

The Hunt Library

SMITHSONIAN MATHEMATICAL TABLES

HYPERBOLIC FUNCTIONS

PREPARED BY

GEORGE F. BECKER and C. E. VAN ORSTRAND

PROPERTY OF
carnegie institule of trcahology

No 1871

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION

ADVERTISEMENT.

Among the early publications of the Smithsonian Institution was a very important volume of meteorological tables by Dr. Arnold Guyot. They were so widely used by geographers and physicists as well as by meteorologists that when the fourth edition was exhausted it was decided to recast the entire work and publish three separate volumes, Meteorological Tables, Geographical Tables, and Physical Tables, each of which has now passed through several editions.

In the application of the data of these volumes to the study of natural phenomena certain mathematical tables beside those included in ordinary tables of logarithms are urgently needed in order to save recurrent computation on the part of observers and investigators. It was therefore decided to publish the present volume of Mathematical Tables, on Hyperbolic Functions.

Hyperbolic Functions are extremely useful in every branch of pure physics and in the applications of physics whether to observational and experimental sciences or to technology. Thus whenever an entity (such as light, velocity, electricity, or radioactivity) is subject to gradual extinction or absorption, the decay is represented by some form of Hyperbolic Functions. Mercator's projection is likewise computed by Hyperbolic Functions. Whenever mechanical strains are regarded as great enough to be measured they are most simply expressed in terms of Hyperbolic Functions. Hence geological deformations invariably lead to such expression, and it is for that reason that Messrs. Becker and Van Orstrand, who are in charge of the physical work of the United States Geological Survey, have been led to prepare this volume.

Charles D. Walcott, Secretary.

Washington, D. C., April, igog.

In this first reprint of the Hyperbolic Functions a few misprints of trifling importance have been corrected and four values of the exponential have been changed by a unit in the eighth significant place.
April, igir.
C. D. W.

In the second reprint of these Tables, several additional minor corrections have been made, usually in the last decimal place.

November, 1920.
C. D. W.

CONTENTS.

Introdection : pagb
Definitions and formulas vii
Geometrical illustrations xxviii
Methods of interpolation xxxiv
Description of tables xliii
Historical note xlviii
Table I:Five place values of $\log \sinh u, \log \cosh u, \log \tanh u$, and \logcoth u.I
Table II:
Five place values of $\sinh u, \cosh u, \tanh u$, and $\operatorname{coth} u$ 87
Table III:
Five place values of $\sin u, \cos u, \log \sin u$, and $\log \cos u, u$ being expressed in radians and their angular equivalents ${ }^{1} 73$
Table IV:
The ascending and descending exponential to seven significant figures with $\log _{10} e^{u}$ to seven places 225
Nine place values of the same with ten place logarithms from $u=\mathrm{x}$ to $u=100$ 259
Auxiliary table of multiples of $\log _{10} e$ for interpolation of $\log _{10} e^{u}$. 261
Table V:
Five place values of natural logarithms 263
Interpolation coefficients for derivative formula 273
Table VI:
The gudermannian of u to seven places in radians and to the same order of accuracy in degrees, minutes, and seconds 275
Table VII:
The anti-gudermannian to hundredths of a minute in terms of the gudermannian expressed in degrees and minutes from $0^{\circ} 0^{\prime}$ to $89^{\circ} 59^{\prime}$. (This table is otherwise known as a table of me- ridional parts for a spherical globe) 309
Table VIII:
Table for conversion of radians into angular measure and vice versa 320
Numerical constants 32 I

DEFINITIONS AND FORMULAS.

The hyperbolic functions are named the hyperbolic sine, cosine, tangent, cotangent, secant, and cosecant from their close analogy to the circular functions, the tangent being the ratio of the hyperbolic sine to the cosine and the other three functions being reciprocals of these, as in circular trigonometry. They are usually denoted by adding h to the symbols of the circular functions, as $\cosh u$ for the hyperbolic cosine of u, $\sinh u$ for the hyperbolic sine of u, etc. ${ }^{1}$

Historically speaking, the hyperbolic functions were evolved from studies of the hyperbola. They might have been developed from the geometry of the ellipse or the catenary or that of other curves. These functions, however, may be considered independently of any geometrical interpretation and can be derived from very fundamental functional theorems.

At least two methods have been devised of defining circular and hyperbolic functions analytically. One of these is due to Mr. Yvon Villarceau, ${ }^{2}$ and is so extremely brief that it can be given here in a somewhat modified form.

It has long been known that

$$
e^{2 m i \pi}=1 ; e^{u+2 m i \pi}=e^{u} ; e^{(u+2 m \pi) i}=e^{i u} .
$$

The second of these equations has a single imaginary period, $2 i \pi$, and the third a single real period, 2π. Hence every exponential e^{u} in which u is real has a single imaginary period, $2 i \pi$, and every exponential with the same base, but with an imaginary exponent, has a real period, 2π. Now, all real purely circular functions may be expressed in terms of constants and exponentials with purely imaginary exponents, and all real hyperbolic functions may be expressed in terms of constants and exponentials with exclusively real exponents.

Hence hyperbolic functions may be defined as the singly periodic exponential functions with real exponents. The circular functions are then the singly periodic exponential functions with imaginary exponents.
It remains to be considered how, from this point of view, the hyperbolic functions of complex variables are to be regarded. The question almost answers itself ; for

$$
e^{x+i y}=e^{x} \cdot e^{i y}
$$

[^0]which is evidently the product of two functions-one circular, the other hyperbolic. Such functions have a real period and an imaginary one, but since they are single-valued they are not elliptic functions.

The circular and hyperbolic functions being defined as above, it is merely as a matter of convenience that a few of the simpler combinations of exponentials receive special names, as sine, cosine, etc.

The other analytical method of generalizing the two classes of functions is due to Edward Lucas, ${ }^{1}$ and is too long to be given here in full, but the method may be indicated. If a and b are the two roots of the equation

$$
x^{3}-P x+Q=0,
$$

where P and Q are positive or negative whole numbers, then two functions may be defined as follows:

$$
U_{n} \equiv \frac{a^{n}-b^{n}}{a-b} ; V_{n} \equiv a^{n}+b^{n},
$$

and these functions are related by the equation

$$
U_{2 n}=U_{n} V_{n} .
$$

Lucas develops and studies these functions, limiting n at first to whole positive numbers. He finds that all the theorems resulting from this study are converted into those of ordinary trigonometry when U is replaced by $2 \sin n$ and V by $2 \cos n$. He infers that between the limits I and minus I, n may be replaced by any real value, and shows that the theorems dealing with U and V when translated into trigonometric formulas on this assumption can be verified. By substituting for n an imaginary argument, the hyperbolic functions also are found to be comprehended in the general functions U and V.

Both the circular and hyperbolic functions may further be regarded as integrals of the equation

$$
\frac{d}{d x} \log \frac{d^{2} y}{d x^{2}}=\frac{d}{d x} \log y, \text { or } \frac{d^{2} y}{d x^{2}}=c y .
$$

If $c=a^{3}$, this gives

$$
\frac{y}{a}=A e^{x}+B e^{-x},
$$

where A and B are arbitrary constants; so that the integral expression includes $\sinh x, \cosh x$, and the sum or difference of these functions.
If $c=-b^{2}$.

$$
\frac{y}{b}=A_{1} \cos x+B_{1} \sin x .
$$

${ }^{1}$ Am. Jour. of Math., vol. 1, 1878, p. 184.

The hyperbolic functions may also be defined geometrically with reference to any hyperbola.

Let $O A=a, O B=b$ be the semi-axes of the hyperbola $A P$, and its conjugate $B P^{\prime}$ referred to the rectangular axes $o x$ and $o y$. The argument or independent variable u and its functions are then given by : ${ }^{1}$

$$
\begin{gathered}
u=\frac{\text { sector } O A P}{\Delta O A B}, \sinh u=\frac{\Delta O A P}{\Delta O A B} \\
\cosh u=\frac{\Delta O P B}{\Delta O A B}, \text { etc. }
\end{gathered}
$$

FIG. I.

The areas of the triangles $O A B, O A P$, and $O P B$ are respectively $\frac{1}{2} a b$, $a y$ and $\frac{1}{2} b x$, and the area of the sector $O A P$ is found from the equation of he hyperbola,

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\mathrm{I}
$$

o be

$$
S=\frac{a b}{2} \log \left(\frac{x}{a}+\frac{y}{b}\right)
$$

Hence, in accordance with the above definitions,

$$
\begin{aligned}
& u=\frac{2 S}{a b}=\log \left(\frac{x}{a}+\frac{y}{b}\right), \\
& \sinh u=\frac{y}{b}=\frac{1}{2}\left(e^{u}-e^{-u}\right), \\
& \cosh u=\frac{x}{a}=\frac{1}{2}\left(e^{u}+e^{-u}\right) .
\end{aligned}
$$

Similarly the argument and functions of circular trigonometry are :

$$
\begin{aligned}
& \theta=\frac{2 S}{a^{2}}=\frac{\text { arc }}{\text { radius }} \\
& \sin \theta=\frac{y}{r}=-\frac{1}{2} i\left(e^{i \theta}-e^{-i \theta}\right), \\
& \cos \theta=\frac{x}{r}=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)
\end{aligned}
$$

A comparison of the preceding equations shows that there exist between the two sets of arguments and functions many interesting analogies and relations. The arguments are in each case the ratio of two areas, although the argument of the circular functions may also be defined as a ratio of two lines;

[^1]the hyperbolic functions stand in the same relation to the equilateral hyperbola as the circular functions do to the circle; each set of functions may be defined analytically as a particular branch of the theory of the exponential function, and it is possible to pass from the one to the other by means of the imaginary $i=\sqrt{-r}$. For example,
\[

$$
\begin{aligned}
& \sinh u=-i \sin i u, \\
& \cosh u=\cos i u, \\
& \tanh u=-i \tan i u .
\end{aligned}
$$
\]

Furthermore, every rational function of the hyperbolic functions and their inverts can be integrated by the help of corresponding known integrals of circular functions. Thus, to find $\int \operatorname{sech} u d u$ from

$$
\int \sec u d u=\frac{1}{2} \log \frac{I+\sin u}{I-\sin u}=\log \frac{I+\tan \frac{u}{2}}{I-\tan \frac{u}{2}},
$$

substitute $i u$ for u and reduce to the form

$$
\int \operatorname{sech} u d u=\frac{\mathrm{I}}{i} \log \frac{\mathrm{I}+i \tanh \frac{u}{2}}{\mathrm{I}-i \tanh \cdot \frac{u}{2}}
$$

If in this equation $\tanh \frac{u}{2}$ is replaced by y, the second member coincides in form with the expression for $2 \tan ^{-1} y$ given below.

Hence

$$
\int \operatorname{sech} u d u=2 \tan ^{-1}\left(\tanh \frac{u}{2}\right)=g d u
$$

Similarly, when a differential is encountered the integral of which is not to be found in this collection, it is expedient to deduce the corresponding expression in cyclic functions by substitution of $i x$ for x, etc., and then to make a search for its integral.

Most interesting is the relation existing between the formulæ of spherical trigonometry and the formulæ of Lobachevsky's imaginary geometry, hyperbolic geonetry, or pseudo - spherical geometry, as it is sometimes called. Lobachevsky defines the

Fig. 2. angle $C P A$ as the angle of parallelism, the line $P C$ being the limiting position of $P B$ when the distance $A B$ is infinite. In this geometry two parallels, $P C$
and $P C^{\prime}$, may be drawn from a point P to a line $A B$; the sum of the angles of a triangle is less than two right angles, and the angle of parallelism $\Pi(p)$ is dependent upon the perpendicular distance p of the point P from the line $A B$. If now any line passing through A, such as $A E$, is extended until the perpendicular erected at its middle point is parallel to $A B$, the locus of the points E is a boundary curve, and the revolution of this curve about $A B$ or one of its parallels develops a boundary surface. It is upon this surface of constant negative curvature that Lobachevsky imagines a triangle of sides a, b, c and angles A, B, C to be drawn. He establishes as fundamental relations between the sides and angles of this triangle ${ }^{1}$
$\sin A \tan \Pi(a)=\sin B \tan \Pi(b)=\sin C \tan \Pi(c)$
$\sin \Pi(b) \sin \Pi(c)=\sin \Pi(a)-\cos \Pi(b) \cos \Pi(c) \sin \Pi(a) \cos A$
$\sin \Pi(a) \cos A=-\cos B \cos C \sin \Pi(a)+\sin B \sin C$
and also proves that

$$
\begin{aligned}
& \sin \Pi(u)=(\cos i u)^{-1}=(\cosh u)^{-1} \\
& \tan \Pi(u)=i(\sin i u)^{-1}=(\sinh u)^{-1} \\
& \cos \Pi(u)=-i \tan i u=\tanh u
\end{aligned}
$$

Hence the preceding equations may be written

$$
\begin{aligned}
& \frac{\sin A}{\sinh a}=\frac{\sin B}{\sinh b}=\frac{\sin C}{\sinh c} \\
& \cosh a=\cosh b \cosh c-\sinh b \sinh c \cos A \\
& \cos A=-\cos B \cos C+\sin B \sin C \cosh a_{-}
\end{aligned}
$$

These formulas are, in fact, precisely those of spherical trigonometry, in which the real sides a, b, c have been replaced by the imaginaries $i a, i b, i c$. If the triangle on the boundary surface is infinitesimal, the above equations reduce to the well-known relations between the sides and angles of a triangle on the Euclidean plane. The theorems of non- Euclidean geometry may not therefore be inconsistent with experience, for the largest triangle which we can measure is infinitesimal in comparison with a triangle on the boundary surface. Lobachevsky pointed out that a triangle on a boundary surface would correspond to a triangle connecting three stars in distant parts of the universe, and that the postulates of his geometry, involving as they do the question of the curvature of space, would be capable of experimental proof if the parallaxes of distant stars could be measured with sufficient accuracy.

Lastly, there is an important relation between the numerical values of the circular and hyperbolic functions. If the argument u assumes successive values between 0 and $+\infty$, sinh u assumes successive values between o and $+\infty$ just as $\tan a$ does when α varies from 0 to 90°; cosh u assumes values between I and $+\infty$ like $\sec \beta$, and $\tanh u$ assumes values between o and I

[^2]in the same way as $\sin \gamma$. The variation of the hyperbolic functions throughout the entire plane and their similarity to the circular functions between the limits 0° and 180° is shown

A

Fig. 3. in the diagram. Since each of the functions is singly periodic, there must be a single value of α, β, γ corresponding to a particular value of u, such that

$$
\begin{aligned}
\sinh u & =\tan a, \\
\cosh u & =\sec \beta, \\
\tanh u & =\sin \gamma .
\end{aligned}
$$

It will be found by substituting in the trigonometric formulæ that $a=\beta=\gamma$ $=\phi$, and the required relations are therefore

$$
\begin{aligned}
\cosh u & =\sec \phi, \\
\sinh u & =\tan \phi, \\
\tanh u & =\sin \phi .
\end{aligned}
$$

The angle ϕ which renders it possible to evaluate the hyperbolic functions by means of the circular functions is of great importance in pure and applied mathematics. Some of its properties and applications will be considered in the section on geometrical illustrations. It is called gudermannian u and is written

$$
\phi=g d u .
$$

The following list of formulæ involving' the hyperbolic functions might be greatly extended, but it includes the most useful relations. ${ }^{1}$

[^3]A.-Relations between Hyperbolic and Circolar Functions.
r. $\sinh u=-i \sin i u=\tan g d u$.
2. $\cosh u=\cos i u=\sec g d u$.
3. $\tanh u=-i \tan i u=\sin g d u$.
4. $\tanh \frac{1}{2} u=\tan \frac{1}{2} g d u$.
5. $e^{u}=(1+\sin g d u) \div \cos g d u$,
$=\left[1-\cos \left(\frac{1}{2} \pi+g d u\right)\right] \div \sin \left(\frac{1}{2} \pi+g d u\right)$, $=\tan \left(\frac{1}{4} \pi+\frac{1}{2} g d u\right)$.
6. $\sinh i u=i \sin u$.
7. $\cosh i u=\cos u$.
8. $\tanh i u=i \tan u$.
9. $\sinh (u \pm i v)= \pm i \sin (v \mp i u)$,
$$
=\sinh u \cos v \pm i \cosh u \sin v
$$
10. $\cosh (u \pm i v)=\cos (v \mp i u)$,
$=\cosh u \cos v \pm i \sinh u \sin v$.
II. $\cosh (m i \pi)=\cos m \pi$. (m is an integer.)
12. $\sinh (2 m+1)^{\frac{1}{2}} i \pi=i \sin (2 m+1) \frac{1}{2} \pi$. (m is an integer.)

B.-Relations among the Hyperbolic Functions.

13. $\sinh u=\frac{1}{2}\left(e^{u}-\epsilon^{-u}\right)=-\sinh (-u)=(\operatorname{csch} u),^{-1}$

$$
=2 \tanh \frac{1}{2} u \div\left(\mathrm{I}-\tanh ^{2} \frac{1}{2} u\right)=\tanh u \div\left(1-\tanh ^{2} u\right)^{3 / 1}
$$

14. $\cosh u=\frac{1}{2}\left(e^{u}+e^{-u}\right)=\cosh (-u)=(\operatorname{sech} u)^{-1}$,

$$
=\left(I+\tanh ^{2} \frac{1}{2} u\right) \div\left(I-\tanh ^{2} \frac{1}{2} u\right)=I \div\left(I-\tanh ^{2} u\right)^{1 / 9} .
$$

15. $\tanh u=\left(e^{u}-e^{-u}\right) \div\left(e^{u}+e^{-u}\right)=-\tanh (-u)$,

$$
=(\operatorname{coth} u)^{-1}=\sinh u \div \cosh u=\left(1-\operatorname{sech}^{2} u\right)^{3 / 2}
$$

r6. $\operatorname{sech} u=\operatorname{sech}(-u)=\left(1-\tanh ^{2} u\right)^{3 / 3}$.
17. $\operatorname{csch} u=-\operatorname{csch}(-u)=\left(\operatorname{coth}^{2} u-1\right)^{3 / 2}$.
18. coth $u=-\operatorname{coth}(-u)=\left(\operatorname{csch}^{2} u+1\right)^{1 / 2}$.
19. $\cosh ^{2} u-\sinh ^{2} u=1$.
20. $\sinh \frac{1}{2} u=\sqrt{\frac{1}{2}(\cosh u-1)}$.
21. $\cosh \frac{1}{2} u=\sqrt{\frac{1}{2}(\cosh u+1)}$.
22. $\tanh \frac{1}{2} u=(\cosh u-1) \div \sinh u$,

$$
=\sinh u \div(I+\cosh u)=\sqrt{(\cosh u-I) \div(\cosh u+1)}
$$

23. $\sinh 2 u=2 \sinh u \cosh u=2 \tanh u \div\left(1-\tanh ^{2} u\right)$.
24. $\cosh 2 u=\cosh ^{2} u+\sinh ^{2} u=2 \cosh ^{2} u-1$,
$=\mathrm{I}+2 \sinh ^{2} u=\left(\mathrm{I}+\tanh ^{2} u\right) \div\left(\mathrm{I}-\tanh ^{2} u\right)$
25. $\tanh 2 u=2 \tanh u \div\left(1+\tanh ^{2} u\right)$.
26. $\sinh 3 u=3 \sinh u+4 \sinh ^{3} u$.
27. $\cosh 3 u=4 \cosh ^{3} u-3 \cosh u$.
28. $\tanh 3 u=\left(3 \tanh u+\tanh ^{8} u\right) \div\left(I+3 \tanh ^{2} u\right)$.
29. $\sinh n u=$

$$
n \cosh ^{n-1} u \sinh u+\frac{(n)(n-1)(n-2)}{6} \cosh ^{n-3} u \sinh ^{3} u+\ldots
$$

30. $\cosh n u=\cosh ^{n} u+\frac{n(n-\mathrm{t})}{2} \cosh ^{n-2} u \sinh ^{2} u+\ldots$.
31. $\sinh u+\sinh v=2 \sinh \frac{1}{2}(u+v) \cosh \frac{1}{2}(u-v)$.
32. $\sinh u-\sinh v=2 \cosh \frac{1}{2}(u+v) \sinh \frac{1}{2}(u-v)$.
33. $\cosh u+\cosh v=2 \cosh \frac{1}{2}(u+v) \cosh \frac{1}{2}(u-v)$.
34. $\cosh u-\cosh v=2 \sinh \frac{1}{2}(u+v) \sinh \frac{1}{2}(u-v)$.
35. $\sinh u+\cosh u=\left(1+\tanh \frac{1}{2} u\right) \div\left(1-\tanh \frac{1}{2} u\right)$.
36. $(\sinh u+\cosh u)^{n}=\cosh n u+\sinh n u$.
37. $\tanh u+\tanh v=\sinh (u+v) \div \cosh u \cosh v$.
38. $\tanh u-\tanh v=\sinh (u-v) \div \cosh u \cosh v$.
3). coth $u+\operatorname{coth} v=\sinh (u+v) \div \sinh u \sinh v$.
39. coth $u-\operatorname{coth} v=-\sinh (u-v) \div \sinh u \sinh v$.
40. $\sinh (u \pm v)=\sinh u \cosh v \pm \cosh u \sinh v$.
41. $\cosh (u \pm v)=\cosh u \cosh v \pm \sinh u \sinh v$.
42. $\tanh (u \pm v)=(\tanh u \pm \tanh v) \div(1 \pm \tanh u \tanh v)$.
43. $\operatorname{coth}(u \pm v)=(\operatorname{coth} u \operatorname{coth} v \pm \mathrm{I}) \div(\operatorname{coth} v \pm \operatorname{coth} u)$.
44. $\sinh (u+v)+\sinh (u-v)=2 \sinh u \cosh v$.
45. $\sinh (u+v)-\sinh (u-v)=2 \cosh u \sinh v$.
46. $\cosh (u+v)+\cosh (u-v)=2 \cosh u \cosh v$.
47. $\cosh (u+v)-\cosh (u-v)=2 \sinh u \sinh v$.
48. $\tanh \frac{1}{2}(u+v)=(\sinh u+\sinh v) \div(\cosh u+\cosh v)$.
49. $\tanh \frac{1}{2}(u-v)=(\sinh u-\sinh v) \div(\cosh u+\cosh v)$.
50. $\operatorname{coth} \frac{1}{2}(u+v)=(\sinh u-\sinh v) \div(\cosh u-\cosh v)$.
51. $\operatorname{coth} \frac{1}{2}(u-v)=(\sinh u+\sinh v) \div(\cosh u-\cosh v)$.
52. $\frac{\tanh u+\tanh v}{\tanh u-\tanh v}=\frac{\sinh (u+v)}{\sinh (u-v)}$.
53. $\frac{\operatorname{coth} u+\operatorname{coth} v}{\operatorname{coth} u-\operatorname{coth} v}=-\frac{\sinh (u+v)}{\sinh (u-v)}$.
54. $\sinh (u+v)+\cosh (u+v)=(\cosh u+\sinh u)(\cosh v+\sinh v)$.
55. $\sinh (u+v) \sinh (u-v)=\sinh ^{2} u-\sinh ^{2} v$,

$$
=\cosh ^{2} u-\cosh ^{2} v
$$

57. $\cosh (u+v) \cosh (u-v)=\cosh ^{2} u+\sinh ^{2} v$,

$$
=\sinh ^{2} u+\cosh ^{2} v
$$

58. $\sinh (m i \pi)=0 . \quad$ (m is an integer).
59. $\cosh (m i \pi)=(-\mathrm{I})^{m}$.
60. $\tanh (m i \pi)=0$.
61. $\sinh (u+m i \pi)=(-1)^{m} \sinh u$.
62. $\cosh (u+m i \pi)=(-1)^{m} \cosh u$.

63 . $\sinh (2 m+1) \frac{1}{2} i \pi= \pm i$.
64. $\cosh (2 m+1) \frac{1}{2} i \pi=0$.
65. $\sinh \left(\frac{i \pi}{2} \pm u\right)=i \cosh u$.
66. $\cosh \left(\frac{i \pi}{2} \pm u\right)= \pm i \sinh u$.
67. $\tanh (u+i \pi)=\tanh u$.

C. -Inverse Hyperbolic Functions.

68. $\sinh ^{-1} u=\log \left(u+\sqrt{u^{2}+1}\right)=\cosh ^{-1} \sqrt{u^{2}+\mathrm{r}}=\int \frac{d u}{\left(u^{2}+\mathrm{r}\right)^{3 / 2}}$.
69. $\cosh ^{-1} u=\log \left(u+\sqrt{\left.u^{2}-1\right)}=\sinh { }^{-1} \sqrt{u^{2}-\mathrm{I}}=\int \frac{d u}{\left(u^{2}-1\right)^{3 / 2}}\right.$.
70. $\tanh ^{-1} u=\frac{1}{2} \log (\mathrm{I}+u)-\frac{1}{2} \log (\mathrm{I}-u)=\int \frac{d u}{\mathrm{I}-u^{2}}$.

7I. $\operatorname{coth}^{-1} u=\frac{1}{2} \log (\mathrm{I}+u)-\frac{1}{2} \log (u-\mathrm{r})=\int \frac{d u}{\mathrm{I}-u^{2}}=\tanh ^{-1} \frac{\mathrm{I}}{u}$.
72. $\operatorname{sech}^{-1} u=\log \left(\frac{1}{u}+\sqrt{\frac{\mathrm{I}}{u^{2}}-\mathrm{I}}\right)=-\int \frac{d u}{u\left(\mathrm{I}-u^{2}\right)^{3 / 3}}=\cosh ^{-1} \frac{\mathrm{I}}{u}$.
73. $\operatorname{csch}^{-1} u=\log \left(\frac{\mathrm{I}}{u}+\sqrt{\frac{\mathrm{I}}{u^{2}}+\mathrm{I}}\right)=-\int \frac{d u}{u\left(u^{2}+\mathrm{I}\right)^{1 / 2}}=\sinh ^{-1} \frac{\mathrm{I}}{u}$.
74. $\sin ^{-1} u=-i \sinh ^{-1} i u=-i \log \left(i u+\sqrt{\left.1-u^{2}\right)}\right.$.
75. $\cos ^{-1} u=-i \cosh ^{-1} u=-i \log \left(u+i \sqrt{\left.1-u^{2}\right)}\right.$.
76. $\tan ^{-1} u=-i \tanh ^{-1} i u=\frac{1}{2 i} \log (1+i u)-\frac{1}{2 i} \log (1-i u)$.
77. $\cot ^{-1} u=i \operatorname{coth}^{-1} i u=\frac{1}{2 i} \log (i u-1)-\frac{1}{2 i} \log (i u+1)$.
78. $\sin ^{-1} i u=i \sinh ^{-1} u=i \log \left(u+\sqrt{\left.1+u^{2}\right)}\right.$.
79. $\cos ^{-1} i u=-i \cosh ^{-1} i u=\frac{\pi}{2}-i \log \left(u+\sqrt{\left.1+u^{2}\right)}\right.$.
80. $\tan ^{-1} i u=i \tanh ^{-1} u=\frac{i}{2} \log (1+u)-\frac{i}{2} \log (\mathrm{I}-u)$.
81. $\cot ^{-1} i u=-i \operatorname{coth}^{-1} u=-\frac{i}{2} \log (u+1)+\frac{i}{2} \log (u-1)$.
82. $\cosh ^{-1} \frac{1}{2}\left(u+\frac{1}{u}\right)=\sinh ^{-1} \frac{1}{2}\left(u-\frac{1}{u}\right)=\tanh ^{-1} \frac{u^{2}-1}{u^{2}+1}$,

$$
=2 \tanh ^{-1} \frac{u-1}{u+1}=\log u
$$

83. $\tanh ^{-1} \tan u=\frac{1}{2} g d 2 u$.
84. $\tan ^{-1} \tanh u=\frac{1}{2} g d^{-1} 2 u$.
85. $\cosh ^{-1} \csc 2 u=-\sinh ^{-1} \cot 2 u=-\tanh ^{-1} \cos 2 u=\log \tan u$.
86. $\tanh ^{-1} \tan ^{2}\left(\frac{1}{4} \pi+\frac{1}{2} u\right)=\frac{1}{2} \log \csc u$.
87. $\tanh ^{-1} \tan ^{2} \frac{1}{2} u=\frac{1}{2} \log \sec u$.
88. $\cosh ^{-1} u \pm \cosh ^{-1} v=\cosh ^{-1}\left[u v \pm \sqrt{\left.\left(u^{2}-1\right)\left(v^{2}-1\right)\right]}\right.$.
89. $\sinh ^{-1} u \pm \sinh ^{-1} v=\sinh ^{-1}\left[u \sqrt{1+v^{2}} \pm v \sqrt{1+u^{2}}\right]$.

D.-SERIES.

90. $e^{u}=\mathrm{I}+u+\frac{u^{2}}{2!}+\frac{u^{3}}{3!}+\frac{u^{4}}{4!}+\ldots \quad \quad\left(u^{2}<\infty.\right)$
91. $\log u=(u-1)-\frac{1}{2}(u-1)^{2}+\frac{1}{3}(u-1)^{3}-\ldots \quad(2>u>0$. $)$
92. $\log u=\frac{u-\mathrm{I}}{u}+\frac{\mathrm{I}}{2}\left(\frac{u-\mathrm{I}}{u}\right)^{2}+\frac{\mathrm{I}}{3}\left(\frac{u-\mathrm{I}}{u}\right)^{3}+\ldots \quad\left(u>\frac{1}{2}.\right)$
93. $\log u=2\left[\frac{u-I}{u+I}+\frac{I}{3}\left(\frac{u-I}{u+I}\right)^{3}+\frac{I}{5}\left(\frac{u-I}{u+I}\right)^{3}+\ldots\right](u>0$. $)$
94. $\log (\mathrm{I}+u)=u-\frac{\mathrm{I}}{2} u^{2}+\frac{\mathrm{I}}{3} u^{3}-\frac{\mathrm{I}}{4} u^{4}+\ldots \quad\left(u^{2}<\mathrm{I}\right.$. $)$
95. $\log \left(\frac{\mathrm{I}+u}{\mathrm{I}-u}\right)=2\left[u+\frac{1}{3} u^{3}+\frac{\mathrm{I}}{5} u^{5}+\frac{\mathrm{I}}{7} u^{7}+\ldots\right] \quad\left(u^{2}<\mathrm{I}.\right)$
96. $\log \left(\frac{u+1}{u-1}\right)=2\left[\frac{I}{u}+\frac{I}{3}\left(\frac{I}{u}\right)^{3}+\frac{I}{5}\left(\frac{I}{u}\right)^{5}+\ldots\right] \quad\left(u^{2}>1.\right)$
97. $\sinh u=u+\frac{u^{3}}{3!}+\frac{u^{5}}{5!}+\frac{u^{7}}{7!}+\ldots$ $\left(u^{2}<\infty.\right)$

$$
=u\left(I+\frac{u^{2}}{\pi^{2}}\right)\left(I+\frac{u^{2}}{2^{2} \pi^{2}}\right)\left(I+\frac{u^{2}}{3^{2} \pi^{2}}\right) \ldots \quad\left(u^{2}<\infty:\right)
$$

98. $\cosh u=1+\frac{u^{2}}{2!}+\frac{u^{4}}{4!}+\frac{u^{6}}{6!}+\ldots \quad\left(u^{2}<\infty\right.$. $)$

$$
=\left(I+\frac{4 u^{2}}{\pi^{2}}\right)\left(I+\frac{4 u u^{2}}{3^{2} \pi^{2}}\right)\left(I+\frac{4 u u^{2}}{5^{2} \cdot \pi^{2}}\right) \cdots \quad\left(u^{2}<\infty .\right)
$$

99. $\tanh u=u-\frac{1}{3} u^{3}+\frac{2}{15} u^{5}-\frac{\mathrm{I} 7}{3^{I} 5} u^{7}+\ldots \quad\left(u^{2}<\frac{1}{4} \pi^{2}\right.$. $)$ 100. $u \operatorname{coth} u=\mathrm{x}+\frac{\mathrm{I}}{3} u^{2}-\frac{1}{45} u^{4}+\frac{2}{945} u^{6}-\ldots \quad\left(u^{2}<\pi^{2}\right.$.) IOI. $\operatorname{sech} u=\mathrm{I}-\frac{\mathrm{I}}{2} u^{2}+\frac{5}{24} u^{4}-\frac{6 \mathrm{I}}{720} u^{6}+\ldots \quad\left(u^{2}<\frac{1}{4} \pi^{3}\right.$. $)$ 102. $u \operatorname{cscte} u=\mathrm{I}-\frac{\mathrm{I}}{6} u^{2}+\frac{7}{360} u^{4}-\frac{3 \mathrm{I}}{\mathrm{I} 5 \mathrm{I} 20} u^{6}+\ldots \quad\left(u^{3}<\pi^{2}.\right)$ 103. $g d u^{\prime}=\phi=u-\frac{I}{6} u^{3}+\frac{1}{24} u^{5}-\frac{61}{5040} u^{\top}+\ldots$.

$$
\begin{equation*}
=\frac{\pi}{2}-\operatorname{sech} u-\frac{1}{2} \frac{\operatorname{sech}^{2} u}{3}-\frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} u}{5}-\ldots \text { (arge.) } \tag{usmall.}
\end{equation*}
$$

104. $u=g d^{-1} \phi=\phi+\frac{I}{6} \phi^{3}+\frac{I}{24} \phi^{5}+\frac{6 \mathrm{I}}{5040} \phi^{7}+\ldots \quad\left(\phi<\frac{\pi}{2}.\right)$

I05. $\sinh ^{-1} u=u-\frac{I}{2} \frac{u^{3}}{3}+\frac{I}{2} \frac{3}{4} \frac{u^{5}}{5}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{u^{7}}{7}+\ldots \quad\left(2 u^{2}<\right.$ 1. $)$

$$
=\log 2 u+\frac{I}{2} \frac{I}{2 u^{2}}-\frac{I}{2} \frac{3}{4} \frac{I}{4 u^{4}}+\frac{I}{2} \frac{3}{4} \frac{5}{6} \frac{I}{6 u^{6}}-\ldots\left(u^{2}>\mathrm{I} .\right)
$$

106. $\cosh ^{-1} u=\log 2 u-\frac{I}{2} \frac{I}{2 u^{2}}-\frac{1}{2} \frac{3}{4} \frac{I}{4 u^{4}}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{I}{6 u^{6}}-\ldots\left(u^{2}>\right.$ I.)
107. $\tanh ^{-1} u=u+\frac{1}{3} u^{3}+\frac{1}{5} u^{5}+\frac{1}{7} u^{7}+\ldots \quad\left(u^{2}<\mathrm{I}\right.$. $)$
108. $\operatorname{coth}^{-1} u=\tanh ^{-1} \frac{\mathrm{I}}{u^{u}}=\frac{\mathrm{I}}{u^{u}}+\frac{\mathrm{I}}{3 u^{3}}+\frac{\mathrm{I}}{5 u^{5}}+\frac{\mathrm{I}}{7 u^{7}}+\ldots\left(u^{2}>\mathrm{I}.\right)$

IOg. $\operatorname{sech}^{-1} u=\cosh ^{-1} \frac{\mathrm{I}}{u}=\log \frac{2}{u}-\frac{1}{2} \frac{u^{2}}{2}-\frac{1}{2} \frac{3}{4} \frac{u^{4}}{4}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{u^{6}}{6}-\underset{\left(u^{2}<1\right.}{\circ}$. $)$
IIO. $\operatorname{csch}^{-1} u=\sinh ^{-1} \frac{\mathrm{I}}{u^{2}}=\frac{\mathrm{r}}{u}-\frac{\mathrm{I}}{2} \frac{\mathrm{I}}{3 u^{3}}+\frac{\mathrm{I}}{2} \frac{3}{4} \frac{\mathrm{I}}{5 u^{5}}-\frac{\mathrm{I}}{2} \frac{3}{4} \frac{5}{6} \frac{\mathrm{I}}{7 u^{\top}}$

$$
+\ldots\left(u^{2}>\text { 1. }\right)
$$

$=\log \frac{2}{u}+\frac{1}{2} \frac{u^{2}}{2}-\frac{1}{2} \frac{3}{4} \frac{u^{4}}{4}+\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{u^{6}}{6}-\ldots\left(u^{2}<\right.$ I. $)$
E.-Derivatives.
III. $\frac{d e^{u}}{d u}=e^{u}$.
112. $d \frac{\log _{e} u}{d u}=\frac{1}{u}$.

II3. $\frac{d a^{v}}{d u}=a^{v} \cdot \frac{d v}{d u} \cdot \log _{e} a$.
II4. $\frac{d u^{u}}{d u}=u^{u}\left(\mathrm{I}+\log _{e} u\right)$.
II5. $\frac{d \sinh u}{d u}=\cosh u$.
I 16. $\frac{d \cosh u}{d u}=\sinh u$.
117. $\frac{d \tanh u}{d u}=\operatorname{sech}^{2} u$.
118. $\frac{d \operatorname{coth} u}{d u}=-\operatorname{csch}^{2} u$.

I I9. $\frac{d \operatorname{sech} u}{d u}=-\operatorname{sech} u . \tanh u$.
120. $\frac{d \operatorname{csch} u}{d u}=-\operatorname{csch} u$. $\operatorname{coth} u$.

12I. $\frac{d \sinh ^{-1} u}{d u}=\frac{1}{\sqrt{u^{2}+\mathrm{I}}}$.
122. $\frac{d \cosh ^{-1} u}{d u}=\frac{I}{\sqrt{u^{2}-1}}$.

I23. $\frac{d \tanh ^{-1} u}{d u}=\frac{I}{1-u^{2}}$.
124. $\frac{d \operatorname{coth}^{-1} u}{d u}=\frac{I}{I-u^{2}}$.
125. $\frac{d \operatorname{sech}^{-1} u}{d u}=\frac{-1}{u v^{\prime} \frac{1}{1-u^{2}}}$.
126. $\frac{d \operatorname{csch}^{-1} u}{d u}=\frac{-1}{u \sqrt{u^{2}+1}}$.
127. $\frac{d \operatorname{gd} u}{d u}=\operatorname{sech} u$.
128. $\frac{d \mathrm{gd}^{-1} u}{d u}=\sec u$.
F.-Integrals. (Integration constants are omitted.)
129. $\int \sinh u d u=\cosh u$.
130. $\int \cosh u d u=\sinh u$.

13I. $\int \tanh u d u=\log \cosh u$.
132. $\int \operatorname{coth} u d u=10 g \sinh u$.
133. $\int \operatorname{sech} u d u=2 \tan ^{-1} e^{u}=\operatorname{gd} u$.
134. $\int \operatorname{csch} u d u=\log \tanh \frac{u}{2}$.
135. $\int \sinh ^{n} u d u=\frac{1}{n} \sinh ^{n-1} u . \cosh u-\frac{n-1}{n} \int \sinh ^{n-2} u d u$, $=\frac{1}{n+1} \sinh ^{n+1} u \cosh u-\frac{n+2}{n+1} \int \sinh ^{n+2} u d u$
136. $\int \cosh ^{n} u d u=\frac{1}{n} \sinh u \cdot \cosh ^{n-1} u+\frac{n-\mathrm{I}}{n} \int \cosh ^{n-2} u d u$,

$$
=-\frac{1}{n+1} \sinh u \cosh ^{n+1} u+\frac{n+2}{n+1} \int \cosh ^{n+2} u d u
$$

137. $\int u \sinh u d u=u \cosh u-\sinh u$.
138. $\int u \cosh u d u=u \sinh u-\cosh u$.
139. $\int u^{2} \sinh u d u=\left(u^{2}+2\right) \cosh u-2 u \sinh u$.
140. $\int u^{n} \sinh u d u=u^{n} \cosh u-n u n-1 \sinh u$

$$
+n(n-I) \int u^{n-2} \sinh u d u
$$

141. $\int \sinh ^{2} u d u=\frac{1}{2}(\sinh u \cosh u-u)$.
142. $\int \sinh u$. $\cosh u d u=\frac{1}{4} \cosh (2 u)$.
143. $\int \cosh ^{2} u d u=\frac{1}{2}(\sinh u \cosh u+u)$.
144. $\int \tanh ^{2} u d u=u-\tanh u$.
145. $\int \operatorname{coth}^{2} u d u=u$. $\operatorname{coth} u$.
146. $\int \operatorname{sech}^{2} u d u=\tanh u$.
147. $\int \operatorname{sech}^{3} u d u=\frac{1}{2} \operatorname{sech} u \tanh u+\frac{1}{2} \operatorname{gd} u$.
148. $\int \operatorname{csch}^{2} u d u=-\operatorname{coth} u$.
149. $\int \sinh ^{-1} u d u=u \sinh ^{-1} u-\left(1+u^{2}\right)^{1 / 2}$.
150. $\int \cosh ^{-1} u d u=u \cosh ^{-1} u-\left(u^{2}-1\right)^{1 / 2}$.
151. $\int \tanh ^{-1} u d u=u \tanh ^{-1} u+\frac{1}{2} \log \left(\mathrm{I}-u^{2}\right)$.
152. $\int u \sinh ^{-1} u d u=\frac{1}{4}\left[\left(2 u^{2}+1\right) \sinh ^{-1} u-u\left(1+u^{2}\right)^{1 / 2}\right]$.
153. $\int u \cosh ^{-1} u d u=\frac{1}{4}\left[\left(2 u^{2}-1\right) \cosh ^{-1} u-u\left(u^{2}-1\right)^{3 / 2}\right]$.
154. $\int(\cosh a+\cosh u)^{-1} d u=2 \operatorname{csch} a \cdot \tanh ^{-1}\left(\tanh \frac{1}{2} u \cdot \tanh \frac{1}{2} a\right)$,

$$
=\operatorname{csch} a\left[\log \cosh \frac{1}{2}(u+a)-\log \cosh \frac{1}{2}(u-a)\right]
$$

155. $\int(\cos a+\cosh u)^{-1} d u=2 \csc a . \tan ^{-1}\left(\tanh \frac{1}{2} u . \tan \frac{1}{2} a\right)$.
156. $\int(\mathrm{r}+\cos a \cdot \cosh u)^{-1} d u=2 \csc a . \tanh ^{-1}\left(\tanh \frac{1}{2} u . \tan \frac{1}{2} a\right)$.
157. $\int \sinh u \cos u d u=\frac{1}{2}(\cosh u . \cos u+\sinh u . \sin u)$.
158. $\int \cosh u . \cos u d u=\frac{1}{2}(\sinh u . \cos u+\cosh u . \sin u)$.
159. $\int \sinh u \cdot \sin u d u=\frac{1}{2}(\cosh u . \sin u-\sinh u . \cos u)$.
160. $\int \cosh u \cdot \sin u d u=\frac{1}{2}(\sinh u \cdot \sin u-\cosh u \cdot \cos u)$.
161. $\int \sinh (m u) \sinh (n u) d u$

$$
=\frac{1}{m^{2}-n^{2}}[m \sinh (n u) \cosh (m u)-n \cosh (n u) \sinh (m u)]
$$

162. $\int \cosh (m u) \sinh (n u) d u$

$$
=\frac{\mathrm{I}}{m^{2}-n^{2}}[m \sinh (n u) \sinh (m u)-n \cosh (n u) \cosh (m u)]
$$

163. $\int \cosh (m u) \cosh (n u) d u$

$$
=\frac{\mathrm{r}}{m^{2}-n^{2}}[m \sinh (m u) \cosh (n u)-n \sinh (n u) \cosh (m u)]
$$

164. $\int \sinh u \tanh u d u=\sinh u-g d u$.
165. $\int \cosh u \operatorname{coth} u d u=\cosh u+\log \tanh \frac{u}{2}$.
166. $\int \sec u d u=g^{-1} u$.
167. $\int \sec ^{3} \phi d \phi=\int\left(I+\tan ^{2} \phi\right)^{1 / 2} d \tan \phi=\frac{1}{2} \sec \phi \tan \phi+\frac{1}{2} \operatorname{gd}-1 \phi$, $=\frac{1}{2} \tan \phi\left(\mathrm{I}+\tan ^{2} \phi\right)^{1 / 2}+\frac{1}{2} \sinh ^{-1}(\tan \phi)$. Here $\phi=g d u$.
168. $\int \frac{d u}{\left(u^{2}+a^{2}\right)^{3 / x}}=\sinh ^{-1} \frac{u}{a}$. $\quad \int \frac{d u}{\left(a^{2}-u^{2}\right)^{1 / 2}}=\sin ^{-1} \frac{u}{a}$.
169. $\int \frac{d u}{\left(u^{2}-a^{2}\right)^{1 / 2}}=\cosh ^{-1} \frac{u}{a}$. $\quad \int \frac{-d u}{\left(a^{2}-u^{2}\right)^{1 / 2}}=\cos ^{-1} \frac{u}{a}$.
170. $\int \frac{d u}{\left(a^{2}-u^{2}\right)_{u<a}}=\frac{\mathrm{I}}{a} \tanh ^{-1} \frac{u}{a}$. $\int \frac{d u}{a^{2}+u^{2}}=\frac{\mathrm{I}}{a} \tan ^{-1} \frac{u}{a}$.
171. $\int \frac{-d u}{\left(u^{2}-a^{2}\right)_{u>a}}=\frac{\mathrm{I}}{a} \operatorname{coth}^{-1} \frac{u}{a} . \quad \int \frac{-d u}{a^{2}+u^{2}}=\frac{\mathrm{I}}{a} \cot ^{-1} \frac{u}{a}$.
172. $\int \frac{-d u}{u\left(a^{2}-u^{2}\right)^{3 / 2}}=\frac{1}{a} \operatorname{sech}^{-1} \frac{u}{a} . \quad \int \frac{d u}{u\left(u^{2}-a^{2}\right)^{3 / 2}}=\frac{1}{a} \sec ^{-1} \frac{u}{a}$.
173. $\int \frac{-d u}{u\left(a^{2}+u^{2}\right)^{1 / 2}}=\frac{1}{a} \operatorname{csch}^{-1} \frac{u}{a} . \quad \int \frac{-d u}{u\left(u^{2}-a^{2}\right)}=\frac{1}{a} \csc ^{-1} \frac{u}{a}$.
174. $\int \frac{d u}{\left(a u^{2}+2 b u+c\right)^{3 / 2}}=\sqrt{\frac{1}{a}} \sinh ^{-1} \frac{a u+b}{\left(a c-b^{2}\right)^{1 / 2}} \quad a$ positive, $a c>b^{2}$;

$$
\begin{aligned}
& =\sqrt{\frac{1}{a}} \cosh ^{-1} \frac{a u+b}{\left(b^{2}-a c\right)^{1 / 2}}, \quad a \text { positive, } a c<b^{2} ; \\
& =\frac{1}{\sqrt{-a}} \cos ^{-1} \frac{a u+b}{\left(b^{2}-a c\right)^{3 / 3}}, \quad a \text { negative. }
\end{aligned}
$$

175. $\int \frac{d u}{\left(a u^{2}+2 b u+c\right)}=\frac{1}{\left(a c-b^{2}\right)^{3 / 2}} \tan ^{-1} \frac{a u+b}{\left(a c-b^{2}\right)^{1 / 2}}$,

$$
a c>b^{2}
$$

$$
\begin{array}{ll}
=\frac{-1}{\left(b^{2}-a c\right)^{3 / 2}} \tanh ^{-1} \frac{a u+b}{\left(b^{2}-a c\right)^{3 / 2}}, & a c<b^{2}, \\
=\frac{-1}{\left(b^{2}-a c\right)^{3 / 2}} \operatorname{coth}^{-1} \cdot \frac{a u+b}{\left(b^{2}-a c\right)^{1 / 2}}, & \left.a c<b^{2}-a c\right)^{1 / 2}, \\
& a u+b>\left(b^{2}-a c\right)^{1 / 2} .
\end{array}
$$

176. $\int \frac{d u}{(a-u)(u-b)^{1 / 2}}=\frac{2}{(a-b)^{1 / 2}} \tanh ^{-1} \sqrt{\frac{u-b}{a-b}}$,
or $\frac{-2}{(b-a)^{1 / 2}} \tan ^{-1} \sqrt{\frac{u-b}{b-a}}$,
or $\frac{2}{(a-b)^{3 / 2}} \operatorname{coth}^{-1} \sqrt{\frac{u-b}{a-b}}$. (The real form is to be taken.)
177. $\int \frac{d u}{(a-u)(b-u)^{1 / 2}}=\frac{2}{(b-a)^{1 / 2}} \tanh ^{-1} \sqrt{\frac{b-u}{b-a}}$,

$$
\begin{aligned}
& \text { or } \frac{2}{(b-a)^{3 / 2}} \operatorname{coth}^{-1} \sqrt{\frac{b-u}{b-a}} \text {, } \\
& \text { or } \frac{-2}{(a-b)^{3 / 2}} \tan ^{-1} \sqrt{\frac{b-u}{a-b}} \text {. (The real form is to be taken.) }
\end{aligned}
$$

178. $\int\left(u^{2}-a^{2}\right)^{3 / 2} d u=\frac{1}{2} u\left(u^{2}-a^{2}\right)^{x}-\frac{1}{2} a^{2} \cosh ^{-1} \frac{u}{a}$.
179. $\int\left(a^{2}-u^{2}\right)^{1 / 3} d u=\frac{1}{2} u\left(a^{2}-u^{2}\right)^{1 / 2}+\frac{1}{2} a^{2} \sin ^{-1} \frac{u}{a}$.
180. $\int\left(u^{2}+a^{2}\right)^{1 / 2} d u=\frac{1}{2} u\left(u^{2}+a^{2}\right)^{3 /}+\frac{1}{2} a^{2} \sinh ^{-1} \frac{u}{a}$.
181. $\int e^{a u} d u=\frac{e^{a u}}{a}$.
182. $\int u e^{a u} d u=\frac{e^{a u}}{a^{2}}(a u-1)$.
183. $\int u^{m} e^{a u} d u=\frac{u^{m} e^{a u}}{a}-\frac{m}{a} \int u^{m-1} e^{a u} d u$.
184. $\int \frac{e^{a u} d u}{u^{m}}=\frac{1}{m-1}\left[-\frac{e^{a u}}{u^{m-1}}+a \int \frac{e^{a u} d u}{u^{m-1}}\right]$.
185. $\int a^{b u} d u=\frac{a^{b u}}{b \log a}$.
186. $\int u^{n} a^{n} d u=\frac{a^{u} u^{n}}{\log a}-\frac{n a^{u} u^{n-1}}{(\log a)^{2}}+\frac{n(n-1) a^{*} u^{n}-2}{(\log a)^{3}} \cdots$

$$
\pm \frac{n(n-1)(n-2) \cdot \cdot 2.1 a^{u}}{(\log a)^{n+1}}
$$

187. $\int \frac{a^{u} d u}{u^{n}}=\frac{a^{u}}{n-1}\left[-\frac{1}{u^{n-1}}-\frac{\log a}{(n-2) u^{n-2}}-\frac{(\log a)^{2}}{(n-2)(n-3) u^{n-3}}\right.$

$$
\left.-\ldots+\frac{(\log a)^{n-1}}{(n-2)(n-3) \cdot \ldots 2.1} \int \frac{a^{2} d u}{u}\right]
$$

188. $\int \frac{a^{u} d u}{u}=\log u+u \log a+\frac{(u \log a)^{2}}{2.2!}+\frac{\left(u \log a^{3}\right.}{3 \cdot 3!}+\ldots$
189. $\int \frac{d u}{\mathrm{I}+e^{u}}=\log \frac{e^{u}}{\mathrm{I}+e^{u}}$.
190. $\int \frac{d u}{a+b e^{m u}}=\frac{1}{a m}\left[m u-\log \left(a+b e^{m u}\right)\right]$.

19I. $\int \frac{d u}{a e^{m u}+b e^{-m u}}=\frac{\mathrm{I}}{m(a b)^{3 / 2}} \tan ^{-1}\left(e^{m u} \sqrt{\frac{a}{b}}\right)$.
192. $\int \frac{d u}{\left(a+b e^{m u}\right)^{3 / 2}}=\frac{1}{m v^{\prime} \bar{a}}\left[\log \left(\sqrt{a+b e^{m u}}-\sqrt{a}\right)\right.$

$$
\left.-\log \left(\sqrt{a+b e^{m u}}+1 / \bar{a}\right)\right]
$$

193. $\int \frac{u e^{u} d u}{(1+u)^{2}}=\frac{e^{u}}{1+u}$.
194. $\int e^{a u} \log u d u=\frac{e^{a u} \log u}{a}-\frac{1}{a} \int \frac{e^{a u} d u}{u}$.
195. $\int \log u d u=u \log u-u$.
196. $\int u^{m} \log u d u=u^{m+1}\left[\frac{\log u}{m+\mathrm{I}}-\frac{\mathrm{I}}{(m+\mathrm{I})^{2}}\right]$.
197. $\int(\log u)^{n} d u=u(\log u)^{n}-n \int(\log u)^{n-1} d u$.
198. $\int u^{m}(\log u)^{n} d u=\frac{u^{m+1}(\log u)^{n}}{m+1}-\frac{n}{m+1} \int u^{m}(\log u)^{n-1} d u$.
199. $\int \frac{(\log u)^{n} d u}{u}=\frac{(\log u)^{n+1}}{n+1}$.
200. $\int \frac{d u}{\log u}=\log (\log u)+\log u+\frac{(\log u)^{2}}{2.2!}+\frac{(\log u)^{3}}{3 \cdot 3!}+\ldots$.
201. $\int \frac{d u}{(\log u)^{n}}=-\frac{u}{(n-\mathrm{I})(\log u)^{n-1}}+\frac{\mathrm{I}}{n-\mathrm{I}} \int \frac{d u}{(\log u)^{n-1}}$.
202. $\int \frac{u^{m} d u}{(\log u)^{n}}=-\frac{u^{m+1}}{(n-\mathrm{I})(\log u)^{n-1}}+\frac{m+\mathrm{I}}{n-\mathrm{I}} \int \frac{u^{m} d u}{(\log u)^{n-1}}$.
203. $\int \frac{u^{m} d u}{\log u}=\int \frac{e^{-y}}{y} d y$, where $y=-(m+1) \log u$.
204. $\int \frac{d u}{u \log u}=\log (\log u)$.
205. $\int \frac{d u}{u(\log u)^{n}}=-\frac{\mathrm{I}}{(n-\mathrm{I})(\log u)^{n-1}}$.
206. $\int(a+b u)^{m} \log u d u=$

$$
\frac{1}{b(m+1)}\left[(a+b u)^{m+1} \log u-\int \frac{(a+b u)^{m+1} d u}{u}\right]
$$

207. $\int u^{m} \log (a+b u) d u=$

$$
\frac{1}{m+1}\left[u^{m+1} \log (a+b u)-b \int \frac{u^{m+1} d u}{a+b u}\right] .
$$

208. $\int \frac{\log (a+b u) d u}{u}=$

$$
\begin{aligned}
& \log a \cdot \log u+\frac{b u}{a}-\frac{\mathrm{I}}{2^{2}}\left(\frac{b u}{a}\right)^{2}+\frac{\mathrm{I}}{3^{2}}\left(\frac{b u}{a}\right)^{3}-\cdots \\
= & \frac{\mathrm{I}}{2}(\log b u)^{2}-\frac{a}{b u}+\frac{\mathrm{I}}{2^{2}}\left(\frac{a}{b u}\right)^{2}-\frac{\mathrm{I}}{3^{2}}\left(\frac{a}{b u}\right)^{3}+\cdots \cdot
\end{aligned}
$$

209. $\int \frac{\log u d u}{(a+b u)^{m}}=\frac{1}{b(m-1)}\left[-\frac{\log u}{(a+b u)^{m-1}}+\int \frac{d u}{u(a+b u)^{m-1}}\right]$. 210. $\int \frac{\log u d u}{a+b u}=\frac{1}{b} \log u \cdot \log (a+b u)-\frac{1}{b} \int \frac{\log (a+b u)}{u} d u$. 2II. $\int(a+b u) \log u d u=\frac{(a+b u)^{2}}{2 b} \log u-\frac{a^{2} \log u}{2 b}-a u-\frac{1}{4} b u^{2}$. 212. $\int \frac{\log u d u}{(a+b u)^{3 / 2}}=$

$$
\begin{gathered}
\frac{2}{b}[(\log u-2) \sqrt{(a+b u)}+\sqrt{a} \log (\sqrt{a+b u}+\sqrt{a}) \\
-\sqrt{a} \log (\sqrt{a+b u}-\sqrt{a})], \text { if } a>0, \\
=\frac{2}{b}\left[(\log u-2) \sqrt{(a+b u)}+2 \sqrt{-a} \tan ^{-1} \sqrt{\frac{a+b u}{-a}}\right], \text { if } a<0 .
\end{gathered}
$$

213. $\int_{0}^{\infty} e^{-a^{2} u^{3}} d u=\frac{\sqrt{\pi}}{2 a}=\frac{\mathrm{I}}{2 a} \Gamma\left(\frac{1}{2}\right)$.
214. $\int_{0}^{\infty} u^{n} \varepsilon^{-a u} d u=\Gamma \frac{(n+1)}{a^{n+1}}=\frac{n!}{a^{n+1}}$.
215. $\int_{0}^{\infty} u^{2 n} e^{-a u^{2}} d u=\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}$.
216. $\int_{0}^{\infty} e^{-u^{3}-\frac{a^{2}}{u^{2}}} d u=\frac{e^{-2 a}}{2} \sqrt{\pi}$.
$a>0$.
217. $\int_{0}^{\infty} e^{-n u} \sqrt{u} d u=\frac{1}{2 n} \sqrt{\frac{\pi}{n}}$.
218. $\int_{0}^{\infty} \frac{e^{-n u}}{\sqrt{u}} d u=\sqrt{\frac{\pi}{n}}$.
$n>0$.
219. $\int_{0}^{\infty} \frac{d u}{\sinh (n u)}=\frac{\pi}{2 n}$.
220. $\int_{0}^{\infty} \frac{u d u}{\sinh (n u)}=\frac{\pi^{2}}{4 n^{2}}$.

22I. $\int_{0}^{i \pi} \sinh (m u) \cdot \sinh (n u) d u=\int_{0}^{i \pi} \cosh (m u) \cdot \cosh (n u) d u$ $=0$, if m is different from n.
222. $\int_{0}^{i \pi} \cosh ^{2}(m u) d u=-\int_{0}^{i \pi} \sinh ^{2}(m u) d u=\frac{i \pi}{2}$.
223. $\int_{-i \pi}^{+i \pi} \sinh (m u) d u=0$.
224. $\int_{0}^{i \pi} \cosh (m u) d u=0$.
225. $\int_{-i \pi}^{i \pi} \sinh (m u) \cosh (n u) d u=0$.
226. $\int_{0}^{i \pi} \sinh (m u) \cosh (m u) d u=0$.
227. $\int_{0}^{1} \frac{\log u}{\mathrm{I}-u} d u=-\frac{\pi^{2}}{6}$.
228. $\int_{0}^{1} \frac{\log u}{I+u} d u=-\frac{\pi^{2}}{I 2}$.
229. $\int_{0}^{1} \frac{\log u}{I-u^{2}} d u=-\frac{\pi^{2}}{8}$.
230. $\int_{0}^{1} \log \left(\frac{I+u}{I-u}\right) \cdot \frac{d u}{u}=\frac{\pi^{2}}{4}$.

23I. $\int_{0}^{1} \frac{\log u d u}{\left(\mathrm{I}-u^{2}\right)^{3 / 2}}=-\frac{\pi}{2} \log 2$.
232. $\int_{0}^{1} \frac{\left(u^{p}-u^{q}\right) d u}{\log u}=\log \frac{p+\mathrm{I}}{q+\mathrm{I}}$, if $p+\mathrm{I}>0, q+\mathrm{r}>0$.
233. $\int_{0}^{1}(\log u)^{n} d u=(-1)^{n} \cdot n!$.
234. $\int_{0}^{1}\left(\log \frac{1}{u}\right)^{1 / 2} d u=1 / \frac{\pi}{2}$.
235. $\int_{0}^{1}\left(\log \frac{\mathrm{x}}{u}\right)^{n} d u=n!$.
236. $\int_{0}^{1} \frac{d u}{\left(\log \frac{1}{u}\right)^{1 / 2}}=\sqrt{\pi}$.
237. $\int_{0}^{1} u^{m} \log \left(\frac{\mathrm{I}}{u}\right)^{n} d u=\frac{\Gamma(n+\mathrm{I})}{(m+1)^{n+1}}$, if $m+\mathrm{I}>0, n+\mathrm{I}>0$.
238. $\int_{0}^{\infty} \log \left(\frac{e^{u}+\mathrm{r}}{e^{u}-\mathrm{I}}\right) d u=\frac{\pi^{2}}{4}$.
G.-Formulas for the Solution of Pseudo-spherical Triangles.

$$
\begin{aligned}
& \text { a.-Right Triangles. } \\
& \sin A=\frac{\cot \Pi(a)}{\cot \Pi(c)}=\frac{\sinh a}{\sinh c} \\
& \cos A=\frac{\cos I(b)}{\cos \Pi(c)}=\frac{\tanh b}{\tanh c} \\
& \cos A=\frac{\sin B}{\sin \Pi(a)}=\sin B \cosh a . \\
& \cot A=\frac{\cot \Pi(b)}{\cos \Pi(a)}=\frac{\sinh b}{\tanh a} . \\
& \cos B=\frac{\cos \Pi(a)}{\cos I(c)}=\frac{\tanh a}{\tanh c} \\
& \cos B=\frac{\sin A}{\sin \Pi(b)}=\sin A \cosh b . \\
& \sin B=\frac{\cot \Pi(b)}{\cot \Pi(c)}=\frac{\sinh b}{\sinh c} \\
& \cot B=\frac{\cot \Pi(a)}{\cos \Pi(b)}=\frac{\sinh a}{\tanh b} \\
& \tan A \tan B=\sin \Pi(c)=\sin \Pi(a) \sin \Pi(b) . \\
&=\operatorname{sech} c=\operatorname{sech} a \operatorname{sech} b .
\end{aligned}
$$

b.-Oblique Triangles.

The general relations are:

$$
\cosh a=\cosh b \cosh c-\sinh b \sinh c \cos A
$$

$\sin A \sinh b=\sin B \sinh a$.
$\operatorname{coth} a \sinh b=\cosh b \cos C+\sin C \cot A$.

$$
\cos A=-\cos B \cos C+\sin B \sin C \cosh a
$$

Forti solves the six typical cases in the following manner:
Case r.-Given a, b, c. Put $2 p=a+b+c$. Then,

$$
\tan \frac{1}{2} A=\sqrt{\frac{\sinh (p-b) \cdot \sinh (p-c)}{\sinh p \sinh (p-a)}}
$$

The conditions are $a<b+c ; b<a+c$; and $c<a+b$.
CASE 2.-Given a, b, A. Draw the geodetic line $C D$ perpendicular to $A B$.
Then $a>C D ; \frac{\sinh b \sin A}{\sinh a}<\mathrm{I} ; \cot \frac{1}{2} C>0 ;$ and $\tanh \frac{1}{2} c>0$.

$$
\begin{aligned}
& \sin B=\frac{\sinh b \sin A}{\sinh a} \\
& \cos \frac{1}{2} C=\frac{\tan \frac{1}{2}(A-B) \sinh \frac{1}{2}(a+b)}{\sinh \frac{1}{2}(a-b)} \\
& \tanh \frac{1}{2} c=\frac{\tanh \frac{1}{2}(a-b) \sin \frac{1}{2}(A+B)}{\sin \frac{1}{2}(A-B)}
\end{aligned}
$$

Case 3.-Given $a, b, C . \quad 2 \Delta=\pi-(A+B+C)$.

$$
\begin{aligned}
& \tan \frac{1}{2}(A+B)=\cot \frac{1}{2} C \frac{\cosh \frac{1}{2}(a-b)}{\cosh \frac{1}{2}(a+b)} \\
& \tan \frac{1}{2}(A-B)=\cot \frac{1}{2} C \frac{\sinh \frac{1}{2}(a-b)}{\sinh \frac{1}{2}(a+b)} \\
& \tanh \frac{1}{2} c=\sqrt{\frac{\sin \Delta \sin (\Delta+C)}{\sin (\Delta+A) \sin (\Delta+B)}}
\end{aligned}
$$

CASE 4.-Given $A, B, c . \quad A+B<\pi$ and $D B C<D B G$. The angle $D B G$ is the angle between the geodetic $D B$ drawn perpendicular to $A C$ and the geodetic $B G$ drawn parallel to $A C$.

$$
\begin{aligned}
& \tanh \frac{1}{2}(a+b)=\tanh \frac{1}{2} c \frac{\cos \frac{1}{2}(A-B)}{\cos \frac{1}{2}(A+B)} \\
& \tanh \frac{1}{2}(a-b)=\tanh \frac{1}{2} c \frac{\sin \frac{1}{2}(A-B)}{\sin \frac{1}{2}(A+B)} \\
& \tan \frac{1}{2} C=\sqrt{\frac{\sinh (p-a) \sinh (p-b)}{\sinh p \sinh (p-c)}}
\end{aligned}
$$

Case 5.-Given $A, B, a . \quad a>C D$ and $A+B<\pi$.
Solve the two right triangles formed by the geodetic line $C D$ drawn perpendicular to $A B$.

Case 6.-Given $A, B, C . \quad A+B+C<\pi$.

$$
\tanh \frac{1}{2} a=\sqrt{\frac{\sin \Delta \sin (\Delta+A)}{\sin (\Delta+B) \sin (\Delta+C)}}
$$

H.-Formulas for the Solution of the Cubic ${ }^{1}$.

If a cubic equation is given in the form

$$
z^{3}+a z^{2}+b z+c=0
$$

it can be reduced by the substitution $z=x-\frac{a}{3}$ to the simpler form

$$
x^{3}+p x+q=0
$$

${ }^{1}$ Taken from Des Ingenieurs Taschenbuch der Hütte, Berlin, I8th edition.

CASE I.-When $x^{3}+p x \pm q=0 ; p$ and q positive. Compute the auxiliary variable u from $\sinh u=\frac{\frac{1}{2} q}{\frac{1}{3} p\left(\frac{1}{8} p\right)^{\frac{1}{2}}}$; then the roots are

$$
\begin{aligned}
& x_{1}=\mp 2 \sqrt{\frac{1}{3} p} \sinh \frac{1}{3} u . \\
& x_{2}= \pm \sqrt{\frac{1}{3} p} \sinh \frac{1}{3} u+i \sqrt{p} \cosh \frac{1}{3} u . \\
& x_{3}= \pm \sqrt{\frac{1}{3} p} \sinh \frac{1}{3} u-i \sqrt{p} \cosh \frac{1}{3} u .
\end{aligned}
$$

CASE 2.-When $x^{3}-p x \pm q=0 ; p$ and q positive. $\left(\frac{1}{3} p\right)^{3}<\left(\frac{1}{2} q\right)^{2}$. Compute u from $\cosh u=\frac{\frac{1}{2} q}{\frac{1}{3} p\left(\frac{1}{3} p\right)^{\frac{1}{3} / 2}}$; then the roots are

$$
\begin{aligned}
& x_{1}=\mp 2 \sqrt{\frac{1}{3} p} \cosh \frac{1}{3} u . \\
& x_{2}= \pm \sqrt{\frac{1}{3} p} \cosh \frac{1}{3} u+i \sqrt{p} \sinh \frac{1}{3} u . \\
& x_{3}= \pm \sqrt{\frac{1}{3} p} \cosh \frac{1}{3} u-i \sqrt{p} \sinh \frac{1}{3} u .
\end{aligned}
$$

CASE 3.-When $x^{3}-p x \pm q=0 ; p$ and q positive. $\left(\frac{1}{3} p\right)^{3}>\left(\frac{1}{2} q\right)^{2}$. Compute the angle u from $\cos u=\frac{\frac{1}{2} q}{\frac{1}{8} p\left(\frac{1}{3} p\right)^{1 / 2}}$; then the roots are

$$
\begin{aligned}
& x_{1}=\mp 2 V \frac{\overline{1} p}{3} \cos \frac{1}{3} u . \\
& x_{2}=\mp 2 \sqrt{\frac{1}{3} p} \cos \left(\frac{1}{8} u+120^{\circ}\right) . \\
& x_{3}=\mp 2 \sqrt{\frac{1}{3} p} \cos \left(\frac{1}{8} u+240^{\circ}\right) .
\end{aligned}
$$

Case 4.-When $x^{3}-p x \pm q=0 ; p$ and q positive. $\left(\frac{1}{3} p\right)^{3}=\left(\frac{1}{2} q\right)^{2}$.

$$
\begin{aligned}
& x_{1}=\mp 2 \sqrt{\frac{1}{3} p} . \\
& x_{2}=x_{3}= \pm v \overline{\frac{1}{3} p} .
\end{aligned}
$$

For applications of hyperbolic and circular functions to the solution of the cubic whose coefficients are general (i.e., real or complex), see a brief paper by Mr. W. D. Lambert in American Mathematical Monthly for April, 1906.

GEOMETRICAL ILLUSTRATIONS OF HYPERBOLIC FUNCTIONS.

The algebraic relationship of the hyperbolic functions to the circular functions has been discussed in the section on definitions and formulas. A close relationship also exists between the elliptic functions and the hyperbolic functions. Thus it may be shown that the elliptic integral of the first kind,

$$
u=\int \frac{d \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}},
$$

in which k is the modulus and ϕ the amplitude, reduces to $u=g d^{-1} \phi$ when $k=\mathrm{r}$. The elliptic functions thus degenerate into the hyperbolic functions when the modulus is equal to unity. A case in point is the elastica, the equation of which takes the form of an elliptic integral, excepting when the modulus is unity. It then reduces to the two equations

$$
\frac{x}{a}=u-2 \tanh u ; \frac{y}{a}=\frac{2}{\cosh u},
$$

which is a syntractrix described by the free end of a rod whose middle point traces out the tractory. ${ }^{1}$

Ligowski gives the following easy geometrical method of demonstrating the relations between the hyperbolic and circular functions. Let the equation of the circle of unit radius be

$$
x^{2}{ }_{c}+y^{2}{ }_{c}=\mathrm{I},
$$

and call u_{c} the arc of this circle from the positive x axis to the point $x_{c} y_{c}$ Then, of course, the circle may be repre-
 sented by the two equations

$$
x_{c}=\cos u_{c} ; y_{c}=\sin u_{c}
$$

Now, the area of the circular sector, whose chord is $2 y_{c}$, is $\frac{2 . u_{c} . \mathrm{I}}{2}=u_{c}$, so that x_{c} and y_{c} may be regarded as the cosine and sine of a sector u_{c}. The ellipse may be derived from the unit circle by multiplying the ordinates y_{c} by b. Hence, in the ellipse, the area of the sector subtended by the chord $2 y_{e}$ is, say, u_{e} and $u_{e}=b u_{c}$.

[^4]Thus

$$
\begin{gathered}
x_{c}=\cos u_{c}=\cos \frac{u_{e}}{b}, \\
y_{c}=\sin u_{c}=\frac{y_{e}}{b}=\sin \frac{u_{e}}{b},
\end{gathered}
$$

so that for the ellipse,

$$
\begin{gathered}
x_{e}^{2}+\frac{y_{e}^{2}}{b^{2}}=\mathrm{I} \\
x_{c}=x_{e}=\cos \frac{u_{e}}{b} ; y_{e}=b \sin \frac{u_{e}}{b}
\end{gathered}
$$

The equation

$$
x^{2}-y^{2}=I
$$

represents an equilateral hyperbola, and if u is the area of the hyperbolic sector whose chord is $2 y$, then there can be no objection to writing

$$
x=\cosh u ; y=\sinh u,
$$

where cosh and sinh are functions whose nature is still to be determined. The most evident relation is

$$
\cosh ^{2} u-\sinh ^{2} u=\mathrm{I} .
$$

Now if $i=\sqrt{-1}$, the hyperbola may be written

$$
x^{2}+\frac{y^{2}}{i^{2}}=I
$$

which is an ellipse whose major axis is unity and whose minor axis is i. Comparing this with the ellipse discussed above, it appears at once that

$$
\begin{aligned}
& x=\cosh u=\cos \frac{u}{i} \\
& y=\sinh u=i \sin \frac{u}{i}
\end{aligned}
$$

or, in an equivalent form,

$$
\begin{aligned}
& \cosh u=\cos i u ; \sinh u=-i \sin i u, \\
& \cosh i u=\cos u ; \sinh i u=i \sin u .
\end{aligned}
$$

The investigation of $\cosh u$ and $\sinh u$ can be completed in various ways; for example, by writing out the series for $\cos i u$ and $-i \sin i u$ and showing that their sum or difference is $e^{ \pm u}$.

The geometrical properties of the hyperbolic functions themselves are commonly discussed in reference to the equilateral hyperbola. They could also be derived from the geometry of the ellipse without reference to the hyperbola; but a more perspicuous method seems to be to study the relations of these functions to both curves at the same time. ${ }^{1}$

In any ellipse,

$$
\frac{x^{2}}{\beta^{2}}+\frac{y^{2}}{a^{2}}=\mathrm{I}
$$

[^5]the area $a \beta$ may be chosen as the unit area, so that the equation of the curve becomes
$$
\alpha^{2} x^{2}+\frac{y^{2}}{\alpha^{2}}=\mathrm{I} .
$$

By varying the value of α in this equation a family of ellipses is obtained each of area π, all with the same center and all with axes lying in the axes of coördinates. The envelope of this system of curves is the hyperbola $x y=\frac{1}{2}$, and this may be conceived as generated by the motion of a single point. The coördinates of the point P_{1}, at which the hyperbola is tangent to the ellipse, are

$$
x_{1}=\frac{1}{V^{\prime} 2 \alpha} \quad y_{1}=\frac{a}{V^{\prime}} ;
$$

and the coördinates of the point c at which the hyperbola is tangent to the unit circle, are

$$
x=y=\frac{I}{V^{\prime}}
$$

Fig. 5.
If the hyperbola is conceived as generated by the point c in moving from its original position to P_{1} (or as a "line of flow'), its radius vector sweeps over an hyperbolic sector $o c P_{1}$. If this area is called $\frac{u}{2}$, then by a wellknown formula,

$$
d u \doteq x d y-y d x
$$

and because $x y=\frac{1}{2}$,

$$
d u=\frac{1}{2}\left(\frac{d y}{y}-\frac{d x}{x}\right) .
$$

Since no integration constant is required,

$$
u=\frac{1}{2} \log \frac{y_{1}}{x_{1}}=\frac{1}{2} \log a^{2} \text { or } a=e^{u} .
$$

The area u is the sector $o P_{1} c P_{2}$, where the coördinates of P_{2} are $x_{2}=y_{1}$, and $y_{2}=x_{1}$. It is noteworthy that two other areas, $A P_{1} c P_{2} B$ and $C D P_{1}$ $c P_{2}$, have this same value, for evidently

$$
\int_{x_{1}}^{x_{2}} y d x=\int_{y_{1}}^{y_{2}} x d y=\log \alpha=u .
$$

The length of the chord $P_{1} P_{2}$ is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}=a-a^{-1},
$$

and half of this, or $P_{1} a$, is the hyperbolic sine which may evidently be put in the form

$$
\sinh u=\frac{e^{u}-e^{-u}}{2}
$$

Since the curve $P_{1} c P_{2}$ is an hyperbola,

$$
\overline{o a^{2}}-\overline{a P_{1}^{2}}=\mathrm{I},
$$

and therefore

$$
o a=\sqrt{1-\sinh ^{2} u}=\frac{e^{u}+e^{-u}}{2}=\cosh u .
$$

The diameters connecting the points of intersection of the unit circle and the ellipse whose axes are α and a^{-1}, may be called the isocyclic diameters of the ellipse, because the circle and the ellipse have the same area. These diameters are not conjugate. If the ellipse is conceived as the section on the greatest and least axes of an ellipsoid of unit volume, the isocyclic diameters are the traces of the circular sections of the ellipsoid. The coördinates of one of the points of intersection, say E, are

$$
x=\frac{\mathrm{I}}{\sqrt{a^{2}+\mathrm{I}}} ; y=\frac{a}{\sqrt{a^{2}+\mathrm{I}}},
$$

and therefore the angle ν, which the vector $o E$ makes with the major axis of the ellipse, is given by the relation
and it follows that

$$
\tan \left(\frac{\pi}{2}-2 v\right)=\frac{1}{2}(\cot v-\tan v)=\sinh u .
$$

This angle $\left(\frac{\pi}{2}-2 v\right)$ is $g d u$, or the gudermannian of u, so that in any
ellipse whatever the angle made by any line parallel to one isocyclic diameter with a perpendicular on the other isocyclic diameter is the gudermannian of the natural logarithm of the semi-major axis, this being expressed in terms of the isocyclic radius, which in the general case is the square root of the product of the semiaxes. ${ }^{1}$ In the diagram the gudermannian $b o b_{1}$ is shown as bisected by the axis of the hyperbola, and it is worth remarking that if the ellipse were to be distorted into a circle by compressing the major axis and elongating the minor axis, the line ob would be brought into coincidence with $o b_{1}$, so that $g d u$ can be defined as the angle through which an isocyclic diameter has swept when the ellipse has been derived from a circle by irrotational plane strain.

The angle $45^{\circ}+\frac{g d u}{2}$ which occurs in the formula for meridional parts is the angle made by either isocyclic diameter of the ellipse with the minor axis, and the tangent of this angle is the semi-major axis a.

The twofold relations of the hyperbolic functions to the hyperbola and the ellipse are illustrated in a somewhat different manner in figure 6.

Here the curve $p_{1} c p_{2}$ is an arc of an hyperbola $y^{2}-x^{2}=1$. If the area of the sector $o p_{1} c p_{2}$ is called $u, a p_{1}=\sinh u$ and $o a=\cosh u$. Make $b c=p_{1} a$ and draw the associated ellipse shown in the diagram. Then the angle $b o c=g d u ; b o=\cosh u$ and

$$
\begin{aligned}
& \tan g d u=\sinh u \\
& \sec g d u=\cosh u \\
& \sin g d u=\tanh u .
\end{aligned}
$$

The ellipse has corresponding properties. Since the gudermannian is the angle between either isocyclic diameter and a line perpendicular to the other, the line $o b$ may be regarded as coinciding with one isocyclic diameter and the axis of abscissas with the other. The major axis of the ellipse then bisects

[^6]the angle $90^{\circ}-g d u$, its magnitude is $2 e^{u}$, and the equation of the ellipse is
$$
x^{2}+4 x y \tan g d u+y^{2}\left(4 \tan ^{2} g d u+\mathrm{I}\right)=\mathrm{I} .
$$

By varying the value of $\tan g d u$ (or $\sinh u$) a system of ellipses is obtained whose envelopes are $y= \pm 1$, so that if any one of the ellipses is supposed to be derived from the circle by distortion, the process is that generally known as "shearing motion or scission."

If the points in the circle are sought which correspond to the points on the

Fig. 6.
major axis of the ellipsoid, it will be found that the angle between the two positions (the angle of rotation) is equal to the gudermannian. ${ }^{1}$

If instead of the horizontal, the vertical line in figure 6 had been taken as coinciding with the isocyclic diameter of the ellipse, the result would have been the discovery of a system of ellipses whose envelopes are $x= \pm \mathrm{I}$, similar in all respects excepting orientation to that discussed.
${ }^{1}$ Love's Treatise on the Theory of Elasticity, vol. I, p. 43.

METHODS OF INTERPOLATION.

It is not easy to describe the use of the tables which follow without some notes on the methods of interpolation with reference to which they are arranged. In all of them the argument advances by equal increments, each equal, say, to ω. It is required to find a value of the function F intermediate between two tabulated values, F_{0} and F_{1}, corresponding to a fractional value of the argument or to $n \omega$, where n is always less than unity, and preferably less than one-half.
Let F_{n} be the value of the function to be determined ; let F_{-1} and F_{-2} be tabulated values of F immediately preceding F_{0}, and let F_{1}, F_{2} be values immediately following F_{0}. Denote $F_{1}-F_{0}$ by a_{1}, other first differences (Δ^{\prime}) being similarly represented. If also $a_{2}-a_{1}=b_{1}, b_{1}-b_{0}=c_{1}$, etc., the whole system of functions and differences is shown in the following schedule: ${ }^{1}$

F	Δ^{\prime}	$d^{\prime \prime}$	$\Delta^{\prime \prime \prime}$	$\Delta^{i v}$	s^{0}	$\Delta v i$
F_{-2}		$b^{\prime \prime}$		$d^{\prime \prime}$		$f^{\prime \prime}$
F_{-1}	$a^{\prime \prime}$	b^{\prime}	$i^{\prime \prime}$	$d^{\prime \prime}$	$e^{\prime \prime}$	f^{\prime}
F_{0}	a^{\prime}	b_{0}	c^{\prime}	d_{0}	e^{\prime}	f_{0}
F_{1}	a_{1}	b_{1}	c_{1}	d_{1}	e_{1}	f_{1}
F_{2}	a_{2}	b_{2}	c_{2}	d_{2}	c_{2}	f_{2}

The most familiar formula of interpolation is due to Newton, and in the above notation it may be written thus:

$$
\begin{gathered}
F_{n}-F_{0}=n a_{1}+\frac{n(n-1)}{2!} b_{1}+\frac{n(n-1)(n-2)}{3!} c_{2} \\
+ \\
+\frac{n(n-1)(n-2)(n-3)}{4!} d_{2}+\ldots
\end{gathered}
$$

[^7]The coefficients are those of the binomial theorem. This formula is applicable to the first intervals of a series, which is not the case with any other mode of interpolation. It may also be adapted to the last intervals by substituting - n for n and $a^{\prime}, b^{\prime}, c^{\prime \prime}, d^{\prime \prime}, \ldots$ for $a_{1}, b_{1}, c_{2}, d_{2}, \ldots$ In systematic interpolation, such as is involved in the construction of tables, it is usual to employ the more rapidly converging formulas of Stirling or Bessel; but when a computing machine and a table of products are available it is sometimes less laborious to compute an extra term of Newton's formula than to calculate and apply the mean differences called for by the other methods. Both Stirling's and Bessel's formulas can be derived from Newton's by known relations between the several differences.

In Stirling's formula the mean of the first differences next preceding and following F_{0} is made use of instead of only the latter, as in Newton's formula. The third differences are similarly treated, so that a_{0}, c_{0}, etc., being new quantities, are defined by

$$
\frac{a^{\prime}+a_{1}}{2}=a_{0} ; \frac{c^{\prime}+c_{1}}{2}=c_{0} \text {, etc. }
$$

These mean values are used in conjunction with the even differences on the same horizontal line with F_{0} in the schedule, and Stirling's formula is

$$
\begin{aligned}
F_{n}-F_{0}= & n a_{0}+\frac{n^{2}}{2!} b_{0}+\frac{n\left(n^{2}-1\right)}{3!} c_{0}+\frac{n^{2}\left(n^{2}-\mathrm{I}\right)}{4!} d_{0} \\
& +\frac{n\left(n^{2}-1\right)\left(n^{2}-4\right)}{5!} e_{0}+\ldots
\end{aligned}
$$

To interpolate backward it is only needful to substitute $-n$ for n.
In Bessel's formula use is made of mean differences of the even orders, and if b, d, etc., are these means they are defined in terms of the scheduled differences, thus:

$$
\frac{b_{0}+b_{1}}{2}=b ; \frac{d_{0}+d_{1}}{2}=d \text {, etc. }
$$

They are used in conjunction with the simple odd differences a_{1}, c_{1}, etc., and the formula is

$$
\begin{gathered}
F_{n}-F_{0}=n a_{1}+\frac{n(n-1)}{2!} b+\frac{n(n-1)\left(n-\frac{1}{2}\right)}{3!} c_{1}+\frac{(n+1) n(n-1)(n-2)}{4!} d \\
+\frac{(n+1) n(n-1)(n-2)\left(n-\frac{1}{2}\right)}{5!} e_{1}+\ldots
\end{gathered}
$$

When $n=\frac{1}{2}$, or for interpolation to the middle of an interval, the coefficient of c_{1} vanishes and $F_{n}-F_{0}$ is independent of third differences, which is clearly a great advantage. In general this method is very advantageous when n approaches one-half, while Stirling's formula is preferred for small values of n.

When Bessel's formula is used for backward interpolation, it may be written
$F_{-n}-F_{0}=-n a^{\prime}+\frac{n(n-\mathrm{r})}{2!}\left(\frac{b_{0}+b^{\prime}}{2}\right)-\frac{n(n-1)\left(n-\frac{1}{2}\right)}{3!} c^{\prime}+\ldots$, n being taken as positive.

A distinct method of interpolation is founded directly upon Taylor's theorem. If $F_{0}^{\prime} F_{0}^{\prime \prime}$, etc., are the successive derivatives of F_{0}, and ω is the constant increment of the argument, this fundamental theorem may be written
$F_{n}-F_{0}=n \omega F_{0}^{\prime}+\frac{n^{2} \omega^{2} F_{0}^{\prime \prime}}{2!}+\frac{n^{3} \omega^{3} F_{0}^{\prime \prime \prime}}{3!\cdot}+\frac{n^{4} \omega^{4} F_{0}^{i 0}}{4!}+\ldots \ldots(a)$,
and this becomes an interpolation formula when the derivatives are expressed in terms of the differences. This is readily accomplished to any degree of exactness whenever the differences become rigorously or sensibly constant at some particular order and the tabular interval is small relatively to the period of the function. To find the numerical values of the derivatives it is not necessary that the analytical expression of the function should be known; for, rearranging the terms of the formula of Bessel and Stirling according to ascending powers of n and comparing coefficients,
(Bessel.) (Stirling.)
$F_{0}^{\prime}=\frac{I}{\omega}\left(a_{1}-\frac{1}{2} b+\frac{1}{12} c_{1}+\frac{1}{12} d-\frac{1}{120} e_{1}-\ldots\right)=\frac{I}{\omega}\left(a_{0}-\frac{1}{6} c_{0}+\frac{1}{30} e_{0}-\ldots\right)$
$F_{0}^{\prime \prime}=\frac{\mathrm{I}}{\omega^{2}}\left(b-\frac{1}{2} c_{1}-\frac{1}{12} d+\frac{1}{24} e_{1}+\ldots\right)=\frac{\mathrm{I}}{\omega^{2}}\left(b_{0}-\frac{1}{12} d_{0}+\ldots\right)$
$F_{0}^{\prime \prime \prime}=\frac{\mathrm{I}}{\omega^{3}}\left(c_{1}-\frac{1}{2} d+0 \ldots\right) \quad=\frac{\mathbf{I}}{\omega^{3}}\left(c_{0}-\frac{1}{4} e_{0}+\ldots\right)$
$F_{0}^{i 0}=\frac{I}{\omega^{4}}\left(d-\frac{1}{2} e_{1}-\ldots\right) \quad=\frac{\mathrm{I}}{\omega^{4}}\left(d_{0}-\ldots\right)$
$F_{0}^{v}=\frac{\mathrm{I}}{\omega^{5}}\left(e_{1}-\ldots\right) \quad=\frac{\mathrm{I}}{\omega^{5}}\left(e_{0}-\ldots\right)$.
Hence, to compute the first derivative, say from Stirling's formula, when the 6 th differences and $\frac{1}{30}$ of the mean of the corresponding third differences are negligible, it is only needful to take the mean of the first differences preceding and following the tabular value of the function, subtract from it onesixth ($\frac{1}{6}$) of the mean of the corresponding third differences, and divide the result by ω.

Newton's formula gives for arguments near the beginning of the series of tabular values:

$$
\begin{aligned}
& F_{0}^{\prime}=\frac{\mathrm{I}}{\omega}\left(a_{1}-\frac{1}{2} b_{1}+\frac{1}{3} c_{2}-\frac{1}{4} d_{2}+\frac{1}{5} e_{3}-\ldots\right) \\
& F_{0}^{\prime \prime}=\frac{\mathrm{I}}{\omega^{2}}\left(b_{1}-c_{2}+\frac{11}{12} d_{2}-\frac{5}{6} e_{3}+\ldots\right) \\
& F_{0}^{\prime \prime \prime}=\frac{\mathrm{I}}{\omega^{3}}\left(c_{2}-\frac{3}{2} d_{2}+\frac{7}{4} e_{3}-\ldots\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{0}^{i v}=\frac{I}{\omega^{4}}\left(d_{2}-2 e_{3}+\ldots\right) \\
& F_{0}^{v}=\frac{I}{\omega^{j}}\left(e_{3}-\ldots\right),
\end{aligned}
$$

and for arguments near the end of the series of tabular values,

$$
\begin{aligned}
& F_{0}^{\prime}=\frac{I}{\omega}\left(a^{\prime}+\frac{1}{2} b^{\prime}+\frac{1}{3} c^{\prime \prime}+\frac{1}{4} d^{\prime \prime}+\frac{1}{5} e^{\prime \prime \prime}+\ldots\right) \\
& F_{0}^{\prime \prime}=\frac{\mathrm{I}}{\omega^{2}}\left(b^{\prime}+c^{\prime \prime}+\frac{11}{12} d^{\prime \prime}+\frac{5}{6} e^{\prime \prime \prime}+\ldots\right) \\
& F_{0}^{\prime \prime \prime}=\frac{\mathrm{I}}{\omega^{3}}\left(c^{\prime \prime}+\frac{3}{2} d^{\prime \prime}+\frac{7}{4} c^{\prime \prime \prime}+\ldots\right) \\
& F_{0}^{i v}=\frac{1}{\omega^{4}}\left(d^{\prime \prime}+2 e^{\prime \prime \prime}+\ldots\right) \\
& F_{0}^{v}=\frac{\mathrm{I}}{\omega^{5}}\left(c^{\prime \prime \prime}+\ldots\right)
\end{aligned}
$$

The differences of the derivatives may of course be found and discussed in the same manner as those of any other function, and the higher deriva-
 To distinguish the differences of F^{\prime} from those of F, they may be denoted by Greek letters, and the notation is exhibited in the following scheme :

$$
\begin{array}{llllll}
F^{\prime}-2 & & & & \\
& a^{\prime \prime} & & & & \\
F^{\prime}-1 & & \beta^{\prime} & & & a_{1}+a^{\prime}=2 a_{0} \\
F_{0}^{\prime} & a^{\prime} & & \gamma^{\prime} & & \beta_{0} \\
& \alpha_{1} & & \delta_{1} & & \gamma_{1}+\gamma^{\prime}=2 \gamma_{0} \\
F_{1}^{\prime} & & \beta_{1} & & \\
F_{2}^{\prime} & a_{2} & & & &
\end{array}
$$

Using Stirling's formulæ, page $x \times x v i$, the successive derivatives inclusive of fifth differences are now
$F_{0}^{\prime \prime}=\frac{\mathrm{I}}{\omega}\left(\alpha_{0}-\frac{1}{6} \gamma_{0}\right) ; F_{0}^{\prime \prime \prime}=\frac{\mathrm{I}}{\omega^{2}}\left(\beta_{0}-\frac{1}{12} \delta_{0}\right) ; F_{0}^{i \phi}=\frac{\mathrm{I}}{\omega^{3}}\left(\gamma_{0}\right) ; F_{0}^{0}=\frac{\mathrm{I}}{\omega^{4}}\left(\delta_{0}\right) ;$
and the interpolation formula may be written
$F_{n}=F_{0}+n \omega F_{0}^{\prime}+\frac{n^{2} \omega}{2!}\left(\alpha_{0}-\frac{1}{6} \gamma_{0}\right)+\frac{n^{8} \omega}{3!}\left(\beta_{0}-\frac{1}{1_{2}^{2}} \delta_{0}\right)+\frac{n^{4} \omega}{4!} \gamma_{0}+\frac{n^{5} \omega}{5!} \delta_{0} ;$ or, neglecting fifth differences,

$$
F_{n}=F_{0}+n \omega\left[F_{0}^{\prime}+\frac{n}{2} a_{0}+\frac{n^{2}}{6} \beta_{0}+\frac{n}{12}\left(\frac{n^{2}}{2}-1\right) \gamma_{0}\right],
$$

and for backward interpolation

$$
F_{-n}=F_{0}-n \omega\left[F_{0}^{\prime}-\frac{n}{2} a_{0}+\frac{n^{2}}{6} \beta_{0}-\frac{n}{12}\left(\frac{n^{2}}{2}-\mathrm{I}\right) \gamma_{0}\right] .
$$

In the tables which follow, the first derivatives multiplied by ω are tabulated in units of the last decimal place of the tabulated function (except Table VII), and the remaining quantities required in the computation can be found by mere inspection. The higher order of differences will be needed only for a very few arguments at the beginning or end of those tabular values whose numerical magnitudes approacho or ∞. For the remaining arguments it will be found that the $\frac{1}{48}$ part of the second difference of $\omega F_{n}{ }^{\prime}$ is not great enough to influence the result, and it is therefore sufficient to use

$$
\left.\begin{array}{l}
F_{n}=F_{0}+n \omega\left(F_{o}^{\prime}+\frac{n}{2} a_{o}\right) \\
F_{-n}=F_{0}-n \omega\left(F_{0}^{\prime}-\frac{n}{2} a_{0}\right)
\end{array}\right\} \cdots(b),
$$

ωa_{0} being the mean first difference of ωF^{\prime} corresponding to F_{0}. This formula is rigorous when third differences are zero. In most cases $\frac{n \omega a_{0}}{2}$ can be found mentally, and since $\omega\left(F_{0}^{\prime}+\frac{n}{2} a_{0}\right)$ is here to be regarded as an interpolated value of ωF_{0}^{\prime}, no confusion can arise as to the sign of the correction. It thus becomes almost as easy to include ωa_{0} in the computation as to omit it. A convenient rule is: Find by linear interpolation the value ωF^{\prime} for one-half the interval $\left(\frac{n}{2}\right)$; multiply this interpolated value by the entire interval (n) and apply the product to the tabular value of the function, either positively or negatively, according as the function is increasing or decreasing. To illustrate the application of this rule, find $\log _{10} \sinh 0.00304$. In this case $n=0.4$ and the table gives

$$
F_{0}=7 \cdot 477 \mathrm{I} 2 ; \omega F_{0}^{\prime}=1447,7 ; \omega a_{0}=-48,3,
$$

the last two quantities being expressed in units of the fifth decimal place. Interpolating ωF^{\prime} linearly for one-half the interval,

$$
\omega F_{\frac{n}{2}}^{\prime}=\omega\left(F_{0}^{\prime}+\frac{n}{2} a_{0}\right)=1447,7-0.2 \times 48,3=1438,0 ;
$$

multiplying this value by n and adding the result to the tabular value of the function, there results

$$
F_{n}=1438,0 \times 0.4+7.47712=7.48287
$$

The corresponding difference formula (Bessel's) is

$$
F_{n}=F_{0}+n\left[a_{1}-\frac{(\mathrm{I}-n)}{2} b\right] .
$$

The derivative formula (b) with two terms has the advantage of being much more convenient than the difference formula, while the accuracy of the two is the same (five-eighths of a unit) when the derivatives are tabulated to the
same order of decimal as the function. In the case of linear interpolation, however, it is in general more accurate to use the differences, the maximum error of the difference formula being one-half of a unit and that of the derivative formula three-fourths of a unit in the next succeeding decimal place. The accuracy of the two formulas is the same when the next succeeding decimal of the derivative is tabulated. The error of the derivative formula is then simply the error of the tabular value, while the error of the difference formula may be $=,>$ or $<$ than that of the tabular value, but is never greater than one-half of a unit.

Interpolation formulas which are applicable only to a single function are rarely advantageous, because as much time is often consumed in looking them up as is saved by employing them; but some formulas applicable to hyperbolic functions are so simple that when once suggested they can hardly be forgotten. Thus, Taylor's theorem gives at once
$\cosh (u+n \omega)-\cosh u=n \omega \sinh u+\frac{n^{2} \omega^{2}}{2!} \cosh u+\frac{n^{3} \omega^{3}}{3!} \sinh u+\ldots$, and the form for the sine is of course similar. Again, when, as here, the cosine is tabulated with an argument in terms of radians,

$$
\cos (u+n \omega)-\cos u=-n \omega \sin u-\frac{n^{2} \omega^{2}}{2!} \cos u+\frac{n^{3} \omega^{3}}{3!} \sin u+\ldots
$$

the series for the sine being similar.
So, too,

$$
\begin{aligned}
\log _{e}(u+n \omega)-\log _{e} u & =\log _{e}\left(\mathrm{I}+\frac{n \omega}{u}\right) \\
& =\frac{n \omega}{u}-\frac{1}{2} \frac{n^{2} \omega^{2}}{u^{2}}+\frac{1}{3} \frac{n^{3} \omega^{3}}{u^{3}}-\frac{1}{4} \frac{n^{4} \omega^{4}}{u^{4}}+\ldots \quad\left(\frac{n^{2}}{u^{2}}<\mathrm{I} .\right)
\end{aligned}
$$

Simplest of all is the exponential,

$$
\begin{aligned}
e^{u+n \omega} & -e^{u}=e^{u}\left(e^{n \omega}-\mathrm{I}\right)=e^{u}\left(n \omega+\frac{n^{2} \omega^{2}}{2!}+\frac{n^{3} \omega^{3}}{3!}+\ldots\right) \ldots(c), \\
& =e^{u}\left(+0.01 n+0.000,05 n^{2}+0.000,000, \mathrm{I} 67 n^{3}+\ldots\right),(\omega=0.0 \mathrm{I}) \\
& =e^{u}\left(+0.001 n+0.000,000,5 n^{2}+\ldots\right) .
\end{aligned}
$$

The series in $n \omega$ may be replaced by h, and this may have any finite value. Especially when a computing machine is available, this formula is easily applied and is, of course, rigorous.

From time to time inverse interpolation by a method more accurate than first differences is called for; indeed, whenever interpolation of a function by higher differences is needful, it is equally needful that the argument corresponding to a given function should be ascertained by a like process. The method ordinarily pursued in such cases is to estimate two values of the argument, one a little greater and the other a little less than that of the required argument, interpolate corresponding values of the function, and finally interpolate linearly over the reduced interval for a final value of the argument.

Another method consists in interpolating values of the function and its derivatives for an approximate value of the required interval and then computing a correction to this approximate value by means of a reversed Taylor's series. ${ }^{1}$

If second differences only are to be taken into account, the usual method of procedure is to estimate an approximate value of n, say n^{\prime}, and with this estimated value we interpolate linearly as before and find the value of $\omega F_{\frac{n^{\prime}}{2}}^{\prime}$ corresponding to one-half of the estimated interval $\left(\frac{n^{\prime}}{2}\right)$. Then the required interval (n) is equal to the difference between the given value and the nearest tabular of the function divided by $\omega \frac{F_{\frac{n^{\prime}}{2}}^{\prime}}{\prime}$. This method is in fact simply the reverse of the one for direct interpolation. A recomputation is of course necessary if the values of n and n^{\prime} are not practically the same. As an illustration, find u when $\log _{10} \sinh u=7.48287$. We first compute

$$
n^{\prime}=\frac{7.48287-7.47712}{1448,0}=0.4
$$

then the value of $\omega \frac{F_{n^{\prime}}^{\prime}}{\prime}$ in terms of the last tabular unit is found as before by linear interpolation to be $1438, o$. Hence

$$
n=\frac{7.48287-7.47712}{1438,0}=0.40 \text { and } u=0.00304
$$

Since the estimated and computed values of the interval agree, there is no need of a recomputation.

The methods which are based upon an estimated value of the argument are unsystematic and clumsy. It is much better to use a formula which gives the required result by a direct and rigorous method. To find such a formula, divide Taylor's series (eq. a) by ωF_{0}^{\prime}, and put

$$
n_{1}=\frac{F_{n}-F_{0}}{\omega F_{0}^{\prime}} ; f_{2}=\frac{\omega^{2} F_{0}^{\prime \prime}}{2 \omega F_{0}^{\prime}} ; f_{3}=\frac{\omega^{3} F_{0}^{\prime \prime \prime}}{6 \omega F_{0}^{\prime}} ; f_{4}=\frac{\omega^{4} F_{0}^{i v}}{24 \omega F_{0}^{\prime}} ; f_{5}=\frac{\omega^{5} F_{0}^{v}}{120 \omega F_{0}^{\prime}} ;
$$

then the interpolation formula may be written

$$
n_{1}=n+f_{2} n^{2}+f_{3} n^{3}+f_{4} n^{4}+f_{5} n^{5}
$$

Reversing this series in accordance with the relation, ${ }^{3}$

$$
\begin{gathered}
x=\frac{y}{a_{0}}+\frac{y^{2}}{a_{0}{ }^{3}}\left(-a_{1}\right)+\frac{y^{3}}{a_{0}^{5}}\left(-a_{0} a_{2}+2 a_{1}^{2}\right) \\
\quad+\frac{y^{4}}{a_{0}{ }^{7}}\left(-a_{0}^{2} a_{3}+5 a_{0} a_{1} a_{2}-5 a_{1}^{3}\right) \\
+\frac{y^{5}}{a_{0}^{9}}\left(-a_{0}^{3} a_{4}+3 a_{0}^{2}\left(a_{2}^{2}+2 a_{1} a_{3}\right)-2 \mathrm{I} a_{0} a_{1}^{2} a_{2}+14 a_{1}^{4}\right)
\end{gathered}
$$

[^8]which is the reversed series of
$$
y=a_{0} x+a_{1} x^{2}+a_{2} x^{3}+a_{3} x^{4}+a_{4} x^{5}
$$
and rearranging the terms, ${ }^{1}$
\[

$$
\begin{align*}
n=n_{1} & +n_{1}\left[-n_{1} f_{2}+2\left(n_{1} f_{2}\right)^{2}-5\left(n_{1} f_{2}\right)^{3}+14\left(n_{1} f_{2}\right)^{4}+\ldots\right] \\
& +n_{1}^{2}\left[n_{1} f_{3}\left(-\mathrm{I}+5\left(n_{1} f_{2}\right)-2 \mathrm{I}\left(n_{1} f_{2}\right)^{2}+\ldots\right)\right] \\
& +n_{1}^{3}\left[n_{1} f_{4}\left(-\mathrm{I}+6 n_{1} f_{2}\right)+3\left(n_{1} f_{3}\right)^{2}+. .\right] \\
& +n_{1}^{4}\left[-n_{1} f_{5}+\ldots\right] \quad . \quad . \quad . \quad . \tag{d}
\end{align*}
$$
\]

In the actual computation it is convenient to put

$$
r=\frac{n_{1}}{2 \omega F_{0}^{\prime}} ;
$$

then, when successive values of ωF_{n}^{\prime} are tabulated in units of the last decimal place, and Stirling's coefficients are used,

$$
\begin{array}{ll}
n_{1} f_{2}=r \omega\left(\alpha_{0}-\frac{1}{6} \gamma_{0}\right) & n_{1} f_{3}=\frac{1}{3} r \omega\left(\beta_{0}-\frac{1}{12} \delta_{0}\right) \\
n_{1} f_{4}=\frac{1}{12} r \omega \gamma_{0} & n_{1} f_{5}=\frac{1}{60} r \omega \delta_{0} .
\end{array}
$$

The formula is rigorous inclusive of fifth differences, and does not require the computation of an approximate value of n. It is applicable to any function or series of tabulated values whose successive derivatives become evanescent. It is particularly convenient when differences higher than the second are neglected. The formula then becomes

$$
n=n_{1}+n_{1}\left[-r \omega \alpha_{0}+2\left(r \omega a_{0}\right)^{2}-5\left(r \omega a_{0}\right)^{3}+1_{4}\left(r \omega a_{0}\right)^{4}\right] .
$$

Since $r \omega \alpha_{0}$ is a very small quantity, the higher powers are seldom needed, and, should they be required, are easily taken into account. As an example, let it be required to find u when $\log _{10} \sinh u=7.48287$. We compute

$$
\begin{aligned}
& n_{1}=\frac{7.48287-7.47712}{1447,7}=0.40 \\
& r=\frac{n_{1}}{2 \omega F_{0}^{\prime}}=\frac{0.40}{2 \times 1447,7}=0.0001
\end{aligned}
$$

and

$$
n_{1} r \omega a_{0}=0.40 \times 0.0001 \times(-48,3)=0.00
$$

Hence $n=n_{1}=0.40$ and $u=0.00304$, the same as obtained by the other method.

When $F_{n}=e^{u}$, it is easily shown, either by means of series (d) or by independent methods, that

$$
\begin{aligned}
& n \omega=\log \left(\mathrm{I}+n_{1} \omega\right) \quad . \quad . \quad . \quad . \quad . \quad . \quad(e) \\
& n=+n_{1}-0.005 n_{1}^{2}+0.000,033 n_{1}^{3}+\ldots, \\
& \left.n=+n_{1}-0.0005 n_{1}^{2}+\ldots=0.0 \mathrm{I}\right) \\
& n=0.00 \mathrm{I})
\end{aligned}
$$

These formulæ afford an easy means of finding the natural logarithm of a

[^9]number from the tabular values of $e^{ \pm u}$. Thus, to find the natural logarithm of 0.9642 IO2, we compute
$$
n_{1}=\frac{0.9646403-0.9642102}{0.0009646403}=0.44587
$$

Substituting in the last of the above equations

$$
n=0.44587-0.0005 \times(0.45)^{2}=0.44577
$$

hence nat log of $0.9642102=-0.03644 .58$.
One of the most important applications of differences is the detection of errors in values tabulated at equal intervals of the argument. It may be shown by substitution in the schedule of differences (page xxxiv) that an error, $+\epsilon$, in F_{0} produces errors in the successive differences of any order which are multiples of ϵ, the law of distribution of the multiples being that of the corresponding coefficients of the binomial theorem, and the signs of the errors being alternately positive and negative. Since some order of differences of every continuous function must vanish, the presence of an error in a tabular value must ultimately result in producing successive differences of a certain order which alternate in sign. A comparison of these differences with the corresponding binomial coefficients enables one to estimate the magnitude of the error. Thus in the series which follows :

X	X^{3}	Δ^{\prime}	$4^{\prime \prime}$	$\Delta^{\prime \prime \prime}$	$\Delta i v$
13	2197				
		547			
14	2744		84		
15	3375	63 I	90	6	$+2$
		721		8	
16	4096		98		-8
		819		-	
17	4915		98		+12
18		917	110	± 2	- 8
18	5832	1027		4	
19	6859		114		$+2$
		II4 1		6	
20		I26I	120		
21	926 I				

the alternation in sign occurs in the fourth-order differences, and the numerical values are twice the coefficients of $(a+b)^{4}$. Hence there is an error of +2 units in the value 4915 . The corrections $-2,+8,-12,+8,-2$ applied to the fourth differences causes them to vanish, and the corrections - 2 , $+6,-6,+2$ applied to the third differences reduces them to a constant.

This method is particularly useful in detecting large accidental errors in a series of observed values and in estimating their magnitudes.

DESCRIPTION OF TABLES.

Table I is devoted to 5-place values of the logarithmic hyperbolic sine, cosine, tangent, and cotangent of u expressed in radians. The argument u advances by ten-thousandths from o to 0.1 , by thousandths from o.r to 3.0 , and by hundredths from 3.0 to 6.0 . In this as in all the tables (except Table VII), instead of the first differences, the first derivatives of the functions multiplied by the tabular interval (ω) are tabulated in units of the last decimal place, under the heading ωF_{0}^{\prime}. As noted above, this agrees with much of the most authoritative modern practice and facilitates interpolation. It did not appear worth while to extend the tabulation of the table beyond six radians, because higher values are seldom needed; but in Table IV a few very high values of $e^{ \pm u}$ are given, from which in case of need the hyperbolic functions can be found.

In Table II the natural values of the hyperbolic functions are tabulated for the same arguments as in Table I. In some instances the values are given to one or to two places of decimals more than would be obtained by taking the inverse logarithms of the preceding table.

Table III gives $\sin u=-i \sinh i u$ and $\cos u=\cosh i u$ with their logarithms to 5 decimal places, the argument u being expressed in radians. The tabulation extends from $u=0.0000$ to 0.1000 , and from $u=0.100$ to 1.600, because $90^{\circ}=1.5707963$ radians; so that, this value of $\frac{\pi}{2}$ being borne in mind, the table affords the means of finding the sine or cosine of any arc expressed in radians.

Independently of hyperbolic functions, this table is often convenient. It also facilitates the computation of the principal hyperbolic functions of complex variables. Thus

$$
\begin{aligned}
& \sinh (u \pm i v)=\sinh u \cos v \pm i \cosh u \sin v \\
& \cosh (u \pm i v)=\cosh u \cos v \pm i \sinh u \sin v
\end{aligned}
$$

and to compute either of these functions it is only needful to take out two tabulated logarithms from Table III, two from Table I, make two additions, and look out two antilogarithms. It is of course conceivable that all the four quantities involved should be tabulated once for all; but even if u and v advanced only by hundredths, such a table would occupy 200 pages. To find from it functions corresponding to u and v expressed in thousandths would require three interpolations-a process quite as laborious as the use of the tables here given.

Space which would otherwise be vacant is utilized to give the angular values of the radian arguments, or a table of conversion of radians from xliii
0.0000 to 0.1000 and from 0.100 to 1.600 into degrees, minutes, seconds, and hundredths of a second.

Table IV gives the values of $\log _{10} e^{u}, e^{u}$ and e^{-u} to 7 decimal places from $u=0.000$ to 3.000 and from 3.00 to 6.00 . The values of e^{u} and e^{-u} enter into a vast number of equations representing natural phenomena, especially those (as Cournot remarked) which can be classed under the generic denomination of phenomena of absorption or gradual extinction. The ascending and descending exponentials may be regarded at will either as hyperbolic functions or as independent components of hyperbolic functions, since

$$
e^{ \pm u}=\cosh u \pm \sinh u
$$

while, on the other hand,

$$
\begin{aligned}
& \sinh u=\frac{e^{u}-e^{-u}}{2} ; \cosh u=\frac{e^{u}+e^{-u}}{2} ; \\
& \tanh u=\frac{e^{u}-e^{-u}}{e^{u}+e^{-u}} ; \operatorname{gd} u=2 \tan ^{-1} e^{u}-\frac{\pi}{2} .
\end{aligned}
$$

It is further evident that a table of $e^{ \pm u}$ is a table of natural antilogarithms. Formula e on page xli affords an easy means of obtaining the natural logarithm of a number from the tabular values of $e^{ \pm u}$. It is of course unnecessary to give the derivative of e^{u}, since this is e^{u}, while the derivative e^{-u} is $-^{-u}$. In general the interpolation or extrapolation of the function is very easy. (See formula c, page xxxix). The logarithm of e^{-u} is not given because, being merely the arithmetical complement of the $\log _{10} e^{u}$, it can be read off as fast as it can be written down.
In any table of $\log _{10} e^{u}$ where the interval of u is ω, the difference of successive logarithms is constant and equal to $\omega \log _{10} e$ or 0.43429448ω. If the logarithm of $e^{u+n \omega}$ is required, this will be

$$
(u+n \omega) \log _{10} e=\log _{10} e^{u}+n \omega \log _{10} e .
$$

Hence it is practicable to prepare an extended table of proportional parts or a table of $n \log _{10} e$ which is applicable to any table of $\log _{10} e^{u}$ when the tabulated values are multiplied by ω. Such an auxiliary table is given at the close of Table IV, in which the argument $\frac{n}{\omega}$ varies from 0.000 to 0.500 . If ω is unity, this is merely a 5 -place table of $\log _{10} e^{u}$. If, on the other hand, ω is o.00r, as in the earlier part of Table IV, the auxiliary table gives the increments corresponding to n to 8 places of decimals. Thus, if $\log _{10} e^{0.088245}$ is required, Table IV gives $\log _{10} e^{0.088}=0.0382179$, the auxiliary table gives for $\frac{n}{\omega}=0.245, n \log _{10} e=0.10640$; and since $\omega=0.001, \omega n \log _{10} e=$ 0.000 ro640, which added to $\log _{10} e^{n .088}$, gives $\log _{10} e^{0.08845}=0.0383243$. In the latter portion of Table IV ω is only o.or; so that, if the $\log _{10} e^{3.00245}$ is wanted, the main table gives $\log e^{3.00}=1.3028834$, and ω times $n \log e$ is 0.0010640 ; so that the required number is I .3039474 .

When $\log _{10} e^{u}$ is required for $u>6.00$ the auxiliary table is insufficient to give 7 -place values. Then the main table, IV, may be used as an auxiliary table. Thus

$$
\begin{aligned}
\log e^{11.088245} & =\log e^{11}+\log e^{0.088845} \\
& =4.7772393+0.0383243=4.8 \mathrm{I} 55636 .
\end{aligned}
$$

In the second part of Table IV values of $e^{ \pm u}$ and the logarithms of e^{u} are given, u varying from I to 100 . The logarithms are given to 10 decimals; the other functions to 9 significant figures. Such high values are seldom needed, but are included here lest these tables might some times fail the computer.

Table V gives the natural logarithms of numbers from I to rooo, with their derivatives to 5 places of decimals. These derivatives are merely the reciprocals of the arguments, and since $\log _{e}\left(\frac{1}{y}\right)=-\log _{e} y$, the logarithms of the derivatives are the tabulated logarithms taken negatively. The table thus gives, in addition to the logarithms of 1000 whole numbers, the logarithms of rooo proper fractions lying between 0.001 and unity.

The interpolation of natural logarithms is much less simple than is that of common logarithms, and this is the main reason why the latter are preferred for computation. A few simple rules, however, facilitate the needful calculations. When the natural logarithm of a vulgar fraction is required it is best to look out the logarithm of both numerator and denominator and subtract. If the natural logarithm is required of a fractional number stated decimally and less than 21.000 , no attempt should be made to interpolate it directly, because the third differences of the table cannot be neglected for numbers so near the beginning of the table. If the number lies between 10.000 and 21.000 , as, for example, 12.345 , it should be written $123.45 / \mathrm{Io}$, and the required $\log a r i t h m$ will be nat $\log 123.45$ - nat $\log \mathrm{IO}$. It is safe to interpolate the first of these between nat $\log 123$ and nat $\log 124$, using the formula for second differences. If the number whose logarithm is to be found lies between I and ro, as, for example, 8.2468, it should be written $824.68 / \mathrm{IOO}$, so that the required quantity is nat $\log 824.68$ - nat $\log 100$. The first of these logarithms can be found by using only the mean first differences or the tabulated derivatives between the logarithms of 824 and 825. For values of the argument between 21 and 158 interpolation requires the use of second differences, while above 158 average first differences or the first derivative is sufficiently accurate, inasmuch as the error involved is less than half a unit in the fifth decimal place.

It would be possible to interpolate the negative logarithms of the smaller fractions given by the derivatives-that is, from the reciprocal of 159 on to the end of the table, or for numbers between 0.00628 and 0.00100 -but this would not be expedient, because these reciprocals are themselves rounded values. If the natural logarithm of 0.0068352 is wanted as accurately as
the tables will give it, it is best to find the logarithm of 683.52 and to subtract from it the logarithm of 100,000 . (See also formula e, page xli.)

The use of second differences may be avoided altogether if the computer chooses, for any number not lying between 158 and 1,000 may be multiplied and divided by another number which will bring the numerator within these limits. Thus, if, as before, nat $\log 12.345$ is required, this number may be written $24690 / 20$, and the natural logarithm of the numerator found by help of the derivative, less nat $\log 20$, is the required value.

The awkwardness of a table of natural logarithms is inherent and cannot be overcome by any device. It depends on the fact that e and the base of numeration, the number io, are incommensurable quantities. If our numeration were duodecimal, as it might have been had six fingers to a hand been the rule instead of the exception, 12 would also have been the most convenient base for a table of logarithms. A great table of natural logarithms, such as Barlow's 8-place table of all numbers from I to 10,000 , is only a little more convenient than that here offered, and with it, too, it is expedient to multiply any small number by a factor such that the product approaches 10,000 .

Table VI gives the values of the gudermannian of u to 7 places from $u=0.000$ to $u=3.000$ and from $u=3.00$ to $u=6.00$. In this table u is expressed in radians, and $g d u$ both in radians and in angular measure. For theoretical work the gudermannian in radians is usually the more convenient, but for use in finding hyperbolic functions it must be reduced to an angle.

The gudermannian, $g d u$, is connected with the hyperbolic functions by the following well-known relations:

$$
\begin{aligned}
& \sinh u=\tan g d u ; \cosh u=\sec g d u ; \tanh u=\sin g d u \\
& \tanh \frac{u}{2}=\tan \frac{1}{2} g d u ; u=\log _{e} \tan \left(\frac{\pi}{4}+\frac{1}{2} g d u\right) .
\end{aligned}
$$

Thus Table VI, with the help of a 7-place table of logarithms of the circular functions, gives 7 -place values of the hyperbolic functions.

The derivative of $g d u$ is sech u, and can be used independently of the gudermannian.

Table VII is substantially a reversion of Table VI, and gives the antigudermannian in terms of the gudermannian, both, however, being expressed in minutes and decimals of a minute. If m is the antigudermannian expressed in minutes and u the same function expressed in radians,

$$
m=3437.7468 u=3437.7468 \log _{e} \tan \left(\frac{\pi}{4}+\frac{1}{2} g d u\right)
$$

Table VII is a table of m, and if m is multiplied by 0.0002908882 I the product is u in radians. This table is known to navigators as a table of Meridional Parts for a Spherical Globe. It is frequently of use in the discussion of physical questions and is the very foundation of navigation with Mercator charts. In the more modern works on navigation, however, the
ellipticity of the meridian is allowed for in computing tables of meridional parts, and consequently this table will probably never be reproduced in a navigator. For this reason it is here preserved for computers who are not engaged in navigation.

To test this table, which is borrowed from Inman, 200 of the values, or one in every 27 entries, were compared with Gudermann's 7 -decimal place table of the antigudermannian in radian measure. In nearly all cases Inman's last figure was confirmed, but in a few instances the last figure is incorrect by a unit. Inquiry into these cases showed that the maximum error detected was less than 0.006 of a minute. Thus the last figure is not absolutely trustworthy, but is near enough to enable the computer to interpolate accurately to 5 places. If 7 places of the antigudermannian are required, they can be found by inverse interpolation in Table VI.

The earlier part of Table VII may be interpolated by first differences without considerable error. At about $84^{\circ} 30^{\prime}$ one-eighth of the second difference becomes approximately half a unit in the last tabulated place, and beyond this point second differences should be taken into account.

Table VIII is a table for converting radians into angular measure and vice versa. A few numerical constants are appended.

HISTORICAL NOTE.

The first and most important application of the functions now known as hyperbolic was made by Gerhard Mercator (Kremer) when he issued his map on " Mercator's projection," in 1569 , or, as some say, in 1550, while Bowditch gives the date as $\mathbf{I} 566$. To this day substantially all of the deepsea navigation of the world is carried on by the help of this projection, which has been modified only to the extent of correcting the "meridional parts'" for the ellipticity of the meridian. Mercator's problem was to find a projection on which the loxodrome should be a straight line. The solution is unique, and for a spherical globe is $\lambda=g d \frac{m}{a}$ where λ is the latitude, m the "meridional part," or the ordinate on the projection of a point in latitude λ, and α is the radius of the sphere. Of course, this relation gives

$$
\frac{m}{a}=\log _{e} \tan \left(\frac{\pi}{4}+\frac{\lambda}{2}\right)
$$

and this Mercator must have tabulated. He published his map without explanation, however, and it was left to Edward Wright in I 599 to state the formula for m.
"The actual inventor of the hyperbolic trigonometry," says Professor McMahon, "was Vincenzo Riccati, S. J. (Opuscula ad res Phys. et Math. pertinens, Bononiae, 1757). He adopted the notation Sh. ϕ, Ch. ϕ, for the hyperbolic functions and $S c . \phi, C c . \phi$ for the circular ones. He proved the addition theorem geometically, and derived a construction for the solution of a cubic equation. Soon after Daviet de Foncenex showed how to interchange circular and hyperbolic functions by the use of $\sqrt{-1}$, and gave the analogue of de Moivre's theorem, the work resting more on analogy, however, than on clear definition (Reflex. sur les quant. imag., Miscel. Turin Soc., Tom. r). Johann Heinrich Lambert systematized the subject and gave the serial developments and the exponential expressions. He adopted the notation $\sinh u$, etc., and introduced the transcendent angle, now called the gudermannian, using it in computation and in the construction of tables.'."
C. Gudermann published an important memoir on Potential or Cyclichyperbolic functions in 1830^{2}, followed by extended tables. In recogni-

[^10]tion of his contributions to the subject, Cayley, in 1862, ${ }^{1}$ proposed the name gudermannian ${ }^{2}$ for the angle which Lambert called transcendent, and which had been rariously designated by others. Among other more recent works on hyperbolic functions are Siegmund Günther's Lehre von den Hyperbelfunctionen, 1881, and Mr. James McMahon's Hyperbolic Functions, 4th edition, 1906.

The first large table of hyperbolic functions we have met with is Legendre's table of $\log \tan \left(\frac{\pi}{4}+\frac{\lambda}{2}\right)$ to 12 decimals. The argument advances
by increments of 30 minutes, but five differences are tabulated to facilitate interpolation. ${ }^{3}$ Gudermann in 1831 published a table of the same function, using centesimal degrees and advancing by hundredths of a degree ($0^{\circ} 0^{\prime} 32^{\prime \prime}$.4) from 0 to an entire quadrant, the function being given to seren decimal places. This was later supplemented by a table adrancing by hundredths of a degree from 88° to 100°, the function being given to eleven decimal places. Gudermann also gave a 9-place table of $\log \cosh u, \log$ $\sinh u$, and $\log \tanh u$, from $u=2.000$ to $u=5.000$, and a io-place table of the same functions from $u=5.00$ to $u=12.00$.

In 1862 Z. F. W. Gronau ${ }^{4}$ published a 5 -place table of hyperbolic functions, the argument being the gudermannian $g d u$ in sexagesimal degrees and minutes. He tabulated to this argument $\log \cosh u, \log \sinh u$, and the Briggs logarithm of $\left(\frac{\pi}{4}+\frac{g d u}{2}\right)$ instead of the natural logarithms of this function, following therein a suggestion of Lambert.
In I890 W. Ligowski issued his Tafeln der Hyperbelfunctionen und der Kreisfunctionen, which is admirably accurate and much the most useful collection of tables of the hyperbolic functions hitherto printed. He filled the gap left by Gudermann by computing $\log \sinh u, \log \cosh u$, and \log $\tanh u$ from $u=0.000$ to 2.000 . These he gives to only 5 places, but in addition he tabulates $g d u$ in degrees, minutes, seconds, and decimals of a second. These values are in all cases sufficiently accurate to enable the computer to take out from an ordinary table of logarithms 7 -place values of the logarithms of $\cosh u$, $\sinh u$, and $\tanh u$. The argument ranges from 0.000 to 2.000 and from 2.00 to 6.00 for $g d u$, while $\log \cosh u$ and $\log \sinh u$ are carried up to $u=9.00$. Ligowski also gives the natural functions $\cosh u$, $\sinh u, \cos u$, and $\sin u$ to 6 decimals for values of u in radians from 0.00 to 2.00 , the $\cosh u$ and $\sinh u$ being continued to $u=8.00$. The only fault we can find with Ligowski's tables is that the increments of the argument are sometimes inconveniently large.

[^11]In 1883 F．W．Newman published a 12 －place table ${ }^{1}$ of the descending ex－ ponential from $u=0.000$ to $u=15.349$ ，and a 14 －place table of the same func－ tion advancing by two－thousandths from 15.350 to 17.298 and by five－thou－ sandths from 17.298 to 27.635 ．In the same volume appeared Mr．J．W．L． Glaisher＇s tables of the ascending and descending exponential to nine sig－ nificant figures，with ro－place logarithms．The argument advances by one－ thousandth to $0 . \mathrm{I}$ ；by one－hundredth to 2.00 ；by one－tenth to ro ，and by a single unit to 500 ．

Mr．A．Forti＇s Nuove Tavole delle Funzioni Iperboliche were pub－ lished in 1892．The hyperbolic sines，cosines，and tangents，together with their logarithms，are given to six decimals from 0.0000 to 0.2000 ， from 0.200 to 2.000 ，and from 2.00 to 8.00 ．Frequent errors，however，of one，two，and three units in the last decimal place practically limit these tables to five places．The gudermannian is tabulated in degrees，minutes， seconds，and tenths of a second，and the logarithms of the arguments are given to seven places．

In the volume here presented the first thousand values of $\log \sinh u, \log$ cosh u ，and $\log \tanh u$ have been computed；the remaining values have been taken from the tables of Gudermann or Ligowski．The values of the nat－ ural hyperbolic sines and cosines for values of the argument <0.1 and of the tangents for arguments >2.0 have been computed；the remaining values have been taken from the tables of Forti and Ligowski．A recomputation of a great number of the borrowed values was made in order to obtain the required accuracy．The values of $\operatorname{coth} u$ and $\log \operatorname{coth} u$ have been computed．

In Table III the sines and cosines were obtained by interpolation from the 7 －place values of natural sines and cosines given in Hülsse＇s Vega， where the argument is expressed in angle．The logarithms of the sines and cosines and the angular equivalents of the arguments have been computed．

In Table IV the values of e^{-u} are all taken from Newman＇s great table．Those of e^{+u} from 0.000 to 0.100 and from 1 to 100 are from Glaisher＇s table．The remainder we computed，checking the results by Glaisher＇s table or by reciprocating．It should be noted that the 7 －place table of e^{u} given in Hülsse＇s edition of Vega is inaccurate and really amounts to no more than a 5 －place table．The logarithms of e^{a} were com－ puted independently of the values of e^{u} ．
Tables V and VIII are borrowed．
The values of $g d u$ in Table VI in terms of angle are taken from Ligow－ ski，excepting the thousand values between $u=2.000$ and 3.000 ．These were interpolated from Ligowski＇s values（ 2.00 to 3.00 ）with due checks on his accuracy．In preparing the table of $g d u$ in radians it was necessary for us to make an independent computation of this function from $u=0.300$ to $u=3.000$ in order to secure accuracy in the seventh significant figure． The remaining values were derived from Ligowski by converting angles
into radians. A considerable number of his values, however, were tested by independent computation.

Table VII is borrowed from the Nautical tables of James Inman, revised by James W. Inman, London, 1867, with a few small corrections.

Finally, it may be remarked that the derivatives as given in these tables have been computed for them. They are not derived from the differences of the values as printed, but from more extended values, or are computed independently, and the error of the derivatives as well as of the functions is less than one-half of a unit in the next succeeding decimal place.

These tables were prepared in connection with the geophysical work of the United States Geological Survey, and are published with the permission of the Director.

George F. Becerer. C. E. Van Orstrand.

Washington, D. C., January, 1908.

TABLE I

LOGARITHMS OF HYPERBOLIC FUNCTIONS

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \tanh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	\log coth u
0.0000	- ∞	- $-\infty$	0.00000	0,0	- ∞	$\mp \infty$	∞
. 0001	6.00000	43429,4	. 00000		6.00000	43429,4	4.00000
. 0002	-30103	21714,7	. 00000		. 30103	21714,7	3.69897
. 0003	. 47712	14476,5	. 00000		.47712	14475,5	. 52288
. 0004	. 60206	10857,4	. 00000		. 60206	10857,4	-39794
0.0005	6.69897	8685,9	0.00000	0,0	6.69897	8685,9	$3 \cdot 30103$
. 0005	. 778 I 5	7238,2	. 00000		. 77815	7238,2	.22185
. 0007	. 84510	6204,2	. 00000		. $8+510$	6204,2	. 15490
. 0008	. 90309	5+28,7	.00000		. 90309	5428,7	.0969I
. 0009	. 95424	4825,5	.00000		.95424	4825,5	.04576
0.0010	7.00000	4342,9	0.00000	0, \%	7.00000	4342,9	3.00000
. OOII	. 04139	39+48, 1	.00000		.04139	3948, I	2.95861
. 0012	. 07918	36I9, 1	. 00000		. 07918	3619, 1	. 92082
.0013	. II394	3340,7	.00000		. II394	3340,7	. 88606
.0014	.146I3	3102,1	. 00000		. 14613	3102,1	. 85387
0.0015	7.17609	2895,3	0.00000	0,0	7.17609	2895,3	2.82391
. 0016	. 20412	2714,3	. 00000		. 20412	2714,3	. 79588
.0017	. 23045	2554,7	. 00000		. $230+5$	2554,7	. 76955
. 0018	. 25527	2412,7	. 00000		. 25527	2412,7	. 74473
. 0019	. 27875	2285,8	. 00000		.27875	2285,8	.72125
0.0020	$7 \cdot 30103$	2171,5	0.00000	0,0	7.30103	2171,5	2.69897
.002I	. 32222	2068, 1	.00000		. 32222	2068, 1	. 67778
. 0022	. 34242	197+1	. 00000		-31242	1974, 1	. 65758
. 0023	-36I73	1888,2	. 00000		. 36173	1888,2	. 63827
. 0024	. 38021	I809,6	. 00000		.3802I	1809,6	. 61979
0.0025	7.39794	1737,2	0.00000	0,0	7.39794	1737,2	2.60206
. 0026	. 41497	1670,4	.00000		.4I497	1670,4	. 58503
. 0027	. 43136	1608,5	. 00000		. 43136	I608,5	. 56864
. 0028	. 44716	I55I, 1	.00000		. 44716	I 551,0	- 55284
. 0029	. 46240	I497,6	. 00000		. 46240	1497,6	. 53760
0.0030	フ.47712	1447,7	0.00000	0,0	7.47712	I447,6	2.52288
. 0031	. 49136	I401,0	. 00000		. 49136	I400,9	. 50864
. 0032	. 50515	I 357,2	. 00000		. 50515	1357,2	- 49485
. 0033	. 51851	1316,0	. 00000		. 51851	1316,0	.48149
. 0034	. 53148	1277,3	. 00000		. 53148	1277,3	. 46852
0.0035	7.54407	1240,8	0.00000	0,0	7.54407	1240,8	2.45593
. 0036	. 55630	I206,4	. 00000		. 55630	I206,4	. 44370
. 0037	. 56820	II73,8	. 00000		. 56820	II73,8	. 43180
. 0038	. 57978	II42,9	. 00000		. 57978	II42,9	. 42022
. 0039	. 59107	III3,6	. 00000		. 59106	III3,6	. 40894
0.0040	7.60206	1085,7	0.00000	0,0	7.60206	1085,7	2.39794
. 0041	. 61279	1059,3	.00000		. 61278	1059,2	-38722
. 0042	. 62325	I034,0	. 00000		. 62325	1034,0	-37675
. 0043	. 63347	Ioro,o	. 00000		. 63347	IOIO,O	-36653
. 0044	. 64345	987,0	.00000		. 64345	987,0	-35655
0.0045	7.65321	965, I	0.00000	0,0	7.65321	965, I	2.34679
. 0046	. 66276	944, I	. 00000		. 66275	944, I	. 33725
. 0047	. 67210	924,0	. 00000		. 67209	924,0	-32791
. 0048	. 68124	904,8	.0000I		.68I24	904,8	-31876
. 0049	. 69020	886,3	. 00001		.69019	886,3	. 3098 I
0.0050	7.69897	868,6	0.00001	0,0	7.69897	858,6	2.30103
u	$\log \tan \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log cse gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0050	7.69897	868,6	0.00001	0,0	7.69897	868,6	2.30103
.005I	. 70757	$85 \mathrm{I}, 6$. 00001		. 70757	851,5	. 29243
. 0052	. 71601	835,2	. 00001		. 71600	835,2	. 28400
. 0053	. 72428	$8 \mathrm{I} 9,4$. 00001		. 72427	$8 \mathrm{I} 9,4$. 27573
. 0054	. 73240	804,3	.0000I		. 73239	804,2	.2676I
0.0055	7.74036	789,6	0.00001	0,0	7.74036	789,6	2.25964
. 0056	. 74819	775,5	. 00001		.74818	775,5	. 25182
. 0057	. 75588	761,9	. 00001		. 75587	761,9	. 24413
. 0058	. 76343	748,8	. 00001		$.753+2$	748,8	. 23658
. 0059	. 77085	736, 1	. 00001		.77085	736,1	. 22915
0.0060	7.77815	723,8	0.00001	0,0	7.77815	723,8	2.22185
. 0005	. 78533	712,0	. 00001		.78532	711,9	. 21.68
. 0062	. 79239	700,5	. 00001		. 79239	700,5	.20761
.0053	. 79934	689,4	. 00001		. 79933	689,3	.20067
. 0064	. 80618	678,6	. 00001		. 80517	678,6	. 19383
0.0065	7.81292	668, I	0.00001	0,0	7.81291	668, 1	2. 18709
. 0066	. 81955	658,0	. 00001		.81954	658,0	. 18046
. 0067	. 82608	648,2	. 00001		. 82607	6.48,2	. 17393
. 0068	. 83251	638,7	. 00001		. 83250	638,6	. 16750
. 0069	. 83885	629,4	.0000I		. 83884	629,4	. 16116
0.0070	7.84510	620,4	0.00001	0,0	7.84509	620,4	2.1549 I
.0071	. 85126	$6 \mathrm{II}, 7$. 00001		. 85125	611,7	. 14875
.0072	. 85734	603,2	.0000I		. 85732	603,2	. I4268
. 0073	. 86333	594,9	.0000I		. 85332	594,9	. 13668
.0074	. 86924	586,9	. 00001		. 86922	585,9	. 13078
0.0075	7.87507	579, 1	0.00001	0,0	7.87505	579,0	2.12495
. 0076	. 88082	571,4	.0000I		.8808I	571,4	. 11919
. 0077	. 88649	564,0	.0000I		. 886.48	564,0	. 11352
.0078	. 89210	556,8	.0000I		. 89209	556,8	. 10791
. 0079	. 89763	549,7	. 00001		. 89762	549,7	. 10238
0.0080	7.90309	542,9	0.00001	0,0	7.90308	542,8	2.09592
.0081	. 90849	536,2	.0000I		.90848	536, I	. 09152
. 0082	.91382	529,6	. 0000 I		.91380	529,6	. 08520
. 0083	.91908	523,2	. 00001		.91907	523,2	. 08093
. 0084	.92428	517,0	.00002		. 92427	517,0	. 07573
0.0085	7.92942	510,9	0.00002	0,0	7.92941	510,9	2.07059
. 0085	. 93450	505,0	. 00002		. 93449	505,0	.0655I
. 0087	. 93952	499,2	. 00002		.93951	499,2	. 06049
. 0088	-94449	493,5	.00002		. 94447	493,5	. 05553
. 0089	-94940	488,0	.00002		.94938	487,9	.05052
0.0090	7 7.95425	482,6	0.00002	0,0	7.95423	482,5	2.04577
.0091	.95905	477,3	. 00002		. 95903	477,2	. 04097
. 0092	. 96379	472, I	.00002		. 96378	472,0	. 03622
. 0093	. 96849	467,0	. 00002		-96847	467,0	.03153
. 0094	.973I3	462,0	. 00002		. 97312	462,0	. 02688
0.0095	7.97773	457,2	0.00002	0,0	7.97771	457, 1	2.02229
. 0096	. 98228	452,4	.00002		. 98226	452,4	. 01774
. 0097	.98678	447,7	. 00002		. 98676	447,7	. O1324
. 0098	. 99123	443,2	. 00002		.99121	443,1	.00879
. 0099	-99564	438,7	. 00002		.99562	438,7	. 00438
0.0100	8.00001	434,3	0.00002	0,0	7.99999	434,3	2.00001
u	$\log \tan \operatorname{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin 9 \mathrm{~d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{Fa}^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0100	8.00001	434,3	0.00002	0,0	7.99999	434,3	2.00001
. 0101	. 00433	430,0	. 00002		8.0043 I	430,0	1.99569
. 0102	. 0085 I	425,8	. 00002		. 00859	425,7	. 99141
. 0103	. 01284	$42 \mathrm{I}, 7$. 00002		. 01282	421,6	. 98718
. 0104	.01704	417,6	. 00002		. 01702	417,6	.98298
0.0105	8.02120	413,6	0.00002	0,0	8.02117	413,6	1.97883
. 0105	.02531	409,7	. 00002		. 02529	409,7	. 9747 I
. 0107	. 02939	405,9	. 00002		. 02937	405,9	. 97063
. 0108	. 03343	402, I	. 00003		.0334I	402, I	. 95659
. 0109	. 03744	398,5	. 00003		.0374I	398,4	.96259
0.0110	8.04140	394,8	0.00003	0,0	8.04138	394,8	1. 95862
.orif	. 04533	391,3	.00003		.0453I	391,2	. 95469
. 0112	. 04923	387,8	. 00003		. 04920	387,7	. 95080
. OII3	. 05309	384,4	. 00003		. 05306	384,3	. 94694
.OII4	.05691	381,0	. 00003		. 05689	380,9	.943II
0.0115	8.05071	377,7	0.00003	0,0	8.05058	377,6	I. 93932
. 0116	. 06447	374,4	. 00003	0,1	. 06144	374,4	. 93556
. 0117	. 05820	371,2	. 00003		.06817	371,2	.93183
.OII8	. 07189	368,1	.00003		. 07186	368,0	-928I4
.OII9	.07536	365,0	.00003		. 07553	364,9	. 92447
0.0120	8.07919	361,9	0.00003	O,I	8.07916	361,9	I. 92084
. OI 21	. 08280	358,9	.00003		. 08276	358,9	. 91724
. 0122	. 08537	356,0	. 00003		. 08534	355,9	.91366
. 0123	.08992	353, I	. 00003		.08988	353,0	.91012
. 0124	. 09343	350,3	.00003		. 09340	350,2	. 90660
0.0125	8.09692	347,5	0.00003	0,I	8.09689	347,4	I. 903 II
. 0126	. 10038	344,7	.00003		. 10035	344,6	. 89965
. 0127	. 10382	342,0	.00004		. 10378	341,9	. 80622
. 0128	-10722	339,3	. 00004		. 10719	339,3	. 89281
. 0129	. 11060	336,7	.00004		. 11057	336,6	. 889.43
0.0130	8.11396	334, 1	0.00004	O,I	8.11392	334,0	I. 88608
. 0131	. I1728	33I,5	. 00004		. II725	33I,5	. 88275
. 0132	- 12059	329,0	.00004		. 12055	329,0	. 87945
. or33	. 12386	326,6	.00004		. 12383	326,5	. 87617
. 0134	. 12712	324, I	. 00004		. 12708	324, 1	. 87292
0.0135	8.13035	32I,7	0.00004	O,I	8.13031	331,7	1.85969
. 0136	. 13355	319,4	. 00004		. 13351	319,3	. 85649
. 0137	- 13673	317,0	. 00004		. 13669	317,0	. 8633 I
.or38	. 13989	314,7	. 00004		. 13985	314,7	. 86015
. Or39	- I4303	312,5	. 00004		. 14299	312,4	. 85701
0.0140	8. raf_{44}	3 I0,2	0.00004	O,I	8.14610	310,2	1.85390
. Or 41	. 14923	308,0	. 00004		. 14919	308,0	. 85081
. Or42	. 15230	305,9	. 00004		. 15226	305,8	. 84774
.Or43	. 15535	303.7	.00007		. I553I	303,7	. 81469
. 0144	. 15838	301,6	.00005		. 15833	301,6	. 84167
0.0145	8.16138	299,5	0.00005	O,I	8.16134	299,5	1. 83866
. 01846	. 16437	297,5	. 00005		. I6432	297,4	. 83568
.or47	. 16733	295,5	. 00005		. 16729	295,4	. 83271
.or48	. 17028	293,5	. 00005		. 17023	293,4	. 82977
. 0149	. 17320	291,5	. 00005		. 17315	291,4	. 82685
0.0150	8.176II	289,6	0.00005	O,I	8. 17606	289,5	1. 82394
u	$\log \tan \operatorname{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} \mathbf{u}$
0.0150	8.176ir	289,6	0.00005	O,I	8.17606	289,5	1. 82394
. OI5I	.17899	287,6	. 00005		. 17894	287,6	. 82106
. 0152	.18185	285,7	. 00005		. 18181	285,7	.81819
. OI 53	.18471	283,9	. 00005		. 18465	283,8	.8I534
. 0154	. 18754	282,0	. 00005		. 18749	282,0	.8125I
0.0155	8.19035	280,2	0.00005	O,I	8.19030	280, I	1.80970
. 0156	. 19314	278,4	. 00005		. 19309	278,3	. 80591
. 0157	. 19592	276,6	. 00005		. 19586	276,6	. 80414
. OI58	. 19858	274,9	. 00005		. 19862	274,8	. 80138
. OI 59	. 20142	273,2	. 00005		.20136	273, I	.79854
0.0160	8.20414	271,5	0.00005	O,I	8.20108	271,4	1.79592
. 0161	. 20684	269,8	.00005		. 20679	269,7	. 7932 I
.0162	. 20953	268, 1	. 00005		. 20948	268,0	. 79052
.0163	. 2122 I	266,5	. 00005		. 21215	266,4	.78785
. 0164	.21486	264,8	.0000'		. 21480	264,8	.78520
0.0165	8.21750	263,2	0.00005	0,1	8.21744	263,2	1.78256
. 0166	. 22013	26I,6	. 00005		. 22007	261,6	. 77993
. 0167	. 22274	260, I	. 00005		. 22258	250,0	. 77732
. 0168	. 22533	258,5	. 00006		. 22527	258,5	. 77473
. 0169	. 22791	257,0	. 00006		. 22785	256,9	. 77215
0.0170	8.23047	255,5	0.00006	O,I	8.23041	255,4	1.76959
. O171	. 23302	254,0	. 00005		. 23295	253,9	. 76705
. 0172	. 23555	252,5	. 00005		. 23549	252,4	. 76451
.0173	. 23807	251, 1	. 00005		. 23800	251,0	. 76200
. 0174	. 24057	249,6	. 00007		. 2405 I	249,5	. 75949
0.0175	8.24305	248,2	0.00007	O,I	8.24299	248, 1	1.75701
.0176	. 24554	246,8	. 00007		. 24547	246,7	.75453
.0177	.24800	245,4	. 00007		. 24793	24, ${ }^{2}$. 75207
.0178	. 25044	244,0	. 00007		.25037	243,9	. 74963
.OI79	. 25288	242,6	. 00007		.2528I	2.2,6	. 74719
0.0180	8.25530	241,3	0.00007	0,I	8.25523	241,2	1. 74477
. 0181	. 25770	240,0	. 00007		.25763	239,9	. 74237
. 0182	. 26010	238,6	. 00007		. 26002	238,6	. 73998
.0183	. 262.4	237,3	. 00007		. 262.40	237,3	. 73760
.0184	.25484	236,1	. 00007		.26477	235,0	.73523
0.0185	8.26720	234,8	0.00007	0,I	8.25712	234,7	1.73288
. 0186	. 26954	233,5	. 00008		.26946	233,4	. 73054
. 0187	. 27187	232,3	.0000S		.27179	232,2	. 72821
. 0188	.27418	231,0	.00008		.2741I	231,0	. 72589
. 0189	.27649	229,8	. 00008		.2764I	229,7	.72359
0.0190	8.27878	228,6	0.00008	O,I	8.27870	228,5	1.72130
. orgi	.28106	227,4	. 00008		. 28098	227,3	. 71902
.org2	. 28333	226,2	. 00008		.28325	226, I	. 71675
.0193	. 28558	225, 1	.00008		.28550	225,0	-71450
. 0194	.28783	223,9	.00008		. 28775	223,8	. 71225
0.0195	8.29006	222,7	0.00008	O,I	8.28998	222,7	1.71002
. 0196	. 29228	221,6	. 00008		. 29220	22I,5	. 70780
. 0197	. 29449	220,5	. 00008		. 2941 I	220,4	. 70559
. 0198	. 29669	219,4	.00009		. 29661	219,3	. 70339
. 0199	. 29888	218,3	. 00009		. 29880	218,2	. 70120
0.0200	8.30106	217,2	0.00009	0, 1	8.30097	217,I	1.69903
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	a $\mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0200	8.30106	217,2	0.00009	0, I	8.30097	217, 1	х. 69903
. 0	- 30323	216,1	. 00009		. 30314	216,0	. 69686
. 0202	. 30538	215,0	. 00009		- 30529	214,9	. 6947 I
. 0203	. 30753	214,0	. 00009		. 30744	213,9	. 69256
. 0204	. 30955	212,9	. 00009		. 30957	212,8	. 69043
0.0205	8.31178	211,9	0.00009	O,I	8.31169	21 r, 8	1.68831
. 0205	. 31390	210,9	. 00009		. 3138 I	210,8	. 68619
. 0207	. 31600	209,8	. 00009		-31591	209,7	. 68409
. 0208	. 31809	208,8	. 00009		- 31800	208,7	. 68200
. 0209	. 32018	207,8	. 00009		. 32008	207,7	. 67992
0.0210	8.32225	205,8	0.00010	O,I	8.32216	206,7	1. 67784
. 021 II	-3243I	205,9	. 00010		. 32422	205,8	. 67578
. 0212	. 32637	20+,9	. 00010		. 32627	204,8	. 67373
.0213	-3284I	203,9	. 00010		. 3283 I	203,8	. 67169
.0214	- 33045	203,0	.00010		. 33035	202,9	. 66965
0.0215	8.33247	202,0	0.00010	O,I	8.33237	20r,9	1.65763
. 0216	. 33449	201, I	.00010		. 33439	201,0	. 665651
. 0217	- 33649	200,2	. 00010		. 33639	200, 1	.6536I
. 0218	-33849	199,2	. 00010		. 33839	199,2	. 6616 I
. 0219	. 34048	198,3	.00010		- 34037	198,2	. 65963
0.0220	8.34246	197,4	0.00011	0, I	8.34235	197,3	r. 65765
. 022 I	. 34443	195,5	. 00011		- 34432	196,4	. 65568
. 0222	- 34639	195,7	. 00011		-34628	195,6	. 65372
. 0223	-34834	194,8	.000II		- 34823	194,7	. 65177
. 0224	. 35028	193,9	. 00011		. 35018	193,8	. 64982
0.0225	8.35222	193, I	0.00011	0, 1	8.3521 I	193,0	1. 64789
. 0226	- 35415	192,2	. 0001 II		. 35403	192, I	. 64597
. 0227	. 35606	191,4	. 0001 I		. 35595	191,3	. 64405
. 0228	- 35797	190,5	. 0001 I		. 35786	190,4	. 64214
. 0229	-35987	189,7	.000II		-35976	189,6	. 64024
0.0230	8.36177	188,9	0.00011	0, 1	8.36165	188,8	1. 63835
. 023 I	. 36365	188,0	. 00012		- 36353	187,9	. 63547
. 0232	- 36553	187,2	. 00012		-3554I	187,1	. 63459
. 0233	- 36740	185,4	. 00012		-36728	186,3	. 63272
. 0234	- 36926	185,6	. 00012		-36914	185,5	. 63086
0.0235	8.37 III	184,8	0.00012	0,I	8.37099	184,7	r.62901
. 0236	. 37295	184,1	. 00012		. 37283	184,0	. 62717
. 0237	. 37479	183,3	. 00012		- 37467	183,2	. 62533
. 0238	. 37562	182,5	. 00012		. 37649	182,4	. 62351
. 0239	- 37844	181,7	. 00012		- 37832	181,6	. 62168
0.0240	8.38025	181,o	0.00013	O, I	8.38013	180,9	1.61987
. 0241	. 38206	180,2	. 00013		. 38193	180, 1	.61807
. 0242	. 38386	179,5	. 00013		- 38373	179,4	. 61627
. 0243	-38565	178,8	. 00013		- 38552	178,7	. 61448
. 0244	. 38743	178,0	. 00013		- 38730	177,9	. 61270
0.0245	8.38921	177,3	0.00013	O, I	8.38908	177,2	r.61092
. 0246	. 39098	176,6	.00013		. 39085	176,5	. 60915
. 0247	. 39274	175,9	. 00013		-3926)	175,8	. 60739
. 0248	. 39450	175,2	. 00013		- 39436	175,0	. 60564
. 0249	. 39624	174,5	. 00013		-396II	174,3	. 60389
0.0250	8.39799	173,8	0.00014	0.1	8,39785	173,6	1.60215
u	log tan gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin 9 \mathrm{du}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log csc od u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.0250	8.39799	173,8	0.00014	O,I	8.39785	173,6	1.50215
. 0251	-39972	173, 1	.00014		. 39958	I73,0	. 60042
. 0252	. 40145	172,4	.00014		. 40131	I 72,3	. 59859
. 0253	. 40317	171,7	.000I4		. 40303	I 71,6	. 59597
. 0254	. 40488	I71,0	.00014		. 40474	I70,9	. 59526
0.0255	8.40659	170,3	0.00014	0,I	8.40645	I70,2	I. 59355
. 0256	. 10829	169,7	.0001.4		. 40815	169,6	. 59185
. 0257	. 40998	169,0	.00014		. 4088	168,9	. 59016
. 0258	. 41167	168,4	.00014		. 41152	168,3	. 58848
. 0259	. 41335	167,7	. 00015		. 41320	167,6	. 58580
0.0250	8.41502	167, 1	0.00015	O,I	8.41488	167,0	I.58512
.026I	. 41669	166,4	. 00015		- 41654	165,3	. $583+6$
. 0262	. 41835	165,8	. 00015		. 41820	165,7	-58180
. 0263	. 42001	165,2	. 00015		. 41986	165,1	. 58014
. 0264	. 12165	164,5	.00015		. 42150	164,4	. 57850
0.0265	8.42330	163,9	0.00015	O,I	8.42314	163,8	1. 57685
. 0256	. +2493	163,3	. 00015		. 42.478	163,2	. 57522
. 0267	. 42656	162,7	.00015		. 42641	162,6	. 57359
. 0258	. 42819	162, 1	. 00016		. 42803	162,0	. 57197
. 0269	. 42980	16I,5	. 00016		. 42955	161,4	. 57035
0.0270	8.43 I 42	160,9	0.00016	O,I	8.43126	160,8	I. 56874
. 0271	- +3302	160,3	.00016		. 43286	160,2	. 56714
. 0272	- $43+62$	159,7	. 00016		- $43+46$	I59,6	. 56554
. 0273	. 43622	159, I	. 00016	.	.43505	I59,0	. 56395
.0274	. 43780	158,5	.00016		. 43764	I58,4	. 56236
0.0275	8.43939	158,0	0.00016	O,I	8.43922	157,8	I. 56078
.0275	. 41095	157,4	. 00017		- 44080	157,3	- 55920
. 0277	-44254	156,8	.00017		- 11237	156,7	. 55753
. 0278	. 41410	I56,3	.00017		. 44393	I56, 1	. 55607
. 0279	. 44566	I55,7	. 00017		. 44549	155,6	. 5545 I
0.0280	8.4472I	I55, I	0.00017	O,I	8.44704	155,0	I. 55296
.0281	. 44876	154,6	. 00017		. +14859	154,5	. 5514 I
.0282	. 45031	I54,0	. 00017		. 45013	153,9	. 54987
. 0283	-45184	153,5	.00017		. 45167	I53,4	-54833
. 0284	. 45338	153,0	. 00018		. 45320	I52,8	-54680
0.0285	8.45490	152,4	0.00018	O,I	8.45473	152,3	I. 54527
. 0286	. 15643	151,9	. 00018		. 45625	151,8	. 54375
. 0287	- 45794	I5I,4	. 00018		- 45776	I5I,2	- 51224
. 0283	. 45945	I50,8	.00018		. 45927	150,7	. 51073
. 0289	. 46096	150,3	. 00018		. 46078	150,2	. 53922
0.0290	8.462 .46	I49,8	0.00018	0,I	8.46228	I49,7	1.53772
. 0291	. 46395	I49,3	. 00018		. 46377	I49,2	. 53623
. 0292	. 46544	I48,8	.00019		. 46526	I48,6	. 53474
. 0293	. 46693	148,3	. 00019		. 46674	I48, 1	. 53326
. 0294	. 4684 I	I47,8	. 00019		. 46822	I47,6	-53178
0.0295	8.46989	147,3	0.00019	O,I	8.46970	I47, 1	1.53030
. 0296	. 47136	146,8	. 00019		. 47116	I46,6	. 52884
. 0297	. 47282	I46,3	.00019		. 47263	I46, I	- 52737
. 0298	. 47428	145,8	. 00019		. 47409	I45,7	. 52591
. 0299	. 47574	145,3	.00019		- 47554	I45,2	. 52446
0.0300	8.47719	144,8	0.00020	O,I	8.47699	144,7	I.52301
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	a $\mathrm{FO}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{FO}^{\prime \prime}$	$\log \csc g d u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \operatorname{coth} u$
0.0300	8.47719	144,8	0.00020	$0, \mathrm{I}$	8.47699	I44,7	1.52301
. 0301	. 47863	144,3	. 00020		. 47844	I4, ${ }^{2}$. 52156
. 0302	. 48007	I 43,8	. 00020		. 47987	I43,7	. 52013
. 0303	.48r5I	143,4	. 00020		.4813I	I43,2	. 51869
. 0304	. 48294	I42,9	. 00020		. 48274	I42,8	. 51726
0.0305	8.48437	I42,4	0.00020	O,I	8.48417	I42,3	1. 51583
. 0306	. 48579	142,0	. 00020		. 48559	I4I, 8	. 51441
. 0307	. 48721	I4I,5	. 00020		. 48700	I41,4	. 51300
. 0308	. 48862	I41,0	. 00021		-48841	I 10,9	. 51159
. 0309	. 49003	140,6	. 0002 I		. 48982	I40,5	.51018
0.0310	8.49143	I40, I	0.0002 I	O, I	8.49122	I.40,0	I. 50878
.03II	. 49283	I 39,7	. 0002 I		. 49262	139,6	. 50738
.0312	. 49423	139,2	. 00021		. 49401	I39, I	. 50599
.03I3	. 49562	I38,8	.0002I		-49540	138,7	. 50.460
.0314	. 49700	I38,4	. 0002 I		. 49679	138,2	. 5032 I
0.0315	8.49838	137,9	0.00022	O,I	8.49817	137,8	I. 50183
. 0316	. 49976	137,5	. 00022		- 49954	137,3	. 50046
.0317	. 50113	137,0	. 00022		. 50091	135,9	. 49909
.03I8	. 50250	I 36,6	. 00022		. 50228	I36,5	. 49772
.0319	- 50385	136,2	. 00022		. 50364	I36, 1	. 49636
0.0320	8.50522	135,8	0.00022	O, I	8.50500	I35,6	I. 49500
.0321	. 50658	135,3	. 00022		. 50636	135,2	. 49354
. 0322	- 50793	134,9	. 00023		. 50771	131,8	. 49229
. 0323	. 50928	I 34,5	.00023		- 50905	134, +	. 49095
.0324	. 51052	I34, I	. 00023		.51039	133,9	. 48961
0.0325	8.51196	133,7	0.00023	O,I	8.51173	133,5	1.48827
. 0325	. 51329	133,3	. 00023		-51306	I33, I	. 48694
. 0327	. 51463	I 32,9	. 00023		-51439	132,7	. 48561
.0328	. 51595	I 32,5	.00023		. 51572	I 32,3	. 48428
. 0329	. 51727	I32, I	. 00023		. 51704	131,9	.48296
0.0330	8.51859	131,7	0.00024	O, I	8.51836	I3I,5	I. 48164
.033I	. 51991	I31,3	. 00024		. 51967	I3I, I	. 48033
. 0.332	- 52122	I30,9	. 00024		- 52098	130,7	. 47902
.0333	. 52252	130,5	. 00024		. 52228	I30,3	. 47772
. 0334	. 52383	I30, I	. 00024		. 52358	I29,9	. 47642
0.0335	8.52513	129,7	000024	O, I	8.52488	129,5	I. 47512
. 0336	. 52642	129,3	. 00025		. 52618	129,2	. 47382
. 0337	. 52771	128,9	. 00025		. 52747	128,8	. 47253
. 0338	. 52900	128,5	. 00025		. 52875	128,4	. 47125
. 0339	. 53028	128,2	. 00025		. 53003	128,0	. 46997
0.0340	8.53156	127,8	0.00025	O, I	8.53131	127,6	1. 46869
.034I	. 5328 +	127,4	. 00025		. 53259	127,3	. 4674 I
. 0342	. 534 II	127,0	. 00025		. 53386	126,9	. 46614
. 0343	. 53538	126,7	.00026		. 53512	126,5	. 46488
. 0344	. 53664	126,3	.00026		. 53639	126, 1	.46361
0.0345	8.53791	125,9	0.00025	O,I	8.53765	I25,8	1. 46235
. 0346	. 53916	125,6	. 00026	0,2	. 53890	125,4	. 46110
. 0347	. 54042	125,2	. 00026		. 54016	125, 1	. 45984
. 0348	. 54167	I24,8	. 00026		. 54140	124,7	. 45860
. 0349	. 5429 I	124,5	. 00026		. 54265	12.4,3	. 45735
0.0350	8.54416	124, I	0.00027	0,2	8.54389	124,0	I.456II
u	$\log \tan \mathrm{gdu}$	$\omega \mathrm{Fo}^{\prime}$	$\log \sec$ gd u	$\dot{\omega} \mathrm{F}_{0}{ }^{\prime}$	$\log \sin$ gd	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	\log coth u
0.0350	8.54416	124, I	0.00027	0,2	8.54389	124,0	1.456II
. 035 I	- $5+540$	123,8	. 00027		. 51513	123,6	. 45487
. 0352	-54663	123,4	. 00027		. 54635	123,3	. 45364
. 0353	. 54785	123, 1	. 00027		. 54759	123,9	. 45241
. 0354	-54909	122,7	.00027		- 54882	122,6	. 45118
0.0355	8.55032	122,4	0.00027	0,2	8.55005	122,2	1. 44995
. 0356	. 55154	122,0	. 00028		. 55127	121,9	. 44873
. 0357	. 55276	121,7	. 000028		. 55248	121,5	. 44752
. 0358	- 55398	121,4	. 00028		. 55370	121,2	- +1630
. 0359	. 55519	121,0	. 00028		. 55491	120,9	. 41509
0.0360	8.55640	120,7	0.00028	0,2	8.556II	120,5	I.443S9
.036I	. 55760	120,4	. 00028		. 55732	120,2	. 44268
. 0362	. 55880	120,0	. 00028		. 55852	119,9	. 41148
. 0363	. 56000	I 19,7	. 00029		. 55972	119,5	. 41028
. 0364	. 56120	II9,4	. 00029		. 56091	119,2	. 43509
0.0365	8.56239	II9,0	0.00029	0,2	8.56210	118,9	I. 43790
. 0366	. 56358	118,7	. 00029		. 56329	118,6	. 4357.1
. 0367	. 56475	II8,4	. 00029		. 56447	118,2	. 43553
. 0368	. 56595	II8,I	. 00029		. 56565	117,9	-43435
. 0369	. 56712	117,7	. 00030		. 56683	117,6	. 43317
0.0370	8.56830	II7,4	0.00030	0,2	8.56800	II7,3	I. 43200
. 0371	. 56947	II7, ${ }^{\text {I }}$. 00030		. 56917	117,O	. 43083
. 0372	. 57004	116,8	. 00030		. 57034	1 16,6	. 42956
. 0373	. 57181	116,5	. 00030		. 57151	II6,3	. 428.49
. 0374	. 57297	II6,2	. 00030		- 57267	116,0	. 42733
0.0375	8.57413	II5,9	0.00031	0,2	8.57383	115,7	I. 42517
. 0376	. 57529	II5,6	. 0003 I		. 57498	115,4	. 42502
. 0377	-57644	I I5,3	. 00031		-57614	II5, I	. 42386
. 0378	. 57760	II4,9	. 0003 I		-57729	IIT,8	- 42271
. 0379	$\cdot 57874$	II4,6	.00031		-57843	114,5	. 42157
0.0380	8.57989	II4,3	0.00031	0,2	8.57957	IIf,2	I. 42043
. 0381	. 58103	I I 4,0	. 00032		. 58071	113,9	. 41929
. 0382	. 58217	113,7	. 00032		. 58185	II3,6	.41815
. 0383	-58330	I I 3,4	. 00032		. 58399	II3,3	. 41701
.0384	. 58.44	II3,2	. 00032		. 58412	II3,0	. 41588
0.0385	8.58557	II2,9	0.00032	0,2	8.58525	II2,7	1.41475
. 0385	. 58670	112,6	. 00032		. 58537	II2,4	. 41363
. 0387	. 58782	II2,3	. 00033		- 58749	II2, 1	. 41251
. 0388	. 58894	II2,O	. 00033		. 58851	III, 8	-4II39
. 0389	. 59006	III,7	. 00033		. 58973	III,5	.41027
0.0390	8.59117	III, 4	0.00033	0,2	8.59084	III,2	1. 40916
. 0391	. 59229	III, I	. 00033		. 59196	III, O	. 40804
. 0392	- 59340	110,8	. 00033		. 59306	110.7	. 40694
. 0393	-59450	110,6	. 00034		. 59417	IIO, 4	. 40583
. 0394	. 59561	IIO,3	. 00034		. 59527	IIO, I	.40473
0.0395	8.59671	110,0	0.00034	0,2	8.59637	109,8	1. 40363
. 0395	. 5978 I	109,7	. 00034		- 59747	109,6	.40253
. 0397	. 59890	109,5	. 00034		. 59856	109,3	. 40144
. 0398	. 60000	109,2	. 00034		. 59965	109,0	.40035
. 0399	. 60109	108,9	. 00035		. 60074	108,7	. 39926
0.0400	8.60218	108,6	0.00035	0,2	8.60183	108,5	1.398I7
u	$\log \tan 9 \mathrm{~d} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	${ }^{\omega} \mathrm{FF}^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0400	8.60218	108,6	0.00035	0,2	8.60183	108,5	1.39817
. 0.401	. 60326	108,4	. 00035		. 60291	108,2	. 39709
. 0402	. 60434	108, I	. 00035		. 60399	107,9	. 39601
. 0403	. 60542	107,8	. 00035		. 60507	107,6	- 39493
. 0.404	. 60650	107,6	. 00035		. 60615	107,4	- 39385
0.0405	8.60757	107,3	0.00036	0,2	8.60722	107, 1	1. 39278
. 0.405	. 60865	107,0	. 00036		. 60829	106,9	. 39171
. 0.407	. 6097 I	106,8	. 00036		. 60935	106,6	. 39065
. 0408	. 61078	106,5	. 00036		. 61042	106,3	-38958
. 0409	. 61184	106,2	. 00036		. 61 If8	106, I	. 38852
0.0410	8.61291	105,0	0.00036	0,2	8.61254	105,8	1.38746
. 041 II	. 61396	105,7	. 00037		. 61360	105.5	. 38640
. 0412	. 61502	105,5	. 00037		. 61465	105,3	-38535
.0413	. 61607	105,2	. 00037		. 61570	105,0	- 38430
. 0.414	.6I712	105,0	. 00037		. 61675	104,8	. 38325
0.0415	8.6I8I7	104,7	0.00037	0,2	8.61780	104,5	1.38220
..0416	. 61922	104,5	. 00038		. 61884	104,3	.38i16
.0417	. 62026	104,2.	. 00038		. 61988	104,0	-38012
. 0418	. 62130	IO4,0	. 000038		. 62092	103,8	. 37908
. 0419	. 62234	103,7	.0003S		. 62196	103,5	. 37804
0.0420	8.62338	103,5	0.00038	0,2	8.62299	103,3	I.37701
. 0421	. 6244 I	103,2	. 00038		. 62403	103,0	. 37597
. 0422	. 62544	103,0	. 00039		. 62505	102,8	- 37495
. 0423	. 62647	102,7	. 00039		. 62608	102,5	. 37392
. 0424	. 62750	102,5	. 00039		. 627 II	102,3	. 37289
0.0425	8.62852	102,2	0.00039	0,2	8.62813	102, 1	1.37187
. 0425	. 62954	102,0	. 00039		. 62915	IOI, 8	. 37085
. 0427	. 63056	101,8	. 00040		. 63016	IOI, 6	- 36984
. 0428	. 63158	IOI,5	. 00040		.63118	101,3	. 36882
. 0429	. 63259	101,3	. 00040		. 63219	ror, 1	.36781
0.0430	8.63360	IOI, 1	0.00040	0,2	8.63320	100,9	1. 36680
. 0431	. 6346 I	100,8	. 00040		. 63421	100,6	. 36579
. 0432	. 631562	100,6	. 00041		. 6352 I	100,4	. 36479
. 0433	. 63652	100,4	.0004r		. 63622	100,2	. 36378
. 0434	. 63753	100, I	.0004I		. 63722	99,9	. 36278
0.0435	8.63863	99,9	0.0004 I	0,2	8.63822	99,7	1.36178
. 0.0436	. 63962	99,7	. 00041		. 63921	99,5	. 36079
. 0437	. 64062	99,4	.0004I		. 64020	99,3	-35980
. 0.438	.64161	99,2	. 00042		. 64120	99,0	. 35880
. 0439	.64260	99,0	.00042		. 64219	98,8	-35781
0.0440	8.64359	98,8	0.00042	0,2	8.64317	98,6	I. 35683
. 0.441	. 64458	98,5	. 00042		. 64416	98,4	. 35584
. 0442	. 64556	98,3	. 00042		. 64514	98,	. 35485
. 0443	. 64655	98, 1	. 00043		. 64612	97,9	. 35388
. 0444	. 64753	97,9	. 00043		. 64710	97,7	-35290
0.0445	8.64850	97,7	0.00043	0,2	8.64807	97,5	I. 35193
. 04146	. 64948	97,4	. 00043		. 64905	97,2	. 35095
. 0447	. 65045	97,2	. 00043		. 65002	97,0	-34998
. 0448	. 65142	97,0	. 00044		. 65099	96,8	. 34901
. 0449	. 65239	96,8	. 00044		. 65195	96,6	-34805
0.0450	8.65336	96,6	0.00044	0,2	8.65292	96,4	I. 34708
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} \mathrm{u}$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \csc g d u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.0450	8.65336	96,6	0.00044	0,2	8.65292	96,4	I. 34708
. 0451	. 65432	96,4	. 00044		. 65388	96,2	- 34612
. 0452	. 65529	96, I	. 00044		. $65+84$	96,0	-.34516
. 0453	. 65625	95,9	. 00045		. 65580	95,7	-3+420
. 0454	.65721	95,7	. 00045		.65575	95,5	-34324
0.0455	8.65816	95,5	0.00045	0,2	8.65771	95,3	1.34229
. 0456	. 65912	95,3	.000.45		. 65856	95,	. 31134
. 0457	. 65007	95, 1	.00045		. 6595 r	9+9	. 34039
. 0458	. 65102	94,9	.000-46		. 66056	94,7	-33944
. $0+59$. 66197	94,7	.000-46		. 6615 I	94,5	. 33849
0.0460	8.66291	94,5	0.00046	0,2	8.66245	94,3	1.33755
. 0.461	. 66385	94,3	.00046		. 66339	94, 1	. 33661
. $0+62$. 66480	94, I	. 00045		. 66433	93,9	-33567
. 0.463	. 66574	93,9	. 00047		. 66527	93,7	-33473
. 0.464	. 66667	93,7	. 00047		. 6562 I	93,5	- 33379
0.0465	8.66761	93,5	0.00047	0,2	8.66714	93,3	I. 33285
. $0+466$. 66854	93,3	. 00047		. 66807	93, 1	. 33193
. 0.67	. 66947	93, I	.00047		. 66900	92,9	-33100
. 0.468	. $670+10$	92,9	. 00048		. 66993	92,7	- 33007
. 0469	. 67133	92,7	. 000.48		. 67085	92,5	-32915
0.0470	8.67226	92,5	0.00048	0,2	8.67178	92,3	1. 32822
. 0471	. 67318	92,3	. 00048		. 67270	92, 1	. 32730
. 0472	. 67410	92, 1	. 00048		. 67362	91,9	-32538
. 0473	. 67502	91,9	.00049		. 67454	91,7	-32546
. 0474	. 67594	91,7	. 00049		. 67545	91,5	-32455
0.0475	8.67685	91,5	0.00049	0,2	8.67637	91,3	I. 32363
. 0.0475	. 67777	91,3	. 00049		. 67728	91, I	. 32272
. 0477	. 67868	91, 1	. 00049		. 67819	90,9	-3218I
. 0478	. 67959	90,9	. 00050		. 67910	90,7	-32090
. 0479	. 68050	90,7	. 00050		. 68000	90,5	. 32000
0.0480	8.68 IfI	90,5	0.00050	0,2	8.68091	90,3	1.31909
. 0.48 I	.6823I	90,4	. 00050		.68181	90,2	-31819
. 0.482	. 68322	90,2	. 00050		. 68271	90,0	-31729
. 0483	. 68412	90,0	. 0005 I		.68361	89,8	-31639
. 0.48	.68501	89,8	. 0005 I		. 6845 I	89,6	-31549
0.0485	8.68591	80,6	0.00051	0,2	8.68540	89,4	1. 31460
. 0.486	.68581	89,4	. 00051		. 68529	89,2	-31371
. 0.487	. 68770	89,2	. 0005 I		. 68719	89,0	-31281
. 0.488	. 68859	89,1	. 00052		. 68808	88,9	-31192
. 0487	. 68948	88,9	.00052		. 68896	88,7	-31104
0.0490	8.69037	88,7	0.00052	0,2	8.68985	88,5	I. 31015
. 0.491	. 69125	88,5	. 00052		. 69073	88,3	- 30927
. 0.492	. 69214	88,3	. 00053		. 69161	88,1	-30839
. 0493	. 69302	88,2	. 00053		. 69250	87,9	- 30750
. 0494	. 69390	88,0	. 00053		. 69337	87,8	- 30663
0.0495	8.69478	87,8	0.00053	0,2	8.69425	87,6	1. 30575
. 0.496	. 69566	87,6	. 00053		. 69513	87,4	-30487
. 0497	. 69654	87,5	.00054		. 69500	87,2	- 30400
. $0+98$. 69741	87,3	.0005		. 69687	87, 1	- 30313
. 0.49	. 69828	87,1	. 00054		. 69774	86,9	-30226
0.0500	8.69915	86,9	0.00054	0,2	8.6986 r	86,7	I. 30139
u	Iog $\tan \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{FO}^{\prime}$	$\log \sin \mathrm{g} \mathrm{d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{logesc} \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0500	8.69915	85,9	0.00054	0,2	8.69851	$8 \longleftarrow, 7$	I. 30139
. 0501	. 70002	86,8	. 00054		. 59947	86,5	. 30053
. 0502	. 70089	86,6	. 00055		. 70034	85,4	. 29965
. 0503	.70175	85,4	. 00055		. 70120	86,2	. 29880
. 0504	. 70261	86,2	. 00055		.70205	86,0	. 29794
0.0505	8.70348	86, r	0.00055	0,2	8.70292	85,9	1.29708
. 0505	. 70434	85,9	. 00055		. 70378	85.7	. 29522
. 0507	. 70519	85,7	.0005		. 70464	85,5	. 29536
. 0508	. 70605	85,6	. 00055		. 70549	85,3	. 2945 I
. 0509	.70691	85,4	. 00056		. 70534	85,2	. 29365
0.0510	8.70776	85,2	0.00056	0,2	8.70719	85,0	I. 2928 I
. 0511	. 70851	85, 1	. 00057		. 70804	84,8	. 29196
. 0512	.70946	84,9	. 00057		. 70889	84,7	. 29111
.05I3	. 7103 I	84,7	. 00057		. 70974	84,5	. 29026
.0514	.7III5	84,6	. 00057		.71058	$8+3$.28942
0.0515	8.71200	84,4	0.00058	0,2	8.71142	$8_{4,2}$	I. 28858
.0516	. 71284	84,2	. 00058		. 71226	84,0	. 28774
.0517	. 71368	84,1	. 00058		. 71310	83,9	. 28590
.0518	. $71+52$	83,9	. 00058		. 71394	83,7	. 28606
.0519	. 71536	83,8	. 00058		.71478	83,5	. 28522
0.0520	8.71620	83,6	0.00059	0,2	8.71561	83,4	1.28439
.0521	. 71703	83,4	. 00059		. 71644	83,2	. 28356
. 0522	. 71787	83,3	. 00059		. 71728	83,0	. 28272
. 0523	. 71870	83, 1	. 00059		-718II	82,9	.28189
. 0524	.71953	83,0	. 00060		.71893	82,7	.28107
0.0525	8.72036	82,8	0.00050	0,2	8.71976	82,6	1.28024
. 0525	.72119	82,6	. 00050		. 72059	82,4	.2794r
. 0527	. 72201	82,5	. 00060		.72141	82,3	. 27859
.0528	.72284	82,3	. 00005		. 72223	82,1	. 27777
. 0529	.72366	82,2	.0005I		. 72305	81,9	. 27695
0.0530	8.72448	82,0	0.0006 I	0,2	8.72387	Si,8	1.27613
. 0531	. 72530	8I,9	.0006I		. 72469	81,6	.2753I
.0532	. 72512	SI,7	.0006I		. 72550	81,5	. 27450
. 0533	. 72693	81,6	.00062		. 72532	8I,3	. 27368
. 0534	. 72775	8I,4	. 00062		.72713	SI,2	.27287
0.0535	8.72855	$8 \mathrm{I}, 3$	0.00062	0,2	8.72794	81,0	1.27206
. 0536	. 72937	$8 \mathrm{I}, \mathrm{I}$.00062		. 72875	80,9	. 27125
. 0537	. 73018	81,o	.00053		. 72956	80,7	. 27044
. 0538	. 73099	80,8	.00063		. 73036	80,6	.25964
. 0539	.73180	80,7	.00063		. 73117	80,4	.2688 .3
0.0540	8.73260	80,5	0.00063	0,2	8.73197	80,3	1. 26803
.0541	. 73341	80,4	.00054		. 73277	80, 1	. 26723
. 0542	. 7342 I	80,2	. 00069		. 73357	80,0	. 26643
. 0543	. 73501	80, 1	.00054		. 73436	79,8	.26564
. 0544	.73581	79,9	.00064		.73517	79,7	.26483
0.0545	8.73661	79,8	0.00064	0,2	8.73597	79,5	1.26403
. 0546	. 7374 I	79,6	. 00065		. 73676	79,4	. 25324
.0547	. 73820	79,5	. 00065		. 73755	79,2	. 26245
. 0548	. 73900	79,3	. 00065		. 73835	79, I	. 26165
. 0549	. 73979	79,2	. 00065		.73914	78,9	. 26086
0.0550	8.74058	79,0	0.00066	0,2	8.73993	78,8	1.26007
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	ωF_{0}^{\prime}	\log coth u
0.0550	8.74058	79,0	0.00066	0,2	8.73993	-8,8	1. 25007
.0551	. 74137	-8,9	. 00066		. 7407 I	78,7	. 25929
.0552	. 74216	78,8	. 00066		. 74150	-8,5	.25850
. 0553	. 74295	78,5	. 00066		.74228	-8,4	. 25772
. 0554	. 74373	78,5	. 00067		. 74307	-8,2	. 25693
0.0555	8.74452	78,3	0.00057	0,2	8. 74385	-8,1	I. 25615
. 0555	. 74530	78,2	. 00067		. $7+463$	77,9	. 25537
. 0557	. $7+4608$	78,0	. 00057		. 74541	7\%,8	. 25459
. 0558	. 74685	77,9	. 00068		.7+618	77.7	. 25382
. 0559	. 74754	77,8	. 00068		.74696	77,5	. 25304
0.0550	8.748 .41	77,5	0.00058	0,2	8. $2+773$	7ア, 4	1.25227
.0561	. 74919	77,5	. 00058		. 7485 I	7T, 3	. 25149
.0552	. $7+996$	77, +	. 00069		. 74928	77, 1	. 25072
. 0563	. 75074	77,2	. 00069		. 75005	77,0	. 24995
.0564	. 75151	77, 1	. 00059		. 75082	75,8	. 24918
0.0555	8.75228	76,9	0.00069	0,2	8.75159	75,7	1.2.4841
. 0565	. 75305	75,8	. 00070		. 75235	75,6	. 24765
. 0.557	. 75382	75,7	. 00070		. 75312	-5,4	. 24683
. 0558	. $75+58$	76,5	. 03070		. 75383	75,3	. 24612
. 0569	. 75535	76,4	. 00070		.75464	75,2	. 24536
0.0570	8.756II	76,3	0.0007 I	0,2	8.75540	76,0	1. $2+460$
. 0571	. 75687	7S,	. 0007 I		. 75616	75.9	. 24384
. 0572	.75753	75,0	. 0007 I		. 75692	75,8	. 24308
. 0573	. 75839	75,9	. 00071		. 75758	75,6	. 24232
. 0574	. 75915	75,7	.00072		.75844	75,5	. 24156
0.0575	8.75991	75,6	0.00072	0,2	8.75919	75,4	I.2.108I
. 0575	. 70056	75,5	. 00072	0,2	. 75994	75,2	. 24005
. 0577	. 76142	75.4	.00072	0,3	.75069	75, 1	. 23931
.0578	. 76217	75,2	. 00073		. $761+4$	75,0	. 23856
. 0579	.76292	75, 1	. 00073		. 75219	74,8	.23781
0.0580	8.75357	75,0	0.00073	0,3	8.76294		1. 23705
.058I	. 75442	74,8	.00073		. 76369	74,6	. 23.531
.0582	. 76517	74,7	.00074		. 76.43	74,5	. 23557
. 0583	.75591	74,6	.00074		. 76518	74,3	. 23482
. 0384	. 76666	74,5	.00074		.76592	74,2	. 23.408
0.05 S 5	8.76740	74,3	0.00074	0,3	8.76656	74, 1	I. 23334
. 0585	. 76815	74,2	. 00075		. 76740	73,9	. 23260
.0587	. 76883	7+1	. 00075		-76814	73,8	. 23186
. 0588	.76953	73,9	. 00075		. 76888	73,7	. 23112
. 0589	.77037	73,8	. 00075		.7695I	73,6	. 23039
0.0550	8.77110	73,7	0.00076	0,3	8.77035	73,4	1. 22965
. 0591	. 77181	73,6	.00076		- 77108	73,3	. 22892
. 0592	.77258	73,4	.00076		-77181	73,2	. 22819
. 0593	. 77331	73,3	.00076		$\cdot 77255$	73,1	. 22745
. 0594	.77404	73,2	.00077		.77328	72,9	.22572
0.0595	8.77477	73,I	0.00077	0,3	8.77400	72,8	1. 22600
. 0595	. 77550	73,0	. 000077		. 77473	72,7	. 22527
. 0597	. 77523	72,8	. 00077		-77546	72,6	. 22.454
. 0598	. 77606	72,7	. 000078		. 77618	72,5	. 22382
. 0599	.77759	72,6	. 00078		.77691	72,3	. 22309
0.0600	8.7784 II	72,5	0.00078	0,3	8.77753	72,2	1. 22237
u	$\log \tan$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0600	8.77841	72,5	0.00078	0,3	8.77763	72,2	1.22237
. 0601	.77914	72,3	.00078		. 77835	72, 1	. 22165
. 0.602	. 77.985	72,2	. 00079		. 77907	72,0	. 22003
. 0603	. 78058	72, 1	. 00079		.77979	71,8	.2202I
. 0604	.78130	72,0	.00079		. 7805 I	71,7	. 21949
0.0605	8.78202	71,9	0.00079	0,3	8.78123	71,6	1.21877
. 0.0605	. 78274	71,8	. 00080		. 78194	71,5	. 21805
. 0607	. $783+6$	71,6	. 000080		. 78256	71,4	. 21734
. 0608	. 78417	71,5	. 00080		. 78337	71,3	. 21663
. 0609	.78489	7r,4	. 00080		.78408	71, 1	. 21592
0.0610	8.78560	7r,3	0.0008 I	0,3	8.78479	71,0	1.21521
.06It	. 78531	71,2	. 00081		. 78550	70,9	-21450
.06I2	. 78702	71, I	. 0008 I		. 78621	70,8	. 21379
.05I3	. 78773	70,9	. 00082		-78692	70,7	.21308
.06I4	.7884 4	70,8	. 00082		. 78752	70,6	. 21238
0.0615	8.78915	70,7	0.00082	0,3	8.78833	70,4	1.21167
.0616	. 78985	70,6	. 00082		.78903	70,3	.21097
.05I7	. 79056	70,5	. 00083		. 78973	70,2	. 21027
.0618	. 79127	70,4	. 00083		. 79044	70, 1	. 20956
.0619	.79197	70,3	. 00083		.79114	70,0	. 20885
0.0620	8.79267	70, 1	0.00083	0,3	8.79184	69,9	I. 20816
.062I	. 79337	70,0	. 00084		. 79253	69,8	. 20747
. 0622	. 79407	69,9	. 00081		. 79323	69,6	. 20677
. 0623	. 79477	69,8	. $00008+$. 79393	69,5	. 20607
. 0624	. 79547	69,7	.00084		. 79462	69,4	. 20538
0.0625	8.79516	69,6	0.00085	0,3	8.79532	69,3	1. 20.468
. 0665	. 79686	69,5	. 00085		. 79601	69,2	. 20399
. 0627	. 79755	69,4	. 00085		. 79670	69,1	. 20330
.0628	. 79825	69,2	.00086		.79739 .79808	69,0 68,9	
. 0629	.75894	69,1	. 00086		. 79808	68,9	. 20192
0.0630	8.79963	69,0	0.00085	0,3	8.79877	68,8	1.20123
. 0631	. 80032	68,9	. 00086		. 79945	68,6	. 20055
. 0632	. 80101	68,8	. 00087		. 80014	68,5	. 19986
. 0533	. 80169	68,7	. 00087		. 80082	68,4	. 19918
. 0534	. 80238	68,6	. 00087		.8015I	68,3	. 19849
0.0635	8.80307	68,5	0.00088	0,3	8.80219	68,2	r. 19781
. 0636	. 803775	68,4	. 00088		. 80287	68, 1	. 19713
. 0637	. 80443	68,3	. 00088		. 80355	68,0	. 19645
. 0638	. 80512	68,2	. 00088		. 80423	67,9	. 19577
. 0639	. 80580	68,1	. 00089		. 80491	67,8	. 19509
0.0640	8.805 .48	68,0	0.00089	0,3	8.80559	67,7	I. 1944 I
. 06.064	. 80716	67,8	. 000089		. 80626	67,6	- 19374
. 0642	. 80783	67,7	. 00089		. 80694	67,5	. 19305
. 0643	. 80851	67,6	. 000090		. 80761	67,4	-19239
. 0644	. 80919	67,5	. 00090		. 80829	67,3	.1917I
0.0645	8.80986	67,4	0.00090	0,3	8.80896	67, 1	I. 19104
. 0646	. 81053	67,3	. 00091		. 80963	67,0	. 19037
. 0647	. 8112 I	67,2	. 00001		. 81030	66,9	-18970
. 0648	. 81188	67,1	. 000091		. 81097	66,8	. 18903
. 0649	.81255	67,0	. 00091		.81164	66,7	. 18836
0.0650	8.81322	66,9	0.00092	0,3	8.81230	66,6	1.18770
u	$\log \tan \mathrm{g} \mathrm{d}_{\mathrm{u}}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin 9 \mathrm{~d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega F_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.0550	8.81322	66,9	0.00092	0,3	8.81230	65,6	1. 18770
.055I	.81389	66,8	. 00092		. 812397	66,5	. 18703
. 0652	.81456	66,7	. 00002		. 81353	66,4	- 18637
. 0653	.81522	66,6	. 00093		.8I+30	66,3	. 18570
. 0654	.81589	66,5	. 00093		.8I495	66,2	. 1850%
0.0655	8.8 I 655	66,4	0.00093	0,3	8.81552	65,1	1. 18438
. 0556	.81722	66,3	. 00093		.81628	66,0	. 18372
. 0657	.8r788	66,2	. 00094		. 81604	65,9	. 18306
. 0558	.81854	66,1	. 00094		.81760	65,8	- 18210
. 0559	.81920	66,0	.00094		. 81825	65,7	. 18174
0.0560	8.81986	65,9	0.00095	0,3	8.81891	65,6	1.18109
. 0.0561	. 82052	65,8	.00095		. 81957	65,5	. 18043
. 0552	. 82118	65,7	. 00095		. 82023	65,4	- 17970
. 0563	. 82183	65,6	. 00095		. 82088	65,3	- I7912
. 0664	. 82249	65,5	.00096		. 82153	65,2	- 1784
0.0665	8.82314	65,4	0.00095	0,3	8.82218	65, 1	1.17782
. 0666	. 82380	65,3	.00096		. 82283	65,0	. 1771
. 0667	. 82445	65,2	. 00097		. 82348	64,9	. 17552
. 0668	. 82510	65,1	.00097		.82413	64,8	. 17587
. 0669	. 82575	65,0	. 00097		. 82.478	64,7	-17522
0.0570	8.82640	64,9	0.00097	0,3	8.82543	64,6	I. 17457
.0571	. 82705	64,8	. 00098		. 82507	64,5	. 17393
. 0572	. 82770	64,7	.00098		. 82.672	64,4	. 17328
. 0673	. 82834	64,6	. 00008		. 82736	64.3	. 17254
. 0674	.82899	64,5	. 00099		. 82800	61,2	. 17200
0.0575	8.82963	64,4	0.00099	0,3	8.82864	64,1	1.17136
. 0676	. 83028	64.3	.00099		. 82929	64,1	. 17071
. 0677	. 83092	$64,2{ }^{4}$. 00099		. 82994	64,0	- 17006
.0578	.83156	64,2	.00100		. 83056	63,9	-16914
. 0579	. 83220	64,1	. 00100		. 83120	63,8	. 16880
0.0580	8.83284	64,0	0.00100	0,3	8.83184	63,7	1. 16815
.0681	. 83348	63,9	.00101		. 83248	63,5	. 16752
. 0682	. 83412	63,8	. 00101		. 833 II	63,5	- 16689
. 0583	. 83475	63,7	.00101		. 83375	63.4	. 16625
. 0684	. 83539	63,6	. 00102		. 83438	63,3	. 16562
0.0685	8.83503	63,5	0.00102	0,3	8.83501	63,2	1. 16499
. 0.0686	. 83656	63,4	. 00102		. 83564	63,1	. 16436
. 0687	. 83730	63,3	. 00102		. 83627	63,0	. 16373
. 0588	. 83793	63,2	.00103		. 83690	62,9	. 16310
. 0689	. 83856	63,1	.00103		. 83753	62,8	. 16247
0.0690	8.83919	63,0	0.00103	0,3	8.83816	62,7	I. 16184
. 0591	. 83982	63,0	. 00104		. 83879	62,7	. 16121
. 0692	. 84045	62,9	. 00104		. 83341	62,6	. 16059
. 0693	.84108	62,8	. 00104		. 84004	62,5	- 15956
. 0594	.8417I	62,7	. 00105		.84065	62,4	. 15934
0.0595	8.81233	62,6	0.00105	0,3	8.84129	62,3	1. 15871
. 0596	. 81296	62,5	. 010105		. 81791	62,2	. 15809
. 0697	. $8+358$	62,4	. 00105		. 84253	62, 1	. 15717
. 0598	. 81421	62,3	. 00106		. 84315	62,0	. 15685
. 0599	. 84483	62,2	.00106		. 84377	61,9	. 15623
0.0700	8.84545	62,1	0.00105	0,3	8.84439	6I,8	1. 15561
u	log tan $\operatorname{gd~u}$	${ }_{*} \mathrm{Fo}^{\prime}{ }^{\prime}$	$\log \sec$ gd u	* Fo'	$\log \sin 9 \mathrm{da}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0700	$8.8+545$	62, 1	0.00105	0,3	$8.8+439$	61,8*	I. 1556I
. 0701	. 8.4607	62, 1	. 00107		. 81501	61,8	. 15499
.0702	. $8_{4} 569$	62,0	. 00107		. $8+562$	61,7	. 15438
. 0703	. 84731	61,9	.00107		. $8+624$	61,6	. 15336
. 0704	. 84793	6I,8	. 00108		. 84686	6I,5	. 15314
0.0705	8.84855	61,7	0.00108	0,3	8.84747	$6 \mathrm{I}, 4$	I. 15253
. 0706	. 84917	61,6	. 00108		. $8+808$	6I,3	. 15192
. 0707	. 81978	61,5	.00108		. $8+870$	6I,2	. I5I30
. 0708	. 85040	$6 \mathrm{r}, 4$.00109		. 84931	61,	. 15059
. 0709	. 85101	6I, 4	. 00109		. $8+992$	61,0	. 15008
0.0710	8.85162	61,3	0.00109	0,3	S.85053	6I,O	I. 14947
. 07 II	. 85224	$6 \mathrm{I}, 2$. 00110		.851I4	60,9	. 14885
.0712	. 85285	$6 \mathrm{I}, \mathrm{I}$. 00110		. 85175	60,8	. I4825
.0713	. 85345	6I,0	. oorio		. 85235	60,7	- I4755
.0714	. 85107	60,9	. OOIII		. 85295	60,6	. 14704
0.0715	8.85468	60,8	0.00111	0,3	8.85357	60,5	I. 14643
. 0716	. 85528	60,8	. 0011 l		. 85417	60,4	. I4583
. 0717	. 85589	60,7	.00112		. 85478	60,4	. 14522
.0718	. 85550	60,6	. 00112		. 85538	60,3	. I4462
.0719	. 85710	60,5	. 00112		. 85598	60,2	. I4402
0.0720	8.85771	60,4	0.00112	0,3	8.85558	60,1	I.I4342
. 0721	. 8583 I	60,3	. 00113		. 85718	60,0	. I4282
. 0722	.85891	60,3	. 00113		. 85778	59,9	. I4222
. 0723	. 85952	60,2	. 00113		. 85838	59,9	. I 4152
.0724	. SSolz	60, I	.00114		.85898	59,8	. Ifloz
0.0725	8.85072	60,0	0.00114	0,3	8.85958	59,7	I. I4042
.0725	. 85132	59,9	. OOII4		. 85017	59,6	. 13983
.0727	.85192	59,8	. 00115		. 80077	59.5	. 13923
.0729	. 8525 I	59,8	.00115		. 85137	59,5	. I3853
. 0729	. 8531 I	59,7	.00115		. 86196	59,4	. 13804
0.0730	8.85371	59,6	0.00115	0,3	8.86255	59,3	I. 13745
.0731	. 85430	59,5	.00116		.85314	59,2	. 13686
. 0732	. 85490	59,4	.00115		. 85374	59, I	. I3626
. 0733	. 85519	59,4	.00117	.	. 86133	59,0	. 13567
. 0734	. 85609	59,3	. 00117		. 86492	59,0	. 13508
0.0735	8.86558	59,2	0.00117	0,3	8.85551	58,9	I. 13449
. 0735	.85727	59, 1	.001I8		. 85609	58,8	. 13391
. 0737	. 85786	59,0	.00118		. 85668	58,7	. 13332
. 0738	. 86845	59,0	. 00118		. 85727	58,6	. I3273
. 0739	.85904	5S,9	.00118		. 85785	58,6	. 13215
0.0740	8.85963	'58,8	0.00119	0,3	8.85844	58,5	1.13156
. 0711	. 87022	58,7	. 00119		. 85902	58,4	. I3098
.0742	. 87080	58,6	. 00119		.85c6r	58,3	. I3039
. $07+3$. 87139	58,6	. 00120		. 87019	58,2	. I298I
. $07+4$. 87197	58,5	. 00120		. 87077	58,2	. 12923
0.0745	8.87256	58,4	0.00120	0,3	8.87135	58,1	I. 12865
. 0746	.87314	58,3	. 00121		. 87193	58,0	. 12807
. $07+7$. 87372	58,2	. 00121		. 87251	57,9	. 12749
. $07+8$. 87431	58,2	.00121		. 87309	57,8	. 1259 I
.0749	. 87489	58, I	. 00122		. 87367	57,8	. 12633
0.0750	8.87547	58,0	0.00122	0,3	8.87425	57,7	I. 12575
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0750	8.87547	58,0	0.00122	0,3	8.87425	57,7	I. 12575
. 0751	. 87505	57,9	. 00122		. $87+82$	57,6	. 12518
. 0752	. 87553	57,9	. 00123		. 87540	57,5	. 12460
. 0753	. 87721	57,8	. 00123		. 87598	57,5	. 12102
. 0754	.87778	57,7	. 00123		.87555	57,4	. 12345
0.0755	8.87836	57,6	0.00124	0,3	8.87712	57,3	1. 12288
. 0755	. 87894	57,6	. 00124		.85770	57,2	. 12230
. 0757	.8795I	57,5	. 00124		. 87827	57,2	. 12173
. 0758	. 88009	57,4	. 00125		. 87884	57, 1	.12116
. 0759	. 88056	57,3	. 00125		.87941	57,0	. 12059
0.0760	8.83123	57,3	0.00125	0,3	8.87998	56,9	I. 12002
.0761	.88i80	57,2	. 00125		. 88055	56,8	. I 1945
. 0762	.83238	57, I	. 00126		.88II2	56,8	. 11883
.0753	. 83295	57,0	. 00125		. 88168	56,7	. 11832
.0754	. 88352	57,0	.00127		. 88225	56,6	. 11775
0.0755	8.88 .408	56,9	0.00127	0,3	8.88282	56,5	I. 11718
. 0756	. 88.65	56,8	. 00127		. 88338	56,5	. 11662
. 0767	. 83522	56,7	.00128		. 88394	56,4	. 11606
. 0768	. 88579	56,7	. 00128		. 83.451	56,3	- II549
. 0769	. 88535	55,6	.00128		. 88507	56,3	. II493
0.0770	8.88692	56,5	0.00129	0,3	8.88563	56,2	I.II437
.0771	. 88748	56,4	. 00129		. 88520	56,	. II380
.0772	. 88805	56,4	. 00129		. 88575	56,0	. II324
. 0773	. 88851	56,3	. 00130		. 88732	56,0	. 11268
. 0774	.88917	56,2	.00130		. 88787	55,9	. 11213
0.0775	8.88974	56,2	0.00130	0,3	8.888_{43}	55,8	I.III57
.0776	. 89030	56, 1	. 00131		. 88899	55,7	. IIIIOI
.0777	. 89085	56,0	.00131		. 88955	55,7	- 11045
.0778	. 89142	55:9	.O0I3I		. 89010	55,6	- 10050
.0779	. 89198	55,9	.00132		.89056	55,5	- 10934
0.0-So	8.89253	55,8	0.00132	0,3	8.89122	53.5	1. 10878
.0781	. 89309	55,7	.00132		. 89177	55,4	. 10823
.0782	. 83365	55,6	.00133		. 89232	55,3	-10768
.0783	. 8942 I	55,6	.00133		. 89283	55,2	. 10712
.0784	. 80475	55,5	.00133		. 89343	55,2	. 10657
0.0,85	S. 89532	55,4	0.00134	0,3	8.89398	55, 1	1. 10502
.0785	. 89587	55,4	.00134		. 89453	55,0	- 10547
.0787	. 89512	55,3	. 00131		. 89503	55,0	-10492
.0783	. 89598	55,2	. 0135		.89563	54,9	. 10437
.0-89	. 89753	55,2	.00135		.89618	54,8	. 10382
0.0790	8.89808	55,1	0.00135	0,3	8.89672	54,7	I. 10328
.0791	. 89863	55,0	.00136		. 89727	54,7	. 10273
. 0792	. 83918	54,9	.00136		. 89782	54,6	. 10218
.0793	. 89973	54,9	.00136		. 89836	54,5	. 10164
. 0794	. 90028	54,8	.00137		. 89891	54,5	- IOIO9
0.0795	8.90082	54,7	0.00137	0,3	8.89945	54,4	1. 10055
. 0796	. 90137	54,7	.00137		. 90000	54,3	. 10000
. 0797	. 90192	54,6	.00138		. 90054	54,3	. 09946
.0708	. 902.46	54,5	.00138		.90108	54,2	. 09892
. 0799	.90301	54,5	.00138		.90162	54, I	. 09838
0.0800	8.90355	54,4	0.00139	0,3	8.90216	54, I	1.09784
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sec \mathrm{gd} u$	a) $\mathrm{F}_{0}{ }^{\prime}$	$\log \sin 9 \mathrm{~d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log csc gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0800	8.90355	54,4	0.00139	0,3	8.30216	54, I	1.09784
. 0801	. 90410	54,3	.00139		. 90271	54,0	. 09729
. 0802	. 90464	54,3	.00I40		. 90324	53,9	. 09676
. 0803	.90518	54,2	.03140		.90380	53,9	. 09620
. 0804	. 90572	54, I	.00140		. 90432	53,8	. 09568
0.0805	8.50626	54, I	0.00141	0,3	8.90486	53,7	1.09514
.0805	.9068I	54,0	. 0014 I	0,3	. 90540	53,5	. 09460
. 0807	. 90734	53,9	. 00141	0,3	. 90593	53,6	. 09407
.0808	. 90788	53,9	.00142	0,4	. 90547	53,5	. 09353
. 0809	. 90842	53,8	.00142	0,4	.90700	53,4	.09300
0.0810	8.90896	53,7	0.00142	0,4	8.90754	53,4	I. 09246
.08II	. 90950	53,7	.00143		.90807	53,3	.09193
.0812	. 91003	53,6	. 015		. 90860	53,3	. 09140
.08I3	. 91057	53,5	.OOI43		.90914	53,2	. 09086
.08I4	.91IIO	53,5	.00144		.90967	53, I	.09033
0.08 I 5	8.91164	53,4	0.00144	0,4	8.91020	53, 1	I. 08980
.08i6	.91217	53,3	.00I 44		. 91073	53,0	. 08927
.0817	.9127I	53,3	.00145		.91126	52,9	. 08874
.0818	. 91324	53,2	.00I45		.91179	52,9	. 0882 I
.0819	.91377	53,1	. 0145		.9123I	52,8	.08769
0.0820	8.91430	53, I	0.00146	0,4	8.91284	52,7	1.08716
.0821	.91483	53,0	.00146		. 91337	52,7	. 08663
.0822	. 91536	53,0	.00147		.91390	52,6	.08510
.0823	.91589	52,9	.00147		.91442	52,5	.08558
. 0824	.91642	52,8	.00147		.9I495	52,5	. 08505
0.0825	8.91695	52,8	0.001 .48	0,4	8.91547	52,4	I. 08.853
. 0826	.91747	52,7	.00148		. 91599	52,3	.08-401
. 0827	. 91800	52,6	. 00148		.91652	52,3	. 08348
. 0828	. 91853	52,6	.00149		.91704	52,2	. 08296
. 0829	. 91905	52,5	. 00149		.91756	52, I	. 08244
0.0830	8.91958	52,4	0.00149	0,4	8.91808	52, 1	I.08I92
.083I	.92010	52,4	. 00150		. 91850	52,0	.08140
. 0832	. 92062	52,3	. 00150		. 91912	52,0	. 08088
. 0833	.92II5	52,3	. 00151		.91964	51,9	.08036
. 0834	.92167	52,2	.00151		. 92016	51,8	. 07984
0.0835	8.92219	52,I	0.00151	0,4	8.92068	5I,8	1.07932
.0835	. 9227 I	52, I	.00152		. 92120	51,7	. 07880
. 0837	. 92323	52,0	. 00152		.92171	51,6	.07829
.0838	. 92375	5I,9	.00152		. 92223	51,6	. 07777
. 0839	. 92427	51,9	.00153		. 92274	51,5	. 07726
0.0840	8.92479	51,8	0.00153	0,4	8.92326	5I,5	1.07574
. 0.81 I	.9253I	5I,8	. 00153		. 92377	51,4	. 07623
.0842	. 92583	51,7	.00154		. 92429	51,3	. 07571
. 0873	. 92563	51,6	.00154		.92480	51,3	. 07520
. 084	. 92686	51,6	. 00154		.9253I	51,2	.07459
0.0845	8.92737	51,5	0.00155	0,4	8.92582	51,2	1.074i8
.0846	. 92789	5I,5	. 00155		. 92634	51, I	. 07366
. 0847	. 92840	5r,4	. 00156		. 92685	51,0	. 07315
.0848	. 92892	51,3	. 00156		. 92736	51,0	. 07264
. 0849	. 92943	5I,3	. 00156		. 92787	50,9	.07213
0.0850	8.92994	51,2	0.00157	0,4	8.92837	50,8	1.07163
u	$\log \tan 9 \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin 9 \mathrm{du}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	logese gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.0850	8.92994	51,2	0.00157	0,4	8.92837	50,8	1.07153
. 0851	. 93045	51,2	. 00157		. 92888	50,8	.07112
. 0852	. 930096	51,1	. 00157		. 92939	50,7	.0705r
. 0853	.93I48	51,O	. 00158		- 92990	50,7	.07010
. 0854	.93199	51,0	. 00158		- 93040	50,6	.05960
0.0855	8.93250	50,9	0.00159	0,4	8.93091	50,5	1.06909
. 0856	. 93300	50,9	. 00159		.93141	50,5	. 06859
. 0857	. 9335 I	50,8	. 00159		. 93192	50,4	. 05808
. 0858	. 93402	50,7	. 00160		-932.12	50,4	.05758
.0859	-93453	50,7	. 00160		-93293	50,3	.06707
0.0850	8.93503	50,6	0.00160	0,4	8.933-43	50,3	1.05557
.0851	. 93554	50,6	. 00161		. 93393	50,2	. 066507
. 0862	. 93504	50,5	. 00161		-93+43	50, 1	. 05557
. 0853	. 93655	50,4	. 00162		. $93+93$	50, I	. 06507
. 0854	. 93705	50,4	.00162		-935-43	50,0	. 05457
0.0855	8.93756	50,3	0.00162	0,4	8.93593	50,0	1.05407
. 0855	. 93806	50,3	. 00153		. 93643	49,9	. 05357
. 0857	. 93856	50,2	. 00163		-93693	49, ${ }^{\text {S }}$. 06307
.0858	. 93307	50,2	. 00163		-93743	49,8	. 05257
. 0859	. 93957	50,1	.00164		. 93793	49,7	. 05207
0.0870	8.94007	50,0	0.00164	0,4	8.93843	49,7	1.06157
. 0871	-9.4057	50,0	. 00165		. 93892	49,6	. 05108
.0872	-94107	49,9	. 00165		. $939+2$	49,6	. 05058
.0873	-9.4157	49,9	. 00165		. 93991	49,5	. 05009
. 0874	-94205	49,8	.00165		-94041	49,4	. 05959
0.0875	8.94256	49,8	0.00165	0,4	8.94090	49,4	1.05910
. .0876	. 94305	49,7	. 00165		-94140	49,3	. 05850
. 0877	. 94355	49,5	. 00157		-94189	49,3	. 05811
.0878	-94405	49,6	.00167		-94238	49,2	. 05762
.0879	. 94455	49,5	. 00168		-94287	49,2	.05713
0.0880	8.94504	49,5	0.00168	0,4	8.94336	49, I	1.05664
.083I	-91554	49,4	.00168		-94385	49,0	. 05615
.0882	. 94603	49,4	. 00169		-9+434	49,0	. 05566
. 0883	. $9+4552$	49,3	.00169		-94483	48.9	.05517
.0834	.94702	49,3	. 00159		. 94532	48,9	.05+68
0.0885	8.94751	49,2	0.00170	0,4	8.94581	48,8	1.05419
. 0885	. 94800	49,1	.00170		-94630	48,8	.05370
.0887	-94849	49,1	.00171		- 94679	48,7	. 05321
. 0383	. 94898	49,0	.00171		. 94727	48,7	. 05373
. 0889	- 94947	49,0	.00171		-94776	48,5	. 05224
0.0890	8.94996	48,9	0.00172	0,4	8.94825	48,5	1.05175
.oS91	. 95045	48,9	.03172		. 94873	48,5	. 05127
. 0892	. 95094	48,8	. 00173		. 94922	48,4	. 05078
. 0893	-95I43	48,8	.00173		-94970	48,4	.05030
. 0894	. 95192	48,7	. 00173		-95018	48,3	. 04982
0.0895	8.95240	48,7	0.00174	0,4	8.95067	48,3	1.04933
. 0895	. 95289	48,6	.00174		. 95115	48,2	. 0.4885
. 0897	. 95337	48,5	. 00174		. 95163	48,2	. 0.4837
. 0898	-95386	48,5	.00175		. 95211	48,1	.04789
. 0899	-95434	48,4	.00175		. 95259	48,0	.04741
0.0900	8.95483	48,4	0.00176	0,4	8.95307	48,0	1.04693
u	log tan gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	log sec gd u	* $\mathrm{F}_{0}{ }^{\prime}$	$\log \sin 9 \mathrm{~d} u$	$\infty \mathrm{Fo}^{\prime}{ }^{\prime}$	log cse gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{Fo}^{\prime}$	log cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	log coth u
0.0900	8.95483	48,4	0.00176	0,4	8.95307	48,0	1.04693
. 0901	. 95531	48,3	.00175		. 95355	47,9	. $0+645$
. 0902	. 95550	48,3	.00176		. 95403	47,9	. $0+5597$
. 0903	. 95628	48,2	.00177		. $95+5 \mathrm{I}$	47,8	. 04549
. 0904	. 95676	48,2	.00177		. 95499	47,8	. 04501
0.0905	8.95724	48, 1	0.00178	0,4	8.95547	47,7	1.04453
. 0905	. 95772	48, 1	.00178		.95594	47,7	. 04406
. 0907	. 95820	48,0	.00178		. 95642	47,6	. $0+358$
. 0908	. 95868	48,0	.00179		. 95689	47,6	. $0+3111$
. 0909	.95916	47,9	.00179		.95737	47,5	. $0+263$
0.0910	8.95964	47,9	0.00180	0,4	8.95784	47,5	1.04216
. 0911	. 90012	47,8	. 00180		. 95832	47,4	. 04168
. 0912	. 96060	47,8	. 00180		. 9585	47, +	. 04121
. 0913	. 95107	47,7	. 0018 I		. 95927	47,3	. $0+073$
. 0914	. 95155	47,6	.0018i		.9597+	47,3	. 04025
0.0915	8.96203	47,6	0.00182	0,4	8.9502 I	47,2	1.03979
. 0910	. 96250	47,5	. 00182		. 96068	47, 1	. 03932
. 0917	. 95298	47,5	.00182		. 95115	47, I	. 03885
. 0918	. 96345	47,4	. 00183		. 96163	47,0	.03837
. 0919	. 96393	47,4	. 00183		.96210	47,0	.03750
0.0920	8.96440	47,3	$0.0018+$	0,4	8.96256	46,9	1.03744
. 0921	. 95487	47,3	.0018 ${ }^{4}$. 95303	46,9	. 03697
. 0922	. 96535	47,2	.00184		. 95350	46,8	. 03650
. 0923	. 96582	47,2	. 00185		. 96397	46,8	. 03603
.0924	. 96629	47, I	. 00185		. 96444	46,7	. 03556
0.0925	8.96676	47, 1	0.00185	0,4	8.95491	46,7	1.03509
. 0925	. 96723	47,0	. 00185		. 96537	46,6	. 03.03453
. 0927	. 95770	47,0	. 00185		. 96584	46,6	. 03416
. 0928	.95817	46,9	.00187		. 95630	46,5	. 03370
. 0929	. 95864	46,9	.00187		. 95677	46,5	.03323
0.0930	8.96911	46,8	0.00188	0,4	8.96723		1.03277
.093I	. 95958	45,8	. 00188		. 95770	46,4	. 03230
. 0932	. 977004	46,7	. 00188		. 95816	46,3	. 03184
. 0933	. 97051	46,7	.00189		. 96852	46,3	.03138
. 0934	.97098	46,6	. 00189		. 96909	46,2	. 03091
0.0935	8.97144	46,6	0.00190	0,4	8.95955		1.03045
. 0935	. 97191	46,5	. 00190		. 9700 I	46, 1	. 02999
. 0937	- 97237	46,5	.00190		. 97047	46, 1	. 02953
. 0938	. 97284	46,4	. 00191		. 97093	46,0	.02G07
. 0933	. 97330	46,4	.00191		.97139	46,0	.02861
0.0940	8.97377	46,3	0.00192	0,4	8.97185	45,9	I. 028 I5
. 0941	. 97423	46,3	. 00192		. 9723 I	45,9	. 02789
. 0942	. 97469	46,2	. 00192		. 97277	45,8	. 02723
. 0943	. 97516	46,2	. 00193		. 97323	45,8	. 02677
. 0944	. 97562	46, 1	.00193		. 97368	45,7	. 02632
0.0945	8.97508	46, r	0.00194	0,4	8.97414		1.02585
. 0946	. 97654	46,0	. 00194		. 97460	45,6	. 02540
. 09.47	. 97700	46,0	.00194		. 97505	45,6	. 02495
. 0948	-97746	45,9	. 00195		-9755I	45,5	. 02449
. 0949	. 97792	45,9	.00195		. 97597	45.5	. 02403
0.0950	8.97838	45,9	0.00196	0,4	8.97642	45,4	1.02358
u	$\operatorname{logtangdu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin$ gd u	$\omega \mathrm{Fo}^{\prime}$	log csc gdu

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.0950	8.97838	45,9	0.00195	0,4	8.97542	45,4	1.02358
. 0951	.97833	45,8	. 00196		.97687	45,4	.02313
. 0952	. 97929	45,8	. 00197		.97733	45,3	. 02257
. 0953	- 97975	45,7	. 00197		.97778	45,3	. 02222
. 0954	-9802 1	45,7	. 00197		.97823	45,2	. 02177
0.0955	8.98066	45,6	0.00198	0,4	8.97859	45,2	1.02131
. 0955	.98II2	45,6	. 00198		.97914	45,2	. 02085
. 0957	-98157	45,5	.00199		. 97959	45, 1	. 02041
. 0958	. 98.203	45,5	.00199		-9SO04	45, I	. 01995
. 0959	. 98248	45,4	.00199		.98349	45,0	. 01951
0.0960	8.98294	45,4	0.00300	O,4	8.98094	45,0	1.01906
.0961	. 98339	45,3	.00200		.9SI39	419	. $0: 861$
.0952	. 98384	45,3	.00201		.98184	449	.018i6
. 0963	.98430	45,2	.00301		-98229	44,8	. 0171
.0964	.98475	45,2	.00201		-98273	4, 8	.0172\%
0.0965	8.98520	45, I	0.00202	0,4	8.983I8	44,7	1.01682
. 0956	. 98565	45, 1	.00202		.98353	44,7	. 01637
. 0.057	. 98510	45,1	.00203		.98408	4,4,6	. 01592
. 0968	. 98555	45,0	. 00203		. 98452	44,6	. $015 \div 8$
. 0059	.98700	45,0	. 00204		.98497	+1,5	. 01503
0.0970	8.98745	44,9	0.00204	0,4	8.9S541	44,5	I.OI459
.0971	. 58790	44,9	. 00204		. 98585	4, 5	. 01414
. 0972	. 98835	44,8	. 00205		.98530	44, 4	. 01370
. 0973	. 98880	44,8	. 00205		. 98575	44,4	. 01325
.0974	.98925	44,7	.00205		. 98719	4,4	. O128I
0.0975	8.98969	44,7	0.00205	0,4	8.98753	44,3	1.01237
.0976	.99014	+1,6	.00207		-98807	4,2	. 01193
.0977	.95059	44,6	. 00207		.98852	44.2	- OIIt8
.0978	. 99103	44.5	.00207		.98835	4, I	. OIIO4
.0979	.99148	44,5	.00208		.98940	44.1	. OIOSO
0.0983	8.99192	44,5	0.00208	0,4	8.98984	44,0	1.0iOI6
.0381	. 99237	4,4,4	.00209		.99028	44,0	.009\%2
. 0,82	. 99281	44,4	. 00209		.99072	43,9	. 00928
.cc83	. 99325	41,3	. 00209		.99116	43,9	. 00884
.0984	. 99370	44,3	. 00210		.99160	43,9	. 00840
0.0985	8.994I4	44,2	0.00210	0,4	8.99203	43,8	1.03797
.0986	. 99458	44,2	. CO こ̇II		. 99247	43,8	. 00753
.0987	. 99502	4,2	. 00211		-99291	43,7	. 00709
.098S	. 99546	4, 1	. 00212		. 99335	43,7	. 00565
.0989	. 93550	44, 1	.00212		.99378	43,6	. 00522
0.0950	8.99634	44,0	0.00212	0,4	$8.99+22$	43,6	1.00578
. 0991	.99678	44,0	. 00213		. 99466	+3,5	. 00534
.0992	. 99723	43,9	. 00213		. 99509	43,5	. 00.491
. 0993	. 99765	43,9	.00214		-99553	43.4	. $00+17$
. 0994	.998io	43,8	. 00214		. 99596	43,4	. 00404
0.0995	8.95854	43,8	0.00215	0,4	8.99639	43,4	1.00361
. 0995	. 99893	43,7	. 00215		. 99683	43,3	. 00317
. 0597	. 5994	43,7	. 00215		-99726	43,3	.00274
. 0998	. 99985	43,7	. 00215		.99769	43,2	.00231
. 0999	9.00029	43,6	. 00216		.93812	43,2	. 0018
0.1000	9.00072	43,6	0.00217	0,4	8.99856	43, I	I. 00144
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{Fa}^{\prime}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.100	9.00072	435,7	0.00217	4,3	8.99856	43I,4	1.00144
. IOI	. 00506	431,5	. 00221	4,4	9.00285	427, I	0.99715
. 102	. 00935	427,3	. 00226	4,4	. 00710	422,8	. 99290
. 103	. 01360	423, I	. 00230	4,5	. OII3I	4IS,7	-98869
. 104	. 01782	419, I	. 00234	4,5	. 01547	4I4,6	. 98.453
0.105	9.02199	415, I	0.00239	4,5	9.01960	410,6	0.98040
. 105	. 02512	4II, 2	. 0024	4,6	. 02368	406,7	. 97632
. 107	. 03021	407,4	. 00248	4,6	. 02773	402,8	. 97227
. 103	. 03427	403,7	. 00253	4,7	.03174	399,0	. 96826
. 109	. 03829	400,0	. 00257	4,7	. 03571	395,3	. 96429
O.IIO	9.04227	356,4	0.00262	4,8	9.03965	391,6	0.96035
. III	. $0+681$	392,9	. 00267	4,8	. 04354	388, I	. 95646
. 112	. 05013	389,4	. 00272	4,8	. 04741	384.5	-95259
. 113	. 05400	385,0	. 00277	4,9	. 05124	381, 1	. 94876
. II4	. 05785	382,6	. 00282	4,9	. 05503	377,7	. 94497
0.115	9.05165	379,3	0.00287	5,0	9.05879	374,3	0.94121
. 116	. 05513	376, 1	. 00292	5,0	. 05252	$37 \mathrm{I}, \mathrm{I}$. 93748
. Ir7	. 05918	372,9	. 00297	5, I	. 05621	367,8	-93379
. 118	.07289	369,8	. 00302	5,1	. 05987	364,7	-93013
. 119	.07557	365,7	. 00307	5,1	. 07350	36I,5	. 92650
0.120	9.08022	363,6	0.00312	5,2	9.07710	358,5	0.92290
. I 2 I	.08384	360,7	. 00317	5,2	. 08057	355,4	-91933
. 122	.08744	357,7	. 00322	5,3	.0842I	352,5	.91579
. 123	.09100	354,9	. 00328	5,3	. 08772	349,5	. 91228
. 124	. 09453	352,0	. 00333	5,4	. 09120	346,7	. 90880
0.125	9.09804	349,2	0.0033 S	5,4	9.09465	343,8	0.90534
. 125	. 10153	346,5	. 00344	5,4	. 09808	341,1	.90192
. 127	. 10497	343,8	. 00349	5,5	. IOI 48	338,3	. 89852
. 228	. 10880	$34 \mathrm{I}, \mathrm{I}$. 00355	5,5	. 10485	335,6	. 89515
. 129	. III79	338,5	. 00360	5,6	. 10819	333,0	. 8918 r
0. 130	9.11517	336,0	0.00366	5,6	9.III5I	330,3	0.88849
.13I	. 1185 I	333,4	. 00372	5,7	. II480	327,8	. 88520
. 132	. 12183	330,9	. 00377	5,7	. 11805	325,2	. 88194
. 133	. 12513	328,5	. 00383	5,7	. 12130	322,7	. 87870
. 134	. 12840	326,0	. 00389	5,8	. 12452	320,3	. 87548
0.135	9.13165	323,7	0.00395	5,8	9.12771	317,8	0.87229
. 135	. 13488	321,3	. 00400	5,9	. 13087	315,4	. 86913
. 137	. 13808	319,0	. 00405	5,9	-13402	313,1	. 85598
- I38	. IfI26	3 16,7	. $00+1 \mathrm{I} 2$	6,0	.13713	310,7	. 86287
. 139	. It44I	3I.4,5	.00418	6,0	. I4023	308,5	.85977
0.140	9. I4755	312,2	0.00424	6,0	9.14330	306,2	0.85670
. If I	. 15056	310,0	. 00430	6, 1	. I4635	304,0	.85365
- If 2	. 15375	307,9	. 00436	6, I	. I4938	301,8	. 85062
. I 43	. I5682	305,8	.00143	6,2	. 15239	299,6	
. I44	- 15985	303,7	. 00449	6,2	. 15338	297,5	. 84462
0.145	9. 16289	301,6	0.00455	6,3	9.15834	295,4	0.84166
. 145	.16589	299,6	. 00.46 I	6,3	. 16128	293,3	.83872
. I47	. 16888	297,6	.00469	6,3	. 16.420	291,2	. 83580
. I48	. I7I85	295,6	.00474	6,4	. 16711	289,2	. 83289
. 149	-17479	293,6	.00480	6,4	. 16999	287,2	. 83001
0.150	9.17772	291,7	0.00487	6,5	9.17285	285,2	0.82715
u	$\log \operatorname{tangdu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
0.150	9.17772	291,7	0.00487	6,5	9.17285	285,2	0.82715
. 151	. 18063	289,8	. 00.493	6,5	.17569	283,3	. $82+31$
. 152	. 18351	287,9	. 00500	6,6	. 17852	281,4	. SaIt
. 153	. 18638	285, 1	. 00505	6,6	.18I32	279,5	. $\mathrm{SI} \mathrm{S}^{58}$
. 154	. 18924	28.4,2	. 00513	6,6	. 1841 I	277,6	. 81589
0.155	9.19207	282,4	0.00520	6,7	9.18587	275,8	0.81313
. 156	. 19488	2So,6	. 00525	6,7	. I8962	273,9	. Sroz8
. 157	. 19708	278,9	.00533	6,8	. 19235	272,1	. 80765
. 158	. 20046	277, I	.00540	6,8	. 19505	270,3	. $80+94$
. 159	. 20323	275,4	. 00547	6,8	. 19776	268,6	. 80224
0.160	9.20597	273,7	$0.0055+$	6,9	9.2004	265,9	0.79356
.16I	. 20870	272,1	. 00560	6,9	. 20310	255,1	. 79590
. 162	.2II4I	270,4	. 00567	7,0	. 20574	253,4	. 79426
.163	.2Ifil	258,8	.00574	7,0	. 20337	251,8	. 79163
. 164	. 21679	267,2	.00581	7,I	. 21097	250,1	.78903
0.165	9.219+5	265,6	0.00589	7,I	9.21337	23S.5	0.78543
. 166	. 22210	254,0	. 00595	7,1	.21614	256,9	.78386
. 167	. 22473	252,5	. 00603	7,2	.21871	255,3	. 78120
. 168	. 22735	260,9	. 00510	7,2	. 22125	253,7	.77875
.169	. 22995	259,4	.00617	7,3	.22378	252,2	.77022
0.170	9.23254	257,9	0.00625	7,3	9.22629	250,6	0.77371
. 171	. 2351 I	256,4	. 00532	7,4	. 22879	249, I	. 77121
.172	. 23767	255,0	. 00639	7,4	. 23128	247,6	. 76872
. 173	.2402I	253,5	. 00547	7,4	. 23374	245,1	. 76626
. 174	. 24274	252, I	. 00654	7,5	. 23620	24,6	. 75380
0.175	9.24525	250,7	0.00662	7,5	9.2385_{4}	243,2	0.76136
.176	. 24775	219,3	. 00669	7,6	-2+105	241,7	. 75884
. 177	. 25024	2.47,9	. 00677	7,6	- 24347	210,3	. 75653
.178	. 25271	245,5	. 00688	7,6	. $2+587$	238,9	. 75413
. 179	. 25517	245,2	. 00692	7,7	. 24825	237,5	.75175
0.180	9.23762	243,9	0.00700		9.25062	236,1	-. 74938
. 18 I	. 25005	242,5	.00708	7,8	. 25297	234,8	. 74703
.182	. 26247	241,3	.00715	7,8	. 25531	233,4	- $7+459$
.183	. 26487	240,0	. 00723	7,9	. 25754	232,1	-74236
.184	. 26727	238,7	.00731	7,9	. 25996	230,8	. 74004
	9.26965		0.00739		9.26226	229,5	0.73774
. 186	.27201	236,2	. 00747	8,0	. 25454	228,2	. 735.46
.187	. 27437	234,9	. 00755	8,0	. 26682	225,9	-73318
. 188	.27571	233,7	.00763	8 , I	. 26908	225,7	-73092
. 189	.27904	232,5	.0077I	8,1	.27133	224,4	-72867
0.190	9.28 ¢36	231,3	0.00779	8,2	9.27357	223,2	0.72643
. 191	. 28357	230,1	. 000787	8,2	. 27580	221,9	- 72420
. 192	. 28597	229,0	.00796	8,2	.27801	220,7	. 72199
. 193	. 28825	227,8	.0080 4	8,3	. 28021	219,5	. 71979
. 194	. 29052	226,7	.00812	8,3	.28240	218,3	. 71760
0.195	9.29278	225,5	0.00821	8,4	9.28458	217,2	0.71542
. 196	9.29503	224,4	. 00829	8,4	. 28674	216,0	. 71326
. 197	. 29727	223,3	. 00837	8,4	. 28890	214,9	. 71110
. 198	. 29950	222,2	.00846	8,5 8,5	. 29104	213,7 212,6	.70896 .70683
. 199	. 30172	22I, I	. 00854	8,5	. 29317	212,0	-70683
0.200	9.30392	220,0	0.00863	8,6	9.29529	211,5	0.70471
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\underline{l o g s e c ~ g d ~ u ~}$	*) Fo^{\prime}	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	l00 csc gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.200	9.30392	220,0	0.00863	8,6	9.29529	2 I , 5	0.70471
. 201	. 30512	219,0	. 00871	8,6	. 29740	210,4	. 70250
. 202	. 30830	217,9	. 00880	8,7	. 25950	203,3	. 70050
. 203	. 31047	216,9	. 00889	8,7	. 30159	208,2	. 6984
. 204	. 31254	215,8	. 00897	8,7	. 30366	207, 1	. 69634
0.205	9.31479	214,8	0.00905	8,8	9.30573	205,0	0.69427
. 205	. 31693	213,8	. 000915	8,8	-30778	205,0	. 69222
. 207	. 31907	212,8	. 00924	8,9	-30983	203,9	. 69017
. 203	. 32119	211,8	. 00933	8,9	-31186	202,9	. 68814
. 209	. 32330	210,8	. 00942	8,9	. 31389	201,9	.685ir
0.210	9.32541	209,8	0.00951	9,0	9.31590	200,8	$0.68+10$
. 211	. 32750	208,9	. 00960	9,0	-31790	ISS, 8	. 68210
. 212	. 32958	207,9	.00969	9, I	-31990	198,8	. 68010
. 213	. 33166	207,0	.00978	S,I	-32188	197,9	. 67812
. 214	. 33372	205,0	.00987	9,2	. 32385	196,9	. 67615
0.215	9.33578	205,1	0.00996	9,2	9.32582	195,9	0.67418
. 215	. 33783	204,2	.01005	9,2	-32777	19-4,9	. 67223
. 217	. 33985	203,3	. OIOI5	9,3	- 32972	194,0	. 67028
. 218	. $3+189$	202,4	. 01024	9,3	. 33165	193,0	. 66835
. 219	. 34391	201,5	. 01033	9,4	- 33358	192, I	. 66642
0.220	9.34592	200,6	0.01043	9,4	9.33549	191,2	0.66451
. 221	. 34792	199,7	. 01052	9,4	. 33740	190,3	. 66260
. 222	-34991	198,8	. 01062	9,5	- 33930	I89,3	. 66070
. 223	. 35190	I9S,0	. 01071	9,5	.34119	188,4	.6588I
. 224	.35387	197, I	. 0108 r	9,6	- $3+307$	187,5	. 65693
0.225	9.35584	196,3	0.01090	9,6	9.34494	186,7	0.65506
. 225	. 35780	195,4	. 01100	9,7	. 34680	185,8	. 65320
. 227	. 35975	194,6	. 01109	9,7	- 3485	184,9	. 65135
. 228	. 36169	193,8	. OIII9	9,7	- 35050	184,0	. 64950
. 229	.35362	193,0	. 01129	9,8	. 35234	183,2	. 64766
0.230	9.36555	192, I	0.01139	9,8	9.35716	182,3	0.64584
. 231	. 36747	191,3	. OII 49	9,9	. 35598	181,5	. 64402
. 232	. 36938	ISO,5	. OII58	9,9	- 35779	180,6	. 64221
. 233	-37128	189,8	. 01168	9,9	. 35959	179,8	. 64047
. 234	.37317	189,0	. 01178	10,0	-36I39	179,0	. 63861
0.235	9.37505	188,2	0.01188	10,0	9.36317	178,2	0.63683
. 236	. 37594	187,4	. OI 198	IO, I	. 36495	177,4	. 63505
. 237	-37881	185,7	. 01208	10, I	- 36572	176,6	. 63328
. 238	- 38057	185,9	. 012129	Io, 1	. 36848	I75,8	. 63152
. 239	. 38252	185,2	. 01229	10,2	. 37024	I75,0	. 62975
0.240	9.38437	18.8.4	0.01239	10,2	9.37198	174,2	0.62802
. 24 I	-38521	183,7	. OI249	10,3	- 37372	I73,4	. 62628
. 212	-38805	183,0	. 01259	10,3	- 37545	172,6	. $62+55$
. $2+3$. 38987	182,2	. 01270	IO,4	- 37717	171,9	. 62283
. 24.4	. 39169	I8I,5	. O12SO	IO,4	. 37889	I7I, I	.621II
0.245	9.39350	180,8	0.01291	10,4	9.38050	170,4	0.61940
. 246	. 39531	ISo, I	. O1301	10,5	. 38230	169,6	. 61770
. 247	- 39710	179,4	.OI312	10,5	. 38399	168,9	. 61601
. 248	- 39889	178,7	. O1322	10,6	. 38567	168, 1	. 61433
. 249	. 40068	178,0	. 01333	10,6	. 38735	167,4	.61255
0.250	9.40245	177,3	0.01343	10,6	9.38902	166,7	0.61098
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{3}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega F_{0}{ }^{\prime}$	\log coth u
0.250	9.40245	177,3	$0.013+3$	I0,6	9.38502	165,7	0.6ios8
. 251	. 40422	175,6	. 01354	10,7	. 39059	165,0	. 60931
. 252	. 40599	176,0	. 01355	10,7	-39234	165,3	. 60766
. 253	. 40774	175,3	. 01375	10,8	. 39399	164,5	. 60501
. 254	. 40949	174,6	. 01385	10,8	. 39563	163,8	$.60+37$
0.255	9.41124	174,0	0.01397	10,8	9.39727	163, 1	0.60273%
.256	. +1297	173,3	. Or 408	Ic,9	-39890	162,5	.601 10
. 257	. 41470	172,7	.OIfI9	10,9	- 40052	I6I, ${ }^{\text {c }}$. 59248
. 258	. 41643	172,0	. Or 430	II,O	- 40213	I6I, I	. 59787
. 259	.41814	IフI, 4	. 0144 t	II,O	. 40374	160,4	. 59526
0.250	9.41985	I70,8	0.01452	II,O	9.40534	159,7	0.59465
. 251	. 42156	I70,2	. 01463	II, I	. 40593	159, 1	. 59307
. 252	. 42325	169,5	.01474	II, I	. 40852	158,4	. 3914
.263	. 42495	168,9	. 01485	II,2	. 41010	157, ${ }^{\text {5 }}$. 5390
. 254	. 42554	168,3	. OI496	II,2	. 41158	157,1	. 58332
0.255	9.42832	167,7	0.01507	I1,2	9.41324	156,5	0.585-5
. 266	. 42999	167,1	. 01519	II,3	. +1 1-80	I55, ${ }^{\text {c }}$. 58520
. 257	. 43155	165,5	. O1530	II, 3	. 41.536	155.2	-58364
. 258	. 43332	165,9	.ors41	II,4	. 41791	154,5	. 58209
. 259	. 43498	165,3	.or553	II,4	.41945	I53,9	. 58055
0.270	9.43653	161,7	0.01564	II,4	9.42099	I53,3	0.57901
. 271	. 43827	164,2	.O1575	II,5	. 42252	152,\%	. 57748
.272	. 43991	163,6	. 15158	II,5	. 42404	I52, 1	. 575,6
. 273	.44154	163,0	. 01599	II,6	. 42556	I5I, 4	- 3744
. 274	. 44317	162,4	. 01510	II,6	. 42707	I50,8	. 37293
0.275	$9 \cdot 14179$	16r,9	0.01622	II, ${ }^{\text {\% }}$	9.12857	150,2	0.57143
. 275	. 44641	151,3	.01534	11,7	. 43007	149,6	. 56993
.277	. 44802	160,8	. 01645	II, 7	-43157	I49,0	-56843
. 278	. 44962	160,2	. 01657	II, 8	. 43305	148,5	. 56595
. 279	. 45122	159,7	. 01669	II, 8	. 43454	1.47,9	. 56546
0.280	9.45282	159, 1	0.01681	II,9	9.43601	147,3	0.56399
. 281	. 45441	158,6	. 01693	II,9	$\cdot 437+8$	1+6,7	. 56252
- 282	-45399	I58, 1	.01704	11,9	. 43 S95	146, 1	. 56105
.283	-45757	157,5	. 01716	12,0	. 44040	I 4 5,6	- 55950
. 284	. 45914	157,0	. 01728	12,0	. 41185	145,0	.55814
0.285	9.46071	156.5	0.01740	12, I	9.44330	I44,4	0.55570
. 285	. 96227	I56,0	.01752	12, I	- $4+475$	I 43,9	. 55525
. 287	. 46383	155,5	.01765	12, I	. +4618	143,3	- 55382
. 288	- 46538	I 54,9	. 01777	12,2	. 44751	I+2,8	- 55239
.287	. 46693	I54,4	.01789	12,2	. 44904	142,2	. 55096
0.290	9.46847	153,9	0.01801	12,3	$9 \cdot 45016$	141,7	0.54954
. 291	. 47001	153,4	. 01813	12,3	. 45187	Ifi, 1	-54813
. 292	-47154	I53,9	.01825	12,3	. 45328	I.40,6	- 54672
. 293	. 47305	152,4	. 01838	12,4	. 45468	I.40, I	- 54532
. 294	. 47459	152,0	. 01851	12,4	.45608	139,5	- $5+392$
0.295	9.47510	I5I,5	0.01853	12,5	9.45747	139,0	0.54253
. 295	.47752	I5I,O	. 01875	12,5	. 45885	138,5	- 54114
. 297	. 47912	150,5	. 01883	12,5	. 46024	138.0	. 33975
. 298	. 48063	I50,0	. OISOO	12,6	. 46162	137,5	. 53838
. 299	. 48212	149,6	. 01913	12,6	. 46299	136,9	. 53701
0.300	9.48362	I.19, I	0.01925	12,7	9.46436	136,4	0.53564
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{FO}^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin g d u$	$\infty \mathrm{FO}^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$10 \mathrm{~g} \sinh 4$	a) Fo'	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
0.300	9.48362	I49, 1	0.01926	12,7	9.46436	136,4	0.53564
. 301	. 48510	148,6	. 01938	12,7	.46572	135,9	. 53428
. 302	. 48559	148,2	. 01951	12,7	. 46708	135,4	. 53292
. 303	. 48807	147,7	. 01964	I2,8	. 46843	134,9	. 53157
. 304	. 48954	147,2	. 01977	12,8	. 45978	134,4	. 53022
0.305	9.49101	I-16,8	0.01989	12,8	9.47112	133,9	0.52888
. 305	. 49218	I.45,3	. 02002	12,9	. 47.245	I33,4	. 52755
. 307	. 49394	1-45,9	. 02015	I2,9	. 47379	133,0	. 52621
. 308	. 49540	1.45,4	. 02028	13,0	. 47511	132,5	. 52489
. 309	. 49685	145,0	. 02041	13,0	. 47644	I32,0	. 52356
0.310	9.49830	14,4,6	0.02054	13,0	9.47775	I31,5	0.52225
. 3 II	. $4997+$	I.4, 1	. 02067	13, 1	. 47907	131,0	. 52093
. 312	. 50118	I. 43,7	. 02080	13, 1	. 48037	130,6	. 51963
. 313	. 50251	143,3	. 02094	13,2	. 48158	130, 1	. 51832
. 314	. 50404	I 42,8	.02107	13,2	-48298	129,6	. 51702
0.315	9.50547	142,4	0.02120	13,2	9.48427	129,2	0.51573
. 316	. 50389	142,0	.02133	13,3	. 48556	128,7	. 51444
. 317	. 5083 I	IfI, 6	.02146	13,3	. 48684	128,2	. 51316
. 318	. 50972	I4I, I	.02160	13,4	. 48812	127,8	. 51188
.319	.5IIT3	140,7	.02173	13,4	. 48940	127,3	. 51060
0.320	9.51254	140,3	0.02187	13,4	9.40067	125,9	0.50933
. 321	. 51394	I 39,9	. 02200	13.5	. 49194	126,4	. 50806
. 322	. $5153+$	139,5	.02214	13.5	- 49320	126,0	. 50680
. 323	. 51673	I39,I	. 02227	13,6	- 49416	125,5	. 50554
. 324	. 51812	138,7	.0224I	13,6	-49571	125,1	. 50429
0.325	9.51950	I38,3	0.02254	13,6	9.49696	124,7	0.50304
. 326	. 52038	137,9	. 02268	13,7	. 49820	124,2	. 50180
. 327	. 52226	137,5	. 02282	13,7	- 49944	123,8	. 50056
- 328	.52363	137, 1	. 02295	I 3,8	. 50058	123,4	. 49932
. 329	. 52500	135,7	. 02309	I3,8	. 50191	122,9	-49809
0.330	9.52637	136,3	0.02323	13,8	9.50314	122,5	0.49586
. 33 I	. 52773	135,0	. 02337	13,9	. 50.436	122, 1	. 49564
. 332	. 52909	1 35,6	. 02351	I3,9	. 50558	$12 \mathrm{I}, 7$. 49442
. 333	. 53014	135,2	. 02365	If,0	. 50579	121,3	. 49321
. 334	. 53179	134,8	. 02379	14,0	. 50800	I20,8	. 49200
0.335	9.53314	134,5	0.02393	If, 0	9.5092 x	120,4	0.49079
. 336	. 53448	I34, I	. 02.407	It, I	. 51041	I20,0	. 48959
. 337	. 53582	I 33,7	.02421	I4, 1	-5116r	119,6	. 48839
. 338	. 53715	I33,3	. 02435	I4, I	-5128r	I19,2	- 48719
. 339	. 53849	133,0	. 02449	14,2	. 51400	II8,8	. 48600
0.340	9.53981	132,6	0.02463	I4,2	9.51518	118,4	0.48482
. 341	. 54114	132,3	. 02478	It, 3	. 51636	I18,0	. 48364
. 342	-54246	131,9	. 02192	It, 3	. 51754	117,6	- 48248
. 343	- 54378	131,5	. 02505	I4,3	- 51872		. 48128
. 347	. 54509	131,2	. 02520	14,4	. 51989	I 16,8	. 480 II
0.345	9.54640	130,8	0.02535	14,4	9.52105	II6,4	0.47895
. 346	. 54771	130,5	. 02549	14,5	. 5222 I	1 16,0	- 47779
. 347	-54901	130,1	. 02564	I4,5	. 52337	115.7	. 47653
-348	. 5503 I	129,8	. 02578	If, 5	. 52453	II5,3	. 47547
. 349	. 55161	129,5	. 02593	14,6	. 52568	II4,9	- 47432
0.350	9.55290	129, I	0.02607	14,6	9.52682	II4,5	0.47318
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}$	$\log \csc g d u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega F_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	\log cothu
0.350	9.55290	129,I	0.02507	14,6	9.52682	II4,5	0.47318
. 351	. 55419	128,8	. 02622	14,6	. 52797	IIt, I	. 47203
. 352	. 55547	128,4	. 02637	14,7	. 52911	II 3,7	. 47089
- 353	. 55676	128, 1	. 02651	14, 7	. 53024	II3,4	. 46976
-354	. 55804	127,8	. 02565	14,8	. 53137	II3,0	. 46863
0.355	9.55931	127,4	0.02681	I4,8	9.53250	112, ${ }^{\text {I }}$	0.46750
. 353	. 56059	127, I	. 02695	I 1,8	. 53363	I12,3	. 46637
. 357	. 56185	125,8	. 02711	I4,9	- 53475	III,9	. 46525
. 358	. 56312	126,5	.02726	14,9	. 53585	111,5	.46414
. 359	- $56+38$	I26, I	.02740	I5,0	-53698	III, 2	.46302
0.360	9.56564	125,8	0.02755	15,0	9.53809	I 10,8	0.4619 I
. 351	. 56650	125,5	. 02770	15,0	. 53919	110,5	.46081
. 352	. 56815	125,2	.02785	I5, I	. 54030	IIO, I	.45970
.353	. 56940	124,8	. 02801	I5, I	-54190	109,7	. 45850
. 354	. 57055	124,5	.02816	15, 1	-54249	109,4	.4575I
0.355	9.57189	124,2	0.02831	15,2	9.54358	109,0	0.45642
. 356	. 57313	123,9	.02845	15,2	. 51467	108,7	. 45533
. 357	. 57437	123,6	.0286I	15,3	- $5+575$	108,3	. 45424
. 368	. 57561	123,3	. 02887	I5,3	- 54684	108,0	. 45316
. 369	. 57584	123,0	. 02892	I5,3	. 54792	107,7	-45208
0.370	9.57807	122,7	0.02907	15,4	9.54899	107,3	0.45101
. 371	. 57929	122,4	.02923	15,4	. 55006	107,0	. 44994
. 372	. 5805 I	122, I	. 02938	I5,4	. 55113	105,6	. 4.4887
. 373	. 58173	I21,8	. 02954	I5,5	. 55220	105,3	. 44780
. 374	. 58295	121,5	.02569	I5,5	. 55325	106,0	. 44674
0.375	9.58416	I21,2	0.02985	15,6	9.55.132	105,6	0.41568
. 375	. 58537	120,9	. 03000	I5,6	. 55537	105,3	.41463
. 377	. 58558	120,6	. 03015	I5,6	. 55642	105,0	. 44358
. 378	. 58779	120,3	.03031	15,7	. 55747	10.4,6	. 41253
. 379	.58839	120,0	. 03047	15,7	. 55882	104,3	. 441 I 48
0.380	9.59019	II9,7	0.03053	15,8	9.55955	104,0	0.44044
.3SI	. 59138	II9,5	.03079	15,8	. 56059	103,7	. 43941
. 382	. 59257	II9,2	.03095	I5,8	. 56163	103,3	. 43837
. 383	- 59377	II8,9	.03110	I5,9	. 56256	103,0	. 43734
. 384	- 59495	118,6	.03125	15,9	.56369	102,7	. 43631
0.385	9.59514	II8,3	0.03142	15,9	9.56 .472	102,4	0.43528
. 385	. 59732	II8,0	.03158	16,0	. 56574	102, I	. 43426
. 387	. 59850	II7,8	.03174	16,0	. 56676	IOI, 8	. 43324
. 388	. 59957	II7,5	.03190	16, I	. 56777	IOI,4	. 43223
.389	. 60085	II7,2	.03205	I6, I	. 56879	IOI, I	.43121
0.390	9.60202	116,9	0.03222	тб, 1	9.56980	100,8	0.43020
. 391	. 60319	116,7	.0323S	16,2	. 57080	100,5	. 42920
. 392	. 60435	116,4	. 03255	16,2	. 5718 I	100,2	.42819
. 393	. 6055 I	II6, 1	. 03271	16,2	. 5728 I	99,9	. 42719
. 394	. 60668	I 15,9	. 03287	16,3	. 57380	99,6	. 42620
0.395	9.60783	II5,6	0.03303	16,3	$9.57+80$	99,3	0.42520
. 395	. 60899	II5,3	. 03320	16,4	. 57579	99,0	. 42421
. 397	.6IOI4	I15, 5	. 03335	16,4	. 57678	98,7	. 42322
. 398	. 61129	IT4,8	. 03353	16,4	-57776	98,4	. 42224
.399	. 61244	II4,6	. 03369	16,5	. 57875	98, 1	. 42125
0.400	9.61358	IIT,3	0.03385	16,5	9.57973	97,8	0.42027
u	$\log \tan \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{FF}^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.400	9.61358	II 4,3	0.03385	16,5	9.57973	97,8	0.42027
. 401	.6I472	II $4, \mathrm{O}$. 03402	16,5	. 58070	G7,5	. 41930
. 402	. 61585	II3,8	.03419	16,6	.58158	97,2	.41832
. 403	. 61700	I13,5	. 03435	16,6	. 58255	¢6,9	. 41735
. 404	.61813	II3,3	. 03452	16,6	. 58361	96,6	. 41639
0.405	9.61926	I13,0	0.03468	16,7	9.58458	95,3	0.41542
. 406	. 62039	I 12,8	. 03485	16,7	. 58554	95,1	. 41446
. 407	. 62152	I 12,5	. 03502	I6,8	. 58550	95,8	. 41350
. 408	.62254	I 12,3	. 03519	16,8	. 58746	95,5	. 41254
. 409	. 62375	I 12,0	. 03535	I6,8	. 5884 I	95,2	-41159
0.410	9.62488	III,8	0.03552	IS,9	9.58935	94,9	0.41064
. 4 II	. 62500	I II, 6	. 03569	16,9	. 5903 I	94,6	. 40969
. 412	. 6271 I	I I 1, 3	. 03585	I6,9	. 59125	94,4	. 40875
. 413	. 62823	III, I	.03603	I7,0	- 59220	94, I	-40780
. 414	. 62934	I 10,8	. 03620	17,0	-593I4	93,8	. 40686
0.415	9.63044	I 10,6	0.03537	17, 1	9.59407	93,5	0.40593
. 416	. 63155	IIO, 4	. 03654	17, I	- 59501	93,3	. 40459
. 417	. 63265	IIO,I	. 03671	I7, I	- 59594	93,0	. 40406
. 418	. 63375	109,9	. 03688	I7,2	- 59587	92,7	. 40313
.419	. 63485	109,6	. 03706	17,2	- 59779	92,4	.4022I
0.420	9.63594	109,4	0.03723	I7,2	9.59871	92,2	0.40129
. 42 I	. 63704	109,2	. 03740	17,3	. 59953	91,9	. 40037
. 422	. 63813	109,0	. 03757	17,3	. 60055	91,6	- 39945
. 423	. 63922	108,7	. 03775	17,3	.60147	9I,4	- 39853
. 424	.64030	108,5	. 03792	I7,4	.60238	9I, I	. 39752
0.425	9.64139	108,3	0.03810	17,4	9.60329	90,8	0.39671
. 425	. 64247	108,0	. 03827	17,5	. 60420	50,6	- 39580
. 427	. 64355	107,8	. 03844	17,5	. 60510	90,3	-39490
. 428	. 64462	107,6	. 03862	17,5	. 60500	SO,I	- 39400
. 429	. 64570	107,4	. 03880	17,6	. 60690	89,8	-39310
0.430	9.64677	107, I	0.03897	17,6	9.60780	89,6	0.39220
. 43 I	. 64784	105,9	. 03915	17,6	. 60859	89,3	. 39131
. 432	. 64891	105,7	. 03932	17,7	. 60959	89,0	. 3904 I
. 433	. 64997	105,5	. 03950	17,7	. 61047	88,8	. 38353
. $43+$.65104	105,3	. 03968	I7,7	.6II35	88,5	. 38864
0.435	9.65210	105,0	0.03985	I7,8	9.61224	88,3	0.38776
. 436	. 65316	105,8	. 04003	I7,8	. 51313	88,0	. 38687
. 437	. 65422	105,6	. 04021	17,9	. 61401	87,8	. 38599 .
. 438	. 65527	105,4	.04039	I7,9	.6I.488	87,5	.38512
. 439	. 65633	105,2	. 04057	17,9	.61576	87,3	. 38.424
0.440	9.65738	105;0	0.04075	I8,0	9.61663	87,0	0.38337
. 441 I	. 65843	104,8	. 0.4093	18,0	. 61750	85,8	. 38250
. $4+12$. 65947	104,6	. 041 II	18,0	. 61835	86,5	. 38164
. 443	. 66052	104,4	. 04129	18, I	. 61923	85,3	. 38077
. 414	. 66156	104,2	. 04147	18, 1	. 62009	86,1	. 37991
0.445	9.65260	104,0	0.04165	18, 1	9.62095	85,8	0.37905
. 4.45	. 66364	103,7	. 0.4183	18,2	. 62180	85,6	. 37820
. 447	. 66458	103,5	. 04202	18,2	. 62266	85,3	. 37734
. 448	. 66571	103,3	. 04220	18,3	.6235I	85,1	-37519
. 449	. 66574	103, I	. 04238	18,3	. 62435	84,9	. 37564
0.450	9.65777	102,9	0.04256	I8,3	9.62521	84,6	0.37479
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g \mathrm{gd}_{\mathrm{u}}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.450	9.65777	102,9	0.04256	18,3	9.62521	84,6	0.37 .479
. 451	. 65880	102,7	. 04275	18,4	. 62605	84,4	. 37395
. 452	. 66933	102,5	. 04293	I8,4	. 625 ¢0	84, r	. 37310
. 453	. 67085	102,3	. 04312	18,4	. 62774	83,9	- 37226
.454	.67187	IO2, I	. 04330	18,5	. 62837	83,7	-37143
0.455	9.67289	IOI,9	0.04348	18,5	9.62341	83,4	0.37059
. 456	. 67391	IOI,8	.04367	18,5	. 63024	83,2	. 35976
. 457	. 67493	101,6	. 04385	18,5	. 63107	83,0	. 36893
. 458	.67594	IOI, 4	.04104	I8,6	. 63190	82,8	-35810
. 459	.67596	IOI,2	. $0+423$	I8,6	.63273	82,5	. 35727
0.450	9.67797	IOI,O	0.04141	18,7	9.63355	82,3	0.35645
.46I	. 67898	100,8	. $0+160$	18,7	. 63438	82, 1	. 36562
. 452	. 67998	100,6	.04479	18,7	. 63519	81,8	. 36481
. 463	. 68099	100,4	. $0+498$	18,8	. 63601	81,6	. 35399
. 464	. 68199	100,2	.04516	I8,8	.63583	81,4	. 35317
0.465	9.68299	100,0	0.04535	18,9	$9.63,-64$	81,2	0.35236
. 465	. 68399	99,8	. 04554	18,9	. 63845	$8 \mathrm{I}, \mathrm{O}$. 35155
. 467	. 68499	99,7	. 04573	18,9	. 63926	80,7	-350,4
. 4.48	. 68599	99,5	.04592	19,0	.64007	80,5	. 35993
.469	. 68698	99,3	.04611	19,0	.64087	80,3	-359I3
0.470	9.68797	99,	0.04530	19,0	9.54167	80, 1	0.35833
.47I	.68895	98,9	. 04649	19, I	. 64247	79,9	. 35753
.472	. 68995	98,7	.0466S	IG, I	. 64327	79,6	.35573
. 473	. 69094	98,6	.04687	IS, I	. 64105	79,4	-35594
. 474	. 69192	98,4	. 04706	19,2	. 64186	79,2	. 35514
0.475	9.69290	98,2	0.04726	19,2	9.64555	79,0	0.35435
. 475	. 69388	98,0	. 01745	19,2	. 6,544	-8,8	. 35356
. 477	. 69485	97,8	. 0.476	19,3	. 64722	-8,6	.352-8
.478	. 69584	97,7	. 04783	19,3	. 64801	78,4	-35199
. 479	. 69582	97,5	.04803	19,3	. 64879	78,2	-35121
0.480	9.69779	97,3	0.04822	19,4	9. 64957	77,9	0.35043
. 481	. 69875	97, 1	.04841	15,4	. 55035	77,7	- 31965
. 482	. 69973	97,0	.04851	19,4	. 65113	77,5	- 34887
.483	. 70070	96,8	. 04880	19,5	. 65150	77,3	-34810
. 484	.70167	95,6	. $0+400$	19,5	. 65257	77,1	-34733
0.485	9.70264	65,5	0.04919	19,6	9.65344	75,9	0.34656
. 485	. 70360	95,3	. 04939	19,5	. $65+21$	76,7	-34579
. 487	.70456	96,	. 04959	19,6	. 65498	75,5	- 34502
.483 .480	.70552 .70548	95,9	. 04978	19,7	. 65574	75,3 76,1	-34426 -34350
. 489	$\cdot 70548$	95,8	.04988	19,7	. 65050	76, I	-34350
0.450	9.70744	95,6	0.05018	19,7	9.65726	75,9	0.34274
. 919	. 70839	95,4	. 05037	19,8	. 65802	75,7	-34198
. 492	. 70935	95,3	. 05057	19,8	. 65878	75,5	-34122
. 493	. 71030	95,	. 05077	19,8	. 65953	75,3	-340.47
-49.4	. 71125	95,0	. 05097	19,9	. 65028	75,1	. 33972
	9.71220	94,8	0.05117	19,9	9.65103	74,9	0.33807
. 495	. 71315	94,6	. 05137	19,9	. 66178	74,7	. 33822
. 497	. 71.409	94,5	.05155	20,0	. 65253	74,5	- 33747
. 498	. 71503	94,3	.05175	20,0	. 65327	74.3	- 33673
. 499	. 71598	94, 1	.05195	20,0	. 65401	74, 1	. 33599
0.500	9.71692	94,0	0.05217	20, 1	9.65475	73,9	0.33525
u	$\log \tan \operatorname{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{singdu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \operatorname{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	\log coth u
0.500	9.71692	94,0	0.05217	20,1	9.66475	73,9	0.33525
. 501	. 71785	93,8	. 05237	20, 1	. 65519	73,7	. 3345 I
. 502	. 71879	93,7	. 05257	20, I	. 66523	73,5	- 33377
. 503	. 71973	93,5	. 05277	20,2	. 65696	73,3	. 33304
. 504	. 72065	93,3	. 05297	20,2	. 65759	73, I	-3323I
0.505	9.72160	93,2	0.05317	20,2	9.658 .42	72,9	0.33158
. 505	. 72253	93,0	. 05338	20,3	. 65915	72,8	. 33085
. 507	. 72346	92,9	. 05358	20,3	. 65988	72,5	. 33012
. 508	. 72438	92,7	.05378	20,3	. 67060	72,4	. 32940
. 509	. 72531	92,6	. 05399	20,4	. 67133	72,2	. 32857
0.510	9.72524	92,4	0.05419	20,4	9.67205	72,0	0.32795
. 511	. 72716	92,3	. 05439	20,4	. 67277	71,8	. 32723
. 512	. 72808	92, 1	.05460	20,5	. $673+8$	71,6	. 32652
. 513	. 72900	92,0	. 05480	20,5	. $67+20$	71,5	. 32580
-5I4	. 72992	91,8	.05501	20,5	. 67491	71,3	-32509
0.515	9.73084	91,7	0.0552 I	20,6	9.67562	71,1	0.32438
. 516	. 73175	91,5	. 05542	20,6	. 67633	70,9	. 32357
. 517	. 73267	91,4	. 05563	20,6	. 67704	70,7	- 32295
. 518	. 73358	9I,2	. 05583	20,7	. 67775	70,5	. 32225
. 519	. 73449	9I, 1	.0550-	20,7	.67845	70,3	. 32155
0.520	9.73540	90,9	0.05625	20,7	9.67916	70,2	0.32084
. 521	. 73631	90,8	. 05645	20,8	. 67985	70,0	. 32014
. 522	. 73722	90,6	. 05665	20,8	. 68055	69,8	. 31944
. 523	. 73812	90,5	. 05687	20,8	.68125	69,6	. 31875
. 524	. 73903	90,3	. 05708	20,9	.68195	69,5	. 31805
0.525	9.73993	90,2	0.05729	20,9	9.68254	69.3	0.31736
. 525	. 74083	90,0	. 05750	20,9	. 68333	69,	. 31667
. 527	. 74173	89,9	.05771	21,0	. 58402	68,9	-3I598
. 528	. $7+253$	89,8	.05792	21,0	. 68471	68,7	-3529
. 529	.74353	89,6	.05813	21,0	.68540	68,6	-31460
0.530	9.74442	89,5	0.05834	2I, 1	9.68508	68,4	0.31392
. 53 I	. 74.532	89,3	. 05855	21, 1	. 68577	68,2	. 31323
. 532	.74621	89,2	.05875	2I, I	. 68745	68,0	-31255
. 533	. 74710	89,1	.05897	21,2	.68813	67,9	-31187
. 53.4	.74799	88,9	. 05918	21,2	. 68880	67,7	-31120
0.535	9.74888	88,8	0.05940	21,2	9.68948	67,5	0.31052
. 536	. 74976	88,6	.0596I	21,3	. 69016	67,4	. 30984
. 537	. 75055	88,5	.05982	21,3	. 69083	67,2	-30917
. 538	. 75153	88,4	. 06004	21,3	. 69150	67,0	- 30850
- 539	.75242	88,2	. 06025	2I,4	. 69217	66,9	-30783
0.540	9.75330	88, 1	0.06046	21,4	9.69284	66,7	0.30716
. 54.1	. 75418	88,0	. 05058	21,4	. 69350	66,5	. 30550
. 542	. 75505	87,8	.06089	21,5	. 69417	66,3	. 30583
. 543	. 75594	87,7	.06III	21,5	. 69483	66,2	-30517
-544	. 7568 I	87,6	.06I32	21,5	. 69549	66,0	. 3045 I
0.545	9.75759	87,4	0.06154	21,6	9.69615	65,9	0.30385
. 546	. 75856	87,3	. 06175	21,6	. 6968 r	65,7	. 30319
. 547	. 75943	87,2	. 06197	21,6	. 69746	65,5	- 30254
. 548	. 76030	87,0	.06219	21,7	. 69812	65,4	- 30188
. 5.49	.75II7	86,9	.062.40	21,7	.69877	65,2	. 30123
0.550	9.76204	86,8	0.06262	2I,7	9.69912	65,0	0.30058
4	$\log \tan \operatorname{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gdu}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fe}^{\prime}$	\log coth u
0.550	9.76204	86,8	0.05262	21,7	9.699 .42	65,0	0.30058
. 551	.76291	86,6	. 05284	21,8	. 70007	64,9	. 29993
. 552	. 76377	86,5	.06306	21,8	. 70072	64,7	. 29928
- 553	. 76464	85,4	. 06327	21.8	. 70137	64,5	. 29853
. 554	. 75550	86,3	.06349	2I,9	. 70201	64,4	. 29799
0.555	9.76636	86,	0.05371	21,9	9.70255	61,2	0.29735
. 556	. 75722	85,0	. 05393	21,9	. 70329	64,1	. 29571
. 557	.76808	85,9	$.05+15$	22,0	.-0393	63,9	. 29607
. 558	. 75894	85,7	. 06437	22,0	. 70457	63,7	. $295+3$
- 559	. 76980	85,6	.06459	22,0	.70521	63,6	. 29479
0.560	9.77065	85,5	0.0548 I	22, I	9.70584	63,4	0.29416
. 561	. 77151	85,4	. 05503	22, I	. 70548	63,3	. 29352
. 562	. 77236	85,2	. 05525	22,i	.70711	63, 1	. 29289
. 563	. 77321	85, 1	. 06517	22,2		63,0	. 29226
. 564	.77406	85,0	. 05570	22,2	. 70837	62,8	. 29163
0.565	9.7749 I	84,9	0.06592	22,2	9.70900	62,7	. 29100
. 565	. 77576	84,8	.05SI4	22,3	. 70052	62,5	. 29038
. 567	. 7765 I	84,6	. 06635	22,3	. 71025	62,3	. 28975
. 568	. 77745	84,5	. 06659	22,3	.71087	62,2	.28913
. 569	. 77830	84,4	.06581	22,3	- 71149	62,0	. 2885 I
0.570	9.77914	8.4,3	0.06703	22,4	9.712II	61,9	0.28789
. 571	.77998	84,2	. 05723	22,4	-71273	61,7	. 28727
. 572	. 78083	84,0	. 06748	22,4	. 71334	61,5	. 28666
. 573	. 78167	83,9	.06771	22,5	-71395	6I,4	. 28504
. 574	.78250	83,8	.06793	22,5	-7145	6I,3	. 28543
0.575	9.78334	83,7	0.06815	22,5	9.71519	61,1	0.28 .48 I
. 576	. 78418	83,6	.06833	22,5	. 71580	61,0	. $28+20$
. 577	.78501	83,4	. 05851	22,6	.71641	60,8	. 28359
. 578	.78585	83,3	. 06883	22,6	.71701	60,7	. 28299
. 579	. 78658	83,2	. 05905	22,7	-71752	60,5	. 28238
0.580	9.78751	83,1	0.06929	22,7	9.71822	60,4	0.28178
. 581	.78834	83,0	. 05951	22,7	. 7888	60,2	. 28117
. 582	. 78917	82,9	. 06974	22,8	. 71943	60,1	. 28057
. 583	. 79000	82,7	. 06997	22,8	. 72003	60,0	. 27997
. 584	.79082	82,6	. 07020	22,8	.72063	59,8	. 27937
0.585	9.79165	82,5	0.07043	23,9	9.72123	53,7	0.27875
. 585	. 79247	82,4	.07055	22,9	. 72182	59,5	. 27818
. 587	. 79330	82,3	. 07088	22,9	. 72242	59,4	. 27758
. 583	. 79412	82,2	.07III	23,0	-72301	59,2	. 27699
. 589	.79-494	82, 1	.07134	23,0	.72360	59,1	. 27640
0.550	9.79576	82,0	0.07157	23,0	9.72419	58,9	0.2758 I
. 591	. 79658	81,8	. 07180	23,0	. 72.478	58,8	. 27522
. 592	. 79740	$8 \mathrm{I}, 7$. 07203	23,1	. 72537	58.7	. $27+63$
. 593	. 79822	$8 \mathrm{I}, 6$. 07226	23, I	. 72595	58,5	.27405
. 594	. 79903	8I,5	. 07249	23, 1	.72654	58,4	. 27346
0.595	9.79985	81,4	0.07273	23,2	9.72712	58,2	0.27288
. 596	. 80056	81,3	. 07296	23,2	. 72770	58,1	. 27230
. 597	. 80147	8I,2	.07319	23,2	. 72828	58,0	. 27172
. 598	. 80228	$8 \mathrm{fr}, \mathrm{I}$. 07342	23,3	-72885	57,8	. 27114
. 599	. 80309	81,0	. 07366	23,3	-72944	57,7	. 27056
0.600	9.80390	80,9	0.07387	23,3	9.73001	57,3	0.25999
u	$\log \tan$ gd u	$\infty \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\oplus \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \operatorname{cscgd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.600	9.80350	80,9	0.07389	23,3	9.73001	57,5	0.25999
. 601	. 80.77	80,8	.07+12	23,4	. 73059	57,4	. 25941
. 602	. 80552	80,7	. 07436	23,4	. 73116	57,3	. 26888
. 603	. 80532	80,5	.07459	23,4	. 73173	57, I	. 26827
. 604	.80713	80,4	.07482	23,4	. 73231	57,0	.25759
0.605	9.80793	80,3	0.07506	23,5	9.73287	56,9	0.26713
. 605	. 80874	80,2	. 07529	23,5	. 73344	56,7	. 26556
. 607	. 80954	So, 1	. 07553	23,5	. 73401	56,6	. 26559
. 608	. 81034	80,0	. 07575	23,6	. $73+57$	56,5	. 26513
. 609	.8rim4	79,9	. 07500	23,6	.73514	56,3	. 25485
0.610	9.81194	79,8	0.07624	23,6	9.73570	56,2	0.26430
. 611	. 81273	79,7	.07. 47	23,7	. 73626	56,0	.25374
. 612	. 81353	79,6	. 07571	23,7	. 73682	55,9	. 26318
. 613	. I 433	79,5	.07695	23,7	. 73738	55,8	- . 26262
.6I4	.81512	79,4	.07718	23,8	.73794	55,7	. 26206
0.615	9.81591	79,3	0.07742	23,8	9.73849	55,5	0.26151
.6I6	.8167I	79,2	. 07765	23,8	. 73905	55,4	. 26095
.6I7	. 81750	79, 1	. 07790	23,8	. 73960	55,3	. 26040
. 618	. 81829	79,0	. 07814	23,9	.74015	55,	. 25985
. 619	.81908	78,9	. 07838	23,9	. 74070	55,0	. 25930
0.620	9.81987	78,8	0.07861	23,9	9.74125	54,9	0.25875
. 621	. 82065	78,7	. 07885	24,0	. 74180	54,7	. 25820
. 622	.82I44	78,6	. 07909	24,0	. 74235	54,6	. 257.65
. 623	. 82223	78,5	. 07933	24,0	. 74289	54,5	. 25711
. 624	. 82301	78,4	. 07957	2.4, 1	. 74344	54,3	.25656
0.625	9.82380	78,3	0.07582	24, 1	9.74398	54,2	0.25602
. 625	. 82458	78,2	.08006	24, 1	. $7+452$	54, 1	. 25548
. 627	. 82536	78,1	. 08030	24, 1	. 74506	54,0	. 25494
. 628	. 82614	78,0	. 08054	24,2	. 74560	53,8	. 25440
. 629	.82592	77,9	.08078	24,2	. 77614	53,7	. 25386
0.630	9.82770	77,8	0.08102	24,2	9.74667	53,6	0.25333
. 631	. 82848	77,7	.08126	24,3	. 74721	53,5	.25279
. 632	. 82925	77,6	.08I5I	24,3	. 74774	53,3	. 25225
. 633	. 83003	77,5	.08175	24,3	. 74828	53,2	.25172
. 634	. 83080	77,4	.08200	24,4	.7488I	53, I	.25119
0.635	9.83158	77,3	0.08224	24,4	9.74934	53,0	0.25066
. 635	. 83235	77,3	.0S248	24,4	. 74987	52,8	. 25013
. 637	. 83312	77,2	.08273	24,4	. 75040	52,7	. 24960
. 638	. 83389	77,1	. 08297	24,5	. 75092	52,6	. 24908
. 639	. 83466	77,0	.08322	24,5	.75145	52,5	. 24855
0.6 .40	9.83543	76,9	0.08346	24,5	9.75197	52,3	0.24803
. 6.41	. 83620	75,8	.08371	24,6	. 75249	52,2	. 24751
. 6.42	. 83697	76,7	.08395	24,6	. 75302	52, I	.24608
. 643	. 83774	76,6	.08420	24,6	. 75354	52,0	. 24646
. 644	. 83850	76,5	.08445	24,7	. 75706	51,9	. 24594
	9.83927	76,4	0.08469	24,7	9.75457	5r,7	0.24543
. 616	. 84003	-76,3	. 08494	24,7	. 75509	51,6	. 24491
. 647	. 84079	-6,2	.08519	24,7	. 75561	51,5	. 24439
.648	. 84155	76,	. 08543	24,8	. 75612	5I,4	. 24388
.649	. 81232	75,1	. 08568	24,8	. 75653	5I,3	. 24337
0.650	9.84308	76,0	0.08593	24,8	9.75715	5I,I	0.24285
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gdu}$	$\omega \mathrm{F}_{3}{ }^{\prime}$	$\log \mathrm{csc} g \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.650	9.84308	75,0	0.08593	24,8	9.75715	5I, I	0.24285
. 651	. $8+383$	75,9	. 08518	24,9	. 75766	51,0	. $2+234$
. 652	. 84459	75,8	. 08643	24,9	. 75817	50,9	. 24183
.653	. 84535	75,7	. 08608	24,9	. 75857	50,8	. $2+1133$
. 654	. 8461 I	75,6	. 08593	24,9	. 75918	50,7	. 24082
0.655	9.84685	75,5	0.08718	25,0	9.75959	50,6	0.2403 I
. 656	. 84762	75,4	$.087+2$	25,0	. 75019	50,4	. 2398 I
. 657	. 84837	75,4	.08758	25,0	.75070	50,3	. 23930
. 658	. 84912	75,3	.08793	25, I	. 75120	50,2	. 23880
. 659	. $8+988$	75,2	.08818	25, I	.75170	50, I	. 23830
0.650	9.85053	75, I	0.03843	25, 1	9.76230	50,0	0.23780
.66I	. 85138	75,0	. 08858	25, I	. 75270	49,9	. 23730
. 652	. 85213	74,9	. 08893	25,2	.76320	49,7	. 23580
. 663	. 85288	74,8	.08gr8	25,2	. 76369	49,6	. 23 ¢3I
. 654	.85362	74,7	. 08843	25,2	.76419	49,5	.2358I
0.665	9.85437	74,7	0.08959	25,3	9.76.469	49,4	0.23531
. 665	. 85512	74,5	. 08934	25,3	. 76518	49,3	. $23+82$
. 657	. 85586	74,5	.0col9	25,3	. 76567	49,2	.23+33
. 668	.8566I	7+,4	.09045	25,3	.75516	49, I	.23384
. 669	. 85735	74,3	. 05070	25,4	.76653	48,9	. 23335
0.670	9.85809	74,2	0.03095	25,4	9.75714	48,8	0.23286
. 571	. 85884	74,2	.09121	25,4	. 75763	48,7	. 23237
. 672	. 85958	74,1	.09145	25,5	.75812	48,5	. 23188
. 673	. 85032	74,0	.09172	25,5	. 76850	48,5	. 23140
. 674	.85106	73,9	. 09197	25,5	. 76009	48,4	.23091
0.675	9.85180	73,8	0.09223	25,5	9.75957	48,3	0.23043
.676	. 85253	73,7	. 09238	25,6	. 77005	48,2	. 22995
. 677	. 85327	73.7	.09274	25,6	-77053	48,1	. 22947
. 678	.85401	73,6	. 09300	25,6	. 77101	47,9	.22899
. 679	.86474	73,5	. 09325	25,7	.77149	47,8	.22851
0.680	9.85548	73,4	0.09351	25,7	9.77197	47,7	0.22803
.681	. 85521	73,3	. 09377	25,7	. 77245	47,5	. 22755
. 682	.85694	73,3	. 09402	25,7	. 77292	47,5	22708
. 683	. 85768	73,2	. $09+28$	25,8	. 77340	47,4	22650
. 684	.8584	73, 1	. 09454	25,8	. 77387	47,3	.22613
0.685	9.85014	73,0	0.09480	25,8	9.77434	47,2	0.22566
. 686	.85987	72,9	. 09505	25,9	. 7748 I	47, 1	. 22519
. 687	.87050	72,9	.0.9531	25,9	. 77528	47,0	. 22.472
. 688	. 87133	72,8	. 09557	25,9	. 77575	46,9	. 22.425
. 689	. 87205	72,7	. 09583	25,9	. 77622	46,8	. 22378
0.690	9.87278	72,6	0.09609	26,0	9.77669	46,7	0.2233 I
. 691	. 87351	72,5	. 09635	26,0	. 77715	46,6	. 22285
. 692	.87423	72,5	.09561	26,0	. 77762	46,4	. 22238
. 693	. 87495	72,4	.09687	25, I	-77808	46,3	. 22192
. 694	. 87568	72,3	. 09713	26,1	.77855	46,2	. 22145
0.695	9.87640	72,2	0.09739	26, 1	9.77901	46, 1	0.22099
. 695	. 87712	72,2	. 09765	26, 1	. 77947	46,0	. 22053
. 697	. 87784	72,1	. 09792	26,2	-77993	45,9	. 22007
. 698	. 87856	72,0	.09818	26,2	. 78039	45,8	. 21961
. 699	. 87928	71,9	.09844	26,2	.78084	45,7	. 21916
0.700	9.88000	71,9	0.09870	26,2	$9.78 \mathrm{ra}_{30}$	45,6	0.21870
u	$\log \tan \mathrm{g} \mathrm{d} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sec \mathrm{gd} u$	a $\mathrm{F}_{0}{ }^{\prime}$	$\log \sin g d u$	$\infty \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.700	9.83000	71,9	0.05870	26,2	9.78130	45,6	0.21870
.70I	. 88072	71,8	.0,89	26,3	.781\%	45,5	. 21824
. 702	.83144	71,7	.09923	26.3	.78221	45,4	. 21779
. 703	. 88216	71,6	. 09543	25,3	.78266	45,3	. 21734
. 704	. 88287	71,6	. 09975	26,4	.78312	45,2	. 21588
0.705	9.88359	71,5	0.10002	25,4	9.78357	45, I	0.21543
. 706	. 88.830	71,4	. 10028	26,4	.78402	45,0	. 21598
. 707	. 88502	71,3	-10055	26,4	. 78447	4.7,9	. 21553
. 708	. 88573	71,3	- 1008I	25,5	.78492	44,8	. 21508
.709	. 88544	71,2	. 10108	25,5	.78536	44.7	.21464
0.710	9.88715	71,1	0.10134	26,5	9.78581	44,6	0.21419
. 7 II	. 88785	71,0	. 10161	26,5	. 78625	44,5	. 21374
. 712	. 88857	71,0	. 10187	26,6	. 78670	44,4	. 21330
. 713	. 88928	70,9	. 10214	25,6	. 78714	44,3	. 21286
. 714	. 88999	70,8	. 10240	26,6	. 78759	44,2	. 21241
0.715	9.85070	70,8	0.10257	26,7	9.78803	44, I	0.21197
. 716	. 89111	70,7	. 10294	26,7	. 78847	44,0	. 21153
. 717	.89211	70,6	. 10320	26,7	.78891	43,9	. 21109
. 718	. 8 c 282	70,5	. 10347	25,7	. 78935	43,8	. 2 ros5
. 719	. 83352	70,5	. 10374	25,8	. 78978	43,7	. 21022
0.720	9.89423	70,4	0.10491	26,8	9.79022	43,6	0.20978
. 721	. 89493	70,3	. 10427	25,8	. 79065	43,5	. 20934
. 722	. 89563	70,3	. 10454	26,8	.79109	43,4	. 20891
. 723	.89534	70,2	. 10.48 I	26,9	. 79153	43,3	. 20847
. 724	. 89704	70, 1	. 10508	25,9	. 79195	43,2	. 20804
0.725	9.89774	70,0	-. 10535	26,9	9.79239	43,1	0.20761
. 726	. 89844	70,0	. 10562	27,0	. 79282	43,0	. 20718
. 727	. 85914	69,9	. 10589	27,0	. 79325	42,9	. 20675
. 728	.89984	69,8	. 10515	27,0	. 79368	42,8	. 20632
.729	. 90054	69,8	. 10643	27,0	. 79411	42,7	. 20589
0.730	9.90123	69,7	-. 10570	27,1	9.79453	42,6	0.20547
.73I	. 90193	69,6	. Ióto	27, I	. 79496	42,5	. 20504
. 732	. 90263	69,6	. 10724	-27, 1	. 79538	42,5	. 20462
. 733	. 90332	69,5	. 10751	27,1	.79581	42,4	. 20419
. 734	. 90402	69,4	. 10773	27,2	.79523	42,3	. 20377
0.735	9.90471	69,4	-. 10805	27,2	9.79665	42,2	0.20335
. 736	. 90540	69,3	. 10833	27,2	. 79708	42, I	. 20292
. 737	.90510	69,2	. 10850	27,2	. 79750	42,0	. 20250
. 738	. 90679	69,2	. 10887	27,3	. 79791	41,9	. 20209
. 739	.90748	69,1	. 10915	27,3	. 79833	41,8	. 20167
0.740	9.90817	69,0	0. 10942	27,3	9.79875	41,7	0.20125
. 741	. 90885	69,0	. 10969	27,3	. 79917	41,6	. 20083
. 742	.90955	68,9	. 10397	27,4	. 79958	41,5	. 20042
. 743	. 91024	68,8	. 11024	27,4	. 80000	4I,4	.20000
.744	. 91092	68,8	. 1105 L	27,4	. 8004 I	4I,3	. 19959
0.745	9.91161	68,7	0.11079	27,5	9.80082	4I,2	0.19918
.746	. 91230	68,5	. 11105	27,5	. 80124	41,2	. 19876
. 747	. 91298	68,6	. III34	27,5	. 80165	41, 1	.19835
. 748	.91367	68,5	. III6I	27,5	. 80206	4I,0	. 19794
. 749	. 91436	68,4	. 11189	27,6	. 80247	40,9	. 19753
0.750	9.91504	68,4	0.11216	27,6	9.80288	40,8	0.19712
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{g} \mathrm{d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \operatorname{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
0.750	9.91504	68,4	0.11215	27,6	9.80288	40,8	0.19712
.751	. 91572	68,3	. 1124	27,6	. 80328	40,7	. 19672
. 752	-9164I	68,2	. 11272	27,6	. 80359	40,6	. 19531
. 753	.91709	68,2	. 11299	27,7	. 80410	40,5	- 19590
.754	.91777	68, 1	. 11327	27,7	. $80+50$	40,4	-19550
0.755	9.91845	68, 1	0.11355	27,7	9.80490	40,3	0.19510
. 755	.91913	68,0	. 11382	27,7	. 80531	40,3	. 19469
. 757	.9198i	67,9	-11410	27,8	. 80571	40,2	. 19429
. 758	.920.9	67,9	. II 438	27,8	. 8051 I	40, I	. 19389
. 759	.92117	67,8	. IIf65	27,8	. 80551	40,0	. 19349
0.750	9.92185	67,7	O.II493	27,8	9.80591	39,9	0.19309
. 751	-92252	67,7	- II521	27,9	. 80731	39,8	. 19259
. 752	. 92320	67,6	- 11549	27,9	. 80771	39,7	. 19229
.753	. 92387	67,6	. 11577	27,9	. 80810	39,6	-19190
. 75.4	-92455	67,5	. 11605	27,9	. 80850	39,6	. 19150
0.755	9.92522	67,4	0.11633	2S,0	9.80889	39,5	O.I9III
.755	. 92590	67,4	. 11551	28,0	. 80929	39,4	. 19071
. 757	. 92657	67,3	. 11687	28,0	. 80968	39,3	. 19032
. 758	.92724	67,3	.1517	28,0	. 81007	39,2	. 18993
. 769	. 92792	67,2	- 11745	28, 1	. 81047	39, I	. 18953
0.770	9.92859	67,1	0.11773	28, 1	9.81085	39,0	0.18974
. 771	. 92926	67, 1	. 11801	28, I	.81125	39,0	. 18875
. 772	. 52993	67,0	. 11829	28,1	.8II64	38,9	- 18836
. 773	. 93050	67,0	. 11858	28,2	.81202	38,8	-18798
. 774	.93127	66,9	. II885	28,2	.8124I	38,7	. 18759
0.775	9.93194	65,8	-.IISIT 4	28,2	9.81280	38,6	0.18720
. 775	. 9325 I	66,8	. 11942	2S,2	. 81318	38,5	. 18582
. 777	. 93327	65,7	. 11970	28,3	. 81357	38,4	. 18643
.778	-93394	66,7	. 11999	28,3	. 81395	38,4	. 18505
. 779	-9346I	66,6	.12027	28,3	. 81434	38,3	. 18566
0.780	9.93527	65,5	0.12055	28,3	9.81472	38,2	0.18528
.781	. 93594	66,5	. 12081	28,4	. 81510	38,1	. 18890
. 782	. 93660	66,4	. 12 II 12	28,4	. 81548	38,0	. 18452
-783	-93727	66,4	. 12141	28,4	. 8 r 585	37,9	. 18.154
.784	. 93793	66,3	. 12169	28,4	.81624	37,9	. 18376
0.785	9.93859	66,2	0.12197	28,5	9.8 r 662	37,8	-. 18338
. 785	. 93925	65,2	. 12225	28,5	. 81699	37,7	. 18301
. 787	. 93992	66,1	. 12254	28,5	.8I737	37,6	. 18253
.783	. 94058	66,1	. 12283	28,5	. 81775	37,5	. 18225
. 789	-94124	66,0	. 12312	28,6	.8r8r2	37,4	.18188
0.750	9.94190	66,0	0.12340	28,6	9.81850	37,4	-.18150
. 791	. 94256	65,9	. 12369	28,6	. 81887	37,3	. 18 II3
. 792	. 94321	65,8	. 12397	28,6	.81924	37,2	- 18076
. 793	-94387	65.8	. 12425	28,7	. 81961	37, 1	- 18039
. 794	. 94453	65,7	. 12455	28,7	.81998	37,0	. 18002
	9.94519		0.12483	28,7	9.82035	37,0	0.17965
. 795	. 94584	65,6	. 12512	28,7	. 82072	36,9	- 17928
. 797	. 94650	65,6	. 12341	28,8	. 82109	36,8	- 17891
.758	-94716	65,5	. 12570	28,8	. 82146	36,7	. 17854
. 799	.94781	65,5	. 12598	28,8	. 82183	36,6	.17817
0.800	9.94846	65,4	0.12627	28,8	9.82219	36,6	0.17781
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	* Fo^{\prime}	$\log \sin$ gd u	$\omega \mathrm{FF}^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.830	9.9+8+6	65,4	0.12527	28,8	9.82219	36,6	0.17781
. 801	.94912	65,3	. 12655	28,9	. 82255	36,5	. 17744
. 802	. 94977	65,3	. 12585	28,9	. 82292	36,4	. 17708
. 803	$.950+2$	65,2	. 12714	28,9	. 82329	36,3	. 17571
. 804	. 95108	65,2	. 12743	28,9	. 82365	36,2	. 17535
0.805	9.95173	65,	0.12772	29,0	9.82401	36,2	0.I7599
. 805	. 95238	65,1	. 12801	29,0	. 82437	36,1	. 17563
. 807	. 95303	65,0	. 12830	29,0	. 82473	36,0	. 17527
. 808	. 95358	65,0	. 12859	29,0	. 82509	35,9	. 17491
. 809	. $95+33$	64,9	. 12888	29, I	. 82545	35,9	. I7455
0.810	9.95498	64,9	0.I2SI7	29, I	9.82581	35,8	0.17419
. 81 I	. 95563	64,8	. 12945	29, I	.82517	35,7	. 17383
. 812	. 95627	64,8	. 12975	29, I	. 82552	35,6	. 17348
. 813	. 95692	64,7	. 13004	29,2	. 82688	35,5	. 17312
.8I4	. 95757	64,6	. 13033	29,2	. 82723	35,5	. 17277
0.815	9.95821	6.4,6	0.13053	29,2	9.82759	35,4	0.17241
. 816	. 95885	$6+1,5$. I3092	29,2	. 82794	35,3	. 17206
. 817	. 95950	64,5	. I3I2I	29,2	. 82329	35,2	. 17171
.818	. 95015	64,4	. 13150	29,3	. 82855	35,2	. I7135
. 819	.95079	64,4	. 13180	29,3	. 82900	35, 1	. 17100
0.820	9.95144	64,3	O. 13209	29,3	9.82935	35,0	0.17055
. 821	.96208	64,3	. 13238	29,3	. 82970	3-1,9	. 17030
. 822	.96272	64,2	. 13258	29,4	. 83005	34,9	- I5995
. 823	. 95336	64,2	. 13297	29,4	. 83040	34,8	. 16960
.82.4	.9640I	64, I	. 13325	29,4	. 83074	34,7	. 15926
0.825	9.95465	64,1	0.13355	29,4	9.83109	34,6	0.15891
. 825	. 95529	64,0	. 13385	29,5	. $831+4$	34,6	. 16856
. 827	. 95593	64,0	. 13415	29,5	. 83178	34,5	. 16822
. 823	. 95657	63,9	- 13414	29,5	. 83213	34,4	. 16787
. 829	.9672I	63,9	. 13474	29,5	. $832+7$	34,3	.16753
0.830	9.95784	63,8	0.13503	29,6	9.8328 I	34,3	0.16719
. 83 I	. 958	63,8	. 13533	29,6	. 83316	34,2	. 15684
. 832	. 95912	63,7	. 13552	29,6	. 83350	$34, \mathrm{I}$. 16650
. 833	. 96975	63,7	. 13592	29,6	. 83384	34,0	. 16616
. 834	. 97039	63,6	. 13622	29,6	. 83418	34,0	. 16582
0.835	9.97103	63,6	0.13651	29,7	9.83452	33,9	0. 16548
. 836	. 97167	63,5	. 1368 I	29,7	. 83486	33,8	. 16514
. 837	. 97230	63,5	. 3371 I	29,7	. 83519	33,8	. 16481
. 838	. 97293	63,4	. 13740	29,7	. 83553	33,7	. 16447
. 839	. 97357	63,4	. 13770	29,8	. 83587	33,6	.16413
0.840	9.97420	63,3	0.13800	29,8	9.83620	33,5	0.16380
. 841	. 97484	63,3	. 13830	29,8	. 83654	33,5	. 16346
. 842	. 97547	63,2	- I3850	29,8	. 83687	33,4	. 15313
.843	. 97510	63,2	. 13887	29,9	. 83721	33,3	. 16279
. 844	. 97573	63,1	. 13919	29,9	. 83754	33,3	. 16246
	9.97736	63,1	0.13949	29,9	9.83787	33,2	0.15213
. 8.86	. 97799	63,0	. I3979	29,9	. 83820	33, I	. 15180
. 847	. 97862	63,0	. I4003	29,9	. 83853	33,0	. 16147
.848	. 97925	62,9	. I4039	30,0	. 83885	33,0	. 16114
. 849	.97988	62,9	. I4059	30,0	.83919	32,9	. 16081
0.850	9.9805 I	62,8	0.14099	30,0	9.83952	32,8	0.16048
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{3}{ }^{\prime}$	$\log \csc g \mathrm{~d} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
0.850	9.98051	62,8	0.14059	30,0	9.83952	32,8	0.150 .48
. 851	. 931 I 4	62,8	. 1.4129	30,0	. 83935	32,8	. 16015
. 852	.98177	62,7	- I+159	30,1	. 84018	32,7	. 15982
. 853	.98239	62,7	. If 189	30,1	. 84050	32,6	- I5950
. 854	.98302	62,7	. I42I9	30,1	. 8.4083	32,6	. 15917
0.855	9.98365	62,6	O. I 4249	30, 1	9.84115	32,5	0.15885
. 856	. 98.427	62,6	. I 4279	30,1	. 8.8158	32,4	. 15852
. 857	. 98490	62,5	- I+310	30,2	. $8+1180$	32,3	.15820
. 858	.98552	62,5	- I 4340	30,2	. $8+213$	32,3	. 15787
. 859	.98515	62,4	- I4370	30,2	. $8+2+5$	32,2	-15755
0.850	9.93577	62,4	0. 14400	30,2	$9.8+277$	32,1	0.15723
. 855	. 98739	62,3	. $1+430$	30,3	. $8+309$	32,1	. 1559 r
. 852	. 88802	62,3	. 14451	30,3	. $8+3+1$	32,0	. 15559
. 853	. 98854	62,2	. $1+49 \mathrm{I}$	30,3	. $8+373$	3 I,9	. 15627
. 854	.98525	62,2	. 14521	30,3	.84405	31,9	. 15555
0.855	9.98988	62,1	0.I.4552	30,3	9.81437	31,8	0.15563
. 855	. 9505 I	62, 1	. 14582	30,4	. $8+469$	$3 \mathrm{I}, 7$. 15531
. 857	-99113	62,1	. $1+612$	30,4	. $8+1500$	31,7	. 15500
. 858	.99175	62,0	. I $45+3$	30,4	. $8+532$	31,6	. 15.56
. 859	-99237	62,0	. 14673	30,4	. $8+553$	31,5	. 15 437
0.870	9.99299	6I,9	0.14704	30,5	9.84595	31,5	0.15405
.871	. 99361	61,9	. 14734	30,5	. 84625	31,4	- 15374
. 872	. 99422	6I,8	-14705	30,5	. 8.4658	$3 \mathrm{I}, 3$. $153+2$
. 873	. 99484	61,8	. 14795	30,5	. 81689	3I,3	. 15311
. 874	.99546	61,7	. 1.4825	30,5	. 84720	$3 \mathrm{I}, 2$. 15280
0.875	9.95508	61,7	0.14856	30,6	9.84751	31, 1	0.15249
. 876	. 99669	6I,7	. I_4837	30,6	. $8+783$	3 I ,	. 15217
. 877	. 9973 I	6I,6	. 14917	30,6	.84814	31,0	. 15185
. 878	. 99793	6I,6	- I 4 C 48	30,6	.84845	30,9	-15155
. 879	.99854	61,5	. I4979	30,7	. $8+875$	30,9	. 15125
0.830	9.99916	61,5	-. 15009	30,7	9.84905	30,8	-. 55034
.83i	. 59977	61,4	. 15040	30,7	. 84937	30,7	. 15053
. 882	0.00038	61,4	. 1507 I	30,7	. 84968	30,7	. 15032
. 883	. 00100	$6 \mathrm{I}, 3$. I5101	30,7	. 84998	30,6	. 15002
. 884	.00161	6I,3	. 15132	30,8	.85029	30,5	. 1497 I
0.835	0.00222	61,3	0.15163	30,8	$9.85059{ }^{\circ}$	30,5	0.1494I
. 885	.00284	$6 \mathrm{I}, 2$	- I5194	30,8	. 85090	30,4	. 14910
. 887	.00345	61,2	-15225	30,8	. 85120	30,3	- I4880
. 883	. 00405	$6 \mathrm{I}, \mathrm{I}$. 15253	30,9	. 85151	30,3	- I4819
. 889	. 00467	6I, 1	. 15285	30,9	. 85181	30,2	. 14819
0.890	0.00528	61,0	0.15317	30,9	9.85311	30,2	0.14789
. 891	.00389	61,0	. 15348	30,9	. 85241	30, 1	. 14759
. 892	. 00550	61,0	. 15379	30,9	. 85271	30,0	-14729
. 893	.00-71	60,9	. 15.110	31,0	. 85301	30,0	- If 4 c9
. 894	. 00772	60,9	. 1541 r	31,0	. 85331	29,9	. 1.4669
0.895	0.00833	60,8	0.15472	31,0	9.85361	29,8	0. $1+4639$
. 895	.00894	60,8	. 15503	$3 \mathrm{I}, 0$. 85391	29,8	. I. 4609
. 897	. 00955	60,8	-15534	$3 \mathrm{I}, 0$. 85421	29,7	- I+579
.898 .899	. .101015	60,7 60,7	. 15565	$3 \mathrm{I}, \mathrm{I}$ $3 \mathrm{I}, \mathrm{I}$. 85450	29,6 29,6	.14550 .14520
. 899	. 01076	60,7	-1535	31,1	. 85	29,	-
0.900	0.01137	60,6	0.15627	$3 \mathrm{I}, 1$	9.85509	29,5	0.14491
u	$\log \tan g d u$	a $\mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
0.900	0.01137	60,6	0.15527	31, 1	9.85509	29,5	0.14491
. gOI	. OrI97	60,6	. 15653	31, 1	. 85539	29,5	.I446I
. 902	. 01258	60,5	. 15689	31,2	. 85568	29,4	. I4132
. 903	. 01318	60,5	. 15721	3I,2	. 85598	29,3	. I4.402
. 904	. 01379	60,5	. 15752	3I,2	. 85627	29,3	. I4373
0.905	0.01439	60,4	0.15783	3I,2	9.85655	29,2	0.14344
. 905	. 01500	60,4	. 15814	31,2	. 85685	29,2	. I4315
. 907	. 01550	60,3	. 15846	31,3	. 85715	29, 1	. 14285
. 908	. 01620	60,3	. 15877	31,3	. 8574	29,0	. I4256
. 909	. 0168 I	60,3	. 15908	31,3	. 85773	29,0	. 14227
0.910	0.01741	60,2	0.15939	3I,3	9.85801	28,9	0.14199
. 911	. 01801	60,2	. 15971	31,3	. 85830	28,8	. 14170
. 912	. 0185 r	60,1	. 16002	3I,4	. 85859	28,8	. 14141
.913	. 01921	60,1	. 16033	3I,4	. 85888	28,7	. I4II2
. 914	. 0198 I	60,1	. 16055	3I,4	. 85917	28,7	. 14083
0.915	0.02041	60,0	0.16095	3I,4	9.85945	28,6	O. I4055
. 916	. 02101	60,0	. 16128	3I,4	. 85974	28,5	. I4026
. 917	.0216I	54,9	. 16159	3I,5	. 86002	28,5	. 13998
. 918	. 02222 I	59,9	.16191	31,5	. 85031	28,4	. 13959
.919	.02281	59,9	. 16222	3I,5	. 85059	28,4	. I394I
0.920	0.0234 I	59,8	0.16254	31,5	9.85088	28,3	0. 13912
. 92 I	. 02401	59,8	. 16285	31,5	.85ir 6	28,2	. 13884
. 922	.0246I	59,8	. 16317	31,6	.85I44	28,2	. 13856
. 923	. 02520	59,7	. 16348	31,6	.85172	28, I	. 13828
. 924	. 02580	59,7	. 16380	31,6	. 85200	28,1	. 13800
0.925	0.02640	59,6	0.16411	31,6	9.85228	28,0	0. 13772
. 925	. 02599	59,6	. 16443	31,6	. 86256	27,9	. 13744
. 927	. 02759	59,6	. 16475	31,7	. 86284	27,9	. 13716
. 928	.02819	59,5	. 16505	3I,7	. 86312	27,8	. I3688
. 929	. 02878	59,5	. 16538	31,7	. 86340	27,8	. 13660
0.930	0.02937	59,4	0.16570	31,7	9.85368	27,7	0.13632
. 931	. 02997	59,4	. 16502	31,7	. 85395	27,7	. 13605
. 932	. 03056	59,4	. 16633	31,8	. 85423	27,6	. 13577
. 933	.03I16	59,3	. 16565	31,8	. 86450	27.5	. 13550
. 934	. 03175	59,3	. 16697	31,8	. 85478	27,5	. 13522
0.935	0.03234	59,3	0.16729	31,8	9.85505	27,4	0.13495
. 936	. 03293	59,2	. 16761	31,9	. 86533	27,4	. 13467
. 937	. 03353	59,2	. 16792	31,9	. 86560	27,3	- I3440
. 938	. 03412	59, I	. 16824	31,9	. 85587	27,3	. 13413
. 939	.0347I	59, I	. 16856	31,9	. 85615	27,2	. 13385
0.940	0.03530	59, I	0. 16883	31,9	9.85642	27, I	0.13358
.94I	. 03589	59,0	. 16920	32,0	. 86669	27, I	. I333
. 942	. 03648	59,0	. 16952	32,0	. 86596	27,0	. 13304
. 013	. 03707	59,0	. 16, 81	32,0	. 85723	27,0	. 13277
. 944	. 03756	58,9	-17016	32,0	. 85750	26,9	. 13250
0.945	0.03825	58,9	0.17048	32,0	9.85777	26,9	0.13223
. 546	. 03888	58,9	. 17080	32,0	. 86804	26,8	. 13196
-947	. 03943	58,8	. 17112	32,1	. 85830	26,7	. 13170
-948	. 04001	58,8	. 17144	32, I	. 85857	26,7	.13I43
.949	. 04060	58,7	-17176	32,I	. 85884	26,6	.13II6
0.950	0.04119	58,7	0.17208	32, r	9.85910	26,6	0.13090
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec$ gd u	$\omega \mathrm{FO}^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
0.950	0.04119	58,7	$0.1720 S$	32,1	9.85910	26,6	0.13090
.95I	. 04178	58,7	. I7241	32,1	. 85937	25,5	. 13053
. 952	. 04236	58,6	. 17273	32,2	. 86953	26,5	. 13037
. 953	. 04295	58,6	. 17305	32,2	. 86990	26,4	. 13010
. 954	. 04353	58,6	. 17337	32,2	.87016	25,4	. 12984
0.955	0.04412	58,5	0.17369	32,2	9.87043	25,3	0.12957
. 956	. 0.4470	58,5	. 17402	32,2	. 87069	25,2	. 1293 I
. 957	. 04529	58,5	. $17+34$	32,3	.87095	25,2	. 12905
. 958	. 04587	58,4	. 17465	32,3	. 87121	26,1	. 12879
. 959	. $0+6646$	58,4	. 17498	32,3	.87147	25,1	. 12853
0.950	0.04704	58,4	0.17531	32,3	9.87エア3	26,0	0.12827
. 961	. 0.4703	58,3	. I7563	32,3	. 87199	26,0	. 12801
.962	. 0182 I	58,3	. 17595	32,4	. 87225	25.9	. 12775
. 953	. 04879	58,2	. 17528	32,4	.87251	25,9	. 12749
. 964	. 04937	58,2	. 17550	32,4	.87277	25,8	. 12723
0.955	0.04996	58,2	0.17693	32,4	9.87303	25,8	0. 12697
.955	. 05057	58,1	. 17725	32,4	. 87329	25,7	. 12571
. 957	. 05112	58,	. 17757	32,5	.87354	25,7	. 12546
. 958	.05170	58,1	. 17790	32,5	.87380	25,6	. 12520
. 969	. 05228	58,0	. 17822	32,5	.87406	25,5	. 12594
0.970	0.05285	58,0	-.17855	32,5	9.87431	25,5	0.12569
.97I	. 05344	58,0	. 17887	32,5	. $87+56$	25,4	. 12544
. 972	. 05102	57,9	. 17920	32,6	. 87482	25,4	. 12518
. 973	. 05460	57,9	. I7953	32,6	. 87507	25,3	. 12.493
. 974	.05518	57,9	. 17985	32,6	.87533	25,3	. 12467
0.975	0.05576	57,8	-. 18018	32,6	9.87558	25,2	0. 12442
. 976	. 05533	57,8	. 18050	32,6	.87583	25,2	. 12417
. 977	.05691	57,8	- 18083	32,6	.87608	25,1	. 12392
. 978	. 05749	57,7	. 18115	32,7	. 87633	25,1	. 12357
. 979	. 05807	57,7	-18I48	32,7	. 87558	25,0	-123+2
0.980	0.05854	57,7	0.18i8i	32,7	9.87583	25,0	0. 12317
. 881	. 05922	57,6	. 18214	32,7	. 87708	24,9	. 12292
.c82	. 05980	57,6	. 18246	32,7	. 87733	24,9	- 12257
. 983	. 06037	57,6	. 18279	32,8	. 87758	24,8	. 12242
.984	. 05095	57,5	. 18312	32,8	. 87783	24,8	. 12217
0.985	0.05152	57,5	0.18345	32,8	9.8-807	24,7	0.12193
. 585	. 05210	57,5	. 18378	32,8	. 87832	24,7	. 12168
. 985	. 05267	57,4	. 18+10	32,8	. 87857	24,6	. 12143
. 989	. 05325	57,4	. 18143	32,9	. 87881	24,6	. 12119
. 989	.06382	57,4	-18470	32,9	.87506	24.5	. 12094
0.990	0.06439	57,3	0.18509	32,9	9.87930	24,5	0.12070
. 991	. 06497	57,3	. 18542	32,9	. 87955	24,4	. 12045
.992	.05354	57,3	. 18575	32,9	. 87979	24,3	. 12021
.993	. 05611	57,2	. 18508	32,9	. 88003	24,3	- 11997
. 994	. 06669	57,2	. 18641	33,0	. 85028	24,2	. 11972
0.995	0.05726	57,2	0.18574	33,0	9.88052	24,2	0.11948
. 996	. 05783	57,2	. 18707	33,0	.83076	24, 1	. I 1924
. 997	.05840	57, I	. 18740	33,0	.88100	24, 1	. 11900
. 998	. 05897	57, 1	. 18773	33,0	. 88124	24,0	. 11876
. 999	. 05954	57, I	. 18805	33,1	. 88148	24,0	. 11852
1.000	0.07011	57,0	0.18839	33,1	9.88172	23,9	0.11828
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\pm \mathrm{Fo}^{\prime}$	$\log \sin \mathrm{g} \mathrm{d}_{\mathrm{u}}$	$\infty \mathrm{F}_{3}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Lcgarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
1.000	0.07011	57,0	0.18839	33, 1	9.88172	23,9	0.11828
. 001	.07058	57,0	. 18872	33, I	.88196	23,9	. 11804
. 002	. 07125	57,0	. 18905	33, I	. 88220	23,8	. 11780
. 003	. 07182	55,9	. 18938	33, I	. 88244	23,8	. II756
. 00.4	. 07239	56,9	. 18971	33, I	. 88268	23,8	. II732
1.005	0.07296	56,9	0.19004	33,2	9.8829 r	23,7	0.11709
. 005	. 07353	56,8	. 19038	33,2	.883I5	23,7	. 11685
. 007	. 07410	56,8	. 1907 I	33,2	. 83339	23,6	. 11661
. 008	. 07465	56,8	-19104	33,2	. 88352	23,6	. 11638
. 009	. 07523	56,7	. I8I37	33,2	. 88386	23,5	.11614
1.010	0.07580	56,7	0.19171	33,3	9.88409	23,5	0.11591
. OII	. 07637	56,7	. I9204	33,3	. 83433	23,4	. 11557
. Or 2	. 07593	56,7	-19237	33,3	. 88.456	23,4	. II544
. 013	. 07750	56,6	. 19270	33,3	. 88480	23,3	. II520
. OI 4	.07807	56,6	. 19304	33,3	. 88503	23,3	. II497
1.015	0.07863	56,6	0.19337	33,3	9.88525	23,2	0.11474
. 016	. 07920	56,5	. 19370	33,4	. 83549	23,2	. II45I
. 017	. 07975	56,5	. 19404	33,4	. 88572	23,1	. II428
. 018	. 08033	56,5	. 19437	33,4	. 88595	23, I	. II405
. 019	. 08089	56,4	. 1947 I	33,4	. 88619	23,0	. II38I
1.020	0.08146	56,4	0.19504	33,4	9.88512	23,0	0.II358
. 021	. 08202	56,4	. 19537	33,5	. 88554	22,9	. II336
. 022	.08258	56,4	. 1957 I	33,5	. 88587	22,9	. II3I3
. 023	.08315	56,3	. 19604	33,5	. 88710	22,8	. II290
. 024	. 08371	56,3	. 19538	33,5	. 88733	22,8	. 11267
1.025	0.08427	56,3	0.19571	33,5	9.88756	22,7	O. II2.14
. 025	. 08483	56,2	. 19705	33,5	. 88779	22,7	. 1122 I
. 027	. 08540	56,2	. 19738	33,6	.88301	22,6	. III99
. 028	. 08596	56,2	. 19772	33,6	. 88324	22,6	. 11176
. 029	.08552	56,I	. 19805	33,6	.88846	22,6	. III54
I. 030	0.08708	56, I	-. 19839	33,6	9.88859	22,5	O.III3I
. 031	.08754	56, I	. 19873	33,6	. 88891	22,5	. 11109
. 032	.08820	56,I	. 19905	33,6	. 88914	22,4	. 11086
. 033	. 08876	56,0	. 19940	33,7	. 88.936	22,4	. 11064
. 034	. 08932	56,0	. 19974	33,7	.88959	22,3	. 11041
I. 035	0.08988	56,0	0.20007	33,7	9.88981	22,3	0.11019
. 036	. 09044	55,9	. 200.41	33,7	. 89003	22,2	. 10997
. 037	.09100	55,9	. 20075	33,7	. 89025	22,2	- 10975
. 038	. 09156	55,9	.20109	33,7	. 89048	22,I	. 10952
. 039	.09212	55,9	.20142	33,8	. 85070	22,1	. 10930
I. 040	0.09268	55,8	0.20176	33,8	9.8 cog2	22,0	0.10508
. 041	. 09324	55,8	. 20210	33,8	. 89114	22,0	. 10885
. 042	. 09379	55,8	. 20241	33,8	. 89136	22,0	. 10854
.043	. 09435	55,7	. 20278	33,8	. 89158	2I,9	. 10842
. 044	.0949I	55,7	. 203 II	33,9	. 89180	21,9	. 10820
1.045	0.09547	55,7	0.20345	33,9	9.89201	21,8	0. 10799
.046	. 09602	55,7	. 20379	33,9	. 89223	21,8	. 10777
. 047	. 09558	55,6	. 20413	33,9	. 89245	21,7	. 10755
.048	.09714	55,6	. $20+17$	33,9	. 89267	21,7	. 10733
. 0.49	. 09759	55,6	.2048I	33,9	. 89288	21,6	. 10712
I. 050	0.09825	55,6	0.20515	34,0	9.89310	21,6	0.10590
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{\mathrm{g}^{\prime}}$	$\log \sin \mathrm{gd} u$	$\omega F^{\prime}{ }^{\prime}$	$\boldsymbol{l o g} \csc \mathrm{gd} u$

Legarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega F_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
1.050	0.09825	55,6	0.20515	34,0	9.89310	21,6	0. 10590
.05I	. 09880	55,5	. 20549	34,0	. 83331	21,6	. 10559
. 052	. 09936	55,5	. 20583	34,0	. 89353	21,5	. 10647
. 053	. 09991	55,5	. 20517	34,0	. 89375	21,5	. 10525
. 054	. 10047	55,4	. 20551	34,0	. 87396	21,4	. 10504
1.055	0.10102	55,4	0.20585	34,0	9.89417	2I,4	-. 10583
. 056	. 10158	55,4	. 20719	$34, \mathrm{I}$. 89439	21,3	. 1056I
. 057	. 10213	55,4	. 20753	34,1	. 83460	21,3	. 10540
. 058	. 10268	55,3	. 20787	34,1	. 89481	21,2	. 10519
. 059	. 10324	55,3	. 2032I	$34, \mathrm{I}$. 89502	21,2	. 10498
1.050	0.10379	55,3	0.20855	34, 1	9.89524	21,2	0.10476
.0'́	. 10434	55,3	. 20889	$34, \mathrm{I}$. 89545	21, I	. 10455
. 052	. 10489	55,2	. 20924	34,2	. 89566	2I, I	. 10434
. 053	. 10545	55,2	. 20958	$3+2$. 89587	21,0	. 10413
. 054	. 10500	55,2	. 20692	34,2	. 83508	21,0	. 10392
I. 055	0. 10655	55,I	0.21025	34,2	9.89629	20,9	0.10371
. 055	. 10710	55, I	. 21050	34,2	. 83550	20,9	. 10350
. 057	. 10765	55, I	.21094	3+,2	. 85571	20,9	- 10329
. 058	. 10320	55, I	. 21129	34,3	. 83592	20,8	. 10308
. 059	. 10875	55,0	. 21163	34,3	. 89712	20,8	. 10288
1.070	0.10930	55,0	0.21197	34,3	9.89733	20,7	0.10267
. 071	. 10985	55,0	. 21232	34,3	. 89754	20,7	. 10246
. 072	. 11040	55,0	. 21255	34,3	. 89774	20,6	. 10226
. 073	. 11095	54,9	. 21300	34,3	. 89795	20,6	. 10205
. 074	. III50	51,9	. 21335	31,4	.89816	20,5	. 10184
1.075	0.11205	54,9	0.21369	34,4	9.89836	20,5	-.10164
. 075	. 11250	54,9	. 21-403	34,4	. 8 c857	20,5	. IOIf3
. 077	. 11315	54,8	. 21438	34,4	. 8,877	20,4	. 10123
.078	. II370	54,8	. 21472	34,4	. 83808	20,4	. 10102
. 079	. II 424	- 54,8	. 21507	34,4	. 89918	20,3	. 10082
1.080	0.11479	54,8	0.21541	34,4	9.89938	20,3	0.10062
. OSI	. II534	54,7	. 21575	34,5	. 89959	20,3	. 10041
. 032	. II589	54,7	.21610	34,5	. 89979	20,2	. 10021
. 083	. II643	54,7	. 21644	34,5	. 89999	20,2	
. 084	. 11698	54,7	. 21679	34,5	.90019	20, I	.09081
1.085	0.11753	54,6	0.21713	34,5	9.90039	20, I	0.09961
. 085	. 11807	54,6	. 21748	34,5	. 90059	20, I	. 09941
.087	. II852	54,6	. 21782	34,6	. 90079	20,0	.0S92I
.083	. 11916	54,5	. 21817	34,6	. 90099	20,0	.09301
. 089	. 11971	54,5	. 21852	34,6	-901 19	19,9	. 0 g88i
1.090	0.12025	54,5	0.21885	34,6	9.90139	19,9	0.0985 I
. 091	. 12080	54,5	. 21921	34,6	. 90159	19,9	. 09881
. 092	. 12134	5+,4	. 21955	34,6	.90179	19,8	. 0 8821
. 093	. 12189	54,4	. 21990	34,7	.90199	19,8	. 09801
. 094	. 12243	54,4	. 22025	34,7	.902I8	19,7	. 09782
1.095	0.12398	54,4	0.22059	34,7	9.90238	19,7	0.09752
. 095	. 12352	54,4	. 22094	34,7	. 90258	19,6	. 09742
. 097	. 12405	54,3	. 22129	34,7	.90277	19,6	. 09723
. 098	. 12461	54,3	. 22164	34,7	. 90297	19,6	. 09703
. 099	. 12515	54,3	. 22198	34,7	. 90317	19,5	. 09583
1. 100	0.12569	54,3	0.22233	34,8	9.90336	19,5	0.09664
4	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{\mathrm{G}^{\prime}}$	$\log \sin g d u$	$\omega \mathrm{Fo}^{\prime}$.	$\log \mathrm{csc} \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
I. 100	0.12569	54,3	0.22233	34,8	9.90336	19,5	0.09664
. 101	. 12623	54,2	. 22268	34,8	. 90336	19,4	. 09614
. 102	. 12678	54,2	. 22303	34,8	. 90375	19,4	.09525
. 103	. 12732	54,2	. 22337	34,8	. 90394	19,4	. 09605
. 104	. 12785	54,2	. 22372	34,8	. 50414	19,3	. 09586
I. 105	0.12840	54, 1	0.22407	34,8	9.90433	19,3	0.09567
. 106	. 12894	54, I	. $22+42$	34,9	. $90+52$	19,2	.09548
. 107	. 12948	54, I	. 22477	34,9	. 90472	19,2	. 09528
.ro8	. 13002	54, I	. 22512	34,9	. 90491	19,2	. 09509
. 109	. 13056	54,0	. 22547	34,9	. 90510	19, I	. 09490
I.IIC	0.13 III	54,0	0.22582	34,9	9.90529	19,I	0.09471
. III	. 13165	54,0	. 22516	34,9	. 90548	19,I	. 09452
. 112	- I3218	54,0	. 22551	35,0	. 90567	19,0	. 09433
. II3	. 13272	53,9	. 22685	35,0	. 90585	19,0	.094I4
. IIf	. 13326	53,9	. 22721	35,0	. 90505	18,9	. 09395
I.II5	0.13380	53,9	0.22756	35,0	9.90624	18,9	0.09375
. 116	. 13434	53,9	. 22791	35,0	. 90643	18,9	. 09357
. 117	. 13488	53,8	. 22825	35,0	. 90562	I8,8	. 09338
. 118	. 13542	53,8	.22861	35,0	. 90580	I8,8	. 09320
. II9	. 13595	53,8	.22895	35, I	. 90.599	18,7	. 09301
1.120	0.13649	53,8	0.22931	35,I	9.90718	18,7	0.09282
. 121	. 13703	53,8	. 22967	35, I	.90737	18,7	. 09263
. 122	. 13757	53,7	. 23002	35, 工	. 90755	18,6	. 09245
. 123	. 1381 r	53,7	. 23037	35, I	. 90774	18,6	.09226
. 124	. 13854	53,7	. 23072	35, I	. 90792	18,6	. 09208
I. 125	-. 13918	53,7	0.23107	35, I	9.908 II	18,5	0.09189
. 125	. 13972	53,6	. 23142	35,2	. 90830	18,5	.09170
. 127	. I+025	53,6	. 23177	35,2	. 90848	18,4	.09152
. 128	. I4079	53,6	. 23213	35,2	. 90865	18,4	.09134
. 129	. ItI33	53,6	. 23248	35,2	. 90885	I8,4	. 09115
I. 130	0.14186	53,5	0.23283	35,2	9.90903	18,3	0.09097
. 131	. I4240	53,5	. 23318	35,2	. 50921	18,3	. 09079
. 132	. I4293	53,5	. 23353	35,3	. 90940	18,3	. 09060
. 133	. I4347	53,5	. 23389	35,3	. 90958	18,2	. 05042
. 134	. 14400	53,5	. 23424	35,3	.90976	18,2	. 09024
I.I35	0.14454	53,4	0.23459	35,3	9.90994	I8, 1	0.09006
. 136	. I4507	53,4	. 23495	35.3	.91012	18,1	.08988
. 137	. 14560	53,4	. 23530	35,3	. 91030	18, I	. 08970
. 138	. 14614	53,4	. 23565	35,3	. 91049	18,0	. 08951
. 139	. I4667	53,3	.23601	35,4	.91067	18,0	. 08933
I. I40	0.14720	53,3	0.23636	35,4	9.91085	18,0	0.08915
. If 1	. 14774	53,3	.23671	35,4	.91102	17,9	. 08898
. 142	. 14827	53,3	. 23707	35,4	. 91120	17,9	. 08880
. I43	. I4880	53,3	. 23742	35,4	.91138	17,8	. 08852
. I44	. 14934	53,2	. 23778	35,4	.91156	17,8	.088+4
I. I45	0.14987	53,2	0.23813	35,4	9.91174	17,8	0.08826
. 146	. 15040	53,2	. 23848	35,5	.91192	17,7	. 08808
. 147	. 15093	53,2	. 23884	35,5	. 91209	17,7	. 08791
. 148	. 15146	53,2	. 23919	35,5	. 91227	17,7	. 08773
. I49	. 15200	53,1	. 23955	35,5	. 91245	17,6	. 08755
I. 150	0.15253	53, I	0.23590	35.5	9.95262	17,6	0.08738
U	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{singdu}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Smithsonian Tableg

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1. 150	0.15253	53,I	0.23990	35,5	9.91262	17,6	0.08738
. 151	. 15305	53, I	. $2+025$	35,5	.91280	I7,6	.08720
. 152	. 15359	53, I	. 2.2051	35,5	.91297	17,5	.08703
. I53	. 15412	53,0	. 24097	35,6	. 91315	I7,5	. 08585
. 154	. 15465	53,0	.2+133	35,6	.91332	I7,5	. 08668
I. I55	-.15518	53,0	0.24168	35,6	9.91350	I\%,4	0.08550
. 156	. 15571	53,0	. $2+204$	35,6	. 91357	17,4	. 08633
. 157	. 15624	53,0	. 2.4239	35,6	. 91385	I7,3	. 08515
. 158	. 15677	52,9	. $2+275$	35,6	.91402	I7,3	. 08598
. 159	. 15730	52,9	. 243 II	36,6	.91419	I7,3	.08581
1.160	-.15783	52,9	$0.2+3+6$	35,7	$9.91+36$	IT,2	0.08564
. $16!$. 15836	52,9	. $2+382$	35,7	. $91+54$	I7,2	.08546
. 152	. 15883	52,9	. 24418	35,7	.91471	17,2	.08529
. 163	. 1594 I	52,8	. $2+453$	35,7	.91.488	I7, 1	. 08512
. 164	. 15994	52,8	. 21483	35,7	.91505	I7, I	.08495
1.165	0.160 .47	52,8	$0.2+525$	35,7	9.91522	17,I	0.08478
. 165	. 15100	52,8	. 24560	35,7	. 91539	17,0	.0846I
. 167	. 16152	52,7	. $2+595$	35,8	. 91556	I\%, 0	.08.444
. 168	. 16205	52,7	. 24532	35,8	.91573	İ, 0	. 08427
. 169	. 16258	52,7	. $2+668$	35,8	. 91590	16,9	.08410
1.170	0.16311	52,7	0.24703	35,8	9.91607	16,9	0.08393
. 171	. 16363	52,7	. 24739	35,8	.91624	16,9	. 08376
. 172	. 16416	52,6	. 24775	35,8	.9164I	16,8	. 08359
. 173	. 16469	52,6	. 24811	35,8	. 91658	I6,8	.08342
. 174	. 16521	52,6	. 24847	35,9	.91674	16,8	. 08326
1.175	-. 16574	52,6	0.24883	35,9	9.91691	16,7	0.08309
.175	. 16636	52,6	. $2+919$	35,9	.91708	16,7	. 08292
. 177	. 16679	52,5	. 24954	35,9	. 91724	16,7	.08276
-178	. 1673 I	52,5	. 24590	35.9	.9174I	16,6	. 08259
. 779	. 16784	52,5	.25026	35,9	.91758	I6,6	. 082.12
1. 180	0.16836	52,5	0.25062	35,9	9.91774	16,6	0.08236
. 181	. 16889	52,5	. 25093	35,9	.91791	16,5	.08209
. 182	. Ióg+I	52,4	. 25134	35,0	. 91807	16,5	.08193
. 183	. 16994	52,4	. 25170	36,0	.91824	16,4	.08if6
. 184	. 17046	52,4	. 25205	36,0	.91840	16,4	.08160
I. 185	0. 17099	52,4	0.25242	36,0	9.91857	16,4	0.08 I 43
. 185	. 17151	52,4	. 25278	36,0	.91873	16,3	.08127
. 187	. 17203	52,3	. 25314	36,0	.91889	16,3	.OSIII
. 188	. 17256	52,3	. 25350	36,0	. 91906	16,3	. 08004
. 189	-17308	52,3	. 25385	36,1	.91922	16,2	.08078
I. 190	0. 17360	52,3	0.25122	36,	9.91938	16,2	0.08062
. 191	-17413	52,3	. 25458	36, 1	. 91954	16,2	. 080.46
. 192	. 17465	52,2	. 25494	36,I	. 91970	16,2	. 08030
. 193	. 17517	52,2	. 23530	36,1	-91987	16,I	. 08013
. 194	. 17569	52,2	. 25567	36,1	. 92003	I6, I	. 07997
	0. 17621	52,2	0.25603	36,1	9.92019	16,1	0.0798 I
. 196	. 17674	52,2	. 25539	36,2	. 92035	16,0	. 07965
. 197	. 17726	52,2	. 23675	36,2	-92051	16,0	. 07949
. 198	- 177\%	52, I	. 23711	36,2	. 92067	16,0	. 07933
. IS9	. 17830	52, I	. 25747	36,2	. 92083	15,9	. 07917
1.200	0.17882	52, 1	0.25784	36,2	0.92099	15,9	0.07901
u	$\log \tan \operatorname{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d^{\prime} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh$ น	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega F_{0}{ }^{\prime}$	$\log \operatorname{coth} \mathrm{u}$
I. 200	0.17882	52, I	0.2578t	36,2	9.92039	I5,9	0.07501
. 201	. 17934	52, 1	. 25820	36,2	. 22 II4	15,9	. 07886
. 202	. 17985	52,I	. 25855	36,2	. 92130	I 5,8	.07870
. 203	. 18038	52,0	. 25892	36,2	.92146	I5,8	. 07854
. 204	. I80go	52,0	. 25929	36,3	.92162	I5,8	. 07838
I. 205	0.18142	52,0	0.25965	36,3	9.921-8	I5,7	0.07822
. 206	.18194	52,0	. 25001	36,3	. 92193	15,7	. 07807
. 207	. 18246	52,0	. 26037	36,3	. 92209	15,7	.07791
. 208	. 18298	51,9	. 26074	36,3	. 92225	15,6	. 07775
. 209	. 18350	5I,9	. 25110	36,3	.922-10	I5,6	.07750
1.210	0.18 .402	5I,9	0.25146	36,3	9.92256	I5,6	0.07744
. 211	. 18454	5I,9	. 20 I83	36,3	. 92271	I 5,5	. 07729
. 212	. 18506	51,9	. 25219	36, +	.9228-	I 5,5	.07713
. 213	. 18558	51,9	. 25255	36,4	. 92302	15,5	.07698
.2I4	. 18510	51,8	. 26292	36,4	.92318	I5,4	.07682
1.215	0.18562	51,8	0.25328	36,4	9.92333	15,4	0.07667
. 216	. 18713	51,8	. 25365	36,4	. 92349	15,4	.0755I
. 217	.18755	51,8	. 25401	36,4	.92354	I 5,4	.07636
. 218	. 18817	51,8	. 26437	35,4	. 92379	I5,3	.07621
. 219	. 18869	51,7	. 26.474	36,5	. 92395	15,3	.07505
1.220	0.18920	51,7	0.26510	35,5	9.92410	15,3	0.07590
. 221	. 18972	51,7	. 26547	36,5	. 92125	15,2	. 07575
. 222	. 19024	5r,7	. 25583	36,5	. 92410	I5,2	. 07560
. 223	. 19075	51,7	. 26620	36,5	. 92456	15,2	. 07544
. 22.4	. 19127	5I,7	. 26656	36,5	.9247I	15,I	. 07529
1.225	0.19179	51,6	0.26693	36,5	9.92485	I5, I	0.07514
. 226	. 19230	51,6	. 26729	36,5	. 92501	I5, 1	. 07499
. 227	. 19282	51,6	. 26766	36,6	. 92516	I5,0	.07484
. 228	. 19334	51,6	. 26802	36,6	.92531	15,0	.07459
. 229	. 19385	51,6	. 25839	36,6	. 92545	15,0	.07454
1.230	0.19437	51,5	0.26876	36,6	9.92561	15,0	0.07439
. 23 I	. 19488	51,5	. 26912	36,6	. 92576	14,9	. 07424
. 232	. 19540	5I,5	. 26949	36,6	.92591	I4,9	. 07409
. 233	. 19591	51,5	. 26985	36,6	. 92605	I4,9	. 07394
. 234	. 19643	5I,5	. 27022	36,6	.92521	IL, 8	. 07379
1. 235	0.19594	51,5	0.27059	36,7	9.92535	I, 4,8	0.07365
. 236	. 19746	5I,4	. 27095	36,7	. 92650	I, ${ }^{1}$. 07350
. 237	. 19797	51,4	. 27132	36,7	-92655	14,7	. 07335
. 238	. 19848	51,4	. 27169	36,7	. 92580	14,7	.07320
. 239	. 19900	51,4	. 27205	36,7	. 92694	I4,7	. 07306
1.240	0.19951	51,4	0.27212	36,7	9.92709	14,7	0.07291
. 241	. 20003	51,4	. 27279	36,7	.92724	14,6	.07276
. 242	. 20054	51,3	. 27316	36,7	. 92738	I.4,6	. 07262
. 243	. 20105	5I,3	. 27352	36,8	. 92753	14,6	. 07247
. 214	. 20157	51,3	. 27389	36,8	. 92767	I4,5	. 07233
1.245	0.20208	51,3	0.27426	36,8	9.92782	I4,5	0.07218
. 246	. 20259	5I,3	. 27463	36,8	. 92796	14,5	. 07204
. 247	.20310	51,2	. 27499	36,8	.928í I	14,4	. 07189
.248	. 20362	5r,2	. 27536	36,8	. 92825	14,4	. 07175
. 249	. 20413	51,2	. 27573	36,8	.92840	I, 4	.07160
1.250	0.20464	51,2	0.27510	36,8	9.92854	I4,4	0.07146
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	log sinh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth 4
1.250	0.20464	51,2	0.27610	36,8	9.92854	14,4	0.07146
. 251	. 20515	51,2	. 27647	36,9	. 92858	14,3	.07132
. 252	. 20565	51,2	.27584	36,9	- 22833	I 4,3	. 07117
. 253	. 20518	51, I	. 27721	36,9	.92837	I 1,3	. 07103
. 254	. 20569	51, I	. 27757	36,9	.929II	14,2	.07089
I. 255	0.20720	51, 1	0.27794	35,9	9.92925	If,2	0.07074
. 256	. 20771	51, 1	. 27831	36,9	. 92940	I, H^{2}	.07060
. 257	. 20822	51, I	.27858	35,9	. 92954	I 4,2	.07046
. 258	. 20873	51, I	.27505	36,9	. 92958	If, I	.07032
. 259	. 20924	51,0	. 27942	36,9	-92982	İ, I	. 07018
1. 260	0.20975	51,0	0.27973	37,0	9.92596	If, 1	0.07004
. 261	. 21026	51,0	. 28016	37.0	. 93010	I 4.0	. 06990
. 252	.21077	51,0	.2SO53	37,0	.93024	I 1,0	.06976
.263	. 21128	51,0	.280go	37,0	. 93038	14,0	. 05952
. 264	. 21179	51,0	.28127	37,0	. 93052	If,O	. 06948
1.255	0.21230	50,9	0.28164	37,0	9.93056	13,9	0.06934
. 265	.2128I	50,9	.28201	37,0	-93080	13,9	. 05920
. 257	. 21332	50,9	. 28238	37,0	. 93094	13,9	. 05906
. 268	. 21383	50,9	. 28275	37, 1	. 93108	13.8	. 05892
. 259	. $21-4+$	50,9	. 28312	37,1	. 93122	I3,8	.06878
1.270	0.21485	50,9	0.28349	37,1	9.93135	13,8	0.05855
. 271	. 21536	50,9	. 28385	37, 1	.93I +9	I3,8	. 0585 I
. 272	. 21585	50,8	$.28+23$	37, I	. 93153	13,7	. 06837
. 273	. 21637	50,8	.28460	37, I	. 93177	13,7	. 058823
.274	. 21688	50,8	. 28498	37, 1	. 93190	13,7	. 05810
1.275	0.21739	50,8	0.28535	37, 1	9.93204	13.6	0.05796
. 276	. 21750	50,8	. 28572	37,2	. 93218	13,6	.05-82
. 277	. 21880	50,8	. 28509	37,2	.93231	13,6	. 05769
. 278	.21891	50,7	. 28546	37,2	. 93245	13,6	. 05755
. 279	. 21942	50,7	.28583	37,2	. 93258	13.5	. 06742
1.280	0.21993	50,7	0.28 \% 21	37,2	9.93272	13,5	0.05728
. 281	. 22043	50,7	. 28758	37,2	. 93285	I 3,5	.06715
. 282	. 22094	50,7	.28-95	37,2	. 93299	I 3,5	.05701
. 283	. 22145	50,7	.28832	37, 2	. 93312	I3,4	. 05688
. 284	. 22195	50,6	. 28369	37,2	. 93325	I3,4	. 06674
1. 285	0.22246	50,6	0.28907	37,3	9.93339	I3,4	0.05661
. 285	. 22296	50,6	. 28944	37,3	. 93353	I3.3	. 06647
. 287	. 22347	50,6	. 28981	37,3	. 93366	I3,3	. 06634
. 288	. 23398	50,6	.29018	37,3	. 03379	I 3,3	. 06621
. 289	. 224.48	50,6	. 29056	37,3	. 93392	I3.3	. 06608
I. 290	0.22499	50,6	0.29093	37,3	9.93.405	I3,2	0.06594
. 291	. 22549	50,5	. 29130	37,3	. $93+19$	I 3,2	. 06581
. 292	. 22600	50,5	.29168	37,3	-93432	I3,2	. 06568
. 293	. 22650	50,5	. 2920.5	37,3	. $93+45$	13,2	$.06555$
. 294	.22701	50,5	. 29242	37,4	. $93+58$	I3,I	. 06542
1. 295	0.2275 I	50,5	0.29280	37,4	9.93472	I3, I	0.05528
. 296	. 22802	50,5	. 29317	37,4	. 93485	I3, I	. 06515
. 297	. 22852	50,4	. 29355	37,4	.93498	13,I	. 06502
. 298	. 22903	50,4	.29392	37,4	.935II	13,0	. 06489
. 299	. 22953	50,4	.29429	37,4	-93524	13,0	.06476
I. 300	0.23004	50,4	0.29 .467	37,4	9.93537	13.0	0.06463
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\because \mathrm{log} \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log tanh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.300	0. 23004	50,4	0.29467	37,4	9.93537	13,0	0.06463
. 301	$\because 23054$	50,4	. 29504	37,4	. 93550	12,9	. 06450
. 302	$\therefore .23104$	50,4	. 29542	37,4	-93553	12,9	. 06437
-303*	$\because \quad .23155$	50,4	. 29579	37,5	. 93576	12,9	. 06.424
. 304	. 23205	50,3	. 29617	37,5	. 93588	12,9	.05412
I. 305	0.23255	50,3	0.25654	37,5	9.93601	12,8	0.06399
. 306	. 23306	50,3	. 29692	37,5	.93614	12,8	. 06386
. 307	. 23356	50,3	. 29729	37,5	-93627	12,8	. 06373
. 308	. 23406	50,3	. 29767	37,5	. 93640	12,8	. 06360
.309	. 23457	50,3	. 29804	37,5	. 93552	12,7	. 06348
1.310	0.23507	50,2	0.29842	37,5	9.93665	12,7	0.06335
. 311	. 23557	50,2	. 29879	37,5	. 93678	12,7	. 06322
. 312	. 23607	50,2	. 29917	37,6	. 93691	12,7	. 06309
. 313	. 23657	50,2	. 29954	37,6	. 93703	12,6	. 06297
. 314	. 23708	50,2	. 29992	37,6	.93716	12,6	. 06284
1.315	0.23758	50,2	0.30029	3\%,6	9.93728	12,6	0.06272
. 316	. 23808	50,2	. 30057	37,6	.9374I	12,6	. 06259
-317	. 23858	50, I	. 30105	37,6	. 93754	12,5	. 06246
. 318	. 23908	50, I	. 30142	37,6	. 93766	12,5	. 06234
. 319	. 23958	50, I	. 30180	37,6	. 93779	12,5	. 0622 I
1.320	0.24009	50, I	0.30217	37,6	9.93791	I2,5	0.06209
. 321	. 24059	50, I	. 30255	37,7	. 93804	12,4	.06196
. 322	.24109	50, 1	- 30293	37,7	.93815	12,4	. 06184
. 323	. 24159	50, 1	. 30330	37,7	.93828	I2,4	.06172
-324	.24209	50,0	. 30368	37,7	.93841	12,4	.06I59
1. 325	0.24259	50,0	0.30406	37,7	9.93853	12,3	0.06147
. 326	. 24309	50,0	. 30.144	37,7	. 93855	I2,3	. 06135
. 327	. $2+359$	50,0	-30481	37,7	. 93878	12,3	.06122
. 328	. 24409	50,0	-30519	37,7	. 93890	12,3	. 06110
. 329	. 24459	50,0	. 30557	37,7	. 93902	12,2	.06098
1.330	0.24509	50,0	0.30594	37,8	9.93914	12,2	0.06086
. 33 I	. 24559	49,9	. 30632	37,8	. 93927	12,2	. 06073
. 332	. $2+609$	49,9	-30670	37,8	. 93939	12,2	.0606I
- 333	.24559	49,9	-30708	37,8	. 9395 I	12, I	. 06049
. 334	. 24709	49,9	- 30746	37,8	. 93963	12, I	. 06037
	0.24759	49,9	0.30783	37,8	9.93975	12,I	0.06025
. 336	. 2.4808	49,9	-30821	37,8	. 93987	I2, I	. 06013
. 337	. 24858	49,9	- 30859	37,8	-93999	12,0	. 06001
. 338	. 24908	49,9	- 30897	37,8	.9401 I	12,0	. 05989
. 339	. 24958	49,8	. 30935	37,8	.04023	12,0	. 05977
I. 340	0.25008	49,8	0.30972	37,9	9.94035	12,0	0.05965
. 341	. 25058	49,8	-31010	37,9	. 94047	I I,9	. 05953
- 312	. 25107	49,8	-31048	37,9	. 94059	II,9	. 05941
- 313	. 25157	49,8	-31085	37,9	. 94071	II,9	. 05929
. 344	. 25207	49,8	-31124	37,9	. 94083	II,9	. 05917
I. 345	0.25257	49,8	0.31162	37,9	9.94095	Ir, 8	0.05905
. 3.46	. 25306	49,7	. 31200	37,9	.94107	II, 8	. 05893
. 347	. 25356	49,7	. 31238	37,9	.94119	II,8	.0588I
. 348	. 25406	49,7	-31276	37,9	.94130	II,8	. 05870
-349	. 25456	49,7	. 31314	37,9	.94142	II,8	. 05858
I. 350	0.25505	49,7	0.31352	38,0	9.94154	II,7	0.05846
4	$\log \tan g \mathrm{~d} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}^{\prime}$	\log esc gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$100 \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	ot
1.350	0.25505	49,7	0.31352	38,0	9.94154	II,7	Q-a ${ }^{2}$
. 35 I	. 25555	49,7	. 31390	38,0	.94166		5834
- 352	. 25605	49,7	-31428	38,0	.94177		8\%3
. 353	. 25654	49,6	-31465	38,0	.94189	II, 7	
. 354	. 25704	49,6	. 31503	38,0	. $9+201$	II,6	
1. 355	0.25754	49,6	0.31541	38,0	9.94212	II,6	0.05788
. 356	. 25803	49,6	. 31580	38,0	. $9+224$	II,6	.05776
- 357	. 25853	49,6	-31618	38,0	. 94235	II,6	. 05765
. 358	. 25902	49,6	-31656	38,0	. 94247	II,5	. 05753
-359	. 25952	49,6	-31694	38, 1	.94258	II,5	.05742
1.360	0.26002	49,6	0.31732	38,1	9.94270	I I, 5	0.05730
. 361	. 25051	49,5	. 31770	38, 1	. $9+128 \mathrm{I}$	I I, 5	.05719
. 362	. 26101	49,5	- 31808	38, 1	. 94293	II,4	. 05707
. 363	. 26150	49,5	-318.46	38,1	. 94304	II, 4	.05696
. 364	. 26200	49,5	-31884	38, 1	. 94316	II, 4	. 05684
1. 365	0.26249	49,5	0.31522	38,1	9.94327	II,4	0.05573
. 365	. 26299	49,5	. 31960	38,	. $9+338$	II,4	. 05662
. 367	. 26318	49,5	- 31998	38, 1	. 94350	I I, 3	.05650
. 368	. 26398	49,5	. 32036	38, 1	. 94361	II,3	. 05639
. 369	. 26147	49,4	. 32075	38,2	. 94372	II,3	. 05628
I. 370	0.26496	49,4	0.32113	38,2	9.94384	II,3	0.05616
. 371	. 26546	49,4	. 32151	38,2	. 94395	II,2	. 05605
. 372	. 26595	49,4	. 32189	38,2	. $9+405$	II,2	. 05594
. 373	. 26645	49,4	. 32227	38,2	. 94417	II,2	. 05583
. 374	. 26694	49,4	. 32256	38,2	.94429	II,2	. 05371
1.375	0.26743	49,4	0.32304	38,2	9.94440	II,2	0.05560
. 375	. 26793	49,3	- $323+2$	38,2	-9445I	II, I	. 05549
- 377	. 26842	49,3	. 32380	38,2	.94462	II, I	.05538
. 378	. 25891	49,3	. 32418	38,2	-94473	II, I	. 05527
-379	. 26041	49,3	-32457	38,2	-94484	II, I	. 05516
I. 380	0.26990	49,3	0.32495	38,3	9.94495	II,O	0.05305
. 38 I	.27039	49,3	. 32533	38,3	. 94505	II,O	. 05.94
. 382	.27089	49,3	. 32571	38,3	. 94515	II,O	. $05+83$
. 383	.27138	49,3	. 32610	38,3	.94528	II, 0	
. 384	. 27187	49,2	-326+8	38,3	. 94539	II,O	.0546I
1.385	0.27236	49,2	0.32685	38,3	9.94550	10,9	0.05150
. 385	. 27285	49,2	. 32725	38,3	.9456I	10,9	. 05439
. 387	.27335	49,2	. 32753	38,3	. 94572	10,9	. 05128
. 388	.27384	49,2	. 32801	38,3	. 94583	10,9	.05417
.387	. 27 7 433	49,2	- 32840	38,3	. 94594	10,8	.05406
1.350	0.27482	49,2	0.32878	38,4	9.94604	10,8	0.05395
. 391	. 27532	49,2	. 32916	38,4	. 94615	10,8	. 05385
- 392	.27581	49,2	- 32955	38,4	. 94626	10,8	.05374
. 393	. 27630	49, I	. 32993	38,4	. 94637	10,8	. 05363
. 394	. 27679	49, I	. 3303 I	38,4	. 94648	10,7	. 05352
1. 395	0.27728	49, I	0.33070	38,4	9.94658	10,7	0.05342
. 396	. 27777	49, 1	. 33108	38,4	. 94669	10,7	.05331
. 397	. 27826	49, I	-33147	38,4	. 94680	10,7	. 05320
. 398	. 27875	49, I	- 33185	38,4	. 94690	10,6	. 05310
. 399	. 27925	49, 1	-33224	38,4	. 94701	10,6	. 05299
1. 400	0.27974	49, 1	0.33262	38,5	9.94712	10,6	0.05288
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	a $\mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.400	0.27974	49,1	0.33252	38,5	9.94712	10,6	0.05288
. 401	. 28023	49,0	. 33300	38,5	. 94722	10,6	.05278
. 402	. 28072	49,0	. 33339	38.5	. 94733	10,6	.05267
.403	.28I2I	49,0	- 33377	38,5	. 94743	10,5	. 05257
. 404	.28I70	49,0	-33416	38,5	.94754	10,5	.05246
I. 405	0.28219	49,0	0.33454	38,5	9.94764	10,5	0.05236
. 405	. 28258	49,0	. $33+93$	38,5	-94775	10,5	. 05225
. 407	. 28317	49,0	- 3353 I	38,5	. 94785	10,5	. 05215
. 408	. 28366	49,0	. 33570	38,5	. 94796	IO, 4	. 05204
. 409	. 28415	48,9	. 33508	38,5	. 94805	10,4	.05194
1.410	0.28464	48,9	0.33647	38,5	9.948 I 7	10,4	0.05183
.4II	. 28512	48,9	. 33686	38,6	. $9+827$	10,4	. 05173
. 412	.2856I	+8,9	. 33724	38,5	. 94837	10,3	. 05163
. 413	. 28510	48,9	. 33753	38,6	.94848	10,3	.05152
. 414	. 28559	48,9	.33801	38,6	. $9+858$	IO,3	.05I42
1.415	0.28708	48,9	0.338_{10}	38,6	9.94858	10,3	0.05132
. 416	. 28757	48,9	. 33878	38,6	. 94879	10,3	.0512I
.417	. 28806	48,9	-33917	38,6	. 94889	10,2	.05III
. 418	. 28855	+8.8	33956	38,6	. $9+489$	10,2	.05101
. 419	. 28503	48,8	. 33994	38,6	.94909	10,2	. 05091
1.420	0.28952	48,8	0.34033	38,6	9.94919	10,2	0.05081
. 42 I	. 29001	48,8	. 34071	38,6	. 94930	10,2	. 05070
. 422	. 29050	48,8	-31110	38,7	. 94940	10, I	. 05050
. 423	. 29099	48,8	-34I49	38,7	. 94950	10,I	. 05050
. 424	. 29147	48,8	. 34187	38,7	. 94960	IO,I	. 05040
I. 425	0.29196	48,8	0.34225	38,7	9.94970	10,I	0.05030
. 425	. 29245	48,8	. $3+265$	38,7	. 94980	IO, I	. 05020
.427	. 29294	48.7	. 34304	38,7	. 94990	10,0	. 05010
. 428	. 29342	+8,7	. $3+312$	38,7	. 95000	10,0	.05000
. 429	. 29391	48,7	.3438I	38,7	.95010	10,0	. 04990
I. 430	0.29440	48,7	0.34420	38,7	9.95020	10,0	0.04980
.43I	. 29.489	48,7	-34458	38,7	. 95030	10,0	. 0.4970
. 432	. 29537	48,7	- 34497	38,7	. 95040	9,9	. 04960
. 433	. 29585	48,7	. 34536	38,8	. 95050	9,9	. 04950
. 434	. 29635	48,7	- 34575	38,8	. 95060	9,9	.04940
I. 435	0.29683	48,7	0.34613	38,8	9.95070	9,9	0.04930
. 436	. 29732	48,6	. 34652	38,8	. 95080	9,9	. $0+930$
. 437	. 29781	48,5	-34691	38,8	. 95090	9,8	. 04910
-438	. 29829	48,6	. 34730	38,8	. 95099	9,8	. 04901
-439	.29878	48,6	. 34769	38,8	.95109	9,8	.04891
1.440	0.29926	48,6	0.34807	38,8	9.95119	9,8	0.0488 I
. 411	. 29975	48,6	-34846	38,8	. 95129	9,8	.0487I
. 4142	. 30024	48,6	-34885	38,8	. 95139	9,7	. 04861
. 443	. 30072	48,6	-3492.	38,8	.95148	9,7	. 04852
. 444	. 30121	48,6	-34953	38,8	. 95158	9,7	.04842
I. 445	0.30169	48,5	0.35002	38,9	9.95168	9,7	0.04832
. 446	. 30218	48,5	. 35040	38,9	. 95177	9,7	. 0.4823
.+47	. 30266	48,5	. 35079	38,9	. 95187	9,6	. 04813
$\cdot 448$.30315	48,5	.35118	38,9	.95197	9,6	. 04803
. 449	. 30363	+8,5	.35157	38,9	.95206	9,6	. 04794
I. 450	0.30412	48,5	0.35196	38,9	9.95216	9,6	0.04784
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	ωF^{\prime}	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	\log coth u
1.450	$0.30+12$	48,5	0.35196	38,9	9.95316	9,6	0.04784
. 45 I	. $30+60$	48,5	. 35235	38,9	. 95225	9,6	. 04775
. 452	. 30509	48,5	. 35274	38,9	. 95235	9,5	. 04765
. 453	-30557	48,5	-353I3	38,9	. 95245	9,5	. 04755
. 454	-30606	48,4	. 35352	38,9	-95254	9,5	.0 .4746
1.455	0.30654	48,4	0.35391	38,9	9.95264	9,5	0.04736
. 456	. 30703	48,4	. $35+29$	39,0	. 95273	9,5	. 04727
. 457	. 3075 I	48,4	. 35168	39,0	. 95283	9,5	. 0.4717
. 458	-30799	48,4	- 35507	39,0	. 95292	9,4	. 04708
. 459	-30848	48,4	-35546	39,0	.95301	9,4	.04699
1.460	0.30895	48,4	0.35585	39,0	9.953 II	9,4	0.04689
. 461	. 30945	48,4	. 35624	39,0	. 95320	9,4	. $0+680$
. 462	. 30993	48,4	. 35653	39,0	. 95330	9,4	.04670
.463	. 3104 I	48,3	. 35702	39,0	. 95339	9,3	.04661
. 464	. 31090	48,3	-35741	39,0	.95348	9,3	.04652
I. 465	0.31138	48,3	0.35780	39,0	9.95358	9,3	0.04642
. 466	. 31185	48,3	. 35819	39,0	. 95367	9,3	. 04633
. 467	. 31235	48,3	. 35858	39,0	. 95375	9,3	. 04624
. 468	. 31283	48,3	-35897	39, 1	. 93385	9,2	.04615
.469	-3I33I	48,3	-35937	39, 1	. 95395	9,2	.04605
1.470	0.31379	48,3	0.35976	39, I	9.95104	9,2	0.04596
. 471	. 31428	48,3	. 36015	39, I	. 95413	9,2	. $0+587$
. 472	-31476	48,3	. 36054	39, I	. 95422	9,2	.04578
. 473	. 31524	48,2	-36093	39, I	.9543I	9,2	. 0.4569
. 474	-31572	48,2	-36132	39, 1	-954.41	9,I	. 04559
I. 475	0.31621	48,2	0.35171	39, I	9.95450	9,I	0.04550
. 476	. 31669	48,2	. 36210	39, I	. 95459	9,I	. 04541
. 477	. 31717	48,2	. 35249	$39, \mathrm{I}$. 95458	9,I	. 04532
. 478	-31765	48,2	. 36283	39, I	.95477	9,I	. $0+5323$
. 479	-3 $3^{\text {r }} 4$	48,2	. 3632 S	39, 1	.95485	9,0	.04514
1. 480	0.31862	48,2	0.36367	39,2	9.95495	9,0	0.04505
. 481	. 31910	48,2	. 36.405	39,2	. 95504	9,0	. $0+496$
. 482	. 31958	48,2	-36+15	39,2	.95513	9,0	. 04.487
.483	- 32005	48, I	. 36484	39,2	. 95522	9,0	. $0+478$
.484	. 32054	48,1	. 36523	39,2	.95531	9,0	. $0+469$
I. 485	0.32102	48, I	0.36363	39,2	.95540	8,9	. 04460
. 485	. 32151	48,	. 36602	39,2	-95549	8,9	. $04+451$
.487	-32199	48,1	-35641	39,2	-95558	8,9	. $04+42$
. 488	-32247	48,1	- 36680	39,2	. 95557	8.9	. 04433
. 489	-32295	48, 1	. 35719	39,2	. 95576	8,9	. 041424
I. 490	0.32343	48, r	0.36759	39,2	9-95584	8,8	0.04416
. 491	.32391	48,	. 36798	39,2	. 95593	8,8	. $0+407$
.492	- 32439	48,1	. 36837	39,2	. 95602	8,8	. 04398
. 493	. 32487	48,0	.36876	39,3	.956II	8.8 88	. 04389
. 494	. 32535	48,0	. 36916	39,3	.95620	8,8	.04380
I. 495	0.32583	48,0	0.36955	39,3	9.95628	8,8	0.04372
. 496	. 32631	40,0	. 36994	39,3	.95637	8,7	. 04363
. 497	-32679	48,0	. 37033	39,3	-95646	8,7	. 04354
. 498	. 32727	48,0	. 37073	39,3	. 95655	8,7	. 04345
.499	. 32775	48,0	-37112	39,3	. 95663	8,7	. 04337
1.500	0.32823	48,0	0.37151	39,3	9.95672	8,7	0.04328
u	$\log \tan \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{singdu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc g d \mathrm{u}$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$, ω F ${ }_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.500	0.32823	48,0	0.37151	39,3	9.95672	8,7	0.04328
. 501	. 32871	48,0	.37191	39,3	. 95681	8,7	. $0+4319$
. 502	. 32919	48,0	. 37230	39,3	- . 95689	8,6	. 04311
. 503	. 32957	48,0	- 37259	39,3	. 95698	8,6	. 04302
. 504	. 33015	47,9	. 37309	39,3	. 95707	8,6	. 04293
1.505	0.33063	47,9	0.37348	39,3	9.95715	8,6	0.04285
. 505	. 3311 I	47,9	- 37387	39,4	-95724	8,6	. $0+1276$
. 507	. 33159	47,9	-37427	39,4	-95732	8,5	. 04258
. 508	. 33207	47,9	-37466	39,4	-9574I	8,5	. 04259
. 509	- 33255	47,9	. 37505	39,4	-95749	8,5	. 0425 I
1.510	0.33303	47,9	$0.375+5$	39,4	9.95758	8,5	0.04242
. 511	- 33350	47,9	-375S4	39,4	.93766	8,5	. 04234
. 512	- 33398	47,9	-37624	39,4	. 95775	8,5	. 0.4225
. 513	-33+46	47,9	. 37563	39,4	.95783	8,4	. 04217
.514	- 33494	47,8	-37702	39,4	-95792	8,-4	. 0.4208
1.515	0.33572	47,8	$0.377+2$	39,4	9.95800	8,4	0.04200
. 516	. 33590	47,8	-3778I	39,4	.95808	8,4	. 04192
. 517	. 33538	47,8	.37821	39,4	.95817	8,4	.04183
. 518	. 33685	47,8	. 37850	39,4	.95825	8,4	. 04175
. 519	- 33733	47,8	-37900	39,5	.95834	8,3	. 041166
1.520	0.3378 r	47,8	0.37939	39,5	9.958 .42	8,3	0.04158
. 52 I	. 33829	47,8	. 37979	39,5	.95850	8,3	. 04150
. 522	. 33877	47,8	-38018	39,5	. 95859	8,3	.04I4
. 523	- 33924	47,8	-38057	39,5	. 95857	8,3	. 041133
. 524	-33972	47,8	. 38097	39,5	.95875	8,3	. 04125
1.525	0.34020	47,7	0.38135	39,5	9.95883	8,2	0.04117
. 526	-34068	47,7	. 38 I	39,5	. 95892	8,2	. 041108
. 527	-3+115	47,7	-38215	39,5	. 95900	8,2	. 04100
. 528	-34163	47,7	-3825,	39,5	. 95908	8,2	. 04092
. 529	-342II	47,7	. 38295	39,5	. 95916	8,2	. 04084
1.530	0.34258	47,7	0.38334	39,5	9.95924	8,2	0.0 .4076
. 531	-34306	47,7	. 38374	39,5	. 95933	8 , I	. 0.4067
. 532	-34354	47,7	-38413	39,6	.95941	8,1	. 04059
. 533	- 34402	47,7	-38453	39,6	.95949	8, 1	. 0.4051
. 534	-3449	47,7	. 38492	39,6	. 95957	8, I	. 04043
1.535	$0 \cdot 34497$	47,7	0.38532	39,6	9.95965	8,1	0.04035
. 536	-3+545	47,6	.385ıI	39,6	. 95973	8, I	. 0.4027
. 537	-34592	47,6	.38JI	39,6	.95981	8,0	. 04019
. 538	-34640	47,6	-3865I	39,6	. 95989	8,0	. 0.4011
. 539	-34687	47,6	. 38.50	39,6	. 95997	8,0	. 04003
1.540	0.34735	47,6	0.38730	39,6	9.96005	8,0	0.03995
. 541	-34783	47,6	.38769	39,6	.96013	8,o	. 03987
. 5.42	-34830	47,6	-38809	39,6	. 9602 I	8,0	. 03979
. $5+3$	-3+878	47,6	. 38849	39,6	. 96029	8,0	. 03971
. 544	-34925	47,6	-38888	39,6	. 95037	7,9	. 03953
r. 545	0.34973	47,6	0.38928	39,6	9.96045	7,9	0.03955
. 5.46	. 35021	47,6	-38968	39,7	. 96053	7,9	. 03947
. 547	. 35058	47,6	. 39007	39,7	.9606I	7,9	. 03939
. 548	-35116	47,5	- 39047	39,7	.95059	7,9	.0393I
. 549	.35153	47,5	. 35087	39,7	. 96077	7,9	. 03923
1. 550	0.352 II	47,5	0.39126	39,7	9.95084	7,8	0.03916
u	$\log \tan \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	ωF^{\prime}	$\log \csc g d u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega F_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
1. 550	0.35211	47,5	0.39125	39,7	9.95084	7,8	0.03916
. 551	. 35258	47,5	. 39166	39,7	. 95092	7,8	. 03508
. 552	- 35305	47,5	- 39206	39,7	-96100	7,8	. 03900
. 553	-35353	47,5	-39245	39,7	. 96108	7,8	. 03892
- 554	. 35401	47,5	. 39285	39,7	.96II6	7,8	. 03884
I. 555	$0.35+48$	47,5	0.39325	39,7	9.96123	7,8	0.03877
. 556	-35+96	47,5	. 39365	39,7	. 95131	7,7	. 03859
. 557	-35543	47,5	-39404	39,7	. 95139	7,7	. 03851
. 558	-35591	47,5	. $39+14$	39,7	. 9614	7,7	. 03853
. 559	. 35538	47,5	-39484	39.7	. 95154	7,\%	.03846
I. 560	0.35585	47,4	0.39524	39,8	9.95162	7,7	0.03838
. 561	. 35733	47,4	. 39563	39,8	.95170	7,7	. 03830
. 562	35780	47,4	. 39603	39,8	. 9517	7,7	.03823
. 563	35828	47,4	. 39643	39,8	. 96185	7,6	.03815
. 564	. 35875	47,4	. 39688	39,8	. 96193	7,6	. 03807
1.555	0.35923	47,4	0.39722	39,8	9.95200	7,6	0.038 co
. 565	. 35970	47,4	. 3575	39,8	. 95208	7,6	. 03792
. 567	-30017	47,4	-35802	39,8	.952r5	7,6	.03785
. 568	. 35065	47,4	. 39812	39,8	. 95223	7,5	.03777
.559	. 35112	47,4	. 39882	39,8	.9623I	7,5	. 03769
1.570	0.35160	47,4	0.35921	39,8	9.95238	7,5	0.03762
. 57 I	. 35207	47,4	. 39051	39,8	. 962.46	7,5	. 03754
. 572	. 35254	47,3	. 40001	39,8	.96253	7,5	.03747
. 573	. 36302	47,3	. 40041	39,8	. 96251	7,5	. 03739
. 574	. 35349	47,3	. 4008 I	39,9	. 95268	7,5	.03732
I. 575	0.36396	47,3	0.40121	30,9	9.96276	7,5	0.03724
. 576	. $36+14$	47,3	. 40151	39,9	. 96283	7,4	. 03717
. 577	. 3519 I	47,3	. 40200	39,9	.95291	7.4	.03709
. 578	. 36538	47,3	. 40240	35,9	. 95298	7,4	. 03702
. 579	. 35585	47,3	. 40283	39,9	-95305	7,4	.03595
1. 580	0.36633	47,3	0.40320	39,9	9.95313	7,4	0.03687
. 581	. 36680	47,3	. 40350	39,9	. 96320	7,4	. 03580
. 582	. 35727	47,3	. 40.403	39,9	. 95327	7,4	.03573
. 583	-36775	47,3	-40+10	39,9	-95335	7,3	. 03565
. 584	. 36822	47,2	. 40.480	39,9	-953+2	7,3	.03558
1.585	0.36859	47,2	0.40520	39,9	9.96349	7,3	0.03651
. 585	. 36916	47,2	. 40560	39,9	. 95357	7,3	.03643
. 587	. 36954	47,2	. 40399	39,9	. 95364	7,3	. 03636
. 588	. 37011	47,2	. 10539	39,9	. 96371	7,3	.03629
. 589	. 37058	47,2	. 40679	40,0	. 96379	7,3	. 03621
I. 590	0.37105	47,2	0. 10719	40,0	9.95385	7,2	0.03614
. 591	. 37152	47,2	. 40759	40,0	. 96393	7,2	. 03507
. 592	. 37200	47,2	. 40799	40,0	.96700	7,2	.03600
. 593	. 37247	47,2	. 40839	40,0	. 05407	7,2	. 03593
- 594	. 37294	47,2	. 40879	40,0	-95415	7,2	. 03585
1. 595	0.37341	47,2	0.40919	40,0	9.95422	7,2	0.03578
. 596	. 37388	47,2	. 40959	40,0	. 96429	7,2	.03571
. 597	-37435	47, 1	. 40959	40,0	. 96435	7,I	. 03564
- 598	-37482	47, I	. 41039	40,0	. 96443	7,I	. 03557
. 599	. 37530	47, I	.41077	40,0	. 95450	7,1	. 03550
1. 600	0.37577	47, I	0.41119	40,0	9.96457	7,1	0.03543
u	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\pm \mathrm{F}_{0}{ }^{\prime}$	$\log \sin$ od u	$\pm \mathrm{Fo}^{\prime}$	$\log \mathrm{csc} \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.600	0.37577	47,1	0.41119	40,0	9.95157	7,I	0.03543
. 601	. 37624		. 41159		. 95.165		. 03535
. 602	. 37671		. 41199		-95.772		. 03528
. 603	.37718		. 41239		. 96479		.0352I
. 604	. 37765		. 41279	40, I	. 95485	7,0	.03514
1. 605	0.37812	47, I	0.41319	40, 1	9.96493	7,0	0.03507
. 606	. 37859		. 41360		.96500		. 03500
. 607	. 37905		. 41.400		.95307		.03-193
. 608	. 37953		. $41+10$. 95514		.03486
. 609	. 38001		.41480		. 96521		. 03479
1.610	0.380.48	47,0	0.41520	40, 1	9.95528	7,0	0.03472
.6II	. 38095		.41560		. 96535	6,9	. 03465
. 612	. 381.42		. 41600		. 95542		.03458
. 613	. 38189		. 41510		. 96548		. 03452
.614	. 38235		.41680		. 96555		.03+45
1.615	0.38283	47,0	0.41720	40,1	9.95562	6,9	0.03438
. 616	. 38330		. 11761		. 96569		.0313I
. 617	. 38377		- 41801		. 95576		.03-424
. 618	. 38.424		. 41841		. 96583	6,8	.03417
. 619	. 3847 I		. 4188 I		.96590		.03410
1.620	0.38518	47,0	0.41921	40,2	9.95597	6,8	0.03403
. 621	.38565		. 41961		. 96603		. 03397
. 622	. 38512		. 42001		.96610		. 03390
.623	. 38559	46,9	. 42012		. 96617		.03383
. 624	. 38705		. 42082		.96624		. 03376
1.625	0.38752	46,9	0.42122	40,2	9.96630	6,7	0.03370
. 625	.38799		. 42152		. 96537		. 03363
. 627	. 38846		. 12202		. 96644		. 03356
. 628	. 38893		- 42243		. 95651		. 03349
. 629	. 38940		. 42283		. 95657		. 03343
1.630	0.38987	46,9	0.42323	40,2	9.9656	6,7	0.03336
. 631	. 39034		. 42363		. 95671		. 03329
. 632	. 39081		. 42403		. 96677		. 03323
. 633	. 39128		. 42444		. 96584	6,6	. 03316
. 634	. 39175		-42484		. 96691		. 03309
1. 635	0.39221	46,9	0.42524	40,2	9.95697	6,6	0.03303
. 636	. 39258		. 42564	40,3	. 96704		. 03296
. 637	. 39315	46,8	. 42505		. 96710		. 03290
. 638	. 39362		. 42645		. 96717		. 03283
. 639	- 39409		. 42585		. 96724		. 03276
1. 640	0.39456	46,8		40,3	9.95730	6,5	0.03270
. 641	. 39502		. 42756		. 95737		. 03263
.642	- 39549		. 42805		. 96743		. 03257
. 643	-39595		. 42846		. 96750		. 03250
. 644	. 39643		. 42887		. 96756		. 03214
1.645	0.39690	46,8	0.42927	40,3	9.95763	6,5	0.03237
. 6.46	. 39736		. 42957		. 96769		. 03231
. 647	- 39783		. 43008		.95776		. 03224
.648	- 39830		. 43048		. 95782	6,4	. 03218
. 649	-39877		. 43083		. 96788		. 03212
1. 650	0.39923	46,8	0.43129	40.3	9.96795	6,4	0.03205
u	log tan gd u	* F FO^{\prime}	$\log \sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin 9 \mathrm{du}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh u	$\omega \mathrm{Fg}^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}^{\prime}$	\log coth u
1. 650	0.39923	+5,8	0.43123	40,3	9.95795	6,4	0.03205
. 651	. 39970	46,7	.43169		.95801		. 03199
. 652	. 40017		. 43203	40,4	. 95808		. 03192
. 653	. 40054		. 43250		.95814		. 03185
. 654	. 40110		- 43290		. 0,5820		. 03180
1.655	0.40157	46,7	0.43330	40,4	9.95827	6,4	0.03173
. 655	. 40204		.43371		.96833	6,3	.03167
. 657	. 40251		. $43+1 \mathrm{I}$.95840		.03i50
. 658	. 40297		- $+3+51$. 95846		.03154
. 659	. 40344		- $+3+92$. 95852		.03148
1.650	0.40391	46,7	0.43532	40,4	9.95838	6,3	0.03142
. 661	. 40437		. +3573		.96855		. 03135
. 662	-40+84		. 43613		. 96871		.03129
. 663	. 4053 I		. 43553		.95877		.03123
. 664	. 40577		. 43594		.95883	6,2	.03117
1.665	0.40524	46,7	0.43734	40,4	9.95890	6,2	0.03110
. 665	. 40571	46,6	. 43775		. 96895		. 03104
. 667	. 40717		-43815		. 96002		. 03008
. 668	. 10764		. 43856		.96,08		.030g2
. 669	. 408 II		. 43895	40,5	. 96915		. 03035
1.670	0.40857	46,6	0.43937	40,5	9.95921	6,2	0.03079
. 671	. 40904		. 43977		.95927		. 03073
. 672	. 40950		. 414017		. 96933	6, I	. 03057
. 673	. 40997		. 44058		.95939		. 03051
. 674	.41044		-4,4098		. 95945		.03055
1. 675	0.41090	46,6	0.44139	40,5	9.96951	6,1	0.03049
. 676	. 41137		.41579		. 96957		. 03043
. 677	.41183		. 41220		. 95954		. 03036
. 678	. . 41230		- +4260		-96970		.03030
. 679	. $412 \pi \bar{J}$. 44301		.96976		. 03024
1.680	0.41323	46,6	0.44341	40,5	9.96982	6,0	0.03018
.68I	. 41370	46,5	.44382		. 95988		. 03012
. 682	. 41416		. $1+422$. 95994		. 03005
. 683	. 41463		. 44463		. 97000		. 03000
. 684	. 41509		. 44503		.97006		. 02997
1.685	0.41556	46,5	0.44544	40,5	9.97012	6,0	0.02988
. 685	.+11602		. +4585		. 97018	.	. 02982
. 687	. 41649		. 41625	40,6	.97024		. 02976
. 688	.41695		. $4+4665$. 97030	5,9	. 02970
. 687	$.4174^{2}$. 44705		.97036		. 02964
1.690	0.41788	46,5	0. $+47+4$	40,6	9.97042	5,9	0.02958
. 691	.41835		. 44787		. 97047		. 02953
. 692	. 4183 r		. 44828		. 97053		. 02947
. 693	. 41928		. 44863		.97059		. 02941
. 694	. 41974		.44509		. 97065		. 02935
1.695	0.4202 I	46,5	0.44950	40,6	9.9707 I	5,9	0.02929
. 696	. 42067		- +1950		-67077		. 0.2923
. 697	. 42 II4	46,4	.45031		. 97083	5,8	. 02917
. 698	. 42160		. 45072		.97089		. 02911
. 699	. 42207		.45112		. 97094		. 02906
1.700	0.42253	46,4	0.45153	40,6	9.97100	5.8	0.02900
u	$\log \tan \mathrm{gd} u$	$\cdots \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\infty \mathrm{F}_{0}{ }^{\prime}$	$\log \sin 9 \mathrm{da}$	$\omega \mathrm{F}^{\prime}$	$\log \operatorname{cse} \mathrm{gd}$ u

Logarithms of Hyperbolic Functions.

U	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.700	0.42253	46,4	0.45153	40,6	9.97100	5,8	0.02900
. 701	. 42259		. 45193		.97105		.02894
. 702	. 42346		. 45234		.97112		. 02888
. 703	. 12392		. 45275		.97118		. 02882
.704	- $42+39$. 45315		. 97123		. 02877
1. 705	0.42485	46,4	0.45356	40,7	9.97129	5,7	0.02871
. 706	. 42531		. 45397		.97I35		. 02855
. 707	. 42578		-45437		.97I4I		. 02885
. 708	. 42524		-45478		.971.46		. 02854
. 709	.42671		. 45519		.97152		
1.710	0.42717	46,4	0.45559	40,7	9.97158	5,7	0.028 .42
. 711	. 42763		. 45600		. 97163		. 02837
. 712	. 42810		. 4561 I		. 97169		.0283I
. 713	. 42856	46,3	-4568I		.97175		. 02825
. 714	. 42902		. 45722		. 97180	5,6	. 02820
1.715	0.429 .49	46,3	0.45763	40,7	9.97185	5,6	0.0281_{4}
. 716	. +2995		. 45803		. 97192		. 028808
. 717	. 43041		-458+4		. 97197		. 02803
. 718	. 43088		-45885		. 97203		. 02797
. 719	. 43134		-45925		. 97208		. 02792
1.720	0.43180	46,3	0.45956	40,7	9.97214	5,6	0.02785
. 72 I	. 43227		. 46007		. 97220		. 02780
. 722	. 43273		- . 46048		. 97225		. 02775
. 723	. 43319		.46089		.97231	5,5	. 02769
.724	. 43355		. 46129	40,8	. 97236		.02754
1.725	0.43412	46,3	0.76170	40,8	9.972 .42	5,5	0.02758
. 726	. 43458		- +621 I		. 97247		. 02753
.727	. 43504		. 46252		. 97253		. 02747
. 28	-43551		. 46292		. 97258		.027-12
.729	. 43597		.46333		. 97264		. 02736
1.730	0.43643	46,2	0.46374	40,8	9.97269	5,5	0.02731
. 731	. 43689		.46415		. 97275		. 02725
.732	. 43736		. 46455		. 97280	5,4	. 02720
. 733	. 43782		. 45495		. 97285		. 02715
-734	-43828		. 46537		.97291		. 02709
1.735	0.43874	46,2	0.46578	40,8	9.97295	5,4	0.02704
. 736	. 43920		.46619		. 97302		. 02698
. 737	-43967		. 46660		. 97307		. 02593
.738	-41013		. 46700		.97313		. 02687
. 739	. 41059		$.4674^{1}$.97318		. 02682
1.740	0.44105	46,2	0.46782	40,8	9.97323	5,4	0.02677
. 741	. 41151		.46823		.97329	5,3	. 02671
. 742	-44198		. 46854		. 97334		. 02666
. 743	-44244		. 46905		. 97339		.0266I
. 744	. 41290		. $469+5$	40,9	. 97345		. 025.55
1.745	0.44336	46,2	0.46985	40,9	9.97350	5,3	0.02550
. 746	. 44382		. 47027		. 97355		. 02645
. 747	-41428		. 47068		. 97350		.026.10
.748	. 44475	46,1	. 47109		. 97366		. 02634
. 749	. 4452 I		. 47150		.9737I		. 02629
1. 750	0.44567	46,1	0.47191	40,9	9.97376	5,3	0.02624
u	$\log \tan 9 \mathrm{~d} u$	(a) $\mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	a $\mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega F_{3}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

U	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cosh u	$\omega \mathrm{Fo}^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
1.750	0.44557	46,1	0.47191	40,9	9.97376	5,3	0.02624
. 751	. 44613		. 47231		. 97382	5,2	. 02518
. 752	. 41659		. 47272		. 97387		. 02613
. 753	. 44705		.47313		. 97392		. 02508
. 754	. 4475 I		-47354		. 97397		. 02603
1.755	0.44797	46, I	0.47395	40,9	9.97402	5,2	0.02598
. 756	. $448+4$. $47+35$. 97.108		. 02592
. 757	- 41890		-47477		. 97413		.02387
. 758	. 44935		. 47518		.97418		. 02582
. 759	. 44982		. 47559		.97423		. 02577
1.750	0.45028	46, I	0.47600	40,9	9.97428	5,I	0.02572
. 761	. $450 \% 4$. 47641		. $97+33$. 02567
. 752	. 45120		. 47582		. 97439		. 02561
.753	. 45166		. 47722		. $97+14$. 02556
. 754	. 45212		. 47763	41,0	. 97419		. 02551
1.765	0.45258	46, I	0.47804	41,0	9.97454	5,I	0.025 .46
. 756	. 45304	46,0	. 47845		. 97459		. 02531 I
. 757	. 45350		-47885		. 97464		. 02535
. 758	. 45396		. 47927		. 97469		. 02531
. 760	- $45+42$. 47968		. 97474		. 02526
1.770	0.45488	46,0	0.48009	41,0	9.97479	5,0	0.02521
. 771	. 45534		. 48050		. 97484		. 02516
. 772	. 45580		. 48091		. 97489		. 02511
. 773	. 45627		.48I32		. 97494		.0250
. 774	-45673		.48173		. 97499		. 02501
1.775	0.45719	46,0	0.48214	41,0	9.97504	5,0	0.02496
. 776	. 45765		. 48255		. 97509		. 02491
. 777	.45810		- 48296		. 97514		. 02485
.778	. 45856		. 48337		. 97519		.02481
. 779	. 45902		. 48378		. 97524		.02476
1:780	0.45948	46,0	0.48419	41,0	9.97529	4,9	0.02471
.78I	. 45904		. 48.450		. 97534		. $02+66$
.782	. 46040		. 48501		. 97532		.02401
.783	-46085		. 48542		. 97544		. 02456
. 78.4	. 46132		. 48583		-97549		.0245I
1.785	0.46178	45,9	0.48524	4I,I	9.97554	4,9	0.02446
. 785	. 46224		. 48556		. 97559		. 02411
. 787	. 46270		.48707		. 97564		. 02436
.788	. 46316		. 48748		. 97568		. 02432
. 789	. 46362	*	.48789		. 97573		. 02427
1.790	0.46408	45,9	0.48830	41,1	9.97578	4,8	0.02 .122
.791	. 46454		. 48871		. 97583		. 02417
. 792	. 46500		. 48912		. 97588		. 02412
. 793	. 46546		. 48953		. 97593		. 02407
. 794	. 46592		. 48394		. 97597		. 02403
1.795	0.46637	45,9	0.49035	41,1	9.97502	4,8	0.02398
. 796	. 46683		. 49076		. 97607		. 02393
. 797	. 46729		. 49117		. 97612		. 02388
. 798	. 46775		. 49159		. 97617		. 02383
. 799	. 46821		. 49200		-97621		. 02379
1.800	0.46857	45,9	0.49241	4 I .1	9.97626	4,8	0.02374
u	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\pm \mathrm{Fo}^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega F^{\prime}{ }^{\prime}$	\log cosh u	$\omega \mathrm{Fo}^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
I. 800	0.46857	45,9	0.49241	41, I	9.97026	4,8	0.02374
. Sor	. 46913		. 49282		. 97531	4,7	. 02369
. 802	. 46959		. 49323		.97536		. 02354
. 803	.47004		. 49364		. 97510		. 02360
. 80.4	. 47050	45,8	. 49.405		-97545		. 02355
1.805	0.47095	45,8	0.49416	41, I	9.97650	4,7	0.02350
. 805	. 47142		. 49483		. 97651		. $023+6$
. 807	. 47188		. 49529	41,2	. 97559		.02341
. 808	- 47234		. 45570		-97664		. 02336
. 809	. 47279		. 49611		.97658		. 02332
1.810	0.47325	45,8	0.49532	41,2	9.97573	4,7	0.02327
. 811	. 473 I I		. +9693		.97578	4,6	. 02322
. 812	. 47417		. 49734		. 97582		.02318
. SI3	. 47463		. 49775		.97587		. 02313
.814	. 47509		. 49817		. 97592		. 02308
I. 815	0.47554	45,8	0.49858	41,2	9.97595	4,6	0.02304
. 815	. 47600		. 49899		.97701		. 02299
.817	.47646		. 49940		-97705		. 02295
. 818	. 47692		. 49982		.97710		. 02290
. 819	. 47737		. 50023		-97715		. 02285
1.820	0.47783	45,8	0.50054	41,2	9.97719	4,6	0.02281
. 82 I	. 47829		. 50105		.97724		. 02276
. 822	. 47875		. 50146		. 97728	4,5	.02272
. 823	. 47921		. 50188		. 97733		. 02267
. 824	. 47956		. 50229		. 97737		.02263
1.825	0.48012	45,7	0.50270	4I,2	9.97742	4,5	0.02258
. 826	. 48058		. 50311		.97746		. 02254
. 827	. 48104		. 50353		. 97751		. 02249
. 823	.48I+9		. 50394		-97755		. 02245
. 829	.48195		-50435		. 97760		. 02240
r. 830	0.48241	45,7	0.50475	41,3	9.97764	4,5	0.02236
. 831	. 48285		. 50518		. 97759		. 0223 I
. 832	. 48332		. 50559		-97773		. 02227
. 833	. 48378		. 50500		-97778	4,4	. 02322
. 834	. 48424		. 50641		-97782		. 02218
1.835	0.48 .469	45,7	0.50583	41,3	9.97787	4,4	0.02213
. 836	. 48515		. 50724		.97791		. 02209
. 837	. 48361		. 50755		-97796		. 02204
. 838	. 48505		. 50805		. 97800		. 02200
. 839	. 48652		. 50848		. 97804		.02196
1.840	0.48598	45,7	0.50887	4I,3	9.97809	4,4	0.02191
. 8.41	. $487+3$. 50930		. 97813		. 02187
. $8+2$. 48789		. 50972		-97817		. 02183
. 843	. 48835		. 51013		-97822		. 02178
.8+4	. 48880		. 51054		. 97826	4,3	. 02174
1. 845	0.48926	45,7	0.51096	4I,3	9.97831	4,3	0.02169
. 8.86	. 48972	45,6	. 51137		. 97835		. 02155
. $8+7$. 49017		-51178		. 97839		. 02161
. 8.8	. 49063		. 51219		. 97843		. 02157
. 849	. 49109		. 5126 I		.97848		. 02152
1. 850	0.49154	45,6	0.51302	41,3	9.97852	4,3	0.02148
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log cse gd u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{u^{\prime}}$	$\log \cosh u$	$\omega \mathrm{FG}^{\prime}$	$\log \tanh u$	$\omega \mathrm{FG}^{\prime}$	$\log \operatorname{coth} u$
1.850	0.49154	45,6	0.51302	41,3	9.97852	4,3	0.02148
. 851	. 49200		. 51343		.97836		. 2214
. 852	. 49246		. 51385		. 9785 r		. 02139
. 853	. 49291		. $51+25$. 9785		. 02135
. 854	-49337		. 51463	41,4	. $97-859$.02131
1.855	0.49382	45,6	0.31509	41,4	9.97873	4,3	0.02127
. 855	. $49+28$. 51550		. 97878	4,2	. 02122
. 857	. 49474		. 51592		. 97883		. 02118
. 858	. 49519		.51633		. 97885		. 02114
. 539	. 49565		. 51674		.97890		. 02110
1.850	0.49510	45,6	0.51715	4I,4	9.97895	4,2	0.02105
. 851	. 49556		. 5175%		.97899		. 02101
. 852	. 49702		. 51793		. 97903		. 02957
. 853	. 49747		. 51840		. 97907		02003
. 854	. 49793		.5188I		. 97911		. 02082
1.855	0.45838	45,6	0.51923	4I,4	9.97916	4,2	0.02084
. 855	. 49884		. 51954		. 97920		. 0.2080
. 857	. 49929		. 52005		. 97924		.02076
. 858	. 49975		. 5204		. 97928	4, I	. 02072
. 859	. 50020	45,5	- 52088		. 97932		. 02058
1.870	0.50056	45,5	0.52130	4I, 4	9.97935	4,I	0.02054
.871	. 50112		. 52171		. 97940		. 02050
.872	. 50157		. 52212		. 97945		.02055
. 873	. 50203		. 52254		. 97949		. 0205 I
. 874	. 502.48		. 52295		-97953		. 02047
1.875	0.50294	45,5	0.52337	41,4	9.97957	4,1	0.02043
.875	. 50339		. 52378		.97961		. 02039
.87\%	. 50385		-52420		. 97965		. 22035
. 8,8	. 50430		. 52.461		. 97069		. 02031
. 879	. 50476		. 52503		. 97973		. 02027
1.830	0.50521	45,5	0.52544	41,5	9.97977	4,0	0.02023
. 83 I	. 50567		. 52585		.97981		. 02019
. 832	. 50612		. 52527		. 97985		. 02015
. 883	. 50658		. 52568		. 97908		.02011
. 884	. 50703		. 52710		. 97993		. 02007
1.885	0.50749	45,5	0.52751	41,5	9.97997	4,0	0.02003
. 885	. 50794		. 52793		. 58001		. 01999
. 887	. 50840		. 52834		.98005		. 01995
. 883	. 50885		. 52875		.98009		. org9r
. 889	. 5093 I		. 52917		.98013		. 01987
1.890	0.50976	45,5	0.52959	41,5	9.98017	4,0	0.01583
.891	. 51021		. 53000		. 08021		. 01979
. 892	. 51067	45,4	. 53042		. 98325		. 01975
. 893	-51112		. 53083		.98029	3,9	. 01975
. 894	. 51158		. 53125		.98033		. 01967
1.895	0.51203	45,4	0.53 I 66	41,5	9.98037	3,9	0.01963
. 896	. 51249		. 53208		.98041		. 01959
. 897	. 51294		. 53249		. 98045		. 01955
. 898	. 51340		. 53291		. 98049		. 01951
. 839	. 51385		. 53332		. 98053		. 01947
1.900	0.51430	45,4	0.53374	41,5	9.98057	3.9	0.01943
U	$\log \tan \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{F}_{0}^{\prime}$	$\log \sin \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{3}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
1.900	0.51 .430	45,4	0.53374	41,5	9.98057	3,9	0.01943
. 501	. 51476		. 53415		. 98060		. 01940
. 902	. 51521		- $53+57$. 98064		. 01936
. 903	. 51567		. 53498		-98068		. 01932
.904	. 51612		. 53540		-98072		. 01928
1.905	0.51657	45,4	0.3358 I	41,5	9.98076	3,8	0.01924
.905	. 51703		. 53523	41,6	. 93080		. 01920
. 907	. 51748		. 53665		- 98084		. 01916
. 908	. 51794		- 53705		- 98087		. 01913
. 909	. 51839		-53748		. 98091		. O1909
1.910	0.51884	45,4	0.53787	41,6	9.98095	3,8	0.01905
.9II	. 51930		. 5383 I		. 98099		. Oigor
.912	- 51975		. 53872		. 98103		. 01897
.913	- 52020		-53914		.98106		. 01894
.914	. 52066		. 53955		.98iIo		. 01890
1.915	0.52111	45,4	0.53597	41,6	9.9811_{4}	3,8	0.01885
. 916	. 52157		. 51039		.98iri8		. 01882
.917	. 52202	45,3	- 54080		. 98122		. 01878
. 918	. 52247		. 51122		. 98125		. 01875
.919	. 52293		. 54164		-.98i29	3,7	.01871
1.920	0.52338	45,3	0.54205	41,6	9.98133	3,7	0.01857
. 921	. 52383		. 54247		. 98137		. 01863
. 922	- 52429		- 54288		.98140		. 01850
. 923	. 52474		- 54330		.98144		.OI856
. 924	. 52519		. 54372		.98148		.01852
1.925	0.52565	45,3	0.51413	41,6	9.98151	3,7	0.01849
. 926	. 52610		. 54155		.98155		.01845
. 927	. 52555		-5449		.98159		. 01841
. 928	- 52700		. 54538		. 98162		. 01838
.929	-52746		-54583		.98166		. O1834
1.930	0.52791	45,3	0.54621	41,6	9.98170	3,7	0.01830
.93I	. 52835		. 54663		. 98173		. 01827
. 932	. 52882		. 54705		.98177	3,6	. 01823
. 933	. 52927		. 54746		.98181		. 01819
. 934	. 52972		-54783	41,7	.98184		.01816
1.935	0.53018	45,3	0.54830	4r,7	9.98188	3,6	0.01812
. 936	.53063		. 54871		.98192		. 01808
. 933	- 53108		-54913		. 98195		. 01805
. 938	-53153		-51955		.98199		. 01801
. 939	. 53199		-54995		. 98202		. 01798
1.940	0.532 .14	45,3	0.55038	41,7	9.98206	3,6	0.01794
. 9.41	. 53289		. 55080		. 98210		. 01790
.942	- 53334		. 55121		-98213		.01787
.943	-53380	45,2	. 55163		.98217		.01783
. 944	. 53425		. $55205^{\prime \prime}$. 98220		. 0.1780
1.945	0.53470	45,2	0.552 .46	41,7	9.98221	3,6	0.01776
. 946	-53515		- 55288		. 98227	3,5	. 01773
. 947	-5356I		. 55330		. 98231		. 01769
. 948	. 53606		. 55371		. 98235		.01765
. 949	. 53651		. 55413		. 98238		. or762
1.950	0.53696	45,2	0.55455	41,7	9.98212	3,5	0.01758
!	$\log \tan \operatorname{dd} u$	${ }_{0} \mathrm{~F}_{0}{ }^{\prime}$	$\operatorname{logsec} \mathrm{gd} u$	$\infty \mathrm{F}_{0}{ }^{\prime}$	$\log \sin g d u$	$\infty \mathrm{F}_{3}^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\underline{\log \sinh } \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g}$ tanh u	${ }^{\circ} \mathrm{FF}^{\prime}{ }^{\prime}$	\log coth u
1.950	0.53696	45,2	0.55455	41,7	$0.982+2$	3.5	0.01758
.95I	. 53712		. 55495		. 98245		. 01755
. 952	. 53787		- 55538		-98249		-01751
. 953	. 53832		- 55580		- 98252		-01748
. 954	. 53877		. 55622		. 98256		. 01744
1.955	0.53922	45,2	0.55663	41,7	9.98259	3,5	0.01741
. 956	. 53968		. 55705		-98263		. 01737
. 957	-54013		-55747		. 98266		. 01734
. 958	-54058		- 55788		-98269		. 01731
. 959	.54103		. 55830		. 98273		.01727
1.960	0.54148	45,2	0.55872	41,7	9.98276	3,4	0.01724
. 951	-54194		. 55914		. 98280		. 01720
. 962	- 54239		- 55955		. 98283		. 01717
. 963	- $5+284$		- 55997		. 98287		. 01713
. 964	- $5+329$. 56039	4I,8	. 98290		. 01710
1.965	0.54374	45,2	0.56081	41,8	9.98294	3.4	0.01706
. 966	. 54419		.56122		. 98297		. 01703
. 967	. $54+165$. 56164		. 98300		. 01700
. 968	-54510		. 56206		-98304		. 01696
. 969	- 54555		- 562.18		. 98307		. 01693
1.970	0.54600	45,2	0.56290	41,8	9.983 II	3,4	0.01689
.971	. 54645	45,1	. 56331		. 98314		. 01686
. 972	. 54690		. 56373		. 98317		. 01683
. 973	. 54736		. 56415		. 98321		. 01679
. 974	. 54781		. 56457		.98324		. 01676
1.975	0.54826	45,1	0.56498	4I,8	9.98327	3,3	0.01673
. 976	. 54871		. 56540		. 98331		. 01669
. 977	. 54916		. 56582		. 983334		. 01666
. 978	-54961		. 56521		. 98337		. 01663
. 979	-55005		. 56666		. 98341		. 01659
1.980	0.55051	45,1	0.56707	4I,8	9.98344	3,3	0.01656
.98I	. 55097		. 567.49		. 98347		. 01653
. 982	. 55142		. 56791		. 98351		. 01649
. 983	. 55187		. 56833		. 08354		. O1646
.984	. 55232		. 56875		.98357		. 01643
	0.55277	45,1	0.56916	4I,8	9.98360	3.3	0.01640
. 986	. 55322		. 56958		. 98364		. 01636
. 987	. 55367		. 57000		.98367		. 01633
. 988	- 55412		. 57042		. 98370		. 01630
.989	. 55457		. 57084		. 98374		.01626
1.990	0.55502	45, 1	0.57126	4I,8	9.98377	3,2	0.01623
. 991	. 55547		. 57167		. 98380		. 01620
. 992	- 55593		-57209		. 98383		. 01617
. 993	. 55638		. 57251		. 98387		.01613
. 994	. 55683		. 57293		. 98390		.01610
1.995	0.55728	45,1	0.57335	41,9	9.98393	3,2	0.01607
. 996	. 55773		. 57377		. 98396		. 01604
. 997	. 55818		-57419		. 98399		. or6ar
. 998	. 55863		- 57460		$.98403$. 01597
. 999	. 55908		. 57502		. 98406		. 01594
2.000	0.55953	45,0	0.57544	41,9	9.98409	3,2	0.01591
*	$\log \tan$ od 10	- $\mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\pm \mathrm{Ff}^{\prime}$	$\log \sin 9 \mathrm{~d} u$	$\cdots \mathrm{Fo}^{\prime}$	$\log \csc \mathrm{gd} \mathrm{n}$

Logarithms of Hyperbolic Functions.

u	$\underline{l o g} \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \operatorname{coth} u$
2.000	0.55953	45,0	0.57541	41,9	9.98 .109	3,2	0.01591 .01588
. 001	. 55998		. 57586		. 98.112		. 01588
. 002	. 56043		. 57628		.98415		. .101582
. 003	. 56088		. 57670		. 98418		. .101578
. 004	. 56133		. 57712				.0157
2.005	0.56178	45,0	0.57754	41,9	9.98425	3,2	0.01575
2.005	. 56223	450	. 57795		. 98428	3,1	. 01572
. 007	. 56258		. 57837		.98431		. 01509
. 008	. 56313		. 57879		. 98434		1566
. 009	. 56358		. 57921		.98437		. 01563
2.010	0.56403	45,0	0.57963	4I,9	9.98440	3,1	0.01560
. 01 II	. $56+18$. 58005		. 9814		. 01556
. 012	. 56493		. 580.47		. 98447		. O1553
. 013	. 56538		. 58089		. 98.850		. 01550
. 017	.56583		.5853I		. 98453		.01547
	0.56628	45,0	0.58172	41,9	9.98756	3,I	0.01544
2.015	. .56673	4,	. 58214		. 98459		.01541
. 017	. 56718		. 58256		. 98862		. 01538
. 018	. 56723		. 58298		. 98465		. OI535
. 019	. 56808		. 58340		. 98.468		.OI532
2.020	0.56853	45,0	0.58382	41,9	9.98471	3,1	0.01529
. 02 r	. 56898		. $58+24$. 98174		.OI520
. 022	. 569.13		. 58466		. 98.877	3,0	-OI523
. 023	. 56988		. 58508		. 98180		.OI5 216
. 024	. 57033		. 58550		. 98.84		.OI516
2.025	0.57078	45,0	0.58592	41,9	9.98487	3,0	0.01513
. 026	. 57123		. 58534		. 98490		.OI510
. 027	. 57168		. 58676		.98893		.01507
. 028	. 57213		. 58718	42,0	. 98.490		.OI504
. 029	. 57258		. 58760		. 98.499		.OI50I
2.030	0.57303	45,0	0.58802	42,0	9.98502	3,0	0.01498
. 03 I	. 57348		. 58843		. 98505		.01495
. 032	. 57393	44.9	. 58885		. 98508		. OI 492
. 033	- $57+38$. 58927		.9851I		.01489
. 034	. 57483		. 58969		.98514		. OI485
	0.57528	44,9	0.59011	42,0	9.98517	3,0	0.01483
. 036	. 57573		. 59053		. 98519		.0148I
. 037	. 57518		. 59095		. 98522	-	.0I. 478
. 038	. 57563		- 59137		. 98525	2,9	. OI475
. 039	. 57708		. 59179		. 98528		.OI472
2.040	0.57753	44,9	0.59221	42,0	9.98531	2,9	0.01469
. 04.1	. 57797		. 59263		. 98534		. OI466
. 042	. 578.12		- 59305		. 98537		. O1.463
. 043	. 57887		- 59347		. 98510		. OI460
. 044	. 57932		- 59389		. 98543		. 01457
	0.57977	44,9	0.59431	42,0	9.98546	2,9	0.01454
. 046	. 58022		. 59473		. 98549		. 01451
. 047	. 58067		- 59515		. 98552		. Or448
. 0.48	. 58112		- 59557		. 98555		.Or445
. 049	. 58157		- 59599		. 98558		. OI442
2.050	0.58202	44,9	0.596 .41	42,0	9.98560	2,9	0.01440
\pm	log tan gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\text {f }}$	$\log \sin \mathrm{gd} u$	ωF_{0}^{\prime}	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{Fa}^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \operatorname{coth} u$
2.050	0.58202	449	0.59641	42,0	9.98560	2,9	0.01480
. 051	. 582.46		. 59583		. 98563		.01437
. 052	. 58291		. 59725		. 98560		.OI434
. 053	. 58336		- 59767		. 98359		.OI43I
. 054	. 58381		. 59809		. 98572		. O1428
2.055	0.58 .426	44.9	0.59851	42,0	9.98575	2,9	0.01425
. 056	. 58.471		- 59893		. 98578	2,8	. O1422
. 057	. 58516		- 59935		. 93580		. OI 420
. 058	. 58561		. 59977		. 98583		. 01417
. 059	. 58606		. 60019		. 98586		. OI4I4
2.060	0.58650	44,9	0.6006 I	42,0	9.98589	2,8	0.01411
. 061	. 58695		.60104		. 98592		. 01.408
. 062	. 58740		. 60146		. 98595		. Or 405
. 063	. 58785		. 60188		. 98597		. O1-403
. 064	. 58830		. 60230	42,1	. 98500		.01400
2.055	0.58875	44,8	0.60272	42,1	9.98603	2,8	0.01397
. 066	. 58920		. 60314		. 98606		.or 394
. 067	. 58964		. 60356		. 98509		. Or 391
. 068	- 59009		. 60398		. 988 II		. 01389
.069	. 59054		. 60440		. 98614		. 01386
2.070	0.59099	44,8	0.60482	42,1	9.98517	2,8	0.01383
. 071	. 59144		. 60524		. 98620		. 01380
. 072	. 59189		. 60565		. 98622		. 01378
. 073	. 59233		. 60508		. 98525		. 01375
. 074	. 59278		. 60650		. 98528	2,7	. 01372
2.075	0.59323	44,8	0.60692	42,I	9.98631	2,7	0.01369
. 076	. 59368		. 60734		. 98533		. 01367
. 077	-59413		. 60777		. 98536		. 01354
. 078	- 59457		. 60819		. 98639		.0136I
. 079	. 59502		. 60851		. 98642		. 01358
2.080	0.59547	44,8	0.60903	42,I	$9.985+4$	2,7	0.01356
.08I	. 59592		. 60945		. 98647		. 01353
. 082	. 59637		.60987		. 98550		. 01350
. 083	. 59681		. 61029		. 98652		. Or 348
. 084	. 59726		.61071		. 98555		. 01345
2.085	0.59771	44,8	0.61113	42,1		2,7	
. 086	. 59816		.6II55		. 98666		. 01340
.087	. 59851		. 6 rig 8		. 98663		. 01337
. 088	. 59905		. 61240		. 98666		. Or 334
. 089	. 59950		. 61282		. 98568		. O1332
2.090	0.39995	44,8		42, I	9.98571	2,7	
.091	. 60040		. 61366		. 98857		.01326
. 092	. 60085		-. 61.408		. 98576	2,6	. 01324
. 093	. 60129		. 61450		-98679		.or32I
. 094	. 60174		.61492		. 98682		.01318
2.095	0.60219	44,8	0.61535	42,1	9.98684	2,6	0.01316
. 096	. 60264		. 61577		. 98587		.or313
. 097	. 60308		. 61619		. 98690		. 01310
. 098	. 60353		.6166I		. 98692		. 01308
. 099	. 60398		. 61703		. 98695		. 01305
2.100	0.60443	44,8	0.61745	42,	9.98597	2,6	0.01303
u	$\log \tan \operatorname{dd} \mathrm{u}$	$\infty \mathrm{Fo}^{\prime}$	$\log \sec \mathrm{gd} u$	as $\mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} \mathrm{t}$	$\pm \mathrm{F}_{3}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\underline{\log \sinh u}$	$\omega F_{0}{ }^{\prime}$	log cosh 4	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fe}^{\prime}$	\log coth u
2.100	0.60443	4,88	0.61745	42, I	9.98697	2,6	0.01303
. 101	. 60487	44,7	. 61787		.98700		. 01300
. 102	. 60532		. 61830	42,2	. 98703		. 01297
. 103	.60577 .60622		.61872		. 98708		. 01292
			0.61956	42,2	9.98710	2,6	0.01290
2.105 .106	0.60666	44.7	0.61958 .61998	4,2	9.98713		. 01287
.106 .107	. 60711		. 620.40		. 98716		. 01284
. 108	. 60801		. 62083		.98718		. 01282
.109	. 608.45		. 62125		.98721		. 01279
2.110	0.60890	44,7	0.62167	42,2	9.98723	2,6	0.01277
. III	. 60935		. 62209		. 98726	2,5	. 01274
. 112	. 60979		. 62251		.98728		. 01272
.113	. 65024		. 62293		. 98731		.01269 .01267
. 114	.61069		. 62336		. 98733		
	0.65114	44,7	0.62378	42,2	9.98736	2,5	0.0126 .4
.115	. 6 r158		. 62420		. 98738		. or262
. 117	.6r203		. $62+62$. 98741		7
. 118	. 612.18		. 62504		. $987+3$.01257
. 119	. 61292		. 625.46		-98746		
2.120	0.61337	44,7	0.62589	42,2	9.98748	2,5	0.01252
. 121	.61382		. 62631		. 98751		. 01249
. 122	.61427		. 62673		-98753		. 01247
. 123	.6I.47		. 62715		-93756		. 01244
. 124	. 61516		.62757		.98758		. 01242
2.125	0.61561	44,7	0.62800	42,2	9.98761	2,5	0.01239
. 126	. 61605		. 6288_{12}		.98763		. 01237
. 127	. 61650		. 62884		. 98766		. 01234
. 128	. 61695		. 62926		.98768		. 01232
. 129	. 61739		. 62969		.98775		. 01229
2.130	0.61784	44,7	0.63017	42,2	9.98773	2,5	0.01227
. 131	. 61829		. 63053		. 98776	2,4	. 01224
. 132	. 61873		.63095		.98778		. 01222
. 133	. 61978		. 63137		.9878x		. 01212
. 134	. 61063		.63180		. 98783		.01217
2.135	0.62007	44,7	0.63222	42,2	9.98785	2,4	0.01215
. 136	. 62052		. 63264		. 98788		. 01212
. 137	. 62097		. 63306		- 98790		-01210
. 138	. 62141		. 63349		-98793		. O1207
. 139	. 62185		. 63391		.98795		. 01205
2. I40	0.62231	44,6	0.63433	42,2	9.98798	2,4	0.01202
. IfI	. 62275		. 63475		. 98800		. 01200
. 142	. 62320		. 63518		. 98802		. OII98
. 143	. 62365		. 63560	42,3	. 98805		. OII95
. 144	. 62409		. 63602		-98807		. O1I93
				42,3	9.98810	2,4	
2.145 .146	0.62454 .62498	4,6	$\begin{array}{r} .03044 \\ .63687 \end{array}$	42,3	9.98812	2,4	. 01188
. 147	. $625+3$. 63729		. 9881		.01186
. 148	. 62588		. 63771		. 98817		. 01183
. 149	. 62632		. 63813		-98819		.01181
2.150	0.62677	44,6	0.63856	42,3	9.9882 I	2,4	0.01179
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{Fa}^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin$ od u	$\Leftrightarrow \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{logesc} \mathrm{cd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{\mathbf{u}}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log coth u
2.150	0.62677	44,6	0.63856	42,3	9.68521	2,4	0.01179
.15I	. 62722		. 63898		. 08321		. 01176
. 152	. 62,76		. 63940		. 98826	2,3	. 01174
. 153	. 62811		. 63982		. 68828		.01772
. 154	. 62855		.64025		. 98831		. 01169
2.155	0.62900	4,6	0.6.4067	42,3	9.98333	2,3	0.01167
. 156	. $629+5$		$.6+109$. 68835		. 01165
. 157	. 62989		. 64152		. 98338		. 01162
. 558	. 63034		.61194		. 98840		. 01160
. 159	. 63079		. 6.4236		. 98812		. 01158
2.160	0.63123	44,6	0.64278	+2,3	9.98845	2,3	0.01155
.161	. 63168		. 64321		. 988.17		. O1153
. 162	. 63212		. 64363		. 98849		. OII5I
. 163	. 63257		. $6+105$. 98852		. OII48
. 164	. 63302		. $64+48$. 0885.4		. OII46
2.165	$0.633+6$	44,6	0.64490	42,3	9.98856	2,3	0.01144
. 166	. 63391		. 64532		. 98859		. O1Ifi
. 167	. $63+35$. 64574		. 98861		.OII39
. 168	. 63480		.64617		. 98853		. O1137
. 169	. 63524		. 64659		. 98865		. OII35
2.170	0.63569	4-4,6	0.64701	42,3	9.98368	2,3	0.01132
. 171	.63514		. 64744		. 98870		. OII30
. 172	. 63658		. 64785		. 98872		. OII28
.173	. 63703		. 64828		. 98874		. O1126
. 174	. 63747		.64871		. 98877	2,2	. 01123
2.175	0.63792	44,6	0.64913	42,3	9.98879	2,2	0.01121
. 176	. 63836		. 64955		. 98881		. 01119
. 177	.6388I		. 64998		. 08883		.01117
. 178	. 63926		. 65040		. 98885		. OIIM4
. 179	. 63970		. 65082		. 98888		.01112
2.180	0.64015	44,6	0.65125	42,3	9.98890	2,2	0.01110
. 181	. 64059		. 65167		. 98892		. 01108
. 182	. 61104	44,5	. 65209		. 08304		. 01106
. 183	. 64118		. 65252		. 98897		. 01103
. 184	. 64193		. 65294		. 98899		. OIfOI
2.185	0.61237	44.5	0.65336	42,3	9.98901	2,2	0.01099
. 185	. 64282		. 65379		. 98903		. 01097
. 187	. 64326		. 65421	42,4	. 98905		. 01095
. 188	. 64371		. 65463		. 98908		. 01092
. 189	. $64+16$. 65506		. 98910		. 01090
2.190	0.64460	44,5	0.65548	42,4	9.98912	2,2	0.01088
. 191	. 64505		. 65590		. 98914		. 01086
. 192	. 64549		. 65633		. 98916		. 01084
. 193	. 64594		. 65675		. 88919		. 01081
. 194	. 64638		. 65718		.9892I		. 01079
2.195	0.64683	44.5	0.65760	42,4	9.98923	2,2	0.01077
. 196	. 64727		. 65802		. 98925		. 01075
	. 64772		. 65845		. 98927	2,I	. 01073
. 198	. 64816		. 65887		. 98929		. 01071
. 199	. 6486 I		. 65929		-98931		. 01069
2.200	0.64905	44.5	0.65972	42,4	9.98934	2,1	0.01066
u	$\log \tan \operatorname{cd} \mathrm{u}$	- Fof	$\log \sec$ gd a	- Fo'	$\log \sin g d \mathrm{a}$	* $\mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{Fu}^{\prime}$	log cosh us	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}^{\prime}$	$\log \operatorname{coth} u$
2.200	0.64905	44,5	0.65972	42,4	9.98934	2,I	0.01066
. 201	. 64950		.6601 4		. 98936		. 01064
. 202	. 64994		. 65056		. 08938		. 01062
.203	. 65039		. 66099		. 98840		. 01050
. 204	. 65083		.66I4I		.98342		. 01058
2.205	0.65128	44.5	0.66184	42,4	$9.989+4$	2,I	0.01056
. 205	. 65172		. 66226		. 98946		. 01054
.20\%	. 65217		. 66268		-98948		. 01052
. 208	. 65261		. 65311		. 98950		. 01050
. 209	.65305		. 65353		-98953		. 01047
2.210	0.65350	445	0.65396	42,4	9.98955	2,1	0.01045
. 211	. 65395		. $66+38$. 98957		. 01043
. 212	. 65439		. 66.48		-98959		.0r04I
. 213	. 65484		. 65523		. 98961		. 01039
. 214	. 65528		. 66565		.98963		.01037
2.215	0.65573	44,5	0.66608	42,4	9.98965	2,1	0.01035
. 216	. 65617		. 66650		. 98967		. 01033
. 215	. 65662		. 65692		.98959		. 0103 I
. 218	. 63706		. 66733		-98971		. 01029
. 219	. 6575 I		. 66777		. 98973		. 01027
2.220	0.65795	44,5	0.66820	42,4	9.98975	2,0	0.01025
.221	. 65810		. 66862		. 98977		. 01023
. 222	. $6588+$. 66905		-98979		-01021
.223	. 65928		. 660.47		.98982		. 01018
. 22.4	. 65973		. 66989		.98984		. 01016
	0.65017	41,5	0.67032	42,4	9.98986	2,0	0.0101 .4
. 225	. 65052		. 67074		.98988		. 0 IOI2
. 227	. 65105		. 67117		. 98990		. 01010
. 228	.66151	44,4	. 67159		. 98992		. 01008
. 229	. 66195		. 67202		. 98994		. 01006
2.230	0.66240	44,4	0.67244	42,4	9.98996	2,0	0.01004
.231	. 66284		. 67285		. 98998		. 01002
.232	. 66328		. 67329		. 99000		. 01000
. 233	. 66373		. 6737 I		. 99002		.00998
. 234	. 66417		. $67+1+$.99004		.00995
	0.66462	44,4	0.67456	42,4	9.99006	2,0	0.00994
. 236	. 66506		. $67+99$. 99008		. 00992
. 237	. 6655 I		. 6754 I	42,5	-99010		. 00990
. 238	. 66595		. 67583		.99012		. 000988
. 239	. 66640		.67525		.99014		. 00 ¢ 85
2.240	0.66684	44,4	0.67668	42,5	9.99016	2,0	0.00984
. 241	. 66728		. 6771 I		. 99018		. 000882
. 212	. 66773		. 67753		. 99019		. 00098 I
. 243	.66817		. 67796		. 99021		. 00979
. 244	. 66862		.67839		-99023		. 00977
2.245	0.66905	44,4	0.6788 I	42,5	9.99025	I,9	0.00975
. 245	. 66950		. 67923		. 99027		. 00973
.247	. 66995		. 67965		. 99029		. 00971
. 218	. 67039		. 68008		. 99031		. 000969
. 249	. 67084		.68051		. 99033		. 00957
2.250	0.67128	44,4	0.68093	42,5	9.99035	r,9	0.00955
u	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\text {r }}$	$\log \sin g d u$	$\infty \mathrm{Fo}^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fa}^{\prime}$	\log coth u
2.250	0.67128	4,4	0.68093	42,5	9.99035	1,9	0.00955
. 251	. 67173		. 68136		. 99037		. 00056
. 252	. 67217		.68178		. 99039		. 00061
. 253	. 67261		.68220		. 990.11		. 00959
. 254	.67306		. 68263		. 99043		. 00957
2.255	0.67350	44,4	0.68305	42,5	$9.990+5$	1,9	0.00955
. 256	. 67394		. 68378		. 99047		. 00953
. 257	.67439		. 68390		. 990.48		. 00953
. 258	. $67+83$. $68+33$. 99050		. 00950
. 259	. 67528		. 68475		. 99053		. 00948
2.260	0.67572	44.4	0.68518	42,5	9.99054	1,9	0.00946
. 261	. 67616		. 68560		. 99056		. 00944
. 262	. 6756 r		. 68503		. 99058		. 00912
.263	.67705		. 68545		. 99060		. 00940
.254	. 67750		. 68688		. 99052		. oog38
2.265	0.67794	44.4	c. 68730	42,5	9.99064	I,9	0.00936
. 266	. 67838		. 68773		. 99065		. 00935
. 267	. 67883		.68815		. 99057		. 00933
. 268	. 67927		. 68858		. 99069		.0093I
.259	. 67971		.68c00		. 9907 I		. 00929
2.270	0.68016	$44 \cdot 4$	0.68043	42,5	9.99073	1,9	0.00927
. 271	. 68060		. 68985		. 99075		. 00925
.272	.68105		. 69028		. 99077	1,8	. 000923
. 273	. $681+9$. 69070		.99078		. 00922
. 274	.68i93		. 69113		. 99080		. 00920
	0.68238	44.4	0.69156	42,5	9.99082	I,8	0.009 I 8
. 276	. 68282		. 69198		. 99084		. 00916
. 277	. 68326		. 69241		. 99086		. 00914
.278	.68371		. 69283		-95088		. O0912
. 279	. 68415	44,3	. 69326		-99089		. 009 II
2.280	0.68459	44,3	0.69368	42,5	9.9909 I	r, 8	0.00909
. 281	. 6850.4		. 69411		. 99093		. 00907
. 282	. 68548		. 69453		. 99095		.00905
.283	. 68592		. 69496		-99097		. 00903
. 284	. 68537		. 69538		. 99098		. 00902
2.285	0.6858 I	44.3	0.69581	42,5	9.99100	1,8	0.00900
. 286	. 68725		. 69623		. 99102		. 00898
. 287	.68770		. 69666		. 99104		. 00806
. 288	.68814		. 69708		.99106		. 00894
. 289	. 68858		. 6975 I		.99107		. 00893
2.290	0.68903	443	0.69794	42,5	9.99109	I, 8	0.00891
. 291	. 68947		. 69836		.9911 I		. 00889
. 292	. 68991		. 69879	42,6	.99II3		. 00887
. 293	. 69036		. 6992 I		. 99115		. 00885
. 294	. 69080		. 69964		.99116		. 00884
	0.69124	44,3	0.70006	42,6	9.99118	I,8	0.00882
. 296	. 6916		. 70049		. 99120		. 00880
. 297	. 69213		. 7009 I		. 99122		. 00888
. 398	. 69237		. 70134		. 99123		. 00877
. 299	. 69302		. 70177		. 99125	1,7	. 00875
2.300	0.69346	44,3	0.70219	42,6	9.99127	1,7	0.00873
\square	$\log \tan 0 d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	Iogsec odu	$\infty \mathrm{F}_{0}^{\prime}$	$\log \sin g d u$	${ }^{*} \mathrm{~F}_{6}{ }^{\prime}$	100 csc gd u

Logarithms of Hyperbolic Functions.

u	$\mathrm{log} \sinh \mathrm{u}$	$\omega F^{\prime}{ }^{\prime}$	10 cosh u	$\omega \mathrm{Fo}^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \operatorname{coth} u$
2.300	0.69346	44,3	0.70219	42,6	9.99127	I,7	0.00873
. 301	. 69390		. 70262		. 99129		.0087I
. 302	. 69435		. 70304		. 99130		.00870 .00868
. 303	. 69479		. 70347		.99132 .99134		. .00866
. 304	. 69523		. 70389		.99134		
2.305	0.69568	44,3	$0.70 \div 32$	42,6	9.99136	1,7	0.00864
. 305	. 69612		. 70.475		. 99137		. 00883
. 307	. 69656		. 20517		. 99139		. 008085
. 308	. 69700		. 70560		.9914I		.00859
.309	. 69745		. 70602		.99142		
2.310	0.69789	44,3	0.70645	42,6	9.99144	1,7	0.00856
. 311	. 69833		. 70687		.99146		. 00854
. 312	. 60878		. 70730		. 99148		. 00852
. 313	. 69922		. 70773		.99149		.00851
. 314	. 69966		.70815		.9915I		.00849
2.315	0.70010	41,3	0.70858	42,6	9.99F53	I,7	0.008 .47
. 316	. 70055		. 70900		. 99154		.00846
. 317	. 70099		. 70943		.99156		.008-14
. 318	.70143		. 70986		. 99158		. 008.42
. 319	. 70188		.71028		. 99159		.00841
2.320	0.70232	44,3	0.71071	42,6	9.9916I	1,7	0.00839
. 321	. 70276		. 71113		. 99163		.00837
. 322	. 70320		. 71156		. 99164		. 00836
- 323	.70365		.71199		.99166		. 00834
. 324	.70409		.71241		.99168		. 00832
	0.70453	44,3	0.71284	42,6	9.99169	I,7	0.00831
. 326	. 70497		. 21326		. 99171		. 00829
. 327	. 70542		. 71369		. 99173		. 00827
. 328	. 70585		. 71412		. 99174		. .00826
. 329	. 70630		.71454		-.99176	I,6	. 00824
2.330	0.70675	44,3	0.71497	42,6	9.99178	1,6	0.00822
. 33 I	. 70719		. 71539		. 99179		. 00821
-332	. 70763		. 71582		. 99181		. 00819
. 333	. 70807		-71625		. 99183		. 00817
. 334	. 70852		. 71667		. 99184		. 00816
	0.70895	44,3	0.71710	42,6	9.99186	1,6	0.00814
. 336	. 70970	44^{2}	. 71753		. 99188		.008i2
. 337	. 70984		-71793		. 99189		.008II
. 338	. 71029		. 71838		.99191		. 00809
-339	. 71073		. 71880		. 99192		. 00808
2.340	0.71117	44,2	0.71923	42,6	9.99194	I,6	0.00806
. 341 I	. 7116 I		. 71966		. 99196		. 00804
. 312	. 71205		. 72008		. 99197		.00803
- 343	. 71250		. 72051		. 99199		. 00801
-344	. 71294		. 72004		. 99200		. 00800
2.345	0.71338	44,2	0.72136	42,6	9.99202	1,6	0.00798
. 346	. 71382		. 72179		. 99204		. 00796
- 347	. 71427		. 72221		-99205		. 00795
-348	. 71471		-72264		. 99207		. 00793
-349	.715I5		. 72307		. 99308		. 00792
2.350	0.71559	44,2	0.72349	42,6	9.99210	1,6	0.00790
u	$\underline{l o g} \tan 9 \mathrm{~d} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin g d u$	$\pm \mathrm{F}^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega^{\circ} \mathrm{Fo}^{\prime}$	\log coth 4
2.350	0.71559	4,2	0.72349	42,6	9.99210	I, 6	0.00790
. 351	. 71604		-72392		. 99212		.00788
. 352	. 71648		. 72435		.99213		.00787
. 353	. 71692		. 72477	42,7	.99215		.00785
-354	.71736		.72520		. 99216		.00784
2.355	0.7178 r	44,2	0.72563	42,7	9.99218	1,6	0.00782
. 356	.71825		. 72605		. 99219		.0078I
- 357	. 71869		-72548		.9922I		.00779
. 358	.71913		-72691		.99223		.00777
-359	. 71957		.72733		.99224		.00776
2.360	0.72002	44,2	0.72776	42,7	9.99226	1,5	0.00774
. 351	. 720.46		. 72819		. 99227		.00773
. 352	. 72000		. 72861		. 99229		.0077 1
. 363	.72134		. 72904		. 99230		. 00770
. 364	. 72178		. 72947		. 99232		.00768
2.365	0.72223	44,2	-.72989	42,7	9.99233	1,5	0.00767
. 365	. 72267		. 73032		. 99235		. 00765
. 367	.723II		. 73075		. 99236		.00764
. 368	. 72355		.73117		. 99238		.00752
. 369	. 72399		.73160		. 99239		.00761
2.370	0.72414	44,2	0.73203	42,7	9.992 .41	I,5	0.00759
. 371	. 72.188		. 73245		. 99242		. 00758
. 372	. 72532		. 73288		. 99214		. 00756
-373	.72576		.73331		. 99245		. 00755
. 374	. 72620		. 73373		. 99247		. 00753
2.375	0.72665	44,2	0.73416	42,7	9.992 .49	I,5	0.00751
. 376	. 72709		. 73459		. 99250		. 00750
. 377	. 72753		. 73501		-99252		.00748
. 378	. 72797		. $735+4$. 99253		. 00747
-379	.72841		. 73587		.99254		.00746
2.380	0.72885	44,2	0.73630	42,7	9.99256	1,5	0.00744
.381	. 72930		. 73672		. 99257		. 00743
- 382	. 72974		. 73715		. 99259		.00741
-383	. 73018		. 73758		. 99260		.00740
. 384	. 73052		.73800		. 99262		. 00738
2.385	0.73106	44,2	0.73843	42,7	9.99263	I,5	0.00737
. 386	. 73151		. 73886		. 99265		. 00735
. 387	. 73195		. 73928		. 99266		. 00734
. 388	. 73239		. 73971		. 99268		. 00732
. 389	. 73283		.74014		. 99269		.00731
2.390	0.73327	44,2	0.74056	42,7	9.99271	1,5	0.00729
-391	. 73371		. 74099		. 99272		. 00728
. 392	. 73416		. 717142		.99274		. 00726
- 393	. 73460		. 71185		. 99275	1,4	. 00725
. 394	. 73504		. 74227		. 99277		.00723
2.395	0.73518	44,2	0.74270	42,7	9.99278	1,4	0.00722
- 396	. 73592		. 74313		. 99279		. 0072 I
. 397	. 73636		. 74355		.9928I		. 00719
. 398	. 73680		. 74398		. 99282		.00718
-399	-73725		.7444		.99284		.00716
2.400	0.73769	44,2	0.74484	42,7	9.99285	1,4	0.00715
u	$\underline{\log \tan g \mathrm{~d}} \mathrm{u}$	$\infty \mathrm{F}^{\prime}{ }^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\pm \mathrm{F}_{0}{ }^{\prime}$	$\log \sin 9 \mathrm{~d} u$	- F F^{\prime}	$\log \mathrm{csc}$ gd u

Logarithms of Hyperbolic Functions.

u	$100 \sinh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.400	0.73769	44,2	$0.74+84$	42,7	9.99285	I, 4	0.00715
. 401	.73813	44, 1	. 74.526		. 99287		.00713
.402	. 73857		.74569		. 99288		. 00712
.403	. 73901		.74612		-99289		.00711
.404	. 73945		. 74655		-99291		. 00709
2.405	0.73990	44, 1	0.74597	42,7	9.99292	I,4	0.00708
. 406	. 74034		. 74740		. 99294		. 00706
.407	. 71078		. 74783		. 99295		.00705
. +108	. 74122		. 74825		. 99297		.00703
.409	.74166		.74868		-99298		.00702
2.410	0.74210	44, 1	0.74911	42,7	9.99299	I,4	0.00701
. 411	. 74254		. 74954		.99301		.00599
. 412	-74298		. 74995		. 99302		. 00598
. +13	. 74343		. 75039		. 99304		. 00696
. 414	-74387		.75082		. 99305		. 00695
2.415	0.74431	44, I	0.75125	42,7	9.99306	I,4	0.00594
. 416	. 74475		. 75167		. 99308		. 00692
.417	. 74519		. 75210		. 99309		. 00691
. 418	. 71563		.75253		. 99310		. 00650
.419	. 74607		.75296		. 99312		. 00688
2.420	0.74652	44, 1	0.75338	42,7	9.99313	I,4	0.00687
. 421	. 74696		.75381		. 99315		. 00685
. 422	. 74740		. 75424	42,8	. 99316		. 00581
. 423	.74784		. 75467		.99317		. 00683
. 427	-7+828		. 75509		. 99319		.0068I
2.425	0.74872	44, 1	0.75552	42,8	9.99320	I,4	0.00680
. 426	.74916		. 75595		. 99321		. 00579
. 427	. 74960		-75638		-99323		. 00057
. 428	. 75004		. 75680		. 99324		.00576
. 429	. 75049		. 75723		.99325	1,3	. 00575
2.430	0.75093	44, I	0.75766	42,8	9.99327	1,3	0.00673
. 431	. 75137		. 75809		. 99328		. 00672
. 432	. 75 I81		.75851		. 99329		. 00671
. 433	. 75225		. 75894		. 9933 I		. 00669
. 434	. 75269		. 75937		. 99332		. 00568
2.435	0.75313	44, 1	0.75980	42,8	9.99333	I,3	0.00667
. 436	. 75357		. 76022		. 99335		. 00665
. 437	. 75401		. 76065		. 99336		. 00664
. 438	. 75145		. 76108		. 99337		. 006663
. 439	. 75490		.76151		.99339		. 0066 I
2.440	0.75534	44, 1	0.76194	42,8	9.99370	r,3	0.00660
. 414	. 75578		. 76236		. 99341		. 00659
. 412	. 75622		. 76279		. 99343		. 00657
. 413	. 75666		.76322		. 9934		. 00556
. 414	. 75710		. 76365		-99345		. 00655
	0.75754	44, 1	0.76407	42,8	9.99347	I,3	0.00553
. 446	. 75798		. 76450		. 99348		. 00652
. 447	. 75842		. 76493		. 99349		.00551
. 448	. 75886		. 76536		. 99351		. 00649
. 449	. 75930		-76579		-99352		. 00648
2.450	0.75975	44, I	0.76621	42,8	9.99353	I,3	0.00647
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin g d u$	ωF^{\prime}	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh \mu$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.450	0.75975	44, 1	0.76521	42,8	9.99353	I,3	0.00647
. 451	. 76019		. 75604		. 99354		. 00646
. 452	. 76063		. 75707		. 99356		. 00544
. 453	. 76107		. 76750		. 99357		. 00543
. 454	.76151		.75793		. 99358		. 00642
2.455	0.75195	44, I	0.76835	42,8	9.99360	1,3	0.00640
.456	. 76239		.768-8		.9936I		. 00539
. 457	. 76283		. 76921		. 99362		. 00638
. 458	. 76327		.76964		. 99363		. 00637
-459	.7637I		.77003		-99365		. 00635
2.460	0.76415	4-1, I	0.77049	42,8	9.99365	1,3	0.00634
. 461	. $76+59$.77092		. 99367		. 00533
. 462	. 76503		. 77135		. 99359		. 00631
.463	. 76547		.77178		. 99370		. 000330
.464	.75592		. 77220		. 99371		. 00629
2.465	0.75636	44,I	0.77263	42,8	9.99372	1,3	0.00628
. 466	. 76680		. 77305		. 99374		. 00625
.467	. 76724		. 77349		. 99375		. 000625
.468	. 76768		. 77392		. 99376	1,2	. 000524
.469	.76812		.77435		-99377		. 00623
2.470	0.76856	44,I	0.77477	42,8	9.99379	1,2	0.00621
. 471	. 76900		. 77520		. 99380		. 00620
. 472	. 76941		. 77563		. 9938 I		. 00619
. 473	. 76988		.77606		. 99382		. 00518
. 474	. 77032		. 77649		.99384		. 00616
2.475	0.77076	44,0	0.77591	42,8	9.99385	1,2	0.00615
. 476	. 77120		. 77734		. 99386		. 00514
. 477	. 77164		. 77777		. 99387		. 00513
. 478	. 77208		. 77820		. 99388		. 00612
. 479	. 77252		.77863		. 99390		. 00610
2.480	0.77296	44,0	0.77505	42,8	9.99391	I,2	0.00609
. 48 I	. 77340		. 77948		. 99392		. 00608
. 482	. 77384		. 77991		. 99393		. 006607
. 483	. 77429		. 78034		. 99394		. 00606
. 484	. 77473		. 78077		. 99396		. 00604
2.485	0.77517	44,0	0.78120	42,8	9.99397	1,2	0.00603
. 486	. 77561		.78163		. 99398		. 00602
. 487	. 77505		. 78205		. 99399		. 00601
. 488	. 77649		. 78248		. 99401		. 00599
. 489	.77693		-78292		. 99402		. 00598
2.490	0.77737	44,0	0.78334	42,8	9.99403	1,2	0.00597
. 491	. 7778 I		. 78377		. 99404		. 00595
. 492	. 77825		. 78.420		-99405		. 00595
. 493	. 77869		. 78.462		. 99406		. 00594
. 494	. 77913		. 78505		-99408		. 00592
2.495	0.77957	44,0	0.78548	42,8	9.99409	1,2	0.00591
. 496	. 78001		. 78591		. 99410		. 00590
. 497	. 78045		. 78534		. 9941 I		.00589
. 498	. 78089		. 78577		. 99412		$\begin{aligned} & .00588 \\ & .00586 \end{aligned}$
. 499	.78133		.78719		.994I4		. 00586
2.500	0.78177	44,0	0.78762	42,8	9.99415	1,2	0.00585
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\bullet \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \operatorname{gd} \mathrm{n}$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log tanh is	$\omega F_{0}{ }^{\prime}$	\log coth u
2.500	0.78177	44,0	0.78762	42,8	9.99415	I, 2	0.00585
. 501	. 78221		.78805		. 99416		. 00584
. 502	. 78255		. 78848	42,9	. 99417		. 00583
. 503	. 78309		.7889I		. 99418		. 00582
. 504	.78353		.78934		. 99419		. 0058 I
2.505	0.78397	44,0	0.78977	42,9	9.9942 I	I,2	0.00579
. 506	. $78+11$. 79019		. 99422		. 00578
. 507	.78485		. 79006		-99-123		.00577
. 508	.78529		. 79105		. 99.424		.00576
. 509	. 78573		. 79148		. 99425	I, I	. 00575
2.510	0.78517	44,0	0.79191	42,9	9.99425	I, I	0.00574
. 51 I	. 78661		. 79234		.99427		. 00573
. 512	. 78705		-79277		-99429		. 00571
. 513	. 78749		. 79319		. 99430		. 00570
. 514	-78793		-79362		.9943I		.00569
2.515	0.78837	44,0	0.79405	42,9	9.99432	I, I	0.00568
. 516	.78881		. 79448		-99433		. 00567
. 517	-78925		-79491		-99434		. 00566
. 518	. 78969		. 79534		-99435		. 00565
. 519	. 79013		. 79577		.99437		. 00563
2.520	0.79057	44,0	0.79619	42,9	9.99438	I, I	0.00562
. 521	.79101		. 79662		. 99439		. 000561
. 522	. 79145		. 79705		. 99440		. 00560
. 523	. 79189		.79748		.99441		. 00559
. 524	. 79233		.79791		. 99412		. 00558
2.525	0.79277	44,0	0.79834	42,9	$9.99+43$	I, I	0.00557
. 526	. 7932 I		. 79877		. 99414		. 00556
. 527	. 79365		. 79920		. $99+46$. 00554
. 528	. 79409		.79962		. 99447		. 00553
. 529	. 79453		. 80005		. 99448		. 00552
2.530	0.79497	44,0	0.80048	42,9	9.99449	I, I	0.00551
. 531	. 7954 I		. 80091		. 99450		. 00550
. 532	. 79585		. 80134		. 99451		. 00549
. 533	. 79629		. 80177		. 99452		. 00548
. 53.4	. 79673		. 80220		-99453		. 00547
2.535	0:79717	44,0	0.80263	42,9	9.99454	I, I	0.00546
. 536	.79761		. 80306		. 99455		. 00545
. 537	. 79805		. 80348		. 99456		. 00544
. 538	. 79849		. 80391		. 99458		. 00542
. 539	. 79893		. 80434		. 99459		. 00541
2.540	0.79937	44,0	0.80477	42,9	9.99460	I, I	0.00540
. 541	. 79981		. 80520		. 99461		. 00539
- 542	. 80025		. 80563		. 99462		. 00538
. 543	. 80069		. 80606		. 99463		. 00537
. 544	. 80113		. 80649		. 99464		. 00536
2.545	0.80157	44,0	0.80692	42,9	9.99465	I,I	0.00535
. 546	. 80201		. 80734		. 99466		. 00534
. 547	. 80245		. 80777		. 99467		. 00533
. 548	. 80289		. 80820		. 99468		. 00532
. 549	. 80333		. 80863		.99469		.0053I
2.550	0.80377	44.0	0.80906	42,9	9.99470	I, I	0.00530
u	$\log \tan \mathrm{gd} u$	$\infty \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin$ gd u	$\pm \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

U	$\log \sinh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega F_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
2.550	0.80377	440	0.80905	42,9	9.99470	I, I	0.00530
. 551	. 80420		. 80949		.99471		. 00529
- 552	. 80464		. 80992		. 99473		. 00527
. 553	. 80508		. SI 1035		. 99474		.c0526
-554	.80552		.81078		. 99475		. 00525
2.555	0.80596	44,0	0.8 SI 121	42,9	9.99476	1,0	0.00524
. 556	. 80610		. 81164		. 99477		. 00523
. 557	. 80684		.81205		. 99478		.00522
. 558	. 80728		. 81249		. 99479		.00521
. 559	. 80772		. 81292		. 99480		. 00520
2.560	0.80816	44,0	0.81335	42,9	9.9948 I	I,O	0.00519
. 561	. 80850		.81378		.99482		.00518
. 562	. 80904	43,9	. 81421		. $99+83$.00517
. 553	. 80948		. 81464		. 99484		.00516
. 564	. 80992		. 81507		. 99485		. 00515
2.565	0.81036	43,9	0.81550	42,9	9.99486	I,O	0.00514
. 566	. 81080		.8I593		. $99+87$. 00513
. 567	.81124		. 81635		.99488		. 00512
. 568	. 81168		. 81678		. 99.489		.005II
. 569	.81212		.8I72I		. 99490		. 00510
2.570	0.81256	43,9	0.81764	42,9	9.99491	I,O	0.00509
. 571	.81299		.81807		. 99492		. 00508
. 572	. 81313		. 81850		. 99493		. 00507
. 573	. 81387		.81893		. 99494		.00506
. 574	.8I-43I		.81936		. 99495		. 00505
2.575	0.81 .475	43,9	0.81979	42,9	9.99496	I,O	0.00504
. 576	. 81519		. 82022		. 99497		. 00503
. 577	. 81563		. 82065		. 99498		. 00502
. 578	. 81607		. 8210 S		. 99499		.00501
. 579	.8165I		.8215I		. 99500		. 00500
2.580	0.81695	43,9	0.82194	42,9	9.99501	I,O	0.00499
. 58 I	. 81739		. 82237		. 99502		. 00498
. 582	. 8 I 783		. 82279		. 99503		. 00497
. 583	.81827		. 82322		. 99504		. 00.496
. 584	.81871		. 82365		. 99505		. 00495
2.585	0.81915	43,9	0.82 .408	42,9	9.99506	1,0	0.00494
. 585	. 81958		. 8245 I		. 99507		. 00403
. 587	. 82002		. 82494		. 99508		. 00492
. 588	. 82046		. 82537		. 99509		.0049I
. 589	. 82090		. 82580		. 99510		.00490
2.590	0.82134	43,9	0.82523	42,9	9.99511	I,O	0.00489
. 591	. 82178		. 82666		. 99512		.00488
. 592	. 82222		. 82709		. 99513		. 00.487
- 593	. 82266		. 82752		. 99514		.00486
- 594	.82310		. 82795		. 99515		. 00485
2.595	0.82354	43,9	0.82838	42,9	9.99516	1,0	0.00484
. 596	. 82398		. 82881		. 99517		. 00.483
. 597	. 82442		. 82924	43,0	. 99518		. 00482
. 598	. 82485		. 82967		. 99519		.00481
- 599	. 82529		. 83010		. 99520		.00480
2.600	0.82573	43.9	0.83052	430	9.99521	1,0	0.00479
4	$\log \tan \mathrm{gd} u$	$\infty \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	${ }^{*} \mathrm{~F}_{0}{ }^{\prime}$	$\log \sin 9 \mathrm{~d} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$\log \sinh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.600	0.82573	43,9	0.83052	43,0	9.9952 I	1,0	0.00479
. 601	. 82517		. 83095		. 99522		.00478
. 602	. 82661		. 83138		-99523		. 00477
. 603	. 82705		. 83181		-99524		. 00.476
. 604	. 82749		. 83224		. 99525		
2.605	0.82793	43,9	0.83267	43,0	9.99526	0,9	0.00174
. 606	. 82837		. 83310		. 99527		. 00.473
. 607	.82881		. 83353		. 99527		. 00.773
. 608	. 82925		. 83396		-99528		. 00472
. 609	. 82968		. 83439		. 99529		.0047I
2.610	0.83012	43,9	0.83482	43,0	9.99530	0,9	0.00470
. 611	. 83056		. 83525		. 9953 I		. 00.69
. 612	. 83100		. 83568		. 99532		. 00468
. 613	. 83 I 44		. 8361 I		-99533		. 00.67
. 614	. 83188		. 83554		-99534		. 00466
2.615	0.83232	43,9	0.83697	43,0	9.99535	0,9	0.00465
. 616	- 8.83276	43,9	. 83740		. 99536		. 00464
. 617	. 83320		. 83783		. 99537		. 00463
. 618	. 83364		. 83826		. 99538		. $00+62$
. 619	. 83407		. 83859		. 99539		. 00461
2.620	$0.83+51$	43,9	0.83912	43,0	9.99540	0,9	0.00460
. 621	. 83.195		. 83955		. 99541		. 00459
. 622	. 83539		. 83998		. 99541		. 00.459
. 623	. 83583		. 81041		. 995.42		. 00458
. 624	. 83627		. 81084		. 99543		. 00457
2.625	0.83671	43,9	0.84127	43,0	9.99544	0,9	0.00456
. 626	. 83715		. 84170		. 99545		. 00455
. 627	. 83759		. 81213		-995-6		. 00454
. 628	. 83802		. 84256		. 99547		. 00453
. 629	. 83846		. 81299		. 99548		. 00452
2.630	0.83890	43,9	0.84341	43,0	9.99549	0,9	0.0045 I
. 63 I	. 83934		. 84384		. 99550		. 00.450
. 632	. 83978		. $8+1427$. 99551		. 00419
. 633	. 84022		. 84470		. 9955 I		. 00449
. 634	. 84056		. 84513		.99552		. 00448
2.635	0.84 rr 10	43,9	0.84556	43,0	9.99553	0,9	0.00447
. 635	. 84154		. $8+599$. 99554		. 00.146
. 637	. 84197		. 84642		. 99555		. 00445
. 638	. 8124 T		. 84685		. 99556		. 00414
. 639	. 84285		. 84728		. 99557		. 00443
2.640	0.84329	43,9	0.84771	43,0	9.99558	0,9	0.00412
. 641	. 84373		. $8+8 \mathrm{I} 4$. 99559		. 00.41 I
. 642	. 84.417		. 81857		. 99559		. 00141
. 643	. 84461		. 81900		. 99560		. 00440
. 644	. 84505		. 84943		.9956I		. 00439
	0.84548	43,9	$0.8 \div 986$	43,0	9.99562	0,9	0.00438
2.646	. 84592		. 85029		.99563		. 00437
. 647	. 84636		. 85072		. 99564		. 00436
. 648	. 84680		. 85115		. 99565		. 00435
. 649	. 84724		. 85158		. 99566		. 00434
2.650	0.84758	43,9	0.8520 T	43,0	9.99566	0,9	0.00434
u	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	log sec gd u	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\log \sin \mathrm{gd} u$	$\pm \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

4	$\underline{l o g} \sinh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.650	0.8_{4768}	43,9	0.85201	43,0	9.99565	0,9	0.00434
. 651	. 84812		. 852.4		. 99567		. 00.433
. 652	. 84855		. 85287		. 99568		.00432
653	. 84899		. 85330		. 99569		. 00431
. 654	. 84943		. 85373		-99570		. 00430
2.655	0.84987	43,9	$0.85+16$	43,0	9.99571	0,9	0.00429
. .656	.85031		. $85+59$. 99572		. 00.428
. .657	. 85075		. 85502		. 99572		. 00428
. 658	. 85119		. 85545		. 99573		.00.427
. 659	.85162		. 85588		. 99574		.00426
2.660	0.85206	43,9	0.85531	43,0	9.99575	0,8	0.00 .425
. 661	. 85250		. 85674		. 99576		. 00.124
. 662	. 85294		. 85717		. 99577		. 00423
. 663	. 85338		. 85760		. 99578		. 009122
. 664	. 85382		. 85803		.99578		. 00422
2.665	0.85425	43,9	0.85846	43,0	9.99579	0,8	$0.00+21$
. 666	. 85469		. 85883		. 99580		. 00420
. 667	.85513		. 85932		.9958r		.00419
. 668	. 85557	43,8	. 85975		. 99582		.00418
. 669	.85601		. 86018		. 99583		.00417
2.670	0.85645	43,8	0.86061	43,0	9.99583	0,8	0.00417
. 671	. 85589		. 86104		. 99584		.00416
. 672	. 85733		. 86147		. 99585		. 00415
. 673	. 85776		. 85190		. 99585		. 00.114
. 674	. 85820		. 85233		. 99587		.00413
2.675	0.85864	43,8	0.86275	43,0	9.99588	0,8	0.00412
. 676	. 85908		. 86320		. 99588		. 00412
. 677	. 85952		. 85363		. 99589		.00411
. 678	. 85996		. 85405		-99590		. 00410
. 679	. 86039		. 85449		. 99591		. 00409
2.680	0.86083	43,8	0.86492	43,0	9.99592	0,8	0.00408
.681	. 86127		. 86535		-99592		. 00408
. 682	.86171		. 85578		. 99593		.00407
. 683	. 86215		. 85621		. 99594		. $00-106$
. 684	. 85259		. 85664		. 99595		. 00405
2.685	0.85302	43,8	0.85707	43,0	9.99596	0,8	0.00404
. 686	. 86346		. 86750		. 99597		. 00.403
. 687	. 86390		. 85793		. 99597		. 00403
. 688	. 86434		. 85835		. 99598		. 00402
. 689	. 86478		. 85879		. 99599		.00401
2.690	0.86522	43,8	0.85922	43,0	9.99500	0,8	0.00400
.691	. 86565		. 86955		. 99601		. 00399
. 692	. 86609		. 87008		. 99601		. 00399
. 693	. 86653		.8705I		. 99602		. 00398
. 694	. 86697		. 87094		. 99503		. 00397
2.695	0.86741	43,8	0.87137	43,0	9.99604	0,8	0.00396
. 696	. 86785		. 87180		. 99605		. 00395
. 697	. 86828		. 87223		. 99605		. 0395
. 698	. 88872		. 87266		. 99606		. 00394
. 699	. 86916		. 87309		. 99607		. 00393
2.700	0.86960	43,8	0.87352	43,0	9.99508	0,8	0.00392
u	$\log \tan \operatorname{dd} u$	$\pm \mathrm{Fo}^{\prime}$	$\log \sec$ gd u	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	$\log \sin 0 d u$	- $\mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{n}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	log coth u
2.700	0.86960	43,8	0.87352	43,0	$\begin{array}{r} 9.99608 \\ .99608 \end{array}$	0,8	0.00392 .00392
	.87004 .87048		$\begin{aligned} & .87395 \\ & .87+38 \end{aligned}$		$\begin{aligned} & .99008 \\ & .99509 \end{aligned}$.00391
. 703	. 87891		. $87+81$. 99610		. 00330
. 704	. 87135		.87524		.99611		. 00389
2.705	0.87179	43,8	0.87567	43,0	9.99612	0,8	0.00388
. 705	. 87223		.87610		. 99612		.00388
. 707	. 87267		. 87654		.99613		.00387 .00385
. 708	. 87310		. 87697		.99514		.003885
. 709	. 87354		. 87740				
2.710	0.87398	43,8	0.87783	43,0	9.99615	0,8	0.00385
. 711	. 87442		. 87825		. 99615		.00384
.712	. $87+88$. 87869	.	. 99617		. 003838
.713	. 87530		. 87912		.996619		.00381
. 714	. 87573						
2.715	0.87617	43,8	0.87998	43, I	9.99619	0,8	0.0038 I
. 716	. 8766 I		. 8301 O		. 99620		.00380
. 717	. 877705		.88084		. 996621		. 000379
. 718	. 87774		. 88127		. 996622		.00378
. 719	. 87792						
2.720	0.87836	43,8	0.88213	43, 5	9.99623	0,8	0.00377
. 721	. 87880		. 88236		. 99624		. 00376
. 722	. 87924		. 888299		. 996625	0,7	. 00375
.723 .724	. 87801 I		. 883885		. 999626	0,7	. 00374
				43, I	9.99627	0,7	0.00373
2.725	0.88055 .88099	43,8	0.88428	43,	-. 99628		. 00372
. 727	. 888 I 43		. 88515		. 99628		. 00372
. 728	. 88187		. 88558		. 99629		.00371
. 729	. 88230		. 88501		. 99630		. 00370
2.730	0.88274	43,8	0.88644	43, 1	9.9963 I	0,7	0.00369
2.735 .731	. 88318		. 88587		. $9963 \mathrm{3I}$. 00369
. 732	. 88362		. 88730		-99632		. 00368
. 733	. 88406		. 88373		-99633		.00367
. 734	. 88449		.88316		. 99633		.00367
	0. 88493	43,8	0.88859	43, I	9.99634	0,7	0.00366
. 735	. 88537		. 88902		. 99635		. 00365
. 737	. 8858 I		. 88945		. 99636		. 00364
. 738	. 888656		. 88988		. 999636		.00364
.739	. 88668		. 8903 I		-99037		. 0030
2.740	0.88712	43,8	0.89074	43, 1	9.99638	0,7	0.00362
. 741	. 88756		. 89117		. 99539		. 0036 I
. 742	. 88800		. 89161		. 99639		.00361
. 743	. 88844		. 89204		. 99660		.00360 .00359
. 744	. 88887		. 89247		. 99641		.00359
2.745	0.8893 I	43,8	0.89290	$43, \mathrm{I}$	9.9964 I	0,7	0.00359
. 745	. 88975		. 89333		. 99642		. 00358
. 747	. 89019		. 89376		. 9964		. 003357
-748	. 89003		. 89419		. 99644		.00356
. 749	. 89106		. 89462		. 99644		.00356
2.750	0.89150	43,8	0.89505	43, 1	9.99645	0,7	0.00355
u	$\log \tan \mathrm{gd} u$	$\infty \mathrm{Fo}^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}{ }^{\prime}$	$\log \sin$ gdu	$\omega \mathrm{F}^{\prime}$	$\log \csc \mathrm{gdu}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega F_{0}{ }^{\prime}$	\log coth 4
2.750	0.89150	43,8	0.89505	43, I	9.99545	0,7	0.00355
. 751	. 89194		. 89548		. 99646		. 00351
. 752	. 89238		. 89591		. 99646		. 00354
. 753	.8928I		. 89534		. 99647		. 00353
. 754	. 89325		. 89677		. 99648		. 00352
2.755	0.89369	43,8	0.89720	43, I	9.99649	0,7	0.00351
. 756	. 89.413		. 89764		. 99649		. 00351
. 757	. 89457		. 89807		. 99650		. 00350
. 758	. 89500		. 89850		. 99651		. 00349
. 759	. 89544		. 85893		. 99651		. 00349
2.760	0.89588	43,8	0.89936	43,I	9.99652	0,7	0.00348
. 761	. 89532		. 89979		. 99653		. 00347
. 762	. 89676		. 90022		. 99653		. 00347
.763	. 89719		.90065		. 99554		. 00346
. 764	. 89763		.90108		. 99655		. 00345
2.765	0.89807	43,8	0.90151	43,1	9.99656	0,7	0.003 .4
. 766	. 80851		.9019 4		. 99556		.00344
. 767	. 89894		. 90237		. 99657		. 00343
. 768	. 89938		.9028I		. 99658		. 00342
.769	. 89982		.90324		.99658		. 00342
2.770	0.90026	43,8	0.90367	43, I	9.99659	0,7	0.00341
. 771	. 90069		.90410		. 99660		. 00340
. 772	. 90113		. 90453		. 99660		. 00340
. 773	. 90157		. 90496		. 9966 I		. 00339
. 774	.90201		. 90539		. 99662		. 00338
2.775	0.90245	43,8	0.90582	43, 1	9.99662	0,7	0.00338
. 776	. 90288		. 50625		. 99663		. 00337
. 777	. 90332		- 90668		. 99664		. 00336
. 778	. 90376		. 90712		. 99664		.00336
. 779	. 90420		. 90755		. 99665		. 00335
2.780	0.90463	43,8	0.90798	43,I	9.99666	0,7	0.00334
.781	. 90507		. 90841		. 99666		. 00334
. 782	. 9055 I		. 90884		. 99667		. 00333
. 783	. 90595		. 90927		. 99668		. 00332
. 784	. 90638		. 90970		. 99668		. 00332
2.785	0.90682	43,8	0.91013	43,I	9.99669	0,7	0.00331
. 786	. 90726		. 91056		. 99670		. 00330
. 787	. 90770		. 91099		. 99670		. 00330
. 788	. 908 I 3		.91142		.99671		. 00329
.789	. 90857		.91185		. 99672		. 00328
2.790	0.90901	43,8	0.91229	43, I	9.99672	0,7	0.00328
. 791	. 90945		. 91272		. 99673		. 00327
. 792	. 90989		.91315		. 99674		.00326
. 793	. 91032		.91358		. 99674		.00326
. 794	.91076		.91401		. 99675		. 00325
2.795	0.91120	43,8	0.91414	43, 1	9.99676	0,6	0.00324
. 796	.91164		. 91487		. 99676		. 00324
. 797	. 91207		.91530		. 99677		.00323
. 798	.9125I		.91574		-99678		. 00322
. 799	. 91295		. 91617		. 99678		.00322
2.800	0.91339	43.8	0.91660	43.1	9.99579	0,6	0.00321
u	$\log \tan \mathrm{gd} u$	- $F_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\bigcirc \mathrm{F}_{6}{ }^{\text {b }}$	$\log \operatorname{sing} \mathrm{gd} u$	$\omega^{*} \mathrm{Fo}^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\boldsymbol{l o g} \tanh u$	$\omega F_{0}{ }^{\prime}$	\log coth u
2.800	0.91339	43,8	0.91650	43, I	9.99579	0,6	0.00321
.801	. 91382		. 51703		. 90579		. 0032 I
. 802	.91.426		-91746		. 99580		. 00320
. 803	.91470	43.7	-91789		. 9958 I		. 00319
. 804	.91514		.91832		.9958i		.00319
2.805	0.91557	43,7	0.91855	43,1	9.99682	0,6	0.00318
. 805	.91601		. 91918		. 99683		.00317
. 807	. 91645		. 91962		. 99683		.00317
. 808	. 91689		. 92005		. 93584		.00316
. 809	.91732		-920.8		.99685		.00315
2.810	0.91776	43,7	0.92091	43, 1	9.99585	0,6	0.00315
.8II	.91820		. 92134		. 99685		.003I4
.812	.91854		-92177		. 99586		.003I4
. 813	. 91907		. 92220		. 99687		.00313
.8I4	.9195I		. 92263		-99588		.00312
2.815	0.91995	43,7	0.92306	43, 1	9.99688	0,6	0.00312
. 816	. 92039		. 92350		.99689		. 00311
.8I7	. 92082		-92393		. 99690		.00310
. 818	. 92126		-92436		. 99690		.00310
. 819	.92170		-92479		.9969I		. 00309
2.820	0.92213	43,7	0.92522	43, 1	9.9959 I	0,6	0.00309
.821	. 922237		. 92565		. 99692		. 00308
. 822	. 92301		. 92608		. 99693		. 00307
. 823	. 92345		. 92651		. 99593		. 00307
.824	. 92388		. 92695		. 99594		. 00306
2.825	0.92432	43,7	0.92738	43,I	9.99694	0,6	0.00306
. 825	. 92.576		.92781		. 99595		. 00305
. 827	. 02520		. 92324		. 99696		. 00304
. 8.88	. 92553		.92867		. 99696		. 00304
. 829	-92607		.92910		. 99697		. 00303
2.830	0.92651	43,7	0.92953	43,1	9.99698	0,6	0.00302
. 831	. 92695		. 52995		. 99698		. 00302
. 832	. 92738		. 93040		. 99699		. 00301
. 833	. 92782		. 93083		. 99699		-00301
. 834	.928z6		.93126		. 99700		. 00300
2.835	0.92869	43,7	0.93169	43,1	9.99701	0,6	0.00299
. 836	.929r3		. 93212		.99701		. 00299
. 837	. 92957		. 93255		. 99702		. 00298
. 838	. 93001		. 93298		. 99702		. 00298
. 839	. 93044		. 9334 I		. 99703		. 00297
2.840	0.93088	43,7		43,1	9.99704	0,6	0.00296
. 8.81	.93132		. 93428		. 99704		.00296
. 842	. 93176		. 9347 I		. 99705		. 00295
. 843	.93219		. 93514		-99705		. 00295
. 814	. 93263		. 93557		. 99706		. 00294
2.845	0.93307	43,7	0.93600	43,1	9.99706	0,6	0.00294
.846	. 93350		. 93643		. 99707		. 00293
.847	. 93394		. 93587		. 99708		. 00292
. 8.88	. 93438		-93730		. 99708		. 00292
. 849	. 93482		. 93773		. 99709		.00291
2.850	0.93525	43,7	0.938 r 6	43, 1	9.99709	0,6	0.00291
4	$\log \tan \mathrm{gd} u$	$\omega F_{0}{ }^{\prime}$	$\log \sec$ gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gdx}$ u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	ωF_{0}^{\prime}	$\log \cosh \mu$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	\log coth u
2.850	0.93525	43,7	0.938 i5	43, 1	9.99509	0,6	0.00291
. 851	. 93569		. 93859		. 99710		. 00290
. 852	. 93613		. 93902		. 9971 I		. 00289
. 853	. 93657		-93945		. 997 II		.00289
. 854	. 93700		. 93980		. 99712		.00288
2.855	0.93741	43,7	0.94032	43,1	9.99712	0,6	0.00288
.855	.93783		. 9.9075		. 99713		. 00287
. 857	.93831		-94118		. 99713		. 00287
. 858	. 93875		.94161		.99714		.00236
. 859	-93919		-94204		. 99715		.00285
2.850	0.93963	43,7	0.94247	43, 1	9.99715	0,6	0.00285
. 851	. 94006		. $9+291$. 99716		. 00284
. 852	. 94050		. 94334		. 99716		. 00284
. 863	-94094		. 94377		. 99717		. 00283
. 854	-94137		.94420		. 99717		. 00283
2.855	0.9418 I	43,7	0.04463	43, 1	9.99718	0,6	0.00282
. 855	. $9+225$. 94505		. 99719		.0028I
. 857	.94259		. 94549		. 99719		.00281
. 858	. $9+312$		-94593		. 99720		.00280
. 869	.94356		.94636	43,2	. 99720		.00280
2.870	0.94100	43,7	0.94679	43,2	9.99721	0,6	0.00279
. 871	.94443		-94722		.9972I		. 00279
.872	. $9+487$. 94755		. 99722		.00278
. 873	-94531		-94808		. 99722		.00278
. 874	-94575		.94852		.99723		. 00277
2.875	0.94518	43,7	0.94895	43,2	9.99724	0,6	0.00276
. 875	.9-9662		. 94938		. 9973		.00276
. 877	. 94706		-9498I		.99725		. 00275
. 878	-94749		.95024		.99725	0,5	. 00275
. 879	. 94793		.95067		.99726		.00274
2.850	0.94837	43,7	0.95110	43,2	9.99725	0,5	0.00274
. 88 I	.94880		. 95154		. 69727		. 00273
. 882	-94924		. 95197		-99727		. 00273
. 833	. 94968		-95240		-99728		.00272
. 834	. 95012		.95283		. 93728		.00272
2.835	0.95055	43,7	0.95326	43,2	9.59739	0,5	0.00271
. 885	. 95099		. 95369		. 99730		. 00270
. 887	.95143		. 95413		. 99730		. 00270
. 888	.95185		-95456		.99731		.00259
. 889	-95230		.95499		-99731		. 00269
2.890	0.95274	43,7	0.95542	43,2	9.99732	0,5	0.00268
. 891	.95317		. 95585		. 99732		. 00268
. 892	.95351		.95628		. 99733		. 00267
. 893	. 95405		. 95672		. 99733		.00267
. 894	. 95449		.95715		-99734		.00266
2.835	0.95492	43,7	0.95758	43,2	9.99734	0,5	0.00266
. 895	. 95536		.95801		. 99735		. 00265
. 897	. 95580		.95844		-99735		. 00265
. 898	.95623		. 95887		. 99735		. 00264
. 899	. 95667		. 9593 I		-99737		. 00263
2.900	0.95711	43.7	0.95974	43,2	9.99737	0,5	0.00263
u	$\log \tan \mathrm{gd} u$	$\omega \mathrm{Fa}^{\prime}$	$\log \sec \mathrm{gd} \mathrm{u}$	$\pm \mathrm{Fo}^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \boldsymbol{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
2.900	0.95711	43,7	0.95974	43,2	9.99737	0,5	0.00263
. 901	. 95754		. 96017		. 99738		. 00262
. 902	. 95798		. 96050		. 99738		. 00262
. 903	. 95812		.96103		. 99739		. 0026 I
. 90.4	. 95885		. 96146		. 99739		. 0026 I
2.905	0.95929	43,7	0.96190	43,2	9.99740	0,5	0.00260
. 905	. 95973		. 96233		. 99740		. 00260
. 907	. 96017		.96276		. 99741		. 00259
. 908	. 96060		. 96319		. 99741		. 00259
.909	.96104		.95362		. 99742		. 00258
2.910	0.96148	43,7	0.95405	43,2	9.99742	0,5	0.00258
.9II	.96191		. 96449		. 99743		. 00257
. 912	.96235		-96492		. 99743		. 00257
. 913	. 96279		. 96535		. 99744		. 00256
. 914	. 96322		-96578		. 9974		
2.915	0.96366	43,7	0.96621	43,2	9.99745	0,5	0.00255
. 916	. $96+10$. 96664		. 99745		. 00255
. 917	. 96453		.96708		. 99746		. 00254
. 918	.96497		.9675I		. 99746		. 00254
. 919	-9654I		-96794		. 99747		. 00253
2.920	0.96584	43,7	0.968 .37	43,2	9.99747	0,5	0.00253
. 92 I	. 96628		. 96880		. 997.48		. 00252
. 922	. 96672		.96923		. 99748		. 00252
. 923	.96716		.96967		. 99749		. 0025 I
. 924	. 96759		. 97010		. 99749		. 0025 I
2.925	0.96803	43,7	0.97053	43,2	9.99750	0,5	0.00250
. 926	. 96847		. 97096		. 99750		. 00250
. 927	. 96890		.97139		. 9975 I		. 00249
. 928	. 96934		.97183		. 9975 I		. 00249
. 929	-96978		. 97226		. 99752		. 00248
2.930	0.97021	43,7	0.97269	43,2	9.99752	0,5	0.002 .48
. 93 I	. 97065		. 97312		. 99753		. 00247
. 932	. 97109		. 97355		. 99753		. 00247
. 933	. 97152		. 97398		. 99754		. 00246
. 934	. 97196		. 97412		. 99754		. 00246
2.935	0.97240	43,7	0.97485	43,2	9.99755	0,5	0.00245
. 936	. 97283		. 97528		. 99755		. 00245
. 937	. 97327		-97571		. 99756		. 00244
. 938	.97371		. 97614		. 99756		. 00244
. 939	-97414		-97658		. 99757		. 00243
2.940	0.97458	43,7	0.97701	43,2	9.99757	0,5	0.00243
. 941	. 97502		. 97714		. 99758		. 00242
. 942	. 97545		.97787		. 99758		. 00242
. 943	. 97589		. 97830		. 99759		.0024I
. 944	.97633		.97874		. 99759		.0024I
2.945	0.97676	43,7	0.97917	43,2	9.99760	0,5	0.00240
. 946	. 97720		. 97960		. 99760		. 00240
. 947	. 97764		. 98003		. 9976 I		.00239
. 948	. 97807		. 98046		.9976I		. 00239
. 949	.97851		. 98089		. 99762		. 00238
2.950	0.97895	43,7	0.981 .33	43,2	9.99762	0,5	0.00238
4	$\log \tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\omega \mathrm{FO}^{\prime}$	$\log \csc g d \mathrm{u}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\Leftrightarrow \mathrm{F}_{0}{ }^{\prime}$	\log coth u
2.950	0.97895	43,7	0.98133	43,2	9.99762	0,5	0.00238
.95I	. 97938		.98176		. 99763		. 00237
. 952	. 97982		-98219		- 99763		. 00237
. 953	. 98026		. 98262		- 99763		. 00237
. 954	. 98069		. 98305		- 99764		
2.955	0.98113	43,7	0.98349	43,2	9.99764	0,5	0.00236
. 956	.98157		. 98392		. 99765		. 00235
. 957	. 98200		-98435		. 99765		. 00235
.958	. 98244		-98478		. 99766		. 00234
. 959	. 98288		.98521		.99766		.00234
2.960	0.9833 I	43,7	0.98565	43,2	9.99767	0,5	0.00233
. 961	. 98375		. 98608		. 99767		. 00233
. 962.	. 98419		. 98651		. 99768		. 00232
.963	.98462		. 98694		. 99768		. 00232
.964	. 98506		.98737		. 99769		.0023I
2.965	0.98550	43,7	0.9878 I	43,2	9.99769	0,5	0.00231
. 966	. 98593		. 98824		.99770		. 00230
. 967	. 98637		. 98867		. 99770		. 00230
.958	.98681		.98910		. 99770		. 00230
. 969	.98724		.98953		-9977I		. 00229
2.970	0.98768	43,7	0.98997	43,2	9.99771	0,5	
. 971	. 98812		. 99040		. 99772		.00228
. 972	. 08855		. 99083		. 99772		. 00228
. 973	. 98899		.99126		-99773		.00227
..974	. 98943		.99169		. 99773		. 00227
2.975	0.98985	43,7	0.99213	43,2	9.99774	0,5	0.00226
. 976	.99030		. 99256		. 99774	.	. 00226
. 977	. 99074		. 99299		. 99775		. 00225
.978	-99117		. 99342		.99775	0,4	. 00225
. 979	.9916I		-99385		-99775		. 00225
2.980	0.99205	43,7	0.99429	43,2	9.99776	0,4	0.00224
. 981	. 992748		. 99472		. 99776		.00224
. 982	. 99292		.99515		-99777		.00223
.983	. 99336		-99558		. 99777		. 00223
. 984	. 99379		.9960I		-99778		. 00222
2.985	0.99423	43,7	0.99645	43,2	9.99778	0,4	0.00222
. 985	. 99466		. 99688		. 99779		.0022I
.987	-99510		.99731		. 99779		. 00221
. 988	.99554		. 99774		. 99779		.0022I
.989	-99597		.99818		. 99780		. 00220
2.990	0.99641	43,6	0.99851	43,2	9.99780	0,4	0.00220
.991	. 99685		. 999904		.99781		.00219
. 992	. 99728		. 99947		. 99781		. 00219
-993	.99772		. 99990		. 99782		.00218
. 994	.99816		1.00034		-99782		.00218
2.995	0.99859	43,6	1.00077	43,2	9.99783	0,4	0.00217
. 996	. 99903		. 00120		. 99783		.00217
. 997	. 99947		.00163		. 99783		. 00217
. 998	. 99990		. 00206		-99784		. 00216
. 999	1.00034		. 00250		. 99784		
3.000	1.00078	43,6	1.00293	43,2	9.99785	0,4	0.00215
-	$\log \tan \operatorname{gd} \mathrm{y}$	¢ $\mathrm{FF}_{0}{ }^{\prime}$	log sec gd u	* Fo'	log $\sin \mathrm{gd} \mathrm{u}$	$\infty \mathrm{Fo}^{\prime}$	log cse gdy

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
3.00	1.00078	+36,5	1.00293	432, I	9.99785	4,3	0.00215
. 01	. 00514	+35,4	.00725	+32,2	. 99789	4,2	. 00211
. 02	. 00950	+36,4	.01157	432,2	-99793	4, I	. 00207
. 03	. 01387	+35,3	. 01589	432,3	-99797	4,1	. 00203
. 04	. 01823	+35,3	.02022	432,3	.95801	4,0	. 00199
3.05	1. 02259	436,2	1.02454	432,4	9.95805	3,9	0.00195
. 03	. 02690	+36,2	. 02885	432,4	-9,809	3,8	.00191
. 07	. 03132	436,2	. 03319	432,4	.998I3	3,7	. 00187
. 03	. 03568	+35,1	. 03751	432,5	. 99817	3,7	. 00183
. 09	. 04004	+35,1	.04184	432,5	-99820	3,6	. 00180
3.10	1.04440	435,1	1.04616	432,5	9.99824	3,5	0.00176
. II	. 04876	+35,0	. 05049	432,5	. 99827	3,4	. 00173
. 12	. 05312	+35,0	. 05.818	432,6	. 9983 r	3,4	. 00169
. 13	. 05748	435,0	.05914	432,5	. 99834	3,3	. 00166
. It	.05184	+35,9	.06347	432,7	.99837	3,3	. 00163
3.15	1.06520	435,9	1.05779	432,7	9.998 .1	3,2	0.00159
. 15	. 07056	+35,9	.07212	432,7	.99844	3,1	. 00156
. 17	. 07492	435.8	.07645	432,8	. 9988	3,1	. OOI53
. 18	. 07927	435,8	.0SojS	432,8	. 99850	3.0	. 00150
. 19	.08363	+35,8	.08510	+32,8	. 90853	2,9	.00147
3.20	1.08797	435,7	1.08943	432,9	9.99856	2,9	0.00144
. 21	. 09235	435.7	. 09376	432,9	. 99859	2,8	. 00141
. 22	.09670	+35.7	.09809	+32,9	. 99851	2,8	.00139
.23	. 10105	435.7	.10242	+32,9	. 99854	2,7	. 00136
. 24	. 10542	+35,6	. 10575	433,0	-99857	2,7	.00133
3.25	1.10977	435,6	I. IIIoS	433,0	9.99859	2,6	0.00131
. 25	- IILI3	435,5	- I154I	433,0	. 99872	2,6	. 00128
. 27	. 1818	435,6	.119]+	433,0	. 99875	2,5	.00125
. 23	. 12284	435.5	. 12407	433, I	.99877	2,5	.00123
.29	. 12720	435,5	-12840	433, 1	. 99879	2,4	. 0012 I
$3 \cdot 30$	I. I3155	435,5	I. 13273	433, I	9.99882	2,4	0.00118
. 3 I	. I3591	435.5	. 13705	433,1	. 99884	2,3	.001 16
. 32	. 1.4026	435,4	. 14139	433,2	. 99885	2,3	.00114
. 33	. $1+46 \mathrm{r}$	435,4	. 14573	433,2	.99889	2,2	.00111
. 34	. 14897	435.4	. 15005	433,2	. 99891	2,2	.00109
3.35	1. 15332	435; 4	1. 15439.	433,2	9.99893	2,I	0.00107
. 36	. 15768	435.3	. 15873	433,2	. 99895	2, I	. 00105
. 37	. 16203	435,3	. 16305	433,3	. 99897	2,I	. 00103
. 38	. 16638	435.3	. 16739	433,3	. 99899	2,0	. 00101
. 39	. 17073	435.3	. 17172	433,3	.99901	2,0	.00099
$3 \cdot 40$	1.17509	435.3	1. 17605	433,3	9.99903	1,9	0.00097
. 4 I	. 17941	435,2	. 18039	433,3	. 99905	I,9	. 00095
.42	. 18379	435,2	. 18472	433.4	. 99907	1,9	. 00093
. 43	- 188If	435.2	. 18903	433,4	. 99909	1,8	.00091
. 44	. 19250	435,2	. 19339	433,4	.999II	1,8	. 00089
3.45	1. 19685	435,2	I. 19772	433,-	9.99912	1,8	0.00088
. 46	. 20120	435,2	. 20205	433.7	. 99914	I,7	. 00086
. 47	. 20555	- 335 , 1	. 20539	433,5	. 99916	1,7	. 00088
- 48	.20990	435, 1	.2107 .3	433,5	.99918	1,6	.00082
. 49	.21425	435, 1	.21505	433,5	. 99919	1,6	.0008I
3.50	1. 21860	435, I	I. 21940	433.5	9.95921	1,6	0.00079
u	$\log \tan \operatorname{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sec \mathrm{gd} u$	$\infty \mathrm{F}_{0}{ }^{\prime}$	$\log \sin 9 \mathrm{dd}$	$\cdots \mathrm{F}_{0}{ }^{\prime}$	$\log \csc \mathrm{gd} \mathrm{u}$

Logarithms of Hyperbolic Functions.

\pm	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{Fa}^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{6}{ }^{\prime}$	$\log \operatorname{coth} u$
$3 \cdot 50$	1.21850	435,1	I. 219.40	+33,5	9.99921	1,6	0.00079
. 51	. 22295		. 22373		. 99922		.00078
. 52	. 2273 I		22807		. 93924	1,5	.00076
. 53	.23166	435,0	.23240		. 99925		. 00075
. 54	.23601		. 23674	433.6	. 99927		. 00073
$3 \cdot 55$	1.24036	435,0	1.24107	433,6	9.99928	1,4	0.00072
. 56	.2477		. 24541		. 99930		.00070
. 57	. 24906		. 24975		. 9993 I		. 00059
. 58	. 25341		.25408		. 99993	I,3	. 00067
. 59	.25776		.25842		. 93934		. 00056
3.60	1.26211	434,9	1. 26275	433,6	9.99935	I,3	0.00055
. 61	. 256.46		. 26709	433,7	. 999936	1,3	. 000064
. 62	. 27080		.27143		. 99938	I, 2	. 00062
.63	. 27515		. 27575		. 99939		. 0006 I
. 64	. 27950		. 28010		. 99940		. 00050
3.65	$\text { I. } 28385$	434,9		433,7	9.99941	1,2	0.00059
. 66	$.28820$. 28878		. 99942		. 00058
. 67	. 29255		. 23311		. 99944	I, I	. 00056
. 68	.29690	434,8	.29745		. 99945		. 00055
. 69	. 30125		-30179	433,8	.99946		. 00054
3.70	I. 30559	434,8	1. 30612	433,8	9.99947	I, I	0.00053
. 71	. 30994		. 31046		. 99948	1,O	. 00052
. 72	-31429		-31480		. 99949		.00051
. 73	. 31864		.31914		. 99950		. 00050
. 74	-32299		. 32348		. 99951		.00049
3.75	I. 32733	434,8	1.32781	433,8	9.99952	1,0	0.00048
. 75	. 33 168		. 33215		. 99953	0,9	. 00047
. 77	. 33603		. 33649		. 99954		. 00046
. 78	-34038	434,7	- 34083		. 99955		.00045
. 79	-34472		. 34517	433,9	. 99955	.	.00044
3.80	I. $3+907$	434,7	1.34951	433,9	9.99957	0,9	0.00043
. 81	. 35342		-35384		. 99957		. 00043
. 82	. 35777		. 35818		. 99958	0,8	.00042
. 83	. 3621 I		. 36252		. 99959		.0004I
. 84	. 36646		. 36686		. 99960		. 00040
3.85	1.37081	434,7	1.37120	433,9	9.99961	0,8	0.00039
. 85	. 37515		-37551		. 99961		. 000039
. 87	- 37950		- 37988		. 99962		. 00038
. 88	- 38385		-38422		. 99963	0,7	. 00037
. 89	. 38819		. 38856		. 99964		.00036
3.90	I. 39254	434,7	I. 39290	433,9	9.99964	0,7	0.00036
. 91	-39689	434,6	. 39724		. 99965		. 00035
. 92	. 40123		. 40158	434,0	. 99966		.00034
. 93	. 40558		. 40591		. 99966		. 00034
. 94	. 40993		. 41025		. 99967		. 00033
3.95	I.41427	434,6	I. 41459	434,0	9.99968	0,6	0.00032
. 96	. 41862		. 41893		. 99968		. 00032
. 97	. 42296		. 42327		. 99969		.00031
. 98	. 42731		. 4276 I		. 99970		. 00030
-99	. 43166		.43195		. 99970		.00030
4.00	1. 43600	434,6	1.43629	434,0	9.99971	0,6	0.00029
u	$\log \tan \mathrm{gd} \mathrm{u}$	$\pm \mathrm{Fo}^{\prime}$	$\log \sec$ gd u	- $\mathrm{Fo}^{\text {t }}$	$\log \sin \mathrm{gd} u$	$\cdots \mathrm{Fo}^{\prime}$	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{FO}^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	\log coth u
4.00	1.43500	434,6	I. 43629	43-4,0	9.99971	0,6	0.00029
. 01	. 44035		. 44063		. 9997 I		. 00029
. 02	-4,4469		. 441497		. 99972		. 00028
. 03	. 44904		. 4.493 I		. 99973	0,5	. 00027
. 04	.45339		. 45365		. 99973		. 00027
4.05	1.45773	434,6	I. 45799	434,0	9.99974	0,5	0.00026
. 06	. 46208		. 46233		. 99974		. 00026
. 07	. +6542	434,5	. 46668		. 99975		. 00025
. 08	. 47077		. 47102		. 99975		. 00025
. 09	-475II		. 47536	434, 5	-99976		. 00024
4.10	1.47946	434,5	I. 47970	434, I	9.99976	0,5	0.00024
.II	- +8380		. 48.404		. 99977		. 00023
. 12	. 48815		. 48838		. 99977		. 00023
. I3	- 49219		. 49272		- 99978	0,4	. 00022
. 14	. 49684		. 49706		-99978		. 00022
4.15	1.50118	434,5	I. 501.40	434, 1	9.99978	0,4	0.00022
. 16	. 50553		-50574		. 99979		. 0002 I
. 17	. 50987		. 51008		-99979		. 0002 I
. 18	-51422		. 51442		. 99980		. 00020
. 19	. 51836		. 51876		. 99980		.00020
4.20	1.5229I	434,5	1.52310	434, I	9.99980	0,4	0.00020
. 21	. 52725		. 52745		. 99981		. 00019
. 22	- 53160		-53179		. 99981		. 00019
.23	- 53594		-53613		. 99982		. 00018
. 24	- 54029		-54047		. 99982		. 00018
4.25	1. 54163	434,5	I. 5448I	434,5	9.99982	0,4	0.00018
. 25	. 54898		-54915		. 99983	0,3	. 00017
.27	- 55332		-55349		- 99983		.00017
. 28	. 55767		-55783		. 99983		. 00017
. 29	. 56201		-562I7		-99984		. 00016
4.30	I. 56636	434,5	I. 56652	434, 1	9.99984	0,3	0.00016
. 3 I	. 57070		. 57086		. 99984		. 00016
. 32	. 57505	434,4	- 57520		. 99985		. 00015
. 33	. 57939		- 57954		. 99985		. 00015
. 34	- 58373		-58388		. 99985		. 00015
4.35	I. 58808	434,4	I. 58822	434, I	9.99986	0,3	0.00014
. 36	- 59242		. 59256	434,2	. 99985		. 00014
- 37	- 59677		. 59691		. 99986		. 00014
. 38	. 60111		. 60125		-99986		. 00014
. 39	. 60546		. 60559		-99987		. 00013
4.40	I. 60980	434,4	1. 60993	434,2	9.99987	0,3	0.00013
. 41	. 61414		. 61427		. 99987		. 00013
. 42	-61849		.61851		. 99987		. 00013
. 43	. 62283		. 62295		. 99988	0,2	. 00012
. 44	. 62718		. 62730		-99988		. 00012
	1.63152	434,4	I. 63164	434,2	9.99988	0,2	0.00012
. 46	. 63587		. 63598		. 99988		. 00012
. 47	. 6402 I		. 64032		. 99989		. 00011
. 48	. 64455		-64467		. 99989		.000II
. 49	. 64890		. 64901		. 99989		. 0001 I
4.50	1.65324	434,4	I. 65335	434,2	9.99989	0,2	0.00011
u	$\log \tan g d u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\infty F_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	$\cdots F_{0}{ }^{\prime}$	log caced u

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathbf{F o}^{\prime}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \operatorname{coth} u$
$4 \cdot 50$	1.65324	434,4	1.65335	434,2	9.99989	0,2	0.00011
. 51	. 65759		. 65769		. 99989		. 0001 I
. 52	. 66193		. 66203		. 99990		. 00010
. 53	. 66627		. 66637		- 99990		. 00010
- 54	. 67062		. 67072		. 99990		. 00010
4.55	1. 67496	434,4	1.67505	434,2	9.99990	0,2	0.00010
. 56	. 67931		. 67940		. 99990		.00010
. 57	. 68365		. 68374		. 99991		. 000009
. 58	. 68799		. 68808		. 99991		. 00009
- 59	. 69234		. 69243		.99991		.00009
4.60	I. 69668	434,4	1.69677	434,2	9.9999 I	0,2	0.00009
.6I	. 70102		. 701 II		. 99991		. 00009
. 62	. 70537		-70545		. 99992		.00008
. 63	. 70971		. 70979		. 99992		. 00008
. 64	. 71406		. 71414		. 99992		. 00008
4.65	1.71840	434,4	1.71848	434,2	9.99992	0,2	0.00008
. 66	. 72274		. 72282		. 9.99992		. 00008
. 67	. 72709		. 72716		. 99992		. 00008
. 68	. 73143		.7315I		. 99993	0,I	. 00007
. 69	. 73577		-73585		. 99993		. 00007
4.70	1.74012	434,4	1.74019	434,2	9.99993	0,I	0.00007
. 71	. 74446		-74453		. 99993		.00007
. 72	. 7488 I		-74887		. 99993		. 00007
. 73	. 75315		-75322		. 99993		. 00007
. 74	. 75749		. 75756		. 99993		. 00007
4.75	1.76184	434,4	1.76190	434,2	9.99993	O,I	0.00007
. 76	. 756 I 8		. 76624		. 99994		. 00006
. 77	. 77052		. 77059		. 99994		. 00006
. 78	. 77487		. 77493		. 99994		. 00006
. 79	.77921		-77927		. 99994		. 00006
4.80	1.78355	434,4	1.78361	434,2	9.99994	O,I	0.00006
. 81	. 78790		. 78796		. 99994		. 00006
. 82	. 79224		. 79230		. 99994		. 00006
. 83	. 79658	434,3	. 79664		. 99994		.00005
. 84	. 80093		. 80098		. 99995		. 00005
4.85	1.80527	434,3	1.80532	434,2	9.99995	O,I	0.00005
. 86	. 80962		. 80967		. 99995		. 00005
. 87	. 81396		.81401		. 99995		. 00005
. 88	. 81830		.81835		. 99995		. 00005
. 89	. 82265		. 82269		. 99995		. 00005
4.90	1.82699	434,3	1.82704	434,2	9.99995	O,I	0.00005
. 91	. 83133		. 83138		. 99995		. 00005
. 92	. 83568		. 83572		. 99995		. 00005
. 93	. 84002		. 84006		. 99995		. 00005
-94	. 84436		.8444I	434,3	-99996		.00004
4.95	1.84871	434,3	1.84875	434,3	9.99996	O,I	0.00004
. 96	. 85305		. 85309		. 99996		. 00004
. 97	. 85739		. 85743		. 99996		. 00004
. 98	. 85174		. 85178		. 99996		.00004
. 99	. 86608		. 86612		. 99996		.00004
5.00	1.87042	434,3	1.87046	434.3	9.99996	Q, I	0.00004
u	$\log \tan \mathrm{od} u$	* F60	$\log \sec \mathrm{gd} x$	* Fo'	$\log \operatorname{sing} \mathrm{gd}$	- Fo'	$\log \csc \mathrm{gd} u$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\log cosh u	$\omega \mathrm{Fo}^{\prime}$	$\log \tanh u$	$\omega \mathrm{Fo}^{\prime}$	log coth u
5.00	1.87042	43+3	1.870.46	43-4,3	9.99995	O, I	0.00004
.01	. $87+77$. $87+40$. 99996		. 00004
. 02	. 8791 I		. 87915		. 99995		. 00004
. 03	. 8833		. 88349		- 99996		. 00004
. 04	. 88 -80		.88783		. 99995		.00004
5.05	1.89214	434,3	1. 89217	434,3	9.99996	O,I	0.00004
. 05	. 80648		. 89552		. 99997		. 00003
. 07	.90083		. 90085		-99997		. 00003
. 08	. 90517		. 90520		. 99997		. 00003
. 09	. 90951		. 90955		. 99997		. 00003
5.10	1.91385	43-4,3	1.91389	43-, 3	9.99997	0,1	0.00003
. II	.91820		. 91823		. 99997		. 00003
. 12	. 92254		. 92257		-99997		. 00003
. I3	. 92689		.92692		.99997		.00003
. 14	.93123		.93126		. 99997		. 0000.3
5.15	I. 93557	434,3	1. 93560	434,3	9.99997	O,I	0.00003
. 16	. 93992		. 93994		. 99997		. 00003
. 17	. 94126		. 94129		. 99997		.00003
. 18	. 9.9850		. 9.9863		. 99997		. 00003
. 19	. 95294		. 95297		-99997		. 00003
5.20	I. 95729	434,3	I. 95731	434,3	9.99997	O,I	0.00003
. 21	. 96163		. 95156		. 99997		. 00003
. 22	. 96597		. 96600		. 99997		. 00003
. 23	. 97032		. 97034		. 99998	0,0	. 00002
. 24	. 97466		. 97469		. 99998		. 00002
5.25	I. 97900	434,3	1.97903	434,3	9.99998	0,0	0.00002
. 26	. 98335		. 98337		. 99998		. 00002
. 27	. 98769		.6877I		. 99998		. 00002
. 28	. 99203		. 09205		. 99998		. 00002
. 29	. 99538		. 99640		. 99998		. 00002
	2.00072	434,3	2.00074	434,3	9.99998	0,0	0.00002
. 3 I	. 00505		. 00508		. 99998		. 00002
. 32	. 00941		.00943		- 99998		. 00002
. 33	. 01375		.01377		- 99998		. 00002
. 34	. 01809		. O18II		-99998		.00002
	2.02244	434,3	2.02245	43-4,3	9.99998	0,0	0.00002
. 36	. 02678		. 02680		. 99998		. 00002
. 37	.03112		.03114		- 99998		. 00002
. 38	. 03547		. 03548		. 99998		. 00002
. 39	. 03981		. 03983		. 99998		. 00002
5.40	2.04415	434,3	2.04417	434,3	9.99998	0,0	0.00002
. 41	. 04849		. 0.485 I		- 99998		. 00002
. 42	. 05284		. 05285		. 99998		. 00002
. 43	. 05718		. 05720		. 99998		. 00002
. 44	.06152		. 06154		-99998		. 00002
	2.06587	434,3	2.06588	434,3	9.99998	0,0	0.00002
. 46	.0702I		. 07023		. 99998		. 00002
. 47	. 07455		. 07457		. 99998		. 00002
. 48	. 07800		. 078 gs		- 99998		. 00002
. 49	.08324		.08325		. 99999		. 00001
5.50	2.08758	434,3	2.08760	434,3	9.99999	0,0	0.00001
0	$\log \tan 9 \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin \mathrm{gd} u$	* $\mathrm{F}_{0}{ }^{\prime}$	$\log \csc 9 \mathrm{gd}$

Logarithms of Hyperbolic Functions.

u	$\log \sinh u$	$\omega F_{0}{ }^{\prime}$	$\log \cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \tanh u$	$\omega \mathrm{F}_{6}^{\prime}$	log coth ut
5.50	2.08758	43-4,3	2.08760	434,3	9.99999	0,0	0.00001
. 51	. 09193		. 09194		. 99999		. 00001
. 52	.09527		. 09528		. 99993		. 0000 I
. 53	. 10051		. 10063		. 95999		. 00001
. 54	. 10495		. 10497		. 95999		. 0000 I
5.55	2. 10930	434,3	2.10931	434.3	9.99399	0,0	0.00001
. 56	. 11354		. 11365		. 99999		. 00001
. 57	. 11798		- I ISOO		. 96999		. 00001
. 58	. 12233		. 12234		. 95997		. 00001
- 59	. 12667		. 12568		. 99999		. 00001
5.60	2.13101	434,3	2.13103	434,3	9.99599	0,0	0.00001
. 61	. 13536		. 13537		. 99999		. 00001
. 62	. 13970		. 1397 I		. 99999		. 00001
. 63	. 14404		. 14405		. 99999		. 00001
. 64	. 14839		. 14840		. 99999		. 00001
5.65	2.15273	4343	2.15274	434,3	9.99999	0,0	0.00001
. 66	. 15707		. 15708		. 99999		. 00001
. 67	. 1515		. 16142		. 99999		. 00001
. 68	. 15576		. 16577		. 99999		. 00001
. 69	. 17010		. İOII		. 99999		. 00001
5.70	2.17114	434,3	2.17445	434,3	9.99999	0,0	0.00001
. 71	.17879		. 17880		. 99999		. 0000 I
. 72	. 18313		. 18314		. 99999		. 00001
. 73	. 18747		. 18748		. 99999		. 00001
. 74	. 19182		.19182		. 99999		.0000I
5.75	2. 19616	434,3	2.19617	434,3	9.99999	0,0	0.00001
. 76	. 20050		. 20051		. 99999		. 00001
. 77	. 20484		. 20.485		. 99999		. 00001
. 78	. 20919		. 20920		. 99999		. 00001
. 79	. 21353		. 21354		. 99999		. 00001
5.80	2.21787	434,3	2.21788	$43+3$	9.99999	0,0	0.00001
. 81	. 22222		. 22222		. 99999		. 0000 I
.82	. 22655		. 22657		. 99999		. 00001
. 83	. 23090		.23091		. 99999		. 00001
. 84	. 23525		.23525		. 99999		. 00001
5.85	2.23959	434,3	2.23960	434,3	9.99999	0,0	0.00001
. 83	. 2.4393		. 2.139 .4		. 99999		. 00001
. 87	. 24828		. 24828		. 99999		. 00001
. 88	. 25263		. 25262		. 99999		. 00001
. 89	.25695		. 25697		. 99999		. 00001
5.90	2.26130	434,3	2.26131	434,3	9.99999	0,0	0.00001
. 91	. 26565		. 26565		. 99999		. 00001
. 92	. 26999		. 27000		. 99999		. 00001
. 93	. 27433		. 27434		. 99999		. 00001
. 94	. 27868		.27868		. 99999		.00001
5.95	2.28302	434,3	2.28303	434,3	9.99999	0,0	0.00001
. 96	. 28736		. 28737		. 99999		. 00001
. 97	.29171		. 29171		-99999		. 00001
. 98	.29605		. 29605		. 99999		. 00001
. 99	. 30039		. 30040		. 99999		. 00001
6.00	2.30473	434,3	2.30474	434,3	9.99999	0,0	0.00001
u	$\log \tan \mathrm{gd} \mathrm{u}$	$\pm \mathrm{F}_{0}{ }^{\prime}$	logsec gd u	$\omega \mathrm{Fu}^{\prime}$	$\log \sin g d u$	$\omega \mathrm{FF}^{\prime}$	$\log \csc \mathrm{gd} u$

TABLE II

NATURAL HYPERBOLIC FUNCTIONS

Natural Hyperbolic Functions.

u	sinh u	$\omega \mathrm{F}_{\mathrm{j}}{ }^{\prime}$	cosh u	$\omega \mathrm{Fo}^{\circ}$	$\tanh u$	$\omega \mathrm{Fo}^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0000	0.00000	10,0	1.00000	0,0	0.00000	10,0	∞	\propto
. 0001	.00010		. 00000		.00010		10000.00	1000000,0
. 0002	. 00020		. 00000		. 00020		5000.00	250000,0
.0003	. 00030		.00000		. 00030		3333.33	IIIIII, I
. 0004	.00040		. 00000		.00040		2500.00	62500,0
0.0005	0.00050	10,0	1.00000	0,0	0.00050	10,0	2000.00	40000,0
. 0005	. 00050		. 00000		. 00050		1665.67	27777,8
. 0007	.00070		. 00000		. 00070		$1+28.57$	20108,2
. 0008	. 00080		. 00000		. 00080		1250.00	15625,0
. 0009	. 00090		.00000		. 00090		IIII.II	12345,7
0.0010	0.00100	10,0	1.00000	0,0	0.00100	10,0	1000.00	10000,0
. 0011	. 00110		.00000		. 00110		909.09	8264,5
. 0012	. 00120		. 00000		. 00120		833.33	6944,4
. 0013	. 013130		. 00000		. 00130		759.23	5917,2
. 0014	. 00140°		. 00000		. 00140		714.29	5102,0
0.0015	0.02150	10,0	1.00000	0, 0	0.00150	10,0	656.67	4444,4
. 0016	. 00150		. 00000		. 00160		625.00	39ə6,2
. 0017	. 00170		. 00000		.00170		588.24	$3+60,2$
. 0018	. 00180		. 00000		.00180		555.56	3086,4
. 0019	.00190		. 00000		.00190		526.32	2770, I
0.0020	0.00200	10,0	1.00000	0,0	0.00200	10,0	500.00	2500,0
. 0021	. 00210		. 00000		. 00210		475.19	2257,6
. 0022	. 00220		. 00000		. 00220		454.55	2055, I
. 0023	. 00230		. 00000		. 00230		$43+.78$	1890, ${ }^{\text {c }}$
. 0024	. 002.40		.00000		.00240		416.67	1736, I
0.0025	0.00250	10,0	1.00000	0,0	0.00250	10,0	400.00	1600,0
. 0025	. 00260		. 00000		. 00260		384.62	I 479,3
. 0027	. 00270		. 00000		.00270		370.37	1371,7
. 0028	. 00280		. 00000		. 00280		357.14	1275,5
. 0029	. 00290		.00,000		. 00290		344.83	II89, I
0.0030	0.00300	10,0	1.00000	0, 0	0.00300	10,0	333.33	IIII, 1
.0031	. 00310		. 00000		.00310		322.58	1040,6
.0032	.00320		. 00001		. 00320		312.50	975,6
. 0033	. 00333		. 00001		. 00330		303.03	918,3
. 0034	. 00340		. 0000 I		. 00340		294.12	865,
0.0035	0.00350	10,0	1.0000	0,0	0.00350	10,0	285.72	8r6,3
. 0036	. 00360		.00001		. 00360		277.78	771,6
. 0037	. 00370		.0000I		.00370		270.27	
.0038	. 003880		. 00001		. 00380		263.16	692,5
. 0039	. 00390		.00001		.00390		$256.4{ }^{1}$	657,5
0.0040	0.00400	10,0	1.00001	0,0	0.00400	10,0	250.00	625,0
. 0041	. 00410		.0000		.00410		243.90	594,9
. 0042	. 00420		. 00001		. 00420		238.10	566,9
. 0043	. 00430		.00001		.00430		232.56	540,8
. $00+4$. 00440		.00001		. 00440		227.27	516,5
0.0045	0.00450	10,0	I.0000	0,0	0.00450	10,0	222.22	493,8
. 00.46	. 00460		.0000I		. 00460		217.39	472,6
. 0047	. 00478		.0000I		. 00470		212.77	452,7
.0048 .0049	.00480 .00490		.00001		.00480 .00490		208.33 204.08	434,0 416,5
0.0050	0.00500	10,0	1.00001	0,I	0.00500	10,0	200.00	400,0
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{Fo}^{\prime}$	$\boldsymbol{s i n}$ gd u	$\omega^{*} \mathrm{~F}_{0}{ }^{\prime}$	csc gd u	* Fo^{\prime}

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\tanh \mathrm{u}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
0.0050	0.00500	10,0	1.00001	O,I	0.00500	10,0	200.00	400,0
. 005 I	. 00510		. 00001		. 06510		196.08	384,5
. 0052	. 00520		. 00001		. 00520		192.31	309,8
. $\operatorname{co5} 3$. 00530		. 00001		. 00530		183.68	356,0
. 0054	. 00510		. 00001		. 00540		185.19	3+2,9
0.0055	0.00550	ro,0	1.00002	O, I	0.00550	10,0	181. 82	330,6
. 0056	. 00550		. 00002		. 00560		178.57	318,9
. 0057	. 00570		. 00002		. 00570		175.44	307,8
.0058	. 00580		. 00002		. 00580		172.42	297,3
.0059	. 00590		. 00002		. 00590		169.49	287,3
0.0050	0.00500	10,0	1.00002	O,I	0.00600	10,0	166.67	27フ, 8
. 0061	. 00610		. 00002		. 00510		163.94	268,7
.0052	. 00620		. 00002		. 00520		161. 29	260, I
. 0053	. 00530		. 00002		. 00530		158.73	251,9
. 0064	. 00510		. 00002		. 00640		156.25	24,1
0.0065	0.00650	10,0	1.00002	O,I	0.00550	10,0	153.85	235,7
. 0056	. 00560		. 00002		. 00560		151.52	229,6
.0057	.00670		. 00002		. 00570		149.26	222,8
.008	. 00580		. 00002		. 00658		147.06	216,3
.0059	. 0069		. 00002		. 00590		1+4.93	210,0
0.0070	0.00700	10,0	1.00002	O,I	0.00700	10,0	142.85	20.4, 1
.0071	. 00710		. 00003		. 00710		140.85	198,4
.0072	. 00720		. 00003		. 00730		138.85	192,9
.0073	. 00730		. 00003		.00730		136.99	187,6
. 0074	. 00740		. 00003		. 00740		135.14	182,6
0.0075	0.00750	10,0	1.00003	0,1	0.00750	10,0	133.34	177,8
. 0076	. 00760		. 00003		. 00760		13 I .58	173.1
. 0077	. 00770		. 00003		.00770		129.87	168,7
. 0078	. 00780		. 00003		.00780		128.21	164,4
. 0079	. 00790		. 00003		. 00790		126.58	160,2
0.0080	0.00800	10,0	1.00003	OI,	0.00800	10,0	125.00	156,2
. 008 I	. 00810		. 00003		. 00810		123.46	152,4
. 0082	. 00820		. 00003		. 00820		12 I .95	148,7
. 0083	. 00830		. 00003		. 00830		120.48	145,2
. 0084	. 00840		. 00004		. 00840		119.05	141,7
0.0085	0.00850	10,0	1.00004	O,I	0.00850	10,0		138,4
. 0085	. 00850		. 00004		. 00860		116.28	135,2
.0087	. 00870		. 00004		. 00880		114.95	132, 1
. 0088	. 00880		. 000004		. 00880		113.64	
. 0089	. 00880		. 00004		. 00890		112.36	126,2
0.0090	0.00900	10,0	1.00004	O, I	0.00900	10,0	III.II	123,5
. 0001	. 00910		. 00004		. 00910		109.89	120,8
. 0092	. 00920		. 000004		. 00920		108.70	118.1
. 0093	. 00930		. 00004		. 009330		107.53	115,6
. 0094	. 00940		. 00004		. 00940		106.39	113,2
0.0095	0.00950	10,0	1.00005	0,I	0.00950	10,0	105.27	110,8
. 0096	. 00960		. 00005		. 00960		104.17	108,5
. 0097	. 00970		. 00005		. 00970		103.10	106,3
. 00098	. 00980		. 00005		. 00088		102.04	104, 1
. 0099	. 00990		. 00005		. 00990		101.01	102,0
0.0100	0.01000	10,0	1.00005	0,1	0.01000	10,0	100.00	100,0
4	$\tan \mathrm{od} u$	$\pm \mathrm{F}_{0}^{\prime}$	sec gd u	$\infty \mathrm{FO}^{\prime}$	$\sin 9 \mathrm{~d} u$	* Fo'	csc gd u	$\cdots \mathrm{Fa}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{Fa}^{\prime}$	tanh 4	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth 4	$\infty \mathrm{F}_{0}{ }^{\prime}$
0.0100	0.01000	10,0	1.00005	O,I	0.01000	10,0	100.003	1000,0
. 0101	. 01010		. 00005		. 01010		99.013	980,3
. 0102	. 01020		. 00005		. 01020		98.043	961, 1
. 0103	. 01030		. 00005		.01030		97.091	942,6
. 0104	. O1040		. 00005		. 01040		96.157	924,5
0.0105	0.01050	10,0	1.00006	O,I	0.01050	10,0	95.212	907,0
. 0106	. 01060		. 00006		. 01050		94.343	890,0
. 0107	. 01070		. 00006		. 01070		$93 \cdot 462$	873,4
. 0108	. 01080		. 00006		. 01080		92.595	857,3
. 0109	. 01090		. 00006		. 01090		91.747	841,6
0.0110	0.01100	10,0	1.00006	0,I	0.01100	10,0	90.913	826,4
. OIII	.OIIIO		. 00006		. OIIIO		90.094	8il, 6
. 0112	.OII20		. 00006		. 01120		89.289	797,2
.OII3	. 01130		. 00006		. 01130		88.499	783.1
.OII4	. 01140		. 00006		. OIIfo		87.723	769,4
0.0115	0.01150	10,0	I. 00007	O,I	0.01150	10,0	86.960	756, I
. 0116	. 011160		. 00007		. 01160		86.211	743, 1
. 0117	. 01170		. 00007		. OII70		85.474	730,5
.OII8	. 01180		. 00007		. OII80		84.750	718,2
.OII9	. 01190		. 00007		. OI 190		84.038	706, 1
0.0120	0.01200	10,0	1.00007	O, I	0.01200	10,0	83.337	694,4
. 0121	. 01210		. 00007		. 01210		82.649	683,0
. 0122	. 01220		. 00007		. 01220		8 r .971	671,8
. 0123	. 01230		. 00008		. 01230		81.305	660,9
. 0124	. 01240		. 00008		. 01240		80.649	650,3
0.0125	0.01250	10,0	1.00008	O,I	0.01250	10,0	80.004	640,0
. 0126	. 01260		. 00008		. 01260		79.369	629,8
. 0127	. 01270		. 00008		. 01270		78.744	620,0
. 0128	. 01280		. 00008		. 01280		78.129	610,3
. 0129	. 01290		. 00008		. 01290		77.524	600,9
0.0130	0.01300	10,0	1.00008	0,1	0.01300	10,0	76.927	591,7
.0131	. 01310		. 00009		. 01310		76.340	582,7
. 0132	. 01320		. 00009		. 01320		75.752	573,9
. 0133	.01330		. 00009		-01330		75.192	565,3
. 0134	. 01340		. 00009		. O1340		74.631	556,9
0.0135	0.01350	10,0	1.00009	O,I	0.01350	10,0	74.079	548,7
. 0.0136	. 01360		. 00009		. 01360		73.534	540,6
. 0137	. 01370		. 00009		. 01370		72.997	532,8
. 0138	. 01380		. 00010		. 01380		72.468	525, 5
. 0139	. 01390		. 00010		. 01390		71.947	517,5
0.0140	0.01400	10,0	1.00010	O, I	0.01400	10,0	71.433	510,2
.014I	.01410		. 00010		. OIf 10		70.927	503,0
. 0142	. 01420		. 00010		. 01420		70.427	495,9
. 0143	. O1430		. 00010		. 01430		69.935	489,0
. 0144	. 01440		. 00010		. O1440		69.449	482,2
0.0145	0.01450	10,0	I. 0001 I	0,I	0.01450	10,0	68.970	475,6
. 0146	. 01460		. 00011		. 01460		68.498	469,1
.0147	. 01.470		. 0001 II		. or 470		68.032	462,7
. 0148	. 01480		. 0001 I		. 01480		67.573	456,5
. 0149	. 01490		. 0001 I		. Or490		67.119	450,4
0.0150	0.01500	10,0	I. 00011	0,2	0.01500	10,0	66.672	444,4
\square	$\boldsymbol{t a n} \mathbf{g d} \mathbf{d}$	© $F_{0}{ }^{\prime}$	sec gd u	- $\mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	* F0'	csc gd u	$\omega . \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{6}{ }^{\prime}$	$\cosh 0$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{FO}^{\prime}$
0.0150	0.01500	10,0	1.00011	0,2	0.01500	10,0	66.672	414,4
. 0151	. 01510		. 0001 I		. 01510		66.230	438,5
. 0152	. 01520		. 00012		. 01520		65.795	432,8
. 0153	. 01530		. 00012		. 01530		65.365	427,2
. 0154	. 01540		.00012		. O1540		64.940	421,6
0.0155	0.01550	10,0	1.00012	0,2	0.01550	10,0	67.521	416,2
. 0156	. 01560		. 00012		. 01560		64.108	410,9
. 0157	. 01570		. 00012		. 01570		63.699	405,7
. 0158	. 01580		.00012		. 01580		63.296	400,5
. 0159	. 01590		.00013		. 01590		62.898	395,5
0.0160	0.01600	10,0	1.00013	0,2	0.01600	10,0	62.505	390,6
. 0161	.01610		.00013		. 01610		62.117	385,8
. 0162	. 01620		. 00013		. 01620		61.734	381,0
. 0163	. 01630		.00013		.01630		61.355	376,3
. 0164	.01640		. 00013		. 01640		60.981	371,8
0.0165	0.01650	10,0	1.00014	0,2	0.01650	10,0	60.612	367,3
. 0166	. 01660		.00014		. 01660		60.247	362,9
. 0167	. 01670		.00014		. 01670		59.886	358,5
. 0168	. 01680		.00014		. 01680		59.519	354,3
. 0169	. 01690		.00014		. 01690		59.177	350, I
0.0170	0.01700	10,0	1.00014	0,2	0.01700	10,0	58.829	346,0
. 0171	. OI7 10		. 00015		. 01710		58.485	342,0
. 0172	. 01720		. 00015		. 01720		58.145	338,0
. 0173	. 01730		. 00015		. 01730		57.809	334, 1
. 0174	. 01740		. 00015		. 01740		57.477	330,3
0.0175	0.01750	IO,O	1.00015	0,2	0.01750	10,0	57. 149	326,5
. OI76	. 01760		. 00015		. 01760		56.824	322,8
. 0177	. 01770		. 00016		. 01770		56.503	319,2
. 0178	. 01780		. 00016		. 01780		56.185	$3 \mathrm{I} 5,6$
. 0179	. 01790		. 00016		. 01790		55.872	312, 1
0.0180	0.01800	10,0	1.00016	0,2	0.01800	10,0	55.562	308,6
. 0181	. 01810		. 00016		.01810		55.255	305,2
. 0182	. 01820		. 00017		. 01820		54.951	301,9
. 0183	. 01830		. 00017		. 01830		54.651	298,6
. 0184	. 01840		.00017		. 01840		54.354	295,3
0.0185	0.01850	10,0	1.00017	0,2	0.01850	10,0	54.060	292,2
. 0186	. 01850		. 00017		. 01860		53.770	2890
. 0187	. 01870		. 00017		. 01870		53.482	285,9
. 0188	. 01880		. 00018		. 01880		53.198	282,9
. 0189	. 01890	-	. 00018		.01890		52.916	279,9
0.0190	0.01900	10,0	1.00018	0,2	0.01900	10,0	52.638	277,0
. 0191	. 01910		. 00018		. 01910		52.362	274, I
. 0192	. 01920		. 00018		. 01920		52.090	271,2
. 0193	. 01930		. 00019		. 01930		51.820	268,4
. 0194	. 01940		. 00019		. 01940		51.553	265,7
0.0195	0.01950	10,0	1.00019	0,2	0.01950	10,0	51.289	263,0
. 0196	. 01960		. 00019		. 01960		51.027	260,3
. 0197	. 01970		. 00019		. 01970		50.768	257,6
. 0198	. 11980		. 00020		. 01980		50.512	255,0
. 0199	. 01990		. 00020		. 01990		50.258	252,5
0.0200	0.02000	10,0	1.00020	0,2	0.02000	10,0	50.007	250,0
\%	$\tan 9 \mathrm{da}$	- $\mathrm{F}_{\mathrm{B}^{\prime}}$	$\sec \mathrm{gd} \mathrm{u}$	- Fo'	\sin od a	- Fó	cece od ut	- Fo^{\prime}

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega F_{0}{ }^{\prime}$	tanh u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	coth u	ωF_{0}^{\prime}
0.0200	0.02000	10,0	1.00020	0,2	0.02000	10,0	50.007	250,0
. 0201	. 02010		. 00020		. 02010		49.758	247,5
. 0202	. 02020		. 00020		. 02020		49.512	245,0
. 0203	. 02030		.0002I		. 02030		49.258	242,6
. 0204	.03040		.00021		. 02040		49.025	240,3
0.0205	0.02050	I0,O	1.00021	0,2	0.02050	10,0	48.787	237,9
. 0205	. 02050		. 00021		. 02050		48.551	235,6
. 0207	.02070		. 00021		.02070		48.316	233.3
.0208	.02080		. 00022		. 02080		48.084	231, I
. 0209	. 02090		. 00022		. 02090		47.854	228,9
0.0210	0.02100	10,0	1.00022	0,2	0.02100	10,0	47.626	226,7
. 0211	. 02110		. 00022		. 02110		$47 \cdot 400$	224,6
. 0212	. 02120		. 00022		. 02120		47.177	222,5
. 0213	. 02130		. 00023		. 02130		46.955	220,4
.0214	. 02140		. 00023		.02140		46.736	218,3
0.0215	0.02150	10,0	1.00023	0,2	0.02150	IO,O	46.519	216,3
. 0216	. 02160		. 00023		. 02160		46.303	214,3
. 0217	.02170		. 00024		.02170		46.090	212,3
. 0218	. 02180		. 00024		. 02180		45.879	210,4
. 0219	. 02190		. 00024		. 02190		45.669	208,5
0.0220	0.02200	10,0	1.00024	0,2	0.02200	10,0	45.462	206,6
. 0221	. 02210		. 00024		. 02210		45.256	204,7
. 0222	. 02220		. 00025		. 02220		45.052	202,9
. 0223	. 02230		. 00025		. 02230		44.850	201, I
. 0224	. 02240		. 00025		.02240		44.650	199,3
0.0225	0.02250	10,0	1.00025	0,2	0.02250	10,0	47.452	197,5
. 0226	. 02250		. 00026		.02250		44.255	195,7
. 0227	. 02270		. 00026		. 02270		44.060	194,0
. 0228	. 02280		. 00025		. 02280		43.867	192,3
. 0229	.02250		. 00025		. 02290		43.676	190,7
0.0230	0.02300	10,0	1.00025	0,2	0.02300	10,0	43.485	189,0
. 0231	. 02310		. 00027		. 02310		43.298	187,4
. 0232	. 02320		. 00027		.02320		43.111	185,8
. 0233	. 02330		. 00027		. 02330		42.926	184,2
. 0234	. 023340		. 00027		.02340		42.743	182,6
0.0235	0.02350	10,0	1.00028	0,2	0.02350	10,0	42.56 r	181, I
. 0236	. 02360		. 00028		. 02360		42.381	179,5
. 0237	. 02370		. 00028		. 02370		42.202	178,0
. 0238	. 02380		. 00028		. 02380		42.025	I76,5
. 0239	. 02340		. 00029		. 02390		41.849	175,0
0.0240	0.02700	10,0	1.00029	0,2	0.02400	10,0	41.675	173,6
.02+1	. 02410		. 00029		. 02410		41.502	172, I
. 0242	. 02420		. 00029		. 02420		$4 \mathrm{I} \cdot 330$	170,7
. 0243	. 02430		. 00030		. 02430		41.160	159,3
. 02.44	. 02.440		. 00030		. 02440		40.992	167,9
0.0245	O\%2450	10,0	1.00030	0,2	0.02450	10,0	40.824	I66,6
. 02.46	\%.02460		. 00030		. 02460		40.659	165,2
. 0247	. 02470		. 0003 I		. 02469		40.494	163,9
-0848	.02480		. 0003 I		. 02479		40.331	162,6
$\checkmark .0249$.02450		.0003I		. 02.489		40.169	161,3
0.0250	0.02500	10,0	1.0003 I	0,3	0.02499	10,0	40.008	160,0
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fa}^{\prime}{ }^{\prime}$	$\sec \mathrm{gd} u$	© $\mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	* Fe^{\prime}	csc gd u	* $\mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

!	$\sinh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{Fig}^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F^{\prime}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
0.0250	0.02500	10,0	1.00031	0,3	0.02499	10,0	40.008	160,0
. 0251	. 02510		. 00032		. 02509		39.849	158,7
. 0252	. 02520		. 00032		. 02519		39.591	157,4
. 0253	. 02530		. 00032		. 02529		39.534	156,2
. 0254	. 02540		. 00032		. 02539		39.379	155,0
0.0255	0.02550	10,0	1.00033	0,3	0.02549	10,0	39.224	153,8
. 0256	. 02360		. 00033		. 02559		39.071	152,6
. 0257	. 02570		. 00033		. 02509		38.919	151,4
.0258	. 02580		. 00033		. 02579		38.768	150,2
. 0259	. 02590		. 00034		.02589		38.619	149, 0
0.0250	0.02600	10,0	1.00034	0,3	0.02599	10,0	38.470	147,9
. 0261	. 02610		. 00034		. 02609		38.323	146,8
. 0252	. 02520		. 00034		. 02619		38.177	145,7
. 0263	. 02530		. 00035		.02629		38.032	14.45
. 0254	. 026.40		. 00035		. 02639		37.888	143,4
0.0255	0.02650	10,0	1.00035	0,3	0.025 .49	10,0	37. 75	142,4
. 0256	. 02650		. 00035		. 02659		37.603	I+1,3
. 0257	.02570		. 00036		. 02659		37.462	140,2
. 0268	. 02580		. 00036		.02679		37.322	139,2
. 0269	. 02690		. 00035		. 02689		37.184	138,2
0.0270	0.02700	10,0	1.00036	0,3	0.02599	10,0	37.046	137, I
. 0271	. 02710		. 00037		. 02709		36.909	135, I
.0272	. 02720		. 00037		. 02719		36.774	135, I
. 0273	. 02730		. 00037		. 02729		35.639	I34, I
. 0274	.027.40		. 00038		. 02739		35.505	133,2
0.0275	0.02750	10,0	1.00038	0,3	0.02749	10,0	36.373	132,2
.0276	. 02760		. 00038		. 02759		36.211	131,2
. 0277	. 02770		. 00038		.02759		36.110	130,3
. 0278	.02780	-	. 00039		.02779		35.980	129.4
. 0279	. 02790		. 00039		.02787		35.852	128,4
0.0280	0.02800	10,0	1.00039	0,3	0.02799	10,0	35.724	127,5
.0281	.02810		. 00039		. 02809		35.597	126,6
. 0282	. 02820		. 000040		. 02819		35.470	125,7
. 0283	. 02830		. 00040		.02829		$35 \cdot 375$	12.4 .8
.0284	. 02840		. 00040		. 02839		35.221	124,0
0.0285	0.02850	10,0	I. 00041	0,3	0.02849	10,0	35.097	123,2
. 0285	. 02860		. 00041		. 02859		34.975	122,2
. 0287	.02870		. 00041		.02839		34.853	I2I,4
. 0283	.02880		. 00041		. 02879		34.732	120,5
. 0289	. 02880		. 00042		. 02889		34.612	119,7
0.0290	0.02900	10,0	1.00042	0,3	0.02899	10,0	$34 \cdot 492$	I 18,9
. 0291	. 02910		. 00042		. 02909		$34 \cdot 374$	I $18, \mathrm{I}$
. 0292	. 02920		. 00043		. 02919		34.256	117,2
. 0293	. 02930		. 00043		. 02929		34. 139	116,4
. 0294	. 02940		. 00043		. 02939		34.023	115,7
0.0295	0.02950	10,0	1.00044	0,3	0.02949	10,0	33.908	114,9
. 0296	. 02950		. 00044		. 02959		33.794	II4, I
. 0297	. 02970		. 00044		. 02959		33.680	113.3
. 0298	. 02980		. 00044		. 02979		$33 \cdot 567$	112,6
. 0299	. 02990		. 00045		. 02989		$33 \cdot 455$	III, 8
0.0300	0.03000	10,0	I. 00045	0.3	0.02999	10,0	$33 \cdot 343$	III, I
\square	$\tan 9 \mathrm{~d} \mathbf{u}$	© $F_{0}{ }^{\prime}$	sec ad a	* Fo^{\prime}	$\sin 9 \mathrm{~d} x$	$\omega \mathrm{F}^{\prime}$	csc ad u	$\stackrel{F}{ }{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\text {b }}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	coth u	$\cdots F_{0}{ }^{\prime}$
0.0300	0.03000	10,0	1.00045	0,3	0.02999	10,0	33.343	III, I
. 0301	. 03010		. 00045		. 03009		33.233	110,3
. 0302	. 03020		. 000046		. 03019		33.123	109,6
. 0303	. 03030		. 00046		. 03029		33.013	108,9
. 0304	. 03040		. 00046		. 03039		32.905	108,2
0.0305	0.03050	10,0	1.00047	0,3	0.03049	10,0	32.797	107,5
. 0305	. 03050		. 00047		. 03059		32.690	105,8
. 0307	. 03070		. 00047		. 03069		32.584	106, 1
. 0308	. 03080		. 00047		. 03079		32.478	105,4
. 0309	. 03090		. 00048		. 03089		32.373	104,7
0.0310	0.03100	10,0	1.000+8	0,3	0.03099	10,0	32.268	104,0
.03II	.03III		. 00048		.03109		32.165	103,4
.0312	.03121		. 00049		.03119		32.052	102,7
.0313	.03131		. 00049		.03129		31.959	102,0
.0314	.031.4I		.00049		.03139		31.858	IOI, 4
0.0315	0.03151	10,0	1.00050	0,3	0.03 I 49	10,0	31.757	100,7
.0316	.0316I		. 00050		.03159		31.656	100, 1
.0317	.03171		. 00050		.03169		31.556	99,5
.0318	.0318I		. 00051		.03179		3 I .457	98,9
. 0319	. 03191		. 00051		.03189		31.359	98,2
0.0320	0.03201	10,0	I. 0005 I	0,3	0.03199	10,0	31.261	97,6
. 0321	.032II		. 00052		. 03209		31.163	97,0
. 0322	. 03221		. 00052		.03219		31.067	96,4
. 0323	.0323I		. 00052		. 03229		30.971	95,8
. 0324	.0324I		.00052		. 03239		30.875	95,2
0.0325	0.03251	10,0	1.00053	0,3	0.03249	10,0	30.780	94,6
. 0326	.0325I		. 00053		. 03259		30.686	94,1
. 0327	.0327I		. 00053		. 03269		30.592	93,5
. 0328	.03281		. 00054		. 03279		30.499	92,9
. 0329	. 03291		. 00054		.03289		30.406	92,4
0.0330	0.03301	10,0	1.00054	0,3	0.03299	10,0	30.314	91,8
.0331	. 03311		. 00055		. 03309		30.223	91,2
. 0332	. 03321		. 00055		.03319		30.132	90,7
. 0333	. 03331		. 00055		. 03329		30.041	90, 1
. 0334	.03341		. 00056		. 03339		29.951	89,6
0.0335	0.03351	10,0	1.00056	0,3	0.03349	10,0	29.862	89, I
. 0335	. 03361		. 00056		. 03359		29.773	88,5
. 0337	.0337I		. 00057		. 03369		29.685	88,0
. 0338	.03381		. 00057		. 03379		29.597	87,5
. 0339	.03391		. 00057		. 03389		29.510	87,0.
0.0340	0.03401	10,0	1.00058	0,3	0.03399	10,0	29.423	85,6
. 0341	.03411		. 00058		. 03409		29.337	85,0
. 0342	.03.12I		. 00058		.03419		29.251	85,5
. 0343	.0343I		. 00059		. 03429		29.166	85,0
. 0344	. 03441		. 00059		. 03439		29.081	84,5
0.0345	0.03451	10,0	1.00060	0,3	0.03449	10,0	28.997	84,0
. 0346	.0346I		. 000060		. 03459		28.913	83,5
.03-47	.03471		. 00060		. 03469		28.830	83,0
. 0348	.0348I		. 00061		. 03479		28.747	82,5
. 0349	. 03491		. 00061		. 03489		28.665	82, 1
0.0350	0.03501	10,0	1.00061	0,4	0.03499	10,0	28.583	81,6
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	singd u	- Fu'	csc gd u	$\omega \mathrm{Fa}_{0}{ }^{\prime}$

Smitheonian Tables

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{3}{ }^{\prime}$	$\operatorname{coth} u$	$\Leftrightarrow \mathrm{F}_{0}{ }^{\prime}$
0.0350	0.03501	10,0	1.00061	0,4	0.03499	10,0	28.583	81,6
. 0351	.03511		. 00062		. 03509		28.502	8r, 1
. 0352	. 03531		. 00052		. 03519		28.42 I	80,7
. 0353	.0353I		. 00052		. $035=9$		$28.3+0$	80,2
. 0354	.0354I		. 00063		. 03539		28.260	79,8
0.0355	0.03551	10,0	1.00053	0,4	0.035 .49	10,0	28.181	79,3
. 0356	. 03561		. 00053		. 03558		28.102	78,9
. 0357	. 03571		. 00005		. 03568		28.023	78,4
. 0358	.0358I		. 00064		. 03578		27.945	78,0
. 0359	. 03591		. 00064		. 03588		27.857	77,6
0.0360	0.03601	10,0	1.00065	0,4	0.03598	10,0	27.790	77, 1
.0361	.036II		. 00065		. 03608		27.713	75,7
. 0362	. 03621		. 00055		. 03618		27.636	76,3
. 0363	.03631		. 00056		.03628		27.560	75,9
. 0364	. 0364 I		. 00056		. 03638		27.485	75,4
0.0365	0.03651	10,0	1.00057	0,4	0.03648	10,0	27.409	75,0
. 0356	.0365I		. 00067		. 03658		27.335	74,6
. 0367	. 03671		. 00067		. 03658		27.260	74.2
. 0368	.03681		. 00068		.035-8		27.186	73,8
. 0369	.03691		. 00068		. 03588		27.113	73,4
0.0370	0.03701	10,0	1.00058	0,4	0.03598	10,0	27.039	73,0
. 0371	.037II		. 00069		. 03708		25.967	72,6
.0372	.0372I		. 00069		.03718		25.834	72,2
. 0373	. 03731		. 00070		.03728		25.822	71,8
. 0374	.03741		.00070		. 03738		25.750	71,5
0.0375	0.03751	10,0	1.00070	0,4	0.03748	10,0	25.679	71,I
.0376	.03751		. 00071		. 03758		26.608	70,7
. 0377	.03771		.00071		. 03768		26.538	70,3
. 0378	. 03781		. 00071		. 03778		26.468	70,0
. 0379	.03791		.00072		. 03788		26.398	69,6
0.0380	0.03801	10,0	1.00072	0,4	0.03798	10,0	25.328	69,2
.0381	.038II		. 00073		.03808		26.259	68,9
. 0382	.03821		. 00073		.03818		26.191	68,5
. 0383	. 03831		.00073		.03828		26.122	68, 1
. 0384	.03841		. 00074		.03838		25.054	67,8
0.0385	0.0385 I	IO,0	1.00074	0,4	0.03848	10,0	25.987	67,4
. 0385	.03851		. 00075		. 03858		25.920	67,1
. 0387	.03871		. 00075		. 03858		25.853	66,7
. 0388	.03881		. 00075		. 03878		25.785	66,4
. 0389	. 03891		. 00076		. 03888		25.720	66,1
0.0390	0.03901	10,0	1.00076	0,4	0.03878	10,0	25.654	65,7
. 0391	. 03911		. 00075		.03908		25.588	65,4
. 0392	. 03921		. 00077		. 03918		25.523	64,0
. 0393	. 03931		. 00077		. 03928		25.458	64,7
. 0394	. 03941		. 00078		. 03938		25.394	64,4
0.0395	0.03951	10,0	1.00078	0,4	0.035 .18	10,0	25.330	64.1
. 0396	. 03961		.00078		. 03958		25.266	63,7
. 0397	.03971		. 00079		. 03968		25.202	63.4
. 0398	. 03981		. 00079		. 03978		25.139	63,1
. 0399	.03991		.00080		.03988		25.076	62,8
0.0400	0.04001	10,0	1.00080	0,4	0.03998	10,0	25.013	62,5
и	$\tan 9 \mathrm{da}$	- Fe^{\prime}	$\sec \mathrm{gd} \mathbf{u}$	- Fo'	$\sin 0 \mathrm{~d} u$	- $\mathrm{Fo}^{\prime}{ }^{\prime}$	cscogd is	$\sim \mathrm{FF}^{\prime}{ }^{\prime}$

Smithzomian Tazles

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{F}_{\mathrm{j}^{\prime}}$	$\cosh u$	$\omega \mathrm{F} 0^{\prime}$	tanh u	$\omega \mathrm{F}_{3}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0400	0.0;00	10,0	1.00080	0,4	0.03998	10,0	25.013	62,5
. 0401	. 0.9011		. 00080		. 04008		24.951	62,2
. 0.402	.04021		. 000081		. 04018		24.889	6I,8
. 0.403	. 0.4031		. 0008 r		. 04028		24.827	$6 \mathrm{I}, 5$
. 0.404	. 04041		.00082		. 04038		24.756	6I,2
0.0405	0.04051	10,0	1.00082	0,4	0.04048	10,0	24.705	60,8
. 0.405	. 0.4061		. 03082		. 0.4058		24.644	60,6
. 0.407	. C 407 I		. 00083		. 0.4058		$24.58+$	60,3
. 0.408	. 0.4081		. 00083		. 0.4078		24.523	60,0
. 0409	. 0.7091		. 00084		. 04038		24.464	59,7
0.0410	0.04101	.10,0	1.0008_{4}	0,4	0.04098	10,0	24.404	59,5
. 0.411	. Otili		. 00084		. 04108		24.345	59,2
.0412	. $0+1121$.00085		. 04118		24.285	58.9
. $0+13$. 0413 I		. 00085		. 041128		24.227	58,7
. 0414	. 04141		. 00085		. 04138		24.168	58,3
0.0415	0.0415 I	10,0	1.00086	0,4	0.04148	10,0	24.110	58,0
. 0416	. 04161		. 00087		. 04158		24.052	57,8
. 0417	. 0417 I		. 00087		. 04168		23.995	57,5
. 0418	. $0+18 \mathrm{I}$. 00087		. $0+178$		23.937	57,2
. 0419	. 04191		. 00088		. 04188		23.880	56,9
0.0420	0.04201	10,0	I. 00088	0,4	0.04198	10,0	23.824	56,7
. 0.421	. 012 II		. 00089		. $0+1208$		23.767	56,4
. 0422	. $0+4221$. 00089		. 04217		23.711	56,1
. $0+23$. 0.4231		. 00089		. 04227		23.655	55,9
. 0424	. 01241		. 00090		. 04237		23.599	55,6
0.0425	0.0425 I	10,0	1.00090	0,4	0.04347	10,0	23.544	55,3
. 0.426	. $0+25 \mathrm{I}$. 000091		. 0.4257		23.488	55,I
. $0+27$. 04271		. 00001		. 01257		23.433	54,8
. 0428	. $0+4281$. 00002		. 04277		23.379	54,6
. $0+429$. 04291		. 00092		. 01287		23.324	54,3
0.0430	0.0430 O	10,0	1.00092	0,4	0.04297	10,0	23.270	54,0
. $0+31$. 043 II		. 00093		. 04307		23.216	53,8
. $0+332$. 0432 I		. 00093		. 04317		23.163	53,6
. 0433	. 04331		. 00094		. 04327		23.109	53,3
. 0434	. 04341		. 00094		. 04337		23.056	53, 1
0.0435	0.0435 I	10,0	1. 000095	0,4	0.04347	10,0	23.003	52,8
. 0435	. 04361		. 00095		. 04357		22.950	52;6
. 0437	. 04371		. 000095		. 04357		22.858	52,3
. 0438	. 0438 I		. 00096		. 04377		22.846	52, I
. 0439	. 04391		. 000096		. 04387		22.79 .4	51,9
0.0440	0.04101	10,0	1.00097	0,4	0.04397	10,0	22.742	51,6
. 0.411	.044II		. 00097		. 04407		22.690	5I,4
. 0442	. 04121		. 00008		. 01417		22.639	51,2
. 0443	. 04431		. 000098		. 04427		22.588	50,9
. 0444	. 04441		. 00099		. 04437		22.537	50,7
0.0445	0.0445 I	10,0	1.00099	0,4	0.04417	10,0	22.487	50,5
. 0446	. 04.161		. 00099		. 01457		22.435	50,2
. 0447	. 0447 r		. 00100		. 04.457		22.386	50,0
. $0+48$. 0.448 T		. 00100		. 04.477		22.3 .35	49,8
. 0449	. 04492		. 0 Ior		. 0.4487		22.287	49,6
0.0450	0.04502	10,0	1.00101	0,5	0.04497	10,0	22.237	49,3
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{g} \mathrm{d}^{\prime \prime}$	$\omega F_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{19}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \boldsymbol{F}_{\prime \prime}{ }^{\prime}$	coth u	* $\mathrm{F}_{0}{ }^{\prime}$
0.0450	0.04502	IO,O	1.00101	0,5	0.04497	10,0	22.237	49,3
. 0.451	. 0.4512		. 01010		. $0+5507$		22.188	49,1
. 0452	. 04522		. 00102		. 04517		22.139	48,9
. 0453	. 04532		. 00103		. 04527		22.090	48,7
. 0454	. 04542		.00103		. 04537		22.042	48,5
0.0455	0.04552	10,0	1.00104	0,5	0.04547	10,0	21.993	48,3
. 0455	. 04502		. 00104		. 0.4557		21.945	48, 1
. 0457	. $0+472$. 00104		. 0.4567		21.897	47,8
. 0458	. 0.4582		. 00105		. 04575		21.819	47,6
. $0+59$. 04592		.00105		. 04585		21.802	47,4
0.0460	0.04502	10,0	1.0010S	0,5	0.04597	10,0	21.754	47,2
. $0+61$. 0.4612		. 00106		. 0.4607		21.707	47,0
. 0.462	. 04622		. 00107		. 04617		21.660	46,8
. 0.453	. 0.4532		. 00107		. 0.4527		21.614	46,6
. 0464	$.046+2$. 00108		. 0.4637		21.567	46,4
0.0465	0.04652	10,0	1.00108	0,5	0.04547	10,0	21.521	46,2
. 0.465	. 0.4662		. 00109		. 0.01557		21.475	46,0
. 0.467	. 0.4672		. 00109		. 0.04657		21.429	45,8
. 0468	. 0.4682		. 00110		. 04677		21.383	45,6
. 0.469	.04692		. 00110		.04687		21.338	45.4
0.0470	0.04702	10,0	1.001 10	0,5	0.0 .4697	10,0	21.292	45,2
.0471	. 04712		. 0011 II		. 04707		21.247	45,0
. 0472	.04722		. 00111		. 04716		21.202	44,9
. 0473	. 04732		.00112		. 04725		2 I .157	44,7
. 0474	. 04742		. 00112		. 04736		21.113	44.5
0.0475	0.04752	10,0	1.00113	0,5	0.04746	10,0	21.068	44,3
. 0.476	. 0.4762		.00113		. 04756		21.024	44, 1
. 0477	. 04772		. 00114		. 04756		20.980	43,9
. 0.478	. 04782		.00114		. 04776		20.036	43,7
. 0479	. 04792		.00115		. 04786		20.893	43,6
0.0480	0.04802	10,0	1.001 15	0,5	0.04795	10,0	20.849	43.4
.0481	.04812		. 00116		. 04805	.	20.805	43,2
. 0.482	. 04882		.00116		.04816		20.763	43,0
. 0483	. 04838		.00117		. 0.4826		20.720	42,8
. $0+84$. 0.4842		.00117		. 04836		20.677	42,7
0.0485	0.04852	10,0	1.00118	0,5	0.04846	10,0	20.635	42,5
. 0.485	. 0.4862		.00118		. 04856		20.592	42,3
. 0.487	. 04872		.00119		. 04866		20.550	42,1
. 0.488	. 04882		. 0119		. 04876		20.508	42,0
. 0.489	. 0.4892		. 00120		. 04885		20.466	4r,8
0.0490	0.04902	10,0	1.00120	0,5	0.04896	10,0	20.424	41,6
.0491	. 0.4912		. 00121		. 04906		20.383	41,4
. 0492	. 04922		.00121		. 04919		20.342	41,3
. 0493	. 04932		.00122		. 04926		20.300	41, 1
. 0494	. 04942		. 00122		.04936		20.259	40,9
0.0495	0.04952	10,0	1.00123	0,5	0.04946	10,0	20.219	40,8
. 0496	. 0.4952		. 00123		. 04956		20.178	40,6
. 0497	. 04972		. 00124		. 04966		20.137	40,5
. 0498	. 04982		. 00124		. 04976		20.097	40,3
. 0499	. 04992		. 00125		. 04986		20.057	40, 1
0.0500	0.05002	10,0	1.00125	0,5	0.04996	10,0	20.017	40,0
n	$\tan 9 \mathrm{da}$	$\omega \mathrm{Fo}^{\prime}$	\sec gd a	- Fo'	$\sin 9 \mathrm{da}$	$\omega F_{0}{ }^{\prime}$	cse od 1	- Fo^{\prime}

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega F^{\prime}{ }^{\prime}$
0.0500	0.05002	10,0	1.00125	0,5	0.04995	10,0	20.017	40,0
. 0501	. 05012		. 00126		. 05006		19.977	39,8
. 0502	. 05022		. 00126		.05016		19.937	39,6
. 0503	. 05032		. 00127		.05025		19.897	39,5
. 0504	. 05042		.00127		. 05036		19.858	39,3
0.0505	0.05052	10,0	1.00128	0,5	0.05046	10,0	19.819	39,2
. 0506	. 05052		.00128		. 05056		19.780	39,0
. 0507	. 05072		. 00129		. 05066		19.741	38,9
. 0508	. 05082		. 00129		.05076		19.702	38,7
. 0509	. 05092		. 00130		. 05086		19.663	38,6
0.0510	0.05102	10,0	1.00130	0,5	0.05096	10,0	19.625	38,4
. 051 II	. 05112		.00131		. 05105		19.587	38,3
. 0512	. 05122		. 00131		. 05116		19.548	38, 1
. 0513	. 05132		. 00132		. 05125		19.510	38,0
.05I4	.05142		. 00132		. 05135		19.472	37,8
0.0515	0.05152	10,0	1.00133	0,5	0.05145	10,0	19.435	37,7
. 0516	. 05162		. 00133		.05155		19.397	37,5
. 0517	. 05172		. 00134		. 05165		19.360	37,4
.0518	.05182		. 00134		.05175		19.322	37,2
. 0519	.05192		. 00135		. 05185		19.285	37, I
0.0520	0.05202	10,0	1.00135	0,5	0.05195	10,0	19.248	36,9
. 0521	. 05212		. 00136		. 05205		19.2II	36,8
. 0522	. 05222		. 00136		. 05215		19.174	36,7
. 0523	. 05232		.00137		. 05225		19.138	36,5
. 0524	. 05242		.00137		. 05235		19. 101	36,4
0.0525	0.05252	10,0	1.00138	0,5	0.05245	10,0	19.065	36,2
. 0526	. 05262		.00138		. 05255		19.029	36,1
. 0527	. 05272		.00139		.05265		18.993	36,0
. 0528	. 05282		. 013139		. 05275		18.957	35,8
. 0529	. 05292		.00140		. 05285		18.921	35,7
0.0530	0.05302	10,0	1.00140	0,5	0.05295	10,0	18.886	35,6
.0531	. 05312		. 00141		. 05305		18.850	35,4
. 0532	. 05323		. 00142		.05315		18.815	35,3
. 0533	. 05333		. 00142		. 05325		18.779	35,2
. 0534	. 05343		.00143		. 05335		18.744	350
0.0535	0.05353	10,0	1.00143	0,5	0.05345	10,0	18.709	34,9
. 0536	. 05363		. 00144		. 05355		18.675	34,8
. 0537	. 05373		. 00144		. 05365		18.640	34,6
. 0538	. 05383		. 00145		. 05375		18.605	34,5
. 0539	. 05393		.00145		. 05385		18.571	34,4
0.0540	0.05403	10,0	1.00146	0,5	0.05395	10,0	18.537	34,3
.0541	. 05413		. 00146		. 05405		18.502	34, 1
. 0542	. 05423		. 00147		. 05415		18.468	34,0
.0543	.05433		.00147		. 05425		18.434	33,9
. 0544	. 05443		. 00148		. 05435		18.400	33,8
0.0545	0.05453	10,0	I. 00149	0,5	0.05445	10,0	18.367	33,6
. 0546	. 05463		. 00149		. 05455		18.333	33,5
. 0547	. 05473		. 00150		. 05465		18.300	33,4
. 0548	. 05483		.00150		. 05475		18.266	33,3
. 0549	. 05493		. 00151		.05484		18.233	33,I
0.0550	0.05503	10,0	1.00151	0,6	0.05494	10,0	18.200	33,0
4	$\tan 9 \mathrm{~d} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd}$ u	$\cdots \mathrm{F}^{\prime}$	$\sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd a	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0550	0.05503	10,0	1.00151	0,6	0.05494	10,0	18.200	33,0
. 0551	. 05513		. 00152		. 05504		18.167	32,9
. 0552	. 05523		. 00152		. 05514		18.134	32,8
. 0553	. 05533		. 00153		. 05524		18.102	32,7
. 0554	. 05543		. 00153		. 05534		18.069	32,5
0.0555	0.05553	10,0	I. 00154	0,6	0.05544	10,0	18.037	32,4
. 0556	. 05563		. 00155		. 05554		18.004	32,3
. 0557	. 05573		. 00155		. 05536		17.972	32,2
. 0558	. 05583		. 00156		. 05574		17.940	32, I
. 0559	. 05593		. 00156		. 05584		17.908	32,0
0.0560	0.05603	10,0	1.00157	0,6	2.05594	10,0	17.876	31,9
.0561	.05613		. 00157		. 05604		17.814	31,7
. 0562	. 05623		. 00158		.056I4		17.812	31,6
. 0563	. 05633		. 015		. 05624		17.781	31,5
. 0564	. 05643		. 00159		. 05634		17.749	31,4
0.0565	0.05653	10,0	1.00160	0,6	0.05644	10,0	17.718	31,3
. 0565	. 05663		. 00160		. 05654		17.687	$3 \mathrm{I}, 2$
. 0567	. 05673		.0016I		. 05664		17.656	3 I I
. 0568	. 05683		. 00161		. 05674		17.625	31,0
. 0569	. 05693		. 00162		. 05684		17.594	30,9
0.0570	0.05703	10,0	1.00162	0,6	0.05694	10,0	17.563	30,7
. 0571	. 05713		. 00163		. 05704		17.532	30,6
. 0572	. 05723		. 00164		. 05714		17.502	30,5
. 0573	. 05733		. 00164		. 05724		17.471	30,4
. 0574	. 05743		. 00165		. 05734		17.441	30,3
0.0575	0.05753	10,0	1.00165	0,6	0.05744	10,0	17.410	30,2
. 0576	. 05763		.00166		. 05754		17.380	30,1
. 0577	. 05773		. 00167		. 05754		17.350	30,0
. 0578	. 05783		. 00167		. 05774		17.320	29,9
. 0579	. 05793		. 00168		. 05784		17.290	20,8
0.0580	0.05803	10,0	1.00168	0,6	0.05794	10,0	17.261	29,7
.0581	. 05813		. 00169		. 05803		17.231	29,6
.0582	. 05823		. 00169		. 05813		17.202	29.5
. 0583	. 05833		. 00170		.05823		17.172	29,4
. 0584	. 05843		.0017I		. 05833		17.143	29.3
0.0585	0.05853	10,0	1.00171	0,6	0.05843	10,0	17.114	29,2
. 0585	. 05853		. 00172		. 05853		17.084	29,1
. 0587	. 05873		. 00172		. 05863		17.055	29,0
. 0588	. 05883		. 00173		. 05873		17.026	28,9
. 0589	. 05893		.00174		. 05883		16.998	28,8
0.0590	0.05903	10,0	1.00174	0,6	0.05893	10,0	16.969	28,7
. 0591	. 05913		. 00175		. 05903		16.940	28,6
. 0592	. 05923		. 00175		. 05913		16.912	28,5
. 0593	. 05933		.00176		. 05923		16.883	28,4
. 0594	. 05943		.00176		. 05933		16.855	28,3
0.0595	0.05954	10,0	1.00177	0,6	0.05943	10,0	16.827	28,2
. 0596	. 05964		.00178		. 05953		16.798	28,1
. 0597	. 05974		. 00178		. 05963		16.770	28,0
. 0598	. 05984		.00179		. 05973		16.742	27,9
. 0599	. 05994		.00179		. 05983		16.714	27,8
0.0500	0.06004	10,0	1.00180	0,6	0.05993	10,0	16.687	27,7
:	$\tan 0 \mathrm{da}$	$\infty \mathrm{Fo}^{\prime}$	$\sec \mathrm{gd} \mathrm{u}$	- Fo'	\sin gd n	- Fo'	csc od \quad a	${ }^{\circ} \mathrm{FF}^{\prime}$

Smitheonian Taeles.

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0500	0.05004	10,0	1.00180	0,6	0.05993	10,0	16.687	27,7
. 0501	.05014		. 00181		. 05003		16. 659	27,7
.0502	. 05024		. 00181		. 05013		16.631	27,6
. 0503	. 06034		. 00182		. 06023		16.604	27,5
. 0504	. $050+4$.00182		. 06033		16.576	27,4
0.0605	0.06054	IO,0	1.00183	0,6	0.05043	10,0	16.549	27,3
. 0.0505	. 05054		. 00184		. 05053		16.522	27,2
. 0507	. 05074		. 00184		. 06053		16.495	27, I
. 0508	. 06081		. 00185		. 05073		16.468	27.0
. 0609	.05094		. 00185		. 05082		16.44I	25,9
0.0510	0.05104	10,0	1.00185	0,6	0.05092	10,0	16.414	26,8
.06II	.05114		.00187		. 05102		16.387	26,8
.0612	. 06124		. 00187		.06I12		16. 360	25,7
.06I3	. 05134		. 00188		. 06122		16.334	26,6
.06I4	.05I44		. 00189		. 05132		16.307	25,5
0.0615	0.06154	10,0	1.00189	0,6	0.06112	10,0	16.281	26,4
. 0616	.05164		. 00190		.06I52		16.254	26,3
. 0617	. 06174		. 00190		. 06162		16.228	26,2
.0618	.05184		. 00191		.06I72		16.202	25,1
.0519	.06194		. 00192		. 06182		16.175	25,1
0.0620	0.06204	10,0	1.00192	0,6	0.06192	10,0	16.150	26,0
.0621	. 05214		. 00193		. 05202		16.124	25,9
.0522	. 06524		. 00194		. 06212		16.098	25,8
.0623	. 06534		. 00194		. 06222		16.072	25,7
. 0624	.0624		. 00195		. 05232		16.046	25,6
0.0525	0.06254	10,0	1.00195	0,6	0.06212	10,0	16.021	25,6
. 0626	. 06264		. 00196		. 06252		15.995	25,5
. 0627	. 06274		. 00197		. 05252		15.970	25,4
. 0628	. 05284		. 00197		. 06272		15.944	25,3
. 0629	. 06294		.00198		. 06282		15.919	25,2
0.0530	0.05304	10,0	1.00199	0,6	0.06292	10,0	15.894	25,2
.063I	. 06314		. 00199		. 06302		15.809	25,1
. 0632	. 06324		. 00200		.06312		I5.844	25,0
. 0633	. 06334		. 00200		. 06322		15.819	24,9
. 0634	. 05344		. 00201		. 06332		15.794	24,8
0.0635	0.05354	10,0	1.00202	0,6	0.06342	10,0	15.759	24,8
. 0636	. 0.0364		. 00202		. 0.03351		15.744	24,7
. 0637	. 06374		. 00203		.0636r		15.720	24,6
. 0638	. 06384		. 00204		. 06371		15.695	24,5
. 0639	. 05394		. 00204		. 0538 r		15.671	24,5
0.0640	0.06704	10,0	I. 00205	0,6	0.06391	10,0	15.646	24,4
. 0671	. 06414		. 00206		.06.401		15.622	24,3
.0642	. 06.424		. 00205		. 0641 I		I5.598	24,2
.0643	. 06734		. 00207		. 06421		15.574	24,2
. 0644	. 06444		. 00207		. 0643 I		I5.549	24, 1
0.0645	0.06454	10,0	I. 00208	0,6	0.06441	IO,0	15.525	24,0
. 06.46	. 06.64		. 00209		. 06451		15.501	23,9
. 0647	. 06475		.00209		. 06461		15.478	23,9
.0648	. 06485		. 00210		. 06471		15.454	23,8
. 0649	. 05495		.002II		. 0648 I		15.430	23,7
0.0650	0.06505	10,0	I. 002 II	0,7	0.0649 r	10,0	15.406	23,6
U	$\boldsymbol{t a n} \mathrm{gd} u$	© $\mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\sin gd u	$\pm \mathrm{F}_{0}{ }^{\prime}$	cse god u	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} \mathrm{u}$	$\omega \mathrm{F},{ }^{\prime}$	coih u	$\omega F^{\prime}{ }^{\prime}$
0.0650	0.05505	10,0	1.002II	0,7	0.06491	10,0	15.405	23,6
.0551	. 05515		. 00212		. 05501		15.383	23,6
. 0552	. 06525		. 00213		. 05511		15.359	23,5
. 0.053	. 05535		. 00213		. 05521		15.335	23.4
. 0654	. 05545		. 00214		. 05531		15.312	23,3
0.0655	0.06555	10,0	1.00215	0,7	0.065 .11	10,0	15.289	23,3
. 0656	. 05555		. 00215		. 05551		15.265	23,2
. 0657	. 06575		. 00216		. 05551		15.243	23,1
. 0558	. 06585		. 00217		. 06571		15.219	23, I
. 0659	. 06595		. 00217		. 06580		15.196	23,0
0.0650	0.05605	10,0	1.00218	0,7	0.05590	10,0	15.174	22,9
.056r	. 06615		. 03219		. 065600		15.151	22,9
.0562	. 05525		. 00219		. 06510		15.128	22,8
. 0663	. 05635		. 00220		. 05620		15.105	22,7
. 0664	. 05645		. 00221		. 06530		15.082	22,5
0.0665	0.05655	10,0	I. 0022 I	0,7	0.06640	10,0	15.060	22,5
. 0666	. 05665		. 00222		. 065550		15.037	22,5
. 0667	. 06575		. 00223		. 05650		15.015	22,4
. 0668	. 05685		. 00223		.05570		14.992	22,4
. 0659	. 06695		. 00224		. 06680		14.970	22,3
0.0670	0.06705	10,0	I. 00225	0,7	0.06690	10,0	14.948	22,2
.0575	. 06715		. 00225		. 06700		14.925	22,2
.0572	. 06725		. 00226		. 06710		1.4.903	22, 1
.0673	. 06735		. 00227		.06720		14.88 I	22,0
. 0574	. 06745		. 00227		. 06730		14.859	22,0
0.0675	0.06755	10,0	1.00228	0,7	0.06740	10,0	1. 4.837	21,9
. 06786	. 06765		. 00229		. 06750		14.815	21,8
. 0677	. 06775		. 00229		.05760		$1+794$	21,8
.0678	. 06785		. 00230		. 06770		14.772	21,7
.0679	. 06795		. 0023 I		. 05780		14.750	21,7
0.0680	0.06805	10,0	1.00231	0,7	0.05790	10,0	14.729	21,6
. 0581	.05815		. 00232		. 06799		14.707	21,5
. 0582	. 06835		. 00233		. 06809		14.685	21,5
. 0583	. 05835		. 00233		. 05819		14.664	21,4
. 0684	. 06845		. 00234		. 06829		14.643	21,3
0.0585	0.06855	10,0	I. 00235	0,7	0.05839	10,0	14.621	21,3
. 0580	. 06855		. 00235		. 06849		14.600	21,2
. 0687	. 068875		. 00235		. 06859		14.579	21,2
. 0688	. 06885		. 00237		. 06869		14.558	21,1
. 0689	. 06895		. 00237		. 06879		14.537	21,0
0.0690	0.06905	10,0	1.00238	0,7	0.06889	10,0	14.516	21,0
. 0691	. 06916		.00239		. 06899		14.495	20,9
. 0692	. 06925		. 00240		. 06909		14.474	20,8
. 0693	. 06936		. 00240		. 06919		14.453	20,8
. 0694	.06946		. 00241		. 06929		14.432	20,7
0.0695	0.06956	10,0	1.002.42	0,7	0.06939	10,0	1.4 .412	20,7
. 0696	. 06966		. 00242		. 06949		14.39 I	20,6
. 0697	. 06976		.00243		. 06959		14.370	20,6
. 0698	. 06986		. 00214		. 06969		14.350	20,5
. 0699	.06996		. 00244		. 06979		$14 \cdot 329$	20,4
0.0700	0.07005	10,0	1.00245	0,7	0.06989	10,0	14.309	20,4
u	\tan gd ${ }^{\text {a }}$	- $\mathrm{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} \mathrm{d}$	$\pm \mathrm{FO}^{\prime}$	$\sin 9 \mathrm{~d} u$	$\cdots \mathrm{F}_{0}{ }^{\prime}$	csc od \quad -	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	ωF_{0}^{\prime}	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0700	0.07005	10,0	1. 00245	0,7	0.05989	10,0	14.309	20,4
. 0701	. 07016		. 00245		. 05999		14.289	20,3
. 0702	. 07026		. 00247		. 07008		I4. 258	20,3
. 0703	. 07036		. 00247		. 07018		I4. 248	20,2
. 0704	. 07046		. 00248		. 07028		I.4. 228	20, 1
0.0705	0.07056	10,0	1.00249	0,7	0.07038	10,0	14.208	20, 1
.0705	. 07056		. 00249		. 07048		I4. 183	20,0
.0\%07	. 07076		. 00250		. 07058		I4. 168	20,0
.070	. 07085		. 00251		. 07058		I4. 148	19,9
. 0709	. 07096		. 0025 I		.07078	9,9	14.128	19,9
0.0710	0.07106	10,0	I. 00252	0,7	0.07088	9,9	14. 108	19,8
.07II	. 07116		. 00253		. 07098		14.058	19,7
. 0712	. 07126		. 00254		. 07108		14.059	19,7
. 0713	. 07136		. 00254		. 07118		14.049	19,6
. 07 I4	.07146		. 00255		.07128		14.029	19,6
0.0715	0.07156	10,0	1.00256	0,7	0.07138	9,9	14.010	19,5
. 0716	. 07166		. 00256		. 07148		13.990	19,5
. 0717	.07176		. 00257		. 07158		13.971	19,4
.0718	. 07186		. 00258		.07168		13.952	19,4
. 0719	. 07196		. 00259		.07178		13.932	I9,3
0.0720	0.07206	10,0	1.00259	0,7	0.07188	9,9	13.913	19,3
. 0721	. 07216		. 00260		. 07198		13.894	19,2
. 0722	. 07226		. 00261		. 07207		13.874	19,2
. 0723	. 07235		. 00261		.07217		13.855	19,I
. 0724	. 07246		. 00252		. 07227		13.836	19,0
0.0725	0.07256	10,0	1.00263	0,7	0.07237	9,9	13.817	19,0
. 0725	. 07266		. 00264		. 07247		13.798	18,9
. 0727	.07276		. 00264		. 07257		13.779	18,9
. 0728	. 07286		. 00265		. 07267		13.761	18,8
. 0729	. 07295		. 00266		. 07277		13.742	18,8
0.0730	0.07305	10,0	1.00267	0,7	0.07237	9,9	13.723	18,7
.0731	. 07317		. 00267		. 07297		13.704	18,7
. 0732	. 07327		. 00268		. 07307		13.686	18,6
. 0733	. 07337		. 00259		. 07317		13.667	I8,6
. 0734	. 07347		. 00269		. 07327		13.648	18,5
0.0735	0.07357	10,0	1.00270	0,7	0.07337	9,9	13.630	18,5
. 0735	. 07367		. 00271		. 07347		13.611	18,4
. 0737	. 07377		. 00272		. 07357		13.593	18,4
. 0738	. 07387		.00272		. 07367		13.575	18,3
. 0739	. 07397		. 00273		. 07377		13.556	18,3
0.0740	0.07407	10,0	1.00274	0,7	0.07387	9,9	13.538	18,2
.0741	. 07417		. 00275		. 07396		13.520	18,2
. 0742	. 07427		. 00275		. 07406		13.502	18, 1
.0743	. 07437		. 00276		. 07416		13.484	18, 1
. 0744	. 07447		. 00277		. 07426		13.466	18,0
0.0745	0.07457	10,0	1.00278	0,7	0.07436	9,9	13.448	18,0
. 0746	. 07467		.00278		. 07446		13.430	17,9
. 0747	. 07477		. 00279		. 07456		13.412	17,9
. 0748	. 07487		. 00280		. 07466		13.394	17,8
. 0749	. 07497		.0028I		.07476		13.375	I7,8
0.0750	0.07507	10,0	1.0028 I	0,8	0.07486	9,9	13.358	17,7
u	$\tan \mathrm{gd} \mathbf{u}$	$\omega \mathrm{Fo}^{\prime}$	sec gd u	- Fo^{\prime}	$\sin 9 \mathrm{~d} \theta$	$\omega \mathrm{F}_{0}{ }^{+}$	csc od u	- Fo^{\prime}

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	tanh 4	$\omega F_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0750	0.07507	IO,O	1.0028 I	0,8	0.07486	9,9	13.358	17,7
. 0751	. 07517		. 00282		. 07496		13.34 I	17,7
. 0752	. 07527		. 00283		. 07505		13.323	17,7
. 0753	. 07537		.0028.		. 07516		13.305	17,6
. 0754	. 07547		. 0028.		. 07525		13.288	17,6
0.0755	0.07557	10,0	1.00285	0,8	0.07536	9,9	13.270	I7,5
. 0756	. 07567		. 00286		. 07546		13.253	17,5
. 0757	. 07577		. 00287		. 07556		13.235	I7,4
. 0758	. 07587		. 00287		. 07566		13.218	IT,4
. 0759	. 07597		. 00288		. 07575		I3.20I	17,3
0.0760	0.07607	10,0	1.00289	0,8	0.07585	9.9	13.183	17,3
.076I	. 07617		. 00290		. 07595		13.166	17,2
. 0762	. 07627		. 00290		. 07605		13.149	17,2
. 0763	. 07637		. 00291		. 07615		13.132	17,1
. 0764	. 07647		. 00292		. 07625		13.114	I7,I
0.0765	0.07657	10,0	1.00293	0,8	0.07635	9,9	13.097	I7,I
. 0756	. 07667		. 00294		. 07645		13.080	17,0
. 0767	. 07678		. 00294		. 07655		13.063	17,0
. 0768	. 07688		. 00295		. 07665		13.046	I6,9
. 0769	. 07698		. 00295		. 07675		13.030	16,9
0.0770	0.07708	10,0	1.00297	0,8	0.07685	9,9	13.013	16,8
. 0771	. 07718		. 00297		. 07695		12.996	16,8
.0772	. 07728		. 00298		. 07705		12.979	16,7
. 0773	. 07738		. 00299		. 07715		12.962	16,7
. 0774	. 07748		. 00300		. 07725		12.946	16,7
0.0775	0.07758	IO,O	1.00300	0,8	0.07735	9.9	12.929	16,6
. 0776	. 07768		.00301		. 07744		12.912	16,6
. 0777	. 07778		. 00302		. 07754		12.896	16,5
. 0778	. 07788		. 00303		. 07754		12.879	16,5
. 0779	. 07798		. 00304		. 07774		12.863	16,5
0.0780	0.07808	10,0	1.00304	0,8	0.07784	9.9	12.847	16,4
. 0781	. 07818		. 00305		. 07794		12.830	16,4
. 0782	.07828		. 00306		. 07804		12.814	16,3
. 0783	.07838		. 00307		.07814		12.797	16,3
. 0784	.07848		. 00307		. 07824		12.78 I	16,2
0.0785	0.07858	10,0	1.00308	0,8	0.07834	999	12.765	16,2
. 0785	. 07858		. 00309		$.078+4$		12.749	16,2
. 0787	. 07878		. 00310		. 07854		12.733	16,1
. 0783	. 07888		. 0031 I		. 07864		12.717	16, 1
. 0787	.07898		.003II		. 07874		12.701	16,0
0.0790	0.07908	10,0	1.00312	0,8	0.07884	9.9	12.685	16,0
. 0791	. 07918		. 00313	.	. 07894		12.669	15.9
. 0792	. 07928		. 00314		. 07903		12.653	15.9
. 0793	. 07938		.00315		. 07913		12.637	15,9
. 0794	. 07948		.00315		. 07923		12.62 I	15.8
0.0795	0.07958	10,0	1.00316	0,8	0.07933	9,9	12.605	1588
. 0796	. 07968		.00317		. 07943		12.589	15.7
. 0797	. 07978		. 00318		. 07953		12.574	15.7
. 0798	. 07988		.00319		. 07963		12.558	15,7
. 0799	. 07999		.00319		. 07973		12.542	15,6
0.0800	0.08009	10,0	1.00320	0,8	0.07983	999	12.527	15,6
1	tan god y	$\pm \mathrm{Fo}^{\prime}$	$\sec \operatorname{sd} 1$	- Fof	$\sin \mathrm{edy}$	- Fe^{\prime}	cese gd u	* Fo'

Smithoonian Tasles

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{13}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0^{\prime}}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0800	0.08009	10,0	1.00320	0,8	0.07983	9,9	12.527	15,6
. 0801	. 88019		. 00321		. 07993		I2.511	15,6
. 0802	. 08029		. 00322		. 08003		12.495	I5,5
. 0803	. 08039		. 00323		.08013		12.480	15,5
. 080	. 08049		.00323		. 08023		12.465	15,4
0.0805	0.08059	IO,O	1.00324	0,8	0.08033	9,9	12.449	15,4
. 0806	. 0.8069		. 00325		. $080+3$		12.434	I5,4
.0807	. 0.8079		. 00326		. 08053		12.418	I5,3
. 0808	. 08089		. 00327		. 08062		12.403	15,3
. 0809	. 08099		. 00327		. 08072		12.388	15,2
0.0810	0.08109	10,0	1.00328	0,8	0.08082	9,9	12.373	15,2
.08ri	.08II9		. 00329		. 08092		12.357	15,2
.0812	. 08129		. 00330		.08102		12.342	15, I
.0813	.08139		.0033I		.08II2		12.327	I5, I
.08I4	.08I. 49		.0033I		.08122		12.312	I5, I
0.0815	0.03159	10,0	1.00332	0,8	0.08132	9,9	12.297	I5,0
.0816	.08169		. 00333		.08I42		12.282	I5,0
.0817	.08179		. 00334		.08152		12.267	I 4,9
.0818	.08189		. 00335		.08162		12.252	I 4,9
.0819	.08199		. 00336		.08172		12.237	I4,9
0.0820	0.08209	10,0	1.00336	0,8	0.08182	9,9	12.222	I4,8
.0821	.082I9		. 00337		.08192		12.208	I 4,8
-0822	. 08229		. 00338		. 08202		12.193	I 4,8
. 0823	. 08239		. 00339		.0S2II		12.178	14,7
. 0824	. 08249		.00340		.08221		12.163	I4,7
0.0825	0.08259	10,0	I. 00341	0, 8	0.08231	9,9	12. 149	14,7
. 0826	. 08269		. 00341		.0824I		12.134	14,6
. 08.37	. 08279		. 00342		.08251		12.119	I.4,6
. 0828	. 08289		. 00343		.0825I		12.105	I4,6
. 0829	. 08299		. 00344		.08271		12.090	I4,5
0.0830	0.08310	10,0	1.00345	0,8	0.0828 I	9,9	12.076	I 4,5
. 0831	. 08320		. 00345		.08291		12.051	14,4
. 0832	. 08330		. 00346		. 08301		12.047	I. 4,4
. 0833	-08340		. 00347		.083II		12.033	I, 4
. 0834	. 08350		. 00348		.08321	*	12.018	I4,3
0.0835	0.08360	10,0	I.00349	0,8	0.0833 I	9,9	12.004	I4,3
. 0835	. 08370		. 00350		. 08341		II.990	I4,3
. 0837	.08380		. 003350		. 08351		II. 975	I4,2
. 0838	. 08390		. 00351		.08360		11.951	I4,2
. 0839	. 08.800		. 00352		. 08370		11.947	If, 2
0.0840	0.08410	10,0	I. 00353	0,8	0.08380	9,9	II. 933	I4, I
.0841	.08420		. 00354		. 08390		11.919	If, I
. $08+2$. 08130		. 00355		. 08800		11.905	If, 1
. $08+3$. 08.810		. 00356		.08410		II. 890	I4,0
. 0844	.08450		. 00356		. 08420		II. 875	14,0
0.0845	0.08460	10,0	1.00357	0,8	0.08430	9,9	11.852	14,0
. 08.86	$.08470$. 00358		. 08.840		11.849	13,9
. 0817	-08480		. 00359		. 08450		II. 835	I3,9
.0848	.08490		. 00350		.08460		11.821	13,9
.0849	. 08500		.0036I	0,3	. 08470		11.807	I3,8
0.0850	0.08510	10,0	1.00361	0,9	0.08480	9,9	II. 793	13,8
4	$\tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	\sin gd u	$\omega \mathrm{Fo}^{\prime}$	csc od u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hypsrbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{3}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0850	0.08510	10,0	1.00361	0,9	$0.08+80$	9,9	11.793	13,8
. 0851	.08520		. 00362		. 08490		11.779	I3,8
. 0852	. 08530		. 00363		. 88499		11.755	13,7
.0853	.08540		. 00364		. 08509		11.752	13,7
. 0854	. 08550		. 00365		. 08519		11.738	13,7
0.0855	0.08560	10,0	1. 00366	0,9	0.08529	9,9	11.724	13,6
.0836	. 08570		. 00367		. 08539		II.7II	13,6
. 0857	.03580		. 00367		. 08549		11.697	13,6
.0858	.08591		. 00368		. 08559		11.684	13,6
.0859	. 08501		. 00369		. 08569		II. 670	13,5
0.0850	0.086 II	10,0	1.00370	0,9	0.08579	9,9	Ix. 657	13,5
.085I	.08521		. 00371		. 08589		II. 643	13,5
. 0852	. 08531		. 00372		. 08599		11.630	13,4
. 0853	. 08541		. 00373		. 08509		II. 616	13.4
. 0854	. 08551		. 00373		. 08619		II. 603	13,4
0.0855	0.08561	10,0	1.00374	0,9	0.08528	9,9	II. 590	13,3
.085	. 08571		. 00375		. 08538		11.576	13,3
. 0857	.0858I		. 00375		. 08548		11.553	13,3
. 0858	. 08691		. 00377		. 08558		II. 550	13,2
.0859	.08701		. 00378		. 08568		II. 536	13,2
0.0870	0.08711	10,0	1.00379	0,9	0.08578	9,9	11.523	13,2
.0871	.08721		. 00380		. 08688		II. 510	13, 1
.0872	. 08731		. 00380		.08698		11.497	13, I
. 0873	.08741		.0038I		.03708		11.484	13,1
.0874	.0875I		. 00382		. 08718		11.471	13.1
0.0875	0.08751	10,0	1.00383	0,9	0.08728	9,9	II. 458	13,0
.0875	. 08771		. 00384		. 08738		II. 415	13,0
. 0877	.0878I		. 00385		.05748		11.432	13,0
.0878	.08791		. 00385		.08758		II.419	12,9
.0879	. 08801		. 00387		. 08757		II. 406	12,9
0.0880	0.088 II	10,0	1.00387	0,9	0.08777	9,9	II. 393	12,9
.083r	. 0882 I		. 00388		. 08787		II. 380	12,8
.0832	. 0883 I		. 00389		. 08797		II. 367	12,8
. 0833	. 0888		. 00390		.08807		II. 354	12,8
.0884	.08852		. 00391		.088I7		II. 342	12,8
0.0885	0.08862	10,0	I. 00392	0,9	0.08827	9,9	II. 329	12,7
. 0836	. 08872		. 00393		. 08837		II.316	12,7
. 0887	. 08832		. 00394		.088.47		11.304	12,7
. 0888	. 08892		. 00395		. 08857		1 I .291	12,6
. 0889	. 08902		. 00395		. 08857		II. 278	12,6
0.0890	0.08912	10,0	1.00396	0,9	0.08877	989	11.265	12,6
. 0891	. 08922		. 00397		. 08885		1 II .253	12,6
. 0892	.08932		. 00398		. 08895		II. 240	12,5
. 0893	. 08942		. 00399		.08906		11.228	12,5
. 0894	.08952		. 00400		.08916		11.215	12,5
0.0895	0.08962	10,0	1.00401	0,9	0.08926	9.9	II 203	12,5
. 0895	. 08972		. 00402		. 08936		II. 191	12,4
. 0897	. 08982		. 00403		. 08946		II. 178	12,4
. 0898	. 08992		. 00403		. 08956		II. 165	12,4
. 0899	. 09002		. 00404		.08966		II. 153	12,3
0.0900	0.09012	10,0	1.00405	0,9	0.08976	9.9	II.14I	. 12,3
4	$\tan 9 \mathrm{~d} u$	$\infty \mathrm{FO}^{\prime}$	$\sec 9 \mathrm{da}$	- $\mathrm{Fa}^{\text {r }}$	$\sin 9 \mathrm{da}$	$\omega \mathrm{Fo}{ }^{+}$	csc gd 4	- $\mathrm{Fa}^{\text {a }}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega F_{0}{ }^{\prime}$
0.0900	0.09012	10,0	1.00405	0,9	0.08976	9,9	II.I4I	12,3
. 0901	. 09022		. 00406		. 08986		II. 129	12,3
. 0902	. 09032		. 00407		. 08996		II. II7	12,3
. 0903	. 09042		. 00408		. 09006		II. 104	12,2
. 0904	.09052		. 00.409		.09015		11.092	12,2
0.0905	0.09062	10,0	1.00410	0,9	0.09025	9,9	11.080	12,2
. 0906	. 09072		. 00411		. 09035		11.068	12, 1
. 0907	. 09082		. 00412		. 09045		II. 056	12, I
. 0908	. 09092		. 00413		. 09055		11.043	I2, I
. 0909	. 09103		. 00413		. 09055		II.O3I	12,I
0.0910	0.09113	10,0	1.00414	0,9	0.09075	9,9	II.OI9	12,0
.09II	. 09123		. 00415		. 09085		11.007	12,0
. 0912	. 09133		. 00416		. 09095		10.995	12,0
. 0913	. 09143		. 00417		.09105		10.983	I2,0
. 0914	.09153		. 00418		.09115		10.971	II,9
0.0915	0.09163	10,0	1.00419	0,9	0.09125	9,9	10.959	II,9
. 0916	. 09173		. 00420		. 09134		10.948	II,9
. 0917	. 09183		. 00.42 I		.09144		10.936	II,9
.0918	. 09193		. 00.422		. 09154		10.924	II,8
.0919	. 09203		. 00423		. 09164		10.912	I I, 8
0.0920	0.09213	10,0	1.00423	0,9	0.09174	9,9	10.900	II,8
. 0921	. 09223		. 00424		.09184		10.888	II,8
. 0922	. 09233		. 00425		. 09194		10.877	$1 \mathrm{I}, 7$
. 0923	. 09243		. 00426		. 09204		10.865	I I,7
. 0924	. 09253		. 00427		. 092 I4		10.853	II,7
0.0925	0.09263	10,0	1.00428	0,9	0.09224	9,9	10.842	II,7
. 0926	. 09273		. 00429		. 09234		10.830	II, 6
. 0927	. 09283		. 00430		. 09244		10.818	I I, 6
. 0928	. 09293		. 00431		. 09253		10.807	II, 6
. 0929	. 09303		. 00432		.09253		10.795	II, 6
0.0930	0.09313	10,0	1.00433	0,9	0.09273	9,9	10.784	II,5
. 093 I	. 09323		. 00434		. 09283		10.772	II,5
. 0932	. 09333		. 00435		. 09293		10.761	II,5
. 0933	. 09344		. 00436		. 09303		10.749	II,5
. 0934	. 09354		. 00436		. 09313		10.738	II,4
0.0935	0.09364	10,0	1.00437	0,9	0.09323	9,9	10.726	II,4
. 0936	. 09374		. 00438		. 09333		10.715	II, 4
. 0937	. 09384		. 00439		. 09343		10.704	II, 4
. 0938	. 09394		. 00440		. 09353		10.692	II, 3
. 0939	. 09404		. 00441		. 09362		10.68 I	II, 3
0.0940	0.09414	10,0	1.00442	0,9	0.09372	9,9	10.670	II, 3
. 0941	. 09424		. 00443		. 09382		10.658	II,3
. 0942	. 09434		. 00444		. 09392		10.647	II,2
. 0943	. 09444		. 00445		. 03402		10.636	II,2
. 0944	. 09454		. 00446		. 09412		10.625	II,2
0.0945	0.09464	IO,O	1.00447	0,9	0.09422	9.9	10.613	II,2
. 0946	. 09474		. 00448		. 09432		10.602	II, I
. 0947	. 09484		. 00449		. 09442		10.591	II, I
. 0948	. 09494		. 00450	0,9	. 09452		10.580	II, I
. 0949	. 09504		. 0045 I	1,0	. 09462		10.569	II, I
0.0950	0.09514	10,0	1.00452	1,0	0.09472	9,9	10.558	II,O
U	$\tan \mathrm{gd} u$	* $F_{0}{ }^{\prime}$	sec od u	* Fo'	$\sin 9 \mathrm{~d} u$	- $\mathrm{F}_{0}{ }^{\prime}$	csc gad u	- Fo^{\prime}

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{c o t h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.0950	0.09514	10,0	1.00452	I,O	0.09472	9,9	10.558	II,O
. 0951	. 09524		.00453		.0,48I		10.547	II,O
. 0952	. 09534		. 00453		.09491		10.536	II,O
. 0953	. 09544		. 00454		. 09501		10.525	II, 0
. 0954	. 09554		. 00455		.095II		10.514	II, 0
0.0955	0.09565	10,0	1.00456	1,0	0.0952 I	9,9	10.503	10,9
. 0956	. 09575		. 00457		. 09531		10.492	10,9
. 0957	. 09585		. 00458		. 09541		10.481	10,9
. 0958	. 09595		. 00459		. 09551		10.470	10,9
. 0959	. 09605		. 00460		. 09561		10.459	10,8
0.0960	0.09515	10,0	r.00461	1,0	0.09571	9,9	10. 449	10,8
. 0961	. 09625		. 00462		.09581		10.438	10,8
.0962	. 09635		. 00.463		. 09590		10.127	10,8
. 0963	. 09645		. 00464		.09600		10.416	10,7
. 0964	. 09655		. 00.465		. 09610		10.406	10,7
0.0965	0.09665	10,0	1.00466	1,0	0.09620	9,9	10.395	10,7
. 0966	. 09675		. 00.467		. 09630		10.384	10,7
. 0967	. 09685		. 00468		.09640		10.373	10,7
. 0968	. 09695		. 00469		. 09650		10. 363	10,6
. 0969	. 09705		. 00470		.09560		10.352	10,6
0.0970	0.09715	10,0	1.00471	1,0	0.09670	9,9	10. 342	10,6
. 0971	. 09725		. 00472		. 09680		10.33 I	10,6
.0972	. 09735		. 00473		.09689		10.320	10,6
. 0973	. 09745		. 00.474		. 09699		10.310	10,5
. 0974	. 09755		. 00475		.09709		10.299	10,5
0.0975	0.09765	10,0	1.00476	1,0	0.09719	9.9	10.289	10,5
. 0976	. 09775		. 00.477		. 09729		10.278	10,5
. 0977	. 09785		. 00478		. 09739		10.258	10,4
. 0978	. 09795		.00479		. 09749		10.258	10,4
. 0979	. 09806		. 00.480		. 09759		10.247	10,4
0.0980	0.09816	10,0	1.00481	1,0	0.09759	9,9	10.237	10,4
. 00881	. 0,0826		. 00482		. 09779		10.226	10,4
. 0982	. 09836		-00483		. 09788		10.216	10,3
.0983	. 09886		. 00484		. 09798		10.206	10,3
. 0984	. 09856		. 00485		. 09808		10.195	10,3
0.0985	0.09866	10,0	1.00485	1,0	0.09818	9,9	10.185	10,3
. 0986	. 09876		. 00486		. 09888		10.175	10,3
. 0987	. 09885		. 00487		. 09838		10.165	10,2
. 0988	. 09896		. 00488		. 09848		10. 154	10,2
. 0989	. 09906		. 00489		. 09858		10.144	10,2
0.0990	0.09916	10,0	1.00490	1,0	0.09868	9,9	10.134	10,2
. 0991	. 09926		. 00491		. 09878		10.124	10, 1
. 0992	. 09936		. 00492		. 09888		10.114	10, 1
. 0993	. 09946		. 00493		. 09897		10.104	10, 1
. 0994	. 09956		. 00494		. 09907		10.093	10, 1
0.0995	0.09966	10,0	1.00495	1,0	0.09917	9,9	10.083	IO, I
. 0996	. 09976		. 00496		. 09927		10.073	10,0
. 0997	. 09987		. 00497		. 09937		10.063	10,0
. 0998	. 09997		. 00.498		. 09947		10.053	10,0
. 0999	. 10007		. 00499		. 09957		10.043	10,0
0. 1000	0.10017	10,1	I. 00500	1,0	0.09967	949	10.033	10,0
!	$\tan 9 \mathrm{da}$	$\bullet \mathrm{Fa}^{\prime}$	sec gd a	- For	$\sin 98 \mathrm{u}$	$\triangle \mathrm{Fe}_{0}{ }^{\prime}$	csc go u	- F6'

Natural Hyperbolic Functions.

U	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cath u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0:100	0.10017	100,5	1.00500	10,0	0.09967	99,0	10.0333	996,7
IOI	. IOII7	100,5	. 00510	10, I	. 10065	99,0	$9.93+5$	977,0
- 102	. 10218	100,5	. 0052 I	10,2	. 10165	99,0	. 8379	957,9
. 103	. 10318	100,5	. 0053 I	10,3	. 10264	98,9	. 7430	939,3
. 104	. 10419	100,5	.00541	10,4	. 10363	98,9	.6500	921,2
0.105	0.10519	100,6	1.00552	10,5	0.10462	98,9	9.5588	c03,7
. 103	. 10620	100,6	.00562	10,6	. 10560	98,9	. 4693	885,7
. 107	. 10720	100,6	. 00573	10,7	- 10559	c8,9	. 381.4	870,1
. 108	. 10821	100,6	. 00584	10,8	. 10758	98,8	. 2953	854,0
. 109	. 10922	100,6	. 00595	10,9	. 10857	98,8	. 2106	838,4
0.110	0. 11022	100,6	1.00505	II,O	0. 10955	98,8	9.1275	823,1
. III	. III23	100,6	. 00617	II, I	. .11055	98,8	. 0.460	808,3
. 1	. 11223	100,6	. 00628	II,2	. 11153	98,8	8.9559	793,9
. 113	. II324	100,6	. 00639	II,3	. 11252	98,7	. 8872	779,8
. 114	. 11425	100,7	. 00651	II,4	. II351	98,7	. 8099	766,1
0.115	0.11525	100,7	1. 00662	II,5	O.II450	98,7	8.7340	752,8
. 116	. 11626	100,7	. 00674	II,6	. 11548	98,7	. 6593	739,8
. 117	. 11727	100,7	. 00585	II,7	. 11647	98,6	. 5850	727,2
. 118	- 11827	100,7	. 00597	I I, 8	. 11746	98,6	.5139	714,9
. 119	. 11928	100,7	. 00709	II,9	. 11844	98,6	. 4430	702,8
- 0.120	0.12029	100,7	1.00721	12,0	0.11943	98,6	8.3733	$69 \mathrm{I}, 1$
. 121	. 12130	100,7	. 00733	12, I	. 12041	98,5	. 3048	679,7
. 122	. 12230	100,7	. 00745	12,2	. 12140	98,5	. 2373	658,5
. 123	. 12331	100,8	. 00757	12,3	-12238	98,5	.1710	657,7
. 124	. 12432	100,8	. 00770	12,4	. 12337	98,5	. 1058	647,0
0.125	0.12533	100,8	1.00782	12,5	0.12435	98,5	8.0416	636,7
. 126	. 12633	100,8	. 00795	12,6	. 12534	98,4	7.9785	626,6
. 127	. 12734	100,8	. 00808	12,7	. 12632	98,4	. 9163	616,7
. 128	. 12835	100,8	. 00820	12,8	. 12731	c8,4	. 8551	607,0
. 129	. 12936	100,8	. 00833	12,9	. 12829	98,4	. 7949	597,6
0.130	0.13037	100,8	1.00846	13,0	0.12927	98,3	7.7356	588,4
. 131	. 13138	100,9	. 00859	13, I	. 13026	98,3	. 6772	579,4
. 132	- 13238	100,9	. 00872	13,2	. 13124	98,3	. 6197	570,6
. 133	- 13339	100,9	. 00886	13,3	. I3222	98,3	. 563 I	562,0
. 134	- 13440	100,9	. 00899	13,4	. 13320	98,2	. 5073	553,6
0.135	0.13541	100,9	1.00913	13,5	-. I3419	98,2	7.4524	545,4
. 136	. 13642	100,9	. 00926	13,6	. 13517	98,2	. 3982	537,3
. 137	. 13743	100,9	. 00940	13,7	- I35r5	98, 1	- 3449	529,5
. 138	. 13844	IOI, 0	. 00954	13,8	. 13713	98, 1	. 2923	521,8
. 139	. 13945	IOI,0	. 00968	13,9	.138i	98, 1	. 2405	51.4,3
0.140	0.140 .46	101,0	1.00982	I4,0	0.13509	98, 1	7.1895	506,9
. T 4 r	. 14147	IOT, 0	. 00995	I, 1 ,	. 14007	98,0	. 1391	499,7
. I42	. 14248	101,0	. Ol 1010	I 1,2	. If 105	98,0	. 0895	492,6
. I43	. I4349	IOI, 0	. 01024	I4,3	. If 203	98,0	. 0406	485,7
. I44	. 14450	101,0	. 01039	14.4	. I4301	98,0	6.9924	478,9
0.145	0.14551	IOI, I	1.0105 .3	14,6	0.14399	97,9	6.9448	472,3
. 146	. 14652	IOI, I	. 01068	14,7	. I4197	97,9	. 8979	465,8
. 147	. I4753	IOI, I	. 01082	14,8	- 14595	97,9	. 8517	459,5
. 148	. 14854	IOI, I	. 01097	I4,9	. I4693	97,8	. 8060	453,2
. 149	. 14955	IOI, I	. OIII2	15,0	. 14791	97,8	. 7610	447, 1
0.150	0.15056	IOI, I	I.OII27	15,I	0.14889	97,8	6.7166	44r, 1
4	$\boldsymbol{\operatorname { t a n }} \mathbf{9 d} \mathrm{u}$	¢ $\mathrm{F}_{0}{ }^{\prime}$	\sec gd u	$\omega \mathrm{FO}^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\rightarrow \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	tanh 4	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	coth u	c: Fu'
0.150	0. 15056	IOI, 1	1.01127	15, 1	0. 14883	97,8	6.7166	441, I
. 151	. 15157	IOI, I	.OII42	15.2	. 14985	97,8	. 6728	435,3
- 152	- 15259	IOI, 2	.OII57	I5,3	. $1508+$	97,7	. 6295	429,5
. 153	- 15360	101,2	. 01173	15.4	. 15182	97,7	.5859	423,9
. 154	. 15461	IOI, 2	. 01188	15.5	. 15279	97,7	-5448	418,3
0.155	0. 15562	IOI,2	1.01204	15,6	0.15377	97,6	6.5032	412,9
. 156	. 15663	IOI, 2	. 01219	15,7	-15475	97,6	.4622	407,6
. 157	. 15755	101,2	.OI235	15,8	-15572	97,6	. 4217	402,4
. 158	. 15866	101, 3	. 01251	I5,9	- 15670	97,5	. 3817	397,3
. 159	. 15967	IOI, 3	. 01267	16,0	. 15767	97,5	. 3422	392,2
0.160	0.16068	101,3	1.01283	16,1	0.15865	97,5	6.3032	387,3
.161	. 16170	IOI, 3	. 01299	16,2	. 15952	97,5	. 2548	382,5
. 162	. 16271	IOI, 3	. 01315	16,3	. 16060	97.4	. 2257	377,7
.163	. 16372	IOI, 3	. O133I	16,4	. 16157	97,4	. 1892	373, 1
. 16.4	. 16474	101,3	. 013.48	16,5	. 16254	97,4	. 1521	368,5
0.165	0.16575	IOI, 4	I. 01364	16,6	0.16352	97,3	6.1155	364,0
.165	. 16675	IOI, 4	. 01381	16,7	. 16449	97,3	. 0793	359,6
. 167	. 16778	IOI, 4	. 01398	16,8	. 16546	97,3	. $0+36$	355,2
. 168	. 16879	IOI, 4	. OIf 15	16,9	. 1664	97,2	. 0083	351,0
. 169	. 16981	IOI, 4	.OI43I	17,0	.16741	97,2	5.9734	346,8
0.170	0.17082	1OI, 4	1.01448	17, I	0.16838	97,2	5.9389	342,7
. 171	. 17183	IOI,5	. OI 466	17,2	. 16935	97, 1	.9048	338,7
. 172	. 17285	IOI, 5	. OIf83	17,3	. 17032	97, 1	. 8712	334,7
. 173	- 17388	101,5	.01500	17,4	.17129	97, 1	. 8379	330,8
. 174	- 17488	IOI,5	. 01518	17,5	. 17225	97,0	. 8050	327,0
0.175	0.17589	101,5	1.OI535	17,6	0.17324	97,0	5.7725	323,2
. 175	. 17691	101,6	. O1553	17,7	.17420	97,0	. 7104	319,5
. 177	- 17793	IOI, 6	. 01571	17,8	.17517	96,9	. 7085	315,9
. 178	. 17894	101,6	. 01588	17,9	. 17614	96,9	. 6772	312.3
. 179	. 17996	IOI,6	. 01606	18,0	.17711	96,9	.646I	308,8
0.180	0.18097	IOI, 6	1.01624	18,1	0.17808	96.8	5.6154	305,3
. 18 I	. 18199	101,6	.01643	18,2	. 17905	95,8	. 585 I	301,9
. 182	. 18301	101,7	. 01661	18,3	. 18002	96,8	. 5550	298,6
. 183	- 18402	IOI,7	. 01679	18,4	. 18098	96.7	. 5253	295,3
. 184	. 18504	101,7	. 01698	18,5	.18195	96,7	. 4960	292, 1
0.185	0.18606	IOI,7	1.01716	18,6	0.18292	96,7	5.4659	288,9
. 185	. 18707	101,7	. 01735	I8,7	. 18388	96,6	. 4382	285,8
. 187	. 18809	101,8	. OI754	18,8	.18485	96,6	. 4098	282,7
. 188	. 189 II	101,8	. 01772	18,9	. 18582	96,5	. 3817	279,6
. 189	. 19013	IOI, 8	.OI79I	190	. 18678	96,5	. 3539	276,6
0.190	0.19115	IOI,8	1.01810	19, I	0.18775	96,5	5.3263	273.7
. 191	. 19216	IOI, 8	. 01830	19,2	. 18871	96,4	. 2991	270,8
. 192	- 19318	IOI, 8	. 01819	19,3	. 18967	96,4	. 2722	268,0
- 193	. 19420	IO1,9	. 01888	19,4	- 19064	96,4	. 2455	265,2
. 194	. 19522	IOI,9	. 01888	19,5	. 19160	96,3	.2191	262,4
0.195	0.19624	IOI,9	1.01907	19,6	0. 19257	96,3	5.1930	259.7
. 195	. 19725	101,9	. 01927	19,7	. 19353	96,3	. 1672	257,0
. 197	. 19828	IOI,9	. 01947	19,8	. 19449	96,2	. 1415	254.4
. 198	. 19930	102,0	. 01967	19,9	. 19545	96,2	. 1163	25I,8
. 199	. 20032	102,0	. 01987	20,0	. 19641	96,1	.0913	249,2
0.200	0.20134	102,0	1.02007	20,1	0.19738	96, 1	5.0665	246,7
4	$\boldsymbol{t a n} \mathbf{g d} \mathbf{u}$	- Fo^{\prime}	$\sec \mathrm{gdx}_{4}$	$\omega F_{0}{ }^{\prime}$	$\sin 9 \mathrm{~d} u$	$\omega \mathrm{Fo}^{\prime}$	csc od u	$\omega \mathrm{Fo}^{\prime}$

Smitheonian Tables

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{Fo}^{\prime}$	coth u	$\omega \mathrm{Fo}^{\prime}$
0.200	0.20134	102,0	1.02007	20,1	0.19738	96, I	5.0665	246,7
. 201	. 20236	102,0	. 02027	20,2	. 19834	96, I	. $0+119$	244,2
. 202	. 20338	102,0	. 02047	20,3	- I9930	96,0	. 0176	241,8
.203	. 20.440	102, I	. 02068	20,4	. 20025	96,0	4.9936	239,4
. 204	.20,542	102, I	. 02088	20,5	. 20122	96,0	.9698	237,0
0.205	0.20614	IO2, 1	1.02109	20,6	0.20218	95,9	4.9462	234,6
. 206	. 20746	102, I	. 02129	20,7	.20313	95,9	. 9228	232,3
. 207	. 20848	102,2	. 02150	20,8	. 20409	95,8	. 8997	230, 1
. 208	. 20950	102,2	. 02171	21,0	. 20505	95,8	. 8768	227,8
. 209	. 21052	102,2	. 02192	21,I	. 20601	95,8	. 8542	225,6
0.210	0.21155	102,2	1.02213	21,2	0.20697	95,7	4.8317	223,5
. 211	. 21257	102,2	. 02234	21,3	. 20792	95,7	. 8095	22I, 3
. 212	. 21359	102,3	. 02256	21,4	. 20888	95,6	. 7874	219,2
. 213	.21461	102,3	. 02277	21,5	. 20984	95,6	. 7656	217, 1
. 214	. 21564	102,3	. 02299	21,6	. 21079	95,6	. 7440	215, 1
0.215	0.21666	102,3	1.02320	21,7	0.21175	95,5	4.7226	213,0
. 216	.21768	102,3	. 02342	2I,8	. 21270	95,5	. 7014	2II,O
. 217	.21871	102,4	. 02364	21,9	. 21366	95,4	. 6804	209, I
. 218	. 21973	102,4	. 02385	22,0	.2146I	95,4	. 6596	207,1
.219	. 22075	102,4	. 02408	22, I	.21556	95,4	. 6390	205,2
\% 0.220	0.22178	102,4	1.02430	22,2	0.21652	95,3	4.6186	203,3
.22I	. 22280	102,5	. 02452	22,3	. 21747	95,3	. 5983	201,4
. 222	. 22383	102,5	. 02474	22,4	. 21842	95,2	.5783	199,6
. 223	. 22485	102,5	. 02497	22,5	. 21938	95,2	. 5584	197,8
. 224	. 22588	102,5	. 02519	22,6	. 22033	95, 1	. 5387	196,0
0.225	0.22690	102,5	1.02542	22,7	0.22128	95,I	4.5192	194,2
. 225	. 22793	102,6	. 02565	22,8	.22223	95, 1	. 4999	192,5
. 227	. 22895	102,6	. 02588	22,9	. 22318	95,0	. 4807	190,8
. 228	. 22958	102,6	. 02610	23,0	.22.15	95,0	. 4617	189, 1
. 229	.23101	102,6	. 02634	23, I	. 22508	94,9	. 4429	187,4
0.230	0.23203	102,7	1. 02657	23,2	0.22603	94.0	4.4242	185,7
. 231	. 23306	102,7	. 02680	23,3	.22698	94,8	. 4057	184, 1
. 232	.23409	102,7	. 02703	23.4	. 22793	94,8	. 3874	182,5
. 233	.235II	102,7	. 02727	23,5	.22887	94,8	- 3692	180,9
. 234	. 23614	102,8	. 02750	23,6	. 22982	94,7	-3512	179,3
0.235	0.23717	102,8	1.02774	23,7	0.23077	94,7	4.3334	177,8
. 235	. 23820	102,8	. 02798	23,8	.23171	94,6	-3157	176,2
. 237	. 23922	102,8	. 02822	23,9	. 23266	94,6	. 2981	174,7
.238	. 24025	102,8	. 028846	24,0	. 23361	94,5	. 2807	I73,2
. 239	. 24128	102,9	. 02870	24,1	. 23455	94,5	. 2635	171,8
0.240	0.2423 I	102,9	1.02894	24,2	0.23550	94,5	4.2464	170,3
-271	. 24334	102,9	. 02918	24,3	. 23644	94,4	. 2294	168,9
. 212	. 24437	102,9	. 02943	24,4	. 23738	94,4	. 2126	167,5
. 243	. 24540	103,0	. 02967	24,5	. 23833	94,3	. 1959	166, 1
. 244	. 24643	103,0	. 02992	24,6	. 23927	94.3	. 1794	164,7
0.245	0.24746	103,0	1.03016	24,7	0.24021	94,2	4.1630	
. 246	. 24849	103,0	. 03041	24,8	. 24115	94,2	.1467	162,0
.247	. 24952	103, I	. 03066	25,0	. 24210	94, I	. 1306	160,6
. 248	. 25055	103, I	.03091	25,1	. 24304	94, I	. 1146	1593
. 249	.25158	103, 1	.03116	25,2	. 24398	94,0	. 0987	158,0
0.250	0.2526 I	103, 1	1.03141	25,3	0.24492	94,0	4.0830	156,7
4	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathbf{F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} \mathbf{u}$	(a) Fo^{+}	$\sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	csc od u	a Fof

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{Fo}^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{6}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.250	0.25251	103, 1	1.0314I	25,3	0.24192	94,0	4.0830	I56,7
. 251	. 25364	103,2	. 03167	25,4	. 24585	94,0	.0574	I55,4
. 252	. 25468	103,2	.03192	25,5	. 24680	93,9	.0519	154,2
.253	. 25571	103,2	.03218	25,6	. 2.4774	93,9	.0365	I52,9
. 254	. 25674	103,2	. 03243	25,7	. 2.4867	93,8	. 0213	151,7
0.255	0.25777	103,3	1.03269	25,8	0.24961	93,8	4.0062	150,5
. 256	. 2588 I	103,3	. 03295	25,9	. 25055	93,7	3.9912	149,3
. 257	. 25984	103,3	. 0332 I	25,0	. 25149	93.7	. 9763	T48-1
. 258	. 26087	103,3	. 03347	26, 1	. 25242	93,6	. 9616	I 46,9
. 259	. 26191	103,4	. 03373	26,2	. 25336	93,6	. 9470	145,8
0.260	0.26294	103,4	1.03399	26,3	0.25430	93,5	3.932.4	144,6
. 261	. 26397	103,4	. 03425	26,4	. 25523	93,5	. 9180	I 43.5
. 262	. 26501	103,5	.03+52	26,5	. 25617	93,4	. 9037	r42,4
. 263	. 26604	103,5	. 03478	26,6	. 25710	93,4	. 8895	141,3
. 264	. 26708	103,5	. 03505	26,7	. 25803	93,3'	.8755	140,2
0.265	0.268 II	103,5	1.03532	26,8	0.25897	93,3	3.8515	139, I
. 265	. 26915	103,6	. 03559	26,9	. 25990	93,2	. 8.875	I38,0
. 267	. 27018	103,6	. 03585	27,0	. 26083	93,2	. 8339	137,0
. 268	. 27122	103,6	. 03613	27, 1	. 26176	93,I	. 8203	135.9
. 269	. 27226	103,6	. 03640	27,2	. 26269	93, I	. 8067	134,9
0.270	0.27329	103,7	1.03667	27,3	0.26362	93,1	3.7933	13339
. 271	. 27433	103,7	. 03695	27,4	. 26456	93,0	. 7799	132,9
. 272	. 27537	103,7	. 03722	27,5	. 26548	93,0	. 7567	131,9
. 273	. 27640	103,7	. 03750	27,6	. 26641	92,9	. 7536	130,9
. 274	. 27744	103,8	. 03777	27,7	. 25734	92,9	. 7405	129,9
0.275	0.27848	103,8	1.03805	27,8	0.26827	92,8	3.7275	128.9
. 276	. 27952	103,8	. 03833	28,0	. 26920	92,8	. 71.47	128.0
. 277	. 28056	103,9	. 0385 L	28,1	. 27013	92,7	. 7020	127.0
. 278	. 28159	103,9	. 03889	28,2	.27105	92,7	. 6803	125, 1
. 279	. 28253	103,9	.03917	28,3	. 27198	92,5	. 6768	125,2
0.280	0.28367	103,9	1.03946	28,4	0.27291	92,6	3.6643	124,3
. 281	. 2847 I	104,0	. 03974	28,5	. 27383	92,5	. 6519	123,4
. 282	. 28575	104,0	. 0.4003	28,6	. 27475	92,5	. 6396	122,5
.283	. 28679	104,0	.04031	28,7	. 27568	92,4	. 6274	121,6
.284	. 28783	104,1	.04060	28,8	. 27560	92,4	. 6153	120,7
0.285	0.28887	104, 1	1.04089	28,9	0.27753	92,3	3.6033	I 19,8
. 285	. 28991	104, 1	.04118	29,0	. 27845	92,2	. 5913	1190
. 287	. 29096	104, I	. 04147	29,1	. 27937	92,2	. 5795	[18,
. 288	. 29200	104,2	. 04176	29,2	. 28029	92, I	. 5677	117,3
. 289	.29304	104,2	. 04205	29,3	.28121	92, 1	. 5560	116,5
0.290	0.29408	104,2	1.04235	29.4	0.28213	92,0	3.5414	115,6
. 291	. 29512	104.3	. 04264	29,5	. 28305	92,0	. 5329	114,8
. 292	. 29617	104,3	. 04294	29,6	. 28397	91,9	.5214	I I4,0
. 293	. 29721	104.3	. 04323	29,7	. 28489	91,9	. 5101	113,2
. 294	. 29825	104,4	. 04353	29,8	.28581	91,8	. 4988	I12,4
0.295	0.29930	104,4	1.04383	29,9	0.28573	9 gr 8	3.4876	III,6
. 296	. 30034	104,4	. 04413	30,0	. 28765	91.7	-4765	110,9
.297	. 30139	104,4	. 04443	30,1	. 28856	9r,7	. 4654	IIO,I
. 298	. 30243	104,5	. 04473	30,2	. 28948	91,6	. 4545	
. 299	. 30348	1045	. 04503	30,3	. 29040	91,6	. 4436	108,6
0.300	0.30452	104,5	1.04534	30,5	0.29131	91,5	3.4327	107,8
\square	\tan gd	- Fa'	sec gd u	$\pm \mathrm{Fo}^{\prime}$	$\sin \mathrm{gd} \mathrm{u}$	- Fo^{\prime}	csc gd u	$\sim F_{0}^{\prime}$

Natural Hyperbolic Functions.

■	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$.	$\omega F_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.300	0.30452	104,5	1.04534	30,5	0.29131	91,5	3.4327	107,8
. 301	. 30557	10, 5	. 04564	30,6	. 29223	91,5	. 4220	107, 1
. 302	. 30561	10,4,6	. 04595	30,7	.29314	91,4	.4113	106,4
. 303	-30766	10,4,6	. 04625	30,8	. 29405	91,4	.4007	105,6
. 304	. 30870	104,7	. 04656	30,9	. 29497	91,3	. 3902	104,9
0.305	0.30975	104.7	1.04687	31,0	0.29588	91,2	3.3797	104,2
. 306	. 31080	10, 4,7	. 04718	$3 \mathrm{I}, 1$. 29679	91,2	. 3693	103,5
. 307	. 31185	104, $\%$. 04750	31,2	. 29771	91, I	- 3590	102,8
. 308	. 31289	10,4 8	. 0 - -SI	31,3	. 25862	91,1	-3488	102, I
. 309	. 31394	10,, 8	.048I2	31,4	. 29953	91,0	-3386	101,5
0.310	0.31499	104,8	1.04844	31,5	0.30014	91,0	3.3285	100,8
. 311	.31604	10,4,9	. $0+8875$	31,5	. 30135	90,9	. 3184	100, I
. 312	. 31709	10,4,9	. 0.4507	31,7	-3023j	90,9	- 3085	99,5
. 313	.31814	10,4,9	. 04939	31,8	-30316	90,8	. 2985	98,8
. 31.4	. 31919	IO5,0	. 04970	31,9	. 30407	90,8	. 2887	98,2
0.315	0.32024	105,0	1.05002	32,0	0.30498	90,7	3.2789	97,5
. 316	. 32129	105,0	. 05034	32, 1	. 30589	50,6	.2692	96,9
. 317	- 32234	105, 1	. 05067	32,2	. 30579	90,6	. 2595	96,2
-318	. 32339	105, I	. 05099	32,3	. 30770	90,5	. 2499	95,6
. 319	. 32414	105, 1	.05131	32,4	. 30850	90,5	. 2404	95,0
0.320	0.32549	105,2	1.05164	32,5	0.30951	90,4	3.2309	94,4
. 321	. 32654	105,2	.05195	32,7	.3104I	90,4	. 2215	93,8
. 322	. 32759	105,2	. 05229	32,8	. 31131	90,3	. 2122	93,2
. 323	-32855	105,3	. 05262	32,9	-31222	90,3	. 2029	92,6
. 324	. 32970	105,3	. 05295	33,0	. 31312	90,2	. 1937	92,0
0.325	0.33075	105,3	1.05328	33, 1	0.31 .402	90, I	3.1845	9I,4
. 326	. 33181	105.4	. 05361	33,2	.3I492	90, I	. 1754	90,8
. 327	. 33286	1054	. 05394	33,3	. 31582	90,0	. 1653	90,3
. 328	. 3339 I	105,4	. 05428	33,4	.31572	90,0	.1573	89,7
. 329	-33497	105,5	. 05461	33,5	. 31762	89,9	. 1.484	89, 1
0.330	0.33602	105,5	1.05495	33,6	0.31852	89,9	3.1395	88,6
. 331	. 33708	105,5	. 05528	33,7	. 31942	89,8	. 1307	88,0
. 332	-338ı3	105,6	. 05562	33,8	. 32032	89,7	. 1219	87,5
. 333	-33919	105,6	. 05596	33,9	-32121	89,7	. II 32	86,9
. 334	-34024	105,6	. 05630	3-1,0	-322II	89,6	. 1045	86,4
0.335	0.34130	105,7	1. 05664	34, 1	0.32301	89,6	3.0959	85,8
. 336	. 34236	105,7	. 05698	3, 2	. 32390	89,5	. 0874	85,3
. 337	-34342	105,7	. 05732	3+3	- 32480	82,5	. 0789	84,8
. 338	- 34447	105,8	. 05767	34,4	. 32569	89,4	. 0704	84,3
. 339	- 34553	105,8	. 05801	34,6	- 32658	85,3	. 0620	83,8
0.340	0.34659	105,8	1.05836	34,7	0.32748	89,3	3.0536	83,2
. 341	. 34765	105,9	. 05871	34,8	. 32837	89,2	. 0.453	82,7
-3+2	-34871	105,9	. 05905	34,9	-32926	89,2	. 0371	82,2
- 343	-34977	105,9	. 05940	35, 6	. 33015	89, I	. 0289	$8 \mathrm{I}, 7$
. 344	. 35082	106,0	. 05975	35, I	. 33104	89,0	. 0207	8r,2
0.345	0.35188	106,0	1.06011	35,2	0.33193	89,0	3.0126	80,8
. 346	. 35295	106,0	. 06046	35,3	. 33282	88,9	. 0046	80,3
. 347	-35101	106, 1	.0608I	35,4	-33371	88,9	2.9966	79,8
. 348	. 35507	106, I	. 06117	35,5	-33460	88,8	. 9886	
-349	. 35613	106,2	. 06152	35,6	- 33549	88,7	.9807	78,8
0.350	0.35719	106,2	1.06188	35,7	0.33538	88,7	2.9729	78,4
U	$\boldsymbol{t a n} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gdx} u$	* Fo^{\prime}	cse gd a	$\pm \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}^{\prime}$	$\cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{6}{ }^{\prime}$	coth u	$\omega \mathrm{Fo}^{\prime}$
0.350	0.35719	106,2	1.06188	35,7	0.33638	88,7	2.9729	78,4
. 35 I	. 35825	106,2	.0622.4	35,8	. 33726	88,6	. 9651	77,9
. 352	-3593I	106,3	. 06259	35,9	-33815	88,6	. 9573	77,5
- 353	. 36038	106,3	. 06295	36,0	-33903	88,5	. 9496	77,0
-354	-36144	106,3	. 06332	36, 1	-33992	88,4	-9419	76,5
0.355	0.36250	106,4	1.06368	36,3	0.34080	88,4	2.9343	76,1
. 356	. 36357	106,4	. 06404	36,4	. 34169	88,3	. 9267	75,7
. 357	. 36463	106,4	.06410	36,5	-31257	88,3	.9191	75,2
-358	-36570	106,5	. 06477	36,6	-343-4	88,2	.9116	74,8
-359	. 36676	106,5	.065I4	36,7	- 34433	88, I	. 9042	74,3
0.360	0.36783	106,6	1.06550	36,8	0.34521	88, I	2.8968	73,9
. 351	. 36889	106,6	. 06587	36,9	. $3+609$	88,0	. 8804	73,5
. 362	. 36996	106,6	. 06624	37,0	-34697	88,0	. 882 I	73,
. 353	. 37102	106,7	. 06661	37, 1	-34785	87,9	. 8748	72,6
. 364	-37209	106,7	. 06698	37,2	-34873	87,8	. 8675	72,2
0.365	0.37316	106,7	1.06736	37,3	0.34961	87,8	2.8603	71,8
. 365	. 37423	106,8	. 06773	37,4	. 35049	87,7	. 8532	71,4
. 367	- 37529	105,8	. 06810	37,5	. 35136	87,7	. 8460	71,0
. 368	-37636	106,8	. 06848	37,6	-35224	87,6	. 8390	70,6
.369	- 37743	106,9	. 06886	37,7	-35312	87,5	.8319	70,2
0.370	0.37850	106,9	1.06923	37,9	0.35399	87,5	2.8219	69,8
.371	. 37957	107,0	. 06961	38,0	. 35487	87,4	. 8180	69,4
. 372	- 38064	107,0	. 06999	38,1	. 35574	87,3	. 8110	69,0
. 373	-38171	107,0	. 07037	38,2	. 35661	87,3	. 8042	68,6
. 374	-38278	107, I	. 07076	38,3	-35749	87,2	. 7973	68,2
0.375	0.38385	107, I	I.07114	38,4	0.35836	87,2	2.7903	67,9
. 375	. 38.492	107,2	. 07152	38,5	. 35923	87, I	. 7837	67,5
. 377	- 38599	107,2	.07191	38,6	. 36010	87,0	. 7770	67,1
-378	. 38707	107,2	. 07230	38.7	-36007	87,0	. 7703	66,7
- 379	.38814	107,3	. 07268	38,8	. 36184	86,9	. 7637	66,4
0.380	0.38921	107,3	1.07307	38,9	0.36271	86,8	2.7570	66,0
. 381	. 39028	107,3	. $073+6$	39,0	. 36358	86,8	. 7505	65,7
. 382	- 39136	107,4	. 07385	39, 1	. 36444	86,7	. 7439	65.3
. 383	-39243	107,4	. 07425	39,2	. 36531	86,7	. 7374	64,9
-384	. 39351	107,5	. 07464	39,4	. 36618	86,6	.7309	64,6
0.385	0.39458	107,5	1.07503	39,5	0.36704	86,5	2.7245	64,2
. 385	. 39566	107,5	. 07543	39,6	. 36791	86,5	.7181	63.9
. 387	. 39673	107,6	. 07582	39,7	. 36877	86.4	. 7117	63.5
. 388	-39781	107,6	. 077622	39,8	-36963	86,3	. 7054	63,2
. 389	- 39889	107,7	. 07662	39,9	. 37050	86,3	. 699 I	62,8
0.390	0.39996	107,7	1.07702	40,0	0.37136	86,2	2.6928	62,5
. 391	. 40104	107,7	. 07742	40, 1	. 37222	86, 1	. 6866	62,2
- 392	. 40212	107,8	. 07782	40,2	. 37308	86, I	. 6804	6I,8
. 393	.40319	107,8	. 07822	40,3	. 37394	86,0	. 6742	$6 \mathrm{6}, 5$
-394	. 40427	107,9	. 07863	40,4	. 37480	86,0	.668r	61,2
0.395	0.40535	107,9	1.07903	40,5	0.37566	85,9	2.6620	60,9
. 396	. 40643	107,9	. 07944	40,6	. 37652	85,8	. 6559	60,5
. 397.	. 40751	108,	. 07984	40,8	- 37738	85.8	. 6499	60,2
. 398	. 40859	108,0	. 08025	40,9	. 37824	85,7	. 6438	59.9
. 399	. 40967	108, 1	. 08066	41,0	. 37909	85,6	. 6379	59,6
0.400	0.41075	108, 1	1.08107	41,I	0.37995	85,6	2.6319	59,3
-	tan gd u	- Fo'	\sec od a	$\cdots \mathrm{Fo}^{\prime}$	$\sin 9 \mathrm{~d}$	- F F^{\prime}	cse ede	\pm Fod

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.400	0.41075	108, 1	1.08107	41, 1	0.37995	85,6	2.6319	59,3
. 401	.41183	108, 1	.08148	41,2	. 38080	85,5	. 6250	59,0
. 402	. 41292	108,2	.08190	4I,3	.38166	85,4	. 6201	58,7
. 403	-41400	108,2	. 08231	4I, 4	. 38251	85,4	. 6143	58,3
. 404	.41508	108,3	. 08272	4I,5	. 38337	85,3	. 6085	58,0
0.405	0.41616	108,3	1.08314	41,6	0.38422	85,2	2.6027	57,7
. 406	. 41725	108,4	. 08356	$4 \mathrm{I}, 7$. 38507	85,2	. 5959	57,4
. 407	. 41833	108,4	. 08397	4I,8	. 38592	85,1	. 5912	57,1
. 408	. 41941	108,4	. 08439	41,9	. 38577	85,0	. 5855	56,8
. 409	. 42050	108,5	.08481	42,0	. 38762	85,0	- 5798	56,6
0.410	0.42158	108,5	1.08523	42,2	0.38847	84,9	2.5712	56,3
. 41 I	. 42257	108,6	. 08566	42,3	. 38932	84,8	. 5686	56,0
-412	. 42376	108,6	. 08508	42,4	. 39017	84,8	. 5630	55,7
. 413	. 42484	108,7	. 08550	42,5	. 39102	84,7	. 5574	55,4
. 414	. 42593	108,7	. 08693	42,6	. 39186	84,6	. 5519	55, 1
0.415	0.42702	108,7	1.08736	42,7	0.39271	84,6	2.5464	54,8
. 416	. 42810	108,8	. 08778	42,8	. 39356	84,5	. 5409	54,6
. 417	. 42919	108,8	.08821	42,9	- 39440	84,4	. 5355	54,3
. 418	. 43028	108,9	. 08854	43,0	- 39524	84,4	. 5301	54,0
. 419	. 43137	108,9	.08807	43, I	-39609	84,3	. 5247	53,7
0.420	10.43246	109,0	1.08950	43,2	0.39693	84,2	2.5193	53,5
. 42 I	. 43355	109,0	. 0899.4	43,4	- 39777	84,2	. 5140	- 53,2
. 422	. 43464	109,0	. 09037	43,5	. 39851	84	. 5087	52,9
. 423	. 43573	109, I	.09081	43,6	. 39945	84,0	. 5034	52,7
. 424	. 43682	109,1	.09124	43,7	-40029	84,0	. 4982	52,4
0.425	0.43791	109,2	1.09168	43,8	0.40113	83,9	2.4929	52,2
. 426	. 43900	109,2	. 09212	43,9	. 40197	83,8	. 4877	51,9
. 427	. 44009	109,3	. 09256	44,0	-40281	83,8	. 4826	51,6
. 428	. 41119	109,3	. 09300	44, 1	. 40365	83,7	. 4774	51,4
. 429	-44228	109,3	. 09344	44,2	. 40449	83,6	. 4723	5I, I
0.430	0.44337	109,4	1.09388	44.3	0.40532	83,6	2.4672	50,9
. 43 I	. 41447	109,4	. 09433	44,4	. 40616	83,5	. 462 I	50,6
. 432	. 44556	109,5	. 09477	44,6	. 40599	83,4	. 4571	50,4
- 433	. 44666	109,5	. 09522	44,7	. 40783	83,4	. 4520	50, I
. 434	. 44775	109,6	. 09567	44,8	. 40856	83,3	. 4470	49,9
0.435	0.44885	109,6	1.09611	44,9	0.40949	83,2	2.442 I	49,6
. 436	. 44995	109,7	. 09655	45,0	. 41032	83,2	. 4371	49,4
. 437	. 45104	109,7	. 09701	45, I	.4III5	83,1	. 4322	49,2
. 438	-45214	109,7	. 09747	45,2	-41199	83,0	. 4273	48,9
. 439	. 45324	109,8	. 09792	45,3	. 41282	83,0	. 4224	48,7
0.440	0.45434	109,8	1.09837	45,4	0.41364	82,9	2.4175	48,4
. 441	. 45543	109,9	. 09883	45,5	. 41447	82,8	. 4127	48,2
.442	. 45653	109,9	. 09928	45,7	. 41530	82,8	. 4079	48,0
. 443	. 45763	I 10,0	. 09974	45,8	. 41613	82,7	. 4031	47,7
. 414	. 45873	I IO,O	. 10020	45,9	. 41695	82,6	.3983	47,5
0.445	0.45983	IIO,I	1. 10066	46,0	0.41778	82,5	2.3936	47,3
. 446	. 46093	IIO,I	- IOII2	46, 1	-4186I	82,5	. 3889	47,
. 447	. 46204	110,2	. 10158	46,2	. 41943	82,4	. 3842	46,8
-448	-46314	I IO,2	. 10204	46,3	. 42025	82,3	. 3795	46,6
-449	. 46424	I 10,3	. 10251	46,4	. 42108	82,3	- 3749	46,4
0.450	0.46534	ITO,3	I. 10297	46,5	0.42190	82,2	2.3702	46,2
U	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	© $F_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{Fo}^{\prime}$	$\sin \mathrm{gd} \boldsymbol{\psi}$	$\omega \mathrm{FO}^{\prime}{ }^{\prime}$	csc od u	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\infty \mathrm{F}^{\prime}{ }^{\prime}$
0.450	0.46534	IIO,3	I. 10297	46,5	0.42190	82,2	2.3702	46,2
.45I	. 46645	110,3	. 10344	46,6	. 42272	$82, \mathrm{I}$. 3656	46,0
. 452	. 46755	110,4	. 10390	46,8	. 42354	$82, \mathrm{r}$. 3610	45,7
. 453	. 46855	I10,4	. 10.437	46,9	. $42+36$	82,0	. 3565	45,5
. 454	. 46976	I 10,5	. 10484	47,0	. 42518	81,9	. 3519	45,3
0.455	0.47086	110,5	1.10531	47, 1	0.12500	8I,9	2.3474	45, 1
. 456	. 47197	I 10,6	-10578	47,2	. 42682	81,8	. $3+29$	44,9
. 457	. 47307	110,6	. 10625	47,3	. 42764	$8 \mathrm{I}, 7$. 3384	44,7
. 458	. 47418	I 10,7	. 10673	47,4	. 42845	81,6	. 3340	44.5
. 459	. 47529	IIO,7	. 10720	47,5	. 12927	81,6	. 3295	44.3
0.460	0.47610	I 10,8	1. 10768	47,6	0.43008	$8 \mathrm{I}, 5$	2.3251	44,I
. 461	. 47750	1 10,8	. 10816	47,8	. 43090	$8 \mathrm{I}, 4$. 3207	43,9
. 462	. 4785 I	I 10,9	. 10853	47,9	. 43171	81,4	. 3164	43.7
.463	. 47972	IIO,9	. IO9II	48,0	. 43253	$8 \mathrm{I}, 3$. 3120	43,5
.464	. 48083	III,O	. 10959	48, 1	. 43334	8I,2	. 3077	43:3
0.455	0.48194	III,O	I.II007	48,2	0.43415	8I,2	2.3033	43,1
. 465	.48305	III, I	. 11056	48,3	. 43495	81, I	. 2991	42,9
. 467	. 48416	III, I	. II 104	48,4	- 43577	$8 \mathrm{I}, 0$. 2948	42,7
. 458	. 48527	II I, 2	. III53	48,5	. 43658	80,9	. 2505	42,5
.469	. 48538	III,2	. 11201	48,6	- 43739	80,9	. 2863	42,3
0.470	0.48750	III,2	I. II250	48,7	0.43820	80,8	2.2821	42, 1
. 471	. 4885 I	III,3	. 11299	48,9	. 43901	80,7	. 2779	41,9
. 472	. 48972	I II, 3	- II348	49,0	.43581	80,7	. 2737	41,7
. 473	. 49084	II I, 4	- II 397	49, 1	-440's2	80,6	.2695	41,5
. 474	. 49195	III,4	- 11446	49,2	- 41413	80,5	. 2654	41,3
0.475	0.49306	III,5	1.11495	49,3	0.44223	80,4	2.2613	41, I
. 476	. 49418	III,5	. 11544	49,4	. 44303	80,4	. 2572	40,9
. 477	. 49530	III,6	. 11594	49,5	- 44384	80,3	. 2531	40,8
. 478	. 49641	III,6	. 11643	49,6	.41464	80,2	. 2490	40,6
. 479	. 49753	III,7	. 11693	49,8	-44544	80,2	. 2450	40,4
0.480	0.49865	III,7	I. II743	49.9	0.44524	80,1	2.2409	40,2
. 48 I	. 49976	III, 8	. II793	50,0	. 44704	80,0	. 2369	40,0
.482	. 50088	III,8	- 11843	50, 1	. 44784	79,9	. 2329	39.9
.483	. 50200	III,9	. 11893	50,2	-44854	79,9	. 2289	39,7
. 484	. 50312	III,9	. 11943	50,3	- 44944	79,8	. 2250	39,5
0.485	0.50424	112,0	I. II994	50,4	0.45024	79,7	2.2210	39,3
. 485	. 50536	I12,0	- 12044	50,5	. 45104	70,7	.2171	39,2
. 487	. 50648	112,1	. 12095	50,6	. 45183	79,6	. 2132	39,0
. 488	. 50760	II2, I	. 12 I45	50,8	-45263	79,5	.2093	38,8
.489	. 50872	112,2	. 12196	50,9	. 453 - 42	79,4	. 2054	38,6
0.490	0.50384	112,2	1. 12247	51,0	0.45422	79,4	2.2016	38,5
. 49 I	. 51097	112,3	. 12298	51, I	- 45501	79+3	. 1978	38,3
. 492	. 51209	II2,3	- 12349	$5 \mathrm{I}, 2$. 45580	79,2	. 1939	38,1
. 493	. 5132 I	I12,4	. 12401	51,3	. 45659	79,2	. 1901	38,0
. 494	-51434	I12,5	. 12452	5I,4	-45739	79,1	. 1863	37,8
0.495	0.51546	112,5	1.12503	51,5	0.45818	79,0	2.1825	37,6
. 495	. 51659	112,6	. 12555	51,7	. 45897	78,9	. 1788	37,5
. 497	-51771	112,6	. 12607	51,8	. 45975	78.9	.1751	37,3
. 498	-51884	112,7	. 12659	51,9	. 46054	78,8	. 1714	37, 1
. 499	-51997	112,7	. 12711	52,0	. 46133	78,7	. 1676	37,0
0.500	0.52110	112,8	1.12763	52, 1	0.46212	78,6	2.1640	36,8
	$\tan 9 \mathrm{~d} \boldsymbol{u}$	$\pm \mathrm{Fo}^{\prime}$	$\sec 9 \mathrm{dy}$	- $\mathrm{Fo}^{\prime}{ }^{\prime}$	$\sin \mathrm{gd} \mathrm{a}$	$\pm \mathrm{Fo}^{\prime}$	csc od u	$\omega \mathrm{Fo}^{\text {f }}$

Smithsonian Tablez

Natural Hyperbolic Functions.

n	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.500	0.52110	II2,8	1. 12763	52,I	0.76212	78,6	2.1640	36,8
. 501	. 52222	I12,8	. 12815	52,2	. +6290	78,6	. 1603	36,7
. 502	. 52335	112,9	. 12857	52,3	. 46369	78,5	. 1566	36,5
. 503	. 52448	I 12,9	. 12919	52, ${ }^{\text {a }}$	- 66477	78,4	. 1530	36,4
. 504	. 5256 I	113,0	. 12972	52,6	.46525	78,4	. 1493	35,2
0.505	0.52674	I 13,0	I. 13025	52,7	0.46504	78,3	2.1457	36,0
. .505	. 52787	I13,I	. 13077	52,8	. 46682	78,2	. 1421	35,9
. 507	. 52500	II3,I	. 13130	52,9	- 46750	78,1	. 1385	35,7
- 508	. 53013	II3,2	. 13183	53,0	- +6839	78,	. 1350	35,6
. 509	. 53127	II3,2	. 13236	53, I	- 46917	78,0	. 13 I4	35,4
0.510	0.53240	I13,3	I. 13289	53,2	0.46995	77,9	2.1279	35,3
. 511	. 53353	113,3	. 13343	53,4	. 47072	77,9	. 1244	35, I
. 512	. 53456	II 3,4	. 13356	53,5	-47150	77,8	. 1209	35,0
. 513	. 53580	II 3,4	. 13450	53,6	-47228	77,7	. II74	3.8
. 514	. 53693	II 3,5	. 13503	53.7	- 47305	77,6	. 1139	34,7
0.515	0.53807	II 3,6	T. 13557	53,8	0.47383	77,5	2. 1105	34,5
. 516	. 53920	II 3,6	. 13611	53,9	-47461	77,5	. 1070	34,4
. 517	- 51034	I 1 3,7	. 13665	54,0	- 47538	77,4	. 1036	34,3
. 518	-54148	113,7	. 13719	54,1	-47615	77,3	. 1002	34, 1
. 519	. 54252	II 3,8	.13773.	51,3	. 47693	77,3	. 0968	34,0
0.520	$0.5+375$	II 3,8	I. 13827	5-4,4	0.47770	77,2	2.0934	33,8
. 521	-54483	113,9	. 13882	54,5	-47847	77, 1	. 0900	33.7
. 522	. 54603	113.9	. 13936	54,6	- 47924	77,0	. 0856	33,5
. 523	-54717	IIf,0	. 13991	54,7	- 48001	77,0	. 0833	33,4
. 524	-5483I	II 4,0	. 14046	54,8	. 48078	76,9	. 0799	33,3
0.52 .5	0.54945	II 4, I	I. 14101	54,9	0.48 I 55	76,8	2.0766	33, I
. 525	. 55059	II + , 2	. 14156	55, I	- 48232	76,7	. 0733	33,0
. 527	-55173	II 4,2	. I42II	55,2	- 48308	76,7	. 0700	32,9
. 528	- 55288	II 4,3	. 14265	55,3	- 48385	76,6	. 0558	32,7
. 529	-55402	II4,3	.I432I	55,4	-48+62	76,5	. 0635	32,6
0.530	0.55516	IIf,4	I. 14377	55,5	0.48538	76,4	2.0502	32,4
. 531	. 55631	II 4,4	. I4432	55,6	. 485 I 5	76,4	. 0570	32,3
. 532	. 55745	II 4,5	. 74488	55,7	-48591	75,3	. 0538	32,2
. 533	- 55860	II 4,5	. 14544	55,9	- 48757	76,2	. 0505	32,0
. 534	- 55974	II 4,6	. I4600	56,0	- 48843	76, 1	. 0474	31,9
0.535	0.56089	${ }_{11} 14,7$	I. 14656	56,1	0.48919	76,I	2.0442	31,8
. 536	. 56204	II 4,7	. 14712	56,2	. 48395	76,0	. 0410	31,7
. 537	. 55318	II 4,8	. I4768	56,3	- 45071	75,9	. 0378	3I,5
. 538	. 5643.3	114,8	. 14825	56,4	-49147	75,8	. 0347	31,4
. 539	-56548	II4,9	. 1.488 I	56,5	. 49223	75,8	.03I6	31,3
0.540	0.56653	I I4,9	I. 14938	56,7	0.49299	75,7	2.0284	3I, 1
. 54 I	. 56778	I 15,0	. I4994	56,8	. 49374	75,6	. 0253	31,0
. 512	. 56893	II5, I	. 15051	56,9	. 49450	75,5	. 0222	30,9
. 543	- 57008	II 5,1	. 15108	57,0	- 49526	75,5	. 0192	30,8
-544	. 57123	II 5,2	. 15165	57,I	-49501	75,4	. 0161	30,6
0.545	0.57238	115,2	I. 15223	57,2	0.49676	75,3	2.0130	30,5
. 54.5	. 57354	I I 5,3	- 15280	57,4	. 49752	75,2	. 0100	30,4
. 547	. 57469	II 5,3	- I5337	57,5	- 49827	75,2	. 0070	30,3
. 548	. 57584	I 15,4	. 15395	57,6	-49002	75, 1	. 0039	30,2
. 549	. 57700	II5,5	. 15452	57,7	-49977	75,0	. 0009	30,0
0.550	0.57815	II 5,5	I. 15510	57,8	0.50052	74,9	I. 9979	29,9
u	$\boldsymbol{\operatorname { t a n }} \mathrm{g} \mathrm{d}^{\mathrm{u}}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{g} \mathrm{d}^{\text {u }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\csc gd u	* Fo'

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}^{\circ}{ }^{\circ}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{3}{ }^{\prime}$	coth u	$\omega \mathrm{FO}^{\prime}$
0.550	0.57815	I 1 5,5	I. 15510	57,8	0.50052	74,9	工.9979	29,9
. 551	. 57931	I 15,6	. 15568	57,9	. 50127	74,9	. 9949	29,8
. 552	- 58046	I15,6	. 15625	58,0	. 50202	74,8	. 9920	29,7
. 553	. 58162	115.7	. 15684	58,2	. 50277	74,7	. 9890	29,6
- 554	. 58278	I 15,7	. 15742	58,3	-50351	74,6	.9850	29,4
0.555	0.58393	II 5,8	I. 15801	58,4	0.50 .426	74,6	I.9831	29,3
. 555	. 58509	115,9	. 15859	58,5	. 50500	74,5	. 9802	29.2
. 557	- 58625	I15.9	. 15918	58,5	. 50575	74,4	.9773	29.1
. 558	. 58741	I 16,0	. 15976	58,7	. 50549	74,3	. $974+$	29,0
. 559	. 58857	I16,0	. 16035	58,9	. 50724	74,3	.9715	28.9
0.560	0.58973	I 16, 1	I. 16094	59,0	0.50798	74,2	I. 9586	28.8
. 561	. 59089	I 16,2	. 16153	59, 1	. 50872	74, 1	. 9657	28,6
. 562	. 59205	116,2	.16?12	59,2	. 50946	74,0	. 9629	28.5
.563	. 59322	I 16,3	. 16272	59.3	. 51020	74,0	. 9600	28.4
. 564	. 59438	I 16,3	. 16331	59,4	. 5 5rg4	73,9	. 9572	28,3
0.565	0.59554	I 16,4	I. 16390	59,6	0.51168	73,8	I.9544	28,2
. 566	. 5967 I	116,5	. 16450	59,7	. 51242	73,7	. 9515	28,1
.567	. 59787	I 16,5	. 16510	59,8	. 51315	73,7	. 9487	28,0
. 568	. 59904	I 16,6	. 16570	59.9	. 51380	73,6	. 9459	27,9
. 569	. 60020	116,6	. 16630	60,0	. 51462	73,5	. 9432	27,8
0.570	0.60137	I 16,7	1. 16690	60,1	0.51536	73,4	1. 9104	27,7
. 571	. 60254	116,7	. 16750	60,3	. 51609	73,4	. 9376	27,5
. 572	. 6037 I	116,8	. 16810	60,4	. 51583	73,3	-9349	27,4
. 573	. 60.887	I 16,9	. 16871	60,5	. 51756	73,2	.9321	27,3
. 574	. 60604	116,9	. 16931	60,6	. 51829	73,1	. 9394	27,2
0.575	0.60721	II7,0	1. 16992	60,7	0.51902	73, 1	1.9267	27,1
. 576	. 60838	II7, I	. I7053	60,8	. 51975	73,0	. 92.40	27,0
. 577	.60955	II7, 1	. I7II3	61,0	. $520+8$	72,9	. 9213	26.9
. 578	. 61073	II7,2	. 17174	6I,I	. 52121	72.8	.9186	25.8
. 579	. 61190	117,2	. 17236	61,2	. 52194	72,8	.9159	26,7
0.580	0.61307	II7,3	I. 17297	6r,3	0.52257	72,7	1.9133	26,6
. 581	.61424	117,4	. 17358	61,4	. 52339	72,6	. 9105	26,5
. 582	. 61542	II7,4	. 17420	6I,5	. 52412	72,5	- 9080	26,4
.583	. 61659	II7,5	- I748I	6I, 7	. 52484	72,5	. 9053	26,3
. 584	. 61777	II7,5	-17543	6I,8	. 52557	72,4	. 9027	25,2
0.585	0.61894	117,6	1. 17505	61,9	0.52629	72,3	I. 5001	26,1
. 580	. 62012	11\%,7	. 17667	62,0	. 52701	72,2	. 8975	26,0
. 587	. 62130	117,7	. 17729	62.1	. 52773	72,2	. 8349	25,9
. 583	. 62247	I 17,8	. 17791	62,2	. 528.6	72,1	. 8 ¢,23	25.8
. 589	. 62355	II7,9	. 17853	62,4	-52918	72,0	. 8397	25,7
0.550	0.62483	117,9	1.17916	62,5	0.52990	71,9	1.8872	25,6
. 591	. 62601	118,0	. 17978	62,6	. 5300 j	71,8	. 88.46	25,5
. 592	. 62719	118,0	. 18041	62,7	. 53133	71,8	. 882 I	25,4
. 593	. 62837	I 18, 1	. 18104	62,8	- 53205	71,7	. 8795	25,3
. 59.4	. 62955	118,2	. 18167	63.0	. 53277	71,6	. 8770	25,2
0.595	0.63073	118,2	1. 18230	63, 1	0.53348	71,5	I. 8745	25, 1
. 593	. 63192	118,3	. 18293	63,2	. 53420	71,5	. 8720	25,0
. 597	. 63310	118,4	.18350	63.3	- $53-991$	71,4	. 8595	24,9
. 598	. 63128	118,4	. 18419	63.4	. 53562	71,3	. 8670	2.4
. 599	. 63547	118,5	.18483	63,5	. 53034	71,2	. 8645	24,8
0.600	0.53665	118,5	1. 18547	63.7	0.53705	71,2	1.8620	24,7
4	$\tan 9 \mathrm{gd}$	$\pm \mathrm{Fa}^{\prime}$	$\sec \mathrm{gd}$:	- Fo'	$\sin 9 \mathrm{da}$	$\pm \mathrm{Fo}^{\prime}$	cscegd u	$\omega F_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega F_{0}{ }^{\prime}$
0.600	0.63665	118,5	I. 18547	63,7	0.53705	71,2	I. 8620	24,7
. 601	. 63784	118,6	. 18510	63,8	. 53776	71,	. 8596	24,6
. 602	. 63903	I18,7	. 18674	63,9	. 53847	71,0	. 8571	24,5
. 603	.6402I	118,7	. 18738	64,0	. 53918	70,9	. 8547	24,4
. 604	. 61140	II8,8	. 18802	64,1	. 53989	70,9	. 8522	24,3
0.605	0.64259	II8,9	I. 18866	64,3	0.54050	70,8	I. 8198	24,2
. 606	. 64378	118,9	. 18931	64.4	. 54131	70,7	. 8474	24, I
. 607	. 64497	II9,0	. 18995	64,5	. $5+201$	70,6	. 8450	24,0
. 608	. 64616	II9, I	. 19050	64,6	. 54272	70,5	. 8426	24,0
. 609	. 64735	II9, 1	. 19124	64,7	. 54342	70,5	. 8.402	23,9
0.610	0.6 .4854	I19,2	I. 19189	64,9	0.54413	70,4	1. 8378	23,8
. 611	. 61973	119,3	. 19254	65,0	. 54483	70,3	. 8354	23,7
.612	. 65093	119,3	. 19319	65,1	. 54553	70,2	. 833 I	23,6
.613	. 65212	II9,4	. 19384	65,2	. 54624	70,2	.8307	23,5
.6I4	.6533I	119,4	. 19449	65,3	.54694	70, 1	. 8284	23,4
0.615	0.6545 I	II9,5	I. 19515	65,5	0.54764	70,0	I. 8260	23,3
. 616	. 65570	I 19,6	. 19580	65,6	. 54834	69,9	. 8237	23,3
. 617	. 65690	I19,6	. 19646	65,7	. 54904	69,9	.82I4	23,2
. 618	. 65810	I19,7	. 19712	65,8	. 54973	69,8	.8191	23,1
.619	. 65929	119,8	. 19778	65,9	. 55043	69,7	.8I68	23,0
0.620	0.66049	II9,8	I. 19844	66,0	0.55113	69,6	r.8145	22,9
.621	. 66169	119,9	. 19910	66,2	. 55182	69,5	. 8122	22,8
. 622	. 66289	120,0	. 19976	66,3	. 55252	69,5	. 8099	22,8
. 623	. 66409	120,0	. 20042	65,4	. 5532 I	69,4	. 8076	22,7
. 624	. 66529	120, I	. 20109	66,5	. 55391	69,3	. 8054	22,6
0.625	0.65649	120,2	I. 20175	66,6	0.55460	69,2	I. 8031	22,5
. 625	. 66769	120,2	. 20242	66,8	. 55529	69,2	. 8009	22,4
. 627	. 66890	120,3	. 20309	65,9	. 55558	69, 1	. 7986	22,4
. 628	. 67010	120,4	. 20375	67,0	. 55667	69,0	. 79.54	22,3
. 629	. 67130	120,4	. 20443	67, 1	. 55736	68,9	. 7942	22,2
0.630	0.67251	120,5	1. 20510	67,3	0.55805	68,9	1. 7919	22,I
. 63 I	. 67371	120,6	. 20577	67,4	. 55874	68,8	. 7897	22,0
. 632	. 67492	120,6	. 20645	67.5	. 55943	68,7	. 7875	22,0
. 633	. 67613	120,7	. 20712	67,6	. 56011	68,6	. 7853	21,9
. 634	. 67734	120,8	. 20780	67,7	. 56080	68,6	.7832	21,8
0.635	0.67854	I20,8	1. 20848	67,9	0.56 I 49	68,5	1.7810	21,7
. 636	. 67975	120,9	. 20916	68,0	. 56217	68,4	. 7788	21,6
. 637	. 68096	121,0	. 20984	68,1	. 56285	68,3	.7767	21,6
. 638	.68217	121,I	. 21052	68,2	. 56354	68,2	. 7745	21,5
. 639	. 68338	I2I, I	. 21120	68,3	. 56122	68,2	.7724	21,4
0.640	0.68459	I2I,2	I. 21189	68,5	0.56490	68, 1	I. 7702	21,3
. 6.41	. 6858 I	I21,3	. 21257	68,6	. 56558	68,0	. 7681	21,3
. 612	. 68702	121,3	. 21336	68,7	. 56626	67,9	. 7660	21,2
. 643	. 68823	121,4	. 21395	68,8	. 56694	67,9	.7639	21,1
. 644	. 68945	I2I,5	. 21463	68,9	. 56762	67,8	.7518	21,0
	0.69066	121,5	I. 21532	69,1	0.56829		1. 7597	21,0
. 6.6	. 69188	121,6	. 21602	69,2	. 56897	67,6	. 7576	20,9
.647	. 69309	121,7	. 21671	69,3	. 56965	67,6	. 7555	20,8
. 648	. 69431	121,7	. 21740	69,4	. 57032	67,5	. 7534	20,7
.649	. 69553	121,8	.21810	69,6	. 57100	67,4	.7513	20,7
0.650	0.69675	I21,9	I. 21879	69,7	0.57167	67,3	I. 7493	20,6
u	$\boldsymbol{\operatorname { t a n }} \mathrm{g} \mathrm{d}^{\mathrm{u}}$	a $\mathrm{Fo}^{\prime}{ }^{\prime}$	$\sec \mathrm{gd} u$	© $\mathrm{Fo}^{\prime}{ }^{\prime}$	$\sin \mathrm{g}$ d u	$\omega \mathrm{Fo}^{\prime}$	csc od u	$\leadsto \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	二 $F_{0}{ }^{\prime}$
0.650	0.69675	121,9	1.21879	69,7	0.57167	67,3	1.7493	20,6
. 651	. 69797	121,9	. 21949	69,8	. 57234	67,2	. 7.772	20,5
. 652	. 69919	122,0	. 22019	69,9	. 57301	67,2	. 7452	20,5
. 653	. 70041	122, 1	. 22089	70,0	. 57369	67,	. 7431	20,4
.654	. 70163	122,2	. 22159	70,2	. 57436	67,0	. 7411	20,3
0.655	0.70285	122,2	1.22229	70,3	0.57503	66,9	1.7391	20,2
. 656	. 70407	122,3	. 22300	70,4	. 57570	66,9	. 7370	20,2
. 657	. 70530	122,4	. 22370	70,5	. 57536	66,8	. 7350	20, 1
. 658	. 70652	122,4	. 22414	70,7	. 57703	66,7	. 7330	20,0
. 659	. 70775	122,5	. 22511	70,8	. 57770	66,6	. 7310	20,0
0.660	0.70897	122,6	1. 22582	70,9	0.57836	66,5	1.7290	19,9
. 661	. 71020	122,7	. 22653	71,0	. 57903	66,5	. 7270	19,8
. 662	. 71142	122,7	. 22724	71,1	. 57969	66,4	. 7251	19,8
. 653	. 71265	122,8	. 22795	71,3	. 58036	66,3	. 7231	19,7
. 664	. 71388	122,9	. 22867	71,4	.58102	66,2	.7211	19,6
0.665	0.71511	122,9	1.22938	71,5	0.58168	66,2	1.7192	19,6
. 666	. 71634	123,0	. 23010	71,6	. 58234	66, I	. 7172	19,5
. 667	. 71757	123, 1	. 23081	71,8	. 58300	66,0	. 7153	19,4
. 668	. 71880	123,2	. 23 F53	71,9	. 58365	65,9	. 7133	19,4
. 669	. 72003	123,2	. 23225	72,0	. 58432	65,9	.7114	19,3
0.670	0.72126	123,3	1.23297	72, I	0.58498	65,8	1.7095	19,2
. 671	. 72250	123,4	. 23369	72,2	. 58564	65,7	. 7075	19,2
. 672	. 72373	123,4	. 23412	72,4	. 58629	65,6	. 7056	19,1
. 673	. 72497	123,5	. 23514	72,5	. 58895	65,5	. 7037	19,0
. 674	. 72620	123,6	. 23587.	72,6	. 58760	65,5	.7018	190
0.675	0.72744	123,7	1. 23659	72,7	0.58826	65,4	1. 6999	18,9
. 676	. 72858	123,7	. 23732	72,9	- 58891	65,3	. 6980	18,8
. 677	. 72991	123,8	. 23805	73,0	. 58957	65,2	. 6962	18,8
. 678	. 73115	123,9	. 23878	73,1	. 59022	65,2	. 6943	18,7
. 679	. 73239	124,0	. 23951	73,2	. 59087	65, 1	. 6924	18,6
0.680	0.73363	124,0	1.24025	73,4	0.59152	65,0	1.6906	18,6
. 681	. 73487	124,1	. 2.4098	73,5	. 59217	64,9	. 6887	18,5
. 682	. 73611	124,2	. 24172	73,6	. 59282	64,9	. 6859	18,5
. 683	. 73735	124,2	. 24245	73,7	. 59347	64,8	. 6850	18,4
. 684	. 73860	124,3	. 24319	73,9	. 594 II	64,7	. 6832	18,3
0.685	0.73984	124.4	I. 24393	74,0	0.59476	64,6	1.6813	18,3
. 686	. 74109	124,5	. 24467	74,1	. 59541	64,5	. 6795	18,2
. 687	. 74233	12.4,5	. 24541	74,2	. 59605	64.5	. 6777	18,1
. 688	. 74358	124,6	. 24616	74,4	. 59670	64,4	. 6759	18,1
. 689	. 74482	124,7	. 24690	74,5	. 59734	64,3	. 6741	18,0
0.690	0.74607	124,8	1.24765	74,6	0.59798	64,2	1.6723	18,0
. 69 I	. 74732	124,8	. 24839	74,7	. 59852	64,2	. 6705	17,9
. 692	. 74857	124,9	. 24914	74,9	- 59927	64,1	. 6687	17,8
. 693	. 74982	125,0	. 24989	75,0	. 5999 I	64,0	. 6669	17,8
. 694	. 75107	125, I	. 25064	75, 1	. 60055	63.9	. 6652	17,7
	0.75232	125,1	1.25139	75,2	0.60118	63.9	1.6634	17.7
. 696	. 75357	125,2	. 25214	75,4	. 60182	63,8	. 6616	17,6
. 697	. 75482	125,3	. 25290	75,5	-60246	63,7	. 6599	17.6
. 698	. 75607	125,4	. 25365	75,6	.60310	63,6	.6581	17,5
. 699	. 75733	125,4	. 25441	75,7	. 60373	63.6	. 6564	17,4
0.700	0.75858	125,5	1.25517	75:9	0.60437	63.5	1. 6546	17,4
4	tangeda	* Fa^{\prime}	sec od u	© F9'	$\sin 9 \mathrm{~d} u$	$\pm \mathrm{Fo}^{\prime \prime}$	cse gd u	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.700	0.75858	125,5	1.25517	75,9	0.60437	63,5	I. 6546	17,4
. 701	.75984	125,6	. 25593	75,0	. 60500	63,4	. 6529	17.3
. 702	.75́l 10	125,7	. 25669	76,	. 60.564	63,3	. 6512	17,3
. 703	.76235	125,7	. 25745	76,2	. 60627	63,2	. 6494	17,2
. 704	. 76351	125,8	. 2582 I	76,4	.60690	63,2	. 6.477	I7, I
0.705	0.76487	125,9	1.258s8	76,5	0.60753	63,1	I. 6.460	17, 1
. 705	. 750513	126,0	. 25954	76,6	. 60816	63,0	. 6443	17,0
. 707	. 75739	126, 1	. 2505 I	76,7	. 6089	62,9	. 6126	17,0
.708	. 7585	125, 1	. 25128	75,9	. 60942	62,9	. 6.409	16,9
. 709	. 76991	126,2	. 26205	77,0	. 61005	62,8	. 6392	16,9
0.710	0.77117	125,3	1. 25282	77, 1	0.61058	62,7	1.6375	I6,8
.7II	. 7724	125,4	. 25359	77,2	. 61130	62,6	. 6358	I6, 8
. 712	. 77370	126,4	. 25.436	77,4	. 61193	62,6	. 6342	16,7
.7I3	. 77197	I26,5	. 26514	77,5	. 61255	62,5	. 6325	16,7
.714	.77523	126,6	. 25591	77,6	.6I3I8	62,4	. 6308	16,6
0.715	0.77750	126,7	1. 26669	77,7	0.61380	62,3	I. 6292	I6,5
. 716	. 77876	126,7	. 25747	77,9	. 61443	62,2	. 6275	I6,5
.717	.78003	126,8	. 25825	78,0	. 61505	62,2	. 6259	16,4
. 718	. 78130	126,9	. 25903	78,	. 61567	62,1	. 6272	16,4
. 719	. 78257	127,0	. 26,481	78,3	. 61629	62,0	. 6226	16,3
0.720	0.78384	127, 1	1. 27059	78,4	0.6 r 69 I	6r,9	1.6210	16,3
.721	. 73511	127, 1	. 27138	78,5	. 61753	6r,9	. 6194	16,2
. 722	.78338	127,2	. 27216	78,5	.61815	61,8	. 6177	I6,2
.723	. 78756	I27,3	. 27295	78,8	. 61876	6r,7	.6I6I	I6, I
. 724	. 78893	127,4	. 27374	78,9	. 61938	6r,6	.6145	16,I
0.725	0.79020	127,5	I. 27453	79,0	0.62000	6r, 6	1. 6129	IS,0
. 725	. 79148	127,5	. 27532	79, I	. 62061	61,5	.6Ir3	16,0
. 727	. 79275	127,6	. 27511	79,3	-62123	6r,4	. 6097	15,9
. 728	. 79403	127,7	.276co	79,4	. 62184	6I,3	.608I	15,9
. 729	. 7953 I	127,8	. 27770	79,5	. 62245	6I,3	.6055	I5,8
0.730	0.79659	127,8	1.27849	79,7	0.62307	6r,2	I. 6050	I 5,8
. 73 I	. 79785	127,9	. 27929	79,8	. 62368	6I, 1	. 6034	I5,7
. 732	. 79914	128,0	. 28009	79,9	. 62429	$6 \mathrm{I}, 0$. 6018	15,7
. 733	. 80042	128, 1	. 28089	80,0	. 62490	61,0	. 6003	15,6
. 734	.80171	128,2	.28169	80,2	. 62551	60,9	. 5987	15,6
0.735	0.80299	128,2	1. 28249	80,3	0.62511	60,8	I. 5972	15,5
. 736	. 80.427	128,3	. 28330	80,4	. 62672	60,7	. 5956	I 5,5
. 737	. 80555	128,4	. 28410	80,6	. 62733	60,6	. 5941	15,4
. 738	. 80684	128.5	. 288191	80,7	. 62794	60,6	. 5925	15,4
. 739	. 80812	128,6	. 28572	80,8	. 62854	60,5	. 5910	I5,3
0.740	0.80941	128,7	1. 28652	80,9	0.62915	60,4	I. 5895	15,3
. $7+1$. 81070	128,7	. 28733	8I, I	. 62975	60,3	. 5879	15,2
. $7+4$. 81199	I28,8	. 28815	$8 \mathrm{I}, 2$. 63035	60,3	. 5854	15,2
. 743	. 81327	128,9	. 28896	$8 \mathrm{I}, 3$. 63095	60,2	- 58.49	15, I
.744	. 81456	129,0	. 28977	8I,5	. 63156	60, I	. 5834	15, I
0.745	0.81585	129, 1	I. 29059	81,6	0.63216	60,0	I. 5819	15,0
. 746	. 8 I 7 I 4	129, 1	. 29140	$8 \mathrm{I}, 7$. 63275	60,0	. 5804	15,0
	. 81844	129,2	. 29222	$8 \mathrm{I}, 8$. 63335	59,9	. 5789	14,9
.748 .749	. 81973	129,3	. 29304	82,0	. 63395	59,8	. 5774	I4,9
.749	. 82102	129,4	. 29385	82, I	-63455	59,7	. 5759	14,8
0.750	0.82232	129,5	1. 29.468	82.2	0.63515	59,7	1.5744	14,8
u	tan $\mathrm{gd}^{\text {u }}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	sec gd u	$\omega \mathrm{Fo}^{\prime}$	$\sin 9 \mathrm{~d} u$	$\omega \mathrm{Fo}^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	coth u	$\omega F_{0}{ }^{\prime}$
0.750	0.82232	129,5	1.29 .458	82,2	0.63515	59,7	1.574	14,8
.751	. 82361	129,6	. 29551	82,4	. 63575	59,6	. 5730	14,7
. 752	. 82491	129,6	. 29533	82,5	. 63534	59,5	. 5715	14,7
. 753	. 82620	129,7	. 29716	82,6	. 63594	59,4	. 5700	If,6
. 754	. 82750	129,8	. 29798	82,8	. 63753	59,4	. 5586	14,6
0.755	0.82880	129,9	1.2988I	82,9	0.63812	59,3	1.5571	14,6
.756	. 83010	130,0	. 26,964	83.0	. 63871	59,2	. 5556	14,5
. 757	. 83140	1 30,0	. 30047	83,1	. 63931	59, I	. 5642	I 4,5
. 758	. 83270	I 30, I	. 30130	83,3	. 63950	59,1	. 5628	If,
. 759	. 83400	130,2	.302It	83,4	. 64049	59,0	. 2613	If, 4
0.760	0.83530	130,3	1.30297	83,5	0.64108	58,9	1.5599	14,3
.751	. 83651	1 30,4	. 3038 I	83.7	. 64167	58,8	. 5584	14.3
. 762	. 83791	I 30,5	. 30464	83,8	. 64225	58,8	. 5570	If, 2
.763	. 83922	1 30,5	. 30548	83,9	. 6.428	58,7	. 5555	It, 2
.754	. 84052	130,6	. 30532	84,1	. $643+3$	58,6	. 5542	I-4,2
0.765	0.84183	1 30,7	1.30716	$8{ }_{4}, 2$	0.6410 r	58,5	1.5528	I. 4,1
. 766	.843I4	130,8	. 30801	84,3	. 64160	58,4	. 5514	I4, 1
. 757	. $8+445$	130,9	. 30885	84.4	. 64518	58,4	. 5500	If, 0
. 768	. 84576	131,0	. 30970	84,6	. $6+576$	58,3	. 5.486	I-4,0
.769	. 84707	I3I, I	. 31054	84,7	. 64635	58,2	. 5472	13,9
0.770	0.84838	131, I	1.31139	84,8	0.64693	58,1	1.5458	13,9
. 771	. 84969	131,2	. 31224	85,0	. 64751	58,1	. 5144	I3,9
. 772	. 85100	131,3	. 31309	85,1	. 64809	58,0	. 5430	13,8
. 773	. 85231	I31,4	. 31394	85,2	. 64857	57,9	. 5416	13,8
. 774	. 85363	131,5	-31+79	85,4	. 64925	57,8	-5402	13.7
0.775	0.85494	I31,6	1.31565	85,5	0.64983	57,8	1. 5389	13,7
. 776	. 85525	131,7	. 31650	85,6	. 65040	57,7	. 5375	13,6
. 777	. 85758	131,7	. 31736	85,8	. 65098	57,6	. 5361	13,6
. 778	. 85883	I3I,8	. 31822	85,9	. 65156	57,5	. 53448	13.6
. 779	. 8602 I	131,9	. 31908	86,0	. 65213	57,5	-5334	13,5
0.780	0.85153	132,0	1.31994	85,2	0.65271	57,4	1.532I	13,5
. 781	. 85285	I32,1	. 32080	86,3	. 65328	57,3	. 5307	13.4
. 782	. 85417	132,2	. 32166	85,4	. 65385	57,2	. 5294	13.4
. 783	. 85550	I32,3	. 32253	86,5	. 65443	57,2	.5281	13.3
.784	. 85682	132,3	-32340	85,7	. 65500	57, 1	. 5267	13,3
0.785	0.85814	132,4	1. 32426	85,8	0.65557	57,0	1.5254	13.3
. 785	. 85947	132,5	. 32513	86,9	. 65514	56,9	. 5241	13,2
.787	. 87079	132,6	- 32500	87.1	. 65671	55,9	. 5228	13,2
. 788	. 87212	132,7	. 32687	87,2	. 65727	56,8	. 5214	13,1
. 789	. 87345	132,8	-32775	87.3	. 6578	56,7	. 5201	13,1
0.790	0.87478	132,9	1.32862	87,5	0.6584 I	56,6	1.5188	13,1
. 791	. 87610	132,9	. 32950	87,6	. 65838	56,6	. 5175	13,0
. 792	. 87743	133,0	. 33037	87,7	. 65954	56,5	. 5162	13,0
. 793	. 87877	133, I	-33125	87,9	. 66011	56,4	-5149	12,9
. 794	. 88010	133,2	. 33213	88,0	. 66057	56,4	. 5136	12,9
0.795	0.88143	133,3	1.33301	88, 1	0.66123	56,3	1.5123	12,9
. 796	. 88275	13.3 .4	. 33389	88,3	. 66179	56,2	. 5110	12,8
. 797	. 88410	133,5	- 33478	88,4	. 66236	56,1	. 5098	12,8
. 798	. 88543	133,6 133	- 33566	88,5	. 66292	56,	. 5085	12,8
. 799	. 88577	133,7	. 33655	88,7	. 66348	56,0	. 5072	12,7
0.800	0.888 II	133,7	1.33743	88,8	0.66404	55,9	I. 5059	12,7
\pm	$\tan 9 \mathrm{da}$	$\sim \mathrm{Fo}^{\prime}$	\sec ad a	$\omega \mathrm{Fo}^{\prime}$	\sin ged u	$\omega \mathrm{FO}^{\prime}$	csc gd u	$\sim \mathrm{Fo}^{\text {t }}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth 4	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.800	0.88811	133,7	I. 33743	88,8	0.66404	55,9	I. 5059	12,7
. 801	. 88944	133,8	. 33832	88,9	. 65460	55,8	. 50.47	12,6
. 802	. 89078	I33,9	. 33921	89,1	. 66515	55,8	. 5034	12,6
. 803	. 89212	I 34, 0	. 34011	89,2	. 66571	55,7	. 5022	12,6
. 804	. 89346	I34, I	. 34100	89,3	. 66627	55,6	. 5009	12,5
0.805	0.89480	134,2	I. 34189	89,5	0.66682	55,5	I. 4996	12,5
. 805	. 89615	I34,3	. 34279	89,6	. 66738	55,5	. 4984	12,5
. 807	. 89749	I34,4	. 34368	89,7	. 56793	55,4	. 4972	12,4
. 808	.89883	I 34.5	- 34458	89,9	. 66849	55,3	. 4959	12,4
. 809	.90018	I34,5	- 34548	90,0	. 66904	55,2	. 4947	12,3
0.810	0.90152	134,6	I. 34638	90,2	0.66959	55,2	I. 4935	12,3
.8ir	. 90287	134,7	. 34729	90,3	.67014	55, I	. 4922	12,3
.8I2	. 90.122	134,8	- 34819	90,4	. 67059	55,0	. 4910	12,2
.8I3	. 90557	134,9	. 34909	90,6	. 67124	54,9	. 4898	12,2
.8I4	. 90692	135,0	. 35000	90,7	. 67179	54,9	. 4886	12,2
0.815	0.90827	I 35,1	r. 3509 r	90,8	0.67234	54,8	I. 4873	12,I
.816	. 90962	I35,2	. 35182	91,0	. 67289	54,7	. 4861	12,I
.817	. 91097	135,3	- 35273	91, 1	. $673+3$	54,6	. 4849	I2,0
. 818	. 91232	135,4	. 35364	91,2	. 67398	54,6	. 4837	12,0
.8r9	. 91368	I 35,5	- 35455	91,4	.67453	54,5	. 4825	12,0
0.820	0.91503	135,5	I. 35547	91,5	0.67507	54,4	I.4813	II,9
.821	. 91639	135,6	. 35638	91,6	.6756I	54,4	. 480 I	II,9
. 822	. 91775	I 35,7	. 35730	91,8	. 67616	54,3	. 4789	II,9
. 823	. 91910	I 35,8	- 35822	91,9	. 67670	54,2	. 4778	II,8
. 82.4	. 920.46	I35,9	. 35914	92,0	. 67724	54, 1	. 4766	II,8
0.825	0.92182	136,0	I. 36006	92,2	0.67778	54, 1	I. 4754	II,8
. 826	. 92318	136,1	. 36098	92,3	. 67832	54,0	. 4742	II,7
. 827	. 92454	I 36,2	. 36190	92,5	. 67885	53,9	.473I	11,7
. 828	. 92591	136,3	. 36283	92,6	. 67940	53,8	. 4719	11,7
. 829	. 92727	I 36,4	- 36376	92,7	. 67994	53,8	. 4707	11,6
0.830	0.92863	136,5	I. 36468	92,9	0.68048	53,7	I. 4696	11,6
. 831	. 93000	I 36,6	. 3656 r	93,0	.68101	53,6	. 4684	11,6
. 832	. 93137	136,7	- 36654	93, I	.68155	53,5	. 4672	II,5
. 833	. 93273	136,7	-. 36748	93,3	. 68208	53,5	.466I	II,5
. 834	. 93410	136,8	-36841	93,4	. 68262	53,4	. 4649	II,5
0.835	0.93547	136,9 ${ }^{\circ}$	I. 36934	93,5	0.68315	53,3	I. 4638	II,4
. 836	. 93684	137,0	- 37028	93,7	. 68368	53,3	. 4627	II, 4
. 837	.93821	137, 1	. 37122	93,8	. 68.422	53,2	. 4615	II,4
. 838	. 93958	I37,2	- 37216	94,0	. 68.475	53, I	. 460.4	Ir,3
. 839	-94095	137,3	. 37310	94, 1	. 68528	53,0	. 4593	II,3
0.840	0.94233	1 37,4	I. 37404	94,2	0.6858 I	53,0	I. 458 r	II,3
. 841	. 94370	I 37,5	. 37498	94.4	. 68534	52,9	. 4570	II,2
. 842	. 94508	137,6	- 37593	94,5	. 68587	52,8	. 4559	II,2
. 843	. 94645	137,7	- 37687	94,6	. 68739	52,7	. 4548	II,2
. 844	-94783	137,8	- 37782	94,8	. 68792	52,7	. 4537	II, I
0.845	0.94921	137,9	1. 37877	94,9	0.68845	52,6	I. 4525	II,I
. 846	. 95059	138,0	- 37972	95, 1	. 68897	52,5	. 4514	II, I
. 847	-95197	138, 1	- 38067	95,2	. 68950	52,5	. 4503	II,O
. 848	-95335	138,2	-38162	95,3	. 69002	52,4	. 4492	II,O
. 949	-95473	138,3	-38258	95,5	. 69055	52,3	.448I	II, 0
0.850	0.956 r 2	138,4	1. 38353	95,6	0.69107	52,2	I. 4470	10.9
U	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	© $\mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\sin \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{\mathrm{G}}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.850	0.95612	138,4	1.38353	95,6	0.69107	52,2	1.470	10,9
. 851	. 95750	I38,4	-38+49	95,7	. 69159	52,2	. 4459	10,9
. 852	. 95888	I38,5	. 38545	95,9	. 6921 I	52,1	- 4449	10,9
. 853	. 96027	I 38,6	. 386.41	96,0	. 69263	52,0	.4438	10,8
. 854	.96166	138,7	. 38737	95,2	. 69315	52,0	. 4127	10,8
0.855	0.96305	I 38,8	1. 38833	96,3	0.69367	51,9	1.4416	10,8
. 856	. 964	138,9	. 38929	96,4	. 69.19	51,8	. 4.405	10,8
. 857	. 96582	I 39,0	. 39026	96,6	. 69471	51,7	. 4395	10,7
. 858	. 96721	139, 1	. 39122	96,7	. 69523	51,7	-4384	10,7
. 859	. 9686 I	I 39,2	. 39219	96,9	. 69574	51,6	.4373	10,7
0.860	0.97000	139,3	1. 39316	97,0	0.69626	51,5	I. 4362	10,6
. 851	. 97139	1 39,4	-39+13	97, 1	. 69677	51,5	. 4352	10,6
. 852	-97279	139,5	. 39510	97,3	. 69729	51,4	. 4341	10,6
. 863	-97418	139,6	. 39608	97,4	. 69780	51,3	. 4331	10,5
. 854	.97558	139,7	. 39705	97,6	. 69831	51,2	. 4320	10,5
0.855	0.97698	I39,8	I. 39803	97,7	0.69882	51,2	1.4310	10,5
. 866	. 97838	I39,9	. 39901	97,8	. 69934	51,1	. 4299	10,4
. 857	.97978	I.40,	. 39999	98,0	. 69985	51,0	-4289	10,4
. 868	.98r18	I.10, 1	. 40097	98,I	. 70036	51,0	. 4278	10,4
. 859	. 98258	140,2	. +0195	98,3	. 70087	50,9	. 4268	10,4
0.870	0.98398	140,3	I. 40293	98,4	0.70137	50,8	1. 4258	10,3
. 871	. 98538	I.40,4	. 40.392	98,5	. 70188	50,7	. 4247	10,3
. 872	-98679	I.10,5	- 40490	98,7	-70239	50,7	. 4237	10,3
. 873	. 98819	1.40,6	. 40589	98,8	. 70290	50,6	. 4227	10,2
. 874	. 98960	I40,7	. 40588	99,0	. 70340	50,5	. 4217	10,2
0.875	0.99101	I_40,8	1.40787	99,I	0.70391	50,5	I. 4206	10,2
. 876	. 9924 I	I40,9	. 40886	99,2	. $70+4 \mathrm{I}$	50,4	. 4196	10,2
. 877	. 99382	141,0	. 40985	99,4	. 70491	50,3	. 4186	ID, 1
.878	. 99523	14I, I	.41085	99,5	. 70542	50,2	. 4176	ro, 1
. 879	. 99665	I41,2	. 41184	99,7	. 70592	50,2	.4166	10, 1
0.880	0.99806	141,3	1.41284	99,8	0.70642	50,1	1. 4156	10,0
.881	. 99947	141,4	.41384	99,9	. 70092	50,0	. 4146	10,0
. 882	1.00089	141,5	.41484	100, 1	. 70742	50,0	-4136	10,0
. 883	. 00230	141,6	.41584	100,2	. 70792	49,9	. 4126	10,0
. 88.	. 00372	141,7	.41684	100,4	.70842	49,8	.4116	9.9
0.885	1.00514	141,8	1.41785	100,5	0.70892	49,7	I. 4106	9,9
. 885	. 00055	141,9	. 417886	100,7	. 70941	49,7	. 4096	9.9
. 887	. 00797	142,0	. 41986	100,8	. 70991	49,6	. 4086	9,8
. 888	. 00939	142, 1	. 42087	100,9	. 71040	49.5	- 4076	9,8
. 889	. 01081	142,2	. 42188	IOI, I	.71090	49,5	.4067	98
0.890	1.01224	142,3	1.42289	101,2	-0.71139	49,4	1. 4057	9,8
. 891	. 01365	142,4	. 42391	101, 4	. 71189	49,3	. 4047	9.7
. 892	. 01508	142,5	. 42492	101,5	. 71238	49,3	. 4037	9,7
. 893	.01651	142,6	. 42594	101,7	.71287	49,2	. 4028	9.7
. 894	. 01794	142,7	. 42695	101,8	.71336	49,1	. 4018	9.7
0.895	1.01936	142,8	I. 42797	101,9	0.71385	49,0	1.4008	9.6
. 896	. 02079	142,9	. 42899	102, 1	. 71434	49,0	. 3999	9,6
. 897	. 02222	143,0	. 43001	102,2	. 71483	48,9	- 3989	9,6
. 898	. 02365	143, 1	. 43104	102,4	.71532	48,8	- 3980	9.5
. 899	. 02508	143,2	. 43206	102,5	.71581	48,8	- 3970	9.5
0.900	1.02652	143,3	1.43309	102,7	0.71630	48,7	I. 3961	0.5
u	$\tan 9 \mathrm{du}$	* Fo'	sec od u	$\pm \mathrm{Fa}^{\prime}$	$\sin \mathrm{g} \mathrm{d} x$	- F90	cac of ut	- Fg^{\prime}

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	tanh u	$\omega \mathbf{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.900	I. 02552	I 43	1. 43309	103	0.71630	48,7	I. 3961	9,5
. 901	. 02795	I-43	-43411	103	.71678	48,6	. 3951	9,5
. 902	. 02938	$1+4$. 43514	103	-71727	48,6	. $39+2$	9,4
. 903	. 03082	14	- 43517	103	. 71776	48,5	- 3932	9,4
. 904	. 03226	14	. 43720	103	-71824	48,4	-3923	9,4
0.905	1.03370	T.44	1. 43824	103	0.71872	48,3	I. 39 T 4	9,4
. 906	. 03513	I-4	- 43927	104	. 71921	48,3	. 3904	9,3
. 907	. 03657	I 14	- 4103 I	104	. 71969	48,2	. 3895	9,3
. 908	.03801	144	- 41134	10.4	-72017	48,1	. 3885	9,3
. 909	. 03946	144	. 41238	104	. 72055	48, 1	.3876	9,3
0.910	1.04090	144	1. 44342	104	0.72113	48,0	1. 3857	9,2
. 911	. 01234	14	- $4+4+6$	104	. 72161	47,9	.3858	9,2
.912	. 04379	$1+5$	-4455I	104	-72209	47,9	- 3849	9,2
. 913	-0+523	145	-. 4.4555	105	. 72257	47,8	. 3840	9,2
.914	. 0.4658	145	. 47750	105	-72305	47,7	. 3830	9,I
0.915	I.04813	1.45	1.44855	105	0.72352	47,7	I. 3821	9,I
.916	. 0.4958	145	. 41869	105	. $72+00$	47,6	. 3812	9,I
. 917	.05103	145	- 45075	105	- 72448	47,5	. 3803	9,I
.918	. 05218	145	. 45180	105	-72495	47,4	- 3794	9,0
. 919	. 05333	145	. 45285	105	. 72542	47,4	. 3785	9,0
0.920	1.05539	145	1. 45390	106	0.72590	47,3	1.3776	9,0
.921	. 05684	145	. 45495	106	. 72537	47,2	. 37.57	9,0
. 922	. 05830	146	. 45602	106	. 72584	47,2	. 3758	8,9
. 923	. 05975	146	- 45708	106	. 72731	47, 1	. 3749	8,9
. 924	.06121	146	-45814	106	-72778	47,0	- 3740	8,9
0.925	1.06267	$\mathrm{r}_{4} 6$	1. 45920	106	0.72825	47,0	I. 3731	8,9
. 926	. 06113	I 46	. 46025	105	. 72872	46,9	. 3723	8,8
. 927	. 06559	I-46	. 46133	107	. 72919	46,8	. 3714	8,8
. 928	. 05705	146	. 46239	107	-72956	46,8	. 3705	8,8
. 929	. 0585 I	146	- 46346	107	-73013	46,7	.3596	8,8
0.930	1.059c8	146	1. 46453	107	0.73059	46,6	1. 3687	8,7
. 931	. 07144	147	. 46560	107	.73106	46,6	. 3679	8,7
. 932	. 07291	147	. 46667	107	.73153	46,5	. 3670	8,7
. 933	. 07438	1.47	. 46775	107	. 73199	46,4	. 366 I	8,7
. 934	. 07587	147	. 46882	108	-73245	46,4	. 3653	8,6
0.935	1.0773I	147	1. 46590	109	0.73292	46,3	r. 3644	8,6
. 936	.07878	147	. 47098	108	. 73338	46,2	. 3636	8,6
. 937	. 08026	147	. 47206	108	-73384	46, I	. 3627	8,6
. 938	.08173	147	-47314	108	- 73430	46, 1	-3618	8,5
. 939	. 08320	147	- 47422	108	-73476	46,0	. 3610	8,5
0.940	I. 08468	148	1. 47530	108	0.73522	45,9	I. 3601	8,5
.941	. 08615	1.48	. 47539	109	. 73568	45,9	. 3593	8,5
. 942	.08763	148	. 47748	109	-73614	45,8	. 3584	8,5
. 943	.0891 1	$\mathrm{r}_{4} 8$. 47857	109	. 73650	45,7	. 3575	8,4
. 944	. 09059	148	. 47956	109	. 73705	45,7	. 3568	8,4
0.945	1.09207	$\mathrm{I}_{4} 8$	I. 48075	109	0.73751	45,6	I. 3559	8,4
.946	. 09355	1.48	. 48184	109	. 73797	45,5	-355I	8,4
. 947	.09503	I. 8	-48203	110	. 73812	45.5	-3542	8,3
. 948	. 0965	I. 48	- +8803	IIO	.73888	45,4	-3534	8,3
. 949	.09800	149	.48513	110	. 73933	45,3	-3526	8,3
0.950	1.09948	I49	1. 48623	IIO	0.73978	45,3	1.3517	8,3
u	$\tan \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\sec od u	$\omega \mathrm{Fo}^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	csc gd u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0^{\prime}}$	$\cosh \mathrm{u}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{u^{\prime}}$
0.950	1.09948	I49	1. 48623	110	0.73978	45,3	1.3517	8,3
. 951	. 10097	I49	. +8733	IIO	. 74024	+5,2	. 3509	8,2
. 952	. 10246	I49	. 48343	110	. 74059	45, 1	. 3501	8,2
. 953	-10395	149	. 48953	IIO	. 74114	45.1	-3493	8,2
. 954	. 10544	149	. 45064	III	. 74159	45,0	. 3485	8,2
0.955	I. 10593	149	1.49174	III	0.74204	44,9	1.3476	8,2
. 956	. 10842	I49	- 49285	III	. 74249	4,9	- 3768	8,1
. 957	- 10g91	149	. 49396	III	. 74294	4,4,8	. 3460	8,1
. 958	. III4 ${ }^{\text {I }}$	150	. 49507	III	. 74338	4, 7	. 3452	8,1
. 959	. II29I	150	. 49618	III	. 74383	44,7	- 3414	8,I
0.950	I. IIf40	150	I. 49729	III	0.74128	44,6	1. 3436	8,1
.96I	. 11590	150	. $498+1$	112	. $7+472$	44,5	. $3+28$	8,0
.962	. 11710	150	. 49953	II2	. 74517	44,5	. 3120	8,0
. 953	. 11890	150	. 50054	112	. $7+56 \mathrm{r}$	44.4	. 3412	8,0
. 964	. 12040	150	. 50176	112	. 74606	443	-3-404	8,0
0.965	I. 12190	150	1. 50289	II2	0.76650	44,3	1. 3396	7,9
. 956	. 12341	150	. 50401	112	. $7+694$	44,2	. 3388	7,9
. 967	. $12+191$	151	. 50513	112	. 74738	4, r	. 3380	7,9
.958	. 12642	151	. 50526	II3	. 74782	44, 1	. 3372	7.9
. 959	. 12792	151	. 50739	II3	.74826	44,0	. 3354	7,9
0.970	I. 12943	151	I. 5085 I	II3	0.74870	43,9	1. 3356	7,8
. 971	. 13094	151	. 50964	II3	. 74914	43,9	. 3349	7,8
. 972	- 13245	151	. 51078	113	. 74958	43,8	-3341	7,8
. 973	. 13396	151	. 51191	113	. 75002	43,7	- 3333	7,8
. 974	. 13547	I5I	. 51304	II4	. 75046	43,7	. 3325	7,8
0.975	1. 13699	151	1.51.418	II4	0.75089	43,6	1.3317	7,7
. 976	. 13850	152	. 51532	II4	. 75133	43,6	. 3310	7,7
. 977	. $1+4002$	152	. 51646	II4	.75175	43,5	. 3302	7,7
. 978	. 14154	152	. 51760	II4	. 75220	43.4	-3294	7,7
. 979	. 14305	152	. 51874	II4	. 75263	43.4	. 3287	7,7
0.980	I. I4457	152	I. 51988	144	0.75307	43,3	I. 3279	7,6
.68I	. 14609	152	. 52103	II5	-75350	43,2	. 3271	7,6
. 982	. 14761	152	. 52218	II5	. 75393	43,2	. 3264	7,6
.983	. 14914	152	. 52332	II5	. 75436	43, I	. 3256	7,6
. 984	. 15065	152	- 52447	115	-75479	43,0	-3249	7,6
0.985	I. 15219	153	1. 52563	115	0.75522	43,0	I. 3241	7,5
. 585	. I 537 I	153	. 52578	115	. 75565	42,9	. 3234	7,5
. 987	. 15524	I53	- 52793	116	. 75608	42,8	. 3226	7,5
. 989	. 15577	153	. 52909	I 16	. 75651	42,8	. 3219	7,5
. 989	. 15830	153	. 53025	II6	. 75694	42,7	-3211	7,5
0.990	1. 15983	153	1.53141	116	0.75736	42,6	I. 3204	7,4
. 991	. 16136	153	. 53257	116	. 75779	42,6	. 3196	7,4
. 992	. 16289	153	. 53373	116	. 75821	42,5	. 3183	7.4
. 993	. 16443	153	-53489	116	. 75854	42,4	. 3182	7,4
. 994	. 16596	154	. 53606	I17	.75906	42,4	. 3174	7,4
	1. 16750	154	1. 53722	117	0.75949	42.3	1.3167	7.3
. 996	. 16904	154	. 53839	117	. 75991	42,3	. 3159	7,3
.997	. 17058	154	- 53956	117	-76033	42,2	-3152	7,3
. 998	. 17212	154	- 54073	II7	. 76075	42,1	. 3145	7,3
. 999	. 17366	154	-54191	117	. 76117	42, 1	. 3138	7,3
1.000	I. 17520	154	1.54308	118	0.76159	42,0	I. 3130	7,2
4	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathrm{u}$	$\infty \mathrm{FO}_{0}{ }^{\prime}$	\sec gd u	$\omega \mathrm{Fa}^{\prime}$	$\sin 0 d u$	- $\mathrm{Fo}^{\prime}{ }^{\prime}$	\csc od u	$\pm \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	sinh u	$\omega \mathrm{Fo}^{\prime}$	cosh u	$\omega \mathrm{Fo}^{\prime}$	tanh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.000	1.17520	154	I. 54308	118	0.76159	42,0	1. 3130	7,2
. 001	. 17074	154	. $54+26$	118	. 76301	41,9	-3123	7,2
. 002	.17829	155	. 54543	118	. 76243	41,9	-3116	7,2
. 003	. 1798	155	. 54565	118	. 76285	41,8	-3109	7,2
. 004	.18133	155	. 57779	118	. 76327	4I,7	. 3102	7,2
1.005	1.18293	155	1. $5+898$	II8	0.76359	41,7	1. 3094	7,1
. 006	. 18448	155	. 55016	118	. 76410	41,6	. 3087	7,1
. 007	. 18503	155	. 55134	119	. 76452	41,6	-3080	7, 1
. 008	. 18758	155	. 55253	119	. 76493	41,5	-3073	7, I
. 009	. 18914	155	. 55372	119	. 76535	41,4	-3065	7, I
1.010	1. 19069	155	I. 5549 I	119	0.76576	41,4	I. 3059	7,1
. 011	. 19225	156	. 55610	119	. 76518	41,3	. 3052	7,0
. 012	. 19380	156	. 55729	119	. 76559	41,2	-30+5	7,0
. 013	. 19536	156	. 55849	120	. 76700	41,2	-3038	7,0
. 014	. 19692	156	. 55969	120	. 76741	41, 1	-3031	7,0
1.015	I. 19848	156	I. 56088	120	0.76782	41,0	I. 3024	7,0
. 016	. 20004	156	. 55208	120	. 76823	41,0	-3017	6,9
. 017	. 20150	156	. 56328	120	. 76854	40,9	-3010	6,9
. 018	. 20317	156	. 56449	120	. 76905	40,9	-3003	6,9
. 019	. 20473	157	. 56569	120	. 70046	40,8	. 2996	6,9
' 1.020	1.20630	157	1. 56689	121	0.76987	40,7	1. 2989	6,9
. 021	. 20787	157	. 56810	12 I	. 77027	40,7	. 2982	6,9
. 022	. 20944	157	. 56931	121	. 77058	40,6	. 2976	6,8
. 023	.21101	157	. 57052	121	. 77109	40,5	. 2969	6,8
. 024	. 21258	157	. 57173	121	. 77149	40,5	. 2962	6,8
1. 025	I.21415	157	I. 57295	121	0.77190	40,4	I. 2955	6,8
. 026	. 215782	157	. $57+16$	122	. 77230	40,4	. 2948	6,8
. 027	. 21730	158	. 57538	122	. 77270	40,3	. 2942	6,7
. 028	. 21887	158	. 57660	122.	. 77310	40,2	. 2935	6,7
. 029	. 22045	158	. 57782	122	.77351	40,2	. 2928	6,7
1.030	1.22203	158	1.57904	122	0.7739 I	40, I	I. 2921	6,7
.031	. 22361	158	. 58026	122	. 7743 I	40,0	. 2915	6,7
. 032	. 22519	158	. 581 I 48	123	.77471	40,0	. 2908	6,7
. 033	. 222677	158	. 58271	123	. 77511	39,9	. 2901	6,6
. 034	. 22836	158	. 58394	123	. 77551	39,9	. 2895	6,6
1.035	1. 22994	159	1. 58517	123	0.7759 r	39,8	I. 2888	6,6
. 036	. 23153	159	. 58540	123	. 77530	39,7	. 2882	6,6
. 037	. 23311	159	. 58753	123	. 77670	39,7	. 2875	6,6
. 038	. 23470	159	. 58886	123	. 77710	39,6	. 2868	6,6
. 039	. 23629	159	. 59010	124	. 77749	30,6	. 2862	6,5
1.040	1.23788	159	1.59134	124	0.77789	39,5	1. 2855	6,5
. 0.41	. 23947	159	. 59257	124	. 77828	39,4	. 2849	6,5
. 042	. 24107	159	. 5938I	124	. 77858	39,4	. 2842	6,5
. 043	. 24266	160	. 59506	124	. 77907	39,3	.2836	6,5
. 044	. 24426	160	- 59630	124	. 77946	39,2	. 2829	6,5
1. 045	1. 24585	160	1. 59755	125	0.77985	39,2	1. 2823	б,4
. 046	. 24745	160	. 59879	125	. 78025	39,I	. 2816	6,4
. 047	. 24905	160	. 60004	125	. 78064	39, I	.2810	6,4
. 048	. 25065	160	. 60129	125	. 78103	39,0	. 2804	6,4
. 049	. 25225	160	. 60254	125	. 78142	38,9	. 2797	6,4
1.050	1. 25386	160	1. 60379	125	0.78 I 8 I	38,9	1.2791	6,4
u	$\boldsymbol{t a n}$ od u	$\omega \mathrm{Fo}^{\prime}$	sec ad u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	\csc gdu	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

4	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \boldsymbol{\mu}$	$\omega \mathrm{FO}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.050	1.25386	160	1. 60379	125	0.78181	38,9	I. 2791	6,4
.05I	. 25546	161	. 60505	126	.78219	38,8	. 2785	6,3
. 052	. 25707	16 I	. 6053 I	126	. 78258	38,8	. 2778	6,3
. 053	. 25857	161	. 60756	125	. 82297	38,7	. 2772	6,3
. 054	. 26028	161	. 60882	126	.78336	38,6	. 2766	6,3
I. 055	1. 26189	16I	1.61008	126	0.78374	38,6	1.2759	6,3
. 056	. 26350	161	. 61135	126	. 78413	38,3	. 2753	6,3
. 057	. 25511	161	. 6126 r	127	. 7845 I	38,4	. 2747	6,2
. 058	. 25573	161	. 61388	127	. 78.490	38,4	. 2741	6,2
. 059	. $2683-4$	162	.61514	127	.78528	38,3	. 273 -4	6,2
1.060	1. 26996	162	1.61641	127	0.78566	38,3	1.2728	6,2
. 061	. 27157	162	. 61768	127	. 78505	38,2	. 2722	6,2
. 062	. 27319	162	. 61896	127	. $785+3$	38,2	. 2716	6,2
.053	. $27+81$	162	. 62023	127	. 7858 I	38 , 1	. 2710	6,2
. 064	. 27643	162	. 6215 I	128	. 78719	38,0	.2703	6,1
1.055	1. 27806	162	1. 62278	128	0.78757	38,0	I. 2697	6,1
.056	. 27568	162	. 62406	128	. 78795	37.9	. 2591	6,1
. 067	. 28130	163	. 62534	128	. 78833	37.9	. 2685	6,I
. 068	. 28293	163	. 62662	128	. 7887 r	37,8	. 2579	6, 1
. 069	. 28456	163	.62791	128	.78908	37,7	. 2673	6,I
1.070	1.28.519	163	1.62919	129	0.78946	37,7	I. 2667	6,0
.071	. 28782	163	. 63048	129	. 78384	37,6	. 2661	6,0
. 072	. 28945	163	. 63177	129	. 750.21	37,6	. 2655	6,0
. 073	. 29108	163	. 63306	129	. 79059	37,5	. 26.49	6,0
. 074	. 29271	163	. 63435	129	. 79096	37,4	. 2643	6,0
1.075	1. 29435	164	I. 63565	129	0.79134	37,4	1. 2637	6,0
.075	. 29598	164	. 63694	130	. 79171	37,3	. 2531	6,0
. 077	. 29762	164	. 63824	130	. 79208	37,3	. 2625	5,9
.078	. 29926	164	. 63954	130	. 79246	37,2	. 2619	5,9
. 079	- 30090	164	. 64084	130	. 79283	37, 1	.2613	5,9
1.080	1. 30254	164	1.64214	130	0.79320	37, 1	I. 2607	5,9
. 081	. 30418	164	. 64344	130	. 79357	37,0	. 2601	5,9
. 082	. 30583	164	. 64475	13 I	. 79394	37,0	. 2595	5,9
. 083	. 30747	165	. 64605	131	. 79431	35,9	. 2590	5,8
. 084	. 30912	165	. 64736	131	. 79468	36,8	. 2584	5,8
1.085	1.31077	165	1.64857	131	0.79505	36,8	I. 2578	5,8
. 086	-31242	165	. 64998	131	. 79541	35,7	. 2572	5,8
. 087	. 31407	165	. 65130	131	. 79578	36,7	. 2565	5.8
. 088	-31572	165	. 65261	132	. 79615	36,6	. 2560	5,8
. 089	. 31737	165	. 65393	132	.7965I	36,6	. 2555	5,8
1.090	1.31903	166	1.65525	132	0.79588	36,5	I. 2549	5,7
. 091	. 32068	166	. 65657	132	. 79724	36,4	. 2543	5,7
. 092	. 32234	166	. 65789	132	. 79751	36,4	. 2538	5.7
.093	- 32400	166	. 65921	132	. 79797	36,3	.2532	5.7
. 094	. 32566	166	. 66053	133	. 79833	36,3	.2525	5,7
1.095	1.32732	165	1. 66186	133	0.79870	36,2	1. 2520	5,7
. 096	- 32898	166	. 66319	133	. 79906	36,2	. 2515	5,7
. 097	-33065	166	. 66452	133	. 79942	36,1	. 2509	5,6
.098	. 33231	167	. 66585	133	. 79978	36,0	. 2503	5.6
. 099	-33398	167	. 66718	133	. 80014	36,0	. 2498	5,6
1. 100	1.33565	167	1.66852	134	0.80050	35,9	1. 2492	5,6
u	$\boldsymbol{\operatorname { t a n }} \mathrm{jd} \mathrm{u}$	- F9'	$\sec \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}{ }^{\prime}$	$\sin 9 \mathrm{~d} u$	$\triangle \mathrm{Fo}^{\circ}$	csc gd u	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\circ}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.100	1.33555	167	I. 65852	134	0.80050	35,9	1. 2492	5,6
. 101	. 33732	167	. 65986	$13+$. 83085	35,2	. $2+87$	5,6
. 102	. 33899	167	. 67119	134	. 80122	35,8	.248I	5,6
. 103	. 31066	167	. 67253	134	. 80157	35,7	. 2475	5,6
. 104	. 34233	167	. 67387	134	. 80193	35,7	. 2470	5,5
. I. 105	1.34401	168	1. 67522	134	0.80229	35,6	1. 2464	5,5
. 105	. $3+568$	168	. 67656	135	. 80254	35,6	. 2459	5.5
. 107	. 31736	168	. 67791	135	. 80300	35,5	. 2453	5,5
. 108	. $3+5004$	168	. 6792.5	135	. 80335	35,5	. $2+48$	5,5
. 109	. 35072	168	.68061	135	. 80371	35,4	. 2442	5,5
I. Ifo	I. 35240	168	I. 68195	135	0.80 .405	35,3	I. 2437	5,5
. III	. 35408	168	. 68331	135	. 80.112	35,3	. $2+3 \mathrm{I}$	5,5
. 112	. 35577	168	. $68+67$	136	. 80.477	35,2	. 2425	5,4
. 113	. 35745	169	. 68502	135	. 80512	35,2	. $2+2 \mathrm{I}$	5,4
. 1 If	. 35914	169	. 68738	136	. 80547	35, 1	.2415	5,4
1.155	1.36083	169	1.68374	136	0.80582	35, 1	1.2410	5,4
. 115	. 35252	169	. 69010	136	. 80517	35,0	. 2404	5,4
. 117	. $36+21$	169	. 6914	135	. 80552	35,0	. 2399	5,4
. 118	. 36550	169	. 6 g283	137	. 80587	34,9	.2394	5,4
. 119	. 36759	169	. 69420	137	. 80722	34,8	. 2388	5,3
${ }^{\top} .120$	I. 36929	170	1.69557	137	0.80757	34,8	1.2383	5,3
. 31	. 37098	170	. 69594	137	. 80792	34,7	. 2378	5,3
. $12 \overline{1}$. 37268	170	. 69831	137	. 80825	34,7	. 2372	5,3
. 123	- $37+38$	170	. 69958	137	. 80851	34,6	. 2367	5,3
. 124	. 37508	170	. 70105	138	. 80896	34,6	.2362	5,3
I. 125	1.37778	170	1.70243	138	0.80930	34,5	1. 2356	5,3
. 125	. 37919	170	. 7038 I	138	. 80955	34.4	. 2351	5,3
. 127	-38il9	İI	. 70510	138	. 80999	34,4	. 2346	5,2
. 128	. 38390	ITI	. 70558	138	. 81033	34,3	. 23.45	5,2
. 129	- 38460	r 71	. 70795	138	.81068	34,3	. 2335	5,2
1.130	1.38531	I7I	1.70934	139	0.81102	34,2	I. 2330	5,2
. 131	. 38802	I7I	. 71073	139	. 81136	34,2	. 2325	5,2
. 132	. 38973	I7I	. 71212	139	-81170	34, I	. 2320	5,2
. 133	. 39145	17I	.71351	139	. 81204	34, I	.2315	5,2
. 134	. 39316	171	.71490	139	.81238	34,0	. 2309	5,2
1.135	I. 39488	172	1.71630	139	0.81272	33,9	I. 2304	5,1
. 136	. 39559	172	. 71769	140	. 81305	33,9	. 2299	5, I
. 137	. 39831	172	. 71509	140	. 81340	33,8	. 2294	5, I
. 138	. 40003	172	. 72049	140	. 81374	33,8	. 2289	5, I
. 139	. 40175	172	.72189	1.40	. 81408	33,7	. 2284	5, I
1. 140	1. 40347	172	1.72329	140	0.81441	33,7	I. 2279	5, I
. 141	-40520	172	. 72.470	If 1	. 81475	33,5	. 227.4	5, I
. 142	. 40592	173	. 72510	141	. 81509	33,6	. 2269	5, 1
. 143	. 40865	1/3	.72751	141	. 81512	33,5	. 2264	5,0
. 144	. 41038	173	. 72892	IfI	.81576	33,5	. 2259	5,0
I. 145	1.41211	173	1.73033	141	0.81609	33,4	1.2254	5,0
. 146	. 41384	173	. 73175	141	. 81642	33,3	. 2249	5,0
. 147	.41557	I73	. 73316	142	. 81676	33.3	. 2244	5,0
. 148	. 41731	173	. 73458	142	. 81709	33,2	. 2239	5,0
. 149	. 4190.4	174	. 73599	142	. 81742	33,2	. 2234	5,0
I. 150	1. 42078	174	1.73741	142	0.81775	33, 1	1. 2229	5,0
u	$\tan \mathrm{gd} u$	$\omega^{*} \mathrm{~F}_{0}{ }^{\prime}$	$\sec \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	$\sin 9 \mathrm{~d} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\circ}$	cse gd u	$\infty \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\circ}$	$\boldsymbol{\operatorname { c o t h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 150	I. 12078	174	1.73741	142	0.81775	33, 1	1.2229	5,0
. 151	. 42252	174	. 73884	1.42	. 81809	33, 1	. 2224	4,9
. 152	- $42+25$	174	- 74026	142	.81842	33,0	. 2219	4,9
. 153	. 42500	174	. 74168	143	.81875	33,0	.2214	4,9
. 154	- 42774	174	-74311	143	.81907	32,9	. 22309	4.9
I. I55	I. 42948	174	1.74454	143	0.81940	32,9	1. 2204	4.9
. 156	. 43123	175	. 74597	143	. 81973	32,8	. 2199	4,9
. 157	- 43297	175	- 74740	143	. 82005	32,8	. 2194	4,9
. 158	. 43472	175	. 74884	143	. 82039	32,7	. 2189	4,9
. 159	. 43547	175	. 75027	144	. 82071	32,6	. 2185	4,8
1. 160	1. 43822	175	1.75171	I44	0.82104	32,6	I. 2180	4,8
. 161	. 43908	175	. 75315	144	. 82137	32,5	.2175	4,8
. 162	. 414173	175	. 75459	174	. 82169	32,5	. 2170	4,8
. 163	. 44349	176	. 75603	144	. 82202	32,4	. 2165	4,8
. 164	. 41524	176	. 75748	145	. 82234	32,4	. 2160	4,8
1. 165	1.44700	176	1.75892	145	0.82266	32,3	1.2156	4,8
. 156	. 41876	176	. 75037	145	. 82239	32,3	. 2151	4,8
. 167	. 45052	176	. 76182	145	. 82331	32,2	. 2146	4,8
. 168	- 45228	176	. 76327	145	. 82363	32,2	. 21.41	4,7
. 169	-45405	176	. 76472	145	. 82395	32,1	. 2137	4.7
1.170	1. 4558 I	177	1. 75618	146	0.82 .427	32,1	1.2132	4,7
.17I	- 45758	177	. 76754	146	. 82459	32,0	. 2127	4.7
. 172	- 45935	177	. 76909	146	. 82491	32,0	. 2123	4,7
. 173	. 46112	177	. 77056	1.46	. 82523	31,9	. 2118	4,7
. 174	. 46289	177	-77202	146	. 82555	31,8	. 2113	4,7
I. 175	I. 46466	177	1.77348	146	0.82587	31,8	1.2108	4,7
. 175	. 466	177	. 77495	147	. 82619	31,7	. 2104	4,7
. 177	. 4632 I	178	. 7754 I	147	. 83650	31,7	. 2099	4,6
. 178	. 46999	178	. 77788	147	. 82582	31,6	. 2095	4,6
. 779	. 47177	178	. 77935	147	. 82714	31,6	. 2090	4,6
1. 180	1. 47355	178	1. 78083	147	0.82745	31,5	1. 2085	4,6
. 181	. 47533	178	. 78230	148	. 82777	31,5	.208I	4,6
. 182	-47711	178	. 78378	148	. 82808	31,4	. 2076	4,6
.183	. 47890	179	. 78525	148	. 82840	31,4	.2072	4,6
. 184	. 48068	179	. 78573	148	. 82871	31,3	. 2067	4,6
I. 185	I. 48247	179	1.78822	148	0.82902	31,3	1.2062	4,6
. 185	. 48426	179	. 78970	148	. 82933	$3 \mathrm{I}, 2$. 2058	4,5
. 187	. 48505	179	. 79119	149	. 82965	31,2	. 2053	4.5
. 188	. 48784	179	. 79257	149	. 82996	31,I	. 2049	4.5
. 189	. 48964	179	. 79416	149	. 83027	31,1	. 2044	4,5
I. 190	I. 49143	180	1. 79565	149	0.83058	31,0	I. 2040	4.5
-191	. 49323	180	. 79714	149	. 83089	31,0	. 2035	4.5
. 192	. 49502	180	. 79854	150	. 83120	30,9	. 2031	4.5
. 193	. 49682	180	. 80013	150	. 83151	30,9	. 2026	45
. 194	. 49862	180	. 80163	150	. 83182	30,8	. 2022	4.5
	1. 50043	180	1.80313	150	0.83212	30,8	1.2017	4.4
. 196	. 50223	180	. 80.463	150	. 83243	30,7	.2013	4,4
. 197	. 50404	18 I	. 80514	150	. 83274	30,7	. 2009	4.4
. 198	. 50584	18 I	. 80764	151	. 83304	30,6	. 2004	4.4
. 199	. 50765	181	. 80915	151	. 83335	30,6	. 2000	4.4
I. 200	I. 50946	18 r	1.81066	151	0.83365	30,5	1.1995	4,4
n	tan gdu	- Fo'	$\sec \mathrm{gd} \mathrm{u}$	- $\mathrm{Fo}^{\prime}{ }^{\prime}$	\sin od u	$\sim F_{0}{ }^{\prime}$	cscodu	- Fo^{\prime}

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega F_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { c o t h }} \mathbf{u}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
1.200	1. 50946	r8i	1.81066	151	0.83355	30,5	I. 1995	4.4
. 201	. 51127	I8I	. 81217	I5I	. 83396	30,5	. 1931	4,4
. 202	. 51309	I8I	. 81368	151	. 83426	30,4	. 1987	4,4
. 203	- 51.490	I82	. 81519	15 I	. 83457	30,3	. 1982	4,4
.204	. 51672	182	.8167I	152	. $83-487$	30,3	. 1978	4.3
1.205	1. 51853	182	1.81823	152	0.83517	30,2	I. 1974	4,3
. 205	. 52035	182	. 81974	152	. 83548	30,2	. 1969	4,3
. 207	. 52217	182	. 82127	152	. 83578	30, I	. 1965	4,3
. 208	. 52400	182	. 82279	152	. 83608	30,1	. 1961	4,3
. 209	. 52582	182	. $82+3 \mathrm{I}$	153	. 83538	30,0	. 1956	4,3
1.210	I. 52764	183	1. 82584	153	0.83668	30,0	I. 1952	4,3
. 21 II	. 52947	183	. 82737	153	. 83698	29,9	. 1948	4,3
. 212	. 53130	183	. 82830	153	. 83728	29,9	. 1943	4,3
.213	. 53313	183	. 83043	153	. 83758	29,8	. 1939	4,3
. 214	. 53496	183	. 83197	153	. 83788	29,8	. 1935	4,2
1.215	I. 53679	183	1.83350	154	0.83817	29,7	I. 1931	4,2
. 216	. 53853	184	. 83504	154	. 83847	29,7	. 1926	4,2
. 217	. 54046	184	. 83658	154	. 83877	29,6	. 1922	4,2
. 218	. 5.4230	184	. 83812	154	. 83906	29,6	-1918	4,2
. 219	-54414	184	. 83966	154	. 83936	29,5	. 1914	4,2
1. 220	1. 54598	181	1.84121	155	0.83965	29,5	I. 1910	4,2
.22I	. 54782	184	. 81276	155	. 83995	29,4	. 1905	4,2
. 222	- 54956	184	. 84430	155	. 84024	29,4	. 1901	4,2
. 223	. 55151	185	. 84586	155	. 84054	29,3	. 1897	4,2
. 224	. 55336	185	. 84741	155	. 84083	29,3	. 1893	4, I
1.225	I. 55520	185	1.84896	156	0.84112	29,3	I. 1889	4,1
. 226	. 55705	185	. 85052	156	. 84142	29,2	. 1885	4, I
.227	. 55831	185	. 85208	156	. 84171	29,2	. 188 I	4,1
. 228	. 56076	185	. 85354	156	. 81200	29,1	. 1877	4, I
. 229	. 56261	186	. 85520	156	. 84229	29,1	.1872	4, 1
1.230	I. 56447	186	1.85676	156	0.84258	29,0	I. 1858	4, I
. 231	. 56633	186	. 85833	157	. 84287	29,0	. 1864	4,1
. 232	. 56819	185	. 85989	157	. 84316	28,9	. 1860	4, I
. 233	. 57005	186	. 86146	157	. 84345	28,9	. 1856	$4, \mathrm{I}$
. 234	. 57191	186	. 86303	157	. 84374	28,8	. 1852	4, I
1. 235	1.57377	186	I. 8616 I	157	0.84402	28,8	I. 1848	4,0
. 236	. 57564	187	. 86618	158	. 84431	28,7	. 1844	4,0
. 237	. 57750	187	. 86776	158	-84460	28,7	. 1840	4,0
. 238	. 57937	187	. 86934	158	. 81488	28,6	. 1836	4,0
. 239	. 58124	187	. 87092	158	. 84517	28,6	. 1832	4,0
I. 240	I. 58311	187	1.87250	158	0.84546	28,5	I. 1828	4,0
. 241	. 58499	187	. 87408	158	. 81574	28,5	. 1824	4,0
. 242	. 58686	188	. 87567	159	. 84602	28,4	. 1820	4,0
. 243	. 58874	188	. 87726	159	. 84631	28,4	. 1816	4,0
. 214	-59062	I88	. 87885	159	. 84659	28,3	.1812	40
I. 245	1.59250	I88	1.88044	159	0.84688	28,3	1.1808	3,9
. 2.46	. 59438	188	. 88203	159	. 87716	28,2	. 1804	3,9
. 2.47	. 59626	188	. 88363	160	. 84744	28,2	. 1800	3,9
. 248	-59815	189	. 88522	160	. 84772	28, 1	. 1796	3,9
. 249	. 60003	189	. 88582	160	. 84800	28,1	. 1792	399
1.250	1. 60192	189	1.88842	160	0.84828	28,0	1.1789	3,9
4	$\tan \mathrm{gd} \mathbf{u}$	© FO^{\prime}	$\sec \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\infty \mathrm{FO}^{\prime}$	$\csc \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	cosh 4	$\omega \mathrm{Fo}^{\prime}$	tanh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth 4	$\omega \mathrm{Fo}^{\prime}$
1.250	1.60192	189	1.888 ${ }^{12}$	160	0.84828	28,0	1.1789	3,9
. 25 I	. 6038 I	189	. 89003	160	.8+856	28,0	. 1785	3,9
. 252	. 60570	189	. 89163	16I	. 84884	27,9	.1781	3,9
. 253	. 60759	189	. 89324	161	. 84912	27,9	. 1777	3,9
. 254	. 60949	189	. 89485	I6I	. 84940	27,9	. 1773	3,9
1. 255	1.61138	190	I. 89646	16 r	0.84968	27,8	1.1769	3,9
. 256	.61328	190	. 89807	16 r	. 84996	27,8	. 1765	3,8
. 257	. 61518	190	. 89968	162	. 85023	27,7	. 1761	3,8
. 258	. 61708	150	. 90130	162	. 8505 I	27,7	. 1758	3,8
. 259	.61898	190	. 90292	162	. 85079	27,6	. 1754	3,8
1. 260	1.62088	190	I. 90454	162	0.85106	27,6	1.1750	3,8
. 261	. 62279	191	. 90616	162	. 85134	27,5	. 1746	3,8
. 262	. 62470	19 I	. 90778	162	. 85161	27,5	. $17+2$	3,8
. 263	. 62661	191	. 90941	163	. 85189	27,4	. 1739	3,8
. 264	. 6285 I	191	-91104	163	. 85216	27,4	. 1735	3,8
1.265	1. 63043	191	1.91267	163	0.85244	27,3	1.1731	3,8
. 266	. 63234	191	-91430	163	. 85271	27,3	.1727	3,8
. 267	. 63426	192	.91593	163	. 85298	27,2	-1724	3,7
. 268	. 63617	192	-91757	164	. 85325	27,2	-1720	3,7
. 269	. 63807	192	. 91920	164	. 85353	27, 1	. 1716	37
1.270	1.64001	192	r. 92084	164	0.85380	27, 1	1.1712	3.7
. 271	. 64193	192	-92248	164	. 85407	27,1	.1709	3.7
. 272	. 64385	192	-92413	164	. $85+37$	27,0	- 1705	3,7
. 273	. 64578	193	. 92577	165	. $85+61$	27,0	. 1701	3,7
. 274	. 64771	193	. 92742	165	. 85488	26,9	. 1698	3.7
I. 275	1. 64964	193	I. 92907	165	0.85515	26,9	.1.1694	3,7
. 276	. 65157	193	. 93072	165	. 85542	26,8	. 1690	3,7
. 277	. 65350	193	. 93237	165	. 85568	26,8	. 1687	3.7
. 278	. 65543	193	. 93402	166	. 85595	26,7	.1683	3.6
. 279	. 65736	194	. 93568	166	. 85622	26,7	. 1679	3,6
T. 280	1. 65930	194	I. 93734	166	0.85648	26,6	1.1676	3,6
. 281	.66124	194	. 93900	166	. 85675	26,6	. 1672	3.6
. 282	. 66318	194	-94056	166	. 85702	25,6	. 1568	3,6
. 283	. 66512	194	-94233	167	. 85728	26,5	. 1665	3,6
. 284	. 66706	194	. 94399	167	. 85755	26,5	. 1661	3,6
1.285	1.66901	195	1.94566	167	0.8578 I	26,4	1.1658	3,6
. 286	. 67096	195	. 94733	167	. 85808	26,4	. 1654	3,6
. 287	. 67290	195	-94900	167	. 85834	26,3	. 1650	3.6
. 288	. 67485	195	-95068	167	. 85850	26,3	. 1647	3,6
. 289	. 67680	195	. 95235	168	. 85886	26,2	. 1643	3,6
1.290	1.67876	195	1.95403	168	0.85913	26,2	1.1640	3.5
. 291	. 68071	196	.95571	168	. 85939	26,1	. 1636	3,5
. 292	. 68267	196	. 95739	168	. 85965	26,1	.1633	3.5
. 293	. 68863	196	. 95907	168	.85991	26,I	. 1629	3,5
. 294	. 68659	196	. 96076	169	. 86017	26,0	. 1626	3.5
I. 295	1. 68855	196	1. 96245	169	0.85043	26,0	1.1622	3.5
. 296	.6905I	196	.96414	169	. 86069	25,9	. 1619	3.5
. 297	. 69248	197	. 96583	169	. 86095	25,9	. 1615	3.5
. 298	. 69444	197	. 96752	169	. 866121	25,8	.1612	3.5
. 299	. 6964 I	197	. 96922	170	. 86147	25,8	. 1608	3.5
1.300	1.69838	197	1.97091	170	0.86172	25.7	1.1605	3.5
u	$\tan \mathrm{gd} \mathrm{u}$	$\omega^{*} \mathrm{~F}^{\prime}$	\sec gd u	* Fo^{\prime}	$\sin 9 \mathrm{~d} \mathrm{n}$	- $\mathrm{Fb}_{6}{ }^{\prime}$	csc od u	$\pm \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 300	1.69838	197	I.97091	170	0.85172	25,7	1.1605	3,5
. 301	. 70035	197	. 97261	170	. 85158	25,7	. 1601	3,5
. 302	. 70233	197	.97.431	150	. 85234	25,7	. 1598	3,5
. 303	. $70+30$	198	-97602	170	. 85249	25,6	. 1594	3,4
. 304	. 70528	198	. 97772	171	. 85275	25,6	-1591	3,4
I. 305	1.70825	198	I. 97943	I7I	0.85300	25,5	1.1587	3,4
. 305	. 71024	198	.98II4	I7I	. 85326	25,5	. 1584	3,4
. 307	. 71222	198	. 98285	IJI	. 85351	25,4	-1581	3,4
. 308	. $71+20$	198	- 98456	I7I	. 85377	25,4	. 1577	3,4
. 309	.71519	199	. 98628	172	.85102	25,3	-1574	3.4
1.310	1.71818	199	1.98800	172	0.85428	25,3	1.1570	3,4
. 3 II	. 72017	199	. 98972	172	. 85453	25,3	. 1557	3,4
. 312	. 72216	199	. 9914	152	. 85478	25,2	.1554	3,4
.313	. 72415	199	. 99316	172	. 85503	25,2	. 1560	3,4
-3I4	.72614	199	-99489	173	. 85528	25,1	.1537	3,4
I.315	1.72814	200	1.99661	1/3	0.85554	25, 1	I. I554	3,3
. 316	.73014	200	. 95834	173	. 85579	25,0	. 1550	3,3
. 317	. 732 I 4	200	2.00007	173	. 85504	25,0	. 1547	3,3
-318	. $73+14$	200	. 00181	173	. 85629	25,0	. I544	3,3
. 319	.73614	200	. 00354	174	. 85653	24,9	-1540	3,3
I. 320	$1.738 \mathrm{I}_{4}$	201	2.00528	174	0.86578	24,9	I. 1537	3,3
- 321	. 74015	201	. 00702	174	. 83703	24,8	. 1534	3,3
-322	. 71216	201	. 00876	174	. 85728	24,8	. 1530	3,3
. 323	. 74417	201	. 01050	174	. 85753	24,7	. 1527	3,3
-324	. 74618	201	. 01225	175	. 86778	24,7	. 1524	3,3
I. 325	1.74819	201	2.01399	175	0.85802	24,7	1. 1520	3,3
. 325	. 75021	202	. 01574	175	. 85827	24,6	. 1517	3,3
. 327	. 75222	202	. 01749	175	. 85851	24,6	.15I4	3,3
. 328	. 75424	202	. 01923	175	.85876	24,5	. I5II	3,2
-329	. 75626	202	. 02100	176	. 86500	24,5	. 1507	3,2
I. 330	1.75828	202	2.02276	175	0.85925	24,4	I. 1504	3,2
. 331	. 75031	202	. 02.452	176	. 86949	24,4	. 1501	3,2
. 332	. 76233	203	. 02628	175	. 85974	24,4	. 1498	3,2
- 333	. 76436	203	. 02804	176	. 869098	24,3	. 1495	3,2
. 334	. 76639	203	.0293I	177	. 87022	24,3	. I49I	3,2
1. 335	1.76842	203	2.03158	177	0.870 .47	24,2	1. 1488	3,2
. 336	. 77045	203	. 03335	177	. 87071	24,2	. 1485	3,2
- 337	. 77249	204	. 03512	177	. 87095	24, 1	. 1482	3,2
-338	. 77452	204	. 03689	177	. 87119	24, 1	.1479	3,2
. 339	. 77556	204	. 03867	178	.87143	24, 1	. 1475	3,2
1. 340	1.77860	204	2.04044	178	0.87167	24,0	1.1472	3,2
. 34 x	. 78064	204	. 04222	178	.87191	24,0	. 1469	3,2
- 342	. 78268	204	. 04101	178	. 87215	23,9	. 1465	3,1
-343	. 78473	205	. 04579	178	. 87239	23,9	.1463	3,1
-344	. 78677	205	. 04758	179	. 87263	23.9	. 1460	3,1
1.345	1. 78882	205	2.04936	179	0.87287	23,8	I. 1456	3,I
. 346	. 79087	205	. 05115	179	.87311	23,8	. I453	3,1
-347	-79293	205	. 05294	179	. 87334	23,7	. 1450	3,I
-348	. 79498	205	. 05474	179	. 87358	23,7	. I447	3, I
-349	. 79704	206	. 05653	180	. 87382	23,6	. 1414	3,1
1.350	I. 79909	206	2.05833	180	0.87405	23,6	I.I44	3,I
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec ad u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} u$	$\pm \mathrm{Fo}^{\prime}$	csc od u	$\omega \mathrm{Fa}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{Fo}{ }^{\prime}$
1.350	1.79909	206	2.05833	I80	0.87405	23,6	1. 1441	3,1
. 351	. 80115	206	. 06013	180	. $87+29$	23,6	. 1438	3,1
. 352	. 80321	206	.06194	I8O	. 87452	23,5	. $1+35$	3,1
- 353	. 80528	205	. 05374	181	. 87475	23,5	. 1432	3,1
-354	. 80734	207	. 06555	I8I	.87499	23,4	. 1429	3,1
1.355	1.80941	207	2.05735	I8I	0.87523	23,4	I. 1425	3,I
. 356	.8ir 48	207	. 06910	181	. 87545	23,4	. 1.423	3,0
. 357	. 81355	207	. 07098	181	. 87570	23,3	. 1419	3.0
- 358	. 81562	207	.07279	182	. 87593	23,3	. 1416	3,0
. 359	.81769	207	.0746I	182	. 87616	23,2	.1413	3,0
1.360	1.81977	208	2.07643	182	0.87539	23,2	I. 1410	3,0
. 361	. 82184	208	. 07825	182	. 87602	23,2	. 1407	3,0
. 362	. 82392	208	. 08007	182	. 87585	23,1	. 1404	3.0
. 363	. 82600	208	.08igo	183	. 87709	23, I	. I4,	3,0
. 354	. 82809	208	. 08372	183	.87732	23,0	. 1398	3,0
1.365	1.83017	209	2.08555	183	0.87755	23,0	I. 1395	3,0
. 365	. 83225	209	. 08738	183	. 87778	23,0	. 1392	3,0
. 367	. 83135	209	. 08922	183	.87801	22,9	. 1389	3,0
. 368	. 83644	209	.09105	184	. 87824	22,9	. 1386	3,0
. 369	. 83853	209	.09289	184	. 87846	22,8	. 1384	3,0
1.370	1.84052	209	2.09473	18.4	0.87859	22,8	1. 1381	3,0
. 371	. 84272	210	. 09657	184	. 87892	22,7	. 1378	2,9
. 372	. $8+182$	210	.0984I	184	. 87915	22,7	. 1375	2,9
. 373	. 84691	210	. 10026	185	. 87937	22,7	-1372	2,9
. 374	. 84902	210	. IO2II	185	. 87960	22,6	. 1369	2,0
1.375	1.85112	210	2. 10396	185	0.87983	22,6	1. 1366	2,9
. 376	. 85322	211	. 10581	185	. 88005	22,6	. 1363	2,9
. 377	. 85533	2 II	. 10756	186	. 88028	22,5	. 1360	2,9
. 378	. 85744	2 II	. 10953	I86	. 88050	22,5	- I357	2,9
. 379	. 85955	2 II	- III38	186	. 88073	22,4	- 1354	2,9
1.380	1.86166	2 II	2.11324	186	0.88095	22,4	r. 1351	2,9
$\cdot .381$. 85378	212	. 11510	185	.88117	22,4	. 1348	2,9
. 382	. 85589	212	. 11697	187	.88140	22,3	-1346	2,9
. 383	.85801	212	. 11883	187	. 88162	22,3	. 1343	2,9
. 38.4	. 87013	212	. 12070	187	.88184	22,2	-1340	2,9
1.385	1. 87225	212	2. 12257	187	0.88207	22,2	I. 1337	2,9
. 385	. 87437	212	. 12415	187	. 88229	22,2	. 1334	2,8
. 387	. 87550	213	. 12632	188	. 88251	22,1	. 1331	2,8
. 388	. 87863	213	. 12820	188	. 88273	22,1	. 1328	2,8
. 389	. 88076	213	. 13008	188	. 88395	22,0	. 1326	2,8
1. 390	I. 88289	213	2.13196	188	-0.88317	22,0	1.I323	2,8
. 391	. 88502	213	. 13385	189	. 88339	22,0	. 1320	2,8
. 392	. 88716	214	- 13573	189	. 88361	21,9	. 1317	2,8
. 393	. 88929	214	. 13762	189	. 88383	21,9	-1314	2,8
. 394	. 89143	214	. 3 3951	189	. 88405	21,8	.1312	2,8
1. 395	1. 89357	214	2.14140	189	$0.88{ }_{427}$	21,8	I. 1309	2,8
. 396	. 89571	214	. 14330	190	. 88.448	21,8	. 1306	2,8
. 397	. 89786	215	. 14520	190	. 88.470	21,7	. 1303	2,8
. 398	. 90000	215	. 14709	190	. 88192	21,7	. 1300	2,8
. 399	.90215	215	. 14900	190	. 88513	21,7	. 1298	2,8
1.400	1.90430	215	2.15090	190	0.88535	21,6	1. 1295	2,8
\pm	tangdx	$\infty \mathrm{F}^{\prime}{ }^{\prime}$	$\sec \mathrm{gd} \mathrm{a}$	$\sim \mathrm{FO}^{\prime}$	$\operatorname{singd} u$	${ }_{00} \mathbf{F F O}^{\prime}{ }^{\prime}$	$\csc \operatorname{sd} u$	$\infty \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 400	1.90430	215	2.15090	190	0.88535	21,6	I. 1295	2,8
. 401	. 90645	215	. 15280	191	. 88557	21,6	. 1292	2,8
. 402	.9085I	215	. 15471	19 I	.83378	21,5	- 1289	2,7
. 403	.91076	216	. 15662	19 I	. 88600	21,5	. 1287	2,7
. 404	. 91292	216	. 15853	I9I	. 88521	21,5	. 1284	2,7
1.405	1.91508	216	2.16045	192	0.88643	21,4	I.128I	2,7
. 406	-91724	216	. 16236	192	. 88564	21,4	. 1279	2,7
. 407	. 91940	216	. 16428	192	. 88586	21,3	. 1276	2,7
. 408	. 92157	217	. 16620	192	.88707	21,3	.1273	2,7
. 409	. 92374	217	. 168 r 2	192	. 88728	21,3	. 1270	2,7
I.410	1.92591	217	2.17005	193	0.88749	21,2	1. 1268	2,7
.41I	. 92808	217	. 17198	193	.88771	21,2	. 1265	2,7
. 412	. 93025	217	. 17391	193	. 88792	21,2	. 1262	2,7
. 413	. 93212	218	. 17584	193	. 88813	21, 1	. 1250	2,7
.414	-93460	218	-17777	193	. 88834	21,1	. 1237	2,7
1.415	1.93678	218	2.17971	194	0.88855	21,0	I. 1254	2,7
. 416	. 93896	218	. 18164	194	. 88876	21,0	. 1252	2,7
. 417	.94174	218	. 18358	194	. 88897	21,0	. 1249	2,7
. 418	. 94333	219	. 18553	194	. 88918	20,9	. 1246	2,6
.419	.9455I	219	. 18747	195	. 88939	20,9	. 124	2,6
1.420	1.94770	219	2. 18942	195	0.88960	20,9	1.124I	2,6
. 421	. 94989	219	. 19137	195	. 88981	20,8	. 1238	2,6
. 422	. 95209	219	. 19332	195	. 89002	20,8	. 1236	2,6
423	. 95428	220	. 19527	195	. 85022	20,8	. 1233	2,6
. 424	. 95648	220	- 19723	196	. 89043	20,7	. 123 I	2,6
I. 425	1. 95867	220	2.19918	196	0.89064	20,7	I. 1228	2,6
. 426	. 96087	220	. 20114	196	. 89084	20,6	. 1225	2,6
. 427	. 96308	220	. 20310	195	. 89105	20,6	. 1223	2,6
-428	. 96528	221	. 20507	197	. 89126	20,6	. 1220	2,6
.429	. 96749	221	. 20704	197	. 89146	20,5	. 1218	2,6
I. 430	1.96970	22 I	2.20900	197	0.89167	20,5	I. 1215	2,6
. 431	. 97191	221	. 21097	197	. 89187	20,5	. 1212	2;6
. 432	. 97412	221	. 21295	197	. 89208	20,4	. 1210	2,6
. 433	. 97633	221	. 21492	198	. 89228	20,4	. 1207	2,6
. 434	. 97855	222	. 21690	198	. 89248	20,3	. 1205	2,6
I. 435	1.98076	222	2.21888	198	0.80259	20,3	I. 1202	2,5
. 436	. 98298	222	. 22086	198	. 89289	20,3	. 1200	2,5
. 437	. 98321	222	. 22285	199	. 89309	20,2	. I197	2,5
. 438	. 98743	222	. 22483	199	. 89329	20,2	. II95	2,5
. 439	. 98966	223	. 22682	199	. 89350	20,2	. 1192	2,5
1.440	1.99188	223	2.2288 I	199	0.89370	20;1	I.II89	2,5
.44I	. 99411	223	. 23080	199	. 89390	20, 1	. 1187	2,5
. 442	- 99635	223	. 23280	200	. 89.410	20,I	. 1184	2,5
. 443	. 99858	223	. 23480	200	. 89430	20,0	. 1182	2,5
. 444	2.00082	224	. 23680	200	. 89450	20,0	. 1179	2,5
I. 445	2.00305	224	2.23880	200	0.89470	20,0	I. II77	2,5
-446	. 00529	224	. 24080	201	. 89490	19,9	. 1174	2,5
- 447	. 00753	224	.24281	201	. 89510	19,9	- II72	2,5
. 448	. 00978	224	. 24482	201	. 89530	19,8	. 1169	2,5
.449	. 01202	225	.24683	201	. 89550	19,8	. 1167	2,5
1.450	2.01427	225	2.24884	201	0.89569	19,8	I. 1165	2,5
u	$\boldsymbol{t a n g d} \mathrm{g}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} u$	$\omega \mathrm{Fo}^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega F_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{t a n h} a$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.450	2.01427	225	2.24884	201	0.89569	19,8	1.1165	2,5
-45I	. 01652	225	. 25086	202	. 89589	19,7	. 1162	2,5
. 452	. 01877	225	. 25283	202	. 89609	19,7	. 1160	2,5
. 453	. 02103	225	. 25490	202	. 89628	19,7	. 1157	2,4
. 454	. 02328	225	. 25692	202	. 89648	19,6	. 1155	2,4
1. 455	2.02554	225	2.25894	203	0.89668	19,6	I. 1152	2,4
. 456	.02780	226	. 25097	203	. 89687	19,6	. 1150	2,4
. 457	. 03006	226	. 26300	203	. 89707	19,5	. 1147	2,4
. 458	. 03233	227	. 26503	203	. 89726	19,5	. II 45	2,4
. 459	. 03459	227	. 25706	203	. 89746	19,5	. II43	2,4
1. 460	2.03685	227	2.26910	20.4	0.89765	19,4	I.II4O	2,4
. 461	. 03913	227	.27114	204	. 89785	19,4	. 1138	2,4
. 462	. 04140	227	. 27318	204	. 89804	19,4	. 1135	2,4
. 463	. 04368	228	. 27522	204	. 89823	19,3	. II33	2,4
. 464	. 04595	228	. 27726	205	. 898.43	19,3	.II3I	2,4
1.465	2.04823	228	2.27931	205	0.89862	19,2	1.1128	2,4
. 466	. 05051	228	.28136	205	. 8088 r	19,2	. 1126	2,4
. 467	. 05280	228	. 28341	205	. 89900	19,2	. 1123	2,-4
. 468	. 05508	229	. 28547	206	. 89920	19, 1	.II2I	2,4
. 469	. 05737	229	. 28752	206	. 89939	19,1	. III9	2,4
1.470	2.05965	229	2.28958	206	0.89958	-I9,I	1.1116	2,4
. 471	. 05195	229	. 29164	206	. 89977	19,0	. IIIf 4	2,4
. 472	. 06424	229	. 29370	206	. 89996	19,0	. 1112	2,3
. 473	. 06653	230	. 29577	207	.90015	19,0	. 1109	2,3
. 474	. 06883	230	. 29784	207	. 90034	18,9	. 1107	2,3
1.475	2.07113	230	2.29991	207	0.90053	18,9	1.1105	2,3
. 476	. 07343	230	. 30198	207	. 90072	18,9	. 1102	2,3
. 477	. 07573	230	. 30405	208	. 90090	18,8	. 1100	2,3
. 478	.07804	231	. 30613	208	.90109	18,8	. 1098	2,3
.479	.08034	23 I	-308.21	208	.90128	18,8	. 1095	2,3
1.480	2.08265	231	2.31029	208	0.90147	18,7	1.1093	2,3
. 48 I	. 08497	231	. 31238	208	. 90166	18,7	. 109 I	2,3
. 482	. 08728	231	. 31446	209	.90184	18,7	. 1088	2,3
.483	. 08959	232	- 31655	209	. 90203	18,6	. 1086	2,3
. 484	.09191	232	. 31864	209	. 9022 I	18,6	. 1084	2,3
1.485	2.09423	232	2.32073	209	0.90240	18,6	1. 1082	2,3
. 486	. 09655	232	- 32283	210	. 90259	18,5	. 1079	2,3
. 487	. 09888	232	- 32493	210	. 90277	18,5	. 1077	2,3
. 488	. IOI20	233	- 32703	210	. 90296	18,5	. 1075	2,3
. 489	. 10353	233	. 32913	210	.903I4	18,4	. 1072	2,3
1.490	2. 10586	233	2.33123	2 II	0.90332	18,4	1. 1070	2,3
.491	. 10819	233	. 33334	211	.9035I	18,4	. 1068	2,2
. 492	. 11053	234	- 33545	2 II	. 90369	18,3	. 1066	2,2
. 493	. 11286	234	- 33756	2 II	. 90388	18,3	.1063	2,2
. 494	. 11520	234	-33968	212	.90406	18,3	. 1061	2,2
		234	2.34179	212	0.90424	18,2	1. 1059	2,2
. 496	. 11989	234	. 34391	212	. 90.442	18,2	. 1057	2,2
. 497	. 12223	235	-34603	212	.90460	18,2	- 1055	2,2
. 498	. 12458	235	. 34816	212	. 90479	18, 1	. 1052	2,2
. 499	. 12693	235	-35028	213	. 90497	18, 1	. 1050	2,2
1.500	2.12928	235	2.3524 I	213	0.90515	18,1	1. 1048	2,2
\square	$\tan \operatorname{gd} \mathrm{a}$	$\cdots \mathrm{Fe}^{\prime}$	sec ad a	$\pm \mathrm{Fo}^{\prime}$	$\sin 9 \mathrm{~d}$	$\cdots \mathrm{Fe}^{\prime}$	csced u	$\omega \mathrm{Fo}^{\prime}$

Natural Hyperbolic Furstions.

4	$\sinh u$	${ }^{*} \mathrm{~F}_{4}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	tanh u	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.500	2.12923	235	2.35241	213	0.90515	I8, 1	I. 1048	2,2
. 501	.13153	235	. 35454	213	. 90533	I8,0	. 10.46	2,2
-502	. 13399	235	. 3507	213	. 9055 I	I8,0	. 1044	2,2
. 503	. 13035	236	. 3583 I	21.4	.90559	18,0	. IO4 1	2,2
. 504	. 13871	236	. 36095	214	.90587	17,9	. 1039	2,2
1. 505	2.14107	236	2.36309	21.4	0.90605	17,9	1. 1037	2,2
. 506	. $143+3$	237	. 35523	214	. 90623	17,9	. 1035	2,2
. 507	- IT580	237	. 36737	215	-90641	17,8	. 1033	2,2
. 503	- I. 4817	237	. 36952	215	. 90658	17,8	. 1030	2,2
. 509	. 15054	237	. 37157	215	. 90676	17,8	. 1028	2,2
1.510	2.15291	237	2.37382	215	0.90604	17,7	1. 1026	2,2
. 511	. 15529	238	. 37597	216	.90712	17,7	. 1024	2,2
. 512	. 15766	238	.37-813	216	. 90739	I7,7	. 1022	2, I
. 513	. 16004	238	. 38029	216	.90747	I7, 6	. 1030	2,1
. 514	. 16242	238	-38245	216	. 90755	17,6	. 1018	2,1
1.515	2. 1648 r	238	2.38461	216	0.90782	17,6	I. 1015	2,1
. 515	. 16719	239	. 38578	21%	. 90800	17,6	. 1013	2,1
. 517	. 16958	239	. 38895	217	. 90817	17,5	. IOII	2,1
-518	. 17197	239	-39112	217	. 90835	17,5	. 1009	2,I
. 519	. 17436	239	-393-9	217	. 90852	17,5	. 1007	2,I
1.520	2.17676	210	2.39547	218	0.90870	17,4	1.1005	2,1
. 521	. 17515	240	. 39755	218	. 90837	17,4	. 1003	2,I
. 522	. 18155	210	. 39983	218	. 90905	17,4	. 1001	2,I
. 523	. 18395	2.9	. 40201	218	. 90922	17,3	. 0998	2,1
. 524	. 18536	2.10	. 40419	219	.90939	17,3	. 0996	2,I
1.525	2.18876	2.11	2.40638	219	0.90957	17,3	1.0594	2,1
. 526	. 19117	241	.40857	219	-60974	17,2	. 0692	2,1
. 527	. 19358	2.11	.41075	219	-90991	17,2	.0590	2,1
. 528	. 19599	241	.41296	220	-91008	17,2	.0988	2,I
. 529	- 19840	242	.41516	220	-91025	17, 1	. 0086	2, 1
1. 530	2.20082	242	2.41736	220	0.91042	17,1	1.0084	2,1
. 531	. 20324	242	. 41956	220	. 91060	IZ, I	.0982	2,1
. 532	. 20566	242	. 42176	221	-91077	I7,1	. oc80	2,I
. 533	. 20808	242	.42397	221	-91094	17,0	.0978	2,I
. 534	.2105I	243	. 42618	221	-911II	17,0	. 0976	2,0
1.535	2.21293	243	2.42839	221	0.91128	17,0	1.0974	2,0
. 535	. 21536	2.43	. 43050	222	.91145	16,9	. 0972	2,0
. 537	. 21780	243	. 43282	222	-9116r	16,9	. 0970	2,0
- 538	. 22023	244	. 43504	222	-91178	16,9	.0958	2,0
. 539	. 22257	244	. 43726	222	.91195	16,8	. 0965	2,0
1.540	2.22510	2.41	2.43949	223	0.91212	16,8	I. 0053	2,0
. 541	. 22 \% 55	244	. 41171	223	-91239	16,8	.0961	2,0
-542	. 22999	244	. 44394	223	. 91246	16,7	. 0959	2,0
-543	. 2324.3	245	. 44617	223	.91262	16.7	. 0957	2,0
- 544	. 23488	245	.4484	223	. 91279	16,7	. 0955	2,0
1. 545	2.23733	245	2.45064	22.4	0.91296	16,7	1.0953	2,0
- 546	. 23978	245	. 45288	224	.91312	16,6	. 0951	2,0
. 547	. 21224	246	. 45512	224	.91329	16,6	. 0949	2,0
- 548	. 21469	2.46	- 45736	224	.91345	16,6	. 0947	2,0
. 549	. 24715	2.46	-45961	225	.91362	16,5	.0945	2,0
1.550	2.24961	246	2.46186	225	0.91379	16,5	1.0943	2,0
4	$\boldsymbol{\operatorname { t a n }} \mathbf{g} \mathbf{d} u$	$\bullet \mathrm{Fa}^{\prime}$	\sec gdu	$\triangle \mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} \mathrm{a}$	$\propto \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\infty \mathrm{Fo}^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
I. 550	2.24961	2.46	2.46 I 86	225	0.91379	16,5	1.0943	2,0
. 551	. 25207	246	.46411	225	.91395	16,5	. 0942	2,0
. 552	. 25454	247	. 46636	225	.91411	16,4	.0940	2,0
- 553	.25701	247	. 46852	226	.91428	16,4	. 0938	2,0
. 554	. 25948	247	- 47088	226	.914+4	16,4	. 0936	2,0
1. 555	2.25195	247	2.47314	226	0.91461	16,3	1.0934	2,0
. 556	-. $264+2$	248	-47540	226	. 91477	16,3	. 0933	2,0
- 557	. 26690	248	. 47757	227	.91493	16,3	. 0930	1,9
. 558	. 26938	248	. 47993	227	. 91510	16,3	. 0928	I,9
. 559	. 27185	248	. 4822 I	227	. 91526	16,2	.0926	I,9
1.560	2.27434	. 248	2.48148	227	0.91542	16,2	1.0924	1,9
. 561	.27583	249	. 48575	228	. 91558	16,2	. 0922	1,9
. 562	. 27932	249	. 48903	228	.91574	16,1	. 0920	I,9
.563	.28181	249	. 49131	228	.91591	16, I	. 0918	1,9
. 564	. 28430	249	. 49360	228	. 91607	I6, I	. 0916	I,9
1. 565	2.28579	250	2.49588	229	0.91623	16,1	1.0914	1,9
. 566	. 28929	250	.49817	229	. 91639	16,0	.0912	I,9
.567	. 29179	250	. 50046	229	.91655	16,0	.0911	1,9
. 568	. 29429	230	. 50275	229	.91671	16,0	.0909	1,9
. 569	. 29680	251	. 50505	230	.91687	15,9	. 0907	1,9
1.570	2.29930	251	2.50735	230	0.91703	15,9	1.0905	1,9
. 571	-30181	251	. 50965	230	. 91718	15,9	. 0903	1,9
. 572	. 30432	251	. 51195	230	-91734	15,8	.0901	1,9
. 573	. 30583	25 I	. 51426	23 I	.91750	15.8	. 0899	1,9
. 574	- 30935	252	. 51656	231	.91766	15,8	.0897	1,9
1.575	2.31187	252	2.51887	231	0.91782	15,8	I. 0895	1,9
. 576	-31439	252	. 52119	231	.91797	15,7	. 0894	1,9
. 577	. 31691	252	. 52350	232	-91813	15,7	. 0892	I,9
. 578	- 31943	253	. 52582	232	.91829	15,7	. 0890	1,9
. 579	. 32196	253	. 52814	232	.91845	15,6	. 0888	1,9
1.580	2.32419	253	2.53047	232	0.91850	15,6	1.0886	1,9
. 581	. 32702	253	. 53279	233	. 91876	15,6	. 0884	1,8
. 582	. 32956	254	. 53512	233	.91891	15.6	. 0882	I,8
.583	- 33209	254	. 53745	233	. 91907	15,5	.088I	1,8
. 584	. $33-453$	254	. 53978	233	. 91922	15,5	. 0879	1,8
1.585	2.33717	25.4	2.54212	234	0.91938	15.5	1.0877	I,8
. 586	. 33972	254	. 54.46	234	. 91953	15.4	. 0875	I,8
. 587	. 34226	255	. 54680	234	. 91969	15.4	.0873	I,8
. 588	-3448I	255	-54914	234	. 91984	15.4	. 0871	1,8
. 589	. 34736	255	. 55149	235	. 92000	15.4	.0870	1,8
1.590	$2 \cdot 34991$	255	2.55384	235	0.92015	15.3	1.0868	1,8
. 591	. 35247	256	-55619	235	. 92030	15.3	. 0856	1,8
. 592	. 35502	256	- 55854	236	. 92046	15,3	. 0864	1,8
. 593	. 35758	256	. 56090	236	. 922061	15,2	. 0852	I,8
- 594	. 36015	256	. 56326	236	. 92076	15,2	.085I	I,8
	2.36271	257	2.56562	236	0.92091	15,2	1.0859	I,8
. 596	. 36528	257	. 56798	237	. 92106	15.2	. 0857	I,8
- 597	. 36785	257	- 57035	237	. 92122	15, 1	. 0855	1,8
- 598	- 37042	257	- 57272	237	. 92137	15, 1	. 0853	1,8
- 599	. 37299	258	. 57509	237	.92152	15, I	. 0852	I,8
I. 600	2.37557	258	2.57746	238	0.92167	15, 1	1.0850	I, 8
u	$\tan \operatorname{da} \boldsymbol{x}$	- Fa^{\prime}	sec ged u	* $\mathrm{F}_{0}{ }^{\prime}$	$\sin 9 \mathrm{~d} u$	$\triangle F_{0}{ }^{\circ}$	$\csc \operatorname{cd} u$	- $\mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}^{\prime}$	$\boldsymbol{t a n h} \boldsymbol{u}$	$\omega F^{\prime}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.600	2.37557	258	2.57746	238	0.9216%	15,1	1.0850	1,8
. 601	-37515	258	. 57584	238	. 92182	15,0	. 08.88	I,8
.602	. 38073	258	. 58222	238	. 92197	15,0	. 08.86	1,8
. 603	. 38331	258	. 58860	238	. 92212	I5,0	. 08.8	I,8
. 604	. 38590	259	. 58409	239	. 92227	14,9	. 0843	I,8
1.605	2.38849	259	2.58937	239	0.92242	I4,9	1.0841	1,8
.60'	. 39108	259	. 59156	239	. 92257	İ,9	. 0839	1,7
. 60%	. 39367	259	. 59416	239	.92272	14,9	. 0838	1,7
. 608	. 39626	260	. 59655	240	. 92286	I4,8	. 0836	I,7
. 609	. 39885	250	. 59895	2.40	. 92301	I 4,8	. 0834	I,7
1.610	2.40146	250°	2.60135	240	0.92316	I.4,8	I. 0832	1,7
. 611	. 40406	250	. 60375	240	. 92331	I 4,8	.083I	1,7
. 612	. 40567	251	. 60015	241	. 92346	I4,7	. 0829	1,7
. 613	. 10928	261	. 60857	2.11	. 92360	14,7	. 0827	I,7
. 614	.41189	261	.61098	2.11	. 92375	I4,7	. 0825	I,7
1.615	2.41450	261	2.61339	241	0.92390	14,6	1.0824	I,7
. 616	. 41711	262	. 6158 r	2.42	. 92304	14,6	. 0822	1,7
. 617	. 41973	252	. 61822	242	-92419	I4,6	. 0820	1,7
. 618	. 42235	252	. 62064	$2+2$	-92433	14,6	. 0819	1,7
. 619	. 42497	252	. 62307	$2+2$	-92448	14,5	. .0817	1,7
1.620	2.42760	253	2.62549	243	0.92462	14,5	1.0815	1,7
. 621	. 43022	253	. 62792	243	. 92477	14.5	.0814	I,7
. 622	. +3285	253	. 63035	243	. 92491	1, 5	. 0812	1,7
. 623	- 43548	263	. 63279	2.4	. 92506	I, 4.4	. 0810	I,7
. 624	.43812	254	. 63522	244	. 92520	I, 4	. 0808	I,7
1.625	2.44075	264	2.63767	2.4	0.92535	I4,4	1.0807	1,7
. 626	. 44339	264	.64011	244	. 92549	I 4,3	. 0805	1,7
. 627	.44603	254	. $6+255$	245	. 92563	I4,3	. 0803	1,7
. 628	. 44858	264	. 64500	245	. 92578	I4,3	. 0802	I,7
.629	. 45132	265	. 64745	245	. 92592	14,3	. 0800	I,7
1.630	2.45397	265	2.64990	275	0.92606	I4,2	1.0798	1,7
.63I	. 45662	265	. 65236	246	. 92620	14,2	. 0797	I,7
. 632	-45928	255	. 65482	246	. 92635	14,2	. 0795	I,7
. 633	. 46193	266	. 65728	2.46	. 92649	I4,2	. 0793	1,6
. 634	. 46459	266	. 65974	2.46	. 92663	If, 1	. 0792	1,6
1. 635	2.46725	266	2.66221	247	0.92677	I4,I	1.0790	1,6
. 636	. 46992	266	. 66467	2.47	. 92691	14, 1	.0789	1,6
. 637	-47258	267	. 66715	247	. 92705	If, 1	.0787	1,6
. 638	. 47525	267	. 66962	248	. 92719	14,0	. 0785	1,6
. 639	-47792	267	. 67210	248	. 92733	14,0	.0784	1,6
1. 640	2.48059	267	2.67457	248	0.92747	14,0	1.0782	1,6
. 641	. 48327	268	. 67706	248	.92761	14,0	. 0780	1,6
. 642	. 48595	268	. 67954	249	. 92775	13.9	. 0779	1,6
.643	. 48853	268	. 68303	249	-92789	139	. 0777	1,6
.644	-49131	268	. 68452	249	. 92803	13,9	. 0776	1,6
1.645	2.49400	269	2.68701	249	0.93817	13.9	1.0774	1,6
.646	. 49669	269	. 68951	250	.9283 I	13,8	. 0772	1,6
. 647	. 49938	269	. 69200	250	. 92814	13,8	.0771	1,6
. 6.48	. 50207	269	. 69451	250	. 928858	13,8	. 0769	1,6
. 649	. 50477	270	.69701	250	. 92872	13.7	. 0768	1,6
1.650	2.50746	270	2.69951	251	0.92886	13,7	1.0766	1,6
1	$\tan \mathrm{gdy}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	sec gd u	$\pm \mathrm{Fo}^{\prime}$	$\sin 9 \mathrm{~d} u$	$\omega \mathrm{Fo}^{\prime}$	csced u	$\pm \mathrm{F}^{\prime}$

Natural Hyperbolic Functions.

4	$\boldsymbol{\operatorname { s i n h }} \boldsymbol{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.650	2.50746	270	2.69951	251	0.02385	13,7	1.0766	1,6
. 651	. 51017	270	.70202	251	. 92889	I3,7	.0754	1,6
. 652	. 51287	270	. 70454	251	.92913	13,7	. 0763	1,6
. 653	. 51557	271	. 70705	252	. 92927	13,6	.0761	1,6
. 654	. 51828	271	. 70957	252	. 92240	13,6	.0760	1,6
1. 655	$2 \cdot 52099$	271	2.71209	252	0.92954	13,6	1.0758	1,6
. 656	. 52371	271	. 71461	252	. 92968	13,6	. 0756	1,6
. 657	. 52542	272	. 71713	253	. 9298 r	13,5	. 0755	1,6
. 658	. 52914	272	. 71966	253	. 92905	13,5	. 0753	1,6
. 659	. 53185	272	. 72219	253	. 93008	I 3,5	. 0752	1,6
1.650	2.53459	272	2.72472	253	0.93022	I3,5	1.0750	1,6
. 661	. 53731	273	. 72726	254	. 93035	13.4	. 0749	I, 6
. 662	-54004	273	. 72980	254	. 93049	13,4	. 0747	I,5
.653	-54277	273	. 73234	254	. 93062	13,4	.0746	1,5
. 66.4	-54551	273	. 73480	255	. 93075	13,4	. 07.4	1,5
1.655	2.54824	274	2.73743	255	0.93089	13,3	1.0742	1,5
. 666	. 55098	274	. 73998	255	. 93102	13,3	.0741	I,5
. 607	. 55372	274	. 74253	255	. 93115	13,3	. 0739	I, 5
. 668	- 55647	275	. 74509	256	. 93129	13,3	. 0738	1,5
. 659	-5592I	275	.74755	256	-93142	13,2	. 0736	1,5
1.670	2.56196	275	2.75021	256	0.93155	13,2	1.0735	I 5
. 671	. 56.47 I	275	. 75277	256	. 93168	13.2	. 0733	1,5
. 672	. 56747	276	. 75534	257	. 93182	13,2	. 0732	1,5
. 673	- 57022	276	. 75791	257	. 93195	13, 1	. 0730	1,5
. 674	. 57298	275	. 760.48	257	. 93208	13,I	. 0729	1,5
1.675	2.57574	275	2.76305	258	0.93221	I3, 1	1.0727	1,5
. 676	. 57851	277	. 76563	258	. 93234	13,1	. 0726	I,5
. 677	. 58127	277	.76821	258	. 93247	13,0	. 0724	1,5
. 678	. 58.104	277	. 77079	258	. 93260	I3,0	. 0723	I,5
. 679	. 58682	277	. 77338	259	. 93273	I3,0	. 0721	1,5
1.680	2.58959	27.9	2.77596	259	0.93286	I3,0	1.0720	1,5
.68I	. 59237	278	. 77856	259	. 93299	13,0	. 0718	1,5
. 682	. 59515	278	. 78115	260	. 93312	12,9	. 0717	I,5
. 683	. 59793	278	. 78375	250	. 93325	12,9	. 0715	I,5
. 684	. 60072	279	. 78535	260	. 93338	12,9	. 0714	1,5
I. 685	2.60350	279	2.78895	260	0.93351	12,9	1.0712	I,5
. 686	. 60639	279	.79I55	261	. 93364	12,8	. 0711	1,5
. 687	. 60909	279	. 79416	251	. 93376	12,8	. 0709	1,5
. 688	.67188	280	. 79677	261	. 93389	12,8	.0708	1,5
. 689	. 61468	280	. 79938	261	. 93402	12,8	. 0706	I,5
1.690	2.61748	280	2.80200	262	0.93415	12,7	1.0705	1,5
. 691	. 62028	280	. 80.462	262	. 93427	12,7	. 0703	1,5
. 692	. 62309	28 I	. 80724	262	. 93440	12,7	. 0702	1,5
. 693	. 62590	28 I	. 80987	263	. 93453	12,7	. 0701	I,5
. 694	. 62871	281	.81249	263	. 93465	12,6	. 0699	1,4
1.695	2.63152	282	2.81512	263	0.93478	12,6	1. 0698	I,4
. 696	. 63434	282	.81776	263	. 93491	12,6	.0696	I,4
. 697	. 63716	282	. 82039	264	. 93503	12,6	. 0695	1,4
. 698	. 63908	282	. 82303	264	. 93516	12,5	. 0693	I,4
. 699	. 64280	283	. 82567	264	.93538	12,5	. 0692	I,4
1.700	2.64563	283	2.82832	265	0.93541	12,5	1.0691	1,4
\checkmark	$\tan \mathrm{gd} \mathrm{u}$	* F O^{\prime}	sec sed	- F\% ${ }^{\prime}$	sin od u	${ }^{\circ} \mathrm{Fa}^{\prime}$	cacesea	$\cdots \mathrm{Fa}^{\prime}$

Smithsonian Tamle

Natural Hyperbolic Functions.

4	$\boldsymbol{\operatorname { s i n h }} \boldsymbol{u}$	$\omega \mathrm{F}^{\prime}$	$\cosh u$	$\omega \mathrm{F} \mathrm{i}^{\prime}$	tanh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
1.700	2.64563	28_{3}	2.82832	265	0.93541	12,5	1.0591	I,4
.701	. 4.4846	283	. 8300 \%	255	. 93553	12,5	.ci39	1,4
-702	. 63129	283	. -33\%	255	-93560	12,5	.0.03	I, 4
.703	. 05413	284	. 83627	255	-935-8	12,4	.0.83	I, 4
.704	. 65605	$3{ }^{4} 4$. 3882	250	.93591	12,4	.0685	I,4
1.703	2.65981	28.	2.84158	256	0.93503	12,4	1.or83	I,4
. 700	. 60.3265	28.	. $8+424$	256	. 93.15	12,4	.0082	I, 4
. 707	. 60550	285	.8490	257	-93628	12,3	.0ك81	I,4
. 708	. 66834	285	. 84057	267	. 93540	12,3	.0679	I, 4
.709	. 67119	285	.85224	267	. 93652	12,3	.0678	I, 4
1.710	2.67405	285	2.85491	257	0.23655	12,3	1.0676	I,4
.711	.67690	283	. 85759	258	-9357	12,2	. 0675	1,4
.712	. 67025	285	.83027	268	-93589	12,2	. 0674	I, 4
.713	.68252	285	.83295	268	-93701	12,2	.0672	I, ${ }_{4}$
. 714	. 68549	287	.8j563	269	.93714	12,2	.0571	I,4
1.715	2.68836	287	2.85332	259	0.93725	I2,2	1.0569	1,4
. 715	. 69123	287	. 87101	269	. 93738	I2, 1	. 0668	1,4
. 717	.60410	287	.87370	259	-93750	12.1	. 0666	1,4
. 718	. 6×697	288	. 87540	270	-93762	12, 1	. 0665	I,4
. 719	. 69985	288	. 82010	270	-93774	12,1	. 0664	1,4
1.720	2.70273	288	2.88180	270	0.93785	12,0	1.0663	1,4
. 721	. 70561	288	. $88+50$	2-1	. 93708	12,0	. 0661	1,4
. 722	. 70850	289	. 88721	271	-93810	12,0	. 0660	1,4
. 723	. 71139	283	. 88962	271	-93822	12,0	. 0658	1,4
. 724	. 71428	289	. 89263	271	.93834	12,0	. 0657	1,4
1.725	2.71717	290	2.80335	272	$0.938+6$	11,9	1.0656	1,4
. 725	. 72007	290	. 8 C 807	272	. 93858	II,9	. 0654	1,4
. 727	. 72297	290	.90079	272	-93870	II,9	. 0653	1,3
. 728	. 72387	290	. 9035 I	273	-93882	I 1,9	. 0652	1,3
. 729	. 72878	291	. 90624	273	. 93824	I 1,8	. 0650	I,3
1.730	2.73168	291	2.90897	273	0.93505	IT,8	1.0649	1,3
. 731	. 73460	291	.91170	273	. 93917	I 1,8	. 0648	I,3
. 732	. 73751	291	. 91444	274	. 93929	I I, 8	. 05.46	1,3
. 733	. 74042	292	.91718	274	-93941	If, S	. 0645	1,3
. 734	. 74334	292	. 91992	274	-93933	11,7	. 0644	1,3
1.735	2.74626	292	2.92266	275	0.93964	II, 7	1.0642	1,3
. 736	. 74919	293	. 9254 4	275	. 93976	II, 7	. 0641	1,3
. 737	. 752 II	293	. 92816	275	-93988	11,7	. 0640	1,3
. 738	. 75504	293	. 93092	275	-93999	I 1,6	. 0638	1,3
. 739	. 75798	293	. 93367	276	. 9401 I	IT,6	. 0637	1,3
1.740	2.76091	294	2.93543	276	0.94023	I1,6	1.0636	1,3
. 741	. 76385	29.4	. 93919	276	-94034	I 1,6	. 0634	1,3
. 742	. 76679	294	. 94196	277	-94046	I 1,6	. 0533	1,3
. 74.4	. 76973	294	. 94473	277	-94057	II,5	. 0632	1,3
. 744	. 77268	295	. 94750	277	. 94069	IT,5	. 0631	I,3
1.745	2.77563	295	2.95027	278	0.94080	I1,5	1.0629	1,3
. 746	. 77858	295	. 95305	278	. 94092	II,5	. 0528	I,3
. 747	.78153	296	. 95583	278	-94103	II,4	. 0627	r,3
. 748	. 7849	296	. 95861	278	-9+115	II,4	. 0625	I,3
. 749	. 78745	296	. 961.40	279	.94126	II,4	.0624	I,3
1.750	2.7904 T	296	2.96419	279	0.94138	II,4	1.0623	I,3
4	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	${ }^{*} F_{u^{\prime}}$	sec gd u	- FO^{\prime}	$\sin \operatorname{dd} 4$	$\omega \mathrm{Fu}^{\prime}$	csc ody	$\omega \mathrm{Fu}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega F^{\prime}{ }^{\prime}$	cosh u	$\omega \mathrm{F}{ }^{\prime}$	$\boldsymbol{t a n h} u$	ωF^{\prime}	coth u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
1.753	2.79041	295	2.50419	279	0.94138	II,4	1.0523	I,3
. 751	- 79338	297	. 65058	279	. 24149	11,4	.0621	I,3
. 752	. 79535	297	-96978	280	-. 4160	11,3	. 0520	1,3
. 753	- 29632	297	.97257	280	. 917172	II, 3	. 0519	I,3
.754	. 80239	298	. 97537	280	.941 ${ }^{\text {c }}$	II,3	. 0618	I,3
1.755	2.80527	298	2.978i8	28 I	0.94194	II,3	1.0516	1,3
. 755	. 80825	298	. 58008	281	. 04205	II,3	. 0615	I,3
. 757	. Siriz	298	- 88379	28 I	. 0.4217	II, 2	.06I4	I,3
. 758	. 81422	299	. 98551	28 I	. $9+4228$	II,2	. 0513	I,3
.759	. 8172 I	299	. 98042	282	. 94239	II,2	.06II	I,3
1.760	2.82020	299	2.99224	282	0.94250	IT,2	1.0610	1,3
. 761	. 82319	300	. 99506	282	. 94.261	II,I	. 0509	ז,3
. 762	. 82519	300	.90-89	283	. 94273	II, 1	. 060 S	I,3
. 763	. 82919	300	3.00072	283	. 94284	II,I	.0'0's	I,2
.754	.83219	300	. 00355	283	. 94295	II, I	. 0605	1,2
1.755	2.83519	301	3.00538	284	0.04305	II, I	1.0504	1,2
. 765	.83820	301	. 00022	28.4	. $9+317$	I 1,0	. 0603	1,2
. 767	. $8+121$	301	. 01205	28.4	. $9+3328$	II,O	. 0601	1,2
. 768	. $8+422$	301	. 01.400	284	-94339	11,0	. 0500	1,2
.769	. 84724	302	. 01774	285	. 94350	II,O	. 0599	1,2
1.770	2.85026	302	3.02059	285	0.94361	II, 0	1.0598	1,2
. 771	. 85328	302	. $023+4$	285	. 9.4372	10,9	. 0595	1,2
. 772	. 85631	303	. 02630	286	. 94383	10,9	. 0595	1,2
. 773	. 85933	303	. 02916	285	. 94394	10,9	. 0594	I,2
. 774	. 86237	303	. 03202	286	-94403	10,9	. 0593	1,2
1.775	2.85540	303	3.03488	287	0.94416	10,9	1.0591	I,2
. 775	. 85814	304	. 03775	287	. 94426	10,8	.0590	1,2
. 777	. 87147	30.4	. 0.4062	287	- 94437	10,8	. 0589	1,2
. 778	. 87452	304	. 04349	287	-94148	10,8	.0588	1,2
. 779	. 87756	305	. 04637	288	-94459	10,8	.0587	1,2
1.780	2.8806 I	305	3.04925	288	0.94470	10,8	1.0585	1,2
.781	. 88366	305	. 05213	288	. 9.4480	10,7	.0584	1,2
. 782	. 88571	306	.05501	289	. 9449 I	10,7	. 0583	1,2
. 783	. 88977	306	. 05790	283	. 94502	10,7	.0582	I, 2
.784	. 89283	306	. 06079	289	-94513	10,7	. 0581	1,2
1.785	2.89589	306	3.06369	290	0.94523	10,7	1.0579	1,2
. 785	. 89896	307	. 06659	290	. $9+534$	10,6	. 0578	I, 2
. 787	. 90202	307	. 05949	290	. 94544	10,6	. 0577	1,2
.788	- 90510	307	. 07239	291	. 94555	10,6	. 0576	I, 2
. 789	.90817	308	. 07530	291	. 94565	10,6	. 0575	1,2
1.790	2.91125	308	3.07821	291	0.94575	10,6	1.0574	1,2
.791	. 91433	308	.08i12	291	. 9.4587	10,5	. 0572	1,2
. 792	. 91741	308	. 08.803	292	.94597	10,5	. 0571	I,2
. 793	. 923049	309	. 08505	292	.94608	10,5	. 0570	1,2
. 794	. 92358	309	. 08888	292	.94618	10,5	. 0569	1,2
1.795	2.92667	309	3.09383	293	0.94629	10,5	1.0568	1,2
. 796	. 92977	310	. 09573	293	. $9+639$	10,4	. 0566	1,2
. 797	. 93287	310	.0385	293	.94649	10,4	. 0555	1,2
. 798	. 93597	310	. 10160	294	. 94660	10,4	.0564	1,2
.799	.93907	310	. 10453	294	-94670	10,4	. 0563	1,2
7. 800	2.94217	3 II	3. 10747	294	0.94681	10,4	1.0552	1,2
\square	$\tan \operatorname{gd} \mathrm{y}$	$\infty \mathrm{Fe}^{\prime}$	sec gdu	© Fg^{\prime}	$\sin 9 \mathrm{da}$	© Fo^{\prime}	cse gd u	$\pm \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{6}{ }^{\prime}$	cosh u	$\omega \mathrm{F}^{\circ}$	tanh u	$\omega \mathrm{F}{ }^{\prime}$	coth u	$\omega F_{0}{ }^{\prime}$
1.800	2.94217	311	3.10747	294	0.9468 I	10,4	1.0562	1,2
. 801	.94528	311	. $110+2$	295	. 94691	10,3	. 0561	1,2
. 802	.94840	311	. II335	295	. 94701	10,3	. 0550	1,2
. 803	. 95151	312	. 11631	295	.94712	10,3	. 0558	I, I
. 80.4	. 95463	312	. 11927	295	. 94722	10,3	. 0557	I, I
1.805	2.93775	312	3.12222	296	0.94732	10,3	1.0556	I,I
. So,	. 96087	313	. 12518	296	. 94742	10,2	. 0555	I, I
. 807	. 95400	313	. 12814	296	. 94753	10,2	. 0554	I, I
. 808	.96-13	313	. 13 III	297	. 94753	10,2	.0533	I, I
. 809	.97026	313	. 13408	297	-94773	10,2	. 0552	I, I
I. 810	2.97340	314	3.13705	297	0.94783	10,2	1.0550	I,I
. 817	. 97534	314	. 14003	298	. 94793	10, I	. 0549	I, I
.812	. 97968	314	. $\mathrm{T}+300$	208	.94803	10, 1	. $05+8$	I, I
. 813	. 08282	315	. 14509	298	.94814	10, I	.0547	I, I
.814	. 98597	315	. 14897	299	-94824	10,I	. 0546	I,I
1.815	2.98912	315	3.15196	299	0.94834	10, I	1.0545	I, I
. 815	. 99227	315	. 15495	299	. 9484	10,0	. $05+4$	I, I
.817	-99543	316	. 15794	300	-94854	10,0	.0543	I, I
. 818	. 90859	316	. 16094	300	-94854	10,0	. 0541	I, I
. 810	3.00175	316	. 56394	300	-94874	10,0	. 0540	I, I
$1.8 \mathbf{0}$	3.00492	317	3.16694	300	0.94884	10,0	1.0539	I, I
.821	. 00808	317	.16995	301	. 9.489	IO,O	. 0538	1,I
. 822	.01125	317	. I 7296	301	. 94904	9,9	. 0537	I, I
. 823	.014 13	318	. 17597	301	.94914	9,9	. 0536	I, I
. 824	. 01751	318	. 17809	302	.94924	9,9	. 0535	I, I
1.825	3.02079	318	3.18201	302	0.94933	9,9	1.0534	r, 1
. 826	. 02397	319	. 18503	302	-94943	9,9	. 0533	I, I
. 827	. 02716	319	. 18805	303	. 94953	9,8	. 0532	I, I
. 828	. 03035	319	. 19108	303	- 94953	9,8	. 0530	I, I
. 829	. 03354	319	. 19411	303	-94973	9,8	. 0529	I,I
1.830	3.03574	320	3. 19715	304	0.94983	9,8	1.0528	I, I
.831	. 03994	320	. 20019	304	. 94992	9,8	. 0527	I, I
. 832	. 04314	320	. 20323	304	. 95002	9,7	. 0526	I, I
. 833	. 0.4634	32 I	. 20527	305	. 95012	9,7	. 0525	I, 1
. 834	. 04955	321	. 20932	305	. 95022	9,7	. 0524	I, I
1.835	3.0527	321	3.21237	305	0.95031	9.7	1.0523	I, I
. 836	. 05597	322	. 21543	306	.9504x	9,7	. 0522	I, I
. 837	. 05919	322	. 21849	305	. 95051	9,7	.052I	I, I
. 838	. 05241	322	. 22155	306	.95060	9,6	. 0520	I, I
. 839	. 06563	322	. 22.461	307	. 95070	9,6	.0519	I, I
1.840	3.05885	323	3.22768	307	0.95080	9,6	I.0518	I, I
. 841	.07209	323	. 23075	307	. 95089	9,6	.0516	I, I
. 842	.07532	323	. 23382	308	. 95090	9,6	.0515	r, I
. 843	. 07856	324	. 23690	308	. 95108	9,5	.0514	r, 1
. 844	.08180	324	. 23998	308	.95118	9,5	.0513	I, I
1.845	3.08504	324	3.24306	309	0.95127	9,5	I. 0512	I, I
. 8.85	. 08828	325	. 246 T 5	309	. 95137	0.5	.0511	r,o
. 847	. 09153	325	. 2.4924	309	.95146	9,5	.0510	1,0
. $8 \div 8$. 09478	325	.25233	309	. 95156	9,5	. 0509	1,0
. 849	. 09803	326	.25543	310	.95165	9,4	. 0508	1,0
1.850	3. 10129	326	3.25853	310	0.95175	9,4	1.0507	1,0
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} \mathbf{u}$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	sec gd u	$\infty F_{0}{ }^{\prime}$	singda	$\triangle F_{0}{ }^{\prime}$	csc od a	$\infty \mathrm{Fo}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega F^{\prime}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{\mathbf{u}}{ }^{\prime}$
1.850	3.10129	326	3.25853	310	0.95175	9,4	1.0507	1,0
. 851	. 10455	326	. 25163	310	. 9518.	9,4	.050 5	I, O
. 852	. 1078I	326	. 26474	311	.95193	9,4	. 0505	1,O
. 853	. 11108	327	. 25785	3 II	-95203	9,4	.0504	1,0
. 854	. 11435	327	. 27096	311	-95212	9.3	. 0503	I, O
1.855	3.11762	327	3.27408	312	0.95221	9,3	1.0502	1,0
. 856	. 12090	328	.2\%719	312	. 93231	9,3	.0501	I, 0
. 857	-12418	328	. 28032	312	-95240	9,3	. 0500	I,O
. 858	. 12746	328	. 28344	313	. 95249	9,3	. 0499	I,O
. 859	. 13074	329	. 28657	313	. 95259	9,3	. 0498	1,0
1.860	3.13403	329	3.28970	313	0.95258	9,2	1.0497	1,O
.85I	. 13732	329	. 29284	3 I 4	. 95277	9,2	. 0.455	I, 0
. 862	. I4062	330	. 29598	3 I 4	.95285	9,2	. 0.495	1,0
. 853	. I4392	330	. 29912	31.4	. 95205	9,2	. 0.404	1,0
. 864	- 14722	330	. 30227	315	-95305	9,2	. 0493	1,0
1.855	3.15052	331	$3 \cdot 305.12$	315	0.95314	9,2	I. 0492	1,0
. 866	. 15383	33 I	. 30857	315	-95323	9, I	. 0.491	1,0
. 857	. 15317	331	.31172	316	. 95332	9,I	. 0.490	I, 0
. 858	. 16045	331	. 31488	316	-95341	9, I	. 0.489	1,0
. 859	. 16377	332	. 3180.4	316	-95350	9,I	. 0.48	1,O
1.870	3.16709	332	3.32121	317	0.95359	9,I	I. 0487	1,0
. 871	. 17041	332	- 32438	317	. 95368	9,0	. 0.485	1,0
.872	. 17374	333	. 32755	317	-953-8	9,0	. 0485	I,O
. 873	. 17706	333	. 33073	318	. 95387	9,0	. 0484	1,0
. 874	. 18040	333	- 33390	318	.95396	9,0	. 0.483	1,0
1.875	3.18373	$3+4$	3.33709	318	0.95405	9,0	1.0482	1,0
. 875	. 18707	334	. 34027	319	-95414	9,0	.0481	1,O
. 877	. 19041	334	-34346	319	-95422	8,9	.0480	I,O
. 878	. 19376	335	-34665	319	-95431	8,9	. 0.479	1,0
. 879	. 1971 I	335	. 34985	320	.954.90	8,9	.0478	I,O
1.880	3.20046	335	3.35305	320.	0.95449	8,9	1.0477	I, 0
. 83 I	. 20381	336	. 35625	320	. 95458	8,9	. 0476	1,0
. 832	. 20717	336	. 35946	321	. 55457	8,9	. 0.475	I, 0
. 883	. 21053	336	. 36266	321	-95475	8,8	. 0474	1,O
. 884	. 21390	337	- 36588	321	-95485	8,8	. 0473	1,O
1.885	3.21726	337	3.36909	322	0.95493	8,8	1.0472	1,O
. 885	. 22063	337	. 3723 I	322	. 95502	8,8	. 0471	1,0
. 887	. 22401	338	. 37553	322	.95511	8,8	. 0470	1,0
. 888	. 22738	338	-37876	323	-95520	8,8	. 0469	1,0
. 887	. 23076	3.38	.38199	323	-95529	8,7	. 0468	I,O
I. 890	3.23415	339	3.38522	323	0.95537	8,7	1.0467	1,0
. 891	. 23753	339	. 38846	32.4	. 95546	8,7	. 0.466	1,0
. 892	. 24093	339	. 39170	324	. 95555	8,7	.0465	1,0
. 893	. 24432	339	- 39494	324	. 95563	8,7	. 0464	1,0
. 894	. 24772	340	. 39818	325	-95572	8,7	. 0463	0,9
1.895	3.25112	340	3.40143	325	0.9558 I	8,6	1.0462	0,9
. 896	. 25452	340	. 40469	325	. 95589	8.6	. 0461	0,9
. 897	. 25792	341	. 40794	326	. 95598	8.6	. 0460	0,9
. 898	. 26133	341	. 41120	326	. 95607	8,6	.0460	0,9
. 899	. 26475	341	. 41447	326	. 95615	8,6	. 0459	0.9
1.900	3.26816	342	3.41773	327	0.95624	8,6	1.0458	0,9
\#	$\tan 9 \mathrm{da}$	$\omega F^{\prime}{ }^{\prime}$	sec gd u	$\pm F_{0}{ }^{\prime}$	$\sin 98 \mathrm{z}$	$\cdots F_{0}{ }^{\prime}$	cseced a	$\bullet F_{3}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{F}$	cosh 4	$\omega \mathrm{F}$:	$\tanh \mathrm{u}$	$\omega \mathrm{F}_{j}$	coth u	$\omega \mathrm{Fu}^{\prime}$
I.900	3.25816	342	3.4173	327	0.95624	8,6	1.0458	0,9
. 901	. 27150	$3+2$	- 42100	32\%	. 9 ± 533	8,5	.0457	0,9
. 902	. 27500	$3+2$	- $+2+27$	328	. 956541	8,5	. $0+536$	0,9
-903	. 27843	343	- +2	328 328	-95649	8,5	. $0+55$	0,9
. 904	. 28186	343	- +3083	328	.95558	8,5	. $0+554$	0,9
I. 905	3.28529	343	$3 \cdot 43+12$	329	0.95565	8.5	1.0453	0,9
. 905	. 238873	344	- $+3 \times 40$	329	. 9555	8,5	. $0+52$	0,9
. 907	. 29217	344	- +109	329	. 9543	8,4	. 0451	-,9
. 908	.2956!	344	. +1390	330	. 95592	8,4	. $0+50$	0,9
-909	. 29906	345	+4,28	330	. 95700	8,4	. $0+49$	0,9
1.910	3.30250	345	3.430 38	330	0.95709	8,4	1. 0448	0,9
.91I	. 30596	345	. 453 S	33 I	. 95717	8,4	. 0447	0,9
. 912	. 30041	345	- + FTV	331	.95725	8,4	. 0447	0,9
. 913	. 31287	345	-405I	331	. 95734	8,4	. 0446	-,9
.914	. 31633	346	. 45382	332	.93742	8,3	. 0445	0,9
1.915	3.31980	347	3.467 I 4	332	0.95750	8,3	1.044	0,9
. 916	. 32327	347	- +7045	332	.95759	8,3	.0443	0,9
.91\%	-32574	347	-47379	333	. 95757	8,3	. 0442	0,9
. 918	-33021	$3+8$	-4712	333	.95775	8,3	. 0441	-,9
.919	-33369	348	. 48045	333	. 95783	8,3	. $0+40$	0,9
1.920	3.33718	378	3.48378	334	0.95792	8,2	1.0439	0,9
. 921	. $3+1066$	$3+9$. +8 -72	334	. 95800	8,2	. 0438	0,9
. 923	. 34415	349	. +5046	334	.95808	8,2	. 0438	-,9
. 923	-34764	349	. 4038 I	335	.95816	8,2	. 0437	0,9
. 924	. 35114	350	- 49716	335	. 95825	8,2	. 0436	0,9
1.925	3.35-64	350	3.50051	335	0.95833	8,2	1.0435	0,9
. 926	. 35814	350	. 50387	336	.958 .41	8,1	. 0434	0,9
. 927	. 36164	35 I	-50,23	336	-95849	$8, \mathrm{I}$. 0433	0,9
.928	. 36515	351	- 51039	337	. 95885	8 8, I	. 0432	0,9
. 929	-36857	351	. 51395	337	. 95855	8,I	. 0431	-,9
1.930	3.37218	352	3.51733	337	0.95873	$8, \mathrm{I}$	1.0430	0,9
.931	-37570	352	- 52070	338	.95881	8 8, 1	. 0430	0,9
. 932	- 37922	352	- 32408	338	. 95800	8,1	. 0429	0,9
-933	. 38275	353	- 52745	338	-95898	8,0	. 0428	0,9
-934	-38528	353	. 53085	339	. 95906	8,0	. 0427	0,9
1.935	3.3898	353	3.53423	339	0.95914	8,0	1.0426	0,9
. 936	. 39335	354	. 53763	339	. 95922	8,0	. 0425	0,9
-937	. 39689	354	- 54102	340 340	. 95930	8,0	. 0424	0,9
. 938	. 40043	354	- $54+42$	340	-95938	8,0	. $0+23$	0,9
. 939	. 40397	355	-54782	340	-95945	7,9	. 0423	0,9
I.940	3.40752	355	3.55123	341	0.95953	7,9	1.0422	0,9
.941	. 411108	355	- 55464	$3+1$. 95961	7,9	. 0421	0,9
. 942	- 41463	356	. 58805	34 I	. 95969	7,9	. 0420	0,9
. 943	. 41819	356	- 56417	342	. 95977	7,9	. 04119	-0,9
-944	. 42176	356	. 56489	342	. 95985	7,9	. 0418	0,9
1.945	$3 \cdot 4532$	357	3.5583 I	343	0.95993	7,9	1.0417	0,9
. 946	. 42889	357	-57174	343	.96001	7,8	. 0417	0,9
. 947	-43247	358 358	- 37517	343	. 960009	7,8	. 0416	-0,9
. 948	-43504	358	-57850	$3+4$.96016	7,8	. 0415	-,9
. 949	. 43962	358	. 58204	344	. 95024	7,8	. 0414	0,9
1.950	3.4432 I	359	3.58548	344	0.96032	7,8	1.0413	0,8
u	$\operatorname{tangodu}$	$\omega \mathrm{Fo}^{\prime}$	sec gd u	${ }^{*} \mathrm{Fo}^{\prime}$	$\boldsymbol{\operatorname { s i n }} \mathrm{gd} \mathrm{u}$	$\pm \mathrm{Fo}^{\prime}$	csc gd u	${ }^{*} \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega F_{6}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{4}{ }^{\text {b }}$	$\tanh u$	$\omega \mathrm{F}^{\prime}{ }^{\text {d }}$	coth u	$\omega \mathrm{Fa}^{\prime}$
1.950	3.1432 I	359	3.58548	344	0.96032	7,8	1.0413	0,8
.951	. 44679	359	. 58893	345	. 06040	7,8	. 0412	
. 952	. 45038	359	- 59237	345	. 96047	7,7	. 0412	
. 953	. 45398	360	- 59583	$3+5$. 95055	7,7	. 0411	
.954	. 45758	360	- 59928	$3+6$. 96053	7,7	. 0410	
1.955	3.46118	360	3.60274	3.46	0.95071	7,7	1.0409	0,8
. 955	. 46478	36 I	. 60320	346	.960,8	7,7	. 0.108	
.957	. 46839	261	. 60957	34	. 95085	7,7	. 0.407	
. 958	. 47200	361	. 61314	345	. 95094	7,7	. 0.407	
. 959	. 47562	362	. 61662	$3+8$.96101	7,6	. 0.406	
1.950	3.47923	362	3.62009	348	0.95109	7,6	1.0 .405	0,8
. 961	. 48286	362	. 62357	3.18	. 96117	7,5	. 0404	
. 952	. 486	363	. 62706	349	. 96124	7,6	. 0403	
. 963	. 4901 I	363	. 63055	349	. 96132	7,6	. 0.402	
. 954	. 49374	353	. $63+404$	349	. 96139	7,6	.0 .402	
I. 965	3.49738	364	3.63753	350	0.96147	7,6	1.O401	0,8
. 966	. 50102	364	. 64103	350	. 95155	7,5	. 0.400	
. 957	. $50+66$	364	. $6+454$	350	. 96152	7,5	. 0399	
. 968	. 50331	365	. 64804	351	.95170	7,5	. 0398	
. 969	. 51196	365	. 65155	351	. 9517	7,5	. 0397	
1.970	3.51561	366	3.65507	352	0.96185	7,5	I. 0397	0,8
. 971	. 51927	366	. 65858	352	. 96192	7,5	. 0396	
. 972	. 52293	365	. 66211	352	. 56199	7,5	. 0395	
. 973	. 52659	367	. 65563	353	. 95207	7,4	. 0394	
. 974	. 53026	367	. 66916	353	.96214	7,4	. 0393	
1.975	3.53393	367	3.67269	353	0.96222	7,4	I. 0393	0,8
. 975	. 53760	368	. 67623	354	. 96229	7,4	. 0392	
. 977	. 54128	368	. 67977	$35-4$.95237	7,4	. 0391	
.978	. 54195	368	.683.31	354	. $962+4$	7.4	. 0390	
. 979	. 54855	369	. 68586	355	.9525I	7,4	.0389	
1.980	$3 \cdot 55234$	369	3.69041	355	0.96259	7,3	1.0389	0,8
. 681	. 55603	369	. 69395	356	. 96256	7,3	. 0388	
. 982	. 55972	370	. 69752	356	. 96273	7,3	. 0387	
. 983	. 56342	370	. 70108	356	. 96281	7,3	. 0386	
. 984	. 56713	370	. 70.465	357	.95288	7,3	. 0385	
1.985	3.57083	371	3.70821	357	0.96295	7,3	1.0385	0,8
.985	- 57454	371	. 71179	357	. 96302	7,3	.0384	
. 987	. 578826	372	. 71536	358	. 95310	7,2	.0383	
. 988	. 58197	372	. 71894	358	. 96317	7,2	. 0382	
. 989	.58569	372	. 72253	359	. 95324	7,2	. 0382	
1.990	3.58942	373	3.726II	359	0.9533 I	7,2	1.0381	0,8
. 991	. 59315	373	. 72971	359	.96339	7,2	. 0380	
. 992	. 59588	373	. 73330	360	.96346	7,2	. 0379	
. 993	. 60061	374	. 73690	360	. 96353	7,2	. 0379	
. 994	. 60435	374	. 74050	360	.96360	7, I	. 0378	
1.995	3.60809	374	3.74411	361	0.06367	7,1	1.0377	0.8
. 996	. 61184	375	. 74772	361	. 96374	7,1	.0376	
. 997	. 61559	375	. 75133	362	. 96382	7,1	. 0375	
. 998	. 61934	375	. 75495	362	. 96389	7, I	. 0375	
. 999	. 62310	376	. 75857	362	. 96396	7,1	. 0374	
2.000	3.62686	375	3.76220	363	0.96403	7,1	1.0373	0,8
4	$\tan \mathrm{gd}$	$\sim F_{0}{ }^{\prime}$	sec gda	$\sim \mathrm{Fa}^{\text {a }}$	$\sin 9 \mathrm{da}$	- Fg^{\prime}	\csc od a	$\triangle \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}$.	cos'7 4	$\omega \mathrm{F}_{j^{\prime}}$	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.000	3.62゙85	375	3.76230	353	0.95403	7,1	1.0373	0,8
. 001	$.630{ }^{\circ}$	372	.76582	353	. 06	7,1	.0372	
. 052	. 03439	377	.76046	353	. 96417	7,0	.0372	
. 003	. 63815	35	.7730)	34	. 96424	7,0	.0371	
. 004	.64194	370	-21573	364	. 9543 I	7,0	.0370	
2.005	3.64572	378	3. 28033	365	0.96438	7,0	1.0369	0,8
. 005	. 61950	3-8	. 88.802	355	. 66415	7,0	. 0359	0,8
. 007	. 65328	379	. $-8,68$	35	. 56453	7,0	. 0368	0,7
. 008	. 65,07	379	. 79133	356	. 96459	7,0	. 0367	
.000	.65087	379	. 50499	365	.96466	6,9	. 0365	
2.010	3.65466	380	3.79853	365	0.96473	6,9	1.0356	0,7
. 011	. 66845	380	. 80232	367	. 06.480	6,9	. 0355	
.012	. 6,7227	38 I	. 80559	307	. 95487	6,9	. 0364	
. 013	. 6,7508	38 T	. 80956	368	. 96493	6,9	. 0363	
. 01.4	. 67989	3 SI	.81334	368	. 95500	6,9	. 0363	
2.015	3.68370	382	3.81702	368	0.95507	6,9	1.0352	0,7
. 016	. 08752	382	.82071	369	. 96514	6,9	. 0361	
. 017	. 69134	382	. 82440	369	. 96521	6,8	. 0360	
. 18	. 69517	383	. 82800	370	. 95528	6,8	. 0360	
. 019	. 69800	383	. 83179	370	. 96535	6,8	. 0359	
2.020	3.70283	384	3.83549	370	0.96541	6,8	1.0358	0,7
. 021	. 70657	384	. 83919	371	. 96548	6,8	. 0358	
. 022	.71051	384	. 84290	371	. 96555	6,8	. 0357	
. 0.23	. 71.436	385	. 84562	371	. 96562	6,8	. 0356	
. 024	. 7182 I	385	. 85033	372	. 96568	6,7	. 0355	
2.025	3.72205	385	3.85405	372	0.96575	6,7	1.0355	0,7
.025	. 72591	385	. 857.8	373	. 95582	6,7	. 0354	
. 027	. 72977	385	. 85150	373	. 96587	6,7	. 0353	
. 028	. 73354	387	. 85532	373	. 96595	6,7	. 0353	
. 029	. 73750	387	.86897	374	. 95602	6,7	. 0352	
2.030	3.74138	387	3.87271	374	0.96609	6,7	1.0351	0,7
.031	. 74525	388	. $8-645$	375	. 96615	6,7	. 0350	
. 032	. 74913	388	. 88020	375	. 96622	6,6	. 0350	
. 033	. 75301	389	. 88395	375	. 96629	6,6	. 0349	
. 034	. 75690	389	.88771	376	. 96635	6,6	.03+8	
2.035	3.76079	389	3.89147	376	0.95642	6,5	1.0347	0,7
. 036	. 76468	390	. 89523	375	. 95648	6,6	. 0347	
. 037	. 76858	390	. 89900	377	. 96655	6,6	.0346	
. 038	. 77248	390	. 90277	377	. 96662	6,6	. 0345	
. 039	.77638	391	. 90654	378	. 96668	6,6	. 0345	
2.0 .40	3.78029	39 r	3.91032	378	0.96675	6,5	1.03+4	0,7
. 0.19	. 78420	391	. 91410	378	. 9668 I	6,5	. $03+3$	
. 0.42	. 78812	392	. 91789	379	. 96588	6,5	.0343	
. 043	- 29204	392	. 92168	370	. 96694	6,5	. 0342	
. 044	. 79596	393	. 92547	380	.95701	6,5	.0341	
2.045	3.79989	393	3.92927	380	0.96707	6,5	1.0340	0,7
. 0.46	. 80382	393	. 93307	380	. 95714	6,5	. 0340	
	. 80776	394	. 93688	38 r	. 96730	6,5	. 0339	
.0.48	.81169	394	. 94069	381	. 96727	6,4	.0338	
. 0.49	.81564	394	. 94450	382	. 96733	6,4	. 0338	
2.050	3.81958	395	3.94832	382	0.967 .40	6,4	1.0337	0,7
u	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	- $\mathrm{Fo}^{\prime}{ }^{\prime}$	sec gd u	$\cdots \mathrm{FO}^{\prime}$	$\sin \mathrm{gd} a$	(a) $F_{0}{ }^{\prime}$	csc gidu	- Fa^{\prime}

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\circ}$	coth u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
2.050	3.81958	395	3.94832	382	0.96710	6,4	1.0337	0,7
. 051	. 82353	395	.95214	382	. 96746	6,4	.0336	
. 052	. 82749	395	. 95597	383	. 95752	6,4	. 0336	
. 053	. 83145	396	. 95979	383	. 95759	6,4	. 0335	
.054	. 83515	396	. 96363	384	.95755	6,4	. 0334	
2.055	3.83937	397	3.96747	384	0.96771	6,4	1.0334	0,7
. 056	. 84334	397	.97131	384	. 95778	6,3	. 0333	
. 057	. 84732	398	. 97515	385	. 95784	6,3	.0332	
. 058	. 85129	398	. 97900	385	. 96790	6,3	. 0332	
. 059	. 85527	398	. 98285	386	. 95797	6,3	.0331	
2.060	3.85926	399	3.98571	385	0.96803	6,3	1.0330	0,7
. 061	. 85325	399	. 99057	385	. 96809	6,3	.0330	
. 062	. 86724	399	. 99414	387	. 95816	6,3	. 0329	
. 063	.87124	400	.99831	387	. 96822	6,3	. 0328	
. 054	. 87524	400	4.00218	388	. 96828	6,2	. 0328	
2.065	3.87924	401	4.00606	389	0.95834	6,2	1.0327	0,7
. 065	. 88325	401	. 00994	388	. 96841	6.2	. 0326	
. 057	. 88726	401	. 01382	389	.95847	6.2	. 0325	
. 058	. 83128	402	.01771	389	. 96853	6,2	. 0325	
. 069	. 89530	402	.02161	350	.96859	6,2	. 0324	
2.070	3.89932	403	4.02550	390	0.96855	6,2	1.0324	0,7
. 071	. 90335	403	. 02941	390	. 96872	6,2	. 0323	
. 072	. 90738	403	. 03331	391	.96878	6, 1	. 0322	
. 073	.91141	404	. 03722	391	. 96884	6,1	. 0322	
. 074	.91545	40.4	. 0.4113	392	.96890	6,1	.0321	
2.075	3.91950	405	4.04505	392	0.96896	6,1	1.0320	0.7
. 076	. 92354	405	. 04877	392	. 95502	6,I	.0320	0,5
. 077	. 92759	405	.05290	393	. 96908	6,1	. 0319	
.078	. 93165	405	.05683	393	. 96914	6,1	. 0318	
. 079	. 93351	406	.05076	$39+$. 96920	6,1	. 0318	
2.080	3.93977	406	4.06470	394	0.96926	6,1	1.0317	0,6
.081	. 9.4384	407	. 06854	394	. 96933	6,0	. 0316	
. 082	. 94791	407	. 07259	395	. 96939	6,0	. 0316	
. 083	. 95198	408	. 07654	395	. 95945	6,0	. 0315	
.084	. 95606	408	.08049	396	.9595I	6,0	. 0315	
2.085	3.96014	408	4.08445	395	0.96957	6,0	1.0314	0,6
. 085	. 96423	409	. 08811	396	. 96963	6,0	. 0313	
. 087	. 96832	409	. 09238	397	. 96969	6,0	.0313	
. 088	.972.4I	410	. 09635	397	.96975	6,0	. 0312	
. 089	. 97651	410	. 10032	398	. 95980	5,9	.03II	
2.090	3.98061	410	4. 10430	398	0.96586	5.9	I.03II	0,6
. 091	. 98472	411	. 10828	398	. 95992	5,9	. 0310	
.092	. 98883	4 II	. 11227	392	. 96998	579	. 0309	
. 093	. 99294	412	. 11626	399	. 97004	5,9	. 0309	
. 094	. 99706	412	. 12026	400	. 97010	5,9	. 0308	
2.095	4.00179	412	4.12426	400	0.97016	5.9	I. 0308	0,6
. 096	.00531	413	. 12826	401	. 97022	5.9	.0307	
. 097	. 00944	413	. 13227	401	. 97028	5.9	. 0306	
.098	.01358	414	. 13628	401	. 97034	5.8	. 0306	
. 099	. 01771	414	. 14029	402	. 97039	5.8	. 0305	
2.100	4.02186	414	4.1443I	402	0.97045	5,8	1.0304	0,6
-	\tan god u	$\pm \mathrm{F}_{6}^{\prime}$	\sec ad u	- $\mathrm{F}_{0}{ }^{\prime}$	$\sin 9 \mathrm{da}$	$\pm \mathrm{Fa}^{\prime}$	csceda	$\cdots \mathrm{Fe}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega{ }^{\prime \prime}$	$\cosh u$	$\omega \mathrm{F}_{3}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.100	+.02186	414	4. 14+3I	402	0.97045	5,8	1.0304	0,6
. 101	. 02500	415	- 18034	403	.9705I	5,8	. 0304	
. 102	. 03015	415	. 15237	403	.97057	5,8	. 0303	
. 103	.03+31	416	. IS640	403	.97063	5,8	.0303	
. 104	.03847	416	. 16043	404	. 97068	5,8	. 0302	
2.105	4.04263	415	4.1644	404	0.97074	5,8	I. 0301	0,6
. IO')	. 0.4680	417	-16852	405	. 97080	5,8	. 0301	
. 107	. 05097	417	. 1725	405	-97286	5,7	. 0300	
. 103	. 05514	418	. 17663	405	. 97091	5,7	. 0300	
. 109	. 05932	418	. 180	406	. 97097	5,7	. 0299	
2.110	4.06350	418	4. 18.174	406	0.97103	5,7	I. 0298	0,6
.III	.06769	419	. 18881	407	. 97109	5,7	. 0298	
. 112	.0,188	419	. 19288	407	.97114	5,7	. 0297	
. II3	.07607	420	. 19695	408	.97120	5,7	. 0297	
. 114	. 08027	420	. 20103	408	. 97125	5,7	. 0296	
2.115	$4.08+48$	421	4.205 II	408	0.97131	5,7	I. 0295	0,6
. 116	. 08858	421	. 20920	409	.97137	5,6	. 0295	
. 117	. 09288	421	. 21329	409	-97I 43	5,6	. 0294	
. 118	. 09711	422	. 21738	410	. 971 I-4	5,6	. 0294	
. 119	. 10133	422	.22148	410	. 97154	5,6	. 0293	
2.120	4.10555	423	4.22558	4 II	0.97159	5,6	1.0292	0,6
.121	. 10978	423	. 23959	4 II	. 97165	5,6	. 0292	
. 122	. II 401	423	. 23380	4 II	.97171	5,6	. 0291	
. 123	. 11825	42.4	. 23792	412	.97176	5,6	. 0291	
. 12.4	. 12249	424	. 24204	412	. 97182	5,6	. 0290	
2.125	4.12673	425	4.24617	413	0.97187	5,5	1.0289	0,6
. 126	. 13098	425	. 25029	413	. 97193	5,5	. 0289	
. 127	. I3523	425	. $25+43$	414	. 97198	5,5	. 0288	
. 128	. 13949	426	.25856	414	. 97204	5.5	. 0288	
. 129	. I 4375	426	. 26271	414	. 97209	5,5	. 0287	
2.130	4.14801	427	4.26685	415	0.97215	5,5	1.0286	0,6
.131	. 15228	427	.27100	415	.97220	5,5	. 0286	
. 132	. 15656	428	. 27516	416	. 97226	5.5	. 0285	
. 133	. 16083	428	. 27932	416	.97231	5,5	. 0285	
. 134	. 16512	428	. 28378	417	. 97237	5,4	. 0284	
2.135	4. 16940	429	4.28755	417	0.97242	5,4	1.0284	0,6
. 136	. 17369	429	. 29182	417	. 972.48	5,4	. 0283	
. 137	. 17798	430	. 29599	418	. 97253	5,4	. 0282	
. 138	. 18228	430	. 30017	418	. 97258	5,4	. 0282	
. 139	. 18658	430	- 30436	419	. 97264	5,4	.028I	
2.140	4.19089	431	4.30855	419	0.97269	5,4	1.028 I	0,6
. 141	. 19520	431	-31274	420	. 97275	5,4	.0280	
. 142	. 19952	432	-31694	420	. 97280	5,4	. 0280	
. I43	. 20384	432	. 32114	420	. 97285	5.4	.0279	
. 144	. 20816	433	. 32534	421	. 97291	5,3	.0278	
2. I. 45	4.212 .49	433	$4 \cdot 32955$	42 I	0.97296	5,3	1.0278	0,6
. 146	. 21682	433	- 33377	422	. 97301	5.3	. 0277	
. 147	.22115	434	- 33799	422	. 97307	5,3	. 0277	
.I48	. 22549	434	-34221	423	. 97312	$5 \cdot 3$. 0276	
. 149	. 22984	435	-34644	423	. 97317	5,3	. 0276	
2.150	4.23419	435	$4 \cdot 35067$	423	0.97323	5,3	1.0275	0,6
u	\tan gd u	$\omega \mathrm{Fo}^{\prime}$	sec gd u	* $\mathrm{F}_{0}{ }^{\prime}$	$\sin 9 \mathrm{~d} u$	$\infty \mathrm{Fa}^{\prime}$	\csc od a	$\Leftrightarrow \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{6}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}$;	$\operatorname{coth} u$	$\omega \mathrm{F}_{j}{ }^{\prime}$
2.150	4.23419	435	4.35067	423	0.97323	5,3	I. 0275	0,6
. 151	. 23854	435	-35.491	424	.97328	5.3	.0275	
. 152	. 24290	4.36	-35915	424	. 97333	5,3	. 0274	
. 153	. 24726	436	- 36339	425	. 97338	5,3	. 0273	
. 154	.25162	437	-36764	425	.973+4	5,2	. 0273	
2.155	4.25599	437	4.37190	425	$0.973-49$	5,2	I. 0272	0,6
. 156	. 25037	438	.37615	425	. 97354	5,2	.0272	0,6
. 157	. 25475	438	. 38042	426	. 97359	5,2	.0271	0,5
. 158	. 26013	438	- $38+88$	427	. 97365	5,2	.0271	0,5
. 59	. 27352	439	. 38896	427	. 97370	5,2	.0270	0,5
2.160	4.27791	439	4.39323	428	0.97375	5,2	1.02\%0	0,5
.16I	. 28230	440	. 39751	428	. 97380	5,2	. 0269	
.162	. 28570	40	. 40180	429	. 97385	5,2	. 0268	
. 163	. 29111	41	. 40608	429	.97390	5,2	.0268	
.164	. 29551	HI	. 41038	430	. 97396	5,1	. 0267	
2.165	4.29993	471	4.41468	430	0.97401	5, I	1. 02067	0,5
. 156	. 30434	412	. 41898	430	. 97406	5,1	. 0.266	
.167	-30876	42	. 42328	431	. 97411	5, I	. 0265	
. 168	. 31319	$4+13$. 42750	431	. 97416	5, I	. 0265	
. 169	. 31752	443	.43191	432	.97421	5,I	. 0255	
2.170	4.32205	444	4.43623	432	0.97426	5, I	1.0264	0,5
.171	. 32649	414	. 44056	433	.9743I	5, I	. 0254	
.1フマ	. 33093	444	- 41488	433	-97436	5, I	. 0263	
. 173	- 33538	445	. 44922	434	.97441	5,I	. 0263	
. 174	- 33983	445	- 45355	434	. 97446	5,0	. 0262	
2.175	4.34429	446	4.45790	434	0.97452	5,0	1.0262	0,5
.175	. 34875	446	. 46224	435	. 97457	5.0	. 0261	
. 177	. 35321	447	. 46559	435	. 97462	5,0	. 02250	
. 178	. 35758	447	. 47095	436	.97467	5,0	. 0260	
. 179	. 36215	448	. 4753 I	436	. 97472	5,0	. 0259	
2.180	4.35663	448	4.47967	437	0.97477	5,0		0,5
. 181	. 37111	448	. 48404	437	. 97482	5,0	. 0258	
.182	. 37560	449	. 48812	438	. 97487	5,0	. 0258	
. 183	. 38009	449	. 49279	438	. 9749 I	5,0	. 0257	
.184	. 38459	450	. 49718	438	. 97496	4,9	. 0257	
2.185	4.38909	450	4.50156	439	0.97501	4,9	1. 0256	0,5
. 185	. 39359	45 I	. 50595	439	. 97506	4,9	. 0256	
. 187	-39810	451	. 51035	40	. 9751 I	49	. 0255	
. 188	. 40261	451	. 51475	440	. 97516	4.9	. 0255	
. 189	. 40713	452	. 51916	44 I	.97521	4,9	. 0254	
2.190	4.41165	452	4.52356	441	0.97526	4,9	1.0254	0,5
. 191	.41617	453	. 52798	44^{2}	. 9753 I	4,9	. 0253	
. 192	. 42070	453	. 53240	442	. 97535	4,9	. 0253	
. 193	. 42524	454	. 53682	443	. 97541	4,9	. 0252	
. 194	-42978	454	-54125	443	. 97545	4,8	. 0252	
2.195	4.43432	455	4.54568	443	0.97550	4.8	1.025I	0,5
. 196	. 43887	455	. 55012	444	. 97555	4,8	. 0251	
. 197	. 44342	455	. 55456	444	. 97560	4.8	. 0250	
. 198	. 44798	456	. 55900	445	. 97565	4,8	. 0250	
. 199	. 45254	456	. 56345	445	. 97570	4,8	. 0249	
2.200	4.45711	457	4.56791	446	0.97574	4,8	1.0249	0,5
-	$\tan 9 \mathrm{da}$	$\cdots \mathrm{F}_{0}^{\prime}$	sec gd x	- $\mathrm{Fb}^{\prime}{ }^{\prime}$	$\operatorname{sing} \mathrm{ad}$	- F 0^{\prime}	cscedy	- Fig

Natural Hyperbolic Functions.

u	$\sinh u$	ω F.:	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\operatorname{coth} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
2.200	4.45711	457	4.56791	4.46	0.97374	4.8	1. 0249	0,5
. 201	. 46168	457	. 57237	$4{ }^{4}$.97579	4.8	. $02+8$	
. 202	. 46625	458	. 57683	417	-97584	48	.0248	
.203	- 47083	458	. 58130	447	. 97589	4	. 0247	
.204	-47541	459	. 58577	48	.97533	48		
2.203	4.48000	459	4.59025	448	0.97598	4,7	1.0246	0,5
.20')	. 48459	459	- 59473	$4+8$.97603	4.7	. 02.46	
.207	. 48919	460	- 59922	49	-97608	4,7	. $02+5$	
. 208	- 49379	460	.6037	449	.93612	4.7	. 0245	
. 209	- 4,8840	461	. 6082 I	450	.97617	4,7	. 0214	
2.210	4.50301	461	4.61271	450	0.97622	4,7	1.0244	0,5
2.21 I	. 50,62	462	.61721	45 I	.97626	4.7	. 02.43	
. 212	. 51224	462	. 62172	45 I	-9,53I	4.7	-0243	
. 213	.51687	463	. 62624	452	.97636	47	.0242	
.214	. 52149	463	. $630 \% 6$	452	. 97640	4,7	.0242	
2.215	4.52613	464	4.63528	453	0.97645	4,7	1.0241	0,5
. 216	. 53077	464	. 63981	453	. 97650	4.6	. 0211	
. 217	. 5354 I	464	. $6+434$	454	-97654	4,6 46	.0240	
. 218	-54005	465	. 64888	454	-97659	4,6 4,6	. 0240	
.219	. $5+471$	465	. $653 \ddagger 2$	457	.97564	4,6	. 0239	
2.220	4.54936	466	4.65797	455	0.97668	4,6	1.0239	0,5
. 221	. 55102	466	. 66252	455	. 97673	4.6	. 0238	
. 222	. 558.9	467	. 65708	456	.97678	4,6	. 0238	
. 223	. 56336	467	. 67164	456	. 97682	46	. 0237	
. 224	- 56803	468	. 67620	457	. 97587	4,6	. 0237	
2.225	4.57271	468	4.68078	457	0.97691	4,6	1.0236	0,5
. 223	. 57739	469	. 68535	458	. 97606	4.6	.0236	
. 227	. 58208	469	. 68793	458	. 97700	4,5	. 0235	
. 228	. 58577	469	. 69751	459	. 97705	4.5	. 0235	
. 229	. 59147	470	. 69910	459	-97709	4,5	.023.4	
2.230	4.59617	470	4.70370	450	0.97714	4.5	1.0234	0,5
. 231	. 60087	471	. 70830	460	. 97718	4,5	. 0233	
.232	. 60559	471	. 71290	461	-97723	4.5	. 0233	
. 233	. 61030	472	. 71751	461	. 97727	4,5	. 0233	
. 234	. 61502	472	. 72212	462	. 97732	4,5	. 0232	
2.235	4.61974	473	4.72674	462	0.97736	4.5	1.0232	0,5
. 236	. 62447	473	. 73136	462	-97741	4.5	.023I	
. 237	. 62921	474	. 73599	463	. 97745	4.5	. 0231	
. 238	. 63395	474	. 74062	463	. 97750	4.4	. 0230	
. 239	. 63869	475	. 74525	464	-97754	4.4	. 0230	
2.240	4.64344	475	4.74989	464	0.97759	4,4	1.0239	0,5
. $2+1$. 6.4819	475	. 75454	465	. 97763	4.4	. 0222	
. 242	. 65295	476	. 75919	465	. 97768	4, 7	. 0228	-
. 2.43	. 65771	476	. 76385	466	. 97772	4.4	. 0228	
. 244	. 66247	477	. 7685 I	466	-97776	4.4	. 0227	
2.245	4.66724	477	4.77317	467	0.97781	4.4	1.0227	0,5
. 246	. 67202	478	.77784	467	.97785	4.4	. 0227	
. 247	. 67680	478	. 78252	468	. 97790	4.4	. 0226	
. 248	. 68158	479	. 78719	468	. 97794	4.4	. 02226	
. 249	. 68637	479	. 79188	469	-97798	4,4	. 0225	
2.250	4.69117	480	4.79657	469	0.97803	4,3	I. 0225	0,5
1	$\tan \mathrm{gd} \mathrm{u}$	$\infty \mathrm{Fo}_{0}{ }^{\prime}$	sec gd \mathfrak{u}	* FO^{\prime}	$\sin \mathrm{gd} \mathrm{t}$	* $F_{0}{ }^{\circ}$	csc od u	$\infty \mathrm{Fg}^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\tanh u$	$\omega F_{i j}{ }^{\circ}$	coth u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
2.250	4.69117	480	4.79657	469	0.97803	43	1. 0225	0,5
. 251	. 69597	480	. 80126	470	.97807	4.3	.0224	
. 252	. 70077	481	. 80506	470	.97811	4.3	.0224	
.253	. 70558	481	.81066	471	.97816	4.3	. 0223	
. 254	. 71039	482	.81537	471	.97820	4.3	. 0223	0,5
2.255	4.う152I	482	4.82008	472	0.97824	4,3	1.0222	0,4
. 256	. 72003	482	. 82.480	472	. 97829	4	. 0222	
. 257	. 72486	483	. 82952	472	.97833	4,3	. 0222	
. 258	. 72969	483	. 83425	473	.97837	4.3	. 0221	
.259	-73-453	484	. 83898	473	.97841	4.3	. 0221	
2.260	4.73937	484	$4.8+372$	474	0.97846	4.3	1.0220	0,4
. 261	. $7+422$	485	. $8+8+6$	474	.97850	4.3	. 0230	
. 262	. 74907	485	.85321	475	. 97854	4.2	. 0219	
.253	. 75392	485	. 85796	475	.97858	4.2	.0219	
. 264	.75878	485	. 86272	476	. 97863	4,2	. 0218	
2.265	4.76365	487	4.86748	476	0.97857	4,2	1.0218	0,4
. 265	. 76852	487	. 87224	477	. 5,7871	4.2	. 0218	
.257	. 77339	488	.87701	477	.97875	4,2	. 0217	
. 268	. 77827	488	. 88179	478	. 97879	4,2	. 0217	
.269	.78316	489	. 88657	478	.97884	4,2	. 0216	
2.270	4.78804	489	4.89136	479	0.97888	4,2	1.0216	0,4
.271	. 79294	490	. 89615	479	. 97892	4,2	. 0215	
. 272	. 79784	490	. 90094	480	. 97896	4,2	. 0215	
. 273	. 80274	49 I	. 90574	480	. 97900	4,2	.0214	
. 274	. 80765	491	.91055	48I	. 97903	4, I	. 0214	
2.275	4.81256	492	4.91536	481	0.97909	4,1	I.0214	0,4
. 276	. 817.48	492	. 92017	482	.97913	4, I	. 0213	
. 277	. 822.10	492	. 92499	482	. 97917	4, I	.0213	
. 278	. 82733	493	. 92982	483	.9792I	4,1	. 0212	
. 279	.83226	493	. 93465	483	.97925	4,1	. 0212	
2.280	4.83720	494	4.93948	484	0.97929	4, 1	I.02II	0,4
. 281	.81214	494	. 94432	484	.97933	4, I	.0211	
. 282	. 84709	495	. 94917	485	. 97937	4.1	.021I	
.283	. 85204	495	. 95402	485	. 97942	4,1	. 0210	
. 284	.83699	495	.95887	486	. 97946	4.1	.0210	
2.285	4.86196	496	4.96373	486	0.97950	4.1	1.0209	0.4
. 285	. 86692	497	. 96859	487	. 97954	4,1	. 0209	
. 287	. 87189	497	. 97346	487	. 97958	4,0	. 0208	
. 288	. 87687	498	.97834	488	. 97962	4,0	. 0208	
.289	. 88185	498	.98322	488	. 97966	4,0	. 0208	
2.290	4.88684	499	4.98810	489	0.97970	4,0	1.0207	0,4
. 291	. 89183	499	. 99299	489	. 97974	4.0	. 0207	
.292	. 89582	500	.99789	490	. 97978	4,0	. 0206	
. 293	.90182	500	5.00279	490	. 97982	4,0	. 0206	
. 294	. 90683	501	. 00769	49 r	. 97986	4,0	. 0206	
2.295	4.91184	501	5.01260	49 I	0.97990	4.0	1.0205	0,4
. 296	. 91685	502	. 01751	492	. 97994	4,0	. 0205	
. 297	. 92187	502	. 02243	492	. 97998	4,0	. 0204	
. 298	. 92690	503	. 02736	493	. 98002	40	.0204	
.299	-93193	503	. 03229	493	.98006	3,9	. 0203	
2.300	4.93696	504	5.03722	494	0.98010	3.9	1.0203	0.4
\#	$\tan 9 \mathrm{da}$	- Fg^{\prime}	sec gd a	$-\mathrm{Fo}^{\prime}$	$\operatorname{sing} \mathrm{ad}$	- Fa^{\prime}	$\csc 9 \mathrm{ad}$	${ }_{*} \mathrm{Fa}^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{\operatorname { s i n h }} \mathrm{u}$	$\omega \mathrm{F}$	$\cosh u$	$\omega \mathrm{F}_{j}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega \mathrm{F}_{0}{ }^{\circ}$	coth 4	$\omega F_{0}{ }^{\prime}$
2.300	4.93696	504	5.03722	404	0.98010	3,9	1.0203	0,4
. 301	.94200	504	. 04216	494	.98014	3,9	. 0203	
- 302	. 94705	505	. 04710	495	-.98018	3.9	. 0202	
. 303	. 95210	505	.05205	495	-98021	3.9	. 0202	
. 304	. 95715	506	.05701	406	. 98025	3,9	. 0201	
2.305	4.06221	506	5.05197	405	0.98029	3,9	1.0201	0,4
. 306	. 0.9727	507	. 056903	497	. 98033	3,9	. 0301	
. 30%	. 97234	507	.07160	497	. 08037	3.9	. 0200	
. 308	. 97742	508	. 07588	493	. 98041	3,9	. 0200	
.309	. 98250	508	.08I86	498	. 98045	3.9	. 0199	
2.310	4.98758	509	5.08584	499	0.980 .49	3.9	1. 0199	0,4
. 311	-99267	509	. 09183	499	-98053	3,9	. 0199	
. 312	. 99075	510	.09583	500	-98056	3,8	. 0198	
. 313	5.00285	510	.10183	500	. 98050	3,8	. 0198	
. 314	. 00797	511	. 10683	501	. 98064	3,8	. 0197	
2.315	5.01308	511	5.11184	501	0.08068	3,8	1.0197	0,4
. 316	. 01819	512	. 11685	502	. 98072	3,8	. 0197	
-317	.02331	512	. 12188	502	.98076	3,8	. 0196	
. 318	. $028+4$	513	. 12691	503	. 98079	3,8	. 0196	
.319	. 03357	513	. 13194	503	- 98083	3,8	. 0195	
2.320	5.03870	514	5.13697	50.4	0.98087	3,8	1.0195	0,4
. 321	. 04.388	514	.14202	504	.98091	3,8	. 0195	
. 322	.048,8	515	. 14706	505	-98075	3,8	. 0194	
. 323	. 05413	515	. 15211	505	- 08098	3,8	. 0194	
. 32.4	. 05929	516	. 15717	505	-98102	3,8	. 0193	
2.325	$5.06+45$	516	5.16223	505	0.98106	3,8	1.0193	0,4
-326	. 05061	517	. 16730	507	. 58110	3,7	. 0193	
. 327	.07478	517	.17237	507	-98II3	3,7	. 0192	
. 328	. 07996	518	.17745	508	-98117	3.7	. 0192	
. 329	.08514	518	. 1825.3	509	-9812I	3,7	. 0192	
2.330	5.09032	519	5.18762	509	0.98124	3,7	1.OIgI	0,4
. 331	. 09551	519	. 19271	510	-98128	3,7	. 0191	
. 332	. 1007 I	520	. 19781	510	.98132	3,7	. 0190	
. 333	. 1059 I	520	. 20291	5 II	-98136	3.7	. 0190	
. 33.4	. IIIII	521	. 20802	511	.98139	3.7	. 0190	
2.335	5.11632	521	5.21314	512	0.981 .43	3,7	1.0189	0,4
. 336	. 12154	522	. 21825	512	.98147	3,7	. 0189	
. 337	. 12676	522	. 22338	513	-98150	3,7	. 0188	
. 338	. 13199	523	. 22851	513	.98154	3.7	. 0188	
. 339	. 13722	523	. 23364	514	.98158	3,7	. 0188	
2.370	5.14245	524	5.23878	514	0.98161	3,6	1.0187	0,4
. 341	. 14770	524	. 24393	515	. 98165	3,6	.0187	
. 342	-15294	525	. 24908	515	. 98169	3,6	. 0187	
-3+3	. 15819	525	. 25423	516	.98172	3.6	. 0186	
. 344	. 16345	526	. 25939	516	-98176	3,6	. 0186	
2.345	5.16871	526	$5.26+56$	517	0.98179	3.6	1.0185	0,4
-376	. 17398	527	. 26973	517	.98183	3,6	. 0185	
-347	. 17925	527	. 27491	518	. 98187	3,6	. 0185	
-348	. 18453	528	. 28009	518	.98190	3.6	. 0184	
. 349	. 18981	529	. 28528	519	.98194	3,6	. 0184	
2.350	5.19510	529	5.29047	520	0.98197	3,6	I. 0184	0,4
u	$\boldsymbol{\operatorname { t a n }} \mathbf{9 d} \mathrm{u}$	* F $0_{0}{ }^{\prime}$	sec od u	$\omega \mathrm{Fo}^{\prime}$	$\sin \mathrm{gd} u$	${ }^{*} \mathrm{Fo}^{\circ}$	cscodu	- $\mathrm{Fo}^{\prime}{ }^{\prime}$

Natural Hyperbolic Functions.

${ }^{\sim}$	$\sinh u$	$\omega \mathrm{F}_{\mathrm{G}^{\prime}}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathbf{u}$	$\omega \mathrm{F}_{0}{ }^{\circ}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.350	5.19510	529	5.29047	520	0.98197	3,6	1.0184	0,4
. 351	. 20039	530	. 29567	520	. 98201	3.6	. 0183	
. 352	. 20369	530	- 30087	521.	. 08204	3,6	.0183	
. 353	.21100	531	- 30608	521	.98208	3,6	. 0182	
-354	. 21630	531	. 31129	522	. 08212	3,5	. 0182	
2.355	5.22162	532	5.31651	522	0.08215	3,5	1.0182	0,4
. 356	. 22564	532	-32174	523	. 68219	3,5	. 018 I	
. 357	. 23226	533	. 326097	523	. 98223	3.5	.018I	
. 358	. 23759	533	. 33220	524	. 98226	3.5	. 0181	
. 359	. 24293	534	. 3374	52.4	. 98229	3,5	. 0180	
2.360	5.24827	534	$5 \cdot 3+260$	525	0.98233	3.5	1.0180	0,4
. 361	. 25361	535	-34794	525	. 58236	3,5	. 0180	
. 362	. 25896	535	-35319	525	. 98240	3.5	. 0179	
.353	. 26432	535	- 35845	526	.9824	3,5	. 0179	
. 364	. 26968	536	. 36372	527	. 98247	3,5	.0178	
2.365	5.2750 .4	537	5.36839	528	0.98250	3,5	1.0178	0,4
. 366	. $280+2$	537	-37427	528	.9825-	3.5	.0178	
. 367	. 28579	538	- 37955	529	. 98257	3,5	. 0177	
. 368	. 29118	538	-38484	529	. 98251	3,4	. 0177	
. 369	. 29656	539	-39014	530	. 98264	3,4	. 0177	
2.370	5.30196	540	5.395+4	530	0.98267	3,4	1.0176	0,4
. 371	. 30735	540	. 40074	531	.98271	3,4	.0176	
. 372	-31275	541	. 40605	531	. 98274	3.4	. 0176	
. 373	-31817	541	.41137	532	.98278	3,4	. 0175	
. 374	. 32358	542	. 41669	532	.98281	3,4	. 0175	
2.375	5.32900	542	5.42201	533	0.98285	3,4	1.0175	0,4
. 376	- $33+42$	543	. 42735	533	. 98288	3,4	.0174	0,4
. 377	- 33985	543	- 43268	53.4	.98291	3.4	. 0174	$0 \cdot 4$
. 378	-34529	544	. 43803	535	.98295	3.4	.0173	0,3
. 379	. 35073	$5+4$	-44337	535	.98208	3,4	.0173	0,3
2.380	5.35618	545	5.44873	536	0.98301	3.4	1.0173	0.3
. 381	. 36163	545	. 45.409	536	. 98305	3.4	.0172	
. 382	. 36708	546	- 45945	537	. 98308	3.4	. 0172	
. 383	-37255	546	. 46482	537	.98311	3,3	. 0172	
-384	. 37801	547	.47020	538	. 98315	3.3	.0171	
2.385	5.38349	$5+8$	5.47558	538	0.98318	3.3	1.0171	0,3
. 386	. 38897	548	. 48096	539	. 98322	3,3	. 0171	
. 387	. $39+45$	549	. 48535	539	. 98325	3,3	.0170	
. 388	. 39994	549	. 49175	540	. 98328	3.3	. 0170	
. 389	. 40543	550	. 49715	541	.9833I	3.3	. 0170	
2.390	5.41093	550	$5 \cdot 50256$	541	0.98335	3.3	1.0169	0,3
. 391	. 41644	551	. 50798	542	. 98338	3.3	.0169	
. 392	. 42195	551	. 51339	542	. 9834 I	3.3	.0169	
. 393	. 42746	55.2	. 51882	543	. 98345	3.3	. 0168	
. 394	. 43299	552	- 52425	543	.983+8	3.3	. 0168	
2.395	5.43851	553	5.52969	544	0.98351	3,3	I. 0168	0,3
. 396	-4405	554	.53513	544	. 98354	3,3	$.0167$	
. 397	. 44958	554	- 54057	$5+5$ 546	. 98358	3.3 3 3	$.0167$ $.0167$	
.398 .399	. 45513	555	-54003	546 546	.98361 .98364	3,3 3,2	.0167 .0166	
2.400	5.46623	556	5.55695	547	0.98367	3,2	r.or66	0,3
u	$\tan 9 \mathrm{~d} \mathbf{x}$	$\omega \mathrm{Fa}^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\text { }}$	$\sin 9 \mathrm{da}$	- $F_{9}{ }^{\circ}$	csced ${ }^{\text {a }}$	- $\mathrm{F}_{\mathrm{o}^{\prime}}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{6}{ }^{\text {' }}$	$\cosh u$	$\infty \mathrm{F}^{\prime}{ }^{\prime}$	tanh 4	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	coth 4	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
2.400	5.46623	535	5.35695	547	0.98367	3,2	I. 0166	0,3
. .401	- +7170	555	. 50212	545	. 8371	3,2	. 0166	
. 402	-. 71735	357	- $550-39$	5.8	-983i4	3,2	. 0165	
.403	. +8292	557	. 57337	548	-0837	3,2	. 0165	
. 404	. 48850	558	. 57886	549	.98380	3,2	. 0165	
. 2.405	5.49408	558	5.58435	549	0.98384	3,2	I. 0164	0,3
. 406	. 49967	559	. 58384	350	. 98387	3,2	. 0164	
. 407	. 50526	550	. 59535	551	. 98350	3,2	. 0164	
.408	. 51086	560	. 60083	531	- 98303	3,2 3	. 010163	
.409	. 51646	561	. 60637	552	-98396	3,2	. 0163	
2.410	5.52207	551	5.61189	552	0.98 .400	3,2	I. 0163	0,3
. 411	. 52,69	562	. 61711	553	.98403	3,2	. 0162	
. 412	. 5333 I	552	. 62294	533	-98406	3,2	. 0162	
. 413	. 53893	563	. $628+8$	554	-98109	3,2	.0162	
. 414	- $5+456$	563	. 63402	55-	$.98+12$	3,2	. 0161	
2.415	5.55020	564	5.63957	555	0.98415	3,1	1.0161	0,3
. .416	. 5558.4	565	. 64512	556	.98418	3, I	.0161	
. 417	. 56149	565	. 65058	556	-68422	3, I	. 0160	
. 418	. 56715	566	. 65624	557	-98+25	3,1	. 0160	
. 419	. 57280	565	. 6618 I	557	.98128	3,1	. 0160	
2.420	5.57877	567	5.66739	558	0.98431	3,1	1. OI 59	0,3
. 421	. 58.114	567	. 67297	558	. 98434	3,1	. OI 59	
. 422	. 38081	368	. 67856	559	-98437	3,1	. 0159	
.423 .	- 59550	568	. 68.115	560	-98440	3,I	. 0158	
. 424	. 60118	559	. 68975	560	-98443	3,I	. 0158	
2.425	5.60688	570	5.69535	561	$0.98+46$	3, I	1.0158	0,3
. 426	.61257	570	. 70096	561	. 08450	3,1	. 0157	
. 427	. 61828	57 I	. 70658	562	. 98453	3,I	. 0157	
. 428	. 62399	57 I	. 71220	562	-98+56	3, I	. 0157	
. 429	. 62970	572	. 71783	563	.98459	3.1	. 0157	
2.430	$5.635+2$	572	5.72346	564	0.98462	3,1	1.0r56	0,3
. 431	. 64115	573	. 72910	564	. 98.465	3,0	. 0156	
. 432	. 64688	573	- 73474	565	. 98.48	3,0	. 0156	
. 433	. 65262	574	- 74039	565	- 08.471	3,0	. OI55	
. 434	. 65836	575	. 74605	566	-98474	3,c	.OI55	
2.435	5.6641 I	575	5.75171	566	0.98477	3,0	1.OI55	0,3
. 436	. 660886	576	. 75738	567	. 98.880	3.0	. 0154	
. 437	. 67563	575	. 76305	568	. 98.88	3.0	. 0154	
. 438	. 68139	577	. 75873	568	. 98.886	3.0	. 0154	
.439	. 68716	577	:77441	569	-98489	3.0	. 0153	
2.440	5.69294	578	5.78010	569	0.98492	3,0	1.0153	0,3
.441	. 60872	579	. 78580	570	-98495	3,0	. 0153	
. 442	. 70451	579	. 79150	570	-98498	3.0	. 0152	
. 443	. 71031	580	. 79721	57 I	. 98501	3.0	. 0152	
. 414	. 71611	580	. 80292	572	. 98504	3,0	.Or52	
2.445	5.72191	58 I	5.80864	572	0.08507	3,0	I. 0152	0,3
. 446	. 72772	58 I	.8r436	573	. 98510	3.0	. 0151	
. 447	. 73354	582	. 82009	573	. 08513	3.0	. 0151	
. 4148	-73936	583	. 82583	574	-985i6	2,9	. 0151	
. 449	. 74519	583	. 83157	575	- 98519	2,9	. 0150	
2.450	5.75103	584	5.83732	575	0.98522	2,9	1.0150	0.3
4	$\tan \mathrm{gd} u$	$\infty \mathrm{FO}_{0}{ }^{\prime \prime}$	sec od u	$\omega \mathrm{Fo}^{+}$	$\sin 9 \mathrm{du}$	$\pm \mathrm{FO}^{\circ}$	\csc gd u	$\omega \mathrm{F}_{0}{ }^{\text {r }}$

Natural Hyperbolic Functions．

u	$\sinh u$	$\omega F^{\prime}{ }^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\text {b }}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{3}{ }^{\prime}$
2.450	5.75103	584	5.83732	575	0.08522	2，9	1.0150	0，3
－ 51	． 75.57	384	． $8+307$	570	． 0,8525	2，9	． 0150	
－ 452	．-627 I	585	． 84883	こご	． 08528	2，9	． 0149	
－ 453	－ 7885	585	． $85+60$	57	． 68530	2.9	． 01.49	
． 454	．7742	585	．83037	5π	． 88533	2，9	． 01.49	
2.455	5．7S029	587	5.85615	378	0.98536	2，9	1.0149	0，3
．+36	． 3015	585	． 87193	579	． 08539	2，9	． 0148	
． 457	．79203	583	．8フフJ2	579	． 68512	2，${ }^{1}$	．0148	
.458	． 79791	588	． 88352	580	． 98545	2，9	． 1.148	
． 459	.80380	589	． 83932	580	． 98540	2，9	． 0147	
2.460	5.80969	590	5.89512	581	0.08551	2，9	1.0147	0，3
． 461	． 81559	590	．90094	582	． 88554	2,9	．0147	
． 452	． 82149	591	． 90575	582	． 88556	2.9	． 0146	
.463	． 82740	591	． 91258	583	． 98559	2，9	．0146	
． 464	． 83332	592	．91841	583	． 98562	2，9	.0146	
2.465	5.83924	592	5．92． 425	58.	0.08565	2.8	1.01 .46	0，3
． 466	． 84516	593	． 93009	585	． 08558	2.8	． 01.45	
.457	． 85110	59.4	． 93594	585	．68571	2.8	．0145	
． 468	．85704	594	． 94179	585	．9857t	2，8	．0145	
． 469	． 85298	595	． 94755	586	.98576	2，8	． 0144	
2.470	5.85893	595	5.95352	587	0.98579	2，8	1.0144	0，3
． 471	． 87.489	596	． 95939	587	． 98582	2，8	．Or44	
． 472	． 88085	597	． 96527	583	.98585	2.8	． 014	
． 473	． 88682	597	． 97115	58	． 98588	2，8	．0143	
． 474	． 89279	498	．97704	589	.98550	2，8	． 0143	
2.475	5.83877	598	5.98394	590	0.98593	2，8	I． 0143	0，3
.476	．90476	599	． 98884	591	． 08595	2.8	． 0142	
． 477	． 91075	599	． $99+74$	591	． 98599	2.8	． 0142	
． 478	． 91675	600	6.00066	592	． 18802	2，8	． 0142	
． 479	． 92275	601	． 00658	592	．98604	2，8	． 0142	
2.480	5．92876	601	6.01250	593	0.98507	2.8	1．0141	0，3
． 481	．93478	602	． 01844	593	． 98510	2.8	． 0141	
． 482	． 94080	602	． 02437	594	.98513	2，8	． 0141	
． 483	． 94682	603	． 03032	595	． 98515	2，7	． 0140	
． 48.4	． 95286	604	． 03627	595	．98518	2，7	． 01.40	
2.485	5.95890	604	6.04222	596	0.98621	2，7	1.0140	0,3
． 485	． 96494	605	．0．4818	596	． 98524	2，7	． 0140	
． 487	． 97099	605	．05415	597	． 08526	2，7	． 0139	
． 488	． 97705	606	． 06013	598	． 98629	2，7	． 0139	
． 489	． 9831 I	607	． 066 II	598	．98632	2，7	． 0139	
2.490	5．98918	607	6.07209	599	0.98535	2，7	I． 0138	0，3
． 491	． 99526	608	．07809	600	． 98537	2，7	． 0138	
． 492	6.00134	608	． 08408	600	． 98540	2，7	． 0138	
． 493	． 00743	609	． 09009	601	．98643	2，7	． 0138	
． 494	． 01352	610	．09610	601	． 98645	2，7	． 0137	
	6.01962	610	6． 10211	602	0.98548	2，7	1．0137	0，3
． 496	． 02572	611	． 10814	603	． 98651	2，7	－． 0137	
． 497	． 03183	611	．11417	603	．98653	2，7	． 0136	
． 498	． 03795	612	． 12020	604	． 98556	2.7	． 0136	
． 499	． 04408	613	． 12624	604	． 98659	2，7	． 0136	
2.500	6.05020	613	6.13229	605	0.98661	2，7	1.0136	0，3
＊	$\tan \mathrm{gd} u$	＊$F^{\prime}{ }^{\prime}$	sec od u	－ $\mathrm{F}_{0}{ }^{\prime}$	sia ged a	－$F_{0}{ }^{\prime}$	csc ed u	$\cdots F_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{1}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{4}{ }^{\prime}$	$\operatorname{coth} u$	$\omega F_{0}{ }^{\prime}$
2.500	6.05020	613	6. 13229	605	0.0,8561	2,7	1.0136	0.
. 501	. 05634	6 I 4	. 13834	600	. 8850	2,7	. 0135	
. 502	. $0: 248$	614	- If+40	605	. 68557	2,6	. 0135	
. 503	.00803	615	, 5047	607	.c8569	2,6	. 0135	
. $50-4$. $07+78$	616	- 15054	607	-98672	2,6	. 0135	
2.505	6.03094	616	6.16262	608	$0.0,8575$	2,6	1.0134	
. 50.0	.05711	617	. IUS70	6	. 98.577	2,6	. 0134	
. 507	.00328	617	. 17479	009	-93'50	2,6	. 0134	
. 508	.09946	618	. 18089	610	. 58.83	2,6	. 0134	
- 509	. 10564	619	. I8599	611	. 68585	2,6	. 0133	
2.510	6.11183	619	6.19310	6 II	0.98588	2,6	I. 0133	O,
. 511	. 11803	620	-19921	612	- 9850	2,6	. 0133	
. 512	. $12+23$	621	. 20534	612	. 98503	2,6	. 0132	
. 513	. 13044	621	. 21146	613	- 98306	2,6	. 0132	
. 514	. 3665	622	. 21760	614	. 98608	2,6	-0132	
2.515	6.14287	622	6.22374	614	0.98701	2,6	I. 0132	0,
. 516	- 1.4910	623	. 22988	615	.98703	2,6	. 0131	
. 517	-15533	624	. 23603	616	. 98705	2,6	.013I	
. 518	. 16157	62.4	. 2.4219.	616	.98708	2,6	.013I	
. 519	. 16782	625	. 24836	617	.98711	2,6	. 0131	
2.520	6.17 .407	625	6.25453	61%	0.98714	2,6	1.0130	O,
. 521	-18033	626	. 26071	618	. 98716	2,6	. or30	
- 522	- 18559	627	- 26689	619	- 28719	2,5	. 0130	
. 523	- 19285	627	. 27308	619	.6,8721	2,5	. 0130	
. 524	. 19914	628	. 27927	620	.98724	2,5	. 0129	
2.525	$6.205+2$	629	6.28548	621	0.98726	2,5	I. 0129	O,
. 526	. 21171	629	. 29169	621	. 98729	2,5	. 0129	
. 527	. 21800	630	- 29750	622	.98731	2,5	. 0128	
. 528	. 22.230	630	. 30.412	622	. 98734	2,5	.0128	
. 529	. 2306 I	631	. 31035	623	. 98736	2,5	. 0128	
2.530	6.23692	632	6.31658	624	0.98739	2,5	I. 0128	O,
. 531	. 24324	632	. 32282	624	. 9874	2,5	. 0127	
. 532	. 24957	633	- 32907	625	. 58744	2,5	. 0127	
- 533	. 25590	634	. 33532	626	. 08746	2,5	. 0127	
- 534	. 26224	63.4	-34158	626	. 08749	2,5	. 0127	
2.535	6.26858	635	6.34785	627	0.98751	2,5	I. 0126	O,
. 536	. 27494	635	-35412	627	. 98754	2,5	. 0126	
. 537	. 28129	636	- 36040	628	. 98756	2,5	.0126	
- 538	. 28766	637	- 36068	629	. 98759	2,5	. 0126	
. 539	. 29.403	637	- 37297	629	.9876I	2,5	. 0125	
2.540	6.30040	638	6.37927	630	0.98764	2,5	1.0125	O,
. 541 I	. 30678	639	. 38557	631	. 98766	2,5	. 0125	0,
. 542	. 31317	639	- 39188	631	. 98769	2,4	. 0125	o,
. 543	- 31957	640	- 39820	632	. 98771	2,4	.0124	0,
-544	- 32597	640	-40452	633	. 98773	2,4	.0124	0,
2.545	6.33238	641	6.41085	633	0.98776	2,4	1.0124	O,
. 546	. $33879{ }^{\text { }}$	642	- 41719	634	. 98778	2,4	. 0124	
. 547	-34521	642	. 42353	635	.98781	2,4	. 0123	
-548	. 35164	643	-42988	635	.98783	2,4	. 0123	
. 549	- 35807	644	. 43623	636	. 98786	2,4	. 0123	
2.550	6.36451	644	6.44259	636	0.98788	2,4	1.0123	0
4	$\boldsymbol{\operatorname { t a n }} \mathrm{gd} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	sec gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\sin \operatorname{dd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}$.	$\cosh u$	$\omega \mathrm{F}$:	$\tanh u$	$\omega \mathrm{F}$,	$\operatorname{coth} u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
2.550	6.36451	644	$6.4+259$	636	$0.68,088$	2,4	$1 . \mathrm{OI} 23$	0,2
. 551	. 37006	045	- H80	637	. 68800	2.4	. 0122	
. 552	-37711	$64^{\prime \prime}$. +5533	6,38	. 5,8703	2.4	. 0122	
. 553	. 38387	646	. 46172	638	. 6875	2,4	. Cl 22	
. 554	. 39033	647	. 46810	639	. 68.68	2,4	. OH 22	
2.555	6.306880	647	6.47450	640	0.08300	2,4	1.0121	0,2
. 556	. 40328	648	. +8080	640	. $4 \times \geqslant \div 2$	2,4	. 0121	
. 557	. 4095	649	. 48730	641	-9805	2.4	.0121	
. 558	. 41625	619	. 40372	64.2	. $\mathrm{S} \times 2 \mathrm{O}$	2.4	.0121	
. 559	. 42275	650	. 50014	642	. 08510	2,4	. 0120	
2.560	$6 .+2926$	651	6.50656	643	0.08812	2.4	1.0120	0,2
. 361	. 43575	65 I	. 51299	$64+$. 2×354	2.4	. OH 20	
. 562	. $4+2 \geq 28$	652	. $519+3$	$64+$		2,4	. 0120	
. 563	. 44880	653	. 52588	(145	.68419	2.3	. 0120	
. 364	. 45533	653	. 53233	646	.98821	2,3	. 0119	
2.365	6.46187	654	6.53879	645	0.98824	2.3	I.OII9	0,2
. 566	. 46841	655	. 54525	64%	. 1,8823	2.3	. 0119	
. 567	. 47496	655	. 55173	647	. 58828	2,3	. 0119	
. 568	. 48152	656	. 55820	648	. 8831	2,3	. 0118	
. 569	. 48808	656	. 56469	649	. 98833	2,3	. 0118	
2.570	6.49464	657	6.57118	649	0.98835	2,3	1.018	0,2
. 571	. 50122	658	. 57768	650	. 2×838	2.3	. 0118	
. 572	. 50780	658	. $5^{8}+18$	651	- $\mathrm{SR}_{3} 10$	2,3	.0117	
. 573	. 51439	659	. 55069	651	$.988+2$	2.3	. 1117	
. 574	. 52098	660	. 59721	653	. 98845	2,3	. 0117	
2.575	6.52758	660	6.60374	653	0.08845	2.3	1.0117	0.2
. 576	. 53419	661	. 61037	653	. 98849	2,3	. 0116	
. 577	. 54080	662	. 61680	65.	. 6×851	2.3	. 0116	
. 578	. $5+774$	662	. 62335	655	.c8854	2,3	. 0116	
. 579	. 55405	663	. 122090	655	. 98855^{6}	2.3	. 0116	
2.580	6.56068	664	6.63646	656	0.0883^{3}	2.3	I. OII5	0.2
. 581	. 56732	664	.64302	657	. 9880	2,3	. 0115	
. 582	. 57397	665	.64959	657	. 98853	2,3	. 0115	
. 583	. 58052	666	. 65617	658	. 98885	2,3	. 0115	
. 584	. 58728	666	. 66275	659	.98857	2,3	. 0115	
2.585	6.59395	667	6.66934	659	0.98870	2,2	1.0114	0,2
. 586	. 60062	668	. 67594	600	. 68872	2,2	. 0114	
. 587	. 60730	668	. 68254	661	. 98874	2,2	. 0114	
. 588	. 61388	66	. 688915	66 I	. 98876	2,2	. OII4	
. 589	. 62068	670	. 69577	662	-98878	2,2	. 0113	
2.590	6.62738	670	6.702 .40	663	0.98881	2,2	1.OII3	0,2
. 591	. $63+108$	671	. 70903	663	. 98883	2,2	.0113	
. 592	. 64079	672	. 71566	664	. 98885	2,2	. 0113	
. 593	. 64751	672	. 72231	665	. 98887	2,2	. 0113	
. 594	. 65424	673	. 72896	665	.98890	2,2	. 0112	
	6.66097	674	6.73562	666	0.98892	2,2	1.0112	0,2
. 596	. 66771	674	. 74228	667	. 98894	2,2	. 0112	
. 597	. 67446	675	. 74895	667	. 88896	2,2	. 0112	
. 598	. 68121	676	. 75563	668	. 98898	2,2	.OIII	
. 599	. 68797	676	.7623I	669	.98901	2,2	. OIII	
2.600	6.69473	677	6.76001	669	0.98903	2,2	1.OIII	0,2
u	\tan gat	$\triangle F_{B}{ }^{\prime}$	sec ged ut	$\pm \mathrm{Fa}^{\prime}$	$\sin \mathrm{gd} u$	$\pm \mathrm{Fa}^{\prime}$	cscesd u	- Fo^{\prime}

Sintheomian Tables

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}$	cosh 4	${ }^{\omega} \mathrm{F}$:	$\tanh u$	$\omega \mathrm{F}_{\mathrm{j}}{ }^{\text {j }}$	coth u	$\omega \mathrm{F}^{\prime}$
2.600	6.69473	67	6.76901	669	0.08503	2,2	I.OIII	0,2
. 1001	,70150	678	.775\%0	600	. 08.8905	2,2	.OIII	
. 602	-70828	5,	- 72×1	$5-1$. 0890	2,2	. 0110	
. 603	. 71537	079	. 78912	6,2	-68909	2,2	. 0110	
. 604	.72186	640	. 7954	6,2	. 08911	2,2	. OH 10	
2.605	6.72856	680	6.80236	673	0.98914	2,2	I.OIIO	0,3
.tiof	. 73547	681	. 80930	65	. 98916	2,2	. 0110	
. 607	. 74238	68.2	. 81604	6.7	- $0^{89} 18$	2,2	. 0109	
. 608	-74910	682	.822,8	675	-99920	2,I	. 0109	
.6iog	. 75593	683	. 82953	6,5	. 98922	2,I	. 0109	
2.610	6.762,6	68.	6.83629	$6-6$	0.98924	2,1	1.0709	0,2
. 611	. 76960	CS_{4}	. $\mathrm{S}_{4} \mathrm{~S}^{06}$	677	. 58326	2,1	. 0109	
. 612	. 750.4	68	. 84083	6-8	. 9892	2.1	. 108	
. 613	.78330	685	. 83651	$6-8$. 98931	2,1	. 10108	
. 614	. 79015	685	. 85340	670	.98933	2,I	. 0108	
2.615	6.79702	685	6.87019	680	0.98335	2,1	1.0108	0,2
. 616	. 80390	688	.87599	680	. 98937	2,1	. 0107	
. 61%	. 81078	688	. 28380	681	. 08939	2,1	.0107	
. 618	. 81767	689	. 89061	682	.98941	2,1	. 0107	
. 619	. 82456	690	. $897+4$	682	. 98943	2,1	. 0107	
2.620	6.83146	690	6.90426	683	0.98946	2,I	1.0107	0,2
. 621	. 83837	691	.91110	68	. $989+8$	2,1	. 0106	
. 622	. 84528	692	. 91794	685	. 98950	2,I	. 0106	
. 623	. 85220	692	-92479	685	. 98952	2,I	. 0106	
. 624	. 85913	693	.93164	686	.98954	2,1	. 0106	
2.625	6.85607	694	6.93851	687	0.98956	2,I	1.0106	0,2
. 626	.87301	695	.94538	687	. 98958	2,I	.oros	
. 627	. 87906	695	. 95325	688	. 98960	2,1	. 0105	
. 628	. 88591	696	.95914	689	. 98962	2,1	. 0105	
. 629	. 89388	697	-96603	689	. 98964	2,1	. 0105	
2.630	6.90085	697	6.97292	690	0.98956	2,1	1. OrO_{4}	0,2
. 631	.90782	698	.97933	691	. 98958	2,I	.0104	
. 632	.91481	699	. 98674	691	. 98970	2,0	. 0104	
. 633	. 92180	699	. 96356	692	. 98972	2,0	. 0104	
. 634	. 92879	700	7.00058	693	. 98974	2,0	. 0104	
2.635	6.93580	701	7.00752	694	0.98977	2,0	1.0103	0,2
. 636	. 94281	701	. $01+46$	694	. 08979	2,0	. 0103	
. 637	. 94983	702	.02140	695	. 88981	2,0	.0103	
. 638	. 95685	703	. 02835	696	. 98883	2,0	.0103	
. 639	. 96588	704	.03532	696	. 98985	2,0	. 0103	
2.640	6.97092	704	7.04228	697	0.98087	2,0	1.0102	0,2
. 641	. 97797	705	. 04925	698	. 98989	2.0	. 0102	
. 642	. 98502	706	.05624	699	. 98991	2,0	. 0102	
. 643	. 90208	706	. 06323	699	. 98993	2.0	. 0102	
. 644	. 99915	707	.07022	700	. 98995	2,0	. 0102	
2.645	7.00622	708	7.07723	701	0.98997	2.0	r.oiot	0,2
. 646	. 01330	708	.08423	701	. 98999	2,0	. O Ior	
. 647	.02030.	709	. 09125	702	.99001	20	. O Ior	
. 648	. 02748	710	. 09828	703	. 99003	2.0	.orior	
. 649	.03458	711	. 1053 !	703	. 99005	2,0	. 0101	
2.650	7.04169	7 II	7.11234	704	0.99007	2,0	1.0100	0,2
u	$\tan \mathrm{gd} u$	© Fo^{\prime}	sec gd u	* Fo'	$\sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{Fo}^{\prime}$	csc gd u	$\pm \mathrm{Fo}^{\prime}$

Smithsonian Tables

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh 4$	$\omega \mathrm{Fa}^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathbf{u}$	$\omega F_{0}{ }^{\text {a }}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.650	7.04169	711	7.11234	704	0.99007	2,0	1.0100	0,2
. 651	. 0.4831	712	. 11939	705	. 99009	2,0	. 0100	
. 652	. 05593	713	. 1354	706	. 9901 I	2,0	. 0100	
. 653	. 05306	713	. 13350	705	. 99013	2,0	. 0100	
. 654	.07020	714	. 14057	707	. 99015	2,0	. 0100	
2.655	7.07734	715	7.14764	708	0.99016	2,0	1.0099	0,2
. 655	.08449	715	. 15472	708	. 99018	2,0	. 0099	
. 657	. 09165	716	. 16181	709	. 9,9020	1,9	.0059	
. 658	. 00882	717	. 16891	710	. 99022	1,9	. 0099	
. 659	. 10599	718	. 17601	711	. 99024	1,9	. 0099	
2.650	7.11317	718	7.18312	7 II	0.99026	1,9	1.0098	0,2
. 661	. 12036	719	. 19024	712	. 99028	1,9	. 0008	
. 652	. 12755	720	. 19736	713	. 99030	1,9	. 00098	
. 653	. 13475	720	. 20449	713	. 99032	1,9	. 00088	
. 664	- I+195	721	.21163	714	. 99034	1,9	. 0098	
2.665	7. 14918	722	7.21877	715	0.99036	I,9	1.0097	0,2
. 666	- 15640	723	. 22593	716	. 99038	1,9	. 0007	
. 667	. 16363	723	. 23309	716	. 9990	1,9	.0097	
. 668	. 17086	724	. 24025	717	. 99042	1,9	. 0097	
. 669	. 1781 I	725	. 2.4743	718	. $990+4$	I,9	. 0097	
2.670	7.18536	725	7.25461	719	0.990 .45	1,9	1.0096	0,2
. 671	. 19262	725	. 26180	719	. 99047	1,9	. 00096	
. 672	. 19588	727	. 25900	720	. 95049	1,9	. 0096	
. 673	. 20715	728	. 27620	721	. 9905 I	1,9	.0096	
. 674	. 21443	728	. 2834 I	721	.99053	I,9	.0096	
2.675	7.22172	729	7.29063	722	0.99055	1,9	1.0095	0,2
. 675	. 22902	730	. 29785	723	. 95057	1,9	. 0095	
. 677	. 23632	731	- 30509	724	.95059	1,9	. 0095	
. 678	. 24363	731	- 31233	724	. 990%	1,9	.0095	
. 679	.25034	732	. 31957	725	.99062	1,9	.0095	
2.680	7.25827	733	7.32583	725	0.95064	1,9	1.0094	0,2
.681	. 26560	733	. 33409	727	. 99006	1,9	. 0094	
. 682	. 27293	734	- 341136	727	. 95058	1,9	. 0094	
. 683	. 28028	735	- 34864	728	.99070	1,9	. 0094	
. 684	. 28763	736	-35592	729	. 99072	I,8	. 0094	
2.685	7.29499	736	7.36321	729	0.99073	1,8	1.0094	0,2
. 685	. 30236	737	-37051	730	. 99075	1,8	. 0093	
. 687	-30973	738	- 37782	731	. 95077	I,8	. 0093	
. 688	. 31711	739	. 38513	732	. 99079	I,8	.0093	
.689	-32450	739	- 39245	732	.99081	1,8	. 0093	
2.690	7.33190	740	7.39978	733	0.99083	1,8	1.0093	0,2
. 691	. 33930	741	. 40711	73.4	. 99084	1,8	. 0092	
. 692	-34671	741	. 41446	735	.99085	1,8	.0092	
. 693	. 35413	742	.42181	735	.99088	1,8	. 0092	
. 694	. 36156	743	. 42917	736	. 99090	1,8	. 0092	
2.695	7.36899	744	7.43653	737	0.99092	1,8	I. 0092	0,2
. 696	. 37643	744	. 44390	738	. 99004	1,8	.0091	
. 697	. 38388	745	. 45128	738	. 97095	I,8	.0091	-
. 698	. 39133	746	. 45867	739	. 99097	I,8	.0091	
. 699	- 39879	747	. 46607	740	. 99099	1,8	.0091	
2.700	7.40636	747	7.47347	741	0.99 ror	I, 8	1.0091	0,2
\%	tan gd u	$\infty \mathrm{FF}_{0}{ }^{+}$	sec gd u	- F F^{\prime}	$\sin 9 \mathrm{da}$	- Fo°	cse gd u	$\omega \mathrm{Fg}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	© $F_{6}{ }^{\prime}$	$\cosh u$	ωF_{u}^{\prime}	$\tanh \#$	$\omega F_{0}{ }^{\circ}$	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.700	7.40525	747	7.47347	741	0.99101	I,8	1.009I	0,2
. 701	. 41374	748	. 48058	741	. 99103	1,8	.0091	
. 702	. 12122	749	- $\because 8330$	742	. 99104	1,8	. 0090	
.703	. 42872	750	. 49572	$7+3$	-9910	I,8	. 0090	
. 704	. 43622	750	. 5035	74	. 90108	I,8	. 0090	
2.705	7.4133^{2}	751	7.51059	744	0.99110	т,8	1.0050	0,2
. 706	- 45124	752	-51804	745	. Sgili	I, 8	.0090	
. 707	. 45875	753	. 52550	746	. 99113	I,8	.0083	
.708	. 46629	753	. 53296	747	. 99115	I.8	. 0089	
.709	- 47383	754	-54043	747	.99117	r,8	.0089	
2.710	7.48137	755	7.34791	T+8	0.99118	I,8	1.0089	0,2
- 711	. 483 k 2	755	. 55539	749	. 99120	I, 8	. 0030	
.712	. 409648	755	. 55288	750	. 99122	I,7	. 0083	
. 713	. 50.405	757	. 57038	750	.99124	I,7	. 0083	
.714	. 51162	758	. 37789	751	.99125	I,7	.0088	
2.715	7-51920	759	7.58541	752	0.99127	1,7	1.0088	0,2
. 716	. 52579	759	. 59293	753	. 99129	I,7	. 0088	
.717	-53439	760	. 60045	753	. 99131	I,7	. 0088	
. 718	- 54199	761	. 60800	754	. 99132	I,7	. 0083	
.719	-57950	762	. 61535	755	-99134	1,7	.0087	
2.730	7.55722	762	7.62310	756	0.99136	1,7	1.0087	0,2
.721	. 56485	763	. 63066	756	. 92138	1,7	.0087	
. 722	-57249	764	. 63833	757	. 99139	1.7	. 0087	
.723	. 58013	765	. 64580	758	.99141	1.7	. 0087	
.724	-58778	765	. 65339	759	-96143	I,7	. 0086	
2.725	7.59543	756	7.66058	760	0.99144	I,7	I. 0085	0,2
. 226	. 60310	767	. 66858	760	. 991.45	I,7	. 0085	
. 727	. 61077	768	. 67519	751	. 99148	I,7	. 0085	
.728	. 61845	-68	. 68380	752	. 99150	I,7	. 0086	
. 729	.62614	769	. 691.42	753	. 99151	1,7	. 0086	
2.730	7.63383	770	7.69905	763	0.99153	I,7	1.0085	0,2
. 731	. 64154	771	. 70659	754	. 99155	I,7	. 0085	
. 732	. 64925	771	. 71434	765	. 99156	I,7	. 0085	
. 733	. 65697	772	. 72199	766	. 99158	1,7	. 0085	
. 734	. 66469	773	.72965	766	-99160	I,7	. 0085	
2.735	7.67242	774	7.73732	767	0.99161	I,7	1.0085	0,2
.736	. 68017	774	. 74500	758	.99163	I,7	. 0084	
. 737	.68791	775	. 75268	769	. 99165	I,7	.0084	
. 738	. 69567	776	. 75037	770	. 99165	1,7	.0084	
. 739	.70344	777	. 76807	770	-99168	I,7	.0084	
2.740	7.71121	778	7-77578	771	0.99170	1,7	1.0084	0,2
.74I	.71899	778	. 78349	772	. 93171	1,7	.0084	
.742	. 72677	779	. 79122	773	. 99173	1,6	. 0083	
.743	. 73457	780	. 79895	773	. 99175	ז,6	. 0083	
. 744	.74237	78 r	. 80668	77.4	.99175	1,6	. 0083	
2.745	7.75018	78 I	7.81443	775	0.99178	1,6	1.0083	0,2
. 7.76	. 75800	782	. 82219	776	.99179	I,6	. 0083	
. 747	. 76583	783	. 82995	777	-9918I	1,6	. 0083	
. 748	. 77365	784	. 83772	777	. 99183	1,6	. 0082	
. 749	.78150	785	. 84549	778	-99184	1,6	.0082	
2.750	7.78935	785	7.85328	779	0.99186	1,6	1.0082	0,2
【	tan adu	- Fo^{\prime}	sec ged u	- Fa^{\prime}	$\sin \operatorname{dat} \mathrm{u}$	- $F_{0}{ }^{\prime}$	\csc gd u	- $\mathrm{F}_{6}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{t a n h} u$	ωF_{0}	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.750	7.78935	785	7.85328	779	0.90185	1,6	1.0082	0,2
.751	. 79721	783	. 85107	780	. 99188	1,5	.0082	
. 752	. 80507	787	. 85887	78 r	. 99189	1,6	. 0082	
. 753	. 81295	788	. 87668	781	. 99191	1,6	. 0082	
. 754	. 82083	788	. 88450	782	. 99192	1,6	.0081	
2.755	7.82872	789	7.80232	783	0.99194	1,6	I. 008 I	0,2
. 756	. 83561	790	. 90016	784	. 99195	1,6	. 0008 I	
. 757	. $8+452$	791	. 90800	784	. 99197	1,6	.008I	
.758	. $852+3$	792	. 91585	785	. 99199	1,6	. 0081	
. 759	. 85035	792	. 92370	785	.99200	1,6	.0081	
2.760	7.85828	793	7.93157	787	0.99202	1,6	1.0080	0,2
.76I	.87621	794	. 93944	788	. 99304	1,6	.0080	
. 762	. $88+15$	795	. 94732	788	. 99205	1,6	. 0080	
.763	. 8921 I	796	.95521	780	-99207	1,6	. 0080	
. 764	. 90006	796	.96310	790	. 99208	1,6	.0080	
2.765	7.90803	797	7.97101	791	0.99210	1,6	1.0080	0,2
.765	. 91601	798	. 97892	792	. 99212	I,6	.0079	
. 767	. 92399	799	. 98384	792	. 99213	1,6	. 0079	
.758	. 93198	799	. 99477	793	. 99215	1,6	.0079	
.769	. 93998	800	8.00270	794	.99216	1,6	. 0079	
2.770	7.94799	8 II	8.01065	795	0.99218	1,6	1.0079	0,2
.771	. 95600	802	. 01860	796	. 99219	1,6	. 0079	
. 772	. 96402	803	. 02656	756	. 9922 I	1,6	. 0079	
. 773	. 97205	803	. 03453	797	-93222	I,5	.0078	
. 774	.98009	804	. 04250	798	. 99224	1,5	. 0078	
2.775	7.98814	805	8.05049	799	0.99226	I,5	1.0078	0,2
. 775	. 99619	806	.05848	800	. 99227	1,5	. 0078	
.777	$8.00+26$	807	. 05648	800	.99229	1,5	.0078	
. 778	. 01233	807	. 07449	801	. 99230	I,5	. 0078	
. 779	. 020.40	808	. 0825 I	802	. 99232	1,5	. 0077	
2.780	8.02849	809	8.09053	803	0.99233	I,5	1.0077	0,2
.781	. 03659	810	. 09856	804	. 99235	I,5	. 0077	
.782	. 04469	8 II	. 10660	804	. 99236	1,5	. 0077	
.783	. 05280	8 II	. 11465	805	-99238	I,5	. 0077	
. 784	. 06092	812	. 12271	806	. 99239	I,5	. 0077	
2.785	8.06904	813	8. 13077	807	0.99241	1,5	1.0077	0,2
. 786	. 07718	814	. 13885	808	-99242	I,5	.0076	
. 787	. 08532	815	. 14693	809	. 99244	1,5	.0076	
. 788	. 09347	816	. 15502	809	-99245	1,5	. 0076	
.789	. 10163	816	. 16311	810	-99247	1,5	.0076	
2.790	8. 10980	817	8.17122	811	0.99248	1,5	1.0076	0,2
. 791	. 11797	818	. 17933	812	. 99250	I,5	.0076	
. 792	. 12616	819	. 18746	813	. 93251	1,5	. 0075	
. 793	. 13435	820	. 19559	813	-99253	I,5	. 0075	
. 794	. 14255	820	. 20373	814	-99254	1,5	. 0075	
2.795	8.15076	821	8.21187	815	0.99256	I, 5	1.0075	0,2
. 796	. 15897	822	. 22003	816	. 99257	I,5	. 0075	0,2
. 797	. 16720	823	. 22819	817	. 99259	I,5	. 0075	0,2
.798	. 17543	824	.23636	8	-99260	1,5	. 0075	0,2
. 799	. 18367	824	. 24454	818	-99262	1,5	.0074	0,1
2.800	8. 19192	825	8.25273	819	0.99263	1,5	1.0074	0, 1
\#	\tan gia	$\pm F^{\prime}{ }^{\prime}$	\sec ed a	- $\mathrm{F}_{0}{ }^{\prime}$	$\sin \mathrm{gd} y$	$\cdots \mathrm{Fa}^{\prime}$	csced a	- Fa^{\prime}

Natural Hyperbolic Functions.

u	sinh u	$\omega \mathrm{Fu}^{\prime}$	cosh u	$\omega \mathrm{F}^{\prime}$	tanh u	$\omega \mathrm{F}_{0}{ }^{\circ}$	coth u	$\omega \mathrm{F}_{3}{ }^{\prime}$
2.800	8. 19192	825	8.25273	8 8 9	0.90263	1,5	1.0074	0,1
. 801	. 20018	825	. 2 Tog 2	8.0	.99235	1,5	. 0074	
. 802	. 2084	827	. 26913	821	. 9925	1,5	.0074	
. 803	. 21671	828	.27,34	8.22	-99258	1,5	.0074	
. 804	. 22499	829	. 28535	822	-99269	1,5	. 0074	
2.805	8.23328	829	8.29379	823	0.99270	1,5	1.0073	0,I
. 806	. 24158	830	. 30203	824	. 99272	1,5;	.0073	
. 807	. 24989	831	. 31025	825	-99273	1,4;	. 0073	
. 808	. 25832	832	. 31853	825	. 99275	1,4	. 0073	
. 809	. 26653	833	-32579	827	. 99276	1,4	. 0073	
2.810	8.27486	834	8.33506	82	0.99278	1,4	1.0073	0,1
.811	. 28320	834	. $34.33+$	828	. 99279	1,4	.0073	
. 812	. 29154	835	. 35153	829	.99281	1,4	. 0073	
. 813	. 29990	836	. 35962	830	. 99282	1,4	.00;2	
. 814	. 308.25	837	- 36823	831	. 99283	1,4	.0072	
2.815	8.31664	838	8.37554	832	0.99285	I,4	1.0072	0,I
. 816	. 32502	838	. 38485	833	. 99285	1,4	.0072	
. 817	- 33341	839	- 39319	833	. 99288	1,4	. 0072	
. 818	- 34180	840	. 40153	834	-99289	1,4	. 0072	
.819	-35021	841	. 40987	835	-99291	I, 4	. 0071	
2.820	8.35852	842	8.41823	836	0.99292	I,4	1.0071	O,I
.821	. 35704	$8+3$. 42659	837	. 99293	1,4	.0071	
. 822	- 37548	$8+3$. 43496	838	. 99295	$1{ }^{1}+$	-0071	
. 823	- 3839 I	8	. 41334	838	. 99296	I,4	. 007 I	
. 824	- 39236	845	. 45173	839	-99298	1,4	.0071	
2.825	8.40082	846	8.46013	840	0.99399	r,4	1.007 r	O,I
. 825	- 40928	847	. 46853	841	. 993300	I, 4	.0070	
. 827	. 41776	848	. 47595	$8{ }^{8} 2$. 99302	1,4	. 0 \% 0	
. 828	. 42524	849	. 48537	8	. 993303	I, 4	.0070	
. 829	- 43473	849	-49380	843	-99305	I,4	.0070	
2.830	8.44322	850	8.50224	84	0.99306	1,4	1.0070	O,I
- 2.83 I	. ${ }^{-45173}$	851	. 51068	845	. 99307	I, 4	-0070	
. 832	. 46025	852	. 51914	846	. 99309	I,4	. 0070	
. 833	- 46877	853	. 52760	847	-99310	I,4	. 00669	
. 834	. 47730	854	. 53608	848	. 99311	I,4	. 0069	
2.835	8.4858 .4	854	8. 54456	849	0.99313	I,4	1.0059	O, I
. 836	. 49439	855	. 553305	849	. 99314	I, 4	. 0069	
. 837	- 50295	856	. 56155	850	-99316	$\mathrm{r}_{\mathrm{r}} \mathbf{4}$. 0059	
. 838	. 51151	857	. 57006	851	-99317	I, 4	. 0069	
. 839	. 52009	858	. 57857	852	-993I8	$1{ }_{1} 4$. 0069	
2.840	8.52857	859	8.58710	853	0.99320	1,4	1.0069	o,r
. 841 r	. 53726	860	. 59563	854	. 99332	I,4	. 0068	
. 812	. 54586	850	. 60417	855	. 99322	I, 4	. 0068	
.843	. 55447	851	. 61272	855	. 99324	I,3	. 0068	
. 844	. 56309	852	. 62128	855	. 99325	I,3	. 0068	
2.845	8. 57171	863	8.62085	857	0.99326	r,3	1.0068	0,I
. 846	. 58035	864	. 63842	858	-99328	1,3	.0068	
. 878	. 58899	865	. 64701	859	-99329	1,3	. 0068	
. 848	. 59764	856	. 65560	860	-99330	1,3	. 0066	
. 849	. 60630	866	. 66420	861	-99332	1,3	. 0067	
2.850	8.61497	867	8.67281	861	0.99333	1,3	1.0067	o,r
*	\tan gda	- Fo^{\prime}	\sec gd u	\& $\mathrm{F}_{0}{ }^{\prime}$	\sin od a	$\pm \mathrm{F}^{\circ}{ }^{\circ}$	cscegd u	$\pm \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	$\omega \mathrm{Fo}^{\prime}{ }^{\prime}$	\cosh \#	$\omega \mathrm{Fi}_{0}{ }^{\prime}$	tanh u	$\omega \mathrm{F}^{\prime}$	$\operatorname{coth} u$	$\infty \mathrm{Fo}^{\prime}{ }^{\prime}$
2.850	8.61497	867	8.67281	851	0.99333	I,3	1.0067	O,I
. 851	. 62365	868	. $68 \mathrm{r}+3$	852	. 99334	I,3	. 0067	
. 852	. 63233	869	. 69006	863	. 99335	I,3	. 0067	
. 853	. 64103	870	. 608870	854	. 99337	I,3	. 0067	
. 854	. 64973	871	. 70734	865	. 99338	I,3	.0067	
2.855	8.65844	872	8.71600	856	0.99340	I, 3	1. 00066	0,1
. 856	. 66716	872	. 72.466	867	. 99341	I,3	. 0066	
. 857	. 67589	873	. 73333	858	. 9934	I,3	. 0066	
.853	. $68+63$	874	. 74201	858	. 99344	I,3	. 0066	
.852	. 69337	875	. 75070	869	. 99345	I,3	. 0066	
2.850	8.70213	875	8.75940	8-0	0.99346	1,3	1.0066	0, 1
. 851	. 71089	877	. 76810	871	. 99348	1,3	. 0066	
. 852	. 71967	878	. 77582	872	. $993-19$	I,3	. 0066	
. 853	.72845	879	. 78554	873	. 99350	1,3	. 0065	
.85:	. 73724	879	. 79428	874	. 99351	I,3	. 0065	
2.865	8.74604	880	8.80302	875	0.99353	I,3	1.0065	O,I
. 85	. 75484	831	.81177	875	. 99354	I,3	. 0065	
. 857	. 76356	882	. 82053	876	. 99355	I,3	.0065	
. 858	. 772.48	883	. 82930	877	. 99357	I, 3	.0065	
. 859	. 78132	884	. 83807	878	.99358	I,3	. 0065	
2.870	8.79016	885	8.84686	879	0.99359	1,3	1.0065	O,I
. 871	. 79901	886	. 85565	880	. 99360	1,3	. 0064	
. 872	. 80787	885	. 85446	83 I	. 99362	1,3	.0064	
. 873	. 81674	887	. 87327	832	. 99363	1,3	.0054	
. 874	. 82562	888	. 88209	883	. 99364	I,3	.0064	
2.875	8.83450	889	8.89092	883	0.99365	1,3	1.0064	O, I
. 876	. 84340	890	. 89976	834	. 99367	1,3	. 0064	
. 877	. 85230	891	.90861	885	. 99358	1,3	. 0064	
. 878	. 85122	892	. 91746	885	. 99369	1,3	. 0063	
. 879	.87014	893	. 92633	887	. 9937 I	I,3	. 0063	
2.880	8.87907	894	8.93530	838	0.99372	1,3	1.0063	O,I
.88I	. 88801	894	. 91409	889	. 99373	1,3	. 0063	
. 882	. 89696	895	. 95298	800	. 99374	1,2	. 0063	
. 883	. 90591	896	. 96188	891	. 99376	I,2	. 0063	
. 884	.91488	897	. 97079	891	. 99377	1,2	. 0063	
2.885	8.92385	898	8.97971	892	0.99378	1,2	1.0053	0,1
. 885	. 93284	899.	. 98864	893	. 99379	1,2	. 0062	
. 887	-94183	900	. 99758	894	. 99380	1,2	. 0062	
. 888	. 95084	901	9.00652	895	. 99382	1,2	. 0062	
. 889	. 95985	902	. 01548	896	. 99383	1,2	. 0062	
2.890	8.96887	902	9.02444		0.99384	1,2	1.0062	O, 1
. 891	. 97790	903	. 03342	898	. 99385	I,2	. 0062	
. 892	. 98693	904	. 04240	899	. 99387	I,2	. 0062	
. 893	. 99598	905	.05139	900	. 99388	I, 2	. 0062	
. 894	9.00504	906	.06039	901	. 99389	1,2	. 0061	
2.895	9.01410	907	9.06940	901	0.99390	1,2	1.0061	O,I
. 896	. 02318	908	. 07842	902	. 99391	1,2	.006I	
. 897	. 03226	909	. 08745	903	. 99393	1,2	. 0061	
. 898	. 04135	910	. 09648	904	. 99394	1,2	.006I	
. 899	. 05045	9 II	. 10553	905	. 99395	1,2	.006r	
2.900	9.05956	911	9.11458	906	0.99396	1,2	1.006I	0,1
\square	tan ed ${ }^{\text {a }}$	$\leftrightarrow \mathrm{Fa}^{\prime}$	$\sec \mathrm{gd} \mathrm{a}$	- F ${ }^{\prime}$	sha ged u	- Fi'	\csc gd u	- F FG^{\prime}

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega^{*} \mathrm{~F}^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	tanh u	$\omega F_{0}{ }^{\prime}$	$\operatorname{coth} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.900	9.05956	911	9.11458	906	0.99396	1,2	1.0061	O,I
.901	. 06868	912	. 1235	507	. 99338	1,2	.0061	
. 902	.07-81	913	. 13272	c08	. 99399	1,2	. 0065	
. 903	. 08695	914	. 14180	909	-99400	1,2	. 0060	
. 904	. 09609	915	. 15090	910	. 90401	1,2	. 0060	
2.905	0.10525	916	9.16000	911	0.99402	I,2	1.0060	0,I
. 006	. 1141	917	. 16911	911	. 90403	1,2	. 0060	
. 907	. 12359	918	. 17823	912	. 09.405	1,2	. 0065	
. 008	. 13277	919	.18735	913	. 99405	1,2	.00650	
. 909	. 141206	920	. 19649	914	. 09407	I,2	.0060	
2.910	9.15116	921	9.20564	915	0.99408	I,2	1.0060	0,1
. 911	. 16037	921	. 21479	916	. 99409	1,2	. 0059	
. 912	. 16959	922	. 22396	917	. 99411	1,2	.0059	
.913	. 17882	923	. 23313	918	. 909412	I, 2	. 0059	
. 914	. 18806	924	. 21232	919	.99413	I,2	.0059	
2.915	9.19730	925	9.25151	920	0.99414	I,2	1.0059	0,1
. 910	. 20656	926	. 26071	921	. 99415	1,2	. 0059	
.917	. 21583	927	. 25992	922	. 99416	I,2	.0059	
. 918	. 22510	928	. 27914	923	-99+18	I, 2	. 0059	
.919	. 23438	929	. 28837	923	. 99419	I,2	. 0058	
2.920	9.2.4368	930	9.29761	924	0.99420	1,2	I. 0058	0,1
.921	. 25298	931	-30686	925	. $99+121$	I,2	. 0058	
. 922	. 25229	932	. 31612	926	. 99422	I,2	.0058	
. 923	.27161	933	. 32538	927	. 999123	I, I	. 0058	
. 924	. 28004	933	-33466	928	. 99425	I, I	.0058	
2.925	9.25028	934	9.34395	929	0.99436	I, I	1.0058	O,I
. 926	. 29963	935	. 35324	930	. 99427	x, 1	.0058	
.927	- 30899	936	-36254	931	. 99428	I, I	.0058	
. 928	-31835	937	. 37185	932	. 99429	I, I	. 0057	
. 929	- 32773	938	.38128	933	. 99430	r, I	. 0057	
2.930	9.33712	939	9.39051	934	0.99531	I, I	1.0057	O,I
.93I	-34651	940	-39986	935	. 99433	I, I	. 0057	
. 932	. 35592	941	- 10921	936	-99434	I, I	. 0057	
. 933	- 36533	942	. 41857	937	- 99435	I, I	. 0057	
.934	-37475	943	. 42704	937	. 99436	I, I	. 0057	
2.935	9.38419	944	9.43732	938	0.99437	I, 1	1.0057	O,I
. 936	-39363	945	. 47671	939	-99438	I, I	. 0057	
. 937	. 40308	946	. 45610	940	. 99439	r, I	. 0056	
. 938	. 41254	947	. 46551	941	- 99414	I, I	. 0056	
. 939	.42201	947	-47493	942	. 99441	I, I	. 0056	
2.940	9.43149	948	9.48+36	943	0.99413	I, I	1.0056	O,I
. $9+1$. 41098	949	. 49379	94	. 99414	I, I	. 0056	
. 942	-45048	950	. 50324	945	. 99445	I, I	. 0056	
. 243	- 45999	951	. 51269	946	. 99446	I, I	. 0056	
. 944	. 46950	952	. 52216	947	.994-47	I, I	.0056	
2.945	9.47903	953	9.53163	948	0.09448	I,I	I.0055	O,I
. 946	. 48857	954	. 54112	949	. 99449	1,I	. 0055	.
. 947	. 49811	955	-5506I	950	-99450	I, I	. 0055	
.948	. 50767	956	. 56011	951	.99451	I,I	. 0055	
. 949	. 51723	957	. 56962	952	. 99453	I, I	. 0055	
2.950	9.5268I	958	9.57915	953	0.99454	I,I	I. 0055	O,I
\square	$\tan 9 \mathrm{gd}$	$\cdots \mathrm{F}_{0}{ }^{\prime}$	sec god u	$\infty \mathrm{FO}^{\prime}$	$\sin 9 \mathrm{~d} n$	$\infty \mathrm{Fo}^{\prime}$	$\csc \operatorname{cod} \mathrm{a}$	$\sim \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cosh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\boldsymbol{t a n h} u$	$\omega F_{0}{ }^{\circ}$	$\boldsymbol{c o t h} \mathrm{u}$	$\omega F^{\prime}{ }^{\prime}$
2.950	9.52681	958	9-57915	953	0.99454	I, I	1.0055	O,I
.951	. 53639	959	. 588.58	954	. 99455	1, I	.0055	
. 952	. 54598	960	. 59822	955	-99456	I, I	. 0055	
-953	- 55559	961	. 60777	956	-99457	I, I	.0055	
. 954	. 56520	962	. 61733	957	. 99458	I, I	. 0055	
2.955	9.57 .482	963	9.62690	957	0.99459	I, I	1.0054	O,I
. 956	. $58+45$	564	. 63648	958	. 99.460	I, I	. 0054	
. 957	- 59410	965	. 64607	959	.99461	I, I	.0054	
. 958	. 60375	966	. 65567	930	. 99462	I, I	. 0054	
. 959	. 61341	967	. 66528	901	. 99463	I, I	.0054	
2.960	9.62308	967	9.67490	962	0.99464	I, I	1.0054	O,I
.951	. 63275	968	. $68+52$	963	. 99465	I, I	.005-4	
. 952	. 61245	069	. 69416	954	. 99467	I, I	. 0054	
.963	. 65214	970	. 70381	965	-99468	I, I	. 0054	
. 964	. 66185	971	. 71347	956	.99469	1,1	.0053	
2.965	9.67157	972	9.72313	957	0.99470	I, I	1.0053	O,I
. 966	. 68130	973	.73281	968	. 99471	I, I	. 0053	
. 967	. 69104	974	. 74249	969	. 99472	I, I	. 0053	
. 958	. 70073	975	. 75219	970	-99473	I,I	. 0053	
. 969	. 71054	976	.75190	971	. 99474	1,0	. 0053	
2.970	9.72031	977	9.77161	972	0.99475	1,0	1.0053	0,1
.971	. 73008	978	.78134	973	. 99476	1,0	. 0053	
. 972	. 73987	979	. 79107	974	. 99477	1,0	. 0053	
. 973	. 74967	980	. 80082	975	. 99478	1,0	. 0052	
. 974	-75947	98 I	. 81057	975	. 99479	I,O	. 0052	
2.975	9.76929	982	9.82034	977	0.99480	1,O	1.0032	0,1
. 976	. 77911	983	. 83011	978	.9948I	1,O	.0052	
. 977	. 78895	984	. 83989	979	. 99482	1,0	.0052	
. 978	. 79879	985	. 84969	980	-99483	1,0	.0052	
. 979	.808 5	985	. 85949	58 I	. 99484	1,0	.0052	
2.980	9.81851	987	9.86930	982	0.99485	1,0	1.0052	0,1
. 981	. 82839	988	. 87913	983	. 99486	1,0	. 0052	
. 982	. 83827	983	. 88896	884	. 99487	1,0	. 0052	
.983	. 84816	990	. 89880	985	-99488	1,0	.005 I	
.984	. 85807	991	. 90866	986	.99489	1,0	.0051	
2.985	9.86798	992	9.91852	987	0.99490	1,0	1.0051	Q,I
. 985	. 87790	993	. 92839	988	.99491	1,O	.005I	
. 987	. 88784	994	. 93828	989	. 99492	1,0	. 0051	
. 988	. 89778	995	. 94817	950	.99493	1,O	. 0051	
.989	.90773	996	. 95807	991	-99495	1,0	.005I	
2.990	9.91770	997	9.95798	692	0.99496	I,O	1.0051	0, I
.991	. 92767	998	.97791	993	. 99497	1,0	. 0051	
. 992	. 93755	999	.98784	994	. 99498	1,0	. 0051	
. 993	. 94765	1000	. 99778	995	. 99499	1,0	.0050	
. 994	. 95765	1001	10.00774	996	. 99500	1,0	.0050	
	9.96766	1002	10.01770	997	0.99501	1,0	1.0050	0,1
. 996	. 97768	1003	. 02767	98	. 99502	1,0	.0050	
.997	. 98772	1004	. 03765	999	-99503	1,0	.0050	
. 998	. 99776	1005	. 04755	1000	. 99504	1.0	.0050	
. 999	10.0078 I	1006	. 05765	1001	.99504	1,0	. 0050	
3.000	10.01787	1007	10.06766	1002	0.99505	1,0	1.0050	0,1
n	tan ad	$\pm \mathrm{Fo}^{\prime}$	$\sec 9 \mathrm{~d} \mathrm{u}$	* Fa^{\prime}	stin ga	* F $\mathrm{F}_{0}{ }^{\prime}$	escod u	- $\mathrm{F}_{\boldsymbol{\theta}}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\boldsymbol{s i n h} u$	${ }^{\omega} \mathrm{F}^{\prime}$	cosh u	$\omega \mathrm{F}_{0}{ }^{\prime}$	tanh 4	$\omega \mathrm{F}^{\prime}$	coth u	$\omega \mathrm{Fo}^{\prime}$
3.00	10.0179	1007	10.0677	1002	0.99505	9,9	1.0050	I, O
.or	10.1191	1017	10.1583	1012	. 59515	9,7	. 0047	I, I, O
. 21	10.2212	1027	10.2700	1022	. 90525	9.5	. 00.18	1,0
. 03	10.3215	${ }^{1037}$	10.3728	1032	-99334	9.3	. 0047	0,9
. 04	10. +287	10.48	10.475	$10+3$	-99543		. 00.4	0,9
	10.5340	10 \% 8	10.58 SI 4	10 ± 3	0.99552	8.8	1.0045	0,9
. 06	10.6403	1059	10.6852	1054	. 09501	8.8	. $00+4$	0,9
. 0	$10.5+77$	1079	10.79+2	$10{ }^{105}$	-99570	8.6	. 0043	0,9
. 08	10.8552	roso	10.5022	1083	. 999578	8.4	. 00042	0,8
. \times	10.9558	1101	11.0113	1097	-59587	8,2	. 0041	
3.10	11.0765	1112	II. 1215	1108	0.59595	8.1	1.0041	0,8
. 11	11.1832	1123	11.2328	1119	. 59503	7,8	. 0040	0,8
. 12	II. 3011	1135	II. 3453	1130	-99611	7,8	. 0039	0,8
. 13	11.4151	1146	11.4583	${ }_{115}^{115}$.99618	7,5	.0038	-0,8
. 14	II. 5303	1157	11.5736	1153	-99325	7,5		
3.15	11. 6464	1169	11.6895	1165	0.99533	7,3	1.0037	0,7
. 16	11.7641	1181	11.8065	116	. 99641	7,2	. 0030	0,7
.17	11.8827	1152	${ }_{11} 12.9247$	$\begin{array}{r}1188 \\ 1300 \\ \hline 181\end{array}$. 90648	7,0 6.0	.0035 .0035	0,7 0,7
. 18	12.0026	1204	12.0442 12.1648	1200	. 96955	6,8	. .0035	0,7 0,7
. 19	12.1236	1216	12.1648					
3.20	12.2459	1229	12.2865	1225	0.99568	6,5	1.0033	0,7
. 21	12.3694	1241	12.4057	1237	. 99675	6,5	. 0033	0,7
. 22	12.1941 12.6200	1253	12.5340 12.6505	1219 1262	. 99581	6,4	.0032	0,6
. 23	12.6200 12.7473	1266 1279	12.6595 12.7854	1202 1275	. 995698	6,1	.0031	0,6
	12.8758	1291	12.9146	1288	0.99700	6,0	1.0030	0,6
. 26	13.0056	1304	13.0410	1301	. 99706	5.9	.0030	0,6
. 27	13.1367	${ }_{1317}$	13.1747	1314	. 99712	5,8	. 0029	0,6
. 28	13.2691	1331	13.3067	1327	. 99717	5,6	. 0028	0,6
. 29	13.4028	1344	$13.4{ }^{\text {O }}$	1340	. 99723	5,5	. 0028	0,6
3.30	13.5379	1357	13.5748	1354	0.99728	5,4	1.0027	0,5
-31	13.6743	1371	13.7108	${ }_{135}^{138}$. 99734	5.3	. 00027	0,5
. 32	13.8121	1385	13.8483	1381	. 99739	5,2	. 00026	0,5
- 33	13.9513 14.0918	1399 I 413	13.9871 14.1273	1395 1499	. 999744	5,0	. 0025	0,5
$3 \cdot 35$	14.2338	1427	14. 2589	I 423	0.99754		1.0025	0,5
. 36	14.3772	1441	14.4120	I 438	. 99759	4,8	.0024	¢,5
. 37	14.5221	${ }^{1} 456$	I4. 5565	I +52	. 97754	4.7	.0024	0,5
. 38	${ }^{14.6684}$	1470	I4.7024	1	-99758	4,6	. 0023	0,5
. 39	14.8161	1485	14. 8498	1482	- 99773	4.5	. 0023	0,5
3.40	14.9654	1500	14.9987	1497	0.99777	4.4	1. 0022	0,4
- 4	15.1161	1515	15.1491	1512	. 99782	4.4	. 0022	\bigcirc
. 42	15.2584	1530	15.3011	1527	-99786	4.3	. 0021	0,4
-43	15-4221	1515	15.4545	1542	-99790	4,2	. 00021	0,4
$\cdot 44$	15.5774	1561	15.6095	1558	. 99795	4,1	.002I	O,4
3.45	15.7343	1577	15.7661	1573	0.99799	4,0	r. 0020	0,4
. 46	15.8928	1592	15.9242	1589	. 99803	3.9	. 0020	0,4
. 47	16.0528	1608	16.0839	1605	- 99807	3.9	. 0019	0,4
. 48	16.2145	1625	16.2453	1621 1638	-99810	3.8	. 0019	0,4
-49	16.3777	1641	16.4082	1638	. 99814	3.7	. 0019	0,4
3.50	16.5426	1657	16.5728	1654	0.99818	3.6	1.0018	0,4
"	$\boldsymbol{t a n}$ od u	* Fo^{\prime}	\sec gd u	- Fo ${ }^{\prime}$	\sin da a	${ }^{\circ} \mathrm{FF}{ }^{\circ}$	crc gd u	$\pm \mathrm{Fa}^{\prime}$

Natural Hyperbolic Functions.

U	$\sinh u$	$\omega \mathrm{F}^{\prime}$	$\cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}$	coth u	$\omega \mathrm{F}$;
$3 \cdot 50$	16. $5+26$	1657	16.5728	1654	0.99818	3.6	1.0018	0,4
. 51	16.7092	1674	16.7391	1671	. 96821	3.6	. 0018	0,4
-52	$16.87 \% 4$	1691	16.9070	1683	. 90825	3,5	. 00018	0,4
. 53	17.0473	1708	17.0706	1705	. 9682	3.4	.0017,	0,3
. 54	17.2190	1725	I7.2480	1722	. 098832	3,4	.0017	0,3
3.55	17.3923	1)42	I-. 2210	1739	0.09835	$3 \cdot 3$	1.001%	0,3
. 56	17.5674	I-60	17.3058	1757	. 968838	3,2	. 0010	0,3
. 57	17.7442	1775	17.7724	1774	- 4,812	3.2	. 0016	0.3
. 58	17.92.28	1795	$15.950-$	1792	. 99845	3 , I	. 001%	0,3
. 59	18.1032	1813	18.1308	1810	. 698.8	3,0	. 0015	0,3
3.60	18.2855	1831	18.3128	1829	0.09851	3.0	1.0015	0,3
. 61	18.4695	1850	18.4956	1845	. 9085.4	2.9	. 0015	0.3
. 62	18.6554	183	18.6822	1865	. 93837	2.9	. 0014	0,3
. 63	18.8432	1887	18.8597	1884	. 99859	2.8	.0014	0.3
. 64	19.0328	1906	19.0590	1903	. 9985	2,8	. 014	0,3
3.65	19.2243	1925	19.2503	1922	0.99865	2,7	1.0014	0,3
. 66	19.4178	1944	19.4435	$19+2$. 90888	2,6	. COH 3	0,3
. 67	19.6132	1964	19.6387	1961	. 99870	2,0	. 0013	0,3
. 68	Ig. 8106	1984	19.8358	IC8I	. 96873	2.5	.0013	0,3
.69	20.0099	2003	20.0349	2001	. 60875	2,5	. 0012	0,2
3.70	20.2113	2024	20.2350	2021	0.99878	2,4	1.0012	0,2
. 71	20.4147	$20+4$	20.4391	2041	. 99880	2.4	. 0012	0,2
. 72	20.6201	2014	$20.64+3$	2012	.99883	2.3	.0012	0,2
. 73	20.8275	2085	20.8516	2083	. 99883	2,3	.0012	0,2
.74	21.0371	2106	21.0609	2104	. 99887	2,3	. 0011	0,2
3.75	21.2408	2127	21.2723	2125	0.99889	2,2	1.0011	0,2
. 76	21.4026	2149	21.4859	2146	. 9,8892	2,2	. 0011	0,2
. 75	21.6785	2170	21.7010	2168	. 9,804	$2, \mathrm{I}$. 0011	0,2
. 78	21.8966	2192	21.9194	2190	. 59886	2,1	. 0010	0,2
. 79	22.1169	2214	22.1395	2212	. 99898	2,0	. 0010	0,2
3.80	22.3394	2236	22.3518	2234	0.99900	2,0	1.0010	
. 81	22.504 I	2259	22.5833	2256	. 09502	2,0	. 0010	0,2
. 82	22.7911	2281	22.8131	2279	. 99904	1,9	. 0010	0,2
. 83	23.0204	2304	23.0421	2302	. 90505	1,9	. 0009	0,2
. 84	23.2520	2327	23.2735	2325	. 99908	I,8	. 0009	0,2
3.85	23.4859	2351	23.50;2	2349	0.99909	1,8	1.0009	0,2
. 85	23.7221	2374	23.7432	2372	. 0991 I	I,8	. 0009	0,2
. 87	23.9508	2398	23.9815	2396	. 99913	1,7	. 0009	0,2
. 88	24.2018	24.22	24.2224	2420	.99915	1.7	.0009	0,2
. 89	24.445^{2}	2447	24.4657	$3+45$.99916	1,7	. 0008	0,2
3.90	24.6911	2471	24.7113	2469	0.99918	1,6	1.0008	0,2
.91	24.9395	2496	24.9595	2494	. 99920	1,6	. 0008	0,2
. 92	25.1903	2521	25.2101	2519	. 99921	1,6	. 0008	0,2
. 93	25.4437	2546	25.4633	2544	. 99923	1,5	. 00008	0,2
.94	25.6996	2572	25.7150	2570	. 99924	1,5	. 0008	0,2
3.95	25.9581	2598	25.9773	2596	0.99926	1,5	1.0007	0,I
. 96	26.2191	2624	25.2382	2 2i22	. 99927	1,5	. 0007	0,1
. 97	26.4828	2650	25.5017	2648	. 99929	1,4	. 0007	0,1
. 98	26.7492	2677	26.7679	2675	. 999330	I,4	. 0007	O,I
. 99	27.0182	2704	27.0367	2702	.99932	1,4	. 0007	Q,I
4.00	27.2899	2731	27.3082	2729	0.99933	1,3	1.0007	O,I
\square	$\tan \operatorname{ad} \mathrm{x}$	* Fo'	\sec gd u	- $\mathrm{F}_{6}{ }^{\prime}$	siag ed a	$\bullet \mathrm{Fg}^{\prime}$	$\csc \operatorname{gd} u$	$\cdots \mathrm{Fo}^{\prime}$

Natural Hyperbolic Functions.

4	$\sinh u$	$\omega \mathrm{FG} \mathrm{F}^{\prime}$	$\cosh u$	$\omega \mathrm{F}^{\prime}$	$\tanh u$	$\omega \mathrm{F}^{\prime}$	coth u	$\omega \mathrm{F}_{0}{ }^{\prime}$
4.00	27.2809	2731	27.3082	2729	0.90033	I,3	1.0007	O,I
. OI	27.354	27Es	27.3\$25	2-5	. 09634	I,3	.0007	
.02	$27.8+16$	2.85	27.8595	278.	. 99033^{\prime}	I, 3	. 0006	
. 03	28.1215	$2 \mathrm{SH}_{14}$	28.1393	2312	. 909037	I. 3	.0006	
. 84	28.404	2842	$28 .+220$	2840	$.29,938$	I,2	.000	
4.05	28.6500	2871	28.7074	280	0.99939	I,2	1. 0006	O,I
. 06	28.9785	2000	28.9558	2898	. 59904	I, 2	. 0006	
.07	29.259	2929	29.2870	2927.	-6, $\mathrm{C}^{2} 2$	I,2	. 00005	
. 08	29.5043	2958	29.5852	2935	. 90904	I, I	. 0006	
. 09	29.8616	25488	$29.8-83$	2,86	.9994.4	I, I	. 0006	
4.10	30.1619	3018	30.178	3016	0.90945	I, I	1.0005	O,I
. II	30.4652	30.48	30.8815	3047	.99946	I, I	. 0005	
. 12	30.7-15	30-9	30.787	3076	. 9,9947	I, I	. 0005	
. 13	31.0809	3110	31.0970	$3 \mathrm{IC8}$.096,48	1.0	. 0005	
. 14	31.3934	3141	31.4094	3139	. 95949	I, 0	. 0005	
4.15	31.7091	3172	31.7249	3 I I	0.99950	1,0	1.0005	O,I
. 16	32.0280	3204	32.0436	3203	. 99951	1,0	. 0005	
. 17	32.3500	3237	32.3t55	3235	. 99952	1,0	.0005	
. 18	32.6753	3259	32.6906	324	.94953	0,9	. 0005	
-19	33.0038	3302	33.0190	3300	. 99954	0,9	. 0005	
4.20	33.3357	3335	33.3507	3334	0.09955	0.9	1.0004	O,I
. 21	33.0708	3369	33.6857	336	. 90955	0,9	. 0004	
. 22	34.0094	3.402	34.02.41	3401	. 90957	0.9	. 0004	
.23	34.3513	3437	34.3659	$3+35$. 99958	0.8	. 0004	
. 24	$34.65,67$	3471	34.731 I	3470	. 90958	0,8	. 0004	
4.25	35.0456	3506	35.0598	3505	0.99959	0,8	1.0004	O,I
. 25	35.3979	35.41	35.4121	35.40	. 99960	0,8	. 0004	
. 27	35.7538	3577	35.70, 8	3575	. 909 51	0,8	. 0004	
. 28	35.1133	3613	36.1271	3011	.90962	0,8	. 0004	
. 29	36.4764	3649	36.4901	36.48	. 90962	0,8	.0004	
$4 \cdot 30$	36.8431	3685	36.8367	3684	0.90963	0,7	1.0004	O,I
. 31	37.2135	3723	37.2270	3721	. 9996	0,7	. 0004	
- 32	37.5877	3760	37.6010	3759	. 99965	0,7	. 0004	
- 33	37.96 .56	3798	37.9787	3797	. 99065	0,7	. 0003	
- 34	38.3473	3836.	38.3603	3835	.99966	0,7	. 0003	
4.35	38.7328	3875	38.7457	3873	0.99067	0,7	1.0003	O,I
. 36	39.1222	3913	39.1350	3912	.99957	0,7	. 0003	
. 37	39.5155	3953	39.5281	3952	. 99968	0,6	. 0003	
- 38	39.9128	3993	39.9253	3991	-99969	0,6	. 0003	
. 39	40.31 .40	4033	40.3264	4031	.99969	0,6	. 0003	
4.40	40.7193	4073	40.7316	4072	0.99970	0,6	1.0003	O,I
. 41	41.1287	4114	41.1408	4113	. 99970	0,6	. 0003	
. 42	41.5421	4155	41.5542	4154	. 99971	0,6	. 0003	
.43	41.9508	4197	41.9717	4196	. 99972	0,6	. COO 3	
- +4	12.3816	4239	42.3934	4238	. 99972	0,6	. 0003	
4.45	42.8076	4282	42.8193	4281	0.99973	0,5	1.0003	O,I
.46	43.2380	$43 \geq 5$	+3.2495	4324	. 99973	0,5	. 0003	
. 47	43.6726	4368	43.684 I	4367	. 99974	0,5	. 0003	
- 48	+4.1117	- 4412	4.1230	44 II	.99974	0,5	. 0003	
. 49	44.5551	$+457$	44.5663	4456	. 99975	0,5	. 0003	
4.50	45.0030	4501	45.0141	4500	0.99975	0,5	1.0002	0,0
\square	$\boldsymbol{t a n g d u}$	$\omega \mathrm{Fo}^{\prime}$	$\boldsymbol{s e c}$ od u	$\infty \mathrm{Fo}^{\prime}$	$\sin \mathrm{gd} u$	$\omega \mathrm{Fb}^{\prime}$	csc gd u	$\pm \mathrm{F}_{8}{ }^{+}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{1}{ }^{\text { }}$	$\cosh u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\boldsymbol{\operatorname { t a n h }} \mathrm{u}$	$\omega \mathrm{F}$,	$\operatorname{coth} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$
4.50	45.0030	4501	45.0141	4500	0.99975	0,5	I. 0002	0,0
. 51	45.4554	4547	45.4054	4546	. 90909	0,5	. 0002	
. 52	45.9124	4592	45.9232	4591	. 99996	0,5	. 0002	
. 53	+6.3739	4638	46.3847	4637	. 9997	0,5	. 0002	
. 54	45.8401	4685	46.8507	4684	.990977	0,5	. 0002	
4.55	47.3109	4732	47.3215	4731	0.99978	0,4	1.0002	0,0
- 30	47.785	+780	47.7970	4779	. 99978	0,4	.0002	
. 57	48.2605	4828	48.2772	4827	. 999979	O,4	.0002	
. 58	48.7521	4876	48.7623	4875	. 90905	0,4	. 0002	
. 59	49.2421	$\underline{+925}$	49.2523	4924	.000\%9	0,4	. 0002	
4.60	49.7371	4975	49.7472	4074	0.99280	0,4	1.0002	0,0
. 61	50.2371	5025	50.2471	5024	.909480	0,4	.0002	
. 62	$50.7+21$	5075	50.7519	5074	. 90981	0,4	. 0002	
. 63	51.2522	5126	51.2619	5125	. 990881	0,4	.0002	
. 64	51.7673	5178	51.7770	5177	. 99981	0,4	. 0002	
4.65	52.2877	5230	52.2973	5229	0.90982	0,4	1.0002	0,0
. 66	52.8133	5282	52.8228	5281	. 99982	0,4	. 0002	
. 67	53.34+2	5335	53.3536	5334	. 09988	0,4	. 0002	
. 68	53.8804	5389	53.8897	5388	. 090983	0,3	. 0002	
. 69	54.4220	5443	$54 \cdot+312$	5412	. 99983	0,3	. 0002	
4.70	54.9690	5498	54.978r	5497	0.99983	0,3	1.0002	0,0
. 71	55.5216	5553	55.5305	5552	. 99984	0,3	. 0002	
. 72	56.0797	5609	56.0888	5008	-90084	0,3	.0002	
. 73	$56.6+34$	5665	56.6522	5664	. 90984	0,3	.0002	
. 74	57.2127	5722	57.2215	5721	. 909085	0,3	. 0002	
4.75	57.7878	5780	57.7965	5779	0.99985	0,3	1.0001	0,0
-7	58.368	5838	58.3772	5837	. 99985	0,3	. 0001	
. 77	58.9554	5896	58.9439	58,6	.90985	0,3	.0001	
. 78	59.5480	5956	59.5554	5955	. 99985	0,3	.0001	
. 79	60.1465	6015	60.1548	6015	. 99086	0,3	. 0001	
4.80	60.7511	6076	60.7593	6075	0.99985	0,3	1.0001	0,0
. 81	61.3617	6137	61. 3099	6136	. 90987	0,3	. 0001	
. 82	61.9785	6199	61.9886	6198	.99987	0,3	. 0001	
. 83	62.6015	6261	62.6095	6260	. 99987	0,3	. 0001	
. 84	63.2307	6324	63.2386	6323	.99987	0,3	.0001	
4.85	63.8663	6387	63.8741	6387	0.90988	0,2	1.0001	0,0
. 86	64.5082	6452	64.5160	6.451	. 99988	0,2	. 0001	
. 87	65.1566	6516	65.1643	6516	. 99988	0,2	. 0001	
. 88	65.8115	6582	65.8191	6581	. 90988	0,2	.0001	
. 89	66.4730	66.48	66.4805	6647	. 99989	0,2	.0001	
4.90	67.1412	6715	67.1486	6714	0.99989	0,2	1.0001	0,0
. 91	67.8160	6782	67.8237	6782	. 99989	0,2	.0001	
. 92	68.4977	6850	68.5050	6850	. 999889	0.2	.0001	
. 93	69.1861	6919	69.1934	6919	. 99990	0,2	.0001	
. 94	69.8815	6989	69.8887	6988	. 99990	0,2	.0001	
4.95	70.5839	7059	70.5910	7058	0.99990	0,2	1.0001	0,0
. 96	71.2934	7130	71.3004	7129	. 99990	0,2	.0001	
. 97	72.0100	7202	72.0169	7201	. 99990	0,2	:0001	
. 98	72.73 .38	7274	72.7406	7273	. 99991	0,2	. 0001	
. 99	73.4648	7347	73.4716	7346	. 99991	0,2	.0001	
5.00	74.2032	7421	74. 3099	7420	0.99991	0,2	1.0001	0,0
-	$\boldsymbol{t a n g a}$	* $\mathrm{Fa}^{\prime \prime}$	sec ed a	$\cdots F^{\prime}{ }^{\prime}$	$\sin 9 \mathrm{~d} u$	- $\mathrm{Fa}_{\mathrm{B}^{\prime}}$	\csc gd u	* Fe^{\prime}

Natural Hyperbolic Functions．

u	$\boldsymbol{\operatorname { s i n h }} \mathbf{u}$	ωF^{\prime}	$\cosh u$	$\omega \mathrm{F}$,	$\tanh u$	$\omega \mathrm{F}$ ；	coth u	$\omega \mathrm{F}_{u^{\prime}}$
5.00	7－． 2032	5421	－4．20，9 ${ }^{\prime}$	7420	0.09991	0，2	1． 0001	0，0
． 01	74．94，	$74{ }^{\circ}$	74.9537	745	．0960］	0，2	． 0001	
．02	75.7023	5371	75.7050	7 ± 0	－ 6 ypor	0，2	． 0001	
． 03	71.4632	－647	75.1608	745	． 6 ygy 1	0.2	． 0001	
． 04	72．2318	724	77.238	7233	.90992	0,2	． 0001	
5.05	78．0080：	－Soi	－8．014＋	－801	0.09992	0，2	I． 0001	0,0
． O	78．7921：	－80	7－784	－80	． 99902	0，2	． 0001	
． 07	79． 3_{8}^{80}	－1， 5	70.5103	ブバ	． 959092	0，2	． 00001	
． 08	80.3839	8034	80.3901	8035	－9p902	0,2	． 0001	
． 09	8 F .19 S	Sizo	81.1080	8119	．996g2	0，2	． 0001	
5.10	82．0070	8201	82.0140	8201	0.00993	O，I	1.0001	0，0
.11	82．832\％	828	82.8382	8283	．99993	o，I	． 0001	
－12		$83+5$	83.750	8 Sin	． 99903	O，I	． 0001	
． 13	$8+5056$	8451	84.5115	8.51	． 99993	O，I	． 0001	
.14	85.3550	8534	85.3608	8535	.99993	0,1	． 0001	
5.15	85.2128	8622	$81.218{ }^{\prime}$	85	0.99993	O，I	1.0001	0，0
． 16	87.0704	8，00	8.08851	8708	．99993	O， 1	． 0001	
． 17	87.0545	8.03	8.9503	8795	． 99904	O，I	． 0001	
． 18	88.8386	$888+$	$83.81+2$	$883+$	． 09094	0,1	．0001	
.19	89.7315	8974	83.7371	8973	．99994	O，I	． 0001	
5.20	$90.633+$	9064	90．4389	9063	0.09994	O，I	1.0001	0，0
． 21	91．5443．	9155	91.5498	9154	． 999994	O，I	． 0001	
． 22	92．4ti4	$92+7$	92.4695	¢ $2+5$	． 96994	0,1	． 0001	
． 23	93.3937	9340	93.3991	9，3\％	． 99994	O，I	． 0001	
． 24	94．3324	943－4	94．3375	9433	．99094	O，I	． 0001	
5.25	95.2805	9529	95．2858	95.28	0.99994	0,1	I． 0001	0，0
． 25	06.2381	9624	95.2433	0624	－99995	O，I	． 0001	
． 27	97．2054	9721	9\％．2100	9721	－99995	O，I	． 0001	
． 28	98.1824	6819	98.1875	9818	． 09995	O，I	． 0001	
． 29	99.1692	9917	90.1742	9917	． 99995	O，I	． 0001	
5.30	100． 1659	10017	100.1709	10017	0.99995	O，I	1.0000	0，0
． 31	101． 1726	1018	101.1773	10117	． 99995	O，I	． 0000	
． 32	102.1895	10219	102．1944	10． 219	． 99995	O，I	． 0000	
． 33	103． 2166	10322	103.2254	10322	．00005	O，I	． 0000	
－34	104．2540	10426	104.2588	10.425	． 99995	O，I	． 0000	
5.35	105.3018	10531	105.3065	10530	0.99995	O，I	1.0000	0，0
． 36	106.3601	10535	106.3648	10636	.99996	O，I	． 0000	
－ 37	$107 .+2 \times 1$	10743	107.4338	10743	． 99996	O，I	． 0000	
－ 38	108． 5088.	10851	108.5134	10851	.99996	0.1	． 0000	
． 39	109.5904	10960	109.6040	10950	． 99996	0,1	．0000	
5.40	110．7009	11071	110.7055	11070	0.99996	O，I	1.0000	0，0
． 41	111．8135	IIIS2	Iri．8i80	III81	.999066	a，I	． 0000	
． 42	112.9375	11204	112.9418	11294	． 99996	O，I	． 0000	
.43	114.0724	11408	114.0768	11407	． 99996	0,1	．0000	
－ 4	115.2189	I1522	115.2233	11522	． 99996	0,1	． 0000	
$5 \cdot 45$	116.3760	11638	116.3812	11638	0.99996	O，I	1.0000	0，0
． 46	117.5466	11755	117.5508	11755	． 99996	0,1	． 0000	
－47	118.720	11873	118.7322	11973	－． 99996	0,1	． 0000	
.48	119.0213	11093	110.9254	ICO2	．99997	O，I	． 0000	
． 49	121.1265	12113	121.1307	12113	． 99997	0,1	． 0000	
5.50	122.3439	12235	122.3480	12234	0.99997	0,1	1．0000	0，0
u	\tan odu	© $\mathrm{F}_{0}{ }^{\prime}$	sec od u	$\omega \mathrm{FO}^{\prime}$	$\sin \mathrm{gd} \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	csc gd u	$\bullet \mathrm{F}_{0}{ }^{\prime}$

Natural Hyperbolic Functions.

u	$\sinh u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh u	$\omega \mathrm{FO}_{0}{ }^{\prime}$	$\tanh u$	$\omega \mathrm{F}_{0}$	coth 4	$\omega \mathrm{F}_{0}{ }^{\prime}$
$5 \cdot 50$	122.3439	12235	122.3480	12234	0.99997	0,I	1.0000	0,0
. 51	123.5735	12358	123.5776	12357	. 99997	O,I	. 0000	
. 52	124.8155	12482	12.4 .8195	12482	. 99997	0,I	. 0000	
. 53	125.0700	12607	126.0739	12607	. 99997	O,I	. 0000	
- 54	127.3370	12734	127.3410	12734	.99997	O,I	. 0000	
5.55	128.6168	12862	128.5207	12852	0.99997	O,I	1.0000	0,0
. 56	129.9095	12991	129.9133	12991	. 99997	O,I	. 0000	
. 57	131.2151	13122	131.2190	13122	. 99997	0,1	. 0000	
. 58	132.5339	13254	132.5377	13253	. 99997	0,1	. 0000	
- 59	I 33.8659	13387	133.8697	13387	. 99997	O,I	. 0000	
5.60	135.2114	13522	135.2150	1352I	0.99997	$0, \mathrm{I}$	1.0000	0,0
. 61	136.5703	13657	136.5739	13657	. 999997	O,I	. 0000	
. 62	137.9429	13795	137.9465	13794	. 99997	O,I	. 0000	
. 63	139.3293	13933	139.3329	13933	.99997	O,I	. 0000	
. 64	140.7296	1.4073	140.7331	1.4073	. 99997	O,I	. 0000	
5.65	142.1440	14215	142.1475	14214	0.99598	0,0	1.0000	0,0
. 66	143.5726	1.4358	143.5761	14357	. 99998	0,0	. 0000	
. 67	145.0155	14502	145.0190	14502	. 99998	0,0	. 0000	
. 68	1.46.4730	14648	146.4754	14647	. 99998	0,0	. 0000	
. 69	I47.945I	14795	147.9485	14795	-99998	0,0	. 0000	
5.70	I 49.4320	14944	1.49.4354	14943	0.99998	0,0	1.0000	0,0
. 71	150.9339	15094	150.9372	15093	. 99998	0,0	. 0000	
. 72	152.4508	15245	152.4541	152.5	-99998	0,0	. 0000	
. 73	153.9830	15399	153.9863	15398	.99998	0,0	. 0000	
-74	155.5306	15553	155.5338	15553	. 99998	0,0	. 0000	
5.75	157.0938	15710	157.0969	15709	0.99998	0,0	1.0000	0,0
. 76	158.6726	15858	I'58.6757	15857	-99998	0,0	.0000	
. 77	160.2673	16027	160.2704	16027	. 99998	0.0	. 0000	
. 78	161.8781	16188	161.8811	10188	. 99998	0,0	. 0000	
. 79	163.5050	16351	163.5080	16350	. 99998	0,0	. 0000	
5.80	165.1483	16515	165.1513	16515	0.99998	0,0	1.0000	0,0
.81	165.808 I	16681	165.8111	16681	. 99998	0,0	. 0000	
. 82	168.4845	16840	168.4875	168.48	. 99998	0,0	.0000	
. 83	170.1779	17018	170.1808	17018	. 99998	0,0	. 0000	
. 84	171.8882	17189	171.8911	17189	.99998	0,0	. 0000	
5.85	173.6158	17362	173.6186	17362	0.99998	0,0	1.0000	0,0
. 86	175.3606	17536	175.3635	17536	. 99998	0,0	. 0000	
. 87	177.123I	17713	177.1259	17712	. 99998	0,0	. 0000	
. 88	178.9032	17891	178.9060	17890	. 99998	0,0	. 0000	
. 89	180.7013	18070	180.7040	18070	. 99998	0,0	. 0000	
5.90	182.5174	18252	182.5201	18252	0.99998	0,0	1.0000	0,0
.91	184.3517	18435	184.3544	18135	. 99999	0,0	. 0000	
. 92	186.2045	18621	185.2072	18520	. 99999	0,0	.0000	
. 93	188.0759	18808	188.0785	18808	. 99999	0,0	.0000	
. 94	189.9661	I8997	189.9688	18997	-99999	0,0	.0000	
5.95	191. 8754	19183	191.8780	19188	0.99999	0,0	1.0000	0,0
. 96	193.8038	19381	193.8054	19380	-99999	0,0	. 0000	
. 97	195.7516	19575	195.7541	19575	.99999	0	. 0000	
. 98	197.7189	19772	197.7214	19772	.99999	0,0	. 0000	
-99	199.7061	19971	199.7086	19971	-99999	0,0	. 0000	
6.00	201.7132	20172	201.7156	20171	0.99999	0,0	1.0000	0
■	tan gdx	* Fo'	*ee gd u	- F ${ }^{\prime}{ }^{\prime}$	$\sin 9 \mathrm{da}$	$\sim \mathrm{Fa}^{\prime}$	cese ad	- Fo^{\prime}

Smithamikn Tamers

TABLE III

natural and logarithmic circular functions

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\pm \mathrm{F}_{0}{ }^{\circ}$	$\log \sin u$	$\pm F^{\prime}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{Fo}^{\prime}{ }^{\prime}$	"
0.0000	0.00000	10,0	I. 00000	0,0	- 5	$+\infty$	0.00000	0,0	$0^{\circ} 00 \times 0 \times 00$
. 0001	. 00010		. 00000		6.00000	43429,4	. 00000		00020.63
. 0002	. 00020		. 00000		.30103	21714,7	. 00000		0 004 t .25
. 0003	. 00030		. 00000		. 47712	14476,5	. 00000		0 OI 01.88
. 0004	$.00040^{\prime}$. 00000		. 60206	10857,4	. 00000		00122.51
0.0005	0.00050	10,0	1.00000	0,0	6.69897	8685,9	0.00000	0,0	O OI 43.13
. 0005	. 00050		. 00000		. $7-815$	7238,2	. 00000		00203.76
. 0007	.00070		. 00000		. 84510	6204.2	. 00000		00224.39
. 0008	. 00080		. 00000		. 90309	5128,7	. 00000		00245.01
.0009	.000go		. 00000		. 95.424	4825,5	. 00000		00305.64
0.0010	0.00100	10,0	1.00000	0,0	7.00000	4342,9	0.00000	0,0	00326.26
. 0011	.001 10		. 00000		. 04139	3948, I	.00000		00346.89
. 0012	. 00120		. 00000		.07918	3619, 1	. 00000		0 Of 07.52
.0013	.00I30		. 00000		. 11394	$33+0,7$. 00000		00428.14
.0014	. 00143		. 00000		. 14613	$3 \mathrm{IO}, 1$. 00000		00448.77
0.0015	0.00150	10,0	1.00000	0,0	7.17609	2895,3	0.00000	0,0	00509.40
.0015	. 00160		. 00000		. 20412	2714.3	. 00000		00530.02
. 0017	. 00170		. 00000		. 23045	2554,7	. 00000		00550.65
.0018	. 00180		. 00000		. 25527	2412,7	. 00000		00511.28
.0019	. 00190		. 00000		. 27875	2285,8	.00000		00631.90
0.0020	0.00200	10,0	1.00000	0,0	$7 \cdot 30103$	2171,5	0.00000	0,0	o 0652.53
.0021	. 00210		. 00000		. 32222	2068, I	. 00000		00713.16
.0022	. 00220		. 00000		- 34212	1074	. 00000		00733.78
. 0023	. 00230		. 00000		. 35173	1888,2	. 00000		00754.41
. 0024	.00240		. 00000		-38021	I809,6	.00000		00815.04
0.0025	0.00250	10,0	1.00000	0,0	7.39794	1737,2	0.00000	0,0	00835.66
.0026	. 00260		. 00000		. 41497	1670,4	. 00000		00856.29
. 0027	.00270		. 00000		. 43136	1608,5	. 00000		00916.91
. 0028	. 00280		. 00000		. 44716	1551,0	. 00000		00937.54
.0029	. 00290		. 00000		. 46240	I 497,6	.00000		00958.17
0.0030	0.00300	10,0	1.00000	0,0	7.47712	1417,6	0.00000	0,0	- 10 18.79
.0031	. 00310		. 00000		. 49136	1400,9	. 00000		- 1039.42
. 0032	. 00320		0.99999		- 50515	I 357,2	. 00000		0 II 00.05
. 0033	.00330		. 99999		. 5185 I	${ }^{1} 316,0$.00000		0 II 20.67
.0034	.003-10		. 99999		- 531.48	1277,3	. 00000		0 II 41.30
0.0035	0.00350	10,0	0.99599	0,0	7.54407	12.40,8	0.00000	0,0	012 O1. 93
. 0036	. 00350		. 99999		. 55630	1206,4	. 00000		01222.55
. 0037	.00370		. 99999		. 56820	1173,8	. 00000		01243.18
.0038	. 00380		. 99999		- 57978	1142,9	. 00000		01303.81
. 0039	. 00390		- 99999		- 59106	III3,6	. 00000		O 1324.43
0.0040	0.00400	10,0	0.99999	0,0	7.60205	1085,7	0.00000	0,0	01345.06
. 00.11	. 00410		. 99999		. 61278	1059,2	. 00000		0 O 1405.69
. 0042	. 00420		- 99999		. 62325	1034,0	. 00000		- 1426.31
.0043	. 00430		. 99999		. 63347	1010,0	. 00000		01446.94
. 0044	. 00410		-99999		. 64345	987,0	. 00000		01507.57
0.0045	0.00450	10,0	0.99999	0,0	7.65321	965, I	0.00000	0,0	01528.19
. 00.46	. 00460		. 99999		. 66276	944, 1	. 00000		0 O 1548.82
. 0047	. 00470		. 99999		. 67210	924,0	. 00000		01609.44
. 0048	. $00+180$. 99999		.68124	904.8	. 00000		01630.07
. 00.49	. 00490		. 99999		. 69019	886,3	9.99999		01650.70
0.0050	0.00500	10,0	0.99999	0,0	7.69897	868,6	9.99999	0,0	017 II. 32
-	-1 sinh ia	- FO^{\prime}	cosh in	- Fa^{\prime}	$\log \frac{\sinh i n}{i}$	$\pm \mathrm{Fo}^{\prime}$	log cosh in	${ }^{*} \mathrm{Fo}^{\prime \prime}$!

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\sim F_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{\mathrm{G}}{ }^{\prime}$	u
0.0050	0.00500	10,0	0.99999	0,0	7.69897	868,6	9.99999	0,0	$0^{\circ} 17^{\prime} 11.32$
. 0051	. 00510		. 99999	0,1	. 70757	851,6	. 99999		$\bigcirc 1731.95$
.0052	. 00520		-99999		. 71600	835,2	. 99999		01752.58
. 0053	. 00530		-99999		. 72427	819,4	. 99999		0 I8 I3. 20
.0054	.00540		. 99999		. 73239	804,2	.99999		- 1833.83
0.0055	0.00550	10,0	0.99998	0,1	7.74036	787,6	9.99999	0,0	0 I8 54.46
. 0056	. 00560		. 99958		. 74819	775,5	. 99999		0 19 15.08
. 0057	. 00570		. 99998		. 75587	761,9	. 90909		- I9 35.71
. 0058	. 00580		- 99998		. 75343	748,8	. 99999		- 19 56.34
. 0059	. 00590		-99998		. 77085	736,1	. 99999		020 I6.96
0.0060	0.00600	10,0	0.99998	0,I	7.77815	723,8	9.99999	0,0	02037.59
. 00061	. 00610		. 99598		. 78533	711,9	. 99999		02058.22
. 0062	. 00620		. 99998		. 79239	700,5	. 99997		02118.84
. 0063	. 006630		-99598		. 79934	689,3	.09999		02139.47
. 0064	. 00640		. 99998		. 80618	678,5	.99999		02200.09
0.0065	0.00650	10,0	0.99958	O,I	7.81291	668, I	9.99999	0,0	02220.72
. 0066	. 00650		. 99598		. 81954	658,0	. 99999		02241.35
. 0067	. 00670		. 99998		. 82507	643,2	. 99999		02301.97
. 0058	. 00588		. 99998		. 83251	638,7	. 99999		02322.60
. 005	. 00690		. 99998		. 83885	629,4	. 99999		02343.23
0.0070	0.00700	10,0	0.99998	O, I	7.84509	620,4	9.95999	0,0	02403.85
. 0071	. 00710		. 99997		. 85125	611,7	. 95999		02424.48
.0072	. 00720		. 99997		. 85733	603,2	. 95999		- 2445.11
. 0073	. 00730		. 99997		. 853332	594.9	.99939		02505.73
. 0074	. 00740		. 99997		. 85923	585,9	. 99999		02526.35
0.0075	0.00750	10,0	0.99997	O,I	7.87506	579,0	9.99999	0,0	02546.93
.0076	.00750		. 99997		. 8808 I	$57 \mathrm{I}, 4$. 99999		02607.6 r
. 0077	. 00770		. 99997		. 88849	5640	. 99999		02628.24
. 0078	.00780		. 99997		. 89209	556,8	. 99999		02648.87
.0079	.00790		. 99997		. 89762	549,7	.99999		02709.49
0.0080	0.00800	10,0	0.99997	0,1	7.90 .09	542,9	9.99999	0,0	.027 30.12
. 0081	. 00810		. 99997		. 90848	536,2	. 999999		02750.74
. 0082	. 00820		. 99997		. 91381	529,6	. 99999		- 28 Ir. 37
. 0083	.00830		. 99997		. 91907	523,2	. 99999		02832.00
. 0084	. 00840		. 99996		. 92427	517,0	. 99998		02852.62
0.0085	0.00850	10,0	0.99996	O,I	7.92941	510,9	9.95908	0,0	02913.25
. 0086	. 00850		. 95995		-93449	503, 0	. 99998		0 2933.88
. 0087	. 00870		. 99995		. 93951	499, 1	. 99998		- 2954.50
. 0088	. 00.880		. 99996		-94448	493,5	-99968		03015.13
. 0089	. 00890		. 99996		. 94938	488,0	. 99998		03035.76
0.0090	0.00500	10,0	0.99996	O,I	7.95424	482,5	9.99998	0,0	
. 0009 I	. 00910		. 99996		. 95904	477,2	. 999998		03117.01
.0092	. 00920		. 99996		. 96378	472,0	. 99998		0 O 3137.64
. 0093	.00930		. 99996		. 96848	467,0	. 99998		03158.25
. 0094	. 00940		. 99995		.97312	462,0	-99998		- 3218.89
0.0095	0.00950	10,0	0.99995	O,I	7.97772	457, 1	9.99998	0,0	03239.52
.0096	. 00950		. 59995		. 98226	452,4	. 99998		- 3300.14
. 0097	. 00970		. 99995		. 98676	447,7	. 99998		03320.77
. 0058	. 009880		. 99995		. 99122	443, 1	. 99998		0334 t .40
. 0099	.00990		. 99995		. 99563	438,7	-99998		03402.02
0.0100	0.01000	- 10,0	0.99995	O,1	7.99999	434.3	9.99998	0,0	03422.65
a	-isinh in	${ }^{*} \mathrm{Fo}{ }^{\prime}$	cosh iut	* F ${ }^{\text {a }}$	les $\frac{\sinh \text { iu }}{i}$	$\omega \mathrm{Fa}^{\prime}$	Lear cosh in	$\omega F_{0}{ }^{*}$:

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }}$ u	$\omega \mathrm{F}_{5}{ }^{\prime}$	$\cos 4$	$\omega^{\text {F }}$;	$109 \sin u$	$\omega \mathrm{Fi}$	$\log \cos u$	$\omega \mathrm{Fij}^{\prime}$	u
0.0100	0.01000	10,0	0.99995	0,1	7.99999	434,3	9.09998	0,o	$0^{\circ} 344^{\prime} 22.65$
. 0101	. 01010		. 59995		8.00431	430,0	. 99998		03443.27
. 0102	.01020		. 59995		. 00859	+25,8	. 99998		03503.90
. 10103	.01030		. 99995		. 01283	+21,6	. 99998		- 3524.53
. 0104	. 01040		-59995		. 01703	417,5	. 99998		- 3545.15
0.0105	0.01050	ro,o	0.99994	0, I	8.02118	413,6	9.99998	0,o	- 3505.78
. 106	. 01060		. 99.924		. 02530	409.7	. 99998		- 3626.41
. 0107	. 01070		. 09994		. 02938	405,9	.99958		= 5474.03
. 0108	. 01080		. 99994		.03342	402.1	. 99997		- 3707.66
. 0109	.oroso		.93954		.03742	398,4	. 99997		- 3728.29
0.0110	0.01100	10,0	0.99594	0,I	8.04138	394, 8	9.99997	0,0	- 3748.91
. 0111	. 01110		. 95999		. $0+5331$	391,2	. 99997		- 38809.54
. 0112	. 01120		. 99994		. 04922	337,7	. 99997		- 3830.17
. 0113	. 01130		.99994		. 05307	384,3	-99997		$\bigcirc 3850.79$
. 012	. OHI_{4}		. 99994		.05690	380,9	. 99997		- 39 II. 42
0.0115	0.01150	10,0	0.99993	0,1	8.05069	377,6	9.99997	0,0	- 3932.05
. 0116	. 01160		. 99993		. $064+5$	374.4	. 99997	0,1	- 3952.67
. 117	. 01170		. 93993		.06818	371,2	-99997		O 4013.30
. 0118	. 01180		.95993		. 07187	368,0	-99997		- 4033.52
. 1119	. 01190		-99993		. 07554	364,9	. 99997		0 4054.55
0.0120	0.01200	10,0	0.99993	0, 1	8.07917	361,9	9.99997	0,1	- 4115.18
. 0121	. 01210		. 99993		.08277	358,9	. 99997		04135.80
. 0122	. 01220		. 99993		.031.35	356,0	. 99997		O 4156.43
. 0123	. 01230		. 99992		.08389	353, ${ }^{\text {a }}$	-99997		04217.05
. 0124	. 01240		. 99992		. 09341	350,2	-99997		04237.68
0.0125	0.01250	10,0	0.59992	o, 1	8.00690	347,4	9.99997	o, 1	- 4258.31
. 0126	. 01260		. 99992		.10036	344,7	-99997		04318.94
. 0127	. 01278		. 99992		. 10379	342,0	-99995		$\bigcirc 3339.56$
. 0128	. 01280		. 99992		- 10720	339,3	-99996		$\bigcirc 4400.19$
. 0129	. 01290		. 99992		.11058	335,6	-99996		04420.82
0.0130	0.01300	10,0	0.99992	0,I	8.11393	334, 1	9.99996	O,I	- 44 41.44
. 0131	. 01310		.99991		- 11726	331,5	- 99996		04502.07
. 0132	.01320		. 5999 I		- 12056	329.0	. 99996		$\bigcirc{ }^{\circ} 4522.70$
. 0133	. 01330		-99591		. 12384	326,5	- 99996		O 4543.32
. 0134	. 01340		.99591		. 12709	324,1	-. 99996		- 4603.95
0.0135	0.01350	10,0	0.99991	0,1	8.13032	321,7	9.99996	0,1	- 4624.57
. 10136	. 13360		. 99991		-13353	319,3	. 99996		${ }^{\circ} 4645.20$
. 0137	. 01378		. 99991		. 13571	317,0	. 99596		$0 \begin{array}{llll}0 & 47.83\end{array}$
. 0138	. 01380		. 99990		. 13987	314.7	. 99995		O 4726.45
. 0139	. 01390		.99950		. 14300	312,4	- 99996		04747.08
0.0140	0.01400	10,0	0.99990	0, I	8.146II	310,2	9.99996	0, 1	04807.7 x
. 0141	. 01410		. 99990		. 14920	308,0	. 99996		$0{ }^{0} 4888.33$
. 0142	. 01420		. 99990		. 15227	305,8	- 99996		$\bigcirc{ }^{0} 4848.96$
.0143	. 01430		-99990		. 15532	303,7	-99996		$\bigcirc{ }_{0}^{0} 4909.59$
. 014	. 01440		-99990		. 15835	301,6	. 99995		04930.2 I
0.0145	0.01450	10,0	0.99989	0,1	8. 16135	299,5	9.99995	0,1	- 4950.84
. 0146	. 01460		. 99989		. 16434	297,4	- 99995		0 \% 11.47
.0147 .0148	$\begin{array}{r}.01470 \\ .01480 \\ \hline\end{array}$.99989 .99989		-16730	295,4	- 99995		- 5032.09
. 0148	. 01480		. 99989		-17035	293.4	-99995		- 5052.72
. 0149	. 01490		. 99989		. 17317	291,5	-99995		05113.35
0.0150	0.01500	10,0	0.99989	0, I	8. 17508	289,5	2.99995	0,1	05133.97
"	-isinh iu	${ }^{*} \mathrm{Fo}^{\prime}$	cosh iu	$\omega \mathrm{Fo}^{\prime}$	$10 \frac{\sinh i 4}{i}$	${ }^{*} \mathrm{Fo}^{\prime}{ }^{\prime}$	log cosh iu	${ }^{*}{ }^{\circ}{ }^{\prime}$	n

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{Fg}^{\prime}$	$\log \cos u$	$\omega \mathrm{Fu}^{\prime}$	u
0.0150	0.01500	10,0	0.99989	0,1	8.17608	289,5	9.99995	0,1	$0^{\circ} 51^{\prime} 33$ ".97
. 0151	. 01510		. 99989	0,2	. 17895	287,6	. 99995		- 5154.60
. 0152	. 01530		- 95988		. 18183	285,7	. 99995		05215.23
. 0153	. 01530		. 99988		. $18+67$	283,8	. 99995		- 5235.85
. 0154	. 01540		. 99988		. 18750	282,0	. 99995		- 5256.48
0.0155	0.01550	10,0	0.99988	0,2	8.19031	280,2	9.99995	0,1	$\bigcirc 5317.10$
. 0156	. 01560		-99988		. 1931 I	278,4	. 99995		- 5337.73
. 0157	. 01570		. 99988		. 19588	276,6	. 99995		- 5358.36
. 0158	. 01580		.99988		. 19864	274,9	-99995		05418.98
. 015	. 01590		. 99987		. 20138	273, 1	. 99995		05439.61
0.0160	0.01600	10,0	0.99987	0,2	8.20410	271,4	9.99994	Os,	05500.24
. 0161	. 01610		. 99988		.20658	269,7	. $9999+$		05520.86
. 0162	.01620		- 99987		. 20950	268,1	. 99994		$\bigcirc 5541.49$
.0163	. 01630		. 99987		. 21217	266,4	. 09994		05602.12
. 0164	.01640		. 99987		. 21482	264,8	. 99994		- 5622.74
0.0165	0.01650	10,0	0.99985	0,2	8.21746	263,2	9.99994	0,1	$05643 \cdot 37$
. 0166	. 01660		. 99986		. 22009	26I, 6	. 99994		- 5704.00
. 0167	.01670		. 99986		. 22270	260,0	. 99994		- 5724.62
. 0168	. 01680		. 99986		. 22529	258,5	. 99994		- 5745.25
. 0169	.01690		. 99986		. 22787	257,0	. 93994		- 5805.88
0.0170	0.01700	10,0	0.99985	0,2	8.23043	255,4	9.99994	0,1	- 5826.50
. 0171	. 01710		. 99985		. 23298	253,9	. 99994		- 5847.13
. 0172	. 01720		. 99985		. 23551	252,5	-99994		- 5907.75
.0173	. 01730		. 99985		. 23802	251,0	. 99994		- 5928.38
.0174	. 01740		. 99985		. 24053	249,6	. 99993		- 5949.01
0.0175	0.01750	10,0	0.99985	0,2	8.24302	2.48, 1	9.99993	O,I	10009.63
. 0170	. 01760		. 99985		. 24549	2.46,7	. 99993		10030.26
. 0177	. 01770		. 99984		. 24795	2.45,3	. 99993		10050.89
.0178	. 01780		. 99984		. 25040	24,0	. 99993		1 OI 11.51
. 0179	. OI790		. 99384		. 25283	242,6	. 99993		1 or 32.14
0.0180	0.01800	10,0	0.99984	0,2	8.25525	241,2	9.99993	0,I	1 or 52.77
. 0181	. 01810		. 99984		. 25766	2399	. 99993		10213.39
. 0182	. 01820		. 99983		. 25005	238,6	. 99993		I 0234.02
. 0183	. 01830		. 99983		. 26243	237,3	. 99993		$1 \begin{array}{llll}1 & 02 & 54.65\end{array}$
. 0184	. 01840		. 99983		. 26479	236,0	. 99993		10315.27
0.0185	0.01850	10,0	0.99983	0,2	8.26715	234.7	9.99993	0,1	10335.90
. 0186	. 01860		. 99983		. 26949	233.5	. 99992		10356.53
. 0187	. 01870		. 99983		. 27182	232,2	. 99992		10417.15
. 0188	. 01880		. 99982		. 27413	231,0	. 99992		$\begin{array}{llllllllllll}\text { I } 04 & 37.78\end{array}$
. 0189	.01850		. 99982		. 27544	229,8	. 99992		10458.40
0.0190	0.01900	10,0	0.99982	0,2	8.27873	228,5	9.99992	O,I	10519.03
. OigI	. 01910		. 99982		. 28101	227,4	. 99992		10539.66
. 0192	. 01920		. 99982		. 28327	226,2	. 99992		I 0600.28
. 0193	. 01930		. 99981		. 28553	225,0	. 99992		10620.91
. 0194	. 01940		.99981		. 28777	223,8	. 99992		10641.54
0.0195	0.01950	10,0	0.99981	0,2	8.29001	222,7	9.99992	0,1	10702.16
. 0196	. 01960		. 9998 I		. 29223	221,6	. 99992		100722.79
	. 01970		. 99981		. 29444	220,4	. 99992		10743.42
. 0198	. 01980		. 99980		. 29664	2193	. 9999 I		10804.04
. 0199	. 01990		. 99980		. 29882	218,2	.99991		10824.67
0.0200	0.02000	10,0	0.99980	0,2	8.30100	217, 1	9.99991	0,1	I 0845.30
\square	-isinh in	$\cdots \mathrm{Fo}^{\prime}$	cosh iv	* Fo'	$\operatorname{ren} \frac{\sinh i 4}{1}$	* F ${ }^{\prime}{ }^{\prime}$	log cosh la	- Fo'	:

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	* $\mathrm{F}_{0}{ }^{\circ}$	$\log \sin u$	$\omega F_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}^{\prime}$	4
0.0200	0.02000	10,0	0.90580	0,2	8.30100	217, 1	9.99991	O, I	$\mathrm{I}^{\circ} \mathrm{O} 8^{45.30}$
. 0201	. 02010		. 59930		. 30317	216,0	-99991		10905.92
. 0202	. 02020		. 99330		-30532	215,0	. 99991		10925.55
. 0203	. 02030		. 60979		-30747	213.9	. 9999 I		10947.18
. 0204	. 02040		. 59979		. 30360	212,9	. 99991		11007.80
0.0205	0.02050	10,0	0.99979	0,2	8.31172	211,8	9.99991	0,1	I IO 28.43
. 0206	. 02050		. 999979		. 31384	210,8	. 99991		I 10 49.06
. 0207	. 02070		. 95979		. 31594	209,8	. 9999 I		1 II 09.68
. 0208	. 02080		. 99978		.31803	208,8	. 99991		1 II 30.31
. 0209	.02050		-99978		. 32012	207,8	. 9999 I		I 1150.93
0.0210	0.02100	10,0	0.99978	0,2	8.32219	205,8	0.99990	0,I	I I2 II. 56
. 0211	. 02110		. 99978		. $32+25$	205,8	. 99990		I 1232.19
. 0212	. 02120		-99678		. 32 '330	20.4,8	. 99990		I 1232.81
.0213	. 02130		. 99977		. 32935	203,9	. 99990		$\begin{array}{llll}1 & 13 & 13.44\end{array}$
. 0214	.02140		. 99975		. 33038	202,9	. 99990		I I3 34.07
0.0215	0.02150	10,0	0.99977	0,2	8.33241	202,0	9.93990	0, 1	11354.69
. 0216	. 02150		. 99075		. $33+12$	201,0	-59990		I If 15.32
. 0217	. 02170		. 99976		-33543	200, I	. 99990		I 1435.95
. 0218	. 02180		. 99976		. 33842	159,2	. 99990		1 I If 56.57
. 0219	. 02150		-99975		-34041	138,3	. 99990		I 1517.20
0.0220	0.02200	10,0	0.99976	0,2	8.34239	197,4	9.99989	O,I	$\begin{array}{llll}1 & 15 & 37.83\end{array}$
. 0221	. 02210		. 99976		- $34+35$	195,5	- 95989		I 1558.45
. 0222	. 02220		- 99975		-34632	195,6	-99989		$\begin{array}{llll}1 & 16 & 19.08\end{array}$
. 0223	. 02230		. 99975		-34827	194,7	-97930		$\begin{array}{lllll}\text { I } 16 & 39.71\end{array}$
. 0224	. 02240		. 99975		.35021	193,8	-99989		1 I 700.33
0.0225	0.02250	10,0	0.99975	0,2	8.35215	193,0	9.99089	0,I	$\begin{array}{lll}\text { I } & 17 & 20.96\end{array}$
. 0225	. 02260		. 99974		. 35107	192, 1	.99583		I 1741.58
. 0227	.02270		. 99974		. 35593	Igr, 3	-99983		I 1802.21
. 0228	. 02280		. 99974		. 35700	ISO,4	. 9938		$\begin{array}{llll}\text { I } & 18 & 22.84\end{array}$
. 0229	. 022200		. 99974		.35980	182,6	-99983		I I8 43.46
0.0230	0.02300	10,0	0.99974	0,2	8.36 r 69	188,8	9.99089	O, I	I I9 0.4.09
. 0231	. 02310		. 99973		. 36357	188,0	. 99388		I 1924.72
. 0232	. 02320		. 99973		- 35545	187,2	. 99,83		I 1945.34
. 0233	. 02330		-.99973		. 36732	185,4	. 99988		12005.97
. 0234	. 02340		. 99973		-35918	185,6	-99988		I 2026.60
0.0235	0.02350	10,0	0.99972	0,2	8.37103	184,8	9.99388	0,I	12047.22
.0236	. 02360		. 99972		. 37237	184,0	. 99988		$1 \begin{array}{llll}1 & 21 & 07.85\end{array}$
. 0237	.02370		. 99972		-37471	183,2	. 99988		1 I 2128.48
. 0238	. 02380		. 99972		. 37554	182,4	. 99988		12149.10
. 0239	. 02350		. 99971		-37836	181,7	. 99988		$1 \begin{array}{lll}122 & 09.73\end{array}$
0.0240	0.02400	10,0	0.99971	0,2	8.38017	180,9	9.99987	0,I	I 2230.36
. 0241	. 02410		. 99971		. 38.58	180,2	. 99987		12250.98
. 0242	. 02420		-99971		. 38377	179,4	. 99987		12311.61
. 0243	. 024.430		. 99970		- 39555	178.7	. 99987		$1 \begin{array}{llll}1 & 23 & 32.23\end{array}$
. 024	. 02440		-99970		- 38735	178,0	. 99987		12352.86
0.0245	0.02450	10,0	0.99970	0,2	8.38912	177,2	9.99987	0,I	$1 \begin{array}{lll}124 & 13.49\end{array}$
. 0245	. 02.460		. 99970		. 39089	176,5	. 99987		I 2434.11
. 0247	. 02470		. 99969		. 39265	$175+3$. 99987		$1 \begin{array}{llll}1 & 24 & 54.74\end{array}$
. 0248	. 02480		. 99969		. 3944 I	175, 1	. 99987		12515.37
. 0249	. 02490		. 99959		. 39615	174.4	. 99987		I 2535.99
0.0250	0.02500	I0,0	0.95959	0,2	8.39789	1737	9.99986	0,1	I 2556.02
\square	-i sinh ia	$\omega \mathrm{F}_{6}{ }^{\prime}$	cosh iu	${ }^{*} \mathrm{~F}_{0}{ }^{\prime}$	$\log \frac{\sinh i v}{i}$	$\pm \mathrm{Fo}^{\prime}$	log cosh ju	$\omega \mathrm{F}_{0}{ }^{\prime}$	4

SMTHEONIAN TABLEA

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\pm F_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \cos 4$	$\infty \mathrm{F}_{0}{ }^{\prime}$	4
0.0253	0.02500	10,0	0.59969	0,2	8.39789	1737	9.90986	O,I	$1{ }^{\circ} 25^{\prime} 56.62$
. 0251	.02510		. 99969	0,3	. 3993	173,0	. 95986		12517.25
. 0252	. 02520		. 959.8		. 40135	172,3	. 59086		I 2637.87
. 0253	. 02530		. 99968		. 40307	171,6	. 99095		12658.50
. 0254	. 02540		. 99958		.40479	170,9	. 99988		12719.13
0.0255	0.02550	10,0	0.99967	0,3	8.40519	170,3	9.99985	0,1	I 2739.75
. 0250	. 0.2500		. 99967		. +0819	160,6	. 99985		I 2800.58
. 0257	.02570		. 99967		. +098	168,9	. 97686		12821.01
. 0258	. 02580		. 99967		. 41157	168,3	.09086		I 2841.63
. 0259	. 02590		. 99956		. +11325	167,6	.99085		I 2902.26
0.0200	0.02600	10,0	0.90966	0,3	8.41492	167,0	9.90985	O,I	12922.88
. 0261	. 02610		. 95956		. 41659	165,4	. 95985		12943.51
.025.2	.02530		. 95966		. 41825	165.7	. 90985		13004.14
. 0253	.02530		. 99965		. 41991	165,1	.99985		1302.4 .76
. 0264	. 02540		. 99965		. 42155	164,5	. 99885		13045.39
0.0265	0.02550	10,0	0.99965	0,3	8.42320	163,8	9.99985	O,I	13106.02
. 0266	. 026660		. 99965		- 42483	163,2	. 99685		13126.64
. 0267	.02670		. 99906		. 4294	162,6	. 99985		13147.27
.0268	.02580		. 99964		. 42808	162,0	. 99984		13207.90
. 0269	. 02550		. 99964		. 42970	161,4	. 99984		13228.52
0.0270	0.02700	10,0	0.99964	0,3	8.4313 I	160,8	9.99984	O,I	I 3249.15
. 0271	. 02710		. 99963		. 43292	160,2	. 95984		13309.78
. 0272	. 02720		. 99953		. 43452	159,6	. 99984		13330.40
. 0273	. 02730		. 99953		. 43511	159.0	. 99984		13351.03
. 0274	. 02740		. 99952		. 43770	158,5	-99984		134 II. 66
0.0275	0.02750	10,0	0.99962	0,3	8.43928	157,9	9.99984	0,1	13432.28
. 0276	. 02760		. 99962		. 41085	157.3	. 59983		13452.91
. 0277	.02770		. 95962		. 44242	155.7	. 99983		$1 \begin{array}{llll}\text { I } & 35 & 13.54\end{array}$
. 0278	.02780		. 99961		. $4+399$	156,2	. 99983		I 3534.16
. 0279	. 02750		. 99961		. 44555	155,6	.95583		13554.79
0.0283	0.02800	10,0	0.99961	0,3	8.44710	155, I	9.99983	0,1	I 3615.41
. 0281	. 02810		. 99961		.44855	154,5	. 99983		13636.04
. 0282	.02330		. 99960		. 45019	154,0	. 99983		13656.67
. 0283	.02830		. 999050		. 45173	153.4	- 99983		$\begin{array}{llll}1 & 37 & 17.29\end{array}$
. 0284	. 02840		. 99996		-45326	152.9	. 99382		I 3737.92
0.0285	0.02850	10,0	0.99959	0,3	8.45479	152,3	9.99982	0,1	
. $0288{ }^{\circ}$.02830		. 99959		. 45531	151,8	.95982		13819.17
.0287	. 02880		. 99959		-45783	151,3	-99982		± 3839.80
. 0283	. 02883		. 99959		. 45933	150,8	. 99982		I 3900.43
. 0288	. 02890		. 99958		-46084	150,2	. 99982		1 3921.05
0.0290	0.02900	10,0	0.99958	0,3	8.46234	1.49 .7	9.99982	0,1	13941.68
. 0291	. 02910		. 99958		. 46383	149,2	. 99982		14002.31
. 0292	. 02920		. 99957		. 46532	148,7	. 99981		14022.93
. 0293	. 02930		. 99957		. 46581	148.2	. 99981		14043.56
. 0294	. 02940		. 99957		-46828	147,7	.99981		I 4104.19
0.0295	0.02950	10,0	0.99956	0,3	8.46976	147,2	9.99981	0,1	I 4124.81
. 0296	.02960		. 99956		. 47123	1467	. 99981		I 4145.44
. 0297	.02970		. 99956		. 47269	146,2	. 99981		14206.06
. 0298	. 02980		. 99956		. 47415	1.45,7	. 99988		I 4226.69
. 0299	. 02990		. 99955		-47561	145,2	-95981		I 42 47.32
0.0300	0.03000	10,0	0.99955	0,3	8.47706	1447	9.99980	0,1	I 4307.94
:	-isinhin	${ }^{*} \mathrm{Fb}{ }^{\prime}$	coch fin	* $F_{0}{ }^{\prime}$	$\log \frac{\sinh i t}{i}$	$\pm \mathrm{F}_{0}{ }^{\circ}$	log coen iny	- Fa^{\prime}	4

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} u$	$\omega \mathrm{Fu}^{\prime}$	$\cos 4$	$\omega F_{0}{ }^{\circ}$	$\log \sin u$	ωF^{\prime}	$\log \cos u$	$\omega F_{U}{ }^{\prime}$	u
0.0300	0.03000	10,0	0.99955	0,3	8.4770	14,7	9.90980	O, I	I 43 '07.94
. 0301	. 03010		. 99955		. 47850	1+4,2	. 995 ,80		I 4328.57
. 0302	.03020		. 99954		. 47904	$1+3.8$	-99080		I 4349.20
. 0303	. 03030		. 99954		. 48738	$1+3.3$.99680		14409.82
. 0304	.03040		. 99954		.48281	1+2,8	-95980		14430.45
0.0305	0.03050	10,0	0.99953	0,3	3. $18+23$	I.:2,3	9.99980	O,I	14451.08
. 0305	. 03060		. 99953		. 48565	141,9	. 99980		145 II .70
.0307	.03070		. 99953		. 4870%	I.41,4	. 95980		$1 \begin{array}{lll}152.33\end{array}$
. 0308	. 03080		. 99953		. 48348	141,0	- 99979		$145 \quad 52.96$
. 0309	. 03090		. 99952		. 4838	1.40,5	. 99979		$\begin{array}{lllllllllllll}15 & 13.58\end{array}$
-0310	0.03100	10,0	0.99952	0,3	8.49129	If0, 1	9.99979	0,I	I 4634.21
. 0311	.03109		. 99952		. 49269	139.6	. 99979		I $46 \quad 54.84$
.0312	.03119		. 99951		- 49.408	139,2	- 95979		$1 \begin{array}{lllllllll}15 & 15\end{array}$
. 0313	.03129		. 9995 I		. 49547	138.7	-99979		I 4736.09
.0314	.03139		. 99951		. 49685	138,3	. 99979		14756.71
0.0315	0.03149	10,0	0.99950	0,3	3.49824	137,8	9.99978	O,I	$1 \begin{array}{lll}18 & 17.34\end{array}$
. 0315	.03159		. 99950		. 49961	137,4	. 99978		14837.97
. 0317	. 03159		. 99950		. 50039	137,0	. 99978		I 4858.59
. 0318	.03179		. 99949		. 50235	135,5	-99978		$1 \begin{array}{llll}1 & 49 & 19.22\end{array}$
. 0319	.03189		. 99949		. 50372	136, 1	.99978		I 4939.85
0.0320	0.03199	10,0	0.99949	0,3	8.50503	135,7	9.99978	O,I	I 5000.47
.0321	. 03209		. 59948		. 50543	135,2	. 99978		15021.10
.0322	. 03219		. 99948		. 50778	134,8	-99977		I 5041.73
. 0323	. 03229		. 99948		. 50913	134,4	. 99977		15102.35
. 0324	. 03239		. 99948		. 51047	134,0	. 99977		I 5122.98
0.0325	0.03249	10,0	0.99947	0,3	8.51181	133,6	9.99977	0,1	I 5143.6 I
. 0326	. 03259		. 99947		. 51314	133,2	. 99977		I 5204.23
. 0327	. 03269		. 99947		. 51447	132,8	. 99977		I 5224.86
. 0328	. 03279		. 99946		. 51580	132,4	. 99977		$\begin{array}{lllll}\text { I } & 52 & 45.49\end{array}$
.0329	. 03289		. 99946		.51712	132,0	. 99976		I 5306.11
0.0330	0.03299	10,0	0.99946	0,3	8.51844	131,5	9.99976	0,1	I 5326.74
.0331	. 03309		. 99945		. 51975	131,2	. 99976		I 5347.37
. 0332	.03319		. 99945		. 52105	130,8	. 99976		15407.99
. 0333	. 03329		. 99945		. 52236	I30,4	. 99976		I 5428.62
. 0334	. 03339		. 9994		. 52367	130,0	.93975		I 5449.24
0.0335	0.03349	10,0	0.99944	0,3	8.52496	129,6	9.99976	0,I	I 5309.87
.033J	. 03359		. 99944		. .52525	129,2	. 99975		I 5530.50
. 0337	. 03369		. 99943		. 52755	128,8	. 99975		I 5551.12
. 0338	. 03379		. 99943		- 52883	128,4	. 99975		I 5611.75
. 0339	. 03389		. 99943		. 53012	128, 1	. 99975		I 5632.38
0.0340	0.03399	10,0	0.99942	0,3	8.53.140	127,7	9.99975	O,I	I 5653.00
.03-11	.03409		. 99942		. 53267	127,3	. 99975		I 5713.63
. 0312	. 03419		. 99942		. 53394	125,9	. 99975		I 5734.26
.0343	. 03429		. 9994 I		. 53521	126,6	. 99974		I 5754.88
.0344	.03439		.9994I		. 53647	126,2	. 99974		I 58 I5.5I
0.0345	0.03449	10,0	0.99940	0,3	S. 53773	125,8	9.95974	0,I	I 5836.14
. 0346	. 03459		. 99940		. 53899	125,5	. 99974	0,2	I 5856.76
. 0347	.03469		. 99940		-54024	125,1	- 99974		I 5917.39
.0348	.03479		. 99939		. 54149	124,7	. 99974		I 5938.02
. 0349	.03489		. 99939		. 54274	124,4	. 99974		I 5958.64
0.0350	0.03499	10,0	0.99939	0,3	8.54398	124,0	9.99973	0,2	20019.27
*	-isinhiu	$\infty \mathrm{FO}^{\prime}$	cosh in	- $\mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	${ }^{*} \mathrm{Fo}^{\prime}$	log cosh iu	$\pm \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\cos u$	ωF_{j}^{\prime}	$\log \sin u$	$\sim \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}$	\therefore
0.0350	0.03499	10,0	0.99939	0,3	8.54308	124,0	9.99973	0,2	$2^{3} 00 \times 19.127$
. 0351	. 03509		. 99938	0,4	. $5+522$	123.7	.90073		20039.80
. 0352	. 03519		. 93938		. 54.54	123,3	. 59093		20100.52
.0353	. 03529		-95938		. $5+768$	123.0	.90973		2 O1 21.15
. 0354	. 03539		.95937		. 54891	122,6	.99973		20141.77
0.0355	$0.035+9$	10,0	0.99937	0,4	8.55014	122,3	0.99973	0,2	20202.40
. 03556	. 03559		. 99937		. 55136	121,9	. 99972		20223.03
. 0357	. 03569		. 92933		- 55258	121,6	. 99972		20243.65
. 0358	. 03579		. 99936		- 53370	121,3	. 900072		20304.28
. 0359	.03589		- 90.35		-55500	120,9	. 50572		20324.91
0.0350	0.03599	10,0	0.99935	0,4	8.55621	120,6	9.99972	0,2	20345.53
. 0361	. 03609		. 99935		- 55711	120,3	. 90772		20406.16
. 0362	. 03619		. 95934		. 35851	119.9	. 99972		20420.79
. 0363	. 03629		. 99934		-5598r	110.6	. 99971		20447.41
. 0364	. 03639		. 99034		. 56101	119.3	.99071		20508.04
0.0355	0.03549	10,0	0.99933	0,4	8.56220	118,9	9.99971	0,2	20528.67
. 0355	. 03659		. 99933		. 50338	118.0	. 99771		20549.29
. 0357	. 03669		. 99933		-. 56457	I 18,3	. 99971		20609.92
. 0368	. 03679		. 99932		. 56575	118,0	. 99971		20630.54
. 0359	.03689		. 99932		. 56593	117,6	. 59970		20651.17
0.0370	0.03699	10,0	0.99932	0,4	8.56810	II7,3	9.99970	0,2	20711.80
. 0371	. 03709		. 99931		. 56927	117,0	. 99970		20732.42
. 0372	. 03719		. 99931		. 57044	116,7	. 99970		20753.05
. 0373	. 03729		. 99930		. 57161	I 16,4	. 99970		$\begin{array}{lllll}2 & 08 & 13.68\end{array}$
. 0374	.03739		. 99930		. 57277	I16, I	. 99970		20834.30
0.0375	0.03749	10,0	0.99930	0,4	8.57393	115,8	9.99969	0,2	20854.03
.0376	. 03759		. 99929		. 57509	115,4	. 99959		20915.56
.0377	. 03769		. 99929		. 57624	115, 1	. 99969		20931.18
.0378	. 03779		. 99929		. 57739	I 14.8	. 99950.		20956.81
. 0379	. 03789		. 90928		. 57854	I I 4,5	. 59569		210017.44
0.0380	0.03799	10,0	0.99928	0,4	8.57968	114,2	9.99969	0,2	2 10 38.06
.0381	. 03809		. 99927		. 58082	113.9	. 59958		2 10 58.69
.0382	. 03819		. 99927		. 58195	II3,6	. 99358		2 II 19.32
.0383	. 03829		.95927		. 58309	113.3	. 59968		2 I1 39.94
.0384	.03830		. 90926		. 58422	113,0	.95958		21200.57
0.0385	0.03849	10,0	0.95926	0,4	8.58535	I12,7	9.99968	0,2	21221.20
.038j	.03859		. 99925		. 58548	112,5	.99968		21241.82
.c337	.03859		. 99925		. 58750	I12,2	. 99967		21302.45
.0383	. 03879		. 99925		. 58872	111,9	. 99967		21323.07
. 0383	. 03889		. 99924		. 58984	111,6	.99967		2 I3 43.70
0.0390	0.03899	10,0	0.99924	0,4	8.59095	III,3	9.99967	0,2	21404.33
.0391	. 03909		. 99924		. 59207	111,0	. 99967		21424.95
. 0392	. 03919		. 99923		. 59317	110,7	. 99967		2 I 445.58
. 0393	. 03929		. 99923		. 59428	I10,5	.99966		21506.21
. 0394	. 03939		. 90952		. 59538	110,2	. 99966		21526.83
0.0395	0.03949	10,0	0.99922	0,4	8.59648	109.9	9.99966	0,2	21547.46
. 0395	. 03959		. 99922		. 59758	109,6	. 99966		21608.09
. 0397	. 03969		. 99921		. 59858	109,3	. 99966		21628.71
. 0398	. 03979		. 99921		. 59977	109,1	. 99966		$2 \begin{array}{lll}2 & 1649.34\end{array}$
. 0399	. 03989		. 99920		. 60085	108,8	. 99965		21709.97
0.0400	0.03999	10,0	0.99920	0,4	8.60194	108,5	9.99965	0,2	21730.59
a	-i sinhis	* Fo' ${ }^{\prime}$	cosh in	- Fig^{\prime}	$\log \frac{\sinh }{1}$	- Fi'	log cosh max	$\cdots F_{9}{ }^{\prime}$	\%

Circular Functions.

4	$\sin u$	$\omega F_{6}{ }^{\prime}$	$\cos u$	ωF^{\prime}	$\log \sin u$	ωF_{0}^{\prime}	$\log \cos u$	$\omega \mathrm{F}_{\text {; }}$,	\pm
0.0400	0.03997	10,0	0.99920	0,4	8.60194	108,5	9.99965	0,2	$2^{\circ} 17^{\prime} 30^{\prime \prime} .59$
. $0 .+01$. 04009		. 69920		. 60303	108,2	. 90963		21751.22
. 0.402	. 04019		. 99919		. 60411	108.0	. 99065		21811.85
. 0.403	. 04029		. 99919		. 60519	107,7	.99055		$\begin{array}{llll}2 & 18 & 32.47\end{array}$
. 0.404	. 04039		. 99918		. 60526	107,4	. 99965		2 I8 53.10
0.0405	0.04049	10,0	0.99918	0,4	8.60\%34	107,2	9.99964	0,2	2 I9 13.72
. 0.405	. 04059		.95918		. 60891	1050	. 99954		2 I9 34.35
. 0.407	. 0.4069		. 99917		.6034	106,6	. 99964		219 54.98
. 0.408	. 04079		. 99917		. 61054	105,4	.99964		22015.60
.0409	. 04087		. 99916		.61160	105, 1	.99954		22036.23
0.0410	0.04099	10,0	0.99916	0,4	8.61256	105.9	9.99963	0,2	22055.86
. $0+111$.04109		. 99916		. 61372	105,6	.99963		22117.48
. $0+12$. 04119		. 99915		. 61477	105.4	.99963		22138.11
. 0413	. 04129		. 99915		. 61583	105.1	.99963		22158.74
. 0.411	. 041139		.99914		. 61588	104,8	.99953		22219.36
0.0415	0.04149	10,0	0.99914	0,4	8.61792	104,6	9.99963	0,2	22239.99
. 0.416	. 04159		. 99913		. 61897	10.4,3	. 99962		22300.62
. 0417	. 04166		. 95913		. 62001	IO, 1	. 99962		22321.24
. 0418	. 04179		- 59913		.6210'5	103,8	. 99962		22341.87
. 0419	. 04189		-95912		. 62209	103, 3	. 99962		22402.50
0.0420	0.04199	10,0	0.99912	0,4	8.62312	103,3	9.99962	0,2	22423.12
. 0421	.04209		. 59911		. 62115	103, I	. 99952		22443.75
. 0422	. $0+4219$. 95911		. 62518	102,9	. 99961		$2 \begin{array}{llll}25 & 04 & 37\end{array}$
. 0423	. 04229		-999II		.62521	102,6	. 69951		22525.00
. 0424	. 04239		.95910		. 62724	102,4	.9996I		22545.63
0.0425	0.04249	10,0	0.99910	0,4	8.62826	102, I	9.99961	0,2	22506.25
. 0.426	. 0.04259		. 99909		. 62928	101,9	. 99951		225125.83
. $0+127$. $0+259$. 50509		. 63030	IOI, 6	. 99960		22647.51
. $0+128$. 04272		- 95908		. 63131	101,4	. 99900		22708.13
. 0489	. 04283		-99908		. 63232	101,2	. 99960		22728.76
0.0430	0.0 .4299	10,0	0.99908	0,4	8.63333	100,9	9.99960	0,2	$\begin{array}{llll}2 & 27 & 19.39\end{array}$
. 0431	. 0.4309		. 95907		. 63134	100,7	. 99960		22810.01
. 0432	. 04319		-95907		. 63535	100,5	-99959		22830.64
. 0433	. 04329		. 99905		. 63535	100,2	-95959		22851.27
. 0434	. 04339		-95905		. 63735	100,0	. 59959		229 11.89
0.0435	0.04349	10,0	0.99905	0,4	8.63835	99,8	9.99359	0,2	$\begin{array}{llll}2 & 29 & 32.52\end{array}$
. 0435	. 04359		-99905		. 63935	99,5	. 99959		22953.15
. 0437	. 04369		. 99905		. 64034	99,3	-99955		
. $0+38$. 04379		-99904		. 64134	99,1	. 99958		23034.40
. 0439	. 04389		. 99904		. 64233	98,9	. 99958		23055.02
0.0440	$0.0+399$	10,0	0.99903	0,4	8.64331	98,6	9.99958	0,2	23115.65
. 04.41	.04109		. 99903		. 64430	98,4	. 99958		23136.28
. 0.412	. 0.4419		. 59902		. 64528	98,2	. 99958		23156.90
. $04+4$. 04429		. 95902		. 6.4625	98,0	. 99957		23217.53
. 0.44	. 0.4439		. 99901		. 64724	97,7	. 99957		23238.16
0.0415	0.04449	10,0	0.99901	0,4	8.64822	97,5	9.99937	0,2	$\begin{array}{llll}2 & 32 & 58.78\end{array}$
. 0446	. 04459		. 99901		. 64919	97,3	. 99957		23319.41
. 04.47	. 04469		.99500		.65016	97, I	. 99957		$\begin{array}{ll}2 & 33 \\ 4 & 40.04\end{array}$
. 0448	. 04479		. 99900		. 65113	96,9	. 99956		23400.66
. 0449	. $0+488$. 99899		. 65210	96,7	.99955		23421.29
0.0450	0.04498	10,0	0.99899	0,4	8.65307	96,4	9.99956	0,2	23441.92
и	-isinhiu	$\omega \mathrm{Fa}^{\prime}{ }^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i 4}{i}$	$\infty \mathrm{F}_{0}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	-

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\sim \mathrm{Fu}^{\prime}$	$\log \cos u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	u
0.0450	0.04458	10,0	0.99899	0,4	8.65307	96,4	9.99956	0,2	$2^{\circ} 34441.92$
. 0.451	. 04508		. 93888	0,5	. 65403	96,2	. 98956		23502.54
. 0452	. 04518		. 99308		. 65499	96,0	. 99956		$235 \quad 23.17$
. 0453	. 04528		- 69837		. 65395	95,8	. 99955		23543.80
. 0.454	. 04538		. 99897		. 65691	95,6	. 09995		23604.42
0.0455	0.04548	10,0	0.99897	0,5	8.65785	95,4	9.99955	0,2	23525.05
. 0.456	. 04558		. 96806		. 65881	95,2	. 99955		23545.68
. 0.457	. 04568		. 99896		. 65975	95,0	. 99955		23706.30
. 0458	. 04578		. 99895		. 66071	94,8	. 99954		23720.93
. 0459	. 04588		. 99895		. 66166	94,6	. 99954		23747.55
0.0460	0.04598	10,0	0.99894	0,5	8.65250	94,3	9.99954	0,2	23908.18
. 0.451	. 04608		. 99894		. 66355	94, 1	. 99354		23828.81
.0452	. 0.4618		. 99893		. 66449	93,9	. 99954		23849.43
. 0453	. 04628		. 99893		. 66543	93,7	. 99953		23910.05
. 0.464	. 04638		. 99882		. 660536	93,5	. 99953		23930.69
0.0465	0.04548	10,0	0.99892	0,5	8.65730	93,3	9.99953	0,2	23951.31
. 0465	. 04658		. 99881		. 65823	93,1	. 95953		24011.54
. 0467	. 04658		.96891		. 66916	92,9	. 99953		24032.57
. 0.468	. 04678		. 99891		. 67009	92,7	. 99952		24053.19
. 0.469	. 046888		. 99890		.67101	92,5	. 99952		24113.82
0.0470	0.04698	10,0	0.99890	0,5	8.67194	92,3	9.99952	0,2	2413.45
. 0.471	. 04708		. 99889		. 67285	92.1	. 99952		24155.07
. 0472	. 04718		. 99889		. 67378	91.9	. 99952		24215.70
. 0473	. 04728		. 99888		.67470	91,7	. 9995 I		24236.33
. 0474	. 04738		. 99888		.67562	91,6	. 99951		24256.95
0.0475	0.04748	10,0	0.99887	0,5	8.67653	91,4	9.9995 I	0,2	24317.58
. 0.476	. 04758		. 99887.		. 67744	91,2	. 99951		24338.20
. 0477	. 04768		. 96,885		. 67835	91,0	. 99951		24358.83
. 0478	. 04778		. 99885		. 67925	90,8	. 99950		24419.46
. 0479	. 04788		. 99885		.68017	90,6	. 99950		24440.08
0.0480	0.04798	10,0	0.99885	0,5	8.68107	90,4	9.99950	0,2	24500.71
. 0.481	. 04808		. 99884		. 68198	90,2	. 99950		24521.34
.0482	. 04818		. 99884		. 68288	90,0	. 99950		24541.96
. 0483	. 04828		. 99883		. 68378	89,8	. 99949		$\begin{array}{llllll}2 & 46 & 02.59\end{array}$
. 0484	. 04838		.99883		. 68468	89,7	. 99949		24623.22
	0.04848	10,0	0.99882	0,5	8.68557	89.5	9.99949	0,2	24643.84
. 0.485	. 0.4858		. 99882		. 68647	80.3	. 99949	.	24704.47
. 0.487	. 04858		.95888		. 68736	89,1	. 99948		24725.10
.0488	. 048878		. 99881		. 68825	88,9	. 99948		24745.72
. 0489	. 04888		.99880		. 68914	88,7	. 99948		24806.35
0.0490	0.04898	10,0	0.99880	0,5	8.69002	88,6	9.95948	0,2	24826.98
.0491	. 04908		. 99879		. 69091	88,4	. 99948		24847.60
. 0492	. 04918		. 99889		. 69179	88,2	. 99947		24908.23
. 0493	. 04928		. 909879		. 69367	88,0 87,8	. 99947		$\begin{array}{llll}2 & 49 & 28.85 \\ 2 & 49 & 49.48\end{array}$
. 0494	. 04938		. 99878		. 69355	87,8	-99947		24949.48
	0.04948	10,0	0.99878	0,5	8.69443	87,7	9.99947	0,2	25010.11
. 0495	. 04958		. 99887		. 69530	87,5	. 99947		25030.73
. 0497	. 04968		. 99877		. 69618	87,3 8715	. 99946		25051.36 25111.90
.0498 .0499	.04978 .04988		. .99876		. 69705	87,1 87,0	. 99946		$\begin{array}{lll} 2 & 51 & 11.99 \\ 2 & 51 & 32.61 \end{array}$
. 0499	. 04988		-99876		. 69792	87,0	-99946		25132.61
0.0500	0.04998	10,0	0.99875	0,5	8.69879	86,8	9.99946	0,2	25153.24
*	-isinh in	${ }^{*} \mathrm{~F}^{\prime}{ }^{\prime}$	cosh in	- Fo'	$\operatorname{los} \frac{\sinh }{1}$	- Fo'	Vog comin in	- Fo'	घ

Circular Functions.

-	$\sin u$	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{Fa}^{\prime}$	$\log \sin u$	ωF_{0}^{\prime}	log $\cos u$	$\omega^{*} F_{0}{ }^{\prime}$	U
0.0500	0.04998	10,0	0.99875	0,5	8.69879	85,8	9.99946	0,2	$2^{\circ} 51^{\prime} 53.24$
. 0501	. 05008		. 90875		.699'56	85,6	. 99945		25213.87
. 0502	. 05018		. 5887		. 70052	85,4	. 99245		25234.49
. 0503	. 05028		. 95874		.70138	86,3	. 99945		25255.12
.0504	.05038		.99873		. 70225	85,1	. 99945		25315.75
0.0505	0.05048	10,0	0.93873	0,5	8.703 II	85,9	9.95945	0,2	$\begin{array}{llll}2 & 53 & 36.37\end{array}$
. 0505	. 05058		. 90872		. 70397	85,8	.9994		25357.00
. 0507	. 05068		- 0,872		. 70.48	85,5	.9394		25417.63
. 0508	. 05078		-9,877		.70558	85.4	. 9994		254.38 .25
.0509	. 05088		-9,870		. 70653	85,2	. 99944		25458.88
0.0510	0.05098	10,0	0.99870	0,5	8. 70738	85,1	9.99943	0,2	25519.51
. 0511	. 05108		. 90839		. 70833	8+,9	. 99943		25540.13
. 0512	. 05118		-90859		- 70908	$8+7$. 99243		25600.76
.0513	. 05128		. 99858		. 70993	84,6	. 99943		25621.38
.0514	. 05138		.95858		.71077	84.4	. 99943		25642.01
0.0515	0.05148	10,0	0.95857	0,5	8.71162	84,3	9.99942	c,2	25702.64
. 0515	. 05158		. 99867		. 71246	84,1	.99942		25723.26
. 0517	. 05168		. 99856		. 71330	83,9	. 93942		25743.89
. 0518	. 05178		. 9×856		-71414	83,8	. 99942		25804.52
. 0519	. 05188		-99855		. 71497	83,6	.99941		25825.14
0.0520	0.05198	10,0	0.95835	0,5	8.7158 I	83.4	9.99941	0,2	25845.77
. 0521	. 05208		. 90864		. 71654	83,3	.9994I		25906.40
. 0522	. 05218		. 9986		. 71747	83,1	.99941		$\begin{array}{llll}2 & 59 & 27.02\end{array}$
. 0523	. 05228		. 99853		. 71830	83,0	.98941		$\begin{array}{llll}2 & 59 & 47.65\end{array}$
. 0524	. 05238		. 95853		. 71913	82,8	.999 .40		30008.28
0.0525	0.05248	10,0	0.99852	0,5	8.71996	82,6	9.99940	0,2	30028.90
. 0525	. 05258		. 99852		. 22079	82,5	. 99940		30049.53
. 0527	. 05268		. 99885		. 72151	82,3	-95940		3 O1 10.16
. 0528	. 05278		. 9585 r		. 72243	82,2	. 99939		3 O1 30.78
. 0529	. 05288		. 9580		. 72325	82,0	.99939		30151.41
0.0530	0.05298	10,0	0.99850	0,5	3.72407	$8 \mathrm{I}, 9$	9.99939	0,2	$\begin{array}{lll}3 & 02 & 12.03 \\ 3 & 02 & 32.66\end{array}$
.0531	. 05308		. 99859		. $72+87$	81,7	. 99939		$\begin{array}{llll}3 & 02 & 32.66 \\ 3 & 02 & 53.29\end{array}$
. 0532	. 05317		. 99859		. 72371	81,6	. 99939		$\begin{array}{llll}3 & 0253.29\end{array}$
. 0533	. 05327		-99858		. 72 'j52	$8 \mathrm{I}, 4$. 99938		$\begin{array}{llllll}3 & 03 & 13.91\end{array}$
. 0534	. 05337		. 95857		. 72733	81,3	. 99938		30314.54
0.0535	0.05347	10,0	0.99857	0,5	8.72815	$8 \mathrm{I}, 1$	9.95938	0,2	$\begin{array}{llll}3 & 03 & 55.17\end{array}$
. 0536	. 05357		-99856		.72896	80,9	. 99938		30415.79
. 0537	. 05367		-99856		. 72577	80,8	. 99937		$\begin{array}{lllllllllllllllll}3 & 04 & 36.42\end{array}$
.05.38	.C5377		. 99855		. 73057	80,6	. 99937		30457.05
. 0539	. 05387		. 99855		.73138	80,5	. 99937		30517.67
0.0510	0.05397	10,0	0.99854	0,5	8.73218	80,3	9.99937	0,2	30538.30
. 0541	. 05407		. 99854		. 73299	80,2	. 99936		$\begin{array}{llll}3 & 05 & 58.93\end{array}$
. 0542	. 05417		. 99853		. 73379	80,0	. 99936		30619.55
.0543	. 05127		- 99853		. 73459	79,9	. 99936		30640.18
. 0544	. 05437		. 99852		. 73538	79,8	.99936		30700.8 I
0.0545	0.05447	10,0	0.99852	0,5	8.73618	79,6	9.99935	0,2	30721.43
. 0546	. 05457		-9585I		. 73698	79,5	. 99935		30742.06
. 0547	. 05467		. 99850		. 73777	79,3	. 99935		30802.68
. 0548	. 05477		-99850		.73856	79,2	. 99935		$30823.3 \mathrm{I}$
. 0549	.05487		-99849		. 73935	79,0	. 99935		30843.94
0.0550	0.05497	10,0	0.99849	0,5	8.74014	78,9	9.99934	0,2	30904.56
】	-i sinh iu	- F F^{\prime}	cosh iu	${ }^{\circ} \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh \text { iu }}{1}$	$\omega \mathrm{FO}^{\prime}$	log cosh iu	$\bullet \mathrm{Fo}^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}{ }^{\prime}$	$\log \sin u$	- F $\mathrm{F}^{\prime}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{Fi}{ }^{\text {a }}$	u
0.0550	0.05497	10,0	0.95849	0,5	8.74014	78,9	9.99934	O,	$3{ }^{\prime \prime} 09004.56$
.0551	. 05507		-9,848	0,6	. 74093	78,7	. 99934		30925.19
. 0552	. 05517		. 9.848		. 74172	78,6	.09934		30945.82
. 0553	. 05527		. 95,847		. $7+250$	78,5	. 99934		31005.44
. 0554	. 05537		-99847		. 74329	78,3	. 99933		31027.07
0.0555	0.05547	10,0	0.998 .46	0,6	8.74-407	78,2	9.99933	0,2	31047.70
. 0556	. 05557		. 99845		. $7+485$	78,0	. 99933		31108.32
.0557	.05557		. 9988		-74593	77.9	. 99033		3 II 28.95
. 0558	. 05577		. 9984		. 74641	77,7	. 99932		3 II 49.58
. 0559	. 05587		-95844		-74719	77,6	. 99932		31210.20
0.0560	0.05597	10,0	0.99843	0,6	8.74796	77,5	9.99932	0,2	31230.83
. 0551	.05607		. 99843		. 74873	77,3	. 99932		$\begin{array}{lllllllllll}3 & 12 & 51\end{array}$
. 0562	. 05517		. 99842		. 74951	77,2	. 99931		$\begin{array}{lllllllllllllllllllllll}3 & 13 & 12.08\end{array}$
. 0563	. 05627		-99842		. 75028	77,I	. 99931		$\begin{array}{lllll}3 & 13 & 32.71\end{array}$
. 0564	. 05637		.98841		. 75105	76,9	.99931		
0.0565	0.05547	10,0	0.99840	0,6	8.75182	76,8	9.99931	0,2	
. 0565	.05657		. 99840		. 75258	75,6	. 99930		31434.59
. 0567	. 05557		. 98839		. 75335	76,5	. 99930		31745.21
. 0568	. 05677		. 99839		. 757111	75,4	. 99930		$\begin{array}{llll}3 & 15 & 15.84\end{array}$
. 0569	. 05587		. 99838		-75488	76,2	. 93930		$315 \quad 36.47$
0.0570	0.05697	10,0	0.95838	0,6	8.75564	76,	9.99929	0,2	$315 \begin{array}{lll}3 & 57.09\end{array}$
. 0571	.05707		. 99837		. 75640	75,0	.99929		
. 0572	. 05717		. 99836		. 75715	75,8	-.99929		
. 0573	. 05727		. 99836		. 75792	75,7	. 99929		$\begin{array}{llll}3 & 15 & 58.97\end{array}$
. 0574	. 05737		. 99835		. 75857	75,6	-99928		31719.60
0.0575	0.05747	10,0	0.99835	0,6	8.75943	75.4	- 2.99928	0,2	
.0575	. 05757		.99834		. 75018	75,3	. 99928	0,3	$\begin{array}{llll}3 & 18 & 00.85 \\ 3 & 18 & 21\end{array}$
. 0577	. 05757		. 99834		. 75093	75,2	-99928		$\begin{array}{llll}3 & 18 \\ 3 & 21.48\end{array}$
.0578	. 05777		. 99833		. 75169	75, 1	. 99927		$\begin{array}{llll}3 & 18 & 42.11 \\ 3 & 19 & 02.73\end{array}$
. 0579	. 05787		.99832		. 75244	74,9	-99927		31902.73
0.0580	0.05797	10,0	0.99832	0,6	8.75318	74,8	9.99927	0,3	$\begin{array}{lll}3 & 19 & 23.36\end{array}$
.0581	.05807		. 99831		. 76393	74,7	. 99927		$\begin{array}{llll}3 & 19 & 43.99\end{array}$
. 0582	.05817		.99831		. 7.7568	74.5	. 99926		32004.61
.0583	. 05827		. 99830		.76542	74,4	.99920		$\begin{array}{lll}3 & 20 & 25.24 \\ 3 & 30 & 45.86\end{array}$
. 0584	. 05837		-98830		.76017	74,3	-99920		32045.80
0.0585	0.05847	10,0	0.99829	0,6	8.75691	74,2	9.99925	0,3	32106.49
. 0585	. 05857		. 95828		. 77785	74,0	. 99925		$\begin{array}{lll}3 & 21 & 27.12 \\ 3 & 21 & 47.74\end{array}$
.0587	. 05867		. 99828		.75839	73,9	. 99925		$\begin{array}{llll}3 & 21 & 47.74\end{array}$
. 0588	. 05877		-99827		.75913	73,8 73,6	. 99925		$\begin{array}{lll}3 & 22 & 08.37 \\ 3 & 22 & 20.00\end{array}$
. 0589	. 05887		.98827		-70980	73,6	-99925		32229.00
0.0590	0.05897	10,0	0.99826	0,6	8.77060	73.5	9.99924	0,3	$\begin{array}{lll}3 & 22 & 49.62 \\ 3 & 23 & 10.25\end{array}$
. 0591	. 05907		. 99825		.77133 .77207	73.4 73.3	. 999.24		$\begin{array}{llll}3 & 23 & 10.25 \\ 3 & 23 & 30.88\end{array}$
. 0592	. 05917		.99825 .99824		.77207 .77280	73,3 73,2	. 99924		$\begin{array}{llll}3 & 23 & 30.88 \\ 3 & 23 & 51.50\end{array}$
. 0593	.05927 .05937		. 99824		.77280 .77353	73,2 7300	. 999923		$\begin{array}{llll}3 & 23 & 51.50 \\ 3 & 24 & 12.13\end{array}$
0.0595	0.05946	10,0	0.99823	0,6	8.77426	72,9	9.99923	0,3	$\begin{array}{lll}3 & 24 & 32.76\end{array}$
. 0596	. 05956		. 99822		. 77499	72,8	. 99923		32453.38
. 0597	. 05966		. 99822		. 77572	72,7	. 99923		
. 0598	. 05976		. 99821		. 77644	72,5	. 99922		$\begin{array}{llllllllll}3 & 25 & 34.64\end{array}$
. 0599	. 05986		.9982I		.77717	72,4	. 99922		32555.26
0.0600	0.05996	10,0	0.99820	0,6	8.77789	723	9.99922	0,3	32615.89
-	-1 sinh in	$\cdots \mathrm{Fa}^{\prime}$	cosh in	- Fa^{\prime}	$\operatorname{tos} \frac{\sinh \text { in }}{i}$	* Fi'	Hog cosh in	$\omega \mathrm{Fo}^{\prime}$!

Circular Functions.

u	$\sin \mathrm{u}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos 4$	F_{0}	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{Fo}^{\prime}$	u
0.0100	3.05935	10,0	0.06820	0,6	8.75783	72,3	9.99922	0,3	$3^{\circ} 26^{\prime} 15^{\prime \prime} .89$
. 0601	. 0.0005		. 92819		.7,851	72,2	. 999221		
. 0602	. 06016		. 09819		.77933	72, 1	. 99921		32657.14
. 0603	. 05025		. 000818		. 88005	71,9	. 9392 I		
. 0604	.05035		-9,988		.78077	71,8	. 99921		32738.39
0.0605	0.060 .46	10,0	0.69817	0,6	8.-8149	71,7	9.95920	0,3	32759.02
. 0505	. 05055		. 99816		. 82221	71.5	. 95920		$\begin{array}{llll}3 & 28 & 19.65\end{array}$
. 0607	. 06066		. 909815		.78292	71,5	. 99920		$\begin{array}{lll}3 & 28 \\ 3 & 40.27\end{array}$
. 0568	. 05076		. 9,685		-78354	71,3	. 99920		32900.90
. 06509	. 05085		. 99815		. -8435	71,2	-99919		32921.53
0.0610	0.06096	10,0	0.99814	0,6	8.78506	71,1	9.99919	0,3	$\begin{array}{llll}3 & 29 & 42.15\end{array}$
. 05 II	. 05106		. 99813		.7357	71,0	. 99919		33002.78
. 0512	. 05116		. 92813		. 785	70,9	. 99919		$\begin{array}{llll}3 & 30 & 23.41\end{array}$
. 0613	.05ı 25		. 98812		.78719	70,8	. 99918		33044.03
.06I4	. 05136		. 99812		.78790	70,6	. 99918		3 3I 04.60
0.0615	0.061 .46	10,0	0.99811	0,6	8.78850	70,5	9.99918	0,3	33125.29
. 06516	. 06156		. 90810		-7831	70,4	-99918		$33^{31} 45.91$
. 0517	.05r65		. 96810		. 79001	70,3	-99917		33200.54
. 0618	.05176		-99809		. 79071	70,2	. 99917		
. 0619	. .06185		. 90888		. 79141	70,1	. 99917		$33247 \cdot 79$
0.0620	0.06196	10,0	0.99808	0,6	8.79211	70,0	9.99916	0,3	$\begin{array}{llll}3 & 33 & 08.42\end{array}$
. 0621	. 06.006		. 99807		.7928I	69,8	. 99916		$\begin{array}{llll}3 & 33 & 29.04\end{array}$
. 0622	. 05216		.9980		. 79351	69,7	. 99916		$\begin{array}{llll}3 & 33 & 49.67\end{array}$
. 0623	. 06226		. 99806		. 79421	69,6	. 99916		$\begin{array}{llll}3 & 34 & 10.30\end{array}$
. 0624	.06236		. 95805		-79490	69,5	. 99915		33430.92
0.0625	0.06246	IO,O	0.99805	0,6	8.79560	69,4	9.99915	0,3	33451.55
. 0.0626	. .06256		. 99804		. 79629	69,3	.99915		33512.18
. 0627	. 05256		. 99804		. 79598	69,2	. 99915		33532.80
. 0628	.05275		. 99803		. 79767	69,1	.99914		$\begin{array}{llll}3 & 35 & 53.43\end{array}$
. 0629	. 06286		. 99802		. 79836	69,0	.99914		$3 \quad 3614.06$
0.0630	0.06296	10,0	0.99802	0,6	8.79905	68,8	9.99914	0,3	$\begin{array}{llll}3 & 3 & 34.68\end{array}$
. 0631	. 0.05306		-99801		. 79974	68,7	.99913		$\begin{array}{llll}3 & 3655.31\end{array}$
.0532	. 05316		. 99800		. 80043	68,6	. 99913		$\begin{array}{llll}3 & 37 & 15.94\end{array}$
. 0633	. 05325		. 99800		. 80111	68,5	.99913		$\begin{array}{llll}3 & 37 & 36.56 \\ 3 & 37 & 57.19\end{array}$
. 0634	.06336		. 99799		. 80180	68,4	.99913		33757.19
	0.05346	10,0	0.99798	0,6	8.80248	68,3	9.99912	0,3	$\begin{array}{llll}3 & 38 & 17.82\end{array}$
0.0535 .056	0.06356	10,0	0.99798 .99798	0,6	. 80316	68,2	.99912		$\begin{array}{llll}3 & 38 & 38.44 \\ 3 & 38 & 50.07\end{array}$
. 0537	. 06366		. 99797		. 80385	68, 1	. 99912		313859.07
. 0638	. 06376		. 99797		. 80453	68,0	. 99912		$\begin{array}{llll}3 & 39 & 19.69\end{array}$
. 0639	. 06385		. 99796		. 8052 I	67,9	. 999 II		33940.32
0.0640	0.06396	10,0	0.99795	0,6	8.80588	67,8	9.999 II	0,3	34000.95
. 0641	. 06.406		. 99795		. 80656	67,7	. 999 II		34021.57
. 06412	. 06416		- 99794		. 80724	67, 6	. 99910		34042.20
. 0643	. 05.425		. 99793		. 8079 I	67,4	-99910		$\begin{array}{llll}3 & 41 & 02.83 \\ 3 & 41 & 23.45\end{array}$
.0644	. 06436		. 99793		. 80859	67,3	.99910		3 41 23.45
	0.06446	10,0	0.99792	0,6	8.80926	67,2	9.99910	0,3	34144.08
. 0.0646	. 06756		. 99791		. 80993	67, 1	. 99909		34204.71
. 0647	. 05465		- 99791		. 81060	67,0	. 99909		34225.33
. 0648	. 06475		. 99790		.81127	66,9	. 99909		$\begin{array}{llll}3 & 42 & 45.96\end{array}$
. 0649	. 06485		-99789		. 81194	66,8	. 99908		34306.59
0.0650	0.06495	10,0	0.99789	0,6	8.81261	66,7	9.99908	0,3	34327.21
и	-isinh in	$\cdots \mathrm{Fg}^{\prime}$	cosh it	$\sim \mathrm{Fo}^{\prime}$	$100 \frac{\sinh i u}{i}$	* Fo'	log coath iu	- Fg^{\prime}	-

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0650	0.06495	10,0	0.99789	0,6	8.81251	66,7	9.99008	c,3	$3^{\circ} 43^{\prime} 27^{\prime \prime} .21$
. 0.051	. 06505		. 99788	0,7	. 81327	66,6	. 999008		$3+3+7.84$
. 0652	. 05515		. 99783		. 81394	66,5	. 90908		34408.47
. 0653	. 06525		. 99787		.81460	66,4	. 99907		34427.09
. 0654	. 06535		. 99785		.81527	66,3	-99007		34449.72
0.0655	0.06545	10,0	0.99785	0,7	8.81593	66,2	9.99907	0,3	34510.34
. 0656	. 06555		. 99785		. 81659	66,1	. 99906		34530.97
.0657	. 06565		. 99784		. 81725	66,0	-99906		34551.60
. 0658	. 06575		. 99784		.81791	65,9	. 99906		34512.22
. 0659	. 06585		. 99783		.81857	65,8	. 99906		34632.85
0.0650	0.06595	10,0	0.99782	0,7	8.81923	65,7	9.99905	0,3	
. 0561	. 06665		. 99782		. 81989	65.6	. 99905		34714.10
. 0652	.06615		. 9978 I		. 82057	65,5	. 99905		34734.73
. 0663	. 06625		. 99780		. 82120	65.4	. 99904		34755.36
. 0664	. 06635		. 99780		. 82185	65,3	. 99904		34815.98
0.0665	0.06645	10,0	0.99779	0,7	8.82250	65,2	9.99904	0,3	34836.61
. 0556	. 06655		. 99778		. 82315	65,1	. 59904		34857.24
. 0567	. 06665		. 99778		. 82380	65,0	. 99903		34917.83
. 0668	. 06675		. 937.7		. 82415	64,9	. 99903		$\begin{array}{llll}3 & 49 & 38.49\end{array}$
. 0569	. 06585		. 99776		. 825 IC	64,8	.99903		34959.12
0.0670	0.06695	10,0	0.99775	0,7	8.82575	64,7	9.99902	0,3	35019.74
.0671	. 05705	10,0	. 99775	0	. 82640	64,6	. 99902		35040.37
. 0672	. 06715		. 99774		. 82704	64.5	. 99902		35100.99
. 0673	. 065725		. 99774		. 82759	64,4	. 99902		3 51 21.62
.0674	. 06735		. 99773		. 82833	64,3	.99901		35142.25
0.0675	0.06745	10,0	0.99772	0,7	8.82837	64,2	9.99501	0,3	35202.87
. 0676	. 06755		. 59772		. 829062	64,1	. 99901		35223.50
. 0677	. 06765		. 59771		. 83026	64,1	.95,500		35244.13
.0578	. 06775		. 99770		. 83050	64,0	. 99900		
. 0679	. 06785		. 99770		. 83154	63,9	. 99900		35325.38
0.0680	0.06795	10,0	0.99769	0,7	8.83217	63,8	9.99900	0,3	35346.01
. 0.0581	. 06805		. 99768		. 8328 I	63,7	. 99889		35406.63
. 0582	. 06815		. 99758		. 83345	63,6	. 99899		35427.26
. 0683	. 06825		. 99767		. 83408	63,5	.99899		$\begin{array}{llll}3 & 54 & 47.89 \\ 3 & 55 & 08.51\end{array}$
. 0684	. 06835		. 99756		. 83472	63.4	. 99898		35508.51
0.0685	0.06845	10,0	0.99765	0,7	8.83535	63.3	9.99898	0,3	35529.14
. 0585	. 06885		. 93765		. 83598	63,2	. 99898		35549.77
. 0687	. 05855		. 99764		. 83652	63,1	. 99897		35610.39
. 0688	. 06875		. 99763		. 83725	63,0	.99897		35631.02
. 0689	. 06885		. 99763		. 83788	62,9	.95897		35651.65
0.0690	0.06895	10,0	0.99762	0,7	8.83850	62,8	9.99897	0,3	$\begin{array}{llll}3 & 57 & 12.27\end{array}$
.0691	. 06005		. 99761		. 83913	62,8	. 99895		35732.90
. 0692	.06914		. 99761		. 83976	62,7	. 99886		35753.52
. 0693	. 06924		. 99760		. 88039	62,6	. 99886		$\begin{array}{llll}3 & 58 \\ 3 & 14.15\end{array}$
. 0694	. 06934		-99759		.84101	62,5	. 99895		35834.70
0.0695	0.06944	10,0	0.99759	0,7	8.84164	62,4	9.99895	0,3	35855.40
. 0696	. 06954		. 99758		. 842206	62,3	. 99895		35916.03
. 0697	. 06964		. 99757		. 84288	62,2	. 99894		35936.66
. 0698	. 06974		. 99756		. 84350	62, 6	. 99894		35957.28
. 0699	. 06984		. 99756		. 84412	62,0	.99894		40017.91
0.0700	0.06994	10,0	0.99755	0,7	8.84474	6r,9	9.99894	0,3	40038.54
*	-1 sinh fis	* Fo'	cosh la	$\pm \mathrm{Fa}^{\prime}$		- Fi'	log coen he	$\cdots F_{0}{ }^{\prime}$	-

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{FO}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}_{3}{ }^{\prime}$	$\log \sin u$	$\infty \mathrm{F}^{\prime}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	4
0.0700	0.05994	10,0	0.99755	0,7	8.8+474	61,9	9.95854	0,3	$4^{\circ} 00^{\prime} 38^{\prime \prime} .54$
.0701	.07004		. 99754		. $8+535$	61,9	.95853		$+0059.16$
.0702	.07014		. 950554		. $8+598$	6I,8	. 95893		40119.79
. 0703	.07024		. 95953		. $8+660$	61,7	.95893		40140.42
.0704	. 07034		. 99752		. 84721	6I,6	.99892		40201.04
0.0705	0.07044	10,0	0.99752	0,7	8.847^{83}	61,5	9.99892	0,3	40221.67
.070	.07054		. 99751		. 8484	$6 \mathrm{I}, 4$.95882		40242.30
. 0707	.07034		. 99750		. 8.8905	6I,3	.9983I		40302.92
.0703	.07074		.99749		.84957	61,2	.9983I		40323.55 403
.0709	.07084		. 99749		. 85028	6I,2	.9989I		
0.0710	0.07094	10,0	0.99748	0,7	8.85089	$6 \mathrm{I}, 1$	9.99890	0,3	40404.80
. 0711	. 07104		. 99747		. 85150	$6 \mathrm{I}, \mathrm{O}$. 95850		40425.43
.0,12	.07144		. 99747		. 85211	60,9	. 93850		40446.05
.0713	.07124		. 99745		. 85272	60,8	. 99890		40506.08 40527.31
.0714	.07134		-99\% 45		5333	7	-9988		40527.31
0.0715	0.07144	10,0	0.9974	0,7	8.85394	60,6	9.99889	0,3	40547.93
.0716	.07154		. 9974		. $85+54$	60,6	. 96889		40608.56
.0717	. 07164		-96743		. 83515	60,5	. 99888		40629.19
.0718	. 07174		. 99742		. 85575	60,4	. 95888		40549.81
. 0719	.07184		-99742		. 85635	60,3	.99888		40710.44
0.0720	0.07194	10,0	0.99741	0,7	8.85696	60,2	9.99887	0,3	40731.07
. 0721	.07204		. 97740		. 85756	60,1	. 99887		40751.69
. 0722	. 072 I 4		. 99739		. 85815	60,0	. 93887		40812.32
. 0723	. 07224		-99739		. 85875	60,0	. 99885		40832.95 40853.57
. 0724	. 07234		-99738		. 85936	59,9	. 99886		40353.57
0.0725	0.072.4	10,0	0.99737	0,7	8.85996	59.8	9.99886	0,3	40914.20
. 0726	. 07254		. 99737		. 85056	59,7	. 99885		40934.82
. 0727	. 07264		. 99736		. 85115	59,6	. 99885		40955.45
.0728	.07274		. 99735		. 85175	59,5	. 99885		41016.08
. 0729	. 07284		. 99734		. 85234	59,5	. 99884		41036.70
0.0730	0.07294	10,0	0.99734	0,7	8.85294	59,4	$9.9988{ }_{4}$	0.3	4 10 57.33
. 0731	. 07303		. 99733		. 83533	59.3	. 99888		4 II 17.95
. 0732	.07313		. 99732		. 85412	59,2	. 99838		4 II 38.58
. 0733	. 07323		. 99731		. 85472	59, I	-90883		$\begin{array}{llll}4 & \text { II } & 59.21 \\ 4 & \text { II } & 19.84\end{array}$
. 0734	. 07333		. 99731		. 85531	59, I	. 99883		41219.84
0.0735	0.07343	10,0	0.99730	0,7	8.86590	59,0	9.99883	0,3	41240.46
. 0736	. 07353		. 99729		. 85549	58,9	. 99882		41301.09
. 0737	. 07353		. 99729		. 83707	58,8	. 99882		41321.72
. 0738	. 07373		. 99728		. 85736	58.7	. 99882		41342.34
. 0739	. 07383		. 93727		. 86825	58,7	.9988I		41402.97
0.0740	0.07393	10,0	0.99725	0,7	8.85834	58,6	9.99888	0,3	$\begin{array}{llll}4 & 14 & 23.60\end{array}$
. 0741	. 07403		. 99725		. $850+2$	58,5 58,4	.9988I		$\begin{array}{lll}4 & 14 & 4.22 \\ 4 & 15 & 04.85\end{array}$
. 0742	. $07+13$. 99725		.87001	58,4	.99880 .95883		$\begin{array}{llll}4 & 15 & 04.85 \\ 4 & 15 & 25.48\end{array}$
. 0743	. $07+23$. 99724		. 87059	58,3 58,3	. 99880		4 4 4 15
. 074	. 07433		. 99723		. 87117	58,3	-9988		
0.0745	0.07443	10,0	0.99723	0,7	8.87175	58,2	9.99879	0,3	
. 0745	.07453		. 99722		. 87234	58,1	.99879		$\begin{array}{lll}4 & 15 & 27.35 \\ 4 & 16 & 47.08\end{array}$
. 0747	.07463		. 99721		. 87292	58,0	- 99879		4 4 4 4 4
.0748	. 07473		. 997720		. 873500	58,0 57,9	. 99878		$\begin{array}{llll}4 & 17 & 08.61 \\ 4 & 17 & 29.23\end{array}$
.07+9	. 07483		. 99720		. 87408	57,9	-99878		41729.23
0.0750	0.07493	10,0	0.99719	0,7	8.87465	57,8	9.99878	0,3	41749.86
a	-i sinhia	${ }^{*} \mathrm{FO}^{\prime}$	cosh ix	$\pm \mathrm{F}^{\prime}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	$\pm \mathrm{Fi}^{\text {® }}$	log cosh iu	* For ${ }^{\prime}$	ロ

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	ωF_{0}^{\prime}	$\log \sin u$	$\omega F_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.0750	0.07493	10,0	0.99719	0,7	8.87465	57,8	0.99878	0,3	$4^{\circ} 17^{\prime} 49.46$
. 0751	. 07503		. 99718	0,8	. 87523	57,7	. 99877		418 10. 49
. 0752	. 07513		-99717		.87581	57.6	- 09877		4183 I .11
. 0753	. 07523		. 99717		.87538	57,6	. 99877		41851.74
.c754	. 07533		. 99716		.8,695	57,5	.95876		41912.37
0.0755	0.07543	10,0	0.99715	0,8	8.87753	57,4	9.958-6	0,3	41932.99
.0755	. 07533		. 99714		.8-811	57,3	.90876		41953.62
. 0757	. 07563		. 99714		.8-8,8	57,3	. 99885		420 I4. 25
.0738	. 07573		-99713		. 87525	57,2	. 96875		42034.87
. 0759	. 07583		.99712		.87582	57, 1	. 90875		42055.50
0.0750	0.07593	10,0	0.997 II	0,8	8.88040	57,0	9.99874	0,3	42116.13
. 0751	.0,603		. 9971 I		.88097	57,0	. 908874		42136.75
.07J2	.0-513		. 99710		.83153	55,0	. 998874		42157.38
.0753	.07623		. 99709		.83210	55,8	. 99873		422 18.00
. 0754	. 07633		.99708		. 83257	56,7	. 96873		42238.63
0.0765	0.07643	10,0	0.99;08	0,8	8.88324	56,7	9.99873	0,3	42259.26
.0756	.07653		. 69707		. 88380	55,6	. 99837		42319.88
.0757	.07652		. 99705		. 88.437	56,5	. 99872		42340.51
.0758	. 0.7572		. 99705		. 83493	56,4	.99872		424 OI. 14
.0759	.07682		. 99704		. 83550	56,4	.95871		42421.76
0.0770	0.07692	10,0	0.99704	0,8	8.83505	55,3	9.99871	0,3	42442.39
. 0771	. 07702		. 95703		.8352	55,2	.96871		42503.02
.0772	. 07712		. 59702		. 83713	56, I	. 99880		42523.64
. 0773	. 07722		-99701		.83775	55, 1	-99870		42544.27
. 0774	. 07732		.99701		. 88331	56,0	. 99870		42604.93
0.0775	0.07742	10,0	0.99700	0,8	8.88387	55.9	9.99859	0,3	42625.52
. 0775	. 07752		. 99599		. 83743	55,9	. 99859		42646.15
. 0777	.07762		-99608		. 83×8	55,8	. 9985		42706.78
.0778	.0772		. 99658		. 83054	55,7	. 99888		42727.40
.0779	.07782		-99597		. 83110	55,6	.95858		$+2748.03$
$0.0,80$	0.07792	10,0	0.99596	0,8	8.89155	55,6	9.99858	0,3	42808.65
.0781	. 07802		. 99695		. 8322 I	55.5	. 99837		42829.28
. 0732	.0,812		. 99694		. 89275	55,4	. 90857		42849.91
.0733	.07822		. 99694		. 89333	55.4	. 95877		42910.53
.0734	.07832		-99693		. 83387	55,3	. 93866		42931.16
0.0785	0.0-842	10,0	0.99692	0,8	8.87412	55,2	9.99856	0,3	42951.79
.0,3j	.07852		. 96691		. 82498	55, I	. 99886		43012.41
.0737	.07832		. 99590		. 85553	55, I	. 95855		43033.04
.0733	.07372		-9960		. 8,608	55,0	. 99955		43053.67
.0739	.0,882		. 99687		.8,553	54,9	.99855		43114.29
0.0790	0.07892	10,0	0.99588	0,8	8.89718	54,9	9.95854	0,3	43134.92
. 0731	.07902		. 59657		. 89772	54,8	. 93884		43155.55
. 0792	. 07912		. 99568		. 85827	54,7	.90884		43216.17
. 0703	.07922		. 99685		. 89882	54,7	. 95813		43236.80
. 0734	. 07932		. 99685		. 89936	54,6	. 93853		43257.43
	0.07942	10,0	0.99584	0,8	8.89991	54,6	9.99853	0,3	43318.05
. 0796	. 07952		. 99583		. 90045	54,4	. 99852		43338.68
. 0797	. 07962		-99683		. 90100	54,4	. 99882		43359.31
.0758	. 07972		. 99688		. 90154	54.3	. 99852		43419.93
. 0799	. 07982		.99581		.90208	54,2	. 9988 I		43440.56
0.0800	0.07991	10,0	0.99680	0,8	8.90263	54,2	9.9985 I	0,3	435 or. 18
*	-isinhia	$\omega F_{0}{ }^{\prime}$	cosh in	- $\mathrm{F}_{8}{ }^{\prime}$	$\log \frac{\sinh \text { in }}{i}$	$\pm F_{0}{ }^{\prime}$	log cosh it	$\omega \mathrm{Fa}_{0}{ }^{\text {r }}$	-

Circular Functions.

и	$\sin 4$	$\omega^{\omega} \mathrm{Fo}^{\prime}{ }^{\prime}$	$\cos u$	$\omega{ }^{\prime}{ }^{\prime}$	$\log \sin u$	$\pm F^{\prime}$;	$\log \cos \mathrm{u}$	$\omega \mathrm{F}_{j}$	u
0.0800	0.07991	10,0	0.95080	0,8	8.50253	54.2	9.96851	0,3	$4{ }^{\circ} 35^{\prime}$ Or. 18
. 0801	. 08001		. 9,50		.903I7	54, 1	- cosji		43521.81
.0802	. OSOII		. 69		. 9037 I	54,0	- 0 S S		43542.41
. 0803	.c802I		. 95		- $90+25$	54,0	-9635		43603.06
.0804	. 08031		. 9957		-904\%	53,3	. 95859		43623.69
0.0805	0.08041	10,0	0.56575	0,8	8.90533	53,8	9.99859	0,4	43644.32
. 0805	.08051		. 97675		.90585	53,8	. 5 S539		43704.94
. 0807	. 0806 T		. 6,95		. 90640	53,7	. 6,88		+3725.57 +13750
. 0803	. OSO 7 I		. 29617		. 00694	53,6	. 97858		43745.20 43806.82
. 0800	.0808I		. 99573		.90747	53,6	- 99858		43806.82
0.0810	0.0809I	10,0	0.90572	0,8	8.90801	53,5	9.9285.	0,4	$+3827.45$
.08II	.08101		.9,951		. 90854	53.4	.9925		43948.08
.0812	.08III		. 6981		. 90508	53,4	-99357		$+3908.70$
.0813	.0812I		. 09570		.90351	53,3	. 96855		43929.33
.0814	.08131		.90459		.91014	53,2	.90856		43949.96
0.0815	0.08141	10,0	0.99568	0,8	$8.910 ' 8$	53,2	9.90835	0,4	44010.58
.0816	.08151	10,0	. 9,665		.91121	53, 1	. 99853		$4+1031.21$
.0817	.08151		. 9956		-91174	53.0	-5,5855		4.4051 .83 441212.46
.0818	.08171		.9955		.91227	53,0	. 95855		$\begin{array}{llll}4 & 41 & 12.46 \\ 4 & 41 & 33.09\end{array}$
.0819	.08181		. 99665		.91280	52,9	-95854		44133.09
0.0820	0.08191	10,0	0.99564	0,8	8.913 .33	52,8	9.99854	0,4	44153.71
.0821	.08231		. 99653		. 91385	52,8	-99853		44214.34
.0822	.08211		. 99662		. 91438	52,7	- 99853		44234.97
. 0823	. 08221		. 99652		.91491	52,7	-99853		44255.59
.0824	.0823I		. 99661		. 91544	52,6	. 99852		44316.22
0.0825	0.08241	10,0	0.99660	0,8	8.91596	52,5	9.99852	0,4	44336.85
.08.26	. 08251		. 39659		. 91649	52,5	. 99852		44357.47
.0827	.08351		. 99658		.91701	52,4	. 9935 I		44418.10
.0828	.08271		. 99557		.91753	52,3	-9985I		44438.73
.0329	.0323I		. 99657		.91305	52,3	. 9985 I		44459.35
0.0830	0.08290	10,0	0.99535	0,8	8.91858	52,2	9.99850	0,4	44519.98
. 0831	.08300		. 9,655		. 91910	52, 1	.99850		44540.61
. 0832	.08310		-99554		. 91962	52,1	. 93850		4460 OL .23
. 0833	.08320		. 99053		. 92014	52,0	-93949		4 4 4 4 621.85
. 0834	. 08330		. 99652		. 92065	52,0	.99849		44542.48
0.0835	0.08340	10,0	0.99552	0,8	8.92118	51,9	9.95848	0,4	447 03.11
. 0836	. 08350		. 99651		. 92170	51,8	-99348		44723.74
. 0837	. 08360		. 99650		. 92222	5I,8	-90848		44744.36
. 0838	.08370		. 99649		. 92274	51,7	. 93887		44800.99
. 0839	. 08380		. 99648		. 92325	51,6	. 95847		44825.62
0.0840	0.08390	10,0	0.99647	0,8	8.92377	51,6	9.99847	0,4	44846.24
. 08.81	. 08.800		. 99647		.92428	51,5	. 99884		44905.87
. 08.8	. 08.110		. 99646		. 92480	51,5	. 99886		44927.50
. 0843	. 08120		. 99645		. 92531	$5 \mathrm{I}, 4$. 90886		44948.12
.0844	.08430		.99544		. 92583	51,3	. 99845		45008.75
0.0845	0.08410	10,0	0.99543	0,8	8.92634	51,3	9.95845	0,4	45029.38
. 0886	. 08450		. 99642		. 92685	51,2	. 99844		45050.00
. 0847	. 08.860		. 99642		. 92735	51,2	. 99884		45110.63
$.08+8$.0819	.08470 .08 .480		.99641 .909610		. 92788	51,1 51,0	. 99844		45131.26
. 0849	.08.480		.99040		. 92839	51,0	.99843		45151.88
0.0850	0.08490	10,0	0.99639	0,8	8.92890	51,0	9.99843	0,4	45212.51
n	-i sinh iut	$\triangle \mathrm{F}_{0}{ }^{\text {a }}$	cosh iu	${ }^{*} F_{0}{ }^{\prime}$	$\operatorname{tog} \frac{\sinh \text { iu }}{i}$	$\omega \mathrm{Fe}^{\prime}$	$\log \cosh$ in	$\triangle F^{\prime}{ }^{\prime}$	\square

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}^{\prime \prime}$	$\log \sin u$	$\omega \mathrm{F}_{3}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{Fog}^{\prime \prime}$	u
0.0850	0.08 .490	10,0	0.99639	0,8	8.02890	51,0	9.90343	0,4	$4^{\circ} 522^{\prime} 12.51$
. 0851	. 08500		. .99538	0,8	. 92941	50,9	. $6,68+3$		45233.14
. 0852	. 08510		. 99637	0,9	. 92991	50,9	. 90812		45253.76
. 0853	. 08520		. 90536		. 93042	50,8	. 0,942		45314.39
. 0854	.08530		. 99636		.93003	50,7	.9584I		45335.01
0.0855	0.08540	10,0	0.99535	0,9	8.9314	50.7	9.99841	0,4	45355.64
. 0855	. 08550		. 99634		. 93194	50,6	. $598+1$		$45+16.27$
. 0857	. 08560		. 99633		$.932+5$	50,6	-90840		$45+36.89$
. 0858	.08560		. 99532		. 93295	50.5	- 9,810		45457.52
. 0859	. 08579		.99531		. $9334{ }^{5}$	50,4	. 99840		45518.15
0.0850	0.08589	10,0	0.99630	0,9	8.93395	50,4	9.99839	0,4	45538.77
.0861	. 08599		. 99630		-93447	50,3	. 9,839		45559.40
. 0852	. 08509		. 99529		- 53497	50.3	.99838		45620.03
. 085	.08519		-99538		-6,3547	50,2	.99838		45640.65
. 0854	. 08529		. 99627		. 93597	50, 1	. 99838		457 or. 28
0.0855	0.08539	10,0	0.99626	0,9	8.93547	50,1	0.90837	0,4	43721.91
. 0856	. 08519		. 99525		. 93697	50,0	. 9,837		45742.53
. 0857	. 08559		. 99624		. 93747	50.0	. 99837		45803.16
.0858	. 08569		. 99624		. 93797	49.9	. 99836		45823.79
. 0869	. 08579		. 99523		-93847	409.	.96836		$+5844.41$
0.0870	0.08589	10,0	0.99622	0,9	8.93897	49,8	9.99835	0,4	45905.04
. 0871	. 08599		. 99621		. 93947	42.7	.95835		45925.66
. 0872	.08709		. 99620		. 93997	49.7	. 99835		45946.29
. 0873	.08719		. 99619		. 94046	40,6	. 99834		$50006 . \mathrm{g}^{2}$
.0874	. 08729		.99618		. 9.4096	49,6	. 99834		$50027.5+$
0.0875	0.08739	10,0	0.99617	0,9	8.94145	49.5	9.99834	0.4	50048.17
. 0876	. 08749		. 900517		. 9.9195	49.5	. 90833		5 or 08.80
.0877	. 08759		.99616		. 9424	49.4	.90833		5 O1 29.42
.08-8	. 08759		. 99615		. 94294	49.3	. 98832		5 or 50.05
.0877	. 08779		. 99614		-94343	49,3	. 99832		50210.68
0.0880	0.08789	10,0	0.99513	0,9	8.94392	49,2	9.99832	0,4	50231.30
. 0881	. 08793		. 99512		-9444	49,2	. 9983 I		50251.93
. 0883	. 08809		. 99611		. 24191	49,1	. 99831		50312.55
. 0883	. 08819		. 99510		. 94540	49,1	. 98830		50333.18
. 0884	.08828		. 99610		. 94583	49,0	. 99830		50353.81
0.0835	0.08838	10,0	0.99600	0,9	8.94638	48,9	9.99830	0,4	50414.44
. 0385	. 08848		. 99608		. 94587	48,9	. 95829		50435.06
. 0837	. 08858		. 99607		. 24735	48,8	. 99829		50455.69
. 0878	. 08858		. 99606		- 9478	48,8	. 99829		50516.31
. 0889	. 08878		. 99605		. 94833	48,7	. 99828		50536.94
0.0890	0.08883	10,0	0.9950 .4	0,9	8.94882	48.7	9.99828	0,4	50557.57
. 0891	. 08888		. 99603		. 94930	48,6	. 99827		50618.19
. 0892	. 08908		. 99602		. 94973	48,6	. 95827		50638.82
. 0893	. 08918		. 99602		. 95027	48.5	. 98827		50659.45
. 0894	. 08928		. 99601		. 95076	48,4	. 98826		50720.07
0.0395	0.08938	10,0	0.99600	0,9	8.95124	48.4	9.95826	0,4	50740.70
. 0896	. 08948		. 99559		. 95173	48,3	. 99825		50801.33
. 0807	. 08958		. 99598		. 95.221	48,3	. 99885		50821.95
.08-8	.08958		. 99597		. 95369	48,2	. 99825		50842.58
. 0899	. 08978		-99596		. 95317	48,2	.95824		50903.21
0.0900	0.08988	10,0	0.99595	0,9	8.95366	48,1	9.99824	0,4	50923.83
\square	I sinhia	- Fol	cosh in	$\sim \mathrm{F}_{0}^{\prime}$	tog $\frac{\operatorname{singh}}{1}$	$\cdots \mathrm{Fa}^{\prime}$	log conim in	- F Fot	\#

Circular Functions.

u	$\sin u$	$\omega \mathrm{Fo}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos L$	$\omega \overline{\mathrm{F}} \mathrm{O}^{\prime}$	u
0.0900	0.08988	10,0	0.99595	0,9	8.95356	48,	9.96S24	0,4	$5^{\circ} 09^{\prime} 23.03$
.0y01	. 08903		. 69594		. 95414	48, 1	. 9852		$509+4 \cdot 46$
. 0902	.0,00S		-99503		.95432	48.0	. 55823		51005.09
.0,03	.09018		- 99593		.95510	+8,0	. 99323		51025.71
. 0904	. 09028		-99592		.95538	47,9	. 99822		51046.34
0.0905	0.09038	10,0	0.99591	0,9	8.95606	47,9	9.99822	0,4	5 II 06.96
. 0906	.09048		. 99550		. 95653	478	. 99322		51127.59
.0,07	.09053		. 90589		.95701	47.8	. 99821		51148.22
. 0908	.09058		. 99558		. 95749	47,7	. 90881		
. 0909	.09077		. 99587		.9575\%	47,6	. 93820		51229.47
0.0910	0.09087	10,0	0.99586	0,9	8.958+4	47,6	9.998 .20	0,4	51250.10
. 0911	. 000097		. 99585		. 95892	47,5	. 99830		51310.72
. 0912	. 09107		. 99584		. 95939	47,5	.99819		51331.35
. 0913	.03117		. 99384		. 95987	47,4	. 99819		51351.68
. 0914	. 09127		. 99583		. 95034	47,4	. 99818		51412.60
0.0915	0.09137	10,0	0.99582	0,9	8.9608 I	47,3	9.99818	0,4	5 If 33.23
. 0916	.09147		. 99581		. 96129	47,3	. 99818		5 It 53.85
. 0917	. 09157		. 99580		. 96176	47,2	. 99817		$\begin{array}{lllll}5 & 15 & 1+4 \\ 5 & 15 & 48\end{array}$
. 0918	. 09167		. 99579		.96223	47,2	. 99817		5 I5 35.11
. 0919	. 09177		-99578		. 95270	47,1	. 99816		51585.74
0.0920	0.09187	10,0	0.99577	0,9	8.96317	47, I	9.99816	0,4	51616.36
. 0921	. 09197		. 99576		. 96355	47,0	. 99816		5 I 16 36.99
.0922	. 09207		. 99575		. $96+12$	47,0	. 99815		$\begin{array}{lllll}5 & 16 & 57.62\end{array}$
. 0923	. 09217		. 99574		. 96458	46,9	. 90815		51718.24
. 0924	. 09227		. 99373		. 96505	+6,9	.99814		51738.87
0.0925	0.09237	10,0	0.99572	0,9	8.96552	46,8	9.99814	0,4	
. 0926	.09247		. 99572		. 96599	46,8	. 90814		5 I8 20.12
. 0927	.09,257		. 9957 r		-96646	46,7	. 99813		51840.75
.0928	. 09267		. 99570		. 96692	46,7	-99813		5 19 01.37
. 0929	. 09277		. 99569		. 96739	46,6	.99812		51922.00
0.0930	0.09287	IO,0	0.99568	0,9	8.96786	46,6	9.99812	0,4	51942.63
. 0931	. 09297		. 99567		. 96832	46,5	. 99812		52003.25
. 0932	. 09307		. 99566		. 95879	46,5	.998rI		52023.88
. 0933	.09316		. 99565		. 96925	46,4	.9981I		$52044 \cdot 51$
. 0934	. 09326		. 99564		. 96972	46,4	.99810		52105.13
0.0935	0.09336	10,0	0.99563	0,9	8.97018	46,3	9.99810	0,4	52125.76
. 0933	.09346		. 99562		. 97064	46,3	.99809		5 21 46.39
. 0937	. 09356		- 99561		-971 10	46,2	.99809		52207.01
. 0938	. 09366		. 99560		. 97157	46,2	. 99809		52227.64
. 0939	. 09376		. 99559		. 97203	46,1	. 99808		52248.27
0.0940	0.09386	IO,0	0.99559	0,9	8.97249	46,I	9.99808	0,4	
. 0911	. 09396		. 99558		. 97295	46,0	. 99807		$\begin{array}{llllllllllll}5 & 23 & 29.52\end{array}$
. $09+12$. 09406		. 99557		- 5734 T	46,0	. 99807		
. 0943	. 09416		. 99556		. 97387	45.9	. 99807		52410.77
. 0944	. 09426		. 99555		-97433	45,9	. 99805		52431.40
0.0945	0.09436	10,0	0.99554	0,9	8.97479	458	9.99806	0,4	52452.02
. 0946	. 09446		. 99553		. 97524	45,8	. 99805		52512.65
. 0947	.09456		-99552		. 97570	45,7	. 99805		$\begin{array}{llllllllllll}5 & 25 & 33.28\end{array}$
.0948	. 09460		. 99551		. 97616	45,7	. 99805		52553.90
. 0949	. 09476		-99550		-9756I	45,6	-99804		52614.53
0.0950	0.09486	10,0	0.99549	0,9	8.97707	45,6	9.99804	0,4	52635.16
4	-isinh iu	- F F^{\prime}	cosh in	$\cdots \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i u}{i}$	* FO^{\prime}	log coshiu	$\omega \mathrm{F}_{0}{ }^{\prime}$	\square

Circular Functions.

u	$\sin 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos L$	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	u
0.0950	0.09485	10,0	0.99549	0,9	8.97707	45,6	9.9,804	0,4	$5^{\circ} 26^{\prime} 35^{\prime \prime} .16$
. 0951	. 09496		. 99548	0,9	. 97753	45,5	.00,803		52655.78
.0952	. 09506		- 99547	1,0	. 97758	45.5	.9,803		52716.41
. 0953	. 09516		- 99546		. 9784	+5,4	. 56,802		52737.04
. 0954	. 09526		. 99545		.97837	45,4	. 98802		52757.64
0.0955	0.09535	10,0	0.99544	1,0	8.97934	45,3	9.99802	0,4	52818.29
. 0956	. 09545		. 99543		.97580	45.3	.90801		52838.62
. 0957	. 09535		-99542		. 08025	45,2	. 90801		52859.54
. 0958	. 09565		-99541		.98070	45,2	- 98800		52920.17
. 0959	. 09575		-99541		98115	45,1	. 95800		52940.79
0.0960	0.09585	10,0	0.99540	1,0	8.98160	45, 1	9.99800	0,4	53001.42
.0951	.09595		. 99539		. 088205	45,1	. 99799		53022.05
. 0952	. 09505		. 99538		. 0825 I	45,0	. 99799		53042.67
. 0963	.0965		-99537		. 98395	45,0	. 90708		53103.30
. 0954	.09625		. 99536		. 98340	44,9	. 99798		53123.93
0.0955	0.09635	10,0	0.99535	1,0	8.98385	44,9	9.99797	0,4	53144.55
. 0966	. 09645		. 99534		. 98430	44.8	. 99797		53205.18
. 0967	. 09655		. 99533		. 98475	44,8	. 96797		53225.81
. 0968	.09665		-99532		. 98320	44,7	. 99795		$\begin{array}{lllllllll}5 & 32 & 46.43\end{array}$
. 0969	. 09675		-9953I		.98564	44.7	-99796		53307.06
0.0970	0.09685	10,0	0.99530	1,0	8.98509	44,6	9.99795	0,4	53327.69
. 0971	. 09695		. 99529		. 98554	44,6	. 99795		$\begin{array}{llllllllllllllllll}5 & 33 & 48.31\end{array}$
. 0972	. 09705		-99528		. 98698	44.5	. 99795		53408.94
. 0973	. 09715		. 99527		. 98743	44,5	. 99794		53429.57
. 0974	. 09725		.99525		. 98787	41.4	. 99794		53450.19
0.0975	0.09735	10,0	0.99525	1,0	8.98832	44.4	9.99793	0,4	53510.82
. 0976	. 09745		. 99524		. 98876	41.4	. 99793		53531.45
. 0977	. 09754		. 59523		. 98920	44,3	-99792		53552.07
. 0978	. 09754		. 99522		. 98965	44.3	. 99792		$\begin{array}{llll}5 & 36 & 12.70\end{array}$
. 0979	. 09774		. 9952 I		.99009	44,2	-99792		53633.32
0.0980	0.09784	10,0	0.99520	I,O	8.99053	44,2	9.99791	0,4	
. 0981	. 09794		. 99519		. 99097	44, I	. 99791		$5 \begin{array}{lllll}5 & 37 & 14.58\end{array}$
. 0982	. 09804		. 99518		. 99141	44,1	. 99790		53735.20
. 0983	.098I4		. 99517		. 99185	44,0	. 99790		53755.83
. 0984	. 09824		. 99516		. 99229	44,0	. 99789		53816.46
0.0985	0.09834	10,0	0.99515	1,0	8.99273	43,9	9.99789	0,4	$\begin{array}{llll}5 & 38 & 37.08\end{array}$
. 0986	. 09844		. 99514		. 99317	43.9	. 99789		53857.71
. 0987	. 09854		. 99513		. 99361	43.9	. 99788		53918.34
. 0988	. 09884		. 99512		. 99405	4388	. 99788		53938.96
. 0989	. 09874		. 995 II		. 99449	43,8	. 99787		53959.59
0.0990	0.09884	10,0	0.99510	1,0	8.99493	43.7	9.99787	0,4	54020.22
. 0991	. 09894		. 99509		. 99536	43,7	. 99786		54040.84
. 0992	.09904		. 99508		. 99580	43,6	. 99786		54101.47
. 0993	. 09914		-. 99507		. 99664	43,6	. 99786		54122.10
. 0994	. 09924		. 99506		. 99667	43.5	. 99785		54142.72
0.0995	0.09934	10,0	0.99505	1,0	8.99711	43.5	9.99785	0,4	54203.35
. 0996	. 09944		. 99504		. 99754	43.5	.99784		54223.97
. 0997	. 09953		-99503		. 99798	43.4	.99784		54244.60
. 0998	. 09963		-99502		. 9984 I	43.4	. 99783		54305.23
. 0999	. 09973		-99501		. 99884	43,3	. 99783		54325.85
0.1000	0.09983	10,0	0.99500	1,0	8.99988	4333	9.99782	0,4	54346.48
-	-i sinh in	* Fo'	cosh im	$\cdots \mathrm{F}_{8}^{\prime}$	$\operatorname{rog} \frac{\sinh i x}{i}$	$\omega \mathrm{Fe}^{\prime}$	log cochin	* F F^{\prime}	-

Circular Functions.

u	$\sin 4$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\cos 4$	$\omega{ }^{\prime}$	$\log \sin u$	$\omega F^{\prime}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{v^{\prime}}$	\pm
0.100	0.09983	99,5	0.99500	10,0	8.09928	432,8	9.59782	4,4	
. I	. 10083	99,5	. 99490	10, 1	9.00358	+28, 5	. 99778	4,4	54712.75
. 102	. 10182	99,5	-99,480	10,2	. 00783	$42+3$. $9375+$	4.4	55039.01
. 103	. 10282	99.5	-99470	10,3	.01207	+20,2	.99769	+,5	53405.28
. 104	. 10381	99,5	. 99460	10,4	.01625	+15,1	.99765	4,5	55731.54
0.105	$0.10+8 \mathrm{I}$	99,4	0.99449	10,5	9.03039	412,1	9.99760	4,6	60057.80
. 105	. 10580	99,4	. $99+39$	10,6	. $02+49$	408,2	. 99756	4,6	60424.07
. 107	. 10 "80	OG, 4	. 99428	10,7	.02353	40, 3	-95751	4,7	60750.33
. 108	. $10-79$	99,4	. $99+17$	10,8	.03258	+00,6	- 99746	4,7	6 II 16.60
. 109	.10378	99,4	. 90407	10,9	.03657	305,9	. 9974 I	4,8	6 If 42.86
0.110	0.107\% 8	99,4	0.99396	11,0	9.04052	303,2	9.99737	4,8	61809.13
.III	. 11077	99,4	. 99385	I1, 1	.04143	389,6	. 90732	4.8	62135.39
. 1	. 11177	90.4	. 99373	11,2	.0.8831	385, 1	. 99727	4,9	63501.66
. I13	. 11276	99,4	. 99352	II, 3	.05215	382,7	. 99722	4.9	$\begin{array}{llll}6 & 28 & 27.92 \\ 6 & 31 & 54.9\end{array}$
. 114	. 11375	99,4	. 99351	11,4	. 05396	379,3	. 99717	5,0	63154.19
0.115	0.11475	99,3	0.99339	11,5	9.05974	376,0	9.99712	5,0	63520.45
. 115	. 11574	99,3	. 99328	11,6	. $053+8$	372,7	. 99707	5,1	38 46.72
. 117	. 11673	99,3	. 99316	11,7	. 05719	369,5	. 99702	5,1	$\begin{array}{lllllllllll}6 \\ 7 & 12.98\end{array}$
.ri8	. 11773	99,3	. 99305	II,8	.07037	366,3	- 99697	5,1	64539.25
-119	. 11872	99,3	. 99293	II,9	.07452	363,2	-99692	5,2	64905.51
0.120	0.11971	99,3	0.99281	12,0	$9.078 \mathrm{I}_{4}$	360,2	9.99687	5,2	65231.78
. 12 I	. 12070	99,3	. 99269	12,1	. 08173	357,2	. 9958 I	5,3	65558.04
. 12	. 12170	99,3	. 99257	12,2	. 08528	354,2	. 99675	5.3	65924.31
. 123	. 12259	99,2	-99245	12,3	.0838I	351,3	. 99671	5,4	70250.57
.124	. 12368	99,2	. 99232	12,4	.0923I	348,4	. 99665	5,4	70616.84
0.125	0.12467	99,2	0.99220	12,5	0.09578	345,6	9.99560	5,5	70943.10
. 126	. 12567	99,2	. 99207	12,6	. 09922	3+2,9	. 99654	5,5	$7 \begin{array}{llll}7 & 13 & 09.37\end{array}$
. 127	. 12656	99,2	. 99195	12,7	. 10264	340, 1	. 9964	5,5	7 16 35.63
. 1	. 12765	99,2	. 99182	12,8	. 10502	337,4	. 99643	5,6	720 O1.90
. 129	. 12864	99,2	. 99169	12,9	. 10938	334,8	. 99638	5,6	72328.16
0.130	0.12963	99,2	0.99156	13,0	9.11272	332,2	9.99632	5,7	$7 \quad 265.4 .42$
.13I	. 13063	99, I	. 99143	13,1	. 11603	329,6	. 99626	5,7	73020.69
. 132	. 13162	99, I	. 99130	13,2	. II931	327, 1	. 99621	5,8	73346.95
. 133	. 13261	99, 1	. 99117	13.3	. 12257	324,6	. 99615	5,8	73713.22
. 134	. 13360	99, 1	.99104	I3,4	. 12580	322,2	.99609	5,9	74039.48
0.135	0. 13459	99,	0.99090	13.5	9. 12901	319.7	9.99603	5.9	74405.75
. 136	. 13558	99, 1	. 99077	13,6	. 13220	317,4	. 99597	5,9	74732.01
.137	. 13657	99,1	. 99063	I 3,7	. 13536	315,0	. 99591	6,0	75058.28
- 138	. 13756	99,0	- 99049	${ }^{1} 3,8$. 13850	312,7	. 99585	6,0	75424.54
. 139	. 13855	99.0	. 99036	I3,9	. 14162	310,4	. 99579	6,1	75750.81
0.140	0.13954	99,0	0.99022	I4,0	9.1447 I	308,2	9.99573	6,1	8 or 17.07
. 1.41	. 14053	90,0	. 99008	If, 1	. 14778	306,0	. 99567	6,2	80443.34
. 142	. 14152	99,0	. 98993	I4,2	. 15083	3038	. 99561	6,2	80809.60
. 143	. 14251	99,0	- 98979	14.3	. 15385	301,6	. 99554	6,3	8 I1 35.87
. 144	. 14350	99,0	.98955	14,4	. 15685	299.5	. 99548	6,3	81502.13
0.145	0.14449	99,0	0.98951	1,4 4	9.15985	297,4	9.99542	6,3	$818 \quad 28.40$
. 146	. 14548	98,9	. 98936	14,5	. 1628 r	295,3	. 99535	6,4	82154.66
. 147	. 14647	98,9	. 98921	1,6 6	. 16575	293,3	. 99529	6,4	82520.93
: 148	. 14746	98,9	. 98907	1,4,7	. 16858	291,3	. 99523	6,5	82847.19
. 149	. 14845	98,9	. 98892	14,8	. 17158	289,3	. 99516	6,5	83213.45
0.150	0.14944	98,9	0.98877	14,9	9. 17446	287,4	9.99510	6,6	83539.72
a	-i sinhlu	$\infty \mathrm{F}_{0}{ }^{\prime}$	cosh ix	$\sim \mathrm{F}_{0}{ }^{\prime}$	$\log \frac{\sinh i}{i}$	$\pm \mathrm{Fo}^{\prime}$	$\log \cosh \mathrm{ie}$	$\pm \mathrm{Fo}^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{Fo}^{\prime}$	cos 4	$\omega_{\text {F }}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}$;	log cos 4	$\omega \mathrm{Fij}^{\text {j }}$	u
0.150	$0.149+4$	98,9	0.98877	14,9	9.174 ${ }^{5}$	287,4	9.99510	0,6	$8^{*} 35^{\prime} 39.72$
-151	. 15043	98,9	. 58835	15,0	.17/33	285.4	. 99503	6,6	83905.99
. 152	. 15142	98,8	. 98847	515	. 18317	283,5	. 09496	6,7	88.4232 .25
. 153	. 15240	98.8	. 98832	15,2	. 18300	281,5	. 99490	6,7	84558.52
.154	. 15339	98,8	. 98817	15,3	. 18580	279,8	-99483	6,7	84924.78
0.155	0.15438	98,8	0.98801	15,4	9.18859	277,9	9.99476	6.8	83251.04
. 156	. 15537	98,8	.98-85	15,5	.1913'5	2-5,1	. $99+69$	6,8	$8{ }^{56} 117.31$
. 157	. 15635	98,8	. 98770	15,5	. 19411	274,3	. 99463	6.9	85943.57
. 158	. 15734	98,8	. 98754	15,7	. 19 's85	272, 6	. 99456	6.9	90309.84
. 159	. 15833	98,7	. 98739	15,8	. 19957	270,8	. $99+49$	7,0	90636.10
0.160	0.15932	98,7	0.98723	15,9	9.20227	269,1	9.99412	7,0	91002.37
.16I	. 16031	98,7	. 98707	16,0	. $20+95$	257,4	. $990+35$	\%,	91328.63
. 162	. 16129	98,7	. 98551	16,1	. 2076r	255,7	. 99.48	-1	$9165+$.co
. 163	. 16228	98,7	- 58574	16.2	. 21026	26.4,1	. 99420	7,1	92021.16
. 164	. 16327	c8,7	. 98558	16,3	. 21290	262,4	. 94413	7,2	923 47-43
0.165	0.16425	98,6	0.98542	16,4	9.21551	250,8	9.99406	7,2	92713.69
. 165	. 16524	98,5	. 985	16,5	.21811	259.2	. 993369	7,3	93039.96
. 167	. 16622	98,6	. 98509	16,6	. 22370	257,6	. 99392	7,3	93406.22
. 168	- 167681	${ }^{98,6}$. 98592	16.7	. 22326	256,1	. 99384	7,4	93732.49
. 169	. 16820	98,6	. 98575	16,8	. 22582	254,5	. 99377	7,4	94058.75
0.170	0.16918	08,6	0.08558	16,9	9.22836	253,0	9.99369	7,5	94425.00
. 171	. 17017	58.5	. 98542	17,0	. 23088	251,5	. 99362	7,5	94751.28
. 172	. 17115	98,5	. 98524	17, 1	. 23338	250,0	. 99354	7,5	95117.55
-173	. 17214	98,5	- 98507	17.2	. $23-88$	248,5	. 99347	7,6	95443.81
. 174	. 17312	98,5	. 98490	17,3	. 23836	247, 1	. 99339	7,6	958 10.08
0.175	0.17411	98,5	0.98473	17,4	9.24082	245.6	9.99332	7.7	10 or 36.34
. 176	. 17509	98,5	. 98455	17,5	. 24327	24, 2	. 99324	7,7	10 0502.61
. 177	. 17608	${ }_{68,4}$. 98438	17,6	. 24570	242.8	. 96316	78	$\begin{array}{ll}10 & 08 \\ 10 & 28.87\end{array}$
. 178	. 17705	98.4	- 98.420	17,7	. 24812	$24 \mathrm{I}, 4$. 99308	7,8	101155.14
. 179	. 17805	98,4	. 58402	17,8	. 25053	240,0	. 97300	7,9	101521.40
0.180	0.17903	98,4	0.9838.	17,9	9.25292	238.7	9.99293	7,9	101847.67
. 181	. 18001	98,4	. 98366	18.0	. 25530	237,3	. 99285	7.9	$1 \begin{array}{lll}10 & 22 & 13.93\end{array}$
. 182	. 18100	98,3	- 98338	18,1	. 25767	236,0	. 99277	8.0	Io 25 40.19
. 183	. 18188	${ }^{98,3}$	- 98333	18,2	. 266002	234,7	. 99269	8.0	10 2906.46
-184	. 18296	98,3	. 98312	18,3	. 25236	233,4	. 99261	8, 1	10 3232.72
0.185	0. 18395	88,3	0.98294	18,4	9. 26469	$232, \mathrm{I}$	9.99253	8.1	103588.99
. 185	. 18493	98.3	. 98275	18.5	. 26701	230,8	-99234	8,2	103925.25
-187	. 18591	98,3	. 08257	${ }^{18,6}$. 266931	220,5	. 99235	8,2	104251.52
. 188	. 18888	98, 2	- 98838	18.7	. 271160	228,3	. 99228	8.3	104617.78
. 189	. 18788	98,2	-98219	18,8	. 27387	227,0	. 99230	8,3	10 4944.05
0.190	0. 18885	98,2	0.98200	18,9	0.27614	225.8	9.99211		
. 19 I	. 18984	98,2	. 98181	19.0	. 27839	224,6	. 99203	8.4	10 56 36.58 II 0 02.84 15
. 192	. 19082	98,2	. 98162	19, 1	. 280053	223.4	.99195	88.4	II 110002.84
. 193	. 19180	98,1	-98143	19,2	. 28285	222,2	. 99185	8.5	II 1103029.11
. 194	. 19279	28, 1	-98124	19,3	. 28507	221,0	. 99178	8,5	II 0655.37
0. 195	0. 19377	08, 1	0.98105	19.4	9.28728	210.9	9.99169	8.6	II 1021.64
. 196	- 19475	88, 1	. 98083	19.5	. 28947	218.7	. 99160	8,6	II 13 47.90
. 197	. 19573	98.1	. 98066	19.6	. 29165	217,6	. 99152	87	
. 198	. 19671	98,0	. 98046	19,7 198	. 293882	216,5 215,3	. 9914134	8.7 8,8	$\begin{array}{llll}\text { II } & 20 & 40.43 \\ \text { II } & 24 & 06.70\end{array}$
. 199	- 19769	98,0	. 98020	198	. 29598	215,3	. 99134	88	II 2406.70
0.200	0. 19857	98,0	0.98007	19.9	9.29813	214,2	9.99126	8,8	II 2732.96
\%	-ixinh in	${ }^{*} \mathrm{Fb}^{\prime}$	cosk but	- F F^{\prime}	$\log \frac{\sinh }{\mathrm{i}} \mathrm{i}$	${ }^{\circ} \mathrm{Fo} 0^{\circ}$	log cosh in	${ }_{-F_{6}{ }^{\prime}}$	*

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos 4$	$\omega \mathbf{F}^{\prime}{ }^{\prime}$	$\log \sin u$	ω	og $\cos u$	$\omega \mathrm{F}_{0}^{\prime}$	u
0.200	0.19857	68,0	0.08007	19,9	9.29813	214,2	9.90125	8,9	$11^{\circ} 27^{\prime} 32.96$
. 201	. 11,905	98.0	. 97087	20,0	. 30027	213,1	. 99117	8,8	113059.23
. 2 C 2	. 20013	C8.0	. 97965	20,1	. 30239	212,1	. 99108	8,9	II $3+25.49$
. 203	. 20161	57.9	. 97947	20,2	-30451	211,0	. 99059	8,9	II 3751.76
. 204	. 20253	C5,3	. 97925	20,3	-3055I	209,9	.99050	9,0	II 4118.02
0.205	0.20357	97,9	0.97005	20,4	9.3087 I	208,9	c. 5908 I	9,0	II 4444.29
. 205	. 20455	67,9	. 97885	20.5	. 31079	20	-99072	9,	II 4810.55
. 207	. 20552	97.9	.9785	20,6	. 31285	205,8	.99063	9,	II 5135.81
. 208	. 20550	97.8	. 97845	20.7	. 31493	205,8	. 95054	9,2	II 5503.08
. 209	. 20748	97,8	. 97824	20,7	. 31698	204,8	. 99044	9,2	II 5829.34
0.210	0.20846	97,8	0.97803	20,8	2.31902	203,8	9.99035	9,3	12 OI 55.61
. 211	. 20944	97, 8	. 97782	20,9	. 32105	202,8	. 99025	9,3	120521.87
. 212	. 21042	97.8	. 97761	$2 \mathrm{I}, 0$. 32308	201,8	.99017	9,3	120848.14
.213	. 21139	97.7	- C7740	21,1	. 32509	200,8	. 99007	9.4	12 I 214.40
. 214	.21237	97,7	.97719	21,2	. 32709	199,8	. 98998	9.4	121540.67
0.215	0.21335	97,7	0.97698	21,3	9.32909	158,9	9.98388	9,5	121905.93
.210	. $21+32$	97.7	. 97676	21,4	. 33107	197,9	. 98979	9,5	$12 \quad 2233.20$
. 217	. 21530	97,	.97655	21,5	. 33305	157,0	. 98,59	9,6	122559.46
. 218	. 21628	97,6	. 97633	21,6	. 3350 I	195,0	. 98960	9,6	122925.73
. 219	. 21725	C7,6	.97612	21,7	-33697	195, I	. 58350	5,7	123251.97
0.220	0.21823	97,6	0.97590	21,8	9.33891	194,2	2. 58940	9,7	123518.26
. 22	.2192I	97,6	. 97568	21,9	. 34085	193,3	. 98931	9,8	I2 3944.52
. 222	. 22018	97,5	-97546	22,0	- $3+1273$	192.4	.98321	9,8	124310.79
. 223	. 22116	97,5	. 97524	22,1	- 34.470	191,5	. 98911	9.8	124637.05
. 224	. 22213	97,5	. 97502	22,2	-3465I	190,5	. 98301	9,9	125003.32
0.225	0.223 II	97,5	0.97479	22,3	9.34851	189,8	9.98391	9,9	125329.58
,	. 22.408	97,5	. 97457	22,4	. 35041	188,9	. 9888 I	10,0	125655.85
.227	. 22505	97,4	. 97435	22,5	. 35227	183,0	. 98371	10,0	130022.11
. 228	. 22603	97,4	. 97412	22,6	- 35417	187,2	. 98851	10, 1	130348.38
. 229	. 22700	97,4	-97387	22,7	- 35503	185,3	.98851	10, I	130714.64
0.230	0.22798	97,4	0.97367	22,8	9.35789	185,5	9.98841	10,2	131040.91
. 231	. 22895	97,3	. $973+4$	22,9	. 35974	184,7	. 9883 I	10,2	131407.17
. 232	. 22992	97,3	. 97321	23.0	. 36158	183,8	. 98821	10,3	$\begin{array}{lllllll}13 & 17 & 33-44\end{array}$
. 233	. 23090	97,3	. 97298	23,1	. 35342	183,0	.98810	10,3	132059.70
. 234	. 23187	97,3	-97275	23,2	- 36525	182,2	. 98800	IO,4	I3 24.425 .96
	0.23284	97,3	0.97251	23,3	9.35706	181,4	9.98790	10,4	
. 236	. 233882	57,2	. 97228	23.4	. 36887	180,6	. 98779	10,4	133118.49
. 237	. 23479	97,2	-9720	23.5	- 37068	179,8	. 98769	10,5	133444.76
. 238	. 23576	97,2	. 97181	23,6	- 37247	179,0	. 98758	10,5	133811.02
. 239	. 23673	97,2	. 97158	23,7	. $37+25$	178,2	. 58748	10,6	I3 41 37.29
0.240	0.23770	97, I	0.97134	23,8	9.37603	177,5	9.58737	10,6	134503.55
. 241	. 23807	97, 1	. 97110	23,9	. 37780	176,7	. 98725	10,7	134829.82
. 242	. 23964	97, I	. 97085	24,0	- 37957	175,9	- 58716	10,7	13 51 56.08
. 243	. 24062	97, 1	. 97062	24,1	- 38132	175,2	. 98705	10,8	I3 5522.35
. 244	. 21159	97,0	. 97038	2.4,2	. 38307	174,4	-98694	10,8	I3 5848.6 I
0.245	0.24256	97,0	0.97014	24,3	9.3848r	173,7	9.98583	10,9	14.0214 .88
. 246	. 24353	97,0	. 96989	2,4,4	. 38655	173.0	. 98672	10,9	14054 I .14
. 247	. 21450	97,0	. 96965	2,4,4	- 38827	172,2	. 98562	II, 0	1440907.41
. 2.48	. 24547	95,9	. 96941	24,5	- 38999	171.5	. 98651	II,O	14 I2 33.67
.249	. 24643	96,9	. 96916	24,6	. 39170	170,8	. 98540	II,O	14 I5 59.94
0.250	0.24740	96,9	0.968 gr	24,7	9.39341	170,1	9.98628	I I, I	141926.20
4	-i sink iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh in	$\sim F_{0}{ }^{\prime}$	$\log \frac{\sinh i 4}{i}$	$\bullet F_{0}{ }^{\prime}$	log cosh iu	$\pm \mathrm{Fo}^{\prime}$	"

Circular Functions.

4	$\sin u$	$F_{0}{ }^{\prime}$	$\cos 4$	F	$\log \sin u$	$\omega \mathrm{F},{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}$;	u
0.250	0.24740	96,9	0.96891	24,7	9.39341	170, 1	9.93528	II, I	$14^{\circ} 19$ " 26.120
. 251	. 24837	95,9	. 95856	24,8	. 39510	I.S.4	.8517	II, I	If 2252.47
. 252	. 24934	95,8	. 95842	24,9	-35,579	168.7	- 2 80)	II, 2	142618.73
. 253	. 25031	96.8	. 95817	25,0	-3, $3+8$	158,0	. 98595	II,2	$1+2945.00$
. 254	. 25128	c6,8	. 95792	25,1	. 40015	157,3	. 68584	II, 3	I4 33 II. 26
0.255	0.25225	95,8	0.95765	25,2	9.40182	166,5	9.98572	11,3	143637.53
. 256	. 25321	96,7	. 96741	25.3	. 40349	165.9	. 68561	II, 4	If 4003.79
. 257	. 25118	95,7	. 96716	25.4	.40514	165.2	. 93550	II, ${ }^{\text {d }}$	$14+330.06$
. 258	. 25515	96,7	. 96600	25.5	. 40575	164,5	. 98538	11,5	$1+4656.32$
. 259	.23511	96,7	. 9655	25,6	. 10843	163,9	. 68527	11,5	I+ 5022.58
0.260	0.25708	96,5	0.95539	25,7	9.41007	153,3	9.98515	11,6	145348.85
. 261	. 25805	95,5	. 96613	25,8	. 41170	162,5	. 98504	I 11,6	145715.11
. 252	. 25901	95,6	. $96=87$	25,9	. 41332	152,0	. 98.84	11,6	150041.39
. 263	. 25958	96,6	. 96561	26.0	.41494	161.3	. 98.880	II,7	150407.44
.254	. 25024	96,5	. 96535	26,1	.41655	160,7	$.98+69$	11,7	150733.91
0.255	0.25191	96,5	0.95509	25,2	9.41815	160,0	9.98457	II,8	15 II 00.17
. 255	. 25287	95,5	.95483	23,3	.41975	159.4	.984	II,8	$151+2.5 .44$
. 267	.25334	95,5	. 96457	26.4	. 42134	158.8	. 98433	II,9	151752.70
. 258	. 25480	96,4	.95430	25,5	. 42292	158,2	$.98+21$	11,9	152118.97
. 269	. 25577	95,4	.95404	26,5	. 42450	157,5	. 08.409	12,0	152445.23
0.270	0.25573	96,4	0.96377	25,7	9.42507	156,9	9.98397	12,0	152811.50
. 271	. 26770	96,4	. 96350	25,8	.42754	156,3	. 98385	12,1	153137.75
. 272	. 26865	95,3	. 95324	2j,9	. 42920	155,7	. 98373	12,1	153504.03
. 273	. 26952	95,3	. 96297	27,0	. 43075	155, 1	. 98361	12,2	153830.22
.274	. 27058	95,3	. 56270	27, 1	-43230	154,5	.98349	12,2	154155.56
0.275	0.27155	96,2	0.95243	27,2	9.43384	153,9	9.98337	12,3	154522.82
. 276	. 27251	96,2	. 96215	27,3	. 43538	153,3	. 98324	12,3	154849.09
. 277	. 27347	96,2	. 95188	27,3	. $43^{6} \mathrm{sg}$	152,8	. 98312	12,3	$15 \quad 5215.35$
.278	. 27443	96,2	.9616I	27,4	. $438+4$	152,2	-98300	12,4	155541.62
. 279	. 27539	¢5, 1	. 96133	27,5	. 43995	151,6	. 58287	12,4	$15 \quad 5907.88$
0.280	0.27636	95, 1	0.95105	27,6	9.44147	151,0	9.98275	12,5	160234.15
. 281	. 27732	96, I	. 96078	27,7	. 41298	150,5	. 98262	12.5	16 of 00.41
. 282	. 27828	95,1	. 95050	27,8	- 44448	I 49.9	. 98250	12,6	160926.68
.233	. 27924	96,0	. 95022	27,9	- 41597	149.3	. 98237	12,6	$1612 \begin{array}{ll}16 & 52.94\end{array}$
. 284	. 28020	95,0	. 95994	28,0	. 44746	148,8	.98225	12,7	16 1619.20
0.285	0.28116	95,0	0.95966	28,1	9.44895	148,2	9.98212	12.7	161945.47
. 285	. 28212	95,9	. 95938	28,2	. 45043	147,7	. 98159	12,8	162311.73
. 287	. 28308	95,9	. 95910	28,3	. 45190	147, 1	. 98185	12,8	162638.00
. 283	. 28.404	95,9	. 95881	28.4	-45337	I 46,6	.98173	12,9	163004.26
. 283	. 28499	95,9	. 95853	28,5	.45484	146,1	. 98161	12,9	163330.53
0.290	0.28595	95,8	0.95824	28,5	9.45629	145,5	9.98148	13,0	$1635 \quad 56.79$
. 291	. 28691	95,8	. 95795	28,7	. 45775	145.0	.98135	13.0	$1640 \quad 23.06$
. 292	. 28737	¢5,8	. 95767	28,8	. 45919	I 44.5	.98122	13.1	164349.32
. 293	. 28883	95.7	. 95738	28.9	. 46054	144.0	.98109	13.1	164715.59
. 294	. 28978	95.7	. 95709	29,0	.46207	143.4	.98095	13.1	155041.85
	0.29074	95.7	0.95680	29, 1	9.46350	1.42,9	9.98082	13,2	
. 295	. 29170	95.7	. 95651	20,2	.46493	142,4	. 98050	13,2	165734.38
. 297	. 29255	95,6	. 95622	2S,3	. 46635	141,9	. 8056	13.3	17 01 00.65
. 298	. 29361	95,6 $\mathbf{C 5}, 6$. 95593	29,4 29.5	.46777 .46918	141,4 $1.40,9$.98042 .98029	13.3 13.4	$\begin{array}{llll}17 & 04 & 26.91 \\ 17 & 07 & 53.18\end{array}$
. 299	. 29456	55,6	. 95503	29,5	.46918	140,9	-98029	13,4	170753.18
0.300	0.29552	95.5	0.95534	29.6	9.47059	140,4	9.98016	13.4	17 II 19.44
\square	-i sinh in	$\triangle \mathrm{Fo}^{\prime}$	cosh in	$\cdots \mathrm{Fo}^{\prime}$	$\log \frac{\sinh }{i}$	$\cdots{ }^{\circ} \mathrm{Fa}^{\prime}$	10.4 cosk is	$\sim F_{0}{ }^{\prime}$	\#

Circular Functions.

u	sin	$\omega \mathrm{F}_{j}{ }^{\prime}$	\cos [$\log \sin u$	$\omega \mathrm{F}^{\prime}$	$\log \cos \mathrm{L}$	$\omega \mathrm{F}_{9}{ }^{\prime}$	4
0.300	0.29552	95,5	0.95534	29,6	9.47039	I 10,4	9.98016	13,4	$17^{\circ} 11^{\circ} 19.44$
. 301	. 29648	95,5	. 95504	29,6	. 47159	139,9	. 98002	I3,5	17 If 45.71
. 302	. 29\% 43	95,5	. 95474	25,7	- 4533 C	139,4	. 97589	13.5	171811.97
. 303	. 29838	95,4	-95+45	20,8	. 47473	138,9	. 97975	13,5	172138.24
-304	. 29934	95,4	.95415	29,9	.47515	1 38,4	. 97952	I3,5	172504.50
0.305	0.30029	95,4	0.95385	30,0	9.47755	137,9	9.97948	13,7	17 2830.77
. 30 j	. 30125	95,4	. 93355	30,1	. 47392	137.5	. 97934	13.7	1773157.03
. 307	-30220	95,3	-95324	30,2	. 43229	137,0	-57920	13.8	$173523 \cdot 30$
- 308	. 30315	95,3	-95-264	30.3	. 48155	1355	.97907	13.8	173849.56
. 309	. 3041 II	95,3	. 55264	30,4	. 48303	135,0	. 97893	13,9	174215.83
0.310	0.30505	95,2	0.95233	30,5	9.48+38	135,6	9.9-879	13.9	174542.09
.311	. 30501	95,2	. 95203	30,6	. 48574	135, I	. 9785	14.0	174908.35
-312	- 30695	95,2	-95172	30,7	. 18709	134.7	.97851	If, 0	I7 5334.62
. 313	. 30791	95,1	.95141	30,8	. 48343	134,2	.97837	14.1	175600.83
-314	- 30887	95,1	.95111	30,9	. +8975	133,7	. 97823	If, I	I7 5927.15
0.315	0.30982	95,1	0.95080	31,0	9.49110	133,3	9.97809	14,2	180253.41
. 310	. 31075	95,0	. $950+9$	31, 1	- 4924	132,8	.97795	I4,2	18 o5 19.68
. 317	.31172	95,0	. 95017	31,2	-49376	132,4	. 97780	14,2	180945.94
. 318	. 31257	95,0	-94685	31,3	- 49508	131,9	. 97766	14.3	1813
. 319	. 31362	95,0	. 94955	$3 \mathrm{I}, 4$	- 49540	131,5	. 97752	I4,3	
0.320	0.31437	94,9	0.94924	31,5	3.49771	131,1	9.97737	14,4	182004.74
. 321	. 31552	4,9	. 24892	31,6	. 49902	130,6	. 97723	14.4	182331.00
. 322	. 31646	94,9	-9,480	31,6	. 50032	130,2	. 97709	If,	$18 \quad 2657.27$
. 323	. 31741	94,8	-6.4829	31,7	. 50162	129,7	. 97694	14.5	$\begin{array}{lllllllllll}18 & 30 & 23.53\end{array}$
. 324	. 31836	94,8	-94797	31,8	. 50292	129,3	.97679	14,6	$18 \quad 3349.80$
0.325	0.31931	94,8	0.947-65	31,9	0.5042 L	128,9	9.97665	14,6	183716.06
. 326	. 32026	9.4,7	- 94733	32,0	. 50550	128.5	. 97650	14,7	184042.33
-327	-32120	94,7	-94701	32,1	- 5057	128,0	. 97535	14,7	$18+408.59$
-323	- 32215	94,7	-94669	32,2	. 50835	127,6	.97621	14,8	184734.85
-329	-32310	94,6	-9.9637	32,3	. 50733	127,2	.97606	14,8	1851 OI. 12
0.330	0.32404	94,6	0.94604	32,4	9.51050	125,8	9.97591	14,9	$18 \quad 5427.39$
-331	-32499	94,6	. 94572	32,5	. 51187	125.4	. 97575	14,9	IS 5753.65
- 332	- 32593	94.5	-94539	32,6	. 51313	125,0	-9756r	I5,0	19 or 19.92
. 333	- 32688	94,5	-94507	32,7	. 51439	123,6	. 97546	15,0	190446.18
. 334	-32782	94.5	-94774	32,8	. 51564	125,2	. 97531	I5, I	190812.45
0.335	0.32877	94.4	0.94441	32,9	9.51689	124,8	9.97516	15, 1	19 II 38.71
. 335	. 3297 I	94.4	-94108	33,0	. 51814	124,4	. 97501	I5,2	19 15 04.97
- 337	- 33056	94.4	- 94375	33, 1	. 51938	121,0	-97485	15,2	19 18 31.24
. 338	- 33160	94.3	. 91342	33,2	. 52062	123.6	. 97470	I5,3	192157.50
. 339	-33254	94,3	-94309	33,3	. 52185	123,2	. 97455	15,3	192523.77
0.340	0.33349	94,3	0.94275	33,3	9.52308	122,8	9.97440	15,4	192850.03
-341	- $33+43$	94,2	. 94242	33,4	- 52430	122,4	. 97424	15.4	193216.30
-342	- 33537	94,2	-9.9209	33,5	- 52553	122,0	. 97409	15.5	193542.56
. 343	-33631	94,2	. 94175	33,6	. 52574	121,6	. 97394	15,5	193908.83
-344	-33725	94, 1	-9414r	33,7	-52796	121,2	. 97378	15,6	194235.09
0.345	0.33830	94, 1	0.94108	33,8	9.52917	120,8	9.97362	15,6	1946 or. 36
. 346	. 33914	94, 1	. 94074	33.9	. 53038	120,5	. 97347	I5,7	194927.62
- 347	- 34008	94,0	. 94040	34,0	. 53158	I20, 1	. 97331	15,7	195253.89
-3.48	- 34102	94.0	-94006	34, I	- 53278	I19,7	. 97315	${ }^{1} 5.8$	1956
. 3.49	. 34196	94,0	. 93972	31,2	. 53397	119,3	. 97300	I5,8	195946.42
0.350	0.34290	93,9	0.93937	34,3	9.53516	II9,0	9.97284	15,9	$20 \quad 0312.68$
n	- 1 sinh iu	- Fa^{\prime}	cosh ia	$\omega \mathrm{F}^{\prime}$	$\log \frac{\sinh i t}{i}$	$* F^{\prime}{ }^{\prime}$	log cosh in	$\pm \mathrm{Fo}^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F},{ }^{\text {, }}$	$\log \cos u$	$\omega \mathrm{F}_{\mathrm{u}}{ }^{\prime}$	u
0.350	0.34290	93,9	0.93937	34.3	9.53515	IIS,O	9.97284	15,9	$20^{\circ} 03^{\prime} 12.68$
. 351	- $3+384$	93,9	. 93903	34,4	. 53635	118,6	.97258	15.9	200538.95
. 352	-3+4-8	93,9	. 93859	34.5	. 33754	118,2	. 97252	15,0	30 10 05.21
. 353	-34571	93,8	.93834	34,6	. 53872	117.9	. 97236	16,0	201331.48
-354	-3+665	93,8	. 93799	34,7	. 53589	11\%,5	. 97220	16, 1	201637.74
0.355	0.34759	93,8	0.93755	34,8	9.54107	IIT,2	9.97204	16,	202024.01
. 356	-34853	95,7	. 93730	34,9	. 51224	II 5,3	.95183	15,	202350.27
. 357	- $3+246$	93,7	. 9369	34,9	- 54340	116,4	. 97172	16.2	202715.54
. 358	- 35040	93,7	. 9366	35,0	- $5+457$	116, I	. 97155	16,	203042.80
. 359	-35134	93,6	. 93625	35, I	-54573	115,7	.97139	16,3	203409.07
0.360	0.35227	83,6	0.93550	35,2	9.54593	II3,4	9.97123	16,3	203735.33
. 361	. 35321	93,6	. 93554	35,3	. 54823	1150	. 97106	16,4	2041 O1.60
. 352	- $35+15$	93,5	-93519	35, 4	. 54918	114,7	.97090	16	204427.8 ;
. 363	- 35508	93,5	-93484	35,5	- 55033	IT4.3	. 97074	16.5	204754.12
.354	. 35601	93,4	. $93+18$	35,6	. 55147	$1 \mathrm{I}, 0$. 97057	16,5	205120.39
0.365	0.3569	93,4	0.93412	35,7	9.55251	113.7	9.97040	16,6	205445.65
. 356	. 35788	93,4	. 93377	35,8	. 55374	113.3	.97024	I 6,6	205812.92
. 357	. 35882	93,3	. 93341	35,9	. 55487	I13,0	.97007	16,7	21 ol 39.18
. 368	- 35975	93.3	. 93305	36,0	. 55650	I12,6	. 0695	16,7	210505.45
. 3 -69	. 35058	93,3	.93269	35,1	-55713	I 12,3	. 96974	16,8	210831.71
0.370	0.3616	93,2	0.93233	36,2	9.55825	112,0	9.96957	16,8	21 II 57.98
. 371	. 35255	93,2	. 93197	36,3	. 55937	III,6	. 96940	16,9	211524.24
. 372	- 36348	93,2	. 93160	36,3	-5648	III,3	. 66923	16,9	2 I 1850.51
. 373	-3644I	93, 1	. 93124	36,4	. 55159	III,O	. 95906	17,0	212216.77
-374	. 36534	93, 1	-93087	36,5	-56270	110,7	.95883	17,0	212543.04
0.375	0.35627	93, 1	0.93051	36,6	9.55380	110,3	9.95872	7,	212909.30
. 376	. 35720	93,0	. 93014	36,7	. 55401	110,0	. 9855	17, 1	21 3235.57
. 377	-3681	93,0	. 92977	36,8	. 55500	109,	. 9.5838	17,2	213601.83
. 378	. 36905	92,9	. 92940	36,9	. 56710	109.4	. 91820	17,	213928.10
. 379	. 36999	92,9	-92904	37,0	. 56319	109,0	.96803	17,3	214254.36
0.380	0.37092	92,9	0.92856	37, I	9.56928	108,7	9.95786	17,3	214620.63
. 381	. 37185	92,8	. 92829	37,2	. 57037	108,4	. 96769	17.4	$2149+6.89$
. 382	. 37278	92,8	. 92792	37,3	- 57145	108, 1	. 96751	17	215313.16
.383	- 3737	92,8	. 92755	37,4	- 57253	107,8	. 95734	17,5	215639.42
. 384	. 37463	92,7	. 92717	37,5	. 57361	107,5	. 96716	17,5	220005.69
0.385	0.37556	92,7	0.92680	37,6	9.57468	107,2	9.96699	17,6	
. 385	. 37649	92,6	. 92642	37,6	. 57575	106,9	. 9668 I	17,6	220658.22
. 387	. 37741	92,6	. 9260	37,7	- 57682	105,6	. 95663	17.7	221024.48
- 388	.3783	92,6	. 92557	37,8	- 57788	106,3	. 96646	17,8	$22 \begin{array}{lllll} & 13 & 50.74\end{array}$
.389	. 37926	92,5	. 92529	37,9	. 57894	105,0	. 96628	17,8	221717.01
0.390	0.38019	92,5	0.92 .491	38,0	9.58000	105.7	9.96610	17,9	$22 \quad 2043.27$
. 391	. 38111	92,5	. 92453	38,1	. 58105	105,4	. 96592	17,9	222409.54
. 392	. 3820	92,4	. 92415	38,2	. 58211	105, 1	. 96574	18,0	222735.80
. 393	. 38296	92,4	. 92376	38,3	. 58316	104,8	. 96556	18,0	223102.07
. 394	. 38388	92,3	. 92338	38,4	. 58.420	104,5	. 96538	18, 1	223428.33
	0.38 .881	92,3	0.92300	38,5	9.58524	104,2	9.96520	18,1	223754.60
. 396	. 38573	92,3	. 92261	38,6	. 58528	103.9	. 96502	18,2	224120.86
. 397	. 3856	92,2	. 92223	38,7	. 58732	103,6	.96484	18,2	224447.13
. 393	. 38758	92.2	. 92184	38,8	. 58836	103.3	. 96465	18.3	224813.39
. 399	. 38850	92,1	. 92145	38,8	. 58939	10320	.95447	18,3	225139.66
0.400	0.38942	93,1	0.92106	38,9	9.59042	102,7	9.96429	18,4	225505.92
ロ	-isinhit	* F' ${ }^{\prime}$	cash in	- F F^{\prime}	$\operatorname{tos} \frac{\sin b i u}{i}$	$\triangle F_{0}{ }^{\prime}$	log cesh in	- $\mathrm{F}_{0}{ }^{\prime}$:

Circular Functions.

u	$\sin u$	${ }_{*} \mathrm{Fb}^{\prime}{ }^{\prime}$	$\cos 4$	$\omega \mathrm{F}_{3}{ }^{\text {a }}$	$\log \sin u$	$\omega \mathrm{F}$;	$\log \cos L^{\prime}$	$\omega F^{\prime}{ }^{\prime}$	U
0.400	0.389 .42	92,I	0.92105	38,9	0.59042	102,7	9.95429	18,4	$22^{\circ} 55^{\prime} 05.92$
. 401	. 35034	92,1	. 92057	39,0	-591+4	102,4	. 95410	18.4	$22 \leq 832.19$
. 402	. $3912{ }^{\prime}$	92,0	.92023	39,1	-5327	102,2	. 9352	185	23 O1 38.45
. 403	- 39218	92,0	. 9158	39,2	. $393-45$	1019	-5374	18.5	230532.72
. 404	. 30310	91,9	-91950	39,3	- 59450	101, 3	. 93353	18,5	230350.98
0.105	0.39402	97,9	0.61910	39,4	9.35,552	IOI,3	0.95336	18.5	2312 I 72.25
. 406	. 39494	91,9	. 61381	32.5	-39653	101,0	. 96318	18.7	$231543 \cdot 51$
.407	. 3059	91,8	.91831	39,6	- 5055	100,7	. 95299	187	231909.78
.408	. 33.77	91,8	.9172	35.7	- 50954	100,5	. 96280		23323036.04
.409	. 35709	cil, 8	.917シ2	39,8	- 55955	100,2	. 95262	18,3	232002.31
0.410	0.35851	SI,7	0.91712	39.9	c. 60055	929	9.96243	18.5	232928.57
. 411	. 3953	91,7	. 91672	400	. 60155	95,6	. 95224	18.9	$23 \begin{array}{llllll} & 32 & 54.84\end{array}$
. +112	. 460.44	51.5	. 91632	+40,0	.60254	99,4	. 96205	19,0	233521.10
. +113	. 40135	91.6	. 91592	$\div 0,1$.60353	59.1	. 93185	15.0	233947.36
. 414	.$^{.40227}$	91,6	.91552	;0,2	. 50452	98,8	.96167	19, I	234313.63
0.415	0.40319	91,5	0.91512	40,3	9.60551	08,5	9.951.48	19, I	$23+539.89$
. 416	. 40410	91,5	. 91471	40,4	.60.45	083	.95128	19,2	235006.16
. +17	. 40502	CI, 4	. 91431	- 0,5	. 60748	98.0	. 55109	19,2	235332.12
. 418	. 40593	91,4	. 91350	40.6	.6084E	97,8	. 9 joco	It, 3	235558.69
.419	. 40685	91,3	. 91350	40,7	. $60-73$	97,5	.9507I	19,3	240024.95
0.420	0.40776	¢1,3	0.91309	40,8	9.61041	97,3	9.96051	19	240351.22
. 421	. 40857	91,3	. 91233	409	. 61138	97,0	. 90032	19.	240717.48
. 422	. 40359	91,2	. 91227	41.0	.6I23-4	96,7	. 96012	19,5	241043.75
. 423	. 41050	91,2	.9118)	4 4 .0	.6133I	96,5	. 95993	19, 3	2414
. 424	. 41141	91,1	. 91145	41,1	. 61427	95,2	-95973	19,6	241726.28
0.425	0.41232	91,I	0.91104	41,2	9.61524	96,0	9.95954	19,	342102.54
. +26	. +1323	SI, 1	. 91033	+1,3	. 61619	≤ 5.7	-95934	19.	242428.81
. 427	. 41414	91,0	. 91021	41,4	.6I715	55.5	-9:914	19.8	242755.07
- 428	. 41505	91,0	. 50780	41,5	.618ic	55.2	-958:4	19,8	243121.34
.429	.41593	90,9	.5098	41,6	.61905	04,9	. 93875	19,9	$2+3447.60$
0.430	0.41587	50,3	0.90837	41,7	9.62000	64,7	9.95855	19,9	24.8813 .87
. 431	. 41788	So,9	. 92855	41,8	. 62005	94.4	. 95835	20,0	244140.13
. 432	. $4180 \times$	50. 8	. 50813	41,9	.6218c	9+2	.95815	20,0	244503.40
. 433	. 41950	90,8	. SO 77	120	.62283	S4.0	- 57805	20,	$24.48 こ 2.56$
. 434	. 42550	50,7	. 93729	42, 1	. 62377	93,7	. 95775	20, I	$2+5158.93$
0.435	0.42 T 41	90,7	0.90387	42, 1	9.62471	93.5	9.95755	20,2	245525.19
. 436	. 42232	90,6	. 50645	+2,2	. 62564	93,2	. 95734	20,	245051.46
. 437	. 42322	90,6	. 50603	42,3	. 5257	93.0	. 93714	20,3	250217.72
. 438	. 42413	90,6	., 00560	+2,4	. 52750	92.8	. 55694	20,3	250543.99
. 439	. 42503	90,5	. 90518	42,5	.62842	C2,5	. 95673	20,4	250910.25
0.440	0.42594	50,5	0.90475	42,6	9.62935	92,2	9.95553	20,4	25.1236 .51
. 411	. 42584	90,4	. $90+33$	42,7	. 63027	92,0	. 93632	20,5	
. 412	. 42775	SO,4	. 90390	42,8	. 63119	91,8	.93612	20,6	251929.04
. +14	. 42855	90.3	. 90347	42.9	. 63210	91,5	.95591	20,6	252255.31
. 444	. 42955	50,3	. 90304	43,0	. 63302	91,3	. 93571	20,7	$2525 \quad 21.57$
0.145	0.43046	50,3	0.90261	43,0	9.63393	91,1	9.95550	20,7	25.2947 .84
. 446	. 43139	90,2	. 90218	43,1	. 63484	90,8	. 95529	20.8	253314.10
. 447	. 4.3226	90,2	. 90175	43.2	. 63575	90,6	. 95509	20,8	253640.37
. 448	. 43316	SO, I	. 90132	43,3	.63605	90.4	. 65488	20,9	254006.63
. 419	-43706	90, I	.90088	43.4	. 63755	90,1	. 95467	20,9	254332.90
0.450	0.43497	90,0	0.90045	43.5	9.63845	80,9	9.95446	21,0	254559.16
घ	-isinh in	$\omega^{*} \mathrm{~F}_{0}{ }^{\prime}$	cosh iu	$\triangle \mathrm{F}_{0}{ }^{\text {b }}$	$\log \frac{\sinh i 4}{i}$	$\infty \mathrm{Fo}^{\prime}$	\log cosh ius	$\infty \mathrm{FO}^{\prime \prime}$	-

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} u$	$\omega \mathrm{Fo}^{\prime}$	$\cos u$	${ }_{\omega} \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.450	0.43497	90,0	0.90045	43.5	9.63845	80.9	9.95446	21,0	$25^{\circ}+6^{\prime} 39.16$
. 451	. 43587	90,0	.,50001	+3,6	. 63935	89.7	. $95+25$	21,0	255025.43
-452	. 43677	90,0	. 89958	+3.7	. 64025	80.4	. 95404	21,1	255351.69
. 453	. 43766	89,9	. 89914	+3.8	. 64114	80.2	. 95383	21,1	255717.96
-454	.43856	80,9	. 89870	+3.9	. 64203	89,0	-6,5361	21,2	25004.22
0.455	0.43946	80,8	0.80826	43.9	9.64292	83,8	9.95340	21,2	260410.49
. 456	. 44036	80,8	. 89782	+4,0	. $6+381$	88,5	. 95315	21,3	260736.75
-457	- 4126	83,7	. 89738	44.1	. $64+59$	88,3	. 95298	21,4	251103.03
. 458	. +11216	89,7	. 89694	4, 2	. 64537	88, 1	. 6.5275	21.	$251+29.28$
. 459	- +4305	89,6	. 89650	44,3	. 64645	87,9	. 95255	21,5	25 I7 55.55
0.460	0.44395	89,6	0.89605	44.4	2.64733	87.7	9.95233	21,5	25 21 21.81
. 461	. 44484	89,6	. 80561	44,5	. 6482 I	87,4	. 95212	21.6	252448.08
.462	- 44574	89,5	. 83516	4.46	. 64008	87,2	. 95150	21.	25.2814 .34
.463	- 4.4663	80,5	. 82472	47.7	. 64995	87,0	. 9516	21.7	2) 3140.61
. 464	. +4753	89,4	. 89427	44,8	. 65082	85,8	.95147	21,7	253505.87
0.465	0.44842	89,4	0.89382	44.8	9.65159	83,6	9.95125	2I,8	${ }^{2} 33833.13$
. 465	. 44932	89,3	. 89337	4-4,9	. 65255	85,4	. 95103	21,8	$25+159.40$
. 457	. 45021	89,3	. 89232	45,0	. $653+1$	85,1	.95081	21,9	234525.606
. 438	. 45110	82.2	. 89247	45,1	. 65428	85.9	. 95059	22.0	254851.93
.469	- 45199	89,2	. 82202	45,2	. 65513	85,7	. 95037	22,0	355218.19
0.470	0.45289	87,2	0.89157	45,3	9.65397	85.5	9.95015	22,1	255544.46
. 471	. 45373	89,1	. 89111	45.4	.6558	85,3	. CHC93	22,1	263910.72
. 472	. 4545	89,1	. 83055	45.5	. $65-59$	85,1	. $9: 971$	22.	270236.99
. 473	. 45556	89,0	.80021	45,5	. 63854	84.5	. 949	22.2	270503.25
.474	. 45545	89,0	. 89975	45,5	. 65939	84,7	. 24927	22,3	270929.52
0.475	0.45734	88,9	0.83 cr29	45,7	9.66024	84.4	9.94904	22,3	271255.78
. 475	. 45823	88,9	. 88383	45.8	. 65109	8 ¢,2	. 94882	22,4	271622.05
. 477	. 45912	83.8	. 83338	45.9	. 65152	84.0	.9:80	22,	271948.31
. 478	. 46000	83.8	. 88792	46,0	. 66276	83.8	. $9+837$	22,5	$2723 \mathrm{I}+.58$
-479	. 46037	88,7	. 83746	46,1	. 65360	83,6	.94815	22,6	$27 \quad 2640.84$
0.480	0.45178	88,7	0.83599	46,2	9.66443	83,4	9.94702	22,6	273007.11
. 481	. 46257	88.7	. 83533	46.3	. 65527	83.2	. 94750	22,7	$27 \quad 3333.37$
. 482	. 46355	88.6	. 88507	46,4	. 65310	83.0	. 94747	22,7	$2735 \begin{aligned} & 25.64\end{aligned}$
. 483	. 46444	88,6	.83561	46,4	.67593	82,8	.04724	22.8	274025.90
. 484	. 46532	83,5	. 885 I 4	46,5	. 66775	82,5	-94701	22,8	2743 52.17
0.485	0.46521	88,5	0.83467	46,6	9.66858	82,4	9.94678	22,9	$2747 \quad 18.43$
. 483	. 46709	88,4	. 88.421	46,7	. 66940	82,2	. 94555	22,9	$2750+4.70$
. 487	. 46708	88,4	. 83374	46,8	. 67022	82,0	-9.4633	23,0	275410.95
. 488	. 46885	88,3	. 83327	46,9	. 6710	8r, 8	. 91609	23, 1	$27 \quad 5737.23$
.489	. 46974	88,3	. 88280	47,0	. 67185	8r,6	. 94586	23,1	230103.49
0.490	0.47053	88,2	0.88233	47, 1	9.67258	$8 \mathrm{r}, 4$	9.94553	23,2	280423.76
- 491	. 47151	88,2	. 88185	47,2	. 67319	$8 \mathrm{r}, 2$. 94510	23.2	280756.02
. 492	. 47239	88,1	. 83139	47.2	. 67430	$8 \mathrm{r}, \mathrm{o}$. 95517	23.3	28 II 22.28
. 493	. 47327	83,1	. 88092	47,3	. 67511	83,8	- 54.403	23.3	281448.55
. 494	-47415	83,0	. 88344	47,4	. 67592	80,6	. 94470	23.4	2818 14.81
0.495	0.47503	89,0	0.87997	47.5	9.67572	80,5	9.9447	23.4	28 21 41.09
. 496	. 47591	87,9	. 87949	47,6	. 67753	80,3	. 91423	23.5	$28 \quad 2507.34$
. 487	. 47579	87,9	. 87072	47,7	. 67333	80.1	. 5400	23.6	$22 \begin{array}{lll}29 & 33.61\end{array}$
. 498	- 47787	87.9	. 87854	47,8	. 67913	79,9	. 91375	23.5	233159.87
.439	. 47855	87,8	. 87806	47,9	. 67993	75,7	. 54332	23,7	$28 \quad 35 \quad 25.14$
0.500	0.47943	87,8	$0.877=8$	47,9	9.68072	79.5	9.94329	23.7	$2838 \quad 52.40$
-	-isinhis	- FFo'	cosh in	${ }_{*} \mathrm{~F}_{\mathrm{O}^{\prime}}$	$\log \frac{\sinh i m}{i}$	- $\mathrm{F}_{0}{ }^{\prime}$	-0ecosh in	${ }_{-} F_{i g}{ }^{\prime}$!

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	cos	$\omega \mathrm{F}$;	$\log \sin u$	$\omega F_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	4
0.500	0.47943	87,8	0.87758	47,9	9.68072	79,5	9.94329	23,7	$28^{2} 38^{\prime} 52.40$
. 501	. +8030	87,7	. 87710	48,0	.68152	79,3	. 94305	23,8	
-502	. 48158	87,7	. 87662	48.1	. 63231	79,1	. 94281	23.8	28454.93
. 503	. 48205	87,6	.8-614	48,2	. 68310	-8,9	-94257	23.9	2849 II. 20
. 504	-. 48293	87,6	.87365	48,3	. 68387	-3,7	-94233	24,0	$285237 \cdot 46$
0.505	0.48381	87,5	0.87517	48,4	9.6845	78,6	9.94209	24,0	235603.73
. 505	. +8.858	87,5	. $87+69$	-8,5	. 68515	$\bigcirc 8,4$. 94185	24, 1	285929.99
. 507	. 48556	87,4	.8721	18.6	. 68824	78,2	. 9.4151	24,1	290236.26
. 508	. 48543	87,4	. 87372	48,6	.68702	78,0	-G4137	24,2	$\begin{array}{lllll}29 & 05 & 22.52 \\ 39 & 00 & 18.70\end{array}$
. 509	-. 48730	87,3	. 87323	48,7	.68-80	72,8	.94II3	2.4,2	290948.79
0.510	0.48818	87,3	0.87274	48,8	9.68858	77,6	9.94089	24.3	29131505
. 511	. 48805	87,2	. 87226	+3\%	. 68335	77,5	.94057	2. 21	291641.32
.512	. 48032	87,2	.8-177	45.0	. 69013	7\%3	-9.90-40	2,4,4	292007.58
. 513	. 49079	87,1	.87128	49.1	.69050	77,	.94016	$2.4,5$	292333.85
. 514	. $4916{ }^{\prime}$	87,1	. 87078	49,2	.69167	75,9	. 93991	24,5	II
0.515	0.49253	87,0	0.87029	49,3	9.6924	75,7	9.93967	24,6	293026.38
. 516	. 493340	87,0	. 83980	49,3	. 69320	76,6	. 93942	24,5	$2) 3352.64$
. 517	- +4.427	85,9	. 83931	497	. 59397	75,4	. 93917	24,7	2937 I8.50
. 518	. 49514	85.9	. 8588 I	49,5	. 69473	75,2	. 93803	24,8	294045.17
. 519	-49'01	86,8	. 83852	49,6	. 69549	76,0	.93878	24,8	2944 II. 43
0.520	0.49588	85,8	0.86782	49.7	9.69625	75,9	9.93843	24,9	$2947 \quad 37.70$
. 521	. 49775	86.7	. 85732	498	. 69701	75,7	. 93818	2.4,9	295103.96
. 522	. 4985 I	86,7	. 85682	49,9	. 69775	75.5	- 93793	25,0	295430.23
. 523	. 49948	85,6	. 85632	49,9	. 69352	75,3	.93758	25,0	295756.49
. 524	. 50035	85,6	. 85582	50,0	. 69927	75,2	-93743	25,1	30 O1 22.76
0.525	0.50121	85,5	0.85532	50,1	9.70002	75,0	9.93718	25,2	300449.02
. 526	. 50208	85,5	. 86.882	50,2	.70077	74,8	.93603	25,2	300815.29
. 527	. 50294	85,4	. 85432	50,3	. 70152	74,6	. 93667	25.3	30 II 41.55
. 528	- 50381	86,4	. 86382	50,4	. 70226	74,5	. 93542	25.3	301507.82
. 529	. 50467	86,3	. 8633 I	50,5	. 70301	74,3	. 93617	25,4	$3018 \quad 34.08$
0.530	0.50553	86,3	0.8628 r	50,6	9.70375	74,1	9.93591	25,4	302200.35
. 531	. 50640	86,2	. 86230	50,6	. 70449	74,0	. 93566	25.5	$3025 \quad 26.61$
. 532	. 50726	86,2	. 86179	50.7	. 70523	73,8	. 93540	25,6	$30 \quad 28 \quad 52.88$
. 533	. 50812	86,1	. 86129	50,8	. 70397	73,6	. 93515	25,6	$3032 \begin{array}{lllll}30 & 19\end{array}$
. 534	. 50898	85, 1	. 86078	50,9	.70570	73,4	.93489	25,7	303545.41
0.535	$0.5098+$	85,0	0.86027	51,0	9.70743	73,3	9.93463		303911.67
. 536	. 51070	85,0	. 85975	51,I	. 70317	73,1	. 93438	25,8	$\begin{array}{llll}30 & 42 & 37.94 \\ 30\end{array}$
. 537	. 51156	85.9	. 85595	51,2	. 70390	72,9	. 93412	25,9	$\begin{array}{llll}30 & 46 & 04.20\end{array}$
. 538	. 51242	85.9	. 85874	51,2	. 70963	72,8	. 93380	25,9	304930.47
. 539	. 51328	85,8	. 85822	51,3	.71035	72,6	. 93360	26,0	305256.73
0.540	0.51414	85,8	0.85771	51,4	9.71108	72,5	9.93334	26,0	305623.00
. 541	. 51499	85.7	. 85719	51,5	. 71180	72,3	. 93308	26, 1	305949.26
- 542	. 51585	85.7	. 85668	51,6	.71252	72,1	. 93282	26,2	310315.52
- 543	. 51671	85,6	. 85616	51,7	. 71324	72,0	. 93256	26,2	31 of 41.79
. 544	. 51756	85,6	. 85565	51,8	.71395	71,8	. 93229	26,3	311008.05
0.545	0.51842	85,5	0.85513	51,8	9.71468	71,6	9.93203	26,3	311334.32
. 546	. 51927	85,5	. 85461	51,9	. 71540	71,5	. 93177	26.4	311700.58
. 547	. 52013	85.4	. 85409	52,0	. 71611	71,3	. 93150	26,4	3 II 2026.85
- 548	. 52098	85.4	. 85357	52, I	. 71682	71,2	. 93124	26,5 26,6	$\begin{array}{llll}31 & 23 & 53.11 \\ 31 & 27 & 19.38\end{array}$
-549	. 52183	85,3	. 85305	52,2	.71753	71,0	. 93097	26,6	31 2719.38
0.550	0.52269	85,3	0.85252	52,3	9.71824	70,8	9.93071	26,6	3I 3045.64
-	-i sinhiu	$\omega \mathrm{Fo}^{\prime}$	cosh in	$\sim \mathrm{Fo}^{\text {f }}$	los $\frac{\sinh i e}{i}$	$\triangle \mathrm{Fo}^{\prime}$	log cosh in	${ }_{*} \mathrm{~F}_{0}{ }^{\prime}$	-

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{6}{ }^{\prime}$	$\boldsymbol{l o g} \cos u$	$\omega \mathrm{Fij}^{\prime}$	u
0.550	0.52269	85,3	0.85252	52,3	9.71824	70,8	9.93071	26,6	$31^{\circ} 30^{\prime}+5.64$
. 551	. 52354	85,2	. 85200	52,4	. 71895	70, 7	. $930+4$	26,7	$313+11.91$
- 552	- 52439	85,1	. 85148	52,4	. 7195	70,5	. 93017	26,7	313738.17
. 553	. 52524	85,1	. 85035	52,5	. 72035	70,4	. 9299 T	26,8	31.4104 .44
. 554	. 52609	85,0	. 85043	52,6	. 72106	70,2	.92964	26,9	314430.70
0.555	0.52594	85,0	0.84390	52,7	9.72176	70,0	9.92937	26,9	3 L 47 56.97
. 556	. 52779	84,9	. 84937	52,8	. 72246	69,9	. 92910	27,0	315123.23
. 537	. 52834	84.9	. 84884	52,9	.72316	69.7	. 92883	27,	315449.50
- 558	- 52949	84.8	. 84832	52,9	. 72386	69,6	. 92356	27,1	315815.76
- 559	. 53034	84,8	. 84779	53,0	. 72455	69,4	. 92829	27,2	32 O1 42.03
0.560	0.53119	84,7	0.84726	53, I	9.72525	69,3	9.92801	27,2	320508.29
. 561	. 53203	$8_{4,7}$. 84672	53,2	. 72594	C9,	. 92774	27,3	320834.56
. 562	- 53238	84,6	. 84619	53,3	. 72653	60.0	. 92747	27.3	321200.82
. 363	. 53373	84,6	. 84566	53.4	. 72732	68,8	. 92719	27,	321527.09
. 564	- 53457	84,5	. 84512	53.5	. 72801	68,7	. 92692	2\%,5	$32 \quad 18 \quad 53.35$
0.365	0.53512	84,5	0.84459	53,5	9.72859	68,5	9.92665	27,5	322219.62
. 565	. 53626	8+,4	. $8+405$	53,6	. 72933	68,4	. 92637	27,	322545.88
. 567	. 53710	84,4	. 84352	53.7	.73005	68,2	. 92509	27.7	322912.15
- 568	- 53795	$8+3$. 84298	53,8	. 73074	$68, \mathrm{I}$. 92582	27,7	323238.41
.569	. 53879	84,2	. 8.4244	53,9	.73142	67,9	. 92554	27,8	$32 \quad 3504.67$
0.570	0.53963	84,2	0.84190	54,0	9.73210	67,8	9.92526	27,8	323930.94
. 571	. 51047	84,1	. 84136	54,0	. 73277	67,6	. 92498	27,9	$32+257.20$
. 572	. 54131	84,1	. 81082	54, I	. 73345	67,5	. 92.470	28,0	324623.47
. 573	- 54216	84,0	. 8.4028	54,2	. 73412	67,3	. 92.442	28,0	324949.73
- 574	. 54300	84,0	. 83974	54,3	. $73+80$	67,2	.92.414	28, 1	325316.00
0.575	0.54383	83.9	0.83919	54,4	9.7354\%	67,0	9.92385	28,1	325642.25
. 575	. 54467	83,9	. 83865	54.5	. 73614	66,9	. 92358	28,2	330008.53
. 577	-54551	83,8	. 83810	54.6	. 73680	66,7	. 92330	28,3	3303134.79
-578	- 54635	83,8	. 83756	54.6	. 73747	66,6	. 92301	28,3	330701.06
-579	-54719	83.7	. 83701	54.7	.73814	66,4	-92273	28,4	33 10 27.32
0.580	0.54802	83,6	0.83646	54,8	9.73880	66,3	9.92245	28,5	$\begin{array}{llll}33 & 13 & 53.59\end{array}$
. 58 r	. 54886	83,6	. 83591	54,9	. 73946	66,2	. 92216	28,5	$\begin{array}{lllllllllllllll}33 & 17 & 19.85\end{array}$
-582	. 54970	83,5	. 83536	55,0	. 74012	65,0	. 92188	28,6	332046.12
. 583	- 55053	83.5	. $83-481$	55, I	. 74078	65.9	. 92259	28,6	332412.38
. 584	. 55137	83-4	. 83426	55, 1	. 74144	65,7	.92130	28,7	332738.65
0.585	0.55220	83,4	0.83371	55,2	9.74210	65,6	9.92102	28,8	333104.91
. 585	. 55303	83,3	. 83316	55.3	. 74275	65.4	. 92073	28,8	333431.18
. 587	. 55387	83,3	. 83261	55,4	. 74340	65.3	. 92044	28,9	333757.44
. 588	-55470	832	. 83225	55.5	. 74405	65,	. 92015	29.0	334123.71
. 589	- 55553	83,1	.83150	55,6	. 7447 I	65,0	. 91986	29,0	334449.97
0.590	0.55636	83,1	0.83094	55,6	9.74536	64,9	9.91957	29,1	334816.24
. 591	. 55719	83,0	. 83038	55,7	. 74600	64.7	. 91928	29,1	335142.50
. 592	. 55802	83.0	. 82983	55.8	. 74665	64,6	. 91899	29,2	335508.77
- 593	. 55885	82,9	. 82927	55,9	. 74730	64.4	. 91859	29.3	$33 \quad 58 \quad 35.03$
-594	. 55968	82,9	.82871	56,0	-74794	64,3	.91840	29.3	340201.29
0.595	0.56051	82,8	0.82815	56.1	9.74858	64,2	9.91811	29,4	340527.56
. 595	. 56134	82,8	. 82759	56.1	. 74922	64,0	.91781	29.5	340853.82
. 597	. 56216	82,7	. 82703	56,2	. 74985	639	. 91752	29.5	341220.09
. 598	. 56299	82,6	. 82646	56,3	. 75050	63.8	. 91722	29.6	341546.35
. 599	. 56382	82,6	. 82590	56,4	.75114	63,6	.91693	29,6	341912.62
0.600	0.56464	82,5	0.82534	56,5	9.75177	63.5	9.91653	29.7	342238.88
*	-1sinhin	${ }^{\circ} \mathrm{Fo}$	cosh in	$\sim F_{0}{ }^{\circ}$	$\log \frac{\sinh i x}{i}$	$\omega \mathrm{F}_{0}{ }^{\circ}$	log cosh in	* Fa^{\prime}	.

Circular Functions.

u	$\sin u$	$\omega F_{0}{ }^{\prime}$	$\cos 4$	$\omega \mathrm{F}^{\prime}$	$\log \sin u$	$\omega F^{\prime}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.600	0.56454	82,5	0.82534	5t5,5	9.75177	63,5	9.91-63	29,7	$34^{\circ} 22^{\circ} 38^{\prime \prime} .83$
. 601	. 56547	82,5	. 82.47	56, 3	. 75241	63,3	. 915 こ3	29,8'	$3+2505.15$
. 602	. 56029	82,4	.82+20	56,5	. 75304	63.2	.9100t	2, 8	$3+2931.41$
. 603	. 56712	82,4	. 82364	55.7	. 25357	63,1	. 91574	29.9	343257.68
. 604	. 56794	82,3	.82307	55,8	. 75430	62,9	.9154	30,0	$3+3623.94$
0.605	0.56876	82,3	0.82250	53,2	9.75493	62,8	9.91514	30,0	$3+3950.21$
. 605	. 56958	82,2	. 8215,3	57,0	. 75556	62,7	.914S4	30,1	34.4316 .47
. 607	. 57041	82,1	. 82139	¢ 3.0	. 75618	62,5	. 91454	30,2	34.4642 .74
. 603	. 57123	82,1	. 82079	5 5 , 1	. 7558 I	62,4	.91+23	30,2	$3+5009.00$
. 603	-. 57205	82,0	.82022	57,2	. $75 \sim 43$	62,3	.91393	30,3	$34 \quad 53 \quad 35.27$
0.610	0.37237	82,0	0.81965	57,3	9.75805	62, 1	9.91353	30,4	345701.53
. 6 II	. 37359	81,9	. 81507	57,4	.75857	62,0	. 51332	30,4	350027.80
. 612	- 57451	81,9	. 81850	57,5	. 75929	61,9	.91302	30,5	350354.05
. 613	. 57532	$8 \mathrm{I}, 8$. 81,93	57.5	. 75991	61.7	-9127	30.5	$\begin{array}{llllllllllllllll}35 & 07 & 20.33\end{array}$
. 614	.37514	$8 \mathrm{I}, 7$.81735	57,6	.76053	61,6	.9124I	30,6	35 10 46.59
0.615	0.37596	$8 \mathrm{r}, 7$	0.81677	57,7	9.76114	6I, 5	9.91210	30,7	35 If 12.86
.616	- 5178	81,6	. 81420	57,3	. 76176	$6 \mathrm{I}, 4$.91179	30,7	351739.12
. 615	. 57559	81,6	. 81552	57.9	.75237	61,2	-91149	30,8	$\begin{array}{lllll}35 & 21 & 05.39\end{array}$
. 618	. 57041	$8 \mathrm{I}, 5$.81504	57.9	. 75238	$6 \mathrm{t}, 1$.91188	30,9	$35 \quad 243$ I. 55
.619	- 58022	81,4	.81+45	58,0	.75359	61,0	. 91087	30,9	$35 \quad 2757.92$
0.620	0.58104	81,4	0.81388	58,1	9. $76+20$	60,8	9.91056	31,0	353124.18
. 621	. 58185	$8 \mathrm{I}, 3$. 81330	58,2	. 70481	60,7	. 91025	31, I	353450.44
. 622	. 58256	81,3	. 81271	58,3	. $755+2$	60,6	. 00594	31, I	353816.71
. 623	. 58347	81,2	. 81213	58,3	. 75502	60,4	. 90903	$3 \mathrm{I}, 2$	354142.97
. 624	-58129	81,2	.81155	58,4	- 75663	60,3	. 90931	3I,3	354509.24
0.625	0.58510	81, 1	0.81093	58,5	9.76723	60,2	0.90900	31,3	$3548 \quad 35 \cdot 50$
. 626	. 58591	81,0	. 81038	58,6	. $-6-83$	60,1	. 90869.	$3 \mathrm{I}, 4$	$35 \quad 5201.77$
. 627	. 58552	81,0	. 80973	58.7	. 76843	59,9	. 90837	31,5	355528.03
. 628	. 58753	80,9	. 80 g 20	58.8	. 75903	59, 8	. 90806	31,5	355854.30
. 629	. 58834	80,0	. 808 jz	58,8	.76963	59.7	. 90774	31,6	350220.56
0.630	0.58914	80,8	0.80803	58,9	9.77022	59,6	9.90743	31,7	36
. 631	. 58995	83,7	. 80714	59,0	. 77082	59,4	. 90711	31,7	$36 \quad 0913.09$
. 632	- 59075	80,7	. 80585	59, 1	. 77141	59.3	. 90679	31,8	$\begin{array}{llll}36 & 12 & 39.36\end{array}$
. 633	. 59157	83,6	. 80.525	50,2	. 77200	59,2	. 90547	31,9	$\begin{array}{llllllllllll}36 & 16 & 05.62\end{array}$
. 634	. 59237	80,5	. 80566	59,2	. 77259	59,1	. 90615	31,9	$36 \quad 1931.89$
0.635	0.59318	80,5	0.80507	59,3	9.77318	58,9	9.90583	32,0	362258.15
. 636	. 59398	80,4	. 8048	59,4	. 77377	58,8	. 90551	32,1	$\begin{array}{llllllllllllll}36 & 26 & 24.42\end{array}$
. 637	- 59479	80,4	. 80338	59.5	. 77436	58,7	. 90519	32, I	362950.68
. 638	. 59559	80,3	. 80329	59,6	. 77495	58,6	-90487	32,2	$\begin{array}{lllllllllllll}36 & 33 & 16.95\end{array}$
. 639	. 59639	80,3	. 80259	59,6	. 77553	58,5	-c0455	32,3	363643.21
0.640	0.59720	80,2	0.80210	59,7	9.77612	58,3	9.90423	32,3	364000.48
.641	. 59800	80,I	. 80150	59,8	. 77570	58,2	. 90390	32,4	$3643135 \cdot 74$
. 642	- 59880	80,1	. 80090	59.9	. 77728	58,1	. 90358	32,5	364702.01
. 643	- 50960	80,0	. 80030	60,0	. 77-86	58,0	. 90325	32,5	$3650 \quad 28.27$
.644	. 60040	80,0	. 79970	60,0	. 77844	57,8	. 90293	32,6	$36 \quad 5354 \cdot 54$
0.645	0.60120	79.9	0.79910	60,1	9.77902	57,7	9.90260	32,7	365720.80
. 640	. 60200	79,8	. 79850	60,2	. 77959	57,6	. 90227	32,7	370047.06
. 647	. 60280	79,8	. 79790	60,3	. 78017	57,5	. 9015	32,8	$\begin{array}{lllllllllllllllllllll}37 & 0.4 & 13.33\end{array}$
. 648	. 60359	79.7	. 79729	60,4	. 78074	57,4	. 90162	32,9	
. 649	. $60+39$	79,7	. 79669	60,4	.78132	57,2	. 90129	32,9	37 II 05.86
0.650	0.60519	79,6	0.79608	60,5	9.78189	57,1	9.90096	33,0	37 I4 32.12
*	-i sinh in	* Fo' ${ }^{\prime}$	cosh in	$\omega \mathrm{Fa}^{\prime}$	$\log \frac{\sinh i u}{i}$	$\pm \mathrm{F}_{0}{ }^{\circ}$	log cosh iu	$\infty \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.650	0.60519	79,6	0.79608	60,5	9.78189	57,I	9.90096	33,0	$37^{\circ} \mathrm{I}+32^{\prime \prime} .12$
. 651	. 60598	79,5	. $795+8$	60,6	. 78216	57,0	. 90063	33,	371758.39
. 652	. 60678	79,5	. 79487	60,7	.78303	56.9	. 90030	33,2	372124.65
. 653	. 60757	79,4	. 79426	60, 8	. 8350	5 ${ }^{6,8}$.80997	33,2	372450.92
. 654	.60837	29,4	. 79366	60,8	. 73416	56,	. 80963	33,3	372817.18
0.655	0.60916	79,3	0.79305	60,9	9. -8.873	56,5	9.80930	33,4	$373143 \cdot 45$
. 656	. 60995	79,2	. 7524	61,0	. 78530	56,4	. 8585	33	373509.71
. 657	. 61074	79,2	. 79183	6I, 1	.-858;	55,3	. 88,813	33.	$37 \quad 3835.68$
. 658	-61154	79, 1	. 79122	61,2	. 785	56,2	. 81830	33.6	374203.24
. 659	.61233	79,1	. 79060	61,2	. $8 \mathbf{8} 608$	56, 1	. 83795	33,6	374528.51
0.560	0.61312	79,0	0.783	61,3	9.78754	56,0	9.89752	33	374854.77
. 661	.6I391	-8,9	. 783	6r, 4	. 28310	55,8	. 80729	33,8	375221.04
. 662	. 6 r 470	78,9	. 7337	61,5	. 78856	55,7	.8,605	33.8	$375347 \cdot 30$
. 663	. 61548	-8,8	. 78815	6I, 5	. 8822	55.6	. 89661	33,9	375913.57
. 664	. 61627	78,8	. 78753	61,6	.78977	55,5	. 89627	34,0	380239.83
0.665	0.61706	-8,7	0.78692	61,7	9.79033	55,4	9.89593	34, 1	380606.10
. 665	. 61785	78,6	. 78630	6r,8	. 79088	55,3	. 89555	34, 1	380932.36
. 667	. 61853	78,6	. 7856	61,9	. 79143	55,2	. 80525	34.	381258.63
. 658	. 61942	78,5	. 78506	61,9	. 79198	55,0	. 8,8490	34, 3	381624.89
. 669	. 62020	78,4	. $73+4$	62,0	.79253	54,9	. 80456	34,3	381951.16
0.670	0.62099	78,4	0.78382	G2,I	9.79308	54,8	9.89422	34.4	$38 \quad 2317.42$
. 671	. 6217	78,3	. 73320	62,2	. 79363	54,7	. 8,387	34,	$38 \geq 643.68$
. 672	. 62255	78.3	. 78238	62,3	. 79418	54,6	. 89353	34,5	383009.95
. 673	. 62333	78,2	. 78156	62.3	. 79472	54,5	. 89318	34.6	$38 \quad 33 \quad 36.21$
. 674	. 62412	78,	.78133	C2,4	. 79527	54.4	. 89284	34,7	383702.48
0.675	0.62490	78,1	0.78071	62,5	9.79581	54.3	9.89249	34,8	$3840 \quad 28.74$
. 676	. 62568	78,0	. 78008	62,6	. 79635	54.1	. 89214	34,8	384355.01
. 677	. 62646	77,9	. 77346	C2,6	. 79689	54,0	. 89175	34.9	384721.27
. 678	. 62724	77,0	. 77833	62.7	. 79743	53, 9	. 8914	35,0	$385047 \cdot 54$
. 679	. 62802	77,8	. 77820	62,8	. 79797	53,8	. 89105	35,0	385413.80
0.680	0.62879	77,8	0.77757	62.9	9.7985 I	53.7	9.89074	35, 1	385740.07
. 68 I	. 62957	77,7	.7794	63,0	. 79904	53,6	. 83039	35,2	39 or 06.33
. 682	. 63035	77,6	. 77531	63.0	. 79958	53.5	.8900:-	35.3	390432.60
. 683	. 63112	77,6	. 77568	63, 1	. 8001 II	53.4	. 88958	35.3	390758.86
. 684	. 63190	77,5	.77505	63,2	. 80065	53.3	. 88733	35,4	39 I1 25.13
0.685	0.6326	77,4	0.77442	63,3	9.80118	53,2	9.883	35,5	39 I4 51.39
. 685	. 63345	77,4	. 77379	63,3	. 80171	53,1	. 858	35.0	391817.66
. 687	. 63422	77,3	. 77315	63.4	. 80224	52,9	. 88324	35.6	392143.92
. 688	. 63499	77,3	. 77252	63.5	. 80277	52,8	. 88791	35.7	392510.19
. 689	. 63577	77,2	. 77188	63,6	. 80330	52,7	.88755	35,8	$39 \quad 38 \quad 36.45$
0.690	0.63654	77, 1	0.7712	63.7	9.80382	52,6	9.83715	35.8	
. 691	. 63731	77, 1	. 7706	63.7	. 80435	52,5	. 88383	35.9	$3935 \quad 28.98$
. 692	. 63808	77,0	. 7699	63,8	. 80.487	52,4	. 88547	36,0	393855.25
. 693	. 63885	76,9	. 76933	63.9	. 80540	52,3	. 88311	36,1	394221.51
. 694	. 63962	76,9	. 76869	64,0	. 80592	52,2	. 83575	36,1	394547.78
0.695	0.64039	76,8	0.76805	64,0	9.80544	52,1	9.88539	36,2	394914.04
. 696	. 64115	76,7	. 76741	64, 5	. 80696	52,0	. 88503	36,3	395240.31
. 697	. 64192	76,7	. 76677	64,2	. 80748	51,9	. 88467	36,4	395606.57
. 698	. 64269	76,6	. 76613	64.3	. 80800	51,8	. 884330	36,4	395932.83
. 699	. 64345	76,5	. 76549	64,3	. 80852	51,7	. 88394	36,5	400259.10
0.700	0.64422	76,5	0.76484	64.4	9.80903	51,6	9.88357	35,6	400625.36
घ	-is sinhia	$\sim \mathrm{Fi}^{\prime}$	cosh in	$\omega \mathrm{FG}^{\prime}$	$\log \frac{\sinh i x}{i}$	- Fig	'oscosthin	- F 0_{0}^{\prime}	u

Circular Functions.

\because	stin ${ }^{\text {co }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos 4$	$\omega \mathrm{E}^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{\mathrm{G}}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F} 0^{\prime}{ }^{\prime}$	3
10.700	0.64122	76,5	0.7548	64,4	9.80903	51,6	9.88357	35,5	$40^{\circ} 06^{\prime} 25^{\prime \prime} 36$
\%o1	. $6+498$	76,4	. 76420	64,5	. 80955	51,5	. 88321	35,7	400251.63
-:702	. 64575	- 76,4	. 76355	64.6	. 81006	51,4	. 88234	36,7	40 I3 17.89
. 703	$\therefore 64651$	75,3	. 75391	64,7	. 81057	$5 \mathrm{I}, 2$. 88247	36,8	401644.16
.704	. 64727	76,2	. 76226	$6.4,7$.81109	51, I	. 83210	36,9	402010.42
0.705	0.64803	76,2	0.76161	6.8	9.81160	51,0	9.83173	37,0	402336.69
. 705	. $6+880$	76,1	.75005	64,9	.812II	50,9	. 88136	37,0	402702.95
. 707	. 64956	76,0	.7503I	65,0	. 81252	50,8	. 88099	37, I	$4030 \quad 29.22$
. 708	. 65032	75,0	. 75955	65,0	.81312	50,7	.83052	37,2	403355.48
. 709	.65108	75,9	.75901	65, 1	.81363	50,5	. 88025	37,3	103721.75
0.710	0.65183	75,8	0.75835	65,2	9.81414	50,5	9.87988	37,3	404048.01
. 711	. 65259	75,8	. 75771	65,3	.81464	50,4	. 87950	37,4	$10+1417.28$
. 712	. 63335	75,7	. 35705	65,3	.81515	50,3	. 87913	37,5	404740.54
. 713	. 653111	75.6	. 75640	65.4	.81565	50,2	. 87875	37,6	405106.81
.714	. 65.485	75,6	.75575	$6_{5,5}$.816I5	50, 1	.87838	37,6	405433.07
0.715	0.65562	75,5	0.75509	65,6	9.81655	50,0	9.87800	37,7	405759.34
. 716	. 65637	75,4	. 7541	-5,6	.81715	49,9	. 87762	37,8	41 O1 25.60
. 717	. 65713	75,4	. 75378	65.7	. 81765	49,8	. 87724	37,9	410451.87
. 718	. 65788	75,3	. 75312	65,8	. 81815	49,7	. 87587	37,9	410818.13
. 19	. 65853	75,2	. 75246	65,9	.8I864	49,5	. 87649	38,0	4 II 44.40
0.720	0.65938	75,2	0.75181	65,9	9.81914	49,5	9.87511	38,1	411510.66
. 721	. 66014	75, 1	. 75115	66,0	. 81953	49,4	. 87572	38,2	411836.93
. 722	. 65089	75,0	. 75049	65, I	. 82013	49,3	. 87534	38,2	412203.19
. 723	. 66164	75,0	. 71982	66,2	. 82052	49,2	.87496	38.3	4 l 2529.45
. 724	. 66239	74,9	.74916	66,2	.82III	49,1	. 87458	38,4	412855.72
0.725	0.66314	74,8	0.74850	66,3	9.82160	49,0	9.87419	38,5	413221.98
. 726	. 66388	74.8	.74784	66, 4	. 82203	48.9	. 87381	38,6	413548.25
. 727	. 66463	74,7	. 74717	66,5	. 82258	48,8	. 87342	38,6	413914.51
. 728	. 66538	74,7	.74651	66,5	. 82307	48,7	. 87303	38,7	414240.78
. 729	. 66612	74,6	.74584	66,6	. 82355	48,6	. 87265	38,8	414607.04
0.730	0.65687	74,5	0.74517	66,7	9.82404	48,5	9.87226	38,9	414933.3 I
. 731	. 66761	74,5	. 74451	66,8	. 82453	48.4	. 87187	38,9	415259.57
. 732	. 66836	74,4	. $7+384$	66,8	.82501	48,3	. 87148	39,0	415625.84
. 733	. 66910	74,3	. 74317	66,9	. 82549	48,2	. 87109	39, 1	415952.10
. 734	. 66984	74,3	. 7.4250	67,0	. 82597	48, 1	. 87070	39,2	420318.37
0.735	0.67059	74,2	0.74183	67,1	9.82646	48,0	9.87030	39,3	420644.63
. 736	. 67133	74, 1	. 74116	67, 1	. 82694	47,9	. 86991	39,3	42 10 10.90
. 737	. 67207	74,0	. 74049	67,2	. 82741	47,9	. 85952	39,4	421337.16
. 738	. 67281	74,0	. 73982	67,3	. 82789	47,8	. 86912	39,5	$42 \begin{array}{lllllllll} & 17 & 03.43\end{array}$
.739	. 67355	73.9	.73914	67,4	. 82837	47,7	. 85873	39,6	422029.69
0.740	0.67429	73,8	0.73847	67,4	9.82885	47,6	9.86833	39,7	422355.96
. 741	. 67503	73,8	. 73779	677	. 82932	47,5	. 86794	39,7	422722.22
. 742	. 67576	73,7	. 73712	67,6	. 82379	47,4	. 85754	39,8	423048.49
- 743	. 67650	73,6	. 73644	67,7	. 83027	47,3	. 86714	39,9	423414.75
-744	. 67724	73,6	. 73577	67,7	. 83074	47,2	. 85674	40,0	423741.02
0.745	0.67797	73,5	0.73509	67,8	9.83121	47, 1	9.85634	40,0	424107.28
. 746	. 67871	73.4	. 73441	67,9	. 83168	47,0	. 85594	40, 1	424433.55
. 747	. $679+4$	73,4	. 73373	67,9	. 83215	46,9	. 85554	40,2	424759.8 I
-748	. 68017	73,3	. 73305	68,0	. 83262	46,8	. 85513	40,3	425126.08
.749	.68091	73,2	. 73237	68, 1	. 83309	46,7	. 85.473	40,4	425452.34
0.750	0.68164	73,2	0.73169	68,2	9.83355	46,6	9.86433	40,5	425818.60
-	-i sinh iu	$\pm \mathrm{Fa}^{\prime}$	cosh iu	$\omega^{*} \mathrm{Fo}^{\prime}$	$\log \frac{\sinh i 4}{i}$	$\omega F^{\prime}{ }^{\prime}$	$\log \cosh$ is	$\pm \mathrm{Fo}^{\prime}$,

Circular Functions.

u	$\sin u$	$\omega \mathrm{FO}^{\prime}$	$\cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{Fig}^{\prime}$	$\log \cos u$		
0.750	0.68 I 64	73,2	0.73169	68,2	9.83355	46,6	9.86433		
. 751	. 68237	73, 1	.73101	68,2	. 83.402	46,5	. 85392		
. 752	. 68310	73,0	. 73032	68,3	. $83+48$	45.4	. 85352		
.753	. 68383	73.0	. 72964	68,4	. 83495	46,3	.83311		44837
.754	. 68.456	72,9	.72896	68,5	. $835+1$	46,2	. 85270	40,8	1203
0.755	0.68529	72,8	0.72827	68,5	9.83587	46,2	9.86229	40,9	43 15 29.93
. 750	. 68602	72,8	. 72759	68.6	. 83533	46,1	. 85188	40,	431855.19
. 757	. 68574	72,7	. 72690	68.7	. 83679	46,0	.85147	4 I ,	432222.46
.758	. 68747	72,6	.72621	68.7	. 83725	45.9	. 85106	41.1	432548.72
. 759	. 68820	72,6	. 72552	68,8	. 83771	45,8	. 85005	4 I ,	4329 I 4.99
0.760	0.68892	72,5	0.72 .484	68,9	9.83817	45.7	9.85024	41.3	433241.25
. 751	. 68055	72,4	. 72415	60,0	. 83853	45,6	. 85583	41.4	433607.52
. 752	. 69037	72,3	. 72346	6n,o	. 83503	45,5	. 85041	41,	433933.78
. 753	. 69109	72,3	. 72277	60,1	. 83954	45,4	. 85000	4 I ,	434300.05
.754	. 69182	72,2	. 72207	$6 \mathrm{G}, 2$. 83999	45,3	. 85858	41,6	434626.31
0.755	0.69254	72,1	0.72138	69,3	9.8 .8044	45,2	9.85817	41	434953.58
. 755	. 69325	72,1	. 720×9	69,3	. 8.1087	45, 1	. 85775	41	435318.84
. 757	. 69398	72,0	. 72000	69.4	. 84135	45,1	. 85733	41,9	435645.11
. 758	. 69470	71,9	.71930	69.5	. 84180	45,0	. 85591	41.3	440011.37
.769	. 69542	71,9	. 71831	69,5	. 84225	44,9	. 85×49	42,0	$4403 \quad 37.64$
0.770	0.6951_{4}	71,8	0.71791	69,6	9.84259	44,8	0.8560%	42, 1	440703.90
. 771	. 69685	71,7	. 71721	69,7	. 843 T 4	44,7	. 83565	42,2	441030.15
. 772	. 69757	71,7	. 71652	69,8	. 84353	44,6	. 85523	42,3	441356.43
. 773	. 69829	71,6	. 71582	69,8	. 84.403	44,5	. 85480	42,4	441722.70
. 774	. 69900	71,5	. 71512	69,9	. 84.448	4, 4	. 85438	42,5	442048.96
0.775	0.69972	71,4	0.71442	70,0	9.84492	44,3	9.85395	42,5	442415.22
. 775	. 70043	71,4	. 71372	70,0	. 8155.35	44,3	. 85353	42,6	442741.49
. 777	. 70114	71,3	. 71302	70,	. 8458 I	44,2	. 85.310	42,7	443107.75
. 778	.70185	71,2	. 71232	70,2	. 88.865	44,1	. 85267	42,8	443434.02
.779	.70257	71,2	. 71162	70,3	. 84669	44,0	. 85225	42,9	443800.28
0.780	0.70328	71, 1	0.71091	70,3	9.84713	43,9	9.85182	43,0	444126.55
.781	. 70399	71,0	. 71021	70,4	. 84757	43.8	. 85139	43,0	444452.81
. 732	. 70470	71,0	.7095I	70,5	. 8.8800	43.7	. 8500 a	43,1	$444^{8} 19.08$
. 783	. 70541	70,9	. 70380	70,5	. 8.844	43,6	. 85052	43,2	445145.34
. 784	. 70612	70,8	-70803	70,6	. 84883	43,6	. 85009	43,3	445511.61
0.785	0.70583	70,7	0.70739	70,7	9.8493 I	43.5	9.84966	43.4	445837.87
. 783	. 70753		. 70638	70,8	. 84975	43.4	. 84923	43.5	450204.14
. 787	. 70824	70,6	. 70597	70,8	. 85018	43.3	. 8.8879	43,6	450530.40
. 788	. 70894	70,5	-7052	70,9	. 8505 r	43,2	. 84835	43.7	450856.67
. 787	. 70965	70,5	. 70456	71,0	. 85104	43,1	. 84792	43.7	$45 \quad 12 \quad 22.93$
0.790	0.71035	70,4	0.70385	71,0	9.85147	43,0	9.84748	43.8	45×549.20
. 791	. 71106	70,3	. 70313	71, 1	. 85190	42,9	. 87704	43.2	$45 \quad 1915.46$
. 792	. 71176	70,2	. 70242	$7 \mathrm{I}, 2$.83233	42,9	. 87660	44,0	452241.73
. 793	. 71246	70,2	. 70171	71,2	.85275	42,8	. 84616	44.1	$45 \quad 2607.99$
. 794	.71316	70,1	. 70100	71,3	. 85319	42,7	. 84572	44.2	452934.26
	0.71386	70,0	0.70038	71,4	9.85362	42,6	9.84527	44.3	
. 796	. 71.456	70,0	. 69957	71,5	. 85404	42,5	. 84483	44.4	$\begin{array}{llll}45 & 36 & 26.79 \\ 45 & 30 & 53\end{array}$
. 797	. 71526	69,9 698	. 69888	71,5 71,6	. 85447	42,4	.84439 .84394	44.4	$\begin{array}{llll}45 & 39 & 53.05 \\ 45 & 43 & 19.32\end{array}$
.798 .799	.71596 .71666	69,8 69,7	. 69814	71,6 71,7	. 85483	42,3 42,3	. 8439350	446	$\begin{array}{llll}45 & 43 & 19.32 \\ 45 & 45 & 45.58\end{array}$
0.800	0.71736	69.7	0.69671	71,7	9.85573	42,2	9.84305	44,7	4550 II. 81
-	-isinh ix	$\omega F_{*}{ }^{\prime}$	cosh iar	- $\mathrm{Fi}^{\text {i }}$	$\log \frac{\sinh \text { iu }}{i}$	$\cdots \mathrm{Fa}^{*}$	fog cosh in	$\pm \mathrm{Fef}^{\prime}$:

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}^{\prime}$	\cos d	$\omega \mathrm{F}$.	$\log \sin u$	$\omega \mathrm{F}_{\text {j }}$;	$\log \cos u$	$\omega \mathrm{Fu}^{\prime}$	U
0.850	0.71735	69,7	0.606571	71,7	9.85373	42,2	9.84303	4.7	$45^{\circ} 50^{\prime} 11.184$
. 801	. 71805	6x,6	. 69559	-1,8	. 8515	+2,1	. $8+260$	4.8	+5 5338.11
. 802	. 71875	69,5	. 69527	71.9	.8555S	+2,0	. 81215	44.9	153704.37
. 803	. 71944	69,5	. 69455	71,9	.85700.	41.9	. 81170	45.0	460030.64
. 804	. 72014	69,4	. 69383	-2,0	. 85742	41,8	. 84125	$4 \mathrm{E}, \mathrm{I}$	460356.90
0.805	0.72083	69,3	0.693 II	72,1	9.85-83	41,8	9.84080	45,2	450723.17
. 805	. 72152	69.2	. 69239	72,2	. 85825	41,7	. 84035	45,3	45 10 49.43
. 80	. 72222	69,2	. 60115	72,2	. 85817	41,6	. 83690	45.3	45 I 415.70
. 808	. 72391	69,1	-69095	-2,3	. 85908	41,5	. 839.4	45.4	461741.96
. 809	.72360	69,0	. 6,0022	72,4	. 85950	41,4	. 83899	45,5	462108.23
0.810	0.72429	68,9	0.68950	72.4	0.85091	4I,3	9.83853	45.6	162434.49
.811	. 72498	68,9	. 68837	72,5	. 8032	41,3	.83803	45.7	462800.76
.812	. 72555	68.8	. 68305	72,5	. 85074	41,2	. 83752	45.8	463127.02
.813	. 72535	68,7	.68732	72,6	.85115	41, I	. 83716	45.9	453453.29
.814	.72704	68,7	. 68550	72,7	.8jı6	41,0	. 83670	46,0	463819.55
0.815	0.72773	68,6	0.68587	72,8	0.85197	40,3	9.83624	46, 1	464145.82
. 816	. 72841	68,5	. 68514	72,8	. 85238	40,8	. 83578	46,2	464512.08
. 817	. 72910	68.4	. 68.41	72,9	.85278	40,8	. 83532	46,3	464838.35
. 818	. 72978	68.4	. 6836	73.0	. 85319	40,7	. 83485	46,4	465204.61
. 819	.73046	68,3	. 68395	73,0	.85360	40,5	. 83439	46,5	455530.83
0.820	0.73115	68,2	0.68222	73.1	9.85400	40,5	9.83393	46.5	4658 57.14
.82I	. 73183	68,	. 68149	73,2	. 85 +41	40,4	. 83316	46,5	470223.41
.822	. 73251	68.1	. 6837	73.3	. 85481	40,4	. 83329	46.7	470549.67
. 823	. 73319	68,0	. 68002	73.3	. 85522	40,3	. 83253	46,8	470915.94
. 824	.73387	67,9	.67c29	73,4	.85562	40,2	. 83205	46,9	471242.20
0.825	0.73455	67,9	0.67855	73.5	9.85502	40, I	9.83159	47,0	471608.47
. 825	. 73523	67,8	. 67782	73.5	. 83642	40,0	. 83112	47, I	471934.73
. 827	. 73590	67,7	. 67709	73.5	. 85582	40,0	.83054	47,2	472300.93
. 828	. 73558	67,6	. 67635	73.7	. 83722	39.7	. 83017	47,3	$47 \quad 25 \quad 27.26$
. 829	. 73726	67,6	. 67551	73,7	. 85762	39,8	. 82970	47,4	$472953 \cdot 52$
0.830	0.73793	67,5	0.67488	73,8	9.85802	39,7	9.82922	47,5	473319.79
. 831	. 73851	67,4	. $67+14$	73.9	. 8581 r	39,6	.82875	47,6	473646.05
.832	.73928	67,3	. 67340	73.9	. 8188 I	39,6	. 82327	47,7	4740
.833 .834	.73095 .74062	67,3 67,2	. 67265	74,0 74,1	. 85920	39,5	. 82779	47,8	474338.58
. 834	.74062	67,2	. 67192	74,1	. 85960	39,4	. 82732	47,9	474704.85
0.835	0.74130	67,1	0.67118	74, 1	9.86979	39,3	9.82684	48,0	475031.11
. 836	. 74197	67,0	. 67044	74,2	.87038	39,2	. 82636	48,	475357.38
.837	. 74264	67,0	. 65959	74.3	.87078	39,2	. 82588	48,2	475723.64
.838	$\cdot 74331$	65,9	. 65885	74.3	. 87117	39, 1	. 82539	48,3	480049.91
. 839	.74398	66,8	.6682I	7-4,4	.87156	39,0	. 82.49 I	48,4	4804 16.17
0.840	0.74464	66,7	0.66746	74,5	9.8-195	38,9	9.82443	48,5	480742.44
. 8.81	. 74531	66,7	. 66672	74.5	. 87234	38,8	.82394	48,5	48 II 08.70
. 812	. 74598	66,6	. 66597	74,6	. 87273	38,8	. 82346	48,6	4818434.97
.843	.74664	66,5	. 65523	74.7	.87311	38,7	. 82297	48,7	48 I8 or.23
. 844	. 74731	66,4	. 654.48	74,7	. 87350	38,5	. 82248	48,8	482127.50
0.845	0.74797	66,4	0.66373	74.8	9.87388	38,5	9.82199	48,9	482453.76
. 846	-7.4853	66,3	. 600208	74.9	. 87427	38,5	. 82150	49,0	482820.03
. 8478	.74930 .74996	66,2 66,1	. 65223	$7+9$. 87465	38,4 3	.82101	49, I	483146.29
.848 .849	.74996 .75062	66, I	. 66148	75,0 75,1	.87504 .87542	38,4 38,2	. 82052	49,2	$\begin{array}{llll}48 & 35 & 12.56 \\ 48 & 38 & 38\end{array}$
-49	-7502	60,1	. 60073	75,1	. 87542	38,2	. 82003	49,3	$\begin{array}{lllll}48 & 38 & 38.82\end{array}$
0.850	0.75128	66,0	0.65998	75,1	9.87580	38,2	9.81953	49.4	484205.09
4	-i sinh iu	$\omega F_{0}{ }^{\prime}$	cosh in	$\omega \mathrm{FO}^{\prime}$	$\log \frac{\sinh i u}{i}$	$\omega \mathrm{FO}^{\prime}{ }^{\circ}$	$\log \cosh$ iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos 4$	$\omega \mathrm{Fu}^{\prime}$	$\log \sin u$	ωF_{j}^{\prime}	$\log \cos u$?	$\omega F_{i}{ }^{\prime}$	u
0.850	0.75128	66,0	0.65998	75, 1	9.87580	38,2	9.81953	49,4	$48^{\circ}+2^{\prime} 05^{\prime \prime} .09$
. 851	. 75194	65,9	. 65523	75,2	.87618	38,1	. 81904	49.5	$48+53 \mathrm{I} \cdot 35$
. 832	. 75260	65,8	. 65848	75,3	.87656	35,0	.81854	49,5	484857.61
. 853	. 75326	65,8	. 65773	75.3	. 8,694	37,9	. 81805	49.7	485223.88
. 854	. 75391	65,7	. 65597	75,4	.87732	37,8	. 81755	49,8	485550.14
0.855	0.75457	65,6	0.65522	75,5	9.87770	37,8	9.81705	49,9	4859 I6.41
. 856	. 75523	65,5	. 655.46	75,5	. $8-808$	37,7	. 81655	50,0	490242.67
. 857	. 75588	65,5	. 63471	75,6	.87845	37,6	.81605	50, 1	490608.94
. 858	. 75654	65.4	. 65395	75,7	. 87883	37.5	. 81555	50,2	490935.20
. 859	. 75719	65,3	. 65319	75,7	. 87920	37,5	.81504	50,3	49 I3 OI. 47
0.850	0.75784	65,2	0.65214	75.8	9.87958	37,4	0.81454	50,4	491627.73
. 861	. 75849	65,2	. 65168	75,8	.87955	37,3	.81403	50,5	49 I9 54.00
. 852	. 75915	65, 1	. 65092	75,9	. 88033	37,2	. 81353	50,7	$4923 \quad 20.26$
. 853	. 75980	65,0	. 65016	75,0	. $830 \% 0$	37,2	.81302	50,8	492646.53
. 854	. 75045	64,9	. 64940	76,0	.88107	37, 1	.8125I	30,9	493012.79
0.855	0.76110	64,9	0.64854	76, I	9.88144	37,0	9.81200	51,0	493339.06
. 856	. 75174	64,8	. 64788	76,2	.8318I	36,9	.81149	51,1	493705.32
.857	. 76239	64,7	. 64712	76,2	. 83218	36,9	. 8iog 8	51,2	494031.59
. 858	. 75304	64,6	. 64635	76,3	. 88255	36.8	.81047	$5 \mathrm{I}, 3$	494357.85
. 859	. 76368	64,6	. 64559	76,4	. 88291	36,7	. 80095	51,4	494724.12
0.870	0.75433	64,5	0.64483	76,4	9.88328	36,6	9.80944	51,5	495050.38
. 871	. 76497	6.4 .4	. 64406	76,5	. 83355	36,6	. 80893	51,6	495416.65
.872	. 76562	64.3	. 64330	76,6	. 88.101	36,5	. 8381 I	51,7	495742.91
. 873	. 75625	64,3	.64253	76,6	. 88.38	36,4	.80789	51,8	50 O1 09.18
. 874	. 76690	64,2	. 64176	76,7	. 88.474	36,3	. 80738	51,9	50 at 35.44
0.875	0.76754	64,1	0.64100	76,8	2.88510	36,3	9:80686	52,0	5008 or.71
. 875	. 75818	64,0	. 64023	75,8	. 83547	36,2	. 80634	52, I	50 II 27.97
. 877	. 76882	63,9	. 63945	75.9	. 83583	36,I	. 8058 I	52,2	5014
. 878	. 76946	63,9	. 63869	76,9	. 83319	36,0	. 80529	52,3	501820.50
. 879	. 77010	63,8	. 63792	77,0	. 88555	36,0	. 80477	52,4	502146.76
0.880	0.77074	63.7	0.63715	77, I	9.88591	35,9	9.80424	52.5	502513.03
. 881	. 77138	63,6	. 63638	77, 1	. 88727	35,8	. 80372	52,6	502839.29
. 882	. 77201	63,6	. 63561	77,2	. 83762	35,8	. 80319	52,7	503205.56
. 883	. 77265	63.5	. 63.484	77,3	. 88798	35,7	. 80266	52,9	$5035 \begin{array}{llll}51.82\end{array}$
. 884	. 77328	63,4	. 63.406	77,3	. 88834	35,6	:80213	53,0	503858.09
0.885	0.77391	63.3	0.63329	77,4	9.88869	35,5	9.80160	53.1	504224.35
. 885	. 77455	63,3	. 63252	77,5	. 88905	35,5	. 83107	53,2	504550.62
. 887	. 77518	63,2	. 63174	77,5	. 88940	35.4	. 80054	53.3	504916.88
. 888	. 7758 I	63,1	. 63095	77,6	.88776	35,3	. 80001	53.4	505243.15
. 88	. 77644	63,0	. 63019	77,6	.89011	35,2	. 79047	53.5	505609.41
0.890	0.77707	62,9	0.62941	77,7	9.80046	35,2	9.79894	53,6	505935.68
. 891	. 77770	62,9	. 62853	77,8	. 8308 r	35.1	. 79840	53.7	510301.94
. 892	. 77833	62,8	. 62785	77,8	. 89116	35,0	. 79786	53.8	$5 \mathrm{5I} 0628.21$
. 893	. 77896	62,7	. 62708	77,9	.89151 .89185	35.0	.79732 .70678	53.9	$\begin{array}{lllll}51 & 09 & 54.47 \\ 51 & 13 & 20.74\end{array}$
. 894	. 77958	62,6	. 62630	78,0	. 89185	34,9	-79578	54, 1	511320.74
0.895	0.78021	62,6	0.62552	78,0	9.89221	34,8	9.79624	54,2	511647.00
. 896	. 78083	62,5	. 62474	78,1	. 89256	34.7	. 79570	54.3	512013.27
. 897	. 78146	62,4	. 62396	78, 1	. 89291	34,7	. 79515	54,4	$\begin{array}{llll}51 & 23 & 39.53 \\ 51\end{array}$
. 898	-78208	62,3	. 62318	78,2	. 89325	34,6	. 79461	54.5	$\begin{array}{lllllllllll}51 & 27 & 05.80\end{array}$
. 899	. 78270	62,2	. 62239	78,3	. 89360	34,5	. 79406	54,6	513032.06
0.900	0.78333	62,2	0.62161	78,3	9.89394	34,5	9.79352	54,7	513358.33
\square	-isinh in	* Fo'	cosh in	- F $\mathrm{F}^{\prime}{ }^{\prime}$	$\log \frac{\sinh \text { is }}{1}$	* FFo'	Hog coshtin	$\sim \mathrm{F}_{0}{ }^{\prime}$	4

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos 4$	$\omega \mathrm{Fo}^{\prime}$	$\log \sin u$	$\omega \mathrm{Fo}^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
0.900	0.78333	62,2	0.62161	78,3	9.89394	34,5	9.79352	54,7	$51^{\circ} 33{ }^{\circ} 58{ }^{\prime \prime} .33$
. 901	. 78395	62,1	. 62083	78,4	. 89429	31.4	. 79297	54,8	513724.59
. 902	. 78457	62,0	. 62004	78,5	. 89.463	34.3	. 79242	55,0	5 I 4050.86
. 903	. 78519	6I,9	. 61926	78,5	. 89497	34,3	. 79187	55, I	5144 17.12
. 904	.78531	6I,8	. 61847	78,5	. 89532	34,2	-79132	55,2	$514743 \cdot 38$
0.905	0.78543	6I,8	0.61769	78.6	9.89566	34,1	9.79077	55,3	515109.65
. 906	. 78704	61,7	. 61690	-8.7	. 87500	34,0	. 79021	55,4	515435.91
. 907	. 78,56	61,6	. 61611	78,8	. 890634	34,0	-7896	55,5	515802.18
. 908	. 78327	61,5	. 61532	-8,8	. 80668	33.9	. 78910	55.6	52 O1 28.44
. 909	-78839	61,5	. 61453	78,9	. 89702	33,8	.78855	55,8	520454.71
0.910	0.78950	61,4	0.61375	790	9.89735	33,8	9.78799	55,9	520820.97
. 911	. 79012	61,3	. 61296	79,0	.8769	33,7	.78743	56.0	52 II 47.24
. 912	. 79073	61,2	. 61217	79,	. 8 CO3	33,6	. 78387	56,	521513.50
.913	. 79134	6I, 1	.6I137	79, 1	. 89336	33,6	.78531	56,2	52 I8 39.77
.914	. 79195	6I, 1	. 61058	79,2	.83870	33,5	.78574	56,3	522206.03
0.915	0.79256	61,0	0.60979	79,3	9.89903	33,4	9.78518	56,4	522532.30
.916	. 79317	60,9	. 60900	79,3	. 89937	33,3	. 78.62	56,6	522858.56
. 917	. 79378	60,8	. 60820	79,4	. 89970	33,3	.78405	56,7	
. 918	. 79439	60,7	. 60741	79,4	. 90003	33,2	. 783.48	56,8	523551.09
. 919	. 79500	60,7	. 60662	79,5	. 90036	331	. 78291	56,9	523917.35
0.920	0.79560	60,6	0.60582	70, 0	9.90070	33, 1	9.78234	57,0	524243.62
.921	. 79521	60,5	. 60502	79,6	.90103	33,0	. 78177	57,2	$52 \quad 4609.89$
. 922	. 79581	60,4	. $60+23$	79,7	. 90136	32,9	. 78120	57,3	524936.15
. 923	. 79742	60,3	. 60343	79.7	. 90168	32,9	.78063	57,4	
. 924	. 78802	60,3	. 60263	79,8	.90201	32,8	. 78005	57,5	525628.68
0.925	0.79862	60,2	0.60183	79,9	9.90234	32,7	9.77948	57,6	525954.95
. 925	. 79922	60,1	. 60104	72,9	. 90267	32,7	. 77890	57,7	530321.21
. 927	. 79982	60,0	. 60024	80,0	. 90299	32,6	.77832	57,9	53 of $47 \cdot 48$
. 928	. 80042	59,9	. 59944	80,0	. 90332	32,5	. 77774	58.0	53 10 13.74
.929	. 80102	59,9	. 59864	80, I	. 90364	32,5	.77716	58, 1	531340.01
0.930	0.80162	59,8	0.59783	80,2	9.90397	32,4	9.77558	58,2	531706.27
. 931	. 80222	59.7	- 59703	80,2	. 90429	32,3	. 77500	58,4	532032.53
. 932	. 8028 I	59,6	- 59623	80,3	. 90461	32,3	. 7754 I	58,5	532358.80
. 933	. 80341	59,5	- 59543	80,3	-90494	32,2	.77483	58,6	532725.06
. 934	. 80400	59,5	. 59462	80,4	.90525	32,I	. 77424	58,7	533051.33
0.935	0.83460	59,4	0.59382	80,5	9.90558	32,1	9.77365	58,8	
. 936	. 80519	59.3	. 59301	80,5	. 90550	32,0	. 77306	59,0	533743.85
. 937	. 80579	59,2	- 59221	80,6	. 90522	31,9	. 77247	59,1	534110.12
-. 938	. 80538	59,I	- 59140	80,6	-90554	31,9	. 77188	59,2	534436.39
. 939	. 80597	59,1	. 59050	83,7	. 90586	31,8	. 77129	59,3	534802.65
0.940	0.80755	50,0	0.58770	83,8	9.90717	31,7	9.77070	59,5	535128.92
.941	. 80815	58,9	. 58898	80,8	. 90749	31,7	. 77010	59,6	535455.18
. 942	. 80874	58.8	. 58817	80,9	. 9078 I	31,5	. 76950	59,7	5358 21.45
. 943	. 80932	58,7	. 58735	80,9	. 90812	31,5	. 7689 I	59,8	54 O1 47.71
. 944	. 80991	58,7	. 58555	81,0	.9084	31,5	. 76831	60,0	540513.98
0.945	0.81050	58,6	0. 58574	81,0	9.90875	31,4	9.76771	60,1	$54 \quad 0840.24$
. 946	. 81108	58,5	. 58493	$8 \mathrm{I}, \mathrm{I}$. 90905	31,3	. 75711	60,2	
-947	.81167	58.4	. 58.412	$8 \mathrm{I}, 2$. 90938	31,3	. 76650	60,3	$54 \begin{array}{llll}54 & 15 & 32.77\end{array}$
-948	.81225	58,3	. 5833 I	81,2	. 90969	$3 \mathrm{I}, 2$. 76590	60,5	5418489.04
-949	. 81283	58,2	. 58250	81,3	. 91000	31, I	. 76529	60,6	542225.30
0.950	0.81342	58,2	0.58168	81,3	9.9103 I	31,1	9.76469	60,7	5425 51. 57
4	-isinh iu	$\omega \mathrm{F}_{0}{ }^{\prime}$	cosh iu	$\infty F_{0}{ }^{\prime}$	$\log \frac{\sinh \text { iu }}{i}$	* Fa'	$\log \cosh$ in	$\omega \mathrm{Fo}^{\prime}$	-

Gircular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos \mathrm{u}$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\infty \mathrm{F}_{0}{ }^{\prime}$	$109 \cos u$	$\infty \mathrm{F}_{0}{ }^{\prime}$	u
0.950	0.81342	58,2	0.58168	8I,3	9.91031	31,1	9.75469	60,7	$34^{\circ} 25^{\prime} 51^{\prime \prime} .57$
.95I	. 81400	58, I	. 58087	$8 \mathrm{I}, 4$.91062	31,0	. 7 J 408	60,9	543917.83
. 952	.8I458	58,0	. 58006	$8 \mathrm{I}, 5$. 91093	30,9	. 76317	$6 \mathrm{I}, 0$	$5+32+4.10$
. 953	.8i516	57.9	- 57924	81.5	. 91124	30,9	. 76286	61, 1	543610.3^{65}
.954	.81574	57,8	. $578+2$	81,6	.91155	30,8	.76225	61,2	$5+3936.63$
0.955	0.8163 I	57,8	0.57751	8r,6	9.91185	30,7	9.76163	6r,4	544302.89
. 956	. 81689	57,7	. 57679	81,7	. 91215	30,7	. 76102	61,5	544529.15
. 957	. 81747	57,6	. 57597	$8 \mathrm{I}, 7$. 91247	30,6	.76040	61,9	544953.42
. 958	.81804	57,5	. 57516	81.8	. 91278	30,5	. 75979	6I, 8	545321.68
. 959	. 81862	57,4	. 57.434	8I,9	. 91308	30,5	. 75917	6I,9	545647.95
0.950	0.81919	57,4	0.57352	81,9	9.91339	30.4	9.75855	62,0	5500 I 4.21
.96I	0.81976	57,3	. 57270	82,0	. 91369	30,3	. 75793	62,2	550340.48
.962	. 82034	57,2	. 57 I S8	82,0	. 91359	30,3	. 75731	62.3	550706.74
. 963	. 82091	57, I	. 57105	82,1	. 91429	30,2	. 75668	62.4	55 10 33.01
. 964	. 821.48	57,0	. 57024	82, 1	. 91460	30,1	.75606	62,6	55 I3 59.27
0.955	0.82205	56,9	0.56942	82,2	9.91490	30,1	9.75543	62,7	551725.54
. 966	. 82262	56,9	. 56859	82,3	. 91520	30,0	. $75+80$	62,8	552051.80
. 967	.82319	55,8	. 56777	82,3	. 91550	29,9	. 75417	63,0	$552+18.07$
. 968	.82375	56,7	. 56695	82,4	. 91580	29,9	. 75354	63,1	532744.33
. 969	. $82+32$	56,6	. 55612	82,4	.91510	29,8	.75291	63,2	553110.60
0.970	0.82489	56,5	0.56530	82,5	9.91639	29,8	9.75228	63.4	553436.86
. 971	. 82545	56,4	-564.17	82,5	. 91669	29.7	. 75154	63,5	5538 03.13
. 972	. 82501	56,4	. 56365	82,6	. 91699	29,5	. 75101	63,6	554129.39
. 973	. 82558	56,3	. 56282	82,7	-91729	29,6	. 75037	63,8	554455.66
. 974	82714	56,2	. 56200	82,7	.91758	29,5	. 74973	63,9	$55 ; 821.92$
0.975	0.82770	56,1	0.56117	82,8	9.91787	29,4	9.74909	64,1	55 51 48.19
. 976	. 82826	56,0	. 56034	82,8	.91817	29,4	. 74845	64.2	555514.45
. 977	. 82892	56,0	. 55351	82,9	.91846	29,3	. 74781	64,3	555840.72
. 978	. 82938	55,9	- 55858	82.9	.91875	29,2	. 74717	64,5	560206.98
. 979	. 82994	55,8	- 55785	83,0	.91905	29,2	. 74652	64,6	560533.25
0.980	0.83050	55,7	0.55702	83,0	9.91934	29, 1	9.74587	64.8	550859.51
.98I	. 83105	55,6	. 55619	83,1	. 91963	29,1	. 74522	64,9	551225.77
.982	. 83161	55.5	- 55536	83,2	. 91992	29,0	-74457	65,0	$5615 \quad 52.04$
.083	. 83216	55,5	- 55453	83.2	. 92021	28,9	. 74392	65,2	$\begin{array}{lllllllllllllll}56 & 19 & 18.30\end{array}$
. 984	. 83272	55,4	- 55370	83.3	. 92050	28,9	. 74327	65,3	$55 \quad 2244 \cdot 57$
0.985	0.83327	55,3	0.55285	83.3	9.92079	28.8	9.74262	65,5	5626 10.83
. 986	. 83382	55,2	. 55203	83.4	. 92107	28,8	. 74193	65,6	562937.10
. 987	. $83+38$	55,1	. 55120	83.4	. $9213{ }^{5}$	28.7	. 74131	65,7	563303.36
. 988	. 83493	55,0	. 55036	83.5	. 92165	28,6	. 74065	65.9	563629.63
. 989	. 83548	55,0	. 54953	83.5	.92193	28,6	. 73999	66,0	563955.89
0.990	0.83603	54,9	0.54859	83,5	9.92222	28,5	9.73933	66,2	554322.16
. 991	. 83657	54,8	. 54785	83.7	. 92250	28,4	. 73866	66,3	564648.42
. 992	. 83712	54,7	-54702	83.7	. 92279	28.4	. 73800	66,5	56 50 14.69
. 993	. 83767	54.6	-546I8	838	. 923307	28,3	. 73734	66.6	565340.95
. 994	. 83821	54.5	. 54534	838	. 92335	28,3	. 73667	66,8	565707.22
0.995	0.83876	54.5	0.54450	83.9	9.92364	28,2	9.73600	66,9	570033.48
. 996	. 83930	54,4	. 54366	83,9	. 92392	28.1	. 73533	67,0	570359.75
. 997	. 83985	54,3	. 54282	84,0	. 92420	28,1	. 73466	67,2	570726.01
. 998	. 84039	54.2	. 54198	84.0	. 92448	28,0	. 73399	67,3	571052.28
. 999	. 84093	54, 1	-54114	84,1	.92475	27,9	. 73331	67,5	
1.000	0.84147	5400	0.54030	84,1	9.92504	27,9	9.73254	67,6	57 I7 44.8I
-	-isinh in	$\cdots \mathrm{FO}^{\prime}$	cosk in	* For ${ }^{\prime}$	$\log \frac{\sinh }{1}$	$\cdots \mathrm{F}_{0}{ }^{\prime}$	rog cosh in	* F9'	-

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos 0$	$\omega^{\omega} \mathrm{F}_{0}{ }^{\prime}$	$\log \sin 0$	${ }^{\omega} \mathrm{FF}^{\prime}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
1.000	0.841 .47	54,0	0.54030	84, 1	9.92504	27,9	9.73264	67,6	$57^{\circ} 17^{\prime} 44^{\prime \prime} 8 \mathrm{I}$
.001	. $8+231$	53,9	. 53345	$8+2$	- G2532	27,8	. 73196	67,8	572111.07
. 002	. 84255	53,9	. 53852	84.3	-92560	27,8	. 73128	67,9	$572437 \cdot 34$
. 003	. $8+309$	53,8	. 3378	84,3	-92587	27,7	. 73060	68,1	572803.60
. 004	. 84363	53,7	. 53693	84,4	. 92515	27,6	. 72992	68,2	573129.87
1.005	$0.8+416$	53,6	0.53609	8.4 .4	9.92543	27,6	9.72924	68.4	5734 56.13
. 006	. $8+470$	53,5	. 33524	84,5	-92573	27,5	. 72855	68,5	573822.40
. 007	. $8+523$	53,4	- 5 24io	$8+5$. 923508	27,5	. 72787	68.7	574148.65
. 008	. 84577	53.4	- 53355	$8+6$	-92725	27,4	. 72718	68,3	5745 I 4.92
. 009	. 84630	53,3	. 53271	8.4,6	-92752	27,3	.72549	69,0	574841.19
1.010	$0.8+683$	53,2	0.53186	84,7	9.92-80	27,3	9.72580	69,1	575207.45
. 011	. 84736	53, I	. 53101	8.7	.92807	27,2	. 7251 I	69,3	575533.72
. 012	. 84789	53,0	. 53017	84,8	-92334	27,2	. $72+41$	69,5	575859.98
. 013	. $8+8+2$	52,9	. 52932	84,8	. 92851	27,1	. 72372	69,6	580226.25
. 014	. $8+895$	52,8	. 52847	84,9	.92388	27,0	. 72302	69,8	5805 52.5I
1.015	$0.8+9+8$	52,8	0.52762	85,0	9.92915	27,0	9.72232	69,9	580918.78
. 016	. 85001	52,7	. 52577	85,0	. 92942	25,9	. 72162	70, 1	581245.04
. 017	. 85053	52,6	. 52592	85.1	. 92969	26,9	. 72072	70,2	5816 II. 31
. 018	. 85106	52,5	. 52507	85.1	. 92996	26,8	. 72022	70,4	
. 019	. 85158	52,4	. 52422	85,2	. 93023	25,7	. 71951	70,6	5812303.84
1.020	0.8521 I	52,3	0.52337	85,2	9.93049	26,7	9.71881	70,7	5826 30.10
. 021	. 85263	52,3	. 52251	85,3	. 93075	26,6	. 71810	70,9	532956.37
. 022	. 85315	52,2	. 52166	85,3	. 93103	26,6	. 71739	71,0	583322.63
. 023	. 85367	52, I	-52081	85.4	.93129	26,5	. 71668	71,2	583648.90
. 024	. 85419	52,0	. 51595	85,4	. 93156	26,4	. 71595	71,3	5840 I5.16
1.025	0.85471	51,9	0.51910	85.5	9.93182	26,4	9.71525	71,5	584341.43
. 026	. 85523	51,8	. 51824	85,5	. 93208	26,3	. 71453	71, 7	584707.69
. 027	. 85575	51,7	- 51739	85,6	. 93235	26,3	-71382	$7 \mathrm{I}, 8$	585033.95
. 028	. 85627	51,7	- 51653	85,6	.93231	26,2	. 71310	72,0	58 5400.22
. 029	. 85678	51,6	. 51568	85,7	. 93287	26, 1	. 71238	72,2	585726.49
1.030	0.85730	51,5	0.51482	85,7	9.93313	26,1	9.71165	72,3	590052.75
. 031	.85781	51,4	. 51396	85,8	. 93339	26,0	. 71093	72,5	590419.02
. 032	. 85833	51,3	. 51310	85,8	. 93365	25,0	. 71020	72.6	590745.28
. 033	. 85884	51,2	. 51224	85,9	.9339I	25,9	. 70948	72,8	59 II II. 54
. 034	. 85935	51,1	. 51139	85,9	. 93417	25,8	. 70875	73,0	59 I4 37.8I
1.035	0.85985	51,I	0.51053	86,0	9.93443	25.8	9.70802	73, I	$\begin{array}{llll}59 & 18 & 04.07\end{array}$
.036	. 85037	51,0	. 50967	86,0	. 93459	25.7	. 70729	73,3	592130.34
. 037	. 85088	50.9	. 50881	86, I	. 93494	25,7	. 70055	73.5	592456.50
. 038	. 85139	50,8	. 50794	85,1	. 93520	25,6	. 70582	73,6	$5928 \quad 22.87$
. 039	. 85190	50,7	-50708	85,2	.93546	25,6	. 70508	73,8	593149.13
1.0 .40	0.86240	50,6	0.50622	86,2	9.9357 I	25,5	9.70434	74,0	$5935 \quad 15.40$
. 041	.85291	50,5	- 50536	85,3	. 93597	25,4	. 70360	74,2	593841.66
. 042	. 83341	50,4	-50449	85,3	. 93622	25,4	. 70286	74,3	594207.93
.043	. 85392	50,4	. 50363	86,4	. 93647	25,3	. 70211	74,5	5945 34.19
. 044	. 86442	50,3	. 50277	86,4	.93573	25,3	. 70137	74,7	594900.46
1.045	0.85 .492	50,2	0.50190	85,5	$9.936 ¢ 8$	25,2	9.70062	74,8	595226.72
. 046	. 85543	50,1	- 50104	85,5	. 93723	25, I	. 69987	75,0	5955152.99
. 047	. 85593	50,0	-50017	85,6	-93748	25,1	.69912	75,2	595919.25
. 048	. 85643	49,9	- 49030	85,6	. 93773	25,0	. 69837	75,4	$600245 \cdot 52$
. 049	. 85693	49,8	- 49844	86,7	.93758	25,0	. 69751	75,5	6006 II. 78
1.050	0.85742	49,8	0.49757	86,7	9.93823	24,9	9.69585	75,7	600938.05
u	-i sinh iu	$\sim \mathrm{Fo}^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh i 8}{i}$	$\omega \mathrm{Fo}^{\prime}{ }^{\prime}$	$\log \cosh \mathrm{iu}$	* $\mathrm{F}_{0}{ }^{\prime}$,

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\cos \mathrm{u}$	$\omega F_{0}{ }^{\circ}$	$\log \sin u$	ωF_{u}^{\prime}	10 cos 4	$\omega F_{0}{ }^{\prime}$	U
1.050	0.85742	49,8	0.49757	$8{ }^{8,7}$	0.93823	24,9	9.69885	75,7	$60^{\circ} 09^{\prime} 38^{\prime \prime} .05$
. 051	. 85792	49.7	. 4950	80.8	. 93848	24,9	. 69.110	-5,9	10 I 3 C 4.31
. 052	. $838+2$	40,6	. 49584	85,0	.9583	24,8	. 69534	7,	601630.53
. 053	. 85891	49,5	. 49457	86,9	. 0.3888	24,7	. 6×458	71,2	$6019 \quad 56.84$
. 054	. 85941	49,4	- 49410	85,9	. 93522	24,7	. 6,381	75,4	602323.11
1. 055	0.85090	49,3	0.49323	87,0	0.93947	24,6	9.60305	75,6	6102649.37
. 055	. 87039	49,2	. 49235	87.0	. 93972	2, 5	. 60,223	76.8	603015.64
. 057	.87083	49, I	- 49149	87.1	.93909	24.5	. 60151	72,0	fo 3341.00
. 058	.87138	49, I	. 49062	87, 1	. 94021	24.5	. 60074	\%,	$60 \quad 3708.17$
. 059	.87187	40,0	. 48974	87,2	. 94045	24,4	.6899	77,3	604034.43
1.060	0.87236	48,9	0.48887	87,2	9.94069	24,3	2.68930	77,5	50.400 .69
. 0 ¢ 1	.87284	48,8	. 48800	87,3	. 94094	24,3	. 6838	75,7	60.4726 .95
. 052	. 87333	48,7	. 48713	8-,3	. 94118	24,2	. $68-64$	7-9	605053.22
. 063	. 87382	48.6	. 48125	87,4	. 94142	24,2	.688	-8,0	605419.49
. 064	. $87+30$	48,5	. 48538	87,4	.94165	24, 1	. 68608	-3,2	605745.75
1.055	0.87479	48,5	0.48450	87.5	9.94190	24,1	9.68530	78,4	61 or 12.02
. 055	.87527	48,4	. .8363	87,5	. 04214	24,0	. 68.851	-8,6	61 of 38.28
. 057	. 87575	48.3	. 4825	87,6	. 94238	23.9	. 68373	78,8	610804.55
. 058	.87624	48,2	. 48188	87,6	. 94262	23.9	. 688294	79,0	6111130.81
.059	.8-572	48,1	. 48100	87,7	-9+285	23,8	.68215	79,2	611457.08
1.070	0.87720	48,0	0.48012	87,7	9.94310	23,8	9.68135	79,3	6181823.34
. 071	. 87758	47,9	. 47925	87,8	. 94334	23,7	. 68056	20.5	612149.61
.072	.87816	4, 8	.47837	87,8	-94357	23,7	. 67976	79,7	612515.87
. 073	.8,854	47,7	-47749	87,9	. 94381	23.3	. 67806	79,9	612842.14
.074	.87011	47,7	. 47661	87,9	. 94405	23,6	.67816	80, 1	6 I 3208.40
1.075	0.87959	47,6	0.47573	88,0	9.94428	23.5	2.67736	80,3	613534.67
. 076	. 83007	47,5	. 47.485	88,0	. $9+45 \mathrm{I}$	23.4	.6,656	80,5	613900.93
.077	. 83054	47,4	. 47337	88, r	. 9.4475	23.4	. 67575	80,7	614227.20
.078	.83101	47,3	.47:09	88, 1	. $94+98$	23,3	. 67494	80,9	614553.46
. 079	.88I49	47,2	-47221	83,1	.94522	23.3	. 67414	81, I	614919.73
1.080	0.88 r 96	47, I	0.47133	88,2	9.94545	23.2	9.67332	81,3	61 5245.99
. 081	. 88243	47,0	. 47045	88,2	. 94568	23,2	. 67251	$8 \mathrm{I}, 5$	615612.25
.032	. 83290	47,0	. 46956	88,3	. 94591	23, 1	. 67169	81,7	615938.52
. 083	. 88337	46,9	. 46858	88,3	. 94614	23,0	. 67088	81,9	620304.79
. 084	. 88384	46,8	. 46780	88,4	. 94637	23,0	. 67006	82,I	620631.05
1. 085	0.88430	46,7	0.46691	88,4	9.94660	22,9	9.66692 .4	82,3	620957.31
. 085	. 88.877	46,6	. 46603	88,5	. $9+683$	22,9	. 66841	82,5	$62 \begin{array}{llll}623.58\end{array}$
. 087	. 88524	46,5	. 46514	88.5	. 94706	22,8	. 66759	82,7	621649.84
. 088	. 83570	46,4	.46426	88,6	-94729	22,8	. 66676	82,9	622016.11
. 089	. 88616	46,3	. 46337	88,6	. 94751	22,7	. 65593	83,1	622342.37
1.090	0.88563	46,2	0.46249	88,7	9.94774	22,7	9.66510	83.3	$62 \quad 2708.64$
. 091	. 88709	46,2	. 46160	88,7	. 94797	22,6	. 66426	83,5	623034.90
. 092	. 88755	46, 1	. 46071	88,8	.94819	22,5	. 66343	83.7	6234 O1.17
. 093	. 88801	46,0	. 45582	88,8	. 94842	22,5	. 660259	83.9	623727.43
. 094	. 88847	45,9	-45894	88,8	.94854	22,4	. 66175	84,1	684053.70
1.095	0.88893	45,8	0.45805	88,9	9.94887	22,4	9.66091	84.3	624419.96
. 096	. 88939	45,7	. 45716	88,9	. 94909	22,3	. 66007	84.5	624746.23
. 097	. 88984	45,6	. 45627	89,0	. 94935	22,3	. 65922	84,7	625112.49
. 098	. 89030	45,5	-45538	820	. 94954	22,2	.65837	84,9	625438.76
. 099	. 89075	45,4	. 45449	89,1	. 94976	22,2	. 65752	85,1	625805.02
1.100	0.8912 I	45,4	0.45360	89,1	9.94998	22,1	9.65667	85,3	63 or 31.29
и	-isinh ia	$\cdots \mathrm{Fo}^{\prime}$	cosh in	$\omega \mathrm{Fa}^{+}$	Los $\frac{\sinh \text { it }}{1}$	$\omega \mathrm{Fa}^{*}$	rog cosh in	$\omega \mathrm{Fe}_{0}{ }^{+}$:

Cirsular Functions.

u	$\sin u$	$\omega \mathrm{F}_{u^{\prime}}$	$\cos u$	- $\mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{u}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	山
1.100	0.89121	45.4	0.45350	89,1	9.94998	22,I	9.65667	85.3	63° O1 $31^{\prime \prime} .29$
. 101	. 89166	45.3	. +5270	8,2	. 95020	22,0	. 6558 I	85,5	630457.55
. 102	. 83211	45.2	. 45181	80,2	. 95042	22,0	. 65496	85,8	530823.82
. 103	. 80256	45, 1	. 4500,2	8503	. 95054	21.9	. $65+10$	85,0	63 II 50.08
. 104	. 89301	45,0	. 45003	89,3	. 95086	21,9	. 65324	85,2	631516.35
1.105	0.89346	44.9	0.44913	89,3	9.95108	2I,8	9.65238	86,4	631842.61
. 106	. 80391	+4,8	. 41824	80,4	.95130	2I, 8	.65151	86,6	632208.88
. 107	. 83436	4,4,7	- 47435	89,4	. 95151	21,7	. 65064	86,8	632535.14
. 108	. 89481	4,6	- $4+46$	89,5	.95173	21,7	. 64977	87,0	6329 O1.41
. 109	. 89525	4.6	- $4+556$	89,5	. 95195	21,6	. 64890	87,3	633227.67
I. 110	$0.895{ }^{\circ}$	41,5	0.41466	89,6	9.95216	21,6	9.64803	87,5	$63 \quad 35 \quad 53.93$
. III	. 87614	H,4	. 41377	89,6	. 95238	21,5	. $6+715$	87,7	633920.20
. 112	. 8355	4,3	. 41287	89,7	. 95259	21,5	. 64628	87,9	$63+246.46$
. II3	. 89703		. 14197	89,7	.9528I	21,4	. 64540	88,1	63.4512 .73
. II4	. 83747	44,1	. 41108	80,7	. 95302	2I,3	. 6445 T	88,4	634938.99
I.II5	0.89791	44,0	0.44018	89,8	9.95323	21,3	9.64363	88,5	635305.26
. 116	. 83835	+3,9	- 43928	85,8	. 95345	21,2	. 64274	88,8	635631.52
. 117	. 80870	43,8	. 43838	89,9	. 95365	21,2	. 64185	89,0	635957.79
. 118	. 89923	43.7	-437-48	89,9	. 95387	21,1	. 64095	89,3	640324.05
. 119	. 89966	43,7	. 43658	90,0	.95408	21, 1	. 64007	89,5	640650.32
1.120	0.90010	43,6	0.43568	90,0	$9.95+29$	21,0	9.63917	89,7	641016.58
. 121	. 90054	43.5	. 43478	90, I	. 95450	21,0	. 63827	90,0	$6+13+2.85$
. 122	. 00097	43.4	. 43388	90, I	. 9547 I	20,9	. 63737	90,2	$6+1709.11$
. 123	. 90140	43,3	. 43298	90, I	. 95492	20,9	. 63547	90,4	642035.38
. 124	.90184	43,2	. 43308	90,2	.95513	20,8	. 63556	90,6	642401.64
I. 125	0.90227	43, 1	0.43118	90,2	9.95534	20,8	9.63466	90,9	642727.91
. 126	. 90270	43,0	. 43027	90,3	-95554	20,7	. 63375	91, I	6430 54.17
. 127	. 90313	42,9	. 42937	90,3	. 95575	20,6	. 63283	$9 \mathrm{I}, 3$	643420.44
. 128	. 90356	42,8	. 42847	90,4	. 95595	20,6	. 63192	91,6	643746.70
. 129	. 90399	+2,8	.42756	90,4	.95616	20,5	.63100	91,8	644112.97
1. 130	0.90441	42,7	0.42666	90,4	9.95637	20,5	9.63008	92,1	644439.23
. 131	. 90484	42,6	. 42575	90,5	. 95657	20,4	. 62916	92,3	644805.50
. 132	. 90526	42,5	-42485	90,5	. 95678	20,4	. 62824	92,5	645131.76
. 133	. 90569	42,4	. 42394	90,6	. 95698	20,3	. 62731	92,8	645458.03
. 134	. 9061 I	42,3	. 42304	90,6	.95718	20,3	. 62638	93,0	645824.29
1.135	0.90653	42,2	0.42213	90,7	9.95738	20,2	9.62545	93,3	65 or 50.56
. 136	. 90696	42, 1	. 42123	90,7	. 95759	20,2	. 6245 I	93.5	650516.82
. 137	. 90738	42,0	. 42032	90,7	. 95779	20, I	. 62358	93, ${ }^{\text {a }}$	650843.08
. 138	. 90780	41,9	. 41941	90,8	. 95799	20, I	. 62264	94.0	651209.35
. 139	. 90822	4I,9	-41850	90,8	. 95819	20,0	. 62170	94,2	65 I5 35.6I
1.140	0.90863	41,8	0.41759	90,9	9.95839	20,0	9.62075	94,5	65 I9 OI. 88
. 141	. 90905	41,7	. 41669	90,9	. 95859	19,9	. 61981	94,7	652228.14
. 142	. 90947	41.6	. 41578	90,9	. 95879	19,9	. 61885	95,0	6525 54.4I
. I43	. 90988	41,5	. 41487	91,0	. 95859	19,8	.61791	95,2	$65 \quad 2920.67$
. 144	.91030	41,4	. 41336	91,0	. 95918	19,7	.61695	95,5	653246.94
I. 145	0.91071	41,3	0.41305	91,I	9.95938	19,7	9.61600	95,8	653613.20
. 146	.91112	41,2	-41214	91,1	. 95958	19,6	. 61504	96,0	653939.47
. 147	. 91153	4I,1	. 41122	91,2	. 95977	19,6	. 61408	96,3	654305.73
. 1.48	. 91195	41,0	.41031	91,2	. 95997	19,5	. 61311	96,5	654632.00
. 149	. 91235	40,9	-40940	91,2	. 95016	19,5	. 61215	96,8	654958.26
1.150	0.91276	40,8	0.40849	91,3	9.96036	19,4	9.6III8	97,0	655324.53
-	-isinh in	$\infty \mathrm{Fo}^{\prime}$	cosh iu	$\omega \mathrm{F}_{0}{ }^{\text {r }}$	$\log \frac{\sinh i u}{i}$	$\Leftrightarrow \mathrm{F}_{0}{ }^{\prime}$	log cosh in	$\propto \mathrm{Fo}^{\prime}{ }^{\prime}$	и

Circular Functions.

4	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\pm \mathrm{F}_{\mathrm{G}}{ }^{\prime}$	log cos 4	$\omega \mathrm{F}_{\mathrm{g}}{ }^{\prime}$	u
1.150	0.91275	40,8	0.10849	91,3	9.96036	10,4	9.61118	67,0	$65^{\circ} 53 \times 24.53$
. 151	.91317	+0,8	. 40757	91,3	. 96055	19.4	. 61021	97,3	$655^{5 t} 30.79$
. 152	. 91358	40,7	. 40565	91,4	. 060075	19.3	.60923	97,6	660017.06
. 153	. 91399	40,6	. 40575	91,4	. 96094	19.3	.6082'	97,8	660343.32
. 154	. 91439	40,5	. 40.483	91,4	. 96113	19,2	. 60728	98,	660709.59
1. 155	0.91479	40,4	0.40392	91,5	9.95132	19,2	9.60632	98.4	661035.85
. 156	. 91520	40,3	. 40300	91,5	. 95152	19,1	. 60531	[4,5	651402.12
. 157	.91560	40,2	. 40209	91,6	.96171	10,1	. 60432	¢8,9	661728.38
. 158	. 91600	40,1	. 40117	91,6	. 96190	19,0	. 60333	90,2	66 20 54.65
. 159	. 91640	40,0	. 40026	91,6	. 96209	19,0	. 60233	90,4	662420.9 r
I. 160	0.91680	39,9	0.39934	91,7	9.951223	18,9	9.60134	907	662747.18
. 161	. 91720	39,8	. 39842	91,7	. 96246	18,9	. 60034	100,0	663113.44
. 162	. 91760	39,8	- 39751	91,8	. 96255	18,8	. $5993+$	100,3	$663+39.70$
. 163	. 91800	39,7	- 39659	91,8	. 96384	18,8	. 59834	100,5	663805.97
. 164	. 91839	39,6	- 39567	91,8	. 96303	18,7	. 59733	100,8	664132.23
1. 165	0.91879	39,5	0.39475	91,9	9.96322	18,7	9.59632	101, 1	$664+58.50$
. 166	. 919	39,4	. 39383	91,9	. 96340	18,6	. 59531	101,4	664824.76
. 157	. 91958	39.3	-39291	92.0	. 96359	18.6	- 59430	101,6	665151.03
. 158	.91997	39,2	. 39199	92,0	. 96377	18,5	. 59328	101,9	665517.29
. 169	. 92036	39, 1	. 39107	92,0	. 96396	18,5	. 59226	102,2	$665843 \cdot 56$
1.170	0.92075	39,0	0.39015	92,I	9.96414	18,4	9.59123	102,5	670209.82
.I7I	.92114	38,9	. 38923	92, 1	.95433	18,4	. 59021	102,8	670535.09
.172	. 92153	38,8	. 3883 I	92,2	. 9645 I	18,3	. 58918	103, I	670902.35
. 173	. 92192	38,7	. 38739	92,2	.96469	18,2	. 58815	103.4	671228.62
. 174	. 92230	38,6	. 3844	92,2	. 96487	18,2	. 58711	103, 5	671554.88
1.175	0.92269	38,6	0.38554	92,3	9.96506	18, 1	9.58607	103.9	671921.15
.170	. 923307	38,5	. 38.862	92,3	. 96524	18, 1	. 58503	104,2	672247.41
.177	. $923+6$	38,4	. 38370	92,3	. $965+2$	18,0	. 58399	10.45	$67 \quad 2613.68$
.178	. 92384	38,3	-38277	92,4	.96560	18,0	- 58294	104,8	672939.94
. 179	. 92422	38,2	. 38185	92,4	.96578	17,9	. 58189	105,1	673306.21
1.180	0.92 .461	38,1	0.38092	92,5	9.96596	17,9	9.58084	105,4	$67 \quad 3632.47$
. 181	. 92499	38,0	. 38000	92,5	. 95614	17,8	. 57978	105,7	673958.74
. 182	. 92537	37,9	. 37907	92,5	. 96631	17,8	. 57872	106,0	674325.00
. 183	. 92574	37,8	. 37815	92,6	. 96649	17,7	. 57766	106,3	674651.27
. 184	. 92612	37,7	. 37722	92,6	.96667	17,7	. 57660	106,6	$67 \quad 5017.53$
1. 185	0.92650	37,6	0.37630	92,6	9.96684	17,6	9.57553	106,9	675343.80
. 185	. 92687	37,5	. 37537	92,7	. 96702	17,6	. 57446	107,2	675710.06
. 187	. 92725	37,4	-37414	92,7	. 96720	17,5	. 57339	107,5	6800
. 188	. 92762	37,4	. 37352	92,8	.96737	17,5	. 57231	107,9	$\begin{array}{lllll}68 & 04 & 02.59\end{array}$
. 189	. 92800	37,3	. 37259	92,8	. 96755	17,4	. 57123	108,2	680728.85
1. 190	0.92837	37,2	0.37166	92,8	9.96772	17,4	9.57015	108,5	681055.12
. 191	. 928874	37,1	. 37073	92,9	. 96789	17,3	. 56900	108,8	681421.38
. 192	. 929 II	37,0	. 36980	92,9	-96807	17,3	. 56797	109,1	681747.65
- 193	. 92948	36,9	. 36887	92,9	. 96824	17,2	. 56688	109,4	682113.91
. 194	. 93985	36,8	. 36794	930	. 9084	17,2	. 56578	10988	082440.18
1. 195	0.93022	36,7	0.30701	93,0	9.96858	17,1	9.56468	110, 1	682806.44
. 196	. 93058	36,6	. 36608	93,1	. 96875	17,1	. 56358	110,4	6831382.71
- 197	. 93095	36,5	. 36515 .	93, 1	. 96893	17,0	. 56247	110,7 I110	168
.198 .199	.93131	36,4 36,3	.36422 .36329	93,1 93.2	. 96910	17,0 16,9	.56137 .56025	111,0 I11,4	$\begin{array}{lll} 68 & 38 & 25.24 \\ 68 & 41 & 51.50 \end{array}$
. 199	.93168	36,3	-30329	93,2	.90927	10,9	. 50025	111,4	
I. 200	0.93204	36,2	0.36236	93.2	9.96943	16,9	9.53914	111,7	$68 \quad 45 \quad 17.77$
\square	-isinh is	\pm Fo'	cosh in	- Fs'	$\log \frac{\sinh }{1} \mathrm{in}$	$\pm \mathrm{Fi}^{*}$	fageoshin	$\sim \mathrm{F}^{\prime}{ }^{\prime}$:

Circular Functions．

u	$\boldsymbol{\operatorname { s i n }} u$	$\omega \mathrm{F}_{u^{\prime}}$	$\cos 4$	$\omega F_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
1.200	0.93204	36，2	0.36236	93，2	9.95343	16，9	9.55914	III，7	$69^{\circ} 45^{\prime} 17$ ブ．77
． 201	． 93240	36， 1	． 35143	93，2	． 0.950	16，8	． 55802	112，0	684844.03
． 202	． 93276	36，0	． 36049	93，3	．99977	16，8	． 5560,0	II2，4	685210.30
． 203	． 93312	36,0	． 35955	93.3	．9594	16，7	． 55577	I12，7	685536.56
． 204	． $933+8$	35，9	． 3585	93，3	－．9JOII	16，7	－ 55464	II3，0	685902.83
1.205	0.93384	35，8	0.35759	63，4	9．97027	16，6	9.5535 I	II3， 4	690229.09
． 206	． 93420	35.7	． 35.55	93．4	.97044	I6，6	． 55237	I13，7	6905 55．36
． 20%	． 93455	35.6	－ 35582	93，5	．97050	I5，5	． 55124	IIf，I	690921.62
． 203	． 9349 I	35，5	． 35489	93.5	． 97077	16，5	． 55002	IIT 4	691247.89
． 209	． 93526	35，4	． 35395	93，5	． 97093	16，4	－54895	IIf， 8	6916 14．15
1.210	0.93562	35，3	0.35302	93，6	9．97110	16，4	9．54780	II5， 1	691940.42
． 211	． 93597	35，2	． 35238	93，6	．97126	16，3	． $51+665$	115,5	$69 \quad 2305.68$
． 212	． 9333	35， 1	－ 35115	93，6	－6フI！	16，3	－54549	115,8	692632.95
． 213	． 936067	35.0	－35021	93，7	． 97159	16，2	－5433	I 16，2	692959.21
． 214	． 93702	34，9	－3＋927	93，7	． 97175	16，2	． 54317	I 16，5	6933 25．47
1.215	0.93737	34，8	0.34834	93，7	9.97191	16，I	9.54200	I 16，9	693651.74
． 216	． 93372	34，7	－34740	93，8	．97207	16，I	． 5.1083	117，2	69 ＋0 18．00
． 215	．93806	34，6	－3＋646	93.8	－97223	16，0	． 53365	I 17，${ }^{\text {¢ }}$	$69+3+14.27$
． 218	． 938.4 I	34.6	－ $3+5532$	93，8	．97239	16，0	． 53848	IIS，O	694710.53
． 219	． 93875	34，5	－3458	93，9	．97255	15，9	． 53730	I 18，3	695036.80
1.220	0.93910	34，4	0.34365	93，9	9．0727I	15，9	9.536 II	118,7	695403.06
． 221	． 93944	34，3	－3427	93.9	． 97287	15，8	－53492	I 19，I	$6957 \quad 29.33$
． 222	－93978	34，2	－3＋177	94，0	． 97303	15，8	－ 53373	119,4	$700055 \cdot 59$
． 223	． 94013	34， 1	－ 34083	94.0	． 97319	15，7	． 53253	I 19，8	700421.85
． 224	． 94047	34，0	． 33889	94，0	． 97334	15,7	． 53133	I 20，2	700748.12
1.225	0.9408 I	33，9	0.33895	94， 1	9.97330	15，6	9.53013	120，5	70 II 14.39
． 226	． 94114	33，8	． 33800	94， 1	． 97366	15，6	． 52892	120，9	70 If 40.05
． 227	－94148	33，7	－33706	94， 1	． 97381	15.5	． 52771	I2I，3	7 T IS 06．c2
． 228	． 94182	33，6	－33512	94，2	． 97397	15，5	． 52650	121，7	702133.18
． 229	． 94215	33,5	－ 33518	94，2	． 97412	15，5	－52528	122，I	702.459 .44
1.230	0.94249	33.4	0.33424	94，2	9．97＋28	15，4	9．52．106	122，5	$70 \quad 28 \quad 25.71$
． 231	． 9.9282	33,3	－ 33330	94，3	－9743	15，4	． 52283	122，9	703151.98
． 232	－94316	33，2	－ 33235	94，3	－97458	15.3	． 52160	123，2	703518.24
． 233	． 94349	33．1	－33171	94，3	． 97474	15，3	－52036	123，6	703844.5 I
． 234	． 94382	33，0	－33047	94.4	－97489	15,2	． 51913	12．4，0	704210.77
1.235	0.94415	33，0	0.32952	94，4	9.97504	15.2	9.51788	124，4	$7045 \begin{array}{lll}70 & 37.04\end{array}$
． 236	． 91448	32，9	－32858	94，4	． 97519	15， 1	． 51664	124，8	704903.30
． 237	． 94481	32，8	－ 32763	94，5	． 97534	I5，I	－ 51539	125.2	$70 \quad 5229.57$
． 238	． 94513	32,7	－ 32669	94，5	． 97549	15，0	． 51413	125，6	705555.83
． 239	－ 94546	32，6	－32574	94，5	． 97504	15，0	． 51287	126，1	$70 \quad 5922.09$
1.240	0.94578	32，5	0.32480	94.6	9.97579	14，9	9.51161	126，5	710248.36
.241	．946II	32，4	－ 32385	94，6	． 97594	14,9	－ 51034	126，9	710614.62
． 212	－94643	32，3	－ 32290	94，6	． 97609	14，8	． 50907	127，3	710940.89
.243	－94675	32，2	－ 32196	94，7	． 97624	14，8	． 50780	127，7	711307.15
． 24	－94708	32， 1	－32101	94，7	－97638	14，7	－ 50652	128， 1	71 I6 33.42
1． 245	0.94740	32，0	0.32006	94，7	9.97653	14，7	9.50524	I28，6	7 I I9 59.68
． 246	－ 94772	31，9	－31912	94，8	－97628	14，6	－ 50395	129，0	712325.95
． 245	． 94803	31，8	－31817	94，8	． 97682	14，6	． 50266	129，4	712652.21
． 248	． 94835	31,7	－31722	94，8	.97697	14，5	． 50136	129，8	713018.48
． 249	． 94867	31，6	－31627	94,9	． 97711	14，5	－ 50006	130，3	713344.74
1.250	0.94898	31，5	0.31532	94,9	9.97725	I4，4	9.49875	130，7	7137 II．OI
＂	－i sinh iu	$\infty \mathrm{F}_{0}{ }^{\prime}$	cosh in	${ }^{*} \mathrm{Fo}^{\prime}$	$\operatorname{iog} \frac{\sinh i n}{i}$	$\pm \mathrm{F}^{\circ}{ }^{\circ}$	100 cosh iu	$\omega \mathrm{FO}_{0}{ }^{\prime}$	u

Circular Functions.

u	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{Fij}^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{j}{ }^{\prime}$	$\log \cos u$	$\omega F_{0}{ }^{\prime}$	u
I. 250	0.94898	31,5	0.31532	94, 0	0.97\%25	I 4,4	9.49875	130.7	$71^{\circ} 37^{\prime} 11.01$
.251	-94930	31,4	- $31+37$	94,9	. $97 \pi 70$	14.4	. 49745	131, 1	714037.27
. 252	-94951	31,3	- 313.42	95,0	. 97755	$1+3$.49513	131, ${ }^{\text {, }}$	714103.54
.253	-94993	3I,2	- 31247	95.0	.97759	$1+3$. 49481	132,0	714720.80
. 254	.95024	31,2	-31152	95,0	.97783	I 4,2	. 49349	132,5	-1 5056.07
1.255	0.95055	31,1	0.31057	95, 1	0.97795	14.2	9.49216	132,9	715422.33
. 256	. 95085	31,0	. 300632	95, 1	.97812	It, 1	. 49083	133,4	71 5748.60
. 257	.95117	30,9	- 30857	95, I	. 97825	I, I I	. 48050	133.8	72 01 14. 86
. 258	-95148	30,8	-30772	95, 1	.97840	14.0	. 48316	13.4 .3	720441.13
. 259	.95178	30,7	-30577	95,2	. 97854	1, 1 ,	. 4858 I	134,	720807.39
1. 2650	0.95309	30,6	0.30582	95,2	9.97878	13.9	9.48545	135.2	72 II 33.66
. 251	. 95240	30,5	. 30486	95,2	.9,882	13,3	. 48411	135.7	721459.92
. 262	. 95270	30,4	. 30301	95.3	. 9,7893	13.9	. 48275	136, 1	721826.19
.263	. 95300	30,3	. 30296	95.3	. 97909	13,8	. 48138	135,5	722162.45
. 264	.95331	30,2	-30201	95,3	.97923	13,7	.48002	137,1	722518.72
1.265	0.95361	30,1	0.30105	95,4	9.97937	13,7	9.47854	137,6	$722844 . c 8$
. 266	. 9539 r	30,0	. 30010	95.4	. 97951	13.7	. 47726	138,0	723211.24
.267	. 95421	29,9	.29914	95,4	. 9,9064	13.6	. 47588	138,5	723537.51
. 268	. 95451	29.8	. 20319	95.5	. 97978	13,5	. 47449	1390	723903.77
.269	.95480	29,7	. 29724	95,5	.97991	13.5	. 47310	139,5	$72+30.04$
1.270	0.95510	29,6	0.29628	95,5	9.98005	13,5	9.47170	140,0	724556.30
. 271	. 95540	29,5	. 29533	95.5	. 98718	13.4	. 47030	140.5	724922.57
. 272	. 95569	29.4	. 29437	95,6	.98032	13.4	. 4188	If 1.0	725248.83
. 273	. 95559	29.3	. 29341	95.6	. 98045	13.3	. 45748	141.5	725615.10
. 274	. 93628	29,2	. 29246	95,6	.98058	13.3	. 46506	1420	723941.36
1.275	0.95657	29,2	0.29150	95,7	9.98072	13,2	9.46464	142,5	730307.63
. 276	. 95686	29,1	. 29054	95.7	. 28085	13,2	. 43321	143.0	730633.83
. 277	. 95715	29,0	. 28059	95.7	. 98098	13.1	. 46178	143,5	731000.16
. 278	. 9574	28,9	. 28853	95.7	. 081 III	13.1	. 46034	I4,4,1	731326.42
. 279	. 95773	28,8	. 28767	55,8	.98124	13,0	. 45830	144,6	731652.69
I. 280	0.95802	28,7	0.28072	95.8	9.98137	13,0	9.45745	145, 1	$73 \quad 2018.95$
. 281	. 95830	28,6	. 28576	95,8	. 98150	13,0	. 45600	145,6	732345.22
. 282	. 95859	28,5	. $28+80$	95,9	.98163	12,9	. 45454	146,2	732711.48
. 283	. 95887	28,4	.28384	95.9	.98176	12.9	. 45307	I46,7	733037.75
. 284	. 95915	28,3	. 28288	95,9	. 98187	12,8	.45160	147,3	733404.01
I. 285	0.95944	28,2	0.28192	95,9	9.98202	12,8	9.45013	147,8	733730.28
. 288	. 95972	28,1	. 28096	96,0	-98.214	12,7	. 44855	148,3	734055.54
. 287	. 96000	28,0	. 28000	96.0	. 08227	12.7	. +4716	148,9	734422.81
. 288	. 96028	27,9	. 27904	96,0	. 98240	12,6	. 44567	149.5	734749.07
. 289	. 96056	27,8	. 27808	96,1	.98252	12,6	. 44117	150,0	735115.34
I. 290	0.90084	27,7	0.27712	96, 1	9.98265	12,5	9.44267	150,6	735441.60
.291	.96III	27,6	. 27616	96, I	. 98277	12,5	. 44116	151,1	735807.86
. 292	. 96139	27.5	. 27520	96,	. 98290	12,4	. 43965	151,7	74 O1 34.13
. 293	. 96166	27,4	. 27.424	96,2	. 98302	12,4	. 43813	1523	740500.39
. 294	. 96194	27,3	. 27328	96,2	.98315	12,3	. 43660	153,9	740826.66
I. 295	0.96221	27,2	0.27231	96,2	9.98327	12,3	9.43507	153.5	74 I1 52.92
. 296	. 96248	27,1	. 27135	96,2	. 98339	12,2	. 43353	1540	741519.19
. 297	. 96275	27,0	. 27039	96,3	. 98351	12,2	. 43199	r54, 6	$7418 \quad 45.45$
. 298	. 96302	26,9	. 26943	963	. 98364	12,2	. 43048	155.2	$7+2211.72$
. 299	. 96329	26,8	. 26846	96,3	. 98376	12,1	. 42888	155,8	742537.98
I. 300	0.96356	26,7	0.26750	96,4	9.98388	12, I	9.42732	156,4	742904.25
-	-i sinhiu	$\cdots F_{\theta^{\prime}}$	cosh is	$\bullet F_{9}{ }^{\prime}$	$\operatorname{rog} \frac{\sinh \text { in }}{i}$	$\omega \mathrm{Fa}^{\text {a }}$	Fog cosh in	$\omega F_{6}{ }^{\prime}$	\square

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{0}^{\prime}$	$\cos 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\underline{\log \sin u}$	* Fo^{\prime}	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	\square
I. 300	0.96355	26,7	0.26750	96,4	9.98388	12,I	9.42732	156,4	$74^{\circ} 29^{\prime} 04.25$
. 301	. 9.3383	26,7	. 25654	96,4	.98400	12,0	. 42575	157,	743230.51
. 302	.9409	26,6	. 26557	96,4	. 98412	12,0	. 42418	157,7	743556.78
. 303	. 90436	26,5	. 26.461	96,4	. 98.24	II,9	- 42260	158,3	7+ 3923.04
. 304	. 96462	26,4	. 26364	96,5	-98436	11,9	. 42102	158,	744249.31
1.305	0.95488	26,3	0.26258	96,5	9.98475	II,8	9.41912	159,5	74 4615.57
. 306	. 96515	26,2	. 25171	96,5	. 98459	I 1,8	. 41782	160,2	744941.84
. 307	. 96541	26,1	. 26075	96,5	. 9847 I	II,7	. 41522	160,	745308.10
. 308	. 96567	26,0	. 25978	96,6	. 98.83	r 1,7	. 41.461	16I,-4	745634.37
-309	. 96593	25,9	. 25882	96,6	.98494	II, 6	-41299	162, I	750000.63
1.310	0.96618	25,8	0.25785	95,6	9.98506	II,6	9.41137	162,7	750326.90
. 311	. 9664	25,7	. 25088	95,6	. 98518	II,5	. 40974	163,4	7506 53.16
. 312	. 96670	25,6	. 25592	96,7	. 98329	II,5	. 40810	164,	751019.43
. 313	. 96695	25.5	. 25495	96,7	.98541	II,5	. 40646	164,	751345.69
. 314	. 9672 I	25,4	. 25398	96,7	. 98552	$\mathrm{II}_{2} 4$. 40481	165,4	751711.96
1.315	0.96746	25,3	0.25302	96,7	9.98563	II,4	9.40315	166, 1	752038.22
. 316	. 95771	25,2	. 25205	96,8	. 98575	I I, 3	. 40148	166,7	$75 \quad 2404.49$
. 317	. 96797	25,1	. 25108	96,8	. 98585	II, 3	-39981	167,4	752730.75
. 318	. 96822	25,0	. 25011	96,8	. 98597	I I,2	-39814	168, 1	753057.01
. 319	. 96847	24,9	. 24914	96,8	. 98608	II, 2	-39545	168,8	753423.28
1.320	0.06872	24,8	0.248 r 8	96,9	9.98520	II, I	9.39476	169,5	753749.54
. 321	. 96896	24,7	. 24721	96,9	. 98631	II, I	- 39306	170,2	754115.81
. 322	. 96921	24,6	. 2.4624	96,9	. 98542	II,O	-39135	170	754442.07
. 323	. 960246	24,5	. 24527	96,9	. 98553	11,0	-38964	171,7	754808.34
-324	. 96970	24,4	-24430	97,0	. 98664	10,9	. 38792	172,4	755134.60
1.325	0.96994	24,3	0.24333	97,0	9.98575	10,9	9.38619	173, 1	755500.87
. 325	. 97019	24,2	. 24236	97,0	. 98885	10,8	. 38446	I73,9	755827.13
. 327	. 97043	24, 1	. 21139	97,0	. 98696	10,8	- 38272	174,6	76 O1 53.40
. 328	. 97067	24.0	. 24042	97, I	.98707	10,8	-38097	175,3	750519.66
. 329	. 97091	23,9	. 23945	97, 1	.98718	10,7	. 37921	176, 1	760845.93
1.330	0.97115	23,8	0.23848	97, 1	9.98729	10,7	9.37744	176,9	761212.19
. 3.31	. 97139	23.8	. 23750	97, 1	. 98739	10,6	. 37567	177,6	761538.46
. 332	. 97162	23.7	. 23553	97,2	. 98750	10,6	- 37389	178,4	761904.72
. 333	. 97186	23.6	. 23556	97,2	. 98760	10,5	- 37210	179,2	762230.99
. 334	. 97209	23.5	. 23459	97,2	.9877I	10,5	-3703I	180,0	762557.25
1. 335	0.97233	23,4	0.23362	97,2	9.98781	10,4	9.36851	180,8	762923.52
. 336	. 97256	23,3	. 23264	97,3	. 98792	10,4	. 36569	181,6	763249.78
. 337	- 97279	23,2	. 23167	97,3	-98802	10,3	. 36487	182,4	763616.05
. 338	. 97303	23, 1	. 23070	97,3	. 98812	10,3	-36305	183,2	763942.31
. 339	-97326	23,0	. 22973	97,3	. 98823	10,3	. 36121	184,0	764308.58
1.340	0.97348	22,9	0.22875	97,3	9.98833	10,2	9.35937	184,8	764634.84
. 341	. 97371	22,8	. 22778	97,4	. 98883	$1 \mathrm{O}_{2} 2$	-35751	185,7	$7650 \mathrm{OI} . \mathrm{II}$
- 342	. 97394	22,7	.22581	97,4	. 98853	10, 1	- 35565	186;5	765327.37
- 343	. 97417	22,6	. 22583	97,4	-98863	10, 1	- 35378	187,3	765653.63
. 344	. 97439	22,5	. 22486	97,4	. 98873	10,0	-35191	188,2	770019.90
1. 345	0.97462	22,4	0.22388	97,5	$9.9888{ }_{3}$	10,0	9.35002	189,1	770346.16
. 346	. 97484	22,3	. 22291	97,5	. 98893	9,9	. 34813	189,9	770712.43
. 347	. 97506	22,2	. 22193	97,5	- 98903	9,9	-34622	190,8	77 10 38.69
- 348	. 97528	22,I	. 22006	97,5	.98513	9,8	-3443I	191,7	77 14 04.96
-349	. 97550	22,0	. 21998	97,6	. 98923	9,8	-34239	192,6	771731.22
1.350	0.97572	21,9	0.21901	97,6	9.98933	977	9.34046	193,5	$77 \quad 2057.49$
u	-isinh in	$\omega \mathrm{FG}^{\prime}$	cosh in	$\triangle \mathrm{Fo}^{\prime}$	$\log \frac{\sinh \text { in }}{i}$	$* F_{0}{ }^{\prime}$	oucosh in	$\pm F^{\prime \prime}$	\square

Circular Functions.

u	$\boldsymbol{\operatorname { s i n }} \mathrm{u}$	$\omega \mathrm{F}_{10}{ }^{\prime}$	$\cos u$	$\omega \mathrm{Fj}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}$;	$\log \cos u$	$\omega F_{j}{ }^{\text {j }}$	4
1.350	0.97572	21,9	0.21901	97,6	9.08933	9.7	9.34076	103,5	$7720 \quad 37.49$
. 351	. 97504	21,8	. 21803	95,6	. 98542	9,7	. 33352	194,4	75 $2+23.75$
. 352	. 97.016	21.7	. 21705	95,6	-68152	9,7	-. 33157	195.3	77 2750.02
. 353	. 97538	21,6	. 21608	97.6	. 68922	9,6	- 3346 I	100,2	773110.23
-354	. 97550	21,5	. 21510	55.7	. 68371	9,6	. 33264	10, 2	77 34 42.55
1. 355	0.97581	21,4	0.21413	97.7	9.58:81	9,5	9.33057	108,1	773808.81
-355	. 97702	21,3	. 21315	57.7	.0890	9,5	. 3288	196.1	774135.08
. 357	. 97723	21,2	. 21217	95,	-9,000	9.4	.3250	200,0	774501.34
- 358	. 9774	21,1	. 21119	97.0	. 99009	9.4	. 32458	201,0	77.4827 .61
. 359	. 97765	21,0	. 21022	97,8	.93019	9,3	. 32257	202,0	75153.87
1.360	0.97-8j	20,9	0. 20934	97.3	9.92028	9,3	9.32054	203.0	375520.14
. 361	. 97807	20,8	. 20826	57.8	. 99037	9,2	. 31851	204,0	775846.40
. 362	. 97828	20,7	. 20728	97.8	$.990+5$	9,2	-31656	205,0	7802 12.67 -8 05
.353	. 97819	20,6	. 20630	57,8	.6,055	9,2	-31451	200,0 $20-0$	$\begin{array}{llll}78 & 05 & 38.93 \\ 78 & 09 & 05.20\end{array}$
. 364	. 97899	20,5	. 20533	97,9	. 9805	9,1	. 3124	20;,0	780905.20
1. 365	0.97890	20,4	0.20435	97.7	9.99074	9,I	9.31037	208,0	781231.46
. 365	. 97310	20.3	. 20337	97,9	.99083	9.0	. 30828	20¢11	781537.73
. 367	.97931	20,2	. 20239	97.9	. 99092	980	- 30519	210, I	781923.99
- 368	.97951	20,1	. 20141	980	-99101	8.9	. 30108	211,2	$\begin{array}{llll}73 & 22 & 50.25 \\ 73 & 26 & 16.52\end{array}$
. 369	. 97971	20,0	. 25043	68,0	. 90110	8,9	. 30196	212,3	$73 \quad 2616.52$
I. 370	0.97991	19,9	$0.199+5$	98.0	9.99119	8,8	9.29983	213.4	$\begin{array}{llll}78 & 29 & 42.78 \\ -8 & 33 & 09.05\end{array}$
-371	. 980 rr	19,8	. 1984	c8,0	. 99127	8.8	. 29769	214.5	$\begin{array}{llll}-8 & 33 & 09.05\end{array}$
. 372	. 9803	19,7	. 19749	c80	. 99136	8.7	. 29554	21.6	
. 373	. 98050	19,7	. 19551	98, 1	.99145	8,7	. 29338	216,7	78 8 40 01.58 8 27.8
-374	. 98070	19,6	. 19553	¢8, 1	. 99154	8,7	. 29121	217,8	4327.84
1.375	0.98089	19,5	0.19+55	88.1	9.99162	8,6	9.28903	219,0	-8 4654.11
. 375	. 98109	19.4	. 1935	C8, 1	.99171	8,6	. 28583	220,1	735020.37
- 377	-98128	19.3	. 19359	98.1	.99179	8.5	. 28.62	221,3	${ }_{78}^{78} 5346.64$
-378	. 98147	19,2	. 19150	02,1	. 09188	8.5	. 28210	222,5	$\begin{array}{lllll}78 & 57 & 12.90\end{array}$
-379	. 98166	19,1	. 19062	082	.99196	8,4	. 28017	223.7	790039.17
1. 380	0.98185	19,0	0.18064	98,2	9.99205	8.4	9.27793	224,9	790405.43
. 38 I	. 98204	18,9	. 18836	98,2	. 99213	8.3	. 27568	223,1	790731.70
. 382	. 08223	18,8	. 1878	58,2	. 99221	8,3	. 27311	2274,3	79 10 57.96
.383	.98242	18,7	. 18869	98.3	.99230	8.3	. 27113	228,5	79.14
. 384	.98250	18,6	. 18371	58.3	. 99238	8,2	. 26884	229,3	721750.49
1.385	0.98279	I8,5	0. 18473	98,3	9.90246	8,2	9.26554	231,1	79.2116 .76
. 385	. 98.97	18.4	. 18375	983	. 93254	81	. 26422	232,3	792443.02
. 387	. 98315	18,3	. 18276	58.3	. 99262	8,1	. 261.89	233,6	7928109.29
. 388	. 98334	18,2	. 18178	583	. 99270	8,0	. 25955	234,9	$793135 \cdot 55$
. 389	. 98352	I8,1	. 18080	98,4	. 99278	8,0	. 25719	236,3	7935 OI. 82
1.390	0.98370	18,0	0.17981	98,4	9.99285	7,9	9.25482	237,6	793828.08
. 391	. 98388	17,9	. 17883	58,4	.99294	7,9	. 25244	238,9	794154.35
. 392	. 98.406	17,8	.17785	98,4	. 89302	7,8	.25004	240,3	794520.61
- 393	. 98424	17,7	. 17685	98,4	. 99310	7,8	. 24753	241,7	794846.88
. 394	.98447	17,6	. 17588	¢8,4	.99318	78	. 24521	243. 1	$79 \quad 5213.14$
1.395	0.98459	17,5	0.17489	98.5	9.99325	7,7	9. 24277	244,5	795539.40
- 396	. 98476	17,4	. 17391	98,5	. 99333	7,7 7,6	. 24.2382	245,9	$7)$ 80 80 02 02 1.63
. 397	. 98.94	17,3 172	- 17.922	98,5 88.5	. 99341	7,0 7,6	. 233537	24,8,8	8005158.20
. 398	. 98511	17,2 17,1	.17194 .17095	98,5 98,5	. 999356	7,6 78	. 23288	250,3	800924.46
I. 400	0.98545	17,0	0.16997	98,5	9.99363	7,5	9.23036	251,8	801250.73
-	-isinh in	ωF^{\prime}	cosh ind	${ }^{*} \mathrm{Fo}^{\prime}$	tose $\frac{\operatorname{tinh} \text { ta }}{1}$	- $\mathrm{Fe}^{\text {a }}$	logeosh in	$\pm \mathrm{F}_{\mathrm{Q}^{\prime}}$	-

Cirsular Functions:

u	$\sin 4$	$\omega F_{0}{ }^{\prime}$	$\cos 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
I. 400	0.98545	17,0	0.16997	98,5	9.99363	7,5	9.23036	251,8	$80^{\circ} 12^{\prime} 50^{\prime \prime} .73$
. 401	. 98562	16,9	. 16898	98,6	. 99371	7,4	.22784	253,3	801616.99
.102	. 98579	16,8	. 16800	98.6	. 99378	7,4	. 22530	251,8	801943.25
.403	. 98596	16,7	. 16701	58,6	. 99386	7,4	.22274	256,4	802309.52
. 404	. 98612	16,6	. 16602	98,6	. 99393	7,3	. 22017	258,0	802635.79
I. 405	0.98629	16.5	0.16504	58,6	9.99400	7,3	9.21758	259,5	$80 \quad 30 \quad 02.05$
. 406	. 98645	16,4	. 16.405	98,6	. 994108	7,2	. 21.128	261, 1	803328.32
. 407	. 98562	16,3	. 16306	98,7	. 99415	7,2	. 21236	252,8	8035154.58
. 408	. 986 -8	16,2	. 16208	98.7	. 99422	7,1	. 20372	264,4	80.4020 .85
. 409	. 98694	I6, 1	. I6109	98,7	. 90129	7,I	. 20707	266,1	804347.11
I. 410	0.98710	16,0	0.16010	98,7	9.90436	7,0	9.20410	267,8	$80 \quad 4713.38$
- 411	.98726	15,9	. 13912	68,7	. 92443	7,0	. 20172	269,5	805039.64
. 412	. 98742	15,8	. 15813	98,7	. 95450	7,0	. 19901	271,2	805405.91
.413	. 98758	15,7	. 15714	98,8	. 9945	6,9	- 19629	272,9	805732.17
.414	. 98773	I5,6	. 15615	98,8	. 99454	6,9	. 19355	274,7	810058.44
I.415	0.98-89	15,5	0.15517	c8,8	9.99471	6,8	9.19080	276,5	81 of 24.70
. 416	. 98804	15.4	. 15418	98,8	. 99478	6,8	. 18802	278,3	81 0750.97
.417	. 98820	I5,3	. 15319	58,8	. 99484	6,7	. 18523	280,2	81 II I7.23
. 418	. 98835	15,2	. 15220	58,8	. 99491	6,7	. 18242	282,0	81 $14443 \cdot 50$
. 419	. 98850	I'5, 1	. 15121	58,9	-99408	6,5	. 17959	233,9	81 1800.76
I. 420	0.98865	15,0	0.15023	98,9	9.99504	6,6	9.17674	285,8	812136.02
. 421	. 98880	I.4,9	. 14924	08,9	. 99511	6,6	. 17388	287,8	812502.29
. 422	. 98895	I 4,8	. 14825	93.9	. 99517	6,5	. 17099	289,7	81 2328.53
. 423	. 98910	I4,7	. 14725	68,9	. 99524	6,5	. 16808	291,7	813154.82
. 424	. 98924	14,6	. $1+527$	98,9	. 99530	6,4	. 16515	293,7	81 3521.08
I. 425	0.98939	14,5	0.14528	¢ 8,9	9.99537	6,4	9.16221	295,8	813847.35
. 426	. 98954	14,4	. 14429	99,0	. 99543	6,3	. 15924	297,8	854213.61
. 427	. 98968	I 4.3	. I4330	99,0	. $995+9$	6,3	. 15635	299,9	8 I 4539.83
. 428	. 98982	I4,2	. I423I	99.0	. 99536	6,2	. 15324	302, I	8 I 49 06.14
. 427	. 98996	I.4, 1	. 14132	99,0	. 99562	6,2	.1502I	304,2	8 I 5232.4 I
1.430	0.99010	14,0	0.14033	99,0	9.99568	6,2	9.14716	306,4	8 I 5558.67
. 431	. 99024	13,9	. 13934	99,0	. 99574	6,1	. $1+408$	308,6	$81592+.94$
. 432	. 99038	13,8	- 13835	99,0	. 99580	6,1	- ruos8	310,9	820251.20
. 433	. 99052	13.7	. 13736	69, 1	. 99586	6,0	. 13786	313,2	820617.47
. 434	. 99066	13,6	. 13637	99,1	.99532	6,0	. 13472	315,5	820943.73
1.435	. 99079	13.5	-. 13538	99, 1	9.99598	5.9	9.13r55	317,8	$82 \begin{array}{llll}82 & 10.00\end{array}$
. 436	. 99093	13.4	. 13439	99,1	. 90604	5,9	. 12836	320,2	821636.26
. 437	. 99106	I 3,3	- 13340	99, I	. 99510	5,8	. 12515	322,7	8220020.53
. 438	.99120	${ }_{1} 13,2$	- I3241	99, I	-99615	5,8	. 12191	325, ${ }^{\text {I }}$	$\begin{array}{lllll}82 & 23 & 28.79\end{array}$
. 439	.99133	13.1	.13142	99, I	.99622	5,8	. 1185	327,6	822655.06
I. 440	0.99146	13,0	0.130 .42	99, I	9.99527	5,7	9.11536	330,1	823021.32
. 441	. 99159	12,9	. 12943	99,2	. 99633	5,7	. 11204	332,7	823347.59
. 4.42	. 99172	12,8	. 12844	99,2	. 99639	5,6	. IOS70	335,3	823713.85
- 443	. 99185	12,7	. 12745	59,2	. 9964	5,6	. 10534	338,0	824040.12
. 444	.99197	12,6	. 12546	99,2	. 99650	5,5	. 10194	340,7	824406.38
1. 445	0.99210	12,5	0.125 .46	99,2	9.99655	5,5	9.09852	343,4	824732.65
. 446	. 99222	12,4	. 12447	99,2	. 99561	5,4	. 09507	346,2	825058.91
. 447	. 99235	12,3	. 12348	99,2	. 99556	5,4	. 09160	349,0	825425.17
. 448	. 99247	12,2	- 12249	99,2	. 99672	5,4	. 08809	35I,9	825751.44
. 449	.99259	12, 1	. 12150	99,3	. 99677	5,3	. 08456	354,8	83 O1 17.70
I. 450	0.99271	I2, I	0.12050	99,3	9.99682	5,3	9.08100	357,8	830443.97
4	-isinh iu	$\omega \mathrm{Fo}^{\prime}$	cosh iu	$\pm \mathrm{Fo}^{\prime}$	$\log \frac{\sinh \text { iu }}{i}$	$\Leftrightarrow \mathrm{FO}^{\prime}$	log cosh in	$\omega \mathrm{F}_{0}{ }^{\prime}$	-

Circular Functions.

u	$\sin 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos u$	$\omega \mathrm{F}^{\prime}{ }^{\prime}$	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	リ
1.450	0.99271	12,I	0.12050	99,3	9.99682	5,3	9.08100	357,8	$83^{\circ} 04{ }^{\prime} 43.97$
. 451	. 99283	12,0	. 11951	99,3	. 99808	5,2	.0,7.40	3t0,8	83 as 10.23
-452	. 99295	II,9	. 11852	99,3	- 90603	5,2	. 07378	363, 0	83 II 36.50
. 453	. 99307	II,8	. 11752	99.3	-996s	5,I	. 07013	367,0	831502.76
. 454	. 99319	II,7	.11653	99,3	. 99703	5, I	.0664	370, 1	$8318 \quad 29.03$
1. 455	0.99330	11,6	0.11554	99,3	9.99708	5,1	9.06272	373.4	832155.29
. 456	. $993+2$	11,5	. 11454	99.3	. 99713	5,0	.05877	376.7	832521.56
. 457	. 99353	II,4	. 11355	99.4	. 99718	5,0	. 05519	380,0	$83 \quad 2847.82$
-458	. 99365	II, 3	. 11256	09,4	. 99723	4,9	.05137	383,4	833214.09
. 459	. 99376	II,2	. 11156	99,4	. 95728	49	. 0.4752	385,8	833540.35
1. 460	0.99387	II, I	0.11057	99,4	9.99733	4,8	9.04364	390,4	833906.62
. 461	. 99398	11,0	. 10958	90,4	. 99738	4,8	. 03971	394,0	$83+232.88$
. 462	. 99.409	10,9	. 10858	99,4	- 99742	4.7	.03576	397,6	834539.15
.463	. 99420	10,8	. 10759	99,4	- 99747	4,7	.03176	401,3	834925.41
.464	. 99430	10,7	. 10659	99.4	. 99752	4,7	.02773	405, I	835251.68
1. 465	0.99441	10,6	0. 10560	99.4	9.99756	4.6	9.02366	409,0	$83 \quad 5617.94$
. 466	. 9945 I	10,5	. 10460	99.5	. 99761	4,6	. 01955	412,9	835944.21
. 467	. 99462	10,4	. 10361	99,5	. 99766	4.5	. 015.40	416,9	840310.47
. 468	. 99472	10,3	. 10262	09.5	. 99770	4.5	. 01121	421,0	840636.74
.469	. 99482	10,2	. 10162	99,5	. 99775	4,4	. 00698	425,2	841003.00
1.470	0.99493	10,1	0. 10063	99.5	9.99779	4.4	9.00271	429.4	$8413 \quad 29.27$
. 471	. 99502	10,0	. 00963	90,5	. 99783	4,3	8.95839	433.7	$8+16 \quad 55.53$
. 472	. 99512	9.9	. 09864	99.5	. 99738	4.3	. 99403	438,2	$8+2021.79$
. 473	. 99522	98	. 09764	99.5	. 99792	4.3	-98963	4.12,7	842348.06
. 474	. 99532	9.7	. 09665	99,5	. 99796	4,2	-98518	447,3	8427 14.32
1.475	0.99542	9,6	0.09565	99,5	9.99800	4,2	8.98068	452,0	$3_{4} 3040.59$
. 476	. 99551	9,5	. 09455	99,6	. 99805	$4, \mathrm{I}$	-97614	456,8	$8+3406.85$
. 477	. 99560	9,4	. 09366	99,6	-99809	4.1	- 97155	461.7	$8+3733.12$
. 478	. 99570	9.3	. 09266	99,6	. 99813	4,0	. 96591	466,7	$8+4059.38$
. 479	. 99579	9,2	. 09167	99,6	. 99817	4,0	-95222	471,8	$8+425.65$
1.480	0.99588	9,1	0.09067	99,6	9.99821	4,0	8.95747	477.0	844751.91
. 48 r	. 99597	9,0	. 08968	99,6	. 99825	3.9	. 95257	482,3	845118.18
. 482	. 99605	8.9	. 08858	99.6	. 99823	3.9	-94782	487,8	$8+5444.44$
. 483	. 99615	8.8	. 08768	99.6	. 99832	3.8	. 94292	493,4	845810.71
. 484	. 99624	8,7	. 08669	99,6	. 99836	3,8	-93796	499, I	85 O1 36.97
1.485	0.99632	8,6	0.08569	90.5	9.99340	3,7	8.93294	504,9	850503.24
. 483	. 9964 I	8,5	.08469	99,6	. 90884	3,7	. 92786	510,9	850829.50
. 487	. 99649	8.4	. 08370	99,6	. 93847	3.6	-92272	517,1	85 II 55.77
. 488	. 99657	8,3	. 08270	99.7	. 99851	3.6	-91751	523.3	85
. 489	. 99666	8,2	.08I71	99.7	. 99855	3.6	. 91225	522,8	$85 \quad 18 \quad 48.30$
1.490	0.99674	8,1	0.08371	99.7	9.99838	3.5	8.90692	536,3	$85 \quad 2214.56$
. 491	. 99682	8,0	. 07971	99,7	. 99862	3,5	. 90152	543,1	$85 \quad 2540.83$
. 492	. 99690	7,9	. 07871	99.7	. 99865	3.4	. 89606	550, 0	$85 \quad 2907.09$
. 493	. 99608	7,8	. 07772	99,7	. 99888	3.4	.80052	557, 1	8553233.36
. 494	. 99705	7,7	. 07572	99.7	. 998872	3.3	. 88491	564.4	853559.62
1.495	0.99713	7,6	0.07572	99.7	9.99875	3.3	8.87923	571,9	853925.89
. 496	. 99720	7,5	. 07473	90.7	. 99888	3.3	.87348	579.6	854252.15
. 497	. 99728	74.4	. 07373	99.7	. 99882	3.2	. 85754	587,4	854618.41
. 498	. 99735	7.3	. 07273	99.7	. 99885	3.2	. 86173	595.5 603	$\begin{array}{llll}85 & 49 & 44.68 \\ 85 & 53 & 10.04\end{array}$
. 499	. 99742	7,2	. 07173	99,7	. 99888	3.1	. 85573	603,9	855310.94
1.500	0.99749	7,1	0.07074	99.7	9.99891	3.1	8.84955	612.4	$85 \quad 5637.21$
-	-i sink in	- Fo'	coech in	- F F^{\prime}	$\log \frac{\sinh }{1}$	$\omega F_{0}{ }^{\prime}$	log cesthixy	${ }_{*} \mathrm{FF}^{\circ}{ }^{\prime}$	\#

Circular Ftnctions.

4	$\sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\cos 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$. $\log \sin 4$	$\omega \mathrm{Fo}^{\prime}$	$\log \cos 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u
1.500	0.09749	7,1	0.07074	99,7	9.99891	3,1	8.8495	612,4	$85^{\circ} 56^{\prime} 37^{\prime \prime} 21$
. 501	.99757	70	.0.554	95, ${ }^{\text {9 }}$. 99804	3,1	. 84340	621,2	860003.47
. 502	. 09000	6,9	.085-4	c, 0.8	. 90897	3,0	. 83723	630,3	$8 J 0329.74$
. 503	. 99770	6,8	.0654	90,8	. 99300	2,9	. 83387	639,6	850655.00
. 504	. 95.977	6,7	. 04575	90,8	. 99903	2,9	. 8.244	649,2	851022.27
1.505	0.99784	6,6	0.06575	90.8	5.95906	2,9	8.81789	659,1	861348.53
. 506	.99790	6,5	. 0345	96.8	. 99509	2,3	. 81125	609,3	86 I7 It. 80
. 507	.9975	6,4	. 0373	99.8	. 99712	2,8	. 80450	679,8	852041.06
. 508	. 99803	6,3	. 0527	60, 8	. 99714	2,7	. 79765	690,7	$85 \quad 24 \quad 07.33$
. 509	. 9,309	6,2	.05176	92	. 99917	2,7	.79059	701,9	$86 \quad 27 \quad 33.59$
1.510	0.90815	6,1	0.05076	99.8	9.95320	2,6	8.78351	713,5	863059.85
. 511	. 90821	6,0	. 05976	99,8	. 99022	2,5	. 77642	725,4	853426.12
. 512	. 01827	5.9	. 05370	99.8	. 99925	2,6	. 73910	737,8	863752.39
. 513	. 9,833	5,8	. 05776	90,8	-99927	2,5	. 76166	750,6	854118.65
.5I4	. $9: 339$	5,7	. 03577	99,8	. 99930	2,5	.75409	763,8	854444.92
1.515	$0.998+4$	5,6	0.05577	9.8	9.95932	2,4	8.74638	775:3	8548 II. 18
. 516	. 99850	5,5	. 05477	99.8	. 99935	2,4	. 73853	751.8	855137.45
. 517	. 9885	5,4	. 0537	94,9	. 99937	2,3	. 73054	836,5	85
. 518	. 9083	5,3	. 05277	9699	. 99939	2,3	. 722.40	821,8	$85 \quad 5829.98$
. 519	. 92856	5,2	. 05177	CS.9	.95942	2,3	- 71410	837,7	87 OI 56.24
1.520	0.99371	5,I	0.05077	99,9	9.99044	2,2	8.70555	854,2	870522.51
. 521	. 90876	5,0	. 0.4973	99,9	. 99016	2,2	. 69702	871,4	870848.77
.523	.92881	4.9	. $0.48-8$	99,9	. 9048	2, I	.68321	839.3	871215.04
. 523	. 99886	4,8	.0:778	99,9	-99550	2, I	. 67723	997,9	871541.30
. 524	.90891	4,7	. 0.75	99,9	. 99952	2,0	. 67005	927,4	871907.56
1.525	0.99895	4,6	0.04578	99,9	9.99954	2,0	8.66068	9.77,7	$87 \quad 2233.83$
. 526	. 99900	4,5	. 0.473	99.9	. 99956	1,9	. 65110	968,3	872500.09
. 527	. 99004	4,4	. $0+378$	99.9	. 9,9,98	1,9	. 64130	991,o	872926.36
. 528	.99008	4,3	. 04278	99,9	- 99960	1,9	.63127	IOI, 2	$8732 \begin{array}{llll}87 & 32.62\end{array}$
. 529	.90913	4,2	. 04178	99,9	. 93952	I,8	. 62101	1039,5	873618.89
1.530	0.99917	4,1	0.04079	99,9	9.9936	I,8	S.61050	1064,0	873945.15
. 531	. 99921	4,0	. 03979	99,9	- 59065	I, 7	. 59973	IOS0,7	874311.42
. 532	. 97925	3.9	. 0,387	99,9	. 99067	I, 7	. 58368	1118,9	874537.68
. 533	. 99929	3.8	. 03779	99.9	-990669	I, 5	. 57735	1148,5	$87 \quad 5003.95$
. 534	. 99932	3.7	. 0350	99.9	. 99371	1,6	. 56571	1179,7	875330.21
1. 535	0.99936	3,6	0.03579	99.9	9.99772	1,6	8.55375	1212,7	875656.48
. 535	. 99939	3,5	.03479	99.9	. 93974	I,5	. 54145	1247,6	$88 \quad 0022.74$
. 537	. 90943	3.4	. 03379	99,9	. 99975	I,5	. 52879	1284,5	880349.01
. 538	. 90946	3.3	. 03279	99,9	. 90977	I, 4	. 51575	1323,7	830715.27
. 539	. 99949	3,2	. 03179	99,9	. 99978	I,4	. 50230	1365,4	88 10 41.54
1.540	0.99953	3.1	0.03079	100,0	0.99979	1,3	8.488+3	1409,8	851407.80
. 541	. 99986	3,0	. 02979	100,0	. 9998 I	1,3	.47410	I457, I	83 I7 34.07
-542	. 99959	2,9	. 02879	100,0	. 99082	I,3	. 45528	1507,7	88 21 00.33
-543	. 90961	2,8	. 02779	100,0	. 99983	1,2	. 41293	1562,0	882426.60
. 544	. 99964	2,7	. 02679	100,0	. 99984	1,2	.42802	1620,3	882752.86
I. 545	0.99967	2,6	0.02579	100,0	9.09986	- I, I	8.4115 I	1683,2	883119.13
. 546	. 99969	2,5	. 02479	100,0	. 99988	I, I	. 39434	1751,1	$883445 \cdot 39$
-547	. 90972	2,4	. 02379	100,0	. 99588	1,0	. 37647	$18.24,7$	8838 II. 66
- 548	. 999974	2,3	. 02279	100.0	. 99989	1,0	-35783	1904,8	884137.92
-5-49	. 999976	2,2	. 02179	100,0	. 93930	0,9	. 33835	1992,2	$88 \quad 4504.18$
1.550	0.95978	2,1	0.02079	100,0	9.99991	0,9	8.31796	2088,0	884830.45
u	-i sinh iut	$\pm \mathrm{F}^{\prime}{ }^{\prime}$	cosh iu	$\omega F_{0}{ }^{\prime}$	$\log \frac{\sinh i 0}{i}$	$\infty \mathrm{Fo}^{\prime}$	log cosh ing	- $F_{0}{ }^{\prime}$	и

Circular Functions.

\square	$\boldsymbol{\operatorname { s i n }} u$	$\omega \mathrm{Fo}^{\prime}$	$\cos 4$	© Fi^{\prime}	$\log \sin u$	$\omega \mathrm{F}_{0}{ }^{\prime}$	$\log \cos u$	$\omega \mathrm{Fa}_{2}{ }^{\prime}$	\square
1. 550	0.99978	2,1	+0.03079	100,0	9.99991	0.9	8.35\% 9	20S3,0	88 $8^{3}+8^{\prime} 30^{\prime \prime} .45$
. 551	. 99580	2,0	. 01980		. 09099	0.9	. 29.356	219,3,5	885156.71
- 552	. 99982	1.9	. 01830		. 99992	0,8	-2705	2310.3	883522.98
. 553	. 99984	1,8	. 01730		. 99993	0.8	. 25031	240.1	${ }_{88}^{888} 58.9 .24$
. 554	-99986	1,7	. 01680		.99994	0.7	.22519	2585,4	$8,0215.51$
I. 555	0.99988	1,5	+0.013SO	100,0	9.09095	0.7	8. 15,354	2749,1	890541.77
- 556	. 90989	1,5	. 21480		. 999995	0,5	.170r4	2934,9	890908.04
- 557	-95990	1.4	-01380		. 99996	0,5	1395	3147,7 3303	891234.30
. 558	- 99952	I, 3	. 01238		. 92906.	0.6	.10,07	3393\%	891600.57
. 559	. 99993	1,2	. 01180		. 99997	0,5	.07174	3681,4	871926.83
1. 550	0.99934	I, I	+0.01080	100,0	9.99997	0,5	8.03327	+020,5	892253.10
- 361	. 99995	I, 0	.00030		. 99098	O.t	7.99103	4433, 1	89 2619.36
- 552	. 95996	0.8	.03830		. 99958	0.4	-344:0	4937, 1	89.2945 .63
. 563	. 959997	0.8 0,7	.00780		. 999999	c.3	.89189 .83227	5570,4 6350,0	$\begin{array}{llll}89 & 33 & 11.89 \\ 89 & 36 & 3 & \text { 16 }\end{array}$
						0,3		6390,	
1. 565	0.99998	0.6	+0.00580	100,0	9.99999	0,3	7.-51315	7402,5	894004.42
- 566	-99999	0,5	. $00+80$		0.00000	0.2	. 6809 r	9054.7	8043 30.69
- 367	. 99099	0,4	. 00380		. 00000	0. 2	-57936	1143908	894656.95
.568 .569	1.00000 1.00000	0,3	.00230		.00000 .00000	${ }_{0}^{0,1}$	-4659 $.25+38$	15530,9 24176,8	895023.22 895349.48
-56	1.00000	0,2	. 00180		. 00000	o, 1	.25438	24176,8	
1.570	1.00000	0, 1	+0.00083	100,0	0.00000	0.0	6.90109	54537,4	895715.75
- 571	. 00000	0, 0	.00020		. 00000	0,0	$6.30894 n$		50 0042.01
- 572	. 00	0 O,	. 00120		. 000000	$\bigcirc{ }_{0} \mathrm{O}$	7.08051	36080,7	500408.28
. 573	.00000 0.99999	0,2 0,3	.00220 .00320		.00000 .00000	0,1	- 34315	19707,7 13556,1	$\begin{array}{lllll}90 & 07 & 34.54 \\ \text { co } & \text { II } & 00.81\end{array}$
1. 575	0.99999	0,4	$\cdots 0.00420$	100,0	0.00000	0,2	7.62363n	10331,2	901427.07
- 576	. 99999	0.5	. 05220		9.9.9959	0,2	. 71631	8345,8	901753.33
. 577	-99998	0,6	. 00520		. 6,9998	0,3	. 76.25	7000,5	$\begin{array}{ll}90 & 21 \\ 19.60\end{array}$
. 578	-99997	0,7	. 00720		-.99999	0,3	. 85755	6028,6	902445.85
- 579	-99997	0,8	. 00820		. 99999	O,t	.91400	5293,8	902812.13
1.580	0.99996	0,9	-0.00920	100,0	9.99998	0,4	$7.96306 n$	4718,6	903138.39
$.58 \mathrm{I}$. 99995	I, O	. 01020		. 99998		8.00475	4256, 1	903504.66
- 582 .583 .	.999994	1,1 1,2 r,	.01120 .01220		. 90997	0,5	.04635	3876,2 358,5	co 3830.92
. 583	. 99993	1,2	.01220 .01320		. 999997	0.5 0,6	. 08648	3558,5 3289,0	9041 90 45 15 23.19
1. 585	0.99900	1,4	-0.01420	100,0	9.99996	0,6	8.15239n	3057,4	904849.72
. 586	. 99988	1,5	. 01520		. 99995	0,7	.18193	2856.3	905215.98
- 587	. 99987	1,6	.01520		. 99994	0,7	. 20959	26350	¢0 5542.25
- 588	- 09985	1,7	. 01720		-99994	0.7	. 23560	2524,2	co 5908.51
-589	. 99983	1,8	. 01820		-99993	0,8	. 26014	2385,5	910234.78
1. 590	0.99982	1,9	-0.01920	100,0	9.99992	0,8	8.28336 m	22611,2	gi 06 or.04
-591	. 99988	2,0	. 02020		. 99991	0,9	. 30540	$21.49,3$	gi 0927.31
- 592	-99,78	2,1 2,2	.02120 .0220		. 99990	0,9	. 32638	2047,9	
. 593	.99975 .99973	2,2 2,3	.02230		. 99989	I, I, O	.34639 .36552	19556 1871,3	$\left\lvert\, \begin{array}{lll}91 & 16 & 19.84 \\ 91 & 19 & 46.10\end{array}\right.$
I. 595	0.99971	2,4	-0.02420	100,0	9.99387	I, I	8.38384 n	1794,0	912312.37
. 596	. 999968	2,5	. 02520		-99985	I, I	-40142	1722,8	91 2638.63
. 597	. 99966	2,6	. 022200		. 95985	I, 1	. 41831	1657,0	cr 3004.90
- 598	. 99993	2,7 3	. 02720		-99984	I, 2	. 434547	1596,1	91 3331.16
- 599	. 99960	2,8	. 02820		-99983	1,2	. 45025	153974	913657.43
1.600	0.99957	2,9	-0.02920	10, 0	9-9998r	1,3	8.46538	1483,7	91 4023.69
-	-isinh is	- Fg^{\prime}	cosch in	$\cdots F_{0}{ }^{\circ}$	cos $\frac{\sinh \text { in }}{i}$	- F ${ }^{\prime}$	los cossh ta	- F F^{\prime}	-

TABLE IV

the ascending and descending exponential and $\log _{10}\left(e^{u}\right)$

Note.-In Table IV, for u greater than 2.302 , the tabulated values of the ascending exponential may sometimes be erroneous to one unit in the last place.

The Exponential.

\square	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-0}	u	$\log _{10}\left(e^{\text {a }}\right.$)	θ^{\square}	e^{-u}
0.000	0.0000000	1.000000	1.0000000	0.050	0.0217147	1.051271	0.9512294
. 001	. 0004343	. 001 cor	0.9090005	. 051	. 0221490	. 052323	.950 2787
. 002	. 0008885	. 002002	. 998000	. 052	. 0225833	. 053376	-949 3 308
. 003	.001 3039	. 003005	. 9970045	. 053	. 023 O176	. 054430	. 9483800
. 004	.001 7372	. 004008	. 9960050	. 054	. 0234519	. 055485	-9474321
0.005	0.0021715	1.005013	0.9950125	0.055	0.0238862	1.056541	0.9464851
. 006	. 0026058	. 006018	. 994 OIS0	. 056	. $02+3205$. 057598	. 9453391
. 007	. 0030401	. 007025	. 9930244	. 057	. 0247548	. 058656	. 9445941
. 008	. 0034744	. 008032	. 9920319	. 058	. 0251891	. 059715	. 9436499
. 009	. 0039087	. 009041	. 9910404	. 059	. 0256234	.060 775	. 9427068
0.010	0.0043429	1.010 050	0.9900498	0.060	0.0260577	1.061 837	0.9417645
. 011	. 0047772	. 011061	. 9890603	. 0.51	. 0264920	. 062899	. 9408232
. 012	. 0052115	. 012072	. 9880717	. 062	. 0269263	. 053962	. $939 \cdot 8829$
. 013	. 0056458	.013085	.9870811	. 063	. 0273606	. 055027	. 9389435
. 014	. 0060801	. 014098	.9860975	. 064	. 0277948	. 066092	.9380050
0.015	0.0065144	1.015 II3	0.985 III9	0.065	0.0282291	1.067159	0.9370675
. 016	. 0069487	. 016129	. 8841273	. 066	. 0286634	. 068227	.9361309
. 017	. 00738.30	. 017145	.983 1437	. 057	. 0290977	. 069295	. 9351952
. 018	. 00788	.018163	. 9821610	. 068	. 0295320	. 070365	. 9342605
. 019	. 0082516	. 019182	. 9811794	. 069	. 0299663	. 071436	. 9333267
0.020	0.0086859	1.020201	$0.980 \quad 1587$	0.070	0.0304006	1.072508	0.9323938
. 021	. 0091202	. 021222	. 9792190	.071	. 0308349	. 073 581	.931 4619
. 022	. 0095545	. 022244	. 9782102	.0,2	.031 2692	. 074655	. 9305309
. 023	. 0099888	. 023267	. 9772625	. 073	.031 7035	. 075731	. 9296008
. 024	. 0104231	. 024290	. 9762857	.074	. 0321378	.076 807	-9286717
0.025	0.010 8574	1.025315	0.9753099	0.075	0.0325721	1.07788	0.9277435
. 026	. OII 2917	. 026341	. 974335 I	.076	. 0330064	. 078963	. 9268162
. 027	. O11 7260	. 027368	.9733612	. 077	. 0334	. 080042	. 9258899
. 028	. 0121602	. 028396	. 9723884	. 078	. 0338750	.081 123	. 9249644
. 029	. 0125945	. 029425	. 9714165	. 079	.0343093	. 082204	. 9240399
0.030	0.0130288	1.030455	0.9704455	0.080	0.0347436	1.083287	0.9231163
. $03 \mathrm{3r}$. 0134631	.031 486	. 9694756	. 081	.0351779	. 084371	.9221937
. 032	.013 8974	. 032518	. 9645066	.082	. 0356121	.085456	-921 2720
. 033	. 0143317	. 033 551	. 9675386	.083	. 0360464	. 086542	-920 3511
. 034	. 0147660	. 034585	. 9565715	. 084	. 0364807	. 087629	.919 4313
	0.0152003	1.035 620	0.9656054	0.085	0.0369150	1.088717	0.9185123
. 036	.015 63.46	.036 656	. 9646403	. 085	. 0373493	. 089806	.917 5942
. 037	. 0160689	. 037693	. 9636761	. 087	. 0377836	. 090897	.916 6771
. 038	. 0165032	. 0.38731	. 9627129	. 088	.038 2179	. 091988	. 9157609
. 039	. 0169375	.039770	. 9617507	. 089	. 0386522	. 093 081	-914 8456
0.040	0.0173718	1.0408 II	0.9607894	0.090	0.0390865	1.094174	0.9139312
. 041	. 0178061	. 041852	. 9598291	. 091	. 0395208	. 095269	. 913017
. 042	. 0182404	. 042894	. 9588698	.092	. 0399551	. 096365	. 9121051
. 043	. 0186747	. 043938	. 9579114	. 093	. 0403894	. 097462	-911 1935
. 044	.or9 rogo	. 044982	.9569540	. 094	. 0408237	. 098560	. 9102828
0.045	0.0195433	1.046028	0.9559975	0.095	0.0412580	1.099659	0.9093729
.046	. 0199775	. 047074	. 9550420	. 096	. 0416923	. 100759	-908 4640
. 047	. 0204118	. 048122	. 9540874	.097	. 0421266	. 101860	. 9075560
. 048	. 0208461	. 04917 I	.953 1338	. 098	. 0425609	. 102963	. 9066489
. 049	.021 2804	.050220	. 952 I8II	. 099	. 0429952	. 104066	.905 7427
0.050	0.0217147	1.051271	0.9512294	0.100	0.0434294	1. 105171	0.9048374
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{x}}\right)$	$\mathrm{log}_{11}\left(e^{\mathrm{a}}\right)$	$0^{\text {a }}$	e^{-a}	loge (ex)	$\log _{10}\left(e^{4}\right)$	e^{3}	e^{-8}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{L}}\right)$	$e^{\text {u }}$	e^{-x}	4	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	e^{a}	e^{-4}
0.100	0.0434294	1. 105 I II	0.9048374	0.150	0.0651412	1.161834	0.8507080
. 101	. 0438637	. 106277	. 9039330	.151	. 0,53575	. 152007	. 8508477
10	. $0+42580$. 107383	. 9030266	.152	. 0660128	. 104 I 10	. 858.8883
. 103	. $0+47323$. 10849 I	.1,02 1270	.153	. 06664121	-1535 325	. 8581297
. 104	. 0451665	. 109600	. 9012253	. 154	. 05688814	. It 04.85	.8572720
0.105	0.0456009	I. 110711	0.9003245	0.155	0.0673155	1.107 658	0.8554152
. 105	. 0460352	. III 822	. $89942+6$.15)	. 0.5749	. 16882 ;	. 8555592
. 107	. 0464695	. 112934	. 8985257	. 157	.0'8 1812	. 169996	. 8547041
. Ic3	. 0469038	. IIt $0+8$. 8976276	.158	. 068 Gi85	. 171166	. 8538488
. 109	.0473381	. 115162	. 896 -304	. 159	. 0600528	. 172338	. 8529044
0.110	0.0477724	I.116 278	$0.80583+1$	0.150	0.0694871	I.I73 511	0.8521438
. 1	. 0482067	. 117395	.89+938	. 161	. 06992214	. 17468	. 8512921
. I	. 0486810	. 118513	. 8240443	. 15	. 0703557	.175850	. 850412
. 113	. 0490753	. 119632	. 8331507	.153	. 0707000	. 177037	. 8493912
. 114	.0495096	. 120732	. 8922580	. 164	. 0712243	. 178214	. $8+37+20$
0.115	0.0499439	I.121 873	0.891356 x	0.155	0.0716586	1.179393	0.8478937
. II'	. 0503782	. 122956	. 8904752	. 163	.072 0929	. 180573	. 8470.462
. 117	. 0508125	.124 119	. 8895852	. 167	.072 5272	. 18175	. 8461995
. II8	.051 2467	. 125244	. 888 6,61	.158	. 072 9615	. 182937	. 8453538
. 119	.051 68io	. 126370	. 8878078	.169	. 073 3958	.184 120	. 8445089
0.120	0.0521153	I. 127497	0.8359204	0.170	0.0738301	1.185305	0.8436648
. 12	. 0525495	. 128625	. 886 0340	. 171	. $07+26.4$. 18549 I	. $8+28216$
. 12	. 0525839	. 129754	. 8851484	.172	. 0746987	.187678	. 8419792
. 123	. 0534182	. 130884	. $88+2637$. 173	. 0751329	. 188866	. 8411376
. 124	. 0538525	. 132016	. 8833798	. 174	. 0755672	. 190056	. 8402969
0.125	0.0542868	1. 133148	0.8824969	0.175	0.0760015	1.191 246	0.8394570
12	. 0547211	. 134282	. 8816148	. 175	.075 4358	. 192438	. 8386180
. 127	. 0551554	. 135417	. 8807337	. 177	.076 8701	. 19363 I	. 8377798
. 128	. 055 5887	. 136553	. 8798534	. 178	. 0773044	. 194825	. 8369424
. 129	. 0560240	. 137690	. 8789740	-179	. 0777387	- 19602 I	.8361059
0.130	0.0564583	I. 138888	0.8780954	0.180	0.0781730	1. 197217	0.8352702
. 131	. 0568926	. 139968	. 8772173	. 181	. 0786073	. 198415	. 8344354
. 132	. 0573259	. 141108	. 8763410	. 182	. 0790416	. 199614	. 8336013
. 133	. 0577612	. 142250	.8754651	. 183	. 0794759	. 200814	. 8327682
. 134	. 0581955	. 143393	. 8745901	. 184	. 0799102	. 202016	.831 9358
	0.0586298	I. 144537	0.8737159	0.185	0.0803445	1.203 218	
. 136	. 0590540	. 145682	. 8728426	. 185	.080 7788	. 204422	. 8302736
. 137	. 0594983	. 146.828	. 8719702	. 187	.081 2131	. 205627	. 8294437
. 138	. 0599326	. 147976	. 8710987	. 188	.031 6474	. 206834	. 8286147
. 139	. 0603669	. 149124	. 8702280	. 189	. 0820817	. 208041	. 8277805
0.140	0.0508012	1. 150274	0.8693582	0.190	0.0825160	1.209250	$0.826 \mathrm{gs01}$
. 141	. 0612355	. 151425	. 8684893	. 19 I	. 0829502	. 210459	.826 1326
. 142	.06I 6608	. 152577	. 8376213	. 192	. 0833845	. 211681	. 8253069
. 143	. 0621041	. 153730	. 866754 I	- 193	. 8838188	. 212883	$.8244820$
. 144	.062 5384	. 154884	. 8658877	. 194	. 0842531	. 21.4096	. 8236579
0.145	0.0629727	1.156 240	0.8650223	0.195	0.0846874	2.215311	0.8228347
. 146	.063 4070	. 157196	. 8641577	. 195	. 0851217	. 216527	. 8220122
. 147	. 0638413	. 158354	. 8632940	. 197	.0855560	. 217744	. 8211906
. 148	. 0642756	$.159513$	$.8624311$. 198	$.0859903$	$.218062$	$.8003699$
. 149	. 0647099	.160673	. 861561	- 199	.0864246		-819 5409
0.150	0.065 I442	1.161834	0.8607080	0.200	0.0868589	1.221403	0.8187308
Knade $e^{\text {a }}$)	reonde ${ }^{\text {a }}$)	${ }^{\text {a }}$		(ex) ${ }^{\text {a }}$)	logese ${ }^{\text {a }}$)	e^{*}	-

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {I }}$	a^{-a}	u	$\log _{10}\left(\mathrm{e}^{a}\right)$	e^{a}	$e^{-\pi}$
0.200	0.0868589	I.221 403	0.8187308	0.250	0.1085736	1. 284025	0.7788008
. 201	. 0872932	. 222625	. 8179124	. 251	. 1090079	.285310	. 7780224
. 20	.0877275	. 223848	. 8170949	. 252	. $1094+22$. 286596	.7772477
. 203	. 0881618	. 225072	. 8162782	. 253	. 1098765	. 287883	. 7764679
. 204	. 0885961	. 226298	.815 4624	. 254	-110 3108	. 289172	. 7756918
0.205	0.0800304	1.227525	0.8146473	0.255	0.110 745I	I. 290462	0.7749165
. 206	. 0894647	. 228753	. 8138331	. 256	. 1111794	. 291753	. 7741420
. 207	. 0898990	. 229983	.813 0196	. 257	. III 6137	. 293045	. 7733682
. 238	. 0903333	. 231213	.812 2070	. 258	. 1120480	. 294339	.7725952
. 209	. 0907675	. 232445	.8II 3952	. 259	. II2 4823	. 295634	.771 8230
0.210	0.0912018	1. 233678	0.81058 .42	0.260	0.1129166	1.296930	0.7710516
. 211	.091 6361	. 234912	. 8097741	.261	. 1133509	. 2581228	. 7702809
. 2	. 0920704	. 236148	. 8089647	.262	. 1137852	. 299527	. 7635110
. 213	. 0925047	. 237385	. 8081561	.263	. 1142194	. 300827	. 7687419
. 214	. 0929390	. 238 -623	. 8073484	.204	. II4 6537	. 302128	. 7679735
0.215	0.0933733	I. 239862	0.8065414	0.265	0.1150880	I. 30343 I	0.7672059
. 216	. 0938076	. 241102	. 8057353	. 266	. 1155223	. 304735	. 7654391
. 217	. 0942419	. 242344	. 8049300	.267	. II5 9566	- 305040	.7656731
. 218	. 0946762	. 213587	. 8041254	. 268	. 1163909	. 307347	. 7649078
. 219	. 0951105	. 214 83I	. 8033217	.269	. 1168252	. 308.655	. 7641433
0.220	0.0955448	1.246077	0.8025188	0.270	0.117 2595	I. 309964	0.7633795
. 221	. 0959791	. 247323	. 8017167	. 271	. 1176938	. 311275	. 7626165
. 22	. 0964134	. 24857 I	. 8009154	. 272	. 118 I285	. 312587	. 2618543
. 223	. 0968477	. 24982 I	. 800 II48	.273	. 1185624	. 313900	.76I log28
. 224	. 0972820	.251 071	. 799315 I	. 274	. 1889967	. 315215	.7503321
0.225	0.0977163	I. 252323	0.7985162	0.275	0.1194310	1. 31653 I	0.7595721
. 236	. 0981506	. 253576	. 7977181	. 276	. 1198653	. 317848	. 7588 I 29
. 227	. 0985848	. 254830	. 7969208	. 277	. 1202996	-319 166	. 7580545
. 228	. 099 0191	. 256085	. 7961243	.278	. 1207339	. 320485	. 7572968
. 229	. 0994534	. 257342	. 7953285	. 279	. 1211682	. 321807	. 7565399
0.230	0.0998877	1.258600	0.79415336	0.280	0.1216025	I. 323130	0.7557837
. 231	.1003220	. 259859	. 7937395	.28I	. $122 \quad 0367$	- 324454	. 7550283
. 232	. 1007563	. 261120	. 7929461	. 282	. 1224710	. 325779	. 7542737
. 233	. 1011906	. 261238 I	. 7921536	.283	. 1229053	. 327105	. 7535198
. 234	. 1016249	. 263644	. 7913618	. 284	. 1233396	. 328433	. 7527656
0.23	0.1020592	1.264909	0.7905708	0.285	0.1237739	1. 329762	
. 236	. 1024935	. 266174	. 7897807	.285	. 1242082	. 3311092	$.751 \quad 2625$
. 237	. 1029278	. 26744 I	. 7889913	. 287	. 1246425	. 332424	. 7505117
. 238	. 1033621	. 268709	. 7882027	. 288	. 1250768	- 333757	. 7497616
. 239	. 1037964	.269979	.7874149	. 289	. 1255111	- 335092	. 749 OI22
0.240	0.1042307	1.271 249	0.7866279	0.290	0.1259454	I. 336427	0.7482636
. 241	. 1046650	.27252 I	. 7858416	. 291	.r26 3797	. 337765	.747 5157
. 242	. 1050993	. 273794	. 7850562	. 292	- 1268140	. 339103	. 7467685
. 243	. 1055336	. 275069	. 7842715	. 293	. 1272483	. 340443	. 7460221
. 244	. 1059679	. 276344	.7834876	. 294	. 1276826	-345 784	. 7452765
0.245	0.1064021	1.277621	0.7827045	0.295	0. 1281169	I. 343 I26	0.7445316
. 246	. 1068364	. 278900	. 781 y 9223	. 296	. 1285512	. 344470	.7437874
. 247	. 1072707	. 280179	-781 1407	. 297	. 1289855	. 345815	.7430440
. 248	$.1077050$	$.28 \mathrm{I} 460$. 7803599	. 298	. 1294198	. 347162	. 7423013
. 249	.1081393	. 282742	.779 5800	.299	. 129854 I	-348 510	.741 5594
0.250	0.1085736	1.284025	0.7788008	0.300	0.1302883	I. 349859	0.7408182
loge ($0^{\text {a }}$)	logid $\left(\mathrm{e}^{\text {a }}\right.$)	$e^{\text {Ix }}$	${ }^{-}$		$\operatorname{logran}_{\text {lo }}\left(\mathrm{e}^{\mathrm{a}}\right)$	$e^{\text {a }}$	0^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{n}}\right)$	e^{u}	e^{-a}	u	$\log _{10}\left(\mathrm{e}^{\text {u }}\right.$)	$e^{\text {a }}$	e^{-a}
0.300	0.1302883	I. 349859	0.7408182	0.350	0. 1520031	1.41908	0.704688 I
. 301	. 1307226	. 351209	. 7400708	. 351	. $152+374$. +2048	. 703 S 838
- 302	. 1311569	. 352561	. 7393381	. 352	. 1528717	. 421909	.7032801
. 303	.131 5912	. 353 914	. 7385091	- 353	. 1533060	.423 331	. 7025772
- 304	. 1320255	. 355269	. 7378509	. 354	. 1537402	. 424755	.7018750
0.305	0.132 4598	1.356625	0.7371234	0.355	0.1541745	1.42618 I	0.7011734
. 306	. 1328941	. 357982	. 7363866	. 356	. 15460×8	. 427608	. 700478
. 307	. 1333284	- 359341	. 7356506	-357	. 1550431	.429036	.6099 7725
-303	. 1337627	. 360 701	. 7349153	. 358	. 1554774	. 430466	. 6990731
. 309	. 1341970	. 362062	. 734 I 808	-359	.155 91I7	. 431897	. $69837+4$
0.310	0.1346313	1.363425	0.733470	0.360	0.1563460	1.433329	0.6976763
. 31 I	. 1350656	. 354789	. 7327139	. 361	. 1567803	- 434 - 03	. 696950
-312	. 1354999	. 366155	.731 9815	- 362	. 1572146	. 436199	.69, 2324
. 313	. 1359342	. 367522	. 7312499	. 363	. 1576480	. 437636	. 6955854
. 314	. 1363685	. 368890	. 7305190	. 364	. 1580832	. 439074	.6948912
0.315	0.1368028	1.370 259	0.7397889	0.365	0. 1585175	1.410514	0.6941967
. 316	. 1372371	. 371630	. 7290555	. 366	. 1589518	. 41195	. 6935028
-317	. 1376714	. 373003	. 7283309	. 367	. 1593861	. 413398	.th92 8096
. 318	. 1381056	. 374376	. 7276028	. 368	. 1598204	. 444842	. 6921172
. 319	.138 5399	. 375751	. 7268755	-369	. 1602547	. 416288	. 691425
0.320	0.1389742	1.377128	0.7261490	0.370	0.1606890	1.447735	0.6907343
. 321	. 1394085	. 378506	. 7254233	. 371	.161 1233	. 449183	. 6×00439
. 322	. 1398428	. 379885	. 7246982	. 372	. 1615575	. 450633	. 68935
. 323	. 1402771	. 381265	. 7239739	. 373	. 1619918	. 452084	. 6886652
. 324	.140 7114	. 382647	. 7232502	-374	. 162426 I	. 453537	. 6879769
0.325	0.1411457	I. 384031	0.7225274	0.375	0.1628604	1.454 991	0.6872893
. 325	. 1415800	. 385415	. 7218052	. 375	. 1632947	. 456447	. 6866023
. 327	. 1420143	. 386801	. 7210837	. 377	.1637290	. 457904	. 6859161
. 328	. 1424486	. 388189	. 7203630	. 378	. 1641633	. 459363	. 6852305
. 329	. 14288829	. 389578	.7196430	-379	. 1645976	. 460823	. 6845456
0.330	0.143 3172	1.390968	0.7189237	0.380	0.1650319	1.462385	0.6838614
. 331	. 1437515	. 392360	. 7182052	. 381	. 1654662	. 463748	. 6831779
. 332	. 1441858	. 393753	.7174873	. 382	.1659005	. 465212	. 6821951
. 333	. 1446201	. 395147	. 7167702	.383	. $16633+8$. 466678	.681 8129
. 334	. 1450544	. 396543	. 7160538	. 384	. 1667691	.468145	.681 1314
0.335	0.1454887	1. 397940	0.715338 I	0.385	0.1672034	1.469614	0.6804506
. 336	.145 9229	. 399339	. 7146231	. 385	. 1676377	. 471085	. 6797705
. 337	. 1463572	. 400739	. 7139088	. 387	. 1680720	. 472556	. 6790911
. 338	. 1467915	. 402141	. 7131953	. 388	. 1685063	. 474030	. 6784123
. 339	. 1472258	.403543	.7124824	.389	. 1689406	. 475505	.6777343
0.340	0.1476601	1. 404948	0.7117703	0.390	0.1693748		0.6770569
. 341	.1480944	. 406353	.711 0589	. 391	.1698091	. 478459	. 6763802
. 342	.1485287	. 407760	. 7103482	. 392	. 1702434	. 479938	.6757041
. 343	. 1489630	. 409169	. 7096382	-393	.170 6777	. 481418	. 6750287
. 344	. 1493973	. 410579	.7089289	. 394	. 1711120	. 482901	.6743541
0.345	0.149 8316	1.411990	0.7082204	0.395	0.1715463	1.484384	0.6736800
. 346	. 1502659	. 413403	. 7075125	. 396	. 1719806	. 485869	$.6730057$
. 347	. 1507002	. 414817	. 7068053	-397	. 1724149	$\begin{aligned} & .487356 \\ & .488844 \end{aligned}$	$.6723340$
.348 .349	.1511345 .1515688	.416232 .417649	.7060989 .7053931	. 398	.1728492 .1732835	.488844 .490334	$\begin{aligned} & .6716620 \\ & .6709907 \end{aligned}$
. 349	.151 5688	. 417649	. 7053931	-399	. 1732835	-490334	.670 9907
0.350	0.1520031	1.419 008	0.7046881	0.400	0.1737178	1.491825	0.6703200
loget $\left(\mathrm{E}^{3}\right)$	lotande ${ }^{\text {a }}$)	-	-	reseces)	logmen 0^{5}	${ }^{\text {a }}$	-

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{x}}\right)$	$e^{\text {a }}$	e^{-a}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{n}	$e^{-\pi}$
0.400	0.1737178	I. 491825	0.6703200	0.450	0.195 4325	1. 368312	0.6376282
. 401	.174 1521	. 493317	. 6696501	. 451	. 195856	. 5098 SI	.6365908
. 402	. 1745864	- $49+8 \mathrm{II}$. 66889807	. 452	. 195301 I	. 571452	.6363542
.403	.1750207	. 496307	. 6683121	. 453	-196 7354	. 373024	.635718 I
. 104	. 1754550	. 497804	. 667644 I	.454	. 1971697	. 57458	.6350827
0.405	0.1758833	I. 499303	0.6669768	0.455	0.19760 .40	1. 576173	$0.634+480$
. 405	. 1753235	. 500803	. 6563102	. 456	.1980383	. 577750	. 6338138
. 407	.1757579	. 502304	. 6556442	. 45%	. 1984726	. 579329	.633 I 03
. 408	. 177 1921	. 503807	. 6649789	. 458	. 1989059	. 580909	. 6325475
. 409	. 1776264	. 505312	. 664 3I. ${ }^{2}$. 459	. 1993412	. 582491	.631 9152
0.410	0.1780607	1.506 818	0.6536503	0.450	0.1997755	1.584074	0.6312836
. 411	. $173+950$. 508325	. 6629859	. 461	. 2002098	. 585659	. 6306527
. 412	.1789293	. 509834	. $65232+3$. 462	. 2006414	. $587 \quad 245$. 6300223
. 413	. 1793636	. 5 II $3+5$. 6516523	. 463	. 2010783	. 588833	. 6293926
. 414	. 1797979	. 512857	. 6610010	.464	. 2015126	. $590+23$. 6287636
0.415	0.1802322	1.514371	0.6503403	0.465	0.2019469	I. 592 OI4	0.628135 r
. 416	. 1806665	. 515836	. 6596803	. 466	.2023812	. 593607	. 6275073
. 417	. 1811008	. 517403	. 6590202	.467	. 2028155	- 595201	. 6258801
. 478	. 1815351	. 518921	.6583622	. 468	. 2032498	- 596797	. 6252535
. 419	. 1819694	. 52040	.6577042	. 469	. 2036841	. 598395	. 6256276
0.420	0.1824037	1.521952	0.6570 .68	0.470	0.2041184	I. 599994	0.6250023
. 42 I	. 1828380	. 523 484	. 6563901	. 471	. 2045527	. 601595	. 6243776
. 422	. 1832723	. 525009	. 65573.10	. 472	. 2045870	. 603197	. 6237535
.423	. 1837066	. 525534	. 6550785	-473*	. 2054213	. 60.4801	. 6231301
. 424	. 1841409	. 528062	. 6544239	. 474	. 2058556	. 605407	. 6225073
0.425	0.184 5752	I. 529590	0.6537698	0.475	0.2062899	1.608 or4	0.621 885 I
. 425	. 1850094	. 531121	.6531163	. 475	. 2067242	. 609623	. 6212635
. 427	. 1854437	. 532653	.6524636	- 477	. 2071585	.6II 233	. 6206425
. 428	. 1858780	. 534186	. 65181 If	.478	. 2075928	. 612845	. 6200222
. 429	. 1863123	. 535721	.6511599	. 479	. 2080271	. 614459	.6194025
0.430	0.1857466	1.537258	0.6505091	0.480	0.2084614	1.616074	0.6187834
. 431	. 1871809	. 538795	. 6498589	. 481	. 2088356	. 617691	. 6181649
. 432	.1876152	. 540335	. 6492094	. 482	. 20933.59	. 619310	. 6175471
. 433	. 18800495	. 541876	.6485605	. 483	. 20077642	. 620930	. 6169298
. 434	. 1884838	. 543419	.6479123	. 484	. 2101985	. 622552	. 6163132
0.435	$0.188 \mathrm{gl81}$	1.544963	0.6472647	0.485	0.2106328	1.624175	0.6156972
. 436	. 1893524	. 546509	. 6466177	. 485	. 2110671	. 625800	.6150818
. 437	. 1897867	- 548056	. 6459714	. 487	. 2115014	. 627427	. 6144670
. 438	- 1902210	. 549605	. 6453258	. 488	. 2119357	. 629055	. 6138529
. 439	. 1906553	. 551155	. 6446808	. 489	. 2123700	.630685	. 6132393
0.440	-.191 0895	1.552 707	0.6440364	0.490	0.2128043	1.632316	0.612 6264
. 441	. 1915239	. 554261	.6433927	. 491	. 2132385	. 633949	.612 0141
. 442	-191 9582	. 5558 I 6	. 6427496	. 492	. 2136729	. 635584	.611 4024
. 443	-1923925	- 557372	.6421072	. 493	. 2141072	. 637221	. 6107913
. 444	. 1928257	. 558930	. 6414654	. 494	.214 5415	.638859	. 610 I808
0.445	0.1932610	I. 560490	0.640 821.3	0.495	0.2149758	I. 640498	
. 446	. 1936953	. 562051	. 6401838	. 496	. 2154 LIOI	. 642140	. 6089616
. 447	. 1941296	. 563614	. 6395439	. 497	. 2158414	. 643783	. 6083530
. 448	. 19456.39	. 565179	$.6389047$	-498	.2162787	. 645427	$.6077449$
. 449	. 1949982	. 566745	. 638266 I	. 499	.2167129	. 647073	. 6071375
0.450	0.1954325	1.568312	0.6376282	0.500	0.2171472	1.648721	0.6065307
$\log _{80}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\operatorname{logio}\left(\mathrm{E}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {a }}$	-	$\log _{e}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\log _{0}\left(\mathrm{e}^{\mathrm{n}}\right)$	$e^{\text {I }}$	e^{-v}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	$e^{-\mathrm{a}}$	u	$\log _{10}\left(e^{4}\right)$	$e^{\text {a }}$	e^{-8}
0.500	0.21714772	1. 648721	0.6055307	0.550	0.238850	1.733233	0.3769468
. 501	. 2175815	. 650371	. 605924	. 551	. 230293	. 73488	. 5.63731
. 502	. 2180158	. 652022	. 6053188	. 552	. 2397305	. 734572	. 5757971
- 503	. 2184531	. 653675	. $60 \div 7138$. 533	. 2401648	. 73838	. 5752216
. 504	. 218884	.655329	. 6041094	. 554	. 24035931	.740 200	. $57+6$
0.505	0.2193187	1.655086	0.6035056	0.355	0.2410334	1.741941	0.5740723
. 505	. 2197530	. 658643	. 6029024	. 556	. 24145	. 743681	. 5734.35
. 507	. 2201873	. 650303	. 6022098	. 557	. 24118020	. $7+5428$.5,2 9253
. 508	.2206216	. 651964	. 60160,78	. 558	.2423353	- $7+7175$. 57235
. 509	.2210559	. 653627	.601 0954	. 559	. 2427706	. 748923	.571-306
0.510	0.2214902	1.655291	0.6004956	0.560	0.2432049	1.750673	0.5712091
. 511	. 2219245	. 636957	. 5998954	. 5^{515}	. 2436392	. 752424	. 5706381
. 512	. 2223588	. 668625	. 5902958	. 562	. $2+40735$.754 177	. 57000,7
. 513	.2223931	. 670295	- 5986968	. 53	. $2+4$ 50,8	. 755932	. 560
. 514	. 2232274	. 671956	. 5980094	.554	. 2449421	.75768	. 50439288
0.515	0.2236517	1. 673639	0.5975006	0.565	0.2453764	1.75948	$0.5 \% 3601$
. 516	. 2240960	. 675313	. 5969034	. 556	. 2158107	. 761208	. 5073021
. 517	. 2245302	. $676 \mathrm{c8} 3$. 5953058	. 567	. 2.462450	. 762970	. 5782246
. 518	. 2249545	. 678667	. 5957108	. 568	.2466793	. 754734	. 5666576
. 519	.2253988	. 680346	- 5951154	. 550	.2471136	.766500	. 55000912
0.520	0.225833 I	1. 682028	0.5945205	0.570	0.2475479	I. 768267	0.5555254
. 521	. 2252574	. 6837 711	. 5939263	. 571	. 2479821	. 770036	. 5649602
. 523	. 22267017	. 685395	. 5933327	. 572	. 2484164	. 771807	-564 3055
. 523	.2271360	. 68708 s	. 5923367	. 573	. 2488507	. 773580	. 5638314
. 524	.2275703	. 688759	. 5921472	. 574	. 2492850	.775 354	. 5632579
0.525	0.2280046	I. 650459	0.5915554	0.575	0.2497193	1.777131	0.5627049
. 526	. 228 +38)	. 692150	. 5909541	. 576	. 2501536	. 778909	. 5521424
. 527	. 2288732	. 673 84.3	. 5903734	- 577	.2505879	. 780088	. 5615806
. 528	. 2293075	. 695538	. 5897834	- 578	. 2510222	.782470	. 5610193
. 529	.2297418	. 697234	. 5891939	-579	.251 4565	.784253	. 5404585
0.530	0.2301761	I. 698932	0.5886050	0.580	0.2518908	I. 786038	0.5598 .84
. 531	. 2306104	. 700632	. 5880167	. 581	.2523251	. 787825	. 5593387
. 532	. 2310447	. 702334	. $587+289$. 582	.2527594	. 789614	. 5587797
. 533	. 2314790	. 704037	. 5878418	. 583	.2531937	. 791405	. 5582212
. 534	. 2319133	$.7057{ }^{2}$. 5352553	. 58.	.2536280	. 733197	. 5576632
0.535	0.2323475	1.707448	0.5856693	0.585	0.2540623	$1.794 \mathrm{S91}$	0.5571059
. 535	. 2327818	. 709157	. 5850839	. 585	. 2544956	. 796787	. 5505490
. 537	. 2332161	.710857	. 5844991	. 587	. 2549309	. 798585	. 5559928
. 538	. 2336504	. 712578	. 5839149	. 588	. 2553652	.800384	. 5554370
. 539	. 2340847	.714292	.583 3313	. 589	.2557994	.802185	. 5548819
0.540	0.2345190	1.716007	0.5827483	0.590	0.2562337	1.803988	0.5543273
. 541	. 2349533	.717 724	. 5821658	. 591	. 2566080	. 805793	. 5537732
. 542	. 2353876	. 719442	. 5815839	- 592	.2571023	. 807600	. 5532197
. 543	. 2358219	. 721163	. 5810026	. 593	. 2575366	. 809409	- 5526608
. 544	. 2352562	.722885	. 580.4219	-594	.2579709	. 811219	. 5531144
	0.2366905	1.724608	0.5798418	0.595	0.2584052	1.813 031	0.5515626
. 546	. 2371248	. 726334	. 5792522	. 596	. 2588395	. 814845	.5510113
. 547	.2375591	. 728001	. 5786833	- 597	. 2592738	. 816661	. 5504605
. 548	$.2379934$	$.729790$. 5781049	. 559	.2597081	.818478 .800	-5499104 -549307
- 549	.2384277	.731521	. 5775270	-599	.2601424	. 820298	. 5493607
0.550	0.2388620	1.733253	0.5769498	0.600	0.2605767	1.822119	0.5488116
109es $\left(e^{3}\right)$	togande ${ }^{\text {n }}$)	$e^{\text {a }}$	${ }^{-}$	logote ${ }^{\text {a }}$)	losmo (ex)	${ }^{\text {a }}$	-

The Exponential.

u	$\log _{10}\left(e^{u}\right)$	$e^{\text {a }}$	e^{-n}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\theta^{\text {a }}$	e^{-u}
0.600	0.2605767	1.832 II9	0.548815	0.650	0.2822914	1.915541	0.5220458
. 601	. 2610110	. 823942	. 5482631	. 651	. 2827257	. 917457	. 5215240
. 602	. $2614+453$. 825 -67	. 5477151	. 652	.2831600	. 919376	. 5210027
. 603	. 2618796	. 827593	. 5471577	. 633	. 2835943	. 921295	. 520.4820
. 604	. 2523139	.829 422	. 3766208	. 654	. 2840285	. 923218	. 519 ¢618
0.605	0.2627482	1.831252	0.5460744	0.655	$0.284+4629$	1.925143	0.5194121
. 606	. 2631825	. 833084	. $5+5$ 5286	. 656	. 28.8972	. 927059	. 5189229
. 607	. 2636168	. 834918	. 544983.	. 657	. 2853315	. 928597	. 5184042
. 608	. 2640510	. 836754	. 5444387	. 658	. 285 7658	. 930 ¢27	. 5178861
. 609	. 2644853	. 838592	. 5438545	. 659	. 2852001	. 932859	.517 3684
0.610	0.2549196	I. 84043 I	0.5433509	0.650	0.2856341	1.934 792	0.5168513
.6II	. 2653539	. 842273	. $5+28078$. 651	. 2870687	. 935728	. 5163347
. 612	. 2557882	. 844116	. 5422653	. 662	. 2875029	-958666	.5158187
.613	. 2662225	. $8+595 \mathrm{y}$.541733	. 663	. 2879372	. 940605	.515 3031
. 614	.2566568	. 847808	. 5411818	. 66.4	. 2883715	. 942547	.5I4 788I
0.615	0.2570911	I. 849657	0.5406409	0.655	0.2888058	I.944 491	0.514 2735
. 616	. 2675254	. 851507	. 5401005	. 665	.2892401	. 946436	. 5137595
. 617	. 2679597	. 853360	. 5395607	. 667	. 2896744	. 948383	. 5132460
. 618	. 2683940	. 855214	. 5390214	. 668	. 2901087	. 950333	.512 7330
. 619	. 2688283	. 857070	. 5.384827	. 669	. 2505430	. 952284	. 5122205
0.620	0.2692626	I. 858928	0.5379444	0.670	0.2909773	1.954237	0.5117086
. 621	. 2696969	. 850788	. 5374068	. 671	. 2914116	. 955193	. 5111971
. 622	. 2701312	. 862650	. 5368696	. 672	. 2918459	. 958150	. 5106852
. 623	. 2705655	.854513	. 5363330	. 673	. 2922802	. 960109	. 5101758
. 624	. 2709998	. 855379	. 5357970	. 674	. 2927145	. 962070	. 5096558
0.625	0.271434 T	$1.868 \quad 246$	0.535261 .4	0.675	0.2931488	1.954033	0.5091564
. 626	. 2718583	. 870 II3	. 5347264	. 675	. 2935831	. 955098	. 5086475
. 627	. 2723026	. 871985	. 5341920	. 677	. 2940174	. 957965	. 508 ± 391
. 628	. 2727369	. 873859	. 533658 I	.678	. 2944517	. 969934	. 5076312
. 629	.2731712	. 875734	. 5331247	. 679	. 2948850	. 971905	. 5071239
0.630	0.2736055	1.877 6II	0.5325918	0.680	0.2953202	1.973878	0.5056170
. 631	. 2740398	. 879489	. 5320595	. 68 I	.2957545	. 975853	. 5061106
. 632	. 2744741	. 881370	. 5315277	. 682	. 2961888	-977839	. 5056048
. 633	. 2749084	. 883252	. 5309964	. 683	. 296623 I	. 979808	. 5050904
. 634	. 2753427	. 885136	. 5304657	. 684	. 2970574	.98I 789	. 5045946
0.635	0.2757770	1.887022	0.5299355	0.685	0.2974917	1.983 772	0.5040902
. 636	. 2762113	. 888910	. 5234058	. 686	. 2979260	. 885757	. 5035864
. 637	. 2766456	. 890800	. 5288767	. 687	.2983603.	. 987743	. 503083 I
. 638	. 2770799	. 892692	. 528348 I	. 688	. 2987946	. 989732	. 5025802
. 639	. 2775142	. 894585	. 5278200	. 689	. 2992289	.991 723	. 5020779
0.640	0.2779485	I. 89648 I	0.5272924	0.690	0.2996632	1.993716	0.5015761
. 641	. 2783828	. 898378	. 5267654	. 691	. 3000975	. 995710	.501 0747
. 642	. 2788171	. 900278	. 5262389	. 692	. 3005318	. 997707	. 5005739
. 643	. 2792514	. 902179	. 5257129	. 693	. 300966 I	. 999706	. 5000736
. 644	. 2796856	. 904082	. 5251875	. 694	. 3014004	2.001706	-4995738
0.645	0.2801199	I. 905987	0.5246625	0.695	0.3018347	2.003709	0.4990744
. 646	. 2805542	. 907894	. 524 I 38 I	. 695	. 3022690	. 005714	. 4985756
. 647	. 2809885	.909 803	. 5236143	. 697	. 3027033	. 007721	. 4980773
.648	. 28 I 4228	. 911714	. 523 0,09	. 698	. 3031375	. 009729	$.4975795$
. 649	.28r 8571	. 913626	. 522 5681	. 699	. 3035718	. OII 740	. 497082 I
0.650	0.2822914	I. 91554 I	0.5220458	0.700	0.3040061	2.013753	0.4965853
$\log _{0}\left(\mathrm{e}^{\mathrm{x}}\right)$	$\log _{10}\left(e^{\text {a }}\right.$)	$e^{\text {a }}$	${ }^{-}$	$\log _{0}\left(\mathrm{e}^{\mathrm{L}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{T}}\right.$)	e^{x}	e^{-12}

The Exponential.

и	$\log _{10}\left(\mathrm{e}^{\mathrm{T}}\right)$	$\theta^{\text {a }}$	e^{-8}	u	$\log _{19}\left(8^{0}\right)$	$e^{\text {a }}$	e^{-n}
0.700	0.3040061	2.013753	0.4955853	0.750	0.3257209	2.117000	0.4723666
. 701	. 3044404	.015767	. 4950850	. 751	- 3251532	. 119118	. 471894
. 702	-3048747	. 017884	. 4955931	.752	-325 5895	. 121238	-471 +238
. 703	. 3053090	. 019803	. 4950978	. 753	. 3270237	.12336	. 4709516
. 704	. 3057433	. 021824	. 4946020	. 757	. 3274580	. $125+85$. $470+809$
0.705	0.3061776	2.023847	0.4941085	0.755	0.3278923	2.127 612	0.4700106
. 703	-305 6I19	. 025872	. 493 6I47	. 756	. 32832666	. 129740	. 4693408
. 707	. 3070.462	. 027898	-4931213	. 757	-328 7609	.131871	- ffor 0-15
. 708	. 3074805	. 029927	. 4926285	. 758	.3291952	.134 00.4	.4686027
. 709	. 3079148	. 031958	.4921361	. 759	. 3296295	.136139	. 4681343
0.710	0.3083491	2.033991	0.491642	0.750	0.3300638	2.138276	0.4676664
. 711	. 3087834	. 036026	. 4911528	. 701	. 3304681	. 140416	. 1671990
. 712	. 3092177	.038063	. 4906619	- 712	-3309324	. 142557	-446-7320
.713	. 3096520	. 040102	. 4501715	.763	-331 3667	. 144701	.4fis 2555
.714	. 3100853	. 042144	.4896815	. 764	. 3318010	. 146846	. 4657995
0.715	0.3105206	2.04187	0.4831921	0.765	0.3322353	2. 148994	$0 .+653339$
. 716	. 3109548	. 046232	. 4887032	. 765	. 3326696	.151 144	. 4648888
. 217	-311 3S91	. 048279	. 4882147	. $7^{6} 7$. 3331039	. 153297	.464 40,42
.718	-311 8234	. 050328	. 4877267	-768	- 3335382	. 155451	. 4639400
. 719	. 3122577	. 052380	. 4872393	. 769	-3339725	. 157608	. 463 4763
0.720	0.3126920	2.054433	0.4867523	0.770	0.3344058	2.159 766	0.4630131
. 721	. 3131253	. 056489	. 4852657	.77I	. 3348410	. I6I 927	.4525503
. 722	. 3135605	. 058546	. 4857797	. 772	. 3352753	. 164090	. 4620880
. 723	. 3139949	. 060606	. 4852942	. 773	. 3357096	. 166255	. 46 I 626I
. 724	. 3144292	.062 667	. $48+8091$. 774	. 3361439	. 168423	.461 1647
0.725	0.3148535	2.054731	0. $48+32.46$	0.775	$0.336 \quad 5782$	2.170592	0.4607038
. 725	. 3152978	. 066797	. 4838405	. 775	. 3370125	. 172764	. 4602433
. 727	. 3157321	. 068855	.483 3569	. 777	. 3374168	. 174938	. 4597833
. 728	. 3161664	.070 935	. 4828738	.7-8	- 337881 II	. 177 II4	. 4593237
. 729	. 3166007	. 073007	. 4823911	. 779	- 338 3154	. 179292	. 4588646
0.730	0.3170350	2.07508 I	0.4819090	0.780	0.3387497	2.181472	0.458 .4060
. 731	. 3174693	. 077157	. 4814273	. 781	. 3391840	.183655	. $457{ }^{\prime} 9478$
. 732	. 3179036	. 079235	. 480946 I	. 782	. 3396183	. 185840	. 4574901
.733	. 3183379	.081 315	. 4804654	. 783	. 340 0526	. 188027	-457 0329
. 734	. 3187721	. 083398	. 4799852	. 784	. 3404859	. 190216	-4565760
0.735	0.3192064	2.085482	0.4795055	0.785	0.340 C 212	2.192407	
. 736	. 3196407	. 087559	. 4790262	. 785	. 3413555	. 194600	$.4556638$
. 737	. 3200750	. 089657	. 4785474	. 787	. 3417898	. 196796	. 4552084
. 738	. 3205093	.091 748	. 4780691	.788	-342 2241	. 108994	.4547534 .4542980
. 739	. 3209436	. 09384 I	. 4775913	.789	. 3426583	. 201194	. 4542989
0.7\%0	0.3213779	2.095936	0.4771139	0.790	0.3430926	2.203396	0.4538448
. 741	. 3218122	. 098032	. 4766370	. 791	. 3435269	. 205601	
. 742	. 3222465	. 100132	. 4761606	. 792	. 3439612	. 207808	. 4529388
. 743	. 3226808	. 102233	. 47568.47	. 793	$.344 \quad 3955$	$.210017$. 4524853
. 744	. 323 I151	. 104336	. 4752093	. 794	$.3448298$.212228	.4520330
0.745	0.3235494	2.106441			0.3452641		
. 746	. 3239837	. 108549	. 4742598	. 796	. 3456984	. 216657	-4511299
. 747	. 3244180	. 110659	-473 7858	. 797	$.3461327$. 218874	$.4506790$
.748 .749	$\begin{array}{r} .3248523 \\ .3252866 \end{array}$.112770 .114884	.4733122 .4728392	. 798	$\begin{array}{r} .3465670 \\ .3470013 \end{array}$.221094 .223 16	$\begin{array}{r} .4502285 \\ .4497785 \end{array}$
. 749	. 3252866	. 114884	-472 8392	. 799	. 3470013	.223316	-449 7785
0.750	0.3257209	2.117000	0.4723666	0.800	0.3474356	2.22554 I	0.4493290
Hende ${ }^{\text {a }}$	londe $\mathrm{E}^{\text {x }}$)	$0^{\prime \prime}$	e^{-3}	male ${ }^{\text {a }}$)	$\operatorname{lognc}\left(0^{\text {ax }}\right)$	$e^{\text {a }}$	0

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{U}}\right)$	e^{a}	e^{-a}	u	$\log _{10}\left(\mathrm{E}^{\mathrm{a}}\right)$	$\mathrm{e}^{\text {a }}$	e^{-4}
0.800	0.3474356	2.22554 I	0.4493290	0.850	0.3591503	2.339647	0.42741 .49
. 801	. 3478899	. 227768	. 4188899	. 851	. 359 58+6	.3+1 cis	. 4269877
. 802	. 3483042	. 229996	. 4484312	. 852	. 3700189	.344331	. 4255610
.803 .804	- 34887303	. 232228	. +1775830	. 853	. 3704532	$\begin{array}{r}\cdot 346 \\ -376 \\ \hline\end{array}$.4261346 .4257087
. 804	. 3491728	. 234 46I	. 4175352	.854	. 3708875	-349 024	. 4257087
0.805	0.3496071	2.236696	0.4750879	0.855	0.3713218	2.351374	$0.425 \quad 2832$
. 805	. 3500414	. 238934	. +166411	. 855	. 3717561	. 353727	. 424 8581
. 807	- 3504756	, $2+1 \mathrm{I} 174$	-445 $19 \cdot 6$. 857	. 3721904	. 355082	-4x 4335
. 808	. 3509099	. 243417	. 41557487	. 858	. 3726247	-358439	. 4240093
. 809	. 3513142	. 245661	. 4153031	. 859	. 3730590	. 360799	- 4235855
0.810	0.3517785	2.247908	0.414888 I	0.850	0.3734933	2.363161	0.423 162I
.81I	. 3522128	. 250157	. 41441134	. 851	. 3739275	. 365525	- 4227391
. 812	. 3526451	. 252408	. 4439.52	. 852	. 3743618	- 367892	-422310́ó
. 813	. 3530814	. 254662	. 4435235	. 853	. 3774.7861	. 370251	-4218975
.814	. 3535157	. 255918	. 4130032	. 84	. $375{ }^{\circ} 2304$. 372632	- 4214728
0.815	0.3539500	2.259176	0.4426393	0.855	0.3756547	2.375006	0.4210516
. 816	. $354+3843$. 2514.36	. $44219: 9$. 836	. 376 0950	- 377382	. 4206307
. 817	. 3548185	. 263699	. 411 7549	. 857	. 3765333	- 379761	. 4202103
. 818	. 355259	. 265953	. 4113134	. 868	. 3769576	.382142	. 4197903
.819	. 3556872	. 258230	. 4108723	. 859	. 377 for9	. 384525	. 4193707
0.820	0.3561215	2.270500	0.4404317	0.870	0.3778362	2.3859 911	0.4189515
. 831	. 356 5358	. 272771	. 4399914	. 871	. 3782705	. 389299	. 4185328
. 822	. 3569901	. 275045	. 4395517	. 872	. 3787048	. 391689	-418 1145
. 823	. 3574244	. 277322	. 4391123	. 873	-379 I391	. 394082	. 4176956
.8×4	. 3578587	. 279600	- 4386734	. 874	. 3795734	. 396478	. 4172791
0.825	0.3582929	2.28 I 88 I	0.4382350	0.875	0.3800077	2.398875	0.4168520
. 825	. 3587272	. 284154	. 4377970	. 875	. 3804420	. 401275	-416 4454
. 827	. 3591615	. 285449	. 4373594	. 877	-380 8763	. 403678	. 4160291
. 838	. 3595958	. 288737	. 436 922,3	. 878	.381 3100	.406083 .408490	. 41561315
. 8	. 3600301	.291037	. 4364856	. 879	.381 7418	.408490	.4151979.
0.830	0. 3604644	2.293319	0.4360493	0.830	0.382 1791	2.410900	0.4147829
. 831	. 3608387	. 295613	. 4356135		. 3826134	.413312	-414 3683
. 832	. 36133330	. 297910	. 4351781	. 882	. 3830477	-415 725	-413 9542
. 833	-361 7673	. 300209	. 4347431	. 883	. 3834820	.418 143	. 4135404
. 834	. 3622016	. 302510	. 4343035	. 884	. 3839163	. 420563	. 4131271
0.835	0.3626359	2.304814	0.433 8745	0.885	0.3843506	2.422984	0.4127142
. 836	. 3630702	. 307120	. 4334408	. 883	. 3847849	. 425409	. 4123017
. 837	. 3635045	. 309428	. 4330076	. 887	. 3852192	. 427835	. 4118896
. 838	- 3639388	. 311739	. 4322748	. 888	. 385635	-430 264	- 41147779
. 839	. 3643731	. 314052	. 4321424	. 889	. 3868878	-432696	.4II 0656
0.840	0.3648074	2.316367	0.4317105	0.850	0.3855221	2.435130	0.4106558
.841	. 3652417	. 318685	. 4312790	. 891	. 3859564	. 437566	. 4102453
. 812	. 3556750	. 321004	-430 8480	. 892	- 3873907	. 440005	- 4098353
.843	. 3661102	. 323327	. 4304173	. 893	- 3878250	. 442446	. 4094256
.844	. 3665445	. 325651	. 429987 I	. 894	. 3832593	. 444890	. 4090164
0.845	0. 366 9788	2.327978	0.4295574	0.825			0.4086076
. 8.86	. 357413 I	. 330307	. 429 I 1280	. 895	. 3891279	. 449784	. 4081992
. 847	- 3578474	. 332638	. 4288	. 897	. 3895622	-452 235	. 4077012
. 8.8	- 36888817	. 334972	. 4282706	. 898	- 3899964	. 454689	. 4073836
. 849	. 3687160	-337 308	- 4278426	. 899	. 3904307	-457 145	. 4069754
0.850	0.3691503	2.339647	0.4274149	0.900	0.3908650	2.459603	0.4065697
Hosede ${ }^{\text {a }}$)		e^{x}	e^{-a}	loge ($\mathrm{E}^{\text {a }}$)	logi2de ${ }^{\text {e }}$)	$0^{\text {a }}$	e^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-4}	u	$\log _{20}\left(\mathrm{e}^{\mathrm{E}}\right)$	$e^{\text {a }}$	e^{-8}
0.900	0.3908550	2.459603	0.4065697	0.950	0.4123708	2.585710	0.3857410
. 901	. 3912993	. 462054	. 4061633	. 951	$.41301+1$. 588297	-305 3545
. 90	-391 7336	. 464527	. 4057573	-952	.+13488	. 593885	-385 5/83
.903	. 3921679	. 466993	.4053518	. 953	. 4138826	. 593478	-385 $3^{2} 25$
.904	.392 6022	. 469461	.4049466	-954	.4I4 3160	. 595073	. 3851971
0.905	0.3930365	2.471932	$0.40+5+19$	0.955	0.4147512	2.508671	0.3848121
. 905	. 3934708	. 474405	. 4041375	. 956	.4151855	.601 271	. $384+275$
. 507	- 393 9051	. 47688 r	. 4037336	. 957	.4156108	. 603873	- 384
.908	. 3943304	. 479359	.4033301	.953	.4150541	. 606478	. 3836394
. 909	. 3947737	. 481839	. 4029269	. 959	.4164884	. 609085	. 3832760
0.910	0.3952080	2.484323	0.4025242	0.960	0.4169227	2.611606	0.3828029
. 911	. 3956423	. 485808	.4021219	. 951	.4173570	. 614309	. 3825102
. 912	. 3950756	. 489295	. 4017200	. 962	. 4178913	. 616925	.3821279
. 913	. 3965109	. 491787	. 4013185	. 963	. 4182256	. 619543	-381 7459
.9I. 4	-396 9452	. 494280	. 4009173	.964	.4186599	. 622164	. 3813644
0.915	0.3973795	2.495775	0.4005166	$0.96=$	0.4190912	2.624788	0.3800832
. 916	. 3978137	. 499273	. 4001163	. 956	.4195285	. 627414	. 3806024
. 917	- 3982480	-501 774	. 3997164	. 967	. 4190528	.630042	. 3802220
.918	. 3986823	. 504277	. 3903169	. 988	. 4203971	. 632674	. 3798420
. 919	. 3991166	. 505782	. 3989178	. 959	. 4208314	. 635308	. 379.4623
0.920	0.3995509	2.509290	0.3985190	0.970	0.4212656	2.637944	0.3790830
. 921	. 3999352	. 511801	. 3981207	. 971	.4216999	. 640384	. 3787041
. 922	. $400+195$. 514314	. 3977228	. 972	- 4221312	. 643225	- 3783256
. 923	-400 8538	. 516830	. 3973253	. 973	.4225685	. 645870	- 3779475
.924	. 4012881	. 519348	. 3969281	. 974	.4230028	. 648517	-3775697
0.92	0.4017224	2.521868	0.3965314	0.975	0.423437 I	2.651167	0.3771924
. 926	. 4021567	. 524391	. 3961351	. 976	.4238714	. 653820	. 37 ' 8153
. 927	. 4025910	. 526917	- 3957391	. 977	. 42.43057	. 656475	-3764387
. 928	.4030253	. 529445	. 3953436	. 978	. 4247400	. 659133	- 376 Of25
.929	. 4034596	. 531976	. 3949485	. 979	.4251743	. 661793	. 3756865
0.930	0.4038939	2.534509	0.3945537	0.980	0.4256086	2.654456	0.3753111
.931	. 4043282	. 537045	- 3941594	.981	. 4260429	. 657122	. 3749360
. 93	.4047525	. 539583	. 3937654	. 982	. 4264772	. 669790	. 3745612
. 933	. 4051968	. 542124	. 3933718	.983	. 4269115	$.6724^{62}$. 3741869
. 934	.4056310	. 544668	-3929786	. 984	. 4273458	. 675135	. 3738129
0.935	0.406	2.547213	0.3925859	0.985	0.4277801	2.677812	0.3734392
.936	. 4064996	. 549762	. 3921935	. 985	. 4282144	. 680491	. 3730660
. 937	. 4069339	. 552313	. 3918015	. 887	. 4286487	. 683173	. 3726931
. 938	. 4073682	. 554857	. 3914098	. 988	. 4290829	. 685857	. 3723206
. 939.	. 4078025	- 557423	. 3910187	.989	.4295172	. 688545	.371 9485
0.940	0.4082368	2.559981	0.3906278	0.990	0.4299515	2.691234	0.3715767
. 941	. 4086711	. 562543	- 3502374	. 991	. 4303858	. 693927	.371 2053
. 942	. 4091054	. 565107	- 3398474	. 992	. 43082201	. 696622	- 3708343
. 943	. 4095397	. 567673	. 3894577	. 993	. 4312544	. 699323	-370 4036
. 944	. 4099740	. 570242	. 3890684	. 994	. 4316887	. 702021	-370 0934
0.945	0.4104083	2.572813	0.3886796	0.995	0.4321230	2.704724	0.3697234
. 9.96	. 4108485	. 575387	. 3882911	. 996	. 4325573	-707430	$.3693539$
. 947	.4112769	. 577964	. 3879030	. 997	- 4329916	.710 139	-368 9847
. 9448	. 41171112	.580543 .583125	.3875153 .3871280	. 998	. 4334259	.712851 .715565	$.3686159$
. 949	.412 4455	. 583125	. 3871280	. 999	. 4338602	.715565	-368 2475
0.950	0.4125798	2.585710	0.3867410	1.000	0.4342945	2.718282	0.3678794
loselet ${ }^{\text {a }}$)	leasole ${ }^{\text {a }}$)	8		logale")	Homano ${ }^{\text {a }}$)	${ }^{\text {x }}$	-

The Exponential.

и	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right.$)	$\mathrm{e}^{\text {a }}$	e^{-8}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\mathrm{e}^{\text {a }}$	e^{-a}
1.000	0.4342945	2.718282	0.3678794	1.050	0.4560092	2.857651	0.3499377
. 001	- 4347288	. 721001	. 3675117	. 051	- 455433	.850 510	. 3495880
. 00	- 4351631	. 723724	- 367 I 144	. 053	- 4568878	. 863372	-3492386
. 003	- 4355974	. 726449	- 3657775	. 053	- +573121	. 856237	- 3488895
. 004	. 4360317	. 729177	. 3564109	. 054	- +577464	. 869105	. 3485408
I. 005	0.4364650	2.731907	0.356046	1.055	0.4581807	2.871975	0.3481924
. 006	. 4369002	. 734641	. 3656788	. 055	- 4586150	. 874849	. 34788444
. 007	- 4373345	. 737377	. 3653133	. 057	- $+590+93$. 877725	. 3474967
. 008	. 4377888	.740115 .742857	. 364948 SI	.	- 4594835	.880 .883 804	$\begin{array}{r}.347 \\ -316894 \\ \hline 189\end{array}$
. 009	. 4382031	.742 857	. 3645834	. 059	-4599179	. 883485	- 3468024
I. OIO	0.4386374	2.745601	0.3642190	1.060	0.4603522	2.885 371	0.3454558
. OH	. 4390717	. $7+83+8$. 3638549	. 061	-450 7854	. 883259	- 346151095
.or	-439 5050	-751 708	- 3634913	. 062	-4612207	. 892150	- 3457636
. 013	. 4399403	.753850 .75665	.3631280 .3627550	. 063	. 46 I . 6550	. 895043	. 3454188
.ort	-440 3746	.756 605	-362 7650	. 064	. 4620893	. 897940	-3450728
1.015	0.4408089	2.759363	0. 3624024	1.065	0.4625236	2.900839	0.3447279
. 016	-441 2432	. 762124	. 3520102	. 056	-4629579	. 903741	. 3143833
. 017	- 4117675	. 764888	. 36116783	. 067	-4633922	-906 646	- 314 0391
. 018	. 4121118	. 767654	-361 3169	. 068	-4638265	. 909555	- 3436952
. 019	. $44^{2} 546 \mathrm{I}$.770 423	. 3609557	. 069	-464 2608	.912 466	. 3433517
1.020	0.4129804	2.773195	0.3605949	1.070	0.4646951	2.915379	$0.343 \quad 0085$
. 0	- 443412	. 775969	. 3602345	. 071	-465 1294	. 918295	. 3126657
. 022	- 4438490	. 778747	. 3598745	. 072	. 4655637	.921 216	- 3423232
. 023	. 4142833	. 781527	. 3595148	. 073	-4659980	.924 139	- 3419810
. 024	-4447175	. 784310	. 3591554	.074	. 4664323	. 927064	-341 6392
1.025	0.4451518	2.787095	0.3587955	1.075	0.4668666	2.929993	0.3412978
. 026	. 4455861	. 789884	. 3584378	. 076	- 4673009	.932924	. 3409566
. 027	. 4460204	. 792675	. 3580706	. 077	- +677352	. 935859	- 3406158
. 028	. 4464547	. 795469	. 3577217	.078	. 4681695	.938796	- 3402754
. 229	. 4468890	. 798266	. 357364 I	. 079	. 4686037	.941736	-3399353
1.030	0.4473233	2.801066	0.3570070	1.080	0.4690380	2.944680	0.3395955
.031	. 4477576	. 803868	. 3566501	. 081	-469 4723	. 947626	. 3392561
. 032	. 4481919	. 800674	- 3562937	. 082	- 469 S056	-950 575	. 338 9170
. 033	. 4486262	. 809482	- 3559375	.083	-470 3409	.953 527	- 338 5783
. 034	. 4490605	.812 293	. 3555818	. 084	-470 7752	.956 482	-3382399
1.035	0.4494948	2.815106	0.3552264	1.085	0.4712095	2.959440	0.3379018
. 036	. 44992921	.817923	. 3548713	. 088	-471 6438	. 962401	-337 364 LI
. 037	. 4503636	. 820742	-354 5166	. 087	. 472078		$\cdot 3372267$
.038 .039	. 4507977	. 8235634	.3541623 .3538083	. 088	.4725124 .4729467	.968 331	$\begin{aligned} & .3368896 \\ & .3365529 \end{aligned}$
							-336 5529
1.040	0.4516663	2.829217	0.3534547	1.090	0.473 3810	2.974274	0.3362165
. 041	. 4521005	. 832048	. 3531014	. 091	. 4738153	. 977250	- 3358804
. 042	- 4525349	. 33488 I	- 352 7485	. 092	-474 2495	. 980229	-335 5447
. 043	-4529691	. 837717	. 3523959	. 093	. 4746839	. 983210	- 3352094
. 044	. 4534034	. 840557	. 3520437	. 094	-475 1182	.986 195	- 3348743
1.045	0.4538377	2.843399	0.3516918	1.095	0.4755525	2.989183	0.3345396
. 046	. 4542720	. 846243	. 3513403	. 096	. 4756868	. 992173	- 3342052
. 047	. 4547063	. 849091	. 350 9891	. 097	-476 419	-995 167	- 3338712
. 048	. 455 I 406	. 851942	. 3506383	. 098	-4768553	. 998164	- 3335375
. 049	. 4555749	. 854795	. 3502879	. 099	- 4772896	3.001163	. 3332041
1.050	0.4560092	2.857651	0.3499377	1.100	0.4777239	3.004166	0.3328711
Hoge ${ }^{\text {a }}$)	$\left.\mathrm{logiog}_{10} \mathrm{e}^{4}\right)$	$\mathrm{e}^{\text {d }}$	e^{-a}	$\mathrm{log}_{\text {e }}\left(\mathrm{e}^{\mathrm{k}}\right)$	$\operatorname{logide}^{(0)}{ }^{\text {a }}$)	$\mathrm{e}^{\text {a }}$	e^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-a}	\checkmark	$\log _{10}\left(\mathrm{e}^{4}\right)$	$\mathrm{e}^{\text {a }}$	e^{-5}
1. 100	$0.477 \quad 7239$	3.004166	0.3328711	I. 150	$0.499+387$	3.158193	0.3166368
. IOI	. 4781582	.007 172	. 332 5384	. 151	. 409085	. 161353	0.3163203
. 102	. 4785925	. O 10 I 80	- 3322050	. 152	. 5003072	. 164516	. 316041
. 103	. 4790268	. 013192	. 3318740	. 153	. 5002715	. 16768	.3156883
. 104	. $479+6 \mathrm{II}$. 016207	. 3315	. 154	- 5011758	. 170851	. 315 3728
1.105	0.4798954	3.019224	0.3312109	1.155	0.5016101	3.174 023	0.3150575
. 106	. 4803257	. 022215	- 3308708	. 156	. 5020444	. 177199	. $3147+26$
. 107	. $480-540$. 025259	- 3305491	. 157	. 502478	.180378	. 3144281
. 108	. 4811983	. 0288296	-330 2187	. 158	. 5029130	. $1835^{\circ} 0$	-314 1138
. 109	. 4816326	.031 326	. 3298887	. 159	. 5033473	. 185	-313 7998
1.110	0.4820569	3.034358	0.3295350	1.160	$0.503,7816$	3.189933	$0.313+852$
II	. 4825012	. 037394	. 3292296	. 1515	. 5042159	. 193125	. 3131729
. 112	. +829355	. 040433	. 3289005	. 162	. 5046502	. 1043320	. 3128598
. 113	. 4833668	. 043475	. 3285718	. 163	. 5050815	. 199517	. 312547 I
. 114	. 4838041	. 046520	. 328 2434	. 164	. 5055188	. 202719	. 3122347
1.115	$0.48+2383$	3.049568	0.3279153	I. 165	0.5050531	3.205923	0.3119227
. 116	. $48+6$.052619	. 3275875	. 166	. 50 ', 3874	. 209130	. 3116109
. 117	.4851059	. 055673	. 3272501	. 167	. 5068217	. 212341	. 3112904
. 118	-485 5412	.058731	. 3269330	. 168	. 5072550	. 215555	. 3100883
. 119	. 4859755	.061 791	. 3266062	. 169	. 5076902	. 218772	- 3106775
1.120	$0.48510,8$	3.064854	0.3262798	1.170	0.50812 .45	3.221993	0.3103669
. 121	. 4868441	. 067921	. 3259537	.171	. 5085588	. 225216	. 3100567
. 122	. 4872784	.070 990	. 3256279	.172	. 5089031	. 228443	. 3097468
. 123	-487 7127	.074063	. 3253024	. 173	. $509+274$. 231573	. 3094372
. 124	. 488 1470	. 077138	. 3249773	. 174	. 5098617	. 234906	. 3091280
1.125	0.4885813	3.080217	0.3246525	1.175	0.5102060	3.238143	0.3088190
. 125	. 4830156	. 083299	. 3243280	.175	. 5107303	. 211383	. 3085103
. 127	$.489+499$. 086383	. 3240038	.177	. 5111646	. 241626	. 3082020
. 128	.4898842	. 08947 I	. 3236800	.178	. 5115989	. 247872	. 3078939
. 129	. 4903185	. 092562	. 3233565	. 179	. 5120332	. 251121	. 3075852
1.130	0.4907528	3.095657	0.3230333	1.180	0.5124675	3.254374	0.3072787
. 131	. 4911871	. 098754	. 3227104	. 18 r	. 5129018	. 257 t 30	. 3069716
. 132	-4916214	. 101854	. 3223878	. 182	. 5133361	. 260837	. 3066648
. 133	-492 0556	. 104957	. 3220656	. 183	. 5137704	. 264152	. 3063583
. 134	-4924899	. 108004	-3217437	. 184	. 5142047	. 267418	. 306 052I
1.135	0.4929242	3.111174	0.3214221	1.185	0.5146390	3.270687	0.3057462
. 136	. 4933585	. .114286	. 3211009	. 185	. 5150733	. 273959	. 3054406
. 137	-4937928	.117402	. 3207799	. 187	. 5155075	. 277235	. 3051353
. 138	-494 2271	.120521	. 3204593	. 188	. 5159418	. 280514	. 3048303
. 139	. 4946614	.123643	. 3201390	. 189	. 5163761	. 283796	. 3045256
1. 140	0.4950957	3.126 768	0.3198190	1.190	0.5168104	3.287081	0.3042213
. 141	. 4955300	. 129897	. 3194994	. 191	. 5172447	. 290370	. 3039172
. 142	. 4959643	. 133028	. 3191800	. 192	. 5176790	. 293662	. 3036134
. 143	- 49633986	.136163	. 3188610	. 193	. 5181133	. 296957	. 3033100
. 144	-4968329	. 139300	. 3185423	. 194	. 5185476	. 300256	. 3030068
1.145	0.4972672	3.142441	0.3182239	1. 195	0.5189819	3.303558	0.3027040
. 146	1.4977015	. 145585	. 3179059	. 196	. 5194162	. 306863	. 3024014
. 147	. 4981358	. 148733	.3175881	. 197	. 5198505	. 310171	. 3020992
. 148	-4985701	. 151883	. 3172707	. 198	.5202848	$.313483$. 3017972
. 149	. 4990044	. 155036	.3169536	. 199	. 520719 r	. 316798	. 3014956
1.150	0.4994387	3.158193	0.3166308	1.200	0.5211534	3.320117	0.3011942
Hosec (0)	lopnde ${ }^{\text {a }}$)	0^{3}	e^{-7}	$\operatorname{logsog}^{(08)}$	lomene ${ }^{\text {a }}$)	$e^{\text {R }}$	-

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$e^{\text {a }}$	e^{-n}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {u }}$	e^{-}
I. 200	0.521 I534	3.320117	0.3011942	1. 250	0.542868 I	3.4903 .43	0.2855048
. 201	. 5215877	. 323439	. 3008932	.251	. 5433024	- 493835	. 2352184
. 20	. 5220220	. 32574	. 3005924	. 252	- $5+37367$	-49733I	. 2859324
. 203	. $522+563$. 330092	- 3002920	. 253	- $5+41710$	- 500830	. 2856466
. 204	. 5228906	. $333+24$. 2099918	. 254	-5446053	-50+332	. 2853611
I. 205	0.5233249	3.336759	0.2996920	I. 255	0.5450396	3.507838	0.2850758
. 200	. 5237591	. 340008	. 2593505	. 255	. 5454739	-5II 348	. 28.47909
. 207	. 5241934	- $343+39$. 2900932	. 237	-5459082	-5I4 85I	. $28+5063$
. 208	. 5246277	. 346784	. 2787943	. 238	. 3453425	. 518378	. 2342219
. 209	. 5250630	. 350133	. 2984956	. 259	- 3467758	-521 838	. 2839378
I. 210	0.5254963	3.353485	0.2581573	1.260	0.5472110	$3 \cdot 525+21$	0.2836540
. 2	. $525930{ }^{\text {a }}$. 356840	. 23785	. 2.51	. 5476453	. 528949	. 2833705
. 21	. 523349	-300 198	. 2976015	. 252	. 5480786	- 532479	. 2830873
.213	. 5257992	-363 560	. 29730	. 263	. 5485139	. 536 O14	.2828043
. 214	. 5272335	. 360 c 25	. 2570009	. 264	-5489482	-539 55I	. 2825217
1.215	0.5276678	3.370294	0.2967100	1.265	0.5493825	3.543093	0.2822393
. 216	. 5281021	. 373666	. $295+135$. 265	- 5498168	. 546638	.28r 9572
. 217	. 523 534	. 377041	-295 1772	. 257	- 5502511	-550 185	.28i 6754
. 218	. 5289707	-383 +20	. 2958212	. 258	. 5506854	. 553738	.281 3938
. 219	. 5294050	.383802	. 2955255	. 259	-551 1197	-557293	.281 1126
I. 220	0.5298393	3.387 183	0.2952302	1.270	0.5515540	3.560853	0.2808316
. 22	. 5302735	-390 577	.2C4 9351	.271	.551 9883	. $564+15$. 2305509
.22	. 530 7079	- 303 969	. 2946403	. 272	- 5524226	. 567 gSI	. 2802705
. 223	. 5311422	- 397365	. 2943458	. 273	. 5528569	. 571551	. 2799904
. 224	. 5315764	. 400764	. 2940516	. 274	. 5532912	. 575124	. 2797105
1. 225	0.5320107	3.404166	0.2937577	1.275	0.5537255	3.578701	0.2794310
. 225	. $5324+50$. 407572	. 2934641	. 276	. 5541598	. 582282	. 2791517
. 227	. 5328793	. 410 981	.2931708	. 277	- 5545941	- 585866	.2788727
. 228	. 5333136	-414 394	. 2928777	. 278	-555 0283	. 589454	.2785939
. 229	. 5337479	. 417810	. 2925850	. 279	. 5554626	- 593045	.2783155
1.230	0.5341822	3.421230	0.2922926	1.280	0.5558959	3.596640	0.2780373
. 231	. 5346165	. 424652	. 25 , 20004	. 28 I	. 5563312	. 600238	. 2777594
. 232	. 5350508	. 428079	. 2917085	.282	. 5567655	. 603840	. 2774818
. 233	. 5354851	. 431509	. 2914170	.283	. 5571998	. 607446	. 2772044
. 234	. 5359194	. 434942	. 2911257	. 284	. 5576341	. 611055	.2769274
1.235	0.5363537	3.438379	0.2908318	1.285	0.5580684	3.614668	0.2766506
. 236	. 5367880	. 441819	. $29054+11$. 285	. 5585027	. 618284	. 2763741
. 237	. 5372223	. 415262	. 2502537	. 287	. 5589370	. 621905	. 2760978
. 238	. 5376565	. 448709	. 2899636	. 288	. 5593713	. 625528	. 2758219
. 239	.5380009	. 452160	. 2896737	. 289	. 5598056	. 629156	. 275 5462
1. 240	0.5385252	3.455613	0.2893812	1. 290	0.5602399	3.632787	0.2752708
. 241	. 5389595	- 459071	. 2890950	. 291	. 5606742	. 636421	. 2749956
. 242	. 5393937	. 462532	. 2888060	292	. 5611085	. 640059	. $27+7208$
. 243	- 5398280	. 465996	. 2885174	293	. 5615428	. 643701	. 2744162
. 244	. 5402623	. 469464	. $288 \cdot 2290$. 294	. 5619771	. 647347	. 2741719
1. 245	0.5406966	3.472935	0.2879409	I. 295	0.5624114	3.650996	0.2738079
. 246	. 5411309	. 476409	. 2876531	. 296	. 5628456	. 654649	. 2736241
. 247	. 5415652	- 479888	.2873656	. 297	. 5632799	.658305	. 2733506
. 248	. 5419995	$.483 \quad 369$	$.2870784$. 298	$.5037142$. 661965	. 2730774
. 249	. 5424338	. 485854	. 2867914	.299	. 5641485	.665629	$.27280+5$
1.250	0.542858 I	3.490343	0.2865048	T. 300	0.5645828	3.659297	0.2725318
$\log _{e}\left(e^{4}\right)$	$\log _{10}\left(\mathrm{E}^{\mathrm{x}}\right)$	e^{x}	e^{-3}	$\log _{6}\left(e^{x}\right)$	$\log _{17}\left(e^{4}\right)$	$\mathrm{e}^{\text {a }}$	

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{n}}\right)$	$e^{\text {a }}$	$e^{-\pi}$	u	$\log _{10}\left(\mathrm{e}^{\mathrm{x}}\right)$	$e^{\text {a }}$	e^{-0}
I. 300	0.3645828	3.669297	0.2725318	1.350	0.5862976	3.857426	0.2592403
- 301	. 5650171	. 672968	. 2722504	. 351	. 5857318	. 811235	. 258 c8811
-302	. 5654514	. 675643	. 271 6x-3	-352	. 38.161	. 85148	. 2587223
-303	. 5558857	. 680321	.2717154	-353	.3876004	. 89000	.258 .4637
. 304	. 5663200	. 684003	. 271438	-354	. 5880347	. 872885	. 2582054
I. 305	0.5667543	3.687685	0.2711725	1.355	$0.588+690$	3.876	0.2579473
-305	. 5571885	. 691379	.270 9015	. 356	. 5889033	. 880640	. 257485
. 307	. 5676239	. 695072	. 2706307	. 357	-58) 33.6	. $88+522$. 2574.319
. 308	. 568 0572	. 69876	. 2703502	. 358	. 580 2719	. 888.409	.25717 .45
-309	. 5684915	.702459	.270 0900	-359	. 5902062	. 872259	.256 c,176
1. 310	0.5689258	3.706174	0.26988201	1.360	0.5906405	3.896193	0.256663
. 311	. 5693601	. 709882	. 2695504	. 361	. 5910,78	. 90009 c	. $25640+2$
-312	. 5697944	. 713593	. 2592810	. 362	. 5915051	.903993	. 25614880
. 313	. 5702237	.717309	. 2590118	. 363	. 5919434	. 907899	.2558919
. 314	.570 6629	. 721028	. 2587429	. 364	- 5923777	.9II 809	. 25563
I. 315	0.5710972	3.724751	0.2684743	1.365	0.5928120	3.915723	$0.2553{ }^{3} \mathrm{CO}$
. 315	. 5715315	. 728478	. 2682060	. 365	. 5032453	. 919641	. 2551254
. 317	. 5719658	. 732208	. 2679379	- 367	. 5936806	. 923562	. 254 8704
. 318	. 5724001	. 735942	. 2576701	. 368	. 5941149	. 927488	. 2546157
-319	. 572834	. 739680	. 26574026	. 369	. 5445491	. 931417	. 2543612
I. 320	0.5732587	3.74342 I	0.2671353	1.370	0.5949834	3.935351	0.2541070
- 321	. 5737030	. 747167	. 2538383	. 371	. 5954177	. 939388	. 2538530
- 322	.5741373	.750916	. 2666016	. 372	. 5958520	. 943229	. 2535093
. 323	. 5745715	. 754669	.2563351	- 373	. 5962863	. 947174	. $2533+58$
-324	. 5750059	.758425	. 2660589	-374	. 5967205	.951 124	. 253 0926
1. 325	0.5754	3.762185	0.2658030	1.375	0.5971549	3.955077	0.2528396
. 325	. 5758745	. 765949	. 2655373	. 376	. 5973882	. 959034	.2525869
. 327	. 5763088	. 769717	. 2652719	- 377	. 5080235	. 962995	$.25233+4$
-328	. 5767431	.773489	. 2550067	-378	- 5984578	. 966960	.2520822
. 325	. 5771774	.777264	. 2647419	- 379	. 5988921	. 970929	.2518303
1.330	0.5776117	3.781 043	0.2644773	1. 880	0.599 .3264	3.974 coz	0.2515785
. 33 I	. 5780.460	. 784826	. 2642129	. 381	. 5997607	. 978879	. 2513271
-332	. 5784802	.783613	. 2639488	- 382	. 6001950	. 982859	.2510739
. 333	. 5789145	. 792404	. 2636850	. 383	. 6006293	. 98584	.25082 .49
-334	. 5793488	. 796198	. 2634215	. 384	. 6010636	. 990833	.2505742
1.335	0.579783 r	3.759996	0.2531582	1. 385	0.6014979	3.994825	0.2503238
. 336	. 5802174	. 803798	. 2628951	. 386	. 6019322	. 998823	. 2500736
. 337	. 5806517	. 807604	. 2626324	. 387	. 6023664	4.002824	. 2498237
. 338	. 5810860	. 811413	. 25236999	- 388	. 6028007	. 006828	. 2495740
. 339	. 5815303	. 815226	.252 1076	. 389	. 6032350	.010 837	. 2493245
1.340	0.5819546	3.819044	0.2518457	1.390	0.6036693	4.014850	
. 341	. 5823889	. 822864	. 2615840	. 391	. 6041036	. 018867	. 2488204
-342	. 5828232	. 826689	. 2613225	. 392	. 6045379	. 022888	.2485777
. 343	. 5832575	. 830518	. 2510613	- 393	. 6049722	.026913	. 2483292
-344	. 5836918	.834350	. 2608004	, 394	. 6054065	. 030942	. 2480810
1.345	0.584 l 261	3.838187	0.2605397	1. 395	0.6058 .08	4.034975	0.2478330
. 346	. 5845604	. 842027	. 2602793	. 396	. 6002751	. 039012	. 2475853
. 347	. 5849947	. 845871	. 260 0191	- 397	. 6067094	. 043053	. 2473379
. 348	. 5854290	. 849718	. 2597593	. 398	. 6071437	. 047008	. 247 0,07
-349	. 5858633	.853570	. 2594996	. 399	. 6075780	. 05154	.2458437
1.350	$0.586 \quad 2976$	3.857426	0.2592403	1.400	0.6080123	4.055200	0.2465970
logode ${ }^{\text {a }}$)	$\left.\log _{3}\left(8^{4}\right)^{2}\right)$	0^{*}		lose(e) ${ }^{\text {a }}$)	Hemode ${ }^{\text {a }}$)	${ }^{\text {a }}$	e^{-3}

The Exponential.

4	$\log _{10}\left(\mathrm{e}^{\mathrm{n}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-n}	u	$\log _{10}\left(8^{\text {u }}\right.$)	$e^{\text {a }}$	e^{-u}
1.400	0.6080123	4.055200	0.2465970	1.450	0.6297270	4.263115	0.2345703
. 401	. 6084166	. 05925	. 2463505	.451	. 6301613	. 267380	. 2343358
. 402	. 6088809	. 063318	. 2461043	. 452	. 6305956	. 271649	. 2341016
. 403	. 6093152	. 067384	. 2458583	. 453	. 6310299	. 275923	. 2338576
. 404	. 6097495	.071 453	. 2456125	- 454	. 6314642	. 280201	.2336339
1.405	0.6101837	4.07537	0.245367 I	1.455	0.6318985	$4.2 \mathrm{~S}_{4} 483$	0.2334004
. 406	. 6106180	. 0796804	. 2451218	. 456	. 6323328	. 288770	. 233 1671
. 407	. 6110523	. 083685	. 2448768	. 457	. 632757 I	. 293005	. 2329340
. 408	.6II 4866	. 087772	. 2446321	. 458	. 6332014	. 297356	. 2327012
. 409	.6II 9209	. 091851	. 2143875	. 459	. 6336356	- 301656	. 2324686
1.410	0.6123552	4.095955	0.244 I 433	I. 460	0.6340699	4.305960	0.2322363
. 1 II	. 6127895	. 100053	. 2438993	. 461	. 63450.42	. 310268	. 2320042
. 412	. 6132238	. 104156	. 2436555	. 462	. 6349385	-3I4 580	. 2317723
.413	.6T3 6581	. 108262	. 2434120	. 463	. 6353728	- 318897	.23I 5406
. 414	. 6140924	. 112372	. 2431687	.464	. 6358071	. 323218	.231 3092
1.415	0.6145267	4.116 485	0.2429256	I. 465	0.6362414	4.327543	0.2310780
. 416	. 6149610	. 120605	. 2426828	. 466	. 6366757	. 331873	. 2308470
.417	. 6153953	. 124728	.242402	.467	. 6371100	. 336207	. 2306153
. 418	. 6158296	. 128884	.2421979	. 468	. 6375443	. 340545	. 2303858
. 419	. 6162639	. 132985	. 2419559	. 469	. 6379786	- 34488	. 2301555
1.420	0.6166982	4.137120	0.24171 .40	I. 470	0.6384 t 29	4.349235	0.2299255
. 12 I	. 6171325	. 141250	. 2414724	. 471	. 6388472	. 353587	. 2296957
. 422	. 6175668	. I45 403	. 2412311	. 472	. 6392815	- 357942	. 2294651
. 423	. 6180010	. 149550	. 2409900	. 473	. 6397158	. 362302	. 2292367
. 424	. 6184353	. 153702	. 2407491	. 474	. 6.40 I501	. 366667	. 2290076
1.425	0.6188696	4.157858	0.2405085	I. 475	0.6405844	4.371 036	0.2287787
.425	. 6193039	. IV2 018	. 240258 I	. 476	. 6410187	. 375409	. 2285501
. 427	. 6197382	.165182	. 2400279	. 477	. 6414529	. 379787	. 2283216
. 428	. 6201725	. 170350	.2397880	. 478	. 6418872	- 384169	. 2280934
.429	. 6206058	. 174523	.2395484	- 479	. 6423215	.388555	. 2278554
1.430	0.6210411	4.178 699	0.2393089	1.480	0.6427558	4.392946	0.2276377
. 431	. 6214754	. 182880	. 2390597	. 781	. 643 Igor	. 39734 I	. 2274102
. 432	.621 9097	. 18705	.2388308	. 482	. 6436244	. 401740	. 2271829
. 433	. 6223440	. 191254	. 2385921	.483	. 6140587	. 405144	. 2269558
-434	. 6227783	. 1954	. 2383536	. 484	. 6444930	. 410553	. 2267250
1.435	0.6232126	4. 199645	0.2381154	I. 485	0.6449273	4.414965	0.2265023
. 436	.6236469	. 203847	. 2378774	. 486	. 6453616	. 419383	. 2262760
. 437	. 6240812	. 208053	. 2376396	. 487	. 6457959	. 423804	. 2260.458
-488	. 6245155	. 212263	.2374021	. 488	. 6462302	. 428230	. 2258239
- 439	. 6249498	. 216477	.23716 .88	.489	. 6766645	. 432 66I	. 225 5981
1.440	0.625384 I	4.220696	0.2369278	I. 490	0.6470988	4.437096	0.2253727
. 44 I	. 6258183	. 224919	. 2366909	. 491	. 647533 I	. 441535	. 2251474
- 442	. 6262526	. 229146	.2364514	. 492	. 6479674	- 445979	. 2249224
.443	. 6356869	. 233377	. 2362180	. 493	. 6484017	. 450427	. 2246976
. 414	. 6271212	. 237612	. 235 9819	-494	. 6488360	. 454879	. 2244730
I. 445	0.6275555	4.241852	0.235746 I	I. 495	0.6492703	4.459337	0.2242486
.446	. 6279898	. 246096	. 2355104	. 496	. 6497045	. 463798	. 2240245
. 447	. 6284241	. 250344	. 2352751	. 497	. 650 I388	. 468254	. 2238006
. 448	. 6288584	. 254597	. 2350399	. 498	. 6505731	. 472735	. 2235769
. 449	. 6292927	. 25885 +	. 2348050	-499	. 6510074	. 477210	. 2233534
1.450	0.6297270	4.263115	0.2345703	I. 500	0.6514417	4.481 689	0.2231302
$\log _{0}\left(\mathrm{e}^{4}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-1}			$\mathrm{e}^{\text {a }}$	e^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{4}	e^{-a}	«	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right.$)	$\mathrm{e}^{\text {a }}$	e^{-a}
1.500	0.6514417	4.481689	0.2231302	I. 550	0.6731564	4.71 II 40	0.2122480
. 501	. 6518760	. 486173	. 222 5 07 I	. 55 I	. 6735907	. 716184	. 2120358
. 502	. 6523103	. 490 661	. 2226843	-552	. 6740250	. 720903	.211 8239
. 503	. 6527446	. 495154	. 2224618	. 553	. 6744593	. 725626	. 21119122
. 504	. 653 1789	. 499652	. 2222394	. 554	. 6748936	. 730354	. 2114007
1. 505	0.6536132	4.504154	0.2220173	1. 555	0.6753279	4.735087	0.2115894
. 506	. 6540475	. 508660	.221 7954	. 555	. 6757523	. 739824	. 2109783
. 507	. $65+4818$. 51317 I	. 2215737	. 557	. 6761955	. 744556	. 2107674
. 508	. 654 916I	. 517685	.221 3522	. 558	. 6766308	. 749313	. 2105568
. 509	. 6553504	. 522206	. 2211310	. 559	. 6770651	. 754065	. 2103453
1.510	0.65578 .7	4.526731	0.2209100	1.560	0.6774994	4.758821	0.2101361
. 511	. 6562190	. 531250	. 22206892	. 561	. 6779337	. 763582	. 203 92 50
. 512	. 6566533	. 535793	. 2204686	. 562	. 6783680	. 758348	. 2097162
. 513	. 6570876	. 540331	. 2202488	. 563	. 6788023	. 773119	. 2095006
. 514	. 6575218	. 514874	. 220028 I	. 564	. 6792366	. 777895	. 2092972
1.515	0.657 956I	4.54942 T	0.2198082	1. 565	0.6796709	4.782675	0.2090880
. 516	. 6583904	. 553973	. 2195885	. 555	. 6801052	. 787460	. 2088850
. 517	. 6588247	. 558529	. 2193690	. 557	. 6805395	. 792250	. 2036703
. 518	. 6592590	- 563090	. 219191497	. 558	. 6889737	. 797045	. 2084617
. 519	. 6596933	. 567655	. 2189307	. 569	. 6814080	. 80184	. 2082533
1. 520	0.6501276	4.572225	0.2187119	1. 570	0.681 8423	4.806648	0.2080452
. 521	. 6505619	. 576800	. 2184933	. 57 I	.682 2755	. 811457	. 2078372
-522	. 6509952	. 581379	. 2182749	. 572	. 6827109	. 816271	. 2076295
. 523	. 6614305	. 585962	. 2180567	. 573	. 6831452	. 821090	. 2074220
. 524	. 66 I 8674	. 590 55I	. 2178388	. 574	. 6835795	. 825913	. 2072147
I. 525	0.6622991	4.595 I 44	0.2176211	1. 575	0.684 0138	4.830742	0.2070076
. 526	. 6627334	. 599741	. 2174035	. 576	. $68+448 \mathrm{I}$. 835575	. 2068006
. 527	. 6531677	. $6013+3$. 2171852	. 577	. 6848824	. 840473	. 2065940
. 528	. 6636020	. 608950	. 2169592	. 578	. 6853167	. 845256	. 20638875
. 529	. 6640363	.613 5 551	. 2167523	. 579	. 6857510	.850 103	. 2061812
1. 530	0.6644706	4.618177	0.2165357	1.580	0.6861853	4.854956	0.2059751
. 531	. 6649049	. 622797	. 2163192	. 581	. 6866196	. 859813	. 2057992
. 532	. 6553391	. 627422	. 2161030	. 582	. 6870.359	. 864675	
. 533	. 6557734	. 632052	. 2158870	. 583	. 6874882	. 869543	. 205 3581
. 534	. 6662077	. 636687	. 2156713	. 584	. 6879225	. 874415	. 2051528
I. 535	0.6666420	4.641325	0.2154557	1.585	0.6883568	4.879291	0.2049478
. 536	. 6670763	. 645969	. 2152403	. 585	. 6888910		. 2047429
- 537	. 66575106	. 650617	. 2150252	. 587	. 6892253	. 889050	. 2045383
. 538	. 66679419	. 655270	. 2148103	. 588	. 68969596	. 893951	. 2043339
. 339	. 6683792	. 659928	. 2145956	. 589	. 6900939	. 898848	. 2041296
1. 540	0.6688 x 35	4.664590	0.2143811	1. 590	0.6905282	4.903749	0.2039256
. 54 I	. 6692478	. 669257	. 2141668	. 591	. 6909625	. 90865	. 2037218
. 542	. 6696821	. 673929	. 2139528	. 592	. 6913968	. 913566	. 2035182
. 543	. 6701164	. 678605	. 21373889	- 593	. 6918311	. 918482	. 20331148
. 544	. 6705507	. 683285	. 2135253	. 594	. 6922654	.923 403	. 2031115
1.545	0.6709850	4.687972	0.2133119	1. 595	0.6926997	4.928329	0.2029085
. 546	. 6714193	. 692662	. 2130987	. 596	. 6931340	. 933260	. 2027057
. 547	. 6718536	. 697357	. 2128857	. 597	. 6935683	. 938195	. 2023031
. 548	. 6722879	. 702057	. 2126729	. 598	. 6940036	. 943136	. 2023007
. 549	. 6727222	. 706 761	. 2124603	. 599	. 6944369	. 948082	. 2020985
1. 550	0.6731564	4.711470	0.2122480	1.600	0.6948712	4.953032	0.201 8965
$\log _{e}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$0^{\text {a }}$	0^{-a}	loge ($\mathrm{e}^{\text {a }}$)	$\operatorname{logion}^{(10} \mathrm{E}^{\text {a }}$)	e^{n}	-

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{L}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-u}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {a }}$	e^{-a}
1.600	0.6948712	4.953032	0.2018965	1.650	0.7165859	5.205980	0.192 0459
. 601	. 6953055	. 957983	. 2016947	. 651	. 7170202	. 212 I 89	. 1918580
. 602	. 6957398	. 962 9+8	. 2014931	. 652	. 7174545	.217404	- IgI 6662
.603	. 696174 T	. 967 OT 4	. 2012917	. 653	. 7178838	. 222624	- Ig1 4746
. 604	. 6966083	. 972884	.2010905	. 654	. 7183231	. 227849	.191 2832
1.605	0.6970 .426	4.977850	0.2008896	I. 655	0.718 7574	5.233080	0.1910921
. 605	. 697475	. 982880	. 3006988	. 655	. 7191917	.238316	. 1909011
. 607	. 6979112	. 037825	. 2004882	. 657	.7196250	. 243537	-190 7103
. 608	. 698345	. 9928816	. 2002838	. 658	. 7200603	. 248803	. 1905196
. 609	. 6987798	. 997 811	. 2000876	. 659	. 7204945	. 254054	. 1903292
1.610	0.699 2I4I	5.0028 II	0.199 8876	I. 660	0.7209288	5.2593 II	O. 1901390
. 611	. 6996484	. 007817	-199 6878	. 651	. 72130531	. 204573	. 1899489
. 612	. 7000827	. 012827	. 1924832	. 662	. 7217974	. 259840	. 1897591
. 613	. 7005170	. 017812	. 1992888	. 653	. 7222317	. 275 II2	. 1895694
.6I4	. 7009513	. 022863	. 1990897	. 644	. 7226660	.280350	. 1893799
1.615	0.7013856	5.027883	0.1s8 8;07	I. 655	0.7231003	5.285673	0.1891507
. 616	. 7018199	. 032918	.1986919	. 663	. 7235346	. 290962	. 1890016
. 617	. 7022512	. 037954	. 1984933	. 667	. 7239589	. 295255	. 1888127
. 618	. 7026885	. 042994	. IC8 2949	. 668	.724 .4032	. 301554	. 1886239
. 619	. 7031228	. 0480	. 1980967	. 659	. 7248375	. 306858	. 1884354
1.620	0.7035571	5.053090	0.1978987	1.670	0.7252718	5.312168	0.188 2471
. 621	. 7035914	. 058145	. 1977009	. 671	.725 705i	. 317483	. 1880589
. 62	. 7044256	. 053207	. 1975033	. 672	.7261404	. 322803	. 1878709
. 623	. 7048599	. 068272	. 1973059	. 673	. 7265747	. 328128	. 1876832
. 624	. 7052942	. 073343	. 1971087	. 674	.727 cogo	. 333459	. 1874956
1.625	0.7057285	5.078419	0. 1959117	1.675	0.7274133	5.338795	0.1873082
. 626	. 7031628	. 083510	. 1957149	. 670	. 7278775	. 314137	.187 1210
. 627	. 7055971	. 083585	. 1965182	. 677	. 7283118	- 349483	. 1869339
. 628	. 7070314	. 093677	. 1963218	. 678	. 7287461	. 354836	. 1857471
. 623	.7074657	.098 773	. 1961256	. 679	.7291804	. 360193	. 1865604
1.630	0.7075000	5.103 875	0.IS5 9296	1.680	0.7296147	5.365 556	0.1853740
. 631	. $70833+3$. 108 981	. 1957337	. 68 I	.7300490	. 370924	. 1861877
. 632	. 7087685	.114093	-195 538I	. 682	. 7304833	. 376298	- 1860016
. 633	. 7092029	. 119209	. 1953427	. 683	. 7309176	. 381677	.1858157
. 634	. 7096372	. 12433 I	-195 I474	. 684	.731 3519	. 387 061	. 1856300
1.635	0.7100715	5.129458	0.194 9524	1.683	0.7317862	5.392451	0.1854444
. 636	. 7105058	. 134550	-194 7575	. 685	. 7322205	. 397846	. 1852591
. 637	. 7109401	. 139727	. 1945629	. 687	. 7326548	. 40.3247	. 1850739
. 638	. 71113744	. 144869	- 1943684	. 688	.733 0891	.408653	. 1848889
. 639	. 7118087	. 150017	- I94 174i	. 689	. 733 5234	. 414064	. 1847041
1.640	0.7122430	5.155170	0.1939800	1.690	0.7339577	5.419 48I	0.184 5195
. 641	. 7120772	. 100327	. 1937832	. 691	. 7343920	. 424903	. 1843351
. 642	. 7131115	. 165490	. 1935925	. 692	. 7348263	. 430331	. 1841509
. 643	. 7135458	. 170658	. 1933900	. 693	. 7352606	. 435754	. 1839568
. 644	.713 9801	. 17583 I	. 1932057	. 694	. 7356949	-441 202	. 1837829
I. 645	0.7144144	5.181 010	0.1930126	I. 695	0.7361291	5.446646	0.183 5992
. 646	. 7148487	. 185194	. 1928196	. 695	. 7365634	. 452095	. 1834157
. 647	. 7152830	. 191382	. 192625	. 697	. 7369977	. 457550	. 1832324
. 648	. 7157173	-196576	. 1924344	. 698	. 7374320	. 463010	. 1830493
. 649	.716 1516	. 201775	. 192242 I	. 699	.7378563	. 468 476	. 1828563
I. 650	0.716 .5859	5.206980	0.1920499	1.700	0.7383006	5.473947	0.1826835
$\operatorname{loged}_{e}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\log _{10}\left(e^{\mathrm{a}}\right)$	$e^{\text {u }}$	e^{-}	$\log _{e}\left(e^{\text {a }}\right.$)	logio $\left(e^{u}\right)$	$e^{\text {a }}$	e^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-a}	u	$\log _{10}\left(e^{4}\right)$	e^{u}	e^{-0}
1.700	0.7383006	5.473947	0.1826835	1.750	0.7500153	5.754 603	0.173 7739
. 701	. 7587349	. 479424	. 1825009	. 751	. 7604495	. 760350	. 1736003
. 702	. 7391692	. 484906	. 1823185	. 752	.750 8839	. 765123	. 1734267
. 703	. 7396035	. 490394	. 1821353	. 753	.751 3182	. 771892	. 1732534
.704	. 7400378	. 495887	. 1819542	. 754	. 7617525	. 777667	.173 0802
I.705	0.740472 I	5.501, 385	0.181 7724	1.755	0.7521858	5.7834 .8	0.172 9072
. 705	. 7409064.	. 505800	.181 5907	. 756	. 7526211	. 789234	. 1727344
. 707	.741 3407	. 512399	.181 40, 2	. 757	.763 0554	. 795025	.172 51518
. 709	.741 7750	. 517915	. 1812279	. 758	. 7534997	. 830821	.172 3833
. 709	. 7422093	. 523435	. 1810457	. 759	. 7539210	. 806628	. 1722170
1.710	0.7426436	5.528 c 6 I	0.180 8558	1.750	0.764 3583	5.812437	0.1720449
. 711	. 7430779	. 534493	.180 6850	:751	. 7647920	. 818253	.171 8729
. 712	. 7435122	. 540030	. 1805044	. 752	. 7652259	. 824074	.I7I 7011
. 713	. 7439464	- 545573	. 1803240	. 763	. 7656612	. 829901	. I7I 5295
. 714	. $74+3807$. 551122	. 180 I4,8	.754	. 75609.55	. 835734	.I7I 3581
1.715	0.7448150	$5 \cdot 556675$	0.1799637	1.755	0.756 5298	5.841572	0.1711858
. 716	. 7452493	. 562235	. 1797888	. 766	. 766951	. 847417	.171 0157
. 717	. 7456835	. 567800	. 1796042	. 757	. 7673583	. 853257	. 170848
. 718	. 7451179	. 573371	. 1794246	. 758	. 7578326	. 859123	. 1706740
.719	.7465522	. 578947 .	. 1792453	.759	.758 2559	. $86+585$. 1705034
1.720	0.7469865	5.584 528	0.1790561	1.770	0.768 7012	5.870853	0.1703330
. 721	. 7474208	. 590116	.1788872	. 771	. 759 I 355	. 875727	. 1701627
. 722	. 7478551	. 595709	.178 7084	. 772	. 7695638	. 882607	. 1699227
. 723	. 7482834	. 601307	. 1785258	. 773	. 7700041	. 8884 4 2	. 1698228
. 724	. 7487237	. 606911	.178 3513	. 774	.7704384	. 894384	. 1696530
1.725	0.7491580	5.612521	0.178 1731	1.775	0.7708727	$5.900 \cdot 28 \mathrm{I}$	0.1694834
. 725	. 7495923	. 618 135	. 1779950	. 775	. 7713070	.905 184	. 169314 I
.727	. 7500256	. 623757	. 1778171	. 777	. 7717413	. 912094	. 169 I448
.728	. 7504609	. 629384	. 1776393	. 778	.7721755	. 918009	. 1689758
. 729	. 7508952	. 635016	.17774618	. 779	.772 6039	. 923930	. 1688059
1.730	0.7513295	5.6.40 654	0.177 2944	1. 780	0.7730412	5.929856	0.1686381
.731	.751 7637	. 646297	. 1771072	. 781	. 7734785	. 935789	. 1684656
.732	. 7521980	. 651947	. 1759302	. 782	. 773 9128	. 941728	. 1683012
. 733	. 7526323	. 657601	.176 7534	.783	. 7743471	. 947673	. 168 1330
. 734	. 7530666	. 663262	.176 5767	. 784	. 774 7SI4	. 953623	. 1679649
I. 735	0.7535009	5.669928	0.1754002	1.785	0.7752157	5.959580	0.1677971
. .736	. 7539352	. 674600	. 1762239	. 785	. 7756493	. 965543	. $1 \sim 76293$
- .737	.754 3695	. 680277	. 1760478	. 787	. 7760812	.971' 511	. 1674618
. 738	.7548038	. 685950	. 1758718	. 789	. 7755185	. 977485	. 1672944
. 739	. 7552381	. 691649	. 1756950	. 789	. 7769528	.983466	. 1671272
1.740	0.7556724	5.697343	0.1755204	1.790	0.7773871	5.989452	0.1669602
. 741	. 7561057	. 703044	. 1753450	.791	. 7778214	. 995445	
. 742	. 7565410	. 708750	. 1751697	. 792	. 7782557	6.001443	. 1666256
. 743	. 7569753	. 714461	. 1749946	. 793	. 7786900	. 007448	. 1664600
. 744	.7574096	.720178	. 1748197	. 794	. 7791243	. 013458	. 1662937
1.745	0.7578439	5.725901	0. 1746450	1.795	0.7795586	6.019475	0.1661275
. 746	. 7582782	. 731630	. 1744704	. 795	. 7799929	. 025457	. 1659614
. 747	. 7587125	. 737365	. 1742960	. 797	. 7804272	. 031526	. 1657955
. 748	.7591468	.743105	. 1741218	. 798	.780 8615	. 037560	.1656258
. 749	. 7595810	. 74885	. 1739478	. 799	.781 2958	. 043601	. 1654643
1.750	0.7500153	5.754603	0.1737739	1.800	0.7817301	6.049647	0.1652989
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{n}}\right)$	$\log _{10}\left(e^{\text {n }}\right.$)	$\mathrm{e}^{\text {u }}$	e	$\log _{\text {c }}\left(\mathrm{e}^{\text {u }}\right.$)	$\log _{10}\left(e^{\text {a }}\right.$)	$e^{\text {II }}$	e^{-n}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{4}	e^{-a}	4	$\log _{10}\left(e^{4}\right)$	$e^{\text {a }}$	e^{-u}
1.800	0.7817301	6.049647	0.1652989	1. 850	0.8031448	6.359820	0.1572372
. 801	. 7821644	. 055700	. 1651337	. 851	. 8038791	. 365183	. 1570800
. 802	. 7825987	. 061759	. 1649686	. 852	. $80+3134$. 372552	. 1569230
. 803	. 7830330	. 067824	. 1648037	. 853	. 8047477	. 378928	. 1567662
. 804	.7834672	. 073895	. 1646390	. 854	. 8051820	. 385310	. 1566095
1.805	0.7839015	6.079971	0.164 4745	1.855	0.8056163	6.391698	0.156 4529
. 805	. 7843358	. 085054	. 1643101	. 856	. 8050505	. 398093	.156 2966
. 80%	. 8847701	. 09214	. 154 I 458	. 857	. 8064849	. 404494	. 1561403
. 808	. 7852014	. 098239	. 1639818	. 859	. 8369191	. 410902	. 5559843
. 809	. 7856387	. 104340	. 1638179	. 859	. 8073534	.417316	. 1558284
1.810	0.7860730	6.110 447	0.1636541	1.850	0.807 7877	6.423737	0.1556726
.8II	. 7865073	. 116561	. 1534906	. 851	. 8082230	. 430164	. 1555170
. 812	. 7869416	. 12268 I	.1633272	. 862	. 8086563	. 436597	. 1553616
. 813	. 7873759	. 128806	.1631639	.853	. 8090906	. 443037	. 1552063
.8I4	. 7878102	. 134938	. 1630008	. 864	. 8095219	. 449483	. 1550512
1.8 r 5	0.7882445	6.14I 0,6	0.1628379	1.855	0.8099592	6.455936	0.154 8962
. 815	. 7886788	. I47 220	. 1626752	. 856	. 8103935	- 462395	. $15+7414$
. 817	. 789 II 3 I	. 153371	. 1625126	. 867	. 8108278	. 468861	. 1545867
. 818	.7895474	. 159527	. 1623501	. 838	.8II 2621	-475 333	. 1544322
.819	. 7899817	. 165690	. 1621879	. 859	.8II 6964	. 48 I 8 II	.154 2779
1.820	0.7904160	6.171858	0.162 0258	1.870	0.8121307	6.488296	0.1541237
. 821	. 7908503	.178 033	.1618638	.871	. 8125650	. 494788	. 1539696
. 822	. 7912845	. $18+215$. 1617020	.872	. 8129993	. 501286	. 1538157
. 823	. 7917188	. 190402	. 1615404	. 873	. 8134336	- 507791	. 1536520
. 824	. 792 I53I	. 195595	. 1613789	. 874	.813 8579	. 514302	. 1535084
1.825	0.7925874	6.202795	0.1612176	1.875	0.8143022	6.520819	0.153 3550
.826	. 7930217	. 209001	. 1610565	. 876	. 8147364	. 527343	. 1532017
. 827	. 7934560	. 215213	. 1608955	. 877	. 8151707	. 533874	. 1530486
. 828	. 7938903	. 221431	. 1607347	. 878	. 8156050	- $5404 \mathrm{4I}$. 1528956
. 829	. 7943246	. 227656	. 1605741	. 879	.816 0393	- 546955	. 1527428
1.830	0.7947589	6.233887	0.1604136	1.880	0.8164735	6.553505	0.1525501
. 831	. 7951932	. 240124	. 1602532	. 88 I	.816 9079	. 560062	. 1524376
. 832	. 7956275	. 246367	. 1600931	. 882	. 8173122	. 566625	. 1522852
. 833	. 7960618	. 252616	. 1599330	. 883	.817 7765	. 573195	-152 1330
. 834	. 7964961	. 258872	. 1597732	. 884	. 8182108	. 579 771	. 1519810
1.835	0.7969304	6.265134	0.1596135	1. 885	0.818645 I	6.586354	0.1518291
. 836	.797 3647	. 271402	. 1594540	. 885	. 8190794	. 592944	. 1516773
. 837	. 7977930	. 277677	. $15929+6$. 887	. 8195137	. 599540	. 1515257
. 838	.758 2333	. 283958	. 159 I354	. 888	. 8199480	. 606143	. 1513743
. 839	. 7586676	. 290245	. 1589753	. 889	. 8203823	. 612753	. 1512230
1.840	0.7991018	6.296538	0.1588174	1.890	0.8308166	6.619369	0.1510718
.8.4I	. 7995361	. 302838	. 1586587	. 891	. 8212509	. 625991	. 1509208
. 842	. 7599704	. 309 I44	. 1585001	. 892	. 8216852	. 632621	. 1507700
.843	. 8004047	. 315455	. 1583417	.893	. 8221195	. 639257	. 1506193
. 814	. 8008390	.321 775	. 1581834	. 894	. 8225537	. 645899	. 1504687
1.845	0.8012733	6.328100	0.1580253	1. 895	0.8229880	6.652548	
.886	. 8017076	. 334431	. 1578574	. 896	. 8234223	. 659204	$.1501681$
. 847	. 8021419	. 340769	. 1577096	. 897	. 8238566	. 665867	. 150 Or80
. 848	. 8025762	. 347113	.1575520	. 85	. 8242909	. 672536	. 1498681
. 849	. 8030105	. 353463	. 1573945	. 890	. 8247252	. 679212	. 1497183
1.850	0.8034448	6.359820	0.1572372	I. 900	0.8251595	6.685894	0.149 5686
$\log _{e}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\log _{10}\left(\theta^{n}\right)$	e^{n}	${ }^{-}$	$\operatorname{loghe}_{\text {e }}\left(\mathrm{e}^{\text {a }}\right.$)	$\log _{10}\left(e^{\text {u }}\right.$)	$0^{\text {a }}$	e^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\theta^{\text {a }}$	e^{-a}	u	$\log _{10}\left(e^{\text {a }}\right.$)	$\mathrm{e}^{\text {a }}$	$\mathrm{e}^{-\mathrm{u}}$
1.900	0.8251595	6.685894	0. 1495686	1.950	0.8468742	7.028688	0.142 274I
. 901	. 8255938	. 692584	. 1494191	. 951	. 8473085	. 035720	. 1421319
. 902	. 826 02881	. 699280	. 1492698	. 952	. 84777428	. 042759	. 141 I g898
. 903	. 8264624	. 705982	. 1491206	. 953	. 8481771	. 049805	. 1418479
. 904	. 8258967	.712 692	. 1489715	. 954	. 8486 fr 4	. 056859	. 1417061
1. 905	0.8273310	6.719408	0.1488226	I. 955	0.8490457	7.063919	0.14I 5645
. 906	. 8277653	. 726130	-I48 6739	. 956	. 8494800	. 070985	. 1414230
. 907	. 8281996	. 732850	. 1488535	. 957	. 8499143	. 078 06I	.1412816
- 908	. 82863539	. 739596	. 14883758	-958	. 85034886	. 085143	. 1411404
. 909	. 8290582	. 746339	. 1482285	. 959	. 8507829	. 09223 I	. 1409993
1.910	0.8295025	6.753089	0.148 0804	I. 960	0.8512172	7.099327	0.1408584
.911	. 8299358	. 759845	. I47 9324	. 961	. 8516515	-106 430	- 1407176
.912	. 8303710	. 766608	- 14778845	. 962	. 8520858	-113 540	. 1405770
.913	. 8308053	. 773378	. 14776368	. 963	. 8525201	. 120657	. 1404365
.914	. 83 I 2396	. 780155	. 1474892	. 964	. 8529544	. 127 781	. 1402965
1.915 .916	0.8316739 .832 I 82 .832	6.785939 .703729		I. 965	0.8533887 0.838230 853	7. 1341913	
.916	.8321082 .8325425	. 793729	-.147 1946	. 966	. 85382380		
.918	. 8329768	. 807330	. 1469005	. 968	. 8546915	. 156349	. 1397350
.919	. 8334 IIII	.814 I4I	. 1467536	. 969	. 8551258	. 163509	. 1395964
I. 920	0.8338454	6.820958	0.1466070	I. 970	0.8555601	7.170676	0.139 4569
.921	. 8342797	. 827783	. 1464604	. 971	. 8559944	. 177851	. 1393175
. 922	. 8347140	. 834614	. 1463140	. 972	. 8564287	. 185032	. 1391782
.923	.$^{835} 1483$. 841452	. 1451678	-973	. 8568630	. 192221	. 139039 I
-924	. 8355825	.848 297	. 1460217	. 974	. 8572373	. 199417	. 1389001
1.925	0.836 or69	6.855149	0. 1458758	I. 975	0.8577316	7.206620	0.1387613
. 926	. 8364512	. 852007	. 1457300	-973	. 8581659	.213 830	. 1386226
. 927	. 8368855	. 868873	. 1455843	. 977	. 8586002	. 2221047	. 1388848
. 928	. 8373198	. 875745	. 1454388	. 978	. 8590345	. 228272	. 1383457
.923	. 837754 t	. 882624	. 1452934	. 979	. 8594688	. 235504	. 1382074
I. 930	0.8381884	6.889510	0. 145 1482	1.980	0.8599031	7.242743	0. 1380692
. 931	. 83886226	. 896403	. 145 co31	. 981	. 8603374	. 249989	. 1379312
-932	. 8390569	. 903303	. 1448858	. 982	. 8607717	. 257243	. 1377934
. 933	. 8394912	.910 210	. 1447134	. 983	. 8612060	. 264504	. 1376557
. 934	. 8399255	.917 123	. 1445688	. 984	. 8616403	.271 772	. 337 5181
I. 935	0.8403598	6.924044	o. 1444243	ז. 985	0.8520745	7.279047	0.1373806
. 936	. 840794 y	. 930972	. 1442799	. 985	. 8525088	. 286330	. 1372433
. 937	. 84112284	-937905	- 1441357	. 988	. 8629431	. 293620	. 137106 I
-938	. 8412627	-944847	. 1439916	. 988	. 8633774	. 300917	. 1369691
. 939	. 8420970	.951 796	. 1438477	. 989	. 8638117	. 308222	. 1368322
1.940	0.8425313	6.958751	0. 1437039	1. 990	0.8642460	7.315534	0. 1366954
. 941	. 8429656	.965 713	- 1435603	. 991	. 8646803	- 322853	- 1365588
-942	. 8433999	-972682	. $\mathrm{T} 43{ }^{4168}$. 992	. 8651146	-330 179	. 1364223
-943	. 8438342	. 979659	. 1432735	. 993	. 8655489	-337 513	. 1362860
-944	. 8442685	. 986642	. 1431303	. 994	. 8659832	-344854	. 1361497
1.945	0.8447028	6.993632	0. 1429872	1. 995	0.8664175	7.352203	0.136 ${ }^{0137}$
. 946	. 845 I 37 I	7.000629	. 1428443	. 996	. 8668518	. 359559	.1358777
-947	. 8455714	. 007633	- 1427015	. 997	. 86672861	. 365922	. 1357419
. 948	. 8460057	.014 644	. 14255889	-998	. 86677204	-374 293	. 1356062
. 949	. 8464399	.021 662	. 1424164	. 999	. 8681547	-381 671	. 1354707
1.950	0.8468742	7.028688	0.1422741	2.000	0.8685890	7.3890 .56	0.135 3353
logese ${ }^{\text {a }}$)	logide $\mathrm{e}^{\text {a }}$)	$e^{\text {a }}$	e^{-3}	logece ${ }^{\text {a }}$)	$\operatorname{logiol}^{1}\left(\mathrm{e}^{4}\right)$	${ }^{\text {a }}$	e^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-a}	u	$\log _{10}\left(\mathrm{e}^{4}\right)$	$e^{\text {a }}$	e^{-0}
2.000	0.8685890	7.389056	0.1353353	2.050	0.8903037	7.757901	0.128 7349
. 001	. 8500233	. $3064+9$. 1352000	. 051	. 8907380	. 775673	. 1286062
. 002	. $850 \frac{1576}{}$. 403849	. 1350649	. 052	. 8911723	.783152	. 1284777
. 003	. 8698918	. 41125	. 1349299	. 053	. 8916066	. 791240	. 1283793
. 004	.870 3261	. 418672	. 1347950	. 054	. 8920409	. 799035	. 1282210
2.005	0.870 7604	7.426094	0.1346503	2.055	0.8924752	7.806838	0.1280928
. 005	. 8711947	. 433524	. 1345257	. 056	. 8929095	. $81+649$. 1279548
. 007	. 87116290	. 440951	-134 3912	. 057	. 8933137	. $822+47$.1278359
. 008	. 8720633	. 448 \% 106	. $13+2559$. 058	. 8937780	. 830294	. 1277091
. 009	. 8724976	. 455858	. 1341227	. 059	. 8942123	.838128	. 127 5815
2.010	0.8729319	7.463317	0.1339887	2.060	0.8946466	7.845970	0.1274540
. Oir	. 87333662	. 470784	. 1338548	. 061	. 8950809	. 853820	. 1273256
. 012	.8738005	- 478259	-133 7210	. 062	. 8955152	. 861677	. 1271993
. 013	. $87+2348$. 485741	. 1335873	. 063	. 8959495	. $8595+3$. 1270722
. 014	. 8746691	. 493230	. 1334538	. 064	. 8963838	. 877417	. 1269452
2.015	0.8751034	7.500727	0.1333204	2.065	0.8958181	7.885298	0.1268183
. 016	. 8753377	. 508232	. 133 1871	. 066	. 8972524	. 893187	. 1266915
. 017	. 8759720	. 515744	. 1330540	. 057	. 8976867	. 901084	. 1255649
. 018	. 8761063	. 523253	. 1329210	. 068	. 898 I210	.908989	. 1264384
. 019	. 8768406	. 530790	. 1327882	. 069	. 8985553	.916902	. 1263120
2.020	0.8772749	7.538325	0.1326355	2.070	0.8989896	7.924823	0.1261858
. 021	. 8777091	. 545857	. 1325229	. 071	. 8994239	. 932752	. 1260597
. 022	.878 I434	. 553417	. 1323504	. 072	. 8998582	. 940689	. 1259337
. 023	. 8785777	. 560974	. 132258 I	. 073	. 9002925	. 948633	. 1258078
. 024	. 8790120	. 568539	. 1321259	. 074	. 9007268	. 956586	. 1256820
2.025	0.8791463	7.576 III	0.1319938	2.075	0.901 1610	7.964546	0.1255564
. 026	. .8798806	. 58369 I	. 1318619	. 076	. SOI 5953	. 972515	. 1254309
. 027	. 8803149	. 591278	. 1317301	. 077	. 9020296	. 980491	. 1253056
. 028	. 8807492	. 598873	. I31 5985	. 078	. 9024639	. 988476	. 1251803
. 029	.881 1835	. 605475	. 1314669	. 079	. 9028982	.956 468	. 1250552
2.030	0.88 I 6 I 78	7.614086	0.131 3355	2.080	0.9033325	8.004469	0.124 9302
. 031	. 8820521	. 621704	. I31 2043	. 081	. 9037668	. 012477	. 1248053
. 032	. 8824864	. 629330	. I31 0731	. 082	. 9042011	. 020494	. 1246805
. 033	. 8829207	. 636963	. 130942 I	.083	. 9046354	.028518	. 1245560
. 034	. 8833550	. 644604	.130 8II2	. 084	. 9050697	. 035551	. 1244315
	0.8837893	7.652252	0.1306805	2.085	0.9055040	8.044591	
. 036	$.8842336$. 659908	. 1305499	. 085	. 9059383	.052640	. 1241829
. 037	.8846579	. 657572	.1304194	.087	. 9063726	. 05067	. 1240588
.038	. 8850922	. 675243	. 1302800	. 088	.906 8069	. 068761	. 123 9348
.039	. 8855264	. 682922	. 1301588	.087	. 9072412	. 076834	. 1238109
2.040	0.8859607	7.690609	0.1300287	2.090	0.9076755	8.084915	0.123687 r
. 041	. 8853950	. 698304	. 1298987	. 091	. 9081098	. 093004	.1235635
. 0.42	. 8368293	. 706005	. 1297689	. 092	. 908544 I	- IOI IOI	. 1234400
.043	. 8872636	. 713716	. 1296392	.093	.9089784	. 109206	. 1233166
. 044	. 8876979	. 721433	. 1295096	. 094	.9094125	. II7 320	. 1231934
2.045	0.8881322	7.729159	0.1293802	2.095	0.9098469	8.125 44 I	$0.123 \quad 0702$
.0 .46	. 8885665	. 736892	. 1292509	. 096	. 9102812	. 133570	. 1229472
. 047	. 8890008	$.744632$. 1291217	. 097	-910 7155	$\text { . I4I } 708$	$.1228243$
. 0.48	. 8894351	.752381	.1289926 .1288637	. 038	. 9111498	. 149854	. 1227016
. 049	. 8898694	. 760137	. 1288637	.099	.911 5841	. 158008	. 1225789
2.050	0.8903037	7.767901	0.1287349	2.100	0.9120184	8.166 170	0.1224564
$\operatorname{loge}_{e}\left(\mathrm{e}^{\mathrm{n}}\right)$	$\log _{10}\left(\theta^{\text {u }}\right.$)	$e^{\text {a }}$	e^{-4}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{a}}\right.$)		$e^{\text {u }}$	e^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{a}	e^{-n}	u	$\log _{10}\left(e^{\text {u }}\right.$)	e^{a}	e^{-a}
2.100	0.9120184	8.166 170	0.I22 4564	2.150	0.933733 I	8.584858	0.11648 .12
. 101	. 9124527	. 174340	. 1223340	. 151	. 9341674	. 593448	. 1163677
. 102	. 9128870	. 182519	. 1222118	. 152	. 9346017	. 602045	. 1162514
. 103	.9133213	. 190705	. 1220896	. 153	. 9350360	. 610652	. 1161352
. 104	.913 7556	. 198900	. 1215676	. 154	. 9354703	. 619267	. 1160192
2.105	0.9141899	8.207103	O.I2I 8457	2.155	0.9359046	8.627890	0.1159032
. 106	. 9146242	. 215314	. 1217239	. 155	. 9363389	. 635522	. 1157873
. 107	.915 0585	. 223534	. I2I 6022	. 157	. 9367732	. 645 I63	. 1156716
. 108	. 9154928	. 231761	. 1214807	. 158	. 9372075	. 653 813	.II5 5560
. 109	.915 9271	. 239997	. I2I 3593	. 159	. 9376418	. 662471	. 1154405
2.110	0.9163614	8.24824 I	0.1212380	2.160	0.938 076I	8.671138	0.115325 I
. 1	.916 7957	. 256494	. 1211168	. 151	.9385104	. 679813	. 1152099
. 112	. 9172299	. 264754	. 1206957	. 162	. 9389447	. 688497	. 11500.47
. II3	. 9176642	. 273023	. 1208748	. 163	. 9393790	. 697190	. 11449797
. 114	. 9180385	. 28 I 300	. 1207540	. 164	.9398133	.705892	. 1148547
2.115	0.9185328	8.289586	0.1206333	2.165	0.9402476	8.714 602	0.114 7499
. 116	.918 9671	. 297879	. 1205127	. 166	. 9706818	. 723321	.114 6352
. 117	:919 4014	. 306182	. 1203923	. 167	. 9411161	. 7320.9	.II4 5207
. 118	.9198357	- 314492	. 1202719	. 168	. 9415504	. 740785	.II4 4062
-119	. 9222700	-322 8II	. 1201517	. 169	. 9419847	. 749530	. 1142919
2.120	0.9207043	8.331137	0.1200316	2.170	0.9424150	8.758284	0.1141776
. 121	.921 1385	- 339473	. 1199117	.17I	. 9428533	. 767047	. II4 0635
. 122	.921 5729	- 347816	. 1197918	. 172	. 9432876	. 775818	. II3 9 !95
. 123	.9220072	-356 168	.119 6721	. 173	. 9437219	. 784508	. I13 8356
. 124	. 9224415	. 354529	. II9 5525	. 174	. 9441562	. 793387	. 1137218
2.125	-0.922 8758	8.372897	O.II9 4330	2.175	0.9445905	8.802185	0.1136082
. 126	. 9233101	-381 275	. 1193136	. 170	. 9450248	. 810992	. II3 4946
. 127	. 9237444	. 389660	- II9 1943	. 177	. 9454591	. 819807	. 1133812
. 128	.9241787	. 398054	- 1190752	-178	. 9458934	. 82863 I	. 1132678
. 129	.9246130	. 406456	. 1189562	. 179	. 9463277	.837464	. II3 1546
2.130	0.9250472	8.414867	0.1188373	2.180	0.9467620	8.846306	
.13I	. 9254815	. 423286	. 1187185	. 181	. 9471963	.855 157	. 1129285
. 132	. 9259158	. 431713	. 1185999	. 182	. 9476306	. 854017	. 1128157
. 133	. 9263501	. 440149	.118 4813	. 183	. 9480649	. 872885	. 1127029
. 334	. 9267844	. 418594	- 1183629	. 184	. 948499 I	.881 762	. 1125803
	0.9272187	8.457047	0.1182446	2.185	0.9489334	8.890649	
. 136	. 9276530	. 465508	. 1181264	. 185	. 9493677	. 899544	$.1123653$
. 137	. 9280873	. 473978	. II8 0083	.187	. 9498030	. 908448	. 1122530
. 138	.928 5216	. 482456	. 1178904	. 188	. 9502363	. 917361	. 1121408
. 139	. 9289559	. 490942	.117 7726	. 189	. 9506706	. 926282	. 1120287
2. 140	0.9293902	8.499438	0.1176548	2.190	0.9511049	8.935213	0.1119167
. 141	. 9298245	. 507941	. II7 5372	. 191	.951 5392	. 944153	. III 8049
. 142	. 9302588	. 516454	. 1174198	. 192	. 9519735	. 953101	. 1116931
. 143	.9306931	. 524974	. 1173024	. 193	. 9524078	. 962059	.III 5815
. 144	-93I 1274	. 533503	.117 1852	. 194	. 9528421	. 971026	.III 4700
2.145	0.9315617	8.542041	0.1170080	2.195	0.9532764	8.980001	O.III 3586
. 146	. 9319960	. 550588	. 1169510	. 196	. 9537107	.988 986	$\text { . III } 2473$
. 147	.932 4303	. 559142	. 1168341	. 197	. 9541450	. 997979	. IfI I36I
. 148	. 9328645	. 567706	.116 7174	. 198	$.9545793$	9.006982	. III 0250
. 149	. 9332988	. 576278	.1166007	. 199	. 9550136	. 015993	. IIO 9140
2.150	0.933733 I	8.584858	0.1164842	2.200	0.9554479	9.025 Of3	0.1108032
$\log _{e}\left(e^{\text {u }}\right.$)	$\log _{12}\left(\mathrm{e}^{\mathrm{n}}\right)$	$0^{\text {a }}$	e^{-4}	$\log _{e}\left(e^{x}\right)$	$\log _{\text {Io }}\left(\mathrm{el}^{\text {II }}\right.$)	$e^{\text {x }}$	e^{-a}

The Exponential.

4	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-a}	4	$\log _{10}\left(e^{4}\right)$	$\mathrm{e}^{\text {u }}$	e^{-a}
2.200	0.9554779	9.025013	0.110 So32	2.250	0.9771626	9.487736	0.105 3992
. 2	. 9558822	. 034043	. 1106924	. 251	. 9775969	. 497228	-105 2939
. 202	. 9563164	. 043082	. 1105818	. 252	.9780312	. 506730	. 1051885
. 203	. 9567507	. 052129	. IIO 4712	. 253	. 978485	. 516242	. 1050835
. 204	. 9571850	. 061 I 86	. IIo 3608	. 254	. 9788998	. 525763	. 1049785
2.205	0.9576193	9.070252	0.I10 2505	2.255	0.9793341	9.535293	0.104 8735
. 206	. 9580536	. 079326	. 1101403	. 255	. 9797684	. 544833	. 1047687
. 207	. 9584879	. 083410	. 1100302	. 257	. 9802026	. 554383	. 1046640
. 208	. 9589222	.097503	. 1099203	. 258	.980 6369	. 563942	. IO4 5594
. 209	. 9593565	. 106605	. 1098104	. 259	. 9810712	. 573 5II	. 1044549
2.210	0.9597908	9.115716	0.1097006	2.260	0.9815055	9.583089	0. 1043505
. 211	. 9602251	.124 837	. 1095910	. 251	. 6819398	. 592677	. 1042462
.212	. 9606594	. 133956	. 1094815	. 262	.9823741	. 602275	- 104 I420
. 213	.961 0937	. 143105	. 1093720	.263	. 9828084	. 611882	. IO4 0379
. 214	. 9615280	. 152252	. 1092627	.264	. 9832427	. 621498	. 1039339
2.215	0.9519523	9.161 409	0.1091535	2.265	0.9836770	9.631125	0.1038300
. 216	. 9623956	.170 575	. $1090+14$. 266	.9841113	. 64075 I	. 1037253
. 217	. 9628309	. 179750	. 1089354	. 267	. 9845456	. 650406	. 1036226
. 218	. 9632652	. 188935	. 1088265	. 268	. 9849799	. 660001	. 1035190
. 219	. 9636995	. 198128	. 1087178	.259	. 9854142	. 659726	. 1034155
2.220	0.9641337	9.20733 I	0.1086091	2.270	0.9858485	9.679401	0.1033122
. 221	. 9645680	. 216543	. 1085006	.27I	. 9852828	. 689085	. 1032089
- 222	. 9650023	. 225764	. 1083921	. 272	. 9857171	. 698779	. 1031058
. 223	. 9654366	. 234994	. 1082838	.273	. 987 I514	. 708483	. 1030027
. 224	. 9658709	. 214234	. 1081755	.274	. 9875857	.718196	. 1028998
2.225	0.9663052	9.253483	0.1080674	2.275	0.9880199	9.727919	0.1027969
. 225	. 9667395	. 262741	. 1079594	. 275	. 9884542	. 737652	. 1026912
. 227	. 9671738	.272008	. 1078515	. 277	. 9838835	. 747394	. 1025915
. 228	. 9576081	.281 285	. 1077437	.278	. 9893228	. 757147	. 1024890
. 229	. 9680.424	. 290 571	. 1076360	. 279	. 9897571	. 766909	. 1023865
2.230	0.9684767	9.299866	$0.10752 \mathrm{~S}_{4}$	2.280	0.9901914	9.776680	0.1022842
. 231	. 968 9110	-309 17I	. 1074210	.28r	. 9906257	. 785462	. 1021820
.232	. 9693453	- $318+84$. 1073136	. 282	. 9910600	. 796253	. 1020798
. 233	. 9697796	. 327808	.1072063	.283	. 9914943	. 806054	. 1019778
. 234	. 9702139	. 337140	. 1070592	. 284	.991 9285	.815 865	. 1018759
2.235	0.9706482	9.346482	0.1069 CLI	2.285	0.9923629	9.825686	0.101 7741
. 236	. 9710825	. 355833	. 1068852	. 285	. 9927972	. 835517	.101 6723
. 237	. 9715168	- 365194	. 1067784	. 287	. 9932315	. 845357	. 1015707
. 238	.971 9511	- 374563	. 1066716	. 288	.9936658	. 855208	. IOI 4692
. 239	. 9723853	-383943	. 1065650	. 289	. 994 IOOI	.865068	. 1013678
2.240	0.9728196	9.393331	0.106 4585	2.290	0.9945344	9.874938	o. 101 2665
. 241	. 9732539	. 402729	. 106352 I	. 291	. 9949687	. 884818	. IOI 1652
. 242	. 9736882	. 412137	. 1062458	.292	. 9954030	. 894707	. IOI 0641
. 243	. 9741225	-421 554	. 1051396	.293	. 9958372	. 904607	. 1009631
. 244	. 9745568	-430980	. 1060335	. 294	. 9962715	.914517	. 1008622
2.245	0.9749911	9.440416		2.295	0.9967058	9.924436	0.100 7614
. 246	. 9754254	. 44986 r	. 1058217	. 296	. 9971401	. 934365	. 1006607
. 247	. 9758597	-459 315	. 1057159	. 297	. 9975744	- 944305	. 1005601
. 248	. 9762940	. 468779	. 1056102	. 298	. 9980087	. 954254	. 1004596
. 249	. 9767283	. 478253	. 1055047	. 299	.9984430	. 964213	. 1003592
2.250	0.9771626	9.487736	0.1053992	2.300	0.9988773	9.974182	0.1002588
loge $\left(e^{\text {u }}\right.$)	$\log _{10}\left(e^{\mathrm{u}}\right)$	$e^{\text {a }}$	-	$\log _{e}\left(e^{u}\right)$	$100_{1}\left(e^{u}\right)$	e^{a}	e^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\mathrm{e}^{\text {a }}$	e^{-a}	u	$\log _{10}\left(e^{4}\right)$	$\mathrm{e}^{\text {a }}$	e^{-a}
2.300	0.9988773	9.974182	0. 1002588	2.350	1.0205920	10.485570	0.0953692
. 301	. 999 3116	.984 162	. 1001586	-351	. 0210263	- 496061	. 0952738
. 302	. 9997459	. 994151	. 1000585	. 352	. 0214606	. 506562	. 0951786
- 303	I. 0001802	10.004150	. 0999585	-353	. 0218949	- 517074	. 0950835
- 304	. 0006145	. 014159	. 0998586	. 354	. 0223292	. 527595	. 0949884
2.305	I. OaI 0488	10.024178	0.0997588	2.355	1.0227635	10.538129	0.0948735
- 306	. 0014831	. 034207	. 0996591	. 356	. 0231978	-548672	. 034 7587
- 307	.0019174	. 044247	. 0995959	. 357	. 0236321	-599226	. 0947039
- 308	. 0023517	. 054296	. 0994600	. 358	. 0240564	. 559791	. 0946093
-309	. 0027850	. 064355	. 0993606	-359	. 0245007	- 580366	. 094 5147
2.310	1.0032203	10.074425	0.0992613	2.360	1. 0249350	10.590951	0.0944202
. 311	. 0036545	. 084504	. 0991620	. 361	. 0253693	. 601548	. 0343259
-312	. 0040888	. 094594	. 0990629	- 362	. 0258036	. 612155	. 9942316
. 313	. 0045231	. 104693	. 0989839	- 363	. 0262379	. 622772	. 0941374
. 314	. 0049574	. 114803	. 0988850	- 364	. 0266722	. 633400	. 0940433
2.315	1.005 3917	10.124 923	0.0987662	2.365	1.0271064	10.644039	0.0939493
. 316	. 0058260	. 135053	. 0986675	. 356	. 0275407	. 654688	. 0938534
. 317	. 0052603	.145 193	. 0988688	. 367	. 0279750	. 665348	. 0937666
- 318	. 0056946	. 155343	. 09847303	- 368	. 02884093	. 676019	. 0936679
. 319	. 0071289	. 165504	. 0983719	. 369	. 0288436	. 685700	. 0935743
2.320	1.0075632	10.175 674	0.0982736	2.370	1.0292779	10.697392	0.0934807
-321	. 0079975	.185 855	. 0981754	. 371	. 0297122	. 708095	. 0933873
- 322	. 0084318	. 196046	. 0980772	- 372	. 0301465	. 718808	. 0932940
. 323	. 008 8661	. 206247	. 0979792	. 373	. 0305808	. 729533	. 0932007
. 324	. 0093004	. 216459	. 0978813	. 374	. 0310151	. 740268	. 093 1076
2.325	1.0097347	10.226680	0.0977834	2.375	I. 0314494	10.751 or 3	0.0930145
. 326	. 0101090	. 236912	. 0976857	-375	.031 8837	.761 770	. 0929215
. 327	. 0106033	. 247154	. 097 5881	- 377	.032 3180	. 772.537	. 0928236
- 328	.011 0376	.257406	. 0974905	. 378	. 0327523	. 783.315	. 0927359
. 329	.OII 4718	. 267669	. 097393 I	- 379	. 0331866	. 794103	. 0926432
2.330	I. 011 906I	10.277942	0.0972957	2.380	1.0336209	10.804903	0.0925506
- 331	. 0123404	. 288225	. 0971985	-381	. 0340552	. 815713	. 0924588 I
- 332	. 0127747	. 298518	. 0971014			. 826534	. 0923657
-333	.013 2090	. 308822	. 0970043	-383	. 0349338	. 837366	. 0922733
- 334	. 0136433	-319,136	. 0969073	- 384	. 0353580	. 848209	. 092 18II
2.335	1.014 0776	10.329460	0.0968105	2.385	1. 0357923	10.859063	0.0920890
. 336	. 0145119	. 339795	. 0967137	. 386	. 0362266	. 869927	. 0915959
- 337	. 0149462	. 350140	. 09666171	. 387	. 0366609	. 880803	. 0919050
. 338	. 0153805	. 360495	. 0965205	-388	. 0370952	-991 689	. 0918181
-339	. 0158148	. 37086 I	. 0964240	-389	. 0375295	. 902585	.091 7214
2.340	1.0162491	10.381 237	0.0963276	2.390	1.0379638	10.913494	c.091 6297
-341	.016 6834	. 391623	.006 2314	-391	. 0383981	. 924413	. 091538 I
- 342	.017 1177	. 402020	. 00613532	-392	. 0388324	-935 343	. 0914466
- 343	. 0175520	. 412427	. 0960391	. 393	. 0392667	.946 284	.091 3552
-344	. 0179853	.422845	. 095943 I	- 394	. 0397010	. 957235	.091 2639
2.345	1.018 4206	10.433273	0.0958472	2.395	1.0401353	10.958198	
- 346	.018 8549	. $4437 \mathrm{7II}$. 0957514	. 396	. 04085696	. 979172	. 0910810
-347	.019 2891	. 454160	. 0956557	- 397	. 04110039	. 990156	. 0909905
-344	.019 7234	. 464620	. 0955601	. 398	. 0414382	11.001152	. 0908896
-349	. 0201577	. 475089	. 0954646	- 399	. 0418725	. 012159	. 0908087
2.350	1.0205930	10.485 570	0.0953692	2.400	1.0423068	11.023176	0.0907180
loge $\mathrm{e}^{\text {W }}$)	$\log _{10}\left(e^{\text {a }}\right.$)	$\theta^{\text {a }}$	e^{-n}	$\log _{e}\left(\mathrm{e}^{\mathrm{r}}\right)$	$\operatorname{lograndem}^{\text {a }}$)	$\mathrm{a}^{\text {a }}$	0^{-4}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-u}	u	$10010\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-4}
2.400	1.0423068	11.023176	0.0907180	2.450	1.0640215	II. 588347	0.0862936
. 401	. 04272711	. 034205	. 09006273	. 451	. 0644558	. 599941	. 0862073
. 402	. 0431753	. 045245	. 0905367	. 452	. 0648901	. 611547	. 0861212
.403	. 0436096	. 056296	. 0904162	.453	. 0653214	. 623164	. 0850351
. 404	. 0440439	. 067357	. 0903558	- 454	.0657587	. 634793	. 085949 I
2.405	1.044 4782	11.078 430	0.0902655	2.455	1. 0661930	II. 646434	0.0858532
. 406	. 0449125	. 089514	.090 1753	. 456	. 06666272	. 658086	. 0857774
. 407	. 0453468	. 100609	. 090085 I	-457	. 0670515	. 659750	. 0856916
. 408	. 0457811	. 111715	. 0899951	. 438	.0674958	. 681425	. 0856060
.409	. 0462154	. 122833	. 0899052	-459	. 0679301	.693 II3	. 0855204
2.410	1.046 6497	II. 133 g 5 I	0.0898153	2.450	1.0683544	11.704 812	0.0854350
. 41 II	. 0470810	. I 45 IOI	. 0897255	. 461	. 0687987	. 716522	. 0853496
- 412	. 0475183	. 156251	. 0896358	. 462	. 0692330	. 728245	. 0852643
. 413	. 0479526	. 167413	. 0895463	. 463	. 0696673	. 739979	. 0851790
. 414	. 0483869	.178 586	. 0894568	. 464	.070 1016	.751 725	. 0850939
2.415	1.048 8212	II.189 770	0.0893673	2.465	1.0705359	II. 763482	0.0850088
. 416	. 0192555	. 200966	. 089 2780	. 466	.070 9702	. 775252	.084 9239
.417	. 0496888	. 212172	. 0891888	. 467	.071 4045	. 787033	. 0848350
. 418	. 0501241	. 223390	.089 0996	-488	.071 8388	. 798826	. 0847512
. 419	. 0505584	. 234619	. 0890106	-469	.072 273I	.810 630	.084 6695
2.420	1.0509926	11.245859	0.0889216	2.470	1.0727074	II. 822447	0.0845849
. 42 I	. 0514269	. 257 III	. 0858327	-471	. 0731417.	.834275	. 0845003
. 422	. 0518512	. 268374	. 088 7440	-472	. 0735750	. 846115	. $08+4159$
.423	. 0522955	. 279648	. 0886553	. 473	. 0740103	. 857967	. 08.33315
. 424	. 0527298	. 290933	. 0885666	-474	. 0744445	. 86983 I	. 0842472
2.425	1.0531641	II. 302229	0.0884781	2.475	1.0748788	II. 881707	0.0841630
. 426	. 0535984	.313537	. 08838897	-475	. 0753131	. 893595	. 0840789
. 427	.054 0327	. 324857	. 0883013	-477	. 0757474	. 905494	. 0839948
. 428	. 0544670	. 336187	. 0882131	-478	. 0761817	. 917406	.083 9109
. 429	. 0549013	- 347529	. 0881249	-479	. 0766160	. 929329	. 0838270
2.430	1.0553356	II. 358882	0.0880368	2.480	1.0770503	II. 941264	0.0837432
. 43 I	. 0557699	. 370247	. 0879.88	. 48 I	. 07748.46	. 953212	. 0836595
. 432	. 0562042	-381 623	. 0878609	. 482	. 0779189	.965 I7I	.0835759
. 433	. 0566385	. 393010	. 0877731	.483	.078 3532	. 977 I42	. 0834924
. 434	. 0570728	. 404409	. 0876854	. 484	. 0787875	. 989 I25	. 0834089
2.435	1.0575071	II. 415819	0.0875977	2.485	1.0792218	12.001120	0.0833256
. 436	.0579414	.427240	. 0875102	. 486	. 0796561	. 013127	.0832423
. 437	. 0583757	. 438673	. 0874227	-487	.080 0904	. 025147	. 0831591
-438	. 0588099	. 450118	. 0873353	-488	. 0805247	.037178	.083 0760
. 439	. 0592412	. 461573	. 087248 I	.489	.080 9590	. 04922 I	. 0829929
2.440	1.0596785	II. 47304 I	0.0871609	2.490	1.0813933	12.061 276	
. 44 I	. 0601128	.484520	. 0870737	. 491	. 0318270	. 073343	. 0828271
. 412	. 060547 I	. 456010	. 0859807	-492	. 0822618	. 085423	.082 7443
. 443	.050 5814	. 507512	. 0868998	-493	.082 696I	. 097514	.082 6616
. 444	.061 4157	. 519025	. 0868129	-494	. 0831304	. 109618	. 0825790
2.445	1.06I 8500	II. 530550	0.0867261	2.495	1.0835647	I2.I2I 734	0.0824965
. 446	. 0522843	. 542086	. 0866395	. 496	.0839950	. 133861	. 0824140
. 478	. 0627185	. 533634	. 0855529	-497	. 08.44333	. 146001	.082 3316
. 448	. 0631529	. 565193	. 0864663	-498	.0848676	. 158153	$.0822493$
. 449	. 0635872	. 576764	. 0863799	-499	. 0853019	.170318	. 0821671
2.450	1.0640215	II. 588347	0.0862936	2.500	1.0857362	12.182494	0.0820850
$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{x}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$e^{\text {a }}$	e^{-2}	$\log _{\mathrm{e}}\left(\mathrm{e}^{\mathrm{x}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{T}}\right)$	$\mathrm{e}^{\text {u }}$	0^{-2}

The Exponential.

u	$\log _{10}\left(e^{\text {a }}\right.$)	e^{a}	$\mathrm{e}^{-\mathrm{u}}$	u	${ }_{100}{ }_{10}\left(\mathrm{e}^{\mathrm{u}}\right.$)	$\mathrm{e}^{\text {a }}$	e^{-a}
2.500	1. 0857362	12.182 494	0.0820850	2.550	I. 1074509	12.807104	0.0780817
. 501	. 0861705	. 194688	. 0820030	. 551	. 1078852	. 819917	. 0780036
. 502	. 0866048	. 205883	.081 9210	. 552	. 1083195	. 832744	. 0779257
. 503	.087 0391	.219 096	.08I 8391	- 553	. 10875388	. 845583	. 0778878
. 504	. 0874734	.231 322	.081 7573	. 554	. 1091888	. 858435	. 0777700
2.505	1.0879077	12.243559	0.0815755	2.555	1.109 6224	12.87 I 300	0.0776922
. 506	. 08883420	. 255809	.08I $59+0$. 555	. 110055	. 884177	. 077 6146
- 507	. 08887763	. 268071	.08I 5124	. 557	. 1104910	. 897058	. 0775370
- 508	. 0892105	.280345	.08I 4309	. 558	. 1109253	-909 972	. 0774595
. 509	. 0896449	. 29263 I	.08i 3495	. 559	. III 3596	.922 888	. 077382 I
2.510	1.0900791	12.304930	0.0812882	2.560	1.111 7939	12.935817	0.0773047
. 511	. 0905134	-317 241	.081 1370	. 561	. 1122282	. 948750	. 0772275
. 512	. 0909477	. 329565	.081 1059	. 552	. 1126625	.951 715	. 0771503
. 513	.091 3820	. 341900	. 0810218	. 55	. 1130063	. 974683	. 0770732
.514	. 0918163	-354 248	. 8009438		. 1135311	. 987664	. 076 996I
2.515	I. 0922506	12.366609	-08086こ9	2.565	I.113 9653	13.000 658	0.0769192
. 516	. 0926849	. 378082	c80 7821	. 566	. 1143996	. 131366	. 0768123
. 517	. 0931192	. 391305	. 0807013	. 557	. 1148339	. 026685	. 076765
. 518	. 0935535	.403 704	.080 6207	. 558	. 1152682	. 039719	.076 6888
-519	. 0939878	.416 174	. 080 5401	. 559	. 1157025	. 052765	. 0766121
2.520	1. 094422 L	12.428597	0.0804595	2.570	1.116 ${ }^{1} 688$	13.065824	0.0765355
. 521	. 0948564	. 441032	.080 379?	. 571	.116 5711	. 078897	. 0764590
. 522	. 0952907	. 453 479	.a8. 2988	. 572	. 117 cost	. 091982	. 0763826
-533	. 0957250	. 465938	. 0802185	- 573	. 1174397	. 10508 O	. 07630063
-524	. 0961593	.478411	. 0801384	-574	. 1178740	. 118192	. 0762300
2.525	1.096 5936	12.490895	0.0800583	2.575	I.118 3083	13.131317	0.0761538
. 526	. 0970279	. 503392	.079 9783	. 575	. 1187426	.I44 455	. 0760777
. 527	. 0974622	.515902	. $079888{ }^{4}$. 577	. 119 I769	. 157606	. 0760017
. 528	. 0978955	. 528424	. 0798885	. 578	.119 6112	. 170770	. 0759257
.539	. 0983307	. 540959	. 0797387	- 579	. 1200455	. 183.948	. 0758498
2.530	1.0987650	12.553506	0.0796590	2.580	I. 1204798	13.197138	0.0757740
. 531	. 0991993	. 566056	. 0795794	. 58 r	. 1209141	. 210342	. 0756983
. 532	. 0996336	. 578638	. 0794999	. 582	. 12131848	. 223559	. 0756225
- 533	.1000679	. 591223	. 0794204	. 583	. 1217826	. 236789	. 0755470
- 534	. 1005022	. 60382 I	. 0793410	. 584	. 1222169	. 250032	.075.4715
2.535	1.100 9365	12.616431	0.0792617	2.585	I. 1226512	13.263 289	0.075 3961
. 535	. 1013708	. 629054	. 0791825	. 588	. 1230855	. 276559	. 0753307
. 537	. 1018051	. 641689	. 0791034	. 587	. 1235198	. 289842	. 0752454
. 538	. 1022394	. 654337	. 0790243	. 588	. 123 9541	. 303139	. 0751702
. 539	. 1026737	. 666998	. 0789453	. 589	. 1243884	. 316449	. 0750951
2.540	1.103 1080	12.679671	0.0788564	2.590	1. 1248227	13.329772	0.0750200
. 541	. 1035423	. 692357	. 0788888	. 591	. 1252570	. 343 x 08	. 074 945I
. 542	. 1039766	. 705056	. 0787088	. 592	. 1256913	-356 458	. 0748701
. 543	. 1044109	. 717767	. 0786302	. 593	. 12512566.	. 369828	. 0747953
-544	. 1048452	. 730491	. 0785516	- 594	. 1265599	. 383198	. 0747206
2.545	1. 1052795	12.743228	0.0784731	2.595	1. 1269942	13.396587	0.0746459
. 546	. 1057138	. 735978	. 0783846	. 596	. 1274285	. 409991	. 0745713
- 547	$.106 \quad 1480$. 768740	$.0783163$. 597	. 1278628		$.0744967$
- 5488	.106 .107023 166	.781515 .794303	.0782380 .0781598	. 598	$\begin{aligned} & .1282971 \\ & .1287314 \end{aligned}$	$\begin{aligned} & .436888 \\ & .450 \\ & \hline 281 \end{aligned}$.0744223 .0743479
2.550	1.107 4509	12.807104	0.0780817	2.600	1.129 1657	13.463738	0.074 2736
togec $\left(\mathrm{e}^{\text {a }}\right.$)		$0^{\text {a }}$	e^{-a}	Soge $\left(0^{\text {a }}\right.$)	logis $\mathrm{E}^{\text {b }}$)	0^{4}	0^{-3}

Suitheontam Tablez

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-8}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{n}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-n}
2.600	I. 1291657	13.463738	0.0742735	2.650	1.150 8804	I4.154 039	0.0706512
. 601	. 1295959	. 477208	.074 1993	. 651	. 55131.47	. 168200	. 0705805
. 602	. 1300342	. $4906 \mathrm{6g} 2$. 0741252	. 652	. 1517490	. 182375	. 0705101
. 603	. 1304685	. 504190	. 0740511	. 653	.152 1833	. 19555	. 0704396
. 604	. 130 g 028	. 517701	. 073 9771	. 654	.152 6176	. 210758	. 0703692
2.605	1.131 3371	13.531225	0.0739031	2.655	1.1530518	It. 224986	0.0702988
. 605	. 13177 r 4	. $54+753$.073 8293	. 656	. 1534861	. 239218	$.0702286$
. 607	. 1322057	. 558315	.073 7535	. 657	.1539204	. 253404	. 0701504
. 608	. 1326400	. 571880	. 0736818	. 658	. 1543547	. 267725	.0700883 .0700182
. 609	. 1330743	. 585459	. 0736081	. 659	. 1547850	. 282000	. 0700182
2.610	1.1335086	13.599051	0.0735345	2.660	1. 1552233	14.296289	0.0599482
.6II	. 1339429	. 612657	. 0734510	. 661	. 1556576	. 310593	. 0698783
. 612	. 1343772	. 626275	. 073 3876	. 662	. 1560919	- 324910	.0698085
. 613	.1348155	. 639909	. 0733143	.663	. 1563262	- 339242	. 0697387
. 614	. 1352458	. 653556	. 0732410	.664	. 1569605	. 353589	.0696590
2.615	I. 135680 I	13.667216 680 880	$\begin{array}{lll}0.073 & 1678\end{array}$	2.665		14.367950 .382325	0.0595994
. 616	.136 1144	. 680880	. 0730947	. 666	.1578291 .1582631	.382325 .306711	$\begin{aligned} & .0595298 \\ & .0694603 \end{aligned}$
. 617	-136 5187	. 694578	. 0730216	. 657	.158 .158 .15974	. 39071118	.0694603 .0693509
. 618	-1369830	.708280 .721995	.0729485 .0728757	. 655	.1586977 .1591320	.411 118	$\begin{aligned} & .0693509 \\ & .0693215 \end{aligned}$
. 619	-1374172	.721 995	. 072875		-159 1320		
2.620	1.1378515	13.735724	0.0728029	2.670	I. 1595663	14.439 969	0.0692522
. 621	. 1382858	. 749456	. 0727301	. 671	. 1600005	. 454415	$.0691830$
. 622	.138 7201	. 753222	. 0726574	. 672	. 1604349	. 458878	. 0591139
. 623	. 1391544	. 775993	. 0725818	. 673	. 1608592	- 483354	$.0590+48$
. 624	.139 5887	. 790775	. 0723122	. 674	.16I 3034	-497845	
2.625	1.140 0230	13.804574	0.0724398	2.675	I.16I 7377	I4.512 350	0.0689068
. 625	. 1404572	. 818385	. 0723674	. 676	. 1621720	. 526859	. 06888380
. 627	. 1408816	. 832211	. 0722950	. 677	. 1626053	. 511104	. 05887592
. 628	.141 3259	. 816050	. 0722228	. 678	.1630406	. 555952	. 05878004
. 629	.141 7502	. 859903	. 0721506	. 679	. 1634749	. 570515	. 0686318
2.630	1.1421945	13.873770	0.0720785	2.680	1. 1639092	14.585 003	0.0685632
. 631	. 1426288	. 887651	. 0720064	.681	. 1643435	. 599685	. 0.684946
. 632	. 1430631	.901 545	. 07193.4	. 682	-164 7778	. 614293	. 0584262
. 633	. 1434974	. 915454	.071 8626	.683	. 1652121	. 628914	. 0683578
. 634	. 1439317	. 929376	.071 7907	. 684	.1656464	. 643550	. 0582894
2.635	1.I44 3650	13.943312	0.0717150	2.685	I. 1650807	I4. 658201	0.0682212
. 636	. 1448003	. 957253	.071 6473	. 685	. 1665150	$.672867$. 0581530
. 637	. 1452345	. 971227	. 0715757	. 687	. 1669493	. 687547	. 0580849
. 638	. T45 6688	. 985205	.071 5041	. 688	. 1673836	. 702242	. 05801088
. 639	. 146 103I	. 999197	. 0714327	. 689	. 1678179	.716 952	. 0679489
2.640	I. 1465374	14.013 204	0.0713613	2.690	1. 1682522	14.731 676	0.0678809
. 641	. 1469717	. 027224	. 0712899	. 691	. 1686855	. 746415	. 0.578131
. 642	. 1471050	. 041258	.071 2187	. 692	. 1691207	. 761169	.0577453
.643	. 1478403	. 055306	. 0711475	. 693	.169 5550	. 775937	.0676775
,644	. 1482746	. 059369	. 0710764	. 694	. 1699893	. 790721	. 0676100
2.645	1. 1.487089	14.083145	0.0710054	2.695	I. 1704236	14.805519	0.0675424
. 646	. 1491432	. 097536	. 0709344	. 696	. 1708579	. 820332	. 0674749
. 6.47	. 1495775	. III 640	. 0708635	. 697	. 1712922	.835159	.0574074
. 648	. 1500118	. 125759	. 0707927	. 698	. 1717265	. 850002	. 0573401
. 649	. 1504461	. 139892	. 0707219	. 699	. 1721608	.864859	. 0672728
2.650	I. 1508804	14.154039	0.0706512	2.700	I. 172595 I	14.879732	0.0672055
$\log _{e}\left(\mathrm{e}^{\mathrm{n}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {u }}$	e^{-}	$\log _{e}\left(e^{4}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {u }}$?

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{a}	e^{-0}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{a}	e^{-n}
2.700	I. 172595 I	14.879732	0.0672055	2.750	I. 1943098	15.642632	0.0639279
. 701	. 1730294	. 894619	. 0671383	. 751	. 194741	. 658282	. 0538540
. 702	. 1734637	. 900 521	. 0670712	. 752	. 195 I784	. 6739.8	. 0638001
. 703	. 1738880	. 924438	. 0670042	. 753	. 1956127	. 689630	. 0637364
.704	.174 3323	. 939370	. 0669372	. 754	. 1960470	. 705328	.0636727
2.705	I. 1747565	14.954317	0.0668703	2.755	1. 1964813	15.721041	0.063 6050
. 705	. 1752009	. 96278	. 0668035	. 756	.196 9155	. 736770	. 0635454
. 707	. 1756352	. 984255	. 0557367	. 757	. $1973+99$. 752514	.063 4819
. 708	. 1750695	. 999247	. 0656700	.758	. 19778	. 768275	. 063 +185
.709	.175 5038	15.014 254	. 0566039	. 759	.1982185	. 784051	. 063355 I
2.710	r. 1769380	15.029275	0.0665368	2.760	1.198 6528	15.799843	0.0632918
. 711	. 1773723	. 044312	. 0664703	. 761	. $199 \mathrm{c} /{ }^{-1}$.8I5 651	. 0632235
. 712	. 17788065	. 059364	. 0651039	. 762	. 199 5214	. 831474	. 0531653
.713	. 1782400	. 07443 I	. 0563375	. 763	. 199955	. 847314	. 063 1022
. 714	.17S 6752	. 089513	. 0562712	.754	. 2003809	.853169	. 053039 I
2.715	1. 1791095	15.104 610	0.0662050	2.765	1. 2008212	15.879040	0.062976 I
. 716°	. 1795438	. 119722	. 056 I388	. 756	. 2012585	. 894927	. 0629132
.717	. 1799781	. 134850	. 06600727	.-57	. 2016928	. 910830	. 0528503
. 718	. 1804124	. 149992	. 0660066	.78	.2021271	. 926749	.062 7875
. 719	. 1808.467	. 165 I-9	. 0659407	.769	. 2023 5614	. 942683	. 0627247
2.720	r. 1812810	15.180322	0.0658748	2.770	1. 2029957	15.958634	0.0626620
. 721	. 18 r 7153	. 195510	. 0658087	. 77 I	. 2034300	. 974601	. 0625994
. 722	.1821495	. 210713	. 0557431	.772	. 20384	. 990583	. 0625368
. 723	. 1825839	. 225932	.0656774	. 773	. 2042586	16.006582	. 0624743
.724	.183 0182	. 241165	. 0656118	. 774	. 2047329	. 022596	. 0624119
2.725	I. 1834525	I5.256 4I4	0.0655462	2.775	1.2051672	工6.038 627	0.0623495
. 726	. 1838868	. 271678	. 065.4807	. 776	. 2056015	. 054674	.062 28,2
. 727	. 1843211	. 285957	. 0654152	. 777	. 2060358	. 070736	. 0622249
. 728	. 1847553	. 302252	. 0553499	.778	. 2064701	. 085815	
.729	.1851895	. 317562	. 0652845	. 779	. 2069044	. 102910	.062 1006
2.730	I. 1856239	15.332887	0.0652193	2.780	I. 2073387	16.119021	0.0620385
.73I	. 1860582	- 348228	. 0651541	. 781	. 2077730	. 135148	.061 9765
. 732	. 1864925	. 363583	. 065 08go	. 782	. 2082072	-151 291	.061 91.46
. 733	. 1869268	. 378955	. 0650239	.783	. 2086415	.167451	$.0618527$
. 734	.1873611	- 394341	. 0649589	. 784	. 2090758	. 183626	. 0617908
2.735	I. 1877954	15.409743	0.0648940	2.785	1. 2095101	16. 199818	0.0617291
. 736	. 1882297	. 425161	. 0648291	.786	. 2099414	. 216026	.061 6674
. 737	. 1886640	. 440594	.064 7643	. 787	. 2103787	. 232250	.06I 6058
. 738	.1890983	. 456042	. 0646995	. 788	. 21108130	. 248490	. $061514{ }^{2}$
. 739	. 1895326	. 471506	. 0646349	.789	. 2112473	. 264747	.061 4827
2.740	I. 1899669	15.486985	0.0645703	2.790	1.211 6816	16.28 I 020	0.0614212
. 741	. 1904012	. 502480	. 0545058	. 791	. 2121159	. 297309	.061 3598
. 742	. 1908355	. 517990	. 0644413	. 792	. 2125502	. 313614	.061 2983
. 743	.191 2698	. 533516	. 0643759	. 793	. 2129845	-329 936	.061 2372
. 744	. 1917041	- 549057	. 0643126	. 794	. 2134188	- 346274	.061 1760
2.745	I. 1921384		0.0642483	2.795	1.2138531	16. 362629	0.0611149
. 746	. 1925726	. 580186	. 064 I841	. 796	. 214 3874	. 379000	. 0610538
. 747	. 1930069	. 595774	. 064 II99	. 797	. 2147217	- 395387	. 0509928
. 748	. 1934412	. 611378	. 0640558	. 798	.2151560	-411 790	$.060 \quad 9318$
-749	. 1938755	. 626997	. 0639918	. 799	.2155903	. 428210	.060 8709
2.750	I. 1943098	15.642632	0.0639279	2.800	1.216 0245	16.444 647	0.0608 for
$\log _{\text {e }}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\log _{10}\left(e^{\text {a }}\right.$)	$e^{\text {u }}$	e^{-5}	loge $\left(\mathrm{e}^{\text {b }}\right.$)	$\log _{12}\left(\mathrm{E}^{\text {IV }}\right.$)	$e^{\text {a }}$	e^{-8}

The Exponential.

4	$\log _{10}\left(\mathrm{e}^{\mathrm{V}}\right)$	$e^{\text {a }}$	e^{-a}	u	$\log _{10}\left(e^{4}\right)$	$e^{\text {u }}$	e^{-u}
2.800	1.216 0245	16.444647	0.0'́o Siol	2.850	1.2377393	17.287782	0.0578443
. 801	. 2164588	.161100	. 0650793	. 851	. 2381735	- 305078	. 0577855
. 802	. 2168331	. 477569	. 0506886	. 852	.2386079	- 322392	.0577287
. 803	. 2173274	-494055	.050 6279	. 853	. 2390422	- 339723	. 0576710
. 804	. 2177517	. 510557	. 060 3573	.854	. 2394765	. 35707 I	. 0576134
2.805	1. 2181950	16.527076	0.0605068	2.855	1. 2399107	17.374437	0.0575558
. 805	. 2186303	. $5+3$ 6II	. 060 + 463	. 835	. 2403450	-391820	.0574983
. 807	. 2190546	- 560163	. 0503859	. 857	. 2107793	- 409221	.0574108
. 808	. 2194989	.576732	. 0503255	. 858	. 2412135	. 425639	.0573834
. 809	. 2199332	. 593 317	. 0602652	. 859	. 2416479	. 414074	. 0573261
2.810	I. 2203675	16.609918	0.0602050	2.850	1.2420822	17.46I 527	0.0572688
. 811	. 2208018	.626535	. $0501+18$. 861	. 2125165	. 478997	.0372115
. 812	. 2212361	. 643 171	. 05008087	. 852	. 2429508	. 495485	. 0571543
.813	. 2216704	. 659823	. 0500246	. 853	. 243 3851	. 513990	. 0570972
. 814	.2221047	. 67649 I	.0599647	. 854	. 243 8194	. 531513	. 0570401
2.81	1. 2225390	16.693176	0.05990 .47	2.865	1. 2442537	17.549053	0.0569831
. 816	. 2229733	. 70987	. 059898	. 856	. 2146880	. 566611	. 0569262
. 817	. 2234075	. 726395	. 0597850	. 857	. 2451223	. 584185	.0368593
. 818	. 2238418	.743331	. 0597253	. 868	. 2455565	. 601779	.0568124
. 819	.22+276I	. 76008.2	. 0596656	. 859	. 2459909	. 619390	. 0567557
2.820	1. 2247104	16.776851	0.0596059	2.870	I. 2464252	17.637018	0.0566989
. 821	. 2251447	. 793635	. 0595454	. 871	. 2468595	. 654664	.0566 .123
. 822	. 2255790	. $810+38$. 0594858	. 872	. 2472938	. 672328	. 0565856
. 823	. 226 O133	. 827257	. 0594274	. 873	. 2477280	. 690009	. 056529 I
. 824	. 2264476	. $8+4092$. 0593680	. 874	. 2481623	.707708	.0564726
2.825	1. 2268819	16.860945	0.0593087	2.875	1. 2485966	17.725424	0.0564161
. 826	. 2273162	. 877814	. 0592194	. 876	. 2490309	.743158	. 0563598
. 827	.227 7505	.894701	. 0591502	. 877	. 2494652	. 760910	.0563034
. 828	. 2281848	. 911604	. 0591310	. 878	. 2498995	. 778680	. 0562471
. 829	.2286191	. 928524	. 0590719	. 879	. 2503338	.796468	. 0561909
2.830	1. 2290534	16.945461	0.0590129	2.880	1.2507681	17.814273	0.0561348
. 831	. 2294877	. 962415	. 0589539	.881	. 2512024	. 832095	. 0560787
. 832	. 2299230	. 979386	. 0588919	. 883	.251 6367	. 849937	. 0560226
.833	. 2303563	. 996374	.0588361	. 883	.2520710	. 857795	.0559666
. 834	.2307906	17.013378	.0587773	. 88.4	. 2525053	.885673	. 0559107
2.835	1. 2312249	17.030400	0.0587185	2.885	1.2529396	17.903568	0.0558548
. 836	. 2316592	. 047439	. 0586598	. 885	. 2533739	. 921480	. 0557990
. 837	. 2320934	. 064495	.0586012	.837	. 2538082	. $9394 \mathrm{4I}$. 0557432
. 838	. 2325277	.081 568	. 0585426	. 888	.2542425	. 957359	. 0556875
. 839	. 2329620	. 098658	. 0584841	. 889	. 2546768	. 975325	. 0556318
2.840	1.2333963	17.115 766	0.0584257	2.890	1.255 IIII	17.993310	0.0555762
. 841	. 2338306	. 132890	. 0583673	. 891	. 2555453	I8.OII 312	. 0555207
.842	. 2342649	. 150031	.0583089	. 892	. 2559796	. 029332	. 0554652
.843	.2346992	. 167190	.0582507	. 893	. 2564139	. 047371	. 0554097
. 844	. 2351335	.184 356	. 0581924	. 894	.2568482	.065427	.0553544
2.845	1. 2355678	17.201559	0.0581343	2.895	1.2572825	18.083501	0.0552900
. 8.86	.2360021	. 218769	. 0580762	. 896	. 2577168	. 101594	. 0552438
. 847	. 2364364	. 235996	. 058018 I	. 897	.2581511	. I19 705	. 0551885
. 848	. 2368707	. 253241	. 0579601	. 898	. 2585854	. 137833	. 0551334
. 849	.2373050	.270503	. 0579022	. 899	.2590197	. 155980	. 0550783
2.850	1. 2377393	17.287782	0.0578443	2.900	1. 2594340	18.174 145	0.0550232
$\log _{e}\left(e^{4}\right)$	$\log _{10}\left(e^{\text {a }}\right.$)	$e^{\text {a }}$	e^{-}	$\mathrm{log}_{e}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\operatorname{logiol}^{10}\left(\mathrm{e}^{\mathrm{n}}\right)$	$\theta^{\text {a }}$	e^{-n}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\text {u }}\right.$)	$e^{\text {II }}$	e^{-a}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{n}}\right)$	$\mathrm{e}^{\text {a }}$	e^{-4}
2.900	1.2594540	18.174145	0.0550232	2.950	1.2SI 1687	19.105954	0.0523397
. 901	.2598883	. 192329	. 0549582	. 951	.281 6030	. 125069	. 0522874
. 902	. 2603226	. 210330	. 0549733	.952	.2820373	. I44 204	.052 2351
. 903	. 2507569	. 228750	. 0548584	. 953	.2824716	.163358	. 0521829
. 904	. 2611912	. 246988	. 0548036	. 954	. 2829059	. 18253 I	.052 1308
2.905	1.2616255	18.265244	0.0547488	2.955	1.2833402	19.201723	0.0520787
. 905	. 2620598	.283518	.054 6941	.956	. 2837745	. 220934	.052 0266
. 907	.262494 I	-301 8II	.054 6394	. 937	. $28+2088$. 240165	.051 9746
. 908	.2529284	. 320122	. 0545848	. 958	. 28.6431	.2594 I	.0519 9227
. 509	.2633625	. 33845 I	.05I 5302	-959	. 2850774	.278683	.0518708
2.910	1. 2637959	18.355759	0.0544757	2.960	1.2855117	19.297972	0.0518 r 89
.91I	. 2642312	. 375165	.054 4213	.961	.2859460	. 317279	. 0517671
. 912	. 2646555	. 393549	. 0543669	-962	.2853803	- 336605	.051 7154
.913	. 2650998	.411 952	. 0543125	.963	. 2368145	- 355953	.051 6637
.914	.2655341	. 430373	. 0542583	-954	. 2872488	- 375318	.051 6121
2.915	I. 2659584	18.488812	0.0542040	2.955	1.2876831	19.394703	0.0515605
. 916	. 2564027	. 457270	. 0541499	. 965	. 2881174	.414108	. 0515089
. 917	. 2668370	- 485747	. 0540257	. 967	. 2885517	. 433531	.051 4575
. 518	. 2572713	- 504242	. 0540417	. 968	. 258 g860	.452 975	.051 4050
.919	. 2577056	- 522755	. 0539876	. 969	.2894203	-472 437	.051 3546
2.920	1.2681399	18.541287	0.0539337	2.970	1.289. 8545	19.491 920	0.0513033
.92I	. 2685742	. 559828	. 0538758	.971	. 2502839	. 511 I 42 I	.051 2520
. 922	. 2690085	. 578407	. 0538259	-972	. 2507232	. 530942	. 0512008
.923	.2594128	- 595995	. 0537721	. 973	. 2911575	- 550483	.051 1496
. 924	. 2698771	. 615601	. 0537184	.974	. 2915918	- 570043	.051 0985
2.925	1.2703114	18.634225	0.0536647	2.975	1.2920261	19.589623	0.0510474
. 926	. 2707457	. 652870	. 0536 III	. 976	. 2924604	. 600223	. 0509964
. 927	. 2711799	. 571532	. 0535575	. 977	. 2928947	. 638842	. 0509454
-923	.271 6142	. 650213	. 0535039	.978	. 2933290	. 648480	. 0508945
. 929	. 2720.885	. 708912	. 0534505	-979	.2937633	. 668139	. 0508437
2.930	1.2724828	18.72763 I	0.0533970	2.980	I. 2941976	19.687817	0.0507928
.931	. 2729171	. 746368	.0533437	. 581	. 2946319	. 707514	. 0507421
. 932	.2733514	. 765123	. 0532904	. 982	. 2950661	. 727232	.0506913
. 933	.2737857	.783 898	. 0532371	. 993	. 2955004	.746959	. 0506407
.934	. 2742200	.802691	. 0531839	.984	. 2959347	.766726	. 0505901
	I. 2746543	18.821503	0.0531307	2.985	I. 2963590	19.786502	0.0505395
. 933	. 2750886	. 840334	. 0530776	. 986	. 2968033	. 806299	. 0504890
. 937	. 2755229	. 859184	.0530246	-987	. 2972375	.826115	.0504385
. 938	. 2759572	.878052	.0529716	. 588	. 2976719	. 845951	.050388 I
. 939	.2763915	. 896940	. 0529186	. 989	. 2981062	.855807	.0503377
2.940	1.276 8258	18.915846	0.0528557	2.990	1. 2985405	19.885682	0.0502874
.941	. 2772601	. 934772	. 0528129	. 991	. 2989748	.905578	. 0502372
. 942	. 2776944	. 953715	. 0527601	. 992	. 299409 I	. 925494	. 0501870
.943	.2781287	. 972679	.0527074	. 993	. 2998434	. 945429	.0501368
. 944	. 2785630	.991 661	. 0526547	. 994	- 3002777	. 965385	.0500867
2.945	1. 2789972	19.010662	0.0526021	2.995	1. 3007130	19.985360	0.0500366
. 946	. 2794315	.029683	.0525495	. 996	. 3011463	20.005355	. 0499856
. 947	. 2798558	. 048722	.0524970	. 997	. 3015806	. 025371	. 0499367
. 948	. 2803001	. 067780	. 0524445	-998	. 3020149	. 045406	$.0498867$
. 949	. 2807344	. 086857	. 052392 I	. 999	. 3024492	.065461	. 0498836
2.950	1.281 1687	19.105 954	0.0523397	3.000	1. 3028834	20.085537	0.0497871
$\operatorname{loghe}_{e}\left(\mathrm{e}^{\mathrm{a}}\right)$	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$9^{\text {a }}$	e^{-0}	$\log _{e}\left(e^{4}\right)$	logno (e) ${ }^{\text {a }}$	$e^{\text {a }}$	$0^{-\square}$

The Exponential.

4	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$\mathrm{e}^{\text {u }}$	$\mathrm{e}^{-\mathrm{a}}$	4	$100_{10}\left(\mathrm{e}^{\text {u }}\right.$)	$e^{\text {u }}$	e^{-u}
3.00	1. 3028834	20.085537	0.0497871	3.50	1.5200307	33.113 452	0.0301974
. 01	. 3072254	. 237400	. 0492917	. 51	- 3243735	- 482	98969
. 02	-3II 5693	. 491292	. 0488012	. 52	- 5287156	.784 129	. 0295994
. 03	. 3159123	. 697233	.0483156	. 53	. 5330595	34.123 c68	. 0293049
. 04	. 3202552	. 905243	. 0478349	. 54	. 5374025	. 460919	. 0290133
3.05	1. 3245982	21.115 344	0.0473589	3.55	1.5417454	34.813318	0.0287246
. 2.05	.328 .32811	. 327557	. 0.468877	. 56	. 546088.	35.163197	. 0284388
. 07	. 3332841	. 51 I 903	. 0464212	. 57	.5504313	. 516593	. 0281559
. 08	. 3376270	. 758402	. 0459593	. 58	. 5547742	. 873 511	. 0278757
. 09	-371 9699	. 977078	. 0455020	. 59	. 559 II72	36.234075	. 0275983
3.10	1. 3463129	22.197951	0.0450492	3.60	$1.563{ }^{4601}$	36.598234	0.0273237
3.11	. 3506558	. 42104	.0446010	. 61	. 567803 I	.966053	. 0270518
. 12	. 3549088	. 646380	. 0441572	. 62	. 57211460	37.337 568	. 0267327
. 13	. 3593417	. 873980	. $0+37178$.63	. 5764890	.712817 38.091837	. 0255162
. $\mathrm{I}+$. 3636847	23.103 857	. 0432828	. 64	. 5808319	38.091837	. 0262523
3.15	1.3680276	23.336065	0.0428521	3.65	1.5851749	38.474665	0.0259911
. 16	. 3723706	. 570596	. 0424257	. 66	. 5895178	. 861343	. 0257325
. 17	. 3767135	. $807+84$. 0420036	. 67	. 5938607	39.251900	.0254765 .0252230
. 18	.381 0565	24.046754	. 0415857	. 68	. 5982037	. 646394	.0252230 .0249720
. 19	. 3853994	.288427	. 0411719	. 69	. 6025466	40.044847	. 0249720
3.20	1.3897423	24.532530	0.0407622	3.70	1. 6068896	40.447304	0.0247235
. 21	. 3940853	. 779085	. 0.403566	. 71	.6II 2325	.853807	. 0244775
. 22	.3984282	25.028120	. 0399551	. 72	. 6155755	41.264394	. 0242340
. 23	. 4027712	. 279655	. 0395575	. 73	.6199184	. 679108	$.0239928$
. 24	. 407 II4I	. 533722	. 0391639	.74	. 6242614	42.097590	. 023754
3.25	1.411 4571	25.790340	0.0387742	3.75	1. 6286043	42.521082	0.0235177
. 26	. 4158000	26.049537	. 0383884	. 76	.6329473	. 948425	. 0232837
. 27	. +201430	-311 339	. 0380064	. 77	.6372902	43.380055	. 0230321
. 28	. $42+4859$. 575733	. 0376283	. 78	. 641633 I	. 816042	
. 29	. 4288288	. 842864	. 0372538	. 79	. 6459761	44.256400	. 0225956
3.30	1.4331718	27.112639	0.0368832	3.80	1. 6503190	44.701184	0.0223708
. 31	. 4375147	.385125	. 0365162	. 81	. 6546620	45.150439	. 0221.482
.32	. 44188577	. 660 351	.036 1528	. 82	. 6590049	$\begin{array}{r}.604 \\ 4608 \\ \hline 062 \\ \hline 18\end{array}$.0219278 .0217096
. 33	. 4462006	${ }_{8} .938342$. 0357931	. 83	. 6633479	46.062538 .525474	.0217096 .0214936
. 34	. 4505436	28.219127	.0354370	. 84	. 6676908	.525474	.02I 4936
3.35	1.4548865	28.502734	0.0350844	3.85	1. 6720338	46.993063	
. 36	. 4592295	.789 191 808	. 0347353	.83	.6763767 .6807106	47.465351 .942386	.0210680 .0208584
. 37	. 4635724	29.078527	. 0343836	.87	. 6807196	$\begin{array}{r}.942386 \\ 48.424 \\ \hline 15\end{array}$. 0208584
. 38	-4679153	. 370771	. 0340475	. 88	. 6850626	40.424215 .910887	.020 6508
. 39	. 4722583	. 665952	.0337087	.8)	. 6894055	.910887	.0204453
3.40	1.4766012	29.964100	0.0333733	3.90	1. 6937485	49.402449	0.0202419
. 4 I	. 4809442	30.25524	. 0330412	.91	. 6980914	. 898952	. 0200405
.42	. 4352871	. 569415	. 0327124	. 92	. 7024344	50.400445	. 0198411
. 43	. 4896301	. 876643	.0323869	. 93	. 7067773	.906978 51	.0196437 .0194482
. 44	. 4939730	31.185958	. 0320647	. 94	. 7111203	51.418601	. 0194482
3.45	1.4983160	31.500392	0.0317456	3.95	1. 7154632	51.935367	0.0192547
. 46	. 5026589	. 816977	.031 4298	.96	. 7198061	52.457326 .984 531	. 0190631
. 47	$\begin{array}{r}.5070019 \\ .511 \\ \hline 148\end{array}$	32.136743 .459722	.0311170 .0308074	. 97	.7241491 .7284920	.984531 53.517034	.018 8734
. 48	-511 31588	$\cdot 159722$.785948	.030 5009	. 98	. 7328350	54.054889	. .0184997
3.50	1. 5200307	33.115452	0.0301974	4.00	1.7371779	54.598150	0.0183156
$\log _{e}\left(e^{5}\right)$	$\operatorname{login}^{1}\left(e^{\mathrm{x}}\right)$	e^{u}	e^{-n}	$\operatorname{logec}_{\text {e }}\left(\mathrm{e}^{\text {a }}\right.$)	$\log _{10}\left(e^{\text {a }}\right.$)	$e^{\text {a }}$	e^{-a}

The Exponential.

u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	e^{u}	e^{-0}	u	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	$e^{\text {a }}$	e^{-u}
4.00	1.7371779	54.598 150	0.0183156	4.50	I. 9513252	90.017 I3I	0.0111000
. 0	. 7415209	55.146871	. 0181334	. 51	. 9586631	. 921819	. 010 9,85
. 02	. 7458538	. 701105	. 0179530	. 52	. 963 OIII	91.835598	. 0108890
. 03	. 7502068	56.26091 I	. 0177743	. 53	. 9673540	92.758561	. 0107807
. 04	. 7545497	. 826343	. 0175975	- 54	. 9716969	93.690800	. 0106734
4.05	1.758 8927	57.397457	0.017 4224	4.55	1.9760399	94.632408	0.0105672
. 06	. 7632356	. 974 311	. 0172450	. 56	. 9803828	95.583480	. 0104621
. 07	. 7675785	58.556963	. 0170774	. 57	. 9847258	96.514110	. 0103580
. 08	. 7719215	59.145470	. 0169075	. 58	. 9890687	97.514394	. 0102549
. 09	. 7762644	. 739892	. 0167392	. 59	. 9934117	98.494430	. 0101529
4. 10	1.780 6074	60.340288	0.0165727	4.60	1.9977546	$99.48+316$	0.0100518
. II	.784 9503	. 946718	. 0164078	. 61	2.0020976	100.484150	. 0099518
. 12	. 7892933	61.559242	. 0162445	. 62	. 0064405	IOT. 494032	. 0098528
. 13	. 7936362	62.177923	. 0160829	. 63	. 0107835	102.514064	. 0007548
. I4	. 7979792	. 802821	. 0159229	. 64	. 0151264	103.544348	. 0096577
4.15	1. 8023221	63.434000	0.0157544	4.65	2.0194693	104.584985	0.009 .5016
. 16	. 8066650	64.071523	. 0156076	. 66	. 0238123	105.636082	. 0094605
. 17	.8II 0080	. 715452	. 0154523	. 67	. 0281552	106.697743	. 000 3:23
. 18	. 8153509	65.365853	. 0152985	. 68	. 0324982	107.770073	. 0092790
. 19	. 8196939	66.022791	. 0151463	. 69	. 036841 I	108.853 ISc	. 0091867
4.20	I. 8240368	66.68633 I	0.014 9956	4.70	2.0411841	109.947 I72	0.0090953
	. 8283798	67.3565310	. 0148464	. 71	. 0455270	111.052160	. 0030048
. 22	. 8327227	68.033484	. 0146986	.72	. 0498700	112.168253	. 0089152
.23	. 8370557	.717 232	. 0145524	. 73	. 0542129	113.295156 .3	.008 8265
. 24	.841 4086	69.407852	. 0144076	. 74	. 0585558	114.434 20.2	.009 7386
4.25	1. 8457515	70.105412	0.0142642	4.75	2.0628893	115.584285	0.0086517
. 25	. 8500945	. 809983	. 0141223	. 75	. 0672417.	116.745926	$.0085656$
. 27	. 8544374	71.521635	. 0139818	. 77	. 07158.17	117.919242	. 0084804
. 28	. 8587804	72.240440	. 0138427	.78	. 0759276	119.104351	. 0083960
. 29	. 8331233	.965468	. 0137049	. 79	. 0802706	120.301369	. 0083125
$4 \cdot 30$	1.8574663	73.699794	0.0135685	4.80	2.0846135	121.510 418	0.0082397
. 31	. 8718092	74.440489	. 0134335	.8I	. 0889565	122.731618	. 0081479
. 32	. 8761522	75.188 628	. 0132999	. 82	.. 0932994	123.965091	. 0080568
. 33	. 8804951	. 944287	. 0131675	. 83	. 0976423	125.21096 I	. 0075865
. 34	. 884838 I	76.707539	. 0130365	. 84	. 1019853	126.459352	. 0079071
4.35	1. 889 1810	77.478463	0.0129068	4.85	2.106 3282	127.740390	0.0078284
. 36	. 8335239	78.257134	. 0127784	. 85	. 1106712	129.024203	. 0077505
. 37	. 8978569	79.043632	. 0126512	. 87	. I15 0141	130.320918	.0076734
. 38	. 9022098	. 838033	. 0125254	. 88	. II9 3571	131.630665	. 0075970
. 39	. 9065528	80.640419	. 0124007	. 89	. 1237000	132.953575	. 0075214
4.40	1.gro 8957	81.450869	0.0122773	4.90	2.1280430	134.289780	0.0074466
. 41	. 9152387	82.259454	. 0121552	. 91	. 1323859	135.639415	. 0073725
. 42	. 9195816	83.096285	. 0120342	. 92	. 1367289	137.002613	. 0072991
. 43	. 9239246	.931417	. OII 9145	. 93	.141 0718	138.379513	. 0072265
. 44	. 9282675	84.774942	. OII 7959	. 94	. 1454147	139.770250	. 007 1546
4.45	1.9326104	85.626944	0.0116786			141.174964	0.0070834
. 46	. 9369534	85.487509	.OII 5624	. 96	. 1541006	142.593796	. 0070129
-47	.941 2963	87.356723	.OII 4473	. 97	.1584436	144.026888	. 006943 I
. 48	$.9456393$	88.234673	. OII 3334	. 98	. 1627855	145.474382	. 0068741
. 49	. 9499822	89.121 446	. OII 2206	. 99	. 1671295	146.936424	. 0068057
4.50	1.9543252	90.017131	0.0111090	5.00	2.1714724	148.413159	0.0067379
loge $\left(\mathrm{e}^{\mathrm{x}}\right)$	$\operatorname{logincosem}^{\text {a }}$)	$e^{\text {a }}$	0^{-1}	$\operatorname{logec}_{e}\left(\mathrm{e}^{\mathrm{x}}\right)$	$\log _{20}\left(\mathrm{e}^{\mathrm{x}}\right)$	$e^{\text {a }}$	$]^{-}$

The Exponential.

-	$\log _{10}\left(\mathrm{e}^{\mathrm{a}}\right)$	$e^{\text {a }}$	$0^{-\pi}$	u	$\log _{10}\left(\mathrm{e}^{\mathrm{n}}\right)$	e^{n}	e^{-40}
5.00	2.1714724	148.413 159	0.0067379	$5 \cdot 50$	2.3886197	244.691932	0.0040818
. OI	. 1758154	I49.904 736	. 0066709	. 51	-392 9526	247.151 127	. 004040461
. 02	. 1801583	155.411 304	. 00660.45	-52	- 3973055	249.635037	. 00400405
. 03	. 1845012	152.933013	. 0065388	. 53	. 4016485	252.143911	. 0039660
. 04	. $18884{ }^{2}$	I54.470 015	. 006 4737	. 54	. 4059914	254.677999	. 0039255
5.05	2.193 1871	156.02246 .4	0.0064093	5.55	2.4103344	257.237556	0.0038875
. 06	. 1973301	157.590516	. 006 3+155	. 56	.4146773	259.822836	. 0038488
. 07	. 2018730	I50.174 327	. 0062824	. 57	- 4190203	252.434099	.0038105
. 08	. 2062160	160.774 056	. 0062199	. 58	. 1233632	265.071606	.003 7726°
.09	. 2105589	162.389862	.006 1580	. 59	. 4277062	267.735620	. 0037350
5.10	2.2149019	164.021 907	0.0060067	5.60	2.4320491	270.426407	0.0036979
. 11	. 2192418	165.670355	. 0060361	. 61	. 4363920	273.144238	. 003661 I
.12	. 2235877	167.335359	.005 9760	. 62	- 4407350	275.889383	. 0036246
. 13	.2279307	169.017118	. 0059166	.63	. 4450779	278.662 I17	. 0035886
. 14	. 2322736	170.715768	. 0058587	. 6	- +194209	381.462718	. 0035529
5.15	2.2366166	I72.43I 490	0.0057994	5.65	2.4537638	284.291466	0.0035175
. 16	. 2409595	174.164 455	. 0057417	. 66	. 4581068	287.148642	$.0034825$
. 17	. 2453025	175.914837	. 0056846	. 67	. 4624497	290.034534	. 0034479
. 18	. 2496454	177.682811	. 0056280	. 68	-466 7927	292.949430	$.0034 \mathrm{~L} 36$
. 19	.2539884	179.468553	.005 5720	. 69	-471 1356	295.893620	.0033796
5.20	2.2583313	181.272212	0.0055166	5.70.	$2-4754785$	298.867401	0.0033460
. 21	. 2626743	$183.09+058$. 0054617	. 71	. 4798215	301.871068	.003 3127
. 22	. 2670172	$184.93+184$. 0054073	. 72	-484 1644	304.904923	. 0032797
. 23	. 2713601	186.792804	. 0053535	. 73	- 4885074	307.969268	. 0032471
. 24	. 2757031	188.670103	. 0053003	-74	. 4928503	311.064411	. 0032148
5.25	2.2800460	190.566269	0.0052475	5.75	2.4971933	314.190660	0.0031828
. 25	. 2843890	192.481 491	. 0051953	. 76	- 5015362	317.348329	. 0031511
. 27	. 2887319	194.415963	. 0051436	77	. 5058792	320.537733	. 003 IIg8
. 28	. 2930749	196.369875	. 0050924	. 78	- 5102221	323.759190	.0030887
. 29	. 2974178	198.343426	. 0050418	. 79	-514 5651	327.013024	. 0030580
$5 \cdot 30$	2.3017608	200.336810	0.0049916	5.80	2.5189080	330.299560	0.0030276
. 31	. 3061037	202.350228	. 0049419	.81	. 5232509	333.619126	. 0029974
. 32	. 3104466	204.383882	. 0048928	. 82	- 5275939	336.972054	. 0029676
. 33	- 3147896	206.437974	. 004844 T	. 83	- 3319368	340.358679	. 0029381
. 34	-319 1325	208.512710	. 0047959	. 84	. 5362798	343.77934 I	. 0029088
5.35	2.3234755	210.608298	0.0047482	5.85	2.5406227	347.234 381	0.0028799
. 36	- 3278184	212.724946	. 0047009	. 86	. 5449657	350.724144	. 0028512
. 37	-332 I6I4	214.862858	. 0046541	. 87	- 5493086	354.248980	. 0028229
. 38	-336 5043	217.022275	. 0046078	. 88	- 5536516	357.809242	. 0027948
. 39	- 3408473	219.203386	. 0045620	. 89	- 5579945	361.405284	.002 7570
5.40	2.3451902	221.406416	0.0045166	5.90	2.5623374	$365.037{ }^{4} 468$	0.0027394
. 41	-349 533I	223.631588	. 0044716	. 91	. 5666804	368.706155	.002 7122
.42	- 3538761	225.879 I 22	. 0044271	. 92	. 5710233	372.411714	. 0026852
-43	- 3582190	228.149 245	. 004383 I	. 93	- 5753663	376.154514	. 0026585
. 44	-362 5620	230.442183	. 0043395	. 94	-579 7092	379.934930	. 0026320
5.45	2.3669049	232.758 I66	0.0042963	5.95	2.5840522	383.753339	0.0026058
. 46	. 3712479	235.097424	. 0042536	. 96	- 5883951	387.610124	. 0025799
. 47	- 3755908	237.460193	. 0042112	. 97	- 5927381	391.505671	$.0025542$
. 48	- 3799338	239.846707	.004 1693	. 98	. 5970810	395.440368	. 0025288
. 49	-384 2767	242.257207	.004 1278	. 99	. 6014239	399.414610	. 0025037
5.50	2.3886197	244.69r 932	0.0040858	6.00	2.6057669	403.428793	0.0024788
$\log _{e}\left(e^{x}\right)$	$\log _{10}\left(e^{u}\right)$	$e^{\text {a }}$	${ }^{-}$	$\log _{\mathrm{e}}\left(\mathrm{e}^{x}\right)$	$\log _{10}\left(e^{x}\right)$	$\mathrm{a}^{\text {n }}$	-

gmithsonian tables

The Exponential.

The numbers in square brackets denote the numbers of figures between the last figure given and the decimal point; for example, the first nine figures of e^{50} are 518470553 , and there are 13 additional figures before the decimal point is reached. The numbers in parentheses denote the numbers of ciphers between the decimal point and the first significant figure; for example, in $e^{-\infty 0}$ there are 21 ciphers between the decimal point and the figures 192874985 .

The Exponential.

"	$\log _{10}\left(\mathrm{e}^{\mathrm{u}}\right)$	${ }^{\text {ex }}$	e-n
51	22.14901 85771	Ifo 934 cos [14]	(22) 709547416
52	22.5833133590	383100800 [14]	(22) 2511027 ¢07
53	23.0170075409		(23) 950268005
54	23.1519020228	$\begin{array}{llll}283 & 075 & 330 & {[15]} \\ 769 & \text { c-8 } & 52 & {[15]}\end{array}$	(23) 353262857
55	$2{ }_{2} 2.3204909856$	209 I55 950 [10]	(24) 478889283
57	24.754, ${ }^{51} 5685$	558572000 [16]	(24) 175879220
58	25.18907 99504	$1545538544[17]$	(25) $647023 \quad 193$
59	$25.62337+3823$	$420121040[17]$	
60	26.0570689142 25.4919533951	$11+200$ 310 309 794 794 [18]	
62	25.92625 78780	843835657 [18]	(25) 118506485
63	27.3605523599	229378315 [19]	(27) 435951000
64	$27.7948+68418$	623514	(27) 160381089
65	28.22914 $28.663+3$ 8057	169 488 460 924 718 663	(28) 590009054 (28) 217052201
67	$28.603+3$ 29.0973 028875		(29) 798490425
68	29.5320247594	340427605 [21]	(29) 293748211
69	29.9663192513	925378 173 [21]	(29) 108053928
70	30.4005137332	25 I 543857 [22]	(30) 397544974
71	30.8349082151	683757123 [22]	(30) 146248623
72 73	$31.26920 ~ 26970$ $31.703+971789$	185 857 175 505 239 363 23$]$ $23]$	(3I) 538018616
73	31.70379 32.13779 16508	$\begin{array}{llll}\text { 137 } & 338 & 298 & {[24]}\end{array}$	(32) 728129018
75	32.5720861427	$373324200[24]$	(32) 267853696
75	$33.006388062+5$	IOT 480039 [25]	(33) 985415469
77	33.4106751056	$2758513+6$ [25]	(33) 362514002
78	33.8749695885	749841	(33) I33 351482
79	34.3092640704		(34) 490609173
80	34.7435585 .23 35.17785 30312		(34) 180485139
82	35.6121445161	409309696 [27]	(35) 244260074
83	36.0464419980		(36) 898582594
84	36.4807364799	302507732 [28]	(36) 330570063
85	36.9150309618	822301271 [28]	(35) 121 609930
86	37.31932 54437	223524650 [29]	(37) 447377931
87	37.78351 99256	607603023 [29]	(37) 164581143
83	38.2179144075	$165163625 \quad[30]$	(38) 605460190
89	38.6522088894	$448961282[30]$	(38) 222736356
90	39.0855033713	122040329 [31]	(39) 819401202
9 I	39.5207978532	331740 oro [31]	(39) 301440879
92	39.9550923351	901762841 [31]	(39) I10 893002
93	40.3893868170	245124554 [32]	(40) 407955867
94	40.8236812989	606317623 [32]	(40) 150078576
95	4 T .2579757808	1815123 908 [33]	(41) 552108228
95	41.6922702627	492345829 [33]	(41) 203109266
97	42.12656 47446	$\begin{array}{llll}133 & 833 & 472 & {[31]}\end{array}$	(42) 747197234
c8	42.5608592255	$3638797095[34]$	(42) 274878501
99	42.9951537084	$088003032[34]$	(42) IOT 122149
100	43.4294481503	258811714 [35]	(43) 372007598

The numbers in sauare brackets denote the numbers of figures between the last figure given and the decimal point; for example, the first nine figures of e^{50} are 518.470553 , and there are 13 additional figures before the decimal point is reached. The numbers in parentheses denote the numbers of ciphers between the decimal point and the first significant figure; for example, in e^{-50} there are 2I ciphers between the decimal point and the figures 192874985.

Auxiliary Table for Interpolation of $\log _{10}\left({ }^{\mathrm{u}}\right)$.
($\mathrm{p}=\mathrm{n} \times 43429,448 \mathrm{r} 9 . .$.

n	D	n	p	n	D	n	D	n	D
0.000	000	0.050	2171	0.100	4343	0.150	6514	0.200	8586
. 001	043	. 051	2215	. IOI	+385	. 151	6558	. 201	8729
. 002	087	. 052	2258	. 102	4430	. 152	6601	. 202	8773
.003	130	. 053	2302	. 103	4473	. 153	6645	. 203	8816
. 004	I74	. 054	2345	. 104	4517	-154	6688	. 204	8860
0.005	217	0.055	2389	0.105	4560	0.155	6732	0.205	8903
.006	261	. 056	2432	. 106	4604	. 156	6775	. 205	89.46
. 007	304	. 057	2475	. 107	4647	. 157	6818	. 207	8050
. 008	347	. 058	2519	. 108	4690	. 158	6862	. 208	co33
. 009	391	. 059	2562	. 109	4734	. 159	6905	. 209	9077
0.010	434	0.060	2606	0.110	4777	0.160	6949	0.210	9120
. 011	478	. 061	2649	. III	4821	. 161	6992	. 211	9164
. 012	521	. 062	2693	. 112	4864	. 162	7036	. 212	9207
. 013	565	.063	2736	. 113	4908	. 163	7079	. 213	9250
. 014	608	.064	2779	. 114	4951	. 164	7122	.2I4	9394
0.015	651	0.065	2823	0.115	4994	0.165	7166	0.215	9337
. 016	695	. 066	2866	. 116	5038	. 166	7209	.216	9381
. 017	738	. 057	2910	. 117	5081	. 167	7253	. 217	9424
. 018	782	. 068	2953	.118	5125	. 168	7296	. 218	9468
. 019	825	. 069	2997	. 119	5168	. 169	7340	. 219	9511
0.020	869	0.070	3040	0.120	5212	0.170	7383	0.220	9554
. 021	912	. 07 I	3083	. 121	5255	. 171	$7+26$. 221	95c8
. 022	955	. 072	3127	. 122	5298	. 172	7470	. 222	9641
. 023	999	. 073	3170	. 123	5312	. 173	7513	. 223	9685
. 024	1042	. 074	3214	. 124	5385	. 174	7557	. 224	9728
0.025	1086	0.075	3257	0.125	5429	0.175	7600	0.225	9772
. 0.26	1129	. 075	3301	. 126	5472	. 176	7544	. 223	9815
. 027	1173	. 077	3344	. 127	5516	. 177	7687	. 227	9858
. 028	1216	. 078	3387	. 128	5559	. 178	7730	. 228	9902
. 029	1259	. 079	343 I	. 129	5602	. 179	7774	. 229	9945
0.030	1303	0.080	3474	0.130	5646	0.180	7817	0.230	9989
. 031	1346	. 081	3518	. 131	5689	.181	7851	. 231	10032
. 032	1390	. 082	3561	. 132	5733	. 182	7904	. 232	10076
. 033	1433	. 083	3605	. 133	5776	.183	7948	.233	10119
. 034	1477	.084	3648	. 134	5820	.184	7991	. 234	10162
0.035	1520	0.085	3692	0.135	5863	0.185			10206
. 036	1563	. 086	3735	. 136	5906	. 186	8078	. 236	10249
. 037	1607	.087	3778	. 137	5950	. 187	8 I 2 I	. 237	10293
. 038	1650	. 088	3822	. 138	5993	. 188	8165	.238	10336
. 039	1694	. 089	3865	. 139	6037	. 189	8208	. 239	10380
0.040	1737	0.090	3909	0.140	6080	0. 190	8252	0.240	
. 0.41	1781	. 091	3952	. 141	6124	.191	8295	. 241	10466
. 042	1824	. 092	3996	. I42	6167	. 192	8338	. 242	10510
. 043	1867	. 093	4039	. 143	6210	. 193	8382	.243	10553
. 044	1911	. 094	4082	. 144	6254	. 194	8425	. 244	10597
0.045	1954	0.095	4126		6297				
. 046	1998	. 096	2169	. 146	6341	. 196	8512	. 246	10684
. 047	2041	. 097	4213	. 147	6384	. 197	8556	. 247	1072
.0.48	2085	.098	4256	. 148	6428	. 198	8599	.248	10771
. 049	2128	. 099	4300	. 149	6471	. 199	8642	. 249	10814
0.050	2171	0.100	4343	0.150	6514	0.200	8686	0.250	10857
n	D	n	D	n	D	n	D	n	-

Auxiliary Table for Interpolation of $\log _{10}\left(e^{u}\right)$.
($\mathrm{p}=\mathrm{n} \times 43429448 \mathrm{Ig}$. . .)

n	D	n	D	n	D	n	D	n	D
0.250	10857	0.300	13029	0.350	15200	0.400	17372	0.450	19543
. 251	10901	. 301	13072	. 351	152.14	. 401	17415	-451	19587
. 252	10914	. 302	13116	- 352	15287	. 402	17.459	- 452	19630
. 253	10988	. 303	13159	- 353	1533 I	. 403	17502	-453	19674
. 254	I103I	. 304	13203	-354	15334	. 404	I7545	-454	19717
0.255	11075	0.305	13246	0.355	15417	0.405	17589	0.455	19760
.256	IIII8	. 306	13289	. 356	15461	. 406	17632	. 456	19804
.257	III6I	. 307	13333	. 357	15504	. 407	17676	. 457	19847
. 258	II205	. 308	13376	- 358	${ }^{15548}$. 408	17719	-458	19891
. 259	11248	. 309	13420	. 359	I559I	. 409	17763	-459	19934
0.260	I1292	0.310	13463	0.360	15635	0.410	17806	0.460	19978
. 261	II335	. 311	13507	. 361	15678	. 411	17850	. 461	20021
. 252	11379	. 312	13550	-362	15721	. 412	17893	. 462	20064
. 263	11422	. 313	13593	-363	15765	.413	17936	. 463	20108
. 26.4	II465	-314	13637	-364	15808	. 414	17980	. 464	20151
0.265	II509	0.315	13680	.0.365	15852	0.415	18023	0.465	
. 266	11552	. 316	13724	. 356	15895	. 416	18067	. 466	20238
. 267	11596	. 317	13767	. 367	15939	-417	18ifo	-467	20282
. 268	11639	-318	I38II	- 368	15982	.418	18154	. 468	20325
.269	11683	. 319	13854	. 369	16025	.419	18197	-469	20368
0.270	11726	0.320	13897	0.370	16059	0.420	18240	0.470	20412
. 271	11769	. 321	13941	. 371	16112	. 421	18284	-471	20455
. 272	11813	. 322	${ }^{1} 398.4$	- 372	16156	. 422	18327	-472	20499
.273	11856	- 323	14028	-373	16199	. 423	18371	. 473	20542
. 274	11900	- 324	I407I	. 374	16243	. 424	18414	. 474	20586
0.275	I 1943	0.325	14115	0.375	16286	0.425	18458	0.475	20629
. 275	11987	. 326	I+158	. 375	16329	. 426	18501	.476	20672
. 277	12030	- 327	I. 4201	. 377	16373	. 427	18544	-477	20716
.278	12073	. 328	I 4245	. 378	16416	. 428	18588	-478	20759
. 279	12117	-329	14288	- 379	16.460	.429	1863I	-479	20803
0.280	12160	0.330	14332	0.380	16503	0.430	18675	0.480	20846
. 281	1220.4	. 331	14375	. 381	16547	.431	18718	-48I	20890
. 282	12247	- 332	1449	- 382	16590	. 432	18762	. 482	20933
.283	12291	. 333	14.62	. 383	16633	. 433	18805	. 483	20976
. 28.4	12334	-334	I4505	. 384	16677	. 434	I8848	-484	21020
0.285	12377	0.335	14549	0.385	16720	0.435	18892		21063
. 285	12427	. 336	14592	. 386	16764	. 436	18935	. 486	21107
. 287	12464	. 337	14636	. 387	16807	. 437	18979	. 487	21150
. 288	12508	- 338	14679	. 388	16851	. 438	19022	. 488	21194
. 289	12551	-339	14723	. 389	16894	. 439	19066	. 489	21237
0.290	12595	0.340	14766	0.390	16937	0.440	19109	0.490	21280
. 291	12638	. 341	14809	. 391	16981	. 441	19152	. 491	21324
. 292	12681	-342	14853	- 392	17024	.442	19196	-493	21367
. 293	12725	-343	I4896	- 393	17068	. 443	19239	. 493	21411
. 294	12768	-344	14940	-394	IVIII	. 444	19283	-494	21454
0.295	12812	0.345	${ }_{14983}$	0.395	17155	0.445	19326	0.495	21498
. 296	12855	- 346	15027	. 396	17198	. 446	19370	. 496	21541
. 297	12899	-347	15070	- 397	17241	-447	19413	-497	21584
. 298	12942	-348	${ }_{5} 5113$	- 398	17285	. 448	19456	. 498	21628
. 299	12985	-349	15157	- 399	17328	.449	19500	-499	21671
0.300	13029	0.350	15200	0.400	17372	0.450	19543	0.500	21715
\square	D	n	D	n	D	n	p	n	D

TABLE V

NATURAL LOGARITHMS

Note.-In Table V, for u greater than I58, linear interpolation of $\log _{\mathrm{e}} u$ suffices to give a value whose error is not greater than one unit in the last place.

Natural Logarithms.

u	$\log _{\mathrm{e}} \mathrm{H}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	logeu	$\omega \mathrm{Fo}^{\prime}$	u	$\log _{\text {e }} \mathrm{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	4	$\log _{\text {el }} 4$	$\omega \mathrm{F}_{0}{ }^{\prime}$
0	∞	∞	50	3.91202	2000	100	4.60517	1000	150	5.01064	667
I	0.00000	100000	51	3.93183	1961	101	4.61512	990	I5I	5.01728	662
2	0.69315	50000	52	3.95124	1923	102	$4.62+97$	980	152	5.02388	658
3	1.0983i	33333	53	3.97029	1887	103	4.63473	971	153	5.03044	654
4	1. 38629	25000	54	3.98398	1852	104	4.64439	962	154	5.03695	649
	1. 6094	20000	55	4.00733	I8I8	105	4.65396	952	155	5.04343	645
6	1.79176	16667	56	4.02535	1786	105	$4.663+4$	943	156	5.04986	641
7	1. 94591	$1+285$	57	4.04305	1754	107	4.67283	935	157	3.05625	637
8	$2.079+4$	12500	58	$4.060 \div 4$	1724	108	4.68213	926	158	5.06260	633
9	2.19722	IIIII	59	4.07754	1695	109	4.69135	917	159	5.06890	629
10	2.30259	10000	60	4.09434	1667	IIO	4.70048	909	160	5.07517	625
II	2.39790	cog I	61	4.11087	1639	III	4.70953	901	161	5.08140	621
12	2.48491	8333	62	4.12713	1613	II2	4.71850	893	162	5.08760	617
13	2.55495	7692	63	4.14313	1587	113	4.72739	885	163	5.09375	6 I 3
14	2.63906	714	64	4.15888	I562	II4	4.73620	877	16.4	5.09987	610
15	2.70805	6667	65	4.17439	1538	II5	4.74493	870	165	5.10595	606
16	2.77259	6250	66	4. 18965	1515	116	4.75359	862	166	5. 11199	602
17	2.83321	5882	67	4.20 .469	1493	117	4.76217	855	167	5.11799	599
18	2.89037	5556	68	4.21951	I.471	118	4.77058	847	168	5.12396	595
19	2.94444	5263	69	4.234 II	1449	119	4.77912	840	169	5.12990	592
20	2.99573	5000	70	4.24850	1429	120	4.78749	833	170	5.13580	588
21	3.04453	4762	71	4.26258	1408	121	4.79579	826	I71	5.14166	585
22	3.09104	4545	72	4.27657	1389	122	4.80402	820	172	5. 14749	58 I
23	3.135-19	4348	73	4.200.6	1370	123	4.81218	813	173	5.15329	578
24	-3.17805	4167	74	4.30407	I35I	124	4.82028	806	I74	5.15906	575
25	3.21888	4000	75	4.31749	1333	125	4.82831	800	175	5.16479	571
26	3.25810	3846	76	4.33073	1316	126	4.83528	794	176	5.17048	568
27	3.29584	3704	77	4.3438 I	1299	127	4.84419	787	177	5.17615	565
28	3.33220	3571	78	4.35671	1282	128	4.85203	781	178	5.18178	562
29	3.36730	3448	79	$4.369+5$	1266	129	4.85981	775	I79	5.18739	559
30	3.40120	3333	80	$4 \cdot 38203$	1250	130	4.86753	769	180	5. 19296	556
31	3.43399	3226	81	4.39445	I235	131	4.87520	763	181	5.19850	552
32	3.46574	3125	82	4.40572	1220	132	4.83280	758	182	5.20401	549
33	3.49651	3030	83	4.4183_{4}	1205	${ }^{133}$	4.89035	752	183	5.20949	546
34	$3 \cdot 52636$	2941	84	$4 \cdot 43082$	1190	134	4.8978 .4	746	4	5.21494	543
35	$3 \cdot 55535$	2857	85	4.44265	1176	135	4.90527	74 I	185	5.22036	541
36	3.58352	2778	85	$4 \cdot+5435$	1163	135	4.91265	735	185	5.22575	5.38
37	3.61092	2703	87	4.46591	II49	137	4.91998	730	187	5.23111	535
38	3.63759	2632	88	4.47734	II36	138	4.92725	725	188	5.23644	532
39	3.66356	2564	89	4.48864	II24	139	4.93447	719	189	5.24175	529
40	3.68888	2500	90	4.4998 I	IIII	I 40	4.94164	714	190	5.24702	526
4 I	3.71357	2439	91	4.51085	1099	141	4.94876	709	191	5.25227	524
42	3.73767	2381	92	4.52179	1087	142	4.95583	704	192	5.35750	521
43	3.76120	2326	93	4.53250	I075	I43	4.96284 4.96981	699 694	193	5.26269 5.26786	${ }_{5}^{518}$
44	3.78419	2273	94	4.543 9	1064	144	4.96981	694	194	$5 \cdot 20780$	515
45	3.806665	2222	95	4.55388	1053	145	4.97673	690	IS5	5.27300	513
46	3.82854	2174	96	4.56435	1042	146	4.98361	685	196	5.2781 I	510
47	3.85015	2128	97	4.57471	1031	1.47	4.99043	680	197	5.28320	508
48	3.87120	2083	98	4.58497 4.59512	1020	148	$4.9972 I$ 5.00395	676 671	198	5.28827 5.29330	505 503
49 50	3.89182 3.91202	2041 2000	99 100	4.59512 4.60517	1010 1000	149 I50	5.00395 5.01064	671 667	199 200	5.29330 5.29832	503 500
e^{x}	x	e^{-x}	e^{x}	x			x	e^{-}	e^{x}	x	e^{-x}

Natural Logarithms.

u.	$\log _{\text {el }} \mathrm{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\text {el }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathrm{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathrm{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
200	5.29832	500	250	5.52146	400	300	5.70378	333	350	5.85793	286
201	5.30330	498	251	5.52545	358	301	5.70711	332	351	5.86079	285
202	$5 \cdot 30827$	495	252	5.52943	397	302	5.71043	331	352	5.85363	284
203	5.31321	493	253	5.53339	395	303	5.71373	330	353	5.86647	283
204	5.31812	490	254	5.53733	394	304	5.71703	329	354	5.86930	282
205	5.32301	488	255	5.54126	392	305	5.7203 I	328	355	5.87212	282
206	5.32788	485	256	5.54518	391	306	5.72359	327	356	5.87493	281
207	$5 \cdot 33272$	483	257	5.54908	389	307	5.72685	326	357	5.87774	280
208	5.33754	48 I	258	5.55296	388	308	5.73010	325	358	5.88053	279
209	$5 \cdot 34233$	478	259	$5 \cdot 55683$	386	309	5.73334	324	359	5.88332	279
210	5.34711	476	260	$5 \cdot 56068$	385	310	5.73657	323	360	5.88510	278
211	5.35186	474	261	$5 \cdot 56452$	38.3	311	5.73979	322	361	5.88888	277
212	5.35659	472	262	5.56834	382	312	$5.7+300$	321	362	5.89164	226
213	5.36129	469	253	5.57215	380	313	5.74620	319	363	5.89440	275
214	5.35598	467	264	5.57595	379	3 I 4	5.74939	318	364	5.89715	275
215	5.37064	465	265	$5 \cdot 57973$	377	315	5.75257	317	365	5.85990	274
216	$5 \cdot 37528$	463	265	5.58350	376	316	5.75574	316	366	5.90253	273
217	5:37990	461	267	$5 \cdot 58725$	375	317	5.75890	315	367	5.90536	272
218	$5 \cdot 38450$	459	268	5.59099	373	318	5.76205	3 I 4	368	5.90808	272
219	5.38907	457	269	5.59471	372	319	5.76519	313	369	5.91080	271
220	5.39363	455	270	5.59842	370	320	5.76832	312	370	5.91350	270
221	5.39816	452	271	5.60212	369	321	5.77144	312	371	5.91630	270
222	5.40268	450	272	5.60580	358	322	5.77455	3 II	372	5.91889	259
223	5.40717	448	273	5.60947	366	323	5.77755	310	373	5.92158	268
224	5.41165	446	274	5.61313	365	324	5.78074	309	374	5.92426	267
225	5.41610	444	275	5.61677	364	325	5.78383	308	375	5.92693	267
225	5.42053	442	276	5.62040	362	326	5.78690	307	376	5.92959	266
227	5.42495	441	277	5.62402	361	327	5.78996	305	377	5.93225	265
228	5.42935	439	278	5.62762	360	328	5.79301	305	378	5.93489	265
229	5.43372	437	279	5.63121	358	329	5.79606	304	379	5.93754	264
230	5.43808	435	280	5.63479	357	330	5.79909	303	380	5.94017	253
231	$5 \cdot 44242$	433	281	5.63835	356	331	5.80212	302	381	5.94280	252
232	5.44674	431	282	5.64191	355	332	5.80513	301	382	5.94542	262
233	5.45104	429	283	5.64545	353	333	5.80814	300	383	5.94803	261
234	5.45532	427	284	5.64897	352	334	5.81114	299	384	5.95064	260
235	5.45959	426	285	5.65249	351	335	5.81413	299	385	5.95324	260
235	5.46383	424	286	5.65599	350	336	5.81711	298	386	5.95584	259
237	5.46806	422	287	5.65948	318	337	5.82008	297	387 388	5.95842	258
238	5.47227	420	288	5.66296	347	338	5.82305	296	388	5.96101	258
239	5.47646	418	289	5.66643	346	339	5.82600	295	389	5.96358	257
240	5.48064	417	290	5.66988	345	340	5.82895	294	390	5.96615	256
241	5:48480	415	291	5.67332	344	341	5.83188	293	391	5.96871	256
242	5.48894	413	292	5.67675	342	342	5.8348 I	292	392	5.97126	255
243	5.49306	412	293	5.68017	34 I	343	5.83773	292	393	5.97381	254
244	$5 \cdot 49717$	410	294	5.68358	340	344	5.84064	291	394	5.97035	254
245	5.50126	408	295	5.68698	339	345	5.84354	290	395	5.97889	253
246	$5 \cdot 50533$	407	296	5.69036	338	346	5.84644	289	396	5.98141	253
247	5.50939	405	297	5.69373	337	347	5.84932	288	397	5.98394	252
248	5.51343	403	298	5.69709	336	348	5.85220 5.85507	287	398	5.98645 5.98806	251
249	$5 \cdot 51745$	402	299	5.70044	334	349	5.85507	287	399	5.98896	251
250	5.52146	400	300	5.70378	333	350	5.85793	286	400	5.99146	250
e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}

Natural Logarithms.

u	logel	$\omega \mathrm{F}_{0}{ }^{\prime}$	4	logelt	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\mathrm{log}_{\mathrm{e}} \mathrm{H}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	4	$\log _{\text {el }}$	$\omega \mathrm{Fo}^{\prime}$
400	5.99146	250	450	6.10925	222	500	6.2146 I	200	550	6.30992	182
401	5.99396	249	451	6.11147	222	501	6.21661	200	551	6.31173	I8I
402	5.99645	249	452	6.11368	221	502	6.21850	199	552	6.31355	18 I
403	5.99894	248	453	6.11589	221	503	6.22059	199	553	6.31536	I8I
404	6.00141	248	454	6.11810	220	50.4	6.22258	198	554	6.31716	18 I
405	6.00389	247	455	6.12030	220	505	6.22456	198	555	6.31897	180
405	6.00635	246	456	6.122 .49	219	506	6.22654	198	556	6.32077	180
407	6.0088 I	246	457	6.12468	219	507	6.22851	197	557	6.32257	180
408	6.01127	245	458	6.1258%	218	508	6.23048	197	558	6. 32436	179
409	6.01372	244	459	6.12905	218	509	¢. 23245	196	559	6.32615	179
410	6.01616	244	460	6.13123	217	510	6.23441	196	560	6.3279 \ddagger	179
4 II	6.01859	243	46 I	6.13340	217	511	6.23637	196	561	$6 \cdot 32972$	178
412	6.02102	243	462	6.13555	215	512	6.23832	195	562	6.33150	178
413	6.02345	242	463	6.13773	216	513	6.24028	195	563	6.33328	178
414	6.02587	242	464	6.13988	216	5 I 4	6.24222	195	564	6.33505	177
415	6.02828	241	465	6. 14204	215	515	6.24417	194	565	6.33683	177
416	6.03069	240	466	6.14419	215	516	6.246II	194	566	6.33859	177
417	6.03309	240	467	6.14633	214	517	6.24804	193	567	6.34036	175
418	6.03548	239	468	6.14847	214	518	6.24998	193	568	6.34212	176
419	6.03787	239	469	6.15060	213	519	6.25190	193	569	6.34388	176
420	6.04025	238	470	6. 15273	213	520	6.25383	192	570	6.34564	175
42 I	6.04263	238	47 I	6.15486	212	52 I	6.25375	192	571	6.34739	175
422	6.04501	237	472	6. 15698	212	522	6.25757	192	572	6.34914	175
423	6.04737	236	473	6.15910	2 II	523	6.25958	191	573	6.35089	175
424	6.04973	236	474	6.16121	2 II	524	6.26149	191	574	6.35253	174
425	6.05209	235	475	6.16331	2 II	525	6.25340	190	575	6.35437	174
426	6.05444	235	476	6.16542	210	526	6.26530	190	576	6.35611	174
427	6.05678	234	477	6.16752	210	527	6.26720	190	577	6.35784	173
428	6.05912	234	478	6.16961	209	528	6.26910	189	578	6.35957 .	173
429	6.06146	233	479	6.17170	209	529	6.27099	189	579	6.36130	173
430	6.06379	233	480	6.17379	208	530	6.27288	189	580	6.36303	172
43 I	6.066 II	232	481	6.17587	208	531	6.27476	188	58 I	6.36475	172
432	6.06843	23 I	482	6.17794	207	532	6.27664	188	582	6.36647	172
433	6.07074	231	483	6.18002	207	533	6.27852	188	583	6.36819	172
434	6.07304	230	484	6.18208	207	534	6.28040	187	584	6.36990	171
435	6.07535	230	485	6.18415	206	535	6.28227	187	585	6.37161	17 I
436	6.07764	229	486	6.18521	206	536	6.28413	187	586	6.37332	171
437	6.07993	229	487	6.18826	205	537	6.28500	185	587	6.37502	170
438	6.08222	228	488	6.19032	205	538	6. 28786	186	588	6.37673	170
439	6.08450	228	489	6.15236	204	539	6.28972	186	589	6.37843	170
440	6.08677	227	490	$6.194{ }^{1}$	204	540	6.29157	185	590	6.38012	169
441	6.08904	227	491	6.19544	204	54 T	6.29342	185	591	6.38182	169
442	6.09131	226	492	6.19848	203	542	6.29527	185	592	6.38351	169
443	6.09357	226	493	6.20051	203	543	6.29711	184	593	6.38519	I69
444	6.09582	225	494	6.20254	202	544	6.29895	184	594	t. 38588	I68
445	6.09807	225		6.20456	202	545	6.30079	183	595	6.38856	168
446	6.10032	224	496	6.20658	202	546	6.30262	183	596	6.39024	168
447	6. 10256	224	497	6.20859	201	547	6.30445	183	597	6.39192	168
448	6.10479	223	498	6.21060	201	548	6.30628	182	598	6.39359	167
449	6.10702	223	499	6.2126 I	200	549	6.30810	182	599	6.39526	I67
450	6.10925	222	500	6.2146 I	200	550	6.30992	182	600	6.39693	167
e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	e^{-x}	e^{x}	x	0^{-x}

Natural Logarithms.

u	$\log _{\text {el }} \mathbf{L}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	4	$\log _{\text {el }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	${ }^{\text {logel }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	и	lodeu	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
600	6.39693	167	650	6.47697	154	700	6.55108	143	750	6.62007	133
601	6.39859	166	651	6.47851	I54	701	6.55251	143	751	6.62141	133
602	6.40026	166	652	6.48004	153	702	6.55393	142	752	6.62274	133
603	6.40192	166	653	6.48158	153	703	6.55536	142	753	6.62407	133
604	6.40357	I66	654	6.48311	153	704	6.55678	I 42	754	6.62539	133
605	6.40523	165	655	6.48464	153	705	6.55820	142	755	6.62672	132
606	6.40688	165	656	6.48616	152	705	6.55962	142	756	6.62804	132
607	6.40853	165	657	6.48768	152	707	6.56103	If1	757	6.62936	132
608	6.41017	164	658	6.48920	152	708	6.56244	141	758	6.63068	132
609	6.41182	164	659	6.49072	152	709	6.56386	I4I	759	6.63200	132
610	6.41346	164	660	6.49224	152	710	6.56526	I4I	760	6.63332	132
6 II	6.41510	164	661	6.49375	151	711	6.56667	I4I	761	6.63463	I3I
612	6.41673	163	662	6.49527	15 I	712	6.56808	1.10	762	6.63595	I31
613	6.41836	163	663	6.49577	151	713	6.56948	I 40	763	6.63726	131
614	6.41999	163	664	6.19828	151	714	6.57088	140	764	6.63857	I3I
615	6.42162	163	665	6.49979	150	715	6.57228	140	765	6.63988	I3I
616	6.42325	162	666	6.50129	150	716	6.57368	140	766	6.64118	I3I
617	6.42487	162	667	6.50279	150	717	6.57508	139	767	6.64249	130
618	6.42649	162	668	6.50429	150	718	6.57647	139	768	6.64379	130
619	6.428 II	162	669	6.50578	149	719	6.57786	139	769	6.64509	130
620	6.42972	161	670	6.50728	149	720	6.57925	139	770	6.64639	130
621	6.43133	I6I	671	6.50877	149	721	6.58064	139	771	6.64769	130
622	6.43294	161	672	6.51026	149	722	6.58203	139	772	6.64898	130
623	6.43455	161	673	6.51175	149	723	6.58341	138	773	6.65028	129
624	6.43615	160	674	6.51323	148	724	6.58779	138	774	6.65157	129
625	6.43775	160	675	6.51471	148	725	6.58617	138	775	6.65286	129
626	6.43935	160	676	6.51619	148	726	6.58755	138	776	6.65415	129
627	6.44095	159	677	6.51767	148	727	6.58893	138	777	6.65544	129
628	6.44254	159	678	6.51915	147	728	6.59030	137	778	6.65673	129
629	6.41413	159	679	6.52052	147	729	6.59167	137	779	6.65801	128
630	6.44572	159	680	6.52209	147	730	6.59304	137	780	6.65929	128
631	6.44731	158	681	6.52356	147	731	6.59441	137	781	6.66058	128
632	6.44889	158	682	6.52503	147	732	6.59578	137	782	6.66185	128
633	6.45047	158	683	6.52649	146	733	6.59715	136	783	6.66313	128
634	6.45205	158	684	6.52796	146	734	6.5985 I	136	784	6.6644 I	128
635	6.45362	157	685	6.52942	146	735	6.59987	136	785	6.66568	127
636	6.45520	157	686	6.53088	146	736	6.60123	136	786	6.66696	127
637	6.45677	157	687	6.53233	146	737	6.60259	136	787	6.66823	127
638	6.45834	157	688	6.53379	145	738	6.60394	136	788	6.66950	127
639	6.45990	156	689	6.53524	145	739	6.60530	I35	789	6.67077	127
640	6.46147	156	690	6.53669	145	740	6.60665	135	790	6.67203	127
641	6.46303	156	691	6.53814	145	741	6.60800	135	791	6.67330	126
6.42	6.46459	156	692	6.53959	145	742	6.60935	135	792	6.67456	126
643	6.46614	156	693	6.54103	144	743	6.61070	135	793	6.67582	126
644	6.46770	155	694	6.54247	144	744	6.61204	134	794	6.67708	126
645	6.46925	155	695	6.54391	144	745	6.61338	134	795	6.67834	126
646	6.47080	155	696	6.54535	144	746	6.61473	134	796	6.67960	126
647	6.47235	155	697	6.54679	143	747	6.61607	134	797	6.68085	125
648	6.47389	154	698	6.54822	143	748	6.61740	134	798	6.68211	125
649	6.47543	154	699	6.54965	143	749	6.61874	134	799	6.68336	125
650	6.47697	154	700	6.55108	143	750	6.62007	133	800	6.6846r	125
e^{x}	x	0^{-x}	e^{x}	x	0^{-x}	e^{x}	x	e^{-x}	0^{x}	x	e^{-x}

Natural Logarithms.

U	logel	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\text {el }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\log _{\mathrm{e}} \mathrm{U}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	$\mathrm{log}_{\mathrm{e}} \mathrm{L}$	$\omega \mathrm{F}_{0}{ }^{\prime}$
800	$6.68{ }_{4} 6$ I	125	850	6.74524	118	900	6.80239	III	950	6.85546	105
801	6.68585	125	851	6.74641	118	901	6.80351	III	951	6.85751	105
802	6.68711	125	852	6.74753	117	902	6.8345	III	952	6.85857	105
803	6.68835	125	853	6.74876	117	903	6.805\%2	III	953	6.85901	105
80.4	6.68960	12.4	854	6.74993	117	904	6.80683	III	954	6.85066	105
805	6.6908_{4}	124	855	6.75110	II\%	905	6.83793	110	955	6.85 I 7 I	105
806	6.69208	124	855	6.75227	117	906	6.80904	110	956	6.85276	105
807	6.69332	124	857	6.75344	117	907	$6.810 \mathrm{I}_{4}$	110	957	6.85380	104
808	$6.69+56$	124	858	6.75460	117	903	6.81124	110	958	6.85185	104
809	6.69580	124	859	6.75577	116	909	6.81235	IIO	959	6.86589	104
810	6.69703	123	860	6.75693	116	910	$6.813+4$	110	960	6.85693	104
8 II	6.69827	123	851	6.75809	116	9 II	6.81454	110	961	6.86797	104
812	6.65950	123	862	6.75926	116	912	6.81564	110	952	6.8 Ścoi	104
813	6.70073	123	863	6.76041	II6	913	6.81674	110	963	6.87005	104
814	6.70196	123	864	6.75157	II6	914	6.81783	109	964	6.87109	104
815	6.70319	123	865	6.76273	II6	915	6.81892	109	965	6.87213	104
816	6.70441	123	856	6.76388	II5	916	6.82002	109	965	6.87316	104
817	6.70564	122	857	6.76504	II5	917	6.82III	109	967	$6.87+20$	103
818	6.70686	122	868	6.76619	I15	918	6.82230	109	968	6.87523	103
819	6.70808	122	869	6.76734	II5	919	6.82329	109	969	6.87526	103
820	6.70930	122	870	6.76849	I15	920	6.82	109	970	6.87730	103
821	6.71052	122	871	6.76961	II5	921	6.82546	109	971	6.87333	103
822	6.71174	122	872	6.77079	115	922	6.82555	108	972	6.87936	103
823	6.71296	122	873	6.77194	115	923	6.82763	108	973	6.88038	103
824	6.71417	121	874	6.77308	II4	924	6.82871	108	974	6.83I. 41	103
825	6.71538	I2I	875	$6.77+22$	II4	925	6.82979	108	975	6.882 .4	103
826	6.71659	I2I	875	6.77537	II4	926	6.83087	108	975	6.88346	102
827	6.71780	121	877	6.77651	II4	927	6.83195	108	977	6.88449	102
823	6.71901	121	878	6.77755	II4	928	6.83303	108	978	6.88551	102
829	6.72022	12I	879	6.77878	II4	929	6.834 II	108	979	6.88653	102
830	6.72143	120	880	6.77992	II4	930	6.83518	108	980	6.88755	102
831	6.72263	120	881	6.78106	IIt	931	6.83626	107	981	6.88357	102
832	6.72383	120	882	6.78219	II3	932	6.83733	107	982	6.88959	102
833	6.72503	120	883	6.78333	113	933	6.83841	107	983	6.8906 I	102
834	6.72623	120	884	6.78446	II3	934	6.83948	107	984	6.89163	102
835	6.72743	12	885	6.78559	II3	935	6.84055	107	985	6.89264	102
835	6.72863	120	885	6. 78572	II3	935	6.84162	107	985	6.89366	IOI
837	6.72982	119	887	6. 78784	II3	937	6.84268	107	987	6.89467	101
838	6.73102	119	883	6.78897	113	938	6.84375	107	988	6.89568	IOI
839	6.73221	II9	889	6.79010	112	939	6.84482	106	987	6.89669	IOI
840	6.73340	119	890	6.79122	112	940	6.84588	106	990	6.89770	IOI
841	6.73459	119	891	6.79234	II2	941	6.84694	106	591	6.89871	101
842	6.73578	119	892	6.79347	112	942	6.84801	106	992	6.85972	I
813	6.73697	119	893	6.79459	112	943	6.84907	106	993	6.90073	IOI
844	6.73815	$1{ }^{18}$	894	6.79571	112	944	6.85013	106	994	6.90174	IOI
845	6.73934	118	895	6.79682	II2	945	6.85118	106	995	6.90274	IOI
846	6.74052	118	896	6.79794	112	9.46	6.85224	106	996	6.90375	100
8.77	6.74170	118	897	6.79906	III	947	6.85330	106	997	6.90475	100
848	6.74288	118	898	6.80017	III	948	6.85435	105	998	6.90575	100
849	6.74406	118	899	6.80128	III	949	6.8554 I	105	999	6.90675	100
850	6.74524	II8	900	6.80239	III	950	6.85646	105	1000	6.90776	100
0^{x}	x	e^{-x}	e^{x}	x	$\mathrm{e}^{-\mathrm{x}}$	$\mathrm{e}^{\text {x }}$	x	e^{-x}	e^{x}	x	e^{-x}

Natural Logarithms.

4	Logeu	4	Lodel	4	$\log _{\mathrm{e}} \mathrm{L}$	u	LogeU	4	Logel
1000	6.90776	1351	7.21598	1721	7.45066	2III	7.65492	2503	7.82525
1009	6.91672	1367	7.22037	1723	7.45182	2113	7.65586	2521	7.83241
'IOI3	6.92067	1373	7.22475	1733	7.45761	12129	7.66341	2531	7.83637
1019	6.922558	1.381	7.23056	I741	7.46221	21311	7.56435	2539	7.83953
102I	6.92854	I399	7.24351	1747	$7 \cdot 46566$	2137	7.66716	2543	7.84110
IO3I	6.93828	I409	7.25054	1753	$7 \cdot 46908$	2141	7.66003	25.59	7.84346
1033	6.94022	I 123	7.26052	1759	7.47250	2143	7.66096	2551	$7.8+124$
1039	6.94501	1427	$7.2 j 333$	1777	7.48268	2153	$7.67+62$	2557	7.84659
1049	6.95559	1429	7.25473	1783	7.48605	2161	7.67833	2579	7.85516
1051	6.95750	I433	7.26753	1787	7.48829	2179	7.68562	2591	7.85980
106I	6.96597	I439	7.27170	r789	7.48941	2203	7.69758	2593	7.86057
1063	6.96885	I447	7.27725	I80I	7.49610	2207	7.695,39	2609	7.86672
1069	$6.97+48$	I 4515	7.28001	I8II	7.50163	2213	7.70210	2617	7.85978
1087	6.99118	1.453	7.28139	1823	7.50824	2221	7.70571	2521	7.87131
IogI	6.99485	1459	7.28551	183 I	7.51262	2237	7.71289	2633	7.87588
1093	6.99568	1471	7.29370	1847	7.52132	2239	7.71378	2647	7.88 I 18
1097	7.00033	148 I	7.30047	1861	7.52887	2243	7.71537	3657	7.88495
1103	7.00579	1483	7.30182	1857	7.53209	2251	7.71913	2659	7.88371
1109	7.01121	1487	$7 \cdot 30452$	1871	7.53423	2257	7.72621	2663	7.88721
1117	7.01840	I489	7.30586	1873	7.53530	2269	7.72709	2671	7.89021
1123	7.02376	I493	7.30854	1877	7.53743	2273	7.72886	2677	7.89245
1129	7.02909	I499	7.31255	1879	7.53849	2281	7.73237	2683	7.89469
1151	7.04839	I5II	7.32053	1889	7.54380	2.287	7.73500	2687	7.89518
1153	7.05012	1523	7.32844	1901	7.55014	2293	7.73762	2689	7.89592
1163	7.05876	I531	7.33368	1907	7.55329	2297	7.73936	2693	7.89841
II7I	7.06561	1543	$7 \cdot 34148$	1913	7.55543	2309	7.74457	2699	7.90064
IISI	7.0741 .2	I.549	7.34536	1931	7.56579	2311	7.745+1	2707	7.90360
1187	7.07918	${ }^{1} 553$	7.34794	1933	7.56883	2333	7.75491	2711	7.90507
II93	7.08423	I559	7.35180	1949	7.57507	2339	7.757 .48	2713	7.90581
1201	7.09091	1567	$7 \cdot 35692$	1951	7.57610	2341	7.75833	2719	7.90802
1213	7. 10085	1571	$7 \cdot 35947$	1973	7.58731	2347	7.75089	2729	7.9 HI 69
1217	7.10414	1579	7.36455	1979	7.59035	2351	7.75260	2731	7.91242
1223	7. 10906	1583	7.36708	1987	7.59438	2357	7.76514	2741	7.91608
1239	7.11396	1597	7.37588	1993	7.59740	2371	7.77107	2749	7.91899
1231	7.11558	1601	7.37838	1997	7.59910	2377	7.77359	2753	7.92045
1237	7.12044	1607	$7 \cdot 38212$	1999	7.60040	2381	7.77528	2767	7.92552
1249	7.13010	1609	7.38337	2003	7.60240	2383	7.77012	2777	7.92913
1259	7.13807	1613	$7 \cdot 38585$	2011	7.60539	2389	7.77853	2789	7.93344
1277	7.15237	1619	7.38956	2017	7.60937	2393	7.78030	2791	7.93416
1279	7.15383	1621	$7 \cdot 39080$	2027	7.61431	2399	7.78281	2797	7.93630
1383	7.15696	1627	7.39449	2029	7.61530	2411	7.78780	280 I	7.93773
1289	7.16162	1637	7.40062	2039	7.63021	2417	7.79028	2803	7.93845
1291	7.16317	1657	7.41276	2053	7.62706	2423	7.79276	2819	7.94414
1297	7.16781	1663	7.41638	2063	7.63192	2437	7.75852	2833	7.94909
1301	7.17089	1667	$7 \cdot 41878$	2069	7.63482	2441	7.80016	2837	7.95050
1303	7.17.242	1669	7.41998	2081	7.64060	2447	7.80262	2813	7.95262
1307	7.17549	1693	$7 \cdot 43426$	2083	7.64156	2459	7.80751	2851	7.95543
1319	7.18463	1697	7.43662	2087	7.64348	2467	7.81076	2857	7.95753
1321	7.18514	1699	7.43780	2089	7.64444	2473	7.81319	2861	7.95893
1327	7.19068	I709	$7 \cdot 44366$	2099	7.64922	2477	7.81480	2879	7.96520
e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	\times

Natural Logarithms.

u	Logel $^{\text {l }}$	u	Logel $^{\text {u }}$	${ }^{\prime}$	$\mathrm{Log}_{\mathrm{t}} \mathbf{4}$	4	Logell	«	${ }_{\text {Logel }}$
2887	7.96797	3323	8. 10862	3709	8.21852	4129	8.32579	4561	8.42535
2897	7.97143	3329	8.11043	3719	8.22121	4133	8.32676	4567	8.42661
2903	7.97350	3331	8.11103	3727	8.22336	4139	8.3282I	4583	8.4301 I
2909	7.97556	3343	8.11462	3733	8.22497	4 I 53	8.33159	4591	8.43185
2917	7.9783I	3347	8.11582	3739	8.22657	4157	8.33255	4597	8.43316
2927	7.98173	3359	8.11940	3761	8.23244	4159	8.33303	4603	8.43446
2959	7.98582	3361	8. 11999	3767	8.23403	4177	8.33735	4621	8.43837
2953	7.95058	3371	8.12296	3769	8. 23456	4201	8.33308	4637	8.44182
2957	7.99193	3373	8.12336	3779	8.2332 I	4211	$8.345+6$ 8.34688	4639	8.4425 8.443 I 2
2963	7.99396	3389	8.12829	3793	8.24091	4217	8.34688	4643	8.443 I 2
2969	7.99598	3391	8.12888	3797	8.24197	4219	8.34735	4649	8.4144 I
2971	7.99665	3407	8.13359	3803	8.24355	4229	8.34972	4651	8.44184
2999	8.00603	3 413	8.13535	3821	8.24827	4231	8.35019	4657	8.44513
3001	8.00670	3433	8.14119	3823	8.34879	4241	8.35255	4663	8.44745
3011	8.01003	3419	8. 14584	3833	8.23140	42.43	8.35303	4673	8.44955
3019	8.01268	3457	8. 14816	3847	8.25505	4253	8.35538	4679	8.45084
3023	8.01400	345 I	8.14931	3851	8.25609	4259	8.35679	4691	8.45340
3037	$8.018{ }^{\text {j }}$	$3+63$	8. 14989	3853	8.25661	4261	8.35726	4703	8.45590
$30+1$	8.01994	3467	8.15104	3863	8.25920	427 I	8.35960	4721	8.45978
3049	8.02257	3469	8.15162	3777	8.26282	4273	8.36007	4723	8.46020
306 I	8.02650	3491	8.15794	388I	8.26385	4283	8.36241	4729	8.46147
3057	$8.028+6$	3499	8.15023	3889	8.26591	4289	8.3638 T	4733	8.46231
3079	8.03236	3511	8. 16366	3907	8.27053	4297	8.35567	4751	8.465 II
$30{ }_{3}$	8.03366	3517	8. 16536	3911	8.27155	4327	8.37263	4759	8.46779
3089	8.03560	3527	8.15820	3917	8.27308	4337	8.37494	4783	8.47282
3109	8.04206	3529	8.16877	3919	8.27359	4339	8.37540	4787	8.47366
3119	8.04527	3533	8.16990	3923	8.2746 I	4349	8.37770	4789	8.47408
3121	8.04591	3539	8.17150	3929	8.27614	4357	8.37954	4793	8.4749 I
3137	8.05102	3541	8.17216	3931	8.27665	4363	8.38092 8.38320	4799 480.1	8.47516 8.47653
3163	8.05928	3547	8.17386	3943	8.27970	4373	8.38320	480 I	8.47653
3167	8.05054	3557	8.117667	3947	8.28071	4391	8.38731	4813	8.47908
3159	8.01117	3559	8.17723	3967	8.28577	4397	8.38868	4817	8.4799 t
318 I	8.00495			3689	8.29130	4409	8.39140	483 I	
3187 3191	8.06684 8.06809	358 I 3583	8.18340 8.18306	4001	8.29430 8.20480	4421	8.39412 8.39457	4886 I	8.48500 8.49105
3191	8.06809	3583	8.18396	4003	8.29480	4423	8.39457	487 I	8.49105
3203	8.07184	3593	8. 18674	4007	8.29580	4441	8.39863	4877	8.49229
3209	8.07371	3507	8. 19063	4013	8.29729	4447	8. 39998	4889	8.49474
3217	8.07630	3613	8. 19229	4019	8.29879	445 I	8.40088	4903	8.49760
3221	8.07745	3617	8.19340	4021	8.29929	4457	8.40223	4909	8.49883
3229	8.07993	3623	8. 19506	4027	8.30078	4463	8.40358	4919	8.50086
325 I	8.08672	363 T	8. 19726	4049	8.30623	448 t	8.40760	493'I	8.50330
3253	8.08733	3637	8. 19891	4051	8.30672	4483	8.40805	4933	8.50370
3257	8.08856	3643	8.20056	4057	8.30820	4493	8.41028	4937	8.5045 I
3259	8.08918	3659	8.20495	4073	8.31214	4507	8.41339	4943	8.50573
3271	8.09285	367 I	8.20822	4079	8.31361	4513	8.41472	495 I	8.50734
3299	8. 10137	3673	8.20876	4091	8.31654	4517	8.41560	4957	8. 50856
3301	8.roig 8	3677	8.20985	4093	8.31703	4519	8.41605	4967	8.51057
3307	8.10380	3691	8.21365	4099	8.31850	4523	8.41693	4969	8.51097
3313	8.10561	3697	8.21528	4111	8. 32142	4547	8.42222	4973	8.51178
3319	8. 10742	3701	8.21636	4127	8.3253 I	4549	8.42266	4987	8.51459
e^{x}	x	e^{x}	x	0^{x}	\times	e^{x}		e^{x}	x

Natural Logarithms.

u	Logeu	U	$\log _{\mathrm{e}} \mathbf{U}$	u	$\log _{\mathrm{e}} \mathbf{4}$	u	Logeu	u	Logels
			8.60098	5849					
4993	8.51579	5437	8.60098	5849	8.67403	6287	8.74624	6733	8.81478
4999	8.51699	54.4 I	8.60172	5851	8.67437	6299	8.74815	6737	8.81537
5003	8.51779	5443	8.60209	5857	8.67539	6301	8.74846	6761	8.31893
5009	8.51899	5449	8.60319	586 r	8.67608	6311	8.75005	6763	8.81922
5011	8.51939	5471	8.60722	5867	8.67710	6317	8.75100	6779	8.82158
5021	8.52138	5477	8.60831 I	5869	8.67744	6323	8.75195	6781	8.82188
5023	8.52178	5479	8.60858	'5879	8.67914	6329	8.75290	6791	8.82335
5039	8.52496	5483	8.60941	5881	8.67948	6337	8.75416	6793	8.83365
5051	8.52734	5501	8.61269	5897	8.682:20	$63+3$	8.755 IT	6803	8.82512
5059	8.52892	5503	8.61305	5903	8.68322	6353	8.75568	6823	8.82805
5077	8.53248	5507	8.61378	5923	8.68660	6359	8.75763	6827	8.82854
508I	8.53326	5519	8.61595	5927	8.68727	6361	8.75794	6829	8.82893
5087	8.53444	5521	8.61631	5939	8.68930	6367	8.75888	6833	8.82952
5099	8.53680	5527	8.61740	-5953	8.69165	6373	8.75983	6841	8.83069
5 IOI	8.53719	553 I	8.61812	598I	8.69634	6379	8.76077	6857	8.83303
5107	8.53837	5557	8.62281	5987	8.69735	6389	8.76233	6863	8.83390
5113	8.53954	5563	8.62389	6007	8.70058	6397	8.76358	6869	8.83477
5119	8.54071	5569	8.62497	6011	8.70135	6421	8.76733	6871	8.83506
51.47	8.54617	5573	8.62569	6029	8.70434	6427	8.75826	6883	8.8358 I
5153	8.54733	5581	8.62712	6037	8.70566	6449	8.77168	6889	8.83758
5167	8.55005	5591	8.62891	6043	8.70665	6451	8.77199	6507	8.84029
5171	8.55082	5623	8.63462	60.47	8.70732	6469	8.77478	6911	8.84087
5179	8.55237	5639	8.63746	6053	8.70831	6473	8.77539	6917	8.84174
5189	8.55430	5641	8.63782	6067	8.71062	6.48 r	8.77663	6947	8.84607
5197	8.55584	5647	8.63888	6073	8.71161	6491	8.77817	6949	8.84635
5209	8.55814	5651	8.63959	6079	8.71260	6521	8.78278	6959	8.84779
5227	8.56159	5653	8.63994	6089	8.71424	6529	8.78401	6961	8.84808
523 I	8.56236	5657	8.64065	6091	8.71457	6547	8.78676	6967	8.84894
5233	8.56274	5659	8.64100	6 IOI	8.71621	6551	8.78737	6971	8.84951
5237	8.56350	5669	8.64277	6113	8.71817	6553	8.78768	6977	8.85037
5261	8.56808	5683	8.64523	6121	8.71948	6563	8.78920	6983	8.85123
5273	8.57035	5689	8.64629	6131	8.72111	6569	8.79012	6991	8.85238
5279	8.57149	5693	8.64699	6133	8.72144	6571	8.79042	6997	8.85324
528I	8.57187	5701	8.64840	6143	8.72307	6577	8.79133	7001	8.8538 I
5297	8.57490	5711	8.65015	6151	8.72437	6581	8.79194	7013	8.85552
5303	8.57503	5717	8.65120	6163	8.72632	6599	8.79467	7019	8.85638
5309	8.57716	5737	8.65469	6173	8.72794	6507	8.79588	7027	8.85752
5323	8.57979	5741	8.65539	6197	8.73182	6619	8.79770	7039	8.85922
5333	8.58167	5743	8.65574	61199	8.73214	6637	8.80042	7043	8.85979
5347	8.58429	5749	8.65678	6203	8.73279	6653	8.80282	7057	8.86 ± 78
5351	8.58504	5779	8.66199	6211	8.73408	6659	8.80372	7059	8.86347
5381	8.59063	5783	8.66268	6217	8.73504	6661	8.80402	7079	8.86489
5387	8.59174	5791	8.66406	6221	8.73569	6673	8.80582	7103	8.85827
5393	8.59286	5801	8.66579	6229	8.73697	6679	8.80672	7109	8.86912
5399	8.59397	5807	8.66682	6247	8.73986	6689	8.80832	7121	8.87080
5407	8.59545	5813	8.66785	6257	8.74146	6691	8.80852	7127	8.87165
5413	8.59656	5821	8.66923	6263	8.74241	6701	8.81001	7129	8.87193
5417	8.59730	5827	8.67026	6269	8.74337	6703	8.8ro3r	7151	8.87501
5419	8.59767	5839	8.67231	6271	8.74369	6709	8.8 II 2 I	7159	8.87613
542 I	8.59988	5843	8.67300	6277	8.74465	6719	8.81269	7177	8.87804
e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	x

Natural Logarithms.

u	Logeu	4	$\mathrm{Log}_{\mathrm{e}} \mathrm{U}$	u	$L_{\text {Loge }} \mathrm{U}$	u	$L_{\text {Loge }} \mathrm{u}$	u	Logeu
7187	S.SSO03	7621	8.93866	8093	8.99875	8573	9.05637	9001	9.10509
7193	8.88086	7639	8.94102	8IOI	8.99974	8581	9.05731	9007	9.10576
7207	8.88231	7643	8.94155	8 III	9.00098	8597	9.05917	9011	9.10620
7211	8.88336	7649	8.94233	8117	9.00172	8599	9.05940	9013	9.10642
7213	8.88364	7669	S.94494	8123	9.00245	8509	9.06056	9029	9.10820
7219	$8.894+7$	7673	8.94546	8147	9.00541	8623	9.06219	9041	9.10953
7229	8.88586	7681	$8.9+6511$	8161	9.00712	8527	9.06265	9043	9.10975
7237	8.83596	7085	8.94729	8167	9.00-85	8629	9.06288	90.49	9.11041
7243	8.88779	7691	8.94781	8 SIT	9.00835	8541	9.06427	9059	9.11151
7247	8.88834	7699	8.94885	8179	9.00933	8647	9.06497	9067	$9.112,40$
7253	8.88917	7703	8.94937	8 lgI	9.01079	8663	9.06682	9091	9.11504
7283	8.89330	7J17	8.95118	8209	9.01299	8669	9.06751	9103	9.11636
7297	8.89522	7723	8.95196	8219	9.01420	8677	9.06843	9109	9.11702
7307	8.89659	7727	8.953 .48	8221	9.01445	8681	9.06889	9127	9.11899
7309	8.89686	7741	8.95429	8231	9.01566	8689	9.0698 I	9133	9.11955
7321	8.89850	7753	8.95584	S233	9.01591	8693	9.07027	9137	9.12009
7331	8.89937	7757	8.95635	8237	9.91639	8699	9.07006	9151	9. 1.2162
7333	8.90014	7759	8.95661	8243	9.01712	8707	9.07188	9157	9.12227
$73+9$	8.90232	7789	8.96047	8253	9.01954	8713	9.07257	9161	9.12271
7351	8.90259	7793	8.95098	8269	9.02027	8719	9.07326	9173	9.12402
7369	8.90504	7817	8.96405	8273	9.02075	8731	9.07464	9181	9.12489
7393	8.90829	7823	8.96482	8287	9.02244	8737	9.07532	9187	9.12554
7411	8.91072	7839	8.95559	8291	9.02293	8741	9.07578	9199	9.12685
7417	8.91153	784	8.96712	8293	9.02317	8747	9.07647	9203	9.12728
7433	8.91368	7853	8.96-65	8297	9.02355	8753	9.07715	9209	9.12794
7451	8.91610	7857	8.97043	8311	9.02534	8761	9.07807	9221	9.12924
7457	8.91691	7873	8.97119	8317	9.02606	8779	9.08012	9227	9.12989
7459	8.91718	7877	8.97170	8329	9.02750	8783	9.08057	9239	9.13119
7477	8.91959	7879	8.97196	8353	9.03038	8803	9.08285	$92+1$	9.13141
7481	8.92012	7883	8.97246	8363	9.03157	8807	9.08330	9257	9.13314
7487	8.92092	7901	8.97474	8369	9.03229	8819	9.08 .466	9277	9.13539
7+89	8.921.19	7907	8.97550	8377	9.03325	8821	9.08489	928I	9.13572
7499	8.92252	7919	8.95702	8387	9.03414	8831	9.08602	9283	9.13594
7507	8.92359	7927	8.97803	8389	9.03468	8837	9.08670	9293	9.13702
7517	8.92492	7933	8.97879	8419	9.03825	8839	9.08693	93 II	9.13895
7523	8.92572	7937	8.97929	8423	9.03872	88.49	9.08806	9319	9.13981
7529	8.92652	7949	8.98080	8429	9.03943	8861	9.08941	9323	9.14024
7537	8.92758	7951	8.98105	8431	9.03967	8863	9.08964	9337	9.14174
7541	8.92811	7963	8.98256	8443	9.04109	8867	9.09009	934 I	9.14217
7547	8.92891	7993	8.98632	8447	9.04157	8887	9.09234	9343	9.14238
7549	8.92917	8009	8.98832	8.61	9.04322	8893	9.09302	9349	9.14302
7559	8.93049	8011	8.98857	8467	9.04393	8923	9.09639	9371	9.14538
7551	8.93076	8017	8.98932	8501	9.04794	8929	9.09706	9377	9.14602
7573	8.93234	8039	8.99206	8513	9.04935	8933	9.09751	9391	9.14751
7577	8.93287	8053	8.99380	8521	9.05029	8941	9.09840	9397	9.14815
7583	8.93366	8059	8.99454	8527	9.05099	8951	9.09952	9403	9.14878
7589	8.93446	8069	8.99578	8537	9.05216	8963	9.10086	9413	9.14985
7591	8.93472	808 I	8.99727	8539	9.05240	8069	9.10153	9419	9.15048
7603	8.93630	8087	8.99801	8543	9.05287	8971	9.10175	942 I	9.15070
7607	8.93682	8089	8.99826	8563	9.05521	8999	9.10487	943 I	9.15176
e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	x	e^{x}	x

Natural Logarithms.

TABLE VI

THE GUDERMANNIAN

The Gudermannian.

u	gdu	$\omega \mathrm{F}$	gd	$\omega \mathrm{F}_{j}^{\prime}$	u	gdu	$\omega \mathrm{Fo}^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$
. 000	0.0000000	10000	000	205.26	0.050	0.0499792	5988	$2^{\circ} 5 I^{\prime} 48^{\prime \prime} .95$	256.01
. 001	. 0010000	10	00325.25	205.26	. 051	. 0509779	9387	25514.95	206.00
. 002	. 0320000	I 0000	00553.53	205.26	. 052	.051 9766	9986	25840.94	99
. 003	. 0030000	10	$\bigcirc 10$ I8.79	205.25	. 053	. 0529752	9985	30206.92	205.98
. 004	. 0040000	I 0000	0 I3 45.0	20́s. 26	. 054	. 0539738	9985	30532.89	205.96
0.005	0.0050000	I 0000	0 I7 II.32	06.26	0.055	0.0549723	95	30858.85	205.95
. 005	. 0060000	I 0	02037.58	206.25	. 056	. 0559708	9984	31224.80	205.94
. 007	. 0069999	I 0000	02403.84	206.25	. 057	. 056 5692	9584	31550.73	205.93
. 0	. 0075999	I 0000	- 2730.10	206.26	. 058	. 0579575	5983	31916.65	205.92
.009	. 0085999	I 0000	- 3055.35	206.26	. 059	. 0585658	9983	32242.57	205.91
10	0.009	9999	03422.61	206.25	0.050	0.0599640	9582	32508.47	89
II	. 0109998	9999	03748.87	206.25	. 051	. 0509622	9981	32934.36	205.88
. 012	. 11119997	9999	04115.12	206.25	. 062	. 0519503	5981	33300.23	205.87
. 013	. 0129996	9999	$04+41.37$	205.25	. 053	. 0529584	9580	33626.10	205.86
. 014	. 0139995	9999	04807.6 I	205.24	. 064	. 0639564	9980	33951.94	205.84
0.015	0.0149994	9999	$05133 . S^{\prime}$	205.24	0.065	0.0549543	979	34317.78	
. 016	. 0159993	9999	05500.10	206.24	. 065	. 065952 I	9978	34643.60	205.82
. 017	. 0165592	5999	05826.23	206.23	. 067	. 056 9499	9978	35009.41	205.80
. 018	. 017 9590	9938	I OI 52.57	206.23	. 068	. 0579477	9977	353 35.21	205.79
. 019	. 018 c989	9738	I 0518.80	206.23	. 069	. 0689453	9976	35700.99	205.77
0.020	0.019		108		0.070	0.0699429	9976	40026.76	205.76
. 021	. 020	95	11211.24	206.22	. 071	. 0709404	9975	40352.51	205.75
. 0	. 02	99	11537.46	205. 21	. 0	. 0719379	9974	40718.25	205.73
. 023	. 0229980	9997	11903.67	206.21	. 073	. 0729352	9973	4 IO 43.98	205.72
. 024	. 0239977	9597	I 2229.89	206.21	. 074	. 0739326	9973	4 If 09.68	205.70
0.	0.0249974	9997	I 2556.08		0.075	0.0749298	9972	41735.38	
. 026	. 0259971	9997	12922.28	206.20	. 076	. 0759259	9971	421 Or. 06	205.67
. 027	. 0269967	9995	13248.47	206.19	. 077	. 0769240	9970	42426.72	205.65
. 023	. 0279753	96	I 3514.66	206.18	. 078	. 0779210	9970	42752.37	205.64
. 029	. 0289359	9995	I 3940.84	206. 18	. 079	. 0789180	9969	43118.00	205.62
0.030	0.0299955	995	$1{ }^{1} 4307.02$	206.17	0.080	0.0799148	9968	434 43.61	205.61
. 031	. 0309950	9995	I 4633.19	206.17	. 081	. 0809116	9957	43809.21	205.59
. 032	. 0319945	95	I 4959.35	206. 16	. 082	.081 9083	9966	44 I 34.79	205.57
. 033	. 0329940	995	I 5325.50	205.15	. 083	. 0825049	9966	44500.36	205.56
. 034	. 0339935	9994	I 5651.65	206.15	. 084	. 0839014	9965	44825.90	205.54
0.035	0.034	94	20017.79		0.085	$0.08+8978$		45151.44	205.52
. 036	. 0359922	9994	20343.93	206. 13	. 085	. 0858942	9963	45516.95	205.50
. 037	. 0369916	93	20710.06	206.	. 087	. 0858905	9962	45842.44	205.49
. 038	. 0379909	993	2 10 36.18	206	. 088	. 0878856	9961	50207.92	205.47
. 039	. 0389901	9992	21402.29	206. II	. 089	. 0888827	996 I	50533.38	205.45
0.040	0.0399893	9992	21728.39	206	0.090	0.0898787	9900	50858.82	205.43
. 0.41	. 0409885	9992	22054.49	206.0	. 091	. 0908747	9959	51224.25	205.4 I
. 042	. 04198877	9991	22420.58	206.c8	. 092	.0918705	9958	51549.65	205.39
. 043	. 0429858	9991	22746.65	306.07	. 093	. 0928662	9957	51915.03	205.38
. 041	. 0439858	9990	23112.72	206.07	. 094	. 0938619	9956	52240.40	205.36
0.045	0.0449848	999	23438.79	206.06	0.095	0.0948574	9955	52605.75	205.34
. 046	. $045 \quad 9838$	9989	23804.84	206.05	. 096	. 0958529	9954	52931.08	205.32
. 047	. 0469827	9989	24 I 30.88	206.04	. 097	. 0968482	9953	53256.38	205.30
. 048	.0479816	9988	24456.91	206.03	. 098	. 0978435	9952	53621.67	205.28
. 049	. 048980.4	9988	24822.93	206.02	. 099	. 0988387	0051	53946.94	205.26
0.050	0.0499792	9988	25148.95	206.01	0.100	0.0998337	9950	54312.19	205.24
u	$\operatorname{an}^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$	s.chu	$2 \tan ^{-1}\left(e^{\text {a }}\right.$) -90°	w sech u	u	$2 \tan ^{-1}\left(e^{4}\right)-\frac{\pi}{2}$	ech u	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	m sech u

The Gudermannian.

u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{Fo}^{\prime}$
0.100	0.0998337	9930	${ }_{5}^{\circ} 43 \text { ' } 12.12 .19$	205.24	0.150		9889		97
. 101	. 1008287	59	54637.42	205.22	. 151	-		30	
. 102	. IOI 8235	9948	55002.62	205.20	. 152	. 151418 I	9885	84032.22	203.90
. 103	. 1028184	9947	55327.81	205.18	. 153	. 1524065	988	84356.11	203.87
. 104	. 103 8izo	9946	55652.97	205.15	. 154	. 1533949	988	84719.96	203.84
0.105	0. 1048076	$99+5$	60018.12	205.13	0.155	0.1543831	9881	85043.79	203.81
. 106	-105 8021	9944	60343.24	205.11	. 156	. 1553711	9880	85407.59	203.78
. 107	. 1057964	9943	60708.34	205.09	. 157	. 1563590	9878	85731.35	203.75
. 108	. 1077907	$99+2$	6 10 33.42	205.07	. 158	. 1573467	9876	90055.08	203.72
. 109	. 1087848	S94I	6 I3 58.48	205.05	. 159	. $15833+3$	9875	90418.78	203.68
0.110	0.1097788	9940	61723.51	205.02	0.160	0.1593217	9873	90742.45	203.65
. 1	. 1107728	9939	62048.52	205.00	. 161	. 1603089	9872	9 II 06.09	203.62
. 112	.III 7555	9538	62413.51	204.98	. 162	. 1612950	9870	9 If 29.69	203.59
. II3	. II2 7603	5936	62738.48	204.95	. 163	. 1622830	9859	91753.25	203.55
. 114	.113 7539	9535	63103.42	204.93	. 164	. 1632697	9867	92116.80	203.52
0.II5	O.II4 7474	9934	63428.34	20	0.165	0.164 2564	$\mathrm{c}^{8} 85$	92440.31	19
. 116	. 1157407	5933	63753.24	304.88	. 166	. 1652428	985	92803.78	203.46
. 117	. 1167340	9932	641 18.11	204.86	. 167	. 1662291	9862	93127.22	203.42
. 118	.117 727I	9931	64442.96	204.84	. 168	. 1672153	586I	93450.62	203.39
. 119	. 1187201	9930	64807.78	204.81	. 169	. 1682012	9859	93813.59	203.35
0.120	0.1197130	9928	65 I 32.59	204.79	0.170	0.1691870	9857	94137.33	203.32
. 121	. 1207058	9927	$65457 \cdot 36$	204.76	. 171	. 1701727	5856	94500.63	203.29
. 1	. 1216985	5926	65822.11	204.74	. 172	.171 1581	9854	94823.90	203.25
. 123	. 1226910	9925	7 O1 46.84	204.71	. 173	. 1721434	9852	95147.14	203.22
. 124	. 1236834	9924	70511.54	204.69	. 174	. 1731286	5851	95510.33	203.18
0.125	0.1246757	9922	70836.22	204.66	0.175	0.1741136	9849	9.5833 .50	203.15
. 126	.125 6679	9921	71200.87	204.64	.175	. 175 O983	5847	IO O1 56.63	203.11
. 127	. 1266600	9920	7 I 525.49	204.61	. 177	. 1760830	9845	100519.72	203.08
. 128	. 1276519	9919	71850.09	204.59	.178	. 1770574	9844	IO 0842.78	203.04
. 129	:128 6437	5917	72214.67	204.56	. 179	. 1780517	9542	10 1205.80	203.00
0.130	0.129 6354	9916	72539.22	204.53	0.180	0.1790358	9840	10 15 28.78	202.97
. 131	. 1306269	9915	72903.74	204.51	. 181	. 1800197	9838	10 18 51.73	202.93
. 132	.1316183	9913	73228.23	204.48	. 182	. I81 0035	9837	IO 22 I4. 65	202.90
. 133	. 1326096	9912	73552.70	204.45	. 183	.1819871	9835	10 2537.52	202.86
. 134	. 1336008	9911	739 17.14	204.43	. 184	. 1829705	9833	IO 2900.36	202.82
0. 135	0.134 5918	9910	7424 4 .55	204.40	0. 185	0.183 9537	9831	103223.17	202.78
. 136	. 1355827	9908	74605.94	204.37	. 186	. 1849367	9829	Io 3545.93	202.75
. 137	. 1365734	9907	74930.29	204.34	.187	. 1859196	9828	10 3908.66	202.71
. 138	. 1375641	9906	75254.62	204.32	. 188	. 1869022	9825	IO 4231.35	202.67
. 139	. 1385545	9904	75618.93	304. 29	. 187	. 1878847	9824	Io 45 54.0I	202.63
0.140	0. I39 5449	9903	75943.20	204.26	0.190	0.1888670	9822	Io 49 I6.62	202.60
. 141	. 1405351	9901	80307.45	204.23	-191	. 1898492	${ }_{5} 820$	10 5239.20	202.56
. 142	. 1415252	9900	80631.65	204.20	. 192	. 1908311	9818	1056 or. 74	202.52
. 143	. 1425151	9899	80955.85	204.17	. 193	. 1918129	9817	105924.24	202.48
. 144	. 1435049	9897	81320.01	204.14	. 194	.192 7944	9815	II 0246.71	202.44
0.145	0.1444946	9896	81644.14	204.12	0. 195	0.193 7758	9813	II 0609.13	202.40
. 146	. 145484 I	9894	82008.24	204.09	. 196	. 1947570	981 I	II 0931.51	202.37
. 147	. 1464734	9893	82332.31	204.06	. 197	. 1957380	9809	II I2 53.86	202.33
. 148	. 1474626	9891	82656.35	204.03	. 198	. 1967188	9807	II 1616.17	202.29
. 149	. 1484517	9890	83020.36	304.00	. 199	. 1976994	9805	II 1938.43	202.25
0.150	0.1494406	9889	83344.35	203.97	0.200	0.198 6798	9803	II 2300.66	202.21
-	$2 \tan ^{-1}\left(e^{4}\right)-\frac{\pi}{2}$		$2 \tan ^{-4}\left(e^{a}\right)-90^{\circ}$	\square	u	$2 \tan ^{-1}\left(e^{n}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	∞ sech a

The Gudermannian.

u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	od u	$\omega \mathrm{F}_{0}{ }^{\prime}$	odu	$\omega F_{0}{ }^{\prime}$
0.200	0. 1986798	9803	II 2300.66	202.21	0.250	0.2474358	9695	14 ${ }^{\circ} 10 \times 37.30$	199.98
. 201	. 1996601	9801	II 2622.85	202.17	. 251	. 2484052	9693	I4 13157.26	199.93
. 202	. 2006401	9799	II 2944.99	202.13	. 252	. 2493741	9591	I4 17 I7.16	199.88
. 203	. 2016200	9797	II 3307.10	202.09	. 253	. 2503434	9688	142037.02	199.84
. 204	. 2025996	9795	II 3629.17	202.05	. 254	. 2513121	9686	142356.83	199.79
0.205	0.2035790	9794	II 3951.19	202.01	0.255	0.2522805	9683	I4 27 I6. 59	199.74
. 206	. 2045583	9792	II 4313.18	201.96	. 256	. 2532488	968 I	143036.31	199.69
. 207	. 2055374	9790	II 4635.12	201.92	. 257	. 2542167	9679	If 3355.97	199.64
. 208	. 2065162	9788	II 4957.02	201.88	. 258	. 2551815	9676	I4 3715.58	IS9.59
. 209	. 2074949	9786	If 5318.89	201.84	. 259	. 2561520	9674	I4 $4035 . \mathrm{I4}$	199.53
0.210	0.2084733	9783	II 5640.71	201.80	0.260	0.257 I192	967 I	144354.65	199.48
. 211	. 2094515	978 I	120002.48	201.76	. 261	. 2580862	9669	If 47 14.10	199.43
. 212	. $210+296$	9779	120324.22	201.71	. 262	. 2590530	9656	If 5033.5 I	199.38
. 213	. 2114074	9777	120645.91	201.67	. 263	. 2600195	9664	If 5352.87	193.33
.214	. 212385 I	9775	12 10 07.56	201.63	. 264	. 2609857	966 I	I4 57 I2.18	197.29
0.215	0.2133625	9773	1213139.17	201.59	0.265	0.2619518	9659	150031.43	199.24
. 216	. 2143397	9771	121650.74	201.54	. 266	. 2629175	9656	150350.63	199.19
. 217	. 2153167	9769	I2 2012.26	201.50	. 267	. 2538830	9654	150709.78	199.13
. 218	. 2162935	9767	122333.74	201. 46	. 268	. 2648483	9651	I5 10 28.88	199.08
. 219	. 2172701	9765	12 2655.18	201.42	. 269	. 2658133	9649	I5 1347.93	199.03
0.220	0.2182465	9763	123016.57	201.37	0.270	0.266778 r	9646	I5 17006.92	198.98
. 2	. 2192227	9761	123337.92	201.33	. 271	. 2677425	9644	$15 \quad 2025.86$	198.93
. 222	. 2201985	9759	123659.23	201. 28	. 272	. 2687058	96.1	152344.75	198.87
. 223	. 2211744	9756	I2 4020.49	201.24	. 273	.2596708	9639	$15 \quad 2703.59$	198.82
. 224	. 2221499	9754	124341.71	201.20	. 274	.2706345	9636	I5 3022.37	198.77
0.225	0.2231252	9752	124702.88	201. 15	0.275	0.2715980	9533	I5 3341.10	I¢8.71
. 226	. 2241003	9750	125024.01	201.11	. 276	. 2725612	9631	I5 3659.78	198.66
. 22	. 2250752	9748	I2 5345 . IO	201.06	. 277	. 2735242	9628	I5 40 I8.4I	198.61
. 22	.2260499	9746	125706.14	201.02	. 278	. 2744868	9526	154336.98	198.55
. 229	.22702 .43	9743	I3 0027.13	200.97	. 279	. 2754493	9623	154655.49	Ig8.50
0.230	0.2279986	9741	I3 0348.08	200.93	0.280	0.2764114	9620	155013.95	198.45
. 231	. 2289726	9739	130708.99	200.88	. 281	. 2773734	9618	155332.36	158.38
. 232	. 2299464	9737	I3 Io 29.85	200.84	. 282	. 2783350	9615	155650.72	198.33
. 233	.2309199	9735	I3 I3. 50.66	200.79	.283	. 2792964	9612	I6 0009.02	Is8. 27
. 234	. 2318933	9732	I3 17 II. 42	200.74	. 284	. 2802575	9610	160327.26	198.22
0.235	0.2328664	9730	I3 2032.15	200.70	0.285	0.28 I 2184	9607	$160545 \cdot 45$	199.16
. 236	. 2338393	9728	I3 2352.82	200.65	. 285	. 2821789	9504	161003.58	198.11
. 237	. 234 8120	9726	I3 27 I 3.45	200.60	. 287	. 2831393	9602	I6 I3 21.66	198.05
. 238	.2357844	9723	133034.03	200.56	. 288	. 2840993	9599	16 1639.69	198.00
. 239	.2367566	972 I	133354.56	200.51	. 289	. 2850591	9596	I6 19 57.66	197.94
0.240	0.2377286	9719	$13 \quad 3715.05$	200.46	0.290	0.2850186	9594	16 2315.57	197.89
. 241	.2387004	9716	I3 4035.49	200.42	. 291	. 2869778	9591	162633.43	197.83
. 242	.2396719	9714	I3 4355.88	200.37	. 292	. 2879368	9588	162951.23	197.77
. 243	. 2406432	9712	134716.23	200.32	. 293	. 2888955	9586	163308.97	197.72
. 244	. 2416143	9710	I3 5036.53	200.27	. 294	. 2898539	9583	I6 3626.66	197.66
0.245	0.242585 I	9707	$13 \begin{array}{lll}13 & 56.77\end{array}$	200.23	0.295	0.290812 I	9580	I6 3944.30	197.60
. 246	. 2435557	9705	I3 5716.98	200.18	. 296	.2917699	9577	I6 43 or .87	197.55
. 247	. 2445261	9703	140037.13	200.13	. 297	. 2927275	9575	164619.39	197.49
. 2.48	.2454962	9700	140357.23	200.08	. 298	. 2936849	9572	I6 4936.85	197.43
. 249	.246466 I	9698	140717.29	200.03	. 299	.2946419	9569	I6 5254.26	197.38
0.250	0.2474358	9695	I4 $1037 \cdot 30$	199.98	0.300	0.2955987	9566	16 56 II .60	197.32
u	$2 \tan ^{-2}\left(e^{\text {a }}\right)-\frac{\pi}{2}$	ch	$2 \tan ^{-1}\left(\operatorname{sen}^{0}\right)-90^{\circ}$	w sech u	U	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	hu	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gju	$\omega \mathrm{F}_{6}{ }^{\prime}$
0.300	0.2955987	9566	$16^{\circ} 56^{\prime} 11.60$	197.32	0.350	0.3430655	9417	193922.34	
. 301	. 2965552	9563	I6 5928.89	197.25	. 351	. $3+40071$	9414	19 4235.55	I8
- 302	. 2975 II4	9561	170246.13	197.20	-352	- 3449483	9411	194530.70	IG4.II
. 303	. 298.4673	9558	17 06 03.30	197.15	. 353	. 3458893	9408	I9 4904.78	194.05
- 304	. 2994229	9555	170920.42	197.09	- 354	-3468299	9405	195218.80	193.98
0.305	0.3003783	9552	171237.48	197.03	0.355	0.3477702	940 I	195532.75	193.92
. 305	- 3013334	9549	I7 I5 54.48	196.97	. 355	. 348 万IOI	9358		193.85
. 307	- 3022882	9547	1719 I1.42	196.91	- 357	. 3496498	9395	200200.45	193.78
. 308	. 3032427	9514	172228.30	196.85	. 353	. 3505891	9392	200514.20	193.72
. 309	-304 1969	95.41	172545.12	196.79	. 359	. 35 I 528 I	9388	200827.88	193.65
0.310	0.3051509	9538	1729 Or. 89	195.74	0.360	0.3524668	9385	20 II 41.50	193.58
. 311	. 3061045	9535	173218.60	195.68	- 361	. 3534052	9382	20 If 55.05	193.52
- 3	. 3070579	9532	173535.24	196.62	. 362	- $3543+32$	9378	20 I8 c8.54	193.45
. 313	. 3080110	9539	173851.83	196.56	. 363	. 3552809	9375	202121.95	193.38
-3I4	- 308 9638	9525	174208.36	195.50	. 354	- 3562183	9372	$202+35.30$	193.32
0.315	0.3099163	95	174524.83	19	0.365	0.3571554	9	202748.59	
. 315	. 3108585	9521	174841.23	196.38	. 365	. 358092 I	9366	2031 OI .80	193.18
. 317	. 3118204	9518	175157.58	196.32	- 367	. 3590285	9362	203414.95	193.11
. 318	. 3127721	9515	175513.87	196.26	. 369	. 35996	9359	203728.03	193.05
. 319	. 3137234	9512	I7 5830.10	196.20	. 369	. 3609003	9356	204041.04	192.58
0.320	0.314	9509	I8 or 46.26	196.14	0.370	0.3618358	9352	204353.98	
. 3	. 3156252	9505	180502.37	196.08	. 371	. 3627708	9349	204706.86	192.84
. 3	. 3155757	9503	I8 0818.42	196.01	. 372	. 3637056	9346	$20 \quad 5019.66$	192.77
. 323	. 3175258	9500	18 II 34.40	195	- 373	. 3646400	9343	205332.40	192.70
. 324	. 3184757	9497	I8 I4 50.32	195.89	. 374	. 3655741	9339	$20 \quad 5645.07$	192.63
0.3	0.3194252	9494	181806.19	195.83	0.375	0.366507	9336	205957.67	57
-325	- 3203745	9491	182121.99	195.77	-376	. 3674413	332	210310.20	192.50
. 327	-321 3235	9488	182437.72	195.71	. 377	. 3683743	9329	210522.65	192.43
- 3	-322 2721	9485	182753.40	195.65	. 378	. 369307 I	9326	210935.05	192.36
. 329	. 3232205	9482	183109.02	195.58	- 379	. 3702395	9322	211247.38	192.29
0.330	0.3241686	9479	183424.57	195.52	0.380	0.3711716	9319	211559.63	192.22
. 331	. 325 II63	9476	I8 3740.06	195.46	. 38 I	. 3721033	9316	2119 I1.82	192.15
. 33	- 3250538	9473	1840 55.49	195.40	. 382	. 3730347	9312	212223.93	192.08
. 333	. 327 OIIO	9470	184410.85	195.33	. 383	. 373 9658	9309	212535.97	192.01
. 334	. 3279578	9467	184726.16	195.27	. 384	. 3748365	9305	212847.95	191.94
0.335	0.3289044		185041.40	195.21	0.385	0.3758268	9302	$2131 \cdot 59.85$	191.87
. 336	. 3298506	9461	$18 \quad 5356.57$	195.15	. 385	. 3767569	9299	213511.68	191.80
- 33	. 3307965	9458	185711.69	195.08	. 387	. 3776855	9295	213823.45	191.73
. 338	. 3317422	9455	190026.74	195.02	- 38	. 3786159	9292	214135.14	191. 60
. 339	. 3326875	9452	190341.72	194.95	- 389	. 3795449	9288	214446.76	19 I .59
0.340	0.3336325	9449	F9 0656.65	194.89	0.390	0.3804736	9285	214758.31	19 L .51
. 341	. 3345772	94	19 Io it. 50	194.83	. 391	.3814019	9281	215109.79	191.44
. 342	. 3355216	9442	19 I3 26.30	194.76	- 392	-382 329	9278	215421.20	191.37
. 343	. 3364657	9439	191641.03	194.70	. 393	. 3832575	9275	215732.53	191.30
- 344	. 3374095	9436	1919 55.70	194.63	- 394	- 3841848	9271	220043.80	191.23
0.345	0.3383529	9433	192310.30	194.57	0.395	0.385 II	68	2203 54.99	191. 16
. 346	. 3392961	9430	$19 \quad 2624.84$	194.51	. 395	. 3860383	9264	220706.11	191.09
	. 3402383	9427	192939.31	194.44	. 397	. 3859645	9261	221017.16	191.01
- 348	-341 1814	9424	193253.72	194.38	. 398	. 3878904	9257	221328.14	190.94
. 349	. 3421236	9420	193608.06	194.3I	. 359	. 3888159	9254	$22 \quad 16 \quad 39.04$	190.87
0.350	0.3430655	9417	193922.34	194.25	0.400	0.38974 II	9250	221949.88	190.80
【	$\left\|2 \tan ^{-2}\left(e^{n}\right)-\frac{\pi}{2}\right\|$		$2 \tan ^{-1}\left(e^{(0)}\right)-90^{\circ}$			${ }^{2}\left(e^{8}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	ect

The Gudermannian.

u	gdu	$\omega \mathrm{F}_{\mathrm{v}}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{u^{\prime}}$	4	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.400	0.389741 I	9250	$22^{\circ} 19 \times 49.88$	190.80	0.450	0.4355388	9066	$24^{\circ} 57^{\prime} 16^{\prime \prime} .34$	187.01
. 401	. 3906660	9247	222300.64	190.72	. 451	. 4364453	9063	250023.31	183.93
. 402	- 3915904	$92+3$	2225 II. 32	190.65	- 452	. 43735 I 4	9059	250330.20	185.85
. 403	- 392 5146	9240	222921.94	190.58	- 453	. 438257 I	9055	250537.01	185.77
. 404	. 3934383	9236	223232.48	190.51	- 454	. 4391524	905I	250943.74	185.69
0.405	0.3943518	9232	223542.95	190.43	0.455	0.4100673	9047	23 I2 50.39	I86.6I
. 405	. 395 28+8	9229	223853.35	190.36	. 455	. +109718	$90+3$	25 I5 56.96	186.53
. 407	. 3962075	9225	224203.67	190.29	. 157	. 4118759	9040	$25 \quad 1903.46$	186.45
. 408	. 3971299	9223	224513.92	190.2 I	. 459	. 4427797	9036	$25 \quad 2209.87$	186. 37
. 409	. 3980519	9218	224824.09	190.14	-439	.4436831	9032	252516.20	186.29
0.410	0.3589735	9215	225134.19	190.06	0.460	0.444585 I	9028	252822.46	185.21
. 411	- 3998948	92 II	22544.22	189.99	. 461	- +154885	90.24	253128.63	186.13
. 412	. 400 8r59	9207	225754.18	I89.92	. 462	- +153909	5020	$25343+.72$	186.05
. 413	. 4017353	9204	23 OI 04.06	I89.84	. 463	. 4472327	9015	253740.74	185.97
. 414	. 4026565	9200	230413.86	189.77	.464	. 44819.41	9012	$2540+6.67$	185.89
0.415	0.4035763	9197	230723.59	189.69	0.465	0.4490951	9008	254352.52	185.8I
. +16	. $404+958$	c193	23 Io 33.25	180.62	. 465	. 4199958	9004	$25+658.29$	185.73
. 417	. $405+149$	9189	23 I3 42.83	I89.54	. 467	. 4508960	9001	255003.98	185.65
. 418	. 4053337	9186	$23 \quad 15$ 52.34	ISS9.47	. 468	. 4517959	8997	$25 \begin{array}{lll}23 & 09.59\end{array}$	185.57
. 419	. 4072521	9182	232001.75	183.39	. 469	. 4526954	8993	2556 I5.12	185.49
0.420	0.4081701	9178	2323 II. 13	I89.32	0.470	0.4535944	8989	$25 \quad 5920.57$	185.41
. 421	. 4090878	9175	232620.41	189.24	. 471	. 454493 I	8935	250225.93	185.33
. 422	. 4100051	9171	232929.62	183.17	472	.4553914	85SI	26053 I .22	185.24
. 423	. 410 O 220	9168	$23 \quad 3238.75$	189.09	. 473	-456 2893	8977	260836.42	185.16
. 424	. 41118385	9164	233547.81	189.02	. 474	. 457 I858	8573	25 II 4I.54	185.08
0.425	0.4127548	9160	233856.79	188.94	0.475	0.4580839	8969	26 I4 46.58	185.00
. 426	. 4136705	9157	234205.69	183.87	. 476	. 4589806	8055	$261751 \cdot 54$	184.92
. 427	. 414586 I	9153	$23+5$ I4. 52	188.79	. 477	. 4598769	8951	262056.42	184.84
. 128	. 4155012	914	234823.27	188.71	.478	. 4607728	8957	2624 OI. 21	184.75
. 429	. 4164159	9145	235131.95	188.64	. 479	. 4616683	8953	$26 \quad 2705.93$	184.67
0.430	0.4173303	9142	235440.55	189.56	0.480	0.4625634	8949	$26 \quad 3010.56$	184.59
. 431	. 4182743	9138	235749.07	188.49	. 481	.463 458r	8945	2633 I5.10	184.51
. 432	.4191579	9134	240057.52	188.41	. 482	. 4643524	8941	263619.57	184.42
. 433	. 4200711	9131	240405.89	188.33	. 483	. 4652.464	8937	$26 \quad 3923.95$	184.34
- 434	. 4209840	9127	2407 It .18	188.26	. 484	. 4661399	8933	26.4228 .25	184.26
0.435	0.4218965	9123	241022.40	188. 18	0.485	0.4670330	8929	264532.47	184.18
. 436	. +228085	919	241330.54	188.10	. 485	. 4679257	8925	264836.60	184.09
- 437	. 423720.4	9116	241638.60	188.02	. 487	. 4688180	892 I	265140.65	184.01
. 438	.4246318	9 II 2	241946.59	187.95	. 483	. 4697099	8917	265444.62	183.93
. 439	. 425 5428	9108	242254.50	187.87	. 489	. 4706014	8913	$26 \quad 5748.50$	183.84
0.440	0.4264534	9104	$24 \quad 2602.33$	187.79	0.490	0.4714925	8909	270052.31	183.76
-441	. 4733636	9 IOI	2429 10.08	187.71	. 491	. 4723832	8905	270356.02	183.68
-442	. 4282735	9097	$2432 \quad 17.75$	187.64	-492	. 4732735	8901	270659.65	183.59
- 443	. 4291830	9093	$2435 \quad 25.35$	187.56	-493	.4741633	8897	271003.21	183.51
. 444	. 4300921	cos9	243832.87	187.48	-494	. 4750528	8893	27 I3 06.68	183.42
0.445	0.4310009	9085	244140.3 I	187.40	0.495	0.4759419	8889	27 16 10.06	183.34
. 446	. 4319092	9082	244447.67	187.32	. 496	. 4768305	8885	$27 \quad 19$ 13.36	183.26
- 447	. 432 8172	9078	244754.96	187.24	-497	. 4777188	8880	272216.57	183.17
- 448	- 433 7248	9074	245102.16	187.17	- 498	. 4786066	8876	$27 \quad 2519.70$	183.09
. 449	. 4346320	9070	$24 \quad 5409.29$	187.09	-499	. 479494 I	8872	$27 \quad 2822.75$	183.00
0.450	0.4355388	9066	245716.34	187.01	0.500	0.48038 II	8868	27 31 25.7I	182.92
\pm	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{n}}\right)-90^{*}$	ω sech u	u	$2 \tan ^{-1}\left(e^{a}\right)-\frac{\pi}{2}$	chu	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{a}}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gdu	$\omega \mathbf{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{\mathrm{v}}{ }^{\prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{\mathrm{u}}{ }^{\prime}$
0.500	0.48038 rr	8868	273125.71	182.92	0.550	0.5241996	8657		
. 501	.481 2677	8864	273428.59	182.83	. 551	. 5250651	8653		
. 502	. 4821539	8850	273731.38	182.75	. 552	. 5259302	8649	300800.88	I78. 39
. 503	. 4830397	8856	274034.09	182.67	. 553	. 5257948	86.4	301059.23	178.30
. 504	. 4839251	8852	274336.71	182.58	. 554	. 5276590	86.40	$3013 \quad 57.48$	178.21
0.505	0.4848100	$83_{4} 8$	274639.25	182.50	0.555	0.5285228	8636	301655.65	178.12
. 505	. 4856946	88	27494 4 . 70	183.41	. 556	. 529385 I	8631	301953.72	178.03
. 507	. 4865787	8839	275244.07	182.33	. 557	. 5302400	8627	302251.71	177.94
. 508	. 4874625	8835	275546.35	182.24	. 558	.531 III5	8522	302549.60	177.85
. 509	. 4883458	883 I	275848.55	182.15	. 559	.531 9735	8618	302847.41	177.76
0.510	0.4892287	8827	28 or 50.66	182.07	0.560	0.5328351	8614	303145.12	177.67
. 5 II	. 490 I112	8823	28 of 52.69	181.98	. 561	. 5336962	8609	303412.75	177.58
. 512	-490 9933	8819	280754.63	181.90	. 562	. $53+5569$	8605	303740.28	$177 \cdot 49$
. 513	. 4918749	8814	28 IO 56.48	181.81	.563	. 5354172	8501	$30+037.73$	177. 40
. 514	. 4927562	88 I	28 I3 58.25	181.73	. 56.4	. 5362771	8596	304335.08	177.31
0.515	0.4936370	8806	281659.94	181. 64	0.565	0.5371365	8592	304632.35	177.22
. 516	. 4945174	8802	2820 O1. 53	181.55	. 565	. 5379954	8587	$30+929.52$	177.13
. 517	. 4953974	8798	282303.04	181. 47	. 567	. 5388539	8583	305226.60	177.04
. 518	. 4962769	8794	$28 \quad 2604 \cdot 47$	181. 38	. 568	. 5397120	8579	305523.59	176.95
. 519	. 497 1561	. 8789	$28 \quad 2905.8 \mathrm{I}$	181. 29	. 569	. 5405696	8574	305820.49	176.85
0.520	0.4980348	8785	283207.06	18 I .21	0.570	0.5414268	8570	31 O1 17.30	176.76
. 521	. 4989131	878I	283508.22	181.12	. 571	. 5122836	8565	3104 I4.02	$17{ }^{\text {joj }}$. 67
. 522	. 4997910	8777	283809.30	181.04	. 572	. $5+31399$	8561	310710.65	176.58
. 523	. 5006685	8773	284110.29	180.95	. 573	. 543.9958	8556	311007.18	176.49
. 524	- 5015455	8758	2844 II. 20	180.85	. 574	. 5448512	8552	311303.63	176.40
0.525	0.5024222	8764	2847 I2.01	180.77	0.575	0.5457062	8548	311559.98	176.31
. 526	. 5032984	8760	285012.75	180.69	. 576	. 5.465607	8543	311856.24	176.22
. 527	-504 1742	8756	285313.39	180.60	. 577	. 54741.48	8539	312152.41	175.12
. 528	. 5050495	8752	285613.95	180.51	. 578	. 5482685	8534	312448.49	175.03
- 529	. 5059245	87.77	2859 I4.41	180.43	- 579	- 549 1217	8530	$312744 \cdot 47$	175.94
0.530	0.5067990	8743	290214.80	180.34	0.580	0.5499744	8525	3I 3040.37	175.85
. 531	. 5076731	8739	290515.09	180.25	. 581	. 5508267	8521	313336.17	175.76
. 532	. 5085468	8735	290815.30	180.16	. 582	. 5516786	8516	31 3631.88	175.66
. 533	. 5094200	8730	29 II I5.42	180.07	. 583	. 5525300	8512	313927.50	175.57
. 534	. 5102928	8726	29 I4 I5.45	179.99	. 584	. 553 3810	8508	314223.03	175.48
0.535	0.5111652	8722	29 I7 15.39	179.90	0.585	0.5542315	8503	314518.46	175.39
. 536	. 5120372	8717	292015.24	179.81	. 585	. 5550816	8499	314813.80	175.30
. 537	. 5129087	8713	2923 15.01	179.72	. 587	. 5559313	8494	315109.05	175.20
. 538	. 5137798	8709	292514.69	179.63	. 588	. 5567804	8490	315404.21	175.11
- 539	. 5146505	8705	292914.28	179.55	. 589	. 5576292	8485	315659.27	175.02
0.540	0.5155207	8700	$2932 \begin{array}{lllll} & 13.78\end{array}$	179.46	0.590	0.5584775	8481	315954.25	174.93
. 541	. 5163905	8696	$2935 \quad 13.20$	179.37	. 591	. 5593253	8476	320249.13	174.83
. 542	. 5172599	8692	2938 12.52	179.28	. 592	. 5601727	8472	320543.91	174.74
. 543	. 5181289	8687	2941 II .76	179. 19	- 593	. 5610196	8467	320838.61	174.65
. 544	. 5189974	8683	294410.91	179.10	- 594	. 5618661	8463	32 II 33.21	174.55
0.545	0.5198655	8679	294709.96	179.01	0.595	0.562 .7122	8458	321427.71	174.46
. 546	. 5207332	8675	295008.93	178.93	. 596	. 5635577	8454	3217 22.13	174.37
. 547	. 5216004	8570	295307.81	178.84	- 597	. 5644029	8449	322016.45	174.27
- 548	. 5224673	8666	295606.61	178.75	. 598	. 5652476	8445	322310.68	174.18
- 549	. 5233336	8662	295905.31	178.66	. 599	. 5660918	8440	$32 \quad 2604.81$	174.09
0.550	0.5241996	8657	300203.92	178.57	0.600	0.5669356	8436	$32 \quad 28 \quad 58.85$	173.99
\square	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(e^{6}\right)-90^{\circ}$	u	-	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$		$2 \tan ^{-2}\left(\mathrm{e}^{4}\right)-90^{\circ}$	wsech u

The Gudermannian.

4	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{Fo}^{\prime}$	ad u	$\omega \mathrm{F}_{0}{ }^{\prime}$
0.600	0.56693	8	322858.85	173.99	0.650	0.6085398	8205	345200.34	24
. 601	. 5577789	8431	323152.80	173.90	. 651	. 6093600	8200	345449.52	169.14
. 602	-5686218	$8+26$	323446.66	173.81	. 652	. 6101798	8195	345738.62	169.04
. 603	. 5694642	$8+22$	323740.42	173.71	. 653	. 6109991	8191	350027.61	168.93
. 604	. 570306 I	8417	324034.09	173.62	. 654	.6II 8179	8186	350316.51	168.85
0.605	0.5711476	8413	324327.66	173.53	0.655	0.6126363	8181	350605.31	168.75
. 605	. 5710887	8408	3246 21.14	173.43	. 656	. 6134542	8177	350854.01	168.66
. 607	. 5728293	8404	3249 I4. 52	173.34	. 657	. 6142710	8172	35 II 42.62	168.56
. 608	. 5736594	8399	325207.82	173.24	. 658	. 6150885	8167	351431.13	168.46
. 609	. $57+5091$	8395	3255 OL. 1	173.15	. 659	.6I5 905I	8163	351719.54	168.36
0.610	0.5753484	8350	325754.12	173.06	0.660	0.6167211	8158	$35 \quad 20 \quad 07.86$	168.27
. 611	. 5751871	8385	330047.13	172.96	. 651	. 6175366	8153	352256.08	168.17
. 612	. 5750255	8381	$3303+0.04$	I72.87	. 662	. 6183517	8148	352544.20	168.07
. 613	. 3758533	8376	330632.86	172.77	. 663	. 6191663	8 I 44	$35 \quad 28 \quad 32.22$	167.97
. 614	. 5787007	8372	330925.59	172.68	. 664	. 6199804	8139	353120.14	167.88
0.615	0.5795377	8367	331218.22	172.59	0.655	0.620794 T	8134	353407.97	S
. 616	. $58037+1$	8363	331510.76	I72.49	. 655	. 6216073	8129	353655.70	167.68
. 617	. 5812102	8358	33 I8 03.20	172.40	. 667	. 6224200	8125	353943.34	167.58
. 618	. 5820457	8353	332055.55	172.30	. 668	. 6232322	8130	354230.87	167.49
. 619	. 5828809	8349	332347.81	172.21	. 669	. 6240440	8115	354518.31	167.39
0.630	0.5837155	83	332539.97	I72. II	0.670	0.6248553	8110	354805.65	167.21
. 6	. $58+5497$	8310	332932.03	172.02	. 671	. 625666 I	8106	355052.89	167.19
. 622	. 5853834	8335	333224.00	171.92	. 672	. 6264764	8 ror	355340.03	I67.09
. 623	. $585 \quad 2167$	8330	333515.87	171.83	. 673	.6272863	8096	355627.08	167.00
. 624	. 5870495	8326		171.73	. 674	. 6280956	8091	355914.03	I66.90
0.625	0.58788 I9	8321	334059.34	171. 67	0.675	0.6289046	8087	360200.83	166.83
. 625	. 5887137	8317	334350.93	171.54	. 676	. 6297130	8082	360447.63	166.70
. 627	. 5895152	8312	334642.42	171.45	. 677	. 6305209	8077	360734.28	166.53
. 628	. 590376 I	8307	334933.82	171.35	. 678	. 6313284	8072	361020.84	165.51
. 629	. 5912066	8303	335225.12	171.26	. 679	.6321354	8068	36 I3 07.29	166.45
0.630	0.5920367	8298	335516.33	171.16	0.680	0.6329420	8063	36 I5 53.65	166.3I
. 631	. 5928662	8293	335807.44	171.06	.681	. 6337480	8058	36 I8 39.91	166.21
. 632	. 5936954	8289	340058.46	170.97	. 682	. 6345536	8053	362126.07	166. 11
. 633	. 5945240	8284	340349.38	170.87	. 683	. 6353587	8049	3624 I2.I4	I66.01
. 634	. 5953522	8280	370640.20	170.78	. 684	. 6361633	8044	362658.10	165.92
0.635	0.5961799	8275	340930.93	170.68	0.685	0.6369675	8039	362943.97	165.82
. 636	. 5970072	8270	341221.56	170.59	. 686	. 637771 I	8034	363229.74	165.72
. 637	. 5978339	8266	341512.10	170.49	. 687	.6385743	8029	$3635 \quad 15.41$	165.62
. 638	. 5986603	8261	341802.54	170.39	. 688	. 6393770	8025	$3638 \quad 00.98$	165.52
. 639	. 599486 I	8256	342052.89	170.30	. 689	. 6401792	8020	364046.45	165.42
0.640	0.6003115	8252	342343.14	170.20	0.690	0.6409810	8015	364331.82	165.32
. 611	. 6011364	82.47	342633.29	170.11	. 691	. 6417823	8010	3646 I7.09	165.22
. 642	. 6015609	82.12	342923.35	170.01	. 692	. 6425830	8006	364902.27	165.13
. 643	.60278 .49	8238		169.91	. 693	. 6433834	8001	$365147 \cdot 34$	165.03
. 644	.6036084	8233	343503.17	169.82	. 694	. 6441832	7996	365432.32	164.93
0.645	0.6044315	8228	343752.94	169.72	0.695	0.6449825	7991	365717.20	164.83
. 6	. 605254 I	8	314042.61	169.62	. 696	. 6457814	7986	3700 01. 98	164.73
. 647	. 6060762	8219	344332.19	169.53	. 697	. 6465798	7581	370246.66	164.63
. 648	. 6068979	8214	344621.67	169.43	. 698	. 6473777	7977	370531.24	164.53
. 649	. 6077190	8210	3449 I1.05	169.33	. 699	. 648 I751	7972	370815.72	164.43
0.650	0.6085398	8205	345200.34	169.24	0.700	0.6489721	7967	37 II 00.10	164.33
u	$2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$	sechu	$2 \tan ^{-1}\left(e^{a}\right)-90^{\circ}$	w sech 4	u	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$	echu	$2 \tan ^{-1}\left(e^{00}\right)-90^{\circ}$	ω sech 4

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{v}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega F_{u}{ }^{\prime}$
0.700	0.6489721	7967	37 II 00.10	164.33	0.750	0.6882014	7724		32
. 701	. 6497685	7962	$3713+4.38$	164.23	. 751	. 6889735	7719	392830.98	
. 702	. 6505645	7957	371628.57	$16+13$. 752	. 6897451	7714	393110.15	159.11
. 703	. 6513600	7953	37 19 12.65	$16+.03$. 753	. 6905163	7709	393319.21	159.01
. 704	. 6521550	79+8	37 21 56.63	163.93	. 754	. 6912870	7704	393628.18	158.91
0.705	0.6529496	79	372440.52	153.84	0.755	0.6920572	7690	393907.04	158.81
. 705	. 6537436	7938	372724.31	163.74	. 755	. 6928269	7694	394145.80	158.71
. 707	. 6545372	7933	373007.99	163.64	. 757	. 693 595I	76 co	$39+424.46$	158.6I
. 708	. 6553303	7928	373251.58	163.54	. 758	. $69+3648$	7685	$39+703.01$	158.51
. 709	. 656 I229	7924	373535.06	163.44	. 759	. 6951330	7580	394941.47	158.40
0.710	0.6569150	7919	373818.45	163.34	0.760	0.6959007	2675	395219.82	158.30
. 711	. 6577067	7914	374101.74	163.24	. 761	. 6966679	7670	395458.07	158.20
. 712	. 6584978	7909	$3743+4.92$	163.14	. 752	. 6974347	7665	395735.23	158.10
. 713	. 6592885	7904	374628.01	163.04	.763	. 6982009	7660	4000 It .28	158.00
. 714	. 6600787	7859	3749 I1.00	162.94	. 764	. 6989667	7555	400252.22	157.50
0.715	0.6608584	7895	375153.89	162.84	0.765	0.6997319	7650	400530.07	157.80
. 716	. 6616576	78 CO	375436.68	162.74	. 766	.7004957	7645	400807.81	157.69
. 717	. 6624453	7835	375719.36	162.64	. 7 ¢ 7	. 7012510	7540	40 10 45.46	157.59
. 718	. 6632346	7880	3800 OI. 95	I62.54	. 708	. 7020218	7635	40 I3 23.00	157.49
. 719	. 6640223	7875	380244.44	152.44	. 750	. 7027880	7530	401600.44	157.39
0.720	0.6648096	7870	$38 a_{5} 26.83$	162.34	0.770	0.7035508	7625	$4018 \quad 37.78$	157.29
. 721	. 665 5964	7865	380809.11	162.24	. 771	. 704313 I	7520	402115.01	157.19
. 722	. 6663827	7861	38 10 51.30	162.14	. 772	. 7050750	7616	402352.15	157.08
. 723	. 6671685	7856	38 I3 33.39	162.04	. 773	. 7058363	751 II	$4025 \quad 29.18$	156.98
. 724	. 6679539	7851		16 I .94	. 774	. 706597 I	7506	402906.11	156.88
0.725	0.6687387	7846	38 I8 57.26	161.84	0.775	0.7073574	7601	403142.94	156.78
. 726	. 659523 I	7841	382139.05	16 I .74	. 775	. 7081173	7596	403419.67	156.68
. 727	. 6703059	7836	382420.73	16 I .64	. 777	. 7088756	7591	403656.29	156.57
. 728	. 6710903	783 I	382702.32	16I.54	. 778	. 7096354	7585	403932.82	156.47
. 729	. 6718732	7827	$38 \quad 2943.80$	16I. 43	. 779	.710 3938	7581	$40 \quad 4209.24$	156.37
0.730	0.6726556	7822	38 32 25 19	16 I .33	0.780	0.7111516	7576	$404445 \cdot 56$	156.27
.73I	. 6734376	7817	383506.47	16 I .23	. 781	. 7119090	7571	404721.77	156.17
. 732	. 6742190	7812	383747.65	16I. 13	. 782	. 7126659	7566	404957.89	156.06
. 733	. 6750000	7807	381028.74	161.03	. 783	.713 4223	7561	405233.90	155.96
. 734	. 6757804	7802	384309.72	160.93	. 784	.714 1781	7556	405509.8 I	155.85
0.735	0.6765604	7757	384550.60	160.83	0.785	0.7149335	7551	405745.62	155.76
. 735	. 6773399	7792	384831.38	160.73	. 785	.715 6884	7546	410021.33	155.66
. 737	. 6781189	7788	385112.06	160.63	. 787	. 7164428	7541	410256.94	${ }^{1} 55.55$
. 738	. 6788974	7783	3885352.64	160.33	. 788	. 7171967	7537	410532.44	155.45
. 739	. 6796754	7778	385633.12	160.43	. 789	.717 9501	7532	4I 0807.84	I55.35
0.740	0.6804530	7773	$38 \quad 59.13 .50$	160.33	0.790	0.7187030	7527	41 IO 43.14	${ }_{1} 55.25$
. 741	. 6812300	7768	39 O1 53.77	160.23	. 791	. 7194554	7522	4113180.33	155.15
. 742	. 6820065	7763	390433.95	160.13	. 792	. 7202073	7517	41.15153 .43	155.04
. 743	. 6827826	7758	3907 I4.02	160.02	. 793	. 7209588	7512	41 I 828.42	154.94
. 744	. 6835582	7753	3909 54.00	159.92	. 794	.721 7097	7507	4 I 2103.3 I	154.84
0.745	0.6843333	7748	$\begin{array}{llll}39 & 12 & 33.87\end{array}$	159.82	0.795	0.7224601	7502	412338.10	154.74
. 746	. 6851079	7744	391513.64	159.72	. 796	. 7232101	7497	412612.78	154.63
. 747	. 6858820	7739	391753.31	159.62	. 797	.7239595	7492	412847.36	154.53
. 748	. 6856536	7734	$\begin{array}{llll}39 & 20 & 32.88\end{array}$	159.52	. 798	.7247084	7487	413121.84	154.43
. 749	. 6874287	7729	392312.35	159.42	. 799	.7254569	7482	413356.22	154.33
0.750	0.6882014	7724	392551.72	159.32	0.800	0.7262048	7477	413630.50	154.22
-	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(60^{\circ}\right)-900$	*sech :	a	$2 \tan ^{-3}\left(e^{(4)}\right)-\frac{\pi}{2}$	weech n	$2 \tan ^{-2}\left(e^{(0)}\right)-90^{\circ}$	m mech a

The Gudermannian.

u	od u		gu			gd	${ }^{*} \mathrm{FFO}^{\prime}$	odu	$\omega \mathrm{F}_{0}{ }^{\prime}$
	20,4		$41^{\circ} 36{ }^{\prime} 30.5$	154.22	0.850	0.7629677	7228	$43^{\circ} 42^{\prime} 53 \prime \prime 38$	149.09
	. 7269523	7472	413904.67	154.12	. 851	. 7536902	7223	434522.41	
. 832	. 7276992	7467	414138.74	154.02	. 852	. 7544122	721	4347 51. 34	
. 803	. 7284457	7462	41412.71	153.92	. 83	.765 1338	7213	435020.17	
. 804	. 7291916	7457	414646.57	153.81					
0.8	0.	7452	41	153	0.855	0.765 7754	203	435517.52	
	- 730	744	415154.00	153.	. 856	. 7678295	7198	435746.04	
	. 73142505	74.2	415427.56	153.	. 857	. 7580149	3	$\begin{array}{llll}44 & 00 & 1+45 \\ 4 & 02 & 42.76\end{array}$	
	. 7321705	7437	1157 or.or	153		. 7587340			
. 809	. 7329140	7432	11593						
0.810	0.73	7427	420207.62	153.20	0.	0.770	88	$40079 . \mathrm{cs}$.05
81	. 7343995	$7+22$	12 ot 40.76	I53.10	. 861	. 770	83		
	. 7351414	17	420713	15		. 7716051			
	. 735	7412 $7+07$	$\begin{array}{llll}42 & 09 & 40.75 \\ 42 & 12 & 19.59\end{array}$	152.79	. 864	.773 0377	7158	41730.48	
$\begin{array}{r}0.81 \\ .81 \\ \hline 1\end{array}$	0.737 .738	O2	421452.33 421724.96	152			718	$4{ }^{4} 2225.56$	
	. 73888439	7332	421957.50	152	. 867	. 7751829	113	442452.94	33
. 818	. 7395829		422229.93	152		. 7758959	7138	442720.22	
. 8	. 740		4225		. 869		7133	442947.40	147.13
	0.7	7378	42	152.17	0.870	0.7773235	8	443214.48	
	. 74	7373	123006.60	152.07	. 871	. 77880360	23	$44344 \mathrm{I} \cdot 45$	
	. 7425339		423238.62	${ }^{151 .}$	72	. 778	8		
	. 743	7363	423510.53						
	.744		4237					4	
0.825	0.7447420	7353	42	151.66		0.780 8812		31	
	. $7+5$		424	151.55		. 781	03		
	. 746	7343 7338	42	I			7003 7088		
	-7476790	33	425019.87	${ }_{151.25}$. 879	. 7837184	708	$44 \begin{array}{ll}4 & 13.52\end{array}$	
	0.7	7328	425251.05	15 I.	0.880	0.7844264	78		
. 8	. 749	7323	425522.16	151.04		. 785		445905.50	8
	-749	8	425733.15	150	. 882	. 785841	7068	45 o	
	. 750		4300	${ }^{150.84}$. 788			
. $83+$.751 3391	7308	4302	150.		. 7872536	058	450522	
0.835	0.752	7303							145.48
	. 753			150.		. 7	704		
			43 Io 25.56	150.		. 780	703		
	. 754	728	43 I2 56.93			. 7900728	7038	45 I6 0.4.21	
9	. 754	7283	4315	${ }^{150.22}$. 889	. 790776	703	45 I8 29.32	
	0.755		+3 17 57.37	150.12	0.890	0.7914794	7028	45 20 54.34	
. 8	. 7564123		432027.43	150.01	. 891	. 7921819		45	
	. 7571694	72	432257.39	IT9.	. 892	. 7928839	7018	45254.05	
. 8	. 7578959	725	432527.25	I49.	. 8	. 793585	7013 7008	452808.76 453033.36	
. 8	-7586219	725	4327	I49.70		-75		45	
	0.759		433026.66	I49.60		0.79		453257.85	,
	. 76000725	72	433256.21	I49.50	. 896	. 79	6998	453522.25	. 34
	. 760 7970	-	433525.65	IT9.	. 89	. 79		453746.54	
. 8	.7615211 .7622416	723	43 43 40 40 24.24	149.29 I49.19	. 898	.797 .797 784 8	6983	$\begin{array}{llll}45 & 40 & 10.73 \\ 45 & 42 & 34.85\end{array}$	
0.850	0.7629677	7228	434253.3	149.09	0.90	0.7984823	6978	45	3.9
	$2 \tan ^{-1}\left(\mathrm{er}^{\mathrm{u}}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(\mathrm{ex}^{\text {a }}\right.$) -90°	ω sech u		$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{a}}\right)-\frac{\pi}{2}$	sech 4	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{a}}\right)-90^{\circ}$	a sech u

The Gudermannian.

4	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}^{\prime}$	u	gd u	$\omega F_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{\mathrm{J}}{ }^{\prime}$	
0.900	0.7984823	6978	$45^{\circ} 44^{\prime} 58^{\prime \prime} .80$	1.43 .93	0.950	0.8327479	6728	$47^{\circ} 42^{\prime} 46^{\prime \prime} .58$	138.78	
. 901	. 7991798	6973	454722.67	1.33 .83	. 951	. 8334205	6723	474505.31	138.68	
. 902	. 7998769	6968	454946.45	143.72	. 952	. 8340726	6719	474723.94	138.38	
. 903	. 8005734	6963	$45 \quad 52$ 10.12	I 43.62	. 953	. 8347642	6714	474942.47	I38.48	
. 904	. 8012695	6958	455433.69	I 43.52	. 954	. 8354353	6709	475200.89	138.37	
0.905	0.8019650	6953	$45 \quad 5657.16$	I43.42	0.955	0.8361059	6704	4754 I9.22	I38.27	
. 906	. 8026601	6948	455920.52	I43.31	. 956	. 8367760	6699	475637.44	I38.17	
. 907	. 8033516	6743	46 O1 43.78	I43.2I	. 957	. 8374.456	6654	475855.55	138.07	
. 908	. 80404807	6938	460406.54	I43.11	.988	. 8381147	6689	48 O1 I3.57	137.66	
. 909	. 8047422	6933	460630.00	143.00	.953	. 8387833	6684	480331.48	137.86	
0.910	0.8054353	6928	460852.95	142.90	0.950	0.83945 I 4	6679	480549.29		
. 911	. $80612 \overline{7} 8$	6923	16 II 15.79	142.80	.961	. 8 ¢0 1191	6574	480807.00	137.65	
. 912	. 8058198	6918	461338.54	I 42.69	. 962	. $8: 70735$	6569	43 10 $2+.60$	137.55	
.913	. 8075114	6913	46 I6 OI. 18	I 12.59	.963	. 8141528	6664	481242.10	137.45	
-914	. 8082024	6908	46 I8 23.72	I. 42.49	. 964	. 8421190	6659	48 I4 59.50	137.35	
0.915	0.8088830	6903	462046.16	I42.38	0.965	0.8427845	6554	48 I7 16.80	137.25	
. 916	. 8395830	6898	462308.49	I42.28	. 966	. 8434497	6649	48 I9 33.99	137.14	
.917	. 8102726	6893	462530.72	142.18	. 967	. 844 II4 4	66.4	18215 I .09	137.04	
. 918	. 8io 9516	6888	462752.85	I $12 . \mathrm{c} 8$. 958	. 8147785	6639	482408.08	135.94	
. 919	.8II 6502	6883	4630 I 4.87	1.41.97	. 95	. 8454422	6534	$48 \quad 2624.96$	136.84	
0.920	0.8123383	6878	463235.79	141.87	0.970	0.8461053	6629	4 S 284 4 .75	I36.73	
. 921	. $\mathrm{SI}_{13} 0258$	6873	463458.61	141.77	. 971	. 8467683	6524	+8 2058.43	I36.63	
. 922	. SI3 7129	6858	463720.33	141. 66	. 972	. 8477301	6519	483315.01	I35.53	
. 923	. 814383	6853	463941.94	1.41. 56	. 973	. 8480918	6614	+835 31.49	136.43	
. 924	. 8150855	6858	464203.45	141.46	. 974	. 8487530	6609	-8 3747.87	136.32	
0.925	0.8157710	6853	464424.85	141.35	0.975	0.849 4135	6504	484004.14	136.22	
. 926	. 8164561	6848	464646.16	I4I. 25	. 976	. 8500738	6599	484220.31	135.12	
. 927	.817 I405	68	164907.35	I.41. 15	. 97%	. 8507335	6594	484436.38	136.02	
. 928	.817 8247	6838	465128.45	141.05	. 978	. 8713927	6589	$48+653.3 \div$	135.92	
. 929	. 8185083	6833	465349.45	140.94	. 979	.852 0514	6584	484908.21	135.81	
0.930	0.8191913	6828	$46 \quad 5610.34$	140.84	0.980	0.8527096	6579	485123.57	135.7 I	
. 931	. 8198739	6823	465831.13	140.74	. 981	. 8533673	6574	-8 53393.63	135.51	
. 9	. 8205560	6818	470051.81	140.63	.982	. 8570245	6570	485555.19	135.51	
. 933	.82I 2375	6813	470312.40	140.53	.983	. 85468 Iz	6565	485810.64	135.40	
. 934	.821 9186	6808	$47 \quad 0532.88$	I 40.43	. 984	. 8553374	6560	行 0025.00	135.30	
0.935	0.8225992	6803	470753.25	I 10.33	0.985	0.855993 I	6555	490241.25	135.20	
. 935	. 8232792	6758	47 10 13.53	1.40 .22	. 986	. 8566483	6550	490456.40	135.10	
. 937	. 8239588	6793	471233.70	140.12	-987	. 8573030	6545	4907 II. 44	I35.00	
. 938	. 8246379	6788	47 I4 53.77	I40.02	. 988	. 8579573	6540	490926.39	134.89	
. 939	. 8253164	6783	47 I7 13.74	139.91	. 989	. 8586110	6535	49 II 41.23	134. 20	
0.940	0.8259945	6778	47 I9 33.60	139.8I	0.990	0.8592642	6530	49 I3 55.97	134.69	
.94I	. 8266721	6773	472153.36	139.71	. 991	. 8599170	6525	49 16 10.61	134.59	
. 942	. 8273492	6768	472413.02	I39.6I	. 992	. 8505692	6520	$4918 \quad 25.15$	134.-9	
-943	. 8280257	6763	472632.57	139.50	. 993	. 8612210	6515	492039.58	134.38	
. 944	. 8287018	6758	472852.02	139.40	. 994	.851 8723	6510	492253.92	134.28	
0.945	0.8293774	6753	47 31 II. 37	139.30	0.995	0.8625230	6505	492508.15	134.18	
. 946	. 8300525	6748	473330.62	139.20	. 996	. 8631733	6500	$4927 \quad 22.28$	135.08	
- 947	. 8307271	6743	473549.76	139.09	. 997	. 8638331	6495	492936.30	133.98	
- 948	. 8314012	6738	473808.80	138.69	. 998	. 8644724	6490	493150.23	133.87	
. 949	. 8320748	6733	474027.74	I 38.89	. 999	. 865 I112	6485	493404.05	133.77	
0.950	0.8327479	6728	474246.58	138.78	1.000	0.8657695	6481	493617.77	133.67	
\%	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$	u	$2 \tan ^{-1}\left(e^{x}\right)-90^{\circ}$	mosech a	\\|	$2 \tan ^{-1}\left(e^{4}\right)-\frac{\pi}{2}$	sech 8	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	msech u	

The Gude:mannian.

a	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{Fo}^{\prime}$
1.000	0.855	6481	$49{ }^{\circ} 36^{\prime} 17.77$	133.67	I. 050	0.8975576	6235	$51^{\circ} 25^{\prime} 34.55$	128.6I
1.000 .001	- $865+173$	6476	49 49 1	133.57	. 051	. 8081809	6230	512743.11	128.51
. 002	. 8570646	6471	494041.91	133.47	. 052	. 8938037	6225	512951.57	128.41
. 003	. $857 \mathrm{7I} 4$	6465	$49+2 \leq 8.33$	133.37	. 053	. 8994260	622 I	513159.92	128.3T
. 004	. $8=83518$	6.451	$49+511.64$	133.26	. 054	. 9000.478	6216	513408.18	128.2I
1.00	0.857	645	494724.85	133.16	1. 055	0.9006591	6211	513616.34	I28.11
. 1.00	.879	64	494937.97	133.06	. 056	. 9012900	6206	513824.40	128.01
. 007	. 8702938	6445	195150.68	132.9 ¢	. 057	. 9015103	6201	514032.36	127.9 I
. 008	. 870 g 38 l	$6+11$	495403.89	132.85	. 058	. 8025302	6196	514240.2 I	127.8 I
. .009	. 87 I 5820	6436	495616.69	132.76	. 059	. 903 I496	6191	514447.97	127.71
1.010	0.872 2254	6	495829.40	132.65	1.050	0.9037585	6187	514655.63	127.6I
. 1.01 I	.872 858	6426	$5000+2.00$	132.55	. 051	. $50+3859$	6 I 22	514903.18	127.51
. 012	. 8735106	6421	500254.50	132.45	. 053	. 9050048	6177	515110.64	127.41
. 013	. $87+1525$	6416	500506.90	132.35	. 053	.905 6222	6172	515318.00	127.31
. 014	. $87+7939$	6412	300719.20	132.25	. 064	. 9062392	6167	515525.25	127.2I
1.01	$0.875+348$	6407	500931.40	132.15	1.055	0.9068557	6162	515732.41	127.11
,	.8750752	6402	50 II 43.49	132.04	. 065	. 9074716	6157	515939.46	127.01
. 0	. 8767152	6397	501355.49	131.94	. 057	. 9080871	6153	52 O1 46.42	126.91
. 018	. 8773515	6392	30 16 07.38	131.84	. 0	. 9097022	6148	520353.27	
. 019	. 8775936	6387	5018 I9.17	131.74	. 069	.9093167	6143	520500.03	125.71
1.020	0.8786320	6382	502030.86	131.64	1.070	0.9099307	6138	520806.68	125.61
. 0	. 8792700	63%	502242.45	131.54	. 071	. 9105443	6133	52 I0 13.24	126.51
. 0	. 879 col4	6372	502453.94	131.44	. 072	. 9111574	28	521219.70	125.41 126.31
. 02	. 8805141	6367	502705.32	131.34	. 073	.9II 7699	6123 6118	$\begin{array}{llll}52 & 14 & 26.05 \\ 52 & 16 & 32.31\end{array}$	126.31 I25.21
. 024	.831 1809	6302	5029 16.51	131.23	.074	.9123821	6118	52 16 32.31	21
1.025	2.881 8169	6357	503127.79	131.13	1.075	0.9129937	6114	52 18 38.46	126.11
	. 8824524	6353	503338.87	131.03	.076	. 9136048	109	522044.52	126.01
. 027	. 88300774	6348	503549.85	130.93	. 077	. 9142155	6104	522250.48	
. 028	. 8837219	6313	503800.73	130.83	. 078	. 9148256	6099	522456.33	125.81
. 029	. $83+3560$	6338	5040 II .51	130.73	. 079	. 9154353	6094	522702.09	125.71
1.030	$0.88 \div 9895$	633	504222.19	130.63	1.080	0.9160445	6090	522907.75	125.6 I
. 031	. 8856226	632	$50+32.75$	130.53	. 08 I	. 9166532	6085	52 31 13.30 52 33 18.76	125.51 125.4 I
. 032	. 8852551	6323	$50+643.24$	130.42	. CB_{2}	. 9172515		$\begin{array}{llll}52 & 33 & 18.76 \\ 52 & 35 & 24.12\end{array}$	
. 033	. 8858872	6318	504853.61	130.32	.083	.917 8693	6075 6070	$\begin{array}{llll}52 & 35 & 24.12 \\ 52 & 37 & 29.38\end{array}$	125.31 125.21
. 034	. 8875188	6313	505103.89	130.22	. 08	. 9184765	6070	523729.38	125.21
1.035	0.888 I 499	6308	5053 I 4.06	130.12	1.085	0.9190833	6065	523934.54	125. II
. 036	. 8887805	6304	505524.13	${ }^{1} 30.02$. 085	. 9196896	6061	524139.60	125.01
. 037	. $889+105$	6299	505734 -10	129.92	.087	. 9222954	6	524344.56	124.01
. 038	. 8900102	6294	505943.97	129.82	. 098	. 9209008	6051	524549.12	124.8I
. 039	. 8906693	6289	51 OI 53.74	129.72	. 089	.921 5056	60.46	5247 54.18	$12+71$
1.040	0.8912980	628	510403.41	I 29.62	1.090	0.922 1100	6041	524958.85	124.6 I
. 041	. 8919262	627	510612.58	129.52	. 091	. 9227139	6037	$\begin{array}{lllllll}52 & 52 & 03.41\end{array}$	124.51
. 042	. 8935538	6274	510822.44	129.42	. 092	. 923 3173	6032	525407.87	124.41
. 043	. 893 I810	6269	511031.81	129.32	. 093	.9239203	6027	$5256 \text { I2.24 }$	124.32
. 044	. 893 8077	6264	511241.07	I29.21	. 094	. 9245227	6022	5258 I6.50	124.22
T. 045	0.8944339	6260	51 If 50.24	I29.11	1.095	0.9251247	17	530020.67	124.12
. 046	. 8950596	6255	511659.30	129.01	. 096	.9257262	6013	530224.74	124.02
. 0.47	. 8956848	6250	511908.25	128.91	. 097	.925 3272	6008	530428.70	
. 048	. 8963096	6245	512117.12	128.81	. 098	. 9269278	6003	530632.57	123.82
.04)	. 8969338	6240	512325.88	128.71	. 099	.9275278	5998	530836.34	123.72
I. 050	0.8975576	6235	512534.55	128.61	I. 100	0.9281274	5993	53 10 40.01	123.62
u	$2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(e^{8}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{4}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	ω sech u

The Gudermannian.

и	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\text {a }}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 100	0.9281274	5993	$53^{\circ} 10^{\prime} 40.01$	123.62	I. 150	0.9574980	5756	15	
. 101	. 9287265	5989	531243.59	123.52	.15I	. 9580734	5751	54 5336.82	. 62
. 102	.929 325I	5984	531447.06	123.42	. 152	.9586482	5746	5+ 5535.39	118.53
. 103	. 9299232	5979	531650.43	123.32	. 153	. 5592226	5712	$5+5733.87$	118.43
. 104	. 9305209	5974	$5318 \quad 53.71$	123.23	. 154	. 9597965	5737	5+ 5932.25	118.33
1. 105	0.931 II8I	5969	$\begin{array}{llll}53 & 20 & 56.89\end{array}$	123.13	I. 155	0.9603700	5732	55 OI 30.53	118.23
- 106	. 9317148	5955	532259.96	123.03	. 156	. 9609430	5727	550328.72	118.14
. 107	. 9323110	5960	532502.94	122.93	. 157	. 9615155	5723	550526.81	118.04
. 108	. 9329067	5955	3 27 05	122.83	. 158	. 9520875	5718	55 c 724.80	117.94
. 109	. 9335020	5950	532908.60	122.73	. 159	. 962659 I	5713	550922.69	117.85
I.IIO	0.9340968	5945	53 31 II. 29	122.63	I. 160	0.9632302	5709	53 II 20.49	117.75
. I	. 9346911	5941	533313.87	122.54	. 161	. 9638008	3704	5513 I8.19	117.65
. 112	. 93528.49	5936	533516.36	122.44	. 162	. $96+3710$	5699	$5515 \quad 15.80$	117.56
. II3	. 9358782	5931	533718.75	122.34	. 163	. 9649407	5695	551713.31	117.46
. 114	. 93647 II	5926	533921.03	122.24	. 164	. 9655099	5690	551910.72	117.36
1.115	0.9370635	5922	534123.22	122.14	I. 165	0.956 0787	5685	552108.04	117.27
16	. 9376554	5917	534325.32	122.04	. 166	. 9666470	5681	552305.26	117.17
. 117	. 9382469	5912	$534527 \cdot 3 \mathrm{I}$	122.94	. 167	. 967 21.8	5675	552502.38	117.07
. 118	. 9388378	5907	534729.21	121. 85	. 168	. 967782	5671	552659.41	116.98
. 119	. 9394283	5902	5349 31.00	121.75	. 169	.968 3491	5667	552856.34	II6.88
1.120	0.9400183	5898	535132.70	I21. 65	1. 170	0.9589155	5662	553053.17	
. 1	-940 6079	5893	535334.30	121. 55	. I71	. $959+315$	5657	553249.91	I16. 69
. 1	. 9411069	5888	535535.80	121.4	. 172	. 9700470	5653	553446.55	116.59
. 123	.941 7855	5883	535737.21	121. 35	. 173	.970 6120	5648	553643.10	I16.50
. 124	. 9423736	5879	535938.51	121.26	. 174	.971 1766	56	$\begin{array}{lllll}55 & 38 & 39.54\end{array}$	116.40
1.125	0.9429613	5874	54 OI 39.72	12I	I. 175	0.9717407	5539	554035.90	116.3I
	. 9435484	5850	540340.83	121.06	. 176	.9723043	563.4	554232.16	116.21
. 127	. 944 I351	586.	540541.84	120.c6	. 177	. 9728575	5629	$55 \div 28.32$	116.11
. 128	. 9447213	5860	540742.76	120.86	. 178	. 9734301	5625	554624.38	I16.02
. 129	. 9453070	5855	540943.57	120.77	. 179	. 9739924	5620	554820.35	115.92
I. 130	0.9458923	5850	54 II 44.29	120.67	1.180	$0.97+5542$	5615	555016.22	115.83
.13I	. 946477 I	58.5	54 I3 44.91	120.37	. 181	. 9751155	56 II	555212.00	115.73
. 132	. 9470514	5811	$541545 \cdot 43$	120.47	. 182	. 9756763	5606	553407.68	115.63
. 133	. 9476452	5836	541745.85	120.38	.183	.976237	5601	$\begin{array}{llll}55 & 56 & 03.27\end{array}$	115.54
. 134	. 9442286	5831	541946.18	120.28	. 184	. 9757956	5597	555758.76	II5.44
1.135	0.9488115	5826	542146.41	120.18	1.185	0.9773560	5592	555954.15	115.35
. 136	. 9493939	5822	542346.54	120.08	. 186	. 9779150	5588	56 or 49.45	115.25
. 137	. 9499758	5817	542545.58	119.98	. 187	. 9784735	5583	560344.66	115.16
. 138	. 9505573	5812	542746.51	119.89	. 188	.979 0316	5578	560539.76	115.06
. 139	.951 1383	5807	542946.35	II9.79	. 189	.9795892	5574	560734.78	II4.96
I. 140	0.9517188	5803	543146.09	119.69	I. 190	0.9801463	5569	560929.69	II4.87
. 141	. 9522683	5798	543345.74	II9.59	.19I	. 9807030	5564	56 II 24.51	114.77
. 142	. 9528784	5793	543545.28	II9.50	. 192	. 2812592	5560	561319.24	II4.68
. 143	. 9534575	5789	543744.73	119.40	. 193	-98i 8149	5555	561513.87	114.58
. 144	. 954 0361	5784	543944.08	119.30	.194	. 9823702	555 I	561708.41	114.49
I.I45	0.9546143	5779	54 41 $43 \cdot 34$	119.27	I. 195	0.9829251	5546	$56 \quad 1902.85$	114.39
. 146	.9551920	5775	544342.49	119.11	. 196	$.9834794$	5541	$56 \quad 2057.19$	114.30
. 1478	.955 7692	5770	$\left\lvert\, \begin{array}{llll}54 & 45 & 4 \mathrm{I} .55 \\ 54 & 47 \\ 40.5 \mathrm{I}\end{array}\right.$	119.01 118.91	. 197	$\begin{array}{ll}.984 & 0333 \\ .984 & 5858\end{array}$	5537	$\begin{array}{lll} 56 & 22 & 51.44 \\ 56 & 24 & 45.60 \end{array}$	114.20 114.11
. I 48	$\begin{array}{r}.956 \\ .956 \\ \hline 9222\end{array}$	5765 5760	54 47 54 49 39.31	118.91 118.82	. 198	. 9845858	5532	56 56 26 26 6.66	114.11 114.01
1.150	0.9574980	5756	545138.15	118.72	1.200	0.9856922	5523	$56 \quad 2833.62$	113.92
u	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	∞ sech a	H	$\operatorname{an}^{-2}\left(e^{x}\right)-\frac{\pi}{2}$	ech a	$2 \tan ^{-1}\left(e^{x}\right)-90^{\circ}$	wsech 4

The Gudermannian.

u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	4	gd u	$\omega \mathrm{F}^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$
						1.0127356	5295	$58^{\circ}{ }^{\prime \prime}{ }^{\prime} 31{ }^{\prime \prime} .72$	
1.200	0.9856922	55	33.62		1.250	1.0127350	5295	580320.89	109.23 109.13
. 20	. 9862443	551	563027.49	113.82	. 251	.O13 2649	5285	580509.98	109.13 109.04
. 202	. 9867959	5514	563221.25	113.73 II3.63	. 252	. 0137938	5288	$\begin{array}{lllll}58 \\ 58 & 06 & 58.98\end{array}$	$\begin{aligned} & 109.04 \\ & 108.95 \end{aligned}$
. 203	. 9873470	5509	563414.94	113.63	. 253	.014 3222	5282 5277		$\begin{aligned} & 108.95 \\ & 108.85 \end{aligned}$
. 204	.9878377	5504	563608.53	113.54	.254	. 01485	5277		
	0.9884479	5500	563802.02	I13.44	I. 255	1.0153777	5273	58 10 36.69	103.76
1.205	. 9889977	5495	563955.42	113.35	. 255	. 0159048	5269	581225.40	\%
. 207	. 9895470	549 I	$56+148.72$	113.25	. 257	. $016+314$	5264	58 I4 I4.03	
. 2	. 9500958	5486	564341.92	113.16	. 258	. 0169576	5250	58 16 02.56	108.49
. 209	. 9906442	5482	564535.03	113.06	. 259	. 0174833	5255	581751.00	108.39
1.210	0.591 1921	5477	564728.05	11	1. 260	I. 0180086	525 I	58 I9 39.35	108.30
. 211	. 9917396	5472	564920.97	112.83	. 251	. 0185335	5245	58 21 27.6I	
. 2	. 9922866	54	555113.80	112.78	. 262	. 0190578	5242	5882315.77	108.12
. 213	. 92 $^{2} 833 \mathrm{I}$	5453	565305.54	112.69	.263	. 0195818	5237	582503.84	108.03
. 214	. 9933792	$5+59$	5654 59.17	112.59	. 364	. 0201053	5233	582651.82	107.93
215	0.9939		56	112.50	I. 265	1.0206283	5228	582839.71	107.84
216	. 9944700	54	565844.17	112.40	. 266	. 0211510	5224	583027.50	107.75
. 217	. 995 or 4	5415	570036.53	112.31	. 267	. 0216731	5219		107.65
. 218	. 9955590	5140	570228.79	11	. 268	. 0221948	5215	583402.82	107.57
. 219	.9961028	5436	$57 \mathrm{c}+420.96$	II2	. 269	. 022716 I	5210	583550.34	107.47
1.220	0.9966462	543 I	570513.03	112.03	1. 270	1.0232369	5206	583737.77	107.38
. 221	. 9971891	$5+27$	570805.01	111.93	. 271	. 0237573	202	583925.10	107.29
. 2	. 9977315	5422	570956.90	III. 84	. 272	. 0242772	5197	584112.35	107.20
. 223	. 9332735	5	57 II 48.69	111.74	. 273	. 0247967	5193	584259.50	107.11
. 224	. 9988150	5413	57 I3 40.39	111.65	. 274	. 0253158	5188	$58+446.56$. 02
1.225	0.96	5.408	571531.99	III. 56	I. 275	1.0258344	518	58 4633.53	
. 225	. 9998967	5.0	571723.50	III. 45	. 275	. 0263525	5179	584820.41	
. 22	1.0004369	5399	571914.92	111.37	. 277	. 0268703	5175	585007.20	105.74
. 228	. 000 9766	5395	5721 or. 24	III. 28	. 278	. 0273876	5171	585153.90	
. 229	. 0015158	5350	572257.47	III.	. 279	. 0279044	5166	585340.50	106.56
1.230	1.0020546		572448.60	111.09	I. 280	1.0284208	5162	585527.02	
. 2,1	. 0025930	5381	$57 \quad 2639.64$	IIO.59	281	. 0289367	5157	58 57813.44	
. 232	. 0031303	5377	572830.59	110.50	. 282	. 0294523	5153	585859.77	106.29
. 233	. $0036=83$	5372	573021.45	110.81	. 283	. 0299673	5148	590046.01	106.19
. 234	. 0042033	5368	5732 I2.21	110.71	. 284	.0304819	5144	590232.16	105.10
1. 235	1.0047418	5,363	573402.88	110.62	I. 285	1.030996	5140	590418.22	or
. 236	. 0052779	5359	573553.45	110.53	. 286	.03I 5099	5 I 35	590604.19	
. 237	. 0258 S 35	5354	573743.93	110.43	. 287	. 0320232	5131	590750.06	105.83
. 238	. 0063187	534	$573934 \cdot 32$	I 10.34	. 288	. 0325360	5126	590935.85	105.74
. 239	. 0058834	5345	574124.61	110.25	.28=	. 0330485	5122	59 II 21.54	105.65
I. 240	1.0074177	5340	5743 I 4.82	110.15	I. 290	1.0335605	8	591307.15	105.56
. 241	.007 9515	5336	574504.92	110.05	. 291	. 0340720	5113	59 I4 52.66	105.47
. 242	. 0034840	53	574654.9	109	. 292	. 034583 I	5109	59 I6 38.08	105.38
. 243	. 0090178	5327	$5748+4.86$	109.88	. 293	. 0350938	5104	591823.41	105.29
. 2.44	. 0095503	5322	575034.69	109.78	. 294	.0356040	5100	592008.60	IOS
I. 245	1.010 0823	5318	575224.43	109.6	1.295	1.0361138	5096	592153.81	105.II
. 246	. 0106139	5313	575414.07	109.60	. 233	. 036623 I	5091	592338.87	105.02
. 247	.ori I450	5309	575603.02	109.50	. 297	. 0371320	5087	592523.84	104.93
. 218	.OII 6756	5304	575753.08	109.41	. 298	.0376405	5083	592708.72	104.83
. 249	. 0122058	5300	575942.44	109.32	. 299	. 0381485	5078	592853.5 I	104.74
I. 250	1.0127356	5295	58 OI 31.72	109.23	1.300	1.0386561	5074	593038.21	104.65
u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{a}}\right)-\frac{\pi}{2}$, u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u})}-90^{\circ}\right.$	ω sech u	-	$\left.2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2} \right\rvert\,$	w sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{a}}\right)-90^{-}$	ω sech u

The Gudermannian.

u	od u	$\omega F_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega F_{0}{ }^{\prime}$
1. 300	1.0386561	5074	$59^{\circ} 30^{\circ} 38^{\prime \prime} .21$	104.65	I. 350	1.0634837	4858	$60^{\circ} 55^{\prime} 59.11$	$100^{\prime \prime} 21$
. 301	. 0391633	5059	593222.82	104.56	. 351	. 0533859	4854	605739.43	100.12
- 302	. 0396700	5065	593407.34	104.47	. 352	. 2544546	4850	6059 19.51	100.03
. 303	. 0401763	5061	593551.77	104.38	. 353	. 0649393	4846	610059.50	99.95
. 304	. 0406822	5056	593736.10	104.29	. 354	. 0554237	48.1	610239.4 I	99.86
I. 305	1.041 1876	5052	593920.35	104.20	1. 355	1.065 9076	4837	610419.22	99.77
. 305	. 0416926	5048	594104.51	104. II	. 356	. 0563911	4833	610558.95	99.39
. 307	. 0421971	5043	594248.58	104.02	-357	. $06687+2$	4829	61 0738.59	99.60
. 308	. 0427012	5039	594132.56	103.93	. 358	. 0673568	4824	61 09 I8.15	99.51
. 309	. 0432049	5035	594616.45	103.84	. 359	. 0678390	4820	61 10 57.61	99.42
1.310	1.0437081	5030	594800.25	103.75	I. 360	1. 0683209	4816	611235.99	99.34
. 311	. 0442109	5026	594943.96	103.67	. 361	. 0588022	4812	61 I4 16. 29	99.25
. 312	. 0147133	5021	595127.58	103.58	. 362	. 0159832	4808	6I 1555.49	99.16
-313	. 0452152	5017	5953 II.II	103.49	.363	. 0597637	4803	$61 \begin{array}{llll} & 17 & 34.61\end{array}$	99.08
. 314	. 0457167	5013	595454.55	103.40	-364	.070 2439	4799	61 I9 13.64	c8.99
1.315	1.0462178	5008	595637.91	103.3 I	I. 365	1.0707236	4795	6 I 2052.59	98.90
. 316	. 0467184	5004	595821.17	103.22	. 365	. 07112028	4791	612231.45	98.82
. 317	. 0472185	5000	600004.34	103.13	. 367	. 0716817	4786	612410.22	58.73
- 318	. $0+477184$	4995	60 ol 47.43	103.04	. 368	. 0721601	4782	6 I 2548.90	
. 319	. 0482177	4991	600330.42	102.55	. 355	. 0726382	4778	612727.50	98.55
1.320	1.0487166	4987	$60 \quad 0513.33$	102.86	1. 370	I. 0731158	4774	6I 2906.01	98.47
. 321	. 049 2151	4983	600656.14	102.77	. 371	. 073 5929	4770	6 I 3044.44	98.38
. 322	. 0497131	4978	600838.87	102.68	. 372	. 0740597	4766	613222.78	98.30
. 323	. 0502107	4974	601021.51	102.59	-373	. 074 5460	4761	6134 or.03	98.21
. 324	. 0507079	4970	601204.06	102.50	. 374	. 0750220	4757	SI 3539.20	98.12
1.325	1.0512046	4905	60 I3 46.52	102.42	1. 375	1.0754975	4753	613717.28	98.04
. 326	. 0517009	4961	60 I5 28.89	102.33	. 376	. 0759725	4749	613855.27	97.95
. 327	. 0521968	4957	60 I7 II. 17	102.24	. 377	. 0764.472	4745	614033.18	97.86
. 328	. 0526923	4952	60 61853.37	102.15	-378	. 0769215	4740	6142 II.00	97.78
. 329	. 0531873	4948	602035.47	102.06	. 379	. 0773953	4735	614348.73	97.69
1. 330	1.0536819	44	602217.49	101.97	1. 380	1.0778687	4732	6 I 4526.38	97.61
. 33 I	. 0541760	4939	602359.41	101.88	. 381	. 0783417	4728	614703.94	97.52
. 332	. 0546698	4935	602541.25	101. 79	. 382	. 0788143	4724	614841.42	97.43
- 333	. 0551631	4931	602723.00	101.7I	-383	. 0792855	4720	615018.8 I	97.35
. 334	. 0556559	4927	602904.67	101.62	. 384	. 0797582	4715	615156.12	97.26
1.335	1.0561484	4922	603046.24	101. 53	I. 385	1.0802295	47 II	6I 5333.34	97.18
. 336	. 0566404	4918	603227.72	101. 44	-386	. 0807005	4707	615510.47	97.09
. 337	. 0571320	4914	603409.12	101. 35	-387	.081 1710	4703	$615647 \cdot 52$	97.01
. 338	. 0576231	4909	603550.43	101. 26	-388	.081 6411	4699	6158124.48	96.92
- 339	. 0581139	4905	603731.65	101. 18	-389	.0821107	4695	6200 OI. 36	96.83
1. 340	1.0586042	4901	$1 \begin{array}{llll}60 & 39 & 12.78\end{array}$	Ior.09	1.390	1.082 5800	4691	62 or 38.15	96.75
-341	. 0590940	4897	604053.83	101.00	-391	. 08310488	4686	620314.86	96.66
-342	. 0595835	4892	604234.78	100.91	. 392	.083 5173	4682	620451.48	96.58
- 343	. 0600725	4888	604415.65	100.82	. 393	.083 9853	4678	$\begin{array}{llll}62 & 06 & 28.01 \\ 62 & 08 \\ 04\end{array}$	96.49
- 344	. 06056 II	4884	604550.43	100.74	-394	. 0844529	4674	620804.46	96.41
I. 345	1.06I 0493	4880	604737.12	100.65	1. 395	1.0849201	4670	620940.83	96.32
. 346	.061 5370	4875	$60 \quad 49$ 17.73	100.56	. 396	. 0853868	4666	62 II 17.11	96.24
. 347	. 0620243	4871	605058.24	100.47	- 397	.085 8532	4662	621253.30	96.15
. 348	. 0625112	4867	605238.67	100.38	-398	. 0863192	4657	621429.41	96.07
. 349	. 0629977	4863	605419.01	100.30	. 399	. 0867847	4653	621605.44	95.98
I. 350	1.0634837	4858	605559.27	100.21	1.400	1.087 2498	4649	621741.37	95.90
0	$2 \tan ^{-1}\left(e^{a}\right)-\frac{\pi}{2}$	sech 1	$2 \tan ^{-2}\left(0^{a}\right)-90^{\circ}$	ω sech a	u	$\tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$	ech u	$2 \tan ^{-1}\left(e^{x}\right)-90^{\circ}$	sech x

The Gudermannian.

u	od u	$\omega F_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F},{ }^{t}$	${ }^{\prime}$	od u	$\omega \mathrm{F}$	gd	$\omega \mathrm{F}_{0}{ }^{\prime}$
					1. 450	1.109 9809	4447	$63^{\circ} 35^{\prime}$ 5I. 24	91.72
1. 400	1.0872198	4649	$\begin{array}{llll}62 & 17 & 41.37 \\ 62 & 19 \\ 17.23\end{array}$	95.90	1.451	. 1104314	4443	633722.92	91.64
. 401	.087 .088 1758 8	46	$\begin{array}{llll}62 & 19 & 17.23 \\ 62 & 20 & 53.00\end{array}$	95.71 95.73	-452	. 1108855	4439	6338 54.52	91.56
. 402	.088 6427	4637	622228.68	95.64	. 453	. III 3192	4135	634026.03	91.47
. 404	. 0891062	4633	622404.28	95.56	. 454	. III 7624	4431	634157.46	91.39
1.405	1. 0895693		622539.80	95.	1.455	I.II2	4427	634328.82	9I.3I
. 406	. 0900320	4625	622715.23	95.39	. 455	. 1126478	$4+23$	634500.08	91.23
. 407	. 0904942	462	622850.58	95.30	. 457	. II3 0899	+419	634631.27	91.15
. 408	. 090956 I	4616	623025.84	95.22	. 458	. 1135316	$+415$	634802.38	91.07
. 409	. 0914175	4612	623201.02	95.14	. 459	. 1139729	$4{ }^{1 I I}$	634933.40	
1.410	1.0918785	4608	6233 36.1I	95.05	I. 460	I.114 4138	4407	63 51 04.35	90.90
.	. 032339 I	4604	6235 II. 12	94.97	. 461	.II4 8543	4.403	635235.21	82
. 412	. 0927993	4600	623646.04	94.88	. 462	. II5 2944	4359	635405.99	90.74
. 413	.093 2591	4595	623820.88	94.80	. 463	. 115734 I	4395	635536.68	
. 414	. 0937185	4592	623955.64	94.71	.454	. 1161734	4391	$635707 \cdot 30$	90.58
1.415	1.0941775	4588	624130.31	94.	1.455	1.116 612t		635837.83	90.49
. 416	. 0946361	458	62430.4 .90	94.55	. 466	. II7 0509	4383	640008.29	50.41
-	. 0950942	4580	$62+39.40$	94.46	. 467	. I17 4890	4379	64 or 38.66	90.33
. 418	.095 5520	4576	624613.82	94.38	. 468	. 1179268	4375	640308.95	90.25
. 419	. 0960094	4571	624748.16	94.29	. 469	. 1183611	4372	640439.16	90.17
1.4	1.0064653	4567	624922.41	94.21	1.470	I. 1188011	4368	640609.29	90.09
. 421	. oc6 9228	4563	625056.58	94.13	. 471	. II9 2377	4364	640739.34	90.01
. 422	. 0973790	4559	625230.66	94.04	. 472	. II9 6738	4360	640909.31	89.03
-423	. 0978347	4555	625404.66	93.96	-473	. 120 1096	4356	641039.19	89.85
. 424	. 0982900	455 I	625538.58	93.88	. 474	. 1205450	4352	641209.00	
I. 425	1.0987449	454	625712.41	93.79	I. 475	1. 1209800	4348	641338.72	80.68
. 426	. 0991994	4543	625846.16	93.71	- 475	. 1214146	$43+4$	641508.37	89.60
. 427	. 0996536	4539	630019.83	93.62	. 477	.1218488	4310	641637.93	89.52
. 428	. 1001073	4535	63 or 53.4 I	93.54	. 478	. 1222826	4336	641807.41	
. 429	. 1005606	453 I	630326.91	93.46	. 479	. 122716 I	4332	64 I9 36.8I	89.36
I. 430	I.IOI OI34	4527	630500.3	93.37	I. 480	I. 123 I491	4328	642106.13	89.28
. 431	. 1014659	4523	630633.66	93.29	. 491	. 1235818	4325	642235.37	89.20
-432	. 1019180	4519	630806.91	93.21	. 482	. 124 0140	432 I	642404.53	89.12
. 433	. 1023697	4515	630940.08	93.13	. 483	. 12441459	4317	642533.61	89.04
. 434	. 1028210	45 II	63 II I3.16	93.04	. 484	. 1248774	4313	642702.61	
I. 435	1.103 2719	4507	631246.16		1.485	1.1253085	4309	642831.53	
. 436	. 1037223	4503	63 If 19.08	92.83	. 485	. 1257392	4305	643000.37	88.80
-437	. 1041724	4499	63 15 51.91	92.79	. 487	. 1261695	4301	643129.13	
. 438	. 1046221	449	63 I7 24.66	92.71	. 488	. 1265994	4297	$\begin{array}{lllll}64 & 32 & 57.81\end{array}$	
- 439	. 1050714	449 I	$63 \quad 18 \quad 57.33$	92.63	. 489	$.1270289^{\circ}$	4293	643426.41	. 6
I. 440	1.105 5202	4487	632029.92	92.54	I. 490	1. 127458 I	4290	$6435 \quad 54.93$	88.48
1	. 1039687	4483	632202.42	92.46	. 491	. 1278869	4286	$6437 \quad 23.37$	88.40
. 442	. 1064168	4479	632334.8	92.38	- 492	. 1283152	4282	643851.72	88.32
. 443	. 1058644	4475	632507.18	92.30	. 493	. 1287432	4278	644020.00	88.24
. 444	. 1073117	447 I	$63 \quad 2639.44$	92.21	. 494	. 129 I708	4274	644148.20	88.16
I. 415	I. 1077585	4467	6328 II.6I	92.13	I. 495	1. 1295980	4270	644316.32	88.08
. 446	. 1082050	4463	632943.70	92.05	. 496	. I30 0249	4266	6444 44.36	88.00
. 447	. 1086511	4459	633115.71	91.97	. 497	. 1304513	4263	644612.32	87.92
. 448	. 1090968	4155	633247.63	91.88	. 498	. 1308774	4259	644740.20	87.84
. 449	. 109542 I	4451	633419.48	91.80	. 499	. 131303 I	4255	644908.01	87.76
1.450	1.109 9869	4447	633551.24	91.72	I. 500	1.131 7283	4251	645035.73	87.68
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	wsech u	$2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{\mathrm{n}}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{u}}\right)-90^{\circ}$	chu

The Gudermannian.

u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{Fo}^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	odu	$\omega \mathrm{F}_{0}{ }^{\prime}$
I. 500	1.I31 7283	4251	$64^{\circ} 50,35^{\prime \prime} .73$	87.68	I. 550	I. 1525078	4062	66° O2' OI' ${ }^{\text {S }}$ I	
. 501	. 132 I532	4247	$6+5203.37$	87.60	- 551	.152 9139	4058	660325.55	
. 502	. 1325778	$42+3$	645330.93	87.52	. 552	. 1533195	4055	660449.22	83.63
. 503	. 1330019	4239	645458.42	87.44	. 553	. 153 7248	4051	660612.81	83.55
. 504	. 1334257	4236	645625.82	87.37	. 554	. 1541257	40.47	660736.33	83.48
I. 505	I. 1338490	4232	$6457 \dot{53.15}$	87.29	1.555	I. 1545342	4043	660859.77	83.40
. 506	. 1342720	4228	$6+5920.40$	87.21	. 536	. 1549384	40.40	66 10 23. If 4	83.33
. 507	. 1346946	422.	650047.56	87.13	-55\%	. 155312 I	4036	66 II 46.42	83.25
. 508	. 1351158	4220	6502 It. 65	87.05	. 558	. 1557456	4032	661300.63	83.17
. 509	. 1355387	4216	650341.66	86.97	. 559	. 156 I486	4029	66 It 32.77	83.10
1.510	I. 1359501	4213	650508.59	86.89	1. 560	I. 1565513	4025	66 I5 55.83	83.02
. 511	. 1363812	4209	$650635 \cdot 44$	85.81	. 561	. 1569536	4021	661718.81	82.95
. 512	- 3688019	4205	650802.22	85.73	. 562	. 1573556	4018	661841.72	82.87
. 513	. 1372222	4201	650928.91	85.65	. 563	. 157757 I	4014	652004.55	82.79
. 514	. 1376421	4197	65 10 55.53	85.58	. 564	. 1581583	4010	662127.31	82.72
1.515	I. 1380617	4194	651222.07	85.50	1.365	1.158 5532	4007	662249.99	82.64
. 516	. 1384808	4190	651348.52	85.42	. 566	. 1589597	4003	662412.59	82.57
. 517	. 1388996	4186	6515154.91	85.34	. 567	. 1593598	3599	662535.12	82.49
. 518	- 1393180	4182	651641.21	85.26	. 568	. 1597595	3905	65 26 57.57	82.12
. 519	. I39 7360	4178	$65 \quad 18 \quad 07.43$	86.18	. 569	. 1601589	3992	662819.95	82.34
1.520	I. I40 I537	4175	651933.58	86.11	1. 570	I. 1605579	3988	662942.25	82.26
. 52 I	. Ito 5709	4 I 71	652059.64	85.03	. 571	. 1609566	3985	663104.48	82.19
-522	- Ifo 9878	4167	652225.63	85.95	. 572	. I6I 3548	3981	663226.63	82.11
. 523	.I4I 4043	4163	652351.54	85.87	. 573	. 1617527	3977	663348.71	82.04
. 524	.I4I 8205	4159	$65 \quad 2517.38$	85.79	. 574	.1621503	3974	663510.71	81.96
1.525	I. I42 2362	4156	$65 \quad 2643.13$	85.72	1.575	1.162 5475	3970	663632.63	81.89
. 526	. I42 6516	4152	652808.8 I	85.64	. 576	. I62 9443	3966	$663754 \cdot+8$	8 I .8 I
. 527	. I43 0666	4 T 48	$652934 \cdot 4 \mathrm{~T}$	85.56	. 577	.1633408	3963	663916.26	$8 \mathrm{8I} .74$
. 528	. 14348 I 2	4144	653059.93	85.48	. 578	.163 7369	3959	664037.96	81. 66
. 529	. I43 8954	4141	$653225 \cdot 37$	85.40	. 579	.164 1326	3955	664159.58	8 I .59
I. 530	I.I44 3093	4137	653350.74	85.33	1.580	1. 1645279	3952	664321.13	8 I .51
. 531	. I44 7228	4133	653516.02	85.25	. 58 I	. 1649230	3948	664442.6 I	8 8 .44
. 532	. I45 I359	4129	653541.23	85.17	. 582	.1653176	3945	66.4604 .01	81.36
. 533	. 1455486	4125	653806.37	85.09	. 583	. 1657119	3941	66.4725 .33	$8 \mathrm{8I} .29$
. 534	. I45 9610	4122	653931.42	85.02	. 584	.1661058	3937	66.4846 .58	8I.2I
I. 535	I. I46 3730	4118	654056.40	84.84	I. 585	I. 1664993	3934	665007.76	8 I .14
. 536	. 1467846	4114	654221.30	84.86	. 585	. 1668925	3930	665128.86	81.06
. 537	. 1471958	4110	654346.12	84.78	. 587	. 1672854	3926	665249.89	80.99
. 538	. 1476067	4107	654510.87	84.71	. 588	.1676788	3923	665410.84	80.92
. 539	. 1480172	4103	$654635 \cdot 54$	84.63	. 589	.1680699	3919	665531.72	80.84
1. 540	I. 1484273	4099	654800.13	84.55	I. 590	I. 1684617	3916	$66{ }^{66} 52.52$	80.77
. 541	. I488370	4095	654924.64	84.48	. 591	$.168853 I$	3912	665813.25	80.69
. 542	. 1492464	4092	655049.08	84.40	- 592	. 1692441	3908	665933.91	80.62
- 543	. 1496554	4088	65	84.32	- 593	. 1696348	3905	670054.49	80.54
- 544	. 1500640	4084	655337.72	84.25	- 594	. 1700251	3901	670215.00	80.47
1. 545	I. 1504722	4081	65 55 or 9.93	84.17	I. 595	I. 1704150	3898	$6703 \quad 35.43$	80.40
. 546	. 150880 I	4077	655626.06	84.09	. 596	. 1708046	3894	670455.79	80.32
. 547	. 1512876	4073	655750.11	84.01	. 597	.171 1938	3891	670616.07	80.25
. 548	. 1516947	4069	6515914.08	83.94	. 598	.171 5827	3887	670736.28	80.17
. 549	. 1521015	4066	660037.98	83.86	. 599	. 1719712	3883	670856.42	80.10
I. 550	1.152 5078	4062	6602 or. 8 r	83.78	1.600	I. 1723594	3880	671016.48	80.03
\square	$2 \tan ^{-1}\left(e^{\text {a }}\right)-\frac{\pi}{2}$	sech 1	$2 \tan ^{-4}\left(e^{x}\right)-90^{\circ}$		-	$2 \tan ^{-1}\left(\theta^{x}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}(40)-90^{\circ}$	ch

The Gudermannian.

и	gd 4	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	4	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$
1.600	1.I72 3594	3880	$67^{\circ} 10^{\prime} 16^{\prime \prime} 48$	80.03	1.650	I. I9I 3170	3704	$68^{\circ} 15^{\prime} 26^{\prime \prime} .76$	76.41
. 601	-172 7472	3876	67 II 36.47	79.95	. 651	. ig1 6872	3701	681643.13	76.34
. 602	173 1346	3873	671256.39	79.88	. 652	-1920571	3697	681759.44	76.27
. 603	.173 5217	3869	6714 I6. 23	79.8 I	. 633	. 1924257	3694	$\begin{array}{llll}68 & 19 & 15.67\end{array}$	76.20
. 604	. 1739084	3865	67 I5 36.00	79.73	. 654	. 1927960	3691	682031.83	76.12
I. 605	1.174 2948	3862	671655.69	79.66	I. 655	I. 1931648	3687	682147.92	76.05
. 600	. 1746803	3058	671815.31	79.58	. 656	. 1935334	3684	682303.93	75.98
. 607	. 1750655	3855	671934.85	79.51	. 657	. 1939016	3680	682419.88	75.91
. 608	.175 4518	$3{ }^{3} 51$	$67 \quad 2054.34$	79.44	. 658	. 1942605	3677	682535.76	75.84
. 609	.175 8365	38.4	672213.74	79.36	. 659	. 1946370	3674	6826 51.57	75.77
1.610	1.176 2213	38.4	672333.07	79.29	1.660	I. 1950042	3670	$68 \quad 28 \quad 07.30$	75.70
. 611	. 1766056	3841	672452.32	79.22	. 661	- 1953710	3567	6823 22.97	75.63
. 612	. 1769895	3837	672511.50	79.15	. 662	-195 7375	3653	683038.55	75.56
.613	. I77 3730	3834	672730.61	79.07	. 663	. 1961037	3	683154.09	75.49
. 614	. 1777562	3830	672849.65	79.00	. 664	. 1964695	36.56	683309.54	75.43
1.6I5	I. 1781390	3826	673008.61	78.93	1. 655	I. 1968349	3653	683424.93	75.36
. 616	.178 5215	3823	673127.50	78.85	. 665	. 1972001	3650	683540.24	75.29
. 617	. 1789036	3819	$6732+6.32$	78.78	. 667	. IS7 5649	3646	683655.49	75.22
. 618	. 1792853	3816	$673+05.06$	78.71	. 658	-1979293	3643	683810.65	75.15
. 619	. 1796667	3812	673523.73	78.63	. 659	. 1982535	3639	683925.77	75.08
1.620	I. 1800478	3809	673642.33	78.56	1. 670	1. 1986572	3636	684040.80	75.01
. 621	. 1804285	3805	673800.86	78.49	. 671	. 1990207	3633	684155.77	74.94
. 622	. 1808089	3802	673919.31	78.42	. 672	. 1993838	3629	684310.66	74.87
. 623	. 1811889	3798	674037.69	78.34	. 673	. 1997465	3625	684425.49	74.80
. 624	. 1815685	3795	674156.00	78.27	. 674	. 2001030	3523	584540.24	74.72
1.625	I. 1819478	3791	674314.24	78.20	I. 675	I. 20047 I I	3619	684654.93	74.65
. 625	. 1823268	3788	674432.40	78.13	. 676	. 2008328	3616	684809.55	74.58
. 627	. 1827054	3784	674550.49	78.06	. 677	. $20119+2$	3612	684924.09	74.51
. 628	. 1830836	3781	674708.51	77.98	. 678	. 2015553	3609	685038.57	74.44
. 629	. 1834615	3777	674826.46	77.91	. 679	. 2019160	3606	685152.98	74.37
1.630	I. I83 8390	3774	$674944 \cdot 33$	77.84	1.680	I. 2022764	3602	685307.32	74.30
.631	. 1842162	3770	675102.13	77.77	. 681	. 2026365	3599		74.23 74.17
. 032	. 1845931	3767	$\begin{array}{lllll}67 & 52 & 19.85\end{array}$	77.69	. 682	. 2029962	3596	685535.78	74.17
. 633	. 1849696	3763	675337.52	77.62	. 68	.2033556	3592	685649.52	74. 10
. 634	. $1853+57$	3760	6754 55.11	77.55	. 684	. 2037147	3589	685803.58	74.03
1.635	I. 1857215	3756	675612.62	77.48	1.685	1.2040734	3586	$68 \quad 5917.97$	73.96
. 636	. 1860970	3753	675730.07	77.41	.68j	. 2044318	3582	690031.89	73.89
. 637	. 1864721	3749	$6758 \quad 47 \cdot 44$	77.34	. 68	. 2047899	3579	69 OI 45.75	73.82
. 638	. 18688469	3746	680004.74	77.26	. 688	.2051476	3576	690259.53	73.75
. 639	.187 2213	3742	68 O1 21.97	77.19	. 689	. 2055050	3572	690413.25	73.68
1. 640	I. 1875953	3739	680239.12	77.12	1. 690	I. 2058620	3569	690526.90	73.61
. 6.41	. 1879091	3735	680356.21	77.05	. 691	. 2062187	3566	690640.48	73.54
. 642	. $18838+24$	3732	680513.22	75.98	. 692	. 205575 I	3562	690753.99	73.48
. 613	. 1887155	3729	680530.15	76.91	. 693	. 2069312	3559	690907.43	73.41
. 644	. 189088 I	3725	680747.03	75.83	. 594	. 2072859	3556	69 IO 20.80	73.34
I. 645	I. 1894605	3722	680903.83	76.76	1. 695	1. 2076423	3552	69 II 34.II	73.27
. 046	. 1898325	3718	68 10 20.56	76.69	. 695	. 2079974	3549	69 I2 47.34	73.20
. 047	. 190204 I	3715	68 II 37.22	76.62	. 697	. 208352 I	3546	691400.51	73.13
. 648	. 1905754	3711	681253.80	76.55	. 698	. 2087065	3542	691513.61	73.07
. 649	. 1909463	3708	68 If 10.32	76.48	. 699	. 2090605	3539	69 16 26.64	73.00
1.650	1.191 3170	3704	681526.76	76.41	1.700	1. 2094143	3536	691739.60	72.93
U	$2 \tan ^{-1}\left(e^{n}\right)-\frac{\pi}{2}$	sechu	$2 \tan ^{-1}\left(e^{0}\right)-90^{\circ}$	ω sech u	u	$2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{n}}\right)-90^{\circ}$	ω sech u

smithsonian tables

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega F_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega F_{0}{ }^{\prime}$
I. 700	I. 209 4I43	3536	$69^{\circ} 177^{\prime} 39.60$	72.93	1.750	1. 2266847	3374	" 89	59
. 701	. 2097677	3532	69 I8 52.50	72.86	.751	. 227 0219	3370	7018 II. 44	69.52
. 702	. 2101208	3529	$69 \quad 2005.32$	72.79	. 752	. 2273588	3367	701920.93	69.45
. 703	. 2104735	3525	692118.08	72.72	. 753	. 2276954	3364	702030.35	69.39
. 704	. 2108259	3522	692230.77	72.66	. 754	. 2280316	2361	702139.71	69.32
1.705	1.2II 1780	3519	692343.39	72.59	1.755	1. 2283676	3358	702249.00	69.25
. 706	.211 5297	3516	692455.95	72.52	. 756	. 2287032	3355	7023.58 .23	69.19
. 707	.2II 88I2	3513	692608.43	72.45	. 757	. 2290385	335 I	702507.30	69.13
. 708	. 2122323	3509	$6927 \quad 20.85$	72.38	. 758	. 2293735	3348	702616.48	69.06
. 709	. 2125830	3506	692833.20	72.32	. 759	. 2237082	3345	702725.51	69.00
1.710	1.2129335	3503	$692945 \cdot 49$	72.25	1.760	1.2300425	3342	702834.48	68.93
. 711	. 2132836	3499	693057.70	72.18	. 761	. 2303755	3339	$702943 \cdot 38$	68.87
. 712	. 2136334	3496	693209.85	72.11	. 762	.2307103	3336	703052.22	68.80
. 713	. 2139828	3493	693321.93	72.05	. 763	. 2310437	3333	703200.09	68.74
. 714	. 2143319	3490	693433.94	71.98	. 764	. 2313768	3329	$70 \quad 3309.69$	68.67
1.715	I. 2146807	3486	60.3545 .89	71.91	1.765	1.2317095	3326	70.3418 .33	68.61
. 716	. 2150292	3483	6936 57.76	71.84	. 766	. 2320.420	3323	$7035 \quad 26.91$	68.54
. 717	. 2153774	3480	693809.57	71.78	. 757	.2323742	3320.	703535.42	68.48
. 718	. 2157252	3477	693921.32	71.71	. 768	.2327060	3317	$\begin{array}{llllllllllll}70 & 37 & 43.87\end{array}$	68.42
. 719	.2160727	3473	694032.99	71.64	.759	.2330376	3314	$70 \quad 38 \quad 52.25$	68.35
1.720	I. 2164198	3470	694144.60	71.58	1.770	1.2333688	33 II	704000.57	68.29
. 72 I	. 2167667	3467	6942 56.I4	71.51	. 771	. 2336997	3307	704108.83	68.22
. 722	. 2171132	3464	694407.62	71.44	. 772	.2340303	3304	704217.02	68.16
. 723	. 2174594	3460	694519.02	71.37	. 773	. 2343606	3301	70 43'25.1. 4	68.09
. 724	. 2178053	3457	694630.37	71.31	. 774	. 2346905	3298	704433.20	68.03
1. 725	1.2181508	3454	69474 Lr .64	71.23	1.775	1.2350202	3295	704541.20	67.96
. 726	. 2184960	345 I	694852.85	71.16	. 776	. 2353495	3292	704649.13	67.90
. 727	. 2188409	3447	695003.69	71.10	. 777	.2356785	3289	70.4757 .00	67.84
. 728	. 2191855	3444	695115.06	71.03	. 778	.2360073	3286	70.4904 .80	67.77
. 729	.2195297	3441	695226.06	70.96	. 779	.2363357	3283	70.5012 .54	67.7 I
1. 730	1.2198737	3438	695337.90	70.90	1. 780	1.2366638	3279	705120.22	67.64
. 731	. 2202173	3434	695447.88	70.83	. 781	. 2369916	3276	705227.83	67.58
. 732	. 2205605	343 I	695558.68	70.75	. 782	. 237319 I	3273	705335.38	67.52
. 733	. 2209035	3428	695709.42	70.70	.783	.2376463	3270	$7054+2.87$	67.45
. 734	.221 2461	3425	695820.10	70.63	.784	. 237973 I	3267	705550.29	67.39
1.735	1.22I 5885	3422	695930.71	70.56	1. 785	$1.238 \quad 2997$	3264	705557.65	67.33
. 736	. 2219304	3418	700041.25	70.50	. 786	. 2386259	3261	705804.94	67.26
. 737	. 2222721	3415	70 O1 51.72	70.43	. 787	. 2389519	3258	705912.17	67.20
. 738	. 2226135	3412	700302.13	70.37	. 788	. 2392775	3255	710019.34	67.13
. 739	. 2229545	3409	$70 \quad 4412.47$	70.30	. 789	. 2396028	3252	71 or 26.44	67.07
1.740	1.2232952	3405	700522.75	70.23	1.790	1.2399279	3249	710233.48	67.01
. 741	. 2236356	3402	700632.96	70.18	. 791	. 2402526	3246	710340.46	66.94
. 742	. 2239757	3399	700743.10	70.11	. 792	. 2405770	3243	710447.37	66.88
. 743	.2243154	3396	700853.18	70.05	.793	. 2409011	3239	710554.22	66.82
. 744	. 2246548	3393	701003.19	69.98	. 794	. 2412249	3236	710701.01	66.76
1.745	1.2249940	3390	70 II I3.14	69.91	1.795	1. 2415483	3233	710807.73	66.69
. 746	. 2253328	3336	701223.02	69.85	. 796	. 2418715	3230	710914.39	66.63
. 747	. 2256712	3383	701332.84	69.78	. 797	.2421944	3227	71 10 20.99	66.57
. 748	.2260094	3380	701442.59	69.72	. 798	.2425170	3224	71 I1 27.52	66.50
. 749	. 2263472	3377	$7015 \quad 52.27$	69.65	. 799	.2428392	322 I	711233.99	66.44
1.750	1.2266847	3374	$7017 \quad 01.89$	69.59	1.800	1.2431612	3218	711340.40	66.38
u	$2 \tan ^{-1}\left(e^{n}\right)-\frac{\pi}{2}$	ω sech u	$2 \tan ^{-2}(\mathrm{ear})-90^{\circ}$	ω sech u	u	$2 \operatorname{tar}^{-3}\left(e^{x}\right)^{-\frac{x}{2}}$	ech ${ }^{\text {a }}$	$2 \tan ^{-1}\left(e^{8}\right)-90^{\circ}$	sech u

The Gudermannian.

u	gd	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega^{\text {r }}{ }^{\prime}$	\ldots	gdu	$\omega \mathrm{F}_{0}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
1. 800	1.2431612		$71 \text { I3 } 40.40$	66.38	1. 850	1. 2588759	3069	720741.78	63.30
. 801	$\begin{array}{r}.243 \\ \hline 1828\end{array}$	3215	71 If 46.75	65.31	. 851	. 219 I825	3065	720845.05	63.24
. 802	. $24380+2$	3212	711553.03	66.25	. 852	. 2594890	3063	720948.26	63.18
. 803	. 244 1252	3209	711659.25	66.19	. 853	. 2597952	3050	72 Io 51.41	12
. 804	. 2444460	3206	71 I8 05.41	66.13	. 854	. 260 IOII	3057	72 II 54.50	
1.805	1.24	3203	7119 II. 30	66.06	1.855	I. 2604065	3054	721257.53	63.00
. 806	. 2450855	3200	712017.53	66	. 856	. 2607119	3051	72.1400 .50	94
. 807	.2454054	3197	712123.50	65	. 857	. 2610169	30.4	72.1503 .41	
. 808	. 2157259	3194	712229.41	65	.858	. 2613216	30.4	$\begin{array}{llll}72 & 16 & 05.26 \\ 72 & \text { I7 } & 09.05\end{array}$	
. 809	. 2460451	3191	712335.26	65.81	9	1	3043	721709	
1.8	1.	3188	71	65.75	1.850	1. 2619302	0	72 I8 II. 78	70
. 811	. 2466827	3185	712546.76	65.69	. 851	. 2622340	3037	72 I9 14.45	
. 812	. 2470010	3182	712552.42	65.63	. 862	. 2625375	3034	722017.05	58
. 813	. 2473190	3179	712758.01	$65 \cdot 56$. 863	. 2628408	3031	722119.61	52
. 814	. 2476367	3176	712903.54	$65 \cdot 50$. 864	. 2631438	3028	7222	
1.8	1.24	73	713009.02	$65 \cdot 44$	1.855	I. 2534464	025	722324.54	62.40
. 81	. 248	317	713114.42	65.38	. 856	. 2637488	22	722425.91	34
. 8	. 2185880	316	713219.77	65.32	. 867	. 2640509	3020	722529.22	8
. 818	.2489046	3164	713325.06	65.25	. 858	. 2643527	3017		
. 819	. 2492208	3161	713430.28	65.19	. 869	. 2646543	3014	722733.67	6
1.8	1.2495367	3158	$713535 \cdot 44$	65.13	1.870	1. 2549555	3011	$\begin{array}{llll}72 & 28 & 35.80 \\ 72\end{array}$	62.11
. 821	. 2498523	3155	713640.54	65.07	. 871	. 2652565	8	722937.88	
. 822	. 2501676	3152	713745.58	65.01	. 872	. 265557 I	3005	723039.60	99
. 823	. 2504826	3149	713850.55	64.95	. 873	. 2658575	3002	723141.85	
. 824	.2507973	3146	713955.47	64.88	. 874	. 2661576	2999	$72 \quad 3243.75$	
I. 825	1.2511118	3 I 43	714100.32	64.82	1.875	1. 2654574	7	$\begin{array}{llll}72 & 33 & 45.59\end{array}$	6 I .8 I
. 8	. 2514259	3140	714205.11	64.76	. 875	. 2667569	2994	$723447 \cdot 37$	
. 8	. 2517397	3137	714309.84	64.70	. 87	. 2670362	29 nI	723549.09	6
. 8	.2520532	3134	714414.51	64.64	. 878	.267355 T		723650.75	
. 829	.252 3654	3131	714519.12	64.58	. 879	. 2676538	2985	723752.35	
I. 830	I. 25	3128	714623.67	64.52	1.880	1. 2679521	2982	723853.90	
. 83 I	. 2529920	3125	714728.15	64.45	.881	. 2682502	2930	723955.39	61.46
. 832	.2533043	3122	714832.57	64.39	. 832	. 2685480	2577	724056.82	61.40
. 833	. 2536104	3119	714936.94	64.33	.883	.2688455	2974	724158.19	
. 834	. 253 9281	$3 \mathrm{II6}$	715041.24	64.27	.884	. 2691428	2971	724259.50	
1.835	I. 2542396				I. 885	1. 2694398	2968	724400.75	22
. 836	. 254	3110	715249.66	64.15	. 885	. 2697364	2965	724501.94	6. 16
. 83	. 2548616	3107	715353.77	64.09	. 88	. 2700328	2962	724603.08	. 11
. 838	. 255 I721	3104	715457.83	64.03	. 888	.2703289	2960	724704.15	6 I .05
. 839	.2554824	3101	715601.83	63.97	. 889	.2706248	2957	724805.17	60.99
1.840	1. 2557923	309	715705.76	63	I. 890	1.2709203	2954	724906.13	83
. 841	. 256 IO20	309	715809.64	63.84	. 891	.271 2156	2951	725007.03	
. 8.42	. 256 41I4	3092	7159 I3.45	63.78	. 892	. 2715106	2948	725107.88	60.81
. 813	. 2567205	3089	720017.21	63.72	. 893	. 2718053	29.46	725208.65	60.75
. 844	.2570293	3086	72 OI 20.90	63.66	. 894	.2720997	2943	725309.39	60.70
I. 845	1.2573378	3084	720224.53	63.60	1.895	1.2723938	2940	725410.06	64
. 846	. 2576460	3081	720328.10	63.54	. 806	. 2726877	2937	725510.67	60.58
. 847	. 2579539	3078	720431.61	63.48	. 897	. 2729812	2934	725611.23	60.52
. 848	. 2582615	3075	720535.06	63.42	. 858	.2732745	2932	725711.72	60.47
. 849	. 2585688	3072	720638.45	$63 \cdot 36$. 899	. 2735675	2929	725812.16	60.41
I. 850	1.2588759	3009	720741.78	63.30	1.900	1.2738503	2926	725912.54	60.35
u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-90^{\circ}$	ω sech u	u	$\operatorname{an}^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(\mathrm{e}^{10}\right)-90^{2}$	ω sech u

The Gudermannian.

u	odu	$\omega \mathbf{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	odu	$\omega \mathrm{Fo}^{\prime}$
I. 900	1. 2738603	2926	725912.54	60.35	1.950	1.288 I45I	2789	$73^{\circ} 18^{\prime}$ İ.OI	5
. 901	.274 1527	2923	730012.85	60.29	.95I	. 2884239	2785	731916.51	57.47
. 902	. 2744449	2920	73 or 13.13	60.24	. 952	. 2887024	2784	735013.95	57.42
. 903	. 2747368	2918	730213.33	60.18	. 953	. 2889806	2781	73 II II.34	57.36
. 904	. 2750284	2915	730313.48	60.12	.954	. 2892586	2778	735208.68	57.31
1.905	1.2753197	2912	730413.58	60.06	1.955	1.2895363	2776	735305.96	57.25
. 905	. 275 6I08	2909	730513.61	60.01	. 956	. 2898137	2773	735403.18	57.20
. 907	.2759016	2906	73 о́ 13.59	59.95	. 957	. 2900909	2770	735500.35	57.14
. 908	. 276 I921	2904	730713.51	59.89	. 958	.2903678	2768	7355 57.46	57.09
. 909	.2764823	2501	7308 I3.37	59.83	. 959	. 2906144	2765	735654.52	57.03
1.910	1.275 7722	2838	730913.18	59.78	1. 960	I. 2909208	2762	735751.53	56.98
. 911	. 277 0519	2855	73 I0 12.92	59.72	. 961	. 2911969	2760	$73 \quad 5848.48$	56.92
. 912	. 2773513	2893	73 II 12.62	59.66	. 962	. 2914727	2757	$73 \quad 5945.38$	56.87
. 913	. 2776404	2890	731212.25	59.61	. 963	. 2917483	2754	$7+00+2.22$	56.81
.914	. 2779292	2887	73 I3 II. 83	59.55	. 964	.2920236	2752	74 O1 39.00	56.76
1.915	1.2782178	2884	73 I4 II. 35	59.49	1.965	1.2922587	2749	740235.73	56.70
. 916	. 278506 I	2881	731510.81	59.43	. 966	. 2925734	2746	740332.41	56.65
. 917	. 2787941	2879	731610.22	59.38	. 967	. 2928480	27.4	740429.03	56.60
. 918	. 2790818	2876	731700.53	59.32	. 968	. 2931222	2741	$7+0525.60$	56.54
. 919	.2793693	2873	731808.85	59.26	-969	. 2933952	2739	$7+0622.12$	56.49
I. 920	1. 2796565	2870	73-19 08.09	59.21	1.970	I. 2936699	2736	740718.58	56.43
. 921	. 2799434	2868	732007.27	59.15	.971	. 2939434	2733	$7+0814.98$	56.38
. 922	. 2802300	2805	732106.39	59.09	. 972	. 2942166	2731	740911.33	56.32
. 923	. 2805164	2862	732205.46	59.04	. 973	. 2944835	2728	741007.63	56.27
. 924	. 2808024	2859	732304.47	58.98	. 974	. 29.47622	2725	74 II 03.87	56.22
1.925	I. 2810883	2857	732403.42	58.92	1.975	I. 2950346	2723	741200.06	55.16
. 926	. 2813738	2854	732502.32	58.87	. 976	. 2953068	2720	741256.20	56.11
. 927	.281 6590	2851	7326 O1.16	58.81	. 977	. 2955786	2718	741352.28	56.05
. 928	. 2810440	2849	$73 \quad 26 \quad 59.94$	58.76	. 978	. 2958503	2715	741448.30	56.00
. 929	. 2822288	2846	$73 \quad 2758.67$	58.70	.979	. 2961216	2712	741544.28	55.95
1.930	1.2825132	2843	$73 \quad 2857.34$	58.64	1.980	1.2963927	2710	741640.20	55.89
. 9.31	. 2827974	28.10	$73 \quad 2955.95$	58.59	. 88 I	. 2966636	2707	741736.06	55.84
. 932	.2830813	2838	733054.5 I	58.53	. 982	. 2969342	2705	741831.87	55.78
. 933	.2833649	2835	733153.01	58.47	. 983	. 2972045	2702	741927.63	55.73
. 934	. 2836482	2832	733251.46	58.42	. 884	.2974745	2699	472023.34	55.68
1. 935	1.2839313	2829	733349.85	58.36	1.985	I. 2977443	2697	742118.99	55.62
. 930	. 284214 I	2827	733448.18	58.31	. 988	. 2980139	2694	742214.58	55.57
. 937	. 2844967	2824	733546.46	58.25	. 987	. 2582832	2592	742310.13	55.52
-938	. 2847789	2821	733644.68	58.19	. 988	.2985522	2689	742405.62	55.46
. 939	. 2850609	2819	$73 \quad 3742.85$	53.14	.989	. 2988210	2686	742501.05	55.4 I
1. 940	1.2853427	2816	$73 \quad 3840.96$	58.08	1.990	1.2990895	2684	742556.44	55.36
. 9415	. 285624 I	2813	733939.01	58.03	. 991	. 2993577	2681	742651.77	55.30
. 942	. 2859053	2811	734037.01	57.97	. 992	. 2996257	2679	742747.04	55.25
. 943	. 2851862	2808	734134.95	57.92	. 993	. 2998934	2676	742842.27	55.20
. 944	. 2864669	2805	734232.84	57.86	. 994	. 300 I609	2673	742937.44	55.14
I. 945	1. 2857473	2802	7343 30.68	57.80	1.995	I. 300428 I	2671	743032.55	55.09
. 946	. 2870274	2800	734428.45	57.75	. 996	. 3006951	2668	743127.62	55.04
. 947	. 2873072	2797	734526.17	57.69	. 997	. 3009618	2666	743222.63	54.98
. 948	. 2875858	2794	734623.84	57.64	. 998	-301 2282	2663	743317.59	54.93
. 949	. 2878661	2792	734721.45	57.58	. 999	-301 4944	2661	743412.49	54.88
I. 950	1.2881451	2789	7348 I9.Or	57.53	2.000	1.3017603	2658	743507.34	54.83
u	$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(88^{\circ}\right)-90^{\circ}$	0 s	घ	$2 \tan ^{-1}\left(\cos ^{2}\right)-\frac{\pi}{2}$		$2 \tan ^{-1}\left(\theta^{3}\right)-90^{\circ}$	* sech u

The Gudarmannian.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline u \& gd u \& $\omega \mathrm{F}_{0}{ }^{\prime}$ \& gd u \& $\omega \mathrm{F}_{0}{ }^{\prime}$ \& u \& gdu \& $\omega F_{0}{ }^{\prime}$ \& od u \& $\omega \mathrm{F}_{0}{ }^{\prime}$

\hline \& \& \& \& \& 2.050 \& \& 2533 \& $$
{ }^{\circ} 199^{\prime} 43.53
$$ \& $$
52.24
$$

\hline 2.000 \& 1.3017603
.302020 \& 2658 \& $7+3507.3+$
$7+36$

c2.14 \& 54.77 \& . 2.051 \& $1.31+9880$
$.31+980$ \& 2530 \& $75 \quad 2035.75$ \& 52.19

\hline . 00 \& . 302020 \& 2655 \& $7+30 c 2.14$ \& $5+.77$
$5+.72$ \& . 052 \& . 3152409 \& 2528 \& 75 21 27.91 \& 52.14

\hline . 002 \& . 3022914 \& 2653 \& 743656.89
$7+3751.58$ \& $5+.72$
54.67 \& . 053 \& -315 4930 \& 2525 \& 752220.03 \& 52.09

\hline . 003 \& .302555
.3028215 \& 2650
2548 \& $7+3751.58$
$7+38$ 4.22 \& 54.67
54.61 \& .053
.054 \& -315 7760 \& 2523 \& $\begin{array}{llll}75 & 22 & 20.03 \\ 75 & 23 & 12.09\end{array}$ \& 52.04

\hline 2.005 \& 1. 3030861 \& 25 \& 7+ 3940.3 I \& 54.5 5 \& 2.055 \& 1.315 0082 \& 2520 \& 752404.11 \& 51.99

\hline 2.005 \& $.303 ~$
.3505 \& 2643 \& 74 40 35.35 \& 54.51 \& . 056 \& . 3162501 \& 2518 \& 752456.07 \& 51.94

\hline . 0 \& . $30361+7$ \& 2540 \& 744123.83 \& 54.45 \& . 057 \& . 3155018 \& 2515 \& 752547.98 \& 51.89

\hline . 008 \& . 3038785 \& 2638 \& 744224.26 \& 54.40 \& .c58 \& . 3157532 \& 2513 \& 752639.85 \& 8

\hline . 009 \& . 3041422 \& 2535 \& 744318.64 \& 54.35 \& . 059 \& . 3170044 \& 2511 \& 752731.60 \& 51.79

\hline 2.010 \& I. \& 2633 \& 744412.97 \& 54.30 \& 2.060 \& I. 3172557 \& 2508 \& $75 \quad 2823.42$ \& 51.74

\hline . 0 \& . 3046687 \& 2630 \& $74+507.24$ \& 54.25 \& . 06 I \& . 3175001 \& 2505 \& 752915.14 \& 51.69

\hline . OI \& . 3049316 \& 2627 \& 74 46 OI. 46 \& 54.19 \& . 062 \& . 3177565 \& 2503 \& $75 \quad 3006.80$ \& 64

\hline . 0 \& . 3051942 \& 2525 \& 744555.63 \& 54.I4 \& . 063 \& -318 0058 \& 2501 \& 753058.41 \& 51.59

\hline . 014 \& . 3054566 \& 2622 \& 744749.74 \& 54.09 \& . 064 \& -3I8 25 \& 2499 \& 75 31 49.98 \& 51.54

\hline 2.01 \& 1.3057187 \& 2620 \& 74.4843 .81 \& 54 \& 2.065 \& 1.3185065 \& 2.466 \& $75 \begin{array}{llll}72 & -11.49\end{array}$ \& 51.49

\hline . \& . 3050805 \& 2617 \& $7+4037.82$ \& 53.59 \& . 055 \& . 3187560 \& 2494 \& 753332.95 \& 51.44

\hline . 0 \& . 305242 I \& 2615 \& 74 $503 \mathrm{3r} .78$ \& 53.53 \& . 057 \& . 3190053 \& 2491 \& 753424.37 \& 51.39

\hline . 018 \& . 3065035 \& 2612 \& 745125.69 \& 53.88 \& . 068 \& -319 2543 \& 2489 \& 753515.73 \& 51.34
51.29

\hline . 019 \& . 3057645 \& 2510 \& $74 \quad 52 \quad 19.54$ \& 53.83 \& . 059 \& . 319503 I \& 2487 \& 753007.04 \& . 29

\hline 2.020 \& I. 307 \& 2607 \& 745313.35 \& 53.78 \& 2.070 \& 1.3197516 \& 2484 \& 753658.3 I \& 51.24

\hline .025 \& . 3072850 \& 2505 \& 745407.10 \& 53.73 \& . 071 \& . 3199999 \& 2482 \& 753749.52 \& 51.19

\hline . 02 \& . 307546.4 \& 2602 \& 745500.80 \& 53.67 \& . 072 \& . 3202480 \& 2479 \& 753840.69 \& 51.14

\hline . 023 \& . 3078065 \& 2600 \& $7455 \quad 54 \cdot 45$ \& 53.62 \& . 073 \& . 320 - 4558 \& 2477 \& 753931.80 \& 5 I .09

\hline . 024 \& . 3080663 \& 2597 \& 745648.05 \& 53.57 \& . 074 \& . 3207433 \& 2475 \& 754022.87 \& 4

\hline 2.025 \& I. 3083259 \& 2595 \& 74 \& 53.52 \& 2.075 \& 1.3209907 \& 2472 \& 754113.89 \& 50.99

\hline , \& . 3085853 \& 2592 \& 745835.08 \& 53.47 \& .070 \& . 3212378 \& 2470 \& 754204.85 \&

\hline . 027 \& . 3088443 \& 2590 \& 745928.52 \& 53.42 \& . 077 \& . 3214846 \& 2467 \& $\begin{array}{|ccc|}75 & 4255.77 \\ 75 & 43 & 46.64\end{array}$ \&

\hline . 02 \& . 309 1032 \& 2587 \& 750021.91 \& 53.36 \& . 078 \& -321 7312 \& 2465 \& 754346.64 \& 50.84

\hline . 029 \& . 3093618 \& 2585 \& 75 O1 15.25 \& 53.31 \& . 079 \& .321 9776 \& 2453 \& $754437 \cdot 45$ \& 50.79

\hline 2.030 \& 1.3096201 \& 25 \& 75 \& 53.26 \& 2.080 \& 1.3222238 \& 2460 \& 754528.23 \& 50.75

\hline . 031 \& . 3098782 \& 2580 \& 750301.78 \& 53.21 \& . 08 SI \& . 3224697 \& 2458 \& 754518.55 \&

\hline . 032 \& - 3101361 \& 2577 \& 750354.96 \& 53.16 \& . 082 \& . 3227153 \& 2455 \& 754709.62 \&

\hline . 033 \& -310 3936 \& 2575 \& 750448.09 \& 53.11 \& .083 \& . 3229508 \& 2453 \& $\begin{array}{lll}7548 & 00.24 \\ 7548 & 50.82\end{array}$ \& 50.60
50.55

\hline . 034 \& . 3106510 \& 2572 \& 750541.17 \& 53.06 \& . 084 \& - 3232059 \& 245 I \& 754850.82 \&

\hline 2.035 \& I. 310908 I \& 2570 \& 750534.20 \& 53.00 \& 2.085 \& 1. 3234509 \& 24.48 \& \& 50.50

\hline . 036 \& -3II I649 \& 2567 \& 750727.18 \& 52.95 \& . 885 \& . 3236955 \& 24.4 \& 755031.82 \& 50.45

\hline . 037 \& -311 4215 \& 2565 \& 750820.11 \& 52.90 \& . 087 \& . 323 9401 \& 2444 \& 755122.25 \& 50.40

\hline . 038 \& -311 6779 \& 2562 \& 750912.99 \& 52.85 \& . 039 \& -324 18:3 \& 244 I \& 755212.62 \& 50.35

\hline . 039 \& . 3119340 \& 2560 \& 751005.81 \& 52.80 \& . 089 \& . 3244283 \& 2439 \& 755302.95 \& 50.30

\hline 2.040 \& 1.312 1898 \& 2557 \& 75 10 58.59 \& 52.75 \& 2.090 \& I. 324672 I \& 2436 \& 755353.23 \& 50.26

\hline . 041 \& . 3124455 \& 2555 \& 75 II 51.3I \& 52.70 \& .0,1 \& . 3249155 \& $2+34$ \& $755443 \cdot 16$ \& 50.21

\hline . 042 \& . 3127008 \& 2552 \& 751243.98 \& 52.65 \& .092 \& .3251589 \& 2432 \& 755533.65 \& 50.16

\hline . 043 \& -312 9559 \& 2550 \& 75.1336 .60 \& 52.60 \& .093 \& . 3254020 \& $2+27$ \& 755023.78 \&

\hline . 044 \& -313 2108 \& 2547 \& 75 I4 29.17 \& 52.55 \& . 094 \& . 3256448 \& 2427 \& 755713.86 \&

\hline 2.045 \& 1.313 4654 \& 2545 \& 751521.69 \& 52.49 \& 2.095 \& 1.3258874 \& 2425 \& \& 50.01

\hline . 0.46 \& - 3137198 \& 2543 \& 751614.16 \& 52.44 \& . 096 \& .3261297
$.326 ~ 3718$ \& 2422

2420 \& $$
\begin{aligned}
& 75 \quad 5853.89 \\
& 75 \\
& 59 \\
& 43.83
\end{aligned}
$$ \& 49.96

49.92

\hline . 047 \& . 3139739 \& 2510 \& 75 17 06.58 \& 52.39 \& . 097 \& $.326 ~ 3718 ~$
$.326 ~$
I

- \& 2.420

2.18 \& $$
\begin{aligned}
& 755943.83 \\
& 760033.72
\end{aligned}
$$ \&

\hline . 0.48 \& .314 2278 \& 2538
2535 \& $\left\lvert\, \begin{array}{cccc}75 & 17 & 58.95 \\ 75 & 18 & 51.27\end{array}\right.$ \& 52.34
52.29 \& .098 \& .326
.3258574 \& 2418
2415 \& $\begin{array}{llllllllllllll}76 & 00 & 33.72 \\ 76 & \text { O1 } & 23.56\end{array}$ \& 49.87
49.82

\hline .049
2.050 \& .3144815
1.3147349 \& 2535
2533 \& $\left\lvert\, \begin{array}{llll}75 & 18 & 51.27 \\ 75 & 19 & 43.53\end{array}\right.$ \& 52.29
52.24 \& .059
2.100 \& .3258554
1.3270968 \& 2715
2413 \& 760213.36 \& 49.82
49.77

\hline u \& $2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$ \& sech u \& $2 \tan ^{-1}\left(e^{a}\right)-90^{\circ}$ \& hu \& u \& $2 \tan ^{-1}\left(\mathrm{e}^{\mathrm{a}}\right)-\frac{\pi}{2}$ \& ω sechu \& $2 \tan ^{-1}\left(\mathrm{e}^{0}\right)-90^{\circ}$ \& w sech u

\hline
\end{tabular}

The Gudermannian.

u	gd 4	$\omega F_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}^{\prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}^{\prime}{ }^{\prime}$
2.100	1. 3270968	2413	$76^{\circ} 02^{\prime} 13.13 .36$	49.77	2.150	I. 3388732	2298	$4^{\prime} 2^{\prime} 42.42$. 41
. IOI	. 3273380	2411	760303.11	49.72	. 151	. 339 1029	2296	$7643 \quad 29.81$	47.36
. 102	- 3275789	2408	760352.80	49.67	. 152	. 3393325	229.4	7644 I7.15	47.32
. 103	. 327 8ic6	2405	750442.45	49.63	. 553	. 3395617	2292	764504.44	47.27
. 104	. 328060 I	2404	750532.06	49.58	. 154	. 3397908	2290	764551.69	47.23
2.105	1. 3283003	2401	750521.61	42.53	2.155	1.340 OIC7	2287	-5 4638.89	47.18
. 105	- 3285403	2399	7607 II.II	49.48	. 155	. 3402483	2285	764726.05	47.13
. 107	- 328 7SOI	2357	760800.57	49.43	. 157	. 3404707	22.33	761813.16	47.09
. 108	. 3290197	2354	760849.98	49.39	. 158	. 34070.10	2281	754900.23	47.04
. 109	. 3292590	2392	760939.34	49.34	. 159	- 3409328	2278	764947.25	47.00
2. 110	I. 3294980	2350	76 10 28.66	49.29	2.160	I.34I 1605	2276	765034.22	46.95
. III	. 3297369	2387	76 II 17.92	49.24	. 161	-341 388I	2274	75121.15	46.90
. 112	. 3299755	2385	761207.14	49.19	. 162	. 3416153	2272	755208.03	46.85
. II3	. 3302139	2383	7512 こ6.31	45.15	. 163	-341 8424	2270	765254.87	46.81
.174	. 3304520	2380	75 I3 45.43	49.10	.164	. $3+20693$	2267	765341.66	46.77
2.115	I. 3306900	2378	751434.51	49.05	2.165	1. 3422955	2265	75 5428.40	45.72
. 116	. 3309277	2376	761523.54	49.00	. 166	- 3425223	2263	765515.10	46.68
. II7	-331 165I	2373	761612.52	48.66	. 167	- 3427485	2251	7656 O1.75	46.63
. 118	.33I 4023	2371	751701.45	48.CI	. I'S	- 3429744	2259	765648.36	46.59
. 119	.331 6393	2359	76 I7 50.33	48.85	. 169	- 3432002	2256	765734.93	46.54
2.120	1.331 8761	2367	761839.17	48.81	2.170	1. 3434257	2254	- 5821.45	45.50
. 121	. 3321127	2354	761927.93	48.77	. 171	- 3436510	2252	755907.92	46.45
. 122	. 3323450	2362	762016.70	48.72	.172	- 3438751	2250	7559 5t.35	46.41
. 123	. 3325850	2360	762105.40	48.67	. 173	-314 1010	22.18	7700.40 .73	46.36
. 124	. 3328209	2357	762154.04	48.62	. 174	-344 3256	2245	77 O1 27.07	46.3 I
2.125	1.3330565	2355	752242.64	4858	2.173	1. 34155001	2243	770213.35	46.27
. 125	. 3332919	2353	762331.20	48.53	. 176	- 3447743	2241	770259.61	46.22
. 127	. 333527 I	2350	762419.70	48.48	. 177	. 3449983	2239	770345.81	46.18
. 128	. 3337620	2348	762508.16	48.44	. 178	-345 2220	2237	770431.96	46.13
. 129	. 333 3 957	2346	$75 \quad 2555.57$	48.39	. 179	. 3454456	2234	770518.08	46.09
2.130	1.3342312	2344	$76 \quad 2644.94$	48.34	2.180	I. 3456689	2232	770604.14	46.04
.13I	-33+4654	2341	762733.20	48.29	. 18 I	-3458921	2230	770050.17	46.00
. 132	. 3346995	2339	$7028 \quad 21.53$	48.25	. 182	. 3461150	2228	770736.14	45.93
. 133	-334 9333	2337	$76 \quad 2909.75$	48.20	. 183	-346 3377	2226	770822.08	45.91
. 134	. 3351658	2335	$7629 \quad 57.93$	43.15	. 184	. 346560 I	2224	770907.96	45.87
2.135	I. 3354002	2332	$75 \quad 3046.05$	48.11	2.185	I. 34678.4	2221	770953.81	45.82
. 136	. 3356333	2330	7315134.14	48.06	. 186	- 3470044	2219	77 10 39.60	45.78
. 137	- 3358562	2328	763222.18	43.01	. 187	-3472252	2217	77 II 25.36	45.73
. 138	. 3350988	2325	7563310.17	47.57	. 189	- 3474478	2215	771211.07	45.69
. 139	. 33633 I 3	2323	763358.11	$47 \cdot 182$. 189	. 3476692	2213	77 I2 56.73	45.64
2.140	1.3365635	2321	763446.01	47.87	2.150	I. 3478904	22 II	771342.35	45.60
. I4I	. 3357955	2319	763533.86	47.83	. 191	- 348 III4	2208	771427.93	45.55
. 142	. 3370272	2316	763621.66	47.78	. 192	-3483321	2306		45.51
. I43	. 3372588	2314	763709.42	47.73	. 193	-3485526	2204	771558.95	45.46
. 144	. 3374901	2312	763757.13	47.69	. 194	-3487729	2202	771544.39	$45 \cdot 42$
2.145	I. 3377212	2310	753844.79	47.64	2. 195	1. 3489930	2200	771729.79	$45 \cdot 38$
. 146	. 3379520	2307	763932.41	47.59	. 195	- 3492129	2198	771815.14	45.33
. 147	. 3381826	2305	764019.98	47.55	. 197	- 3494326	2196	771900.45	45.29
. 148	. 338413 I	2303	764107.51	47.50	- It 8	-349 6520	2193	771945.72	45.24
. 149	. 3386432	2301	764154.99	$47 \cdot 46$	- 199	-3498713	2191	772030.94	45.20
2.150	1.3388732	2298	764242.42	47.4I	2.200	1.3500903	2189	772116.11	45.16
-	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$	ech u	$2 \tan ^{-1}\left(e^{(a)}-90^{\circ}\right.$	w sech u	-	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$	∞ sech u	$2 \tan ^{-2}\left(\mathrm{e}^{\mathrm{e}}\right)-90^{\circ}$	ω sech a

The Gudermannian.

u	0 O	${ }_{4} \mathrm{~F}_{3}{ }^{\prime}$	giu	$\omega \mathrm{F} \mathbf{j}^{\prime}$	u	gia	wïu'	giu	$\omega \mathrm{F}_{0}{ }^{\prime}$
							2085		43.00
2.200	1.3500903	2189	772110.11	45.15	2.250	1.3507733	2085	775759.04	43.00
. 201	. 350 3091	2187	7722 O1. 25	45.11	. 251	-360 9817		775842.62	42.90
. 202	. 3505277	2185	$7122+6.34$	45.07	. 252	-351 I899	20 SI	775925.55	42.92
. 203	. 3507461	2183	772331.28	45.02	. 253	-351 3578	22,9	780008.46	42.88
. 204	. 3509643	2181	772416.38	$\therefore 4.8$. 254	. 3516056	2077	780051.32	42.83
2.20	1.351 1822	21	7725 OI.34	4.2	2.255	I. 3518132	207	780134.13	42.79
,	. 3514000	217	772546.25	4.	. 235	. 3520205	2073	7802 I6.90	42.75
.	. 3516175	2174	772531.12	44.85	. 237	- 3522277	2071	780259.63	42.71
. 20	. 3518348	2172	772715.95	14.80	. 258	. 3624347	2065	780342.32	42.67
. 209	. 3520519	2170	772500.73	H.75	. 259	. 3626414	2067	780424.97	42.63
2.210	1.3522688	2168	$772845 \cdot 17$	44.72	2.250	1. 3528480	2065	780507.57	42.58
. 211	. 3524855	2166	72930.16	+4.67	. 2 ¢1	. $35305+3$	2053	780550.13	42.54
. 2	. 3527020	2164	7730 I4.82	4.63	. 252	- 3532505	20.0	780632.66	42.50
. 213	. 3529183	2162	773050.42	44.59	. 253	- 3634654	2058	780715.14	42.46
.214	. 353 I343	2159	$\pi 3143 \cdot 5$	+4.54	. 264	. 3536722	2056	780757.57	42.42
2.215	1.3533502	2157	773228.51	4.50	2.255	1. 3538777	2054	780839.97	42.38
. 216	. 3535658	2155	773312.59	+4.46	. 256	. 3640831	2052	750922.33	42.33
. 21	. 3537812	2153	773357.42	44.41	. 257	- 3542882	205	$7^{8} 1004.64$	42.29
. 218	. 3539964	2151	77 3441.81	44.37	. 268	-354 4n3I	20	7^{8} 10 46.91	42.25
. 219	-354 2II4	2149	773535.15	+4.33	. 269	-3646979	204	78 II 29.14	42.2 I
2.220	I. 354	2147	773510.45	44.28	2.270	1. 3649024	2044	78 I2 II. 33	42.17
. 221	. 3546408	21.5	$77365+.72$	44.24	. 271	. 3651058	2042	78 I2 53.48	42. 13
. 2	. 3548552	2 I 43	773738.94	44.20	. 272	-3653109	20	78 I3 35.59	42.09
. 22	- 3550093	2141	773823.11	44.15	. 273	-365 5149	2038	781417.66	42.05
. 224	. 3552833	2138	773907.24	44. II	. 274	. 3557185	2035	78 I4 59.68	42.00
2.225	I. 3554970	2135	77	44.0	2.275	I. 365922 I	203	78 I5 41.66	4 4 .96
	. 3557106	2134	7740	4	. 275	. 3661255	2032	731623.61	41.92
. 227	. 3559239	2132	774119.38	43.98	. 277	- 3663286	2030	78 I7 05.5I	
. 22	. 3561370	2130	774203.34	43.04	. 278	. 3655316	2028	$7^{9} 17817.37$	41.84
. 229	-356 3499	2128	774247.25	43.89	.279	. 3567343	2026	781829.19	
2.230	1. 3565626	2126	774331.13	43.85	2.280	I. 3569359	202	781910.97	41.76
. 23	. 3567751	2124	77414.96	43.81	. 281	. 3571392	2023	781952.71	41.72
. 232	- 3559874	2122	774458.74	43.77	. 282	- 3673414	2021	782034.40	41.68
. 233	-3572095	2120	774542.49	43.72	. 283	. 36754.33	2019	782116.06	41.64
. 234	-357 4114	2118	774625.19	43.68	. 234	- 367 745I	2017	782157.68	41.60
2.235	1.3576230	16	$77 \quad 4709.85$	43.64	2.285	1. 3579466	2015	782239.25	4 T .55
. 236	- 3578345	2114	774753.47	43.60	. 286	- 368 1480	2013	$\begin{array}{llll}78 & 23 & 20.78 \\ 78 & 24 & 02.28\end{array}$	4I.5I
. 237	. 358045	2 III	774837.04	43.55	. 287	. 3583492	2011	782402.28	41.47
. 238	- 3582568	2109	774920.57	43.51	. 288	. 3685501	2009	782443.73	41.43
. 239	. 3584676	2107	775004.06	43.47	. 289	. 3587500	2007	782525.14	41.39
2.240	I. 3586783	2105	775047.51	43.43	2.290	. 3689515	2005	782606.51	41.35
. 241	. 3588887	2103	775130.91	$43 \cdot 38$. 291	. 369 I519	2003	782647.85	41.31
. 242	- 3590987	2101	7752 I4. 27	$43 \cdot 34$. 292	-369 3521	2001	782729.14	41.27
. 243	- 3593080	2099	775257.59	43.30	. 293	- 3695520	1999	782810.39	41. 23
. 244	. 3595187	2097	775340.87	43.26	. 294	. 3697518	1997	782851.60	41.19
2.245	1.3597283	2095	775424.10	43.21	2.295	1. 3699514	1595	782932.77	41.15
. 246	. 3599377	2093	775507.29	43.17	. 295	. 3701508	19.3	783013.89	41.11
. 247	. 3501459	2091	775550.44	43.13	. 297	. 3703500	1971	783054.08	41.07
. 248	. 3603559	2039	775633.55	43.09	. 298	. 3705490	1989	783136.03	41.03
. 249	. 3605647	2087	775716.62	43.04	. 299	-370 7479	1987	$78 \quad 32$ I7.04	40.59
2.250	I. 3607733	2085	775759.64	43.00	2.300	1. 3709465	1985	783258.01	40.95
■	$2 \tan ^{-1}\left(e^{\mathrm{n}}\right)-\frac{\pi}{2}$	chu	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	\% sech u	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	chu	$2 \tan ^{-1}\left(e^{n}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega F_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	4	cd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.300	1.3709465	1985	$78^{\circ} 32^{\prime} 58^{\prime \prime}$.or	40.95	2.350	1.330 6.31	ISgo	$79^{\circ} 06^{\prime} 16.03$	38.90
. 301	. 3711419	1983	783338.94	40.91	. 351	. 3808221	1888	790655.00	38.95
- 302	-371 3435	1981	783419.82	40.87	- 352	. 3810108	1885	790733.03	8.91
. 303	. 3715412	1979	783500.67	40.83	- 353	. 3811994	1885	790812.82	38.87
-304	-3717390	1977	783541.48	40.79	- 354	-381 3877	1383	790851.67	38.84
2.305	1.371 9367	1975	783522.25	40.75	2.355	I. 3815759	1881	790930.49	38.80
- 306	. 3721341	1974	783702.98	40.71	. 356	.381 7639	1879	79 10 09.27	38.76
. 307	. 3723314	1972	783743.66	40.66	- 357	.381 9517	1877	79 10 48.01	38.72
- 308	. 3725284	1970	78382.4 .31	40.63	- 358	-382 1394	1875	79 II 26.71	38.08
- 309	- 3727253	1968	783904.92	40.59	- 359	. 3823268	1874	79 I2 05.37	38.64
2.310	1.3729220	1966	783945.49	40.55	2.360	1.382 5141	1872	791244.00	38.61
.3II	. 3731185	1964	784026.02	40.51	. 361	. 3827012	1870	79 I3 22.59	38.57
. 312	- 3733148	1962	784106.51	40.47	. 362	. 382888 I	1868	79 I4 OI.I4	38.53
. 313	. 3735109	1960	784146.96	40.43	- 363	. 3830748	1866	79 It 39.65	38.49
. 314	. 3737068	1958	784227.37	40.39	. 364	. 3832613	1864	791518.12	38.46
2.315	I. 3739025	1956	$78 \quad 4307.74$	40.35	2.365	I. 3834476	1863	79 I5 56.55	38.42
-315	. 3740980	1954	784348.07	40.31	. 366	.3836338	1861	791634.96	38.38
. 317	. 3742934	1952	784428.36	40.27	. 367	. 3838198	1859	79 I7 13.32	38.34
. 318	. 3744885	1950	784508.6 I	40.23	. 368	. 384	1857	791751.64	38.30
. 319	. 3746835	1949	784548.82	40.19	. 369	. 384 I912	1855	79 I8 29.93	38.27
2.320	I. 3748782	1947	784628.99	40.15	2.370	1. 3843766	1853	791908.18	38.23
. 32 I	. 3750728	1945	784709.13	40.11	. 371	. 3845619	1852	79 19 46.39	38.19
. 322	. 3752672	1943	784749.22	40.07	- 372	. 3847470	1850	722024.56	38.15
. 323	. 3754614	1941	784829.28	40.04	. 373	. 3849318	18.8	792102.70	38.12
. 324	-375 6554	1939	784909.29	40.00	- 374	. 385 II65	1846	79 21 40.80	38.08
2.325	1. 3758492	1937	784949.27	39.96	2.375	1. 385301 I	1844	79.2218 .86	38.04
. 325	. 3760428	1935	$78 \quad 5029.21$	39.92	. 376	- 3854854	1843	702255.88	38.00
. 327	. 3762362	1933	785109.10	39.88	- 377	. 3856696	1841	792334.87	37.97
-328	. 3764295	1931	78 51 48.06	39.84	. 378	. 3858536	1839	792412.81	37.93
- 329	. 3766225	1930	$78 \quad 5228.78$	39.80	- 379	.3860374	1837	792450.73	37.89
2.330	1. 3768154	1928	785308.56	39.76	2.380	1. 3862210	1835	792528.60	37.86
. 33 I	. 3770001	1926	785348.30	39.72	. 381	. 3854044	1833	792506.44	37.82
. 332	. 3772006	1924	785428.01	32.68	. 382	. 3865877	1832	792641.24	37.78
-333	. 3773929	1922	785507.67	39.64	. 383	. 3867708	1830	792722.00	37.71
. 334	. 3775850	1920	785547.29	39.61	- 384	. 3869537	1828	792759.73	37.71
2.335	1.3777769	1918	785626.88	39.57	2.385	1.3871364	1826	$\begin{array}{llllllllll}79 & 28 & 37.41\end{array}$	37.67
. 336	. 3779685	1916	785706.43	39.53	. 386	.3873189	1824	792915.07	37.63
- 337	. 378 1601	1914	785745.94	39.49	. 387	. 3875013	1823	792952.68	37.60
-338	. 3783515	1913	${ }_{78}^{78} 5825.40$	39.45	. 388	. 3876834	1821	793030.26	37.56
. 339	-378 5427	I9II	785904.84	39.41	. 389	. 3878655	1819	793107.80	37.52
2.340	1. 3787336	1909	785944.23	39.37	2.390	1. 3880473	1817	79 31 45.30	37.49
. 34 I	. 3789244	1907	790023.58	39.33	. 391	. 3882289	1816	793222.77	37.45
-342	-379 1150	1905	79 ar 02.89	39.30	. 392	. 3884104	1814	793300.20	37.4 I
- 343	. 3793054	1903	79 or 42.17	39.26	- 393	. 3885917	1812	$7933 \quad 37.59$	37.37
-344	- 3794957	1901	790221.41	39.22	. 394	.3887728	I810	7934 I4.95	$37 \cdot 34$
2.345	1. 3796857	1899	790300.61	39.18	2.395	1. 3889537	1808	793452.27	37.30
. 346	. 3798756	1898	$7903 \quad 39.77$	39.14	. 396	. 3891345	1807	$7935 \quad 29.55$	37.26
-347	. 3800052	1896	790418.89	39.10	- 397	. 3893150	1805	793606.80	37.23
-348	. 3802547	1894	790457.97	39.06	- 398	. 3894954	1803	793644.01	37.19
-349	. 3804440	1892	790537.02	39.03	- 399	. 3896757	1801	793721.18	37.15
2.350	1.380633 I	1890	790616.03	38.99	2.400	I. 3898557	1800	793758.32	37.12
1	$2 \tan ^{-2}\left(e^{\text {a }}\right)-\frac{\pi}{2}$	chu	$2 \tan ^{-1}\left(\operatorname{sex}^{\circ}\right)-90^{\circ}$	ω sech a	-	$2 \tan ^{-2}\left(e^{x}\right)-\frac{x}{2}$	cha	$2 \tan ^{-7}(\mathrm{em})-90^{\circ}$	ω sech B

u	odu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{\mathrm{J}^{\prime}}$
2.400	1. 3898557	1800	$79^{\circ} 37^{\prime} 58^{\prime \prime} .32$	37.12	2.450	1. 3986356	1713	$80^{\circ} 08^{\prime} 09^{\prime \prime} .31$	$35 \cdot 34$
. 401	. 3900356	1798	793835.42	37.08	. 451	. 358880	I7II	800844.63	35.30
. 402	. 3902153	1796	793912.48	37.05	. 452	. 3989779	1710	800919.91	35.27
. 403	- 3903948	1794	793949.51	37.01	. 453	. 399 I48S	1708	8009 55.16	35.23
. 404	. 3905741	1792	794026.50	36.97	. 454	. 3993195	1706	80 10 30.37	35.20
2.405	I. 3907533	1791	794103.45	36.94	2.455	1. 3994901	1705	So 11105.55	35.16
. 406	. 3909323	1789	794140.37	36.90	. 456	. 3996605	1703	80 II 40.70	35.13
. 407	. 391 IIII	1787	794217.25	36.86	. 457	. 3998307	1701	801215.81	35.09
. 408	. 3912897	1785	7942 54.10	36.83	. 458	. 4000007	1700	801250.89	35.06
. 409	. 3914681	$\mathrm{I}_{7} \mathrm{~S}_{4}$	7943 30.91	36.79	. 459	. 4001706	1698	801325.92	35.02
2.410	I.391 6464	1782	794407.68	36.75	2.460	1.4003403	I696	801400.93	34.99
. 411	. 3918245	1780	$79+44.42$	36.72	. 461	. 4005099	1695	801435.10	34.95
. 412	. 3920025	1778	794521.12	36.68	. 462	. 4006793	1693	801510.84	34.92
. 413	. 392 I802	1777	794557.78	36.65	. 463	. 4008885	1691	$801545 \cdot 74$	34.89
. 414	- 3923578	1775	79 +634.41	36.6 I	. 464	. 4010175	1690	801620.61	34.85
2.415	1. 3925352	1773	794711.00	36.57	2.465	1.401 1854	I688	So $1655 \cdot 45$	34.82
. 416	. 3927124	1771	794747.56	36.54	. 466	. 4013551	1686	801730.25	34.78
. 417	- 392885	1770	794824.08	35.50	. 467	. 4015237	1685	80 If 05.0I	34.75
- 418	-393 0664	1768	794900.57	36.47	. 468	. 401692 I	1683	801839.74	34.71
. 419	. 393243 I	I766	794937.02	36.43	. 469	. 4018503	1681	80 19 14.44	34.68
2.420	1. 3934196	1764	795013.43	36.39	2.470	1.4020283	1680	801949.10	34.65
. 421	. 3935960	1763	795049.80	36.35	.471	. 4021962	1678	802023.73	34.61
. 422	- 3937722	I76I	795126.15	36.32	-472	. 4023639	1676	802058.33	34.58
. 423	. 3939482	1759	795202.45	36.29	-473	. 4025315	1675	802132.89	34.54
. 424	-394 1240	1758	795238.72	36.25	. 474	. 4026989	1673	802207.4 L	$34 \cdot 51$
2.425	I. 3942997	1755	795314.96	36.22	2.475	1.4028651	1672	802241.91	34.48
. 425	. 3944752	1754	795351.15	36.18	. 476	. 4030332	1670	80.2316 .36	34.44
. 427	-394 6505	1752	795427.32	36.14	-477	. 4032001	1668	802350.79	$34 \cdot 4 \mathrm{I}$
. 428	-3948257	1751	795503.44	36.11	. 478	. 4033668	I666	83	$3+37$
. 429	. 3950006	1749	795539.54	36.07	-479	. 4035334	1665	802459.54	34-34
2.430	1. 3951754	1747	795615.59	36.04	2.483	1. 4036998	1663	832533.85	34.3I
. 431	- 3953501	$17+5$	795651.61	36.00	. 48 I	. 4038660	1662	802608.15	34.27
. 432	- 3955245	1744	795727.60	35.97	. 482	. 404032 I	1660	802642.40	34.24
-433	- 3956988	1742	$\begin{array}{lllll}79 & 58 \\ 7 & 58 & 03.55\end{array}$	35.93	- 483	. 4041980	1658	$\begin{array}{lllll}80 & 27 & 16.62\end{array}$	34.20
. 434	- 3958729	1740	$79 \quad 5839.46$	35.90	. 484	. 4043637	1657	So 2750.8 I	34.17
2.435	1. 3960469	1739	795915.34	35.86	2.485	1.4045293	1655	$80 \quad 2824.97$	34.14
. 436	. 3962207	1737	795951.19	35.83	. 485	. 4046947	1653	80	34.10
. 437	. 3963943	1735	800026.99	35.79	.437	. 4048600	1652	802933.17	34.07
- 438	. 3965677	1733	80 OI 02.77	35.76	. 488	. 4050251	I650	803007.23	34.04
. 439	- 3967410	1732	80 or 38.51	35.72	. 489	. 4051900	1648	803041.25	34.00
2.440	1.3969141	1730	$8002 \mathrm{I4.21}$	35.69	2.490	I. 4053548	1647	803115.23	33.97
- 41 I	. 3970870	1728	800249.88	35.65	-491	. 4055194	1645	803149.19	33.94
. 412	- 3972597	1727	800325.51	35.62	. 492	. 4056838	1614	803223.10	33.90
- 443	- 3974323	1725	8004 OI. 11	35.58	. 493	. 4058881	16.42	803256.99	33.87
. 444	- 3976047	1723	800436.67	$35 \cdot 54$	-494	. 4050122	1640	803330.84	33.84
2.445	1.3977770	1722	800512.20	35.51	2.495	1. 4051762	1639	8034	33.80
. 446	. 3979490	1720	800547.69	35.48	. 496	. 4063400	1637	$80 \quad 3438.45$	33.77
- 417	-3981209	1718	80 06 23.15	35.44	. 497	. 4055036	1636	803512.20	33.74
. 448	- 3982927	1716	80 06 58.57	35.4 I	. 498	. 406657 I	1634	803545.92	33.70
. 449	- 39846	1715	800733.95	35.37	-499	. 4068304	1632	803619.60	33.67
2.450	1.3986356	I713	800809.31	35.34	2.500	I. 4069936	1631	$80 \quad 3653.26$	33.64
,	$2 \tan ^{-1}\left(e^{4}\right) \frac{\pi}{2}$	chu	$2 \tan ^{-1}\left(e^{\mathrm{x}}\right)^{-90}$	w sech 4	u	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ω sechu	$2 \tan ^{-1}\left(\mathrm{e}^{4}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{Fo}^{\prime}$	gdu	$\omega \mathrm{Fo}$
2.500	I. 4069936	1631	$80^{\circ} 36^{\prime} 53.26$	33.64	2.550	1. 4149492	1552	81 0414.22	32.02
. 50 I	. 4071566	1629	803726.88	33.60	. 551	. 4151043	1551	SI $04+6.22$	31.98
. 502	. 4073194	1627	803800.46	33.57	. 552	. 4152593	1549	810518.19	31.95
. 503	. 407482 I	1625	803834.01	33.54	. 533	. 4154142	15.8	810530.13	31.92
. 504	. 4076446	1624	So 39 07.5:-	33.50	. 554	. 4155688	1546	810622.03	31.89
2.505	I. 4078069	1623	803941.02	$33 \cdot 47$	2.555	1.4157234	1545	SI 05 53.91	31.85
. 506	. 4079591	1621	8040 It .47	33.44	. 556	. $41587 / 8$	1543	810725.75	31.83
. 507	. 4031311	1619	804047.90	33.40	. 557	. 4160320	1541	SI 0757.56	31.80 ,
. 508	. 4082930	1618	804121.28	33.37	. 558	. 4151860	1540	81 of 29.3t	31.76
. 509	. 4084547	1616	804154.64	33.34	- 559	.4163400	1538	81 09 O1.09	31.73
2.510	I. 4086163	1515	804227.96	33.31	2.560	I. 4164937	1537	81 0932.80	3 I .70
. 511	. 4087777	1613	80.43 Q1. 25	33.27	. 56 I	. 4166473	1535	81 10 04.49.	31.67
. 512	. 4089383	1612	8043 34.51	33.24	. 562	. 4168008	1534	81 10 36.14	3 I .64
. 513	. 4091000	1610	804407.73	33.21	. 563	.416 9541	1532	81 II 07.77	3I.6I
. 514	. 4092609	1608	804440.52	33.17	. 564	.417 1073	I53I	SI II 39.36	3 I .58
2.515	I. 4094216	1607	804514.08	33.I4	2.565	I. 4172603	1529	811210.92	31.54
. 516	. 4095822	1605	804547.20	33.11	. 565	. 4174131	1528	81 1242.45	3 I .51
. 517	. 4097427	1604	804620.30	33.08	. 567	. 4175659	1526	811313.95	31.48
. 518	. 4099029	1602	$\begin{array}{llllllll}80 & 46 & 53.35\end{array}$	33.04	. 368	- 41778184	1525	8151345.11	31.45
. 519	.4100631	1600	$80 \quad 4726.38$	33.01	. 569	.4178708	1523	SI I4 16.85	31.42
2.520	1.410 2230	1599	804759.38	32.98	2.570	1.4180231	1522	8 I If 48.25	31.39
. 52 I	. 41103828	1597	804832.34	32.95	. 571	. 4181752	1520	81 IJ 19.63	31.36
. 522	. 4105425	1595	804905.27	32.91	. 572	. 4183271	1519	SI 1550.97	31.33
. 523	. 4107020	1594	804938.17	32.83	. 573	. 4184789	1517	SI I6 22.28	31.30
. 524	.410 8613	1593	805011.03	32.85	. 574	.4186306	1516	81 1653.56	31.27
2.525	I.4II 0205	1591	So 5043.86	32.82	2.575	I. 418782 z	1514	811724.81	31.23
. 526	. 4111795	1580	805116.66	32.78	. 576	. 4189334	1513	81 1755.03	31.20
. 527	.4II 3384	1588	805149.43	32.75	. 577	. 4190847	1511	81 18 27.22	31.17
. 528	.4II 497I	1586	So 5222.17	32.72	. 578	. 41923357	1510	81 18 58.38	31.14
. 529	.4II 6556	1585	805254.87	32.69	. 579	. 4193855	1508	811929.50	31.11
2.530	I.4II 8i40	1583	805327.54	32.65	2.580	1.419 5374	1507	812000.60	31.08
.53I	.411 9722	1582	805400.18	32.62	. 58 I	.4196880	1505	81 2031.67	31.05
. 532	. 41213003	1580	805432.78	32.59	. 582	- 4198.884	1504	812102.70	31.02
. 533	. 4122882	1578	805505.36	32.56	. 583	. 4199888	1502	81 2133.70	30.99
. 534	. 4124160	1577	805537.90	32.53	. 584	. 4201389	1501	81 2204.68	30.96
2.535	I. 4126036	1575	So 5610.41	32.49	2.585	I. 4202889	1493	$\begin{array}{llll}81 & 22 & 35.62\end{array}$	30.93
. 536	. 4127611	1574	805642.89	32.46	. 586	. 4204388	1408	812306.53	30.90
. 537	. 4129184	1572	$805715 \cdot 33$	32.43	. 587	. 4205885	1496	8 I 2337.4 I	30.87
. 538	. 4130755	1571	805747.75	32.40	. 588	. 420738 I	1495	812408.26	30.84
. 539	.413 2325	1569	805820.13	$\bigcirc 2.37$. 589	. 4208875	1493	81 2439.09	30.8 I
2.540	1. 4133893	1568	$80 \quad 5852.48$	32.33	2.590	1.4210368	1492	SI 2509.88	30.77
. 54 T	. 4135460	1566	805924.80	32.30	-591	.421 1859	1491	81 2540.63	30.74
. 542	. 4137025	1564	805957.08	32.27	- 592	-4213349	1483	81 26 II. 36	30.71
. 543	. 4138589	1563.	81 0029.34	32.24	. 593	-421 4837	1488	812642.06	30.68
. 544	. 4140151	156 I	81 OI OI. 56	32.21	- 594	.421 6324	1486	81 27 I2.73	30.65
2.545	1.414 1712	1560	8 I OI 33.75	32.17	2.595	1. 4217803	1485	$\begin{array}{llll}81 & 27 & 43.37\end{array}$	30.62
. 546	. 4143271	1558	8 I 0205.9 I	32.14	. 596	. 4219293	1483	81 281813.98	30.59
-547	.414 4829	1557	81 0238.03	32.11	. 597	. 4220776	1482		30.50
. 548	. 4146385	1555	$8 \mathrm{8I} 0310.13$	32.08	. 598	. 4222257	1480	81 291515.10	30.53
. 549	.4147939	1554	81 0342.19	32.05	. 599	.4223736	1479	81 2945.62	30.50
2.550	1.4149492	1552	81 04 14.22	32.02	2.600	1.4225214	1477	$8 \mathrm{I} 30 \mathrm{I6.11}$	30.47
u	$2 \tan ^{-2}\left(e^{x}\right)-\frac{\pi}{2}$	sech :	$2 \tan ^{-1}\left(e^{x}\right)-90^{\circ}$	msech a	u	$2 \tan ^{-1}\left(e^{n}\right)-\frac{\pi}{2}$	\pm sech t	$2 \tan ^{-1}\left(e^{\circ}\right)-90^{2}$	∞ sech a

The Gudermannian.

u	$\mathrm{sfu}^{\text {d }}$	$\omega \mathrm{F}_{0}{ }^{\prime}$	gut	$\omega \mathrm{F}_{v^{\prime}}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega F_{0}{ }^{\prime}$
2.600	1.4225214	1477	81 $30^{\prime} 16.11$	30.47	2.650	1.4297283	1406	$81^{\circ} 55^{\prime} 02.63$	29.00
. 601	. +22655 r	1476	813045.55	30.47	. 651	. 4298688	1405	81 5531.62	28.97
. 602	. +228166	1474	81 31 10.99	30.41	. 632	. 4300092	1403	81 5600.58	28.94
. 603	. 4229540	1473	8I 31 47.39	30.38	. 633	. 4.301405	1402	81 5629.51	28.92
. 604	. 423 III2	1471	81 3217.75	30.35	. 654	. 4302896	1400	8I 5658.41	28.89
2.605	1.4232583	1470	8I 3248.09	30.32	2.655	1.4304395	1399	81 5727.28	28.85
. 605	. 4234052	1469	81 3318.40	30.29	. 656	. 4305594	1398	81 5756.12	28.83
. 607	. 4235520	1457	81 $33-48.67$	30.25	. 657	. 4307001	1396	81 5824.94	28.80
. 603	. 4236985	I 466	8i 34 18.92	30.23	. 658	. 4308187	1395	81 58 53.72	28.77
. 609	. 423845 I	1464	81 34 49.1I4	30.20	. 659	. $430 \mathrm{988I}$	1394	8I 5922.48	28.74
2.610	I. 4239915	1463	81 3519.32	30.17	2.660	I. 4311274	1392	8 I 595 I .2 I	28.72
. 611	. 4241377	1451	8I 3549.48	30.14	. 661	. 43 I 2655	1391	820019.91	28.69
. 612	. 4242837	1460	8i 3619.61	30.11	. 662	. 4314055	1389	820048.58	28.66
. 613	. $424+297$	1458	81 3649.71	30.08	. 663	-43I 5444	1388	82 OI 17.23	28.63
. 614	. 4245754	1457	813719.77	30.05	. 664	. 431683 I	1397	82 or 45.84	28.60
2.615	1.424 7211	1456	81 3749.81	30.02	2.665	1.4318217	1385	820214.43	28.57
. 616	. 4248665	1454	81 3819.82	29.99	. 666	.431 9602	1384	820242.99	28.55
. 617	. 4250119	1453	8 II 3849.80	29.96	. 667	. 4320985	1383	8203 II. 52	28.52
. 618	. +25157 I	1451	81 3919.75	29.93	. 668	. 4322367	138 I	820340.02	28.49
. 619	. 425302 I	1450	8I 3949.67	29.90	. 669	. 4323747	1380	820408.50	28.46
2.620	1.4254470	1448	81 40 I9.56	29.87	2.670	1.4325127	1378	820436.95	28.43
. 621	. 4255918	1477	8I 4049.42	29.85	. 671	.4326504	1377	820505.36	28.40
. 622	.4257364	1445	81 4119.23	29.82	. 672	. 432788 I	1376	820533.75	28.38
. 623	. 4258809	1444	81 4149.05	29.79	. 673	. 4329256	1374	820602.12	28.35
. 624	. 4250252	1443	8I 4218.82	29.76	. 674	.4330629	1373	820630.45	28.32
2.625	I. 4261694	1441	81 4248.55	29.73	2.675	1. 4332002	1372	820658.76	28.29
. 626	.4253135	1440	814318.28	29.70	. 676	. 4333373	1370	820727.03	
. 627	. +264574	1438	81 4347.96	29.67	. 677	. 4334742	1369	820755.28	28.24
. 628	. 4266012	1437	81 44 17.6I	29.64	. 678	. 433 6iIO	1368	820823.51	28.21
. 629	. 4267448	1436	81 4447.24	29.61	. 679	. 4337477	1366	820851.70	28.18
2.630	1.426 8833	1434	814516.83	29.58	2.680	$1.43388+3$	1365	820919.86	28.15
. 631	. 427 0316	1433	81 4546.40	29.55	. 681	. 4340207	1363	820948.00	28.12
. 632	. 427 1748	I43I	81 4615.94	29.52	. 682	-434 1570	1362	821016.11	28.10
. 633	. 4273170	1430	8 I 4645.44	29.49	. 683	. 434293 I	136 r	82 10 44.20	28.07
. 634	. 4274608	1428	8 I 47 I 4.92	29.46	. 684	. 434 429I	1359	82 II 12.25	28.04
2.635	1.4276036	1427	814744.37	29.43	2.685	1. 4345650	1358	82 II 40.28	28.01
. 636	. 4277452	1426	81 4813.73	29.41	. 685	.4347008	1357	821208.28	27.99
. 637	. 4278837	1424	81 4843.18	29.38	. 687	. 4348364	1355	82 I2 36.25	27.96
. 638	-42. 0310	1423	81 4912.55	29.35	. 688	. 4349719	1354	821304.19	27.93
. 639	.4281732	1421	81 4941.88	29.32	. 689	.4351072	1353	82 I3 32.11	27.90
2.640	I. 4283153	1420	81 50 II. 18	29.29	2.690	I. 4352424	1351	8221359.99	27.87
. 641	. 12885	1419	815040.46	29.26	. 691	- 4353775	1350	82 If 27.85	27.85
. 642	. 4285590	1417	815109.70	29.23	. 692	. 4355124	1349	82 I4 55.69	27.82
. 6.43	. 4287407	1416	815138.92	29.20	. 693	- 4356472	1347	821523.49	27.79
. 644	. 4288822	1414	81 5208.11	29.17	. 694	. 4357819	1346	821551.27	27.77
2.6 .45	1.4290236	I4I3	81 5237.27	29.14	2.695	I. 4359164	1345	821619.02	27.74
. 646	. 429 1648	1412	815306.40	29.12	. 696	.4360508	1343	82 16 46.75	27.71
. 647	. 4293059	1410	81 53335.50	29.09	. 697	. 4361851	1342	82 I 714.44	27.68
. 648	. 4294458	1409	81 5404.57	29.06	. 698	.4363192	1341	82 I7 42.11	27.65
. 649	. 4295876	1407	815433.62	29.03	. 699	. 4364532	1339	82 I8 09.75	27.63
2.650	1.4297283	1406	81 5502.63	29.00	2.700	1.4365871	1338	82 I8 37.36	27.60
u	$2 \tan ^{-1}\left(e^{n}\right)-\frac{\pi}{2}$	h	$2 \tan ^{-1}\left(\mathrm{e}^{u}\right)-90^{\circ}$	ω sech u	-	$2 \tan ^{-1}\left(e^{\mathrm{a}}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	$\omega_{\text {sech }} \mathrm{u}$

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gda	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.700	1.436 5871	1338	82° 18 $8^{\prime} 37.36$	27.60	2.750	I. 443 II44	1273	$82^{\circ} 41^{\prime} 03.70$	26.26
. 701	. 4367309	1337	821904.95	27.57	. 751	. 4432416	1272	824129.95	26.24
. 702	. 4368545	1335	82 19 32.51	27.54	. 752	. 4133683	1271	824156.18	26.21
. 703	. 4369879	1334	822000.04	27.52	. 753	. 413 1959	12%	824222.38	26.19
. 704	. 437 12'13	1333	$82 \quad 2027.54$	27.49	. 754	. 4136227	1268	824248.55	26.16
2.705	1.4372545	I33I	822055.02	27.46	2.755	I. 4437495	1267	8243 I4.70	26.14
. 706	. 437 3876	1330	822122.47	27.44	.756	. 4438761	1266	824340.82	26.11
. 707	. 4375205	1329	82 21 49.83	27.41	. 757	. 4140026	1265	824406.92	26.08
. 708	.4376533	1327	822217.29	27.38	. 758	. 441 1290	1253	$82+32.99$	26.05
. 709	.4377850	1325	822244.66	27.35	. 759	- 4142533	1262	824459.03	26.03
2.710	1.4379186	1325	822312.00	27.33	2.760	1. 44438 I 4	1261	82.4525 .05	26.01
. 711	.4380510	1324	822339.31	27.30	. 761	. 414 5074	1260	824551.04	25.98
. 712	. 4381833	1322	822406.60	27.27	. 752	. 4446333	1258	82 4617.01	25.95
.713	. 438315.	1321	822733.85	27.25	. 763	. 4147591	1257	824642.95	25.93
. 714	. 4384475	1320	822501.09	27.22	. 764	. 4148847	1256	824708.87	25.50
2.715	1. 4385794	1318	822528.29	27.19	2.765	1. 4450102	1255	824734.76	25.88
. 716	. 4387 III	1317	822535.47	27.17	. 766	. $4+51355$	1253	824800.62	25.85
. 717	. 4388828	1315	822522.63	27.14	. 76	. 4452609	1252	824826.46	25.83
. 718	. 4389743	1314	822649.75	27.11	. 758	. 4453850	1251	824852.27	25.80
. 719	. 4391057	1313	$82 \quad 2716.85$	27.08	. 769	. 4455 III	1250	824918.06	25.77
2.720	1.439 2369	1312	822743.9	27.06	2.770	1.4456360	12.48	824943.82	25.75
. 721	. +393650	1310	8.22810 .96	27.03	. 771	. +157507	1247	825009.56	25.72
. 722	- 4391970	1309	822837.98	27.00	. 772	- 4458854	1246	825035.27	25.70
. 723	. $439620 r$	1303	822904.97	25.98	. 773	. 4460099	1245	825100.95	25.67
. 724	.4397606	1307	822931.94	26.95	. 774	.4461343	1243	825126.61	25.65
2.725	I. 4398912	1305	822958.87	26.92	2.775	1. 4162536	1242	S2 5152.25	25.62
. 726	. 4400216	1304	823025.79	26.90	. 776	. 4463827	12.11	825217.85	25.60
. 727	. 1401520	1303	823052.67	25.87	. 777	. 4465068	1240	825243.44	25.57
. 728	. 4402822	1301	823119.53	26.8 .4	.778	. 4466307	1238	825309.00	25.55
. 725	. 4404123	1300	823146.36	26.82	. 779	. 4467545	1237	$82 \begin{array}{llll}83 & 34 & 53\end{array}$	25.52
2.730	I. 4405422	1209	823213.16	25.79	2.780	1. 7468781	i 236	825400.04	25.49
. 731	. 4406720	1298	823239.94	26.76	. 781	. 4470017	1235	825425.52	25.47
. 732	. 4408017	1296	823306.69	25.74	. 782	. 4471251	$123+$	825450.98	25.44
. 733	. 4409.313	1295	823333.42	26.71	.783	. 4472484	1232	8.25516 .41	25.42
. 734	.441 0607	1294	823400.11	26.68	.784	. 4473716	1231	82 5541.81	25.39
2.735	1.441 1900	1292	Sz 3425.78	26.66	2.785	I. 4474946	1230	325607.19	25.37
. 736	. 4413192	1291	823453.43	26.63	. 786	. 447 6175	1229	825632.55	25.34
. 737	. 4414483	1290	823520.05	26.61	. 787	. 4477403	1227	825657.88	25.32
. 738	.441 5772	1289	823546.64	26.58	. 788	. 4478630	1226	8257 23.19	25.29
. 739	.441 7050	1287	823613.21	26.55	.789	. 4479856	1225	825748.47	25.27
2.740	I. 4418347	1285	823639.75	25.53	2.790	I. 4481080	1224	825813.72	25.24
. 741 I	. 411 I 9632	1285	823706.26	26.50	. 791	. 4482303	1223	825838.95	25.22
. 742	. 4420916	1283	823732.75	26.47	. 792	. 4483525	1221	825904.16	25.19
. 743	. 4422109	1282	$\begin{array}{lllll}82 & 37 & 59.21 \\ 82 & 38\end{array}$	26.45	. 793	. 4484746	1220	825929.34	25.17
. 744	. 442348 I	128I	823825.64	26.42	. 794	. 4485966	I219	825954.49	25.14
2.745	I. 442476 I	1280	323852.05	26.40	2.795	1.4487184	1218	830019.62	25.12
. 746	. 4426040	1278	823918.43	26.37	. 796	. 44888401	1217	830044.73	25.09
. 747	.4427318	1277	82 3944.79	26.34	. 797	.4489617	1215	83 O1 09.81	25.07
- 748	. 4428594	1276	8240 II. 12	25.32	. 798	. 4490832	1214	83 or 34.86	25.04
. 749	. 4429870	1275	824037.42	26.29	. 799	. 4492045	1213	83 or 59.90	25.02
2.750	1.443 II44	1273	824103.70	26.26	2.800	1.4493258	1212	830224.90	24.99
घ	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$	∞ sech u	$2 \tan ^{-1}\left(e^{2}\right)-90^{\circ}$	ω sech a	-	$2 \tan ^{-3}\left(e^{x}\right)-\frac{\pi}{2}$	sechu	$2 \tan ^{-2}\left(e^{(0)}-30^{\circ}\right.$	ω sech n

The Gudermannian.

\pm	gd u	ωF_{0}	gdu	$\omega \mathrm{F},{ }^{\prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathbf{F}_{0}{ }^{\prime}$
2.800	I. 4493258	1212	$83^{\circ} 02^{\prime} 24.90$	24.99	2.850	1. 4552365	1153	$83^{\circ} 22^{\prime} 44.07$	
. 80	. $4+49+459$	121	830249.88	24.97	. 83 I	. 45535 I 7	II52	832307.84	23.76
. 802	. 4495679	1209	8303 It .84	2.4 .94	. 852	. 455458	II5I	8323 3I.58	23.74
. 803	. 4496888	1209	830339.77	24.92	. 853	. 4555819	1150	832355.3 I	23.71
. 804	. 4498095	120	830404.68	24.89	. 854	. 4556968	II48	8324 I9.01	23.69
2.805	I. 4199301	1205	830429.56	24.	2.855	1.4558115	1147	832442.69	23.67
. 806	. 4500507	205	830454.42	24.85	. 856	. 4559262	II 46	832506.34	23.64
. 807	. 4501710	1203	830519.25	24.82	. 857	. 4560408	II45	832529.97	23.62
. 808	. 4502913	1202.	830544.05	24.80	. 858	. 4561552	II44	832553.58	23.59
. 809	. 4504115	I201	830608.84	24.77	. 859	. 4562696	1143	$83 \quad 2617.16$	23.57
2.810	I. 450 5315	1200	830633.60	24.75	2.860	1. 4563838	1.42	$83 \quad 2640.72$	23.55
.8II	. 4506514	IIS9	$8306 \quad 58.33$	$2+.72$. 861	. 4554979	1140	832704.25	23.52
. 81	. 4507712	1198	830723.04	24.70	. 862	. 456 6II9	1139	832727.77	23.50
.813	. 4508909	1.196	830747.73	24.67	. 863	. 4567258	1138	832751.26	23.48
.814	. 4510105	1195	$\begin{array}{lllllllllll}83 & 08 & 12.39\end{array}$	24.65	. 864	. 4568395	II37	8328 If. 72	23.45
2.815	I.45I 1299	94	830837.03		2.855	1. 4569532	1136	$8_{3} 28838.16$	23.43
. 816	. 4512492	1193	8309 O1. 64	24.60	. 866	. 4570667	1135	8329 O1. 58	23.41
. SI_{17}	. 4513684	II9I	830926.23	24.5 S	. 867	. 4571801	1134	$83 \quad 2924.98$	23.38
. 818	. 4514875	1190	830950.79	24.55	. 868	. 4572935	1133	83 ¢ 48.35	23.36
. 819	. 4516065	II8,	83 10 15.33	24.53	. 869	. 4574067	II3I	8330 II. 70	23.34
2.820	I.45I 7253	1188	83 10 39.84	24.50	2.870	1.4575198	II30	$83 \quad 3035.03$	23.32
21	. 451844 I	1187	83 II 04.3	24.48	. 871	. 4576327	1129	833058.33	23.29
. 82	. 4519627	1186	83 II 28.80	24.45	. 872	- 4577456	1128	833121.61	23.27
. 823	. 45208 I 2	1184	83 II 53.24	24.43	. 873	. 4578584	1127	833144.87	23.25
. 824	.4521995	1183	831217.66	24.41	. 874	. 4579710	1126	833208.11	23.22
2.8	1.452 3178	2	831242.05	24.38	2.875	1.4580835	125	833231.32	20
. 82	. 4524359	1181	831305.42	24.36	. 876	. 4581959	1124	$8332 \quad 54.50$	23.18
. 827	. 4525540	1180	83 I3 30.76	24.33	. 877	. 4583083	123	833317.67	23.15
. 828	. 4526719	II78	83 I3 55.08	24.31	. 878	. 4584204	II2I	833340.81	23.13
. 829	. 4527897	1177	83 If 19.38	24.28	. 879	-458 5325	II2	833103.93	23.11
2.830	I. 45		831443.65	24.26	2.880	I. 4586445	1119	$83 \quad 3427.03$	23.08
. 83 I	. 4530249	75	831507.90	24.24	. 881	. 4587564	III8	833450.10	23.06
. 832	. 453 I423	1174	8315 32.12	24.21	. 882	. 458858 I	1117	833513.15	23.04
. 833	- 4532597	1173	8381556.32	24.1	. 883	. 4589798	16	833536.18	23.02
. 834	. 4533769	II7I	831620.50	24.16	. 884	. 4590913	III5	8335 59.18	22.99
2.835	I. 4534940	70	831644	24	2.885	1. 4592027	III4	833622.16	22.97
. 836	. 4536109		831708.78	24.12	. 886	. 4593140	ILI3	833645.12	22.95
. 83	- 4537278	1168	83 I7 32.88	24.09	. 887	. 4594252	III	833708.06	22.92
. 838	- 4538145	1167	831756.96	24.07	. 888	. 4595363	IIIO	833730.97	22.90
. 839	. 4539612	1166	83 I8 21.02	24.04	. 889	. 4596473	IIO	$83 \quad 3753.85$	22.88
2.840	1.4540777	M65	8318	24.	2.890	1. 459758 I	1108	$83 \quad 3816.73$	22.86
. 841	. 454.1941	1163	831909.06	24.	. 891	. 4598689	107	833839.57	22.83
. 842	-454 3194	1162	83 19 33.04	23.	. 892	. 4599795	1106	833902.40	22.81
. 813	- 4544265	II6I	83 I9 57.01	23	. 893	. 4600901	05	833925.19	22.79
. 844	. 4545426	1	832020.94	23.93	. 894	. 4602005	IIO	833947.97	22.77
2.845	I. 4546585	159	832041.85	23.90	2.895	1. 4603108	103	834010.73	22.74
. 846	. 4547743	1158	832108.74	23.88	. 896	. 4604210	IIOI	834033.46	22.72
. 847	. 4548900	1156	832132.61	23.85	. 897	. 4605311	1100	834056.17	22.70
. 848	.4550056	1155	83 21 56.45	23.83	. 808	. 4606411	1099	834118.85	22.68
. 849	. 455 I2II	1154	$83 \quad 22 \quad 20.27$	23.81	. 899	. 4607510	1098	834141.52	22.65
2.850	1.4552365	1153	$83 \quad 2244.07$	23.78	2.900	1.4608607	1097	$83 \quad 42 \quad 04.16$	22.63
u	$2 \tan ^{-1}(\mathrm{ec})-\frac{\pi}{2}$	chu	$2 \tan ^{-1}\left(e^{0}\right)-90^{\circ}$	m sech u	4	$2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$	ech	$2 \tan ^{-1}\left(e^{4}\right)-90^{\circ}$	ω sech

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$
2.900	1.4608607	1097	$83^{\circ} 42^{\prime} 04.1{ }^{\prime \prime} 16$	22.63	2.950	1.4662123	1044	$84^{\circ} 00 \times 28.00$	53
. 901	. 4609704	1095	$S_{3} 4225.78$	22.61	. 951	. 4663167	1043	810049.53	21.51
. 902	. 4610800	1095	834249.37	22.59	. 952	. 4664209	1042	84 OI II. 03	21.49
. 903	. 46118.94	1004	8343 II. 95	22.56	. 953	. 466525 I	rafi	81 ol 32.51	21.47
. 904	. 4612987	1093	8343 34.50	22.54	. 954	. 4666291	1040	84 ol 53.97	21.45
2.905	I.46I 4080	1092	$8343 \quad 57.03$	22.52	2.955	1. 4667330	1039	840215.40	2 I .43
. 906	.461 5171	IO9I	834419.54	22.50	. 956	. 4668368	1038	840236.82	21.40
. 907	.46I 625I	Ioro	834442.02	22.47	. 957	. 4668.406	$10: 7$	810258.21	21.38
. 908	. 4617350	1088	834504.48	22.45	. 958	.4670442	1036	840319.58	21.36
. 909	. 4618438	1087	834526.92	22.43	.959	. 4671477	1035	840340.93	21.34
2.910	1.46I 9525	1085	834549.34	22.41	2.960	I. 467251 I	1034	840402.27	2I. 32
.91I	. 4620610	1085	8346 II. 73	22.38	. 961	. 467354.4	1033	$8+0423.57$	21.30
. 912	. 4621695	1084	$834634 . \mathrm{II}$	22.36	. 962	. 4674576	1032	840444.86	21.28
.913	. 4622779	1083	834656.46	22.34	. 963	. 4675607	1031	840506.13	21.25
. 914	. 462386 I	1082	834718.79	22.32	. 964	. 4676637	IO29	840527.37	21.23
2.915	1. 4624942	1081	834741.09	22.30	2.965	I. 4677666	1028	840548.60	2I.2I
. 916	. 4626023	1080	1834803.38	22.27	. 966	. 4678694	1027	$8+0609.80$	21.19
. 917	. 4527102	1079	834825.64	22.25	. 967	. 4679721	1026	810630.98	21.17
. 918	. 4628180	1078	834847.88	22.23	. 968	. 4680747	1025	840652.14	21.15
. 919	. 4629257	1077	8349 10.10	22.21	.969	. 468 I772	1024	$8+0713.29$	21.13
2.920	1.4630334	1076	834932.29	22.18	2.970	1.4682796	1023	840734.40	21.11
. 921	. 463 I409	1074	834954.47	22.16	. 971	. 4683819	1022	840755.50	21.09
. 922	. 4632483	1073	835016.62	22.14	. 972	. 468484 II	1021	840816.58	21.07
. 923	. 4633555	1072	8350039.75	22.12	. 973	. 468586 I	1020	840837.64	21.05
. 924	.4634627	IO7I	835100.86	22.10	. 974	. 468688 I	1019	840858.67	21.02
2.925	1.4635698	1070	835122.94	22.07	2.975	I. 4687900	1018	840919.69	21.00
. 926	. 4636758	1069	835145.00	22.05	. 976	. 4688918	10	840940.68	20.98
. 927	. 4637836	1068	835207.05	22.03	. 977	. 4689935	1016	$8+$ 10 01. 65	20.96
. 928	. 4638904	1067	835229.07	22.01	. 978	. 4690950	IOI5	811022.60	20.94
. 929	. 4639970	1065	835251.06	21.99	. 979	. 4691965	IOI4	84 IO 43.53	20.92
2.930	1.4641036	1065	835313.04	21.97	2.980	1. 4692979	1013	84 II 04.44	20.90
.93I	. 4642100	1064	835313.99	21.94	. 981	. 4693992	1012	84 II 25.33	20.88
. 932	. 4643163	1063	835355.93	2 I .92	. 982	. 4695003	IOII	84 II 46.20	20.86
. 933	.4644226	1062	835418.84	21.90	.983	. 4696014	Ioto	871207.05	20.84
. 934	. 4645287	1061	835440.73	21.88	. 984	. 4697024	1009	$84^{\circ} \mathrm{I} 227.89$	20.82
2.935	I. 4646347	1060	835502.59	21.86	2.985	1. 4698033	1008	841248.68	20.80
. 936	. 4647406	1059	8355124.44	21.83	. 986	. 4699040	1007	841309.47	20.78
. 937	. 4648464	1058	835546.26	2 I .8 I	. 987	. 4700047	1006	841330.23	20.75
. 938	. 4649521	1056	83850808.07	21.79	. 988	. $470 \cdot 1053$	1005	841350.98	20.73
. 939	. 4650577	1055	$83 \quad 5629.85$	21.77	.989	.4702057	1004	841411.70	20.71
2.940	I. 4651632	1054	$83 \quad 5651.60$	21.75	2.990	1.470306 I	1003	841432.40	20.69
. 941	. 4652686	1053	835713.34	21.73	. 991	. 4704064	1002	841453.09	20.67
. 942	. 4653739	1052	835735.06	21.70	. 992	. 4705065	1001	84	20.65
. 943	. 4654790	1051	835756.75	21.68	. 993	. 4706066	1000	841534.39	20.63
. 944	. 465584 I	1050	835818.42	21.66	. 994	. 4707066	999	841555.01	20.61
2.945	1.465 689 I	1049	835840.07	21.64	2.995	I. 4708065	998	84 I6 15.6I	20.59
. 946	. 4657939	1048	8359 aI .70	21.62	. 996	. 4709062	997	841636.19	20.57
. 947	. 4658887	1047	835923.31	21.60	. 997	. 4710059	996	841656.75	20.55
. 948	. 4660033	1046	835944.90	21.58	. 998	.471 1055	995	$\mathrm{Cllll}_{84} 1717.29$	20.53
. 949	.4661079	1045	840006.46	21.55	. 999	.471 2050	994	841737.81	20.51
2.950	1.4662123	1044	840028.00	21.53	3.000	1.4713043	993	841758.30	20.49
\square	$2 \tan ^{-1}\left(e^{x}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(e^{(0)}\right)-90^{\circ}$	wsech u	\square	$2 \tan ^{-1}\left(\theta^{x}\right)-\frac{\pi}{2}$	secha	$2 \tan ^{-2}\left(e^{(x)}-80^{\circ}\right.$	- sech u

The Gudermannian.

u	od u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$
3.00	1.471 3043	9933	$8+^{\circ} 17^{\prime} 58.30$	204.88	3.50	1.5104199	6034	$86^{\circ} 32^{\prime} 26^{\prime \prime} .47$	124.46
.UI	. 4722927	9835	842122.17	202.85	. 51	. 5110203	5974	863430.31	123.22
. 02	. 4732713	9737	$8+2+44.01$	200.84	. 52	.511 6147	5915	863632.92	122.00
. 03	. 4742401	9641	$8+2803.86$	198.85	. 53	. 5122033	5856	$863834 \cdot 31$	120.79
. 04	. 4751994	9545	843121.72	196.88	. 54	.5127859	5798	864034.50	II9.59
3.05	1.4761492	9451	843437.63	194.93	$3 \cdot 55$	1.5133628	5740	864233.49	118.40
. 06	. 4770896	9357	843751.59	193.00	. 56	. 5139340	5683	864431.30	117.22
. 07	. 4780206	9264	$8+4103.64$	191.09	. 57	. 5144995	5627	854627.94	6.06
. 08	. 4780425	9173	8444 I3.78	189.20	. 58	. 5150594	5571	864823.43	114.91
. 09	. 479855 I	9082	844722.04	187.32	. 59	.5156I37	5516	865017.76	113.60
3.10	I. 4807588	8992	$8+5028.43$	185.47	3.60	1.516 1625	5461	865210.96	112.63
3.	. 4816535	9003	845332.97	183.63	. 61	. 5167058	5406	865403.03	III. 52
. 12	.4825393	8814	$8+5635.69$	181.81	. 62	. 5172438	5353	865553.99	I 10.4 I
. 13	. 4834154	8727	845936.59	180.00	. 63	. 5177764	5300	5743.85	109.31
. 14	. 4842847	8640	850235.70	178.22	. 64	.518 3037	5247	865932.62	
3.15	I. 485 I 445	8555	850533.04	176.45	3.65	1. 5188258	5195	87 O1 20.30	5
3	. 4859957	8470	850828.61	174.70	. 66	. 5193427	5143	870306.92	8
.17	. 4868385	8386	85 II 22.45	172.97	. 67	. 51985.44	5092	870452.47	105.03
.18	.4876729	8303	85 If 14.56	171.26	. 68	. 52036 II	504 T	870636.98	103.99
. 19	. 483 4971	8221	85 I7 04.97	169.56	.69	. 5208627	4991	870820.45	102.95
3.20	1.489 3170	8139	85 19 53.69	167.88	3.70	I. 5213593	4942	871002.89	101. 93
. 21	. 4901269	8058	852240.73	166.21	. 71	. 5218511	4893	87 II 44.3I	100.92
. 22	. 4909287	7978	852526.12	164.56	. 72	. 5223379	4844	871324.73	90.91
.23	. 4917226	7899	$85 \quad 2809.85$	162.93	.73	. 5228199	4796	871504.14	98.92
.24	. 4925085	7821	853051.99	16 I .32	. 74	. 523297 I	4748	871642.57	97.94
3.25	1.4932867	77	853332.50	159.71	3.75	1.5237695	4701	871820.02	96.96
. 26	. 4940572	7667	853611.42	158.13	. 76	. 5242373	4654	871956.50	95.00
.27	. 1948200	7590	853848.77	156.56	. 77	. 5247004	4608	872132.03	95.05
. 28	. 4955753	7515	854124.55	155.01	.78	.5251580	4562	872306.60	94.10
. 29	. 406323 I	744 I	854358.79	153.47	. 79	. 5256128	4517	872440.23	93.17
3.30	I. 497	7367	854631.50	151.95	3.80	1.5260622	4472	872612.93	92.24
-3I	. 4977964	7294	854902.69	150.44	.81	. 5265072	4428	872744.71	91.32
. 32	. 498522 I	7221	855132.38	148.05	. 82	. 5269478	4384	8782915.58	00.42
. 33	. 4992407	7150	855400.59	147.47	. 83	. 5273839	4340	873045.55	
. 34	. 499 952I	7079	855627.32	146.00	. 84	.5278157	4207	$3732 \begin{array}{ll}37 & 142\end{array}$	3
3.35	I. 5006564	7008	855852.60	144.56	3.85		4254	873342.80	87.75
. 36	. 5013537	6939	85 OI 16.44	143.12	. 86	. 5286666	4212	873510.11	86.87
. 37	. 5020441	6870	850338.84	141.70	. 87	. 5290856	4170	873636.55	86.01
. 38	. 5027277	6802	850559.8 +	140.29	. 88	. 5295005	4128		85.15
. 39	. 5034045	6734	8608 I9.44	138.90	. 89	. 5299113	4087	873926.86	84.3I
3.40	1.504	6667	86 10 37.65	137.52	3.90	1. 5303180	4047	874050.75	83.47
. 41	. 5047380	6601	86 12 54.48	136.16	.91	. 5307207	4007	874213.81	82.64
. 42	. 5053948	6536	86 I5 09.96	134.80	. 92	. 5311193	3967	874336.03	81.82
. 43	. 5060451	6471	861724.10	133.47	. 93	. 5315140	3927	874457.45	81.00
47	. 5056889	6406	86 I9 36.90	132.14	. 94	. 5319048	3888	874618.05	80.20
3.45	1.5073264	6343	862148.38	130.83	3.95	I. 5322917	3850	874737.85	79.40
. 46	. 5079575	6280	$85 \quad 2358.56$	129.53	. 96	. 5326747	38 II	874856.85	78.61
-47	. 5085823	6217	852507.44	128.24	. 97	. 5330539	3773	875015.07	77.83
. 48	. 5092010	6156	$85 \quad 2815.05$	126.97	. 98	.5334294	3736	$\left\lvert\, \begin{array}{lllll}87 & 51 & 32.52 \\ 87 & 52 & 49.19\end{array}\right.$	77.06 76.29
. 49	. 509 8135	6095	863021.39	125.71	. 99	. 5338011	3699	875249.19	76.29
3.50	1.5104199	6034	$8632 \quad 26.47$	124.46	4.00	I. 534 169I	3662	875405.10	75.53
-	$2 \tan ^{-1}\left(e^{\mathrm{a}}\right) \frac{\pi}{2}$	sech u	$2 \tan ^{-1}\left(e^{u}\right)-90^{\circ}$	ω sech u	и	$2 \tan ^{-1}\left(e^{\text {a }}\right)-\frac{\pi}{2}$	hu	$2 \tan ^{-1}\left(e^{n}\right)-90^{\circ}$	ω sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	u	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega F_{0}{ }^{\prime}$
4.00	1. 534 I691	3662	$87^{\circ} 54^{\prime} 05^{\prime \prime} .10$		4.50	1.5485792	2222	$88^{\circ} 43^{\prime} 37^{\prime \prime} 40$	${ }^{\prime \prime} 82$
. 01	. 5345335	3626	875320.25	74.78	. 51	. 5488003	2199	$88+422.99$	45.37
. 02	. 5348943	3590	875634.67	74.04	. 52	. 549 OI9I	2178	884508.13	44.92
. 03	- 5352514	3554	875748.33	73.30	. 53	. 5492358	2156	$88+532.82$	44.47
. 04	. 5356050	3518	8759 01. 27	72.57	. 54	. 5494503	2134	834637.07	44.03
4.05	I. 5359551	3483	880013.48	71.85	4.55	I. 5496627	2113	884720.88	43.59
. 015	. 5363017	34.49	88 ol 24.97	71.14	. 56	. 5498730	2092	88.4804 .25	43.15
. 07	-536 6449	$3+15$	880235.76	70.43	-57	. 55003 II	207 I	$88+847.19$	42.73
. 08	. 5369846	338 I	8803.45 .83	69.73	. 59	. 5502873	205 I	884929.70	42.30
.os	. 5373210	3347	880455.22	69.03	. 59	. 5504913	2030	8850 II. 79	41.88
4.10	I. 5376540	33 I 4	880503.91	68.35	4.60	I. 5506933	2010	885053.46	41.46
. II	. 5379837	328 I	8807 II.91	67.67	. 61	. 5508933	1990	885134.72	41.05
. 12	. 5383102	3248	880819.25	67.00	. 62	.551 0914	1970	885215.56	40.64
. 13	. 5386333	3216	880925.91	65.33	. 63	. 5512874	195 I	835256.00	40.24
. 14	. 5389533	3184	881031.91	65.67	. 64	.551 4815	193 I	835336.04	39.84
4.15	I. 5392701	3152	88 II 37.25	65.02	4.65	1.551 6737	1912	885415.68	39.44
. 16	. 5395837	3121	881241.94	64.37	. 66	. 5518640	1893	885454.92	39.05
.17	. 5398243	3090	88 I3 45.99	63.73	. 67	. 5520523	1874	885533.77	38.66
. 18	. 5402017	3059	83 I4 49.40	63.10	. 68	. 5522388	1856	885612.24	38.28
. 19	. 540506 I	3029	88 I5 52.19	62.47	. 69	. 5524235	1837	885550.33	37.89
4.20	1. 5408074	2998	891654.34	61.85	4.70	1.552 6063	I819	835728.03	37.52
. 21	. 5411058	2969	881755.88	61.23	. 71	. 5527873	180 I	885805.36	37.14
. 22	. 5414012	2939	881856.81	60.62	. 72	. 552965	1783	855842.32	36.77
. 23	. 54116936	2910	831957.13	60.02	. 73	$\cdot 553$ I438	1765	8859 I8.91	36.41
. 24	. 5419831	288 I	882056.85	59.42	. 24	. 5533195	1748	8359 55.14	36.05
4.25	I. 5422698	2852	882155.98	58.83	4.75	I. 5534934	1730	890031.01	35.69
. 26	. 5425536	2824	882254.52	58.25	. 76	. 5536655	1713	89 O1 06.52	35.33
. 27	. 5428346	2796	882352.48	57.67	. 77	. 55383	1696	87 O1 41.68	34.28
. 28	. 5431128	2768	832449.85	57.09	. 78	. $55+00.7$	1679	$8) 0216.48$	34.63
. 29	. 5433882	2741	882546.67	56.53	. 79	. 5541718	1662	390250.94	34.29
4.30	1. 5436609	2713	882642.91	55.96	4.80	I. 5543372	1646	890325.05	33.95
. 3 I	. 5439308	2686	882738.60	55.41	. 8 I	. 5545010	1630	890358.84	33.61
. 32	. 544 IgSI	2660	832833.73	54.86	. 82	. 5546631	1613	890432.28	33.28
. 33	. 5444628	2633	882928.31	54.3I	. 83	. 5548236	1597	890505.39	32.94
- 34	. 5447247	2607	883022.35	53.77	. 84	. 5549825	1581	890538.17	32.62
4.35	I. 544984 T	258 tr	883115.85	53.24	4.85	1.555 1399	1566	890610.63	32.29
. 36	. 5452409	2555	883208.82	52.71	. 86	. 5552957	1550	890642.76	31.97
. 37	. 5454952	2530	8833 O1. 27	52.18	. 87	. 5554499	1535	890714.57	31.65
. 38	. 5457469	2505	8833 53.19	5 5 .66	. 88	. 5556026	1519	890746.07	31.34
. 39	. 545996 I	2480	883444.59	51.15	. 89	. 5557538	1504	890817.25	31.03
4.40	1.546 2429	2455	8 8 $3535 \cdot 49$	50.64	4.90	I. 5559034	1489	890848.12	30.72
.4I	. 5464872	243 I	883625.88	50.14	. 91	. 5560516	1474	890918.69	30.41
. 42	. 5467290	2407	8837	49.64	. 92	. 5561983	1460	890948.95	30.11
. 43	. 5469685	2383	883805.15	49.14	. 93	. 5563436	1445	89 10 18.91	29.8 I
. 44	. 5472055	2359	883854.05	43.65	. 94	. 5564874	1431	89 10 48.57	29.51
4.45	1.5474403	2335	883942.46	48.17	4.95	1.556 6297	1417	89 II 17.93	29.22
. 46	. 5476726	2312	884030.40	47.69	. 96	. 5567707	1403	8) II 47.01	28.93
. 47	. 5479027	2280	884117.85	47.22	. 97	. 5569103	1389	89121215.79	28.64 28.36
. 48	$\begin{array}{ccc}.548 & 1305 \\ .548 & 3560\end{array}$	2266	$\begin{array}{llll}88 & 42 & 04.83 \\ 88 & 42 & 51.35\end{array}$	46.75 46.28	. 98	$\begin{array}{r}.557 \\ .557 \\ \hline\end{array}$	1375 1361	$\begin{array}{llll}89 & 12 & 44.29 \\ 89 & 13 & 12.51\end{array}$	28.36 28.07
. 49	. 5483560	2244	884251.35	40.28	. 99	-557 1852	1301	891312.51	28.07
4.50	1.5485792	2222	884337.40	45.82	5.00	1.5573206	1348	89 I3 40.44	27.79
u	$2 \tan ^{-1}\left(e^{n}\right)-\frac{\pi}{2}$	sech u	$2 \tan ^{-2}\left(e^{2}\right)-90^{\circ}$	wsech a	:	$2 \tan ^{-1}\left(e^{-1}\right)-\frac{\pi}{2}$	asech:	$2 \tan ^{-1}\left(\cos ^{2}\right)-90^{\circ}$	∞ sech u

The Gudermannian.

u	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	4	gd u	$\omega \mathrm{F}_{0}{ }^{\prime}$	gdu	$\omega \mathrm{F}_{0}{ }^{\prime}$
			891340.41	27.79		I. 5626228	8 I 7	$89^{\circ} 31^{\prime} 54.10$	16.86
5.00 .01	$\begin{array}{r}1.5573206 \\ .557 \\ \hline 1547\end{array}$	1348	89 80 80 14 40.44	27.79 27.52	5.50 .51	1.5026228 .5627042	809	893210.87	16.69
. 01	.5574547 .557585 57	1334	89 89 89 I4 4 35.48	27.52 27.24	. 52	. 562 7S47	801	893227.48	16.53
. 03	. 5577189	I308	891502.58	26.97	. 53	. 5628644	793	893243.92	16. 36
. 04	. 5578400	1295	891529.42	26.71	. 54	. 5629433	785	893300.20	16.20
5.05	1. 5579778	1282	S9 1556.00	26.44	$5 \cdot 55$	I. 5630215	777	893316.32	16.04
. 06	. 558 105.4	1269	891622.30	26.18	. 56	. 5630988	770	893332.27	15.88
. 07	. 5582317	1256	891648.35	25.92	. 57	. 5631754	762	893348.07	15.72
. 08	. 5583567	12.14	89 I7 I4.I4	25.66	. 58	. 5632512	755	893403.71	15.56
. 09	. 5584804	1232	891739.67	25.40	. 59	. 5633263	747	893419.20	15.41
5.10	1. 5586030	1219	891804.94	25.15	5.60	I. 5634006	740	$893434 \cdot 53$	15.25
,	. 5587243	1207	891829.97	24.90	. 61	. $56347+2$	732	893449.71	15.10
. 12	. 5588444	1195	8.1854 .74	24.65	. 62	. 5635471	$72 \cdot 5$	893504.73	14.95
. 13	. 5589633	1183	89 19 19.27	24.41	. 63	.5636192	718	893519.61	I4.80
. 14	. 559 O8II	1172	891943.56	24.16	. 64	. 5636606	7 II	$893534 \cdot 34$	I. 4.66
5.15	1.5591976	1160	892007.60	23.92	5.65	1.5637613	703	893548.93	I4.51
. 16	. 5593131	$1 \mathrm{I}_{4} 8$	892031.40	23.69	. 65	. 5638313	697	853603.36	14.37
. 17	. 5594273	1137	892054.97	23.45	. 67	. 5639006	690	893617.66	14.22
. 18	. 5595404	1126	892118.31	23.22	. 68	. 56339692	683	893631.81	14.08
. 19	. 5596524	III_{4}	892141.41	22.99	. 69	. 5640372	676	893645.8 z	13.94
5.20	1.5597633	1103	S9 2204.28	22.76	5.70	1.564 1044	669	893659.70	13.80
. 21	. 5598731	1092	802226.92	22.53	. 71	. 5641710	663	893713.43	13.67
. 22	. 55998 I 8	1081	802249.34	22.31	. 72	. 5642369	656	8.3 3727.03	13.53
. 23	. 5600804	1071	8923 I1. 53	22.08	. 73	. 5643022	649	893740.49	13.40
. 24	. 550 1959	1060	892333.51	21.86	. 74	. 5643668	643	893753.82	13.25
5.25	1.5603014	1049	892355.26	21.65	5.75	1.5644308	637	893807.01	13.13
. 26	. 5604058	1039	892416.80	21.43	. 76	. 5644941	630	893820.08	13.00
. 27	. 5605092	1020	892438.13	21.22	. 77	. 5645568	624	893833.01	12.87
. 28	. 5606116	1018	892459.24	21.01	. 78	. 5646189	618	893845.82	12.74
. 29	. 5607129	1008	$8925 \quad 20.14$	20.80	. 79	.5646804	612	893858.50	12.6I
5.30	1. 5608132	998	892540.84	20.59	5.80	1.5647412	606	8939 II. 05	12.49
. 3 I	. 560 gizó	988	892601.33	20.39	. 81	. 5648015	599	893923.48	12.37
. 32	. 5610109	979	892621.61	20.18	. 82	. 5648611	571	893935.78	12.24
. 33	. 5611083	969	892641.69	19.98	. 83	. 5649202	588	893947.96	12.12
. 34	. 56120.47	959	$8) 2701.58$	19.78	. 84	.5649787	582	894000.02	12.00
5.35	I. 56 I 300 I	950	892721.26	19.59	5.85	1. 5650365	576	8940 II. 96	II. 88
. 36	. 5613946	940	892740.75	19.39	. 85	. 5650939	570	894023.78	II. 76
. 37	. 56 KI 488 I	931	892800.05	19.20	. 87	. 5551501	565	894035.48	11.65
. 38	. 5615807	922	892819.15	I9.01	. 88	. 5652068	559	894047.07	II. 53
. 39	. 5516724	912	852838.06	18.82	. 89	.5652624	553	894058.54	LI.4I
5.40	1.561 7632	903	89 28 56.79	18.63	5.90	1. 5553175	548	89.4109 .90	II. 30
. 41	. 561853 I	894	892915.33	18.45	. 91	. 5653720	$5+2$	894121.15	II. 19
.42	. 56 I 942 I	885	892933.68	18.25	. 92	. 5654259	537	894132.28	11.08
. 43	. 5620302	877	892951.85	18.08	. 93	.5654794	532	894143.30	10.97
. 44	. 562 II74	868	893009.85	17.90	.94	. 5655323	526	894 I 54.2 I	10.86
5.45	I. 5622038	859	893027.66	17.72	5.95	1. 5655847	52 I	894205.02	10.75
.46	. 5622893	85 I	893045.29	17.55	. 96	. 5656365	516	894215.71	10.64
. 47	. 5623739	842	893102.75	17.37	. 97	. 5656879	511	894226.30	10.54
- 48	. 5524577	834	893120.04	17.20	. 98	. 5657387	506	894236.79	10.43
. 49	.5625407	826	893137.15	17.03	. 99	. 5657890	501	8942 47.17	10.33
5.50	1.5626228	8I7	893154.10	16.86	6.00	I. 5658388	496	894257.44	10.23
\square	$2 \tan ^{-1}\left(e^{4}\right)-\frac{\pi}{2}$	echu	$2 \tan ^{-1}(\mathrm{ea})-90^{\circ}$	ω_{0} sech u	u	$2 \tan ^{-1}\left(e^{2}\right)-\frac{\pi}{2}$	- sech u	$2 \tan ^{-1}\left(\mathrm{ex}^{u}\right)-90^{\circ}$	ω sech 4

TABLE VII

THE ANTI=GUDERMANNIAN

m expressed in minutes in terms of the Gudermannian, gd u expressed in degrees and minutes. 1 minute $=0.00029088821$ radians,
$0.0002908882 \mathrm{Im}=\log _{\mathrm{e}} \tan \left(\frac{\mathrm{I}}{4} \pi+\frac{\mathrm{I}}{2} \mathrm{gdu}\right)=\mathrm{u}$ radians.
In this table the second decimal place is sometimes erroneous by a unit.

The Anti-Gudermannian.

gdu	0°	I	2°	3°	4°	$5{ }^{\circ}$	6°	$7{ }^{\circ}$	8°	9°	10°	gdu
${ }^{\prime}$	$00^{\prime} .00$	60.00	120	180.08	240	300.38	360.66	421.05	+81.57	$5+2.23$	7	o^{\prime}
1	1.00	61.00	121.02	181.08	241.20	301.38	361.66	$+22.06$	+82.58		4.08	I
2	2.00	62.00	122.03	182.08	212.00	302.39	352.67	423.06	+83.59	$5+4.25$	605.10	2
3	3.00	63.00	123.03	183.09	$2+3.20$	303.39	363.67	+24.07	48.60	545.27	605.12	3
4	4.00	64.00	124.03	184.09	$2+4.20$	304.40	364.68	425.08	485.61	546.28	607.13	4
5	5.00	65.00	125.03	185.09	$2+5.2 \mathrm{I}$	305.40	355.69	+20.09	486.62	$547 \cdot 30$	608.15	5
6	6.00	66.00	125.03	185.09	245.21	306.40	365.69	427.09	487.63	548.31	609.16	6
7	7.00	67.00	127.03	187.09	247.21	307.41	367.70	428.10	488.64	549.32	6iro. I8	7
8	8.00	68.00	128.03	183.09	248.21	308.41	368.70	429.11	489.65	550.34	6it. 19	8
9	9.00	69.00	129.03	189.03	249.20	309.42	369.71	430.12	190.66	551.35	612.21	9
10	İ.	70.00	130.03	150.10	250.22	310.42	370.72	431.13	491.67	$552 \cdot 36$	6 I 3.23	10
II	II	71.00	131.03	191. 10	251.22	3 II .42	371.72	432.13	492.68	$553 \cdot 37$		II
12	12	72.00	132.03	192.10	252.23	312.43	372.73	1313.14	493.69	554.39		12
13	13.00	73.00	133.03	193. 10	253.23	3 I 3.43	373.74	434. 15	494.70	555.40	616.27	13
${ }_{4}$	If.00	74.01	134.03	194.10	254.23	$3 \mathrm{I}+4.4$	374.74	+35.15	495.71	556.41	617.29	14
15	15.00	75.01	I35.03	195.10	255.23	315.44	375.75	436.17	496.72	557.43	618.31	15
15	16.00	75.01	136.03	196. II	255.24	316.45	375.75	437.17	497.73	558.44	619.32	16
17	17.00	77.01	137.04	197. II	257.24	317.45	377.75	438.18	498.74	559.45	620.34	17
18	13.00	78.01	138.04	193. I	258.24	318.45	378.75	439.19	499.75	560.47	621.35	18
19	19.00	79.01	139.04	199.11	259.25	319.46	379.77	440.20	500.75	561.48	622.37	19
20	20.	80.0	I40.04	200. II	250.25	320.46	380.78	44 I .21	501.77	562.49	623.39	20
21	2 I	8 r	141. 04	20	251.25	321.47	38 I .78	442.21	502.78	563.51	624.40	2 I
22	22.00	82.0	1.42.04	20	252.25	322.47	382.79	443.22	503.79	564. 52	625.42	22
23	23.	83.01	143.04	203.12	263.26	323.48	383.79	444.23	504.80	505.53	626.44	23
24	24.00	84	144.0	204.12	264.26	324.48		+15.24	505.81			24
25	25.00	85.01	145.0	205.12	265.25	325.48	385.8 I	446.25	506.83		628.47	25
25	26.00	85.01	I 46.0	206.12	265.27	325.49	386.81	447.26	507.84	568.57	629.49	26
27	27	87.01	$1{ }^{1} 77.04$	207.13	267.27	327.49	387.82	448.25	508.85	569.59	630.50	27
28	28.00	88.01	148.05	208.13	268.27	328.50	383.83	449.27	509.85	570.60	631.52	28
29	29.05	89.01	149.05	209.13	259.27	329.50	389.83	450.28	510.87	571.62	6312.54	29
30	30.00	90.01	150.05	210.13	270.28	330.51	320.84	451.29	511.88	572.63	633.56	30
31	31.co	91.01	151.05	211.13	271.28	3:31.5I	391.85	+52.30	512.85	573.64	634.57	3 I
32	32	92.01	152.05	212.13	272.28	332.52	392.85	+53.3T	513.90	574.65	635.59	32
33	33	93.01	153.05	213.14	273.29	333.52	393.86	$+54.32$	514.9T	575.67	636.61	33
34	34	94.01	154.05	214.It	27. 29	334. 53	3514.8	455.33	515.93	575.691		34
35	35.	95.01	155.05	215.14	275.25	335.53	395.87	456.33	515.94	577.70	638.64	35
	36.00	96.01	156.05	216.14	276.30	336.54	395.88	457.34	517.55	578.71	630.65	35
37	37.00	97.01	157.05	217. It	27.30	337.54	397.88	458.35	518.95	579.73	640.68	37
3	38.00	98.01	158.06	218.15	278.30	338.55	398.89	459.36	519.97	こS3.7t	641.69	38
35	39.00	co. 0	I'59.06	2!9. 15	279.31	332.55	399.90	460.37	520.58	581.76	612.71	39
40	40.00	100.0	160.06	220.15	280.31	340.56	400.91	461.38	521.59	582.77	$6+13.73$	40
41	41.00	rot. 01	161.06	22 I .15	28 T .3 I	341.56	$40 \mathrm{~T} . \mathrm{gT}$	462.39	523.01	583.79	644.75	4 I
42	42.00	10	162.06	222.15	232.32	342.57	- 402.92	463.40	524.02	58.80		42
43	43.	103	163.06	223.16	283.322	$3+3.57$	403.93	464.4I	525.03		646.78	43
44	44.00	104.02	I64.06	1224:15	$28+32$	344.59	404.93	465.41	525.04	585.83	647.80	44
45	45	105.02	165.06	225.16	285.33	345.58	405.94	466.42	527.05	587.84	648.82	45
46	46.00	105.02	166.06	226.16	285.33	346.59	406.95	457.43	528.05	588.85	649.84	45
47	47.00	107.02	167.07	227.16	287.33	347.59	407.95	468.4	529.08	589.87	650.85	47
48	48.	108.02	168.07	229.17	289.34	348.60	408.96	469.45	530.09	590.83	651.87	48
49	49.00	100.0	169.07	239.17	1289.34	3.19 .60	409.97	+70.46	531.10	591.90	652.89	49
50	50.00	110.02	170.07	230.17	290.34	350.	410.97	471.47	532.11	592.92	653.91	50
51	51.00	IIT. 02	171.07	231.17	291.35	351.61	411.08	472.48	533.12	593.93	654.93	51
52	52.00	112.02	172.07	232.18	292.35	352.62	412.99	473.49	534. 14	594.95	655.94	52
53	53.00	113.02	173.07	233.18	293.35	353.62	414.00	474.50	535.15	595.96	656.96	53
54	54.00	114.02	174.07	234.18	234.36	351.63	415.00	475.5 I	536.16	596.98	657.98	54
55	55	115.02	175.07	235.'18	295.36	355.63	416.01	476.52	537.17	597.99	659.00	55
56	56.00	116.02	176.08	236.18	296.37	356.64	417.02	477.53	338.18	599.01	650.02	56
57	57.00	117.02	177.08	237. 19	297.37		418.03	478.54	539.20	600.02	661.04	57
58	58.00	I18.02	178.08	238.19	298.37	358.65	419.03	479.55	540.2 I	601.04	662.05	58
59 60	59.00	IIg.0:	179.08	239.19	299.38	359.65	420.04	480.56	541.22	602.05		59
60	60.	120.02	ISO.	34	30	360.66	421.05	48 r .57	542.23	603.07	654.09	60

The Anti-Gudermannian.

gdu	II ${ }^{\circ}$	12°	13°	14°	15°	16°	17°	$18{ }^{\circ}$	19 ${ }^{\circ}$	20°	gdu
o'	664'.09	725.32	786.78	848.49	910.45			10	49	12	0^{\prime}
I	665.11	726.34	787.81	849.52	9II. 50	973.77	1036.35	1099.27	1162.54	1226.20	I
2	655.13	727.37	730.83	850.55	912.53	974.81	1037.40	1100.32	1163.60	1227.27	2
3	657.15	728.39	789.83	851.53	913.57	975.85	1038.44	IINI. 37	1164.65	1228.33	3
4	658.17	723.41	790.89	852.61	914.60	570.83	1039.49	1102.42	1165.72	1229.40	4
5	669.19	730.43	791.91	853.64	915.64	977.93	10.40 .53	1103.47	1166.78	1230.4	5
6	670.21	731.45	792.94	854.67	516.67	978.97	1041.58	II04.53	1167.83	1231.53	6
7	671.22	732.48	793.97	855.70	917.71	980.01	1042.63	1105.50	1168.89	1232.59	7
8	672.24	733.50	794.c9	85.73	918.75	981.05	1043.67	1106.63	1169.95	I233.66	8
9	673.26	731.53	750.02	857.75	919.78	932.09	1044.72	1107.68	1171.01	1234.	9
10	674.28	735.55	797.04	858.80	920.82	583.13	IO45. 77	1108.74	1172.07	1235.79	10
II	675.30	736.57	${ }^{7} 98.07$	859.83	921.85	584.17	$10+5.8 \mathrm{I}$	I 109.79	I173.13	1236.85	II
12	675.32	737.59	799.10	850.83	922.89	985.22	1047.86	IIIIO. 8	II74. 19	1237.92	12
I3	677.34	738.62	800.13	851.89	923.93	ciS 26	10.88 .91	IIII. 89	1155.24	1238.98	I3
14	678.36	739.64	801.15	852.52	924.96	087.30	1049.95	1112.95	1176.30	1240.05	14
I5	679.38	740.66	802.18	83.95	925.00	S88.34	1051.00	IIIt. 00	1177.35	1241. II	15
16	680.40	741.69	803.21	854.98	927.03	589.38	1052.05	III5.05	11-8. ${ }^{2}$	1242. 18	16
I7	68 I .42	742.71	804.24	855.02	928.07	$990 .+2$	1053.09	1116.11	1179.48	1243.25	17
18	682.44	743.73	805.25	857.05	¢29.1I	SSIT. 47	1054.14	1117.16	1180.54	1244.31	18
19	683.46	74.76	806.23	868.08	930.15	932.51	1055.15	III8.21	II81.60	1245.38	19
20	68.4 .48	745.78	807.32	869.11	931.18	993.55	1056.24	III9.27	1182.66	1246.44	20
21	685.50	746.8 I	808.3 '3	870.14	932.22	994.59	1057.28	1120.32	1183.72	1247.51	21
22	635.52	747.83	809.37	871.18	933.25	995.63	1058.33	II2I. 37	1184.78	1248.58	22
23	687.54	748.85	810.40	872.2 T	934.29	996.68	1059.38	1122.43	1185.84	1249.64	23
24	688.56	749.88	8 II .43	873.24	935.33	937.72	1050.43	11.33 .48	1186.90	1250.71	24
25	689.58	750.90	812.46	874.27	935.37	998.76	IOSI. 48	I124.53	1187.96	1251.78	25
26	630.60	751.92	813.49	875.31	937.40	999.80	1052.52	1125.59	1189.02	1252.85	26
27	691.62	752.95	814. 52	876.34	938.44	1000. 85	1063.57	1126.64	I190.08	1253.91	27
. 28	692.64	753.97	815.54	877.37	939.48	INOI. 89	1054.62	1127.70	1191.14	1254.98	28
29	693.65	755.00	816.57	878.40	943.52	1002.93	1065.67	I123.75	I192.20	1256.05	29
30	694.68	756.02	817.60.	879.44	$9+1.56$	1003.97	1065.72	1129.81	1193.26	1257.12	30
31	695.70	757.05	818.63	880.47	942.59	1005. 02	1067.77	IT 30.86	1194.32	1258.18	31
32	696.73	758.07	819.60	88 I .50	943.63	1005.06	1068.81	II31.92	1195.39	1259.25	32
33	697.74	759.09	820.69	882.54	944.67	1007. 10	1069.85	1132.97	1195.45	1250.32	33
34	698.75	760.12	82 I .7 I	883.57	945.71	I008. 15	1070.91	1134.03	1107.51	1261.39	34
35	699.78	761.14	822.74	884.60	946.74	1009.19	1071.96	II 35.08	1198.57	1262.45	35
36	700.80	762.17	823.77	885.64	547.78	IOTO. 23	1073.01	II36. 14	1199.63	1253.52	36
37	701.82	763.19	824.80	885.67	948.82	IOII. 28	1074.06	1137.19	1200.69	1264.59	37
33	702.85	764.22	825.83	887.70	949.85	IOI2. 32	1075.11	1138.25	1201.75	1265.66	38
39	703.87	765.24	826.83	838.74	6.50 .90	1013.36	1076. I6	1139.30	1202.82	1266.73	39
40	704.89	766.27	827.89	889.77	951.94	1014.4 ${ }^{\text {I }}$	1077.21	11.40 .36	I203.88	1267.80	40
4 I	705.91	767.29	828.92	890.80	952.98	IOI5 54	1078.26	II4T. 41	1204.94	I268.87	4 I
42	706.93	768.32	829.95	891.84	954.01	1016.50	1079.31	1142.47	1206.00	11369.93	42
43	707.95	769.34	830.98	892.87	955.05	Ior7. 54	1080.36	1143.52	1207.05	1271.00	43
44	708.97	770.37	832.00	873.91	956.09	1018.58	1081.41	II44.58	1208.13	1272.07	44
45	709.99	771.39	833.03	894.54	957.13	1019.63	1032.45	1145.64	1209. 19	1273.14	45
46	711.02	772.42	834.06	895.97	958.17	1020.67	1083.51	1146.69	1210.25	1274.2I	46
47	712.04	773.44	835.09	897.01	959.21	1021.72	1084.56	1147.75	1211.31	1275.28	47
48	713.00	774.47	836.12	893.04	900.25	1022.75	1085.61	1148.80	1212.38	1276.35	48
49	714.08	775.49	837.15 838.18	899.08	961.29	1023.81	1086.66	1149.86	1213.44	1277.42	49
50	715.10	776.52	838.18	900. 11	962.33	ID24.85	1087.71	1150.92	1214.50	1278.49	50
5 I	716.12	777.54	839.21	901.15	963.37	1025.90	1088.76	1151.97	1215.57	1279.56	51
52	717.15	778.57	840.24	902.18	904.41	1026.94	1089.81	1153.03	1216.63	1280.63	52
53	718.17	779.59	841.27	903.22	955.45	1027.99	1090. 86	1154.09	1217.69	1281.70	53
54^{\prime}	719.19	780.62	842.30	904.25	966.49	1029.03	1091.91	I155. 14	1218.76	1282.77	54
55	720.21	781.65	843.33	905.28	90.7 .53	1030.08	1092.96	1156.20	1219.82	1083.84	55
56	721.23	782.67	844.36	906.32	968.57	1031.12	1094.01	1157.26	1220.88	1284.91	56
57	722.26	783.70	845.39	907.35	969.61	1032.17	1095.06	$1 r 58.32$	1221.55	1285.98	57
58.	723.28	784.73	846.42	908.39	970.65	1033.21	1096.11	1159.37	1223.01	1287.05	58
59	724.30	785.75	847.45 848.49	909.43 970.46	971.69	1034.26	1097.16 1098.22	1160.43 1161.49	1224.07 1225.14	1288.13 1289.20	59 60
60	725.32	780.70		910.46				116I. 49	1225	1209.	60

The Anti-Gudermannian.

gd u	21	22°	23°	24°	25°	26°	-	28°	9	30°	gdu
O^{\prime}	12889.	1353.	I418	1484.06	1549	1616.47	1683.52	1751.16	1819.44	38	d
	1	13	I419.	1485.15	1551	1617. 58	1684.64	1752.29	I820.58		
2	1291	1355.84	1420.80	I485.25				1753.43	1821.72 1822.87		2
3	1272.41	1355.92	I 421.89	$1487.3+$	155						3
	1293.418	1358.00	1422.08			$\begin{aligned} & I 620.92 \\ & 1622.04 \end{aligned}$		1756.83			4
	1254.55	1359.					1690.25	I757.95	1825.30		6
6	1295.63 1295.70	${ }_{1360}^{1351}$					1690.25 1691.38	I759.09	$1827 \cdot 4$		7
8	1297.7	1362.32		1492.82	1558	1625.	I692. 50	1760.23	1823.59		8
		I353.40	$1+23.41$	1493.	1559.		1693.62	1761.35			9
Io	1293	1364.48	29.50	1495.	1561.04	1627.61	1694.75	1762.50		1899.93	10
II		136	I430.	1496.11	1562.14	1628.72	1695.87	1763.63	1832.02	1901.09	11
	1302	1356.	I431.	1497.20	1563.25	1620	15457.00 1608.12	1774.77	1833.17 1834.32	1902.25 1903.40	12
I3	1303.1	1367.72 1368.80	I432.76	I498.30	${ }_{1564}^{15}$	1630.95	1690.12 169.25	1757.04			4
14	1304 1305	${ }_{\text {I369 }}^{1368}$	I433.8 I434. I	1499. 1500.	1565.46	1633.18	1699.25 $1700 \cdot 37$	1768.17	I 836.6 I	1905.72	15
15	13	137	I436.03	「こOI. 59	I567.67			1769.	1837.75	1905.88	16
17	1307	1372.04	1437.	1502.	1568.77		170	1770			7
18	${ }^{1} 308$	1373.12	1438	1503	1569.8		1703.				
19		${ }_{137}^{137}$	I439	1504.88	${ }_{1572}^{1570 .}$	1638.70	17	1773.85	1842.34		20
2 I	131	1375.36	I441.	1507.08	15	1639.		1774.98	I843.49	1912.67	21
22	1312	1377.	$1+12$	1508.17	157	1560.99	Izos.	177			
23	1313.8	1378	1443.	1509	157						23
24	1316	1	144	I5	1577.63	164	17 II	1779.53	I848.08	1917.30	25
26	1317.08	1387. 77	1446.92		157			1780.67	1849.23	1918.46	25
	1318.	T382. 85	14.8 .01	1513	1579	I64	1713				27
	I319.23	${ }_{1}^{1333.93}$	14	151							29
29 30	$\xrightarrow{1320.3}$	1385	${ }_{1}$	1516.96	1583.17	1649.9	1717	I785.22	1853.82	1923.10	30
3	I322.4	I38	45	8.0	15	I65	1718.39	1786.36	I854.97	1924.25	3 I
			1453	1519.16	1585		1719				32
33	1324.	1389.	I454.	1520. 26		165	1720.65	T788.63	I857.27	1926.59	33
	1326. 7	I390.43	1455.	${ }_{\text {152I } 35}$	1587.60 1588.71	1654.39 1655.51	1721.77	1779.77	57	1927.75 1923.91	34
	1326.75	I391. 5	1450.73	1522.	1588		172	179			
36	1327.8	I39	1457.83	152	1589.82 1590.92	1556.63	172	I792.05 T793.19			37
	1328.90 1329.98	I393.		1524.	1590.92		17	1793.19	I863.02	193.10 IS32.40	38
	335.00	1395.84	ז46I.10	1526.85	1593	r659.9	1727.42	1795.47	${ }^{1854.17}$	1933.55	39
40	${ }^{1} 332.13$	1306.93	1462 .19	1527	I594.25	I66I. 10	1728.54		1865.	1934.72	40
4 I	I333.21	1358.	1463.28	1529.06	1595.36	I66	1729.67			1935.88	4
43	1334	1399.	1464	1530.	1596		I730. 80				42
43	${ }_{1}^{1335}$	I400. 18		${ }_{1532.36}^{1531.23}$	1577.58		1731.93			$\begin{aligned} & 1938.21 \\ & 1939.37 \end{aligned}$	43
	$\xrightarrow{1336 .}$	1 I 401.25	I466.56 1467.65	$\xrightarrow{1532.36} 1$	1598.69 1599.80	1665.70	${ }_{\text {I734 }}^{1733}$	18802. 31	I887.92 I 87.08	1939.37 $1940 \cdot 54$	45
	1338.6	İO3	I468.75	1534.	1600.91	1667.82	1735.32	1803.45			46
	I 339.6	I 404.	I469.84	1535.	1602.02		1736.	I804. 59	I873.38	1942.85	47
	${ }_{13}$		1470.9 1472.0	${ }_{1537}{ }_{153}$	1503.13 1604.24 150	1670.0 1671.1	I738.51	I809.73		1944.03	4
50	I 31	I 407.77	I 47	1538.9	1605.35	1672.3	1739.84	1808.01	1875.84	1946.36	50
5	1343.98	I 408.85	I474.21	1540.07	ז 606.	1673.	I740.98	1809.15			5
	1345.06	1409.94	1475.	${ }_{1541.17}^{1512.17}$			1742.1	1810. 30	$\left\|\begin{array}{l} \mathrm{I} 879.144 \\ \mathrm{I} 880.30 \end{array}\right\|$	1948.69	53
	$\xrightarrow{\text { I346.14 }}$	$\xrightarrow{1411 .}$	$\begin{aligned} & \mathrm{I} 476 . \\ & 1477 . \end{aligned}$	15+2.27	11600		1743.24	I8t2.	I885. 45	1957.02	54
55	I34i	I4I	1478.59	I5	1610.91	1677.91	I745.50	I813.72	I882.60	1952.18	55
55	I349.37	1414.28	I470	1545.58	1612.02	1679.03	I746.63	1854. 85	1883.75		56
	1350.45 I 351.53	1415.	${ }_{\mathrm{I}}^{\mathrm{I} 48}$	1546.69	1613.13 $16 T 4.25$ 1	1680.15	$\begin{aligned} & 1747.76 \\ & 1748.90 \end{aligned}$	I816.01	$\begin{aligned} & \mathrm{I} 884 . \mathrm{C} \\ & \mathrm{I} 885 . \mathrm{C} \end{aligned}$	${ }^{1954.51}$	57
	$\begin{aligned} & 1351 \\ & I_{352} \\ & \hline \end{aligned}$	${ }_{1417.54}^{146}$	Ii418.87	1547.79	${ }_{1}$	1681.27	$\begin{aligned} & 1748.9 \\ & 1750.0 \end{aligned}$	1818.29	1887.23	1956.85	59
60	-	1418.63	1484.06	1549.	1616.47	1683.52	1751.	I819.	1888.	1958.	60

The Anti-Gudermannian.

gd	35°	32°	33	34	35	36	37	38	39°	40°	ad
σ^{\prime}	1958	2028.38	2099.53	2171.48		23		26	2544.93	9	o'
1	1959	2029.56	2100.72	2172.69	2245.51	2319.22	2393.88		$25+6.22$		
2	Ig,60	2030	2101	2173.89	2246.73	232		2470.80			
3	1951. 51	2031.92	2103	2175.10	2247.95	232	2395.39	2472.07			3
4	1962.68	2033.10	2104.30	2175.3I	2249.17	2	2297		2550.08	2527.91	
5	Ig53.85	2034	2105.49	$12177 \cdot 5 \mathrm{I}$	2250.39	2324. 17	2398.90	2474.61	2551.37	2639.22	5
6		2035	2106.68	2178.72	2251.62			2475.88	2552.65		6
	Ig 55	2036.64	2107.88	2179.93	2252.84	2325.65	24	2477.15	2553.95		7
8	1967	2037	2109.07	2181.14	225	2327 . 8 c				2533.14	8
9		2039	2110.27		2255.28	2329.12	2403.91	2479.69	2556.52		
10		2040	2111.46	2183.55	2256.51	2330.36	2405 . 17	2400.97	2557.81		10
II	197	20	2112.65	128	2257.73	233 I .60	$2+106.42$	2482.12			II
I2	197	2042	2113	2185		2332.84					12
13	197	2043	2115.95	2187.18	2260.18	2334.08	2408.93	2484.78	2561.68	2639.69	13
1	1974	2044.91	2116.24	12183.39	2251.40			12485.05	2562.97		I 4
I5	1975	2046	2117.44	2189.60	2252.63	2336.56		2487.33	2564.27	2542.31	15
16	197	204	2118.63	2190.81	2253.85	2337.80				2	16
17	1977.8	20.48 .46	2119.83	2152.02		2339					17
18	1979	2049.64	2121.03	2193.23	2256.30	231		2:GI. 15			8
19	198	2050.83	21	2 I		234	2416.47	2492.43	2569.43		19
20	IS8	2052.01	212	219	2268.75	23	241	2493.70	2570.73		20
21	1982		212	$2 \mathrm{Ig6}$	2269.98				2572.02		21
22	198	205	2125	2158	2271.20	23	2420	2495.25	2573.31		22
23	Ig8	2055	2127.01	2199.29	2272.43	2346.49	242	2497.52	2574.61	2652.80	23
24	1985.0	2056.75	2128.21	2200.50		234		2498.80	25	2654.11	24
25	Ic87.2	2057.93	2129.4I	220	2274.88	234		2500.08	2577 -19	2655.43	25
26			21	220		235	2425	2501.35	2578		26
27	198	2060.	2131.80	2204.14	2277.34	2351. 46	2426.54	2502.63		2558.05	\%
28		2051.	21	220	22	2352	2427	2503.91	2581.08		28
29	199		213		2279.79	2353	242	2505.18		2660.68	29
30	I993	206	2135.40	2207	22	2355.19	2430			2662.00	30
31	199		2136	1230					2584.97		31
32	199	2066	213	221	$2283 \cdot 48$		243	2509.02	2583.23	2664.63	32
33	1990	2067	2139	22	2234.71			2510.30			33
34	I997	2059.6	2140		2285.94	2360.17		2511.58	2588.85		4
35	1998	2069.2	2141.40	2213.84	2287.17	236 I .4 I	2436.62	2512.86	2590.15	2668.58	35
36		207	21.2	2215.06	22		2437.8				36
	200	2072	2143	2216.27		2363	2439.15	2515.41	2592.75	2671.21	37
38		2073	2145	2217.49	2290	23.55 .15	2+40.	2516.69	2594.05		38
39	200	207	21.46 .20	2218	12292.09	2366.40	2441.68	2517.97			39
40	200	207	21	2219			2	2519.25	2	-	40
41				2221.1					2597.95		4 I
42		2078	214	2222.35		2370 . If		2521.82			42
43	2008		2151.01	2223.57	229		2446.73	2523. 10	2600.54	2679.12	43
44	2000	2080	2 I	22	22	237	241		2501.84	2580	44
45	20IO	208	2153.41			237	2449	2525.66	2603.14	2681	45
46		2082	2154.62		2300.71		2450.52	2526.95			46
47	2013	208	2155.82	22	230	237	2451.79	2528.23	2505.75	2584.40	47
48	2014	2085.23	2157.02	2229	2303.17		2453.05	12529.5 I			48
49		2086.42	2158.23	2230.87	2304.41	2378.87	2454.32	2530.79			49
'50	201	208	2159.43	22032.09	2305.64	2380.12	2455.58	2532.08	2609.65	6	50
5		2088.	2160.63				2456				51
52	2018.	2089.95	2161.84	2234.53	2308.11	2382.62	2458	2534.65	2612.26	2691.01	52
53		2091	2163.04				245	2535.93			53
54	202	2092	2164.25	2230.97		2385.12	2460	2537.20			54
55	2022	2093	2165.45	2238 . I9	23						55
	2023	2094.	2166	2339.41	${ }^{2} 1213.05$			2539.79			56
57	2024.85	2095.95	2167.86	2240.63	2314.28	2388.88	246	2541.07	3618.78	2697.63	57
'58	2026.03	2097. I4		2241.85	12315.52						58
59 60	2027.20 2028.38	2098.33 2099.53	2170.28 2171.48	2243.07 2244.29	2316.75 2317	2391. 2392.63	2466.99 2468.26	25431.04 2544.93	2621.38 2622.69	2700.27 2701.60	59

The Anti-Gudermannian.

od u	$4 \mathrm{I}^{\circ}$	42°	43	44°	45	46	47	48°	49	50°	gd u
σ	$2701^{\prime} .60$	2781.71	2853.10	2945.8 I	3029.94	3115.55	3202.7 I	329 I .53	3382.08	3474.47	σ
I		2783	2864.46	2947.21	3031.35	3116.99	3204 . 18	3293.02	3383.6 I	3476.03	I
2	2704.25	278.4 .40	3865.83	2948.60	3032.77	3118.43	3205.65	329.4. 52	3335.13	3477.59	2
3	2705.57	2785.75	2567.20	2949 -99	3034.18	3119.87	3207.12	3296.01	3380.66	3479.14	3
	2706	2787.09	2858.57	2951.38	3035.60	3121.31	3208.58	$3297 \cdot 5 \mathrm{I}$		3480.70	,
5	2708.23	2788.44	2869.94	2952.77	3037.02	3122.75	3210.05	3299.01	3389.7 I	3482.26	5
6	2709	2789.79	2871.31	2954.16	3038.43	3124.19	3211.52	3300.5 I	3391.24	3483.82	6
7	2710.8	2791. I4	2872.68	2955.56	3039.85	3125.63	3212.99	3302.00	3392.77	$3+85.38$	8
8	2712.	2792.49	2874.05	2956.95	3041.27	3127.08	3214.76	$3: 303.50$	3394.29	3485.94	8
9	27	2793.84		2958.34	3042.6	3128.52	3215.93	3305.00	3395.82	3488.50	9
10	271	2795. 19	2876.79	2959.74	3044.10	3129.96	3217.40	3306.50	$3397 \cdot 35$	3490.06	0
II	27	2795	2878.16	2961.13	3045.52	313	3218.87	3308.00	3398.88	3491.62	II
12	271	2797.8	2879.53	2962.53	3046.94	3 I 32	3220.3	3309.50	3400.4 I	3493.18	2
13	2718	2799.24	2880.90	2963.92	3048.35	3134.30	3221	33 II . 00	3401.94	3494.74	13
14	2720.	2800.59	2882.28	2965.32	30.49 .78	3135.75	3223.2	3312	3403 -47		14
15	2721.51	2801.94	2883.65	2966.71	3051.20	3137.19	3224.76	33 I 4.00	3405.00	3497.87	15
16	2722	2803.29		2968.11	3052.62	3138.6	3225.23	3315.50	3406.54	3499.43	16
17	2724.17	2804.64	2886.39	2969.50	3054.0	3 L 40.08	3227.71	3317.00	3408.07	3501.00	17
18	2735.50	2805.99	2887.77	2970.50	$3055 \cdot 46$	314	3229.	3318.51	3409.60	3502.56	18
19	2726.83	2807.34	2889.14	2972.30	3055.88	$31+2.9$	3230.66	3320.01	3411.14	3504. 13	19
20	2728.17	2808.50	2890.52	2973.70	3058.3 I	$31+4.42$	3232.13	332 I .52	3412.67	3505.70	20
2 I	272	2810.05	2891.89	2975.09	3059.73	3145.87	3233.6T	3323.02	3114.20	3507.26	2 I
22	2730.83	28 II .40	2893.27	2976.49	3061.15	3147.32	3235.08	3324.53	$3+15.74$	3508.83	22
23	2732.16	2812.76	2894.64	2977.89	3062.58	अ148.77	3236.56	3326.03	3417.28	3510.40	23
24	273	2814.11	2896.02	2979.29	3064.00	3150.22	3238.04	3327.54	3418.8I	3511.97	24
25	27	28 I 5.46	2897.40	2980.69	3065.42	3151.6	3239.52	3329.04	3420.35	3513.54	25
26	2736.1	2816.82	2898.77	2982.09	3066.85	3153	3240.99	3330.55	3421.89		26
27	2737.50	2818.17	2900.15	2983.49	3068.27	315	32.12 .47	3332.06	3423.43	3516.68	27
28	273		2901.53	2984.89	3069.70	3156.03	$32+$	3333.	3424.c6	3518.25	28
29	2740	182	2902	2986.29	3071.'I3	3157.48	3245.43	3335.07	3426.50	3519.82	29
30	2741.50	. 2	2904.28	2987.70	3072.55	3158.93	3246.91	3336.58	3128.04	352I. 39	30
31	2742	2823.60	2905.66	2589.10	3073.98	3160.3	3248.39	3338.09	3429.58	3522.96	3 I
32	27	2824.95	2907.04	2950.50	$3075 \cdot 4 I$	3161.84	3249	3339.60	3431.12	$3524.5+$	32
33.		2826.31	2908.12	2991.90		3163.29	3251.35	334I. II	3432.65	3526.II	33
34	274	2827.67	2909.80	2993.3 I	3078.26	3164.74	3252.84	3342.62	3434.20	3527.68	34
35	2748	2829.03	2911.18	2994.71	3079.69	3166.20	$3254 \cdot 32$	3344.14	3435.75	3529.26	35
3	127		2912.56	2995.12	308 I .12	3167.65		3345.65	3437.29	3530.83	36
37	2750.8	2831.74	2913.94	2997.52	3082.55	3169.11	3257.28	3347.16	3438.83	3532.41	37
38	2752		2915.32	2998.93	3083.98	3170.57	3258.77	3348.67	3440.38	3533.99	38
39			2916.71	3000.33	3085.4 I	31772.02	3260.25	3350.19	3441.92	3535.56	39
40	2754	2835.82	2918.09	3001.74	3086.84	3173.48	3261.74	3351.70	3413.47	3537.14	40
4 L	2756.2	2837.18	2919.47	3003. 14	3088.27	3174.94	3263.22	3353.21	3445.01	3538.72	4 I
42	2757		2920.85	3004.55	3089.70	3176.40	3264.71	$3354 \cdot 73$	3446.56	3540.30	42
43	2758.89		2922.24	3005.96	3091.14	3177.85	3266.19	3356.24	3448 . 10	3541.88	43
44	2760		2923	3007.36 3008.77	3092.57 3094.00	3179.31	3267.68	3357.76 3359	3449.65	3543.45	44
45			2926.	3008.77 3010.18			,		75	$35+5.04$ 3546.62	45
47	$276+2$	2845.35	2927.78	3011.59	3096.87	3183.69	3272 . 14	3362.31	3454.29	3548.20	47
48	2765	2846.71	2929.16	3013.00	3098.30	3185.15	3273.63	3363.83	3455.84	35.49.78	48
49	2766.93	2848.08	2930.55	3014.41	3099.74	3185.61	3275.12	3365.35	3457 - 39	3551.35	49
50	2768.27	2849.44	2931.93	3015.82	3101.17	3188.07	3276.61	3366.87	3458.94	3552.94	50
5 I	2769.62	2850.8 r	2933.32	3017.23	$3 \mathrm{IO2} .60$	3 I 89.54	3278.10	3368.39	3460.49	3554.53	51
52	2770.96	2852.17	2934.71	3018.64	3104.04	3191.00	3279.59	3369.91	3462.04	3556.11	52
53 54	2772.30 2773.64	2853.53 2854.90	2936.09 2937.18	3020.05 3021.46	3105.48	$3 \mathrm{I92.46}$	3281.08	3371.43	3463.60	3557.70	53
54	2773.04 2774.99			3021.46	3106.92 3108.35	3193.92	3282.57	3372.95	3455.15	3559.28	54
56	277	2850.20 2857.63			3108.35	3195	4.06	3374.47	3465.70	3560.87	55
5								3375.9			56
50	2779.02	2860.36	2943.04	3027. II	$3 \mathrm{II2.67}$	3199.78	3288.54	337.51 3379.04	3471. 36	3565.04 3565	58
59	2780.37	2861.73	2944.42	3028.52	3II4.IT	3201.25	3290.04	3380.56	3472.92	3567.22	59
60	2781.71	2863.10	2945.8 I	3029.94	3115.55	3202.71	3291.53	3382.08	3474.47	3568.81	60

smithsonian tables

The Anti-Gudermannian.

gd u	$5 I^{\circ}$	52°	53°	54°	55°	56°	57°	58°	59°	60°	gd u
O	3568'.8I	3665.	3753.76	3854.64	3957.97	4073.90	,		+409.14	$4527 \cdot 37$	${ }^{\prime}$
I	35	3666	3765.42	3866.34	3959.7 I		4184.46	+296.19	+111.08	4529.37	I
2	3571. 99	3668.	3767.09	3850.04	3971.45	4077.48	4185.29	4298.07	+113.03	4531.37	2
3	3573.58	3670.07	3765.75	3869.74	3573.20	4079.27	4188.13	4259.95	+14.97	+533.37	3
4	3575.17	3571.7	3770.41	3371.45	3974.95	4031.05	+189.97	4301.85		+535.38	4
5	35\%6.76	$3673 \cdot 32$	3772.08	3873.15	3976.69	4082.85	4191.81	4303.74	4118.86	$4537 \cdot 38$	5
6	3578.35		3773.74	3974.85	39-8. 44	+1084.65	4193.65	4305.64	+420.8I	4539.39	6
7	3579.94	3575.5	3775.41	3875.56	3,80.19	4056.44	4195.49	4307.53	4122.75	4541.39	8
8	358I	3678.21	3777.08	38,8.27	3581.54	4088.24	+197. 33	+309. +3	+124. 70	+543.40	8
9	3583.13	3679.	3778.74	3899.98	3383.69	4030.03	-1599. I7	43 II .32	4125.65	+5+5.41	9
10	3584.73	368 I .	3780.41		35,85.44	4091.83	+201.02	43 I 3.21	+428.60	4547.42	10
II	3585.32	3683.	3782.08	3883.39	3987.19	+093.62	4202.87	4315.11	4430.56	4549.43	II
12	3587.92	3684.7	3783.75	3885.10	3938.94	4095	4204.71	4317.01	$\underline{+2} 2.51$	4551.44	12
I3	3589.5I	3585.3	3785.42	3885.8 I	3'50.69	-107\%. 22	+206.56	4318.91	$4+34.46$	4533.45	13
14	3591. II	3687.	3787.09	3888.52	3592.45	-0,9.02	4203.41	4320.80	435.42	4555.47	14
I5	3592.7 I	3689.63	3788.76	3890.23	3594. 30	+100.82	4210.26	4322.70	438.37	+557.48	15
16	3594.30	3691.	3790.43	389 T .95	3995.95	4102.62	+212. 10	4324.6 I	4410.33	4559.50	16
17	3595.90	3592.9	3792.10	3893.66	3597.71	4104.42	4213.95	4326.51	4442.29	4561.52	17
18	3597.50	3694.5	3793.78	3895.37	3599.47	4106.22	+215.80	4328.41	+44.24	4563.53	18
19	3599. 10	3696.17	3795.45	3897.09	4001.22	4108.02	4217.66	4330.31	446.20	4555.55	19
20	3600.7	3597.8	3797.12	3898.80	4002.98	+109.82	4219.51	4332.22	4148.16	4557.57	20
2 I	3602.30	3699.	3798.80	3900.52	4004.74		4221.36	4334.12	4450.12	4569.59	21
22	3503.90	3701.	3,300. 47	3902.23	4005.30	411	4223.22	4336.03	4423.09	45 I 1.6I	22
23	3605.50	3702.7	3802.15	3903.95	4008.06	4115	4225.07	4337.94	4454.05	4573.64	23
24	3607.11	3704.35	3803.83	3505.67	-010.02	1117	4225.93	4339.84	4456.01	4575.65	24
25	3608.71	3705.9	3805.50	3907.38	4011.78	4118.85	4228.78	4341.75	4457.98	4577.69	25
26	36 r	3707.6	3807. I8	3909.10	4013.54	4120	1230.64	4343.66	459.94	4579.71	26
27	3611.92	3709.27	3808.85	3910.82	4015.31	4122.	$\underline{+232.50}$	4345.57	4461.91	4581.74	27
28	3613.52	3710.91	3810.54	3912.54	4017.07	4124.	4234.35	$4347 \cdot 48$		$4=83.77$	28
29	3615.13	3712.5	3812.22	3914. 26	4018.84	4126	4236.22	4349.40			29
30	3616.74	$37 \mathrm{I}+2$	3813.90	39 I 5.99	4020.60	+127.90	4238.08	435 I . 3 I	4.467 .82	45.87 .83	30
3 I	3618.34	3715.8	3815.58	3917.71	4022.37	4129.72	4239.94	4353.23	4469.79	4589.85	3 I
32	3619.95	3717.4	3817.27	3919.43	4024. 13	4131.53	4241.80	4355 . I4	471.76	4591.89	32
33	3621.56	3719.13	3818.95	3921.16	4025.90	4133.	4243.67	$+357.06$	4773.73	4593.92	33
34	3623.17	3720.77	3830.63	3922.88	4027.67	4135	4245.53	4358.97	475.71		34
35	3624.78	3722.42	3822.32	3924.61	4029.44	4136	$4247 \cdot 39$			4598.00	35
36	3626.39	3724.0	3824.00	39.6 .33	4031.2I	4138.	4249.26	4362.8 r	4479.66	4600.03	36
37	3628.00	3725.7	3825.69	3938.06	4032.98	4140.6 I	4251.13	4364.73	4481.63	4602.07	37
38	3639.6 r	3727.36	3827.37	3929.79	4034.75	4142.42	4252.99	4366.65	4483.61		38
39	363 I .22	3729.0	3829.06	3931.51	4036.52	41.44 .24	1254.86	4368.57 4370.50	4485.59 4887	4606.15	39
40	3632.83	3730.6	3830.75	3933.24	4038.29	4	$\underline{4256.73}$	4370.50	4487.57	4608. 19	40
4 I	363	3732.3	3832.43	3934.97	4040.07	41.47 .88	4258.60	4372.42	4489.55	4610.23	41
42	3636.06	3733.9	3834.12	3936.70	404 I .84	4149.70	4260.47	4374.34	491.53	4612.27	42
43	3637.67	3735.6	3835.8 r	3938.43	4043.61	4151.52	4262.34	4376.27	4493.51		43
44	3639.28	3737.26	3837.50	3940.16	$4045 \cdot 39$	4153.35	4264.22	4378.20 4880.12	$4495 \cdot 50$ 4497.48	4016.30 4618.41	44
45	3640.00	3738.91		3941.90	4047. 17	4155.17	4266.09	4380.12	4497.48	4618.4 I	45
46	3642.51	3740.5	38.40 .88	3943.63	4048.94	4157.00	4267.97	4382.05	+499.47	4620.45	46
47	3644.13	3742.21	38.42 .58	3945.36	4050.72	4158.82	4269.84	4383.93	4501.45		47
48	3645.75	3743.8	38.44 .27	3947.10	4052.50	4160.65	4271.72	4.385 .01	4503.44		48
49	3647.36	3745.5 3747.	3845.96 3847.66	39.48 .83 3950.57	4054.28 4056.06	4162.47 4164.30	4273.59 4275.47		4305.43 4507.42	$\begin{array}{\|} 4626.60 \\ 4628.65 \end{array}$	49 50
50		3747.		3950.57 3952.31	4050.06 4057.84	4164.30 4166.13	4275.47 4277.35	4389.77	4507.42 4509.41	4628.65 4630.71	50 51
52	3652.22	3750.4	3851.05	3954.04	4059.62	4167.96	4279.23	4393.64	45 II .40	4632.76	52
53	3653.84	3752.15	3852.75	3955.78	406 I . 4 I	4169.79	428 I .11	4395.57	4513.39		53
54	3655.46	3753.	3854.44	3957.52	4063.19	4171.62	4282.99	4397.51	4515.39	4636.87	54
55	3657.08	3755	856.14	3959.26	4064.97	4173.45	428	4399.44	4517.38	4638.93	55
56	3658.70	3757	3857.84	3961.00	4066.76	4 I 75.28	4285.75	4401.38	4519.38	4640.98	56
57	3660.32	3758.7	3859.54	3962.74	4068.54	4177.12	4390.53	4403.32	4521.37 4523.37	4643.04 4645.10	57 58
58	3661.95	3760.4	3861.24		4070.33 4072.12		4290.53 4292.41	4405.26 4407.20	4523.37 4525.37	4645.10	58
59	3663.57 3665.19	3762. 3763.	862.94		4072.12 4073.90						60
60	3605.	3703	804.04	3907.97	4073.	4182.62	4294	4409.14	4527.37	4049.23	

The Anti-Gudermannian.

gdu	61°	62°	63°	64°	65°	66°	67°	68°	69	70°	gd u
${ }^{\prime}$	4649'.23	4774	490.4.94	5039.42	5178.81	5323.51	5474.01	5630.82	5794.56	5965.92	σ^{\prime}
I	4651.29	4777	4907.14	30.41.70	5181.18	5325.97	5476.57	5633.49	$5797 \cdot 35$	5968.84	I
2	4653.35	4779	4909.35	5043.99	5183.54	5328.43	5479.13	5636.16	5800.14	5971.77	2
3.	+655.42	+781.3	4911.55	50.6 .27	5185.91	5330.90	$5+8$	5638.84	5802.94	5974.70	3
4	4657.49	4783.51	+913.75	50+8. 56	5188.29	5333.36	5484.	564 L .51	5805.74	5977.63	4
5	4659.55	4785.65	4915.97		5190.66	5335.83	5+86.83	564.19		5980.57	5
6	4661.62		1918.18	5053.14	5193.03	5339.30	5489.40	5646.87	5811.34	5583.50	6
7	4663.69	4789.92	4920.39	5055.43	5195.41	5340.77	5491.97	5649.56	5814.15	5986.44	7
8	4665.76	+792.06	4922.60	5057.72	5197.79	$53+3 \cdot 2+$	$5+94$.	5652.24	5816.95	5989.38	8
9	4667.83	4794.20	4924.81	5060.01	5200.17	5345.71	$5+97$.	. 93	5819.76	5992.33	9
Io	+669.91	45 5 5.	4927.03	$50 . j 2.30$	5202.55					5995.27	10
II	4671.98	+798	4929.24	5064.60	5204.93	5350.66	550	-650.30	5825.39	5998.22	II
12	4074.04	+ 500.63	4931.46	5006.90	5207.31	5353. It	5504	5663.00	5828.20	6001.17	I2
I3	+675.13	+802.77	4933.68	50́s9.19	5209.70	5355.61	5507.43	5665.69	5831.02	6004.13	I3
14	4588.21	+804.92	4935.90	5071.49	5212.09	5338.09	5510.01	5668.38	5833.84	6007.08	14
15	4680.29		+938.12	5073.80		5360.58	5512.60	5671.08	5836.66	6010.04	15
16	+682.37	+89.	+940.3-	50,6. 10	5216.86	5363.06	5515.18	5673.78	5839.48	6013.00	16
17	4684.45	$48 \mathrm{II} \cdot 36$	$49+2.57$	5078.40	5219.25	5355.55	5517.	5676.48	5812.31		17
18	4686.53	${ }_{4}^{81} 3.51$	4944.79	5080.71	5221.64	5368.03	5520	5779.19	${ }_{5815}^{5815}$		I8
19	4688.61	4815	4947.02	5083.01	5224.04 5225.43	5370.52	552	5681.89 5684.60	5847.96 5850.79	$\begin{aligned} & 6021.90 \\ & 6024.87 \end{aligned}$	19
21				5087.63	5228.83	5375.50	5528.	5687.31	5853.63	6027.84	2 I
22	4594.8	+822. 13	4953.70	5089.94	5231.23	5378.00	5530.	5690.02	5856.47	6030.81	22
23	4596.96	+824.29	4955.94	5092.25	5233.63	5380.49	5533.34	5692.73	5859.31	6033.79	23
24	4699.05	4826.	4958.17	5094. 57	5235.03	5382.c9	5535.2	5605.45	5862.15	6036.77	24
25	4701.14	+828.60	4950.40	5095.88	5238.43	5385.49	5538.55	5698.17	5864.99	6039.75	25
26	470	+830.7	1962.64	5099.20	$5240.8+$	5387.99	55-1.	5700.80	5867.84	6042.74	26
27	4705.32	+832.9	4964.87	5101.52	5243.24	5390.49	$55+3$.	5703.6I	5870.69	6045.73	27
28	+707.41	+8.35.0	+967. 11	5103.84	5245.65	5392.99'	5546.37	5706.33	5873.54	60.48 .72	28
29	4709.5	4837.25	4969.35	5106. 16	5248.06	5395.50	5548.9	5709.06	5876.39	71	29
30	47 II	+339.42	4971. 59	5108.48	5250.47	5398.01	5551.59	5711.78			30
31	4713	4811.58	4973.83	5110.80	5252.88	5400.52	5554.20	5714.51	5832.10	6057.70	3 I
32	4715.79	+843.75	4976.08	5113.13	5255.30	5103.03	5555.82	5717.25	5884.96	6060.70	32
33	4717.89	4845.92	4978.32	$5115 \cdot 45$	5257.71	5405.54	$5559 \cdot 1+$	5719.98	5887.82		33
34	4719.99	$48+8.09$	+980.57	5117.78	5260.13	5408.05	5562.05	5722.71	5800.68	6066.71	34
35	4722.09	4850.26	4982.82	5120.11		5410.57	5564.68	5725.45	5893.55	6069.71	35
36	4724.19	4852.43	4985.06	5122.44	5264.97	5413.08	5567.30	5728.19	5896.41	6072.72	36
37	4726.30	$485+.6 \mathrm{I}$	4987.31	5124.77	5267.39	5415.60	5569.93	5730.93	5899.28	6075.73	37
38	4728.40	4856.7	+989. 56	5127.11	5250.81	5418.12	5572.55	5733.68	5902.15	6078.75	38
39	4730	4858.96	4991.82	5129.44	5272.23	$5+20.64$	5575.18	5736.42	5905.03	608 I .76	39
40	473		4994.07	9131.78	5274.66	$5+23.17$	5577.81	5739.17	5907.90	6084.78	40
41	4734.72	4863.31	4996.32	5134.11	5277.09	5425.69		5771.92	5910.78	6087.8 I	41
42	4736.83	+865.49	+998. 5	5136.45	5279.52	5428.22	5583.08	$57+4.67$	5913.67	6090.83	42
43	4738.94	4867.67	5000.84	5138.79	528 I .95	5430.75	5585.71	$5747 \cdot 43$	5916.55		43
4	4711.05	4869.86	5003. 10	5III.It	5284.38	5433 . 28	5588.35	5750.18	5919.44		44
45	4743.16	4872.04	5005.36	5143-48	5286.82	5435.81	5590.99	5752.94	5922.32	6099.92	45
46	4745.28	+874.22	5007.62	5145.83	5289.25	5438.35	5593.64	5755.70	5925.22	6102.95	46
47	4747.39	4876.4I	5009.88	5148.17	5291.69	5440.88	5596.28	5758.46	5928. II	6105.99	47
+3	'4740.51	4878.60	5012.15	5150.52	5294. I3	5143.42	5598.93	5761.23	5931.00	6109.03	48
49	4751.63	4880.79	5014.41	5152.87	5296.57	5415.96	5601.57	5763.99	5933.90	6112.07	49
50	4753.74	+882.98	-016. 68	5155.22	5299.01	$5+48.50$	5604.22	5756.76	5936.80	6 II 5.12	50
51	4755.85	+885.17	5018.94	5157.57	5301. +5	5451.05	5606.87	5769.53	5939.70	618.16	5 I
52	4757.98	+887.36	5021.21	5159.93	5303.90	5453.59	5609.53	5772.31	5942.6I	6121.2I	52
53	4760.10	+889. 55	5023.48	5162.28	5306.34	5456.14	5612.18	5775.08	5945.51	6124.26	53
54	4762.23	489 I .75	5025.76	5164.64	5308.79	5458.68	5614.84	5777.86	5948.42	6127.32	54
55	$4764 \cdot 35$	4893.94	502	5167.00	5311.24	546 I . 23	5617.50	5780.64	5951.33	6 r 30.38	55
56	${ }_{47} 65.47$	+806.	5030.30	5169.35	5313.69	5463.78	5620.16	5783.42	5954. 24	6133.44	56
57	4768.60	4898.34	5032.58	5171.72	5316.15	5466.34	5622.82	5786.20	5957.16	6136.50	57
58 59	4770.73 4772.86	4000.54 4002.74	5034.86	5174.08	5318.60	5468.89	5625.49	5788.98			58
60	4772.86 4774.98	4902.74 4904.94	5037.14 5039.42	5176.44 5178.8 I	5321.06 5323.51	5471.45 5474.01	5628.15 5630.82	5791.77 5794.56	5963.00 5965.92	6142.63	59 60

ine Anti-Gudermannian.

gd u	$7 \mathrm{I}^{\circ}$	72°	73°	74°	75°	76°	77°	78°	79°	80°	gdu
o'	$6145^{\prime} .70$	6334.84	$\overline{6534.42}$	6745.74	6970.34	\% 7	$7+67.21$	7741.57	8045.71	375.20	o^{\prime}
I	6148.77	6338.08	6537.85	6749.37	6974.20	207	747 I .66	7749.38	8050.95	3380.96	I
2	6151.85	6341.32	654 I .27	6753.01		7218.35	7476.11	7754.20	8056.20	386.73	2
3	6154.93	6344.56	6544.70	6756.64	6981.95		$7+80.37$			8392.52	3
4	6158.01	63.47 6351	$65+8.13$ 6551.57	6,50.28					8066. 73	8358.31	4
5	6101.09	635	6551.57	6763.93					8072.01	8404.11	5
6	6164.		6555.01	6767.58					8077.29	$8+09.92$	6
7	6167.27	6357.56	6558.45	6771.23	699				8882.88	$8+15.74$	7
-	6170.33	6360.82	6561.89	6754.89	700	297			8087.88	$8+21.57$	8
19	6173 6175		6555.34	6778.55 6782.21	7005.28 7009.19	7247.47	7507		$80 r 3.19$ 806	8427.42	0
10				6782.21 6785.88	7009.19			00		43.27	10
12	6182.75	6373.88	6575.70	6789.55	7017.01	. 2	7520.90				2
13	6185.85	6377.16	6579.16	6793.22	7020.93	264.22	7525.4	S07.66	8114.31	$8+50.85$	13
14	6188.96	6380.43	6582.63	6795.c0	202		7530.00	7812.55	8119.86	$8+56.77$	14
15	6192.07	6383.71	6586.10	6800.58	7028.75	-272.02, 7	534.53	7857.4	8125.22	8462.67	15
I6	6195	6386.	6589.57	680+. 27	7032.70	2-275.83	7539.06	7822.38	$\mathrm{I}_{130} 388$	8468.58	16
17	6 IC 8.30	6390.28	6593.05	6807.96	7036.64	281.05		7827.30	8135.95	$8+74.50$	17
18	6201.42	6393.57	6596.52	6811.65	7040.58	7285.27	5+8.15	7832.23	8I+I. 33	$8+80.43$	18
19	6204. 54	6396.8	6500.01	6815.35	504. 52			7837.16	8146.72	$8+86.37$	19
20	6207.65	6400.15	6603.49	6819.05	7048.47	7293.72, 7	7557.26		8152.12,	8492.32	20
2 I	6210.78	6403.44	6606.98	6822.75			55	847.05	8157.53	8498.28	2 I
22	6213.91	$6+06.74$	6610.47	6826.46	7056.37	302.20	7566.3	752.01	8162.95	8504.25	22
23	6217.04	6 ± 10.05	6513.96	6830.18	7060.33	7305	7570.9	7856.97	8168.37	8510.23	23
24	62:20.18	$6413.3=$	6517.46	6833.89	7064.30	7310.69	7575.54	7851.94	8173.80	8515.22	24
25	6223.31	6416.66	6620.97	6837.61	7068.27	7314.95	7580.13	7866.91	8179.24	8522.22	25
26	6225.45	6419	6524.47	68.1 I. 34	7072.24	319.217	7584.	7871.90	8 T 8	8528.23	26
27	6229.59	6423.29	6627.98	6845.07	7076.22	7323.47	7589.32	7876.89	8190. 15	8534.20	2-
28	6232.74	6426.6 I	663 I .49	6848.80	7080.20	7327.7.4	7593.9.3	-	8195.61	$85+0.29$	28
29	$6235.8)$	$6+29.93$	6635.01	6852.53	70S4.19	7332.02	7598.54	7886.89	8201.09	$85+6.33$	29
30	6239.04	6433.25	6638.53	6856.27	7088.18	733 - 30	7003. It	7891.91	8206.57	8552.38	30
31	6242.19	6436.58	6642.05	6860.02	7092. 18		7607.78	7896.93	8212.06	8558.45	3 I
32	$6245 \cdot 35$	6439.91	$65+5 \cdot 58$	6863.77	7096. 18	+	712.41	7901.95	8217.56	854.52	32
33	6248.50	6443.24	6649.11	6857.52	7100.18	349.18	7617.04	7906.98	8223.07	8570.6 I	33
34	6251.67	$64+6.58$	$6652.64{ }^{\prime}$	6871.27	7104.19	$7353 \cdot 48$	-621. 68	7912.0.3	8228.59	$85-5.70$	34
35	6254.83	$6+49.92$	6556.18	1875.03		7357.79	7626.33	7917.08	$823+12$	8	35
36	6258.00	6453.26	6659.72	6878.80	7112.23	7352.10	7330.09	7922.13	8239.66	8588.93	36
37	6261.17	6456.61	6563.25	6882.56	7116.25	7365.42	7635.65	7927.19	8245.20	8595.06	37
38	6264-3+	6459.95	6656.81	6886.34	7120.28	7370.74	740.31	7932.26	8250.75	8601.20	38
39	6267.51	6463.31	6670.36	6890.11	7124.31	7375.07	7544.08	7937.34		8507.35	39
40	6270.69	6466.66	6673.91	6893.89	7128.35	7379.40	7649.66	7942.43	8261	86 r 3.51	40
4I	6273.87	6470.02	6677.47	6897.68	7132.39	7383.74	7654.35	7947.52	8267.46	86 rg .68	4 I
42	6277.05	6473.38	668 I .03	6901. 46	7136.43	7388.08	7659.04	7952.62	8273.05	8525.86	42
43	6280.24	6475.74	6684.59	6005.25	7140.48	7392.43	7663.74	7957.72	82-8.65	8532.05	43
44	6283.4.3	6480.11	6688.16	6909.05	7144.54	7396.79	7568.44	7912.84	8284.25	8638.26	44
45	6286.62	6483.48	6691. 73	6912.85	7148.60	7401.15	7673.15	7967.96	8289.87	8644.47	45
46	6289.82	6486.86	$6695 \cdot 3 \mathrm{~T}$	6916.65	7152.67	7405.51	7677.87	7973.09	8295.49	8550.70	45
47	6293.01	6490.23	6698.89	6920.46	7156.74	7409.88	7682.59	7978.23	8301.12	8656.94	47
48	6396.21	6493.6 I	6702.47	6924.27	7160.81	74.4 .26	7687.32	7983.37	8306.77	8663.19	48
49	6299.12	6497.00	6706.06	6928.09	7164.89	7418.64	7692.05	7988.52	8312.42	8669.45	49
50	6302.62	6500.38	6709.65	6931.91	7168.97	7423.03	7696.79	7993.68	8318.08	8675.72	50
51	6305.83	6503.77	6713.24	6935.73	7173.06	7427.42	7701.54	7998.85	8323.75	8882.00	51
52	6309.04	6507.17	6716.84	6939.56	7177.15	743 T .82	7706.30	8004.03	8,329.43		52
53	6312.26	6510.56	6720.44	$6943 \cdot 40$	718 I .25	7436.22	7711.06	8009.21	8335.12	8594.60	53
54	6315.48	6513.96	672.4 .04	6947.23	7185.35	7440.63	7715.83	8014.10	8240.82	8700.92	54
55	6318.70	6517.36	6727.65	6951.07	7189.46	7445.05	7720.	8019.60	8346.52	8707.25	55
56	632 I .92	6520.77	6731.26	6954.92	7193.57	7449.47	7725.38	8024.81	8352.24	8713.59	56
57	6325.14	$65^{2} 21.18$	6734.88	6958.77	7197.69	7453.89	7730.17	8030.02	8357.96	8719.94	57
58	6328.37	6527.59	6738.50	6962.62	7201.81	7458.3 .3	7734.96	8035.24	$83^{6} 3.70$	8726.30	58
59	6331.6 I	6531.01	6742.12	6966.48	7205.94	7462.76	7739.76	80.40 .47	8369.44	8732.68	59
60	6334	6534.42	6745.74	6970.34	7210.07	7467.21	$7744 \cdot 57$	8045.71	8375.20	8739.06	60

The Anti-Gudermannian.

gd u	81	82°	83°	8	8	86°		88	89°	gdu
	8739.06	9145.46	9605.82	10136.89	10764.62	11532.52	12	13916.43	-	O^{\prime}
	-		9614.03	10146. ¢ $^{\text {¢ }}$	10776.11	II5+6.88	12541.27	13945.20		1
2		9159.83	9622.27	10156.07	10787.65	11561.31	12560.54	13974.22	$10+16.11$	2
3	8758.29	9167.08	9630.52	10165.70	10799.22	11575	12579.91	14003.48	16475.90	3
4		9174.32	9638.80	10175.37	10810.82	11500.34	125 m 9.10	14033.00		4
5	8771.17	9181.57	9647.09	10185.05	ros22.47	11604.95	12619.00	14062.77		5
6	S7	9188.84		10194.75	10S34. 16	11619.62	12638.70	1.1092 .80		5
7	8784.10	9196.13	9663.74	10204.51	10845.89	$1163+36$	12658.53	$1+123.03$	16726.04	2
8	8790.5	9203.42	9572.09	10214.28	10857.65	II649.16	12678.46	I+153.65	16791.53	8
9		n210.74	0680.47	10224.08	$10859 .+6$	$1166+.02$	12508.52	$1+184.49$		9
10	8803.58	0218.07		10233.90		11678.94	127	14215.61		10
I	89	22	0697.28	10243.75	TO893.20			I4247.01		II
12	88.6 .63	9232.75	9705.71	10253.64	10905.13	11708.99	12759.39	14278.70	17066.70	12
I3	8823.17	0240.15	9714.17	10263	10917.10	II72.	127	14310.68	17139.09	13
14	8829.73	$0247 \cdot 54$	9722.64	10273	ron29. II	$11739 \cdot 30$	12800	$1+3+2.97$	17213.03	14
I5	8836.30	9254.95	9731.14	10283	10941.17	$1175+35$	12821. 36			15
I6	$88_{+2} .88$	9262.37	9730.66	102	10953.26	11769.88		6		16
17	8849.47	9269.81	9748.20	10303.47	10965.40	11785.27	12863.30	$1+141.68$	$17+44.87$	17
18	8856.0	9277.27	9756.76	10313.53	'0977.59	11800.73	12	14775.23	17525.77	18
I9	886	9284.74	9765	10323.61	10080.81	I18i6.26	12905.75	14509.10	17608.63	19
20	886	9292.23	977	1033	11002.08	11831.87	12927. 18	$1+5+3.31$	17693.49	20
	8875	9299.73	978			11847.54	12948.74	14577.87		21
22	8582	9307	9791	10354.0	11026.75	11863.28	12970.44	14012.78		22
23	8889. 29	9314.79	97	1036	IT039.15		12992.27			23
24	8895.97	3322.34	9808.57	1037	110	118	I3014.25		-	24
25	8902.66	9329.91	9817.28	1038	11054.09	11910.95			5	25
26	8009.37	9337.49	0826.02	10395.03	11075.63	II926.99				26
27	8916.09	93+5.10	9834.77	10405.35	11089.21	II9+3.10	I30			27
28	8922.82	9352.72	$98+3.55$	10415.71	IIIOI. 84	11959.29	I310	14830.00	18.60 .62	8
29		93f0	c852.35	10425.09	IIII4.52	11975.55	13126.27	I-807.57		29
30	8936.33	9368.00	986 T .17	10435.51*	III27.24	11991.89	13149			30
3	SOL	9375.67		10746.96		12008.31	1317		. 3	3 I
32	8949	9383.36	9878.88	10457.44	11152.82	120	I3195.	14582.83	919.67	32
33	8056.68	9391.06	9887.77	10467.95	III65.69	12041.39	13218.60	15022.12	19044.69	33
34	8063.49	9398.79	9806.69	10.178 .50	III78.60	12058.05	13212.07	15051.87	19174.44	34
35	8970.32	9406.53	9905.63	10489.08	III91.56	12074. 79	13265.70		19309.27	35
36	8977	9414.28	9	10499.69	I1204.57		13289.50	I5142.77	19449.61	36
37	8984	9422.05	9923.57	10510.33	11217.63	12108.51	13313.47	15183.94	19595.92	37
3	8990.87	9429.84	9932.57	10521.01	I1230.74	12125.49	13337.60	15225.62	19748.73	38
39	8997.75	9437.65	$99+1.60$	10531.71	II243.90	I2142.57	I3361.90	15257.80	19908.66	39
40	9004. 65	9445.48	9950	10542.45	11257.11	I21	I3385.37			40
4	9011.55	9453.32	9959.73	10553.23		12176.96	I3411.02	ז 5353.76	20253.72	41
42	9018.4	9461. 18	9958.83	10564.04	11283.68	12194.29	I 3435.85	15397.56	20438.59	42
43	9025.4	$9+69.06$	9977.9	10574.88	11297.04	12211.	13450.83	15411.93	20535.09	43
44	9032.36	9476.96	9987. II	10585.76	I1310.46	12229.21	13485.05	15485.85	20843.50	44
45	9039.32	9484.87	9996.28	10596.67	11323.93	12246	I3511.43	I5532.40	21065.37	45
46	9046.29	9492.8 T	10005.48	10507.62	11337.45	12264.49	13537.00	15578.55	21302.55	46
47	9053.28	9500.76	10014.70	10618.60	11351.02	12282.26	13562.75	15625.32	$21557 \cdot 3 \mathrm{I}$	
48	0050.29	5:508.73	10023.95	10529.61	II 364.65	12300.13	13588.71	15672.75	21832.48	48
49	9067.31	9516.71	10033.22	10540.67	11378.33	12318.09	13614.85	15720.83	22131.60	49
50	9074.34	9524.72	$100+2.52$	10651.75	I1392.06	12335.15	13641.20	15769.59	22459.26	50
51	$\operatorname{cost} .39$	0532.74	10051.84	10652.87	1 I 405.85	12354.30	13667.75	15819.06	22821.46	51
52	9088.45	9510.79	10051.19	10674.03	IIf19.70	12372.54	13694.52	15869.25	23226.39	52
53	9005.52	0548.85	10070.56	10685.22	II 433.60	12390.89	13721.48	15920.19	23685.42	53
5	$9 \mathrm{TO2} .61$	9556.93	10079.06	10696.46	11447.56	12409.33	I3748.67	15971.89	24215.35	54
55	9109.72	9565.03	10089.38	10707.72	11461.58	12.127 .87	13776.07	I602 4.38	248.12 .12	55
56	9116.84	9573.15	10038.83	10719.03	11475.65	I2 246.51	13803.68	16077.68	25609.23	56
57	9123.97	0581. 29	10108.30	10730.37	II 489.78	12.465 .26	13831.53	16131.82	26598.21	57
58	9131.12	9589.45	IOII7.81	10741.75	11503.97	12.484.10	13859.60	16186.83	27992.10	58
59	9138.28	9597.62	10127.33	10753.17	IISI8.21	12503.05	13887.90	16212.74	30374.96	59
60	19145	05	Ior 36.89	10767.62	11532.52	12522.11	13916.43	16299.56		60

TABLE VIII

CONVERSIUN OF radians into angular Measure and vice versa

Conversion of Angular Measure into Radians.

n	Radians for n degrees	Radians for n minutes	Radians for n seconds	n	Radians for n degrees
1	0.01745320252	0.0002908882 I	0.0000048481	6 I	2
2	. 03490658504	.00058 17764 2	.00000 95962 7	62	.08210 413524
3	. 03235987756	. 00087266763	. $00001451+14$	63	. 09955 7+2876
4	.06¢81 31700 8	. 00116355283	.00001 939255	64	-1IzOI 0j2Iz 8
5	0.08726646260	0.00145444104	0.00002421058	65	1. 13446401380
6	. 10471975512	. $0017+532925$. 000029088882	66	. 1519173053
8	- 12217304761	. 00203621746	. 000033933596	67	. I6937 05988 4
8	. 1396263401	.00232 710567	.00003 87850 9	68	18682389136
9	.15707963268	.00261 799388	. 00004353323	69	. 20427 71838 8
IO	0.1745329252	0.00290888209	$0.000048_{4} 813$		I. $221733^{0} 9754_{4} 0$
II	. 1919862177	. 00319977030	. 0000533295	7 I	.23918370592
12	. 20943951024	. $003+9065850$. 0000581776	72	. 25663 705I4 4
13	. 22689280276	.00378 15467 I	. 0000630257	73	.27409035396
14	. 24434609528	. 00407243492	.00006 78739	74	. $2915+364648$
15	0.26179 .938780	$0.00+36332313$	0.0000727220		1. 3089969350 o
16	. 27925268032	. 00465421134	. 00007757019	76	. 32645023152
17	. 2967059728	. 00494509955	.00008 $2+1833$	78	-34390 352404
18	-31415 92653	. 00523598776	. 0000872664	78	-36135 68i65 6
15	-33161 3557	. 00552687596	. 00009211460	79	. 37881010908
20	$0.3+90658504$	0.0058177641	0.00009696274	80	1. 39626340160
21	- $366519 \mathrm{I}+292$. 006610865238	.00010 181087	8 8	. 41371669412
22	. 3839724354	. 00639954059	.00010 66590 I	82	-43116 998664
23	. 4014257279	. 00669042888	. 0001115071	83	-41852 327916
24	- 418879020	. 0069813170 I	.00011 63552	84	- 45607657168
25	0.43633231300	0.00727230522	0.000121203	85	1.4835 2085420
26	. 45378560552	.00756 309343	.00012 605156		-5009831567 2
27	- 47123889804	.00785 398163	.00013 089969	87	. 518436849234
28	- 4886921905	.00814 $48608+$.00013 574783	88	. 53588974176
29	. 50614548308	. $008+3$ 57580 5	.00014 05959	89	5533+303427
30	0.52359877560	0.00872664626	0.0001454441	90	1. 57079632579
3 3	. 541105206812	.00901 75347		91	
32		. 009308422688	. 000151514038	92	. 60570291183
31 34 34	.57595865316 $.593+119456$	$\begin{array}{r}.00959 \\ .00989 \\ \hline 19108 \\ \hline 199\end{array}$.00015 .0001698851 483665		$\begin{aligned} & .62315620+35 \\ & .64050 \\ & \hline 94503 \end{aligned}$
34 35	-59341 194568 0.6 I 85 52382	.00989019909 0.01018 10873	$\begin{array}{r}.00016 \\ 0.00016 \\ 968479 \\ \hline\end{array}$	94 95	$\begin{array}{r} .64050945887 \\ 1.65805 \quad 278939 \end{array}$
		0.01018 .010 .47 0.08735 19750	0.00016 .00017 0643 5329	$\begin{aligned} & 95 \\ & 96 \end{aligned}$	1. 65805278939
36 37	. 64577182324	.01076 286372	.00017 938106	97	. 69295937443
38	. 663225115	.01105 375193	. 00018 +22920	98	. 71042266595
39	. 68067840828	.01134 464014	.00018 907734	99	. 72787595947
40	0.69813170080	0.01163552835	0.00019392547	100	1.74532 925199
	. 71558499332	.0119264165 6	.00019 877361	,	. 91985217719
42	. $7330382858 \frac{4}{4}$.01221 730476	. 00020362175	120	$2.09+39510239$
43	. 75049157836	. 01250819297	. 000208469888	130	. 26892802759
44	. 76794487088	.01279 908II 8	. 00021331802	I4a	-44346095279
	0.78539816340	0.01308906939	0.00021816616	150	2.61799387799
46	. 80285145592	. 01338085760	. 00022301429	160	. 79252680319
47	. $8203047+84$. 01336717458 I	.00022 785243	170	.95705 972S3 9
48	. 8377580.4096	. 01396263402	. 00023271057	I80	3.11159 265359
49	.85531 13334 8	. 01425352222	. 00023755870	190	-31612 557879
50	0.87266462000	0.OI454 441043	$0.0002+240684$	200	3.49065850399
51	. 89011791852	.01483 520864	. 00024725498	210	. 65519142919
52	-90757 12110 4	.01512 6r868 5	. 0002521031 I	220	. $83972+35439$
53	.92502 450356	.01541 707506	. 00025695125	230	4.01425727959
54	-94247 779608	.01570 796327	. 00026179939	240	. 18879020479
	0.95993103850	0.01599885148	0.0002666475		4.36332312999
56	-97738 438112	. 01628973969	.00027 14.49566	260	.53735 605519
	. 99483767364	.01658 0602789	. 00027634380	270	. 71238898038
58	I. 01229096616	. 01687 15161 0	. 00028 Ir919.4	300	5.23598775598
59	. 02974425868	. 0171624043 I	. 00028604007	330	.7595865315 8
60	1.04719 755120	0.01745329252	0.0002908382	360	6.28318530718

Conversion of Radians into Angular Measure.

Radians		Angle	Radians	Angle	
0.1	$05^{\circ} 43$	46.4806247	0.006	$0^{\circ} 20$	37. ${ }^{\prime \prime}$-8883 75
0.2	1127	32.9612494	. 007	2.4	$03.853^{15} 47$
0.3	17 II	$19 .+4187+1$. 008	27	30.1184500
0.4	$22 \quad 55$	05.9224988	. 009	30	36.3832562
0.5	$28 \quad 38$	52.4031235	0.0100	- 34	22.6480625
0.6	3422	38.8837483	. 0001	OO	20.624806
0.7	$40 \quad 06$	25.3643730	. 0002	00	41.2529512
0.8	4550	II. $8+49977$. 0003	OI	-1.8704+ 19
0.9	5 I 33	58.3255224	. 0004	Or	22.3053225
1.00	$57 \quad 17$	+4. Sob2 71	0.0005	0 or	43.1324031
0.01	$003+$	22.04806 25	.000)	02	0.3.75888 37
0.02	OI 08	+5.29512 49	. 0007	02	$24.388: 3+4$
0.03	OI 43	07.9448874	.0008	02	45.01184 50
0.04	0217	30. 5922499	. 0009	03	05.6383256
0.05	0251	53.2103124	0.00100	- 03	26.26480625
0.05	$03 \quad 26$	$15.88837+8$. 00001	∞	02.05264806
0.07	0400	38.5364373	. 00002	00	04.12529 612
0.08	O4 35	O1. $18+49$ 58	. 00003	00	$05.1879+419$
0.09	0509	23.8325522	. 00004	00	08.25059225
0. 100	0543	46.4805247	0.00005	000	10.31321031
0.001	0003	25. 2548062	. 00006	00	12.37588837
0.002	006	52.52961 25	. 00007	∞	14.43853644
0.003	∞ 10	$18.75+4187$. 00008	00	15.50118450
0.004	0013	45.0592250	. 00009	00	18.56383256
0.005	0017	II.32403 I2	0.00010	- 00	20.62648000

Smithsonian Tables

Numerical Constants.

$\log _{10} 2=0.301029995663981$
$\log _{e} 2=0.693147180559945$
$\log _{\mathrm{e}} \mathrm{IO}=2.302 \Sigma 85092994046$
$\mathrm{e}=2.718281828459045$
$\log _{10} \mathrm{e}=0.434294481903252$
$\log _{10} \log _{10} \mathrm{e}=9.6: 7784311300537$
$\pi=31415926535$ S9793
$\log _{10} \pi=0.497149872694134$
$\log _{\mathrm{e}} \pi=1.144729585_{5} 49400$
$\frac{I}{\pi}=0.31830988618379 \mathrm{r}$
$\pi^{2}=9.869604401089359$
$\frac{\mathrm{I}}{\pi^{2}}=0.101321183642338$
$1^{/ \pi}=1.772453850905516$

$$
\frac{\mathrm{I}}{1 \pi}=0.564 \mathrm{I} 895 \mathrm{~S}_{35} 47756
$$

$$
\log _{10} \frac{I}{V \pi}=9.731425063652933
$$

$$
\sqrt{\frac{\pi}{2}}=1.253314137315500
$$

$$
\sqrt{\frac{2}{\pi}}=0.797 S 84560802865
$$

$\log _{10} \sqrt{\frac{2}{\pi}}=9.90194006148 .4924$

$$
\text { I radian }=206264 . S 062470964 \text { seconds }
$$

$$
=3437.74677 \text { o7S49 minutes }
$$

$$
=57.2957795131 \text { degrees }
$$

$\log _{10} 206264.80625=5 \cdot 3144251332$

[^0]: ${ }^{1}$ More compendious and convenient, but less usual, is the notation employed by B. de Saint-Venant, $\operatorname{sih} u$, $\operatorname{coh} u, \operatorname{tah} u$.
 ${ }^{2}$ Comptes Rendus, Paris, vol. 83, 1876, p. 594.

[^1]: ${ }^{1}$ For definitions which are independent of the position of the sectorial areas see Prof. James McMahon's "Hyperbohic dyanctions" and a paper "On the Introduction of the
 1894-95.

[^2]: ${ }^{1}$ H. P. Manning's Non-Enclidean Geometry, p. 60.

[^3]: ${ }^{1}$ Taken with additions from Prof. B. O. Peirce's Short Table of Integrals, and Prof. McMalion's Hyperbolic Functions.

[^4]: ${ }^{1}$ If in these equations m is substituted for 2 they represent any syntractrix. The two equations, with this substitution, can be combined to the following :

 $$
 \frac{(a u-x)^{2}}{a^{2} m^{2}}+\frac{y^{2}}{a^{2} m^{2}}=\mathrm{I},
 $$

 showing that the curve is traced by a point on a circle of radius $a m$ whose center is in motion. It is noteworthy that if in this equation the hyperbolic sector u is replaced by a circular sector ϕ, the new equation represents a prolate or a curtate cycloid, or better the syncycloid. Thus the syntractrix may be considered as a syncycloid with an infinite period.

[^5]: ${ }^{1}$ See Bull. Geol. Soc. Am., vol. 2, I8gr, p. 49, and Am. Jour. Sci., vol. 46, 1893, p. 337.

[^6]: ${ }^{1}$ The isocyclic diameter used in this illustration of hyperbolic functions lies in the circular section of a shear ellipsoid, or an ellipsoid in which the mean axis is a mean proportional between the greatest and least axes. The position of the circular section of the general ellipsoid is also readily expressed in terms of hyperbolic functions. Let the equation of the ellipsoid be

 $$
 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=\mathrm{r} ; a>b>c .
 $$

 $$
 \text { If } \frac{b}{c}=\cosh u_{1} \text {, and } \frac{a}{b}=\cosh u_{2},
 $$

 the angle ν which the circular section makes with the greatest axis is given by

 $$
 \tan \nu=\frac{1}{i} \tanh i \nu=\frac{b-2-a-2}{c^{-2}-b-2}=\frac{\tanh u_{1}}{\sinh u_{2}} .
 $$

 If $u_{1}=u_{2}$ and $\frac{a}{b}=a$ this expression reduces to $\tan \nu=a-1$, or to the case of the shear ellipsoid.

[^7]: ${ }^{1}$ The notation and general outline of treatment here presented closely follow Mr . Herbert L. Rice's treatise, Theory and Practice of Interpolation, ISgg. The Nichols Press, Lynn, Massachusetts.

[^8]: ${ }^{1}$ Rice's Theory and Practice of Interpolation, section 83 .
 ${ }^{2}$ Prof. James McMahon: "On the General Term in the Reversion of Series." Bull. Am. Math. Soc., April, 1894.

[^9]: ${ }^{1}$ See, also, "Inverse Interpolation by Means of a Reversed Series," Phil. Mag., May, 1908.

[^10]: ${ }^{1}$ James McMahon, Hyperbolic Functions, p. 7x.
 ${ }^{2}$ Crelle's Journal, vols. $6,7,8$, and 9 . These memoirs were afterwards reprinted in a separate volume. xlviii

[^11]: ${ }^{1}$ Phil. Mag., vol. 24, p. 19.
 ${ }^{2}$ Thus spelled in Cayley's paper.
 ${ }^{3}$ Exercises de Cal. Int., vol. 2, ISI6.
 ${ }^{4}$ Neueste Schriften der Naturforscher-Gesellschaft in Danzig, vol. 6, x 862.

