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PREFACE 

Continuing in an uninterrupted manner since 1956, the biennial symposia on naval 

hydrodynamics convened for its Eighth Symposium, August 24-28, 1970 at Pasadena, 

California. This conference was jointly sponsored by the Office of Naval Research, the 

Naval Undersea Research and Development Center, and the California Institute of 

Technology. 

The technical program in this series is traditionally structured about a limited num- 

ber of topics of current interest in naval hydrodynamics. In the case of the Eighth 
Symposium, “‘Hydrodynamics in the Ocean Environment’’ was selected as the focal theme 

not only because of the present widespread research interest and activity in this subject 

but also in recognition of 1970 as the inaugural year of the ‘International Decade of 

Ocean Exploration.” This motif for the Eighth Symposium was also aptly reflected in 

the banquet address to the participants by Rear Admiral O.D. Waters, USN, then Ocean- 

ographer of the Navy. 

The organization and management of a meeting of this magnitude requires the atten- 

tion and energy of a large number of people over a long period of time. To Dr. Harold 

Brown, President of the California Institute of Technology, to Captain Charles Bishop, 

Commander, Naval Undersea Research and Development Center, and to all the various 

members of their organizations who contributed in many different ways to the success 

of the Eighth Symposium, the Office of Naval Research is deeply indebted, and to them 

we extend our heartfelt gratitude and appreciation for a job well done. It is particularly 

appropriate, however, to acknowledge the specific roles of Professor Milton S. Plesset and 

Professor T.Y. Wu of the California Institute of Technology and Dr. J. Hoyt of the Naval 

Undersea Research and Development Center who as a group carried the lion’s share of 

the responsibility for the detailed planning and day-to-day management of the Eighth 

Symposium. We take special pleasure in acknowledging the invaluable assistance of Mrs. 

Barbara Hawk, secretary to Professor Plesset, who in a most gracious and efficient man- 

ner carried out a multitude of important tasks in support of the Symposium. In addition, 

Mrs. Hawk, together with Mrs. Alrae Tingley, were responsible for the preparation of the 

typescript which was used in the publication of these proceedings. Mr. Stanley Doroff of 

the Office of Naval Research played his usual critical role, participating actively in every 

aspect of the planning and execution of the arrangements for the Eighth Symposium. 

feb bg u~ 
RALPH D. COOPER 

Director, 

Fluid Dynamics Program 

Office of Naval Research 
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ADDRESS OF WELCOME 

Rear Admiral C, O. Holmquist 
Chtef of Naval Research and Assistant 

Oceanographer for Ocean Science 

I am pleased to welcome you to the Eighth International 
Symposium in Naval Hydrodynamics. This is a symposium sponsored 
every other year by the Office of Naval Research, with the objective 
of bringing together the leading investigators in the field of hydro- 
dynamics research throughout the world. 

ONR has held many international meetings during the nearly 
quarter-century of its existence. This is in line with its charter 
issued by Congress, which includes the responsibility to disseminate 
information on world-wide trends in research and development. It 
is for this reason, for example, that we have a branch office in 

London. 

This series of meetings, however, has a unique characteristic. 
Every other meeting is held outside the United States. Two years 
ago we met in Rome, and two years from now we plan to hold this 
symposium in another country. This stimulates attendance by non- 
U.S. participants. 

This year we welcome to the United States a number of dis- 
tinguished researchers in the field of hydrodynamics. As you have 
noted in your program, you will hear papers read by scientists 
from institutions as far away as Australia. The information made 
available through this international meeting will not only provide the 
U.S. Navy with new ideas for significantly improving its ship designs 
but also a pool of knowledge that will stimulate international coopera- 
tion in science, The Navy has already received important benefits 
from an exchange of research data with other countries. 

In regard to this symposium, ONR owes a great deal both to 
the Naval Undersea Research and Development Center and the 
California Institute of Technology, who have joined together to serve 
as hosts. We appreciate very much their efforts in arranging this 
meeting and providing the excellent facilities. 

I might add as a personal note that I am delighted to have this 
opportunity to return to the Cal Tech campus, where I studied for 

my doctorate in the early 1950's. Since my field is aeronautics, I 

xi 



cannot pose as an expert in hydrodynamics, although I am sure you 
recognize that the two fields have similar and related problems. In 
fact, in ONR we label our program Fluid Dynamics, with part of this 
program dealing with hydrodynamics and part with aerodynamics. 

Aside from serving as co-hosts, both Cal Tech and NURDC 
have made major contributions to the work in hydrodynamics, some 
under ONR sponsorship. For some time Cal Tech has been studying 
a problem of critical concern to the Navy. This is the damage 
caused to propellers and other vital components by cavitation. 
Theoretical and experimental investigations on basic problems in 
fluid mechanics conducted here are assisting naval engineers in 
solving cavitation damage problems. At the same time, this work 
is adding to our knowledge of the phenomenon known as supercavita- 
tion, which has led to the development of supercavitating propellers 
and hydrofoils resulting in increased speed of specialized naval 
vehicles. 

A major program at NURDC sponsorship promises not only 
to reduce drastically drag resistance during turbulent flow but also 
to reduce the flow noise which frequently interferes with sonar 
operations. I am referring to the use of polymer additives which 
when injected into the boundary layer of water promises to give naval 
vehicles the capability of burst speed. 

At present NURDC is engaged in achieving a complete under- 
standing of the mechanism of the drag and noise reduction properties 
of dilute solutions of polymer additives. This will give us a firm 
technical basis for predicting what extent we can achieve drag re- 
duction and flow-noise suppression on Navy vehicles. 

Research in hydrodynamics is carried out under contract to 
ONR at a variety of academic and at industrial organizations and at 
naval laboratories and field stations. Typical of the universities 
participating in the program are Stevens Institute, the Massachusetts 
Institute of Technology, Stanford, University of California, Harvard, 
Florida State, and Michigan in addition to Cal Tech. Industrial 
organizations include Hydronautics, Inc., and LTV Research Center 
and the Ampex Corp. Our in-house work in addition to NURDC is 
performed at the Naval Ship Research and Development Center, the 
Naval Research Laboratory, the Naval Ordnance Laboratory and the 
Naval Postgraduate School in Monterey, California. 

Each of these three elements -- the university, industry and 
the Navy laboratory -- have a unique contribution not only to the 
Navy's fluid dynamics program but to Navy research and development 
in general, Universities provide us with the more fundamental data 
on which all good technology is based. Industry has special know- 
how in producing test beds and experimental hardward needed to 
prove our theories. The Navy laboratory provides in one location 
theoretical scientists working with naval engineers and naval officers 
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who have an intimate understanding of the Navy's operational prob- 
lems. 

As an example of what this combination can produce, we have 
developed computer programs to predict the coupled motions of 
heave and pitch for surface ships operating in a seaway. The input 
information that is used consists of ship geometry, forward speed, 
and a stochastic description of the sea state. Another computer 
program simulates the launch perturbations of a torpedo leaving a 
moving submarine. This provides a relatively inexpensive method 
for determining the operational limitations during launch, an insight 
into how launch problems can be solved, and tool for the design of 
future submarine weapon systems. 

The research process is continuous and complex, and it is 
rarely, if ever possible, to label a new discovery as the product of 
one individual or even one institution. Research has to be coopera- 
tive, and we can achieve the most by cooperating on an international 
scale. As this meeting indicates, ONR and the Navy subscribes to 

that objective. Iam sure that all of us are faced with the problem 
of producing the maximum amount of significant research results 
with a minimum of funds and manpower, so that we should all benefit 
from a mutual sharing of our knowledge. 
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ADDRESS AT THE SYMPOSIUM BANQUET 

Rear Admiral O. D. Waters, Jr. 
Oceanographer of the Navy 

Mr. Chairman, distinguished foreign guests, geniuses in 
residence, Ladies and Gentlemen: 

It is both an honor and a pleasure to be given an opportunity 
to speak here tonight to the delegates to the 8th Symposium on Naval 
Hydrodynamics. 

It is obviously an honor for a mere sailor to be invited to 
talk to so erudite an audience and under such distinguished sponsor- 
ship as the California Institute of Technology, the Office of Naval 
Research and the Naval Undersea Research and Development Center. 

It is a particular pleasure since it is not often the wheel of 
fortune stops right on your number and you get invited to speak just 
fifty miles from the birthplace of a brand new grandchild. 

I believe it's customary about here for a visiting speaker to 
tell a condescending joke about California smog but since most of you 
read the newspapers you know that we on the East Coast are now 
living in a glass house where that subject is concerned. After all, 
when it gets to the point where you can no longer see the National 
Capital from the top of the Washington Monument you can't pass it off 
any longer as a morning haze. 

In any case I arrived here by way of Alaska where most of 
the country's current supply of fresh air seems to be stockpiled so 
my lungs are back in pretty good condition. 

This subject of smog and pollution in general reminds me that 
an acquaintance recently told me of an opinion poll he claimed had 
been taken among American Indians. Only 12% of them, he said, 
felt we should get out of Vietnam, but 88% thought we should get out 
of North America. 

I originally intended to say a few kind words about the sponsors 
of this annual event but changed my mind. Anything about the valuable 
work that has been done in oceanography and many related fields by 
the Office of Naval Research and the Naval Undersea Research and 
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Development Center (our chief semanticist had us remove the nasty 
word warfare from their title) would come under the heading of 
bragging about a relative. And after bringing myself up-to-date on 
the history of the California Institute of Technology I felt there was 
just nothing I could say. Even an amateur of science who walks 
across a campus where such men as Millikan and Michaelson once 
tarried to think, feels as an art lover must feel when he walks ona 
stone bridge across the Arno where Leonardo once set his mighty 
sandal. The debt the nation and the Navy owe this Institute is beyond 
all calculation. 

The point was adroitly made, I thought in a booklet about Cal 
Tech that Dr. Plesset was kind enough to send me. The booklet 
contained a picture of a man on a bicycle as an illustration of the 
Institutes recreational opportunities. The man on the bicycle who 
was unidentified in the caption, was Einstein. 

Dr. Plesset also provided me with a program of Symposium 
events and I ran through it looking for a possible clue as to what I 
should choose as atopic. Several arresting items caught my eye. 
Listed was a paper on "The Second-Order Theory for Nonsinusoidal 
Oscillations of a Cylinder in a Free Surface." Another was on 
"Three Dimensional Instabilities and Vortices between two Rotating 
Spheres," and another on "Interaction between Gravity Waves and 
Finite Turbulent Flow Fields." 

Well, I know when I'm out of my league so I decided to just 
make a few First Order remarks on the mission of Navy Oceano- 
graphy and how it is organized. 

First a definition. Hydrodynamics is not generally considered 
to be oceanography but then neither specifically is anything else. 
Oceanography as we use it is just an omnibus word for any scientific 
or engineering discipline as it applies to the oceans. 

It is nothing new. In the American Navy it goes back at least 
to our pre-civil war patron saint, Lieutenant Matthew Fontaine 
Maury, who used his knowledge of winds and currents to help the 
clipper ships set their famous world speed records. In Great Britain 
it goes back to the famous voyage of the HMS CHALLENGER. 
Benjamin Franklin took a lively interest in it and so did Aristotle. 

But modern oceanography in the Navy dates from the christen- 
ing of the NAUTILUS and the nuclear missile submarines that followed 
it. Warfare had suddenly become truly three-dimensional. The new 
mission of Navy oceanography was to see to it that the Fleet was 
given the information it had to have to insure its ability to operate 
efficiently in this new and deadly area of underseas warfare. 

Before I tell you how we went about this let me say a few 



words about the broader aspects of oceanography. In the Navy we 
consider it as our field of special competence and we are entrusted 
with close to half the Federal budget -- or about 210 million dollars 
in this current year of fiscal austerity. 

Work in the entire field however is carried on at three levels. 

First there is the National effort. This involves industries 
like the oil business -- 15% of our oil already comes from under- 
water -- and the fishing industry where our annual catch can be 
greatly increased with a better understanding of the ocean currents 
and temperatures, which influence the distribution of fish -- and the 
growing aquatic recreation field where beach erosion, the character 
of marine life, the most efficient design of boat hulls and other 
oceanographic factors are most important. 

The next area is the Federal effort. There are close to 
thirty major Federal agencies concerned with oceanography to some 
degree. The Department of the Interior in fisheries. The Food and 
Drug Administration in medicine from the sea. And the Coast Guard 
with a variety of oceanographic interests -- to mention just a few. 
This Federal effort is now being examined from an organizational 
standpoint. The President has recommended and the Congress is 
considering a broad new plan to streamline this effort under unified 
executive direction. 

This brings me to the third area of oceanography, the military 
aspects, for which the Navy, quite logically, is the Defense Depart- 
ment agent. 

Our job of controlling the seas for defense requires that Navy 
have the broadest program in scope in the Federal Government. 

To avoid duplication of effort and give us a clear-cut chain 
of command we put all of our efforts under the technical direction of 

the Oceanographer of the Navy. 

For organizational efficiency the program was set up in four 
divisions. These divisions are Ocean Engineering and Development, 
Ocean Science; Operations, and Environmental Prediction Services. 

Our newest and fastest developing area is Ocean Engineering 
and Development. Seven major efforts are included here: undersea 
search and location; submarine rescue and escape; salvage and 

recovery; diving; instruments for survey and environmental pre- 
diction; and underwater construction. We have allocated 57 million 

dollars for these programs this year. 

Our first rescue vessel, the DSRV-I , which can be equipped 
also for survey work was launched recently at San Diego. Our first 
nuclear deep submersible, the NR-I, has already completed its 
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early tests, and is currently undergoing some changes including 
improvements to its main propulsion system. The DSRV-II will be 
ready soon for launching. Our goal with these vehicles and their 
attendant systems is a capability of rescuing personnel down to 
submarine crush depth. They will be made available on request to 
other governments and some are already making the necessary modi- 
fications required for utilizing their services. 

Our first nuclear propelled deep sea vehicle the NR-I, has 
done some bathymetric work during her sea trials and is undergoing 
continuing tests to determine the limits of her capabilities. 

We are working on a Large Object Salvage System (LOSS). 
The goal is to develop a capability of bringing up a submarine intact 
down to a depth of 850 feet. 

An extension of the engineering effort is our Deep Ocean 
Technology or DOT program designed to anticipate the multiplying 
requirements of the pioneering technology. 

For instance we are well past the blue print stage on our 
proposed Deep Submergence Search Vehicle (DSSV) designed to 
operate to a depth of 20,000 feet -- a depth that accounts for 98% 
of the ocean floor. 

An immediate concern is with new power packs. The old 
style batteries just can't give us either the speed, power or endurance 
now required. We need electrical systems that will operate in salt 
water and we are working on thermochemical power sources. We 
are currently sponsoring a design competititon between two firms in 
this area. It is a long range item that already shows promise. 

Our new machines with all of the improvements we are 
achieving are no better than the skills of the men who operate them. 
To make the point by hyperbole, if I had only a dollar to spend I would 
spend 95 cents on training and equipping men and 5 cents on the hard- 
ware. So the whole engineering effort is concerned with extensive 
bio-medical work, particularly in relation to deep saturation diving. 

We are already working deeper than 600 feet in the open sea 
and 1,000 feet experimentally. We are hoping to go to 2,000 feet, 
perhaps 3,000 feet before we are through. 

This means we need more and more bio-medical data for 
equipment design and for shaping the selection, training, operational 
use and health care of our aquanauts and undersea vehicle pilots. 

We are taking the field of underwater medicine from its 
rather narrow corner as an occupational sub-specialty, for its 
scope transcends its size in at least three important ways. First, 
it has forced us to study the effects of pressure on living systems, 
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a study neglected in biology as compared with other fields of science 
and one which promises to advance the understanding of normal pro- 
cesses. Second, it is an important confluence of the rapidly mixing 
disciplines of biology and engineering. And finally, it is the keystone 
to safe and effective utilization of a growing number of underwater 
systems. 

Our second field, first really in long-range importance, is 
science. 

The primary objective is to provide the basic knowledge 
needed in all our programs. About 75% of this effort is directed 
toward anti-submarine warfare particularly in studies of the behavior 
of sound underwater, as sound is our only practical method of de- 

tecting a potential underwater enemy. Much of this work is done 
under contract with academic and non-profit institutions such as 
Cal Tech where we can pick the brains of hundreds of the nations top 
scientists. Engineering, of course, comes in here to provide and 
equip the platforms that our research scientists need to work from 
-- ships, deep submersibles, flip type vessels that can stand on 
their head, surface and subsurface buoys, airplanes, satellites, 

even a floating ice island. 

Next our Operations effort. It functions in direct support of 
the Fleet. In addition to much else, including various world-wide 
surveys, it carries out duties imposed on us long ago by law to pre- 
pare and disseminate charts and publications necessary for naviga- 
tional safety both for Navy ships and for the Merchant Marine. 

In support of this program is our Environmental Prediction 
section which operates as an undersea weather bureau to forecast 
those changes within the waters of the ocean that affect our opera- 
tions, In this field we work very closely with the Fleet Numerical 
Weather Center. 

Despite our concentration on our primary defense mission, 
the Navy program is necessarily a broad one -- the broadest in the 
Federal program -- for the seas are our domain -- and we must 
know and understand everything we can about them -- the animal 
life that abounds in them, the nature of the ocean waters, their 

circulation, the character of the bottom, and much else. 

Thus many of the things we must learn and study are of 
interest to others, in the government, including foreign governments, 
in the academic world, in industry. I am proud to report that the 
Navy takes part in many cooperative programs in such fields as 
fisheries, oil and minerals from the sea, wave predictions, and 

others. We strongly support this phase of our program because as 
taxpayers it gives us a feeling of accomplishment to see federal tax 
dollars doing double duty. I will give just two examples. 
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A friendly neighbor, Iceland, asked for help when they 
realized that herring, which make up 90% of their export products, 
were going to be difficult to find this last season. The herring 
migrate from Norway and stop off at the East Coast of Iceland when 
they reach the cold edge of the Greenland current. When this current 
meanders or changes its location, as these ocean currents are likely 

to do, it may divert the fish away from their normal grounds near 
Iceland, as happened recently. We diverted an ice patrol plane with 
a heat measuring sensor long enough to find the cold wall of the 
current. And sure enough there were the herring. We are planning 
now to help Iceland develop its own capability for this kind of work. 

We are also providing technical help in harbor improvement 
programs for several South American countries, and we are running 
annual courses on oceanography and hydrography for foreign 
students. 

We opened our files on ice reconnaissance and trained some 
people and also provided an on-board oceanographer to the owners 
of the great new tanker the MANHATTAN, which has recently 
successfully navigated the Northwest Passage. Free passage of this 
once impassable channel should prove to be an invaluable national 
asset both from an industrial and a strategic viewpoint. 

Recognition of the importance of oceanography and hydrography 
to present day and future naval operations, coupled with a concern 
for the availability of technically competent naval officers within 
these areas, has caused us to establish a new Special Duty Officer 
category. It will consist of approximately 140 officers of ranks 
Ensign through Captain. Promotion opportunities are equal to that 

of'an Unrestricted Line Officer. 

Inputs to the specialty at the Ensign level will come from the 
Naval Officer Candidate School at Newport, R. I., and the Naval 

Reserve Officer Training Corps Contract Units. Applicants must 
have a degree in oceanography, or in another field of earth science, 
physical science, marine science or engineering (with emphasis 
on survey engineering for hydrography or ocean engineering for 
oceanography); must have completed mathematics through calculus 
plus one year of college physics and chemistry; and should have a 
B average or better in mathematics, physical science and engineer- 
ing courses. Graduates of the U. S. Naval Academy and the Naval 
Reserve Officer Training Corps Units (regular students) may apply 
after approximately three years active duty. 

The first three years of commissioned service will consist of 
a tour of sea duty on an oceanographic or hydrographic survey vessel 
and a shore duty tour at a naval facility involving application of 
oceanographic information to naval operations. Subsequent tours 
may include management of research and development projects, 
oceanographic forecasting, mapping, charting and geodesy, instructor 



duty, and administration of various areas of the Navy's Oceanographic 
program. 

Turning to the Federal scene, the big push now would seem 
to be with the war on pollution and, certainly we need to fight it. 
Oceanography of course is involved here, particularly in the coastal 
zones, estuaries and lakes. 

Thousands of words are being written on the pollution of our 
environment and the new "in" word is ecology. My daughter heard 
it and read it so often she decided to look it up. The dictionary told 
her it meant "the relationship between living organisms and their 
environment.” "Here," she said, "I was wondering what it was and 
I've been right in the middle of it all the time." 

Our new consciousness of our total ecology and the drive 
against pollution are going to lead to some complex conflicts -- such 
as between the off-shore oil interests and the conservationists -- 
the real estate developers and the fishing industry. When you drain 
a salt marsh, for instance, you interfere with the food chain that 

supports the fish we need for human food. Involved also is the huge 
and growing water recreation industry. 

In solving our problems we have to be sure not to throw out 
the baby with the polluted bath water. 

Has oceanography got an assured future? Yes of course. We 
are going to have to turn more and more to the inexhaustible seas 
for the food and the minerals we will need for the worlds exploding 

population. 

But I don't see that future going up in a near vertical line as 
it did, for instance, in the space business. In the first place there 

are none of those big hunks of development money lying around these 

days. 

But I do see it going up steadily in a much more gently rising 
curve. 

But go up it will and as it goes we will need more and more 
sophisticated equipment and techniques to gather and evaluate infor- 
mation and ever smarter and better educated men to program and 

run them. 
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TSUNAMIS 

G. F. Carrier 
Harvard Untverstty 

Cambrtdge, Massachusetts 

I. INTRODUCTION 

An understanding of the coastal inundation caused by Tsunamis 
requires the piecing together of several studies. Among the poten- 
tially important characterizing features of the phenomenon are: the 
temporal and spatial distribution of the ground motion which initiates 
the Tsunami, the distance from the source to the target area in ques- 
tion, the bottom topography of the intervening ocean, and the topag- 
raphy of the coastal area itself. These are all discussed in some 
detail in [1], a manuscript which was prepared in conjunction with 
a longer series of lectures than this one. In order to avoid excessive 
duplication of publication, we content ourselves here with a brief 
summary of that material. As will be evident, many details remain 
to be explored; unfortunately, there is no evidence to suggest that 
even a more comprehensive understanding of the phenomena will sug- 
gest procedures for alleviating the intensity of Tsunami inundation. 

Il. INITIATION AND DEEP WATER PROPAGATION 

The wave generated by a submarine earthquake is large 
enough in lateral extent and small enough in amplitude so that a 
linear theory is completely adequate for an analysis of the propaga- 
tion over deep water. However, the propagation path is so long that 
dispersion and its attendant changes in wave shape cannot be ignored. 
Accordingly one can adopt either the classical linear theory of 
gravity waves or the Boussinesque formalism to study the early 
stages of the wave propagation. When either is done, for a basin of 
constant depth, H, it is convenient to present the results in terms 
of a particular family of initial ground motions. We discuss here 
the waves which result when the ground motion is given by 

F, (x,t) = ier. [ - tal 5(t). 

When the half width, L, of the distrubed region is "small," the 
wave which arrives at a distance x, will have been greatly affected 
by dispersion; when the width of the generating ground motion is 
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longer, smaller distortions of the wave will be apparent at xp». 
Figures ita, 1b, and ic illustrate the quantitative aspects of the 

foregoing statement. In the notation of those figures, 

l= 4en 

When the depth of the water is 3 miles and x,= 3000 miles, the 
three cases shown represent ground motions whose half widths are 
0, 19 and 33 miles. Figure id indicates the wave which ensues 
when the ground displacement is given by 

F= Fy (x,t) - F) (x +520 5t) 

with a = 10. That is, the ground motion has a dipole character 
rather than a general subsidence or elevation. The persistent lore 
that the second or third crest of the Tsunami penetrates more than 
the first makes it interesting to speculate (in view of Figs. 1) that 

many initiating ground motions may be of dipole form. 

III RUN-UP ON A PLANE BEACH 

When the wave encounters a sloping shelf along which the 
water depth generally goes to zero, the wave steepens and becomes 
greater in amplitude. Accordingly one no longer can rely on a linear 
theory. However, the shelves of real interest are such that the 
distance along the wave trajectory above sucha shelf is short enough 
so that dispersion in this region is not of any real importance. 

There is a non-iinear, non-dispersive shallow water theory 

which leads to tractable problems when the depth of the basin is 
linear in one horizontal coordinate and when the entire phenomenon 
is independent of the other. Thus, we can regard the results re- 
ferred to in Section 2 as the input information for a study in which we 
ask how such waves climb up a sloping shelf. The analysis which 
accompanies such a study involves only the solution of a linear 
equation whose interpretation in the non-linear context is explicit 

and accurate. 

The result of interest is the ratio of the run-up, No, (the 

vertical distance above sea level to which water encroaches) to the 
wave height, 1,, at the edge of the shelf. One interesting result is 

this: 

Hor @ = 10 

- -176 
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where A = 4.2 if the ground motion is upwardor A= 5.6 if it is 
downward. The corresponding results for other values of L can 
easily be found (the calculation requires only the use of the method 
of stationary phase). The dependence on the shelf slope, 0, is that 
which would be found for monochromatic waves whereas the depen- 
dence on x_ is a consequence of the dispersion during the deep 
water propagation. 

IV. DEEP OCEAN TOPOGRAPHY 

If there were systematic variations in the water depth between, 

say, the Aleutians and the equatorial Pacific, one might expect that 

the relative intensities of the Tsunamis (with Aleutian source) which 
were incident on different Pacific islands might differ because of 
mid-ocean refractive effects. Exhaustive studies of this effect have 
certainly not been completed but the indications are that this is not 
a major reason for the different response at (for example) Wake and 
Hawaii. One might also anticipate that the irregular deep ocean 
topographical variations could seriously modify the wave which 
propagates across the ocean. This possibllity has been analyzed 
treating each event as a member of an ensemble of phenomena each 
of which take place over a topography which is itself a member of a 
stochastically described collection of random topographies. This is 
motivated loosely by the fact that the one-dimensional topography 
between any given source and any given target differ from that associ- 
ated with any other source-target pair, and the fact that the topog- 
raphies are so poorly known that little else can be done. The result 
of this study indicates that the ratio of intensity at x, of the wave 
over the irregular bottom to that over constant depth is characterized 

by 

2 
el 

ee iar 
ana 

where € is the ratio of the average irregularity height to the average 
depth and L = 2nN where N is the number of wave lengths of the 
monochromatic wave whose scattering is being studied. For wave 
lengths in the spectral region of major interest, the effect of this 
facet of the wave propagation seems to be of relatively small im- 
portance too. 

V. ISLAND TOPOGRAPHY 

When the wave encounters an island, the lateral scale of that 

island has the same order of magnitude as much of the important 
part of the wave length spectrum. Thus, the pretense that the wave 
climbs a plane shelf must be corrected. The refractive effects so 
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implied cannot be estimated readily py geometric optics methods at 
such wave lengths and one must resort to numerical procedures. 
The results of such studies are depicted in Figs. 2 and 3, taken from 
Lauterbacher [2]. Figure 2 indicates the variations of intensity 
with position on a given island and Fig. 3 indicates the extent of this 
effect for different ratios of wave length to island size. 
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L/R = 1.67 

Patel 
BEACH MAXIMUM 

"op! iP) 

BEACH MAXIMUM 

WAVELENGTH )/L 

Fig. 3. Ratio of two-dimensional to one-dimensional maximum wave 
amplitude on beach. L, island diameter at ocean floor; R, 

island diameter at beach. 
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LABORATORY INVESTIGATIONS ON 
AIR-SEA INTERACTIONS 

Ee Yo Hsu and H. Y. Yu 
Stanford Untversity 

Stanford, California 

I. INTRODUCTION 

Since the comprehensive review on wind wave generation by 
Ursell [1956], there have been renewed, intensive studies, theoreti- 
cal as well as experimental, on the subject. Although significant 
contributions have been made by many investigators, the final goal 
of achieving a basic understanding of the fundamental mechanism of 
energy transfer between a turbulent air stream and the ocean has not 
been realized. A unified, comprehensive theory of wind wave gener- 
ation must provide adequate explanation of the energy transfer 
between the two media at all stages of wave growth from capillary 
waves to sea swell. In the absence of sucha unified theory, a 

convenient classification of various flow regimes in wind-wave 
generation may be made by use of the ratio of water wave celerity 
C and the air shear velocity u* at the interface. When C®# ats 
the dominant mechanism of energy transfer between air and water 
is the "viscous mechanism," characterized by the critical layer 
being within the laminar sublayer and treated by Miles [ 196 at. 
When C¥% 10 u’, the critical layer is outside the laminar sublayer 
and the dominant mechanism of energy transfer is the "inviscid 
mechanism" (Miles [1957, 1967] and Benjamin [ 1959]) with transfer 
arising from the normal pressure acting on the interface and the neces- 
sary phase angle between the pressure distribution and the progres- 

sive wave. As pointed out by Longuet-Higgins [ 1969], neither of the 
above theories accounts for two well-established features of wave 
generation: (1) the existence of some wave energy in a frequency 
range corresponding to waves traveling faster than the mean free- 
stream velocity and (2) the damping of a swell by an adverse wind. 

The experimental investigations of Sutherland [1967], Hires 
[1968], and Chang [1968] and many others are limited to the viscous 
range. Because of the high Reynolds number in a typical wind blowing 
over the ocean surface, the viscous mechanism can be safely neg- 
lected as irrelevant to full-scale wave energy transfer. Hence, 
Miles' inviscid model has received most attention and been widely 
employed in comparisons with experimental data obtained in full 
scale (ocean) and laboratory simulations. 
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The dearth of systematic measurements taken under controlled 
conditions closely comparable to those of Miles' model was a moti- 
vation for our research program at Stanford University. In order 
to examine the applicability of Miles! inviscid theory, experiments 
were designed for measuring the wave induced perturbation pressure 
or inviscid Reynolds stress under steady-state and unsteady-state 
conditions. Other experiments were also devised for measuring the 
growth of mechanically generated waves subjected to wind action. 
From these measured wave growths, the growth factor of Miles was 
calculated. The objectives of this paper are to present a summary 
of our experimental data in the inviscid range, to compare our data 
and other existing data to the theory and the ocean observations, 
and to suggest specific and fruitful avenues for further study. 

Il. A BRIEF REVIEW OF THE THEORY 

To facilitate presentation and discussion of the experimental 
data, a brief outline of the assumptions, key equations and results 
of Miles' inviscid, shear-flow theory are presented below. 

The deep-water, wave profile is assumed to be a progressive, 

sinusoidal wave, expressed as 

n ='avexp! hik(x:- Gt)], kay<< 1 (1) 

where a is the amplitude, k= 2n/L is the wave number, lL is the 

wave length, and C is the wave celerity. The assumptions of irro- 
tational, incompressible water motion lead to the existence of 

velocity potential. By substituting the velocity potential in the 
linearized Bernoulli equation and evaluating the result at the free 
surface, one obtains the equation of motion governing the propaga- 
tion of a small amplitude, surface wave 

2 
Py OMe © Pele ey, age Pa (2) 

where g is the acceleration caused by gravity, p, is the mass 
density of water, and p, is the aerodynamic pressure caused by 
the wind stream. 

Miles [1957] assumed the aerodynamic pressure p, has 
the form 

p, = (2 + iB)p,U, kn (3) 

where pg is the mass density of the air, U, is a reference speed 
for the air, and @ and f are, respectively, the in-phase and 
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out-of-phase non-dimensional-pressure-coefficients. The phase 
angle @ is 

g = tan’! (B) (4) 

The constants @ and 8 were determined by solving an inviscid Orr- 
Sommerfeld equation which represents the perturbations (caused 
by the water wave at the interface) to a wind shear-flow described 
by an assumed logarithmic, mean velocity distribution 

Uly) = U, In = (5) 
fe) 

where y is the vertical distance from the mean water surface and 
Y, is the roughness height. 

The effect of the impressed aerodynamic pressure P, on 
the surface wave can be evaluated by solving Eq. (2). It follows 
that the complex wave celerity 

2 
1 p fU 

a : pesslipe gd © 1 Bonet C ei ae (2 +i6)(ct) J (6) 

where C, = (g/k)’?. Substituting Eq. (6) into Eq. (1) yields 

4 p thins 
a= a, exp ls kC, co (<4) Bt] (7) 

where a, is the amplitude at t=0. 

It is convenient to measure the growth of wave amplitude as 
a function of fetch x in a wind-wave channel. The dynamic equi- 
valence, valid for x >>L, is given by Phillips [1958] as 

x= Sot, me 

where C,/2 is the group velocity of a deep-water wave. Conse- 
quently, the fetch-dependent amplitude growth a is 

2 Ke are a= a, exp [£2 © utpal o 
w 

where a, is now the wave amplitude that would exist without wind 
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action ior-at. x = 01. 

The total energy per unit of surface area E of a small- 
amplitude, sinusoidal, progressive wave is 

If the energy corresponding to a, is E,, Eq. (8) may be rewritten 
as 

2. 2 
E = E. exp [££ x’u’ px] (9) 

° EP, | 

The out-of-phase pressure component BP is responsible for the energy 
transfer from the air stream to the wave. Experimental results are 
presented in the non-dimensional form 

log, tie = AF (10) 

where F is a non-dimensional fetch 

k?2 
HPS ete 

and 

A= (2 £2) log ee toa x10. 
Py fe) : 

for pes 1 gm/cm°* and Sp 0.00118 gm/cm’*. 

III. LABORATORY INVESTIGATIONS 

3.1. Techniques of Simulation 

3.41.1. Moving wavy-boundary (steady-state) 

In attempts to verify Jeffreys' sheltering hypothesis, Stanton, 
et al. [1932], Motzfeld [1937], Thijsse [1951], and Larras and 
Claris [1960] measured pressure distributions over stationary, 

solid, and two-dimensional sinusoidal boundaries in either a wind 

tunnel or a water channel. In the light of the critical-layer mecha- 

nism proposed by Miles, these stationary wavy-boundary experiments 
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cannot be regarded as an adequate, steady-state simulation of the 
wind-generated wave problem, because the critical layer in the 
experiments is of zero thickness and, hence, the critical level lies 

on the stationary boundary. All of the above experiments, with the 
exception of Thijsse's indicated a smaller sheltering coefficient than 
that anticipated by Jeffreys, who expected the pressure distribution 
to be out-of-phase with the wave (in accordance with Miles' inviscid 
theory). The resulting small sheltering coefficient may be attributed 
to either viscous or finite wave-amplitude effects. 

For amore realistic steady-state simulation of wind-generated 
waves and demonstration of the importance of the critical-layer 
mechanism of energy transfer, the wavy boundary must be moving 
with a speed equal to the wave celerity and opposite to the direction 
of mean free-stream. An important advantage in this simulation is 
that the flow field is steady. Consequently, measuring techniques 
are greatly simplified. 

The first successful moving, wavy boundary experiment and 
its resultant presentation of the normal pressure distribution on the 
boundary were reported by Zagustin, et al. [1966, 1968]. Subse- 
quently, Ott, et al. [1968] extended the Zagustin investigation and 
used refined experimental procedures to achieve better experimental 
accuracy. Small amplitude waves with a length of 3 ft and amplitude 
of 0.65 in. were used. Because of the limited capability of the 
experimental facility, G/U. was limited to approximately 0.75 (U, 
is the air velocity at the edge of the boundary layer). 

3.1.2. Flexible wall with progressive waves (unsteady- state) 

Kendall [1970] described a series of experiments on wind- 
wave simulation in a low turbulence wind tunnel. The wavy wall was 
the floor of the constant pressure test section of the tunnel. The 
surface of the wavy wall was composed of neoprene rubber sheet 
which was constrained to form a series of sinusoidal waves (length = 
4 in. and height = 0.25 in.). The rubber sheet was supported from 
beneath by a series of ribs which were connected to individual. circu- 
lar eccentric cams. Each cam was positioned with proper phase 
difference on a common cam shaft expending the length of test section. 
Rotation of the cam shaft caused each rib to execute a reciprocating 
vertical motion and thus a progressive wave form was produced. 
Reversing the direction of rotation of the cam shaft produced waves 
traveling in the opposite direction, giving - 0.5 < C/U, <0.5. 

The boundary conditions for the two methods of wind- generated 
wave simulation described above deviate slightly from those of a true 
air-water interface. If the fluid particle velocity in a wave motion 
is small compared to the wave celerity (true for small amplitude 
waves), the moving wavy boundary simulation approximately satisfied 
the boundary conditions. In the flexible wall experiment the surface 
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particle motion resulting from the flexure of the rubber sheet was a 
backward-rotating 3:1 ellipse as compared with the forward- rotating 
circle of deep water waves. Again, the boundary condition was 

approximately satisfied for small amplitude waves. 

3.1.3. Wind-wave research channel (unsteady-state, true air- 
water interface) 

The physical features of the Stanford facility were reported 
by Hsu [1965]. The channel is approximately 6 ft high and 3 ft 
wide and has a usable test section length of 75 ft. At the downwind 
end, there are a beach to absorb wave energy and a centrifugal fan 
to produce the wind in the channel. At the other end, the air is 
drawn vertically through a system of filters and then carried hori- 
zontally on to the water surface at the beginning of the test section 
by a converging elbow. A hydraulically-driven, horizontal-displace- 
ment, wave-generating plate is located 17 ft upstream of the test 
section. This distance is sufficient to allow generated waves to 
become fully established prior to being subjected to wind action. 
Sinusoidal waves, ranging in frequency from 0.2 to 4 cps, can be 
generated. The maximum wind speed is approximately 70 fps with 
a nominal water depth of 3 ft inthe channel. A limitation of the 
present facility is that the wind and the propagating waves move in 
the same direction. 

3.2. Measurements of Wave-Induced Perturbation Pressures 

Because the flow field was steady in the moving wavy-boundary 
experiment (Sec. 3.1.1), two conventional, but small (1/32 in. O.D), 
pitot-static probes were used for all the velocity and pressure measure- 
ments. The reference probe was located in the free-stream while the 
other probe could be moved to any distance from the moving boundary 
by atraversing mechanism. Realizing that the traversing probe 
must be aligned with the local flow direction, we mounted this probe 
in a special rotating device. These probes were connected to a 
Pace P-90 differential pressure transducer through a manifold 
system which provided selective readings of dynamic pressure or 
pressure differential between the two probes. 

The pressure measurements in the flexible wall experiments 

(Sec. 3.1.2) were made through static holes in the flexible surface. 
Essentially, a length of metal tubing in the form of a loop was used 
to connect the static hole and the pressure transducer. The loop 
served to cancel the unwanted pressure gradient generated by the 
motion of the tubing. 

Because the thickness of critical layer was small in the wind- 
wave channel experiment (Sec. 3.1.3), the measurements of pertur- 
bation pressure were obtained by use of a specially-designed wave 
following system. Again, the perturbation pressure is the difference 
between the pressure at the air-water interface and that in the free 
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stream and was monitored by two identical pressure sensors, one 
at the interface and the other in the free stream, through a Pace 
P-90 differential pressure transducer. The whole system was 
allowed to follow the wave motion so that the lower pressure sensor 
was kept a fixed distance from the instantaneous air-water interface 
and inside the critical layer. The unwanted pressure signal caused 
by the motion of the system was determined by calibration tests and 
removed in the final data reduction. 

3.3. Measurement of Wave Growth 

A series of experiments was run to measure wave growth 
rate in the Stanford wind-wave channel. Small-amplitude, deep- 

water waves with frequencies varying from 0.9 to 1.4 cps were used 
with the maximum wind speed ranging from 12 to 44 fps (fan speed of 
100-300 rpm). Time records of wave profiles were obtained with 
capacitance-wire sensors at seven locations spaced at 10 ft intervals 
along the centerline of the test section. Air velocity distributions 
were taken at six intermediate locations with a conventional pitot- 
static probe. 

Although the mechanically-generated waves were initially of 
small amplitude and closely sinusoidal, they become steep and some- 
what non-sinusoidal with increasing fetch in response to the wind 
action. The true wave profile could be viewed as a superposition of 
a mean wave and a spectrum of ripples. Therefore, a phase averag- 
ing procedure was adopted to determine the mean wave profile at 
each fetch and fan speed. The mean wave profile at each phase angle 
was the result of averaging 35 waves in the time series. The stream 
function fitting technique introduced by Dean [1965] and outlined for 
this application by Bole and Hsu [1967] was used for evaluating the 
kinetic and potential energy of each mean wave profile. Finally, the 
total wave energy at each location of the test section was adjusted 
for wave energy dissipation due to viscous action. The dissipation 
was determined experimentally for conditions without wind. 

Along with the mean wave profile, the ripple variance of the 
water surface about the mean wave profile at each phase angle of the 
wave and the mean ripple variance and standard deviation for all the 
phase angles were calculated. The ripple variance is, of course, 
proportional to the potential energy contained in the ripple. 

IV. RESULTS AND DISCUSSION 

4.1. Water Surface Roughness (Unsteady-State, True Air- Water 

Interface) 

When mechanically generated waves were subjected to wind 
action, ripples were always present and were superposed on the 
waves. Thus, the water surface can no longer be regarded as smooth 
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and its roughness can be described by the ripple standard deviation 
o of the water surface elevation about the mean-wave profile. It 
was observed that o increased with wind speed at the same fetch. 
In general, o increasedas y,u /v increased. The values of o 
are listed in Table 1 and vary from about 0.001 to 0.039 ft. 

From a least-square fit of the velocity profile Eq. (5) to the 
measured data, values of U, and y, can be obtained and hence the 
values of y,, ky,, and B (see Sec. 2). The values of yg are com- 
piled in Table 2 and vary from 0.004 to 0.011 ft. The values in 
Table 1 and Table 2 show that the ripple standard deviation is larger 
then the critical layer thickness in all cases. It seems that the 
surface roughness or ripples should destroy the organized actions 
of vorticity which Lighthill [1962] presented as the physical expla- 
nation of Miles' instability mechanism. Thus, Miles' interpretation 
of the energy transfer mechanism -(adopted from Lin [1955]) as the 
perturbation Reynolds stress working against the mean velocity pro- 
file at the critical layer is severely strained by the existence ofa 
ripple layer large enough to obliterate the critical layer. 

The potential energies of wind+generated ripples with and 
without mechanically generated waves are presented in Table 3. 
The presence of the generated waves decreases ripple energy sig- 
nificantly. Although there are many irregularities, ripple energy 
generally decreases as wave frequency increases. Exceptions occur 
at 300 rpm and 60 ft fetch where the 1.2 and 1.4 cps waves are 
breaking and ripple energy is sharply decreased. Sample power 
spectra of the ripples superposed on a 1.1 cps wave were obtained 
by subtracting the mean 1.1 cps wave profile from the original water 
surface elevation time series, The remaining time series, which 
contains only ripple variation, was then spectral analyzed. The 
resulting power spectra of wind- generated ripple with and without 
mechanically generated waves is exhibited in Fig. 1. Spectral 
peaks for the two cases appear at about the same frequency, but 
spectral density is drastically reduced when waves are present. 

The two possible reasons for ripple attenuation in the 
presence of waves are | 

a. sheltering effects retard ripple generation by the wind, 

b. non-linear wave-wave interactions cause ripple energy 
to be dissipated and to be transferred to the waves as 
suggested by Longuet- Higgins [1969] (see later discussion 
on wave energy). 

4,2. Mean Wave Profiles 

Mean wave profiles were determined by phase-averaging 
over records of 35 waves. A sample of corresponding pairs of 
mean wave profiles and their corresponding original recordings for 
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TABLE 1. RIPPLE SPECTRUM STANDARD DEVIATION 

o x 10° (ft) 

Fetch Mechanical Wave Frequency ( ee eee ee 

NououwnrF Noo pre 

3 3 

6 5 

6 8 

8 9 

8 0 

8 2 

* 

Waves breaking. 
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CRITICAL LAYER THICKNESS TABLE 2 e 

y, xX 10° (ft) 

cps) 
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TABLE 3. RIPPLE SPECTRUM POTENTIAL ENERGY 

Values x 10° (£t-1b/£t7) 

Fetch Mechanical Wave Frequency (cps) 

NFrFO FrFRrRFOOO 

* 
Waves breaking. 
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200 RPM 

——— I. cps wave 

No wave 

Frequency (cps) 

Fig. 1. Influence of 1.1-cps wave on 200-rpm ripple 
spectra 

1 cps and 1.3 cps waves at 300 rpm is given in Figs. 2 to 5. A close 
examination of these figures (wave motion is toward the left and the 
usual Sanborn attenuation scales are marked) reveals that the posi- 
tions assumed by the ripples influence the mean wave profile. For 
example, ripple superposition in the 1.0 cps wave caused the mean 
wave crest to become flattened. However, ripple superposition on 
the 1.3 cps wave did not cause mean wave profile distortion. Many 
of the records show ripples superposed in such a way that the crest 
was sharply peaked. The existence of such conditions may enhance 
separation of the air flow over the wave surface. 

A source of error arises from the fact that mean wave pro- 
files were distorted, and yet their energy was compared with that of 
Miles' pure sinusoids. An expression consisting of a cosine and sine 
plus their two higher harmonics was least-squre fitted to each of the 
mean wave profiles (see below). Results indicated that the total 
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error introduced by representing the mean wave by these five terms 
was not greater than 5 per cent in any case. 

4.3. Wave Energy 

The total wave energy (potential plus kinetic) was calculated 
by the method developed by Dean [1965] through least-square- fitting 
an analytic stream function to the mean measured wave profiles. 
Details of the procedure were presented by Bole and Hsu [1967]. In 
order to compare the measured wave energy with Miles' prediction, 
wave dissipation in the channel, determined experimentally under 
the condition of no wind, as a function of fetch was added to the 

measured wave energy. Figure 6 shows the energy ratio E(x)/E(0), 
as a function of downstream distance for a 1.4 cps wave subjected to 
various wind speeds, while the results in Fig. 7 are for a constant 

wind speed (300 rpm) acting on waves of various frequencies. The 
data was then reduced to the non-dimensional fetch F defined in 
Eq. (10). The final results, compared with Miles' inviscid theory, 

40 50 Oo 10 20 30 

x--Fetch (ft) 

Fig. 6. 1.4-cps wave growth vs. x 
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300 RPM 

(e} 10 20 30 40 50 
x-- Fetch (ft) 

Fig. 7. 300-rpm_wave growth vs. »¥ 

are exhibited in Figs. 8 and 9. In nearly every case, experimental 
values fall well above the theoretical line. By assuming the growth 
to be totally dependent on F inthe form of Eq. (9), we calculated 
a ratio of the experimental and theoretical B values and present the 
results in Table 4. The f-ratios vary from about 1 to 10. The 
mean ratio for all frequencies and rpm's is about 3. 

The total spectral energy of the ripples in most of the experi- 
mental cases was no more than about 20 per cent of the mechanically- 
generated wave energy. Phillips [1966] argued that non-linear inter- 
actions between waves should be weak. Hence, our procedure of 

measuring the growth of a single wave within a spectrum should be a 
valid means of evaluating the parameters necessary for comparisons 

with Miles' theory. 
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6.0 

5.0 

40 

E(F) 30 

E(0) 

2.0 0.04 

0.03 

fe) 100 200 300 400 500 600 

Fig. 8. 1.4-cps wave growthvs. F 

0.06 
E(F) 

r(x 

0.04 

300 RPM 

(wb)- Wave Breaking 

0.02 
te) 200 400 600 800 1000 1200 : 

Fig. 9. 300-rpm wave growthvs. F 
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TABLE 4, RATIO OF EXPERIMENTAL TO THEORETICAL B 
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Waves breaking. 

On the other hand, our experimental evidence indicated that 

the wind- generated ripples riding on the mechanically- generated 
waves had a tendency to break on the crests rather than in the 

troughs. Longuet-Higgins [1969] showed that, in breaking, the 

ripples may impart a significant portion of their momentum to the 

longer waves in a strong non-linear interaction. Mollo-Christensen's 
[1970] field observations showed that there were relatively high 
peaks of energy in a high frequency band located near the crest of 

the main wave. It is difficult to conclude that Mollo-Christensen's 
data, taken in a confused sea, whether these high frequency peaks 

are produced as a result of the breaking waves, caused by wave 
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groups of different frequency overtaking one another, or partly by 
the generation of high frequency waves on the wave crest. To fully 
investigate the non-linear, wave-wave interactions and to establish 

the role of ripples in the transfer process, measurements similar 
to those of Mollo- Christensen and additional detail measurements 
of the velocity field below the air-water interface should be carried 
out under the controlled conditions of a laboratory simulation. 

The incompatibilities of the Miles’ mathematical model with 
the natural wave-growth environment, as discussed in the previous 
section, were anticipated by Miles. He stated in this 1957 paper 
that "our model cannot be expected to have more than qualitative 
significance for rough flow." It would appear that a more realistic 
model and an improved theory of energy transfer cannot be formu- 
lated until detailed studies of the structure of air flow near the air- 
water interface are carried out. 

4.4. Non-dimensional Pressure Coefficients 

The non-dimensional pressure coefficients @ and B ob- 
tained from the various techniques of laboratory simulation are 
exhibited in Figs. 10 and 11 as functions of ky,. Comparison between 
the measured values of the in-phase pressure coefficient @ (steady- 
state, moving-wavy-boundary; unsteady-state, wind-wave channel) 
and the Miles' theory is shown in Fig. 10. The experimental values 
of the out-of-phase pressure coefficient B, evaluated from wave 
growth measurements, are shown in Fig. 11. Although there is 
considerable scatter in the experimental data, the deviation from 
the inviscid theory is clearly evident and is consistent with the 
results of the wave growth measurements. Because of the limited 
capability of the experimental facility in the steady-state, moving- 
wavy-boundary experiment, experimental values were limited to 
ky, = 0.1. 

The experimentally determined phase angle g obtained from 
the three different methods of laboratory simulation -- moving-wavy- 
boundary, flexible boundary with progressive waves, and wind-wave 
channel -- is shown in Fig. 12 as a function of C/u’. In view of 
the uncertainties among investigators in determining u values, 
the experimental phase angle as a function of C/Ug@ and their cor- 
responding theoretical values are shown in Fig. 13. The JPL-data 
includes negative values of C. Because the measured velocity pro- 
files varied to some extent with Ug and C as discussed by Kendall 
[1970] , theoretical values of g for the case in which Um = 5.5 
in./sec and C=0 were calculated. 

In an attempt to detect flow separation in the region near the 
air-water interface in the wind-wave channel experiments, pressure 
measurements over waves of various amplitudes with constant fre- 
quency were made. The measured phase angles for two wave 
frequencies, 0.6 and 0.78 cps, are shown in Fig. 13. The scatter 
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Stanford Data: |. Pressure Measurement 

f=0.4cps C=8.64fps a: & 2.5" 
f=O.5cps C=8.25fps a: wIl.15" 
f=O0.6cps C=7.55 fps a: o1.15" 01.5" 62.10" $3.10 
f=O0.78cps C=6.40fps a: 01.25" 92.12" 063.15" 

Il.Steady State Moving Belt Simulation 

asO;75'% -X#3,0" \[Casi92 tps = x 
a 

Inviscid Theory > 

io > 2 4” 26" 8 1072 2 4 6 810"! 2 4.) BR 

ky, 

Fig. 10. Comparison between measured and theoretical values of 
a vs. ky, 
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of the experimental data precludes any definite conclusion about 
possible flow separation. Although a unified theory is needed to 
describe the relationship between the phase angle » and + C/U F 
the experimentally determined phase angles in the inviscid range do 
indicate a correct trend compared with Miles' theory. 

V. CONCLUSIONS 

The accumulated laboratory experimental evidence obtained 
at Stanford and elsewhere indicates general support for Miles' 
inviscid theory of energy transfer between air stream and progressive 
waves through the phase shift of the aerodynamic pressure at the 
interface. However, the experimental growth rate is considerably 

in excess of Miles' prediction, being approximately three times 
larger. The most fruitful avenue for further study would appear to 
be to reexamine the necessary simplifying assumptions in the Miles' 
inviscid model. The incompatibilities near the air-water interface 
suggest that detailed experimental investigations of this region are 
essential before an understanding of the energy transfer mechanisms 
and the conditions under which they occur can be fully established. 
The effects of turbulence, possible flow separation, ripple super- 
position and boundary layer development are complex, but could be 
modelled and fruitfully studied in laboratory simulations. 
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AIR-SEA INTERACTIONS: RESEARCH PROGRAM 
AND FACILITIES AT IMST 

M. Coantic and A. Favre 

IMST 

Marseille, France 

ABSTRACT 

This research concerns the small-scale physical pro- 
cesses responsible for mass, momentum and energy 

exchanges between the atmospheric surface layer and 
the oceans. 

Their theoretical study has been undertaken. It outlines 
the importance of turbulence and the influence of recip- 
rocal interactions between the various transfer pro- 
cesses. It has led to the design of an experiment where 
the natural phenomena shall be partially simulated, ina 

large laboratory facility. 

This one combines a micrometeorological wind tunnel 
with a 40 meters long wave tank, under controlled tem- 
perature and humidity conditions. It has been extensively 
tested with a one-fifth scale model. It is presently under 
construction, and wiil be operative by 1971. 

Instrumental studies have also been undertaken, and 
results obtained in the measurement of turbulence in 
water flows. 

I. INTRODUCTION 

The knowledge of energy exchange processes between atmos- 
phere and oceans appears of major interest for oceanography as well 
as for meteorology. These two media have indeed to be considered 
as elements of a single system, for the dynamical and thermodynam- 
ical evolution of each of them largely depends on interactions through 
their common boundary. 
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One of the essential steps in the solution of the air-sea inter- 
action problem lies in the understanding of small-scale processes 
in the air and water layers adjacent to the interface, where the 

various forms of energy are either transferred or converted, while 
going from one medium to the other. The experimental study of 
these phenomena involves a detailed and delicate exploration ofa 
region whose thickness is of the order of the wave height. Now, 
experiments performed at sea are subjected to such environmental 
constraints that the accuracy and repeatability of measurements 
seems necessarily limited. It has therefore appeared useful to 
complement field studies by laboratory experiments, where an ex- 
tensive investigation is feasible under exactly repeatable conditions 
and with the possibility to control independently each of the govern- 
ing parameters. 

This is the program which has been undertaken atI.M.S.T., 
and which is described in the present paper. The preliminary steps 
of this program have included: collection of information about cur- 
rent research; attempt of a critical survey of existing knowledge, 
in order to find out definite research objectives; and a first theoreti- 

cal study of the physical mechanisms of air-sea interactions, and 
of their governing parameters. These studies have led to the con- 
clusion that it would be feasible to obtain, in the laboratory, a partial 
simulation of the atmospheric-oceanic energy exchange processes, 
provided that a sufficiently large facility could be realized. 

The following steps of the program have then comprised: 
the preliminary design of this facility, combining a micrometeorolo- 
gical wind tunnel with a 40 meters long wave tank; the realization of 
a one-fifth scale model, and its use for various preliminary tests 
and experiments; the detailed design and the building of the large 
wind-wave facility; and, last but not least, the development of various 

theoretical and instrumental researches. 

The purpose of the present paper is to introduce the various 
objectives and results of our research program, and to describe the 
facilities which have been, or are being, realized. Due to space 

limitation, that presentation will be limited to a rather short account 
referring to previous publications for more details, when possible. 
The plan adopted is logical rather than chronological: 

- Theoretical studies; 
- Setting up the characteristics and design of the large air- 

sea facility; 
- Model tests; 

- Building of the air-sea facility; 
- Studies of measuring instruments and methods. 

At last, we shall try to draw some preliminary conclusions 
about this program, the prospects it opens, and its possible appli- 
cations. We shall also have the pleasure to express our thanks to 
the many individuals and organizations who have contributed to its 
realization. 
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Il. THEORETICAL STUDIES 

1. The Physical Mechanisms of the Ocean-Atmosphere Interaction 

As it is well known, the small-scale transfer of energy be- 
tween atmosphere and oceans occurs following four various mecha- 
nisms, sketched by Fig. 1: 

a) Radiation, including: i) short-wave radiation from the sun on the 
sea surface, which is partially reflected and absorbed over a 

more or less large depth under the interface; ii) long-wave radi- 
ation coming from the atmosphere and from the sea, and involv- 
ing a radiative transfer process between the interface itself and 
the atmospheric layers (see II.3). 

b) Evaporation (or condensation), and turbulent convection of water 
vapor, which, due to the very high latent heat of vaporization of 
water, leads to a turbulent latent enthalpy transfer from the sea 

surface to the atmosphere. 

c) Turbulent convection of sensible enthalpy, resulting from tem- 
perature differences between adjoining points of the system. 

RADIATION TURBULENT ENTHALPY KINETIC ENERGY 

TRANSFER TRANSFER 

Incident Reflected 

Z WY] j Yj 
j ay YY YY YY YY Yyy / Yy YY YY 

: : ; ' Gaseous phase 

4 4. L S Interface 
Q $ 

Liquid phase 

Zz 

__ RESULTING ENERGY 

TRANSFER = S+L+0:S'+Q' 

Short wave Long wave 

Received § Emitted 
Sensible 

Fig. 1. Schematic display of energy transfers in the vicinity of the 
ocean-atmosphere interface. 
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d) Transfer of kinetic energy across the turbulent boundary layers 
on both sides of the interface, of which the most obvious effect 
is the generation of waves. 

Information on these mechanisms can be gathered in many books, 
ranging from meteorology (e.g. Brunt [ 1939], Haltiner and Martin 
[1967] , Roll [1965]) to oceanography (e.g. Lacombe [ 1965], 
Phillips [1966], Sverdrup [1957]), or devoted to atmospheric tur- 
bulence (e.g. Lumley and Panofsky [1964], Monin and Yaglom [1966], 
Priestley [1959]). One of the first steps of our program has been to 
attempt to review the physical laws and equations governing the 
ensemble of these phenomena (see Coantic [ 1968]). 

The main conclusion that can be reached is that, although the 
above types of transfer have been analyzed and listed separately, 
they are not independent, and the key of the problem lies in their 
reciprocal interactions. For instance, processes a) and b) set in 
action very large amounts of energy, whereas c) and chiefly d) are 
responsible for much smaller exchanges. However, the kinetic 
energy transfer, which enters as the smallest term in the energy 
balance, strongly influences the turbulent evaporation and convection 
processes. Infact, except for certain radiation effects, air-sea 

interactions are essentially governed by turbulence. 

This is only one aspect of the aforementioned reciprocal inter- 
actions. Other ones will appear, for instance, when considering the 

boundary conditions for the various variables at the interface, or 
when expressing the conservation of the different energy fluxes, as 
schematized on the lower part of Fig. 1. Furthermore, two most 
important peculiarities are displayed when comparing the present 
case to the more classical problem of simultaneous heat, mass and 
momentum exchange between a fluid flow and a more or less rough 
surface. In the latter case, the turbulent convective processes, 

if not completely understood, are sufficiently well known to allow a 
good estimate of the various transfer rates. However, the methods 
of computation therein developed are not applicable here for two 
main reasons: 

- On one hand, because the boundary is no longer static, and pos- 

sesses "dynamic rugosities" capable of yielding and absorbing 
momentum with large variations of the ratio of the tangential shear 
stresses to the normal pressure forces. This fact will have conse- 
quences difficult to ascertain, not only upon the dynamical exchange 
mechanism but also upon the degree of "Reynolds analogy" be- 
tween this process and those concerning exchange of scalar vari- 

ables. 

On the other hand, because, due to the well known stratification 

effects in the atmosphere, heat and humidity can no longer be con- 

sidered as "passive scalar containments." This means that the 
turbulent structure of the boundary layer, and the transfer rates 
themselves, are strongly modified by the direction and intensity 
of the vertical heat and humidity gradients. 
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As discussed in our previous publications (Coantic [ 1968], Coantic 
et al. [1969]), and in Part III of the present paper, the preceeding 
considerations have been the basis for the settling of our research 
program and the design of our simulation facility. Some aspects of 
the problem are already being the subject of theoretical investigations, 
which we shall now mention shortly. 

2. Wave and Current Generation by Wind 

The transfer of mechanical energy from air to sea has two 
main consequences: the development of currents and turbulence in 
the upper ocean, and the generation and amplification of waves. This 
latter process can be broadly described as follows: the turbulent 
atmospheric boundary layer exerts on the water surface normal and 
tangential stresses, with steady, periodic and random components. 
As a consequence of these stresses and of the gravity and capillarity 
restoring forces, motions of a wavy character are generated at the 
interface. As soon as their amplitude becomes appreciable, non- 
linear effects are developed, which result in a modification of the 
airflow structure and, hence, of the applied stresses, the existence 

of a continuous wave spectrum and the production of turbulent energy 
in the sea. The wave amplitude is then limited by the dissipative 
action of turbulence and viscosity. 

As mentioned earlier, the understanding of this complex 
mechanism is essential to elucidate, not only the dynamical, but 

also the thermodynamical aspects of air-sea interactions. A careful 
study has, accordingly, been undertaken (Ramamonjiarisoa [ 1969, 
1970]), first of existing theories (based on models proposed by 
Miles and Phillips) and later on of more recent developments in the 
researches of Stewart, Mollo-Christensen, Longuet-Higgins, 
Hasselmann and Reynolds, among others. This helped us in identify- 
ing some points that have to be subjected to experimental study, 
namely: the existence of separation after the wave crests, the phase 
shift between surface pressure and elevation, the spatial and temporal 
variations of Reynolds stresses, and of the turbulent structure of the 
flow in general. Our future measurement program has been estab- 
lished in consequence, taking advantage of the possible use of the 
space-time correlation technique, and of numerical data processing 
methods to separate the "mean," the "phase average" and the "tur- 
bulent" parts of each variable. 

3. Interaction of Turbulent and Radiative Transfers 

Another typical example of reciprocal interactions between 
the various modes of energy transfer near the air-sea interface is 
the simultaneous transport of sensible enthalpy by turbulent con- 
vection, and by infrared radiation. The turbulent heat flux is 

usually assumed constant with height in the atmospheric surface 
layer. However, the validity of this hypothesis is known to be 
questionable, due to a possible vertical variation of the infrared 
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radiative flux (see e.g. Munn [ 1967]). 

This problem has been approached theoretically, using semi- 
empirical expressions fitted to the emissivity curves, and assuming 
logarithmic temperature and humidity profiles. A first approxima- 
tion of the radiative heat flux divergence is thus obtained analytically, 
as a function of the surface layer parameters (Coantic and Seguin 
[1970]). Numerical values of the infrared flux gradient, dq,/dz, 
in the first ten meters of the marine atmosphere are shown in Fig. 2, 
for two different wind velocities (A: Uj) =3 m/s; B: Ujo = 9 m/s); 
two sea surface temperatures (cases 1,2: 8, = +5 CG; cases 3,4: 

8, = + 20 °C); and two temperature differences (cases 1,3: 0,9 - 89 = 
- 5 °C; cases 2,4: O19 - 0g = +1 °C). The resulting vertical vari- 
ations of the turbulent heat flux, shown by Fig. 3, are seen to attain 

unexpectedly large values, of the order of 30 to 40%, when wind 

velocity is low and humidity is high. 

These results are considered as preliminary. If confirmed, 
they could lead to a reinterpretation of some experimental data, 
and should appeal to an extension of turbulent transfer theories to 
the case of a variable heat flux. 

-08 -04 (a) : +04 a mw/em¥m 

Fig. 2. Computed vertical variations of radiative flux divergence 
for various atmospheric situations 
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Fig, 3. *Relative vertical variation of the turbulent heat flux, for 
various atmospheric situations 

4. Water Vapor Turbulence and Its Measurement 

The turbulent transfer of humidity in the lowest atmospheric 
layers is, as mentioned earlier, one of the principal mechanisms 
for the exchange of energy between air and sea. In addition, this 
process governs the mean distribution and turbulent structure of 
specific humidity in the lower levels, and thus exerts an essential 
influence on electromagnetic wave propagation. Therefore, the 
contemplated studies require the measurement of humidity fluctu- 
ations, whose levels and scales have to be estimated to delineate 

suitable measuring devices. 

This estimation has been obtained by: a) studying the equa- 
tions governing the mean distributions, turbulent fluxes and levels 
of fluctuations of humidity b) examining the known experimental 
data; and c) predicting the form of the spectrum from the Kolmogorov- 
Obukhov theory (Coantic and Leducq [1969]). Figure 4 compares the 
predicted spectral behavior of turbulent humidity fluctuations (after 
some shift towards lower frequencies), and recent measurements by 

Miyake and McBean [1970]. Considering the experimental under- 
estimation of the high frequency part of the spectrum, the overall 
agreement is not too bad. 

Once the estimate is made, it is then possible to define 
specifications for devices measuring humidity turbulence, for use 
either in the field or in the laboratory (see VI. 3). 
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Fig. 4. Comparison between predicted spectral behavior of turbu- 

lent humidity fluctuations, and measurements by Miyake 
and Mc Bean [ 1970] 

5. Two-Phase Processes in the Vicinity of Air-Sea Interface 

The equations governing the mean properties of air-sea inter- 
actions are usually written in an earth fixed Eulerian frame of refer- 
ence, and different sets of equations have to be used in the gaseous 
and in the liquid phase. Due to the unsteady random character of the 
interface, this means that an appreciable part of the system has, 
strictly speaking, to be treated as a two-phase flow. 

If one wants to take into account the obviously important 
effects of sea spray in the lower atmosphere, and of air bubbles in 
the upper ocean, the necessity of considering two-phase effects is 
still more clear. Prompted by chemical and nuclear engineering 
problems, notable progress has been gained these last years in the 
analytical and empirical description of such processes. We plan to 
apply the methods therein developed to the study of the two-phase 
portion of the ocean-atmosphere system. 

Ill. STUDY OF CHARACTERISTICS AND DESIGN OF THE SIMU- 
LATING FACILITY 

14. Conditions for Modelling Small-Scale Air-Sea Interactions 

In consequence of the physical mechanisms of air-sea energy 
exchanges, the planned laboratory experiments will concern the 
structure of turbulent velocity, temperature and humidity boundary 
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layers obtained at the interface between an airflow and a water mass. 
The three basic processes of momentum, heat and mass transfer will 
be effectively realized by controlling air velocity, temperature and 
humidity, and water velocity and temperature. Furthermore, 
appropriate heating or cooling will provide an approximate repre- 
sentation of the most important radiation effects. 

However, such experiments will be really useful in modelling 
the atmospheric-oceanic phenomenon, only if the three aforementioned 
specific features: turbulent atmospheric structure, stratification 
effects, and interface motion, are at least partially reproduced. 
This seems feasible, provided that a sufficiently large facility can 
be realized. 

2. Simulation of the Atmospheric Dynamical Structure 

It is well known that the atmospheric surface layer motions 
can be simulated in the laboratory, in so-called "micrometeorologi- 
cal wind-tunnels" (see e.g. Pocock [ 1960], Cermak et al. [ 1966], 
McVehil et al. [1967], Mery [1968]). In short, these motions are 
characterized, on one hand by extremely high values of Reynolds 
number, and on the other hand, by stratification effects corresponding 

to appreciable values of Richardson number. For a good modelling, 
these dimensionless numbers have to keep significant values in the 
laboratory flow. For the latter, this implies rather large tempera- 
ture differences, and low wind velocities. In consequence, to pre- 

serve sufficiently high Reynolds numbers while observing cumulative 
stratification effects, it is necessary to build large facilities. Simi- 
lar conclusions are reached if one considers the problem of main- 
taining the ratio between the roughness height at the surface and the 
boundary layer thickness or the Monin-Obukhov length, or if one 
requires the reproduction of an appreciable Kolmogorov inertial 
range. 

For these reasons, the test section length of micrometeoro- 
logical wind tunnels reaches several tens of meters and the velocity 
range is of the order of a few meters per second, while provision 

is made for creating temperature differences of several tens of 
degrees centigrade. The main characteristics of our project are as 
follows: 

- Length of the water surface forming the interface in the test 
section: 40 meters. 

- Air velocity range: 0.5 to 14 meters per second. 

- Maximum temperature and specific humidity differences: 30 °C, 
and 25.10°° Kg water by Kg air. 

The estimated performance of the facility is sketched by Fig. 5, 
which shows the rather wide range of dimensionless parameters that 
should be covered. The general scheme of the tunnel is given in 
Fig. 6. It is a closed-circuit wind-tunnel, with several rather 
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unusual dispositions, dictated by specific requirements. For 
instance, to obtain stable functioning at the lowest velocities, the 
return circuit's area has been purposely reduced; the total head 
loss has been increased by tightly finned heat exchangers acting as 
flow equalizers just upstream the settling chamber; and the diffusors 
have been fitted with vortex generators and stabilizing vanes. The 
test section's area is 3.20 by 1.45 meter, and the overall size of the 
facility 61 by 7.50 meters. The wind velocity can be continuously 
varied from 0.5 to 14 meters per second, with a relative accuracy 
of 2.10°°, using a helicoidal fan driven by a variable speed D.C. 
motor with electronic regulation. 

ENE Ae ‘el a FAS SRE 
0 10 20 30 40 Xm oy 0 500 i000 1500 ~~ 2000 

=—=——{) = "ims 
SESSA U = 4mis (a) ( b ) 

a =: 20 30 40 Xm 

Cd) 

Fig. 5. Estimated performance of the facility: a) Reynolds number, 
and boundary layer thickness; b) Sensible and latent en- 
thalpy fluxes; c) Wind-Waves' age and significant héight; 
d) Richardson number. 
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Fig. 6. General scheme of the wind-water tunnel 

3. Reproduction of Heat and Mass Transfer Processes 

Supposing a convenient flow structure has been obtained, the 
existence of nonzero temperature and partial water vapor pressure 
differences between the water surface and the incoming air flow will 
be sufficient to cause turbulent convective processes of mass and 
sensible and latent enthalpy similar to those encountered in the 
atmospheric boundary layer. 

The equations governing these transfers being linear with 
respect to temperature and humidity, these last variables can be 
fixed on grounds of experimental convenience, as long as stratifi- 

cation effects do not arise. The estimated values of flux Richardson 
number, computed at one-quarter boundary layer thickness and for 
a temperture difference amounting to 25 °C, are displayed in Fig. 
2(d) as a function of longitudinal abscissa and velocity. At the 
highest velocities, Richardson number is clearly negligible, and 

temperature and humidity differences will be chosen, to improve 
experimental accuracy, at the highest levels authorized by the 
equipment's capabilities (see Fig. 2(b), and below). On the other 
hand, at the lowest velocities, temperature and humidity can no 

longer be considered as scalar passive contaminants, and their 
differences will be chosen in order to obtain a given Richardson 
number, i.e. a given effect on the dynamical structure. 
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A first approximation representation of radiative beat ex- 
changes seems also to be feasible in the laboratory. At the small 
scale we are interested in, the main effect of short wave solar radi- 
ation is a global elevation of the oceanic temperature, that can be 
reproduced by heating the water mass. Due to the radiative trans- 
fer process mentioned in II.3, the reproduction of infrared heat 
exchange is more delicate, but its primary effect yet remains the 
cooling (or occasionally heating) of the interface itself. This 
localized heat sink shall be simulated, either by increasing the 
cooling produced at the same place by evaporation, or by lowering 
the temperature of the ceiling of the test section, and thus con- 
trolling the radiative heat exchange between this wall and the water 
surface. 

The designed facility will allow independent control of air 
and water temperatures in the 5 °C - 35 °C range, with an accuracy 
of the order of 0.1 °C. The relative humidity of air entering the test 
section will be varied from 60% to 100%. Fig. 7 schematizes the 
main components of temperature and humidity control system: cooling 
and drying (by condensing) coils, heating coils and vapor injectors 
in the air circuit; cooling and heating heat exchangers in the water 
circuit; heat generator, frigorific unit with cooling tower, steam 
boiler, regulating system. The working principle is represented 
using the temperature-mixing ratio diagram. 

=e 

HEATER 160000 cu 

HEATER 
90000 cal /b 

at 

if 

Fig. 7. Schematic diagram of temperature and humidity control 
systems 
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4. Reproduction of Interfacial Motions 

The problem of obtaining laboratory waves statistically 
similar to those encountered over the oceans has been thoroughly 
studied these last years, with the view, either to perform more 
realistic structural tests, or to experimentally investigate the 
mechanism of wave generation by wind. The works of Veras [| 1963], 
Hidy and Plate [ 1965], Hsu [1965], Gupta [1966], and of the 
Waterloopkundig Laboratorium [ 1966a,b] can be cited among many 
others. The unsymmetrical, randomly varying and three-dimen- 
sional waves existing in nature can be simulated only at the cost of 
building large laboratory facilities. The so-called "wind-wave 
tunnels" reach one hundred meters in length and several meters in 
width, with smooth and parallel side walls and an efficient absorbing 

beach at the end. 

The main characteristics of waves naturally generated by 
wind along our 40 meters long tank have been forecast from the 
preceeding references and are shown by Fig. 2(c). It is clearly 
possible to generate gravity waves of appreciable amplitude, and 
thus to cover a nonnegligible range of Froude numbers. However, 
the "wave age," i.e. the ratio of the celerity of propagation, C, 
of dominant waves to the wind velocity, U, remains low, especially 

at the highest velocities. The same is true of the ratio C/U~ (where 
U+ is the friction velocity in the boundary layer), which is known 
as an important parameter in the wave generation process. Asa 
matter of fact, these two ratios control the relative magnitude of 
normal and tangential stresses exerted by wind on water, with im- 
portant consequences upon the various energy exchange mechanisms 
(see II.1). It is therefore necessary to have the possibility to act 
on these parameters, by controlling the wave height and celerity 
independently of wind velocity. This will be done by means ofa 
wavemaker set at the beginning of the water channel and conveniently 
randomly actuated. It is known that the combined action of sucha 
device and of wind blowing will result, after some distance, ina 
satisfying wave pattern. 

The details of that part of the equipment are sketched by 
Fig. 8. A new type of wavemaker, comprising a fully submerged 
wave plate connected to the tank by means of bellows, has been 
imagined. This arrangement allows to realize a fairly smooth 
joining of air and water flows, even in the presence of waves. The 
end of the channel will be equipped with an absorbing beach made 
from parallel tubes with a 7° slope. A slight water movement 
(between 0.1 and 0.01 m/s) necessary for cleaning and temperature 
controlling purposes, will be insured by«a recirculating 35 HP heli- 
coidal pump. 

* 
By A. Ramamonjiarisoa. 
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Fig. 8. Details of junction between air and water flows, and arrange- 
ment of the submerged wavemaker. 

5. Further Details and Conclusions 

At each step in the design of the facility, we endeavored to 
improve the simulation of the natural phenomenon and some of the 
arrangements taken to this end have just been described. A peculiar 
problem was set by the parasitic boundary layers which unavoidably 
originate along the side walls and ceiling of an elongated working 
section, and which are known to result in cumbersome secondary 
motions. The dispositions adopted to reduce these effects, thereby 
improving the representation of the unlimited atmospheric-oceanic 
system, are represented by Fig. 9. The cross sectional shape of 
the working section (see Fig. 9(a)) has been designed with a height/ 
width ratio of 1 to 2.2, and furthermore fitted, like in the Water- 

loopkundig Laboratorium [1966a,b] design, with vertical plates 
restricting the span of the useful water surface to 2.62 meters. 
The lateral quays thus realized will limit the parasitic dynamical as 
well as thermodynamical effects in the central part of the working 
section, where the measurements will be performed. To further 

improve the two-dimensionality of the flow, and to prevent the inter- 
action of the studied boundary layer with that one developing on the 
working section's ceiling, boundary layer control devices will be 
used. As shown by Fig. 9 (b), they combine boundary layer suction 
(by means of slots or porous walls) and blowing (through slots), 
taking advantage of the possibilities of tangential blowers. 

At last, it will be necessary, specially at the lowest wind 
velocities, to artificially trigger transition, and eventually to in- 
crease the boundary layer thickness, by means of devices similar to 
those studied by Counihan [1969] or Campbell and Staden [ 1969]. 
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Suction through porous wall 

Suction and blowing 
by slots 

(b) 

Fig. 9. Details of test section: a) Section view, showing the lateral 
quays; b) Boundary layer control devices. 

All the foregoing will make clear that we have tried to insure 
an acceptable simulation of the main aspects of air-sea interactions. 
Entire modelling, with full similarity, cannot, of course, be attained. 
We believe, however, that experiments where the various physical 
mechanisms are effectively put in action, and where basic parameters 

possess significant values, will realize a partial simulation of natural 
exchanges, thus affording the possibility of interesting investigations. 
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IV. PRELIMINARY ONE-FIFTH SCALE MODEL TESTS 

A one-fifth scale model of the large air-sea interaction 
facility has been built. The primary object was to check and im- 
prove various design characteristics; altogether it was also planned 
to perform instrumental studies, and to execute preliminary small- 
scale scientific experiments. 

This scale model is a detailed reproduction of all parts of 
the large facility, including not only the aerodynamic and hydraulic 
elements, but also the equipment controlling heat and humidity ex- 
changes. A view of the wind-water tunnel, and of the control console, 
is given in Fig. 10. 

Fig. 10. General picture of the model 
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1. Overall Aerodynamic Tests 

The first use of the model has been to test the global aero- 
dynamic performance of the facility. The initial design, represented 
by the upper part of Fig. 11, suffered from several imperfections 
resulting in a low power factor and in an inadequate working stability. 
Detailed flow explorations have led to successive amendments in the 
geometry of the model (see Pouchain [1970] and Coantic et al. [1969]). 
The final design, shown in the lower part of Fig. 11, offers satis- 
factory performance, and has therefore been adopted in the later 
building of the large facility, the aerodynamic characteristics of 
which have been predicted from the model tests. 

SECTION A 

SECTION B,C 

INITIAL 
SECTION D 

ee — hea 

SECTION E,F 

0 In FINAL 

Fig. 11. Improvements in aerodynamic design of the model 

2. Flow Exploration and Improvement in the Working Section 

A deeper flow study of the working section has then been per- 
formed, of which typical results, obtained for a wind velocity of 
8.3 m/s, are displayed by Fig. 12. It can be seen that the situation 
is good in the entrance section, with a very flat velocity profile, 
and a turbulence intensity below 0.002 (the effects that can be dis- 
cerned near the water surface are the consequence of artificial 

boundary layer thickening in the final part of the contraction). The 
further growth of the various boundary layers, and the fact that they 
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Fig. 12. Flow characteristics in the test section: a) Vertical 
velocity profiles; b) Horizontal velocity profiles; 
c) Vertical distributions of turbulence intensity. 
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begin to join together towards the end of the working section, leading 
to a fully developed channel flow, are also apparent. 

As already mentioned (see III.5), it is therefore necessary to 
take steps to restrict the development of the lateral and upper bound- 
ary layers. Tests performed under different conditions have proven 
that the contemplated control method was efficient in this respect 
(Pouchain [1970]). Fig. 13 illustrates typical results obtained for 
various blowing rates (i.e. ratios of jet velocity to mean flow veloc- 
ity), while sucking through a porous wall and blowing across a 15 
millimeters height slot. The improvement in velocity distribution 
is clear. As shown by Fig. 14, the turbulent intensity distribution is 
also ameliorated. Some problems related to pressure perturbations 
still have to be solved, but, on the whole, the method appears as 
promising. 

No blowing ese 

With blowing Uj /U, = 105 ------ - 

Fig. 13. Improvement in test section's flow by means of boundary 
layer control: a) Flow configurations for three rates of 
blowing; b) Variation of boundary layers! thickness. 
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Fig. 14. Effects of blowing on turbulence intensity distributions. 

he Hydraulic Tests 

The hydraulic performance of the facility has also been sub- 
jected to various tests. The functioning of the water recirculating 
circuit has been controlled. The working of the new submerged 
wavemaker, and of the absorbing beach, has also been found satis- 

factory. 

Observations of waves generated by wind in the model tank, 
such as those shown by Fig. 15, suggests they qualitatively possess 
the three-dimensional random structure typical of oceanic wind 
waves. Measurements of wave spectrum at different fetches along 
the working section have just been done, and the results displayed 
in Fig. 16 compare favorably with those of previous studies (see 
the references in III.4). The spectral shape and evolution strongly 
suggests the existence of nonlinear effects transferring energy from 
higher to smaller frequencies, as recently postulated by Longuet- 
Higgins and Mollo-Christensen. 
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Fig. 15. Sample view of wind-waves obtained for a 4 m/s velocity 
and a 4 m fetch. 
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Fig. 16. Evolution of wind-waves' spectra as a function of fetch 
along the model's test section. 

Mm ~] 



Favre and Coantie 

4. Tests of Temperature and Humidity Control Systems 

Various working tests of that part of the equipment have been 
executed. The validity of the previously chosen control methods 
has been checked, the obtainable temperature and humidity range 
has been controlled, and the stability of regulating loops has been 
tested. After some improvements, the overall thermodynamic per- 
formance of the model has been correct. 

A further study of temperature repartitions upstream and 
inside the working section has then been undertaken, for different 
flow and thermal conditions. Typical results are shown by Fig. 17, 
where an initially isothermal airflow, and the development of thermal 
boundary layers can be observed. The temperature distribution in 
the entrance section is usually good; except in extreme cases of 
large heating and velocities of the order of one meter per second, 
where parasitic stratification effects appear. 
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Fig. 17. Temperature Distribution in the Model's Test Section 

V. CONSTRUCTION OF THE LARGE AIR-SEA INTERACTION 
FACILITY 

In view of the rather considerable size of the designed wind- 
wave tunnel, its erection was not possible inside I.M.S.T. 's main 

building. It was therefore decided to build a new laboratory, includ- 
ing the large air-sea facility, its auxiliary equipments and a group 
of offices, workshops and laboratories, and located in the new 
Marseille-Luminy Campus. Its floor plan is shown by Fig. 18. 
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Fig. 18. Air~Sea Interactions Laboratory Floor Plan 

The preliminary design of the facility has been determined by 
I.M.S.T., and its detail drawings set up with the aid of architect 
and engineering offices. The construction works have been planned 
in three stages: a) Erection of buildings, concrete structural parts 
of the tunnel, electric equipments, temperature and humidity con- 
trol systems; b) Fitting up of the main elements of air and water 
circuits, including static parts (tunnel walls etc.) as well as pump 

and fan; c) Completion and equipment of the facility, placing control 
apparatus and such parts as wave-maker and boundary layer control 
devices in position. 

Works have been started in January 1969, and step a) is 
fully completed from several months (see Fig. 19). Step b) is now 
nearly achieved, and the first run of the wind-water tunnel is planned 
for the end of the present year.” Our program forecasts about one 
more year for the execution of step c), and the beginning of strictly 
scientific experiments by the end of 1971. These experiments will 
concern: first the dynamic exchange process alone; then, the heat 
and mass transfer processes; and later on the effects of stratifica- 
tion upon these three mechanisms. The execution of this program 
will clearly take several years. 

VI. RESEARCHES RELATED TO INSTRUMENTATION PROBLEMS 

Some of the anticipated experiments obviously necessitate, 
either the development of new measuring instruments and methods, 
or the adaptation of existing ones. Corresponding researches have 
been undertaken since the early stages of our program. 

¥ 
Note added in proof: this has been achieved by November 1970. 
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Fig. 19. Constructions! progress by May 1970: view of refrigerating 
coils, and of concrete contraction and test section. 

1. Turbulence Measurements in Water Flows 

A first work has been devoted to the measurement of velocity 
and temperature mean and fluctuating values in water flows, and of 
the associated turbulent momentum and heat fluxes. The adaptation 
to this problem of the well known hot-wire technique has been studied 
experimentally. An apparatus including a tubular water channel was 
constructed to that end, and hot-wire sensors were manufactured. 
The theoretical and experimental study of the performance of various 
types of wires and films has resolved satisfactory methods of cali- 
bration and measurement, particularly for commercially manufactured 
conical hot films for which dimensionless cooling laws have been pro- 
posed, and for slanting wedge-shaped films. The intensity and the 
spectrum of turbulence, and the Reynolds stresses themselves, have 

been determined inside a circular conduit, with a comparable degree 
of accuracy to that attainable in air flows (see Fig. 20). Later on, 
the effects of water temperature variations upon the hot-film response 
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Fig. 20. Turbulence measurements in water flows: a) Comparison 

of turbulence spectra measured in dynamically similar 

air and water flows. 
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Fig. 20. Turbulence measurements in water flows: b) Comparison 

of turbulence intensities measured in dynamically 
similar air and water flows; c) accuracy checking 
of measured shear stresses. 
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have been thoroughly studied (see Fig. 21), and measurements of the 
intensity of temperature turbulence have been executed. 

These results are given in a number of publications: Resch 
[ 1968, 1970], Resch and Coantic [1969], Ezraty and Coantic [1970], 
Ezraty [1970]. They show conclusively that, subject to some pre- 
cautions, turbulence measurements can be quite accurately per- 
formed in water flows, using hot-film anemothemometers. 

2. Measurements of Turbulent Fluctuations of Humidity 

After the theoretical study reported in II.4, the development 
of a water vapor turbulence measuring technique has been undertaken. 
Various methods have been considered: psychrometry, dew-point 
measurement, use of hot-wire, absorption of Lyman alpha or infrared 
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Fig. 21. Dimensionless Cooling Law for a Conical Hot-Film. 
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radiation, measurement of refractive index, use of the ionic probe. 
These techniques which depend on the thermodynamic properties of 
moist air present advantages from the point of view of miniaturi- 
zation, whereas those based on electromagnetic properties are 
advantageous from the point of view of bandwidth. Psychrometry 
and Lyman alpha absorption seem to be the most promising ones, 
the latter appearing to have the best chance for adaptation to parti- 
cularly difficult measuring conditions (Coantic and Leducq [ 1969]). 

For practical reasons, psychrometry has been chosen for a 
first deeper investigation. A small calibrating tunnel has been built 
and various types of miniaturized small time constant psychrometers 
have been manufactured and tested. A prototype psychrometer is 
used with wet and dry balsa fibers, of which surface temperature is 
measured by platinum resistors (5 microns in diameter), the result- 

ing electrical signals being fed into a small analogue computer, 
whose output is directly proportional to specific humidity fluctuations. 
The physical size of the sensing head is a few millimeters and the 
bandwidth several cycles per second (Leducq[1970]). These results 
are only preliminary, and further studies are now being undertaken. 

3. Data Proces sing 

Considering on one hand the volume of measurements to be 
taken, and on the other hand the necessity, mentioned in II.2, to 

separate any variable in its "mean," "phase average" and "turbu- 
lent" parts, the use of digital data acquisition and processing methods 
seem unavoidable. 

Preliminary studies have been done of a small data acquisition 
system for continuous digitizing and numerical tape recording of 
turbulent variables. The recorded data could be later, pre-pro- 
cessed on the system itself and eventually transferred to a large 
computer for a comprehensive treatment. This data acquisition 
system could also be useful for control process of the tunnel and of 
the measuring equipments, thereby largely increasing the efficiency 
of the facility. 

VII. CONCLUSIONS AND PROSPECTS 

The research program which has just been introduced is 
obviously a long-term one. It is therefore too soon to state any 
definitive conclusion, and we can only try to survey some preliminary 
results, and to think about the probable prospects of the research 
we have undertaken. 

The main result of the work performed till now is the detailed 
definition of a scientific experiment which, although done in the 
laboratory, seems capable to give results applicable to the natural 
processes occurring near the ocean-atmosphere interface. The 
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interest of this original approach is clear, but its success will be 

ascertainable only after fulfillment of the anticipated experimental 
program. Indeed, in spite of the growing evidence in favor of the 
laboratory simulation of such geophysical phenomena, it is only by 
direct comparison with field data that the exact degree of similarity 
achieved with the natural process will be known. It is, however, 
reasonable to expect, at worst, a partial success of this approach, 
namely the elucidation of some among the many unsolved aspects of 
small scale air-sea interactions. 

Besides this main point, a few results have been, to date, 

obtained in various related domains. We shall quote: some progress 
in the understanding of effects of water vapor transfer and long-wave 
radiation upon turbulent heat transfer in the atmospheric surface 
layer; some improvements in the technique of micrometeorological 
and wind-wave facilities; results on the measurement of turbulent 
processes in water flows, with the aid of hot-film anemothermometers. 

It is clear that much work still remains to be done, when the 

present program is necessarily limited in scope. On the other hand, 
the described facilities will offer possibilities that will not be fully 
exploited by only one scientific group. Therefore, it should be 
possible in the future to consider some cooperation with other groups, 
in order to take full advantage of the capabilities of that tunnel. 

The researches that can be performed with such an equipment 
have multiple fields of application. The results of the present pro- 
gram could obviously be useful for oceanography and naval hydro- 
dynamics (wave forecasting, shiprouting, fishing, pollution, oceano- 
graphic methods, etc.), as well as for meteorolory (long range fore- 
casting, air pollution, future climatic control, etc.), and seem also 
to be applicable in other domains: chemical engineering, air con- 
ditioning, heliotechnique, and even biological and agricultural 
micrometeorology. Furthermore, new experiments could be planned 
in the fields of acoustic wave propagation, light transmission or 
reflexion, electromagnetic propagation, structural mechanics, and 
soon. In short, this facility ought to be a kind of "pocket ocean- 
atmosphere interface," where basic as well as applied experiments 
could be done more easily and economically than in the field. 
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EXPLOSION-GENERATED WATER WAVES 

Bernard LeMéhauté 
Tetra Tech, Ine. 

Pasadena, California 

I. INTRODUCTION: A review of the state of the art 

This paper reviews recent developments concerning water 
waves generated by underwater explosions, with particular emphasis 
on the wave generation mechanism. Analytic models for predicting 
water waves from explosions in deep water are presented together 

with methods for improving our understanding of the wave generation 
mechanism. 

A submerged detonation almost instantaneously produces hot 
gas or plasma within a limited volume. High temperatures and 
pressures result in two disturbances of the ambient fluid: emission 
of a shock wave traveling outward, which vaporizes a mass of water; 
and radial motion of the fluid, so that the "bubble," consisting of 
explosive debris and water vapor, begins to expand. At the same 
time, if undisturbed by bounding surfaces, it begins to rise due to 
its buoyancy. 

During the expansion phase, pressure within the bubble falls 
considerably below the ambient hydrostatic pressure, owing to its 
outward momentum acquired by the water. The motion then re- 
verses; the bubble contracts under hydrostatic pressure, [| acquiring 
inward momentum and adiabatically compressing the central gas 
volume to a second -- but lower -- pressure.] Upon reaching its 
minimum diameter, several phenomena may occur: energy is radi- 
ated by the emission of a second shock wave; if near the free surface, 

the contracted bubble will not be spherical but may evert, the bottom 
rushing up and passing through the top; lastly, the surface of the 
contracting bubble is extremely unstable -- it may break up irregu- 
larly, forming a spray within the bubble. 

The bubble may lose enough energy through repetitive expan- 
sions and contractions so that it collapses entirely, leaving a mass 
of turbulent warm water and explosion debris, and no waves of conse- 

quence will be generated. This case is typical for large, deeply 
submerged detonations, and will not be further discussed here. 

For shallower explosions, the nature of ensuing surface 
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motions depends upon the phase with which the bubble reaches the 

surface. Depending upon the depth of the burst, these may include 

a well-formed hollow column, a very high, narrow jet, or a low, 
turbulent mound, followed by development of a prominent base surge. 
The duration of this "initial" disturbance may be quite great, starting 
from the first appearance of a mound as the bubble nears the free 
surface, to the collapse, under gravity, of the water thrown upwards. 
Base surge of plumes are not related to shock interaction. These 
phenomena are ultimately manifested by a system of water waves 
radiating from the location of the explosion. 

If the water is of uniform depth, the wave system will have 

circular symmetry. Most of the energy of the explosion goes into 
the shock wave and local turbulence; only a small amount (10% at 

the most) actually appears in the ensuing water wave system. 

As a result of its complicated origin, the initial disturbance 
comprises a broad, irregular spectrum. Since deep water is a 
dispersive medium, as the waves travel outwards, they will become 
sorted according to frequency; the longer waves running ahead, and 
the shorter waves trailing behind. A curve of wave period versus 
time at any distant location, therefore, will monotonically decrease, 

In general, the energy distribution among the frequencies 
generated will not be uniform; the spectrum will be peaked near a 
frequency corresponding to a wave length which is a small multiple 
of the radius of the central disturbance. 

At a fixed distance r from the explosion, if one measures 
the maximum amplitude 4,,,, of the envelope of the water waves 
generated by a given yield W as a function of burst depth, curves 
having the general shape shown in Fig. 1 will be obtained. These 
curves have two characteristic peaks. 

UPPER CRITICAL DEPTH 

LOWER CRITICAL DEPTH 

DEPTH OF DETONATION 

Fig. 1 A schematic illustration of the relationship 
between wave amplitude, range, depth-of- 

burst, and yield 
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The first peak is called upper critical depth (u.c.d.); the 
second one is the lower critical depth (l.c.d.). While there is so 

far no; adequate theoretical explanation for the u.c.d.,.the l.c.d. 
is clearly analogous to the influence of burst depth on crater dimen- 
sions in solid materials, and is related to the balance between ex- 
plosion energy going into cratering and that vented to the atmosphere, 

Another interesting feature which has been experimentall ob- 
served is a change of phase between corresponding waves of trains 
generated by explosions above and below the upper critical depth. 
Such a change, in fact, is predicted between theoretical models of 
wave trains generated by an initial impulse acting on the surface and 
an initial surface elevation, respectively, suggesting that the impulse 
model may be more appropriate for explosions above the upper criti- 
cal depth. The u.c.d. is a rather puzzling aspect of explosive wave 
generation. Abundant experimental data with HE charges within the 
range 0.5 - 300 lbs exhibit a large scatter under presumably identi- 
cal conditions, mq, varying between 0.5 - 2 times that at the l.c.d. 

Moreover, the scaled wave frequency at "ma, is uniformly higher, 
indicating a smaller effective source radius. Lastly, the existence 
of the u.c.d. is still somewhat in question for large explosions, 
since several attempts to reproduce it with 10,000 lb HE charges 
have been unsuccessful. It has been suggested (Kriebel [| 1968]) that 
the upper critical depth effect is obtained from interference between 
the direct incident shock wave and its reflected waves, resulting in 
more effective containment and greater cavity expansion than from 
deeper or shallower charges. As the detonation depth increases, 
the pressure impulse on the free surface has less and less effect 
on the cavity formation and ultimately becomes negligible. This 
undoubtedly influences the shape of a theoretical cavity, which pro- 
duces an equivalent system of water waves, since the dimension of 
this cavity is closely related to both frequency and amplitude of the 
first envelope. Nevertheless, it appears that the large data scatter 
obtained under fixed experimental conditions at the upper critical 
depth are largely due to Taylor instability of the collapsing cavity. 

The mathematical model described later can be adjusted to 
produce practically any type of wave train desired, by assuming 
various shapes for the initial cavity. 

i. . INPUT CONDITION 

The theoretical formulation of an overall mathematical model 
for simulating the time history resulting from an underwater detona- 
tion is an extremely complicated task. However, keeping in mind 
the main objective of our problem -- the generation process of water 
waves -- many detailed phenomena, chemical or nuclear, can be ig- 
nored, retaining only the kinematic and dynamic features. 

For example, one can consider only the following phases, 
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both of which are mathematically tractible. 

The Compressible Hydrodynamic Phase 
The Incompressible Phase 

The first is arrived at by defining the conditions which prevail at the 
location of the explosion and in its immediate neighborhood. The 
second makes use of this input as an initial condition to calculate the 
water waves at a distance far from the explosion. 

2.1 The Compressible Hydrodynamic Phase 

The compressible phase of an underwater detonation lasts 
for a relatively short time. Initially, upon detonation, there is im- 
mediate vaporization of water around the weapon due to intense 
radiation. This takes place in a time scale of microseconds. As 
the shock wave propagates outward, the bubble front initally coin- 
cides with the shock front (Fig. 2). Only the initial phase of the 
formation of the bubble need be considered compressible. Bubble 
migration, expansion, and collapse can be treated as incompressible, 

BUBBLE FRONT j SHOCK FRONT 

TIME AFTER DETONATION, t 
r b 

DISTANCE FROM EXPLOSION ,r 

Fig. 2 Qualitative relationship between shock front 
and bubble front 

or, perhaps more correctly, as quasi-incompressible, since subse- 

quent shock waves are emitted at each minimum of the bubble history. 
It is obvious that, from the point of view of wave generation, the only 

problems of importance during the compressible phase concern the 
fluid motions generated in the vicinity of the bubble and the effect 
of reflected shocks. The early, compressible phase of bubble (cavity) 
expansion can be treated by the particle-in-cell technique, which has 
been successfully employed in many similar cases of compressible 
flow, both in fluids and in solids (Mader [ 1967]). 
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Again, it should be emphasized that the objective is to obtain 
an input condition for wave generation rather than to solve the many 
associated problems of bubble dynamics, shock propagation, and 
radioactive debris distribution. However, these problems cannot be 

ignored, inasmuch as they affect the wave generation process. 
Extensive work has been performed on bubble dynamics of both con- 
ventional and nuclear explosives (Snay [1966]). The energy partition- 
ing between radioactive potential energy, thermal energy to heated 
and vaporized water, shock energy, and kinetic and potential bubble 
energy has been investigated by a number of authors (see, for ex- 
ample, DASIAC Special Report 104 - Secret). Detailed studies of 
shock propagation and pressure fields have been performed by many 

investigators. Some of these studies neglect the effect of gravity; 
others make gross assumptions about the thermodynamic properties 
of the bubble. But all of these effects should be included in an 
effective model for analyzing the wave generation process, unless 
it can be shown that they can be neglected because they do not affect 
the wave characteristics. 

2.2 The Incompressible Phase 

The input condition being defined by the compressible phase, 
the subsequent cavity behavior may be treated as incompressible 
flow. It is tentatively proposed to analyze the wave generation pro- 
cess through a numerical solution to the time-dependent, viscous, 
incompressible flow of a fluid with a free surface. Figure 3 is an 
experimental example of near-burst free surface history. The most 
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promising method applicable to this problem seems to be the MAC 
Method developed by Harlow and his group at the Los Alamos 
Scientific Laboratory. Further study to improve both accuracy and 
efficiency (with respect to computer time) has led to development 
of other techniques, such as SUMMAC (Chan, et al. [1969]). Despite 
the degree of sophistication that has been achieved for treating free 
surface flow problems by numerical techniques, problems still re- 
main which require some approximation. These are related to the 
amount of energy dissipated by viscous turbulence associated with 
the plume and base-surge radiating from the explosion. Energy 
dissipated by the radiating surge is similar to that in a tidal bore, 
except for the difference in water depth. The choice of a suitable 
viscosity coefficient that realistically accounts for turbulent dissi- 
pation can only be made empirically, and will be related to the mesh 
size of the numerical model. This choice is also subject to the con- 
straint of numerical stability. 

Ill WATER WAVE FORMULATION 

3.1 General Analytical Generation Model 

Using the initial conditions obtained by the above methods, 
one can determine the water waves generated by such disturbance 
analytically. 

The problem of surface waves generated by an arbitrary -- 
but localized -- disturbance of the free surface has been investigated 
by Kajiura [ 1963], who has derived very general solutions incor- 
porating the effects of initial displacement, velocity, pressure, and 
bottom motion. Kranzer and Keller [ 1959] present a simplified 
approach through the assumption of radial symmetry. The two solu- 
tions are equivalent under appropriate conditions, but, because the 

former permits utilization of the previous methods in the form of a 
time-dependent input condition, the approach of Kajiura [ 1963] will 
be adopted here. 

The problem may be formulated as follows. In water of 
constant depth D, the coordinate system is established with x and 
y in the horizontal pone of the undisturbed surface and z* taken 

eames 34 upward; a is the time, n'(x™ wt yt ) the cee ge eleva- 
tion, cosy eect at *) the particle Beas and p*(x*,y ee 
the pressure. The motion is assumed pe ooh iniphyiny the 
existence of a potential function ®(x* vw ,z*,t*). Dimensionless 

quantities are introduced as follows: 

x = x*/D y=y*/D Z= z*/D 

t = t*Vg/D n= */D v*/Vg/D 

& = 6*/(D/ gD) p = p*/pgD 

< I 
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where g is the gravitational acceleration. 

Making use of Green's formula, Kajiura [1963] gives a solu- 
tion of V@=0 satisfying bottom conditions (6, =0, z2=-1) and 
the linear free surface condition: 

@.2(x;y.Z:T) = 1/an\ (( Go, ~ BG,,), 2945 

S 

: 1/an\ (ce, : 5,G,,), _1 1S, (1) 
P 0 ° 

where S denotes the source region, initial conditions are denoted 

by subscript zero and G is the appropriate Green's function; 7 is 
a time associated with the generation period. The Green's function 
is: 

00 ze 

G(x9sVo2Z93T |X» Ys Z5t) -{ —olk=) [sinh k} 4 = |z-zolt 

fe) 

2 sinh k }1 + (z +2) 

cosh k(1 +z) cosh k(1 +20) dk 

(2) 

where r is the horizontal distance between the source point (x9, yo) 
and the point under consideration (x,y) i.e., 

Za k 

: =z}! ~ cosw(t-7){ coshk 

—2 2 2 
re = (x -. xg)” ty = yo) (3) 

and 

w* = k tanh k. (4) 

Clearly, G is symmetric with respect to t and 7, and with respect 

to source and field points. The quantities w and k are dimension- 
less frequency and wave number, respectively. 

Applying the given boundary conditions and integrating Eq. (1) 
with 0<7<t gives, after some calculation 

ntp= (lum +R as, (5) 
5) 

where 

fies 
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F = (Cr. i Gamo.g Zj=z=0 (6) 

and 

| " 
t 

2 i PG, a7 + (PGee) eat 
t 

ee if p,G,; dt + (pG,+)-20 Zy=z=0 (7) 

It can be seen that F, contains the contribution to n from 

the initial velocity and surface deformation of the source while Fy, 
represents the influence of initial pressure. Therefore, the model 
is very general; in fact, Kajiura[ 1963] gives an additional term repre- 
senting the contribution from an arbitrary bottom disturbance, which 
is ignored here. It has been found, however, that such generality is 
not necessary in order to make practical predictions of water wave 
production. Instead, it is possible, for example, to absorb the 

effects of initial velocity and pressure into a fictitious initial surface 
deformation, chosen in such a way that the predicted waves are 
essentially the same as would be found using actual velocity, defor- 
mation and pressure. 

3.2 Simplified Approach 

The advantage of this approach in practical work will be 
apparent later in discussing the correlation between theory and 
experiment. The essential point, however, is that, instead of 

needing to predict the complicated phenomena leading to initial 
deformation, velocity and pressure, it may be sufficient to utilize 

easily measurable quantities to calibrate a simplified source model. 

With this in mind, we rewrite Eq. (5) as a Green's function 
of time only: 

1 n= rai (iGsin) 2gdS5 . zgez= 0 (8) 

Furthermore, it is reasonable to assume that, for a single 
explosion in water of constant depth, the problem is symmetric about 
the z-axis passing through the source. When the appropriate opera- 
tions [ in Eq. (8)] are performed, and the transformation to cylindri- 
cal coordinates (r,®) is made, one obtains the time-and-space 

dependent surface elevatior™ 

00 { 277 00 Ss 

n(r,t) = ao k cos ut{ i" Neto) Seater ite dr, ae,} dk (9) 
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where 1(ro) is the initial deformation. Noting that 

ree x? +r7- 2rr cos (8. - 6) (10) ) ) fr) 

the Bessel function J)(kr) may be rewritten according to Graf's 
addition theorem as 

Jo(kr) = Ig(kr)Ig(kr,) + 2) J,(kr)J,(kr,) cos n(®,- 8). (14) 
n=l 

Integration with respect to 0, from zeroto 2m deletes the sum- 
mation so that 

ro) 00 

H(t) = k cos wtJg(kr) {\ Mg Fo) Jol Kt) Zo arg} dk. (42) 
C 

The same result was obtained previously by Kranzer and Keller 
[1959] using integral transforms; in the literature dealing with radial 
dispersive waves, Eq. (12) is generally referred to as the Kranzer- 
Keller solution. 

Equation (12) is a double integral solution that can be con- 

siderably simplified by additional approximations. In particular, 
for large r and t, J,.(kr) may be replaced by an asymptotic cosine 
function, and the resulting integral approximated by the method of 
stationary phase (Stoker [ 1965]), to obtain 

~ 1 AcV(k) Wr.t)* — ZV") m(d) cos (Ar - tv tanh 2) (13) 
k= 

where 

4 00 

US { NolTo) IJo(Kro) ro dro (14) 
fe) 

is the zero-order Hankel transform of the initial elevation (ro) and 

k i — (15) 
2cosh k yk tanhk 

V(k) == cana 

is the wave group velocity, and \ is the particular value of k fora 
given r and t found from: 
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Wiair/t. (16) 

The problem now is to choose 1,(r,) in such a way, depending on 
water depth and explosion characteristics, that Eq. (13) best fits 
an observed wave train. 

3.3 Time-Dependent Free Surface Deformation 

Another possible mathematical model includes the kinetic 
and potential energy transmitted to the water by both the atmospheric 
overpressure and the gaseous expansion of the bubble. The initial 
conditions are now time-dependent, and at least one additional 

parameter (time) is added to the initial conditions. 

While Eq. (13) gives the total energy partitioned to water 
waves as a function of detonation depth, as well as the distribution of 
energy amongst frequencies, the introduction of time-dependence, 
if properly used, permits a better fit to observations, not only for 
the first maximum of the wave envelope mg, (and its corresponding 
wave number k,,), but also to the whole shape of the wave envelope. 

As an example of a time-dependent input condition, consider 
for example, 

Wig (Fos T) = No (Zo) sin or (17) 

where 7, can be considered as the dimensionless period of first 
expansion of the crater cavity from an explosion (Whalin [ 1965]). 

The initial surface velocity at time 7 =0 is 

Zy = 0 

d T ,, | 2=0 =G8) = see A(rd) (18) 
=0 

T= t =— O . 

and the resulting wave train is given by 

_ mw _ md) /kV(k) y n(r,t) = i Hier =yMny oc sin (Xr - ty\ tanh 2). (19) 

It is interesting to note that n(r,t) is independent of real-time history 

of the free surface deformation and depends only upon its time deriva- 

tive at time 7 =0. 
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3.4 Main Features of the Mathematical Models 

[ Based on Eqs. (13) and (14)], typical examples of various 
models for initial surface deformations No (r ro) are given in Table I. 
The first case, a parabolic water crater, is that proposed by Kranzer 
and Keller [1959]. 

The general features of traveling wave trains given by the 
equations presented in Table I are: 

ae The waves travel radially from the explosion. 

b. The leading free ee disturbance or leading wave 
travels at velocity ygD. 

c. Ata given location, the frequency of individual waves 
increases monotomically. 

d. The amplitudes of individual waves (cosine function in 
Eq. (12)) are modulated into groups of successively 

smaller amplitude by the slowly varying Bessel function 
J,(kr,) in Eq. (14). 

e. The number of waves ina given group increases with 
time or distance traveled. 

f. The length of a group increases linearly with time or 
distance traveled. 

ge. The frequency associated with a specific crest decreases 
with time or distance traveled (equivalently, a given 
crest moves forward within a group). 

he The frequency associated with the maximum amplitude 
of a given group is constant. 

i. The maximum height of a given group decreases as the 
inverse of time or distance traveled. 

je The maximum height of successive groups passing a 
given point decreases with time, 

These features are partly illustrated in Fig. 4, which shows a com- 
puted wave train at three different locations. The general decay of 
wave height with distance is the result of both radial dispersion and 
circular spreading. This radial dispersion is characterized by a 
general increase in the wave length of individual waves with distance. 

Wave crests occur when cos (wt - kr) = 1 (Eq. (13)), and 
crest order numbers are given by wt - kr = n(2n-1) where n is an 
integer. It is also interesting to note that in the case of deep water, 
the trajectories of individual waves inthe r-t plane are defined 
by parabolae: n(2n-1) = gt @/4r, See consecutive arrival times at 
any point r will be inthe ratios t: t/V3 3:t/¥5, etc. Similarly, at any 
instant of time t, the consecutive crest radii will have the ratios 
rir/3:r/5, etc. 
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Exploston-Generated Water Waves 

CREST LOCUS DIMENSIONLESS FREE SURFACE ELEVATION 

ENVELOPE 

LINE OF MAX CREST 

(CONSTANT PERIOD) 

DIMENSIONLESS DISTANCE, r =r°/D 

DIMENSIONLESS TIME t=t*/g/pd 

Fig. 4 Schematic drawing of wave trains as function of time at 
three different locations (Van Dorn, personal communi- 
cation) 

Based on this formulation, an equivalent crater size defined 
by its maximum depth ‘omax and radius R can be empirically re- 
lated to yield W and detonation depth as shown in the following. 

However, the present formulation is oversimplified. The 
cavity shape (and not only its overall dimension) is a function of 
submergence depth and charge weight, and the phenomena of the 
upper critical depth is very sensitive to the manner in which the 

cavity is formed. 

IV. CORRELATION WITH EXPERIMENTS 

4,1 Practical Formulation 

In Eq. (13) the cosine term represents the individual waves, 
while the remainder of the expression gives their varying amplitude 
or envelope which we shall call A: 
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A =1 SVK) (20) 

in which it is understood that k is the root of Eq. (16) 

It can be seen from Eq. (20) that for any fixed value of r, 

the least nonzero value of k for which dA/dk = 0 is independent 
of r; this means that the maximum of the first wave envelope (where 
dA /dk = = 0) is associated with a constant value of k (and, therefore, 

wavelength and period) throughout its propagation. This constant 
value of k at the first envelope maximum, k,,, depends only on 
the nature of the source disturbance 1,(ro) cones the factor 7(k). 

Evaluating A at I ax? we can write 

= Constant (2 1) Anat = {Fite (MH) } Keke 
for a particular source deformation 1,(rog), which means that the 
amplitude of the maximum waves is inversely proportional to r. 

Before we can proceed with the quantification of the theoretical 
model, we must select an appropriate form of ,(r,). The two con- 
straints on this choice are, first, that the resulting wave envelope 
shape be sufficiently similar to observed shapes that some manipu- 
lation of numerical coefficients will give an accurate fit; and, second, 

that the Hankel transform of 1)(ro9) be within our power to obtain in 
a closed form. 

In addition, it would be nice -- although it is not really neces- 
sary -- to have 1,(r,) intuitively resemble the effective surface 
deformation due to an explosion. For all these reasons, we are led 
to try simple polynomials in ms for 1,(r,) with crater-like shapes. 

Of the three forms which have been used in practical work 
(Table I), the last has been tentatively established as most suitable: 

Talo) = Tomax 2 ( (2) -1]r, = 

o>) toc R 

where ‘oma is a coefficient which, for the sake of simplicity, will 
be written as ‘oq in the following. 

The wave amplitude is then given by 
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2 / 
ment) les (4s) J,(kR) cos (kr - tVk tanhk), — (22) 

ag 

the two "cavity parameters" n, and R being embodied within our 
previous expression for the envelope amplitude, A. It is through 
empirical determination of these two parameters that we hope to 
correlate theory and experiment. 

4.2 Experimental Correlation 

While y. and R cannot be experimentally measured, they 
can be determined indirectly from Rees and eats which are 

characteristic of the source disturbance, and also measurable. 

Hence, we seek to relate k,,, and n,,,r to the characteristics of 

the explosion by experiment, and n, and R to ky, and Nmar 

by theory. The expression giving kg, in terms of nN, and R is 

GA 
ie a 0 (23) 

since this expression defines the maxima of the wave envelope; the 
least non-zero value of k for which the above expression holds is 

K ax? 

For k__ >3 (relatively deep water) vi = /2 = const max be > TdV/dk ! 
and 

V2 mg J,(kR) . (24) 

mheretore, Kk can be determined from the first turning value of max 
the Bessel function J3(kR); viz for 

Kay = 4.20. (25) 

Our other measurable, mgr, may now be related to 1) and 
R by evaluating Ang, (OF Tmax) at k = Kkmqe When this is done and 
the resulting expression is simplified, we have 

Wott = 10ST ae (26) 

All that remains now is to relate "mgr and Kg, to the 
characteristics of the explosion; these are W, explosive yield in 

pounds of TNT, Z, detonation depth in feet, and D, the water depth 
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in feet. A large volume of experimental data (with small chemical 
changes in relatively deep water) has been obtained at the Waterways 
Experimental Station, Vicksburg, Mississippi, from which the 

following empirical relations were deduced: 

* at 0.54 
i limagt oO. Wi 

WeCeds Pie O> Fos =~ 0-25 (27a) 

K riage) BeOS ae Ow 

ieee =10 w?4 

L. Ges -0.25> oo32-7.5 (27b) 
-0.3 * ft ee Ss soo Ww 

at Z 
Insufficient Data wos <7 gees, (2-7) 

The products Teer given above were determined from the empiri- 
cal data of Fig. 5. Corresponding data for shallow water explosions 
and other aspects of explosion-generated waves in shallow water are 
beyond the scope of this presentation, and the reader is referred to 
LeMéhauté [ 19714]. 

YIELD 

O W =0.50 Ibs TNT 

fe) = 2.00 lbs TNT 

A 10.00 Ibs TNT 

+ 125.00 Ibs TNT 

e 385.00 Ibs TNT 

MONO 1966 © 

HYDRA IL -A a 

=9,250.00 Ibs TNT 
= 14,500.00 Ibs TNT 

0 ay 2. = -4 -5 a6 =7 -8 

z/w2:3 

Fig. 5 An empirical scaling fit relating the maximum wave height 
“max With distance from explosion r*, yield and depth of 
explosion (data provided by Waterways Experimental Station) 
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Figure 6 presents examples of the matching between theoreti- 
cal wave envelope and wave records due to a 9, 620 lb TNT explosion. 
The slight irregularities in the symmetry of the recorded wave trains 
are attributed to partial shoreline reflection interferring with the 
radiating wave trains (Hwang et al. [1969]. But, in general, the 
computed wave envelopes agree fairly closely with the observed 
amplitudes. 

4.3 Limitiations of the Model Due to Scale Effects 

An examination of Fig. 5 reveals that the bulk of data upon 
which predictions are based are restricted to yields from one-half to 
a few hundred pounds of TNT. One wonders then just how reliable 
extrapolation to very large yield (say, 10'9 pounds of TNT) would be. 
The limited data available from nuclear explosions is insufficient to 
resolve this problem. Comparison between crater data in soft 
materials for both nuclear and TNT explosions suggest that the laws 
of similitude may be applied to contained explosions but may not 
apply over a large yield range for venting detonations. In particular, 
the shock wave from a nuclear explosion travels much faster in air 
than in water, which is not the case for a TNT explosion. 

We may infer several things, however, just from the nature 

of the scaling parameters given by Eq. (27). Consider, for example, 
the groups n*,,.r*/W°54 and Z/W®3. In each, the exponent of W 
was chosen to best compress the data of Fig. 5 into a single curve, 
since W represents an energy, dimensional analysis suggests that 
Nmaxt/(W/pg)'/2 and Z/(W/pg)!/4 are appropriate scaling parameters, 
although similar conditions also require that other parameters, such 

as atmospheric pressure and sonic velocity in water, should also be 
scaled with yield. These conditions are never satisfied experimental- 
ly, and it is therefore not surprising that exponential scaling alone is 
not satisfactory. Moreover, the fact that the parametric coefficients 

vary with Z means that the phenomena are not simply scalable 
(Pace et al. | 1969]). Lastly, the lack of evidence for an u.c.d. at 
large yields suggests that the generation process is fundamentally 
different. 

For small yields (and subsequent small depth at burst) hydro- 
static pressure is small compared to atmospheric pressure; for 
large yields the reverse is true. In the former extreme, dimensional 
analysis suggests 1/3 power scaling; in the latter, 1/4 power scaling. 
In an analogous review of earth crater scaling, (Chabai [1965]) has 

proposed an "overburden scaling law" in which the scaling exponent 
varies between these two extremes, but without convincing improve- 

ment in agreement to the experimental data. 
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Fig. 6 Compari of OSI 1966 Mono Lake experiments with 

theory 
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4.4 Energy Coupling 

The deficiencies of simple exponential scaling are more appar- 
ent when considering the efficiency of energy coupling into water 
waves. The analytic source models discussed above are linear, and 
thus the total wave energy is equal to ns potential energy of the 
source model; i.e., proportional to 16 2@R2, But, in view, of Eq. (26), 

the empirical relations given in Eq. (27) imply that 16 2R2 ~ 8 
which obviously cannot be true for all yields, since it ‘states that 
wave energy increases faster than explosion energy under geometri- 
cally similar conditions. It is also pertinent to recall that the calcu- 
lating of energy based on the theoretical source model may lead toa 
significant error; since only the first wave train has been watched 
with experiments, it may happen that the following wave train contains 
less energy than the theoretical model, as due the dissipative 
mechanism which influences the high frequency waves. Keeping in 
mind these reservations, it is found that the energy in the wave train 
is 

2 
Ey = 126(n 2) ft=Lb, 

Then, inserting the value of n,,,r in terms of yield and water depth, 
it is found that at lower critical depth, the efficiency e is 

e = 0.0074 WO-%E 1% (W is in pounds). 

At upper critical depth, the increase of efficiency with yield 
within the range of available experiments is even more pronounced, 
For example, e which is 1% in the case of 0.5 lbs of TNT has been 
found to be 6% in the case of an explosion of 375 pounds, which implies 
that n° = w-6! at upper critical depth. Such results cannot, of 

course, be extrapolated to atomic yield. 

Since the fraction of yield energy appearing as waves is only 
a few per cent for the largest tests so far conducted, we are faced 

with the problem of trying to distinguish very small energy differ- 
ences in normalizing analytic models to actual experiments. While 

the present models provide adequate predictions for the largest 
waves over an impressive range of yields (0.5 - 64,000,000 lbs TNT 
equivalent), it is recognized that important phenomenological factors, 
such as atmospheric pressure, shock interaction, and cavity stability 
have been neglected, each of which can reasonably be expected to 
influence wave formation to some extent. What is really surprising 
is that such simple models work as well as they do, considering the 
great complexity of the process of explosive wave generation. 
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RESONANT RESPONSE OF HARBORS 
(THE HARBOR PARADOX REVISITED) 

John W. Miles 

Untversity of Californta 
San Dtego, California 

I. INTRODUCTION 

We consider the surface-wave response of a harbor to a 
prescribed, incident wave in an exterior half-space on the hypo- 
thesis of linearized, shallow-water theory, an ideal fluid, anda 
narrow mouth, invoking the equivalent-circuit techniques that have 
proved so efficient in attacking analogous problems in acoustics 
and electromagnetic theory. These techniques offer significant 
advantages in practice: (i) the sub-problems of external radiation, 
channel coupling, and internal resonance may be attacked separately; 
(ii) the equivalent-circuit parameters may be expressed as homo- 
geneous, quadratic forms that may be simply approximated without 
solving the complete boundary-value problem; (iii) observed values 

(including those from model experiments) of dominant parameters, 
such as resonant frequencies, may be incorporated in preference 
to, or in place of, theoretical values; (iv) empirically determined 

dissipation parameters (resistances) may be incorporated; (v) ana- 
log computation, both conceptual and electrical, may be invoked to 
expedite understanding of the resonant response. 

Referring to Fig. 1, we consider a harbor H that opens to 
the sea through a narrow mouth M ina straight coastline, x =0. 
Let 

Ci(x;y) =5V, exp {- jk (x cos 0, + y sin 6; )} (1.4) 

br =¢; (- x,y) (1.2) 

be the complex amplitudes of the incident and specularly reflected 

A more detailed version of this work has been published elsewhere 
[ Miles, 1971]. 
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Fig. 1. Schematic diagram of harbor opening on straight 
coast line; ¢€;, €; and O, are, respectively, the 
incident, specularly reflected, and scattered 

waves 

(from x = 0) waves on the hypothesis of the monochromatic time 
dependence exp (jwt), where € denotes free-surface displacement 
(we omit the modifier complex amplitude of throughout the subse- 
quent development), k is the wave number, and Vj = 2¢;(0,0) is 
a measure of the excitation of the harbor through M. By narrow, 

we imply 

a/R << 1 and ka<<1i, (2. 32,6) 

where a is the width of M, and R is a characteristic dimension 
of H. These restrictions imply that the motion within H is small, 
and that the energy of the motion induced by V; (or, more precisely, 
by the pressure pgV,) is dominantly kinetic and concentrated near 
M (the narrowness of which implies locally high velocities), except 
in the spectral neighborhoods of the resonant frequencies of the 
harbor. An appropriate measure of this dominant motion is the flow 
through M, say I, which, by hypothesis (linearized theory), must 
be simply proportional to V;. We regard Vj; and I as the voltage 
and current at the input terminals of an equivalent circuit and seek 
a description of the resonant response of the harbor in terms of the 
voltages induced in this equivalent circuit. 

The input impedance, Z; = V,/I, for the configuration of 
Fig. 1 may be resolved (see Fig. 2a) into a series combination of a 

radiation impedance, Zu= Rat jXy- and a harbor impedance, 

Zy= jXy» where 1 i XI tl? /o, and X,|I|*/w are respectively 
proportional to the power radiated from i through M (in the form 
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of a scattered wave, (,), the non-radiated energy stored in the ex- 
terior half-space, and the energy stored in the harbor (we also could 
incorporate an empirical, resistive component in Z,, say Ry, to 
account for an energy dissipation proportional to Ry tls). We infer 
from the solution of the corresponding acoustical radiation problem 
[ Miles 1948; §3 below] that both Ry and Xy are bounded, positive- 
definite functions of w, by virtue of which we may regard them as 
single resistive and inductive elements, respectively (although neither 
Ry nor Xy has the same frequency dependence as its elementary, 
electrical counterpart). We infer from the analogy with the corre- 
sponding acoustical resonator [ Morse 1948, §23] that Zy comprises 
an infinite sequence of parallel combinations of inductance L, and 
capacitance C,, which bear a one-to-one correspondence to the 
natural modes of the clos, harbor and resonate at the corresponding 
frequencies, w, = (L,C,) , together with a single capacitor Cg, 
which corresponds to the degenerate mode of uniform displacement, 

for which wo= 0. The solution within H may be expanded in this 
infinite set of modes, with the root-mean-square displacement and 
the kinetic and potential energies in the n'th mode being proportional 
to the voltage across C, and the energies stored in Ly and Cp, 
respectively. The arguments of the preceding paragraph suggest 
that the individual modal impedances are important only in the 
neighborhoods of their respective resonant frequencies, and hence 
that Z,may be approximated in the neighborhood of w=wW, bya 
lumped inductance, say Ly, in series with either Cg or the single, 
parallel combination of L, and C,, such that the energy in all modes 
but the n'th is proportional to L [I “. The corresponding equivalent 
circuit is shown in Fig. 2b (we give a quantitative derivation of this 
equivalent circuit in §§2 and 3). 

Fig. 2. Equivalent circuit for harbor opening directly at coastline: 

(a) implied by (3.2); (b) implied by (3.2) and (4.6). 
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The voltage-amplification ratio, « |v,/V,|, provides a 
measure of the resonant response in the cee ere of w = w,. 
The zero'th mode, in which the harbor acts like a Helmholtz reso- 

nator, is unique in that the equivalent circuit reduces to a series 

combination of Ray Lyt ly, and C, and exhibits a simple, series- 
resonant behavior path a resonant frequency, say Wp, that is deter- 
waar by a balance between the potential energy stored in H, 
2 ce es the kinetic energy stored in the vicinity of M, 
= f° + ‘( The results for the rectangular harbor Lites and 
Munk 19 peaoce that the sharpness of the Helmholtz resonance 
is ec me by 

= {log (R/a)} (1.4) 

and that 

oe o(s!/%y, ae ="O(1/- 6): and Qo= O(1/5) (1.5a,b,¢)} 

as a/R > 0, where Gq. is the peak value of @ ae and Q, is the 

ratio of the resonant Goceeney, to the half- -~power bandwidth of the 
resonance curve for the n'th mode. 

The resonant response of the harbor in the higher modes is 
strikingly different than that of a simple, series-resonant circuit in 
consequence of the proximity of the parallel-resonant frequency, 
Wp, at which Z; = oo, and the series-resonant frequency, w,, at 

which |Z, | has a minimum and @, = >> 1. We show in §4 that 

@,= , + O(8), G,= O(1/8), and Q,=0(1/8) (n# 0) (1.6a,b,¢) 

It follows from (1.5) and (1.6) that narrowing the harbor 
mouth does not affect the mean-square response to a random excitation 
in the spectral neighborhood of w= w, (which response is proportional 
to @, to afar if the bandwidth of the random input is large compared 
with ” Bt_) "except in the akg We mode, but that the response in that 
mode increases inversely as 6! Miles and Munk [1961] overlooked 
the proximity of parallel and series resonance in the higher modes and 
arrived at the erroneous conclusion that narrowing the harbor mouth 
would increase wan /O,, for all modes, rather than only the Helmholtz 
mode, and designated the phenomenon as "the harbor paradox." In 
fact, as pointed out by Garrett [1970], this qualitative conclusion is 
inconsistent with their quantitative results, which actually imply 
(1.6) for the higher meds in a narrow rectangular harbor. Garrett 

also showed that Ga 2/6) is similarly invariant for excitation of a 
circular harbor through an open bottom and correctly conjectured 
that the result holds generally for the higher modes in any harbor. 
In brief, the harbor paradox originally stated by Miles and Munk 
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holds only for the Helmholtz mode and otherwise must be replaced by 
the weaker paradox that narrowing the harbor mouth has no effect 
on the mean-square response of the higher modes to a random input 
in the absence of friction (narrowing the mouth increases friction, 

thereby decreasing the response, in a real harbor). It follows that 

the higher modes are not likely to be strongly excited, but that the 
Helmholtz mode may dominate the response of a harbor to an exterior 
disturbance that has significant energy in the spectral neighborhood 
Of Wo. 

Carrier, Shaw and Miyata [1970] consider a harbor that 
communicates with the coast through a narrow canal and find that 
both @, and Qo are significantly increased (as might be inferred 
from the analogy with the classical Helmholtz resonator; cf. Rayleigh 
[1945], §307). We show in §5 that such a canal is analogous to an 
electrical transmission line and may be replaced by a symmetrical, 
four-terminal network for the calculation of V, (see Fig. 3). The 
analogy with the transmission line rests on the hypothesis that only 
plane waves are excited in the canal. An examination of the effects of 
higher modes shows that the elements of the four-terminal network 
may be appropriately generalized, but that the plane-wave approxi- 
mation is likely to be adequate if the breadth of the channel is less 
than a half-wavelength. 

Fig. 3. Canal and equivalent circuit for the plane-wave 
approximation. The impedances Z,, = Z,, and 
Z,, are given by (5.4) 

The precise determination of Z, and Z,, requires the solu- 
tion of an integral equation for the normal velocity in M (or, in the 
case of an intervening canal, a pair of integral equations for the 
normal velocities across the terminal sections of the canal). The 
formulation of §§2 and 3 yields variational approximations to Zy 
and Z, that are invariant under a scale transformation (i.e. a 
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change in the mean value) of the velocity in M and stationary with 
respect to first-order variations of this velocity about the true solu- 
tion to the integral equation (cf. Miles and Munk [1961] and Miles 
[ 1946, 1948, 1967]; we omit the explicit formulation of the integral 
equation and further discussion of the variational principle in the 

present development). The resulting representation of Zy is rela- 
tively insensitive to the geometry of H and yields a simple, ex- 
plicit approximation that depends essentially only on ka. The cor- 
responding representation of Z, requires Green's function (subject 
to a Neumann boundary condition) for the closed harbor, the explicit, 
analytical construction of which is possible only for those boundaries 
(rectangular, circular or circular-sector, and elliptic or elliptic- 
hyperbolic sector) that permit separation of variables; however, we 
may infer the matrix representation of this Green's function for a 
polygonal approximation to an arbitrarily shaped harbor from Lee's 
[1971] collocation solution of the general problem. We give explicit 
results for a circular harbor in §6 with special emphasis on the 
Helmholtz mode. It appears from these results that a large harbor 
with a short entrance or a small harbor with an entry canal of length 
comparable with R may resonate in the Helmholtz mode under 
tsunami excitation. 

II HARBOR IMPEDANCE 

Let x and y be the Cartesian coordinates in the free sur- 
face, t the time, w the angular frequency,’ h the depth, 

1/2 
c = (gh) and k =" (2.1a,b) 

the wave speed and wave number, ¢€ the free-surface displacement, 
a the x-component of the particle velocity, 6 and u the corre- 
sponding complex amplitudes, such that 

{£(x,y,t),i(x,y.t)} = @[{0(x,y),ulx,y)}e”’], (2.2) 

where ® implies the real part of and j=y-1, 

r= udS (dS = h dy) (2.3) 
M 

the flow through M, 

Vee a u* av ) ae dy (2.4) 

* 
a weighted measure of the displacement in M, where u_ is the 
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complex conjugate of u, 

Zy= V/L= n| i‘ u ay|* i tu* dy (225) 

the harbor impedance, and 

* * 

P= ZR (ogn J tu dy} =z pgR(VI ) (2. 6) 

the rate at which energy flows through M. We may regard eV, 6I, 
(a/B)Z,,, and aPR(VI") as the voltage, current, impedance, and 
power in an equivalent electrical circuit, where the constants of 
proportionality, @ and £6, may be chosen to obtain convenient 
electrical units. The choice a=86=1 is implicit in the discussion 
in §1, but not in what follows except as noted. 

Solving the shallow-water equations (Lamb [1932], §189) for 
an assumed velocity in M, subject to the boundary condition that the 
normal derivative of €, n° V6, vanish on B, the lateral boundary 

of the free surface in H, we obtain 

&(x,y) = (jw/g) \ G(x,y30,n)u(0,n) dy (2:7) 

where 

G(x,y3,7) = » (ke - Ky! Walxs yal >7)> (2.8) 

is the point-source Green's function for H, the w, are the nor- 
malized eigenfunctions for the closed harbor, and the summation is 
over the complete set of these functions. The wy, are real and satisfy 

(v2 + 1) Up 0) (x,y in Hi); (2. 9a) 

(n> V)b, = 0 on B, (2. 9b) 

and 

i. Yn, dA = 6, (2. 9c) 

where k, are the eigenvalues (resonant wave numbers), and 6mn 
is the Kronecker delta. We designate the degenerate (but non-trivial) 
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solution corresponding to w= const. by n= 0: 

me eO) oe Ae (2. 10) 

where A is the area of H. We also note that more explicit results 
may require the use of two indices to count off the individual modes, 

The exact determination of the assumed velocity u(0,y) 
requires u and ¢ to be matched across M to the corresponding 

solution of the exterior boundary-value problem (see §3 below). 
This matching condition yields an integral equation for u(0,y), the 
exact solution of which in finite terms does not appear to be possible; 
however, simple approximations to u(0,y) are capable of yielding 
excellent approximations to Zy and Z, by virtue of the associated 
variational principle (cf. Miles [1946, 1948, 1967] and Miles and 
Munk [1961]). We proceed directly to such approximations by intro- 
ducing the normalized trial function f(y), such that 

HO ,Alasell /AY Ely), (sy) dgtayits (2.14a,b) 
M 

In the subsequent development, we neglect the dependence of f(y) on 
k and assume that it depends only on the geometry of M. The 
validity of this approximation, which also implies that f(y) is real, 
depends essentially on the antecedent approximation ka << 1. 

Substituting (2.11) into (2.4) and (2.7), combining the results 
in (2.5), and invoking (2.8), we obtain 

v=! tf * ay (2.12) 
M 

and 

Zi » Lins (2.13) 

n 

where 

. 2 . p- 

Ww a w n a (geallf, wel = (gaa). ee 
is the modal impedance, and pp is a dimensionless measure of the 
excitation of the n'th mode through M (note that p,o=1 and 
Z, = 1/jwA). The Z, in the equivalent circuit appear in series, Z, 
as a capacitor, and each of the remaining Z, asa parallel combina- 
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tion of an inductor and capacitor, L,= tin/(weA) and C,= A/\in. The 
dominant terms in Zy as w—~0O are Zo and the sum of the inductive 
reactances obtained by neglecting w* relative to wa in the remaining 
Lane 

III. RADIATION IMPEDANCE 

The solution of the shallow-water equations in the exterior 
half-space (x <0) for a prescribed incident wave, say Ci(x,y), and 
the assumed velocity u(0,y) in the harbor mouth is given by 
[ Miles and Munk 1961] 

C(x,y) = O(x,y) + O)(-x,y) + O.(x.y), (3. 1a) 

where 

t.(x,y) = - 3 (w/g) | He [klx? + fy-nl?)”?Juio,n) an (x = 0), 
(3. 1b) 

He is a Hankel function, the first two terms on the right-hand side 
of (3.1a) give the solution for total reflection from the plane x = 0 
(as would occur if M were closed), and ¢, is the scattered wave. 
Substituting u into (3.1) from (2.11), setting x = 0, and then sub- 
stituting the result into (2.12), we obtain 

Vee Vi 2/23 (3.2) 

where 

Vi = 2{ t.f* dy (3. 3a) 
M 

= 26.(0,0) (ka << 4) (3. 3b)! 

is the equivalent exciting voltage of the incident wave, and 

Za $ (w/e) | Hy (kly-n|)£ (y(n) dn dy (3.4) 
M“M 

The definition of Vi implicit in (1.1) corresponds to the approxi- 

mation (3.3b). 
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is the radiation impedance of the harbor mouth. The equivalent 
circuit corresponding to (3.2) is sketched in Fig. 2a. 

The velocity distribution in M for ka<< i corresponds to 
that for potential flow. Normalizing this distribution according to 
(2.11b), we obtain 

fly) = 0 [ay -yV* (ly| <a). (3.5) 

Substituting (3.5) into (3.4) and invoking ka << 1, we obtain 

Zy= (w/c )[3 + jAyka)] (ka << 1), (3.6) 

where 

wAy = in [ 8/(yka)] , (3.7) 

and In y = 0.577... is Euler's constant. 

IV. RESONANT RESPONSE 

An appropriate measure of the response of the harbor to a 
prescribed incident wave is the mean-square elevation, say o%, as 
determined averaging over both space and time (the temporal 
average of (° is 3|¢]|*): 

c*=ta'( Iz |? da. (4.1) 
H 

Substituting { into (4.1) from (2.7), invoking (2.8) for G and (2.11) 
for u, carrying out the integration over A with the aid of (2.9c), 
and invoking (2.14) for Zn= Vn/I, where V, is the voltage induced 
across Zp by I, we obtain 

ot= 3) wily =slviF > Oe, (4.2) 
n n 

where 

Gul) = pa [Va/Vi | = wae |Zn/(Zyt Z| (4.3) 

is the amplification factor for the n'th mode, and 

Kk = k°A = w(A/gh) (4.4) 
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a a dimensionless measure of (the square of) the frequency (similarly, 
BA). 2 Invoking (3.3b) on the hypothesis a PK << 1, we obtain 

of = mraty | for the (temporal) mean-square elevation of 2Ci, by 
vintue of le (4.2) reduces to 

=o?) Qk). (4.5) 2 
The hypotheses (1.3a,b) imply |Z,| << + Z| for each 

of the modal impedances in the summation of (2.13) except in the 
neighborhood of kK = K,, where the sum may be approximated by 

ZyF (jo /c*) [A +p,(x, - «71, (4. 6a) 

where 

A, = y Barlen? (4. 6b) 

m=0 being excluded from the summation. Invoking (2.14), (3.6), 
and (4.6) in (4.3), we obtain 

Gol) = fh u? + [ado(a) - 1]*5°V? (4. 7a) 

and 

Gn(ic) = wl? $2 (ie = wal +L - tg - wel f?, (4. 7b) 

where 

A(x) = Ay + Aj(ka), (4. 8a) 

A, = A,+Aj(k.a) (n #0). (4. 8b) 

The peak values of Gy, are given by 

mel -I/2 
Go = 2Ko and G,= 2n, A, (n # 0), (4. 9ayvb) 

where K = he is the series-resonant point determined by 

~ ~ ~ -| 
KyA(K,) = 1 and Ky, = K, + pA, (n # 1). (4.10a,b) 

~ 

The amplification factor drops off sharply on both sides of K = K, 
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andis O(1/A,) for |K - k,| >> 41/A,. The point kK =k, corresponds 
to parallel resonance (Zp =o), for which the total flow through M 
vanishes (I = 0) whilst o* remains of the same order as o;. We 
define the Q of the resonant response near K = Kp as the ratio of 
the resonant frequency to the half-power bandwidth, such that [ the 
frequencies at the half-power points are proportional to fra (143 Q:')] 

G[xK,(1 + Gr )] = GL (4.11) 

Substituting (4.7) into (4.11) and invoking (4.10), we obtain the first 
approximations 

~-| ~ 

Qo = 2k =G, (4. 12a) 

and 

il 2  4~-,2 
Q, = 2h, KA, = 2 KAG,- (4. 12b) 

Now suppose that the incident wave is random with the power 
spectral density Sj(f), such that 

© 

oe - S| (£) df (w = 2rf), (4.13) 
0 

where f is the frequency. Generalizing (4.5), we obtain 

2 
c=) f S,(£) |G,(«) | af (4.14) 

fe] 
n 

for the power spectral density in the harbor. Substituting (4.7) into 
(4.14), invoking w= ck/VJA, and calculating the contribution of the 
resonant peaks at ™ = w, on the hypothesis that their bandwidths are 
small compared with those of S,(f), we obtain 

o° = (gh/a)'” », PS) (Eq) (4.15) 
n 

where 

Be ee a Ghd 2 ye aol 
P, = (4m) Ky an [it (O,/Ka) (kh - Re dd (4. 16a) 

0) 

- 5 Pol Gr (Qn/ ha oO) (4. 16b) 
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is the power-spectrum-amplification factor for the n'th mode. Sub- 
stituting (4.9), (4.10) and (4.12) into (4.16b), we obtain 

Pp =4Ki”, (4.17) 

from which we infer that narrowing the harbor mouth does not affect 
the mean response to a random input except in the Helmholtz mode, 
but that it does increase significantly the response in that mode [ this 
conclusion ignores the increase in viscous dissipation that would be 
associated with narrowing the mouth]. 

V. EQUIVALENT CIRCUIT FOR CANAL 

We now interpose a cana of breadth b and length £ between 
the harbor and the coast, as shown in Fig. 3, and obtain the equivalent 
circuit on the assumption that only plane waves need be considered 
in the canal. This approximation is strictly valid only for kb << 1, 
but a more complete analysis shows that the effects of the cross- waves 
(y-dependent modes) are not likely to be significant for kb <r. 

Invoking the plane-wave approximation, u = u(x) and ¢ = C(x), 
in (2.3) and (2.4), we obtain 

I(x) = bhu(x) and V(x) = C(x). (5.1 a,b) 

Assuming 1(0) =I, and I(£) = Ig, we obtain the transmission-line 
solution 

I(x) = csc k£[ I, sin k(£-x) + I, sin kx] (5. 2a) 

and 

V(x) = (jbc sin kf)! EI, cos k(£-x) - Ip cos kx]. (5. 2b) 

Setting V(0) = V, and V(£) = Vp in (5.2b), we obtain the matrix 
equation 

Vv _ Zi; 22 I (5.3) 

V2 Z i220 -T, 

Twe use canal in the same sense as Lamb [ 1932, §169ff] - Some might 
regard the synonym channel as more appropriate in the present context. 
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where 

Z 1; = 'Zoo— = (j/be) cotyiel, Zio = - (j/bc) csc kf, 

and (5.4) 

Zi - Zip = Zop- Zio = (j/bc) tang kf. 

The four-terminal network implied by (5.3) and (5.4) is sketched in 
Fig. 3, wherein the arms (Z,, - Z,) and pillar (Z, ) are inductive 
and capacitative, respectively, for kl<qm (£ less fran a half-wave- 
length). 

The preceding results remain valid for a canal of arbitrary 
(but constant) cross section S if h=S/b, where b is the breadth 
of the canal of variable depth in the sense that the effects of the cross 
waves (y-dependent modes) that are generated by a change in depth 
are negligible in the shallow-water approximation (see Lamb, §176 
for a qualitative argument and Bartholomeusz [ 1958] for a proof). 

Inserting the equivalent circuit for the canal between the 
equivalent circuits for the harbor mouth (at x = 0) and the harbor 
(at x = £), we obtain the equivalent circuit shown in Fig. 4a. Cal- 
culating I, and the corresponding voltage drop across Z, and 
invoking (4. 3a) for the modal amplification factor, we obtain 

Rp Le gelMytse) Le te(Ayte fl 

Fig. 4. Equivalent circuit for harbor connected to coast through 
canal: (a) general case; (b) Helmholtz mode (kA << 1, 

kf << 1). 
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ZI 
p¥2Gi(x)= [Vil [Zale| 

2 /-l 
[(Z,, + ZiV(Z,, + Zs) Zs | Ze Zao 

ol -\ 
[(Zy + Z) cos kf +j{(bc) +bcZZ} sin ké| |Z, |, 

(5. 5c) 

where (5.5c) follows from (5.5b) through (5.4). The frequency de- 
pendence of G,(x) is qualitatively similar to that established in §4, 
but K,- K, may not be small. The values of G, and Qn may be 
substantially larger than those given by (4.9) and (4.12); however, 
(4.17) remains valid for n#0, andthe results therefore are of 
limited interest. There also exist modes that correspond to reso- 
nance of the canal itself, for which x= is approximately a node 
and the motion excited in H is small, but these, too, are governed 

by (4.17) in the sense that decreasing the channel width does not 
affect the mean response of the canal to a random input except in 
the Helmholtz mode. 

We consider further the gpecial case of Helmholtz resonance, 
assuming kf << 1 as wellas k A<<i. The equivalent circuit then 
reduces to that of Fig. 4b. Calculating |V,/V,| in this circuit 
and neglecting terms of O(k*b£) relative to unity, we obtain 

Gol) = {5 (1 +a) e+ [KA(K) - 1, (5.6) 

where 

a=bl/A (5.7) 

is the ratio of the canal and harbor areas, and 

A(x) = Ay t+ (1 + a)Ay(ka) + (1 + Za)(£/b). (5.8) 

Resonance is determined by K,A(kK) = 1 and yields 

-l~-l 
G,=Q,= 2(1 ta) Ko (5.9) 

and 

(5.10) 

in place of (4.9a), (4.12a), and (4.17). 
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VI. CIRCULAR HARBOR 

The eigenfunctions determined by (2.9) for a circular harbor 
of radius R are given by 

Vogt 10) = A” [ I,(ide)T' Jolidgr/R) (m= 0), (6. 1a) 
-/2 

(r,e) = (2) |1 - (@) 7 GER) |e 
vod) = AY | - GE) | a 

sin m8 

(ni = £5, (6. 1b) 

and 

In(ims) = 9 (m= 0,152,257 B'S 0, ae eee) 

where r is the polar radius measured from the center of the harbor, 
68 is the polar angle measured from the midplane of the mouth, we 
write Wmdr,9) in place of u,(x,y), the indices m (the number of 
azimuthal nodes) and s (the number of radial nodes) jointly replace 
the single index n in §2, and the eigenfunctions obtained by choosing 
the alternatives cos m@ and sin m@ are distinct. The eigenvalues 
are given by 

Kms = lig) « (6. 2) 

The zero'th mode of (2.10) corresponds to m =s = 0, for which 

tga Or 
We specify M by R=1 and -20y< 0 < 20,4, where 

0,= a/R << 1, (6.3) 

by virtue of which we may neglect the curvature of the harbor 
boundary over its intersection with the straight coastline. The 
essential approximation is sin 270, = 204; which is in error by less 
than 5% for a/R<i1. Carrying out the calculation of p,, (2.15), 
and A, (4.6), on the basis of the approximations (6.3) and (3.5), 
we obtain 

tims= (2 - Sol 1 - (m/jt,) 1 [4 + Olm'6)] (6.4) 

for the cos m@ modes and pms=0 for the sin m@ modes [the 
approximation (6.4) is not uniformly valid as m—~ o, but it suffices 

for all but the calculation of A,] and 
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nA, = Es + In (4R/a) (Oy << 1). (6.5) 

Combining (3.7) and (6.5) in (4.8), we obtain 

wA,. = 3.0135 + 24n(R/a) - £n(kR), (6. 6) 

wherein k= kp, for n# 0. 

The resonant wavelength, = 2m/ky, G) = Q), and Py for 
the Helmholtz mode, as determined by (4. 9a), (4.10a), (4.12a), and 
(4.17) in conjunction with (6.6) are given by the lowest curves in 
each of Figs. 5-7. The higher curves in Figs. 5-7 are based on 
(5.8) - (5.10) and illustrate the striking effects of an intervening 
canal on Helmholtz resonance. Q,, as determined by (4.12), is 

plotted in Fig. 8 for the first five modes. The remarkable sharpness 
of the higher modes, vis-a-vis the Helmholtz mode, is borne out by 
Lee's [1971] experiments. 

b/R 

Fig. 5. Wavelength for Helmholtz resonance of circular harbor plus 
canal (b= a for £=0). The results are strictly valid only 
for b/R << 1 and kof << 1, but the corresponding errors 
are not likely to exceed 5 - 10% for b/R< 1 and kof <3 
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0.01 0.03 0.1 b/R 0.3 1.0 

Fig. 6. Resonant amplification factor, G, = Q,, for Helmholtz mode 
in circular harbor. kof > 3 to the right of the dashed line. 
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Fig. 7. Power-spectrum-amplification factor for Helmholtz mode 
in circular harbor. Kol > $ to the right of the dashed line. 
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1000 

(m,s) = (0,1) 

300 PF 

100 

Qms 

30 

Fig. 8. Q,. for the first five modes ina circular harbor. The dashed 
portions of the curves correspond to ka> 1 
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The period for the Helmholtz mode is given by 

T, =r,/¢ = an(A/gh)? KY? (6.7) 

Choosing R=1000' and h = 20', we obtain Ty = 2\,/rR minutes, 
which approximates typical tsunami periods (20 - 40 minutes) for 
\,/2mR in the range of 5-10 (see Fig. 5). We infer that a large 
harbor with a short entrance (£/R << 1) or asmall harbor witha 
canal (£/R ~ 0.3-3) may act as a Helmholtz resonator under 

tsunami excitation. 
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UNSTEADY, FREE SURFACE FLOWS; 
SOLUTIONS EMPLOYING THE LAGRANGIAN 

DESCRIPTION OF THE MOTION 

Christopher Brennen, Arthur K. Whitney 

Caltfornta Institute of Technology 
Pasadena, Caltfornia 

ABSTRACT 

Numerical techniques for the solution of unsteady free 
surface flows are briefly reviewed and consideration 
is given to the feasibility of methods involving param- 
etric planes where the position and shape of the free 
surface are known in advance. A method for inviscid 
flows which uses the Lagrangian description of the 
motion is developed. This exploits the flexibility in 
the choice of Lagrangian reference coordinates and is 
readily adapted to include terms due to inhomogeneity 
of the fluid. Numerical results are compared in two 
cases of irrotational flow of a homogeneous fluid for 
which Lagrangian linearized solutions can be con- 
structed. Some examples of wave run-up on a beach 
and a shelf are then computed. 

I. INTRODUCTION 

There are many instances of unsteady flows in which analytic 
solutions , even approximate ones, are not available. This is par- 
ticularly true of free surface flows when, for example, non-linear 
waves or even slightly complicated boundaries are involved. Though 
analytical methods are progressing, especially through the use of 
variational principles (Whitham [1965]) and, in some cases, the 
non-linear shallow water wave equations yield important results 
(Carrier and Greenspan [ 1958]) there is still a need for numerical 
methods. Indeed, numerical "experiments" can be used to comple- 

ment actual experiments. 

Until very recently numerical solutions in two dimensions 
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invariably seemed to employ the Eulerian description of the motion 
though the Lagrangian concept has been used for some time in the 
much simpler one-dimensional case (e.g. , Heitner [ 1969], Brode 
[ 1969] ) and to make small time expansions (Pohle [1952]). Perhaps 
the best known of these Eulerian methods is the Marker-and-Cell 
technique (MAC) begun by Fromm and Harlow [ 1963] and further 
refined by Welch, et al. [1966], Hirt [1968] , Amsden and Harlow 
[1970] , Chan, Street and Strelkoff [1969] and others. The most 
difficult problem arises in attempting to reconcile the initially un- 
known shape and position of a free surface with a finite difference 
scheme and the necessity of determining derivatives at that surface. 
In the same way, few solutions exist with curved or irregular solid 
boundaries. In steady flows, mapping techniques have been em- 
ployed to transform the free surface to a known position (e.g. , 
Brennen [ 1969]). It would therefore seem useful to examine the use 
of parametric planes for unsteady flows. The Lagrangian description 
in its most general form (Lamb [ 1932]) involves such a plane and by 
suitable choice of the reference coordinates, the free surface can 
be reduced to a known and fixed straight line. However a discussion 
of other parametric planes and mapping techniques is included in 
Section 3. 

The major part of this paper is devoted to the development 
of a numerical method for the solution of the Lagrangian equations 
of motion in which full use is made of the flexibility allowed in the 
choice of reference coordinates. For the moment, we have restricted 
ourselves to cases of inviscid flow. Very recently, Hirt, Cook and 
Butler [1970] published details of a method which employs a 
Lagrangian tagging space but is otherwise similar to the MAC tech- 
nique. This is further discussed in Section 4B. 

Il. LAGRANGIAN EQUATIONS OF MOTION 

The general inviscid dynamical equations of motion in 
Lagrangian form are (Lamb [ 1932]): 

< Ya Ze P, 
1 (Xy-F) | Xbp +(%y-G) P Yep (2-H) Zoe +S 7 Pep =o (1) 

pal Y, Ze P, 

where X,Y,Z are the Cartesian coordinates of a fluid particle at 
time t, F, G, H are the components of extraneous force acting upon 

it, P is the pressure, p the density and a, b, c are any three 
quantities which serve to identify the particle and which vary con- 
tinuously from one particle to the next. For ease of reference 
(X,Y,Z) are termed Eulerian coordinates, (a,b,c) Lagrangian co- 
ordinates. Suffices a,b,c,t denote differentiation. 
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If Xo, Y,, Z, is the position of a particle at some reference 
time ty (when the density is p,) then the equation of continuity is 
simply 

Q(X,Y,Z) _ , (Xp, Yo, Zo) (2) 
Ae eter, 

Frequently it is convenient to define a, b, c as identical to Xp», Yo, Zo; 

thus reducing the R.H.S. of (2) to p 9; however it will be seen in the 
following sections that flexibility in the definition of a, b, c is of 

considerable value when designing numerical methods of solution. 

If the extraneous forces, F, G, H, have a potential 922 and 
p, if not uniform, is a function only of P then, eliminating 2 + P/p 
from (1): 

0 ee ar (UpX, - U.X, + V,Y, - V-¥, + W,Z, - W,Z,) =—b= 0 

) oT: 
Br (UcXq- UgXe +t VeY, - Va¥_ + WyZ, - U,Z,) = ae = 0 (3) 

) oT 
5-H (UgX, - UpX, a Vows = Vii%e Le Wo2p - W, 2Z,) i “5 = 0 

where, for convenience, the velocities Xy> Y,> Z, are denoted by 

U, V, W. The quantities [,, [,, [3 are related to the Eulerian 
vorticity components, 6,, 5, 63 by 

PD, = 6,(¥,2, - ¥,2,) + (2.x, - ZX) + O,(X,¥, - X,¥,) 

Ty = 6)(%Zq - YgZ_) + SA(Z,Xq - ZX.) + 05(X, ¥, - X,Y.) (4) 

r; 7 CY oZp ~ YpZ) C(2,X, - Z,X,) " C3(X,Y, e X,Y) 

(Thus, of course, vorticity changes with time are due solely to 
changes in the coefficients of the L.H.S. of (4) which, in turn, 
represents stretching and twisting of the vortex line.) Given the 
vorticity distribution €(X,Y,Z) at some initial time, t,, T(a,b,c) 
(which is independent of time) may be obtained through Eqs. (4) and 
used in the final form of the dynamical equations of motion, namely 
Eqs. (3) integrated with respect to time. 
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For incompressible, planar flow the equations reduce to 

Continuity: XqYp- YgXp = F(a,b) (5) 

(or differentiated w.r.t. t): 

U,Y,- U,Yy ete VaX, = Vix. = 0 (6) 

Motion: UX, - U,X, + UA Ss - Vee =) = ia.) (7) 

By introducing the vectors Z=X+t+iY and W= U - iV, (6) and (7) 
conveniently combine to: 

ZW», = Zp Wa i I(a,b). (8) 

Other types of flow have also been investigated. For example, 
in the case of a heterogeneous, or non-dispersive stratified liquid in 
which p is a function of (a,b), Eq. (8) becomes: 

t ! | ZaWy~ ZpWq =~ (T(asiTaey, ~ 5) (Xp - FMP, ~ PG) 
te] 

+ (4, - G)(p,¥, - p,¥,) odtee M9) 

The integral term therefore manufactures vorticity. The methods 
developed for a homogeneous fluid in Sections 4A to D are modified 
in Section 4E to include such effects. 

III. OTHER PARAMETRIC PLANES 

It may be of interest to digress at this point to consider other 
parametric planes (a,b), which are not necessarily Lagrangian. 
That is to say the restrictions X,(a,b,t)=U, Y,(a,b,t) = V are 
abandoned so that U,V are no longer either Eulerian or Lagrangian 
velocities. Provided J = 8(X,Y)/8(a,b) # 0, or ow, the equation for 
incompressible and irrotational planar flow remains 

ZW, - Z,W, = 0- (10) 

To incorporate one of the advantages of the Lagrangian system, it 
is required that the free surface be fixed and known, say on a line 
of constant b. Then the kinematic and dynamic free surface conditions 
are respectively 
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(U =. X%,)¥,-.(V - YK 50 (11) 

(U, + F)Xq + (Vz; + G)¥, + (U - X,)U,g - (V - ¥4)Vq = 0. (12) 

Now a useful choice concerning the (a,b) plane would be to 

require the mapping from (X,Y) to be conformal. Then, of course, 
(10) simply reduces to the Cauchy-Riemann conditions Ug, = - Vp, 
U,p= V, sothat W =U - iV is an analytic function of c=a+tib or 
of Z. 

In this way, John [1953] has constructed some special, exact 
analytic solutions. The kinematic condition, (11), has the particular 

solution W(a,t) = Z,fa,t) on.the free surface, which implies W(c,t) = 
Z,(c,t) by analytic contingation. If, in addition, 

+ (F +iG) = iZ,K(c,t) (13) 

where K is real on the free surface, then the dynamic condition 
thereon is also satisfied. John discusses several examples for various 
choices of the function K. 

The potential of such methods may not have been fully realized 
either analytically or numerically. In the latter case, however, the 
conformality of the (X,Y) to (a,b) mapping is not necessarily a 
great advantage, whereas a fixed and known free surface position 
most certainly is. 

The digression ends here and the following sections develop 
a Lagrangian numerical method from the equations of Section 2. 

IV. A NUMERICAL METHOD EMPLOYING LAGRANGIAN 
COORDINATES 

A method for the numerical solution of incompressible, 
planar flows is now described. It attempts to take full advantage of 
the flexibility in the choice of Lagrangian coordinates. 

A. Time Variant Part 

The method uses an impiicit scheme with central differencing 
overtime, t. Thus Z Pia, b) is determined at a series of stations 
ab riee: distinguished by the integer, p- Knowledge of velocity values, 
EY , at a midway station p +2 enables y Ated (a,b) to be found from 
Z’ through the numerical approximation 

p+l pri 
Zs, Zt TZy (error order TZeee) (14) 
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where 7 is the time interval. Acceleration values, Zi , needed in 
the free surface condition (Section 4C) are approximated by 
(Zo - Zz CAWG (error order 7T4Z 4444). Thus the main part of the 
solution involves finding P, ‘. knowing Z? Z; and their previous 
values. 

The first time step (from p=0 to p=t1) requires a little 
special attention. Clearly Z °(a,b) is chosen to fit the required 
initial conditions. But further information is required on a free 
surface which will enable the accelerations in that condition to be 
found (see Section 4C). 

B. Spatial Solution 

A method of the present type is restricted to a finite body of 
fluid, S. However, S, could be part of a larger or infinite mass of 
fluid if an "outer" approximate solution of sufficient accuracy was 
available to provide the necessary matching boundary conditions at 

the interface. The region, S, need not be fixed intime. It would 
indeed be desirable, for example, to "follow" a bore. 

In a great number of cases of widely different physical ge- 
ometry including all the examples of Section 6, it is convenient to 
choose S to be rectangular inthe (a,b) plane. This rectangle 
(ABCD, Fig. 1) is then divided into a set of elemental rectangles. 
The motion of each of these cells of fluid is to be followed by deter- 
mining the Z values at all the nodes. 

NODE NUMBERING IN FREE 

SURFACE CONDITION: 

D a 

Fig. 1. The Rectangular Lagrangian Space, S, Showing the 
Numbering Conventions Used 

122 



Lagrangian Soluttons of Unsteady Free Surface Flows 

Making the assumption of straight sides the actual area ofa 
cell in the physical plane is 

A= 3[(X, - X)(¥Y, - ¥,) - (X,- X,)(¥, - Y3)] (15) 

Number suffices refer to the four vertices, numbered anticlockwise; 

other node numbering conventions are shown in Fig. 1. If this area 
is to remain unaltered after proceeding in time from station p to 
pti through Eq. (14) then 

Imag {(Zo - Za)’(W, - We) - (Z, - Zg) (Wp - Wa) } 
pti/2 Pp. ae 

+ r{(U, - U,V, - V4) - (Up - U,V, - Vz} + 2A AD 

=0=R, (16) 

where the terms on the L.H.S., second line are numerical cor- 
rections required to preserve continuity more exactly and prevent 
accumulation of error over a large number of time steps. The nu- 
merical value of the L.H.S. at some point in the iterative solution 
is termed the continuity residual, Rg. 

Assuming linear variation in velocity along each side of the 
cell, evaluating the circulation around 1234 and setting this equal to 
the known, initial circulation, I, yields (in the case of a homo- 
geneous fluid): 

Real {(Z, - Z,)(W, - Ws) - (Z, - Z3)(Wp - W,)} - 20, =0= Ry (17) 

Slight hesitation is required here since, for validity, the Z and W 
values in this equation should relate to the same station in time. 
But by choosing to apply it at the midway stations and substituting 
zPrve Ze + (r/2)ze" the T terms are found to cancel and (17) per- 
sists when the values referred to are Z and Ww?*!# R, is the circu- 
lation residual. The modification of (17) in the case of a hetero- 
geneous fluid is delayed until section 4E. 

Combining (16) and (17) produces the cell equation: 

(Z, - Z,)(W, - W,) - (Z,, - Z,)(W, - W,) Main Part 

Zar - Aa i Continuity 
T 

t+ ir {((U,- U,)(V, - Vay - (U,- U,)(V, - V,)} + Corrections 

- 21, Permanent Cell Circulation Term 
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1 
+ Te {(Wig Wier a)(Z, - Z,) Higher 

= (Wis ots Wio = W3 - Wz) (Z4 - Z3) Order 

+ (W, + Wi. - We - 3)(Z, - Zs) Correction 

- (W, + W,, - W, - W,)(Z, - 2,)} if required 

=0=R,+iR, =R, the cell residual. (18) 

The higher order correction, included for completeness, allows the 
shape of the cell sides and the variations in velocity along them to be 
of cubic form. Without it the neglected terms are of order Z Wppp» 
ZabWap, etc., with it they are of order Za Wbppbppp etc. Values 
referred to are Z? and Wt [Ptl2 vPtv2, 

Though this derivation of the cell equation is instructive, it 
can be obtained more directly (except for the continuity correction) 
by integration of (8) over the area of the cell in the (a,b) plane 
(using Taylor expansions about the center of the cell). 

p The cell equations must now be solved for weve (W'F="PV); 

Z being known, in order to proceed in time. 

In a recently published paper, Hirt, Cook and Butler [ 1970] 
take a rather different approach in which the (a,b) plane is employed 
merely as a tagging space. The equations are written in essentially 
Eulerian terms, no derivatives with respect to a,b appearing. The 
numerical method (LINC) is similar to that of the MAC technique 
(Fromm and Harlow [1963], Welch, et al. [1966] , Chan, Street 
and Strelkoff [1969], etc.) and involves solving for the pressure at 
the center of a cell as well as for the vertex velocities. Advantages 
of the method described in the present paper are: the pressure has 
been eliminated (though this may be disadvantageous in compressible 
flows); no special treatment is required for cells adjacent to bound- 
aries; inhomogeneous density terms are relatively easily included. 
However, since the LINC system is based on the Eulerian equations 
of motion, the inclusion of viscous terms is more easily accomplished 
than in the present method where such an attempt leads to horrendous 
difficulties. 

C. Boundary Conditions 

To complete the specifications, a condition upon waits is 
required at each of the boundary nodes. ot Bis usually takes the form 
of an expression connecting U and V °. For example, solid 
boundaries, whether fixed or moving in time, may be prescribed by 
a function, F(X,Y,t) =0. Then the required relation is 
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p+v2 F(x? + tu y+ ey 4) = 0 (19) 

Dynamic free surface conditions are simply constructed from 
Eqs. (1). If, for example, the only extraneous force is that due to 
gravity, g, inthe negative Y direction, the condition on a free 
surface suchas AB, Fig. 1, is 

XyXq t (Yes + g)Y, = 
a a 7 (20) 

a” Nea 3/2 
(Xq + Ya) 

where T is the surface tension if this is required. 

Unlike the field Eqs. (8) or (18) these boundary conditions 
may not be homogeneous in all the variables. In a given problem 
only the boundary conditions are altered by different choices of 
typical length, h (perhaps an initial water depth), and typical time, 
say yh/g inthe above example. Then, using the same letters for 
the dimensionless variables, g and T/p in Eq. (20) would be re- 
placed by 1 and S = T/pgh’. The numerical form of that condition 
used at a free surface node suchas 0 (Fig. 1) is: 

¥ 2 +1/ = 

a x)"(Ue i Us ip FAY ay (Ve ies Vo on 7) 

= 18(R - 5) (24) 

where F is assessed at each node as 

_ LOK, - XY, + ¥, - 2¥,) - (, - ¥,MX, + X, - 2X0] 
ae ee ee ee  e  E / Cae R e 

: [oxesany ty wey 

and the accelerations have been replaced by the expressions given 
in Section 4A. Again, Eq. (21) relates Up, to Shae since all 
other quantities are known. 

If the liquid starts from rest at t =0 (as in the examples of 
Section 6) then difficulties at the singular point t = 0 can be avoided 
by choosing to apply the condition at t= 7/4 rather than t =0. 
Using Zy, = 22)"/r and Z=Z°+ (7/4)zV2 at that station the special 
boundary condition becomes 

1/2 \/2 Us {(X, - Xs)" +F(U, - Uy} + (v, - va)” (vy? + 7g /2) = 0 (22) 
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in the case of zero surface tension. 

D. Method of Solution 

It remains to discuss how the equations may be solved to find 
at every node. Due to the non-linear terms in (18) and some 

boundary conditions as well as to the fact that a good estimate of 
w?’*'2 can be made from values at previous time stations, a simple 
iterative or relaxation scheme was employed. Such a method in- 
volves visiting each cell in turn and adjusting the W values at its 
vertices in such a way that repetition of the process reduces the 
cell residuals, R, to negligible proportions. But, on arrival ata 
particular cell, there are an infinite number of ways in which its 
four vertex values can be altered in order to dissipate the single cell 
residual. However, experience demonstrated that a procedure based 
on the following changes (AW, 9 3anq4) was superior in convergence 
and stability to any of the others tested: 

wti72 

AW, = - AW; = wiR(Z, - Z3)/8A 

(23) 
AW, = - AW, = wiR(Z, - Z,)/8A 

Here w is an overrelaxation factor and A is the area of the cell, 

which is unchanged with time and given by the expression (15). These 
incremental changes have a simple and meaningful physical inter- 
pretation. As can be seen from Fig. 2, they are a combination of two 
changes, one representing pure stretching and the other pure rotation, 
which dissipate respectively the continuity and circulation components 
of the residual. 

Having visited each and every cell, the boundary conditions 
were then imposed. Where these were Sen in the form A.U?*'/#+ 
B.V?*!2+ C=0=R,, A,B,C being constants and Rgthe residual, 
the following ehanges" were made, the choice being based upon experi- 
ence: 

p+i/2 
AU A| Re 

se op te (24) 
Ayetv2 al (A® + B*) 

The whole process was then repeated to convergence, 

E,. Inhomogeneous Fluid 

In a non-dispersive, inhomogeneous fluid, p(a,b), which is 
independent of time, will be prescribed through the initial choice of 
Z (a,b). Indeed in many cases it will be convenient to choose Z° in 
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3 4 

Fig. 2(a). The Cell in the Reference Plane (a,b) 

ee 

MQ2=- gq (22-24) 

4Q niet (Zaza) 2°! Ga '427 44 
R. —_——— 

AQ, = - gh (Z,-Z3) 

INCREMENTAL VELOCITY CHANGES INCREMENTAL VELOCITY CHANGES 

WHICH DISPERSE THE CONTINUITY WHICH DISPERSE THE CIRCULATION 

RESIDUAL, R_ (PURE STRETCHING) RESIDUAL, R,; (PURE ROTATION) 

Fig. 2(b). The Cell in the Physical Plane (X,Y) 

such a way that p is some simple analytic function of (a,b). This 
is particularly desirable because by substituting for p, pg, py in 
Eq. (9), this can then be integrated over a cell area (as in Section 4B) 
to produce a convenient additionalterm, 9 on the L.H.S. of the 
cell Eq. (18). Since the expression for gre will depend upon that 
choice of p(a,b) an example will illustrate this. 

If p is to be constant along the free surface, AB, Fig. 1, 

and along the bed, CD, it may be possible to choose Z° such that 
p is a linear function of b, say p= Ppcop(1 + yb) where 
Y= Pap/Pep - 1 and b=1 on AB. Then, 
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p+i2 p-V/2 
Qio34 a G i234 

+1/2 a ve! p = -31n (1 - p) [{(y, FULUSSU)  ° = 40,40, +0, Fu) 

p 
x {X,- X,-X,+X,} 

+ -\/2 Pp +{V, +Vp tV, +¥,)°"'7-(V, +Vp V5 4Vg) ? + amg} {¥, -¥,-¥, +¥%} ] 

Lt p pri/2 p 2 t+ 2-5 in (t-w} [(x,-x)°(u, 40,0" - (u, tu)? 7} 
p p+i/2 p-i/2 

- (X,- X3) {(U, + U,) a (U;+U,) } 

+ =F 
+ (¥, -¥,) {(v, tv.) = (vy, - Vv, + 27g} 

+1/ p-i/2 

~ (Xg- Ya) {(Vp + Va) = (Vg +V_) + 278} 

where p = yAb/(1 + yb3,), b3, being the b value on side 34 of the 
cell and Ab the difference across each and every cell. The first 
term is of order p, the second order p*. The boundary conditions 
are usually identical to the homogeneous case. 

V. ACCURACY, STABILITY, CONVERGENCE AND SINGULARITIES 

A. Accuracy 

If the cell equation, (18), is used without the higher order 
spatial correction, an indication of the errors due to neglected higher 

order spatial derivatives can be obtained by assessing the value of 
that correction and inferring its effect upon the final values of W. 
Unfortunately, the mesh distribution and mesh size required for a 
solution of given accuracy will not be known a priori and can only be 
arrived at either by trial and error or by using some technique of 
rezoning. The latter method in which cells are subdivided where and 
when the violence of the motion demands it, can be difficult to pro- 
gram satisfactorily and has not been attempted thus far. 

Errors due to higher order temporal derivatives are most 
fa regulated by ensuring that, for each cell, both 
T| W, "Wel /IZ, - Z| and T|W,- W,|/|Z,- Z, are comfortably less 
than unity. A workable rule of thumb can be devised in which a 
suitable Tt for a particular time step is determined from the W and 
Z values of the preceding step. 
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By Stability of Cell Relaxation 

Suppose the central member, cell A, of the group of cells 
shown in Fig. 3 contained a residual Ry which was then dissipated 
according to the relations (23). Transfer functions, Dag, Dg, etc., 
will describe the residual changes, AR,, etc., in the surrounding 
cells where 

AR, = wD,,R,, etc. (24) 

Fig. 3. Z-Plane 

For example 

Dag = {(Z, - Zis\(Zp- Z4) - (Zig - Z4(Z, - Zs) }i/8A, 

where A, is the area of cell A. For convergence of the relaxation 
method it is clearly necessary that the w for each cell be chosen 
so that all w|D| are significantly less than unity. It is instructive 
to inspect the case in which all the cells are roughly geometrically 
similar inthe Z plane. Then 

ld? - a3 
Dial = [Daal = Dae = iD ~ ors vam =i 
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dd 4 

[Dacl = [Dye] = |Dacl = |Dasl * oa = ao ye 

where d,, dp are the lengths of the cell diagonals. For square cells, 

Y, =Y,=0 and the situation is stable. However difficulties may 

arise when the cells are very skewed or elongated and it is in such 

situations, in general, that care has to be taken with the relaxation 

technique. 

C. Observation on the Cell Equation 

One feature of the basic cell equation, (18), itself demands 

attention. Note that without the higher order spatial correction, the 

residuals, R in all of the cells (of Fig. 3) remain unaltered when 

the W or Z values at alternating points (say the odd numbered 

points of Fig. 3) are changed by the same amount. Such alternating 

"errors" must be suppressed. Some damping is provided by the 

higher order spatial correction since it is not insensitive to these 

changes. But experience showed this to be insufficient unless all 

the boundary conditions also inhibited such alternating "errors." 

Solid boundaries usually provide adquate damping. For instance, 

in Fig. 4(a) fluctuations in U on BC, DA andin V on BC are 

obviously barred. But the free surface provides little or no such 

suppression and as will be seen in the next section this can lead to 

difficulties. It is of interest to note that some of the solutions of 

Hirt, Cook and Butler [1970] exhibit the same kind of alternating 

errors. 

In the MAC technique, neglected higher order derivatives of 
the diffusion type and with negative coefficients (a "numerical" 
viscosity) can lead to a numerical instability if not counteracted by 
the introduction of sufficient real viscosity. In the present method, 
as with that of Hirt, Cook and Butler [1970], the convection terms 
which cause that problem are not present. The higher order spatial 
correction does contain terms of diffusion order, but it cannot be 

directly correlated with a viscosity since viscous terms are ofa 
2 

different form (i.e., like f vVxy I dt). Also, the higher order spatial 

correction has a beneficial rather than a destabilizing effect. 

D. The Free Surface 

By including previously neglected derivatives, the numerical 
free surface condition (without surface tension) is found to correspond 

more precisely to: 

2 
A 

{XqXt+ * YolYr+ t 1)} + ier { XeaaX t+ + YoaalYt+ t 1)} 

2 4 

be 7 {XX t YaYererd = 0 (26) 
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where Aa isthe a difference across a cell and the second and 
third terms constitute truncation errors. Inspect this in the light of 
a linearized standing wave solution (see Section 6A), i.e., 

X=a-Mcocos Jkt sin ka’e*” iT} 

Y = bikM cos vik t cos ka ef? 

where the variables are non-dimensionalized as in Section 4C and 
k is the non-dimensional wave number in the a,b plane. Then, 
the second and third terms of Eq. (26) will be insignificant provided 

2 2 
k (Aa) 

respectively. Or, in terms of a wavelength, \ = 21/k: 

R. >> 2 and T<< 45 AX (27) 

since Aa® AX, the X difference between points on the free surface. 

The first condition states the inevitable; namely, that the solution 
will be hopelessly inaccurate for (a,b) plane wavelengths comparable 
with the mesh-length Aa. Given that the first condition holds then 
the second says that 7 << 84AX. For a travelling wave system the 
same condition states that T should be less than the time taken for 
a wave to travel one mesh length. This constitutes a restriction on 
T which is usually more stringent than that of Section 5A. If, for 

example, the depth of the fluid is divided into N intervals andthe X 
difference across each cell is of the same order as the Y difference 
then T should be less than 8/N. 

A more difficult problem arises when the first condition is 
considered alongside the fact, ascertained in the previous section, 
that the field equation provides little or no resistance to disturbances 
whose wavelength is equal to Aa. The only resort would seem to be 
to some artificial damping technique which would eliminate or sup- 
press these small wavelengths. The technique used in the examples 
to follow was to relax the W values on the free surface such that 
w = pw'?° + (1 - B)W* where W'S° was the value indicated by the 
free surface condition, W* the value which would make the numeri- 

cal equivalent of Woagg, be zero at that point and B was slightly less 
than one half, 
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E. Singularities 

Successful numerical treatments of singularities depend upon 
the availability of analytic solutions to the flow in the neighborhood 
of that point. For example, at a corner between solid walls the 
velocity varies as the (1 - $)/B power of distance from that junction 
where f is the included angle. If this is /2 (as at points C or 
D, Fig. 4(a)) the variation is linear and thus the numerical estimate 
of the circulation around the cell (see Section 4) in such a corner is 

a good one. Where the angle is not 1/2 (D, Fig. 4(c)) errors will 
occur due to the non-linear variation of velocity, but corrective pro- 
cedures are easily devised. 

A great deal less is known about the singularities at a junction 
of a free surface and a solid boundary. If the wall is static and verti- 
cal (A, Fig. 4(a)) so that X,, = X,= Xp;= 0, etc., it follows from the 
equation of motion that if Y, =0 at t=0 then it is always zero for 
irrotational flow; the tangent to the free surface at the wall is always 
horizontal. Thus the free surface condition without surface tension 
is automatically satisfied at such a junction and only weak singular 
behavior is expected. But a similar analysis of the case when the 
wall begins to move at t=0 (remaining vertical) indicates that Yt 
must be infinite at the junction (B, Fig. 4(a)) at t = 0, the singularity 
being logarithmic in space. An extension to t#0 has not so far been 
obtained. One approach might be a Fourier analysis of the step in 
X;; 80 that the steadily oscillating solutions of Fontanet [1961] could 
be used. These suggest that Y,, becomes finite for t>0. 

SLOPING 
BEACH 

X 

Mactth Xl amexe 

FIG. 4(b) FIG. 4(d) 
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In the examples to follow (see Figs. 4(a) to (d)) satisfactory 
numerical solutions could be obtained by ignoring all but one of the 
singularities. The exception was the shoreline, point A, Fig. 4(c). 
If B is the angle between the tangent to the free surface at A and 
the horizontal then correlating the two boundary conditions yields: 

(Zia = - el? /(cot B cos a + sin a) (28) 

Thus the sign of B determines the direction of the acceleration up 
or down the beach, If the fluid starts from rest at t=0, B=0, 

then (Z;+;+)t:0 = 0 and successive differentiation of the basic equation 
(8) and the boundary conditions yields (for irrotational motion): 

TT. 

- ee i Zrists Zate? Spire 2 tate. =O OF ».unless o@ = 3 (29) 

Z Z Z. =0oro, unless a= "or = ttittt *“atttt > “brttt ? 4 6 

These relations suggest a behavior which is logarithmically singular 
in time at t=0 unless @=n/2n, n integer. Roseau [1958] found 
similar logarithmic singularities in periodic solutions for the general 
case which excluded @=1/2n and another set of particular angles 
(see also Lewy [1946]). But a systematic analysis of the singular 
behavior (especially for t# 0) has not as yet been completed. Rather, 
since the relations (29) no longer necessarily hold if the condition 

of irrotationality near that point is relaxed, the problem was circum- 
vented numerically by replacing the circulation condition on the single 
cell in that corner by the condition (28) at the point A and the time 

= 0 was avoided by applying (28) at t = 7/4 just as was done with 
the general free surface condition (Section 4C). 

Note that strong singularities could be introduced by unsuitable 
mapping to the (a,b) plane. 

VI. SOME RESULTS INCLUDING COMPARISONS WITH LINEAR 
SOLUTIONS 

A. Lagrangian Linearized Solutions 

Linearized solutions to the Lagrangian equations are obtained 
by substituting K=at6&, Y=B +n into the equations of continuity 
and motion and neglecting all multiples of derivatives of § and n. 
For incompressible and irrotational planar flow the Cauchy-Riemann 
conditions 6 = - nb, &=Nq result so that € tin, and therefore 
Z-c (where c=atib) is an analytic function of c. In the absence 
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of surface tension the free surface condition reduces to 

Ey ten, =0 (g = 1 in the dimensionless variables) (30) 

only when the additional assumption that 1+ << gis made. In this 
way harmonic solutions can be obtained for some simple problems. 

In passing, it may be of interest to compare Lagrangian 

linearization with the more common Eulerian type, at least in some 

simple cases. For travelling waves on an infinite ocean the first 

order Lagrangian terms are precisely those of Gerstner's waves. 

The Eulerian solution must be taken to the third order to achieve this 

waveform. On the other hand, while the Eulerian solution is always 

irrotational the Lagrangian only approaches it. Thus the comparitive 

accuracy of the two methods depends upon what particular feature of 

the flow is under scrutiny. A comparison of the works of Zen'kovich 

[1947] and Penney and Price [1952] for standing waves on an infinite 
ocean demonstrates the same features. 

B. Example One, Figs. 4(a),, 551627 9:85 9% and 10 

In the example of Fig. 4(a), the liquid is initially at rest in 
the rectangular vessel BCDA; between t=0 and t=T the side BC 
moves inward according to 

2 
X,dt) = M sin nt /2T for Ot <RE 

=M for C2ck 

With a suitable choice of M and T this creates a wave which 
travels along the box, builds up on and is reflected by the opposite 
wall, AD. The linearized solution (which requires a Fourier 

analysis of the free surface boundary condition) is 

(os) 

Z- c= Xpdt) [1 : a + » R,B,(t) sin ae (31) 
k= 

where 

ve T k T R, = M/nk (“4 - 1) cosh (3 

B(ticiees ale Gicosn O< <7 
k k as 

= cos vt + cos y(t - T)} t> Tt 

eh 

_ | kr kr)“ 

Meek ee tank | 
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t/Y¥ = 0.0 8.0 12.0 16.0 20.0 2U.0 26.0 
+ X o ¢ SYMBOL © © 4 

90.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 X 

Linearized solution to example 1: M=0,53, T= 327, T=0.53, 
showing free surface position at a selection of times, t. 

%/¥ = 0.0 8.0 12.0 16.0 20.0 24.0 26.0 
+ xX o SYMBOL © O 4 

MESH 65X9 POINTS 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Xx 

Numerical solution to example 1: M=0.53, T=327T, 7 =0.53, 
showing free surface position at a selection of times, t 
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t/Y¥ = 0.0 4.0 8.0 12.0 16.0 20.0 23.0 26.0 30.0 

SYMBOL © © 4 + X © # X& Z 

—~——--- 

Se ee ee ee 

1.0 2.0 3.0 4.0 5.0 6.0 a0 8.0 9.0 10.0: X 

Linearized solution to.example 1:.M = 1.16, T = 167, = C.60; 
showing free surface position at a selection of times, t 

t/Y = 0.0 4.0 8.0 12.0 16.0 20.0 23.0 26.0 30.0 
SYMBOL © © 4 + X © # XX Z 

MESH 65 X 9 POINTS 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

Numerical solution to example 1: M= 1.16, T = 167, T=0.60, 

showing free surface position at a selection of times, t 
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= 
N 

t/Y¥ = 0.0 4.0 8.0 12.0 16.0 20.0 22.0 
© A + X © 4 SYMBOL 

>| ks oOo 

N 

[0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 X 

Fig. 9. Linearized solution to example i: M = 2.00, T= 167, T=0.48, 

showing free surface position at a selection of times, t 

pease aa | a | iE 

t/y = 0.0 4.0 8.0 12.0 16.0 20.0 22.0 

SYMBOL 0 10) a ate x © Gr 

MESH 65X9 POINTS 

2.4 

2.0 

20.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 xX 

Fig. 10. Numerical solution to example 1: M=2.00, T=167,7 =0.48, 

showing free surface position at a selection of times, t 
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and £ is the a difference between the walls AD and BC. In 
Figs. 5 and 6, 7 and 8, 9 and 10 the numerical and linearized free 
surface shapes are compared for three cases of increasing wave 
amplitude. As the amplitude increases the similarity between the 
two diverges; both the wave velocity and the build up on the wall 
become progressively greater in the numerical solution. Note also 
that, especially in Fig. 10, the peak of the wave is much sharper than 
in the linearized solution. For amplitudes less than that of Figs. 5 
and 6 the results were almost identical. 

GC. Example Two, Figs. 4(b), 11, and 12 

The second example, Fig. 4(b), introduces moving and curved 
solid boundaries; the liquid is disturbed from rest by a bed uplift of 
the form: 

2 2 = For Xi <X<X2, ¥,=Msin |S] sin [RAH] for 0<t<T 
2k 

= 2 nx | 
= M sin | 7X- Xt for t> 2 

For. Xi Xi wo uke’, Yop = 0 ali at 

Within certain extreme limits on M and T this causes a surface 
wave immediately above the bed disturbance which then spreads out 
to each side and is followed by a depression wave over the bed uplift. 
The linearized solution is 

00 

Vee eS e) +) R _ [itann (75) awe coat ete 

k=l 

+ Bt) ain (SEE | (32) 

where 

R, = M {sin (5X2 : in (GX) 1/20? ce (Bis e(x2 = X1))"} 

Vy Ee tanh Ens 

2sin a for 0 <<" T., =(Z2 for. t > T = my rT 

B,(t) =o, cos vtti-(1+o,) cost for O<t<T 

2 t g (cos vt + cos v(t - T) foraysh Sn 
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t/Y¥ = 0.0 3.0 5.0 7.0 10.0 13.0 16.0 18.0 20.0 
SYM80L © > x x Zz 

90.0 1.0 2.0 3.0 4.0 5.0 X 

Fig. 11. Linearized solution to example 2: M=0.344, Xi = 0.75, X2=2.12, 
T = 67, T=0.35, free surface positions at selection of times, t 

t/Y¥ = 0.0/3.0 5.0 7.0 10.0 13.0 16.0 16.0 20.0 
SYMBOL © © 4 + X © # X& Z 

MESH 40 X9 POINTS 

50.0 1.0 2.0 3.0 4.0 5.0 X 

Fig. 12, Numerical solution to example 2: M=0.344, X1 = 0.75, X2= 2.12, 
T =67, T=0.35, free surface positions at selection of times, t 
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r, = sech® (3£)/[E% - 4] 

and £ is the a difference between the vertical walls. For T of 
the order of 2 or 3 and for values of M upto0.3, at least, there 

was virtually no difference between the numerical and linearized 
solutions. Figures 10 and 11 in which M = 0.344 demonstrate this. 

D. Example Three, Figs. 4(c), 13, 14, 15. A Sloping Beach 

By altering the condition on the boundary AB of example one 
and employing the shoreline treatment of Section 5E, the interaction 
of the waves with a sloping beach could be studied. In Fig. 13 a 
small wave appraches a 27° beach. As the horizontal inclination of 
the tangent to the free surface at the shoreline (B) decreases, the 

shoreline (A) accelerates up the beach until B becomes positive. 
The acceleration then reverses (as in Eq. (28)) and the wave reaches 
maximum run up. The backwash is extremely rapid and positions 
t/r = 21, 22 suggest that this causes the small wave which is follow- 
ing the main one to break. By this time the cells have become very 
distorted and the mesh points excessively widely spaced to allow 
further progress. A similar succession of events takes place with 
the larger wave and smaller beach angle (18°) of Fig. 14. Note in 
this case,the large run-up to wave-height ratio. In neither of these 
cases does there appear to be any tendency for the main wave to 
break on its approach run. Indeed the reaction with the beach is 
similar to the behavior predicted by Carrier and Greenspan [ 1958] 
in their non-linear shallow water wave analysis. The wave amplitude 
was further increased and the beach slope decreased to 9° in an 
attempt to produce breaking on the approach run. A preliminary 
result is shown in Fig. 15. Variations in the application of the free 
surface condition and in the shoreline treatment have, as yet, failed 
to remove the irregularities in that solution. A stronger shoreline 
singularity coupled with an insufficiently rigorous treatment of it may 
be to blame. An optimistic viewer might detect a breaking tendency. 

E. Example Four, Figs. 4(d), 16. A Shelf 

One final example is shown in Figs. 4(d) and 16 where the wave 
travels up a shelf, created by changing the boundary condition on CD, 
Fig. 1. Excessive vertical elongation of the cells on top of the shelf 
caused this computation to be stopped at the last time shown. (At 
this point the wave height/water depth ratio on the shelf is of the order 
of 2.) However, one can detect a splitting of the wave into two waves 
as might be expected from the theory of Lax [1968]. 
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t/r = 8.0 11.0 14.0 17.0 19.0 21.0 22.0 

SYMBOL oO Oo & + x Oo 

eS MESH 30X9 POINTS 

20.0 1.0 2.0 3.0 U.0 5.0 6.0 7.0 X 

Fig. 13. Example 3 with M=0.30 and T=67T, T=0,.571. The beach slope 
is 27°. Free surface positions at selection of times, t 

ce 

| t/y = 8.0 12.0 14.0 17.0 19.0 21.0 23.0 25.0 
EK SYMBOL © © 4 + x © # ®& 

i} 

MESH 30X9 POINTS 

© 

we 

20.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 X 

Fig. 14. Example 3 with M=0.60 and T=87, 7T=0.571. The beach 

slope is 189, Free surface positions at selection of times ,t 
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=e Je ee 
N 

th = 12.0 16.0 20.0 21.0 22.0 22.8 23.7 2U.5 

| SYMBOL oO © -A + x © a: x 

| MESH 51 X9 POINTS : 

oO 

20.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 X 

Fig. 15. Example 3 with M=2.00, T=167, T=0,481. The beach slope 
is 9°. Free surface positions at selection of times, t 

2.0 

2.4 

t/Y = 8.0 10.0 11.4 12.2 13.1 13.9 14.3 

SYMBOL CROP ay et a xX nO a 4 

MESH 80X9 POINTS 

2.0 

50.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 X 

Fig. 16. Example 4 with M =2.00, T=167T, T=0.481. Shelf defined by 
X1=4.41, X2=5.16, HR=0.3. Free surface positions at 
selection of times, t 
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VII. CONCLUDING REMARKS 

Rather severe examples were taken in order to test the 
limiting characteristics of the method developed. Provided the 
various interval limitations were adhered to only two problems arose 
which could prematurely conclude a computation. First, excessive 
elongation of the cells in regions of the most violent motion could 
cause the mesh points to be excessively widely spaced; rezoning 
could, however, make it possible to continue. Secondly, it would 

appear that a more detailed knowledge and treatment of some singu- 
larities is required. Work on this, and especially on the shoreline 
singularity of example three, is in progress at the moment. 

Other types of examples which have been only briefly investi- 
gated thus far are: the matching with a semi-infinite region in which 
some analytic solution is used; the inclusion of surface tension; the 

extension of the method to three dimensions; examples in which the 
fluid is inhomogeneous. It is hoped to present such results in the 
near future. 

The authors are deeply appreciative of the kind and considerate 
help given by Professor T. Y. Wu. 
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TWO METHODS FOR THE COMPUTATION OF 
THE MOTION OF LONG WATER WAVES — 

A REVIEW AND APPLICATIONS 

Robert L. Street 
Robert K. C. Chan 

Stanford University 
Stanford, California 

and 
Jacob E. Fromm 
IBM Corporatton 

San Jose, Caltfornia 

I. INTRODUCTION 

The continuing evolution in speed and capacity of digital com- 
puters has encouraged the development of many computationally 
oriented methods for analysis of the movement of waves over the 
surface of the ocean and onto the shore. Carrier [1966] gave analy- 
tical techniques requiring numerical evaluation for the propagation 
of tsunamis over the deep ocean and for the run-up on a sloping beach 
of periodic waves that do not break. He noted that linear theory is 
valid in the deep ocean and over much of the sloping shelf; thus, non- 
linear theory is needed only in specific regions where the nonlinear 
contributions to the dynamics are important. However, his nonlinear, 
approximate theory was developed only for the plane flows. An ex- 
tension and application of Carrier was made by Hwang, et al. [1969]. 
They studied the transformation of non-periodic wave trains ona 
uniformly sloping beach using the nonlinear shallow water wave 
equation and the Carrier-Greenspan transform. This transform 
fixes the moving, instantaneous shoreline of the physical plane to a 
single point in the transformed plane. Although the analysis deals 
only with plane flows and does not handle breaking waves, it does 
predict wave run-up and reveals a significant beat phenomenon. 

To study nonlinear effects and/or to account more completely 
for the waves' reaction to arbitrary ocean topography and boundaries, 
it is natural to turn to numerical methods and their accompanying 
computer codes. The simplest of the numerical methods are repre- 
sented by the refraction techniques of Keulegan and Harrison [ 1970] 
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and Mogel, et al. [1970]. These methods, based on linear, geo- 
metric-optics theory, are applicable to arbitrary bottom topography 
but can predict neither breaking nor run-up. They also neglect 
reflection and diffraction effects. The computer code is very simple, 
requiring step-by-step solution of Snell's law and a wave intensity 
equation over a grid of bottom depths. 

Vastano and Reid [1967] described a procedure employing a 
numerical integration of the linearized long wave equation to study 
tsunami response at islands. They concluded, by comparison with 
analytic solutions for special cases, that their numerical model gave 
an adequate representation of the solution to the linearized equations. 
Their paper indicated that the work was a lead-in to a more general 
treatment of arbitrary bottom topography. At the island they useda 
vertical cylinder that penetrates the surface and thereby restricts 
the movement of the instantaneous shoreline. No run-up can be cal- 
culated in the usual sense. 

In another approach, Lautenbacher [1970] used linear, 
shallow water theory to study run-up and refraction of oscillating 
waves of tsunami-like character on islands. His method allows for 
the moving, instantaneous shoreline and, of course, for superposi- 
tion of individual results from monochromatic waves. Working from 
an integral equation formulation and employing a Hankel function 
representation of the far-field radiation condition similar to that 
used by Vastano and Reid [1967] , Lautenbacher used a grid of dis- 
crete points to numerically integrate the integral equation of his 
model. Combining his work with Carrier [1966], Lautenbacher was 
able to estimate total tsunami run-up from a distant source. He also 
emphasized the importance of refractive focusing effects. 

The numerical methods aimed specifically at modelling non- 
linear effects take three forms: 

a. Approximate, plane-flow models for arbitrary or sloping 
beaches and based on approximate equations. 

b. Exact plane-flow models. 

c. Quasi-three-dimensional models, 

The approximate, plane-flow models are represented by the 
work of Freeman and LeMéhauté [1964], Peregrine [1967], Heitner 
[1969], Street, et al. [1969], Camfield and Street [1969] , and Madsen 
and Mei [1969a, 1969b]. With the exception of Heitner [1969], the 
authors used Eulerian coordinates. Freeman and LeMéhaute [ 1964] 
applied the method of characteristics to the nonlinear, shallow water 

wave equations for plane flow. They described a method for com- 
puting the shoaling of a limit-height solitary wave on a plane beach, 
predicting the point of breaking inception by the crossing of character- 
istic lines and computing the subsequent bore development and run-up 
at the shoreline. A term was added to the equations to correct the 
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assumed hydrostatic pressure distribution beneath the wave, the 
assumption not being valid for finite amplitude waves. Camfield and 
Street [1969] used a refined correction term, but the results were 

not entirely satisfactory in either case. 

Peregrine [1967] and Madsen and Mei[1969a] derived approxi- 
mate, nonlinear, governing equations for the propagation of long waves 
over slowly varying bottom topography. In these equations the verti- 
cal component of motion is integrated out of the computation so a 
single-space-dimension problem is all that remains. Madsen and 
Mei [1969a] showed that, while they and Peregrine used different 
approaches and solution methods, the equations are the same when 
presented in the same variables. Furthermore, Madsen and Mei 
[1969a] explained that these nonlinear equations, obtained under 
assumptions similar to those leading to cnoidal waves in the case of 
horizontal bottoms, give a uniformly valid description of long wave 
problems as long as breaking does not occur. In particular, their 
equations were derived under the condition that the Ursell parameter 

2 

U, = ye = O(1) (1) 
ie) 

where 1 is a measure of wave amplitude, L, is a characteristic 
wave length and do is the water depth. Thus, the nonlinear, govern- 
ing equations are of the Korteweg-deVries type (KdV) that have per- 
manent solutions, e.g., cnoidal waves, for the case of horizontal 

bottoms. Madsen and Mei[1969a] demonstrated that, although the 
equations pertinent to each of the three groups of long waves (Airy 
where U,>>1, KdV where U, = O(1) and Linear where UU, << 1) 

have different mathematical solutions, the features characterizing 
each group are all contained in the equations derived under the 
assumption of waves of the KdV type. 

The method of characteristics was applied by Madsen and Mei 
[1969a, 196 9b] to solve their equations for initial, boundary value 

problems involving solitary waves and periodic waves on plane slopes 
and a shelf; their equations, like those of Peregrine [1967], are 
applicable to general, uneven bottoms. Street, et al. [1969] pre- 
sented a numerical model APPSIM and results based on the Peregrine 
[1967] method, but employing initial and boundary conditions similar 
to those of Madsen and Mei[1969b]. These methods reproduced the 
nonlinear breakdown on a shelf of a solitary wave, the breakdown 
having previously been observed only in experiments [Street, et al., 
1968]. Furthermore, comparison shows quantitative agreement _ 
amongst these methods and relevant experiments. Run-up cannot 
be calculated with these models which employ the vertical beach (or 
island) face that was used by Vastano and Reid [1967]. However, 
Peregrine's [1967] derivation included the two horizontal space 
dimensions, while Madsen and Mei [1969a] did not. Accordingly, 
as an extension of APPSIM, a quasi-three-dimensional model 
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APPSIM2 is based on Peregrine's equations and is described in detail 
in Section III below. 

Heitner [ 1969] presented a nonlinear method based on 
Lagrangian coordinates and a finite element representation of the 
fluids. His theory retains terms representing the kinetic energy of 
the vertical motion; thus, like the methods described just above, 
Heitner's approximate method permits permanent waves to propa- 
gate. Unlike those methods, Heitner's formulation gives a repre- 
sentation of wave breaking inception, bore formation and run-up 
on a linear beach for plane flows. 

The exact, plane-flow models are represented by the work of 
Brennen [1970], Hirt, et al. [1970] , and Chan and Street [1970]. 
All are based on the exact equations of motion; however, Chan and 
Street [1970] work in Eulerian coordinates, Brennen [1970] uses 
Lagrangian coordinates and equations, and Hirt, et al. [1970] em- 
ploy Lagrangian coordinates but retain the Eulerian form of the 
overning equations. Based on the Marker-and-Cell (MAC) method 
Welch, et al. , 1966], Chan and Street's model for water waves is 

called SUMMAC and is discussed in Section IVofthis paper. Brennen 
has applied his technique to tsunami generation by ocean floor move- 
ments and to run-up on abeach. Hirt, et al., made applications to 
wave sloshing in a tank by way of verification of their method, called 
LINC, which has wide application in ocean wave analyses as well. 
All the exact, plane-flow methods mentioned employ some form of 
finite- difference or cell representation of a discrete grid of points. 

Finally, the quasi-three-dimensional methods are represented 
by the work of Pritchett [1970] and Leendertse [1967] and by the 
extension to two horizontal dimensions of the APPSIM program of 
Street, et al. [1969] discussed above. Pritchett presents a code 
for solving incompressible, two-dimensional, axisymmetric, time- 
dependent, viscous fluid flow problems involving up to two free 
surfaces. The basic equations are exact; heuristic models for tur- 
bulence simulation are used. Scalar quantities such as heat and 
solute concentration can be traced, and the fluid may be slightly non- 
homogeneous. Most of the variables, their placement in the compu- 
tational mesh, and the free surface treatment are those used in MAC 

[ Welch, et al., 1966]. 

Leendertse [1967] developed a computational model for the 
calculation of long-period water waves in which the effects of bottom 
topography, bottom roughness and the earth's rotation were included. 
The equations of motion are vertically integrated so only the two 
horizontal space-dimensions remain (much in the manner of Peregrine, 
[1967]), but while Peregrine [1967] , Madsen and Mei[1969a, 1969b] 
and Street et al. [1969] retain terms to account for the vertical 
accelerations of the fluid, Leendertse [1967] does not. His equations 
become the usual nonlinear shallow water wave equations with added 

terms to account for the bottom roughness and earth's rotation. He 
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focuses his attention on the modelling of long waves such as tsunamis 
in areas with irregular bottom topography and complicated ocean 
boundaries. His computation uses a space-staggered scheme (where 
velocities, water levels, and depth are described at different grid 
points) and a double time step operation in which the time integral 
is considered over two successive operations in a manner designed 
to make effective use of the space-staggered scheme. Among the 
papers mentioned in this Introduction, only Leendertse [1967], 
Welch, et al. [1966] and Chan and Street used computer graphic 
display for output of results. The value of graphic display is illus- 
trated in the results presented in the remainder of this work. 

II. THE PRESENT WORK 

Street, et al. [1969] gave a progress report on the develop- 
ment of computer programs fortwo numerical, finite-difference 
models for the study of long water waves. These models and their 
accompanying programs were, as noted above, given the acronyms 
APPSIM and SUMMAC. Both were based on representation of the 
motion of inviscid, incompressible fluids in terms of the Euler 
equations of motion in Eulerian coordinates. Flow boundary con- 
ditions were derived from physical requirements and the governing 
equations at the boundaries. The mathematical models thus obtained 
were then transformed to numerical, finite difference models for the 

purposes of computation. In 1969 the study had been confined to 
plane flows, but the numerical results had been verified by compari- 

son with experiments and the work of others. The models were to 
provide detailed flow field data in the portion of the wave shoaling 
process where nonlinear effects are significant, but breaking has not 
occurred. 

Our approximate simulation (APPSIM) is based on the method 
of Peregrine [1967] and supplemented by the work of Madsen and Mei 
[1969a, 1969b]. APPSIM was implemented for quasi-two-dimensional, 
plane flows (vertical motion integrated out). For the purpose of 
implementing, testing, and verifying the program and method, we 
simulated the propagation of solitary waves on a stepped slope which 
represents the configuration of the continental slope and shelf, i.e., 
we examined long waves in moderately shallow water. The key 
criteria to be satisfied were 

a. Solitary waves propagate stably on a horizontal bottom. 

b. Solitary waves decompose into undular bores when the 
waves propagate onto a stepped slope [ Street, et al., 
1968]. — 

c. Wave heights must be in good quantitative agreement with 
available experimental data. 

As reported by Street, et al. [1969] APPSIM met these criteria. 
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The successful application of APPSIM to examples of plane 
motion of long waves indicated that the method could be applied to a 
quasi-three dimensional simulation (two horizontal space dimensions 
with vertical effects represented in once integrated equations) of the 
motion of waves over arbitrary bottom topography. We have ex- 
tended APPSIM to handle general bottom topography and both solitary 
and oscillatory wave inputs. The new method is called APPSIM2 and 
presented in SectionIII below. 

An objective of our exact simulation was to provide detailed 
information about wave processes near the shore and at the ocean- 
structures interface. The Stanford- University- Modified Marker-and- 
Cell (SUMMAC) method computes time-dependent, inviscid, incom- 
pressible fluid flows with a free surface; the method is suitable for 
analyzing two-dimensional flows. Initially, we simulated the propa- 
gation of solitary waves in a horizontal channel filled with fluid to 
unit depth and with vertical end walls, The solitary wave propagation 
problem possessed several key features: 

a. The theories for the wave motion against the wall were 
not in agreement with experiments. 

b. The solitary wave should propagate stably (without change 
of form) in zones not near the channel walls. 

c. Perfect reflection from the walls should occur. 

We undertook a significant modification of the MAC method to create 
a numerical scheme suitable for water wave simulation. As reported 
in 1969, the resulting SUMMAC simulation met the criteria of stable 

propagation and perfect reflection of solitary waves and resolved the 
disagreement between theory and experiment for motion against a 
vertical wall. 

The successful application of SUMMAC to the initial example 
indicated the possibility of employing a modification of the same 
technique to attack a variety of other problems. We have subsequently 
studied the generation of water waves by a periodic pressure pulse 
and the shoaling and run-up of solitary waves on a stepped slope and 
on plane beaches. A summary of the presently implemented SUMMACG 
method and results for the periodic pressure pulse problem are pre- 
sented in Section IV of this paper. An evaluation of the numerical 

qualities of SUMMAC and a report of the shoaling and run-up studies 
are given in Chan, et al. [1970] and Chan and Street [1970b]. 
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Ill. APPSIM2 

3.14. The Governing Equations and Auxiliary Conditions 

Dimensionless variables are defined below and in Fig. 1 where 
the physical domains considered are also illustrated. The variables 
are 

* * -! 
(x sy en d*)d, (Xess od) 

/2 
t—1 (e/a) 

(u*, v*) (gd) /? 
(u,v) 

where those on the left-hand sides are dimensionless and d, is the 
depth in the deepest part of the simulated wave tank. Here, x and 
y are fixed, Cartesian coordinates in the horizontal plane; u(x,y,t) 
and v(x,y,t) are the corresponding mean (vertically-averaged) 
horizontal fluid velocities; n(x,y,t) is the free surface shape, 

measured from the still or undisturbed water line in the tank, and 
d(x,y) is the depth of the still water. 

de (ER 
oma Aeromax (ae), 
b. Submerged Seamount (Plan View) 

Fig. 1. Definition of symbols and simulated wave tanks for APPSIM2 
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For waves of the KdV type that we wish to study, U, = O(1). 
If 

€ = No/do (2) 

and 

o = dg/L. <1 (3) 

for long waves, then from Eq. (1), Uy=e€/o*=1 and €=0% This 
is the relation on which Peregrine [1967] based his expansion-in-a- 
parameter analysis. He pointed out also that d(x,y) = O(1) and the 
derivatives of d equal O(c) are necessary restrictions; otherwise, 
the variations in the depth of water are shorter than the incident 
waves and tend to generate shorter waves, thus upsetting the scheme 
of the approximations. 

Under the above conditions Peregrine [1967] obtained the 
momentum equations 

1 1 .2 
u, tuu, +vu, tn Fs d[ (du),, + (dv) yy] =i bug Vaylt 

(4) 

OSS yg Oy <i 0<t 

1 Ake 
Mea We le ae d[ (du),y + (dv)yy | aid ees Vole 

(5) 

0 < x < By ~0-<-y<- Lo, — 0X 

and the continuity equation 

n, +[(d + nul, +[(d + nv], = 0 
(6) 

O<—x <i e, Os y's bo, 11.0. <t 

These equations and the appropriate auxiliary conditions described 
below are solved numerically by a straightforward finite difference 
scheme that is presented in Section 3.2. 

The auxiliary conditions are the boundary and initial condi- 
tions appropriate to Eqs. (4-6) for motion in a vertical-walled tank 
(Fig. 1). For solid, vertical walls the velocity perpendicular to the 
wall is zero at the wall and non-breaking waves reflect perfectly 
from the wall. If n is the normal coordinate and U and V are 
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typical normal and tangential fluid velocities at the wall, then in 
inviscid flow 

1, = 0 (7) 

a) (8) 

Vi= 0 (9) 

Un (10) 

Accordingly, for Wall 1 shown in Fig. 1 we have for 0<y<L,, 
Or<i t; 

n,(0 ry »t) =0, v,(0,y,t) = 0, u(0 ryt) =0, u,,(0,y,t) = 0 

Similar conditions hold on the other walls. 

If we choose to prescribe n=n(t) along Wall 1 where x=0, 

then a special set of conditions must be derived (cf., Madsen and Mei 
[1969a] who point out that this prescription corresponds physically 
to the situation of having measured the incoming wave height at a 
particular station), Peregrine [1967] gave the irrotationality con- 
dition 

wy-% =Z4lV > (dull, -5alV- (du)l 
-Faa[V-U] +z aalV- Ul (14) 

where u = (u,v) and V = (8/8x, 8/8y). Ifthe bottom is flat in the 
neighborhood of Wall 1, d,=d,y=0 and Eq. (11) becomes 

(6 teas i (12) 

But, if n(0,y,t) = n(t), then until some reflection from a shoal or 
beach in the tank returns to x =0, 

uy(0,y,t) = 0 (13) 

and, hence, 

v,(0,y >t) = 0 (14) 
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Given (0,y,t) = n(t) and Eqs. (13) and (14) and using Eqs. (4-6) 
at Wall 1, one can uniquely determine u, v and 7 there for the 

case of a prescribed incoming wave. The conditions at the remaining 
walls are, of course, not changed. 

The appropriate initial conditions for Eqs. (4-6) are the 
initial values of the dependent variables, viz., 

n(x,y,0) = ni(x,y);  ulx,y,0) = uj(x,y)s = v(x,y,0) = vj(x,y) (15) 

3.2. The Difference Representation and Computation Scheme 

For numerical computation the region 0Sx=L,,0Sy=1, 
is covered by a grid of discrete mesh points with a spacing Ax= Ay = 
4 and calculations are carried forth with time steps At. To allow 

for proper representation of the boundary conditions the grid indices 
(i,j) run over the intervals (1,M) and (1,N) respectively and 
points (1,j), (Mj), (i,1) and (i,N) lie outside the tank walls, e.g., 
x=0 is equivalent to (2,j), etc. Consequently, L, = (M-2)A and 
Le=(N-2)A (see Fig. 1). 

In the finite difference representation of the differential 
equations and auxiliary conditions, central space-differences are 
always used; both forward and time-splitting schemes are used for 
time-differences. The differential equations of motion, eqs. (4-6), 
lead to a highly nonlinear and coupled set of difference equations. 
These are solved iteratively, using a predictor-corrector method. 
If u, v and n are known at all the grid points at t!.e n' time 
level, the following scheme leads to calculation of u, v and 7 at 

the nti!? level. 

First, u, v and 1 are predicted at the nti level by use 

of the nonlinear, shallow water wave equations (Eqs. (4-6) with their 

right-hand sides set to zero). With the superscript P indicating 

the predicted value, the difference equations are, after rearrange- 

ment for computation, 

P At 

i) aaa er 2 (aj jng My) F Vly — yj) F Tiny > m1) (16) 

py Ale aCAt oe joo" \+ E “a 

At 
Mig = Mig ~ Ty Cig (Giely + Niet - Gi-ny - Tieng) F diy F TiMCGiedy ~ Bi-1j 

PN inc Milas i Moiel ce dtiel es Silas nij-0)) (18) 
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t 
where variables without superscript are known at the nf time level. 

Second, the x-momentum, Eq. (4) is used to obtain a difference 
equation for u values at the nti™ Jevel. Central space-differences 
and time-splitting are used about the point (i,j,n+43); this leads to 
a difference equation that is implicit. Now we gather the u™! terms 
from the j'? row on the left-hand side of the equation and all other 
terms on the right-hand side. The heart of our procedure is to use 
uP, vP and 7? values in lieu of the u™*!, vy"! and n*! terms which 
appear on the right-hand side of the equation, these terms being 
mostly inthe j-1 and jt1 rows. The result, when rearranged for 
computation is, for each j, 

n+l n+l nel _ Au + BM + Cull =H, 15 3,4,060,M-2 (19) 

where 

2 
AE 1 di 

= - pelle ie age 
A 4A bea af 2A* ( 3 dijdj.1,) 

adj, 
B= Ll + aSu, 

3A 

At 4 dy 
aa Ms | en eS 2 dij diey ) 

: At 
E = ig’ BA ij iat Uj _4;) 

At P 
AGA Vip lijet = Mifare Bie 

At P P 
— ZA Miatj - Nien t Niet) - Ti-g) 

dij 
+ eae (- Fig Piany * 24 j4iy - Fi) 

4 P P P FZ (distjet Vietiet ~ FietjetVi-tjet ~— Fiety r%i6 jet 

p 
midis ip ¥ - dj a faljel i+ljel Vieljel i-ljal Vi-tjet 

IOS tei peljat daar qae) 
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‘ Visi) T 20;j - Yi-tj Pe 
64 

1, P P P P 
FAV atjeh 7 Vic ljeht Viatjat PoVi-ajat 

5 Vixtfel S:Viedjon tT Viste bY intjt )) 

Equation (19) must be solved for all i simultaneously for a given j. 
The matrix of coefficients of the unknowns in Eq. (19) is tridiagonal 
and is quickly and easily solved by a tridigonal-matrix equation 
solver employing Gaussian Elimination. The process is repeated for 
each j until the ee are known. Appropriate boundary conditions 
are introduced at the ends of the j'® row in each computation. 

Third, the y-momentum Eq. (5) is used to obtain a difference 
equation for the v values at the nti™ Jevel. The result is entirely 
equivalent to that for the u values, viz., the third-order terms on 
the right-hand side create a naturally implicit system so time-splitting 
is used. Now, however, we use vP and nP values for all i-1 and 
iti points along a given column of implicit equations (i = constant, 
3 <= j= N-2) and we use the u™! values just computed. The result, 
when rearranged for computation, is 

~ nel ~ nel n+l . 
AVii + Bj, + Cv iin =£ , j= 3,4,.-.,N-2 (20) 

where 

~ 2dij B=1 + Sy 
34 

At 1 / dj 
an Vi ae ae dys dij) 

At e P 
E=Vijy - ZA ay (Via een a Vii io) ) 

ot rail aia) Pega, Vise Vise, & Vij-1 

At Ee esl ic 
PE Aa Bijeii Myel = ja) t 
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dij 1 n+l n+l nel 

2ae \ 4 (diggjat Ciatjel ~ Fienjet Bi-tjet — Tietj-1 Uistj-1 

n+l 
a Gi ype Pie aj ~ Gigtjetietjel + Gj-tjet Uj - Ijel 

Be Gi gtjet ia tj-t zs dij. 4i-tj-1) a Fijat Vijel 

+ 2dijvij - dij-1Vij-t) 

2 
dj; 1 ,_nel nel n+] + n+| 

= an (5 (Wis ijel ~ Upetjet ~ Vie tye 7 Bprj-r 

~ Uistjel " Uj ijel t Gietj-1 Uj-1j-1) 

- vijr + 2vij - vij-t) 

Now, Eq. (20) must be solved for all j simultaneously for a given i. 
Again we use the tridiagonal-matrix equation solver. The process 
is repeated for each i until the vjj are known. 

Fourth, the continuity Eq. (6) is used to obtain 3 difference 
equation for the 7 values at the nti™ jevel. The u™ and v"* 
values are used in an equation that, as suggested by Peregrine [1967], 
uses an average for u and v values, but forward differences for 
"1 values. The result, rearranged for computation, is the explicit 
equation 

nel At ul t+ uij = 1 i} 

Bip. Ty xa ( 2 (di.iy + Misty - Fi-tj - Ning) 

4 n+l nel 

FS (dij t mig hlinng + Yisty - inj — Mn 

n-l ne 

TVileh oc Vilas “iclre wat 

vit + vij 
2. (dijet i Nijel ~ dij et ie ni} (21) 

This equation is used to compute nit! for 2512 M-1., 2-2 j 
and then the first iteration, the predictor iteration, at the n 
time level is complete. 

= N-1, 
th 

If now the second through fourth steps above are repeated with 
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P values replaced by the nt 11” values just calculated, the accuracy 
of the solution is increased; this is the corrector iteration. Numeri- 
cal tests showed that the computations remained stable if at least 
two iterations were used (one predictor, one corrector). The u™, 

v +l and n+! values obtained in the second and the third iteration 
agreed to at least four significant figures after several hundred At 
steps in simulation of solitary wave motion onto a shelf (Fig. fia). 

Boundary conditions in difference form were derived from 
Eqs. (7-10) in the case of solitary wave simulation. The wave was 
started well inside the tank walls which were held rigid. For ex- 
ample, for Wall 1 in Fig. 1 we have from Eqs. (7-10) at any time 
level 1), = Ngjr Vij = V3j> 4ej= 0, and Wyj = - Ug} Other walls have 

similar conditions. 

For input of an oscillatory wave propagating in the positive 
x-direction at x = 0 we prescribe 

2nto.- At « (nti) (22) 
fo) 

where ‘to is the amplitude (usually small) and Lo is the wave 
length. The celerity Cy is taken to be unity in nondimensional 
terms. From Eq. (14) we have v,, = v3). Because n3* and 74; 
are computed explicitly in the tank region, ni; is obtained by 
polynomial interpolation according to the second-order formula 

n+l n+l n+l n+l Me ig ee Ee, (23) 

Finally, the continuity difference Eq. (21) is used for points (2)) 
where it has not been previously employed to relate uf! to the 

values inthe interlor, j= 2. With u i known as a function of | 

Ugj» Uzi, etc., Eq. (19) can be used in 2S i= M-2 and the ui 
found; vi values are replaced by v{, values in the first iteration. 

Figure 2 is a flow chart for the APPSIM2 computations. 
These were performed on an IBM 360/91 system. For a typical 
computation with A =0.25, At=0.22, M= 154, N = 54 and 126 
time steps the program required about 360K bytes (90K words) of 
core storage and 4 minutes of CPU time (about 1/30 minute per 
time step). The stability of the method is discussed in Sec. 3.4 
after presentation of computational results. 

3.3. Results and Discussion 

To illustrate the focusing effect of wave refraction and the 

reaction of waves to a shelf geometry, solitary and oscillatory waves 

were shoaled over the bottom topography shown in Fig. la. The 

water depth in the tank was 1.0 while the depth of the shelf was 0.4. 
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REMARKS 

BOTTOM, dj; 
SOLITARY OR 

OSCILLATORY 

WAVE IN 

+X- DIRECTION 

WAVE IN 

CALC u,v,7 

(shallow water eqns) 
CALC PREDICTED VALUES uP? y? pP EXPLICIT 

KOUNT = 0 

use uP PnP 

CALC u®*!, KOUNT = KOUNT +1 IMPEICLT. IN 
X- DIRECTION 

use unt! yP nP 
IMPLICIT IN 

Y-DIRECTION 

EXPLICIT 

(uses advanced 

velocities, however) 

SET uP sult! pps noth yPaynrl 

KOUNT 2 2 

WRITE/TAPE DUMP 

T= TOP;STOP 

Fig. 2. APPSIM2 flow chart 

The deep and shallow portions are connected smoothly by a cosine 
curve. 

For the solitary wave simulation, the pertinent parameters 
were L, = 38, Lg= 13, x,= 14.5, X%,= 19.5, yy= 7.75, Yg= 2-75, 
A=0.25, At=0.2165, and no= 0.1. The wave was started with its 
crest lying along x,= 8.0 and propagated in the positive x-direction 
toward the shelf. Chan and Street [1970a] showed that the effective 
half-length of a solitary wave of amplitude No = 0.1 is about 11 so 
it is necessary to correct the initial Boussinesq [ Wiegel, 1964] 
wave profile for the influence of the wall at x = 0; however, it was 

unnecessary to correct the leading portion of the wave for the bottom 
influence. The initial u-velocity distribution was calculated from 
Eq. (6) under the assumptions that v=0, n = n(x,t) and the wave is 
moving at a constant speed Co=1+0.5 7 [Wiegel, 1964] with 
constant form. In addition At was selected in accordance with the 
Courant-type condition 

A 
Ats=— 

Co 

Results of the solitary wave computation are shown in Figs. 3-5. 
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r= 19-5 

Fig. 4. Velocity map (v) for t= 19.5 

0.2 

0.1 7 

0.0 
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LEGEND: - SCALE EXAGGERATED FOR ILLUSTRATION 
---APPSIM (2-DIMENSIONAL SIMULATION) 
——APPSIM2(3-DIMENSIONAL SIMULATION ) 

0.1 hea x ” 

= 0.0 
2 4 6 8 10 12 14 #16 18 20 22 24 26 28 30 32 34 36 

x 

Fig. 5. Wave profiles for two- and three-dimensional propagation 
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The evolution of the free surface is illustrated by free sur- 
face maps in Fig, 3, while Fig. 4 shows a v-velocity map for 

= 19.5. The maps are printed during program execution by a sub- 
routine that scales the variable values on a range running from a 
minimum of zero to a maximum of ten. Only odd numbers are 
printed at their corresponding node points. These maps are ex- 
tremely useful for initial interpretation of the data, Later, quanti- 

tative studies of results can be made because the u, v, n fields 

are stored on tape after every five time steps and maps are made 
after every 20 to 40 steps. Thus Fig. 5 illustrates a quantitative 
comparison between the two-dimensional results and the three- 
dimensional simulation at t= 19.5 for y=0 and y=L»2. Both 
the effect of wave refraction and the nonlinear response of the flow 
are evident. 

As another example, Fig. 6 contains pictures of the develop- 
ment of the yn, u, and v fields for oscillatory waves shoaling ona 
shelf. The pertinent parameters were L, = 66, L,= 41, x;= 25.5, 
X5= 45.5, yr = 25.5, ye = 15.5, 4=0.5, At=0.5, and 2) = Hy = 
0.05. The input wave at Wall 1 (Fig. 1) had eerie length Ly '=(20 
and speed C,=1.0 sothe period Ty = 20. The actual computed 
length was essentially. 20 also. In this case we sought to simulate a 
large region so A was large; even so 458K bytes of core storage 
were required for the program. In spite of the rather coarse grid 
the computed properties of the waves were smooth and well behaved. 

T= 21.5 

T= 44.5 

T=68.5 

| i 
7-CONTOURS U-CONTOURS V-CONTOURS 

Fig. 6. Shoaling on a shelf (oscillatory waves) 
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The contour lines in Fig. 6 were computed by a plotting pro- 
gram developed by Schreiber [1968]. The facility used was an IBM 
2250 graphic display unit in which the computed contour lines are 
projected on a TV screen. The contour plots were recorded by 
photographing the surface of the screen. Several motion pictures 
have also been made with this apparatus. 

Two 2250 units are used when films are made. First, as 

noted above the computed field values are stored on tape during the 
APPSIM2 computer run. Later, a special program calls up the 
tapes and transforms the field data to contour lines. These are 
transmitted to the 2250 units. One is used as a control console to 
monitor picture quality and to set the movie camera speed. The 
second unit has a 16 mm movie camera mounted on it and focused on 
the screen. The camera operation is synchronized with the suc- 
cession of contour plots flashed on the TV screen. Titles are also 
constructed on the screen and filmed. Judicious editing transforms 
the 16 mm film into a useful and interesting movie. As the sequence 
of Fig. 6 shows, the evolution of the flow fields is particularly 
instructive. Because all the pertinent parameters are usually shown 
simultaneously on the screen with the contour plots, quantitative 
interpretations of the contour information can be made directly 
from the graphic display. For example, at t = 68.5 the maximum 
wave height along the line y =0 is about 0.06, while along y=Lap, 
the height is 0.05 (i.e. , the wave is unaffected by the shelf at this 

time). In Fig. 6, the n-plot increment for t = 68.5 is 0.01, the 
maximum value is n = 0.064 and the minimum is n = - 0.026. For 
oscillatory waves it is necessary to have some detailed printout in 
addition to the graphic display for quantitative analyses because the 
contours are not marked with their contour level values. 

Finally, we simulated long wave amplification by a circular 
submarine seamount and compared our results with the experimental 
values of Williams and Kartha [1966]. The following pertinent param- 
eters exactly match one of their experimental runs for a half-seamount 
(Fig. 1b) with non-dimensional parameter X = 2mb/L,= 3.0: xc= 56.7 
is the distance from the wave generator to the peak of the island; 
b = 7.73 is the radius of the base of the seamount, T = 16.6 is the 
wave period, No= 0.0082, d=1.0 beyond the seamount base, 

€ = 0.116 is the submergence of the seamount at its peak and 
L,= 23.2. The tank length L, = 116 was selected to prevent re- 
flections from reaching the seamount. The amplification ratio 
H;/H, = Ay was calculated where H,= 2n, and Hj = the trough-to- 
crest distance on waves at the island peak where d=e€e. 

The experimental Af = 2.42, while A; = 2.46 according to 
the refraction theory of Mogel, et al. [1970] and As = 2.70 accord- 

ing to APPSIM2 for a seamount whose shape was given by 

d(x,y) = (41.0 - aS) +€ 
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with 

eres re x)" eon? 

and q=1.0 (the shape factor). This was a linear seamount with a 
sharp peak where the first derivative of d(x,y) is discontinuous and 
the higher derivatives are undefined (cf., Sec. 3.1). Unfortunately, 
the difficulty of resolution of the island features near the peak was 
compounded by the fact that to simulate the experimental conditions 
within our nominal core allotment of 500K bytes we had to use A = 
0.5 where 4 =0.25 would have been preferable. As a consequence, 
we believe, of the coarse grid the short waves generated by the 
island wave response are not properly resolved, being of the order 
of one or two grid divisions. The solution, therefore, while not 

unbounded, appears unstable. 

On the other hand, Williams and Kartha [1966] did not report 
on the sea-state near the islands and our results might be physically 
reasonable. Atest using q = 2.0 which gives a dome-like island 
produced an A; = 4.65 for X= 2mb/L, = 3.0 which is slightly 
beyond the range of the experiment. However, this A¢ value lies, 
as does our result for q = 1.0, within the uncertainty band of re- 
sults presented by Williams and Kartha. 

3.4. Stability Analys is 

Initial calculations with APPSIM2 and no iteration, viz., 

operating with only a single predictor/corrector step produced some- 
what ragged results after several tens of time steps. Accordingly, 
a linear stability analysis was made to examine the amplitude pro- 
perties of the computational scheme. 

For the stability analysis we set dj; = 1 and defined the 
constant parameters 

B= At+ v;/4 

(24) 
y=At+n/4 

R= At/A 

The equations defining the computational scheme were linearized by 
considering only difference quantities as variables and treating the 
remaining terms as the constants of Eq. (24). Thus, the prediction 
Eqs. (16-18) become 
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p 1 { 
Uy = 4a - FU - Bien) - Play - Bij.) 

- $ Renietj - Nj-1)) (25) 

=) 4 | 
Mp a) Pipe Mijn) 

ini nij-0 (26) 

4 1 
nig = Nii - > eM - Ni-tj) - > PCnijed - Nij-1) 

- S(vARMuieyy - vig) - GOYFR Mv qa - Ye) (27) 

The remaining Eqs. (19-21) of the corrector step were treated ina 
similar manner; where P values appeared, the values from Eqs. 
(25-27) were introduced. To test the resulting linearized form of 
Eqs. (19-21) we introduced the Fourier component solution (or error) 

—ex ilo, x + oy) iwt 
e W-=w 

where we seek to determine if w values, either real or complex, 

exist such that W is a solution of the difference equation and where 

* 
u 

—> te * 

= Vv = constant 

nN 

Ole 2m/ry 

for representative wave lengths \, and XX» in the x- and y-directions 
respectively. Now, let p = e!¥4! so 

—> — KK n i(o,x+o,y) 

(= W=Wu (28) 

at any point in time and space. Thus, we insert Eq. (28) in the 
linearized u, v, 1 equations and obtain 
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Aiy AQ yg] U 

x * 
[A] W = |ag, agp - ail v =) (29) 

* 

ay 7930. 331)" 

where the aij = ajj(%,Bsy,R,As0, s05,p). Because Woe OF Sin 
general, a Fourier component solution can exist and Eq. (29) can be 
satisfied only if |A| = 0, viz., only if a set of eigenvalues exists for 
the matrix A. The condition |A| = 0 leads to a determination of bs 
linear stability depends on the amplitude of p. If |p| 1 the solu- 
tion by Eqs. (16-21) would be termed linearly stable. 

Analysis of the coefficient matrix A in Eq. (29) is complex 
and is not reproduced here, but the key results are as follows. 
First, if 6, = 20A/)d, and 85 = 2nA/r», then for finite At, \, and 
Nos 

lim |p. | = il 

A—=0 

Similarly, for finite A, \, and \3, 

lien, |e = 
At—0 

The solution scheme is stable in these limit cases. 

Second, the case 6,=0, namely, \,= 00, was investigated. 
Then, 

ln | = f(a, y,9,) 

for assumed A and R. This approach leads to a complex, cubic 
equation with a possible root 

Ju,| = 1 + Oe) (30) 

and a possible root pair with maximum modulus equal to or slightly 
exceeding unity, i.e., 

lu2,3lmax = 1 (34) 

Specifically, in a solitary wave computation with A= 0. 5“and 
Mt-=\0525, we have for n= 0.1, y =0.05, a= 0.05, p=0, R=Oe 
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and 

-7 

Ips] e 1+7xX10 <1 +o0(a) 

lo3lmox © 1.005 <1 + O(a) 

for \,;> 2A. For i, = 24, |p| =1 exactly. Forsythe and Wasow 
[ 1960] suggest that the errors may be controllable and lead to a 
stable computation when 

[els 2 O(At) (32) 

In the present case a@< At because a= uAt/A and u/A <1; 
accordingly, the condition (32) can be written as |p. | = 1+ O(a). 
Our computational experience with APPSIM which has 0,=0 always 
and does not use iteration also suggests that the computation is stable, 
at least for several hundred time steps. APPSIMZ2, however, because 

of its coupled (u,v, 7) equations and the propagation of error from 
the u-field where |ujj | is relatively large compared to the v-field 
and n-field, does require at least one iteration (which tends to make 
the computation more like an implicit scheme) to retain a smoothly 
varying solution on a smoothly varying bottom topography. 

3.5% Prognosis 

The computational results indicate that APPSIM2 is a useful 
means of studying the evolution of flow fields in wave shoaling over 
smoothly varying bottom topography. However, the method requires 
considerable computer storage and moderate execution time. Thus, 
APPSIM2Z, which models nonlinear processes in nonbreaking waves, 
should be used only when nonlinear effects are expected to be sig- 
nificant, other methods (cf., SectionI) being appropriate otherwise. 
As Madsen and Mei [1969a] indicate, the equations of KdV type used 
in APPSIM2 should make the method applicable to a wide range of 
long wave problems. 

Two futher steps should be made in the development of the 
method. First, the linear stability property could be improved by 
introduction of a second-order central difference method for the 
convective terms in Eqs. (18) and (21). This central difference 
[ Fromm, 1968] leads to a modification of Eq. (31) such that 

l2,3 lear =1 

for most components of interest. Alternatively, Eq. (21) can be 
made an entirely implicit equation for ni; [cf., Eq. (19)]; this 
will eliminate the growing contribution represented by Eq. (31) and 
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caused by the explicit nature of the ate equation. Second, a series 

of simulations of specific hydraulic models should be made to deter- 
mine the grid size A required to resolve the smallest significant 
feature of a problem and to determine the sensitivity of the simula- 
tion to discontinuous bottom topography. 

IV. SUMMAC 

Chan and Street [1970a] proposed the SUMMAC computing 
technique as a tool for analyzing two-dimensional finite-amplitude 
water waves under transient conditions. The method is, as noted 

above, a modified version of MAC which was developed by Welch, 

et al. [1966]. The essence of the initial modifications consisted of 
a rigorous application of the pressure boundary condition at the free 
surface and extrapolation of velocity components from the fluid 
interior so that inaccuracy in shifting the surface boundary is kept 
at a minimum. 

The objective of this section is to provide a summary of the 
SUMMAC method, of its application to water wave problems and of 
a number of new improvements added to SUMMAC since Chan and 
Street [1970a] was written. 

4.1. Summary of the Method 

The fluid is regarded as incompressible and the effect of 
viscosity on the macroscopic behavior of flow is considered to be 
negligible. The entire flow field is covered with a rectangular mesh 
of cells, eachof dimensions 6x and dy. The center of each cell 
is numbered by the indices i and j, with i counting the columns 
in the x-direction and j counting the rows in the y-direction ofa 
fixed Cartesian coordinate system (Fig. 7). The field-variable 
values describing the flow are directly associated with these cells 
[ Welch, et al. 1966]. The fluid velocity components u and v and 
the pressure p are the dependent variables while the independent 
variables are x, y and the time variable t. 

In addition to the cell system which represents the flow field 
by a finite number of data points, there is a line of marker particles 
whose sole purpose is to indicate where the free surface is located. 
These hypothetical particles may or may not represent the actual 
fluid particles at the free surface, depending on whether one chooses 
the Lagrangian or the Eulerian point of view to calculate the motion of 
free surface, 

The marker-and-cell system provides an instantaneous repre- 
sentation of the flow field for any particular time. When an initial 
set of conditions is given, the entire fluid configuration can be ad- 
vanced through a small but finite increment of time 6t. First, the 
pressure for each cell is obtained by solving a finite-difference 
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j= JMAX- ~-|~ -- 

Fig. 7. Cell setup and position of variables 

Poisson's equation, whose source term is a function of the velocities. 

This equation was derived subject to the requirement that the resulting 
finite- difference momentum equations should produce a new velocity 
field that satisfies the continuity equation (conservation of mass). The 
finite- difference equations of motion are then used to compute the new 
velocities throughout the mesh. Finally, the marker particles are 
moved to their new positions, their velocities being interpolated from 
the nearby cells. The new flow configuration now serves as the initial 
condition for the next time step and the foregoing procedure is repeated 
as many times as necessary for the investigation. With proper choice 
of 6x, dy and 6t, the SUMMAC algorithm is capable of yielding so- 
lutions that are computationally stable and also reasonably faithful in 
simulating the physical phenomena. 

Dimensionless variables are used throughout (cf., Sec. 3.1). 
The governing equations for an incompressible, inviscid fluid are 

Pa Tb t+vyz—=-y t+ By, (33) 
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dv dv dv _ dp 

and 

du BV _ 9 (35) 
ox By 

Here, p is the pressure; gy, and gy are the x and y components 
of the gravity acceleration whose absolute value is g and t is the 
time variable. Also, if the direction of gravity is the same as the 
-y direction, then g,=0 and gy=- 1. 

Boundary conditions are easily derived for the fluid motion at 
the solid walls of the tank (cf. , Chan and Street [1970a]). For incom- 
pressible fluids with very low viscosity, such as water, it is suffi- 
ciently accurate to use at the free surface the single condition 

p= Pg (x; t) (36) 

where pg is the externally applied pressure at the free surface. 
Under usual circumstances p,= 0, but it can also be prescribed as 
a function of x and t for some problems. 

As shown in Fig. 7 the computation region is divided into a 
number of rectangular cells. The fluid pressure p is evaluated at 
the cell centers, while u is defined at the mid-point of the right-hand 
and left-hand sides of the cell and v is defined at the midepoint of 
the upper and lower sides. Then, for the cell (i,j) the following set 
of equations are derived from Eqs. (33) and (34): 

rei 7 ied t dt gy + (Pij - Piety) (37a) 

Tuite 7 oar t-5t gy ot ot (Pi.y, - Pij) (37b) 

“el = Viieg + OB, +e (Pij - Pijst) (37¢) 

Viel = Vijek + 6t gy + s (Pij-1 - Pij) (37d) 

In the above equations, variables with the superscript nt1 

are related tothe nti‘ time step. Variables lacking a superscript 

are evaluated at the n't step. Thus, Eqs. (37) are suitable for 
updating the values of u and v about the cell (i,j). The "eonvective 

contributions" u* and v* are 
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* du du Wish) = Yiedj SE iis By itd (38) 

* av ov 
Vijed = Vijes + St ¢ - Ret ES 5 V By Dlist (39) 

* * n+l n+ 
where Vid) and Vij contribute to uj. j and vjjsk » respectively, 

through the convection process and ( ) represents Me as yet un- 
specified finite difference approximation of the enclosed terms. 

Before Eqs. (37) can be employed to compute the new velocities, 
the p field must be obtained. Consider the finite-difference conti- 
nuity equation [see Eq. (35)] 

we Fe adele ied 

n+l Ey ie j Bites j ij+ ~ Yij- _ 

Dij = a Pe ee (40) 

Substituting Eqs. (37) into Eq. (40) and requiring Dj, = 0 leads to 
the pressure equation 

a 21: $DO: 1; as + pi 
—— Pi+tj Pi-lj + Pij+l Pij-! + - 

Pij =( 5x2 Sy 2 Rij) (41) 

Here 

Z= 2(<5 + 52) (42) 

sj 1 ee aE 4 L ee ee ij iied - Vij-d 
a a ptt ot : ee M2) 

Near the free surface "irregular stars" (Fig. 8) must be used to de- 
rive an appropriate pressure equation so that, in the discrete sense, 

the free surface condition p =p, is applied to the exact location. 
Let ), No, Na, Ng be the lengths of the four legs of the irregular 
star (Fig. 8) and p,, Py», P3: Pg be the value of p at the ends of these 
legs. Then, it can be shown the irregular-star pressure equation is 

= — 179730 Pi 7 TPs + "4P2 + Pa yp. 44 
Pi ~ 2mang t 17 Fes ns nn, wea peg 

Equation (44) reduces to Eq. (41) when Eq. (44) is applied to an 
interior cell. 
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Fig. 8. Irregular star for p calculations 

The hypothetical particles that mark the free surface are 
moved to their new locations according to their locally interpolated 
values of u and v. Fora given particle k we find the velocity 
component u, for the particle by making a Taylor series expansion 
about the nearest data point of the u field. Similarly, a series 
expansion about the nearest data point of the v field gives v,, the 
y-component of the particle velocity. With u, and v, available, 
each free surface marker particle is advanced by the following 
formulas: 

ri —s 
WW 

=] 
+ _ 

= 
[o4] ct 

(45) 
n n+l yy + ve dt 

—- 
Hl 

where x and Yk refer to the position of the yh particle at the 
nt" time step. Also, the particle velocities are evaluated at the 
advanced, i.e., nti , time step. 

The quantities u and v are not defined outside the fluid 

domain, but they are needed to carry out the computations using 

Eqs. (37) and (43) and the particle velocities near the free surface. 

We calculate these undefined u and v values by a simple linear 

extrapolation from the fluid interior. 

A complete set of initial data -- the u and v fields and the 

position of a line of particles depicting the free surface, are needed 

to start the computation. The initial pressure p needs to be known 

only approximately, such as a hydrostatic distribution, because the 

p field is solvable if u and v are given. 
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The evolution of fluid dynamics is calculated in "cycles," or 
time steps. At the start of each cycle the source term Rjj for 
each cell is evaluated by Eq. (43). The pressure p is computed 
only for those cells whose centers fall in the fluid region; either 

Eq. (41) or Eq. (44) is used as appropriate. The successive-over- 
relaxation method is used to solve the p field. The iteration is 
terminated when 

(m) (m-1) 

i CP <€ (46) 

for every cell, where (m) means the m'" iteration and eP isa 
predetermined small positive number. The accuracy in solving pij 
at the n~ time step has a direct bearing on the accuracy of satisfy- 
ing the continuity equation Di; nl 0 [Eq. (41)] at the nti" step. 
Smaller values of Dij We result len smalles €p are used, However, 
there is little improvement in reducing Di; for €,< 10°” because 
the round-off level of the computer has been reached. 

Now Eqs. (37) yield the new velocities. Then each marker 
particle is advanced to its new position by Eqs. (45). Thus a cycle 
is completed and the next one can be started immediately. 

The convective contributions given by Eqs. (38) and (39) can 
be approximated by a wide variety of finite difference formulas. 
Chan and Street [1970c] show that, while the original MAC and 
early SUMMAC equations used a first-order explicit method, second- 

order explicit methods are better. Of the two second-order explicit 
schemes studied, the so-called "upstream" difference alone rather 

than in a "phase-averaged" procedure yields better results in prob- 
lems where free surface waves are present. In,this upstream dif- 
ference, if Whim represents either Vises jp OF wii) > then for the 

case when Um ™0 and Vom >0 Use 

Won Gi Wm. l +E ens Wy) 

4 (8-1) co ; Da + Fen) (47) 

where 

W pry = Weim + (wg tm) 

+ (a-1) (Wp om - 20 im of W pm) (48) 

and 
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n n 
ite StU pm , 6 = 5tV em 

6x dy 

We examined the finite difference convection equations by the 
extended von Neumann method in which nonlinear equations are first 
linearized. The resulting criteria were 

jaj=i1;  |pi[ =1 (49) 

A second criterion 

dt 1 
tx < re! (50) 

where C =the surface wave celerity, was derived by considering 
the propagation of the free surface waves. These were simple linear 
analyses and can only be used as guidelines in choosing the time 
increment 6t for given 6x and dy. Because numerical dispersion 
is quite severe for short wave components, care must be exercised 
to provide adequate resolution for all the important features in the 
flow. As a rule of thumb, the smallest significant flow feature must 
be represented by at least ten cells. 

In both the MAC and SUMMAC a line of particles was used to 
mark the free surface position. A pair of (xy, y,) values were 
associated with the k' particle at the nth time step. Then Eq. (45) 
was employed to calculate (xe x.) This procedure is really a 
Lagrangian method that tends to be unstable after a large number of 
time steps. The problem is not serious for simulating solitary 
waves [cf., Chan and Street, 1970a]. But, in calculating periodic 
waves a given particle is moved up and down as each wave passes. 
In the process a small number is systematically added to and then 
subtracted from x, and y, contributing to very large round-off 
errors. In addition, there is no restraint on the individual particle 
positions because each is calculated independently of the others. 

To overcome the difficulty with moving particles, an alterna- 
tive approach using the Eulerian point of view can be developed. The 
flow region is divided by a number of vertical lines with equal spacing 

4 and n is now the height of the free surface measured from the 

reference level y = 0 at the channel bottom. The horizontal posi- 

tions of these vertical lines are fixed and we only compute the change 

in n along each vertical line as time passes. 

The kinematic condition at the free surface, from the Eulerian 

viewpoint is 
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ee (51) 

Many difference schemes may be developed to approximate Eq. (51). 
Our tests show that the forward implicit method with the difference 
equation 

qu _ nr al al th 5 Ue 

Be Tek oo ke (Seed ; ) (52) 

is one of the best. A stability analysis shows that Eq. (52) leads to 

a linearly stable computation with slight dampling. 

Numerical tests were carried out in the context of a simple 
physical problem whose exact solution was known, viz., a solitary 
wave ina horizontal channel. Among five alternative combinations 
of surface and correction term treatments tested, that using Eq. (52) 

and Eqs. (47) and (48) was the best. 

Now consider 6t. The maximum fluid speed in the above 
tests was u,,,* 0.30 and 6x =0.5 while 5y = 0.1. According to 

Eq. (49) 
max 

6x _ 0.50 _ 1.67 
or 0.30 Umax 

The speed of the surface wave is C=1.18. The Courant condition 
[ Eq. (50)] would require 

ox 0,50 = 

But the Courant condition should also be observed in computing 
the free surface. Because we used the spacing 4 =0.05 at the free 
surface, the condition 

A > 0205. bt < & = pq = 0.0424 

must be satisfied. Therefore, the most restrictive condition is 

&t < 0.0424. In all the test examples, 6t =0.05 was used. This is 

slightly larger than the estimated maximum allowable 6t, but no 

distortions or instabilities were noted. However, the result of 

seriously violating the Courant condition, i.e., using 6t = 0.10, 

was large non-physical distortions that suggest one has to be careful 

about the choice of 5t. 
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Experiments were also performed on the problem of generating 
periodic waves by pressure pulse (Sec. 4.2). Instability at the free 
surface became explosive after 600 time steps when the particle 
method was used. Using the forward implicit method, we were able 
to calculate up to more than 3000 steps and there were still no signs 
of instability. 

The numerical tests described above indicated that it is ad- 
vantageous to use the second-order upstream difference method to 
compute the convective contributions to a ; and vn - For the 
free surface calculations, the forward implicit scheme is best. 
However, the particle method of computing the free surface need not 
be dismissed altogether. The Eulerian method is restricted to waves 
in a channel whose two ends are vertical walls. If the water surface 
has an advancing front, such as a solitary wave climbing on a slope 
[ Chan and Street, 1970b] , the particle method is the only choice, 
When 6t is small enough and the particle velocities are evaluated 
at the ntit? time step, the particle method does provide a stable 
solution. However, the particle method should not be used in the 
simulation of periodic waves over long periods of time. 

4.2. Results and Discussion 

As an example, periodic pressure pulses were used to 
generate a train of oscillatory waves in a channel of constant depth 
(Fig. 9). The fluid is entirely at rest at t= 0. Then, the pressure 
distribution 

on, athe 
Xq 

R, = F(X,T) 

Fig. 9. Setup of pressure pulse problem 
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p, sin (=e) . [eee nea for, OS x= xq 

Ps = (53) 

0 for x > 4 

is applied to the free surface. Here p, is the amplitude of the 
pressure pulse, Tp, is its period and xg is the horizontal length of 
the surface subject to the prescribed pressure. Equation (53) was 
employed by Fangmeier [1967] in solving the same type of problems 
using time-dependent potential flow equations. 

In the first case, a channel of the length L, = 30.0 was used. 
The computation domain consists of 80 X 24 cells, each with 6x = 
0.30 and Sy = 0.10. Weused pp=0.10, Tp=7.6 and xq=4.0 in 
Eq. (53) to generate the surface disturbances. The development of 
the u field is shown in Fig. 10. The plot increment is 0.025 per 
contour line with u = 0.0125 on the contours closest to the ends of 
the channel. At t = 10.0 the leading wave leaves the generating 
area and progresses to the right. At t = 43.493 the first wave runs 
up the right-hand wall and reflection begins to interfere with the on- 
coming waves. As a result, a standing wave pattern occurs when 
t= 72.986 to t= 84. 233. 

| 

T2#10.000 T= 78.734 

T= 72.986 T= 84.233 

Fig. 10. Periodic waves (u contours) 

179 



Street, Chan and Fromm 

} 
\\ /} 7} \ 

J 

| 
| 

/ TV. y ZA GINAIAI\\ JIN Soa | WWIII 
T= 10.000 T= 78.734 

| 

BIAS = 4 LO 
T=#30.000 T= 80.984 

T= 43.493 T= 62.484 

LOI = ROO “A 
T= 72.986 T= 84.233 

Fig. 11. Periodic waves (v contours) 

In Fig. 11, the time history of the v-field is shown. The 
plot increment for the contours is also 0.025 per line. On the chan- 
nel floor, v=0.0. The first contour above the floor has v= +0.0125 

if it is in front of the wave crest, and v = - 0.0125 if it is at the 
back. The sparse contours on the right-hand side of the channel at 
t = 80.984 and t = 84.233 indicate that when the standing waves 
reach their peaks the fluid velocity almost becomes zero temporarily. 
This phenomenon is caused by the interaction of the reflected and 
incident waves that tend to alternately enhance and cancel each other. 

In Fig. 12 we used along channel with L; = 60.0. Thus the 
"progressive" wave patterns can be analyzed before the reflection 
sets in. The wave train is composed of a group of dispersive waves. 
The amplitude increases from the leading wave to the third wave. 
It then decreases on the following waves. This observation suggests 
that the nonlinear response of the fluid system is somewhat out of 
phase with the forcing function at the surface. Therefore, it appears 
that pure nondispersive periodic waves cannot be generated by the 
disturbance described by Eq. (53) unless the amplitude p, is very 
small. 

Because of its symmetrical profile, we selected the fourth 
wave in Fig. 12 and compare it in Fig. 13 with Stokes' second-order 
and third-order theories [ Wiegel, 1964]. Good agreement with the 
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Fig. 12. A train of nearly periodic waves 
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third-order theory is found. 

To obtain a meaningful comparison with the profiles of the 
Stokes' waves, a Fourier analysis was performed on the profile 
computed by the SUMMAC method. The SUMMAC wave profile in 
Fig. 13 can be expanded in a Fourier series of the Stokes form 
[ Wiegel, 1964]. The coefficients can be evaluated by the standard 
procedures in calculus. The first ten coefficients have been com- 
puted and compared with those for the Stokes' theories. From the 
trend of each coefficient, it appeared that as the order of approxi- 
mation increases the Stokes' wave converges to our numerical 
solution. Also, in comparison of wave speeds we find good agree- 
ment with Stokes' third-order theory. The difference is within 
0.4 per cent. 

In Fig. 14 the distribution of u under the wave crest and the 
wave trough is compared with Stokes’ theory. The SUMMAC method 
predicts a much lower u velocity under the crest than Stokes' solu- 
tions. This discrepancy is probably caused by the fact that the 
numerical simulation was made in a channel of finite length which is 
a closed system and the waves have not quite reached the steady 
state, while the Stokes’ waves hold for an infinitely long channel. 
Nevertheless, the slope of the u-distribution (i.e., 8u/8y) is very 
close to that of the third-order theory. 

(a) (b) 

UNDER WAVE UNDER WAVE 

TROUGH CREST 

Y/ do 

° SUMMAC 

—— STOKES' SECOND 
ORDER THEORY 

——— STOKES' THIRD 
ORDER THEORY 

Fig. 14. Distribution of u under wave crest and trough 
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Fig. 15. Motion of fluid particles 

The paths of the fluid particles are plotted in Fig. 15. We 
selected three fluid particles which lie on the vertical plane x = 12.0 
at t=0.0. Their initial vertical positions are y = 6.0, 0.5 and 

1.0, respectively. The instantaneous particle positions are plotted 
at every 5 &t's (6t = 0.05). Each particle moves in an oscillatory 
pattern which completely differs in nature from the translation motion 
in a solitary wave. The surface particle travels in a quasi-elliptic 
orbit but never returns to its original position. Thus, there is a net 
mass transport in the direction of wave propagation near the free 
surface. At half water depth the scale of the orbits is smaller and 
the current (mass transport) is opposite to the wave direction. On 
the channel bottom the particle merely goes back and forth hori- 
zontally and the "backward current" is also larger there. Because 
the wave channel in our simulation is a closed system, the fluid 
carried along by the surface waves must return in the opposite 
direction in the lower fluid layers. 

Finally, a comparison was made with the numerical solutions 
of Fangmeier [1967]. The qualitative agreement was good, as was 
the agreement in the wave phase; however, the SUMMAC method 
gave a much better treatment of the free surface that markedly re- 
duced the height of the largest of the waves as compared to 
Fangmeier's simulation. 
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4.3% Prognosis 

The successful application of the SUMMAC technique to 
several physical problems indicates its usefulness as an engineering 
research tool for analyzing the dynamics of water waves in two space 
dimensions. It is capable of providing accurate quantitative results 
as well as qualitative descriptions [see, e.g. , Chan and Street, 
1970b]. In addition, rapid advance in the design of high-speed com- 
puting systems makes numerical modelling economically feasible. 

While it is possible to employ the SUMMAC technique to 
attack a wide variety of water wave problems, some limitations 
inherent in the method must be noted. First, as a result of achieving 
a high degree of accuracy in applying the free surface pressure con- 
dition by using irregular stars, waves after breaking cannot be simu- 
lated. When breaking occurs, the computation must be terminated. 
Second, only non-turbulent flows are considered in our model. 
Although laminar viscous damping has little effect on large scale 
wave motions, energy dissipation due to the turbulence can be sig- 
nificant. However, a recent study by Pritchett [1970] shows that it 
is feasible to implement a heuristic simulation of turbulence in the 
MAC framework. 
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AN UNSTEADY CAVITY FLOW 

D. P. Wang 
The Catholte Untversity of America 

Washington, D.C. 

I. INTRODUCTION 

A perturbation theory for two-dimensional unsteady Cavity 
flows has been formulated by the present author and Wu [1965]. In 
that formulation we regard the unsteady part of the motion as a 
small perturbation of a steady cavity flow already established. This 
already established steady cavity flow will be called as the basic 
flow. Our perturbation expansion is carried out in terms of a set 
of intrinsic coordinates (s,n) of the basic flow. The coordinate s 

is the arc length measured along a streamline in the direction of the 
basic flow, and n the distance measured normal to a streamline. 
An illustration is given in Fig. 1, where the solid lines represent 
the basic flow configuration, AB represents the wetted side of the 
solid body, AI and BI, the two branches of the cavity wall which 
is a free surface. Also shown in Fig. 1 is the unsteady perturbed 
flow configuration represented by dotted lines. The unsteady 

ee h(s,t) 

- |= - = aa 

Fig. 1 Illustration of an unsteady perturbation flow 

* 

This paper will henceforth be referredtoas W. 
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displacement of the free surface and the solid body from their cor- 
responding locations in the basic flow is denoted by n = h(s,t). If 
the wetted side of the solid body and the free surface of the basic 
flow are taken to be n=0,h(s,t) is assumed to be a very small 
quantity. In W we have found that the linearized kinematic and 
dynamic boundary conditions on the free surface for the unsteady 
perturbation potential $, are 

oe se tage on n=0 (1) 

and 

0, (2) Bh vg Stee gn ons 
and that the boundary condition on the solid body is 

ee = oP + ee (a,b) on n=0., (3) 

In the above equations R and q, are respectively the radius of curva- 
ture and the constant speed on the free surface of the basic flow, and 
q, is the speed of the basic flow. The + (or -) sign onthe right- 
hand side of (2) holds for the upper (or lower) branch of the cavity 
wall; these signs are necessary to make R a positive quantity. We 
should mention here that in obtaining (2) we have assumed that the 
cavity pressure remains unchanged during the unsteady perturbation. 

If we regard q,/R as an equivalent gravitational acceleration 
and the s-coordinate rectilinear, then (1) and (2) are in the same 
form as the linearized free surface boundary conditions in water wave 
problems. Thus we expect that the centrifugal acceleration q?/R 
due to the curvature of the basic flow streamline should play the role 
of a restoring force in producing and propagating the surface waves 
along the curved cavity wall. 

The purpose of the present paper is to use this perturbation 
theory to study some unsteady behavior of the Kirchhoff flow when the 
solid plate is in small harmonic oscillations. 

II. THE BASIC FLOW 

In this paper we consider the basic flow to be a flat plate held 
normal to an incoming uniform stream of infinite breadth, with-a 
cavity formation of infinite length as shown in Fig. 2. This is the 
so-called Kirchhoff flow. Both the speed of the incoming stream and 
the length of the plate AB are taken to be unity. A set of Cartesian 
coordinates (x,y) with its origin at the stagnation point C is chosen 
as indicated in Fig. 2, where the point I denotes the point at infinity. 
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z— plane 

Fig. 2 The basic flow and its conformal mapping planes 

The solution of this problem can be obtained by the Levi-Civita 
method in terms of a parametric variable ¢ (Gilbarg [ 1960]), 
and we simply give it below for subsequent use. The complex 
potential f,, velocity w, and the complex variable z=x+iy are 

f.-7(t+¢) (4) 

w= Sy > (5) 

and 
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g 1 
z=) Wo dc , (6) 

where 

K=33— (7) 

The flow region in various planes can also be found in Fig. 2. For 
points on the plate AB, we may deduce from (6) 

x= > (sin 20 - 4cos 0~ w~ 20), (8) 

where @= Arg, when © is onthe circular arc ACB, and 

-nr2Z=0s0. (9) 

III UNSTEADY PERTURBED FLOW 

It is shown in W that by eliminating h between (1) and (2) 
and transforming (s,n) and R tothe variables fy and Wo a 
single free surface boundary condition in complex variable form can 
be obtained, which is 

Re [L(f,)] = 0, (10) 

where 

f, = >, + ip, (11) 

is the complex perturbation potential, and the linear differential 
operator L is 

L= (s+ wr) -{elSG (Fe tor) - Se or (12) 

It is also shown in W that the boundary condition (3) on the 
solid body can be transformed into 

Im gel = - alte + oe (ach) (13) 
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where h is regarded as a given function of s and t. Since along the 
solid body df, =q,ds, which is purely real, (13) may be written as 

* dh 
Im f =- f 37 As = qoh, (14) 

where we have set Imf, to zero at s = 0, the stagnation point of the 
basic flow. For the basic flow considered and from the definition 

adopted for the intrinsic coordinates (s,n), we note that along CB 

do = Wo: (s,n) = (x,y), (15) 

and along CA 

Go = - Wo: (s,n) =- (x,y). (16) 

If we denote the prescribed motion of AB as y= 1,(x,t) instead of 
n = h(s,t), with the aid of (15) and (16), (14) becomes 

x 
8 

im t= - J) sapl dx - won. (17) 

Let us assume that the prescribed motion of AB is given by 

n (x,t) = € cos ot, (18) 

where e€ is avery small constant quantity and w is the frequency of 
oscillation. For convenience¢ in the following analysis, let us intro- 
duce an imaginary unit j = a which is regarded as different and 
non-interacting with the imaginary unit { used in defining the com- 
plex variable z=xtiy. If we agreed that only the real part with 
respect to j of a quantity is meaningful to us, we may write (18) as 

mi, Goat) = ee). (19) 

To avoid any confusion in the notation, from now on when we mention 

the real (or imaginary) part of a function ¥, denoted by Re (or 
Im 3) as it has been used so far, we mean the real (or imaginary) 

part of 3 with respect to i, not with respect to j, evenif 3 con- 
tains j. Only when the final result is obtained shall we take the real 
part with respect to j as our solution. 

If we assume that the disturbance has already been applied for 
a long time so that the entire flow is in harmonic oscillation, we may 
write the complex velocity potential f(z, t) as 
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f(z,t) = f(z)e!™’, (20) 

If we substitute (20) into (10) we may write the free surface 
boundary condition as 

Re H=0 (21) 

where 

2 
5 fe a 625, Abd ae Sea at a [o? + jo in (4 awe) ¢, (22) 

df df, df,/ df, df, Wo df 

which is an analytic function defined in the flow field. We may also 
write 

2 
i df 1 [ dw, ye 

H = ag et 2jo- In Wo aa 
Wo dz Wo ( She 

1 dw 
- |w rare aa peattcel |e. (23 [u? +; = CoeerR ) ) 

Since the differential operator L is purely real on the plate AB, 
the boundary condition (17) may be expressed in terms of the analytic 

function H. By a straightforward application of L on (17) and by 
the use of (19) and (20), the boundary condition on AB may be written 
as 

Im H= y, (24) 

where 

2 2 
=€ [- ok + jo(w crs ova + [wrx 

jo(w, + me, dfy df 

; 4 d z 
- jo(w, - 3 )] Ge tm wo + Jo atv + 2)I. (25) 

The boundary conditions expressed in the forms of (21) and (24) may 
be used to determine H for points in the interior of the flow field. 
However, to obtain a physically acceptable H, other boundary con- 
ditions have to be imposed on H. 

We shall assume that the free surface displacement due to the 
unsteady disturbance of the plate AB has to be bounded everywhere. 
This condition can be satisfied if the free surface displacement is 
bounded at the separation points A,B and at the point at infinity. 
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It is shown in W that the curvature of the free surface of the basic 
flow is 

1 . | Ge de : (26) 
R Wo df, 

where q,= 1 inour problem. From the local mapping behavior near 
z| = 00 between the w,-, f,- and z-planes shown in Fig. 2, we see 

that 

Wo ti” .agr (27) 

and 

o> = iz as lz| — ©, (28) 

where a, is a constant. In the following analysis we always use an 
to indicate some constant. The substitution of (27) and (28) into (26) 
gives us 

{ -3/2 

er Olz] ) (29) 

on the free surface as |z | — oo. Since we assume that the free sur- 
face displacement near the point at infinity has to be bounded, then, 

from (2) and (29), we have, near the point at infinity, 

spi B=. 00 
For harmonic oscillations, (30) suggests that we may write 

= Ale )efO as |z| + &, (31) 

since along the free surface of the basic flow 0/8@s = 8/@f). The 
substitution of (31) into (2) gives 

j -f dA _jwlt-f) 
pea as |z| — oo. (32) 

is) 

In view of (29) and (28), (32) ipplies that along the free surface near 

ies the point at infinity A = O(z , at most, in order that h be bounded 

there. With h being bounded at infinity and having a form shown 
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in (32), we can obtain, from (1), that on the free surface 99,/8n = 
o(z7') as |z|-—- oo. These results indicate that along the free sur- 
face near the point at infinity both f and df/dz should vanish. 
Since the unsteady disturbance is mainly a surface phenomenon, it 
is not unreasonable for us to assume that f and df/dz also vanish 
in the interior of the flow field near the point at infinity. Therefore, 

we assume that 

HO as |z| — oo. (33) 

This rules out the possibility that there is any induced circulation 
around the point at infinity. Based on the assumption that h is 
bounded at infinity and the result that on the free surface 909,/8n = 
o(z) as |z | —> oo, an integration of (1) will show that if 

oo Gel) **#5>0 (34) 

in the neighborhood of the points A, B with r the distance from 
these points, h will be bounded at A,B. Condition (34) is also 
necessary in order that the pressure be integrable over the plate 
AB. 

To facilitate the determination of H, let us introduce a 

transformation 

, (35) 

G=T- (7? - 1ylf2 

where the cut in the LG hep cnaks is taken along the straight line between 
-1 and 1, and (72-1)'/* +7 as |t| +m, -aw<ArgtT=m. The 
mapping (35) maps the entire basic flow onto the upper-half 7T-plane 
as shown in Fig. 3. In terms of the variable 7, the function y 
becomes 

eile air 
y= TR ELT | i (Kw)? 1-7°) far(1-7 

+ t2cos'7| + (Ka) [7(1-77)/? (4-579) 

£ $2723. = 72 +107 + 4 + (2-372)cos" | +2jKuT {, (36) 

where 
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T —plane 

(-1,0) (1,0) 

Fig. 3 A conformal mapping plane of the basic flow 

ay = cos. 7 —=.0¢ (37) 

We note that y, shown in (36), has simple poles at 7T=0 and +1, 
and therefore, it obviously does not satisfy the Holder condition on 
AB, where -1=7=1. Inorder to find H, which is regarded as 
a function of T now, let us continue it analytically into the lower- 
half 7T-plane by 

H(r) = - H(7), (38) 

and let us define another analytic function 9(T) by 

Q(T) = 7(7? ~ 1)? Hr), (39) 

where the branch cut for (7? - 1)!72 has been defined after (35). If 
we denote the limiting values of 2 as Im7—~+0 by Qy,, then, 
from (39), (21) and (24), 

iT] (o) on [Re T| > 1 
(40) 

- 27(1 - reife on |Re T | <i; 

With 2,- Q_ given by (40), the function (7) may be determined 
(Muskhelishvili [ 1946]) 

‘ | 21/2 
Q(T) = +{) eal do + ss bark, (41) 

n=O 

where b, are arbitrary constants and N is an arbitrary integer. 
From (39), H(T) may be written as 
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N 
| / H(1) = een tN o(1-0%)F y(o) 4, +) byr ; (42) 

o-T 

n=O 

However, to satisfy (21), b, have to be purely real. The condition 
(33) is equivalent to 

H(t) > 0 as |t| > o, (43) 

since near | z | = 0 

Ta aces (44) 

To satisfy (43), 

b, = 0 for i= Zs (45) 

Due to the symmetry of our problem, which implies 

Im f=.0 on Cl, (46) 

and due tothe fact that the differential operator L is purely real on 
CI, we require that 

be O. (47) 

This leaves only the constant b,; undetermined. After carrying out 
the integrations in (42), we may write 

H(t) = ooS95 papery | j(Ku)?M,(7) + (Kul?M, (7) 

2 QnjKor + b\7%{(7?-1)'? ], (48) 

where 

al M, (7) = 07%(7°-4)(47 +9) +7771)? [ 20- 5 -4(1 tn)7"] 

4 
Array? in — ore aty os(a), (49) 
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M(t) = 2ur(672-5) + w%{572-1) - 2(77-1)/* [4G + (546m) 77] 

+ 7(4-572)(72-1)/2 In Zoe + (2-37%)(72-1)'® (7), (50) 

G = Catalan's constant = 0. 915965594, (51) 

and 

| = 
-| 

or) = WesBe err) 8 ~tw=cos ¢=0, (52) 

which cannot be expressed in terms of elementary functions. 

It is not difficult to see from (48) that as | 7 | — oo, the 
dominating term is the one containing b,, which is of the order eae : 
Since the remaining terms in (48) are obtained from the integral 
shown in (42), they are, therefore, of the order |7 ee This indi- 
cates that the b, term is the most important term for the flow field 
near the point at infinity. 

With H given by (48), (22) may be regarded as a linear, 
second order, ordinary differential equation for f. 

If we transform the independent variable from f, to G and 
make the following change of dependent variable 

1/2 

f2 F(t) (S72) acy (53) 

The differential equation (22) is readily reduced to 

a°*F ae 

where 

2 1/2 
df dw jwfo G(t) = ($7) (Ge) eH, (55) 

f, and wy, as functions of ¢ are given by (4) and (5), and H is 
given by (48) with 7 as a function of ¢ given by (35). To help us 
to understand the properties of the Eq. (54), let us make the follow- 
ing change of variables 
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ge ioe 

(56) 

F imei” , 

which transforms (54) into 

ar y (1 - 8jK 2p) = = 4ice?* 5 ap? - 8j)Kw cos 2B)F =- 4iGe §. (57) 

This is Mathieu's differential equation. The flow region now occupies 
in the B-plane a semi-infinite strip shown in Fig. 4. In principle, 
a general solution of (57), or (54), can be obtained. If we denote the 

solutions of the homogeneous equation of (54) by F,(¢) and F,(), 

then a general solution of (54) is 

C C 
F(¢) = WOR) fF (¢) \ F,(A)G(A) dd - F,(6) \ F, (A) G(A) art, 

3 4 
(58) 

where 

dF 
W(F|,F,) = art F, - SF, (59) 

which is a constant. 

B-plane 

(7774 40) (37774 ,0) 

Fig. 4 <A conformal mapping plane of the basic flow 
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To obtain F explicitly we must first obtain F, and Fj. In 
this paper we are not going to obtain the exact forms of F, and Fo, 
even though they can be expressed in terms of the solutions of the 
Mathieu equation given in (57). We shall, instead, obtain the asymp- 
totic representations for F, and Fy as woo. We should mention 
here that Langer [ 1934] has developed asymptotic representations 
for the solutions of the Mathieu equation with at least one parameter 
large; however, instead of modifying his asymptotic representations 
to cover the equation shown in (53) with j another imaginary unit, 
we shall derive the asymptotic representations for F, and F, 
below. 

Let us denote 

2 

OS ie (60) 

then, the homogeneous equation of (54) can be written as 

2 

C 
rev hy 

= jKwx (¢)F. (61) " 
Due to the symmetric properties of our problem we need only con- 
sider half of the flow region, say the region bounded by ICAI, which 
inthe €-plane is a quarter circle as shown in Fig. 2. Inthis region 
Xx has a simple zero at € =1 anda pole of order 3 at € =0. If we 
make a typical change of the independent variable to €, defined by 
(Jeffreys [ 1962]) 

C = ae = le () dt, 
(62) 

| 

and put 

: -1/2 

d 

ee = { jKwé + r(&)] U, (64) 

where 
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2 dg Nge 

| ove isp eer (65 
feleanien w-ne ] 

A straightforward expansion of (62) shows that 

B= Ot") as 4-0, (66) 

and, of course, 

r(€) = 0(1) as G1, (67) 

Equation (66) indicates that the mapping (62) maps the point I to the 
point at infinity in the §-plane. The flow region ICAI inthe §-plane 
is shown in Fig. 5. From (65) and (66) we can see that 

r(€) = 0(zr) as |E| — o. (68) 

Olver [1954] has investigated an equation of the form 

a’u ae [we + r(é)] U, (69) 

where ee is a positive large parameter. He shows that for a domain 
D, if r(€) is regular in D and r(&) = o(é |!" for some ao > 0 

| | 
€— plane 

7/6 

Fig. 5 A conformal mapping plane of the basic flow 
region bounded between ICAT 
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as |é | — oo, and if the distance between the boundary lines of D 
does not tend to zero as |&]|— oo in any subdomain of D, then, 

a uniformly valid expansion of U in terms of Airy functions can 
be obtained. Olver [ 1957] later extends the result to the case when 
yp“ is a large complex parameter. For our problem, all the above 
requirements for a uniformly valid expansion in terms of Airy 
functions are satisfied except that the parameter pw” in our case is 
jKw, where j is an imaginary unit independent of the imaginary unit 
i used in the complex variable §. Since i and j do not interact 
and j may be regarded as a real quantity so far as the imaginary 
unit of i is concerned, we assume that Olver's result is applicable 
here and write the two solutions of (64) as 

= Ai[(jKu)” é][1 + 0(<)] (70) 

and 

Algae = Mi +o) ast o-oo, (71) 

where Ai(X) is the Airy function with argument X, which may be 
expressed either as the sum of two converging series or as an 
integral given in the following (Jeffreys & Jeffreys [ 1956]) 

27i/3 a / 

xs- Ls? 
Ai(x) = a e * dg. (72) 

mi eee 

Substituting x =(jKa)'/* into (72) and manipulating the result, we 

can show that 

AY(JKu)'”¥] = 3{(1-17) ai[(aKey!E) + (1H) Ail(-iKa)”"E]}, (73) 

where Ge and (eile will be taken as ewe and aris respec- 

tively. Therefore, from (63) 

oN 

*) =(§ %) 

ie 1/3 1/3 
~2(F by {(1-ij) Ail (Ko) 6] + (1+ij)Ai[(-iKe) 6]}. (74) 

Similarly, 
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dé -1/2 

F, = (e) Us, 

dé -1/2 ori/3 ‘ 

~2 (Se) (1-4) ailGK aye 8] + (1445) Aili a)'3 0? 7}, 
(75) 

In (74) and (75) 

dé -1/2 £ 1/4 

CaM Ga ae sh 
where € is given by (62) and x given by (60). With F, and F, 
given in (74) and (75), we may find W(F, ,F,), which is 

1/3 jw/6 -iw/3 
W(F, , F,) kw s(Ka) e Z (77) 

or 

WR Fy ays liners Geren, (78) 
6) 

Let us now express the solution F interms of the 7 variable. 
From (4), (5) and (35), we have 

fo= KT; (79) 

2 

(SP) = 4K?7?(7? = PE tS 4)'72}2 ; (80) 

and 

away". 3 [per Sa = ty (81) 
(az ) ~ V2 ~ ~ pts 

When we change the variable of integration in (58) from © to T, we 
need the quantity d€/d7, which may be obtained from (35) and is 

Se - [7 - (r? - 1)? cr? - ty. (82) 

F 2 

If we denote G(t)d$/dt by g(t)e!“*, then with the aid of (55), (48), 
(79), (80), (81) and (82) 
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te fitr ty7r&-'4) 34] 

(r2_ 1)'72 [j(Kw)°M, (7) +(Ke)*M,(7) 
g(T) = 

- 2njKwt + b,7%(7? - 1)7]. (83) 

In (83) we note that although b, is purely real with respect to i, 
it may be complex with respect to j; we also note that the term 
2mjKwT is extremely small as compared to the term j(Kew)® M (T) as 
w—+ oo, and since both of them are dependent on j, so we may 
neglect 2mjKwT from (83) and write 

vee | [atest ety tT] [j(K&)°M, (r) Ag SORE 

+(Ka)'M,(7) + b,7%(7?- 1)'7] . (84) 

The asymptotic form of F can now be expressed as 

1 io WE Fy File] i. F,[ t(o)e** 

- Fal oc | F,[t (o)] e(o)eX* ao}, (85) 
Gg 

where o is the integration variable in the T-plane and F,(¢), 
F4(¢), g(7) and W(F,,F,) are given in (74), (75), (84) and (77). 

Substituting all the necessary results obtained above into (20); 

noting the relations 

(1 £ij)> = 2(4 ij) 
(86) 

(1 +ij)(41 - ij) = 0 

when we are taking the real part of (20) with respect to j, we obtain 
the complex velocity potential f,; as 

ee (eis 
eae (reqir®=1 ~ 4) 

= Pivolteucskae ; 
at mY Meneses) { Aif(iKs)'E] Ail(Ke)"e?"/%] . 

me 
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Ai[iK w)!3 © 77%] Ai[(iK w)'72 ti} EAN g (01+ B,g,o)] de 

' Ti _jw(t-Kr7+Ko 7) 
| 

+l ye e* { aif(-iKu)' 6] Ai[(-iKu)”4 @ M/E) 

oe 

ree -27ri/3 - Ail(-iKw) 6] aif(-ika)’? EEA)! [e,(0) 

B g3(c)] dc (87) 

where § and x as functions of T are given by 

t 
2.972 | 3ri/4 do ee “a 

| (2 - 1)'4 

and 

x= [( BS -r] (89) 
€ and X indicate the functional values of & and y when the 
variable 7 is replaced by the integration variable o, 

g,(7) = Saar pie MoM (7) + Ka)? M7) (90) 

g(T) = earn al i(K.w)?M,(T) +(Kw)*M,(7)] , (91) 

SA ie Tift + yr? - 1) - 4), (92) 

B, is an arbitrary complex constant which is derived from b,, and 
B, is the complex conjugate of B,. The lower limits of integration 
shown in (87) are chosen for our convenience. Therefore, when 
necessary, homogeneous solutions of the form 
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A(t) elt) ATK yy! ale 

n 2 ‘ 
Altre Ai[(iKw)'” a ; 

95 
A(T) eK ail(-iK al] ae 

and 

-iw(t-Kr2) -27i/3 
A(T)e Ailcikay” e ay él, 

where 

1/4 

A(t) = —2) (94) 
T - V7? -1-i 

may be added to (87). 

We shall now study the behavior ofthe solution (87) for 
|r| > R, >> 1, 0 = Arg? = 1/2. 4A circular arc of radius Ry, 4s 
drawn in the o-plane as indicated in Fig. 6. Also shown in that 
figure is a hyperbola S representing the equation Re [ i(o# - 7?)] =0. 

Fig. 6 Paths of integration for the solution given in 
Eq. (87) when 7 is large 
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If we are travelling along S inthe direction of increasing Imo 
and if we restrict ourself to the first, second and fourth quadrants 
of the o-plane only, then on the right-hand side of S Re [ i(o?-77)] 
<0, and on the left-hand side Re [i(c*-7?)] > 0. When either Im 7 
or ReT is zero, S degenerates into the positive real and imagi- 
nary o-axes. 

From (88), we note that 

Scan: (95) 

and 

1 T 
Arg § =zArgTts as |t| + c (96) 

Therefore, for 7 and w large, the arguments of the Airy functions 
appearing in (87) are large. Their asymptotic representations are 
(cf. Jeffreys & Jeffreys [1956]), 

AR cep 2 Ll WwW C—O aw (Kay 274 

when ~-carge<Z ; 

mig 26 we? 
AB 23 i pie 

Ai[fikKw) e Era 
2m (Kw) € 

when - Recargé<=, 

Ag 3 3 

/s ce ke (97) 
| 

Ai[(-iKe) §] ~ ———=——px-77a 
2Vm (Ku) € 

when 3 <Arg & <a 

smi 2 salle 771 caws 

1/3 - 2mi/3 Aa 
Ai[(-iKw) e 6) ~ ———_ 

ale (xe)! evs 

Lin 
when - z<Argi<—. 
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A straightforward expansion shows that, as |7T| > R, 

-1/4 -| \/4 i/8 -3/4 
Bee ema ee Alo any. ee is (98) 

And it is easy to see, as some related explanation has been given in 
the paragraph after (52), that as |7| > R, 

eel 4. 7h, 9/4 
Xx g,(T) t B g3(7)] a B, 2 

(99) 
-|/4 om — _/4, 7i/8 9/4 

x [ g,(7) ~ B g,(7)] = Sat oe T : 

Let us denote the a of the potential represented by the first inte- 
gral in (87) by f, (e 

Haleatize ss» lt fey 
Js eh Gao Cee er ae 

T mi +iw(t-Kr + ko*) -27i/3 xf eee { Ail(axia)”* €] aif (Ku)? 7”) 
oe 

: Ail (iKo)!> ee Ail(iKw)”° =] \ Creal g (oc) +B, ga(c)] do 

(100) 

For any 7 with |7| >R, and 0= Arg 7 = 1/2, the path of inte- 
gration in (100) = always be chosen to be Lj, which is a path 
coming from ooe * to 7, lying completely on the right-hand side 
of the hyperbola S and outside the circular arc lo | =R,. A 
typical L; is shown in Fig. 6. Since along L; |o| >R,, we may 
substitute the expansion given in (97), (98) and (99) into (100) and 
obtain 

B See Kt 2K) 
aS, mae COV8 oi ah @(E, é) do, (101) 

1(2Kw) 

Ly 

where 

(6,2) = 2 eA fKag” - PY). (102) 
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We note that along Li the hyperbolic sine function in (101) may be- 

come exponentially large, however, since L,; lies on the right of 
S, thefactor exp [iKw(c?-7?)] will be overwhelmingly small there. 
Let us now integrate (101) by parts once to get 

Tt 2 2 
(e) i iw(t-Kt tka ) oy 

< Eee 4 fe Bsinh @(€,€) n(2Kw)/273/4 (2iKw) 

Z jw(t-Ke 9k o*) S Ua... ov = ri/4 © [2° sinh ®(€,&) 
008 

oss wi/4 

+ 04 Se cosh &(E 2) ac} (103) 

The integrated part in (103) ig identically zero; when we evaluate it 
at the upper limit, sinh ®(€,6) = 0, and at the lower limit, the 
factor exp iKwo’) is overwhelmingly small. If we integrate the 
integral (103) successively by parts and note the relation that 

wi/4 wW/2 ae -/2 2 Bets CK oe pee -* : (104) 

37i/4  -yY2 
where gue dé /do a a ee o is obtained from (88), we can show 

that 

(e) i iwt - fe (105) 
41(Kw) 

Since: j= O(z'/2) as |z | — oo, from (104), we see that the contri- 
bution to the potential due to f/®) is of order |z[’? for |z| 
large. This type of potential is acceptable. Now, let us denote the 
Bart of the potential represented by the second integral in (87) by 
anaes 

| 

ALL De ZE (g yy ( FB iutt- Kr+Ko*) 
2 eee 

(Ku)! (T= Vr2-1 =i) a 

x {ail (-1Ka) €] ai(-iK we ?”8} 

~ Ail(-ika)/Fe°?7”E) aif(-iKw)'7E] | (E/2)'4[ g,(0)+B, g,(0)] ac. 

(106) 
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To investigate the behavior of ee for |7|>R _, let us divide the 
region in the first quadrant of the o-plane outside the circular arc 
|o| = Rj into two parts, D; and D3. D,, as shown by the shaded 
area in Fig. 6, is bounded by the circular arc |o| = Rj, the imagi- 
nary o-axis ye the hyperbola S' representing the equation 
Re [ i(o?- R?e””“)] = 0. D, is bounded by the real c-axis, |o| = R, 
and S'. For T in Dg, we may choose the path of integration in 
(106) to be Ly, whichis similar to L, except now it lies on the 
left-hand side of S. Atypical Ly is shown in Fig. 6. Usinga 
process similar to that used to obtain (105) from (100), we may 

obtain, from (106), 

(Ww) eByi i -I 
SS a i 

2 
4 1(Kw) 

(107) 

When 7 is in Dj, the hyperbola S will be extremely close to both 
positive axes of the o-plane, S degenerates into the axes when T 
lies on the imaginary o-axis. For this case we have to deform the 
simple path Le into L3+ La, as shown in Fig. 6, in order that the 

factor exp [-iKw(o?-77)] will not become oo eee large along 
the path. Lz is a path coming from coe ”'’* to 0 on the lower-half 
o-plane, from there along the real o-axis towards o = 1, turning a 
small circle to the upper side of the real c-axis and along it to 0 
on the upper-half o-plane, to circumscribe the cut in the o-plane, 
and then leaving 0 to coe3/4, Path La comes from ocoe?™'/4 to 
7, lying completely on the left-hand side of the hyperbola S and 
outside the circular arc |o | = R,;. The integration along Lg is 
convergent; near both ends of the path the integral is exponentially 
small, near o=0 M,(c) and M,(c), which appear in g,(c), are 
of order o% and o respectively and g3(c) is of order G2: near 

o = 1 only Mj(c) contributes to ga(c) a square-root type of, singu- 
larity. The latter property of M,(c) is the reason that (Kw) M,(c) 
is being kept in the integrand together with the term (Kw)?Ma(c). 
We may remark here that if we did not neglect the term 2mjKw7 

appearing in g.(c) from g(7) in (83), we would have aterm of the 
form 2miKwo. Since the presence of such a term would not affect the 
property of the integrand along L, near,o»=0 and 1, and since it 
is one order in w smaller than the (Kw) M,(c) term, its neglect is 
justified. Let us now denote the contribution to fm from the inte- 
gration along L, by Z(7), 

2€ (B/x yi Fleiwtt-Ked ps 
Z(T) = —= Ai[(-iKw)°~ € (Ku)? posing a e { i[(-i ] 

wer m4 ; 

woe™/4 Saray Ai[(-iKu)'” patel (E/x)'4 | (co) +B, g.(o)] do - 

[ 
3 
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@omi/4 

-27i/3 =f 

slaiptouna) ee aes Kee yesh rica) PET EAM 
3 

[e,(o) +B,g,(o)] ao} . (108) 

We note that when 7 is in D, the, Air TA Ail (=iKw) Vee 
exponentially large and Ail (5 iKw)!/? eat is exponentially small 
therefore, in order. that {\" tend to zero as |7| + oo in D,, we 
require that the coefficient Ai[(-iKw)'/3&] be zero. This deter- 
mines the constant B,, or B,, 

: 2 

5, - Pi aaes pee on Aaa | (a g(c) av/ 

L3 
; 2 

i Ps ateary Per Ey GQ) *g.(o) do. (109) 
L 
3 

With B, given by (109), Z(7) becomes exponentially small when 

tT isin D,. We shall not attempt to evaluate By, explicitly in this 
paper, however, in view of (91) and (92) we may conclude that 

B, = O[(Ku)*]. (110) 

Since Ly is outside the circular arc lo | = R,;, we may substitute 
the expansions given in (97), (98) and (99) into the integral along Ly 

to obtain 

a Tt 
x= -iw(t- Kr 4K o2) 

41 

X oM sinh [ 5 eel a Fa ie ae recy do. 

(111) 

£") 

Now, if we apply the method of integration by parts to the integral 
along Ly, we can show that for 7 in D,, with Z(T) being expo- 
netially small, 

Be i ea (112) 
AnibK wo) 

Summing up all the results obtained in (105), (107) and (112), we 
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have 

ei i 
f| ~ ——s (B,e 

4n(Kw) 

T as [il 0. (113) 

From (113) we may derive the following results: (i) From (110) 
we may conclude that f,* eKw. (ii) For 7 lying on the real 7T-axis, 
which corresponds to the cavity wall of the basic flow, f, is purely 
imaginary; this indicates that near the point at infinity the perturbation 
velocity wy, = 0f,/8z is always perpendicular to the original cavity 
wall. (iii) If we recall that 7 = O(z'/#) as | 7 | — oo, we can see that 
the perturbation velocity is of order |z lees for large values of |z|; 
this, together with the result stated in (ii), implies that the unsteady 
free surface displacement tends to zero as |z|—~ oo. (iv) Along the 

imaginary T-axis, which corresponds to the line of symmetry of the 
flow, f, is purely real; this means that there is no velocity component 
normal to the line of symmetry which, of course, is what we should 
expect. 

It should be pointed out here that the order of magnitude and 
the direction of the perturbation velocity on the free surface near 
the point at infinity agree with the results obtained by Wang and Wu 
[1963] in the study of small-time behavior of unsteady cavity flows. 

Finally, we shall investigate the behavior of the solution (87) 
near the separation point 7= 1. From (4), (35) and (5), the pertur- 
bation velocity w, may be written as 

Of Of Ww, Halas st. (114) 

Equation (114) indicates that the singular behavior of w, near 7 = 1 

can be studied from that of df /€87 near T= 1. Let us now differ- 
entiate f; given by (87) with respect to 7. The differentiation of 
f,; with respect to T may be viewed as consisting of four parts; the 
differentiation of the 7 appearing in the limits of integration, the 
differentiation of the factors exp (+iKwr*), the differentiation of the 
Airy functions with respect to 7, and the differentiation of the factor 

in front of the curely brackets in (87). Only the latter two parts 

produce terms of the form a_(T* - 13" @ near T = 1; all the other 

parts either give zero or a finite contribution to w,. Therefore, 

condition (34) and the condition that the pressure is integrable over 
the plate AB are satisfied. 

Since the solution given by (87) behaves properly at infinity and 
at the separation point, we conclude that it is the solution of the 
problem; no additional solution of the homogeneous equation, as 

shown in (93) needs to be added. 
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DEEP-SEA TIDES 

Walter H. Munk 
Untversity of Caltfornta 
san Diego,  Caltfornta 

ABSTRACT 

The classical Laplace tidal theory, when applied in 
numerical form to the world's ocean basins, does not 

yield results in good accord with observations. In 
part, this may be due to density stratification and in- 
ternal tides (coupled to external tides); and in part to 
dissipation at the ocean boundaries. At a given port 
the spectrum of the observed tides shows a complicated 
line structure superimposed over acontinuum. The 
continuum rises at the frequencies where the lines are 

clustered, probably as a result of internal tides. 

Tide dissipation leads to an exchange of angular mo- 
mentum between the spin of the earth and the orbit of 
the moon. As a result of this spin-orbital coupling, 
the length of day and month are both increasing. Ob- 
servations of the moon since 1680, of Babylonian 
eclipses and of the structure of Devonian tropical coral 
(which give the number of Devonian days per year) 
confirm these calculations. 

To untangle these problems, it is probably necessary 
to make observations in the deep sea, relatively re- 
moved from the scattering and absorbing boundaries. 
Such observations have now been made for the last three 
years, and they yield relatively clear pictures of the 
deep-sea tidal pattern. The tides in the northeast 
Pacific can be roughly accounted for by superposition 
of a northward-traveling Kelvin wave (trapped by 
rotation to the boundary) and a southward-traveling non- 
trapped Poincaré wave. 

In order for the calculations to be realistic, they need 

take into account the tidal yielding of the sea floor. 
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STABILITY OF AND WAVES IN STRATIFIED FLOWS 

Chia-Shun Yih 
Universtty of Michigan 
Ann Arbor, Michigan 

ABSTRACT 

A theorem giving sufficient conditions for stability 
of stratified flows, which is a natural generalization 

of Rayleigh's theorem for shear flows of a homogeneous 
fluid, is given. Sufficient conditions for the existence 
of singular neutral modes, and consequently of unstable 
modes, are also presented, and in the development the 
possibility of multi-valued wave number for neutral 
stability of the same flow is explained. Finally, neutral 
waves with a wave velocity outside of the range of the 
velocity of flow (non-singular modes) are studied, and 
results concerning the possibility of these waves are 
given. In addition, Miles' theorem [ 1961] on the stability 
of stratified flows for which the Richardson number is 
nowhere less than 1/4, and Howard's semi-circle theorem 
[ 1961] are extended to fluids with density discontinuities, 

I. INTRODUCTION 

The stability of stratified flows of an inviscid fluid has been 
studied in a general way, i.e. , without specifying the actual density 
and velocity distributions, by Synge [1933], Yih [1957], Drazin 
[1958], Miles [1961, 1963], Howard [1961], and others. Of these, 
Miles has made particularly substantial contributions to the subject. 
However, many questions still remain open. Among these are the 
following: 

(i) Miles [ 1961] showed that if the Richardson number is 
nowhere less than 1/4, the flow must be stable. This 
is a sufficient condition for stability. What can one say 
regarding the stability of the flow when the Richardson 
number is less than 1/4 in part or all of the fluid? Are 
there then some sufficient conditions for stability not 
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covered by Miles' criterion? What, in fact, is the 

natural generalization of Rayleigh's theorem on the 
sufficient condition for stability of a homogeneous 
fluid in shear flow? 

(ii) Are there some sufficient conditions for instability? 

(iii) Miles [| 1963] has shown that the wave number at neutral 
stability can be multi-valued for the same flow, in an 
actual calculation for a special density distribution and 
a special velocity distribution. Is there an explanation 
for this, even if not completely general? 

(iv) Do internal waves with a wave velocity outside the 
range of the velocity of flow exist? How many modes 
are there? What is the character of each mode? 

In this paper the questions posed above will be answered in as 
general a way as possible. By "general" I mean "without numerical 
computation." Although special calculations for special flows, 
involving the use of computers, are important because they often 
give us insight into and understanding of the subject, and sometimes 
are of practical interest, results obtained in a general way are often 
more useful. The question naturally arises: Can general results be 
continually improved and sharpened, albeit with increasing cost in 
labor, but without the use of computers? The answer to this question 
necessarily reveals the attitude of the respondent more than anything 
else. My answer to it is in the affirmative, and the results contained 
in this paper, aside from whatever interest or merit they may have 

for those cultivating the subject, are given to substantiate my faith. 

In addition, some straightforward extensions of Miles' theorem 

mentioned in (i) above, and of Howard's semi-circle theorem [ 1961] , 
are made to make these theorems applicable to fluids with discon- 

tinuities in addition to continuous stratification in density. 

Il DIFFERENTIAL SYSTEM GOVERNING STABILITY 

If U and p denote the velocity (in the x-direction) and the 
density, respectively, of the primary flow in the absence of distur- 
bances, and u and v denote the components of the perturbation in 
velocity in the directions of increasing x and y, the linearized 
equations of motion are 

ip (uy F Ua +O) = - Bes, (1) 

p(v, + Uv,) = - py - BP» (2) 

in which subscripts indicate partial differentiation, t denotes time, 
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p is the deviation of the pressure from the hydrostatic pressure in 
the primary flow, p is the density perturbation, g is the gravi- 
tational acceleration, and 

The equation of continuity 

permits the use of a stream function w, in terms of which the velocity 

components can be expressed: 

se v= a (3) 

The linearized form of the equation of incompressibility is 

p, + Up, tvp'=0, (4) 

in which 

plz a, 
dy 

If n is the vertical displacement of a line of constant density 
from its mean position, the kinematic relationship 

le ea (5) 

holds. All perturbation quantities will be assumed to be periodic in 

x and have the exponential factor exp ik(x- ct), so that from (5) and 
(3) we have 

wes(U=-c)y, u==([(U=c)n]t, v= ik(U-e)7. (6) 

Then (1) and (4) give 

=p(U-c)’n' and p=-P'n. (7) 

Writing 

n(x,y st) = Fly)eik- et) (8) 
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and substituting (6) and (7) into (2), we have, with B denoting -p'/p, 

[p(U-c)*F']' + pl Bg-k'(U-c)*]F = 0, (9) 

which is the equation used by Miles [1961] and Howard [ 1961] to 
study the stability of stratified flows. 

Miles [1961] assumed U to be monotonic and U and ) to 
be analytic in his studies. Howard [1961] was able to prove Miles' 
theorem (on a sufficient condition for stability) and to obtain his own 
semi-circle theorem without these hypotheses. But both of them 
assumed ‘p to be continuous, and considered the upper boundary to 
be fixed as well as the lower one. We shall now show that the 
theorems of Miles and Howard can be generalized to allow density 
discontinuities. The mean velocity U (though not necessarily U') 
will be assumed continuous. 

Let there be n surfaces of density discontinuity, and let the 
free surface, if there is one, be the first of such surfaces. The 

densities above and below the i-th surface of density discontinuity 
will be denoted by (p,), and (pg); , respectively, and we shall define 
(Ap); by 

(Ap), = (py - p,); « (10) 

The interfacial condition can be obtained by integrating (9) in the 
Stieltjes sense in an arbitrarily small interval containing the discon- 
tinuity under consideration, and is, with the accent indicating differ- 
entiation with respect to y, 

[p(U-c)*F'], - [p(U-c)*F'], = - gApF, (11) 

to be applied at any surface of discontinuity. At a free surface Py 
vanishes, and (11) becomes 

(U-c)*F' = pF, (12) 

which is the free-surface condition, to be applied at y=d, d being 

the depth. If the upper surface is fixed instead of free, the condition 
there is 

F(d) = 0. (12a) 

The boundary condition at the bottom, where y=0, is 

F(0) = 0. (13) 
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Ill. EXTENSION OF MILES' THEOREM 

Following Howard [ 1961], we set 

eu w2r, 

where W=U- cc. Then (9) can be written as 

(pwG')' - [(pU')'/2 + pw + pw'(U'*/4 - gB]G= 0. (14) 

The boundary condition at the bottom is 

G(0) = 0. (15) 

The interfacial conditions (11) become 

Py (WG! - U'G/2), - p (WG! - U'G/2), = gApw'G, (16) 

to be applied at the surfaces of density discontinuity, and in particu- 
lar the upper-surface condition becomes 

WG'-U'G/2=gW'G, or G(d)=0, (17) 

depending on whether the upper surface is free or fixed. 

Multiplying (14) by G", where the asterisk indicates the com- 
plex conjugate, and integrating from the bottom to the first surface 
of density discontinuity and then from discontinuity to discontinuity 
throughout the fluid domain, and utilizing (15), (16), and (17), we 
have 

(Vewtia'l? +k |G/7] +( Gun |Gl*/2 + (51 u'?/4 - g6] w'|G/w/? 

-) gaaw*|c/w|?-) (GU, - @UIJIGP/2=0, U8) 

in which each of the integrals is over the entire fluid domain exclusive 
of the surfaces of density discontinuity (i.e., it is a summation of 

integrals over the layers of continuous density distributions), and 
the summation is over the discontinuities, including the free surface 
if there is one. If the flow is unstable, c, > 0, and the imaginary 

part of (18) is 

Valiot? +x%iGiy +f alae - u'7/4] |o/wl* + ) ga,pla/wl? =o, 
i (19) 
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from which it is again evident that if 

gb = U'*/4 

everywhere in the fluid exclusive of the interfaces and the free surface 
(if there is one), the flow must be stable. 

IV. EXTENSION OF HOWARD'S SEMI-CIRCLE THEOREM 

Equation (9) can be written as 

(pW2F')' + p(Bg - k*W*) F = 0. 
* 

Multiplying this equation by F , the complex conjugate of F, inte- 
grating throughout the fluid domain and using the boundary or inter- 
facial conditions (11), (12), and (13), we have 

(ewilr' P+ lel -(seplFP- Dealer =o, (20) 

in which the summation is over the surfaces of density discontinuity, 
and the integrals extend throughout the fluid exclusive of the surface 
of discontinuity in density, The real and imaginary parts of (20) are 

(at u- op)? - It lel? +e"1F 1 -loe6iFl - ) sae lFl =o, 
(21) 

¥t Hy eed) Zee Bal, 2c,4 plu cote, +k FL) 20. (22) 

Writing 

G-nlley teri; 

we obtain from (22) 

(ue = ¢. $a, (23) 

then from this and from (21) we obtain 

(ut thea tel o + \ gop [F[? + Ded lF 
2 

(24) 

If a and b are respectively the minimum and the maximum of U, 
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so that a= U=b, we have 

o=((u- au-va={u%- (a +») vO +tab\ Q 

=[c, te, - (a +b)c, + ab] |0 + geBlFP +) evlFl, 

| 

after using (23). This means that 

[c, - (a +b)/2]’ +07 =[(b - a)/2l’, (25) 

that is, the complex wave velocity c for any unstable mode must lie 

inside the semi-circle in the upper half-plane, which has the range of 

U for diameter. Thus Howard's semi-circle theorem is recovered. 

-2 -2 
From (19) and noting that |W| Sc, , we deduce that 

kc) = max (u'?/4 - gB) (26) 

remains valid even if there are surfaces of discontinuity in density. 
In (26) we exclude these surfaces in the evaluation of B. It is easy 

to see that (26) contains Miles' theorem. 

V. SUFFICIENT CONDITIONS FOR STABILITY 

Miles' theorem gives a sufficient condition for stability. But 
it certainly does not guarantee instability if the local Richardson 
number J(y) defined by 

Sy) = #6 (27) 
ww! 

is less than 1/4 in part of the fluid or even all of the fluid. We shall 
sharpen Miles' sufficient condition for stability by deriving two 
theorems which constitute, more than anything hitherto known, the 
natural generalization of Rayleigh's theorem for the stability of a 

homogeneous inviscid fluid. 

For the discussion in this section it is more convenient to use 

the stream function 

w= f(y) etk(x-ct) . (28) 

Comparison with (6) and (8) shows that 
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f(y) = (c - U)F(y). (29) 

In terms of f(y), the governing equation (9) becomes 

~ (OU jer det eee (pf')' + Sly Te t=30., (30) 

Equation (30) can be made dimensionless by the use of the new 
variables 

(31) a3 iv ipr esp pow c= p Bi” MA datz U Vv? c 

where p, is a reference density and V a reference velocity. Then 
(30) becomes, after the circumflexes are dropped, 

pf) 9 |i ic eae fo (32) ay 

in which everything is now dimensionless, the accents indicate differ- 
entiation with respect to the dimensionless y, 

@=kd (33) 

is the dimensionless wave number, and 

N = ga/v* (34) 

is actually the reciprocal of the square of a Froude number. The 
appearance of N does not necessarily signify the importance of sur- 
face waves, since it appears even if the upper boundary is fixed. 
The fact that it is associated by multiplication to p' indicates that 
the entire term represents the effect of gravity in a stratified fluid 
in shear flow. 

Henceforth in this paper we shall consider rigid boundaries 

only, for which the boundary conditions are 

£(0) = 0 and f(1) = 0, (35a,b) 

to be imposed on the function f in (32). 

226 



Stabitltty of and Waves in Stratified Flows 

It is then clear that the system consisting of (32) and (35a,b) 
gives, for a non-trivial solution, a relationship 

Fi (a7,N,c) = 0. (36) 

Since c is complex, (36) has a real part and an imaginary part. 
When c; is set to zero and c, eliminated from the two component 
equations, a relationship 

F,(@,N) = 0, (37) 

if one such exists, gives the neutral-stability curve. It is possible, 
however, that c is real for all values of @ and N, in which case 

c. = 0 inthe entire N-a@ plane, and then of course there is no 

neutral-stability curve because one component equation of (36) is 

Cir 0, and the other is simply (36) itself, with the c therein real, 

In this section, we shall assume rr and U to _be continuous, 

analytic, and monotonic. Furthermore, we assume p'< 0 throughout. 
We now recall the following known results: 

(i) If J(y) is not less than 1/4 for the entire fluid domain, 
then the flow is stable [ Miles 1961], 

(ii) If c; #0 then c, must be equalto U at some point in 
the flow, as a consequence of the semi-circle theorem 

of Howard [1961], and 

(iii) If an eigenfunction exists for (c,, @,, N,), then near 
that point c is a continuous function of @ and N, 
[ Miles 1963 and Lin 1945]. 

Under the assumptions we have made on p and U, and in 
view of the known results just cited, we conclude that the non-existence 
of any singular neutral mode, which is a mode with a real c equal to 

U at some point in the flow, implies the non-existence of unstable 
modes. The reason is as follows. In the N-@ plane there is always 
a region of stability. For we can imagine g andhence J(y) to in- 
crease indefinitely, until J(y) is everywhere greater than 1/4, which 
is attainable since B is nowhere zero. Thus there is a region of 
large N for which the flow is stable. If unstable modes exist there 
must then be a stability boundary dividing the region of stability from 
the region of instability, and hence a neutral-stability curve. As we 
approach that curve from the region of instability, c, being within 
the range of U so long as c; #0 and continuous in @ and N so 
long as c is an eigenvalue, according to (iii) above, in the limit, 

when c; = 0, c, must be within the range of U, i.e., the limiting 
mode must be a singular neutral mode. Hence the non-existence of a 
singular neutral mode implies the non-existence of unstable modes. 
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In fact even the existence of special singular neutral modes for which 
c equals the maximum or minimum of U does not imply the existence 
of contiguous unstable modes, as a consequence of the semi-circle 
theorem of Howard. Hence we need not be concerned with these 
special border cases. In demonstrating the non-existence of unstable 
modes it is sufficient to demonstrate the non-existence of singular 
neutral modes with a<c<b, where a is the minimum and b the 
maximum of U. 

Miles [ 1961, p. 507] has shown that singular neutral modes 
are impossible for monotonic U if J(y) > 1/4 everywhere. In his 
demonstration he actually showed that a singular neutral mode with 
a J(y,) > 1/4 at the place y=y, where U=c is impossible. Hence 
we need only consider the case Hy), = 1/4 in our search for the non- 

existence of singular neutral modes. For J(y,) = 1/4, one solution 

of (32).is 

£, = (y - y,)!/?w, (38) 

where 

w, = 1 +Aly - y,) +e. (39) 

with 

a= [un GBs yam] , (y=5) (40) 
pu' sp c 

provided U' does not vanish at y = y,.- [ We shall consider mono- 
tonic U only. Hence this restriction on U' does not affect our 
results in this paper.] The other solution is found by assuming it 
to be of the form f,h, substituting it into (32), and_solving for h. 
The result, after division by a constant (which is p, or p at Y)? 
is 

f= £, In (y-y,) - [2A + (In pi’ (y-y)/ 11 + Bly-y,) teeel, (41) 

where B is aconstant. Now the Reynolds stress defined by 

eS 1S. Die 9 (42) 

where the bar over uv means time or space average, can be ex* 

pressed interms of f as 

p,V 2ac.t 
T = S a(f'f"), e Te (43) 
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in which the asterisk denotes the complex conjugate, and the t, now 
interms of d/V, is ee Oo ees as is f, Considering the singu- 
lar neutral case, for which c, = 0, it is easy to see from (40) and 

(41) that f'f* is real for y > Ye and equal to ~in: for ty <y,., Hence 
(£' £*), suffers a jump at y,- Since f' f* is zero at both rigid 
boundaries, it cannot afford this jump. [If @ #0, this jump cor- 
responds to a jump in the Reynolds stress. But we do not have to 
consider the jump in 7, and can consider merely the jump in (f' ft), al 
Consequently a eaelae neutral mode with J(y_) equal to 1/4 is im- 
possible. And we can henceforth concentrate on the case Jy, )< 1/4. 

For J(y,) < 1/4 Miles [1961] gave the solutions of (32): 

f(y) =(y - yay ee, (44) 

in which 

=i tAly —ye)/(1-tv) +2005 (45) 

with A given by (40) [but with y = (1 + v)/2 therein] and 

S(t 45e), 2 Jo diye le (46) 

We can use (44) and (45) with all terms therein considered dimension- 
less. Miles [1961, pp. 506-507] showed that for J_<1/4 the solu- 
tion, if one exists, must be either f, or f.. We can demonstrate 

our point by considering f, as the solution. The demonstration for 
the other case is strictly similar. 

The study of the eigenvalue problem defined by (32) and (35a,b) 
naturally leads to a study of the zeros of f. Since f is given by 
(44), it leads to the study of the zeros of w,. This in turn leads us 

to consider the differential equation for w (from which the subscripts 
are removed for convenience). Denoting w, or w_ by w, we can 

easily obtain that equation: 

= fas =s ' Pau 
(p2z2%w')' — PY) ape rs yp 'z"! 4. fo")? = a*5 = at w = 0, (47) 

(ean) 

with z=y-y,, and y= (1+ V)72e 

We are now in a position to present 

Theorem 1. If p and U are continuous and analytic, with p' <0 
and U'> 0, and if (pu)! and (In p)" are positive throughout, then 
singular neutral modes are impossible. 
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Proof. We have shown that it is necessary only to consider the case 
Jy, )< 1/4. We may consider f, only, since the proof for f_ is 
the same, and since the solution ‘is either f_or f. Nowat y=y, 
we have f,=0. Near ¥, ve have 

Since p' is negative and U' and (pU')' are positive, U" is 
positive. Thus U-c is greater than Ujz for z>0O. On the other 
hand -p'/p is less than (-p TP). for < > y,» since (In p)" is posi- 
tive. We know that for small positive z Q is negative, as can be 
seen from (48). Hence for any z>0O the term 

Nee 
(U - c)” 

is less than pJ, /z* and Q is negative. Equation (48) exhibits the 
behavior of Q near Yor Let the bracket in (47) be denoted by - G. 
Then since Q is negative and U-c is positive for y>y,, and 
since p' is negative and (pU')' positive, G must be positive for 
y>y,- Multiplying (47) by w and integrating between y, and 1, 
we have 

| 

(p2>%ww'), - if 2°“ pw! + Gw’) dan O, (49) 
y c 

where the subscript i indicates that the parenthesis is evaluated at 
y = 1. Note that the integral in (49) is convergent in spite of the 
simple pole in two terms contained in G-- one of which in Q, as 
indicated by (48). Equation (49) clearly shows that w(1) cannot be 
zero. .Hence the theorem. 

Another theorem is 

Theorem 2. If e and _ U_ are continuous and analytic, with p! 
negative and U_ positive, and if U" and (In) are negative 
throughout, then singular neutral modes are impossible. 

The proof for this theorem is similar to that for Theorem 1. 
The only modification demanded for clarity is that instead of (44) we 

should write 

f(y) _ 2h) /2., (2) 

with z now definedas y, - ye The equation corresponding to (47) 
is now 
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(50) 

in which, it must be emphasized, all accents indicate differentiation 
with respect to y, not z. The rest is strictly similar to the proof 
for Theorem 1, except the range of integration is between z=0 and 
z=y, (or between y=y, and y = 0), and we want to show w#0 at 
y = 0. Note also that U"<0O now guarantees (pU')'<0. 

Since the non-existence of singular neutral modes implies the 
non-existence of unstable modes, we have also 

Theorem 3. If p and U are continuous and analytic, with p' 
negative and (ay positive, and if either (pU")' and (In) " are both 
positive throughout, or U and (In P) are negative throughout, 

the flow is stable. 

This theorem is the natural generalization of Rayleigh's theorem for 
inviscid homogeneous fluids in shear flow. Previous attempts at this 
generalization [ Synge 1933, Yih 1957, Drazin 1958] have produced 
the result that there must be stability if (in dimensional terms) 

2Bg(U - c,) 

Ju- cl? 

_ (su')? 

_ 

does not change sign. This criterion is not useful because it involves 
not only c, but also c;. 

VI. SUFFICIENT CONDITIONS FOR INSTABILITY 

Sufficient conditions for instability have seldom been given in 
studies of hydrodynamic stability. In giving some such conditions, 
we shall also be able to explain why the @ can be multi-valued for 
the same N, at neutral stability. 

We assume that p and U are analytic, that p' = 0, and that 
at a point where p'=0, U" is also zero. The value of U at that 
point will be denoted by U,, for we shall consider the possibility of 
having c equalto U at that point. We demand that at any other 
point where U=U,, p'=0= U" must be satisfied. If U is mono- 
tonic, of course there is only one point at which U = U,. 

= Under the assumptions made, p" must be zero at Y,* since 
p' is never positive, andnear y, 
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p' = poly - y,)- 

If ps were not zero p' would be positive for y slightly larger than 
vo With this realization, it is immediately clear that the bracket 

in (32) has no singularity at y_. Let us denote the bracket in (32) 
by the sumbol B, which is a function of y, @, and N. Then if m 

is the minimum of B/p_ between two points y, and y,, with 
2 

O0Sy<y,=1, for @ =0, and if 

: n = a positive integer, (51) 

by the use of Sturm's first comparison theorem we know that there 
must be at least n zeros of f between y, and yz, whatever the 
value of f(0) and f'(0). (Note that the P in m or in (32) is dimen- 
sionless.) We can always choose f(0) =0. If (51) is satisfied then 
there must be at least n internal zeros of f. Wecanincrease @ 
so that, again by Sturm's first comparison theorem 

£(1) = 

for 

a= 2% Os: one eee 39 ays 

where 

Qi S Op Ais < wae, SO ns 

It is evident that for @ =a; there are at least n-i internal zeros. 

Hence we have 

Theorem 4. Under the assumptions stated in the second paragraph 

of this section, if (51) is satisfied there are at least n modes with 

c =U, and a=a@, (i=1, 2,..., n), and with a; increasing with i. 

For the i-th mode there are at least n-i internal zeros. 

It is easy to show, by exactly the same approach used by Lin [1955, 
pp. 122-123], which we shall not repeat here, that by varying a 
slightly (now not necessarily by decreasing it, as is in Lin's case), 
c will become complex. Hence we have 

Theorem 5. Near the neutral modes stated in Theorem 4, there 

are contiguous unstable modes. 
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Theorem 4 explains why for the same N, given p and U, 
there can be many values for @ on the neutral-stability curve (or 
curves), which has been observed by Miles [ 1963] for a special p 
and a special U. 

We can sharpen Theorems 4 and 5 by defining M to be the 
maximum of B/p in (y, ; y,) for a=0. Then if (51) holds and 

= (h +1)? 1? 
M , 

(y,-y,)° 
(52) 

the words "at least" in Theorem 4 can be replaced by the word 
"exactly. " 

We note that the analyticity of p and U is needed only near 
Y_» and that, as a consequence of Theorem 5, a layer of homogeneous 

fluid containing a point of zero U" and adjoining a stratified layer 
with uniformly large J(y) is always unstable. 

VII. NON-SINGULAR MODES 

It remains to study neutral waves with a (real) c outside of 

the range of U, whose minimum and maximum will continue to be 

denoted by a and b. We assume p and U to be continuous, and 

that their derivatives as appear in (32) exist. Thenif m and M 

retain their definitions as given by (51) and (52), except that c=a-e, 

we have 

Theorem 6. Under the assumptions on DP and U_ stated above, if 
(51) holds there are at least n modes with c=a-€, a@=q@ (i= 
,2,-..,n), and aj increasing with i. For the i-th mode there are 

at least n-1 internal zeros. If (52) holds in addition, then there 
are exactly n such modes, the i-th of which has exactly n-i in- 

ternal zeros. lf (pU')’ is negative, then _n_can only increase as 

the arbitrary positive constant ¢€ decreases. 

The proof of this theorem is by a straightforward application of the 
first comparison theorem of Sturm. Similarly, if m and M are 

defined by (51) and (52), except that c=bte, where € is an arbi- 
trary positive constant, we have 

Theorem 7. Under the assumptions on P and U_ stated above, if 
olds there are at least n modes with c= €, @=aqj (l= 

»2,-e+e,N), and aj increasing with i. For the i-th mode there 

are at least n-i internal zeros. If (52) holds in addition, then there 

are exactly n such modes, the i-th of which has exactly n-1i in- 

ternal zeros. If (pU')’ is negative, then n can only increase as 

€ decreases. 
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If for c=a-€ or c=Lté€, andany €=0, M is less than 
w/(y, “Yi )? for all y, and y, between zero and 1, then there can 
be no waves propagating with c equalto a or b, or outside of the 
range of U. Onthe other hand, if U'=0 at the point of maximum 
or minimum U, and, a fortiori, if there is a region of constant U 
where U=aor b, it can be easily shown that waves of any finite 
wave length and any finite number of internal zeros n can propagate 
with c<a or c>b. All this is in contrast with waves propagating 
in a layer of homogeneous fluid with a free surface and in shear flow. 
In that case [ Yih 1970], if U is monotonically increasing with y, 
waves of all wave lengths can propagate with c greater than b, and 
only sufficiently long waves can propagate with c less than b. 
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DISCUSSION 

L. van Wijngaarden 
Twente Institute of Technology 

Enschede, The Netherlands 

The flow with a free surface of a fluid, homogeneous in density, 

but with inhomogeneous velocity distribution, is a special case of your 
class of stratified fluids. Burns [ 1953] considered this case and I 
guess his results are comprised in yours. When viscosity is allowed 
for, the problem becomes much more complicated. It may be of 
interest to note that Velthuizen and 1[1969a, 1969b] studied this prob- 
lem taking viscosity into account. We obtained results essentially 
different from Burn's results, which is due to viscous effects. 

At large Reynolds number the flow can be divided in an inviscid 
region and viscous regions at the critical layer and at the bottom. At 
the outer edge of the viscous layer at the wall the Reynolds stress 
cannot be put equal to zero a priori because a stress may build up in 
the wall layer. 
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REPLY TO DISCUSSION 

Chia-Shun Yih 
Untverstty of Michigan 
Ann Arbor, Mtchtgan 

It is well known that Rayleigh's sufficient condition for stability 
of inviscid fluids flowing between rigid boundaries is satisfied by a 
parabolic velocity profile, whereas plane Poiseuille flow, which has 
this profile, has been found by Heisenberg and Lin to be unstable at 
sufficiently large Reynolds numbers, when viscous effects are taken 
into account. Since the present paper is a study of the stability of 
inviscid fluids,and, in particular, Rayleigh's criterion for stability 
is generalized in it, Professor van Wijngaarden's position that the 
consideration of viscosity may force us to modify some of the con- 
clusions in the paper is easily acceptable. 

In considering viscous effects, however, it is not entirely 

self-consistent to assume a horizontal mean flow with a free surface, 

as Velthuizen and Professor van Wijngaarden have done [ 1969a,b], 
since such a flow obviously cannot be maintained, and must in time 

attenuate to a state of rest. This is not to say that any conclusion of 
instability reached by them is without significance, for instability of 
a transcient nature may well occur, with the disturbances growing 

for a short duration of time. In this regard the results of Benjamin 
[1957] and Yih [1963] for surface waves ina fluid layer flowing down 
an inclined plane are relevant. They found that the speed c, of long 

surface waves, be they unstable, neutral, or stable, exceeds the 

maximum speed of flow. The absence of long waves propagating up- 
stream supports Professor van Wijngaarden's claim in connection 

with Burn's result, which is supported by a study [ Yih 1971] of waves 

in a flowing inviscid liquid. But the nonexistence of a critical layer 

renders rather less cogent the argument given in Professor van 

Wijngaarden's discussion. On the other hand, this nonexistence sub- 

stantiates the conclusion made in Yih [1971] (and similarly in this 
paper) regarding the nonexistence of singular neutral modes, since 

the velocity U in laminar flow of a viscous fluid down an inclined 
plane is parabolic, with a constant U". 

We also recall that Tollmien's sufficient condition for insta- 
bility [ 1935] of an inviscid fluid is not much affected by the considera- 
tion of viscosity, at least when the Reynolds number is large, and 

hope that the same is true with the sufficient conditions for instability 

presented in this paper. 
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ON THE PREDICTION OF IMPULSIVELY 
GENERATED WAVES PROPAGATING INTO 

SHALLOW WATER 

Paul R. Van Mater, Jr. 

United States Naval Academy 
Annapolis, Maryland 

and 
Eddie Neal 

Naval Shtp Research and Development Center 
Washington, D.C. 

ABSTRACT 

This report treats the problem of the propagation ofa 
dispersive wave system generated impulsively by a 
surface explosion in deep water into shoaling and shallow 
water regions. A topography consisting of an arbitrary 
bottom profile with parallel straight contour lines is 
assumed. The linear theory of impulsive wave genera- 
tion for water of uniform depth is used as a basis for 
evaluating the spectral energy of the wave system ata 
point in deep water distant from the explosion. Con- 
servation of energy is then invoked to extend the pre- 
diction to propagation over a bottom of variable depth. 
A cnoidal wave theory is introduced to describe the 
changes in form of the individual phase waves and the 
wave envelope as the system enters the shallow water 
regime. The effect of wave refraction at locations 
other than along an axis normal to the bottom contours 
is treated. Empirical criteria are incorporated to pre- 
dict the occurrence of wave breaking, the decay of wave 
height after breaking, and the attainment of stability 
in the reforming wave. Attenuation of wave height due 
to dissipation of energy at the fluid boundaries is also 
considered. All of the above elements have been in- 
corporated in a computer program. Details of the 
computational procedure are described in an appendix. 
Typical predictions made using this program are dis- 
played for small, moderate, and large source strengths. 
The agreement of the predictions with experimental 
observations is discussed qualitatively, but no experi- 

mental data are included. 
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I. INTRODUCTION 

The nature of wave systems yenerated impulsively by explo- 
sions at or below the water surface is of natural interest to re- 
searchers in the naval community because of the ship behavior which 
results from such an environment. When water-wave systems enter 
shallow water they undergo changes in form which may have an 
adverse effect on motions depending on the size of the waves relative 
to the ship or small craft. While the motivation of this work from 
our point of view is ultimately the prediction of ship behavior ina 
shallow-water explosion-generated wave environment, this paper 
is confined to the prediction of the forcing function -- the wave 
system. In itself this case presents an interesting means of study- 
ing the shoaling behavior of a dispersive wave system, an area 
which has received surprisingly little attention. Previous efforts 
in the direction of predicting impulsively- generated wave systems 
entering water of variable depth stem from the work of Dr. William 
Van Dorn (cf. Van Dorn and Montgomery [ 1963]) and have been 
confined to the prediction of wave envelopes. This paper should be 
viewed as a second generation of the Van Dorn model. 

As a starting point we shall tabulate some of the rather com- 
plex effects which occur in shallow water. Not all of these will be 
considered in the present prediction scheme but the exclusions will 
be noted. 

(a) In deep water, phase and group velocities depend pri- 
marily on wave frequency giving rise to the well-known 
characteristic of the system known as frequency disper- 
sion. As the system moves into water whose depth is 
small compared to the lengths of the waves in the system 
this frequency dependence weakens and dependence on 
water depth and wave height strengthens. Waves which 
in deep water moved through the group at phase velocities 
up to twice the group velocity now become nearly frozen 
in their position in the group. 

(b) The nearly sinusoidal form of the waves in deep water 
changes to one of sharp crests separated by long flat 
troughs. An asymmetry about the horizontal plane 
develops in which the crest height above the still water 
line is greater than the trough depth. The maximum 
slope of the waves increases. This last feature is of 
particular importance in ship motion prediction. 

(c) As wave height becomes significant with respect to the 
water depth and the wave nears the breaking point the 
leading face of the wave steepens and a wave slope asym- 
metry develops. As the slope of the face of the wave 
near the crest approaches the vertical the wave becomes 
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(d) 

(e) 

(£) 

(g) 

(h) 

(i) 

irreversibly unstable and breaking follows. In the final 
stage before breaking there is an abrupt increase in wave 
height known as "wave peak-up." Breaking may fall into 
one of three broad categories: plunging, spilling, or 
surging, 

After breaking the wave continues as a spilling wave until 
it either runs up on the beach or reforms as a stable 
wave. Energy dissipation accompanying breaking reduces 
the wave height. 

In the case of dispersive systems entering shallow water 
a low-frequency oscillation is superposed on the wave 
train. This "wave set-up and set-down" is caused by the 
transport of mass with the system, particularly when 
breaking or near breaking occurs, and the resulting 
counterflow. 

When an element of a wave crest passes over a bottom 
contour line obliquely it is refracted so as to be more 
nearly aligned with the bottom contour line, If the bottom 
contours are not parallel straight lines a focusing of 
wave energy can occur at "caustic points" and consider- 
able wave height enhancement can result. 

The height of waves in shallow water is attenuated by 
energy losses due to bottom friction, bottom percolation, 
internal friction, and surface contamination. 

Incoming waves which encounter steep offshore bars or 
beaches may be reflected seaward. Under the right con- 
ditions standing wave systems of surprising severity may 
be produced. 

Non-linear instabilities in a shallow-water wave may 
cause it to decompose, or split into two or more com- 
ponent waves. The hazardous "double rollers" are often- 
times an example of this. A different type of decomposi- 
tion may occur when a wave passes over an offshore bar 
and nearly breaks but then recovers. One or more 
smaller waves known as "solitons" may be shed from the 
back of the larger wave. Little is known about these waves 
at present. 

All of these features can affect ship and small craft operations 
in shallow water and have been included to emphasize the complexity 
of the overall problem. Not all will be attempted in the prediction 
scheme presented in this paper. For our purposes we will consider 
a wave system resulting from an explosion in deep water of nearly 
uniform depth, which propagates into shallow water over a terrain 
represented by parallel straight line bottom contours. We will 

241 



Van Mater and Neal 

include change of wave form with wave slope symmetry retained, 
wave asymmetry about the horizontal plane, wave peak-up, wave 
breaking, wave height attenuation after breaking, stability of the 
reforming waves, wave refraction along paths other than normal to 
the bottom contours, bottom friction, and surface contamination, 

Excluded are: wave slope asymmetry and change of wave form close 

to breaking, wave set-up and set-down, the presence of caustics, 

bottom percolation and internal friction, wave reflection, non-linear 
decomposition, and solotonic shedding. The system will not be 

carried all the way into the beach. 

Specifically, a linear theory for impulsively-generated waves 
in water of uniform depth is invoked to describe the waves in deep 
water at a large distance from the source. From this point a 
different linear theory based on conservation of energy per unit 
frequency is employed to depict the system as it moves into a region 
of shoaling topography. The integral expressions in this theory are 
evaluated numerically using the conditions at each of a series of 
closely-spaced stations as input for evaluating conditions at the next 
station. As the system progresses into shallow water its frequency- 
dispersive nature gradually disappears and non-linear features 
dominate in the wave form and propagation velocities. A non-linear 
cnoidal wave theory is matched numerically to the previous solutions 
to carry the system inthis region. The cnoidal theory is used to 
describe the profiles of the individual waves in the system and the 
asymmetry of the system about the horizontal plane. To treat wave 
breaking existing experimental evidence has been reexamined and 
an improved criterion for wave breaking is incorporated. From the 
same experimental source empirical formulations are developed to 
account for wave height attenuation after breaking and the attainment 
of stability in the reforming wave. The Van Dorn formula for bottom 
friction and surface contamination is used to account for these effects. 
The system is computed not only along an axis normal to the bottom 
contours but also along a series of rays which emanate radially 
from the source and change direction continuously due to refraction 
as the waves move inshore over the shoaling water. 

All these features have been incorporated in a computer pro- 
gram. Results of this program for a specified bottom profile and 
for several source strengths are presented as figures. For the 
researcher working on similar type problems perhaps the most useful 
part of the paper will be the computational procedure which is dis- 
cussed in some detail in an appendix. 

II WAVE GENERATION 

Treatment of the subject of water waves produced by a local 
disturbance has a long history beginning with Cauchy [1815] and 
Poisson [ 1816] each of whom independently solved the classic two- 
dimensional wave problem which bears their names. In recent 
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years Kranzer and Keller [| 1959] , Kajiura [1963], Whalin[1965a], 
and Whalin [1965b] have made significant contributions on the sub- 
ject. The last cited is an extension of the Kajiura work and appears 
to be the most general treatment on the subject. 

The theory as presented by Whalin relates an initial distri- 
bution of impulse, surface velocities, and surface deformations to 

the waves produced at some distance from the source in water of 
finite but uniform depth. To a certain extent the choice of a source 

model is arbitrary in that several models may give an adequate fit 
to experimental data with each having its own particular advantages 
and disadvantages. No physical reality is assigned to the source 
model in terms ofthe dynamics of the explosion; fortunately, how- 
ever, the dimensions of the source model have been found scalable 

in terms of explosive yield so that useful predictions can be made. 

A source model that has been found to give good agreement 
with experiment is a paraboloidal cavity given by: 

nz) = 2d, fe) - 5| a (1) 

0 eae 

The collapse of this cavity at time t=0O generates the wave system. 
In cases of large explosions where the dimensions of the cavity are 
not small compared to the water depth, this model yields a poor 
prediction and a different source model, perhaps utilizing an initial 
time dependency should be employed. 

According to Whalin the surface elevation, (r,t), for an 
axially symmetric surface deformation is: 

00 

nr .t). = ae (0) o cos (Qt) J,(or) do (2) 
0 

where mo) is the Hankel transform of the initial surface deforma- 

tion 7(r): 

oO 

Alo) =| n(z)Jo(or) tr dr. (3) 

All unprimed quantities in these equations have been non-dimensional- 
ized using the water depth, h. Primed variables indicate the cor- 
responding dimensional quantities. 

rod, = dimensionless radius and height of initial surface 
. deformation = ro'/h, d,'/h 
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= dimensionless radius to field point = r'/h r 

n = dimensionless elevation of water surface = 7'/h 

h = water depth 

o = dimensionless wave number = Kh 

K = wave number = root of equation: we = gk tanh kh 

Q = dimensionless frequency = (w*h /g)!/2 

w = frequency, radians /sec 

t = dimensionless time = t'Ve/h 

t' = time, sec. 

The integral in (2) is evaluated using the method of stationary 
phase (cf. Stoker [1957]). After doing this and making the substitu- 
tions the result is: 

n(r,t) = 7982. [- aoe - J,(or,) + cos (or - Mt) (4) 

Here, v = group velocity = 3[ (0/x) tanh ale [41+ (20/sinh 20)]. 
Eq. (4) is valid at distances from the source that are large in com- 
parison with the radius of the cavity and in water of uniform depth. 
A point is selected which satisfies these conditions and the spectral 
energies of the system evaluated as will be discussed in the next 
section. 

III WAVE PROPAGATION OVER A BOTTOM OF VARIABLE DEPTH 

The extension of the solution to regions of variable depth is 
based on a conservation of energy approach originally presented by 
Van Dorn and Montgomery [ 19631. The equation presented therein 
evaluated the spectral energy, that is the energy per unit frequency 
of the system, for the special case of propagation along a ray normal 
to parallel bottom contour lines. The derivation is presented here in 
a slightly different way to permit its extension to include refractive 
propagation. The topography considered is represented in Fig. 1 
which also shows the coordinate system and a typical refracted 
wave ray. 

The following assumptions apply: 

(a) wave frequency remains constant throughout the region of 
wave travel and is unaffected by refraction 

(b) energy is transported at group velocity in a direction 
normal to the wave crest 

(c) energy per unit frequency is conserved between adjacent 

wave orthogonals. 
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WAVE FRONT 
eae — (DEEP WATER) 

ORIGIN STATION 

| 40 59 64 71 76 100 

Fig. 1. Bottom topography and wave refraction 

The approach will be to consider the energy patch between 
two adjacent wave rays, S, and S,, and between two adjacent 
frequencies, w and w + dw, and to establish the dimensions of this 
patch as a function of path position. While the total energy of the 
patch remains constant the energy density changes with patch size 
and this, in turn, determines the local wave amplitude. Establish 

a rectilinear coordinate system, (x,y), with x-axis normal to the 
parallel bottom contours and the beach. Orient the curvilinear 
coordinate system (s,n) shown in Fig. 2 to the median between 
rays. Since Kk = K(w,h) only the magnitude of K,, Kz, and Kk will 
be the same but due to the curvature of the orthogona s the directions 
will be different, Let kx, have components (Z, »m, ) parallel to 
(s,n). Since the patch 66 6&, is small £, + fl, = ri m, = m,=m. 

It may be shown by applicatinn of Snell's Law that the head of 
the vector kK, will shift to the right along line AB in Fig. 3 main- 
taining a constant we secke on the beach as the patch moves inshore. 
Then, from Fig. 3 

m, cos 8, = m cos 8 = mg cos @ . (5) 
i] 

and also, 

m, = Ky59%, (6) 
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Fig. 2. Propagation of an energy- patch over a variable-depth bottom 

b STRAIGHT BOTTOM CONTOURS PARALLEL 
TO THE BEACH ARE ASSUMED 

Fig. 3. Wave number vector diagram for a shoaling bottom 
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so that, 

_ Cos Q 
~ cos 6 60, - (7) 

Since dw is small the frequency dependent change in the trajectory 
of the phase wave orthogonals may be neglected. The change in the 
patch width due to the geometric spreading of the rays as the patch 
moves through a distance, ds, will be 

m 
27 ds. 

The patch width will be 

sti i 

et ath = ds 
0) 

Sf = 20, - £08 Sods : (8) 
cos 

Next, consider the patch length, 6§&. If 6t is the interval required 
for the patch to pass a given point, i, on s, then 

where v, is the group velocity at point i. The time interval, 5t, 
may also be represented as follows 

_ 6t 
dt = =— dw 

ata save! a8 = aw — (1/v) ds 
Ow o Vv 0 dw 

i i 
1 av 1 Ov 8x 

=- dol — ~— ds = - dw — = ds. 
0 v2 w 0 wt aK Ow 

Since v= 8w/8K, 

1 90 it = - aw | niet dg bye OK 
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i 
) 1 

&t = ao OK (+=) ds. (9) 

The patch length becomes, 

i 

8& = v, aw J ee (=z) de (10) 

If E(w) is the energy per unit frequency of the source dis- 
turbance then the energy between orthogonals in a frequency band, 
dw, near the source will be 

2505 
E(w) dw a 

Since the energy of the patch has been assumed constant this will also 
be the value at the field point, i, and this in turn may be equated 
to the local wave energy: 

2 1 
E(w) dy “B80 Zips n OG65;, (14) 

where nj is the local wave amplitude. Substituting the expressions 

for 5% and 6€ from Eqs. (8) and (10) gives: 

i i 
260, _ 1 zi cos 0 2 a7 1 

E(w) dw aS Pg Ni 2880 cos ds | [v, aw | OK (=) ds | ° 

The final result is, 

Bled of 222% a6] [of & (ste) a]. ca 
a a ee 

al B, 

The first bracketed factor, @,, represents the effect of geometric 

spreading between rays while the second bracketed factor, B;; 

represents the effect of the spatial stretching of energy between 

adjacent frequencies, or frequency separation. 

Computationally, E(w) will be evaluated using the results of 

the previous section, Eq. (4), at a point sufficiently removed from 

the source and over bottom depths nearly enough uniform to satisfy 

the conditions on application of that equation. From that point on 

inshore new a's and B's will be computed numerically for each 
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field point desired. Treating E(w) as a constant a new nj = n(w) 
will be computed. Details will be discussed in the appendix on com- 
putational procedure. 

The phase of the waves in water of variable depth requires 
attention. The phase function of Eq. (4), cos (or - Qt), for uniform 
depth may be rewritten as 

Ww 1 
cos (K = +) r 

Vv 

since t'=r'/v'. Now, however, in water of variable depth wave 
number and group velocity will depend on location as well as fre- 
quency. The argument must now be represented in integral form 
with the integration performed along the path, s. The phase term 
now becomes 

cos | («-5) as'| (12) 

where K = k(h,w), v' = v'(h,w), and h = h(s'). 

The central assumptions involved throughout this development 
have been that the system is linear and conservative and that the 
energy per unit frequency remains constant. The assumptions are 
quite viable as long as the water is of deep to moderate depths, say 
one-half wave length or deeper. Inshore of this point the system 
becomes progressively more non-linear, non-conservative and the 
frequency assumption more vulnerable. An evaluation of the linear 
assumption will appear in the section. 

IV. NON-LINEAR FEATURES OF THE SHALLOW WATER SYSTEM 

The previous section carried the wave system from a region 
of uniform depth into a region of variable depth; however, the des- 
cription of the system retained its linear character. We have des- 
cribed earlier the change in form of shallow-water waves from one 
of sinusoidal form to one of sharp crests separated by long flat 
troughs with an associated horizontal plane asymmetry. In this 
section a particular non-linear theory, the cnoidal wave theory of 
Keulegan and Patterson [ 1940], will be incorporated to modify the 
form of the waves and the wave envelope. 

The first of the cnoidal family of wave theories was presented 
by Korteweg and de Vries [1895]. Because the wave elevation was 
given in terms of the Jacobian elliptic cn function they coined the 
work cnoidal to describe the resulting wave form. Subsequent contri- 
butions, in addition to the Keulegan and Patterson paper cited above, 
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have come from Keller [1948] , Benjamin and Lighthill [ 1954] , 
Laitone [1960] , and Laitone [1962]. Masch[1964] has computed 
the shoaling characteristics of cnoidal waves assuming constant power. 
Iwagaki [1968] has simplified cnoidal wave equations to a form which 
he calls "hyperbolic waves." Masch and Wiegel [ 1961] have pro- 
vided extremely useful tables of cnoidal wave functions. 

A paper by Le Méhauté, Divoky, and Lin [1968] motivated, 
in part, the choice of the Keulegan and Patterson theory for incor- 
poration in this prediction scheme. These authors reported shallow- 
water wave experiments and compared the results with twelve differ- 
ent wave theories. Their finding was that none of the theories was 
uniformly satisfactory but that the cnoidal theory of Keulegan and 
Patterson was the most generally satisfactory. For the shortest 
waves linear theory was the best but failed rapidly as the wave length 
was increased. Stokes' second order and Laitone's second order 
were consistently worst. Stokes' third and fifth order were better 
but not as good as linear theory. In terms of the wave profile the 
Keulegan and Patterson cnoidal profile gave the overall best agree- 
ment and was accurately placed with respect to the still water line. 
This latter finding has also been confirmed by Adeymo [ 1968]. 

The central equations adapted from Keulegan and Patterson 
for use here are: 

n'(r',t!) = - ng! + Hon? _— (kr' - ot'), | (14) 

\f2 

=e b-(2)+) (2) @-2g8)] > a 
my! . K(k) - BO), ag y ar (16) 

kk” K(k) 

“H 16 2 meek K(k)] (17) 

2 OW 2 } a 
= ie : ea LG} : (2) + (=) O73. 3 BY) | (18) 

(primes indicate that the variable is_in the dimensional coordinate 
system.) The expression, L?H/h>, may be recognized as the 
Ursell parameter, although, in fact, Stokes was the first to identify 

it. The parameter gives a measure of the linear or non-linear nature 
of the system. Linear theory is generally applicable for values less 
than 1 while cnoidal theory is most appropriate for values greater 

than 10. 

The cn function displays a character that is particularly useful 
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for this application. When the modulus, k, assumes its minimum 
value, zero, cn reduces to cosine. When it assumes its maximum 

value, unity, it reduces to the hyperbolic secant, sech. Since cos? 
reduces to cos by the double angle formula and since the form ofa 
solitary wave is given by a sech* function, the cn function by 
appropriate choices of k describe the complete transition from 
sinusoidal waves to solitary waves. As the value of the modulus 
increases from zero toward unity the wave crests become more 
sharply peaked and the troughs longer and flatter; the height of the 
crest above the still water line increases and the depth of the trough 
decreases. The wave form is symmetrical about a vertical through 
the wave crest so that no wave slope asymmetry is reflected. Thus 
the cnoidal feature may be used to improve the realism of the phase 
waves in several ways: 

(a) to give the non-breaking waves a more realistic profile 

(b) to introduce asymmetry of the waves about the still water 

line 

(c) to increase the velocity of the waves in very shallow water. 
This feature has not been utilized in this application. 

Computationally, the frequency, w, and the water depth, h, 
are defined in the given frequency and spatial array. The wave 
height, H, is obtained from the linear theory of the previous section. 
The elliptic modulus, k, is computed from an iterative solution of 

Eq. (18). K(k) and E(k) are computed from a series expansion in 
terms of k. Further details appear in the appendix on computational 

procedure. 

The application, then, involves the use of a theory developed 
by irrotational, periodic, non-dispersive waves of permanent form 
in water of uniform depth to represent a wave system which is dis- 
persive and not periodic passing over a bottom of variable depth and 
in which vorticity due to bottom friction is present at least to some 
extent. The assumptions implicit in this extension are that the phase 
waves assume a form appropriate to their local peoquency within the 
group and that this frequency content changes only slowly, and further 
that rotationality effects are small. The latter assumption appears to 

be the most vulnerable. 

V. WAVE BREAKING AND ENERGY DISSIPATION 

Despite abundant literature on the subject of wave breaking 
there does not exist today a fully-adequate mathematical description 
of the process, and, in fact, much of the experimental evidence is 

contradictory and subject to wide scatter bands. In the case of this 
analysis the need is for a criterion for wave breaking which relates 
the wave frequency, w, the linearly computed wave height, H, and 
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the water depth, h. In addition expressions are needed which deter- 
mine the wave height decay after breaking and the point at which 
spilling waves regain their stability. In the absence of an adequate 
theoretical base a purely empirical approach will be used. 

Experimental evidence has been plentiful. Iverson [1952] 
and Morison and Crooke [ 1953] made classical contributions. 
Nakamura, Shiraishi, and Sasaki [1966] presented what is perhaps 
the broadest range of data on breaking and decay after breaking. A 
fairly complete bibliography of other works on the subject appears 
in Van Mater [1970]. 

No uniformly satisfactory criterion which predicts both the 
occurrence and the location of wave breaking has yet been developed. 
A commonly used but crude criterion is that a wave breaks when the 
wave height-to-water-depth ratio is equal to or greater than 0.78. 
The Nakamura et al. paper previously alluded to contains all this 
information covering a rather broad range of beach slopes and wave 
conditions, and on this basis it was selected to develop the criteria 

needed for this application. The paper is essentially a report of 
experimental data with no analytical comparisons or proposals. A 
comparison of the shoaling coefficients inferred from the Nakamura 
data shows lower values for the gentler bottom slopes than would be 
obtained by linear theory. This gives rise to suspicion of prominent 
frictional effects in the experiments. Although the wave height may 
have been attenuated by friction as the waves moved inshore it seems 
reasonable to assume that the characteristics, w, H, and h, at the 

breaking point would not be severely affected. More vulnerable, 
perhaps, is the rate of decay after breaking and the length of the surf 
zone reported inthe paper. Nevertheless, the scale of the experi- 
ments is approximately the size of those with which we are concerned. 
The following formulas are a result of reworking and fitting curves 
to the Nakamura data, 

(a) Wave breaking occurs if: 

5 wh (150)"" bs oth sian ‘ 
H ~ 2 t+ logi, (wh/g 20.13, S20.01) 

zn \/4 
p< (10 ae -1.1) +1og ee +0.10 (wh/g<0.13, S= 0.01) 

(19) 

where S = tangent of the angle of bottom slope. A plot of this criteria 
for several bottom slopes is given in Fig. 4. 
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7s (10 es ai + logie( 92) +10, — <13 

s 2.01 

Fig. 4. Wave breaking criteria 

(b) Decay of wave height after breaking is given by, 

yes h H, = Hy (72 (20) 

where, 

H,, h,= wave height and water depth at a point after breaking 

H,_, h, = wave height, water depth at breaking 
b’ “b 

The expression is for two-dimensional waves. In the explosion- 
generated wave case to account for geometric spreading the expres- 
sion must be multiplied by the ratio a, /a, where @ is obtained from 
Eq. (12). 

(c) The equation for wave stability after breaking is: 

[8 = aa (0.85 - 0.40 _ (21) 

The wave heights in Eqs. (17) - (21) reflect experimentally- 
measured quantities; however the wave height information we have 
at hand is computed from the linear theory of Eq. (12). Linear 
theory is known to underpredict wave shoaling as the wave height 
becomes a substantial fraction of the water depth. In addition, in 
the final stages before breaking the wave front slows more rapidly 
than the back. Associated with this developing wave slope asymmetry 
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is a rapid increase in wave height known as "wave peak-up" which 
occurs just before breaking. The effect has been observed by 
Le Méhauté, Snow, and Webb [1966]. On the basis of the experiments 
reported in that source, Van Dorn, Le Méhauté, and Hwang [ 1968] 
state that the increase in wave height due to peak-up is 40% of the 
linearly computed value. 

Computationally, the wave height computed on the basis of 
Eq. (12) is multiplied by a factor of 1.40 to account for peak up and 
tested against Eq. (19) for each point in the spatial and frequency 
array. If breaking occurs the increased wave height is retained as 
H, for use in Eqs. (20) and (21). If no breaking occurs the linear 
value of wave height is retained. 

The Van Dorn boundary dissipation equation for impermeable 
bottoms and modified for a wide basin is: 

/2 ang PUD conan aoa 
where, v = kinematic viscosity of water and points 1 and 2 are 
successive points in the direction or propagation. 

VI. RESULTS AND DISCUSSION 

In this section the computer program predictions for three 
source strengths, corresponding to small, moderate, and large 
explosions, will be described and discussed. No experimental data 
are included but comments will be made on the agreement between 
the predictions and experiments which have been conducted. 

The theory and the computational procedure outlined in the 
preceding sections are applicable to any arbitrary bottom profile 
with parallel straight contours and gentle slopes. However, to 
compare the theory with experiment a specific bottom profile, that 
of a test basin at the Waterways Experiment Station, Vicksburg, 

Miss., was introduced as an input to the computer program. Through 
the courtesy of that laboratory access was granted to data from a 
series of experiments conducted there. The data has not yet been 
formally published by WES at this time, so it cannot be reproduced 
here; however general comments on the agreement between predicted 
and experimental results will be made. 

The computer results are non-dimensionalized on the basis of 
the water depth at the explosion, hg Previous notation is used 
except that the water depth, h, is taken as the depth at the origin, 
ho. 
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Radial distance along axis: r= 2 /ho 

Distance along path: s =s'/hg 

Wave elevation: y= 7) /B 

Offset of path from axis: y=y /o 

Source strength: W= yh. 

In the last definition Y is the explosive yield in pounds of TNT, 
equivalent. For dimensional consistency the exponent should be 1/4; 
however experiments have shown that exponents from 0.26 to 0.30 
(depending on the submergence of the source) provide better 
scaling. The value 0,3 is taken here. 

Results of time histories along the axis for three different 
source strengths are presented in Figs. 5 - 7: 

Figure 5, small explosion, W = 0.139 

Figure 6, moderate explosion, W = 0.166 

Figure 7, large explosion, W = 0.224. 

time —=t=t'V gh, 

Fig. 5. Prediction of wave system on axis for small explosion 
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—— 7x107 —— 

time —= ttV9g7h5 

Fig. 6. Prediction of wave system on axis for moderate explosion 

—— 7110 

1210.67 

STA.59 

re '/hg= 9.83 

20 30 40 50 60 70 80 90 

time —= t= Vg/ho 

Fig. 7. Prediction of wave system on axis for large explosion 
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Predictions are displayed for the five stations, 59, 64, 71, 76, 100 
shown in Fig. 1. The first station, station 59, may be considered 

to be in the transition range from deep to shallow water for the larger 
waves in these explosions. The remaining stations are all in progres- 
sively shallower water. A frequency range was chosen which would 
permit the computation of the first four wave groups. The full four 
groups are shown at station 59, Fig. 6; however since only the first 
two groups are of practical interest these are the only ones shown 
in the remaining displays. 

Wave breaking occurred for the large explosion but not for 
the two smaller explosions. The individual phase waves which have 
either just started to break or are continuing to break are indicated 
by an asterisk in Fig. 11. The irregular shape of the envelope at 
stations 71, 76, and 100 is caused by the fact that breaking and wave 
(envelope) height decay after breaking have already occurred for these 
frequencies within the envelope. Typically, breaking will start within 
a small frequency band then spread to adjacent frequencies as the 
envelope moves inshore. 

The effect of refraction is shown in Fig. 8 for the moderate 
explosion case only. The wave trains correspond to those along the 
ray families 0 9* = 0°, 20°, and 40°. Mean offsets of the path from 
the axis are indicated. Three stations, 59, 76, and 100 are shown to 

give a representative effect. 

¥#¥'/ho 78.49 
" 

ns 10% ——_—_— 

60 70 80 90 100 

time —=t=t'V9/ho 

Fig. 8. Prediction of wave system along refracted rays for 
moderate explosion 
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Early runs on the computer used the cavity dimensions sug- 
gested in Van Dorn, Le Méhauté, and Hwang [1968] and the wave 
peak-up, wave breaking, decay, and stability criteria which have been 
outlined previously. To improve agreement between the theory and 
observation adjustments were made to some of these empirical coef- 
ficients. First, cavity dimensions were adjusted for the best fit 
with the results shown below. 

; 24 

Yo = ae — eel 

C,., Cy, 

small explosion 7.80 1,53 

moderate explosion 7.82 1.33 

large explosion 8.14 2.03 

recommended by Van Dorn 9.60 2.80 

For wave breaking the peak-up ratio was changed from 1.40 to 
1.50, breaking and decay criteria were not changed. The criteria 
for stability after breaking was changed as follows 

2 

Ha = Hp (0.90 - 0.40 2he) 
hg hp 24 

Stable 

where H, is now taken as the height before peak-up. 

The trajectory of an individual wave ray is dependent on the 
initial angle at the origin, 0), bottom profile, and frequency. Con-= 
sequently absolute convergence of a family of wave rays representing 
an array of frequencies is not possible. To give the best overall 
conformity over the spatial domain, 9 is adjusted with frequency, 
i.e. 05 = Oo(w). For the conditions assumed a simple linear varia- 

tion in @(w) was found to give a variation in path lengths which 
generally fell within a 1% band and a variation in offsets from the 
axis which fell within a 5% band, The control angle upon which 
6,(w) is based is designated gene 

With the background now established the following remarks 
may be made regarding the agreement between the predicted, or to 
put it more accurately, the hindcast wave system and the wave 
system observed in experiments. 

(a) For the two smaller explosions, W = 0.139 and W =0.166, 
agreement of the envelopes at stations 59 and 64 is very good. The 
envelopes of the first group are underpredicted at stations 71 and 
76 but overpredicted at station 100. This infers that the linear 
theory underpredicts shoaling wave height enhancement in very 
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shallow water, and also that the boundary dissipation formula used 
in the program does not provide sufficient attenuation. The assym- 
metry of the envelopes show particularly good agreement and is one 
of the strong features of the program. The observed trough levels 
at stations 71 and 76 is slightly lower than predicted. This is 
attributed to wave set-down due to the presence of a counterflow, or 
backwash current. 

(b) For these two smaller explosions the theory in general predicts 
the correct number of waves in the envelope. Agreement in phase 
is poor at station 59 but better at subsequent stations. There is also 
some grounds for suspicion of zero-set clock errors in the experi- 
mental data so that it is difficult to make definitive statements on this 
subject. The same suspicion makes it difficult to comment on the 
agreement of the phase velocity of the observed waves. 

(c) The agreement in regard to the form of the waves in these 
smaller explosions is especially impressive, The change from sinu- 
soidal form to cnoidal form quite accurately represents the observed 

(d) The observed waves were nearly fully attenuated by the middle 
of the second wave group. Stronger attenuation in the higher- 
frequency range is required in the boundary dissipation formula. 

(e) Time of arrival (based on linear group velocity) of the wave 
groups is in very good agreement indicating that transporting energy 
at linear group velocity, even in the presence of noticeable viscous 
effects, remains valid into quite shallow water. 

(f) The fit of the envelope for the large explosion, W = 0.224, at 
station 59 is only fair. The observed envelope of the first group 
reaches its maximum ata later time. It appears that for this source 
strength the explosion may no longer be considered to occur in deep 
water and that a different source model, perhaps one yielding a 
higher-order Bessel function, is indicated. In addition the observed 
troughs of the large waves were much lower than those predicted. 
Again the probable cause is the presence of an observed strong back- 
wash current which would have the effect of depressing the trough 
level. The presence of backwash currents is not reflected by the 
theory. 

(g) The agreement in phase is quite good at stations 59 and 64, but 
not perfect, After wave breaking sets in the phase agreement de- 
teriorates. One of the observed waves in the vicinity of the first 
node decomposed into two component waves both of which eventually 
broke. Otherwise, the theory predicted the correct number of waves. 

(h) For the large explosion breaking is predicted for the second wave 
at station 64. Actually, the third and fourth waves broke at this 
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location and the second wave did not break until a subsequent station. 
A different source model giving a later peak to the first envelope 
would probably also correct this discrepancy. The theory predicts 
about the right number of waves breaking at subsequent stations, 
although there is disagreement in some cases on which individual 
waves break. The decay rate after breaking appears to be about right 
for the envelope heights in the surf zone match quite well. As before 
there is still distortion of the envelope due to backwash effects. The 
stability criteria seems to give a surf zone of about the right length, 
but the data are inadequate to say conclusively. Comparison witha 
much larger number of experiments is needed to fine tune these 
empirical breaking relationships; however impulsively-generated 
wave system furnish an ideal vehicle for such studies. 

(i) The form of the breaking waves and the near-breaking waves is 
very poorly predicted by this program. The wave slope asymmetries 
which develop near and at breaking are not reflected at all in the 
cnoidal wave form. For future generations of the program the 
incorporation of a theory developed by Biesel [1952] is under con- 
sideration. 

(j) Despite the fact that the "correction factor" approach in account- 
ing for wave peak-up is somewhat distasteful it appears useful at this 
evolutionary stage. At the minimum the peak-up correction factor 
should be refined to reflect the influence of w, H/h, and bottom 
slope. Clearly what is needed is a computationally useable non-linear 
theory which predicts this phenomena. 

(k) No comments can be made on the quality of predictions along the 
refracted rays. Such data were taken in the WES experiments but 
are not presently available for comparison. 

In summary it may be said that for small and moderate size 
explosions the theoretical and empirical program presented gives 
good predictions of envelope shapes and asymmetry, wave form, 
and times of arrival of wave groups in shallow water. Wave height 
enhancement in very shallow water and viscous attenuation are some- 
what under-predicted. The quality of the prediction of the phase of 
individual waves remains to be established. For large explosions 
the present source model gives only a fair prediction of envelope 
shape. Group times of arrival and form of non-breaking waves con- 
tinues to be well predicted. Form of near-breaking waves is poorly 
predicted. Counterflow currents have a prominent influence when 
waves are very large, but the presence or effect of such currents is 
not predicted. The location, size, and extent of the surf zone appears 
satisfactory based on a limited comparison. 
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APPENDIX 1 

COMPUTATIONAL PROCEDURE 

This appendix discusses the details of implementing the theory 
outlined in the previous sections in a computer program which will 
predict the wave system in shallow water. 

Initially, a monotonically decreasing bottom profile is 
assumed with parallel straight bottom contours as shown in Fig. 4. 
Actually, the specific profile used in this program was chosen to 
conform to that of a test basin at the U.S. Army Engineer Waterways 
Experiment Station, Vicksburg, Miss. in order to permit comparison 
of the analytical predictions with experiments performed there. A 
polar coordinate system is established with the origin at the point of 
the explosion and the axis taken normal to the bottom contours. The 
axis is divided into a number of closely spaced stations, indexed i, 

with i=0O atthe origin. The frequency range of interest is also 
divided into a number of closely spaced frequencies, indexed j. 
A number of rays, or orthogonals, indexed k, are established 

emanating from the origin. The local angle of the orthogonal with 
the normal to the bottom contours varies with the frequency, w, and 
the water depth at a given location is identified as 6jj,. Because of 
the frequency dependence absolute congruence of the trajectories of 
the orthogonals is not possible. To give the best overall conformity 
with respect to both location and path length the initial angle of the 
orthogonal at the origin, Oj, is adjusted with frequency. Thus the 
index k identifies a family of orthogonals which have approximate 
but not precise spatial agreement, except, of course, on the axis. 
Throughout indexical notation is for array identification only and 
tensor convention is not implied. 

A starting station, i=I, is selected in deep water sufficiently 

distant from the explosion for Eq. (4) to be valid. That theory strictly 
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is for water of uniform depth, but for practical purposes as long as 
the minimum depth (at i =I) is greater than half the length of the 
longest waves with significant energy results will be quite satis- 
factory. Accordingly the depth used in Eq. (4) is taken as the depth 
at i=I. Equation (4) may be rewritten in indexical notation as 

/2 
1 qi Hee I 

Bie Se [paw | cc. allie) a ijk ij (ea) 
do ij 

Nijk = Bijn COS (Kj Sijk - &jtijx) (24) 

where, 

Bijx = envelope elevation function in dimensional system, (ft) 

Nijk = wave elevation in dimensional system, (ft) 

ro,dg = radius and depth of cavity in dimensional system, (ft) 

Stik = path length to i station along ira ray. Also indexed 
j since path varies with frequency 

oj, = Kjhi 

Vij = group velocity 

= /gh, - alah Cj I (1 LNs ) (25) Bo EN oo sinh 20); 

J3 = third-order Bessel function of the first kind 

=) . Vgh; . — vil)" ete 2qjj - 20); cosh2ojj toij __ 1 ) 

ty J sinh 2075; J 

(26) 

The wave number, Kij » obtained from the equation 

2 

and may be approximated in closed form by 

Ki. = #1 (coth SEL 

FoeN cs g 

2 2 1/2 

Vere: (28) 
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The Bessel functions J,(z) and J\(z) are computed from series 
expansions given in Aueaniowite and Stegun [1964] (eqs. 9.41-9.46). 
J,(z) and J3(z) are then computed from the recursion relation 

Jn (2) + Ing (z) = (2n/z)Jp(z). 

The time of arrival of each frequency at the starting station 
is computed from the relation. 

S;; 

ijk 

It is now possible to compute the wave spectral energy at the 
starting station by applying Eq. (12). That equation, rewritten for 
numerical integration, is: 

a. = ik 2k PTjk (30) 

where 

: 1 

“Tk » Re. canoe aaa (31) 

I 

Bik = Vy » a (<2) : ee 
3 

Ae Sy pecs reco 
i=O \j (1 ciaece el 

As! (32) 

cos 0. -l, j,k 

The last factor in Eqs. (31) and (32) represents the incremental 
distance along the path where As' is the station spacing on the axis. 

The energy may now be carried forward from station to 
station as: 

Beene Uk 

or 
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12 ieee 
Tial, i kZiel, j,kPiolik = ijk jn Pijr 

Thus 

atk Bijk \/2 
t -= ! t { 

Niet, isk az SP heres | S (33) 

Similarly; 

Bl. = Blix ijk Pijk qe (3.4) 
tote OUR La: ty kPisi, jk 

In the computer program it is the wave system envelope, B', 
that is carried forward to the next station and the new value at that 
station computed from Eq. (34). The phase term is then applied to 
obtain the wave elevation. 

The envelope function B'(w) is symmetrical about the SWL 
by definition. This corresponds well to the observed envelopes at 
the starting station in deep water, but as the system moves into 
shallow water the envelope and the phase waves develop asymmetries 
about the SWL which we seek to describe by the application of the 
cnoidal theory as previously discussed. 

The first problem is to calculate the elliptic modulus, k, 
for once this parameter is known, all other cnoidal properties may 
be computed directly. Two difficulties are immediately realized 
in the determination of the elliptic modulus. First, Eq. (18) does 
not admit an explicit solution in k. Secondly, the form of cnoidal 
waves becomes quite sensitive to k as k approaches unity. For 
example, there is a noticeable difference between the form of the 
wave determined by k* = 0.99990 and that determined by k?= 
0.999990. Further, explosion parameters of interest require the 
determination of modulus values as large as k”"=1-10°. Thus 
the following procedure was employed to efficiently and accurately 
determine k from Eq. (18). 

Write Eq. (18) as 

2 2 2 2 diwih gaSmiy pee ee as H 1 Aes | 
oar aie Ee Cad Ge) ta > eae 

We then seek the roots of the equation 

g(k) = 0 (35) 
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Now, smaller roots of g(k), say 0< ages oe 10, are 
readily obtained by iteratively searching for zeros of g(k) in 
successively finer increments. Larger roots of g(k), say 

1-10%<k*=1 - 10°, are then obtained by iteratively searching 
for roots of g(k) in half-power increments of 10°". where k= 

fae 1 0% ts Nearly exact solutions in terms of n are then obtained 
using the approximate interpolation relation 

0.575 + 
n= a/Q B (36) 

where @ and 6 are interpolation constants and Q is the dimension- 
less frequency. This approximation is based on a family of curves 
(n vs. t) in Wiegel [1964] (Fig. 2.24). 

Computer computational difficulties are avoided in solving 
Eq. (18) for values of k near unity, since the modulus k and the 
complete elliptic integrals K(k), E(k) can be determined from the 
value of 10 = 1 - k*, using the approximations given in Abramowitz 
and Stegun [1964] (eqs. 17.3.33-17.3.36). Since only the largest 
real root of g(k) is of interest, the computer program searches 
first for the largest real root. If no real root is found in the pange 
1 - 10°4*<k?<1, then the largest real root inthe range 0<k°S 
{= 10°* ts computed. The smaller roots or imaginary roots have 
no meaning. Whenever no real root is obtained in the range 
0<k<1, the modulus is set equal to zero. The computation is 
repeated for each frequency at each location. Note that the calcula- 
tion is based on the double amplitude of the envelope and not on the 
phase wave elevation. 

The distortion of the envelope to its asymmetrical form is 
achieved by applying Eq. (16). Denoting the elevation of the envelope 
above and below the SWL as Hi and H2 those equations become 

H1 Huy (Sw - E(kijx) ] 
Ki KU; ijk 

ijk) 
(37) 

_ Hi ijk | H2ijy = Hijr [1 s ae 

The phase term for water of variable depth was given as 
Expression (13). Denoting the argument of the function as and 
the field point on s as 3g; 

v= J (eget, 
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the expression may be written for numerical integration as follows: 

As! 
Wijk = > Ki-1,j,k * S00 6. t witii, (38) 

ge i-l,j,k 
i=O 

where 

i 

1 As! 
' — e a eee ‘ike > vi] C08 Onin (39) 

i=0 

In Eq. (39) tij, is the time of arrival of the jth frequency com- 
ponent at location (i,k) and is printed out for each frequency at each 
location. 

Introducing the cnoidal phase term of Eq. (14) the wave ele- 
vation becomes 

Nijk = - H2ijx + Hijxon” [ sun) (Hi jx)» ix | ° (40) 

The Jacobian elliptic functions can all be expressed in terms 
of theta functions, and can be computed from the resulting infinite 
series. However, in this program the elliptic function cn in 
Eq. (40) is evaluated to any specified degree of accuracy using 
Landen's transformations. 

Let m=k’, m, = € -m. Then for m sufficiently small 
such that m* and higher powers are negligible, we have the follow- 
ing approximations for the Jacobian elliptic functions 

sn(u,m) = sin u - 0.25 m(u - sin ucos u) cos u (41) 

cn(u,m) = cos u t+ 0.25 m(u - sin ucos u) sinu (42) 

dn(u,m) = 1-0.50 msin u (43) 

For m sufficiently close to unity such that mi and higher powers 
are negligible, we have the approximations 

tanh u + 0.25 m,(sinh u cosh u - u) sech” u (44) sn(u,m) 

cn(u,m) = sech u - 0.25 m, (sinh u cosh u - u) tanh u sech u (45) 

dn(u,m) + sechu + 0.25 m,(sinh u cosh u + u) tanh u sechu (46) 
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Using the following transformations, intermediate values of 
the parameter m are reduced or increased such that the above 
approximations are applicable. 

To increase the parameter, let 

Arno 1 - me : 

Pl tm ee p, = (7) 

vie emer 
1 + P, = 

Then 

- \/2, sn(v,p) cn(v,p) 
sn(u,m) = (1 +p, ) ante op (47) 

dn(u,m) = (1 - (1 - p'”)) sn’(v,p) (48) 
: a P| dn(v,p) 

2 sn‘ (v p) 
cn(u,m) = (1 - (1 - P, UC Rea (49) 

To decrease the parameter, let 

15: Be u 
P= (+=) ’ va— EFT é oy 

ie m, ip 

Then 

an{u;m) = (1 +p") “peek (50) 
i +p “an (v>p) 

dn(u,m) =r(1 = 2 ___sn(v,p) (51) 

> PU TF pent(v ep) 

I CERN css BLN (52) 
i oh p* sn*(v,p) 

Note that in both the descending and ascending Landen trans- 
formations, sn and dn are required in order to compute cn. In 
the computer program values of m greater than 0.6 are computed 
using the ascending transformation. Values of m less than or equal to 
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0.6 are computed using the descending transformation. The transfor- 
mations are reapplied until higher powers of m or m, are deemed 
negligible. The currently used cutoff value is m*(m?) = 10 Both 
of the Landen transformations converge quite rapidly. Thus the 
cutoff parameter value is attained in three of fewer applications of 
the pertinent transformations. 

Some computational difficulty may be experienced in evalua- 
ting the hyperbolic functions used in the ascending Landen's transfor- 
mation, for large values of the argument u. This problem can be 
alieviated somewhat by reducing the cn argument, u, to its 
principal value - 4K(k) Su S 4K(k). Further difficulty may be 
resolved by using the descending transformation throughout the 

modulus range where applicable. 

When k =u, the cn* term in Eq. (40) reduces to cos? (Wijx)/ 2 
and Hijj, = H2ijx = (Hijk)/ 2 = B'. Thus, for k=0, Eq. (40) reduces 
to 

Nijk = B' cos Wijk, 

which is the usual wave elevation equation. 

The matter of the frequency dependence of the trajectories of 
the wave orthogonals has been discussed briefly. In principle it 
would be possible to compute an initial angle 0 jx for each frequency 

and at each station which give a path length and a path offset from 

the axis that would fall within established error limits. Such an 

iterative procedure would increase the computation time enormously 

and was rejected on this basis. Several schemes were tried in 
attempting to find a simple rule for the choice of 99), which would 

give reasonable conformity in a given family of trajectories. The 

simplest rule turned out to be the best. A linear distribution of 

Qik was chosen according to the following relation: 

* Ojk = Sojkl 1 - 0.04(w - 0.2)] (54) 

where Ocik is a control angle for the family of trajectories. The 

choice of the above relation is quite an arbitrary one and a different 

and more complicated bottom topography could necessitate a different 

function or the iterative procedure discussed above. 

The refraction angle at each station along a given path is com- 

puted from Snell's Law: 

Bi ik = arcsin Koj_sin Bojk (55) 
J Ki 
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The path length and offset from the axis are given by 

ro As' 
=i\ = » cos 011 5 x (56) 

t 239 

! 

1 = ° Yiik =) As' * tan 85 i,k ; (57) 

The system is tested for wave breaking by applying Eq. (19) to the 
envelope height, Hjj,, increased by a factor of 1.40 to account for 
non-linear peak up. If the test succeeds and breaking occurs then 
the increased value of envelope height is retained as H, for use in 
computing decay after breaking, Eq. (20), and wave stability, Eq. 
(21). Indexing the breaking point as i=b and any location in the 
surf zone beyond the breaking point as i= a, these equations become: 

; haV'25-58a / apy 
Hoy = Hy (7) Gr (58) 

; 2 
ee = pik (0.85 - 0.40 Sita) , (59) 

o “Stable bjk 8 

Once stability is found the envelope height, or rather the symmetrical 
envelope elevation B = H/2 is carried forward in the usual way. 

Since the test for breaking is applied to the envelope, strictly, 
wave breaking can be considered to occur only if a phase wave crest 
occurs within the breaking band of frequencies. As a practical matter 
the prediction of the exact arrival of the phase wave is the most 
difficult and least reliable part of the whole procedure, so that the 

surf zone should be considered to extend over any region where 
breaking is predicted for any frequency within the envelope. 

The boundary dissipation equation, Eq. (22), is applied to the 
envelope height between successive stations outside the breaking zone. 

In the present computation the array consists of 100 stations, 
120 frequencies, and 3 families of wave rays CH = 0°, 20°, 40°). 
The computer program is listed in Van Mater [1970]. The program 
requires 23 minutes of running time on the IBM 7094 and provides 
about 14,000 lines of output. 

271 



5 

‘ 

tng 

' 

iho)” 

: 
; 

ass 

file 

rs 

sf 4 

ich it 
t " 

a 

i 

re 

r t 

£) 1 

eet 
fee ES 

* 

) 
40 tA 

“ 
“oa oa } 

AF | $ 

nt Ph) RS 0 ) Molla thawte any 

' est 4. f Me 4 » qin'd Gel n j 

haga A hy ( { ad \é 

¢i 
ht 

D R VR 

ita coe ete RY 

iti fs aod bole 21S 
Siren! o dre oe 

itRend 

f ey irk Reve eee Levene 

T 

is ets bide yee) tgilioe ct ae 
LP at ee vy Mugs war. 

i £4 
Grieve 46hdelns cf sete 

“vara mM 
bt Heruea 



HYDRODYNAMICS IN THE OCEAN ENVIRONMENT 

Tuesday, August 25, 1970 

Afternoon Session 

Chairman: J. Hoyt 
Naval Undersea Research and 

Development Center, Pasadena 

Page 

Three Dimensional Instabilities and Vo-tices Between 
Two Rotating Spheres 215 

J. Zierep, O. Sawatzki, Universitat Karlsruhe 

On the Transition to Turbulent Convection 289 
Ruby Krishnamurti, Florida State University 

Turbulent Diffusion of Temperature and Salinity: 
-- An Experimental Study S11 

A. H. Schooley, U.S. Naval Research Laboratory 

Self-Convecting Flows 321 
M. P. Tulin, Hydronautics, Inc. and J. Shwartz, 

Hydronautics-Israel, Ltd. and Israel Institute of 

Technology 

273 



1 wade 
Hh owt 

SB 

ay © ‘ 

T ttc | 9 
ache 

se 
7 

4 4 

voto 
gk eta f _ 

i P| 7s 
~ 

: Moose 

ae a 
eg s | 

i ee t 



THREE DIMENSIONAL INSTABILITIES AND 
VORTICES BETWEEN TWO ROTATING SPHERES 

J. Zierep and O. Sawatzki 

Untversttdt Karlsruhe 
Karlsruhe, West Germany 

We study the motion of a viscous medium between two concen- 
tric rotating spheres. Investigating this type of flow is an extension 
of the well-known contribution of G. I. Taylor [1], who studied the 
motion between two rotating cylinders. Due to the action of the 
centrifugal force instabilities are possible. The main difference 
between the two flow fields is that for the spheres the centrifugal 
force is a function of the latitude. We have here an instability ina 
three-dimensional flow and it is possible that there exist different 
flow regimes -- stable and unstable ones -- side by side. This prob- 
lem is closely related to the cellular convection flow, especially to 
those existing over nonuniformly heated surfaces [2, 3, 4]. The 
thermal buoyancy corresponds to the centrifugal force, the nonuniform 
heating corresponds to the latitudinal dependence of the centrifugal 
force, 

Now some fundamental things about the used apparatus. * ihe 
experiments have been done primarily with the inner sphere (Aluminum) 
rotating and the outer one (Plexiglass) fixed. The gap was filled with 
silicon oil that contained aluminum powder as flow indicator. Measured 
has been mainly the frictional torque that keeps the angular velocity 
of the inner sphere constant. The temperature in the gap was con- 
trolled by thermocouples and photographs have been taken of the 
different flow configurations. The measurements have been done 
by Ritter and Wimmer [ 6] as part of their master thesis. 

Figures 1 and 2 show the results for two different gap widths. 
Plotted is the friction torque coefficient 6, over a Reynolds number 
that ranges from 10! to 10§ Covering this wide range has been 
accomplished by 1) using silicon oils with viscosities between 3 and 
1000 c St and 2) by varying the angular velocity from 0 to 200 revo- 

lutions /sec. 

In principle we have here independent of the width of the gap 
three different domains of fluid motion. For small Reynolds numbers 

Sic aang Arm ar RG ga 
For detailed information see [5]. 
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the Navier Stokes equations give Cy ~ 1/Re, the law for creeping flow. 
Surprisingly this holds up to Re = 3.3 + 103 for the small gap and up 
to Re = 600 for the larger one. Next to this regime follows one of 
laminar boundary layer type with ¢,~ 1/VRe. Finally the turbulent 
flow regime with C,~ 1 Re is Peaches after passing some possible 
instable flow configurations in the transition region. In general we 
have this behavior in all cases but quantitatively there are important 
differences depending on the relative width of the gap. The reason 
for this behavior is the multitude of the possible flow configurations. 

First we study the case of the small relative width of the gap. 
For low Reynolds numbers (for instance Re = 10) the streamlines 
are concentric circles around the axis of rotation (Fig. 3). With 

Fig. 3 For small Reynolds number the streamlines 
are concentric circles around the axis of 
rotation. s = 5mm, Re= Rw, /v = 10 

increasing Reynolds number the streamlines change to spirals (Fig. 4). 
Close to the rotating sphere the spirals are moving from the poles to 
the equator but close to the fixed sphere the spirals are moving from 
the equator to the poles. The inner and the outer spirals join and 
form closed curves. With passing the critical Taylor number 
Ta = 41.3 Taylor vortices begin to develop close to the equator. It 
is remarkable that the critical Taylor number here has the same 
value as for the concentric cylinders. The axes of these vortices 

have spiral form and end free in the flow field. (Fig. 5). From 
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Fig 4 For larger Reynolds number the streamlines 
are spirals, s = 5mm, Re = 2350 

Fig 5 For large Reynolds number the vortex axes 

become spirals and end in the flow field. 
s = 1.05 mm, Re = 27,000, Ta = 41.6 

278 



Instabiltittes and Vortices Between Two Rotating Spheres 

the end of the vortices up to the poles the laminar flow remains 

stable. With increasing Reynolds number, the axes of the vortices 
become wavy (Fig. 6) and the flow turns turbulent after passing some 
intermediate states (Figs. 7, 8}. In this case photographs still show 
a remarkable distinct structure of the flow. 

Fig. 6 The vortex axes become wavy for very large 
Reynolds number. s = 2mm, Re = 16,800, 
Ta = 68.8 

For the larger relative width of the gap this matter is much 
more complicated. In the transition from laminar to turbulent flow 
we found that altogether five basically different but reproducible 
main modes are possible. In the torque diagram all these modes 
are noticeable and they are remarkably stable as soon as they have 
become existent. For this reason we called them "stable instabilities." 
In the experiment these different modes can be established by apply- 
ing a suitable acceleration of the angular velocity. In analogy to the 
rotating cylinders [7] we have here a case of nonuniqueness. The 
mode of instability that is finally realized depends on the initial con- 
dition given by the experimentator. Now the main modes I - V shall 
be discussed briefly. 

I. In spite of having an overcritical state no vortices become 
visible. The transition to the turbulent flow occurs by passing through 
mode II, that is described below. Mode I is characterized by the fact 
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Fig 7 The’turbulent)motion. ‘s = 3.5 mm, Re = 53,500, 

Taii522 

Fig. 8 The turbulent motion. s = 2mm, Re = 158,000, 

Ta = 648 
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that in the field between the two boundary layers of the rotating and 

the fixed sphere -- according to the large gap -- a flow is established 

that moves with a constant but smaller angular velocity than the inner 

rotating sphere. Obviously this type of motion prevents or at least 

delays the development of the Taylor vortices. A similar pattern is 

known to exist also in the gap between two discs [ 8] with one of them 

rotating. 

II. This regime is characterized by a flow with vortices that 

begin at the poles (Fig. 9). The axes of these vortices are inclined 

Fig. 9 Motion of Mode Il. s = 12.15 mm, Re = 8,300, 

Ta. =/630 

slightly to the streamlines close to the fixed sphere. With increasing 
Reynolds number these vortices advance around the poles to the 
equator. The axes become more and more wavy and finally the flow 
turns turbulent. The physical explanation of these vortices is by no 
means evident. We have the conjecture that we have here a situation 
analogous to the occurrences close to a free rotating sphere [9] or 

disc [10]. Very often these vortices are called Stuart vortices. 
Contrarily to the familiar pattern of vortices, rotating with alternating 
direction the Stuart vortices rotate all in the same direction. 

III. Two Taylor vertices develop symmetrical to the equator. 
Outside the vortex zone we have mode I flow. Surprisingly at the 
equator -- where the centrifugal force has its maximum -- the flow 
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Fig 10 Sketch of Mode III 

Fig 1% Motion of Mode III. s = 8 mm, Re = 8,130, 

Ta = 318 
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is directed inward (Figs. 10, 11). This can be explained by a cellular 
motion in the field between the pole and the vortex that forces the 

vortex to rotate in the mentioned direction. The result is the sink 
flow at the equator. 

IV. Two pairs of Taylor vortices develop symmetrical to the 
equator but now with an outward motion at the equator (Figs. 12, 13). 

Mode III is a limit case of IV reached by increasing angular velocity. 
The cell close to the equator becomes smaller and smaller and in the 
limit the flow reverses at the equator. 

V. This is an unsteady version of mode III. Vortices, 
generated at the equator, leave the equator under a small angle of 
about 10° (Fig. 14) and move on spiral trajectories to the pole. 

It is interesting to see that the critical Taylor number increases 
with increasing gap width. Corresponding calculations for rotating 
cylinders with arbitrary gap width, done by KirchgaBner [141], agree 
very well with our experimental results for spheres having the same 
direction (Fig. 15). The explanation for this is that in our case the 
instability first begins at the equator and we have there locally a 
similar situation as in the case of the two cylinders. 

\S 
SSS 

Fig. 12 Sketch of Mode IV 
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Fig. 13 Motion of Mode IV. s = 12.15 mm, Re = 2,660, 
Ta = 201 

Fig. 14 Motion of Mode V. s = 12.145a0m, Re =i ,210, 

La =95.6 
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Fig.15 The critical Reynolds number for rotating 
cylinders [11] and the corresponding 
measurements for the spherical gap 

As far as theory is concerned we have treated three problems. 
Without going into details we give a short summary. 

a. In case of fully laminar flow and a small relative gap width 
the differential equations can be solved by using an approximation 
method like that of v. Karman - Polhausen. The results are simple 

expressions for the streamlines. Close to the walls these are loga- 
rithmic spirals that fit very well to the experimental results (Fig. 4). 

b. Mode 1 -- with larger relative gap -- can also be treated 

easily. For the region close to the fixed and the moving sphere esti- 

mations can be used for the boundary layer thicknesses. For a first 

approximation results for the boundary layer of a rotating disc [ 12] 
can be used. Between these two boundary layers we have an already 
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mentioned full laminar flow. The Navier Stokes equations in spherical 
coordinates give a very simple solution here with the velocity linear 
in r. The analytical expressions for the three flow regions can be 
combined and a short and simple calculation gives a torque coefficient 
that fits surprisingly well to our experimental results. 

c. The Stuart vortices -- already mentioned in connection 
with mode II -- all rotate in the same direction. Experiments done 
with a rotating free sphere [9] have confirmed this type of vortices. 
A simple cinematic consideration shows how one comes from the 
Taylor-Gortler vortices that have an alternating direction of rotation 
to the Stuart vortices. For this it is only necessary to superpose a 
suitable flow field to the Taylor-Gortler vortices with a flow direction 
cross to the vortex axes. With other words: to get Stuart vortices 
it is necessary that the Taylor vortices become embedded in a suitable 
flow field. 

We are dealing here with a real three-dimensional effect that 
changes our vortex model. One realizes easily that for a rotating 
free sphere or in the gap between two spheres of which one is rotating 
the just mentioned situation exists. 
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DISCUSSION 

L. van Wijngaarden 
Twente Institute of Technology 

Enschede, The Netherlands 

The description of mode I reminds me of the result that 
Batchelor [ 1956] derived for laminar flow with closed streamlines 
of fluids with small viscosity: Thin boundary layers on solid 
boundaries separated by a region of constant vorticity. This result 
was derived for two-dimensional flow. In your case the flow is three- 
dimensional, but it might be that the same conditions which are neces- 
sary for Batchelor's result hold in this case of mode I. 
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REPLY TO DISCUSSION 

J. Zierep 
Untversttdt Karlsruhe 

Karlsruhe, West Germany 

The general condition for the existence of closed streamlines, 

given by Batchelor in the cited reference, can be applied to the 
present case of a flow with rotational symmetry. We obtained infor- 
mation about the velocity distribution that has been confirmed by our 
analytical analysis, following a different path. 
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ON THE TRANSITION TO TURBULENT CONVECTION 

Ruby Krishnamurti 
Flortda State Universtty 
Tallahassee, Florida 

EINE. RODUCTION 

The heat flow out of the sea floor has been observed in close 
to 2000 measurements; the mean value for all the oceans is found to 
be 1.4 X 10° cal/cm’sec. [Lee and Uyeda 1965] This is three 
orders of magnitude smaller than the solar heating at the sea surface 
and is surely negligible in any budget of the upper oceans. Yet, 
because this heat flux is imposed from below, it may be of some 

consequence in the dynamics of the abyssal circulation. If this heat 
were to be transferred purely by gonduction through the sea water, 
a temperature gradient o of 10.°C°/m would be required. The 
largest depth across which such a gradient can exist without con- 
vective overturning is determined by the critical value of the Rayleigh 
number R, which is defined as follows: 

where g is the acceleration of gravity, @ the thermal expansion 
coefficient, kK the thermal diffusivity, p the kinematic viscosity, 
and d is the depth of the layer in consideration. This largest depth 
that can transfer the imposed heat flux by conduction is only around 
3 cm. If there are regions or time periods of the abyssal oceans in 
which horizontal advection of heat is not the dominant process, then 

this vertical convection, with its attendant vertical mixing of nutrients, 

can be an important process. 

Some understanding of convective processes can be gained 
from laboratory studies of a horizontal layer of fluid which is heated 
from below and cooled from above. The following is a review of such 
laboratory studies and also a report of some recent experiments in 
rotating and non-rotating systems. 

* 
This is contribution No. 33 of the Geophysical Fluid Dynamics 

Institute. 
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II. TRANSITION TO TURBULENT CONVECTION IN A NON- 
ROTATING LAYER OF FLUID 

Unlike the fast transition to turbulence in plane parallel shear 
flows, the horizontal convecting layer undergoes a number of discrete 
transitions, remaining in each régime for a finite range of Rayleigh 
number. The transition to turbulent convection appears to result in 
the following manner: at sufficiently low values of the Rayleigh 
number the fluid system is stable to all small disturbances. As the 
value of R is increased the system becomes unstable to one kind of 
disturbance. As R is increased still further the fluid becomes un- 
stable to more kinds of disturbances. At sufficiently large Rayleigh 
numbers the flow is unstable to so many kinds of disturbances, each 

occurring with uncontrolled phase, that the flow may be called tur- 
bulent. Before discussing the first three of these transitions, the 
experimental apparatus will be described. 

Apparatus 

One of the possible designs of experimental apparatus is 
shown in Fig. 1. The fluid layer occupies a region 51 by 49 cm, 
with a depth that can be chosen (usually between 1/2 and 5 cm). 
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Fig. 1. Apparatus 
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The plexiglass tank containing the fluid also contains four blocks of 
aluminum 6061 T 651. Two of the blocks are 4 in. thick, two are 
iin, thick, each is Z0 in. by 20 in. wide. The electrical heater, 

which is a fine mesh of resistance material embedded in silicon 
rubber, is attached to the bottom of the lowest block, which is 4 in. 

thick. The heat input is controlled by a variable transformer backed 
by a constant voltage transformer of the line voltage. Above this 
lowest aluminum block is a low-conductivity layer of methyl metha- 
crylate. A layer of liquid sufficiently thin that it never convects 
for the temperature gradients occurring in these experiments effects 
constant thermal contact between the layers. Above this low con- 
ductivity layer is a block of aluminum 1 in. thick; above this is the 
convecting fluid, whose depth is defined by plexiglass spacers. The 
arrangement of blocks above the convecting layer is symmetric to 
that below except that the cooling is accomplished by cooling fluid 
from a constant-temperature circulator flowing in channels in the 
uppermost aluminum block. The channels for incoming and outgoing 
flows are side by side in order to minimize horizontal temperature 
gradients. The channels were cut in a complicated pattern and 
spaced so that the separation of channels was not close to an integral 
multiple of the expected convection cell size. The maximum flow 
rate of the cooling fluid is 2+ 5 gal/min. This apparatus was used 
in the studies which will be described with air, water, and silicone 

oils. For convection in mercury, the aluminum blocks were replaced 

by copper blocks of which two are 2 in. thick, two are 1 in. thick 
and each is 20 in. by 20 in. wide. 

The thermal conductivity of the aluminum is about three orders 
of magnitude larger than that of the oils. The thermal conductivity 
of copper is 50 times as large as that of mercury. This is, of course, 
an attempt to approach the ideal condition of perfectly conducting 
boundaries. With poorly conducting boundaries a horizontal tempera- 
ture ripple corresponding to the cellular structure in the convecting 
fluid penetrates into the boundaries and may control transitions to 
different cellular structures. Also the metal acts as a diffuser of 
any horizontal temperature variations arising from the discrete 
nature of the cooling channels. The large mass of metal (approxi- 
mately 400 1b of aluminum or 700 lb of copper) acts as a large heat 
capacity so that temperatures in the blocks are very stable. 

The heat transported by the convecting liquid is measured by 
concentrating the temperature gradient across the poor conductor in 
the manner devised by Malkus [1954]. In the steady state the heat H 
transported by the fluid is the average of the heat conducted across 
the two poor conductors: 

ig ye Tos on Dee H=k,—7q es : 

where Kp and kp are the molecular conductivities of the low con- 

ductivity layers, dp is the depth of the layer, and T,, T,, Ts and 
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T, are the temperatures of the four aluminum blocks. The sub- 
scripts are ordered from bottom to top. The conductivities kp and 
k' are measured in terms of that of the liquid when it is known that 
the liquid layer is in a state of steady conduction. Then the following 
relations hold: 

Ty AVEL wi) ) Dpeeeignw pa Tail Ty k, —22—3 = k, 2 =k) —3 4 d Bi) a, pi Bidgig 1° 

where k, is the molecular conductivity of the fluid. Thus, once the 

conductivity and depth of the poor conductors is determined, a 
measurement of the temperatures in the four metal blocks allows 
the determination of the Rayleigh number and the heat flux. 

Fine aluminum flakes suspended in the liquid were used to 

visualize the flow. The aluminum flakes become aligned in a shear 

flow, and because they are flakes, reflect light more strongly in 

certain directions , depending upon the direction of the shear and of 

the illumination. In a uniform shear, the brightness is uniform; 

where there is a differential shear, there will be corresponding 

bright and dark regions. In the case of water, alumimm flakes 
would not stay in suspension sufficiently long, so another tracer 
called 'rheoscopic fluid AQW 010' was added to the water. This 
tracer displays differential shears, just as do the aluminum flakes, 

but remains in suspension about 10 times as long. 

Since the fluid layer is bounded above and below by opaque 

boundaries, the plan form of convection is obtained by viewing the 

flow from the side as shown in Fig. 2. The tracers were illuminated 

at mid-depth by narrow overlapping beams of collimated light from 
two 2 W zirconium arc lamps. The two beams directed at each other 
allow visualization of shear regions at both positive and negative 
angles to the line of sight. This line of sight is perpendicular to the 
beam. As the light beam is moved horizontally, illuminating differ- 
ent regions of the fluid, a camera is moved horizontally on a threaded 

Illumination Illumination 
at x4 at Xp 

Camera Camera 

position A position B 

Fig. 2. Geometry for photographing plan form of convection 
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rod in order to keep the illuminated region in focus. Simultaneously, 
the back of the camera rolls on an inclined plane since the camera 
is free to rotate about an axis through its lens. Thus, different 
regions of the fluid produce images on different parts of the film. 
In this way, one obtains a picture of the flow pattern as if one were 
viewing from above. 

For each steadily maintained external condition, the steadi- 
ness or non-steadiness of the resulting flow was to be determined. 
This was found to be too difficult by simply observing moving tracers 
through the fluid since there were gentle time dependencies with 
time scales of the order of several minutes to several hours. In 
order to have a record of the flow at an earlier time against which 
to compare the flow at a later time, the following photographic 
technique was devised. The apparatus used is shown schematically 
in Fig. 3. Two narrow overlapping beams of light illuminate 
aluminum flake tracers along a line inthe x-direction, say, through 
the fluid. The beam remained fixed in space throughout the obser- 
vation time. The camera was free to rotate about an axis through 
its lens. With the camera aperature open, a synchronous motor 
drew a wedge under the back of the camera at a rate determined by 
the time scale of the time dependence of the flow. Thus, the photo- 
graph displays an (x,t) representation of the flow, where t is the 
time coordinate. At t = 0, the camera recorded alternating bright 
and dark regions, corresponding to the cellular structure, as a 
narrow strip of image across the film. When the flow was steady, 
the cell boundaries remained fixed in time, thus producing straight 
lines parallel to the t-axis on the photograph. With the beam near 
the top (or bottom) of the convecting layer, the tracer particles 
have an x-component of velocity which is given by the slope of the 
trajectories inthe (x,t) representation. 

1Convecting liquid 
~N 
Light beam ane 

| 
p—F 

—nn 

Fig. 3. The apparatus for photographing the time evolution of flow 
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The studies that will be described here were performed as 
externally steady, fixed heat flux experiments. Rayleigh number 
and heat flux were measured for fluids having Prandtl number from 
10° to 104. The Rayleigh number ranged from 10° to 108, Except 
in the cases of air and mercury, the "pDlan form" of the convection 

was obtained by viewing from the side. The time dependence was 
determined by both the (x,t) photographs and thermocouples 
internal to the fluid. In the cases of air and mercury time dependence 
was determined only by the internal thermocouples. 

The First Transition 

In the order of increasing R, the first transition occurs at 
the well-known critical Rayleigh number R,. This is a transition 
from the conduction state to one of steady cellular convection. It 
occurs independently of the Prandtl number Pr where Pr = v/Kk. 
The nature of the flow and the change in slope of the heat flux curve 
have been predicted and experimentally verified. For the vertically 
symmetric problem the only stable finite amplitude solution of the 
infinite number of possible steady solutions is the two-dimensional 
roll [Schluter, Lortz and Busse 1965]. With a vertical asymmetry, 
such as that produced by changing mean temperature or by variation 
of material properties (v¥,xX,@) with temperature, the conduction 
state is subcritically unstable to finite amplitude disturbance, and 
the flow near the critical point is hexagonal [ Busse 1962; Segel and 
Stuart 1962; Krishnamurti 1968a,b| - Inthis discussion we restrict 

our attention to the case in which rolls are the realized flow just 
above Re. 

As the heat flux, and hence the Rayleigh number, are increased 
above Re, steady two-dimensional rolls continue to be the observed 

flow up to approximately izZ.R.; ter, 10< Pr < 10%. The size of the 
rolls becomes larger in this range, as shown in Fig. 4, where the 
wave-number 6 is plotted against Raleigh number. This increased 
size of the cell might be rationalized by an argument such as the follow- 
ing. By averaging over the entire fluid the non-dimensionalized tem- 
perature equation in the Boussinesq approximation one finds 

H = Rom + (w9) 

where H is the dimensionless heat flux, o, is the vertical tem- 
perature gradient averaged over the entire fluid, w is the vertical 
velocity, 6 is the departure of the temperature from a horizontal 
average, and brackets indicate averaging over the entire fluid. 
Thus Ro, is the heat flux due to conduction, (w®8) is the convective 
heat flux. As the externally imposed heat flux is increased such that 
R exceeds Rg, the fluid transfers this larger flux through the cor- 
relation (w®). Consider a fluid parcel near the lower boundary. 
Its temperature 9 is limited by the thermal diffusivity of the fluid 
material. As H is continually increased, the fluid is forced to 
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The Second Transition 

The only theoretical study of stability of two-dimensional con- 
vection in the Rayleigh number range of the second transition is that 
of Busse [1968]. He shows that for infinite Prandtl number, two- 
dimensional rolls having wave-number ff within a finite band (see 
Fig. 4) are stable to a restricted class of infinitesimal disturbances 
provided that R< 22,600. If R > 22,600 rolls are unstable for all 
B. Busse shows further that the roll plan form is then unstable to 
a disturbance of rectangular form with one side along the original 
roll axis. It is not known from this theory whether the resulting 
flow above 22,600 is steady. It is also not known how the selection 

of B from this band of possible wave-numbers occurs. 

Laboratory studies [ Krishnamurti 1970a] show that two- 
dimensional rolls do indeed become unstable near this Rayleigh 
number, which will be labelled R,. The "plan forms" (obtained 
from the side) are shown in Fig. Ba where that on the left shows 
rolls below Ry, that on the right shows the flow pattern above Ry. 
The three-dimensional disturbance that forms on the rolls above 
R,, is consistent with Busse's instability to a rectangular distur- 
bance. Since the method of photography displays regions of strong 
shear, the hypotenuse of the rectangle should appear bright. Thus, 
the nature of the growing mode (which is found experimentally to 
attain a steady state) is in agreement with Busse's result. It may 
be noted that the rectangular disturbance of his theory is one with 
symmetry in the vertical. The point of transition is also in good 
agreement with that computed by Busse, for that wave-number 6 
which occurs in the experiment. Figure 5b shows the same transi- 
tion when a circular boundary of plexiglass has been inserted into 
the rectangular region. Both Davis [1967] and Segel [1969] show 
that spatially modulated rolls will line up with their axes parallel 
to the short side of a rectangular container. In the almost square 
container, there appeared to be little preference of orientation of 
the rolls; rolls were seen along the line of sight as well as perpen- 
dicular to the line of sight in two different repetitions of the same 
experiment. The preference of rolls to line up with their axes 
parallel to the short side may be re-expressed as a preference of 
the rolls to meet the boundaries rather than lie along the boundaries. 
This effect is displayed in Fig. 5b. Presumably circular rolls did 
not develop because the plexiglass has thermal conductivity so close 
to that of the fluid that there was negligible distortion of the con- 
duction temperature field and no fringing of the isotherms since 
there was fluid outside of the ring. 

Associated with this change from steady two-dimensional to 
steady three-dimensional flow, there is observed a discrete change 
in slope of the heat flux curve (Fig. 5a). This corresponds to the 
second change of slope observed by Malkus [ 1954]. Ry, showed no 
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move more rapidly to transport this increased heat flux. If the fluid 
must move faster, then the cells must be larger in order to allow 
the hot rising fluid to be in the vicinity of the cold upper boundary for 
a sufficiently long time to lose its heat before sinking and repeating 
the process. Although there are many ways in which the fluid could 
have transferred the increased heat flux, moving more rapidly with 
increased cell size is one ofthem. Of course, if the cells become 

very large, the viscous dissipation of energy near the horizontal 
boundaries would slow down the flow and defeat its own purpose. 
This will be discussed later. It is seen in Fig. 4 that, when the cell 
size is allowed to evolve freely (without being forced as in the ex- 
periments of Chen and Whitehead [ 1968]), approximately one-half 
of Busse's stability diagram is filled with observations, but the 
domain B > f, is conspicuously bare. 

2x 10° 

1x10 

Rt 

5x10? 
Unstable 

3x10 

2x10 

d (cm) R increasing R&R decreasing 

Pr iGai 1-2 x ® 

Pr 57 2 Oo 
Pr 10? 2 + ® 

Pr 0:86 x 10° 3 ® @) 
Pret x 10* 5 A A 

Pr 0-85 x 104 2 * 

Fig. 4. The observed cell size plotted on Busse's stability diagram 
for two-dimensional rolls 
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The Second Transition 

The only theoretical study of stability of two-dimensional con- 
vection in this Rayleigh number range is that of Busse [1968]. He 
shows that for infinite Prandtl number, two-dimensional rolls having 
wave-number f within a finite band (see Fig. 4) are stable toa 
restricted class of infinitesimal disturbances provided that R < 22,600. 
If R> 22,600 rolls are unstable for all B. Busse shows further that 
the roll plan form is then unstable to a disturbance of rectangular 
form with one side along the original roll axis. It is not known from 
this theory whether the resulting flow above 22,600 is steady. It is 
also not known how the selection of B from this band of possible 
wave-numbers occurs. 

Laboratory studies [Krishnamurti 1970a] show that two- 
dimensional rolls do indeed become unstable near this Rayleigh 
number, which will be labelled R,. The "plan forms" (obtained 
from the side) are shown in Fig. 5a where that on the left shows rolls 
below Ry, that on the right shows the flow pattern above Ry. The 
three-dimensional disturbance that forms on the rolls above Ry, 
is consistent with Busse's instability to a rectangular disturbance. 
Since the method of photography displays regions of strong shear, 
the hypotenuse of the rectangle should appear bright. Thus, the 
nature of the growing mode (which is found experimentally to 
attain a steady state) is in agreement with Busse's result. It may be 
noted that the rectangular disturbance of his theory is one with sym- 
metry in the vertical. The point of transition is also in good agree- 
ment with that computed by Busse, for that wave-number £8 which 
occurs in the experiment, although the selection mechanism of that 
B is not understood. Figure 5b shows the same transition when a 
circular boundary of plexiglass has been inserted within the rectangu- 
lar region. Both Davis [1967] and Segel [1969] show that spatially 
modulated rolls will line up with their axes parallel to the short side 
of a rectangular container. In the almost square container, there 
appeared to be little preference of orientation of the rolls; rolls 
were seen along the line of sight as well as perpendicular to the line 
of sight in two different repetitions of the same experiment. The 
preference of rolls to line up with their axes parallel to the short 
side may be re-expressed as a preference of the rolls to meet the 
boundaries rather than lie along the boundaries. This effect is dis- 
played in Fig. 5b. Presumably circular rolls did not develop 
because the plexiglass has thermal conductivity so close to that of 
the fluid that there was negligible distortion of the conduction tem- 
perature field and no fringing of the isotherms since there was fluid 
outside of the ring. 

Associated with this change from steady two-dimensional to 
steady three-dimensional flow, there is observed a discrete change 
in slope of the heat flux curve (Fig. 5). This corresponds to the 
second change of slope observed by Malkus [ 1954]. Ry, showed no 
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HEAT FLUX vs RAYLEIGH NUMBER 

PRANOTL NUMBER = 860 

SHOWING THE SECOND TRANSITION. a 

HEAT FLUX « 10 

Fig. 5a. 

RAYLEIGH NUMBER x10“ 

Heat flux plotted against Rayleigh number showing the 
second transition. Photographs show the corresponding 
change in plan form. The Prandtl number is 860. 
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Fig. 5b. Photographs showing the plan form within circular side 
walls. The transition is the same as in Fig. 5a. The 
Prandtl number is 860. 

definite Prandtl number dependence in the range 10 < Pr < 107. 
There was a marked hysteresis both in the heat flux and plan form 
as the Rayleigh number was increased then decreased past Ry . 
This transition is shown by the curve labelled II in the régime dia- 
gram (Fig. 10). 

The Third Transition 

The third transition in order of increasing R occurs ata 
Rayleigh number which will be labelled R,,,;. It marks a change 
from steady three-dimensional to time-dependent flow, and has 
associated with it a discrete change in slope of the heat flux curve 
(Fig. 6) [Krishnamurti, 1970b]. The change in slope was gmeasured 
for each of the fluids shown in Fig. 10, with 10° “@<Pr<104% The 
transition point is labelled as curve III. For Rayleigh numbers 
above this curve the flow showed two modes of time dependence. 
The one is a slow time dependence with time scale of the order of 
the thermal diffusion time d?/x. An (x,t) photograph showing 
this mode is seen in Fig. 8. The light beam was near the bottom 
of the fluid. It is a slow tilting of the cell with height. Below Ryy 
there was never a noticeable tilt observed. Above Ry; some cells 
would be tilted for times of the order of d?*/k. Fig. 9 shows streak 
photographs of tracer particles in a vertical slice through the con- 

vecting fluid. Figure 9a shows steady flow in cells of rectangular 
cross section at Rayleigh number Re, and Pr = 860. Figures 9b and 
9c show tilted cells at Rayleigh number 74 R, and 89 Ry, respectively, 
and Pr = 860. The tilted cells often occurred in pairs with the tilt 
always such that two rising particles were close together near the 
bottom boundary, flaring apart near the top. Two sinking particles 

were close together near the top, flaring apart near the bottom. 
Untilted cells, as in Fig. 9a are symmetrical about a horizontal 
line at mid-depth in the fluid. When integrated over the cell, the 
net vertical transport of the x-component of velocity, (uw) is zero. 
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0 2 4 6 Sy SO oe? od 18.20 °22° 24 

RAYLEIGH NUMBER X 10 

Fig. 6. Heat flux.vs. Rayleigh number showing the third and fourth 
transitions. Prandtl number = 102. 
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ft 
- p 

Fig. 7. (x,t) photographs of convective flow. The position x 
through the tank is along the abscissa; the total width of the 
photograph represents 48 cm through the fluid. The time t 
is along the ordinate. The Prandtl number is 57. 

(a) R = 28 R,; the total time is 17 minutes 

(b)ueR =*200 R,; the total time is 17 minutes 

(c) R = 335 R,; the total time is 15 minutes 
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(x,t) photograph at 45 R,, showing the slow time dependence 
corresponding to the tilting of the cells. The light beam is 
near the bottom of the fluid layer. The Prandtl number is 
5G. 
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(b) 

Fig. 9. Streak line photographs of tracers ina vertical slice through 
the convecting fluid. The Prandtl number is 860. (a) a ver- 
tical slice through steady two-dimensional rolls at R = 6 Reg. 
(b) Showing a pair of cells with a tilt relative to the vertical. 
R= 74 R,. (c) Showing a tilted cell at R = 89 Rg. 

In case of the tilted cells, however, ( uw) over one cell] is non-zero 

and is always in the sense of transporting positive x-component of 
momentum to regions where the flow is in the positive x-direction, 
transporting negative x-component to regions where the flow is in 
the negative x-direction. Again one might rationalize the increased 
slope of the heat flux curve by the following argument. As the exter- 
nally imposed heat flux is increased more and more, the fluid must 
move faster and faster, Then, to accomplish the heat exchange at 
the boundaries, the cells must become wider and wider. The tilting 
of the cells can help to maintain this flow against the increased viscous 
dissipation along the boundaries. The tilting of cumulus convection 
cells in the earth's atmosphere has often been related with a vertical 
wind shear. The tilted cell is believed to be important in transporting 
momentum in the vertical direction, thus maintaining the wind aloft. 
It is interesting to note that in this laboratory situation convection 
cells tilt even in the absence of a mean wind shear. 

The second mode of time dependence is an oscillatory mode 
with a much shorter time scale. Figure 7 shows (x,t) photographs 
taken with the light beam near the bottom of the layer of fluid. 
Figure 7b shows a bright region, which is a region of strong shear, 
move from one cell boundary to another. This process is repeated 
periodically in time. (x,t) photographs synchronized with a tem- 
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perature record at a point within the fluid showed a temperature 
anomaly each time a bright region moved pass the point. It is an 
oscillation in the sense that the temperature and flow show a time 
periodicity at a fixed point in the fluid. This oscillatory mode is 
illustrated in the following movie which shows convection ina 
Hele-Shaw cell having dimensions 24 in. wide, 2 in. tall, and 1/16 
in. thick (that is 1/16 in. in the direction of the line of sight). It 
shows hot spots and cold spots (bright regions) forming and being 
advected by the mean circulation of the cell. 

As the Rayleigh number is increased transition to turbulence 

appears to result from the increased number and frequency of these 
oscillations. 

Ill. TRANSITION TO TURBULENT CONVECTION IN A ROTATING 
FLUID LAYER 

This topic will be discussed very briefly. A horizontal layer 
of fluid heated below and cooled above is rotated about a direction 
parallel to the force of gravity. The linear stability theory has been 
treated by Chandrasekhar [1961]. The finite amplitude theory with 
very clear physical explanations is given by Veronis [ 1959]. Notable 
experiments have been performed by Fultz and Nakagawa [1955], 
by Rossby [ 1966] , and others. 

Recently, Kuppers and Lortz [1969] have shown that for 
infinite Prandtl number there exists a critical Taylor number Te. 
beyond which there can be no stable steady convection in the vicinity 
of R,- The Taylor number T is defined as 

_ 4 a* 
ee 

T 

where Q is the rotation rate, dthe layer depth, and v is the kine- 
matic viscosity. For T< T, they show that the only stable finite 
amplitude solution is the two-dimensional roll solution. For T> T, 
there must be a transition from the conduction state to a time de- 
pendent flow as the Rayleigh number is increased beyond the critical. 

The apparatus consisted of a fluid layer 1 or 2 cm in depth, 
18 inches in diameter in the horizontal direction. The fluid was 
bounded below by a 2 in. thick aluminum block containing an electri- 
cal heater which is a fine mesh of resistance material. Above the 
fluid layer was bounded by a glass plate over which the cooling fluid 
circulated. 

Photographs taken from above by a camera rotating with the 
fluid are shown in Fig. 11. Figure 11a shows rolls, Fig. 11b shows 
the cross instability forming on the rolls, of the same kind found in 
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Fig. 10. The régime diagram. The circles represent steady flows, 
the circular dots represent time-dependent flows. The 
stars represent transition points. The open squares are 
Rossby's observations of time-dependent flow, the squares 
with a dot in the centre are Willis and Deardorff's obser- 
vations [1967b] for turbulent flow. The triangle is 
Silveston's [1958] point of transition to time-dependent 
flow. 

the non-rotating case. Figure iic shows the break-down of rolls 
and waves forming on them. The disturbance forms an angle of 
58° + 2° to the original roll axis, exactly as predicted by Kuppers 
and Lortz. Figure iic is atransient state; iid is the final steady 
state. In this state the over-all wavy pattern was not observed to 
change with time but the internal striations representing regions of 
strong shear were segn to change with a time scale of the order of 
one minute. (Here d‘/v = 40 sec, d*/k@1 hr). Figure 12 shows 
the régime diagram for the rotating convection. The observed criti- 
cal Taylor numbers compare only approximately with those computed 
by Kuppers [1970] for finite Prandtl number and rigid boundaries. 
The observed transitions occurred at T, =1.5X10° for Pr= 6.7, 
R@ R, andat T,=7%10* for Pr=10%, R= R,., The predicted 
values are T, =7X10° for Pr=1, Te=1.7X10° for Pr=5, 
and T, = 2103 for Pr— oo. 
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Fig. 11. Rotating Benard Convection, showing cross and wave 
instabilities on rolls 
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Fig. 12. The régime diagram for rotating Bénard convection 

IV. SUMMARY AND CONCLUSIONS 

Series of externally steady, fixed heat flux experiments were 
performed to measure Rayleigh number, heat flux and changes in 
flow of horizontal, non- rotating convection for 2.5X10°= Pre 
0.85 X 10% and 103< Ra<10% The régime diagram summarizing 
these experiments is shown in Fig. 10. Each of the curves I, II, 
III and IV marks a transition with a change of slope in the heat flux 
curve. The first is the transition from the conduction state to one of 
steady two-dimensional convection in the form of rolls. 

There is a second transition characterized by the following 
properties: 

(i) There is a discrete change of slope of the heat flux curve 

at Rayleigh number R,, near 12 R,, showing no definite 
Prandtl number dependence in the range 10 < Pr< 104, 
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(ii) There is a change in the flow pattern from two-dimen- 
sional rolls to a three-dimensional flow which is periodic 
in space and steady intime. The change occurs ata 
Rayleigh number coinciding with R,, to within the error 
in determining Rj. 

(iii) There is hysteresis in the heat flux as well as in the flow 
patternas R is increased from below or decreased from 
above, indicating that the transition is caused by a finite 
amplitude instability. 

The third transition is indicated by curve III in Fig. 10. 
Above this curve, the flow is time dependent with a slow tilting of the 
cell in the vertical and a faster oscillation which has the nature of 
hot or cold spots advected with the mean flow. Transition to disorder 
is seen to result from an increased number and frequency of such 
oscillations. 

Higher transitions observed by Malkus [1954] and confirmed 
by Willis and Deardorff [1967a] have not been discussed. 

The small amplitude nonlinear theories have been quite suc- 
cessful in a small neighborhood of the critical point Rg. The obser- 
vation that transition to turbulence occurs near Re for small Prandtl 

number in non-rotating convection, and for T> T, for rotating 
convection, indicates the possibility of gaining further understanding 
of transition to turbulence through the nonlinear theories. 

The research reported here was supported by the Office of 
Naval Research Contract N-00014-68-A-0159 and by grant number 
GK-18136 from the National Science Foundation, 
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TURBULENT DIFFUSION OF TEMPERATURE 
AND SALINITY: — AN EXPERIMENTAL STUDY 

Allen H. Schooley 
U.S. Naval Research Laboratory 

Washington, D.C. 

ABSTRACT 

Stratified temperature and salinity conditions in 
water have been established in a small laboratory 
tank. A method for making measurements and cal- 
culating the eddy diffusivities of temperature and 
salinity for different controlled levels of turbulence 
are described. The ratio of temperature and salinity 
molecular diffusivities is on the order of 100. The 
ratio of temperature and salinity eddy diffusivities, 
for the most turbulent conditions studied, is 14. 

The dissipation of turbulent power density (P) due 
to viscous friction was found to be on the order of 
10’ larger than the power density (P') consumed 
in changing the thickness of the pycnocline. The 
experiments hint that P/P' may be relatively 
constant over a range of turbulence. If this is 
assumed to be true, there exists the possibility of 
estimating temperature (D) and salinity (D') eddy 
diffusivities by knowing the change of density, (Ap), 
and (Ap),, with time (At) for a given depth differ- 
ence (Ah). Plots of D and D!' in cm/sec vs. 
(P'/n)'4 =110(Ap/At)'/2(Ah) in sec”', are shown 
where (n) is the dynamic viscosity of water. 
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I. INTRODUCTION 

The oceans are dominated by several turbulent processes. 
For each turbulent situation there are "eddy" diffusivities of tem- 
perature and salinity that are much larger than the molecular 
diffusivities. In spite of the difficulties in measuring eddy diffusi- 
vities at sea, there is considerable, though incomplete, literature 

on the subject [ Neumann and Pierson, 1966]. Since turbulent ocean 
processes are inherently uncontrollable, several exploratory labora- 
tory experiments were conducted in late 1964 and early 1965. This 
paper is the first publication of the results of these preliminary 
experiments. 

Il APPARATUS. 

Figure 1 shows the test cell where the experiments were 
conducted. It has transparent plastic walls and is 30 cm long, 
9 cm high, and 2.5 cmthick. The bottom 4 cm was filled with either 

room temperature distilled water or a 0.25% solution of sodium 
chloride, depending whether thermal or salinity diffusion was to be 
studied. The molecular thermal diffusivity of pure water at at- 
mospheric pressure and 20°C is 0.00143 cm*#/sec (4% less than sea 
water). The molecular diffusivity of an aqueous NaCl solution is 
0.0000141 cm*/sec (9% less than sea water) according to Hill [ 1962]. 
Convenient distilled water and NaCl solutions were used instead of 
sea water because of these relatively small differences. 

Fig. 1. Experimental cell. Temperature difference sensor near 
center. Salinity difference sensors at right. L shaped wire 
at left produces turbulence on demand. 
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When a thermal experiment was to be conducted, the top 4 cm 
of the cell was filled with water having a temperature several degrees 
above room temperature. A thin piece of balsa wood was floated on 
the top of the bottom layer and warm water introduced through a small 
nozzle directed perpendicularly to the top of the balsa wood. This 
procedure deflects the downward momentum of the warm water flow 
to the horizontal and filling was accomplished with a minimum of 
vertical mixing with the cooler more dense water below. Whena 
salinity diffusion experiment was to be conducted, a top layer of pure 
water was introduced the same way. In this case the bottom water 
contained the salt solution. 

A repeatable amount of turbulence was introduced by mechani- 
cally moving a stiff insulated wire back and forth at the interface 
between the two layers at a controlled rate and for a controlled 
length of time. The wire is shown in Fig. 1 at the 4 cm level where 
the interface was located when the cell was filled. (The cell is 
empty in Fig. 1.) The top of the "L" shaped wire is coupled to a 
mechanical system outside the picture. It is the bottom part of the 
"L" that was rotated back and forth laterally at the interface pro- 
ducing turbulence when desired. Table I gives the specifications 
for generating the amounts of turbulence that were used. 

Table I. Specifications of the Turbulence Generator 

Turbulence No. Mixer Dimensions me ee oe nes 

0 - 0 

4 1.8 mm diam, 7 cm long 10.8° 2.5 

2 : : 5.4 

When a thermal experiment was being conducted, the center 
sensor was used. It consists of a two element copper-constantan 
thermopile with junctions 2 cm apart. The upper junction was 
placed 1 cm above and the other i cm below the interface of the 
upper warm and the lower cooler water. The output of this sensor 
was 30 microvolts for each degree difference in temperature. It 
was connected to a small commercial micro-voltmeter and recorder 
which gave a time record of the temperature difference, 1 cm above 
and 1 cm below the interface. The record of vertical temperature 
difference decay, with time, gives data related to the effect of mole- 
cular diffusion when no turbulence js introduced. The vertical tem- 
perature difference decay, with controlled amounts of turbulence, 
was recorded by using a succession of carefully timed turbulent 
pulses interspaced with short intervals of quiescence. 

When a salinity diffusion experiment was being conducted the 
two sensors on the right in Fig. 1 were used. They are identical 
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probes consisting of two closely spaced platinum wires set in epoxy. 
The conductivity of the solution at the points where each of the probes 
were located was read from a meter scale. The upper probe was 
placed one half cm above the interface and the other one half cm 
below. Standard salt solutions were used to calibrate the conductivity 
of the probes in order to measure salinity. This calibration was non- 
linear and temperature corrections were necessary. 

Figure 2 illustrates the technique that was devised to facilitate 
measuring eddy diffusivity by the use of a series of turbulent pulses 
of the same amplitude and time. The ordinate of this chart is a 
record of the temperature difference (0 to 1.67°C/cm) measured by 
the thermopile shown in Fig. 1 vs. time, which progresses from 
left to right. The record starts at the upper left corner where the 
temperature difference starts to decrease due to molecular diffusion. 
At horizontal chart position #5 the mixer shown in Fig. 1 was acti- 
vated for 15 seconds and then stopped for about 8 minutes. This 
8 minute pause allows the pulse generated internal waves to damp out 
so that the temperature difference due to turbulent eddy diffusion 
can be measured and separated from the relatively slow molecular 
diffusion. Again at chart positions #6.4 and #7.8 similar 15 second 
pulsed of turbulence were introduced. The total time of turbulence 
was thus only 45 seconds, and three successive temperature differ- 

ences due to eddy diffusion were recorded at three 15 second intervals 
of turbulence. The effect of eddy diffusion of NaCl was measured 
by the same technique using the conductivity sensors. 

5 a a a $f Fy 2& 
SS SSS SS = S22 = 

Ey SSS 
oe eee 

——- = =>" = = ee eo ee 
ee ————— SSS 

———— 
( 4¢ Ses Duke GLI une coca ain NOs ye GUN OLY c: Gioia eM Goo Glad - he Aare 

Fig. 2. Temperature difference AT vertically vs. time. The 
decay of AT by molecular diffusion is interrupted three 
times by turbulent pulses lasting 15 sec each. 
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III. THERMAL DIFFUSION 

The model assumed is shown schematically in Fig. 3. At 
zero time ty and depth Zo, a semi-infinite region of water at the 
temperature T>, is assumed to be brought together with a semi- 
infinite region of water at temperature T,. Further, it is assumed 
that z, and T, are essentially constant for t,, to, «+. . Eventually 

as t becomes large, the semi-infinite model breaks down in prac- 
tice because the effective value of T, decreases. 

Fig. 3. Schematic presentation of temperature diffusion as a 
function of water depth z andtime t. Semi-infinite depth 
is presented vertically with z, a reference. Attime to 
a sharp temperature discontinuity is assumed, and T, 
defined as (T, - T,)/2. At t, diffusion has started and 
To remains constant. For long times t,, t, the semi- 
infinite model breaks down because the effective value of 
T, does not remain constant in practice. 

The heat flow for this model is governed by the one-dimensional 
diffusion equation 

2 
OT ot OT 
bvains> Sse (1) 

where D is the diffusivity, usually expressed in cm?/sec. 

Due to vertical symmetry the problem can be formulated 
using the T, part of Fig. 3, where T, =(T, + T,)/2 is the 
reference temperature. Taking T, = 0, z,=0, t,=0 the initial 
and the boundary conditions for z>0O and t=0 is T(z;0) = Ty = 

(T, - T|)/2- For 2=0 and t>0; T(0,t) = T.. 
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The analytical solution to this well-defined problem is 

T(z,T) = Tel 1 - erf(x/2/Dt)] + T, (2) 

where 

x/2,/dt 

erf(x/2VDt) = 2/Vr iy at ae 
OQ 

From (1) the gradient of T atthe boundary z, is 

oT| _ To 
oz Zo wDt 

or 

oT TT, 4 a 0 E |-3(@) (3) 
Zo 

and 

2 

D= (re/m| 4 /(32) (4) 
Zz 

2 
Since I5/2 is constant for any one experiment, a plot of 

1/t vs. (AT/Az)* for the data points should give a straight line 
through the origin with slope Dr/T>. Figure 4 is such a plot for 
the experiment of Fig. 2. A mean square fit gives a slope of 0.66 
with a correlation coefficient of 0.99, Since Tp = 2.45°C, in this 
case the eddy diffusivity is D = 2.45°(0.66)/m = 1.26 cm®*/sec. 

In practice all plots of the experimental data do not yield 
perfectly straight lines, particularly for larger values of t (smaller 
values of 1/t) than are shown in Fig. 4. Calibration and experimental 
errors are always present. In addition, as is illustrated in Fig. 3, 
the effective value of T, is not constant for extended lengths of time 
(t = ty > tq) because the experiments were necessarily conducted 
in a finite size container. However, Fig. 4 does represent con- 
sistency of the data with the simple analytical theory under the 
assumptions that have been made. 
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-20 

| | IA 

Natvaz)? 26, c/em)* 

(sec") 

1/t 

Fig. 4. Sample of experimental data showing (AT /dz)? is a linear 
function of 1/t. This is in accord with theory that diffusi- 
vity D = (T2/n)[(1/t)/(AT/Az)*] 

IV. SALINITY DIFFUSION 

The substitution of S for T in (4) is all that is necessary. 
Thus 

2 

= (ss/n) [4/38 (5) 
O° 

where D' is the diffusivity of NaCl dissolved in water in cm®/sec, 
S, the mass concentration of salt in gm/cm’, t, the diffusion time in 
seconds, z, depth in cm, and Sb, the initial salinity discontinuity 
in gm/cm”*, 
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Fig. 5. Thermal diffusivity D vs. diffusivity of NaCl in water D' 
for zero turbulence at lower left, and increasing turbulence 
toward the upper right. 

V. DISCUSSION OF RESULTS 

Figure 5 shows thermal diffusivity D vertically, and salt 
diffusivity D' horizontally. The point marked (X) at the lower 
left represents the handbook values for the two molecular diffusivities. 
The nearby circular point was determined experimentally when the 
mixer of Fig. 1 was not used. The point nearest the center of Fig. 5 
is an average of four experiments using turbulence #1 as listed in 
Table I. The maximum deviations from the mean are shown. The 
upper right point is for turbulent condition #2. The mean value was 
derived from seven experiments. Again maximum deviations from 
the mean are shown. 

In Fig. 5 a straight line has been drawn connecting the 
molecular diffusivity point with the point of maximum eddy diffusivity. 
The intermediate point is somewhat below this line but there is 
clearly not enough experimental data to determine the shape of the 
curve. At the top of Fig. 5 a scale shows how the ratio of D/D' 
decrease with increasing turbulence. 

Turbulence in a stratified fluid manifests itself in two ways. 
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There is heat energy liberated due to viscous friction. Also, a part 
of the turbulent energy is dissipated in changing the potential gravi- 
tational energy of the pycnocline by changing its thickness. 

The power density associated with a change in potential energy 
can be shown for water to be approximately 

2 
P' = aio peel ergs/cm?® sec (6) 

where g is acceleration of gravity in cm/sec”, (Ap) is either (Ap), 
or (Ap), symbolizing the change in density due to temperature or 
salinity differences across the pycnocline in gm/em®, (Ah) the change in 
thickness of the pycnocline in cm, and (At) =(t,- t,) in sec. For tur- 

bulence #1, P/=0.0074 ergs/cm?® sec. For turbulence #2, P} = 0.055. 

The power density due to viscous friction P was estimated by 
measuring the temperature rise in the water due to turbulence #1 
and #2 being maintained for measured lengths of time. For turbulence 
#1 this was about P, = 0,014(107) ergs/cm* sec. For turbulence #2, 
P, = 0.082(107). 

The ratio of P,/Pj = 1.9(10’), and P,/P,=1.5(10’). Thus, 
it appears that the power density due to viscous friction is on the 
order of 10’ greater than the power density associated with a change 
in the pycnocline thickness. 

However, the ratios for the two conditions of turbulence are 
different only by about 25%. This is interesting, for if it should 
turn out that P/P' is relatively constant over a practical range of 
turbulence, temperature and salinity diffusivities could be estimated 
directly from the time rate of change of pycnocline thickness (after 
internal waves are filtered out). Possible application to the ocean 
is intriguing. 

For physical and dimensional reasons, let us divide P' by 
the dynamic viscosity of water n = 0.01 gm/cm sec, and take the 
square root. Equation (6) then becomes 

1/2 (P'/n)"”? = 110(Ap/At)’*(Ah) 1 /sec (7) 

This equation contains variables that are relatively easy to measure 
and has the dimension of vorticity. It is plotted in Fig. 6 for the 
average values of the variables used in the small scale laboratory 
experiments. 
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Fig. 6. Tentative extrapolation of experimentally determined diffusion 
coefficients D and D' vs. variables that are relatively easy 
to measure at sea. 
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ABSTRACT 

A theory for the motion of two-dimensional turbulent 
vortex pairs in homogeneous media has been developed 
based on separate velocity scaling of the internal and 
external flow fields involved in the motion and taking 
into account variations in volume, circulation, momen- 
tum, and energy. Based on the results obtained from 
this theory (I) a simplified theory (II) is derived to deal 
with the rising motion of turbulent vortex pairs in 
stratified media. The theoretical results are compared 
with systematic experimental observations. 

In theory (I) the ratio of internal to external velocity 
scales, \, is introduced as an important variable and 
the theory is specifically derived for the two limiting 
cases of weak (W ~ 1) and strong ( >> 1) circulation. 
The weak circulation theory leads to results similar to 
those obtained in the past using theory based on com- 
plete similarity and momentum conservation; i.e., 
z~t!/3, The strong circulation theory leads to results 
which depend very much on the way in which vorticity 
from the shear layer is ingested into the vortex pair. 
When ingested so as to cause annihilation (cancellation) 

of the ingested vorticity, the asymptotic trajectory is 
z~t'/2, Under the same conditions the velocity ratio, 
Ww, increases toward an asymptotic value, and the 

virtual momentum coefficient for the motion tends 
to zero. As a result, the asymptotic motion (assuming 
vorticity annihilation) corresponds to a motion with 
complete similarity and with energy conservation. 
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A comparison of experimental observations of rise 
versus time and radius versus height with theory (I) 
lend strong support to the strong circulation theory 

and suggest that ingested vorticity may be largely 
annihilated. 

Based on these finding for homogeneous flows, a sim- 
plified theory (II) for stratified media was developed 
upon the assumptions: (i) the motion is determined 
by conservation of volume, mass, and energy (neg- 
lecting vorticity and momentum); (ii) complete simi- 
larity (dR/dz = 6, a constant). Good agreement was 
found between the predictions of this theory and the 
results of systematic experiments, and particularly 
for the maximum rise of height. 

NOTATION 

a Density gradient in surrounding fluid, a = (1/pe)(dpe/dz) 

A Initial buoyancy parameter (theory), Eq. (44) 

A, Vorticity mixing coefficient, Eq. (9) 

b Half distance between cores of vortex-pair 

B Stratification parameter (theory), Eq. (45) 

c Constant 

Cy Energy dissipation coefficient 

D Energy dissipation parameter, Eq. (46) 

E Total energy of convected mass 

G Experimental buoyancy parameter, Eq. (44) 

j Geometrical parameter, j= 0 for planar geometry, 
j = 1 for axial symmetry 

k Virtual potential energy coefficient, Eq. (38) 

Kin Virtual mass coefficient 

K Virtual kinetic energy coefficient, Eq. (37) 

M, Vertical component of total momentum 

n Parameter defined by Eq. (47) 

r Radial distance from center of rising mass, r* = Eg? + ne + co 

R Mean radius of rising mass 

R Non-dimensional mean radius of rising mass, R= R/R, 

S) Experimental density stratification parameter, Eq. (53) 
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t Time 

me Non-dimensional time, t = Wot/z, 

t ax Time at which the maximum height of rise is reached 

u,v,w Velocity components, see Fig. 14 

W Vertical velocity of rising mass 

WwW Non-dimensional vertical velocity of rising mass, W = W/W, 

we Vertical velocity of ideal vortex-pair 

Z Height of rising mass center above its virtual origin 

Zz Non-dimensional height of rising mass center, Z = z/Zo 

Zmax Maximum height reached by rising mass 

B Modified entrainment coefficient 

Y Local vorticity, Eq. (7) 

I Total circulation about a single vortex 

€,n,»6 Coordinate system, see Fig. 14 

p Local density inside convected mass 

Pe Density of surrounding fluid 

p, Average density of convected mass, Eq. (43) 

Ap Density difference, Ap = pi - Pe 

Wy Velocity ratio, W,/W, 

Le Non-dimensional vertical momentum, (M,/p)/W,,R° 

Subscripts 

( ), Initial conditions 

( ); 7odaternal 

{ }, External 

I. INTRODUCTION 

Ideal Vortex-Pairs. Flow visualization studies carried out 
by Scorer [1957] , Woodward [1959] and Richards [1965], indicate 
that the shear layer which is formed between a moving isolated mass 
of fluid and the stationary surrounding medium tends to roll up and 
create a flow field which resembles (in two dimensions) the one 

associated with two line vortices of equal strength but opposite sign, 
separated by a distance 2b, so-called "vortex-pairs." The possi- 
bility of vortex-pair motions in an inviscid fluid was considered and 
analyzed over 100 years ago by Sir W. Thomson [1867]. His analysis 
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applies only to an idealized vortex-pair in which each vortex has a 
highly concentrated core which is set into motion only by the influence 
of the other vortex. Such an ideal vortex-pair moves through the 
surrounding fluid in a direction perpendicular to the plane joining 
the vortex cores and with a velocity W determined only by the pair 
separation, 2b, and the circulation about a single vortex, [, 
according to the relation 

ee 

A unique feature of this idealized vortex-pair motion is the 
existence of a closed streamline and a finite captured mass, as 

indicated by the oval in Fig. 2a. Thomson [1867] calculated the 
semi-axes of the oval-shaped captured mass to be 2.09b and 1.73b 
so that the cross-sectional area is approximately 3.62 7b“ and the 
ratio of width to thickness is 1.21. 

Under certain circumstances it is entirely possible that 
carefully balanced vortex-pairs, approximating Thomson's ideali- 
zation, can be formed. The motion around the vortex centers must 
be affected by viscosity in a real fluid, but as long as the viscous 
cores do not extend close to the bounding closed streamline, the 
flow within and without this streamline may be so closely matched 
that no large shearing motions or accompanying drag are associ- 
ated with the motion of the captured mass. In fact, nearly ideal 

vortex-pairs are sometimes found in the wakes of lifting surfaces, 
Fig. ta, and are known as "contrails," see Scorer [ 1958] and 
Spreiter and Sachs [1951]. Of course, the concentrated vorticity 
in the vortex cores tends to diffuse, and does so rapidly when the 
flow in the core is turbulent. 

Turbulent Vortex-Pairs. The probable short lifetime of 
ideal vortex-pairs under turbulent conditions gives special impor- 
tance to vortex-pairs whose behavior is governed by turbulent 
entrainment; indeed, it is these kinds of motions which are most 

commonly observed in nature, as in the case of a mass of fluid 
forced out rapidly through an aperture, Fig. ib, or in the convection 
of isolated masses in nature, Fig. ic, or in the bent-over and rising 

chimney plume. 

Turbulent vortex-pairs are characterized by the fact that the 
interior motion does not match the outer flow at the boundary of the 
captured mass, so that a region of high shear exists there, accom- 

panied by the production of vorticity and by turbulent entrainment. 
In other words, these vgrtex-pairs move with a velocity W not 

equal to the velocity W derived from Thomson's model, Eq. (1). 

We may, in principle, generalize Thomson's model to con- 
sider those cases where the velocity of translation, W, has a more 
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general relation to the velocity w* which characterizes the internal, 
rotational motions of the vortex-pair. Two distinct cases suggest 
themselves, in theory. In one case, W> W , and the convected 

mass loses volume to the surrounding fluid and continually shrinks 
in size; we denote this vortex-pair as "underdeveloped," see Fig. 
2b. In the other case, W < W", and the "overdeveloped" vortex- 
pair gains mass through the entrainment of exterior fluid, Fig. 2c. 
Of these it is the latter motion which is most commonly observed in 
nature and forms the main subject of this work. 

Within an overdeveloped motion, the velocity at the boundary 
inside the vortex-pair, as seen by an observer moving with it, will 
be larger than the velocity of the surrounding fluid just outside the 
boundary of the pair. Accompanying the velocity gradients thus 
created across this boundary, shear stresses are exerted by the 
vortex-pair on the surrounding fluid, resulting in the entrainment of 
outer fluid and a general increase in the volume of the convected 
mass, see Fig. 3. Within the high shear zones at the boundary on 
either side vorticity of sign opposite to that within the respective 

SHEAR AND ENTRAINMENT me Tian 

INGESTED VORTICITY 
MIXES HERE 

Fig. 3. Entraining vortex pair (W, > W,) 
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interior is created, and is pulled down around the bottom of the 
rising mass toward the plane of symmetry. To the extent that the 
ingested vorticity remains on its own side of this plane, the vorticity 

within the interior will be steadily reduced; of course, ingested 

vorticity of opposite sign does have a chance to mix and thus to 
annul itself, depending on the efficiency of mixing. Should effective 
annihilation of ingested vorticity occur, then the initial total vor- 
ticity within one side of the pair would be conserved in time. 

As for the kinetic energy implicit in the motion of the vortex 
pair, it must be continuously reduced with time due to turbulent 

dissipation. 

Self-Similarity in Vortex-Pair Motions. It is a striking 
characteristic of free turbulent flows in homogeneous media at 
sufficiently high Reynolds numbers that, under similar circumstances, 
the flows at different points in space or time can usually be reduced 
from one to another upon normalization by an appropriate length 
and velocity scale (self-similarity). This is true, for example, of 

the flow at different downstream sections of turbulent jets and wakes. 
It is therefore natural to expect that a turbulent vortex-pair exhibits 
complete self-similarity during its life time, and this assumption 
has been made in all theoretical treatments of the subject, starting 

with Morton, Taylor, and Turner [1956]. Two important consequences 
of this complete similarity are: (1) cons eryation of the ratio of 

internal and external velocity scales, w/w , during the motion; 

(2) linearity of the length scale of the convected mass with the dis- 
tance traveled from a virtual origin. 

This latter result, predicting that the traces of the side 
boundaries of the convected mass form a wedge, is independent of 
the dynamics of the motion and serves to provide a check on self- 
similarity. In fact, a number of previous experiments on self- 
convecting masses claim to confirm this behavior to a reasonable 
approximation, see, e.g., Scorer [1958] , Woodward [1959] and 
Richards [1965]. 

It is, obvious to ask whether a "natural" value of the velocity 
ratio W/W", or the same thing, of the constant B = dR/dz is ob- 
served, independent of the original circumstances giving rise to the 
convected mass. The answer seems to be no. In the present experi- 
ments, two distinctly different ranges of value of dR/dz differing 
by a factor 2, have been repeatedly measured; these correspond to 
two different stroke lengths in the apparatus used to originate the 
vortex motions, Furthermore, although the present data may be 
claimed to correspond "in a reasonable approximation" to a constant 
value of dR/dz, yet quite consistent deviations from linearity exist 
between the traces of pair radius and distance traveled, see Fig. 4. 
These deviations are such that dR/dz seems actually to increase 
throughout the observed motions. 
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Fig. 4. 
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K aK 
Eq. [240] Ge = 1/2, = 0.38 

RADIUS, R/R, 

The variation of vortex-pair radius with height in a homo- 
geneous medium, experiment 
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In view of these facts, and for other reasons, it seems 

desirable to attempt a more general theory of the motion of turbulent 
vortex pairs, based on the assumption of separate velocity scaling 
of the internal and external motions; i.e, allowing W/W” to vary 
continuously. Afterwards, a simplified theory pertaining to motions 
in stratified media will be developed and the results compared to 
experimental observations, 

Il THEORY (HOMOGENEOUS FLOWS) 

Separate Similarity of Internal and External Flows. We 
visualize the vortex-pair motion to be divided into internal and ex- 
ternal flow fields, separated by a thin region of high shear, which 
also forms the boundary of the captured mass, see Fig. 3. We 
assume that each flow field is itself self-similar. 

Internal. 

— (x 
Wy, (zy): = W, (t) + w, (5:4) (2) 

External. 

Welxsyst) = Welt) - we(% 5%) (3) 

and similarly for the other velocity components. 

We let Y= W,/W,, where yw is, in general, not constant in 
time as it is in the case of complete similarity. 

We choose Wj, as the circumferental velocity averaged over 
the inner boundary of one-half of the vortex pair and W, the same 
except averaged over the outer boundary. (The inner and outer 
boundaries are separated by a thin shear layer.) 

Volume Changes. The volume of fluid comprising the vortex 
pair increases continuously with time due to entrainment into it. 
Because of the similarity assumed, the rate of entrainment of 
volume must (in two dimensions) be proportional to a characteristic 
velocity and a characteristic length. We take for the former, the 
velocity difference W, - W, 

a(cR°) 
dt 

= 2nR(W; - We) > @(¥) (4) 

or, 
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S = Te (y - 1) + aly) = Qh - tay) (5) 

Note that the dependence of the proportionality constant @' on the 
velocity ratio ~ has been left unspecified. 

Circulation Changes. The circulation I about one half of 
the vortex pair is, on account of the inner similarity, proportional 
to the length scale and inner velocity scale. On account of the way 
in which W, was defined, 

T <RW, (6) 

The fluid entrained into the vortex pair from the surrounding 
high shear layer carries vorticity of opposite sign to that already 
within the interior, see Fig. 3 and thus reduces it to the extent it is 
not annihilated through mixing with vorticity being entrained in the 
opposite lobe. The strength of entrained vorticity must, on account 
of similarity, be proportional to the ratio of a pertinent velocity and 
length scale. In particular: 

y(entrained) ~ He (7) 

The flux of entrained vorticity takes the form: 

Vorticity Flux “ Volume Flux + y(entrained) 

=[2mR(w, - Ww) > ewi[ee“t] a) 

Finally, the change in circulation may be related to the flux of 
vorticity: 

aE <a, + 2maty) + (Ww, =)" 9) 
or, 

AWLP) 2 aja! + (W, = Wy) + Y= 2 (10) 
The value of the parameter A, will depend in part upon the 

extent to which entrained vorticity from each side mixes together 
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causing annihilation. In the case of complete annihilation, A,=0. 

Momentum Conservation. The momentum, M,, of the vortex 

pair is conserved in motion through a homogeneous medium. It 
may on account of similarity be expressed in the form, 

a2 = Kip) » W,R = const. (11) 

where K() is a momentum coefficient. Its form may be deduced 

through use of the identity, Lamb [1945], pg. 229, 

<3 =f ye dé dt (12) 

The latter integral can be taken separately over the interior and 
shear layer of the vortex pair, which yields terms upon making use 
of similarity, 

ey yo d& dt = W; R? (13) 

int. 

a yt d& dl = (We - Wi)R® (14) 
shear layer 

As a result, the form of K,{) consistent with our assumptions, 
is seen to be, 

KA) = K, - Ki (15) 

where K, and K, are undetermined constants. 

Energy. The total kinetic energy in the vortex pair motion, 
taking account of similarity, may be expressed as the sum of two 
terms, 

KE, _ K, w7R? + K,W.R? (16) 

while the dissipation takes the form, 
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a KE 
a - WR ° Col) (17) 

where for large values of WU, Cp must approach some limiting value 
Cp', while for small values of | (J+ 1), Cy) C(t) » (We/Wi)>. 

Laws of Motion. Limiting Cases; Weak Circulation (W — 1). 

In this case the inner and outer flows are almost matched and the 

deviation from the ideal vortex motion is small. The laws of motion 
in their appropriate form become, 

Volume. 

& = (p- 1) * a@"(4) (5a) 

Vorticity. 

anes =- Aja'(1) +» (pb - 1° > W, (10a) 

Momentum. 

K (1) ° W,R° CONS te (14a) 

Energy. 

d(WeR) We sse? K(1) S784 = - (58) WR Colt) (17a) 

Combining (5a) and (10a) leads to the result, 

| 
W, < cep A, #0 (18) 

Whereas, (iia) requires 

Ww, * = or z=tl/3 (19) 

so that the presumed motion can take place only if A, =0 or 
A, = (W - 1)-'. Combining (17a) and (10a) leads to the requirement 
that the velocity ratio be constant and have the value 
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v=tt[oenytttha | (20) 
° @ 

At the same time, dR/dz is required to be constant and to have the 

value, 

= dR _/ We Col) 
iin PAE Secs age (sp) ; KU) te 

We leave till later a discussion of comparison with experiment, but 

we may note now that the prediction (19) is similar to that of the 
previous theory based on complete similarity. 

Strong Circulation (J >>1). In this case the interior circu- 
lation is very strong relative to the ideal value and the deviation from 
the ideal vortex motion is large. The appropriate laws of motion are, 

Volume. 

GR Sepa ut 
7am a (W) (5b) 

Vorticity. 

AMAR) = aa'(y) + Wi > (10b) 

Momentum. 

2 (K, - Kh) + W, Ro = b+ (M,/p) (11) 

Energy. 

d os 3. gel 
KW 3 (W, R) = - W, R* Cy (1 7b) 

Combining (10b) and (17b) leads to the requirement that a(ip) be 
constant and equal to 

Cr 

DSK (24) 

Since similarity requires that W,/W be constant, we may hereafter 

take a' constant in (5b) and (10b). Combining (5b) and (10b) leads 

to the result 
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1+A, 

1 Ie 
eo RueAy OF W/W, * (#2) 22) 

and, substituting (22) and (5b) into (11b) leads to the differential 
relation, 

Kp dR\w"'A)) — np dR 
K, - += = ort (23) 
( | (e4 =) a’ dz 

which has the solution, 

a! _ R* Kos Ta °Z= x eee + const. (A; # 0) (24) 

where 

M u = eee 
W, Ro 

0 

and 

a! _ = , Kos 
— Kz =4n R + —#R + const. (A, = 0) 
al mn 

or 

1 

aK, Bed tn R + S2(R - 1) (24a) 
B Ro 

Substituting dR/dz derived from (23) into (5b) yields a relation 
between | and R, 

K 

Seta (25) 
WR aK 

and, finally, it may be shown that, 

W te 2 K __ (I+ Aj) 

sug ic Bone Seek (26) 
K, K, 

The type of motions which ensue from this theory in the case 
of strong circulation are seen to depend very much on the value of 
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A,, the constant appearing in the relation for circulation change, 
and which depends in part on the way in which vorticity is ingested 
into the vortex pair. In fact, the asymptotic behavior of the vortex 
pair changes radically as A; varies around the value unity. This 
is demonstrated in the table below. 

Asymptotic Behavior ( >> 1) 

aK 

pt AiKa) 

ak. aK, 

R(K/a'K,) 

R(K,/a'K,) 

For values of A, > 1, the velocity ratio is seen to decline, 
so that the strong circulation assumption must eventually become 
invalid. The case A, =1 yields results qualitatively similar to 
the weak circulation case. In the case where A,< 1, however, the 
velocity ratio increases to the asymptotic value shown and, most 
interesting, the added momentum coefficient (K, - K,¥) vanishes 
asymptotically, so that the motion becomes determined by volume, 
vorticity, and energy balances alone. Finally, in the case where 
A, << 1 (effective annihilation of ingested vorticity), then asympto- 
tically the motion ea, tae determined by volume and energy balances 
alone, yielding z~t 

III COMPARISON WITH EXPERIMENT (HOMOGENEOUS MEDIA) 

In Figs. 5 and 6 are shown data from actual experiments on 
two-dimensional vortex pair motions in homogeneous fluids. Most 
of the data shown were obtained in experiments carried out in our 
own laboratory. Suffice it here to show a schematic of the facility 
which was used, Fig. 7, and to show Table 1, in which the properties 

and characteristics of the experimental vortex pairs are listed. 
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O EXPERIMENT 
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Zz 
lu 

a 2 
W~R- 

0.1 
| 5 10 

RADIUS, R/Ry 

Fig. 5. The vertical velocity vs. radius of a vortex- 
pair moving in a homogeneous fluid 

Most significant, we found in our experiments and from the 
data of Richards [1965] that the measured variation of vertical 
velocity and pair fadius (two-dimensions) conformed more closely 
to the law W~R™ or z~t'/2 than to the law derived in the past by 
others and which is based on complete similarity and momentum 
conservation; i.e., W~ R? or z~t'”, A test of the simple con- 

servation of momentum, W~ R™, using a typical trajectory is 
illustrated in Fig. 5 and, similarly, in Fig. 6 it is shown that the 
trajectories, so far as they have been observed experimentally, 
conform more closely to the asymptotic law derived earlier for the 
case of strong circulation, utilizing a small value of A, 

(Oi Ay <0 2). 

In the case of strong circulation, the radius grows ina linear 
fashion asymptotically, but the theory predicts that during the initial 
phases of the motion the quantity dR/dz is less than its asymptotic 
value. A similar behavior was observed in our experiments, see 
Fig. 4. The matching up of these observed trajectories with the 
theory offers an opportunity to determine some of the constants of 
the theory. For this purpose we assume to begin with that A, =0, 

since the comparison between observed and theoretical trajectories 
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Fig. 6. 

Tulin and Shwartz 

THEORY: EXPERIMENTS: 

R ar UN 301 

(z/z9) (2+D) (Wot) RUN 302 

RUN 304 
NOTE: D MAY BE REPLACED BY A 

RICHARDS (1965) 

D = 1 CORRESPONDS TO CONSERVATION OF MOMENTUM SOLUTION 

D = 0 CORRESPONDS TO CONSERVATION OF ENERGY SOLUTION 
WITH ZERO DISSIPATION 

es) 2 3 4 5 6 7 8 9 

TIME, Wt/z, 

The rise of vortex-pairs in a homogeneous medium} 
comparison of experiment and theory 
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HOMOGENEOUS OR LINEARLY 
DENSITY-STRATIFIED FLUID 

4g" 

APERTURE 0.75" WIDE 

Fig. 7. Experimental facility for studying vortex-pair motion 

suggests a small value. In this case, 

eK) EE al = ink + [R - 4] (24a) 

The trajectory according to Eq. (24a) with K,/p = 1/2 and 
aK /p = 0.38 is shown in Fig. 4. A fair fit with the experiments has 
been achieved, and noticeably better than is possible with any linear 
trajectory. 

The strong circulation theory thus explains the two important 
features of vortex pair behavior which cannot be explained by the 
usual theory of complete similarity. These features are: (i) the 
tendency for forced vortex Peajectorics (homogeneous flow) to more 
nearly follow the law z~ t”* rather than z ~ t'/3, and (ii) the ten- 
dency for the entrainment coefficient (dR/dz) to grow during the 
initial phase of the motion. These results suggest that in vortex 
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motions in homogeneous flows the internal velocity scale grows 
steadily relative to the translational (external) velocity, the ratio 
approaching a value considerably larger than unity, while at the 
same time, the virtual momentum coefficient associated with the 

vortex motion approaches the value zero. The data also suggest 
that vorticity ingested from around one half of the vortex pair is 
almost annihilated through mixing with vorticity ingested from the 
opposite side. 

IV. SIMPLIFIED THEORY (VORTEX PAIR MOTION IN STRATIFIED 
MEDIA) 

Convected masses in nature are often rising or falling ina 
medium of varying density, as in the case of a chimney plume pro- 
jected upwards into a stable atmosphere. The latter may be 
characterized by a characteristic time (the Vaissala period), 

1/Jag, where a= - (1/pe)(dp,/dz) and P, is the potential density 
of the atmosphere. The same definition can be used to characterize 
any density stratified media. 

The motion of the convecting mass may also be characterized 
at any instant by the time, R/W. It is almost apparent that when 
the latter time is long in comparison to the Vaissala period that the 
effect of stratification will dominate, and conversely. That is, 

Stratification 
Effect of 

Gira ication Ry ag 
Dominates 

decreasing Ww increasing 
Vanishes _——— ete 

Quite clearly, too, as the motion proceeds in time, the ratio R/W 
increases continuously, so that stratification must eventually 
dominate. When this happens, the vertical motion of vortex-pairs 
may become oscillatory, and is accompanied by the collapse and 
horizontal spreading of the convected mass, as illustrated in Fig. 8. 
This behavior is, of course, not consistent with similarity either 

complete or of the kind assumed in the preceding section. 

It is sometimes desirable to be able to estimate the tra- 
jectory of a vortex pair while it is rising in a stratified media and 
particularly to predict the maximum height of rise and the time 
required to reach the maximum. For this purpose, we adopt here 
a simplified theory based essentially on the assumption of strong 
circulation and annihilation of ingested vorticity. In fact, the parti- 

cular assumptions adopted would apply if the velocity ratio, w, had 
already closely approached its limiting value. These assumptions 
are: (i) the motion is determined by conservation of volume, mass, 
and energy (neglecting vorticity and momentum); (ii) complete 
similarity (dR /dz = B, a constant). For further justification of these 
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assumptions we shall depend finally upon a comparison between 
theoretical predictions and the results of systematic experiments. 

The energy balance is expressed as follows, 

2 So) [tts + vy? + w*) +(p - pe) 8b] d& dn dt 

= - (Rate of Dissipation of Energy) (27) 

See Fig. 14 for nomenclature. 

For a self-similar, self-convecting flow, the dissipation of 

kinetic energy per unit volume which occurs due to the action of 
turbulent shear stresses must for dimensional reasons be of the 

form, 

Dissipation pw (28) 
Unit Volume R 

As a result, the energy balance, Eq. (27), for a self-con- 

vecting mass in a homogeneous medium of the same density takes 
the form, 

2. 2+} 3 

K WRT) 2g W Re (29) 
2 dt DR 

where 

j = 0 (two-dimensional) 

j=1 (axisymmetrical) 

and K is a constant of virtual energy, defined by the identity, 

2 2 2 ; 
iY eo dé dn dt = Swr } (30) 

and where Cp, is a dissipation coefficient. 

Making use of (29), together with the relationship R= Bz, 
it may be shown that the height of rise follows the law, 

7 (2+ 1/2* Cp/BK) t (31) 
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in a medium of uniform density with Ap =0. The dissipation coef- 
ficient in nature, D= C)/ BK, may be determined by a comparison 

between theoretical trajectories such as given by (31) and obser- 

vations of vortex pair rise in homogeneous media. As shown in 
Fig. 6, such a comparison leads to the conclusion that D is quite 
small (D <"0,. 2). 

The trajectory given by (31) may be compared to the law which 
would apply if momentum were conserved, 

zeta t (32) 

which coincides with (31) only if D=1. The variance of observed 

trajectories from the momentum law (32) is clearly seen in Figs. 5 
and 6. 

Volume conservation in a self-similar flow leads to a linear 

relation between the nominal radius of the mass and the height of rise 
from the virtual origin z = 0: 

R = Bz (33) 

Conservation of mass takes the form 

d 4! 2+) 1+] = | (3) aR p; | = 2)2nR’ p, WB (34) 

where p,, is the density of the surrounding fluid at any given height 
z and p,; is the average density within the rising mass, defined by 

4\) 24) 
(3) mR |p, (z) - p,(z)] = { (Pp - Pe) d& (dn) dé (35) 

where the integration is taken over the entire volume of the rising 
mass. 

The formulation of conservation of energy is based upon (27) 

and (28) 

K 24) 2+} W>_ 24) 

de [2 PiW R™ +(e, - pleeR'” |= - Cori eR oy 
where W and R are the observed and measured gross properties 
of the rising mass while K and k are the coefficients of the virtual 
kinetic and potential energies, respectively, defined in two dimen- 
sions, e.g., by 
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2_2 

Kp, Se -{ £ (we +w*) dé ae (37) 

and 

k(p; - p,)zR° =f (Pp - Pe)(z +6) d& dg (38) 

In most practical instances where one is dealing with a mass 
of fluid convected through a homogeneous or stratified medium such 
as the ocean or the atmosphere, the difference between the densities 
of the convected and surrounding masses is yery small; that is 
Ap/p, << 1, being usually of the order of 10~, and therefore pj/pe 
can be taken as 1. This assumption, frequently referred to as the 

Boussinesq approximation, see Phillips [| 1966], will be used through- 

out the analysis presented herein. 

Using the Boussinesq approximation and the identity dz = w dt, 
the three conservation statements, Eqs. (33), (34) and (36), may be 
reduced to the following form in the case of a planar motion: 

R = 62, (39) 

dpi 4 24p _ 0 
dz Zz 

or (40) 

d (Ap), 27Apy _ 
dz one alae gts 

2 
dw Cp 2, 2kg (Ap 4 _ 

i> +2(1 +e) W eal re az)z = 0 (41) 

where a=-(1/p,)(dpp/dz) and Ap = (p; - pe). 

Finally, explicit general solutions of (40) and (41) may be 
found. They are: 

oe = ((40) - Sele * ee 4) 

(ye ibe: Be enter ee rile eh a Wn (+ 2D) T¥D/2° 12D 

+ A) 2° - bea] 2” (43) 
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where 

= (2k) = 298 (Ap A= (=) Grits anaY ite ane ee) (44) 

= (sR an = Wwe (45) 

C = —D D= BK (46) 

n= 2(1.+ D) (47) 

and 

ZS Z/fZg (48) 

The parameter G is a measure of the initial buoyancy of the 
convected mean relative to the initial momentum. G is taken as 
positive when a net buoyancy force is acting on the mass, i.e. 
4p <0. S is a measure of the added buoyancy which would result 
from moving the convected mass a vertical distance zo througha 
stratified medium. Since fag is the frequency with which a finite 
volume of fluid of given density would oscillate in a stratified medium, 
often referred to as the Vaisala frequency, the parameter S can 
also be considered as the square of the ratio of the characteristic 
time of the convected motion, z )/W,, and the reciprocal of the 
Vaisala frequency. 

The maximum height of the rising mass, reached at the point 
where W = 0, is according to (43), given by the solution of the 
following: 

ee ee) eee) 

+B(rep72- T=) =° ee) 

It is of interest to consider certain special cases: 

1. A mass rising in a homogeneous medium with the 
same density as itself; i.e., A=0O and B=0. Then 

-n/2 

Gy)? Gs) (50) 
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or, 

(= =1+ (1 +3) wat (51) 

This result suggests how to estimate the dimensionless quantity n 
(or D) through the analysis of the trajectories of rising masses in 
this special case. 

2. Amass with initial density difference rising ina 
homogeneous medium; i.e., B=0. Then 

(ie) = [) = tay]? + Eto)?" ae 
If A> 0O, then no maximum height is reached, but if A<0O, 

\/(1#2D) 
Z max -(- eet (53) 

Zo | A | 

The predicted rise of the mass as a function of time and the 
maximum rise of the mass for a range of values of A (<0) and D, 
as obtained from Eqs. (52) and (53), are presented in Figs. 9 and 
10. These figures demonstrate clearly the effect of the (negative) 
initial buoyancy and energy dissipation parameters on the time 
history of an impulsively started rising mass moving througha 
uniform surrounding fluid of smaller density. 

2a. The same case as above but for W,=0 and A>O. 
First of all, (43) may be rewritten: 

n 

“sw, (22) + eit (5°) ( basco on = 

or in this case 

es Fctbel GD Sl) | 6 
3. A mass with no initial buoyancy rising in a stratified 

medium, i.e., A=0O. Then, 
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SOLUTION FOR B = 0 

= «(ATS 0 

A=-0.4 

A= -1.0 

RISE HEIGHT, z/zo 

TIME, Wot/ z, 

Fig. 9. The rise of an impulsively started heavy mass of fluid in 
uniform surroundings (B= 0), theory 

= oa (55) 

and the maximum rise of the mass, as a function of B, is obtained 

from Eq. (55) by setting W = 0. 

Approximate integrated solution for the height of the con- 
vected mass, z,; as a function of time can be readily obtained from 

Eq. (55) whenever D <<1 and B<<i. When these two require- 
ments are satisfied, Eq. (55) can be rewritten as 

2 

qe aie eid eo (56) 

and upon integration we obtain 
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VB ats sin [ sin" VB + 2/BF | (57) 

where we have normalized the time t according to 

t= Wot (58) 

Equation (57) is particularly useful for the approximate deter- 
mination of the maximum rise of a mass convected in a stratified 
medium and the time at which this maximum height is reached, 
tmx: For the maximum height we find 

1/4 

Zmax = (3) (59) 

and the time required to reach this height is given by 

ofa eet 
ne Ae 

This last result is especially interesting. In experiments on 
convected masses of fluid moving through a density stratified 
medium it was frequently observed that the time it takes the mass to 
reach its maximum height is inversely proportional to the Vaisala 
frequency of the stratified medium, i.e., tiniV28 = const. Equation (60) 
is just a statement of this same fact for small values of B (as usually 
exist in nature), since may [cy = (2k BK (trax 2g) « 

(60) 
ph] 

V. COMPARISON OF EXPERIMENTAL AND THEORETICAL 
RESULTS (STRATIFIED MEDIA) 

In our experimental investigation we have studied the motion 
of impulsively started rising masses (or vortex-pairs) in both 
uniform and density-stratified surroundings. According to the 
theoretical considerations presented in theprevious section, the 
time-histories of these motions, expressed in appropriate non- 
dimensional terms, are determined by three parameters, A, B 

and D, i.e., for given values of these parameters the rise and 
growth of the convected mass as a function of time can be predicted. 
A and B are determined by G and S and by a third parameter 
which is the ratio of the virtual kinetic and potential energy coef- 
ficients, K/k, according to Eqs. (44) and (45). 

While the parameters G and S are determined in each case 
by the initial conditions of the rising vortex-pair, there is no 
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practical way for determining a priori the values of D and K/k. 
These latter parameters can be determined only by comparing 
certain sets of experimental results with corresponding theory. 

A series of experiments on the motion of vortex-pairs ina 
homogeneous medium of the same density, Series III (see Table 1), 
where the parameters G and S (and therefore also A and B) are 
identically equal zero, may be used for determining the dissipation 
parameter D. The rise of the vortex-pairs in this case is predicted 
by Eq. (51) and is graphically depicted in Fig. 9 (with A= 0). 
The actual predicted rise of the convected mass depends on the 
numerical value of the parameter D (or n). 

In Fig. 6 are shown a comparison between experimental and 
theoretical results on the rise of impulsively started masses ina 
uniform medium of the same density. In a log-log plot, the slope 
of the trajectory for large values of (W,t/z,) should be equal, 
according to our analysis, to 1/(2+D), and it can be used therefore 
for determining the value of the dissipation parameter D associated 
with the motion of the rising mass. Included in Fig. 6 are the 
experimental results of Richards [1965], on the rise of two- 
dimensional puffs in homogeneous surroundings. The best agree- 
ment with all experimental results is obtained when we choose 
D =,0..2. 

The numerical value of K/k enters into the analysis only 
when there is an initial difference between the rising and surrounding 
fluid densities or when the surrounding fluid is stratified. This 
value will be also determined from a comparison of some experi- 
mental and theoretical results. For a vortex-pair convected ina 

density-stratified medium we found earlier that, for sufficiently 
small values of the parameters A, B and D, the time it takes the 

mass to reach its maximum height is inversely proportional to the 
Vaisala frequency and is given by 

(trevas) = (se 5 (61) 

This value decreases only very gradually as the value of B (or S) 
so that Eq. (61) is very useful for the experimental determination 

of K/k. 

In Fig. 11 the value of the product (tmav ag » as measured 
in the experiments of Series I and II, is presented as a function of 
the stratification parameters S; the initial conditions for each 
experiment presented in the Figure are included in Table 1. There 
are certain inherent inaccuracies in the experimental determination 
of tmax which explain the scatter. Also shown in Fig. 11 are the 
asymptotic solution for the maximum rise time, Eq. (60), and the 
exact solution, according to Eq. (43), with D=0.2 and G/S = - 0.715. 
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Close agreement between theoretical and experimental results was 
obtained when we used 3K/2k = 6 or K/k=4. We have included 
in the same figure the experimental results from Series III which 
had a markedly different value of B; these too were found to agree 
very closely with the theoretical prediction based on D=0.2 and 
K/k = 4, indicating that the dependence of these latter two parameters 
on £f is probably very weak. We have used these values of D and 
K/k for all subsequent comparisons of experimental and theoretical 
results. The coefficient of virtual potential energy cannot be much 
different from unity, according to its definition in Eq. (38). The 
total kinetic energy of a rising vortex-pair was thus found to be 
about four times larger than the kinetic energy associated with its 
linear convection alone, an indication of the intensity of motion 
inside the vortex-pair, which contributes to its total kinetic energy. 
This finding lends important support to the strong circulation 
assumption. 

A comparison between the predicted and actual maximum 
heights of rise of a vortex-pair convected in a linearly density- 
stratified medium is shown as Fig. 12. The figure includes a 
prediction based on the simplified asymptotic solution for small B 
(or S), Eq. (59), and a prediction obtained from the exact solution 
of Eq. (49) for Zmgx Generally there is good agreement between 
the experimentally measured maximum height of vortex-pairs and 

the exact theoretical solution. 

Finally, in Fig. 13, we compare the measured trajectories 

(height versus time) of vortex-pairs with their theoretically pre- 
dicted trajectories. The vortex-pairs included in the Figure all had 
different starting conditions and they were moving through media 
with different density-stratifications. However, their trajectories, 

as depicted in the figure are shown to depend only on the values of 
the two lumped parameters G and S which combine their starting 
conditions with the properties of the surrounding medium. 

The fact that trajectories of different vortex-pairs are 
grouped according to their G and S values confirms the validity 
of the scaling laws and scaling parameters used herein, while the 
agreement obtained between the experimental and theoretical tra- 
jectories lends further support to the validity of the simplified 
theory presented here for the motion of vortex-pairs in stratified 
media. 

VI. SUMMARY AND CONCLUSIONS 

A theory for the motion of two-dimensional turbulent vortex- 
pairs in homogeneous media has been developed based on separate 
velocity scaling of the internal and external flow fields involved in 
the motion. These two flow fields are depicted to be separated by a 

thin region of high shear, which also forms the boundary of the 
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captured mass. The theory takes into consideration variations in 
volume, circulation, momentum, and energy in the flow field. The 
ratio of internal to external velocity scales, wW, is introduced as an 
important variable. The virtual momentum coefficient is shown to 
be linear inj |, ‘of the form. K, = Koil. 

The theory is specifically derived for the two limiting cases 
of weak and strong circulation. In the former case; “);— 1} and 
the entrainment is weak; the asymptotic behavior of the trajectory 
is z~t'® just as predicted by the usual theory based on complete 
similarity and momentum conservation. 

In the case of strong circulation, w >> 1, the asymptotic 

behavior of the trajectory depends very much on the way in which 
vorticity from the shear layer is ingested into the vortex pair. In 
the case where the shear layer from opposite sides is ingested in 
such a way as to cause annihilation of the ingested vorticity, then 
the asymptotic trajectory is z~ t¥2, Under the same conditions, 
the velocity ratio, Ww, increases toward the asymptotic value 
K /Kp so that the virtual momentum coefficient tends to zero. As 
a result, the asymptotic motion assuming vorticity annihilation 
corresponds to a motion with complete similarity and with energy 
conservation. The ratio of growth of the pair radius with height is 
shown to increase, approaching a linear relation asymptotically. 

Systematic experiments have been carried out, and the results 

for rise versus time and radius versus height are compared with the 
theory. They lend strong support to the strong circulation theory and 
further suggest that ingested vorticity is to a large degree annihilated. 

Based on these findings for the case of homogeneous flows, a 
simplified theory is derived for the rising motion of vortex pairs in 
stratified media. The assumptions of the theory are: (i) the motion 
is determined by conservation of volume, mass, and energy (neg- 
lecting vorticity and momentum); (ii) complete similarity (dR/dz = By 

a constant). General laws of motion in stratified media have been 

derived and solutions given; particularly interesting cases are dis- 
cussed in detail. 

Motions in stratified media were shown to depend on four 
non-dimemsional parameters. Two of these depend upon the initial 
conditions of the motion and the stratification of the media. The 
other two are inherent in the details of the motion and had to be 
determined from experiments; one of these, the dissipation param- 
eter D = Cp/BK was found to be 0.2 while the other, the ratio of 
virtual kinetic and potential energy coefficients K/k was found to be 
4. On the basis of these numbers it may be concluded that the dissi- 
pation rate is small and that the contribution of internal motions to 

the overall kinetic energy is large. 

The experiments confirmed the environmental scaling param- 
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eters, which were used to collapse data taken under differing con- 
ditions. Good agreement was found between predicted and observed 
trajectories. Particularly good agreement was found for the maxi- 
mum height of rise. The time required to reach maximum height 
was found to be inversely proportional to the Vaisala frequency, jag, 
and was given approximately by tmexY 2& = 1.8, in good agreement 
with the theory. In general the experiments confirmed the utility 
of the simplified theory for predictions of the motion of vortex pairs 
in stratified media. This theory has been utilized elsewhere for 
the prediction of the behavior of chimney plumes rising into a stable 
atmosphere, with very good agreement between the theory and full 
scale observations, Tulin and Schwartz [1970], and also with 
excellent correlation with experiments to the penetration of a density 
discontinuity by a turbulent vortex-pair, Birkhead, Shwartz, and 

Tulin [ 19691 « 
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RADAR BACK-SCATTER FROM THE SEA SURFACE 

K. Hasselmann”™ and M. Schieler 
Instttut fuer Geophystk 
Untverstty of Hamburg 

ABSTRACT 

Doppler spectra of electromagnetic backscatter from 
the sea surface are interpreted in terms of general- 
ized Bragg models. The observed broadening of the 
spectra about the Bragg line is attributed to higher- 
order nonlinear processes. At conventional radar 
frequencies, good agreement with the measurements 
is achieved by an extension of the wave- facet inter- 
action model considered by Wright, Bass et al. and 
other workers. The correlation of wave slopes and 
orbital vélocities in the joint probability distribution 
of carrier-wave facets leads to significant differences 
between the Doppler spectra for vertical, horizontal and 
cross polarization. In the HF band, the Doppler 
broadening is interpreted in terms of quadratic wave- 
wave interactions. For the usual case that the electro- 
magnetic wave lengths are small compared with the 
principal wave lengths of the sea, the theoretical Doppler 
spectrum consists of the lowest-order Bragg line and 
superimposed images of the complete ocean wave fre- 
quency spectrum folded on either side of the Bragg line. 
Both wave-facet and wave-wave interaction models give 
promise of extracting significant information on the 
"state of the sea" from electromagnetic Doppler return 
at wave lengths short compared with the dominant wave 
lengths of the sea, 

* : 
Presently at Woods Oceanographic Institution. 
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I. INTRODUCTION 

The development of numerical wave prediction methods in the 
past years [1, 2, 17] has increased the need for wave data ona 
synoptic scale, both as a reference for testing and improving the 
models and as real-time input for the computations. Synoptic wave 
data would also be of value for numerical weather forecasting by 
providing indirect information on surface winds in otherwise poorly 
covered areas of the oceans. The growing interest in electromag- 
netic backscatter from the sea surface stems largely from the 
potentiality of the method for furnishing sea-state data of this kind. 
Radar scatterometers in satellites could scan most of the world 
oceans in a few hours. Alternatively, large areas of the ocean can 

be sampled using HF stations on land. Following the pioneering 
work of Crombie [6] and others, Ward [22] has recently detected 
the backscattered return of ionospheric HF modes from relatively 
small, 100 km square patches of the sea surface at distances up to 
3000 km. 

Unfortunately, both techniques suffer from wave length limi- 

tations. Cloud absorption and finite atenna size define an effective 
transmission window for satellite scatterometers in the conventional 
radar wave length range between a few fractions of a cm and about 
50 cms. Backscatter measurements over long horizontal ranges 
are similarly restricted to ionospheric modes in the decameter 
band. In both cases, the electromagnetic wave lengths are consider- 
ably shorter than the principal components of the surface-wave 
spectrum, which normally lie in the range between 50 and 500 m. 

The bad wave length matching creates difficulties in relating the 
backscattered signals obtained by these methods to significant sea- 
state parameters. 

Scattering experiments in both the centimeter-decimeter and 
decameter bands have now clearly established the basic validity of 
the first-order (Bragg) wave-wave interaction theory. According to 
this model, the backscattered radiation arises from interactions with 
two gravity- wave components whose wavenumbers k9 are determined 
by the Bragg (resonance interaction) condition for constructive inter- 
ference, k?= +2k', where k' represents the horizontal wavenumber 
component of the incident radiation. For non-normal incidence, 
the wave lengths of the scattering and incident components are then 
of the same order, which implies that the scattering surface waves 
normally lie in the high-wavenumber, equilibrium range of the 
surface-wave spectrum. It appears therefore from first-order 
theory that backscatter measurements may yield a useful independent 
determination of Phillips' constant [15, 22], but do not contain sig- 
nificant information on the more interesting low-wavenumber part 
of the wave spectrum which contains most of the wave energy. 

Fortunately, the scattering measurements, while supporting 
the Bragg theory, also indicate that it should be regarded only as a 
first approximation. The Doppler spectra, in particular, exhibit 
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several features not predicted by the Bragg model. Generally, 
there is a marked dependence of the anomalies on sea state, sug- 
gesting that useful correlations between backscatter signatures and 
significant sea-state parameters may be discovered by extending 
the scattering theory to higher order. 

Two generalisations have been proposed: the wave- facet 
interaction model[ 23, 4, cf. also 3, 9, 10, 20, 24], in which the 
Bragg-scattering waves are superposed on longer carrier waves, 
and the higher-order, wave-wave interaction model originally inves- 
tigated by Rice [18]. The models have been applied hitherto mainly 
to the cross sections, which show only weak sea-state signatures. In 
the present paper, we consider their extension to the more strongly 
sea-state dependent Doppler spectra. 

In the cm-dm bands, good agreement with the observed 
Doppler spectra is obtained with the wave-facet interaction model, 
The Doppler spectra are found to be quasi-Gaussian and can be 
characterized to good approximation by the mean frequency and the 
frequency bandwidth. Both parameters depend on moments of the 
wave spectrum which are governed by the high-energy, low-wave- 
number range of the spectrum. They can therefore be used to obtain 
independent estimates of, say, the mean waveheight and period. 

The model allows only for electromagnetic interactions. 
Basically, the hydrodynamical modulation of short gravity waves by 
long carrier waves is of considerable interest, not only for the 
description of the surface wave field, but also for its energy balance. 
The interactions generally lead to an energy loss of the long waves 
at a rate which can be estimated from,the observed upwind-downwind 
asymmetry of the cross sections [11]!. However, because of the 
strong influence of white capping, the interactions cannot yet be 
described in sufficient detail to be included realistically in computa- 
tions of the Doppler spectra. Their effect on the Doppler bandwidth 
is probably negligible, but the mean Doppler frequency may be more 
strongly modified. 

The wave-facet interaction model is valid for electromagnetic 
wave lengths shorter than about 1 m. Thus it applies in the cm-dm 
radar band, but not in the dkm band. In the latter case, however, 

the Bragg theory can be generalised by straightforward extension of 
the wave-wave interaction analysis to higher order. The relevant 

TLonguet- Higgins [13] has shown that the momentum loss of short 
waves breaking on the crests of longer waves results in an energy 
transfer to the long waves. However, the gain in long-wave 
kinetic energy due to this process can be shown to be slightly less 
than the loss of potential energy arising from the simultaneous 
mass transfer between short and long waves. The net result of 
both processes is a weak attenuation of the long waves [ 11]. 
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perturbation parameter of the expansion is given by the ratio of the 
amplitude of the interacting surface wave to the wave length of the 
incident radiation. In the first order analysis, the perturbation 
parameter is proportional to the slope of the scattering Bragg 
wave, which is small for all electromagnetic wave lengths. At 
second and higher order, however, the electromagnetic waves 
interact with longer surface waves of higher amplitude. In this 
case, the perturbation parameter remains small only if the electro- 
magnetic wave length is large compared with the amplitude of the 
entire wave field. This condition is satisfied by dkm waves, but not 
by cm-dm waves. 

The requirements for the wave-facet and wave-wave inter- 
action models are found to be mutually exclusive, so that the two 

expansions cannot be matched in a common region of validity. It is 
a fortunate coincidence that the theoretical wave length gap cor- 
responds to the gap between the two presently available techniques 
for measuring electromagnetic backscatter on a synoptic scale. 

The second order wave-wave interaction analysis yields a 
continuous Doppler spectrum superimposed on the first-order Bragg 
line. The continuum reduces to a particularly simple and useful 
form when the Bragg wave length is short compared with the wave 
lengths of the dominant surface waves -- the usual situation for 
ionospheric modes. In this case, the continuum is identical with 

the two-sided image of the surface-wave frequency spectrum, 

centered on the Bragg line as virtual frequency origin. The energy 

scale of the wave spectrum can be inferred from the observed 
energy of the Bragg line, independent of transmission or other cali- 

bration factors. 

Doppler side-band structures observed by Ward [ 22] and 
others are not inconsistent with this interpretation. However, most 

Doppler spectra published hitherto have been analysed from rather 

short records, so that the continuum is generally not well defined 

statistically. Longer records are needed to decide whether the one- 

dimensional frequency spectrum of the surface-wave field can indeed 

be detected in the Doppler spectrum of backscattered ionospheric 

modes above the inherent ionospheric noise. 

Il THE LOWEST-ORDER SCATTERING MODELS 

For electromagnetic waves short compared with the dominant 

waves of the sea, one might attempt to describe the scattered field 

by a specular reflexion model, in which the sea surface is repre- 

sented as an ensemble of locally plane, infinitesimal facets, each of 

which reflects the incident radiation according to the laws of geometric 

optics. The cross section o for the backscattered radiation (the 

backscattered energy per unit solid angle per unit surface area of the 

ocean) is then proportional to the number density of facet normals 
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pointing towards the source. As the distribution of normals ina 
random surface-wave field is approximately Gaussian, the depen- 
dence of log o on depression angle 9 is given by a parabola, with 
maximum at normal incidence (90° depression angle) and half-width 
typically of the order 10° (Fig. 1). 

CROSS SECTION 

Ow = Onn 

(o/ 90° 180° 

x x 

DOPPLER SPECTRUM 

ie) Wa =W, fo) W, Wy 

Fig. 1. Cross sections and Doppler spectra according to the specu- 
lar reflection and first-order Bragg scattering models 
(qualitative) 
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The frequencies of the backscattered waves are shifted 
relative to the frequency of the incident radiation by the Doppler 
seid OF Nally 2k' * u induced by the facet motion, where 
K = (k', Vy is the wavenumber of the incident radiation and u 

the local orbital velocity of the waves. For an approximately “linear 
wave field, u is a Gaussian variable, and the Doppler spectrum 
also has a Gaussian shape. 

As the backscattered waves are reflected at normal incidence, 

it follows by symmetry that the cross sections and Doppler spectra 
are independent of polarisation. Vertical and horizontal polarisation 
are denoted in Fig. 1 by V and H, respectively, the first index 
referring to the incident field, the second to the backscattered field. 
The cross-polarised return VH and HV vanishes. 

Although applied successfully by Cox and Munk [5] to the 
analysis of sun glitter from the sea surface, the specular reflexion 
model fails to describe the observed electromagnetic backscatter 
at cm-dm and dkm wave lengths. It appears that for these wave 

lengths surface irregularities of length scale comparable with the 
radiation wave length cannot be neglected. Accordingly, recent 
models have been based on the Bragg scattering theory, in which 
these irregularities are regarded as the dominant scatterers. 

It is assumed in the Bragg model that the slopes of the 
scattering surface waves are small and that their wave lengths are 
comparable with those of the radiation field. The backscattered 
field can then be expanded in powers of the surface displacement. 
The first-order field is linear in the surface displacement and can 
therefore be constructed by superposition from the field scattered 
by a single gravity-wave component ¢ = Z exp {ik?- x - iugt}. This 
corresponds to the classical problem of refraction by a periodic 
lattice. The scattered field consists of two waves s = + whose 
horizontal wavenumbers and frequencies are given by the Bragg 
(resonant interaction) conditions 

k' + sk9 = k$ 
ic ie. ee (1) 

W; + sw = W. 

(The vertical wavenumber component 8 determining the scattering 
angle follows from the dispersion relation | w.| =c lie | » where < 
is the velocity of light). 

Hae scettcring (k* = k') occurs for the gravity- wave com- 
ponents k*= + 2k’. The (rae cattering cross section is accordingly 

of the form 

CA To T2B ae Tap (2) 

366 



Radar Back-Secatter from the Sea Surface 

where 

08 = Tuer g(- 2sk') (2,8 = Vor He or = +) 

and F, (k) is the surface-wave spectrum, ngrmalised such that the 
mean square surface displacement ((?) = F,(k) dk. The cornered 
parentheses denote mean values. (The negative sign of the wave- 
number in the definition of ogg has been introduced so that c4g 
corresponds to a spectral line with positive Doppler shift, cf. Eq. 
(3).) Tag is a scattering coefficient obtained by expanding the electro- 

magnetic boundary conditions at the free surface [18]), 

T = 20} ee: (1- e)(e[1 +cos* 6] - cos” 8) 
VV 

(e sin O tye - cos’ 6) 

2 2 

T,,,= | “2b sin? e Bie 
c (sin 8 ie - cos? @)2 

Tyy = Tuy = 9 

where e€ is the dielectric constant of sea water. 

The normalized Doppler spectrum Xg@wg), defined by 
Jxag (ea) dwy= ogg where wq= ws - wj, is given according to (1) by 
two lines at the gravity-wave frequencies + wg, 

Xapled = Xapled) + Xagloa) 

with (3) 

X gla) = TaB(wWg - S Wg) 

Normally, one of the Bragg lines due to scattering from the 
surface wave component propagating in the downwind direction is 
very much stronger than the other line associated with the wave pro- 
pagating in the opposite, upwind direction. 

The general properties of the Bragg cross sections and 
Doppler spectra are indicated qualitatively in the right-hand panels 
of Fig. 1. In contrast to the specular reflexion model, there is a 
pronounced dependence on polarisation and appreciable backscatter 
at small and intermediate depression angles. The cross-polarised 
return again vanishes. 
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L-BAND JULY 29,1965 

A SEA STATE "A" 
© SEA STATE "B" 
x SEA STATE "C" 

— THEORETICAL (15 KNOTS) 

Ove (dB) 

og 10° 20° 30°40° 60° 90° 
DEPRESSION ANGLE 

Fig. 2. Theoretical and observed Bragg backscatter cross sections 
for vertically polarised 24 cm (L band) waves (from Wright 

[ 23]) 

Figure 2 shows a comparison by Wright [23]! of experimental 
and theoretical Bragg cross sections for vertically polarised cm-dm 
waves. The surface waves were represented by a Phillips’ spectrum 
F,(k) = (a/2)k-*5(), with a uniform half-plane angular spreading 
function, S(J) = 7m! for 0S || < 1/2, S(W) =0 for - 1/2 < |y|Snm. 
The constant @ was chosen to fit the observed cross sections, but 
is not inconsistent with other estimates from direct measurements of 
gravity-wave spectra (cf. also [15]). Shown in Fig. 3 are theoreti- 
cal and experimental cross section ratios oy, /o y Lhe agreement 
here is also very good, except for the shortest wave length (3.4 cm, 
8910 MHz), where scattering by spray may be beginning to mask the 

T 

The theoretical cross sections shown in Figs. 2 and 3 were, in fact, 
computed for the wave~facet interaction model considered in the 
next section. However, the deviations from the first-order Bragg 
model are negligible. 
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X 1228 MHz,CROSSWIND 15 KNOTS 
© 8910 MHz,CROSSWIND 15 KNOTS 
— THEORETICAL DEPENDENCE 

FOR RMS TILT ANGLE AT 7.5° 

20 

/O;°, (dB) 
° 
vv 

5° 10° 20° 30°40° 60° 90° 
DEPRESSION ANGLE 

Fig. 3. Theoretical and observed ratios of Bragg backscatter cross 
sections for vertical and horizontal polarisation at wave 
lengths 24 cm (1228 MHz) and 3.4 cm (8910 MHz) (from 
Wright [ 24]) 

weak Bragg return for horizontal polarisation. Not predicted by 
first-order Bragg theory is the observed cross-polarised return, 
which is generally only slightly smaller than or comparable with the 
backscatter for horizontal polarisation; this can be explained by the 
wave-facet interaction model [ 23]. 

Although the observed cross sections oy, and o,, are in 
good agreement with theory, the Doppler spectra for these polar- 
isations point to limitations of the first-order model. In the cm- 
dm bands, the Bragg lines are found to be broadened into Gaussian 
shaped distributions with bandwidths of the same order as the Bragg 
frequency (cf. Fig. 4., from Valenzuela and Laing [20]). Earlier 
measurements by Hicks et al. [13] indicate that the mean frequencies 
of the distributions -- which were not measured by Valenzuela and 
Laing -- may also be considerably higher, by factors of the order 
2to 4, than the theoretical Bragg frequency. 
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In the decameter bands, the observed broadening and shiit 
of the Bragg lines are much weaker. Instead, the Doppler spectra 
show pronounced side band structures (cf. Fig. 11, from Ward [22], 
and similar spectra in Crombie [6] and elsewhere). The basic 
difference in structure of the Doppler spectra observed in the 
cm-dm and dkm bands lends support to theoretical considerations 
calling for alternative expansion procedures in the two wave length 
ranges. 

Ill. THE WAVE-FACET INTERACTION MODEL 

In order to treat the scattering waves as small perturbations 
of a plane surface, it is assumed in the Bragg theory that the wave 
amplitudes are small compared with the wave length of the incident 
radiation. Ina strict sense, the expansion is valid if this condition 
is satisfied not only for the Bragg waves, but for the entire surface 
displacement. Thus the theory is not rigorously applicable to short 
electromagnetic waves of a few cm wave length, although the long 
surface waves of high amplitude which violate the expansion condition 
do not enter in the final scattering expressions. Various workers 
[e.g. 3, 4, 10, 20, 21, 23] have suggested that this formal short- 
coming may be remedied by dividing the surface-wave spectrum into 
two parts, a high-wavenumber scattering region, and the energy- 
containing region at low wavenumbers which defines the "sea." The 
"sea" is then treated as a random carrier wave which modulates 
the scattering by the superimposed Bragg waves. If the Bragg wave 
length 1/k' is short compared with a typical wave length 21/k° 
of the sea, the carrier wave may be represented locally as a plane 
facet, and the first-order scattering theory applied in the reference 
frame of the moving facet. 

The model involves additional conditions besides the two-scale 
assumption that it is possible to define a facet diameter D inter- 
mediate between the carrier and scattering wave length scales, 

(ki)! << D << (k°)| (4) 

The finite facet size implies an indeterminacy Ak = O(1/D) of 
the scattering wavenumber, which corresponds to an angular spread 
Ao = O{(K'Dsin @)"'} of the backscattered beam. The wave-facet 
interaction model is meaningful only if A® is small compared with 
the change in effective depression angle introduced by the facet 
slope 8{/dx = O(k°t) , where € is the carrier-wave amplitude. 

a requires k°4DK' sin 9 >> 1, or, since Dk* <<1, on account of 

4\, 

K'f sin 0 = kyl >>> 1 (5) 
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Similarly, a wavenumber broadening Ak corresponds to a 
frequency broadening of the Bragg line of order Aw= (dwg/dk’) Ak = 
(wa/2k9) - Ak (ignoring capillary effects). The model assumes that 
this is small compared with the Doppler shift w,=- 2K'+ u induced 
by the facet velocity u. For u= O(weS), where weis a typical 
carrier-wave frequency, this requires 

DK! wk! /w, = DK! (k'k°)!"¢ >> 1 

Substituting Dk*° << 1, this is equivalent to 

Ki c(i! [oy >>> 4 (6) 

Since k'/k° >> 1, the frequency condition (6) is less critical 
than the corresponding condition (5) for the angular resolution. The 
inequality (5) is normally fairly well satisfied at conventional radar 
wave lengths for surface-wave heights of order 1 m and higher (except 
for small depression angles, where the model breaks down, in any case 

because of shadowing effects). For electromagnetic wave lengths 
longer than about 1 m the inequality (5) is normally no longer valid, 
even though the two-scale inequality (4) may still apply. 

The total backscattered energy is obtained in the wave-facet 
interaction model by summing over the contributions from all 
scattering facets. Introducing a facet probability distribution p()) 
with respect to the five basic facet parameters = (A, o Nor Ngo Ngee) » 
where 

(AX, 2X53) = (u, » U5, U5) = facet velocity ee local 
long-wave orbital velocity), 

and (h4,X,) = (86 /8x, ,0C /8x,) = (n,,n,) = facet slope, the Doppler 
spectrum is given by 

Xap = { [ T3g5(wg - SW, - w¢)] p(d) dd (7) 

where oy , W, represent, respectively, the Bragg cross section and 
gravity-wave frequency in the facet reference frame. 

To the modulated Doppler spectrum (7) of the first-order 
Bragg field should be added the modulated spectrum of the zero'th 
order field reflected from a plane facet, as described by the specular 
reflexion model. However, this is important only near vertical 
incidence and will be ignored in the following. 

Experimentally, the probability distribution p(\) is found to 
be approximately Gaussian, in accordance with the theoretical distri- 
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bution for a random, linear gravity-wave field, 

p(M) = (20)? |c[ exp {- 5 Con 2,) (8) 

The covariance matrix Cjj can be evaluated from the surface-wave 
spectrum and the linear wave solutions, 

gk? /k g kk,/k | 
—— O —— 

g k,k,/k gkj/k ! 

ie ee ee oie ees ee (9) 
gk - WK, = wk, 

nn? 2 
0 1 7 wk, k Ke 

1 

where Tykg/k= J F, (k)(kjkg/k) dk, etc. 

We note that the facet Doppler shift ws, is correlated not 
only with the facet velocity, but through the correlation (u,n,) 
also with the facet slope, 

(wai) = - 2k; (un) (10) 

For small wave slopes, the factor in square parentheses in 
Eq. (7) can be expanded in powers of nj. The integration can then 
be carried out explicitly for each term of the expansion yielding a 
solution of the form 

Xqpl@s) = Xqhee) + Xgglma) 

with 

2 

Xgl) = (alo > L- (wg stig) /2¢ 04) } 14 at Hace caer tal) (2m( ut) v2 

where q®, qg®, ... are polynomials in (ws = 60.) of order 1,92; .<< 
| 9g 

in the facet Slope, 

g = damdfacsed | (2a), Aa + Meee (Sa) ca 
f 
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An 

25.8 ~ ~s 

{5 (SH) says = S290 (2g) + ($e S88) 

The subscript 0 refers to values at n= 0. 

To lowest order, the Doppler spectra for vertical and hori- 
zontal polarisation are identical Gaussian distributions with mean 
frequency (w) = Swg and variance 

( (w - day) =e) ="2 J Ky kgh Up Yq) + (ky) *(uy)t (14) 

(£,m= 1,2) 

The distribution represents an ensemble of Bragg lines of equal 
energies displaced by their appropriate facet Doppler frequencies 

Wee 

The higher-order corrections qi Bs qs ye ole represent dis- 
tortions of the Gaussian distribution due to the variations in energy 
of the Bragg lines associated with variations in the carrier-wave 
slope. These affect the shape of the Doppler spectrum through the 
correlation between facet slopes and facet Doppler frequency, 
Eq. (10). The degree of distortion depends on the depression angle 
and polarisation. In the cross-polarised case, the zero 'th and first- 
order terms disappear, since (T, wo = (8/8n; 5 Wo = 0, so that the Vv 
Doppler spectrum is non-Gaus sian already to lowest order. 

Computations of the Doppler spectrum were made for a 
Pierson-Moskowitz [16] spectrum using a half-plane cosine-to-the- 
fourth spreading factor, 

-4 4 
ze ki exp {- B(w,/w)} for k, >0 

Fy (k) = 

with @ = 0.0081, B= 0.74 and wo= g/U, where U is the wind 

velocity, aeeumed parallel to the x, axis. The same spreading 

factor was taken for both scattering and carrier waves. 
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For a Pierson-Moskowitz spectrum, ( wos) Satgeren 
(wn;) ~ U. The slope moments (njn;) diverge logarithmically at 
high wavenumbers. To obtain finite (njn;) , the "carrier-wave" 
spectrum was cut off at an upper wavenumber k /10. The exact 
position of the cut-off is not critical for the evaluation of (njnj) ’ 
and the slope moments themselves enter only rather weakly in the 
second-order term q§$ of the expansion (11). However, the 
existence of a divergence as such points to a conceptual difficulty of 
the wave-facet interaction model. It appears that for an asymptotic 
ic? spectrum the carrier-wave region of the spectrum cannot be 
rigorously separated from the Bragg-scattering region. 

Figure 5 shows the computed half-power bandwidths for the 
lowest-order Gaussian spectrum as a function of wave height. The 
values compare well with measurements by Valenzuela and Laing 

[20] < 

Deviations from the Gaussian form due to the higher-order 
corrections ay and q& are represented in Figs. 6 - 9 in terms of 
the mean frequency (w)/wg and the frequency bandwidth 
{ (w - ( w) ie) / (ae) , normalised by their appropriate values for the 
zero'th order Gaussian spectrum. 

The strongest correction is found for the mean frequency, 
particularly for horizontal polarisation. The dependence on depres- 
silon-angle and polarisation, shown in Fig. 6 for U = 20 m/s, is found 
to be very similar at all wind speeds. The absolute values of the 
frequency shifts increase approximately linearly with wind speed, 
Fig. 7. Qualitatively, the polarisation and wind-speed dependence of 
the mean Doppler frequency are in agreement with measurements 
made by Hicks et al. [13] at low depression angles of about 5°, How- 
ever, the theory is not strictly applicable in this case on account of 
shadowing effects. 

The bandwidth corrections (Figs. 8 and 9) remain rather 
small for depression angles less than 45° and limited azimuth angles 
Ww relative to the wind. Larger deviations in the cross-wind direc- 
tions depend strongly on the spreading factors, which are rather un- 
certain for these angles. The experimental dependence of the Doppler 
bandwidth on radar frequency and polarisation [ 20] tends to be some- 
what larger and have a different trend than the corrections shown in 
Figs. 8 and 9. Valenzuela and Laing [ 20] suggest that these effects 
may be due partly to spray. To a fair approximation, the observed 
bandwidths can be represented for small and intermediate angles 
and @ by the zero'th order Gaussian bandwidth. 

Both the bandwidth and mean frequency vary significantly with 
wave height and can therefore be used for estimates of sea state. 
For the one-parametrical family of spectra considered in the present 
example, the two estimates are not independent. However, in general 

the mean square bandwidth ( (w- (w) *) ~ (we) (Eq. 14) and the mean 
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Hasselmann and Schietler 

P-BAND a 

L-BAND 4 

C-BAND o 

X- BAND 

OPEN POINTS (VERTICAL) 

CLOSED POINTS (HORIZONTAL) 

hp.b [m/s] 

1 2 3 4 

Comparison of theoretical half-power bandwidths (h.p.b.) 
for zero'thorder Gaussian spectrum with measurements by 
Valenzuela and Lang 20 . Doppler frequencies are in 
units of equivalent velocities Ug=w,/2k'. Theoretically, 
a Pierson-Moskowitz spectrum with cos*w spreading 
function yields 

2 

h.p.b. [m/s] = 1.06} £926 (4cos*p +1) +sin?ol'* (H,,[ m] Nes 
where the significant wave height Hy * Vena ee 0.209 u*/g. 
The computations were made for w = 09, 6 = 20°, 
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u=20m/s 

HH 

<W> i (4) 

Wg 

2 2 

yz0° (4) a1) 

1 0 1 

15 30 45e /60 15 30 45 60 

2 2 

= (2) w=20° 

1 1 

15 30 45 60 15 30 45 _60 

(4) 

(1) 

15 30 45 60 1 30 45 60 5 
2 2 

(4) 

y =60° | SS Wy 0) 

(4) 

15 1§ 30 45 60 30 45 60 

2 1 

(1) 

(4) 

(4) 
15 30 45 60 

Q -—e 

Fig. 6. Ratios of mean Doppler frequency (w) to Bragg frequency 
wg for the wave-facet interaction model at windspeed 
U = 20 m/s. The indices 1, 2, 3, 4 referto P, L, C and 
X bands, respectively. The computations include terms up 
to order q§ in the expansion (11). To this approximation, 
the cross polarised case yields (w) = wg 
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Fig. 7. Dependence of (w)/wg on wind speed U for 06 = 30°, 
y= 0°, An approximately linear variation is found for all 
depression angles 9 and azimuth angles \W. 
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u=4m/s 
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(1) (1) y=40 
4) 

15 30 45 60 75 15 30 45 60 75 15 30 45 60 75 

15 30 45 60 75 

15 30 45 60 75 16 30 45 60 75 15 30 45 60 75 

Fig. 8. Frequency variance of the Doppler spectrym computed to 
order q5, normalised by the variance (or) of the zero'th 
order Gaussian distribution (U = 4 m/s). 
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Fig. 9. Same as Fig. 8 with wind speed U = 20 m/s 
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product (w,n;) (Eq. 10), which is responsible for most of the mean- 
frequency variation, depend on differently weighted moments of the 
gravity-wave spectrum. The two Doppler parameters can therefore 
be used to obtain independent estimates of two sea-state parameters 
--for example, the mean wave height and mean wave period. 

IV. HIGHER-ORDER WAVE-WAVE INTERACTIONS 

For HF waves longer than about 10 m, the Bragg model can 
be generalised by straightforward extension of the wave-wave inter- 
action expansion to higher order. In this case, the perturbation 
parameter kjf is normally a small quantity even when ¢ is defined 
as the surface displacement of the complete wave field, and there is 
no need to consider the long waves of high amplitude separately. 
In fact, the wave-facet interaction model is not applicable for HF 
waves on account of the angular resolution condition (5). The in- 

equality kx{ << 1 and condition (5) are mutually exclusive, repre- 
senting a wave length gap between the wave-facet and higher-order 
wave-wave interaction models extending from a few fractions ofa 
meter to about 10 meters. 

At second order, the wave-wave interaction analysis yields 
scattered waves through interactions with pairs of gravity-wave 
somponents a,b satisfying the next-order Bragg conditions 

i a b= 4° i + og? + ok? = 
w togw, tow, =, (0,50, = +) (15) 

The second-order Doppler spectrum x? (w4) is obtained by 
summing over all pairs of surface waves yielding a backscattered 
component with the appropriate horizontal wavenumber k‘®= - k' 
and frequency w, = 0; + Wg, oy 

x?) (wg) = » iY TF, (k°)Fy (ik?) 8(coq- oy 4-004) dk (16) 
FD 

where k?=-o (2k! + oak") (Eq. 15). pi?) is a scattering function 
determfned by thé’ second-order coupling coefficients occurring in 
the expansion of the boundary conditions about the undisturbed plane 
surface (cf. Ref. (18)). (The polarisation indices are irrelevant for 
the following discussion and are ignored.) 

Te tenhiicant sea-state signatures are found only for the Doppler 
spectra and not the cross sections. On integrating Eq. (11) with 
respect to frequency the dependence on the moments ( we) and 
(wn; ) disappears, leaving only a weak sea-state dependence 
through the slope moments (njnj). 
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The scattering function T'?) includes both electromagnetic 
and hydrodynamic interactions at the free surface. For wave lengths 
in the HF range and longer, the hydrodynamic interactions can 
probably be described to fair approximation by classical hydrody- 
namical theory, independent of the effects of wave breaking. 
Equation (16) represents the random-field expression of nonlinear 
effects such as nonsinusoidal wave forms!, nonlinear phase velocities, 

etc., that have been variously suggested as explanation of the observed 
side bands of HF Doppler spectra. 

In the limit of an incident wave short compared with the 
principal waves of the sea, the dominant interactions at finite de- 
pression angles are electromagnetic. The largest contributions to 
the integral in (16) arise in this case from interactions in which one 
of the gravity-wave components, say k°, lies near to the peak of the 
spectrum. Since k®° <<k', the second component k? is then approxi- 
mately equal to the Bragg component, ok ye - on (ete Eq. (15) and 
Fig. 10). The side condition wy = ogwg + cpwp = const (expressed by 
the 6-function in the integral) defines an integration curve in the k‘ 
plane which is given approximately by the circle k° = const. This 
follows by noting that, on account of Eq. (15), the variation 6k° 
corresponds to an equally large variation + 6k”. But for k°<%k?, 
the associated frequency variation 6w, is generally small compared 
with the variation 609, since dw,/dk®<< dwg/dk®. Hence the side 
condition wg = const reduces to wg= const. It is shown below that 
at finite depression angles, T?) ae independent of k° for k* << 1, 
and the integration over the directions of k° for fixed k° can then 
be readily carried out,. yielding 

)+ (2)- ( 

7 (4) = x? (wy) + x Wg) 

where (17) 

x2) (44) = 27) F (-s2k!) [Eg(wg- surg) + Ey (stag - w4)] 

and = Eg(w) is the gne-dimensional frequency spectrum of the wave 
field, with (7) = » ~g(w) dw. (The factor 2 arises through inter- 
change of the components a and b in Fig. 10.) 

Thus each Bragg line appears as the carrier of a second- 
order, two-sided image of the surface-wave frequency spectrum. 
Physically, the Doppler continuum arises, as in the case of the wave- 
facet interaction model, through the modulation of the first-order 

+ 
These include the often invoked "higher interference orders" 
occurring in the Bragg scattering by a lattice. They are generated 
only if the periodic scattering field is not a purely sinusoidal dis- 
turbance but contains higher harmonics. 
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Bragg line 

Doppler spectrum 

Fig. 10. Upper panel. Interacting gravity-wavenumbers k%, ik? 
for a spectral-peak wavenumber small compared with the 
Bragg wavenumber 2k!. Strong contributions to the 
second-order Doppler spectrum y) (w,) arise when ee 
is close to the spectral peak. Contour lines indicate 
curves of constant spectral energy. 
Lower panel. The associated second-order Doppler 
spectrum  x'*) consists of two images of the wave fre- 
quency spectrum Eg reflected on either side of the 
Bragg line. 

Bragg field by long surface waves of high amplitude. However, in 
the present case the Doppler shift is not determined by the frequency 
shift w= - 2k'u induced by the long-wave orbital velocities, but 
rather by the {ntrinsic long-wave frequencies wg. Each low- 
frequency component splits the first-order Bragg line 
wi) = w, + op, into two lines w,"' = wi! + wo. Since u® Cw,, the 
regions of validity for the wave-facet and wave-wave interaction 
models may also be expressed, respectively, as wg <<w¢ and 
Wg >> Wee 
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A useful feature of the relation (17) is that it defines the 
surface-wave spectrum in absolute energy units independent of 
electromagnetic calibration factors, which are difficult to establish 
for long-range ionospheric mode propagation. Using Eqs. (3) and 
(2) to eliminate the surface-wave spectrum at the Bragg wavenumber, 
Eq. (17) becomes 

ll) mah (on 

Eg(wg - stg) + Eg(swg - wy) = ol =e (s = +) (18) 

where ¢'')8= Ix 129. (taa) ae is the energy of the first-order Bragg 
line. The ratio T'') /2T(2) can be determined from theory, and 
x8 and ef"s may be measured in arbitrary age units. 

In the relevant limit k°<<k’, tT!) /at® may be deduced 
from the picture of a short scattering wave bb = Ap exp {i(kk>x - wt) } 
riding on a long carrier wave fq = Ag exp {i(k® x- wet)} (whf{th is 
now, howeyer, assumed to satisfy the wave-wave interaction con- 
Aion Aoks << 1, rather than the wave-facet interaction condition 
(5)). For small slopes Agk* << 1, the principal effect of the carrier 
wave is presumably to alter the phase of the scattered field by raising 
and lowering the local mean reference surface of the short scattering 
waves!. Thus if the first-order backscattered wave in the absence 
of the carrier wave is of the form 

gl!) (1) 8 = Ci’ ASA, exp (i(k! + ak? )x - i(w, + opw,)t + ikyx,} 

I 
where Aj is the amplitude of the incident field, c' is im first- 
order coupling coefficient, and it + gpk? & - k', k§~ - kg 
the modulated scattered wave in the presence cot the Patiee wave 
will be given approximately by 

acikste ole (1 + 2ikle, Jo") =o + gi (19) 9 = 

Thus 

go = Cl) asaya; exp {- ik'x - i(wj; t+ wg)t - ikyxs} (20) 

with C® = 2ikic . Expressed in terms of a continuous energy 
spectrum, this is readily found to correspond to a scattering function 
ratio 

T 

A more detailed investigation indicates that slope effects can be 
ignored if k° << k,=k' sin 0. 

384 



Radar Back-Secatter from the Sea Surface 

= (ky) (21) 

For small depression angles (ks << ie), the effect of the 

carrier-wave slope becomes comparable with the phase shift induced 
by the vertical displacement, and the relations (20), (21) should be 
modified to include additional terms dependent on k®. However, 
this requires a more detailed investigation of the electromagnetic 
and hydrodynamic interactions. 

Examples of Doppler spectra obtained by Ward [ 22] from the 
sea echo of 21.840 MHz (14 m) waves at ranges near 3000 km are 
shown in Fig. 11. The analysis was based on short records of one 
minute duration, so that the continuum is poorly resolved statistically 
and individual spectra vary strongly. However, there is some indi- 
cation of two side-band structures appearing on either side ofa 
central Bragg peak. Theoretically, the Bragg line should lie at 
0.48 Hz, which agrees well with the central peak of the first spectrum 
shown, but is somewhat to the left of the main peaks in the other 

cases. The displacement of the side lobes relative to the Bragg peak 
is of the order 0.1 Hz expected for typical ocean-wave frequencies. 

The ratio of the side-band energy e2) = if x (2) (wy) dwy to the 
energy e) of the Bragg line is given according to Eqs. (18) and 
(21) by 

ive, »2 (2) /e") = 4(kiy(¢ ) 

Ward estimates a depression angle of 12°, which yields 

e) 7" = 0.036 ((6[m] )*) 

The observed ratios of order unity correspond to root mean square 
wave heights of about 5 m, which appear rather high, but not im- 
possible. 

More plausible estimates of the wave height may have 
resulted from a more accurate determination of the scattering 
function ratio T By aia at small depression angles. Contamination 
of the observed spectra by ionospheric Doppler shifts may be an 
alternative explanation of the high ratios €(2) /é") - A spurious inter- 
action between the Bragg line and the low frequency ionospheric 
Doppler spectrum could also have been introduced in the present 
experiment by the data analysis, since the Doppler spectra appear 
to have been computed -- as is often done -- from the time series of 

Note added in proof: A detailed analysis has recently been carried 
out by D. E, Barrick "Dependence of Second-Order Doppler Side 
Bands in HF Sea Echo on Sea State," to appear in 1971 G-AP 
Internat. Symp. Digest. 
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the signal phase (or phase cosine), which is nonlinearly related to 

the complex signal amplitude. More detailed investigations using 

longer time series are needed to decide. whether the ocean wave 

spectrum can be extracted from the Doppler spectrum of long range 

HF sea echo in the presence of unavoidable fonospheric noise. 
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INTERACTION BETWEEN GRAVITY WAVES 
AND FINITE TURBULENT FLOW FIELDS 

Daniel Savitsky 
Stevens Instttute of Technology 

Hoboken, New Jersey 

ABSTRACT 

A laboratory study of the interaction of deep water 
gravity waves progressing into a turbulent flow field 
produced by a finite width grid towed in a wide tank 
showed wave height attenuation of nearly 90% in the 
grid wake and wave height amplifications of nearly 75% 
in the still water outside the wake. The transverse 
gradient of longitudinal flow in the wake was predom- 
inantly responsible for the large wave deformations 
and precluded an evaluation of direct turbulence effects. 

A simple, analytical solution using wave refraction, 
diffraction and superposition concepts is developed 
which qualitatively reproduces the measured results. 

I. INTRODUCTION 

As gravity waves progress from their source of origin, they 
encounter a wariety of ocean environments which may interfere with 
their ordered motion and, consequently, alter the amplitude and 

direction of the wave system. Although an extensive literature exists 
on the mechanism of wave generation and their subsequent propaga- 
tion through still water or a uniform flow, only recently has some 
attention been given to waves moving through a non-uniform flow -- 
and these have been restricted to relatively weak velocity gradients 
normal to the wave direction. 

In a realistic ocean environment, gravity waves may encounter 
regions of turbulent flow, particularly in the upper layers. These 
oceanic turbulent flow fields can be developed by various geophysical 
mechanisms. For example, the action of unsteady wind shear stresses 

exerted against the surface of the sea; the breaking of wave crests 
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resulting in "splash turbulence" penetrating into the upper layers of 
the water; turbulent fields set up in intense currents; turbulence 

developed by high velocity, high Reynolds number flows in a tidal 
channel; ship wakes; etc. In each case, it is expected that wave 

attenuation will result from the interaction between the turbulent flow 
fields and wave motion. Such attenuation is of importance in develop- 
ing relatively "quiet" local areas in the sea for launching or recovery 
of small craft or submarines, or in tracing the progress of, say, 
one storm passing through the intensive turbulence of another storm. 

Phillips [1959] presents a theoretical study of the properties 
of waves on the free surface of a liquid in turbulent motion where the 
intensity of the turbulence is sufficiently small to preclude wave 
generation in itself and where the mean velocity of the flow is zero. 
There are two types of possible interaction, each of which results in 
the attenuation of the incident wave. One is an "eddy viscosity inter- 
action" in which wave energy is transferred from the wave motion 
through a stretching of the vortex filaments in the turbulence which 
tends to increase w*, the mean square vorticity associated with the 
turbulence itself, This straining process is of second order in wave 
height-length ratio and, hence, should be important for steep waves 
and when the turbulence scale is much less than that of the waves. 
The second type of interaction is a scattering phenomenon where 
random velocity fluctuations in the turbulence field will result in the 
convective distortion of the wave front, and produce a broad spectrum 

of scattered waves. This scattering effect is of first order in wave 

height-length ratio and, hence, predominates for waves of small 

slope. Phillips shows that, under typical conditions in the open sea, 

the attenuation from scattering will be greater than that from direct 
viscous dissipation for wave lengths greater than about 10 ft. 

An experimental study was undertaken at the Davidson Labora- 

tory, Stevens Institute of Technology, to investigate the interaction 

between mechanically generated progressive gravity waves and a 

controlled turbulence field developed by towing suitable grids ina 

towing tank. Since field measurements by Stewart and Grant [ 1962] 
supported the applicability of the Kolmogoroff hypothesis (that the 

statistical structure of turbulence has a universal form) to turbulence 

near the sea surface in the presence of waves, it was believed that 

grid-generated turbulence (known to satisfy the Kolmogoroff hypothesis) 

would indeed be representative of ocean turbulence on a model scale. 

Two experimental studies were undertaken. The first used a grid 

which spanned the width of a 12 ft wide towing tank and was towed in 

the direction of wave celerity at speeds less than the group velocity 

of the regular wave lengths generated by a plunger type wavemaker. 

In these studies, the test waves overtook and passed through the 

turbulence wake and grid. This so-called one-dimensional grid study 

was made in an attempt to develop a turbulent wake with uniform 

mean flow across any transverse section aft of the grid. Unfortunately, 

as will be subsequently discussed, a uniform flow field was not de- 

veloped near the outer edges of the grid wake and this seriously 
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influenced the test results. The other series of experimental studies 
involved towing a 3-ft wide grid in a 75-ft wide towing tank. The in- 
tent of these tests was to allow any scattered wake system to be 
defracted outside the turbulence patch. However, the finite width 

grid also produced a pronounced longitudinal mean flow velocity 
gradient in transverse sections through the wake. Thus, in these 
latter tests, the generated waves were simultaneously subjected to 
three modification effects: (1) dissipation due to eddy viscosity; 
(2) scattering due to turbulent convective distortion of the wave front 
and (3) deformation of the wave due to mean flow velocity gradients. 

Measurements were made of the wave deformation in the 
wakes of both the one- and two-dimensional grids. An analysis of 
these results indicated that the velocity gradients in the wakes had a 
dominating effect on the wave deformation and thus, unfortunately, 

precluded a reliable evaluation of the possible dissipative or scatter- 
ing action of the turbulence field upon the incident wave. The studies 
are, nevertheless, of importance since they provide unique results, 
obtained under controlled laboratory conditions, describing the pro- 
nounced distortion of a deep water wave when encountering sharp 
current gradients, either naturally existing or artificially produced. 
It is shown that the wave distortion can be such as to provide locally 
areas of reduced wave motion which can be beneficial in launching 
or retrieving small craft or submersibles from a mother ship at sea. 

The experimental results are described in some detail and an 
elementary analytical model is developed which, using the combined 
mechanics of wave refraction, defraction and superposition, at least 
qualitatively reproduces the features of the test results and, perhaps 
more important, describes a possible physical mechanism respon- 
sible for the observed large wave deformations. 

These studies were supported by the Fluid Dynamics Branch 
of the Office of Naval Research, Department of the Navy, under 

Contract NR-062-254, Nonr263(36). They formed the basis for a 
dissertation submitted to the Graduate Division of the School of 
Engineering and Science in partial fulfillment of the requirements 
for the degree of Ph.D. at New York University. 

Il EXPERIMENTAL PROCEDURES 

Turbulence-generating grids have been used with great suc- 
cess in advancing the knowledge of turbulence in air flows, but have 

been used only occasionally in hydrodynamics -- particularly in 
towing tanks where a grid must be towed in quiet water to generate 
a turbulence field. Taylor [1935] has shown that disturbances 
generated in the wake of a grid transform rapidly into a quasi- 
isotropic turbulent field whether the grid is towed in quiet air or an 

airstream passes through the grid. 
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In the present task, vertical turbulence grids of finite draft 
and two mesh sizes were towed at various constant speeds in Tank 
No. 2 and 3 of the Davidson Laboratory in a direction normal to the 
plane of the grid. Regular waves, generated by a plunger type wave- 
maker in quiet water, traveled in the same direction as the grid tow 
(with initial crest lines parallel to the grid) progressed through the 
turbulent wake and grid into quiet water beyond the grid. Waves of 
various constant length and height were generated such that the 
group velocity of each regular wave was greater than the grid veloc- 
ity. The wave lengths and water depth were such that deep water 
gravity waves were generated. Wave amplitudes were measured 
by resistance type wave wires which penetrated the fluid surface. 
Several of the wave wires were towed ahead and behind the grid (at 
the grid speed) while others were stationary and located both in and 
outside of the grid wake. The outputs of these wave probes were 
simultaneously recorded on a "Viscorder" oscillograph tape. 

The details of test procedure, grid characteristics, and test 
conditions for the one-dimensional and two-dimensional turbulence 
grid studies are described separately below. Common to both 
studies was the observation that, for the grid sizes and grid veloc- 
ities considered, the combination of physical grid and turbulent 
wake in smooth water did not produce a measurable wave system of 
its own. In fact, soon after passage of the grid and wake relative 
to a fixed point in the test tank, the water surface appeared unusually 
still. Further, the grid solidity was small enough that, when sta- 
tionary, it did not noticeably affect the wave forms which passed 
through the stationary grid. Neither was there a measurable wave 
reflection from, the grid, 

One-Dimensional Grid Studies 

The one-dimensional grid studies were conducted in Tank 
No. 3 of the Davidson Laboratory. This tank is 300 ft long, 12 ft 

wide and has a water depth of 6 ft. A plunger type wavemaker is 
located at one end of the tank and a slotted beach of 15° slope is 
located at the opposite end to absorb the wave energy with minimum 

reflection. 

Grid Characteristics: A turbulence grid 11.5 ft wide spanned 
the tank width, penetrated the water surface to a depth of 1.6 ft, 
was attached to a standard carriage and towed in a direction away 
from the wavemaker. Figure 1 shows the test setup. Two mesh 
sizes were tested; one had amesh M = 0.36 ft and was made of 
crossed square wooden slats 0.80 inches wide; the other hada 

mesh M = 0.71 ft and was made of crossed square wooden slats 
1.60 inches wide. Thus, in both cases, the grid solidity was 
constant and equal to S= 0.40. The grid was towed at speeds of 
V = 1.0 and V= 1.7 ft/sec. The hydrodynamic drag and Reynolds 
No. of the grid (Re, = VM/w) for these conditions are: 
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Mesh Grid Velocity Drag Reynolds No. 

0.36 £t 1 ft/sec 13.2 lbs 28,000 

0.26 vee ff 37.9 49,000 

ay | 4 ie yey 56,800 

Oa71 ay 6 37.9 96,500 

Measurements were initially made of the mean value of the 
longitudinal velocity (in the grid direction) of the grid wake at the 
centerline of the grid and at a depth of 0.80 feet below the water 
surface. At a distance of 10.0 ft aft of the grid, the wake velocity 
was 0.40 V and decreased slowly with distance aft of the grid -- at 
a distance 20.0 ft aft of the grid, the mean velocity of the wake was 
0.36 V. In these initial tests, a straight line of confetti was sprinkled 
across the 12 ft width of the tank parallel to the plane of the grid. 
Visual observations of this reference line after grid passage showed 
that the confetti moved essentially in one straight line parallel to 
the grid, thus indicating a lack of noticeable velocity gradients -- at 
least on the free surface. An analysis of the wave distortion data in 
this wake yielded anomalous results (these will be discussed ina 
subsequent section) that could not be explained by the assumption of 
a uniform longitudinal mean flow through transverse sections in the 
grid wake. Hence, a detailed survey was then made of the mean 
flow at distances of 10 ft and 20 ft aft of the grid. These results are 
shown in Fig. 2 which presents a plot of longitudinal mean flow (V,) 
versus transverse distance from the grid centerline at a probe depth 
of 10 inches below the water surface. The wake velocities (V,) are 
normalized on the basis of grid speed (V). It is clearly seen that 
the mean flow in the wake is essentially constant for a distance of 
approximately 5 ft from the grid centerline but then rapidly decreases 
between this point and the tank wall. The significance of this local 
velocity gradient will be subsequently discussed. 

The wind tunnel results of Dryden [ 1937], who examined the 
turbulence aft of a rectangular grid having a mesh size M= 0.41 ft 
at a nearly similar Reynolds number, show that the turbulent veloc- 
ity fluctuations u' as a function of distance, X, aft of the grid are: 

V x 
= + 

aay) a 

Thus, for a distance 10 ft aft of the 0.36' mesh grid x/M = 27.7 
and u' = V/37.7 or approximately 3% of the mean flow. At a distance 
of 20 mesh lengths aft of the grid, wind tunnel experiments have 
shown the establishment of quasi-isotropic turbulence. 
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GRID WIDTH =1II.50; DRAFT=20'; MESH SIZE=5.4" 
(GRID TOWED IN [2 FT WIDE TANK) 

VELOCITY PROBE AT 10° DRAFT 

Vw=WAKE VELOCITY ; V=GRID VELOCITY 

0.5 
TANK 

0.4 WALL 
| 

Vw 23 | 

V oe 10 FT AFT OF GRID | 

0.1 | 

20 FT AFT OF GRID 

ie) | 2 3 4 5 6 

€ y=LATERAL DISTANCE FROM GRID @ , FEET 

Fig. 2 Longitudinal Velocity Distribution in Grid Wake 

Wave Height Probes: Wave heights were measured by re- 
sistance type wave wires penetrating through the water surface. 
The position of the wave wires relative to the grid are shown in 
Fig. 1. It is seen that wave wires moving with the grid were 
located 12 ft ahead of and along the grid centerline; 13.25 ft and 
16.50 ft aft of and along the grid centerline; and one located 13.25 ft 
aft and 4 ft transverse to the grid centerline. The wave wires 13.25 ft 
and 16.50 ft aft of the grid were used to obtain a measure of the ap- 
parent wave length in the turbulence field while the pair of wires 
4 ft apart in the transverse plane 13.25 ft aft of the grid were used 
to measure any deformation of the wave crest line as it progressed 
through the turbulence. A stationary wave wire was located 60 ft 
forward of the wavemaker and was used to examine the regularity of 
the amplitude and period of the generated incident wave. 
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A range of wave heights and lengths used in these tests were 
as follows: 

Wave Wave Wave Group Wave 
Length Period Celerity Velocity Height 
hj dt T, sec V2 ft/sec Vg, ft/sec His ff 

20,0 0.025 32:20 1.60 0.05 

2.0 0.625 3.20 1.60 0.10 

5.0 0.763 a 93 fost 0.10 

4.0 0.885 4.52 2.26 0.05 

4.0 0.885 4; 52 2.26 0.10 

6.0 1.080 5.55 2.18 0305 

6.0 1.080 55 2.18 0.10 

8.0 1.250 6. 40 52 20 0.04 

8.0 1.250 6.40 eA) 0.09 

Test Procedure: Several experimental procedures were 
used in these studies. In one group of tests, the grid was held 
stationary 70 ft forward of the wavemaker until several waves had 
passed through the grid. The grid was then towed and wave measure- 
ments were made with the moving wave wires. For certain runs, 
after approximately 50 - 60 ft of grid tow, the aft moving wave 
wire (16.50 ft aft) was released from the tow and remained stationary 
in the tank. Thus, wave height measurements were taken both at a 
fixed position relative to the moving grid and at a fixed position in 
the tank (variable position relative to the grid). The other test pro- 
cedure was to first tow the grid for a distance of approximately 
50 ft which developed a turbulent wake and then start the waves which 
ran through the wake and overtook the moving grid. This technique 
avoided the possibility of a secondary wave formation as the incident 
wave ran through the moving grid. It was established that the results 
obtained with both test procedures were essentially similar. 

Two-Dimensional Grid Studies 

The two-dimensional grid studies were conducted in Tank 
No. 2 of the Davidson Laboratory. This tank is 75 ft square and has 
a water depth of 4.5 ft. A plunger mechanical type wavemaker spans 
one side of the tank and a sloping beach is installed on the opposite 
end to absorb the generated wave energy. 

Grid Characteristics: Two turbulence grids, one 3 ft wide 
and another 5.5 ft wide, were separately towed in a direction away 
from the wavemaker. The grid centerline was 17 ft from one edge 
of the tank. Figure 3 shows the test setup. As in the one-dimen- 
sional tests, two mesh sizes -- M = 0.36 ft and M= 0.71 ft -- were 
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tested. The grids were constructed of crossed square wooden slats 
0.80 inches wide. The solidity, towing speeds and Reynolds number 
of the grids were the same as for the one-dimensional tests pre- 
viously described. The hydrodynamic drag of the 0.36 ft mesh grid 
was 3.2 1bs and 9.25 lbs at tow speeds of 1.0 and 1.7 ft/sec re- 
spectively at a grid draft of 1.67 ft. Ata grid draft of 0.84 ft, the 
hydrodynamic drags for this grid were 1.5 1bs and 4. 33 lbs at 1.0 
and 1.7 ft/sec. It is to be noticed that the grid drag increased as 
the square of the speed for all cases. 

Measurements were made of the mean values of the longitu- 
dinal velocities at depths of 0.80 and 0.40 ft in the grid wake across 

several transverse sections aft of the 3 ft wide, 0.36 ft mesh grid 

with a 1.67 and 0.80 ft draft. A plot of the ratio of wake velocity to 

grid velocity is given in Fig. 4. These velocity ratios were the 
same for both grid drafts and towing speeds. 

It is seen that there is a slow attenuation of velocity with 
distance aft of grid. Further, there is also a slow lateral spreading 
of the wake area. It is interesting to note that the wake velovities 
are all in the direction of grid tow. Surveys of the velocity field up 
to 5 ft from the grid centerline did not indicate a reverse flow. 
Visual observations did indicate a reverse flow along the bottom of 
the test tank. 

An empirical formulation was established to represent the 
wake velocity Vy as a function of distance, x, aft of the grid anda 
distance, y, measured from the grid centerline normal to the x- 
direction. The wake equation is given by: 

ay . 
= = [0.45 - 0.00745x] le Pukka oe aaa | 

where x and y are in units of feet. 

The above formulat was developed for use in the analysis 
of wave deformation for reguier waves running into a velocity gradi- 
ent. This analysis is presented in a subsequent section of this 
report. 

Wave Height Probes: The location of the wave amplitude 
measuring probes are shown in Fig. 3. It is seen that four probes 
were towed with the grid and 7 inches off its centerline; one 3 ft 
forward and three others 1 ft, 3 ft and 6 ft aft of the grid. In addi- 
tion, seven stationary probes were located in a transverse line 
normal to the direction of ,rid tow and at distance 38 ft and then 
20 ft ahead of the wavemaker. It will be noted that one of the 
stationary wave wires was directly on the grid centerline. This 
installation was accomplished by mounting the probe on the floor 
of the tank and providing a slot through the grid which passed over 
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Fig. 4 Longitudinal velocity distribution in grid wake 
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the wave probe. Thus, the transverse probes covered an area from 
the grid centerline to a distance of nearly 9 ft outboard of the edge 
of the grid. 

Test Procedure: The range of wave heights and lengths were 
essentially Similar to those used in the one-dimensional tests. Also, 

the test procedures previously described were followed. The initial 
grid location was always 10 ft ahead of the wavemaker. After ap- 
proximately 60 ft of tow, the grid was stopped and the wavemaker 
continued in operation until the wave amplitudes recorded in the line 
of transverse wave probes were again equal to the incident wave 
amplitude. 

RESULTS OF EXPERIMENTAL INVESTIGATIONS 

Selected test results are first described to illustrate the 
general behavior of waves ina turbulent flow field. An elementary 
analysis of the results is developed in the subsequent section. 

One-Dimensional Grid Studies 

As previously discussed, the original intention of the one- 
dimensional grid study was to provide a turbulent wake with constant 
longitudinal mean flow in any transverse section through the wake. 
Regular waves would be passed through the wake and measurements 
made of the dissipative effects of grid-controlled turbulence on wave 
amplitude attenuation. It was expected that the deep water gravity 
waves would pass through the turbulence field with the crest lines 
always remaining parallel to the grid and that the wave amplitude 
would be essentially constant along a given crest line and decrease 
as the wave progressed further into the turbulent area. Under these 
circumstances, the amplitude attenuation would be due both to 
viscous dissipation and to "wave stretching" as it moved into a longi- 
tudinal current from an originally quiet area. 

This idealized situation did not develop but, rather, it was 

found that the wave crest lines were severely deformed; the wave 
amplitude was not constant across a given crest line; and, further, 

there were pronounced oscillations in the wave amplitude time history 
at each wave probe (whether moving or stationary) in the wake. In 
all cases, the control wave probe, which was fixed in quiet water aft 
of the turbulent wake, indicated a wave of constant amplitude and 
period continuously passing into the wake area. 

General Behavior: An example of typical wave amplitude 
oscillations recorded by both the moving and stationary wave wires 
along the grid centerline is given in Fig. 5. The test conditions 
represented are for a wave length of 4.0 ft and a wave height of 
1.2 inches. The grid velocity was 1.7 ft/sec. The phase speed of 
the wave is 5.4 ft/sec while the average wake velocity is approxi- 
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mately 0.60 ft/sec. Trace No. 1 is for the moving wave probe 
located 13.25 ft. aft of the grid; trace No. 2 is for a moving wave 
wire located 66.5 ft aft of the grid; trace No. 3 represents the 
moving wave wire 12 ft ahead of the grid, and trace No. 4 is for 
the stationary control wave wire located approximately 20 ft aft of 
the start of the turbulent wake. The times of start-up and stop of 
the grid motion and the time of entry of the moving wave wires into 
the wake are also indicated on this figure. Perhaps the most notable 
feature on this typical test record is the pronounced oscillation of 
the measured wave amplitude at all but the stationary wave wire. 
It is seen that, for the specified test conditions, the measured wave 

amplitudes varied from nearly zero to values somewhat larger than 
the incident wave. Further, the time between successive minimum 

values is approximately 9-10 seconds for the waves in the wake but 
considerably longer, although not as clearly defined, for the wave 
probe ahead of the grid. For longer wave lengths, the wave ampli- 
tude variations were reduced and the apparent period between mini- 
mum values increased. A reduction in grid speed reduced the wave 
amplitude variation and increased the apparent period between mini- 
mum values. There was no discernible effect of grid mesh size on 
these general observations. 

It is to be noted from Fig. 5 that fluctuations in wave ampli- 
tude continued for a long time after the turbulence grid was stopped. 
This is, of course, due to the fact that the wake has a mean flow 

defined in Fig. 2 and, consequently, moves past the stationary grid. 
It is also interesting to note that wave deformation at wave wires 1 
and 2 is first evident after approximately 3 seconds or, equivalently, 
after a wave crest has traveled nearly 5 ft into the wake. 

Specific Behavior: The envelopes of wave height (h) variation 
with time, normalized on the basis of incident wave height (h,), are 

plotted in Figs. 6 through 11 for a grid speed of approximately 1 ft/sec; 
a grid draft of 20 inches; and a mesh size of 2.7 inches. Data are 

presented for the 3, 4 and 8 ft wave lengths, each having a height of 
approximately 1 inch. The data for the 2 ft wave length are not pre- 
sented since the wave heights were most irregular even in the non- 
turbulent flow area. The data for the 6 ft long wave were not unlike 
those for the 4 and 8 ft test waves and, hence, are not included in 

this paper. Two companion plots are presented for each wave length. 
For example, the data for the 3 ft long wave are given in Figs. 6 and 
7. The envelopes of the ratio h/h,; for the three moving wave wires 
are plotted in Fig. 6 along with the phase angle between wave crests 
at the centerline and at a point 4 ft outboard of the centerline at a 
longitudinal distance of 13.25 ft aft of the grid. A zero phase angle 
represents a crest line parallel to the grid. The complementary 
data plot for the 3 ft wave is given in Fig. 7 where, in addition to 
the envelopes of h/h;,, the apparent wave length is plotted at a 
longitudinal centerline position approximately 15 ft aft of the grid. 
This wave length is computed from the data obtained at the two 
centerline wave wires located at a distance of 13.25 ft and 16.5 ft 
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aft of the grid. Similar sets of plots are given in Figs. 8 and 9 for 
the 4 ft long wave and in Figs. 10 and 11 for the 8 ft long wave. 

The irregular, oscillatory behavior of the wave height envelope 
is apparent in all plots and decreases as the wave length increases. 
Further, the average wave heights at 13.25 and 16.5 ft aft of the 
grid continuously decreases with increasing time of grid travel 
(which corresponds to an increasing length of turbulent wake through 
which the wave travels). 

Repeat runs for otherwise identical test conditions did not 
produce identical time histories of wave height envelopes. This can 
be seen by comparing the time histories for a point 13.25 ft aft of 
the grid as shown in Figs. 6 and 7; 8 and 9; and 10 and 11. The time 

histories are much more nearly alike for the 8 ft long wave than for 
the 3 ft long wave. 

Crest Line Deformation: An examination of the phase relation 
(8) between the wave crest at a point 13.5 ft aft of and on the grid 
centerline and the wave crest at a point 4 ft transverse to this point 
indicates the first clear regularity to these one-dimensional test 
results. For the case of the 4 ft long wave (Fig. 6), it is seen that 
phase angle is zero, implying a crest line parallel to the grid for 
the first 20 seconds (20 ft of wake development) of grid travel. As 
time increases, the phase angle increases so that crest at the center- 
line precedes the wave crest 4 ft off the centerline. The phase angle 
increases nearly linearly with increasing time. For the 4 ft long 
wave (Fig. 8), a similar linear phase shift occurs except that the 
rate of phase shift is now somewhat slower. The phase shift for the 
8 ft long test wave (Fig. 10) has a maximum value of only 45°. For 
this long wave, the centerline crest lags the outboard crest. A com- 
parison of the wave amplitude shows nearly similar values at both 
wave probes when the phase is 0° or 360° and maximum differences 
when the phase angle is 180°, 

Apparent Wave Length: The apparent wave length along the 
wake centerline was determined from an analysis of the time histories 
of the wave amplitudes at the two wave probes which were 3.25 ft 
apart (probes at distances of 13.25 ft and 16.50 ft aft of the grid). 
The apparent wave length generally increases with increasing time 
of gridtravel. The 3 ft long wave (Fig. 7) attains a value of approxi- 
mately 4 ft after 50 seconds of grid travel and then decreases to a 
value of 3.5 ft. The 4 ft test wave (Fig. 9) attains a value of nearly 
6.5 ft after 100 seconds of grid travel while the 8 ft wave (Fig. 11) 
attains a value of approximately 11 ft after 90 seconds of travel. 
The wave lengthening is expected because of the longitudinal mean 
wake flow in the direction of wave celerity. 

Effect of Grid Velocity: Figures 12 and 13 present the wave 
height envelopes for the 3 ft and 4 ft long waves when the grid speed 
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is increased to 1.7 ft/sec. These resuits are to be compared with 
those on Figs. 6 and 8 for a grid speed of 1.0 ft/sec. The major 
differences are that there are wider variations in wave amplitude at 
the higher grid speed and, further, the periodicity of the phase rela- 
tion is reduced from 60 seconds to 40 seconds for the 3 ft wave and 
from 85 seconds to 50 seconds for the 4 ft wave. Unfortunately, 
sufficient data were not collected to determine the effect of grid 
velocity on apparent wave length. Similar data exist for the longer 
test wave lengths but, for the sake of brevity, these are not included 
in the present thesis. 

Effect of Grid Mesh Size: Increasing the grid mesh size from 
2.7" to 5.4" did not have a discernible effect upon the test results. 

Two-Dimensional Grid Studies 

The objective of these two-dimensional studies was to investi- 
gate the interaction between a turbulent flow field of finite dimensions 
and long-crested, deep water, gravity waves. As previously dis- 
cussed, the grid wake characteristics were such that the waves were 
simultaneously subjected to dissipation effects due to eddy viscosity; 
scattering due to turbulent convective distortion of the wave front; 

and deformation of the wave due to mean flow velocity gradients. As 
in the one-dimensional investigations, it appears that the effect of 
the velocity gradients dominated in developing major wave distortions. 
Although the experimental program examined wide variations in wave 

length, wave height, grid mesh, grid width, grid draft, and grid 
speed, the presentation will be limited to a discussion of results for 
the following brief range of conditions: 

Ace 2. 0546 ONE 

H,= 1.0 inches 

Grid mesh = 2.7 inches 

Grid draft = 0.83; 1.67 ft 

Grid width = 3.0 ft 

Grid velocity = 1.0, 1.6, 2.6 ft/sec 

These limited combinations of parameters serve to illustrate the 

major effects of wake-wave interation. 

General Behavior: The behavior of the time history of the 
wave amplitudes at probe positions, either moving with the grid or 
stationary in the wake, were substantially different from the one- 

dimensional results previously discussed. The extensive irregularity 
in the wave amplitude were not observed -- particularly for those 
wave probes which traveled with the grid. There did appear to be 

some indication of an irregularity for those stationary wave probes 

located approximately two grid widths from centerline -- these were 

not, however, well defined. An examination of the crest line defor- 

mation as a given wave passed over the transverse line of stationary 
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probes indicated a slight concavity to the wave front with the crest 
along the grid centerline being in the lead by, at most, nearly 30 
degrees for the 2 ft long wave at a grid speed of 1 ft/sec. It will be 
recalled that, in the one-dimensional tests, the phase between two 
transverse probes 4 ft apart continuously increased with time. In 
general, the wave height time histories were characterized by either 
a slow attenuation or amplification as the wave passed through the 
wake. 

Figures 14 and 15 present the envelope of wave height time 
histories (normalized on the basis of incident wave height) along the 

transverse line of stationary wave probes fixed in the tank for 2 ft 
and 6 ft long waves respectively. The wave height was 1.0 inches 
and the grid dimensions were: width = 3.0 ft; draft = 1.7 ft; 

mesh = 2.7 in; speed = 1 ft/sec. For the probe on the centerline 
(No. 7), it is seen that there is a continuous decrease in amplitude 

starting from a time when the probe was 13 feet upstream of the 
grid. For the 2 ft wave (Fig. 14) the height is attenuated to approxi- 
mately 10% of the incident wave height when the probe is 7 ft down- 
stream of the grid and retains this reduced height for the entire time 
of data collection (80 seconds). It will be noted from Fig. 3 that, 
when the grid reaches the transverse wave probes, it has already 

developed a wake 28 ft long moving at a mean longitudinal velocity of 
approximately 35 per cent of the grid speed. 

The probe 2.4 ft from the centerline (No. 1) also shows a con- 

tinuous reduction in wave height with increasing time, finally attain- 
ing a value approximately 35% of the incident wave. Probe No. 2, 
located 4.2 ft from the centerline, indicates only small variation in 

wave height with time. The remaining outboard probes (No. 3, 4, 5) 

all show increases in wave height for the entire test run. These 
probes also indicate the existence of mild "beats" in the envelope 
of time histories although not as severe as for the one-dimensional 
case previously discussed. The maximum wave height occurs be- 
tween probes 3 and 4 attaining a value approximately 75% larger 
than the incident wave. It is to be noted that, for all stationary 
wave probes, the height modifications are initially noted when the 
probes are still 13 ft upstream of the grid. In general, then, the 
characteristics of wave deformation in the wake show a significant 
reduction in wave height for approximately one grid width on either 

side of the centerline and an amplification beyond this region. 

Figure 15 represents similar data for a 6 ft long wave -- all 
other conditions being equal. The general characteristics of wave 
deformation are identical to the 2 ft long wave except that the mag- 
nitudes of the changes are reduced. For example, the minimum 
wave height along the centerline is now 30 per cent of the incident 
wave while the maximum wave height is 35% larger than the incident 
wave. 
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The envelope of wave height at the moving probes is given in 
Figs. 16 and 17 for wave lengths of 2 ft and 6 ft respectively. The 
wave probe positions are at distances of 1 ft and 6 ft aft of the grid 
and just off its centerline. The grid was 3 ft wide, had a draft of 
1.7 ft and a mesh size of 2.7 inches. Figure 16 presents results 
for grid speeds of 1.0 and 1.6 ft/sec, while Fig. 17 is for speeds of 
1.0 and 2.6 ft/sec. It is seen that there is a continuous reduction in 
wave height with time. For the 2 ft long wave and a grid speed of 
1.0 ft/sec, the amplitude is reduced to nearly 10 per cent of its 
initial value after approximately 20 ft of gridtravel. It remains 
essentially at this value for the length of the test record which ex- 
tended for 30 seconds after the grid was stopped. The effect of 
increasing the speed of the grid from 1.0 to 1.6 ft/sec reduced the 
wave height to nearly 8% of its initial value. It is to be noted that 
there is a distinct absence of oscillations in these time histories. 

The results for the 6 ft long wave (Fig. 17) are essentially 
similar to those for the 2 ft long wave. At a grid speed of 1 ft/sec, 
the wave height is reduced to approximately 35 per cent of its initial 
value. When the grid speed was increased to 2.6 ft/sec, the wave 

height was reduced to 12 per cent of its initial value. 

An overwater photograph of the wave deformation for a typical 
two-dimensional test is shown in Fig. 18. The reduction in wave 
height along the centerline wake area and the amplification outside 
this area are clearly visible in this photograph. 

\* . 

! 

Fig. 18 Typical wave deformation for two-dimensional grid 
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Specific Results: To more clearly illustrate the modifications 
in wave height along a given crest line, transverse sections through 
the wake are plotted in Figs. 19 and 20 for a grid width of 3 ft, draft 
of 1.67 ft; mesh of 2.7" and speed of 1 ft/sec. The effect of a grid 

draft of 0.83 is given in Fig. 21. The results for the 2 ft wave are 
given in Fig. 19 while those for the 6 ft wave are given in Figs. 20 
and 21. These data are obtained from simultaneous measurements 
of the recorded wave height at times corresponding to the indicated 
distances ahead of and behind the grid. A maximum phase shift of 
only 30° was discernible in the test records. 

It is seen that a substantial reduction in wave amplitude exists 
for a distance of nearly one grid width on either side of the center- 
line. The maximum wave height amplification occurs at approxi- 
mately two grid widths from the centerline and the wave amplitude 
appears to be unaffected at distances of approximately 4 grid widths 
from the centerline. This pattern exists for distances well aft of 
the grid. It is interesting to note that, as the wave passes through 
and ahead of the grid, where the wake does not exist, the deformed 

crest tends to return to its original uniform height. Again, it is 
seen that the 2 ft wave is much more attenuated and amplified com- 
pared to the 6 ft wave, all other conditions being equal. (Compare 
Figs. 19 and 20.) It is also interesting to note that reducing the 
grid draft from 1.67 ft to 0. 83 ft has a negligible effect on wave 
deformation for the 6 ft wave. (Compare Figs. 20 and 21.) 

TRANSVERSE SECTION 
5 AHEAD OF GRID 

—— — TRANSVERSE SECTION 

0.40 // 6 AFT OF GRID 

7 — — — TRANSVERSE SECTION 
32 X AFT OF GRID 

4 6 8 10 l2 

y= DISTANCE NORMAL TO GRID @ ~FEET 

Fig. 19 Height of wave oo line in transverse sections normal to 
grid’‘@.° X= 2", 1, grid width ="3", mesh ="2.7", 
draft = 1.67', V= ne ft/sec. 

419 



60 2 AFT OF GRID 

— —— TRANSVERSE SECTION 
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eee 
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y= DISTANCE NORMAL TO GRID q -FEET 

Fig. 20 Height of wave crest line in transverse sections normal to 
grid Go. Aw= 16; Hy= i eae grid width = 3', mesh,;= 22 fie 

draft = 1.67', V= 1 ft/sec. 

2) FORWARD OF GRID 

1.60 — —_ 2) AFT OF GRID 

——— 4X AFT OF GRID 

TG, 
ea 

1.20 a 
— 

GRID = 
LLL LLLLLA 

h 

hj hie. 0.80 

ae 
See 

040 

fe) 
) 2 4 6 8 10 12 

y= DISTANCE NORMAL TO GRID ¢ -FEET 

Fig. 21 Height of wave crest line in transverse sections normal to 
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TRANSVERSE SECTION 
2X AHEAD OF GRID 

—— — TRANSVERSE SECTION 

grid’'G. 4 ="6", H,= 1", grid width =3', mesh =(257"5 
draft = 0,83", V = 1 ft/sec. 
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Increasing the mesh size from 2.7 to 5.4 inches has a negligi- 
ble effect on the wave deformation. Increasing the width of the grid 
increased the area of wave attenuation and wave amplification. 

III. ANALYSIS AND DISCUSSION 

Viscous and Turbulent Effects 

The initial analysis of the experimental results was directed 
to relating the observed wave deformations to possible physical 
mechanisms associated with the turbulent and viscous nature of the 
grid-generated wake. It was found that the large changes in wave 
height could not be accounted for by these considerations -- parti- 
cularly in the two-dimensional grid studies. In this case, the square 
of the wave height was integrated along a crest line passing through 
the wake to obtain a measure of the energy in the deformed wave. 
This was compared with the energy in the incident wave for the same 
length of crest line. The results of this comparison are presented 
in Table 1 for wave and grid dimensions selected to be typically 
representative of the total test program. The length of integration, 
Y, along a given crest line was the distance between the grid center- 
line and the point where the wave height was again equal to the inci- 
dent wave height. The crest length thus includes both the attenuated 
and amplified wave height regions. For a given test condition, the 
integrations were carried out for several transverse sections through 
the wake, both ahead of and aft of the grid. It is seen from Table 1 
that the integrated expression representative of wave energy pro- 
duces nearly similar results with and without the towed grid. In 
fact, for some test conditions, the integrated energy for waves in 
the presence of the grid results in values somewhat higher than for 
the case of no grid -- but this is attributed to experimental inac- 
curies. It thus appears that viscous dissipative effects were quite 
small and, although they most certainly existed, their magnitude 
could not be accurately detected because the limited number of 
transverse wave probes were inadequate to trace the unexpected 
large wave height deformation which developed along a crest line. 

A measure of the rms of the velocity fluctuations in the turbu- 
lent field yielded substantially the same values with or without waves 
passing through the wake. This was not surprising since the energy 
imparted by the grid to the fluid at a tow speed of 1 ft/sec was 
nearly an order of magnitude larger than the wave energy ina 
crestline length equal to the grid width. 

For the one-dimensional tests, it will be recalled that the 
wave height at a given position in the wake exhibited large fluctua- 
tions and was characterized by irregularities in the recorded time 
histories. These results could certainly not be accounted for by 
dissipative mechanisms in the turbulent field. It appeared then 
that for both the one and two-dimensional studies the principal 
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TABLE. I 

Comparison of Wave Energy With and Without Towed Grid 

0 y, ft. Y 

y 2 2 E,= J b ay E,g= HyY 

(with towed grid) (no grid) 

We; Guid" Transverse Section 

a *K 
oN ght Ts D M V6 Position Eng Ey 

6.0 0.09 3.0 1.7 0.22 1.0 ft/sec 5d(F) 0.067 ft? 0.069 £t3 
6X(A) 0.063 0.060 

32X(A) 0.058 0.064 

S200 l09 3.0 1.7 ,.02.22 . tae 2X(F) 0.081 0.082 

2X(A) 0.081 0.083 

7X(A) 0.081 0.079 

2.0 =0:,09 12 340nl4s:7 00529 Akio 5X(A) 0.081 0.084 
6X(A) 0.087 0.092 

32X(A) 0.081 0.075 

60) s0209' 5.5 1.7 0,22 ~ 1.0 2X(F) 0.093 0.100 

2X(A) 0.087 0.099 

4\(A) 0.087 0.099 

22 02%:0) 097 <3. Oret.OS852.01A22)! 2120 5X(F) 0.081 0.098 

6X(A) 0.072 0.078 

23(A) 0.081 0.091 

6.0 0-509, S20" 0. 85, U22- 1.0 2X(F) . 0.081 0.079 

Z2XCA), 0, 0,70 0.076 

4\(A) 0.070 0.078 

*Wave and grid dimension in feet; L = grid width; D = grid 

immersion; M = grid mesh 

igs is transverse section forward of grid (ft) 
(A) is transverse section aft of grid (ft) 
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mechanism of wave height deformation was due to a redistribution of 
energy along a crest line rather than to dissipative effects. In this 
regard, the results of Phillips [1959] were examined to determine 
possible convective distortions of the wave front resulting from 
scattering interference between wave and turbulence field. It was 
found that the observed results could not be accounted for by the 
turbulent scattering. 

If, in the present studies then, turbulence is assumed to have 

had a minor effect on wave deformation, it remained to examine the 

possible interference between the mean flow gradient in the wake 
and the incident wave. The velocity profiles for the longitudinal 
mean flow aft of the grids are plotted in Figs. 2 and 4 for the one- 
and two-dimensional studies, respectively. In both cases there is 
a relatively sharp velocity gradient between a region of constant 
wake velocity to zero velocity at the tank wall for the one-dimensional 
case and to zero velocity in the still water adjacent to the finite grid 
wake in the two-dimensional case. By application and superposition 
of elemental theories of wave refraction, defraction and interference, 

it was found that the observed results could be, at least, qualitatively 
reproduced and physical mechanisms described to account for the 
large wave deformations observed. 

A detailed analysis is first made of the two-dimensional tests 
since these results were free of possible wall reflection effects 
such as existed in the one-dimensional studies. Further, the 2-D 

analysis will provide the foundation for explaining the results of the 
1-D studies which proved to be the more complex case. 

Wave Interaction with Finite Velocity Field 

Two-Dimensional Results. The longitudinal mean flow in the 
finite wake area aft of the grid is plotted in Fig. 4 and is quantified 
by an empirical formulation, Eq. (2). 

—— 
16740.062x 

Vw =[0.45-0.00745x][e. ] 
Vi 

where 

Vw = mean value of longitudinal velocity in wake 
V = grid velocity 
x = distance aft of grid, ft 
y = distance normal to grid centerline, ft 

In the present analysis, regular waves in still deep water en- 
counter a variable current field Vy (x+y) moving in the same direc- 

tion as the waves. The waves are initially refracted by the current 
to an extent dependent upon the incident wave length, strength of 
current, and the velocity gradients in the wake. The orientation 
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of the wave-wake system is shown in Fig. 22. 

For progressive deep water gravity waves in still water, the 
phase velocity of the wave, Co, is given by: 

Cr= g/k, (3) 

where g = acceleration of gravity, \,= wave length in still water, 
k, = wave number = 27/X., C, = wave velocity relative to still water. 
After the waves have run from still water into a current, the kine- 
matical condition that must be satisfied is that the wave period, T, 

remains constant while the wave length, i, velocity C, and height 
H, change. Given a current velocity V), the constancy of wave 
period is expressed as: 

27 -k(C + Vy) = k(C, + Vu) (4) 

where the subscript, o, refers to the still water conditions. 

Thus: 

2 

ky C+ Vy .S 
kia LGastaVead (Cs 

For the present case Vy, = 0 so that: 

C_S Ny. 9 
Co Co Co 

and 

1 C= 5(Co + VG? + 4V\Co) (5) 

which is the wave speed relative to the water for waves progressing 

in the same direction as the current. 

More generally, for waves whose crest line is at an angle 

relative to the x-axis: 

1 
C= s (Cot Heng + 4V,C, cos 2) (6) 

where @ is the angle between a wave ray and the x-axis (Fig. 22). 

The wave velocity relative to the bottom C' is the vector sum 

of the wave speed relative to the water and the local current. 
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DEFORMED WAVE CREST 

STILL WATER | FINITE CURRENT FIELD 

Vy =LONGITUDINAL CURRENT FIELD IN WAKE 

Co = WAVE VELOCITY, STILL WATER 

C = WAVE VELOCITY, IN CURRENT 

@ = ANGLE BETWEEN WAVE RAY AND X AXIS 

Fig. 22 Wave-wake system 
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Grav ae (7) 

The wave length for waves progressing in the same direction as the 
current is thus: 

N -(4 +1 +4(V, om 
2 te) 

(8) 

It can be seen that the effect of a following current is to increase the 
wave length relative to the water. 

The analytical solution for the refraction of waves traveling 
through a finite current field is obtained by application of Fermat's 
principle that waves will travel in a path such that the travel time is 
aminimum. Applying the method of calculus of variations will lead 
to a time history of the path of individual wave rays passing through 
the current. For the purposes of this analysis, it will be assumed 
that the wake properties do not vary with time. This is a reasonable 
assumption since it has been demonstrated that, for a grid-speed of 
4 ft/sec, the mean wake-velocity is an order of magnitude less than 
the wave speeds. Mathematically, the problem is to determine the 
minimum time path of a given wave ray through a current region de- 
fined by a position dependent velocity vector. The magnitude and 
direction of the current are known as functions of position (Eq. 2). 

The magnitude of the wave crest velocity relative to the water is C, 
given by Eq. (6). The problem is to determine the path of a wave 
ray such as to minimize the time necessary to travel from point A 
to a point B. Analogous optimization problems for dynamic systems 
are described by Bryson and Ho [1969]. 

The equations of motion are: 

x(t) - V,(x,y) - C(x,y,) cos @ 

(9) 
- C(x,y,@) sina y(t) 

with initial conditions 

x(0) = x, 

(10) 
y(0) = yo 

and at end of computation 

x(t,) = xX, 
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where ty is an unspecified terminal time of integration between 
points A and B. It is required to find a(t) and t; such that the 
above constraints are satisfied and that the performance index J(a) 

of elapsed time t, is a minimum expressed mathematically, 

" 
Ha) = § dt (11) 

0) 

is a minimum. 

From the methods of calculus of variations, the Hamiltonian 

of the system is: 

H(x,y,%,d,,d) =it A(- bee (o; cos @) = dC sin a (12) 

where A, and X 
equations are: 

y are Lagrange multipliers. The Euler-Lagrange 

° 0H 

Mme OFS 

- _ 86H 

Bp 

- _ 0H 

pee 3 

- _ 0H 
Vite Ory 

ae 0H 

~ Ba 

The terminal conditions are: 

dlt,) =0 

(14) 
H(t.) = 6 

Since the Hamiltonian is not an explicit function of time, Hl=0 and 

H is aconstant. Further, since H=0 at the terminal condition, 

then it follows that H=0 forall 0StX tye 
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Evaluating 9H/8a from (12) and using the condition H = 0 
leads to a determination of the Lagrange multipliers. 

C cos @ + SE sina 

i, So Cm aS 
Vic cos @ ce sin @) +c? 

(15) 
dC 
Ba Cos %- C sina 
$s 

Vc cos @ +ec sina) + (og 
y= 

The remaining differential equations are employed and, after 

extensive algebraic manipulations (which will not be reproduced 

herein), the following expression for a(t), the angular trajectory 

for minimum travel time, is obtained. 

3 2 
att) = [VC ce verge tc Be sina +C S¥w SE sin? a 

2 
+C B¥ a Sin meos'a HG pe coe. - ac 80 Se cos a 

2 

- ¢ Bly Se cost a - Ny eS sin a cos @ + C?5™ cosa 

6? BE sina +20 902 sina +c°S Gpicos® a 

aV, aC dV, acy - 2 
+26 Sw SE sina cosa + Suu( 52) sin e|/ 

Bop ae | (16) 

The partial derivatives of C and Vy contained in Eq. (16) 

are obtained from the definition of C and Vy, as follows: 

Cc =5 [Co + (C$ + 4V\C, cos a | 

V, (x.y) = (0.45 - 0.0074x) exp . (ae meee 
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Thus: 

c= —— VC, sina (Gc. + 4V,C, cos aye 

he = C, cos @ Cos + 4V0, cos oy oNw 

ac 2 - OV, 
by = C, cos @ (C, + 4V,C, cos a) oe 

2 2 “1/2 
er = Cy, sin a FV - (C, + 4V_C- cos @) 

-3/2 
+ 2C, cos (C,+4V,C, cos a) ] 

a°C av 2 Byda = C, sina Bye [- (C, + 4V,C, cos a) 

-3/2 
+ 2C, cos @ (Ge + 4VC, cos @) | 

anc _-_ vec a (C+ 4V.C ae ayes wo <O8 0 wo ©°8 

ene, 6 2 -3/2 
- 2VC, sin @ (C, + 4VC, cos @) 

and 

OV = -0.00745V exp | - a ‘i P 67 + 0. 062x 

8 

+ V(0.45-0.00745x) exp [- (7c) ] 

» 3( ' )'[- 0. 062y | 
. ° x 1.67 + 0.062x 

8Vy = v(0.45-0.00745x) exp - ( )" 
y - 7 P e 7 e 2x 
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These equations were programmed and evaluated on the 
PDP-10 computer. Refraction diagrams were obtained for several 
wave lengths, grid speeds, and initial wake lengths. The present 
report presents the results for 

= 2, Date 

Grid width = 3 ft 

Grid submergence = 1.67 ft 

Grid mesh = 2.7 in 

Grid velocity = 1 ft/sec 

Wake length (x,) = 40 ft 

Actually, the empirical formulation for the wake velocity is associ- 
ated with the above grid geometry. The results for the 2 and 6 ft 
waves are plotted in Figs. 23 and 24. These refraction diagrams 
are actually constructed by the so-called "orthogonal" method where- 
in a wave ray path is obtained from the computer solution. The 
crest lines shown on the diagrams are everywhere perpendicular to 
the orthogonals and represent the crest position at times correspond- 
ing to multiples of the wave period. This time interval, mutliplied 
by the local wave speed at each point on the crest, determines the 
position of successive wave crests. 

It is evident, for both wave lengths, that a large distortion 
of the wave front occurs for the length of wave crest initially located 
between a point 1 ft from the wake centerline and a point 3.5 ft from 
the centerline. In fact, this 2.5 ft length of crest is stretched to 
nearly eight times this length after the wave has traveled only 30 ft 
into the wake. The local crest line divergence for the 2 ft wave is 
larger than that for the 6 ft wave. A similar large stretching is evi- 
dent for the length of wave crest between 3.5 and 5.0 ft from the 
centerline. Because of this extreme divergence of orthogonals for 
localized lengths of wave crest, it is not expected that refraction 
techniques alone are sufficient to represent the present wave-current 
interference effects. In fact, it is expected that diffraction along 
the wave crest must occur to provide for a flow of wave energy along 
the crest. This modification will be discussed subsequently. 

The qualitative results obtained from the refraction analysis 
can be summarized by describing the behavior of adjacent finite 
crest lengths as the wave passes through the wake. The incident 
wave can be divided into four separate lengths as follows: 

1) Crest length between @ and 1 ft. 

2) Crest length between 1 ft and 3.5 ft. 

3) Crest length between 3.5 ft and 5.0 ft. 

4) Crest length beyond 5.0 ft. 
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Fig. 24 Computed wave refraction diagram 
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Crest Length Between © and 1 ft. In this region, the current 
field is essentially constant across any transverse section and in- 
creases slowly in the longitudinal direction. The effect on this finite 
wave is to increase the wave length in accordance with Eq. (8). For 
a mean flow of 0.30 ft/sec, the 2 ft wave length should increase by 
20% while the 6 ft wave should increase by 10%. This is in reason- 
able agreement with the results in Figs. 23 and 24. Since the wave 
length increases, it is expected that the wave heights will decrease 

in order to maintain wave energy balance. 

Phillips [1969] accounts for this wave energy balance in 
treating the case of long-crested waves running into a current in 
which the surface velocity varies only longitudinally. His results, 
plotted on Fig. 3.6 of his work, show that for the present conditions 
a wave height attenuation of approximately 15% is expected for the 
2 ft wave and approximately 8% for the 6 ft wave. This is consider- 
ably less than the experimentally attained values of 80% to 90% 
attenuation previously discussed. Thus, the refraction procedure 
alone does not account for the results observed in the vicinity of 
the wake centerline. It will later be shown that diffraction effects 
applied to this length of wave crest can indeed result in large local 
attenuations of wave height. 

Crest rss Soe Between 1 ft and 3.5 ft. The orthogonals for 
this crest length diverge rapidly in a direction which causes the 
local wave crest to be redirected out of the wake area into the still 
water. This finite crest length advances in a constant direction 
relative to axis system at a speed and wave length equal to the inci- 
dent wave. It then crosses the undeformed incident crest line at a 
distance 5 ft from the wake centerline. As a first order effect, it 
can be assumed that the wave heights decrease as the square root 
of the ratio of the initial wave ray separation to the separation at 
any subsequent position of the local crest. For the 2 ft long wave at 
a position 12 ft aft of the grid (28 ft into the wake), the wave height 
(Fig. 25) indicates that the average wave height for this local crest 
is approximately 30% of the incident wave height. 

The deflection of this local wave crest length into the area of 
the incident wave could account for the irregularity observed in the 
wave height time histories at fixed points between 7 and 12 ft from 
the wake centerline. 

Crest Length Between 3.5 and 5 ft. For this length of wave 
crest, it was seen that adjacent orthogonals converge and finally 
cross, resulting in a caustic curve [ Pierson 1951]. On the basis of 
simple theory, the wave became infinitely high on the caustic which, 
of course, is not the case. At present, quantitative analysis of the 
wave height at and beyond caustics must still be developed for the 
case where variable currents produce wave distortions. 
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Crest Length Beyond 5 ft. This length of wave crest is 
always outside of the wake current and thus continuously progresses 
through still water with no alteration in wave length or speed. 
During its forward progress, it runs into the caustic area and 
deflected wave crest originating between 1 ft and 3.5 ft from the 
wake centerline. 

Application of Analytical Results 

Due to the omission of defraction effects for each wave crest 
segment, the refraction results discussed in this section are in 

themselves insufficient to represent the test results. They are 
nonetheless invaluable in forming the basis for providing qualitative 
information about the complex processes governing the interaction of 
a wave system with a finite current field. 

Reflection Effects: The results of the refraction analysis 
are first used to compute wave heights along crest lines in transverse 
sections through the wake. The detailed results presented herein 
are for a transverse section 12 ft aft of the grid and for a current 
field extending 40 ft aft of the grid (as shown in Figs. 23 and 24). 
Thus, the wave has progressed 28 ft into the wake at the time of com- 
putation. The grid was 3 ft wide; had a mesh of 2.7 inches; a draft 
of 1.67 ft; and a tow speed of 1 ft sec. Computations were made 
for 6 ft and 2 ft long waves. The experimental results for these 
conditions have already been presented in Figs. 19 and 20. 

Since the purpose of this computation is mainly to compare 
qualitatively the measured results with elemental analytical results, 
simplifying assumptions were introduced. First, it was assumed 
that the local wave height between adjacent orthogonals is inversely 
proportional to the square root of the distance between these adjacent 
ray s«,..hus:, 

Bs = (4) un 
where: 

separation distance between adjacent rays in still water 

se 

° iT] 

= separation distance between adjacent rays on the de- 
formed crest line 

Hy= local wave height in still water 

= local wave height along deformed crest line 

This enabled wave heights to be constructed along a wave crest from 
the centerline to a distance approximately 6 feet from the centerline. 
Beyond this point, there is a superposition of the deflected wave seg- 
ment with the undisturbed length of the incident wave. In this area, 

434 



Gravity Waves and Finite Turbulent Flow Ftelds 

the two waves are combined in proper phase as indicated by the 
crest line plots in Figs. 23 and 24. The section of wave crest that 
develops into a caustic has not been included in this elemental con- 
struction. The results of this simple refraction analysis are 
plotted in Figs. 25 and 26 for the 6 ft and 2 ft wave lengths. It is 
seen that this procedure results in essentially unmodified crest 
heights just aft of the physical grid; then large reductions in wave 
height for areas transverse to the grid and, finally, increases in 

wave height in those areas where the deflected segment of the wave 
combines with the undeformed segment of the incident wave. The 
results of the refraction computations do not entirely agree with the 
experimental data -- particularly in the region of the grid wake where 
the test results show significant attenuations in wave height while 
the computed results show no wave height attenuation. 

Considering the variation of computed wave height along the 
crest line (Figs. 25 and 26), it is seen that there is a large increase 
in wave height for positions less than and greater than approximately 
6 ft from the grid centerline. At this 6 ft point, the computed wave 
height is aminimum. These transverse gradients cannot remain in 
equilibrium and thus represent a source of energy flow along the 
wave crest from the regions of large wave height to the point of low 
wave height. This is a diffraction phenomenon which exists simul- 
taneously with refraction effects. A rigorous theoretical analysis 
of this problem appears to be extremely complex and is yet to be 
developed. For the purposes of the present study, a simplified 
analysis is developed which combines the results of elemental solu- 
tions of wave refraction, diffraction and superposition. Although 
not completely rigorous, this simplified approach is tenable and 
relatively easily applied. 

Diffraction Effects: As normally considered, wave diffraction 
occurs when part of a wave is "cut off" as it moves past an obstruc- 
tion such as a breakwater. The portion of the wave moving past the 
tip of the breakwater will be the source of a flow of energy in the 
direction essentially along the deformed wave crest and into the 
region in the lee of the structure. As explained by Wiegel, the "end" 
of the wave will act somewhat as a potential source and the wave in 
the lee of the breakwater will spread out with the amplitude decreas- 
ing exponentially along the deformed crest line. The mathematical 
solution of this phenomenon, which is taken from the theory of 
acoustic and light waves, is described by Penny and Price [ 1952] ; 

Johnson [ 1952] and Wiegel [1964]. The solutions for two basic 
diffraction phenomenon are presented by Wiegel: one is the case of 
a semi-infinite breakwater and the other is for the case of waves en- 
countering a single gap in a very long breakwater. The solution for 
both cases are presented by Wiegel in the form of contour plots of 
equal diffraction coefficient, K, defined as the ratio of the wave 
height in the area affected by diffraction to the wave height in the 
area unaffected by diffraction. For the case of the wave passing 
through a single gap, the solutions are presented for various ratios 
of wave length to gap width. 
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In applying these diffraction results to the present study, it 
has been assumed that the refraction phenomenon previously dis- 
cussed divides the wave crest into several segments which are 
separately diffracted as they pass through the grid wake. Specifi- 
cally, the segment of the wave crest just aft of the grid is assumed 
to behave as though it was a section of the wave which passed through 
a breakwater gap equal to the grid width. The justification for this 
analogy follows from the refraction results given on Figs. 25 and 
26 where it is shown that, for a distance of approximately one-half 
the grid width on either side of the grid centerline, the wave height 
in the wave cannot be maintained at a constant height since just out- 
board of this segment the refraction analysis yields a small wave 
height. Thus, it appears reasonable to assume that diffraction 
effects will be developed and that this centerline segment of the 
wave will reduce in amplitude and spread transversely along the 
crest as it proceeds into the grid wake. The diffraction coefficients 
will be taken to be those corresponding to a wave at a breakwater 
gap as given on pages 188-189 of Wiegel. 

One other portion of the incident wave which appears to be 
modified by diffraction is that segment of the incident wave which is 
located 5 ft outboard of the grid centerline. From the wave refraction 
diagrams on Figs. 23 and 24, it is seen that wave rays and crest 
lines outboard of 5 ft are not influenced by the grid wake. Simple 
refraction considerations then result in a wave of constant amplitude 
along this length of the wave front. Again, this constant wave height 
cannot be maintained and a defraction process develops which causes 
a lateral spreading of the wave crest into the wake area with an 
attendant reduction in wave amplitude. This lateral flow of wave 
energy can be compared to the case of water passage past a semi- 
infinite breakwater, the solution for which is plotted on page 183 of 
Wiegel. Typical diffraction diagrams for the case of breakwater 
gap and semi-infinite barrier are given in Figs. 27 and 28 of this 
report. 

The computed results for these two diffraction processes 
are plotted in Figs. 29 and 30 for the 6 ft and 2 ft wave lengths 
respectively. Again, the computations are made for transverse 
section approximately 28 ft into the grid wake. For the 6 ft wave, 
the ratio of effective "gap width" to wave length is 3/6 = 0.50; for 
the 2 ft wave, the ratio is 3/2 = 1.50. It is seen that the initial 
constant height wave segment between the grid centerline and 1.5 ft 
outboard is diffracted to approximately 0.30 of this height and is 
spread laterally to a distance nearly 12 ft from the grid centerline. 
Considering the diffraction of the entire wave segment initially 5 ft 
outboard of the grid centerline, it is seen that this section is spread 
inboard to the grid centerline with a corresponding reduction in 
wave height at approximately 0.30 of its initial height. It is seen 
that, for this wave segment, the attenuation of wave height as it 
spreads to the centerline is much more rapid for the 2 ft wave than 
for the 6 ft wave. 
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Superposition of Elemental Results 

The results of the refraction and diffraction results have been 
superposed in order to provide an analytical estimate of the wave 
height distribution along a crest line as it progresses through the 
grid wake. The computations were carried out for a transverse 
section 12 ft aft of the grid for a grid wake 40 ft long. These are 
identical to the refraction calculations previously described. The 
following procedure is used in this superposition of elemental results: 

a) The initial crest length between the grid centerline and 
1.5 ft outboard is diffracted by the breakwater gap technique as 
plotted on Figs. 29 and 30. 

b) The initial crest length 5 ft outboard of the grid centerline 
is diffracted by the technique of wave passage past a semi-infinite 
barrier as plotted on Figs. 29 and 30. 

c) The segment of wave length initially between 1.5 ft and 
3.5 ft is refracted by the orthogonal method and the wave heights 
are obtained by Eq. (17). The orientation (or phase) of this wave 

crest segment to the transverse section 12 ft aft of the grid is ob- 
tained from the computed refraction diagrams such as given in 
Figs. 23 and 24. The resultant wave heights for this segment are 
plotted on Figs. 29 and 30. 

d) The segment of the wave crest between 3.5 ft and 5.0 ft 
outboard has been neglected in this simplified procedure since it 
develops into a caustic line. 

e) The results of (a), (b), (c) and (d) are superposed to ob- 
tain the final wave height distribution. 

The results of the above procedure are presented in Figs. 29 
and 30 for the 6 ft and 2 ft wave respectively and compared with the 
experimental data. It is seen that agreement between computed and 
measured results is qualitatively acceptable for the 2 ft wave length 
and is good for the 6 ft wave length. It appears then that the physical 
processes responsible for the observed deformation of waves pro- 
gressing into a finite current field have been established. It is 
strongly recommended that further studies of this problem be di- 
rected towards the development of a unified, rigorous theory which 
can be used to quantify this interesting wave-current interaction 
phenomenon. 

One-Dimensional Results 

No similar detailed analysis has been made of the one-dimen- 
sional results previously described. It does appear, however, that 
the transverse gradient in the longitudinal wake velocity existing 
at the outer edges produces a local wave refraction. This refracted 
wave segment must then be reflected from the tank walls and prog- 
ress across the wake, running into similarly refracted wave seg- 
ments from the opposite wall. These continuously crossing wave 
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segments passing over the incident wave may develop distortions in 

wave height time histories such as observed in the experiments. 

The wave height irregularity at any point in the wake thus precludes 

a reliable evaluation of the dissipative effects of the grid-produced 
turbulence since only two wave probes were used in this study. 

IV. RECOMMENDATIONS FOR FURTHER STUDIES 

The original objective of the present study was to investigate 
experimentally the interaction between gravity waves and turbulence 
fields generated in the wake of a towed grid. Unfortunately, the 
longitudinal mean flow velocity gradients in the wake had a dominating 
effect on wave deformation and thus precluded a direct evaluation of 

turbulence effects alone. Although, ina realistic ocean environment, 
turbulence fields can be generated by, and exist simultaneously with, 

velocity gradients in ocean currents, it is nevertheless of fundamental 
scientific int¢rest to study separately the effects of turbulence fields 
with no mean flow interacting with gravity waves. The results of 
such an elemental turbulence study can then be combined with velocity 
gradients to represent wave passage through realistic ocean currents. 
Also, the results can be used alone to study the wave interaction 
with isolated turbulence fields such as exist, for example, in regions 
of "splash" turbulence developed by breaking waves. 

It is thus recommended that the present study be continued 
but with an experimental apparatus designated to produce localized 
turbulence areas with no mean flow. The experimental procedure 
should be capable of generating turbulence fields of controlled eddy 
size, turbulence intensities, depth of penetration below the free 
surface, and length and width of turbulence patch. It is further 
recommended that the turbulence generator be capable of developing 
vortices with either a horizontal axis or a vertical axis or a combina- 
tion of both. 

The control of the vortex direction will be important in the 

study of the eddy viscosity interaction in which energy is transferred 
from the wave motion to the turbulence. As discussed by Phillips 
[ 1959] , the passage of the wave results in straining the elements of 
the fluid near the surface in a manner periodic intime. The mean 
strain per cycle of the incident wave is of second order, namely 
(z7/)® , where a is the amplitude and the wave length of the 
incident wave. The wave motion thus provides a mechanism for 
stretching the vortex lines that operates in addition to the stretch- 
ing inherent in the turbulence itself, and so tends to increase w*, 
the mean square vorticity associated with the turbulence. It is ex- 
pected that this possible mechanism for transfer of wave energy 
will be for waves interacting with vertical vortex fields. In this 
case, the vertical velocity gradient in the long-crested wave stretches 
the vertical vortices in the turbulence field, but should not effect the 
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horizontal vortices. An experimental setup designed to control the 
direction of the turbulent vortices can be most instructive in under- 
standing this dissipative process. 

The experimental procedure proposed to develop controlled 
turbulence fields with no mean flow is to sinusoidally oscillate a 
series of grids in a physically confined area in still water. The 
barrier confining the turbulent field can be constructed of four thin, 

vertical plates housing a rectangular box penetrating through the 
water surface to a depth below the lower ends of the oscillating grids. 
After oscillating the grids, the rectangular barrier can be lifted 
above the water surface just as the waves approach so that there is 
an interaction between waves and turbulence. The dimensions of 
this rectangular container can be varied to represent various sizes 
of turbulence areas. The use of an oscillating grid in a confined 
area has been investigated by Murray [ 1968] in his laboratory 
studies of horizontal turbulent diffusion. In his work, the grids 
which filled a 50 cm wide channel were composed of several rods 
1 cm in diameter and 5cm apart. The array consisted of 3 grids, 
each 30 cm apart, and had a stroke of 40 cm. The following con- 
clusions concerning the generated turbulence are described by 
Murray. 

1. There is no mean flow within the confined area of turbu- 
lence generation. This is precisely the objective of the proposed 
experimental procedure. 

2. The oscillating array of grids produces turbulence fields 
which are essentially homogeneous and stationary. 

3. The turbulent velocity distributions are Gaussian. 

4, Taylor's statistical theory of turbulence effectively de- 
scribes the variance, scale time, and scale length of the generated 
turbulence field. 

In summary then, the proposed turbulence stimulation tech- 
nique appears to be adequate for generating controlled and mathe- 
matically definable localized turbulence fields. 

The experimental procedure will consist in mounting the 
turbulence generator over a section of the 75 ft square tank away 
from the side walls. The grid array would be oscillated to generate 
the turbulence field and mechanically generated gravity waves would 
approach this field, Just prior to the waves reaching the area of 
turbulence, the rectangular barrier surrounding the oscillating 
grids would be lifted clear of the water surface so that the waves 
would interact only with the turbulence. It is expected that the 
lateral diffusion of the turbulence area will be very slow compared 
to group velocity of the gravity waves so that, at least for the pas- 
sage of several wave lengths, the turbulence properties may be 
assumed to be stationary. 
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Parametric variations in this study will include: 

1. length and width dimensions of turbulence area; 

2. depth of turbulence area below water surface; 

3. spacing of vertical oscillating rods alone to investigate 
the interaction between vertically oriented vortices and 
gravity waves; 

4. spacing of horizontal oscillating rods to investigate the 
interaction between horizontally oriented vortices and 
gravity waves; 

5. combination of (3) and (4) to construct a grid having a 
rectangular mesh of varying dimensions to provide for 
various scales of two-dimensional turbulence; 

6. vary speed of grid oscillation to obtain various levels of 
turbulence intensity; 

7. vary length and height of gravity waves. 

Measurements should be made of the wave-height time 
history at various locations both inside and outside of the turbulence 
patch. A spectral analysis of these wave height time histories 
should be carried out to determine the extent of wave scattering due 
to the presence of turbulence. Further, a hot film probe should be 
slowly towed through the turbulence area to characterize its statisti- 
cal properties with and without the presence of passing waves. 

It is believed that the suggested experimental procedure is 
practical and can provide data necessary for basic studies of gravity 
waves interacting with local turbulence areas. 

V. CONCLUSIONS 

An experimental study was undertaken to investigate the 
interaction between deep water gravity waves progressing into a 
turbulent flow field generated by a finite width grid moving in the 
wave direction in a large towing tank. It was found that the lateral 
gradient of the mean longitudinal flow in the wake had predominant 
influence on wave deformation and precluded an evaluation of the 
direct effect of turbulence. 

The presence of the velocity gradients resulted in combined 
refraction, diffraction and interference between finite and adjacent 
segments of the incident crest line. Their combined effects were to 
reduce the wave heights in the wake area to approximately 10% of 
their original value. The wave heights outside of the wake were 
increased to values 75% larger than their original value. 
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An elementary analysis was performed of the refraction of 
waves entering a finite current field. A combination of these results 
with simple diffraction considerations qualitatively reproduced the 
measured crest line deformations. A unified theoretical study of 
this complex problem is required to provide quantitative results. 

Recommendations for further investigation of wave interaction 
with turbulence field with no mean flow are made. 

It appears that the present results may be useful in develop- 
ing full-scale procedures for local "quieting" of the deep water waves 
behind support ship for retrieving or launching submersibles or 
landing craft in a following sea. 

ACKNOWLEDGMENTS 

The author wishes to express his appreciation to Dr. R. Hires 
of Stevens Institute of Technology for valuable discussions and tech- 
nical advice rendered during the course of this study. He is also 
indebted to Professors W. J. Pierson, Jr. and G. Neumann of 
New York University for their continued encouragement and helpful 
suggestions throughout the study. Professor Eric S. Posmentier of 
New York University is thanked for his thorough review of the 
dissertation. 

REFERENCES 

Bryson, A. E., Jr. and Ho, Hu-Chi, Applied Optimal Control 
Theory, Blaisdell Publishing Co., 1969. 

Johnson, J. W., "Generalized wave refraction diagrams," Proc. 
Second Conf. Coastal Eng., Berkeley, Calif., 1952. 

Johnson, J. W., "Generalized wave diffraction diagrams," Proc. 
Second Conf. Coastal Eng., Berkeley, Calif., the 
Engineering Foundation on Wave Research, pp. 6-23, 1952. 

Murray, S. P., "Simulation of horizontal turbulent diffusion of 
particles under waves," Coastal Engineering Proceedings 
of Eleventh Conference, London, England, Vol. 1, pp. 446- 
466, Sept. 1968. 

Penny, W. G. and Price, A. T., "The diffraction theory of sea 
waves by breakwaters and the shelter afforded by break- 
waters," Phil. Trans. Roy. Soc. (London) Sec. A, 244, 
pp. 236-53, March 1952. 

445 



Savttsky 

Phillips, O. M., "The scattering of gravity waves by turbulence," 
J. Fluid Mech., Vol. 5, part 2, pp. 177-192, 1959. 

Phillips, O. M., The Dynamics of the Upper Ocean, Cambridge 

University Press. 

Pierson, W. J., Jr., "The interpretation of crossed orthogonals in 
wave refraction problems," U.S. Army, Corps of Engineers, 
Beach Erosion Board, Tech. Report No. 21, January 1951. 

Stewart, R. W. and Grant, H. L., "Determination of the rate of 
dissipation of turbulent energy near the sea surface in the 
presence of waves," J. Geophysical Res., Vol. 67, No. 8, 
pp. 3177-3180. 

Taylor, G. I., Statistical Theory of Turbulence) /Partst(=.IW, 
Proc. Royal Society A; CST Ppp. 421-428. 

Wiegel, R. L., Oceanographical Engineering, Prentice Hall, Inc., 

1964. 

x ok 3 oi * 

DISCUSSION 

Dr. N. Hogben ; 
National Physical Laboratory, Shtp Divtston 

Feltham, Middlesex, England 

Dr. Savitsky has undertaken a very interesting investigation 
of the effect of turbulence on waves in an oceanographic context. 
His main finding is that waves can be dramatically attenuated by 
turbulence from travelling grids. He explains this in terms of 
refraction and diffraction and comments on the potential use for 
quieting sea waves. 

Whilst listening to his presentation it occurred to me that his 
findings may also have an important bearing on the understanding of 
wavemaking by ships. It is a common experience that the wave 
system originating from the stern region of a ship tends to have 
much smaller amplitudes than would be predicted from the usual 
theories. I would be glad if Dr. Savitsky could comment on whether 
this suppression of wavemaking by ship sterns may be at least partly 
explained in terms of a refraction and diffraction analysis such as he 
has described in the paper, applied to the interaction between the 
vorticity and turbulence in the boundary layer and wake and the stern 
wave system. 

* * * % * 
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REPLY TO DISCUSSION 

Daniel Savitsky 
Stevens Institute of Technology 

Hoboken, New Jersey 

It may be possible for ship wakes to locally attenuate the wave 
generated by the afterbody. If the mechanism described in the paper 
is applicable, it would necessarily require that wave amplitudes be 
larger at some distance transverse to the ship wake. This, of 
course, follows from considerations of preserving wave energy. 
Much further study of afterbody generated waves would be necessary 
to determine the association of ship-wave attenuation with the 
mechanism described in the present paper. 
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CHARACTERISTICS OF SHIP BOUNDARY LAYERS 

L. Landweber 

Untverstty of Iowa 
lowa, City, JTowa 

I. INTRODUCTION 

When I accepted the invitation to lecture on ship boundary 
layers, my original plan was threefold: a) to review three-dimen- 
sional boundary-layer theory, b) to discuss the few available appli- 
cations of the theory to ship forms, and c) to present certain un- 

published results on ship boundary layers that have been reported 
in several theses at the University of lowa. In the course of 
attempting to "catch-up" on the literature on three-dimensional 
boundary layers, so that I could pretend to be an authority on the 
subject, I encountered so many excellent review articles, that it 

became apparent that a review-of-reviews was hardly likely to 
match the immortality achieved in its category by the "song-of- 
songs." Rather it seemed to be more useful and interesting to 
examine the validity and applicability to ship forms of the assump- 
tions of existing methods for computing three-dimensional boundary 
layers, and to suggest and partly to implement certain approaches 
which appear to be better suited to the ship problem, 

Some of the common assumptions of three-dimensional 
boundary-layer theory are the following: 

1. Assumption of small cross-flow -- that the direction of 
flow within the boundary layer deviates by only a small angle from 
the direction of the streamline at the outer edge of the boundary 
layer. 

2. Assumption of methods of calculating two-dimensional 
boundary layers for determining the velocity component parallel to 
the outer streamline, even when the small cross-flow assumption is 
avoided. 

3. The assumption of monotonic cross flow -- that as the 
wall is approached from the outer streamline, and angle of deviation 
of the boundary-layer streamlines increases monotonically up toa 
certain value at a small distance from the wall, beyond which it 
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remains nearly constant. 

4. The assumption that three-dimensional boundary-layer 
problems are best treated with equations in streamline coordinates. 

A stimulating article by Lighthill [1] on the fundamental 
significance of vorticity in a boundary layer initiated the development 
of a proposed method for treating ship boundary-layer problems. 
This will be presented in two sections; a first in which the vortex 
sheet on the ship hull, which generates the irrotational flow about it, 

is determined; a second in which the vorticity equations for a three- 
dimensional boundary layer, in terms of a triply orthogonal coordi- 
nate system, are derived. The significance of the first part is that 
it furnishes the initial values for the second. 

So there will be no "review"; but it still seems desirable to 
touch upon the ship boundary-layer treatments of Lin and Hall [2], 
Webster and Huang [3], and Uberoi [4], and the contributions in the 
theses of Pavamani[ 5], Chow [6], and Tzou[7]. 

II NATURE OF THE SHIP PROBLEM 

In comparison with other three-dimensional boundary-layer 
problems, that for the ship is much more complex because of the 
presence of a free surface at which the body is moving partly im- 
mersed. Some ship boundary-layer problems will now be described. 

1. The first step in a boundary-layer calculation, the deter- 
mination of the irrotational flow outside the boundary layer (the outer 
flow) is a difficult problem. Solutions employing linearized free- 
surface boundary conditions and thin-ship theory furnish inadequate 
approximations. The development of more accurate methods of cal- 
culating the irrotational flow about ship forms is a current research 
problem [ 8]. 

2. At Froude numbers sufficiently low so that the free sur- 
face may be treated as a rigid plane, (zero-Froude-number case), 
the three-dimensional flow about the double model, obtained by 
reflecting the immersed portion in this plane, is of considerable 

interest. Methods of computing the irrotational flow for this case 

are available [8, 9]. Calculation of the viscous drag for this case, 

and its ratio to the frictional resistance of a flat plate of the same 

length, wetted area and Reynolds number, would yield the so-called 

form factor of the hull form which is required in one method of 

predicting ship resistance on the basis of model tests Pat. 

3, The three-dimensional boundary layer is very sensitive 

to the shape of the bow. The nature of the boundary layer near the 

forefoot, which determines whether or not bilge vortices will be 

generated, can also be studied at zero Froude number. Bows 
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frequently are designed with zones of reversing curvature, at which 
boundary-layer profiles with S-shaped cross-flows may occur, 

4, At higher Froude numbers the boundary layer will lie 
over a hull surface area which depends upon the equilibrium trim 
and draft and the surface-wave profile along the hull at that Froude 
number. The curvature of the outer streamlines at the free surface 
strongly affects the cross-flow components of the boundary-layer 
velocity profiles [6,7], an effect which is completely ignored in 
boundary-layer studies at zero Froude number. 

5. Near the stern the boundary layer thickness becomes of 
the same order of magnitude as the radii of curvature, and the 
methods of thin boundary-layer theory cannot be used without modi- 
fication. A detailed study of boundary-layer characteristics in this 
region is desirable in connection with the development of improved 
rational methods of computing the viscous drag, and the design of 
stern appendages from the point of view of strength and cavitation. 
Of course, if such a calculation could be extended into the near wake, 

it would be a great boon to the propeller designer, 

6. The draft and trim of a ship may vary greatly, depending 
upon its cargo. It operates at various speeds or Froude numbers, 
and if model tests are involved, the effect of the scale or Reynolds 
number would be of interest. Since the flow pattern would vary 
with each of these four parameters, one may wish to calculate the 

boundary layer for many combinations of parametric values, 

III. SHIP BOUNDARY-LAYER CALCULATIONS 

Ship boundary layers at zero Froude number have been calcu- 
lated by Uberoi[4]. To determine the outer irrotational flow he 
introduced a distribution of n discrete sources lying within but 
close to the hull and determined their strengths by solving simul- 
taneously n linear equations, obtained by satisfying the boundary 
condition on the hull at n points. This source distribution was then 
used to calculate the streamlines. 

For calculating the boundary layer, the flow was treated as 
two-dimensional along each streamline, and the momentum thickness 
and shape parameter determined by an available two-dimensional 
semi-empirical procedure [10]. A better approximation could have 
been obtained with little additional effort had one of the available 
three-dimensional boundary-layer procedures assuming small cross- 
flow been used [11], since these would have taken into account the 
important three-dimensional property of the spreading of streamlines. 
Nevertheless, since the spreading of the streamlines is small except 
near the bow and stern, the results should furnish a useful approxi- 

mation. 
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Finally, to determine the viscous drag, an empirical formula 
relating the shape parameter H, with the outer velocity U, at the 
tail (designated by the subscript t) and the velocity of the uniform 
stream at infinity, U,, 

Geode ttent 
Won 

is assumed, as well as that the equations of thin boundary-layer theory 
may be integrated to the very tail, a dubious assumption. Since 
this empirical relation is unlikely to be universally valid, the fore- 
going procedure, which is that usually employed to compute viscous 
drag, emphasizes the need for additional research on the character- 
istics of the thick boundary layer near the stern. 

An approximate method for computing the boundary layer on 
a ship form at a nonzero Froude number has been developed and 
applied by Webster and Huang [3]. Guilloton's theory of ship wave 
resistance [12] as presented by Korvin-Kroukovsky [ 13] furnishes 
tables from which the outer flow can be determined along three 
streamlines on the hull. The boundary layer along these streamlines 
is then computed by a small cross-flow method employing streamline 
coordinates, due to Cooke [14]. This method has been applied to 
two Series-60 forms of 0.60 and 0.80 block coefficients, over a range 
of Froude and Reynolds numbers. Although the assumption of small 
cross-flow is basic to the method, it was nevertheless applied to 
estimate the locations of separation points on these streamlines on 
the basis of Cooke's criterion that separation occurs when the cross- 
flow is 90°. 

Smith's comparative study of five different methods of com- 
puting a turbulent three-dimensional boundary [11] indicates that a 
method which does not assume small cross-flow, and which employs 
a three-dimensional extension of Head's entrainment hypothesis [ 15] 
for the variation of the streamwise shape parameter gives better 
predictions of the cross-flow than methods which assume small cross- 
flow, and a constant value of the shape parameter. All five methods, 
however, yielded values of the momentum thickness in poor agree- 
ment with experimental results. Smith conjectures that this failure 
is probably due to the adoption of empirical relations for the shear 
stress from two-dimensional theory. 

These results of Smith indicate that the Webster-Huang pro- 
cedure for calculating separation points could be improved considerably 
by the adoption of the best of the five methods. None of the methods, 
however, can be used reliably to calculate the viscous drag. 

Lin and Hall [ 2] also employ streamline coordinates and the 
small cross-flow assumption in computing the boundary layer on a 

ship form. As in the method of Cooke [14], the momentum integral 
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equation in the streamwise direction becomes a differential equation 
for momentum thickness after assuming a power law of variation for 
the streamwise velocity profile and a semi-empirical relation from 
two-dimensional boundary-layer theory between the shear-stress 
coefficient and the momentum-thickness Reynolds number. An 
additional assumption, that the cross-flow angle varies as the square 

of the distance from the outer border of the boundary layer,:is intro- 
duced to determine the cross-flow, Finally a new auxiliary relation 
between the shape parameter and the momentum thickness is derived 
by combining the streamwise momentum and energy integral equations 
and introducing one more assumption, another semi-empirical rela- 

tion between the dissipation coefficient and the momentum thickness 

Reynolds number, also borrowed from two-dimensional theory. 

Each of the five assumptions of the method used by Lin and 
Hall is of doubtful validity for a ship boundary layer. Boundary- 
layer data on ship forms, which are discussed in subsequent sections, 
indicate that the cross-flow is not everywhere small, that the two- 
dimensional relations are not generally valid in a three-dimensional 
boundary layer, that a power law is not a good approximation for the 
streamwise velocity profiles, and that the cross-flow angle cannot 
obey a quadratic relation. 

Finally, a paper due to Gadd [16], which the author has not 
yet seen, should be mentioned. He determines the outer potential 

flow, taking wavemaking into account, and applies this to calculate 
the boundary layer on an equivalent body of revolution, neglecting 
cross-flow. In referring to this paper, Shearer and Steel [17] remark 
that "Gadd has recently applied a three-dimensional boundary-layer 
theory to the pressure distributions obtained using the Hess and Smith 
method, taking account of the free surface, to give friction distribu- 
tions which agree very well with measured values. Comparison of 
this theory with some of the experimental values detailed herein (in 
[17]) are given in... " (in[16]). 

IV. BOUNDARY-LAYER DATA FOR SHIP FORMS 

It has been indicated that the relations for the shear stress 
used in calculating two-dimensional boundary layers may not be valid 
for a three-dimensional boundary layer. In order to investigate the 
applicability to ship forms of these and other empirical relations that 
have been proposed, it would be desirable to have a set of data, in- 

cluding pressure distributions, mean velocity profiles for both the 
streamwise and cross-flow directions, and shear stresses, for some 

shiplike forms. 

Full scale boundary-layer measurements ona 210-foot ship, 
the USS Timmerman, have been reported by Sayre and Duerr [18]. 
Mean velocity profiles are given for four points along the hull, at 
speeds of 5, 10, 15 and 20 knots. The measured boundary-layer 
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thicknesses are in poor agreement with values computed from a for- 
mula for two-dimensional flow on a smooth flat plate. Although no 
other analysis was attempted, these data offer an opportunity to test 
procedures for computing a three-dimensional boundary layer, e.g., 
by the suggested modification of the method of Webster and Huang. 

Some boundary-layer measurements on a 70-meter research 
vessel "Meteor" [19] and a 1:30-scale double model in a wind tunnel 
[ 20] have been reported by Wieghardt. The full-scale measurements, 
taken at a point 40 per cent of the draft from the free surface and 
40 meters from the bow, yielded a value of the shear stress approxi- 
mately equal to that for a flat plate, but a definitely lower value of 
the momentum thickness. The results for the boundary layer at the 

corresponding point on the model were consistent with the full scale 
measurements in spite of the neglect of free surface effects in the 
wind-tunnel tests. Several phenomena peculiar to ship boundary 
layers were displayed by the model study. One of these is the unusual 
shape of the boundary layer (vorticity-containing region) around the 

girth of a fore-ship section, showing bumps at the sides and a great 

increase in thickness at the keel, attributed by Wieghardt to secondary 

flow (i.e., large cross flow) initiated near the bow. The shear-stress 

coefficient at midship section was nearly constant at about Cy =,0'.,0885, 

but decreased to 0.0025 as the keel was approached, and then increased 

rapidly to 0.0039 at the keel. The momentum thickness 6 varied 

even more, from a mean value of @/x = 0.0013 down the sides, in- 

creasing to a maximum of 0.0028 as the keel is approached, then 

falling to 0.0018 at the keel. These results indicate that, at least 

near the keel, the two-dimensional shear stress formulas frequently 

assumed in computing three-dimensional boundary layers, are very 

inaccurate. Wieghardt concludes that "much more experimental 

knowledge about the flow in ship boundary layers, including secondary 

flows and trailing vortices is needed for semi-empirical calculation 

methods for such three-dimensional boundary layers ..." 

A project to obtain full-scale measurement of ship boundary 

layers is under way in Japan, and some resuits of this work were 

reported at the 12th International Towing Tank Conference in Rome 

[21]. The unusual shapes of certain velocity profiles astern of the 

parallel middle body were attributed to the presence of vortices 

separated from the hull. Clearly these profiles could not be repre- 

sented by a power law. On one ship an array of five longitudinal 

vortices was observed in the wake, of which one pair originated at 

the bow, another pair was shed astern of amidships, and the fifth 

was due to the propeller. 

A recent paper by Shearer and Steel [17] is noteworthy in 

that it presents the results of shear-stress and pressure surveys on 

two ship models at a particular Froude number. The effect of the 

Froude number on the shear-stress coefficient C; was found to be 

small except at the uppermost measurement locations along a water- 

line at 25 per cent of the draft from the free surface, for which the 
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curve of C, against longitudinal distance along the waterline undulated 
180° out of phase with the wave profile. The most interesting feature 
of the C, curves for various waterlines is their large variation along 
the waterline even at depths where the free-surface effect should be 
negligible, in agreement with Wieghardt's results. Furthermore, the 
variation was found to be sensitive to the shape of the bow. This again 
indicates that one is not free to assume a simple formula for the shear 

stress in calculating a three-dimensional boundary layer. 

The boundary layer on an ellipsoid with axis ratios 20:4:1 and 
the incident flow in the direction of the longest axis was investigated 
in a wind tunnel by Pavamani [5]. He measured the distribution of 
both pressure and shear stress, the velocity profiles, as well as the 

flow directions in the boundary layer. With the equipment used it was 
not possible to probe the boundary layer in the regions of largest 
curvature. It was found however that the shear stress in a transverse 
section increased in the direction of increasing curvature. 

Two shear-stress formulas that are used in computing three- 
dimensional turbulent boundary layers are one due to Young, 

-0.2 

c,= 4% = 0.0176 (Y) 
2 74 

pU 

and another due to Ludwieg-Tillmann, 

0.678H tae 
C,=0.246x10° (S2) 

Here 7 is the shear stress at the wall, p is the mass density of 

the fluid, U is the velocity at the outer edge of the boundary layer, 

@ is the boundary-layer momentum thickness computed for the 

streamwise component of the velocity, v is the kinematic viscosity, 

and H is the shape parameter of the boundary-layer velocity profile. 
Although not done by Pavamani, his data can be used to compare the 

predictions by these formulas with his shear-stress measurements 

by Preston's method. Comparisons at two points in the midsection, 

one on the centerline and the other in the vicinity of the edge, and 

given in the following table. 

COMPARISON OF MEASURED AND COMPUTED SHEAR STRESS 

AT MIDSECTION OF 20:4:1 ELLIPSOID (R, = 109) 

Measured Young Ludwieg-Tillmann 

0.00330 0.00380 0.00283 

0.00466 0.00444 0.00318 

at centerline 

near the edge 
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These results for only two points already indicate that neither of the 
above formulas gives good agreement, although Young's seems to be 
preferable. It is planned to continue the analysis of Pavamani's data 
with the aims of representing his shear-stress data by an alternative 
formula, and to compare his measurements with computed values of 
the boundary-layer characteristics. 

V. SHIP BOUNDARY-LAYER PHENOMENA 

At a ship's bow certain streamlines of the outer flow pass 
downwards along a side, turn around the bilge, and continue along 
the underside of the hull. Because of the large curvature at the 
bilges, the cross-flow angle in the boundary layer may become large 
and the resulting secondary flow has been observed to roll-up into 
a pair of so-called bilge vortices [22]. Clearly the small cross-flow 
assumption is not suitable for treating this phenomenon. 

It has been observed that these bilge vortices can be eliminated 
by attaching a large bulb to the bow [ 23]. A possible explanation of 
this effect is that the curvature reversals as an outer streamline 

passes from the bulb to the bow, and then around a bilge result in an 
S-shaped velocity profile, i.e., one in which the sign of the cross- 
flow angle changes in passing from the outer limit of the boundary 
layer to the wall. In any case, since bows are frequently designed 
so that streamlines would undergo changes in the sign of the curva- 
ture, S-shaped velocity profiles would occur, so that the assumption 
of monotonically varying cross-flow angle, and in particular its fre- 
quently assumed quadratic variation, would be improper. 

The surface wave profile along the hull affects the boundary 
layer in two ways, as has been shown by Chow[6]. Climbing from 
a wave trough to a crest is equivalent to passing through a region of 
adverse pressure gradient. If the free-surface slope is large enough 
and continues long enough, separation will ensue near the free sur- 
face. Secondly, the curvature at a surface-wave crest along the hull 
tends to generate a secondary flow. Chow[6] has attributed a second 
zone of separation at some distance beneath the free surface to this 

phenomenon. 

The conjectured mechanism of the effect of a surface wave 
on a boundary layer was confirmed by Tzou[7]. He simulated the 
free surface by a sinusoidal ceiling in a wind tunnel, and observed 
and photographed the flow directions in the boundary layer ofa 
vertical ogival strut, as indicated by an array of fine threads sup- 
ported at various distances from the wall. He also verified the effect 
by solving the Navier-Stokes equations and the equation of continuity 
numerically, by a combination of a finite-difference method together 
with the Blasius solution for a flat plate, for a simplified model of 
his experiment. These results indicate once again the unsuitability 
of the small cross-flow assumption for ship boundary layers. 
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VI. THE COORDINATE SYSTEM 

A set of mutually orthogonal lines on a surface S can be 
selected in infinitely many ways. Such a net, together with the 
distance along the normal to S form a system of space coordinates 
which, in general, are triply orthogonal only on S. Although a non- 
orthogonal system of space coordinates is usually an awkward choice 
in formulating the Navier-Stokes equations, when these equations 
are simplified in accordance with the usual assumptions of thin 
boundary-layer theory, Squire [| 24] has shown that the boundary-layer 
equations are identical in form with that for a fully orthogonal system. 

When the third coordinate is the distance ¢ along the normal 
to S, the surfaces © = const. are, for obvious reasons, said to be 

parallel to S. It is shown in texts on differential geometry that the 
lines of principal curvature, and only these lines, have the property 
that the surface normals along them generate developable surfaces 
C = const. and = const., and that these, together with the parallel 
surfaces (€ = const., form a mutually orthogonal family. For this 
reason Howarth [ 25] and Landweber [ 26] employed the lines of 
principal curvature as surface coordinates in formulating the equations 
of motion. Nevertheless, according to Crabtree, et al., [27], "this 
is an undesirable restriction," a feeling that seems to be shared by 
most of the contributors to the subject of three-dimensional boundary 
layers. Preferred is the streamline-coordinate system, although 
geodesics and rectangular coordinates have also been used. Only 
Howarth [ 28] has adopted the lines of principal curvature for the 
coordinate system in his treatment of the three-dimensional boundary 
layer near a stagnation point. 

There are two good reasons for using streamline coordinates. 
One is that, in the cases to which they have been applied, the inviscid- 

flow streamlines could be readily obtained; the other is that practical, 
approximate methods of solving the boundary-layer equations, em- 
ploying techniques developed for two-dimensional boundary layers, 
are available for the equations in streamline coordinates. The simplest 
of these methods are based on the assumption of small cross-flow in 
the boundary layer. According to Smith[ 11], however, who applied 
five of these methods to compute the boundary layer on a yawed wing, 
none of these was found to be completely satisfactory, as has already 
been indicated. 

For the case of present interest, the boundary layer ona 
ship form, the first of the aforementioned reasons does not apply. 
Calculation of the velocity distribution and the streamlines on a ship 
form at the particular Froude number is a task of the same order 
of difficulty as that of solving the three-dimensional boundary-layer 
equations. For the zero-Froude-number case, methods are available 

for computing the potential flow [8,9]; at nonzero Froude numbers an 
approximate method due to Guilloton [12,13] furnishes tables for 
the calculation of three streamlines along a ship hull. 
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Another consideration is that the streamline pattern on a ship 
form is a function of four parameters, the Froude number, the 
Reynolds number, the trim angle and the draft-length ratio. Thus, 
if streamline coordinate were to be used, it would be necessary to 
calculate a great many coordinate systems. It appears to be more 
practical to select a unique coordinate system which depends only upon 
the geometry of hull and is independent of the above four parameters. 

If it sufficed to study thin boundary layers, there would be a 
free choice of orthogonal surface coordinates on the hull surface. 
But the boundary layer near the stern cannot be considered thin, and 
a continuation of the boundary-layer calculations into this region 
could not be undertaken with the equations for an orthogonal coordi- 
nate system unless the surface coordinates had been selected to be 
lines of principal curvature. 

VII. DETERMINATION OF LINES OF PRINCIPAL CURVATURE 

First suppose that the equation of the surface S is given by 

F(x,y5z) = 0 (1) 

where (x,y,Z) _a: are the rectangular Cartesian coordinates of a point 

P on S Let ds=idx +tjdy +kdz denote a vector element of arc 
along one of the lines of principal curvature, where i, j, k are unit 
vectors along the x,y,z axes. Then 

grad F=VF=iF, +jF, tkF, (2) 

is a vector along the normal at P and 

dVF = ds - VVF (3) 

is the change in this vector along the normal in moving an increment 
‘ds from P to P' along a line of principal curvature. It can be 
shown [ 29] that the normals to S at P and P' intersect if and only 
if ds is an element of arc of a line of principal curvature. This 
implies that the vectors 

ds, VF and ds*« VVF 

are coplanar, and hence that 

ds-« VE X(ds'* VVF) =0. (4) 
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Also the condition that ds be normalto VF is 

ds > VF =0 (5) 

Equations (4) and (5) are the differential equations of the lines of 
principal curvature. 

In terms of their components, (5) becomes 

F dx + F dy + F dz =0 (6) 

and from (4) we obtain 

(FF, - FF ,,)(dx) HER, - FF )(dy) H(E FY, - FF )(dz)’ 

t Care aa - ee a EK. - FF) dy dz 

1 (EE - BP yy ze FF y - FF 2) dz dx 

+(FF -FF +FF_ -FF_ )dxdy=0. (7) 
z Xx z yy y yz x = XZ 

Because of the quadratic nature of (7), the simultaneous solution of 
(6) and (7) yields a pair of solutions for (dx, dy, dz), which can be 
shown to be orthogonal. Thus, from an initial point P, one can 
calculate the lines of principal curvature in step-by-step fashion. 

If the equation of the surface is given in the form 

y = f(x,z) (8) 

where x is directed from bow to stern, z is positive upwards, 
and the plane y = 0 is the vertical plane of symmetry, then (6) and 
(7) can be combined into the differential equation of the projection of 
the lines of principal curvature on the plane of symmetry, 

2 

[ pqt - s(1 +q?)] (<2) +[ (1 +p%t - (1 +¢2)r] @ +[(1+p?)s - pqr] = 0 

where 

t=f (10) 

and the principal radii of curvature p are given by 
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(rt - s*)p2 + K[t(1 +p) + r(1 +q2) - 2pqs]p + K* = 0 (11) 

where 

ali 

K =[ t+ p® #ge] 

Other relations between the geometric parameters of the 
orthogonal coordinate system based on the lines of principal curva- 
ture are given in [ 26]. 

VIII. EQUATIONS OF VORTICITY IN A BOUNDARY LAYER 

Lighthill [1] makes a convincing case for the primary im- 
portance of vorticity in a boundary layer. If the vorticity is known, 
the velocity field can be calculated by the Biot-Savart law. Secondly, 
vorticity is diffused and convected more gradually than other fluid 
properties and hence is more readily determinable numerically. 
From the mathematical point of view, Lighthill implies that it is 
easier to solve the diffusion equation for vorticity than the boundary- 
layer momentum equations governed by an outer irrotational flow. 

Sherman [ 30] has also been impressed by Lighthill's views, 
and has contributed a more mathematical discussion of "sources of 
vorticity." Neither he nor Lighthill, however, have formulated the 
vorticity equations for a three-dimensional boundary layer. This 
will now be undertaken. 

The Navier-Stokes equations for an incompressible fluid may 
be written in the vector form 

Wy xGtgrad(4¥-v+2 + gz) =-v cud (12) 
at 2 p 

where Vv is the velocity at a point ot the fluid, w = curl v is the 
vorticity, t denotes time, p is the pressure, p the mass density, 
g the acceleration of gravity, z is a vertical coordinate, positive 
upwards, and v is the kinematic viscosity. An immediate conse- 
quence of (12), obtained by applying the nonslip condition at the wall 
surface S, is 

grad ‘S + gz ) =-vecurlw on § (13) 

which relates the vorticity at the wall to the pressure gradients of 
the flow outside the boundary layer. By taking the curl of the mem- 
bers of Eq. (12) we obtain the Helmholtz vorticity diffusion equation 
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dw - - — 
3 7 curl (v Xw) - v curl curl w (14) 

a form from which the pressure gradient has been eliminated. The 

velocity, however, still appears. 

In rectangular coordinates we would have 

curl curl w= VX(VX0)=VV° o- Voz - Vo 

since V°* w = 0, and (14) could be written in the form 

af _¢ Qu,,9u,, du_ a ab _ ae at 
— —— + == SSe i == —— 
at ox | dy dz ox dy oz Ox 

an _¢ 4,247 a¥_ yan yan _ any on Bee ha by ie oe ay (eye a) 

2 
06 _~ Iw Ow Ow | OO eo OG ag 

Be ae | by Set bs Oy Nios. oe 

We wish to obtain the equivalent set of equations for a three-dimen- 
sional boundary layer, employing a triply orthogonal coordinate 
system (2,8, y), where hda and h,dB are elements of arc along the 
lines of principal curvature on S, and y is distance along the nor- 

mal, with y=0 on S. 

TetG.; Cos €, denote unit vectors in the directions of in- 
creasing @, 6, y. Put 

veeutevtew, w=eé ten tet. 
| 2 3 | 

From w= curl v we have in this system of coordinates, with h, =a, 

1 fow _ O(hev) 1 Ow 8v_ v dhe 
6 h, Lop Oy ] h, 068 Oy h, dy 

178 dw]_ du 1 dw, u Oh 
=e —— = — SS — ieee peel eset! IF 1= t Lay 1) - Gal By” h 8a” h, By 

| 

Mat ihe p dv 1 du 
= aloe th) 3p |= 5 oa” he OB 
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Put h (2, 6,.0)%= H, on AC 6,0) H,; let K; K_ be the curvatures 
in the plane tangent to °S of the arcs @= const. and 6 = const.; let 
K,) 

h,= H(i +Ky), h,= H(t + Ky) 

whence 

8h __Ky 4 Bhp _ Ka 1 
h, oy ey he oy fy 

and, also from [ 26] 

Hence the expressions for &,n,G become 

potest (sOieroiy Ove Kav 

h, 0p dy ft Ky 

we see that 

This indicates that the vorticity lines and the skin-friction lines 

S form an orthogonal net, as is well known. 
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K, be the principal curvatures of the surface S corresponding 
to the directions of increasing @ and 8. Then we have [ 26] 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

on 
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Since in a boundary layer w is small in comparison with u 
and v, and derivatives with respect to @ and B are small in com- 
parison with derivatives with respect to y, we are justified in omitting 
the derivatives with respect to @ and f in (19), (20) and (21). Ina 
thick boundary layer it may be necessary to retain the terms K,y 
and Ky in the denominators of (19), (20), and (21), but we shall 
neglect these terms in the present treatment. Thus the expressions 
for the vorticity components in a boundary layer become 

_ Ov 
E =- By = Kv (25) 

du 
=- — + n ay K, (26) 

¢=Kv-Kwu. (27) 

Near the wallthe y derivatives are dominant so that the expression 
for the vorticity remains that given by (22). Farther into the boundary 
layer, however, the terms Kv, K,u, K.u, and K,v may become 

appreciable when the curvatures are large, as at the bilges of a ship 

form. 

When € and n are known, the corresponding values of u 
and v, obtained by integrating the differential equations (25) and (26), 
are given by 

“Kix?” K.y 
wee ol ne > dy (28) 

0 

EY" se 
ve-e 2 te” ay (29) 

ie) 

somewhat more simply than by the Biot-Savart law. 

We can now obtain the components of curl w in the boundary 
layer by replacing u, v, w by §,7, © inthe right members of (25), 
(26), and (27). Thus we obtain 

curlw-+ é€, = - ri K,n (30) 

ae ot9 
curl we, 5 = + K§ (35) 

Gurl wsttege uk 1.5 K§ (32) 
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and similarly, from (19), (20), and (21), 

curl (v X w) = ele op (un > WE) - wy (w& - ub) - K,(w6 - ut) | 
2 

+e, e (vo, 0) cee Z (un - v§) + K(v6 - om 

ae [= aa (w§ - uf) ee (vG - wn) 

+ K\(w6 - ul) - Klvg - wn) | (33) 

For the components of curl curl w inthe boundary layer we obtain, 

neglecting small terms, 

2 
Pe ee 0g 

curl curl w « e, =e By2 = (K, F K,) dy (34) 

curl curl w- e -.2'n_ K ie (35) 
2 dy2 3 4° Oy 

aan ese ag Sioa 
curl curl w ae = K By aie Ko By a K,K,§ ar K,K,n ° (36) 

Substituting these results into (14) yields the vorticity equations 

2 
ee =5 a (un-vé) _ Fy (we-ut) a K,(w§-ub) + [S54 (KtK)) = | (37) 

2 
an _ 9 _ ee ee) = _ an an 
at zo OY (vo wn) h, oa (un vé) a K{vS wn) Ee + (K, +K,) 5 | (38) 

Be = a (wE-Ue) ~ He gp (ve-wn) + K(wE ub) - Kvo-wn). (39) 

Here u and v are given in terms of the vorticity by (28) and (29); 
w can then be obtained from the continuity equation. 

In order to start the calculation, conditions at time t = 0 

are required. This may be taken to be the vortex sheet for irro- 

tational flow about the hull in a uniform stream, since this gives the 

initial vorticity distribution when the body is impulsively accelerated 

from rest to its constant speed. A procedure for determining this 

vortex sheet is developed in the following section. 
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IX. INTEGRAL EQUATION FOR A VORTEX SHEET FOR IRROTA- 
TIONAL FLOW ABOUT A THREE-DIMENSIONAL FORM 

A three-dimensional form bounded by a surface S is im- 
mersed ina uniform stream of velocity U inthe positive x-direc- 
tion, of unit vector i. We shall suppose that the fluid is inviscid 
and incompressible. Let us assume that the disturbance of the flow 
due to the body may be represented by a vortex sheet of strength 
‘Y= yo where o isa unit vector tangent to the surface S such that 
the fluid within the body is at rest. 

In crossing S in the direction of its outward normal, 

designated by the unit vector n, there is a discontinuity in the tan- 
gential component of the velocity of the fluid, of magnitude y, in 
the direction with unit vector 

B= ox ne (40) 

By continuity, since the fluid on_the interior side of S is at rest, 
the velocity components inthe o and n directions at the exterior 
side of S must also vanish, and hence the velocity at the exterior 
side of S is given by 

_ 

u=yoXn=y xu. (41) 

Since, a priori, the mutually orthogonal directions of the 
streamlines, %S, and of the vortex lines, o, are unknown, it is 
necessary to introduce a set of orthogonal, curvilinear coordinate 
lines,on S, € = const. and 1 = const. _Denote unit vectors in the 

directions of increasing § and » by e, and e,, with sense such 
that e Xe,=n. Put 

Vee +e u=ze +e VS Ghee. We Ute ve (42) 

Then, by (41), we have 

w= Yor v=-y¥,- (43) 

An integral equation for the vorticity vector ‘y can be derived 
from the condition that the contributions to the velocity on the interior 
side of a point P of S must sumto zero. This gives 

2 
2 

—_— 

Yp% mp = U (44) — 1 ( YaX Vp (s+) a8, + s 1 

4m Js PQ 

in which the integral, obtained from the Biot-Savart law, represents 
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the velocity at P induced by vortex elements at points Q of S, 
and, by (41), the negative of the second term is the contribution 
from the local vortex element y,. Here r,, is the length of the 
chord joining the points P and Q of S and Vp denotes the gradient 
with respect to the coordinates of P. 

The integral in (44) is not suitable for numerical evaluation 

in the given form because rpg which goes to zero as Q approaches 
P, occurs in the denominator of the integrand. This singularity can 
be eliminated, however, in the following manner. 

First take the cross-product of (44) by iis to obtain 

1 - 1 = fo ie eee 

RA cae) Xn, dS, +5 (y,Xn,) Xn, = Ui Xn, (45) 

Since, in the neighborhood of P, both ap and Volt /tpq = Tep/ Tay lie 
very nearly in the tangent plane at Q, their cross-product is very 
nearly parallel to no, and hence the integrand of (45) is proportional 
to the angle between n, and n, or r,o/R, where R is the radius 
of curvature of the"arc,of 75 subtended by the chord PQ.” Thus the 
order of the singularity of the integrand of (45) has been reduced to 
that of 1/r,.. 

In order to eliminate this singularity, consider the relation 

be 1 nasty 1 are { 
[ 3% Vo (s+) ] xB, = Ye + HMa(st) - We * Yo(=*) Q PQ 

he 1 
SS yen Re a7 (4) (46) Bel! Nea 

since Ae ° a. = 0. Also we may write 

= 1 — 1 - 4 np * Vo(=—) dSg= \ | p+ Yo(=— a era) dS, + 2m 
5 TPQ S PO PQ 

(47) 

since f, Hg+ Vg (t/rpQ dS, is the flux through S due to a sink of 
th at? i. Applying (46) and (47), and noting that unit streng 

1 4 eine vag) Pt Q lpg 

we obtain from (45), 
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The singularity has been removed from the first integral in (48) 
because a factor proportional to tpg is contained in 

— 

Yo '= Ve Zep (Ver 

The second integrand is also singularity-free at P since 

= { no° © | 
° PS Pe 2 —_— 

oe Vp ( ) am) REA 

and 

n ° V. (=—) a é 

Q P Teg 2Rreo 

Thus we see that (n, + n)) ° V50eyr..) is regular at P. 

A procedure for obtaining a numerical solution of the integral 
equation (48) consists of replacing the integrals by quadrature for- 
mulas to obtain sets of linear equations. Expressing y in terms of 
e, and e, as in (42), for each of n points P the quadrature for- 

mula yields a linear equation in the unknown values of u and v at 
n points Q. This gives n vector equations or, resolving in the 

directions e, and €, at P, 2n scalar equations in 2n unknowns. 

When @Q coincides with P, the integrand is set equal to zero. 

hs Taking the scalar products of the members of (48) by e,, and IP 
€op, we obtain the pair of scalar equations 

er as rl _ es AF 

{ CYo'> Vp) x Vp (=) - e,, dS, t a | (np tng) °V, (=) dSg 

PQ “PQ 

=4nUi +e, (49) 

ie cs he Nc, ae { Wo- We XV (z-) *® ds tye) & +h “Veli -) ds a Gaur P=. ara Sea ke ee oe Peo Q 

= 4nUi + eop- (50) 

In applying these equations, one needs to express Yg and ng in 
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terms of the unit vectors aes: Cre and Tips This requires that the 

direction cosines of C19? Cogs and No relative to C\p» Cap, and np 

be calculated for each combination of P and Q; i.e., $n(nt1) 
tables of direction cosines. Furthermore, if (x,, y,, z,) and 

(Xg, y Yq: 2 Q) are the coordinates of P and Q ina rectangular 
Cartecian coordinate system with unit vectors ie Vs k, then 

Ean = I(x, rica as ay, Set Ke eee) 

and the expression of Vp(1/rpqd = Tpo/Tpg in terms of €,p, €pp and 
np requires that n tables of direction cosines of the latter set of 
vectors with, respect;to.the .i,;j, k system also be obtained. These 
direction cosines and the components of rpg can be readily deter- 
mined if the equations of the surface are given in the form 

<= (Ee .), y= GE sn); z = H(€,n). (51) 

A procedure for solving (49) and (50) by iteration is suggested 
by the following modifications: 

= = { = _ Hl 

if (Yo ~ Yo) x Vp (+) ip dSq . Up nel i (np x Ny) T Vp (=) dSg 

s PQ ) PQ 

= 4nrUi e ip (52) 

{ (a - Yen X Yo( s+) * Sep 45g Pein a, toa: Ye (=e ) a8, 
S PQ PQ 

= 4nUi + €5p. (53) 

For ship forms the foregoing procedure can be used to deter- 
mine the velocity and vorticity distributions and the streamlines and 
vortex lines on a double ship model at zero Froude number, At non- 
zero Froude numbers, a similar pair of integral equations can be 
derived, but these would be considerably more complicated because 
of the contributions of the wave potential to the velocity on the body 
surface S. 

X. CONCLUSIONS 

It has been indicated, on the basis of the limited available 
boundary-layer data on actual ships and ship models, that the various 
integral methods, with or without the small cross-flow assumption, 
and employing streamline coordinates, are of dubious applicability to 
ship forms because three additional assumptions concerning the 
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velocity profile, the cross-flow angle, and the shear-stress coefficient 
are not in accord with these data. If the energy integral equation is 
also used to obtain an auxiliary equation, then an additional assump- 
tion concerning the dissipation coefficient comes into question. 

Two significant ship boundary-layer phenomena, the generation 
of secondary flows and possibly of vortices at the bilges near the bow 
and at a wave crest along the hull, indicate that cross-flow angles 
may become large, so that the small cross-flow assumption would be 
inappropriate. The possibility that the cross-flow may change in 
sense and that the velocity profiles may become S-shaped both at the 
bow and along the wave profile on the hull must also be taken into 

account. 

Lines of principal curvature are recommended as the basis of 
the orthogonal coordinate system for treating ship boundary layers 
because, in contrast with alternative choices, this system remains 
orthogonal even in the thick boundary layer at the stern, and because, 
unlike the streamline coordinates, the former system does not change 
as the draft, trim, and the Froude and Reynolds numbers are varied. 

For this reason, equations for determining the lines of principal 
curvature have been included. 

Since integral methods seem to be wedded to the use of stream- 
line coordinates, the recommendation that these be replaced by the 
lines of principal curvature implies that a differential method must 
be adopted. One such method, based on the work of Bradshaw, 
Ferriss and Atwell [31] for a two-dimensional boundary layer, has 
been extended to the case of a three-dimensional surface by Nash [ 32]. 
An alternative approach based on determining the vorticity in the 
boundary layer, strongly promoted by Lighthill [1] , motivated the 
derivations of the vorticity equations in principal-curvature coordi- 
nates and the integral equations of a vortex sheet for irrotational 
flow about a three-dimensional form. Considerable further develop- 
ment is required for application of these vorticity equations to a tur- 
bulent three-dimensional boundary layer. 

Lastly it should be remarked that presently we cannot deter- 
mine the outer flow about a ship form with sufficient accuracy for 
reliable boundary-layer calculations due to a combination of errors 
due to linearization of the free-surface boundary conditions, approxi- 
mate satisfaction of the hull boundary condition, and the effects of 

viscosity on the wave making. In comparison with the outer-flow 
approximation for the flow about a body without a free surface, the 

effects of viscosity are experienced much farther upstream along the 
body because of the phenomenon of interference between waves 
generated near the bow and stern. Because of the strong interaction 
between the outer flow and that in the boundary layer and wake, it 
appears to be necessary to develop an iteration procedure, alter- 
nating between these regions, which hopefully would converge toa 
solution for the flow about a ship form. 
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DISCUSSION 

Dr..N. Hogben 

National Physical Laboratory, Shtp Diviston 
Feltham, Middlesex, England 

This paper performs a valuable service in laying the founda- 
tions for a new method of calculating ship boundary layer properties 
in terms of the vorticity field. A verdict on the merit of this ap- 
proach must await the results of actual computations and comparison 
with experiment. The purpose of this contribution is to supplement 
the review of experimental data given in the paper by drawing atten- 
tion to work which I reported in 1964 (Ref. (*)). It comprised 
boundary layer explorations covering the surface of a model with 
mathematical form as defined by Wigley (Ref. (**)) having parabolic 
waterlines and section shapes. Measurements were made at 5 speeds 
in the range 0.16 < F,< 0.32 and it is of interest that features 
noted by Wieghardt as cited in the present paper were also observed. 
In particular considerable stretching of the boundary layer below the 
keel, likewise attributed to secondary flow effects, and bumps on the 
velocity profiles attributed to trailing vortices, were found. 
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(*) Hogben, N., "Record of a boundary layer exploration ona 
mathematical ship model," Ship Division NPL Report No. 52, 
July 1964. 

(**) Wigley, W. C. S., "Calculated and measured wave resistance 
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DISCUSSION 

H. Lackenby 
The Brittsh Ship Research Association 

Northumberland, England 

I certainly agree with Professor Landweber's plea for a more 
detailed study of the relatively thick boundary layers in way of ship 
sterns especially in very full tanker forms. 

In Ref. 17 (Shearer and Steele) it is apparent that some of 
the models of the full tanker forms considered were suffering from 
gross separation at the stern. There is little doubt that this accounts 
for the viscous pressure resistance being as high as 30% of the total. 
Incidentally, in this reference the corresponding wave making re- 
sistance or gravitational component was stated to be only 3 to 5% of 
the total. 

Reference is made in Professor Landweber's paper to con- 
ditions which bring about separation but not, as far as I can ascer- 
tain, to methods of calculating the shear stress after separation and 
the added pressure resistance which this brings about. I would be 
glad if the Author would care to comment on the development of 
calculation methods for these conditions. I would also mention that 
in some of the latest full tanker forms there is little doubt that 
separation is taking place on these ships at sea and the situation is 

having to be accepted. 

The viscous component of ship resistance has always been 
an important one but owing to the developments in tanker forms it 
is becoming even more important than it was in this class of ship. 
Professor Landweber's paper is, therefore, of particular interest 
and importance at this time and I look forward to further develop- 
ments in his approach to the problem. 
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REPLY TO DISCUSSION 

L. Landweber 
Untverstty of Iowa 
Ttowa City, Lowa 

Mr. Lackenby emphasizes the importance of boundary-layer 
studies on tanker forms. Since the resistance of a tanker is mainly 
viscous, and the power-wasting phenomena of bilge-vortex formation 
and stern separation are viscous in origin, it is clear that such 

studies are needed, if only to develop designs which avoid their 
occurrence. 

For the particular tanker form to which Mr. Lackenby refers, 

the wavemaking resistance was stated to be only 3 to 5 per cent of 
the total. Our experience has been that the wave resistance of a 
tanker model may be about 10 per cent of the total, and that ifa 
proper bow bulb is fitted, it may be reduced to about 6 per cent. 
Since others have found that bulbs on tanker models reduce viscous, 
rather than wave resistance, this indicates that the problem remains 

to be resolved. 

I would like to thank Dr. Hogben for reminding us of his 
important 1964 boundary-layer paper, one of the very few available 
studies of ship boundary layers. Explorations of this kind on other 
ship forms are urgently needed to guide the development of methods 
of computing ship boundary layers. 
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STUDY OF THE RESPONSE OF A VIBRATING 
PLATE IMMERSED IN A FLUID 

L. Maestrello 
WASA Langley Research Center 

Hampton, Virgtnta 
and 

Peele wo inden 
European SpaceOperattons Center 

Darmstadt, Germany 

I. INTRODUCTION 

A large aircraft in supersonic flight undergoes large variations 
in flow field over its surface. This paper is concerned with studying 
the response of a structure excited by convected turbulence at nearly 
zero pressure gradient and by shock-boundary layer interaction, 
with the inclusion of the coupling due to the acoustic field on each 
side of a panel. Shock waves on thin-walled structures can impose 
severe loading problems, the most common of which is the self- 
induced oscillation which is generated by an oscillating shock. The 
shock wave can easily couple with the forcing frequency present in 
the environment, including panel resonances. 

From interior noise point of view, the upper region of the 
airplane fuselage is considered the principal noise radiator. The 
aerodynamics in this region are known from the Prandtl- Mayer 
relation, and further downstream by shock-boundary interaction. In 
addition, the fuselage skin experiences traveling shock waves which 
run up and down the skin during the acceleration period, which might 
last twenty minutes for a Mach 3 airplane. 

In supersonic flight, the vibration of the surface is influenced 
by the back pressure resulting from the radiation of sound on both 
sides of the surface, so that, the surface motion and radiation are 
coupled phenomena. The interior noise level is determined by skin 
panel vibrations. For radiation below the critical frequency, the 
major source of sound arises from the interaction of the bending wave 
with the discontinuity of the boundary. Above the critical frequency, 
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the action of discontinuities like tear stoppers, etc., have little 
effect on altering sound pressure level, since the sound radiation by 
the panel is in the form of Mach wave radiation. 

The experiment described in this paper indicates that some 
simplifications in the model can be made, viz. (1) that there is no 
significant interaction between the plate and the aerodynamic forces 
on the plate; and (2) that the panel displacement is small in compari- 
son to its thickness so that thin plate theory may be used. The plate 
is, however, acoustically coupled to the external flow field and the 
internal cavity. 

Lyamshev [1968] has solved a similar problem for a com- 
plex structure. Dowell [1969] computed the transient, non-linear 
response of a simply supported plate coupled to an external flow 
field and a cavity. Dzygadlo [1967] presented a linear analysis 
allowing mutual interaction between the plate and the external flow. 
Fahy and Pretlove [1967] have computed a first order approximation 
to the acoustic coupling of a flexible duct wall to the flow field through 
the duct. Maidanek [ 1966] considers an infinite, orthotropic plate 
coupled acoustically to an external flow field. Numerous other in- 
vestigations have been reported on acoustically coupled structures 
with varying degrees of approximation, Irgens and Brand [ 1968], 
White and Cottis [| 1968] , Strawderman [1967], Creighton [ 1970], 
Ffowcs- Williams [1966], Crighton and Ffowcs- Williams [1969], 
Peek [1969], Feit [1966], Lapin [1967], Pal'tov and Pupyrev 
1967]. 

II. MEASUREMENTS 

a) The Experimental Arrangement 

The flow investigated was the sidewall boundary layer of the 
Jet Propulsion Laboratory 20-inch supersonic wind tunnel; the shock 
was induced by a 30° wedge mounted outside the boundary layer, 
off-center and on the same side that the measurements were made. 
This was done to offset the position of the reflected shock from the 
opposite wall. The position of the shock was determined by observing 
the displacement of a line of tufts, and by a static pressure survey. 
For zero pressure gradient, detail of flow field and panel response 
has been previously reported by Maestrello [ 1968]. 

The experiment was arranged to perform three basic measure- 
ments: mean velocity profile ahead of the shock with static pressure 
distribution across the shock, wall pressure fluctuations and measure- 

ment of displacement response of a simple panel structure. The 
titanium test panel measure 12 X 6 X 0.062 inches and was brazed 
on all four sides of a 3/4 inch X 3/4 inch titanium frame. The brazing 

Uap isuportt less % 
TI-6AL-4V Titanium alloy containing 6% aluminum, 4% vanadium, 

90% titanium. 
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was intended to simulate the clamped edge condition. The panel 

formed most of one wall of a rigid cavity measuring 14 X 8 X 6.6 
inches. The other surface of the panel was exposed to the flow field. 

The pressure differential across the panel was variable. The experi- 

ment was conducted at two pressure differentials, viz. 0.06 and 

14 psi; the latter corresponds to the actual differential between wind 
tunnel pressure and local ambient. 

The side wall of the tunnel was modified to accommodate 
two identical, rigid, steel plates, which supported the necessary 
instrumentation. One plate contained an array of holes in which 
pressure transducers were mounted. The pressure transducers 
were mounted on the center-line of the tunnel in the streamwise 
direction at the same locations where the mean static pressure 
measurements were made. Two types of pressure transducers 
were used; one, the conventional lead zirconate titanate type made 

by Atlantic Research, the other a capacitance type made by Photocon 
Corporation with sensitive diameters of 0.06 inch and 0.09 inch 
respectively. Correction due to finite size transducers was made 
adopting the Corcos [1963] approach. The panel displacement was 
measured with Photocon capacitance, displacement transducers 
mounted on brackets which could slide along a bar and could be set 
precisely by means of a screw mechanism. 

The output of both pressure transducers and displacement 
transducer were recorded on Ampex FR-1800H 14-channel tape, 
recorded in the FM mode. Four channels were used for simultane- 
ously recording data for correlation measurements. The maximum 
dynamic range was obtained by splitting each data channel into two 
tape tracks through phase matched filters to separate the lower and 

higher frequencies. 

b) The Wall Pressure Field 

Measurements indicated that the flow field in front of the 
shock closely approximated the properties of equilibrium of an adi- 
abatic flat-plate boundary layer | Maestrello 1968]. The flow in 
front of the shock has the following characteristics: Mach number 
Me, = 3.03, free stream velocity Ue = 2,100 ft/sec, total tempera- 

ture T, = 5679R, boundary layer thickness 6 = 1.37 inch, bound- 

ary layer displacement thickness 5* = 0.445 inch, momentym thick- 

ness = 0.083 inch, Reynolds number R = Ue5/U = 4,87 X 10", skin 
friction coefficient Cr = 1.27 X10~, and C; Rg =39.8 Coles param- 

eter [ Coles 1964]. 

The pressure ratio across the shock is a well defined function 

of Mach number, for a 15° half-cone angle, the pressure ratio is 

approximately 8.5. Experimental results show, however, that this 

ratio is considerably smaller (Ap = 2.3). It is postulated that inter- 

action with an expansion wave originating at the base of the wedge is 
responsible for lowering the pressure differential and producing an 
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Fig. 1. Static Pressure Fluctuations and Mean Pressure 
Distribution Downstream of the Shock 

effective decay downstream, Fig. 1. In the present case, the wedge 
angle induces a shock in the boundary layer large enough to cause a 
separation: farther downstream, the flow becomes reattached and 
goes back to the flat plate condition. This transition takes place 
within a few boundary layer thicknesses. 

Downstream of the shock, the ratio of the mean pressure 
distribution p,g/p, and the ratio of the rms pressure fluctuation 
Piq/P, vary with a consistent relationship and both reach a maximum 
at x/5= 2.3, where subscripts s and sd, mean upstream and 
downstream of the shock, respectively, Fig. 1. Beyond x/6= 6 
the effect of the shock on the static pressure vanishes. Kistler 
[1963] indicates a similar behavior between mean and fluctuating 
pressure in the spearated region ahead of a forward-facing step at 
the same Mach number and upstream Reynolds number. The differ- 
ences in the flow geometry only alter the magnitude of the pressure, 
in that the ratio of the mean pressure to the fluctuating pressure 
Pq/, Pa = 14 in the present experiment while Kistler found that 

Py/ Pig * 32. 

The normalized power spectral density measured upstream 
and downstream of the shock are shown in Fig. 2. The spectra are 

normalized by requiring Jno) d=i1 in order to demonstrate the 

deviation from the zero pressure gradient ease. For the spectra 
just downstream of the shock more energy is concentrated ina 
narrow low frequency band while further downstream at x/6= 4, 
the energy is distributed over a much broader bandwidth and 
approaches the shape and level of the spectrum taken upstream of 
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Fig. 2.. Power Spectral Density of the Wall Pressure 
Fluctuation 

the shock. The normalized power spectral density found upstream 
of the shock corresponds to the zero pressure gradient, and peaks at 
w5/Ue™= 2 while downstream the spectral density is modified in the 
region below the peak. It is significant that by altering the local 
flow conditions, only the low frequency ends of the spectra are 
appreciably affected. It is noticed that the pressure flucutation 
measurements at x/5= 0 where the shock impinges show a notice- 
able deviation from the general pattern in the higher frequencies. 
This is attributed to an intermittant signal superimposed on the 
regular pressure signal as seen on the oscilloscope. It is possibly 
due to the characteristic fanning of the shock as it goes through the 

boundary layer. 

Measurements of the cross-correlation are shown in Fig. 3. 
The cross-correlation characteristics are a function of position 
downstream of the shock. The cross-correlation between positions 
x/§ = 0.33 and x/6 = 3.80, the farthest apart, has characteristics 
similar to those found at zero pressure gradient boundary layer in 
that the ratio between the convection velocity and the freestream 
velocity Uc/Ue = 0.72 and that the correlation between those two 

points is still significant. The cross-correlation of the shortest 
distance between x/6 = 0.33 and x/&=0.75, shows that the con- 
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Fig. 3. Longitudinal Cross-Correlation of the Wall 
Pressure 

vection velocity is very low Uc/Ue = 0.13 and the correlation is very 
weak. The correlation between x /6 = 0555 and x/5 = 0:25, where 

x/5 = 2.25 corresponds to the maximum static pressure ratio is 
negative. The shock induces the boundary layer to separate and the 
recirculation within the separation region permits the sign of the 
pressure to change. Kistler argued that the fluctuating pressure 
in the separated region arises from the combined action of the turbu- 
lent shear layer and the recirculating flow. The picture, however, 
is not yet clear enough to develop a model for time dependent loading, 
since the geometry of the separated region is the primary variable 
in estimating the pressure amplitude and resulting phase. 

No measurement of the lateral cross-correlation was made 
during the test; however, for the purpose of computing the response 
of the panel, it is assumed that the pressure decays similarly to 
that in the case of zero pressure gradient e 7/92 where a = 0.26 
and 7 is the spatial separation [ Maestrello 1968]. This choice 
overestimates the lateral cross-correlation, since the flow field is 
far from being homogeneous. However, the overestimation may not 
bé exceéded by a factor of Z. 
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c) The Panel Response Field 

Measurements were made of the power spectral density and 
cross-correlation of the displacement. Typical results are shown 
in Figs. 4 and 5 for a pressure differential of 14 psi. The static 
deflection of the panel was 0.06 inches at the center, and the dynamic 

deflection was small in comparison with its thickness. 

The displacement spectral density at the center of the panel 
show pronounced spikes, the lowest frequency of which corresponds 
to the lowest mode of the panel. The accuracy beyond a frequency of 
3100 Hz was poor due to the spatial resolution of the capacitance 
transducer, and therefore the spectrum beyond 3100 Hz was ignored. 

Space-time correlation measurements were made along the 
panel centerline from x =x'=3 in. y =y'=3 in. at one-inch inter- 
vals up to a maximum separation of 6 in. The correlogram indicates 
a convected feature with a phase velocity + Ucp = 770 ft/sec. This 
convection velocity corresponds to that found in the previous experi- 
ment using the same arrangements, except that no shock was present 
[ Maestrello 1968]. 
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Fig. 4. Displacement Spectral Density 
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In comparing the results of the present and previous experi- 
ments, it is concluded that the sign change of the convection velocity 
is attributed to the presence of the shock. Furthermore, the cross- 
correlation of the wall pressure also reflects a phase change fora 
separation of 2.5 inches, which is in the same location as the phase 
change which occurs for the displacement correlation in Fig. 5. 

III ANALYSIS OF ACOUSTICALLY COUPLED PANELS 

a) Two-dimensional Finite Panel 

The vibration of the panel is induced by an arbitrary, external 
pressure field F. It is assumed that the panel motion does not 
interact with the turbulent boundary layer, i.e., the forcing field is 
not altered by the plate motion. However, the panel is acoustically 
coupled to the fluid on both sides of the panel. 

The equation of motion for an harmonic component of the dis- 
placement, W, of a thin panel with a force, F, and a pressure 

differential, pp. - pj t 6p acting upon it, obeys the equation 

BAW - ppw W =F tp, -p, + 6p (1) 

where the bending stiffness, B, may include hysteretic damping, 

and where pp is the mass per unit area of the panel, w is the 
angular frequency, py is the acoustic pressure on the streamside of 
of the panel, p, is the acoustic pressure below the panel and dp 
is the static pressure differential. 

The perturbation pressures, p, and pp, are related to the 
velocity potentials, which satisfy time-independent wave equations in 
the appropriate regions. In solving these equations one uses a 
boundary condition which relates the potentials to the panel displace- 
ment. These relationships may be made more obvious through the 
use of Green's theorem. Thus, it is required to solve a system of 
three coupled partial differential equations, the first of which is not 
separable for the clamped edge boundary condition. 

Pp; and py may be found directly as function of W. Thus, 
consider first the cavity. The acoustic velocity potential, gy, satis- 
fies the Helmholtz equation 

Ag +k’ =0 (2) 

with boundary condition 89/8n = 0 on all walls except on the plate 
where 09/8n = - iwW. 

The Greens function, g, for a cavity with hard walls satisfies 
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Fig. 5. Broad Band Space Time Correlation of the Panel Displace- 
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the equation 

Ag(r|r) + keg (3 | x") = 4n6(r - r') (3) 

and is given by Morse and Feshbach, Vol. II [1953] 

' mx m1rx n n Cc Oslo leone re cos ac os ae Be De 

g(r/r') = aabe » » CS) =" = 

c Kinn Sin. (Kmnd) 
m=0 n=0 

cos kyj,z cos k,,(z'+d) a ae Ae 

Xx (4) 
cos k,j2' cos kantZ +4) z<z! 

where 

2 2 mr : nw 7 

nn Bega. acne) 
and kg = w/cg where cy, is the speed of sound in the cavity of dimen- 
sions a,, by, d. 

By applying Green's theorem, the integral equation for ¢g is 
obtained, 

—_ —_> Q 

o@)= 2 T eet at (5a) 

Now using the boundary conditions, this becomes 

— iw we — wea sea =, 

g(r) =- = | a(n 71) W(r))'d x (5b) 

plate 

The pressure p, is related to g by 

Pp, = - iwp.¢e 

where pc, is the mass density of the fluid in the cavity. 

To compute p,, it will be more convenient to operate with the 

differential equation. Let the acoustic velocity potential in the flow 
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field be denoted by WW By applying the Fourier transform on the 
(x,y) coordinates, one gets the ordinary differential equation 

2 aA 

POP 2) + Pila,p,2) = 0 (6) 
dz 

where 

2 2 2 2 2 
GC =k +(M - 1)@ - 2kMa - £B 

@ Ao oxy) 
+ Aa 

W(x, yz) -{ ( da dp Suen w(a,B,z) 
“0 “-09 

k=w/c, M is the flow Mach number and c the speed of sound in 
the region above the plate. Only the positive exponential solution to 
Eq. (6) is chosen, since it is the solution representing outgoing 
waves. Thus, 

b(e,B,z) = A(a,p)e™ (7a) 

The boundary condition, arising from the continuity of normal dis- 
placement is 

du(a,B,z) - . ear 

dz 520 =O 

where the differential operator 

L=k+t+FiM — 
Ox 

Thus, 

Aa ~~ . 

H(a,B,z)=- 5M eM (7) 

Now, since 

nN a 1) Es ' ' 

LW -{ { dx' dy'e lide LW! sy) 

then 
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a b 

W(x,y,2) = - a hs dx' dy' G(x,y,z|x',y',0)L W(x',y') (8) 

Ther 23 © 00 ila(x-x') +B(y-y')+C(z-z')] 

a(F | =f if SO ee, a (9) 
=00 ““00 

which is found in Appendix A to be for supersonic flow, 

where 

ie(Muty/ ue -R*) 
e 271i 

me M’-1 an - R° 

G(r | x") = 

0 outside the Mach cone 

and for subsonic flow, 

ix (Mu+yue+R® ) 
Gi bel ot (10) 

Vvi-M2 vut+ R? 
YN 

dieept inithis case, K = efyl- Mo hand aasi(x-at) (=e = aha 
had been evaluated as 

a 

(k - aM)W 

then Eq. (8) would read 

a b 
xe 

U(x,y,z) = - =|) y dx' dy' W(x',y")L G(x, y,z|x',y',0)(11) 
TT 

* 

This equation is formally correct if L G is interpreted as a distri- 

bution, which is to say that one partially integrates to obtain Eq. (8). 

Now using Eq. (8) 

Pp(x,y +2) at ip cLi(x,y,z) 

OY aa 2 
= leae’ ( dx' dy' G(x,y,z|x',y',0){[L| Wlx',y’) 
4% Yo Yo 

(12) 
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where fp is the density of the fluid above the plate, and where partial 
integration has been utilized. Had Eq. (11) been used instead, 
Eq. (12) would read 

e 2 

1P9C 
Po(x sy» Z) = wee 

40 re) 

a b 
2 

{ dx' dy' W(x,y)|L | G(x,y,z|x',y',0) (13) 

ié) 

which is reducible to Eq. (12) by partial integration. Thus, super- 
sonic flow does not present any especial difficulty aside from the 
fact that G is singular all along the Mach cone, and this is an 
integrable singularity. 

Inserting the expressions for p, and p, into Eq. (1) results 
in a single partial integro-differential equation to solve, viz., 

a b 
2 2 Es ipoc? ( a 

BAW - ppw W = F + 6p es A , G(x,y,|x',y")|L| wW(x',y") dx'dy' 

2 

+ reas if B(XosVo|xXbrve) W(x, y) dx dy (14) 

plate 

where the subscript c refers to the cavity, thus 

x, =x + 7? 

u < + Ye 

Equation (14) presents a formidable computational problem. The 
Green's function g is known as an infinite series which is slow to 
converge (1/n) thus compounding the difficulty by an increasing num- 
ber of necessary operations to maintain a given accuracy. 

An alternative to solving Eq. (14) is to convert it to an integral 
equation for its Fourier amplitudes and to solve the resulting equation. 
The advantage is that this equation is simpler (though it is a singular 
integral equation). The following notation shall be employed: 
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The result of applying the Fourier transform to Eq. (1) is 

2+ Qa a a ve 

BA W- pw W=f + Po - py (15) 

where 

f=F + 6) 

The first term in (15) may be evaluated using Green's theorem; 

thus, 

—> <=> 

-iK-r 2a 4a — rs] 2 

AB WEIOWIF OF Grete (Aw +K'w)| (16a) 

Now, for a plate clamped on its edge to a rigid, plane support, the 
following boundary conditions hold, 

on edge 

where s is in the direction of the edge, i.e., the tangent. Thus, 

22 4° 
Aw=KWtdAl Ww] (16b) 

where 

If more general boundary conditions are to be considered (e.g. 
elastic foundation) the above expression must be replaced by the 
right side of 16a. From the Eq. (7b) and the equation prior to Eq. 
(12) it is found that 

E 2 eel 
p, = Pec en MY Wik) (17) 

From Eq. (5b) it is found that 
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2 
~ W —~ —_ —_ — 

P, = - So { dr, g(K | r,) W( rg) 

plate 
e 

- “a[w] 

where 

g(k| r') = = { dre g(r |r') (18) 

plate 

Substituting these results into Eq. (15) gives 

BT(K)W(k) + BA[W] - Q[w] =£(K) (19) 

where 

oe 2 ear a 
1(K) = K*- be _ oc eM) (19a) 

Let Wp denote the finite Fourier transform of a beam eigenfunction, 

9,2 It follows from the Fourier representation that the Wn, form an 
orthogonal set on the infinite interval. Thus, expanding W as 

w(K) -) Winn'im(%2) Up (Bb) (20) 
m,n 

or alternatively, W as 

W(r) = » Wmn9m(= ) Pn (Z) (21) 

and introducing these expressions into (19) and subsequently utilizing 
the orthogonality, gives 

Win * > Dace as enn (22) 
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and 

Pas ={ § ak YadodbolP) (pal, (2) o,(Z)| 
om Oo t(K) 

- a[¢, (2) « ()]) 

The computation of the integral Iimnr, may be simplified by 
deforming the contour on the @-plane. Due to the manner in which 
the Fourier transform was chosen, the integrand, except the term 
T(k), is single-valued and analytic in the lower half-plane. The 
contour will, thus, be deformed in this half-plane. This deformation 
is determined by the analytic properties of the function T(k), 
Eq. (19a). 

2 

T(a,B) = (a2 + p2)? - Se ee 
Bo V2 + (M2 - 1)a? - 2kMa - & 

This function is two-sheeted with square-root type branch points at 

kM + Vk* + (M? - 1)p? pba ESI Ee 
M* - 1 

The sheet associated with the positive value of the square root will 
be termed the physical sheet, since it corresponds to outgoing radi- 

ation. 

The function has ten zeros on the two sheets, four zeros on 

each sheet with the same values, corresponding to resonances of the 
plate and the other two zeros are located near the branch points on 

one of the two sheets, independent of each other. 

It is convenient to make the following substitutions 

2 
= Po and 4 = Pp© oy Milsias 

The Eq. (19a) may be written 
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aM i 
T(a,B) = (a + B*)* Bec a 

k2 + (m2 - 1)a2 - 2kMa - Bp? 

In the present case,p is a small number (= 0.0015) so that approxi- 

mate values of the zeros may be found, expressed as a power series 

in p. To the second order these zeros are 

[xe + (M2 - 1)B7(Az* + 2A,°B +B - y*)” 

where 

+ kM+ yk? +(M?- 1)p° ay = eee ee 
M2 - 1 

(£), (4), > A(4), (4), 

(ee (“en (22) J 

i 4A (p2+A2 )[x° +(M?-1) A> -2kMA eras 
(+), (+). (+), (+) (+) (+). (+) (+) 

where 

= / 2 2 

Avs), (£)g 7 i aE (*),¥ 

The last four zeros exist on both sheets. The location of the first 
two zeros may be distinguished into three possibilities: when 
ve— A, then a, and a; are respectively on the unphysical and 

physical sheets; as y is increased such that A,<y< As, then a; 

moves off the unphysical sheet and crosses over to the physical 
sheet and as remains unchanged; as y is further increased such 
that AZ<y then a; crosses over to the unphysical sheet and aj 
remains unchanged. A typical configuration for the poles and branch 

points is shown in Fig. 6. 
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a Plane 

Fig. 6. Integration Contour for Typ. 

The above contour, Fig. 6, is deformed to circulations about poles 
and branch cut in the appropriate half-planes of analyticity as indi- 
cated below, Fig. 7, for the upper half-plane, 

Fig. 7. Deformed Integration Contours for I, 

The function T has been analytically continued into the k-plane by 
giving k a small negative imaginary part; so that, the branch points 
and the poles are displaced off the real axis as indicated in the 
previous figures. 

The branch-cut integral is given by 

494 



Response of a Vibrating Plate in a Fluid 

wo Ym(ae) [BA(a, B)-2(2,B)] C oe 
y k?+(M?2-1)a?- 2kMa-f2 

1(B) -f dt [Ba +P - pur? + poce(k-aM 

Z Vie+(M2-1)02- ae) 

where @ = A_- it. So that 

oo 

ie - 2ti s residues dB + { Ya (Bb)I(B) dB 

The branch-cut integral is exponentially damped rather oscillatory, 
so it may be readily performed numerically using Laguerre-Gauss 
quadrature. The second integral is more difficult, it oscillates with 
a period 21/b. 

In solving Eq. (22) maximum values of the indices are polstu- 
lated. This is justified, since the index is inversely proportional to 
some length on the panel. Now there certainly exists, from the 
experimental point of view, a smallest length to which a disturbance 
may be localized. After having solved Eq. (22) the plate displace- 
ment is simply the Fourier transform of (21), thus, 

WOE) =) Wanem(2) on (Z) (23) 

where 9m is a beam eigenfunction. 

To find the sound pressure level in the cavity the expression 
for W from Eq. (23) is inserted into Eq. (5b) to give 

cos 8cos DWE cos Kmn(z + d) 
a b 

y Wrs linrJns 
— 2 (Z)- oe S 

Ey Kmnsin Kn agb,k Ly 
m,n 1,8 

where I, and Jj, are given in the appendix B. 

Similarly, the radiation may be computed from Eq. (12). 

The force is not a deterministic function as has been im- 
plicitly assumed from the outset, but a stochastic variable whose 

correlation properties are known, either via a model or directly 
from experimental data. Thus, it would only be meaningful to com- 
pute statistical averages of the response based on statistical averages 
of the force (i.e. cross-correlation). The procedure to be used is 
an amendment of a procedure due to Rosenblatt [1962], the notation 
is that of Rosenblatt. 
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Consider a homogeneous, stationary, random process > 
(Rosenblatt writes this as X»,(w) to explicitly indicate that it is a 
function defined on a sample space) with a cross-correlation defined 
as 

R( 2 , tr’; t") = (Xo XTh > (24) 

where ( ) is the expectation operator, i.e., R is defined through 

the ensemble average. Because the process is homogeneous and 
stationary, 

R(r ,t;r',t') = R(t - r', t-t') 

or 

R(r - r',t-t!) dr dt = (dM (xz*,) dM (Xm 4, )) 

where dM (x> +) is the Stieljes measure of the process. The pro- 
cedure may be simply stated as the problem of finding a Fredholm 
expansion of R and subsequently representing X,, by such as 
expansion. Such an expansion is provided by the eigenfunctions and 
eigenvalues of the integral equation 

(e8) 

w(t ,t) = NY R(r-r',t-t')y(r',t") dr! dt (25) 
-© 

The spectrum, is of course, continuous. The eigenfunctions are 

plane waves and the eigenvalues the inverse of the power spectral 
density as can be seen by applying the Fourier transform. Thus the 
desired expansion for R is 

R(T-T",t- ay ay fe eee Pt Rik aids 

Now let 

@ 
ir - wt) 

re - = e dM (X=, ) (26) 
°  (2m)P VR(K ,w) “© fs 

It follows from (24) and (26) that 

(Zgu2ZFw) = 6K - K')5(w- a") 
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since (dM(X—,)dM (X~,)) = R(r-r',t-t') dr dt. 

Thus the Zr, are independent random variables with unit 
variance and with zéro mean if EX, ,=0. The transform of (26) is, 

00 —> —> 
—> -i(Ker-wt) > 

Xo, - Z JR(K,w)e dK dw (27) 
’ Kw 

oO 

A simple calculation reveals that (27) satisfies (24). 

These results will now be applied to the plate displacement. 
Thus, the cross-power spectral density (CPSD) of the plate response 
is given by (asterisk denotes complex conjugate) 

(ww) =D om (S) en) (EZ) eC) (Wan Wie") (28) 
m,n,r,s 

Now if the solution to Eq. (22) is represented as 

Winn o » Ymnij Pj 

i,j 

then 

( Winn Wes ) ~ » Ynniy Yren! § 2ij Pkt > 

ijkl 

Barther, 

oo ,0 
ve os 

(5 ©) -( dK dK' Seeyeeeeee abbr (BY) (5) ery 
-00 “-00 

The force F is now identified with Kooy so that 

(FER) = [RE wa Kol} (Zu Z 0) 

* —_ A —_. VA > _. 

[R (K a) RK, )] * 5K - KY) 

In summary then 

= — * x 

(Winn Wes.) = y Vinny Yrek ) - am Vea (bby Bie) Meee 
ie 

nk [T(K) | (29) 
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Analogous to (28), the expression for the CPSD of P, can be written 
in terms of E Wmn Ws from (29). The same can ailize be done for the 

radiation. 

b) One Dimensional Model 

To simplify the computations we assume that the transverse 
plate dimension is very large and that no flexural waves propagate 
in the transverse direction. With these simplifications Eq. (22) 
may be written 

w, + > Paw ue, (30) 

where 

00 ur (Ka)A Pm = 
r 2 ( dK [ (=) | (31) 

am -© T(K) 

where 

4 K NAP 
ipy (1 - 

T(K) = K* = “i aN et ae ae 

Vk? + (M2 - 1)K? - 2kKKM 

and 

00 1 

a -\ ak Yol(aK)F(K) (32) 
Bon T(K) 

The circumvention of the branch points in the above expressions will 

be described shortly. 

If Gmn denotes the inverse matrix to 6mn +t Im then the 

solution to (30) is 

Wa = » Gam?m 

m 

Now performing the ensemble averages as before gives 

(WnWa) =) Gurl rs) Gr (33) 
r,s 

but 
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(a Hel2K) (yc Yala) Ket (O45) -{ ak Sea io dK Fieey Waele (K')) 

To make the discussion concrete let 

* 
(F(K)F (K')) = P(a)6(K! - (K - 3)) 

which corresponds to a spatially uncorrelated pressure field with 
convection velocity U, and power spectrum P(w). 

Thus 

aw 

U;, 

TK (Ke >) 
Cc 

UF (aK) uglaK - m 00 

(4,0) = Pt) | ax (34) 
-00 

The major contribution to the integral for In, Eq. (31), comes about 
when the peak of Up is close to the peaks of 1/f(K); since Wn is a 
highly oscillatory function (period = 27/a) with a peak at x, /a and de- 
caying with the distance from this point and 1/Y(K) is a non-oscilla- 
tory function with peaks whenever K equals the real part of the poles 
which are roughly located at y times the four roots of unit and the 
trapped wave poles near the branch points (k/(1+M) )(k/(M-1)). But 
for the frequencies we are considering (up to 3000 Hz) only the pole 
near k/(1+M) lies on the physical sheet. For this frequency range 
the trapped wave pole is bounded by 0 and 0.15 and the pole near y 
by 0 and 0.6. Now, the peak of py is given by y,,/a which is numer- 
ically (see Appendix B) 0.155, 0.26, 0.36, 0.465, 0.57, 0.67, ... 
and the period is 0.206. The height of the peaks decays roughly as 
(1 /Ka)> is 0.05 of the first. The function 1 /T(K) also has peaks that 
decay in the same manner. Thus, the infinite matrix Ip, has appreci- 
ably non-zero entries only in the upper left-hand corner. Consequently, 
we need only compute Imn for the first 4 or 5 modes, say, and then 

invert this matrix + I to obtain the upper left square matrix of order 
4or 5 of Gmp and thus for higher modes 

Grn = 5mn 

So that 

* X 
(Wn Wn) = (bmPn > 

for other than the first few modes. 

The contour for the integral in (34), Fig. 8, is similar to one 

499 



Maestrello and Ltnden 

K-Plane 

K - Plane 

| 
e S|\7r 

eee 
wer wmr neem me ew KH 

Fig. 9. Deformation of Contour in Fig. 8 

described earlier but the term Y*(K - (k/m)) introduces further 
poles and branch cuts. The contour and its deformation are shown 
in the Figs. 8 and 9. In Fig. 9 only the contours for that part of the 
integrand which is analytic in the upper half-plane are shown. 

Wm(K) may be written 

Um(K) = Sp (K) + T,(K)e 8° 

where 

H 3 3 

4 4 
(aK) - Xm 

and 
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5 Tm(K) = Ney [bn + ia, aK) ( cos Xm Eg ae) 
2 2 2 

(ak)* - x2 (ak)? +x, 

a - (amXm - iaK) (8 Eis ee :)| 
(aK) - Xm (aK) + xq 

with @, and Xm defined in Appendix B. 

Now 

dm(K)Yy(K - +) = LOK) + U(K) 
c 

where 

-i(K-—)a 
ae Ww (a) Uc 

EK) = sm (K) (s,(K - U,) + T,(K - U,/° ) 

and 

i(aw/Uc) i(k-7)e 
U(K) =e T,, (K) (s,(K -T) TAK = Tw, Uc ) 

Thus, we have 

[ee] 

(mon) = P(u) f dK ee 

c 

The above expression is evaluated as a sum of residue contributions 
plus branch--cut integrals. 

5 

1 * L(z}) aoe (o,¢,) = 2mi Res | —_Ha)__| +I +I 
P(w) 2 T(2, )r* (2, - ) | 2 

U, 
l2 

ap Anil dq nes |e) | tit, 

os 252) (r(z)T (z - we) 
ET U, 

j=9 

where the z, are identified in the above figure. 
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Fig. 10. Location of Poles and Branch Cuts 

As indicated previously, zg and Zg are not on the physical 
sheet for the range of frequencies considered (up to 14,000 Hz). 

k 

a geremale acme a 

“0 (aoa Get iy) | "(ar i ty) ter) 

where T*((k/M +1) 5 iy) is the expression following Eq. (31),the 
plus being included only to explicate that it is the positive side of the 
square root branchcut. Y7((k/M+1) + iy) is obtained from T* by 
replacing pp by - wp. 

She UGa—a tt ty) 1 1 

c(i L (477 - iy) 1 4 dy oe le 

os (Wo ai) txt: iy) TGS + iy) 

ae Met) | ot 
0 ol eee aed, "(art - iy) "(art - iy) 

It is felt, that the effect of the pole at z3 cancels the contribution of 
I; and similarly the residue at z,, cancels the contribution of I,. 
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Thus only I, and , will contribute. Therefore 

5 

4 * : U(z) 
Pay 6 omen = 2ni_) res |__| +1 

2 ) er z= 2; T(z)t*(z - wT) ° 

j43 : 

aN: L(z) | + 2ni Res) ee a 
i: 2, Reel ate ys) 

j79 S 

By the same argument which eliminated I, and Iz we may replace 
I, and I, by pretending that z, and zg are on the physical sheet 
and thus 

; U(z) 
I,=- 2ri Res 4 ———— 
5 2726 are = ‘ 

Cc 

and 

: L(z) 
Ig=- 2mi Res 4,—— 
4 ‘i 2=2q Sere = =} 

4 

To evaluate the residues it is necessary to determine 

T(z) = 423 + ipy(32M7k* + 2°M* - 2°M® - 3kM°2* - kz - k°M) 

vk* + (M® - 1)z* - 2kMz° 

The following relationships among the poles are valid 

* * 
Za = yt 27 Zs= a + Ze z= at Zs Uc Ue Ue 

7) * W * 
Z10 aie or Zy = tie ce 

*4 4 ipy*(1 ri Sa) 
Zz iy + 

Vice + (M2 - Hee z 2kMz 
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So 

T(z y= Tite) 

Thus 

bipil pee aa |e? te: 
U 

Similarly 

' 
eee ee Lim | - i | Ag (z,) 

cei, T(z - 

zz, L7"(z, - a) 

4 * U(z,) U(ze) : bd 1k SUNS ES EN e 2 EAE ne 

ZaTP (a) ‘ Smt) T'(z,)T (z, - a T'(2,)T"(z» - Tu 

(a) * Ww *K 
2 U(5- + z2) . U(—- + 2g) 

-s * SAT ae 
li +z 7)T (z,) si +2,)T (zg) 

‘ Uae +P Zg) 

Tg #zJt7 (zg) 

P L(z7) P L (za) : 

Tz)T (z_- u,) T'(z,)T (zy - wr, ) 
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EE e3)) V2 425) 
ete eo Oe ee Tee 2 

xs * 
Ta + 2))T (z.,) Ta + Z2)T (zo) 

____ Lz) 
T'(zg)T "(2g - a) 

In a similar, though simpler fashion, we may evaluate the integral 
in Eq. (3.2). 

Al m(=)] = Am(K) + Byik)e 

where 

2 
ZN X: [ COS, Xm CO. Xm fe ] 

==, (| AM = AM 
Am(K) a es Xm sin Xm + sh Xm Boag 

and 

2 

° 

Bn(K) = - SSm (Xm) = sh x, + sinx,chx,,) - iKa sin x,sh | 
sin Xm + sh Xm 

* 
Thus , Al $m] may be decomposed into factors analytic in upper, 
and lower half-planes, respectively. Denoting these terms by G 
and G we have, 

” GtiK) + G"(K) 
1 ae - an aa dK 

-00 

where 

G"(K) = Am(K) (Sn(K) + Tr (K)e"") 

and 

G"(K) = Bm(K)(Tn(K) + Sp(K)e) 

The contour of integration is indicated below. 
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Fig. 11. Contour-for I, Eq. (31) 

The contour is deformed in the appropriate half-planes and 
branch cuts are replaced by poles as discussed previously. Thus, 

Tat Tmo = Res {Sc} + nae {S0P} 

ae Moma vaeicnd 

We now invert the matrix 6mn+Imn- Let us denote this inverse by 

Gij - Then 

* ee 
Co “,) = Ginp < %%q) Gon 

where the tilde denotes Hermitian conjugate and sum of p and q is 
implied. The final step, then, becomes the diagonalization of the 
CPSD matrix ( Wm Wa) thus giving the PSD for the actual degrees 
of freedom of the system. 

c) Acoustic Power, Power Radiated 

In computing the power radiated, we make use of the unitary 
matrix Ujj which diagonalized the CPSD matrix. The average 
power radiated, to the far field, P, is given by 

P~ (Im jy" Set) 
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With the use of the asymptotic form of the Hankel function, the 
asymptotic form of § may be computed. This form is 

; ke 1- M@sin®@ + Mcos @) 

A(8)e lig 
w(r, scrap 

oe Jonikr V1 Evie sin* @ 

where 

it G a —— -M) 
A(@) -\ dx'e W(x!) 

0 

The acoustic velocity in the radial direction u, is given by 

a, = S¥ (r, 6) 

_ ik(yi - M® sin® @+ M cos 6) sin* 0+ M cos Oy ie r) 

Mo 4 

The pressure, p, a microphone in the far-field would measure is 

given by 

ipo oa oe 
BP ox 

cL 
pc 

ikM? 
EET Rs Mo=4 

iT] 

_ ikp(r, ®) 

Me ol 

The average radiated intensity is given by the expectation value 

1 * 
= Re(pu ) mM iT] 

2 - ; ik(¥i- M sin 6+ aM coe 5 Re(wy') 

2 2 2 > pck (y1 ait arn + M cos 8) Re (yy*) 

Now, 
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* 4 * 
Cb) Se (ALBA (8) 

(2mkr)) 1 - M* sin* 0 

where 

— (xx) cos 8 7 

| |-M@ sin se 
(.A(@)A7(0)) - ax dx'e ( W(x!) W*(x)) 

0 ) 

and where 

(W(x!) W" (x) = > (Win War) Pun 21) q (20) 
m on 

*. 

Let U;; denote the unitary matrix which diagonalizes (W,,W,); 
LCs 5 the transformation to the actual degrees of freedom. Further, 

let \m denote the power in the m!" degree of freedom, then we have 

( w(x") W(x) = yi 9; (x') Uni (5); Uaj _(x) 

i,j,m,n 

The integrals have already been encountered, they are simply the 
finite Fourier transform of the g(x) so that, 

(A(0)A"(8)) = », Wi (2) Usa i 8ij Uny Yj(-2) 
i, j,mn 

where 

ik cos 6 _M 

yi - M2 sin@ 6 
Z = T.f 2 feo. Gop 2 ee 

Ms = 1 
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APPENDIX A 

If we make the following changes in variables 

= ¥(M* - 1) a@- KM 

& 
K= 

M2 - 4 

See 

M* - 4 

then expression for the Green's function in Eq. (9) becomes 

| Qixmu : aieueB- y')+z,/ €2 -(x? + B?)] 
G(x,y,z|x',y',0) ari ie d dp = 

: VM? - 14 40 “00 Je? - (x? +p? 

@iMu fl, or age i[Bly-y' +2] (€2+x2)- B2) 

2 os K*) = B? 
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(see M+F, Vol. 1, Page 823) 

ieMu 00 

el dé e*" rt”) (RYE - K*) 
s -@ 

R? = (y - y')* +22 

The contour of integration for the above integral is shown below. 

& - Plane 

Branch Cut 

i) ; 

I(u) -{ dé Ht” (nye? — Ky 
-0O 

Define 

By considering the asymptotic form of the Hankel function, the above 
integral is seen to be convergent in the upper half-plane for values 
of u and R _ such that 

u>R 

that is, the region inside the Mach cone. 

The contour may be deformed to be a contour along the branch 
cut as shown below. 

€- plane 

Thus 
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He) «| ( (eles “Hl (VE? - ) a€ 
K foe) 

below cut above cut 

It 

oo . 

J 2{ ely (RVER - K*) ab 

We thus get (see Magnus and Oberhettinger, p. 179) 

in/ju?-R? 

I(u) = 2i— 
u2 - R2 

so that 

in(Mut,/ u2-R2 
2Tri e! ( : ) GCx:| 2) eee Be 

a Meee fue Bo 

elk MR (cos O+sin @) 

Me = 1 R sin 0 

APPENDIX B 

Lr = ‘a cos — or (= ) dx 

fe) 

(oe NeeC deer E 

9, (=) See = she te (cos “= - 
if a a r a 

412 

[o @) ise) 4 

\e ee Rye one “i - be alr, (RYE - IC) aE 
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Set = aoa fo (cn [Ce B2)»-BECGS)] +anf22C54)]) 
+ coofZE (%8)] ~coo[(A-B2) aE (858)]} 

+ Spm coe ESEC)] -coel te BD ECT 

+o (ain [(EeoBt)a +22 (28) tn [BE@2))} 
eel Sie cos [22 (25%)| (ch x, tash x ' 

+ ayParmp oie RECE] -otoREEFA)] (ane, ta.cnah 
as 

where 

= Gos K= ch ik 
r sin K, t sh K, 

and the normalization N, is given by [ Dzygadlo 1967] 

-2 L 1 
N, = aK, (sh 2K, - sin 2K,) 2 ee K, COS K, - sin Kr ch K,) 

Ar ° 

2K (ch 2K, - cos 2K, - 4 sin kK, sh K,) 

+ ar ag +3 (sin 2x, + sh 2x,) 

= = (sin K, ch K, + sh kK, cos K,)| 

and the eigenvalues xk, are the roots of the equation 

cos K, cosh K, = 1 
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and are approximately given by 

ul 
K, = 4.730 K, = 7.853 K, = 7) (2n “+ 1) 

Jns is the same as Ings with a and a, replaced by b and kh, 
respectively. 

APPENDIX C 

3 2 na aaa 
Ow > —- dw -iK-r 

Atw] =§ sues BS ae e | 

Now 

A[en(2) ea(E)] = Otn.0.2,8,a,0 
- Q(n,m,f,@,b,a) 

where g is defined in Appendix A and 

O(m,n,@,8,a,b) 

2 . : i = 208) [B- tnp+ oPaen us iP ate] J, oe enC§) 
The integral may be found by appropriately combining the following 
four integrals 

i(x_ + @a) - i(x_- aa) 
e - | 

i(aa-«,) i(aa+x,) 
ale oA Ke A | 

2 aa - K, aat K, 

ea 

n he =} xs —] 
|x 

O_ 

Q x 
Qu * I 

a i(aa+x«,) i(aa-«,) 
x  iax _ ee -i +2£ -i 

- cos Kas e dx= “Stl aa hk. = Ee K, 
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(aati x,) i(aa-ix,) 
‘ che Zeta ai | s =i Ue = 

aa PEK, aa - LK, 

; i(aatix,) (aa-ik,) 

‘ Ohi a | Serie Shee hearst -1] 
na Zi aa tik, aa - ik, 

and where a, is given in Appendix B. 

where 

and J+ 

APPENDIX D 

(a —-> svar aa a 

Ql w] -aiPs ( d r,/g(k/r,) W( r,) 

00 

QL o(x/algsly/b)] = wp, » Emén amiaae)in(Bbn)Emeins 
Kn Sin Kinae 

is given in Appendix B. 
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RECENT RESEARCH ON SHIP WAVES 
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ABSTRACT 

This paper is concerned with various aspects of the 
far-field wave pattern generated by a ship or other 
moving body in steady translation. Section II contains 
a brief derivation of the classical Kelvin wave pattern, 
based upon linear inviscid wave theory. In Section III 
full-scale aerial photographs are presented for the 
waves generated by the Ferry Boat UNCATENA, and 
compared both with the theory and with photographic 
observations of a small scale model of the same vessel. 
In Section IV we discuss a towing tank experiment, 

designed to compare the waves generated by a "wavy 
wall" with the nonlinear theory for this hull form. 
Finally, in Section V, a third-order solution is out- 
lined for the Kelvin wave system, which indicates the 
occurrence of a nonlinear instability on the cusp line. 

I. INTRODUCTION 

Ship waves are intriguing from several viewpoints. To the 
observer of a moving vessel, either layman or professional, they 
are a fascinating pattern on the free surface -- in otherwise calm 
water one might, in fact, regard them as a thing of beauty. To the 
naval architect they are of primary interest as a source of energy 
radiation, and hence of wave drag on the vessel. More generally, 
to ship hydrodynamicists of all disciplines, they are a source of 
complication, interacting with, and affecting the boundary conditions 
of, such fields as viscous drag, propeller-hull interactions, sea- 
keeping, and maneuverability. To anaval vessel ship waves are a 
possible source of detection, visible for hundreds of wavelengths or 

ship lengths downstream and to each side of the vessel's track. 
Similarly, to the operators of all types of vessels, they are a source 
of damage to property and of personal injury to persons, in or be- 
neath the water surface, or on the shoreline. And, to the theoretical 

hydrodynamicist, they are the source of seemingly endless challenges, 
both analytical and computational. 
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The classical analysis of ship waves using linearized inviscid 
wave theory, originated in the nineteenth century by Kelvin and 
Mitchell, has enabled us to understand and predict the qualitative 

features of ship waves. The period since 1900 has seen a wide vari- 
ety of refinements and applications of this basic model, and the 
present unsatisfactory state-of-the-art in no way detracts from the 
dedicated contributions of Havelock and others, some of whom are 
in this audience, who labored with ship-wave theory before it was 

facilitated by digital computers and a more widespread understand- 
ing of the methods of mathematical physics. 

As in most other branches of ship hydrodynamics, our present 
knowledge of ship waves is sufficient only for a qualitative under- 
standing of the phenomena, and does not permit quantitative predic- 

tions with the accuracy required by most engineering situations. In 
the past decade many ambitious scientists and engineers have, there- 
fore, abandoned the assumptions of linearization, or of an inviscid 
fluid. Some of these attempts at fundamental improvements of the 
Kelvin-Michell approach were summarized by the author in a Panel 
Report (Newman [ 1968]) to the Seventh Symposium on Naval Hydro- 
dynamics. The present paper is not intended to cover such a broad 
range of contributions, but only to report on my own recent and very 
limited activities in this area, both experimental and theoretical. In 
the experimental domain, photographic observations have been made 

of the Ferry Boat UNCATENA and of a small scale model of the same 
vessel, in order to verify the Kelvin wave pattern prediction and to 

search for variations in the wave system resulting from scale effects. 
In addition, a series of experiments have been made in a towing tank 
with the objective of confirming the striking nonlinear phase-jumps 
predicted by Howe [1967, 1968]. Finally, in an-extensive theoretical 
investigation, which is reported upon in more detail elsewhere 

(Newman [ 1971]), we consider the possibility of third-order nonlinear 
resonant interactions in ship waves, motivated by the importance of 
these interactions in the field of ocean waves (Phillips [1966]). For 
the sake of completeness, we shall first give a brief outline of the 
classical Kelvin ship-wave system. 

Il.’ THE KELVIN SHIP=“WAVE PATTERN 

Disregarding the local effects close to a ship hull, we can 
assume that ship waves are a distribution, in wavenumber space, of 
individual plane water waves. Generally speaking, these are ob- 
served to be of small amplitude relative to their wavelength, and the 
relevant Reynolds numbers are of order 10®to 10°, so that we are 
led to a linear potential-flow model. The individual plane wave 
system can then be described by the free-surface elevation 

ik(x,cos O+y, sin@) -iwt 
C (xosy,) = Ae (1) 
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where A is the wave amplitude, k is the wavenumber (20/d, if 

X is the wavelength), 9@ the direction of propagation of the wave with 
respect to variations of time t. The kinematic and dynamic properties 
of the wave motion can be readily determined from the velocity poten- 
tial, which differs from the above only by a factor 

(sip jue © 

if the fluid depth is large, the vertical z,-axis is positive upwards 
with z,=0 the plane of the undisturbed free surface, and the 
(X55 Vo» Zo) coordinates are fixed with respect to the bulk of the fluid 

volume. Finally, with the above restrictions, the frequency w and 
wavenumber k obey the dispersion relation 

k= w*/g. 

The most general distribution of these elementary plane waves 
is obtained by integrating over all scalar wavenumbers k (or fre- 
quencies w) and wave directions 90, so that 

Ik(x, cos @+y, sin @)- iwt 
e 

(00) 27 

E(x 5 Vo) -{ ax f dé A(k,8) ° (2) 

(@) 0 

However, steady-state ship waves are independent of time, when 

viewed from a moving coordinate system which translates with the 
ship, say with velocity V inthe +x direction, and this condition 
restricts the frequency, or wavenumber, of the contributions to the 
integrand in (2). If (x,y) denote moving coordinates with 

Xg= xt Vt 

Yo Y? 

then by direct substitution 

ik(x cos O+y sin@)+it(kV cos O-w) 
00 27 

t(x,y) = l ax { d® A(k, O)e (3) 
fe) 0 

This integral will depend on time, for arbitrary amplitude functions 
A(k,9), unless 

w = kV cos 8 (4) 
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or from the dispersion relation, 

kee (g/V?) sec’ 0, (5) 

Finally, if the ship's velocity V is positive, it follows from (4) (or 
from an obvious physical argument) that the wave direction ® must 
lie in the interval - 1/2 S05 1n/2. Thus we arrive at the "free- 
wave" description of the ship-wave system 

i(g/V°) sec” @(x cos @+y sin@) 
11/2 

Heme -{ de A(o)e (6) 
-7/2 

which is the starting point for many analyses of wave resistance. 

Kelvin's ship-wave pattern may be obtained from (6) by noting 
that if the polar radius R = (x? + y?)!/2 is large compared to the 
typical wavelength 271V?/g, then from the method of stationary phase 
the dominant contributions to (6) will arise from those angles @ 
where the phase function 

(g/V’) sec’ 9 (x cos 8 + y sin 8) (7) 

is stationary, or 

& sec’ Q (x cos 8 ty sin 8) = 0. (8) 

Carrying out the indicated differentiation, it follows that 

x tan @ + y(2 sec*@ - 1) =0, 

or that the significant ship waves will be situated at points such that 

sin 8 cos 9 
- |y/x| Se eT a ma (9) 

The behavior of this function is indicated in Fig. 1, and the essential 

features of a Kelvin system are immediately clear: 

-/2 
1. The waves are confined to a sector ly/x|< 8 * 

tan 19°28". 

2. On the boundaries of this sector, or cusp line, the waves 

are oriented at an angle |0| = cot! 2V@ > 35016", 

5iZz 



Recent Research on Shtp Waves 

In the interior of the sector, two distinct wave systems Sis 

will occur, the diverging (|@| > 35°) and transverse 
(|@| < 35°) systems. 

| x 

<= --+4y= tan/2°28" 

~ — Nbcos® aN O= 35%" 
Vx 2-cos*@ ae O=-35°le' 0 0 

Yne~tan 13°28 

Fig. 1 Plot of y x, from Eq. (9), as a function of the 

wave direction 0. 

Finally, if the loci of a given wave crest are plotted, by 
requiring that the wave phase (7) be constant, while (9) is satisfied, 
the familiar Kelvin wave pattern shown in Fig. 2 is obtained. (The 
phase difference of 1/2 between the two wave systems along the cusp 
line is not explainable from the above simplified argument, but is a 
natural consequence of the method of stationary phase. Fig. 2 is 
reproduced from Lunde [ 1951].) 

Transverse 

Wave Crest 

Fig. 2 Wave crests of the Kelvin wave system (from 
Lunde [ 1951] ) 

The amplitude of the individual elements in the Kelvin wave 
system will vary, in accordance with the function A(®@) or the "free- 
wave spectrum" of the vessel. Moreover, the wave amplitude will 
vary as R for large R, in consequence of the radial spreading 
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of wave energy. This result follows, too, from the stationary phase 
approximation, wien in addition, tells us that the attenuation rate 
is changed to R"’3 on the cusp line. A uniformly valid expansion 
near the cusp line has been obtained by Peters [1949] and by Ursell 
[1960]. The latter work includes numerical computations. 

Ill PHOTOGRAPHIC OBSERVATIONS OF SHIP WAVES 

Kelvin's ship-wave pattern, as developed in the preceding 
section or as originally developed by Lord Kelvin using an initial- 
value approach, is well known and widely accepted, since the final 
results are consistent with our observations of ship waves. Never- 
theless, and perhaps to the surprise of many, the author knows of no 
definitive experimental confirmation of the Kelvin pattern. Aerial 
photographs are generally of the near-field (e.g., Guilloton [ 1960]; 
Inui [ 1962]) or from oblique angles (Wehausen and Laitone [ 1960], 
Fig. 23). Stoker's "Water Waves" contains striking high-altitude 
photographs which are from directly above the vessels, but during 
turning maneuvers or while in convoys. One exception to the above 
may be a special volume™ on aerial reconnaissance prepared during 
World War II, but this is not generally available, nor has it been 

used at all for a comparison with theory. 

Two years ago I had the opportunity to obtain aerial photo- 
graphs of the Ferry Boat M. V. UNCATENA. This vessel is 147 feet 
long by 28 feet waterline beam and 9 feet draft, displaces 400 tons, 
and operates at a speed of 153 knots between Woods Hole and Martha's 
Vineyard, Massachusetts. Propulsion is from three propellers, 
turning at 1,200;,1,000, and 1,200 rpm. The water depth injgiie 

area where photographs were made ranges from 50 feet to 80 feet, 
with depths of 70 feet predominant. Originally, this vessel was 
chosen for observation because of the severe wave systems which 
it generated, in consequence of its high (0.38) Froude number. Pre- 

liminary observations from a surface vessel indicated the most severe 
waves to be substantially shorter than those which are predicted on 
the cusp line of the Kelvin wave system, but it is apparent from the 
subsequent photographic observations that these waves, in fact, are 
located inside the 19°28' boundary of the cusp line. 

Three of the photographs obtained are shown here as Figs. 

3-5. These were made with a Hasselblad 2-1/4 X 2-1/4 inch camera 
and a wide-angle lens of 38 mm focal length. Figures 3 and 4 were 
taken consecutively, looking directly downward from an altitude of 
1,000 feet. Figure 5 is an oblique shot from 1,600 feet. As is clear 
oe these photographs, the predominant waves generated are a 
portion of the diverging wave system, lying inside of the 195° cusp 
line. In Figs. 3 and 4 we have drawn in boundary lines + 19°28' 

* 

"Speed of Shipping," revised edition, Central Interpretation Unit, 
revised November 1943, 
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* 
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Fig. 3 Aerial view of the UNCATENA wave system with 
19°28' boundary lines and typical 35916' cusp- 
crest tangent lines superimposed 
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2 ; ” > 

3 

further down- 

boundary lines and 
tangent lines superimposed 

> 

stream, with the 19°28' 

Fig. 4 Aerial view of the UNCATENA 

typical 35°16" 
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Fig. 5 Aerial oblique view of the UNCATENA from 
ahead of the bow 

from the center of the wake, which, in principle, should lie on the 
cusp line or boundary of the wave system. The apex of this center 
is to some extent arbitrary, since, without further knowledge of the 
amplitude function A(6), as it appears in Eq. (6), for this particular 
vessel, the location of the ship's bow relative to the origin of the 
(x,y) coordinates is arbitrary. It is clear, in fact, from Fig. 3 that 
the apex of the UNCATENA cusp lines is somewhat ahead of its bow, 
by a distance of about one ship length. This conclusion is consistent 
with other observations of ship waves (e.g., Gadd [1969]), and we 
emphasize here that, in principle, there is no contradiction between 

this observation and the linear Kelvin prediction. 

Also shown in Figs. 3 and 4 is a typical pair of 35°16' angles, 
which should be tangent to the wave crests on the cusp lines, Both 
the 19°28' boundary angle and the 35°16' wave crest angle are sub- 
stantially confirmed by these observations, within the accuracy 
obtainable from these photographs. In fact, we have not observed 
any phenomena in these tests which are inconsistent with the linear 
Kelvin description of the far-field waves, in spite of the obviously 
nonlinear near-field disturbance associated with this vessel, espe- 
cially at its bow. There is also no noticeable effect on the waves 
from the ship's viscous wake and propeller wake region, in spite 
of the persistence of this wake far-downstream. (However, the 
latter wake effects may be expected to affect the transverse waves 
near the centerline; this effect could not be detected here because of 



Newman 

the relatively weak transverse wave system of this vessel, and the 
fact that aerial photographs from directly above tend to emphasize 

the shorter, and hence steeper, diverging waves.) 

As can be seen in all three photographs, but most noticeably 
in the downstream portion of Fig. 5, the diverging wave system 
includes three discrete groups of waves, separated by relatively 
calm regions or "nodes." The observation of three wave groups is 
also noted by Wehausen in the text adjoining Fig. 23 of Wehausen 
and Laitone [1960]. The explanation of this phenomenon is somewhat 
controversial. One possibility is in terms of the conventional "bow" 
and "stern" waves, and possibly others associated with the shoulder 
or knuckle of the vessel. My own view is that, while this synthesis 

is applicable near the ship, it is inappropriate in the far-field where 
the stationary phase approximation developed in the previous section 
is valid. Indeed, if two discrete "bow" and "stern" wave systems 
are superposed, in the Kelvin stationary phase approximation, the 
result is only one wave system, provided that the observation distance 
downstream is large compared to the separation distance between the 
two disturbances. There will, of course, be interference effects, 

with regions of reinforcement and other regions of cancellation, just 

as in the simpler radiation and diffraction patterns which we associ- 
ate with nondispersive wave problems. In the present context these 
will be introduced via the amplitude function A(@), and my own view 

is that the nodal regions between the three observed wave systems 
correspond to zeros of the function A(9) for this particular vessel. 
Indeed, it is not difficult to perceive, in some parts of these photo- 

graphs, a phase difference of 180° across the nodal regions. In 
principle, there should be additional nodal lines and discrete diverg- 
ing waves in the interior portion of the wave system, but these will 
correspond to relatively short waves which are not so strongly 
generated by this vessel, and more quickly attenuated by viscous 
and other effects. 

As one possible measure of the validity of Froude's hypothesis, 
that ship-wave effects are dependent only on the Froude number and 
the hull form, a series of photographs have also been made with a 
scale model of the UNCATENA. For this purpose a six-foot (scale 
ratio of 24) fiberglass model was constructed, and equipped with a 
single battery-powered electric motor and screw propeller, anda 
radio-controlled rudder system. Figures 6 and 7 show the model, 

as fitted with its single propeller and rudder, with an antenna mast 
for the radio control receiver. Test runs were made with this model 
on the Charles River, with photographic observations from the Boston 
University Bridge at a height of approximately 50 feet. These photo- 
graphs were made with a Minolta 35 mm camera and 28 mm focal- 
length lens. Figures 8 - 10 show the model wave system from various 
oblique angles. Unfortunately, no observations could be made from 

directly above, so that measurements of the wave angles are not 
obtainable for the model scale. Figures 8 - 11 show indeed that 
close to the model discrete bow and stern wave systems are 
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Fig. 6 UNCATENA model Fig. 7 UNCATENA model 

bow view side view 

distinguishable, whereas further downstream these blend into a single 
diverging wave pattern with several nodal regions. It is apparent 
that, on the model scale, more than three wave groups can be 
distinguished far downstream; in Fig. 10 four or possibly five dis- 
crete groups can be noted. Since viscous attenuation is stronger at 
the smaller Reynolds numbers corresponding to the model scale, 
it must be presumed that the attenuation of the short diverging waves 
in the full-scale tests is due to other effects, such as the higher level 

of ambient waves and turbulence in the full-scale flow. Another 
noticeable difference is the obvious presence of transverse waves 
in the model tests, especially in Fig. 9 which is from approximately 
the same viewing angle as the full-scale photograph shown in Fig. 5. 

Fig. 8 UNCATENA model and wave system 
(compare with Fig. 5) 
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Figs 9 UNCATENA model and wave system 
aerial view 

SONG 

Fig. 10 UNCATENA model and wave system 
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This infers a significant difference between the transverse wave 
amplitudes for the model and full-scale, which could have important 
ramifications on the predictions of wave resistance from conventional 
model testing, but this tentative conclusion may be biased by minor 
differences in camera angles or lighting™, and it is felt that a quanti- 
tative measurement of the transverse wave amplitudes for the model 
and full-scale vessel should be made, with wave buoys or stereo 
photographs. 

IV. TANK TESTS OF A WAVY WALL 

In perhaps the only truly nonlinear analysis of ship waves 

carried out to date, Howe [ 1967, 1968] has considered the waves 

generated by a "wavy wall" or ship hull form consisting of a slowly 
damped sine wave. This geometrical form generates preferentially 
only one wave system. By suitable choice of the hull wavelength 
and velocity, a diverging wave system can be generated which, 
according to Howe's theory and based on the analysis of slowly vary- 
ing finite amplitude waves as originally developed by Whitham [1965], 
will become unstable. The most striking feature of Howe's compu- 
tations, resulting from this instability, is the occurrence of a shock 
or "phase-jump" across which there is an abrupt change in phase 
and wavenumber. Figure 11 is reproduced from Howe [ 1968], and 
shows the calculated wave system and the region where a phase-jump 
is predicted. Also shown, on the abscissa and with an exaggerated 

scale, are the waterlines of the hull form. 

Fig. 11 Cross sections of the free surface perpendicular to the 
phase-jump. The broken line segments indicate a possible 
form for the free surface in the neighborhood of the phase- 
jump (from Howe [ 1968]). 

*In color slides shown during the oral presentation of this paper, 

some weak transverse waves can be noted in the full-scale tests. 
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It should be noted that Howe's choice of a specific problem to 
which to apply the Whitham technique was based largely on the rela- 

tive ease of veryifying the results with a suitable experiment. We 
therefore set out to conduct such an experiment in the MIT Ship Model 
Towing Tank. For this purpose a model was constructed of Formica 
plastic laminate, bent to conform to Howe's damped sine wave, with 
fiberglass and polyester resin reinforcement and fairing of the back 
side of the Formica. The model was 10.4 feet long, by 1.5 feet 
vertical depth, and was immersed to a wetted draft of 1.0 feet. This 
"model" was fitted to the towing carriage in an off-center position 
to maximize the effective width of the tank and minimize reflections 
from the tank walls. The tank width is 8.4 feet, and the model was 

set up to give a separation of 5.5 feet between the wavy side and the 
facing tank wall. Tests were carried out at a speed of 4 feet per 
second, and the wave system was observed visually, photographically, 
and with a pair of wave probes which were placed at varying distances 
from the model to obtain a total of sixteen longitudinal wave records. 

Figures 12 and 13 show the model in operation, and the re- 

sulting wave system. In no case was a phase-jump observed, in the 
region where it was anticipated. One can discern a somewhat irregu- 

lar local effect along a longitudinal line about one foot from the tank 

wall, but this phenomena extends to the front of the wave group, is 

parallel to the longitudinal axis, and, moreover, originates further 

away from the model than the predicted phase-jumps. This discrep- 
ancy is unexplained, although D. J. Benney (private communication) 
has pointed out that the existence of phase-jumps can be questioned, 

Fig. 12 Photograph of the wavy wall and wave pattern looking down- 

stream 

532 



Recent Research on Shtp Waves 

Fig. 13 Photograph of the wavy wall and wave pattern looking 
upstream 
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in principle, on the grounds that its existence violates the preassumed 
condition of a slowly varying wave system which is the basis for 
Howe's work. 

V. THIRD-ORDER INTERACTIONS IN KELVIN WAVE SYSTEMS 

One of the fundamental properties of a linear boundary-value 
problem is the principle of superposition; thus, for example, Kelvin's 
ship-wave pattern, although originally derived for a single "pressure 
point,” is valid for any distribution of singularities and hence for 
arbitrary ship hulls. But as soon as the assumption of linearity is 
discarded, the possibilities for nonlinear interactions, among the 

previously independent components of the solution, must all be 
examined. In water-wave theory it was shown ten years ago by 
Phillips (cf. Phillips [1966]) that for deep water gravity waves the 
second-order interactions are relatively uninteresting, but when 
third-order effects are included it is possible for "resonant" inter- 
actions to occur. Thus two or three primary waves can interact, 

over large scales of time and distance, so as to transfer a substantial 
portion of their energy into a completely new wave system of a differ- 
ing wavenumber. This striking result has been confirmed by others, 
both theoretically and experimentally, and can be regarded as well 
established. 

Motivated by the occurrence of third-order interactions in 
ocean wave systems, and by the striking nonlinear effects obtained 
for a special case of the ship-wave problem by Howe [ 1967, 1968] 
as noted in the previous section, I have studied the third-order per- 
turbation solution of the Kelvin wave problem. The details of this 
investigation are "messy," to say the least, and will be presented in 
a separate paper (Newman [1971]|), but I shall briefly describe the 
technique employed and the form of the results. First, as a pre- 
liminary approach to this problem, we may examine the possibility 
that, at any point in the Kelvin wave field, the transverse and diverg- 
ing waves are such as to satisfy the criteria developed by Phillips 
for resonance between two primary waves. It is not difficult to show, 
in fact, that the wavenumbers of the diverging and transverse waves 
are not resonant, except possibly on or near the cusp line, where the 

simple stationary phase results are invalid. 

To develop a complete solution of the ship-wave problem valid 
to third-order would be a formidable task; local effects near the hull, 

and nonlinearities associated with the boundary condition on the hull 
would have to be included, and the possibility of a breaking wave near 
the bow would raise fundamental questions of validity of the solution. 
Instead, we focus on nonlinearities associated only with wave propa- 
gation on the free surface, and taking place slowly over scales of 
many wavelengths, so that local effects and hull nonlinearities can 
both be neglected. The first-order linearized velocity potential must 
satisfy the familiar free-surface condition 
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2 

8, ae P isk = 0 a z= 0 (10) 

where subscripts denote partial derivatives. The notation and co- 
ordinate system are as defined in Section II. By suitably non- 
dimensionalizing the coordinates, we may replace (10) by the con- 
dition 

>, + $),,=0 on 7a Ole (11) 

The general solution of this free-surface condition and of Laplace's 
equation, not including local effects near the disturbance, is (cf. 

Eq. (6)) 

2 

is | do £(0) ef? *k'x (12) 
[@) 

where k= (g/V*) sec* 8, k=(kcos 0, k sin 0), and x= (x,y). (In 
Section II the wave eae were restricted to the sector - 1/2<@< 
1/2. Here we allow all values of @ in the integrand of (12), in 
order to avoid taking the real part of the complex exponential; 
Eq. (12) will be real if £(6) = f (w- 0), and to avoid difficulties with 
the radiation condition we shall assume that (12) holds only if x is 
large and negative.) 

The second-order free-surface condition, analogous to (11), 
is 

az Poxx = 2V >, V Ox - Pix Pi 27 a Pixxz)e (13) 

By inserting the first-order solution (12) for 9, in (13), and replac- 
ing products by repeated integrals, it follows that a particular solu- 
tion of (13) will be 

27 21 k z+ik *x 

bo= J) do i do, £8) £(0,) W(0,,O,)e Ge enle (14) 

where 

hae ig = k(8,) + k(®,). 

The weight function W is an algebraic function, determined by the 

various derivatives in (13), and it can be shown that this function 

contains only removable singularities. Thus by repeated application 
of the method of stationary phase, $)= O(R"!) for large distances 
R from the disturbance, and this second-order potential will be 
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masked by the first-order potential 9, = te )e 

Extending these results to third-order involves straightfor- 
ward but tedious analysis. The third-order free-surface condition 
is analogous to (13), but involves more terms on the right-hand 
side: 

1 

3 if P34 ate 2V6, ° vive,)° : 26 (Vo, ; hate 

Te y Vo) + 2(V >, , V bo. 7. ee ° Vo) 
l 

- b(doz7+ doxxz) (15) 

A particular solution, analogous to (14), is given by the triple integral 

2a 2r 2a eT 
os 123% 123) = 

d3 = i do, if de, \, de, £(0, ) £(0,) £(05) W(0, »9,,6,)e (16) 

where 

Ky = RO) TKO), F k(0,). 

The weight function W(0, 8., 9.) is singular at points where its 

denominator vanishes or where 

2 
Kio, — (sec 9, t+ sec 6, + sec 8,) = 0 (17) 

and it is necessary, therefore, to study the roots of this equation. 
It can be shown that the strongest singularities occur along the cusp 

line; for example, at the point 

The integral (16) is improper at these points and we, therefore, 
conclude, as in many linear wave problems, that a steady-state 
solution cannot be assumed _a priori, but must be derived as the 

appropriate limit of an initial value problem. 

An expedient initial value problem is obtained by regarding 
the right-hand side of (15) as a pseudo-pressure distribution, im- 

posed on the free surface from an initial state of rest, and then 

looking for the steady-state limit which results. To avoid unneces- 
sary algebra we rewrite (15) in the unsteady form 
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$5, us % xy Pe 2b sys t 344 =e! P(x,y) (18) 

where P denotes the right-hand side of (15). A solution correspond- 

ing to (16) is readily obtained, and in the limit € ~ 0 we find that 
the only modification is to replace Eq. (17) for the roots of the 
denominator of W by the new equation 

3 

Kio + (€ 70) sec @))" = 0. (19) 
jr 

Thus the singularities in (16) become slightly complex, and for e > 0 
the integrals in (16) are proper. 

Finally, the behavior of (16) as € ~ 0 must be examined. 
Here the algebraic details are critical, since cancellation occurs 
between many of the leading-order terms. In view of the numerous 
possibilities for error, the following surprising result must be re- 
garded as tentative, and I would hope that it will be verified inde- 

pendently by others who are willing to tackle the algebra involved. 

As €—0, Eq. (16) predicts waves on the cusp line of the 

same form (0 = 35°) as the first-order solution, but with an ampli- 
tude which tends to infinity logarithmically in €. Thus there can 
be no steady-state solution of the third-order initial value problem, 
as posed in Eq. (18) and, presumably, in the more general case of 
a "steady" moving disturbance initiated from a state of rest. Ulti- 
mately, as in the analogous case for ocean waves, the logarithmic 
growth rate will be modified by further nonlinearities, but, never- 

theless, we must conclude that significant amounts of energy can be 
exchanged, through nonlinear processes, in the region of the cusp 

line, among adjacent wavenumbers. 

VI. CONCLUSIONS AND RECOMMENDATIONS 

The caption above is the standard one for theses and reports. 
In this paper we have obviously raised more questions than we have 
answered. The observations of the UNCATENA show that Kelvin's 
wave patterns are confirmed, even for a highly nonlinear near-field, 
provided the observation point is sufficiently far downstream (much 
further than is possible in a conventional towing tank). But are the 
differences noted in the photographs of the full-scale vessel and the 
1/24th-scale model due to differences in photographic conditions 
and experimental errors, or are the transverse waves (and very short 
diverging waves) of substantially larger amplitude on the model scale? 
Here we would emphatically recommend further experiments in which 
the wave heights can be measured quantitatively, both for the full- 
scale vessel and for its model. This task can be simplified if only 
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the transverse waves are examined, but the difficulties of carrying 
out full-scale measurements in an ambient wave system are well 
known. (In spite of their appearance to the contrary, Figs. 3 - 5 
were made early in the morning of a relatively calm day to ensure 
little ambient wave motion. The low rising sun in the model photo- 
graphs is explained similarly !) 

Turning to the wavy wall tests described in Section LV, we 
have attempted, without success, to verify a theoretical anomaly -- 
Howe's phase-jumps. It is an open question whether this failure is 
due to experimental error (an obvious possibility is the effective 
modification of the wavy wall shape due to viscous effects), or if, 

in fact, the phase discontinuity obtained by Howe is a consequence of 
pushing Whitham's slowly varying finite amplitude technique too far, 
with a solution which is not always slowly varying but contains local 
"singularities" or "shocks." It is not likely that this question can be 
answered by further experimental work, unless possibly a viscous 
correction can be incorporated in the model's shape (to allow for a 
turbulent boundary layer in the presence of a slowly varying sinu- 
soidal pressure gradient !). 

Finally, in Section V, we have outlined a nonlinear analysis 
of the Kelvin wave system which predicts an instability along the cusp 
line, but for which (unlike Howe's instability) the conclusion depends 

critically on a delicate avoidance of algebraic errors. Having thus 
gone out on a limb, I can only express the hope that independent 
verification is soon forthcoming. 
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Savitsky of the Davidson Laboratory, Stevens Institute of Technology, 
and the wave probes used for the wavy wall test by Professor Jerome 
Milgram of MIT. 
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DISCUSSION 

SOME DEVELOPMENTS IN SHIP WAVE PATTERN RESEARCH 

N. Hogben 

National Phystcal Laboratory, Shtp Diviston 
Feltham, Middlesex, England 

I. INTRODUCTION 

This note briefly reports two developments in ship wave 

pattern research. The first concerns progress in application of the 
'Equivalent Source Array' concept described in Ref. 1; the second is 
the development of a fully automated system of recording and 
analyzing the waves, a more detailed account of which is being 
prepared asi /Refs<2. 

II. EQUIVALENT SOURCE ARRAYS 

An 'Equivalent Source Array' means for the present purpose, 
a source distribution which according to linear theory would generate 
a given wave pattern. It can be used for evaluating and interpreting 
the correlation between wave theory and experiment and also for 
predicting the effects of wavemaking on changing tank width and depth. 

In Ref. 1, this concept was invoked to interpret wave pattern 
measurements behind 2 series of 3 models with parabolic hull forms 
and systematically varied beam. More recently, a similar investi- 
gation has been made of the wave patterns behind 3 trawler type hull 
forms (aparentand 2 derivatives) tested by Everest (Ref. 3). In the 
case of these more realistic models, the 'equivalent source arrays’ 

were found to vary significantly with speed as indicated by the sample 
results for one of the models shown in Fig. 1. It may be seen that 
sources and sinks appear at a distance ahead of the bow which in- 
creased with increasing Froude number. This effective lengthening 
of the array may be explained in terms of 2nd order increases of 
wave phase velocity due to nonlinearity of the waves generated in the 
bow regions. 

III. AUTOMATED RECORDING AND ANALYSIS 

A prototype for a fully automated recording and analysis 
system has now been developed and operated. It comprises a station- 

ary array of 4 capacitance probes with paper tape output and a com- 
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MODEL 4890 

—— SOURCES 

— — —)— — EXPERIMENT 

a 

| 

0-25 030 035 0-40 0-45 0sO0 0:55 

Fig. 1b Wave pattern resistance 

puter program which analyses the tapes as punched by the recording 
digitizer. The probes themselves are as described in Ref. 4. The 
computer program uses the Matrix method of analysis developed 
with this application in view and described in Refs. 4 and 5. It works 
by a least square fitting of an appropriate function to the wave sur- 
face defined over a suitable grid of positions. 

Some sample results for a 20 foot model of one of the trawler 
type models tested by Everest (Ref. 3), are shown in Figs. 2 and 3. 
Fig. 2 is a copy of part of a computer output. At the top a tabulation 
defining the wave ordinates Z(X,,Y,) 'as measured! by listing R, 
Xp Yr and Z (R isaserial number, Xp, Yp are longitudinal and 
transverse coordinates respectively in feet, and Z is the wave 
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R X Y Zz 

1 25.218) + (8.0005 st 1643 

2 + 25.436 + 6.000 + 0.244 

B “+ 2'5.653 + 4.000 + 0.722 

4, 4°25.871 + 1.333 + 0.893 

5 + 26.307 + 6.000 + 0.7 

6 + 26.524 + 4.000 

tt 26.042. 95 1.2 

PARE WAC 

22 0.739 

146 + 5%. + 1.333 - 0.623 

147 + 60.058 + 8.000 - 0.538 

148 + 60.275 + 6.000 - 0.804 

149 + 60.493 + 4.000 + 0.353 

150° + 60.711) + 1.333 = fit 

CASE 535.100 SPEED 8.710 

N THETA AN By 100DC AL F. Fo 

0 00.00 0.695 -1,112 0.0608 08.481 -0.0371 0.0232 

1 32.09 -0.460 -O.111 0.0051 10.019 -0.0030 -0.0124 

2 45.87 -0. 636 0. 683 0.0235 12.191 0.0319 -0.0298 

3 53.12 -0.127 0.218 0.0019 14.144 0.0166 -0.0097 

4 57.70 0.005 -0.277 0.0024 15.887 -0.0334 0.0006 

5 60.92 -0.028 -0.397 0.0050 17.468 -0.0748 -0.0052 

6 63.35 -0.048 -0.217 0.0016 18.923 -0.0635 -0.0139 

7 65.25 -0.137 -0.021 0.0006 20.276 -0.0093 -0.0620 

8 66.80 0.056 0.145 0.0008 21.546 0.1011 0.0387 

9 68.09 0.076 0.068 0.0003 22.747 0.0728 0.0812 

10 69.18 0.185 0.038 0.0012 23.888 0.0621 0.3033 

11 70.13 -0.068 0.047 0.0002 24.977 0.1174 -0.1708 

12 70.96 0.003 -0.082 0.0002 26.021 -0.3172 0.0100 

13 71.68 -0.074 0.063 0.0003 Zils O25 0.3709 -0.4387 

44 72.35 -0.021 0.062 0.0001 27.993 0.5631 -0.1856 

[ This is to be compared with 100C W=0.09375 obtained by 
100CW= 0.1041 Everest with 15 foot model of the same form (Ref. 4).] 

R x Y CZ DZ 

1 + 25.218 + 8.000 + 1.661 + 0.018 
2 + 25.436 + 6.000 + 0.194 - 0.051 
3 + 25.453 + 4.000 + 0.764 + 0.042 

1,333 + 0.852 - 0.041 
+ 

pyar 

59.840 + 1.553 Uli 478 

147 + 60.058 + 8.000 - 0.502 + 0.036 

148 + 50.275 + 6.000 + 0.766 - 0.038 

149 + 60.493 + 4.000 + 0.607 + 0.254 

150) #_ 60.7145 F 15333 = OF7693 + 0.418 

RMS RESID 00.163 RMS Z 01.080 

Fig. 2 Sample computer output 
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elevation in inches). In the middle is a tabulation of wave spectrum 
parameters accompanied by the resulting wave resistance coefficient 
100 Cw. The first 4 columns define the amplitudes and resistance 
contributions of the various wave modes in notation which corresponds 
to that used for example in Ref. 4. The last 3 columns define functions 
used for computing ‘equivalent source arrays' in notation explained 
in Ref. 1. It may be seen that the resistance coefficient 100 Cy checks 
reasonably well with a result obtained by Everest for a smaller model 
of the same form, using manual pointers on transverse cuts analyzed 
by the method of Eggers (Ref. 6). 

At the bottom is a tabulation defining the wave ordinates CZ 
(Xp-° Yr) 'as fitted' in the same format as the 'as measured’ results 
but with an extra column listing the difference between measurement 
and fit. Fig. 3 shows a sample profile plotted from the computer 
output. 

=o AS MEASURED: 

—_§\f--——_ AS. FITTED’ 

3 

PROFILE AT y=|-333 FEET FROM TANK CENTRELINE 

Fig! 3 “Profile at» y ="1.533 feet from tank centerline 
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VARIATIONAL APPROACHES TO STEADY SHIP 
WAVE PROBLEMS 

Masatoshi Bessho 
The Defense Academy 

Yokosuka, Japan 

INTRODUCTION 

Although there have been many fruitful. engineering applica- 
tions of the theory of the wave-making resistance of ships, it is still 
not possible to completely explain the wave resistance of the usual 
surface-piercing ships. The so-called order theory gives us insight 
into the structure and composition of our approximate theory; however, 
we do not yet have a consistent and practical theory which is univer- 
sally acceptable. 

The author has speculated on what would be the best approxi- 
mation to our boundary value problem. In this connection, is there 
a useful principle which corresponds to the Rayleigh- Ritz principle 
in the theory of elasticity? The present paper will provide a partial 

answer. 

Our first aim is to introduce a variational principle which 
corresponds to the linearized boundary value problem. This is 
accomplished by introducing Flax's expression from wing theory. [ 6] 

Our second aim is to find an alternate expression which will 
enable us to treat blunt bodies, since Flax's method is useful only 
for thin wings. Gauss' variational expression [ 24,25] for the 
boundary problem of a harmonic function is introduced for this pur- 
pose. This is shown to be equivalent to extremizing the Lagrangian 
or kinetic potential. The resulting dynamical interpretation of the 
boundary value problem is similar to the approaches of many other 
authors who have studied free surface problems by using the 
Lagrangian [| 3,12,13,14]. 

I. FLAX'S VARIATIONAL PRINCIPLE 

The variational principle introduced by A. H. Flax in wing 
theory [6] may be directly applied to our problem. Those unfamiliar 
with this principle are directed to Appendix A. 
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If the Kutta-Joukowski condition |6,7,8] is satisfied at the 
trailing edge, we have the reciprocity relation 

‘i pw dx ay= | { pw dx dy (f.1) 
S S 

by (A. 8) and (A.24), where p is the pressure, w is the vertical 
velocity component, and tildas denote reverse flow quantities. The 
integration is over the wetted portion of the ship hull S. 

Let C(x,y) be the free surface elevation. The variation of 
the integral 

1299 [tw - Be, - Bul ax ay (1.2) 
S 

due to variations of p and p takes the form 

51: = iy [ 6p(G, -w) - 6p(%, + w)] dx dy. (1.3) 
S 

Since the variations 6p and 6p are arbitrary, the pressure which 
extremizes the integral I is equivalent to the solution of the boundary 
value problem (A.25) and (A.26); that is, the problem for the pertur- 
bation potential $ with the conditions 

6, = -we ¢, 
(1. 4) 

t= W= -4, 
x 

on the free surface. The stationary value of I is the drag; namely, 

[1] = SS pb, dx dy, (1.5) 

where p, denotes the correct solution. [6,24,26] Thus, the bound- 
ary value problem is converted to a variational problem, the solution 
of which is suggested by various methods of approximation. |[ 6] 

If we introduce the error integral, 

* ms E -{f (p - p,)(® - &,) dx dy, (1.6) 
S 

we see from (1.1), (1.4), and (1.5) that 
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Deer ee (1.7) 

Therefore, Flax's principle produces an approximate solution which 
makes the error integral (1.6) stationary. [23] 

This method suggests powerful means for obtaining approxi- 
mate solutions, but unfortunately it has been applied only to thin 
hydroplanes and wings. [ 7] 

Il. GAUSS' VARIATIONAL PRINCIPLE 

In this section, we assume there is no free surface. Then 

the velocity potential has the following representations for the source- 
sink and doublet distributions: 

o(P)= 355 J) aE 45(2), $2 04eteee Veet) 

and 

oP) = a5) Hi (Q) & AES 4512), PeO; 422,600 ee) 

Here, quantities with the suffix zero stand for the correct solutions 
while those with other suffices are not necessarily correct. For these 
potentials we have the following reciprocity relations: 

\{ oo, dS -\{ To, as; (223) 

S S 

i Poo) dS = pF b,O,,dS, (2. 4) 

Ss Ss 

ia $15, dS -{f $6), dS. (2.5) 
Ss Ss 

Gaus s's variational principle for the Dirichlet problem states 
that if we consider the functional 

and 

G =3/ (b - 2f)o0 dS, (2. 6) 
S 

where 
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f=%, is givenon S, (Zea) 

then the function which gives the maximum value to G is the solu- 
tion of the Dirichlet problem. [9,10] This is easily verified by 
making use of the reciprocity (2.3). 

In the same way, we may construct a variational principle for 
the Newmann problem as follows: Let us consider the extremum 
problem for the functional 

= ant (6, - 2f,)y dS, (2.8) 
$ 

where 

f= Oo, 18° givenron (Si (2.9) 

This problem is seen to be equivalent to the present boundary value 
problem by making use of (2.4). 

Alternately, we may construct a variational problem by making 
use of (2.5); namely, by introducing the functional 

J= an $(2f, - ,) ds, (2, 10) 

and taking the variation, we have 

6J = a S4(f, - $,) dS. (2.44) 
S 

From this we see the equivalence to the boundary value problem. 

[ 24,25] 

Now, since 

G0, eraas= $06 vaive, ar ety 
where D is the entire water domain and d7 is a volume element, 

a natural measure of the error of an approximate solution 96 is 

ey [Vib - 9] ar, (2.13) E 
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which becomes 

E= Ane (o i bo) (>, - bo, dS = J a J; (2. 14) 

by Green's theorem. Here, 

Jo -3(( Mobo, dS (2, 15) 
S 

is the correct value. We see clearly that 

SE = - 6J. (2.16) 

Since E is non-negative, we have the inequality [ 10] 

t,o. (2347) 

It is well-known that among all functions $ having a finite 
energy integral, 

2 
r=3((( [Vo] drt, (2.18) 

D 

and a given normal derivative on S, the one which minimizes T is 
a harmonic function [1,4]. Accordingly, if we solve this minimiza- 
tion problem, say by the relaxation method, we have the inequality 

ea en eles (2.19) 
fe) 

This is the dual of (2.17) and we now have the variational problem 
(2.7) as an involutory transformation of the latter minimization prob- 
lem. (See, for example, the textbook on variational calculus [11] .) 

Ill. A VARIATIONAL PROBLEM FOR THE LAGRANGIAN 

The preceding principle can be easily extended to flow ina 
gravitational field. Let us consider the functional 

L=T-V, (3.4) 

where 
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A annie Ive] dt (3. 2) 

and 

v= 8 O° dxidy (3.3) 
F 

are the total kinetic and potential energies, respectively. L is just 
the kinetic potential or Lagrangian. [5] Assume that the function 
@ has a given normal derivative 

dy=-xXy on S and F. (3. 4) 

Taking the variation of L, we have 

6L= any $V 8h dT al $56, dS + 

si [ 656, + {(374)* - gt}6v] ds. 

Making use of (3.4), which is also true for the new deflected free 

surface, we have 

ai=-\|( $v so dt + an pév dS, [3,14] (3.5) 
D 

where 

p/p = - 6, - 3(Vd) - gh. (3. 6) 

Hence, if the pressure at the free surface vanishes, the 

stationary value of L will be attained when 6¢ is harmonic. This 
is just an extension of Kelvin's minimum energy principle. [1,4] 

On the other hand, if 6¢ is harmonic, then the stationary value 

of L is attained when the free surface pressure is constant and 
zero. The latter is an extension of Riabouchinsky's principle of 

minimum added mass. [3,14] 

The variational problem can be transformed so that the con- 
straint condition is converted to a natural condition. Let us adda 
term which is zero at the stationary point. Consider the functional 
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P=T- v-\ (xv + o,) dS. (3. 7) 
S+F 

Assume that $ is harmonic and, for simplicity, assume that the 

integral over an inspection surface at infinity vanishes. Making use 
of Green's theorem we have 

p= - SVG Cont uvorl ar - 89 0? ax ay 

= ait p dt + Const, (3. 8) 
p D 

where 

Const = §'( H? ax dy -3{\ z* dx dy, (3.9) 
S 

and H is the depth to the bottom. 

Taking the variation, we have 

4 6P = SS. pév dS - SS. 5o($, + x,) dS. (3. 10) 

Therefore, when 

p=0 on F and $,+x,=0 on S and F, (3.41) 

P is stationary. This result was first given by J. C. Luke [12,13], 
who pointed out that the volume integral of the pressure is equivalent 
to the Lagrangian. 

Furthermore, we may write (3.8) as 

P=M-H, (3.12) 

whe re 

H= Tt V (3.13) 

and 
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M = - (Ah oy dT. (3.14) 

M is the total momentum of the system in the x-direction and becomes 
equal to twice T, 

M = 2T = ae éx, dS -{{ oo, dS, (3.15) 
StF S+F 

when 96 satisfies the boundary condition. 

Hence, 6P=0 means that 

6H = 6M. (3.16) 

That is, when the variation of the total energy equals that of the total 
momentum in the x-direction, the potential satisfies the boundary 

conditions (3.11). 

For purposes of application, it may be convenient to write P 

as 

P=- ({ (x, + 46,) dS - g(( OF se doy. (3.47) 
S+F F 

This principle is applied to a regular, two-dimensional wave- 
train in Appendix B. In general, there is some difficulty in the appli- 
cation of this theory since the integrals P and L may not be finite. 
This is because the kinetic energy exceeds the potential energy for a 
finite amplitude wave. [1,2,4] 

One way to bypass this difficulty may be to assume a flow 
model like the Riabouchinsky model [3] in cavitation theory (see 
Fig. 2); however, this may be impossible in the three-dimensional 

case. Another way may be to introduce Rayleigh's friction coef- 
ficient so that the waves far downstream will die out. In any case, 

there are still some problems which make us hesitant to begin the 
actual numerical computations. 

Finally, let us consider the linearization of the free surface 
condition. Neglecting higher order terms in the integral over the 
water's surface and assuming that 

go(x,y) = - 6,(x,y,0), (3.18) 

we have 
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(a) 

(b) 

L: SUFFICIENTLY 

LARGE DISTANCE 

Fig. 2. Riabouchinsky Models 

P=P-.+P,, 

where 

Poe Sf. (x, + $4,) dS, 

and 

Pe = - 4). (xx + goz) dS. 

Accordingly, if we set 

xx + go, = 0 on F, 

which is just the dynamic boundary condition, then 

and we are left with a variational calculus problem for Py ° 
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IV. THE LINEARIZED PROBLEM 

The variational problem for Pg (3.20) is not satisfactory 
since there is no reciprocity relation for this form. We must intro- 
duce the reversed flow potential as was done for Flax's principle. 

Let us consider the integral 

Tete e) = Ll" Go.4) = - Sy Vo,Vo, dT - aS C05 dx dy.44o8) 

Assuming that 9, and $5 are harmonic and satisfy the free sur- 
face condition, we have, by Green's theorem, 

L*($,,) =-2 \h, $140, 4S =-% Mi ox, ds, (4. 2) 

where S is the surface of a submerged body. This is the recipro- 
city theorem for a submerged body. [8] 

If $,= - $,, then 

1*(,) = +\ i bb, dS = L(, 4), (4. 3) 

where 

L($,9) = 3 aa (74) dr - g(( 1 dx dy. (4. 4) 

* 
L_ is called the modified Lagrangian integral [5]. Note that L(¢, 9) 

has a finite value in the linearized case but not in the finite amplitude 

case. 

If S is the wetted part of a surface-piercing body which is 

under the waterline before the free surface is disturbed, there is an 

additional term from the surface integral. [15,16,19,20,21] The 

reciprocity theorem, in this case, is 

oa ‘f bib dy - a\t $192, dS 

rf $6, dy -2 i $,6,, dS. (4.5) 

L*(4,,6,) 
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When 4, = 9, $52 @ and ¢$,=-+x,, Tae becomes 

1 (6, 8) Se \ oLx, dS + aft ox, dS, (4. 6) 

where n is the inner normal to the waterline curve L inthe hori- 
zontal plane. Thus, the first term in the right-hand side of (4.6) is 
the correction for the change of the wetted surface S. [16] This is 
justified, on the one hand, by the dynamical meaning of the Lagrangian 
and, on the other hand, by the linearization procedure of the pre- 
ceding section. 

For the case of a pressure distribution over the water surface, 

we may integrate (4.5) by parts and make use of the formulas in 
Appendix A. This results in the expression 

-2 ae 15 dx dy = af. $.,6, dx dy 

i : 1 x 
a4). [P, + pgt|c, dx dy = 75, [P, + pgt.|t, dx dy. 

(4. 7) 

1*($,, 90) 

Thus, the reciprocity becomes [ 8] 

S (pice) = taxdy= tll 52 dx dy (4.8) P, »Po 2p s P, 2 yy. 2p S 2 | 

where 

£*(p,.B,) = 116.4) - all tt, dx dy. (4.9) 

Making use of these reciprocities, we may easily show the 
equivalence of the boundary value problem to the variational problem 
for the functional I”, where 

i a [ $6, - (@ - $)x,] as, (4. 10) 

for a submerged body, and 

* 
I =- a [pe "(b= pit de dy, (4,11) 

Puvs 

for a pressure distribution. [ 24,26] 
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Alternate representations for these integrals are 

To sd (bordel eD (bos Ooh): (4, 12) 

2K 2k ~ * ~ ~ 

I = (po,Po) - £ (p - pos Pp - Po), (4.13) 

where the suffix zero stands for the correct solution. These for- 
mulas show that the variational principle extremizes the Lagrangian 
of the error and that the stationary values are just given by the 
Lagrangian. 

The difficulty arises in the case of a surface-piercing body. 
From (4.12), the functional to be extremized is 

* 
I = - 16,4) +a ($£0- $f) dy + =e) ($ - $)x,dS. (4.14) 

Taking the variation, we have the boundary conditions equivalent to 
this variational problem, 

>y= - glo $,= 8% on L, (4.15) 

by= - Ove -Xy,y on Se. (4.16) 

But we have no knowledge of the surface elevation on L, a priori, 
as this problem may be indeterminant. [17,23] We must remember 
here that the solution is unique only when the detachment points are 
fixed by the theory of cavitation. [3,14] 

This difficulty may be avoided by introducing a homogeneous 
solution for the two-dimensional, linearized case (see Appendix C). 

For the present case, we might proceed as follows: Let us 
consider the difference between a surface piercing body and the 
limiting case of a submerged body moving very close to the free 
surface as in Fig. 3. [23] The boundary condition on the water 
surface above the submerged body must be 9, = 0, but since the top 

is also the free surface, this is equivalent to 

>, = &x(x,y) =O on aoe (4,17) 

or integrating, we have 

o,(x,y,0) = - g€(x,y) = Const = func (y) on FF. (4.18) 

558 



Variattonal Approaches to Steady Shtp Wave Problems 

(a) SUBMERGED 

OT ae 
\ YU) 

(b) VERYSLIGHTLY SUBMERGED 

(c) SURFACE PIERCING 

Fig. 3. Slightly Submerged Ship 

This formula shows that there may be a thin layer of uniform flow 
over the top of the submerged body. 

When this layer moves with the body, 

$x(x,y,0) = - go(x,y)=-1 on F, (4.19) 

and we clearly have the case of a surface-piercing body. 

On the other hand, the boundary value problem of a submerged 
body is equivalent to the variational problem (4.10). After solving 
this problem, we may calculate the surface elevation over the top 

water plane by (4.18), but it will differ from (4.19), in general. 
In this case, it might be necessary to introduce another potential 
which satisfies condition (4.19), in addition to the above potential. 
This procedure may not be practical because the treatment of the top 
water plane is difficult. 

In this case, it would be more convenient to consider the follow- 
ing two boundary value problems: Let us split the velocity potential 
into two parts, 

d= 6, +, (4, 20) 

with boundary conditions 
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>, = 0 on LL 
(4. 21) 

>, =- Xy on S 

to = Lo = Leo, given on L 

(4. 22) 
$9,=9 on S 

The corresponding functionals are of the form (4.10) for 9), 
and of the form (4.14), without the third term on the right-hand side, 

for Oo. 

For the present case, 4) must be equal to 1/g by (4.19); 
however, in general, it will be arbitrary and, perhaps, a constant 
oa form (4.18). ¢$. is called the homogeneous solution. {18,22, 

26 

Finally, it should be noticed that the Lagrangian is closely 
related to the far-field potential. For a submerged body, we have, 
from the boundary conditions, (A.9), (A.41), and (4.3), 

B : i xxy dS + 21($, 9) 

if) 2L(>,9) + V, (4. 23) 

where V is the displaced volume. For a surface-piercing body, 
interpreting condition (A.10) as a correction for the real wetted 
surface, we have 

iv xg,as +i x, dy =V, (4, 24) 
s EYL 

where V is the displacement volume under the still waterline. 
Therefore, we can write (A.1i1) as 

B=V +21 (9,6, + $), (4, 25) 

where 9, and $9 are defined by (4.21) and (4.22), with C,5= Wierd 

For a pressure distribution, we have, from (A.18) and (4.8), 

B = 2p "(p,P,)s (4. 26) 
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where pz, is a homogeneous solution, as is 5, and to= tg 
Since B is also a measure of the total lift, this formula shows that 

the homogeneous solution for the constant surface elevation influences 
the lift, as we have easily verified by the reciprocity (4.8). [ 26] 
It should be noticed that, in this case, the condition A=0 in (A.18) 
insures the continuity of the planing hull. 

Kotchin's function (A.17) is also given in the form 

a) wo-- $f 
where ‘by has the boundary values 

6.x, dS =| o.6 dy + 2L.°(6,%), (4. 27) 
L 

Pay = ~ Per ede Ss 

and (4. 28) 

~ 

gt, = ee mS Pay on L 

@qis called the diffraction potential. [23,26] Here, the second term 
of (4.27) may be omitted as in (4.25). 

For a submerged body, there is no integration along L and 
H may be written as 

H(6) = - ae (be + dy)x, dS. (4. 29) 

Finally, for a pressure distribution, 

H(0) = 2p£"(p, py) (4. 30) 

where 

a oe (4.31) 
d g ex 

V. CONCLUSION 

We have presented two variational principles for the boundary 
value problem associated with the waves of a ship advancing at a 
constant speed: The first is Flax's principle, which makes use of the 
stationary character of the drag. This principle is useful only for 
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planing boats or for submerged thin wings. [6,24] The second is 
based on Gausz's principle, which converts the boundary value prob- 
lem to a variational problem. This method is shown to be an exten- 
sion of Riabouchinsky's principle of minimum virtual mass. [3,24] 

The latter principle is based on the stationary character of 
the Lagrangian and has recently been used by Luke, in a more general 
form, to study water wave dispersion problems. [3,12,13] We 
also have analogous principles for light and sound wave diffraction 
and for the radiation of energy due to the heaving, swaying, and 
rolling oscillations of ships. [25,27,28,29,30] 

The variational principles emphasize the dynamical meaning of 
the boundary value problems and permit us to solve them approxi- 
mately by the Rayleigh- Ritz-Galerkin procedure. [6,28,29] How- 
ever, when we try to apply these principles to our problem, there 

are two difficulties: 

The first is that our system is not conservative because of 
the trailing wave. This may be bypassed by introducing an artificial 
model, as in Fig. 2, or by introducing a reversed flow for the 
linearized case. 

The second difficulty is for the surface-piercing body, in which 
case the wave profile is not known, a priori, even in the linearized 
case. This difficulty may be avoided by introducing homogeneous 
solutions [27] which appear in the case of a surface pressure distri- 
bution. [ 26] 

Finally, although a variational method does not necessarily 
represent a new method of analysis, it does suggest new methods of 
approximation. For this reason, it may be useful, especially for 
engineering purposes. 
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APPENDIX A 

The Linearized Velocity Potential [2,23] 

Let us consider the flow of water around a ship S, taking the 
coordinate system as in Fig. 1 and the velocity of the stream at up- 
stream infinity to be unity. 

x 

We Vee tir amtevs 
(UNDISTURBED) 

) ow, ss ae a —_ 
yf 

Fig. 1. Coordinate System 

The pressure p(x,y) on the water surface is given by 

= (x,y) = - $,(x,y,0) - g&(x,y), (A. 1) 

in the linearized theory, where p is the water density; g, the 

gravity constant; (€, the surface elevation, and 9, the perturbation 
potential (d@= -udx-vdy-wdz). The suffix stands for differ- 

entiation. 

The kinematic condition on the water surface is 

$(x,y,0) = € (x,y). (A. 2) 

Since the pressure on the free surface is constant, the potential 
must satisfy the condition 

$,,(x»y 29) + go(x,y,0) = 0. (A. 3) 

A solution which has a source singularity at a point Q and 
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satisfies the above water surface condition can be expressed as 

t tl - & lim 

(P,Q) ” (pO) My +0 

T fo) k(z4z') +ik(@+ @') 
, e dk dé i fre ne co 

“Tr k cos*6 - g tyul cos 8 

(A. 4) 

where P= (x,y,z), Q= (x!,y'sz'), C= (Ov laee )s r(P,Q) = PQ 

and w=xcos@+ysin®@, w'=x'cos@+y'sin 0. Hereafter, we 
will call this the fundamental singularity. This solution approaches 
the following values. asymptotically: 

4 1 1 
(P.O) eae eo) tea FY (A. 5) 

x>>x! 

2 
f x sec O{(z+2') +i(@+")} 2 

S(P,Q) ame E tm ec“0 dé. (A.6) 
x<<x! om /2 

By considering the integral 

VV tetarse ay - (Q)SAP,Q)] dS(Q) 

about a point P in the interior of the fluid, we have the expression 

$(P) -{( [$,S - $S,] ds. 
“S+F 

Since $ and S satisfy condition (A.3) on F, we have, finally, 

$(P) -{f [ ¢(Q)S(P,Q) - HQ)S,(P,Q)] d4s(Q) 

- +, [ (Q)S,(P,Q) - $(Q)S(P,Q)] dy', (A. 7) 

where L is the curve on which F cuts S. 

When the water motion is due to a pressure distribution over 
the water surface, we have 

#(P) = 254. p(Q)Sy(P,Q) dx! dy", (A. 8) 
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where we have used (A.1) and integrated (A.7) by parts. We have 
also assumed that the potential and surface elevation are continuous 
over S and F, including L. 

Making use of asymptotic characters (A.5) and (A.6) of S, 
we obtain the asymptotic expansions of ¢$ as follows: 

He) Sst ter At EP» (A. 9) 
2ur 

where r=FPO and 

a=\I s,as +4 6, dy, (A. 10) 
s BL 

1 B=(( Cax- oe) as-4) [o-xe) ay. 9 (att) 
s BIL 

The expression for A may also be written as 

= hae a 
A -\\'4, ds aa ,, dx dy ye $,, dS ane 6, dx dy, (A.10') 

by using (A.3). Thus A is the total outward flux from the water 
domain. This must be zero; otherwise, we would have a large source 
of the resistance other than from the wave and splash. 

We also have the kinematic condition on the surface of the ship, 

$,=-'‘x, on S-. (A.12) 

Therefore, 

SS. o, dS = - Mee x, dS = 0, (A. 13) 

where S is the wetted surface of the ship below the undisturbed 
water surface. From (A.10) and (A,13), we have 

1 = = = +f o, dy = i‘ GC dy =0. (A. 14) 

But this condition is not adequate in practical cases. One way to 
avoid this difficulty may be to take the real wetted surface as S. 
On the other hand, for the consistency of the theory, it may be 
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preferable to take 

x 
P) S34 eS B, 

instead of (A.9). 

Far downstream, we have 

27/2 

op) —co—t Im te(P,0)H(8) sec6 dO, 
-17/2 

where 

$(P,0) = exp[g sec’O(z + ia)] 

and 

1 
H(0) = 15) [ oo at be, dS - if ($,, a eq) dy. 

For a pressure distribution, we have simply 

A=0 

iy 
B =--—_—_ dx d s ped J p(x,y) y 

where 

4 
H(6) ane p(x,y),, dx dy. 

(A.9') 

(A.15) 

(A. 16) 

(A. 17) 

(A. 18) 

(A. 19) 

If the flow direction is reversed, the conditions corresponding 
to (A.1), (A.2), and (A.3) are as follows: 

1w~ ~ ~ 

ppixsy) = (x,y ,0) s gC(x,y), 

$,(x,y,0) = - t, (sy). 

and 
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$,,(%,y +0) t go,(x,y,0) = 0, (A. 22) 

so that the fundamental singularity is the same as that for the direct 
flow, except that the wave follows on the downstream side. This may 
be expressed as 

S(P,Q) = S(Q,P), (A. 23) 

we also have 

S\(P;Q).= 5,(@,P). (A. 24) 

The boundary conditions for this case are 

y=-o)=xXy,y on S, (A. 25) 

$,=-w=-6=w=-f, on S. (A. 26) 

APPENDIX B 

The Progressing Wave 

Let us obtain the solution for a periodic progressing wave, 
moving at constant unit speed, by the variational method of §3. 

We take the form of the complex potential to be 

o tiv = - ia exp (kz - ikx), (B. 1) 

where the origin is on the undisturbed water level. 

The integrals to be evaluated are 

‘ w/k fe) 

P=M-T-V, tye. ax | o, dz, 
e -w/k -0 

(B. 2) 

1 = 4 2 1 a 2 
ee |e (V 4) dx dz, ries ar ax; 
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where 21n/k is the wavelength. 

Assuming a surface disturbance of the form, 

{ =b + ¢ cos kx +d cos 2kx, (B. 3) 

and integrating the expressions for M, T, and V, we have 

2 
1 d k 2 2 2 5M = neal 1 +k(b +5) +--(c* + 4b° + 2a" + Abad], 

1 ae 2.2 2 3 2 T= [1 + 2kb tki(c + 2b +d) +k°c*(2b + d)], (B.4) 

trp me ee 2 -V= 3 lc +a + 2b). 

Differentiating P with respect to a,b, c and d, and equating 
the derivatives to zero (by the principle (3.16)), we obtain the follow- 
ing stationary values, neglecting higher order terms: 

22 
= a(1 arr ee a i} 

8 

Be Ol). 
(B. 5) 

dy 5ka’, 

g/k=1 - k*a’, 

k p22 a ee 
a7 5 ea (4,-+ kre pi; 

evs BE M1 +5 Kec?) (B. 6) oT D 4 9 e 

k . a Pg ess 
Sarah oe ote 

These expressions agree with other well-known results. [1,2] 
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APPENDIX C 

A Variational Principle for the Stream Function 

In the two-dimensional case, we may use a stream function 

instead of the velocity potential. Let us introduce the stream 
function as follows: 

O(x»Z) = U,(x.2), ,(x,z) = - p(x,z). (c.4) 

Then, the boundary conditions for become 

(x0) - g(x,0)=0 and  Y,(x,0) - gib(x,0)=0, — (C.2) 

Wlx,z)'=- b(x,z)=-2 “on S, (Cs) 

C(x) = - W(x,0) and &(x) = U(x,0). (C. 4) 

Introducing a modified Lagrangian integral, 

* - « a ~ 
L (Wy >) = -4 Sf. Vp Vb, dx dy - ral CS, dx, (C. 5) 

F 

we have, directly, the reciprocity 

L(y, 09) = sc ,) 

(C. 6) 

i Yi bou ds - Yet, ds 
s s 

In particular, from (C.3), 

L(y.) = - 4 \. Uso, AS = - 4 \ zp, dS = aN Yolo, IS 

=4 I Tue) dx dy - ral to dx = L(bo, Ho). (C. 7) 
J dp F 

The variational problem with the function 
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I” = L"(Yorto) - L(h - Gord - Ye) 

1 rw ~~ ~~ 

= a) (Web, - Yoby - Yoh) dS. (C. 8) 
Ss 

is equivalent to the boundary value problem for yw Here, the 
boundary values, Wo and wo, are given by (C.3). Since a stream 
function has an arbitrary constant, we should also consider the 
modified problem with boundary conditions 

Wo=- Wo = C: constant on S, (C.9) 

which is the homogeneous problem. [ 22] 

If condition (C.9) holds, the surface elevation at the fore and 
aft ends is C (instead of zero for the condition (C.3)), but the x- 
component of the velocity at the same points is-(1 +gc), by (C.2). 
Hence, the water flows in and out the body unless C=-1/g. Thus 
an adequate condition for a surface piercing body is 

w=-z-— on S&S. (C. 10) 

Throughout this section, we have treated a class of functions 
yw and { which are finite and continuous everywhere. As long as 
the integrals considered exist, the method may be applied with some 
minor changes to other classes of functions. 

The question of the uniqueness of solutions will be left to the 
future. 
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WAVEMAKING RESISTANCE OF SHIPS 
WITH TRANSOM STERN 

Be. Yim 
Naval Shtp Research and Development Center 

Washington, D.C. 

ABSTRACT 

The wave resistance of ships, having transom sterns 
and bow bulbs, is analyzed by an indirect method. 
The total wave resistance of a combination of singu- 
larity distributions for such ships is minimized with 
various parameters of the bulb and the transom stern 
at each Froude number. The effect of free surface on 
the body streamlines near the stern is also analyzed. 

INTRODUCTION 

There has been an increasing interest in ships having transom 
sterns ,not only for high-speed ships like destroyers but also for 
cargo vessels, because of the advantages of more cargo room as 
well as modern improvements in techniques of loading and unloading 
cargoes over the stern. Recently a theoretical study was made by 
this author [1], and a mathematical model was suggested in view of 
applying a higher-order ship-wave theory [2]. In this paper, we shall 
look at the problem again from a different angle, i.e. , approaching 
the problem in a more practical manner. 

There are usually two approaches to the ship hydrodynamics 
problems, direct and indirect. In the direct approach one starts 
with a given ship and finds a corresponding mathematical representa- 
tion for it, then, calculates physical quantities, and verifies the 
results by experiments. On the other hand, one could start with a 

mathematical model such as a singularity distribution, and calculate 
the physical quantities of the model, find the corresponding ship form, 
check the behavior with the experimental results, and utilize the 

knowledge in designing practical ships. This is an indirect approach. 
Both approaches are useful in the development of ship science. In 
Reference 1 by a direct approach, it was found that the transom stern 
might be represented by a sink line along the stern, having a strength 
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proportional to the stern draft. Now, we would like to use the in- 
direct approach to the transom stern theory. Noting that a sink line 
on the free surface is tantamount to the constant pressure distribution 
ahead of the line and that it produces a negative cosine regular wave 
and a depression in the free surface immediately behind the sink line, 
we expect to get streamlines similar to the transom-stern ship from 
a combination of a normal ship-singularity distribution and the tran- 
som sink. 

First the free-surface streamline due to a two-dimensional 
sink line is plotted to establish the validity of this model, which will 
be used later for plotting the streamline near the transom. Then, 
several simple original ship singularities are considered so that 
basic ship models can be modified to those having transom sterns. 
Since the transom sink is supposed to behave like a stern bulb [ 1] 
to cancel stern waves, a bow bulb [ 3,4] made of a source is also 
considered together with the stern sink to cancel bow waves as well 
as to supply source strength which helps form a closed body. Thus, 
optimum strengths for the bow bulb source together with the transom 
stern sink are calculated to minimize the total wave resistance. 

The wave resistances with and without the bow bulb and the 
transom stern are calculated. The Sretensky formula for wave 
resistance is used since it is much simpler to program in the high- 
speed computing machine than the Havelock formula. Finally, 
approximate waveforms near the stern are investigated, which will 
help in designing a good afterbody near the transom stern. 

This is part of a project in which the ultimate goal is to under- 
stand more the physical meaning of a transom stern in the wavemaking 
resistance of a ship; to obtain better design criteria for ships with 
transom sterns; to find out the possibility of an improved ship design 
with the gained knowledge, and, hopefully, to design a good ship with 
a transom stern, making full use of high-speed computers as well as 
testing the model in a towing tank. 

Although this is a small part of ship-designing problems, it 

is not easy to complete ina short time. At this stage, it is merely 

hoped that this paper will achieve several objectives: (1) to validate 

the mathematical model of a ship having a transom stern as a stepping 
stone to analytical investigation of transom sterns, (2) to determine 

the practical ranges of parameters within which the application of 
bulbous bows and transom sterns would be beneficial, and (3) to 

initiate a computational procedure which would be used for an overall 
design program using a high-speed digital computer. 
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Il. A SINK ON THE TWO-DIMENSIONAL FREE SURFACE 

Lamb [5] showed a formula for the free-surface shape due to a 
point sink with the strength M located at x =0, y = 0, moving with 
constant speed U to -x direction on the free surface, where +x 

is on the mean free surface pointing right, and ty points vertically 
upward. The wave height is 

mx 
Z 

where 

Gee 

720 -mx 

Ky | fe Cin {3 - Si kx) cos kpx + Ci k,x sin kox} 
3 m* +k-e zZ 

in sd>"0 (2) 

oe es oat (3) 

6 Ge geen eo (4) 

y = 0.577215665 (5) 

and g is the acceleration of gravity. If this is compared with the 
wave height due to the distribution of constant pressure p, on x<0O, 
it can be easily seen that 

(6) 

holds. Thus, from the Bernoulli equation the form of the free surface 
in x<0O can be given by 

00 mx 
ee, k : n=-Bo(i+ kal —z—z dm) , in x<0O (7) 

Pg 0 EK, 

The wave height for x= 0 is plotted in Fig. 1 and it clearly shows 
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Fig. 1. Stem Waveform by a Sink Line Transform Stem 

the appropriateness of this flow model in the vicinity of the transom 
stern. The integral term is the local disturbance which dies down 
rapidly with aie and the expression of n in x <0 can be inter- 
preted as the body streamline of the half body which is formed by a 
sink on the free surface with a total flux equal to ut.»= upo/(pg) = 27M. 
This kind of two-dimensional half body was treated by Afremov[ 6] in 
investigating the flow near a transom stern, thus obtaining pressure 
distribution of the two-dimensional half body, 

y=-me, in’ x=0 (8) 

with the parameter a=0O. He obtained a sharp rise of pressure near 
the edge of the transom stern where the pressure is zero, the value of 
atmospheric pressure. This sudden rise of pressure at the stern can 
also be observed from experiments of planning ships [7]. 

However, the application of the two-dimensional analyses is 
generally valid only near the transom stern. In addition, in designing 
the afterbody near the transom stern, the investigation of hydrodyna- 
mic interactions between other parts of ship hull and transom stern 
is important, especially the superposition of ship wave systems from 
bow, stern, and any discontinuities of the hull; this will be discussed 
later. 

Ill SHIPS WITH TRANSOM STERNS AND BOW BULBS 

It seems reasonable to say that the general representation of a 
ship with a transom stern and a bow bulb may be achieved by com- 
bining singularity distributions: a source distribution along a given 
base surface with either point or line doublets or sources for the bow 
bulb, and a line sink distribution for the transom stern along a line 
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that is on the free surface, at the stern, and perpendicular to the 
ship centerplane. In the previous section it is known that the transom 
stern can be represented by a sink line at the stern, it is therefore 
natural to deduce that the sink could contribute in cancelling stern 
waves [1]. Since a moving point sink produces negative cosine regular 
waves behind, the proper main hull should have a hull shape that 
produces positive cosine stern waves. To investigate the best shape 
of transom sterns, in a simple way, we have chosen two simple bare- 
hull forms, represented in the Michell sense by the following equa- 
tions: 

B -1<x<0 
—~ | y, = 1 - cos (27x)+, in (9) 

oe 8 - <2 <0 

and 

-i1<x<0 
2Be 2 ; 

y iwi Santas +x‘), in (10) 
s -<2<0 

where L, B,, and H are the ship length, the beam, and the draft, 
respectively; (x,y,z) is the right-hand rectangular cartesian co- 
ordinate system with the origin 0 onthe free surface; the x axis is 
in the direction of the uniform flow velocity at infinity; and the z 
axis is vertically upward. The hull in Eq. (9) produces the favorable 
stern waves for the transom stern but has cusps in both ends and is 
called a cusped cosine ship here. The hull in Eq. (10) is rather a 
common parabolic hull form, not particularly favorable for the tran- 
som stern. The corresponding source distributions by the Michell 
approximation are 

o, = ge! sin (2mx) (14) 

in 

D({y=0,-1<x<0, - H/L<z <0) (12) 

and 

op = -syt(i +2x), in D (13) 

The theory of superposition can be allowed in the sense of the Michell 
ships. For convenience, we set 
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c=, +0, (14) 
with 

B=B, +B, (15) 

where B is the beam of a superposed ship. 

For the transom stern, a triangular shape of stern draft is 
considered as 

g=toy + HL, in 65 eA se (16) 

where @ denotes the deadrise which takes on a negative value for 
y <0, and a positive value for y>0O, 

Hs =. a7 (17) 

is the maximum stern draft; and @ is a parameter to be determined 
for the total optimum wave resistance. Following Ref. 1, the source 

distribution for the transom stern is taken as 

He = 
o, ron) ~ $+ ay ) (18) 

although actual shape of the transom stern corresponding to this 
source distribution will be found later by streamline plotting. In 
addition, a point source located at bow stern, x=-1, y=0,2=42, 

with the strength o, is considered as a source type of bulb that con- 

tributes to form a closed body with the sink distribution at the stern 

as well as to reduce bow waves. 

IV. WAVE RESISTANCE 

The wave resistance due to the source distributions mentioned 

previously can be written according to Sretensky [8] 

@ 
2 {ont 2b 2p ie 

pesca 35 —= » En eo (P +) (19) 

SoU L mio 7A oon | 

where 

gL 1 
k= 2S 

Ue Fe 

578 



Wavemaking Reststance of Ships with Transom Stern 

1 when sagt — (0, 

a (20) 
ts 2 when m2 i 

_ {i 1 47™ be /5ts f1+(5=) (24) 

Lw = tank width where the ship is tested, 

Pee) -{ o(x,y »z) exp} kb(zb tix) t+i2ty =| dS(x,y,z) (22) 

s 

‘Substituting in Eq. (22) all the source distributions for the 
bare hulls, the transom stern, and the bow bulb, and performing the 

integration, we obtain 

TT B, 

= _2 0 __2Be_\ 4 sin (kb)Ba] , P= E -cos (xb) ace 7: mer + SL E (23) 

| m 
P,= ——, {1 -cos(B,7— (24) 

Ww 

P, = cos (kb) exp (kz, b’) (25) 

_ wB, /(2L) 2Be2 Bo Bo 
Q, = [p= (kb) Pee = | + nmkbL +cos (kb) oa E 

(26) 

Q, — (0) (27) 

Q, = - sin (kb) exp (kz,b’) (28) 

where subscripts 1, 2, and 3 correspond to the bare hull, transom 

sink, and bow bulb, respectively, 

E= |t- exp (KO TH Se (29) 

'U 1 = P, +eP, +*)P, (30) 
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and 

Q=Q, taQ, +2, (31) 

with the functions P and Q evaluated and substituted into Eq. (19), 
the wave resistance may be minimized with respect to such parameters 
as @ and o,- 

V. OPTIMUM TRANSOM STERN AND BOW BULB 

A usual technique is employed to obtain the optimum values 
of @ and oc, for given k, B,/L, B /L,2,, and H/L. Namely, we 
solve two linear BGG! eancees pean he in @ and o, 

8 =e ae ee Sat a ZS = 2a(P; + Ob) + 20,(P,P, + Q,Q,) + 2(P,P, + O,Q,) = 0 
(32) 

aR a Bey = 2UlPP, + Q,0)) + 20,(P; Pp? +04 +2(P P, +QQ)=0 

for @ and Op? where 

= 2 
_ 16n°k 2b 

m=O 

etc. 

from the formula of wave resistance. Cases of B, = 0, B, #0; 

B, #0, B,=0 and B,#0, B,# O were calculated for each Froude 

number F,, which will be shown later. 

VI. SLENDER BODY THEORY 

For the case of B,=0, the cross sectional area curve is a 

cusp at both ends. Thus a slender body theory can easily be applied 
here. The result will be only the’ change of 

Diced | (34) 

and 

al = (35) 

in P, and Q, in Eqs. (23) and (26) of the wave resistance of the 
previously described Michell ship, where A is the area of the mid- 
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ship section. 

The slender ship approximation is useful for the ship with a 
transom stern because this may give better chances to represent the 
ship shape near the transom than Michell approximation. 
Yet for the case of low Froude numbers it is well known that the usual 
slender ship theory is also very poor. To improve this situation, the 
slender ship theory can be modified further from that developed by 
Maruo [11]. 

In the equations of wave resistance Eqs. (19) through (22), by 
consecutive applications of integration by part to Eq. (22) 

P +iQ -{ o exp | kb(zb + ix) + i2my = ds 
Ss 

1 
= 15 Se o(0,y,z) exp (eebe + i2ny =) dc 

Ae o(-1,y,z) exp | kb(zb = 4) erp i2ny —| dc 

fax eli a a o exp (kzb* Tarai Bde 
c(x) ~ 

S m 
tis |S, o(0,y,z) exp (kzb + i2ny ail dc 

“i o(-1,y,z) exp | kb(zb - i) + i2ny mt dc 
c(-1) be 

2 . x=0 

=m 2.6 o exp (kzb + i2ry —) ac{ ik 
kb = c(x) A Soe 1 

22 ikxh ae (" 2 m 
- \ dx e'** a, \ o exp (kzb + i2ty ee) ad (36) 

c(x) 

where 

dS = dx de (37) 

The last integral can be approximated by 
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1 ie ikxb n 
3 dx e M*"(x) 
kb ¥¢,, 

where 

M(x) -/ o(x,y,z) de (38) 
c(x) 

This reduces the influences of the line singularity approximation of 
ship hull singularities in two ways, (1) by the factor 1 /b*, which 
corresponds to cos°@ inthe Havelock wave resistance formula, 
(2) by the factor 1/k® which is the smaller if the Froude number is 
the smaller. Of course, the number of terms have been increased 
in the singularities along c(0), which is the intersection of the free 
surface and the transom stern, and c(-1), which is the straight bow 

stem line. 

VII. STREAMLINES 

To establish the validity of the mathematical model of the ship 
with the transom stern, the double model[9,10] scheme is inadequate 
because free-surface waves play a vital role in the flow field of a 
transom stern. 

Fortunately a slender ship model [ 11 ,12] gives an easy repre- 
sentation of the wave height along the train of ship. The wave height is 

Q 

and 

k Bt 
g(x) +y,>0) pet 4 o(x,y,zZ) ds 

Ss 

w © eitw 
x Re | secto | —__¢ 7 __at dé (40) 

_W o t-ksec*@-ipsec® 

where 

= (x, = x) cos 0+ (y, - y) sin 0 (41) 

and S is the ship surface. 

The inner double integral was treated by Havelock and was 

represented by both a Bessel and a Struve functions. [13,14] We 
will consider, for simplicity, a source distribution which becomes 
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zero at both ends of a ship such as we considered in Eq. (11), although 

this is not a basic necessity for evaluating physical quantities, namely, 

o(0,y,z) = o(-1,y,z) = 0 

By making use of this assumption we integrate the wave-height Eq. (39) 
by parts 

x 

C(x, sy)) ae x (x) sy; 0) 

4 ti -imxcos@ qd preeie pectpe | | dade doe 
= - = e dx a> odc rel eee 

wVe-| o(x) 0 t-ksec’O - ip secé 

’ Gis . Re ("f° ey 8) eee ee aed (42) 
0 t-ksec *o - in sec 

where 

w, = x, cos 8 + (y,; - y) sin 0 (43) 

0 itx cos 8 d 2. tliw) +z) 
I(x,,y,3t,9) = - e dx aS o sec Oe dc (44) 

= * JYo(x) 

Integrating I by parts with respect to x, we obtain 

1 d tiiw) + 2) 
I(x, ,y,3t» 9) = ee o(0,y,z) gece ble : dc 

A ¢(0) 

: & A Cites exp |ti(x, FH cos 0 +y,-y sin@)ttzbdc 

(8) 
-it 8 2 

J axe ay {x,y ,z)sec® 0 el(l'*2)| ac (45) 

= dx “¢(x) 

For simplicity o,(0,y,z) and o x(-1,y,z) are assumed to be uni- 

formly distributed , respectively, along the stern on the free surface 

and along the bow stern vertically. For investigation of the flow 
field near the transom stern, the contribution of o,(0 Vee) tO tue 

wave height may be approximated by two-dimens tonal values; the 
contribution of o,(-1,y,z) may be approximated by the stationary 
phase; and the contribution from the last integral of I(%, yit, 9). may 

be approximated by a slender body theory, and will be investigated 

first, here. 

583 



Yim 

Now let us investigate the last (third) term of the above inte- 
grallI. From the slender body theory 

2 

ee a o(x,y,z) exp {ti(x, cos © + y, ~y sin 6) ttz} dc 

5 d°M(x) 
= awe z exp {ti(x, cos © + y, sin 6)} (46) 

x 

With this approximation, we go back to the wave-height Eq. (42) and 
consider the values only on y, = 0 

ti(x)-x) cos @ 

tabs,.0) = - B60" axe mttay (" f sectee ST at ae (an 
ai O it(t-ksec a= ip sec 8) 

Changing the contour of integration with respect to t in a complex 
plane such as Havelock [13] used, we have 

i sels ac mtey seco ae | GEN sesame) oo £5(2, ,0) ae 
Ky T 

+f dx M(x) { 2m sec 0 cos (kx, -x sec 0) dO 
-| -7 

(0) 
T Z 
a) dx M"(x) [{ 2 log |x,-x| - Yo(k|x,-x|)} 

X sign (x,-x) + Hy(lex, =) | 

cee. T ; 
+ dx M"(x}Y,(k|x,-x|) (48) 

where Y is the Neumann function, H is the Struve function, and 

sign (x,-x) is +1 for x,-x>0 and -1 for x,-x<0. 

When only the integral of the first term of I in Eq. (45) is 
taken, we may approximate the wave height as follows, for x, <0: 
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B/2 it(x,cos @- y sin @) Re 39 J t y _ Reo Ace ( ay J do a ie BO ea se C 
B/2 it(t - ksec“O - in sec 6) 

' é @ ave ee it(x cos @- y sin @) 

= dx R x { d ‘ ao { CSS SS SSS 
f. * aU -B/2 _ = Oo : t-ksec“@ -ipsec 6 = 

x 

\, dx Re oo "ay of at | ce ee 
-B/2 t-ksec@ - ip sec ® 

eit(x cos 9- y sin 4), J 

x, B/2 x 1/2 

my ax ot | dy ~ Eu ox lim ao { dt 
fe) B/2 Tt ¥,; > 0-1/2 0) 

x genes oir (ty, sin 6) +J 

sin @(t - ksec*6 - ip sec 6) 

ao] e* oO itx 

Vx? +B2/4 +B/2 o» e'* dt 
- a\ dx log UX tB/4+B/2 4 4 dx +J » XRD eS, > eet |x| 

(49) 

Note that t= 0 is not a singularity because of the zero of 
sin {t(x, cos ® - y sin 0)} in the numerator of the real integrand. 
The integrand J is defined as follows: 

8/2 = 
ee a (a Z ne of eee iwy sin® 

al 7? 
o it(t - ksec’® - ip sec 6) 

B/2 

= Re ay [ a"? at sec of = 

1 \ -ity sin @ ity sin @ 
e te ee ) 

t-ksec*@ - in sec 0 
+ 

o wv ik ae 

Re =a lim an( d@ cos 8 |! $ sec 8 sin@ 

TY B--0 o ik sin 8 

20,7 /(k°U) (50) 
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Letting 

x . 

_ al dt 

ies pen er Se re) 0 a 

we have 

00 ™ 1 

I -\ = dm in ‘sx< 0 
| 0 me +k? 1 

ee sis con koe Cie a iioc 
% Zak ii ee! | 1 1 igs * 

and 

_ 20 30S us 
I, = = cos kx, - EF - % U( 5 - Silex,) cos kx, 

+ Cikx, sin kx,} in x, >0 

Therefore, for x, < 0 

x | 
Oy , 

op ru | 4x1 (log [x,| - 1) - a) dx log (jx? + B2/4 + B/2) 
0 

+2 (( 2 - sikx,) cos kx, + Cikx, sin kx}] (52a) 

and for x, > 0 

x 
I 

C a [4x,(log x, - 1) + sf dx log (¥x* + B“/4 + B/2) 

8T 4n 4 T 
Lis cos kx, - erie es - Sikx,) cos kx, 

+ Cikx, sin kx,}] (52b) 

The wave height related to the second term of I can be approxi- 
mated by the method of stationary phase, [5] neglecting the local 
disturbance: 

/ -1,0,0 u 
Co=- 4 a ie een a} cos (kx +7) (53) 
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The wave height near the stern due to a point source at the 
bow can be approximated also by the method of stationary phase: 

tp = 4k exp (kz, ) / a cos (kx, + z) (54) 

The wave height near the stern due to the transom stern sink, 
approximated by the two-dimensional one, was given earlier, say ¢.. 

As a result, the total sum of ¢,, Cor Sp, and C€, would repre- 
sent an approximate wave height in the wake of the ship near the 
transom stern. The streamlines on the body near the stern can be 
obtained by considering the pressure which is given by the singularity 
representation as was done in Eqs. (6) and (7). The streamlines near 
the bow may be obtained by a double model approximation. The inte- 
grated scheme to produce approximate body streamlines will be pro- 
grammed for a high-speed computer in the near future. 

VIII. NUMERICAL RESULTS AND DISCUSSIONS 

The optimal strength of singularities for the transom stern 
and for the bow bulb are shown in Figs. 2, 4, and 6. The former is 
shown in terms of the deadrise angle a of the afterbody near the 
stern. The latter is shown in terms of the radius of the correspond- 
ing half body produced by the point source located in the infinite 
medium. These are all functions of Froude numbers for the given 
hull shapes. The wave resistance at each Froude number is computed 
for the given hull with the transom stern and the bow bulb optimal at 
a given Froude number} see Figs. 3, 5, 7, and 8. 
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For a slender body model, Eqs. (11) and (35) are used for 
the bare-hull source distribution, which is called a cusped cosine 
ship here. For a Michell thin ship model, computations are per- 
formed for Eq. (11) for cusped cosine and parabolic ships. For the 
combined bare-hull source distribution, the influence of the location 

of transom stern xg, is shown in Figs. 6 through 8. It can be under- 
stood that there is an optimal location for the minimum wave resis- 
tance as in the case of a bulbous bow; however, it is not computed 
here. 

It is interesting and reasonable to see that the optimum size 
of the bulb becomes the smaller for the large Froude numbers over 
0.4, and eventually the strength becomes negative at F,>0.5. In 
other words, for a large Froude number, a ship behaves like a single 
point doublet far behind the ship so that the only way to reduce the 
wave height is to reduce the ship volume. 

Indeed it is possible to take advantage of the transom stern 
as well as the bulbous bow to reduce wave resistance in the Froude 
number range F,< 0.5 by a proper combination of the ship hull 
shape and the transom stern and the bow bulb. For the case ofa 
high-speed ship such as a planing boat, there is no alternative to 
evade the detrimental cavitation without having the full separation 
occur at the transom stern, whether it is beneficial to the wave 

resistance or not. 

The numerical results of streamlines are not given in the 
present paper because of their complexity. The approximate 
method of computation of the streamlines near the stern is shown in 
the previous section. When the ship draft is fairly large, compared 
with the wavelength, the ship shape from the singularities can be 
approximately computed from the double model. However, fora 
transom stern, the free surface follows immediately behind the 

usually shallow drafted afterbody. Thus, the modified slender body 
theory used in the previous sections, combined with a double model 
approach to the forward part of ship hull seems to be promising. 
Some imaginative approximate configurations from the concerned 
source distributions are shown in Fig. 9. 

Last, but not least, the importance of experiments on the 

design of ships with transom sterns should be emphasized. There 
are very few experimental results available [15]. However, this 
has to be done in close coordination with the theory so as not to grope 
in the dark. The theory is now on a solid foundation. More time and 
effort are needed to achieve experimentally usable and complete 
results on ships with transom stern. In the future, the author hopes 

to finish a systematic computer program for designing ships with 
bulbous bow and transom stern that includes information about the 
wave resistance, the bulb size, the transom-stern draft, and the 

main hull shape. 
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LIST OF SYMBOLS 

A Midship section area 

b Defined by Eq. (21) 

B Ship beam 

BB, Ship beams associated with two hull forms given by 

Eqs. (9) and (10), respectively 
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Cosine function defined by Eq. (4) 

Domain defined by Eq. (12) 

Defined by Eq. (29) 

U /(gL) 
Acceleration of gravity 

Draft of ship 

Stern draft 

Froude number, Ve 

Expression defined by Eq. (44) 

Expression given by Eq. (51) 

Expression defined by Eq. (50) 

Lg/u* 

Ship length 

Source strength 

Pressure 

Expression defined by Eq. (22) 

Expressions defined by Eqs. (23), (24) and(25), respectively 

Expression defined by Eq. (22) 

Expressions defined by Eqs. (26), (27) and (28), respectively 

Bulb radius 

Wave resistance 

Ship surface 

Sine function defined by Eq. (3) 

Velocity at x - @ 

Ship speed 

Tank width 

Rectangular coordinates 

The x coordinate of the location of transom stern sink 

Ship hull forms given by Eqs. (9) and (10), respectively 

The z coordinate of the location of the point source for bulb 

Dead rise angle of transom stern defined by Eq. (16) 

Wave height 

Two-dimensional wave height 

Wave heights due to the first, second and third term of I 
in Eq. (45) 

Wave height due to bulb source 
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Gs Wave height due to transom stern sink 

o Source strength for ship hull 

|S Source strength given by Eqs. (11) and (12), respectively 

oT, Source strength for bow bulb 

0; Source strength for transom stern 

p Density of water 

Y Quantity given by Eq. (5) 

DISCUSSION 

Georg P. Weinblum 
Institut fur Sehtffbau 

Hamburg, Germany 

Some general remarks may be permitted, especially from 
the point of view of application. 

So far investigations of more practical character deal pre- 
ferably with the bow wave formations, while linearized wave re- 
sistance theory treats with equal love the forebody and the afterbody 
of displacement ships. Few experiments only have been conducted 
to check, ceteris paribus, the advantage of form symmetry with 
respect to the midship section in real fluid. Such tests have been 
performed by the present writer with bulbous forms by comparing 
simplified ship hulls: 

a) without a bulb (naked hull), 
b) a bulbous bow only, 
c) a stern bow only, 
d) bulbs symmetrically arranged at bow and stern. 

These experiments are useful in the present context, starting 
from the author's and my personal viewpoint, that in ideal fluid a 
similarity can be reached in wave effects due to a transom stern and 
a bulbous bow (because of a similarity in form representation by 
dipole arrangements). The sketch annexed shows an impressive 
improvement by the symmetrical bulbous ship design (d), and this 
indicates, that the combination bulbous bow + transom stern should 
be useful as shown theoretically by the author. 
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The application of linearized wave resistance theory to slow 
full ships following our present state of knowledge overstrains this 
theory heavily. This theory should not be discarded, however, 
completely as long as it is used as a heuristic principle only, i.e. 
as means to look for solutions which must be checked experimen- 
tally. 

It is recommended to use in this sense several earlier inter- 
esting papers published by the author. Considering the present 
critical attitude towards linearized wave resistance theory in general, 

I wish to state that its use (including perhaps some correcting "im- 
provements" for practical purpose still can be highly recommended 
in case of medium or especially high Froude numbers. It should be 
remembered that in the range of the large wave resistance hump 
values computed by Michell's theory may differ by an amount only 
from experimental results which corresponds to the scatter of the 
latter derived from models in different scale. Therefore I welcome 
the author's present second approach on the subject of transom sterns 
although the correlation between form and generating singularities 
(so far rather indicated than carried out) may still require further 

studies. 

With regard to the author's statement about lack of systematic 
experimental evidence it is suggested to look into report No. 167 
Institut fuer Schiffbau Hamburg and to check if something useful can 
be found there. 
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DISCUSSION 

S. D. Sharma and L, J. Doctors 
Untverstty of Michtgan 
Ann Arbor, Michigan 

In an oral discussion at the Symposium Professor Maruo and 
the first-named discusser challenged the validity of the author's 
Fig. 1 because they felt that the wave profile should have been dis- 
continuous at the location of the line sink or the pressure step, 
x=0,. Dr. Yim insisted that his figure was correct, arguing that a 
similar curve is shown in Lamb's "Hydrodynamics," p. 405, In 
the meantime, we have examined the problem more closely and 
arrived at the following conclusions. 

Let us examine the case of the pressure step first. Consider 
a two-dimensional pressure distribution, 

p(x) = po{1 + sgn(x)} /2, (D1) 

on the mean free surface, z=0, moving steadily with speed U 
along the direction of Ox. The resulting motion can be described by 
a velocity potential ¢(x,z) subject to the conditions 

,,(x»2z) + ,,(x,z) = 0, (D2) 

p(x) - pU¢,(x,0) + pgo(x) + ppUd(x,0) = 0, (D3) 

US (x) + o,(x,0) = 0, (D4) 

$, 2(*»-00) = 0, (D5) 

where z = ((x) describes the free surface elevation and the limit 
. — +0 is understood as usual. It is easy to verify that the solution 
is 

” exp (ikx +kz) 2 
(x,y) = - (eo/now) | ae aa dk, ky = g/U ’ (D6) 

@ 

G(x} = - (p,/pg) {1 tsgn(x)}/2 - p,/no8) | ae dk. (D7) 
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The limit » — +0 then leads to the following real expression 

00 

pgt(x)/p, = -{1 +sgn(x)} /2 - Senta) { exp (-wlkgx|) 
i ) 1 + w* 

- {1 - sgn (x)} cos (k,x), (D8) 

which is indeed continuous at x =0 although the wave slope E. 
becomes infinite at that point. This is evident in the accompanying 
Figure (see Curve 1), but does not show up on the scale used by the 
author in his Fig. 1. 

___. _ _ Curve2: Wave profile for a 

line sink, sk 
2TIm 

| 

~~ ~ Curve 1: Wave profile for a 

pressure step, “p~ 
° 

gx/U? > 

Fig. Di. Comparison of Wave Profiles for a Line Sink and 
a Pressure Step 

On the other hand, one can also approach the problem as the 
limiting case of a submerged line source as the submergence tends 
to zero, The velocity potential for a line source of strength m 
(that is, output 2mm per unit length of line) on the line x =0, 25 - f 
is found to be 

2 2 i 
- x + (ztf) exp {k(z-f + ix)} 
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and the wave profile 

C(x) = Ud,(x,0)/g, (D10) 

now becomes 

© -Wikox! yds 
_ sgn (x) e {cos (wkof) + w sin (wkof) } 

- US (x) /2mm =. sane) | See dw 

-k.f 

- {1 - sgn (x)} e Ka cos (kof). (D1i1) 

It is obvious that for f= 0 the wave profile of the line source be- 
comes discontinuous at x=0. For any nonzero value of f the 
profile remains theoretically continuous at x = 0. However, for all 

practical purposes it is discontinuous in the limit f - 0 as shown in 
the accompanying figure (see Curve 2) for kof = 0.00001. 

If we assume p,/pg = - 2mm/U, then the potentials of the 
pressure step (D6) and the line source (D9) become identical in the 
limit f—- 0. But the wave profiles differ by the first term of (D8). 
Incidentally, the author's Eq. (1) differs from our (Di1) by a factor 
of 2. But his relation (6) seems to have a compensating error of 

factor 1/2 so that his wave profile (7) does agree with our (D8). 
We have not investigated what effect this discrepancy has on the 
author's further calculations of wave resistance. But we did notice 
an obvious slip in Eq. (18) for the strength of the line sink repre- 
senting the transom stern. If o, is regarded as a line density, 
apparently a factor L is missing on the R.H.S. On the other hand, 
if o, is interpreted as a surface density, then the R.H.S. should 
contain the Delta function 6(0) as a factor. 

We also find the idea of using a line sink to represent the 
transom stern rather unconvincing. The line sink would tend to 
force the flow around the corner of the transom, which in practice 

occurs only at low speeds, but in a highly viscous manner not 
tractable by ideal fluid theory. The case of real interest is the 
one at high speeds where the flow separates smoothly from the 
transom. In this regime, we feel that the line sink should not be 
used so that the excess sources in the hull can produce a semi- 
infinite half-body. We would appreciate the author's comments on 
this point. 

Notwithstanding minor differences of opinion, we wish to 
congratulate the author on his imaginative approach to a very inter- 
esting problem. 
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REPLY TO DISCUSSION 

B. Yim 
Naval Ship Research and Development Center 

Washington, D.C. 

The author would like to acknowledge Prof. Weinblum's 
encouragement. The author fully agrees with him on everything he 
mentioned. As is indicated in the text, the model of the transom 
stern assumes the linear free-surface condition although, in 
practice, very often nonlinear phenomena, e.g., a rooster-tail or 
cavity collapse, do occur. Therefore, this point also needs care, 
in addition to the error in Michell's thin ship theory or the slender 
ship theory. 

REPLY TO DISCUSSION 

B. Yim 
Naval Ship Research and Development Center 

Washington, D.C. 

The author sincerely appreciates the deep interest shown by 
Drs. Sharma and Doctors regarding his paper. 

About the validity of Fig. 1, the author will attempt to make 
a detailed explanation. First, the author would like to point out that 
the discussers agree by their Eqs. (D6) and (D9) that, with P, /Pg = 
- 2mm/U, the potential due to a point sink located on the free surface 
at x =0 and the potential due to the corresponding uniform pressure 
distribution along the free surface from x=-ooto x=0 are 
identical everywhere in the flow field and on the boundary. This fact 
has long been known. Thus, velocities of the two cases are identical 
everywhere, and the wave heights of the two cases are identical from 
the relation (Di0). Namely, one problem with the given pressure 
distribution is in fact the same problem with the properly given source 
distribution as in many fluid mechanics problems. Admitting this fact, 
it is impossible to claim that the representation by pressure gives 
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the smooth boundary and that the representation by source gives 
the discontinuous boundary. To elaborate a little more, the discussers 

did not notice that the boundary ahead of the location of sink or at 
x<0, z=0 is no longer a free surface but has become a part of 
body boundary formed by the sink flow field, where the pressure is 
a constant different from zero. This may be understood better if we 
consider another identity of potentials due to a point sink on x = 0, 
z=0 and a uniform distribution of doublet in - x direction on 
-o<x<0, z=0. The body boundary created by the two-dimensional 
sink is considered to form a part of a transom stern heuteristically 
in the second section to justify the three-dimensional mathematical 
model in the following sections. It will be easily noticed with a real 
scale how readily acceptable the boundary would be and how proper 
and simple this model is. 

Here the author also appreciates being advised that the factor 
of 2 is missing on M in his equations in the second section of the 
author's paper. This factor has nothing to do with any of the numeri- 
cal results. In fact, the second section has no numerical relation 

with the results derived in other sections. 
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BOW WAVES BEFORE BLUNT SHIPS AND 
OTHER NON-LINEAR SHIP WAVE PROBLEMS 

Gedeon Dagan 

Technton-Israel Institute of Technology 
Hatfa, Israel 

and 
Marshall P. Tulin 

Hydronauttiecs, Incorporated 
Laurel, Maryland 

NOTATION 

a Draft at bow of a completely blunt shape 
(dimensionless) 

b, b Outer and inner coordinates of point B in the 
t and @ planes 

al aah a ah 
He ee Arbitrary constants 

e.. »€,..d), rd,. 
| | t I 

Cp Drag coefficient 

D'! Drag force; D = D'/opu*t! 

f' = »' + iy' Complex potential; F = f'/g'/2T'3/2, £ = f'g/u'>; 
t = £'/u'T! 

Fr, = U'/(gL')'”? Length Froude number 

Fr,= u'/(gT')”2 Draft Froude number 

h'(x') Function describing the body shape; H = h'/T'; 
b= he 

A,' Forebody length; £, = £,' g/u'® 

ti Characteristic length; £ = £'g/u'? 

Nea / 1 Dimensionless free-surface elevation 

P = p'/pu'? Dimensionless pressure 

t' Jet thickness; t = t'g/u'*; ee th/T! 

Tr Draft 

wisu! + iy’ Complex velocity; w= w=w!'/U'; W= w'/(gt')'# 
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U' Velocity at infinity 

Ze x! tay’ Complex variable; z = z'g/U"; 2 =2'/T'; 
22 T! 

8 Angle at bow 

5,2 55, A, Gauge functions 

e= t'c/u'* Small parameter 

to=i6 + i Auxiliary variable; @ = ¢/e 

n' Free-surface elevation; 7 = n'g/U"; n= n'/T'; 

Q = £n(1/w) 

N= 7/7 

Logarithm of complex velocity = T + i@ 

I. INTRODUCTION 

The conventional linearized theory of ship waves is based on 
a first-order perturbation expansion in which the length Froude num- 
ber is of order one, while the beam Froude number (thin ships) 

and/or the draft Froude number (slender of flat ships) tend to infinity. 
While the theory is in fair agreement with laboratory results in the 
case of schematical fine shapes (e.g. Weinblum et al. [1952]), it is 
of a qualitative value at best in the case of actual hulls. To improve 
the accuracy of the linearized solutions, second order nonlinear 
effects have been considered, either in the free-surface condition 

or in the body condition (e.g. Tuck [1965] , Eggers [1966]). 

A different nonlinear effect, overlooked until recently for the 
case of displacement ships, is that associated with the bow bluntness. 

It is well known from the theory of inviscid flow past airfoils or 
slender bodies (Van Dyke [ 1957]) that the linearized solution is 
singular near a blunt nose in the stagnation region. The singularity 
may be removed by an inner expansion in which the length scale is 
a local one associated with the nose bluntness. 

In the case of a free-surface flow with gravity the phenomenon 
is more complex. The pressure rise in the stagnation region is 
associated with the free-surface rise and the formation of a breaking 
wave or spray and the existence of a genuine bow drag. The inner 
expansion of the Bernoulli equation shows that the inertial nonlinear 
terms become more important than the free gravity term, for 
sufficiently high local Froude numbers. 

The bow nonlinear effects have been recognized a long time 
ago in the case of planing plates (Wagner [1932]), but they have been 
always associated with a relatively high Fr,, such that the lift /buoy - 
ancy ratio is of order one. Here we are primarily interested in the 
case of displacement ships which move at a small Fr, and the hull 
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position beneath the unperturbed level is practically independent of 
Fr,. Nonlinear inertial effects may be important nevertheless 
near a blunt bow. 

A systematical experimental confirmation of the role played 
by the bow bluntness has been provided recently by Baba [1969]. 
From towing-tank tests with three geosims of a tanker (Cp = 0.77) 
it was found that in ballast conditions ata Fr,* 1.2 a breaking wave 
appears before the bow. At the maximum Fr, tested (Fr, = 0.24, 
Fry= 1.7, Fig. 1a) the energy dissipated in the breaking wave con- 
tributed 18 per cent of the total resistance, while the energy radiated 
by waves gave only 6 per cent. Baba has suggested a two-dimensional 
representation of the breaking wave of this experiment, as if it were 
uniform and normal to the bow (Fig. 1b), and has estimated 
equivalent length as half the beam. The drag coefficient per unit 
length, corresponding to a two-dimensional flow across the breaking 
wave is Cp=D'/0.5 pU"T' = 0.08 for Fr,=1.7. Sharma [1969] 
has indicated a larger breaking wave resistance for a higher block 
coefficient tanker and has suggested that the bow bulbs main effect 
is to reduce the breaking wave resistance. With the development of 
large tankers, as well as large and rapid cargo ships, the study of 
the bow free-surface nonlinear effect becomes particularly important. 

We present here some of the results of our last year's 
studies, which are reported in detail in two reports (Dagan and 
Tulin [1969, 1970]). 

In this first stage we have attacked the two-dimensional prob- 
lem of free-surface flow past a blunt body of semi-infinite length. 
The two-dimensional study is a necessary step in the development 
of a theory for three-dimensional bows since it provides a valuable 
gain in insight at the expense of relatively simple computations. 
Moreover, it gives an estimate of the bow drag of flat ships and opens 
the way to more realistic computations by further approximations. 

Taking the length as semi-infinite is very useful from a 
mathematical point of view and it is equivalent to the limit Fr, ~ 0. 
This assumption is entirely justified for the small Fr, considered 
here and for determining the bow flow, which is not sensibly in- 
fluenced by the trailing edge condition. 

Il. THE FREE SURFACE STABILITY (SMALL Fr, EXPANSION) 

We consider the two-dimensional gravity flow past the body of 
Fig. 2. The box-like shape has been adopted for the sake of com- 
putational simplicity, but the method can be easily extended to any 

other shape. 

When Fry is small the free-surface is smooth. We assume 

that breaking wave inception is related to the instability of the free- 
surface. According to Taylor's criterion (Taylor [1950]), the 
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(a) 

(VIEW FROM FRONT) 

“KT 
bh WAVE 
(UNIFORM) 

Fig. 1. Baba's [1969] experimental results. (a) Breaking wave 
before a tanker; (b) Baba's two-dimensional representa- 
tion of the breaking wave. 

> 

SHVUEUI 
(0) ‘b) 

“ 

A 01) B(+1) 
ae me 

(c) 

Fig. 2. Small Fr, flow past a box-like shape body. (a) The 
physical plane; (b) the linearized dimensionless physical 
variables; (c) the auxiliary ¢ plane. 
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free-surface becomes unstable when the normal acceleration 
vanishes. In our case this occurs when the centrifugal effect related 
to the free-surface curvature offsets the gravity acceleration. Since 
we expect the free-surface to become steep as Fry increases, 
there must be a critical Fr, characterizing instability. 

The gravity free-surface problem is, however, nonlinear, 

To linearize it we consider a small Fr, perturbation expansion, 

i.e. and expansion for a state near rest. Referring the variables 
tor (Pig: 2)? and (gT ')'/2 and expanding as follows: 

F(Z)= @ +iW = Fr,F(Z) + Fr °F,(Z) +... (1) 

W(Z)= U - iv = Fr,W (Z) + Fr 3w,(Z) +... (2) 

N(X) = Fr/°N (X) + Fr,4N,(X) +... (3) 

we obtain from the exact free surface and body boundary conditions 
the following equations: 

at first order (Fig. 2b) 

Vv, =0 (ASBA) (4) 

wW,=1 (X — - o) (5) 

i.e. a flow beneath a rigid wall replacing the free-surface at its 
unperturbed elevation. In addition 

Napii-u,). (<0, ¥ =6) 

second order 

W, = - UN, (AS, X<0, Y= 0) (7) 

U, = 0 (SBA, X>0, Y=H(x)) (8) 

i.e. a flow generated by a source distribution along the degenerated 
free-surface, and 

N,= 4 0,0, Der Onna p) (9) 

It is easy to ascertain that Wo is zero at infinity such that 
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the total source flux is zero. Similarly N, is zero at both the origin 
and infinity. In fact the first order solution gives the exact values 
of N at infinity and at the stagnation point, the higher order approxi- 
mations correcting only the free-surface shape between these two 
anchor points. The above expansion is consistent and hopefully 
uniformly convergent. It differs from that suggested by Ogilvie 
[1968] who has kept terms of different order in the same equation 
in order to obtain waves far behind a submerged body. 

The solution of the first order approximation for the box-like 
shape body (Fig. 2a) is obtained in terms of the auxiliary variable 
C as 

72 
W, = ($3) F,=t/n (10) 

where the mapping of the linearized Z plane (Fig. 2b) onto ¢ 
(Fig. 2c) is given by 

z= (e? - 1% +2 tn [(e? - 1)? - 2) (14) 
T 

Hence, by Eq. (6) we have 

N, = tes 

For the second order approximation (Eq. (7)) we get 

/2 y, = 64H one a7 (SiS Sad rip. =O) (12) 

W, given along the ¢ real axis (Eqs. (8) and (12)), leads by a 

Cauchy integral to 

{ mr dd 
&, (6) a T Re \; We () (2p © 

1 ‘ork (ee eee ay/2 
-i\2; +(g44) BEE aS 

U2 and No as functions of €, are easily found from Eqs. 

(143) and (9) (for details see Dagan and Tulin [1969]). The shape of 
the free-surface at second order is given in Fig. 3. As expected, 
the profile becomes steep as Fr, increases. 
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VV 
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0.25 

X=x'/T 

N=n'/T' 
0.20 

N (Xx) = Fr? N, X)+ Fr# No (x) +... 
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ie = 
Z Ti Fr? 0.10 
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3.0) 
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Fig. 3. The free-surface shape in front of a rectangular body 

The dimensionless pressure gradient component normal to 
the free-surface is proportional to 

2 2 a{ tard, \ © * <M) 

2 (2 
+ Fr So dN _ y 2a Ne Aug OL) 

dX dX ! qx? "12 ax eS 

where the first two terms of the expansion contribute to order Fr_® 
in the pressure gradient. Taylor's marginal stability is reached for 
the value of Fr, which renders Eq. (14) equal to zero. This value 
has been found to be Fr,# 1.5 and the point of instability at X= 0.3. 

Although the expression for the pressure gradient can hardly 
be expected to converge rapidly at such a high Fr., the’ result iis ‘of 
the order of magnitude of that found by Baba and would seem to con- 
firm the mechanism of free-surface disruption assumed by us. 

The effect is nonlinear since only when taking into account the 
second order term does the steepening of the free-surface depend 
strongly on Fr,. There is no bow drag in the small Fr, limit. 

The present method suggests a possible way for determining 
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the influence of the bow shape on the breaking wave inception, and 
therefore serves in selecting shapes which retard the phenomenon. 
Its application to three-dimensional bows is left for future studies. 

III. THE HIGH FROUDE NUMBER APPROXIMATION (THE JET 
MODEL) 

(a) The Outer Expansion 

As Fr. increases the breaking wave develops. Energy is 
dissipated there and the momentum loss is associated with an induced 
bow drag. To treat analytically this free-surface nonlinear problem 
we have to adopt a flow model which: (i) permits an ideal fluid 
representation of the phenomenon and (ii) lends itself to the lineari- 

zation of the free-surface condition. 

We adopt here the jet model, well known from planing theories, 
and neglect the returning jet flow, such that the jet momentum loss 
is equivalent to that of the breaking wave (Fig. 4a). Moreover we 

expand the exact equations of flow in an € yi jE small parameter 
expansion, consistent with the usual nea sioed ship wave theory. 

The expansion, and the associated model, are probably valid 
for sufficiently high Fr,, and we only may hope, like in other 
asymptotic solutions, that the results are sufficiently accurate even 
for moderate Fr,. 

We consider now an outer expansion with the rss variables 
made dimensionless by referring them to U' and U' */e (see Nota- 
tion). Using a procedure followed in similar problems in the past 
(Tulin [1965], Wu[1967]) we carry out the expansion in an auxiliary 
{ plane (Fig. 4c) related to the complex potential plane (Fig. 4b) 
through the transformation 

aS ee (15) 

We assume now that the jet thickness t and the distance to 
the stagnation point b are both o(1), such that under the outer 
process €—~0, (= Of1) they coalesce with the origin of the ¢ 

plane (Fig. 4e). 

Under these conditions we obtain by a systematical expansion 
of the complex velocity 

w(t) = 1 + §,(e)w,(t) + Sgle) walt) +... (16) 

after taking into account that by definition the body profile has the 
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Fig. 4. High Fr, flow past a blunt body. (a) The physical plane; 
(b) the complex potential plane; (c) the auxiliary ¢ plane; 
(d) flow past a completely blunt shape (physical plane, 
outer variables); (e) the body first-order boundary condition 
in the outer expansion; (f) the zero order boundary conditions 

in the inner expansion. 

equation 

h(x) = €h,(x) (17) 

at first order 

6p=ue (18) 

Re (w, + ik,) = 0 (6 <0, p= 0) (19) 

Im k,(t) = - h, (6) (6>0, p= 0) (20) 

where 
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-0 

and 

cs 
a= be | w, do (21) 

-0 

at second order 

é3= «? 

Re (Siz + iw,) = - Re[ (w, + 26,) S| (E<0, p= 0) (22) 

Im w,=-5Imw,” (6>0, >= 3) (23) 

We determine now the first order solution by replacing the 
body along § >0 by an unknown pressure distribution (equivalent 
to a vortex distribution, see Stoker [1957]) of strength g,(§). 
The function k \() satisfying Eq. (19) and the radiation conditiea 
becomes 

peo -v) 

Keg) en BILL Vi] go) (25) 

Eq. (20) becomes now 

@ . 

=) Re e*”) Fi [i(é - v)] g(v) dv = - (6) (26) 
(@) 

The integral Eq. (26), with a displacement kernel, may be 
solved by the Wiener-Hopf technique. 

The Fourier transform of Eq. (27) reads 

+ 1 - + 

M(A)G, (A) = —— [N, (4) + H,'(\)] (27) l > ! | 

where M, G,; H,, and N, are the transforms of the kernel, 8)? h, 

and the freee paises profile, respectively. 

The kernel's transform has been factorized by Carrier et al. 
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[1967] 
1 1 

(20)'* 1+[a| 
M(A) = =[M()]-M(\)] 

(28) 

The separation of Eq. (27) can now be accomplished, pro- 
vided that we select a given body shape h,(x). 

We limit ourselves here to the case of the completely blunt 
shape of Fig. 4d. The forebody length &£, is of order €, such that 
at the limit € ~ 0 the bow degenerates at first order into a point 
singularity at the origin. Any shape with the same length scale of the 
forebody will yield the same first order body condition. 

With (Fig. 4e) 

(20) 

1 1 1-a 1 

mes (2m) In ie (2m)”? 5 ES A (29) 

we obtain from the separation of Eq. (27) 

eu Le ed { 1 1 : 
6°00 = a X- ba) geze| een actor GP 89 

where the last term, representing eigensolutions, results from the 
application of Liouville's theorem, cj, being arbitrary. 

Equation (30) cannot be inverted exactly, because of the 
integral appearing in M*(\), but the inversion can be carried out 
for large \ by expanding M*(A). After carrying out this process 
(see Dagan and Tulin [1970]) we arrive at the following expression 
for g,(6) in the vicinity of the origin 

n a 

Be eae GE’ eyes Soe (E> 0) (3 1) | (né)/2 » plane 

where d,, are related in a unique manner to Cy, + 
| 
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From Eq. (31) we obtain 

n 

BOM a V2 ans w, (6) = ey + OVC TSA art )ar 2, vi Pe (C0) (32) 

which is the central part of our analysis. 

The expression of the second order solution, satisfying 
Eqs. (22), (23), and (32), was found to be 

at do, 
w(t) = sap + Olln £) + aa (33) 

Summarizing the results for the outer expansion, we have, 
with the estimate t = O(e?) 

€a_ 4 bd, Pe cat bs + €2 ide, 
we (me) pir3/e ont pivsre 

+ €O(t' fn f) (34) 

: 1/2 e\. 2 

Zi Gae € [ai + 2a(£) J+e) cine +S-fine 
1 

t 52} 2 ter) vie (35) 

' 

er, and eo, being again constants related to Cis Coe 

The velocity has the familiar square root singularity at first 
order and a source singularity at second order. The free-surface 
is continuous and attached to the bottom at first order, while at 
second order it rises at infinity. The eigensolutions of the problem, 
which represent in fact the linearized solutions of a free-surface 
flow past a flat horizontal plate, as well as the flow details near the 
bow will be subsequently determined with the aid of an inner solution. 
It is worthwhile to mention here that only at second order are the 
details of the adopted model (i.e. the jet) manifested in the solution. 
Any other model attached to the bow will produce an identical first 
order solution. 
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(b). The Inner Expansion and Its Matching with the Outer Solution 

We stretch now the coordinates and adopt the following inner 
variables, 

t = t/e; ee: z= 2/€; t= t/e; b = b/e (36) 

and expand the function Q = £n(1/w) = 7 +i@ ina perturbation 
series 

~ 

Q Q, + A,(e)Q, +... (37) 

For the body of Fig. 4d we obtain from the inner expansion of the 
exact equations the boundary conditions for %, specified in Fig. 4f, 
which represent a nonlinear free-surface flow without gravity. The 
conditions at infinity are provided by the matching with the outer 
expansion. Only in the case of the straight bow of Fig. 4e are the 
inner conditions so simple. Ina general case we have to solve an 
integral equation for 6 [ Wu, 1967] orto start with a given 6(€). 

The solution of Wo is readily found in the form 

B/t ~ = ~ 72 7 ~ (/2 Ale am NG d... =. Oem oad exp ( ) Tae ) (38) 
(Eye ete sale th eb 

where the exponential represents the eigensolutions of the problem, 
ce being arbitrary constants. 

Expanding W, for large { we obtain 

~ 

d 
posh He37.6(89) 654 Ge ae p/n) + 2[ (E /m)? - b/w] ae is 

t 

z=( Lt/mb af =F - l(t /n)® - pB/u] + 2 /a)”® - pb/l® tn? 
Wo 

t jp td Nie fee (72 -cénG-ait2dt +... (40) 

Before proceeding to the matching we rule out the eigen- 
solutions appearing in Eqs. (38), (39) and (40) because they lead 
either to an infinite velocity in the jet or to an infinite jet thickness, 
depending on whether doi are positive or negative. The matching 
of wo and z (Eqs. (39) and (40)) with w and z (Eqs. (34) and 
(35)) now gives 
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we ea eee 
eat b= Se Oy da, =O (41) 

and both inner and outer solutions are uniquely determined. 

Our estimates of t and b are confirmed, Eq. (41) showing 
that t = O(e2) and b = O(e3/4). The nonlinear character of the prob- 
lem is manifest in the inner expansion. 

We have now a uniform solution which can be written by 
adding the inner and outer solutions and subtracting their common 
part. 

(c) The Bow Drag 

The horizontal force acting on the bow is found by the pressure 
integration in the inner zone (Fig. 4f) 

J J 0 ~ 

B=! p dy = 5 Im (+89 dz=tim! (2+%)(1- 5) dt 
B B b w 1 

Since w is analytical in the lower { half plane the integra- 
tion along BJ may be replaced by integration at infinity (at H) and 

around the origin J. After expanding 1/w, +w. at infinity and near 
ae 0 

the origin, we get for D 

D fae (1 + cos B /m) (43) 

The same result, excepting the cos B/m term, may be 
obtained directly from the first order outer expansion. 

To roughly compare the result of Eq. (43), with Baba's 
findings, lets assume that the bow is completely blunt with B= 1/2 

and,.a-=,l...For’¢€ = Wy ures = 0.34 we have 

Gu= 2Di= 0.34 (44) 

which is roughly four times larger than the value estimated by Baba. 

At this stage it is difficult to find which of the following 

factors explain this discrepancy: The asymptotic character of the 

solution, the lack of details on the bow shape or, may be the most 

important, the crude representation by Baba of a three-dimensional 

flow by a two-dimensional equivalent (Fig. ta). Future experiments 

620 



Bow Waves and other Non-Linear Shtp Wave Problems 

and theoretical developments will give the answer to this question. 

The method presented here is applicable to other bow shapes, 
like blunt round bows. In this latter case the bow drag appears at 
higher order than in the completely blunt case. The extension to 
other shapes, as well as to three-dimensional bodies is left for 
future studies. 

IV. CONCLUSIONS 

Theoretical models of breaking wave inception and of a free- 
surface bow drag have been derived for the case of a two-dimensional 
gravity free-surface flow past a blunt body. In both cases the effects 
are nonlinear and are related to the important role played by the 
inertial term of the Bernoulli equation in the vicinity of the bow. 

The results are of the order of magnitude of those found by 
Baba [ 1969] , but an improved verification has to be done by carrying 
out two-dimensional experiments. The theory presented here may be 
extended, with additional approximations, to three-dimensional flows. 
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DISCUSSION 

L. van Wijngaarden 

Twente Institute of Technology 
Enschede, The Netherlands 

I would like to ask a question about the authors' interpretation 
of Taylor's instability. Th -y use as a criterion for marginal sta- 
bility that the normal component of the pressure gradient at the 
interface between gas and fluid vanishes. This is indeed the case 
for a plane interface. 
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For a plane interface and y Vv 
variables indicated in Fig. 1 we 

pave fluid 
dv __ ap interface 

Pp a e 
ot oy gas 

For negligible gas density Taylor's Figs 4 
result is: 

: Ov . Op stable: SE = 0; En Ors 

instable: UNE > 0s Sp <0. 
Ov oy 

marginal Op _ 0 
stability: oy 

The question is whether this criterion (ap /8y = 0) holds also for 

more general interfaces. As an example consider the spherically 
symmetric implosion of an empty gas bubble (Fig. 2). The equation 
for the radius R is 

2 fluid 
RR +32R =-- Po 

2 p 

where Pg is the pressure far away 
in the fluid, pw > 0. From this 
relation 

ee o2 
RR= -Pm_>R'<o. His. 62 

The inviscid equation for the only velocity component v is 

OV ON = \ 7 op 
ot "br ~  p br 

Since v(r) = R°R/r’, it follows that at r=R 

623 



Dagan and Tulin 

This vanishes never and according to the foregoing criteria the 
motion is stable. 

However Plesset and Mitchell [ 1956] proved that in fact this 
spherically symmetric implosion is unstable. This demonstrates 
that for interfaces which are appreciably curved like in the author's 
case, the criterion for marginal stability is not always that the 
normal pressure gradient vanishes. 
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DISCUSSION 

Prof. Hajime Maruo 

Yokohama Nattonal Untverstty 
Yokohama, Japan 

I congratulate the success of Dr. Dagan's beautiful analysis 
of the wave-breaking resistance discovered by Baba. As in the 
discussion at the 12th ITTC, this resistance component has been 
regarded so far, as a portion of the wave resistance. However the 
present analysis indicates that it is not the case. The wave-breaking 
resistance seems to have a nature akin to that of the spray resistance. 
Which is the better classification, the author considers, whether it 

belongs to the wave resistance or to the spray resistance? 
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REPLY TO DISCUSSION 

Gedeon Dagan 

Technton-Israel Institute of Technology 
Hatfa, Israel 

The authors have indeed applied Taylor's instability criterion 
to a flow field which is different from that considered originally by 
Taylor: The free-surface is curved, the basic flow is not uniform 
and the instability is local. 

For a plane free-surface Taylor [1950] has shown that any 
disturbance, of arbitrary wave length, is unstable for &p/dy < 0; 
moreover, the rate of growth of the disturbance amplitude becomes 
large for small wave lengths. It is reasonable, therefore, to assume 
that for wave lengths which are much smaller than the radius of the 
curvature of the free-surface, Taylor's criterion is locally valid. 

The radius of curvature of the free-surface (r') may be 

quite large. At instability V'*/gr'21, i.e. r'/T' 2 V'2/gT'. For 
the marginal Froude number characterizing instability, Fr, = 1.5, 
it was found that V'/V,, = 0.7. Hence, inthis case, r'/T' = 
(vi*/vi7) Free 1. For adraft T' of order of a few meters, dis- 
turbances of wave lengths much smaller than r' are physically 
conceivable. 

Although the example suggested by Prof. van Wijngaarden, 
of a collapsing spherical bubble, shows undoubtedly that Taylor's 
criterion cannot be applied indiscriminately, its resemblance with 
the case of a steady free-surface is questionable. The inspection of 
Plesset and Mitchell [1956] article reveals that only for R/R,— 0 
(R being the actual radius of the bubble and Ro its initial radius) 
the disturbances are unstable, although the pressure gradient is 
positive. The two cases are quite different. 

We agree in principle with Prof. van Wijngaarden's criticism 
concerning the need for a more rigorous treatment of the local 
stability of a steady curved free-surface. Unfortunately, the basic 
flow itself has been determined only approximately and further 
refinements of the stability criterion do not seem justified at this 
stage. The aim of the computations presented in the paper was 

limited to offering a model of the free-surface breaking and the order 

of magnitude of the marginal Froude number. 
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REPLY TO DISCUSSION 

M.-P. Tutin 

Hydronauttes, Incorporated 
Laurel, Maryland 

The wave-breaking resistance is undoubtedly similar to the 

spray resistance rather than to the wave drag. It is a local phenome- 

non related to the shape of the body. The energy is not radiated, 
but dissipated locally. On this ground, the theoretical analysis pre- 
sented in the paper is based on a model of a semi-infinite body, 
with neglect of the downstream conditions. 
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SHALLOW WAVE PROBLEMS IN SHIP 
HYDRODYNAMICS 

E. O. Tuck and P. J. Taylor 

Untversity of Adelaide 
Adeltatde, South Australia 

ABSTRACT 

In this paper we discuss two basic problems in shallow 
water ship hydrodynamics, namely the squat problem 
and the problem of wave force due to beam seas, Squat 
is an important phenomenon in very shallow water 
because of the danger of scraping bottom. Apart from 
reviewing and extending existing work on sinkage and 
trim in canals and in a wide expanse of shallow water, 

we indicate here how the shallow water results can 
be obtained from a finite depth theory as the depth 
becomes small. Unsteady problems associated with 
motions or of forces on a ship in beam seas are alsc of 
practical importance, as for a ship standing at an ex- 
posed mooring facility. We provide here sample com- 
putations of the side force on a tanker hull in regular 
beam seas. 

I, INTRODUCTION 

It must be stated at the outset that this paper is concerned 
principally with shallow water, and not with finite depth of water, 

except in Section 4. The distinction between these two cases is 
important from the theoretical point of view and needs to be em- 
phasized here since those more accustomed to dealing with water 
of effectively infinite depth tend to refer to "shallow water" when- 
ever the effect of the bottom is considered. 

We take the expression "finite depth" to classify a range of 
water depths in which there are significant changes to the flow prob- 
lems as compared with infinite depth, and significant but not neces- 

sarily dominant effects of the water bottom on the behavior of the 
ship. On the other hand, the "shallow water" regime is one in which 
the depth is so small that the narrowing of the field of flow has a 
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dominant effect on the ship hydrodynamics. 

A degree of quantitativeness may be attached to this concept 
of shallowness in a number of ways. Physically and most significantly 
we require the depth to be so small that the hydrodynamic part of the 
pressure distribution in the field of flow not too close to a disturbing 
influence such as a ship is to a good first approximation independent 
of the vertical coordinate z. Thus the only pressure variation with 
z is hydrostatic. 

If there are waves present, ambient or made by the ship, it 
is consistent with the above that their wavelength be much greater 
than (say 5-10 times) the water depth, and hence the resulting 
shallow-water theory is sometimes called a "long wave theory." 
However, this terminology can be misleading, since most of the 
results obtained also apply when free surface effects are negligible, 
as for a ship moving at very low Froude number, when the wave- 
length is vanishingly small. An additional requirement for significant 
effects of shallowness in the ship hydrodynamics context is that the 
draft of the ship be comparable with the water depth, so that the 
water bottom does have a profound effect on the ship. 

In this paper we are concerned principally with two major 
problems, which are apparently quite distinct from each other, but 
in which similar phenomena appear. The first problem is the classi- 
cal squat problem, associated with steady forward movement of the 
ship in calm water, while the second is an unsteady problem associ- 
ated with the response of, or forces on, a ship without forward motion 

in beam seas. 

Squat is the change in draft and trim of the ship as a result of 
hydrodynamic pressure variations over its hull. Acceleration of 
fluid particles as they pass the middle sections of the ship tends to 

produce a diminution of pressure there, and hence a downward force. 
There is also an upward force near the bow and stern stagnation 
points, but the effect of these forces is small since there is a much 
smaller area over which the positive hydrodynamic pressure can act. 
In any case, the developing boundary layer and ultimate flow separa- 
tion tends to eliminate the upward force at the stern. 

Thus we expect a net downward force, which leads to a down- 
ward displacement, an increase in draft, or sinkage. At the same 

time we might expect a much less significant angular trim effect, in 
which the presence of the small upward force at the bow and the lack 
of such a force at the stern may give a bow-uptrim. These conclu- 
sions are confirmed qualitatively at reasonably low speeds. 

In fact, of course, being a simple Bernoulli effect, squat is 

present in any depth of water. An interesting and immediate conclu- 
sion we may draw is that, like all Bernoulli effects, squat depends 

predominantly on the square of the ship's speed. This seems not to 
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have been noticed by pilots and ship's captains, who are generally 
aware of the problem of squat as a danger to the vessels under their 
control, but are prepared to adopt a linear rule-of-thumb such as 
"a foot for every 5 knots"! 

In shallow water, squat is obviously a most important prob- 
lem, if only because it may cause a ship to actually scrape the bottom. 
But not only is this danger present, but the magnitude of the sinkage 
is actually increased by the proximity of the water bottom. This is 
clear physically, since the effective channel of flow is constricted by 
the additional boundary, leading to even greater acceleration of fluid 
particles across the middle sections of the ship. 

Another interesting additional phenomenon in shallow water is 
a result cf a close analogy between long-wave theory and linear aero- 
dynamics, in which the Froude number F = U/Vgh based on water 
depth h plays the role of the Mach number. Thus we expect extra- 
ordinary effects in the neighborhood of F = 1, c.f. the "sound 
barrier," and indeed both theory and experiment confirm that this 
critical speed is of crucial importance. Theory, at least in its 
linearized form, predicts infinite sinkage at F = 1, while in both 

experiments and in observations at sea we obtain a dramatic increase 
in draft associated with the generation of a type of permanent wave 
or bore accompanying the ship near F=1. 

The squat problem is discussed in Sections 2- 4, each section 
presenting a different aspect of the problem. In Section 2 there isa 

lateral as well as horizontal constriction to the field of flow, anda 

hydraulic-type theory applies, while with the removal of the lateral 
boundaries in Section 3 the true shallow-water theory can be used. 
In Section 4, for the only time in this paper we use a finite-depth 
approach and present calculations of sinkage and trim which are 
close to the shallow-water results when the water depth/ship length 
ratio is reasonably small. 

Problems of ship motions in shallow water, i.e. of flows of 
an unsteady nature, are of special interest again because of the 

dangers inherent in large motions when there is very little water 
beneath the keel. However, even if this danger of grounding were 
not present, one might be wary of using present theories of ship 
motions for cases when the water depth is known to be significant, 
since theories such as strip theory deal (successfully) with infinite 
water depth only. 

For definiteness we concentrate here on a particular mode of 
fluid flow, that involved in pure sideways (sway) motion of the ship 

or of force on it. This mode is of interest for a number of reasons, 
some practical, some theoretical. From the practical point of view 
we expect this mode of motion or force to be of great significance 
when a ship is berthed or positioned in such a way that the dominant 
seas are from abeam, or when it is being manoeuvred sideways by 
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tugs or bow thrusters. 

From the theoretical point of view, this mode is interesting 
in that it provides a transition between the case of a fully-grounded 
ship where the clearance is zero and the whole flow must pass around 
the ends of the ship, and the case when the depth is sufficiently large 
compared with the draft of the ship to allow nearly all the flow to pass 
beneath the keel. At draft/depth ratios intermediate between zero 
and unity (but close to unity) the ship acts like a porous wall, some 

fluid particles passing "through" (i.e. under) it, while others are 
diverted toward the bow or the stern, 

Just as the steady problem has an aerodynamic analogy, so 
the unsteady problem is shown in Section 5 to be analogous to an 
acoustic scattering problem, with the ship playing the role of a partly 
permeable acoustic barrier of negligible thickness (assuming the ship 
is thin). Some results may be obtained directly from the acoustic 
literature for such ribbon-like barriers, but new computations are 
needed for the general porous case. 

In Section 6 we describe techniques for obtaining the effective 
acoustic porosity of the ship, i.e. the extent to which each section of 
the ship blocks (or rather, fails to block) the flow of fluid particles 
beneath it. This porosity is then used in Section 7 to obtain sway 
exciting forces on a Series 60 ship at zero speed. 

II ONE DIMENSIONAL THEORIES OF SQUAT IN SHALLOW, 
NARROW CANALS 

Perhaps the most easily treated shallow-water problem in- 
volving ships is that for ships moving in a waterway so restricted 
in both width and depth that the problem may be treated as if one- 
dimensional, The effect of the ship is then little more than that of 
an obstruction in an (open) pipe. 

This approach clearly has very important applications to 
canals and river traffic, and it is not surprising that a number of 
similar analyses have been made in response to actual squat prob- 
lems arising in the use of such restricted waterways. For instance 
Garthune et al. [ 1948] and Moody [ 1964] , following the method of 
Lemmerman [| 1942], derive a squat formula for use in the Panama 
canal, Constantine [ 1961], following Kreitner [ 1934] , was concerned 
with the Manchester ship canal, Sjostrom [1965] with the Suez canal, 
Tothill [1967] with the St. Lawrence seaway and Sharpe and Fenton 
[1968] with the Yarra river, Australia. No doubt every important 
shallow and narrow waterway has had its independent squat investi- 

gation. 

The theoretical development is in the main quite elementary, 
once we accept the one-dimensional hypothesis, which can itself be 
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justified either by careful asymptotic analysis or by physical reason- 
ing. Suppose the canal has cross-section area A(x,Z(x)), when the 
water surface at station x is defined by z= Z(x), z being a co- 
ordinate measured vertically upward from the equilibrium water sur- 
face. If, similarly, the ship has section area S(x,Z(x)) at station x, 

and the water has only an x-component of velocity u(x), then continuity 
requires u(A-S) = constant, while Bernoulli's equation applied at the 
free surface gives Paves gZ = constant. 

If we take Z=0 far upstream, where u= U, S=0 and 
A = Aj, we have 

u(A - S) = UA, (2.4) 

and 

au + gZ=3U, (222) 

In this formulation the ship is fixed in position and the fluid streams 
past it in the x-direction. Elimination of u gives 

U2 - 2gZ (A(x,Z) - S(x,Z)) = UA (2a3) 0? 

a transcendental equation from which the water surface elevation Z(x) 
at station x may be determined in principle, for a canal of arbitrary 
section (not necessarily uniform or vertical sided), and a ship which 

occupies any proportion of the available canal area at any station. 

In this most general case we should then return to the Bernoulli 
equation to obtain the pressure on the hull (which turns out to be hydro- 
static) and integrate to obtain the force and moment onthe ship. In 
principle the net vertical force would exactly balance the ship's weight 
and the trim moment would be zero, if we had started with the ship in 
its correct squatting position. In practice we should have to devise 
some kind of iteration procedure to move from an initial guess to the 
correct position. Such a general and exact study seems not to have 
been carried out, although it would be of some considerable interest. 

Most investigators avoid this problem by treating an idealized 
ship which is a straight-sided cylinder, and ignoring end effects. In 
that case Z is constant over the length of the ship, and it follows 
that the ship simply rides up (Z > 0) with the water, maintaining 
constant displacement. If at the same time we restrict attention to 
the case when the canal is constant in section area, and in the region 
of interest at the free surface has a width W independent of Z 
(locally vertical sides), then we have from (2.3) that 

(U* - 2gZ (A, t WZ - S) = UA, (2. 4) 
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where S is now constant. On squaring, (2.4) gives a cubic equation 
which may be solved directly for Z. Alternatively, following 
Constantine [ 1961], we may treat the problem in an inverse manner, 
solving for the speed as a function of Z and obtaining in non-dimen- 
sional form 

|e 

me [calcd 3 (2.5) {= ("d= 

where 

F = U/Vgh (2.6) 

d= "2h (257) 

and 

s=S/A,, (2.8) 

with 

h= A,/W (2.9) 

as the mean depth. 

Constantine [| 1961] discusses the nature of the flow predicted 
by (2.5) and presents curves of F against d. Equation (2.5) permits 
only a restricted range of Froude numbers F for any given blockage 
coefficient s, namely 

O<F<F(s) and F,(s)<F<oo, (2.10) 

where F, (s),..F.(s)).are. critical Froude numbers* shown in Fig. 1. 
No steady flow is possible in the "trans-critical" region F, < F< F 
and Constantine [1961] discusses how an unsteady bore fonea ches, 
of the ship if it attempts to exceed F,. Notice from Fig. 1 that the 
trans-critical regime becomes narrow if s is small, and as the 
blockage tends to zero there remains a single critical Froude number 
F,=F,= 1. 

The last result is relevant to an alternative linearized ap- 
proach to solution of (2.3) not utilized by the previously referenced 
investigators, but described in a somewhat different context by Tuck 
[1967]. Instead of specializing the shape of the ship, one now makes 

the approximation that its section area S is everywhere small com- 
pared with the canal section area A. If we again take for definite- 
ness the case of a canal whose undisturbed section area A is inde- 
pendent of x and equal to A, the water elevation Z will likewise 

rl w 

a 
Roots of the equation s = 1 - 
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SUPER-CRITICAL 

TRANS-CRITICAL 

SUB-CRITICAL 

0 0.2 0.4 0.6 0.8 1.0 1.2 

s = SHIP SECTION AREA/CANAL SECTION AREA 

Fig. 1 Critical zones for squat in a canal 

be small relative to the mean depth of water, and we can replace (2. 3) 

by its Taylor series expansion with respect to Z, writing 

(U - 82 Pose ACs O)) Al (x 0) Zt" nr, tas (yO) = 5 ae) = CALA ft) 

On collecting terms of leading order in (2.11) and setting 

A, = A(x, 0) (ni) 

S(x) = S(x, 0) (2.13) 

W(x) = A,(x,0), (2.14) 

we have 

- 82 a +UWZ - US=0, 

ise. 
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Fe 

d=s77 (2°15) 

where F,d,s,h are again defined by (2.6) - (2.9) respectively, 
although all these quantities may now in principle vary with station 
coordinate x. However, if they do not, (2.15) can easily be shown 
to be the result of direct approximation of (2.5) for small s. 

The most interesting feature of (2.15) is of course the singu- 
larity at the critical Froude number F = 1, which is to be expected 

from the fact that the former transcritical region F, < F< F, has 
shrunk down to an isolated "forbidden" Froude number at F=1. We 
shall make use of linearized results like (2.15) throughout the re- 

mainder of this paper; however, it is well to bear in mind in each 

case that we may expect singularities at the critical Froude number 
and that, should these be of concern, they may be explained, studied 
or removed by non-linear considerations similar to those of the 
present section. 

Ill TWO-DIMENSIONAL THEORY OF SQUAT IN WIDE, SHALLOW 
WATER 

The theories of the previous section are useful only in widths 
of water comparable with the beam of the ship. Since the important 
blockage parameter is the ratio of the maximum ship cross-section 
area to the cross-section area of the channel, naive use of these 
theories for very wide channels leads to the conclusion that the squat 
effect tends to zero for a given ship as the channel width tends to 
infinity. But of course the basic Bernoulli effect must still be present, 
even in an infinite expanse of water, so that there will still be squat, 
and indeed substantial squat in this case. 

Analysis of shallow-water flow past ship-like bodies in in- 
finitely-wide water was first attempted by Michell [ 1898] in his 
famous wave-resistance paper. The relatively greater importance 
of Michell's infinite depth formula, the derivation of which consti- 
tutes the first part of his paper, has perhaps led to little interest 

being taken in the second part of the paper, where he treats a shallow 
water problem. This is unfortunate, since Michell's approach is 
what we might now call an aerodynamic analogy, even though his 
paper ante-dates aerodynamics! 

The problem treated by Michell concerns steady flow at speed 
U inthe x-direction past an obstacle of thin cylindrical form, with 
equation 

yor sped, x) <2; (3.4) 
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extending from the bottom z=-h tothe top z=0 ofthe water. It 
is apparent right from the outset that with this model of a ship we can 
expect no prediction of squat, for the "ship" has vertical sides every- 
where, and no fluid passes under it. Michell's only concern was with 
wave resistance, 

The mathematical problem is specified by a disturbance veloc- 
ity potential such that the fluid velocity is V(Ux + 4), satisfying 
Laplace's equation a 

) a>, 9d _ Be ot pee -~ h <2 < 0, (3:52) 

O19 2 Oulart ae, (3,3) 

the linearized free surface condition 

2 
C) 290 Bye TU ge H Oo on =O, pair 

and the linearized hull boundary condition 

3 +2 AUb Gd eeon. 'y=80,. (3.5) 

Both equations (3.4), (3.5) are linearized on the basis that the ship 
is thin, i.e. that its slope b'(x) is everywhere small, so that $ and 
its derivatives are small, as is the free surface elevation. 

We now apply the assumption that the depth h is small. The 
corresponding approximate equations may be obtained formally by 
stretching the z-coordinate with respect to h, then carrying out an 
asymptotic expansion in terms of the small parameter h/L, see 
Wehausen and Laitone [1960]. However, the leading terms are 
easily obtained by simply expanding @$ ina Taylor series with re- 
spect to z, about the bottom value z= -h, i.e. 

(x,y, Z) = (x,y, -h) a (z th) 6,(x,y ,-h) 

a (2th) ,.(x,y 5h) Trewin 6 (35 6) 

The second term in the expansion (3.6) vanishes by (3.3), 

and we use (3.1) to express $,, in terms of $,, and $y, , writing 
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(x,y,z) = o(x,y,-h) - 3(z th V7b(x,y,-h) +... (3.7) 

2 
where V = (a°/ax°) + (a /ay*). On substitution in (3.4) we obtain 
immediately to leading order in h the equation 

- ghV°o(x,y,-h) + U2, (x,y,-h) = 0, 

or 

2 ra 

(1 - F) Fa + Fa] olx,y,-n) = 0, (3.8) 

where F = U/ygh. 

Equation (3.8) is formally identical to the equation describing 
linearized aerodynamics in a two-dimensional flow of a compressible 
fluid, with the Froude number F playing the role of the Mach number 
(see e.g. Sedov [1965]). Indeed, the problem of solving (3.8) subject 
to (3.5) is identical to that for subsonic (F < 1) or supersonic (F > 1) 
flow over a non-lifting wing of thickness b(x), and we may use 
directly the results obtained in aerodynamics. Of course Michell was 
not so fortunate, and we should say that aerodynamicists could have 
used Michell's results, the first solution of any boundary-value prob- 
lem for a non-trivial general boundary. 

The character of Eq. (3.8) is different according as F< 1 
when it is elliptic and F >1 when it is hyperbolic, and different 
mathematical properties and solution techniques apply in these two 
cases. Here we quote only the final result for the hydrodynamic part 
of the pressure distribution over the body surface, namely 

- pu? (C” v\(é) aé 
2mj1- F* 4-0 x= 6 

p= (3.9) 

itt <4 

2 

eee on Ei ce ty 
2m F - 1 

the bar denoting a Cauchy principal value. Note that the pressure 
given. by (3.9) is a function of x only. The z-dependence has been 
neglected as part of the shallow-water approximation and there is no 
y-dependence because of the thin-ship approximation. The complete 
pressure distribution is obtained by adding to (3.9) the hydrostatic 

pressure. 

The only possible force on this cylindrical body is in the x- 
direction, and there is no net moment. Michell found by integration 
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of p times the slope b'(x) that the net force (wave resistance) is 

Oy “Pi<iais 
ie (3. 10) 

n 
Sl Leica} dx, F>t. 
Palate 

No doubt Michell was disappointed in his conclusion of zero 
wave resistance in the more important sub-critical regime, and 
indeed this conclusion may have contributed to the neglect of his 
shallow-water results. However, we can expect no other result 
from the present theory, which lacks a dissipation mechanism in the 
sub-critical regime to leading order. This feature it has in common 
with linearized aerodynamics. However, in aerodynamics the drag 
vanishes even according to nonlinear theory for Mach numbers every- 
where less than unity, whereas in the present water-wave problem 
it is only to leading order that the wave-making dissipation mecha- 
nism disappears. No second-order calculations seem to have been 
carried out to find the non-zero subcritical wave-resistance, and 
this is a problem which merits attention. 

Michell's analysis for a wall-sided "ship" was extended to 
ships of arbitrary cross-section by Tuck [ 1966]. In this case we 
can expect to predict a squat effect, and, although the analysis in the 
1966 paper is rather complicated, the main conclusion is quite 
simple. By the method of matched asymptotic expansions (Van Dyke, 
[1964]), Tuck showed essentially that Michell's result (3.9) for the 
pressure still holds, providing we interpret the function b(x) as the 
mean thickness of the ship at station x, averaged over the full depth 
of the water, i.e. set 

“bis =< s(x) (3.11) 

where S(x) is, as in Section 2, the cross-sectional area of the ship 

at station x. Thus, for example, we obtain again Michell's wave 
resistance formula (3.10) but with (3.11) used to rewrite it in terms 

OE. FO) 

On the other hand, the modified geometry of the ship does now 

allow non-zero vertical-plane forces and moments, and we find an 

upward heaving force 
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v2 £ £ 
ue) ax ( dEB'(xjS'(E)log |x-£|, F241 (eee 
2thy 1 - £ -f 

4 

S'(x) BGe)-dx3, F > 1 (32:43) 
-f 

ee ip 
2h/ F*- 4 

and a bow-up pitching moment 

ig £ L 

- —— ax f dé (xB(x)) *S'(S) log |x-€ | ’ F< 1, 

jal 2th: 1i-F -f -f (3.14) 

S'(x)xB(x) dx, F> 1, (3515) Suc 
2hyF -1 -2 

where B(x) is the width of the ship at the waterline at station x. In 
fact the force written down in (3.12) is invariably negative at sub- 
critical speeds so that a sinkage is to be expected rather than a lift. 

Tuck [ 1966] also gives formulae for the actual sinkage and 
trim displacements of the ship in response to these forces, assuming 
equilibrium with hydrostatic restoring forces, and provides some 
computed results which are in reasonable quantitative and excellent 
qualitative agreement with experiments of Graff et al. [1964]. There 
is a need for more experiments, especially in the very low water 
depth range, but it would appear from the comparisons so far made 
that the theory is quantitatively accurate so long as the depth is less 
than about one eighth of a ship length, and the Froude number based 
on depth is less than about 0.7. 

It may be worth observing here that the integrals in (3.12) - 
(3.15) are fairly insensitive to the shape of the section curves 

B(x), S(x). For instance, the ratio 

° fi ax fi a6 B'(x)S'(§) log |x-6| 
ve n n 

iy B(x) dx = hi S(x) dx 

(3.16) 

is nearly an absolute dimensionless constant, taking values between 

2.0 and 2.4 over a very wide range of B(x), S(x) curve shapes, 

including actual ships and mathematically defined curves. Thus a 

nearly universal approximation to the subcritical vertical force is 
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ou? Q Q 

ee rf B(x) ax f S(x) dx (3.17) 
: 2mhVi - Fs? J -¢ -t 

with a fixed value of \. From this follows a similar approximation to 
the actual sinkage, say a displacement of 6 downwards, where 

re J) Sx) dx 
aa poe ee (3216) 6=2- 

Ti or 

Finally, introducing the displaced volume 

£ 

a { S(x) dx (3.19) 

and making a further assumption (justified in most practical situations) 
that F << 1, we have 

z 
nae Wy 

a eh ie (3. 20) 

where L = 2£ is the ship length. 

In practical terms, if 6, L and h are infeet, V _ in cubic 

feet and U in knots, and if we insert reasonable (conservative) 

values for X and g, (3.20) implies 

6=0.13572- (3321) 

We put forward this formula (3.21) quite seriously for practical use 
by anyone interested in a quick estimate of squat in a wide expanse of 
shallow water. One should note the quadratic dependence on forward 
speed, the inverse dependence on water depth, the proportionality to 
displacement (at fixed length) and inverse square dependence on length 
(at fixed displacement). 

In a subsequent paper, Tuck [1967] extended the 1966 work to 
the case where the ship is moving along the center of a rectangular 
channel of width w, considering only the sub-critical case. The 
assumption made was that w is comparable with the ship length L; 
however the results obtained were uniformly valid, in the sense that 

the infinite- width results were reproduced as w/L — o, while as 
w/L— 0 we obtain predictions which may also be obtained by ele- 
mentary (linear) one-dimensional theory as in Section 2. An inter- 
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esting mathematical feature of this small width limit is that the singu- 
larity at F = 1 becomes stronger as w/L— 0, changing from in- 
verse square root (e.g. (3.12)) to inverse first power (e.g. (2.15)). 

Another conclusion in the 1967 paper was that the ratio between 
the sinkage at width w and that at infinite width was almost independ- 
ent of the shape, size or speed of the ship, depending only on the 

parameter (w/L)yi-F*. Thus, starting with any estimate (even 
(3.21) !) of the infinite width sinkage, we may further estimate the 
effect of finite width by use of the universal curve given in the 1967 
paper. For example, at low values of F, a channel width of two 
ship lengths increases the sinkage by 10%, one ship length by 33%, 
over the infinite width values. For channel widths less than one ship 
length a one-dimensional theory as in Section 1 is sufficiently accurate 
and probably to be preferred. 

IV. THREE-DIMENSIONAL THEORY OF SQUAT IN INFINITE 
WIDTH, FINITE DEPTH 

We begin the present section by presenting the solution! 
Suppose S(x) is the cross-section area curve of a slender ship 
moving at velocity U in water of finite constant depth h, and let 

4 
S*(k) = \ S(x) e!®* ax, (4.1) 

-£ 

Then consider 

; 00 , : 00 -idy 

Bea oe dk kS"(k) cin ( d= 
4 q 

-00 - 00 

: [e* 4 eo cosh QZ k* cosh q(z th) ] (4, 2) 
sinh qh(k® - Kq tanh qh) : sinh gh 

i 

where K=g/U* and q= (k* +22, 

Although the expression (4.2) is extremely complicated, it 
has the following properties, easily checked: 

1 

Gd 0. tk eer = Ayo Jace, (4,3) 

Gay OG) Oz = Oh om tz =. in, (4. 4) 

(iii) °k'(8d/dz) +(0'6/dx = 0 “on z=0, y #0, (4.5) 
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(iv) o-4 S (x) dog 2's f(x), P O(e tos +) as’ r= 0. (4. 6) 

The physical interpretation of $ is as follows. The contribution 
from the first term "e%" inside the square brackets is just the 
potential of a line distribution of sources, of strength proportional 
to S'(x), in a fluid which extends to infinity in all directions. The 

contribution from the second term inside the square brackets cor- 

rects for the presence of a bottom wall at z= - h, while the last 

term in the square brackets corrects for the presence of a free 
surface at z=0. 

The last property (4.6) indicates that the given solution (4. 2) 
can serve as an outer approximation (see Tuck [ 1964]) and will 
match an inner approximation which satisfies the correct boundary 
condition on a slender hull surface. Thus (4.2) gives the disturbance 
potential for flow around a slender ship in finite depth of water, no 
shallowness assumptions having been made. 

The function f(x) in (4.6) is of crucial importance, and may 
clearly be considered in three parts, arising from the three terms 

in the square brackets in (4.2). Let us write 

f(x) = fop(x) + g(x) (4.7) 

where 

L 
US'(x) Aa? U S'(x) - S'(E) 

ns - Pa) = log 4(z x ) a i: dé aaa (4. 8) 

(Tuck and von Kerczek [ 1968]) is the corresponding function for the 
double-body flow in an infinite fluid (no bottom or free surface), 

while g(x) is the contribution from the second two terms in the 

square bracket of (4.2), and takes the value 

. 00 ae 
g(x) = ae ak ks Hic) tK* A* (1) (4.9) 

where 

eee ee (4.10) 
k“ - Kq tanh qh 

In the integral (4.10), if Kh< 1 there is a pole on the real q-axis 

at q = 4q,(k), where 
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2 
k = Kq, tanh qoh (4.11) 

and this pole must be avoided by passing beneath it in order that the 
waves are behind the ship. 

Thus the real part of A*(k) may be written as a Cauchy 

principal value integral, which can be evaluated by standard numeri- 

( cal quadratures,whereas the imaginary part of A‘“(k) can be obtained 
from the residue at the pole, and we have 

wi do So , xh <1 

JA “(k) = (4.12) 

0. Rae's s 

Once A* is determined, g(x) follows by further numerical quad- 
ratures from (4.9), if actual numerical values of g(x) are required. 

However, our main aim is to find the forces on the ship, 

which follow from g(x) via the pressure distribution, given by 

P(x,y»Z) = Polx,y,Z) - pUg'(x) (4.13) 

where Pog (Xs ¥ > Z) is the pressure on a double body in an infinite 

fluid. Hence the vertical force is 

£ 

F, = F, - oul , dx B(x)g'(x) 

20° —— 
= FS - eu dk k?S"(k) B*(k) A*(k), (4.14) 

-00 

and the trim moment is 

L 

F =F +pul dx xB(x) g'(x) 

2 eee 

Fe +h, \ dk k?S*(k) xB*(k) A*(K), (4.15) 
-00 

where F%, Fo are the corresponding quantities for the "submerged" 
half of the infinite fluid double body, B(x) is again the waterplane 
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width curve, B*(k), xB “(k) are Fourier transforms (cf. (4.1)) of 
B(x), xB(x) respectively, and a bar denotes a complex conjugate. 

The quantities Ber He must be computed separately, e.g. 
by computer programs such as those of Hess and Smith [ 1964] or 
Tuck and von Kerczek [1968]. Alternatively, one may estimate them 
experimentally. It is important to note that F%, F® are independent 
of water depth and of Froude number; indeed, when divided by euU- 

these are constants which are a property of the hull geometry alone. 

An interesting special case isa hip with fore-and-aft sym- 
metry, where (neglecting viscosity) FS = 0. In addition, since 
S(-x) = S(x) and -xB(-x) = -xB(x), s* is real and even with 
respect to k whereas xB” is imaginary and odd. Asa result, 
only the imaginary part (4.12) of A*(k) contributes to the integral 
in (4.15), and we have 

ish Ga Bie ae \ dk k°S*9(xB*)9A* (4.16) 

OF = (Kh) = <1 7 (4.17) 
(ee) 

ae dapack S*(K)IxB"(k), F> 1. 
27r 2 2 

(@) do = k 

Similar, but more complicated, results are obtained for F on he 

and ¥F.- es when the ship does not possess fore-and-aft symmetry. 
Evaluation of the supercritical trim moment F,; from (4.17) re- 
quires only a single numerical quadrature (apart from the prior 
estimation of the Fourier transforms S*, xB*). However, in the 
general case an additional numerical quadrature is needed to deter- 
mine the real part of A *(k) from (4.10). 

The shallow-water limit of the above finite-depth results 
corresponds to letting kh ~ 0, i.e. we let the depth tend to zero 
relative to a typical effective wavelength 2n/k. In particular, from 
(4.11) we have qgh > 0 as kh—O and hence k—~ykKkhq, or 
do—~ Fk. Thus for F >1, (4.17) gives for ships with fore-and-aft 
symmetry that 

poe Pe ES *k *k = dk kS* 9xB" (4.18) 

2 Q 

on, eee S'(x)xB(x) dx, (4.19) 
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in agreement with (3.15). It is quite straightforward to show ina 
similar manner that all of the shallow-water results of Section 3 are 
reproduced in the corresponding limit, even when fore-and-aft 
symmetry is not assumed. 

In carrying out this shallow-water limit, one may wonder 
what happens to the "double-body" terms F® and F2. The answer 
is that they are of course quite independent of water depth and hence 
nothing happens to them, and in principle they remain in the formulae, 

However, when the depth is small the shallow-water terms formally 
dominate the total expression for F, or F,, so that Bg and ee 

may be neglected. 

In Fig. 2 we present computed finite-depth sub-critical sink- 
age and super-critical trim for a ship with parabolic waterline and 
section-area curves, a length of 600 ft, beam of 60 ft, draft of 20 ft, 

and block coefficient 0.533. This geometry and size was chosen for 
analytical convenience, but is not unlike a destroyer hull. The super- 
critical trim was calculated directly from (4.17) by a single numeri- 
cal quadrature (since this hull has fore-and-aft symmetry), whereas 
the sub-critical sinkage required an extra numerical integration of 
(4.10), and, furthermore, required separate estimation of the infinite- 

fluid contribution td in (4.14). 

DEPTH = 30 FT. 

SINKAGE (FT.) TRIM (DEGREES) 

A O 
oo SHALLOW 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

FROUDE NUMBER BASED ON DEPTH 

Fig. 2 Finite depth squat for a ship 600 ft long and 20 ft draft 
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Instead of using sophisticated numerical techniques for F®, 
in the present case we estimated ro by assuming that the under- 
water hull could be approximated by an equivalent spheroid, with the 
same length and displacement. If we define the slenderness e€ by 

{2 V € = (ee. (4. 20) 

which is equal to the beam/length ratio of the equivalent spheroid, 
the exact infinite fluid force on the submerged half of the spheroid 
can be obtained from the formula given by Havelock [ 1939] in the 
form 

h 
FO: -pu'- ( B(x) dx + C_(e) (4, 21) 

where 

-2 
2 mee 

S log == ) ‘ (4. 22) 

2y 1-2 {=./4-«2 

In fact, since € is generally small, an adequate slender -body approxi- 
mation to (4.22) is 

bole 2 
C.(€) => tap tt - 3€ ee) & 

2 jo! es Cele) = - € “(log 5€ +5) + 3 + O(e4log €). (4. 23) 

The result (4.22) is of course in exact agreement with 
Havelock's [| 1939] more general formula for ellipsoids whose sections 
are not circular. On the other hand (4.23) is within 10% of computa- 

tions based on Havelock's formula for general ellipsoids, providing 
€ < 0.2 and the half-beam/draft ratio of the general ellipsoid lies 
between 0.65 and 7.0, a range of parameters which includes the 

usual ship dimensions. Some preliminary numerical computations 
using the theory of Tuck and Von Kerczek [ 1968] have shown that 
(4.23) is a good estimate for non-ellipsoidal geometries, while 

Havelock [ 1939] himself made satisfactory comparisons between 
his ellipsoid estimates and experiments of Horn [ 1937] on actual 
ship models, so that there are grounds for believing that (4. 21) 
subject to (4.23) gives a useful prediction of the infinite fluid zero 

Froude number sinkage force. 

The finite depth computations were carried out for water 
depths of 100, 60 and 30 feet. The results for the smallest of these 
depths are in very close agreement with the shallow-water theory 
of Section 3, shown dashed on Fig. 2, over the complete range of 
Froude numbers shown. This indicates that a water depth/ship length 
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ratio of 1 in 20 is quite adequately shallow for the use of shallow- 
water theory. But the results at twice this depth are also in reason- 
ably good agreement with shallow-water theory, the latter theory 
underestimating sinkage by about 20%. The corresponding under- 
estimate at 100 ft depth is about 40%, so that one should consider a 

water-depth/ship length ratio of 1 in 6 as too great to use shallow- 
water theory for sinkage. 

However, it must be pointed out that the difference between 
the finite depth and shallow water predictions of sinkage is pre- 
dominantly due to the influence of the term F® in (4.14). If this 
(positive) term is left out of (4.14) the finite depth computations at 
all depths merely oscillate about a mean which is quite close to the 
shallow-water curve. These oscillations are clearly visible in 
Fig. 2; they are quite similar to the humps and hollows in theoretical 
wave resistance curves, and have the same explanation, as an inter- 

ference effect. One may thus speculate that, by ignoring these oscil- 
lations, we may obtain a useful empirical scheme for computing 
finite depth sinkage by adding the shallow water estimate (e.g. (3.21)) 
to the infinite fluid zero Froude number estimate computed by (4. 23). 
Further work needs to be done to test this suggestion, which is of 
some significance since computations based on the theory of the pres- 
ent section are too complicated and expensive of computer time for 

general use. 

No direct comparisons of the finite depth computations with 
experiment have yet been made, but the differences between the finite- 
depth and shallow-water results appear to be in the right direction 
to explain most of the discrepancies already noted by Tuck [ 1966] 
between shallow-water theory and the experiments of Graff et al. 
[1964]. In particular, more detailed computations for a depth of 
100 ft, (h/L = 0.167) show that the peaks in the sinkage and trim 
curves occur at about the right Froude numbers, 0.94 and 0.98 

respectively, and that the trim starts to become significant at a 
Froude number as low as 0.8. 

V. THE ACOUSTIC ANALOGY FOR UNSTEADY LATERAL FLOW 

In the remainder of this paper we shall be concerned with a 
very special aspect of the problem of ship motions in shallow water, 
namely computation of the exciting force on a stationary ship under 
the influence of regular beam seas. A more general formulation 
and partial solution of the problem of ship motions in shallow water 
is given by Tuck [1970]. Most other work on ship motions in shallow 
water, e.g. Freakes and Keay [1966], Kim [ 1968], concerns finite 
depth rather than shallow water. An exception is a number of papers 
by Wilson (e.g. [ 1959]) on responses of moored ships in harbors, 
but no account is taken there of ship geometry. Mention must also 
be made of the thesis by Ogilvie [1960], in which the shallow-water 
asymptotic expansion was developed rigorously for a class of two- 
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dimensional diffraction problems. 

We now suppose that, except for the scattering effect of the 
ship, the flow field is described by an incident plane wave moving in 
the y-direction, with wavelength 21/k, frequency o, and amplitude 
A, where k and o are related by the shallow-water dispersion 
relation 

o =7ghk. (5.1) 

The potential of this wave will be taken to be the real part of beiet F 
where 

>= A en: (5.2) 0 h ik * : 

In fact, (5.1) and (5.2) are of course already approximations to the 
exact formula (e.g. Wehausen and Laitone [ 1960]) for small-ampli- 
tude waves in finite depth h; for instance the exact expression for 
do is that given by (5.2) multiplied by cosh k(z +h) /cosh kh, which 
tends to unity as kz —~ 0. 

This incident wave is modified by the presence of the ship. 
We suppose that the total field is then the real part of (od) + d)e'*, 
where = $(x,y,z) is the disturbance potential, which is to be 

found. The exact equations satisfied by » are (3.2), (3.3), an 
unsteady free surface condition analogous to (3.4), namely 

gse-o%}=0 on 2=0 (522) 

and a boundary condition on the ship's hull of the form 

Fa (bo + 4) = 0 (5.4) ony 2 i 

where 8/8n denotes differentiation normal to the hull. 

We construct first an outer shallow-water approximation to 
@ in the same way as in Section 3, i.e. by expanding in a Taylor 
series’ with respect to (z th). Equation (3.7) still applies, but on 
substitution of (3.7) in (5.3) we now find 

2 2 
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i.e. (x,y,-h) satisfies the Helmholtz equation 

Vb +k} = 0 (5.5) 

in the (x,y) plane. 

The Helmholtz equation is of course simply the "reduced" 
wave equation, and so applies to any scalar wave problem in two 
dimensions, for sinusoidal time dependence. In particular, it 

describes linear acoustics in two dimensions (e.g. Morse [ 1948]), 
and many results obtained in solving acoustic problems may be 
utilized. 

For example, we may treat immediately the scattering of a 
thin cylindrical ship, as in Michell's model of Section 3, which 
extends from top to bottom of the water. An important difference 
from the theory of Section 3 is that, even in the limit as the thick- 
ness tends to zero, the thin "ship" is capable of scattering beam 
waves. Thus, to leading order, the problem is independent of 

thickness, and reduces to acoustic scattering by a ribbon or strip 
of zero thickness placed broadside on to the waves, with a "hard" 
boundary condition 

ao A [2 = constant on y = 0,, [ao {<0 (5.6) 

The exact solution can be written down as a series of Mathieu 
functions (Morse and Rubenstein [1938]). Results for the scattering 
cross section, the far-field polar diagram and the force on the strip 
can be computed from this series, but only with some difficulty, 
especially for high frequency. Alternatively, integral equation for- 
mulations of the problem can lead to useful high and low frequency 
asymptotic solutions (Hénl, Maue and Westphal [1961] ) or even to 
efficient numerical solutions (Taylor [1971]). Such numerical 
results are included with the discussion of the general case in 

Section 7. 

Once again this idealized ship is deficient from the practical 
point of view. In particular, it allows no account to be taken of flow 
beneath the keel of the ship. In any situation of real interest, wave 

energy is not only scattered, diffracting around the ends of the ship, 
but also transmitted underneath the ship if there is any reasonable 
amount of clearance. The most interesting situation is that which 
applies when the amounts of disturbance scattered and transmitted 
are of the same order of magnitude; we shall see later that this is 
true for draft/water depth ratios in the range 0.5 to 0.95. 

We shall retain the approximation that the ship is thin, and 
hence slender, since it must have small draft. However, the 
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possibility of fluid passing underneath the ship means that we must 
replace the "hard" boundary condition (5.6) by a more general con- 
dition, expressing in effect a relationship between the velocity 
(8¢/dy) + AVg/h of fluid passing "through" (i.e. under) the strip 
y = 04, |x|< £ and the pressure difference (proportional to potential 
difference) across the strip, which causes this underflow. Thus we 
write 

C) a tA [R= FPS on y = 0s, acl ek, (5.7) 

where P = P(x) is the "porosity" of the ship section at station x. 
If the ship is actually touching the bottom, then P=0 and (5.7) 
reduces to (5.6); at the other extreme, if there is substantial 

clearance, P—- oo andthe jump in potential $ across the strip 
tends to zero, leading as expected to zero force on the ship. 

In the following section we indicate how to obtain the porosity 
P(x) for any given ship and sea bottom geometrical configuration. 
The problem of solving (5.5) subject to (5.7) is then identical to that 
for acoustic scattering by a "semi-soft" or porous ribbon with finite 
acoustic impedance, see e.g. Morse [1948]. However, no general 
procedure seems to be available in the acoustic literature for solving 
this type of problem, and we present in Section 7 a numerical 
approach based on an integral equation formulation. 

It should be remarked that as k—~ 0 the present problem 
reduces to uniform steady streaming flow across the ship, the free 
surface being replaced by a rigid wall. This problem was discussed 
by Newman [ 1969] , who presented solutions for the added mass of 
the ship in such a flow. The present theory can be considered a 
generalization of Newman's theory to allow for waves, and gives 
results which agree with Newman's in the limit as ki ~ 0, i.e. as 
the waves become long compared with the length of the ship. 

VI. THE DETERMINATION OF THE EFFECTIVE POROSITY 

The problem formulated in the previous section is to be inter- 

preted as an outer problem, which provides a solution for the scattered 
field everywhere except within a beam or two of the center plane 
y = 0 of the ship. In this latter region, the outer solution must match 
an inner approximation which describes the detailed flow field beneath 
the hull. This flow can easily be shown (Tuck [ 1970] , Newman [ 1969]) 
to be locally two-dimensional in the (x,z) plane, and to satisfy the 

two-dimensional Laplace equation 

S$ + SF =0 (6.1) 
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in that plane. Furthermore, the free surface condition reduces toa 
rigid- wall boundary condition 

SP = 0 or z=0. (6.2) 

Thus the inner problem is identical to that treated by Newman [ 1969], 
who assumed that (6.2) was valid everywhere. 

The boundary condition at "infinity" for this inner solution is 
that the inner solution should match the behavior of the outer solution 
in a common domain of validity, say many beams away from y=0, 
but not so far away that y is as large as £ or 2m/k. In effect, 
this simply means that the inner boundary condition (5.7) for the outer 
solution becomes the outer boundary condition for the inner solution. 
Thus the inner approximation to the disturbance potential ® must 

satisfy 

fia [k= Ps neha aries (6.3) 

which is satisfied if $ is asymptotically independent of y, i.e. 

p+ Avg/h as y->+o (6.4) 

implying 

LL pig as yi (0. (6.5) 

The boundary condition on the hull is (5.4) but where now 

8/8n denotes differentiation normal to the hull cross section IT at 

station x, and where, since ky is small in the inner region, we 

may replace the incident wave 9, by 

b—- A JE (xz ty), (6.6) 

i.e. by an incident stream of speed Ayg/h. Then (5.4) becomes 

Sat ogy (ey ae A Fon on Fr. (6.7) 

Thus the inner approximation to $ is the potential for flow due to 
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motion of the section I as if it were an infinitely long rigid cylinder 
moving in the y-direction with velocity Ayg/h, the fluid at y =+ 00 
being at rest. 

The problem specified by (6.1) subject to (6.2), the bottom 
condition (3.3), the hull condition (6.7) and the rest condition (6.5) 
is a classical Neumann boundary value problem, and @ is deter- 
mined by these conditions apart from an additive constant. If in 
addition we prescribe the natural symmetry condition that o is an 
odd function of y, in conformity with (6.4), then $ is uniquely 
determined, and the actual limit of ¢ as y—~+0o must, via (6.4), 
provide a determination of P. 

A number of techniques are available for solving this two-di- 

mensional boundary-value problem. If the section is sufficiently sim- 

ple (e.g. rectangular) a solution may be found by conformal mapping 

methods (Flagg and Newman [1971]). For actual and quite general 

ship sections we have (Taylor [1971]) developed a computer program 

based on the methods used by Frank [1967] for a similar problem. 

In this method one represents the flow by a distribution of 
sources around the section I, with variable but unknown density. 
These sources individually satisfy the "free" surface and bottom 
conditions (6.2) (3.3), but not, of course the hull boundary condition 
(6.7) on IT. We now attempt to choose the source density function 
in order to satisfy (6.7), thereby obtaining an integral equation from 
which the source density is in principle obtainable. 

Since analytic solutions for general TI are out of the 
question, we adopt a numerical approach in which [I is first approxi- 
mated by a set of straight line segments, on each of which we assume 
the source density to be constant. The integral equation then reduces 
to a set of linear algebraic equations for these unknown constant 
source strengths, and this set of equations is solved by direct matrix 
inversion. 

It is convenient to define a blockage coefficient 

Cx) = pry: (6.8) 

as the inverse of the porosity. With this definition, we see from (6.4) 
that to obtain C(x) we merely divide the potential by minus the 
speed Ayg/h of the motion of the section I and take the limit as 
y—~> too. Thus, if our aim is solely to determine C(x) or P(x), 
we may, without loss of generality, take A=-vh/g for the purpose 
of the present section only, and identify C as the limit of $ as 
y —~ + oo, a quantity which is readily evaluated from the numerical 
solution for the generating source strengths. 

651 



Tuck and Taylor 

The program has been tested by comparison with Flagg and 
Newman's [ 1971] computations for a rectangular section, and gives 
good agreement over the range of dimension of interest. For instance, 
with a rectangle of total width 0.25 and a (submerged) draft 0.1 in 
water of depth 0.125, Flagg and Newman's [ 1971] computations give 
C = 0.598, while our program with 24 segments on the bottom of the 

rectangle and 12 segments on each side gives C = 0.603. Although 
this accuracy (1%) is already very good in the present application, 

it can easily be and has been improved by use of a larger number of 

segments, especially in the neighborhood of the corners. 

Another check is by means of asymptotic estimates for small 
clearances (Taylor[1971]). A formula which is valid for arbitrary 
sections, providing they have substantially vertical sides 2b units 
apart and a substantially flat bottom c (<<h,b) units from the water 
bottom, is 

clacBPy (6.9) 

For strictly rectangular sections, this formula may be improved by 
estimation of the next term in an asymptotic expansion for small 
c/h, giving 

~bh,2h,,, bh 42h. C= 2 +P loge + - b + O(c). (6. 10) 

For the rectangular section used as an example above, (6.9) gives 
C = 0.625 while (6.10) gives C = 0.597. 

Indeed, it must be noted that rectangles are not a fair test for 
the computer program, since the generating source strength becomes 
infinite at the sharp corner. We should therefore expect far better 
accuracy for smooth ship-like sections. For instance, the program 
gives results with accuracies of better than 1% when applied to the 
oval-shaped sections generated by a single isolated dipole in a channel 
(Lamb [{ 1932]). 

Figure 3 shows computations of C(x) /f for a Series 60, 

block 0.80, tanker hull (Todd [ 1963]), with beam/draft ratio of 2.5 
and length/beam ratio of 8.0, the ship length being 2£. The results 
are for two depths of water only, with draft /depth ratios of 0.8 and 

0.9. In neither of these cases is there a great deal of water beneath 
the keel, but this is the interesting range, since it is necessary that 
the clearance be relatively small to achieve significant flow blockage. 
Thus at a draft/depth ratio of 0.4, the typical values of C/f£ are 
already below 0.125 over the whole length of the ship, which leads 

to a maximum force (see the following section) less than a quarter 

of that for the full-blocked situation. 
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(BOW) NORMALIZED STATION CO-ORDINATE x (STERN) 

Fig. 3 Blockage coefficient C(x) for Series 60, block 0.80 ship 

VII. THE SIDE FORCE DUE TO BEAM SEAS 

Once we have obtained the blockage coefficient C(x) or its 

inverse the porosity P(x) for any given ship-water bottom geometry, 
we have all the information about the ship that is necessary to solve 
the outer acoustic-like problem to determine the wave force on the 

ship. Numerical techniques for solving the problem formulated in 
Section 5 are described by Tuck [1970] and by Taylor [1971] and will 
not be discussed in detail here. 

It is sufficient to observe that the outer problem can be re- 
duced to solution of an integral equation, using methods analogous 
to those described by Honl, Maue and Westphal [1961], in which 
P(x) appears as an input quantity. This integral equation can be 
solved by direct numerical quadrature, followed by matrix inversion, 
leading to numerical values for the basic unknown potential 
o(x,0,,-h). 

This potential is proportional to the pressure difference 
across the ship, and hence we may obtain the net force F, on the 
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ship in beam seas in the form 

£ 
Bei="- 2ieph | ; o(x,0,,-h) dx. Wie 1) 

Figure 4 shows computations of | Fo |/2pghLA for the Series 60, 

block 0.80 ship whose blockage coefficient C(x) was given in 

Fig. 3. This particular scaling of the force was chosen so that the 

high frequency or short wave limit kf —~ o is 2.0. This limit cor= 

responds physically to the case when the ship acts as a perfect 

reflector many wavelengths long, so that a pure standing wave exists 

in its neighborhood. This is true for all values of P(x), i.e. for all 

draft/water depth ratios, because as the waves get shorter and 

shorter they are less able to penetrate beneath the hull. 

HIGH FREQUENCY 
ASYMPTOTE 

IFI/2pghlA 

DRAFT/WATER DEPTH = 0.8 

/ 0.9 

1.0 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 

kl = mL/r 

Fig. 4 Side force on Series 60, block 0.80 ship, due to beam seas 
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The results for zero clearance show pronounced wobbles as 
a function of frequency. This is to be expected, and is due to inter- 
ference between the waves diffracted around the two ends of the ship. 
For non-zero P(x) there is a similar but much reduced effect, 

since part of the wave energy is transmitted directly beneath the 
ship, and a less strong diffraction pattern produced. 

The force decreases markedly as the clearance is increased 
and the ship presents less of a barrier to passage of wave energy. 
If in fact the clearance is large, P—~+co or C ~ 0, it follows from 

(5.7) that $(x,0,,-h) — - Avg/h C(x) and hence that 

f 
Fo > Zipghka | C(x) dx. (7. 2) 

i) 

The physical interpretation of this limit is that the effect of the free 
surface on the disturbance flow field about the ship diminishes as the 
clearance increases, until the flow is effectively the same as the low 
frequency limit in which the force is in phase with the fluid particle 
accelerations. This is in line with an interpretation (Newman [ 1969]) 
of C(x) as related to the added mass of the section at x, with the 
free surface replaced by a rigid wall. The resulting force Fg, is of 
course numerically small, if C(x) is itself small. 

On the other hand, the only cases shown in Fig. 4 correspond 
to clearances small enough to give significant blockage C(x), and 
hence a net force comparable with the standing-wave value 4pghlA. 
It would appear that this limiting value is a useful, usually conserva- 
tive, estimate for clearances of this order, but that it should be used 
with caution for low frequencies (very long swell) or for non-small 
clearances. In the latter case, e.g. with draft/water depth < 0,5, 
the standing wave limit may be a substantial over-estimate of the 
total force. 

The computations presented here are samples only. They 
may be considered extensions of similar computations given by Tuck 
[1970] for a mathematically idealized ship with a blockage coefficient 

C(x) = Cy 0? - 50 723) 

In fact the results for the Series 60 ship are not greatly different 
from those given by Tuck [1970], a reflection of the fact that (7. 3) 
is not an unreasonable approximation to the shape of the curves in 
Fig. 3. Further computations, including other ship geometries and 
clearances, and treating the case of incident seas from directions 
other than abeam, are given by Taylor [1971]. 
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DISCUSSION 

Prof. Hajime Maruo 
Yokohama Nattonal Untversity 

Yokohama, Japan 

In the present analysis, the problem of the shallow water 
effect is discussed on the basis of a self-consistent linearized 

theory. According to the investigations into the same problem both 

theoretical and experimental, which were carried out at the University 

of Tokyo several years ago, nonlinear phenomena appeared remark- 

ably in the trans-critical speed range. This problem can be analyzed 

by a similar way to the nonlinear theory of the transonic flow ofa 
compressible fluid. At that time, however, the theory of the tran- 

sonic gas flow had not been well developed, and the former investi- 

gations were obliged to confine themselves in the analysis by the 

analogy with the simple one-dimensional duct flow. Nowadays the 

theory of the transonic flow around a body has been developed to a 

great extent. The mathematical technique used in it may be available 

to the problem of the nonlinear shallow water effect. 
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REPLY TO DISCUSSION 

B20. Tuck and°P. J. Paylor 

Untversity of Adelaide 
Adelatde, South Australia 

We certainly agree with the comments of Professor Maruo 
regarding the importance of nonlinear phenomena in the trans-critical 
speed range. Indeed, the transonic analogy was discussed in the 
paper by Tuck[1966] and further work on this aspect of the problem 
was suggested. 
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SINGULAR PERTURBATION PROBLEMS IN 

g(x,z3€) 

G(x,z) 

h(x, z3€) 

H(x,z) 

H(x) 

SHIP HYDRODYNAMICS 

T. Francis Ogilvie 
Untverstty of Michtgan 
Ann Arbor, Michigan 

NOTATION 

added-mass coefficient 

damping coefficient 

hull offset 

restoring-force coefficient 

contour of body in the cross section at x 

force in j-th mode due to body motion 

force in j-th mode due to incident waves 

gravity constant 

Y offset of camber surface 

g(x,zse)/e 

half-thickness of body (equal to b(x,z) for a symmetri- 
cal body) 

h(x ,z3€)/e 

part of free-surface deflection in problems in two 
dimensions (see Eq. (5=15)) 

projection of a body onto the y =0 plane (the center- 
plane of a ship) 

V-1 

unit vectors parallel to three Cartesian axes 

Fourier-transform variables corresponding tox, y, z@ 
respectively 

modified Bessel function of second kind 

length of a ship, or the segment of the x axis between 
bow and stern cross sections 
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v(x,y»Z) 

xy Z 

De Ga’ 4 

Z,(xsy3€) 

a,(x»Z3€) 

Yp(%2Z3€) 

6) 

€ 

C(x .9,t) 

Ogtlvite 

G=1, ... 5 6) aset of functions defined over the sure 
face of a slender body (see (2-75)) 

added mass per unit length of a slender body 

(j= 1, .-., 6) a set of functions defined over the surface 
of a slender body, equal to the components of the unit 
normal vector for j=1, 2, 3 (see (2-72)) 

damping coefficient per unit length of a slender ship 

unit vector normal to body surface (usually taken positive 
into the body) 

unit vector in a plane x = constant, normal to body 
contour in that cross section 

pressure 

radius coordinate in cylindrical coordinate system 

radius coordinate of a slender body 

xj +t yj + zk 

half-span of a horseshoe vortex or a lifting line 

local half-span in wing cross section at x, or cross 
section area of a slender body (taken as the cross section 
area of the submerged part, for a ship) 

half-span of a wing of large aspect ratio 

keel depth of a ship at cross section at x 

transfer functions between motion variables and forces 

on body 

speed of a body, or speed of an incident stream (the 
latter invariably being taken in the positive x direction) 

fluid velocity at (x,y,z) with uniform stream at infinity, 
U = 1, flowing around a body 

Cartesian coordinates 

stretched Cartesian coordinates, e.g., x= X,y= €Y, 
z=eZ for a slender-body problem, xyz being far- 
field coordinates, XYZ near-field 

terms in a near-field expansion of €(x,y;e) (cf. 

€(x,yse)) 

6 (x,0,z;€) in thin-body problem 

normal velocity component in the plane of a sheet of 
dipoles 

motion-amplitude parameter in ship-motion problems 

small parameter in most problems considered 

displacement of the free surface 
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C(x, y3e) 

C(z) 

n(x,y) 

7(x) 

No(x) 

8 

Q(x,y,t) 

K 

d,(z) 

Hy (Z) 

n(x, z3€) 

gj (t) 

p 

o,, (x3€) 

o,(x»Z3€) 

x,y,z >t) 

$x y) 

$(x,y »z3€) 

$j (x,y »Z) 
G(x,y,z3€) 

}i(x,y »z) 

X (x,y,z) 

bj (x,y »Z) 

W(x,y, Zz ,t) 

Wj(x,y»z) 

WwW 

Q: Gciyss) 

terms in a far-field expansion of €(x,y;e) (cf. 

ZA(Xsy3€) ) 

function mapping the complex variable z onto an 
auxilliary (¢) plane (in Section 5) 

steady part of free-surface deflection in ship-motion 
problem 

free-surface deflection in problems in two dimensions 

part of free-surface deflection in low-speed problem in 
two dimensions (see (5-7) ) 

angle variable in cylindrical coordinate system 

time-dependent part of free-surface deflection in ship- 
motion problem 

g/U*, a wave number in steady-motion problems 

density of dipoles on a line (see (2-40) ) 

density of dipoles on a line (see (2-40) ) 

density of dipoles on a surface 

w*/g, a wave number in oscillation problems 

displacement in the j-th mode of motion (see Section 
2232) 

water density 

density of sources on a line 

density of sources on a surface 

velocity potential (the arguments may vary, but 6 
generally denotes the complete potential function ina 
problem) 

in Section 5.4, potential for the problem in which the 
free surface is replaced by a rigid wall 

terms in a far-field expansion of $(x,y,z;e) 

normalized potential functions (see (2-73), (3-28) ) 

terms in a near-field expansion of (x,y, ze) 

normalized potential functions (see (3-44) ) 

velocity potential for the perturbation of a unit-strength 
incident stream by a slender ship 

normalized potential functions (see (276) ) 

time-dependent part of velocity potential in ship-motion 
problem (with forward speed) 

normalized potential functions (see (3-45) ) 

radian frequency of sinusoidal oscillations 

normalized potential functions (see (3-46) ) 
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MISCELLANEOUS CONVENTIONS 

1) —— Potential: The velocity is always the positive gradient 
of the potential function. 

2) Coordinates and Orientation: In problems involving a steady 
ncident flow, that flow is always inthe positive x direction. 
The vertical axis is the y axis in 2-D problems, the z 
axis in 3-D problems. 

3) Time Dependence: In problems of sinusoidal oscillation, the 
time aependen ce is always in the form of the exponential 
function, e!#f, In such problems, the real part only is 
intended to be used, but we do not indicate this explicitly in 

general. 

4) Fourier Transforms: These are denoted by an asterisk. For 
example, 

foe) @ 
* A 

o (k) -{ dx es (x) : o(x) = + dk ae oe (ils 
-@ ue -@ 

tok sak Gee ~i(kx +f y) 
6 (k,£;z) -{ iY dx dy e o(x,y,Z)- 

-00 “-00 

5) Principal- Value Integrals: These are denoted by a bar through 
the integral sign: 

6) Order Notation: There are three symbols used: O.0,”. 

a) "“y = O(x)" means: |y/x|< M as x0, where M is 
a constant not depending on x. 

b) "y = 0(x)" means: ly/x| > 0 as x0. 

y ~ £(x) " means ly - £(x) | = o(f(x)) as x0. 
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I. INTRODUCTION 

This paper is a survey of a group of ship hydrodynamics 
problems that have certain solution methods in common. 

The problems are all formulated as perturbation problems, 
that is, the phenomena under study involve small disturbances from 
a basic state that can be described adequately without any special 
difficulties. The methods of solution make explicit use of the fact 
that the disturbances of the basic state are small. Mathematically, 
this is formalized by the introduction of one or more small param- 
eters which serve as measures of the smallness of various quantities. 
The solutions obtained will generally be more nearly valid for small 
values of the parameter(s). 

However, the problems will also be characterized by the 
fact that they are ill-posed in the limit as the small parameter/(s) 
approaches zero. Thus, we call them singular perturbation prob- 
lems. Special techniques are needed for treating such problems, 
and we have two which are especially valuable: 

4) The Method of Matched Asymptotic Expansions, and 

2) The Method of Multiple-Scale Expansions. 

The first has a well-developed literature, and it has been made 
particularly accessible to engineers by Van Dyke [1964]. The 
second, which has a longer history, is perhaps less well-known, 
but we now have a textbook treatment of it too, thanks to Cole [ 1968]. 
Because of the availability of such books, my treatment of the 
methods in general will be extremely terse. 

The necessity for treating ship hydrodynamics problems as 
perturbation problems arises most often in the incredible difficulty 
of handling the boundary condition which must be satisfied at the free 
surface. Even after neglecting viscosity, surface tension, com- 
pressibility, the motion of the air above, and a host of lesser 
matters, one can still make little progress toward solving free- 
surface problems unless one assumes that disturbances are small 
-- in some sense. Historically, it has commonly been assumed 
that the boundary conditions may be linearized; in fact, this has so 
commonly been assumed that many writers hardly mention the fact, 
let alone try to justify it. 

The two methods emphasized in this paper can also be applied 
to problems involving an infinite fluid. In fact, neither method was 
applied specifically to free-surface problems until quite recent 
times. Section 2 of this paper is devoted to several infinite-fluid 
problems. My justification, quite frankly, is almost entirely on 
didactic grounds. The methods can be made much clearer in these 
simpler problems, and so I include them here, although in some 
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cases the infinite-fluid problems can be treated adequately by more 
elementary methods. 

Most of the material in this paper has appeared in print 
elsewhere. My intention has been to present a coherent account of 
the treatment of singular perturbation problems in ship hydrody»* 
namics, and so I have reworked solutions by other people and put 
them into a common notation and a common format. In some cases, 

I have made conscious decisions to follow certain routes and to 
ignore others. I am sure that I have made many such decisions 
unconsciously too. I have tried to give credit where it is due, but 
Iam also sure that I have committed some sins of omission in the 
references. I apologize to those whom I may have slighted in this 
way. 

1.1. Nature of the Problems and Their Solutions 

We never really derive the perturbation solution of the exact™ 
problem; we derive, at best, an exact solution of a perturbation 

problem. That is, we formulate an exact boundary-value problem, 
simplify the problem, solve the simplified version, and then hope 
that that solution is an approximation to the solution of the exact 
problem, 

Thus, there will almost always be open questions about the 
validity of our solutions, and these questions can only be resolved 
through comparisons with exact solutions and experiments. We can 
have little hope of being rigorous. In fact, it is difficult to provide 
completely convincing arguments for doing some of the things that 
we do; in many cases, our approach is justified by the fact that it 
works! Much progress has been made in this field by people who 
try approaches "to see what will happen." 

This does not imply that we shoot in the dark. It does sug- 
gest that we often depend more on intuition (or experience, which is 
the same thing) than on mathematical logic in deciding how to solve 
problems. The small disturbance assumptions by which free-surface 
problems have traditionally been linearized must have been tried 
first on this basis. The predictions which result from making such 
assumptions agree fairly well with observations of nature, and so we 
are encouraged to go on making the same assumptions in new prob- 

lems. We may expect to be successful sometimes. 

There are also open questions about the uniqueness of solutions. 
Engineers do not often worry about such matters, but they should 

certainly be aware of certain situations in which the dangers of 

ae Vissi ae 
"Exact" means only that nonlinear boundary conditions are treated 
exactly. I neglect viscosity, surface tension, compressibility, 
etc., and still call the problem "exact." 
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non-uniqueness are especially great. The history of the study of 
free-surface problems provides numerous examples of invalid solu- 
tions being published by authors who were not sufficiently careful on 
this score. We have learned to be careful about imposing a radia- 
tion condition when necessary, although newcomers to the field are 
still occasionally trapped. ~ Questions about stability of our solu- 
tions are not so well appreciated, but of course solution stability is 
just one aspect of solution uniqueness. A particularly startling 
example has been pointed out in recent years by Benjamin and Feir 
[1967]: Ordinary sinusoidal waves in deep water are unstable. This 
has now been demonstrated both theoretically and experimentally. 
It comes as no great surprise to those experimenters who had tried 
to generate high-purity sinusoidal waves for ship-motions experi- 
ments, but it was certainly quite a surprise to the theorists, who 
apparently did not suspect any such phenomenon before its discovery 
by Benjamin and Feir. 

Since we shall be considering small-perturbation problems, 
we may expect the solutions to appear in the form of series expres- 
sions (not necessarily power series!) Often, we are content to 
obtain one term in sucha series. Practically never do we face the 
question of whether the series converges. In fact, we usually just 
hope that the series has some validity, at least in an asymptotic 
sense. 

The question will arise from time to time, "How small must 
the small parameter be in order that a one- (or two- or three- or n-) 
term expansion give valid predictions?" In ship-hydrodynamics 
problems, it is quite safe to assert that the only answer to sucha 
question must be based on experimental evidence. In fact, even in 
simple problems, the knowledge of a few terms is not likely to help 
much with this question. For example, suppose that one tries to 
solve the simple differential equation: y"(x) + y(x) = 0, by means of 
a series of odd powers of x. How does one know that a two-term 
approximation is accurate to within one per cent even if x is as 
large as unity? One might compute the third term, of course, and 
compare it with the second term, hoping to guess what the effect 
of further terms would be. If it were too difficult to compute that 
third term, one could only hope that the solution had some validity, 
and perhaps one would try to find some experimental evidence on 
which to hazard a guess about validity. So it is in our ship-hydro- 

* Within the last few years, a leading German journal published an 
article on wave resistance in water of finite depth, in which it was 
concluded that a body had identically zero resistance if it were 
symmetrical fore and aft. The author was, I believe, primarily 

a numerical analyst, not familiar with the pitfalls of free-surface 
problems. He did not impose a numerical condition equivalent 
to a radiation condition. (This is one reference that I intentionally 
omit. ) 
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dynamics problems. It will be necessary to discuss this point further 
at an appropriate place. 

A related question concerns the precise definition of the small 
parameters that we use to formulate the approximate problems. In 
this paper I avoid defining the small parameter quantitatively. It is 
usually unnecessary and it is dangerous. I shall return to this 
point also. 

1.2. Matched Asymptotic Expansions 

For most of our problems, the approach advocated by 
Van Dyke [1964] is entirely adequate. I shall assume that the reader 
is familiar with (or has access to) Van Dyke's book. Only a few 
definitions and concepts will be mentioned here. 

Perhaps the simplest problem that demonstrates the applica- 
bility of the method of matched asymptotic expansions is the following: 
Find the solution of the differential equation, 

ey + 2y ty =0, 

subject to the initial conditions: 

y(0)=1;  y(0) =0. 

The parameter e€ is to be considered small, and, in fact, we want 
to know how the solution of this problem behaves as € ~0. Now, 
if we set € = 0, the order of the differential equation is reduced, and 
two initial conditions cannot be satisfied. Therefore, one cannot 
obtain a series expansion for the solution by a simple iteration scheme 
which starts with the solution for the limit case, € =0. 

The exact solution for this problem is: 

apie a Pst 

y (t) = =_P28 ___ Pie 

Pine 
’ 

where 

ae) 
N 

mm 

670 



Singular Perturbation Problems in Ship Hydrodynamics 

If we consider that t = O(1) as € —~ 0, then the following approxi- 
mation is valid for y(t): 

y(t)~e Mh +E (2-0 4S Slee ee et. 

This approximation could be obtained step-by-step, iteratively: 

2¥n tT Yn = - €Yp-1 » 

where y(t) ~ y,(t). However, it is not uniformly valid at t =0, 
and the constants cannot be determined. On the other hand, we 

could consider that t = O(e€) as € ~ 0 and rearrange the exact 
solution accordingly. This is most easily done if we set t = €T 
and rewrite everything in terms of T. The approximation for y(t) 
is then: 

2 

yi 1 te(Z-Fy +g -F+ Bye... 

€ 
we te er + g) ted 

This approximation could be obtained completely from the differ- 
ential equation by an iteration scheme in which we let y(t)~ 7, Y,(Ts€), 
the individual terms satisfying the equation: 

YM(7) + 2¥' (7) = - €¥,, (7) = [ ¥ = a¥/d7] 

and the conditions: 

¥,(0)= 4; ¥,(0)=0, n>14; ¥(0)=0, n21 

However, this solution is not uniformly valid for 7 00; in fact, 

one would hardly suspect that it represents a solution decaying ex- 
ponentially with time. 

The difficulty arises because the problem is characterized 
by two time scales, 1/p, and 1/p, , and the two are grossly differ- 
ent. One of the two exponentials in the exact solution decays very 
rapidly and the other decays at a moderate rate. The contrast in 
these two time scales, along with the fact that each has its dominant 
effect in a distinct range of time, allows us to apply the method of 
matched asymptotic expansions to this problem. The Van Dyke 
prescription for doing this is as follows: 
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Define the n term outer expansion of y(t) as [y,(t) +... 
+ yn(t)] ; define the m term inner expansion of y(t) as 
[Y,(7) +... + Ya(7)]. Inthe n term outer expansion, substitute 
t= €7T and rearrange the result into a series ordered according to 
€; truncate this expression after m terms, which gives the m 

term inner expansion of the n term outer expansion. Similarly, 
in the m term inner expansion, substitute 7 =t/eé and rearrange 

the result into a series ordered according to €; truncate this 
expression after n terms, which gives the n term outer expan- 
sion of the m term inner expansion. The matching rule states 
that: 

The m term inner expansion of the n term outer expansion 

= the _n_ term outer expansion of the m_ term inner expan- 

sion. 

In the example discussed in the previous paragraphs, the 
outer solution could not be obtained by a simple iteration scheme. 
The matching principle can now be used to determine the constants 
in the outer solution, and so an iteration scheme is now available, 

requiring, however, that inner and outer expansions be obtained 
simultaneously. In the example, the inner solution could be ob- 
tained completely and independently of the outer, but this is an 
accident which occurred because of the simple nature of the prob- 
lem above. Ordinarily, in cases in which one might consider using 
the method of matched asymptotic expansions, one must proceed 
step-by-step to find first a term in one expansion, then a term in 
the other expansion, and so on. 

It is worthwhile to be fairly precise about certain definitions. 
We use the equivalence sign, "~," frequently. For example, we 
write: 

N 

d(x, y,Z3€) ~ > b,(x,y »Z35€) 
n=O 

This means that: 

N 

| - . o,| = o(d) as e —~ 0 for fixed values of (x,y,z). 

n=O 

Also, it implies that py = 0(¢,) as € 7 0. The qualification that 

(x,y,z) should be fixed is very important. In the example above, 

we would have the equivalent statement for the outer expansion: 

N 

| y (tse) - , yp(tse) | = oly,) as a>, 0 for fixed t, 

n=l 

and, for the inner expansion: 

672 



Singular Perturbatton Problems in Shtp Hydrodynamics 

N 

ly(tse) - » ¥itrie) p= o(Yy) as e—~0 for fixed T. 

n=l 

In the latter, we evaluate the difference on the left-hand side for 
smaller and smaller values of t (= €T) as e€ —~ 0; in other words 

we restrict the range of t more and more as e~0O. This is in 
contrast to the interpretation of the outer expansion, in which we 
simply fix t at any value while we let € ~ 0. In even more physi- 
cal terms, we may say that the inner expansion describes the solu- 
tion during the time when the e?!t term is Maree rapidly, and the 
outer expansion describes the solution when the e it term has 
effectively reached zero and the eP2! term is varying significantly. 
This separation into two distinct regimes is characteristic of prob- 
lems in which we apply the method of matched asymptotic expan- 
sions. Of course, the real key to the success of the method is in 
the procedure by which the two aspects of the solution are matched 
to eachother. After all, they do represent just two aspects of the 
same solution. 

Usually, we insist that our asymptotic expansions be 
consistent. A precise definition of this term is awkward, but per- 
haps it is clear if we state that each term in sucha series depends 
on € in asimple way that cannot be broken down into simpler terms 
of different orders of magnitude. For example, the following two 

series are equal: 

2 3 1 1 2 ee! 
= = _ = 1 [ie ite ee” Fo] ise ae Way ae 

1 f.2 5 ih 3 
ae ra tee Te ] 

: ey ae 
se a= ea Ts ] 

1 3 + [ie + arate 
ic i 

On the right-hand side, let: 

il il 2 1.2 
fle)=itszetze tee Taereuel 3p 

Pa 

f (e) = = fp(e), for mo 0% 

Then we can write: 
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N us N 

> é€! ie >. f,(e) as e= 0. 

n=O n=O 

These happen to be convergent series (if € <1), but we can inter- 
pret them as asymptotic series just as well. The series on the left 
is "consistent"; the one on the right is not, because individual terms 
have their own e€ substructure. 

The striving for consistency can become a religion, but it is 
not a reliable faith. Consistency (or the lack of it) tells us nothing 
about the relative accuracy of otherwise equivalent asymptotic 
expansions. In fact, we could define a third asymptotic series with 
terms given by: 

BOE) = 1/(1-€) ; g,(€) = (9) for n.> 0} 

This series is grossly inconsistent, but one term gives the exact 
answer for the sum of the previous series! Occasionally one can 
make educated guesses about such things, replacing a few consistently 
arranged terms by a simple, inconsistent expression having much 
greater accuracy in practical computations. Mathematically, these 
different asymptotic series are equivalent, and, if € is small 

enough, they will all give the same numerical results. But we want 
in practice to be able to use values of € that are sometimes not 
"small enough. " 

We shall work with consistent series, for the most part, in 

spite of such possibilities of improvement through the use of incon- 
sistent series. Most newcomers to this field of analysis find that 
there is a considerable element of art in the application of the 
method of matched asymptotic expansions, and I personally consider 
that the improvement of the expansions through the development of 
inconsistent expansions is the highest form of this art. Except in 
one respect, I do not intend to pursue the possibilities of inconsistent 
expansions in this paper. 

The exception that I make is the following: Many singular 
perturbation problems lead to asymptotic-expansion solutions of the 
form: 

N n 

» » anm€ (log ey 

n=0 m=O 

where a,,, does not dependon €. We can, of course, write this 
out in a long string of terms quite consistently arranged. However, 
my practice will be to treat the sum: 
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n 

€” > anm(log €)" 

m=0 

h,(e) 

as a single term (albeit inconsistent) in the series Dy bal €) « An 
alternative way of describing this practice is to say that I consider 
log € = O(i) as € ~ 0! I have encountered some practical prob- 
lems which could apparently not be solved by the Van Dyke matching 
principle unless treated in this way, and I have never seen or heard 
of a problem in which this practice led to difficulties. There are 
some good arguments for proceeding in this way, but I know of no 
proof that either way is the correct way. (Some of my colleagues 
will call this a cheap trick, rather than a higher expression of an 
art form.) 

The classical example in physics of this kind of mathematical 
problem is the boundary layer first described by Prandtl in 1904. The 
thickness of the boundary layer becomes smaller and smaller as the 
small parameter, 1/VR approaches zero (R is the Reynolds num- 
ber), but the presence of the boundary layer cannot be neglected, 

because then the governing differential equation becomes lower order, 
and the body boundary conditions cannot all be satisfied. Unfor- 
tunately, Prandtl did not realize the generality of the analysis which 
he introduced into the viscous-fluid problem, and, lacking the 

modern formalism for treating such problems, he could not obtain 
higher-order approximations. 

Perhaps I should include a discussion of Prandtl's problem 
in this paper, since it might be considered as a "singular perturba- 
tion problem in ship hydrodynamics." However, I shall not do this, 
for several reasons. Van Dyke's coverage of the problem is excel- 
lent, I think. Also, the analysis concerns only laminar boundary 
layers, and they are really of quite limited interest in ship hydro- 
dynamics. Finally, the formal procedure breaks down completely 
at the leading edge of a body, and the singularities that occur there 
cause major difficulties in all attempts to use the formalism to 
obtain higher-order approximations. 

One final point should be emphasized, even at the risk of 
insulting the intelligence of readers who have read this far. When- 
ever we write, "e ~ 0," we are implying the existence of a se- 
quence of physical problems in which the geometry of some funda- 
mental parameter varies. For example, in Prandtl's boundary- 
layer problem, we may consider that viscosity changes as 
e=1/¥R—0. Inthe simple ordinary-differential-equation example 
presented above, we may think of a spring-mass system in which the 
mass is changed systematically from one experiment to the next. 
Later, when we treat slender-body theory, we consider a sequence 
of problems in which the body changes eachtime. The theory always 
implies the possible existence of such a series of problems, and the 

quality of the predictions improves as the problem more nearly fits 
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the limit case. Thus, we shall be able to apply the results of 
slender-body theory to bodies which are not especially slender. In 
such cases, we may expect that the predictions will be less accurate 
than the predictions that we woutd make for a much more slender 
body. But we never know a priori how slender the body must be for 
a certain accuracy to be realized, and it would be wrong to assert 
that the theory applies only to needle-like bodies. All that we can 
say is that it would be more accurate for such bodies than for not- 
so-slender bodies. 

1.3. Multiple-Scale Expansions 

In the problems of the previous section, we had two greatly 
contrasting scales for the independent variable. The fact that enabled 
us to obtain two separate expansions was that each of the scales 
dominated the behavior of the solution in a particular region of space 
or aparticular period of time. The major practical concern was to 
ensure that the separate expansions matched, because they really 
represented just different aspects of the same solution. 

The present section is devoted to problems in which there 
are again two greatly contrasting scales. However, in these prob- 
lems, it will not be possible to isolate the effects of each scale 

into a more or less distinct region of space or time. The effects 
of the two scales mingle together completely. However, we may 
still expect to be able to identify these effects somehow, just because 
the two scales are so different. 

There are classical problems of this kind, the most famous 
being related to nonlinear effects on certain periodic phenomena. 
Cole [1968] discusses a number of these problems. Perhaps the 
simplest example of all is alinear one: Find approximate solutions 
for small € inthe problem of a linear oscillator with very small 
damping, where the differential equation might be written: 

y t2ey ty =0. 

To be specific, let the solution satisfy the initial conditions: y(0) = 1 
and y(0) =0. Physically, we expect that the system will oscillate 
with gradually decreasing amplitude. It would be desirable if the 
approximate solution at least did not contradict this expectation. 

We might try representing y(t;€) by an asymptotic expansion 
with respect to €: y(t;e) ~ 7, ypltse). We would find immediately 
that the first term in this expansion is just: yg(t;e) = cos t. This 
seems quite reasonable, since it represents a steady oscillation at 
the frequency approximate to the undamped oscillator. The second 
term in the expansions would be obtained from: 
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y + y, == 2€Y5 = 2€ sin Gs with y, (0) yt (0) = 0. 

It is impossible to obtain a steady-state particular solution of this 
problem. In fact, the solution is: 

y, (tse) = e[ sin t - t cos t]. 

Thus, we obtain an expansion in which the second term grows linearly 
with time. One might expect that succeeding terms will grow even 
faster. This expansion is correct, and, for small values t, it could 
be used for numerical predictions. But we would certainly prefer 
to obtain an expansion which is uniformly’ valid, even for very large 
t. 

The exact solution is easily found, of course. It is: 

y(tse) = en [ cos Vi-e*)t trae sin y(1-e°)t] . 

The approximate solution becomes worse and worse with increasing 
t because the frequency is wrong and because the exponential factor 
is expanded in a power series in t. If we watch the oscillating mass 
on atime scale appropriate to the period of the oscillation, we do 
not see the exponential decay and the slight shift of frequency caused 
by the damping. On the other hand, if we watch for a very long time, 
the effects of damping accumulate gradually. Thus, the effects of the 
"slow-time" scale, 1/e, persist throughout the history of the motion 
as observed on a real-time scale, but these effects never occur 
suddenly. It is this fact which enables us to separate them out of 
the real-time problem. 

There seems to be less reliable formalism available for 
handling such problems than in the case of the method of matched 
asymptotic expansions. More is left to the insight and ingenuity of 
the individual problem solver. In the example discussed above, the 
procedure is fairly clear: Expand y(tje) in a series such as this: 

y(ts€) ~ yolt, Tse) Fy (t,73€) +... , 

where we define: 

“~ 

t. = €t 3 tam FE (rs€) Fete) tees 

* 
Strictly speaking, the series really is uniformly valid except at 
t =o, 
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and the functions f, are to be determined in such a way that the 
approximation is uniformly valid for all t. In treating this parti- 
cular problem, Cole immediately assumes that t~ 7 and further 
that t/7 = 1 + O(e2). These extra assumptions speed the solution 
considerably, but it is not clear how one would know to make them 
if the exact solution were not available. The exact solution takes 
the form: 

y(t;e) = at [iss Pur (¢ /7) sin T], 

in terms of the new variables. (The factor (t /T) does not depend 
on t.) Here it is clear how the two time scales enter into the 

solution as well as the problem. One may expect the relationship 
between t and 7 to be equivalent to the expansion of the quantity 
(1-e€2). The reader is referred to Cole's book for further discus- 

sion of the solution of such problems. 

One problem that will be discussed later is a close relative of 
the classical problems mentioned above. The solution by Salvesen 
[1969] of the higher-order problem of the wave resistance of a sub- 
merged body leads to a situation in which the first approximation is 
periodic downstream and that period is modified in the third-order 
approximation. (Otherwise the waves downstream in the higher 
approximation would grow larger and larger, without limit.) A 
similar problem involves the oscillation of a body on the free sur- 
face, in which the wave length of the radiated waves must be modified 
in the third approximation. For example, see Lee [1968]. 

A quite different application of this method is the problem of 
very low speed motion of a body under or ona free surface. The 
simplest such case has been discussed by Ogilvie [1968]. Fora 
translating submerged body, there are two kinds of length scales: 
length scales associated with body dimensions and submergence, 
and the length scale U Sas which is associated with the presence 
of the free surface. Presumably, the latter has effects primarily 
near the free surface, ina "boundary layer" with thickness which 
varies with u*/g as that variable approaches zero. But the 
effects of the body dimensions are also important near the free 
surface (or at least near a part of it). Thus the effects of the two 

length scales cannot be separated into distinct regions. A brief 
discussion of this problem appears in Section 5.42 of the present 

paper. 

There may be many other problems of ship hydrodynamics in 
which this approach would be valuable. For example, many authors 
have obtained approximate solutions of problems involving submerged 
bodies by alternately satisfying a body boundary condition, then the 
free-surface condition, then again the body condition, etc. At each 

stage, when one condition is being satisfied, the other is being 
violated, but it is assumed that the errors become smaller and 
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smaller with each iteration. Such a procedure is discussed, for 
example, by Wehausen and Laitone [1960], who point out the use- 
fulness of Kochin functions in such procedures. However, there is 
often a question about the precise nature of such expansions. In the 
first approximation, for example, the effects of the free-surface 
are likely to drop off exponentially with distance from the surface. 
This makes it inappropriate to treat depth of submergence as a large 
parameter in the usual manner, because exponentially small orders 
of magnitude are either trivial or exceedingly difficult to handle. 
I do not believe that anyone has yet shown how to treat this problem 
systematically. 

II. INFINITE-FLUID PROBLEMS 

It is mainly the presence of the free surface in our problems 
that forces us to seek ever more sophisticated methods of approxi- 
mation. However, the nature of the approximations can often be 
appreciated more easily by applying those methods to infinite-fluid 
problems. In this section, I discuss a number of problems that are 
geometrically similar to the ship problems that are my real concern. 
In some cases, it must be realized that the methods used here are 

not necessarily the best methods for the infinite-fluid problems. 
However, without the complications which accompany the presence 
of the free surface, one can better understand the significance of 
the coordinate distortions, the repeated re-ordering of series, and 
the matching of expansions. 

The reader who feels comfortable with matched asymptotic 
expansions is invited to skip this chapter. 

Zed) hin Body 

A "thin body" has one dimension which is characteristically 
much smaller than the other dimensions. In aerodynamics, the 
common example is the "thin wing," and, in ship hydrodynamics, 
one frequently treats a ship as if it were thin. In such problems, 
the incident flow is usually assumed to approach the body approxi- 
mately edge-on, and so the thinness assumption allows one to 
linearize the flow problem. 

In this section, thin-body problems are treated by the method 
of matched asymptotic expansions. This is not the way thin-body 
problems are normally attacked, and, in fact, I do not recall ever 

having heard of suchatreatment. At the outset, I must point out 
that there are good reasons why this has been the case. If the body 
is symmetrical about a plane parallel to the direction of the incident 
flow, one does not need inner and outer expansions for solving the 

problem. And if the body lacks such symmetry, the lowest-order 
problem cannot be solved analytically, and so the method of matched 
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asymptotic expansions does not offer the possibility that one may be 
able to obtain higher-order approximations. 

In fact, the problem of a thin body in an infinite fluid is not 

a genuine singular perturbation problem (although it may contain 
some sub-problems that are singular, such as the flow around the 
leading edge of an airfoil). However, I believe that the problem of 
a thin ship is singular; I shall discuss this in Section 4. There has 
been a considerable amount of misunderstanding as to what consti- 
tutes the near field and what constitutes the far field in the thin-ship 
wave-resistance problem, and the rectification of such misunder- 
standing requires a careful statement of the problem. 

It is conceivable that this interpretation of the thin-ship 
problem may be useful in formulating a rational mathematical 
idealization of the maneuvering-ship problem. 

For convenience, I separate the thin-body problem into two 
parts: a) the symmetrical-body problem, and b) the problem ofa 
body of zero thickness. To treat an arbitrary thin body, with both 
thickness and camber, one should certainly consider both aspects 

at once. It is not really difficult to do this, and indeed the problem 
of an unsymmetrical body of zero thickness actually involves thick- 
ness effects (at higher orders of magnitude than in the symmetrical- 
body problem). I have kept the problems separate here only for 
clarity in discussing certain phenomena that occur. 

2.11. Symmetrical Body (Thickness Effects). Let the body 
be defined by the equation: 

+th(x,z3e) for (x,0,z) in H>, 

a (2-1) 
0 for (x,0,z) not in H, 

where | is the part of the y = 0 plane which is inside the body. 
(It is the centerplane if the body is a ship.) The "thinness" of the 
body is expressed by writing: 

h(x, z;€) = €H(x,z), (2-2) 

where € is asmall parameter and H(x,z) is independent of e€. 
The body is immersed in an infinite fluid which is streaming past it 
with a speed U inthe positive x direction. The flow, in the 

absence of the body, can be described by the velocity potential: Ux. 

It will sometimes be convenient to say that the body is defined 
by the equation: y = + h(x,z;e), implying that the function h(x,z;€) 
is identically zero if (x,0,z) is not in H. Also, note that we shall 
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frequently drop the explicit mention of the € dependence. 

As € ~ 0, the body shrinks down to a sheet of zero thickness 
aligned with the incident flow. Thus, the first term in an asymptotic 
expansion of the velocity potential in the far field is just the incident- 
stream potential. In general, let the far-field expansion be expressed 
as follows: 

N 

(x,y ,Z;€) ~ » $(x,y,z;€), where $,) = o(¢) as 

n=O 

e—>0 for fixed (x,y,z). (2-3) 

Then we have: 

$y(xsy»Z5€) = Ux. (2-4) 

The far field is the entire space except the y =0 plane. 
Since the potential $(x,y,z;€) satisfies the Laplace equation through- 
out the fluid domain, the individual terms in the above expansion 
satisfy the Laplace equation in the far field: 

on. t Pnyy t Pis= 0 for ly|> 0. (2-5) 

At infinity, we expect (on physical grounds) that: 

V(o - Ux) > 0. (2-6) 

Therefore, for n>0O, every $, must be singular onthe y = 0 
plane or be a constant throughout space. The latter would be too 
trivial a result to consider, and so we assume that 6, is indeed 
singular on the y = 0 plane. 

But what kind of singularities will be needed? Because of 
the symmetry of the problem, it is not difficult to show that a sheet 
of sources will suffice. One can use Green's theorem to show this. 
Alternatively, one can use transform methods for solving the Laplace 
equation, which is practically equivalent to solving by separation of 
variables. Whatever method is used, the result is the same} 
$(x,y,z3€) has a representation: 

ve og (& ,o3€) d& do (2-7) 

1 0 

( rV¥ 2Z3€) = - it ’ OMX ry + 40 J Yo [ tx-é)" ty" 2 (z-t)"] 172 

where o,(x,z;€) is an unknown source-density function. The outer 
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expansion is just the sum of these: 

n(SsG3€) d& dt ee ere eee 
[ (x-8) yiot (ze oy! 

This is the most general possible outer expansion for this problem. 

It will be necessary presently to know the inner expansion of 
the above outer expansion. To find it, define an inner variable: 

y'=y/e, (2-9) 

substitute for y in the outer expansion, and re-order the resulting 
expression with respect to €. A direct approach to this process is 
difficult, but the following method, in four steps, allows us to obtain 
the desired results to any number of terms ina fairly simple way: 

1) Take the Fourier transform of 4, with respect to x: 

2 © -ikx 
) 1 * dx e 

> (ky ,2;€) =-— dG o. (k;G3e) te ns 

i [x ty? + (2-67)? 
co 

SV ag ot tastse) Ky [kl vy? + 2-01) 
-@ 

where - 0 is the modified Bessel function usually denoted this way, 
and of *(k;z;€) is the Fourier transform of the function o,(x,Z5€)- 
The convolution theorem was used in the first step above. 

2) Take the Fourier Transform next with respect to z: 

40% 1  ** a -i 2 2,V2 
>, (ksy;m;e) = - san (mie) | dze ™ KO lKILy +z iv ) 

-@ 

* 2 _ 21/2 
Uk, mje) _-fk+m) 

- ca lea , 
21" +m ) 

where o mie, mje) is the double transform of oa,(x,z;€). 

3) Substitute: y = €Y and expand the exponential function 
into a power series: 
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agin €) f- -2eG> 2 2 Tn »™M,; oe 

2,2 [1 top Pv tk soak 
** 

an (iyim;€) = = ——> 
2(k +m ) 

4_4 2 
+ Fe Vile +m) +...] 

+5 o. (ky mje) [e |y| + e°| ¥ |? (k* + m?) 

5 Sruie 22 
tore ly|(k +m) sane P 

4) Note that: 

eK 
: Kk KI 

_on (Ksmje) , (k;0;mj;e) = a, (k,m;e) . (2-10) 
2(k? oO m_?)!/2 

*%* ; P 
Also, we observe that, if f (k,m) is the Fourier transform of 
f(x,z), then (k? + m*)f**(k,m) is the Fourier transform of 
- (f,, + £,,). Defining the inverse transform of a**(k,m;e€): 

a(x,z3;€) = $,(x,0,z5€), (2-11) 

and inverting the above series term-by-term, we obtain: 

( z3€) ~ a ( se) to ely] ( zie) - oy €° (YP le ta) >, XsVsZys nh%sZs 2 O,\X 24s 21 Nyy Nes 

1 3 3 

Ty 2s3it : [| (ony ss Tnzz ) 

{2h ite 
aos + + Se Ee 

; IY | ene olor 5 leas 

(2-12) 

This is the inner expansion of a typical term in the outer expansion. 

In order to combine the expansions of the separate terms into 
a single inner expansion of the outer expansion, let us assume that 

n : go, and a, are both O(c). (It is not necessary to assume this, it is 
merely convenient.) Then we have for the desired expansion: 
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g(x, y,z;€) ~ Ux O(1) 

+ a (x,z5€) O(e) 

+ a5(x,Z;€) +S ly |o, (x, z;€) O(e?) 

1 1 2 
+ a3(x,z5€) a) ly |on(x,z3€) -5 ly| (a + a.) O(e?) 

+ O(e*). (2-13) 

Note that we have reverted to far-field variables. We must here 
consider that y = O(e€) in order to recognize the orders of magnitude 
as indicated above. 

Next we must find the inner expansion of the exact solution. 
Substitute y = €Y in the formulation of the problem. The Laplace 
equation transforms as follows: 

2 byy= - Udy + by,)- (2-14) 

The kinematic condition on the body is: 

+ ph, - $y $h,=0 on y= + h(x,z), 

which transforms into: 

o,=+ e°(6H +H) on Y= + H(x,z). (2-15) 

We assume that there exists a near-field asymptotic expansion of the 
solution: 

N 

(x,y »Z3;€) ~ >, @,(x,Y,z;€), where py =0(@,) as en 0, 

n=0 
for fixed (x,Y,z). (2-16) 

We could show carefully that: 

@)(x,Y,z;€) = Ux. 

(Perhaps it is obvious to most readers.) We then express the con- 
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ditions on the near-field expansion as follows: 

~~ e7[ ie 7 oie +@o + e., iF paral (2-17) 

[H] 4 +@,, +3 +...~ + @[ UH, + @ Hy, + OH, +...] 

on Y =+ H(x,z) . (2-18) 

Solution of the @, problem. From the [L] condition above, 
it is clear that: 

Pi yy= 0 (2-19) 

in the fluid domain. Therefore ®; must be a linear function of Y. 

In view of the symmetry of the problem, we can set: 

® (x, Y,z;€) = A, (x,25€) + B, (x,z3€) hy; for ly | > H(x,z). 

(2-20) 

The body condition reduces to: 

(x, +H(x,z),z3€) =e e° UH, (x,z) ee B, (x,z3€) = O(e?). (2-21) 

It appears that we have determined the value of B,(x,z;€) -- but this 
is wrong, as we shall see ina moment. The two-term inner expan- 
sion appears to be: 

x,y,z;€) ~ Ux + A,(x,z;€) + B, (x, z5€) ly |. 

Its outer expansion is obtained by setting Y = y/e: 

o(x,y,z;€) ~ Ux + <8, (x,z;€)|y| + A (x, z5€) . 

O(1) Ofe) O(e*) 

The order-of-magnitude estimates were obtained as follows: B, is 
O(e*), from (2-21). If our expansion is consistent (as we insist), 
then A, is also O(e®), by (2-20). Now, in the outer expansion of 
the inner expansion, the B, term is lower order than the A, term. 
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The two-term outer expansion of the two-term inner expansion is: 

o(x,y,z;€) ~ Ux +4 B (x,zse) ly| . 

O(1) Ofe) 

On the other hand, the two-term inner expansion of the two-term 
outer expansion is, from (2-13), 

o(x,y,z3€) ~ Ux + a, (x,z3€). 

There is no linear term here at all, and it seems that we cannot 
match the two expansions. 

It is a very comforting feature of the method of matched 
asymptotic expansions that things go wrong this way when we have 
made unjustified assumptions. Our mistake was this: When we 
found that apparently B, = €°UH, = O(e?) » we eliminated the possi- 
bility that there might be a term which is O(e) in the inner expan- 
sion’. Now we rectify this error. Once again, let ®, be given by 
(2-20), but suppose that both "constants" are, in fact, O(e). The 
body boundary condition immediately yields the condition that: 

B,(x,z3€) = 0, 

and so we have: 

®, (x, Y,z;€) = Aj(x,z3€) . 

The inner expansion, to two terms, is now given by: 

$(x,y,z3€) ~ Ux t+ A; (x,z3€). 

When we match this to the inner expansion of the outer expansion, 
we find that: 

A, (x,23€) = a,(x,z5€) = $(x,0,z5€). 

(See 2-11.) Now we have matched the expansions satisfactorily, but 

*This trouble would have been avoided if I had started by assuming 
that the expansion is a power series in €, as many people do in such 
problems. However, that procedure can lead to even greater diffi- 
culties sometimes. 
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the result is not yet of much use, since we do not know either function, 
A; or a,. It is worth noting, however, that the inner expansion can 

be rewritten: 

(x,y »Z;€) ~ Ux + $,(x,0,z3€). 

Thus, to two terms the inner expansion is determined entirely by the 
far-field solution, the latter being evaluated on the centerplane. In 
other words, in the near-field view, the fluid velocity (to this degree 
of approximation) is caused entirely by remote effects. 

Solution of the @,; problem: This is much more straight- 
forward, and the results are more interesting. We may expect that 
@p = O(e*), since we still have the nonhomogeneous body condition 
to satisfy. In this case, then, 

@,(x,Y,z3€) = A,(x,z3e) + Bo(x,zse)|Y|, 

and the body condition requires that B,(x,z;€) = €°UH,(x,z) « The 
three-term inner expansion is: 

o(x,y,z;€) ~ Ux + a (x ,2;€) 2 A,(x,z5€) + UH, (x,z) |Y 

O(1) Oe) O(e*) Ole") 

The two-term outer expansion of this three-term inner expansion is: 

P(x,y,z3€) ~ Ux t+ a,(x,z;€) + Uh,(x,z3€) ly 

O(1) O(e) O(e) 

The three-term inner expansion of the two-term outer expansion is, 
from (2-13): 

1 
o(x,y,z5€) ~ Ux + a,(x,z5€) +5 ly |o,(x,z3e). 

(The a, in (2-13) is not carried over to the above expansion, since 
it originates in the third term of the outer expansion.) These two 

match if: 

o, (x,z3€) = 2Uh,(x,z;e€) = O(e). (2-22) 

Thus, finally, we have found o,(x,2;€), the source density in 
the first far-field approximation, as a function of the body geometry. 
It is the familiar result from thin-ship theory. In addition, we can 
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now also write down a,(x,z;€) by combining (2-7) and (2-11): 

tee ae Uh Cre) de de _ 

| ae aS Sy [(e-8) + (tye 

We have the two-term outer expansion -- with everything in it known 
-- and the three-term inner expansion -- with the "constant" 
A,(x,z;€) not yet determined. 

Solution of the higher-order problems: From the [L] con- 
dition, (2-17), it can be seen that &, (x, Y,z;€) is not linear in Y. 

However, the differential equation for @) is easily solved, the body 

boundary condition can be satisfied, and matching can be carried out 
with the outer expansion. The result is: 

$3(x,Y,z;€) = A,(x,z;€) + B,(x,z3€) ly | - 5 Ya, + a.) 

where 

B3(x,z3€) = €[ (a, H) + (aH), ], 

A,({x,23€) = a(x, Z5€). 

We also obtain o,, through the matching, 

o(x,z3€) = 2[ (ah), + (a, hj], 

and this information also gives us ap and Ap. 

Summary: Symmetrical Body. The results for both near- and 
far-fieId expansion are stated in terms of the far-field coordinates 
(the natural coordinates of the problem) in Table 2-1. Ina sense, 
the results are rather trivial. There could be difficulties near the 
edges of H, but, barring such possibilities, the inner expansion 
could be obtained from the outer expansion and then matched to the 
body boundary condition. This is actually the classical thin-ship 
approach. The outer expansion is uniformly valid near the thin 
body, except possibly near the edges. 

In the classical approach to the thin-body problem, there is 
usually a legitimate question concerning the analytic continuation of 
the potential function into the region of space occupied by the body. 
Sometimes one avoids the problem by restricting attention to bodies 
which can legitimately be generated by a sheet of sources, but this 
is not very satisfying. The method of matched asymptotic expansions 
avoids the question altogether by eliminating the need to ask it. What 
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TABLE 2-1 

SYMMETRICAL THIN BODY 

Near-Field (Inner) Expansion y = O(e) 

(x, yszse)~™ Ux + o,(x,23e) + ,(x,z3e) + $a, (x, ze) ly| 
oo cuEEESESEEEEENES aumeenEmEeeet 

O( ) Ole) O(e*) 

i i 2 tas(x,z3€) + > o,(x,23€) ly] - > lyl (a + 1.) 
ER ee 

O(e°) 

+ Ole’) 

Far-Field (Outer) Expansion y = O(1) 

N 

e ~ = Jt. Gnlesose) d& dG 
o(x,y,Z3€) ~ Ux = » Op Tleeb)e+ yy? + (zt) = ~ an e A Gary! 2 

O(1) O(e") 

From Matching 

o,(x,z;€) = 2Uh,(x,z5€) ; 

o,(x,z3€) = 20 (qh), + (a, h),] 5 

etc. s 

t n(S,G3€) do d 
@,(x,25€) = - Fe aie Pex-f)” + (n-tr] ate = : z 
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we are really saying is this: From very far away, the disturbance 
appears as if it could have been generated by a sheet of sources, 
but close-up we allow for the possibility that this observation from 
afar may be somewhat inaccurate. In fact, there is no analytic 
continuation presumed in the present method. 

One can show by the use of Green's theorem that the far- 
field picture is valid even if the analytic continuation is not possible. 
A particularly appealing (to me) version of such a proof has been 
provided by Maruo [1967] for the much more complicated problem of 
a heaving, pitching slender ship moving with finite forward speed on 
the surface of the ocean. 

I suppose that the uniformity of the thin-body solution is the 
result of the fact that a well-posed potential problem can be stated 
by giving a Neumann boundary condition over a surface. The situ- 
ation will be quite different when we consider slender-body theory: 
in the far field, it would be necessary to give boundary conditions 
on aline, and that does not lead to a well-posed potential problem 
in three dimensions. Similarly, we may expect trouble at the con- 
fluence of two boundary conditions, and this indeed occurs when we 
try to treat a ship problem by the method discussed above. The 
free-surface conditions cannot be satisfied, and the difficulty can 

be traced back to the behavior of the far-field potential near the 
intersection of the centerplane and the undisturbed free surface. 

2.12. Unsymmetrical Body (Lifting Surface). For the sake 
of simplicity, Tet the body have zero thickness. Then it can be 
represented as follows: 

y = g(x,z3e) = €G(x,z) for (x,0,z) in H, (2-23) 

where H is now the projection of the body onto the y=0 plane. 
Again, there is a uniform incident flow in the positive x direction. 

The analysis is quite similar to the symmetrical-body case, 
at least in the near field, and so most ot the details will be omitted 
here. In the near field, let there be an expansion: 

N 

(x,y ,235€) ~ > @n(x,Y,z5€), 
n=O 

just as in (2-16). The first term is, again, @o(x,Y,z;€) = Ux. The 
terms again satisfy the transformed Laplace equation, (2-17): 

+ i: + ead fel Porch Dean ier ae 
yy ‘4yy 

2 
T= Cf Oi) ) TOD ot Oost ia sti abel > 
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the body boundary condition is now: 

[H] &, +2 +3, +O, +... Y 

a 
ex { S [ UG, + (dG, + ie G;) aR (Bp Gy I: ®, G,) lj oe =| 

on Y =1G (x77). (2-24) 

The solution for ®, is generally an expression linear in Y, but, 
for the same reasons as in the symmetrical-body problem, only the 
"constant" term can ultimately be matched to the far-field solution, 
and so we take for 9®,: 

&,(x,¥,23€) = Aj(x,zse) = Ole). 

The superscript + has been attached to the solution to indicate that 
this quantity may be different on the two sides of the body. This was 
not necessary in the previous problem, because of the symmetry, but 
in the present near-field problem the body completely isolates the 
fluid on its two sides and there is no reason to assume that A; is 

the same on both sides of the body. (It turns out, in fact, that 

Aj = - Aj -) 

One next obtains: 

+ + 
$,(x,Y,2;€) = A,(x,z3€) + Ba (x,zse) Y . 

From the body boundary condition, the following is true: 

+ 
$2,(x,G,z3€) = Ba (x+z5€) = "UG, (x,z) : (2-25) 

Thus, we find that 

Ba(x,z3€) = Bg(x,z;€) = B,(x,z3e). 

Similarly, one can proceed: 

1 2.2 
$,(x,Y, ze) = A, (x,z3€) + B sboze)¥ -5e YA, + Ay), 

where 

+ ‘ 2 se oe 
B,(x,z;€) = €[(GA,) + (GA, ),]. 
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It is interesting to note the following about the symmetry: 
It turns out that ®, and @®» are odd with respect to Y, but 3 
is neither even nor odd. The linear term in $3 , namely, 
Ba(x,2e)¥, is even, since it turns out that B; = - Bs. Careful 

study of the ®, problem shows that it actually implies that there is 
a generation of fluid in the body, but the rate of generation is higher 
order than the ®,; term. Physically, of course, there can be no 
fluid generated, and so a compensating source-like term appears 
in 5. 

The far field is again the entire space except for the plane 
y = 0. The relations (2-3) to (2-6) are again valid, as well as the 
discussion of them. But now it will not suffice to provide only source 
singularities on the centerplane; clearly we must also provide 

singularities which lead to antisymmetric potential functions. In 
fact, since the body has zero thickness, weshall expect the leading- 
order approximation to be strictly antisymmetric. These require- 
ments are all met by a distribution of dipoles which are oriented with 
the y axis. The potential of such a sheet of dipoles can be expressed: 

f(x,y,z) = ee eS rey 

ae aa (ees Pia sie 

The inner expansion of such an integral can be obtained by the same 
Fourier-transform technique that was used before. One finds that: 

Lyi(ke* mey2 
**(k3y3m) = = (sgn y) pb” “(k,m) e : 

The exponential function can be expanded into a series, which is then 
inverted term-by-term. Define a new function (cf. (2-10)): 

2 ye a 388 Oe eau ¥ mn (kc in)iee~ek Ee — ee 

The following relationships exist between the two functions ,(x,z) 
and y(x,z): 

béee) = ie oa (0) a de (2-28) 
“0 [(x-€) + (z-t)*] 

aos Lem + Hee) do oe E y(x,z) = a0 ie 7 ee re ae Vv ; (2-29) 
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(Note the comparison between (2-28) and the relation between a, 
and on in Table 2-1. In fact, (2-29) gives the inversion of the 
formula in Table 2-1.) The inner expansion of f(x,y,z) can now be 
written in terms of these two functions: 

f(x,y ,z) = F{wlx,2(sgn y) - y(x,z)y - + y(sgn y) (jy, + Hg2) 

1 1 
7 31 y7(Yxx + Vz) + 41 y(sgn Y) (pexxxx + 2uxx22 + zzz) +.. “ ° 

(2-30) 

This may be compared with (2-12). 

Now let us assume that the two-term outer expansion is: 

00 
° 

° 

$(x,y,z;€) ~ Ux ES (€,0;€) d& d& 

-0 [ (x-§)° ty” + (x-t)*] 7 

Furthermore, assume that p; and y, are both O(e). (If these 
assumptions are too restrictive, that fact will become clear in the 
subsequent steps of the method of matched asymptotic expansions.) 
Then the inner expansion of the two-term outer expansion is: 

4 
Ax,y ,2z3€) ~ Ux + p(x, z3€) - y¥,(x,23€) = 5 yh, +p) 

O(1) O(e) O(e?) O(e>) 

I have kept four terms, as indicated by the order-of-magnitude 
notes under the terms. (Recall that y = O(€) in the inner expan- 
sion.) 

Matching with the appropriate forms of the outer expansion 
of the inner expansion, we find that: 

= 

A, (x,25€) = + p,(x,z5€)3 (2-31) 

B5 (x,z3€) = - ey, (x,zZ5€). (2-32) 

From (2-25), we find that: 

¥; (x,z3€) = - €UG,(x,z) =a= Ug,(x,z3€). (2-33) 

It appears now that we could use this knowledge of y, in (2-28) for 
determining p,. But this is wrong. Note from (2-30) that yj,(x,z) 
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is the normal velocity component on the y = 0 plane caused by the 
distribution of dipoles, pw,(x,z), over the same plane. Now we 
would presumably restrict the dipole distribution to the region H, 
and so (2-29) is valid if the range of integration is reduced to just 
H, since the integrand is identically zero outside H. But the same 
is not true in (2-28). There is a generally non-zero normal com- 
ponent of velocity, y,(x,z), over the entire plane, and the range of 
integration in (2-28) cannot be reduced to just H. Unfortunately, 
we know y;(x,z) only on H, from (2-33), and so we have solved 
nothing. 

This difficulty is hardly surprising, since we are really 
formulating here the classical lifting-surface problem, and its 
solution requires either the solution of a two-dimensional singular 
integral equation or the introduction of further simplifications -- 
which will be discussed presently. 

In the lifting-surface problem, we really should distribute 
dipoles over two regions, the centerplane H and the part of the 
plane y=0 which is directly downstream of H. Let the latter be 
called W. Pressure must be continuous across W, since there is 
no body there to support a pressure jump. In the usual aerodynamics 
manner, one can then show that dp,/8x must be zero on W. In 
this way, the integration range in (2-29) can be reduced to an integral 
over just H. 

Of course, lifting surface theory is usually worked out in 
terms of vorticity distributions. I happen to prefer using dipole 
distributions, mainly because then I do not have to worry about 
whether a vortex line might be ending in the fluid region. The con- 
nection is fairly simple between the two versions, of course. A 
single discrete horseshoe vortex extending spanwise between z=s 
and z=-s and downstream to x = oo corresponds to a sheet of 
dipoles of uniform density, spread over the plane region bounded 
by the vortex line. The potential function can be written, for unit 
vortex strength, 

6 @ 

us -\ d ae = (sdb xh A 

eisebc Lc! aaa [ (x-£)° + y? + (2-271? 

Ss 

it LGN ere se 
Seis y? + (2-0)? [ ety roan | 

2 ‘ Af a / 2 Leije 

=| tan!  - tan Ce... [xt ty" tlassy] 
Z-s Zak x(zZ-s 
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The normal velocity component in the plane of the vortex is: 

1/2 

Meme at (ye tee) fi oe ee) 
Z-Ss ZTS 

A lifting line can be described in a similar way if we allow 
the dipole density to vary with the spanwise coordinate, z. For 

simplicity, let us assume that p(z) = p(-z), and that p(s)=0. The 

potential for a lifting line is: 

ul 

s 00 at 

(xy +2) x5 dt ute) f eC era ICT (2-34) 
(x-€)* + y? + (2-2)? ]¥? 

s s' rr) 
cae Ah ds* u's! d hoe VEeitole ness 
oa s' p(s f 4 \ [ (x-6)2 ty? + (2-EF]2” 

(2-35) 

and the normal velocity component is: 

s t ! 

$)(x,0,2) = - maf ds" p'(s!) E + Lx? + (z-s'P ee als | mi(easa} 
-$ Z-S 

Note that this reduces to the result for the single horseshoe vortex 

if a) we set p'(z) = 6(zts) - 6(z-s)™, and b) we integrate over a span 

from -s-f to s+®, where B is a very small positive number. This 

may lend some credibility to the procedure frequently advocated by 

aerodynamicists in wing problems, viz., when integrating by parts 
in the spanwise direction, extend the range of integration slightly 
beyond the wing tips so that quantities which become infinite at the 
tips do not yield infinite contributions that cannot be integrated. 
(This is terrible mathematics, but apparently the physics is sound, 
since the results seem to be correct.) 

Finally, we can use the above procedures to derive the cor- 
responding expressions for a lifting surface. The important quantity 
is the normal velocity component, given by: 

s(€) 2 21 1/2 
$,(x,0,2) = J at ee: wal fy 4 LosnBik + (2-oF)*) 

(2-37) 

* 

6(z) is the usual Dirac delta function. 
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where L is the range of x covered by the lifting surface (the 
length of L being generally the chord length), and s(x) is the half- 
span at cross section x. On H (the projection of the wing on the 
plane y = 0), the normal velocity component, dy, is known, either 

by direct application of the body boundary condition or by matching to 
a near-field solution, and we obtain the usual integral equation for a 
lifting surface. 

We shall not be concerned here with the various methods of 
attempting directly to solve this integral equation, either by analyti- 
cal or numerical methods. In fact, analytical methods do not exist, 
so far as I know, except for a few special geometries, such as 
elliptical planforms. The pair of equations (2-28) and (2-29) forms 
a remarkable analogy to a standard boundary-value problem in two 
dimensions which is analyzed thoroughly by Muskhelishvili [1953]. 
One three-dimensional case has been solved analytically by a method 
that has some similarity to the standard methods for the 2-D prob- 
lem; this was done by Kochin [1940]. Even his circular-planform 
wing led to so much difficulty, it seems unlikely that it will be 
generalized to other planforms. 

Analytical solutions have also been obtained for circular and 
then elliptic planforms by formulating the problem in terms of an 
acceleration potential in coordinate systems appropriate to such 
shapes of figures. This was all done long ago. See Kinner [ 1937] 
and Krienes [1940]. 

There are many numerical techniques for obtaining approxi- 
mate solutions of this problem. However, I ignore these and proceed 
to analyze a special configuration which can be treated approximately 
as a limiting case of the general lifting-surface problem. 

2.2. High-Aspect-Ratio Wing 

It is an interesting historical fact that Prandtl's boundary- 
layer solution really contains the essence of the method of matched 
asymptotic expansions, but Prandtl failed to observe that the same 
technique would work in his lifting-line problem. In the boundary- 
layer problem, he really required the matching of two complementary, 
asymptotically valid, partial solutions. It was probably Friedrichs 
[1955] who first recognized that the high-aspect-ratio lifting-surface 
problem could be treated the same way. Van Dyke [1964] discusses 
the derivation of lifting-line theory in some detail from the point of 
view of matched asymptotic expansions. My presentation is not 
different from Van Dyke's in any startling ways. There are some 
differences, partly because I have in mind applications to planing 
problems eventually, partly because I am not an aeronautical (or 
aerospace) engineer at heart. 

The conventional approach to solving the problem of a wing of 
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high aspect ratio is to simplify (2-37) by arguments that relate the 
sizes of the terms involving (x-&)© and (z-t)*. (Quite comparable 
arguments are used in the conventional approach to the theory of 
slender wings.) If the radical in (2-37) can be simplified, then the 

€ integration can be performed, and one is left with just the integral 
over ¢. In this way, the 2-D integral equation is reduced to a one- 
dimensional integral equation, which is of a standard form. 

Using the method of matched asymptotic expansions, we 
return to the original formulation of the problem and derive a 
sequence of simpler problems, rather than try to work out approxi- 
mate solutions of the integral equation. The large-aspect-ratio 
wing is "slender" in the spanwise direction. This means that cross 
sections parallel to the z=0 plane vary gradually in size and shape 
as z varies; in particular, the maximum dimension inthe z 
direction, say 2S (the span), is much greater than the maximum 

dimension in the cross sections. We shall make whatever further 
assumptions of this kind that we need in order to keep the solution 
well-behaved. The small parameter can be defined as the inverse 
of the aspect ratio, that is, 

e€ = 1/(AR) = (area of H)/4S*, 

where H_ is the projection of the wing onto the y=0 plane. As 
before, it is not necessary to be so specific about the definition of 
€, and in fact it may be misleading. A wing with aspect ratio equal 
to 100 might be slender in the required sense if, for example, there 
were discontinuities in chord length in the spanwise direction. In 
any case, the wing shrinks down to aline, part of the z axis, as 
€ 7; 0.. 

Let the body be defined by the following relation: 

y= g(x,z) = h(x,z), (2-38) 

for (x,0,z) in H. See Figure (2-1). It is not necessary that the 
body be a thin one, in the sense of the previous section. I do, 

however, specify that it should be symmetric with respect to z, 
for the sake of simplicity in what follows. Both of the functions 
g(x,z) and h(x,z) really depend on €, of course*, but we shall 
generally omit explicit mention of the fact. 

There is an incident flow which, at infinity, is uniform in 
the x direction. Let the far-field solution be represented by the 
asymptotic expansion: 

* 
In fact, g and h are both O(e). 
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Y= 9 (*,2) 

2h(x,2) 

Fig. (2-1). Coordinates for the High-Aspect-Ratio Wing 

N 

o(x,y,z) ~ Ux + yS $,(x,y,Z), where $a = o(4,) as e~0O, 

n=l 

for fixed’ '(x,y;z) + (2-39) 

(Again, the dependence on € is suppressed in the notation.) Since 
the body shrinks to a line (x= 0, y=0, |z|<S) in the limit as 
€ > 0, the terms denoted by $, all represent flow perturbations 
which arise in the neighborhood of this singular line. They can be 
expressed in terms of singularities on that line, and the strengths 
of such singularities should be o(1) as € ~ 0. In an ideal fluid, 
we could expect the occurrence of dipoles, quadripoles, etc., on the 
singular line. We also take the realistic point of view that viscosity 
cannot be completely neglected and that there may be some circula- 
tion as a result. In the usual aeronautical point of view, this implies 
that there may be a vortex line present, complete with a set of trail- 
ing vortices. Inthe point of view adopted in the previous section, 
I assume that there may be a sheet of dipoles behind the singular line. 
I also make the usual assumption that these wake dipoles (or vortices) 
lie in the plane y =0. This part of the y=0 plane (0<x<o, 
|z| <S) will be denoted by W. (Note that H_ has all but disappeared 
in the far field view. It is only a line.) 

We can now write the outer expansion in the following form: 
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N i 

Ss 00 : 

Hxsy.2)~Ux+Z ) ae (o) dé ae 
n=l “SO [(x-6) ty + (x-€)] 

+L #2 \ tal te pee 1s ees dg Sf 
“S[x> ty? + (z-£) 

N 

SO i An(6) at ; ht Set (2-40) 
ae i. [ x? ty? + (z- pie 

The first sum contains terms which are exactly of the form given 
in (2-34), that is, they represent a lifting line with a strength 

yn(z). The second and third sums represent lines of dipoles 
Oriented vertically and longitudinally, respectively. It is implied 
above that the sums are asymptotic expansions, in our usual far- 
field sense. 

We shall presently require the inner expansions of these 
ferme. We obtain the inner expansions by assuming that 
r= (x? + y 2) Ve = O(e€), which implies that both x and y are small. 

Inner expansion of the lifting-line potential: Each of the 
double integrals containing a y can be rewritten as a single integral: 

4) 
y { i ( y(t) dé dg 

TJ Jo 2 2 2, 2 
[(x-§) ty + (z-¢)] 

i) VE x2 + y2 + (z-0)*] == AY” at yen (ton! ty + tant! what ey BF] ) | 
(2-41) 

Now break this into two parts: 

1) The first term in brackets on the right-hand side does not 
depend on x. As yO (i.e., for y = O(€) ), its contribution can 
be represented: 

Ps ' 

ezved- By SVE [1+ of), 

where the double sign is chosen according to whether y>O or 
y < 0, respectively, and the special integral sign indicates that the 
Cauchy principal value is intended. This representation is valid only 
for |z|<S, but that is no restriction here. It may be noted that 
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Every term in (2-51) must be of the same order of magnitude 

at a point in the near field, that is for r= O(e). If aterm were 
of some other order of magnitude with respect to €, the definition 
of "consistency" would eliminate it from this series. The orders 
of magnitude of most of the unknown constants can then be written 
down. Since the first term, Ux, is O(€), we can make the follow- 

ing statements: 

2 4 
Nor Agg= Ol€)s Agr» Boy= O(€)3 Aon» Bon = Ole i: 

The term containing the logarithm does not fit the pattern quite so 
well -- unless we follow my arbitrary practice of saying that 
log € = O(1). (See the discussion of "consistency" in Section 1.2.) 
Then we can say that: 

So = O(e). 

The Laurent series expression for the near-field expansion 
is very convenient when it comes to finding the outer expansion of 
the inner expansion. All we need to do is to interpret r differently 
and rearrange the terms according to their dependence on €. Thus, 
if we consider that r = O(1), the outer expansion of the one-term 

inner expansion is: 

(x,y,z) ~ Oo(x,y3z) ~ Ux + S69 log r + No fan y + Aoo 

O(1) Oe) O(e) Ole) 

+ Aor cos © 4 Sorsin’ + of). (2-51') 

O(e*) O(e*) 

This obviously matches the one-term outer expansion, with an 

asymptotically small error which is O(e). 

We could keep two terms in (2-51'); that would be the two- 
term outer expansion of the one-term inner expansion, which would 
have to match the one-term inner expansion of the two-term outer 
expansion. From (2-51') and (2-45b), we thus construct the equality: 

-| 4 4 “I 
Ux + 6, log r + m)tan Y + Ago= Ux +5 y, (2) [1- > tan x]. 

This can be true only if the following are separately true: 

1 1 
55 = 0; NO = Y,(z)3 Aoo =F y,(z)- (2-52) 
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N 

x,y .z)~ y @.(x,y»Z), yy = 01%) ‘as -Ee= 0, 

n=0 

with (x/e, y/e, z) fixed. (2-48) 

The first term in this expansion satisfies the conditions: 

fo. 7 20, = 0 inthe fluid region, (2-49) 

Eto = 0 onthe body. (2-50) 

From (2-45a), it is clear that the one-term inner expansion, 
$(x,y,z) ~ &o(x,y,z), must match the one-term outer expansion, 
6(x,y,z) ~ Ux. Thus @o(x,y,z) is the solution of a two-dimensional 
potential problem, and a rather conventional problem at that: Ina 
section through the body drawn perpendicular to the spanwise axis, 
the potential satisfies the Laplace equation in two-dimensions, a 
homogeneous Neumann condition on the body, and a uniform-flow 
condition at infinity. The direction of the uniform flow is the same 
as the direction of the actual incident stream as viewed in the far 
field. 

Since @) does satisfy the Laplace equation in two dimensions, 
the methods of complex-variable functions are available for deter- 
mining its properties. In particular, if we assume that V@p is 
bounded everywhere in the fluid region and single-valued too, then 
@9 can be expressed as the real part of an analytic function of a 
complex variable, the analytic function being such that its derivative 
can be expressed by a Laurent series. Thus, we can write for 
@o(x,y3z): 

a re) 
@)(x,y3z) = Ux + 6) log r + nm) tan £ 2 Ago + Aoi ces 

+ Bo sin 0 + Az cos 20 + Boz oa 20 Itt oe Sah 

r 
r r 

where r = (x? +y?)'/2, The "constants" are all unknown functions of 
z, the spanwise coordinate. The first term represents a uniform 
stream at infinity, and I have already performed one matching to 
determine this term. The second and third terms represent a source 
and a vortex, respectively; the fourth term, a constant, is included 

for generality; the fifth and sixth terms represent a dipole; etc. 
Such an expansion as (2-51) is valid outside any circle about the 

origin which encompasses the body cross section. 
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I have taken the trouble of writing out the inner expansion of the 
outer expansion in three ways just to point out how, in this problem, 
there is an additional term in the lowest-order expression each time 
we add another term of higher order in the outer expansion. Each 
of the three terms metoded In (2-44) contributes to the € term in 
(2-45c). This phenomenon occurs frequently, and its occurrence is 
the reason that one must proceed step-by-step in the matching. In 
the present problem, one would be in some difficulty if he tried to 
write down an arbitrary number of terms in each expansion and 
immediately start matching. 

Next we formulate the near-field problem. Instead of making 
the formal changes of variable, x= e€X and y = €Y, we shall simply 
understand now that, in the near field, 

x= O(e) and y=O(e); | also 0/ax= O(e!) and 8/8y = Ole"). 

Of course, differentiation with respect to z does not affect orders 
of magnitude. 

The Laplace equation can be written in the form: 

9 TF Syy = - $27, (2-46) 

where the right-hand side is e* higher order than the left-hand side. 
The boundary condition on the body is: 

0 = 6,(g,+h,) - 6+ $(g,#h,) on y=gth. (2-47) 

The last condition is equivalent to requiring that 8¢/én =0 onthe 
body, where 8/8n denotes differentiation in the direction normal to 
the body surface. An alternative statement is the following: 

) S (+ gx + hy) by Fy _ _ (hz + gz)$z =gth. (2-47!) 

aR v1 + (gy + h,)*] v[ 1 + (gy + h,)] en P 

where 986/@N is the rate of change in a plane perpendicular to the 
z axis, measured in the direction normal to the body contour in 
that cross section plane. Note that the left-hand side is O($/e), 
since differentiation in the N direction has the same order-of- 
magnitude effect as differentiation with respect to x or y. The 
right-hand side, on the other hand, is O(ge), since g and h are 

both O(e). 

Now let there be an inner expansion: 
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y,(z) = Ole); w(z), Aylz),  y9(z) = O(€*); 

also, all other terms in (2-40) are o(e?). These statements can 
all be proven. The description of the problem is greatly simplified, 
however, by their being assumed now. 

We can write the three-term outer expansion now: 

(x,y,z) ~ Ux + $\(x,y,z) + (x,y,z), (2-44) 

where 

Gay. )=% a AG de ; (2-44a) OAXsy +z oh ae Me ve ae a i 

S z. Y2(6) dé dt 

Gea S, i [ (x-€)? +y? + (2-0F]¥? 

fa Lyp, (6) +xa,(0)] do . (2-44b) 

Se ey leet 
The inner expansion of the one-term outer expansion is, of course: 

$(x,y,z) ~ Ux, [ Ofe)] (2-45a) 

to any number of terms. (Recall that x = O(e) in the near field.) 
The inner expansion of the two-term outer expansion is: 

(x,y,z) ~ Ux “s y, (z) [1-= 2 4an ¥ | [ O(e)] 

(2-45b) 

£5 sx ob seo [ O(e?)] 

Finally, the inner expansion of the three-term outer expansion is: 

+ 
(x,y,z) ~ Ux +5 y,(2)[ 1 - = tan -| x | a. (z) xr (z) [ O(e)]} 

2n(x? + y%) 

(2-45c) 
Ss 

dé yilS) 4 1 Laren 2 -£5. ME) 4 Sy tey[1-Ltan' ZL]. [ove 
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this term represents a distribution of vorticity extending to infinity 
both upstream and downstream. Thus, it leads to a discontinuity 
across the y=0 plane, even upstream. The second term must 
compensate for this behavior, since there can be no discontinuities 
in the region x <0. 

2) The second term in brackets on the right-hand side of 
(2-41) must be considered carefully with respect to the branches of 
the square-root function. With a bit of effort, one can show that, 

as r— 0, its contribution is: 

x2) (1 - 2 tan! XY) (1 + Ofe*)), 0 < tan’ L<n; 

Vie) (3 - = tan’ Y) ( 4 + O(e*) ) 5 Ge << tank Y< ae 

Combining this result with the previous one, we find that the 
inner expansion of a lifting-line potential function can be written as 
follows: 

ye q ie ¥(6) dé dg 

4m Je YO [ (x-8)° ty? + (2-4)? 

et tinsel ¥) ove (Se xile) | 2 
[ 5 wer [1-4 tan x}-xS" z-t [1+ oe], 

1 y 
for O< tan = <2n. (2-42) 

Inner expansion of the dipole-line potential: An integration 
by parts with respect to € transforms these integrals into an 
appropriate form so that one can let r—~O and thereby obtain the 
first terms in the desired expansions. Typical terms in the second 
and third sums of (2-40) have the following inner expansions: 

) 

es 29) OO ere cal 
ao iF [x* + y° t (2-4) e* [ 2n(x* + y*) J [ As: 198 e| ( ) 

Note the occurrence of the logarithm of ¢€|! 

Inner expansion of the outer expansion: In order not to con- 

fuse the picture, I shall make more as sumptions now, namely: 
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The first of these three equations means only that there is no net 
source strength in the 2-D problem. The second relates the 2-D 
vortex strength, 1, to the dipole density, y,, in the far field. 
The latter can obviously be interpreted also as a vortex strength. 
The third quality relates the "constant" term, Ago, in the near-field 
solution to the far-field solution's dependence on z, the spanwise 
coordinate. It is important to include such a term as this in the 
near-field solution, because it provides a three-dimensional effect 

in the otherwise two-dimensional problems. 

Presumably, the near-field problem can be solved somehow. 

If the body is simple enough, an analytic solution may be obtainable; 
with the available powerful methods of the theory of functions of a 
complex variable, it is even reasonable to hope to find such solu- 
tions. However, even if numerical methods must be used, the 
solution can be found. Then all of the constants in (2-51) except 

Apo are known. The constant of most interest at this moment is 
N,; it will be non-zero only if some mechanism has been included 
that can generate and determine a circulation around the body. I 
shall assume that a Kutta condition is available for this purpose, 
since the present section is concerned with wings. Then, with tq 
known, we can find the first approximation to the vorticity (and 
dipole density) in the far field, by means of (2-52). At the same 
time, Ago is determined. 

Nothing more can be done now unless we find a higher-order 
term in either the near- or far-field expansion. It is interesting 
to pursue the near-field solution further first. 

When we substitute the expansion, (2-48), into the Laplace 
equation, (2-46), and keep only leading-order terms, we obtain the 
partial differential equation for 9: 

G1, + Piyy = - &o,,, in the fluid domain. 

Now @9 was found to be O(€), and we might reasonable expect that 
@, would be O(e"). In fact, this turns out to be quite correct. In 
the equation just above, this means that the left-hand side is O(1) 
and the right-hand side is O(e). Asymptotically, then, we have 
that: 

Gm +O. =0 in the fluid domain. Xx yy 

We again have a purely two-dimensional boundary-value problem 

to solve, if we can state the boundary conditions appropriately. 
From (2-47'), we find by the same arguments that: 

O®, 
aN 

0 on the body. 
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We do not know the conditions at infinity yet, but let us assume that 
the condition on ©, is similar to that on 4p, i-e., the gradient of 
G, should be bounded. 

This problem is identical to the @g9 problem, and so we can 
represent its solution outside of some circle by another series like 
the one in (2-51). We have not determined yet what the coefficients 
of the increasing terms are like, and so we allow two more arbitrary 

terms (the first two terms in the following): 

-| A 8 
@, (x,y;z) = @,x +B,y + 6,log r + n, tan x + Aio + Sle 

ueaae pee Ses SS + ale Se Se too neaees) 
r 1g: 

All terms must be the same order of magnitude if r = O(e). 
Assuming that order to be €', we have: 

ai, B, = O(€); nn Ty Ajo = O(e*); Ai By = Ole); ete. 

With this information in hand, we combine the first two terms 
in the inner expansion and then we obtain the outer expansion of the 
two-term inner expansion: 

(x,y,z) ~ Ux O(1) 

+ Notan™ Z + Ago + %x + Bry Ole) 

+ Soi cos 8 + Bor sin 9, 6, logr +n, tan’ x + Aig. o(e*) 

(2-54) 

First we can keep just the first two orders of magnitude and match 
them with the two-term inner expansion of the two-term outer ex- 
pansion, given in (2-45b). Using (2-52), we see that everything 
already matches except for the terms a,x + B,y and the integral in 
(2-45b). For these to match, we require that: 

Fear pC Sete) (2-55) 

Physically, this means that the ©, problem should have had as the 
condition at infinity: 
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ld - Biy| +0 as r=" oo; 

that is, there is a uniform stream at infinity, moving at a right angle 
to the actual incident uniform stream. This is the downwash velocity. 
With this condition at infinity known, the ©, problem can be solved 
by the same method used for the 9 problem, and all of the terms 
in (2-53) are then known, except Aig 

We have all of the information available to match the three- 
term outer expansion of the two-term inner expansion with the two- 
term inner expansion of the three-term outer expansion. Using 
(2-45c) and all of the terms in (2-54), we obtain the equation: 

-| 
Ux + No tan x + Aoot Biy + Aa_cos 6 sae g + osin? 0 +6, logr +n, tan” zt 

- a et Belly, ypy(z) + xd) (z) 
+ Aig = Ux + 7) y, (z) [1-4 tan x | a ance ; 2) 

ES See! 5 velz) [1 - + tan x]. 

The unknown quantities are: Ajo, HW,» hy, Yee This equation is satis- 
fied only if: 

1 i 
6, = 0; Rar hs vn Yo(z); Aio = = Yal2); 

p,(z) = 27Bo); A(z) = 217A). 

From this matching step, we see that all quantities introduced so 
far are now Sp EN known. There is no source strength in the 
second approximation”; there is a correction to the vorticity in the 
far-field description; there is a correction to the "constant" in the 
near-field problem; and the density of both vertical and longitudinal 
dipoles in the far field is known. It is interesting to note thatthe 
last were determined entirely from the lowest-order near-field 
solution, that is, from Pp. When quadripoles first enter, it will be 

found that they too are determined in strength from 9% 9 solely. 

The next term would be much more difficult to obtain, since, 
in the near field, it entails solving a Poisson equation in which the 

* 
It would have been possible to eliminate the 6 log r terms in both 
problems above by noting that the body boundary conditions allow for 
no net source strength. 
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nonhomogeneous part depends on ®o, which we have not obtained 
explicitly. (The right-hand side of (2-46) finally has an effect.) 
Also, spanwise effects occur in the body boundary condition, (2-47), 
for the first time. Therefore I shall put this problem to rest at this 
point. Table 2-2 shows the sequence of steps that we have followed 
in this problem. 

TABLE 2-2 

HIGH- ASPECT-RATIO WING -- SUMMARY 

eras Far-Field Near-Field Quantity Determined 
Expansion Expansion by Matching 

4 

4 $= Ux =——> 14 Condition at infinity for 
®, problem 3 {e) 

2 Vorticity, y,(z), in far 
field 

2 , + $,<— +4, + ®, 3 Downwash velocity (condi- 
tion at infinity for 9, 
problem) 

4 Correction to vorticity in 
far field; densities of 
vertical, horizontal 

: Fo #13 Ge dipoles in far! field 

One point in particular should be noted: The near-field 
problem was not linearized. If one can predict the flow around the 
two-dimensional forms which appear in the near-field problem, one 
is not limited to consideration of, say, thin wings. All that is 
necessary is that the spanwise length be much greater than the 
dimensions in the two-dimensional problems and that there be gradual 
change in the body and flow geometry in the spanwise direction. 
Needless to say, the latter condition is usually violated at the wing 

tips, and so the analysis breaks down there. It may be hoped that 
the prediction of important physical quantities is not affected too 
seriously thereby, but higher and higher approximations certainly 
cannot be found until the extra singularities at the tips are removed 
somehow. 
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223+. Slender Body 

In the previous section, we considered the flow around a 

slender body which was oriented with its long dimension perpendicu- 
lar to the incident flow. Now we consider the flow around a slender 
body which is oriented with its long dimension approximately parallel 
to the incident flow. The same geometrical restrictions will be 
applied to the body in this problem, namely, that its transverse 
dimensions should be small compared with its long dimension and 
that cross-section shape, size, and orientation should vary gradually 
along the length. 

Although both this section and the previous section concern 
slender bodies in an incident flow, convention says that only this 
section really presents "slender-body theory." 

In ship hydrodynamics problems, slender-body theory has 
been applied mostly to nonlifting bodies, i.e. , bodies not generating 
trailing vortex systems. * T shall limit myself here to such prob- 
lems too. Specifically, I assume that there is no separation of the 

flow from the body; furthermore, there are no sharp edges at which 
a Kutta condition might be applied. The potential function should be 
continuous and single-valued throughout the fluid domain. 

This restriction is not generally desirable. Certainly an 
important aspect of aerodynamics is the calculation of lift ona 
slender body which does generate a vortex wake; modern high-speed 
delta-wing aircraft and many slender missiles are genuine slender 
lifting bodies. There are several important ship-hydrodynamics 
problems which may ultimately be best analyzed by a slender- wing! 
approach. Most important, perhaps, is the problem of a maneuvering 
ship. An attempt is made in this direction by Fedyayevskiy and 
Sobolev [ 1963], but it is not very successful because they use the 
conventional methods of slender-wing theory, and these break down 

in application to wings which are not more-or-less delta shaped. + 
A modern approach to slender-wing theory is given by Wang [ 1968]. 

*Obviously, a ship is a "lifting body," but I think it is commonly 
understood that the term implies a dynamic lift process, and that 

is the way I use it. 

Tusiender wing," "wing of very low aspect ratio," and "slender 
lifting surface" are all equivalent terms in my usage. 

* Conventional slender-wing theory can be used for wings in which the 
span increases monotonically downstream, ending in a squared-off 
trailing edge. If the incident stream is uniform and steady, the 
wing does not have to end at the location of the maximum span, but 
the part of the wing aft of this location must be uncambered. Not 
all of these conditions are satisfied in the interesting ship maneuver- 
ing problems. 
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Fig. (2-2). Fluid Velocity Near a Slender Body 
in Steady Motion 

The physical ideas behind slender-body theory were developed 
fifty years ago, and the original way of looking at this problem is 
perhaps still the best way. Take a reference frame which is fixed 
with respect to the fluid at infinity. As a slender body moves past, 
one may imagine that its greatest effect on the fluid is to push it 
aside; the body also imparts to the fluid a velocity component in the 
axial direction, but this component should be quite small compared 
with the transverse component. Both components should be small 
compared with the forward speed of the body. 

In modern slender-body theory, we attempt to formalize this 
estimate of the relative velocity-component magnitudes. We devise 
a procedure that automatically arranges velocities in the anticipated 
order: 

1) Forward speed 
2) Transverse perturbation 
3) Longitudinal perturbation 

When this pattern comes out of the boundary-value problem, we 
then investigate further to see what other patterns follow from the 
same assumptions. The whole body of assumptions, results, and 
intermediate mathematics constitute what we call "slender-body 
theory." 

In aerodynamics, the original intuitive approach of Munk was 
not completely displaced until the late 1940's. The newer, more 
systematic approach which developed then is described well by Ward 
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[1955]. For the first time, it was possible to predict with some 

confidence how the flow around the various cross sections interacted. 
There were some difficulties in principle, even with the new ap- 
proach; what we now call the "outer expansion" of the problem was in 

effect forced to satisfy body boundary conditions. The difficulty is 
somewhat comparable to trying to force a Laurent-series solution 
to satisfy prescribed conditions which are stated on a contour inside 
the minimum circle of convergence. A readable, refreshing account 
Se ripe aoa theory in the 1950's has been provided by Lighthill 
1960]. 

During the early 1960's, slender-body theory was applied to 
ship hydrodynamics problems by several investigators. Probably 
the earliest to try this on a major scale was Vossers [1962]; he 
attacked a variety of steady- and unsteady-motion problems by 
slender-body theory. He used a Green's function approach, which 
apparently avoids the fundamental difficulty in principle of the 
previous method. However, it is really too much to hope to obtain 
asymptotic estimates of five-fold integrals -- without making mis- 
takes. Apparently Vossers did hope for too much, but Joosen [ 1963] 
and [1964] corrected many of his mistakes. Newman [1964] also 
advocated the Green's-function approach and produced some inter- 

esting results. 

The modern (i.e., fashionable) alternative is to use the 

method of matched asymptotic expansions. In ship hydrodynamics, 
Tuck [ 1963a] first used this method in his doctoral thesis at 
Cambridge University. It avoids the difficulties in principle of 
Ward's approach, and it is easier to work with than the Green's- 
function method. Of course, the method of matched asymptotic 
expansions has its own set of difficulties of principle. However, 

it is the method that I shall pursue here. * 

In any case, the analysis can be no better than the assump- 
tions which are made at the beginning. Therefore I shall be (perhaps 
painfully) explicit about the assumptions. 

2.31. Steady Forward Motion. Let the body surface be 
specified by the equation: 

*A very recent account of slender-body theory, particularly with 
respect to its applications in ship hydrodynamics, has been pub- 
lished by Newman [1970]. I think that his presentation and mine 
generally complement each other (and perhaps occasionally contra- 
dict too). Newman has provided a survey that seems comparable 
in intent to the one by Lighthill [1960], mentioned above, whereas 
I am trying to place slender-body theory into a hierarchy of singu- 
lar perturbation problems. My emphasis is on the development and 

application of the method of solution. 
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ra ro(x, 8) x in K, 

where r= (y? +t: z2)V2 , and @ is an angle variable measured about 

the x axis. It will be assumed that r = O(e). In this section, I 

take the most conventional definition of 8, namely, that it be 

measured in a right-handed sense from the y axis. (In ship prob- 
lems, it is more convenient to measure the angle from the negative 
vertical axis.) A is the part of the x axis which coincides with 
the longitudinal extent of the body; typically, one might take it to be 
the interval, - L/2<x<L/2, butI shall not insist that the origin 
be located at the mid-length section. Figure 2-3 shows a typical 
cross section. 

Fig. (2-3). Cross Section of the Slender Body 

As usual, assume that there exists a velocity potential, 
$(x,y,Z), which satisfies the Laplace equation. There is an incident 

stream which, in the absence of the body, is a uniform flow in the 
positive x direction, with the velocity potential Ux. It will be 
convenient to use cylindrical coordinates, (x,r,®), in which case 

the Laplace equation takes the form: 

1 1 
a Yr o, + ze P06" Pig Oe + fox ene, To(x, 8). (2-57) 

The kinematic boundary condition on the body can be written: 

1 9,70, - , + pi $6 og = 0 on r = rQ(x,9). (2-58) 

With respect to the physical arguments presented at the 
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beginning of the section, note that our frame of reference is now 
moving with the body. Therefore, the velocity components should 
be ordered: 

86/8x ~ U= O(1); 96/8y, 96/8z, 96/ar = o(1); 

8( - Ux) /8x = 0(86/ar). 

In each case, of course, the appropriate limit operation is that 
€e—~>0, where e€ is the slenderness of the parameter. These order 
relations should be valid near the body. 

Far away, there will be the uniform stream, which is O(1), 

but there is no reason to assume that the perturbation velocity will 
have components with differing orders of magnitude. 

These order-of-magnitude relations all come about auto- 
matically if, in the near field, we define new variables: 

r= eR, y=eY, Z=€Z, 

and assume that differentiation with respect to x, Y, Z, R, and 08 

all have no effect on the order of magnitude of a quantity. Thus, 
suppose that the potential in the near field can be written: (x,y,z) = 
Ux + @(x,Y,Z). Then the derivatives have the following orders of 
magnitude: 

Ob _ Od _ 0h _ Ob _ 1 OO _ ge Ut ges Ol) + OG); GEST = Ty = Olb/e); 

882 0(6/e); 2= O(6/e). 

It will turn out that @ = O(e*). This means that the transverse 
velocity components, $y, $2, and 4, are all O(e), that is, they 
are proportional to the slenderness parameter. Note also that a 
circumferential velocity component would be given by (1/r)8o/80 = 
(1/eR)d8@/80 = O(@/e), when we interpret R= O(1) (that is, in the 
near field), and so circumferential and radial velocity components 
have the same order of magnitude. The perturbation of the longi- 
tudinal velocity component is O(®) = O(e*), which is, appropriately, 
a higher order of magnitude than that of the transverse velocity 
components. 

In the far field, we assume that differentiation with respect 
to any of the natural space variables has no order-of-magnitude 
effect. Thus, we use the Cartesian coordinates (x,y,z) and the 
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cylindrical coordinates (x,r,®) in a very conventional manner. 

As € ~ 0, the slender body becomes more and more slender, 

shrinking down to a line which coincides with part of the x axis. 
(This is the line segment that I defined as A previously.) In the 

limit, there is no body at all and thus no disturbance of the incident 
uniform flow. In the far field, the disturbance is always o(1). 
Therefore the far field consists of the entire space except the x 
axis, and the potential function must satisfy the Laplace equation 
everywhere except possibly on the x axis. 

At infinity, it is reasonable to require that the perturbation 
of the incident flow should vanish, which implies that the pertur- 

bation potential must be regular even at infinity. A velocity potential 
cannot be regular throughout space, including infinity, unless it is 
trivial. Therefore the velocity potential must be singular some- 
where, and the only place in the far field where such behavior is 
permitted is on the x axis. Our far-field slender-body problems 
all reduce to finding appropriate singularity distributions on the x 
axis. 

The Far-Field Singularity Distributions. In the far field, 
the first term in the asymptotic expansion for the potential function 
will be Ux. All of the following terms must represent flow fields 
for which the velocity approaches zero at infinity; they represent 
distributions of singularities on the x axis. The nature of the 
singularities can only be determined in the matching process, and 
so we must generally be prepared to handle all kinds of singularities. 

One of the easier ways of doing this is to apply a Fourier 
transform to the Laplace equation, replacing the x dependence by 
a wave-number dependence. The resulting partial differential 
equation in two dimensions can be solved by separation of variables 
in cylindrical coordinates. When we require that the potential 
functions be single valued, we find that the solutions must all be 

products of: 

K,(|k|r) or 1,(|k[r) and sin nO or cos n@, 

where Kn and I, denote modified Bessel functions. Since I, is 
poorly behaved when its argument is large, we reject it, so that the 
solution consists of terms: 

K,(|k|r)[@ cos nO + B sin né]. 

The quantities @ and B are constants with respect to r and 6, 
but they are both functions of k. They also depend on the index n, 
of course. The general solution is obtained by combining all such 
possible solutions. Any term in the far-field expansion of the 
potential function might be of the form: 
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oo 

ik 
bq(X2¥ 12) = = » i dk e™ K,(|k|r)[az,(k) cos n@ +b, .(k) sin n6] , 

no 0 
(2-59) 

where ama(k) and be Ak) are unknown functions. The most general 
far-field expansion comprises the incident-flow potential, Ux, and 
a sum of terms like the above, that is, 

M 

x,y,z) ~ Ux + b(x yz) - fortixed (x,y,z) as € => 0. y. m y 

m=l 
(2-60) 

It will be necessary to have the inner expansion of the outer 
expansion. This means that we must interpret r to be O(e) in 
the above expressions, instead of O(1) as heretofore, and re- 

arrange terms according to their dependence on €. The easiest 
procedure is to replace any of the Kp, functions in (2-59) by its 
series expansion for small argument. We obtain formulas such as 

the following: 

ra, FS (OE 

oo 
1 ikx * = dk e™ K({k [nya o(k) 

-0 

00 Co) 
_ logr ikx 1 ikx Clk]. 
—— i. dk e amolk) - aS. dk e a nolk) log Tse 

(2- 61a) 

n>0: 

1 ied ikx * ! cos x. dk e K,(|k|r)a,,(k) (CP) 0 

Coe aie _ikx ~ 2 (n= 1)) (£22) no { Se ama(k)- (2-61b) 
2nr” a -00 [1k | 

Physically, the n=0 integral represents the potential for a 
line of sources. This can be seen directly from (2-61a): As r~ 0, 
the function is proportional to log r, which is the potential function 
for a source in two dimensions. However, the strength of the 

apparent 2-D source is a function of x. In fact, the integral defin- 

ing that strength is identical to the integral which gives the inverse 
of a Fourier transform. Let ao) be the function having a* (ik) 
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as its Fourier transform, and further define: 

o,(x) = - 27a, (x). 

Then the result in (2-61a) can be rewritten: 

or) 

iS. dk e| * Kol [k |r) aol k) oa Om(x) log r - qa f(x), (2-012') 

© 

f(x) -{ d€ of (§) log 2 |x-€ | sgn (x-&). (2- 61a") 

By manipulating the full integral containing Kp, one can also show 
that: 

i esate * 1 (° __ om(é) a€ ikx 
oa dk e Kol |k | r) anol) =- ae Fee ae » (2-62) 

which is easily recognized as the potential function for a line distri- 
bution of sources. 

Similarly, the other integrals can be interpreted in terms 
of dipoles, quadripoles, etc. In particular, we see that for n=l 
the inner expansion of the integral reduces to the potential in two 
dimensions for a dipole. We may consider the variable x asa 
parameter, and then we have a different 2-D dipole strength at each 
ora 

The Sequence of Near-Field Problems. In the near field, 
we can formalize our procedure by making the changes of variables 
already mentioned, r=eR, y = €Y, z = €Z, then assuming that 
differentiation with respect to R, Y, or Z does not affect orders 
of magnitude. Instead of doing this, I shall simply retain the ordi- 
nary variables, r, y, and z, and Iask the reader to recall that 
differentiation with respect to any of these three variables causes 
a change in order of magnitude. Thus, for example, 06/dr = O(¢/e) 
in the near field. 

In cylindrical coordinates, the Laplace equations and the body 
boundary condition can be written as follows: 
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[L] 9er +2 , ty $09 = - Pxxi (2-57') 

[ H] 86 - Nv = 29,4 (1/20) 70949 = PkTOy 
Vv[it (r99 /r0)"] il dt (r099/roF] 

on r = ro(x,@). (2-58') 

The definition of N is analogous to that in (2-47'). It is a unit 
vector lying in the cross section plane at some x, perpendicular to 
the contour of the body in that cross section. It has the three com- 
ponents: 

(0,-1 »TO9/To) 

V[4 + (r99/r0)*] 

measured in the x, r, and 9 directions, respectively. Equation 
(2-58'), like (2-58), expresses the fact that 8¢/8n =0, where n 
is the unit vector normal to the body surface. 

Let the inner expansion be expressed as follows: 

N 

o(x,y,z) ~ » @,(x,y,z) as €—~0O for fixed (x,y/e,z/e). 

n=0 

Substitute this expansion into the [L] and [H] conditions above: 

2 
(ee) | Vy,2(Po + P + a + 3 +...) = - (Go + Ot eee); 

ae@ To(Po, + O, Tec) 8Dp , AD - : [ H] Sh aon i aT re cere a 

[1 + (r96/t9)"] 

The operator Vy2 is the 2-D Laplacian inthe y-z plane, that is, 

It can be proven that the first term in the expansion, 9, 
represents just the uniform stream: 

(x,y,z) = Ux. 
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This appears so obvious that I pass on immediately to the 9, 
problem. Fromthe [L] and [H] conditions, we find: 

[Lui] Viz % =0 inthe fluid domain; 

[H,] ES ee on r=. (2-63) 
OR Ee att (r9,/20) 

Finding ®, is strictly a problem in two dimensions. In fact, it is 
just the problem that the early aerodynamicists put forth intuitively 
at the beginning of their slender-body analysis. (It was also the end 
of their analysis!) For an arbitrary body shape, we might have to 
solve this boundary-value problem numerically; that is not much of 
a problem today. However, we are not yet ready to work with num- 
bers, because the formulation of the problem is not quite complete: 
we have not specified the behavior of #, at infinity. To do so 
requires that we match the unknown solution of this problem to the 

far-field expansion. 

First, note what (2-63) tells us about the order of mag- 
nitude of ©. The right-hand member is O(e) and the left-hand 
member is O(@,/e) (because of the differentiation in the transverse 
direction), which together imply: 

®, = Ole’). 

Actually, (2-63) says only that ®, cannot be higher order than e*; 
it could be lower order if the matching introduced some effect that 
required € to be o(®,), but this does not happen. 

This , problem is remarkably similar to the @) problem 
in Section 2.2. If we can assume that V4, is bounded at infinity, 
then we can express ©, ina series just like the one in (2-51). 
Whether V®, really is bounded at infinity can only be determined 
from the matching, of course, but we go ahead with the assumption, 

trusting that our method will show us if we have made unwarranted 

assumptions. 

It should be noted too that there are important differences 
between this problem and the problem of Section 2.2. The Neumann- 
type of condition on the body was homogeneous there, but it is not 
homogeneous here. Thus, one may expect that there may be a non- 
zero net source strength inside the body in the present problem. 
What happens at infinity is also different. In the earlier problem, 
the potential had to represent a uniform flow at infinity, and we 
supposed that there might be the proper circumstances that a circu- 
lation flow could occur. In the present problem, the uniform flow 
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at infinity has been included in ), and so we might expect that ©, 
will represent a flow with velocity vanishing at infinity, and there 
appears to be no reason to expect a circulation in the 2-D problem. 

It would be tedious to go through the same arguments that 
were used previously, and so I shall only summarize the results that 
would be obtained after a careful matching process. In the near 
field, , does indeed yield a velocity field which is bounded in 
magnitude at infinity, and there is no circulation. Thus, it can be 
represented by the series: 

Ai cos @ + By sin 6 4 a wee » (2-64) A 
® (x,y,z) = C, sis is log r t+ 

The "constants" are all functions of x. Inthe near field, all terms 
must be the same order of magnitude, by definition, and so Aj 
and Bit are O(€Ajg). (Iam, as usual, ignoring quantities which 
are O(log e).) In the matching, the 1/r terms are lost in the first 
round, and the log r and constant terms are forced to match the 
inner expansion of the outer expansion. 

In the outer expansion, (2-60), only a line of sources in the 
$, term of (2-60) can match the near-field expansion properly. 
That is, in (2-59) and (2-60), we have the following: 

* 
a," (Ik) = by, (k) =0 except for n=0. 

The two-term outer expansion and its two-term inner expansion are: 

[e6) 

ik * 
(x,y +z) ~ Ux + i. dk e Ko [k| r)a,o(k) (2-65a) 

UUs oe tiloge tote) (2-65b) on 9 8 an 1%! » 

where (2-61a') has been used to express the latter. 

Matching between the near-field and far-field then shows that: 

Aig = 0, (x) (2- 66a) 

Cy ge f(r). (2-66) 

In obtaining an actual solution, one proceeds through the 
following steps: 1) Matching shows that ® represents a flow with 
bounded velocity at infinity. 2) Thenthe #, problem is completely 
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formulated and can be solved. 3) From the solution of the ®, 
problem, the function Ajo(x) can be determined, which, through the 
matching, gives o,(x), and the far-field two-term expansion is known, 
4) From the matching relation for C,(x), along with formula (2-61a"), 
the near-field potential is known completely to two terms, and the 
C,(x) term includes the most important effects of interaction among 
sections. This sequence of steps shows what an intimate relation- 
ship exists between near- and far-field expansions. 

The source strength, o, (x) = Aio(x) » can be computed without 
the necessity of solving the flow problem. In the near-field picture, 
draw a circle which encloses the body section. The net flux rate 
across this circle is just Ajg. From the body boundary condition, 
(2-63), one can show that there is a net flux rate across the body 
surface, and it is given by Us'(x), where: 

er 
1 

s(x) -3\ dé ré(x, 0) = cross section area at x. (2-67a) 

The two fluxes must be equal, and so we find that: 

o, (x) = A\o(*) = Us'(x). (2-67b) 

Thus, the source strength is proportional to the rate of change with 
x of the body cross sectional area. 

I shall not pursue the solution to higher order of magnitude, 
although there is no insuperable difficulty in doing so. Rather, I 
prefer to point out several interesting facts about the solution and 
then close this section. 

In the far field, the solution to two terms is axially sym- 
metric, although the body is not a body of revolution. The near- 
field two-term expansion is not symmetric in this way unless the 
body is circular and is aligned with the incident flow, However, 
the near-field solution can be represented by the series, 

Ai; cos 8+ By sin 0 x 4 
o(x,y,z) ~ Ux + AO) jog x - aa f(x) + er rd os r 

and, at large r, the axially symmetric terms dominate this series. 

If the far-field expansion is carried to three terms, it will be 
found that the third term can be interpreted in terms of a line of 
dipoles, both vertically and horizontally oriented. Such terms will 
be of the form given in (2-61b), with n= 1; they contain unknown 
functions a3,(k) and b3,(k), which must be determined through 
matching. These unknown functions will depend entirely on the 
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solution of the ®, problem discussed above. In fact, one finds 

explicitly that: 

ikx * 
atic): a Sele is = ike 

oo 

dk * 
Ay (x) = he. Teh e bo, (k) ° 

Thus, the two-term inner expansion contains enough information to 
determine the strength of the dipoles which appear in the third term 
of the far-field expansion. The same inner expansion would deter- 
mine the strengths of quadripoles in the fourth term of the far-field 
expansion, etc. , étc. 

On the other hand, the far-field expansion (even at the second 
term) contains much information about three-dimensional effects, 

information which is largely lacking in the near-field expansion. I 
have already pointed out that only the "constant" term contains im- 
portant information about 3-D effects in the two-term near-field 

expansion. The rest of the ©, solution depends on just the shape 
of the local section and the local rate of change of section shape and 
size. If higher-order near-field terms are found, it will be seen 
that they are influenced even by the two-term outer expansion. In 
fact, the "constant" term in ©, can be interpreted as a modification 
to the incident stream, caused by the presence of all the other cross 
sections of the body. The effects of this extra incident flow on the 
transverse velocity field are not perceived until one finds a higher 
order expansion of the solution in the near field. 

The briefest account of slender-body theory would be seriously 
lacking without mention of the possibly catastrophic effects of body 
ends. If a body has a blunt end, then s(x) increases linearly in 
some neighborhood of the end. Accordingly, s'(x) is discontinuous, 
jumping from a value of zero just beyond the end to a finite value at 
the end. This is an obvious violation of our assumptions about 
"slenderness." But trouble develops even without a blunt-ended 
body. For example, if the tip is pointed (but not cusped), there will 
still be a stagnation point right at the point. Thus this case violates 
the assumption that longitudinal perturbation of the incident flow 
velocity is a second-order quantity. 

Sometimes these end effects can be overlooked with impunity. 
There are major examples later in this paper. However, even when 
we have such luck, we must be prepared to have higher-order expan- 

sions go awry. 

2.32. Small-Amplitude Oscillations at Forward Speed. In 
this section, we consider the same Kind of body as in Section 2.31, 
namely, a slender body which is aligned approximately with an 
incident stream. However, now we formulate a time-dependent 
problem in which the body performs small-amplitude oscillations 

while it moves through the fluid. 
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It would be entirely feasible to consider the general problem 
in which the body oscillates with the six degrees of freedom of a 
rigid body. (We could even include more degrees of freedom by 
allowing deformations of the body.) However, the major concepts 
should be clear if we allow only two degrees of freedom, a) a 
lateral translation, comparable to the heave or sway of a ship, and 
b) a rotation, like the pitch or yaw of a ship. 

In this section, I shall depart from my usual approach and 
first treat the problem for a perfectly general body, then introduce 
the slenderness property at the very end. This introduces a bit of 
variety, but more important is the fact that some general properties 
of the physical system can be pointed out, without any confusion 
over the effects of assuming slenderness of the body. 

We use two coordinate systems: Oxyz is fixed in the body 
with its origin at the center of gravity, and O'x'y'z' is an inertial 
system which moves with the mean motion of the body center of 
gravity. With respect to the stationary fluid at infinity, the mean 
motion is a translation at speed U inthe negative x!' direction; 
thus, inthe O'x'y'z' system, there appears to be a flow past the 
body in the positive x' direction. 

The two reference systems differ because the body oscillates 
inthe z direction, the instantaneous displacement being denoted 
by §,(t), and rotates about the y axis, the angular displacement 
being denoted by & (t). In a more general problem, we could let 
& (t), E,(t) and Es t) denote surge, sway, and heave (displacements 
along the x, y, and z axes, respectively) and &4(t), E5(t), and 
E,(t) denote roll, pitch, and yaw (rotations about the x, y, and z 
axes, respectively). It will be assumed explicitly that §j(t) is a 
small quantity, so that squares and products can be neglected in 
comparison with the quantity itself. Furthermore, it will be assumed 
that €; (t) varies sinusoidally in time and it will be represented by 
the real part of a complex function varying as e!t, We shall not 
usually bother to indicate that only the real part of a complex 
quantity is to be implied. Thus we can write: 

E(t) = iw (t). (2-68) 

The relationship between the two coordinate systems is as 
follows (see Figure (2-4) ): 

x = x' cos & - (z'-§,) sin€,@ x' - z', ; 

yes yes (2-69) 

z =x' sin &. + (z'-€,) cos &, = ee Ss . 
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Fig. (2-4). Two Coordinate Systems for 
Oscillation Problem 

The absolute velocity of the center of gravity is: 

DR OE te: iw6,k! = (- Ucos && - iwé, sin €,)i 

+ (- U sin &,+ iw€, cos ey) k (2-70) 

=- Uit (iw6., - UE.) k (2-70') 

where (i,j,k) are unit vectors in the Oxyz system, and (i', j',k') 
are unit vectors in the O'x'y'z' system. 

Let the body surface be defined by the equation: 

S(,y,z) = 0. (2-7 1) 

Denote the unit vector normal to the surface, inwardly directed, 

by n: 

n = ni + nj + n,k- (2=TZa) 

It is convenient to make a number of other definitions, as 

follows: 

1) nj: Extend the above definition of ny to j =4,5,6 as 
follows: 
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rXn =n,i tn,j + nk (2-72b) 

where 

= Xj + yj + zk. 

In particular, note that: 

n,= n'k and n,= zn, - xn,. (2-72') 

2) j: This is a normalized velocity potential. It satisfies: 

Ping | Pix, + oj,, =0 in fluid region; 

Dd; 
sel = nj on S(x,y,z) = 0; (2-73) 

|v,| > 0 at infinity. 

3) v(x,y,z): This is a normalized fluid velocity, equal to the 
fluid velocity at (x,y,z) when an incident stream flows 
past the body, the stream having unit velocity, i , at 
infinity. It can be represented as follows: 

v(x,y,z) = V[x - $,(x,y,z)] : (2-74) 

4) mj: This quantity is related to the rate of change of 
v(x,y,z) in the neighborhood of the body, as follows: 

mi +m,j tm3k= m= - (n'V )v; (2- 75a) 

magi + msj +t mgk= - (N-V)(r Xv). (2- 75b) 

In particular, note that: 

a, 
_ z = ° = ! 

sae on (2-75a') 

mM, = - ae r Xx v) = - on (2% - XV3) 

i Fi io [z(1-4, ) +x, =) ee +e (26, = xo). (2-75b') 
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5) Wj: This is another useful normalized velocity potential. 
It is related to mj; the way 9; is related to nj. It 
satisfies: 

Hiyy + iyy + hi,, = 0 in fluid region; 

It oi mj; on S(x,y,z) = 0; (2-76) 

Ivy; | > 0 at infinity. 

In particular, it can be seen that these conditions are 

satisfied for i=3, 5 if: 

a(x sy »Z) = (x,y 2Z)3 (2-76') 

b.(X,y +2) =e $(x,y»Z) = (29, I x9, )- (2-76") 
x z 

(The last term does satisfy the Laplace equation.) 

Now we can write down the velocity potential for the combined 
translation and oscillation in terms of the above-defined quantities. 
It is a well-known fact of classical hydrodynamics that the fluid 
motion can be expressed as a superposition of six separate motions, 
each of which would be caused by the motion of the body in one of the 
rigid-body degrees of freedom. However, it is essential for the use 
of this fact that the description be made in terms of a coordinate 
system fixed with respect to the body. Note that there is no lineari- 
zation implicit in this superposition, in the sense that there is no 
requirement that motions be small in any way. In the body-fixed 
reference frame, the velocity potential is: 

[- Ucos E. 2 iw, sin E.] , (x,y +2) 

+[-Usin & + iwé,cos .]ofx,y,z) + iw6, (xy »Z)- 

The nature of the superposition is obvious when we compare the 
first two coefficients here with (2-70). However, it must also be 
recalled that the velocity potential obtained in this way gives the 
absolute velocity of the fluid, that is, the gradient of this potential 
is the velocity in a reference frame fixed to the fluid at infinity. 
Thus, we must add to this potential an extra term to provide for the 

x 
This can be concluded also by recalling the definition of qj: its 
gradient vanishes at infinity. 
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apparent incident stream in the observation reference frame. The 
latter has the velocity potential Ux', and so the complete potential 
is: 

x', y',z',t) = Ux''='(U cos E.t iw6;sin €) (x,y »z) 

+ (- U sin & + iwS; cos &,)bfx,y,z) + iwSsoe(x,y,z) 

(2-77) 

= Ux'- Uo (xsy>2) t [ iw (x,y »z)] 6 5(t) 

+ [iwo(x,y,z) - Ud lx,y,z)] &,(t) . (2-77') 

The potential @ has been defined basically in terms of the inertial 
reference frame, although most of the right-hand side here is ex- 
pressed in terms of the body-fixed system. Note that not only the 
incident stream is defined in terms of primed coordinates, but also 
the body motion is really defined in those coordinates as well; in 
particular, heave motion is a translation of the body along an axis 
fixed with respect to the fluid at infinity. 

The Bernoulli equation must be used for computing the pres- 
sure: 

ind 2 2 2 
- = >; + = ($y + $y: ar $,')« 

The linear approximations of the derivatives here are as follows: 

2 
6, = [(ia) 3 + (io) ,,] £5(t) 

+ [ (iw) $, - (io) $, + (io) (24, - 26, )] 5 (5 

$. = UL1 - $,] + Livdglés(t) + [ings - Uds,- Ud, ]Ep(t)s 
by = - UL 4] tind. ésit) + [log - Udy] Es(t)s 

$,, = - UL4,] +[inbs,] 83(t) + Linge, - Uds, + U4] E5(t). 
Some simplification has been done through the dropping of quadratic 
terms in §|. Substituting these expressions into the Bernoulli 
equation and simplifying somewhat, one finds that: 
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2 

v? +[ (iw), + (iwU) (bs + V+ $9] S5(t) 

+ [ (iu)?$5 + (ioU) (Ys + V+ 7 $5) - Ulds + V+ 7 4)] a(t) 

In the terms containing §j, one can use primed and unprimed co- 
ordinates interchangeably, since the difference leads to terms of 
higher order. 

The force (moment) corresponding to the j-th mode of 

oscillation is given by: 

Fj (t) = if ds njp(x,y»zZ,t) = Tji g (t) + Fio» 
s 7 

where S is the surface of the body at any instant and Fjg is the 
steady force component. (For j =1,2,3, the latter is zero.) The 
"transfer functions" Tjj are: 

T33=- P i ds nf (ia) $5 + (iwU)(¥, t+ vi¥ ,)] 5 

ae of dS nj (iu), + (iwU)(Y, + V9 4) - Ul, + ¥-V OJ]; 

Ty3 = - of ds nl (ia), + (iwU) (3 + v-.V $3) | ; 

Ty5 = - | ds n,[ (1c), + (iwU) (Hs + v:V $,) - urw,+ v-V $3]. 

These formulas can be simplified considerably, even before 
we introduce the slenderness approximation. We use two theorems: 
One is an extension of Stokes’ theorem, proven by Tuck (see 

Ogilvie and Tuck [ 1969]): 

f. dS nj(v-V $)) = J dS mj4j - 

The other theorem is Green's theorem; in applying it, we note that 
all of the functions decrease sufficiently rapidly far away that there 
is no need to account for effects at infinity.* Thus, in T33 and 
Tz, we have: 

* 
>, and $, appear to represent dipoles at infinity; thus, both are 
proportional to 1/ r@ as r—~ oo. $5 appears to represent a quad- 
ripole, thus is proportional to 1/r> at infinity. 

727 



Ogtlvie 

J, asagiigt vv) =) a5 (4,,45~ 5,6) =o 
Similarly, in T 55) 

f. dS n(p, + ve V $,) = 0)4 

In T 35° we manipulate one integral as follows: 

dS + “V = dS - i nal, + v°V $5) \ (nsb; - m5$,) 

© ‘ a dS (ngs - 45,4, + ts%5, - 4305) 

a i ds n3$, ay ds z(n3,_ - n\$,,)- 

Similarly, in Ts, and T,,., we find: 

i ds ns (5 + v-V $,) = i ds n3$3 - f. dS 2(n,$, - n>, )- 

S 

The last integral in the last two expressions can be rewritten: 

i‘ dS z(n3$, - n,9, ) =j- \ dS znxV 9, 

j- { dS [n Xv (zo) -n X ($k)] 
) 

\ dS n, 9; 
S 

the last equality following from application of Stokes' theorem to the 
first term. Combining all of these results, we find for the Tjj: 

2 
T33 = - p(iw) { dS n,$33 

s 

T35= - p (ie)" {. dS nz, + p(iwU) i ds (n3$, - n, $,); 
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Ts3 = - p(iw)* i ds n39, - p(iwU) { dS (nz - n,,); 
s 

Ty, = - pliw)” i dS ng, + ul dS (n3¢, - n,$,)- 

These results have been obtained with no assumptions made 
about the shape of the body. The only assumption was that the sinu- 
soidal oscillations had very small amplitude. 

Now, finally, let us assume that the body is slender. The 
only effect is that we lose the terms containing n,$,. For a slender 
body, n3 and n, are O(1) as the slenderness parameter, €, 
approaches zero, whereas n, is O(e€). From (2-73), we see that 
oly is therefore higher order than $, and 9, by a factor of €. 
E us: 

r7r 

lS. dS n, 4, /S. ds nsés| = O(e?). 

Seldom in practical problems do we ever retain terms with sucha 
great difference in orders of magnitude, and so we neglect the terms 
containing n,$, if the body is slender. 

In the ship-motion problem, the quantity corresponding to 
T33 will be 

(iw) [ ag, + é bgsl » 

where a3, and b,, are the heave added-mass and damping coeffi- 
cients, respective viet The other Tjj's have a similar interpreta- 
tion in terms of pitch added-moment-of-inertia and damping coef- 
ficients, cross-coupling coefficients, etc. We note that there are 
three kinds of terms here: 

a) Terms independent of U. These are all of the same form: 

Tt =- Gal f. dS nj $j. (2-78) 

b) Terms proportional to U. These occur only in the cross 
terms, Tij » with i#j. For a slender body, we have: 

* 
In the ship-motion problem, $j is complex. Here, of course, 
>; is purely real, and so there is no analog to bij. 
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71) (0) Tg digs r (U/iwl bans (2-79) 

7) (0) ee + (U/ia) Ty (2-80) 

c) A term proportional to U'. This occurs only in T 55 

pO) 
T55 

(0) sa + (Ufa)? TS). (2-81) 

Even at zero forward speed, there is coupling between the 
heave and pitch modes, unless the body is symmetric ) fore- an o 

aft. Ifthe body is symmetrical, one can show that T3, and T, 
are zero. But even in this case, the existence of forward meen. 
causes aloss of symmetry, and so a pure-heave motion causes a 
pitch moment, and a pure-pitch motion causes a heave force. The 
symmetry between T,, and T,, should be noted: The speed- 
independent parts are ‘equal, whereas the speed-dependent parts are 
exactly opposite. 

One remarkable fact is that there is no interaction between 
the oscillatory motion and the perturbation of the uniform stream 
by the steady forward motion. If the above formulas are derived 
from the kinetic-energy formula by use of the Lagrange equations, 
this fact is perhaps obvious. When we derive expressions for force 
and moment on an oscillating ship, it is anything but obvious. 

For the sake of completeness, I write out here the final 
formulas for the ti s for a slender body in an infinite fluid. We 
note first that, by the same procedures used in the steady-forward- 
motion problem, the following is true to a first approximation: 

iy, +j,,=9, in the near field. 

From (2-72'), it is rather obvious that, for a slender body, 

ees sl (| + O(e*)] 
5 3 4 

and thus, from (2-73): 

$,= - xpi + O(e*)]. 

Now let: 

m(x) = mat déin,$,= added mass per unit length, (2-82) 
C(x) 
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where C(x) is the contour around the body in the cross section at x. 

Then clearly, 

(0) 2 
T33 = T33 = - p(iv) i ax ( df nz, = - (ie) if dx m(x), 

L C(x) L 

where L is the domain of the length of the body. Similarly, we 
obtain: 

Ole 2 - 2 ‘ 
wee? Tags p (iw) f. dx «J df no, = (iw) \ dx x m(x) ; 

= (ih , dx x*m (x) . 
ae a 

uN 

Collecting these results, we have: 

ve I a3 = - (el i" dx m(x) ; 

ou w 
| 
ae a U 

(iw) A dx xm(x) - To T 3s ; 

(2-83) 

FI N 53 Gaye ih dx xm/(x) + ~ T33 $ 

ry 1 
2 

so (ay dx x*m(x) + (=) Tg-6 

Ill. SLENDER SHIP 

Of all the problems discussed in this paper, the slender-ship 
problem has led to the most important practical consequences. 
Therefore it is not unreasonable to devote the longest chapter to the 
problem. Even so, some aspects will not be covered; perhaps the 
most important missing example is the case of sinkage and trim of 

a ship. 

In the four sections, two steady-motion and two unsteady- 

motion problems are discussed. The first steady-motion problem 
is the wave-resistance problem, that is, the problem of a ship in 

steady forward motion on the surface of an infinite ocean. In the 
second section, the problem treated is essentially the same, but the 
Froude number is assumed to be related to the slenderness param- 
eter in such a way that Froude number approaches infinity as slender- 
ness approaches zero; this rather unnatural relationship is discussed 
at some length. In the third section, I discuss in some detail the 
problem of heave and pitch motions of a ship at zero forward speed; 
the results are not at all surprising, but the method is quite clear 
in this case, which helps one in approaching the final section. It is 
concerned with the problem which is the combination of the first and 
third problems: heave and pitch motions of a ship with forward speed. 
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3.1. The Moderate-Speed, Steady- Motion Problem 

The theory presented here is due to Tuck [ 1963a] *. The 
analysis -- as far as I carry it here -- is not very much more diffi- 
cult than the analysis of the infinite-fluid problem, and so it will 
only be sketched here. 

The theory is attractive for its simplicity and its elegance, 
but unfortunately it has not been successful in predicting wave 
resistance. The reasons are not entirely clear, although they have 
been discussed for many years. See, for example, Kotik and Thomsen 
[1963]. The difficulty could very well be that real ships are just 
not slender enough for a one-term expansion (or perhaps any number 
of terms) to give an accurate prediction of wave resistance. This is 
the old question, "How small must the 'small' parameter be?" 
Another possibility is that the error arises because the lowest-order 
slender-body theory places the source of the disturbance precisely 
on the level of the undisturbed free surface, and so there are no 
attenuation effects due to finite submergence of parts of the hull. 
(These two possible causes of error are not entirely separate.) 
Still another possible cause is considered in Section 3.2. 

The hull surface will be specified by the equation: 

r = ro(x,@). (3-1) 

Now it will be convenient to measure 9 from the negative z axis, 
since most ships are symmetrical about the midplane. We assume 
that rg = O(e) and that 8°r,/8x" = O(€), as needed. 

There is a velocity potential satisfying the Laplace equation 
and the same kinematic body boundary condition, (2-58), as in the 
infinite-fluid problem. The incident stream is again taken in the 
positive x direction, that is, with velocity potential Ux. The two 
free-surface conditions are: 

ebtslertoytdd = 50%, on z= Ulxyls (3-2) 

C,o+ by Py- >, = 0, on z= C(x,y). (3-3) 

Finally, there is a radiation condition to be satisfied. 

* This reference is not readily available, but the material which is of 
interest here can also be found in Tuck [ 1963b] , Tuck [ 1964a], and 
Tuck [1964b] , all of which are gathered into Tuck [1965a] . 

732 



Singular Perturbation Problems in Ship Hydrodynamics 

As usual, we assume that there is a far-field expansion: 

N 

(x,y,z) ~ » $(x,y,z), where dng = (by) ase. == 0, 

“ee for fixed (x,y,z). (3-4) 

and a near-field expansion: 

N 

(x,y,z) ~ bt @(x,y,z), where @, =o0(@) as e-0, 

n=O for fixed (x,y/e,z/e). (3-5) 

These expansions are substituted into all of the exact conditions, 
from which we obtain two sequences of problems which must be 
solved simultaneously. 

In the far field, the first term in the expansion for ® must 
be just the incident uniform-stream potential, Ux, since the body 
vanishes as € —~ 0 andthe asymptotic representation $ ~ ¢9= Ux 
satisfies the free-surface conditions (trivially). The second term 
represents a line of singularities on the x axis. One really ought 
to allow the most general possible kind of singularities on this line, 
but it is no surprise to find that just sources are sufficient at first, 
and so we consider the special case of a line of sources on the free 
surface. One can show that higher-order singularities could not be 
matched to the near-field solution. Alternatively, one can construct 
a far-field solution using Green's theorem and show that it really 
represents just a line distribution of sources. See, for example, 
Maruo [1967]. 

One can use the classical Havelock source potential to ex- 
press the desired potential for a line of sources, but Tuck's pro- 
cedure is more convenient in the slender-body problem: Apply a 
double- Fourier transform operation to the Laplace equation, re- 
ducing it to an ordinary differential equation with z as independent 
variable: 

~ (ke? + 07) 6 *(e,£5z) + bee (k,£3z) = 0, 

where k and &£ are the transform variables, and the asterisks 
denote the transforms. Assume for the moment that the line of 
sources is located at z =Z,)< 0. The above differential equation 
can be solved generally, with a different solution above and below 
Z=Zqg- The solution in the upper region is forced to satisfy the 
linearized free-surface condition, the solution in the lower region 

must vanish at great depths, and the two must have the discontinuity 
at Z= Zp appropriate to the source singularities. Finally, one may 
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allow Z—~ 0. In physical variables, the result is: 

foe) 
1 5 

$(x.y +2) = - 5 dk e! 6 *(k) Ko (|k |r) 
@ 

2 ro : 00 r ify +2-V(k2+L%) 

ime \ dle J c2a*(K) § aie 
2 2492 eT, 2,’ rOeT “-m 00 f(x? +02)[ (2402) -(Uk- ip /2)"] 

(3-6) 

where yp denotes a fictitious Rayleigh viscosity, puaranteeing that 
the proper radiation condition is satisfied, and o (k) is the Fourier 

transform of o(x), the source density. 

The two-term outer expansion is: 

(x,y, 2) ~"Ux + $,(x,y»z), 

which has the two-term inner expansion: 

(x,y,z) ~ Ux +2 o(x) log x - 3 f(x) - glx), (3-7) 

where 

@ 

f(x) =a dé o'(&) log 2|x-&| sgn (x-&) (3-8a) 

ee) . 

= + a dice o diiloc ielLs ; (3- 8b) 
-@ 

2 po od 
U ikx, 2 * dé g(x) = lim —— dk ek Go J SE 

pO 4m? vm : 00 (8 +8) [ eV (e487) - (Uk- ip /2)*] 

(3-9) 

The expansion should be compared with the corresponding expansion 
for a line of sources in an infinite fluid, as given in (2-65). We now 
have an extraterm, g(x), and the terms containing o(x) and f(x) 
differ by a factor of two from the earlier result. The latter variation 
is not important; it results from the fact that the line of sources was 

taken at z = zg <0, and those sources merged with their images 
when we let zo 0. 

* 
Define o(x) =0 for values of x ahead of and behind the ship. 
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The most interesting feature of this inner expansion of the 
two-term outer expansion is that the wave effects are all contained 
in g(x) -- a function of just x. In the infinite-fluid problem, all 
3-D effects in the near field were included (in the first approximation) 
in the single function of x, f(x) - We now have a generalization of 

this for the free-surface problem. 

In the near field, it is easy to show that the first term in the 
asymptotic expansion of the potential is again just the uniform-stream 
potential, Ux. The next term, %,, must satisfy the Laplace 
equation in two dimensions (in the cross-plane) and the same body 

boundary condition as before, (2-63): 

Ur, (x, 98) 
oar ae eae on r= To(x, 6). (3-10) 

a ty r 
Op 0 

As in the infinite-fluid problem, this conditions suggests that 

® = Ole*), 

since ro = O(e) and 9/9N = Ole”). 

Now consider the free-surface conditions. In the Bernoulli 

equation, note the orders of magnitude: 

1 2 a 2 
gf + UG, Feo NG Cy, i) Pees © on z= (x,y). 

O(t) O(e%) Ofe*%) Ofe?) Ofe?) 

The term containing or, can be dropped, but the others containing 
@, are all the same order of magnitude, and we have no reason to 
suppose that the € term is higher order. In the kinematic condition, 
note the orders of magnitude: 

Us, +O bx tO by - Ot... =0 on z= O(x,y). 

O(t) O(te?) O(f) Ole) 

Clearly, we can drop the term containing ),, but no others. 

Now we must relate the order of magnitude of ¢ with the 
order of magnitude of @,. From the kinematic condition, one might 
suppose that ¢ = O(e€). However, the dynamic condition then implies 
that ¢ ~ 0, which means only that ¢ is higher order than we 
assumed. In fact, the only assumption which is consistent with both 
conditions is that: 
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ae O(e?). 

The kinematic condition then reduces to: 

®, = 0 on z= 0; (3-11) 

thus, ©, represents the flow which would occur in the presence of 
a rigid wall at z=0. From the dynamic free-surface condition, 
we can compute the first approximation to the wave shape: 

g(x,y) ~ - (UG, +5 é,) Ie 9° (3-12) 

It may appear to be a paradox that we have a flow without waves, 
from which we compute a wave shape! But, like all paradoxes, it 
is a matter of interpretation and understanding. We shall return 
to this point presently. 

Since ®, satisfies the Laplace equation in two dimensions and 
a rigid-wall condition on z = 0, it can be continued analytically into 
the upper half space as an even function of z. All of the arguments 
used in the infinite-fluid problem can then be carried over directly. 
In particular, at large distance from the origin, we can write, as 
in (2-64), 

o ~C, + Mog x + O(1/r), as ri 00. 

The two-term inner expansion can be matched to the two-term outer 
expansion. We obtain 

Aio 20(x); u 

C, - f(x) - g(x). 

Note that there is again a factor of 2 difference from the infinite- 
fluid results, (2-66). Of course, the term g(x) is new here. 

We can again determine Ajg andthus o in terms of body 
shape, without the necessity of solving the near-field hydrodynamic 
problem. By the simple flux argument, we find that: 

Aio = 2Us '(x) ? (3- 13a) 

where s(x) is the cross-sectional area of the submerged part of 
the hull. With this convention, we find that 
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o(x) = Us'(x), (3-13b) 

just as in the infinite-fluid problem. Again, we have been able to 
determine the complete two-term outer expansion without explicitly 
solving the near-field problem. This occurs because the source- 
like behavior which dominates far away from the body (still in the 
near-field sense) can be found simply in terms of the rate of change 
of cross section, and it provides all the information needed for 
determining the two-term far-field expansion. 

Enough information is now available to determine a first 
approximation of the wave resistance. It can be computed in either 
of two ways: 1) integrate the near-field pressure over the hull 
surface, or 2) use the far-field expansion and the momentum 
theorem. In either case, one obtains: 

Dy = wave resistance 

© 0 
4 ~ p do(x) da(&) Y, (k|x-& We ee 

where 

o(x) = source density, given in (3-13b), 

[a g/U*, 

dete ae ae 

YQ(z) = Bessel function of the second kind, of order zero, 

argument z. 

This is the slender-body wave-resistance formula which is so 
notoriously inaccurate. At speeds for which one would hope to use 
it, it gives values that are too high by a factor of 3 or more. 
Generally, one could not (and should not) expect to correct such 
errors by including higher-order terms, and so it is rather futile 
to pursue this analysis further. 

Streamlines, Waves, Pressure Distributions. I mentioned 

previously the apparent paradox of prescribing a rigid-wall free- 
surface condition, then using the solution of that problem to compute 
wave shapes, as in formula (3-12). Such a procedure really can be 
quite rational. 

Once a velocity potential is known everywhere, it is a fairly 

137 



Ogilvie 

simple task for a computer to figure out the velocity field and to pro- 
duce streamlines. Figure (3-1) shows the streamlines around a 
Series 60 hull, calculated from the near-field slender-body solution 
by Tuck and Von Kerczek [1968]. The upper boundary of the figure 
is the rigid-wall streamline. Figure (3-2) shows the same stream- 

lines in two other views. These drawings are accurate (in principle) 
to order €. This means, loosely speaking, that they show the 
streamlines on a scale which is appropriate for measuring beam 
and draft of the ship. Thus, we see that some of the streamlines 
start near mid-draft, pass under the bottom, then return to approxi- 
mately their original depth. These are variations which show ona 
scale intended for measuring quantities which are O(e). 

The wave height, on the contrary, is O(e*), as we found 
earlier. Therefore it should not show in these figures. Our 
assumptions have led to the conclusion that wave height is small 
compared with beam and draft. Thin-ship theory, on the other hand, 
predicts that wave height and beam are comparable -- without being 
very explicit about the ratio of wave height to draft. 

In the section of Fig. (3-2) showing hydrodynamic pressure 
along streamlines, only the waterplane curve (denoted byW) is really 
consistent. On any streamline, the pressure will vary mostly because 
of the changing hydrostatic head along the streamline. Such pressure 
variations are O(e). If we were to work out a second-order theory 
and plot the streamlines, the shift in streamline position from first- 
order theory to second-order theory would lead to a hydrostatic pres- 
sure change which is O(e*). This is the same as the order of magni- 
tude of the hydrodynamic pressure, but it is ignored in the figure. 

On the other hand, if we were inside the ship measuring 
pressure at a point on the hull, we would not care which streamline 
went past that point. We could use the Bernoulli equation to esti- 
mate the pressure at any point, and the estimate consistent to order 
€* would be found from the equation: 

. DP i 2 2 
O= ry + gz fu + 2 (2), + @,)- 

3.2. The High-Speed, Steady - Motion Problem 

In the preceding analysis, we have said nothing explicit 
about the speed other than assuming that it was finite. The first 
term in the velocity-potential expansions was Ux, and all other 
terms were assumed to be small in comparison. 

In principle, there is no reason to provide or allow a con- 
nection between Froude number and our slenderness expansion 
parameter. However, the practical manner in which a perturbation 
analysis is used may justify our making such an unnatural assumption. 
In practice, we work out an asymptotic expansion, which provides 
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Fig.(3-1). Steady-Motion Streamlines on Ship Hull According to 
First-Order Slender-Body Theory (Body-Plan View). 
From Tuck and Von Kerczek [ 1968]. 
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Fig. (3-2). Steady-Motion Streamlines and Hydrodynamic Pressure 
on Ship Hull According to First-Order Slender- Body 
Theory (Side and Plan Views). From Tuck and 
Von Kerczek [ 1968]. 
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a description that becomes approximately valid (in a certain sense) 
as the small parameter approaches zero. But we use the expansion 
under conditions in which the small parameter is quite finite, and 
we just hope that the resulting error is not too big. The size of that 
error may depend on other parameters of the problem, and we may 
possibly reduce the error by allowing such other parameters to vary 
simultaneously with the basic slenderness parameter. 

In the steady-motion problem that we have been considering, 
the small parameter e€ could be thought of as the beam/length 
ratio. There is a completely different length scale in the problem, 
namely, U 2/g = = F*L, where F is the Froude number and L is 
ship length. This length is proportional to the wavelength of a wave 
with propagation speed equal to ship speed. When we assume that 
F=O(1) as € ~ 0, we imply that the speed is such as to produce 
waves which can be measured on a scale appropriate for measuring 
ship length, and we imply that this speed is unrelated to slenderness. 

If we are interested in problems of very-low-speed ships or 
very-high-speed ships, in which the generated waves are, respectively, 
much shorter or much longer than ship length, it is entirely con- 
ceivable that our severely truncated asymptotic expansions may be 
made even more inaccurate by the extreme values of Froude number. 
We may increase the practical accuracy by assuming, say, that 
wavelength approaches zero or infinity, respectively as €~ 0. 
This is not to imply that there really is a connection between speed 
and slenderness. It is done only in the hope that wavelength and 
ship length may be more accurately represented when we use the 
theory with a finite value of e€. 

Formally, the low-speed problem may be treated simply as a 
special case of Tuck's analysis, as described in Section 3.1. One 

finds that the appropriate far-field problem contains a rigid-wall free- 
surface boundary condition (in the first approximation). Thus, both 
near- and far-field approximations are without real gravity-wave 
effects. However, this formal approach is quite improper. The diffi- 
culty is so serious that we devote a special section later to the low- 
speed problem. It is perhaps the most singular of all of our singular 
perturbation problems. The difficulty, in essence, is that we have 
treated all perturbation velocity components as being small compared 
with U, and this leads to nonsense if we allow U to approach zero. 

At high speed, a slender-body theory can be developed along 
lines paralleling Tuck's analysis. This has been done by Ogilvie 
[1967]. The resulting near-field and far-field boundary-value prob- 
lems are quite different from Tuck's however. No numerical 
results have been obtained yet from this analysis. 

Near-field and far-field regions are defined just as in the 
previous slender-body problem. In the far-field, the velocity- 
potential expansion starts with the uniform-stream term, Ux, 
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followed by a term representing a line of singularities. The near- 
field expansion also starts with the uniform-stream term, followed 

by a term which satisfies the Laplace equation in two dimensions. 

The differences appear first in the boundary conditions 
satisfied by these expansions. The proper way of setting up these 
conditions is to nondimensionalize everything and then assume that 
Froude number, F, is related to the slenderness parameter, e, 

in such a way that _ F—-o as €~0O. Itis easier just to let the 
gravity constant, g, approach zero inthis limit. The only inter- 
esting new case, it turns out, is: g = O(e€). We now assume this to 
be’ the’ case. 

Since g appears only in the dynamic free-surface boundary 
condition, the body boundary condition will be the same as in the 
moderate-speed problem, Eq. (3-10), and in the infinite fluid prob- 
lem, Eq. (2-63). 

In the far field, the disturbance vanishes as € ~ 0. There- 

fore the free-surface disturbance is o(1). If we let the expansion of 

the velocity potential, (x,y,z), be expressed: 

N 

blxsy,z) ~ Ux + » (x,y,z), for fixed (x,y 2)4 

n=l 

the dynamic and kinematic free-surface conditions are, approxi- 
mately: 

O= UL, - 4, 
on maa (3-14) 

Ue go + Ud), > 

We do not know the relative orders of magnitude of € and 9, 

a priori, but a study of the possibilities shows that only one combi- 
nation is possible, namely, that ¢ and @, are the same order of 
magnitude. Then, in the dynamic condition, the term containing 
g is higher order than the other term, and it can be neglected in 
the first approximation, that is, 

9), =O on Ze Os (3-14) 

which implies also that 

$, = 0 on z=0Q, (3-15) 

Thus, the free surface acts like a pressure-relief surface, with no 
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restraining effect of gravity (to this order of magnitude). 

This condition points to a fundamentally different kind of 
solution from that of the previous problems. If we continue the 

function 4, analytically into the upper half-space, it must be odd 
with respect to the surface z=0. Thus 9, cannot represent a 
line of sources. The least singular solution represents a line of 
dipoles, oriented vertically. Assuming that 9, will consist only 
of such dipoles, we can write it: 

6, (xy 2) f. sin 0 ." d& (6) | 1+, | «4 (Biz4 6) 

grb TE [ (x-8)) + 29] 

where y=rcos@and z=rsin®. The two-term outer expansion 
and the two-term inner expansion of the two-term outer expansion 
are, respectively: 

x,y,z) ~ Ux t+ $(x,y,z) 

~ ux + 2sine (ae we). (3-17) 
0 

I am now assuming that the bow of the ship is located at x = 0; then, 

in matching to the near-field solution, we can show that the dipole 
density must be zero upstream of the ship bow. This expansion is 
unaffected by the downstream dipoles. 

In the near field, we assume the usual expansion: 

N 

Deaive zp Ux + ®, (x,y ,Z) for fixed (x,y/e,z/e). 

n=l 

The term @®, satisfies the 2-D Laplace equation: 

b +6 =0. 
yy zz 

The body boundary condition suggests that ®, = O(e*) , just as it did 

before in Eq. (3-10). 

From the dynamic free-surface condition, 

a wee 2 
O= gh + US, +5 (G+ ,) on 2= (x,y), 

we see that { = O(e) (since g = Ole) ). This causes a new problem. 

We would like, as usual, to change this condition at z = C(x,y) toa 
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modified condition at z=0. But this is not possible. For example, 
the term oe would be transformed: 

© (xsysO(xsy)) = &, (x,y 10) + Slxsy)@,, (x+y0) +... - 

O(e") O(e?) O(e) Ole) 

Every term, in fact, will be the same order of magnitude, and so this 
ordinary kind of expansion fails. We must continue to apply the con- 
dition on the actual (unknown) location of the free surface. 

The kinematic free-surface condition is also nonlinear and 

must be satisfied on the unknown location of the free surface: 

O- UC, + 2, Cy- Pi, on z= C(x,y). 

Each term here is O(€), and so none can be ignored. 

We are left in the rather uncomfortable position of having to 
solve a nonlinear problem just to obtain a first approximation to the 
near-field potential function. However, that nonlinear problem is a 
two-dimensional problem, which is not an insignificant advantage, 
and, as we shall see, it is possible in principle to predict the loca- 
tion of the free surface, thus avoiding the necessity of searching for 
its 

We do not have a condition to apply at infinity in the 9, 
(near-field) problem. It is not so straightforward in this case to 

predict the form of the solution as r— oo, but Ogilvie [ 1967] 
showed that: 

[1 + O(1/r)] as roo, 
A 6 

®, (x;y ,z) = lle ah 

where Aj,; is a constant to be determined. There is no source-like 
behavior. This might have been expected, of course, since the inner 
expansion of the outer expansion, (3-17), showed the characteristics 

of a two-dimensional dipole. An intermediate expansion can be 
used to show that these statements are correct. 

A numerical procedure for solving this problem may be the 
following: Suppose that at some x we know the value of ®, onthe 
free surface, z = €(x,y), and that we also know (C(x,y) at that x. 

*T¢ we expand: ¢ ~ ae we could apply the condition on z=(,, 
then apply the usual kind of transformation, as above, so that 
conditions on higher-order terms would be applied on a priori 
known surfaces. 

743 



Ogtlvite 

Using Green's theorem, we can write: 

1 ( 7 8@ fe) 
@, (xsy,z) = a) [=o log r' - ® 5p (log r') | alt, 

where r!*=[(y-y')? + (z-z')*], and the integration is carried out in 
the cross section, with (y',z') ranging over the body contour, the 
free-surface contour, and a closing contour at infinity. The last of 
these contours contributes nothing and can be ignored. We assumed 
that ®, is known on the free surface, and, from the body boundary 
condition, we know 0,/8N onthe hull. If we let the field point, 
(x;y,Z), approach the hull surface, we obtain an integral equation, 

with @, unknown on the hull and 984,/8N unknown on the free 
surface. This is not quite the usual form for an integral equation, 
but it should be possible to solve it approximately by essentially 
standard numerical methods. Then the Green's-theorem integral 
can be used to express ©, at all points in that cross section. Thus, 
the solution of an integral equation in one dimension allows the 
potential to be found. 

This procedure has not used the information contained in the 
free-surface conditions. Usually, we look on the free surface con- 
ditions as complications that cause tremendous difficulty in the 
finding of solutions. Now we take an opposite point of view: 
Supposing that we have solved the above problem at some x, we use 

the kinematic conditions to predict the value of ¢ just downstream: 

b(x + Axsy) = E(xsy) + Ax (x,y) toe. 

= C(x,y) +o [®,, (xyysGl<sy)) = P, yl hid Ea 

Similarly, we predict the value of ®, on the free surface just 
downstream: 

Bil ceany 721 TMS, FEB] teen 

where the right-hand side is evaluated at (x,y,€(x,y)), and the 
dynamic boundary condition is used to evaluate 9®),. 

Now we are ready to start over. Presumably having solved 
the problem at some x, we have used the free-surface conditions to 

formulate the equivalent problem at x + Ax. The most serious 
difficulty may very well be in starting the whole process, and there 
seems to be no elegant prescription for carrying out that essential 
first step; in some problems, it is possible that a linearized solution 

may suffice for a start, but this is not certain. Another serious 

difficulty may be the stability of the method. 
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This analysis has led to the possibility of predicting waves 
with amplitude which is O(e), that is, waves comparable in ampli- 
tude to ship beam and draft. Such a possibility makes the analysis 
worth further investigation, but itis also the cause of the major 
difficulty, viz. , the necessity of solving a nonlinear problem in the 
near field. 

When the above analysis was offered for publication in 1967, 
one of the referees called attention to the fact that the conclusions 
seemed to be quite at variance with those of Rispin [1966] and Wu 
[1967]. Simple observation shows that, at very great distance, the 
dominant fluid motion should be gravity-related free-surface waves, 
whereas my high-Froude-number analysis predicts no true wave 
motion in the far field. Actually, all aspects of the problem are in 
complete harmony if we consider a "far-far field" in which distance 
from the ship is O(e'), that is, much greater than ship length. 
The two free-surface conditions then fall into the usual linearized 
format, and we would expect to find progressive waves in sucha 

region. 

This is quite reasonable. At very high Froude number, one 

expects typical waves to be very long -- in this case, considerably 
longer than the ship. The appropriate distortion of coordinates is 
an isotropic compression in scale far, far away, in contrast to our 
usual anisotropic stretching of coordinates in the cross-plane near 
the body. In their two-dimensional planing problems, Rispin [1966] 
and Wu [1967] performed just such a distortion. Their problem is 
discussed at some length later, when we come to two-dimensional 
problems. 

The present problem is an interesting case in which an 
inconsistent expansion might be useful in the far field. Suppose that 
we arbitrarily replace the free-surface condition, (3-15), by the 
usual moderate-speed condition, 

U*s,, i Soy = OF on Zw, 

If Froude number is indeed very high, then this condition is quite 
equivalent to (3-15). But the potential function which satisfies this 
condition does not represent just the simple line of dipoles implied 
by (3-16). There will be all of the well-known extra terms involving 
the free surface. If such an inconsistent far-field solution can be 
matched to the near-field solution, then the waveless far-field solu- 

tion obtained previously can be avoided. Perhaps this is worth 

further study. 

3.3. Oscillatory Motion at Zero Speed 

A. systematic study of the zero-speed ship-motions problem 
by means of the method of matched asymptotic expansions does not 
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yield any results that were not obtained previously by simpler means. 
However, it is instructive to consider this problem by this method 
because the results are rather obvious and it is then clear how the 
formalism is used in place of some common physical arguments. Then, 
in the more complicated forward-speed problem, in which physical 
insight is less reliable, the same formalism can be applied with 
reasonable faith in its predictions. 

Only the slender-body idealization of a ship has led to useful 
prediction methods in the ship-motion problem.” The thin-ship 
model, which was intensively studied from the late 1940's until the 
early 1960's, was useful for certain restricted aspects of the prob- 
lem. For example, the damping of heave and pitch motions, as 
predicted by thin-ship theory, is fairly accurate. But the complete 
theory is deficient. A straightforward one-parameter analysis 
leads to the prediction of resonances in heave and pitch with no 
added-mass or damping effects, as shown by Peters and Stoker 
[1954]. (See also Peters and Stoker [1957] and Stoker [ 1957].) 
A multi-parameter thin-ship analysis is apparently satisfactory in 
principle, as demonstrated by Newman [1961], but no one has used 
it for prediction purposes. It is too complicated. 

Slender-body theory at one time appeared to have comparable 
difficulties, but these have been largely removed in recent years, 
and a theory which is essentially rational now exists and is fairly 
successful in predicting ship motions. 

In early versions of the slender-body theory of ship motions, 
all inertial effects (both ship and fluid) were lost in the lowest-order 
approximation, along with hydrodynamic damping effects. The theory 
was even more primitive than the classical Froude-Krylov approach. 
Excitation was computed from the pressure field of the waves, un- 
disturbed by the presence or motions of the ship, and the restoring 
forces were simply the quasi-static changes in buoyancy and moment 
of buoyancy. Even the mass of the ship was supposed to be negligible 
in the lowest-order theory. 

These deficiencies are removed by assuming that the fre- 
quency of motion is high, in an asymptotic sense. That is, jf gne 
assumes that the frequency of sinusoidal oscillation is O(e! 2) a 
then the ship inertia force is the same order of magnitude as the 
excitation and the buoyancy restoring forces. The hydrodynamic 
force and moment also enter into the calculation of ship motions at 
the lowest order of magnitude. This was all recognized, for example, 
by Newman and Tuck [1964]. However, correcting the slender-body 

* 
Note that "strip theory" is a special case of "slender-body theory." 

Re 
€ is the usual slenderness parameter. 
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theory in this way was rejected by many workers on the ground that 
the resulting theory would be valid only for very short incident waves, 
whereas the most important ship motions are known to occur when 
the waves have wave lengths comparable to ship length. 

The choice was this: 1) Follow the reasonable usual assump- 

tions of slender-body theory and obtain a rather useless theory”. 
2) Accept the formal assumption that frequency is high and obtain 
a much more interesting theory -- which turns out to be very similar 
to the intuitive but quite successful "strip theory" of ship motions. 
In what follows, I make the second choice. 

The reasons for the success of this choice have become clear 
in the last few years. In one of the most important practical prob- 
lems, namely, the prediction of heave and pitch motions in head 

seas, we can truly say that we are dealing with a high-frequency 
phenomenon. Because of the Doppler shift in apparent wave frequency, 
fairly long waves are encountered at rather high frequencies; the 
waves are long enough to cause large excitation forces, and the 
frequencies are high enough to cause resonance effects. At zero 
speed, on the other hand, incident waves with frequency near the 
resonance frequencies of a ship are likely to be much shorter in 
length than the ship, and so their net excitation effect is much re- 
duced through interference. For typical ships on the ocean, most of 
the heave and pitch motion at zero speed is caused by waves with 
length comparable to ship length, and so the frequencies of such 
motion are well below the resonance frequencies. Thus, at zero 
speed, prediction of ship motions can be treated largely on a quasi- 
static basis; the system response is "spring-controlled" rather than 
"mass controlled." 

The problem is very much like the simple spring-mass 
problem discussed in Section 1.2. Ifthe mass of a spring-mass 
system is very small, we can ignore inertia effects at low frequency. 
Thus, if the system is described by the differential equation: 

iwt my tky = Fe, 

the exact and approximate solutions, given by: 

*Newman and Tuck showed, for example, that the lowest-order 
perturbation potential resulting from ship oscillations satisfies a 
rigid-wall free-surface condition, even with forward speed in- 
cluded. Maruo [1967] has the same result for the forced-oscilla- 
tion problem. Newman and Tuck performed calculations with a 
second-order theory for the zero-speed case and found practically 
no change in their predictions due to second-order effects. They 
did not make such calculations in the forward-speed problem. 
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Viegas et) /(is mw’), Yap= Felt /c, 

respectively, are approximately equal if w is small enough. If we 
solve this equation on the understanding that w is very large, we 
must keep all quantities in the exact solution. But that solution will 
reduce numerically to the approximate solution if we evaluate it with 
a small value of ow. 

We could say that the solution obtained on the assumption 
of high frequency becomes inconsistent if we apply it to problems at 
low frequency, but, if the appropriate small parameter is small 
enough, an inconsistent approximation is no worse numerically than 
a consistent approximation. 

Once more I would warn against trying to make absolute 
judgments of what is "small" and what is "not small." I avoid 
careful definitions of my small parameters largely for this reason} 
if the definition is not precise, one can never be tempted to put 
numbers into the definition! In the problem ahead, we cannot 

possibly judge analytically how "slender" the ship must be or how 
high" the frequency must be for the results to have some validity. 

In all of the discussions of ship motions, I use the same 
notation as in the study of oscillatory motion in an infinite fluid. 
See Section 2.32. 

The ship in its mean position will be defined by the equation: 

Solxsy +z) =-zt d(x,y) = 0, (3-18) 

where d(x,y) = O(e); the instantaneous hull position is defined by the 
following equation: 

SGc.y.2,t) = - 2.t d(x,y) + €,(t) - x6, (t) =O. (3-19) 

The ship is heading toward negative x (although it does not matter 
in the zero-speed case). Upward heave and bow-up pitch are con» 
sidered positive. 

We assume that all motions have very small amplitude. 
Symbolically, we write that: 

€,(t) = O(€6) as either € or 6 approaches zero. 

where € is the usual slenderness parameter, and 6 is a "motion- 
amplitude" parameter. This convenient assumption allows us to 
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vary the motion amplitude for a given ship (i.e. , for fixed e€), and it 
also guarantees that the motions are small compared with the ship 
beam and draft, even as the latter approach zero as €~ 0. Velocity 
potential, wave height, motion variables, and all other dependent 

variables may be expected to have double asymptotic expansions, 
validas €—~+0O and 6~0. We shall consistently carry terms 
which are linear in 56. The steady-motion problems already treated 
correspond to the 6 =0 case; at zero speed, the 6=0 case is 
trivial. The problem ahead is to solve the linear motions problem 
-- "linear" in terms of motion amplitude. With respect to the 
slenderness parameter, we shall consistently carry up to € terms. 

It should be noted that the slenderness assumption is not 
needed in formulating a linear motions problem at zero forward 
speed; it is convenient, however, in practical application of the 
theory. 

All motions are assumed to be sinusoidal at radian frequency 
w. Iuse a complex exponential notation, so that: §j;(t) = iw6;(t). Also, 
it is assumed that w = O(e7”2), and so symbolically we can write: 
a/at = O(e/2), 

The potential function, $(x,y,z,t), satisfies the Laplace 
equation and the following boundary conditions: 

[A] O= gto tole teste], on 2 = Llxsyst)s  (3-20a) 

ben on | td — ° Hl 
0,0 i yb, = b, Ls Cy ? on aa Cts3yat)s (3-20b) 

LG] 0 = $,S, + bySy - 9, Tey on So, y.2,t) = 04 -(3=21) 

We consider first the problem of a ship which is forced by 
some external means to heave and pitch in calm water. In the far 
field, the slenderness assumption leads us to expect that the potential 
function can be represented by a line of singularities on the x axis. 
From previous experience, we might hope that a line of sources 
would suffice in the first approximation; this turns out to be correct, 
Since these sources represent an oscillating ship, the strengths of 
the sources will also vary sinusoidally. Suppose that there is a 
source distribution on the x axis: 

Re {o(x)e} , - 0 <x<oo. 

Define o(x) to be identically zero beyond the ends of the ship. 
Obviously, o(x) = o(1) as 6—~ 0, since there is no fluid motion at 
all for 6=0. Therefore, in the first approximation, we may 
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linearize the free-surface conditions. More precisely, we could 

assume the existence of asymptotic expansions, #~ /7,d, and 
%~ )'Uq, and let the first term in each be o(1) as 60. The 
linearized free-surface conditions take their usual form: 

a > — (2) if) go t+ o, on z=0; 

[ B] O=-o, tf, on Z = 04 

These can be combined into the following: 

$,- vo=0, on Zz = 0, (3-22) 

where v = w°/g = O(e7'). In the far field, it is very difficult to 
guess how differentiation alters orders of magnitude. If the oscilla- 
tion frequency is very high, then the resulting waves are very short; 
it would be reasonable, perhaps, to try stretching the coordinates, 
and there would be no obvious basis for doing this anisotrophically. 
The approach which I take here is somewhat different: Solve the 
above- stated linear problem exactly, then observe the behavior of 
the solution for high frequency of oscillation. In other words, the 
problem is not stated in a consistant manner, but when we have the 
solution we rearrange it and make it consistent. 

The desired potential function can be written in the following 
form: 

o(x,y,z,t) = Re {$(x,y,z)e"}, (3-23) 

where: 

$(x,y,zZ) = sea dé ot — ekZ 3 p(k V llx-£) + 1) (3-23a) 

7 gi tvezy (it?) (k VK 02) 

eee “ak elk Bae — (3-23b) 
4n ee ores 

The form in (3-23a) can be obtained readily by superposing a distri- 
bution of free-surface sources: Jo is the ordinary Bessel function 
of order zero, and the wiggly arrow shows that the integral is to be 
interpreted as a contour integral, indented at the pole in the obvious 
sense indicated. Form (3--54b) is obtained by a transform method; 
o*(k) is the Fourier transtorm of o(x); details may be found in 
Ogilvie and Tuck [1969]. Again, the inner integral is to be inter- 
preted as a contour integral; there are two poles in this case. In 

both formulas, the path of the contour has been chosen so that the 
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solution has a satisfactory behavior at infinity, viz., it represents 
outgoing waves. 

We need the inner expansion of this potential function, that 
is, we must find its behavior as r= (y2+ 2*)”2 +0. The basic idea 
here in finding the inner expansion is to use the second form of 
solution, convert the contour integral into an integral along a closed 
contour, and use the calculus of residues. The integrand of the 

inner integral has four singularities, located at £=+ 29 and at 

#=+tilk|, where fy = (v? - k?)!/”#, The first two are simple poles, 
but the second two are branch points. We "connect" the latter via 
the point at infinity; see Fig. (3-3). It is drawn for the case that 
k| <v; if |k| > v, all four singularities are purely imaginary. 

The contour is closed as shown if y>0O. (Otherwise, the contour 

is closed below.) The integrals along the large circular arcs 
approach zero as the radius of the arcs approaches infinity. Then 
the inner integral in (x,y,z) is equal to 2mi times the residue 
at £ = - £5, less the value of the contour integral down and back up 
the imaginary axis. The latter can be shown to be O(e€), and so the 
inner integral in (x,y,z) is: 

00 i Ry+z+ ke+e P : 2.2 
{ dZe 2tTiv evz-iyvV-k + O(e) 

wo (Ke + H2y2_ y (v2 — «2/2 

Next, we assume that the source distribution is smooth 
enough that o(x) does not vary rapidly on a length scale comparable 
with ship beam. This assumption implies that o'(k) decreases 

rapidly with increasing values of k, and so the value of the above 
inner integral -- a function of k -- does not really matter except 
when k is small in magnitude. Accordingly, we expand the above 
expression in a manner appropriate for small lk]. We obtain 

Fig. (3-3). Contour of Integration Defining the 
Velocity Potential of a Line of Pul- 
sating Sources: Zero-Speed Case 
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oO 

i i Be a 
(x,y s2) = a clic en ge (ie ae Pl 

e . @ . 

Eee ge iy dk Ag o*(k) {14 ieeeataay 
27 og 

=iieee yg dicheh a oe (3-24) 

With the time dependence reintroduced, we have: 

d(x,yszst) @ Re {lo(xjeZell@t) p40 551. (3-25) 

This approximation represents a travelling wave; for y > 0, in 
particular, the wave is moving away from the line of sources. For 
y <0, we must start over, closing the contour for the £ integration 
on the lower side of the £ plane. It turns out that the result is the 
same if only we replace y by ly|. Thus, we have an outgoing wave 
for y <0 also. In both cases, the outgoing wave has the form 
appropriate for a gravity wave in two dimensions. 

In the approximations above, it is necessary to require that 
r be not extraordinarily large; if one assumes that r = O(i) and 
w= O(e-/2), then the above results follow logically. Thus the very 
simple approximation above is valid even in part of the far field. It 
is an example of the well-known physical principle that nearly 
unidirectional waves can be generated if the wave generator is much 
larger than a wave length. 

If we let r = O(€), no change occurs in this approximation. 
Since v = O(e7'), it is not permissible to expand the exponential 
functions even when y and z are O(e). The only effect of passing 
from far field to near field now is to change the scale of the observed 

wave motion. 

This far-field analysis has provided information that was 
probably quite obvious intuitively: In the near-field, the condition 
at infinity is that there should be outgoing, two-dimensional, gravity 
waves*. With this information in hand, we can move on to the for- 

mulation and solution of the near-field problem. 

In the near-field, we make the usual slender-body assump- 

tions: 

“7 cannot imagine that anyone would ever have doubted this fact, 

even without the above analysis to show it. But in the forward-speed 

problem, the condition at infinity in the near field is not at all ob- 

vious, and such an analysis seems necessary. 
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) ce) Cue -I 
By? Ba’ or = Ole )- 

To a first approximation, the potential function satisfies the Laplace 
equation in two dimensions: 

Pyy + $22 ~ 0, 

and the linear free-surface condition 

$,- vo~ 0 on Zz =. 04 (3-22) 

With the assumptions made above, the two terms here are of the 
same order of magnitude. (If we did not assume high frequency, we 
would obtain just the rigid-wall boundary condition, @,=0.) This 
condition implies that we shall be solving a gravity-wave problem in 
two dimensions. At infinity, we know from the far-field solution 
that the appropriate condition is an outgoing-wave requirement. All 
that remains is to put the body boundary condition, (3-21), into the 
appropriate form. 

Let 8/8N denote differentiation in the direction normal to 
the body contour in across section. Then, from (3-19) and (3-21), 

aN (ita? )¥/2 (ita2)”? 

= és - xts - Es, + dydy _ Es - xés : (3-26) 
(1+a5 yi”? (140% yV2 

The last simplification involves an error which is O(e?) higher 
order than the retained terms. To the same approximation, we can 
write (see (2-72')): 

(14a2yv2' ge ees 
y 

Thus, the boundary condition is: 

o3 5o5 ? on Z= (x,y) » (3-27) oo _ 
DN. *.03 

As in the infinite-fluid problem (cf. (2-73)), we can define 
normalized potential functions, 4;(x,y,z): 
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ie + $j, = OR, in the fluid region; (3- 28a) 

te =n, on z = d(x,y); (3-28b) 

6, - ¥% =O, on z=0, (3-28c) 

where v= w*/g. In the present case, the functions satisfy the 2-D 
Laplace equation and a 2-D body boundary condition, and they must 
satisfy the linearized free-surface condition. Instead of the previous 
simple condition at infinity, we must impose the 2-D outgoing-wave 
radiation condition and a condition of vanishing disturbance at great 
depths. Thus, the boundary-value problem is much more compli- 
cated than in the infinite-fluid case, but, thanks to the slenderness 

assumption, we have only 2-D problems to solve, and, thanks to the 

small-amplitude assumption, the problems are linear. 

The actual velocity potential function can now be expressed: 

(x,y ,Z st) “Re | » 1w6j (A Cx,y,2) | ° (3-29) 

j=35 

It must be observed that each j is complex, because of the radi- 
ation condition. It is necessary to devise an appropriate numerical 
scheme for solving these problems. Both mapping techniques and 
integral-equation methods have been successfully applied. Note, 
incidentally, that the heave/pitch problem requires solution of just 
the 3 problem, since the slenderness assumption allows the 
approximation to be made that $,~ - XOz0 

The result of this analysis is a pure strip theory, that is, 
the flow appears to take place in cross sections as if each cross 
section were independent of the others. It is consistent to follow 
the solution of this problem with a computation of the pressure field 

at each cross section, from which force-per-unit-length, then force 

and moment on the ship can be found after appropriate integrations. 
We obtain the following formulas for the force and moment on the 

ship resulting from the motion of the ship: 

m 2 F(t) = - | ds njl aby ~ xf) + al (Eg, +S 4)], 3-30) 
So 

where j =3 for heave force and j = 5 for pitch moment, and the 

symbol Sg denotes that the integration is to be taken over the hull 

surface in its mean or undisturbed position, which is specified by 

Eq. (3-18). The first term, involving g, is just a buoyancy effect. 
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The following terms are purely hydrodynamic; they will be expressed 
in terms of added-mass and damping coefficients, as follows: Let: 

iw 
m(x) +=—n(x) = p i vat nyt, (3-31) 

C(x 

where C(x) is the contour of the immersed part of the cross section 
of x. Cf. (2-82). We call m(x) the "added mass per unit length" 
and n(x) the "damping coefficient per unit length." Using the 
slender-body approximations that $¢,™ - x, and ng@ - xn,, we 
find for Fj; (t): 

FF (t) = - val dS n(&5-x&) - iw)” ‘ dx (€-x6,)[ m(x) + n(x)/io] ; 
So 

(3-32) 

EM(e) = pg | dS xnglty-xf) + (iol | ax x(Eg-n6)[ mb) + (v0) /iel « 
So E 

Finally, we abbreviate these formulas: 

Fi(t) = - > [ (iw)*a,, + (lalby, +o; 18; (t) » (3-33) 
i=3,5 

where 

as = : dx m(x); bss= J dx n(x); 

Ags = ag, - i dx xm(x); ba. = by, == { dx xn(x); 
E iE 

hye eee eceri(an) b -{ dx x?n(x) ; age i. x°m(x) 55 . x x°n(x 

c= ral dS n, = 208) dx b(x,0); 33 So "3 7 

Crt “na 7 RE is ds Sons zoe dx xb(x,0); 

ce) 

Cog = al ds x, = ee | dx x“b(x, 0); 

So E 

b(x,z) is the hull offset at a point (x,z) on the centerplane. 

95 



Ogilvie 

The wave-excitation problem can be formulated as a singular 
perturbation problem, but such a problem has never been satis- 
factorily solved, even for the zero-speed case. Fortunately, another 
approach is available for obtaining the wave excitation; this is the 
very elegant theorem proven by Khaskind [1957]. It allows one to 
compute the wave excitation force, including the effects of the diffrac- 
tion wave, without solving the diffraction problem. Since we thus 
avoid the singular perturbation problem altogether, only the final 
results are presented here. (Reference may be made to Newman 
[1963] for details of the zero-speed case.) Let the incident wave 
have the velocity potential: 

yz+ilwt-vx) 5 ~ igh 
Oo(x,z,t) es € > 

the corresponding wave shape is given by: 

€o(x.t) = Hele e 

This is the head-seas case, For an arbitrary body, the heave force 
due to the incident waves is: 

F5(t) = pghe'™ ( ds ec" {(1 - vg)ng t ivdgn,} . 
So 

If the body is a slender ship, with axis parallel to the wave-propa- 
gation direction, this formula simplifies to the following: 

FY (t) = pghe's! ( dx “6 | dé ne” (1 - vo,). (3-34a) 
3 (_ C(x) "3 we 

The corresponding expression for pitch moment on a slender body is: 

FS (t) = pghe@? ‘ dx Pile aS dl ne". (4 - vo). (3-34b) 
C(x) 

In the expression (I- v,) in the integrand, the first term leads to the 
force (moment) which would exist if the presence of the ship did not 

alter the pressure distribution in the wave; in other words, it gives 

the so-called "Froude-Krylov" excitation. This fact can be proven 
by applying Gauss' theorem to the integral, Dynamic effects in the 
wave ("Smith effect") are properly accounted for. The second term 
gives all effects of the diffraction wave. 

A final rewriting of the wave-force formula is worthwhile. 
The above approximate expression for FS (t) can be manipulated 
into the following: 
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20 
M v 

+ ipw | dx (xe) | df n_d,e””. 
L Fo, C(x) 33 

The first term shows the Froude-Krylov force quite explicitly; the 
product of € (x,t) and the quantity in brackets is often called an 
"effective waveheight," the second factor being a quantitative repre- 
sentation of the Smith effect. The second integral term has been 
expressed in terms of the vertical speed of the wave surface, 
Co,(x,t). This term should be compared with the force expression 

for the calm-water problem, (3-30). For a slender body, the hydro- 
dynamic part of the latter can be written, for j = 3, 

soa) dS n,[&,(t)3;+6,(t) 5] = -tpo dx [ £,(t)-xé,(0)] Sn! N35. 

The last quantity in brackets is the vertical speed of the cross section 
at any particular x. Comparison with the second term of FY (t) 
shows that the latter is almost exactly the same as the hydrodynamic 
force that we would predict if each section of the ship had a vertical 
speed - Co,(x,t)- This analogy would be exact, in fact, if the expo- 
nential factor, e”*, were not present in the By (t) formula. 

Except for that factor, what we have found is that Korvin- 
Kroukovsky's well-known "relative-velocity hypothesis" is approxi- 
mately correct according to the analysis above. The hypothesis is 
particularly accurate for very long waves, in which case e”*= 1 
over the depth of the ship, but it is less accurate for short waves. 
Again, it should be noted that we have no absolute basis for saying 
whether a particular wave is short or long in this respect. In com- 
puting the Froude-Krylov part of the force, it is well-known that the 
exponential-decay factor must be included in practically all cases of 
practical interest; this has been amply demonstrated experimentally. 
It suggests that one should be wary of dropping the exponential factor 
in the diffraction-wave force expression. 

Summary. In the far field, we assumed that the effects of 

the heaving/pitching ship could be represented by a line of pulsating 
singularities located at the intersection of the ship centerplane and 
the undisturbed free surface. For a first approximation, we tried 
using just sources, and these were sufficient to allow matching with 
the near-field solution. In particular, the inner expansion of the 
outer expansion showed that the near-field expansion would satisfy a 
two-dimensional outgoing-wave radiation condition, at least in the 
first approximation. With this fact established, we formulated the 
near-field problem; it reduced ultimately to the determination of a 
velocity potential in two dimensions, the potential satisfying a linear 
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free-surface condition and an ordinary kinematic body boundary con- 
dition, as well as the outgoing-wave condition. This is a standard 
problem which must generally be solved numerically with the aid of 
a large computer; such programs exist. The force and moment were 
expressed as integrals of added-mass-per-unit-length and damping- 
per-unit-length, both of which could be found from the velocity 
potential for the 2-D problem. Finally, the determination of the wave 
excitation force and moment was carried out by application of the 
Khaskind formula, which permits us to avoid the singular perturbation 
problem involved in solving for the diffraction wave. 

3.4. Oscillatory Motion with Forward Speed 

The problem of predicting the hydrodynamic force on an 
oscillating ship with forward speed is not fundamentally much differ- 
ent from the same problem in the zero-speed case. It is considerably 
more complex, to be sure, but no new assumptions are needed. 

The approach here is that of Ogilvie and Tuck [1969]. Alter- 
native approaches have been devised by numerous other authors; 
some of these were mentioned in the last section. The distinguishing 
characteristics of the Ogilvie-Tuck approach are: 1) application of 
the method of matched asymptotic expansions, and 2) assumption that 
frequency is high in the asymptotic sense that w= O(e"/@), while 
Froude number is O(1i). Also, the problem is broken down into a 

series of linear problems by the use of a "motion-amplitude" param- 
eter, 6, whichis a measure of the amplitude of motion relative to 
the size of ship beam and draft. 

The reference frame is assumed to move with the mean motion 
of the center of gravity of the ship. Thus it appears that there is a 
uniform stream at infinity, and we take this stream in the positive 
x direction. The z axis points upward from an origin located in 
the plane of the undisturbed free surface, andthe y axis completes 
the right-handed system. (Positive y is measured to starboard. ) 

Let the velocity potential be written: 

(x,y 5Z ,t) = Ux 7 Ux (x,y 32) + w(x, y»Z st) s (3-35a) 

where Ul x + x(x,y,z)] is the solution of the steady-motion problem 

discussed in Section 3.1. For the moment, we simply assume that 

W(x,y,z,t) includes everything that must be added to the steady- 

motion potential so that &(x,y,z,t) is the solution of the complete 
problem. We shall also divide the free-surface deformation function 

into two parts: 

C(x,y,t) = n(x,y) +t O(x,y,t), (3-35b) 
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where 1(x,y) is the free-surface shape in the steady-motion prob- 
lem (the {(x,y) of Section 3.1), and 6(x,y,t) is whatever must be 
added so that €(x,y,t) is the complete free-surface deformation. 

The body surface is defined mathematically just as in Section 
3.3 for the zero-speed problem; see (3-18) and (3-19). The same 
assumptions are made about orders of magnitude: 

E(t} = O(ed); w= Oe"). 

From these assumptions and the subsequent analysis, it turns out 
that 

W(x,y,t) = Ofe%28),  O(x,y,t) = O(es), 

as either € or 6—~ 0. Wecan look on the complete solution as a 
double expansion in € and 6. From this point of view, the expan- 
sion for the potential can be written: 

Gov e2st) = 1 Ux + UX, Gay 52) + «ee } 

Ol6°e) “Ol S-e-) 

tAWi(cry zt) + U(x, yee, t) tees } P'0(6).1 (3536) 

o(s'e*?) 
O(8' é*) 

The order of magnitude of the term Uy,(x,y,z) was found in Section 
3.1. The order of magnitude of ~, may be somewhat surprisinge 
Physically, it implies that the effects of ship oscillations dominate 
the effects of steady forward motion -- in the first approximation. 
These orders of magnitude were derived by Ogilvie and Tuck. Here, 
I shall not prove them, but I hope to make them appear plausible. 
It should be noted that the high frequency assumption was made just 
so that the orders of magnitude would come out this way. (Cf. the 
discussion in Section 2.3, in which it was pointed out that the for- 
malism for the steady-motion slender-body problem is established to 
force certain expected results to come out of the analysis. We are 
doing the same here, forcing strip theory to come out as the first 
approximation. ) 

The linearity of the ~, problem permits us to assume that 
the time dependence of , and of the corresponding first term ina 
@ expansion can be represented by a factor e'™’. 

In order to find any effects of interaction between steady 

motion and oscillatory motion, it is necessary to solve for the term 
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WAx,y,z,t). Thus, we must retain two terms in the time-dependent 

part of the potential function. (The problem is still linear, however, 
in terms of 6.) It is not convenient to be repeatedly attaching sub- 
scripts to the symbols, and so I shall simply write out equations 
and conditions which are asymptotically valid to the order of mag- 
nitude appropriate to keeping e€° terms in the expansion of 

W(x,y,Z,t). 

In the far field, the effect of the oscillating ship can be repre- 
sented in terms of line distributions of singularities. Again, we 
try to get along with just a distribution of sources, and we are 
successful if we allow for the existence of both steady and pulsating 
sources. The steady-source distribution is exactly the same as in 
the steady-motion problem. Let the density of the unsteady sources 
be given by o(x)e'“t; define o(x) =0 for the values of x beyond 

the bow or stern. The corresponding potential function must satisfy 
the Laplace equation in three dimensions, a radiation condition, and 

the usual linearized free-surface condition: 

(iw) + 2ioUY, + UY, tgu,=0 on z=0. (3-37) 

Then it can be shown that: 

eat fan ikx dé exp[ il + 2/k* +27] 
W(x, y »2,t)~ ~ 2 ) dk e o (k) 2 

4m J« Cee 2 + Uk /w) 

(3-38) 

where o*(k) is the Fourier transform of o(x), and the contour C 
is taken as in Fig. (3-4), where k, and kg, are the real roots 

(k, < kp) of the equation: 

*There are two real roots if T= wU/g > 1/4; the other_two roots 
are a complex pair. Since we assume that w= Oltaler then also 
1 Olive , and we are assured that T >> 1/4. However, if 
Tt | 1 7ay the complex pair come together, and our estimates are 

all very bad. Of course, it is well known that the ship-motion 
problem is singular at T = 1/4, For still smaller values of T, 
there are four real roots of the above equation, and the solution 
can again be interpreted physically and mathematically. From 
experimental evidence, it appears that our final formulas can be 
applied for any forward speed, at least in head seas, but the 
presence of a singularity at 7= 1/4 shows that this is accidental. 
Our theory is a high-frequency, finite-speed theory, and it really 
should not be possible to let U vary continuously down to zero. 
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cia k < ky 

® 
k> ko 

Fig. (3-4). Contour of Integration Defining the 
Velocity Potential of a Line of Pul- 
sating Sources: Forward-Speed Case 

[+]. Bf =o. 
and the contour is indented as shown at the poles on the real axis 
inthe £ plane. The contour C extends from - oo to too. The 
poles inthe £ plane all fall on the imaginary axis if k,; <k<k,, 
and then C is the entire real axis, with no special interpretations 

being necessary. 

The above expression for (x,y,z,t) is a one-term outer 
expansion, but it is not a consistent one-term expansion. It is 
shown by Ogilvie and Tuck that a much simpler expression is pos- 
sible if r= (y*+z°)'* is O(1) as €—0; emphasis should be 
placed here on the restriction that r is not extraordinarily large. 
If o (k) is restricted in a rather reasonable way, it follows that: 

. fo) : ; 2 

Nee Yio 22) ~All | die! otters PUNT Sr ay eso) 
-00 

We can take this as our one-term outer expansion of (x,y,zZ,t). 

The inner expansion of this expression is obtained by letting 
r = O(e). Then we find that: 

W(x ,y oz pt) ~ 18 ef ote) - 2i(oU/g)(z - ily |Jo')]. (3-40) 

Since vr = O(1), it is not appropriate to expand the exponential 
function further. This is a two-term inner expansion of the outer 
expansion of ; the first term represents an outgoing, two-dimen- 
sional, gravity wave, just as in the zero-speed problem (see (3-25)), 
but the second term represents a wave motion in which the amplitude 
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increases linearly with distance from the x axis. The latter is a 
rather strange kind of potential function; it represents a wave which 
becomes larger and larger, without limit, at large distance. How- 
ever, one must remember that this is the inner expansion of the 
outer expansion of (x,y,z,t); it means that there are waves near 
the x axis which seem to increase in size when viewed in the near 
field. At very great distances, one must revert to the previous 
integral expressions for (x,y,zZ,t). 

We must next find an inner expansion which satisfies con- 
ditions appropriate to the near field and which matches the above 
far-field expansion. One finds readily that: 

Wyy + bz = 0 in the fluid region, 

to the order of magnitude that we consistently retain. Thus, the 
partial differential equation is again reduced to one in two dimensions, 

and so we seek to restate all boundary conditions in a form appropri- 
ate to a 2-D problem. 

The body boundary condition must be carefully expressed in 
terms of a relationship to be satisfied on the instantaneous position 
of the body. This condition can then be restated as a different con- 
dition to be applied on the mean position of the hull. It can be shown 
that: 

Oy —~ §3 - x65 , - USs + U(3-x85) (hoxyz - X22) a ON (40a) + e) ee wey” : on Z= d(x,y). 

[ €'/25] [€6] (3-41) 

The derivative on the left has the same meaning as in the previous 
slender-body analyses: It is the rate of change in a cross section 
plane, in the direction normal to the hull contour in that plane. The 
first term on the right-hand side is the same as in the zero-speed 
problem; see (3-26). The quantity - U& has a simple physical 
interpretation: it is a cross-flow velocity caused by the instantaneous 
angle of attack. The remaining terms all arise as a correction on the 
steady-motion potential function, Uy; the latter satisfies a boundary 

condition on the mean position of the ship, which is not generally the 
actual position of the ship, and so it must be modified. 

Intuitive derivations of strip theory usually omit the terms 
involving x. However, in a consistent slender-body derivation, 

they are the same order of magnitude as the angle-of-attack term. 
(This says nothing about which is the more nearly valid approach!) 

The free-surface condition reduces ultimately to: 
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Wie t Bb, ~ - 2UUy - 2ZUXy Uy - Uxyyy on z=0,. (3-42) 

[e¥? 6] [ €6§] 

The orders of magnitude are noted, again on the basis of information 
not derived here. This condition can be compared with the linear 
condition used in the far field, (3-37). The two terms on the left 
here are obviously the same as the terms (iw) |W + gw, in (3-37), and 
the first term onthe right here, - 2U\),, is the same as the term 

2iwUb, in (3-37). The other two terms on the right-hand side here 
are basically nonlinear in origin; they involve interactions between 
the os cillation and the steady perturbation of the incident stream. 
The term U ey which appears in (3-37) is missing here because 
itis O(e%/%6) in the near field by our reckoning. 

Again it is worthwhile to compare this boundary condition 
with its nearest equivalent in other versions of slender-body theory 
or strip theory of ship motions. If we did not assume that frequency 
is very large, slender-body theory would require in the first approxi- 
mation that ~,= 0, since the other terms are all higher order. This 
is just the free-surface boundary condition obtained in this problem 
by Newman and Tuck [1 964] and by Maruo [1967]. Higher order 
approximations would involve nonhomogeneous Neumann conditions 
on z=0. Onthe other hand, in most derivations of ane theory, 
it is assumed that the free-surface condition is: Wy, + glb,=0 on 
z=0. This agrees with the lowest-order condition peed by 
Ogilvie and Tuck, as given above. However, the assumption of this 
boundary condition in the usual strip-theory derivation is quite 
arbitrary, and no means is available to extend it to higher-order 
approximations. The assumptions made by Ogilvie and Tuck were 
chosen explicitly so that the simplest approximation would be just 
strip theory, and we see here that that goal was achieved. This 

basis for choosing assumptions was selected only because strip 
theory had proven to be the most accurate procedure available for 
predicting ship motions. 

The method of solution used by Ogilvie and Tuck is to find 
several functions each of which satisfies some part of the nonhomo- 
geneous conditions. In particular, let the solution be expressed in 
the following form: 

b(x,y,z,t) -) [ind + UW, + (eo) Uj ]E, (t), (3-43) 

* 
In other words, we stopped fretting about how irrational strip theory 
was and set out to derive it formally] 
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where j =3 and 5, and 9%), Wj, and &j satisfy the following con- 
ditions, respectively: 

2j a pi =. Gj, ae on = d(x; y); Pj, - vj =0 on ze 0; 

(3-44) 

Jyy jzz = 0; 2; Him On. 42 = d(x,y); Y ~ vo =0 on z=0; 

Qj, + Qj =0; Q); =0 on gz =4d(x,y); 

(3-46) 

The quantities nj were defined previously, in (2-72), as the six 

components of a generalized normal vector. Also, the quantities 
mj were defined earlier, by (2-75). In the present notation, let 
v(x,y,z) (see (2-74)) be defined by 

v(x,y+Z) =i E% aX (x,y,z)] ° 

Then mj is again given by the previous formulas. Now it requires 
just a bit of manipulating to show that the assumed solution above 
indeed satisfies the body and free-surface boundary conditions; I 

omit the proof. 

The above near-field solution must match the far-field solu- 
tion, which has an inner expansion given in (3-40). In connection 
with the latter, a comment was made earlier that the near-field 

solution would have to represent a wave motion in which one com- 
ponent grows linearly in amplitude as ly | — oo. Now we can see 
that just such an interpretation must be given to the Qj functions, 
for otherwise we cannot possibly find solutions to the problems set 
above for {92}. The nonhomogeneous free-surface condition on Qj 
can be compared to the free-surface condition that would result if a 
pressure distribution were applied to the free surface. In fact, if 
a pressure field were applied externally on z = 0, the pressure 
being given by 

p(x,y,t) = ipwU6; (t)[ 20). + 2X y Pj, + X yy Fj | > 

then the potential function would have to be tay UN) Ej (t), with 
Qj) (x,y,z) satisfying the conditions stated previously. This 
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"pressure distribution" is periodic in time, and it is also periodic in 
y as ly| — oo; the latter comes from the term containing 4)j,. 
Furthermore, the time and space periodicities are related to each 
other in just the way that one would expect for a plane gravity wave. 
This can be proven by studying the boundary-value problem for 9). 
Thus, there is an effective pressure distribution over an infinite 
area, and it excites waves at just the right combination of frequency 
and wave length so that we have a resonance response. In an ordi- 
nary two-dimensional problem, there would be no solution satisfying 
all of these conditions. However, our solution need not be regular 
at infinity; it must only match the far-field expansion. And the far- 
field expansion predicts an appropriate singular behavior at infinity. 
It is shown by Ogilvie and Tuck that the solution of this inner prob- 
lem does exactly match the above far-field solution. The way the 
pieces of the puzzle all fit together is rather typical of the method 
of matched asymptotic expansions, and it indicates at least that the 
manipulations of asymptotic relations were probably done correctly! 
(It still says nothing about the correctness of the assumptions.) 

There is no benefit to be derived by repeating here the solu- 
tion of the above detailed problems. Rather, we jump to the results 
for the heave force and the pitch moment, and we do little more than 
compare these results with the comparable formulas in two previous 
problems: 

CASE 1: The oscillating slender body, with forward speed, 
in an infinite fluid (Section 2. 32) 

CASE 2: The oscillating slender body (ship), at zero forward 
speed, on a free surface (Section 3. 3) 

In all cases, let the force (moment) be expressed in the form: 

m Ne : 
sO cia \ [ (iw) aj; + (io)by +), JE; (t) . 

i=3,5 

We define cjj to be independent of frequency and of forward speed. 
(We must make some such arbitrary convention, or the separation 
into ajj and cj; components is not unique.) With this convention, 
cjj represents just the buoyancy restoring force (moment). Thus, 
cj, =O forall j,i in case 1; in cases 2 and 3, cj, is given by: 

[oj] = 208) dx {1-3 (4) bl, 0) . 
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Table 3-1 shows ajj and bjj for the three problems. InCases 1 and 

2, the results have been obtained from Sections 2.32 and 3.3, re- 

spectively. ForCase 3, the present problem, the lengthy derivation 
will be found in Ogilvie and Tuck [1969]. Some points should be 
noted: 

1. All of the terms’ in Case 3 include the corresponding 
Case 2 terms, i.e., the added mass and damping at forward speed 
can be computed in terms of the added mass and damping at zero 
speed, plus a speed-dependent component. Formally, we could also 
say that Case 1 includes all of the Case 2 terms, with n(x) set 
equal to zero. From this point of view, the only differences among 

the three cases are the forward-speed effects. 

2. The coupling coefficients b35 and bsz include a forward- 
speed term +¥Ua3z3 in both Case 1 and Case 3. This means, first 
of all, that there can be some damping even in the infinite-fluid 
problem. Secondly, it means that this contribution to the damping 
coefficients is not altered by the presence of the free surface. Note 
that in neither case is it necessary to ignore the steady perturbation 
of the incident stream (the x terms in (3-41), for example) in order 

to obtain this result. 

3. The other coupling coefficients, az, and a,., contain 
similar speed-dependent terms in Case 3; they arise at the same 
point in the analysis as the terms discyssed in 2 above. We could 
arbitrarily include such terms, +(U/w )b3z, in Case 1 too, without 
causing any errors since bg, is zero anyway in Case 1. 

4, In Case 1, there is a speed-dependent term in age which 
is lacking in Case 3. The reason for the lack is that such a term 
is higher order in terms of € in the ship problem, because of the 
assumption that w= O(e"/2). There was no need for a high-frequency 
assumption in Case 1, and so the extra term could legitimately be 
retained. 

5. If, in Case 3, one arbitrarily includes the forward-speed 
term, =(W/a)aans in the ag, coefficient, making it identical to the 
Case 1 coefficient, then it is consistent to modify b,, in a similar 
way, namely by changing it to: 

2 
b =f dx x*n(x) - (U/w) b,, 
55 

The relationship between these forward-speed effects is quite the 

same as that discussed above in paragraphs 2 and 3. Inthe bes 
coefficient of Case 1, we could also introduce an extra term, 

-(U/w)*b33, without causing any error, since b,, is zero anyway in 

this case. Thus we can maintain the symmetry between Case 1 and 

Case 3. 
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TABLE 3-1 

ADDED-MASS AND DAMPING COEFFICIENTS IN THREE PROBLEMS 

CASE 1 - Body CASE 2 - Ship with CASE 3 - Body 
with Forward Speed Zero Forward Speed with Forward Speed 

in Infinite Fluid on Free Surface on Free Surface 

dx m(x) 
—7 

dx n(x) 
ae) 

dx xm(x) + (U/w')b,, - (2pvU/u) Im {1} ' 

7 

dx xn(x) - Ua,, - (2pvU) Re {1} 
a 

dx xm(x) - (U/w)b,, + (2pvU/u) Im {1} : 
dx xn(x) + Ua,, + (2pvU) Re {1} 

ca 

iy dx x*m(x) - (U/w)"a5, dx x*m(x) 

L — 

dx x?n(x) 
oo 

NOTE 1) In all cases, m(x) and n(x) are defined: 

1 
m(x) + y> n(x) = ef df n,$,, 

Clix) 

where C(x) is the wetted part of the cross section contour at x, and n, and 4, have the 
same meaning as in Section 2.32 and 3.3. In CASE 1, $5 ia a real quantity, and so n(x) = 0. 

NOTE 2) The quantity I in Case 3 is defined as follows: Let $= $4, and let ¢q be a 2-D potential 
function which is sinusoidal in y, such that |¢- $,|—> 0 as y— oo. Then: 

co 
2 2 1 2 

I “J dx [So [¢ (x,y ,0) = $a(x»y»0)] s oy. oitxsb(x0),0) ’ 

where b(x,z) gives the hull offset corresponding to the point (x,0,z) on the centerplane. 
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6. The only forward-speed terms not yet discussed are those 
in Case 3 which involve the integral I. They arise from the inclusion 
of the functions $j; in the potential function, as in (3-43), and the 
necessity for including those functions is a consequence of the fact 
that the right-hand side of (3-42), the free-surface condition, is not 

zero. Now, the right-hand side of (3-42) represents an interaction 

between the forward motion and the oscillation. One might try to 
simplify matters by assuming that one can neglect the effects of x, 
the perturbation of the incident stream by the body. But this reduces 
(3-42) to the following: 

Ves + gus = oa 2UYy,; on YT Oi. (3-47) 

O(c”? §) O(e 6) 

The right-hand side is still not zero, and we would still have the 
Qj functions to contend with. In fact, it may be recalled that this 
remaining term on the right-hand side was the one that caused the 
major trouble in interpreting the 92} problems. Neglect of the x 
terms leads to the condition on Q) (cf. (3-46)): 

Q) - vQj = - (2/g)4j,, on z=0, (3-48) jz 

and it is the one remaining right-hand term which causes the solution 
for &j to diverge at infinity. The usual procedure at this point is to 
set Q; = 0, turn the other way, and just ignore these problems. The 

results are in remarkably good agreement with experimental obser- 
vations, and one still wonders how this can be rationalized mathe- 

matically. 

Finally, we should at least mention the problem of predicting 
wave excitations in the forward-speed problem. The singular per- 
turbation problem involved in solving for the diffraction waves has 
not been satisfactorily worked out yet, at least, not in a manner 
compatible with the approach presented above. 

One might hope to avoid the diffraction problem by using the 
Khaskind relations, as in the zero-speed problem. (See Section 3.3.) 
In fact, Newman [1965] has derived what I call the Khaskind- Newman 
relations. These provide a generalization of Khaskind's formula, 
relating the wave excitation on a moving ship to the problem of forced 
oscillations of the ship when the ship is moving in the reverse direc- 
tion. Unfortunately for our purposes, Newman's derivation i based 
on an a priori linearization of the free-surface, in the sense that our 
terms involving x can be neglected. Therefore, the appropriate 
diffraction problem cannot really be avoided in this way. Also, it is 
necessary to have available the potential function for the forced- 
motion problem, and this includes at least a part of the 92} functions 
even if the x dependence is ignored. 
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In a not-yet published paper, Newman has applied the 
Khaskind-Newman relations in the forward-speed problem by arbi- 

trarily ignoring the 9j functions in the forced-motion potential 
function. He finds for the heave excitation force: 

‘et zg : 

1 (t) = pgh(1 + Uw)/g)e- dx e cag dfn ene 
L 

Uv Uv 

i E pes ay oe - al, 

where, as before, w is the frequency of oscillation (that is, the 
frequency of encounter) and v = w‘/g; the frequency measured in an 
earth-fixed reference frame is denoted by wo, and we define 
Vo = wo/g. The actual wave length of the incident waves js N= 2n/v. 
The two frequencies are related as follows: w= wot Uwy/g- These 

formulas are all valid for the head-seas case only. 

This formula should be compared with (3-34a), which was 

the corresponding result in the zero-speed problem. The first 
term in brackets yields the Froude-Krylov force, and the second 

term yields a pure-strip-theory prediction of the diffraction wave 
force, which can be interpreted approximately in terms of the 
relative-motion hypothesis. The remaining terms represent an 
interaction between forward speed and the incident waves. 

Again, it should be pointed out that more than just nonlinear 
effects have been neglected in setting 2j equal to zero. In fact, 
the usual linear free-surface condition for ship-motions problems 

can be written: 

by t BH, = - 2UW, - Udy, on 220, 

(Cf. (3-37) and (3-47).) Even the inclusion of the Qj) terms still 

omits some effects usually considered as linear, namely, the effects 

of the term - Ud,, inthis boundary condition. These effects are 

higher order in the theory presented here solely because of the high- 

frequency assumption. 

IV. THIN-SHIP THEORY AS AN OUTER EXPANSION 

It has already been shown how one can view a symmetrical 
thin-body problem in terms of inner and outer expans ions; the usual 

description of the flow around such a body is really just the first 
term of an outer or far-field expansion. It was not at all obvious that 
one had to use such a powerful method on such a problem, but it was 

clear that one could do this. Probably the only advantage of doing 
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so in the infinite-fluid case was that one could avoid possible ques- 
tions about the validity of analytically continuing the potential 
function inside the body surface. On the other hand, one had then to 
face all kinds of difficulties in principle in justifying use of matched 
asymptotic expansions. It was a rather academic exercise. 

The situation may be quite different in the thin-ship problem. 
The purpose of this chapter is to show one can obtain the first 
results of thin-ship theory in the same way as for the infinite-fluid 
problem but that a second-order solution leads to fundamental 
difficulty. The latter appears to suggest that a combination thin- 
body/slender-body approach may be appropriate. A limited amount 
of other evidence may be cited to support this idea. 

I wish to emphasize that there are no new results in this 
chapter. It is all a mater of interpretation. Perhaps someone will 
be able to show that the problem discussed here has a trivial expla- 
nation. On the other hand, perhaps someone will be stimulated to 

do further research on the subject. In either case, I shall be happy 

with the outcome. 

The problem may be partially stated just as the infinite- 
fluid, thin-body problem was stated. Let there be a velocity potential, 
(x,y,z), which satisfies the Laplace equation, 

[Li] xx + dyy + b22 = 0, 

everywhere in the fluid domain and the body boundary condition, 

[ H] O = dyhy F dy + $7h,, on y= h(x,z) = t€H(x pa): 

Now we add on the two free-surface conditions: 

[ A] 5 U'= gt +S Lont oy + 42), ony sz )=e6 (x53 

[B] 0 = bySxt byby - $2 on 2 = £(x,y). 

Also, we must specify a radiation condition. 

In the far field, where y = O(1), we assume the existence 

of the expansions: 

N 

o(x,y,Z)~ >) b(x,y>Z)> 

n=O for fixed (x,y,z); 

C(x.) = os C,(x2y)> 

nsl 
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N 

(x,y,z) a » Orcs vin 2) + 

n=0 . 
N for fixed (x,y/e,z). 

C(x,y) ~ > Zy(X,y) » 
n=l 

We assume right away that: 

bo(x,y,z) = @)(x,y 52) = |Upien 

In the far field, the ship vanishes as €—~ 0, and so we take 

the entire outside of the plane y = 0 (below the free surface) as the 
far field. It is easily seen that the second term in the outer expan- 
sion must be of the form: 

$(x,y.Z) = - #S. o(&,6)G(x,y,z35,0,0) d6 dt, (4-1) 

where His the portion of the centerplane of the ship below z=0, 
o,(x,z) is an unknown source density, and G(x,y,z35 »1,6) is the 

usual Green's function for a linearized problem of steady motion 
with a free surface. It has the important property: 

Gy tT KG) = 0), on Ze 0; (4-2) 

where K = g /U*. Of course, the potential @;, also has this property: 

Pie VOC, on z ="0. 

For later convenience, we define 

a,(x,z) = (x,0,z), (4-3) 

and so a,(x,z) has the property too: 

Te + Ka), = Or on Zia Ole (4-4) 

With $ (x,y,z) given by (4-1), the two-term outer expansion 

is: 

(x,y,z) ~ Ux + $ (x,y,z), 
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and the inner expansion of the two-term outer expansion is: 

1 
Oi ny .z)i~ Ux.t.o,(x,2), + = ly | oy(x,2) een 

O(1) Ole) O(é) 

I have taken my usual liberty of indicating unproven orders of mag- 
nitude. I am not really assuming these orders of magnitude; I am 
saying that one can prove that these are correct, and I display them 
here now simply as an aid to the reader. 

Now consider the near field. Just as in the infinite-fluid 

problem, one may stretch coordinates, y =€Y, and follow through 

the consequences. This is effectively what I do, without writing the 
change of variable explicitly. Thus, the Laplace equation yields 
the condition: 

Plyy = 9; 

and so 4, must be a linear function of y. The same analysis as 
used in the infinite-fluid problem, Section 2.11, leads to the con- 

clusion that @; is even more restricted than this. It must bea 

constant with respect.to. .y.. Thus, let: 

®, (x,y,z) = A, (x,z). 

The two-term inner expansion is then: 

x,y,z) ~ Ux + Aj(x,z). 

Matching gives the unsurprising result that: 

A,(x,z) = a,)(x,z). (4-5) 

In other words, once again the inner expansion starts out simply as 
the inner expansion of the outer expansion; it is not necessary to 
formulate a near-field problem to obtain this result. 

The same arguments lead to the prediction that: 

@o(x,y,z) = Ao(x ,z) + UbAx)Z) ly 3 (4-6) 

Thus the three-term inner expansion is formed, and it can be matched 
with the three-term inner expansion of the two-term outer-expansion, 

yielding the familiar result once again that: 
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o Ge ,z) = 2Uh,(x,z). 

(See (2-22).) This obviously had to come out this way, since we have 
not yet introduced any effects of the presence of the free surface. 
It should be noted that only the function Ao(x,z) is not already deter- 

mined. (Knowledge of o, (x,z) allows us to express a(x,z) ex- 
plicitly, from (4-1) and (4-3).) 

A systematic treatment of the free surface-conditions leads 
to the following: 

[ A] 0 = gZ, + Ud, O(e) 

+ gZp + Ud: + UZ, %,, +S (Gi, - 61.) +S (€3,) O( €%) 

GPiaracs, 5 Onez = 10; 

[ B] 0 = UZ, - O, O(e) 

+ UZa, - @g, - 2,9, + ®,21, + &2 Ze, O(e*) 

ter isheverce on 2 = 0. 

The lowest-order conditions in [A] and [B] together require that: 

+ KO. =70), on Zz =O 

We see that this is automatically satisfied by our ©, (x55) = A\(x,z) = 
a,(x,z).- (See (4-4).) The first term in the expansion for wave shape 
in the near field is also determined: 

Z Un 
Z, (x,y) =- ra @) (x, 0). 

This really says only that the free surface appears in the near field 
to be raised (or lowered) by just the limiting value (as y — 0) of 
C(x,y) in the far field. Again, a rather trivial result. 

When we consider the (a terms in the free-surface conditions, 

it is a different matter. The two conditions can be combined into the 
following: 
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(4-7) 
Wi7.2 i} 

+ > (hy)x - FU aX, ‘lj TU Wy ly F +a h,Zay- 

2 
In condition [| A] , we note that differentiation of the € terms with 
respect to.y yields: 

0 = Za, + Uhy. 

Therefore, in the complicated free-surface condition above, (4-7), 

only the first two terms involve y; all of the other terms are func- 
tions of just x. From (4-7) and (4-6), we can thus write the follow- 
ing: 

Ora 1h x, 0) Kh, (x,0)] Uly| + (a function of , x). 
XXX 

This must be true for any y, and so we obtain the condition: 

O7= hyyy ote Khyz; on Z= 0. 

If the ship is wall-sided at z= 0, the second term is separately 

zero, and so we would have to require that h,,,=0 at z=0. 

Now this is clearly unacceptable. Why should our theory 
work only for such a special case? (The waterline is made of circu- 
lar arcs inthis case.) 

As a result of our having stretched the coordinates, we came 

to the prediction that the fluid velocity near the thin body consists 
of a tangential component which is essentially independent of the 
local conditions plus a normal component which depends only on 
local conditions. Near the free surface, such results are simply 
untenable. 

I present here a formalism which apparently avoids this 

difficulty. Again, I point out that no new results are obtained. 
However, it does seem possible that the procedure might be fruitful 
if studied further,. 

The idea is to define a third region, complete with its own 

asymptotic expansions of @ and ¢. This region will be essentially 
the same as the near field in a slender-body analysis, that is, it is 

a region in which y = O(€) and z= O(e) as € ~ 0. It follows from 
this assumption that 8/8y and 8/8z both have the effect of changing 
orders of magnitude by a factor 1/e. What is most important is 
that this region is interposed between the thin-body near field and 
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the free surface. Thus, it is no longer necessary or even proper to 
try to make the previous inner expansion satisfy the free-surface 
conditions. 

We expect, as usual, that the first term in the expansion of 

@ in this new near field will be just Ux. Furthermore, we can 

expect the next term to be rather trivial, since the second term in 
the previous near-field expansion did actually satisfy the free-sur- 
face condition. Using the usual arguments of slender-body theory, 
we find in fact that the three-term expansion of $ in this new field 
is: 

(x,y,z) ~ Ux + a,(x,0) + Uh,(x,0) ly | - = ZQ,,(x,0). 

Olt) Ole) O(e*) O(e*) 

The corresponding wave shape is found to be: 

Gixry) ~ - Fay, (40) Of<) 
We 

- Z[ onyx, 0) ly | ecu ay, (x, 0) iggy (Xs 0) | 
g : O(e*) 

2 

- 35[, (x,0) + U hilx, 0) +(Z ai cx.0)| 

Pies 

It can be shown in straightforward fashion that these results match 

the far-field expansion as /(y2 + z2) ~ oo and they match the pre- 
vious (thin-body) near-field expansion as z—~ - oo. Furthermore, 

they satisfy the free-surface conditions without the necessity for 
imposing unacceptable restrictions on the body shape. There is 

just one aspect that requires special care: The free-surface condi- 
tions cannot be satisfied on the surface z=0 inthis near field. 
The reason is that the first term of the ¢ expansion is O(e), and 
differentiation with respect to z is assumed to change orders of 
magnitude by 1/e. Thus, suppose that we want to evaluate some 
function f(z) on z=6€ in terms of its value (and values of its 
derivatives) on z =0. The usual procedure is to write: 

HCh= 0) 4 CEO), Fai SAO) Pawn 
O(f) Ole)» O(f/e) O(e*)- O(£/e*) 

With our set of assumptions, this expansion is useless; we cannot 
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terminate it. The one simplification which is admissible here is to 
evaluate f(z) and its derivatives on z=Z,, where € = Z, + o(e).* 

I have not worked out any more terms in any of these expan- 
sions, but I suppose that the next term in this near-field expansion 
will be much more interesting. In the far field, it is well-known 
that the third term in the expansion of the potential function will in- 
clude the effects of what appears to be a pressure distribution over 
the free surface. It was shown by Wehausen [ 1963] that at the inter- 
section of the undisturbed free surface and the hull surface the solu- 
tion is singular, and he represented the singular part by a line 
integral taken along this line of intersection. From the point of 
view of the method of matched asymptotic expansions, it should be 
possible to represent the far-field effects of that line integral in 
terms of an equivalent line of singularities onthe x axis. The 
strength of the singularities would be determined, as usual, by 

matching the solution to the near-field expansion. At this stage, 
thin-ship theory will have become a singular perturbation problem. 

V. STEADY MOTION IN TWO DIMENSIONS (2-D) 

Sometimes we study two-dimensional problems with the intent 
of incorporating the solutions into approximate three-dimensional 
solutions, as in the treatment of high-aspect-ratio wings and in 
slender-body theory. And sometimes we investigate two-dimensional 
problems simply because the corresponding three-dimensional prob- 
lems aré too difficult. 

The problems discussed in this section are in the second 
group. It is not likely that any of these problems and their solutions 
will have practical application before several more years have 
passed, even in the context of strip theories. Here are some of the 
most fundamental difficulties related to the presence of the free 
surface. 

The first two subsections concern a 2-D body which pierces 

the free surface. Such a problem is intrinsically nonlinear. We 

might try to formulate the problem as a perturbation problem, in 

this case involving a perturbation of a uniform stream. However, 

there must be a stagnation point somewhere on the body, and at that 

point the perturbation velocity is equal in magnitude to the incident 

stream velocity. It is not small! If the stagnation point is near the 

free surface, the free-surface conditions cannot be linearized. We 

must find methods which are adaptable to highly nonlinear problems. 

Such a method is the classical hodograph method, used since 

*The same difficulty arises also in Sections 3.2 and 5.42. 
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the nineteenth century for solving free-streamline problems. But it 
introduces a new difficulty: It cannot be used to treat free stream- 
lines which are affected by gravity, which means that only infinite- 
Froude-number problems can be treated directly. This leads to a 
further great difficulty, which is discussed in some detail in 

Section 5.1. 

In Section 5.3, a brief discussion is presented of the problem 
studied by Salvesen [1969]. It contains two aspects of interest: It 
is a case in which the free-surface conditions can be linearized 
because of the depth of the moving body, and I have already commented 
in the Introduction that there are very interesting fundamental ques- 
tions involved in such procedures. Also, it presents a clear example 
of the classical phenomenon discussed in the section on multiple scale 
expansions: The wave length obtained in the first approximation must 
be modified in subsequent approximations, or the solution becomes 
unbounded at infinity -- where we know perfectly well that the waves 
are bounded in amplitude. 

Finally, Section 5.4 describes two recent attempts to approach 
the problem of extremely low-speed motion. The difficulty is basically 
this: In the usual linearization, we assume that all velocity components 
(at least in the vicinity of the free surface) are much smaller than the 
forward speed -- which becomes nonsense if we subsequently decide 
to let U, the forward speed, approach zero. What is needed is a 
perturbation scheme in which somehow the small parameter is pro- 
portional to U. Then it is certainly permissible to allow U to 
approach zero. Section 5.41 shows a very straightforward procedure 
for doing this; however, it leads to a sequence of Newmann problems, 
and so the wave nature of the fluid motion is lost. In Section 5.42, 
an alternative method is discussed. It is an application of the multi- 

scale expansion procedure to which Section 1.3 was devoted. 

5.1. Gravity Effects in Planing 

Before we try to treat this problem properly, let us consider 
briefly a well-known approach to the 2-D planing problem and deter- 
mine why it is not completely satisfactory. In the middle 1930's, 
A. E. Green wrote several papers on the subject, and the essence of 
his approach is well-presented by Milne-Thomson [1968]. A flat 
plate is located with its trailing edge at the origin of coordinates, as 
shown in Fig. (5-1). There is an incident stream with speed U 
coming from the left, and, at infinity upstream, there is a free sur- 
face at y = h. The effects of gravity are neglected. The fluid is 
assumed to leave the trailing edge smoothly (a Kutta condition), and 
a jet of fluid is deflected forward and upward by the plate. In the 

absence of gravity, the jet never comes down to trouble us again. 
In the figure, A marks the leading edge of the plate and C marks 

the stagnation point. 

The physical plane shown in Fig. (5-1) is also the complex 
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Fig. (5-1). Planing Problem in Fig. (5-2). Planing Problem in 
the Physical Plane the Plane of the 

Complex Potential. 

z=xtiy plane. Let F(z) = $(x,y) + id(x,y) be the complex 
velocity potential for this problem, Then F(z) effects a mapping of 
the z plane onto an F plane, as shown in Fig. (5-2), in which 
points are marked to correspond to Fig. (5-1). It is assumed that 
@=0 and w=0 atthe stagnation point. Furthermore, we have set 
w= Ua onthe upstream free-surface streamline, IJ, which implies 
that a is the thickness of the jet and that Ua is the rate at which 
fluid leaves in the jet. Of course, F(z) is not known yet. 

We can also consider that the z plane is mapped by the 
function w(z) = dF/dz. w(z) is the "complex velocity," that is, 
w=u-iv, where u and v are the velocity components inthe x 
and y directions, respectively. The entire fluid region is mapped 
by w(z) into the region bounded by a half-circle and its diameter, 
as shown in Fig. (5-3). Again, points are marked to correspond to 
Fig. (5-1). The diameter is the image of the planing surface, on 
which the direction of the velocity vector is known, and the circle is 
the image of the entire free surface, on which the magnitude of the 
velocity vector is known (from the Bernoulli eyactiani: Again, we 
note that the mapping function itself is not yet known. 

Fig. (5-3). Planing Problem in Fig. (5-4). Planing Problem in 
the Plane of the the Auxiliary (¢) 
Complex Velocity. Plane. 
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The functions w(z) and F(z) are, of course, very simply 
related, although neither is known explicitly yet. In order to obtain 
another relationship, one introduces the ¢ = € t+ in plane, in which 
the fluid domain is mapped into the lower half-space, as shown in 
Fig. (5-4). We can write out the explicit expressions for mapping 
the F and w planes into the € plane. The first is accomplished 
by means of the Schwarz-Christoffel transformation: 

deo Ua. tite. 
a) eateieic) Gat 

which can actually be integrated, yielding: 

ricien = B( £58 tog £22). 
The second mapping can be shown to take either of the equivalent 
forms: 

ia G=¢ 
Ue 

(1 - gc) ¢ivd - Avie? - 1) 

Jt Gee) ale - 2 v(t? - 1) 
- Cc 

w(z(f)) 

(5-1) 

The solution is then completed by using the relationship between F 
and w, along with these expressions, to obtain the relationship 
between z and ¢. Since: 

dz _ dz dF _ _Hi(s) 
C dF dt © wlz(t)) ’ 

(C) = H(6') dt! 

20) = | wetery a 

= _— -c(G-1) + (1 tbc) log ea7 + if(1-cWi(2-1) 

- thy (1-c) log [¢ + vit®-1)] 

- iV(1-c?)y(br-1) log ee 1) 
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So now we have z as a function of €, as wellas F and w as 
functions of ¢. 

There are three parameters inthis solution, a, b, and c, 

none of which has been determined yet. By letting 4 | “> o.,7Green 
came to the conclusion that the flow far away is a uniform stream 
as required only if: 

¢ = = cos @ and v(i - c*) = sina. (5-2) 

(Both statements are necessary to avoid an ambiguity in sign.) Also, 
one can use the z(€) formula to evaluate z at the leading edge of 

the plate: 

z(-1) = - be 

(Compare Figs. (5-1) and (5-4).) This provides a relationship 
among a,b, and c. Buc there are no more conditions to be found 

unless we introduce more information about the physical problem. 
For example, we could use the solution with unspecified values of 
a and b, and work out the formula for lift on the plate. (Milne- 
Thomson gives the formula.) If then we fix the value of lift, we 
have another condition on a and b. However, this is rather a back- 

wards way of going at the problem. We are most likely to want to 
solve the entire problem just to find the lift and other interesting 
physical quantities, and so we have not gained much if we must 
assume the value of the lift as a given datum. 

There is another anomaly in this result: The value of h 

(See Fig. (5-1)) has not been used in any way. In the formula for 
z(t), let G = &€, with |€| very large. Then every value of z com- 
puted in this way gives a point on the free surface far away from the 

planing surface. With a considerable amount of tedious algebra, 

one can eliminate § and express y asa function of x (at least 

asymptotically, as |x| oo). The first term is the most inter- 

esting: 

E ay (1 =e%) 
‘er ors [log |x| + constant]. 

Thus, far away from the planing surface, the free surface apparently 

drops off logarithmically to - oo. The slope of the free surface 

approaches zero (« 1/|x|) and so there is no violation of our assump- 

tion that the flow at infinity is simply a streaming motion parallel to 

the x axis. But obviously the assumption that the trailing edge was 

located at a height h below the free-surface level at infinity was 

quite meaningless, and it cannot be enforced in the solution. 
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There are thus two difficulties: 1) The above solution is not 

unique (a common difficulty in free-streamline problems); 2) It has 
unacceptable behavior at infinity. 

These difficulties were resolved by Rispin [1966] and Wu 
[1967] , who recognized that the solution of Green's problem is part 
of a near-field (inner) expansion of the complete solution. An inner 
expansion does not necessarily satisfy the obvious conditions at 
infinity; it must only match some outer expansion in a proper way. 
Rispin and Wu produced the appropriate outer expansions and showed 
that matching does occur. The effects of gravity appear first in the 
far field, which is hardly surprising, for two reasons: 1) Far away, 
one expects to find gravity waves as the only disturbance. 2) The 
divergence of the free-surface shape in Green's solution is so weak 
that one might expect the smallest amount of gravity effect to bring 
the free surface into the region where we expect to find it: thus, 
the small effect of gravity eventually would have a large consequence, 
but only far away from the planing surface. 

Rispin defines the small parameter: 

B= gf/U°=1/F*, 

where F is the usual Froude number. Inthe near field, the natural 

coordinates are used, which means effectively that £ is considered 

to be O(1). Smallness of B is achieved by allowing g—~0 or 
U— oo. Rispin treats his small parameter properly by nondimen- 
sionalizing everything, so that he then does not have to specify 
whether U-~oo or g~O. Rather than change all variables now, 
I shall treat g as a small parameter, as in Section 3.2; the results 

are the same as Rispin's, of course. 

In the far field, typical lengths are assumed to be O(1/) in 
magnitude, or O(1/g), in my loose notation. We could define new 
coordinates, say, 

z2=Pz; x= 6x; y= By, 

and consider that z = O(1) as g—> 0 inthe far field, while z= O(1) 

as gO inthe near field. Rather than do this, we shall just keep 

in mind that such orders of magnitude are to be assumed. Also, we 

note that d/dz = O(1) inthe near field and d/dz = O(8) in the far 
field. 

This problem is reversed from the most common kind of 

stretched-coordinate problem: The inner problem is solved by 

natural coordinates, and the outer coordinates are compressed. 

Note, however, that there is no distortion of coordinates between 

near- and far-fields. There is just a change of scale. 
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In the far field, the planing surface appears to vanish in the 
limit, and so the first term in a far-field expansion must represent 

just the incident uniform stream. That is, if the outer expansion is 
represented: 

N N 

F(z;B) ~ : F, (zB), w(z;B) ~ 3 W,(z38), for fixed Bz 

n=O n=O asB—O, 

then clearly we have: 

Fo(z;B) = Uz, and Wo(z;B) = U. 

This one-term outer expansion must match the one-term inner ex- 
pansion, the latter being just Green's solution. This much of the 
matching procedure is rather obvious, and Green already used this 

fact to determine the value of c, as given in (5-2). 

The next term in the outer expansion is not quite so obvious. 
In order to facilitate the matching process, Rispin solved the problem 
inthe ¢ plane, just as we did above for Green's problem. The 
free-surface boundary condition on W, is not much different from 
the familiar linearized condition. One can show fairly simply that: 

dW, , igA 3 A, 
Re[ Sr! + -B5 wi] =0 on = :0'; 

where A=a/n(b tc). (The factor A is just the value of dz/dt 
far away from the planing surface.) Note that the first term is 
O(BW,) because of the differentiation, and the second term is the 

same order because of the g factor. The solution for W, must 
be analytic in the lower half-space and satisfy this condition on 7 =0, 
|€ | > 0; note the exclusion of the origin, where singularities may 

Occur. 

As usual, we try to restrict the singularities to the simplest 
kind possible. In this case, we would find nothing in the near field 
to match with if we allowed all kinds of singularities in W,. A 
sufficiently general solution” is the following: 

-igat/uz°$ igAt/U*TC 
W, (638) = te aa { dt e" [St +S , 

[e.e) 

where C; and Cg are real constants yet to be determined (in the 

matching). 

SG Gales sae 
Rispin discusses more general solutions, which are needed in con- 
structing higher-order solutions. 
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The two-term outer expansion is now: 

w(z3B) ~ U + W, (S38), 

with W, given as above. Its inner expansion to one term is easily 
found: 

w(Z3p)°o u- + ° 

We cannot really say positively that these two terms are the same 
order of magnitude, but it turns out that they must be if this expres- 
sion is to match the two-term outer expansion of the one-term inner 
expansion. The latter is obtained readily from Green's solution for 
w(z(€)) which was given in (5-1). It is: 

wipe + iU sina 

C 

Then, obviously, we find that: 

C, = - U sina. 

We cannot determine the other constants, C,, from the solu- 

tions so far obtained. It is necessary to solve for the second term 
in the inner expansion, and Rispin carries this through. Then, he 
matches the two-term outer expansion of the two-term inner expan- 
sion with the two-term inner expansion of the two-term outer expan- 
sion, finding that C, = - aU/n. Thus, C; is proportional to the 
rate at which fluid leaves in the jet; the C, term represents a sink, 
infact. (The C, term represents a vortex.) 

Rispin obtains estimates for h as well, but the results are 

rather complicated, and it would add no perspicuity to the present 
section to repeat them. The important point in principle is that it is 
possible now to specify the value of h and not come to a contradic- 
tion as a result. The far-field description has effectively provided 
a height reference, because of the effect of gravity. This effect 
does not change the first-order inner solution, but it does modify the 
second-order term. (The velocity magnitude is not constant on the 
free surface in the second approximation. ) 

In the second-order term of the inner expansion, there is 

another interesting phenomenon, namely, the apparent angle of 

attack changes. This means, physically, that the occurrence of 

gravity waves modifies the inflow to the planing surface. In the 
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near field, it is still not possible to see the waves that exist far 

away, but the latter have the effect of making the incident stream 
appear to be rotated somewhat. It is like a downwash effect (although 
the physical origin is quite different). 

If one were given a planing problem such as we formulated 
early in this section, with the incident stream and all geometric 
parameters prescribed, it would be necessary to solve for the 
parameters a and b. One equation relating these parameters has 
already been mentioned, namely, the equation relating the length of 
the plate to these parameters. The other equation comes from the 
expression (which was not written out here) for has a function of 
a and b. 

Rispin avoided much tedious algebra by solving the inverse 
problem. He assumed that a, b, and c were given, then solved 

to find h. He also had to treat the angle of attack as an unknown 
quantity, and he found an asymptotic expansion for it. (Note that 
only two of the basic parameters can be prescribed arbitrarily, 
unless we are prepared also tolet £ be an unknown quantity.) 

One final comment on Rispin's work must be made. He finds 
terms of six orders of magnitude: O(1), O(f8 log B), O(f), 0(p? log? B) ; 
O(B* log 6), and O(8*). But he finds also that they cannot be deter- 
mined one at atime. Rather, they must be taken in groups: a) the 

O(1) terms, b) the terms linear in B (the logarithm being ignored), 
and c) the terms involving 8°. This is the same kind of matching 
procedure that would have been used if he had adopted the working 
rule that logarithms should be treated as if they were O(1). (See 
Section 1.2.) 

5.2. Flow Around Bluff Body in Free Surface 

A problem related to that of Rispin [1966] and Wu [ 1967] 
has been studied by Dagan and Tulin [1969]. They have concerned 
themselves with the flow at the bow of a blunt ship, where any kind 
of linearization procedure must be completely wrong. In order to 
handle such a situation, they have adopted essentially the same pro- 
cedure that the previous authors used, namely, they set up inner- 
and outer-expansion problems in which the nonlinearity is confined 
initially to the near field and the effects of gravity are confined 
initially to the far field. Then, by limiting their study to a two 
dimensional problem, the nonlinear near-field problem can be solved 
by the hodograph method, and the far-field problem is a simple vari- 
ation of a well-studied problem in water-wave theory. The geometry 
of their problem is shown in Fig.(5-5), which is reproduced from 
their paper. They argue that at very low speed there will bea 
smooth flow up to and then down under the bow, with a stagnation 
point at the location of highest free-surface rise, but that that flow 
becomes unstable as speed increases, until finally a jet forms, as 
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Fig. (5-5). Bluff Body in the Free Surface 

sketched in Fig. (5-5). Regardless of whether their description of the 
flow at very low speed is correct , this jet model appears to be 
entirely reasonable physically; a barge-like body usually causes a 
region of froth just ahead of the bow, and this froth is probably 
caused by such a jet being thrown upward and forward, then dropping 
downward (which the theory overlooks). Thus it seems appropriate 
to study the formation of such a free-surface jet by the use of free- 
streamline theory, and one may expect that the details of the formation 
of the jet are not terribly sensitive to the effect of gravity. 

The body, as shown in Fig. (5-5), extends downstream to 
infinity. (In a sense, the whole problem is part of the inner expan- 
sion of a much larger problem, in which the stern of the body would 
be visible and in which waves would follow the body.) Thus, there 
is no Kutta condition or equivalent which can effectively cause a 
circulation type of flow in the fluid region. In Green's problem, for 
example, the flow at great distances appears to have been caused by 
a vortex. It is this property that causes the apparent logarithmic 
deflection of the free surface far away from the body, and it is this 
property that requires the far-field description (as in Rispin's 
problem) to contain a logarithmic singularity at the origin. Dagan 
and Tulin have no such logarithmic solutions. 

They find that the jet appears, from far away, to be caused 
by a singularity of algebraic type. Specifically, the outer expansion 
of their inner expansion shows the complex velocity behaving like 
Zaye: where Z is the complex variable defined in the physical 
plane, shown in Fig. (5-5). Thus, their far-field expansion must 
exhibit a singularity at the origin of this same type. 

This result, if correct, is most interesting, for, as Dagan 

and Tulin point out, it means that the far-field expression for 

* 
Their Section III. 2 has some questionable aspects. 
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pressure is not integrable, and so one must use the near-field ex- 
pansion for any force calculation. Furthermore, it is a disturbing 
result, because it suggests that many previous attempts to incor- 
porate bow-wave nonlinearities into linear-theory singularities 
have been futile exercises. 

Personally, I am not yet willing to admit that the possibility 
of having the complex velocity behave like Z™ is really to be re- 
jected, as Dagan and Tulin claim. Wagner [ 1932] analyzed the 
region of the jet and the stagnation point for the flow against a flat 
plate of infinite extent downstream, and he showed that this flow, 
from far away, has the behavior of a flow around the leading edge 
of an airfoil, that is, the velocity varied with nee Physically it 
seems rather difficult to imagine that, by curving the body around 
just behind the stagnation point, one causes such a drastic change in 

the apparent singularity. 

Dagan and Tulin present a figure (their Fig. 2) in which they 
have placed many symbols showing beam/draft ratios of more than 
a hundred ships, and it is quite evident that most ships have values 
of this ratio considerably greater than unity. They then use this fact 
as an alleged justification for claiming that their 2-D model of the 
bow flow (as in Fig. (5-5)) will have some validity in describing the 
flow around the bow of an actual ship -- since most ships are pre- 
sumably of the "flat" variety. However, this claim is completely 
misleading. The theory might apply to a scow, but not to a ship. 
After all, beam/draft ratio is measured amidships, and even ships 
with the largest block coefficients have entrance angles less than 
180°. 

Also, it is appropriate to mention again the warning against 
defining a small parameter precisely and then trying to interpret on 
some absolute basis whether a particular value of the parameter is 
"Small enough." For example, it is conceivable that a thin-ship 
analysis would be valid for a ship with beam/draft ratio of 10, 
whereas a flat-ship analysis might fail for the same ship. I am not 
saying that this is likely, but it is possible. In one problem, a 
value of 10 might be "small," whereas in another problem a value 
of 1/10 might be "not small." 

Notwithstanding these objections, the paper by Dagan and 
Tulin has provided a refreshing change in outlook on the bow-flow 
problem, and perhaps it will be more fruitful eventually than the 
usual attempts to place complicated singularities at the bow in the 
frame-work of linearized theory. 
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5.3. Submerged Body at Finite Speed 

Since the principal difficulty in solving free-surface prob- 
lems follows from the nonlinear conditions at the free surface, we 

are always seeking new arguments to justify linearizing the condi- 
tions. One possible basis for linearizing is that a body is deeply sub- 
merged. Then its effect on the free surface will presumably be 
small, even if it is not appropriate to linearize the problem in the 
immediate neighborhood of the body itself. 

Such problems were discussed by Wehausen and Laitone 
[1960], where the previous history may also be found. Tuck [1965b] 
introduced a more systematic treatment for the case of a circular 
cylinder. Salvesen | 1969] solved the problem for a hydrofoil (with 
Kutta condition and thus with circulation), and he compared his 

results with the data from experiments which he conducted. In the 
earlier studies of such problems, the approach was usually an itera- 
tive one in which the body boundary condition was first satisfied, 
then an additional term was added to the solution so that the free- 
surface condition would be satisfied; the latter would cause the body 
boundary condition to be violated, and so another term would have to 
be added to correct that error, but then there would again be an error 
in the free-surface condition. And soon. The free-surface con- 
dition that was satisfied once during each cycle was generally the 
conventional linearized condition. Thus, if the procedure converged, 

one obtained a solution which exactly satisfied the body boundary 
condition and the linearized free-surface condition. The contribution 
of Tuck seems to have been in systematizing the procedure in terms 
of a small parameter varying inversely with depth of the body and in 
pointing out that a consistent iteration scheme involves using the 
exact free-surface conditions as a starting point. Then, as the 
boundary condition on the body is corrected at each stage, so also is 
the free-surface condition made more and more nearly exact. 

Tuck concluded, in fact, that it was more important to include 
nonlinear, free-surface effects than to improve the satisfaction of the 

body boundary condition if one were most interested in certain free- 
surface phenomena, e.g., predicting wave resistance and near- 
surface lift. Salvesen agreed with this conclusion only on the con- 
dition that the body speed be not too large. At fairly high speed, 
his results indicated that precision in satisfying the body boundary 
condition was just as important as precision in satisfying the free- 
surface condition. Figure (5-6) is taken from Salvesen's paper; it 
shows the theoretical wave resistance of a particular body as a 
function of (depth) Froude number, the resistance being calculated 
by three different approximations: 1) linearized free-surface 

theory, 2) theory in which the free-surface condition is satisfied to 
second order, and 3) theory in which both the free-surface condition 
and the body boundary condition are satisfied to second order. The 
differences are quite apparent. 
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Fig. (5-6). Theoretical Wave- Resistance 
Gurves for € = t/b = 0.30. 

The figure is a very interesting one. The difference between 
the linear-theory curve and either of the other two curves is pre- 
sumably a second-order quantity, and yet that difference is -- in 
one case -- of the same order of magnitude numerically as the 
linear-theory curve itself. The problem is worth further discussion. 

Salvesen defines his small parameter as follows: 

= t/b;, 

where t is the thickness (or some other characteristic dimension) 

of the body, and b is the submergence of the body below the undis- 
turbed free-surface level. It is not assumed that the body is "thin" 
in any sense; it could be a circular cylinder (Tuck's problem), for 
example. Salvesen's calculations and experiments were carried out 

for a rather fat, wing-shaped body with a sharp trailing edge. The 

body was symmetrical about the horizontal plane at depth b. Ifthe 
free surface had not been present, there would have been no lift on 

the body. 

A complex velocity potential, F(z) = $(x,y) + iu(x,y), can be 

defined for the problem, with z =x tiy measured from an origin 
located in the body at a depth b below the undisturbed free surface. 
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Salvesen expands the complex potential in a series which he groups 
in two alternate ways: 

F(z) il [ Uz + Fol pa be + Fp] eas (5-3) 

Uz +[ Fp, + Fe] Pho, + Ff] ae (5-4) 

These terms are defined in terms of the iteration scheme already 
mentioned. The grouping in (5-3) is to be used near the body, and 
the grouping in (5-4) applies far away from the body; in particular, 
the latter applies on and near the free surface. Salvesen points out 
that this distinction means that: a) near the body, we are consider- 
ing the zero-order flow to be that flow which would occur in the 
presence of the body and the absence of the free surface, and b) near 

the free-surface, the basic flow is just the uniform a stream, 
Thus, in (5-3), we must determine Fpo so that [Uz + F satisfies 
the kinematic boundary condition on the body and ae that Wore, => 0 
as |z| — oo (in any direction). 

Next, Salvesen assumes that Fpo is O(e) far away from the 
body. The two terms so far obtained do not satisfy a free-surface 
condition, and so F¢, must be determined so that, when it is added 

to the first two terms, the sum satisfies the appropriate free-surface 

condition, which is: 

Re (Fy + Fe, tikFy) tixF,}=0 on y=b (5-5) 

where K= g/U*. Since Fpop is assumed to be O(e€) near the sur- 

face, then the same should be true for Fe, as 

Now the three terms in the series do not satisfy the body 
condition, and so Fp, is determined so that, when it is added to 

the first three terms, the sum satisfies the condition properly. 
Then Fp, is assumed to be O(e*) near the free surface, and a new 
function F¢, is found to provide a further correction needed near 

the free surface. 

It is in this last step that the Tuck-Salvesen approach differs 
from the previous treatments of such problems. If Fp, is really 
O(e?) , then the free-surface condition ought to be gafiatied to that 

order of magnitude. It can be shown that this implies the following 

condition on Fe 

Re {Fy f FY, +ikFp, + ikF4,} 

= 7, {Fp + FY, + iKFy + iKFy J : (1/2U)| Fy. - (5-6) 
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The right-hand side of this equation takes account of the nonlinearity 
of the free-surface conditions , since obviously it involves just the 
potential function from the previous cycle of the iteration. 1, is the 
free-surface elevation from the previous approximation; it is given 
by: 

n(x) = - (U/g) Re {Fo + Fy}; 

with the right-hand side evaluated on y= b. One might try to cut 
corners in (5-6) in either of two ways, namely, 1) ignore the right- 
hand side by setting it equal to zero, 2) Drop the terms involving 
Fp, on the left-hand side. The first is equivalent to retaining just 
a linear free-surface condition. The second is equivalent to neglect- 
ing the effect of the second-order body correction at the free surface}; 
this is the "inconsistent" second-order theory to which Fig. (5-6) 
Ferrers. 

Apparently , Salvesen did not prove one important step in his 
development, namely, his claim that Fbpg is O(1) near the body 
and O(¢e) far away from the body. In fact, with his definition of 
e = t/b, it appears that the statement is wrong. The potential Fbo 
represents just a thickness effect, since it is the solution of the 
problem of a symmetrical body ina uniform stream. Although the 
body can be replaced by a distribution of sources, the disturbance 
will appear from far away to have been caused by a dipole, and 
so it must have the form: Fbo~ C/z. If the body were a circular 
cylinder, we could evaluate C: C= Ut’, where t is the radius of 

the cylinder. The complex fluid velocity on the free surface caused 
by the body is, in the first approximation, - C/z*= O(e*), since 
z =x +tib onthe level of the undisturbed free surface. This con- 
clusion contradicts Salvesen's assumption that the free-surface 
disturbance is O(e€), but perhaps it does not matter. At this point, 
the results would presumably be just the same if he had defined: 
€= (t/b)! e (The argument above for a circular cylinder agrees 
with Tuck's conclusions.) 

When the first free-surface correction is found, namely, 
Fe,» its effect in the neighborhood of the body is not diminished by 
an order of magnitude, since at least one part of F¢, involves an 
exponential decay with depth, the exponent being K(y - b). Near the 
body, y= 0, and so the exponential-decay factor is e“", and it has 
been assumed that Kb is O(1). (See Salvesen's paper.) 

Since Fy, is O(e*) near the body, the order of magnitude 
of the next correction term, Fp); must be the same. This time, 

however, the nature of the body disturbance is quite different from 
a dipole disturbance. The effective incident flow corresponding to 
Ff, is not a uniform stream, and so the presence of a sharp trailing 
edge on the body requires that a Kutta condition be imposed, and 
then a circulation flow occurs. From far away, it appears that Fp, 
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is caused by a combination of a vortex and a dipole. If the strengths 
of the two apparent singularities were comparable, the vortex 
behavior would dominate the dipole behavior far away, and the 

induced velocity would diminish in proportion to 1/z, rather than 
1/z*, which was the case for the dipole. Thus, Fp, would be O(e>) 
near the free surface. In the absence of a sharp trailing edge which 
can cause the formation of a vortex flow, the corresponding Fp, 

would be O(e€4%). This matter remains to be resolved. 

There are other interesting aspects to this problem. One 
relates to the interpretation of the small parameter, € =t/b. In 
defining such a dimensionless perturbation parameter, one nor- 
mally assumes that the smallness of € can be realized physically 
either by letting t be extremely small or by letting b be very 
large. In the present problem, this choice is not really available 
tous. The reason is that there is another length scale in the prob- 
lem, namely, 1/xk = U‘/g, and this length scale appears generally 
in combination with the dimension b. It has been assumed that 
Kb = O(1) as € ~ 0. Therefore, if we want to consider the problem 

of a body which is more and more deeply submerged, (b —~ oo), 
then we must also restrict our attention to higher and higher speeds. 
This is awkward. 

Finally, one more important aspect must be mentioned. The 
relation between wave number, xk, and forward speed, U, namely, 

K = 2/U-, is based on linearized free-surface theory. In general, 
if one seeks to find the nature of nonlinear waves which can propa- 
gate without change of form, the wave length of those waves is not 
related to their speed in this simple fashion. To be sure, the 
relationship is approximately correct if the waves are not terribly 
big in amplitude, and so one might expect that the wave length or 
the wavenumber can be expressed as an asymptotic series in € 

K~ Kot K, + Ky toes F 

with Kg = g/U*. This can indeed be done, but it turns out to be 

much more convenient to assume that kK is precisely given and then 

to find the value of forward speed that corresponds to that wave 

number. Thus, one expands the forward speed, U, into an asymptotic 

expansion: 

Ut ug Fy Pech ss 

This procedure is discussed by Wehausen and Laitone [1960], and 

Salvesen uses it in his hydrofoil problem. I was able to omit mention 

of it in writing Eqs. (5-5) and (5-6) because it turns out that u, = 0, 

and so the effect of this speed shift (or period shift) does not enter 

the problem until the third approximation is being sought. However, 

this is a classic example of the kind of expansion described in 
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Fig. (5-7). Third-Order Effect on Wave Length 

Section 1.3. If one did not allow for a variation in either K or U, 

the third approximation would not be valid at infinity, and so one 
would have great difficulty in predicting wave resistance, since that 
quantity depends explicitly on the wave height at infinity. 

Figure (5-7) is taken from Salvesen [1969]. It shows very 
clearly the change in wave length that arises in the third-order 
solution. In fact, it appears in this case that the change of wave 
length is practically the only third-order effect. This figure also 
speaks well for Salvesen’s experimental technique! 

5.4. Submerged Body at Low Speed 

Salvesen [ 1969] computed the wave height behind a hydrofoil 
up to the third approximation, as already mentioned in Section 5.3. 
Although his third approximation is not really consistent, he gives 
what appear to be sufficient arguments to demonstrate that the con- 
sistent result would not be much different from the results presented 
in his paper. Figure (5-8), from Salvesen [ 1969], presents the wave- 
height computations in a way that shows the relative importance of the 
first-, second-, and third-order term. Let the wave amplitude be 

expressed by the series: 

He yh Bett ss where Has = 0(H,) as t = 310. 
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F = U/y(gb) 
E=t/b 

fo) ° 

WAVE -HEIGHT RATI 
2 3 

gt its = €bk 

—-— H, / (Hy +Ho*Ha) 
—---- Hb/ Wane) 
———_—= Ha/(H)+HotH 3) 

From Salvesen (1969) 

Fig. (5-8). First-, Second-, and Third- 

Order Wave Heights at Low 
Speeds. 

(t is the thickness of the foil, as in the last section.) Then the 
figure shows the three ratios, H,/(H, + H2+H;), for n=1,2,3; 
that is, each curve shows the relative contribution to the wave 
height of one of the first three terms in the wave-height expansion. 
As speed decreases (toward the right-hand side of the figure), the 
second-order part comes to dominate the linear-theory part, and 
then the third-order part dominates the first two. It seems quite 
likely that the fourth-order term would take over if the graph were 
extended, then the fifth-, sixth-, ... order terms. 

Salvesen's analysis is based on the condition that t (or, 
more properly, t/b, where b is the body depth) is very small; the 
Froude number is simply a parameter unrelated to t, which is 
equivalent to saying that Froude number = U/V(gb) is O(1) as 
t/b + 0. Perhaps it is not surprising if Salvesen's expansion is not 
uniformly valid with respect to Froude number. That is all that 
Fig. (5-8) really says. 

The reason for its nonuniformity has already been mentioned: 
In the expansion of the solution near the free surface, it has been 
assumed that the lowest-order approximation is just the uniform- 
stream term, Ux; all other terms in the expansion of the potential 

must be very small compared to this term. And this is nonsense if 
we consider the limit process U~0. Of course, we might have 
been lucky: It could have turned out that the velocity perturbation 
approached zero more rapidly than U. But it does not. And so we 
have here a genuine singular perturbation problem. 

Let us consider a sequence of steady-motion experiments, 
each lasting for an infinite length of time. We arrange the sequence 
of experiments according to decreasing values of body speed, U, 
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and we suppose that all conditions except forward speed are identical 
in all experiments. We shall discuss what happens when "UO," 
and we shall understand by the limit operation that we are passing 
through the sequence of experiments toward the limit case in which 
there is no forward speed at all. In each experiment, U isa 
constant. * 

As U~>0O, we certainly expect all fluid motion to vanish. 
But we would like to know to what extent the velocity field vanishes 
in proportion to U (that is, what partis O(U)), what part vanishes 

more rapidly than U (that is, what partis o(U)), and what part, 
if any, vanishes less rapidly than U. 

In an infinite fluid, the velocity everywhere is exactly pro- 
portional to U. Far away, the velocity approaches zero; it drops 
off like 1/r if there is a circulation around the body, and it drops 
off like tps if there is no circulation. But in both cases the 
constant of proportionality is O(U). No matter how distant our 
point of observation is from the body, the velocity is O(U) as 
Ui —= Oe 

At very low speed, one expects that gravity will force the 
free surface to remain plane. The constant-pressure condition will 
be violated to the extent that the magnitude of the fluid velocity on 
that plane is not quite constant, but the error in satisfying the dy- 
namic condition will be proportional to the square of the fluid 
velocity magnitude. The kinematic condition will be satisfied ina 
trivial manner. Accordingly, it seems quite reasonable to assume 
that the free-surface disturbance is O(U‘) as U0, and so the 
velocity potential in the first approximation is the same as if the 
free surface were replaced by a rigid wall. Let the rigid-wall 
velocity potential be denoted by (x,y). Clearly, it is true that: 

$o(x,y) = O(U). 

This follows by the same arguments as those used in the preceding 
paragraph. The more important problem is to determine the order 
of magnitude of [ $(x,y) - $o(x,y)], where (x,y) is the exact 
velocity potential for the case of the body moving at speed U under 

the free surface. 

In order to be specific now, let (x,y) be the velocity 
potential in two dimensions which satisfies the conditions: 

£90=0, on body; |$o- Ux| +0, as x— - a} Fe = 0 on y= 0. 

* 
This is the same point that I belabored in the last paragraph of 

Section 1.2. Again, I apologize to those to whom it is obvious. 

794 



Stngular Perturbatton Problems in Shtp Hydrodynamics 

The body is at rest in our reference frame. 

The rigid-wall solution satisfies all conditions of the free- 
surface problem except the dynamic condition on the free surface. 
The latter could be used to define the free-surface shape. Thus, if 
the free-surface disturbance is expressed by 

mix) nolx) tk) ce Gf 

the dynamic free-surface boundary condition says that: 

nlx) ~ nolx) = 35 LU" - 40,(x,0)] (5-7) 

Of course, the kinematic condition is now violated, but an additional 

velocity field which is O(U*) can correct that. And so it appears 
plausible that: 

(x,y) - $o(x,y) = 0(U). (5-8) 

One point should be noticed from this conclusion. The limit 
process "U-—-0O" implies that Froude number goes to zero. Nothing 
has been said about the length scale used in defining Froude number, 
but it does not matter so long as all dimensions are fixed. The 
submergence and the body dimensions may be quite comparable, 
for example. Thus, we are not considering t/b as small, in the 
sense that Salvesen did. However, both t and b are supposed to 
be large compared with the length U*7s; we imply this if we state 
that all dimensions must be fixed as U0. 

It would be wrong to take (x,y) as the potential for the flow 
around the body in an infinite fluid (without either free surface or a 
rigid-wall substitute). The body can be quite near to the free 
surface in Salvesen's sense, and so the effect of its image cannot be 
neglected. Furthermore, at least part of the effect of the image is 
O(U), even if the body is very far away from the free surface, and 
such an effect must be included in the first term of the approximation 
which is supposed to be validas U~>0O. 

The next problem is to find [ $(x,y) - $9(x,y)]. We consider 
two possible approaches in the following subsections. 

5.41. A Sequence of Neumann Problems. As above, let there 
be a velocity potential, (x,y), which provides the solution of the 
exact problem: 
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2 
en) +5 ent ey) -5U=0, on y=nlxs (5-9) 

OxNx - y= 9, on y = (x); (5-10) 

oe = 0, on the body; (5-11) 

(2 5.y))-) Ux Fe 105 as xo, = 003 (5-12) 

The rigid-wall potential, (x,y), satisfies (5-11) and (5-12) too, 
but it does not satisfy the free-surface conditions, of course; 

instead, we have 

8 
od =05 on y =0. (5-13) 

Now we introduce one more potential function, the difference between 
the above two potentials: 

@(x,y) = (x,y) $ oo(x,y) ° (5-14) 

It must satisfy the body boundary condition, of course, and it 

vanishes far upstream. On the free surface, which we now define as: 

y = N(x) = No(x) + H(x) , (5-15) 

where Tox) is defined as in (5-7), the new potential satisfies the 

two conditions: 

0 = gH(x) - 5 66,x,0) 

2 2 2 +5140, + $0, + 240% + 2hoydy te + Fy lyeqoy § (5-16) 

0 =[nolx) + H'(x)][¢0, + Pl enti - [Hoy # Py] Jenin” (5-17) 

These conditions are still exact. An obvious approach to 

solving for ®(x,y) and H(x) is to re-express these conditions on 

y = n(x) as conditions on, y = 0. Here I shall assume that this can 

be done in the usual way.” Then it follows from the exact conditions 

*This is the crucial point which distinguishes this section from the 

next section. 
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that the following are appropriate simplifications: 

O= gH(x) + 0,2, » on y = 0; (5-18) 

d, = To) $0, - Nolx) Poy on y=0O. (5-19) 

The second condition is a Neumann condition; the right-hand side 
is known, and the condition is prescribed on a known, fixed surface. 

In fact, (5-19) is satisfied by the real part of: 

00 
*) ds p(s) 

s-z’ 
00 

where 

z=x tiy, 

P(X) = N(x) $9 (x, 0). (5-20) 

This follows from the Plemelj formula. (See, e.g., Muskhelishvili 
[1953].) The function p(x) can be interpreted in terms of the fluid 
velocity which is needed to correct the flow field because of the 
error incurred by taking the free surface at y = N(x) while using 
the potential function $ x,y) to prescribe the velocity field. This 
is the same correction which was discussed above in gonnection 
with (5-8). Now we may observe that, since No= O(U) and 
G(x,y) = O(U), it follows that p(x) = O(U"). Thus also: 

|Vve|=o(u) as UO. (5-21) 

This is certainly a much stronger conclusion than (5-8)! 

The integral expression given above is not the solution of the 
@ problem, even in the first approximation, since it does not satisfy 
the body boundary condition. However, since the existence of ® 
arises from a defect of #9 in meeting the free-surface conditions, 
it is difficult to imagine that the above estimate of the order of mag- 
nitude of @ is not correct. 

Numerical procedures could readily be worked out for 
solving problems of the above type. In fact, all that is needed is 
one algorithm which handles the problem of a given distribution of 
the normal velocity component on a surface in the presence of a 
plane rigid wall. The integral part of the solution given above would 
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lead to a non-zero normal velocity component on the body, and this 
would have to be offset by a flow which does not change the condition 
at the plane y=0. Presumably, all higher-order approximations 
would be solutions of problems which are identical in form to this 
one, 

A variation on this approach has been discussed several 
times by Professor L. Landweber, although he has not published 
the work. He points out that the usual linearized free-surface 
condition, 

2 
a og 2 
—_ + = = = Ae K 35 0, on z=0, where K= 2/Us, 

becomes the rigid-wall condition when U~— 0, and so one might try 
an iteration scheme in which @ is expanded ina series, $¢~ hy eo; 

and the terms are obtained as the solutions in an iteration scheme: 

2 

x 

In order to test the scheme, Professor Landweber proposed trying 
to obtain the potential function for a Havelock source in this way; this 
obviates the need to satisfy a body boundary condition, and the known 
potential for the source can be expanded in a series in terms of 1/kK. 

Neither of the above schemes appears very promising to me. 
Salvesen's findings about the singular low-speed behavior seem to 
condemn any approach which overlooks the peculiar nature of the 
free-surface problem at low speeds. The next section should make 
clear why I am pessimistic about these approaches. It should be 
obvious even now that the wave-like nature of the problems has been 
lost, but the difficulty is more serious than that. 

5.42. A Dual-Scale Expansion. According to linearized 
wave theory, the wave-like nature of a free surface disturbance 
loses its identity exponentially with depth. A disturbance created 
at the free surface is attenuated rapidly with depth, and a disturbance 
created at some depth causes a free-surface disturbance which de- 
creases with the depth of the cause. The depth,effect is essentially 
proportional to e*“Y, where, as above, kK=g/U~ and y is measured 
as positive in the upward direction. 

As U approaches zero, this depth-attenuation factor ap- 
proaches zero for any fixed y. In other words, the free-surface 
effects are restricted to a thin layer which approaches zero thickness 
as U->0O. We might say that the free-surface is separated from 
the main body of the fluid by this "boundary layer" in which there is 
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a rapid transition from conditions at the surface to conditions inside 
the bulk of the fluid. From our experience with viscous boundary 
layers, we should expect the occurrence of large derivatives in this 
region and also some difficulty in satisfying boundary conditions on 
a face of the boundary layer. 

In a viscous boundary layer, of course, the derivatives are 
much greater in one direction than in another, and this fact allows 
us to stretch coordinates anisotropically and apply the limit pro- 
cesses of the method of matched asymptotic expansions. In the free- 
surface boundary layer, however, this does not appear to be a 
possible approach. From the linear theory, we expect that there 
will be a wave motion with wave lengths which are O(U?/g). Thus, 
derivatives will be large in at least two directions inside the boundary 
layer -- in the direction normal to the layer and in one direction 
parallel to the layer. 

When I tried to solve this problem two years ago (see Ogilvie 
[ 1968]), I did not apply very systematic procedures. Rather, I 
simply assumed that the first approximation to @, as defined in 
(5-14), would have certain properties, namely, 

= 5 3 B(x,y) = OU); (x,y), Fy(x,y) = O(U); 

also, the surface deflection function would be given by (5-15), with: 

Hix) =/O(U 1. H'b) =-0(0). 

The order of magnitude of, ® was chosen just so that the velocity 
components would be o(1y>), and I assumed that differentiation 
changes a quantity by 1/uU? in order of magnitude. The arguments 
leading up to (5-21) contributed heavily to the conjecture about veloc- 
ity components, and the 1/U® effect of differentiation was chosen 
just because the free-surface characteristic length is U‘/g. It is 
important to note that the rigid-wall potential, 9), is still part of 
the solution, and these statements about orders of magnitude and 
differentiation do not apply to it. In fact, lassume that ¢) is com- 
pletely known, and so it is not necessary to conjecture about the 
effects of differentiation. 

In terms of the general approach of the multiple-scale ex- 
pansion method, I have assumed that an approximation to the solution 
can be represented as the sum of two functions. The first depends 
only on the length scale appropriate to the body geometry. The 
second function depends primarily on lengths measured on a scale 
appropriate to U#/g, but it also depends on the first function and 
thus on lengths typical of the body. However, it seems to be 
possible to keep clear when differentiations are being carried out 
with respect to each of the length scales. 
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Physically, the situation may be described in the following 
way: If U is small enough, the body extends over a distance of 
many wave lengths of the surface disturbance. The initial dis- 
turbance is caused by the body, of course; this is the "rigid- wall" 
motion, and its dimensions are characteristic of the body. It 
causes a free-surface disturbance, with the result that waves are 

created. But these waves are very, very short, whereas the initial 
disturbance from the body appears to be just a slight nonuniformity 
in flow conditions when viewed on the scale comparable to the wave 
length. The method is, in fact, quite similar to classical methods 

such as the W-K-B method. 

When the assumptions listed above are actually applied, we 
find that the approximate free-surface conditions given in (5-18) 
and (5-19) must be replaced by the following: 

R BH(x) + bo, 0) (2, Mol) = 05 (5-22) 

G(x, No(x)) - 4,(x.0)H"(x) = p'(x); 

the function p(x) is the same that was given in (5-20). Note that @ 
in both conditions here is to be evaluated on y = N(x), rather than 
on y=0. The reason is the same that was given in Section 3.2 in 
the near-field problem: If we tried in the usual way to expand 

@(x,9), say as follows: 

4.2 
B(x, 1g) = B(x, 0) + nob (x,0) + 5 NoByy(x,0) +... 

we would find that every term on the right-hand side is the same 

order of, magnitude according to my assumptions. In particular, 

No= O(U‘), and, symbolically, we have: 8/dy = O(1 /U‘). So this 
expansion procedure is not useful. 

The two conditions above can be combined consistently into 
the following: 

Bylves Mole) +5 4 (2610) By (Mg) = PICA). (5-23) 

This is remarkably similar to the free-surface condition for another 

problem. In the ordinary linearized theory of gravity waves, sup- 

pose that a pressure distribution, p(x), is travelling at a speed U. 

The free-surface condition would be: 

2 

&, (x, 0) + Gyx(x,0) = p'(x) , 
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if (x,y) were the potential function for the problem. Replace U 
by 0,(x, 0), the "local stream speed," and evaluate the condition 
on y= T(x) 5 then this condition transforms into the condition found 

for (x,y) in the low-speed problem. Thus, ona "local" scale 
(in which a typical lengthis U 2/g), the free-surface condition is just 
a very ordinary condition; one cannot see that the stream velocity 
changes slightly along the free surface, because the change occurs 
on a scale in which a typical measurement would be a body dimension; 
the change is very gradual. Also, the level of the undisturbed free 
surface appears to change gradually, as given by (5-7); this change 
also cannot be detected on the "local" scale. 

It is now clear that the two length scales are quite distinct. 
We cannot separate the fluid-filled region into distinct parts in each 
of which only one length scale needs to be considered. Rather, the 
gradual changes which appear on the body-size scale appear to 
modify the short-length wave motion in the manner of a modulation. 

In trying to find a potential akon which satisfies (5-23), 

I made a nonconformal mapping: x! =x, y!=y - M(x). Then ©® 
soos a complicated partial differential equation in terms of x' 
and y', but the terms in the equation can be arranged according to 
their Hepentence on U, and it is found that the leading-order terms 

are simply the terms in the Laplacian, that is, 

Oyye + ®y'y! = 0; 

all other terms are higher order. In this new coordinate system, 
the free-surface condition, (5-23), is transformed too, but again 

the leading-order terms are just the same after the transformation 
(but expressed as functions of x' and y'). Furthermore, the 

boundary condition is then to be applied on y'=0. Let us now 
drop the primes on the new variables, for convenience. Then the 
problem is as follows: Find a velocity potential, @(x,y), which 
satisfies the Laplace equation in two dimensions and the free- 

surface condition: 

2 Dy(xsy) += Gof%+ 0). (x0) = p(x), 

where 

p(x) = No(x) $o,(x,0) . 

In addition, the potential must satisfy a body boundary condition; 
this has not been carefully formulated yet, and, in any case, the 

only solution that has been produced so far is one that satisfies 
the free-surface condition but not a body condition. There may be 
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some good justification (or rationalization) for proceeding this way, 
but it is really an open question. 

With such restrictions and reservations expressed, we can 
write down a "solution" of the above problem. Define: 

@ = Re {fp(z)};  O(x,y) = Re {F(z}; 

-2 

Note that: 

fifse) = 0,000); ke) = ef doe 00) 
Then the solution is given by: 

H 00 a2 z 

LT a = fa) ds p'(s) { ia exp E if du (u) | é 
-© -00 C 

The ¢ integral is a contour integral starting at x = - o, located 
entirely in the lower half-space. It should pass above the location 
of the singularity in k(z). This solution represents no disturbance 
at the upstream infinity, as one would expect. 

Far downstream, this solution can be approximated: 

0 z 

F'(z) = 2ie i ds p"(s) exp [ixs = i du[k(u) - id] ; 
-00 s 

where K= g/U% Then, from (5-22), we obtain the wave shape far 
aft of the body: 

00 

H(x) = - aul ds p"(s) sin[ x(x - s) + K(s)], 
& J-o 

where 

K(s) -{ du [k(u) - kK]. 
Ss 

Calculation of the wave resistance is then very simple in principle. 
(In practice, it is a very tedious calculation.) Notethat the expres- 

sion for the wave shape downstream does not require knowledge of 
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F'(z) (or &(x,y)), that is, the surface disturbance far away is a 
real wave, but its shape and size depend only on the solution of the 
rigid-wall problem. This is not true of the wave disturbance in the 
vicinity of the body. 

It would be very useful, I am sure, to formulate this problem 
carefully by the method of multi-scale expansions. The approach 
described by Ogilvie [1968] is very heuristic and leaves much to be 
desired. 
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THEORY AND OBSERVATIONS ON THE USE OF 
A MATHEMATICAL MODEL FOR SHIP MANEUVERING 

IN DEEP AND CONFINED WATERS 

Nils H. Norrbin 

Statens Skeppsprovningsanstalt 
Sweden 

ABSTRACT 

This paper summarizes an experimental and analytical 
study of ship maneuvering, with special emphasis on 
the use of a research-purpose simulator for evaluating 
the behaviour of large tankers in deep water as well as 
in harbour entrances and canals. In an introductory 
Section some new results from full-scale measure- 
ments and simulator studies are given to illustrate the 
demands put on a mathematical model in the two ex- 
treme applications: course-keeping in deep water and 
manoeuvring in a canal bend. 

Well-known derivations of rigid body dynamics and 
homogeneous flow solutions for forces in the ideal case 
are included to form skeleton of the mathematical 
model, Separate equations handle helm and engine 
controls. Coefficients and parameters are made non- 
dimensional in a new system — here designated the 
"bis" system as different from the SNAME "prime" 
system generally used — in which the units for mass, 
length and time, respectively, are given by the mass 
of the ship, m, the length, L, and the time required 

for travelling one ship length at a speed corresponding 
to Via oe 1, L/e. 

Semi-empirical methods are suggested for estimates 
of the force and moment derivatives. Special consider- 
ation is given to added mass and rudder forces in view 
of their predominant importance to course-keeping 
behaviour; the rudder forces measured ona scale 
model are corrected for differences in wake and screw 
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loading before application to full-scale predictions. 
Non-linear contributions to hull forces are included 

in second order derivatives, relevant to the cross- 

flow concept. 

The extension of the mathematical model to the con- 
fined-water case is based upon the theoretical results 
by Newman and others, and upon relations found from 
special experiments. In the model the hydrodynamic 
interferences appearing in forces and moments due to 
the presence of port and starboard side wall re- 
strictions and bottom depth limitations are represented 
by additional terms containing higher order derivatives 
with respect to three suitable confinement parameters, 

N=. tp» N=Ns- Np» and €~ Ina canal the asym- 
metrical forces are considered as due to the aaded 
effects from port (p) and starboard (s) walls rather 
than as the effect of an off-centreline position; 
primarily n is a measure of this position, 7 a 
measure of the bank spacing. 

The mathematical model is here applied for evaluation 
of model test data obtained for a Swedish 98 000 tdw 
tanker in the VBD laboratories. Oblique towing and 
rotating arm tests were performed in "deep" and 
shallow water. Oblique towing tests were also run 
at various distances from a vertical wall in the deep 
tank, and in two Suez-type canal sections. The effect 

of shallow water was especially large in force non- 
linearities. Missing data for bottom and wall effects 
on added mass and inertia are taken from theory and 
from test results due to Fujino, respectively. 

The deep-water predictions for zig zag test and spiral 
loop prove to be in good agreement with full-scale trial 
results. Analogue computer diagrams are given to 
show the effects of shallow water upon definite 
manoeuvres and upon course-change transients follow- 
ing auto-pilot trim knob settings. Finally a few results 
are included to illustrate auto-pilot position control 
of the tanker in free water, in shallow water, between 

parallel walls and in a canal. 
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Shtp Maneuvering in Deep and Confined Waters 

I. INTRODUCTION 

On Course-Keeping in Deep Water 

The average depth of the oceans is some 3800 m. Small 
native crafts still steer their ways between nearby islands in these 
oceans. New ships are built to transport ever larger quantities of 
containers or bulk cargoes at a minimum of financial expense 
between the continents. 

It is not necessarily obvious that the helmsman shall be able 
to control a mammoth tanker on a straight course. A few years ago 
ship operators were stirred by the published results of an analytical 
study, interesting in itself, which in fact did indicate, that manual 

control of ships would be impossible beyond a certain size. Upon 
request by the shipbuilders a series of real-time simulator studies 
were initiated at SSPA in autumn 1967 to investigate manual as well 
as automatic control of large tankers then building, [1]. 

At an early stage of these tests the helmsman was found to 
constitute a remarkably adaptive control, which could not be simu- 
lated by a simple transfer function. As could be expected a rate dis - 
play proved to make course keeping more easy; the rate signal was 
even more essential to the auto pilot. 

The simulator findings were confirmed in subsequent proto- 
type trials. The diagrams of Fig. 1 compare simulator and proto- 
type rates of change of heading and yaw accelerations for a large 
tanker as steered by the author in a Force 6 following sea. (In the 
simulator case the sea disturbance was represented by a cut-off 
pseudo-random white noise of predetermined root mean square 
strength, that was fed into the yaw loop.) This particular tanker is 
dynamically unstable on a straight course, and the steady-state 
L(6)-diagram from a deep-water spiral test exhibits a hysteresis 

loop with a total height of 0.5 °/s and a total width of a little more 
than 3° of helm. If yaw rate is maintained within some 40 per 
cent of the loop height value it has been found possible to control the 
straight heading by use of small helm only. 

The use of the computer-type simulator for the prediction of 
ship behaviour implies the adoption of a suitable mathematical model 
and the knowledge of a number of coefficients in this model. An 
alternative technique that simulates full-scale steering by controlled 
free-sailing ship models is still in use. Mostly the steering has been 
exercised by manual operation of the controls, and it has been claimed 

that at least comparative results should then be valid. It is likely 
that the truth of this statement depends on the actual speed and size 
(and time constants) of the prototype ship as well as of the model 
scale ratio used. 
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Fig. 1. Manual steering of an unstable 230 000 tdw tanker in 
quartering sea. Prototype and simulator records. 
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Time is scaled as square root of length. Human response 
time may be "scaled" within certain limits only. The w(6)-diagrams 
of Fig. 2 demonstrate results of simulated steering of the tanker 
prototype already referred to, as well as of her fictive models of 
four different sizes. (Note that curves run anti-clockwise with time.) 
The smallest "model" is in scale 1:100, i.e. it has a length of 3.1m, 
which should permit free-sailing tests in several in-door facilities. 
The two helmsmen, which each one seem to represent one kind of 

steering philosophy and who were allowed a short training period in 
each case, both failed to maintain the proper control of the two 
smaller "models." 

The control of a ship on a straight course is governed mainly 
by the effective inertia, by the yaw damping moment, by the rudder 
force available, and by the time this force is applied. A mathemati- 
cal model intended for studies of manual or automatic steering may 
therefore be quite simple; in contrast to the test basin model it may 
include proper corrections for the large scale effects often present 
in rudder force data. (Cf. Section VII.) 

Figure 3 repeats the original simulator b(5)-curves from 
real-time straight running, recorded by use of the "complete" 
mathematical model, but it also presents results from tests with a 
linear model as well as with a model, which contains no other hydro- 

dynamic contributions than those in lateral added inertias and rudder 
forces. No major differences were experienced in using these three 

models of increasing simplicity. 

On Manoeuvring in Confined Waters 

Manoeuvring, involving yaw rates and drift velocities, which 
are not small compared to the forward speed, demands a mathemati- 

cal model of considerable complexity. A useful presentation of non- 
linear characteristics has been given by Mandel, [ 2]. One particular 
non-linear model designed to include manoeuvres in confined waters 
will be more fully discussed in subsequent Sections of this paper. 

The average depth of the oceans is some 3800 m. But ocean 
voyages start and terminate at ports behind the shallow waters of the 
inner continental shelves. Additional confinements are presented 
by many of the important gateways of world trading, such as the 
Straits of Dover and Malacca, the Panama Canal, and the Suez Canal 

now closed. 

The maximum draughts of "large" ships have always been 
limited by bottom depths of docks and harbours, and of canals and 

canal locks. With few exceptions the requirements placed on under- 
keel clearances ~ by ship owners or by authorities — have been 
chosen solely with a view to prevent actual ship grounding or exces- 
sive canal bed erosions. Thus the Suez Canal Authorities accepted 
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Helmsman W 
Helmsman N 

Fig. 2. Simulator tests of manual steering of an unstable 230 000 
tdw tanker in real and speeded up time. Yaw rate versus 
helm angle. (Numbers along curves indicate minutes in 
real time.) 

812 



Shtp Maneuvering tn Deep and Confined Waters 

“Complete” model: 

Linear model: 

Helmsman N Helmsman W 

Fig. 3. Simulator tests of manual steering of an unstable 230 000 
tdw tanker using alternative mathematical models. Yaw 
rate versus helm angle. 
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a nominal blockage ratio of 1:4 for ships in northbound transit at a 
maximum speed of 13 kilometres per hour, corresponding to a mean 
back-flow velocity of some 1.5 m/s. 

Today new limits are imposed by the depths of ocean sills as 
well as by the depths and widths of open sea port approaches. The 
potential dangers of a large oil tanker navigating in such waters 
under, say, the influence of an unexpected change of cross current 
must not be denied. Whatever nautical experience the master or 
pilot may possess, he is still in need of actual data and of means to 
convert this information to helm and engine orders. Automatic 
systems on a predictor basis are likely to appear in a near future, [3]. 

In the planning for dredged entrance channels and harbour 
turning basins the maneuvering properties of the ships must no longer 
be overlooked. The upper drawing of Fig. 4, reproduced from 
Ref. [4], shows part of the plan view and a typical section of the 
buoyed channel for 200 000 tdw tankers unloading at a new oil ter- 
minal. Before entering the 90° starboard turn the speed is brought 
down to less than 2 knots, and the tanker then proceeds under slow 

acceleration by own power. Braking tugs are used on quarters, 
and forward tugs assist in the S-bend. The lower diagram of Fig. 4 
is taken from SSPA records of yaw rates in the passage; the initial 
curvature corresponds to r' = 0.175, and the maximum rate of 
change of angular velocity is of the order of 0.0005 o/s? at a forward 
speed of 2.3 knots. 

In general the lateral forces on the ship will all increase as 
water depth turns smaller, and the dynamical stability is also likely 
to increase. From extensive measurements by Fujino it appears, 
however, that the picture is not so simple, and that for some ships 
there may be a "dangerous" range of depth-to-draught ratios, in which 
the dynamic stability gets lost, [5]. 

Recent model tests indicate that the large-value non-linearities, 
such as the lateral cross-flow drag at high values of drift, do increase 
even more than the linear contributions governing the inherent stability 
conditions. Whereas these non-linearities may be omitted in the 
mathematical model of the ship in a canal the bank effects here intro- 
duce destabilizing forces, that are again highly non-linear. 

The effects of well-known forces experienced by a ship sailing 
parallel to the bank of a canal are clearly apparent in the record from 
a Suez Canal transit here reproduced in Fig. 5, [6]. (The positions 
in the canal as well as the width between beach lines were derived 
from triangulation by use of two simple sighting instruments designed 
for the purpose.) Upon approach to the Km 57 bend the ship is slightly 
to port of the canal centre line. The pilot orders port helm for two 
minutes, by which the ship is pushed away from the near bank and the 
desired port turn is also initiated. Back on centre line the ship 
mainly turns with the canal. In spite of a starboard checking rudder 
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she again moves closer to the port bank, and again port rudder has 
to be applied, etc. 

So far analytical studies of ships moving in canals have been 
dealing with straight running. It is believed that the mathematical 
model which is presented here may also be extended to the case of 
slowly widening and bending canals. 

II SYMBOLS AND UNITS, ETC. 

When applicable the symbols and abbreviations here used 
have been chosen in accordance with the ITTC recommendations, 
[7]. Some new symbols are introduced to define the position and 
orientation of a ship in confined waters. (See also Section X.) 

The system of axes fixed in space is 0)x9y9z,, that fixed in 
the body or ship is Oxyz. The point of reference O lies at distance 
Lpp/2 forward of A.P. of the ship. (Cf. Fig. 6 and Section IV.) 

Zo 

Fig. 6. Inertia frame and body axes, etc. 
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Dimensional numbers are given in metric units unless other- 
wise stated. Generally coefficients and relations are expressed in 
non-dimensional forms. In addition to the non-dimensionalizing 
"prime" system usually adopted use is here made of a new "bis" 
system, further presented in Section III. 

A dot above a variable stands for a derivation with respect 
to time. Partial derivatives of forces and moments are designated 
by the proper subscript attached to the force or moment symbol. 

TABLE I 

Symbol Definition ca deaesk Remarks 

A, Channel section area ie 

A Section area of hull isp 

Ajj Added mass.) Mt= 1.2.53 9 =1,2:3. M 

noon i= 4,5,6;)=4,5,6 ML* 
: 2 b= 1,52;33j = 495.6 ML 

Ay Added mass in horizontal oscill. 
inka free surface, neplecting 
gravity M 

Ay Added mass in horizontal oscill., 
unbounded fluid M 

A, Total proj. area of rudder i 

Bea Moveable proj. area of rudder ic 

B Beam of hull hb 

Cp Cross-flow drag coeff., 3-dim. - 

D Diameter of propeller ie 

F Force vector MLT 

Bae Froude number on depth - Pye v/Vgh 

Fy Froude number on length - Fat = V/VeL =v" 

I Moment of inertia Mi 

Ti Mass product of inertia ML* ee Ke 

J Propeller advance coefficient - J=u(1-w)MD 

K Rolling moment about x axis Mir? 

Kg Propeller torque coeff. - Kg = - Q?/pn*p° 

K, Propeller thrust coeff. - K,= T?/on*p* 
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Symbol Definition Fy Soe Remarks 
SE Te a a a ee ere ee 

L Length of hull L L = Lpp 

M Pitching moment about y axis Mier 

M Moment vector is ag 

N Yawing moment about z axis MI?T* N" = N/mgL 

Q Torque about propeller shaft ML*T*® Qt= turbine 
torque 

R Turning radius L ri= 17R 

R Resistance MLT~ xX(R)=-R 
+ Hull draught Te 

EG Propeller thrust MLT™ 

rs Kinetic energy of liquid ML T~ 
U Total flow velocity LT” 

V Velocity of origin of body axes LT y"= V/VeL 

ve Speed of water current LT"! 

V; Ship speed over ground LT” 

W Channel width in general io 

WwW Bank spacing, half of L 2W = We - Wp 

X,Y,Z Hydrodynamic forces along body -2 
axes MLT 

y* Y-force due to rudder MLT™® 

ee Y-force on rudder proper MLT 

a Depth to top of rudder I 

a Water surface elevation L 

ay Slope of lift coefficient curve - 

b Height of rudder 1 

c Flow velocity past rudder ot 

Cp Cross-flow drag coeff., 2-dim. - 

g Gap between rudder and hull 18 

g Gravity vector LT 

h Depth of water ae 

h Vector in general Undef. 

kj; Coefficients of accession to 
inertia - rete eee: 
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Physical Symbol Definition Die nnion Remarks 

ki, Coefficients of accession to 
inertia - ic= 45.56 

k, Corr. factor for rudder inflow - Cf. eq. (7.4) 

k, Corr. factor for rudder inflow - 

ee Non-dim. radius of gyration - 

m Mass of body M rm a 

n Number of revs. of prop. in 
unit time a 

-| - 

2) Pressure in general ML FT. : 
-| _- 

q Stagnation pressure Mi... al : 

p.q,r Angular velocity components an 

Dang Max. radius of equivalent body 
of revolution L 

s Lateral thrust factor - Cf. Section VII 

s Sinkage L 

t Time T t"=t//L/g 

t Thrust deduction factor - 

u,V,;w Components of Vv along body EF 
axes Le 

w Wake fraction - 

X2V 9% Orthogonal coordinates of a right- 

handed system of body axes cL 

X92Vo2Z%, Orthogonal coordinates of a right- 
handed system of space axes 
(inertia frame) i 

A Weight displacement MLT* 4A=ppgV, =mg 

ny Volume displacement L3 Normal approx.! 
V=WV 

Vo Volume displacement at rest = 

A Aspect ratio - 

A, Aspect ratio of rudder x A, = b®/A, 
Re Do for rudder + plane wall 

image - A,= 2h, 
Bl is 

® Velocity potential Ls wi PM y= ®/LV gb 
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Symbol Definition Miimennioen Remarks 

ot Angular velocity of ship iT 

a Angle of attack - 

B Angle of drift - tanB = - v/u 

Y Frequency parameter - Y = Vw/g = u"w" 

Y Coeff. of heading error term 
in proportional rudder control - "Rudder ratio" 

6 Rudder angle (deflection) - 

6* Rudder angle ordered by auto 
pilot - 

5e "Effective" rudder angle - Se = 6 for v=r=0 

€ Phase lead angle - 

ec Restricted water depth parameter - C70 (eee) 

n Ship-to-bank distance parameter - n=n, t Np 

n Bank spacing parameter = 1 =7s - Np 

m1, Port bank distance parameter - Np = L/(Wp - yo) 

"1. Starboard bank distance parameter - Ns = L/(W, - Yo) 

's] Angle of pitch - 

y. Body mass density ratio - ik = m/p V0, or 
norm. surface 
ships p= l 

p Mass density of water ML”? 

o Coeff. of rate of change of 
heading term in proportional 
rudder control ae "Rate (time) 

constant" 

9? Prismatic coefficient - 

> Angle of roll or heel - 

Wy Angle of yaw, or heading error - 
-| 

w Circular frequency T w" = wL/g 

w! Reduced frequency - wo = wl /V = w/a" 
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Ili, NON-DIMENSIONALIZING BY USE OF THE "BIS" SYSTEM 

The use of non-dimensional coefficients is accepted in all 
branches of ship theory, and when motion studies are considered 

even the variables of the equations are often normalized. 

Within the field of maneuvering a unit for time is usually the 
time taken by a body to cover the distance of its own length, and the 
unit for velocity then is most naturally given by the momentary 
speed V = (u* + v*)'*. Ifthe body does not move forward this defi- 
nition is less attractive. In the system just mentioned — which is 
recommended by ITTC and which in most cases is fully adequate — 
symbols for non-dimensional quantities usually are indicated by a 
prime. 

The unit for length almost always is chosen equal to the length 
L of the body, and for the common surface ship more specified 
L=L 

pp* 

The unit for mass is mostly taken as the mass of a certain 
volume ofthe liquid, defined in terms of the body or ship geometry. 
In the "prime" system already referred to reference volumes are, 
say, 3L° [8] or $1°T [9], the latter one used with the reference 
area LT suggested by the wing analogy. 

In case of bodies, which are supported mainly by buoyancy 
lift, the main hull contour displacement V, is perhaps the most 
natural reference volume: if body mass thenis m=p* p* Vo the 
non-dimensional mass is equal to wp. (When treating heavy aircraft 
dynamics Glauert chose ppV in place of pV for the mass unit, 
[10]-) In normal ship dynamics = 1, whereas for heavy torpedoes 
p=1.3 - 1.5, say; the symbol p will be rejected in certain appli- 
cations. 

Here a consistent normalization of motion modes and forces 
will be made in a new system, the "bis" system, where the unit for 
mass is m =ppV,, the unit for length is L and the unit for linear 
acceleration is equal the acceleration of gravity. From this 
the unit for time is ¥L/g, and it also follows the Table below: 
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TABLE II 

Unit for "bis" system "prime" system 

P73 Pye 
mass (M) LPV, 5 L 5 Pat 

length (L) L Ie t 

time (T) JL/g L/V L/V 

linear velocity Vel V Vv 

linear acceleration g v-/L V7/L 

angular velocity V¥g/L VE V/L 

angular acceleration g/L Maye vin 

force upgV> gv SwLt 
p «2.3 p 12.2 

moment wpgVyL 5 VL Vota 

Reference area aM ie Ly 

It will be noted that, in the system suggested, a non-dimen- 
sional velocity is given by the corresponding Froude number, and 
that all forces are related to the displacement gravity load 
A =ppgV, of the body. (Cf. quotients suchas R/A, "resistance 
per tons of displacement," used in other fields of applied naval 
architecture. ) 

It is customary to form a non-dimensional force coefficient 
by dividing by the product of a stagnation pressure (q = (p/2)V*) 
and a reference area, and of course the new system will not demand 
any different rules. In place of the velocity V, however, here is 
chosen that particular velocity which corresponds to F,, = 1, i.e. 
the normalized stagnation pressure is q = (p/2)gl. The reference 
area then is seen to equal p(2V,/L). 

IV. KINEMATICS IN FIXED AND MOVING SYSTEMS 

The two orthogonal systems of axes here used, 0,xoyoZp 
fixed in space — the inertia frame — and Oxyz fixed in the body, 
are shown in Figs. 6 and 7. The orientation of the body axes may be 
derived, from an original identification with the inertia frame, by 
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ah, = bh + Sdech at oy 

Lae =F. SR ¥ @ 

Fig. 7. Graphical deduction of the absolute time derivative of a 
vector OF, =h defined in the moving body system 

the successive rotations through the angle of yaw, \w, the angle of 
pitch, 0, and the angle of roll, $, respectively, defined around the 
body axes z, y, and x in their progressively changed positions. 

In_a certain moment of time the,relation between the space 
vector 0,P = xp and radius vector OP = x,, invariant in the body 
system, is given by 

= Ax (4.4) 

where the orthogonal transformation matrix reads 
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coswcos® -sinwcos¢$ +cosWsin@sin®é sinysind tcosWsin®cosd> 

Az=|sinJcos® coswcos$+sinWsin®@ sing -cos sind tsinsin® cos > 

- sin® cos 8 sind cos 8 cos¢ 

(4. 2) 

When applied in opposite direction the transformation is 

— -l => — ~ — =_ 

xp=A (Xp - X49 = A(x, - X,9) (4. 3) 

where A is the transposed matrix, in which rows and columns 
appear in interchanged positions. 

In particular, note that the gravity vector ‘Bo = QZ, will be 
given by the column vector 

0 - g-* sin 6 

g = A} o} = g cos @ sin (4.4) 

g g cos 8 cos 

in the moving system. 

From Fig. 7 will be seen how the absolute (total) value of the 

time derivative of any vector h in the body system may be calcu- 
lated from the relation 

ap ae —>— — 

hy. =H tM xh (4.5) 

The angular velocity vector oy may now be expressed in 
terms of the Eulerian angles and their time derivatives: For the 
vector h there is h,=Ah and 

+AAh (4. 6) 

and so the column vector 2 is obtained from the carresponding anti- 
symmetric angular velocity matrix for the product AA, 
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p @- sin @ 

% = q| = cos @ sin +0 cos (4.7) 

r icon Gica-sheue ain 

The angular velocity components resolved in the inertia frame 
are 

$=p +q sin @6tan 0 trcos $tan 6 

8 q cos $6- r sind (4.8) 

wW=rcos #sec 8 +q sin sec 8 

In the special case of motion in a horizontal plane in absence 
of rolling and pitching itis Yp=r. 

In Section VIII an expression will be required for the absolute 
acceleration of amass element dm at station P(x,y,z) in a body 

moving through the water with velocity V. From (4.5) then 

u O -r q vd u -ry tqz 

ape = lv | +t] r O -p y| = |v trx -pz (4.9) 

w -q p 0 Zz w -qx tpy 

and by a repeated application of the transformation formula 

u - rv t+ qw - (q2 + r?)x + (pq - r)y + (rp + q)z 

2 = : = + = 2 + 2 + th ce ae ry ° , 

(ap)bs v- pwtru- (r° + p*)y + (qr - p)z + (pq + r)x (4,10) 

w-qut+pyv - (p? +q2)z + (rp - q)x + (qr + py 

=F 
~_,, Inthe presence of a homogeneous steady current Vg aterm 
Gig is to be added to the right-hand member of Eq. (4.9). In 
practical applications this current may be assumed to take place 
in planes parallel to the horizontal, so that Vis fully identified 
by u and v,°. It is easy to show that the column matrix for the 
acceleration in (4.10) will remain unchanged. To the surface ship 
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in horizontal maneuvers, this homogeneous current will only mean 

a steady shift of the path; alternatively, if a certain straight course 

is required heading shall compensate for the steady drift. The 

local finite current, on the other hand, generates varying outer 

disturbances and shall be handled by other means. 

V. FLOW PHENOMENA AND FORCES ON A SHIP IN FREE WATER 

Ideal-fluid Concepts 

As a source of reference for further discussions this Section 
recapitulates some of the characteristics of the flow past a ship in 
free or open water. 

When a double-body ship form — i.e., a body which is sym- 
metrical about the xy-plane — moves forward in a large volume of 
ideal-fluid water the streamlines adjust themselves according to the 
laws of continuity. The shape of those streamlines remain the same 
at all speeds. The increase of relative velocity past the wider part 
of the body corresponds to a back-flow or return flow of the water 
previously in rest. This disturbance in the potential flow pattern 
extends far into the fluid volume — a beam-width out from the side 
of the body the super-velocity still has a value, which is some 80 per 
cent of that just outside the body. 

From a resistance point of view the steady forward motion 
within this ideal homogeneous fluid may lack some realism. Accord- 
ing to the d'Alembert's Paradox the body will experience no resultant 
force. However, if the body is to be accelerated the kinetic energy 
of the fluid must be increased. This energy increase is manifested 
by a resistance, which for a given geometrical form is proportional 
to the mass of displaced fluid and the amount of acceleration, i.e. 
to the product of an "added mass" and the acceleration component in 
the direction considered. The resultant force is not necessarily 
orientated in the same direction. 

In the simple steady motion the total energy certainly will 
remain constant, but as the body moves forward through virgin fluid 
there takes place in each transverse section a repeated particle 
acceleration and transformation of energy. The impuls pressure 
distribution thus generated will normally be unsymmetric, and soa 
free moment results on the body. This moment may be expressed 
by a combination of total-body added mass coefficients. 

In the general case of a complex motion in the ideal homo- 
geneous fluid all the forces and moments will then be available in 
terms of added masses and inertias, according to the theories 
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originated by Kirchhoff [11] and Lamb[12]. In spite of the fact that 
these forces will be modified by the presence of viscosity in the real 
fluid, and that new forces will also be generated by the viscous 
effects, these ideal results should be considered when formulating 
the mathematical model. 

If U is the velocity vector of the lqcal fluid element the 
total kinetic energy is given by T, = (p/2) U* dr, or in a potential 
flow generated by the impuls pressure p® 

eh £0Py Vi a T,=-£{o% ds (5.1) 

The integration is to be extended over the total boundary, i.e. over 
the wetted surface of the body. Let the potential be written in 
linearized form as 

$= Gut dv + o,w + &p + O&q + Or (5.2) 

with respect to the six component body velocities uj. The six 
coefficients @; then are functions of the body geometry and of the 
position in relation to the body. 

The condition for fluid velocity - 8@/8n at the body boundary 
to equal the body normal velocity may be formulated by use of the 
directional cosines for the normal inthe Oxyz-system, whereby 

or 

2T =- X:u*- Y.v*- Z.w?- 2¥. vw - 2X.wu - 2X.uv 
i) Vv w Ww Ww Vv 

2 2 2 
2 Kp ae M,q - N,r - 2M. qr - 2K; rp - 2K,Pq 

(5.3) 

- 2(X,u + Y¥,v + Z.w)r 

Here there are 21 different added masses (Ajj) or "accelera- 
tion derivatives." Force derivatives with respect to a linear accelera- 
tion are of dimension M, and moment derjvatives with respect to an 
angular acceleration are of dimension MIL’, as are the mass moments 

of inertia. Cross coupling derivatives such as X,=- Ajq are of 

dimension ML. 
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If the body has a plane of symmetry there remain 12 different 
acceleration derivatives , and for a body of revolution generated 
around the x axis there are only the three derivatives A,,, A,, and 

Ae 

The motion of the ideal liquid takes place in response to the 
force and moment expended by the moving solid. At any time this 
motion may be considered to have been generated instantaneously 
from rest by the application of a certain impuls wrench. The rate 
of change — cf.Eq. (4.5) — of the impulse wrench is equal to the 
force wrench searched for. Again, the work done by the impulse is 
equal to the increase of kinetic energy, and as shown by Milne- 
Thomson [13] the force and moment on the body may therefore be 
expressed in terms of the kinetic energy of the liquid, 

F =~ g (7it) -@x 23 
oV OV 

(5.4) 

M=-$ (23) -dx-¥x4 
a aQ oV 

(The partial derivations shall be considered as gradient operators.) 
The complete formal expressions for the inertia forces in the ideal 
fluid have been derived from Eqs. (5.3) and (5.4) by Imlay [14], and 
they are here given in Eq. (5.5). 

= ia = Xyu + X,(w + ug) + X.q + Zywq + Zq? + Xv + Xp + Xr 

2 =~ Y,vr - Yorp - ¥,r° - Xyur - Yywr + Yyvq + Zspq - (Y; - Z,)qr 

Yi =Xu+Y,wt Y¥4q +Y¥,v + Yjp + ¥;r + Xwr - Yyvp + X;r? 

2 + (X,- Z;)rp - Zp - X,(up- wr) + Xur - Ziwp - ZaPq + Xsqr 

X,,(u - wq) + Z yw t 24 - X,uq - Xx," ee Zp ge Ste tad Gag) 

2 . 

+Y,rp + Y;p + Xyup + Yywp - Xyq - (X,- Yq)pq - Xqr 
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Kig = X;u + Z,w + Kya - Xywu + X;uq - Yyw? - (¥, - Z:)wq + Mzq? 

+Y,v + Kp + Kx - (¥, - Z,)vr + Zavp - M,r° - K.rp + X,uv 

= (Y, = -Z,)vw = (¥.°* Z,)wr - Y, WP Saree oi Z,)v4 

+ Kpq « (M, - N;)qr + Yyv" 

Mi4= X,(u + wq) + Z.(w - uq) + M,q - X,(u* =P WA) oss (Z, - X,)wu 

+Y,v +K,p +M,r + Y,vr - ¥;vp - K,(p® - r*) + (K; - N;)rp 

- Yyuv t Xww - (X; + Z.)(up - wr) + (x, - Z;)(wp + ur) 

- M;pq + K,aqr 

Ni = Xa + Z.w + M,q + Xu + Ywu » (X, - ¥,)uq - Z,wq - Kia" 

+¥,v + Kp + N.r - Xv" - X.vr - (X,- Y,)vp + M,rp + K,p? 

- (Xx, - Y,)uv - X,vw + (X, + Y,)up + Y.ur ct Z wp 

- (X, + ¥;)vq - (K, - M,)pq - K:qr 

(5.5) 

Forces in Horizontal Motions - General 

Especially, for a body which is symmetrical with respect to 
its xz-plane and which is moving in the extension of its xy-plane, 
there are 

Skin Yves Yer, + X(v - ur) + Xr 

Yig = Yyv + Xjur + ¥;r + X,(a + vr) + X;r* (5. 6) 

Nig = Nr +(¥, - Xuv + ¥,(v tur) [+ Xu? - v4) + X,(a - vr) 

By careful application of sound reasoning it is suggested that terms 
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to the right of the bar may be dropped. Terms containing the coef- 
ficient Y; have been retained in view of the fore-and-aft unsymmetry 
present particularly in propelled bodies. 

The coefficients for u in xX, for v in Y, and for r in N 

— with signs reversed — are the most commonly well-known added 
masses and added moment of inertia respectively. These inertia 
coefficients also appear in some of the cross-coupling terms. 

Lamb's "coefficients of accession to inertia" relate added 
masses to the mass of the displaced volume V (kjj, i= 1, 2, 3) and 
added moments of inertia to the proper moments of inertia of the 
same aac volume (ki; > = 4, 5, 6). Lamb calculated k,,, 

and kg.= ky, for the sphereoid of any length-to-diameter 
seein. ais]. For ellipsoids with three unequal axes the six different 
coefficients were derived by Gurewitsch and Riemann; convenient 

graphs are included in Ref. [16]. For elongated bodies in general 
the total added inertias may be calculated from knowledge of two- 
dimensional section values by strip methods, applying the concept 
of an equivalent ellipsoid in correcting for three-dimensional end 
effects. (See further below.) 

Of special interest in Eq. (5.6) is the coefficient Yy - X, 
in the "Munk moment," [17]. (See also discussion in [18]. This 
free broaching moment in the stationary oblique translation within 
an ideal fluid defines the derivatives 

. 2v kee- ki patel “I ete NaS 
’ B L3 

(Lie 

Nuv= a L 
(kao - ky) (5.7) 

(Cf. Table II.) The factor kg 9- kj, may be looked upon as a three- 
dimensional correction factor. 

Due to energy losses in the viscous flow of a real fluid past 
a submerged body the potential flow picture breaks down in the 
afterbody. In oblique motion there appears a stabilizing viscous 
side force. So far no theory is available for the calculation of this 
force, but semi-empirical formulas give reasonable results for con- 
ventional bodies of revolution. Force measurements on a divided 

double-body model of a cargo ship form have demonstrated that some 
de-stabilizing force is still carried on the afterbody but that most of 
the moment is due to the side force on the forebody, predictable 
from low-aspect-ratio wing or slender body theories, [18]. 

Similar measurements on a divided body in a rotating arm 
shall be encouraged. Contrary to the case of stationary pure trans- 
lation the pure rotation in an ideal fluid involves non-zero axial and 
lateral forces. From Eq. (5.6) the side force is given by Xyur, 
whereas the moment here is Y;ur. For bodies of revolution the 
distribution of the lateral force may be calculated as shown by Munk 
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[17] whereas strip theory and two-dimensional added mass values 
may be used for other forms. The magnitude of ideal side force as 
well as moment are small, however, and ina real fluid the viscous 
effects are dominating. 

There are reasons to believe that the main results of the 
theories for the deeply submerged body will also apply to the case of 
a surface ship moving in response to control actions at low or 
moderate forward speeds. Potential flow contribution to damping 
as well as inertia forces depend on the added mass characteristics 
of the transverse sections of the hull, and as long as these character- 

istics are not seriously affected by the presence of the free surface 
the previous statement comes true. However, an elongated body 
performing lateral oscillations of finite frequencies will generate 
a standing wave system close to the body as well as progressive 
waves, by which energy is dissipated. The hydrodynamic character- 
istics then are no longer functions ofthe geometry only. At a higher 
speed or in a seaway displacement and wave interference effects 
will further violate the simple image conditions. 

VI. CALCULATIONS AND ESTIMATES OF HULL FORCES 

On Added Mass in Sway and Added Inertia in Yaw 

A brief review will here be given of the efforts made to 
calculate the added mass and inertia of surface ships in lateral 
motions. Four facts will be in support of this approach: The added 
masses are mainly free from viscous effects; the added masses 
appear together with rigid body masses in the equations of motions, 
and relative errors are reduced — this is especially true in the 
analytical expression for the dynamic stability lever, which involves 
only the small X,y the added masses are experimentally available 
only by use of non-stationary testing techniques, and in many places 
experimental data must therefore be supplemented with calculated 
values; the added masses are no unique functions of geometry only, 
and experiments must be designed to supply the values pertinent to 
the problems faced. 

The velocity potential for the two-dimensional flow past a 
section of a slender body must satisfy the normal velocity condition 
at the contour boundary as well as the kinematical condition for the 
relative depression velocity at the free constant-pressure surface, 
In case of horizontal as well as vertical oscillations this latter 
linearized conditions is w* + g(9@/8z) = 0 — cf. Lamb[ 12] — or, 
pe tape the non-dimensional potential @" = @/Lygl and 
w!"! = L/g, 

o® iy = n@ u" at | © ® (6.4) 
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For steady horizontal drift at moderate forward speeds one 
finds a similar condition 

BOM ona? 27) re 
e F ° 

oz" nL aty" 
(6.2) 

which shall govern the local accelerations of the flow in the trans- 
verse plane penetrated by the moving body, [18]. 

As is seen from the two equations above the vertical velocities 
at the water surface are zero in the limit of zero frequency or zero 
drift, and negligible for w << V¥g/L or 8 Fir << 1. The water sur- 
face may therefore be treated as a rigid wall, in which the underwater 
hull and streamlines are mirrored, i.e. the image moves in phase 
with the hull. 

For high frequencies, where w>>yg/L, the condition at the 
free surface is ®=0. The water particles move up and down normal 
to the surface, but no progressive waves are radiated. At the juncture 
of the horizontally oscillating submerged section contour and the free 
surface this condition may be realized by the added effect of an image 
contour, which moves in opposite phase. (Cf. Weinblum [19].) The 
value of added mass in this case, "neglecting gravity," is smaller 
than the deeply submerged value by an amount equal to twice the 
image effect. 

Added masses Aj for two-dimensional forms oscillating 
laterally with very low frequencies in a free surface have been cal- 
culated by Grim [ 20] and by Landweber and Macagno [ 21], using 
a LAURENT series with odd terms to transform the exterior of a 
symmetric contour into the exterior of a circle (TEODORSEN map- 
ping). By retaining the first three terms this transformation yields 
the well-known two-parameter LEWIS forms [ 22]; other combina- 
tions of three terms have been studied by Prohaska in connection 
with the vertical vibrations of ships [23]. Two terms (and one single 
selectable parameter for the excentricity) define the semi-elliptic 
contour as that special case with given draught, for which the added 
mass is a minimum. Landweber and Macagno also made calculations 
of the added masses Ay in the high-frequency case. For the semi- 
elliptic contour A, /A; = 4/n*, which result was first found by 
Lockwood-Taylor, [ 24] é 

A basic theory for the dependence of the hydrodynamic forces 
on finite frequencies was developed for the semi-submerged circular 
cylinder by Ursell, [ 25]. By use of a special set of non-orthogonal 
harmonic polynomials he found the velocity potential and stream 
function that satisfied the boundary conditions and represented a 
diverging wave train at infinity. Based upon similar principles 
Tasai extended the calculations of added masses (and damping 
forces) for two-dimensional LEWIS forms to include the total 
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practical range of swaying frequencies, [ 26]. His results are con- 
densed in a number of convenient tables and diagrams; the added 
mass values are seen to vary even outside the limit values cor- 
responding to zero and infinite frequencies. 

An application of a generalized mapping function technique 
to ship section forms of arbitrary shape was performed by Porter, 
who studied the pressure distribution and forces on heaving cylinders, 
[27]. A way of solving the two-dimensional problem without resort 
to conformal mapping was developed by Frank, who represented the 
velocity potential by a distribution of wave sources over the sub- 
merged part of the contour, now defined by a finite number of off- 
sets. The varying source strength was determined from an integral 
equation based on the kinematical boundary condition 

Vugts [ 29] contributed an extensive experimental and theo- 
retical study of the hydrodynamic coefficients for pure and coupled 
swaying, heaving and rolling cylinders, based on the previous works 
by Ursell, Porter and de Jong, [30]. The coefficients of the 
THEODORSEN mapping function were defined by a least square fit 
of the geometry of the cylinder contours to off-sets in 31 points. Of 
special interest is the good agreement obtained between experiments and 
the theoretical predictions for the added mass of a typical midship 
section; the oscillation experiments do not cover the very low fre- 
quencies, however. Although small the difference in the calculations 
for the actual section fit and for an approximate LEWIS form was 
mainly confirmed by the experiments. 

When used with the strip method the integrated section contri- 
butions to total added mass and inertia shall be reduced by the 
appropriate "longitudinal inertia factors" for three-dimensional 
effects. Following Lewis these factors are usually taken equal to 
those derived for the prolate sphereoid in a similar mode of motion. 
This is only an engineering artifice, and it is certainly not correct, 
say, in case of accelerations in yaw for normal hull forms; thus 

these correction factors are mostly omitted in hydrodynamic studies 
of sufficiently slender bodies. 

In a discussion of the strip theory Tuck [31] included the 
results of all the added mass and damping coefficients of a surface 
ship at zero forward speed, calculated by use of Frank's close-fit 
method with 15 off-sets for each of 23 stations. The total added 
mass (Aj) and moment of inertia (Az 69 oF of : Series 60 Block , 70 form 
are here represented by full lines in Fig. 8. Tuck also examined the 
forward speed corrections to be applieg to, ae a Nee values; 
thus, especially, he put Agg = Ace = (U 1 jes age or in present 
notation 

Ni(u" th .= NI( my es r x" my (6 3) 

ran oh ea ae u''=0 wile v5 tO i 
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Fig. 8. Total added mass and added moment of inertia for a 
Series 60 Block .70 form according to theory and 
experiments. 

(Note that the strip theory is not valid for small "reduced frequencies" 
w' = w'"/u", where it shall be replaced by a slender body theory, [ 31] .) 
The dotted curves in the diagrams indicate predictions for 
Fa = ul = 0.20. 

The Series 60 Block .70 form was subjected to oscillator 
experiments in lateral modes at several frequencies and forward 
speeds by van Leeuwen, [32]. The results for the naked hull with 
rudder at F,, = 0.20 are compared with the predictions from strip 
theory in Fig. 8. The experimental values fall well below these 
predictions in the entire range of frequencies, especially in case 
of the moments in yaw. Although it is inherent in the testing tech- 
nique that very low frequencies could not be included van Leeuwens 
results do cover the critical range around w" > u" = 1/4, 

Consider a surface body in steady motion along the centre- 
line between two parallel walls width W apart; the diverging bow 
wave displays an angle to the centreline. If the motion is steady 
the reflected wave will pass aft of the body only if W/L > tg, 
regardless of the speed. For the simple travelling pressure point 
the cusp line angle is equal to 19947 according to the Kelvin theory, 
whereas-slightly different values may be observed for real ship 
forms. In case the body is oscillating (as in the simple example may 
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be illustrated by a pulsating source) additional waves will form, 

which move with speed g/w. At low frequencies these waves move 
faster than the body, so that the diverging wave front folds forward, 
and at a certain forward speed there is now a new requirement on 
basin width to avoid wall interference. For combinations of w and 
V (or u), in which y = w"u" = 0.272, the opening angle equals 
B = 90°, and with a further reduction in speed it rapidly reduces 
again to 55° as y approaches 1/4, This latter condition is associ- 
ated with a special phenomenon of critical wave damping, as has 
been shown from theory as well as experiments by Brard, [33]. 

In model tests with a ship form in lateral oscillations a narrow 
range of critical frequencies may be identified by a change of the 
distribution of the hydrodynamic forces, which was clearly demon- 
strated by van Leeuwen's analysis. 

Whereas there is a discrepancy in the absolute values of 
added masses compared in Fig. 8 this discrepancy could be reduced 
by the application of a three-dimensional corrector; more elaborate 

theories of forward speed effects for slender bodies at low fre- 
quencies may further improve the comparison. In the main, there- 
fore, it may be stated that the variation of added mass with frequency 
is well documented. 

Added Masses in Maneuvering Applications 

The performance problems set up in maneuvering studies 
usually involve a short-time prediction of a transient response to a 
control action, and it is therefore convenient to be in the position 
to use ordinary non-linear differential equations with constant coef- 
ficients. This, of course, is in contrast to the linearized spectrum 
approach to the statistical seakeeping problem, which will more 
readily accept frequency-dependent coefficients. (Frequency- or 
time-dependence as a result of viscous phenomena will be touched 
upon below.) Which values of added mass are now to be used in the 
equations for the manoeuvring ship? It shall be noted that it is hard 
to judge from the behaviour of a free-sailing ship or ship model which 
is the correct answer unless special motions are carefully examined. 

It was early suggested by Weinblum that the low added mass 
values of the high-frequency approximation should be adequate for use 
in dealing with problems of directional stability, where starting con- 
ditions should simulate impulsive motion, [19]. Weinblum also drew 
attention to Ref. [ 34] , in which Havelock proved that the high- 
frequency values appeared in horizontal translations with uniform 
acceleration, regardless of the initial velocity. 

The impulsive pressures experienced on the tapered bow and 
stern portions of a slender body in oblique translation may be calcu- 
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lated from the sectional area curve slope and the added mass 
characteristics of the transverse sections, as shown by Munk [ 17] 

and experimentally verified for the submerged doublebody ship form 
in Ref. [18]. The good agreement obtained between total yawing 
moments measured on this form and its surface ship geosim suggests 
that the deeply submerged added mass values should apply in this 
case. It is observed, however, that the water particles in way of a 

certain section station here are not repeatedly accelerated from 
rest as is the case when considering the cylindrical part of the hull. 
Again, if the principle of superposition of damping and inertia com- 
ponents to the total hydrodynamic force shall be retained for general 
motions it shall be necessary to adopt the zero-frequency added 
mass values. 

An illustrative discussion of added masses with special 
application to the design and analysis of experiments is due to 
Motora in Ref. [35]. For the determination of the added mass in 
sway to be used in the aperiodic equations of a maneuvering ship he 
recorded the direction of the acceleration imparted to a model by a 
force suddenly applied in a certain direction. The added mass then 

could be found from a reasonable estimate of virtual mass in surge. 
To obtain the added moment of inertia in yaw he recorded the angular 
acceleration following the impact by a pendulum, the momentum 
loss of which was also known. He suggested that the inertia values 
so derived should correspond to the impact or high-frequency type, 
but the results included from tests with a series of ship models indi- 
cate sway mass values of the same order as those valid for the deeply 
submerged case, and moments of inertia in yaw of magnitudes cor- 
responding to finite frequency surface values. 

In a recent paper Motora and co-authors [36] compare the 
results of new experiments and calculations of an "equivalent" 
added mass for a ship model in a sway motion, which is initiated 

by a ramp- or step-form impact input of finite duration. The calcu- 
lations are based on Tasai's section values in the frequency domain 
[26] , and in agreement with the experiments they confirm that the 
value of the equivalent added mass defined is a function of impact 
duration. (Cf. Fig. 9.) If the duration is infinitely small only the 
equivalent added mass is equal to its high-frequency value, and it 
becomes larger the longer the duration. Thus these results help to 
explain the earlier findings for added masses as well as for added 
moments of inertia, for which latter the impact technique then used 
did generate rather short input impulses. 

For application to normal ship maneuvers it may now seem 
justified to use the low-frequency or deeply submerged values. 

In recent years it has been widely accepted that the accelera- 
tion derivatives for a surface ship model may be evaluated from a set 
of "planar-motion-mechanism" tests in pure sway or yaw. The 
acceleration amplitudes are varied by an adjustment of oscillator 
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Fig. 9. Motora's equivalent added mass coefficient as defined by 
acceleration due to step input impact of duration T 

amplitudes, whereas the frequency is kept as low as running length 
permits, [32]. A typical reduced frequency w' =w-+ L/V willbe 
of order 0.5, corresponding to w"=y/u", wo" =o' + u" =0.4. in 
Fig. 8. The derivatives so obtained may be expected to be somewhat 
higher than the zero-frequency values. 

The theoretical zero-frequency added mass values for two- 
dimensional LEWIS forms as well as for semi-submerged ellipsoids 
of finite lengths indicate the main dependence on principal geo- 
metrical characteristics. Especially, for very large length-to- 
draught ratios the ellipsoid values tend to those of a semi-elliptic 
cylinder, (1/2)pT?, so that - Yj = T/B. Moreover, it will be seen 
from [ 24] that for LEWIS eee general - YJ! likewise is rather 
close to T/B for fullness coefficients corresponding to midship 
sections. 

The ellipsoid family has a constant prismatic coefficient 
g = 2/3. The correction for finite length involves a slight dependence 
on B/T, as may be seen from Fig. 10. In amore general case 
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Fig. 10. Non-dimensional added mass (a) and added moment of 
inertia (b) from theory and experiments T 

this correction will also depend on g and on lateral profile, etc. 
For the inclusion of ship form values in Fig. 10a the diagram is drawn 
to a base of g - (2T/L). The ordinates are given by the product 
- YJ (B/T)¢, by which the intercepts on the vertical g - (2T/L) = 1 
then corresponds to the infinitely long cylinders. 

In addition to the ellipsoid and LEWIS cylinder values the 
diagram include the experimental results by Motora just referred to 
as well as a number of oscillator results, chiefly from tests run for 

SSPA inthe HyA PMM. The general character of the three- 
dimensional corrector is clearly seen, and it is suggested that the 
diagram may be used for approximate estimates. 

Non-dimensional added moments of inertia, in terms of 
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product - N}'+ B/T, are displayed in Fig. 10b, compiling experiment 
data from different sources. Here the two-dimensional LEWIS-form 
values for high as well as low frequencies are indicated by off-sets 
to the left in the diagram. Motora's 1960 impact test data, which 
appear on a level close to the high-frequency prediction, do not 
indicate any definite dependence on draught-to-length ratio. These 
data as well as low-frequency PMM data clearly indicate an increase 
of moment of inertia with reduced fullness. This trend may be 
expected in view of the deep and narrow bow and stern sections in 
fine forms — certainly the deeply-submerged ellipsoid is not repre- 
sentative for a ship form in yaw acceleration. 

Semi-Empirical Relations for the Four Basic Stability Derivatives 

Among the large number of first-order force and moment 
derivatives, that are used to describe the linearized hydrodynamics 

of the moving hull, only four appear in the analytical criterion for 
inherent dynamic stability with fixed controls. These are the stability 
derivatives proper, Yyy, Nyy, Yy, and Nyy» From simple analogy 
with the zero-aspect-ratio wing theory of Jones [37] they turn out 
as in Table III. 

TABLE III 

Non-dim. system: "Prime" 

tr Ref. area: 

Ld 

Symbol and analogy 
value: 

1 ES ° 

Mm 

N 

RAE es es ee ee 

~ 

ola AW WA NIA Sa NN 5 oa WA WA MA Ala Ny Ny 

Although this analogy has been verified in principle for a submerged 
double-body model as well as for the surface model at small Froude 
numbers [18], it shall not be expected to furnish an adequate nu- 
merical prediction. It suffices to point on the alternative relation 
for a closed body in a perfect fluid, given by Eq. (5.7), and to the 
fact that at least some negative lift is still carried on the run of 
normal ship-form hull. The bow lift or transverse force is not 
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concentrated to the leading edge as in case of a rectangular wing but 
distributed over the forebody as an effect of fullness and section 
shape. Certain modifications to the hull form are known to affect 
the force derivatives, but do not appear in the simple form 
parameters of Table III. The fin effect of screw and rudder con- 
tributes to the derivatives even in the case of vanishing aspect ratio 

of the hull. 

From the analysis of a large number of derivatives it has 
been found that the scatter of data in a plot of, say, May versus the 
parameter LT /V is somewhat smaller than the scatter of VG on 
base of aspect ratio 2T/L. 

The diagrams Fig. 11-12 include stability derivative data 
for normal ship form models with normal-sized rudders propelled 
at medium Froude numbers on even keels. The dotted lines shown 
correspond to the simple wing analogy. The full lines are derived 
by linear regression and upon the tentative assumption of a - 1:2 
relation of moment and force intercepts at zero aspect ratio. Their 

equations are given as 

-Yuv -Nuv 

1.5 0.6 

a 

8G 
V 

1.0 0.4 

Number of Number of 

Prop. Rudder : Prop. Rudder 
0.5 0.2 

1 

1 

2 

0 0.2 0.4 0.6 0.8 
LT2/V 

Fig. 11. Stiffness force and moment derivative data with mean 

regression line. (Cubic fit to experimental results.) 
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Fig. 12. Rotary force and moment derivative data with mean 

regression line, (Cubic fit to experimental results.) 

2 2 LT gh pes Yiy=- 2.6647 - 0.04= - 1.69- J+ ae - 0.04 

nue - 1.01 £2°+0.022-1.28-7-S2+0.02 uv ° LY, e eo 4 VAR ° 

(6.4) 
72, 

tors DS 3 = 7, iT = 
vies 1.02 V 0.18 _ 1.29 4 VW 0.18 

LT? _ + LT 
— 1.88 ro aya +0.09 Ni,= - 0.74 + 0.09 

and of the data 100, 86, 67 and 79 per cent respectively, appear 

within + 20 per cent of these mean values. 

It is obvious that these expressions should be regarded as 

guide values only, but they may also be used for comparative studies, 

especially when steering on a straight course is of main concern. 

In this latter case it is more important to have a proper knowledge 

of the control derivatives, whereas Eq. (6.4) may furnish adequate 

estimates for the hull forces; they again shall be corrected for 

alternative control arrangement alternatives, however. 
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In the next Section an approximate method will be given for 
finding the control derivatives of a rudder of conventional design. 
In the hypothetical case of an isolated rudder experiencing the nomi- 
nal inflow at the stern of the ship it would be easy to calculate its 
contribution to the total "hull + rudder amidship" derivatives from 
a knowledge of its control effectiveness. In general the interference 
effects in behind condition are much more complicated, and in fact 
the contribution searched for mostly is quite small. Even more, 
then, the effect of a modification to rudder and control derivatives 

comes out as a very small change in the stability derivatives. The 
diagram in Fig. 13 is compiled to correlate the effects of such modi- 
fications as reported by Eda and Crane [38] and documented in test 
results available at SSPA. Obviously new experiments are required. 

Reference shall here also be given to the methods of estimating 
stability derivatives for surface ships as suggested and successfully 
tested by Jacobs, [ 39]. 

The aerodynamic wing analogy should only be valid for small 
Froude numbers as the limit solution of a general lifting surface 
integral equation. The effects of finite Froude numbers on the 
lateral stability derivatives of a thin ship of small draught-to-length 
ratio was studied by Hu, [40]. According to Hu the force and 

0,15 Dav. Lab.Exp. with 
Series 60 Block.60 Form 

HyA Exp. with 
SSPA Twin-Screw/ Twin-Rudder 
Tanker 

0 0,005 0,010 0,015 a(t] 

Fig. 13. Change of control force derivatives and total force 
derivatives in sway and yaw with change of relative size 
of rudder. 
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moment derivatives at F, = 0.1 are increased by some 20 per cent 
above their zero-speed values, an increase which is not fully 
realized in model tests. A comparison of the results of this theory 
with various experiments is presented by Newman, [41]. Newman 
also points out that the free surface may give rise to a steady side 
force as a thickness effect, and indicates a solution to that problem. 

From an inspection of the experimental results for the drift 
moment, which are the more consistent, a first approximation to 

the speed dependence is given by 

(NO) = (NE), + 2 Nie" (6.5) uv'u uuy 

where 3Ni,,* 1.3(NjV),- This suggests that the zero-speed values 
will be some 20 per cent lower than those indicated by the mean line 
of Fig. 11. 

Viscous Frequency Effects and Small- Value Non-Linearities 
in Lateral Forces 

In dealing with the free-surface effects on added masses it 
was concluded that so far the frequencies involved in manoeuvring 
motions were to be regarded as low, but that frequency (or memory) 
effects should be expected to appear in time histories were viscous 
phenomena were of more concern. 

The extreme exemplification is furnished by the pitching 
submarine, the stern planes of which are operating in the downwash 
behind the bow planes, but in case of submarines as well as normal 

surface ships also the very stern portion of the hull is exposed to 
velocities induced by vortices trailing from upstream hull and 
appendages. Moreover, local separation within the three-dimensional 
boundary layer flow over the stern directly affects the cross-flow 
momentum and the impulsive pressures. The forces and moments 
experienced by the hull in transient motions can then only be calcu- 
lated by use of convolution integrals over the entire time history, 
such as derived by Brard in case of a special descriptive model, [ 42]. 

For application to the mathematical model defined by ordinary 
differential equations it is again still possible to use frequency 
dependent coefficients, but unfortunately this frequency dependence 
is likely to be subjected to scale effects. It is therefore advisable 
to design experiments for Strouhal numbers or reduced frequencies, 
which are low enough to produce steady-state values. From a sum- 
mary of published data in Ref. [41] the limiting frequency will be 
expected to be somewhere in the region 1<w'< 4. From a more 
recent analysis of sinusoidal free-sailing tanker model data Nomoto 
suggests that this limiting frequency is approached already at 
w'= 0,5, [43]. This indicates that the high-frequency part of a normal 
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ship steering transfer function is obscured by the viscous frequency 
dependence. (Cf. Section IX.) 

The steady motion of a full form may also be accompanied 
by a non-steady separation and shedding of vortices, which will 

violate captive measurements, or it will modify the force field and 

be a cause of unpredictable scale effects. In Ref. [44] Nomoto 
drew the attention to an "unusual" kind of separation, which had 
been observed not on the leeward but on the outer side of the after- 
body of turning models. (Later on he reported the same phenomenon 
taking place on full scale ships combining high block coefficients and 
low length-to-beam ratios.) This separation may be responsible 
for an almost constant increase in yaw damping moment — see 
diagram in Fig. 14a — and so indirectly for the small-rate non- 
linearity displayed in the yaw-rate-versus-helm diagram from spiral 
tests with these hulls. 

Unsymmetrical separation may also take place on a hull 
moving along a straight line with a small angle of drift. If transverse 
force and moment both are mainly linear functions of angle of drift 
the centre of pressure will remain in a forward position, only 
gradually moving aft with onset of viscous crossflow. A three- 
dimensional separation, which suddenly develops on one side of the 
hull, may explain the strange behaviour of the centre-of-pressure 
curve of a tanker model tested by Bottomley [ 45], here reproduced 
in Fig. 14b. New tests with modern hulls sometimes indicate 
similar trends. 

It is fully possible to approximate these effects by a small- 
value non-linearity term in the mathematical model, which may 
then be used, say, for the prediction of a ship behaviour which is 
extremely sensitive to winds of varying directions [ 46]; if the sepa- 
ration is peculiar to the model only this prediction is meaningless, 

however. 

Large-Value Non-Linearities in Lateral Forces 

The predominant non-linearities present in the lateral forces 
are due to viscous cross-flow resistances, and they can only be 
established by experimental procedures. It will be assumed that 
the empirical relationships may be expressed by finite polynomials, 
derived by curve-fitting, and that these same relationships therefore 
also may be fully defined by a finite number of terms in the Taylor 
expansions. This convention motivates the use of appropriate 
numerical factors in front of the derivatives within the hydrodynamic 

coefficients. 

From pure athwartship towing it is possible to define a Y- 
force -Cp°* LT - v*, the sign of which is governed by ly|/v. Thus 
X(v4, hives v2|v|/v, or, for convenience, 3Y vive 

Yvvtivi/y) Ivlv 
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Fig. 14. Smalli-value non-linearities in full form model 
testing. 
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Note that the factor $ has been retained, which should not have been 

the case if v and lv | had been treated as independent variables; 
this, however, would only have been a formal artifice with no 
physical significance. 

In straight-line oblique motion the non-dimensional lateral 
force is Y" (u", v", v"*, |v"|/v"), or, in accepted writing 

Yu" vi") = ye uly" ie ave ve |v" (6.6) 

where a =-Cp- ew (2. It is obvious that here two terms 
are added, which each one corresponds to a certain flow field. In 

the discussion of the "linear" term it was pointed out that the ideal 
flow picture would remain valid over the bow portion of the hull, 
and in view of the finite time required for the development of the 
viscous cross-flow these conditions may still be true at larger 
angles of drift. (Cf. non-linear theories for the lift of zero-aspect- 
ratio wings. ) 

0.8 

0.6 

Cross - Flow Contribution Viscous 

0.4 

Lee Ti 

Zero - Aspect - Ratio 

Wing Theory 

0.2 

0° 30° 60° 90° 
B 

Fig. 15. Calculated and measured lateral forces on a cargo liner 
model in oblique towing. 
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An experimental evidence of the practical validity of the 
superposition in Eq. (6.6) is illustrated in Fig. 15, based on force 
measurements at SSPA on a 3.55 m model of a cargo liner with 
rudder and bilge keels, [47]. In this diagram the quotient 
Y¥/(p/2)V°LT =(2V/L°T)Y¥"/(u"'? + v"*) is plotted versus B = - arctg v/u, 
and the viscous cross-flow component is seen to dominate the entire 

range of 10°< B < 90°. 

The variation of cross-flow drag coefficients with drifting 
speed and hull geometry has also been discussed in several papers 
by Thieme and by other authors, [48, 49, 50], In lack of experimental 

results for a special case in the non-linear range it shall be possible 
to use these results; a typical value of cross-flow drag of a tanker 
formis C,)=0.7. The contribution of cross-flow drag to moment- 
due-to-sway may then be ignored. 

In a similar way it is possible to approximate the non-linear 
rotary derivatives. If cp (> C)) is the mean section drag coefficient 
the moment-due=to-yaw derivative is sNii =e (c,/32) + (LEST 72% 
except for a three-dimensional correction factor. (For rough esti- 
mates ZN], = 0.03 + 2Yiyy » which is verified from experiments.) 
The force-yaw velocity derivative now is zero to this approximation. 
Additional effects of skegs and screws contribute to non-zero values 

1 
of zNj\,, as well as Gare 

In the general case the local cross-flow resistance is pro- 
portional to lv + xr|(v + xr), and from symmetry relations the 
coupling terms are seen to include the derivatives Yjyj,, and Yvypr), 
etc. (In the cubic fits more often used these couplings are repre- 
sented by terms in Yyyr and Yy-,, etc. — cf. Abkowitz, [51].) 

The contribution to Y due to the combined sway and yaw may 
be written Yj, |v|v(r/v) + Yiote |r|r(v/r), iee., Yjyj, may be looked 
upon as the derivative of Yj,,, with respect to yaw velocity r per 
unit v, etc. 

Forward Speed and Resistance 

The principal effects of viscous and free-surface phenomena 
on the resistance to steady forward motion are well-known to naval 
architects. The correlations of wavemaking and separation with ship 
geometry are still less satisfactory. However, alternative methods 
are available for full scale powering predictions from standard series 
or project model data. As will be further discussed in next Section 
the adequate synthesis should supply information not only on shaft 
horse power and r.p.m. but also on hull resistance and wake 

fraction. Speed trial data therefore require an analysis suchas 
proposed and used by Lindgren; in case of very large and slow- 
running ships it may be necessary to include scale effects also in 
the open- water characteristics of the screw propeller, [52]. 
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A simple guide to ship resistance values may be obtained 
from the mean line of Fig. 16, which summarizes the results ofa 

limited number of SSPA trial trip data in terms of the total specific 
resistance R/A = - >See on basis of Froude number Fy or 
u", (A similar plot of "total resistance in Ibs to displacement in 
long tons" versus Taylor speed-length quotient, based on model data, 
was published by Saunders, [| 53].) The mean line also reflects the 
general trend of the resistance-speed-dependence for the individual 
ships in the proximities of their design speeds. 

8 ! 

Black circles relate to full speed, | 
open circles to lower speeds 
at same trial f 

H 

0 0.10 0.20 0.30 Fry 

Fig. 16. Specific resistance figures as evaluated from ship trial 
data at SSPA. 
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A close approximation to a resistance curve with typical 
humps and hollows requires a multi-term polynomial inu. Estab- 
lished practice in naval architecture makes use of a single exponen- 
tial term R, (u/u, )° to characterize the curve in the vicinity of Uy. 

For large slow-running tankers p* 2 over the entire speed range 
of interest, which is associated with an almost constant advance ratio 

for the screw. In confined waters it may be necessary to include a 
higher-order term; see Section IX. 

Forward Resistance Due to Lateral Motions 

When the ship deviates from the true forward motion addi- 
tional forces appear in axial direction. The main cause of speed 
loss in a turning motion is due to the axial component of the centri- 
petal mass force and the hydrodynamic contribution X,,° rv, of 
second importance is rudder drag and finally the axial force due to 
oblique-hull lift and wave-making shall be considered. 

Ideal-flow hydrodynamics identifies X,;, with - Yy, i.e. the 
mass effect is virtually almost doubled. (Cf. (5.6).) A recent 
analysis of turning trial data indicates much lower values of X,,. 

In a steady turn the ship proceeds with her bow pointing 
inwards, so that (m + X,,)rv = - (m t+ ed igs) -B indicates a force 
opposed to forward thrust. In running on a straight course the fre- 
quency of the yawing motion normally is so low that yaw rate and 
drift angle are in phase during most (but not all) of the time, and so 
an average parasite resistance results. 

: Let the response to a sinusoidal motion of the rudder be 
b= q° sin (wt te,) and B = By°* sin (wt + €g). Averaging over a 
number of complete periods gives 

=B = Fao cos (e, - &) (6.7) 

As the normal merchant ship will pivot round a point closely 
aft of the bow at low frequencies a rough, estimate of the average 

product is given by (rv)w.9* - (OP /2)uq. 

A plane wing in a uniform flow will experience an induced 

drag as given by Cpj = (1/mA)C,?. According to certain experiments 

this simple relation may still be used with a correction factor for 

the twisted flow over a rudder behind a screw. The calculation of 

rudder lift will be shortly discussed in the next Section; using a 

nominal aspect ratio equal to twice the geometrical one the correction 

factor just mentioned will be of the order of 1.2 - 1.4. 
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Typical estimates for tankers give as a guide value a relative 
increase in forward resistance due,to a rudder deflection of 6 
radians AX(5)/X(u) = 3.5 or 5° S For small sinusoidal helm 
angles on a straight course the quasi-stationary application gives 
AX(6)/X(u) = 1.75 or 26,°, which may be compared with the relation 
given from propulsion tests with a Mariner ship model in Japan, 
AT(5)/T = 2+ 6°, [54]. 

At propeller advance conditions removed from the steady 
forward motion state the induced rudder drag will be given by 
+ Xcess? |c|c6°, where c=c(u,n) is the effective flow velocity 
past the rudder and where the coefficient a tens is proportional 
to the control derivative +Y(,s and to the ratio a Vale In com- 
puter applications a soft-type limiter will be used fo simulate the 
conditions for a stalled flow. 

The viscous lift experienced by a slender ship hull in oblique 
translation is also accompanied by an induced drag, but the axial 
component of the resultant force still is expected to be positive. 
(According to the zero-aspect-ratio wing analogy the resultant force 
will bisect the angle between the normal to the hull and the normal 
to the flow. With increasing aspect ratios the resultants move 
towards the normal to the flow.) The break-down of the ideal flow 

over the stern causes a change of viscous pressure resistance, 
however, and wave-making effects will cause a further increase of 

forward resistance. 

These effects are here illustrated in Fig. 17 by results of 
axial force measurements on the surface ship model and the sub- 
merged double-body form otherwise described in Ref. [18]. From 
an inspection of these and other surface ship model experiments it 
is suggested to use a term 

lvf|ve (6.8) 
uvvv 

x(a, v) = 3 xX 

to represent the axial force due to lateral drift. An approximate 
value of the derivative is given by §X',, = - 200. 
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VII. SPEED AND STEERING CONTROL 

In general the subject of steering and maneuvering may not 
be separated from that of propulsive control, and this is specially 
true in case of ship behaviour at slow speeds. Moreover, in model 
testing the interactions between hull, propeller, and rudder are 
likely to cause the main problems of model-to-ship-conversion, 

including scale effects of a hydrodynamic nature as well as other 
model effects due to the dynamics of the testing equipment. 

Large seagoing ships are usually propelled by a single centre 
line screw, or by wingward twin screws. In case of a tandem contra- 
rotating propeller arrangement most of the characteristics discussed 
below may be calculated for an equivalent single propeller. In case 
of close-shafted twin screws of overlapping or interlocking types 
the interaction with the rudder should be specially considered. 

It has been repeatedly proven by handling experience that 
twin screw ships should be fitted with twin rudders. Recent model 
tests indicate that with a suitable design of the rudders, including 
a certain neutral position toe-out, this arrangement may favourably 
compete with the centre line rudder alternative also from a propulsive 
performance point of view. 

In the application of the first-order steering theory, first 

introduced by Nomoto in 1956 and strictly valid only for inherently 
stable ships, there appear only two constants: a (desired high) 
"sain" K, which represents the ratio of rudder turning moment to 
yaw damping, and a (desired low) "time constant" T, which 
measures the sluggishness of the ship response, and which repre- 
sents the ratio of ship inertia to yaw damping. As was subsequently 
also shown by Nomoto [ 55] the non-dimensional quotient K'/T' 
turns out to be proportional to the parameter LA,/V for ships with 
similar stern arrangements. This quotient may therefore be looked 
upon as a rudder-on-ship effectiveness factor, proportional to the 
initial yaw acceleration imparted to the ship by a given helm. 

Some ten years ago maneuvering trials were run with three 
tankers of the Gotaverken 40 000 tdw series, all similar except for 
the stern arrangements, [56]. The SSPA analysis of zig-zag tests 
with respect to the rudder-on-ship effectiveness factor just mentioned 
offers a unique illustration of the merits of these arrangements, 
Fig. 18. In particular, note that the two alternatives with rudder 
behind screw (screws) prove to be equivalent in case of same total 
area of rudder, and that the use of the larger area of a twin alter- 
native therefore is especially favourable. 

A propeller or a rudder, or the combination of a propeller 
and a rudder, acts as a stabilizing fin as well as a manoeuvring 
device; the contributions to the fin effect from the propeller and from 
the rudder-behind-propeller are of equal order. It should be 
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100 A,/LT 

Fig. 18. Results from first-order analysis of full-scale zig zag 
tests with three 40 000 tdw tankers, similar except for 

stern arrangements. 

realized that a minor modification to a rudder does not appreciably 
affect this fin effect or the size of a hysterisis loop in the yaw- 
velocity-versus-steady-helm diagram of an unstable ship. However, 
the higher control force per degree of helm then possibly achieved 
will help in actual directional control, where the history of yaw 
velocities and helm angles takes place well within the height of the 
steady-state loop. (See also Section I.) 

The general propulsion case will be represented by an arrange- 
ment including one centre line screw and two wing screws, develop- 
ing thrusts T,, Tg and Tp, respectively. Hull interference 
generates axial forces t,T,, tT, and tpI,, in the opposite direc- 

tions, as well as lateral or sideward forces s,° T and s,° T,- 
In order to adhere to the thrust deduction concept the factors t — 
which are not necessarily constants — will be taken as positive, 
so that’the force in postitive’ x’ direction is -t* T. The facter 

S, will be positive, and sp= - Sg. Roughly sg=tg* cot a, where 
a is the effective waterline angle in front of the propeller. 

Normally the lateral forces due to Tg and Tp are in balance, 

but if Tp# Ts there is a resultant force applied some 0.4L behind 

the C.G. of the ship. The turning moment thus obtained is much 
larger than that produced by the axial forces along the shaft lines, [ 57]9 
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Fig. 19. Force fields on twin-screw tanker on straight steady 
course. 

The diagrams in Fig. 19 illustrate the symmetric force field 
around a twin-screw tanker in normal straight course conditions, 
and the steady state situation when running with starboard propeller 
idling. The non-symmetric suction force on the port quarter is 
balanced by the forces due to drift and checking rudders. The drift 
angle is a fraction of a degree only, and some 90 per cent of the 
compensation force is due to the rudders, set at some 5 to 7 degrees, 
With the twin rudder arrangement it should be possible to maintain 
75 per cent of the speed in this condition. The induced resistance 
due to rudder lift would be larger in case of a single rudder between 
the propellers, but the main cause of speed loss of a ship propelled 
by one of its screws only is the additional drag from the idling 
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propeller; again, that drag may well be increased by a factor of 3 
if the propeller is locked. 

The characteristics of a propeller in axial open-water flow 
are usually given by tables or curves of well-known Ky and Kg 
coefficients versus advance ratio J. In yawed flow the propeller 
also experiences a lateral force and a (small) pitching moment, [ 58]. 

In behind conditions the effective angle of drift at the pro- 
peller still is roughly 2/3 of the nominal local angle, high enough to 
let the propeller contribute the fin effect already mentioned. (The 
sidewash behind the propeller then has a further straightening effect 
on the flow to the rudder.) The effective advance ratio is modified 

by the effective wake in the factor 1-w; here w will be chosen as 

for thrust identity. The effective wake, again, is modified by the 

drift of the ship, being higher for a starboard drift angle than for a 
port one and a right-handed propeller [59]; here that effect will be 
taken as of second order. 

Finally, the vertical asymmetry of the flow field is responsible 
for the appearance of a lateral force on the propeller of a ship even 
if drift or yaw are zero. In case of a single screw ship this latter 
force may be put equal to 3 to 5 per cent of the thrust, [60]. A 
right-handed screw tends to throw the stern of a loaded ship towards 
starboard, thus requiring a small starboard helm to be carried on 
straight course. Other free-running model tests prove that draught 
conditions may change this picture, and that the ship on light draught 
may have a tendency to turn to starboard, (oa). 

The hydrodynamic'thrust T (T,; T,, T,) and torque: © 
(Q¢, Qs, Qp) — which is negative in case ofa right-handed screw on 
a driving shaft — will be given as quasi-stationary functions of 
instantaneous values of forward ship speed, u, and screwr.p.s., 
n (ng, ng, np). The thrust is a major factor governing the flow 
velocity past the rudder, and this velocity likewise will be given in 
terms of u and n. Rudder control derivatives usually are deter- 
mined from model tests in one or two conditions of screw loading 
only. In order to find an adequate prediction of full scale control 
derivatives for the more general propulsion case it is necessary to 
combine model results with a simple procedure for calculating the 

total control force due to rudder deflection. 

From the hydrodynamical point of view the typical all- 
movable rudder in behind condition is equivalent to a twisted wing 
on a pointed afterbody. There are a number of additional complica- 
tions, however: The spanwise velocity distribution is highly non- 
uniform, the flow along the chord is accelerating or decelerating, 
the gap between wing and body is within a retarded boundary layer 
flow and it also varies with the angle of deflection, the boundary 
conditions at the free surface violate the vertical symmetry aspect 
even if there is no suction-down of air, the shape of the body stern 
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is far from say a simple axisymmetric cone. The modern half-spade 
rudder on a fixed horn (the Mariner-type) is a hybrid of the alle 
movable and the flapped types, and other common forms all have 

their special characteristics. The procedure here adopted is not 
a substitute for the detailed calculations necessary for a certain 
project design, but it will furnish a good estimate of control forces 
and make possible the extended use of model results referred to 
above. 

The Rudder or "Control" Derivatives 

It will be assumed that for each rudder configuration may be 
defined "equivalent" values of rudder area, rudder aspect ratio, 
rudder angle and rudder advance velocity. 

A detailed study of the velocity field in the slipstream ofa 
propelled tanker model and of the pressure distribution over the 

rectangular rudder fitted to this model was reported by Lotveit, [62]. 
The distorsion of the spanwise loading due to slip-stream rotation 
was clearly demonstrated, but the diagrams did not indicate any 

definite influence of the rudder image in the hull and free surface; 
the gap distance from top of rudder to stern profile was some 12 per 
cent of rudder height. Straightforward calculations of rudder lift 
from known relations of lift curve slope versus geometric aspect 
ratio and an average advance velocity based on the simple momentum 
theory proved to give good agreement with the rudder forces measured 
by a force balance or integrated from the pressure field. 

Unfortunately in this case no simultaneous measurements 
were made of the total hull-and-rudder forces, and there is stilla 
lack of such data for normal surface ship forms. However, already 
from the old experiments by Baker and Bottomley [ 63] it was seen 
that the total force due to rudder deflection was increased by some 
40 per cent in presence of a deep cruiser stern close above the 
rudder, and that a third of the total force then was carried by the 
hull. 

Let b be the height of the rudder at the stock, or the higher 
value forward of it, and let a be the depth to top of rudder at the 
same station. With a projected area A, of the pudder the aspect 
ratio of rudder + plane image is equal to A = 2b*/A,. The lift 
curve slope aj is taken from the theoretical curve derived from the 
Weissinger theory [64], or from empirical curves available. 

The geometrical aspect ratio usually is of the order of 1.5, 
i.e. the rudder is not a low-aspect-ratio fin, but it seems still to be 
possible to make use of the results for wing-body interferences 
applicable to such fins. In particular, the ratio of the liffon a rigid 
combination of a wing and a cylindrical central body, Lae, to the 

lift of the abridged wing alone, Lg, is simply given by 
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(1 + a/atb)*, [65]. Next, for the calculation of the lift carried on 
the axially oriented body and on the wing deflected to the flow, it is 
observed that the exact t theory by Mirels [66] may be approximated 
by 1 = yee 7 LNS= EN. (1 +a/atb). Except for a correction factor 
the control derivative for the ship will be calculated as 

a2 oo A 1 Isgls W = eM 4S ' = py nacre Are 

where Y{ unlike Y. is defined also for zero forward speed. 
The Pedeon nolt spade or Mariner type rudder has a fixed horn, 
which divides the upper part of the rudder in ratio A,/(Ay - A,)- 
The right-hand member of (7.1) may then be multiplied by a factor 

i - (1/4) (ATR). 

The effective rudder advance velocity c (squared) is calcu- 
lated from the mean square velocity of the screw race and an esti- 
mated mean square velocity past the rudder outside the race. If w 
is the wake factor as integrated by the propeller (thrust identity) the 
effective square velocity above ae race in a normal single screw 
arrangement may be taken as u “(1 - 4 w)?, Inside the race, which in 
average conditions has a diameter some 10 per cent smaller than 
the propeller, the ultimate mean square velocity is given by 
u*(1 - w )*(1 + (8/m) * (K,/J*)), where, for u>0, 

J by 
Ky = Ky, * ey M Ky, s Ky J eae Ky, J (7.2) 

is to be approximated from the open water propeller diagram. Where- 
as the thrust may be analytically defined for all combinations of u 
and n — see below — the working conditions of the rudder are known 
only for a positive thrust, in which case 

=e 2 2 eve ites ee 
COT 2Cyy BF Cy, UN F 2Ciniq |n|n F2Cqy (7:3) 

From an analysis of a large number of control derivative 
measurements on models it appears that a correction factor of 
0.7 - 0.8 shall be applied to Ae 1) when combined with (7.3) to give 
the force Y(u,n,6) =pV/L> aie - &&. This correction factor is 
understood to take care of gap ‘effects and non-ideal geometry of the 
hull + rudder arrangement, etc. 

The four constants in Eq. (7.3) depend on screw character- 
istics and wake factors, and they are therefore unique for the model 
scale. To facilitate a correction for this scale effect in the control 
derivatives the diagram in Fig. 20 has been compiled, chiefly from 
Ref. [67] and data available at SSPA. The slope of curves of wake 
factors against ship or model lengths increases with hull fullness; 
especially SSPA experience of full scale tanker trials rarely include 
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Fig. 20. Scale effects on wake factor w as integrated by propeller 

in model and full scale. 

effective wake factors above 0.38. 

In Fig. 21 the control moment derivative Ng for a 98 000 
tdw tanker is presented as a function of forward speed u and shaft 
speed n, for a 1:70 scale model as well as for the prototype. 
(Extrapolation to slowly reversed propeller is shown dotted.) In 
particular it is seen from the diagram that the turning moment from 
the rudder at self propulsion point of ship is only some 60 per cent 
of the model test value. 

During a maneuver the effective change of angle of attack 
of the rudder is a function of nominal helm deflection 6, drift v, 

and yaw rate r, and change of screw loading. Again accepting this 
quasi-stationary model it is 

E quay 6e= S t+(ky> — +k, St )[8| (7.4) 
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Fig. 21. Relative change of rudder control force with change of 
propeller advance conditions for 3.6 m model and 98 000 
tdw tanker prototype. Diagram based on model tests at 
VBD and SSPA, and on speed trials. 

where typical values are ky=-0.5 and k,=0.5. (An alternative 
but less explicit method to include the same phenomena is given by 
Strom-Tejsen and Chislett [68], who make use of a number of 
coupling derivatives such as Yeine etc.) 

Helm Control 

The manual or automatic pilot exerts the control through the 
steering gear, which is supposed to have a time constant T,, 
causing a small delay in the rudder angle 6 obtained. The value of 
T, may vary say between 0.4 and 4s, the first figure being a good 
catalogue value and the second one not seldom realized in shipboard 
testing. The steering gear or telemotor system often has a back- 
lash of about half a degree. 

The function of an auto-pilot may be said to be essentially 
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of the "proportional + rate control" type, although an integrator 
control shall be added to take care of stationary deviations. Com- 
mercial type auto-pilots include special features, which shall be 
includedin simulator applications. 

With the simple ideal auto-pilot "calling for" the rudder 
angle 5° = yi +o the transfer function of the feed-back loop is 

y(4 qr 8) 

Y, = Yan*? You, = ————-+— (7.5) 2 88 s"y 1 + Tes 

Typical values for the gain or "rudder ratio" y and rate constant 
o of a tanker auto pilot in deep water setting are y = 3 (degrees 
helm per degree heading error) and o = 135 seconds (or 135 degrees 
helm per degree per second of change of heading). (See Section XIII. ) 

Although the course keeping characteristics of say an inherently 
unstable tanker may be studied in a Bode diagram by use of a total 
system open loop transfer function Y,Y,, where the ship dynamics 
open loop Y, is defined from the linearized equations, this method 
is mostly avoided if an analogue computer is available. In case of 
small value non-linearities — such as dead zones or lags — in gyro 
compass and telemotors the equations~of-motion technique is un- 
avoidable. 

Much effort has been devoted to present the function of a 
manual helmsman in terms of a transfer function. The helmsman 
is a highly adaptive control system, which makes the task more 
difficult, but which also makes it more important. In many cases it 
is impossible to run real-time simulations because of lack of time, 
in other cases it is impossible to run comparative simulations just 
because of the learning ability of the operator. 

Hooft tried to evaluate criteria for manual steering of large 
tankers by use of a transfer function, in which the gain and time 
constants were derived by extrapolation from high frequency pilot 
dynamics, [69]. Undoubtedly new basic information is required. 

Propeller Thrust and Shaft Torque 

A majority of ocean-going ships are propelled by fixed-blade 
screws driven by diesel engines or steam turbines, the normal 
steady state outputs of which in principle are characterized by 
constant torque Q5& proportional to fuel pump stroke — and constant 
power — piaportional: to steam inlet pressure — respectively. 
In running conditions the mechanical torque losses QF depend on 
sign of r.p.m. but are more or less independent of its magnitude. 
Shaft r.p.m. is governed by the simultaneous equations for longi- 
tudinal resistance and for thrust and torque, for u>O here given as 
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The steady-state hydrodynamic thrust and torque are given 
as functions of forward speed, wu, and rate ae revolutions, n, based 

on open water K. and K, characteristics; and K, are first 
approximated by square functions of J = apie -w) or 4/J. 
(Note that a linearization of these characteristics does not result 

in a linearization of the (u,n)-dependence.) The Nordstrom data 

[70] may be used when reversing or transient maneuvers are con- 
sidered. In general it is then necessary to confine the analytical 
functions to limited ranges of propeller advance coefficients, i.e. 
to use alternative coefficients as in Eq. (7.2). Harvald has presented 
useful information on the propulsive factors at arbitrary steady-state 
advance conditions, [71]. The effects of separating boundary layer 
flow along the stern of a retarding ship are still less predictable. 

The added mass and moment of inertia involved in unsteady 
maneuvering of the propeller are functions of the momentaneous 
advance coefficients as well as of the rate of change of r.p.m. In 
small changes from normal propulsive conditions the added inertia 
is small as blade angles of attack are small. Naval architects often 
use a value of 30 per cent of rigid screw inertia for the added inertia; 
although this figure originates from model tests with screws oscil- 
lating at zero advance coefficient it may still be used as an effective 
average value during the short reversing stage of an engine maneuver. 
In fact this stage is dominated by the large control torques and by the 

way they are used. 

When simulating maneuvers with diesel-powered ships it 
shall be observed that normal r.p.m. control is not possible for n 

less than some 35 - 40 per cent of design shaft speed ny. The torque 
delivered is here rapidly reduced, mainly due to loss of charge air 
pressure. (For high r.p.m. Q; is almost zero.) Slow speed 
maneuvering must be performed by intermittent use of the propeller, 
which requires repeated starting of the engine. Reversing maneuvers 
must await drop of speed to some 60 per cent of the full speed value, 
at which lower speed braking air may be applied. There is alsoa 
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certain astern r.p.m. which must be attained before fuel may be 
injected to start engine back. For a discussion of detailed features 
of diesel maneuvering the reader is referred to a paper by Ritterhoff, 
[ 72]% 

The energy-converting efficiency of a turbine wheel has a 
maximum of some 80 per cent at a certain ratio of blade velocity to 
nozzle steam velocity, attainable at the design point. Assuming this 
ratio equal to 0.5, and a parabolic curve of efficiency symmetric 
to the design point, the following simple formula is obtained for 
the torque output: 

Q’ = 2xQk (1 - 2° n/M ) (7.7) 

Here o- and n, refer to torque and shaft speed at design conditions 
for full steam inlet xk = 1. The formula furnishes a good approximation 
also for present multi-staged ship turbines. In practical applica- 
tions to studies of slow-speed port approach maneuvering it must be 
realized’ that steam production may then be limited to say kK=0.7. 

VIII. MODELLING THE DEEP-WATER HORIZONTAL MANEUVER 

The General Case 

The ship will be regarded,as a rigid body moving under the_, 
influence of the gravity force mg and the buoyancy force -p* Vo°g 
— where Vo is the volume displacement at rest — as well as under 

that of the external forces, including the control forces applied by 
use of rudders and thrusters. Before reducing the problem to the 
normal merchant ship case the more general form of the rigid body 

dynamics will be included. 

The centres of mass (G) and buoyancy (B) may be off-set 
from the origin of the moving system (0), and it is then practical 
to apply Newton's laws in a summation of the acceleration forces 
on the mass elements (cf. (4.10) and (4. 4)): 

dm 0 0 ay x m-pV, 0 0 0 

0 dm 0 ay =a ly er 0 m-pV, 0 A JO 

Only Or-idm. | ba Z 0 0 m-pVo g 
Z jabs 
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Upon summation the coefficient matrices of the acceleration 
terms, the mass and inertia tensors, expose as 

me 0 0 

m = 0 Myy 0 = dm 

0 0 my 

(8. 2) 

Ax “Ly “Ly 

Paepins tao aipeph ara % Sidm 

“1. “I, L, 

where the elements are defined by 

)x.dm s,m x, > ty? + 22 dm = Iyy ), xy dm =1,y 

Yydm=m+y, >) (2*+x)dm=ly Yyzdm=l, (8. 3) 

yy z2dm=m-z, >) (x? + y*)dm = 1,, )) 2x dm = 1, 

Many authors prefer to introduce the virtual masses and 
moments of inertia into the equations given above. Here the "added" 
masses will consistently be assigned to the hydrodynamic reaction 
forces in the right-hand members; in Section Vit was seen that these 
forces may include other inertia terms otherwise easily overlooked. 
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In most practical applications the xz-plane is a plane of 

symmetry, so that yg= yg=0 and I,yy=0. Except in a few special 
cases, such as when dealing with hydrofoil crafts, etc. — the dis- 
cussion of which is outside the scope of this paper — other terms 
may be safely ignored in view of the smallness of the products of 

inertia and the perturbation velocities involved. 

The Merchant Type Displacement Ship 

In what follows the discussion is restricted to displacement 

ships, for which m= pV, and V*\V,. Forward speed is always 
associated with a sinkage and change of trim, most obvious as 
"squatting" in waters of finite depth, but the manoeuvring dynamics 
will be sufficiently well described by the equations in four degrees 
of freedom, i.e. the surge, sway, roll and yaw. Then 

mfu - rv - ea + zorp{= x 

my + ru +xgr - zp b= ¥ re 

LP - lee . mz_(v + ru) = K - mg(Z, - Z5) sin > 

ep mx,(v + ru) =N 

Whereas the initial roll as well as the steady outward heel 
may be appreciable in case of say a highspeed destroyer these 
angles are also known to be quite insignificant in the tanker case. 
In steady turning a heel, proportional to - (L/Re) * ie , may produce 
an effective camber of the waterline flow around a fine hull, but this 

hardly applies to merchant ship forms. 

Leaving the roll equation the present deep-water model is 
given as in Eq. (8.5). It shall be pointed out that the derivative Yy, 
includes the potential-flow contribution Xj} and the derivative Nj, 
the potential-flow contribution Y;' . In the forward speed equation 
X\, is given a value that is smaller than its ideal value equal to - Yi 

Ones, cae o eee ee 4 (4 - Xiu ie = Xqyt ae ee jot 55 Siu 2 = joy a LL | - t) 

#(L+X™ yh L(x tox yb +L gt Ext ulylv? vr G jams A Y & 6 uw 

=| 4 (2 

+L | Xess [el cd, 
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(8.5) 

Eq. (8.5) is to be combined with Eqs. (7.3), (7.4) and (7.6). In 
case of twin-screw ships (7.6) is to be properly modified and terms 
corresponding to sp°* Tp and s,° Ts are to be introduced in (32:5). 

Some Elementary Concepts 

So far as small motions are considered forward speed and 
r.p.m. remain almost constant and the rudder force and moment 
may be regarded as functions of nominal helm 6. The yaw-rate/helm 
relation is given by the transfer function 

eee | 1+ T3s 
——— (8.6) 

v5 et es | eee 

and the open loop heading response by Y, = (1/s) - Yys which may 
be used with Y, from Eq. (7.5) to study the closed-loop system 
with transfer function F = Y,/(1 + Y,Y,). 

The static gain and the three time constants in (8.6) are built 
up from the coefficient of Eq. (8.5). T3 is always positive. The 
two constants T, and T, are given by the roots of the characteristic 
equation. If s, = - YT) 5 the root to the right on the real axis, 
turns positive the ship is inherently unstable. The analytical criterion 
for dynamic stability suggests the dynamic stability lever 
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to be a suitable measure for the degree of stability. In particular it 
provides a good illustration when studying the effects onto the stability 
characteristics of changes in the stability derivatives. 

Most modern large tankers are slightly unstable,or marginal 
stable, i.e. 1, =1,. For such ships the pivoting point position is 
given by the simple relation 

OP  1-y" 
ss ees. 7 ola eee) uv 

which may be approximated by OP/L = 0.45 + (1/3)(6,,(B/T) - 2). 
For a typical tanker this corresponds to OP/L =0.5. (The formula 
in fact indicates an acceptable value also for the destroyer, about 

0.3.) Again, the pivoting point position — or the drift angle B — 
is a critical parameter to study when entering shallow waters. 

IX. CONFINED WATER FLOW PHENOMENA AND SOME RESULTS 
FROM THEORY 

Mostly on Resistance 

In his notes for a third volume of "Hydrodynamics in Ship 
Design" Saunders collected a number of citations, ranging from 
Scott- Russel to Moody, which all illustrate the classical picture of 
ship behaviour in confined waters as it has been derived from obser- 
vations in full scale and in model tests, [| 73]. He also concluded that, 
by 1960, the ventures and progresses made in analytical studies of 
ship manoeuvring in shallow waters remained scarce. One exception 
was offered by the papers by Brard, [74]. The problems of inter- 
action between meeting or passing ships, or between ships travelling 
abreast — closely related to the bank effect problem of the single 
ship — had been dealt with by Weinblum [ 75], Havelock [76], and 
Silverstein [ 77]. 

Undoubtedly much more effort had by then been devoted to 
the changes of frictional and wave resistance of ships in axial motion 
in confined waters, and an important survey and contribution had 

been given by Schuster [78]. 

Ocean-going ships generally move at low speeds in shallow 
or narrow waterways, and hence the deformation of the wave system 
is small. According to Schuster the wave resistance is not notably 
affected by a limited depth for speeds below Ean = 0.7, at which 

speed the excentricity of the orbital ellipse corresponds to a diameter 
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difference of about 5 per cent. In case of a bottom depth of 15m 
this again corresponds to a ship speed of 16 knots. 

In Ref. [79] Weinblum demonstrated that the wavemaking 
in a canal is a complicated function of speed, depth and width. In 
general it is therefore not possible to define a single effective 
length to characterize the canal dimensions in a speed number. 
However, effective canal speed includes the back-flow, and just as 

a critical speed in shallow water is defined by the speed of the 
solitary wave, Vgh, experimental evidence advocates a critical 

speed in a certain canal corresponding to a certain Boussinesque 
number B= Fy,y(h/W) +1. (Here W is equal to half the mean 
width of the section.) For a rectangular section Muller proved that 

the maximum wave resistance occurred at Fp, = (2(h/W) + 1)-V2 

[80]. In a canal 15 m deep and 120 m wide this corresponds to 
Fy, = 0.81. Again, let it be assumed that a significant change of the 
wave resistance due to the confinements will be found only at a speed 
equal to or higher than 70 per cent of this critical speed: this now 
gives a speed of about 13 knots, much to high to be experienced in 
canal transits involving normal blockage ratios. It may be concluded 
that the additional resistance terms to appear in the speed equation 
normally need not to account for the oscillatory wave-making com- 
ponents. 

Reference shall here be given to recent studies of the un- 
steady flow conditions existing within a critical speed range fora 
ship in a canal; this range tends to zero when the width of the canal 

tends to infinity, [81, 82]. 

At sub-critical speeds the wave-making itself may influence 
the lateral force and moment on a ship moving along a bank, as 
shown by Silverstein, [77]. In case of the low Froude numbers met 
with in practice also these effects may probably be ignored, and the 
water surface may thus be treated as a solid wall. At F,, = 0.078 
or F,, = 0.32, realized for a 98 000 tdw tanker proceeding ata 
speed of 14 km/h through the Suez canal, the longitudinal waves will 
have. a,length.of some:,10.m,, i,.e.; only,4 per cent of the length ofthe 
ship. 

The back-flow producing an increase of frictional resistance 
will also produce an increase of sinkage, and in case of small bed 
clearances this will of course indirectly affect the lateral forces 
sensitive to the clearance. These secondary effects must be born 
in mind when comparing predictions from theory with results from 

force measurements on models, which are free to heave and trim. 

In the normal evaluation and presentation of such measurements, 

however, it will be considered more practical always to use the 
nominal under-keel clearance. 

The viscous resistance, including frictional as well as 
viscous pressure resistance, may be calculated accepting a plate 
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friction line and a form factor, characteristic for the super- 
velocities arene the hull. This resistance now may be written 
[ X"lwehza= 2 Xyyu*, where u is the forward speed of the ship. In 
confined waters there are additional supervelocities, the effect of 
which is equivalent to a back-flow along the hull and waterway 
bottom, where another boundary layer is generated. The two bound- 
ary layers will reduce the effective under-keel clearance, which 
tend to increase the trim by stern. Separation and unsymmetrical 
eddy-making within the boundary layers may initiate yawing ten- 
dencies in straight running, or change the behaviour of the ship in 
manoeuvres. 

Graff has suggested to consider part of the mean back flow, 
AUp, to be due to the lateral restriction, and the other part, AU,; 

to be due to the finite depth, [83]. In normal applications AU is 
small compared to u, so that 

XY = Exyur(1 + SOUP ys + SOU) = xt + KY + Ky) (9.4) 

The effects of a plane bottom at distance h below the ship 
waterline and a pair of parallel vertical walls, each one at distance 
W from the ship centreline, are those produced by an infinite array 
of image bodies with spacings equal to 2h and 2W respectively. 
At the double-body ship centreline the lateral perturbation velocities 
cancel whereas the axial components add together. (This simple 
concept is not valid for W or h small comparedto B or T, in 
which case additional doublet distributions are required to prevent 
a deformation of the body contour.) Graff choose to calculate an 
approximate value of K, for an elliptic cylinder, extending from 
the surface down to the bottom and having a beam given by the three- 
dimensional form displacement. (Thus K, is dependent on canal 
depth, although the final calculation is manely two-dimensional.) 
For the calculation of K, he used an equivalent spheroid and results 
for supervelocities Sanies published by Kirch, [84]. His final 
results are given in graphs and compared with model measurements, 
which confirm that this method offers acceptable values of resistance 
allowances for moderate confinements. It is thereby also possible 
to define a suitable form of resistance derivatives to be evaluated 
from model experiments from case to case. 

In particular, a limited re-analysis of some of the data 
given by Graff indicates that the resistance increase in shallow 
water will be proportional to the increase of an under-keel clearance 
parameter € = T/(h-T). Further analysis of the results for sinkage 
in shallow water according to Tuck's theory are likewise in favour 
of the use of this parameter. (See below.) 

In waterways severely restricted in width as well as in depth 
the increase of resistance is a complex function of blockage conditions. 
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From model tests with a Rhine vessel [85] it appears that the added 
resistance at a given forward speed may be approximated by an 
expression of the form AR=a-+ (BT/Wh) tb- (BT/Wh- ¢, or, 
roughly, 

AX(u;& n) = 5 Xyuts OF +. Xwurtar 67 (9.2) 

where 1/2 = L/W is a bank spacing parameter defined from the 
mean width 2W of the canal cross section. (See Section X.) 

The higher resistance in confined waterways is associated 
with a lower propeller efficiency, and the total propulsive efficiency 
is further reduced by an increase of the thrust deduction. The 
influence of flow restrictions on thrust deduction and wake factors 
has also been considered in a paper by Graff, [| 86].In most simu- 
lator applications this letter influence may be ignored. However, 
the computed values of r.p.m. and speed attained at a given engine 
setting should be compared with, say, diagrams compiled by 

Sjostrom, [87]. 

Sinkage and Lateral Forces 

Within the last decade the application of slender-body theory 
has furnished new understanding and quantitative estimates to the old 
experience on sinkage and lateral motions in confined waters. 
Further developments of the theories and more accurate measure- 
ments are required to bridge a gap still remaining in force pre- 
dictions. 

In an essentially forward motion of the ship in shallow water 
the back-flow is increased all round the frame sections, and according 
to the first-order theory of Tuck the dynamic pressure is largely 
constant in the water around a cross section of the hull and over the 
bottom bed close below it, [88]. Upon assumption of a water depth 
of same order as the draught, the draught and beam being small 
compared to the length of ship and waves, and by use of the new 
technique of "matched asymptotic expansions" Tuck derived formulae 
for the vertical forces and so also for the sinkage and trim at sub- 
and super-critical speeds. 

In case of ships with fore-and-aft symmetry the theory pre- 
dicts zero trim for subcritical speeds, and zero sinkage for super- 

critical speeds. For small to moderate Froude numbers based on 
depth the sinkage varies as speed squared,and, using the under-keel 

clearance parameter defined here, according to the upper curve of 

Big 22). 

870 



Shtp Maneuvering in Deep and Confined Waters 

Infinite width 

0.05 04 0.2 0.5 1.0 2-0 5.0 

2-0 

(flow 

af 
1.5 

A o2.4 6231 12 1+ 78 e-(1-F Ee) 

1 Finite width 

1-05 

1-02 

0.2 05 1-0 2-0 

wee Af 2b pqs? 12 
aw RAT = UF) 

Fig. 22. Sinkage in shallow water of infinite and finite width, 

recalculated from Tuck's results. 
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In Ref. [89] Tuck has extended the theory to canals of finite 
width, in which the ratio of sinkage into the water (or trim) in the 
canal to the sinkage (or trim) in shallow water is given by a unique 
curve on basis of a simple width-and-speed parameter. Replotting 
this curve as in the lower diagram of Fig. 22 Tuck's results are 
shown to yield a square dependence on the bank-spacing parameter 
7 when FA, << 1. 

In canals presenting higher blockage the total sinkage or 
"squat" is dominated by the contribution from water level lowering 
as a consequence of flow continuity. From the Bernoullie and conti- 
nuity equations an approximate relation for the hydrostatic ship 
sinkage in terms of ship lengths is given by 

A 2 
Tey x° Fa 

Q A L Wp ; 2 

Here g and aw are the prismatic and waterline-area coefficients 
of the ship. Other methods of the practical calculation of squat are 

discussed in Ref. [ 90]. 

At low speeds wave making is concentrated to bow and stern 
of the ship, where changes of the local velocities do not influence the 
blockage conditions, and it shall be possible to calculate the forces 
on the ship without regard to wave making. The absolute speed still 
is a parameter, as it is seen to affect the hydraulic as well as the 

dynamic squat in a canal. 

Kan and Hanaoka first presented low-aspect-ratio wing 
results for the calculation of transverse forces and moments ona 
ship in oblique or turning motions in shallow water , [91]. As the 
theory predicts the same correction factor to be applied to all deep- 
water values it seems to be essentially a two-dimensional theory as 
it is in deep water. Newman studied the same problem by use of 
the method of matched asymptotic expansions and by the assumption 
of a three-dimensional flow, differently orientated close to the body 
and close to the bottom (and upper image wall), [92]. His results 
bear out the effects of finite length, most obvious in case of moments 

due to yaw acceleration. 

Newman considers the inner flow to be a two-dimensional 
cross-flow of reduced velocity, at each section depending ona 
blockage parameter in the velocity potential. The outer solution 
assumes flow to take place in planes parallel to the bottom wall at 
nominal transverse velocity as the body is reduced to a cut normal 
to the flow, this being physically similar to the flow past a porous 
plate. The results as applied to forces on a wing of low aspect 
ratio (or to a ship) are given in a simple diagram in [92], and here 
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they are used for comparisons with ship model values in Figs. 33 
and 34. (A limited comparison of sway force and moment derivatives 
derived for the SSPA tanker model was included in [92]. A small 
adjustment of model force derivative appears in the present compari- 
son, due to modified assumptions for non-linear viscous cross-flow 
contribution; cf. Section X.) 

The lateral forces acting on a body of revolution in axial 
motion in close presence of a vertical wall have also been studied 
by Newman, [93]. The source distribution inside the body is 
mirrored in the wall, and in addition the calculations require the 
original distribution to be off-set towards the wall. This three- 
dimensional source distribution defines the velocity potential and 
so the forces may be found by use of the Lagally theorem. As 
expected from experience and approximate image theories for 
bodies not close to the wall there is an attraction towards the wall, 
increasing monotonically up to a finite value of body-and-wall con- 
tact. It is concluded that for geometrically related bodies with 
same sectional-area distribution the suction force will be inversely 
proportional to the length, whereas the yawing moment will be inde- 
pendent of length variation. The results also indicate that there 
will be a bow-away-from-wall moment for bodies with a stern, which 

is blunt compared to the bow, and vice versa. 

In Fig. 23 calculations by Newman's method are compared 
with the results of force measurements on a tanker model towed 
along the vertical wall of a ship model basin. (Cf. Section X,) 

Basin depth was equal to 0.29 Lp», total basin width equal to 
2.7+* Lj. The diagram is plotted on ratio of wall distance to 
maximum radius of equivalent body of revolution, defined by length 
and displacement of model hull t image. The better agreement is 
obtained for that equivalent body, which also has the same sectional 
area curve, but even then the experimental results are some 25 per 
cent in excess of the prediction. At larger separations the differ - 
ence is still larger. Comparative calculations using Silversteins 
"not-too-near-wall" results for an equivalent ovoid [77], are 
included in the diagram; in this case the prediction is better for 

larger separations, but in all much too high. 

As long as the body is not too close to wall contact the 
Newman theory gives a linear dependence for the lateral force on 
ratio of body radius to centre-line wall distance, i.e. it is propor- 
tional to nN, or 1p, defined for starboard or port wall distances in 
next Section. This linear dependence suggests that the lateral force 
on the ship between two parallel vertical walls may be obtained by 
adding the effects from each one, which idea may also be supported 
by the new presentation of old DTMB data [94, 95] given in Fig. 24. 
The diagram includes force and moment measurements on a twin- 
screw tanker model in several canal sections of simple rectangular 
form. 
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Fig. 23. Lateral force on a body moving parallel to a vertical wall. 
Measurements on propelled tanker model and theoretical 
results for bodies of revolution. 
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Fig. 24. Asymmetric forces and-moments on a twin-screw tanker 
model moving parallel to the vertical walls of canals of 
differing widths and depths (From DTMB test data) 

The theoretical results for bow-away-from-wall moments 
are somewhat modified in practice, where bow wave and screw 
action contribute to make the tendency felt in ships of all types. 
Thus, in general a ship that moves off the centre-line of a canal 

must use helm towards the near wall and it takes up a small bow- 
from-wall equilibrium angle. Typical values derived from [ 94] 
for the 721' tanker off-set 50' from centre-line of the 500' X 45' 
section are 15° helm and 1° drift. 

The motion in shallow port approaches may involve much 
larger drift angles, and the behaviour of the ship is markedly 
affected by the increase of lateral cross flow resistance due to 
under-keel blockage. The diagram in Fig. 25 is compiled from 
shallow water test data in Ref. [ 49], and from Japanese data in 
Ref. [ 96], which also include measurements in presence of a wall. 
Again the parameters ¢ and n are used for the presentation. For 
moderate € cross-flow drag increases in proportion to €, just as 
the linear force derivatives, butthe dependence on 1 is of higher 

order, The cross-coupling between § and ) may probably be 
ignored in practical applications. 
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Fig. 25. Ship model cross flow drag coefficients as influenced by 
change of depth and presence of vertical wall 

X. FORMAL REPRESENTATION OF CONFINEMENT EFFECTS 

Waterway Description 

The uniform straight canal with a rectangular section is the 
most simple case of a waterway confined in depth and width, but 
even there several parameters are required to characterize the 
flow phenomena taking place. It was seen in the last Section that 
the wall distance parameter n and the under-keel clearance param- 
eter € both were useful tools for the description of certain effects. 
Their first merit, of course, is due to the zero values defined in 

unrestricted deep water. 

Figs. 26 and 27 show a more general section of a canal. 
Such a canal is usually described by its mean depth between the bed 
lines, its widths at bed and beach lines, and its cross section area, 

related to the midship section of a transiting ship by the blockage 
ratio. The position of the ship in the canal is mostly given by the 
off-centre distance, and by the angle to the canal centre-line. Here 

approximate expressions involving the new parameters only will 
be given for the main geometric characteristics. 
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Fig. 26. Ship moving parallel to walls in a straight canal 

The depth h is considered constant between the bed lines. 
The mean width 2W is defined as the quotient between cross 
section area A, and depth h. The ratio 2W/B is a better param- 
eter for width-to-beam relations the more shallow is the canal. 
For use with theoretical results for thin ships the width parameter 
will here not be related to beam but to ship length L. 

As seen from Fig. 27 the bank and ship positions may be 
given by coordinates normal to a datum line essentially parallel to 
the main direction of the canal. The orientation of the ship is given 
by the heading angle J, measured from the same datum line. The 
basic geometric parameters are defined as 

Under-keel clearance parameter 6 = T/(h - T) 

Port bank distance parameter Np = L/(Wp - Yo) (10.1) 

St'bd bank distance parameter Ns = L/(W, - Yo) 
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— Datum Line 

Fig. 27. Ship moving in a canal of slowly changing form 

Note that W. > : Pa Wes so that 7,>0 and TN) < 0. Itis also con- 
venient to introduce 

1 = Ns + Np dom 

n= Ms - Np 
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The mean width of the canal at the station considered is 

= _ e n : 
ZW = Wy - We = aap i (10.3) 

where the parameter ratio in the right member is constant for all 
lateral positions of the ship in the cross section. Expecially, when 
ship on centre-line so that 1, = - Np = "/2, there is L/2W = 7/4. 
In fact 7/4 alone is an acceptable approximation to the "ship 
length-to-canal width" parameter ratio also at ship positions slightly 
off-set from the centre-line: with yo = W/4 7/4 over-estimates the 
ratio L/2W =7,/4 with less than 7 per cent. As a consequence } 
and € may be used to define an approximate blockage ratio 

BT 1 B 7 10 
=—_- ant —_— _ °? L 4 

2Wh Zan ae ae oa 4 ( 

For small ¢ the blockage ratio is proportional to 7, 

for large € to nm alone. 

Force Representation 

The asymmetric forces appearing in presence of a single wall 
or in a canal are highly increased by an increase of the under-keel 
clearance parameter, and the general model will include complex 
couplings. If a single canal depth is studied on basis of special 
model tests it is of course possible to express the wall effect forces 
in terms of Np and 1, only. Although the geometry of the inflow 
to the propeller may be modified in confined water it is assumed that 
the control derivatives remain unchanged and that changes of rudder 
forces are due to changes of screw loading only. 

When suitable theoretical and experimental information 
becomes available it shall be possible to include the effects of ship 
motions towards the wall and of the angular orientation along it. At 

present solutions to the problem of motions oblique to a wall seem 

to be known only for elementary singularities such as circular 

cylinders and spheres, [97]. In particular, these results give a re- 

pulsion by the wall on the body moving toward or away from it, but, 

again of course, an attraction on the body moving parallel to it. 

For the present investigation it shall be assumed that the 
effects of the walls on a ship moving not to close to them will be 
approximated by the quasi-steady asymmetry, and that the added 

masses may be taken as those derived for low-frequency oscillations 

in the centre of the confinement. 

In the previous Section was shown that the attraction force 
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on the ship in motion parallel to a wall is essentially inversely pro- 
portional to the separating distance, i.e. Y(u,n,) = Zz uinee u"N"> 
and that the effects of two walls may be approximated by super- 
position. Thus for Y(u,Ns»Np) 

2 
2 tuapel tT t 2 Yuunp Np = 2 Yyugh (10. 5) 

where Yuyun= Yuuns= Yuunp* 

As the ship moves closer to one of the walls, or as the walls 
are closer, this expression shall be completed by terms in ng and 
Tio | Tipe or alternatively, in nn. 

The effect of a limited bottom depth is included by additional 
terms in n& and nn&. The forces due to steady sway and yaw are 
assumed to be increased in proportion to uvn and urn, andto uvnt 
and urnG respectively. The dependence of, added inertias on the, 
confinements are represented by terms in vt and vn rt and mt, 

all so far evaluated from the results published by Fujino, [5]. 

XI. MODEL TESTS 

Test Program and Model 

Five years ago an experiment program was designed for a 
tanker model with a view to put to test the analytical model set up 
as well as to obtain basic simulator data for a first canal transit study. 
Full scale measurements should subsequently be made with the 
98 000 tdw prototype in the Suez Canal, but these plans could not be 

fullfilled, of course. 

In November 1965 a first series of three component force 
measurements were ordered to be run witha 1:70 scale model at the 
VBD Laboratories in Duisburg. The test program included straight- 
line oblique towing of the propelled model in "deep" and shallow water 
in the large Shallow Water Tank and rotating arm tests at same depths 
in the Manoeuvring Tank. It also included straight-line oblique towing 
of the same propelled model in two Suez-Canal-type sections witha 
water depth equal to that of the shallow water tests. Most of these 
tests were run at self-propulsion point of model, determined from 
straight course speed runs in the waterways studied. All tests were 
performed at maximum "Suez draught." Resistance and propulsion 
tests had earlier been completed at SSPA with a 1:35 scale model on 
several draughts, and ship speed trials were analyzed to support the 
prediction of full scale screw loadings and control derivatives on 
model test draught. (Cf. Section VII.) 
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Additional tests in the VBD Shallow Water Tank were ordered 
in April 1966 to establish near-to-wall stiffness derivatives from 
straight-line motion close to one of the vertical basin walls in "deep" 
water. After a series of repeated tests with a modified recording 
system the full captive model test program was completed in April 
1967. The test data are included in reports [98] and tables from 
VED. 

The test program is condensed in Table IV. It shall be ob- 
served that no acceleration derivatives could be obtained from these 
tests. Most of the force measurements were made at a model speed 
of 0.465 m/s corresponding to a ship speed of 7.6 knots or 14 km/h. 

The ship prototype was a single-screw/single- rudder turbin 
tanker of the Kockums 90 000 - 100 000 tdw series, delivered to the 

owners in October 1965 for use in the crude oil trade through the 

Suez Canal on a reduced draught. The main dimensions of ship and 

1:70 scale model are given in Table V, and the body plan is shown in 
Fig. 28. The prototype has a Mariner-type rudder, normal bow 
and no bilge keels; a few tests were run to investigate the effects 

of a bulbous bow and of bilge keels of common design. 

Wl 
Fig. 28. Model of 98 000 tdw tanker -- body plan and profiles. 

Model tested on "Suez draught" 
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TABLE V 

Ship 1:70 Model 

Length, Lop =e m 253,00 3.614 

Beam, B m 38.94 0.556 

Design draught, Tow. m he) Oatyc 

Suez draught (38'), T m 14.558 0.165 

Displacement, Suez draught, V m°> 91 933 0.2680 

Slenderness ratio, Suez draught, - 5.606 

"8 
Midship coefficient, Suez draught, - 0.991 

p 

CB forward of L,,/2, x¢@/Lop +0.0185 

Long. radius of gyration/Lpp - 0.23 

Propeller diameter, D m fk Ge Oe HOal 

Pitch ratio, P/D = 0.74 

Area ratio, Ae ~ O65 

Number of blades, z - 5 

Rudder area, total, A, m* 64.8 0.01382 

Horn area/A, - 0.182 

Relative rudder area, A, json t Z 0.0221 

Height at stock, b m ete 19) 0.140 
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Results for Force and Moment Coefficients 

Figs. 29 - 32 show plot of force and moment coefficients 
from tests in deep (free) and shallow water, and the analytical 
approximation obtained by stepwise regression analysis. Results 
from the near-to-wall experiments have been given in Fig. 23. 

In the evaluation it was consistently assumed that the changes 
of first and second order derivatives due to finite depth could be 
approximated by terms proportional to ¢. As the tests did include 
two values of & only, one of which very small, this does not effect 
the derivatives derived for these two depth conditions, nor the "true- 
deep-water" values. 

Further, because of the scatter of experimental data it proved 
suitable to perform the analysis with an assumed value for the deep- 
water cross-flow resistance corresponding to Cp = 0.7; cf. Section VI. 

In agreement with earlier findings the test results indicate a 
very marked influence of shallow water on the non-linear force contri- 
butions, and on the lateral force due to yaw in particular. It shall be 

observed that the analysis involves a change of sign in the first-order 
rotary force derivative as water depth is reduced. 

The force and moment derivatives derived from shallow water 
and canal tests will be presented in next Section. 

Fig. 29. 98 000 tdw tanker — Force coefficient ¥"(B) Ja"? in deep 
and shallow water. 
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12 Fig. 30. 98 000 tdw tanker — Moment coefficient N"(B)/u in 
deep and shallow water. 

“ Note: Rigid mass included 

Tests at Fry = 0-078 - 0.108 

Fig. 31. 98 000 tdw tanker— Total force coefficient Y"(r') /u"® 
in deep and shallow water. 
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02 Tests at F nL = 9:078 - 0.108 

Wigs 32. ye 000 tdw tanker — Moment coefficient N(x!) fa? 
in deep and shallow water. 

XII. RESULTS FOR CONFINEMENT DERIVATIVES 

Figs. 33 - 38 present available empirical or semi-empirical 
results for the main lateral hydrodynamic derivatives appearing in 
the confinement terms of the completed mathematical model. The 
derivatives Yyyy and Nyy, for the 98 000 tdw tanker have been 
derived from the near-to-wall tests in deep water, and are not shown 

here. (Cf. Fig. 23.) 

In Fig. 33 the shallow water results obtained for the SSPA 
tanker are compared with the experimental results published by 
Fujino [5], and with calculations from Newman's theory,[93]. The 
SSPA analysis is based on a linear dependence of the derivatives on 
C and the results are given by plots on straight lines, also sug- 
gested by the theory. Fujino's derivatives are evaluated separately 
for each depth. In general the theory seems to underestimate the 
influence of finite depth, especially for the stiffness moment. 

Increase of added mass and added moment of inertia as 

obtained from Fujino's experiments and Newman's theory is shown 
in Fig. 34, again in poor agreement. 
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5 § , 5 —O— SSPA/VBD Tanker 
BY / OY ii uv | uf as T TYavij=0 | / Yor )fa0 ujino Tanker 

7 &  Fujino “Mariner” 

(Black spots for higher 
speeds) 

Fig. 33. Stability derivatives as influenced by finite depth -- results 
for SSPA tanker compared with Fujino tests and Newman 
theory. 
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Fig. 34. Increase of linear and rotary acceleration derivatives with 
increase of parameter € according to Fujino tests and 
Newman theory. 
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Fig. 35. Rotary force derivative for tanker as a function of waterway 
depth and width, replotted from Fujino PMM data 
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Fig. 36. Rotary moment derivative for tanker as a function of 

waterway depth and width, replotted from Fujino PMM data. 

Fig. 37. Rel. change of lateral acceleration force derivative fora 

tanker as a function of waterway depth and width, replotted 

from Fujino PMM data. 
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y, Fr = 0-0675 

Fig. 38. Rel. change of rotary acceleration moment derivative 
for a tanker as a function of waterway depth and width, 
replotted from Fujino PMM data. 

The diagrams in Fig. 35 - 38 are compiled from Fujino's 
measurements of rotary and acceleration derivatives in shallow 
waters and in canals. The dotted curves suggest a linear increase 
of all these derivatives with ¢€ in unrestricted water, and a more 
complex dependence of ¢ and y inacanal. (Cf. end of Section X.) 

XIII. SOME ASPECTS OF SHIP BEHAVIOUR IN CONFINED WATERS 

Here a few comments will be given on some of the results 
obtained in a computer and simulator study performed for the 
98 000 tdw tanker. The diagrams in Figs. 39 - 45 all include results 
directly drawn on the analogue computer recorder. 

The only full scale maneuvering trials with the prototype 
ship so far available are a 20°/20° zig-zag test and a Dieudonné 
spiral, both run at full speed on full draught. These results are 
compared with the computer predictions — or hindcasts — for the 
ship on Suez draught in Figs. 39 and 40. As the difference in draught 
is not likely to have a significant influence the agreement is quite 
good. It shall be observed that the derivatives with respect to 
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Full scale / 

(7 =13,45m) / 

(T =11,58m) 

0 1S min 

10 

Fig. 39. 98 000 tdw tanker zig-zag test in deep water. Comparison 
of full scale trials and computer prediction. 

v|r| and |v|r are not derived from measurements with this model 
but taken from an analysis of rotating arm tests with another tanker 
form, and the almost exact prediction of overswing angles might be 

somewhat accidental. 

The good correlation of speed loss in the zig-zag maneuver 
is satisfying. The phase difference is likely to be due to the stern 
position of the ship's pressure-type speed log. 

The ship (and simulator model) is slightly unstable on 
straight course in deep water; the total loop width is about 3.5° 
at slow speed as well as at high. In Fig. 41 is also shown the 
spiral prediction for shallow water (¢ = 3.37 or h/T =1.3). Here 
the initial stability is further impaired, whereas the stability ina 
turn is increased. A major factor governing the dependence of 
initial stability on water depth is the change of Yy,-- From Fig. 33 
was seen that Yure is negative for this model, so that the value of 

lf = (xg - Ni - Nut c)/i - Yi, - ure 6) may diminish much faster 
with increasing © than does 1} = (Ny + Nuvt Ae Yuve aa 
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Fig. 40. 98 000 tdw tanker — ,(5,)-diagram from spiral tests in 
deep water, Comparison of full scale trials (x,o) and 
computer prediction ( ). 
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Fig. 41. 98 000 tdw tanker — Low speed spiral diagram from 
computer predictions for deep and shallow water 

A similar trend is not unique, but it shall be observed that it may 
be necessary to include higher order derivatives in ¢ to account 
for a finite range of "dangerous depth" as defined by Fujino, [5]. 

Figure 42 shows predictions for 20° rudder step responses 
in change of heading, yaw rate, and drift angle. The small drift 
angle obtained in the shallow water case is associated with the large 
increase of cross-flow drag. Similar results have earlier been 
reported by Schmidt-Stiebitz, [99]. 

From simulator and full scale experience is known that the 
helmsman may have some difficulties of controlling the ship in 

maneuvers that involve a change of course in shallow waters. 

Maneuvers by use of auto pilots are repeatable and well suited for 
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Fig. 42. 98 000 tdw tanker — Computer predictions of 20" rudder 

step response in deep and shallow water. Approach speed 

7.6 knots. 
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Fig. 43. 98 009 tdw tanker — Computer predictions of 10° course 

change manoeuvres by use of auto pilot knob setting. 

Two speeds in deep water. 
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Fig. 44. 98 000 tdw tanker — Computer predictions of 10° course 
change maneuvers by use of auto pilot knob setting. 
Shallow and deep water. 
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Fig. 45. 98 000 tdw tanker — Computer predictions of on-track 
control by auto pilots in deep and confined waters. 
Approach speed 7.6 knots. Initial off-set 20 m to starboard. 
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comparative studies. The diagrams in Figs. 43 and 44 refer to 10° 
course change maneuvers predicted for the tanker at two speeds in 
deep water and at the lower speed in shallow water, all executed 
using the same normal setting of auto pilot controls. There are 
several overswings in shallow water, and checking helm is large. 

The final diagrams in Fig. 45 furnish a condensed illustra- 
tion to the changing problems of course control in shallow waters 
and in canals. These problems are also dealt with by Eda and 
Savitsky [100], and in considerable detail by Fujino, [101]. 

It is assumed that the ship is moving at low speed on a 
straight course parallel to the required track (in a buoyed channel, 
say) but off-set 20 m to the starboard side. A signal proportional 
to this lateral error, calling for 1 degree rudder per m off track, 
is fed into the auto pilot. The upper curves for the free water con- 
ditions demonstrate that the rudder ratio setting must be increased 
(from normal 3 to say 10) in order to stabilize the ship on the re- 
quired track. This control works reasonably satisfactory also in 
shallow water, but it tends to make the ship over-shoot the centre- 
line in the alternative case between parallel walls in deep water. 
Obviously the presence of the near wall accelerates the first swing 
towards and beyond the centre-line. 

The two lower curves of Fig. 45 relate to the ship ina 
typical part of the Suez canal. In the shallow water the effect of the 
near wall is even more pronounced, and the stern of the ship is in 
danger of hitting the bank. However, by turning down the lateral 
error knob to zero the auto pilot is made to behave like the ex- 
perienced helmsman, already referred to in the introduction. Thus, 
the ship first sheers bow-off the wall before the auto pilot applies a 
counter-rudder in order to slowly press the ship laterally away 
from the wall. The ship is seen to be almost steady on to the centre- 
line within two ship lengths. 

REFERENCES 

1. Norrbin, N. H., and Goransson, S., "The SSPA Steering and 
Maneuvering Simulator," (in Swedish), SSPA Allm. Rapport 
No. 28, April 1969. 

2. Mandel, Ph., "Ship Maneuvering and Control," in "Principles 
of Naval Architecture" (revised), New York 1967. 

3. van Berlekom, W., "Summary of a Simulator Study of Maneuver- 
ing Large Tankers in the Approach to a Port at Brofjorden," 
SSPA PM No. 1643-10, Sept. 1969. (Contract Report) 

896 



fi. 

12. 

13. 

14. 

£5. 

16, 

a7. 

Shtp Maneuvering tin Deep and Confined Waters 

Bohlin, A., "Problems Arising from the Use of Very Large Ships 
in Connection with the Alignment and Depth of Approach 
Channels and of Maneuvering Areas," Paper S. II-3, 
Proc. XXII©® Congrés International de Navigation, Paris 1969. 

Fujino, M., "Experimental Studies on Ship Maneuverability in 
Restricted Waters," Part I, Intern. Shipb. Progr., Vol. 
15, No. 168, Aug. 1968. 

Norrbin, N. H., and Simonsson, E. Y., "Observations onboard 

a 60 000 t.dw. Tanker Maneuvering through the Suez Canal," 
unpublished papers, SSPA and Uddevalla Shipyard, Nov. 1964. 

ITTC, "Recommended Symbols Classified by Subject," Appendix 
II of Presentation Committee Report to the 10th ITTC, 

London 1963. 

SNAME, "Nomenclature for Treating the Motion of a Submerged 
Body Through a Fluid," SNAME Technical and Research 
Bulletin No. 1 - 5, New York 1950. 

Norrbin, N. H., "A Study of Course Keeping and Maneuvering 
Performance," SSPA Publ. No. 45, Goteborg 1960. (Also 
Publ. in DTMB Report 1461, Washington D. C. 1960.) 

Glauert, H., "A Non-Dimensional Form of the Stability Equations 
of an Aeroplane," ARC R & M No. 1093, London 1927. 

Kirchhoff, G., "Ueber die Bewegung eines Rotationskorpers ineiner 
Flussigkeit, " Crelle, Vol. LXXI, Heft 237, 1869. 

Lamb, H., "Hydrodynamics," 
Cambridge 1932 (6th ed.). 

Cambridge University Press, 

Milne-Thomson, L. M., "Theoretical Hydrodynamics," 
Mac Millan, London 1955 (3rd ed.). 

Imlay, F. H., "The Complete Expressions for Added Mass of a 

Rigid Body Moving in an Ideal Fluid," DTMB Report 1528, 
July 1961. 

Lamb, H., "The Inertia Coefficients of an Ellipsoid Moving in 

Fluid," ARC R& MNo. 623, 1918. 

Kotschin, N. J., Kibel, I. A., and Rose, N. W., 
"Theoretische Hydromechanik," Bd. I (from Russian), 
Akademiee«Verlag, Berlin 1954. 

Munk, M., "The Aerodynamic Forces on Airship Hulls," 
NACA Report No. 184, 1923. 

897 



18. 

19. 

20. 

21. 

22. 

eS 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

Norrbtin 

Norrbin, N. H., "Forces in Oblique Towing of a Modei of a 

Cargo Liner and a Divided Double-Body Geosim," SSPA 
Publ. No. 57, 1965. 

Weinblum, G., "On Hydrodynamic Masses," DTMB Report 
809, April 1952. 

Grim, O., "Die Hydrodynamischen Krafte beim Rollversuch," 
Schiffstechnik, 3. Bd., 14/15 Heft, Febr. 1956. 

Landweber, L., and de Macagno, M. C., "Added Mass of Two- 
Dimensional Forms Oscillating in a Free Surface," J. Ship 
Research, Vol. 1, No. 3, Nov. 1957. 

Lewis, F. M., "The Inertia of the Water Surrounding a Vib- 
rating Ship," Trans. SNAME, Vol. 37, 1929. 

Prohaska, C. W., "The Vertical Vibration of Ships," Shipb. 
and Mar. Eng. Builder, Oct-Nov 1947. 

Lockwood-Taylor, J., "Some Hydrodynamical Inertia Coef- 
ficients," Phil. Mag. (Series 7) Vol. 9, No. 55, 1930. 

Ursell, F., "On the Heaving Motion of a Circular Cylinder on 
the Surface of a Fluid," Quart. J. Mech. and Applied Math. , 
Vols, 11; {FtsZ £949. 

Tasai, F., "Hydrodynamic Force and Moment Produced by 
Swaying Oscillation of Cylinders on the Surface of a Fluid," 
ISNA, Vol. 120;°2961". 

Porter, W. R., "Pressure Distribution, Added Mass, and 

Damping Coefficients for Cylinders Oscillating in a Free 
Surface," University of California, Inst. of Engng Res., 

Series 82, Issue No. 16, July 1960. 

Frank, W., "Oscillation of Cylinders in or below the Free 
Surface of Deep Fluids," NSRDC Report 2357, 1967. 

Vugts, J. H., "The Hydrodynamic Coefficients for Swaying, 
Heaving and Rolling Cylinders in a Free Surface," 
Laboratorium voor Scheepsbouwkunde, Delft, Report No. 

194, Jan. 1968. 

de Jong, B., "Berekening van de hydrodynamische coefficienten 
van oscillerende cylinders," Laboratorium voor Scheepsbouw- 

kunde, Delft, Report No. 174, March 1967. 

Tuck, E. O., "A New Approach to the Strip Theory of Forced 
Ship Motion," NSRDC Tech. Note, Sept. 1966. 

898 



32. 

33.6 

34. 

35% 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44, 

45. 

Shtp Maneuvertng in Deep and Confined Waters 

van Leeuwen, G., "The Lateral Damping and Added Mass of an 
Oscillating Shipmodel," Shipbuilding Laboratory, Delft, 
Publ. No. 23, July 1964. 

Brard, R., "Introduction & 1'étude théorique du tangage en 
marche," Bull. ATMA, No. 47, 1948. 

Havelock, T., "The Resistance of a Submerged Cylinder in 
Accelerated Motion," Quart. Journ. Mech. Appl. Math., 
Vol. 2, Part 4, Dec. 1949: 

Motora, S., "On the Measurement of Added Mass and Added 
Moment of Inertia of Ships in Steering Motion," Proc. 
First Symposium on Ship Maneuverability, Washington 1960, 
DTMB Report 1461, 1960. 

Motora, S., Fujino, M., Sugiura, M., and Sugita, M., 

"Equivalent Added Mass of Ships in the Collision," Journ, 
Soc. Nav. Arch. Japan, Vol. 126, Dec. 1969. 

Jones, R. T., "Properties of Low-Aspect-Ratio Pointed Wings 
at Speeds Below and Above the Speed of Sound," NACA 
Report No. 835, 1946. 

Eda, H., and Crane, C. L. Jr., "Steering Characteristics 
of Ships in Calm Water and Waves," Trans. SNAME, 
Vol. 73, 1965. 

Jacobs, W. R., "Estimation of Stability Derivatives and 
Indices of Various Ship Forms, and Comparison with Experi- 
mental Results," Dav. Lab. Report 1035, Sept. 1964. 

Hu, P. N., "Forward Speed Effect on Lateral Stability Deriva- 
tives of a Ship," Dav. Lab. Report R-829, Aug. 1961. 

Newman, J. N., "Some Hydrodynamic Aspects of Ship Maneuver- 
ability,'' Proc. Sixth Symposium on Naval Hydrodynamics, 
Washington, D. C. 1966. 

Brard, R., "A Vortex Theory for the Maneuvering Ship with 
Respect to the History of Her Motion," Proc. Fifth Symposium 
on Naval Hydrodynamics, Bergen 1964. 

Nomoto, K., and Karaanog K., "A New Procedure of 
Maneuvering Model Experiment," JSNA, Vol. 126, Dec, 1969. 

Nomoto, K., "Unusual Scale Effect on Maneuverabilities of 
Ships with Blunt Bodies," Proc. 11th ITTC, Tokyo 1966. 

Bottomley, G. H., "Maneuvering of Ships, Parts II-IV," Trans. 
IESS, Vols. 67, 70, and 74, 1923-1931. 

899 



46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

Norrbtin 

Kent, J. L., "Ships in Rough Water," Thomas Nelson and 
Sons Ltd., London 1958. 

Ambjorn, G.; "Sldpforsok med fartygsmodeller i sned och tvar 
stallning mot korriktningen. eos (with English summary) 3 

Trans. Chalmers Univ. of Technology, No. 123, Goteborg 
1952. 

Thieme, H., "Schleppversuche bei Queranstromung," Schiff 
und Hafen, 6. Jahrg., Heft 6, 1954. 

SNAME, "Notes on Ship Controllability "SNAME Technical and 

Research Bulletin No. 1-27, New York 1966. 

Crane, C. L., Jr., "Studies of Ship Maneuvering — Response 
to Propeller and Rudder Actions," Proc. Ship Control 
Systems Symposium, Encl. to Vol. 1, US Marine Engng. 
Lab., Annapolis 1966. 

Abkowitz, M. A., "Lectures on Ship Hydrodynamics — Steering 
and Maneuverability," HyA Report No. Hy-5, May 1964. 

Lindgren, H., "Ship Trial Analysis and Model Correlation 
Factors," SSPA Publ. No. 54, 1963. 

Saunders, H., "Hydrodynamics in Ship Design," Vol. II, 
Chapter 56, publ. by SNAME, New York 1957. 

Motora, S., and Koyama, T., "Some Aspects of Automatic 
Steering of Ships," Japan Shipb. & Marine Engng., July 
1968. 

Nomoto, K., "Analysis of Kempf's Standard Manoeuvre Test 
and Proposed Steering Quality Indices," First Symposium 
on Ship Maneuverability, Washington D.C., DTMB Report 
1461, Oct. 1960. 

Nordén, I., "Fartyg med tva roder," Gotaverken Journal 
Skeppsbyggaren, No. 4, 1960. 

Norrbin, N. H., "Steuern bei geringer Fahrt," Hansa, 101. 
Jahrg., Heft 10, May 1964. 

Ribner, H. S., "Propellers in Yaw," NAGA Report No. 820, 
1945. 

Ditlev Jorgensen, H., and Prohaska, C. W., "Wind Resistance," 
Appendix IV of Performance Comm. Report to the 11th ITTC, 
Tokyo 1966. 

900 



60. 

61. 

Gas 

Gis 

64. 

65. 

66. 

Ov: 

68. 

69. 

10. 

71. 

12 

Ship Maneuvertng in Deep and Confined Waters 

Wereldsma, R., "Experimental Determination of Thrust 
Excentricity and Transverse Forces Generated by a Screw 
Propelier,"; Intern. Shipb. Progris;\Vol.\.9; No. 95, 
July 1962. 

Norrbin, N. H., "Circle Tests with a Radio-Controlled Model 

of a Cargo Liner," SSPA Publ. No. 53, Goteborg 1963. 

Lotveit, M., "A Study of Rudder Action with Special Reference 
to Single-Screw Ships," Trans. NECI, Vol. 75, 1959/60. 

Baker, G. S., and Bottomley, G. H., "Maneuvering of Ships, 
Part I -- Unbalanced Rudders of Single-Screw Ships," 
Trans. IESS, Vol. 65,. 1921/22. 

Weissinger, J., "Uber die Auftriebsverteilung von Pfeilflugeln, " 
Forschungsbericht deutscher Luftfahrtforschung Nr 1553, 

1942., (Transl. NACA TM 1120.) 

Spreiter, J. R., "The Aerodynamic Forces on Slender Plane- 
and Cruciform- Wing and Body Combinations," NACA Report 
Nos 962, 1950). 

Mirels, H., "Lift Effectiveness of Slender Wings on Cylindrical 

Bodies," J. Aero. Sci., Vol. 20, No. 7, July 1953. 
(Readers Forum.) 

Yazaki, A., and Yokoo, K., "On the Roughness Allowance and 
the Scale Effect on the Wake Fraction of Super-Tankers," 
Prog. 1ithITTC, Tokyo 1966: 

Str¢ém-Tejsen, J., and Chislett, M. S., "A Model Testing 
Technique and Method of Analysis for the Prediction of 
Steering and Maneuvering Qualities of Surface Ships," 
6th Symposium on Naval Hydrodynamics, Washington D.C., 

1966. (Also HyA Report Hy-7, Copenhagen 1966.) 

Hooft, J. P., "The Maneuverability of Ships on a Straight 
Course," Intern. Shipb. Progréss), Vol. 15; No. 162, 
Feb. 1968. 

Nordstrom, H. F., "Screw Propeller Characteristics," 
SSPA Publ. No. 9, Goteborg 1948. 

Harvald, S. A., "Wake and Thrust Deduction at Extreme Pro- 
peller Loadings," SSPA Publ. No. 61, Goteborg 1967. 

Ritterhoff, J., "Beitrag zur Erhohung der Sicherheit von 
Schiffsantriebsanlagen durch Untersuchung ihres 
Manoververhaltens," Schiff und Hafen, 22. Jahrg., Heft 3, 

March 1970. 

901 



73. 

(ee 

hoe 

Tcye 

Tales 

78. 

19. 

80. 

81. 

82. 

83. 

84. 

85% 

Norrbtn 

Saunders, H., "Hydrodynamics in Ship Design," Vol. III, 
Chapter 6, publ. by SNAME, New York 1965. 

Brard, R., "Maneuvering of Ships in Deep Water, in Shallow 
Water, and in Canals," Trans. SNAME Vol. 59, 1954. 

Weinblum, G., "Theoretische Untersuchungen der Stromungsbee- 
influssung zweier Schiffe aufeinander beim Begegnen und 
Ueberholen auf tiefem und beschranktem Wasser," Schiffbau 
34. Jahrg., 1933% 

Havelock, T. H., "Wave Resistance — The Mutual Action of 
Two Bodies," Proc.: Roy. Soce,; Series" A,-Vol. 1553 
London 1936. 

Silverstein, B. L., "Linearized Theory of the Interaction of 
Ships," Inst. Engng. Research, Report Series 82, Issue 3, 
Univ. of California, Berkeley 1957. 

Schuster, S., "Untersuchungen uber Stromungs- und 
Widerstandsverhaltnis se bei der Fahrt von Schiffen in 

beschranktem Wasser," Jahrb. STG, Bd. 46, 1952. 

Weinblum, G., "Wellenwiderstand auf beschranktem Wasser," 

Jahrbs STGY Bdo39);- 1938. 

Muller, O., "Aus dem Grenzgebiet des Wasser- und 
schiffbaulichen Modellversuchswesens," Schiffbau, 36. 
Jahre.§. LISS, 

Constantine, T., "On the Movement of Ships in Restricted 
Waterways," J. Fluid Mechanics, Vol. 9, Part 2, Oct. 1960. 

Hooft, J. P., "On the Critical Speed Range of Ships in 
Restricted Waterways," Intern. Shipb. Progress, Vol. 16, 
No. 177, May 1969. 

Sturtzel,,W., and Graff, W., "Untersuchungen uber die Zunahme 
des Zahigkeitswiderstandes auf flachem Wasser," 85. 
Mitteilung der VBD, Forschungsberichte des Landes 

Nordrhein- Westfalen Nr. 1777, 1967. 

Kirsch, M., "Die Erzeugung von Rotationskorpern aus gegebenen 

Singularitaten-Verteilungen," Schiff und Hafen, Heft 11, 
1959) 

Sturzel, W., and Heuser, H. H., "Widerstands- und 
Propulsionsmessungen fur den Normalselbstfahrer Typ 
Gustav Koenigs," Forschungsberichte des Landes Nordrhein- 

Westfalen, Heft 868, 1960. 

902 



86. 

37. 

88. 

89. 

90. 

91. 

92. 

93% 

94. 

95, 

96. 

Ue 

98. 

Shtp Maneuvertng tn Deep and Confined Waters 

Graff, W., "Untersuchungen uber Anderungen von Sog und 
Nachstrom auf beschrankter Wassertiefe in stehendem und 

stromenden Wasser," Schiffstechnik, 8. Bd, Heft 44, 
Nov. 1961. 

Sjostrom, C. H., "Effect of Shallow Water on Speed and Trim," 
Naval Engineers Journal, April 1967. 

Tuck, E. O., "Shallow Water Flows Past Slender Bodies," 
Journ. Fluid Mechanics, Vol. 26, Part 1, Sept. 1967. 

Tuck, E. O., "Sinkage and Trim in Shallow Water of Finite 
Width," Schiffstechnik, 14. Bd, Heft 73, Sept. 1967. 

Hay, D., "Harbour Entrances, Channels and Turning Basins," 
The Dock and Harbour Authority, Jan. 1968. 

Kan, M., and Hanaoka, T., “Analysis for the Effect of Shallow 
Water upon Turning," (in Japanese), Journ. SNAJ, Vol. 
115, 1964, 

Newman, N. J., "Lateral Motion of a Slender Body Between 

Two Parallel Walls," Journ. Fluid Mechanics, Vol. 39, 
Part 1, Oct. 1969. 

Newman, N. J., "The Force and Moment on a Slender Body of 
Revolution Moving Near a Wall," DTMB Report 2127, 
Dec. 1965. 

Garthune, R. S., Rosenberg, B., Cafiero, D., and Olson, G.uR.,; 

"The Performance of Model Ships in Restricted Channels in 
Relation to the Design of a Ship Canal," DTMB Report 601, 
Aug. 1948. 

Schoenherr, K. E., "Data for Estimating Bank Suction Effects 
in Restricted Water and on Merchant Ship Hulls," Proc. 
First Symposium on Ship Maneuverability, Washington D.C., 
DTMB Report 1461, Oct. 1960. 

Tuji, T., Mori, N., and Yamanouchi, Y., "On the Water Force 
Acting on a Ship in Oblique Flow (Restricted Water Effect) ," 
Contr. to the 12th ITTC, Rome 1969. 

Kennard, E. H., "Irrotational Flow of Frictionless Fluids, Mostly 
of Invariable Density," DTMB Report 2299, Feb. 1967. 

Nussbaum, W., "Messung von Quer- und Langskraften am 

Modell eines Grosstankers,' VBD Berichten Nr. 396 I-II 
and 406, June-Sept. 1966. (Contract Reports.) 

903 



Norrbtn 

99. Schmidt-Stiebitz, H., "Die Manovriereigenshaften der Schiffe 
in Abhangigkeit von Schiffsform und Fahrwasser," Schiff und 
Hafen, 16. Jahrg., Heft 2, Feb. 1964. 

100. Eda, H., and Savitsky, D., "Experimental and Analytical 
Studies of Ship Controllability in Canals," Dav. Lab. Techn. 

Note 809, Sept. 1969. 

101. Fujino, M., “Experimental Studies on Ship Maneuverability in 
Restricted Waters -- Part II," Intern. Shipb. Progr., 
Vol. 17; No. 186 Feb. 1970. 

904 



THE SECOND-ORDER THEORY FOR NONSINUSOIDAL 
OSCILLATIONS OF A CYLINDER IN A FREE SURFACE 

Choung Mook Lee 

Naval Ship Research and Development Center 
Washington,: D.C: 

ABSTRACT 

A nonlinear hydrodynamic response resulting from 
vertical oscillation of a horizontal cylinder in a free 
surface at the sum of two monochromatic frequencies 
is investigated. The fluid surrounding the cylinder is 
assumed incompressible, its motion irrotational and 
its depth infinite. 

It is shown for the case of a semi-submerged circular 
cylinder that when the two frequencies are close to 
each other the hydrodynamic force associated with the 
difference of the two frequencies is greater than the 
steady force. Inthe limit as the two frequencies 
become equal the above two forces also become equal. 
It therefore appears reasonable to include the differ- 
ence-frequency force in the calculation of the maximum 
steady force when the excitation of a body consists of 
narrow-band frequencies. 

I. INTRODUCTION 

The hydrodynamic problem dealing with a horizontal cylinder 
undergoing a vertical simple harmonic motion in a free surface has 
been investigated by many authors. Ursell [ 1949] treated a semi- 
circular cylinder using the method of multipole expansion and ob- 
tained the pressure distribution, added mass, and damping of the 
cylinder. Later Tasai [1959] and Porter [1960] extended Ursell's 
work to cylinders of ship-like sections using conformal mapping. 
Frank [ 1967] dealt with the foregoing problem by the Green's func- 
tion which resulted in a distribution of singularities. Lee [ 1968] , 

following Porter's work, extended the potential solution to second- 
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order in a perturbation series in the ratio of motion amplitude to 
half-beam. In the present work this cylinder-oscillation problem is 
extended to the case where the cylinder is oscillated at the sum of 
two monochromatic frequencies. In this case the second-order 

forces acting upon the cylinder include the effects of interactions 
between two frequencies, in particular, the sum and difference fre- 
quencies of the basic spectrum. The magnitudes of these second- 
order hydrodynamic quantities provide a measure of the non- 
linearity of the frequency response of an inviscid incompressible 
fluid to a periodic disturbance generated by an oscillating body in a 
free surface. 

Hydrodynamic quantities such as added mass and damping 
obtained from the theory of oscillating cylinders in a free surface 
with a monochromatic frequency are extensively used in the studies 
of ship motions. Most of these studies are based on the assumption 
of linear frequency response of ships to waves. Recently Tasai 
[1969] and Grim [1969] emphasized the necessity of further investi- 
gation on nonlinear ship responses to waves. The present investiga- 
tion is an attempt to provide information on the nonlinear relation 
between the motions of a body and surrounding fluid. This informa- 
tion might lead to the study of nonlinear ship motions in waves, 
perhaps by using the scheme suggested by Hasselmann [ 1966]. 

The problem to be investigated in this work is the following. 
An infinitely long horizontal cylinder which is symmetric about its 
vertical axis is semi-submerged and forced to oscillate vertically 
at the sum of two monochromatic frequencies. The maximum dis- 
placement of the cylinder from its mean position is assumed to be 
small compared to the half-beam of the cylinder. The fluid in which 
the cylinder oscillates is assumed inviscid, incompressible, and 
infinitely deep. The motion is assumed to have existed for a period 
significantly long that the initial transient phenomenon of the response 
of the fluid has completely decayed. This problem can be formulated 
as a boundary-value problem for a velocity potential. The kinematic 
and dynamic conditions to be satisfied on the free surface are non- 
linear and the position of the free surface is a priori unknown. An 
exact solution of this problem in a closed form cannot be attained, 

so an approximate solution based on a linearization of the problem 

is pursued in this work. The linearization of the problem is carried 
out by a perturbation expansion of the velocity potential in terms of 
a small parameter formed by the ratio of the half-beam to a typical 
displacement amplitude of the cylinder motion. The first-order 
perturbation potential consists of two potentials, $,(x,y,t) and ,» 
each of which involves only one of the two fundamental frequencies. 
The second-order perturbation potential consists of five potentials. 

Two of them are $, and 4, which are associated respectively with 

frequencies of twice the fundamental frequencies. Two more are 

@, and $, which are associated respectively with the sum and the 

difference of the fundamental frequencies, and the last one, (x,y) 5 

is independent of the frequencies and is a steady potential. The 
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solutions for the first-order potentials were given by Ursell [1949], 
Tassai [1959], Porter [1960], and Frank [1967] among others. 
The solutions for three of the second-order potentials, $3, $,, and 
$,, were given by Parassis [1966] and Lee [1966]. Inthe present 
investigation, the solutions for the remaining second-order potentials, 
$5 and ¢¢, will be given. 

These solutions are based on the method of multipole expan- 
sions similar to that employed by Lee [1966]. An interesting prob- 
lem arising from the present work is a surface-wave problem con- 
cerning a non-decaying pressure distribution on the free surface. 
The solution of this pressure-distribution problem is shown in detail 
in Appendix C. The potential $,, associated with the difference fre- 
quency, is of particular significance in practical problems. $¢¢ is 
a potential which is slowly-varying in time if two fundamental fre- 
quencies are close. In the case of bodies with insignificant restoring 
forces, such as submersibles and floating platforms, any hydrody- 
namic force, which is constant in time or varies slowly with time, 

could cause large excursions from the mean positions of such bodies 
if it acts for alongtime. 4, must be calculated in order to deter- 
mine this slowly-varying hydrodynamic force. 

In the present work numerical results obtained from the solu- 
tion of ¢, are shown. These include the pressure-distribution about 
a semi-submerged circular cylinder, the hydrodynamic force acting 
on it, and the outgoing waves. These results are shown with other 
first- and second-order quantities for comparison purposes. 

II FORMULATION OF THE PROBLEM 

A Cartesian coordinate system is used with origin at the 

interaction of the undisturbed free surface and the vertical line of 

symmetry of the cylinder. The x-axis is in the undisturbed free 

surface and the y-axis is directed upward. 

Any point in the space is described in complex notation by 

z=xtiy= rel9, (1) 

The region outside the cylinder and the cylinder boundary is mapped 

from the region outside a circle inthe €-plane and its circumference 

by the conformal transformation 

00 

Z, _ -(2n+1) 

ae ae: (2) 
n=O 

t=Etin=re™, 21, (3) 
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where a and Bone are real constants. 

Points on the surface of the cylinder at its mean position are 
given by 

= Ben Skene A) x a} ro cos gee 3 y) Xene , 

(4) 

és a sin (2n+1)@ 
Yor a}hgsin a - s eT Sa ? 

n=O 8 

where i, is the radius of the reference circle. When the cylinder 
is at the rest position its half breadth and draft are given respectively 

by 

b = x,(A,, 0); (5) 

aeelyiikly=n/2)| + (6) 

The forced motion of the body is assumed to be the sum of 
two vertical simple harmonic motions with different frequencies. 
The motion of a point fixed in the body is expressed by 

y(t) = h,(sin o,t + sin ot) (7) 

where o, is greater than o, and h, represents the amplitude of 
the individual simple harmonic motions. 

The fluid is assumed to be incompressible and its motion to 
be irrotational so the continuity of mass in terms of velocity potential, 
@(x,y,t) is expressed by 

2 92 

(soe + gon) ® = V°B = 0. (8) 

The boundaries of the fluid are the free surface which extends 

to infinity along both the positive and negative x-axes, the fluid 

bottom which is at infinity, and the immersed surface of the cylinder. 

If we let the equation of the free surface be expressed by 

y= Vixsth, |x| > b, (9) 
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the kinematic and dynamic boundary conditions on the free surface 
can be given respectively by 

(x, Y(x,t),t) ¥, (x,t) - a! + ¥Y, = 0, (10) 

and 

&, (x, ¥(x,t),t) + g¥ +3(O +B) = 0, (11) 

where a constant atmospheric pressure and an absence of surface 
tension on the free surface have been assumed. Taking the substantial 
derivative of Eq. (11) and eliminating Y(x,t) by using Eq. (10), 

we obtain 

+ O25, + 20,6,6,, + O56,=0. (12) 

Let the equation of the cylinder surface at its rest position 
be given by 

S(x9,Yo) = f(x) - yo = 0 (13) 

where f(x,) represents an implicit functional relation between x, 
and y, through the parameters X, and a. Then the equation of the 
oscillating surface can be written as 

S(x,,y, + y(t)) = £(x,) f h(sin ot + sin ot) - y= 0. (14) 

The kinematic condition to be satisfied on the cylinder surface is 

VO(x,,y, + y(t).t) > n= Vn=- st (15) 

where n is the unit normal vector on the cylinder surface and points 
into the fluid and Vn is the normal component of the cylinder- 
surface velocity. Since 

eae VS = CE ,-1) 

2 Nei: - del S : 

Eq. (15) becomes 
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® (xo,y, + y(t), t)f'(x,) - o, mir ho, cos ot + a, cos o,t). (16) 

In terms of the stream function which is the harmonic conjugate of 
@ the boundary condition on the body is 

ay _ 8 _ dy(t) dx 
op EL Ee 

where s_ is the arc length of the cylinder contour in the counter- 
clockwise direction. Thus we have 

Weagsy, + y(t) t) = - x, SO | 

To complete the specification of the boundary-value problem, 
following conditions should be also given; the symmetry of the flow 
about the y-axis implies that 

@(x,y,t) = O(-x,y,t), 

the zero normal component of the fluid velocity on a rigid surface 
at the infinitely deep horizontal bottom is described by 

@,(x,-0, t) = 0, 

and the solution should represent outgoing plane waves as | x | 7160. 

Ill. PERTURBATION EXPANSION 

Assume a frequency-response system in which the relation 
between the input X andthe output Y is given by 

YaiAx+ Bx? 

where the input X is given by 

ae ee 

and A and B are constants; it can then be shown that the frequency 
components involved in the output Y are o,, 05, 20,, 205, 0, +O; 
vg, - 0, anda '"d.c." shift. Therefore, we make a perturbation 
expansion of the complex velocity potential 
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H(z st) = @(x,y,t) i i(x,y,t) 

in terms of a perturbation parameter € = h,/b in the following 
fashion: 

= eH! zh <*H'?) rs eH?) fice 

= ¢(o'" ig” y+ (Bl?) + jy + eH) +) 400, 
(17) 

Each velocity potential and stream function given above is further 
expanded as 

a" = $(x,y,t) + o(x,y,t) 

t ot -jo 
+ P(xsy)e 2 ’ 

=) 
9 (x,y)e 

g!?) 

-j2o,t -j2o4t 

= 9,(x,y)e + ye +¢@ 

-jlo,-o,)t ae ie t % + g(x,y) 

y= Ulxry.t) + bplx,y,t) 

-jo,t -jo5t 
W(xye | + W(x,y)e iu, 

Y= Ys(x,y.t) +y(x,yot) tU(x,y.t) + olx,yst) + H(x,y) 

-\lo,+o5)t 
5° 

-j2o,t -j2o,t -j( )t 
= W,(x,y)e ee We ieee Vie de 

-j(o,- o)t 
+ Ye mete + W(x, y) 

etc., where 

P= Gegt Jeg? v 
k 

Ves + jw 

$(x,y.t) + o(x,y.t) + o(x,. yt) + o(x,y.t) + d(x, y,t) 

ks’ 

(17a) 

(1 7b) 

(1 7c) 

(1 7d) 

for k=1,2,..-,6, and j=v-1. In these expressions, only the real 
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parts are needed, so whenever there appears an expression of the 

product of two complex functions one of which is a time harmonic 
involving with j = v-1, it should be understood that the real part of 
the expression is to be taken. 

The convergence of these perturbation expansions will not be 
discussed. As usual it is hoped that the first few terms of the ex- 
pression would yield an adequate approximation to the exact solution 

of the complex potential H(x,y,t). 

The expansion given in Eqs.(17) and the Bernoulli equation (11) 
suggest that we also assume the expansion 

e€ ] 

-j2o\t -j@o5t 
+ e[ ¥,(x)e + Y,e 

Y(x,t) = €[ ¥, Eyer)" a 

-jlo,+o,)t -j(o,;-o.5)9 
rye | at Yee ee . + Y(x)] + O(e%) (18) 

where 

Tp Soe oR) Oke for fe 1G 23 Se oe 

Substituting these expansions into the Laplace equation and the boun- 
dary conditions and equating the terms of the same order in € as 
well as of the same harmonic time dependence, we obtain a set of 
linear boundary-value problems. In this linearization process the 
instantaneous boundary of the fluid is expanded in Taylor's series 
about the undisturbed position of the fluid boundary. 

The linearized boundary conditions for the functions 9j 
(j = 1,2,3,4,7) are shown in Appendix A where it is shown that in the 

limiting case of o, =o, the relations 9, = 92, 93= 94 = p,/2 and 

Yg= %7 can be established. These identities mean that when o, =o 
the perturbation expansion given in Eqs.(17) reduces to that for the 
case of a simple harmonic oscillation which was investigated by 
Lee [ 1968]. 

The linearized boundary conditions for the functions ?. and 

Yg are given next. 

3.1 The Boundary-Value Problem for Pa(x,y) 

gy, is harmonic in y <0 except in the portion occupied by 

the cylinder at its mean position. On the free surface 

Oey +0) - Kyo, = h(x) (19) 
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whe re 

K,= (co, +o,)"/g: 

h(x) = - jo, /(28)19,(*, 09, 

~ jo5/(28) {99 x.0)(% yy 

in which 

2 
jel On Bh 

ae 

On the cylinder surface, 

- K,9))) - 2(9), P25 + Pry Pay)3 

= Ki%y) a 2(9,, Pox + PiyPay)s 

Pia, 

! =- 5 4(XoVo)E(X,) - M5) = Mp(X,rY,) 

where 

rele. 
m,(X9, Yo) == Jey {(Pixy (Xo Yo) + Poxy)£ (XQ) ~Piyy - Poyy) ’ 

or, in terms of stream functions, 

Pals, 
We 5s Vo) ea J 2 (Wy (xy, Yo) a Wy) 

(20) 

(21) 

(22) 

(23) 

In the far field 9,,—~ 0 as y~-o and 9g, should represent out- 
going plane waves as 
flow condition which is expressed by $5 (%»y) = %5(-X,yY)+ 

3.2 The Boundary-Value Problem for 9,g(x;y) 

yg, is harmonic in y< 0 except in the portion occupied by the 
cylinder at its mean position. On the free surface 

where 

K, = (o, - o,) /g; 
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h(x) = - jo, /(2g){9,(x,0)(9,,, - K9,) - 219%, + 9) Py} 

3 5%/(28) {Pl Pyy r Ky) y 2(P1, Pox + P1yPoy) (25) 

and the bar signs mean the complex conjugates, i.e. 

1 =%ic-ji?is for i=1,2. 

On the cylinder surface 

Pex(Xo2 Vo) f (Xp) = Pey = M,¢(Xo+ Vo) (26) 

where 

og ID ee = , 
M65 mae 2 {Poy y(Xo, Yo) ms Piyy ay (Poxy a Pixy)f (x,)h (27) 

or, in terms of the stream functions, 

We(Xo, Yo) = j 2 (Why = Wey). (28) 

In the far field ggy~ 0 as y~-o and 9 should represent out- 
going waves as |x| —~ oo. The symmetric-flow condition implies 
that 

9_(x+y) = 9,(-x,y)- 

IV. SOLUTIONS FOR os AND 96 

It will be assumed that solutions for the first-order potentials 
gy, and g, are known. The method of multipole expansions for 
finding g, and 9, is described in Appendix B. 

The main difference between the first- and second-order 
problems is in the free-surface conditions. A first-order problem 
has a homogeneous differential equation for the free-surface condi- 
tion (see e.g. (A-1) of Appendix A) whereas a second-order problem 
has an inhomogeneous one (see e.g. (19))- When there exists a non- 
constant pressure distribution on a free surface of negligible surface 
tension the first-order free-surface: condition for an incompressible 
irrotational flow is represented by an inhomogeneous differential 
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equation such as Eq. (19) or (24). The term on the right-hand side 
of the equation of the first-order free-surface condition represents 
the pressure distribution on the free surface. Thus the problems 
for the second-order potentials Ps, and 9, presented in Sections 3.1 
and 3.2 are the same type of boundary-value problems as those for 
the first-order potentials except for the "non-constant pressure" on 
the free surface. If we assume there is no body in the fluid, then 
these problems can be treated as problems for surface waves arising 
from variable free-surface pressure distributions. Solutions for 
these problems are given in Wehausen and Laitone [1960]. If we 
denote the velocity potential associated with the problem of variable 
pressure distribution on the free surface by W and if we assume 
that it is known,we can use it to find the potentials gs and gg. 
This is done by introducing a new function G=g- W, where 9 
could be either g, or 9.,s0 that the free-surface condition for G 
is given by a homogeneous equation such as Gy(x,0) - KG=0 where 
K is either Ks or Kg. The boundary-value problem for G is 
then identical to those for the first-order potentials and the solutions 
to these are well known. Once G is known the solution for @9 is 
readily obtained from g=Gt+twW. This scheme was used by Lee 
[ 1968] to find the second-order potentials gy, and g,. However 
there are certain requirements on the "free-surface pressure 
functions," h, and hg given by Eqs. (20) and (25) respectively, 
to be satisfied before the known methods can be used to 
find the potential W. These requirements are that the functions 
hs(x) and h,(x) should be absolutely integrable in (-00,00) and 
should satisfy the Hdélder condition. Although the proof of these 
statements may not seem obvious from Eqs. (20) and (25), it can be 
ee that both h, and hg satisfy the Holder condition and as 

x] —* 

hy = O(1/24 (29) 

and 

i€(K,-Kp)Ixt - B} 
e yea + O(1 /x?) (30) 

where a, and 6 are given by 

Z ay = — Q,9,K,K (0, - 02) (30a) 

and 

oo di - do- 1/2. (30b) 

Here the quantities Q, and q, for k=1,2 are associated with the 
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first-order potentials and can be best described by the expressions 
of asymptotic behavior of the first-order potentials such as 

Kyy j(K,Ixl-q, ) 
data xe “e K kK for Keak 2 as |x| — o. 

It is apparent from Eq. (30) that hg is not absolutely integrable. 
This implies the necessity of further consideration in deriving the 
solution of W which is associated with hy. 

4.1 Solution for a Case Where Free-Surface Pressure Distribution 

is Specified 

In this section we consider a potential-flow problem with a 
given pressure distribution on the free surface. We restrict our 
attention to the pressure distributions which have harmonic time 
dependence and are even in x. Furthermore we consider the two 
special cases: the one where the pressure distribution decays in 
the manner of 1/x? as |x| — o and the one where the pressure 
distribution behaves like that for outgoing plane waves as |x| ~ o. 
Let w(x,y,t) be a harmonic function defined in y <0 and with its 

time dependence of the form 

-iwt 
w(x,y,t) = W(x,y)e 

where W=W,+jW, and w is an angular frequency. The free- 
surface boundary condition is 

Wy(x,0) - KW = h(x) (31) 

where K = w*/g and h is a known pressure distribution and is even 
in x. We expect that the solution of W should represent outgoing 
plane waves as |x| — oo and furthermore that Wy (x, -00) = 02 "Wie 

seek solutions to this problem in two cases. 

Case 1: h(x) = O(1 /x?) as |x| — o. (32) 

The solution for this case is given in Wehausen and Laitone [ 1960] 
in the form of a complex potential 

te 
F(z) W(x, y) + iW (x, y) 

oe) : 
Hs ; 

1/1 Ae n(é)e'Kl2-
8) & (-iK(z-€)) dé + 2i ( hleve iK(z-€) dé 

00 : 

+ (j-i) ‘a Helens 5 dé. (33) 
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Here E, is the exponential integral defined by 

00 et 

E,(z) - =~ at for larg (z)| <7. 

Case 2: h(x) = Pe ase O(4 /x?) as |x| — c (34) 

where K' (# K) is a wave number and A is a complex constant 

with A = A, + jAg. 

Before trying to solve for W, we introduce a harmonic 
function W,(x,y) which is even in x and satisfies 

W), (x0) - KW, = AelN™! 

W(x» -00) = 

and 

W, ~ Be as |x| OS 

where B is a complex constant with B=B,+jB,. The solution 
for W;, is found in Appendix C as 

Ky <y! iK'z -iK'z 
W, (x,y) =o en - j 2 2 Re;[ A) + eel (35) 

Now we let 

Wo = W - W, in y = 0, 

It ean then be shown that 

jKIxl 
Wz yl » 9) - KW, = h(x) - Ae = h,(x) 

where 

h(x) = O(1 /x*) as |x |— oc 

and that 

Wa y(x» 00) = 0 and Wo(x,y) = W,(-x,y). 
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The solution to this problem is given by Eq. (33) as 

F(z) W,(x,y) ra iW, (x,y) 

ise) , 00 

aa hye “© & (-iK(2-€)) dé + 2i | nigje “2 ae 
wT 

iT] 

ee ae ~iK(z-€) jaa). Been Paes (36) 
-00 

Thus Eqs. (35) and (36) finally give 

We Ww, it Wo» 

“AES aK ial jAr Re, [© 7& (iK'z) man AG aS oe eal 
PKK ae 2 aaa 

+ Re, [z)" h{éye KE (-iK(z-6)) dé + 2S hye ae 

+ (j-i) ie neve Fag |. (37) 

If we seek a solution to the problem described in Section 3.1 
except the body-boundary condition, given by Fq. (21), we can ob- 
tain it from Eq. (33) of Case 1 of this section as 

F(z) = W,(x,y) + iW, (x,y) 

00 
. 

= tf née Mee (-iK,(z- 6). det 2 9 le -iK (2-€) at 

00 
‘ 

+ (j - i) in hleje 
ies 

a 

in which we let h,(x) =0 in - b<x<b since the velocity potentials 
are undefined in this line interval. In the same way, if we seeka 
solution which satisfies all the conditions except the body-boundary 
condition given by Eq. (26) in Section 3.2, we can obtain it from 
Eq. (37) of Case 2 with the constant A replaced by ae!” (compare 
Eq. (30) with (34)). If we express the solution in the form of a com- 
plex potential and let K'=K, - K,, we find that 
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* 

F,(z) ca W, (x,y) a iW, (x,y) 

K'y i(k 'Ixl-B) | .,_ i K'Ix-B) 
= ones e + ije 

sean K7E (iK'z) , e7 suena 
K'+K, 

‘s ~iK(2-€) 
; 

+t h,(&)e éz- E (-iK,(z-§)) d& + ail hale" Mee -€) = 

-iK(z-€) 00 

+ (j- vf h,(é)e dé, (39) 
-00 

where + signs correspondto x5 0 and h(x) =0 in -b<x<pb. 

4.2 Solutions for gy, and 9, 

We will now show how to use the solutions obtained in the pre- 
ceeding section to find Ps and Pee We introduce a new harmonic 

function G, defined by 

G(x, y) = 9. = W, (40) 

in the domain of y <0 except for the portion occupied by the cylinder. 
Here the subscript k can be either 5 or 6 unless specified as one or 
the other. The boundary-value problems posed in Sections 3.1 and 
3.2 can be written in terms of G, as 

G,(x,0) - KG, = 0, (41) 

Gy lx yr ¥o)EK) - Gy = MylK yoo) — (Wy lXqrVq)f",) - Wyy)s (42) ky 

, . * 
or in terms of the harmonic conjugates of G,, denote by G, , the 
above boundary condition can be written as 

* ._b x 
G,(x,, Yo) a! | wa (W(x, Yo) Me v,,) co We = Bo(x,> Yo) (42a) 

and 

Gel(x,+y,) = is (W, (x52 V9) 35) We = B,(x,y,)> (42b) 

Furthermore Gy, is evenin x, Gyy 0 as y~- oo, and G, 
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should represent outgoing waves as |x| — Os 

These boundary-value problems are almost identical to those 

for the first-order velocity potentials. Thus we find them by the 

same method used to find the first-order potentials which is described 

in Appendix B. It is often called the "multipole-expansion method" 

since the potential is expanded in an infinite series of poles, located 

at the origin, of increasing order with unknown strengths. Each 

pole satisfies Laplacian equation everywhere except at the origin, 
the linear free-surface condition of the type ® (x, 0) -\KO@ = 0 and 

the infinite-depth condition, and is evenin x. However, since each 

pole vanishes as | x | — o the radiation condition of outgoing plane 

waves is not satisfied. To circumvent this a source singularity 

which has all these properties plus the property of outgoing waves 

at | x = oo is added to the multipole-expansion series. The unknown 

source and multipole strengths are found by satisfying the remaining 

condition which is the boundary condition on the body. Specifically 

we assume the solution for G, to be 

ee) 

G (x,y) = S (Dem * 5S pan) My m(X(X52) sy(A,a))e cK, (43) 
m=O 

Here b,, = Q, = unknown strength of a source at the origin, c,,=0, 

vee -J cre OsUpee Area sels conte (44) 
0 

= a source of unit strength at the origin, 

ioe) 

where f indicates that a Cauchy principal value is to be used, 

M cos 2ma K sin (2m - i)ea 

km em k (2m - 1)xem 

(2m+2n+1)a (2n ti) a,- 27 sin 
~ 2m +2n ag yemeenel 

for m= i1 (45) 

= multipoles of unit strength at the origin, 

by, and c,, form=i1 are unknown multipole strengths, and q 

represents unknown phase relations between the forced motion of the 

body and the pulsating singularities at the origin. The expression 

for the harmonic conjugate of G, is 

co 

G* (x,y) = » (by mn + 5C pan) Man (0 9 @) ry(\,@)) (46) 

m=O 
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where 

00 DYae- 
* K 

M. = f <a dp + 4re ete eee (47) 
ko p-K k 

(@) k 

* sin 2ma {<22 (2m - 1)a@ 
M = - +K,a Tes ae ra km x m k (2m - 1) m 

00 
? (2n t1)as,4 cos (2m pennee \ he = 42 a8) 

fy ee +2n #14 pemecns 

Our task is now to find the unknown coefficients b,, and c,, and 
the phase relationship q, from the boundary conditions on the body 
surface given in Eq. (42). Since the boundary conditions on the body 
are simpler when written in terms of the stream functions G, than 
in terms of the potential functions G,, we use the Eqs. (42a) and 
(42b) to obtain these unknown quantities. Thus we find that 

00 
p * -J4_ 

» (by 53 I<um) Mim (x5+yp)e = B(x 5+ Yo) : (49) 

m=O 

Since the q,;'s are independent of the points (x,,y,) on the body, we 
see by choosing an arbitrary point on the body, say (x5 (A2'), 

y' (X5.@')) » that 

eK ___ Bylo yo) (50) 
= * 
np (Dim + IC Km) Mum (ho2%') 
m=O 

Substitution of Eqs. (50) into (49) yields 

00 

= * B (x ’ ) ne i] ee M,..(X,,@) - Kt or¥o! na (yn, = 0, i km * IC Km) (Mm (Xo 2) B bet oy) snlkase 

and use of the earlier definition of Dig = Q, and c,,= 0 inthis 

equation yields 

oO 

b * By(X_s Yo) * ' D, (abt Hate) [Mint hora) = Saale yg} 
oo | «PYo ; 

= Bxl%o Yo) (Xs Yo) (5 e__sin pxo px¢ dp + jre ”? sin Kx) - 
B(x)» yo) fe) p - Ky 
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per ain px vole alt Ripe 
- wre ae dp - jme sin K,x,]- (51) 

gone h Sopk 

Since this equation is valid for all values of @ inthe interval 
(- r/2, 0) onthe circle of radius Xo, in principle we can take an 
infinite number of @'s to set up an infinite system of a linear alge- 
braic equation which can then be solved for by 2 and Chmn/ Qs 
In practice, the infinite series is truncated, so only a finite number 
of these unknowns is sought; this finite number is equal to the number 
of chosen @'s. The proof for the convergence of such a truncation 
scheme was given by Ursell [1949]. Once the values of anumber N 
of b, Q, and c, Q, (i.e. m=1,2,..-N) is known the values of 

re) m 
q, an , are readily obtained from Eq. (50) by 

-!f -Im; A 
q, = tan ieee , (52a) 

Q.= |Al, (52b) 

where 

yeep ee ies 5.1) 4 

y (3 ‘ oe Mim (Xo @') 

Thus we finnaly can express the solutions of the velocity potentials 

g(x,y) = Gix.y) + W,(x,y) for k= 5,6. (53) 

V. PRESSURE, FORCE, AND WAVE 

5.1 Pressure on the Cylinder Surface 

If we expand P which denotes the pressures on the cylinder 

in the same way as ® was expanded in Eq. (17), we find that 

P(xo,yo + y(t),t) = €{ Pr (x9r¥e + y(t))e + Pie 

> -j2o,t -j2o,t -jlo,+o,)t 

we {Pie + Piye + Pye 

+P -j(o, -o,)t +P fs i} + ole3) 

vie vir'*07% | Y : 

922 



Nonsinusotdal Oscillattons of a Cylinder in a Free Surface 

We expand P, (i=I,II,...,VII) in Taylor series about the mean 
position of the cylinder (x,,y,) and substitute 

y(t) = h,(sin ot + sin ot) 

€b(sin ot + sin oot) 

in this expansion. We rearrange the terms in powers of € andin 
time harmonics to obtain 

-jo,t -jo,t 
P= € {Pi (xorye)e + pe 

ot -j2o,t 
e 

4 

-j2 -j(o,+0,)t 
+ e%{pe +p geuhil = tp 

-j(o, -o,)t 
oper |e Peale) (54) 

From the Bernoulli equation, 

2 2 

P = -~ pOj(xo, yo + y(t),t) - Palys + y(t) - $ (& + y), 

we eliminate the static pressure pgy,, expand the right-hand side in 
accordance with Eq. (17) and equate terms which are of the same 
power of € and of the same time harmonics. We then find the ex- 
pressions for pj (i=1,2,...,7) in terms of velocity potentials 9, 
and their derivatives. The expressions for these P;'s are 

Pj jp (o) 9) (X95 Vo) - gb) for i=1,2 (55) 

ee er PER Gt tee for (1220 (56) Pigg PF Ve dOU Mie Yo vive aie a iy Os aa? 

- \- J(o, + o)e Axo ¥,) +5 (Px Pox t P1yPry) ue) a 
N 

+2 (0, 9,, a5 5% oy )\ ? (57) 

Pe =~ PySoy ~ oppelx ) +5 (Po, 4 Oye 6 JAG, 2PeXorVol 7 F N\PixPoy PiyPoy) 

z 2 (7% + T2Pey yt i in 
2 

b 1 — = F 

923 



Lee 

where the bar sign means the complex conjugate e.g. 

Pox Prex~ IPogy° 

If we let 

6; =tan (Re, pj/Im, pj) for i=1,2,...,6, 

we can express these pressures in the form 

p, = jlp ler?! for L=ilads ek 9.40 

or, in association with the time harmonics, 

-jwjt 
pje = Ip; | sin (wt + 6.) for i7s4l 2 ,..<57,0 

where 

iT] —_ 
w ies) oj for i 

Wj = (61) 

5.2.) Vertical Hydrodynamic Force on the Body 

The vertical hydrodynamic force acting upon the body is given 

by 

L(t) 
Erste i Pi cos (njy) dl. 

£ 0 

Here £,(t) is the instantaneous position of the point of intersection 
between the bottom of the body and the y-axis, 2(t) the instantaneous 
position of the point of contact of the body with the free surface, and 
cos (n,y) the direction cosine of the unit normal vector on the body 
surface inthe y-direction. The positive direction of the unit normal 
vector is into the fluid, and the integral is taken along the cylinder 
contour. Eq. (54) enables us to show that for the family of cylinders 
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mapped according to Eq. (2) 

b A : 
-jo ft -jJo.t 

F = 2! dxo[e{P\(x-y0)¢ ad + p,e 52 \ 
O 

-j2o,t -j2o,t -j(o,+o5)t 
+ lp. + pye + pee 

-j(o,-o,)t £ Pee J o, os + p7t| + O(e*) c (62) 

If we let 

-jo,t -jo5t F=e(fe"' +f, °°? ) 

2 -j2o,t - j2ont -jlo,+o,)t 
te (f,¢ 2g f,e a: f,€ 

+ fg +i) +O), (63) 

then we find that 

b 

a) 

= 2 | P(X (A522) s¥Q(hy-%))T(2) dw = for f= 142,20%,7 ~ (64) 
-17/2 

where the expressions for p,; are given in Eqs. (55) through (58) 
and 

2 

en¢ 
Xo 

00 

T(@) = - a4}, sina + » ase eriic sin (2n +1) a}. 

n=0 

If we let 

y, = tan” (Re; £, /tm, £) for irs Dale ness 

we can show that 

fi. Il jlfife eM" 

lf, | sin (wt + y;) for =) de seg 0 (66) 
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where the w,'s are defined in Eq. (61). 

5.3 Outgoing Waves at |x| = 0 

Equation (11) shows that 

(x,t) = - - {B xb, ¥(x,t) +t) +5 (&; + a5). 

If we substitute the expansions given in Eqs. (17) and (18) into this 
equation and equate the terms of the same order and time harmonic, 
we find that 

¥j(x) = j + i (x,0) for i= 1,2, (67) 

1. Kj Lp 2 2 : 
Vis = 5 1520) ¢1,2%-0) - > PiPiy - | (Vix +o) for i=1,2, (68) 

; Tt 
Ys(x) = j A? og(x,0) - ZIP(o,o2y + P21y) 

1 
=e Pitan” Tage (69) 

0, -Cv 0 | 0. = = 
Y,(x) = j 1 le,(x.0) ur re (PP oy + PP iy) 

1 _ ie 
a 2g (91, Pox + PiyPay! » (70) 

2 

¥ Ax) = - a (9;,(% 10) Pj, + PiyPiy - 2Ki9;Piy)- (74) 

If we let |x|— o (or X}—~o for @=0 or - 1) only the 
pulsating sources contribute non-vanishing values (see the expression 
for the first-order potentials in Appendix B, and for gz and g, in 
Lee [1968]). Thus we find that 

00 
-jqj e?¥ cos px Kiy 

(x,0) ~-Q.e lim ( dp + jre cos K;x}}]__ g (x, 0) sl y. ip Sa ee i Jly=o 

j(Kjlx!-qj) Sb MaGher ie Uhitemik inlet ha x3 ice (72) J i 

where the Q;'s are the source strengths, the qj's the phase re- 

9126 



Nonstnusotdal Oscillations of a Cylinder in a Free Surface 

lationship between the forced motion and the pulsating singularities 
at the origin, and 

os 
Bie 

2 

Kig2 = ot F for es er Ae 

We can also show from Eqs. (43) through (45) by letting |x| — oo 
(or Xo for @=0 or -rn) that 

00 
-)q; py é 

G,(x,0) ~ - Qie ' lim (5 ee dp ane cos K;x}| =0 
|x |—oo re) P - Kj va 

j(KiIxl-q;) 
= jmQje for 1=55,.0 (73) 

where 

2 

K, = Aumar)s ua > 

g 

2 
K. = (21> 52) 

6 & 
? 

and then Eqs. (38) and (39) can be used to show that 

00 ; st) 

We(x.0)~ 5) gee er® dé, (74) 
i{(K,-K)IxI-B} oo -é) 

Wales 0)~ S85 eas ti made at, (05) 

where ao and B are defined in Eqs. (30). The far-field behavior 
of the derivatives of the functions g; (i=1,2,3,4), Gj (i= 5,6), 
Ws, and Weg can be shown to differ from those exhibited in Eqs. (72) 
through (75) by factors of the appropriate wave numbers Kj. If 
these results are applied to Eqs. (67) through (71) and some mani- 
pulations are carried out,we can show that as A > 0 

BLE, 

i ¥i (x) ~ F Qie for i= 1,2, (76) 
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2 ol l4kjlxl- aj, 2) 4. (7Q;K)) j(2KjIxl- 2q;) 

eon eee as 
00 rau 

F 4K i Ixl-@; peut h, (6) cos 4K,& dé | aad 
g b +2 I 

Vier 
¥; , {*) z Q 

for i= 27 

where h (x) and h (x) are defined in Eq. (A-2) of Appendix A and 

s/ - Im, (Sf, digalé) cos 4K,& dé) 
9i,2 = tan 

- Re; (Sy risel6) cos 4K;§& dé) 

Bae j(Kgx!-q5) 
Y,(x) Z Q.(c, a v,)e 

2 i{(K,+K )Ix!-q,-a.} pe Q,Q,0,0,(K, + Ke | athe 

00 2. 
~ Std | h,(6) cos KE at| ears (78) 

b 

where 

6, = tan" 

Ps es Im j (J, gl) cos K,& dé) 

- Re; pass cos K,& dé) 

BIL! j(K dx! - gg) 
¥,(x) : Q, fo, - o,)e 

2 i{(K)-K>)IxI-(q,- a2} 

00 ae Si ie, = OP) ie Bey caster ag | qilKelx! +86) (79) 

where 

0. = tan” aaa) Cm h(E) cos Kg dé) 
6- tan jayte

NAD pod ow. tuo Doiaw 

-Re, (f, he(é) cos Keé dé) 

¥5(x) aug OP 
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VII. NUMERICAL RESULTS 

A semi-circular cylinder of unit radius (b= 1) is chosen for 

sample calculations of the pressure distributions, hydrodynamic 
forces, and out-going waves. The inputs for the calculations are the 
values of the fundamental frequencies o, and o,. Three values of 
g, are chosen such that the corresponding length of gravity waves 
in deep water, , = 2mg/c,*, are equal to 2b, 10b, and 20b. For 
each value of o, the values of the eo cne sy ge o> are chosen 
so that the wave lengths obtained by Ao omen lie in the interval 
of 4,<A,< 24, which is equivalent to Pcs g)< bos/g < bo ?/g. The 
reason euch a ae cow range of oo is chosen Stems. from our practical 
interests. When the forcing frequencies are close the difference 
between any two frequencies is very small. Thus any hydrodynamic 
force response associated with the difference-frequency within this 
band can often be treated as a d.c. force in practical situations. It 
is of interest to examine how significant the magnitude of the hydro- 
dynamic force of difference-frequency is compared with the pure d.c. 
force: 

Numerical results are obtained here for the d.c. component 
of hydrodynamic pressure, p_,, hydrodynamic force, f,, and for 
ae quantities which are associated with the difference frequency, 
Pe f , and Y, which represent outgoing waves at | = oo. The 
quantities associated with the sum-frequency, p,, f,, and y,, are 
not computed because these quantities can often be approximated 
from the known values associated with the frequencies 20, or 20 
when o, *o5. For comparison purposes the quantities p;, fj, an 
y,; for i= 2 and 4 which are borrowed from Lee [1968] are also 
shown with the quantities presently calculated. 

The deep-water gravity wave length based on the difference 
frequency is given by 

= 21g = x 2/1 

6 c.- o,) 1 + (r,/X,) - 2Vr.,/d, 

where 

aut and ee 
o | T> 

X—/, as afunction of ,/X, is shown in Fig. 1. This figure shows 
the wave length corresponding to the difference-frequency o, - 7, 
compared to the fundamental wave lengths \; and ho. 

In the rest of the figures the abscissas are \ which is defined 
as X= o/dy- For the values of X,= 2b, 10b, and 20b, the corre- 
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Fig. 1 Difference-frequency wave length 
vs. fundamental-frequency wave length 

sponding frequencies are respectively 

ov, (= V2mg/i,)=Vag/b , mg/5b, and Vng/10b. 

o, is obtained from X= d/d, = Cre hay as 

co = ¥ 298/008). - 

Thus we have 

ur ° Le J Pa iT] ia) ion q 
ine) 

tH a = lon a 
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for ,=20b, o,=¥mg/(10b)). 

In Table 1, the values of 6) = osb/g and 6,= (0, - o,) b/g are given 
for = 1.0 (0.1) 2.0 at each given 2X, = 2b, 10b, and Z0b. Thus 
the results in the subsequent figures can be referred to appropriate 
individual dimensionless frequencies suchas 62, 54= 40%b/g = 465, 

and 6¢= 2mg/d,(1 +1/X- 2V1/X once X, and X are given. 

TABLE 1 

5, and 5¢ versus i, at three different values at h, and 6, 

h, = 2b and 6, = wm |,=10b and 6,=m/5 |\,=20b and 6, = 7/10 

0.365 x 10° 

0.136 x 10°? 

0.477 x 10°? 

0.950 x 1072 

15t X40" 

Lethe alo: 

.276.X 107 

341 x 10°! 

.406 X 107! 

.474 x 107! 

.540 x 10°! 

0.680 x 1073 

0.238 X 10% 

0,475-x 10 

0-753. x 10:4 

0.106 x 10°! 

0.138 x 10°! 

O70 X10" 

0.203 x 10°! 

0.237 X 107 

0x270 < 107! 

238 x 107 

.475 X 10°! 

153 6-10"! 

. 106 

. 138 

.170 

. 203 

eit 

. 270 

1 

BA 

3 

4 

5 

6 

it 

8 

) 

0 eee Ee FE NY DY DN Dd DPD Soo ©. O Go oO 6 Oo © 6 So © ,O..0-.0170 SC 2 CO © 16 © 

1 

1 

i. 

i. 

si 

i 

i; 

1 

nla 

Es ea © —& & © Ce, oS © 

In Figs. 2, 3, and 4 the maximum hydrodynamic pressures 
at three points on the cylinder, 0= - 900, - 450, and - 5°, are 
shown as functions of \ for \,=10b. The maximum pressures 
Ip. and lp. are obtained from Eqs. (58) and (59). The pressures 

are non-dimensionalized by pgb and are denoted with bar signs 
e.g. De= |p,|/pgb. The values of p, and_p3 which are not shown 
in these figures are respectively equal to pp and pg at A=1.0. 
The maximum hydrodynamic forces fp (= lt] /2pgb?) ; hgh? epcend 
£7 which are obtained from Eq. (64) are shown as functions of X in 
Figs. 5, 6, and 7 for \, = 2b, 10b, and 20b, respectively. Figure 8 
shows the phase angles y,, y,, and y, which are defined by Eq. (65) 
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18 20 1.0 1.2 1.4 1.6 
First- and second-order pressures vs. \ = h,/h, Rig. 2 
at 0 =- 90° for dy, = 10b 

1.8 20 Vn 1.0 1.6 

Fig. 3 First- and second-order pressures vs. Ge No/ dy 

at 0 = - 45° for \,= 10b 

1.2 
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d, = 10b 
: 6 =-5 DEG 

Fig. 4 First- and second-order pressures vs. X= Xo/hy 
at @=- 5° for X,= 10b 

for 4, = 10b. The radiating-wave amplitudes at |x| = oo are shown 
in Fig. 9 for 4; = 10b. In this figure Y, is defined by Y, = |Y,|/b = 
7™Q,0,/(bg) and Ne and Y,, are obtained in the following way. We 
can show from Eq. (79) that 

-j(o,-o.)¢ 

Ye(x)e ASieee) oa A, cos 1K |x| - (o, * o,)t a de | 

+A, cos} K,|x| - (0, - o,)t + o,f 

- Yepcos }(K, - Ky |x| - (0, - o,)t - (a, - at 

where 

A, ar: (0, = T)Q, ’ 
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LY are if pdf fe i 

fi 

AWN E ANY 
Fig. 5 First- and second-order forces vs. \ for X= 2b 

Oh) tte 

So oa 

= 

|) ae) aur > 
x 

1.0 12 1.4 1.6 1.8 2.0 X 

Fig. 6 First- and second-order forces vs. X for , = 10b 
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>| 

Fig. 7 First- and second-order forces vs. \ for A, = 20b 

2 ad 
Ap= e (o, - o,) | \ h (5) cos K,§ dét , 

2 
T 

Furthermore we can reduce the above expression to 

-i(o,-o,)t = ! Y,(x)e Ye cos 1K, |x| - (o, ~ o,)t + cm 

= Lan cos }(K, - K,) |x| = (oc o,)t - (q, - q,) 

where 

(a 2 1/2 Yeo= LA, tA; +2A,A, cos (a,+,)] 

Q' = tan’! Az sin 0¢- A, sin gg | 

$ A, cos 0,+ A, cos qd, 
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Fig. 8 Phase angles of first- and second-order forces 
vs. X for Y= 10b 

Fig. 9 First- and second-order wave amplitudes at 
lx| = co ve. \% for. X= 10b 
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7) 
w 
rT) 
oc 
9 
wi 
a) 

Fig. 10 Phase angles of first- and second-order waves 
at |x| =00 vs. X for d, = 10b 

We then define 

Y Y 

In Fig. 10 the phase angles gq, (see Eq. (76)), 6,', and q, - q> 
are shown as functions of X for i, = 10b. 

VII. DISCUSSION 

If the forcing motion on a floating body has a very narrow 
frequency band,most of the second-order hydrodynamic responses 
occur in a frequency range of about twice the forcing frequencies. 
However, two components of the second-order force are exceptions 
to this case. One is the steady-state force and the other is the 
force with frequency equal to the difference-frequency between a 
pair of the frequencies in the narrow-band spectrum. If the value 
of the difference-frequency, 0, - oj, is very small, the force which 
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is associated with the difference-frequency changes very slowly in 
time and often may be treated as a pseudo-steady force. In fact we 
can show that in the limiting case of o, = og that the difference- 
frequency force reduces to the steady-state force or in our notation, 
f,=f, when o, =o 9. It is shown in Appendix A that for o, =o5 

P= Po» P3=%4=%/2, and 96=9- 

Equations (55) through (57) show immediately that p, = pp, P3= Py = 
p,/2, and p,=p-7- Substitution of these relations into Eq. (64) leads 
to f,=f;, for o, = aie 4p eae in Figs. 5, 6, and 7 that as 
Mar 4.0, ie, ups oe £1 and in Fig. 8 that yg -0/2 as 
Na 1.0. Since ee 265 eee sin yg from Eq. (66) and f7 is nega- 
tive in this case, we'see ‘that Y6lo,2 05 = 7 m/2 in order to maintain 
the relation f, = f. for 0, = >- 

For sufficiently small values of o, - 63, we can show that the 
expression of the forcing motion becomes 

_y(t) 
ho 

sin o,t + sin Tot 

R 2 sin opt cos sto t (80) 

and the corresponding expression for the hydrodynamic force can be 
derived from Eqs. (63) and (66) as 

F = e2|f,| cos ee t sin (opt if Y>) 

a efalt,| cos (co, - o,)t sin (20,t + y4) 

+ lf, sin y,cos (o, - o4)t Dy £,{+ O(e*). (81) 

This is a beat oscillation for small values of o, - o5. The response 
of hydrodynamic forces to this beating motion is made of two kinds 
of beat oscillations: a slowly-varying sinusoidal oscillation, anda 
steady component. For comparison purposes the relative magnitudes 
of the different components of the hydrodynamic force given in Eq. 
(81) are shown in Table 2 for \,;=10b and do= 11b i.e. XSdeg4e 
The values in Table 2 are obtained from Fig. 6. 
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TABLE. 2 

The magnitudes of hydrodynamic forces for \, = 10b and = 1.1 

2f, 1.58 

4f, 1.00 

f,| sin Yel 0.014 

f, 0.04 

¢, - 1éiL = for i= 2,;436,7) 
2pgb 

It is clear from Table 2 that the first-order force dominates 
the second-order forces. For instance, if we assume € = 0.1 the 

ratio of the first-order force to the largest second-order force is 
2e|f,| /4e*|f,| + 16. It is also clear that the magnitudes of the 
difference-frequency force and the steady force are much smaller 
than the first-order force, so they appear unimportant. However, 
when such forces act upon a body which has very small restoring 
force for a sufficiently long period of time a considerable excursion 
from its mean position can occur. One can see from Figs. 5 through 
7 that the |f,| is largerthanthe |f,| in 1.0<X<2.0. This 
means that for a sufficiently small value of the difference-frequency 
an estimate of the maximum "steady" force acting on an oscillating 
body should include the difference-frequency force. 

If we assume that the motion of a wave maker is described 

by Eq. (80), the expression for the free-surface elevation, Y(x), 
for large x can be given in the form 

Y¥(x) ~ €2C, cos hs 2 t cos (K,|x| =P host) 

a <®}4c, cos (0, - o,)t cos (4K,|x| - B, - 20,t) 

+ 4C, cos (o, - o,)t cos (2K, |x| - B, - 20,t) 

+ ¥,(x) cos (o, - a,)t f + Ole?) (82) 

where C,, C,, C3, B, ; B., and B, are quantities which can be ob- 

tained from Eqs. (76) through (78) and Y,(x) is given by Eq. (79). 
We can see from the above equation that the far-field outgoing waves 
are made of four independent wave components. The terms other 
than the one associated with Y, represent beating phenomena with 
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the beating frequencies of (c, - o,)/2 and g, - og. Although the 
values of Cz and C,; are not shown in Fig. 10, they are found from 
Lee [ 1968] to be about the same order of magnitude as Y,, and 
XY; - This means that the dominant contribution to the free-surface 
wave elevation comes from the first-order term whose beating fre- 
quency is (0, - o,)/2. 

We can conclude that the hydrodynamic force and the outgoing 
waves associated with the difference-frequency of two nearly equal 
frequencies are much smaller than the corresponding first-order 
quantities and are of the same order of magnitude as the other second- 
order quantities. An examination of the figures suggest that if the 
difference-frequency is sufficiently small an estimate of the effective 
"steady" force can be obtained by doubling the pure steady force. 
However, since the magnitude of the difference-frequency force is 
always larger than the steady component this estimate may be a 
low one. 
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APPENDIX A 

Description of the Boundary- Value Problems for the 

Potentials gy; for i= 12535-4245 and 7 

The application of the perturbation expansions given by Eqs. 

(17) and (18) to the exact boundary conditions given by Eqs. (12) and 

(16) yields the following: 

On the free surface: 

Piy(X» 0) - Kj9, = 0 for b= iand 2, (A-1) 

where K; = o?/g, 

Piy(x,0) - 4Kj_29, = - je } i.2%+ 0G (i2yyy ~ Ki P(i-ady) 

= (A-2) = ar = h. 
20% orn t Mticery) t = Bie 

for i=3 and 4, and 
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2 

94(X40) = » - me Rej [joj (+0) (Pky - KyPqy) | = box) (A-3) 

where % = Me - JP xs° 

On the body: 

Pix (%o2Vo)£'(X,) Vit Fa bo; for i= and. 2, (A-4) 

b | 

Pix (Xs Vo)E'(X) - Biy ee a (Pi a)xy (Kor Yo) E(x) - Pi. ayy) 

= m (x5>¥ 4) for i= 3 and 4, (A-5) 

and 

' b ' P2(XQr¥Q)E (x) - 92, = - x Im, [xy (X69 Vq) + Poy Jt (XQ) = Piyy - Poy | 

= m{x),Y,)- (A-6) 

In the far field 

P jy(x»- 00) = 0 for La lj2y 35 45 and 7 

and at | 3x | = oo the potentials g,; for i=1, 2, 3, and 4 should 
represent outgoing plane waves. For the steady potential g_ the 
condition at |x| = oo should be determined by the law of mass con- 
servation (see Lee [ 1968]). 

Symmetric flow condition: 

yi(x,y) = 9 (-x,y) for le=) 2 ae ands 

In the limiting case of o, = 0, the forcing motion given by 
Eq. (7) reduced to 

y(t) = 2hgsin ojt 

and if we let € = 2h,/b, the perturbation expansion given by Eq. (17) 
reduces to 

-jot - j2o,t 2 

B(x,y,t) = €9,(x,y)e + €g,(x,y)e + €°g_(x,y) 
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which is the same expansion as that assumed by Lee [ 1966]. We can 
easily establish the identities gy, =, and g3= 9. It will now be 
shown that for T= o, we also have 9, = 29, and g,=9,. Equation 

: 2 5 3 6 G 
(20) gives 

e . Go hg(x) = - § 5b} o,(*,0)(Pay - Kp,) 

. F = 201, ox + Pry Poy) t - 52] PalPiy ~ Kiry) 

- 210), Pox + Py Poy) f > 

LS ne 2 2\) hex) = - jt }o,(x,0(g,, - Kye) - 2, +e, )f. 

Comparison of this with Eq. (A-2) shows that 

h,(x) — 2h{x). 

Equation (22) gives 

a 
m(x,,y¥,) = - Jz | (Piny Coa Yg) 7 Pony)? Oy) Sig > Peyy t. 

so for 6, =o, 

Ng Ta F jb } P ixy (qr Yo)f'(X,) ~ Piyy t . 

Comparison of this with Eq. (A-5) shows that m, = 2m, The far 
field conditions and the symmetric-flow condition for both ?, and 
9g, are essentially identical. The above results lead to the conclusion 
that 9, = 29;- Q,_ can be shown to be equal to g_ by a similar proof 
if h(x} (Eq. (25) for o, = ¢2) is compared with’ h{x) (Eq. (A-3)) 
and m,(x) (Eq. (27) for ov, = o,) is compared with m_(x) (Eq. (A-6)). 

6 
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Evaluation of the First-Order Velocity Potential 

There are two first-order potentials, g, and 9,, involved 
in this work. Since their solutions are es sentially identical (they 
differ only in the frequencies), g, will be chosen as the representa- 
tive first-order potential. As shown in Appendix A, the boundary- 
value problem for g, is 

V9, = 0, (B-1) 

(x0) - Kg, = 0, (B-2) 

P(X or ¥)f(x,) - 9 = - boy, (B-3) 

P(X» -00) = 0, (B-4) 

9) (x,y) = 9 (-x,y), (B-5) 

and the radiation condition can be explicitly written as 

lim Rej(9), = jK,9,) = 0. (B-6) 
x->+00 

There are two methods for the solution of the above problem. One 
of them is the method of multipole expansions (see Ursell [ 1949]) 
which is essentially an eigenfunction expansion of the unknown function. 
The other is the method of source distribution (see Frank [ 1967] ) 
i.e. the method of Green's function. A brief description of the 
method of multipole expansions will be given. First we consider 
the problem without the boundary condition on the body given in Eq. 
(B-3). If we transform the problem into the {-plane! we find that 

7°M(X,e) = 0, (B-7) 

(2n + i)a aM 
Ka} - 2, Se Sarina | Min.0} - SE = 0, (B-8) 

"Here, it should be recalled that the transformation given by Eq. (2) 
maps the €- and y-axes into the x- and y-axes and maps the contour 

of the semi-circle inthe (-plane onto the contour of the cylinder in 
the z-plane. 
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M(X,@) = M(\,7 - @), (B-9) 

and in place of Eq. (B-4) and (B-6) we require 

M— 0 as X — oO in -7w=as0. (B-10) 

The solution of this problem is 

a) = £28 2ma@ , jae (2m - i)a@ 

ide ea hem VU (2m - 1) 2m! 
oo 

- », (2n+1)agne, sin (2m+2n+1)a \ (B-11) 

n=O 

where m is a positive integer. M, is often called the multipole 
of order m. Although this expression for Ma trivially satisfies 
Eq. (B-6) in the C-plane,the expression above still does not repre- 
sent the outgoing plane waves. To satisfy this radiation condition 
we introduce a source function M,(x,y) which satisfies all the 
required conditions except the boundary condition on the body. The 
expression for the function M, is 

M,(x,y) = ‘ a ea dk - jre” cos K,x (B-12) 
.e) 

0 
where f means that a Cauchy principal value is to be used. There- 

fore we represent our solution as 
oo 

9, = y (Dm + 5Cm) My (x(X,2) sy(X,@))e!4 (B-13) 
m=0 

where b,, and cm are the unknown strengths of the singularities, 
q is the phase difference between the motions of the body and the 
fluid, by = Q= source strength, and c,= 0. The unknown constants 
bm» Cm, and q are to be determined from the boundary condition on 
the body given by Eq. (B-3). 

We introduce the stream function W, which is the harmonic 
conjugate of the velocity potential g,. The Cauchy-Riemann relation 
gives 89,/dn 2 OW /8s along the contour of the cylinder where s is 
the arc length of the contour in the counter-clockwise direction. The 
boundary condition for W, on the cylinder can be shown to be 

Wi (x,,y,) =- bo,x,- (B-14) 

The expression for W, in terms of the harmonic conjugates of My, 
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denoted by N, is easily found to be 

00 

<= » (bm + 5em) Nm(x(X@) sy (X,a)Jer*. (B-15) 
m=O 

where 

N. = - Sin 2me + Kya {£28 (2m - 1)a 
m 2m | (2 1)y2m-t 

cy 

(2n+i)a cos (2m+2nti)a 

7 2 2m 1824 2 ment \ for m= 1, (B-16) 

n=O 

and 

eX sin kx Kiy 
No=- 4) apap dk + jme ' sin Kx. (B-17) 

On alvala, 

Substituting Eq. (B-15) into (B-14), we get 

00 

>. (bm zw jcm)Nm(x(5 2) ,y(h,a))e/4 i bo, x,. (B-18) 

m=O 

We choose any point on the contour of the cylinder between 6=0 and 
== 7/2, say (x!,y5) in z-plane and (\,,@') in the ¢-plane, to show 

that 

00 
Pe Ne ’ 

e 14 ie box! /{ > (5, r 3S on). Nin (Not 2) + QNo( x5, ye) } . (B-19) 

m=! 

Equation (B-19) can be substituted into (B-18) to give 

00 

) Am Ne(hor) = Nig(qo $4 = Nolxdsye) - Nol%orYe) (B-20) 

Deantal€ ‘ Ag = —a 5m | 

In principle we can choose an infinite number of points on the cylinder 
(-1/2< @< 0) to set up an infinite number of simultaneous equations 
from Eq. (B-20) for the unknown coefficients A,. However the 
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infinite series in Eq. (B-20) is truncated to a finite series to obtain 

an approximate solution by a matrix inversion. After finding some 
finite number® of b, and c, and using these coefficients in Eq. 
(B-19) we find the values of Q and q. 

APPENDIX C 

Solution for the Problem of Sinusoidal Pressure 

Distribution on a Free Surface 

We seek a solution for the following boundary-value problem: 

VW (x,y) = 0 in v <0, 

W,  (x,0) - KW, = Ae (Gan) 

where K =w*/g, A is areal constant, and K'=w'*/g# K  Further- 
more we require that 

Wiy (x , - 00) = 0; 

Ww, ~ Bek Yeik'Ix! as |x| — oo 

where B is a complex constant, and 

W, (x,y) = W, (-x,y)- 

If we let 

Wy > Wig Aig 

we can easily show that 

Wi cy(*> 9) - KW, = A cos K'x,; (C-2) 

W),y(x.0) - KW,, = A sin aa a (C-3) 

?The exact number is determined in the sense of "an approximate in 
the mean" for the function on the right-hand side of Eq. (B-20) by 
the series on the left-hand side. 
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The value for the function W,, which has all the required properties 
can be shown to be 

AeKy 
ie qe cos K'x. (C-4) 

It takes little more effort to solve for Wj),. We find it by using a 
transform. Let 

00 e 3 
Wis -{ e PAWis (x,y) dx. 

- 00 

The Laplace equation requires that 

2u,* * = 
- p Wis OW fey, 0 

or 

* Ipl W,,(psy) = c(p)e’ (C-5) 

If this is substituted into the Fourier transform of Eq. (C- 3),the left- 
hand side yields 

Wry = KW, = (|p| - K)c(p) 

and the right-hand side yields 

00 : co 

al e”'P* sin K'|x| dx = 2A \_ e7!* sin K'x dx 
on fe) 

oo lie i(k" 2AK' = (eilk'-Px _ Gi(K'ePe) Gy 5 
1 fe) p--K"= 

(C-6) 

where the apparent improper integral above is interpreted as a 
generalized function.> Thus we find that 

- 2AK' - 2AK' 
(|p| - K)c(p) a PLiae or c(p) = Ge K'2)(]p|] - K) 

3 Another way of interpreting this is that of Lighthill [1967] who let 
jK' jKolx! = 

w'=wot+ je, € = 0 so that eK ixt LQ Mom! oo where K5 = (we - €*)/g 

approaches K' when yp (= €2w,/g) — 0. 
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If this expression is substituted into (C-5) and the transform is 
converted we find that 

AKC ably 
(p2 - K'2)(|p| - K) 

| W,, (x+y) P* dp 

. _ 2AK' © eP%cos px aa 

™ J, (p?- K%)(p - K) 

A py { 1 
-= e"’ cos px { ———_——>--—___ 

T Jo (K +K')(p +K') 

Ges tl 2K! | 

y dp. C-7 
(K'- K)(p - K') (K'- aaa Pp ( ) 

Apparently there are poles at p=K' and p=K. However if the 
inverse transform of the right-hand side of Eq. (C-6) is taken, it is 
readily seen that the integral must be integrated as a principal-value 
integral in order to recover the original function A sin K'|x|. This 
means that the integral in Eq. (C-7) associated with the second and 
third terms in the square bracket should be taken as P.V. integrals. 

If we let 

ward cos px en Re 
124 S808 PX ap = Re, { —— dp, 

0 pt+K 'Jo ptK 

and make the change of variable t = i(p+K')x, we can show that 

‘ 00 sy rage 

I, = Re, eX? \ — dt = Re; | e'*7E, (iK'z) | : 
iKz 

Again the change of variable t = i(p-K')z enables us to show that 

oo py 00 _-ipz -5 e__COs8 px 4, Re; 5 & - dp 
2 p- K' Y7O P- K 

-iK'z 
Re; [e E, (-iK'z) = ime“ 4 

where + signs correspond to the case of x2 0. Similarly the change 
00 

of variable t = i(p-K)z in fs (e”! cos px) /(p- K) dp leads to 

-iKz -iK I,= Re, [e""E,(-iKz) ¢ ine*7} 
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for x 20. This integral is the last term in Eq. (C-7), and we observe 

that ae Iz= - meXY sin K|x|. This implies the existence of a sinu- 
Xl» 00 

soidal wave with wave number K in the far field. It obviously vio- 

lates the radiation condition that the outgoing waves have wave number 

K'. However a careful examination of the integral I, shows that it 

is just one of the homogeneous solutions of the problém which can be 

discarded, if desired, because of the radiation condition. Thus sub- 

stituting the expressions obtained above for I, and [, into Eq. (C-7) 

and discarding the last integral in that equation, we find that 

A I if 
Wty) = - 2 [eaber tebe | 7 LK+K' 

iM tie pear t “1K Zi page K'y 
--4Re([* EV (iK'z) ,e E | ( Re) +e sin eulaole 

T K+K' K' 7K K"-K 

(C-9) 

We combine Eqs. (C-4) and (C-9) to finally obtain 

: Aek Ye ik Ix! 

Wilsall RRS RT 
A eRe Kay , eke (-iK'2) 

: jAre,| £ =k) + ———L | . (C-10) 
T K + K' K-K 

tiz 
Since lim e E (+iz) = 0, we see that 

|x — 00 

as is required. 
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DISCUSSION 

Edwin C. James 
Californta Institute of Technology 

Pasadena, California 

I would like to direct a question to Dr. Lee concerning the 
pure steady force. Apparently this type of force can arise in free 
surface problems and is attributed to a mean drift of mass in the 
direction of wave propagation. The action of such a force applied 
to an unrestrained body results in a sinkage or alift. The question 
is then, how does one physically explain the steady force when the 
symmetry of the problem dictates that the mass transport at the 
station x = 0 should be zero? 

REPLY TO DISCUSSION 

Choung Mook Lee 
Naval Shtp Research and Development Center 

Washington, D.C. 

A mass transport phenomenon arises in the higher-order 
theory of surface waves (see, e.g. Wehausen and Laitone [1960, 
pp. 660-661]). Since the present work deals with a second-order 
problem of free-surface waves, it may be expected that mass- 
transport will occur in the present problem also. Although I have 
not touched upon this subject in the text, I discussed it in some 
detail in my previous work (Lee [1968, pp. 317-318]). 

As the discusser pointed out, there is no mass flux across 
the y-axis. Then, the question arises as to the origin of the mass to 
supply mass transport. I answered this question in this previous 
work by showing that the role of the steady potential gy7(x,y) is to 
counteract the mass transport phenomenon. This means that 9, 
should behave like a steady sink whose strength is equal to the total 
mass drift through two vertical control planes encompassing the 
cylinder, divided by 217. The lowest-order contribution from ¢, 
to the steady force is fourth order, as is proved by Bernoulli's 
equation. Thus, the second-order steady force still exists while 
the mass transport phenomenon is nullified by the pure steady 
potential 97. 
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HYDRODYNAMICS IN THE OCEAN ENVIRONMENT 

Friday, August 28, 1970 

Afternoon Session 

Chairman: T. Y. Wu 
California Institute of Technology 

The Drifting Force on a Floating Body in Irregular Waves 
J. H. G. Verhagen, Netherlands Ship Model Basin, 
The Netherlands 

Dynamics of Submerged Towed Cylinders 
M. P. Paidoussis, McGill University 

Hydrodynamic Analyses Applied to a Mooring and 
Positioning of Vehicles and Systems in a Seaway 

P. Kaplan, Oceanics 

Wave Induced Forces and Motions of Tubular Structures 

J. R. Paulling, University of California, Berkeley 

Simulation of the Environment and of the Vehicle 
Dynamics Associated with Submarine Rescue 

H. G. Schreiber, Jr., J. Bentkowsky, and 

K. P. Kerr, Lockheed Missiles and Space Company, 
Sunnyvale 
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THE DRIFTING FORCE ON A FLOATING BODY 
IN IRREGULAR WAVES 

J. Hs Gs Verhagen 
Netherlands Shtp Model Basin 

The Netherlands 

I. INTRODUCTION 

A floating body in waves experiences a hydrodynamic pressure 
force which is exerted by the surrounding fluid. Several factors 
contribute to this wave pressure. One of them is undoubtedly the 
conventional unsteady exciting force, which makes the body oscillate 
at frequencies in the region comprising the bulk of the energy con- 
taining waves. 

Another factor originates from higher order forces due to 
various non-linear effects. In general these non-linear effects are 

too small to influence the high-frequency motions of the body. They 
can, however, be of importance in that part of the frequency domain 
in which the wave energy is very small, i.e. in the low-frequency 
range, in particular if one of the natural frequencies of oscillation 
of the body lies in that range. 

In the limiting case -- zero frequency -- one arrives at the 
well-known drifting force. 

It will be obvious, to assume that the force on a floating body 
in irregular waves comprises not only a steady part but also a slowly 
varying part, slow in comparison with the mean period of the wave 

spectrum. The steady as well as the slowly varying part of the wave 
force, both of which are proportional to the square of the wave 

height, are denoted by "drifting force." The present paper is con- 
cerned with the slow drift oscillation of a moored vessel in irregular 

waves. It is based on general observations revealed by an extensive 
test program on the behavior of moored bodies in a seaway. 
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Il GENERAL OBSERVATIONS OF TEST RESULTS 

A study of the test results on the behavior of moored floating 
bodies in irregular seas revealed the following general observations: 

14. The horizontal modes of motion -- surge, sway and yaw -- 
show two separate frequency regions. A low frequency 
region corresponding to the low natural frequencies of the 
moored system, and a frequency region corresponding to 
those of the energy containing waves. 

2. The long periodic motion is excited by waves or by a wave 
group with amplitudes high compared to the mean wave 
height. In the considered cases, where a linear stiffness 
of the mooring system is employed, it appeared that the 
amplitude of the long periodic motion for a given vessel 
and mooring system is proportional to the square of the 
significant wave height divided by the mean wave period 
Coe for various long crested seaways coming from a 
given direction. 

3. For a given body and mooring system tested in various 
seaways no clear relation could be discovered between the 
time averaged excursion from the equilibrium position in 
still water and the amplitude of the long periodic motion. 

These observations are obtained from extensive model tests conducted 

in the Seakeeping Laboratory of the N.S.M.B. at Wageningen. 

The behavior is not unique to moored vessels. Also the towing 

force of a vessel towed in irregular seas show the same tendency as 

well as for instance, the slow oscillations in torque and thrust of the 

propeller of a self-propelled model as observed in the seakeeping 

model tests. 

III. DISCUSSION OF THE RESULTS 

The third point of the above mentioned observations deserves 

particular attention. The drifting force on a floating body in regular 

waves -- the time averaged position of the body is fixed in space -- 

is dependent on the joint action of waves and body motions. The 
force is proportional to the square of the wave height and dependent 

on the phase between wave and vessel motion. 

If we consider an irregular wave as build up of a regular wave 

whose amplitude is a slowly varying function of time (slow as com- 

pared to the wave period) and a stochastic variable phase, the cor- 

responding energy spectrum will be narrow. The drifting force on the 

floating body in that case will show the same dependency of the time 

as the square of the wave amplitude. The amplitude of modulation 

will be the same order of magnitude as the time averaged drift force. 
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For a given moored system with approximately linear spring 
stiffness and damping coefficient the same linear relationship must 
be found between mean excursion and low frequency amplitude of 
motion for various seaways. This appears not true. Especially in 
heading waves large discrepancies can occur. From this observation 
I am led to suppose that it will be not allowed to describe a practical 
wave spectrum by a slowly modulated regular wave in order to 
explain the obtained test results. 

Based on the mentioned observations I am led to suggest the 
following hypothesis. 

Hypothests: The wave forces on a moored body in irregular 
waves which are responsible for the excitation of the mass-spring 
system in its resonance frequency are the second order low-frequency 
wave forces on the body in fixed condition, i.e. the drift force due to 
the reflection of waves. 

The influence of the ship motions can be neglected. 

One of the conclusions of this hypothesis is that the exciting 
force for the long-periodic motion is a function of wave character- 
istics and shape of the body alone, and not dependent on the mooring 
system or on the weight distribution of the moored body.. 

The hypothesis is supported by numerical motion calculation 
for comparison with experiments, which will be shown later on. It 
is needed however to extend the number of comparisons in order to 
obtain the restrictions of the proposition. 

The proposition can be made acceptable in the following way: 
Suppose the irregularity of the wave could be described by a more or 
less regular wave pattern in which a few discrete steep waves are 
present. Intuitively it can be stated that the occurrence of a few 
high waves in an otherwise nearly regular wave pattern gives rise to 
some violent ship motions. Through inertia effects these motions 
occur mostly after the corresponding high waves have passed the 
vessel. 

Hence, interaction between the high waves and the resulting 
motion on the pressure distribution around the ship's hull is drasti- 
cally reduced, by the mentioned retardation between exciting force 
and resulting motion. Hence, the effect of such a single high wave 
on the floating body is consequently restricted to the instantaneous 
effect, i.e. the effect of the wave reflection, on a fixed body. The 
corresponding exciting force due to reflection is only dependent on 
body form and wave characteristics. 

Conclusion: The mean drifting force on a floating body in 
irregular waves is dependent on the joint action between waves and 
body motion. 
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The slow drifting oscillations of a moored vessel are caused 
by forces due to the reflection of the waves against the fixed obstacle, 

The remarkable observation that the amplitude of the long- 
periodic motion for a given body and mooring system_in various 
seaways of given direction is proportional to C¥,,, /T can now be 
explained as follows: The force due to reflection of irregular waves 
against a fixed obstacle is proportional to Cy ,3 if the body 
dimensions (L) in the wave direction is not too small compared to 
the mean wave length \ (L/\ >37). A "high" wave can be defined 
more formally as a wave with amplitude a fixed number times the 
significant wave height. The change of occurrence per unit time of 
our socalled "high" wave is then proportional to 1/T provided all 
of the considered random waves are Gaussian distributed, are at 
least distributed in the same way. If the combination of floating 
body and mooring system is considered as a mass-spring system 
with linear stiffness and damping coefficients the resulting long- 
periodic motions will be proportional to Cwy 3 /T. In consequence 
of the many assumptions made in the above reasoning, one should 
be careful to adapt the explanation without reservation. <A firm 

foundation is needed. 

IV. MODEL TEST RESULTS 

An extensive test program has been carried out in the Sea- 
keeping Laboratory of the N.S.M.B. ona number of models in order 
to obtain systematic information on the station-keeping abilities of 
moored vessels in a seaway. Some results of motion tests on one 
of the vessels will be given in this paper. 

The vessel is moored between four horizontal linear springs 
and tested in various seaways approaching from ahead and from 
abeam. A sketch of the mooring system is given below. 

45° Head seas 
ee 

Beam seas 
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The stiffness of each spring amounted to 5 tons/m. and is 
independent of the elongation. The main particulars of the vessel 
are: 

Length - beam ratio = 5.3 
Beam, - draft ratio = 3.65 
Block coefficient = 0.750 
Midship section coefficient = 0.997 
Waterplane coefficient = 0.896 

Wave spectra were produced similar in shape to those 
analysed by Pierson and Moskowitz for fully developed seas. These 
spectra can be described by: 

Both the produced and the hypothetical spectra are given in the 
Figs. 1 through 5. 

The significant wave height is defined as: 

The average wave period is 

where 

ay k 
m, = { w S, (a) dw 

The distribution of the wave elevations confirm well to the normal 

probability distribution. 

The motions of the vessel and the forces in the horizontal 
springs were measured in three irregular head seas and three 
irregular beam seas each with different characteristics. The 
duration of each test run corresponded to approximately half an hour 
for the full scale vessel. This time period is considered to be 
sufficiently long for a reliable statistical treatment of the recorded 

quantities. A typical recording of a horizontal motion of the moored 
vessel is given in Fig. 6. A low-frequency motion in the natural 
period of the ship-spring system is present upon which high-fre- 
quency motions are superimposed. The spectral density of the,surge 
and sway motions are given in Figs. 7 through 12. The distribution 
of the forces and of the motions deviates from the normal distribution 
though in many cases the deviation is not large. 
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Fig. 6. Irregular wave and sway motion 
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V. COMPARISON BETWEEN EXPERIMENTAL RESULTS AND 
CALCULATIONS 

_ Some tentative calculations have been carried out amplifying 
and illustrating the aforementioned suppositions. 

Mean Drifting Force 

The mean drifting force on the moored vessel in the long- 
created irregular waves has been determined by a linear superposi- 
tion of mean drifting forces in the regular wave components of the 
known wave spectrum. As has been shown by Maruo [1] a.o. the 
principle of superposition can also be applied to determine the non- 
linear mean drifting force. For head seas the mean longitudinal 
drifting force is 

2nr® 

F. = he Fl) _ S.(w) dw (4) 

© petiB/L § 

In beam seas the mean lateral drifting force is 

) 
peie 

@ 

F = 2pet | mre S(u) do (2) 
O 2pgo L 

Formulas for the mean drifting force in regular waves on freely 
floating, completely restrained or elastic moored bodies are 
obtained by Maruo[2] and Newman[3]. Numerical calculations 
are usually carried out on specific formulas for the drifting force 
on a slender body. [3] As is well known, the agreement of these 
calculations with experiment is on the whole not very satisfactory. 
The slender body approximation results f.i. in a vanishing mean 
lateral drifting force. Therefore an engineering approach is pre- 
ferred using available experimental data on a similar ship form. 
The estimated curves of the longitudinal drifting force in regular 
head waves at zero forward speed and the transverse force in beam 
waves are given in Figs. 13 and 14. Using these data the expressions 
(1) and (2) for the mean drifting force in irregular waves can be 

solved. The results compared with the experimental results are 
shown in Table I. The agreement is reasonable. 
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TABEE: 1 

Wave Mean drifting forces 
characteristics in tons 

*® in sec 

force measured force calculated force measured force calculated height Cy,, in m Average period Wave direction Longitudinal Longitudinal Transverse Transverse 

» 
G 
@?2 
0 
ot 
MS ot 
G 
ter) 

ran 
YW) 

The low frequency drifting force 

This part of the drifting force has been estimated as follows: 
The measured wave height record {€,(t) is squared c(t). This 

squared wave height function can again be analys ed by a spectral 

analysis. The spectral density function of 7¢°(t) is determined. 
For an example see Fig. 15. As can be seen from this figure it 
contains the sum and difference frequencies of the original wave 
height spectrum. The difference frequencies are now of special 

interest. They are related to the envelope of the original wave 

height record. 

The r.m.s. value of the low-frequency energy variation is: 

V2 

Cedi | f Si p2(w) ao 
diff. freq. 

Te att is proportional to the mean square value of the fluctuating 

part of the wave height envelope. The energy in the fluctuating part 

of the envelope curve depends largely on the occurrence of "high" 
waves. As discussed earlier the occurrence of "high" waves is pro- 
portional to 1/T per unit time. So the relation between the r.m.s. 
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value of the low-frequency energy variation and the characteristics 
of the waves becomes 

=n ows 
= constant ° 

TE ditt 
Aa 

Figure 17 shows that the produced wave spectra fit this relation quite 

well. 

Now the exciting force must be determined keeping the vessel 
in a fixed position. In that case the exciting force is due to wave 
reflection alone. In regular head waves this force is 

F, = $pga*B sin* a 
x 
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Fig. 16. Relation between the low-frequency energy 
variation and wave characteristics 

when a is the wave amplitude and sin*@ is the mean square of 
the angle between the tangent at the ship's waterline and the longi- 
tudinal axis. 

Now the re-m.s. value of the low-frequency exciting force 
becomes 

2 Op, = PEF aitt B sin” a 

and the r.m.s. value of the low-frequency motion is 

a 
x By * Woy 

The surge damping B, is obtained from an extinction curve. The 
numerical values are B,* w,,= 1.50 ton/m, sin*a@=0.24, The 
results compared with the experimental results are shown in Table II. 
The agreement is good. 

976 



Floating Body in Irregular Waves 

TABLE II 

o, inm o, inm 
calculated measured 

0.96 0.87 

0.86 0.77 

2.87 2.54 

where y is a coefficient depending on the beam-wave length ratio. 
For the wave lengths under consideration (\/B = 5) the mean value 
of y is obtained from experimental data on Series 60 models is 
about 0.5. This value increases up to one for shorter waves and 
decreases for longer wave lengths. 

Now the r.m.s. value of the low-frequency exciting force in 

irregular beam seas becomes 

Oy = YPB% aieg £ 

and the r.m.s. value of the low-frequency sway motion is 

The sway damping is again obtained from an extinction curve. The 
numerical value is Byw., = 4 ton/m,. The results compared with 
experimental results are shown in Table III. 

TABLE III 

~ x o, inm co, inm 
sec 

1.19 9.8 0.72 0.67 

1.96 9.6 2012 2.05 

2.30 6.6 Se? 4.56 

a 
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Taking in mind that in the last case the value of y must be 
higher than 0.5, due to the shorter wave length, the agreement is 
very good again, 

© Gy SURGE 

uw2 

Swis /# in m2 sec.-' 

Fig. 17. Relation between surge, sway and wave 
characteristics 
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DYNAMICS OF SUBMERGED TOWED CYLINDERS 

M. P. Paidoussis 
MeGtll University 

Montreal, P.Q.; Canada 

I. INTRODUCTION 

Interest in the dynamic stability of towed ships dates back to 
the halcyon-days when solutions to engineering problems could still 
be obtained by experience, without the aid of sophisticated analysis. 
Certainly, operators of horse-drawn barges in canals must have 
been aware of possible instabilities and remedial actions. Never- 
theless, to the author's knowledge, the first substantive paper on 
the subject, by Strandhagen, Schoenherr and Kobayashi [ 1], did not 
appear until 1950. This is also surprising, if one considers that 
both the analytical techniques and physical concepts were understood 
long before that; indeed much earlier work does exist on the closely 
related topic of stability of airships moored to a mast and kite bal- 
loons, starting with the work of Bairstow, Relf and Jones [ 2] in 1915, 

and followed by the work of Munk [ 3], Glauert [4], and Bryant, 
Brown and Sweeting [5], for instance. 

Strandhagen et al., and the discussors of their paper, firmly 
established the following important criteria for stability of a towed 
ship: (i) the point of attachment of the tow-rope should be ahead of 
both the center of mass and the center of pressure of the (static) 

lateral hydrodynamic forces acting on the ship; (ii):the ship should be 
stable when moving untowed; (iii) in cases where (ii) is not satisfied, 
then the system could be rendered stable by either short enough or 
long enough tow-ropes. It is noteworthy that the criteria for stability, 
at least for the linearized theory of small departures from course, 
apply to all towing speeds, so that for a given configuration a (rigid) 
towed ship is either stable or unstable irrespective of how fast it is 
being towed. Instabilities were found to be of two distinct types: 
(a) yawing, i.e. azero-frequency, amplified motion which in aero- 
elasticity would be referred to as 'divergence', and (b) oscillatory 
instability, where the system, when disturbed, oscillates about its 

position of rest with increasing amplitude. 

More recently, interest in the instability of submerged towed 
bodies has arisen mainly in connection with sonar applications. Here 
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the body housing the sonar device is towed deeply submerged by sur- 
face craft, for the purpose of hydrographic survey, submarine 
detection, or location of schools of fish. We must refer to the work 

of Strandhagen and Thomas [6], Richardson[7], Laitinen [8], 
Patton and Schram [9], Jeffrey [10], Schram and Reyle [11], and 
Whicker [12]. The stability problem for the sonar-type towed bodies 
is of course quite similar to that of a towed glider [5]. The work 
referred to here deals with the dynamics of the towed body system 
as a whole; the geometry of the towed body for these applications 
tends to be fairly complex, and the analysis quite elaborate. 

A considerable amount of work also exists on the equilibrium 
configuration and thedynamics of towing cables, starting with McLeod's 
[13] and Relf and Powell's [14] work, to more recent work by 
Landweber and Protter [15], Pode [16], [17], O'Hara[18], Kochin 
[19], Eames [20], and Albasiny and Day [ 21]; this represents a by 
no means exhaustive list of references. 

The author's interest in this field comes from work associ- 
ated with yet another application: that of the Dracone flexible barge, 
which is a flexible sausage-like container towed behind a small craft, 
and used for the transportation of oil and other lighter-than-water 
cargoes, including the sea transport of fresh water to arid lands 
(e.g. to some of the Aegean islands from the mainland). The new 
element that enters the problem in this case is that of elastic forces, 
making this a problem in the general area of fluidelasticity (cf. 2a) \e 
The first analysis of stability of the Dracone was by Hawthorne [ 2a » 
Later, the author studied systematically the dynamics of flexible 
slender cylindrical bodies immersed in axial flow, for various con- 
ditions of end-constraint [ 24] , [ 25], including the case of a towed 
slender cylinder [26]. In the latter case, both rigid-body type in- 
stabilities and flexural instabilities were shown to exist; stability 
was highly dependent on the towing speed. 

It was suggested [ 27] that cylindrical or quasi-cylindrical 
containers towed underwater by a small submarine could be used to 

transport liquid cargoes to and from arctic ports, avoiding the 

hazards of surface transportation in ice-covered seas. The con- 

tainers could be either flexible or, more likely, rigid; there could 

of course be a string of such containers towed by the same submarine. 
This idea has taken added poignancy since the oil discoveries in the 

Arctic. 

In this paper we shall re-examine the problem of stability of 

a submerged cylindrical body, both flexible and rigid, towed by a 

submarine craft. 
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Il THE EQUATION OF SMALL LATERAL MOTIONS OF A 
FLEXIBLE SLENDER BODY IN AXIAL FLOW 

We shall derive the equation of small lateral motions of a 
slender body of revolution of the type shown in Fig. 1(a); the body 
is supposed to be supported somehow so that it is not washed away 
downstream. The fluid is incompressible and of density p; it is 
flowing with velocity U parallel to the x-axis, which coincides with 

the undisturbed longitudinal axis of symmetry of the body. The body 
is of mass pér unit length m(x), cross-sectional area S(x), and 
flexural rigidity ElI(x). 

Fig. 1(a) Diagram of a flexible, slender body of 
revolution in axial flow 

We consider small motions y(x,t) and assume that y, 
dy/ax, 8*y/ax* to be all small, so that no separation occurs in cross- 
flow. Moreover, we assume that dS/dx is small everywhere, 
except perhaps at the ends of the body, so that no separation occurs 
in the axial flow (except perhaps at the rear end), and so that 
slender-body theory may be used. Also d(EI)/dx is assumed to be 
small, which, together with the restrictions on the displacement 
function, allows us to use the simple Euler-beam approximation to 
describe the flexural forces. The body is further assumed to be 
of null buoyancy and uniform density, so that no constraining force 
in the y-direction nor a moment is necessary to keep it lying along 
the x-axis, at least at zero flow velocity. Furthermore, the motions 

are considered to take place within the (x,y)-plane, which for the 
sake of simplicity is assumed to be horizontal, Finally, we neglect 
internal dissipation in the material of the body. 

We now consider an element 6x of the body. The forces and 
moments acting on it are shown in Fig. 1i(b). Q is the transverse 
shear force, ™ is the bending moment, T is the axial tension, 
F, and F, are the normal and longitudinal components of frictional 
forces per unit length, and Fy, is the lateral inviscid force per unit 
length. 
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Fig. 1(b) Forces and moments acting on an element 
a(x) of the body 

Taking force balances in the x- and y-directions and a moment 
balance we obtain 

aT dy _ 
Sx0 Fu En Bam (1) 

aQ 8 in by dy a*y _ 
da 7 Fut q(T By) + FL GR - Fa mogee = 0 ® 

am 
Q= a3. 9 (3) 

where the inertia forces in the x-direction have been neglected. 

We next consider the functional form of the forces. The 
lateral inviscid force F,5x represents the reaction on the body of 
the force required to accelerate the fluid around it, and may be 

written as 

F, = [(2/at) + U(8/dx)] (Mv), (4) 

as discussed by Lighthill [ 28], [29], where v is the lateral relative 
velocity between the body and the fluid flowing past it, and M is the 
virtual mass of the fluid. Here the effects of sideslip have been 
neglected, effectively assuming that each cross section of the body is 
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part of an infinite cylinder; boundary layer effects have also been 
neglected. The virtual mass M(x) = pS(x), and v(x,t) = [ (8/8t) 
+ U(8/8x)][ y(x,t)] , which substituted into (4) yield 

F, = pS[(8/at) + U(8/ax)]*y + pU[(dy/at) + U(dy/8x)] (dS/dx). (5) 

The frictional forces, as proposed by Taylor [ 30], and elabo- 
rated by Paidoussis [ 24], [25] are taken to be 

tr} " 2¢,(PS/D)U* sini and F, = 3¢,(pS/D)U* cos i, 

where i is the instantaneous angle of incidence on the cross-section 
and is given by i= sin! (v/U), and D= D(x) is the diameter. 
Accordingly, Fy, and F, are given by 

Fy = 2¢y(PS/D)U[(ay/at) + U(ay/ax)] and F, = 2¢,(PS/D)U?. (6) 

Finally, we note that the bending moment is related to the flexural 
rigidity by 

M = El(0*y /ax?). (7) 

Now, substituting (6) into (1), neglecting terms of second order 
of magnitude, and integrating from x to L, we obtain 

L 
T(x) = T(L) + e,pu*{ [ S(x) /D(x)] dx, 

x 

where T(L) is the value of T at the downstream end. We consider 

that T(L) is non-zero and that it arises from possible form drag 
at the end. We accordingly write 

e 
2 

T(x) = 2copS(L)U nF 2c, purl [ S(x) /D(x)] dx, (8) 
x 

where cy, is the form-drag coefficient. 

Substituting now (3), (5), (6), (7) and (8) into (2), making use 
of (1), and neglecting terms of second order of magnitude, we obtain 
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2 2 os 

&, (er 24) + 05(2 tuhyy +eu(R+u¥) ss 

+ 5 uC) + Us 
i 2 

-5 ous [¢,S(L) + J oo ax |33 tm2y =0, (9) 
xX 

which is the equation of small lateral motions. For a uniform cylin- 
der this equation becomes 

eroy +u(2 ru zyy +5 onl (ge + Use 

2 2 
1 2 L-x] 9 8 4 

-3 MU [cg +c D |< +m Be = 0, (10) 

where the diameter, D, and M=pS are now constant. 

We note that in the absence of frictional forces, (10) becomes 

the governing equation for small motions of a cylindrical beam con- 
taining flowing fluid [31], where we interpret M as the mass of the 
contained fluid per unit length. The physical similarity between the 
internal and external flow cases is striking, albeit that in the former 
case fluid friction does not enter the problem. We shall refer to this 

later. 

We finally note that Eqs. (9) and (10) also hold to describe the 

motions of a towed flexible body, if we identify U as the towing 
speed, provided the tow-rope forces are taken into account as part 

of the boundary conditions. 

III. BOUNDARY CONDITIONS 

Clearly the boundary conditions will depend on the mode of end 
constraint. Let us consider the case of a towed flexible cylindrical 
body shown in Fig. 2. The body consists of a uniform cylinder ter- 
minated by a rounded 'nose' and a streamlined, tapering 'tail', incor- 
porated to provide reasonable axial flow conditions over the body. 
We assume that the towing craft moves horizontally in a straight 
course with uniform velocity U, so that the tow-rope in its undis- 
turbed state lies along the x-axis; we also consider the assumptions 
made at the beginning of §2 to hold. 

We may use Eq. (9) to analyze the system, together with 
boundary conditions stating that (a) at the downstream end, x=L, 
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Fig. 2 Diagram of a towed flexible, slender cylinder 
with streamlined "nose" and "tail" 

the bending moment and shear force are zero, and (b) at the upstream 
end, x= 0, the bending moment is zero, but the shear force is equal 
to the normal component of the tow-rope pull. It is obvious, however, 
that the very form of Eq. (9) will depend on the shape of the nose and 
the tail. As we are only looking for the general characteristics of the 
dynamical problem, this is not convenient. We shall instead proceed 
as follows: (i) we shall use Eq. (10) which satisfactorily applies 
over the uniform, cylindrical part of the body; (ii) the forces acting 
on the non-cylindrical ends will be lumped and incorporated in the 
boundary conditions. For this process to be meaningful we must have 
4, <<L and £,<<L, where £, and £, are the lengths of the nose 
and tail, respectively; yet £, and Ly are considered to remain great 
enough to permit the use of slender hody. approximations [ 23], [ 26]. 
Since £, and £) are small, compared to L, we may further simplify 
the problem by considering y and the lateral velocity v to be approxi- 
mately constant over OS xf, and L- 4, =x=L, and by neglecting 
the skin frictional forces over the same intervals. Hence, integrating 
Eq. (2) and using (4), and incorporating the forces arising from the 
tow-rope pull, P, we obtain 

f iad ne 
wer ag 19" (ZF +uZ) bls a wean, 

and 

8Q 8 8 3 sta 
{ 29 ax-£,{ (& + vB) (esv ax -f m 34 dx = 0; 
Lt mt Llp 

the parameters f, and f,, which are equal to unity according to 
slender-body inviscid-flow theory, were introduced to account for 
the theoretical lateral force at the nose and the tail, respectively, 
not being fully realized because of (a)-the lateral flow not being truly 
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two-dimensional, (b) boundary-layer effects, and (c) the use of fins. 
The tow-rope pull P is equal to the tension in the cylinder at x=0, 
plus the form drag at the nose, i.e. 

P= }MU%(c, +c, +c,L/D). 

Substituting P into the above equations and assuming y and v to 
be constant over the intervals of integration, we obtain 

9° 8 F) 
[er Sy +emu(3 + ue 

2 i +3 MU (cy areca. dace! < + (m + £,M)x, eI = 0. «(f4) 

; hs 8 8 9 3 [- EI5 - fpMU ( 5¥ + U5.) + (m +eM)x, 24] =, Os ffeil 42) 

where 

1 f, ict 

x,=5 i S(x) dx and x,= 45 S(x) dx. 

Here M=pS, and S and D are quantities pertaining to the cylindri- 
cal part of the body. 

In the above the forces arising from form drag were taken to 
be inthe x-direction. If they are taken to be along the cylinder, 
then terms }c,MU“(8y/8x) and $c,MU%dy/8x) should be added to 
Eqs. (11) and (12), respectively. 

The other two boundary conditions are obtained by making the 
reasonable assumption that there are no bending moments at x = 0 
and x=L, or 

[ yo [31 Os (13) 

The advantages in this method of analysis, in which the shape 
characteristics of nose and tail were absorbed in the two parameters 
f, and f3, are obvious. The disadvantages are equally obvious: al- 
though we can estimate f, and f,, we cannot easily calculate them. 
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The range of f, and f, will be taken to be between zero and unity, 
the latter limit representing well-streamlined, gradually tapering 
nose or tail, and no flow separation; it is obviously much more likely 
for f, to approach bared than for f,. In the case of a blunt tail, on 
the other hand, fp —> 

IV. EQUATION OF MOTION AND BOUNDARY CONDITIONS OF [ 26] 

The equation of motion given by Eq. (10) is not identical to 
that previously derived by Paidoussis [ 26]. The difference is in the 
frictional terms, because of the different manner in which frictional 
forces were resolved in [26]. The boundary conditions are identical. 

As we shall make use of the results obtained in [ 26] , we give 
the equation of motion below, for reference. 

4 
erge+m(2+uZy)y+3e(MZ)(¥ 

bc, ( MU ates = 0. (10a) 

The equation of motion and boundary conditions used in the 
‘new theory' presented in this paper are believed to be more self- 
:onsistent than those of the 'old theory' of [ 26]. 
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Ve. DYNAMICS OF TOWED FLEXIBLE CYLINDERS 

5.1 Method of Analysis 

Upon expressing the equation of motion and the boundary con- 
ditions in dimensionless form, the dynamics of the system may be 
found to depend on the following dimensionless parameters: 

(i) £, and f,, which were defined in §3; 

(ii) €cy, €c,, c, and c,, where € = L/D; 

(iii) A= s/L; the ratio of tow-rope length to body length; 

(iv) x, =x,/L and x, =x,/L, where x, and x, were 
defined in §3; 

(v) u=(M/El)'”UL, the dimensionless towing speed. 

It is noted that according to the assumptions made in the theory, 
m=M. 

We shall not present the analysis here, as it is adequately 
documented elsewhere [26], [27]. Suffice it to say that solutions 
were obtained of the type 

where Y is a function of x/L, T is a dimensionless time and w 
is the dimensionless frequency given by 

Q being the circular frequency of motion. In general, w will be 
complex. Clearly, we have an infinite set of frequencies, W;, as 

the system has an infinite number of degrees of freedom. If the 
imaginary components of the frequencies, Im/(wj;), are all positive, 
then the system will be stable. If, on the other hand, for the jth 
mode we have Im (w;) < 0, then the system will be unstable in that 
mode; now if the corresponding real component of the frequency, 
Re (w, ), is zero this will represent a divergent motion without oscil- 
jailons: which we shall call yawing; if Re (wj) # 0, then the insta- 
bility will be oscillatory. 
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The calculation procedure was as follows: (a) a set of values 
GE tp fp» EC.» ECL, Cy» Co» Xj» X_ and A were selected; (b) the 
complex frequencies of a few of the lowest modes of the system were 
traced as functions of u, starting with u = 0. 

MERGES WITH FIRST MODE 

3.6 

3.5 

ZEROETH 

Fig. 3 

WwW 
a 

a 
% 
2 
> ) 

MODE 

(A x 
Re (w)=0 Re(w) 

The dimensionless complex frequencies of the zeroth and 
first modes of a flexible cylinder with ecy=ec,= 1, 
f,=f,=1,¢, = co = 0, A= 1 Ne = 2 = 0.01, as a function 
of the dimensionless towing speed u. (Theory of [ 26]). 
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Fig. 4 The dimensionless complex frequencies of the second and 
third modes of a flexible cylinder with ec,=ec,=1, 
f,=f,=1, c,=c,=0, Aas Ge Xj =e = 0.01. (Theory 

5.2 Results Based on the Theory of | 26 

Typical results are shown in Figs. 3, 4 and 5, obtained by 
using Eqs. (10a), (11), (12) and (13). 

We first consider Figs. 3 and 4 applying to bodies with well 
streamlined nose and tail, and A=1, Figure 3 shows the behavior 
(with increasing towing speed) of the two modes which at zero towing 
speed have frequencies w)=w,=0; these are the so-called zeroth 
and first modes and, at low towing speeds, are associated with quas!- 

rigid body motions -- a matter to be further discussed in §6. Figure 
4 shows the loci of the so-called second and third modes of the system 
as functions of towing speed. The frequencies of these modes at zero 

towing speed correspond to the second- and third-mode frequencies 
of the flexible body treated as a free-free beam; accordingly, these 
(and all higher modes) are flexural in character. 
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We observe in Fig. 3 that both the zeroth and first modes 
lead to instabilities for small, finite u. The instability associated 
with the zeroth mode is a yawing one, while that associated with the 
first mode is oscillatory. We see that for u> 3.05 the oscillatory 
instability ceases in the first mode, re-appearing at u* 3.65. 
However, at much lower towing speed (u* 2.3) the system loses 
stability in its second (flexural) mode, as shown in Fig. 4, and at 
u* 4in its third mode. In short, this particular system is subject 

to several types of instabilities; at low towing speeds it is subject to 
quasi-rigid body instabilities, and at higher towing speeds to flexural 
oscillatory instabilities as well. 

Figure 5 shows the zeroth and first mode of a system with a 
well streamlined nose and a very blunt tail. We see that it is not 
subject to yawing instability, and the first mode is only unstable in 
the range 0<u<0.9. It is, however, subject to flexural oscillatory 
instability (not shown) in its second mode for u> 5.29. Accordingly, 
a blunt tail stabilizes the system considerably. Also shown in Fig. 5 
is the first mode of a system with a less than perfectly streamlined 
nose; we see that the range of first-mode oscillatory instability in 
this case is larger, i.ewg O<u< 1.75. 

FIRST MODE (f, =!) 

0.4 4 FIRST MODE (f, = 0.8): 

DS 03 
Im(w) 

: 02 Me CROSSES TO STABLE REGION 
: AT u=0.9 

0.5 0.1 ae 

ey 
ZEROETH MODE (f, =!) 

UNSTABLE 

=lh 

Re(w)=0 3 4 
Re (w) 

Fig. 5 The dimensionless complex frequencies of the zeroth and 
first modes of a flexible cylinder with cole €cr=i, 
f,=1, c= 0, f,=0, co=1, A> 4d, = 0, Ol. Also 
the first mode with f, = 0.8. (Theory e [ 261). 
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Based on such complex-frequency calculations it was possible 
to construct stability daigrams illustrating the effect of various 
parameters on the stability of the system. Examples are given in 
Figs. 6 and 7 showing the effect of stability of f, and A, respectively, 
Other similar stability diagrams may be found in[ 26]. The following 
general conclusions may be drawn: 

(a) for optimal stability the tail should be blunt (f, small, 
cy large), the nose should be well-streamlined Oe ae) 
and the tow- rope length should be short (A small); 

(b) asystem that is.unstable by yawing, within a range of 
towing speeds, can be stabilized by blunting the tail, but 
not by manipulating the length of the tow-rope; 

(c) in some cases it is possible to stabilize a system which 
is unstable at low towing speeds, by towing it faster, 
within a specified range of towing speeds. 

Conclusions (a) above are not contrary to reported experience 

with rigid bodies. On the other hand, (b) may sound surprising. The 
fact is that the onset of yawing is not a function of A, nor is its 
cessation (§6.2). This is also true with f,, Finally, conclusion (c) 
is characteristic of the dynamical behavior of towed flexible cylinders. 

6 

SECOND MODE 
OSCILLATORY INSTABILITY FIRST MODE 

5 OSCILLATORY INSTABILITY 
fy, ‘ Oy 
Ne 

SS 

4 ae 

u STABLE REGION ZEROETH MODES aus 

FIRST MODE 

Za 
YAWING 

YAWING AND OSCILLATORY 
INSTABILITY 

FIRST MODE 

OSCILLATORY INSTABILITY 

0 0.1 0.2 0.3 0.4 O15 0.6 0.7 0.8 0.9 1.0 

BEUNT TAIL ———— f, ——-» ELONGATED STREAMLINED TAIL 

Fig. 6 Stability map showing the effect of the tail shape fora 

flexible cylinder with ecy= ec;=1, f,=1, c= 0; A= 

X, =X> =0001 and c,=1-£, (Theory of 126i fe 
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Fig. 7 Stability map showing the effect of A for a flexible cylinder 
with €cy=ecy=1, f,= 1, c,=0, f,=0.6, cy = 0.4, 
X, =X, = 0.01, (Theory of [ 26]). 

Some experiments were performed designed to test the theory 
[26]. Rubber cylinders of neutral buoyancy were held in vertical 
water flow by a nylon 'tow-rope'. Provided the tail was streamlined 
and the tow-rope not too short, 'criss-crossing', essentially non- 
flexural oscillations developed at very low flow; these were inter- 
preted as corresponding to first-mode oscillatory instability. At 
higher flow velocities, flexural oscillations developed with a modal 
shape corresponding to that of the second mode; sometimes, at yet 
higher flow velocities, oscillations with a third-mode modal shape 

developed. These flexural oscillations were interpreted to cor- 
respond to second- and third-mode oscillatory instabilities, Se- 
quences of ciné-film frames depicting these oscillations are shown 
in Figs. 8 and 9. Finally, it was observed that for sufficiently blunt 
tail and short tow-rope, the system was completely stable. Thus 
the experimental results were in generally good qualitative agree- 

ment with theory. 
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(a) (b) 

Fig. 8 Photographs in consecutive frames showing a cylinde. 
11.1 in.long and 0.54 in.diameter with streamlined nose 
and tail executing (a) criss-crossing, essentially rigid- 
body, oscillation (8 frames/sec), and (b) second-mode 
flexural oscillation (24 frames /sec) 

Quantitative agreement in the various instability thresholds 
and stable zones, based on estimated values of some of the theoreti- 

cal parameters, was also fairly good. 

5.3 Results Based on the New Theory 

Typical results based on the new theory and obtained by using 
Eqs. (10) - (13) are shown in Figs. 10 to 13. 
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(a) (>) (c) 

Fig. 9 Photographs in consecutive frames showing a cylinder 

15.8 in. long and 0.68 in. diameter executing (a) criss- 

crossing, essentially rigid-body, oscillation (8 frames/sec), 

(b) second-mode flexural oscillation (24 frames/sec), 

and (c) third-mode flexural oscillation (24 frames/sec) 

Figures 10 and 11 show the dynamical behavior, with in- 
creasing towing speed, of the zeroth, first, second and third modes 
of a system with well streamlined nose and tail and A = 1; this is 
the identical system, the dynamical behavior of which, according to 
the 'old' theory, is shown in Figs. 3 and 4. We observe that, accord- 
ing to the new theory, the system is considerably more stable than 
predicted by the old theory. Thus, the first mode is unstable only 
for u<0.74 (not discernible in the scale of Fig. 10); moreover, 
the unstable locus originating from merging of branches of the 
zeroth and first modes regains stability at u = 6.3. Similarly, the 
system loses stability in its second and third modes at respectively 
higher towing speeds than predicted by the old theory. 

Further calculations were conducted for the same system as 
above but with other values of f,, always taking c,:= 1\- foe It was 

found that the first mode is not uniformly stabilized with decreasing 
f5 as was the case with the old theory (cf. Fig. 6). The ranges of 
instability of the first mode, for various values of fo, were found 

to be as follows: 0<u<0.74 for f,=1; 0<u<41.66 for f,= 0.8; 

O<u< 1.65 :for f,= 0:6; and '0 <u < 0.70 for f, = 0.4. Thus the 
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UNSTABLE—~—|—~ STABLE 
36, 

3:5 

Re@)=0O Re@) 

Fig. 10 The dimensionless complex frequencies of the zeroth and 
first modes. of,a flexible cylinder with 4, =%4 - cy =f 

fo=1-cpg=1, Ecy=ecy=1, A=1, x, =x, =0.01, as 
a function of the dimensionless towing speed u. (New 
theory). 

curve corresponding to that relating to the first mode in Fig. 6 will 
now exhibit a maximum at f,< 1; i.e. the system is least stable 
in its first mode, not for a perfectly streamlined tail as predicted 
by the old theory, but for a somewhat less perfectly streamlined 
tail. The second and third modes, on the other hand, are both un- 

conditionally stabilized as the tail is made blunter; thus, the 
threshold of instability of the second mode is at u = 2.83 for f,=1, 
at u= 3.85 for f2= 0.6, and at u= 4.38 for f,= 0.4. 

Figures 12 and 13 show the dynamical behavior of a system 
with €cy=ec,= 41, A= 1, XX. = 0.08, £, = 007, ve, = 0) and 
fo=1-cp)=0.7. We note that the effect of a less than perfectly 
streamlined nose is to destabilize the system in all its ocillatorv 
modes. Thus the first mode is unstable for 0 <u< 2.80, and the 
second and third modes lose stability at, respectively u = 3.21 and 

u = 5.40 (cf. values given above). 

Also shown in Figs. 12 and 13 (dashed line) is the behavior 
of a system with €cy= €cy= 0.5 and all other parameters the same. 
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O 10 20 40 50 60 70 

Re(@) 

Fig. 11 The dimensionless complex frequencies of the second and 

third modes of a flexible cylinder with f,=1- c, = 1, 
fg=1-cp= 1, ecy=ecz=1,A=1, xy, = xX, =0.01. (New 
theory). 

This system is unstable in its first mode for 0 <u < 3.43 and loses 
stability in its second and third modes at u= 3.04 and u= 5.14, 
respectively. As we may regard the smaller values of ec, and 
€c,; to represent a smaller € = L/D, we may conclude that reducing 
the slenderness of the system renders it less stable. 

Other similar complex frequency calculations establish that 
the general conclusions regarding optimal stability are essentially 
identical to those given by the old theory, in spite of quantitative 
differences in the thresholds of instability. The main difference 
appears to be that the first-mode instability is less extensive, in 

terms of the range of parameters over which it is possible, than 
predicted by the old theory. (Here it should be mentioned that these 
calculations are still in progress and that stability maps of the type 

of Figs. 6 and 7 are not yet available.) 

The question now remains on how well this theory is capable 
of predicting the experimentally observed dynamical behavior of the 
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Fig. 12 The dimensionless complex frequencies of the zeroth and 
first modes of a flexible cylinder with f,= 0.7, c¢, = 0, 

foe P= cp = 0.7, AH; ‘ecy= ecp= 1, %, = = 0.01 (——). 
Also shown (---), portions of the zeroth and nee modes 

with €c,= €c,;=0.5. (New theory). 

system. The observed behavior of flexible cylinders with increasing 
towing speed [ 26] can be summarized as follows: (a) at low towing 
speeds a 'criss-crossing' oscillation developed in which the cylinder 
inclination was of opposite sign to that of the tow-rope; (b) at 
slightly higher towing speed, sometimes a narrow region of stability, 
or a region of stationary buckling, was observed; (c) at higher 
towing speeds, second-mode, and at yet higher towing speeds, 
third-mode flexural oscillation developed. The above are typical 
observations provided that the tail is not blunt and the tow-rope not 

too short; if they are, then the system remains stable for apparently 
all towing speeds. 

We first note that, in terms of qualitative agreement, the 
results depicted in Figs. 12 and 13, for instance, agree with the 
experimental observations. Thus, at very low towing speeds the 

system is subject to first-mode oscillatory instability and yawing, 
the former ceasing at slightly higher towing speeds, while yawing 
persists (presumably corresponding to the observed buckling). At 
yet higher towing speeds, the second mode loses stability, followed 
by the third mode at even higher towing speeds. 
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Fig. 13 The dimensionless complex frequencies of the second and 
third modes of a flexible cylinder with f, =0.7, c,=0, 
fo-=1-c,=0.7, A=1, x, =x, = 0.01; ——- ec, = €c,= 1; ’ T 
--- €c,=€c,= 0.5. (New theory). 

We next consider quantitative agreement for one specific 
case, the details of which are given in[ 26]: a cylinder with quite 
well streamlined nose and tail, € = 20.4 and A=1 (cf. Table 2 
of [ 26]). Theory is compared with experiment in Table 1. The 
rationale for the choice of parameters used to obtain the theoretical 
values has been discussed in [ 26] and will not be unduly elaborated 
here. The parameters usedare e€cy=e€c;=1, A=i, £,=0.8, 
c,=0, fp=1-cp9= 0.7, X; =X. = 0.01. It is noted that, although 

the tail is quite well streamlined, f,< 1 and cy# O were taken 

(cf. | 26]), as the tail cannot be considered to be perfect in the sense 
described in §3, i.e. with regard to two-dimensionality of the lateral 
flow and lack of separation in the axial flow. On the other hand, the 
nose, although of identical shape to the tail, must have a value of f, 

nearer unity, as no separation takes place over the nose. Accordingly, 
f,= 0.8 and c, =0 were-taken in the new theory} (the calculated 
values of the old theory, also given in Table 1, were obtained with 

f,= 1, which is considered to be unrealistic, as the lateral flow over 

the nose is no more truly two-dimensional than over the tail). 
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TABLE 1 

THEORY COMPARED WITH EXPERIMENT 

Description 

Criss-crossing oscillation 

(first-mode osc. instability) 

Stationary yawing (zeroth- 
3% 3-3 e 8 

mode instability alone) 

Second-mode oscillation 

threshold 

Second-mode with first-mode 
4,.4-7.2 4.4-6.8 

oscillation superposed 

Third-mode oscillation 

threshold 

fe 
€cy= €c,=4, £/=\1-¢c, = 1, f2= i-ep = 0.7, Ali=4y.X, =X, 

same as above, but f,= 0.8, c,=0. 

Psame as for Tf, but f,= 1-c,= 0.8. 

We see that agreement between the new theory and experiment 
is comparable to that between the old theory and experiment. No 
more can be said at this stage, until a more extensive comparison of 
the new theory with experiment has been undertaken, and also because 
of the several incompletely tested assumptions involved in the deter- 
mination of the values of the system parameters. Agreement between 
the new theory and experiment is least satisfactory in predicting the 
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point of cessation of criss-crossing oscillation. Here it might be 
argued that f,= 0.7, c,=0.3 may be too severe for low towing 
speeds; comparison with theoretical values calculated with f,=1-c)= 
0.8 {shown in parentheses in Table 1) yields better agreement, as 
anticipated. 

VI. DYNAMICS OF TOWED RIGID CYLINDERS 

6.1 The Equations of Motion 

We consider exactly the same configuration as in Fig. 2, but 
impose the restriction that the body be rigid. In this case the system 
is reduced to one of two degrees of freedom. The generalized co- 
ordinates may be taken to be the lateral displacement of the center 
of mass, y,, and the angle that the body makes with the x-axis, 4, 
Accordingly, the displacement at any point is given by 

yY=Y_o +t xo (14) 

For the sake of simplicity, we assume that the center of mass coin- 
cides with the geometric center of the body, x, and x, being small. 
For convenience we now measure x from the center of mass, so 

that the body extends from x= - L/2 to x=L/2. 

Instead of deriving the equations of force and moment balance 
independently of the previous work, we shall proceed as follows. 
We shall integrate Eq. (10) or (10a) formally to obtain an equation 
of force balance, and similarly integrate the product of the forces 
in (10) or (10a) by x, to obtain the equation of moment balance. The 
boundary conditions are incorporated through the integral of the 
first term of these equations; alternatively, the shear forces at the 

ends may be viewed as forces replacing the effect of nose and tail on 
the main part of the body. 

Thus using Eqs. (10) to (14) in the manner described above, 
we obtain the following two equations: 

[M(L +x f, +x,f,) +m(L +x, +x] ye 

+[5¢MUL/D +£, - £] y, +35 MUc_y 
c 2s c 

1 ss fetes - 5[m(x, - x,) + M(x,f, - x,f,)] L¢+ MUL [2 - fff] ) 

ae ae o 1 L +MU [sey tf - fa- GF cr d= 0, (15) 

and 
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where Crp= roe By (1B +c, tCo. The same equations could have been 
obtained from first principles. It is noted that here L is the length 
of the cylindrical portion of the body which is smaller than the over- 
all length, as used in §5, by L, +45, the difference never exceeding 
a few per cent. 

We non-dimensionalize these equations by introducing n= y,/L, 
A=s/L, €=L/D, x, = x*,/L, Xp = x,/L and 7 = Ut/L, and consider 
solutions of the form 

1=He”* and d= @e 

where w is a dimensionless frequency defined as w= QL/U, 
being the complex circular frequency of oscillation. Substituting 7 
and $ into the non-dimensionalized equations, and noting that our 
assumptions require m = M, we obtain 

{[2 +x, (1 +4) +xe(t t£)] (-04) +[ 5 ecy +4, -£,] wi) +[ 5c, /A]{ H 

+ {- Fix, +8) - x, H6)] (-04 +L 2-5 (E, +6] (oi) 

+[5 Ecytf,- f,-4 (1/Mcql | ® = 0, (17) 

and 

1 + Xi (a +2) - 4 Xp(4 + £,)(-o*) -[ Sf, 7£,) | (wi) - [ 5 Cr p/4\) 1) 

+ \[Z +4 x) (te, Sxl! + £,)] (-w*) +S, - f,) +3 €cy] (wi) 

+ [5 (1/Mcyp- 5 (ie sito] i = is (18) 
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Similar equations were obtained when using the theory of [ 26], 
i.e. Eqs. (10a), (11), (12) and (13), namely 

}[2+x, +4) +xo(1 +£,)] (- ) +L Ecytf, - fal (wi) +15 cy)/A]{ H 

at }- 4 [x,( +f) - X2(4 + f5)] (-w*) 7 [ 2 - Fig, +£,)] (wi) 

+5 ele, he) +£,-£,-4cqp/A] 1 = 0, (17a) 

}- [5 x14 +) - Sxolt +e] (-04 -[ 4 +2)] (od) - [4 c,,/Al tH 

+} taxi (+8) +4 xo Hey) (-04) +14 (e- 6) + A ecy] (wi) 

tlgcp/A-F(, +4)]1 6 = 0, (18a) 

For non-trivial solution, the determinant of the coefficients of 

H and ® in (17) and (18), or in (17a) and (18a), must vanish, yielding 
a quartic in w, 

i PAG Bao eco =o, (19) 

6.2 Calculations Based on the Theory of | 26] 

The aim here was to compare the dynamical behavior of the 
rigid body to that of a flexible body; as the rigid body may be regarded 
as a flexible one of very large flexural rigidity, it would be reasonable 
to expect correspondence of the dynamical behavior of the rigid body 
to the 'rigid-body' modes of the flexural one, i.e. the zeroth and 

first modes. Recalling that the dimensionless flow velocity in the 
case of a flexible body was defined as u = (M/EI)'/* UL, the dynamical 
behavior of the rigid body should approach that of the flexible one as 
uO. Two sets of calculations were conducted, as described below. 

The four rigid-body frequencies, given by (19), were computed 
for a number of cases and the values compared with the existing com- 
plex frequencies of the flexible body. As an example, let us compare 
the case corresponding to Fig. 3. The four frequencies are w, = 1.956, 
we= -0.761, w,,= + 0.582 - 0.3571. These compare well with the 
four frequencies associated with the flexible body for u=0.7, 

namely w, = 1.934, O5.=9 0. 734, = + 0.580 - 0.350i; the first ek 
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two are associated with the zeroth mode, and the other two with the 

first mode and its mirror image about the [ Im (w)] -axis. 

Surprisingly, the correspondence of the rigid-body frequencies 
to those of the flexible body, for the apparently arbitrary value of 
u = 0.7 persists for other values of f,, as shown in Table 2. This 
value of u= 0.7 can be explained as follows. We have defined the 
dimensionless frequency of the rigid body by w,p= QL/U. On the 
other hand, the dimensionless frequency of the flexible body was 

defined as w,,= [ (M+m)/EI]’“QL*, which may be rewritten as 
o.,=[(M +m)/M]/2u2L/U, where u is the dimensionless flow 
velocity (§5.1). The assumptions made in the theory require that 
m-=M, sothat wy,= V2uQL/U. Now, if the dimensional frequency, 
22, of the rigid body and of the flexible body are identical, we may re- 
write this as Wey = ANE and we can see that identity of the dimen- 

sionless frequencies will occur when u = 1//2* 0.707, 

Calculations were also conducted to pin-point the thresholds of 
yawing and oscillatory instability in terms of f,, A etc., and to 
compare with the existing stability diagrams, e.g. Figs. 6 and 7. 

TABLE 2 

RIGID-BODY AND FLEXIBLE-BODY FREQUENCIES COMPARED 

Other parameters: A=1;€cyaé€cps1, f) = t-c, = 1, 1¢, = 1h 
X; =X2 = 0.01 

Rigid body Flexible body (u = 0.7) 

0. 58-0. 36i 0.58-0.35i 

0. 84-0. 39i if 0. 83-0. 38i 

4.28-0.04i 1. 28-0.004i 

In the case of a rigid body with parameters corresponding to 
those of Fig. 6, it was found that oscillatory instability exists for 
0=f,=1 and that yawing occurs for f,>0.5. Correspondingly, for 
the case of Fig. 7 it was found that yawing persists throughout, and 

"Upon examination, the st: »le branch of the zeroth mode as given in[26] 
was found to be in error; the locus moves away from the [Re (w)] - 
axis much faster than shown in Fig. 3, | 26]. The corrected value 
for u= 027 is given here. 
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that oscillatory instability occurs for A>0.20. Once again agree- 
ment in behavior of the rigid body and the flexible body (for u = 1/2) 
is good. Similar calculations confirmed agreement with the other 
stability maps of [ 26]. 

Two stability diagrams were constructed (Figs. 14 and 15) 
showing the effect of ECy, €Cr, fp and A on stability, for comparison 

with those to be obtained using the new theory. 

a 

YAWING 
a 

Pg 

Fig. 14. The effect of €cy, €c; and f, on stability of a 
rigid cylinder with A= 1, f, = 1-c,=1, 
Co= 1-f2 and x, oa 01, —— ec, = 0.1; 
=-— €¢,= 0,5; --- ec,=1, (Theory of [26]). 

In Fig. 14 we observe that unless ec, is considerably less 
than €cy, the region of oscillations practically covers the whole 
plane; moreover, oscillations persist to lower values of f, than 
yawing does. 

In Fig. 15 we see that a sufficiently short tow-rope has a very 
definite stabilizing effect on the system, as far as oscillatory insta- 
bility is concerned. Very long tow-ropes, on the other hand, evi- 
dently have a very weak stabilizing effect. 

The foregoing clearly establish that the dynamical behavior 
of the rigid body is represented by the behavior of the zeroth and 
first modes of the flexible body at small u. 

One noteworthy aspect of the analysis is that the existence of 
yawing instability cannot be affected by varying A, i.e. by altering 
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OSCILLATIONS 

Fig. 15. The effect of A on stability of a rigid cylinder 
with f,=1-c,=1, ecy=ec,=0.5, Cy = 1-f 2 
and xX, =X, = 0.01. (Theory of [26]). 

the tow-rope length. In the case of the rigid body this becomes 
obvious upon considering equation (19). Since the threshold for 
yawing instability implies w= 0, this threshold is established by 
the equation E=0. Now E is found to be 

E = (c4p/2A)[5 €(cy + Cy) - 2£,] é 

Clearly we see that the threshold is not dependent on A. This seems 
to be in contradiction with Strandhagen's et al. [1] criterion (iii) for 
the stability of towed ships (as given in §1); on closer examination 
of their own work, however, we see that the equivalent of term E, 
in their case also, contains A as a common factor. Accordingly, 
we must conclude that the only form of instability the existence or 
non-existence of which may be controlled by the tow-rope length is 
oscillatory. 

6.3 Calculations Based on the New Theo 

Calculations were also conducted with the new theory. It was 
found that, in this case also, the dynamical behavior of the rigid 

body corresponds to that of the zeroth and first modes of the flexible 
one at low towing speeds -- quantitative correspondence of frequencies 
occurring at u=1/72 as before. 

Stability plots were also constructed (Figs. 16and17). These 
are markedly different to those given by the old theory (Figs. 14 and 
15), the main difference being in that oscillatory instability according 
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OSCILLATIONS (ec =1) 

fe 

OSCILLATIONS (€c,=0-5) 

OSCILLATIONS (€ c;= eae se 

OSCILLATIONS(€c,=1)_ — 

ees 
OSCILLATIONS = 

(€c,=1) {-- <= 

Fig. 16 The effect of. €c,, €c, and f, on stability of 
rigid cylinders with A=1, c,=,1-f,, c¢) =0 
and xX, = Xo= Oe Oty a ee f, = 0.8; 

--- f, = 0.7. (New theory). 

OSCILLATIONS 

Fig. 17 The effect of A on stability of a rigid cylinder; 
Co= 1-fp, ECy= €Cp7= 0-5, X,; = Xo = 0,01; 

— f, = 1-c, = 1; ---f,=0.8,c,=0. (New 

theory). 
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to the new theory occurs over a much more limited range of system 
parameters, while yawing is more prevalent. 

Comparing Fig. 16to Fig. 14 we note the following essential 
differences: (i) yawing, being independent of c, according to the 
new theory, is represented by a single line; (ii) according to the 
new theory oscillations persist to progressively lower values of fp, 
as €cy, is reduced, while the opposite trend was predicted by the 
old theory; (iii) according to the new theory, for f, = 1, there 
are large regions in the (€cy, f,) parameter space where yawing 
occurs alone, but not where oscillations occur alone; on the other 

hand, according to the old theory the opposite is true. However, 
this last point applies only for f, = 1. It may be seen that for f,= 0.8 
and 0.7, the results of the new theory become much more like those 

of Fig. 14 in this respect. 

We note that the onset of yawing is independent of f, as well 
as Cy, so that the line shown in Fig. 16 applies to all cases examined 
therein. Once again considering term E of Eq. (19), which in this 
case is given by E = (CAN €c,- 2f,), we see that £,, Cy, Cos Cy 

and A are all parameters that cannot affect the onset of yawing. 

We next compare Fig. 17 to Fig. 15. The results are quite 
similar, except that (when f, = 1) oscillatory instability occurs over 
a more limited range according to the new theory than predicted by 
the old theory. However, the results of the new theory for f, = 0.8 
when compared with those of the old one for f, = 1 are quite similar. 
The results for f, = 0.7. not shown in Fig. 17, are of interest in 

that oscillatory instability, in that case, occurs practically over the 
whole plane, i.e. for fg>0.013 for A=0.1 and for f,> 0.008 for 
N= 02. 

VII. CONCLUSION 

In this paper we have reviewed an existing theory for the dy- 
namics of flexible cylindrical bodies towed underwater, and developed 

a parallel theory for rigid cylinders. It was shown that, whereas the 
dynamical problem in the case of rigid cylinders is independent of 
towing speed, in the case of flexible cylinders the dynamical behavior 
(and stability) of the system is highly dependent upon towing speed. 
It was found that, in general, flexible towed cylinders are subject 
to both flexural and 'rigid-body' instabilities, the latter occurring 
at relatively low towing speeds. It was also established that at low 
towing speeds, the dynamical behavior of the flexible cylinders in 
their two lowest modes (the so-called zeroth and first) correspond to 
that of rigid cylinders, which of course have but two degrees of free- 
dom. Thus the study of the dynamics of towed flexible cylinders 
yields sufficient information to establish the dynamical behavior of 
the corresponding rigid bodies. 
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A new theory was also presented (for both flexible and rigid 
cylinders) which, it is believed, represents the physical system 
more closely. The main difference in the results obtained by the 
old and new theories are associated with the behavior of the rigid- 
body modes of the system; specifically, the new theory predicts the 
system to be more stable in its first (oscillatory) mode and less stable 
in its zeroth (yawing) mode than does the old theory. 

The new theory is in general qualitative agreement with ex- 
periment. Quantitative agreement cannot be assessed definitively 
until a means is found for accurately determining the values of some 
of the dimensionless system parameters, particularly f, and fp. 
Nevertheless, it is possible to make intelligent estimates of these 

parameters based on experience from other experiments [25]. On 
that basis quantitative agreement between theory and experiment, for 
one particular experiment (Table 1), is seen to be fair, although 
clearly leaving a good deal to be desired. 

In all the above discussion, as in [ 26] » the observed criss- 

crossing instability was identified with the theoretically predicted 
first-mode oscillatory instability, despite the fact that in most cases 
theory predicts that the system is also subject to yawing instability 
over the same range of towing speeds. This is supported by the 
observed frequency characteristics of the oscillation and the ob- 
served effect of varying A, for instance, being essentially as 
theoretically indicated for the behavior of the first mode. It has 
thus been presumed that oscillatory instability is the prevalent form 
of instability. There is, however, an alternative interpretation of 

the observed behavior, namely that criss-crossing oscillation is a 

nonlinear manifestation of yawing. This may be postulated, but can- 
not be proven by the present linear theory. 

In fact a number of questions remain. More careful and ex- 

tensive experiments, including experiments with rigid cylinders, and 
more extensive theoretical calculations are necessary to resolve 
these questions. 

We next consider briefly the mechanism underlying the onset 
of instabilities, to the extent of identifying the physical forces at 
work. 

We first consider the mechanism involved in yawing. The 
first thing to recognize is that yawing must involve angular motion as 
opposed to pure translation. This is evident upon considering the 
cylinder momentarily displaced parallel to the x-axis; in this case 

the forces acting on the cylinder are exactly as in the equilibrium 
configuration, except that the tow-rope exerts a restoring force on 
the body. We next imagine the cylinder momentarily displaced such 
that the y-displacement of the nose is positive and that of the tail 
negative. Then, considering boundary conditions (11) and (12), we 
note that the inviscid hydrodynamic force at the nose is £ MU(dy/dx) 
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while at the tailitis - f MU (ay /8x) » producing a moment tending to 
exaggerate the original inclination. However, there are Coriolis 
forces proportional to MU(@y/8x 8t) which always oppose rotation 
[ cf. Eqs a10)].. ; 

To understand this action of the Coriolis forces we consider 
the related physical system of a hinged-free tube containing flowing 
fluid (as mentioned in §2), depicted in Fig. 18(a), which was first 
considered by Benjamin [32]. We see that if the system rotates 
about A without bending, the fluid suffers a Coriolis acceleration 
which has a reaction on the tube always opposing the motion. This 
is clearly a stabilizing effect, as energy has to be expended by the 
tube to keep the motion going; as further elaborated by Benjamin, 
this represents the action of a pump from the energy-transfer point 

of view. 

Fig. 18 Rudimentary representation of a pump and a 
radial-flow turbine 

We next consider flexural instabilities. Clearly everything 

mentioned so far applies here also. But we also have another force 

coming into play. Once again we consider the hinged-free tube con- 

taining flowing fluid, as shown in Fig. 18(b), where the tube is 

momentarily 'frozen' in the bent shape shown. The centrifugal force 

of the fluid acts to increase the curvature further. This is clearly 

a destabilizing force, energy flowing from the fluid to the tube; it is 

the action of a radial-flow turbine. In flexural oscillations we have 

a play between these 'centrifugal' forces and the Coriolis forces; 

«hen the former prevail, then instabilities may develop. 
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More formally, we may consider the work done, AW, on the 

cylinder over one period of oscillation, ti» in much the same way as 

was done in[ 24]. We find that 

t, 
\ e ° 

AW = (1- ans by + Uyy'] veg ade etd fgmul (ees Uyy'],., dt 
0 

Seg iG: MU) (5? + Uyy') dx dt. (20) 

If AW< 0, oscillations will be damped, while if AW >0O oscillations 

will be amplified, i.e. the system will be unstable. We first note 
that if f, = f,= 1, then instability can only arise from viscous effects 
(cf. [24]). We next consider the first two terms of (20). We note 
that for ice ae sien i stability will be governed by whether 

(1-f 3 yé dt - (1-f OI i yi dt is positive or negative; it is clear, 

therefore, that a well streamlined nose (f, ~ 1) and a blunt tail (f2< 1), 
both tending to make AW <0, will promote stability. For higher U, 
however, the situation becomes more complex, as Ulyy' >y may 
now obtain, and yy! may be either positive or negative, the bar 

representing the mean value over one period of oscillation. (It is 
noted that from Figs. 8 and 9 it may be found that for oscillatory 
instabilities we generally have (yy')o being strongly negative, and 
(yy vy"), also negative but with smaller absolute value.) Stability will 
depend on the magnitude of f,, f,, Vos val etc., and no simple general 
rules can be formulated beyond the statement of Eq. (20). 

It was found that the most effective way of stabilizing a towed 
system is by making it blunt at the tail, which has the disadvantage 
of increasing the towing drag. Clearly, what is needed is a blunt 
tail without separated flow! The present work and that of [ 26] indi- 
cate that small f, and large cy» (both associated with a blunt tail) 
have individually stabilizing effects on the system. Clearly then 
what we need is a sufficiently small f2 for stability, and a small 
Cg for moderate form drag. From the boundary conditions we note 
that a small f, has the effect of reducing the lateral shear exerted 
by the tail on the cylinder. Accordingly, if the tail is made very 
flexible with the rest of the body essentially rigid, the full shear 
force might not be transmitted to the cylinder, simulating the effect 
of a small f,; yet insofar as axial flow conditions are concerned, 

they would be fairly good. Of course, this particular solution might 
give rise to other problems, e.g. whiplash-type behavior of the tail 
may be envisaged. 

Another point of possible practical interest hinges on the 
fact that a towed flexible body, which is unstable at low towing speeds, 

may be stable at an intermediate range of towing speeds. (On the 
other hand, a rigid towed body of the same shape would be unstable 
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at all towing speeds.) Accordingly, in the case of a flexible towed 
system this suggests the possibility of removable stabilizers; these 
would be operative only at low towing speeds, and would be removed 
at the operating speed to reduce drag. Incidentally, the above 
would generally also apply to articulated towed systems, made up of 
a number of rigid tubular sections flexibly connected [ 32], [33]. 
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HYDRODYNAMIC ANALYSES APPLIED TO A 
MOORING AND POSITIONING OF VEHICLES 

AND SYSTEMS IN A SEAWAY 

Paul Kaplan 

Oceantes, Ine. 
Platnvtew, New York 

I. INTRODUCTION 

At present, increasing interest is being devoted to the prob- 
lems of deep sea operations of vessels that must remain on station 
for an extended period of time in order to accomplish their intended 
mission. This concern was given its initial impetus by the success- 
fully conducted preliminary operation of drilling through the ocean 
bottom from a surface ship in the operation known as the "Mohole 
Project," as well as the increase in oil exploration in deeper water 
depths. On the other hand, from the point of view of military 
operations, there is need for placing instrumentation packages and 
other military systems on the ocean floor for various purposes of 
National Defense. These operations require a definite degree of 
precision, safety during the course of the operation, and the capa 
bility of returning to a particular locale and retrieving information 
and/or the equipment itself for further study of data or for emplace- 
ment in another location. 

As a result of this emphasis on deep-sea operations, it is 
necessary to determine the response of representative moored ships 
in the open sea, and also to determine the characteristics of the 
important parameters associated with lowering loads from sucha 
vessel to the ocean floor and returning them to the ship. The 
parameters that are of interest to the personnel aboard the ship are 
the forces in the mooring cables, the displacements and tensions in 
the lowering lines, the degree of precision in placing the loads, the 
accelerations acting on the loads, and the magnitudes of impact on 
the ocean bottom. In order to arrive at some appropriate engineering 
estimates of the capabilities of carrying out such operations, appli- 
cation of available theoretical hydrodynamic studies can be made to 
deal with problems of this nature. 

The study of motions of ships at sea is a general problem of 
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naval concern, and has received increasing emphasis during the last 

fifteen years or so by virtue of the advance of statistical methods 
which describe the effects with greater realism than in previous 
studies based on simplified wave representations. Major concern 
has been devoted primarily to the problems of an advancing ship in 
head seas, with the prime variables of concern being the heave and 
pitch motions. Recent studies, however, have been concerned with 
motions in oblique waves, wherein lateral motions (sway, yaw, and 
roll) are also important. All of these studies involved large ships 
advancing in waves, and only limited theoretical studies have been 
developed to predict adequately the motions in all six degrees of 
freedom under these operating conditions. A treatment of the motion 
of a free ship with six degrees of freedom in waves is a formidable 
problem that has not achieved a complete solution at the present 
time, and when the influences of moorings are also included, the 

problem is further compounded. Nevertheless, there exists a need 

for some means of preliminary estimation of the expected motions of 
a moored vessel, and there is sufficient hydrodynamic information 
available to allow a study that will indicate the expected range of 
amplitudes of motion so that the results obtained can be used as 
guide-lines for operating personnel. 

Another related problem that is assuming more significance 
recently is that of a moored buoy system. These smaller payloads 
are planned for use over large ocean regions to provide a network 
of environmental reporting stations that will yield continuous data on 
the important properties of the ocean and atmosphere for use in 
weather forecasting and other technologies dependent on air-ocean 
interaction. The effective design and engineering development of 
such systems requires an ability to predict the buoy (and hence the 
transmitting antenna) oscillatory motions and structural acceleration 
loadings in various seaways; the determination of the tensions along 
the cable under various operating conditions; etc. Knowledge of such 
results will greatly enhance the design of handling equipment for 
both launching and retrieving of buoys at sea, and will also provide 
basic information on system survivability under extreme environ- 
mental conditions. 

A tool that can provide engineering estimates of such informa- 
tion is a mathematical model that describes the essential mechanical- 
dynamic characteristics of a moored buoy system. This mathemati- 
cal model will be a system of equations and relationships that allows 
the calculation of the spatial configuration, dynamic motion and 

internal tensions of a specified moored buoy in a given excitation 
environment. The hydrodynamic force acting on the buoy hull and 
the forces acting on thecable system (hydrodynamic, inertial and 
elastic) are coupled so that each affects the other, especially when 
considering dynamic effects and rapidly varying motions. Certain 
similarities exist between this problem and that of a moored ship, 
together with definite differences as well. The applicability of basic 
techniques of analysis from one problem to another provides useful 
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insight and extends the utility of basic "tools" used in hydrodynamic 
and dynamic investigations. 

When considering the problem of maintaining a ship on station 
for a long time period, various concepts for achieving a minimum 
deviation from a derired operating point are possible, with the two 
main methods being that of fixed mooring or by use of a dynamic 
positioning system. In certain situations where mobility is required, 
as well as due to the high capital cost of a mooring system for very 
deep water operations, the associated high cost of emplacement and 
the dangers of damage due to large storm conditions, a mooring 
system does not appear to be attractive. Dynamic positioning is a 
more recent development, which has only received limited applica- 
bility to date. 

In order to provide the information ncessary to determine 
the possibility of an application of dynamic positioning, it is neces- 
sary to carry out particular analyses to determine the environmental 
conditions appropriate to possible operating areas; the resulting 
forces and moments acting on the ship; the arrangement and type of 
control effectors; the possible signal systems that provide the error 
and command signals for actuation of controls; possible control 
system concept designs; etc. 

The important quantities that must be determined for proper 
design of the positioning system are the disturbing forces that act 
on the ship. The major forces and moments that affect the ship 
stationkeeping ability in this case are the more-or-less steady type 
of "drifting" forces imposed by the environment, and these quantities 
are amenable to computation by means of hydrodynamic analyses 
using available theory. 

In all of the foregoing situations the importance of hydrodynamic 
force evaluation and its applicability to obtain desired engineering 
performance data is paramount. Many publications are available in 
the literature on ship motion theoretical studies that can be applied 
to the above problem areas, with reasonable expectation of validity 
for the results. The central theme of this Symposium, "Hydrody- 
namics in the Ocean Environment," is certainly appropriate to the 
present International Decade of Ocean Exploration which will em- 
phasize the technology that will yield benefits to Mankind. The 
application of the basic developments in hydrodynamics of ship motion 
to the applied engineering problems associate with maintaining 
vessel operations at fixed positions in the ocean, which will be 
required as part of this extensive international effort, is a vital 
element in achieving improved system performance. It is also a 
good illustration of the direct application of many years of basic 
research toward the solution of problemsthat are anticipated as 
further and deeper ventures into the sea are made. The present 
paper is aimed at providing a limited description of the use of 
hydrodynamic analysis when applied to some of these problem areas. 
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II. SCOPE OF INVESTIGATION 

It is easily seen that there are a host of problems associated 
with the subjects considered in this paper. As a result, some limi- 
tations are imposed so that only certain aspects are considered in 
detail. The region of application of the results in this paper is in 
deep water, so that no shallow water effects are considered. This 
limitation thereby excludes problems of ship oscillation when 
moored at docks in harbors, which is an important problem that can 
be treated in a similar fashion to those herein by proper inclusion 
of shallow water effects. The main emphasis within this paper is 
on the seaway and its effects, and in some cases the influence ofa 

current will not be considered. However it is known that currents 
are often present together with sea waves, and their combined effect 
is often very important. In addition the presence of a current is 
often necessary to establish certain static equilibrium conditions 
for a vehicle about which the seaway disturbances are imposed, 
and in that case certain assumptions are made as to the existence 

of such initial conditions for purposes of simplifying the analysis. 
Similarly, the presence of any wind effects is also not considered 

in detail within this paper. 

When considering the problem of the motions of moored 
systems, it is known that the effects of drift forces are also present 

and that they produce an important influence on the resulting motions 
and cable forces. However, in an effort to obtain tractable solutions 

and to provide information on the characteristics due to different 
force mechanisms, these effects will be considered separately. 

Illustrations of the different influences that act on vehicles and 
systems in a seaway will be presented separately, with some dis- 

cussion given to the expectations with combined effects in a realistic 

situation when more than one mechanism is acting on a system. 
The discussions of results are devoted to the more important 

phenomena influencing performance of a system in the sea, and they 

will be given throughout the paper for each case treated. 

III TECHNIQUES USED FOR MOORED SHIP ANALYSIS 

In order to determine the motions of a moored ship in irregular 

waves, it is necessary to determine the response in regular sinu- 

soidal waves. The aim is to predict these motions, and the technique 

to be utilized is that of spectral analysis [1] wherein the statistical 

definition of the seaway in the form of its energy spectrum is used 

as the initial data. The energy spectrum of the time history of each 

motion of the vessel in response to irregular waves is evaluated for 

the corresponding degrees of freedom to the energy spectrum of the 

seaway. These operators are obtained from the solutions for the 

motions in sinusoidal waves, and in accordance with the basic 

premise of this technique of analysis, a linear theory of ship motions 

is a prerequisite. 
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The equations of motion in regular waves, for six degrees of 

freedom, are formulated according to linear theory by the balance 

of inertial, damping, restoring, exciting, and coupling forces and 
moments. Both hydrodynamic and hydrostatic effects due to the body- 
fluid interaction are included in the analysis, together with the 

influences of the mooring system. The longitudinal motions (heave, 
pitch, and surge) are coupled to each other, and similarly, the 

lateral motions (sway, yaw, and roll) are also coupled. There is 
no coupling between the two planes of motions, in accordance with 
linear theory. 

The hydrodynamic forces and moments such as damping, 
exciting effects due to waves, etc., are determined by application 
of the methods of slender-body theory. Essentially, this theory 
makes the assumption that, for an elongated body where a transverse 
dimension is small compared to its length, the flow at any cross 
section is independent of the flow at any other section; therefore, 

the flow problem is reduced to a two-dimensional problem in the 
transverse plane. The forces at each section are found by this 
method, and the total force is found by integrating over the length 
of the body. A description of the application of slender-body theory 
to calculate the forces acting on submerged bodies and surface ships 
in waves is presented in [2], where simplified interpretations of 
force evaluation in terms of fluid momentum are also given. The 
hydrostatic and mooring forces and moments are combined with the 
hydrodynamic terms, resulting in linear combinations of terms that 
are proportional to acceleration, velocity and displacement in the 
various degrees of freedom. All of these expressions, when related 

to the appropriate ship inertial reactions by Newton's law, lead to the 
set of six linear coupled differential equations of motion. 

Solutions of the equations are found for regular sinusoidal seas 
with varying wave length and heading relative to the barge. The 
response amplitude operators are found from these solutions together 

with the phases of the motions relative to the system of regular waves. 
Assuming a knowledge of the oncoming irregular sea conditions (e.g. 
in terms of sea state, as specified by an associated surface-elevation 

energy spectrom from information in[3]), the set of energy spectra 
for the ship motions are determined. Information on average values 
and probabilities of relatively high values of the amplitudes of oscil- 
lations in the ship-motion time histories for the different degrees of 
freedom are found from the ship-motion energy spectra in accordance 
with the methods of [1]. Cross-spectra are also used to determine 
the energy spectra and hence the various average values and the pro- 
babilities for the remaining quantities of interest, such as load- 
displacement time histories and other quantities which are linear 
combinations of the ship motions and their time rates of change (the 
presence of lowering lines for placing loads on the ocean floor is 
considered inthis analysis). These energy spectra may also be 
obtained from the solutions of the differential equations by linear 
superposition, and explicit use of cross-spectra here is necessary 
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only for obtaining phase information. 

The ship is assumed to be placed in a currentless seaway, 
with no wind effects being considered. This may be somewhat un- 
realistic from the practical point of view, but since concern here is 
devoted only to the motions induced by the seaway, this neglect is 
reasonable (as discussed previously). The ship is assumed to be 
moored with bow and stern moorings of conventional line and anchor 

type. The line and anchor mooring system utilized for this study is 
a particular system especially suited to deep-sea operations [4], 
and utilizes a taut line. Other types of mooring lines can be con- 
sidered as well, but separate analyses to determine the static 
orientation, restoring force variations, etc. must be carried out. 

The extent of linearity for these different mooring arrangements 
must be determined for use in the present type of analysis. The 
effects of the moorings will be to provide restoring effects in the 
particular displacements of surge, sway and yaw, thereby providing 
"spring-like" terms in the equations for these degrees of freedom. 
As a result, there are certain natural frequencies associated with 

these motions, which do not ordinarily occur in case of free (un- 
moored) ships. The moorings are assumed to have a negligible 
influence on the motions of heave, pitch, and roll, which have large 

hydrostatic restoring effects. 

Following the evaluation of the various motions of the moored 
ship, equations are formulated to determine the forces in the moor- 
ing cables, and the displacement of and tension in the lowering line, 
as a function of the different degrees of freedom of the oscillating 
platform moored inthe seaway. The lowering line displacement and 
tension, which are functions of the ship motions are then related to 
the seaway and all of the resulting spectra determined. Operations 
on these quantities provide information on expected amplitudes for 
particular sea states, and in addition the vertical accelerations of 
the loads are determined and similarly expressed, where this infor- 
mation is useful for study of impact ofthe loads on the ocean bottom. 

IV. EQUATIONS OF SHIP MOTION 

The equations of motion of the moored ship are derived on the 
basis of linear theory, with the body allowed to have six degrees of 
freedom. A right-hand cartesian coordinate system is chosen with 
the axes fixed in the body, and with the origin at the center of gravity 
of the body. The x-axis is chosen positive toward the bow, the y-axis 
is positive to port, and the z-axis is positive upward. These axes 
are defined to have a fixed orientation, i.e. they do not rotate with 
the body, but they can translate with the body. The body angular 
motions can be considered to be small oscillations about a mean 
position given by the axes. The dynamic variables are the linear 
displacements x, y, and z along the respective axes, and the 
angular displacements $, 8 and yw which are defined as positive in 
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a direction of positive rotation about the x, y, and z axes, 
respectively, (i.e. port upward, bow downward and bow portward). 
The positive directions of the forces and moments acting on the 
body are similarly defined. 

The force (or moment) acting on the body is composed of the 
inertial force due to dynamic body motions (denoted as Fj), the 
force due to damping (denoted as Fy), the force due to hydrostatic 
restoring action (denoted as F)), the force due to the moorings 

(denoted as Fm), and the force due to waves (denoted as Fy). The 

equations of motion are then established as 

me = F au Dept (1) 

for rectilinear motions (with s representing any rectilinear dis- 
placement, and m the mass ofthe ship), with similar representa- 
tions for the angular motions. A discussion of these different types 
of forces is given below, together with some results obta ned, for 
purposes of illustration. 

The hydrodynamic forces and moments due to dynamic body 
motions are of inertial nature, and do not contain any terms of dissi- 
pative nature. The effect of the free surface is accounted for by 
different frequency-dependent factors that modify the added masses 
of each section. All couplings of inertial nature are exhibited in the 
results of the analysis. In the case of dynamic body motions, the 
simplified results of slender-body theory states that the local force 
on any section is equal to the negative time rate of change of fluid 
momentum [ 2]. For the vertical force (z-force), this is expressed 

by 

D 
ae = at | A535 > (2) 

where A is the added mass of the cross-section and Wy is the 

body vertical velocity, given by 

w, = yy (2 - £8) = % - 60. (3) 

In the above equations, the coordinate € is a "dummy”™ variable 
along the longitudinal coordinate x (and coincident with it), and the 

time derivative D/Dt is just the partial derivative 0/8t, since there 
is no forward speed. The quantity A33 is the added mass of the 
cross section, including free-surface effects, which is obtained from 

the work of Grim [5] for the class of sections known as Lewis forms. 
The total vertical inertial force is then found to be 
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£p ! eo &b 1 ee zi =~ | aggadt- 2 +) Pape at - 6 (4) 
& bs 

where § and & are the bow and stern €-coordinates respectively. 

In a similar manner, the lateral force (along y-direction) may 
also be expressed by use of this same procedure, but certain addi- 
tional factors enter in that case. These factors are the necessity 
of including roll effects which influence the lateral velocity, and 
also the fact that the representation of the lateral force is based upon 
added mass terms that are evaluated for motions relative to the free 
surface level, rather than the body center of gravity position. Cor- 
rections to refer the final forces to the center of gravity position are 
made after finding the forces referred to the free-surface position. 
The detailed procedures for determining these inertial force (and 
moment) results, as well as all other forces of hydrodynamic, 

hydrostatic, etc. nature are described in [ 6] , which is the basic 
report on which the present section of this paper is based. In view 
of this, only limited discussion of the remaining forces and moments 
will be presented. 

The damping forces and moments are dissipative in nature, and 
are primarily due to the generation of waves by the ship motions on 
the surface, which continually transfer energy by propagating outward 
to infinity. In accordance with the two-dimensional treatment used 
for the analysis of inertial forces due to body motions, the same 
concept is used in evaluating the local forces at a section of the ship 
due to wave generation. With the ratio of the amplitude of the heave- 
generated two-dimensional waves to the amplitude of heaving motion 
of the ship section denoted by A,, the vertical damping force per 
unit vertical velocity of the ship section is expressed as 

o—2 

1 _ pg Az _ rR =2 N= nae po (>) A,2 (5) 

where A, for Lewis-form sections are available as a function of 

w°B* /2g = mB '/i, for different beam-draft ratios and section coef- 

ficients, where B- is the local beam and 2 the wave length. 

The vertical damping force at each section is 

dz 1s . 
“ze == N,,(z - E80), (6) 

and this is integrated over the ship length to determine the total 

vertical damping force, given by 
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Zaz - Nz +NiO, (7) 

where 

2 ee N, = po(%) VA? at, (8) 
fs 

and 

é 28> 
Nzg = po(>) \. Aré dé. (9) 

Ss 

Similar treatments yield the lateral damping force, pitch damping 
moment, etc. 

In the initial discussion of damping, emphasis was placed upon 
energy dissipation due to wave generation. Actually, viscous effects 
also manifest themselves and contribute to damping. The contribu- 
tion of the viscous damping term is quite negligible’for most motions, 
with the possible exception of roll. Roll damping due to wave genera- 
tion is often small for most normal ships and viscous effects (or 
other drag mechanisms, such as eddy-making) assume greater 
importance, especially if the ship is fitted with bilge keels. In that 
case, the roll damping is often of nonlinear form, and an approxi- 
mation is used to determine some equivalent linear representation. 
Knowledge obtained from model experiments [7] was used to deter- 
mine the value of roll damping used in treating the illustrative ship 

case in this paper. 

The hydrostatic restoring forces and moments are, as the 
name implies, due to buoyancy effects arising from static displace- 
ments. The only displacements that will result in hydrostatic 
restoring effects are heave, pitch and roll. On the basis of linear 

theory, the local hydrostatic vertical force change due to vertical 
displacements is 

ae =- pgB*(z = 50), (10) 

where the ship is assumed to be almost wall-sided near the inter- 

section with the free surface, and the effective buoyancy change 
comes from the total immersion. Similarly, the hydrostatic 

restoring pitch moment is 

dMp _ dZp 

“xe fe ome 
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leading to total hydrostatic restoring vertical force and pitch moment 
given by 

b x bx 
Z, = - PS B d&«z + pe B & de = 65 (42) 

s és 

and 

fb fb 
M, = ee) BE ab 2- pe) B*t’ dé +e. (13) 

Ss Ss 

In the case of roll motion, the hydrostatic restoring effect is given 

by 

K, = - pgV|GM|¢= - W/GM|4, (14) 

where VY is the displaced volume, |GM| is the metacentric height, 
and W = pgV is the ship displacement. 

The exciting forces and moments due to waves are obtained as 
the sum of terms due to buoyancy alterations as the waves progress 
past the ship hull, together with hydrodynamic terms of inertial 
and damping. The buoyancy effect for the vertical force is repre- 
sented by 

pgBn(é xt) (15) 

at each section, and these contributions are combined to determine 

the total forces and moments due to waves. The analysis includes 
an allowance for the waves to be propagating at an oblique heading 
with respect to the ship, and a further allowance for the influence of 
the non-slenderness of the ship is also included. A correction factor, 
relating the beam to the wave length and the heading, is included for 
this purpose since the shipforms considered for mooring application 
are often not very slender. Details of the evaluation of wave forces 
and moments by these methods are presented in [6]. 

Before discussing the mooring forces and moments, informa- 

tion on the characteristics of the vessel studied in this investigation 
is given below. The particular vessel for which the equations are 
formulated and solutions carried out is the CUSS I, which was the 

vessel used in the preliminary Mohole drilling operation. This ship 
is considered representative of the class of construction type barges 
which will be utilized for deep-sea construction operations. A 
diagram of the barge, together with its mooring and load-lowering 
lines, is shown in Fig. 1. A summary of the numerical values of the 

parameters characterizing the moored-barge system is presented 
in Table 1. 
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Draft: 10 

Center of gravity 

12,000- foot mooring cable 

Fig. 1. Schematic diagram of moored barge 
(Profile and plan views) 
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260 ft 

48 ft 

LO ft 

9.8 £ 

ot Nae 8 = 

15.2 2 

8.16 ft 

2823.2 long tons 

6.324x10® lbs 

Table 1 
Numerical Values of Moored-Barge System 

Length = 

Beam = 

Draft 

Vertical distance from CB to CG = 

Vertical distance from free surface to CG = 

Vertical distance from CG to keel = 

Metacentric height = 

Displacement 

Weight = 

Mass = 
| 

Pitch moment of inertia = 

Yaw moment of inertia: = 

Roll moment of inertia” = 

Total roll moment of inertia (including 
added inertia due to fluid) = 

Surge period® = 

Sway period = 

Heave period = 

Pitch period = 

Roll period = 

Effective spring constant for mooring 
cable = 

Effective mooring system spring constants: 
Surge = 

Sway = 

Yaw = 

Depth of barge 

' Assuming longitudinal gyradius = 0.25 L. 

T surge 

T sway 

Theave 

T pitch 

Trott 

197.624x10° slugs 

706. 7x10°® slug-ft* 

706. 7X10° slug-ft? 
49x10° slug-ft® 

6 78.69X10 slug-ft- 
79 seconds 

= 64.5 seconds 

4.6 seconds 

4 seconds 

7.75 seconds 

4250 lbs/ft 

1250 lbs /ft 
3750 lbs /ft 

633. 75X10° lb-ft /rad 
15 ft 

2Without added fluid inertia; it is assumed that transverse gyradius = 
Bys. 
3For all motions these are uncoupled periods determined in terms of 
effective spring constants and values of total masses or inertias. The 
effects of coupling will change these somewhat, but for first app roxi- 
mations andinterpretation of critical conditions, this. will suffice. 

4F rom model tests [ 7]. 

SBridge strand wire rope, of cross section 0.595 in, 
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In analyzing the mooring forces and moments, the barge is 
assumed to be moored by a conventional line and anchor system, 
with both bow and stern moorings. However, for application to 

deep-sea conditions with depths of the order of 1000 fathoms, a 
certain particular mooring scheme is utilized. This scheme 
utilized a long-wire rope for each mooring leg assembly (12,000 ft 
in length), which is supported in the water by a series of submerged 
spherical buoys. The buoyancy of these buoys keeps the rope taut 
along its entire length, thereby not allowing it to assume the usual 
catenary shape. Withthis arrangement, an initial tension is applied 
along each mooring let, and any changes in mooring forces on the 
ship (and therefore also in the cables) occur as a result of elastic 
forces resulting from ship displacements. A layout drawing of such 
a system is shown in [4], which has direct applicability to ships of 
the same general displacement as the construction barge presently 
studied. 

The displacements having greatest influence on the moorings 
are in the horizontal plane, and these are surge, sway and yaw. 

Since the mooring lines are fairly taut and are under an initial 
tension, the elastic restoring effects may be taken to be fairly 
linear, i.e. the restoring force is proportional to the displacement. 
The proportionality factor for an effective displacement along a 
single mooring cable is found from a knowledge of the modulus of 
elasticity of the cable material. For the present case of 1-inch 
diameter bridge strand wire rope, which is 12,000 ft long, has a 

cross section area of 0.595 in®, and an assumed modulus of 

25 X 106lb/in®, the effective spring constant for a single wire rope 
is found to be C = 1250 1b/ft. This linear result only holds below 
the yield point of 60,000 lb of static force (in a single cable), but it 
is anticipated that the maximum deflection necessary for attaining 
this force (viz. 48 ft) will not be experienced in the present case. 

For the purposes of analysis, the barge is assumed to be 
moored in an arrangement similar to that shown in the following 
sketch of the mooring plan. A longitudinal displacement of the barge 

along x, denoted as Ax, leads to an effective displacement along a 
single cable given by Axcos @, where @ is defined in the sketch 
above. The force in a single cable is then C Ax cos a, The longi- 
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tudinal force component at one end of the ship is represented by 

(CAx\cos @)cos @ + (CAx cos*e)cos,o = .2CAx cos* Q, 

and since an extension of the cable at one end of the ship requires a 
contraction at the other end, a similar force occurs. These forces 

are restoring forces and the net result is a longitudinal force in the 
barge due to the moorings, given by 

X, = 4C cos‘ a@*x=- k,x, (16) 

where x is the surge displacement variable. 

In the case of sway displacement, the effective displacement 
along the cable is y sine, and combining components for net Y- 
force on the barge, accounting for all the cables, leads to a net 
mooring lateral force given by 

Xm etc gin oy = — bys (17) 

For yaw displacements, Y* L/2 where L is the ship length. The 
lateral force at one end of the ship is then 

2C sin®a- Sy = Cl sin?a- y, (18) 

and the contribution to the yaw moment is 

2 1 4 2 we 
CL sin’ @* ¥ (5) =5 CL sin a-w (19) 

at each end. Since the forces at each end are equal and opposite 
(approximately, since the origin is not exactly at the ship center), 
the net yawing moment acting on the barge is given by 

Nm=- CL’ sin?a* w= - kyl (20) 

The variations in the force in the mooring cables due to the 
motions of the barge can easily be found, since they are related 
kinematically to the motions. It is seen that the longitudinal dis- 
placement, x, andthe net lateral displacements, y +(L/2)W at 
the bow and y - (L/2)\ at the stern, can be combined to determine 
the net variation in elongation of each mooring cable. The cable 
displacements due to surging motion on the barge are x cosa, while 

the cable displacement due to the motions of sway and yaw are‘ 
[y+(L/2)W] sin a, according as the cable is at the bow or the stern. 
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Different effects as to the cable displacement directions occur for 
the cables, at either the bow or the stern, for the influence of the 

lateral motions, while the same direction of displacement (at either 

bow or stern) occurs for the surge motion. The general expression 
for the fluctuating cable force may be written as 

Fe = c[x cos a+ (y+ 5v) sin a| 

where C is the effective spring constant for a single wire rope, 
and particular values for each of the four cables are given in the 
following, where a positive cable force is defined as that which pulls 
on the restraining anchor support on the ocean floor. 

The expressions for the individual cable forces (c.f. sketch 

of mooring-line system) are listed below: 

Bow 

F, =- c[x cos @ +(y +>) sin a | port 

(21) 
_ zi ‘ b 

Fa — - Ci cos a-- (y >) sin a | starboard 

Stern 

F, = c [x cos @ - (y - 1) sin a| port 

(22) 

F, = c [x cos @ + ( - >) sin a | starboard 4> y "2 

For the present case where the barge is moored with a = 60°, 
L = 260 ft, the mooring system restoring constants are 

k, = 1250 lb/ft 

ky = 3750 lb /ft (23) 

ky = 633.75 X 10° 1b-ft/rad 

These values are the effective spring constants for surge, sway and 
yaw, and as a result there also exist natural periods for these 

motions in the case of moored ships. There still exist natural 
periods of heave, pitch and roll, as in the case of free ships, and 

these natural periods are relatively unaffected in the present case. 
The introduction of the existence of natural periods in surge, sway 

and yaw (with possible large motions associated with resonances in 
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these degrees of freedom) is the main characteristic of moorings 
applied to ships that distinguishes the resulting motions from those 
of free ships in waves. 

V. SOLUTION OF EQUATIONS 

The equations of motion result from combining all of the 
constituent terms discussed above, and solutions can be obtained 
by converting them to a simpler form for sinusoidal waves. Since 
the exciting forces and moments are sinusoidal functions, the 
motions will also be sinusoidal with the same frequency. Defining 

— iwt — iwt — iwt = iwt = _lwt 
c= xe ; y=ye ; VA AS he Xy = Xe , Yw.= YC rq s, sete. 

the equations of motion are then converted to (complex) algebraic 
linear equations. In matrix form the equations may be represented 

by 

a I 0 as ]f x x 

0 Aon aos Z = 4. (Zi (24) 

a ass as 6 M 

for the longitudinal motions, where the coefficient matrix is sym- 
metric, i.e. aj3 = a3,, a,,= a3,- The matrix elements are defined 

by: 

a, = (- mo* + ioN, + k,) (25) 

aj3 = a3, = m|BG|o (26) 

aon= = (m + ( As, at) ot ioc No + ral Bae (27) 
és €s 

2 bot 4 b * 
Ags = ago = w (; A336 d& - iwNzg - af B Gude (28) 

Ss Ss 

{p i ee 2 fb 2 
an =| I +( A.W dé )'@ + iwCgNo + pe | BtE dé (20) 
33 GF f 33 ) es 

The lateral equations are represented by 
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by be bsry ng 

bo, bop = Bag ff P| =| N 

be Bean bs i) K + (OG)Y 

(30) 

where the matrix here is also symmetric, i.e. bia = bo, by3 = bas 

by, = b3, The elements are defined by 

€b 
by =-(m¢t \ Ago d&) w + iwCyNy + ky 

és 
2 Sb ; 

b,, = b,, = - w ( Ae dé + iwNyy 

s 

bit ss 
be bs, Jf (Ago + (OG) Age) dé + iwCyNy | BG | 

s 

E 
b= - (1, + ( ” Ast dé) w° + iwCyNy + ky 

és 
€b 

by, = Dap = - wf (Ago + (OG) Ax.) & dé + ioNyy| BG | 
s 

bene ol, + iwNg + W|GM| 

The presence of symmetric matrices helps in effecting an 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

easier solution of the equations, obtained by matrix inversion on a 

large digital computer. The solutions are then available for each 
degree of freedom and also for any linear combination of degrees of 
freedom. The real form of the final solutions is obtained by taking 
the real part of the complex function, which was the original defini- 
tion implied in the complex representation of the solution variables. 

The lowering line displacements are related kinematically to 
the body motions, and hence they are relatively simple to determine 
once the different methods of lowering loads are specified in this 
study, viz. center-lowered loads and boom-lowered loads. Center- 
lowered loads, as the name indicates, are lowered through some 

sort of opening through the ship's keel, and it is assumed that this 
is done at just about amidships. The instantaneous displacement 
vector components of the load and lowering line are s,, s 
and are then given by simple geometry as ; 
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S, =x 

sy=y + |KG|¢ (37) 

S$, = 2 

where x, y, z and @¢ are the instantaneous ship motions of surge, 
sway, heave, and roll, respectively, and KQ@ is the vertical distance 

between the center of gravity and the keel. 

The tension, T, in the lowering line is given by the relation 

T-W =—s = ; (38) Wigs FW pat 
—- Zz 
g 

where Wg is the weight of the load, and only vertical effects are 
considered to affect the tension. At rest, 

so that upon representing the tension as 

- = ! Lots t.t aM, gee 

where T' is the tension change due to dynamic effects, one obtains 

Thus the tension variation due to the dynamics of the ship motion is 
directly related to the vertical acceleration of the load, and it is also 
proportional to the weight of the load. 

In the derivation of the formulas given above, it is assumed 
that the trajectory of the load attached to the line is such that at each 
instant it is on the vertical line through the point of attachment of 
the lowering line to the barge. It is also assumed that the elastic 
effects of the lowering lines may be neglected; the only dynamic 
influences considered being those due to the ship motions. The 
neglect of elastic effects in the lowering line appears to be a fairly 
safe assumption, since the major influence would occur only if the 
wave frequencies excited the natural frequency of wave propagation 
in the lowering line. In view of the lack of specification of the line's 
physical characteristics, as well as the expectation of wave-propa- 
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gation frequencies out of the range of interest in the present problem, 
the tensions and accelerations are considered adequately represented 
by Eq. (39). 

For boom-lowered loads, the situation may be visualized by 
reference to the accompanying sketch, where the boom length £ is 

stern 

elevated at an angle a'. An appropriate value for the relevant 
horizontal projection of the boom length (£ cos @') is considered, 

for computational purposes in the present case of a 260 ft length 
barge, to be 150 ft. As shown below, the boom is also oriented 

horizontally at an azimuth angle y, measured from the bow, positive 
in the counterclockwise sense, viewed from above. The load and 

stern bow 

lowering-line displacements about their respective equilibrium 
positions are given by 

s? =x - (f cos @') sin y> w 

slay + (2 cos a') cos y> w (40) 

az = it cos a') cos y° 6 + (£ cos @a') siny > 

and the line tension (fluctuating part), Tt!” and vertical acceleration 

are represented by 
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rT” 2 it os ee oo 
Moe Eh S cos a'(siny > 6 - cos y= @)] (41) 

where 4, 8, and W™ are the rotational barge motions, roll, pitch 
and yaw, respectively, and the superscript y denotes the boom 
azimuth angle. These quantites are derived on the same basis as 
those for center-lowered loads, it being assumed that the boom 
pivots about the ship CG. The instantaneous magnitudes of these 
quantities thus appear as linear combinations of the instantaneous 
ship-motion solutions. 

Each motion of the barge in response to a regular sinusoidal 
wave having a given frequency and propagating in a given direction 
will also be sinusoidal, of the same frequency, but will, in general, 
possess a different phase. In addition, the amplitude of each motion 
will, in general, differ from that of the wave, the ratio of the former 

to the latter being a function of the wave frequency and the heading 
of the wave relative to the heading of the barge, and this amplitude- 
ratio function is known as the response amplitude operator for the 
particular motion of interest. In order to arrive at an effective 
characterization of the barge motions in a random sea, in which 
case these motions themselves have a random nature, the function 

known as the spectral energy density, or the energy spectrum, of 
each motion must be found. This spectrum is a measure of the vari- 
ation of the squares of the amplitudes of the sinusoidal components 
of the motion, as a function of frequency and wave direction. The 

total area under the spectral-energy density curve contains much of 
the statistical information on average amplitudes, near-maximum 
amplitudes, etc., for the particular motion considered. For an 

arbitrary motion, represented by the i-subscript, the energy 
spectrum of that motion, due to the effects of irregular waves, is 
given by 

(i,i) @"' (w) = | Tig(w) | A (o) (42) 

for a particular fixed barge heading in a unidirectional irregular 
sea, where A (w) is the wave spectrum and (Tia is the response 
amplitude operator for that heading. 

For computational purposes in the present study, the Neumann 
Pierson spectral-energy description of the seaway has been adopted, 
and calculations made for these particular sea states, corresponding 
to three particular wind speeds. The following table illustrates the 
conditions. 
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Table 2 

Sea Wind Speed Sig. Wave Surface Elevation (Time 
State Vw (knots) Ht. Hyy3 History and Energy Spectrum) 

(ft) 
rin... Value,, Lt. energy, 

o , (ft) o%, (ft)? 20% = E 

3 14 S05 0.81 0.66 pW Ye 

= 9 6.9 iit 3.05 6.10 

5 Ze 10.0 2.50 6.25 12.46 

The Newmann wave spectrum for a unidirectional fully- 
developed sea represented by 

2 
6 -29°/(wVy) 

iw tS A*(w) = C (43) 

where C is an empirical constant having the value 51.5 ft*/sec, 
vw is the wind speed in units of ft/sec, and A*(w) has the units 
ft?-sec. The wave spectrum for a non-unidirectional sea, allowing 
for angular variation (a two-dimensional spectrum), is represented 

by 
2 -6 -29°/(wVy)* T T 
— Cw e “ cos® By, for -353<By< ts, 0<w< to 

2 T 2 2 
vs (w, By) = 

0, otherwise, (44) 

where Py is an angle measured from the direction toward which the 
wind is blowing (the predominant wave direction). In this case, 
the motion spectrum occurring for a particular barge heading f,, 
measured relative to the wind direction is 

+1 /2 
2 2 BUN) (a) = A2(e) a ABy cos® By| Tin (w.) [2 (45) 

-17/2 

where £6 = By- Bg, and this energy spectrum will depend upon the 
angle B,. 

From the spectral density function, of? (w), for a particular 
motion, there may be obtained, in principle, all the statistical or 

probabilistic properties possessed by the random process. The 
total area, Ej;, under the spectral density function curve, as defined 

above, 
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© (i,i) 
Ej -( dw ® (cw) (46) 

(@) 

is equal to 2a i.e. twice the variance of the ordinates on the cor- 
responding time-history curve. Under the assumption that the 
seaway is a Gaussian or normal stochastic process which is exciting 
a linear system (in this case, the barge), the set of responses of 
the system will in turn represent a Gaussian stochastic process. 
The probability of an ordinate of a particular response lying between 
two values is given by the definite integral of the Gaussian proba- 
bility density between those two limits, and will be a function of the 
variance oj. Thus, Ej or oj may be used to estimate the proba- 
bility of the occurrence of instantaneous values in any range of 
interest, for any given barge motion, including infrequently-occurring 
large or near-maximum values. Characteristics of the motion time 
history may be obtained in terms of the quantity Ej; by relating the 
behavior of the envelope of the record (interpreted as the instantane- 
ous amplitude of the time history curve) to this quantity. Such 
relations are based on assumed narrow-band behavior of the energy 
spectrum, and yield expressions for the mean amplitude of oscilla- 
tion (half the distance between the trough and crest of an oscillation), 
the mean of the highest 1/3 of such amplitudes (known as the signifi- 
cant amplitude), and other related statistical parameters of interest 
for a specified sea condition. In particular the relations for average 
pitch amplitude and significant pitch amplitude are 

Oa, = 0.88 (Ea 
(47) 

8 5ig. = 1.41 VEg 

VI. DISCUSSION OF RESULTS 

Computations of the amplitudes and phases of the six separate 
motions of the moored barge for the complete range of possible 
headings were carried out for wave lengths varying from 100 feet to 
800 feet, which covers the range of periods significant for ship 
motion in an operational environment up to Sea State 5. Solutions to 
the equations were obtained for the complex response operators 
(both amplitude and phase) of the various motions relative to the wave. 
Representative solutions for a particular wave length, for both the 
longitudinal and lateral motion amplitudes, as functions of the heading 
angle B are shown in Figs. 2 and 3. From this data the response 
amplitude operators, as functions of frequency (since w=V2tg/d), 
are obtained and representative curves are presented in Figs. 4 and 
5. Application of the techniyues of spectral superposition theory [1] 
results in spectral energy density values for particular barge motions 
in Sea State 5 (as an example), and these values are indicated in 
Figs. 6 and 7, as illustrations of some of the results. 
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X (feet) 
1.0 

180 150 120 90 60 30° => 0 + So 60 90 120 150 180 

Z (feet) 
1.0 

180 150 120 90 60 30 - O + 30 60 90 120 150 180 

@ (radians) 
025 

Eee 
180 150 120 90 60 30 - O + 30 60 90 120 150 180 

A (degrees) 

Fig. 2. Amplitude of response for unit-amplitude wave as a function 
of direction of wave relative to barge. Longitudinal 
motion; X= 300. 
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Y (feet) 
10 

0.8 

180 150 120 90 40 30 - 0 + 30 60 90 120 180 180 

¢ (radians) 
.08 

.06 

180 180 120 90 60 30 - 0 + 30 60 90 120 150 180 

y (radians) 
.010 

.008 

.006 

180 180 120 90 6Q 30 - 0 + 30 60 90 120 150 1860 

43 (degrees) 

Fig. 3. Amplitude of response for unit-amplitude wave as a function 
of direction of wave relative to barge. Lateral motion; 
X= 300°. 
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w (rad/sec) 

2 
(Response amplitude operator)~ for surge, Tis I 
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(Response amplitude pparataris for heave, IT2 9 

= 
= .0004 
~ 

i] 

a 
° 
a me 
+ 0002 
§ 
= 

w (rad/sec) 

(Response amplitude operator) for pitch, Teel” 

Fig. 4. Response amplitude operators for longitudinal 
motions. 
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(Response amplitude operator)@ for sway, [Tval” 
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.00006 
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.00002 
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te) 
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(Response amplitude operator)* for yaw, [Toel* 

Fig. 5. Response amplitude operators for lateral 

motions. 
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3 SEA STATE 5 

WwW (rad/sec) 

- SEA STATE 5 

ENERGY DENSITY (ft*sec) 

{@) 0.5 10 

Ww (rod /sec) 

Fig. 6. Spectral energy density for translational barge motions 
for indicated barge heading Bg 
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Fig. 7. Spectral energy density for rotational barge motions for 
indicated barge heading Bp 
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In the present study the angle for the predominant wind direc- 
tion was taken to be By = 0, and a variable barge heading angle, Bp, 

introduced to allow for the relative heading of barge to wind. The 
relationships of the wind direction, the wave heading, and the barge 

heading are shown in Fig. 8, together with the difference angle 
Bw- Bg representing the wave heading relative to the barge heading. 
Also shown in this figure are the conventions made use of later for 
the designation of the forces in the mooring cables and the azimuth 
angle for the boom used to lower loads from the barge. 

VECTOR WAVE 
PROPAGATION DIRECTION 

PREDOMINANT 
WIND DIRECTION 

L, 

MOORING LINES ? 

DIRECTION OF 
BARGE HEADING 

La (RELATIVE To 
PREDOMINANT WIND) 

Fig. 8. Orientation and relations between barge, wind and waves 
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Figures 9 and 10 show, for each of the six barge motions, 
the variation of total spectral energy with barge heading, for each 
of the three sea states considered. The ordinate plotted for each of 
the curves is the r.m.s. value, oj, for the time history of the barge 

otion represented, and it will be convenient to refer to the variance 
gj of the function as the total energy. The r.m.s. value of any 
time-history function is therefore the square root of its total energy 
(assuming, here, as always, the mean value of any time-history 
function to be zero. 

Representative examples of calculated spectral energy density 
functions for the case of the center-lowered load are presented for 
two sea states and two barge headings relative to the predominant 
wind direction in Fig. 11. The spectral energy density functions 
shown for the load were calculated from those of the fundamental set 
of cross-spectral energy density functions, i.e. those of the six 
barge motions. Since the time histories of the load and amplitude 
operators for the former may be obtained by forming appropriate 
linear combinations of the complex response operators, Tjn, for 
the barge motions, and calculating their squared absolute values. 

The r.m.s. values (as defined here) were obtained for all 
quantities of interest for the load lowering operation such as dis- 
placements, accelerations, tensions, etc. as well as the forces in 

the mooring cables, for each sea state and barge heading relative to 
the waves. Similarly variations of these quantities as a function of 
the boom azimuth angle were found, from which an optimum boom 
angle (which minimizes the r.m.s. values of any one of the time 
histories of interest) may be determined. As an example of results 
obtained for a 200 ton load lowered in a State 5 sea with a crosswind 
barge heading and with the optimum boom azimuth angle (here 180°, 
i.e. boom over the stern), the r.m.s. value of the added-dynamic 
line tension given by Fig. 12 is (2.38)(200)/32.2 = 14.8 tons. From 
data on the normal probability curve for this r.m.s. value, it can 

be shown that the downward force of impact on the bottom would 
exceed 25 tons approximately 2.3% of the time, if the instant of im- 
pact were allowed to occur at random. For a center-lowered load 
under the same conditions, the r.m.s. value of its acceleration is 

1.17(200)/32.2 = 7.27 tons, and the downward impact force on the 
bottom would exceed 14.3 tons approximately 2.3% of the time. 

The r.m.s. value of the fluctuating component of the force in 
each of the four mooring cables is shown in Fig. 13 as a function of 
barge heading for each sea state. The four are seen to have nearly 
the same r.m.s. value for any particular barge heading in a Sea 
State 3, with the actual values varying between 300 and 600 lb. For 

a Sea State 4 the range is from 1100 to 1750 lb, with the differences 
between r.m.s. values for the four fluctuating cable forces being as 
much as 150 1b. For Sea State 5, the range is from 1800 to 2700 lbs 

with differences in r.m.s. values between cables of 250 1b. In all 
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Fig. 9. RMS values of the translational barge motions as a function 

of barge heading at indicated sea state. 
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Fig. 10. RMS values of the rotational barge motions as a function 
of barge heading at indicated sea state. 
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(TT) 
$(w) FoR Bg = 90° 

—e 
"e T' = Added dynamic tension in 

lowering line I f load Bi wering line per slug o SEA STATE 5 

aan 

SEA STATE 3 

Oo 
(¢) 0.5 1.0 1.5 
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16 
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@(w) FOR SEA STATE 5 

Sy = Port-starboard displacement 
of center-lowered load 

SPECTRAL ENERGY DENSITY (ft2-sec) 

fo) 0.5 1.0 1.5 
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Fig. 11. Spectral energy density functions for added-dynamic 
tension in lowering line and lateral displacement for 
center-lowered load, for indicated barge heading and 
sea state. 
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0.2 
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Bs, BARGE HEADING (degrees) 

Fig. 12. Minimum r.m.s. values of added-dynamic line tension 
(pounds /slug) and vertical load acceleration (feet/second ) 
for boom-lowered load, as a function of barge heading at 
indicated sea state 

cases the cable force r.m.s. values are greatest near crosswind, 
and least for upwind and downwind barge headings. 

All of the results obtained in this study provide useful infor- 
mation for application to many operations that can be performed at 
sea, using a moored ship as the base. The major questions con- 
cerning these results are their degree of validity, as well as the 
capability of extending the results of related situations such as shallow 
water operation, different mooring systems, the effects of nonlinearity, 
etc. Some extensions and/or applications of the present theory have 
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Fig. 13. RMS values of mooring cable forces as a function of barge 

heading at indicated sea state. 
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been carried out, where comparisons between theory, model experi- 

ment, and (in some cases) prototype behavior were made (see [8], 
[9]). The conclusions of those studies were that linear theory 
produced good predictions of motion response operators; shallow 
water effects may be easily incorporated; the effects of other mooring 
arrangements (such as the usual catenary form of weighted chain 
cables) can be represented in linear form and produce results agree- 
ing with theory, within the range of lower sea states. 

While agreement between theory and experiment was generally 
obtained for almost all conditions, some degrees of freedom of the 
vessels considered in [8] and [9] were not properly predicted for 
irregular sea conditions. The motions of surge, sway, and yaw 
exhibited large spectral response characteristics at very low fre- 
quencies where little (if any) wave energy was present, but close to 
the natural frequencies of those motions (due to the mooring "spring™ 
forces). Since these motions are very lightly damped, a very small 
amount of input excitation can still produce relatively large motions 
at these low frequencies. There are a number of possible explana- 
tions for this behavior, but the most plausible one is related to the 

influence of the nonlinear "drift" forces and moments, which will be 
discussed in a later section when considering dynamic positioning. 

The theory described here supplements what may be known 
qualitatively for moored vessel behavior by furnishing quantitative 
estimates for the motions and their inter-relationships. While the 
validity of these analytical results for any particular vessel is sub- 
ject to test, the results for other moored vessels using this same 

analytical procedure give support to the reliability of the predictions. 
Thus, it is feasible to treat all six degrees of freedom of a moored 
ship in a realistic seaway and obtain results for response character- 
istics of various motions of the ship and any associated load. 

Considering the results and examples concerning the load- 
lowering operation, there are two main conclusions. First, motions 
having amplitudes of oscillation or giving rise to forces and accelera- 
tions sufficiently high to influence construction operations may occur 
under certain of the environmental conditions considered in this 
study, particularly when loads are lowered by means of a boom ina 
high sea state. Secondly, the violence of these motions, forces, or 

accelerations may be significantly reduced by the proper choice of 
vessel heading relative to the wind, and boom azimuth angle. The 
latter factor regardless of the sea state, has by far the greater effect 
in minimizing the energy of the fluctuating tension in the lowering 
line, the vertical acceleration of the load, and its three displacement 
components. These results provide useful information for conducting 
operations from a moored ship platform, and hence the capability of 
obtaining guidelines for operating vessels and performing engineering 
work at sea is available with the tools of theoretical hydrodynamic 
analysis presented here. 
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VIL. MOORED BUOY ANALYSIS 

A moored buoy system is similar in many respects to the 
moored ship case, and simplifications are made in order to treat a 
representative problem. The buoy system is assumed to be a single 
point mooring, with a surface floating buoy hull connected by a 
flexible line to the ocean bottom. Both slack and taut types of 
moorings are included in the analysis, and the surface buoy form 
can be either a ship-like form, a spar shape, or an axisymmetric 
discus shape. The analysis is restricted to motion in a single plane 
and the current direction and wave direction thereby lie in this plane, 
making a two-dimensional problem. Allowance for current magni- 
tude variation with depth is considered, with its main influence being 

in the static equilibrium problem (which will not be treated in detail 
here). 

Considering the static equilibrium problem, a free-body 
diagram of a differential element of the cable in the plane of interest 
is shown in Fig. 14. The cable bends and the tension varies along 
its length so as to keep all the indicated forces in equilibrium. The 
cable weight acts vertically and the tension forces are directed 
along the cable axis. The hydrodynamic forces due to the current 
are resolved into components normal and tangential to the cable 
direction. These unit forces are represented as follows: 

F($) = Cys 5 pc(Ve sin 4)° (48) 

G($) = C_+ 5 pc(V, cos 4)” (49) 1 

where 

p = mass density of fluid 

cable chord length (in current direction) ie) Ul 

and C,, C, are appropriate drag coefficients. These coefficients 
depend on the cable cross section and surface geometry. 

The summation of forces along the direction of the cable 

axis yields: 

T + G(o)(1 + €) ds - We, ds sin > - (T - dT)cos (dd) = 0 

For a differential element, d¢—~ 0, so that cos (d¢) ~ 1.0. This 
gives the differential equation for cable tension in terms of the inde- 
pendent variable s, as follows: 

£053 



Kaplan 

(p)(I+e) ds 

F(¢) (1+ «)ds 

Ve = current velocity 

JT = cable tension 

g = distance along relaxed cable 

« = cable strain 

@ = angle of cable from horizontal 

W,= unit submerged weight of cable 

G¢) = tangential unit force componet due to current 

a = Hl normal unit force component due to current 

Fig. 14. Cable Free-Body Diagram 
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dT =[- G(¢)(1 + €) + W, sin ¢] ds. (50) 

The summation of forces normal to the cable axis yields: 

F(¢)(1 te) ds + W, ds cos $ - (T - dT) sin (dé) = 0 

and with d@é—~ 0, we can approximate sin (dd) by dq. Neglecting 
higher order terms involving products of differentials, results in an 
equation for the differential angle: 

do = = [F(t +e) + We. cos 4] ds. (51) 

The strain, or cable elongation, is obtained from the following simple 
relationship for an elastic cable material: 

€= a (52) 

where 

cable (load-bearing) cross section area > uN 

E. = effective static elastic modulus of cable material. 

Associated with these equations is the representation of the 
forces and moments acting on the buoy due to the wind and the cur- 
rent (not considered here, but discussed in[10] from which the 

present analysis is abstracted). All of these effects are considered 
to be in equilibrium with the weight, buoyancy, and cable forces. 

All the forces and moments acting on the buoy due to current 
and wind are considered to be in equilibrium with the weight, buoyancy 
and cable forces. At the surface buoy we then have: 

D, + Dp = T cos 6 

L, + B(6,h) = W+T sin $ (53) 

2 2,1/2 lize 
M, +M,= T(4, +24) sin (@ + © - tan 5 me + B(6,h)GZ(0,h) 

c 

where 
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D, = drag due to wind acting on a buoy 

Do» Les Me = current-induced drag, lift, and moment acting 

on buoy 

T = cable tension (at buoy attachment point) 

@ = cable angle from horizontal (at same point) 

B(@,h) = buoyancy force 

W = total weight of buoy 

4,, Z, = horizontal and vertical distances respectively 
from cable attachment to CG 

Z(8,h) = hydrostatic righting arm 

Thus, for a given buoy'configuration in a particular condition of sub- 
mergence in a given current, Eq. (53) can be solved for 0, T and 
$; that is, the buoy trim equilibrium and the cable tension and angle 
at the buoy. This result then becomes the initial condition for the 
static equilibrium cable geometry calculation. 

When considering the problem of the dynamics of the complete 
moored buoy system, separate considerations in the analysis are 
given initially to the buoy and to the mooring system, with ultimate 
combination (i.e. coupling) exhibited later. The motion of a buoy 
in waves considers the buoy to be equivalent to some type of hull 
form, and the restriction to planar motion results in analyzing only 
three degrees of freedom which may be considered to be surge, 
heave and pitch. The equations of motion of the buoy are formulated 
in the same general way as for a surface ship, described previously. 
The only possible additional influence in the present case of the buoy 
is to allow for the effect of a uniform surface current, which can be 

included in the equations by interpreting the current as an equivalent 
forward speed of the buoy hull through the water. However, for 

simplicity here, this effect is deleted when analyzing the buoy wave 

responses. 

For the case of a ship-form buoy hull the hydrodynamic 
force derivation is similar to that shown previously for the moored 

ship. The general equations of motion in the vertical plane for the 

coupled motions of surge, heave and pitch can be represented in 

a more specific form as 

ax tasx tia 6 = et x, (54) 
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ee oe 

Zz a, me zt ang a a579 + a5,0 + A909 = Lan F Ly (55) 
a 5 

a,x tayz ta,z ta,z ta,0 ta,0 ta,0 = Mn t My (56) 
6 

where the mooring forces are represented in general form and the 
wave forces can be represented as sinusoidal functions of time for 
different wave frequencies. The mooring forces will depend upon 

_ the mooring arrangement (i.e. number of cables, attachment point, 
etc.), whereas the functional form and degrees of freedom in the 

force representation depend upon the geometric arrangement. 

For the surge degree of freedom, the coupling with the pitch 
equation, and vice versa, occurs as a result of hydrodynamic 
inertial coupling (potential flow theory) and hence the symmetry 
relation a,7= a3, is attained. This result is due to the equivalence 
of the off-diagonal terms of the added mass tensor representation 
of inertial forces. With the longitudinal force mx assumed to act 
through the center of buoyancy (CB) of the hull, a pitch moment 
m|BG|x occurs, i.e. a,,=m|BG| = a,7z where LBG| is the 
vertical distance between the CB andthe CG (center of gravity). 
The remaining terms in the surge equation are a,, = m and some 
estimate for surge damping Ajos 

The surge damping can be represented in a number of ways, 
either linearly with allowance for the current by means of perturba- 
tion theory, or in a nonlinear form as a drag coefficient representa- 
tion, etc. (see [10] for more details). Ordinarily, this surge 
damping term is not very important in its influence on the resulting 
ship or buoy motions since there is no natural resonant response 
in surge. However, in the present case of a moored buoy there isa 
restraining surge force from the mooring cable and there may be 
some resonant surge motion. Thus, the proper inclusion of the 
surge damping force on the buoy hull can be important for dynamic 
behavior calculations. 

The mooring cable forces acting on the buoy hull are con- 
sidered separately further ahead in this study. They are important 
since such forces affect the buoy motions, and the buoy motions in 
turn determine the boundary conditions as well as the input excitation 
for the cable dynamics. The techniques for inclusion of these effects 
in the overall mathematical model are considered later in this inves- 
tigation. 

A spar buoy hull form is axisymmetric about the vertical 
axis and hence motion analysis can be carried out for the three 
degrees of freedom with slender body theory techniques used in the 
analysis of the hydrodynamic action on a long slender spar form. 

mi = = pgs, aihiy Pa ee (57) 
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where S, is the spar cross section area at the waterline intersection. 
The mooring force will depend upon the mooring arrangement and 
geometry, and is deleted temporarily from consideration. The wave 
exciting force can be evaluated and the wave generation damping is 
determined from work in[11]. 

The velocity potential and the pressure on a slender axisym- 
metric body in waves are found using the results of [12] for the case 
of a vertically rising body in waves, at zero forward speed and 
evaluated for the condition where only the submerged portion from 
the waterline down is of interest. The fluid pressure on the body in 
regular sinusoidal waves is (from [ 12]) 

P,=.pea ES a sR cos 8' cos wt - sin wt) (58) 

where € and @! are the longitudinal and angular coordinates of the 

spar hull and R is the local hull radius. The local vertical force 
on a section of the spar buoy is then 

wv 

a =-2R tana p dae’ (59) 
e 0 

with tan a = dR/d€ (the slope of the body contour), the local vertical 
force is 

2nrt/ ds! 
SEs = pga sinwts+ e m™ ae (60) 

where S' is the local hull cross section area, leading to 

0 
ké ds! 

Zw = pga sin ut | Oar dé (61) 

where k= 2n/N= w/z, which can be simplified further by integration 
oy parts (with S'(L) =0). 

The surge equation for the spar hull form is represented as 

0 eo 

mx = - of. st(é)[x + (€ - E,)8] d& + Xqt Xy t+ Xm (62) 

where &, is the C.G. location along the €-axis, and the wave force 

is obtained as 
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O 

Xy -f i p cos 6'R dé dé = pau | Bete Nae ocoaai Co) 

The surge damping force expression due to wave generation (pro- 
portional to x) in [11] and to this should be added the surge damping 
due to real fluid drag effects, which is nonlinear. This drag term 

is represented in the form 

0 

ESP ay) [e+e - eg ag (64) 

where Ap is the lateral projected submerged area of the buoy and 
Cy is a drag coefficient whose value is = 1.2, the value for long 

slender bodies and sections in an oncoming normal flow. 

The pitch equation for the spar hull form is represented by 

@e 0 Ho =-) suenlx +6 - 9616 - &) a 
Bt 

fe) 

=: oa (€ - &)S'(&) dé > 0 +Mg+tMy+Mm (65) 

and the wave induced exciting moment is given by 

fe) 
dX oe he - &,) Se ag 

2paw aa - Eg)eMs! (E) d& * cos ut (66) 

M 

The pitch damping moment coefficient due to wave generation is 
given by [11], and as with the surge damping above, the pitch 
moment equation has additional nonlinear damping given by 

O 

S04, ) Pea DOl(E-&) 48 (67) 

which must also be induced. By considerations of symmetry, a 
cross-coupling damping term due to pitch angular velocity, 0, will 
appear in the surge equation, which is given by 

6) 0 ° x,=- 289 Moye ag Je - toielsuey asd (6 
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and a similar term will occur in the pitch equation, proportional to 

x, given by 

nee ° ; 
Me = - oan este) ag - Mn ( - Eg)e“*s'(é) d&- x. (69) 

All of the above expressions can be combined to produce the coupled 
surge and pitch motion equations of the spar buoy, together with the 
heave motion equation. The effects of the mooring are included in 
terms of the appropriate degrees of freedom to allow computation of 
the complete system response, which will be the end product of the 

program. 

The disc-shaped buoy hull is analyzed as a case of a shallow 
draft vessel. The section in the water is a circular cylinder with a 
small draft compared to the cylinder diameter, and the form is 
axisymmetric. The hydrodynamic and hydrostatic forces are found 
using the shallow draft approximation, as in [13], together with other 
simplified representations for the wave-induced forces. Because of 
symmetry relations, where the disc-shaped buoy is assumed to be 
circular shape, some of the coefficients in the basic equations of 

motion, Eqs. (54) - (56), are immediately evident: 

(70) 

aeg9 = az6 = 0. 

Specific values of certain other coefficients are readily evaluated 
for a circular discus shape, and they are given below. Assuming 
that the discus buoy is a cylinder of radius R, and draft d', the 
following heave restoration coefficient value is found: 

2 
aog= pgmR. (71) 

For the case of the pitch restoring moment, the basic term (cor- 

responding to the hydrostatic portion) of the coefficient az, is 
obtained from the expression 

M, = - W|GM|é (72) 

where 

= Mr weight of buoy 

|GM| = metacentric height 
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|GM | is the difference between the distance between the CG and the 
CB of the submerged portion of the buoy, and the metacentric radius 
between the CB and the intersection of the displaced buoyancy vector 
with the vertical axis. 

The metacentric radius is determined from the value of the 
lateral displacement of the CB of the submerged section of the disc 
cylinder. This is determined as the ratio of the moment of inertia 
of the waterplane area about the buoy vertical centerline plane, to 

the displaced volume. With this moment of inertia found to be 
mR*/4, and with the valug of the buoy volume given by mR*d', the 
metacentric radius is R /4d', leading to a metacentric height |GM|: 
given’ by 

ne 
|GM | Sore |BG| (73) 

where |BG| is the vertical distance between the CB and CG of 
the buoy. 

Similarly, values for added mass and added inertia for the 
disc-shaped buoy can be found from the work of [13], based on con- 
sidering this hull as a shallow draft vessel. In that case the total 
added mass in the vertical direction is given by 

‘ Al, dx = pR°My (74) 

where the value of My is given in[13]. Similarly, the added pitch 
inertia term is represented by 

{ Al.x’ dx = pR°I! (75) 

where the value of I} is given in[13]. These values are weakly 
frequency dependent for the range of significant wave lengths of 
concern in the buoy problem, and an appropriate approximate 
constant value can be used. The damping coefficients for heave and 
pitch are represented, respectively, by 

a es Ni dx = pR*wN, (76) 

and 

; 2 5 asg= | Nyx" dx = pR'wH, (77) 
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where the quantities N, and H, are indicated as frequency-dependent 
parameters in (77). 

For the surge degree of freedom the same expressions as for 
the ship hull form for the coupling terms with pitch, and vice versa 
for pitch with surge, are valid for the case of the disc-shaped buoy. 
The damping due to surge also has the same expression, and can be 
carried over to the present case of a disc-shaped buoy, with appro- 
priate values of drag coefficient and reference area for the disc. 

The wave forces acting on the disc-shaped buoy are primarily 
due to hydrostatic action and are evaluated on that basis. The verti- 
cal wave force is expressed as 

R 

Zy = 2pg io £(x)n(x,t) dx (78) 

where 

f(x) = /R* - x? (79) 

is the lateral offset of the buoy circular section and (x,t) is the 

wave height representation, as follows: 

n(x,t) =a sin (x cosB - cyt) 

a sin(=™ - wt) (80) 

where the dependence on the heading angle B is deleted due to sym- 
metry. The resulting expression for the vertical wave force is 

Zy = - ApgRa sin at | (1 - o* cos Yo) do (81) 
10) 

where o =x/R and y = 2mR/\, leading to 

Zw=- 2mpgRea , 240) sin wt (82) 

where J,( ) is a Bessel function. The pitch moment term due to 

waves is given by 

R 

M,,= - 20g | xf(x)n(x,t) dt (83) 
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leading to 

_ 7 My => pgR-alJ,(y) - Jgly)| cos ut . (84) 

For the surge force due to waves the pressure component in 
the axial direction is required, and this is found in terms of the 
axial gradient of the wave amplitude record along the disc. Fora 
hull of draft d', the surge force due to waves is given by 

R 

X, = - 2pgd' \ f(x) a n(x,t) dx (85) 

which leads to 

X, = - 2egmd'RaJ\(y) cos at. (86) 

Thus the above expressions complete the representation of the terms 
required for treating the motion of a disc-shaped buoy in regular 
waves. 

VIII. MOORING DYNAMICS 

The initial treatment of mooring cable dynamics will be based 
upon a complete formulation of equations of motion for a continuous 
line that is assumed to be completely flexible and extensible. The 
analysis is restricted to two-dimensional motion in a single plane, 
which is coplanar with the oncoming current, and the velocities, 
etc. are converted from directions along x- and y-axes (fixed in 
space) to those along the normal to the cable, which leads to con- 

sideration of the velocities U (normal) and V (tangential) relative 
to the cable as basic variables. 

The basic equations of motion inthe x- and y-directions are 

du _ 9 Ox Kae =Ry (r dette) + G(ite) cos $+ F(ite) sin > (87) 

av 8 3 fegy = s(t sais) + G(ite) sin @- F(ite) cos ¢- We (88) 

where p is the sum of the cable mass and added fluid mass per unit 
length, when considering an elongated element of the cable, of length 
(1{+e) ds. From geometric considerations 
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ox = (ite) cos 4, oy = (ite) sin $ (89) 

and with the definitions 

ney veer (90) 

U=usin @-vcos ¢ (91) 

V=ucos ¢+vsin $ (92) 

it can be shown that 

U, - Vo, = - (1+ 94, (93) 

and 

V, +t Ud, = & (94) 

where the s and t subscripts represent partial derivative operations. 

By considering effects normal and tangential to the cable, the 
basic dynamic equations can be expressed in the form 

pl U, - Vo,] = - To, + F(ite) + W, cos # (95) 

pl V, + Ud] = T, + Glite) - W, sin 4. (96) 

In addition the relation 

E yA (97) 

is also necessary, so that the basic equations governing the cable 
dynamics are Eqs. (93) - (97), where the first two relations are 
basically kinematic. For the steady state case, i.e. neglecting 
time derivatives, Eqs. (95) and (96) reduce to the same expressions 
as given in the static equilibrium case, i.e. Eqs. (50) and (51). 

To solve the quasilinear partial differential equations given 
in Eqs. (93) and (97), a linearization procedure can be applied. 
Defining the expressions 
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U = Us) + U'(s,t) (98) 

V = Vols) + V'(s,t) (99) 

T = T,(s) + T(s,t) (100) 

= $(s) + $'(s,t) (101) 

€ = €,(s) + €'(s,t) (102) 

where the '-symbol quantities are perturbations about the equilibrium 
positions (o-subscript terms), and expanding various constituent 
terms up to first order terms alone, leads to 

sin @= sin ($9t+ $') = sin 6, + $' cos $5 (103) 

cos $= cos ($,t+9') = cos $, - $' sin $9 (104) 

The hydrodynamic loading terms are expanded in the form 

Fak, + Fu" + FyV't+ Fy?" (105) 

G=G,+GyuU' + Gw' + Gyo! (106) 

where the partial derivatives of the loading functions with respect 
to particular velocities are indicated. This can be accomplished 
when considering the steady state velocity solutions (from Eqs. (93) 
and (94) when time derivatives equal zero) which, when combined 
with Eqs. (114), are 

Up, = 0 (107) 

Vior= 0 (108) 0 

The linear perturbation equations are then given by 

-pU' = Tod; +790 (ite, )[F,U'+FV'+ Fo] +F,e'+ Ww, ¢'sin d, (109) 

-pV' = Tj +(1te,)[ GU'+GWV' +Gyo'] +G,e'- Wed! cos $o (110) 
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(1 + €,)o, = V'bo, + Vos - Us (141) 

€} =e vert U" do, (11:2) 

ut 

oe oer (113) 

which are a set of first order linear partial differential equations. 
The boundary conditions for this set of equations is the next task of 
importance. For a moored buoy in a combined current and seaway, 
the current is felt acting on the buoy and also on the cable. How- 
ever, the wave effects attenuate rapidly with depth, and hence the 
wave forces act on the buoy along with no influence assumed on the 
cable. In that case the buoy motions due to a regular sinusoidal 
seaway (assumed for analytical simplification) are transmitted to 
the cable at its attachment point, and the cable motions are then 

sinusoidal in time at that point. 

The boundary conditions at the anchor point at the sea bottom 
are given by 

U=V=0, s=0 (414) 

and at the buoy attachment point for the cable, s =£, the boundary 

conditions are much more complicated. The velocities at the buoy 
attachment point are given by 

U= x = 2°6 (115) 
c 

v=z- 4,0 (116) 

where x; z and @ are the wave-induced surge velocity, heave 

velocity, and pitch angular velocity, respectively, and Ze and f¢ 
are the vertical and horizontal distances from the buoy CG to the 
cable attachment point. The normal and tangential velocities are 
defined by Eqs. (91) and (92), and considering the wave-induced 
motions to be of the same order as linearized perturbation terms, 
the boundary condition relations for the perturbations are 

U! = (x - z,0)sin $, - (2 - 4,8) cos 9%, (417) 

V' = (x - z,0)cos &+ (z - £,0) sin $, (118) 

at s=2, where x; z and @ canbe represented in the et form 
for a sinusoidal wave input. The boundary conditions at s=0 are 
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U'=v'=0 (119) 

where only four boundary conditions are necessary since e' can be 
eliminated as a variable by use of Eq. (113). 

The representation of the boundary conditions at the upper 
end of the cable (s = 2), at the attachment with the buoy, shows how 

the cable motions are influenced by the buoy motions. However, 
the buoy motion is also influenced by the cable system dynamics 
since a mooring force acts on the buoy as well. The mooring force 
that affects the buoy motion is due to the component of tension at the 
attachment point, which leads to 

Xm=- T'(L) cos off) + To(L) sin o(£)'(£) (120) 

Zm=- T'(L) sin $,(£) - TolZ) cos (2) $'(£) (124) 

MS Se ee eZ (122) 

where these expressions are component terms on the right-hand 
sides of the respective equations, e.g. Eqs. (54) - (56). With 
T'(£,t) and #'(£,t) represented as f(s)e®t forms the total system 
of buoy and cable can be solved using linear equations of motion for 
sinusoidal wave inputs at different frequencies (assuming the non- 
linear damping terms in the buoy motion equations are linearized). 
The "feedback" nature of the equations governing the buoy motion and 
the cable motion is illustrated by the above discussion, where the 
cable tension force influences the buoy motion directly and the buoy 
motions determine the cable upper point boundary condition. 

As mentioned earlier, the study of a moored buoy system is 
closely related to other mechanical cable system problem areas. 
The case of a moored ship is, of course, very similar to a moored 
buoy but the distinguishing difference is the relative masses that 
are involved. For a moored ship case, the ship is so large (rela- 
tively) that it can be realistically assumed that only the quasi-static 
forces applied to it by the mooring cable are significant, and that the 
cable dynamics do not influence the ship's response; that is, mooring 
cable dynamic forces can be assumed small with respect to other 
excitation forces. Thus, the dynamic problem of the ship and the 
cable can be treated separately. Similar reasoning applies to the 
surface condition of a cable-towed body system. However, the 
analysis of the component forces involved in such systems is appli- 
cable to the present case of a moored buoy system, keeping in mind 
the required coupling in the mathematical model, as shown above. 

The equations developed here for a moored buoy system have 
to be solved in order to determine the necessary information on 
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system performance. The methods to be applied should recognize 
the problem as involving complicated two-point boundary value prob- 
lems, or alternatively another technique that replaces the equations 
by a set of difference equations or differential-difference equations 
similar to the case of a beam vibration problem can be applied (see 
[10] for a discussion of different computational techniques for this 
problem). The solution of the class of partial differential equations 
given above is a specialized simulation problem that is the subject 
of presently on-going research so no further detailed discussions can 
be given. The development of these equations is another illustration 
of the application of knowledge of hydrodynamics of ship motion 
toward other related problems of engineering significance. 

IX. DRIFT FORCES DUE TO WAVES 

When a floating vessel is acted upon by waves it experiences 
forces and moments that are predominantly oscillatory-like in 
nature, with the frequency characteristics similar to that in the 
spectrum of the oncoming wave system. These forces are also 
linear with regard to wave amplitude. In addition there are also 
nonlinear force contributions that arise from the presence of the 
vessel hull modifying the incident waves by virtue of its function 
as an obstruction, as well as the effect of interaction between the 
vessel motion and the incident waves. These nonlinear forces are 
much smaller than the linear wave forces, but nevertheless exert a 

significant effect on certain degrees of freedom of the vessel. 

The major nonlinear drift forces of importance to the problem 
of maintaining a desired position in a seaway are in the longitudinal 
and lateral directions relative to the vessel, as well as the yawing 
moment that tends to rotate the vessel in heading. Some theoretical 
studies of these quantities have been made, but only for determining 
average values in regular waves, with the work of Havelock [14], 
Maruo [15], Hu and Eng [16] and Newman [17] serving as typical 
examples. 

Havelock [14] treats only the drift force in head seas. His 
formula is based on the heave and pitch motions and their relative 
hase to the incident wave. The theoretical approach of Hu and Eng 
Pt 6], which follows that of Maruo [15], yields expressions only for 
the lateral drift force and draft yaw moment in waves. (Maruo's 
results only considered the lateral drift force.) While their results 
are quite general, they have only been reduced to workable formulas 
under the restrictive assumptions of a thin ship, with small draft, 
in long waves. These results indicate infinite (practically unrealis- 
tic) forces and moment as the wave length goes to zero. The maxi-~ 
mum lateral drift force occurs in beam seas (varying as sin°§), 
and the maximum moment occurs at an angle of 45° (varying as 
sin B). 
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Newman's method [17] , based on slender body theory, does 
show some comparison with very limited experimental work for 

lateral drift force and yaw moment which indicates rough agreement. 
His results for longitudinal force, for which no experimental com- 
parison is given, indicate that this force in head seas generally 
exceeds the lateral forces for a given wave length condition. Further- 
more, these results indicate ‘that the maximum lateral force occurs 
in bow waves (B = 45°), with the force going to zero in both head and 
beam waves. 

The results of Hu and Eng [16] include the effects of sway, 
yaw and roll motions, with no influence of heave and pitch included 
(as to be expected for thin ship analysis) while Newman [17] only 
accounts for heave and pitch motion effects without any influence of 
the three lateral degrees of freedom. Thus there is a question as 
to the proper representation of the drift forces that would reflect 
the influence of the important dynamic motions that produce these 
forces. The analysis by Maruo [15] presents a final expression for 
the average lateral drift force in beam seas that depends upon the 
reflected wave amplitude, which in turn is defined in terms of the 
relative motion between the incident wave and the resulting heave 
motion. The presence of sway motion has no effect on the lateral 
drift force since the body acts like a wave particle in beam seas 
and no relative motion occurs (to that order). A similar result is 
indicated for submerged cylinders in the work of Ogilvie [18], 
where the average lateral force identically vanishes. 

In all of these hydrodynamic studies, the force is found to be 
proportional to the square of the incident wave amplitude, since the 
nonlinear pressures are represented in terms of squares of generated 
wave amplitudes, squares of fluid velocities, and products of first 
order oscillatory displacements with derivatives of fluid velocities +> 
While the previous hydrodynamic analyses have been concerned with 
the average drift force for a regular sinusoidal wave, it is important 
also to determine the actual time histories of these forces, especially 
for the case of an irregular incident wave system. In that case it is 
expected that the drift force will be a slowly varying function, in 
terms of the frequencies contained in the defining incident wave band- 
width, and it is of interest to determine the basic representation of 
the forces, the response of floating vessels to such forces, the 

statistical properties, etc. 

In order to illustrate the basic characteristics of these forces, 

particular attention will be given to the case of the lateral drift force 
acting on a vessel in beam seas. Using the results of Maruo (15); 
the later drift force acting on a cylinder (in the two-dimensional cas e) 

is given by 

FE 1 —2 2 1 2——2 2 
> = 5 pgA,|2-71| = 5 Pga A,|=-1| (123) 
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where A, is the ratio of the amplitude of the heave-generated two- 
dimensional wave to the amplitude of heaving motion of the ship 
section, and |z- n| is the absolute value of the relative heave mo- 
tion. It is seen that this expression is thus proportional to the square 
of the incident wave amplitude, with the force only occurring due to 
the relative motion between the heave and the incident wave. It can 
be shown that the mean value of this force in an irregular sea 
characterized by a wave spectrum such as the Neumann spectrum is 

given by 

Qo —— 
: ~— 

mee SG) See (124) 
o a 

where A*(w) is the Neumann spectrum representation given in 

Eq. (43). 

The results obtained in the basic derivations for determina- 
tion of the drift force have been carried out for the case of a single 
sine wave at a fixed frequency. Inthe real case, the waves are 
composed of many frequencies in a band, and for the purposes of 
simplification of the following analysis it will be assumed that this 

bandwidth is relatively narrow. If a combination of two different 

frequencies is present in a wave, and hence in the relative heave 

motion represented by 

Z-N= b, sin wt +b, sin (wet + ¢) (125) 

the square of this term is given by 

(z - n)°= be sin’ wt + bs sin® (wot + 9) +2b,b, sin w,t sin (wot + >) 

1.) 2 2 
= she +b. + 2b, b, cos [(w, - w, )t + 6} 

2 2 
- 54) cos 2w,t + b, cos 2(wt +) - 2b,b, cos [ (wy + o,)t ral}. 

(126) 

It can be seen that this expression is made up of a group of terms 

that are essentially constants and slowly varying terms (due to the 

narrow band assumption), and another group of terms representing 

higher frequency oscillations, i.e. at higher frequencies than the 

wave terms. If a time average of this quantity is made, it will be 

seen that the combination of the constants and the slowly varying 

term remains and the higher frequency terms drop out, and that this 

first grouping of terms can be represented as the square of the 

envelope of the combined signal given in Eq. (125) (see Er9}). 
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If the wave system, and the resulting relative heave motion, 
are represented by the sum of a larger number of terms of different 
frequencies, with these frequencies having only small increments 
relative to a single reference frequency (as a result of the narrow 
band assumption), the contribution to the drift force value in that 
case can be shown to be given by an expression that is also identified 
as the square of the envelope of the total signal. This identification 
and interpretation of this type of expression for the drift force can 
generally be extended to the case of an arbitrary input, including a 
random input which is assumed to be made up of a combination of 
different frequencies within a narrow band. Thus a simulation 
technique in the time domain for this term requires determination 
of the envelope of the input signal (relative heave motion), squaring 
this quantity, and applying the appropriate constants to produce the 
required time history signal. 

The drift force has been shown to be a nonlinear function of 
the wave amplitude, and in a random sea it is a slowly varying 
function of time, where this slow variation is considered relative to 
the wave frequencies and the linear wave-induced forces. Since 
the wave surface elevation and all linear terms derived from it are 
assumed to be Gaussian random processes, the drift force is known 

to be non-Gaussian in regard to its probability density. In order to 
obtain further characterization of the properties of the suction force, 
it would be useful to determine the probability distribution and 
spectral properties of this force. The accomplishment of this task 
will be aided by the simplified interpretation of the drift force that 
was presented above. 

Considering the drift force as the square of the envelope of a 
Gaussian random process, certain information is available concern- 
ing the probability density of this type of function. A square-law 
detector produces an output proportional to the square of the envelope 
of the input, if the input is a narrow band Gaussian random process 
[ 20] which is the assumption used in the present analysis. Fora 
particular input into such a square-law detector, the probability 
density function of the output (denoted as w) is given by 

1 -w/ E(w) s 
p(w) - E(w) © ’ w= 0 (27) 

where E(w) is the mean value of the square-law detector output. 
On that basis, the probability density for the drift force in a random 
sea can be represented by 

-F//F 

p(Fy) = se de seke nabie ee (128) 
F y 

where Fy, is the mean drift force, and hence the probability distri- 
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bution is given by 

P(= <x) =1-e" (129) 
F 

In addition to information on the probability density, additional 
statistical properties of the drift force are provided in terms of the 
autocorrelation and power spectral density functions for that force. 
The relationship between the statistical characteristics of an input 
to the nonlinear form of drift force representation, to the output 
characteristics, as defined by the autocorrelation and spectral 
density, is a useful description which can be applied in further 

analyses and for simulation studies. The problem of a square-law 

detector has been treated in the available literature, e.g. [20] and 
the results can be applied to the present case. If a general narrow 

band Gaussian random process, represented by the variable x(t), 

is the input to a square-law device, and the output is definedas r, 

the autocorrelation function R,2(7) is given by 

Z 2 R.2(7) = 407 + 4R,(7) 

BAG aod ae =(r°) + 4R,(7) (130) 

where 

x = 202 (134) 

is the mean value of the square of the envelope, with of the mean 

square value of the input function x(t). The relations between the 

autocorrelation and power spectral densities of the input function 

are given by 

00 @ 

S,(w) = zt R,(t)e tat, —-R, (7) = a Salen’ da (rae) 
-© 

where 

{ 0 

R,(0) = o4 = a“ Sy(w) dw (133) 
0 

thus being in conformity with the relations described by the Neumann 

wave spectrum and all linear functions derived from that spectral 

formulation. 
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The power spectral density of the square-law device output 
is then 

Oo 
2 -i 

S 2(w) = ai R, (T)e te dt 

J a 00 

=4(r*) §(w) +3 Rilrje de (134) 

where 6(w) is the delta function. The last term onthe right in 
Eq. (134) can be evaluated by using the definitions in Eq. (132), so 
that 

ro) re - 
2 u; ; res 

s( R,x(T)e Lae ae = aN S,(w') au" f R,(T)e i(w-w )T oe 

T JLo T J-00 -00 
© 

-{ S,(0!)Sx(w - w!) dos! (135) 
-00 

which leads to the final result 

aN oo 
S 2(w) = 4(r?) 6(w) +{ S,(w') Sy(w - w') dw. (136) 

-00 

The power spectral density of the square-law device output, whichis 
proportional to the drift force, contains the delta function term (that 
represents the non-zero mean value of the force) and a convolution 
integral of the input spectral density whose value will depend on the 
nature of the particular input. The square law detector output is 
obtained by operating on the output of the square law device with an 
ideal low pass zonal filter that filters out completely the high fre- 
quency part of its input, thereby leaving only the low frequency part 
representing the envelope. 

A particular application to illustrate the results of applying 
this analysis is given for the case of a vessel moored in a seaway 
such that an irregular beam sea is present. The vessel chosen for 
this illustration is the same CUSSI moored barge treated previously, 
and the sea condition is represented by a Newmann spectrum cor- 
responding to a 24 kt. wind (upper Sea State 5). A mathematical 
representation of a filter circuit whose amplitude characteristics 
are approximately the same as the square root of the Newmann 
spectrum formula (Eq. (43)) was derived, programmed on an 
analog computer with a white noise generator input, and produced 
an output that represented a continuous time history of the surface 
waves with that desired spectrum, r.m.s. value etc. A simplified 
constant coefficient second order differential equation for ship heave 
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motion in beam seas was set up on the analog computer, with the 
input wave force excitation assumed to be proportional to the wave 
record, and solutions obtained for z(t), the heave motion as a 

function of time, and also for [z(t) - n(t)], the relative heave 
motion. 

At the same time another equation was programmed on this 

analog computer representing the uncoupled sway motion of the 

moored barge, viz. 

(m + Agdy + Nyy + kyy = Yox(t) (137) 

where Yo,(t) is the wave exciting force. This exciting force was 

simulated to represent the linear wave-induced force and then the 

nonlinear drift force, with separate solutions obtained for each 

excitation above in order to illustrate the different output results. 

The linear wave excitation force was represented as proportional 

to n(t), after a 90° phase shift over the pertinent wave bandwidth, 

which is an adequate approximation. The nonlinear drift force was 

represented by 

= 2 2 
Y aritt = pgLA, {z - n} ’ (138) 

where the { } symbol represents the envelope operation, and a 

constant value is assumed for A,. The envelope of a time-varying 

function is obtained by rectifying the signal (i.e. an absolute value 
circuit), followed by a low pass filter. 

The results of this simulation study are shown in Fig, 15 

for the case of linear wave force excitation and in Fig. 16 for the 

drift force input. The time histories of the surface wave motion, 

sway motion output, and input exciting force are shown in each 

figure. The linear wave force response is seen in Fig. 15 to be 

generally oscillatory, of the same general frequency content as the 

wave input, and with an amplitude of the same order as the wave. 

The input excitation force has somewhat higher, frequency content 

(since it is proportional to n) and it reaches amplitudes of 4X 10° lb. 

The sway motion in Fig. 16, due to the nonlinear drift force 

input, has an entirely different character than the surface wave 

motion or the wave-induced sway motion shown in Fig. 15. Itisa 

long period, almost regular response at the natural period of sway 

for the moored ship, viz. 64 sec. (see Table 1). The input force 

that caused this response is also shown in Fig. 16, as derived 

according to Eq. (138) and it can be seen to be a slowly varying 

function of time, reaching a maximum value of about 50,000 lb and 

causing a response reading up to 15 ft in amplitude. Thus the 

characteristics of the slowly varying nonlinear force, of much 
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Fig. 15. Sway motion response to linear wave force in irregular 
beam seas. 

15 

=3 
ae 10" Yarift 

lb. 

Fig. 16. Sway motion response to nonlinear drift force in irregular 
beam seas, 
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smaller magnitude than the linear wave force, produce large motions 
of moored vessels by causing resonant responses with the low fre- 
quency modes introduced by the moorings. 

If the two responses given in Fig. 15 and 16 were linearly 
combined, as in the realistic case at sea when both forces are 

generated simultaneously, the total output would represent the actual 
motion of the moored vessel. The resulting large motions would 
cause significant stretching of the mooring cables, leading to larger 
forces in the cables than indicated by the linear wave effects above 
(e.g. as shown in Fig. 13). Thus proper consideration of the non- 
linear wave forces and their influence must be included in any 
analytical estimation of expected motions and forces of moored 
vessels, thereby requtring further effort at understanding and simu- 

lating these effects. 

As an aid in obtaining further insight into the characteristics 
of the lateral drift force in this case, an evaluation was made of the 

power spectrum of this force using the expressions given in Eq. (136) 
for the part that represents the random variations of this force 
about its mean value (the convolution integral term). The result 
of this evaluation is shown in Fig. 17, and when considering the 
effect of the low pass filter, all values for w> 1.0 will be eliminated. 
Thus it can be seen that the drift force itself is concentrated at low 
frequencies, and that the response of a dynamic system with a very 
low natural frequency (i.e. the ship sway motion) will result ina 
response spectrum concentrated at an even smaller low frequency 
band. This is what is usually found in the results of model tests and 
full-scale experience, and thus an explanation is provided by the 

preceding analysis. 

X. APPLICATION TO DYNAMIC POSITIONING 

When considering the case of dynamic positioning, various 

forces act on a free vessel in the open sea that cause it to move from 

its required position. These forces are the relatively steady forces 

due to wind and due to current, the oscillatory-type forces due to 

waves and the drift forces. The wind generates forces and moments 

because of its impingement upon the abovewater surfaces of the hull 

and superstructure, while the current forces act on the underwater 

hull (and any submerged drilling equipment, if that is the purpose for 

the vessel). These steady forces can be overcome by the generation 

of steady forces by some type of thruster mechanism that will act to 

maintain the ship more-or-less in its desired location. 

The oscillatory-type forces due to waves are very large, and 

no force-generating system installed on a vessel is expected to be 

able to overcome such effects. The ship will therefore oscillate 

"back-and-forth" in response to these large wave forces with 

essentially no net deviation of significance from its average position. 
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Sy (w) 
drift 0.04 

2(pauk) 
ft.*-sec. 

0.02 

0 0.5 0 1.5 230 2.5 3.0 

w, rad/sec. 

Fig. 17. Representative power spectrum of lateral drift force. 

It is the drift forces and moments whose mean values tend to move 
and/or rotate the ship off position, with their level of fluctuation 
causing dynamic responses that produce ship motion. Thus some 
means of control must be applied to "modulate" the forces developed 
by the thruster system in order to minimize the ship's average 
motion relative to its desired position. 

The ship will experience drift-like forces in the lateral and 
longitudinal directions, as well as a yaw moment, and the philosophy 
of applying control forces to the ship will be aimed at countering 
these forces by orienting the ship in the proper direction so that the 
resultant force is acting along the ship's longitudinal axis and there 
will be no significant moment. It would then be possible to use the 
main propulsive thrust of the ship, assuming controllable pitch 
propellers, to counter this resultant force. Lateral forces that are 
developed by particular thrusters, or other force systems, will be 
used to overcome any tendency of the ship to rotate out of its pre- 
ferred direction due to any resulting yaw moments. The force 
magnitudes in regard to average values can be estimated from the 
results of some of the cited references given in this paper, and 
some idea of the time history variations and maximum magnitudes 
expected relative to the average values can also be inferred from the 
work presented here. 
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In a complete simulation study of the resultant motion of a 
ship in which a dynamic positioning system is to be installed, all 
three degrees of freedom (surge, sway and yaw) will be coupled and 
the forces and moments will be dependent upon the relative orienta- 
ticn with respect to the incident wave system. This will be a some- 
what complicated analysis, but the tools are generally available for 
determining the various hydrodynamic parameters entering inte such 
a study. It will also be necessary to consider the type of signal 
system that would inciate the position errors of the ship, together 
with a signal processing operation (i.e. control system design) that 
will be necessary in order to achieve the desired type of operation. 
Similarly, some estimate of the response time of the thruster force 
development must be included in determining ship response so that 
a measure of positioning accuracy can be obtained as a result of the 
analysis. 

In view of the complexity of this problem, a discussion of a 
simple application will be given for the case of sway motion alone in 
beam seas. In that case the equation of motion will be similar to 
that given in Eq. (137), without the presence of the linear spring 
term (that was due to the mooring in the previous case). The 
response due to the linear wave forces will be generally the same for 
this case as in the case of the moored ship, as shown in Fig. 15. 
However, the effect of the drift forces will cause the ship to continu- 

ally deviate in position within a very short time. The deviation will 
be almost a quadratic growth with time since the response is similar 
to that of a constant force acting on a system primarily represented 
as a pure second derivative dynamic response. Thus a control force 
is necessary, and the control rule should include terms proportional 
to sway displacement and velocity, i.e. the control force will be of 
the form 

Y, = <iCplys=cyolh= Coy (139) 

where y represents the lateral error displacement relative to the 

desired position, y,, and this control force is included in the basic 

equation 

(m + Age)y + Nyy = Ywaves * Yarits * Ye ° (140) 

The lateral position error, which can be obtained from an 

acoustic reference system placed on the ocean bottom, will contain 

the influence of the higher frequency response due to the linear wave 

forces and in addition the control signal that includes the lateral 

velocity error will contain more "noise" in the resulting control 
signal. This can be overcome by the inclusion of appropriate filter 

circuits associated with the control signal processing, which involves 

the use of standard servomechanism techniques within the state-of- 

the-art of control design. A closed loop feedback system using the 
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appropriate measured inputs can then be evaluated in detail by com- 
puter system simulation to determine the optimum gains to be~used 
in the control rule in Eq. (139). The only guidance that can be given 
for this selection, based on simple dynamic principles, is to select 
the value of the gain C, that will produce a resultant frequency that 
lies between the frequency associated with the maximum spectral 
energy of the predominant wave system and the very low (near zero) 
frequency for large responses to drift forces. The value of the gain 
Cy should be such that, when added to the normal ship damping, 
the resulting response of the system will be relatively "flat" through- 
out the major band of disturbing frequencies for the drift force. 
All of these characteristics can be refined in the course of control 
system analysis and design, as well as from the simulation results, 
and further discussion lies beyond the scope of the present paper. 

XI. CONCLUDING REMARKS 

All of the preceding problem areas discussed in this paper 
have illustrated the application of a specific area of Naval Hydrody- 
namics, viz. hydrodynamics of ship motion in waves. The utility 
of presently existing techniques of analysis for solution of practical 
problems in ocean engineering, with emphasis on mooring and posi- 
tioning of vessels and other systems in a seaway, has been shown 
within the limits of the present state of development of this field. 
Greater emphasis toward consideration of certain nonlinear hydro- 

dynamic forces for application to these problems has been indicated, 
especially in view of their predominant effect in certain modes of 
motion. Possible directions for future research and development 
activities in this field will involve consideration of better techniques 
of representing the form of these forces in terms of body geometric 
parameters, more concentration of basic model measurements for 

comparison with theory, and techniques of simulatiorm in dynamic 
analyses of motion behavior. This information will be fundamental 
in establishing computer models for determining many aspects of 
system performance at sea prior to actual construction, thereby 
providing insight as to expected problem areas and methods of solu- 
tion. The methods of applied hydrodynamics for these purposes are 
generally available now, and it remains for the ocean engineering 
profession to determine the utility or applicability of these tools 
to the particular practical problems that they face in their own 
operations. 
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WAVE INDUCED FORCES AND MOTIONS OF 
TUBULAR STRUCTURES 

J. R. Paulling 

University of Caltfornta 
Berkeley, Caltfornta 

ABSTRACT 

Many types of stable ocean platforms consist of space- 
frame assemblages of tubular structural and buoyancy 
members. An approximate method of predicting the 
hydrodynamic forces and resulting motions of such 
structures is described. In this procedure, the force 

on each member is’computed by assuming that the 
member is long and slender and all other members are 
absent. Such forces for all members are summed and 
introduced into the linear equations of motion of the 
entire structure, which may then be solved for the re- 
sulting platform motions. Reasonably good agreement 
is obtained between the results of such analysis and 
model experiments with several different platform 
configurations. 

I. INTRODUCTION 

Many of the stable floating platforms which have been pro- 
posed or constructed for deep water drilling, mining, or emplace- 
ment and recovery of heavy objects can be described as space- 
frame assemblages of tubular members. R. H. Macy [1969] 
describes and illustrates several oil-drilling platforms of this type. 
One of them, BLUE WATER II, consists of a square base configura- 
tion approximately 200 feet square, made up of cylindrical members 
14,5 feet in diameter, with four vertical corner caissons 24.7 feet 
in diameter supporting the main deck. This platform normally 
operates at a draft of about 40 feet. A second platform, the SEDCO 
135, consists of three main vertical caissons located approximately 
at the vertices of an equilateral triangle, several diagonal tubular 
truss members, and, at the bottom of the main caissons, elongated 
pontoons of oval planform. These platforms are moored by a spread 
array of anchors, and operate in water depths of up to 600-1,000 feet. 
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McClure [ 1965] described a platform which was designed for the 
MOHOLE deep sea drilling project. This platform was to consist of 
two submerged main horizontal pontoons 35 feet in diameter, and 390 

feet long, with a centerline separation of 215 feet. Three vertical 

caissons extended from each horizontal pontoon through the free 
water surface to support the main working deck. This platform was 
intended to operate in a water depth of 14,000 feet, and was to be dy- 
namically positioned by means of trainable propulsion units controlled 
through a central computer system. The foregoing types of platforms 
are referred to as "column stabilized," which implies that pitch and 
roll static stability are obtained primarily from the waterplane ma- 
ment of inertia of the surface piercing vertical column. 

A third type of platform for which a tubular space frame con- 
figuration has been proposed is the tension leg platform, an example 
of which is shown by Macy [1969] and described by Paulling and 
Horton [1970]. This is a moored stable platform for which the 
buoyancy exceeds the platform weight, and the net equilibrating 
vertical force is supplied by vertical tension mooring cables secured 
by deadweight or drilled-in anchors. As a final example of tubular 
stable platform structure, we mention the spar-type platforms, the 
prime example of which is FLIP, described by Fisher and Spiess 
[1963]. The platform consists of a single cylindrical member of 
tapering cross section arranged to float vertically, with a small 
portion of its length projecting above the surface of the sea. 

All of these platforms share a common characteristic in that 
their configuration consists of a space frame assemblage of relatively 
long, slender, cylindrical members, with the addition in some cases 
of small buoyancy chambers or pontoons. All share a common ob- 
jective of producing a working platform having minimum wave- 
induced motions, even under relatively severe sea conditions, i.e., 
a platform which is "transparent" to the waves. The positioning 
methods used differ greatly in each case, ranging from essentially 
no positioning, in the case of FLIP, dynamic positioning with no 
physical connection to the sea bottom, in the case of the MOHOLE 
platform, to various types of anchoring systems exemplified by the 
tension leg and the column stabilized platforms. The sea environ- 
ment and resultant platform responses are similar in each case, 
i.e., all are intended to operate in relatively deep water under 
severe environmental conditions, with platform motions which are 
small compared to the overall dimensions of the platform and to the 
length of waves involved. Our objective here is to describe a pro- 
cedure for analyzing the forces and motions which can be applied 
equally to all of these platforms if suitable account is taken of the 
type of anchoring or positioning restraint involved. 

Such an analysis of wave-induced forces and motions forms 
an essential part of the process of designing a platform to perform 
a specific mission. At least three such functions are envisioned. 

First, for a platform of given geometry, a range of sea conditions 
may be investigated to determine what limitations may be imposed 
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on the platform's performance by the resulting wave motions. 
Second, given a set of sea conditions and platform requirements, we 
may investigate a family of platform configurations to determine 
those members of the family which will be able to perform the 
specified mission under the stated sea conditions. This kind of 
analysis, in turn, might form a part of a more extensive system 
study aimed at determining the most cost effective platform system. 
As a third function, the force distributions on structural members 

which are obtained during the force and motion analysis may be 
used in connection with the detailed structural design of the platform. 

The general procedure followed in analyzing the dynamic 
behavior of such a platform is to assume that it behaves as a rigid 
body having six degrees of freedom. The external forces which 
excite the motion of the structure are associated with the fluid motion 
relative to the structure, and with the structure's mooring or position- 
ing system. Two alternative methods are available for the computa- 
tion of the fluid forces. In the first, the fluid is assumed inviscid 
and its motion irrotational, and we proceed on the basis of classical 

hydrodynamic theory to seek a solution to Laplace's equation in the 
fluid region subject to certain boundary conditions. These include 
kinematic boundary conditions on the free water surface and on the 
wetted surface of the structure itself, a constant pressure dynamic 
boundary condition on the free surface, a dynamic boundary condition 
on the wetted surface of the body, which is derived from the rigid 

body equations of motion, and other conditions far from the body 
which are necessary for uniqueness of the solution. This approach 
yields great insight into the fundamental nature of the fluid phenomena, 
and is exact within the limits of the necessary fluid idealization and 
motion linearization. Its implementation, however, is beset with 

almost insurmountable difficulties unless the geometry of the body is 
extremely simple. 

The second method is less exact in principle, but provides 
approximate means of including real fluid effects and of dealing with 
geometrically complex, realistic configurations. This procedure, 
which is employed in the present analysis, is termed "hydrodynamic 
synthesis." Here we consider the complex structure to be assembled 
from a group of simpler bodies whose individual hydrodynamic pro- 
perties are known, perhaps as a result of an analysis of the first type 
above. A fundamental assumption is then made that the hydrodynamic 
force on the assembled structure may be computed by taking the sum 
of the forces of all of the component members. In the simplest:case, 
these forces are computed as though.each member were completely 
remote and independent of the rest of the structure, but subject to the 
same pattern of body and fluid motions. The forces computed in this 
way might be refined by introducing modifications to the fluid flow to 
account for the hydrodynamic interaction between adjacent members. 

The result of this hydrodynamic synthesis is a system of 
hydrodynamic forces acting upon the assembled structure, containing 
terms dependent upon the incident wave system and upon the motion 
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of the structure itself. Additional restraint forces are introduced 
to account for the effects of the mooring or dynamic position system. 
This total system of external forces is then equated to the mass times 
acceleration of the body by Newton's second law, yielding a system 
of coupled differential equations of motion. These equations are then 
solved to obtain the time-dependent motion of the structure. 

In the present analysis, a linear relationship will be assumed 
to exist between all forces and the appropriate motion parameters. 
Two important consequences follow as a result of such an assumption: 
(1) The hydrodynamic forces acting on the structure may be divided 
into two independent parts, one depending only on the incident wave 
motion, and the second depending only on the platform motion. 
(2) A prediction of the platform response to a realistic random sea- 
way may be obtained by superimposing the responses to the seaway's 
regular wave components. 

The validity of such a linearization may be tested either 
empirically or by comparing its results with results of an "exact" 
analysis. An exact analysis is normally possible only for sucha 
simplified class of geometries that the validity of the comparison 
for the realistic case is subject to question. We are, therefore, 

forced to an experimental test. For the present, we have considerable 
evidence on the usefulness of linear techniques in predicting ship 
motions as in Gerritsma [1960], and motions of platforms of the 
present type, Burke [1969], Paulling and Horton [1970]. Some 
further experimental comparisons are given in the present paper. 

II. THE EQUATIONS OF MOTION 

The motion of the platform will be expressed as a small 
deviation from a mean position, and for this purpose it is convenient 
to define two coordinate systems. The first, OXYZ, is fixed rela- 
tive to the structure suchthat O is located at the structur's center 
of gravity, Y is directed vertically upward, and OXZ is parallel 
to the mean waterplane. In many cases, we may take advantage of 
symmetry to arrange these axes so that one or more of them is a 
principal axis of inertia. Also, in some cases, a designer's co- 
ordinate system may be used for drafting or other design purposes, 
which is parallel to OXYZ but whose origin is located elsewhere. 
Quantities defined in this latter system may always be transformed 
to the OXYZ system by simple coordinate transforms, and it is 
assumed that this is done. 

A second coordinate system, oxyz, is fixed in space such 
that it occupies the mean position of OXYZ as the platform moves 
in waves. In general, it is found most convenient to express the 

inertial properties and the forces acting on the structure in OXYZ 
since the geometry of the structure is fixed in this system. On the 
other hand, it is more convenient to express the equations of linear 
motion in the space system, oxyz, since this is an inertial system, 

and because we ultimately wish to obtain the motion of the platform 
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in terms of time dependent deviations from this mean position. The 
linear displacements of the center of gravity of the platform from its 
mean position may then be expressed by the small quantities x(t), y(t), 
z(t), measured in the oxyz system. We next express the rotational 
motion of the platform in terms of the Eulerian angles e(t), B(t), y(t). 
These angles are so defined that the angular displacement between the 
two coordinate systems, oxyz and OXYZ, may be created by imagin- 
ing the platform as first oriented such that the two coordinate systems 
coincide. It is then rotated about OX through the angle a, then about 
the new position of OY through the angle 6, and finally about the new 
position of OZ through the angle y to bring the platform to the final 
position of angular displacement. For small values of a, B, y, the 
two coordinate systems will now be related by: 

x 4 -Y B Xx 

y = y 1 -a@ . Y e (1) 

Zz -B a 1 Z 

The equations of motion may now be written. It is convenient to 
first write the equation for translatory motion in oxyz, thus it is 
assumed that all forces acting on the body have been expressed 
in this system, giving 

f, = mx, , = 4i,. Zed s (2) 

where the x; = x(t), y(t), and z(t), respectively. 

The equations of angular motion may be most easily written 
in the body coordinates, OXYZ, since the moments and products 

of inertia of the structure are constant in this system. If the exter- 
nal moments are also expressed in OXYZ, the Euler equations for 
rotational motion in rotating coordinates are obtained: 

se 

ial 

8. = components of the angular velocity vector in OXYZ, 

moment of inertia about i-axis if i= j, i 

(-) product of inertia if i# j. 

* 
Note that the transformation expressed by Eq. (1) can be applied to 
forces and velocities as well as to coordinates. 
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Now, M; may be transformed by (1) into components, m, i? 
expressed in the space ue system. We note, further, that if 
the angular velocities, , are small quantities, the moments, m,, 

causing the motions eee small of the same order. The transfor- 
mation of moments, therefore, after dropping products of small 
quantities, yields 

mj = M;.- (4) 

Similarly, the components of angular velocity, Q,, in OXYZ 

may be transformed into the space coordinate system. wae small 
angular velocities, this results, approximately, in 

or oe (5) 

Here, the @, are the components in oxyz of a small rotation 
of the structure about an instantaneously fixed axis in space. In 
other words, for the small angular motions to which we limit the 
present analysis, the Euler angles are approximately equal to the 
components of the body rotation during a small time interval about 
the fixed space axes. 

We may now write the translational and rotational equations 
of motion, in the fixed coordinate system, in the combined form 

6 

y mj; X; — 1, as a ae 6\. (6) 

jzl 
Here f. »>x.; i=i1, 2, 3, are the forces and displacements in the 

X,Y, Z- directions ; fi» x.3 i= 4, 5, 6, are the moments and rota- 

tions about the x, y, z-axes, 

m,,* M,5» m,,= m= mass of structure, 
33 

m,,° M,., M,, = moments of inertia about XYZ-axes, 

respectively. 

M4. = ™M,4= ih XY dm 

Mgg= Meg= - we YZ dm | Products of inertia about 

| the OXY Z-axes. 

Myg = Mgq= - seat XZ dm 
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The force system acting on the structure comprises hydrodynamic 
forces resulting from wave and platform motion, hydrostatic forces 
from the changes in displaced volume associated with static displace- 
ments of the platform and the restraining forces exerted by the 
positioning or anchoring system. 

Tl. COMPUTATION OF THE FORCES 

The total hydrodynamic force exerted on the body is assumed 
to be composed of three parts: 

(1) The force resultant of the pressure exerted by the un- 

disturbed incident wave train on the stationary body in 
its mean position. 

(2) The force resulting from the disturbance of the incident 
waves by the body occupying its mean position. 

(3) The force resulting from the motion of the body computed 

as though it undergoes the same motion in calm water. 

In a formalized linear analysis, these terms would be associ- 
ated with velocity potentials representing the incident wave train, 
a diffracted wave train, and the waves generated by the motion of 

the body. The force represented by (1) above, i.e., that part ob- 
tained by neglecting the effect of diffracted waves and body motions, 
is termed the Froude-Krylov force. 

Procedures based on assumptions similar to these have, as 
previously noted, proven successful in predicting the motions of ships 
in waves. The present situation is somewhat simpler than the ship 
case because the structure has no forward speed. 

As noted in the Introduction, we shall obtain the total force 
on the structure by computing the force separately on each member 
of which the structure is composed. Two principal assumptions will 
be made in computing these forces. First, each member is assumed 

‘to be either a cylinder whose cross sectional dimensions are small 
compared to the lengths of both the cylinder and the incident waves, 
or the member is a small pontoon (point volume) all of whose di- 
mensions are small compared to the incident wave lengths. Second, 
all hydrodynamic interaction effects between adjacent members will 
be neglected, thus the force on an individual member will be com- 
puted as though the member occupies its mean position in the field 
with all other members absent. 

In Fig. 1, we show a cylindrical member located in the flow 
field corresponding to a train of waves and undergoing motions cor- 
responding to the rigid-body motions of the entire structure. The 
force per unit length at a given point along the length of the member 
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,Y — NOTE: €€-PLANE IS MEAN 
WATER SURFACE 

LINE IN €C-PLANE PARALLEL TO X-AXIS 

8 WAVE DIRECTION 

ORIGIN 
OF ent 

Fig. 1. Coordinate systems and nomenclature for member 

is assumed to be expressed as 

Foe are pn ds + C,\ we = Uap) af: Cuil ara anp)- (7) 

The first term is the resultant force obtained by integrating 
over the surface of the body the pressure, p, which would exist 
at that location if the body were not present and is seen to be the 
Froude-Krylov force. Note that n is the unit normal vector 
directed out of the body into the fluid. 

The second term is called the drag force and is assumed 
proportional to the relative normal velocity between the member and 
the fluid. The third term is called the added mass force and is 
assumed proportional to the relative normal acceleration between 
the member and the fluid. 

The first term and the first parts of the second and third 
terms are seen to be dependent on the wave motion while the remain- 
ing parts of the last two terms depend on the structure's rigid-body 
motions. In order to evaluate these forces for the cylinder, we must 
define two additional coordinate systems. The first, ox yz, is 
associated with the member such that the x-axis lies along the 
centerline of the member, the y-axis is directed generally upwards, 

the z is defined to form a right-handed system. The second co- 
ordinate system, o§nf, is used to express the waves, and is so 

defined that the €-axis lies in the mean water surface and is positive 
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in the direction of propagation of the waves, 7 is directed upward, 

and € is defined so as to form a right-handed coordinate system. 

Wave Forces 

In order to be consistent with our assumption of small plat- 
form motions, an assumption of small incident waves must also be 
made. The velocity potential for regular infinitesimal gravity waves 
moving in the direction of the positive §€-axis is 

= h k(n+d) 9(&.,0,t) = $2 SOS AT sin (k§ - ut). (8) 

The pressure is given by 

C) P=- pen- par, (9) 

and the linearized velocities and accelerations in the &- and n- 

directions by 

_ 99 . 99 
Se v= 1" 

(10) 

. . OU See BS 
U= 3p = ° 

We shall first compute the Froude-Krylov force which is 
given by the first term in (7). This integral, which is to be evaluated 
over the entire immersed surface of the body in order to obtain the 
total force, may be replaced by the following volume integral through 
the application of Gauss' theorem 

cee ae se 
The corresponding integral expressed for the moment referred to the 
Ent-axes is 

ah p(r Xn) ds 

SSS (cB ng. SSE 3 oe - & ge) av. (1 1b) 

Note that in defining these integrals for a member which projects 

ti 
— 

Th 

iN 
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through the free water surface, the pressure and its derivatives 
vanish for that part of the member's surface or volume above the 
free suriace. 

The evaluation of both of these integrals is a straightforward 
but rather tedious process, yielding the components of force in the 
Eng-directions, and the moments about these axes. We first per- 
form the indicated differentiation of the two terms in the pressure 
equation with respect to €, n, and {, then substitute for €, n, 
and {, their values transformed to the oxyz-coordinates. The 
element of volume is given in oxyz by Adx where A is the 
constant cross sectional area of the cylinder. Since the cross 
sectional dimensions are assumed small compared to the wave 
length, the integrand may be assumed constant over A and, conse- 
quently, the volume integrals are reduced to one-dimensional 
integrals in x to be evaluated over the length of the cylindrical 
member. 

If the member is completely immersed, the evaluation of 
this integral yields two terms corresponding to the two terms in 
Eq. (9) for the pressure. The first term is the static buoyancy 
force or moment and the second is a time-dependent "variable 
buoyancy" corresponding to the variation in effective weight density 
of the fluid as a result of the wave motion. 

If the member projects through the free surface, the region 
of integration must be dealt with in two parts. The first part is the 
constant volume of the member below the mean water surface, and 

the second is the time varying part of the volume of the member lying 
between this mean waterline and the instantaneous water surface. 
Evaluation of the integrals over the first part of the volume, i.e., 
that part below the mean waterline, yields a result identical with that 
for a completely submerged member. In evaluating the integral over 
the second part of the volume, we note that this volume is of the same 
small order of magnitude as the wave amplitude. Since the velocity 
potential, (8), and therefore the second term in the pressure, (9), 
is of this same small order of magnitude, only the first term in the 
pressure, i.e., the hydrostatic part, has a linear contribution to 
this part of the integral. 

In evaluating these integrals, (11), for the pontoon or point 
volume, we note that the assumed small dimensions of the pontoon 
imply that the integrands are constant over its volume. Therefore, 
the integration reduces to taking the product of this volume with the 
appropriate derivatives of the pressure expression. 

The first parts of the last two terms in (7), i.e., the drag 

and added mass forces associated with wave induced water motion, 

are each computed in a similar manner. Let u; and uj; represent 
the components of fluid velocity and acceleration in off, with u; 
and u, the corresponding components in oxyz. A coordinate 
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rotation may be expressed by ai such that 

The components of force on an element of length, dx, inthe oxyz- 
directions are given by 

dF, = @,u, +%,,u,) &, j=1,2,3 (13) 

where p; and }; are added mass & and linear drag coefficients. For 
the cylindrical member, only p55 Xoo, and X33 are non- 
zero, while for the point volanie FAT hee the diagonal terms in p» and 
X are nonzero. 

The forces may now be expressed in o€n{ by the inverse of 
the above transformation 

dF = aj, dF; it R rom hy 

= (piu, + u,) dx. (14) 

Here, the added mass and drag coefficients in of G are seen to be 
related to those in oxyz by the following expressions. 

al amenicl a as 

dij =a Rigi (15) 

_Corresponding expressions for the elementary moments 
about oxyz and o§nG may be written. The total forces and 
moment may be obtained by integrating these expressions over the 
length of the member, noting that uj and uj, contain terms with 
the same trigonometric functions of time which appear in the Froude- 
Krylov buoyancy integrals, (11), and may, in fact, be combined with 
them in carrying out the integration over the member length. 

Evaluation of these integrals yields a set of forces and 
moments in o§nf. A coordinate translation and rotation may now be 
applied to express these forces and moments in the space coordinate 
system oxyz. 
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Motion-Dependent Hydrodynamic Forces 

We now consider a velocity vector, us whose components 
are the velocities of the center of gravity of the structure in oxyz 
and are given by x a‘ ip 1 x, in Eq. (6). We may similarly define 
an angular velocity. vectors QR, whose components are the three 
rotations about oxyz, and were denoted X4» X53» Xe in (6). The 
resultant velocity of a point P(x,y,z) is given by 

ee —> —> — 

us UTM Xr, 

where r is the radius vector drawn from the origin of oxyz to the 
point P. Similarly, the resultant acceleration is given by 

ea 

—_ 

=u 

+ 
a rs) +Yxr. 

(Note that this neglects the radial or "centripetal" acceleration which 
is of the order of the square of the (small) angular velocity.) Point 
P may be thought of as lying on the x-axis of a member of the 
structure, We therefore may obtain the velocity and acceleration 
vectors u,p and app, appearing in Eq. (7) by a transformation similar 
to (12)... THe a, however, relate the member coordinates OxyzZ 

to the space coordinates oxyz inthis case. Also note that the 
velocities and accelerations are now unknown quantities. 

Applying these transformations, we obtain expressions similar 
to (12) where the Uj» u; are replaced by the components of up and 
ape The elementary forces are given by an expres: sion which is the 
negative of (13) but containing the same p's and X's. These are then 
transformed back to the oxyz-directions by the inverse of the above 
transformation. Integration of these elementary forces and their 
moments over the length of the member is somewhat simpler now 
since the velocities and accelerations vary in a somewhat simpler 
manner than in the case of the wave-induced velocities and accelera- 
tions. 

The Added Mass and Drag Coefficients 

The idealization made in arriving at the subdivision of forces 
illustrated in Eq. (7) is a computational expedient at best. In reality, 
the total force experienced by a member of the structure will be the 
resultant of distributed normal pressure forces and tangential shear- 
ing forces arising from viscosity. The subdivision into a Froude- 
Krylov force, a force proportional to relative fluid velocity, anda 

force proportional to relative fluid acceleration, is done partly on an 
intuitive basis and partly on the basis of our knowledge of simpler 
problems. Such a subdivision has the great advantage of leading to 
solutions in which there is a linear relationship between platform 
motion and the exciting wave motion. Let us review some of the 
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justification for this simplification. 

Maruo [ 1954] and Havelock [| 1954] have discussed the forces 
on submerged bodies which are caused by waves of small amplitude 
in an ideal fluid. Maruo deals with the two-dimensional problem of 
a horizontal cylinder completely submerged below the surface of an 
inviscid fluid, and gives some results which can be compared directly 
with Eq. (7). In particular, he shows that, for the case of a deeply 
submerged cylinder, the "exact" total force is equal to twice the 
Froude-Krylov force, Eq. (7), and that this corresponds to a value of 

the added mass coefficient equal to that of the cylinder in an infinite 
fluid combined with the wave motion at the centerline of the cylinder. 
If the cylinder is near the free surface, the force differs from this 

deeply submerged value by an amount dependent upon the depth of 
submergence and the wave length. The error, however, is small 

if both the depth of submergence and the wave length are greater than 
several cylinder diameters. Similarly, C. M. Lee [1970] has 
analyzed the problem of an oscillating cylinder submerged beneath 
the free surface, and has shown that the added mass coefficient for 

forced motion approaches the infinite fluid value within a small error 
if the depth of submergence is more than two times the cylinder 
diameter and the length of generated waves is more than about five 
times the cylinder diameter. For our present purposes, these 
results imply that we may assume a constant value of the added 
mass coefficient in Eq. (7), since in the majority of practical situ- 
ations the cylindrical members will be sufficiently deeply submerged 
and of sufficiently small diameter compared to wave lengths of 
interest to fulfill the above conditions. Thus the first and last terms 
in Eq. (7) can be expected to give a good approximation to the non- 
dissipative parts of the force on the individual member considered 
here. 

The drag or velocity dependent force acting on an oscillating 
body under a train of waves is associated with two phenomena: (1) the 
dissipation of energy in surface waves which are generated as a 
result of motion of the body, and (2) the viscous effects which are 

felt both as tangential forces on the surface of the body, and as a 
deviation of the pressure distribution from its ideal fluid value. This 
latter effect, which is associated with the formation of a wake and 

vortices downstream of the body, will cause the added mass coefficient 

to differ from its ideal fluid value as well. The drag force associated 
with free surface wave effects decays to zero with increasing depth 
of submergence at the same rate that the added mass coefficient 
approaches the infinite fluid value. Therefore wave damping is of 
little significance to the configurations being considered here. The 
drag forces associated with viscosity are generally of much greater 
importance, and also less clearly defined. The usual method of 
approximating these forces, Wiegel [1964], is to assume that they 
behave in a manner similar to the drag on a body immersed in a flow 
of constant velocity. In such case, the drag force is expressed asa 

quadratic function of velocity and the drag coefficient is found to be a 
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function of Reynolds number. In applying this concept to the present 
situation in which we have a periodic fluid motion resulting from the 
superposition of wave and body motions, we might compute a Reynolds 
number using the mean absolute velocity, and choose the drag coef- 
ficient accordingly. The drag term in Eq. (7) should then be a 
quadratic function of velocity. This, however, destroys the linearity 

of our analysis, and in view of the crude approximation involved, it 

is not worth the added complication. In order to preserve linearity, 
an equivalent linear drag coefficient is therefore defined, as described 
in Blagoveshchensky [1962], such that the linear drag force dissipates 
the same energy per cycle of periodic motion as the nonlinear drag 
force which is being approximated. 

The derivation of the equivalent linear drag coefficient is as 
follows. Assume a sinusoidal variation of the relative fluid velocity 
given by 

Vv =v, sin wt. (16) 

The linear drag force is given by 

Dy FEY 

and the nonlinear drag by 

- n D, = Cyav - 

The energy dissipated per quarter cycle of motion is given in the 
linear case by 

~W/2w 

Cc v? dt; 
OL 0 

and in the nonlinear case by 

T/2w 

nl Gi vo pdt. 
ie) 

Equating the two energies enables us to solve for the equiva- 
lent linear drag coefficient in terms of the assumed nonlinear coef- 
ficient. In the case of n= 2 (quadratic drag) the result is 

+, Bo neass (17) ot ae oe 
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Thus, it is seen that the use of such equivalent linearization 
requires a prior knowledge of the amplitude of the motion. No 
difficulty is introduced by this in the case of the wave force ona 
stationary member. However, the amplitude is unknown for the 
absolute motion of the member. This leads to the necessity for an 
iterative solution in which we first assume an amplitude of motion, 
compute the equivalent linear coefficient, and then solve the equa- 
tions of motion using this value. This solution then is used to com- 
pute a refined value of the linear drag coefficient, which is used for 

the second solution of the equations of motion, and so on. It is 
questionable whether the approximations involved warrant more than 
two iterations, as noted by Burke [1969]. 

Hydro static Forces 

A floating body which is displaced in heave, pitch, or roll 
from its equilibrium position experiences hydrostatic forces pro- 
portional to these displacements as a result of the changes induced 
in the immersed volume. There will be no forces in surge, sway, 

or yaw since these displacements, which are parallel to the free 
surface, cause no change in the immersed volume, 

These forces, including coupling terms, are computed by 
standard naval architectural formulas. Thus, the vertical force 

resulting from a small heave displacement, x,, is given by 

F = - pgA,x,, (18) 

where A, is the waterplane area. 

Similarly, the moments of this force about the x- and z- 

axes (static coupling terms) are given by 

M = pgAy zx 
x wow 2 (19) 

M ae PEAY XX, » 

The roll and pitch moments resulting from small angular dis- 
placements are given by 

= - pgVGMa, (20) 

where GM is the appropriate metacentric height, V is the volume 
displaced by the structure, and a is the small roll or pitch angle, 
either x, or x, in the notation of Eq. (6). 

Finally, the force in the y-direction resulting from a small 
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roll displacement, X4, is 

Fy = PR AWZyX4\s (21) 

and for a small pitch displacement, Xe 

Fy = - pgAwXw%¢ » (22) 

Xw, Zw are the coordinates of the center of gravity of A,. These 
forces are included in the equations of motion as static restoring 
or coupling force terms. 

The Restoring Forces 

Three types of restraints have been described in the Intro- 
duction, dynamic positioning, spread array mooring, and vertical 
tension leg mooring. 

A dynamic positioning system incorporates two principal 
components: sensors for detecting deviations from the desired 
position, and thrustors which may be activated automatically or 
manually to exert a force tending to restore the structure to the 
desired position. In the simplest system, the thrustors are actuated 
without time lag to exert a force proportional to the displacement, 
This would be termed a pure proportional controller. Real systems 
seldom operate this simply but incorporate time lags, back lash, 
and other non-ideal characteristics. Increased sensitivity and 
response may be built into the system by having it sense velocity (rate 
control) and acceleration. If the system can be approximated by 
linear features, i.e. , if the applied thrust can be linearly related to 
displacements, velocity, and acceleration of the structure, then the 

control system constants may merely be introduced in the force terms 
of the equations of motion, (6), as additions to the already defined 

hydrodynamic and hydrostatic terms. 

In a spread mooring system, several pretensioned anchor 
lines are arrayed around the structure to hold it in the desired 
location. If the structure moves from its mean position, the tensions 
in the anchor lines change and these changes may be related to the 
geometry (catenary), elasticity, and hydrodynamic properties of the 
anchor lines. It is usually permissible to neglect the hydrodynamic 
forces on the anchor lines and to approximate the force by a linear 
relationship between force and displacements in the plane of the 
anchor line. The displacements at the point of attachment of the 
anchor line may be determined in terms of the coordinates of this 
point for given displacements of the structure. These are resolved 
into horizontal and vertical displacements, xy, yg, in the plane of 

the anchor line by a transformation similar to (12). The horizontal 
and vertical forces exerted by the anchor line may then be expressed 
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as 

Bay “a Its - Kye (23) 

hy NW Ly Ks + KO be 

These forces may then be transformed back to the oxyz coordinates 
for inclusion in the equations of motion. The anchor spring constants, 
ky eee ky are computed from a knowledge of the aforementioned 
elasticity and weight-shape characteristics of the anchor line. 

In a tension leg mooring, the mooring lines are vertical and 
provide essentially total restraint against vertical movement of their 
upper ends. Figure 2 illustrates the horizontal force which results 
when the upper end of such a mooring line is displaced horizontally 
as a result of surge, sway, and yaw. The restoring force in the 
direction opposite the displacement, x,, of the end of mooring line 
n is given by 

(24) 

The displacement, xX,» may be expressed in terms of its components 

in the x- and z-directions, in which case the corresponding com- 
ponents of F, in these directions will be given by (24). 

Xr“ HORIZONTAL COMPONENT 
_ _XnTn 

ft La 

Th 

MOORING LEG "n" 

Fig. 2. Restoring force in tension mooring legs 
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IV. SOLUTION OF THE EQUATIONS OF MOTION 

The total system of forces described in the preceeding 
sections are now introduced into the equations of motion, Eq. (6). 
Our linearization of the problem has resulted in the subdivision of 
these forces into two categories: those forces resulting from the 
wave motion in the presence of the stationary structure, and those 

resulting from the motion of the structure in a stationary fluid. The 
former category contains the first term and the first parts of the 
second and third term on the RHS of Eq. (7). The platform motion 
dependent forces are contained in the second parts of terms two and 
three of the RHS of Eq. (7), plus the hydrostatic and restraint forces. 
The wave motion depending forces are seen, as a result of the velocity 
potential assumed to represent the wave motion, Eq. (8), to be sinu- 

soidal functions of time. If we rearrange the equations of motion into 
the standard form, placing the motion-dependent terms on the left-hand 
side and the time dependent forcing terms on the right-hand side the 
result is a set of six simultaneous second-order differential equations 
of the form 

6 

Ds [ (mj; a aij) x; + bij Xj 28 ci, x;] = F,j sin (wt + Ej), (25) 

j=l 

where the exciting force amplitude, F,;, is proportional to the wave 
amplitude, a. The solution of these equations may be expressed in 
the form 

x; =X; sin (wt + 6), 

where x,,; is proportional to Fj, therefore to the wave amplitude. 
The quantity ws or the amplitude of response to unit waves 
varies with wave frequency, since the exciting force Fo is a function 
of frequency and because the coefficients a, b, c the LHS of (25) 
may also vary with frequency. The square of this unit response is 
then the response amplitude operator, which may be combined with 
the wave spectral density function to obtain the platform response to 
a random seaway. 

V. MODEL EXPERIMENTS 

A number of model experiments have been conducted in the 

University of California Towing Tank in order to test several parts 

of the procedures described in the previous sections. The initial 
objective of the study was to evaluate the tension leg platform, and 
all experiments deal with this configuration. Initial experiments 
were made on single cylinder members to test some of the hydro- 

dynamic force predictions and the linearity of the resultant motions 

in regular waves. Next, experiments were conducted in regular 
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waves using a platform model of triangular plan form to investigate 
the predictability and linearity of motions and mooring tensions of a 
composite structure consisting of a number of cylindrical members. 
Finally, experiments were made in random seas to test the applica- 
bility of linear superposition. 

The arrangement of the model and experimental apparatus 
is shown in Fig. 3. The model configuration shown is typical of a 
number of those tested, consisting of three base cylinders arranged 
to form an equilateral triangle with three or more vertical legs 
supporting the deck. An important geometrical parameter studied 
in these tests was the relative proportion of buoyant volume contained 
in the vertical and horizontal legs. 

PULLEY 
“ 

0000 

LEADS TO 
INTEGRATOR 

WAVE 
SURFACE 

X- AXIS 

PLATFORM 
MODEL INSTRUMENT TENSION LEADS 

TO RECORDER 
ad 

METERS 

DEAD-WEIGHT 
ANCHORS 

V 

TANK BOTTOM 

Fig. 3. Arrangement of experimental apparatus 
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From Fig. 3 it is seen that instrumentation was provided 
for measuring model motions, tension variations in the mooring legs, 
and incident wave amplitude. The surge motion was sensed and con- 
verted to an electrical signal by a miniature low torque potentiometer 
driven by the model through a string and pulley arrangement. Yaw 
was sensed by a rate gyroscope mounted on the model, the output 
of which was integrated electronically to give the yaw displacement. 
Tension meters were installed in each mooring leg. These consisted 
of small proving rings fabricated from seamless stainless steel 
tubing and mounted with etched foil strain gages. Four gages on 
each ring were connected to form a four-arm Weatstone bridge, the 
output of which is proportional to the applied force. The bridge was 
balanced initially to bias out the initial static tension. Therefore 
only the time dependent variations are recorded. 

The outputs of these force and motion transducers, as well 
as the output of a resistance wire wave meter, were recorded, using 
a multichannel oscillograph. During experiments in random waves, 
a simultaneous recording was made of the same quantities in digital 
form on magnetic tape for processing by electronic computer. 

Single Cylinder Experiments 

The first group of experiments were conducted using a single 
circular cylindrical model having hemispherical ends and moored 
by two legs, one at each end. Only the incident regular waves and 
tension variations were recorded. The model dimensions and test 
conditions were: 

Length 3.44 ft 
Diameter 0.282 ft 
Depth of model 0.792 fit = 2.8 X dia. 
Weight 6.5 1bs 
Water depth 4.17 ft 

For this configuration, the computed tension variations in the 
mooring legs will be equal to the hydrodynamic forces expressed in 
Eq. (7), i-e., there will be no linear coupling between the tension 
variations and the motions of the model. These results, for regular 
waves of 1.45 second period, and several different amplitudes striking 
the model at 0, 45, and 90 degrees, are shown in Fig. 4. Experimen- 
tal points show the amplitudes of force variations which were measured 
in the two mooring legs. The theoretical lines have been determined 
by the method described here and by Havelock [1954]. Havelock's 
procedure gives the wave force and moment on a spheroid having its 
long axis horizontal, moving beneath a train of regular waves. For 
the present computation the approximating spheroid was assumed to 
have the same length and diameter as the cylinder model. The 
dashed curve labelled "present work" was computed by Eq. (7) 
assuming the infinite fluid value of unity for the added mass coefficient 
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, LBS 

FORCE AMPLITUDE 

°6 Ol G2" 03804. 05). 06 OF; 
WAVE HEIGHT , FT 

Fig. 4. Tension teg single cylinder 

of the circular cylinder and a quadratic drag coefficient of unity. 

Within the limits of experimental accuracy, the forces are 
seen to vary linearly with wave height for a range of heights tested. 
The two theoretical procedures are seen to give results of about 
equal degree of conformity with experiments. 

Triangular Platform 1 in Regular Waves 

Experiments similar to those with a single cylinder were 
next conducted with a complete platform model. This model was 
similar to the one shown schematically in Fig. 3 except that the main 
horizontal pontoons were of oval cross section and the above-water 
deck was supported by a space frame arrangement of very small 
vertical and inclined tubes. The dimensions of this model, referred 
to as Model 1, are given below: 
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Weight 40.13 lbs 

Buoyancy 56.40 lbs 

Length of side of 
equilateral triangle 3292 ft 

Main pontoon cross section, 
vertical and horizontal 
semi-axes 0.175 X0.109 ft 

Vertical member - radius 0.031 ft 

Draft to centerline of main 
pontoon 0.77 ft 

Water depth 4.18 ft 

This model was subjected to a large number of tests in regular and 
irregular waves. Only a few of the regular wave tests are reported 

here, 

- 
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Fig. 5. Tension variations in legs -- Model 1 
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0.5 

WAVE DIRECTION = 0° 
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DRAG COEF = 1.5 

° rs 
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) 0.1 0.2 0.3 04 0.5 
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Fig. 6. Surge motion -- Model 1 

Figure 5 contains a comparison of measured and computed 
tension variations in the mooring legs for three different wave 
periods and Fig. 6 contains the platform surge motion. Again, the 
agreement between computed and measured values is about as good 
as in the case of the single cylinder. Two features should be noted 
here. First, a mean curve drawn through the experimental tension 
variations appears to curve slightly concave downward with increas- 
ing wave height, thus indicating a measurable nonlinearity in this 
quantity. Second, better agreement between the computed and 
measured values is obtained for motions than for forces. Note that 
the motions are shown for two different values of the assumed 
quadratic drag coefficient. The effect of a substantial change in 
this quantity is seen to be slight. 

Triangular Platform 2 in Random Waves 

A second triangular platform was tested in both regular and 
irregular waves. This platform, designated Model 2; was similar in 
arrangement to the platform depicted in Fig. 3 and had the following 
characteristics: 

Weight 28.49 lbs 

Buoyancy 32.30 lbs 

Length of side 3212 ft 

Main horizontal pontoon dia. 0.187 ft 

Vertical cylinder dia. 0.381 ft 
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Draft to centerline, 

horizontal pontoon 0.78 ft 

Water depth 4.70 ft 

This model was tested in six different random sea conditions, 

representing two families of wave spectra. The first family of 
spectra, designated "A," have their peak ordinate at a wave period 
of about 0.9 second. The second family, or "B" spectra, have their 
peak at about 1.55 seconds. Both families for several different 
significant wave heights are shown in Fig. 7. These two spectra 
were used in order to adequately excite the model over the range of 
wave periods of interest. 
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PERIOD IN SECONDS 
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A SPECTRA x 104 B SPECTRA x !0° 

WAVE AMPLITUDE HALF - SPECTRUM 

Fig. 7. Experimental tank wave spectra 
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The model response is shown in Figs. 8 - 10 for waves mov- 
ing parallel to the X-axis. The first two of these figures show the 
mooring tension variations, and the last shows the surge motion 
versus wave period. In each case the ordinate is the double ampli- 
tude of the force or motion in question divided by wave double ampli- 
tude, thus the amplitude of the transfer function obtained from a time 
series analysis of the random wave tests. Points on the figures dis- 
play these random wave results for three significant wave heights 
within the applicable range of periods for the "A" and "B" spectra. 
Also shown on these figures are results from experiments in regular 
waves, and theoretical predictions. 

It is interesting to note that the random sea tension variation 
results display an apparent amplitude dependence in the range of 
longer periods. This is the range in which drag forces would be 
most strongly felt and no doubt points to a possible deficiency in 
the process of linearizing the drag force. 

As before, the surge motion shows very good agreement 
between experiment and theory. 

0.2 0.6 1.0 1.4 1.8 2.2 26 
WAVE PERIOD IN SECONDS 

Fig. 8. Tension variations in anchor leg 2 
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VI. CONCLUSIONS 

In the previous section, a comparison is shown of experi- 

mental measurements and theoretical predictions of platform motions 
and mooring leg tensions, using the procedure developed here. The 
theoretical results were obtained by the simplest form of the pro- 
cedure in which constant infinite fluid values were assumed for added 
mass coefficients. Constant linear drag coefficients were used, and 
no attempt was made to account for the hydrodynamic interference 
between members of the structure. The first two groups of experi- 
mental results show that the observed performance of single members 
and assemblages does, indeed, follow a nearly linear pattern in 
regular waves, and this pattern is well predicted by the present pro- 
cedure. The last group of experimental results show nearly equally 
good results in both regular and irregular waves. There is, however, 
some consistent nonlinear amplitude variation in longer waves, as 
may be seen in Fig. 9. 

It is probable that the good agreement is obtained because 
the structures tested consisted of assemblages which satisfied the 
initial assumption reasonably well, i.e., 

(1) All members were long, slender cylinders relatively 
sparsely distributed throughout the structure. 

(2) The bulk of the members were submerged sufficiently 
deeply below the free surface. 

(3) The cross sectional dimensions of all members were 
small compared to the waves used in the experiments. 

(4) The motions of the models were small compared to the 

model dimensions and to the wave lengths. 

The aforementioned nonlinear behavior probably illustrates 
the failure of a single value of the linear drag coefficient to ade- 
quately represent this component of the hydrodynamic force over the 
entire range of frequencies. 
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SIMULATION OF THE ENVIRONMENT AND 
OF THE VEHICLE DYNAMICS ASSOCIATED 

WITH SUBMARINE RESCUE 

H. G. Schreiber, Jr., J. Bentkowsky, and K. P. Kerr 
Lockheed Misstles and Space Company 

Sunnyvale, Caltforntia 

I. INTRODUCTION 

The U.S. Navy's first Deep Submergence Rescue Vehicle 
(DSRV) was launched at San Diego, California on January 24, 1970. 
This vehicle was designed and built by Lockheed Missiles & Space 
Company (LMSC) under contract to the U.S. Navy's Deep Submergence 
System Program Office (DSSPO) to provide the capability to rescue 
the crew of a submarine immobilized on the ocean floor. The DSRV 
is 50 feet long, 8 feet in diameter, has a fiberglas external hull and 
an inner (pressure) hull made of three interconnected HY140 steel 
spheres, Propulsion and control of the vehicle are provided by a 
stern propeller in a movable shroud, horizontal and vertical ducted 
thrusters located in pairs fore and aft, and a mercury trim and list 
system. An Integrated Control And Display (ICAD) system developed 
at the Massachusetts Institute of Technology Instrumentation Labora- 
tory enables the DSRV operators to correlate information from 
sonars, Closed circuit television, and advanced navigation devices, 
in order to perform this intricate rescue mission. The mission 
scenario of the DSRV is as follows. Word and position of a dis- 
tressed submarine is received and the DSRV and its support equip- 
ment are flown by three C141 aircraft to a nearby port. The DSRV 
is then loaded on to a mother submarine, by being attached to the 
after escape trunk, and transported to the area of the downed sub- 
marine. The DSRV then detaches itself from the mother submarine 
and descends to the disabled submarine, and mates to one of the 
escape trunks of the distressed vessel as shown in Fig. 1. The 
rescuees are then transferred into the aft two spheres of the DSRV 
and returned to the mother submarine, 24 at atime. Because of the 
possibility that the distressed submarine may be at an unusual atti- 
tude, and there may be bottom currents, the DSRV must be able to 
perform this hovering and mating maneuver in a one knot current 
and at attitudes up to 45 degrees in pitch and roll. 
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This hovering and mating operation puts the DSRV in a new 
and growing class of submersibles which because of their missions, 
are required to hover, work, search, and otherwise maneuver at 

low speeds. This requirement for low speed, high angle of attack 
maneuverability is far outside the range of operation of the conven- 
tional fleet type submarine and consequently analysis designed to 
predict the dynamic behavior of conventional submarines is not com- 
pletely applicable to the prediction of motions of the DSRV and other 
submersibles of the same class. The adequate prediction of the 
DSRV dynamics requires six degrees of freedom and a simulation 
capable of predicting the forces and moments at high angles of attack 
wherein the vehicle will experience lateral forces equal in magnitude 
to the axial forces. To be useful, the simulation must be precise 
enough for use in the design of the automatic control system. The 
operational environment is also quite different from that normally 
simulated in that the vehicle must hover and maneuver in currents 
at near zero forward speed and in the presence of the disabled sub- 
marine which causes considerable disturbances to the flow field. 
This paper, which is divided into three general parts, presents one 
approach to the simulation of the dynamics of a highly maneuverable 
submersible. The first part describes the simulation of the free- 
stream vehicle dynamics or thé dynamics outside the influence of 
the distressed submarine. The second section deals with the inter- 
action forces and moments caused by the presence of the distressed 
submarine and includes a discussion of a test program conducted to 
measure these forces and moments. The third section describes 
the application of the resulting equations of motion in conducting a 
man-in-the-loop simulation of the DSRV motions during the mating 
maneuver. 

The equations of motion were developed at LMSC and pro- 
grammed on a Remington Rand 1103A computer. They were used 
to determine the preformance characteristics of the vehicle to be 
used in design studies and to provide equations of motion for use in 
the control system development. The interaction forces were 
measured in the 12-foot variable pressure wind tunnel at the Ames 
Research Center in Mountain View, California. Tests of this nature 
were necessary due to the lack of data on interaction forces and the 
possibility that these forces would provide a significant influence on 
the vehicle and control system design. The manned simulation was 
performed at the Marine Systems Division of the Sperry Rand 
Corporation to provide demonstration of the ability to manually con- 
trol the DSRV within the limits necessary for mating and to deter- 
mine operational limits for this mode of operation. 
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Il. FREE STREAM DSRV DYNAMICS SIMULATION 

EQUATIONS OF MOTION 

The development of a dynamic simulation of the Deep Sub- 
mergence Rescue Vehicle (DSRV) follows a different approach than 
the methods used in most submarine studies. This deviation from 
the standard approach is necessary because of the basic differences 
in the mode of operation of the DSRV compared to that of conventional 
submarines. While the analysis of a submarine is generally con- 
fined to prediction of the vehicle dynamics at speed in an infinite 
fluid, the DSRV dynamics must also be simulated while hovering and 
docking in the presence of a downed submarine. The conventional 
method used to simulate the dynamics of a submarine is to calculate 
the position of the center of gravity of the vehicle using linear force 
and moment coefficients for the complete vehicle which are refer- 
enced to its center of gravity. The basic equations of motion for 
the DSRV differ in two ways from this conventional method, first in 
the choice of an axis system and secondly in the manner of handling 
the forces on the vehicles and appendages. 

Axis System 

Since the DSRV is required to assume angles of 45° to the 
horizontal in pitch and roll (very unrealistic for a conventional sub- 
marine) a mercury trim and list system is incorporated which moves 
the vehicle's center of gravity (c.g.) to accomplish these attitudes. 
The fact that the vehicle's c.g. moves with respect to the vehicle 
during maneuvers makes it a poor choice as a reference point for 
describing force and moment coefficients since they would have to be 
changed as a function of c.g. position. Using the c.g. as a refer- 
ence axis system would also lead to complications in describing the 
vehicle's motion with respect to the distressed submarine since the 
motion of the axis system with respect to the vehicle would be in- 
cluded in the velocity of the axis system. Therefore, an axis system 
fixed to the body was used as a reference point. Since the axis sys- 
tem is not always at the center of gravity and terms to account for 
this shift must be included in the equations of motion there is no 
advantage in choosing the nominal vehicle c.g. as the center of the 
axis system. There are, however, advantages to having the x-axis 
lie along the vehicle centerline since the basic DSRV shape is a body 
of revolution. This axial symmetry provided by having one axis of 
the system lie along the vehicle centerline greatly reduces the number 
of cross coupling coefficients required to describe the forces and 
moments on the body. The positive direction of this axis is forward 
so that positive vehicle velocities are associated with vehicle forward 
motion. Similarly with the z-axis through the centerline of the transfer 
skirt (280.8 inches aft of the forward perpendicular) the number of 
cross coupling coefficients are reduced and the direct reference to 
the centerline of the transfer skirt simplifies the description of 
relationships between transfer skirt and the hatch during mating 
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maneuvers. The positive direction of this axis is downward com-: 
mensurate with standard submarine dynamics analysis. The y-axis 
is through the x-axis z-axis intersection with positive direction to 
the starboard to provide a right handed orthogonal system. This 
xX, y, 2 body axis frame is related to an inertial axis system, 

X, Y, Z, through the ordered rotations WV, @, and @ about the 
Zz, y and x axis. The origin of inertial axis system is located at 
the origin of the vehicle axis system at the start of a computation 
and the X Y plane is parallel to the water surface with the vehicle 
axis in the X Z plane. 

The Euler angles are formed in the following manner. With 
the two systems initially coincident, a first rotation, (ZW), is 

performed giving the system (x,, y,, Z). Next a rotation, (y,®), 
is performed about the y, axis resulting in the system (x, y,, Zo). 
A third rotation, (x4), about the x axis brings the body axis 
system, (x, y, z) to the final position. The transformation matrix 

relating the (X, Y, Z) system to the (x, y, z) system through the 
above ordered rotations is then 

x cos@ cosw cos®6 sin sind x 

y |=| sin® sin@cos-cos@ cosy sin@ sindsinbtcosdcosi sinécosé fl y 

Zz sin8 cos@coswtsiny sing sind cosdsiny-sinécosW cosb cos@}} Z 

It remains to relate the Euler angle rates to the roll, pitch and yaw 
rates, (p,q,r) respectively. The relation is 
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4 p t+ tan 0(q sin #6+r cos @) 

@ |= qcos $- r sin $ 

w (r cos 6 + q sin $)/cos 0 

High Angle of Attack Considerations 

The second major difference between the DSRV simulation 
and the conventional method is required because of the high angles 
of attack experienced during the hovering and docking maneuvers. 
This high angle of attack problem becomes accentuated by the vehicle 
which, by using its thrusters, is capable of turning without forward 
way, a maneuver entirely outside the scope of those covered by 
conventional analysis. These shortcomings of the conventional 
analys is were overcome by a technique used during development of 
LMSC's DEEP QUEST research submersible where the hydrodynamic 
forces on the body and appendages (in this case the shroud ring) are 
considered separately. This allows for adequate representation of 
stall characteristics of the shroud ring as a function of the local 
angle of attack at the shroud ring which is essentially impossible to 
account for when a total coefficient for the body-ring combination is 
used in the simulation. The coefficients of the body itself are handled 
through addition of a normal drag components to the standard small 
angle of attack representation of forces. These high angle of attack 
considerations will be discussed further in the following sections. 

The equations of linear motion are derived from the funda- 
mental equation 

e = 2 (mY) (1) 
external 

stating that the sum of the external forces acting on a rigid body of 
mass m, equals the time rate of change of the momentum of the 

body. The momentum, mVg,, is a vector quantity and V, is the 
inertial velocity of the center of mass. Expressing V. in terms of 
the velocities and rates about the vehicle fixed axis system described 
earlier 

u+aqZg- rY¢ +t Xe 

wtpY,- 4X_tZ 
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where Xg, Yg, Z,g are the coordinates of the vehicle center in the 

body axis system. Neglecting the velocity and acceleration of the 
ceg.e with respect to the body (Xg, Yg, Ze¢, X_q Yo, Zg= 0) because 
they are small and performing the operations 

= d pee ne = 
Fexternal = ar (™Ve) =mV, body pmo aN 

we obtain 

u tqw - rv - X(q° + 1°) + X(pq - r) + Z,(pr + q) 

Pexternol =myfu tru - pw - Yg(r" + p*) + Z,(ar - p) 7 X(ap + r) 

w+ pv - qu- Z¢(p? +g?) + X,(rp - q) + ¥,(rq +) 

The equations of angular motion are derived from 

Mexternal = £- (le) (2) 

which states that the sum of the external moments acting on a body 
equals the time rate of change of the angular momentum of the body 
with both the moments and angular momentum expressed about the 
same point. Since the hydrodynamic moments are described about 
an off c.g. axis system the development of the right-hand side of 
the equations consists of expressing the time rate of change of the 
angular momentum of the body about the center of the axis system 
with the rotational vector expressed in the directions of the body 
axis, The results of this operation [1] yield: 

Tp + (i - i )qr +m ¥,(w + pv - qu) - Z,(v tru - pw)| 

Mexternal = fea AU ESE) yeep es! | Z,(u + qw- rv) - X,(w + pv - qu)} 

lLrt+(I, -I,pqtm X.(v + ru - pw) - Y,(u + qw - rv) 
z y x G G 

The moments of inertia I,, I, and I, are the moments of 
inertia about the center of the body axis system and not about the 
vehicle cénter of gravity. Since there is near symmetry in weight 
distribution about this body axis system, cross products of inertia 
have been dropped from the equations of motion. 

The external forces and moments, Foyterngi ANd Meyternai » 
on the vehicle during free stream operations come from three 
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sources; the body, the shroud ring, and the thrusters. 

Fexternal = F body + Fghroud * Fthruster - 

The following sections will discuss the simulation of these three 
classes of forces. 

BODY FORCES 

The forces on the body can be divided into several types: 
the static forces, Fhoqy, static » associated with buoyancy and weight 
and the dynamic forces, Fhoqgy dynamic? which depend on vehicle 
motions with respect to the water. 

Static Forces 

The weight or gravitational force (W) acts inthe Z direc- 
tion and the buoyancy, A, acts inthe -Z direction. The total 
vehicle weight, W, can be best expressed as the vehicle weight 
when in neutral trim W, =A plus the change in variable ballast 
from initial conditions. The resulting static forces on the body are: 

- sin 6 

F pody, static = (Wo +My, - S)| sin @cos 0 

cos $cos 8 

The DSRV contains the following ballast and trim systems which will 
affect the static forces on the vehicle: 

Main Ballast 

Variable Ballast 

Transfer Ballast 

Rescuee Ballast 
Mercury Trim 
Mercury List and BG Control 

In operation, the main ballast tanks are full when submerged. 

The Transfer Ballast tanks are empty except when they are being 
used in the dewatering process, and rescuee ballast is exchanged for 
rescuees providing a constant value during submerged operations. 
These systems do not vary during normal submerged operations and 
therefore are not included in the simulation. 

The tanks whose contents vary during submerged, unmated 
operation are the variable ballast (T, and T 3); trim (T, and Ts), 
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and list (T,, T,, and T;) system tanks, Fig. 2. 

The variable ballast tanks (6, 7) are hard tanks each witha 
capacity of 500 pounds of seawater. Water can be transferred to and 
from the sea from either or both tanks at a rate of 2 gallons per 
minute. 

The mercury trim system is a set of two tanks (4,5) con- 
taining 225 pounds of mercury and 15 pounds of oil. A pumping rate 
of 3 gallons per minute provides a net weight change of 5.3 pounds 
per second between the two tanks. With the list system reservoir 

full (Z, maximum) a 23 degree trim angle is attainable. 

T4815 
16817 

12 13 

TI 

Tl LIST SYSTEM RESERVOIR 
T2 STARBOARD LIST TANK ene 
13 PORT LIST TANK x 4g + X5Ws 
T4 FORWARD TRIM TANK CG = —W=Ww 
T5 AFT TRIM TANK . 
T6 FORWARD VARIABLE BALLAST TANK 
17 AFT VARIABLE BALLAST TANK Y5W> «YW 

Y ~ = 
G + Z 

ti 

z(w__w_) 
7. =< Z nf n n no 

G = “co* —Wl+8W, 

Fig. 2. DSRV Trim and List System Tanks 

The list system consists of three spherical tanks each witha 
capacity of 2780 pounds of mercury. The two list tanks (2, 3) are 
located 2.2 feet above the vehicle centerline and are separated by 
4.4 feet. The reservoir (1) is located 3 feet below the centerline. 
The configuration of the list system piping and valving is shown in 
Fig. 3. It is noted that transfer can be effected between list tanks, 
between each list tank and reservoir and between the two list tanks 
tied together and the reservoir. Pumping rate can be varied between 
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1/2" TUBE 

N = NEUTRAL (AS SHOWN) 

E = ENERGIZED 

Fig. 3. List System Schematic 

0 and 28 GPM (51.3 pounds per second net change). During roll 
damping operation the rate is controlled proportionally. In all other 
modes of operation, maximum rate is used. 

Variation of BG is accomplished by transferring from the 
reservoir to the two list tanks. Roll damping is accomplished by 
transferring between list tanks for list angles less than 22.5 degrees, 
and between reservoir and the appropriate list tank for list angles 
greater than 22.5 degrees. 

n = net weight in tank n - pounds 

rate of change of weight in tank n - pounds /second 

commanded rate of change 

228% 

iT] 

net weight in tank n for vertical buoyancy, neutral 
trim and maximum z,- DSRV on surface 

D = Depth, feet 

Baseline operation is represented by 200 pounds plus a cor- 
rection for depth in each of the variable ballast tanks, 93 pounds in 
each list tank, 2404 pounds in the list system reservoir, and equal 
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distribution of mercury between the two trim tanks. Note that all 
mercury system weights listed represent the difference in weight 
between mercury and an equal volume of oil. 

Table 1 summarizes the location of all tanks and the value of 

Wg: 

TABLE 1 

Physical Parameters of Ballast and Trim Systems 

W max 

= i 140,369 pounds 

ZG = 0.1335 feet 

The effects of variations in the weight of water in the variable 
ballast tank on. zg have been included in the basic vehicle equations 
and the z_, variations computed in this section are due only to vari- 
ations in the list and trim systems. 

Changes in depth effect both the density of the water and the 
compressibility of the hull. The net effect on buoyancy, using tem- 
peratures and salinities corresponding to sub-tropical waters cor- 
responds to a gradient of 0.1 pounds per foot of depth. Under normal 
conditions the required ballast change is divided equally between the 
two variable ballast tanks. Thus, for neutral conditions 

W, = Wy + 0.05D 

All operations are written with t = 0 corresponding to neutral 
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buoyancy at the initial operating depth of the problem. 

Thus 

Wn = War, * Wr dt aap Maree eS Pe arc 
0 

t 

Wy = Wyo +9-05D +f) W, dt n= 6,7 

The term Wy which is used in the vehicle equations matrix is 
given by 

Wii = We t Wr - Weg - Wao> 

Location of the center of gravity is given by 

wee xqWa te x5W5 

G 

Wo + ie 

Yo= W> + y3W 
gz ee 

Wo + DW 

D2 Wr aq] Wao) 
Zg= Cs) 

Wo " DW; 

Dynamic Forces 

The hydrodynamic forces arise because of the motion of the 
body with respect to the water and are defined in terms of hydro- 
dynamic force coefficients. The hydrodynamic force and moment 
coefficients used in this report are not the standard non-dimensional 
coefficients used in most studies. It has been found that a set of 
dimensional coefficients provides a much easier nomenclature. The 
force and moment coefficients are represented by subscripted capital 
letters of the form Xgpce._. The letter denotes the direction of the 
force (X for forces along the x-body axis, Y along the y-body axis, 

and Z along the z-body axis) or the axis about which the moment 
results (L, Mand N for moment coefficients describing the mo- 

ments about the x, y, and z body axes respectively). 

The subscripts vary in number and form and denote the 
variable quantities that the coefficient must be multiplied by to 
obtain a force or moment on the body. For example, Xyjy is the 
dimensional axial drag coefficient since when multiplied by u |u| 
the square of the axial velocity, u, it results in an axial force 
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Xywulul = Fx drage Similarly, Muwwlu| is the pitching moment 
used by the normal velocity, w. The use of absolute values in these 
coefficients provide for the proper signs on the force and moments, 
and because of most of the near fore-aft symmetry of the DSRV 
less the shroud, the coefficients are independent of the direction of 

various velocity components. The direction of the normal force 
Zwiui W}u} is dependent only on the direction of the normal velocity 
regardless of whether the vehicle is going forward (u > 0) or back- 
ward (u<0). Since the sign of Zwiy is negative the normal force 
due to normal velocity is always in the opposite direction of the 
normal velocity. A brief description of the development of the 
representation of hydrodynamic forces on the body follows. First 
consider the forces on the axisymmetric bare body of the DSRV and 
then add forces resulting from asymmetries, such as the transfer 
skirt and splitter plate. The representation of lift, acceleration 
and axial drag forces on an axisymmetric bare body is relatively 
well known and can be obtained from slender body theory, Ref. 2, 
other potential flow analysis, Ref. 3, or test data and is of the form 

Xyu t Xyy ula 

F Yyv + ¥pr + Yow rlul + Yuu v1 ul EXT lift, acceleration, axial drag 

Zyw + Zaq + Za a/ul + Zwiyiwlu| 

These lift, accelerating and axial drag forces are those normally 
used to simulate the dynamics of submarines and provide a very 
adequate representation of the forces and moments at low angles-of- 
attack (a < 15°), At high angles-of-attack, however, they become 
inadequate. For example Zwyjw|u], the only force resulting from 
normal velocity, w, goes to0as u goes to 0, while a vehicle 
normal to the flow experiences a significant normal force. This 
normal force is due primarily to flow separation and is, excluding 
Reynolds number effects proportional to the normal velocity squared 
w*, Wind tunnel and water tunnel tests on the Polaris, Poseidon, 

DEEP QUEST, and other vehicles have shown that a reasonably 
good representation of the forces and moments due to normal 
velocity can be obtained by using the two terms Zwyy wlu| i Zwiww | w | 
where Zww is measured force at u=0 (g = 909) divided by the 
normal velocity squared and Zyjw is the slope of the force versus 
angle of attack curve. Pitching (yawing) of the vessel will cause a 
variation in normal velocity along the vessel and therefore a variation 
in this normal drag over the body. It remains then to develop a 
method to account for the distribution of this local normal drag 
caused by pitching and yawing. The use of a strip theory method 
provides that the normal force due to normal drag can be expressed 
as Znormal drag= Ziawiw'|w'| dx where Zi‘, is the local value of 
the normal force coefficient and w' is the local normal velocity and 
can be expressed as w'=w+tqxX where X is the distance between 
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the point in question and the center of the axis (- forward). This 
integral can be evaluated at each step in the integration of a simula- 
tion when the distribution of Z\,y is known but it proves both 
cumbersome and time consuming. On the other hand, for a nearly 

cylindrical body such as a missile or the DSRV, test data has shown 
that a fair representation of both the force and moment are obtained 
when a constant value is used for Zw, from the nose of the vehicle 
to the forward edge of the shroud, a distance L, from the nose. 
This then allows the value Z'wiw to be removed from the integral 
and sets the equality Zwiw= Zwiwi/Ls. Replacing the local normal 
velocity w' by its equivalent w + qX, the integration 
Z ata ‘Ioody (w + qX)+ |(w-qX)| dX still poses some problems because 
of the absolute value signs. To accommodate these two integrals 
are formed depending whether the center of rotation, the point where 
w' =0, is on or off of the body. Expressing the ratio of the distance 
the center of the axis system is off of the nose, Lj), and the length 
L, as K,= L/L, the center of rotation is forward of the nose when 
w/qLs < Ks and aft of the body when w/aLs >K, - 1 and the value 
w'|w'| can be replaced by (|w|/w)(w')"=(|w|/w)(w? + 2wxq + x?q?) 
and the integration 

ae LeLy 
Ziel w' |w'i|*dse= Z! ll { (w* + 2wxq + xq?) dx 

E w -L wlwl 

results in three terms 

wi 2 Cywlw] + Ga lw] + Cyl g 
where 

2 mt 
C, = Lg, Zwiwi 

3 ! 

4 2 ' 

When the center of rotation is on the body K,= w/ql, = K,- 1 the 
integral must be divided into two parts to account for the sign change 

in w'|w'| at the center of rotation and 

Lg ly -w/q Lg ly 
2 

Zit ww? |SdX*="= Zs Jal] ¢ w' ax sh w! ax| 
-Ly -w/q 

where the lal/a is used to denote the direction of force since the 

local normal velocity forward of the center of rotation depends only 
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on q. This when expanded to 

- Zwiwi lal hie (w? + 2qxw + (qx)*) dX ey) 
q Ly 

Le L, 

(w? + 2qxw + (qx)*) ax| 
Ww 

and integrated yields a four term expression for the normal drag 
with the center of rotation on the body 

C4a/la| w°/a + Cya/lal w? + wlal +c alal 

where 

Caw = 21/3 Ziel 

Cs Baele (1 - 2K )z' 
wiwil 

Cogn (i) Ke Ze 
wiwl 

Grit Kk, + kG - 2K) Zz 
Tw wiwl 

In a similar manner the lateral drag terms for the sway or 
equation are developed and result in C, abs us ie at lv | + GC, e/a 
for the center of rotation off oe the bod “vy /-rL or v/-rL, < K,-1 
and Cqar/|r|v3/r + Cove /|t - my A # eta for the center of 
rotation on the body K, = ia = - 1 with 

2 
Ciy = Ls Y vivi 

3 
Co = fs (2K, - 1)Y'! 

vivl 

EN at a 3K et 3K. )yt 
Us < 

i} 
viv 

Cay = 23/3 Yvivi 

2 C.. =, (2Ko- 2) iui 

> 2 
Ce, = Le Lt -~K y ee 3 mg be 

4 2 Cae, /3 = Kort tee aK, 4) y au 

This then completes the simulation of forces on the axisymmetric 
bare body of the DSRV. This representation has been developed 
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keeping in mind the fact that it will be programmed on a digital 
and/or analog computer and several simplifying assumptions were 
made to allow for mechanization of the resultant equations. As in 
any simulation a trade-off must be made between the accuracy of 
representation of forces and moments, the ability to mechanize 
certain types of expressions, and the availability of data. 

The presences of the transfer skirt and splitter plate add 
additional coefficients to the body because of the asymmetries they 
provide. A complete set of these terms due to asymmetries were 
developed, their numerical values determined, and their relative 

importance established, with the reduction in the number of terms 
in the simulation as an end goal. It was doin that additional 
terms of the form Xquw > Xryrv, X, r’, Koad’: Xrprp» YpPp,» YpwPw, 

Yap QP » Yuiwiv] ws z ppP* » Zprpr; aa » Zryrv, Zeer , and Zyjyju u| 
would be required foe adequate simulation of the dynamics of the 
DSRV during the hovering maneuvers. 

qs, The addition of forces due to the shroud, Fyproug,s propeller, 
Forop» thrusters, Frthr» and the interaction forces during mating, 
Tae , complete the force equations. 

A similar line of development was used for determination of 
a set of moment equations. Values for most of the coefficients were 
obtained from model tests conducted at NSRDC (Ref. 4) and Hydro- 
nautics (Ref. 5), and theoretical values were computed for the re- 
maining coefficients. A complete set of equations of motion used for 
the DSRV Model for Analysis (Ref. 6) follow along with numerical 

values of the hydrodynamic coefficients, Table 2. 

Surge: 

m[u + qw - rv - xg(q? + r*) + yelpq - r) + zg(pr + q)] 

= Xu + Xyaw + Xyrvit+ Xywulul + Xr + Xa + Xprp 

- (Wo +) We - 4) sin © + Xghroua + Xprop + Xthr + Xdist 

Sway: 

m[v + ru - pw - ye(r* + p*) + agar - p) + x,(qp + r) | 

SY 7 Ypert Ypp + Yriu r|u| + YpwPw + Yqpqp 

| wi ch Monomer LY yi, V Pa act 
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* 
PhGeviy| + Conv + oul r*] 

# Cyst — + Caer y +Gevir| + Car|r(|] 

+ (Wo + > wy, - A)cos 8 sin @ + Ygnroud + Yprop + Ythr + Yaist 

* Vv Vv Terms are cancelled when “1, >Kg, or ie <K,- i 

+ Vv 
Herms are cancelvedi when Ky = = Ke 1 s~ -rL, s 

1 2 
Cy =z Pls Yyivi 

4 3 ’ 
Coy iss pl, (2K, - 1)¥ viv 

1 4 é ! C3, = 5 pl, (ol eI oe) ae, 

1D 7211 
Cay = = Pz Yui 

1 2 
Coy =z PL (2Kg - 1)¥ viv 

{ 2 2 
Cey = = pl, iE Key Re xii 

Cres ol Bl eK ek ee i7ve= No Peg “Ns s gee vivi 

Heave: 

; 2, 2 ; ° 
m[w +pv - qu-z(p +q ) +x,(rp - q) + yg(rq + p)] 

; ; 2 2 2 = Zyw t+ Zaq aR ZopP + ZyyPV + Z5-Pr + Za sp Sra ice Lopt 

+ Zyiyu |u| + Zui wal + Za all 

+ (Wo +) wy - A) cos 8 cos $6 + 
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aK + Cywlw] + Cyalw] +c, bl g ] 
3 

Bigs 
+ [ Cawrap qt Swat ©” + Cou i a +C,alal]” 

+ Zone + Z gist A Z shroud i Z prop 

* 

Terms are cancelled when w/ql,>K, or w/ql,< kK, - 1 

** 
Terms are cancelled when K, 2 w/ql, = K, - 1 

Cw = pl, Z wlwil 

3 
Cow= > PLS (1 - 2K)Zyiwy 

4 2 1 
Caw pl, /3 (4 ~ 3K, + 3K, )Z iwi 

p2L,/3 Zalwi 

ie) 
a = 

1 2 el, (i 5 2K)2 
wliwl 

OQ o = N 
3 2 2 

pls [« - K,) + a) a 

2) N 

Q 

N By = = 

I Ne 

Ne ne aK NK Ne NK Ne 

4 2 
pL, /a(i - K+ K, 1 - 2K)Z 4. 

Yaw: 

Lr + (I, - I,Jap + ml xg(v + ru - pv) - ye(t. + qw - rv)] 

= Nex B Niv + Npged + Nuvi lulv + Netut r{u| + NwpwP 

+ Nyqvd + Nopwip |u| + Niwiv | wlv 

+ (WoxX, a > Wy x4) cos 8 sin ¢ + Woycesin 8 

+ Yehroud*shrd * Nope + Npropt Naist 

4 * 
+ Cher] el + Copy A Corie Te? + Ca,|r|v] 
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** Cs,|vir + Cy viv + epi r?] 

* Vv Vi Terms are cancelled when - FL. >Ks or - ai < K, - 1 

A 
Vv Terms are cancelled when K,= - ns K,- 1 

s 

4 5 4 eee = pL, /4[K, + (1 - Ky Yui 

{ 2 2 
Cor = > pies /2lK, + (1 - Ke) Win 

4 
C. ae 5 pL, /6 Yyivi 

en 4 3 4 3 y1 
‘ates wire 2L,/3{ Kg - (1 = K,) Tein 

4 4 ) 3 
Cz, = o p 2125/3 Ket (i= Ks) aii 

iM 3 2 2 
Ce, = 2 pl, [2 [K, ia (4 ~ Ks) 1 Yviw 

4 5 4 4 xy: 
Cr, = > pl, /4[Kg - (1 - K,) ger 

Roll: 

Lp PL. = qr + ml Yg(w + pv - qu) = Zg(Vv + ru - pw)] 

= Kp + Ky + Kar + Ky, v|w| +K, rw + K, va + K,pw 

+Kyy viel +Kyy viv] +Kyyplul +K,jy rlul + Kyi P P| 

+ Woyg cos 8 cos $ - (Woz, +) Wy, Z,)cos 8 sin > 

+ Korop + K gist 

1129 



Schretber, Bentkowsky and Kerr 

Pitch: 

Iq + (I, - L)pr + m|[ zg(u + qw - rv) - X_(W + pv - qu)] 

= Mga + Myw + M,pr + Mutwi | ul w * Maui a| | + Mypvp 

+M,,,;u]ul + Myw? + Myyrv + Myr - (Woz¢ >) W;, 24,) in @ 

= (W,Ge +) Wy eos ®@ cos $ - ZshroudXshrd + Mprop + Mthr 

- * 
+ Mais +1 Cigalal * Cogrdyw! + Cogpdy < + Cagl a 

** #[Cgglwla + Cggwiw] +6, AL o] 

x 
Terms are cancelled when w/qlL, >K, or w/ql,<K,- 1 

* 
Terms are cancelled when K,= w/ql, 2 K, - 1 

Cig =F ply /41KS + (1 - Ke)" Zbrwt 

Coq =5eL3 P20 +(1 - Ks) ] Z wiwl 

C3q= - = pLs/6 Ziwi 

Cag =5p2/3L, [-K, F(t = Ky) ZG 

Ce, = p2/3L, [K> + (4 - Rep Z re 

Cog= 5 ple /2[-Ky + (1 - Ke] Zhiq 

Ch, = 5 ple /Al - Ky + (1 - Kyl") Ziaw 
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TABLE 2 

DSRV (ML-493-03) Parameters and Coefficients 

we, (436s ates I, 3678X 10° slug-#t 

26 0.1335 feet Iy 4.52% 10° slug-ft* 

i 49.33 feet Te 4550 40 alupor 

L, 23.4 feet 

L. 46.95 feet 

FORWARD MODE 

-3 2 | 
-6.87X 10 p72. = -1.67X 10 | 

i yd 2a ee tons 2.433 X 10° -1.24x 10° 

| am -4.6 X10° ai i2 x 10" 

L Zhu x10" 2.43 

pa x 10° -1.95 x 10° 

| LAT 208, AO -5,59X 10: 

| Ye W422 Xa" ao = 13.36 X 107 

| -9.41 X10 2.198 X 10° -~2.07 X 10° 

NOTE * Indicates coefficient value is zero when w is negative, 

** Indicates coefficient value is zero when |= | > 0.173. 

(1) Under following conditions: 

200# in each variable ballast tank, 

93# in each mercury list tank, 
remainder in reservoir. 
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TABLE 2 (Cont'd.) 

Coefficient Non- Dimensional Dimensional 

-1.2 x10° PY = -4. 44X10" 

x 10° 1.20X10° 3.72X10° 
-2 3 

x 10 -3.60 X10 

x 107 “4,32 x 10" 

x 10> 1.04% 10° 

x 10° 2.64 X 10° 
-2 3 

x 10 3.60 X 10 
-2 3 

x 10 -3.60 X 10 
-3 2 x 10 -4.44 X 10 
-2 3 

-3.4 X40 -3.72 X10 
-3 3 2 

5.32X10 af2Li= 6.32 10 

-4 
5.4 5G10 1.20 X 10° -6.6 R19 

2.3 X107 2.76 X10° 
-2 3 

-2.8 X10 =3,36 10 
- 3 

oO KAO" -3.6 X10 
=> 2 

4.98 X 10 5.98 X 10 
é 2 

Heo tO. pel -8.3 X10 
-4 6 2 

-1.3 x10 5.92 xX 10 = fel x 10 

4. 2 

-1.34X 10 -7.93 X 10 

1.4 x10 8.3 40 
2 2 

1.34xX10° 7.93 X 10 
2 

i.3 X10° 7.7 X10 

=1.3 7207" =7.7 M40" 
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TABLE 2 (Cont'd.) 

Coefficient Non- Dimensional Dimensional 

5.92 x 10° 

ok Seto) 8.3 x 10° 

-4 2 
1 34.<40 7.93 X10 

-4 2 
=1e,10.. e110) -5.92 x 10 

OL Ore 5.92 x 10. 

0) 0) 

-3 2 
2210 2.64 X 10 

-3 2 

1.419. 40 4,42 <* 10 

-4 4 3 
-3.16 X 10 py Zine = -1.87 X 10 

-4 6 2 
1.5510 5.92 x 10 9.17 X10 

-4 3 
=2.354 ~ 10 -1.39xX10 

-4.5 x10° 2266 40" 
-4 2 

1.3410 7.93 X10 

-4 2 
= 23) 3x 10 (ey eae 8) 

x 2 
ia tO" -8.3 X10 

-4 2 
1.4 X10 8.3 X10 

-4 2 
={.58 X10 -9.35 X10 

n5le X40 322 10° 

“i G4 io -7.93 X 10° 

ee oe -7.7 X10" 
-4 2 

-1.34X10 -7.93 X10 

-5 5 3 
-1),55 X 10 p/2L = -4,53 X 10 

0 2.92 X 10° 0 
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TABLE 2 (Cont'd. ) 

-1.13 X10 
-3 

-1.4 x10 
-3 

1.39 X10 

0 

-3 
-1.4 x10 

-3 
-1.39 X10 

-3 
-8.05 X40 

-2 
-9.9 x10 

5 
-1.0 X10 

-615 “TO 

7.7 X107 
3 

5535 X 10 

-2 

-8.7 x 10 

-3 
5.35 X10 

-4 

x 10 
-2 

x 10 

2.4 X10 
-4 

2652 Xf0 
aa 

-7.25 X40 
-3 

5.4 X40 
-4 

-7.25 X10 
-3 

8.4 X10 

2 

p/2L = 

2.433 X10° 

p/2L° = 
5 

1.20 x10 

p/2L = 
6 

592 x 10 
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5 : 
2.92 X10° 

4 
-3.3 X10 

5 
-4.1 X10 

5 
4.06 X 10 

0 

5 
-4.1 X10 

5 
-4.06 X 10 

| 

-1.96X 10 

-2.41 X 10° 

-2.43 

-1.58 xX 10° 

9.24 10° 
2 

6.42 X 10 
4 

-1.04X 10 

6.42 10° 

566 SUG: 

13.0 ° to" 

2.88X10° 

-3.67X 10° 

-4,29x 10° 
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SHROUD RING FORCES 

The control shroud is a circular movable wing located at the 
aft end of the vehicle, supported by four struts space 90° apart, 
Fig. 4. The force and moments on the shroud ring are obtained from 
curves of lift and drag on the shroud as a function of total angle of 
attack of the shroud, Figs. 4 and 5. Resolving the resultant force, 
F, into the directions of.the vehicle's axis system provides the 
components used in the equations of motion, Xgbroug» Yshrouqs 2nd 
Z shroud’ The relative velocity of the shroud with respect to the water 
in the directions of body axis system is 

se u 

Vop = vg f=|v- Fe 

Ww, w + X,q 

The ordered deflection of the shroud, 6p, a deflection in the vehicle 

pitch plane followed by 6y a deflection about the pitched shroud 
yaw axis results in the relationship 

SAE SHROUD ANGLE OF ATTACK, ag, DEGREES 1.4 

Uer4 

on ae 
0.6 IS sles 

a Nia 
a oe 0.2 Pax 

BS 
REN SES 
Pa Nay 
roe al a 
ee eS 
ee ee 
FSF 
ae a 
poi aa ea Pm Viniaes ee ae 

0 120 140 160 180 

iets Gok i atti. a, DEGREES 

Fig. 4. Shroud Lift Coefficient, C, vs. Shroud Angle-of-Attack, aS 
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DRAG = C, 1/2pVv? 

Fibgc&s 
Ue Vg Ws 

8 FT 

1,83 FT 

0 20 40 60 80 100 120 140 160 180 

SHROUD ANGLE OF ATTACK, Ac IN DEGS, 

Fig. 5. Shroud Drag Coefficient vs. Shroud Angle of Attack 

Us Us 

ss = | Yes | = Teaae| Vs | = TsoeeYse 

Wes Wg 

between the velocity of the shroud relative to the water expressed in 
the direction of the body axis system Vcsg and the same velocity 
expressed in the direction of the deflected shroud axis system V,,. 

Us We cos 65 O- - sin 6p]f ug, 

are EE 0 4 0 Vs } 

Wy sin 6) 0 cos 6, |L_w. 

Wis 
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Sy 
U2s 

“Is —_ 

es) 7 Chie 

Y2s 
‘2s 28 

Is 

cos 6, sin by 0 cos 6, QO -sin 5p Ug 

= |-sin 6, cos 6, 0 0 4 0 Vs 

= 20 0 1Jtisin6, 0 cos 6pJLw, 

Us cos dycos 6p sin by -cos éysin d5][ us 

= Ts22s| Vs |= |-Sin 6ycos 6) cos dy sin dysin 6p |] vg | = Ts22s VsB 

Ws sin 5p 0 cos 6p Ws 

The total angle of attack at the shroud can then be expressed as 

1/2 
-lf (vag tw -I = 2s = 

shroud = tan [! a 2s) ] = tan | vns/‘tps| 
2s 

or performing the indicated operation 

1/2 
7 ( (-sinSycos dpus tcos Syvs tsindysin Spws )’ Hs inSpus tos SpweF| \ 

shroud = 
(cos § cos dpu, tsind,v, -cos 6ysind,wg) 

are then looked up on Figs. 4 and 5 and values of lift, L,, and drag, 

D,, on the shroud are calculated from 

2 z 
L, = p/2S,6,.V and D, = p/25;CpV 

with 

S, = b,C, 

2 Veutvtwe 

b, = 8 feet 

C,= 1.83 feet 

The lift and drag on the shroud are then resolved into forces on the 
shroud F,, and transformed into the body axis system, Fae ° 
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Np = Cc. cos @, + Cy sin a, 

on sin C.e- Cy cos @, 

— 

Fog se V25/Vns Ne 

-Was/VagNe 

and 

F Shroud = T2208 Fg 

The moments on the shroud are the product of the shroud force and 
the distance of the shroud center from the center of the axis system 
as shown in the moment equations. 

THRUSTER FORCES 

The propulsion system of the DSRV consists of a single con- 
ventional screw propeller for axial thrust and four ducted screw 
propellers arranged in forward and aft pairs for lateral and normal 
thrust. This system provides the vehicle with five degrees of 
maneuvering freedom (heave, sway, surge, pitch and yaw) and pro- 
vides forces and moments sufficient to meet hovering requirements 
in currents of the order of one knot. The control of the sixth degree 
of freedom, roll, is provided by the trim and list system. A com- 
plete treatment of the development of the maneuvering system is 
contained in Ref. 7. The following treatment will present the data 
used in the simulation with a little explanation of its development. 

Main Propeller 

The main propeller is a 6-foot diameter, wake adapted, 

three-bladed propeller with a blade area ratio of 0.24 and a maxi- 

mum speed of 1.64 revolutions per second. 

For estimates of the vehicle maneuvering performance the 
propeller thrust and torque characteristics are required for ahead 
and astern motion of the vehicle and for positive as well as negative 
propeller rpm. "Behind-the-ship" tests of the DSRV propeller were 
performed for all four operating modes at the Naval Ship Research 
and Development Center (Ref. 8). 

The curves of the thrust and torque coefficients, Fig. 6, are 

typical for ahead and astern operation of a propeller and can be 

expressed in the form 

eee her 
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NOTE: DATA FROM MODEL TESTS 
CONDUCTED AT NSRDC 

THRUST COEFFICIENT, Kr, AND TORQUE COEFFICIENT, 10Kq 

APPARENT SPEED COEFFICIENT, Ja = 745 

Fig. 6. Characteristics Curves for DSRV Propeller 
(Note: Data from model tests conducted at 
NSRDC (Ref. 8) ) 

The coefficients a, b, c have been evaluated separately for each 

quadrant of the propeller curves, and the resulting thrust and torque 
coefficients are used as an expression of the steady and transient 
characteristics of the propeller forces and moments. During 
maneuvering the propeller may also experience velocities normal to 
its axis. The resulting effect on the propeller thrust in the axial 
direction and torque about the roll axis have been estimated and the 

form of the coefficients can be rewritten including this effect as 
follows: 

2 2 2 1/2 
KeatbJ, te] +a(se +3.) re) 

where 
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vie ge 
Jy= nd 

ed 
nd 

u,v,w = X;y,Z components of vehicle velocity 

= components of vehicle angular velocity relative to 
yaw and pitch axis 

RK .Q 
J 

£ = distance of propeller from coordinate system origin 

The coefficients of the y and z components of the propeller 
force and the corresponding moment coefficients can be similarly 
estimated and are proportional to J, and Jy respectively. For the 

computations of the vehicle responses, all six force and moment 

components have been considered. The resulting propeller force 

and moment equations are: 

Xpop = 755 n(n| - 58 un - 3.8 ae +26 mn (ye twee” 7 U=) 05 <= -0.21 

= - 365 n?-172un- 45u>+26nlvatwe)’  ;u2z0,>8-0.21 

= 155 7 + 60 un + 22 n” + 26n(ve + wa)!” 3u< 0, n=0 

= - 365 n@ - 13 un + 22 n® + 26 n(ve + wo) 5 u<.0% mes 

Yprop = - 30 nvp 5. ee 0 

= - 12nvp ;n<0O 

Zprop = - 30 wp nO 

= - 12 nwp nex 0 

2 2 /2 e 

Pars a0 mln|- 6) Sai AOS ure eentve + we F231 A 

n 
= > -0.21 

2 2 /2 ° 
Wag Fee SS wal 38a + 22(v, + wp)” +130 a 4% >) 

We =,0% = -0.21 
e|p 
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2 @e 

Ba0n #80 un + 35.200 + 22(vp + we)? Tn eee 

it. <= 0, oy = 20 

i - 468 n - 8unt15,2u° + 22(ve two)! +131 a 5 

u<0,n<0 

Mprop= - 765 nwp - n= 0 

= - 306 nWp ; n<0O 

Norop = 705 NVp > n=O 

= 306 NVp Di 0 

where 

Vp=v- 25.54 

RS " Ww ot 25% 5 '¢q 

Ducted Thrusters 

There are two pairs of ducted thrusters used for maneuvering 
in the pitch and yaw planes, as shown in Fig. 2. The four-bladed 
propellers are 18 inches in diameter and have a maximum speed of 

9.8 revolutions per second and produce side force through a combi- 

nation of impeller thrust and a change in the pressure distribution on 
the hull (Fig. 7 and Ref. 7). The thrust due to variation in pressure 
distribution is very dependent on forward speed and the total thrust 
coefficient for the steady state n= 0 condition was measured at 
NSRDC as a function of forward speed (Ref. 9). Force coefficients 

derived from this test are shown in Figs. 5 and 6 as a function of 
u/|n| where n is the propeller RPS. The steady state force is 
obtained from the relationships 

2 * 

Xthr mf = Nmfl 5 

X thr ma = mat 

Lehr yf = an [nv T 

Yonr ya So 
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Fig. 7... Ducted Thruster Schematic 

* 
Z the zt = ny¢|M2¢/T| 

k 
Zthr za = Hy, @se\s 

* 
Mebr 2¢ = 1-06 nz¢|nz¢ | M, 

* 

Méhr za = 1-13 Nzq|Nz9| M2 

- 0.686 Ayatiyn Mehr yn 

* 

N the yf = 0.98 ny¢ | ny] My 

* 
N = 1.04n,,|n,,|Mz 

thr ya 

N thr zn - 0. 686 De, len 

where 

Kone mana X force due to thruster mn 

Yenr mn= * force due to thruster mn 
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Zehr mn= Z force due to thruster mn 

M¢bhr mn = Pitch moment due to thruster mn 

Neher mn= Y2W Moment due to thruster mn 

M = Direction in which force acts 

f for forward-thruster, a for aft-thruster Dp It 

with the force eye ; Te : Ts Pay > and moment coefficients 

(M,*, Mo*, My, M,*) shown in Figs. 8 and 9. 

FORCE COEFFICIENT (LBS/RPS“) 

FORWARD SPEED/IMPELLER SPEED, TnT (FT/SEC/RPS) 

Fig. 8. Effect of Forward Speed on Duct Forces 
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MOMENT COEFFICIENT (FT LBS/RPS2) 

FORWARD SPEED/IMPELLER SPEED inl (FT./SEC ./KPS) 

Fig. 9. Effect of Forward Speed on Duct Movements 

When the propeller in the duct is accelerating, the thrust 

component due to the propeller is a function of the ratio of jet 

velocity, Vj, to propeller speed, n. The thrust coefficient for a 

propeller of this type was estimated from data taken from Ref. 10 

and fit with a second order curve resulting in 

V; 

Tpmn= 10.63 nmn|Mmn|- 5-04 Vijmon| Vjmnn| ; ina a 

= 10.63 nap|nmnal + 6-0 Mmal Vjmnl - 5+04 Vjmnl Vimal 3 

Vimn < 9 

mn 
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where the jet velocity is obtained by integration of the expression 

aVimn _ 9035 (T at ~ 1.91 Vimnl Vjmnl) 
pmn 

The forces on the body due to pressure distribution changes are a 
function of the jet velocity alone and are expressed as 

Top sOeG55 Viet | Vime| (Ty - 2.93) 

Tyma= 9+ 655 Vine | V. ett 2003) 

The resulting forces and moments on the body are then expressed as 

2 * 
X thr mf — 0; 655 V jmt T3 

2 * 
Xehemareeeze Vim 14 

Y the yn Tpyn i T hyn 

Zthe zn = Tpz nt ie 

? * ok 

= Mig 2M; M, 

Tio Ty Tio 

M _ 2M r M ‘ 22 2 2 29 

ae T2 Teo 

Mig s0%e88 Uiya-t 0573 nye 

* 

= Mio M20 
Nene yt = 9-98 Tr +1.31 “T.* Tox bt 

Riise * * 

N = 1,04 M207 44,34 2Me2 oie zo thr ya — T 5 pya T* a * bya 

20 2 20 

Nishi > 06238 Lin. 73 nee 

* * with Tio» Too » Mio» Mgo being the values of T,*, T,", M,” and 
M, for 0 forward way (u= 0). 
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III SIMULATION OF DSRV/SUBMARINE INTERACTION FORCES 

There are two forms of DSRV/submarine interaction forces. 
The first is a mechanical type of force produced when the shock miti- 
gation system touches on the deck and transmits a force to the DSRV. 
The second type of force is caused by changes in the flow field cuased 
by the bottom and the downed submarine and will be called flow inter- 
action forces. 

SHOCK MITIGATION SYSTEM 

The shock mitigation system is primarily designed to protect 
the transfer skirt and absorb shocks in the event of obstacle collision. 
A secondary purpose is to act as a retractable base from which the 
transfer skirt may be slowly lowered to contact the hatch mating 
surface. ; 

The shock system consists of a bumper ring concentric about 
the transfer skirt (see Fig. 10). The ring is attached to eight struts 
extending from four points on the outer hull. Each strut has a hy- 
draulic piston/cylinder arrangement designed to attenuate impacts, 
as well as extend and retract upon command. 

A simplified model of the shock mitigation system is pre- 
sented for purposes of simulating near normal impacts during the 
controlled docking event. Figure 11 illustrates the DSRV with four 
vertical legs extending down from the four hardpoints on the outer 

FULLY 
eae 

FULLY a 
EXTENDED 

Fig. 10. Shock Mitigation System 
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Fig. 11. Simplified Shock Mitigation System for Simulation 

hull. Each leg acts independently of the other three and is limited 
to axial deflections only. The force elements in each leg consist 
of a spring in series with either a damper or a constant force 
element depending on both deflection magnitude and rate. Other 
forces applied to the leg ends are due to lateral friction at the con- 
tact surface. The equations that follow, approximate the force 
effects on the vehicle due to near normal impact during docking. 
The approximation is good if the deviation of the transfer skirt 
mating flange plane from the plane of impact at instant of contact 
is less than 10 degrees. Also, the vehicle velocity parallel to the 
impact plane should be less than 0.5 fps at time of contact. 

The resulting equations will give a disturbing force and 
moment expression, X pist> Y pist> Z ois? Kost? Moist » and Noist 

for application to the vehicle model equations of motion. 

Using the direction cosine matrix 

coswcos@ coswsinOsind-sinbcosd sinpsindtcossinOcos¢ 

[D] = | sinbcos®@ cosycos$tsinbsinOsind sinwsinOcos ¢-coswsind 

sin 0 cosOsind cosOcos 
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Lp Por 

The forces on the i'” leg can be calculated: 

a: 
F pFerces 

i 

-1 
Yy =[D] Yo 

Zi Zi 

Subscript V refers to vehicle axis systems. 

Xi BoXy. + 

Yvi * Yy sue 

Zyi = Zy + Zi 

Also, 
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In all cases, 

{ Xvi (eo) X; 

Miye LO wie=-< Yor Tl Dix Y 

Zj Zvi fe) Zi, 

Xyj 

F,; = Fy = Fy = 0 

if Z - Aj =O 

Lg iT So 

Zi = A> 6 

Ai < 0.58 ft 
= {K/c(z}- A,) “*} 

Aj< 0.5 ft/sec 
22 

Fj = -CAj 

F5j = - K(zj - 4;) 

Zi AO 
A,= 0.58 

K(Z, - A,;) >11,000 lbs 
Aji = Zi - 14,000/K if 

A, = dA; /dt 

Z; - A, >0 

Aj < 0.58 ft 

A,> 0.5 ft/sec 

F,j = - 11,000 lbs 

Ai iseZ ioe 000/K 

j; - Aj> 0 

if A;= 0.58 ft 

K(Z; - A;)< 11,000 Ibs 

F,j = - 11,000 lbs | 

t 

Aj -\ Aj dt 
0 

°2 1/2 
ERAT Pe (X,/(X, +¥, Wie 
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Fyi = bE /{¥,/(X, i ¥ 7} 

Once Fy, Fyj and F, have been calculated, they are transferred 
back into the vehicle frame of reference and summed: 

Pyyj Fxi } 
aM 

Py = [D] Fy; 

Poyi Fy 
4 

Xpist = > Pxyj 
i= | 
4 

Ypist -) By 
i=l 
4 

Zpist -) Fai 
i=l 
4 

Koist -) ( By ln eh i) 
i=l 

= ( ly fs Ste) 

Moist = (Fy, Zi - Fy, Xi) 

Npist = » (- Ry Vit Fy Xi) 

The physical and geometric properties of the system are shown below. 
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K = 310,000 lbs /ft 

C = 44,000 Ibs-sec’/ft” 

y= 0.4 lbs/lb for wet rubber on steel 

TESTS TO MEASURE FLOW INTERACTION FORCES 

Because of the complex flow phenomena, tests were required 
to obtain measurements of the forces applied to the DSRV during the 
mating sequence with probable currents of 0 to 1.5 knots, wherein 

the flow forces are dependent on the approach attitude of the rescue 
vehicle, the orientation of the bottomed submarine, and the proximity 

of the two bodies. 

In order to obtain meaningful experimental data, the following 
test requirements had to be satisfied: 

(1) The tests had to be performed at full scale Reynolds 
number, and 

(2) The environmental conditions had to be known. 

Test Facility 

The operating characteristics of existing hydromechanic test 
facilities were investigated to determine the facility most suited 
to conduct the test program. Because of the stringent combination 
of test conditions , i,e., (1) test operating Reynolds number range of 
2 to 6X 10° per foot, (2) rescue vehicle angles-of-attack up to 45°, 
and (3) varying proximity of two bodies in the test channel, it was 
determined that the test requirements extended beyond the operating 
characteristics of all hydromechanics laboratories. However, the 
National Aeronautics and Space Administration (Ames) 12-foot vari- 
able pressure low turbulence wind tunnel was capable of meeting 
all the test requirements. The Ames Research Center is located at 
the Moffett Field Naval Air Station at Mountain View, California. 
The DSRV test program was conducted at this facility, which operates 
at subsonic speeds up to approximately Mach 1.0. The facility was 
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operated by the Arnold Research Organization under contract with 
NASA. The operating Reynolds number per foot versus Mach-num- 
ber range of the tunnel is presented in Fig. 12. With a 1/30 scale 
model of the bottomed submarine, Reynolds numbers up to 6 X 10& 

based on the model diameter could be achieved at a Mach number of 
0.2. This corresponded to the full-scale Reynolds number ina 
4.5 knot current. Compressibility effects at a Mach number of 0.2 
are known to be insignificant. Because of the large size of the test 
channel and the available equipment and instrumentation this facility 
afforded a unique capability for the DSRV program. 

MACH NUMBER 
STAGNATION PRESSURE, 

LB/SQ IN abs 

a 70i 75 

ec ie 
DYNAMIC PRESSURE 

— LB/SQ FT 

F 50] 

0 l 2 3 4 5 6 7 8 9 LO} casei 

REYNOLDS NUMBER PER FOOT (x10~°) 

Fig. 12. Operating Characteristics of the Ames 12-Foot Pressure 
Wing Tunnel 

Test Section and Model Support System 

The test section is circular in cross section except for flat 
fairings. Figure 13 presents a schematic sketch of the general 
arrangement of the test section and the DSRV model support system. 

As illustrated, the sting-type model support consists of a fixed strut 

mounted vertically in the wind tunnel to which is attached a movable 

body of revolution carrying the sting and, in turn, the DSRV model. 

The strut functions as a support and guide for the body of revolution 
which can be pitched in the vertical plane by means of motor-driven 

lead screws. The range of pitch angles is 10 to 20 degrees; however, 
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12-FT DIAMETER 

SUNKEN 2 a 

SUB 10 DEG 
MODEL 

~ as 

SEA BOTTOM PLANE 

| | FIXED SUPPORT STRUT 

DOWNSTREAM ELEVATION SIDE ELEVATION 

Fig. 13. Arrangement ofthe Test Section and Support System 

pitch angles of 45 degrees were obtained using a bent sting. 

The 1/30th scale submarine model was situated on a ground 
plane installed to simulate the ocean floor, and was oriented both 

into and normal to the current at 0, + 22.5, and + 45 degree roll 

positions. For these mating positions, the DSRV model was set at 
various attitudes when approaching the submarine model along its 
longitudinal axis and from the side (athwartships). Photographs 
of the actual model installation for various mating conditions on the 
forward and aft hatches are shown in Figs. 14 and 15. 

The displacement between the two bodies was regulated by 
vertical movement of the sting mount which supports the DSRV. 

Models 

The 1/30-scale model of the bottomed submarine, shown in 
Fig. 16, was constructed of poplar wood. The diameter of the 
model was 1.07 feet and its overall length was 8.2 feet. The model 
was constructed with a removable aft section in order to position the 
DSRV sting-support, which is located vertically along the centerline 
of the tunnel, over the area of the forward hatch. The model was 
also provided with a small and a large sail in order to simulate 
Permit (594) and Skipjack (588) class submarines. The forward 
hatch locations with the small and large sails was as shown in Fig. 5. 
Only one location of the aft hatch was considered. 
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AFT HATCH 
LOCATION FWD. HATCH 

LOCATION WITH 
SKIPJACK SAIL 

FED, HATCH 
LOCATION WITH 

REMOVABLE SECTION PERMIT SAIL 

PERMIT SAIL 

NOTE: THE MODEL SAIL ASSEMBLY 
COULD BE ROTATED +22.5 
AND 45 DEGREES ALL DIMENSIONS IN INCHES 

Fig. 16. 1/30 Scale Submarine Model 

The submarine model was mounted on a flat rectangular plate, 
1/2" X 40" x 45", to distribute the load on the ground plane. The 
roll positions of the planes and sail were adjustable to simulate sub- 
marine roll angles of 0, + 22.5, and 45 degrees. 

The DSRV model (1/30 scale), shown in Fig. 17, was con- 
structed principally of aluminum. The diameter of the model was 
3.3 inches and its overall length, 19.73 inches corresponding to a 
full-scale length of 49.33 feet. The transfer bell extended 1.3 
inches below the baseline of the DSRV hull. 

Instrumentation 

The overall steady-state forces and moments acting on the 
DSRV model were measured by a strain-gauge balance mounted on 
the end of the supporting sting within the model. A type T-0.75 
(i,e., 3.4 inch diameter) six-component internal strain gauge was 
used for the test program. 

A seven-track FM tape recorder was used to record the 
balance outputs and to provide a time code in order to locate specific 
data for later analysis. Additionally, a switching network was pro- 
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DSRV MATING 
BELL 

ALL DIMENSIONS IN INCHES 

Fig. 17. 1/30-Scale Model of the DSRV 

vided for each data input to provide direct data entry to an oscillo- 
graph as well as the conventional "Record onto tape/Play-back from 
tape to graph" and for quick-look at model oscillation frequencies 
where they occurred. 

Test Conditions 

The test program (Ref. 11) consisted of 258 runs, at Reynolds 
numbers up to 6.0 X 10® per foot, and the DSRV positioned at 6 or 
more locations (distances from the submarine model). The data 
were recorded for about five minutes for each set of test conditions. 

The vertical distance from the mating surface of the DSRV 
rescue bell to the mating surface (hatch) of the submarine, Zg, was 
varied from 0 to at least 12 inches, which corresponds to 30 feet, or 

about one submarine diameter, in full scale. 

As shown in Fig. 13, an angle adapter was used to obtain 
different pitch angles, Orv, of the DSRV. For these test conditions, 

the angle of attach, @ry, of the DSRV was the same as Ory. Angle 

adapters of 0, 15, 30 and 45 degrees were used. When the sub- 
marine model was removed from the tunnel to obtain DSRV free 
stream conditions, the vehicle's angles of attack (pitch angles) 
were obtained by a combination of adapter arrangements and pitch 
of the strut mechanism. 
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REDUCTION AND PRESENTATION OF DATA 

The proximity effects are described by a time independent 
term and a time varying term in each of the six equations of motion. 
These components are functionally dependent on the proximity to the 
distressed submarine, Zq, the DSRV attitude angle, Orv; and the 

orientation of the distressed submarine relative to the current. By 
means of the tests conducted in the Ames facility, these effects 
were determined primarily for two orientations of the submarine to 
the current: head-on and athwartships. The tests were conducted 
with the DSRV mating at both the forward and aft hatches with 
various attitude angles of the DSRV and roll angles of the distressed 
submarine. The DSRV yaw angle was zero for all test conditions. 

Time Independent Interaction Forces 

At the Ames facility the balance data were recorded by 
printing devices, punched onto paper tape by a Beckman 210 com- 
puter, and carried to the laboratory's computing center. The 
resultant steady-state force and moment coefficients were computed 
at the Ames center in the body-axis system. The force coefficients 
were non-dimensionalized by the DSRV's maximum cross sectional 
area; the moment reference arm for moment coefficients was the 

maximum diameter of the DSRV. 

In order to determine the DSRV characteristics in free 
stream, the submarine model was removed from the tunnel, and 

the forces on the DSRV were determined through an angle of attack 
(pitch angles) range from - 12.5 to + 35.0 degrees. The resulting 
normal force, pitching moment, and axial force coefficients versus 
angle of attack are shown in Fig. 18. These results are shown to 
correlate well with previous free stream tests conducted at Hydro- 
nautic'’s ane o(Reft 5). 

Interaction coefficients were determined by plotting the 
measured data and extrapolating the curves to the free stream con- 

ditions. 

The interaction coefficients are: 

Cy (-G)s Cy.» Cz (- Cy,) Force Coefficients 

he Cy, A Cy Moment Coefficients 
i i 

where 

wl Ory - Om Cy; = CX Om TK {5 weLGe 

Cz, = C26 + K Seve 2 Pp CLGs 
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AXIAL FORCE COEFFICIENT, Ca Sat! 

DSRV ANGLE-OF-ATTACK IN DEGS, 

PITCHING MOMENT COEFFICIENT, C -f NORMAL FORCE COEFFICIENT, Cy, 

Fig. 18. DSRV Free Stream Characteristics 

where C and K are functions of the vertical distance between 

the bottom of the transfer bell and the hatch, Zg. 

Ory is the pitch angle of the DSRV (in degrees). 6,, denotes 
the mean DSRV attitude angle (the angle to which the data is refer- 
enced) in degrees and can be converted to disturbing forces and 
moments as follows: 

wd max 1 
4 

2 
X gist (lbs) = Cx; 2 pVc 57 CLC. 

wd, 1 2 

List (ft-lbs) = CL =e dinax > pV, JCC. 

It was determined early in the experimental program that the flow 
forces encountered during mating on the forward hatch with the 
Skipjack sail configuration were more severe than those with the 
Permit sail geometry, and flow forces encountered during mating 
on the aft hatch are less severe than those encountered on the for- 
ward hatch. Hence, almost the entire test program was conducted 
with the Skipjack sail, and the data presented herein are repre- 
sentative of the most severe flow forces that the DSRV will experi- 

ence during mating with a downed submarine. 
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When the DSRV is approaching the distressed submarine 
along its centerline and headed into the current, a suction force is 
applied to the DSRV when it is within a one submarine diameter of 
the hatch, Fig. 19, because of the accelerated flow and the associ- 

ated reduced pressures between the DSRV andthe hull. This suction 
force increases as the displacement between the bodies, Zg, is 
decreased. The maximum value of the suction force, Fyyction » for 
ai knot current is 45.5 1bs. This result correlates well with the 
theory presented in Ref. 12. 

TUNNEL '€ = FWD. HATCH 
LOCATION 

B 
GROUND PLANE gou8 ee 

SUB 
@ METHOD OF REF. 3 Gace 

Zz,’ ni! vy, 

-0.40 

-0.30 

= E 
UO -0.20 - 

-0.10 

= 0 
oo 5 10 15 20 25 30 0 5 10 15 20 25 30 

Zp IN FEET Zp IN FEET 2 IN FEET 

Fig. 19. Time Independent Flow Interaction Forces -- DSRV Mating 
Parallel to Submarine Centerline 

In contrast, when the DSRV is approaching the distressed 
submarine athwartships and headed into the current, interaction 
forces are applied to the DSRV when it is within 2-1/2 submarine 
diameters (75 feet) of the hatch. Referring to the solid Cyn .5 curve 

of Fig. 20, it is apparent that the maximum suction force is also 
45.5 1bs, for this orientation in a 1 knot current. 

Note: The subscript 6, denotes that the attitude angle of the DSRV 
is zero. 
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0) 
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Fig. 20. Time Independent Flow Interaction Forces -- DSRV Mating 
Normal to Submarine Centerline 

Although the DSRV was heading athwartships directly into the 
current for this series, it is shown in Fig. 20 that lateral forces 
were applied to the vehicle, i.e., Cys Cy,» and Cj; were not equal 
to zero. This result is due to the fact that a cross flow results when 
the current is deflected off the sail and the DSRV is therefore not 
heading directly into the resultant flow. The magnitude of the side 
force, Fejgg, in ai knot current is 300 lbs. 

Time Dependent Forces 

During the test program, the outputs of the six-component 
balance (i.e., normal and lateral forward and aft gauges and the roll 
and axial-force channels) were recorded over a five minute interval. 

The long recording time was established to provide a high confidence 
level during analysis of the unsteady effects (Ref. 13). 

The information was digitized by data conversion and input to 
an IBM 7094 force and moment conversion program. The output of 
the 7094 program was then used as input for an existing LMSC Power- 
Spectral Density Computer Program. 
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Plots of typical power-spectral energy versus frequency in 

model scale are shown in Figs. 21 and 22 for the unsteady normal 

force and pitching moments acting onthe DSRV. These conditions 

were for the DSRV mated (Zy = 0) athwartships on the forward hatch 

of a downed submarine with no roll. 

The full-scale natural pitch period of the DSRV can range 

from 41.5 to 72 seconds, corresponding to a BG value of 1 to 3 

inches and a weight of 75,000 lbs. This information shown in terms 

of model data for a 1 knot current in Fig. 22 indicates that there is 

no significant concentration of energy near the DSRV natural fre- 

quency; therefore, motion excitation at resonant conditions will not 

be significant. 

The standard deviation of forces and moments in model scale 

were determined as the square root of the spectral energy, which 

POWER SPECTRAL DENSITY LBS/CPS 

FREQUENCY (CPS) 

Fig. 21. Normal Force Power Spectral Density vs. Frequency 

(Model Scale Values Shown) 
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SUBMARINE 

POWER SPECTRAL DENSITY LBS/CPS 

FREQUENCY (CPS) 

Fig. 22. Pitching Moment Power Spectral Density vs. Frequency 
(Model Scale Values Shown) 

was obtained from the integrated power density spectrum. Then 
using Strouhal number and Reynolds number scaling, the full-scale 
unsteady (a.c.) component standard deviation of forces and moments 
were computed. For the corresponding test conditions, the inter- 
action data were used to compute the full-scale magnitude of the 
steady components. In the simulation the unsteady forces were 
approximated by a white noise perturbation on the current used to 
generate the steady forces. Based on the standard deviation of the 
test data a ratio of unsteady (a.c.) to steady (d.c.) forces of 0.15 
was selected in the frequency range from 0 to 0.082 V, Hertz. 

The ducted thrusters of the DSRV 4re presently designed to 
provide 830 lbs of normal and lateral force and are required to 
maintain vehicle heading in a 1 knot current. The worst side force 
condition, obtained during tests with the sail rolled 22.5 degrees 
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into a 1 knot current and mating on the forward hatch, was 690 lbs 
well within the thruster forces available, Furthermore, during 
mating, the operational procedure will be to head the DSRV, within 
practical limits, into the actual flow (the resultant of the current and 

the cross-flow due to deflected flow off the sail). This operation 
will result in a reduction to the side force to a much lower force 
level. 

INCLUSION IN THE MATHEMATICAL MODEL 

Attempts to mathematically simulate the interaction forces 
by using the potential solution of flow around a cylinder on a plane to 
generate the flow field were unsuccessful in the time available. In 
addition, not enough submarine-current configurations were tested 
to verify superposition techniques. 

The parameters Cxg and K of the previously mentioned 
interaction terms were apporixmated in the simulation by two-slope 
nonlinearities. Figure 23 shows the two slope approximations of the 

>< 

10 
ee 

15 20'~°25' "30° “35 ons TO" 1S “20 * 25, “Sema 

<0.5 Spee ee) sy Sy d= 1B) 

320 FORWARD HATCH 0.8 
DISSUB -C 

2.5 ROLL ANGLE: O 0.6 z8, 
DISSUB 
HEADING: 90° 

Or 5 oO 15: 20 25° 40,035 
ae 2 ee 

Fig. 23. Interaction Force Parameters 
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experimental data equivalent to Fig. 20 with the initial conditions 
starting with the DSRV 35 feet above the submarine 1.atch. 

The method of simulating the steady and unsteady interaction 
effects is shown in Fig. 24. 

GENERATE C AND K PARAMETERS AS 
XO 

APPROXIMATED BY TWO-SEGMENT FUNCTIONS 
OF DSRV ALTITUDE ABOVE HATCH Za 

GENERATE UNSTEADY OCEAN CURRENT 
(ALTITUDE INPUT 
FROM VEHICLE) 

VARIABLE 
BAND PASS 
FILTER 

PERTUBATION INPUT 
(UNSTEADY COMPONENT OF CURRENT) 

COMPUTE Cy,'s FORCE AND MOMENT COEFFICIENTS: GENERATE DISTURBING FORCES AND MOMENTS: 

; < F | Xeaist), ¥ (cist), a, ee 
WHERE: : LeMans Now : 

(PITCH ANGLE Gre C. ce (dist), © (dist) ©“ (dist) 

FROM VEHICLE) Ko ea 2 
Qa 0, “AL (@ 8) X (dist) i Cxe ( rigs 5 Mery) 

Ziaist) | OUTPUTS 
fo} 

* (aist) VEHICLE 
M dist) 
N(aist) 

Fig. 24. Simulation of Interaction 

IV. MANNED SIMULATION 

Early in the DSRV program it was decided to initiate a 
manned simulation study, whose primary objective would be the 
investigation of the operation of DSRV under manual control con- 
ditions, using minimum backup displays. The control system aboard 
DSRV is relatively sophisticated, providing substantial pilot assist- 
ance in the form of augmented stabilization, decoupling of degrees 
of freedom, and automated control loops. Although the primary 
operating modes of the DSRV were not to be manual, it was believed 
that a manual control capability was essential for backup in the event 
of failure or damage of the primary control system. 

The simulation program was confined to the most severe 
segment of the rescue mission, the mating of the DSRV to the hatch 
of the distressed submarine (DISSUB). This segment starts when the 
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DSRV is approximately 20 feet above the deck of the DISSUB, and 
ends when the DSRV is sitting on the deck and has positioned itself 
to the accuracy required to assure a satisfactory seal. This simu- 
lation would be used to determine the limits of current magnitude 
and direction and distressed submarine attitude for which manual 
control is feasible. Mating aids would be used as required. 

The manned simulation program was undertaken sufficiently 
early in the design program to permit some design investigation of 
the parameters of various control elements. Several significant 
design changes were made as a result of these investigations. 

This computerized simulation program complemented the 
simulations undertaken with the LASS (Lighter than Air Submarine 
Simulator) vehicle. LASS operations (Ref. 14) had established the 
feasibility of manual control. However, they did not permit con- 
trolled variation of the environment. 

The facility used for the manned simulation program was 
located at the Sperry Marine Systems Division in Charlottesville, 
Virginia. This facility had previously been used for simulation 
studies of the NR-1 research submersible, and many of the programs 
developed for the NR-1i were available for the DSRV studies. 
Ron Rau, one of Lockheed's DSRV test pilots, served as test pilot 

for the simulation study. 

FACILITY DESCRIPTION 

The computer facility utilized in the simulation combined 
an Ambilog 200 hybrid computer with an EAI-231R analog computer. 
The Ambilog 200 has a basic 4,096-30 bit word memory witha 
memory cycle of 2ysec. The analog portion, used for multiplication 
and division, has a 50 psec cycle. The Ambilog 200 was used to 
simulate the vehicle, coordinate transformations, actuators and 

effectors, current interaction effects and the mating aids. The 
EAI-231R was used for display generation and for simulating the 
ballast and trim systems. 

In addition to the computer, the simulation facility included 
a cab driven in two degrees of freedom (roll and pitch). The cab 
contained a control station consisting of control sticks and other 
system inputs, various meter type displays, and a TV display. 
Figures 25 and 26 show the cab and its interior display arrangement, 
respectively. 
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Fig. 25. Simulation Cab 
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VE VELOCITY= 
| RMR ATS PELL 

(CURRENT MAGNITUDE = 

TROLL RATE 
_— 

SWAY VELOCITY 

Fig. 26. Instrument Panel 

ELEMENTS OF SIMULATION 

Vehicle 

Because the mating operation is confined to low current 
velocities, vehicle control is obtained by means of the main propul- 
sion and thrusters; the shroud remaining locked amidships. The 
relatively limited capability of the Ambilog computer necessitated 
some approximations of the equations of motion to assure fitting 
the entire problem to the computer. The major approximation used 
ignored the stalling effect of the shroud. 

The effect of this approximation is shown in the comparison 
of the heave versus angle of attack curves of the analysis and simu- 
lation models of Fig. 27. At high angles of attack the simulation 
model provides higher heave forces than the analysis model, an 
effect which tends to make the results of the simulation conservative. 

The iteration interval used in the computation was 125 milli- 
seconds. Since some of the degrees of freedom, particularly the 
mating aids, require a higher frequency response, selected portions 
of the simulation utilized a 62.5 millisecond interval. A relatively 
simple integration routine was employed, as shown in Fig. 28. 
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Fig. 27. Comparison of Simulation and Analysis Models 
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Fig. 28. Computation of Vehicle Motions 
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Throughout the course of the program, vehicle responses 
using the simulation model were compared to responses computed 
from the more complete analysis model, which had been programmed 
with a more sophisticated integration routine. 

Vehicle Control System 

The control effectors available are main propulsion for 
surge, a pair of horizontal thrusters for yaw and sway, a pair of 
vertical thrusters for pitch and heave, and mercury ballast control 
for list and trim. Experience with DEEP QUEST and other submer- 
sibles had shown that independent control of the thrusters was not 
effective, since each horizontal thruster, for example, affected both 

yaw and sway. To achieve effective control it is desirable to sepa- 
rate the commands to each degree of freedom. Thus, a sway com- 
mand would be applied equally to both fore and aft thrusters, while 
a yaw command would be applied differentially to the two thrusters. 

Vehicle control (except for trim and list) is obtained from 

two hand controllers. The block diagram of the system, including 
the actuators and effectors, is shown in Fig. 29. The output of 

DSRV STICK SUMMATION AND THRUSTER SIMULATION 
PROP RPM 

EFFECTORS 
| ACTUATORS 

: STICK SUMMATION 
Y x | 

x|x|-—* MAIN PROP 

eo (nes) are 
LEFT STICK y 

| 

T 

iene Fe Bel fa 

RIGHT STICK 
T 
AV | | A THRUSTER F 

x a l Ms l NIN REFINEMENT[ 7 OY 

| | | 
THRUSTER DESIGNATION 

ML — MAGNITUDE LIMIT 
v= SQUARE ROOT FH = FWD HORIZ THRUSTER 
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R.L. — RATE LIMIT AH — AFT HORIZ THRUSTER 
PALG — MAJOR LOOP GAIN AV — AFT VERT THRUSTER 

Fig. 29. DSRV Stick Summation and Thruster Simulation 
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each command axis is fed into a "signed square" circuit, so that the 
commands represent forces rather than propeller RPM. After 
mixing the signals appropriately, they are fed into square root cir- 
cuits so that the commands to the actuators represent RPM. Each 
actuator is represented by a delay network which includes a maximum 
motor acceleration limit. The effectors are represented by an 
(RPM)? network (to convert RPM to thrust) and a "thrust refinement" 
circuit. The latter accounts for the variations of thrust with the 
forward speed of the vehicle. The approximations used in the thrust 
refinement are shown in Fig. 30. 

The actuator/effector simulation shown in Fig. 29 ignores 
the lead-lag thrust effect of the thrusters which results from the 
delay in accelerating the water in the thruster duct. Exploratory 
experiments showed that, in manual control, the thrusters are used 

in a bang-bang fashion, and the effects of ignoring the lead-lag 
response of the thrusters are minimal, 

In the more sophisticated control modes used aboard the 
DSRV, the mercury list system control is integrated into the right- 
hand stick, and the pitch control motion of the right-hand stick 
affects both thrusters and mercury trim control. 

NORMAL 
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Fig. 30. Effect of Forward Speed on Thruster Forces and Moments 
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Displays 

Two sensors are available aboard the DSRV for assistance 
in performing the final mating maneuvers. These are a TV camera 
which looks through a viewport in the midsphere lower hatch, anda 
high resolution short range sonar (SRS) mounted to a retractable 
boom in the transfer skirt. Only the TV was simulated. Details 
of the performance of the SRS were not available at the time the 
simulation study was performed. Also, with good visibility, the 
TV is a much more informative sensor than the SRS. 

The midsphere TV display was simulated by photographing 
a model of a submarine. The photograph was then scanned by a 
CRT, using a flying spot scanner. The size of the area scanned is a 
function of the distance from the camera to the hatch. The dis- 
placement of the center of the hatch from the center of the screen 
is proportional to the distance between the hatch center and the inter- 
section of the camera axis with the hatch plane. Because of the 
relatively small angles between the DSRV and DISSUB planes, no 
attempt was made to provide foreshortening effects. Reproductions 
of the TV display are shown in Fig. 31. The four radial line seg- 
ments at the extremity of the picture represent the staples on the 
submarine deck surface to which a McCann Rescue Chamber can be 
attached. These staples provide precise centering information for 

the pilot. 

Fig. 31. TV Display 
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The most significant meter displays are those of doppler 
velocity, attitude rates. The doppler sonar, located 8.9 feet aft of 
the C.G. and 3.3 feet below the centerline, provides 3 axis ground 
velocity data. Since the doppler sonar is offset from the center of 
gravity, angular motions couple into the doppler signals, and in 
some situations were interpreted by the pilot as translation veloc- 

ities. 

Displays were also provided for roll, pitch and heading angles, 
and for sonar altitude above the DISSUB. Current magnitude and 
direction indicators were available, but were not used in the simu- 
lation, since the corresponding sensors were not installed in the 
vehicle. The additional displays shown in Fig. 26 are associated 
with the anchors and haul down winch control systems. 

Shock Mitigat ion System 

The shock mitigation system serves a dual purpose in the 
mating operation. The primary one is that of dissipating the kinetic 
energy of the DSRV when it lands on the DISSUB. The second function 
was realized only after the simulation study was started. Prior to 
dewatering, the DSRV is connected to the DISSUB primarily by verti- 
cal thrust forces from the DSRV and coulomb friction. Because of 
the existence of the shock mitigation system it is not necessary for 
the DSRV to land precisely on target. As long as the shock mitigation 
ring encloses. all the staples, the DSRV can slide on the DISSUB deck 

until precise alignment is reached. 

As described previously the shock mitigation system has been 
simulated as four independent damped springs. The natural frequency 
of the DSRV-shock mitigation system is approximately 11 radians per 
second, which is too high to simulate with a 62.5 millisecond iteration 
interval. Accordingly, the spring constant was reduced, with a re- 
duction in the natural frequency to 1.7 radians per second. The 
damping constant was also reduced to maintain essentially the same 
percentage damping. 

Anchor and Hauldown 

Exploratory runs were made using both the anchors and haul- 
down as mating aids. No help was obtained with the anchors, and 

very limited assistance was obtained from the hauldown. Schedule 
and budget limitations did not permit an intensive evaluation of this 
problem at the time. Some digital simulation was performed at a 
later date with the hauldown system, which indicated that it should 
provide substantial assistance, particularly when the DSRV is re- 
quired to mate bow up to the current. These results were confirmed 

on simulated tests made with LASS. 
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CURRENT 

Fig. 32. Mating Geometry 

A TYPICAL SIMULATION RUN 

The mating situation to be described is depicted schemati- 
cally in Fig. 32. The DISSUB is rolled 225 degrees in an athwart- 
ship current, so that the DSRV is required to mate bow up. With 
the DSRV heading into the free stream, the interaction forces and 
moments are as depicted in Fig. 33. Deflection of current off the 
sail of the DISSUB causes a starboard sway force on the DSRV. 
The corresponding yaw moment is counterclockwise at large separa- 
tions, but becomes clockwise as the DSRV approaches the DISSUB. 
The normal force provides a suction effect at relatively large dis- 
placements, but becomes destabilizing as the DSRV approaches the 
DISSUB. Thus the normal force, due to interaction, adds to the 
force due to the free stream and tends to push the DSRV away from 
the hatch. Pitch moments remain rather constant over the distance 
Included in the run. 

In performing the mating operation the pilot attempts to head 
into the local stream rather than into the free stream. He sees and 
"feels" the DSRV sway and adjusts his heading to minimize the sway 
motions. Thus, the relative heading is not into the free stream but 
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Fig. 33. Interaction Forces and Moments 

rather is in a relatively arbitrary direction. The effects of heading 
changes on the interaction problem are illustrated in Fig. 34. 

First of all, as the DSRV heading is changed, Euler angle 
variations occur (Fig. 34a). Where initially the DSRV was not re- 
quired to list at all, it must now both list and trim, and can no 
longer make precise list and trim adjustments prior to landing. 
Concurrent with these changes, the free stream current components 
change with heading (Fig. 34b) which must be compensated appropri- 
ately. 

Assuming that the ideal heading corresponds to zero sway 
force, the variation of optimum heading with distance to hatch is 
shown in Fig. 34c. The optimum relative heading is approximately 
30 degrees, with a significant heading change required as the separa- 
tion is decreased. It will be noted from Fig. 34d that the zero head- 
ing yaw angle does not correspond to the zero yaw moment angle, 
This is due to the horizontal gradients in fluid velocity along the 
length of the DSRV. Thus, there is no yaw plane equilibrium con- 
dition, and yaw plane control becomes a more severe problem than 
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Fig. 34. Counteracting Interaction Forces by Heading Changes 

pitch plane control. 

A six channel recording of the simulation test run under 
these conditions is shown in Fig. 35. The variables plotted are the 
displacements x, y and z of the camera of the DSRV from the 

center of the hatch in the coordinate frame of the DSRV as shown 
in Fig. 32. Also plotted are the roll, pitch and heading angles of 
the DSRV, zero heading being into the free stream. For a one 
minute interval during the run the roll, pitch and yaw angle traces 
are replaced with RPM traces from the forward vertical, forward 

horizontal and main propeller, respectively. 

The run begins with the DSRV aligned with the free stream, 
in a level attitude, and at a camera elevation of 20 feet (correspond- 
ing to 15 foot distance between the DSRV seal and the DISSUB hatch). 
This initial condition results in a more severe transient than would 
occur on a mission, so that the advantages of the relative proximity 
in distance is overcome by the necessity to restrore dynamic equili- 
brium. At the start the pilot turned to port about 20 degrees to try 
to maintain equilibrium. Simultaneously, the roll and pitch angles 
are adjusted to try to maintain the DSRV sealing surface parallel to 
the hatch plane. After about two minutes, the pilot descends about 
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half the distance to the hatch, then attempts to maintain altitude 
while adjusting his x and y coordinates. In the process the yaw 
angle has been increased to about 35 degrees. The final descent is 
made, the DSRV touching the deck somewhat in excess of 3.5 minutes 
after the start of the problem. At touchdown the DSRV was almost 
perfectly aligned inthe x direction but was nearly 2.5 feet off 
center inthe y direction. Onthe deck, vertical thrust was applied 
(trace not shown) in an attempt to keep from being lifted off by the 
current. Roll and pitch angles were adjusted to try to position all 
four legs in contact with the deck. Note that during this time the 
DSRV continues to roll and pitch. The transients at impact caused 
the DSRV to slip aft about 2.5 feet. This was corrected, as was 

the misalignment in the y axis. After nearly 5 minutes the pilot had 
the DSRV under control and could commence the final retraction of 
the shock mitigation ring and start up the dewatering pump. At this 
time the computer was placed into HOLD. The final misalignments 
were 0,10 feet inthe x direction and 0.16 feet inthe y direction, 
within the required tolerances. The final yaw pitch and roll angles 
were 36, 6 and 16 degrees, respectively. 

Unfortunately, this would not have been a completely success- 
ful landing. At the time the pilot terminated the run, the DSRV seal 
plane and the deck hatch plane were misaligned about 7 degrees in 
roll and 2 degrees in pitch so that all four shock mitigation legs 
were not in contact with the deck and a satisfactory seal could not be 
made. No instrumentation exists on the DSRV to provide this relative 
attitude data which could result in a serious operational limitation. 
The problem can be alleviated in part by use of the hauldown system 
which provides a larger stabilizing moment, reducing the offset 
angles. 

A major assistance was obtained by installing, in the simu- 
lation, a set of 4 indicators which measured the stroke of the shock 
mitigation hydraulic cylinders. Roll and pitch alignment could be 
achieved with this system, while maintaining the horizontal plane 
alignment. 

A review of the thruster activity leads to two interesting 
observations. First, the thrusters are operated in a bang-bang 
fashion, that is, either maximum thrust or zero thurst is commanded. 

This, despite the fact that an accurate proportional control system is 
available. Second, the activity of the horizontal thrusters is much 
greater than either the vertical thruster or the main propeller. This 
was somewhat predictable from the environmental curves of Fig. 9. 
The frequency of the horizontal thruster activity has implications 
in the thermal design of the thruster motors. 
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Fig. 36. Experimental Results 

RESULTS OF MANNED SIMULATION PROGRAM 

The experimental results of the simulation study are sum- 
marized in Fig. 36. Two sets of curves are shown, those for the 
final runs, of which Fig. 35 was an example, and those of earlier, 

exploratory runs which were made prior to the inclusion of the shock 
mitigation system in the simulation. Performance of the final runs 
did not meet those of the exploratory runs. Schedule constraints 
did not permit much training with the use of the shock mitigation 
system. The pilot believes that with such training the results of the 
two sets of runs would match more closely. 

On the basis of these results, we have tentatively arrived at 
the following performance predictions. 

a) Mating on the aft hatch is feasible for currents in excess 
of one knot at all attitudes of the DISSUB (up to 45 degrees) 
and headings of the DISSUB with respect to the local cur- 
rent. 

b) On the forward hatch, we have to distinguish between 
longitudinal and athwartship currents. In athwartships 
currents the goal of mating in a one knot current can be 
achieved except possibly for very high DISSUB roll angles 
which require the DSRV to mate bow up to the current. 
With respect to longitudinal currents, on those submarine 
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classes which have sufficient clearance between the sail 

and the forward hatch to permit the alignment of the 
axes of the two vehicles, mating is possible in currents 
well in excess of one knot. For those submarine classes 

which do not have sufficient clearance, mating is limited 

to about 3/4 of a knot. 

The manned simulation program yielded some important by- 
product results which impacted on the vehicle design. The most 
significant ones are as follows: 

a) The splitter plate behind the transfer skirt was originally 
incorporated to reduce flow separation behind the skirt 
and minimize axial drag. Model testing unfortunately did 
not verify this drag reduction. However, the splitter 

plate was found in the simulation to provide sufficient 
roll damping to permit mating without automatic roll 
stabilization (automatic roll stabilization is, however, 

provided even in the manual mode). 

b) The shock mitigation system had originally been designed 
to dissipate energy only for impact velocities in excess 
of 0.25 feet per second. Below 0.25 ft/sec, the system 
acted as a spring. However, because the DSRV is 
neutrally buoyant, it will bounce off any spring unless the 
impact energy is absorbed. As a result of observing this 
phenomenon in the manned simulation study, the shock 

mitigation system was redesigned to provide damping for 
all impact velocities. 

c) The relative attitude indicators required to assure angular 
alignment have not yet been incorporated in the design. 

The results of the Ames tunnel tests have been invaluable in 
gaining an understanding of the problems involved in submarine 

mating. In the early phases of the simulation program, before the 

Ames results were available, mating runs were made under free 

stream conditions. Although there had been apprehension about the 

ability of the pilot to perform the 6 degree of freedom control function 

manually, we found that experienced aircraft pilots, with nominal 

DSRV simulator training, could control the DSRV with ease. Success- 

ful mating to currents up to two knots were anticipated for virtually 

all orientations and in excess of two knots for the most favorable 

conditions. 

The inclusion of the interaction effects, particularly on the 

forward hatch, dampened our optimism. The performance goals 

could be met, but at considerably reduced current magnitudes, and 

requiring considerably more pilot training. 
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Prior to the start of the Ames test program, it was believed 
that the most serious interaction effects would be in the pitch plane, 
due to Bernoulli or "suction" effects. The experimental program 
was organized primarily to determine those forces. As we have 
seen, yaw plane interactions are more critical than those in the 
pitch plane. It would be desirable to have additional data, particu- 
larly with respect to interactions as a function of yaw angle and (for 
the longitudinal current) as a function of lateral separation of the 
longitudinal axes of the two vehicles. 

Recognizing the above limitations in the test conditions, no 
attempt has been made to use the Ames data quantitatively in the 
control system design. The data has been useful in the following 
areas: 

a) It has provided an appreciation of the yaw plane problems 
associated with mating. 

b) The force and moment gradients observed have been used 
to select and verify the static gain requirements of the 
automatic control system. 

c) The non-steady interactions have provided an input which 
could be used to establish the dynamic requirement of the 
actuators and effectors, in particular the pumping rate 
requirements of the list system. 

The DSRV is completing preliminary sea trials and will soon 
be conducting mating trials. Before too long we will have some full 
scale verification of the usefulness of the Ames test results. 

IV. CONCLUDING REMARKS 

This paper has presented an approach to the problems of 
simulation of the dynamics of highly maneuverable submersibles. 
All elements of the simulation are covered in considerable detail 
to provide an adequate base to build on for others with similar 
problems. No such comprehensive reference was available for our 
use. 

Although the model test data are not presented in their 
entirety, a reasonably complete description of the test procedure 
and results should allow determination of the usefulness of the data. 
Several references are given for more complete test results. 

It is hoped that this paper illustrates where Naval Hydro- 
dynamics is a continually expanding field and must take into con- 
sideration aspects of control system design, man-in-the-loop 
analysis, and numerous other fields not normally considered as 
relevant to the theoretician. 
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Finally a note about the methods used during the development 
of the simulation. The work was not done in a theoretically rigorous 
manner but rather the simulation was built upon the background of 
the personnel involved in its development and their ability to apply 
existing theories to the problem. A number of the elements in the 
complete simulation of the vehicle dynamics reflect engineering 
judgment and experience. The major output of the study was re- 
quired on a tight schedule and relatively little new theoretical 
analysis were initiated. Since the DSRV is presently preparing 
for sea trials the validity of the simulation should soon be checked 
and correlation between the sea trials data and the results of the 
simulation should provide valuable insight for futher simulations. 
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