oscillations of a liquid, 428

Globule, vibrations of a, 451 ; with friction,

581

Grating, reflection and transmission of sound-

waves by a, 509, 514

Green's theorem, 41 ; Kelvin's extension to

cyclic regions, 52 ; Helmholtz' exten-

sion to sound vibrations, 474

Group-velocity (of waves), 360, 363, 435, 438

Gyrostatic systems, equations of motion of,

186 ; small oscillations of, 294 ;
with

friction, 508

Hamiltonian principle, 177

Harmonic analysis of tidal observations, 342

Harmonics, spherical, 102 ; cylindrical, 126 ;

ellipsoidal, 132, 136

Helicoidal solid moving in frictionless liquid,

163, 169

Highest waves on water, 394

Hydrokinetic symmetry, 161

Ignoration of coordinates, 185

Image, of a double source, in a sphere, 120 ;

of a vortex-ring, 229

Impulse, of a solid moving in a frictionless

liquid, 152, 155

of a vortex-system, 208

Impulsive motion, 11, 16, 113

Djertia-coeflicients, of a cylinder, 72 ; of a

sphere, 115 ; of an ellipsoid, 147 ; general,

154
;
in cases of symmetry, 161

Instability, of surfaces of discontinuity, 358 ;

of linear flow of a liquid in a pipe, 592

Irreducible circuits, 47

Irrotational motion, general theory of, 28,

32; in cyclic spaces, 48; in two di-

mensions, 62

of a liquid mass with a free ellipsoidal

boundary, 625

Jacobi's ellipsoid, 607

Jets, theory of, in two dimensions, 85

capillary phenomena of, 448, 449

Kelvin's theorem of minimum energy, 45, 54

Kinematic coefficient of viscosity, 536

Kinetic energy, of an irrotationally moving

liquid, 44, 54, 63, 118; of a solid

moving through a liquid, 155, 172,

183 ; of a vortex-system, 208, 210, 217,

225
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Kinetic stability, 298, 337

Kineto- statics, 188, 190

Kirchhoff's integral of the general equation

of sound, 477

Lagrangian equations in generalized coordi-

nates, 176, 182

Lagrangian equations of fluid motion, 12

Lamina, impact of a frictionless stream on

a, 91, 93, 95

Laminar motion, 29 ; in viscous liquids, 558,

560, 561

Laplace's tidal problem, 312

Limiting form of relative equilibrium of a

rotating liquid, 613

Limiting velocity, 21

Lines of motion, see Stream-lines

Maclaurin's ellipsoid, 604

Minimum energy, Kelvin's theorem of, 45, 54

Minimum velocity of water-waves, 437

Modulus of decay, 522 ; of water-waves, 564,

566 ; of air-waves, 589

Moving axes, motion of a solid referred to,

157, 170

Multiply-connected regions, 47

Newtonian velocity of sound, 456

Normal modes of oscillation, 237 ; of water

in rectangular and circular tanks, 418
;

in a channel of uniform section, 419,

421, 422, 424 ; of air in a spherical or

cylindrical envelope, 480, 503

Obstacles, scattering of sound-waves by, 486,

491, 507

Oil, effect of a thin film of, on water-waves,

570

Orbits of particles in water-waves, 346, 349,

396

Ordinary stability, 298, 337

Orthogonal coordinates, 141

Orthomorphic projection, 65, 100

Oscillating plane in viscous fluid, 560

Oscillations, see Small oscillations, and Waves

Pear-shaped figure of equilibrium of a ro-

tating liquid mass, 618

Pendulum, oscillating in air, 485, 497 ; im-

pact of air-waves on, 486 ; in viscous

liquid, 583

Periodic motions in a viscous fluid, 558

Periphractic regions, 38

Permanent type, waves of, on water, 398,

402; in air, 460, 463

Physical equations, 6, 433, 589

Pipe, flow of viscous liquid in, 543, 545 ;

turbulent motion in, 592

Poiseuille's experiments, 544

Pressure-equation in irrotational motion, 18 ;

in steady irrotational motion, 19

Pressures on solid moving through a friction-

less liquid, 158

Prismatic vessel, irrotational motion of a

liquid in a rotating, 81

Progressive waves, tidal, 242
; on deep water,

347; in air, 455

Reflection of water waves, 247

and transmission of air-waves by a grating,

509, 514

Relative equilibrium, general conditions of,

615 ; linear series of configurations of,

615

Resistance, hydrodynamic, in a frictionless

liquid, 93, 94 ;
in a viscous fluid, 553

due to the generation of waves, 391, 418

Retardation and acceleration of tides by inertia,

334
; by friction, 524

Revolution, solid of, moving in frictionless

liquid, 164, 167, 168

Ring moving in frictionless liquid, 173

Ripples and waves, 437

Rotating liquid, 24, 25

Rotating dynamical system, small oscillations

of a, 293

Rotating sheet of water, tides on, 301

Rotation of a fluid element, 29

Rotation of a liquid mass under its own at-

traction, 602

Rotational motion, 193

Scattering of air-waves by spherical and other

obstacles, 486, 491, 505, 506

Schwarz' method of conformal representation,

86

Secular stability, 297, 615

Ship-waves, 412, 416

Simple source of sound, 474

Simply-connected regions, 35

Skin-resistance, 594

Slipping, resistance to, at the surface of a

solid, 537, 544

Small oscillations, 235 ;
of a gyrostatic system,

298 ;
of a dissipative system, 529

of a rotating ellipsoidal mass of liquid, 619

Smoke-rings, 228

Solids, moving in frictionless liquid, 150 ;
with

cyclosis, 170

Solitary wave, Scott Russell's, 398

Sound, velocity of, 456

Sound-waves, see Air-waves

Sources and sinks, in irrotational motion, 55,

119

Sources of sound, simple, and double, 474

Speed of an oscillation, defined, 237
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Sphere moving in frictionless liquid, 114, 130;

inertia-coefficient of, 115

in viscous fluid, steady motion, 552
;
oscil-

latory motion, 582

Spheres, motion of two, in frictionless liquid,

122, 124, 181

Spherical globe of liquid, free and forced os-

cillations, 428, 431 ; influence of vis-

cosity, 579

Spherical sheet of water, tidal oscillations of,

286, 290

Spherical harmonics, 102 ; zonal, 105 ; tesseral

and sectorial, 110
; conjugate property

of, 110 ; expansions in terms of, 111,

486

application of to sound-waves, 478, 496 ; to

steady and periodic motions of a viscous

fluid, 548, 571

Spherical vortex, Hill's, 231

Stability, theory of ordinary and secular, 297,

337

of a solid moving in frictionless liquid, 159,

167, 168 ; of a cylindrical vortex, 218 ;

of a jet, 450, 451

of the ocean, 336

of a rotating mass of liquid, 615 ; of a

rotating annulus, 611 ; of Maclaurin's

and Jacobi's ellipsoids, 616, 617

Standing waves on deep water, 346 ; see also

Normal modes

Steady motion of a frictionless liquid, 18 ; with

a free surface, 85 ; general conditions

for, 229

of a viscous fluid, 542, 546, 548

of a solid in a frictionless liquid, possible

types of, 158, 159, 168 ; stability of,

159, 167, 168

of a solid of revolution, 168

Stokes' theorem, 117

Stream-function, Lagrange's, 60
; Stokes', 117,

119

Stream-lines, 17 ;
in two dimensions, 61

of a circular cylinder, 73, 74, 75; of an

elliptic cylinder, translation and rota-

tion, 79 ; of a sphere, 121
; of a circular

disk, 138 ; of a vortex-pair, 214 ; of a

vortex-ring, 224
;
of a spherical vortex,

232
; of standing waves on deep water,

347 ; of a sphere in viscous liquid,

553

Stresses in a viscous fluid, 532

Surface-conditions, 7, 433

Surface-distributions of sources, 56, 58, 575

Surface-disturbance of a stream, 378, 379, 386,

440

Surface-energy and surface-tension, 433

Surfaces of discontinuity, see Discontinuous

motions

Surface-waves, 344

due to a localized disturbance, 364, 371 ;

due to a local periodic pressure, 374, 410 ;

due to a progressive disturbance, 378,

379, 386, 412, 442, 445

of finite height, 392, 395, 398, 402

Symmetry, hydrokinetic, 161

Tangential stress, 533

Tension, surface-, see Capillarity and Surface-

tension

Terminal velocity of sphere falling in viscous

fluid, 554

Tidal waves, defined, 235

in uniform canal, 239, 244, 248 ; in canal

of variable section, 257 ;
on open sheets

of water, 265, 267 ; on a spherical ocean,

286, 290

on a rotating sheet of water, 301

of finite height, 261

Tide-generating forces, 339

Tides, diurnal, 323, 332; semi-diurnal, 324,

332 ; long-period, 315, 319, 329 ; spring-

and neap-, 335 ;
of second order, 265

equilibrium theory of, 340

on a rotating globe, 312
; Laplace's theory,

314; Hough's theory, 329

effect of friction on, 524

Torsional oscillations of a sphere in viscous

fluid, 582

Trochoidal waves, 393, 397

Tube, flow of viscous fluid in a, 543, 545 ;

critical velocity, 592

Turbulent motion, 591 ; critical velocity in a

pipe, 592; theory of Reynolds, 597

Vectors, polar and axial, 32

Velocity-potential, defined, 15 ; kinematical

property of, 17 ; persistence of, in

frictionless fluids, 15, 33; mean value

of, over a spherical surface, 37, 474 ; in

simply and multiply connected spaces,

35, 49

of an isolated vortex, 202

Vena contracta, 22, 89, 91

Viscosity, 532
;
stresses due to, 533 ; coefficient

of, 535

of gases, 586
;
effect on sound-waves, 587

Viscous fluid, equations of motion of, 538

steady motion of, 551
; periodic motion of,

558, 571, 584

flow between parallel plates, 542; through
a narrow tube, 543, 545

steady motions of a sphere and of an el-

lipsoid in, 551, 554

pendulum oscillating in, 583

Vortex-lines and filaments, 193; vortex-sheet,204

Vortex-pair, 213
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Vortex-rings, 221
; mutual influence of, 228 Wave-patterns, due to a progressive disturb-

Vortices, motion due to isolated, 201, 202 ance, 412, 446

persistence of, in frictionless liquid, 195 Wave-propagation in one, two, and three di-

rectilinear, 211
; cylindrical, 218, 219, 231 ; mensions, 241, 276, 279, 347, 406, 409,

circular, 221
; spherical, 231 455, 471, 500

Wave-resistance, 391, 418

Water-waves, effect of viscosity on, 563, 564 ; Waves, see Air-waves and Water-waves

effect of oil on, 570 Weber's transformation, 13

see also Capillary waves, Surface-waves, Wind, action of, in generating water-waves,
Tidal waves 568
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