

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

DEPARTMENT OF COMMERCE
 U. S. COAST AND GEODETIC SURVEY

O. H. TITYIMCANN

SUPERINTENDENT

HYPSOMETRY
-

precise leveling froy brighall, UTAH, TO SAN FRANCISCO, CALIFORNIA

BY

WILIIAM BOWIE
Inspector of Greodetio Worls, and Chief of the Computing Division
U. S. Coast and Geodetic Survey

SPECIAL PUBLICATION No. 22

WASHINGTON
GOVERNMENT PRINTING OPFICR

DEPARTMENT OF COMMERCE
 U. S. COAST AND GEODETIC SURVEY
 O. H. THTTMANN SUPERINTENDENT

HYPSOMETRY

PRECISE LEVELING FROII BRIGHAM, UTAH, TO SAN FRANCISCO, CALIFORNIA

BY
WILLIAM BOWIE:
Inspector of Geodetic Works, and Chief of the Computing Division U. S. Coast and Geodetio Survey

SPECIAL PUBLICATION No. 22

$H E=991$

ADDITIONAL COPIES
OF THS PUBLCATION MAY be procured from TEE SUPERINTENDENT OF DOCUMENTS

GOVERNMENT PRINTING OFFICE
WASHINGTON, D. C.
AT
15 CENTS PER COPY

CONTENTS.

Paga
General statement 5
Standard elevations. 5
Orthometric correction 6
Theoretically best clovations 6
Dynamie numbers 6
Mean sea Icvel at San Francisco, Cal 6
Detailed statement of results. 7
Brigham, Utah, to Beowawe, Nev 7
Beowawe to Marmol, Nev 13
San Franciseo, Cal., to Marmol, Nev 19
Rate of progress 26
Cost of leveling 26
Organization of party 26
Connections with other leveling. 27
Agreement of clevations at Brigham, Utah 27
Circuit elosures 27
Probable and systcmatic errors 27
Instruments used 28
General instructions for precise loveling. 29
Study of errors 32
Investigation of systematic errors. 33
Relations between the diserepancy and the times of running. 34
Relation between errors of leveling and elear and cloudy sky 37
Relation between the errors of loveling and the forward and backward runnings of a line. 42
Conclusions. 43
Standard elevations. 45
Elevations of permanent bench marks 45
Elevations of top of rail in front of railroad stations. 47
Descriptions of bench marks. 48
General notes describing different forms and markings of bench marks 48
Deseriptions:
Brighan, Utah, to Beowawe, Nev 48
Beowawe to Marmol, Nev 53
Marmol, Nev., to San Francisco, Cal. 56
ILLUSTRATIONS.
No. 1. Index map showing general location of the leveling 61
No. 2. Location of bench marks between San Francisco and Clippergap, Cal 62
No. 3. Location of bench marks between Clippergap, Cal., and Doden, Nev. 63
No. 4. Location of bench marks betwcen Doden and Fenelon, Nev 64
No. 5. Location of bench marks betwcen Fenelon, Nev., and Brigham, Utah. 65

precise leveling from brighal, utah, T0 san francisco, cal.

By Whllam Bowie,
Inspector of Geodetic Work and Chief of the Computing Division, United Stàtes Coast and Geodetic Survey.

GENERAL STATEMENT.

This publieation gives the results of a line of preeise levels run along the Southern Paeifie Railway from Brigham, Utah, to San Franeiseo, Cal., during the seasons of 1911 and 1912 by a party of this Survey under the eharge of Assistant John H. Peters. The line is 891 miles (1434 kilometers) in length and fixes the elevations of 315 beneh marks.

Several noteworthy features of this line are: (1) That all of the work was done by one observer. So far as the writer is aware, this is the longest continuous line of levels in the United States ever run by one person. (2) For the first time a motor-driven veloeipede ear was used by a preeise-leveling party of the United States Coast and Geodetie Survey. (3) The excellent progress made by Mr. Peters on his first season's leveling; he had done no preeise leveling previous to 1911 . This is especially remarkable, as the country traversed is thinly populated and villages at whieh the party eould live were far apart.

The engineer who wishes only to obtain the standard elevations of the beneh marks and their deseriptions may find the desired data on pages 45 to 60 . At the back of this volume there is given all index whieh cnables one to find easily the pages on whieh are the elevations and descriptions of marks at any partieular plaee.

Several members of the field and offiee foree assisted in the eomputation of the line of levels and in the preparation of this report. Especial eredit is due H. G. Avers, who had direet eharge of the computations and prepared the descriptions of the beneh marks for publieation, and J. H. Peters who assisted in the study of crrors.

STANDARD ELEVATIONS.
There have been four general adjustments of the preeise levels of the United States, each sueeceding one having becn made neecssary by important additions to the net. The last adjustment showed the net to be suffieiently strong to scrve without change (except for disturbed loeal arcas) for giving fixed or standard elcrations to the public. To this net, as fixed by the 1912 adjustment (the results of whieh are shown in Special Publieation No. 18, of the Coast and Geodetic Surrey), will be adjusted the separate lines as they may be run in the future.

The line under diseussion, from Brigham, Utah, to San Franeiseo, Cal., has beeu fitted in or adjusted to the clevation of a beneh mark at Brigham, with which it was eonneeted, as given by the last general adjustment, and the elevations of eertain bench marks in San Franciseo whieh had been determined by a eonneetion with tidal beneh marks at the Presidio by the eity enginecring department.

The elevations given on pages 45 to 47 of this publication are considered as standard or fixed.

From time to time in the future, general adjustments of the level net will no doubt be made in order to obtain the theoretieally best elevations of the junetion points, but sueh adjustments will not disturb the standard elevations, unless they are found to be greatly in error on aecount of blunders in the leveling or due to the rising or settling of the beneh marks from earthquake disturbanees or the operations of man. Oeeasionally the elcvations of beneh marks are ehanged by mining operations, drainage, and other loeal agencies.

ORTHOMETRIC CORRECTION. ${ }^{1}$

The orthometric correetion was applied to the observed differences in elevation shown on pages 8 to 25 before they were adjusted between the San Francisco and Brigham elevations. This correction eliminates from the observed results the effect of the convergence of level surfaces as the poles of the earth are approached, and the elevations obtained represent the vertieal distanees of the points above mean sea level.

On the line San Francisco to Brigham the total orthometric correction is -0.3122 meters.

THEORETICALLY BEST ELEVATIONS.

Every new line added to the precise level net will have some influence on the elevation of nearly every bench mark in the net, though in most cases this influence will probably be so small as to be negligible. Therefore for surveying and engineering purposes it is desirable that the elevations of bench marks be held fixed rather than be continually changed by very small amounts as new data are added to the net. But it is sometimes desirable to know the theoretically best orthometric clevation of a bench mark. This can be obtained for a bench mark on the line between Brigham, Utah, and San Francisco, Cal., by applying to the standard elevation of the bench mark in question a correction which bears the same proportion to the difference between the theoretically best orthometric elevation and the standard elevation of bench mark " R " at Brigham as the distance between Brigham and the bench mark bears to the whole distance between Brigham and San Francisco. The theoretically best orthometric elevation of bench mark " R " at Brigham as obtained by the methods described on pages 57 and 58 of Special Publication No. 18 is 1309.1510 meters.

DYNAMIC NUMBERS. ${ }^{1}$

When the orthometric correction has been applied to the observed elevation of two beneh marks which are in the same level surface, the surface of the water at rest in an elevated north-and-south canal, for instance, the two marks will have different elevations above sea level. This difference is so slight in practically all cases in which engineers are interested that it may be ignored. There are occasions, however, when it is desired to know the exact distance in terms of some unit between the level surfaces in which two bench marks are situated. The difference between the two orthometric elevations will not give this information. In such cases the dynamic number of each bench mark must be computed, then the distance between the surfaces may be obtained in terms of the work done in raising a unit mass through a unit distance. If the stations should be in the same level surface then the difference between their dynamic numbers will be zero. As stated above, the orthometrie elevations of two points in the same level surface will differ by the amount by which the surface containing them converges toward the sea-level surface in going from the more southern point to the other one. The convergence is a function only of the difference in latitude and the average elevation of the points.

MEAN SEA LEVEL AT SAN FRANCISCO, CAL.
The elevations of the bench marks established by the city of San Francisco, upon which the elevations of the line under discussion depend, are based upon a preliminary elevation of 8.970 feet above mean sea level for bench mark No. 15.

Bench mark No. 15, also known as "Granite B. M.," is the referenee bench mark for the tidal station at the Presidio. It is the top of the rounded head of a copper bolt set in the top of a granite post, 12 inches square in cross section and 36 inches long, imbedded in eoncrete on the east side of the road leading from the Presidio wharf to the Barracks and about 255

[^0]feet from the shore end of the wharf. The top of the stono is marked "U. S. C. S., 1897, B. M." The bench mark was established in August, 1897, and subsequently covered by the edge of the macadamizing of the road to the Quartermastcr's warchouse.

The tide staff at the Presidio was established in 1897. Since then continuous tidal obscrvations have been in progress.

The following table gives the value of mean sea level above the zero of the tide staff of 1897, for each calendar year since its establishment.

Year.	Height.	Year.	Height.	Year.	Height.	Year.	Height.
	Feet.		Fet.		Feet.		Feet.
1898.	8.30	1902.	8.57	1906.	8.58	1910.	8.42
1899.	8.41	1903.	8. 53	1907.	8.66	1911.	8.61
1900.	8.50	1904.	8.63	1908.	8.43	1912.	8.49
1901.	8.46	1905.	8.65	1909.	8.53	1913.	8.51

Mean soa level for 16 years $(1898$ to 1913$)=8.519$ fect on the staff.
The above readings have been reduced to the staff of 1897 on the assumption that bench mark No. 15 remaincd unchanged during the entirc period of observations. The elevation of bench mark No. 15 above the zero of the tide staff of 1897 was accepted as 17.493 fcet, which is the mean of 8 sets of levels taken at various times between the yoars 1897 and 1905.

The elcration of bench mark No. 15 above mean sea level from the tidal observations 1898 to 1913 is therefore $17.493-8.519=8.974$ feet. The difference between this value and the one (8.970) used in the computation of the clevations of the precise leveling bench marks is only 0.004 fcot (1.2 millimeters) and is so small that the elevations havo not been corrected to accord with the latest value of mean sca level.

detalled statement of results.

bRIGHAM, UTAH, TO BEOWAWE, NEV.

This section was run between June 26, and November 8, 1911.
Precise level No. 7 and rods CC and DD were used for the entire line. The lengths of these rods at $0^{\circ} \mathrm{C}$., as determined by the instrument division of this Survey, are as follows: Junc 8, 1911, rod CC, 3.0013 meters, rod DD, 3.0015 meters; January 12, 1912, rod CC, 3.0008 meters, rod DD, 3.0012 meters.

These measurements show a slight shortening of the rods. The field measuromonts give no indication of a sudden change during the pcriod of leveling. In the computation the mean length of the rods at $0.0^{\circ} \mathrm{C}$. for the season, 3.0012 meters, or an excess of 0.40 millimeter per meter was used. The index correction of rod CC was -0.3 millimeter; of rod $\mathrm{DD},-0.2$ millimoter.

Three bench marks, Q, R, and T, on the line of levels between Ogden, Utah, and Pocatello, Idaho, were recovered. The new detcrmination of the diffcrences of elevations between these threc bench marks showed that R and T had maintained the relative position in which they were established, while Q had settled about 26 millimeters.

The elevation of bench mark Q, published on page 132 of Special Publication No. 18, should thercfore bo used with caution for engineering and survey purposes.

The elevations in the following table aro based on an assumed elevation of 1308.9203 moters for bench mark R at Brigham, Utah.

Results of leveling, Brigham, Utah, to Beowawe, Nev.

Date.	$\begin{gathered} \text { From B. M. . } \mathrm{M} \text {. } \\ \text { B. } \end{gathered}$	Dis-tancein kilo-me-ters.	Difference of elevation.			Discrepancy.		Designation of B. M.	Distance from B. M. R	Observed elevation sbove mean see level.
			Forward line.	BackFard line.	Mean.	Partial.	Total acculated.			
June 29.........	Q-10	1.568	$\begin{gathered} m . \\ -3.7553 \\ -3.7529 \end{gathered}$	$\begin{aligned} & m . \\ & +3.7497 \\ & +3.7515 \end{aligned}$	$\begin{gathered} m . \\ -3.7524 \end{gathered}$	mm. +3.5	mm. +12.0	Q 10	$k m$. 12. 115 10.547	$\begin{aligned} & \text { m. } \\ & 1300.0369 \\ & 1296.2845 \end{aligned}$
July 1-June 29.	10-9	1.375	-4.1826	+ 4.1866	- 4.1846	-4.0	+15.5	9	9.172	1292.0999
July 1-June 28.	9-8	0.987	+2.3468	-2.3491	+ 2.3480	+2.3	+11.5	,	8.185	1294.4479
June 28-28.	8-7	0.964 1.227	+3.0333 +1.5243	- 3.0329 +1.5274	$\begin{array}{r}\text { + } \\ +1.0331 \\ -1.5258 \\ \hline\end{array}$	-0.4	+13.8 +13.4	7	7.221	1297. 4810
June 28-27	6-5	0.983	- 1.6416	+1.6427	- 1.6422	-1.1	+10.3	5	5.011	1295.9552
June 27-27	5-4	0.986	- 1.4722	+ 1.4722	- 1.4722	0.0	+9.2	4	4.025	1294.3130 1292.8408
Do.	4-3	0.977	+ 4.1190	- 4.1166	+ 4.1178	-2.4	+9.2	3	3.048	1296.9586
Do.	3-2	1.170	+8.5799	-8.5728	+8.5738	-2.1	+ 6.8	2	1.878	1296.9586 1305.5324
June 28	${ }_{2-5}^{2-J_{6}}$	1.128 1.128	+7.6399 $+\quad 7.6374$	-7.6337 -7.6344	$\}+7.6363$	-4.6	+4.7	J,	0.750	1313.1687
June ${ }^{\text {D }}$ - 28.	$\begin{gathered} \frac{\mathrm{J}_{9}-1}{1-\mathrm{K}_{9}} \end{gathered}$	$\begin{aligned} & 0.628 \\ & 0.614 \end{aligned}$	$\begin{array}{r} +19.1368 \\ +20.3941 \\ \hline \end{array}$	$\begin{aligned} & -19.1370 \\ & -20.3939 \end{aligned}$	$\begin{array}{r} +19.1369 \\ +20.3940 \\ \hline \end{array}$	$\begin{aligned} & +0.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +4.9 \\ +4.7 \\ \hline \end{array}$	K_{9}	$\begin{aligned} & 1.378 \\ & 1.992 \end{aligned}$	
Do.	JoR	0.750	-4.2484	+ 4.2485	-4.2184	-0.1	+0.1	R	0.000	1305.9203
July 1-1.	R-11	1.075	- 7.7889	+7.7882	- 7.7886	+0.7	+ 0.7	11	1.075	1301.1317
July 3-8	11-12	$\begin{aligned} & 1.311 \\ & 1.311 \end{aligned}$	- 9.2179	+7.782 +9.222 +9.2216	-9.2200	-4.1	-3.4	12	2.386	1291.911
July 3-3.	12-13	1.192	- 5.3208	+5.3239	- 5.3224	-3.1	-6.5	13	3.578	1286.589
Do.	13-14	1. 271	- 0.4404	+ 0.4382	- 0.4393	+2.2	-4.3	14	4.849	1286.150
Do	${ }_{15-15}^{14-15}$	1. 263	+0.4679	-0.46s1	+ 0.4680	+0.2	- 4.1	15	6.112	128661
	${ }_{16-17}^{15-16}$	1.102	+0.5403 +0.8441	-0.5414	+0.5408 +0.8454	+1.1	- 3.0	16	7. 214	1287.158
July 3-5	17-18	0.986	+ 1.5476	- 1.5482	+0.8447 +1.547	+2.6	-0.5	17 18	8. 8.463	1285.004
July 5	18-19	1. 291	+3.1569	- 3.1564	+ 3.1566	-0.5	-0.4	19	10.760	1292. ${ }^{12521}$
	19-20	1.210	+ 4.5292	- 45298	+ 4.5295	+0.6	+0.2	20	11.970	1297.238
$\mathrm{DO}^{\text {D }}$	$20-21$	2.014	+1.1856	- 1.1825	+ 1.1840	-3.1	+2.9 -2.8	21	13.984	1298.127
July 7-7	${ }_{2}^{21-L_{9}}$	0.254 1.207	+2.4001 +4.0557	-2.3993 -4.0542	+2.3997 +4.050	-0.8	-3.7	L_{2}	14.238	1300.821
Do	22-23	1.420	+ +1.7453 +	- 4.0542	+4.0550 +1.7454	-1.5 +0.1	-5.2 -5.1	22 23	15.445 16.865	1304.876.
July 6-7	23-24	1.293	+3.3513	- 3.3538	+	+2.5	- 2.6	24	16.865 18.158	1306.643 1309.974
July 6	24-25	1. 273	+ 0.3498	- 0.3495	+ 0.3496	-0.3	-2.9	25	19.431	1309.9749 1310.324
Do.	$25-26$ $26-27$	1.272	+2.4588 +2.8321	-2.4619 -2.8281	+2.4604 +2.8301	+3.1 +4.0	+ +0.2 -3.8	26	20.703	1312.7849
D	26-27	$\begin{aligned} & 1.151 \\ & 1.161 \end{aligned}$	+2.8321 $+\quad 1.7431$	- 2.8281	+2.8301 +1.7433	-4.0 +0.4	-3.8 -3.4	${ }_{\text {27 }}$	21.854 23.015	1315.61
July 1	11-28	1.095	-10.9068	+10.9682	-10.9675	-1.6				
Do.	28-29	1.211	- 2.7640	+2.7646	- 2.7643	-0.6	- 1.5	23	2.170 3.381	$\begin{aligned} & 1290.1642 \\ & 1287.3999 \end{aligned}$
July 11-11	$\mathrm{M}_{\mathbf{2}}^{29-30}$	1.134 1.046	+0.0789 +0.9181	$+\quad 0.0703$ +0.9174 +0.59	- 0.0791	-0.4	-1.9	M9	4.515	1287.3208
Do.	30-31	1.041	+0.9181 +0.5942	+0.9174	+0.9178	-0.7	- 2.6	30	5.611	1288. 2386
July 12-12	30-31	1.041	-0.5920	+0.5957	-0.5930	+0.3	-2.3	31	6.652	1287. 6456
July 11-11.	31-32	0.789	-0.3135	+ 0.3155	- 0.3145	-2.0	-4.3	32	7.441	1287.3311
July 11-12 July $12-12$	${ }_{\text {32-N8 }}$	1.007	+ 1.4582 +1.3355	- 1.4591 -1.3335	+1.4586	+0.9	- 3.4	N_{2}	8.448	1258.7897
Do...	N3-34	1.022	+ +1.3385 +0.3801	- 1.3335	+1.3345 +0.3814	-2.0	- 5.4	33	9.564	1290.1242
D0..	$34-\mathrm{O}_{9}$	1.244	+0.3078	$\begin{array}{r}\text { - } \\ +0.3109 \\ \hline\end{array}$	+	+2.6 -3.1	- 2.8 -5.9	34 09 9	10.588	1290.5056
July 12-13.	$\mathrm{O}_{9}-35$	1.023	+ 1.4855	- 1.4848	+1.4852	-0.7	-6.6	35	12.853	1290.1962
July 13-13.	35-36	1.320	+1.5162	-1.5181	+1.5172	+1.9	= 4.7	35 36	12.853	$\begin{aligned} & 1291.6814 \\ & 1293.1986 \end{aligned}$
Do.	${ }^{36-P_{9}}$	1.376	+0.1301 +0.8488	- 0.1284	+ 0.1292	-1.7	-6.4	P_{9}	15.549	1293.19868 1298
Do	${ }_{37-38}$	1.197 1.137	+0.8488 0.5364	-0.8514 +0.5363	+0.8501 +0.5364	+2.6 +0.1	- 3.8 -3.7	37 38	16.746	1294. 1779
July 13-14.	38-39	1.467	-	+ + +22220		+0.1	-3.7	38	17.883	1293.6415
July 17-17.	38-39	1.467	- 2.2241	+ 2.2263	- 2.2250	+1.6	- 2.1	39	19.350	1291.4165
July 1414	39- ${ }_{0}$	1.559 1.351 1.351	+ ${ }^{2.6350}$	+2.6371 +5.3466	+ 2.6360	+2.1	+0.0	Q	20.909	1294.0525
Do.	Q0-40	1.351 1.356	- 5.3485 -0.3329	+5.3466 +0.3272	- 5.3476	+1.9	$+1.9$	40	22.260	1298. 7049
Julv 17-17.	40-41	1.356	- 0.3335	+0.3215 +0.3315	- 0.3313	+3.8	$+5.7$	41	23.616	1288.3736
July 14-17.	41-42	1.161	- 0.0479	+ 0.0454	- 0.0466	+2.5	+8.2	42	24.777	1288.3270
July 17-18.	$\mathrm{C}_{\mathrm{R}}^{42-13}$	0.613	+1.2777 1.8929	+1.2780 +1.8957	+ 1.2778 +1.8943	+0.3	+8.5	R_{4}	25.390	1289.6048
July 18-18.	43-44	1.385	+	+	- 1.8913	-2.8	+ ${ }^{+8.7}$	43	26.505	1287.7105
	$44-\mathrm{S}_{9}$	1.325	+ 2.5690	- 2.5734	+ 2.5712	+4.4	+	$\stackrel{4}{5}$	27.890 29.215	1283.0251
	- ${ }_{\text {S }}^{45-45}$	1.285	+ 2.3873	- 2.3845	+2.3859	-2.8	+6.0	45	30.500	1292.5892
July 18-24.	46-47	1.582	$\begin{array}{r}\text { + } \\ +3.3836 \\ \hline 1.2972\end{array}$	-3.3854 +1.2901	+3.3845	+1.8	+ 7.8	46	32.082	1296.3667
July $24-24$.	46-47	1.132	-1.2356	+ 1.2301 +1.2968	- 1.2930	+2.8	$+10.6$	47	33.214	1295.0717
	47-T,	0.682	+0.3097	-0.3098	+ 0.3098	+0.1	+10.7	T9	33.896	1295.3815
Do	To-48	0.824	+ 0.9584	-0.9582	+0.9583	-0.2	$+10.5$	48	34.720	1296.3398
Do.		1.205	+4.8963 +9.9556	-4.8924 -9.9484	+ 4.8944	-3.9	+6.6	U_{9}	35.925	1301.2342
July 25-25	$\mathrm{U}_{0}-49$	1.648	+9.9549	- 9.9859 -9.990	$+9.9544$	-1.5	+5.1	49	37.573	1311.1888
Do.	$49-\mathrm{V}$	0.993	+12.5909	-12.5922	$+12.5916$	+1.3	+6.4			1323.7802
Do	Vo-50	0.461	+ 4.9811	-4.9821	+ 4.9816	+1.0	+ 7.4	50	39.027	1328. 7618
Do	50- W_{5}	0.857 0.557	+ 4.6148	-4.6155 +1.9213	+ 4.6152	+0.7	+8.1	W	39.884	1333.3770
Do	51-52	1.097	-1.9222	+11.2213	-13.22030	+0.9	+9.0 +8.0	51	40.441	1331. 4552
July 20-25	53-53	1.017	+14.8016	-14.8007	+14.8012	-0.9	+ 7.1	53	41.538 42.555	1344.6582 1359.4594
July $26-26$.	53-54	1.057 1.121	+15.4260	-15.4274	+15.4267	+1.4	+8.5	54	43.612	1359.4594 1374.8861
Do.	X	1.090	$\}+16.3466$	-16.0593 -16.3393	+16.5598	-1.1	+ 7.4	X	44.733	1391.4459
Do.			+16.3425	-16.3451	+16.3434	-2.4	+5.0	55	45.823	1407.7893
Do...	55-56	0.747 1.028	$\begin{aligned} & +12.7663 \\ & +17.2740 \end{aligned}$	$\begin{aligned} & -12.7646 \\ & -17.2780 \end{aligned}$	+12.7654	-1.7	+ 3.3	56	46.570	1420.5547
July ${ }^{\text {July }}$ 27-27	$56-57$	1.028	+17.2797	-17.2803	+17.2780	+2.4	$+5.7$	57	47.598	1437.8327
July $27-27$	$57-58$ $58-59$	0.985 1.071	+14.6043 +15.0254	-14.6047	+14.6045	+0.4	+6.1	58	48.583	1452. 4372
Do...	59-60	1.071	$\begin{aligned} & +15.0254 \\ & +15.4858 \end{aligned}$	-15.0264 -15.4857	+15.0259 +15.4858	+1.0	+ 7.1 +7.0	59 60	49.654 50.713	1467.4631 1482.9489
Do.	60-61	1.020	+1.5021	-15.4807 +1.5012	+15.4808 +1.5016	-0.1	+7.0 +7.9	60 61	50.713 51.733	1482.9489 1481.4473

Results of leveling, Brigham, Utah, to Beowave, Nev.-Continued.

Dato.	$\begin{aligned} & \text { From B. M. to } \\ & \text { B. M. } \end{aligned}$	Distance in kilo-meters.	Difference of eievation.			Discrepancy.		Designation of B, M.	$\begin{aligned} & \text { Distance } \\ & \text { from } \\ & \text { B. M. R. } \end{aligned}$	Observed elevation above mean sea level.
			Forward line.	Backward line.	Mean.	Partial.	Totai accuiated.			
1911.					m.	$m m$.	$-m m$.		km	
July $27-27$	61-62	1.027	$+6.5173$	- 6.5188	+6.5180	+1.5	- 9.4	62	52.760	1487.9653
July 28-27.	62-63	0.947	+ 5.5724	- 5.5725	+ 5.5724	+0.1	+9.5	63	53.707	1493. 5377
July 27-2s.	${ }^{63-\mathrm{Y}_{0}}$	0.782	+ 0.5000	- 0.5003	+ 0.5002	+0.3	+9.8	Y	54.489	1494. 0379
July 28 -Aug.	Y 9 -64	1.025	- 2.3035	+2.3047	- 2.3041	-1.2	+8.6	64	55.514	1491. 7338
Do..	$64-65$	1.171	- 2.9050	+ 2.9036	- 2.9043	+1.4	+10.0	65	56.685	1488.8295
Do	65-66	1.174	- 4.0912	+ 4.0874	- 4.0893	+3.8	+13.8	66	57.859	1484.7402
Do	66-Z9,	0.524	- 0.1363	+ 0.1360	- 0.1362	+0.3	+14.1	Z9	58.383	1484.6040
July $28-29$	Z9-67	0.974	- 4.6888	+ 4.6875	- 4.6880	+1.1	+15.2	67	59.357	1479.9160
Do...	67-68	1.026	-13.7523	+13.7490	-13.7506	+3.3	+18.5	68	60.383	1466.1654
Do	68-69	1.154	-13.6138	+13.6138	-13.6138	0.0	+18.5	69	61.537	1452. 5516
Do	69-70	1.035	-10.1499	+10.1525	-10.1512	-2.6	+15.9	73	62.572	1442.4004
D	70-A ${ }_{10}$	0.427	- 1.4078	+ 1.4075	- 1.4076	+0.3	+16.2	A_{10}	62.999	1440.9928
Do.	A 1071	1.071	-8.3503	+ 8.3508	-8.3506	-0.5	+15.7	71	64.070	1432.6422
Juiy 29-29	71-72	1.102	-13.3475	+13.3493	-13.3484	-1.8	+13.9	72	65.172	1419. 2938
Do.	${ }^{72-B_{10}}$	1.729	-19.4542	+19.4525	-19.4534	+1.7	+15.6	B_{10}	66.901	1399.8404
July 31-31	$\mathrm{B}_{10} \mathrm{~B}_{10} 73$	1.288	$=4.3392$ $=4.3418$	+4.3480 +4.3434	- 4.3431	-5.2	+10.4	73	68.189	1395. 4973
July 31-31	$73-74$	1.173	+ 7.4020	-7.4053	+ 7.4036	+3.3	+13.7	74	60.362	1402.9009
Do.	74-75	1.156	+ 1.9302	-1.9360	+ 1.9330	+3.7	+17.4	75	70.518	1404.8339
Aug. ${ }^{\text {July }}$ 31-31.	74-75	1.156 0.788	+1.9320 -6.0788	$\begin{array}{r}1 \\ \hline \\ +6.0335 \\ \hline\end{array}$	$+1.9830$	+3.7	+17.4	6	7.518	1404.8339
Aug. 2-2	75-C10	0.788 0.788	- 6.08804	+6.0829 +6.0817	-6.0810	-2.7	+14.7	C_{10}	71.306	1398.7529
July 31-31	$\mathrm{C}_{10} 76$	1.125	-6.5148	+6.5127	- 6.5138	+2.1	+16.8	76	72.431	1392.2391
Do	76-77	1.137	-14.2508	+14.2512	-14.2510	-0. 4	+16.4	77	73.568	1377.9881
July 31-A	77-78	1.322	-15.2620	+15.2825	-15.2622	-0.5	+15.9	78	74.890	1362.7259
Aug. 2-2. Aug. 3-3	78-79 $78-79$	1. 201	-15.2976 -15.3035	$\begin{array}{r} +15.3040 \\ +15.3018 \end{array}$	-15.3018	-2.3	+13.6	79	76.091	1347.4241
Aug. 2-2.	79-80	0.990	-12.1599	+12.1624	-12.1612	-2.5	+11.1	80	77.081	1335. 2629
Do	$80-\mathrm{D}_{10}$	0.712	-9.8945	+9.8965	-9.8955	-2.0	+9.1	D_{10}	77.793	1325.3674
Aug. 2-3	$\mathrm{D}_{10}-81$	1.476	-17.1452	+17.1494	-17.1473	-4.2	+ 4.9	81	79.269	1308.2201
Aug. ${ }^{\text {3-3 }}$	$81-82$	1.045	-13.2380	+13.2599	-13.2590	-1.9	+3.0	82	80.314	1294.9611
	82-83	0.980	- 9.7977	+9.7979	- 9.7978	-0.2	+ 2.8	83	81.294	1285. 1633
Do	$83-\mathrm{E}_{10}$	1.328	- 1.1365	+ 1.1335	- 1.1350	+3.0	+ 5.8	E_{10}	82.622	1284.0283
Aug. 7-7	E_{10-84}	1.514	+ 0.0424	-0.0398	+0.0411	-2.6	+3.2	84	84.136	1284.0694
	84-85	1.096	- 0.0501	+0.0520	- 0.0510	-1.9	+1.3	85	85.232	1284. 0184
Do	$85-86$	1.247	-0.0383	+0.0364	- 0.0374	+1.9	+3.2	86	86.479	1283.9810
Do	86-87	1.281	- 0.0356	+0.0356	-0.0356	0.0	+3.2	87	87.760	1283.9454
Aug. ${ }^{\text {9-9 }}$	$87-\mathrm{F}_{10}$	1.044	+ 3.0519	-3.0504	+ 3.0512	-1.5	+1.7	F_{10}	88.804	1286.9966
Do.	F_{10-88}^{88}	1.230	+ 1.4176	+ 1.4187	+1.4182	-1.1	+ 0.6	88	90.034	1285. 5784
Do	88-89	1.089	+0.0670	- 0.0008	+ 0.0684	+2.8	+ 3.4	89	91.123	1285.6468
Do	89-90	1.096	+ 0.2706	- 0.2717	+ 0.2712	+1.1	+ 4.5	90	92.219	1285.9180
Aug. 10	- $00-91$	1.148	+ 1.4713	- 1.4692	+ 1.4702	-2.1	+ 2.4	91	93.367	1287.3882
Aug. ${ }_{\text {Do }}$	${ }_{6}^{91-G_{10}}$	0.922	+0.6391	- 0.6371	+ 0.6381	-2.0	+ 0.4	O_{10}	94.289	1288.0263
	G $92-92$ 92	0.567 1.183	$\begin{array}{r}+0.3741 \\ \hline 0.2180\end{array}$	-0.3755 +0.2187	+0.3748 +0.2184	+1.4	+1.8	${ }_{93}^{92}$	04.856	1288.4011
Do	93-9.4	1.165	+1.6830	-1.6840	+ +1.6835	+1.0	+ 2.1	94	97.204	1288.1827 1289.8662
Aug. 10-1	94-95	1.039	+ 1.9174	-1.9187	+1.0180	+1.3	+3.4	95	98.243	1291.7842
Do.	95-96	1.165	+ 3.1361	- 3.1342	+ 3.1352	-1.9	+1.5	96	99.408	1294.9194
Aug. 11	${ }^{96-H_{10}}$	1.006	- 2.6467	+ 2.6483	+ 2.6478	-2.2	-0.7	H_{10}	100.414	1292.2716
Do	$\mathrm{Hto}_{10}-97$	1.140	- 3.0171	+3.0180	- 3.0176	-0.9	- 1.6	97	101.554	1289.2540
Do	97-98	0.937	- 1.3460	+ 1.3459	- 1.3460	+0.1	-1.5	98	102.491	1287.9080
Do	98-99	1.186	- 1.6523	+ 1.6523	-1.6523	0.0	-1.5	99	103.677	1286. 2557
Aug. 11	92-100	1.190	+ 0.5055	-0.5072	+ 0.5064	+1.7	$+0.2$	100	104.867	1286.7621
	$100-101$ $101-I_{10}$	1.001	+0.5163 0.4050	+0.5161 +0.4126	+ 0.5162	-0.2	0.0	101	105.868	1287.2783
	101-110	1.083	- 0.4080	+ 0.4126 +0.4111	-0.4107	-2.2	-2.2	I_{10}	106.051	1286.8676
lag. 19-	I_{10-102}	0.975	+ 0.3731	-0.3716	+ 0.3724	-1.5	-3.7	102	107.926	1257.2400
Do.	102-103	1.097	-0.2443	+ 0.2435	-0.2439	+0.8	-2.9	103	100.023	1286.9961
Do	103-104	1. 199	- 0.4785	+ 0.4784	- 0.4784	+0.1	- 2.8	104	110.222	1286.5177
Do	104-105	1.050	- 1.0812	+1.0775	- 1.0794	+3.7	+ 0.9	105	111.312	1285. 4383
Do	105-106	1.359	- 0.3526	+ 0.3550	-0.3538	-2.4	-1.5	106	112.671	1285.0845
Do.	$106-\mathrm{J}_{10}$	1.090	+ 0.7974	-0.7936	+ 0.7955	-3.8	- 5.3	J_{10}	113.761	1285.8800
$\begin{aligned} & \text { Do. } \\ & \text { Aug. } \end{aligned}$	J_{10-107}	1.129	- 0.6697	+0.6720	- 0.6708	-2.3	- 7.6	107	114.890	1285.2092
Aug. 19	$107-108$ $108-\mathrm{K}_{10}$	0.926	+ 0.9834 +0.3567	-0.9825	+0.9830 +0.3574	-0.9	- 8.5	108	115.816	1286. 1922
Aug. 14	K_{10-109}	1.079	+0.4631	-0.4591	+ 0.357	+1.5	- 7.0	K_{10}	117.367	1286.5496
	K10-109	1.079	+0.4594		+ 0.4602	-2.1	- 9.1	109	118.446	1287.0008
Do	109-110	1.026	+ $0.54 \mathrm{S1}$	-0.5480	+ 0.5480	-0.1	-9.2	110	119.472	1287. 5578
	110-111	1.225	- 1.5512	+1.5535	-1.5524	-2.3	-11.5	111	120.697	1286.0054
Do.	111-112	1.101	+ 0.4926	- 0.4936	+ 0.4931	+1.0	-10.5	112	121.798	1286.4085
Ang. 14	112-113	1.065	+0.5146	- 0.5128	+0.5137	-1.8	-12.3	113	122.863	1287.0122
Ang. ${ }_{\text {Do }}$	113-114	1.066	+ 6.3794	-6.3820	+6.3807	+2.6	-9.7	114	123.929	1293.3929
Aug. 15.	114-115	1.077	+13.3915	-13.3940	+13.3928	+2.5	- 7.2	115	125.006	1300.7857
Aug. Do..	$\xrightarrow{115-L_{10}}$	1.450 1.024	+19.2418 +11.5834	-19.2464 -11.5840	+19.2441	+4.6 +0.6	-2.6 -2.0	L_{10}	126.456 127.480	1326.0298
Do.	116-117	1.043	+11.9673	-11.9658	+11.9668	± 1.5	- 3.5	117	128.523	1337. 6135
Do	117-118	1.027	+11.9756	-11.9764	+11.9760	+0.8	- 2.7	118	129.550	1349.5801 1361.5561
Aug. 15-16	118-119	1.037	+12.8233	-12.8218	+12.8226	-1.5	-4.2	119	130.587	1374.3787
Aug. 16-16.	119-M10	0.627	+9.5497	- 9.5539	+9.5520				131.214	
Do.	${ }_{1}^{119-M_{10}}$	0.627	+9.5513	-9.5331	$+9.5520$	+3.0	-1.2	M_{10}	131.214	1383.9307
Do.	120-121	1.028	+11.1230 +14.5343	-11.1310 -14.5341	+11.1300 +14.5342	+2.0	+ 0.8 +0.6	120	132.242	1395.0607
Do.	121-122	1.061	+13.3493	-13.3559	+14.5342	-0.2	+ 0.6	121	133.394	1409.5949
Aug. 17-16	121-122	1.061	+13.3542	-13.3520	+13.3529	+2.2	+ 2.8	122	134.455	1422.9478
Aug. 16-17.	$122-\mathrm{N}_{10}$	1.663	+13.4530	-13.4572	+13.4551	+4.2	+ 7.0	N_{10}	136.118	1436.4029
Aug. ${ }_{\text {Do }} 17-17$	$\mathrm{NiO}_{12} 123$	1. 151	-13.4437	+13.4463	-13.4450	-2.6	+ 4.4	123	137.269	1422.9579
Aug. 18 -18	123-124	1.080	+0.6167	-0.6160	+ 0.6161	-0.2	+ 4.2	124	138.349	1423.5740
Aug. 17-1	123-125	1.080	+ 0.6156 -7.7885	+ 7.7849						
Do.	125-126	1.025	-4.6399	+ 4.6419	$=4.6409$	$\begin{array}{r} +3.0 \\ -2.0 \end{array}$	$\begin{aligned} & +8.8 \\ & +5.8 \end{aligned}$	$\begin{aligned} & 125 \\ & 126 \end{aligned}$	$\begin{gathered} 139.380 \\ 140.411 \end{gathered}$	1415.7873 1411.1464

Results of leveling, Brigham, Utah, to Beowawe, Nev.-Continued.

Date.	$\text { From B. M. }{ }_{\mathbf{M} .}$	$\begin{gathered} \text { Dis- } \\ \text { tance } \\ \text { in kllo- } \\ \text { me- } \\ \text { ters. } \end{gathered}$	Difference of elevation.			Discrepancy.		$\begin{aligned} & \text { Deslgnatlon } \\ & \text { of B. M. } \end{aligned}$	$\begin{aligned} & \text { Distance } \\ & \text { from. } \\ & \mathrm{B} . \mathrm{M} . \mathrm{R.} \end{aligned}$	Observed elevation above mean sea level.
			Forward line.	Backward line.	Mean.	Partial.	Total accu-miliated.			
1911.				m.	m.	mm.	mm.		km.	m.
Aug. 18-18.	126-127	1.077	+1.6473	$=1.6515$	+1.6506	+3.5	+9.3	127	141.488	1412.7970
Aug. 21-21.	$126-127$ 127	1.077 1.031	$\begin{array}{r}\text { +1.6503 } \\ +1.7188 \\ \hline\end{array}$	+ 1.6531 +1.7176	-1.7182	+3.5	+10.5	128	142.519	411.0788
Aug. Do...	128-129	1.021	- 1.8733	+	-1.8742	-1.7	+8.8	129	143.540	1409.2046
Do.	129-130	1.013	+ 0.1014	-0.1014	+ 0.1014	0.0	+8.8	130	144.553	1409.3060
Do	$130-\mathrm{O}_{10}$	0.916	- 5.4012	+5.4006	- 5.4009	+0.6	+ 9.4	O_{10}	145.469	1403.9051
Aug. 21-21	O_{10-131}	1.007	- 5.9264	+5.9336	- 5.9293	-3.8	+ 5.6	131	146.476	1397.9758
Aug. 25-25.	$\mathrm{O}_{10} 131$	1.007	- 5.9284	+5.9288	- 5.2293	-3.8	+ 5.6	131	140.476	1397.9758
Aug. 21-21.	131-132	1.114	+ 0.1530	-0.1532	+ 0.1531	+0.2	+ 5.8	132	147.590	1398.1289
Do.	132-133	1.019	- 1.6055	+1.6050	- 1.6052	+0.5	+6.3	133	148.609	1396.5237
Do.	133-134	1.038	+ 0.2171	- 0.2153	+ 0.2162	-1.8	+ 4.5	134	149.647	1396.7399
Aug. 26-21.	134-135	1.017	+ 5.7854	- 5.7865	+ 5.7860	+1.1	+5.6	135	150.664	1402.5259
Aug. 26-26.	135-136	1.128	- 1.1661	+1.1666	- 1.1664	-0.5	+ 5.1	136	151.792	1401.3595
Do.	136-137	1.024	+0.6430	- 0.6410	+ 0.6420	-2.0	+3.1	137	152.816	1402.0015
Do.	${ }^{137}$ - P_{10}	1.167	-1.8507	+ 1.8509	-1.8508	-0.2	+2.9	P_{10}	153.983	1400.1507
Do.	$\mathrm{P}_{10} \mathrm{P}^{-138}$	1.183	+11.3422	-11.3444	+11.3433	+2. 2	+ 5.1	138	155.166	1411.4940
Do.	138-139	1.022	+12.3863	-12.3862	+12.3862	-0.1	+ 5.0	139	156. 188	1423. 8802
Do	139-140	1. 120	+14.0272	-14.0249	+14.0260	-2.3	+2.7	140	157.308	1437.9062
Aug. 26-27	140-141	1.077	-0.4365	+ 0.4350	- 0.4358	+1.5	+ 4.2	141	158.385	1437. 4704
Aug. 27-27.	141-142	1.184	- 7.0827	+ 7.0819	- 7.0823	+0.8	+ 5.0	142	159.569	1430.3881
	142-143	1.139	+1.9171	- 1.9169	+ 1.9170	-0.2	+ 4.8	143	160.708	1432.3051
Do.	143-144	1.173	-7.3953	+ 7.3927	- 7.3940	+2.6	+ 7.4	144	161.881	1424.9111
Do.	144-145	1.260	+8.5200	-8.5228	+8.5214	+2.8	+10.2	145	163.141	1433.4325
Do.	145-146	1.061	+ 4.3095	-4.3086	+ 4.3090	-0.9	+9.3	146	164.202	1437. 7415
Aug. 28.	${ }_{\text {Q }} \mathrm{Q}_{10-147}$	1.118	-8.6213	+8.6205	-8.6209	+0.8	+10.1	Q_{10}	165.320	1429.1206
Aug. ${ }_{\text {Do. }}$	$\mathrm{Q}_{10}-147$ $147-148$	1.122	-15.6756	+15.6775	-15.6768	-1.9	+8.2	147	166.442	1413.4440
Do.	$147-148$ $148-R_{10}$	1.389 1.382	-14.7280 -11.2233	+14.7282 +11.2262	-14.7281 -11.2248	-0.2	+ +8.0 +5.1	148	167.831	1398.7159
Do.	$\mathrm{R}_{10} 149$	1.415	-10.2636	+10.2685				R10		1387.4911
Aug. 29-30	$\mathrm{rl}_{16}-149$	1.415	-10.2612	+10.2615	-10.2637	-2.6	+ 2.5	149	170.625	1377.2274
Aug. 28-28	149-150	1.147	- 2.4311	+ 2.4296	- 2.4304	+1.5	+ 4.0	150	171.775	1374.7970
Do.	150-151	1.320	- 4.4414	+ 4.4439	- 4.4426	-2.5	+1.5	151	173.095	1370.3544
Do.	151-152	1.015	-7.3303	+ 7.3288	- 7.3296	+1.5	+ 3.0	152	174.110	1363.0248
Do.	152-153	1.447	-5.4230	+ 5.4206	- 5.4218	+2.4	+ 5.4	153	175.557	1357.6030
Aug. 29-29	${ }^{153}$-S ${ }_{10}$	1.149	-0.5656	+0.5685	- 0.5670	-2.9	+2.5	S_{10}	176.706	1357.0360
Do.	Sto-154	1.209	-1.0233	+1.0270	- 1.0252	-3.7	-1.2	154	177.915	1356.0108
Do.	154-155	1.129	- 6.5939	+ 6.5939	-6.5939	0.0	- 1.2	155	179.044	1349.4169
Aug. 29-28	155-156	1.165	-8.9735	$+8.9716$	- 8.9726	+1.9	+ 0.7	156	180.200	1340.4443
Aug. ${ }^{29}$	156-157	1.198	-6.8566	+6.8554	- 6.8560	+1.2	+1.9	157	181.407	1333.5883
Do.	157-158	1.146	- 6.6473	+6.6495	-6.6484	-2.2	-0.3	158	182.553	1326.9399
Aug. $30-30$	159-160	1.145 1.078	- 3.2814	+3.2709 +1.6070	- 3.2802	+2.5	+2.2 +0.7	159	183.698	${ }_{1322}^{1326597}$
Do.	$160-\mathrm{T}_{10}$	1.495	+3.4016	-3.4064	+ 3.4040	+4.8	+ 5.5	T ${ }_{10}$	188.767 186.71	1322.0535 1325.4575
Do.	T ${ }_{10} 161$	1.132	- 0.1042	+0.1034	-0.1038	+0.8	+6.3	161	187.403	1325.3537
Do	161-162	1.114	+ 2.1939	- 2.1963	+ 2.1951	+2.4	+8.7	162	188.517	1327.5458
Do.	162-163	1.027	+ 3.9711	- 3.9709	+ 3.9710	-0.2	+8.5	163	189.544	1331.5198
Aug. 31-31	163-164	1.321	+ 4.9048	- 4.9050	+ 4.9049	+0.2	+8.7	164	190.865	1336.4247
Do.	164-165	1.033	+ 2.2998	-2.3006	+ 2.3002	+0.8	+ 9.5	165	191.898	1338.7249
Do.	${ }_{\text {l }}^{165-U_{10}}$	0.989 1.040	+0.9918 +4.7387	-0.9915 -4.7359	+ 0.9916 +4.7373	-0.3	+9.2	U_{10}	192.887	1339.7165
Do.	166-167	1.136	+ 2.2993	-2.3026	+ 2.3010	+3.3	+	167	193.927	1344. 45338
Do	167-168	1.332	- 4.0720	+ 4.0759	- 4.0740	-3.9	+ 5.8	168	196.395	1346. 75848
Aug. 31, Sept	168-169	1.188	- 1.6220	+1.6252	- 1.6236	-3.2	+2.6	169	197.583	1341.0572
Sept. 1-1	169-170	1.138	+ 2.6970	- 2.6995	+ 2.6982	+2.5	+ 5.1	170	198. 721	1343. 7554
Do.	170-171	1. 239	+1.9552	-1.9556	+1.9554	+0.4	+ 5.5	171	199.960	1345. 7108
Sept. $1-2$	$\mathrm{V}_{10-172}^{171}$	1.074 1.141	+4.2243 +10.9882	- 4.2235	+4.2239 +10.9879	-0.8	+ 4.7	V_{10}	201.034	1349.9347
Sopt. $2-2$	172-173	1.282	+8.9582	-8.6612	+10.989 +8.6604	-0.6 +1.7	+ 4.1	172	202.175 203.457	1360.9226
Do.	173-174	1.144	+ 3.4905	- 3.4914	+ 3.4910	+0.9	+ 6.7	174	204.601	1369.5830
Do.	174-175	1.261	-1.5667	+ 1.5640	- 1.5654	+2.7	+ 9.4	175	205.862	1371.5086
Sopt. 13-13	175-176	0.561	-5.5739	+ 5.5722	- 5.5730	+1.7	+11.1	176	206.423	1371.5086 136565
Do.	176-W ${ }_{10}$	0.9241	-3.3049	+3.3042	-3.3046 !	+0.7	+11.8	$W_{10} 1$	207.347	1362.6310
Sept. 12-12.	${ }_{176-X_{10}}^{17}$	1.111	+3.9260	-3.9317	+ 3.9289	+4.2	+15.3	X_{10}	207.534	$\frac{1369.8645}{}$
Sept. 12-12	$\mathrm{X}_{10} \mathrm{Y}_{10}$	0.800	+ +8.1908	-8.9302	+8.1904	-0.7	+14.6	Y_{10}	208.334	
Do....	$\mathbf{Y}_{10} \mathbf{1 7 7}$	1.239	+6.8279	-6.8264	+6.8272	-1.5	+13.1	177	209. 573	$\begin{aligned} & 1378.0549 \\ & 1384.8821 \end{aligned}$
Sept. 11-11	177-178	1.133		-1.7539	+1.7528	+2.3	+15.4	178	210.706	1386.6349
Do.	$178-Z_{10}$	1.197	+0.4621	- 0.4641	+0.4631	+2.0	+17.4	Z_{10}	211.903	1357.0980
Do.	Z $179-179$	1.649 1.133	+9.2927 +8.9098	-9.2898 -8.9093	+9.2912 +8.9096	-2.9	+14.5 +14.0	179	213. 552	1396. 3892
Do	$\mathrm{A}_{11} \mathbf{1 8 0}$	0.752	+ 4.6038	-4.6027	+ 4.6032	-1.1	+12.9	180	215.437	1405.2988 1409.9020
Sept. 8-6.	180-181	0.747	+8.1766							
Sept. 13-13.	180-181	0.747	+8.1762	-88.1774	$\}+8.1756$	-1.6	+11.3	181	216.184	1418.0776
Sept.8-6	181-182	1.189 1.091	+14.9945 +14.5334	-14.9907 -14.5336	+14.9926 +14.5335	-3.8 +0.2	+7.5	182	217.373	1433.0702
Sept. $8-8$	183-13	0.714	+9.9736	- 9.9705 $-\quad 2.093$	+9.9720 +9.9720	${ }_{-3.1}^{+0.2}$	+ 7.7	183	218.464 219.178	1447.6037
Do.	$\mathrm{I}_{3}-184$	0.514	+ 4.5540	-4.5552	+ 4.5546	+1.2	+ 5.8	184	219.692	1457.5757 1462.1303
Sept. 8	184-185	1.092	+ 2.8152	-2.8164	+ 2.8158	+1.2	+ 7.0	185	220.784	1464.9461
Do.	185-186	1.215	+ 0.1954	-0.1974	+ 0.1964	+2.0	+9.0	186	221.999	1465.1425
Sept. ${ }^{\text {Do.7 }}$	${ }_{\substack{186-J_{3} \\ J_{5}-187}}$	1.045 0.952	+1.9219 +2.3162	-1.9249 +2.3132	+1.9234	+3.0	+12.0	J_{3}	223. 044	1467.0659
Sept. 6-7	187-188	1.107 1.102	+ 2.31453	+2.3132 -0.4525	- 2.3147	+3.0	+15.0	187	223.996	1464.7512
Sept. 7-8	187-188	1.107	+0.4503	- 0.4516	$\}+0.4499$	+4.2	+19.2	188	225.103	1465. 2011
Sept. 6-7	188-189	0.847	+ 1.5376	-1.5384	+ 1.5380	+0.8	$+20.0$	139	225.950	1466.7391
Sept. 7-7 Do..	${ }_{\text {K }}^{189-\mathrm{K}_{3}}$	0.712 1.049	+ 0.1124	+ 0.1124	+ 0.1124	0.0	$+20.0$	K	228. 662	1466. 6287
Sept. 6-7	190-191	1.154	+0.6836 +	- 0.6840	+1.6562 +0.6838	-2.1 +0.4	+17.9 +18.3	190	227.711 228.865	1468.2829 1468.9687

Results of leveling, Brigham, Utah, to Beowawe, Nev.-Continued.

Date.	$\begin{gathered} \text { From B. M. } \\ \text { B. } \\ \text { to } \\ \text {. } \end{gathered}$	Distance in Eilo-meters.	Difference of elevation.			Discrepancy.		Designation of B. M.	Distance from B. M. R.	Observed olevation above mean sea level.
			Forward line.	Backweld line.	Mean.	Partial.	Total accu-mulated.			
1911.										
Sept. 9-7	191-L3	1.043	-0.0558	+ 0.0548	-0.0553	+1.0	+19.3	L_{8}	229.908	1468.9114
Sept. 9-9	$\mathrm{L}_{3}-\mathrm{M}_{3}$	1.211	+ 2.3125	- 2.3145	+2.3135	+2.0	+21.3	M_{3}	231.119	1471.2249
Do.	M ${ }^{-192}$	1.368	+3.2863	- 3.2859	+ 3.2561	-0.4	+20.9	192	232.487	1474.5110
Do	192-N3	0.754	+ 2.3382	- 2.3369	+ 2.3376	-1.3	+19.6	N_{3}	233.241	1476.8486
Do.	$\mathrm{N}_{3}-\mathrm{O}_{8}$	1.739	+ 8.6578	-8.6571	+8.6574	-0.7	+18.9	O_{3}	234.980	1485. 5060
Sept. 9-14.	$\mathrm{O}_{35} \mathrm{O}_{5}-\mathrm{Pr}_{8}$	0.110 0.110	-0.0067	+ 0.0058 +0.0070	-0.0066	+0.3	+19.2	P_{3}	235.090	1485.4994
Sept. 14-14	$\mathrm{O}_{\mathrm{O}_{5}-193}$	0.110 1.352	- 0.0067 +7.8885	a +0.0070 -7.8918	-0.0060 +7.8901	+0.3 +3.3	+19.2 +22.5	193	233.090 236.442	1485.4994 1493.3895
Do	193-194	1.034	+6.6240	-6.6258	+6.6249	+1.8	+24.3	194	237.476	1500.0144
D	$194-Q_{3}$	1.292	+16.4304	-16.4335	+16.4320	$+3.1$	+27.4	Q_{3}	238.768	1516.4464
D	Q -195 $^{\text {a }}$	1.234	+11.3662	-11.3668	+11.3664	+0.4	+27.8	195	240.002	1527.8128
Do	195-196	1.172	+13.3076	-13.3105	+13.3090	+2.9	+30.7	196	241.174	1541.1218
Do.	${ }^{196}-\mathrm{R}_{8}$	1.360	+18.3972	-18.4000	+18.3986	+2.8	+33.5	R8	242.534	1559.5204
Sept. 15	R-197	1. 215	+13.4313	-13.4305	+13.4309	-0.8	+32.7	197	243.749	1572.9513
Do.	197-198	1.172	+13.3380	-13.3423	+13.3402	+4.3	+37.0	198	244.921	1586. 2915
Do	198-S ${ }_{3}$	1.237	+17. 4624	-17.4601	+17.4612	-2.3	+34.7	S_{3}	246. 158	1603. 7527
Do	S\%-199	1.145	+12.0540	-12.0562	+12.0551	+2.2	+36.9	199	247.303	1615. 8078
Do	199-200	1.131	+14.7454	-14.7467	+14.7460	+1.3	+38.2	200	248.434	1630. 5538
Sept. 16	$200-\mathrm{T}_{3}$	1.429	+18.4028	-18.4068	+18.4048	+4.0	+42.2	T3	249.863	1648.9586
Do.	T3-201	1.156	+12.5411	-12.5431	+12.5421	+2.0	+44.2	201	251.049	1661.5007
Sept. 16-18 Sept. 18-18	$\begin{aligned} & 201-202 \\ & 201-202 \end{aligned}$	1.124	$\begin{aligned} & +13.4927 \\ & +13.4930 \end{aligned}$	-13.4936	+13.4932	+0.8	$+45.0$	202	252.173	1674.9939
Sept. 16-16	202-203	1.030	+13.2371	-13.233i						
Sept. 18-19	202-203	1.030	+13.2346	-13.2375	+13.2356	-0.7	+44.3	203	253.203	1688.2295
Sept. 19-19	202-203	1.030	+13.2363							
Sept. 16-18	$\mathrm{CO}^{203-\mathrm{U}_{3}}$	1.272	+17.4607	-17.4617	+17.4612	+1.0	+45.3	U_{8}	254.475	1705.6907
Sept. 18-	$\mathrm{U}_{2}-204$	1.107	+14.0745	-14.0725	+14.0735	-2.0	+43.3	204	255. 582	1719.7642
Do.	204-205	1.132	+12.7202	-12.7256	+12.7239	+5.0	+48.3	205	256.714	1732. 4881
$\begin{aligned} & \text { Do } \\ & \text { Do. } \end{aligned}$	204-205	1.132	+12.7226 +12.2456	-12.7243 -12.2430						
Sept. 19-	205-206	1.131		-12.2430	+12.2445	-2.2	+46.1	206	257.845	1744. 7326
Sept. ${ }^{18}$	206-207	0.989	+12.0727	-12.0740	+12.0734	+1.3	+47.4	207	258.834	1756.8060
Do.	207-208	1.106	+14.6130	-14.6154	+14.6142	+2.4	+49.8	208	259.940	1771.4202
Sept. 19	$208-\mathrm{V}_{3}$	0.691	+9.5153	-9.5146	+ 9.5150	-0.7	+49.1	V_{3}	260.631	1780.9352
	$\xrightarrow{209}{ }^{2}-\mathrm{W}^{209}$	1.274	+15.2193 +8.7892	-15.2165 -8.7863	+15.2179	-2.8	+46.3	209	261.905	1756. 1531
Do.	$\mathrm{W}_{3}-\mathrm{X}^{3}$	1.180	+ +4.5775	- 4.5775	+ 4.5775	- 0.0	+43.4	$\mathrm{X}_{3}{ }^{3}$	264. 471	1804.9409 1809.5184
Do.	$\mathrm{X}_{3}-210$	1.208	+ 8.2619	-8.2596	+8.2608	-2.3	+41.1	210	265.679	1817. 7792
Do.	210-211	1.138	+ 7.9429	- 7.9442	+ 7.9436	+1.3	+42.4	211	266.817	1825.7228
Oct. 12-12	$211-\mathrm{Y}_{8}$	0.568	+ 5.0420	- 5.0400	+ 5.0410	-2.0	+40.4	Y_{8}	267.385	1830.7638
Oct. 12-11	$\mathrm{Y}_{5}-212$	1.096	+11.9147	-11.9155	+11.9151	+0.8	+41.2	212	268.481	1842.6789
Do.	212-Z3	1.306	+ 7.2487	- 7.2510	+ 7.2498	+2.3	+43.5	7_{3}	269. 787	1849.9287
Do	Z3-213	0.956	-1.4950	+ 1.4933	- 1.4942	+1.7	+45.2	213	270.743	1848.4345
Do	213-214	0.685	+ 0.0651	- 0.0679	+ 0.0665	+2.8	+48.0	214	271.428	1848.5010
${ }^{\text {Dot. }} 10-\mathrm{ii}$	214-A ${ }_{4}$	0.995	+ 3.0139	- 3.0119	+ 3.0129	-2.0	+46.0	A_{4}	272.423	1851.5139
Oct. $10-11$	$\mathrm{A}_{1}-215$	1.196	+ 4.0099	- 4.0051	+ 4.0077	-3.0	$+43.0$	215	273.619	1855.5216
Oct. 10-11	A $215-215$	1.196	+ 4.0085 +1.0121	- 1.0102	+ 1.0112	-1.9	+41.1	216	274.836	1856.5328
Do.	216-B4	0.998	+ 2.4372	- 2.4338	+ 2.4355	-3.4	+ 37.7	B_{4}	275.834	1858.9683
Oct. 9-11	$\mathrm{B}_{1}-217$	1.053	+ 3.4181	- 3.4193	+ 3.4187	+1.2	+38.9	217	276.887	1862.3870
Do.	217-218	1.216	+ 4.1818	- 4.1792	+, 4.1805	-2.6	+36.3	218	278.103	1866.5675
${ }^{\text {D }}$.	218-219	1.135	+ 3.8629	- 3.8604	+ 3.8616	-2.5	+33.8	219	279. 238	1870. 4291
Oct. 11-11	${ }^{219}-\mathrm{C}_{4}$	1.551	+ 4.5242	- 4.5242	+ 4.5242	0.0	+33.8	C_{4}	280.789	1874.9533
Oct. 9-10.	$\mathrm{C}_{1}-220$	0.748	- 0.9731	+ 0.9722	- 0.9727	+0.9	+34.7	220	281.537	1873.9806
Oct. 10-8.	$220-221$	1.216	-2.2333	+2.2386 +2380		-4.5	+30.2	221	282.753	1871.7446
Oct. 11-10	$\begin{array}{r}220-221 \\ 221 \\ \hline\end{array}$	1.216 1.266	- 2.2342 +1.1550	+ 2.2380 +1.1567	-2.2360 +1.1558	-4.5 +1.7	+3.2 +31.9	D_{4}		
Oct. 8-8	$\mathrm{D}_{4}-222$	1. 249	+ 4.3837	+	+	+1.7 +0.2	+31.9 +32.1	${ }_{22}{ }_{2}$	284.019 285.268	1872.9004 1868.5188
Do.	222-223	1.400	+ 1.0490	- 1.0501	+ 1.0496	+1.1	+33.2	223	286.668	1869.5664
Oct. 8-7	223-224	1.234	+ 2.0865	- 2.0887	+ 2.0876	+2.2	+35.4	224	287.902	1871.6540
Do.	224-225	1.132	- 1.6183	+ 1.6156	- 1.6170	+2.7	+38.1	225	289.034	1870.0370
Do.	225-226	1.133	+ 4.5777	- 4.5773	+ 4.5775	-0.4	+37.7	226	290.167	187\%.6145
Sept. 28.	${ }^{226-E}{ }_{4}$	1.145	+1.2201 +5.334	+ 1.2203 $+\quad 5.3524$	+ 1.2202	+0.2	+37.9	E_{4}	291.312	1875.8347
Sept. ${ }^{\text {Do }}$ D	$\mathrm{E}_{2}-227$	1.292	-	+5.3524 +3.7622	- 5.3529 -3.7611	+1.0	+38.9	227	292.604	1870. 4818
	F_{1}	1.034	- -2.6560 -2.7530	+3.7622 +2.6512	- 3.7611	-2.2	+36.7	F_{4}	293.638	1866.7207
Oct. 7-7.	F_{1}-228	0.843	- 2.6530	+	-2.6530	+2.9	+39.6	228	294.481	1864.0677
Sept. 28-28	228-229	1.132	-2.3218	+2.3209	- 2.3214	+0.9	+40.5	229	295.613	1861.7463
Do.	220-G4	1.051	- 1.2055	+ 1.2049	- 1.2052	+0.6	+41.1	G_{4}	296.664	1860.5411
Sept. $28-29$	G71-230	0.993	- 4.5654	+ 4.5630	- 4.5642	+2.4	+43.5	230	297.657	1855.9769
Scpt. 29-	$230-231$	0.625	- 1.3392	+1.3399	- 1.3398	-0.7	+42.8	231	298.282	1854. 6373
Do.	231-232	1. 217	+1.0484	- 1.0459	+1.0472	-2.5	+40.3	232	299.499	1855.6845
Do.	232-233	1.215	+2.1954 +3.8995	- 2.1954 $=3.9042$	+ 2.1954	0.0	+40.3	233	300.714	1857.8799
Do.	233-234	1.218	+3.8995 +3.8997	- 3.9042 -3.0000	+ 3.9008	+2.5	+42.8	234	301.932	1861.7807
Do.	234-H4	1.311	+	- 4.4239	+ 4.4234	+1.0	+43.8	H_{4}	303.243	1866. 2041
Sopt. 29-30	$\mathrm{H}_{4}-235$	1.218	- 0.4912	+ 0.4912	-0.4912	0.0	+43.8	235	304.461	1865.7129
Do.	$235-236$ $23-236$	1.218 1.218	+0.1420 +0.1454 +	- 0.1467	+ 0.1444	+1.3	+45.1	236	305.679	1865.8573
Sept. 30-30	236-237	1.218	+0.1208 +3.205	$=0.1432$ -3.2085	+ 3.2085	0.0	+45.1	237	308.989	1869.0658
Do.	237-238	1.316	+ 5.1676	- 5.1645	+ 5.1660	-3.1	+42.0	238	308.305	1874.2318
${ }^{\text {Do. }}$	238-14	1.058	+ 3.2694	- 3.2679	+ 3.2686	-1.5	+40.5	I_{4}	309.363	1877.5004
Oct. 2-2	I 1 -239	0.970	-8.1658	+8.1653	-8.1656	+0.5	+41.0	239	310.333	1869.3348
Do.	239-240	1.255	-16.8891	+16.8904	-16.8898	-1.3	+39.7	240	311.588	1852.4450
Do.	240-241	1.312	-17.0690	+17.0664	-17.0677	+2.6	+42.3	241	312.900	1835.3773
Oct. 2-Sept. 30	${ }_{3}^{241-J_{4}}$	1.200	-15.9948	+15.9913	-15.9930	+3.5	+45.8	${ }_{3}{ }_{4}$	314.100	1819.3843
Scpt. 30-Oct. 2	J_{1}-242	0.726	- 5.7078	+ 5.7052	-5.7085	+2.6	+48.4	242	314.826	1813.6778
Oct. 2-Sept. 30	242-243	1.010	-9.5822	+ 9.5786	-9.5804	+3.6	$+52.0$	243	315.836	1804.0974
Do...	243-244	1.196	-14.4381	+14.4351	-14.4366	+3.0	$+55.0$	244	317.032	1789.6608

Results of leveling, Brigham, Utah, to Beowawe, Nev.-Continued.

Date.	From B. M. to B. M.	Distance in kilo-meters.	Difference of elevation.			Discrepancy.		Designation of B. M.	$\begin{aligned} & \text { Distance } \\ & \text { from. } \\ & \text { B. M. R. } \end{aligned}$	Observed elevation above mean sea level.	
			Forward line.	Backward line.	Mean.	Partial.	Total acci$\underset{\text { mus }}{\text { med. }}$				
$1911 .$		1.089	$\stackrel{m}{\substack{m .8173}}$	$\begin{gathered} m . \\ +12.8157 \end{gathered}$	$\begin{array}{r} m . \\ -12.8165 \end{array}$	$\stackrel{m m .}{\text { m }}$	$\operatorname{mm.}_{+56.6}$	$\left\{\begin{array}{r} \mathrm{K}_{4} \\ \left\{\begin{array}{l} \text { S. P. B. } \\ 5803.200 \end{array}\right\} \end{array}\right.$	$\begin{aligned} & \mathrm{km} . \\ & 318.121 \end{aligned}$	$\stackrel{m}{\text { m }}$ 176. 8443	
Oct. 2-S											
Do.			-8.0485	+ 8.0472	-8.0478	+1.3	+57.9		319.035	1768. 7965	
Sept. 27-27.		1.204	-15.2525	$+15.2514$	-15.2520	+1.1	+59.0	245	320.239	1753.5445	
							+62.8	L_{4}	321.353	1739.8838	
Sept. 30-Oct. 2		$245-L_{4}$ $L_{4} 246$ 1.114 1.193		-13.6595	+13.6594 +16.6594 +16.5	\} -13.6607		+3.8	246	322.546	1723.3586
Do....	246-M	1.183	-8.1865	$\begin{array}{r} +16.5242 \\ +\quad 8.1873 \end{array}$	- 8.1869	-0.8	+64.1	M_{1}	323. 723	1723.3586 1715.1717	
D	$\mathrm{Mr}_{1}-\mathrm{N}_{4}$	0.048	- 0.0640	+ 0.0643	- 0.0642	-0.3	+63.8	N_{1}	323.777	1715. 1075	
Do.	Ni-247	1.486	- 0.5494	+ 0.5497	- 0.5496	-0.3	+63.5	247	325.263	1714.5579	
Do.	$247-\mathrm{O}_{4}$	1.010	- 2.9426	+ 2.9431	- 2.9428	-0.5	+63.0	O_{4}	326.273	1711.6151	
D	$\mathrm{O}_{4}-\mathrm{P}_{4}$	1.620	- 2.6224	+ 2.6217	- 2.6220	+0.7	+63.7	P_{1}	327.893	1708. 9931	
	Pr-248	1.247	- 2.3685	+ 2.3717	- 2.3701	-3.2	+60.5	248	329.140	1706. 6230	
Oct. 3-3	$\mathrm{2}^{248-Q_{4}}$	1. 943	- 1.5055	+ 1.5957	- 1.5956	-0.2	+60.3	Q	331.083	1705. 0274	
Do.	Q1-249	1.275	- 6.7766	+6.7781	-6.7774	-1.5	+58.8	249	332.358	1698.2500	
Do.	249-250	1.216	- 4.3174	+ 4.3215	- 4.3194	-4.1	+54.7	250	333.574	1693.9306	
Do.	250-251.	1.153	- 4.6228	+ 4.6256	- 4.6242	-2.8	+51.9	251	334.727	1689.3064	
Do	251-252	1. 214	- 4.7727	+ 4.7743	- 4.7735	-1.6	+50.3	252	335.941	1684.5329	
D	252-253	1.091	- 4.1223 -3.2998	+4.1206 +3.2975 +3.888	- 4.1214 -3.2986	+1.7	+52.0	253	337.032	1680.4115	
Oct.	S. P. B. M.	0.797	- 3.8903	+ 3.8868	- 3.8886	+2.3	+54.3		337.829	1677. 1129	
		1.043				+3.5	$+57.8$	$\left\{\begin{array}{c}\text { S.P.B.M. M. } \\ 5483.658\end{array}\right\}$	338.872	1873.2243	
Oct. 4-4		1.419	-5.5783	$+5.5784$	-5.5784	-0.1	+57.7	254	340.291	1667.6459	
Do.	- 254-255	1. 194	- 4.5609	+ 4.5637	- 4.5623	-2.8	$\begin{array}{r} +54.9 \\ +56.4 \end{array}$	255	341.485	1663.0836	
Do.	255-256	1.1341.093	- 4.4741	$\begin{array}{r} +4.4726 \\ +4.0886 \end{array}$	- 4.4734	+1.5+3.0		256		$\begin{aligned} & 1658.6102 \\ & 1654.5201 \end{aligned}$	
Do	256-257		-4.0916-4.2600		- 4.0901		$\begin{array}{r} +56.4 \\ +59.4 \end{array}$	257258258			
Do	257-258			$\begin{array}{r} +4.0886 \\ +4.2610 \end{array}$	$\begin{array}{r}-4.2605 \\ -4.7440 \\ \hline\end{array}$	1.0+1.2	+58.4		343.612 344.806	$\begin{aligned} & 1654.5201 \\ & 1650.2596 \\ & 1645.5156 \end{aligned}$	
Do	258-259	1.254 1.094	$=4.2600$ -4.7446	+4.2610 +4.7434			+59.6		344.806 346.060		
Oct ${ }^{\text {Do }}$	$259-\mathrm{S}_{4}$	0.4541.096	- 1.3706	+ 4.3720+4.8558	- 4.7440	1.4-1.9	+58.2	259	346.514	1645.5156 1644.1443	
Oct. 5 -	S_{4}-260		- 4.8539		- 4.8548		+56.3	260	347.610	1644.1443 1639.2895	
Do	260-261	1.216	- 4.8953	$\begin{array}{r} +4.8538 \\ +4.8944 \end{array}$	-4.8948-2.2221	$-2.8+54.4$		261	$\begin{aligned} & 348.826 \\ & 349.960 \end{aligned}$	$\begin{aligned} & 1634.3947 \\ & 1632.1726 \end{aligned}$	
D	261-262	1.134	- 2.2207	+ 4.8984 +2.2235							
Oct. 6-6	$\mathrm{c}_{262-\mathrm{T}_{4}}^{262-\mathrm{T}_{4}}$	0.969	- 1.1548	$\begin{array}{r} +1.1592 \\ +1.1561 \end{array}$	$\}-1.1562$	$-2.9+51.5$		T4	350.929	$\text { 1631. } 0164$	
Oct. 5-5.	T_{4}-263	1. 134	$\begin{array}{r} 1.1564 \\ -\quad 3.8368 \end{array}$	$\begin{array}{r} 1.4560 \\ +3.8350 \\ \hline \end{array}$	- 1.4562	+0.4	$\begin{aligned} & +51.9 \\ & +53.7 \end{aligned}$			$\text { 1631. } 0164$	
Do.	$263-\mathrm{U}_{4}$	1.828			-3.8359-3.6748	+1.8		U_{4}	353. 891	$\begin{aligned} & 1029.0002 \\ & 1625.7243 \\ & 1622.0495 \end{aligned}$	
Oct. 6-6	$\mathrm{U}_{4}-204$	1.129	- 3.6749	+3.6748+2.2055		+0.1	+53.8	264	355.020		
Do	264-265	1.071	- 2.2035		- 2.2045	-2.0	+51.8	265	356.091	1619.8450	
Do	265-266	1. 134	- 2.0381	+ 2.0392	- 2.0386	-1.1	+50.7	266	357.225	1617. 8064	
${ }_{\text {Oct. }}{ }^{\text {Do-15 }}$	266-267	1.612	- 1.9049	+ 1.9031	- 1.9040	+1.8	+52.5	267	358. 837	1615. 9024	
Oct. $15-15$	$\mathrm{V}_{4} 26268$	0.547 1.484	- 2.0633 -1.5179	+2.0637 +1.5143	$=2.0635$ -1.5161	-0.4	+52.1	V_{1}	359.384	1613. 8389	
Do.	268-269	1.045	- 2.3227	+ 2.3224	- 2.3226	+3.6 +0.3	+50.	269	360.868 361.913	${ }_{1612.3228}^{1610}$	
Do	269-270	1.044	+ 0.7454	-0.7450	+ 0.7452	-0.4	+55.6	270	362.957	1610.0002	
Oct. 14-15	270-271	0.805	- 2.8692	+ 2.8675	- 2.8684	+1.7	+57.3	271	363. 762	1607. 8780	
Oct. 14-14	271-272	1.215	- 2.2084	+2.2075	-2.2080	+0.9	+58.2	272	364.977	1605.6690	
Do.	272-273	1.215	- 2.2836	+ 2.2807	- 3.2822	+2.9	+61.1	273	366. 192	1603.3868	
Do.	273-274	1.487	- 1.2744	+ 1.2781	- 1.2762	-3.7	+57.4	274	367.679	1602.1106	
Do	274-275	1. 433	- 2.4785	+ 2.4766	- 2.4776	+1.9	+59.3	275	369.112	1599.6330	
Do	275-276	1.283	- 1.2316	+ 1.2319	- 1.2318	-0.3	+59.0	276	370.395	1598.4012	
Do	276-277	0.936	- 2.8656	+ 2.8683	- 2.8670	-2.7	+56.3	277	371.331	1595. 5342	
Do	277-278	1.147	- 1.4568	+ 1.4546	- 1.4557	+2.2	+58.5	278	372.478	1594. 0785	
Oct. 16-16	$\mathrm{W}_{4}-279$	1.491	+ 5.9367	+ $\mathbf{+} .9364$	+	+2.2	+60.7 +61.0	${ }_{2}{ }^{1}$	373.901 375.392	159.4.4559	
Do.	279-280	1. 2226	- 0.8445	+ 0.8440	- 0.8442	+0.5	+61.5	280	${ }_{376.618}$	1587.6751	
Do.	280-281	1.289	- 2.3539	+ 2.3526	- 2.3532	+1.3	+63.8	281	377. 907	1585.3219	
Do	$281-\mathrm{X}_{4}$	1. 224	+ 0.7396	-0.7388	+ 0.7392	-0.8	+62.0	X_{1}	379. 131	1586.0611	
Do.	X_{1}	1.170	- 3.1209	+ 3.1220	- 3.1214	-1.1	+60.9	282	380. 301	1582.9397	
	282-283	1.104	- 1.7392	+ 1.7361	- 1.7376	+3.1	+64.0	283	381.405	1581. 2021	
Do	284-285	1.028	+	(-	-1.0 +1.4	+63.0 +64.4	284	382.433 383.267	1579.6093	
Oct. 17-17	285-Y ${ }_{1}$	0.172	+	- 0.3431	+0.0321 +0.3428	+1.4 +0.7	+64.4 +65.1	${ }_{7}^{285}$	383.267 383.439	1579.6414 1579.9842	
Oct. 20-20	Yt-286	0.874	- 1.4552	+1.4559	- 1.4556	-0.7	+64.4	286	381.313	1579.9842 1578.5286	
Do.	286-287	1. 097	- 3.5787	+3.5824	- 3.5806	-3.7	+60.7	287	385.410	1574.9480	
	287-288	1. 090	- 2.2296	+ 2.2311	- 2.2303	-1.5	$+59.2$	288	386.500	1572. 7178	
Do	$\begin{array}{r}288-289 \\ 289 \\ \hline 8\end{array}$	1.174 1.111	+ 2.4414 +1.7163	+2.4456 +1.7137	- 2.4135 +1.7150	-4.2	+55.0 +52.4	289	387.674 388.785	1570. 2742	
Oct. 21-21	$\mathrm{Z}_{5}-\mathrm{A}_{5}$	1.179	-1.6455	+ 1.6441	+1.6448	+1.4	+52.4 +53.8	${ }^{2}$	388.785 389.064	$\begin{aligned} & 1571.9892 \\ & 1570.3444 \end{aligned}$	
Do.	$\mathrm{A}_{5}-200$	1.056	- 0.7892					290			
Oct. ${ }^{\text {D23-21. }}$	$\mathrm{A}_{5}-2.20$ $290-291$	1. 1.305	-4.5402	+1.8861 +4.5461	-0.7872	+4.1	+57.9	290	391.020	1569.5572	
Oct. 23-23.	290-291	1.305	-4.5414	+ 4.5397	- 4.5418	-2.1	+55.8	291	392.325	1565.0154	
Oct. 23-21.	291- B_{5}	1. 209	-0.5745	+0.5757	-0.5751	-1.2	+54.6	B_{5}	393.534	1564.4403	
Oct. $23-23$	$\mathrm{B}_{5}-292$	1.046	- 3.9125	+ 3.9116	- 3.9120	+0.9	+55.5	292	394.580	1560.5283	
Do.	292-293	1.130	- 1.9870	+1.9847	-1.9858	+2.3	+57.8	293	395.710	1558.5425	
Oct. $23-24$	293-294	1.133	+ 3.6706	-3.6726	+3.6716	+2.0	+59.8	294	396.843	1562. 2141	
Oct. 23-24	294-295	1. 134	二 0.8028	+ 0.8928	- 0.8928	0.0	+59.8	295	397.977	1561.3213	
Oct. 24-24.	295-296	0.529	$\left\{\begin{array}{l}\text { 二 } 4.9191 \\ =4.9188\end{array}\right.$	+4.9160 +4.9172	- 4.9178	+2.4	+62.2	296	398.506	1556.4035	
Do.	296-297	1. 093	- 2.8903	+2.8891	- 2.8897	+1.2	+63.4	297		1553.5138	
Do	$297-\mathrm{C}_{5}$	1.135	- 1.9427	+ 1.9387	- 1.9407	+4.0	+67.4	C_{5}	400.734	1551.5731	
Do	$\mathrm{C}_{298-298}$	1.708	+ 3.1304	-3.1279	+ 3.1292	-2.5	+64.9	298	402.442	1554.7023	
Oct. $24-25$	$\mathrm{D}_{5} 9298$	1. 1.059	-8.1607 -1.4375	+ 8.1652 +1.4367	-8.1630	-4.5	+60.4	D_{6}	403.928	1546.5393	
Oct. 25-2	299-300	0. 730	+1.1518	+ 1.1524	+	+0.8	+61.2 +61.8	299	404. 987 405 17	1545.1022 1546.2543	
Do.	$300-\mathrm{E}_{6}$	1.158	+ 1.5885	- 1.5892	+ 1.5888	+0.7	+62.5	E_{5}	406.875	1546.2543	
Do.	$\mathrm{E}_{5}-\mathrm{F}_{6}$	1. 096	-3.7920	+ 3.7945	- 3.7932	-2.5	+60.0	F_{5}	407.971	1544.0499	
ct. 25-26	$\mathrm{F}_{5}-\mathrm{C}_{6}$	1. 056	-3.5257	+ 3.5280	- 3.5268	-2.3	+57.7	G_{5}	409.027	1540.5231	

Results of leveling, Brigham, Utah, to Beowawe, Nev.-Continued.

Date.	$\begin{aligned} & \text { From B. M. to } \\ & \text { B. M. } \end{aligned}$	$\begin{gathered} \text { Dis- } \\ \text { tance } \\ \text { in kilo- } \\ \text { mos } \\ \text { ters. } \end{gathered}$	Difference of elevation.			Discrepancy.		$\begin{aligned} & \text { Deslgnation } \\ & \text { of } \mathrm{B}, \mathrm{M} \text {. } \end{aligned}$	Distance from B. M. R.	Observed elevation above mean sea level.
			Forward	Back ward line.	Mean.	Partial.	Total accu-mut-			
1911.				m.	m.	mm.	mm.		km.	
Oct. 25-25	$\mathrm{G}_{5} \mathbf{3 0 1}$	1. 205	+0.6262	- 0.6232	+ 0.6247	-3.0	+54.7	301	410.232	1541. 1478
Do.	301-302	1.219	-4.4353	+ 4.4338	- 4.4346	+1.5	+56.2	302	411.451	1536.7132
Do	$302-\mathrm{H}_{5}$	0.907	-0.6312	+ 0.6283	- 0.6298	+2.9	+59.1	H_{5}	412.358	1536.0834
Do	$\mathrm{H}_{5}-303$	1.216	- 0.9647	+ 0.9628	- 0.9638	+1.9	+61.0	303	413.574	1535. 1196
Oct. ${ }^{25-2}$	303-304	1.219	- 1.3286	+1.3284	- 1.3255	+0.2	+61.2	301	414.793	1533.7911
Do.	$304-\mathrm{I}_{5}$	0.807	- 0.7961	+ 0.7954	- 0.7958	+0.7	+61.9	I_{5}	415.600	1532.9953
Oct. 28 -26	$\mathrm{I}_{5}-\mathrm{J}_{5}$	2.012	-2.8384	+ 2.8379	- 2.8388	+0.5	+62.4	J_{5}	417.612	1530.1571
Do.	$\mathrm{J}_{5}-305$	1.215	- 0.7290	+ 0.7236	- 0.7288	+0.4	+62.8	305	418.827	1529.4283
Do.	$305-\mathrm{K}_{5}$	1.583	- 2.8098	+ 2.8108	- 2.8103	-1.0	+61.8	$\mathrm{K}_{\text {B }}$	420.410	1526.6180
Do.	K ${ }_{5} 306$	1.185	- 3.7441	+ 3.7417	- 3.7429	+2.4	+64.2	306	421.595	1522.8751
Do.	306-307	1.194	- 0.1237	+ 0.1243	- 0.1240	-0.6	+63.6	307	422.789	1522.7511
Oct. ${ }^{28-28}$	307-L/	1.038	+ 3.4648	- 3.4651	+ 3.4650	+0.3	+63.9	L/5	423.827	1526. 2161
Do.	L 5 -308	1.051	- 4.8499	+ 4.8508	- 4.8504	-0.9	+63.0	308	424.878	1521.3657
Do.	308-309	1.318	- 2.7778	+ 2.7749	- 2.7764	+2.9	+65.9	309	426.196	1518.5893
Oct. 28-27	${ }^{309}-\mathrm{M}_{3}$	1.071	- 2.1646	+2.1644	- 2.1645	+0.2	+66.1	M_{5}	427.267	1516.4248
Oct. 27-27	M_{5}-310	1.257	- 0.1935	+ 0.1958	- 0.1946	-2.3	+63.8	310	423.524	1516.2302
Do.	310-311	1.113	- 1.1289	+ 1.1288	- 1.1288	+0.1	+63.9	311	429.637	1515.1014
Do	$311-\mathrm{N}_{5}$	0.866	+ 0.2275	- 0.2246	+ 0.2260	-2.9	+61.0	N_{5}	430.503	151E. 3274
Do	$\mathrm{N}_{5}-312$	1.174	-0.2368	+ 0.2375	-0.2372	-0.7	+60.3	312	431.677	1515.0902
Do.	$312-\mathrm{O}_{8}$	1.344	- 1.2427	+1.2380	- 1.2409	+3.0	+63.3	Os	433.021	1513.8493
Oct. $27-30$	${ }^{312-085}$	1.345 0.570	- 1.2482	+1.2439 +1.5438	- 1.5435	-0.0	+62.7	P_{5}	433.591	1512.3058
Oct. $30-30$	$\mathrm{P}_{5}-\mathrm{Q}_{5}$	0.977	-2.0149	+2.0140	- 2.0144	+0.9	+63.6	Q	434.568	1510.2914
Nov. $1-1$.	$\mathrm{Q}_{5}-\mathrm{R}_{5}$	0.708	- 1.5248	+ +1.5196 +1.5229	-1.5225	+2.6	+66.2	R_{5}	435.276	1508.7689
Oct. 30	$\mathrm{R}_{5-313}^{\mathrm{Qs}_{5}-\mathrm{R}_{5}}$	0.708 1.178	- 1.5228	+1.5229 +3.9081	- 3.9096	+3.1	+69.3	313	436.454	1504.8593
Oct. 30-30	313-314	0.875	- 0.3608	+ 0.3604	- 0.3606	+0.4	+69.7	314	437.329	1504. 4987
Oct. 30-31	314-S,	1. 263	-6.1738	+6.1719	-6.1728	+1.9	+71.6	S_{5}	438.592	1498.3259
Oct. 31-31	$\mathrm{S}_{5}-315$	1.218	-0.5666	+ 0.5639	-0.5652	+2.7	+74.3	315	439.810	1497. 7607
$\begin{gathered} \text { Do.. } \\ \text { Nov. } 2-2 \end{gathered}$	$315-316$ $315-316$ 3	1.215	-2.1441	+2.1394 +2.1410	-2.1407	+1.0	+75.3	316	441.025	1495.6200
Oct. 31-31	316 -317	1.180	二1.0604	+2.1410 +1.0588	- 1.0596	+1.6	+76.9	317	442.205	1494. 5604
Do.	317-Ts	1. 204	-2.3531	+2.3498	-2.3514	+3.3	+80.2	Ts	443.409	1492. 2090
Do	T3-318	1.099	$\left\{\begin{array}{r}+0.8354 \\ +0.8419\end{array}\right.$	- 0.8414	$\}+0.8396$	+2.0	+82.2	318	444.508	1493.0486
Oct. 31-Nov. 2	318-319	1.218	+3.6317	+ 3.6345	- 3.6331	-2.8	+79.4	319	445.726	1489.4155
Nov. 2 -2.	319 U5	0.915	-2.3154	+ 2.3170	- 2.3162	-1.6	+77.8	U_{5}	446. 641	1487.0993
Do	$\mathrm{U}_{5}-320$	1. 170	+1.1616	-1.1658	+1.1637	+4.2	+82.0	320	447. 811	1488.2630
Nov. 3	${ }^{320}-\mathrm{V}_{5}$	1.135	- 3.4481	+ 3.4466	- 3.4474	+1.5	+83.5	V_{5}	448.946	1454.8156
Do.	$\mathrm{V}_{5}-321$	1. 125	+ 0.3423	-0.3441	+ 0.3432	+1.8	+85.3	321	450.071	1485. 1588
Do.	321-322	1.128	- 2.8622	+2.8615	- 2.8618	+0.7	+86.0	322	451.199	1482. 2970
Do	322-323	1.134	-1.2173	+ 1.2184	- 1.2178	-1.1	+84.9	323	452.333	1481.0792
Do	323-324	1.133	- 2.0310	+2.0283	-2.0296	+2.8	+87.7	324	453.466	1479. 0496
Do	324-325	1. 131	- 0.2677	+ 0.2693	- 0.2685	-1.6	+86.1	325	454.597	1478.7811
D	325-326	1.130	- 1.1182	+ 1.1194	-1.1188	-1.2	+84.9	326	455.727	1477.6623
Do	326-327	1.130	-1.7050	+ 1.7038	- 1.7044	+1.2	+86.1	327	456.857	1475.9579
Nov. 4	${ }^{327}$ - W_{5}	1.412	- 0.0330	+ 0.0339	- 0.0334	-0.9	+85.2	W_{5}	458.269	1475. 9245
Do.	$\mathrm{WV}_{5} 328$	1.215	+ 0.1362	-0.1330	+ 0.1346	-3.2	+82.0	328	459.484	1476. 0591
Do	328-329	1.216	- 1.2987	+ 1.2968	- 1.2976	+2.1	+84.1	329	460.700	1474. 7615
Do	329-330	1.215	- 2.1364	+2.1355	-2.1360	+0.9	+85.0	330	461.915	1472.6255
	330-331	1.052	- 1.9905	+1.9935	- 1.9920	-3.0	+82.0	331	462.967	1470.6335
Do	$331-332$ $331-332$ 3	1.198 1.198	- 1.2392	+1.2446	- 1.2412	-3.2	+78.8	332	464. 165	1469.3923
Nov. 6	$\begin{array}{r}331-332 \\ 332-\mathrm{X}_{3} \\ \hline\end{array}$	1.198 0.790	- 1.2400	+1.2410 $+\quad 0.5962$	- 0.5963	+0.2	+79.0	X	464.955	1468. 7960
Do	$\chi_{5}-333$	1.278	- 4.2556	+ 4.2583	-4.2570	-2.7	+76.3	333	466.233	1464. 5390
Do	333-334	1.214	- 1.2240	+1.2205	- 1.2222		+79.8	334	487.447	1463.3168
	334-335	1.218	+ 0.1044	-0.1032	+ 0.1038	-1.2	+78.6	335	468.665	1463.4203
	335-336	1.208	-4.0076	+ 4.0035	- 4.0056	+4.1	+82.7	336	463.873	1453.4150
Do	336-337	1.218	-4.1509	+ 4.1494	- 4.1502	+1.5	+84.2	337	471.091	1455.2648
Do	337-Ys	1.183	-0.4290	+ 0.4306	- 0.4298	-1.6	+82.6	Y_{3}	472.274	1454.8350
Do	Ys-338	1.107	-2.1292	+2.1303	-2.1298	-1.1	+81.5	338	473.381	1452.7052
Nov. $7-7$	333-339	1.219	- 4.6948	+4.6968	- 4.6958	-2.0	+79.5	339	474. 600	1448.0094
Do.	339-340	1.217	-1.5940	+1.5950	- 1.5945	-1.0	+78.5	340	475.817	1446. 4149
Do	$340-341$	1.214	- 2.0886	+2.0916	-2.0901	-3.0	+75.5	341	477.031	1444.3248
Do	$341-342$	1. 134	- 0.7464	+ 0.7494	-0.7479	-3.0	+72.5	342	478.165	1443.5769
Do	342-Z7	0.910	- 1.9546	+1.9556	- 1.9551	-1.0	+71.5	Z_{5}	479.075	1441.6218
Do	Z5-343	1. 135	- 2.0079	+2.0073	- 2.0076	+0.6	+72.1	343	480.210	1439.6142
Do.	343-344	1.218	- 1.8545	+1.8570	-1.8558	-2.5	+69.6	344	481: 428	1437.7584
Nov. 8	$344-345$	1.218	-1.6848	+1.6853	-1.6850	-0.5	+69.1	345	482. 646	1436.0734
Do	345-346	1. 189	- 2.0433	+2.0437	-2.0435	-0.4	+68.7	346	483.835	1434. 0299
	$346-347$	1.118	-1.5324	+1.5322	- 1.5323	+0.2	+68.9	347	484.853	1432. 4976
	$347-\mathrm{A}_{0}$	0.361	- 0.3037	+0.3025	-0.3031	+1.2	+70.1	A_{6}	485.314	1432.1945
	$\mathrm{A}_{5}-\mathrm{Bb}_{6}$	0.113	-0.3501	+0.3501	-0.3501	0.0	+70.1	B_{6}	485.427	1431.8444
	$\mathrm{B}_{5}-\mathrm{C}_{6}$	0.798	-1.5218	+ 1.5253	-1.5236	-3.5	+66.6	C_{8}	486.225	1430.3208

BEOWAWE TO MARMOL, NEV.
This section was run between July 18 and October 25, 1912.
Precise level No. 7 and rods V and W were used for the ontire line. The lengths of these rods at $0^{\circ} \mathrm{C}$. as determined by the instrumont division of this Survey are as follows: June 17, 1912, rod V, 3.0004 meters, rod W, 3.0004 meters; January 25, 1913, rod V, 2.9999 meters, $\operatorname{rod} \mathrm{W}, 3.0001$ meters.

These measurements indicate a shortening of the rods. The field measurements confirm this shortening and show it to have taken place between June 26 and August 5. For the remainder of the period of leveling the rods maintained practically a constant length. In the computation the mean length of the rods on July 16, 3.00019 meters or an excess of 0.06 millimeter per meter was used for the leveling done previous to August 5. For the remainder of the season the mean length of the rods given by the office measures of January 25, 1913, 3.0000 meters was used.

The index error of rod V was -0.5 millimeter; of rod $W,-0.2$ millimeter.
The new determination of the differences of elevation between the three bench marks recovered at Beowawe showed that they had not been disturbed since their establishment in 1911.

The clevations in the following table depend on an elevation of 1431.8444 meters for bench mark B_{8} at Beowawe as determined by the line from Brigham, Utah, to Beowawe, Nev.

Results of leveling, Beowawe to Marmol, Nev.

Date.	From B. M. to B. M.	Distance in kilometers.	Difference of elevatlon.			Discrepancy.		Designation of B. M.	Distance from B. M. B8.	Observed elevation above mean sea level.
			Forward	Backward line.	Mean.	$\begin{aligned} & \text { Par- } \\ & \text { tial. } \end{aligned}$	Total accu-mulated			
1912.			m.	m.	m.	$m m$.	mm.		km.	\%
July 18-18.	$\mathrm{A}_{6}-\mathrm{B}_{6}$	0.135	-0.3491	+0.3495	-0.3493	-0.4	-0.4	\mathbf{A}_{6} \mathbf{B}_{6}	$\begin{array}{r} -0.135 \\ 0.000 \end{array}$	$\begin{aligned} & 14321937 \\ & 1431.8444 \end{aligned}$
Do...	$\mathrm{B}_{6}-\mathrm{C}_{6}$	0.789	-1.5274	+1.5270	-1.5272	+0.4	-0.4 +0.4	C_{6}	0.789	1430.3172
Do	${ }^{\mathrm{C}_{6}-1}$	0.999	-1.8911	+1.8925	-1.8918	-1.4	-1.0	1	1.788	1428. 4254
Do	1-2	1.125	-1.3749	$+1.3706$	-1.3724	+2.5	+1.5	2	2.913	1427.0530
Do	1-2	1. 125	-1.3723	$+1.3716$	-1.3724	+2.5	+1.5		2.913	1427.0.530
July 18-19	3-4	1. 206	-2.0437	+2.0428	-2.0432	+0.9	+ 1.3 +2.2	4	5.325	1425.8952 1423.8520
Do..	4-5	1. 290	-1.5143	+1.5113	-1.5128	+3.0	+5.2 $+\quad 5$	5	6.615	1422. 3392
Do	${ }_{5}^{5-\mathrm{G}_{6}}$	0.902	-1.9620	+1.9632	-1.9626	-1.2	+ 4.0	G_{8}	7.517	1420. 3766
Do.	G_{6-6}	1. 006	-0.6080	+0.6079	-0.6080	+0.1	+ 4.1		8. 523	1419. 7686
July 19-19	6-7	1. 103	-1.3225	+1.3219 +1.6498	-1.3222 -1.6502	+0.6 +0.9	+ + . +5	8	9.626 10	1418. 4464
Do.	7-8	1.124	-1.6507 -1.3476	+1.6498 +1.3478	-1.6502 -1.3477	+0.9	+ 5.6 +5.4	8	10.750	1416. 7962
July 20.1	8-9	1.121	-1.3476	+1.3478 +1.6047	-1.3477	-0.2	+5.4 +5.8	9	11. 871	1415.4485
July ${ }^{20-1}$	9-10	1.163	-1.6051 -1.7709	+1.6047 +1.7744	-1.6049	+0.4 +3.5	+5.8 $+\quad 3$ +2.3	11	13.034 14.116	1413.8436
Do.	11-12	1.125	-1.2406	+1.2405	-1.2406	+0.1	+2.4	12	15.241	1410. 8304
Do	12-H6	1.036	-0.2412	+0.2425	-0.2418	-1.3	+1.1	H_{5}	16.277	1410. 5886
July 20-20	$\mathrm{H}_{6}-13$	1.121	-4.1594	+4.1587	-4.1590	$+0.7$	+1.8	13	17.398	1406. 4296
Do.	13-14	1.126	-2.2427	+2.2437	-2.2432	-1.0	+ 0.8	14	18. 524	1404.1864
Do	14-15	1.104	-1.6818	+1.6790	-1.6804	$+2.8$	+3.6	15	19.628	1402.5060
Do	15-16	1.125	-1.7674	+1. 7665	-1.7670	+0.9	+ 4.5	16	20.753	1400.7390
Do...	16-17	1.125	-0.4100	+0.4141	-0.4108	-3.1	+ 1.4	17	21.878	1400. 3282
July $22-22$	16-17	1.125	-0.4086	+0.4107	-0.4108	-3.1	+1.4	17	21.878	1400. 3282
July 20-23	17-18	1.024	-0.2910	+0.2889 +1.3709	-0. 2900	$+2.1$	+1.5 +3.5 +4.7	18	22.902	1400. 0382
Do.	$\mathrm{19-I}_{8}$	1.185	-1.4885	+1.4833						1398. 6667
Do.	19-I ${ }_{6}$	1.185	-1.4875	+1.4865	-1.4864	+3.1	+ 7.8	I6	25.375	1397.1803
Do	I I_{0}-20	0.752	-1.6296	+1.6313	-1.6304	-1.7	+6.1	20	26.127	1395.5499
Do	20-21	0.984	+0.6259	-0.6275	+0.6267	+1.6	+ 7.7	21	27.111	1396.1766
July 23-22	21-22	0.967	-2.2144	+2. 2148	-2.2146	-0.4	+ 7.3	22	28.078	1393. 9620
Do.	22-23	1.021	+2.9731	-2. 9722	+2.9726	-0.9	+6.4	23	29.099	1396.9346
Do.	23-24	1.020	+1.3330	-1.3334	+1.3332	+0.4	+ 6.8	24	30.119	1398. 2678
July 23-23	$24-25$	1.029	-6.0975	+6.0973	-6.0974	+0.2	$+7.0$	25	31.148	1392.1704
Do.	25-26	1.038	-3.6270	+3.6215	-3.6252	+0.7	$+7.7$	26	32.186	1388.5452
Do	25-26	1.038	-3.6240	+3.6280	-3.6252	+0.7	+ 7.7	20	32.186	1385.5452
Do	26-27	1.021	-1. 5292	+1.5280	-1.5286	+1.2	+8.9	27	33.207	1387.0166
Do.	$27-\mathrm{J}_{6}$	1. 004	+1.4908	-1.4923	+1.4916	+1.5	+10.4	J_{6}	34.211	1388. 5082
July 23-2	$\mathrm{J}_{5}-28$	1. 192	-3.9227	+3.9208	-3.9218	+1.9	+123	28	35. 403	1384. 5864
July 24	28-39	1.125	+1.3726 +23373	+1.3696	+1.3711	-3.0	+9.3 +13	29	36. 528	1385. 9575
Do.	30-31	1.125	-0.2468	+0.2454	-0.2461	+1.4	+14.4	31	38.430	${ }_{1383} 137621$
Do.	31-32	1.125	+0.5726	-0.5743	+0.5734	+1.7	+16.1	32	39.555	1383. 3760
Do	32-33	1.124	-1.2085	+1.2094	-1.2090	-0.9	+15.2	33	40.679	1382.7404
Do.	33-34	1.121	-1.3278	+1.3256	-1.3267	+2.2	+17.4	34	41.803	1381.4137
Do	$34-\mathrm{K}_{6}$	1.123	-1.3321	+1.3322	-1.3322	-0.1	+17.3	K_{6}	42.926	1380.0815
July $24-25$	$\mathrm{K}_{6}-35$	1.210	-1.4185	+1.4176	-1.4180	+0.9	+18.2	35	44.136	1378.6635
Do.	35-36	1.124	-1.1976	+1. 1959	-1.1968	+1.7	+19.9	36	45.260	1377. 4667
Do	36-37	1.124	+0.3991	-0.3998	+0.3994	+0.7	+20.6	37	46. 384	1377.8661
Do.	37-38	1.126	-0.4584	+0.4617	-0.4600	-3.3	+17.3	38	47.510	1377.4061
Do.	38-39	1.126	+0.2049	-0.2087	+0.2068	+3.8	+21.1	39	48, 636	1377.6129
July 25-25	39-40	0.779	-0.5602	+0.5608	-0.5605	-0.6	+20.5	40	49.415	1377.0524
Do.	40-41	1.125	-1.1615	+1.1586	-1.1600	+29	+23.4	41	50.540	1375.8924
Do.	41-42	1.086	-1. 2503	+1.2494	-1. 2498	+0.9	+24.3	42	51.626	1374. 6426
Do.	42-I.5	1.276	-0.3158	+0.3155	-0.3156	+0.3	+24.6	L6	52.902	1374. 3270
July 25-20.	I/6-43	0. 798	-0.4839	+0.4831	-0.4835	+0.8	+25.4	43	53.700	1373.8435
July Do...	43-44	1.125	-1.9993	+2.0000	-1.9996	-0.7	+24.7	44	54.825	1371.8439
July 27-27	${ }_{44-\mathrm{M}_{6}}^{44}$	1.066	+0.593 +0.5867	-0.5878	+0.5875	-3.0	$+21.7$	M_{6}	55.891	1372. 4314
July 26-26.	M ${ }^{-45}$	1.073	-1. 1621	+1.1693						
Do.	$\mathrm{M}_{6}-45$	1.073	-1.1660	$+1.1680$	-1.1663	-4.6	+17.1	45	56.964	1371. 2851
Do	45-46	1.069	-1. 2074	+1.2084	-1.2079	-1.0	+16.1	46	58.033	1370.0572
Do	46-47	1.124	$+0.6065$	-0.6073	$+0.6069$	+0.8	+16.9	47	59.157	1370.6841
Do.	47-48	1.123	+1.0821	-1.0844	+1.0832	+2.3	+19.2	48	60.280	1371.7473

Results of leveling, Beowawe to Marmol, Nev.-Continued.

Date.	From B. M. to B. M.	Distance in kilometers.	Differerice of elevation.			Discrepancy.		Designation of B. M.	Distance from B. M. B6	Observed elevation above mean sea level.
			Forward line.	Backward line.	Mean.	Partial.	$\begin{aligned} & \text { Total } \\ & \text { accu- } \\ & \text { mu- } \\ & \text { lated. } \end{aligned}$			
July 26-27...........	$48-\mathrm{N}_{6}$	0.746	$\begin{gathered} m . \\ +1.2548 \end{gathered}$	$\underset{-1.2530}{m}$	$\begin{gathered} m . \\ +1.2539 \end{gathered}$	$\underset{-1.8}{m m}$	$\begin{gathered} m m . \\ +17.4 \end{gathered}$		$k m$. 61.026	$\underset{1373.0012}{m .}$
July 27-27.	$\mathbf{N}_{6}-49$	1.117	-0.2214	+0.2218	-0.2216	-0.4	+17.4 +17.0	$\begin{array}{r}\text { N } \\ 4 \\ \hline 8\end{array}$	${ }_{62.143}^{61.026}$	1373.0012 1372.7796
D0...	49-50	1.125	+0.1333	-0.1300	+0.1316	-3.3	+13.7	50	63.268	1372.9112
Do	50-51	1.125	+1.7874	-1.7847	+1.7860	-2.7	+11.0	51	64.393	1374.6972
Do	51-52	1.104	+1.3936	-1.3923	+1.3930	-1.3	+9.7	52	65.497	1376.0902
D	52-53	1.083	-0.4026	+0.4054	-0.4040	-2.8	+6.9	53	66.580	1375.6862
Do	53-54	1. 074	-2.2988	+2.3013	-2.3000	-2.5	+ 4.4	54	67.654	1373. 3862
July 27-29.	$54-\mathrm{O}_{6}$	0.592	-0.1409	+0.1417	-0.1413	-0.8	+3.6	O_{6}	68. 246	1373. 2449
July $29-29$.	O_{0-55}	1. 1111	+0.5560	-0.5562	+0.1561	+0.2	+3.8	55	69.357	1373.8010
	55-56	1.123	+3.4737	-3. 4727	+3.4732	-1.0	+2.8	56	70.480	1377. 2742
Do	56-57	1.083	-3. 4914	+3.4911	-3.4912	+0.3	+3.1	57	71.563	1373.7830
D	57-58	1.081	-1.4976	+1.4977	-1.4976	-0.1	+3.0	58	72.644	1372. 2854
July 30-2	58-59	1.382	+2.3364	-2.3344	+2.3354	-2.0	+1.0	59	74.026	1374.6208
Do.	$59-60$ $60-\mathrm{P}_{6}$	1. 082	+0.6804	-0.5790 +1.7232	+0.5797	-1.4	-0.4	60	75.108	1375. 2005
July 30	$60-\mathrm{P}_{6}$	1. 1.079	-1.7192	+1.7232 +1.7183	-1.7200	-1.6	-2.0	P_{6}	76.187	1373. 4805
Do.	$\mathrm{P}_{6} 61$	1.171	-3.9086	+3.9071	-3.9078	+1.5	-0.5	61	77.358	1369.5727
Do	$61-\mathrm{Q}_{6}$	1. 080	-3.6357	+3.6342	-3.6350	+1.5	+1.0	Q ${ }_{6}$	78.438	1365.9377
July 30	Q^{-62}	1. 071	-3.0360	+3.0348	-3.0354	+1.2	+2.2	62	79.509	1362.9023
Do	62-63	1.126	-4. 0346	+4.0341	-4.0344	+0.5	+2.7	63	80.635	1358. 8679
July 31-31	63-64	1. 125	-0.7076	+0.7068	-0.7072	+0.8	+3.5	64	81.760	1358. 1607
Do	64-65	1. 571	-5. 3582	+5.3571	-5.3576	+1.1	+ 4.6	65	83.331	1352.8031
	$65-R 88^{65}$	0. 593	-4.2825	+4.2863	-4. 2842	-1.9	$+2.7$	R_{6}	83.924	1348. 5189
July 31-31	$\mathrm{R}_{-66} 6$	1.163	-0.7238	+0.7225	-0.7232	+1.3	+ 4.0	66	85.087	1347. 7957
Do	66-67	1. 225	-1.3032	+1.3009	-1.3020	+2.3	+6.3	67	86.312	1346. 4937
July 31-Aug.	67-68	1.127	-0.9509	+0.9519	-0.9514	-1.0	+5.3	68	87.439	1345. 5423
Aug. 1-1	68-69	1.189	-1.4796	+1.4824	-1.4810	-2.8	+ 25 +25	69	88.628	1344. 0613
Do	${ }^{69-\mathrm{S}_{8}}$	0.742	-1.2718	+1.2734	-1.2726	-1.6	+0.9 $+\quad .8$	8_{6}	89.370	1342.7887
D	S6-70	0.386	+0.4468	-0.4477	+0.4472	+0.9	+1.8	70	89. 756	1343. 2359
D	70.71	1. 078	-1.0533	+1.0525	-1.0529	+0.8	+2.6	71	90.834	1342.1830
Do	71-72	1. 067	-0. 5510	+0.5490	-0.5500	+2.0	+ 4.6	72	91.901	1341.6330
Do	72-73	1.127	-0.7044	+0.7038	-0.7041	+0.6	+5.2	73	93.028	1340. 9289
Do	73-74	1.211	-0.6717	+0.6695	-0.6706	+2.2	+ 7.4	74	94.239	1340.2583
Aug. 1-2.	74-75	0.623	-0.3847	+0.3829	-0.3838	+1.8	+ 9.2	75	94.862	1339.8745
Aug. 2-2	75-76	1.227	-1.0456	+1.0437	-1.0446	+1.9	+11.1	76	96.089	1338. 8299
	76-77	1.127	-0.0627	+0.9618	-0.9622	+0.9	+12.0	77	97.216	1337. 8677
Do	$77-\mathrm{T}_{6}$	0.369	-1. 2920	+1. 2909	-1. 2914	+1.1	+13.1	T8	97.585	1336. 5763
D	T\%-78	1.150	-0. 5194	+0.5155	-0.5174	+3.9	+17.0	78	98. 73.5	1336. 0589
Do	78-79	1.127	-1.0880	+1.0998	-1.0889	-1.8	+15.2	79	99.862	1334.9700
Do	79-80	1. 126	-0.8732	+0.8748	-0.8740	-1.6	+13.6	s0	100.988	1334. 0960
Aug. 2-	80-81	1.124	-0.3024	+0.3910	-0.3917	+1.4	+15.0	81	102.112	1333.7043
Aug. $7-7$	81-82	1. 600	-0.2458	+0.2440	-0.2449	+1.8	+16.8	82	103. 712	1333.4594
Do.	$82-\mathrm{U}_{6}$	1. 149	-0.7518	+0.7545	-0.7532	-2.7	+14.1	U_{6}	104.861	1332.7062
Do.	$\mathrm{U}_{5}-83$	1. 067	+0.7525	-0.7511	+0.7518	-1.4	+12.7	83	105. 928	1333. 4580
D	83-84	1. 083	-0.6881	+0.6894	-0.6888	-1.3	+11.4	84	107.011	1332.7692
Do	$84-\mathrm{V}_{8}$	1. 152	+0. 4374	-0. 4390	+0.4382	+1.6	+13.0	V_{6}	108.163	1333.2074
Aug. 8-8	$\mathrm{V}_{0}-85$	0.483	-0.7578	+0.7584	-0. 7581	-0.6	+12.4	85	108. 646	1332.4493
Do.	85-86	1.082	-0.1218	+0.1220	-0.1219	-0.2	+12.2	86	109. 728	1332.3274
Do.	86-87	1. 104	-3. 2598	+3.2612	-3.2605	-1.4	+10.8	87	110.832	1329. 0669
Do.	87-88	1. 047	+0.3359	-0.3331	+0.3345	-2.8	+8.0	88	111.879	1329. 4014
Do.	85-89	1. 115	-0.3311	+0.3334	-0.3322	-2.3	+5.7		112.994	1329. 0692
Do.	89-90	1.124	-0.4178	+0.4156	-0. 4167	+2.2	+ 7.9	90	114. 118	1328.6525
Aug. $8-9$.	90-01	1.131	-1.8144	+1.8167	-1.8156	-2.3	+5.6	91	115.249	1326.8369
Aug. 9-0	91-92	0.719	-0.5895	+0.5893	-0.5894	+0.2	+5.8	92	115.968	1326.2475
Do.	${ }^{92-W 6}$	0.845	+0.4355	-0.4361	+0.4358	+0.6	+6.4	W6	116. 813	1326. 6833
Do.	$\mathrm{W}_{6}-93$	1. 455	+3.9316	-3.9321	+3.9318	+0.5	+6.9		118. 268	1330.6151
D	93-94	1. 058	+4.5694	-4. 5663	+4. 5678	-3.1	+3.8	94	119.326	1335. 1829
Do			+1.4438	-1.4441	+1.4440	+0.3	+4.1	X_{6}	120.359	1336. 6269
Aug. ${ }^{\text {a-1 }}$	$\mathrm{X}_{0}-95$	1. 108	-1.3363	+1.3338	-1.3350	+2.5	+6.6	95	121. 467	1335. 2919
Do.	95-96	1. 130	-6. 0717	+6.0692	-6.0704	+2.5	+9.1	96	122. 597	1329.2215
Aug. 10-10	96-97	1.061	-4.9844	+4.9824	-4. 9834	+2.0	+11.1	97	123. 658	1324. 2381
Do.	97-98	1.148	-1.7314	+1.7324	-1. 7319	-1.0	+10.1	98	124.806	1322.5062
Do.	98-99	1. 149	-1.3970	+1.3981	-1.3976	-1.1	+ 9.0	99	125.955	1321.1086
Do.	90-100	1.276	-1.7297	+1.7277	-1. 7287	+2.0	+11.0	100	127.231	1319.3799
Do	$100-\mathrm{Y}_{6}$	1. 109	-1. 5888	+1. 5878	-1.5883	+1.0	+12.0	Y_{6}	128. 340	1317.7916
Aug. 12-12	Y -101	1.131	-0.6166	+0.6169	-0.6168	-0.3	+11.7	101	129.471	1317.1748
Do.	101-102	1. 169	+4.9369	-4.9380	+4.9374	+1.1	+12.8	102	130. 640	1322.1122
Do	102-103	1. 093	-0.3814	+0.3800	-0.3807	+1.4	+14.2	103	131.733	1321.7315
D	103-104	1. 021	+0.8983	-0.8974	+0.8981	-1.4	+12.8	104	132.754	1322. 6296
Do	104-105	1. 023	-1.9309	$+1.9275$	-1.9292	+3. 4	+16.2	105	133. 777	1320. 7004
Aug. 12-13	105-108	1. 0234	-1.1643 -0.0976	+1.1646 +0.0993	-1.1644	-0.3	+15.9	107	134.800 135.874	1319. 5360 1319.4376
Do.	107-108	1.149	-2.7148	+0.0919 +2.7104	-0.0984	-1.7		107		
Aug. 13-13.	107-108	1. 149	-2.7094	+2.7124	-2.7118	+0.7	+14.9	108	137.023	1316. 7258
Aug. 12-13.	108-Z ${ }_{6}$	1. 207	-3.9799	+3.9795	-3.9797	$+0.4$	+15.3	Z_{6}	138.230	1312.7461
Aug. 13-13.	$\mathrm{Z}_{6}-109$	0.922	-2.0116	+2.0120	-2.0118	-0.4	+14.9	109	139.152	1310.7343
Aug. 14 14,	109-110	0. 965	-0.4894	+0.4896	-0.4895	-0.2	+14.7	110	140.117	1310.2448
Aug. 14-14	110-111	1.123 1.123	+0.0239 +0.0281	$\begin{array}{r} -0.0300 \\ -00266 \end{array}$	$+0.0272$	+2.3	+17.0	111	141.240	1310.2720
Do...	111-112	1.162	+3.5673 +	- -3.0689	+3.5681	+1.6	+18.6	112	142. 402	1313.8401
Do.	112-113	1. 242	+4.4194	-4. 4208	+4.4201	$+1.4$	+20.0	113	143. 644	1318. 2602
Do.	113-114	1. 264	+0.9549	-0.9580	+0.9564	+3.1	+23.1	114	144. 908	1319. 2166
Do	114-115	1.234	-0.9820	+0.9807	-0.9814	+1.3	+24.4	115	146. 142	1318. 2352
Do.	$\mathrm{115}^{-\mathrm{A}_{7}}$	1. 006	-2.3329	+2.3286	-2.3308	+4.3	+28.7	A_{7}	147. 148	1315. 9044
Aug. ${ }^{15}$	$\mathrm{A}_{7}-116$	1. 050	+5.9959	-5. 9949	+5.9954	-1.0	+27.7	116	148. 198	1321. 8998
Do.	116-117	1.128	-3.1033	+3.1041	-3.1037	-0.8	$+26.9$	117	149.326	1318. 7961
Do.	117-118	1. 149	-0.5484	+0.5488	-0.5486	-0.4	+26.5	118	150. 475	1318. 2475
Do	118-119	1. 074	-1.1178	+1.1193	-1.1186	-1.5	+25.0	119	151. 549	1317. 1289
Do.	119-120	1.092	-3. 5743	+3.5779	-3.5761	-3.6	+21.4	120	152.641 153.731	1313. 51228
Do.	120-121	1.090	-0.6069	+0.6086	-0.6078	-1.7	+19.7	121	153.731	1312.9450

Results of leveling, Beowawe to Marmol, Nev.-Continued.

Dato.	From B. M. to B. M.	Distance in kilometers.	Difference of elevation.			Discrepancy.		Designation of B. M.	Distance from B. M. B6.	Observed elevation above mean sea level.
			Forward line.	Backward line.	Mean.	Partial.	Total accu-mulated.			
1912.									km.	
Aug. 15-16.	121-122	0.752	-0.6695	+0.6715	-0.6705	-2.0	+17.7	122	154. 483	1312. 2745
Aug. 16-16.	${ }^{122-B_{7}}$	1.433	-2.5391	+2.5414	-2.5402	-2.3	+15.4	B_{7}	155.916	1309. 7343
Do...	$\mathrm{B}_{7}-123$	1.089	+0.2796	-0.2806	+0.2801	+1.0	+16.4	123	157.005	1310. 0144
Do	123-124	1. 022	-1.5328	+1.5333	-1.5333	-1.0	+15.4	124	158. 027	1308. 4811
Do.	124-125	1.151	-0.4518	+0.4554	-0.4536	-3. 6	+11.8	125	159.178	1308.0275
	125-126	1.111	+0.2099	-0.2074	+0.2086	-2.5	+9.3	126	160.289	1308.2361
Do	126-127	1.093	-0.7147	+0.7153	-0.7150	-0.6	+8.7	127	161.382	1307. 5211
Aug. 16-17	127-128	1.093	+0.5837	-0.5868	+0.5852	+3.1	+11.8	128	162. 475	1308. 1063
$\begin{array}{r} \text { Aug. } 17-17 \\ \text { Do... } \end{array}$	128-129	1.023	+4.1021 +5.4827	-4.1000	+4.1010	-2.1	+9.7	129	163.498	1312.2073
Aug. 19-19	$\mathrm{cos}_{129-\mathrm{C}_{7}}^{129-1}$	1.127 1.127	+5.4827 +5.4820	-5.4778 -5.4803	+5.4807	-3.4	+6.3	C_{3}	164. 625	1317.6880
Aug. 17-17.	$\mathrm{C}_{\boldsymbol{T}-130}$	1. 074	+2.8736	-2.8701	+2.8718	-3.5	+ 2.8	130	165.699	1320.5598
Do.	130-131	1.136	-0.6556	+0.6564	-0.6500	-0.8	+2.0	131	166.835	1319.9038
Do.	131-132	1.077	-2.1108	+2.1142	-2.1125	-3.4	- 1.4	132	167.912	1317.7913
Do	132-133	1.123	-4.5630	+4.5653	-4. 5642	-2.3	-3.7	133	169.035	1313.2271
Aug. 17-19.	133-134	1.165	-4. 6106	+4.6101	-4.6104	+0.5	- 3.2	134	170.200	1308.6167
Aug. 19-19.	134-135	1.128	+2.5103	-2. 5099	+2.5101	-0.4	-3.6	135	171. 328	1311.1268
Do.	${ }^{135-\mathrm{D}_{7}}$	1.010	-3.3043	+3.3043	-3.3043	0.0	-3.6	D_{7}	172.338	1307.8225
	$\mathrm{D}_{7}-136$	1.049	+3.6160	-3.6175	+3.6168	+1.5	-2.1	136	173.387	1311. 4393
Aug. 20	136-137	1.030	-2.2738	+2.2730	-2.2723	-1.4	-3.5	137	174.417	1309. 1670
Aug. 19-19	137-138	1.109	-4.3987	+4.4022	-4.4004	-3.5	-7.0	138	175. 526	1304. 7666
Aug. 20-20	138-139	1.150	-0.4110	+0.4098	-0.4104	+1.2	-5.8	139	176.676	1304. 3562
Do.	139-140	1. 076	+0.0652	-0.0610	+0.0631	-4.2	-10.0	140	177.752	1304.4193
Aug. 20-21.	140-141	1. 1.092	+4.2895 +4.2868	-4.2850 -4.2876	$+4.2872$	-1.9	-11.9	141	178.844	1308. 7065
Aug. ${ }^{22-22}$.	$140-141$ $141-E_{7}$	1. 1.217	+4.2868 +1.7726	-4.2876 -1.7723	+1.282 +1.7724	-0.3	-12.2	E7	180.061	1310.4789
Do.	$\mathrm{E}_{\boldsymbol{\tau}}-142$	1.151	-3.8634	+3.8684						
Aug, 22-22.	E_{7}-142	1.151	-3.8630	+3.8667	-3.8654	-4.4	-16.6	142	181.212	1306.6135
Aug. 21-21.	142-143	1.056	-4. 2296	+4.2337	-4.2316	-4.1	-20.7	143	182. 268	1302.3819
Do.	143-144	1.092	-4.4124	+4.4128	-4.4126	-0.4	-21.1	144	183. 360	1297.9693
Do.	144-145	1.091	-1.1839	+1.1797	-1.1818	+4.2	-16.9	145	184.451	1296.7875
Aug, 21-22	145-146	1.038	+1.2921	-1.2919	+1.2920	-0.2	-17.1	146	185. 489	1298.0795
Aug. $22-22$.	146-147	0.985	-2.9454	+2.9465	-2.9460	-1.1	-18.2	147	186. 474	1295. 1335
Do.	147-F7	0.528	+0.7161	-0.7173	+0.7167	+1.2	-17.0	F7	187.002	1295.8502
Do.	$\mathrm{F}_{7}-148$	1. 145	+2.4605	-2.4601	+2.4603	-0.4	-17.4	148	188. 147	1298.3105
Aug. ${ }^{23}$	148-149	1.102	-4.6630	+4.6616	-4.6623	+1.4	-16.0	149	189.249	1293.6482
Do.	149-150	1. 163	-3.1999	+3.2005	-3. 2002	-0.6	-16.6	150	190.412	1290.4480
D	$150-151$ $151-152$	1.139 1.092	-1.4830	+1.4836	-1.4833	-0.6	-17.2	151	191. 551	1288. 9647
Do	152-G7	1.043	-2.8917	+2.8956	-2.8936	-3.9	-22.5	G_{7}	193.686	1290.0262 1287.1326
Aug. 24-2	$\mathrm{G}_{7}-153$	1.123	-4.4009	+4.4024	-4.4016	-1.5	-24.0	153	194.809	1252.7310
Do.	153-154	1.093	-2.1886	+2.1906	-2.1896	-2.0	-26.0	154	195.902	1280.5414
D	154-155	1. 093	-2. 2233	+2.2229	-2.2231	+0.4	-25.6	155	196. 995	1278.3183
D	155-156	1.090	-1.5668	+1.5708	-1.5688	-4.0	-29.6	156	198.085	1276.7495
Aug.	156-157	1. 057	-0. 2252	+0.2270	-0.2261	-1.8	-31.4	157	199.142	1276.5234
Aug. 26-26	$157-158$	1.072	-0.2499	+	-0.2448	-1.8	-33.2	158	200.213	1276.2786
Do.	H_{7}-159	1.083	+0.7198	-0.7174	+1.918 +0.7186	+2.6	-32.0	159	200. 888	1278.2706 1278.9893
Do.	159-160	1. 092	+2.4203	-2.4185	+2.4194	-1.8	-36.8	160	202.980	1281.4086
Do.	160-161	1. 033	+0.3713	-0.3714	+0.3714	+0.1	-36.7	161	204.013	1281.7800
Aug. 26-28	161-162	1. 005	+4.0300	-4.0269	+4.0284	-3.1	-39.8	162	205.018	1255.8084
Aug. 28-28	162-163	1. 126	+4.4149	-4.4129	+4.4139	-2.0	-41.8	163	206.144	1290.2223
Do.	163-164	1. 061	+3.0460	-3.0441	+3.0450	-1.9	-43.7		207.205	1293. 2673
Do	164-165	1.130	-4.5058	+4.5054	-4.5056	+0.4	-43.3	165	208, 335	1288.7617
Do	${ }_{166-166}^{165}$	1. 145	-0.5874	+0.5892	-0.5883	-1.8	-45.1	166	209.480	1283. 1734
Sept. 5	167-168	1.092	-0.5722 +1.5791	+0.5691 -1.5792	-0.5706 +1.5792	+3.1	- 42.0	167	210.572	1287.6028
Do.	168-17	0.864	+0.5005	-0. 1987	+	+1.8	-41.9 -43.7	168	212. 423	1289.1820 1239.6816
	1_{7-169}	0.765	-2.6095	+2.6098	-2.6096	-0.3	-44.0	169	213. 188	1289.6816 1287.0720
Do	169-170	0.913	+0.9245	-0.9241	+0.9243	-0.4	-44.4	170	214. 101	1257.9963
Do	170-171	1. 059	+4.1060	-4.1051	+4.1056	-0.9	-45.3	171	215.160	1292. 1019
	$171-172$ $172-173$	1. 1.207	+1.1651 +4.8255	-1.1675	+1.1663	+2.4	-42.9	172	216.235	1293. 2682
Sept. $10-1$	172-173	1. 2075	+4.8255	-4.8235	+4.8245	-2.0	-44.9	173	217.442	1298. 0927
Do...	174-5 ${ }^{\text {1 }}$	1. 191	+1.9798 +3.6638	-1.9789 -3.6607	+1.9794	-0.9	-45.8	174	218.097	1300.0721
Do	$\mathrm{J}_{7}-175$	0.592	+3.6981 +3.5901	-3.5892	+3.6622 +3.5896	-3.1	-48.9	17 175	219.258 219.880	1303.7343 1307.3239
D	175-176	1.210	-2.2699	+2.2695	+2.2697	+0.9	-49.4	176	221.090	1305. 0542
Do.	176-177	1. 208	-4. 8292	+4.8280	-4.8286	+1.2	-48.2	177	222.298	1300.2256
Dept. $10-11$	177-178	1.144	-4.4991	+4.4975	-4.4983	+1.6	-46.6	178	223.442	1295.7273
Sept, 10-11		0.374 1.168	-1.9342 +0.9521	+1.9345	-1.9344	-0.3	-46.9	K7	223.816	1293.7929
Do.	179-180	1. 1.207	+0.9521 +0.1227	-0.9510	+0.9516 -0.1218	-1.1	-48.0	179	224.984	1294.7445
Do.	$180-\mathrm{L}_{7}$	1.178	+0.9295	-0.9287	-0.1291	\pm	-47.3	180	22.191	1294. 6227
Sept. 11-11	$\mathrm{L}_{2}-181$	0.808	+1.4951	-1.4945	+1.4948	-0.6	-47.7	181	228.369 228	1295.5518 1297.0486
Do.	181-182	1. 041	+0.6502	-0.6504	+0.6503	+0.2	-47.5	182	229.218	1297.0466
Do.	182-M7	0.932	-2.2268	+2.2295	-2.2282	-2.7	-50.2	M 7	230.150	1295.4687
Do.	$\mathrm{M}_{7}-\mathrm{N}_{7}$	1.096	-1.6638	+1.6610	-1.6624	+2.8	-47.4	N_{7}	231.246	1293.8063
Sept. 11-12.	- ${ }^{\mathrm{N} 7-183}$	1. 0.057	+1.7460 +3.7325	-1.7468	+1.7464	+0.8	-46. 6	183	232. 213	1295. 5527
Sept. 12-12	181-0 ${ }_{7}$	1. 192	+0.0600	-0.0607	+ +0.0604	+0.9	-47.8	184	233. 2762	1299. 2847
Do.	O_{7}-185	0.798	-3.6194	+3.6214	-3.6204	+2.0	-48.8	185	235. 262	1295. 7247
Do.	185-186	0.912	-3.3681	+3.3680	-3.3680	+0.1	-48.7	186	236.174	1292. 3567
Do.	${ }^{186}-\mathrm{P}_{7}$	1. 022	-2.8886	+2.8917	-2.8902	-3.1	-51.8	P_{7}	237. 196	1239.4665
Sept. 13-13	$\mathrm{P}_{\mathrm{P}} \mathrm{P}-187$	0.111	-1. 5662	+1.5654	-1.5659	+0.6	-51.2	187	237.307	1287.9006
Sept. 3-12	187-188	1. 164	-1.5062	+1.5658 +3.9971						
Sept. 12-13..	187-188	1. 164	-4.0002	+3.9985 +3.985	-4.0002	+4.9	-48.3	188	238.471	1283.9004

Results of leveling, Beowawe to Marmol, Nev.-Continued.

Date.	$\begin{aligned} & \text { From } \\ & \text { B. M. } \mathrm{M} \text {. } \\ & \text { B. } \end{aligned}$	Distance ln kilometers.	Difference of elevatlon.			Discrepancy.		$\begin{aligned} & \text { Deslgna- } \\ & \text { of B. M. } \end{aligned}$	$\begin{aligned} & \text { Distance } \\ & \text { from } \\ & \text { B. M. B6. } \end{aligned}$	Observedelevationabovemeansea level.
			Forward line.	Backline.	Mean.	${ }_{\text {Par- }}^{\text {Paial. }}$	Total acculated.			
1912.						mm.	$m m$.		m.	m.
Sept. 3. Sept. 12	$\begin{aligned} & 188-189 \\ & 188-189 \end{aligned}$	$\begin{aligned} & 1.081 \\ & 1.081 \end{aligned}$	$\begin{aligned} & -4.6136 \\ & -4.6091 \end{aligned}$	$+4.6091$	-4.6102	+2.3	-44.0	89	239. 552	1279.2902
Sept. 12	$189-190$ $189-190$	1.084 1.084 1	(1) ${ }^{\text {a }}$ 5 524	+ +4.5544	-4. 5539	-3.0	-47.0	90	240.636	1274. 7363
Sept. 3-12	190-191	1.154	-4. ${ }^{\text {- }} 7517$	+4.0505 +3.7505	-3.7511	+1.2	-45.8	191	241.790	1270.9852
Do	191-192	1.020	-2.8950	+2. 8921	-2.8936	+2.9	-42.9	192	242.810	${ }_{1268.0916}$
${ }_{\text {Sept }}^{\text {Do. }}$	${ }^{192-Q 7}$	O. 145	${ }_{-0}^{-1.1388}$	+1.1387	-1.1388	+0.1	-42.8	Q7	243.255	1266. 9523
Sept. ${ }^{\text {P-9 }}$	¢ ${ }_{\text {Qrin }}$	1.354	-0.6220	+0.6150 +0.6193	-0.6194	+4.4	-38.4	193	244.609	1266. 3334
Sept. $7-9$	193-194	1.025	+2.1304	-2.1400	+2.1350	+6.1	-32.3	194	245.634	1268.4684
Sept. ${ }^{\text {9-9 }}$	193-194	1.025	${ }^{+2.1334}$	-2.1359						
Sept. ${ }_{\text {Do. }}$	- $195+195$	1.023	-4.6511	+ + +4.6505	-4.6508	${ }_{+}^{+0.6}$	-31.7	195 198	${ }_{247.571}^{246.657}$	1263.8176 1260.5852
Do	196-197	1.096	-4.3969	${ }_{+4.3988}$	-4.3978	${ }_{-1.9}$	-31.1	197	248.667	${ }^{1256.1874}$
D0	197-198	1.097	-4.5496	+4.5461	-4.5478	+3.5	-27.6	198	249. 764	1251.6396
D	${ }_{198} \mathrm{H}_{7} \mathrm{R}_{7}$	0.562	-2.6440	+2.6444	-2.6442	-0.4	-28.0	R_{7}	${ }^{250.326 .}$	1243.9954
Do.	1 R -199	0.978	-2.6070	+2.6093	-2.6082	-2.3	-30.3	199	251.304	1246. 3872
t.	199-200	1.076	-4.4204	+ $\begin{aligned} & \text { +4.4201 } \\ & +4.4188\end{aligned}$	-4.4180	-2.8	-33.1	200	252.380	1241.9692
Sept. 7-9	200-201	1.133	-4.7911	+4.7921	-4.7916	-1.0	-34.1	201	253.513	1237.1776
Sept. 9 -9	${ }_{202-202}^{2012}$	0.914	-3.2653	+3.2659	-3.2656	${ }^{-0.6}$	-34.7	202	254.427	1233.9120
Sept. ${ }^{\text {Do }}$-i-	202-203	1.153	-4.8945	+4.8934	-4. 69940	. 1	-33.6		255.580	1229.0180
Sept. 13-1	$204-\mathrm{S}_{7}$	0.309	-3.4568	+3.4584	-3.4576	-1.6	-35.3	${ }_{8}{ }_{8}$	257.568	1220.5816
Sept. 14	$\mathrm{St}_{5}-205$	1.176	-0.5375	+0.5341	-0.5358	+3.4	-31.9	205	258. 744	1220.0458
D	205-200	1.021	-2.0262	+2.0273	-2.0268		-33.0	206	259.765	1218.0190
D	$200-\mathrm{T}_{7}$	1.024	-1.2848	+1.2569	-1.2858	-2.1	-35.1	${ }^{T}$	260.789	1216.7332
Do	${ }_{\text {U }} \mathrm{U}_{1-207}^{7}$	${ }_{1}^{0.1275}$	-0.2433	+1.2409	${ }^{-0.7930}$	${ }_{-0.5}^{+0.6}$	- 34.5	${ }^{2} 7$	${ }_{262}^{261.784}$	${ }_{12145}^{1215992}$
Do	307-208	1.095	-2.1071	+2.1058	-2.1064	+1.3	-33.7	208	263.926	1212. 5932
Do	${ }_{5}^{208-V_{7}}$	1.038	-1.0383	${ }_{+1.0375}^{+1}$	-1.0379	${ }_{+0.8}^{+0.3}$	-32.9	V_{7}	264.964	1211.5553
D		1.064	-1.2286	+1.2233	-1.2270	+3.3	-29.6		${ }^{266.028}$	1210.3283
Do	209-210	1.188	-2.6859	${ }^{+2.4742}$	-2. 4747	+1.0	-28.6	210	267.216	1207.8536
D	$211-212$	1.172	-1.5742	+1.5742	-1.5742	${ }_{0.0}$	-27.3	${ }_{212}^{21}$	${ }_{269.561}^{208.39}$	1204.6000
	212-213	1.268	+0.5333	${ }^{-0.5342}$	+0.5338	+0.9	-26.4	${ }_{2} 213$	270.829	1205. 1338
Sept. ${ }_{\text {D }} 10$	${ }^{213-W}$	0.532	-1.8853	+1.8853			-26.4		27.361	1203. 2485
Do.	214-215	1.114	-1.7995	+1.6931	${ }_{-1.7951}$	-0.6	-27.0	${ }_{215}^{214}$	${ }_{273}^{272} 58$	1201.5337
D	215-216	1.020	$+0.0979$	-0.0998	+0.0988	+1.9	-22.3	216	274.619	1199.8574
Do	216-217	1.147	-2.3733	+2.3086	-2.3080	. 3	-23.6	217	275.766	1197.5494
pt. 6		1.092	-0.7300	+0.7271	-0.7286	+2.9	-20.7	218	276. 858	1196. 8208
Sept. 16-17	$219-\mathrm{X}_{7}$	0.653	-0.3203	+0. 3212	-0.3208	-0.9	-21.1	X_{7}	278.605	1193.9138
t. 17	Xr-220	1.134	-1.1678	+1.1678	-1.1678	0.0	-21.1			
Do	220-221	1.023	+2.6086	-2.6073	+2.6080	. 3	-22.4	221	280.762	1195.3540
Do	221-2	1.057	+1.7589	-1.7590	+1.7390	+0.1	-22.3	222	281.849	1197.1130
Do.	222-223	1.022	-0.3349	$+0.3356$	-0.3352	-0.7	-23.0	223	282.871	1196.7778
Do	223-224	1.090	-3.3961	${ }_{+}^{+3.3933}$	-3.3952	. 8	-21.2	224	283.961	1193.3826
Do	${ }_{22-1}^{22-25}$	1.090	${ }^{+2.4267}$	-2.4204	${ }_{+}^{+2.5266}$	-0.3	-21.5	${ }_{4}^{225}$	${ }^{285.051}$	${ }_{1}^{1195} 8092$
D	Y	1.095	${ }_{-0.1651}$	+0.1672	${ }_{-0.1662}^{1.132}$	${ }_{-2.1}$	-22.1	226 22	${ }_{286.491}^{2859}$	
Sept. 17	${ }^{220-227}$	0.546	-0.8048	+0.8039	-0.8044	+0.9	-21.2	227	287.037	1196. 3518
Sept. 18	227-228	1.093	+4.1821	-4.1827	+4.1824	+0.6	-20.6	228	288.130	1200. 5342
Do	228-229	1.077	-3.0319	+3.0300	-3.0310	+1.9	-18.7	229	289.	1197. 5032
Do	229-230	1.093	${ }^{-0.1881}$	+0.1921	-0.1901	-4.0	-22.7	230	290.300	1197. 3131
Do	${ }^{230}-\mathrm{Z}_{7}$	0.578	+0.2067	-0.2070	${ }^{+0.2068}$	+0.3	-22.4	${ }_{27}{ }^{2}$	290.878	1197.5199
Sept. 19	- $2 \times$-231-232	${ }_{1}^{1.1684}$	-1.8549	+ +1.85943	${ }_{-1.8558}$	${ }_{-1.7}^{+0.4}$	-22.0	231	${ }_{293.123}^{2939}$	1194.9254
Do.	232-233	1.123	$+0.0670$	-0.0631	+0.0650	-3.9	-27.6	233	294. 246	1193.1346
Do	${ }^{233-234}$	1.123	+0.0613	-0.0614	+0.0614	+0.1	-27.5	234	295. 369	1193.1960
Do	${ }^{234-235}$	1.082	-0.4123	${ }^{+0.4142}$	-0.4132	-1.9	-29.4	235	296. 451	1192.7828
Do	${ }^{35}-\mathrm{Al}_{3}$	1.049	+0.8099	-0.8041	+0.8060	-3.8	-33.2	A_{8}	297. 500	1193.5888
Sept. 20	A85-230	(1.122	+0.0357	-0.0344	+0.0350	-1.3	-34.5	238 238	298. 424	1193.6238
Do.	237-388	1.118	-2.0199	+2.0177	${ }_{-2.0188}$	+2.2	-33.7	238	${ }^{200.664}$	1191.6649
Do	233-39	1.084	-3.0219	+3.	-3.0238	-1.7	-35.4	239	301.743	1188.6411
pt. 21	238-239	1.084	-3.0239	+3.0229						
Sept.	239-240	1.083	-1.0357	+1.0348	-1.0352	+0.9	-34.5	240	302.831	1187. 6059
Sept. 20.	$240-241$ $241-242$	(1.098	-1.1427	${ }_{+}^{+1.1438}$	- -1.1432	-1.1	-35.6	241	298	1186. 4627
Sept. 21-2	242-243	1.202	-0.4717	${ }_{+0.4727}$	-0.4722	-1.9	-38.5	243	306. 330	${ }_{1185.2469}$
Do	243-244	1.203	-0.5772	$+0.5776$	-0.5774	-0.4	-38.9	244	307. 233	1184.6695
D	${ }^{244}$	0.847	+1.2909	-1.2888	+1.2898	${ }^{-2.1}$	-41.0	Ba_{8}	308080	1185.9593
	BE-245	1.097	${ }^{+3.5335}$	-3.5384	+3.5371	+2.6	-38. 4	245	${ }^{309.177}$	1189.4994
Sept. 23	245-246	1.210	-0.4054	${ }_{-0.4031}^{+0.431}$	-0.4042	${ }^{+2.3}$	-36.1	248	${ }^{310.387}$	1189.0922
Do	247-248	1.124	-1.4319	+1.4300	-1.4310	+1.9	- 34.4	248	312.628	1188.0675
	248-249	1.184	-1.9903	+1.9906	-1.9904	-0.3	-34.7	249	313.812	1186.0771
	249-250	1.082	${ }_{-2}^{+1.4090}$	-1.4079	${ }_{-2}^{+1.4084}$	- -0.1	-35.8	250	31	1187.4855
	${ }_{251-252}$	0.774	${ }_{-1.4105}$	+	${ }_{-1.4101}$	+0.8	${ }_{-35.4}$	252	316.750	${ }_{1183.9281}$
Sept. $24-24$	$252-\mathrm{C}_{3}$	0.690	+0.0610	${ }_{-0.0636}$	+0.0823	+2.6	-32.8	C_{8}	317.440	1183.9904
	C_{5-253}	0.929	-0.4038	$+0.4016$	-0.4027	+2.2	-30.6	253	318.369	1183.5877
D. 2	-253-254	1. 100	-0.7773	+0.767	-0.7770	+0.6	-30.0	254	319.469	1182.8107
	-	1.101	${ }_{+}^{+1.1231}$	-1.1232	+1.1232	${ }_{-2 .}^{+0.1}$	-23.9	${ }_{256}^{255}$	${ }^{320.570}$	1183.0339
Do.	256-Dı	1.142	+0.3237	-0.3234	$+0.3236$	-0.3	-32.5	Di	322.811	1185. 4027

Results of leveling, Beowawe to Marmol, Nev.-Continued.

Date.	$\begin{aligned} & \text { From } \\ & \text { B. M. to } \end{aligned}$B.	Distance in kilometers.	Difference of elevation.			Discrepancy.		Designation of B. M.	Distance B. M. B.	Observed elevation above mean sea level.
			Forward line.	Backward line.	Mean.	Partial.	Total acculated.			
1912.									km.	m.
Sept. 25-2	D 2257	1.101	+0.2330	-0.2316	+0.2323	-1.4	-33.9	257	323.912	1185.6350
Sept. 20-26	257-258	0.982	+0.3870	-0.3868	+0.3869	-0.2	-34.1	258	324.894	1186.0219
Do..	258-259	1. 079	+0.2606	-0.2620	+0.2613	+1.4	-32.7	259	325.973	1186. 2832
Do.	${ }^{259-\mathrm{E}_{8}}$	0.807	+2.8492	-2.8483	+2.8488	-0.9	-33.6	E_{8}	326.780	1189. 1320
Do	E6-260	1. 044	+3.9296	-3.9290	+3.9293	-0.6	-34.2	260	327.824	1193.0613
Sept. 30-30	260-261	0.950	+0.0110	-0.0099	+0.0104	-1.1	-35.3	261	328.774	1193.0717
Do..	261-262	1.101	-4.2127	+4.2118	-4.2122	$+0.9$	-34.4	262	329.875	1188.8595
Sept. 30	${ }_{\text {F }} \mathbf{2 6 2 - 2 6 3}$	0.862	-0.1376	+0.1401	-0.1388	-2.5	-36.9	Fs	330.737	1188.7207
Sept. ${ }_{\text {Do }}$	$\mathrm{F} 8-263$ $263-264$	1.080	+0.0859 +0.8930	-0.0874	+0.0866	+1.5	-35.4	263	331.817	1188.8073
Do	$264-\mathrm{G}_{8}$	0.509	+0.2457	-0.2436	+0.2446	-2.1	-37.3	Gs	333. 407	1189.7004 1189.9450
Do	Gs-265	1. 160	+1.5332	-1.5339	+1.5336	+0.7	-36.6	265	334.567	1191.4786
Oct. 1-1	265-266	0.869	+3.1794	-3.1787	+3.1790	-0.7	-37.3	266	335. 436	1194.6576
Do.	266267	1.083	+4.2149	-4.2114	+4.2132	-3.5	-40.8	267	336.519	1198.8708
Do	${ }^{267}-\mathrm{H}_{8}$	1.182	+0.1546	-0.1558	+0.1552	+1.2	-39.6	H_{8}	337.701	1199.0260
Do	H6-268	1.318	+4.6527	-4.6512	+4.6520	-1.5	-41.1	268	339.019	1203.6780
Do	268-269	1. 165	+0.4021	-0.4014	+0.4018	-0.7	-41.8	269	340.184	1204. 0798
Oct. 1-2	269-270	1.185	+1.6998	-1.6977	+1.6988	-2.1	-43.9	270	341.369	1205. 7786
Do.	270-271	1.243	+2.7519	-2.7521	+2.7520	+0.2	-43.7	271	342.612	1208.5306
Do	271-272	1.207	+0.0693	-0.0713	+0.0703	+2.0	-41.7	272	543.819	1208.6009
Do	272-273	1.209	-0.1477	+0.1459	-0.1468	$+1.8$	-39.9	273	345.028	1208. 4541
	273-274	1. 208	+2.9402	-2.9403	+2.9402	+0.1	-39.8	274	346.236	1211.3943
Oct. 2 -2	274-18	0.997	-0.1520	+0.1500	-0.1510	$+2.0$	-37.8	I_{8}	347.233	1211.2433
Do.	$1 \mathrm{~g}-275$	1.375	+0.4836	-0.4847	$+0.4842$	+1.1	-36.7	275	343. 608	1211.7275
Do.	${ }^{275-J_{3}}$	1.203	+4.5023	-4. 5029	+4.5026	+0.6	-36.1	J8	349.811	1216. 2301
Do	$\mathrm{J}_{6}-276$	1.098	+1.6505	-1.6493	+1.6499	-1.2	-37.3	276	350.909	1217. 8800
Oct. 2	276-277	1.118	-0.1074	+0.1066	-0.1070	+0.8	-36.5	277	352.027	1217. 7730
Do.	277-278	1.104	+3.1041	-3.1045	+3.1043	$+0.4$	-36.1	278	353. 131	1220.8773
Do.	278-K8	0.487	-0.4508	+0.4510	-0.4509	-0.2	-36.3	K8	353.618	1220.4264
Do.	K-279	1.116	-0. 3264	+0.3259	-0.3262	+0.5	-35.8	279	354.734	1220.1002
Do	${ }^{279}-\mathrm{L}_{8}$	0.476	-0.3600	+0.3601	-0.3600	-0.1	-35.9	L_{8}	355.210	1219.7402
ct. 3	L\%280	0.830	+3.3050	-3.3019	+3.3034	-3.1	-39.0	280	356.040	1223.0436
Do	280-281	1.089	+4.3018	-4. 2997	+4.3008	-2.1	-41.1	281	357.129	1227.3444
Do	281-282	1. 083	+3.7991	-3.7972	+3.7982	-1.9	-43.0	282	358.212	1231.1426
Do	282-283	1.084	+3.5958	-3. 5995	+3.5976	$+3.7$	-39.3	283	359.296	1234. 7402
Do	283-284	1. 084	+2.2793	-2.2807	+2.2800	$+1.4$	-37.9	284	360.380	1237.0202
D	$284-\mathrm{Ms}_{8}$	0.748	+0.4864	-0.4899	+0.4882	+3.5	-34.4	M8	361. 128	1237. 5084
D	M M^{285}	1. 130	+3.3607	-3.3622	+3.3614	$+1.5$	-32.9	285	362.258	1210.8698
Oct. 4	285-286	1.087	+1.6196	-1.6231	+1.6214	$+3.5$	-29.4	286	363.345	1242.4912
Do	$286-\mathrm{N}_{8}$	0.709	-0.0919	+0.0907	-0.0913	+1.2	-28.2	N_{8}	364. 054	1242.3999
Do	$\mathrm{N}_{5}-287$	1.132	-1.3081	+1.3088	-1.3084	-0.7	-28.9	287	365. 186	1241.0915
	287-08	1.115	$+0.0407$	-0.0392	+0.0400	-1.5	-30.4	O_{8}	366.301	1241.1315
Do	$\mathrm{O}_{5}-288$	1.123	+0.2393	-0.2390	+0.2392	-0.3	-30.7	288	367.424	1241.3707
Do	${ }^{288}-\mathrm{P}_{8}$	0.512	-0.1431	+0.1425	-0.1428	+0.6	-30.1	P_{8}	367.936	1241. 2279
Do	P5-289	1.137	+5.0789	-5.0772	+5.0780	-1.7	-31.8	289	363.073	1246. 3059
Do	289-290	1.125	+4.9205	-4.9193	+4.9199	-1.2	-33.0	290	370.198	1251. 2258
D	290-291	1.125	+3.7272	-3.7272	+3.7272	0.0	-33.0	291	371.323	1254.9530
Do	291-Q8	0.895	+2.6394	-2.6404	+2.6399	+1.0	-32.0		372.218	1257. 5929
Oct. 5	Qs-292	1. 202	+5.6800	-5.6788	+5.6794	-1.2	-33.2	292	373.420	1263. 2723
	$292-\mathrm{R}_{8}$	1. 503	+1.3733	-1.3729	+1.3731	-0.4	-33.6	R_{8}	374.923	1264.6454
Oct. 8	$\mathrm{R}_{5} \mathrm{R}_{5} \mathrm{~S}_{8}$	0.211 0.211	+0.7100 +0.7107	-0.7106 -0.7107	+0.7105	+0.2	-33.4	S_{8}	375.134	1265.3559
Do	$\mathrm{S}_{5}-293$	1.072	-0.0376	+0.0364	-0.0370	+1.2	-32.2	293	376.206	1265.31s9
Do	293-294	0.843	+3.7718	-3.7738	+3.7728	$+2.0$	-30.2	294	377.049	1269.0917
Do	294-295	1.104	-0.7978	+0.7961	-0.7970	$+1.7$	-28.5	295	378.153	1268.2947
D	295-296	1.082	-0.6251	+0.6232	-0.6242	+1.9	-26.6	296	379. 235	1267.6705
Do	296-297	1.023	-0. 1263	+0.1256	-0.1260	+0.7	-25.9	297	380.258	1267.5445
Oct. 11	297-298	0.926	+0.12¢6	-0.1241	$+0.1254$	-2.5	-28.4		381. 184	1267.6699
Oct. ${ }^{\text {Do. }}$		1.017	+0.4292	-0.4293	+0.4292	$+0.1$	-25.3	Ts	382.201	1268.0991
Oct. ${ }^{\text {Do }}$	T8.299	1.071	-0.4275	+0.4274	-0.4274	+0.1	-28.2	299	383.272	1267.6717
Do	$299-300$ $300-\mathrm{U}^{2}$	1.211	-0.0756	${ }_{-0.0733}$	-0.0744	$+2.3$	-25.9	300	384.483	1267.5973
Oct. 11-12	$300-\mathrm{Ur}^{8}$	1.174	$+0.2751$	-0.2777	$+0.2764$	+2.6	-23.3	U_{8}	385.657	1267.8737
Do.	$\mathrm{V}_{8}-\mathrm{W}_{8}$	0.685	+1.9120	\pm	+1.9120	+0.1	-24.0	W^{8}	${ }^{3867.803}$	1267.4765
Do	W-301	1.187	+1.5703	-1.5661	+1.5682	-4.2	-28.1	301	388.680	1270.9567
Do	301-302	1.120	+3.3442	-3.3459	+3.3450	+1.7	-26.4	302	359.800	1274.3017
D	302-303	1.102	$+3.0731$	-3.0743	$+3.0737$	+1.2	-25.2	303	390.902	1277.3754
Do	303-304	1. 095	+3.9718	-3.9722	+3.9720	+0.4	-24.8	304	391.997	1281. 3474
Oct. 12-12	$304-\mathrm{X}_{8}$	1.221	+4.4013	-4. 1048	+4.4030	+3.5	-21.3	X 8	393. 218	1285. 7504
Do.	$\mathrm{X}_{5} \mathrm{Y}_{8}$	0.358	+1.1893	-1.1915	+1.1904	$+2.2$	-19.1	Y_{8}	393. 576	1286. 9438
Do.	Y_{5}-305	0.970	+1.7324	-1.7358	+1.7341	$+3.4$	-15. 7	305	394. 546	1288.6749
Do	305-306	1. 169	+2.1631	-2.1628	+2.1630	-0.3	-16.0	306	395.715	1290. 8379
${ }^{\text {Do. }}$	306-38	1. 090	+2.9149	-2.9131	+2.9140	-1.8	-17.8	Z_{8}	396.805	1293. 7519
Oct. 14-1	Z-307	1.139	+1.6843	-1.6850	+1.6846	$+0.7$	-17.1	307	397.944	1295. 4365
Do.	$307-308$ $308-309$	1.144	+3.3973	-3.3967	+3.3970	-0.6	-17.7	308	399.088	1298.8335
Do	309-310	1. 208	+1.8463	-1.8474	+1.8468	+1.1	-1.1	310	40.258	1303. 6466
Do	310-311	1.207	+2.1971	-2.1959	+2.1965	-1.2	-15.2	311	402.671	1305.4934 1307.6899
Do	$311-\mathrm{A}_{8}$	1.205	+1.3108	-1.3150	+1.3129	+4.2	- 11.0	A	403. 876	1309.0028
Oct. 15-15	A9-312	0.876	+0.7762	-0.7804		+2.3		312	404.752	1309.7820
Do.	$\mathrm{Ag}_{\mathrm{g}} \mathbf{3 1 2}$	0.876	+0.7799	-0.7802	+0.7792	$+2.3$	-8.7		404.722	1309.7820
Oct. 15	312-313	0.709 1.116	+2.4352 +0.7876	-2.4342	$+2.4347$	-1.0	-0.7	313	405.461	1312.2167
Oct. 15-	313-314	1.116	+0.7876	-0.7887	+0.7888	-0.1	-9.8	314	406.577	1313.0055
Do.	314-315	1. 105	+3.6812	-3.6795	+3.6804	-1.7	-11.5	315	407.682	1316.6559
$\text { Oct. } 16 . \mathrm{B} \cdot{ }^{\circ}$	315-316	1.121	+4.7191	${ }^{(1)}$	+4.7206	+0.8	-10.7	316	408.803	1321. 4065
Do	$315-316$ $316-317$	1.121	+4.7214 +2.7134	-1.7210 -2.7133	+2.7134	-0.1	-10.8	317	409.525	1324.1199
Do	317-318	1. 164	+4.3666	-4.3697	+4.3682	+3.1	-7.7	318	410.689	1328.4881
Do...	$318-\mathrm{B}_{9}$	1.193	+5.0811	-5.0813	+5.0812	$+0.2$	-7.5	Bo	411.882	1333.5693

[^1]Results of leveling, Beowawe to Marmol, Nev.-Continued.

Date.	From B. M. to B. \mathbf{M}.	Distance in kilometers.	Difference of elevation.			Discrepancy.		Designation of B. M.	Distance from B. M. Be	Observed elevation above mean sea level.
			Forward line.	Backward line.	Mean.	Partial.	$\begin{aligned} & \text { Total } \\ & \text { accu- } \\ & \text { mul } \\ & \text { lated. } \end{aligned}$			
1912.										
Oct. 18-16	$\mathrm{Br}_{0}-319$	0.615	+1.7493	-1.7495	+1.7494	+0.2	-7.3	319	412. 497	1335. 3187
Do.	319-320	1.179	+0.0859	-0.0853	+0.0856	-0.6	- 7.9	320	413.676	1335. 4043
$\begin{array}{lcc} \text { ct. } 18-1 \\ \text { Do. } \end{array}$	${ }_{321-321}$	1.022	+0.2010	-0.2059	+0.2050	+1.9	-6.0	321	414. 698	1335. 6093
Do	$\mathrm{C}_{2}-\mathrm{D}_{9}$	0.957	+0.1522	-0.1477	+2.0440	+0.5	-5.5	C9	415.244	1337. 6533
Oct. 18-1	$\mathrm{C}-\mathrm{n}_{9}$	0.957	+0.1484	-0.1526	+0.1502	-0.1	-5.6	D_{9}	416.201	1337.8035
Oct. 18-1	$\mathrm{D}_{5}-\mathrm{F}_{\mathrm{F}}$	0.875	+1.3681	-1.3672	+1.3676	-0.9	-6.5	E9	417.076	1339.1711
	$\mathrm{Fe}_{\mathrm{F}}^{-\mathrm{F}_{\mathrm{g}}}$	1.428	-0.1245	+0.1280	-0.1262	-3.5	-10.0		418.504	1339.0449
Oct. 18-1	F-322	1.088	-1.0706	+1.0670	-1.0688	+3.6	-6.4	322	419.592	1337.9761
$\begin{aligned} & \text { Do. } \\ & \text { Do } \end{aligned}$	322-323	1.069	+0.0729	-0.0744	+0.0736	+1.5	- 4.9	323	420.661	1338.0497
$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$	323-324	1.040	+1.1721	-1.1727	+1.1724	+0.6	- 4.3	324	421.701	1339. 2221
Do	324-325	1.138	+3.1615	-3.1639	+3.1627	+2.4	-1.9	325	422.839	1342.3848
Oct. 19	$325-G 9$ $G 9$	1.428	+5.0325 +5.8441	-5.0367	. 0346	+4.2	+2.3	Q	424.267	1347.4194
Do...	$\mathrm{Gq}_{9}-326$	0.622	+5.8441 +5.8450	-5.8489	+5.8456	+2.0	+ 4.3	326	424.889	1353.2650
Do	326-327	1.042	+7.8000	-7.8022	$+7.8011$	+2.2	$+6.5$	327	425.931	1361.0661
Do	327-328	1.098	+4.4328	-4.4332	+4.4330	+0.4	$+6.9$	328	427.029	1365. 4991
Do	328-329	1.145	+2.2538	-2.2542	+2.2540	+0.4	+7.3	329	428.174	1367.7531
Oct. 21-2	${ }^{329}-\mathrm{H}_{9}$	0.378	+1.9823	-1.9808	+1.9816	-1.5	+5.8	H_{9}	428.552	1369. 7347
Oct. 21 Oct 21	$\mathrm{H}_{\mathbf{H}-330}$	1.086	(1) 8	-2.8219	+2.8234	-1.2	+ 4.6	330	429.638	1372.5581
Do.	- 300 - 19	1.086	+2.8240 +15.9842	-2.8237	+15.9844	+0.4	$+5.0$	$1{ }_{1}$	429.922	
Do	Ig-331	1.157	-17.3154	+17.3181	-17.3168	-2.7	+2.3	331	431.079	1371.2257
Oct. 22-23	331-332	1.123	+ 7.0444	- 7.0418	+ 7.0431	-2.6	-0.3	332	432.203	1378.2688
Oct. 22-22	332-333	1.132	+ 4.9893	- 4.9872	+ 4.9882	-2.1	- 2.4	333	433. 334	1383. 2570
Do	333-334	1.124	+ 4.5129	- 4.5134	+ 4.5132	+0.5	-1.9	334	434. 458	1387.7702
Do	334-335	1.123	+ 7.3748	- 7.3725	+ 7.3726	-2.3	- 4.2	335	435. 581	1395.1438
	335-336	1.123	+6.0237	- 6.0210	+6.0224	-2.7	-6.9	336	436.704	1401.1662
Do	${ }_{337-}{ }^{3} 585$	1.100	+7.6743 +6.6342	= 7.6746	+ 7.6744	$+0.3$	-6.6	337	437. 804	1408.8406
Oct. $22-2$	J, 338	1.138	+6.6342 +3.6595	- 6.63570	+6.6358 +3.6582	+1.2 +2.5	- 7.4	338	438.678 439.816	1415.4737
Do.	338-339	0.738	+ 4.9243	- 4.9244	+ 4.9244	+0.1	-7.8	339	440.554	1424.0580
Do.	339-340	1.038	+ 7.6448	- 7.6394						
Oct. 24-25.	339-340	1.038	+7.6428	- 7.6429	+ 7.6125	-2.6	-10.4	340	441.592	1431.7005
Oct. 23-23	340-341	1. 060	+16.9772	-16.9745	+16.9758	-2.7	-13.1	341	442.652	1448. 6763
Do.	341-342	1. 079	+12.0908	-12.0871	+12.0890	-3.7	-16.8	342	443.731	1460.7653
Do	342-343	1.079	-0.3077	+ 0.3047	-0.3062	+3.0	-13.8	343	444:810	1460. 4591
Do	$343-\mathrm{K} 9$	0.299	- 1.0305	+1.0325	- 1.0315	-2.0	-15.8	Kg	445.109	1459.4276
$\xrightarrow{\text { Dot. }}$ 23-25	Ko-344	1.083	+8.7852	-8.7879	+ 8.7866	+2.7	-13.1	344	446.192	1468. 2142
Oct. 23-25	$34+\mathrm{L}_{9}$	0. 599	+ 9.3999	- 9.4019	+ 9.4009	+2.0	-11.1	L9	446.791	1477.6151
Oct. 25 Do. 25	Lo-345	1.080	+15.9649	-15.9637	+15.9643	-1.2	-12.3	345	447.871	1493. 5794
Do.	$345-346$ $345-346$	1.018	+7.8586	- 7.8649 -7.8596	+ 7.8608	+2.9	-9.4	346	448.889	1501. 4402
Do	$346-347$	1. 025	+ +3.3272	- 3.3327						
Do	$346-347$	1.025	+3.3297	- 3.3312	+ 3.3302	+3.6	-5.8	347	449.914	1504. 7704
Do	347- F6	1.016	+6.6865	- 6.6866	+ 6.6886	+0.2	-5.6	F8	450.930	1511. 4570
	$\mathrm{E}_{6}-\mathrm{F}_{6}$	0.105	-0.4397	+ 0.4403	-0.4400			E_{6}	451.035	1511. 8970

${ }^{1}$ Rejected in field.
SAN FRANCISCO, CAL., TO MARMOL, NEV.
This seetion was run between Mareh 7 and July 12, 1912.
Preeise level No. 10 was used until April 19 and preeise level No. 7 for the remainder of the period of leveling. Rods CC and DD were used until July 3, and rods V and W for the remainder of the period of leveling.

The lengths of rods CC and DD at $0^{\circ} \mathrm{C}$ as determined by the instrument division of this Survey are as follows: January 12, 1912, rod CC, 3.0008 meters, rod DD, 3.0012 meters; Mareh 5, 1913, rod CC, 3.0011 meters, rod DD, 3.0015 meters.

Both the offiee and field measurements of the rods show a lengthening. It is assumed that the lengthening was gradual and distributed uniformly over the period between the offiee measurements. Beeause of the peeuliar profile of this line, whieh is eomparatively level for the first 270 kilometers, rising gradually 2100 meters in the next 170 kilometers and then falling a little in the remaining 56 kilometers, the mean length of the rods, 3.0011 meters, or an excess of 0.37 millimeter per meter, on June 9, whieh is the mean date of the period of the leveling up the ineline, was used in the eomputations. The index eorreetion of rod CC was -0.3 millimeter; of rod DD, -0.2 millimeter.

The lengths of rods V and W , their index eorreetion, and the mean length used in the eomputation are given in eonneetion with the line Beowawe to Marmol, Nev. (See p. 13.)

The elevations in the table following depend on an elevation of 48.5590 meters for beneh mark 635 at San Franeiseo. This elevation was furnished by the engineer of that eity.

Results of leveling, San Francisco, Cal., to Marmol, Nev.

Results of leveling, San Francisco, Cal., to Marmol, Nev.-Continued.

Date.	$\underset{\text { B. M. }}{\text { From. }}$	Distance in kilometers.	Difference of elevation.			Discrepancy.		$\begin{aligned} & \text { Designa- } \\ & \text { otion } \\ & \text { of B. M. } \end{aligned}$	Distance from City 635.	Observed elevation above mean sea level.
			Forward line.	Backward line.	Mean.	Partial.	Total accu-mulated.			
1912.			m.		m.	mm.	mm.		km.	m.
Mar. 27-27	Q, 53	1.173	- 3.6132	+ 3.6139	- 3.6136	-0.7	-21.5	53	79.767	17.0168
Do.	53-54	1.210	-4.0062	+ 4.0051	- 4.0056	+1.1	-20.4	54	80.977	13.0112
Mar. 28-2	54-55	1.209	- 2.5567	+ 2.5592	- 2.5550	-2.5	-22.9	55	82. 186	10.4332
Do.	55-56	1.206	- 3.6482	+ 3.6491	- 3.6486	-0.9	-23.8	56	83.392	6. 8046
Mar. $28-28$	56-57	1.208	-2.5831	+ 2.5839	- 2.5835	-0.8	-24.6	57	84.600	4.2211
Do...	57-R7	0.309	+1.0033	-1.0021	+ 1.0027	-1.2	-25.8	R7	84.969	5.2238
D	R,-58	1.210	-1.2081	+ 1.20118	-1.2084	-0.7	-26.5	58	86.179	4.0154
	$58-59$ $58-59$ 8	1. 1.207	+0.9164 +0.9145	- 0.9119	$+0.9140$	-2.8	-29.3	59	87.386	4.9294
D	${ }^{59-S_{7}}$	1. 544	+	-0.9134	-0.1319	0.0	-29.3	S_{7}	87.930	4.7975
Do	${ }_{50}-60$	1. 114	+4.1285	- 4.1300	+ 4.1292	+1.5	-27.8	60	89.044	8. 9267
Mar. $29-29$	60-61	1. 185	+ 4.5842	-4.5817	+ 4.5830	-2.5	-30.3	61	90.229	13. 5097
	$\mathrm{61-T}_{7}$	0.707	- 0.6871	+ 0.6890	-0.6880	-1.9	-32.2	T 7	90.936	12.8217
Do	T-62	1. 166	+1.6192	-1.6206	+ 1.6199	+1.4	-30.8	62	92.102	14.4416
Do	62-63	1.131	- 3.2012	+3.2034	- 3.2023	-2.2	-33.0	63	93. 233	11. 2393
Do	$\mathrm{63-}_{4}$	0.418	- 1.4416	+ 1.4433	- 1.4424	-1.7	-34.7	U_{7}	93. 651	9. 7969
Do	$\mathrm{U}_{T} \mathrm{Cb4}^{4}$	1. 253	+ 0.4049	-0.4064	+ 0.4056	+1.5	-33.2	64	94. 904	10.2025
Mar. 30-3	$\mathrm{V}^{64} \mathrm{~V}_{7}$	1. 739	+11.1458	-11.1411	+11.1434	-4.7	-37.9	V_{7}	96. 643	21.34459
Do.	V-65	1. 188	-4.3567	+4.3586	-4.3576	-1.9	-39.8	65	97. 831	17.9883
Do	66-67	1.126	+	- 0.0224	+ + +5.0212	+2.3	- 38.7	67	100.164	22.9349
Do	$67-\mathrm{W}_{7}$	1. 233	+ 2.7526	- 2.7505	+ 2.7516	-2.1	-40.8	W_{7}	101.397	25.6865
Mar. 30-A	$\mathrm{W}_{7} \mathrm{X}_{7}$	0. 802	+ 0.7394	-0.7405	+ 0.7400	+1.1	-39.7	X_{7}	102. 199	26.4265
Apr. 3-3.	X, 68	0.564	+ 4.1073	- 4.1071	+ 4.1072	-0.2	-39.9	68	102. 763	30. 5337
Do.	68-69	0.976	+ 3.6692	- 3.6692	+ 3.6692	0.0	-39.9	69	103. 739	34. 2029
Do	$69-\mathrm{Y}_{7}$	1. 044	+3.7097	-3.7090	+3.7094	-0.7	-40.6	Y_{7}	104.783	37.9123
Do	$\mathrm{Y}_{7} \mathrm{Z}_{7}$	1.374	+13.1407	+13.1419	+13.1413	+1.2	-39.4	Z_{7}	100. 157	51.0536
Do	$\mathrm{Z}_{\text {¢ }} \mathbf{7 0}$	1.159	+ 7.0093	- 7.0078	+ 7.0086	-1.5	-40.9	70	107. 316	58.0622
Do	70-71	1.040	+ 1.1614	- 1.1576	+1.1595	-3.8	-44.7	71	108. 356	59.2217
Do	71-72	1. 264	+ 4.8915	- 4.8806	+ 4.8810	-0.9	-4.6	72	109.620	64. 1027
Apr. 3-1	72-73	0.729	+ 2.5542	- 2.5567	+ 2.5554	+2.5	-43.1	73	110. 349	66.6581
Apr. 4	$73-\mathrm{A}_{8}$	0.920	+2.0993	- 2.0892	+ 2.0892	-0.1	-13.2	A_{8}	111.269	68.7473
Do.	$\mathrm{As}_{8} 74$	0.886	+ 7.4457	- 7.43885	+ 7.4437	-4. 6	-47.8	74	112.155	76.1910
Do		0.886 1.132	+7.4462 +2.8282	- 7.4444	+7.827 +2.8274	-1.5	-49.3	75	113.287	79.0184
Do	75-76	1.078	+3.9885	- 3.9881	+3.9883	-0.4	-49.7	76	114. 365	83.0067
Do	76-77	1.196	+ 4.0809	- 4.0500	+ 4.0804	-0.9	-50.6	77	115. 561	87.0871
Do	$7^{77-B_{8}}$	1. 230	+ 5.1480	- 5.1486	+ 5.1483	$+0.6$	-50.0	Bg_{8}	116. 791	92.2354
A pr, 5-5	$\mathrm{Br}_{8}-78$	1. 456	+9.6497	-9.6516	+ 9.6500	+1.9	-48.1	78	118. 247	101. 8860
Do.	78.79	1.123	+ 1.5385	- 1.5387	+ 1.5386	$+0.2$	-47.9	79	119.370	103. 4246
	${ }^{79} \mathrm{C}_{8}$	1.123	-0.9066	+ 0.9041	-0.9054	+2.5	-4.4	C_{8}	120.493	102.5192
Do	C8-80	1.113	+8.2545	-8.2538	+8.2542	-0.7	-46.1	80	121. 603	110. 7734
Do	80-81	1.274	- 0.1424	+ 0.1455	- 0.1440	-3.1	-49.2	81	122.880	110.6294
A pr. 6 -6	${ }^{81} \mathrm{D}_{8}$	0.313	+ 1.4208	- 1.4209	+ 1.4208	+0.1	-49.1	D_{8}	123.192	112.0502
	$\mathrm{D}_{8}-82$	1.172		-1.5690		+1.6	-47.5	82	124. 365	113. 6184
Do	$82-83$	1.124	+ 2.2307	- 2.2336	+ 2.2322	+2.9	-44.6	83	125.489	115. 8506
Do	83-84	1.127	+ 3.9372	-3.9336	+3.9354	-3.6	-48.2	84	126.616	119.7860
${ }^{\text {Do }}$	8485	1.187	+8.1550 +8.1490	-8.1498	+8.1500	-2.8	-51.0	85	127. 803	127.9366
Apr. 8 -8	${ }_{85-\mathrm{E}_{8}}^{84}$	1.1823	+8.1490 +12.4888	- 82.148876	+12.4872	+0.8	-50.2	Es	129.026	140.4238
Apr. 8	$\mathrm{E}_{8}-86$	0.657	-0.6095	+ 0.6084	-0.6090	+1.1	-49.1	86	129.683	139. 8148
Do	${ }_{86-\mathrm{F}_{8}}$	1.245	+ 8.8431	- 8.8405	+ 8.8418	-2.6	-51.7	F_{8}	130.928	148.6566
Do	$\mathrm{F}_{\square}-87$	1.143	+ 8.8521	-6.8504	+ 6.8512	-1.7	-53.4	87	132.071	155.5078
Do	87-88	1.108	+6.4809	- 6.4794	+6.4802	-1.5	-54.9	88	133. 179	161. 9880
Apr.8-9	$88 . \mathrm{G}_{8}$	1.242	+1.7316	-1.7316	+1.7316	0.0	-54.9	G_{8}	134. 421	163.7196
Apr. 8 -	$\mathrm{G}_{8}^{8} 89$	1.100	+ 3.3844	- 3.3828	+ 3.3836	-1.6	-56.5	89	135. 521	167. 1032
Do	89-90	1.150	+ 3.1742	-3.1759	+3.1750	+1.7	-54.8	90	136. 671	170.2782
Do	90-91	1.219	+10.5389	-10.5341	+10.5364	-4.7	-59.5	91	137.890	180.8146
Apr. 9-12	${ }^{91}-\mathrm{HI}_{8}$	1.330	+14.4720	-14.4677	+14.4698	-4.3	- 63.8	H_{8}	139.220	195. 2844
	$\mathrm{H}_{8} 92$	1.118	+9.4587	-9.4618	+9.4602	+3.1	-60.7		140. 338	204.7446
D)	${ }^{92-\mathrm{I}_{8}}$	1. 391	+13.5292	-13. 5267	+13.5280	-2.5	-63.2	If_{8}	141. 729	218. 2726
Do	$\mathrm{I}_{8}-93$	1.469	+3.6803	- 3.6782	+ 3.6792	-2.1	-65.3	93	143. 198	221.9518
Do.	93-94	0.592	+ 2.8298	- 2.8315	+2.8305 +2.814	+2.0	-63.3	94	143.790	224. 7823
Apr, 12-12	${ }^{94} \mathrm{~J}_{8}$	0.211	+ 0.7348	-0.7340	+ 0.7344	-0.8	-64.1	J_{8}	144.001	225. 5167
	$\mathrm{J}_{5}-\mathrm{K}_{8}$	0.705	-6.2892		-6.2892	+0.1	-64.0		144. 706	219. 2275
Do	$\mathrm{K}_{\mathrm{o}}-95$	1.028	-12.0916	+12.0928	-12.0922	-1.2	-65.2	95	145. 734	207. 1353
Do	95-96	1.121	-10.8607	+10.8617	-10.8812	-1.0	-68.2	96	146. 855	196. 2741
Apr. $13-13$	96-97	1. 202	-11.2386	+11.2380	-11.2383	+0.6	-65.0	97	148. 057	185.0358
	${ }_{97} 97 \mathrm{~L}_{8}$	0.554	-5.0093	+5.0051 +5.0071	$\}-5.0080$	+3.7	-61.9	L	148.611	180.0278
Do	${ }^{97} \mathrm{~L}_{\mathrm{L}} \mathrm{L}_{8} 98$	0.554 1.039	- 5.0104 -9.4438	+ 5.0071 +9.4447	- 9.4440	-1.5	-63.4	98	149.650	170.5838
Apr. 15.	L-98	1.039	二 9.44425	+ 9.4447	-9.4440					
Apr. 13-13	98-99	1. 194	-10.6230	+10.6267	-10.6248	-3.7	-67.1	99	150.844	159.9590
Apr. 15-15	${ }^{93}-\mathrm{M}_{8}$	1.096	-9.5605	+9.5572	-9.5588	+3.3	-63.8	M_{8}	151. 940	150.4002
Do	$\mathrm{M}_{\mathrm{E}-100}$	1. 001	-10.4644	+10.4663	-10.4054	-1.9	-65.7	100	152.941	139.9348
Do	100-101	1.081	-8.0848	+8.0848	-8.0848	0.0	-65.7	101	154.022	131. 8500
Do	$101-\mathrm{N}_{8}$	0.236	-2.9304	+ 2.9297	-2.9300	+0.7	-65.0	N_{8}	154.318	128.9200
	$\stackrel{N}{\mathrm{~N}} \mathrm{~N}-102$	1.043	-10.0936 -10.0898	+10.0888 +10.0906	-10.0907	+2.0	-63.0	102	155.361	118.8293
Do	$\mathrm{N}-102$ $102-103$	1.043	$\begin{array}{r}-10.0898 \\ -7.5155 \\ \hline\end{array}$	+10.0906 +7.5131	- 7.5143	+2.4	-60.6	103	156. 380	111.3150
Do.	103-08	0.457	-4.1878	+ 4.1868	-4.1873	+1.0	-59.6	O_{8}	156.837	107. 1277
Apr. 10-16	$\mathrm{O}_{8}-104$	1.098	-10.9322	+10.9323	-10.9322	-0.1	-50.7	104	157.935	96.1955
Do...	$104-105$	1.023	-9.6601	+9.868 +9.65	-9.6603	-0.4	-60.1	105	158.958	86.5352
Do	105-100	1.041	-8.7558	+8.7574	-8.7566	-1.6	-61.7	106	159.999	77.7786
Do	106-107	1.013	-8.7952	+8.7941	-8.7946	+1.1	-60.6	107	161.012	68.9840
	107-108	1.077	-9.2931 -9.2928	+ 9.2880 +9.2947	-9.2922	+1.6	-59.0	108	162.089	59.6918
Apr. 16-16.	108-109	1. 150	-11.3777	+11.3723						
Apr. 17-22.	108-109	1.150	-11.3757	+11.3710	-11.3742	+5.1	-53.9	109	163.239	48.3176
Apr. 16-16.	109-110	1.021	-10.1971	+10.1943	-10.1957	+2.8	-51.1	110	164.260	38.1219
A pr, 22-20.	110-P	0.633	-6.7351	+ 6.7367	-6.7359	-1.6	-52.7	Pa	164. 893	31.3860

Results of leveling，San Francisco，Cal．，to Marmol，Nev．－Continued．

Date．	From B．M．to B．M．	Distance in kilo－ meters．	Difference of elevation．			Discrepancy．		$\begin{aligned} & \text { Designa- } \\ & \text { tion } \\ & \text { of } \mathrm{B} . \mathrm{M} . \end{aligned}$	DistancefromB． M.City 63.5.	Observed elevation above mean sea level．
			Forward line．	Backward line．	Меап．	Par－ tial．	Total accu－ mu－			
1912.									km．	
Apr．22－20．	Ps－111	1.237	-10.1176	＋10．1165	-10.1170	＋1．1	-51.6	111	166． 130	21． 2690
Do．．	111－112	1.023	－0．7618	＋0．7604	-0.7611	＋1．4	-50.2	112	167.153	20．5079
Do	112－113	1.092	＋ 0.2179	－0．2197	＋ 0.2188	＋1．8	－48．4	113	168.245	20.7267
$\begin{aligned} & \text { Do.... } \\ & \text { pr. } 22-22 . \end{aligned}$	${ }_{113}^{113-Q_{8}}$	0.947	－2．6977	＋ 2.6937	－ 2.6958	＋2．7	-45.7	Q8	169.192	18.0309
Do．．．	$\mathrm{Q}_{8}-\mathrm{R}_{8}$	0.226	＋${ }^{2} .3136$	＋ 2.632	＋ 0.3143	＋1．4	－44．3	R8	169.418	18.3452
Apr． $23-23$	$\mathrm{R}_{8}-\mathrm{S}_{8}$	0.530	＋1．8366	＋ 1.8372	－1． 8369	－0．6	－44．9	S_{8}	169.948	16．5083
Apr．22－23	$\mathrm{S}_{8}-114$	1．061	－1．7307	＋1．7310	－1．7308	－0．3	－45． 2	114	171．009	14．7775
Do．．	114－115	1.138	－1．4898	＋ 1.4871	－1．4884	＋2．7	-42.5	115	172.147	13． 2891
$\text { Apr. } 23-23$	115－116	1.372 1.372	－ 2.1728	＋ 2.1777 +2.1801 +	-2.1772	－3．5	－ 46.0	116	173.519	11.1119
Do．	${ }_{116-T_{8}}^{115}$	1.372	二 4.2565	＋ +4.2593 +	－ 4.2579	－2．8	－ 48.8	T8	174.595	6． 8540
Do	Tg－ U_{B}	1．665	－0．6060	+0.6035 $+\quad 0.65$	－0．6050	＋3．1	-45.7	U_{8}	176． 260	6． 2490
Apr．23－24．	$\mathrm{U}_{5}-117$	1． 262	＋0．3594	－0．3578	＋ 0.3586	－1．6	-47.3	117	177.522	6． 6076
Apr．24－24	117－118	0.453	＋0．0233	－0．0226	＋ 0.0230	－0．7	－48．0	118	177.975	6． 6306
Do．．	118－119	1.137	＋0．0150	-0.0148	＋ 0.0149	－0．2	－48．2	119	179． 112	6． 6455
Do	119－120	1.076	＋0．2071	－0．2061	＋ 0.2066	－1．0	-49.2	120	180． 188	6． 8521
Do	$120-\mathrm{V}_{8}$	1.090	＋ 1.4484	－1．4443	＋1．4464	－4．1	-53.3	V_{8}	181． 278	8.2985
Do	$\mathrm{V}-121$	0.917	－0．9363	＋0．9397	－0．9380	-3.4	-56.7	121	182.195	7.3605
Do．	121－122	1.086	－ 0.4040	＋ 0.4075	－0．4058	－3．5	-60.2	122	183.281	6． 4597
Apr．24－25	122－123	1． 165	＋ 0.3224	－0．3209	＋ 0.3216	－1．5	-61.7	123	184.446	7.2763
Apr． $25-25$	123－124	1.019	－ 0.2339	＋0．2348	－ 0.2344	－0．9	-62.6	124	185． 465	7.0419
Do．	124－W8	1.161	－0．8437	＋0．8451	－0．8444	－1．4	－64．0	W8	186． 626	6． 1975
Do	$\mathrm{W}_{8} \mathrm{X}_{8}$	0.057	＋ 0.6757	－0．6750	＋ 0.6754	－0．7	－64．7	X_{8}	186． 683	6． 8729
Do	X_{5}－125	0.424	-0.8107	＋ 0.8110	－0．8108	－0．3	-65.0	125	187.107	6． 06112
Do	125－126	1． 120	＋ 0.0560	－0．0529	＋ 0.0544	-3.1	-68.1	126	188． 227	6． 1165
Do	126－127	1.246	＋ 0.3931	－ 0.3904	＋ 0.3918	－2．7	－70．8	${ }_{7}^{127}$		6． 5053 5． 9039
Do		0.796	＋ 1.0498	＋ 1.0541					191.475	6． 9532
Apr．${ }^{26-26}$	$\mathrm{Y}_{8} \mathrm{Z}_{\mathbf{8}}$	0.796	＋ 1.0515	－1．0498	＋ 1.0513	＋1．4	－68．4	28		6.9552
Apr．${ }^{25-20}$	78.128	1． 205	－0．6251	＋0．6215	-0.6233	＋3．6	－64．8	128	192.680	6． 3319
Apr．26－26	128－129	1.497	－0．3924	＋0．3892	－0．3908	＋3．2	－61．6	129	194． 177	5.9411
Apr．26－25	129 A	0.998	－0．5369	＋0．5335	－0．5352	＋3．4	-58.2	A	195． 175	5． 4059
Apr．26－26	$\mathrm{AO}_{0}-\mathrm{B}_{9}$	0.402	－ 1.1243	＋1．1239	－ 1.1241	＋0．4	-57.8	B_{9}	195． 577	4.2818
Do．	$\mathrm{B}_{2}-\mathrm{C}_{9}$	1． 140	＋1．0349	－1．0325	＋1．0337	－2．4	-60.2	${ }_{0}$	196． 717	5.3155
Do	$\mathrm{C}_{9}-130$	0.720	＋ 0.1614	－0．1611	＋ 0.1612	－0．3	-60.5	130	197． 437	5． 4767
Do	130－131	1． 182	＋ 1.3602	－1．3579	＋ 1.3590	－2．3	－62．8	131	198． 619	6． 8357
Apr．26－27	131－132	1.208	－0．3486	＋0．3467	－0．3476	＋1．9	－60．9	132	199． 827	6． 4881
Apr．27－2	132－133	0.761	＋ 0.2381	－0．2365	＋ 0.2373	-1.6	-62.5	133	200.588	6． 7254
Do．．	${ }^{133}$－ D_{9}	1． 210	－0．7269	＋0．7292	－0．7280	-2.3	－64．8	D_{8}	201.798	5． 9974
Do	$\mathrm{D}_{8}-\mathrm{E}_{9}$	0.098	＋ 1.0869	－1．0878	＋1．0874	＋0．9	-63.9	E9	201.896	7.0848
Do	E\％－134	1． 024	－ 0.6442	＋ 0.6440	－ 0.6441	＋0．2	－63．7	134	202.920	6． 4407
Apr．27－29	134－135	1． 144	－0．0168	＋0．0191	－ 0.0180	－2．3	－66．0	135	204． 064	6． 4227
Apr．29－29	135－F	1.357	－0．1506	＋0．1501	－0．1504	＋0．5	－65．5	F_{0}	205.421	6． 2723
Do．	$\mathrm{F}_{0}-\mathrm{Gq}_{9}$	0.936	＋ 2.2894	－2．2881	＋ 2.2888	－1．3	－66．8	G_{0}	206． 357	8.5611
Do．	$\mathrm{CrO}_{0} \mathbf{1 3 6}$	1.203	－0．5212	＋ 0.5190	－ 0.5201	＋2．2	－64． 6	136	207.560	8． 0410
Do	136－137	1.209	＋0．7608	-0.7597	＋ 0.7602	－1．1	-65.7	137	208． 769	8． 8012
Do	137－138	1． 106	＋ 0.7170	－0．7144	＋ 0.7157	－2．6	－68．3	138	209.875	9． 5169
Do	138－H9	0.325	－0．7757	＋ 0.7748	－0．7752	＋0．9	－67．4	H_{9}	210.200	8.7417
Apr．30－29	$\mathrm{H}_{0}-\mathrm{I}_{9}$	1．326	＋1．4461	－1．4468	＋ 1.4462	＋3．1	-64.3	I_{8}	211.526	10． 1879
$\begin{aligned} & \mathrm{Apr}, \\ & \mathrm{Apr} . \\ & 29-20 \end{aligned}$	${ }_{\mathrm{I}}^{\mathrm{H}_{9}-139}$	1.326 1.245	+1.4433 +0.7568	二1．4487	＋ 0.7548	－3．9	-68.2	139	212.771	10.9427
Apr．29－30	139－140	1． 209	＋ 0.4095	－ 0.4081	＋0．4088	-1.4	－69．6	140	213． 980	11.3515
Apr．30－30	140－141	1． 127	＋ 0.6241	－0．6210	＋0．6226	－3．1	－72．7	141	215． 107	11.9741
Do．	141－39	0.068	－0．389	＋0．3585	－0．3883	－0． 4	－73．1	J	215.175	11.5458
Do	141－142	1．125	＋ 0.3583	－0．3579	＋ 0.3584	－0．9	－73．6	142	216.232	12.3320
Do	142－143	1． 105	＋ 0.8472	-0.8463	＋0．8468	－0．9	-74.5	143	217.337	13．1793
Do．	143－144	1． 106	＋0．4596	－0．4595	＋ 0.4596	－0．1	－74．6	144	218.443	13． 6359
D	144－145	1． 024	＋ 0.4184	－0．4204	＋ 0.4194	＋2．0	－72．6	145	219． 467	14．0583
May 1－2	145－K9	0.405	－0．0825	＋0．0826	－0．0826	－0．1	-72.7	K_{9}	219.872	13.9757
Do．	$\mathrm{K}_{0} 146$	1.189	＋1．7296	－1．7235	＋1．7296	－0．1	－72．8	146	221.061	15．7053
May 1－1	${ }^{146-19}$	1.055	＋ 0.1364	－ 0.1367	＋ 0.1366	＋0．3	－72．5	$1{ }_{1}$	222． 116	15． 8419
Do	L－147	1． 181	＋ 4.1447	－4．1458	＋ 4.1452	＋1．1	－71．4	147	223.297	19.9871
Do．	147－148	1.167	－2．7217	＋ 2.7282 $+\quad 27312$	－ 27272	－5．1	－76．5	148	224.464	17.2599
May 2.	${ }_{147-148}^{147-148}$	1．167	二 2.72206	＋ 2.7312					22.4	17.2599
May 1－1	$148-\mathrm{M}_{9}$	0.365	－ 1.0375	＋1．0359	-1.0367	$+1.6$	-74.9	M9	224.829	16． 2232
Do．	M $0-149$	1.122	＋ 0.4806	-0.4832	＋ 0.4819	＋2．6	－72．3	149	225.951	16.7051
May 1－2．	149－150	1． 072	－0．6293	+0.6347 +0.6324	-0.6323	－2．6	－74．9	150	227.023	16．0723
$\begin{aligned} & \text { May 3-3. } \\ & \text { May 2-2. } \end{aligned}$	$149-150$ $150-151$	1.072 1.127	二0．6327	+0.6324 +0.5196 +0.059	-0.5182	－2．9	－77．8	151	228． 150	15．5546
Do．	$151-\mathrm{N}_{9}$	0.644	－0．0836	＋0．0807	－ 0.0822	＋2．9	－74．9	No	228.794	15． 4724
Do．	$\mathrm{N}_{5}-\mathrm{O}_{9}$	0.804	－ 0.5800	＋ 0.5800	－ 0.58803	－0．6	－75．5	O_{9}	229.598	14．8921
May 2－3．	$\mathrm{O}-152$	1.124	－0．2770		－ 0.2784	-2.7	－78．2	152	230.722	
May 3－3．	152－153	1． 253	+0.3961 +3.2235 +2.503	$\begin{array}{r}+0.3952 \\ +3.2263 \\ \hline\end{array}$	a +0.3956 -3.2249	-0.9 -2.8	－79．1	153 154 1	231.975 233.142	15.0093 11.7844
Do．	$\xrightarrow{153-154}$	1．167	+3.2235 +2.5043	+3.2263 +2.5029 $+\quad .288$	$\begin{array}{r}\text { a } \\ +3.249 \\ +2.5036 \\ \hline\end{array}$	－2．8	-81.9 -83.3	154	233.142 234.307	11.7844 14.2880
Do	$155-\mathrm{P}_{0}$	1.116	＋0．2230	＋0．2236	＋0．2233	－0．6	-83.9	P_{9}	235． 423	14.0647
May 6－6．	P－156	1.041	＋ 1.1967	－1．1978	＋ 1.1972	＋1．1	－82．8	156	236.464	15.2819
Do．	156－157	1.124	－ 1.4195	＋ 1.4217	－ 1.4206	－2．2	－85．0	157	237.588	13.8413
Do	157－158	1.134	－ 0.9970	＋ 0.9948	－ 0.9959	＋2．2	－82．8	158	238.722	12.8454
Do．	158－159	1.123	＋1．0675	－1．0689	＋1．0682	＋14		159	239845	139136
May 6－7．	159－29	0.972	－ 0.6024	+0.6025 $+\quad .1583$	－ 0.6024	－0．1	-81.5 -82.2	Q_{9} 160	240.817 241.978	$\begin{aligned} & 13.3112 \\ & 11.1532 \end{aligned}$
May ${ }^{7-7}$	$\mathrm{Q}_{2}-160$ $160-161$	1.161 1.105	+2.1576 +0.3417	+2.1583 +0.3462	－2．1580	－0．7	－82．2	160	241.978	11.1532
May 9－9．	160－161	1． 105	＋ 0.3461	－0．3450	＋ 0.3448	＋1．7	－80．5	161	243.083	11.4980
May 7－7．	161－162	1.145	＋0．1271	－0．1273	＋ 0.1272	＋0．2	－80．3	162	244－228	11.6252
Do．	162－163	1.098	＋ 0.5860	－ 0.5878	＋ 0.5872	＋1．2	-79.1	163	245.326	12.2124
Do	163－164	1.124	＋1．1539	－ 1.1572	＋ 1.1556	＋3．3	－75．8	164	246．450	13．3680
May 7－10	164－165	1.143	＋1．8150	－ 1.8138	－ 1.8144	－1．2	－77．0	165	247.593	15.1824
May $10-10$.	${ }_{165-\mathrm{R}_{9}}$	0.372 0.372	-0.8676 -0.8649	＋ 0.8648 +0.8641	$\}-0.8653$	＋1．8	-75.2	R_{8}	247.965	14.3171

Results of leveling, San Francisco, Cal., to Marmol, Nev.-Continued.

Date.	$\begin{gathered} \text { From B. M. . } \mathrm{M} \text {. } \\ \text { B. } \end{gathered}$	Distance in kilometers.	Difference of elevation.			Discrepancy.		Designation of B. M.	Distance from Bity 63. Cry	Observed elevation above mean sea level.
			Forward line.	Backward line.	Mean.	Partial.	Total accu-mu-			
1912.										
May 10-10.	R-166	0.797	-0.3208	+ 0.3185	-0.3196	+2.3	-72.9	166	248.762	m. 13.9975
Do.	$166-167$ $167-168$	1.163	+ +0.7143 +0.7090	-0.7149	+ +0.7146 +0.7071	+0.6	-72.3	167	249.925	14.7121
Do.	167-168	1.124	+0.7090	-0.7052 +0.6221	+ 0.7071	-3.8	-76.1	168	251.049	15.4192
May $11-11$	168-169	1.204	- 0.6268	+0.622 +0.6250	- 0.6255	+3.8	-72.3	169	252.253	14.7937
May $10-11$.	$169-S_{9}$	1.276	+ 0.4048	- 0.4047	+ 0.4048	-0.1	-72.4	S9	253.529	15.1985
Do.	Sp-170	1.118	- 1.5941	+1.5917	-1.5929	+2.4	-70.0	170	254.647	13.6056
May 11-11	170-171	0.536 0.536	-0.1397 -0.1408	+0.1434 +0.1433	-0.1418	-3.2	-73.2	171	255.183	13.4638
Do	171-172	1.124	- 0.7087	+0.1112 +0.	-0.7100	-2.5	-75.7	172	256.307	12.7538
Do	172-173	1.164	- 0.5540	+0.5538	-0.5539	+0.2	-75.5	173	257.471	12.1999
May 13-1	${ }_{173-\mathrm{T}}^{17}$	1.097	- 0.8306	+0.8305	-0.8301	+1.0	-74.5	T9	258.568	11.3698
May 13-13.	T9-174	1.419	+ 0.0 .9336	+0.838	+ 0.9342	+1.1	-73.4	174	258.987	12.3040
Do.	174-175	1.152	+ 0.5358	- 0.5309	+ 0.5328					12.3040
Do.	174-175	1.152	+ 0.5322	- 0.5323	$+0.5328$	-2.4	-75.8	175	260.139	12.8368
Do	175-176	1.430	- 0.4521	+ 0.4519	- 0.4520	+0.2	-75.6	176	261.569	12.3848
Do	176-177	0.925	- 0.0137	+ 0.0100	- 0.0118	+3.7	-71.9	177	262.494	12.3730
Do	177-178	1.236	- 0.0328	+ 0.0317	- 0.0322	+1.1	-70.8	178	263.730	12.3408
May 14-13	${ }_{178} 17 \mathrm{U}_{9}$	1.281	- 1.2735	+ 1.2717	- 1.2726	+1.8	-69.0	U_{9}	265.011	11.0682
May 14-14		0.755 1.146	a +1.3613 +0.0301	+1.3626 +0.0293	+ 1.3620 +0.0297	+1.3 +0.8	-67.7	179	265.766	12.4302
$\begin{array}{r} \text { May } 15-14 . \\ \text { Do... } \end{array}$	$179-180$ $180-181$	1.146	+0.0301 +0.5849	+	+0.0297 +0.5858	+0.8	-66.9	180	26.912	12.4005
Do	$181-\mathrm{V}_{8}$	1.414	+	- 0.580808	a +0.5858 +2.2410	+1.8	-65.1	181	268.586 270.000	12.9863
May 15	$\mathrm{V}_{5}-182$	1.281	+	+ 0.2596	+	+0.6	-65.6	182	270.000 271.281	15.2273
Do.	182-183	1.239	- 0.1783	+0.1780	- 0.1782	+0.3	-60.9	183	272.520	14.7873
Do	183-184	1.150	- 1.0837	+ 1.0851	- 1.0844	-1.4	-62.3	184	273.670	13.7029
Do	184-185	0.670	-0.4063	+ 0.4060	- 0.4062	+0.3	-62.0	185	274.340	13.2967
Do.	185-186	0.568	+ 0.3017	-0.3021	+ 0.3019	+0.4	-61.6	186	274.908	13.5986
Do.	186-W9	0.431	- 1.4147	+ 1.4151	- 1.4149	-0.4	-62.0	W9	275.339	12.1837
May 16	Wo-187 $187-188$	0.879	+ 1.2158	+1.2173	+1.2166	+1.5	-60.5	187	276.218	13.4008
Do.	$187-188$ $188-189$	1.063	-1.8684	+1.8689	-1.8686	-0.5	-61.0	188	277.281	11.5317
Do.	$188-189$ $189-190$	1.126	+	- 2.6661	+2.6646	+3.1	-57.9	189	278.407	14.1963
Do	190-191	1.123	+	-0.623 +0.3533	+	-2.9 +0.8	-60.8 -60.0	191	279.572 280.695	14.8211 14.4674
Do	191-X9	0.516	+ 1.4658	- 1.4657	+ 1.4658	-0.1	-60.1	X	281.211	14.4674 15.9332
Do	$\mathrm{X}_{0}-192$	1.209	+ 2.1297	- 2.1284	+ 2.1290	-1.3	-61.4	192	282.420	18.0622
Do	192-193	1.117	+3.4555	- 3.4557	+ 3.4550	+0.2	-61.2	193	283.537	${ }_{21.5178}$
May 16-17	193-194	0.864	+ 1.3824	- 1.3833	+ 1.3828	+0.9	-60.3	194	284.401	22.9006
May 17-17	194-195	1.206	+ 3.9729	- 3.9760	+3.9744	+3.1	-57.2	195	285.607	26.8750
Do.	195-196	1.242	+ 4.8325	- 4.8353	+ 4.8339	+2.8	-54.4	196	286.849	31.7089
Do.	196-197	1.116	+ 4.4840	- 4.4828	+ 4.4833	-1.4	-55.8	197	287.965	36.1922
Do.	197-198	1.123	+4.2233	- 4.2209	+ 4.2221	-2.4	-58.2	198	289.088	40.4143
Do	199-200	1.196	+ 4.7505 +4.0077	- 4.7 .0105	+4.7568 +4.0091	+2.7 +2.8	-55.5	199	290.292 291.488	45.1711
May 17-18.	203-Y9,	0.836	- 1.4141	+ 1.4173	- 1.4157	-3.2	-55.9	Y_{0}	292.324	49.1802 47.7645
May 18-18.	Yo-201	1.151	- 1.4445	+1.4463	- 1.4454	-1.8	-57.7	201	293. 475	46.3191
Do.	201-202	1.083	- 1.3679	+1.3692	- 1.3686	-1.3	-59.0	202	294.658	44.0505
Do.	202-Z,	0.855 1.179	- 0.3080	+1.3028 +0.3068 +2.7029	-0.3074	+1.2	-57.8	Z0	295.413	44.6431
May $21-21$	79,203	1.179 1.179	- 2.7074	+2.7029 +2.7087	- 2.7074	+3.1	-54.7	203	296.592	41.9357
May 18-21.	203-204	1.370	+ 4.9220	-4.9215	+ 4.9218	-0.5	-55.2	204	297.962	46.8575
May 21-21.	$204-\mathrm{A}_{10}$	0.686	+ 1.9622	- 1.9617	+ 1.9620	-0.5	-55.7	A_{10}	298.648	48.8195
Do.	$\mathrm{A}_{10}-205$ $205-\mathrm{B}_{10}$	1.115 0.708	+1.7930 +0.0432	-3.7961	+3.7046	+3.1	-52.6	205	299.763	52.6141
May 22-22	205- ${ }^{205} 10$ $205-\mathrm{B}_{10}$	0.708 0.708	+0.0432 +0.0432	-0.0478 $=0.0416$	$+0.0440$	+1.5	-51.1	B_{10}	300.471	52.6581
May 21-21.	B_{10}-206	1.139	+ 6.5651	- 6.5696	$+6.5682$	+1.6	-49.5		301.610	
May ${ }^{22-22}$.	${ }^{\mathrm{B}_{10} 0-206}$	1. 139	+6.5697	- 6.5684	$+6.5082$	+1.6	-49.5	200	301.610	59.2263
May 23-21.	206-207	1. 165	+ 5.4950	- 5.4973	+ 5.4982	-1.7	-51.2	207	302.775	64.7245
Do.	207-208 208-209	0.381	+ 0.2591	- 0.2594	+ 0.2592	+0.3	-50.9	208	303.156	64.9337
May 25-23.	209-210	1.012	+5.1238 $+\quad 5.5770$	- 5.1204	+5.1221 +5.5785	-3.4	-54.3	209	304.220	70.1058
May 23-24.	$210-\mathrm{C}_{10}$	0.806	+ 1.0782	- 1.0778	+5.121 +1.0780	${ }_{-0.4}^{+3.4}$	-51.7	C_{10}	305.232 306.038	75.6843 76.7623
Do.	$\mathrm{C}_{10} \mathrm{C}_{211}$	1.093	+16.7259	-16.7270	+16.7264	+1.1	-50.6	211	307.131	93.4887
Do.	$211-212$	1.042	+ 1.4817	-1.4820	+1.4818	+0.3	-50.3	212	308. 173	94.9705
Do.	212-213	1.118	+12.6253	-12.6273	+12.6263	+2.0	-48.3	213	309.291	107.5968
May $24-24$.	213-214	1.110	+14.3317	-14.3304	+14.3310	-1.3	-49.6	214	310.401	121.9278
May $24-24$	214-215	1.341	+13.8172	-13.8179	+13.8176	+0.7	-48.9	215	311.742	135.7454
Do.	215-216	1.187	+20.0855	-20.0885	+20.0870	+3.0	-45.9	216	312.929	155.8324
Do.	216-217	1.201	+24.4965	-24.4063	+24.4964	-0.2	-46.1	217	314.130	180.3288
May 24.27 .	217-218	1.179	+23.7184	-23.7194	+23.7189	+1.0	-45.1	218	315.309	204.0477
May May $27-27$.	218-219	1.100	+21.8112	-21.8115	+21.8114	+0.3	-44.8	219	316.409	225.8591
May $27-27$	219-220	1.182	+23.9550	-23.9530	+23.9540	-2.0	-46.8	220	317.591	249.8131
Do.	220-221	1.092	+25.9405	-25.9374	+25.9390	-3.1	-49.9	221	318.683	275.7521
Do.	$221-\mathrm{D}_{10}$	1.135	+21.6837	-21.6871	+21.6879	-1.6	-51.5	D_{10}	319.818	297.4400
Do.	$\mathrm{D}_{10}-222$ $222-223$	0.328 0.999	+4.5922 +25.0851	- 4.5919	+4.5920 +25.0852	-0.3	-51.8 -51.6	${ }_{222}^{223}$	320.146 321.145	302.0320 327.1172
May 28-28	223-224	1.082	+23.7269	-23.7248	+23.7258	+2.1	-53.7	224	322.227	350.8430
Do.	224-225	1.200	$+24.0176$	-24.0183	+24.0180	+0.7	-53.0	225	323.427	374.8610
Do.	225-226	1.150	+16.5361	-16.5372	$+16.5366$	+1.1	-51.9	226	324.577	391.3976
Do.	$226-227$	1.156	+6.9047	- 6.9039	+6.9043	-0.8	-52.7	227	325.733	398.3019
Do.	227-228	1.166	+12.3755	-12.3708	+12.3770	+2.4	-50.3	228	326.899	410.6705
May 28 -29.	227-228-E10	1.166	+12.3773 +3.5623	-12.3777	+3.5616	-1.4	-51.7		327.322	
Do.	$\mathrm{E}_{10} 229$	0.943	+	- 9.9498	+ + +9.9490	+1.6	-50.1	229	328.265	424.1901
Do.	229-230	1.070	+12.4583	-12.4610	+12.4596	+2.7	-47.4	230	329.335	436.6497
Do.	230-231	0.848	+17.5067	-17.5073	+17.5070	+0.6	-46.8	231	330.183	454.1567
May $29-20$	231-232	1.219	+21.7155	-21.7159	+21.7157	+0.4	-46.4	232	331.402	475.8724
May $30-30$	-232-233	1.248	+17.8177	-17.8129 -17.8162	+17.8166	-3.9	-50.3	233	332.650	493.6890
May 29-29	-233-234	1.248	+17.8193 +1.6038	-17.8162	+ 1.6040	+0.3	-50.0	234	333.771	495.2930
	234-235	1.116	+17.3709	-17.3679	$+17.3694$	-3.0	-53.0	235	334.887	512.6624

Results of leveling, San Francisco, Cal., to Marmol, Nev.-Continued.

Date.	From B. M. to B. M.	Distance in kilometers.	Difference of elevation.			Discrepancy.		Designation of B. M.	$\begin{aligned} & \text { Distance } \\ & \text { from } \\ & \text { B. M. } \\ & \text { City } 635 . \end{aligned}$	Observed elevation above mean sea level.
			Forward line.	Backwrard line.	Mean.	Partial.	Total acculated.			
1912.			m.		m.		$m m$.		km.	
May 29-31.	235-236	1.171	+13.5697	-13.5748	+13.5728	$+2.3$	-50.7	236	336.058	526.2352
May 31-31.	235-236	1.171	+13.5735	-13.5730	+ 7.4750					
May $30-30$.	236-237	1.116	+ 7.4743	- 7.4757	+ 7.4750	+1.4	-49.3	237	337.174	533.7102
Do.	${ }_{\text {2 }}^{237-\mathrm{F}_{10}}$	0.688 1.120	+1.4563	-11.4561	+1.4562 +11.3439	-0.2	-49.5	F $\mathbf{1 0}$ 238	337.862 338.982	${ }_{546}^{535.1664}$
Do	$238-\mathrm{G}_{10}$	1.071	+22.7227	-22.7222	+22.7224	-0.5	-47.8	G_{10}	340.053	569.2327
Do	G10-239	1.154	+19.9707	-19.9680	+19.9694	-2.7	-50.5	239	341.207	589.2021
May 31-31.	239-240	1.134	+22.6956	-22.6968	+22.6962	+1.2	-49.3	240	342.341	611.8983
Do...	240-241	1.024	+21.2278	-21.2266	+21.2272	-1.2	-50.5	241	343.365	633.1255
Do	241-242	1.099	+21.9504 +21.9523	-21.9545	+21.9529	+3.0	-47.5	242	344.464	655.0784
$\begin{aligned} & \text { June } 3-3 . \\ & \text { May } 31-31 . \end{aligned}$	242-243	1.180	+21.6097 +23.609	-23.6128	+23.6112	+3.1	-44.4	243	345.644	678.6896
Do.	243-244	1.119	+15.6731	-15.6788						
June 3-3	243-244	1.119	+15.6773	-15.6761	+15.6763	+2.2	-42.2	244	346.763	694.3659
Do.	244-245	1.195	-0.7227	+ 0.7229	- 0.7228	-0.2	-42.4	245	347.958	693.6431
Do	245-246	1.003	+ 0.0813	- 0.0802	+0.0808	-1.1	-43.5	246	348.961	693.7239
Do	246-247	0.976	+1.3804	- 1.3791	+ 1.3798	-1.3	-44.8	217	349.937	695.1037
Do.	$247-\mathrm{H}_{10}$	0.386	+ 4.6663	- 4.6672	+ 4.6668	+0.9	-43.9	H_{10}	350.323	699.7705
June 4-4	$\mathrm{H}_{10}-248$	1.128	-4.3546	+ 4.3563	- 4.3554	-1.7	-45.6	248	351.451	695.4151
Do.	248-249	1.118	+ 6.4256	- 6.4228	+ 6.4242	-2.8	-48.4	249	352.569	701.8393
Do	249-250	1.102	+16.4008	-16.4031	+16.4020	+2.3	-46.1	230	353.671	718.2413
D	250-251	1.098	+11.4355	-11.4378	+11.4366	+2.3	-43.8	251	334.769	729.6779
Do	251- I_{10}	0.761	+6.4652	- 6.4652	+ 6.4652	0.0	-43.8	I_{10}	355.530	736.1431
June 4-5	$\mathrm{I}_{10} \mathbf{0}-252$	1.076	- 2.1380	+ 2.1353	- 2.1366	+2.7	-41.1	252	356.606	734.0065
June 5-5	252-253	1.139	- 4.0866	+ 4.0875	- 4.0870	-0.9	-42.0	253	357.745	729.9195
Do	253-J10	1.005	+ 2.1232	- 2.1237	+ 2.1234	+0.5	-41.5	J_{10}	358.750	732.0423
June 5-	$\mathrm{J}_{10}-254$	0.885	+17.5293	-17. 5279	+17.5286	-1.4	-42.9	254	359.635	749.5715
June 6-6	254-255	1.154	+22.1958	-22.1943	+22.1950	-1.5	-44.4	255	360.789	771.7665
Do.	255-256	1.183	+25.4462	-25.4439	+25.4450	-2.3	-46.7	256	361.972	797.2115
Do.	256-257	1.079	+21.4982	-21.4977	+21.4980	-0.5	-47.2	257	363.051	818.7095
Do	257-258	1.190	+22.6055	-22.6054	+22.6054	-0.1	-47.3	258	364.241	841.3149
Do	258-259	1.152	+14.0240	-14.0218	+14.0229	-2.2	-49.5	259	365.393	855.3378
Do	259-260	1.179	+22.6599	-22.6609	+22.6604	+1.0	-48.5	260	366.572	877.9982
Do.	260-261	0.886	+15.4772	-15.4789	+15.4780	+1.7	-46.8	261	367.458	893.4762
June 6-7	261-262	0.965	+11.1318	-11.1309	+11.1314	-0.9	-47.7	262	368.423	904.6076
June 7.	262-263	1.159	(1)	-22.2113						
June 8-8.	262-263	1.159	+22.2132	-22.2103	$+22.2120$	-2.4	-50.1	263	369.582	926.8196
June 7-7.	263-264	1.097	$+22.9247$	-22.9180	+22.9216	-4.4	-54.5	264	370.679	49.7412
June 8-8.	263-264	1.097	+22.9228	-22.9209						
June ${ }^{\text {Do }}$ -	${ }_{\text {K }}^{264} \mathrm{~K}_{10}-285$	0.884 1.078		-17.3204	+17.3212	-1.5	-56.0	K_{10}	371.563	967.0624
June 8-8	${ }_{\mathbf{K}}^{10} \mathbf{K}_{10-265}$	1.078	+15.0453 +15.0498	- 15.0459	$+15.0490$	+2.7	-53.3	265	372.641	982.1114
June 7-8	265-266	0.914	+4.4092	- 4.4114	+ 4.4103	+2.2	-51.1	260	373.555	986.5217
June 8-8	266-267	1.101	+22.0597	-22.0596	+22.0596	-0.1	-51.2	267	374.656	1008.5813
Do	287-268	1.092	+22.3830	-22.3805	+22.3818	-2.5	-53.7	268	375.748	1030.9631
Do	268-269	1.088	+23.0163	-23.0179	+23.0171	+1.6	-52.1	269	376.836	1053.9802
June 8-10	269-270	0.497	+10.3424	-10.3426	+10.3425	+0.2	-51.9	270	377.333	1064.3227
June 10-1	270-271	1.093	+24. 1956	-24.1932	+24.1944	-2.4	-54.3	271	378.426	1088.5171
Do.	271-272	1.092	+24.4290							
Do	271-272	1.092	+24.4301	-24.4295	$)^{+24.4281}$	-3.0	-57.3	282	379.518	1112.9452
Do	272-L ${ }_{10}$	0.944	+22.1225	-22. 1230	+22.1228	+0.5	-56.8	L_{10}	380.462	1135.0650
June 13-1	$\mathrm{L}_{\mathbf{L} 10-273}$	1.038	$\begin{aligned} & +19.2222 \\ & +19.2189 \end{aligned}$	-19.2178	+19.2204	-0.5	-57.3	273	381.500	1154.2884
June 10-1	273-274	0.837	+18.5748	-18.5706						
June 14-14	273-274	0.837	+18.5746	-18.5742	$\}+18.5736$	-2.3	-59.6	274	382.337	1172.8620
June 13-	274-275	1.289	+28.1738	-28.1714	+28.1726	-2.4	-62.0	275	383.626	1201.0346
Do.	275-276	1.295	+28.3798	-28.3749						
June 14-14	275-276	1.295	+28.3803	-28.3786	$\}+28.3784$	-3.2	-65.2	276	384.921	1229.4130
June 13.	276-277	1.299	+28.9543	(1)	+28.9548	-0.1	-65.3	277	386.220	1258.3678
June 15-15.	276-277	1.299	+28.9555	-28.9548	+28.0548				38.220	1208.3078
June 13-1	277-278	1.291	$\bigcirc+28.5796$	-28. 5774	+28.5785	-2.2	-67.5	278	387.511	1286.9463
Do.	278-279	1.295	+28.7109	-28.7124	+28.7116	+1.5	-66.0	279	388.806	1315.6579
Do.	$279-\mathrm{Mr}_{10}$	1.437	+31.1632	-31.1613	+31.1622	-1.9	-67.9	M_{10}	390.243	1346. 8201
June 15-	$\mathrm{M}_{10} \mathbf{- 2 8 0}$	0.986	+21.4629	-21.4656	+21.4642	+2.7	-65.2	280	391.229	1368.2843
Do.	280-281	0.944	+20.9333	-20.9350	+20.9342	+1.7	-63.5	281	392.173	1389. 2185
June 17-17	281-282	0.260	+ 5.7555	-5.7564	+ 5.7560	+0.9	-62.6	282	392.433	1394.9745
June 15-1	282-283	1.002	+20.9079	-20.9059	+20.9069	-2.0	-64.6	283	393.435	1415.8814
Do.	$283-\mathrm{N}_{10}$	0.681	+14.1001	-14.0992	+14.0996	-0.9	-65.5	N_{10}	394. 116	1429.9810
June 17-1 Do..	N10-284	1.006	+18.9429	-18.9410	+18.9420	-1.9	-67.4	284	395.122	1448.9230
June 18-18.	284-285	0.997 0.997	+20.3287 +20.3284	-20.3245 -20.3278	+20.3274	-2.4	-69.8	285	396.119	1469.2504
June 17-17.	285-286	0.999	+20.8690	-20.8709	$+20.8700$	+1.9	-67.9	286		1490. 1204
Do.	286-287	0.998	+20.8402	-20.8397	+20.8400	-0.5	-68.4	287	398.116	1510.9604
Do.	287-288	0.987	+21.2308	-21.2328	+21.2318	+2.0	-66.4	288	399.103	1532. 1922
Do.	288-289	0.996	+18.2097	-18.2075	+18.2086	-2.2	-68.6	289	400.099	1550.4008
June 18-18	289-290	1.000	+16.9239	-16.9264	+16.9252	+2.5	-66.1	290	401.099	1567.3260
Do.	290-291	0.993	+16.2778	-16.2781	+16.2780	+0.3	-65.8	291	402.092	1583.6040
Do.	291-O ${ }^{10}$	0.300	+ 5.0827	- 5.0816	+ 5.0822	-1.1	-66.9	O_{10}	402.392	1588. 6862
Do.	O_{10-292}	1.013	+14.9183	-14.9223	+14.9203	+4.0	-62.9	292	403.405	1603. 6065
Do.	292-293	1.079	+19.6415	-19.6422	+19.6413	+0.7	-62.2	293	404. 484	1623.2483
Dune 18-20.	293-294	1.000	+17.9413	-17.9428	+17.9420	+1.5	-60.7	294	405. 484	1641.1903
June 18-20.	294-295	0.225	+ 3.8387	- 3.8395	+ 3.8391	+0.8	-59.9	295	405.709	1645. 0294
June 20-20	295-296	0.220	+ 4.1097	- 4.1094	+ 4.1096	-0.3	-60.2	296	405.929	1649. 1390
Do.	296-297	1.141	+20.5586	-20.5625	+20.5606	+3.9	-56.3	297	407.070	1669.6996
Do	297-298	1.183	+21.1530	-21.1519	+21.1524	-1.1	-57.4	298	408.253	1690.8520
Do.	298-299	1.144	+20.9799	-20.9779	+20.9789	-2.0	-59.4	299	409.397	1711.8309
Do.	299-300	1.054	+8.8671	-8.8677	+8.8674	+0.6	-58.8	300	410.451	1720.6983
Do..	300-301	1.182	+15.6842	-15.6835	+15.6838	-0.7	-59.5	301	411.633	1730.3821
June 21-20	301-302	1.073	+17.0593	-17.0577	+17.0585	-1.6	-61.1	302	412.706	1753.4406
June 21-21	302-303	1.089	+15.5451	-15.5458	+15.5454	+0.7	-60.4	303	413.795	1768.9860

${ }^{1}$ Rejected in field.

Results of leveling, San Francisco, Cal., to Marmol, Nev.-Continued.

Date.	From B. M. to B. M.	Distance in kilometers.	Difference of elevation.			Discrepancy.		$\begin{aligned} & \text { Designs- } \\ & \text { tion- } \\ & \text { of B.M. } \end{aligned}$	Distance from B. M City 635.	Observed elevation above mean sea level.
			Forward line.	Backward line.	Mean.	Partial.	Total accu-mulated.			
1912.										
June 21-21	303-304	1.183	+20.1214	-20.1206	$+20.1210$	${ }_{-0.8}^{m m}$	${ }_{-61.2}$	304	${ }_{414.978}$	${ }_{1789 .} 1070$
Do.	${ }^{304-\mathrm{P}_{10}}$	1.100	+18.1330	-16.1363	+16.1346	+3.3	-57.9	P_{10}	416.078	1805.2416
Do.	P_{10-305}	1.097	+16.0222	-16.0258	+16.0240	+3.6	-54.3	305	417.175	1821.2656
June $22-2$	305-306	1.060	+14.8408	-14.8434	+14.8421	+2.6	-51.7	306	418. 235	1836.1077
Do.	306-307	1.099	+16.7968	-16.7987	+16.7968	-0.1	-51.8	307	419.334	1852.9045
Do.	307-308	1.221	+18.9571	-18.9571	+18.9571	0.0	-51.8	308	420.555	1871.8616
Do.	$308-309$ $309-310$	1. 228	+17.1302	- 17.1325	$+17.1314$	+2.3	-49.5	309	421.783	1888.9930
Dune. 24.	309-310	1.158	+18.8207	-18.8250	+18.8228	+4.3	-45. 2	310	422.941	1907.8158
June $24-2$ Do.	310-311	1.124	+18.3130	-18.3123	+18.3126	-0.7	-45.9	311	424.063	1926. 1284
Do.	$311-312$	1. 216	+19.2307	-19.2303	+19.2305	-0.4	-46.3	312	425.281	1945. 3589
Do.	$312-313$ 313	1.117	+18.2481	-18.2483	+18.2482	+0.2	-46.1	313	426.398	1963.6071
Jone $26-2$	313-314	1.081	+17.3217	-17.3199	+17.3208	-1.8	-47.9	314	427.479	1980.9279
June $26-20$ Do...	${ }^{314-Q_{10}}$	0.289	+3.8663	- 3.8670	+ 3.8666	$+0.7$	-47.2	Q_{10}	427.768	1984. 7945
Do.	Q10-315 $315-316$	0.862 1.106	+12.3061 +14.1021	-12.3063 -14.1038	+12.3062	+0.2	-47.0	315	428.630	1997.1007
Do	316-317	1.143	+16.2331	-16.2352	+16.2342 +16.2	+1.7 +2.1	-45.3	316	429.736	2011.2037
Do	317-318	1.083	+16.3500	-16.3478	+16.3189	-2.2	-45.4	318	431.962	2027.43868
Do	318-319	1.038	+15.1519	-15.1536	+15.1528	+1.7	-43.7	319	433.000	2058.9396
June 27-27	$319-320$	1.330	+22.7926	-22. 7964	+22.7945	+3.8	-39.9	320	434.330	2081.7341
Do.	$320-321$	1.083	+19.1857	-19.1846	+19.1852	-1.1	-41.0	321	435.413	2100.9193
Do	$321-\mathrm{R}_{10}$	1.149	+21.9775	-21.9771	+21.9773	-0.4	-41.4	R_{10}	438.562	${ }_{2122.8966}$
Do	$\mathrm{R}_{10}-322$	0.779	+11.3078	-11.3077	+11.3078	-0.1	-41.5	322	437.341	2134.2044
June $27-2$	322-323	0.996	-9.7794	+9.7794	-9.7794	0.0	-41.5	323	438.337	2124.4250
June 27-2 June 28.	323-324	0.932	-15.7318	+15.7284	-15.7301	+3.4	-38.1	324	439.269	2108.6949
June 29-29	324-325	1.091	-19.3304	+19.3272	-19.3293	+4.2	-33.9	325	440.360	2089.3656
June 28-28	$325-326$	1.219	-20.2618	+20.2679	-20.2667	-5.0	-38.9	326	441.579	2069.0989
Do.	$325-326$ $326-327$	1.219 1.123	-20.2667 -18.6381	+20.2706 +18.6388	-20.2608	-0.0	-38.9	320	41.58	
Do	327-328	0.662	-11.2852	+18.6388 +11.2819	-11.2936	+3.3	-36.3	328	443.364	
July 1-1	328-329	1.041	-18.4714	+18.4737	-18.4726	-2.3	-38.6	329	444.405	2020.7043
	$329-\mathrm{S}_{10}$	0.969	-15.1132	+15.1162	-15.1147	-3.0	-41.6	810	445.374	2005.5896
Do	S ${ }_{10}$-330	0.648	-11.8867	+11.8874	-11.8870	-0.7	-42.3	330	446.022	1993.7023
Do	330-331	0.842	-14.4711	+14.4709	-14.4710	+0.2	-42.1	331	446.864	1979.2316
Do	331-332	1.040	-17.8235	+17.8225	-17.8230	+1.0	-41.1	332	447.904	1961. 4086
July 6	332-333	0.523	- 7.4008	+ 7.4004	- 7.4006	+0.4	-40.7	333	448.427	1954.0050
	333-334	0.821	-14.4426	+14.4431	-14.4428	-0.5	-41.2	334	449.248	1939.5652
Do	334-T ${ }_{10}$	0.679	-11.4040	+11.4052	-11.4046	-1.2	-42.4	T10	449.927	1928.1606
July Do	T10-335	0.505	-8.3629	+ 8.3632	-8.3630	-0.3	-42.7	335	450.432	1919. 7976
Do	335-336	0.989	-16.9016	+16.9004	-16.9010	+1.2	-41.5	336	451.421	1902.8966
July 3.	330-337	0.958	-10.6400		-10.6404	-0.8		337	452.379	
July ${ }^{3}$ July ${ }^{\text {a-3 }}$	336-337	0.958		+10.6413	-10.0404	-0.8	-42.3	338	452.379	1892.2562
$\begin{gathered} \text { July } 3-3 . \\ \text { Do. } \end{gathered}$	$337-338$ $338-339$	1.027 0.900	- 7.9882	+ 7.9877 +8.0325	-7.9880 -8.0324	+0.5 -0.1	-41.8 -41.9	338 339	453.406 454.306	1884.2682 1876.2358
July 3-2	339-340	1.060	-14.8053	+14.8087	-14.8070	-3.4	-45.3	340	455.372	1861.4288
Do.	340-341	1.060	-16.9283	+16.9304	-16.9294	-2.1	-47.4	341	456.432	1844.4994
Do	341-342	0.963	-18.2706	+18.2699	-18.2702	+0.7	-46.7	342	457.395	1828.2292
D	342-343	1.061	-18.0310	+18.0318	-18.0314	-0.8	-47.5	343	458.456	1808.1978
Do	343-344	0.981	-17.4063	+17.4053	-17.4058	+1.0	-46.5	344	459.437	1790.7920
$\underset{\text { July } 50}{ }$	$344-\mathrm{U}_{10}$	1.123	-16.8868	+16.8983	-16.8876	-1.5	-48.0	U_{10}	460.560	1773.9044
$\begin{aligned} & \text { July 5-5 } \\ & \text { July } \end{aligned}$	U_{10-345}	1.178	-12.4227	+12.4234	-12.4258	-2.3	-50.3	345	461.738	1761.4786
July 5	345-346	1.071	- 10.0166	+10.0172	-10.0169	-0.6	-50.9	346	462.809	1751.4617
	346-347	1.106	-3.5131	+3.5142	- 3.5136	-1.1	-52.0	347	463.915	1747.9481
Do	347-348	1.144	- 5.4759	+ 5.4744	- 5.4752	+1.5	-50.5	348	465.059	1742.4729
Do	348-349	1.178	- 9.8161	+9.8139	- 9.8150	+2.2	-48.3	349	466.237	1732.6579
Do	349-350	1.079	- 6.1068	+ 6.1060	-6.1063	+0.6	-7.74	350	467.316	1726. 5516
Do	350-351	1.080	- 9.2335	+9.2333	-9.2334	+0.2	-47.5	351	468.396	1717.3182
Do, July $8-8$	351-352	1.080	- 5.1859	+ 5.1647	-5.1653	+1.2	-46.3	352	469.476	1712.1529
July ${ }_{\text {Do }}$ 8-8	${ }^{352-V_{10}}$	0.756	- 2.1912	+ 2.1929	- 2.1920	-1.7	-48.0	V_{10}	470.232	1709.9609
	$\mathrm{V}_{10}-353$	1.050	-8.9193	+8.9200	-8.9199	-0.2	-48.2	353	471.322	1701.0410
Do	353-354	1.083	-8.7450	+8.7467	- 8.7458	-1.7	-49.9	354	472.405	1692.2952
Do	354-355	1.050	- 5.9497	+ 5.9522	- 5.9510	-2.5	-52.4	355	473.485	1686.3442
Do	355-356	1.032	- 6.1358	+6.1386	-6.1372	-2.8	-55.2	356	474.517	1680. 2070
Do	356-357	1.080	- 4.0053	+ 4.0013	- 4.0033	+4.0	-51.2	357	475.597	1676. 2037
Do	357-358	1.080	- 4.0098	+ 4.0113	-4.0106	-1.5	-52.7	358	476.677	1672. 1931
July 9 9	358-359	1.076	- 3.2569	+ 3.2599	- 3.2584	-3.0	-55.7	359	477.753	1668. 9347
July ${ }^{\text {Dog }}$	359-360	1.141	-8.8346	+8.8326	-8.8336	+2.0	-53.7	360	478.894	1660.1011
Do.	360-361	1.080	- 8.3375	+8.3369	-8.3372	$+0.6$	-53.1	361	479.974	1651. 7639
Do	$361-W_{10}$	1.019	- 2.8024	+2.8023	- 2.8024	+0.1	-53.0	W_{10}	450.993	1648.9615
D	$\mathrm{W}_{10}{ }^{-362}$	1.094	-14.9729	+14.9727	-14.9728	$+0.2$	-52.8	362	482.087	1633. 9887
July 9.	362-363	1.061	- 5.5120	+ 5.5131	- 5.5126	-1.1	-53.9	363	483.148	1628.4761
$\begin{aligned} & \text { July } 9 . . . \\ & \text { July } 10-10 \end{aligned}$	年363-364	1.009 1.009	$\begin{gathered} \text { (i) } \\ -13.3414 \end{gathered}$	+13.3447 +13.3414	-13.3422	-1.6	-55.5	364	484.157	1615.1339
July 9-9.	364-365	1.088	-13.0748	+13.3414 +13.0783	-13.0766	-3.5	-59.0	365	485.245	1602.0573
July 10-10.	365-368	1.080	- 7.0983	+8.0026	- 7.9997	-2.6	-61.6	360	486.325	1594.0576
July $11-11$. July $10-10$	$365-368$ $360-367$	1.080 0.964	-7.9984 -9.4670	+7.9995 $+\quad 9.4675$ $+\quad$		-2.6	-61.6	367	488.325 487.289	1584.5904
$\begin{gathered} \text { July } 10-10 . \\ \text { Do... } \end{gathered}$	$366-367$ $367-368$	0.964 1.038	- 9.4670 -7.5637	+9.4675 +7.5627	- 9.4672	-0.5 +1.0	-62.1	367 368	487.289 488.327	1587.5904 1577.0272
July $10-11$	$368-\mathrm{X}_{10}$	0.602	- 3.9117	+3.9136	- 3.9120	-1.9	-63.0	X_{10}	488.929	1573.1146
July 11-11	$\mathrm{X}_{10} \mathbf{3 6 9}$	1.079	-6.8315	+ 6.8310	- 8.8312	+0.5	-62.5	309	490.008	1566.2834
Do.	$369-370$	1.224	-10.5289	+10.5302	-10.5296	-1.3	-63.8	370	491.232	1555.7538
Do	370-371	0.818	-5.1045	+5.1039	- 5.1042	+0.6	-63.2	371	492.050	1550.6496
Do	371-372	0.714	-5. 7014	+5.7000	- 5.7007	+1.4	-61.8	372	492. 764	1544.9489
Juig 12-12	${ }^{372-\mathrm{Y}_{10}}$	0.894	-11.0127	+11.0118	-11.0122	+0.9	-60.9	Y_{10}	493.658	1533.9367
July 12-12	$\mathrm{Y}_{10} 373$	1.128	-9.1245	+9.1264	-9.1254	-1.9	-62.8	373	494.786	1524.8113
Do.	$373-\mathrm{D}_{6}$	0.828	-10.0122	+10.0141	-10.0132	-1.9	-64.7	D_{5}	495. 614	1514.7981
Do	De-E。	0.921	-2.3403	+2.3422	-2.3412	-1.9	-66.6	E_{5}	496.535	1512. 4569
Do	$\mathrm{E}_{\boldsymbol{-}} \mathrm{F}_{6}$	0.103	- 0.4395	+ 0.4398	-0.4396	-0.3	-66.9	Fs	496.638	1512.0173

RATE OF PROGRESS.

The average rates of progress for the two seasons were 73 miles per month in 1911 and 77.4 miles per month in 1912. The maximum progress in any one calendar month was 88 milcs in 1911 and 87 miles in 1912. The average monthly progress for 28 seasons of precise leveling, as shown on page 30 of Special Publication No. 18, is 69.5 miles. The rates of progress for the two seasons levcling on the San Francisco-Brigham line are, respectively, 5 and 11 per cent greater than that average value.

The maximum rates of progress attained in precise leveling by this survey in recent years are given on pagcs 14 and 15 of Precise Leveling in the United States, 1903-1907, and page 30 of Special Publication No. 18.

COST OF LEVELING.

The cost per mile of leveling during the season of 1911 was $\$ 14.09$ ($\$ 8.75$ per kilometer) while the cost of the leveling during the season of 1912 was $\$ 10.73$ per mile ($\$ 6.67$ per kilometer). The average cost per mile for the whole line was $\$ 11.90$. This is in close agreement with the average cost for a number of seasons of leveling, which as stated on page 31 of Special Publication No. 18 is $\$ 11.10$.

The lower unit cost of the work in 1912 was due largely to the use of the motor velocipede car which made the rate of progress more rapid, to the longer season, and to the abscnce of heavy transportation charges on equipment at the beginning and end of the season. The places at which it was possible to get hotel accommodations for the party were closer together than in 1910. The increased experience of the observer, who was also the chief of party, was no doubt an additional factor.

The above figures represent the actual cost of the leveling, including the establishment of the bench marks, with the exception of the cost of the instruments and stationery. It includes the transportation to and from the field paid by the Government and all wages and salaries, including those of the chief of party and recorder. The salary of the chief of party was charged to the leveling for the whole period during which he was engaged upon work incidental to the leveling, including the time spent in travel to and from the field, the time spent in preparing for the field, and in completing field reports, records, and computations at the cnd of the season. One-eleventh has been added to the salary actually paid the chicf of party during the time he was connected with the leveling, to take account of the fact that the Government pays its permanent employees 12 months' salary for 11 months' work upon an average.

In view of the unfavorable character of the country and the steep grades encountered, especially on the western end of the line, the cost of the work must be considered very satisfactory.

ORGANIZATION OF PARTY.

The party consisted of the chief, who made all of the observations, and 5 hands. One of these recorded the observations, 2 were rodmen, 1 held the sunshade, and 1 the wind shield.

The equipment was practically the same as that used on previous lines. During the greater part of the season of 1911 two hand-driven velocipede cars were used to transport the party to and from the work and during the actual leveling. For several wceks at the end of the first season and during the entire season of 1912, one hand-driven velocipede car and one motor-driven velocipede car were used.

During the first season the members of the party lived mostly in tents. At all except one of the headquarters they were able to obtain their meals at hotels, and thus they avoided the necessity of running their own mess. In 1912 it was possible to secure hotel accommodations, both quarters and meals, throughout the season.

For a detailed account of the usual organization and equipment and also the management of a precise leveling party, see pages 14 to 17 of Special Publication No. 18.

CONNECTIONS WITH OTHER LEVELING.

The western end of the leveling was started from four bench marks established by the engineering department of the city of San Francisco. The elevation of those marks had been determined by precise leveling from the tidal bench marks near the tidal station at the Presidio.

At a number of places connections were made with bench marks of tho United States Geological Survey. The bench marks of the Southern Pacific Railway were connected with the new leveling whenever practicable, and when of a substantial character were used instead of setting new permanent bench marks.

Except in the case of the city bench marks in San Franciseo all those of previous leveling with which connections were made, were given the United States Coast and Geodetic Survey designation letter followed by the initials of the organization which established the mark.

AGREEMENT OF ELEVATIONS AT BRIGHAM, UTAH.

The 1912 special adjustment of the level net, which is reported on in Special Publization No. 18, fixed the standard clevation of bench mark R at Brigham, Utah, as 1309.1505 meters, while the elevation of this mark, as given by the observed and unadjusted leveling from San Francisco, was 1309.1684 meters. The difference between the observed and standard elevations is only 0.0179 meter.

The theoretically best value for bench mark R at Brigham, as determined by the 1912 adjustmont, is 1309.1510 meters. This differs 0.0174 meter from the observed value.

These agreements are so close that it is certain that the addition of this new line to the net in a new adjustment would change the elevations very little from those resulting from the 1912 special and general adjustments.

CIRCUIT CLOSURES.

The most sovere test of the accuracy of the new line is the closing errors of the two circuits of which it forms a part. The unadjusted levcling in the loop Seattle-Brigham-San Francisco has a closing error of 0.2360 meter. The correction which would close this circuit of 2911 kilometers is 0.081 millimeter per kilometcr.

The closing error of the loop San Diego-Brigham-San Francisco, as given by tho unadjusted levels, is 0.2612 meter. The correction which would close this circuit of 3027 kilometers is 0.086 millimeter per kilometer.

These corrections per kilometer are very small and compare most favorably with the smallest corrections per kilometer to close circuits, as shown on pages 72 and 73 of Special Publication No. 18.

CORRECTION APPLIED.

The line from San Francisco to Brigham was adjusted to the fixed elevations at those two places. The elevation at the former place was referred to mean sea level as zero and that at tho latter was the standard elevation from the 1912 special adjustment. A correction of only 0.0125 millimeter per kilometer was necessary to mako the line fit the fixed elevations.

PROBABLE AND SYSTEMATIC ERRORS.

On page 88 of Special Publication No. 18 is given the resolution adopted by the International Geodetic Association in 1912 in regard to leveling of high precision. The resoultion gives the following formulas with which to compute the accidental and systematic errors of leveling.

For the probable accidental error, η_{r}, in the case of a sct of lines, whether or not they form circuits,

$$
\eta_{r}{ }^{2}=\frac{1}{9}\left[\frac{\Sigma \Lambda^{2}}{\Sigma L}-\frac{\Sigma r^{2}}{(\Sigma L)^{2}} \Sigma \frac{s^{2}}{L}\right] .
$$

For the probable systcmatic error, σ_{r}, in the case of a set of lines not forming a net,

$$
\sigma_{r}^{2}=\frac{1}{9 \Sigma L} \Sigma \frac{s^{2}}{L}
$$

L denotes the length of an unconnected line, or the length of the side of a polygonal circuit in the case of a net;
ΣL, the aggregate length of the set of lines, or of the nct under consideration;
Δ, the discrepancy between the results of the two runnings between consecutive bench marks;
r, the distance between these two bench marks;
s, the entire systematic discrepancy between the results of the two runnings, either for a whole line or for the side of a circuit.

To obtain the s the process given by Lallemand in his "Nivellement de haute précision," page 713, was used. The accumulated discrepancy was plotted as ordinate against the distance in kilomcters from an initial bench mark as abscissa. The linc connecting these points gave a somewhat irrcgular line which, nevertheless, showed, as a rule, a tendency to a fairly well-defined slope. A straight linc was drawn by eye to represent as nearly as possible the tendency of the irregular line, and was tested to see whether the area between the irregular line and the straight line, lying above the latter, was equal to the area between the two lines and below the straight line. After a straight line was finally adoptcd the difference between the two ordinates corrcsponding to the two cnds of the line of levels gave the value of s.

The following table gives the values of the terms in the above formulas for each of the sections of the line from San Francisco to Brigham and also for the entirc line.

Section.	$\begin{aligned} & \text { Length } \\ & \text { ollime } \\ & \text { L. } \end{aligned}$	Systemcrepancy	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { sections } \\ & \text { N. } \end{aligned}$	$\Sigma 4^{2}$	Σr^{2}	$\frac{8}{2}$
Brigham to Beowawe. Beowawe to Marmol. Marmol to San Francisco.	$\begin{gathered} k m_{4}^{486} \\ \begin{array}{c} 491 \\ 497 \\ 497 \end{array} \end{gathered}$	mm $\begin{array}{r} +73 \\ +33 \\ -25 \end{array}$	435 434 483 48	$\begin{aligned} & 1896 \\ & 1584 \\ & 1926 \end{aligned}$	563 488 445	11.0 2.4 1.3
Total..	1434		1352	5406	1594	14.7

$$
\begin{aligned}
\eta_{r}^{2} & =1 / 9\left[\frac{5406}{1434}-\frac{1594}{(1434)^{2}} \times 14.7\right]=1 / 9[3.770-0.011]=0.418 \\
\eta_{r} & = \pm 0.646 \\
\sigma_{r}^{2} & =\frac{14.7}{9 \times 1434}=0.001139 \\
\sigma_{r} & = \pm 0.034
\end{aligned}
$$

The probable accidental error pcr kilometer for the whole line $\eta_{r}= \pm 0.646$ millimeter.
The probable systematic error per kilometcr for the whole line $\sigma_{r}= \pm 0.034$ millimeter.
These errors indicate an accuracy much greater than that barely necessary for leveling of high precision which is given by the International Geodetic Association as a probable accidental error per kilometer of 1 millimeter and a probable systematic crror per kilometer of ± 0.2 millimeter.

INSTRUMENTS USED.

The leveling instruments used wcre like the adopted model which is described in detail on pages 200 to 211 of Appendix 3 of the Report for 1903. A bricf description of it, with two views, is given on page 7 of Special Publication No. 18.

The regular type of self-reading rods was used. These are described on pages 415 and 416 of Appendix 8 of the Report for 1899. They are graduated to centimeters and on only one face.

The rods were standardized in the United States Coast and Geodetic Survey office, both before and after each field season, and they were also measured by an espccially designed tape
at frequent intervals in the field. This tape and the way it is used are described on page 31 of this publication. The mcasurements in the field are sufficiently exact to indicate whether the rods maintain their lengths or actually change, and the amount of the change, if any.

GENERAL INSTRUCTIONS FOR PRECISE LEVELING.

The leveling was done in accordance with the following general instructions for precisc leveling. These are also given on pages 8 to 12 of Special Publication No. 18, of the United States Coast and Geodetic Survey.

1. Except when specific instructions are given to proceed otherwise, all lines are to be leveled independently in both tbe forward and backward directions.
2. The aistance between successive permanent bench marks sball nowhere exceed 15 kilometers. There shall be no portion of the line 100 kilometers long in whicb there are not at least 20 permanent bench marks. No permanent bench mark is to be counted in considering these limits unless it is adequately described, nor shall both of two bench marks be counted if they are placed so near to one another and in such similar conditions of exposure as to be likely to be destroyed at tbe same time. The preceding statements refer to all permanent bench marks with which the leveling is directly connected, regardless of whether they are new bench marks or old ones establisbed by other organizations. The above-stated limits are to be regarded as extreme lower limits. It is desired that the number of bench marks shall, in general, greatly exceed tbat just necessary to keep within the limits. A good example to emulate is a line run in New York State, in 1902, on which the average distance between bench marks was 2.5 kilometers. It is desired, also, that the bench marks in each general locality shall belong, in part, to each of several classes, such as bolts or otbes marks on buildings, squares cut or bolts or disks set in railroad masonry, such as bridge piers, water tanks, etc., stone posts, and iron-pipe bench marks.
3. The line of levels is to be broken by temporary bench marks into sections from 1 to 2 kilometers long, except where special conditions make shorter sections advisable.
4. Temporary bench marks sbould be establisbed in places where tbey will be free from disturbance by the track hands working along tbe road or by materials unloaded from cars. This is especially important when tbe temporary bench mark is experted to hold the line for any considerable time. It is believed, however, that an undetected error caused by disturbance of the bench mark will be exceedingly rare, when two points, one set-up of the instrument apart, are used for holding the line.
5. At each city along the line, the leveling should be connected with at least two stable bench marks which are connected with the city datum. Connection should also be made with all stable bench marks of otber organizations which may be found along the route.
6. In general, the top of rail of the railroad track should be used as the rod support. However, footpins sbould be carried along during the progress of the work, and they should be used whenever a train is known to be approaching or when there are special reasons for supposing the rail not to be in a sufficiently stable condition.
7. When elevations and descriptions of bench marks establisbed by a railroad (over which a line is to be run) are furnished to this office with a request by the officials of the road to have the precise leveling done by this Survey connected with tbem, as many of tbe railroad bench marks will be incorporated in our line of levels as can be done without greatly delaying its progress. The railroad bench marks which are of a permanent nature are to be treated in the same manncr as new permanent bench marks established by the precise leveling party. If the permanent bench marks of the railroad are chiefly of the same general type they must not be given full weight in deciding whether tbere are enougb bench marks in any section of tho line. (See paragraph 2.) Bench marks of the railroad which are not of permanent character may be determined by extra foresights, as iu the manner provided for determining the height of rail in front of a railroad station. (See paragraph 10.) It will not bo necessary to connect the precise leveling with tbe railroad bench marks which are in places not easily accessible. It will not be necessary to connect with each railroad bench mark where they are less than 1 kilometer apart. The benefits derived from connecting a line of precise leveling with railroad bench marks are: (a) That time is gained by having come permanent bench marks already established; (b) the elevations of the railroad bench marks resulting from the connection with prccise leveling are of great value to the railroad concerned; and, (c) as the work progresses, a cbeck is obtained on gross mistakes which might escape notice, by comparing the elevations furnished by the railroad with those by the precise leveling party.
8. All old bench marks are to be called by their old names or numbers and are to be described fully by quoting the old description, if one is available, and by making additions or corrections to it.
9. All new bench marks are to be designated by capital ketters with numerical subscripts after the alphabet has been exhausted in each State.
10. The elevation of the top of the railroad rail in front of each railroad station along the line of levels is to be determined with a check. This may be done by using the point on the rail as a rod support in eitber the regular forward or backward running of the line, or by taking an extra foresight to it on both the backward and forward runnings, or by taking extra foresights to it from two instrument stations near it in one of the runnings of tho line.
11. When it is desirablo to get the elevations by means of which to compare the line of levels with the profile of the railroad, such elevations may be gotten by single readings on the rod held on top of the rail opposite water tanks and over bridges and culverts. Such structures are usually shown on the railroad profiles.
12. It is desirable that the backward measurement on each section should he made under different atmospheric conditions from those which occur on the forward measurement. It is especially desirahle to make the backward measurement in the afternoon if the forward measurement was made in the forenoon, and vice versa. The observer is to secure as much difference of conditions hetween the forward and backward measurements as is possible without materially delaying the work for that purpose.
13. On all sections upon which the forward and hackward measures differ in millimeters by more than $4.0 \sqrt{\mathrm{~K}}$ (in which K is the distance in kilometers leveled hetween adjacent hench marks) hoth the forward and hackward measures are to be repeated until the difference hetween two such measures falls within the limit. No one of the questioned measures is to he used with a new measure in order to get this agreement.
14. If any measure over a section gives a result differing by more than 6 millimeters from the mean of all the measures over that section, this measure shall be rejected. No rejection shall be made on account of a residual smaller than 6 millimeters unless there is some other good reason for suspecting an error in this particular measure, and in such cases the reason for rejection must be fully stated in the record.
15. Whenever a mistake, such as a misreading of 1 decimeter or 1 meter, or an interchange of sights (the backsight being recorded as a foresight), is discovered in any measure after its completion and the necessary correction applied, such measure may he retained, provided there are at least two other measures over the same section which are not suhject to any such uncertainty. Provided, further, that when it is found that the mistake was made on the last instriment station of the second running of a section and it is corrected on the same day and before beginning work on an adjacent section, such measure may he retained and no further measures of the section are to he required on account of the mistake.
16. The program of ohservation at each station is to he as follows:

Set up and level the instrument. Read the three lines of the diaphragm as seen pmjected against the front (or rear) md, each reading being taken to the nearest millimeter (estimated), and the huhhle heing held continuously in the middle of the tuhe (i. e., hoth ends reading the same). As soon as possible thereafter read the three lines of the diaphragm as seen projected against the rear (or front) rod, estimating to millimeters as hefore, and holding the buhble continuously in the middle of the tube.
17. At each rod station the thermometer in the rod is to be read to the nearest degree centigrade and the temperature recorded.
18. At stations of odd numbers the backsight is to be taken hefore the foresight, and at even stations the foresight is to be taken hefore the hacksight. As the same rod is held on a rod station for both the fore and hack sights, the effect of this is that the same rod is read first at each set-up, it being the rod used for the backsight at the first instrument station.
19. The difference in length between a foresight and the corresponding hacksight must not exceed 10 meters. The difference is to be made as small on each pair of sights as is feasible hy the use of good judgment without any expenditure of time for this particular purpose.
20. The recorder shall keep a record of the rod intervals subtended hy the extreme lines of the diaphragm on each hacksight, together with their continuous sum between each two contiguous hench marks (temporary or permanent). A similar record shall be kept for the foresights. The two continuous sums shall he kept as nearly equal as is feasible without the expenditure of extra time for that purpose, hy setting the instrument heyond (or short of) the middle point between the hack and front rods. The two continuous sums for a section shall not be allowed to differ hy more than a quantity corresponding to a distance of 20 meters.
21. Once during each day of ohservation the error of the level should be determined in the regular course of the leveling and recorded in a separate opening of the record hook as follows: The ordinary ohservations at an instrument station heing completed, transcribe the last foresight reading as part of the error determination, call up the hack rod and have it placed ahout 10 meters hack from the instrument, read the rod, move the instrument to a position about 10 meters hehind the front rod, read the front rod and then the back rod. (The two instrument stations are hetween the two rod points.) The rod readings must be taken with the huhhle in the middle of its tuhe. The required constant C to he determined, namely, the ratio of the required correction to any rod reading to the corresponding subtended interval, is

$$
C=\frac{(\text { sum of near rod readings })-(\text { sum of distant rod readings })}{\text { (sum of distant rod intervals) }-(\text { sum of near rod intervals })}
$$

The total correction for curvature and refraction must he applied to the sum of the distant rod readings hefore using it in this formula. The level should not be adjusted if C is less than 0.005 . If C is hetween 0.005 and 0.010 the ohserver is advised not to adjust the level, hut if C exceeds 0.010 the adjustment must he made. If a new adjustment of the level is made, C should at once be redetermined. It is desirable to have the determination of level error made under the usual conditions as to length of sight, character of ground, elevation of line of sight ahove ground, etc. The adjustment of the instrument to reduce C must he made hy moving the level vial, not by moving the reticle.
22. Notes for future use in studying leveling errors shall he inserted in the record, indicating the time of heginning and ending the work of each section, the weather conditions, especially as to cloudiness and wind, and whether each section of the line is run toward or away from the sun. Such other notes should he made as promise to he of value in studying errors.
23. The instrument shall he shaded from the direct rays of the sun, hoth during the ohservations and when moving from station to station.
24. The maximum length of sight shall he 150 meters, and the maximum is to be attained only under the most favorable conditions.
25. At the beginning and end of the season, and at least twice each month during the progress of the leveling, the 3 -meter interval between metallic plugs on the face of each level rod shall be measured carefully with a steel tape, which shall be kept continuously with the party during the season for that purpose only. The temperatures shown by the thermometer inserted in the rod and by the thermometer attached to the tape at the time of each of these measures must be recorded. The purpose of these measures is to detect changes in the length of the rods and not to determine the absolute lengths. The absolute lengths are determined at the office between field seasons.
26. The tape furnished by the office for measurement of the rods is a piece of steel tape about 3.1 meters long, having near one end a fine line graduation and about 3 meters from it (at the other end of the tape) a series of fine millimeter graduations on a steel rule riveted to the tape. With this special-form of tape the measurement of a rod should be made somewhat as follows: The rod should be supported at about the 0.85 meter and 2.45 meter points only (approximately quarter points) to get the least bending of the rod for any two-support system. In making the measurement the singlo line should bo made to coincide with the fine line on the silver plug nearest the bottom of the rod and the reading should be made at the line on the silver plug at the top of the rod. It is possible to estimate the half tenths of millimeters on the rule which is attached to the tape. The tape should be placed on the face of the rod in such a way that the edge of the tape from which the steel rule does not project coincides with the edge of the face of the rod nearest the meter marks of the rod. Care must be taken that the two edges coincide closely in order that the tape may always assume exactly the same position. The end of the tape at the foot of the rod should be clamped firmly to the rod after the line on the tape and that on the plug have been made to coincide. The tape should then be smoothed down by the hand to make it lie perfectly flat on the face of the rod. With the hand lifted and, consequently, no tension on the tape, the reading should be made from the rule attached to the tape near the upper or top end of the rod.
27. The field computations and abstracts are to be kept up as the work progresses. As soon as each book of the original record is out of use it is to be sent to the office by registered mail. The corresponding abstracts must be retained until an acknowledgment of the receipt of the original record at the office has been received.
28. No duplicates of the original records are to be made except of the descriptions of bench marks, of which duplicates in the form of carbon copies are to be made. At least once during each month such carbon copies as have accumulated are to be sent to the inspector of geodetic work.
29. At least once each month, during the progress of the leveling, a test must be made of the adjustment of the rod levels, and a statement should be inserted in the record showing the manner in which the test was made, whether the error was found to be outside the limit stated below, and whether an adjustment was made. With the bubble of the level rod held at the center, the deviation from the vertical of the plane intersecting the center of the face of the rod throughout its length and normal to the face of the rod, must be determined. The deviation from the vertical of the plane coinciding with the face of the rod must also be determined. If the deviation from the vertical exceeds 10 millimeters on a 3 -meter length of the rod, the rod level must be adjusted.
30. On the left-hand page of the record the number of each instrument station at which the instrument is not set up in tho railroad track is to be included in parentheses. Similarly, on the right-hand page of the record the designating letter for the foresight rod (V, W, etc.) shall be inclosed in parentheses, if said rod is not supported on the railroad rail. If the length of any portion of the level line run off the railroad is 25 meters or more greater than the railroad distance between the points of departure from and return to the railroad, then the distance along the track between these two points must be shown in the record. The purpose of theso requirements is to furnish the office a means of detecting blunders in the leveling, by plotting the level line on the profile of the railroad.
31. When it is expected that the forward and backward runnings of the line are to be completed up to any one place, the elevation at that place should be held by two points, established at least one set-up of the instrument apart. When the loveling is continued from or to such a pair of points, the instrument should be set up between them and readings of the rod taken on each point. The same arrangement of points should be used at the completed end or ends of any detached portion of the line of levels. Either one of the two points may be used for carrying along the elevation, with the other used only as a check against mistakes in reading the rod, or a disturbance of one or both of them. The records should show clearly which one of the two points was used to carry the elevation, and it is believed that it isgood policy to use the same point (backward or forward) in each case as far as may be practicable. It is believed that by employing this method no mistake of a meter or a decimoter made in reading the rod, held on a bench mark, will escape detection.
32. As far as possible all the permanent bench marks should be in the main line of levels and not on spur or branch lines. One of tho exceptions to this rule is where the line runs several miles off the railroad to tho mark of a triangulation station. In such a caso the spur, or branch line, is the more economical way of doing the work and will be satisfactory. Whenever a permanent bench mark is established by means of a spur, or branch line, which has only one setup, the forward and backward lines of the spur or branch should be run at different times of a day or on different days, if practicable. If it should be necessary to have the two runnings made ono immediately after the other, the height of the instrument should be materially changed to make the second measure.
33. Except in rare cases, the permanent bench marks should be established before or during the first running of the line. It is believed to be inadvisable to delay tho tying in of the permanent bench marks until after the line has been run, oven in only one direction. When it is impracticable to establish a permanent bench mark before or
during the first measurement of tbe line, an acceptable manner of tying in the permanent bench mark or including it in the main line of levels is to establish a temporary bench mark on both sides of the proposed location of the permanent bench mark and to leave the distance between tbem unleveled until the permanent bench mark has been set. The arrangement of the temporary bench marks establisbed for this purpose should be similar to that described in tbe latter part of paragrapb 31 of tbese instructions. This would provide for two points, tbe difference in elevation between whicb are known, on each side of the permanent bencb mark and tbe distance between the two pairs of points makes a section in tbe main line of levels. A diagram showing the arrangement of the stakes and the permanent bench mark is sbown below:

The positions of the instrument are shown by X, the positions of the temporary bench marks by 0 , and the position of the permanent bencb mark by \square.
34. Chièfs of party should keep the length of sigbt great enough to make it necessary to do a moderate amount of rerunning. If an observer is extremely cautious and confines all his observations to sigbts sufficiently short to insure easy reading of the rod, it is possible to work montb after montb with almost no rerunning, but tbe progress will be slow. On the otber hand, it is certain that an attempt to take sights of the limiting length, 150 meters, at all times would lead to a very large amount of rerunning and the progress would not be rapid. It is believed tbat the maximum speed consistent with the required degree of accuracy will be secured by continually keeping the lengtb of sight such that tbe amount of rerunning will be from 5 to 15 per cent. An extremely small percentago of rerunning would indicate an excess of caution on the part of the observer. Tbe occurrence of a moderate amount of rerunning is due largely to an attempt on tbe part of the observer to obtain the maximum progress consistent with the required degree of accuracy and not to inability to secure such observations that little or no rerunning would be necessary. Observers have found a convenient rule in fixing tbe length of sigbt to be to sborten the sigbts whenever tbe upper and lower thread intervals subtended on the rod are found to differ frequently by more than a selected limit. Eacb observer sbould fix tbe limit from his own experience by noting the relation between sucb a provisional limit and tbe amount of rerunning found to be necessary while using it. Such a rule is based upon the idea that the additional errors whicb are encountered when the lengtb of sight is increased are, in the main, those due to the increasing accidental errors in reading tbe rods.
35. It is not tbought advisable to state definitely in these instructions the allowable limit on the rate of divergence between the forward and backward lines, but this should be kept small.
36. The record and tho preliminary or field computation of precise levels must conform to the examples given on pages 22 to 26 of Special Publication No. 18, except that in the computation shown on page 25 tho five corrections for curvature and refraction, level, index, lengtb of rod, and temperature are not to be applied in the field.
37. Sbould tbe experience of a chief of party indicate to him tbat a change or changes in these instructions would facilitate tbe work in the field, he is urged to communicate witb tbis office regarding sucb cbanges.
38. When cases arise which are not provided for by tbese general instructions or by specific instructions, the chief of party will uso his own judgment in the matter.

Following the gencral instructions in Special Publication No. 18 there are given some explanations of them which, it is believed, need not be repeated here.

STUDY OF ERRORS. ${ }^{1}$

The errors in leveling are shown by the difference between the backward and forward runnings of the sections, the accumulated discrepancy of the line, and by the closing errors of the circuits. None of these, however, shows exactly what error may be present in any section of a line.

Constant errors due to erroneous values for the rod lengths and to undetected changes in rod lengths during the season are known to be small and may be considered negligible.

The constant or systematic errors due to changes in the elevation of rod supports between the forward and backward readings are very small. The rod support is usually the top of the rail of the railroad, the exact place used for the rod point being marked with keel or some similar substance. Wooden stakes are used as temporary bench marks. Wooden stakes or metal pins are used as the rod support for the short time when a train is known to be approaching or when the line is being run through a town or villagc. Metal plates are no longer used as rod supports. Country roads are uscd only on spur lines out to triangulation stations or to bench marks of other organizations which are not on railroads, with which it is desired to make connections.

[^2]It is possible to have appreciable errors due to the careless work of a rodman who might not place the rod in exactly the same position for the two sights, but it is believed that the effect of this would be largely accidental.

It seems probable that unequal temperatures in different parts of the instrument can have only slight effect on the leveling. All parts of the instrument except the wooden tripod are shielded from the sun during the obscrvations and while moving forward from one instrument station to another. The instrument is constructed of an alloy of nickel and iron which has a very low coefficient of expansion, only 0.000004 per degree Centigrade, and uncqual heating of the different parts should have very little effect in distorting the instrument. Temperature effects are still further minimized by having the levcl vial set into the barrel of the tclescope very close to the line of sight.

The principal sources of accidental crrors are believed to be: (a) Poor estimation of the millimeters in reading the rod; (b) reading the rod before the bubble has come to rest; (c) rapid changes in the vertical refraction.

The principal sources of systematic error are probably: (a) Slow changes in the vertical refraction; (b) difference in the amount of the vertical refraction on the two sights on steep grades; (c) other atmospheric conditions which possibly depend upon the direction of the running, the time of day, whether the sky is clear or cloudy, and whether it is calm or windy.

Some of the errors may be systematic in their effect on a single running of a linc of levels, but the mean of two runnings over the same line under different conditions may minimize or entirely eliminate the effect.

The effect of a gradual change in the vertical refraction is practically eliminated from even a single line by observing the back sight first at one station and the foresight first at the next station, and so on. It is impossible to eliminate the systematic crrors of leveling from a single difference between two bench marks, but the method of procedure in the field is designed to make the effect of the systematic errors on any line or large section of it largely accidental.

It is believed that the value of the accumulated difference between the forward and backward runnings does not give a definite value of the systematic error in a section of leveling. This will be discussed later. (See p. 42.)

It is not easy to discover in the results of leveling the effect of any one condition or set of conditions when only two runnings of a line have been made. In order to do this with any degree of certainty, a line should be run many times, under many different conditions of weather, and with the sun at various azimuths.

INVESTIGATION OF SYSTEMATIC ERRORS.

A number of miles of leveling have been run in the United States over stecp grades on which the errors of leveling secm to be greater, on an average, than those usually obtained when running over level ground. The observers of the United States Coast and Geodetic Survey, during a number of years past, have kept a record of the time of the runnings of the different sections, with the weather conditions at the time the observations were made. Five lines of the leveling by this Survey have been selected for a study of the possible relations between the errors of leveling and the conditions of weather, the time of observations, and the grade. They are:

| No. |
| :--- | :--- | :--- |

$53167^{\circ}-14-3$

The grades on some portions of these lines are as great as $2 \frac{1}{2}$ per cent, or a change in elevation of 25 meters in 1 kilometer. The leveling over the above lines was, as usual, divided into sections which vary in length from something less than 1 kilometer to about 2 kilometers. Each section is run over twice, in opposite directions, and if the two differences in the elevations of the ends of a section do not agree in millimeters within the amount represented by $4.0 \sqrt{K}$, where K is the length of the section in kilometers, one or more additional runnings are made.

The data for the United States Coast and Geodetic Survey leveling do not give any clear idea as to the relation between the accidental errors and the conditions under which the work is done, for the observers are directed to make their lengths of sight at all times as long as possible, provided only that they shall never exceed 150 meters and that the difference in millimeters between the two runnings of a section shall not be greater than $4.0 \sqrt{K}$. It seems reasonable to suppose that with the same length of sight on cloudy and on clear days, the accidental errors would be much smaller on the former, while under the actual condition of running when the cloudy-day sights are 150 meters and the clear-day sights only about half that length the accidental errors will be approximately the same. There remain the systematic errors which may be investigated.

The subject of constant and systematic errors in precise leveling is an old one which has been discussed by many writers of different countries. Most of these errors are of such small amounts that it is difficult to separate them from the accidental errors. It is believed that the largest systematic errors are found in leveling over steep grades, and that the errors are functions of (1) the time of day, (2) the amount of sunshine, (3) the strength of wind, and (4) possibly the direction of the running, forward or backward, or toward or away from the sun.

It being impracticable to investigate the relations between the size and sign of the discrepancy between the results of the two runnings of the sections and the many different grades, the leveling has been separated into only two classes: First, those sections with grades exceeding 10 meters, ${ }^{1}$ and, second, the remainder of the sections. The following table gives the average grades for the lines of leveling under consideration:

RELLATIONS BETWEEN THE DISCREPANOY AND TIE TIMES OF RUNNING.

The instructions issued to the observers direct that the two runnings of a section shall be made at different times of the day, if practicable. The following table gives the average discrepancies for the sections with the two runnings at the same time of the day and also for those which have one running in the morning and the other in the afternoon. In this discussion the direction of the line or sections is not considered. It is only the difference in the elevation of the ends of a section which is taken into account. The letter \mathbf{P} stands for afternoon and A for morning. If the value for $\mathrm{P}-\mathrm{A}$ is positive, it shows that the difference in elevation betweon the two bench marks is greater by the afternoon than by the morning leveling.

The values for the sections which have both runnings made at the same time of the day are given for purposes of comparison with those sections run both in the morning and the afternoon. Only the average value without regard to sign can be given for the $\mathrm{A}-\mathrm{A}$ and $\mathrm{P}-\mathrm{P}$ sections.

[^3]Table 1.
SECTIONS WITH GRADE EXCEEDING 10 METERS PER SECTION.

SECTIONS WITH GRADE LESS THAN 10 METERS PER SECTION.

ALL SECTIONS.

Number of scetions.	224	174	246	194	111	949
P-A, total, positive.	+ 471.4	+321.9	+567.9	+418.1	+362.2	$+2141.5$
Mean discrepancy.	+ 2.10	+ 1.85	+ 2.31	+ 2.16	+ 3.28	+ 2.25
Number of sections.	167	167	180	165	94	773
P-A, total, negative	-302.3	-309.1	-355.6	-374.7	-276.5	-1618.2
Mean discrepancy...	- 1.81	- 1.85	- 1.98	- 2.27	- 2.94	- 2.09
Number of sections.	391	341	428	359	205	1722
Mean discrepancy....	1.98	1.85	2.17	2.21	3.12	2.18
Accumulated discrepancy	+169.1	+12.8	+212.3	+85.7	+ 43.4	+ 523.3
Mean accumulation per section	+ 0.43	+ 0.04	+ 0.50	+ 0.24	+0.21	+ $+\quad 0.30$
Number of sections.	219	170	161	184	173	907
A-A and P-P, total.	442.2	302.5	317.6	451.2	441.5	1955.0
Mean discrepancy...	2.02	1.78	1.97	2.45	2.55	2.16

As stated above there is no standard length of sight and therefore the sizes of the mean differences without regard to sign between the two runnings for the sections of different grade may have little significance, but with the sign considered the size and the sign of the differences of $\mathrm{P}-\mathrm{A}$ are of great importance in indicating whether there may be systematic errors present.

For the stcep sections positive values of P -A predominate, there being 188 positive and 144 negative. Four of the five lines of levels have the positive sign for the total accumulated discrepancy and the mean accumulated discrepancy per section varies from +0.03 to +1.09 millimeters. The line which gives a negative value has only 3 sections with one running in the morning and the other in the afternoon and may be disregarded. The mean accumulated discrepancy per section for all the lines combined is +0.47 millimeter. Even the sections with grades less than 10 meters show a positive mean accumulated discrepancy for each line with an average accumulated discrepancy of +0.26 for all the five lines taken together. This value is only 55 per cent as great as the values for the stecp sections.

On the stcep sections the mean difference without regard to sign for the $\mathrm{P}-\mathrm{A}$ sections is 2.52 millimeters, while it is 2.34 millimeters for the mean of the $\mathrm{P}-\mathrm{P}$ and $\mathrm{A}-\mathrm{A}$ sections. This shows
a closer agreement between the differences in elevation obtained by two runnings at the same time of day than at different times. There is no such difference in the mean values for those sections with low grades.

Taken as a whole, the $1722 \mathrm{P}-\mathrm{A}$ sections indicate that on an average the afternoon running will give a greater difference in elevation between two bench marks than will the morning running. This average value for $\mathrm{P}-\mathrm{A}$ is +0.30 millimeter for bench marks averaging about 1.0 kilometer apart.

On page 20 of the Fourth General Adjustment of the Precise Level Net in the United Statcs it is stated that there probably is a systematic difference between the morning and afternoon runnings of a section on steep slopes. The following paragraph on the subject is quoted from that report:

There is a possibility of an accumulated discrepancy being produced by refraction on lines having steep grades. If the conditions in regard to refraction be the same on the two runnings of a line, there would be no divergence from that cause; butit is probable that the refraction is different on the higher sight than the lower one and that this difference changes during the day as the relative temperatures of the ground and air vary. The refraction on the higher sight (up the slope) is no doubt different in the morning with a rising temperature from what it is in the afternoon with a falling temperature, while the lower sight (down the slope) which comes well above the surface of the ground will not vary so much between the forenoon and afternoon. Consequently, if the observer systematically leveled forward early in the day and backward late in the day, refraction might cause an accumulated discrepancy. If it does, there should be a change of sign in the discrepancy when the program is reversed by leveling backward in the morning and forward in the afternoon. Also, without a change of program a change of sign should occur after passing a summit or the lowest point in a valley.

It is the author's opinion that the afternoon running gives on an average a diffcrence which is closer to the truth than the morning running. In the afternoon the tempcratures of the ground and the air are more nearly the same and a layer of air of uniform density should be concentric or nearly so with the sea-level surface. If this is true the refraction on the front and back sights should be about the same. The leveling of the United States Coast and Geodetic Survey is seldom done after 5 o'clock in the afternoon. So the afternoon running is not materially affected by the abnormal refraction of the late afternoon when a line of sight on a grade would pass through layers of colder and denser air which would tend to be concentric with the surface of the ground. In the late afternoon the earth cools more rapidly than the air and the air near the earth's surface becomes colder than the air above and consequently denser than normal.

In the morning on a clear day the air is receiving heat from the earth's surface. This decreases the density of the air close to the ground, which forms layers which tend to be concentric with the surface of the ground rather than with the sea-level surface. (The air near the earth is of course not at rest but tends to rise, owing to the decreased density.) It may be assumed that the line of sight to the observer from the rod held down the grade is not affected abnormally while the sight to the rod held up the grade is usually close to the ground and must pass through the layers of decreased density near the earth's surface. This sight would be less refracted than the one down the grade and therefore the morning running would give too small a difference between the zeros of the rods sighted on from one station. It is the writer's belief that, other things being equal, a line of levels run over steep grades in two directions in the afternoon, from noon to about one hour before sundown, will give results closer to the truth than levels with both runnings in the forenoon or with one leveling in the forenoon and the other in the afternoon. It is believed that this also applies to leveling over slopes of moderate grade.

The following table is similar to the one shown above, except that the data are given for only those sections which had both runnings in the sunshine:

Table 2.
SECTIONS W1TH GRADE EXCEEDING 10 METERS PER SECTION.

SECTIONS W1TH GRADE LESS THAN 10 METERS PER SECTION.

ALL SECTIONS.

As before, the afternoon runnings give on an average greatcr differences in elevation between the ends of sections than the morning runnings. But on steep grades the all-sunshine results give a mean accumulated discrepancy of $\mathrm{P}-\mathrm{A}$ of +0.71 millimeter per section while the valuc was only +0.47 millimeter where no account was taken of clear or cloudy weather. This seems to bear out the theory stated above that the afternoon runnings give results closer to the truth than the morning runnings. If it wcre cloudy in the morning the difference between the morning and afternoon results should agrce more closely than if the morning running were in sunshinc.

The data for the sections having low grades indicate the same results for the all-sunshine runnings as for the runnings with sunshine or clouds disregarded.

RELATION BETWEEN ERRORS OF LEVELING AND OLEAR AND CLOUDY SKY.

The following table gives data for the leveling done under different conditions of the sky and also for the sections which have both runnings in sunshine or both in cloudy weather.

The sections aro again divided into two groups according to their grades. First, those for which the differcnce in elevation of their ends exceeds 10 meters and, second, those with differences less than 10 meters.

As was stated on page 34, it is difficult or impossible to notice any relations between the accidental errors and the weather conditions, as there is no fixed length of sight. But the data in the tables given below should indicate whether there are any relations between systematic errors and the degree of clearness of tho sky. The letter "C" stands for clouds and "S" for sunshine or clear.

Table :
SECTIONS WITH GRADE EXCEEDING 10 METERS PER SECTION.

-	San Francisco to Marmol.	Beowawe Marmol.	$\begin{aligned} & \text { Brigham } \\ & \text { to } \\ & \text { Beowawe. } \end{aligned}$	$\begin{gathered} \text { Butte } \\ \text { to } \\ \text { Devon. } \end{gathered}$	$\begin{aligned} & \text { Pocatello } \\ & \text { to } \\ & \text { Byite. } \end{aligned}$	All lines.
Number of sections... C-S, total, positive...	 28 $+\quad 54.6$	None.	8 $+\quad 30.7$	10 $+\quad 23.4$	10 +50.5	56 +159.2
Mean discrepancy.	+ 1.95		+ 3.84	+ 2.34	+ 5.05	+ 2.84
Number of sections.	28 $-\quad 53.9$	None.	4.8 $-\quad 4.7$	${ }^{6}$ $-\quad 9.2$		45 -85.1
C-S, total, negatlve.	-53.9 $-\quad 1.92$		-4.7 -1.18	-9.2 -1.53	- 17.3 $-\quad 2.47$	-85.1 $-\quad 1.89$
Number of sections.	56	None.	12	16	17	101
Mean discrepaney...	1.94		2.95	2.04	3.99	2.42
Accumulated discrepancy	+ 0.7	,	+ 28.0	+14.2	+ 33.2	+ 74.1
Mean accumulation per section	+ 0.01		+ 2.17	+0.89	+ 1.95	+ 0.73
Number of sections.	55	None.		15	None.	
C -C, total..........	101.9		27.6	33.1		162.6
Mean discrepancy	1.85		2.76	2.21		2.03
Number of sections.	93		36	60	93	225
S-S, total.	207.7	7.6	69.6	169.0	248.3	702.1
Mean discrepancy.	2.23	2.53	1.93	2.82	2.67	2.46

SECTIONS WITH GRADE LESS THAN 10 METERS PER SECTION.

Number of sections.	46	58	69	24	20	217
C-S, totai, positive.	$+83.6$	+134.4	+160.6	+ 40.4	+ 54.1	+473.1
Mean diserepancy.	+ 1.82	+ 2.32	+ 2.33	+ 1.68	+ 2.70	+ 2.18
Number of sections.	74	55	62	24	13	228
C-S, totai, negativo.	-160.6	- 92.1	-137.3	- 51.4	- 40.9	- 482.3
Mean discrepancy..	- 2.17	- 1.68	- 2.21	- 2.14	- 3.15	- 2.12
Number of sections.	120	113	131	48	33	445
Mean discrepancy	2.04	2.00	2.27	1.91	2.88	2.15
Accumulated discrepancy.	- 77.0	+ 42.3	+ 23.3	-11.0	+13.2	- 9.2
Mean accumulation per section.	- 0.64	+ 0.37	+ 0.18	- 0.23	+ 0.40	- 0.02
Number of sections.	56	39	51	46		204
C-C, total....	96.2	56.1	95.6	88.4	29.8	366.1
Mean discrepaney.	1.72	1.44	1. 87	1.92	2.48	1.79
Number of sections.	240	362	347	290	220	1459
S-S, total...	458.9	646.2	695.8	635.7	626.9	3063. 5
Mean discrepancy.	1.91	1.78	2.00	2.19 .	2.85	2.10

ALL SECTIONS.

Number of sections	74	58	77	34	30	273
C-S, total, positive.	+138.2	+134.4	+191.3	+ 63.8	+104.6	+632.3
Mean discrepancy	+ 1.87	+ 2.32	+ 2.48	+ 1.88	+ 3.49	+ 2.32
Number of sections.	102	55	66	30	20	273
C-S, total, negative.	-214.5	-92.1	-142.0	- 60.6	- 58.2	-567. 4
Mean discrepancy	- 2.10	- 1.68	- 2.15	- 2.02	- 2.91	- 2.08
Number of sections.	176	113	143	64	50	546
Mean discrepancy.	2.00	2.00	2.33	1.94	3.26	2.20
Accumulated discre	-76.3	+ 42.3	+ 49.3	+ 3.2	+46.4	+ 64.9
Mean accumulation	0.43	+ 0.37	+ 0.35	+ 0.05	+ 0.93	+ 0.12
Number of sections.	111	39	61	61	12	284
C-C, total.	198.1	56.1	123.2	121.5	29.8	528.7
Mcan discrepancy	1. 78	1.44	2.02	1.99	2.48	1.86
Number of sections.	333	365	383	350	313	1744
S-S, total.	666.6	653.8	765.3	804.7	875.2	3765.6
Mean discrepancy.	2.00	1.79	2.00	2.30	2.80	2.16

In each of the lines considered the running of a section with steep grade, when the sky was cloudy, gave on an average a difference in elevation groater than the running when the sky was clear. There are 101 sections of stoep slopes or grades on which the two runnings of a section were made, one in sunshine and the other with a cloudy sky. The mean accumulated discrepancy is +0.73 millimeter.

There seems to be no tendeney toward an aeeumulation of C-S (eloudy minus sunshine) for those sections having grades less than 10 meters per section. "The total discrepancy with regard to sign for 445 sueh sections is only -9.2 millimeters or -0.02 millimetcr per scction.

It is the general belief among geodesists that the leveling under a cloudy sky is practically free from systematic errors resulting from atmospheric conditions. Therefore it would appear that the leveling under a clear sky eauses the observed differences in elevation on steep grades to be too small.

In the following table are given data for the steep sections which had one running in elear and the other in eloudy weather, but the data are arranged in two groups, one where the running in sunshine was made in the morning called (SA), while the other has the running in sunshine made in the afternoon (S P):

Table 4.
SECTIONS WITH GRADE EXCEEDING 10 METERS PER SECTION.

	San Francisco to Marmol.	Beowawe to Marmol.	$\begin{aligned} & \text { Brigham } \\ & \text { to } \\ & \text { Beowawe } \end{aligned}$	$\begin{aligned} & \text { Butte } \\ & \text { to } \\ & \text { Devon. } \end{aligned}$	Pocatelio to Butte.	All lines.
Number of sections.. C-SA, totai, positive.	$\begin{array}{r} 13 \\ +22.3 \end{array}$		$\begin{gathered} 6 \\ +25.2 \end{gathered}$	+ $+\quad 6.9$	$\begin{gathered} 4 \\ +20.4 \end{gathered}$	$\begin{gathered} 26 \\ +74.8 \end{gathered}$
Number of sections. . C-SA, totai, negatíve.	21 -44.8		3 -3.7	$\begin{gathered} 3 \\ -5.8 \end{gathered}$	$\begin{gathered} 3 \\ -7.0 \end{gathered}$	30 -61.3
Number of sections. C-SP, total, positive	15 +32.3		2 $+\quad 5.5$	$\begin{gathered} 7 \\ +16.5 \end{gathered}$	6 +30.1	30 +84.4
Number of sections. . C-SP, total, negative	7 -9.1		1 -1.0	3 -3.4	4 -10.3	15 -23.8
C-SA, accumulation per section. C-SP, accumulation per section.	-0.68 +1.05		+2.39 +1.50	+0.18 +1.31	+1.91 +1.98	+0.24 +1.34

SECTIONS WITII GRADE LESS TIIAN 10 METERS PER SECTION.

Number of sections. . C-SA, total, positive	$\begin{array}{r} 24 \\ +42.4 \end{array}$	$\begin{array}{r} 24 \\ +55.6 \end{array}$	$\begin{array}{r} 44 \\ +109.9 \end{array}$	$\begin{gathered} 13 \\ +20.8 \end{gathered}$	$\begin{gathered} 19 \\ +29.1 \end{gathered}$	$\begin{array}{r} 124 \\ +257.8 \end{array}$
Number of sections. C-SA, total, negative	$\begin{gathered} 33 \\ -66.9 \end{gathered}$	33 -57.3	- $\begin{aligned} & 29.7\end{aligned}$	$\begin{gathered} 13 \\ -24.1 \end{gathered}$	$\begin{gathered} 8 \\ -23.6 \end{gathered}$	$\begin{gathered} 116 \\ -231.6 \end{gathered}$
Number of sections. C-SP, total, positive	$\begin{gathered} 22 \\ +41.2 \end{gathered}$	$\begin{array}{r} 34 \\ +78.8 \end{array}$	$\begin{aligned} & 25 \\ & +\quad 50.7 \end{aligned}$	$\begin{gathered} 11 \\ +19.4 \end{gathered}$	$\begin{gathered} 11 \\ +25.0 \end{gathered}$	$\begin{gathered} 103 \\ +215.1 \end{gathered}$
Number of sections. . . C-SP, total, negative.	$\begin{gathered} 41 \\ -93.7 \end{gathered}$	$\begin{gathered} 22 \\ -34.8 \end{gathered}$	33 -87.6	${ }_{-27.3}^{11}$	5 -17.3	${ }_{-260.7}^{112}$
C-SA, accumulation pe $\mathrm{C}-\mathrm{SP}$, accumulation per	-0.43 -0.83	(0.03 +0.79	($+\quad 0.69$ $-\quad 0.64$	-0.13 -0.36	+0.18 +0.48	$+\quad 0.11$ $+\quad 0.21$

ALI. SECTIONS.

Number of sections. C-SA, accumulation per section	$\begin{gathered} 91 \\ -\quad 0.52 \end{gathered}$	$\begin{array}{r} 57 \\ -\quad 0.03 \end{array}$	$\begin{array}{r} 82 \\ +\quad 0.87 \end{array}$	$\begin{array}{r} 32 \\ -\quad 0.07 \end{array}$	$\begin{array}{r} 34 \\ +\quad 0.56 \end{array}$	$\begin{gathered} 296 \\ +0.13 \end{gathered}$
Number of sections.............. C-SP, accumulation per section	$\begin{gathered} 85 \\ -0.34 \end{gathered}$	$\begin{aligned} & 56 \\ & +\quad 0.79 \end{aligned}$	$\begin{array}{r} 61 \\ -\quad 0.53 \end{array}$	$\begin{aligned} & 32 \\ & +0.16 \end{aligned}$	$\begin{aligned} & 29 \\ & +1.06 \end{aligned}$	$\begin{gathered} 230 \\ +0.06 \end{gathered}$

In the above table it is shown that the cloudy running gave on an average a larger value for the difference in elevation on steep grades than the running in sunshine. If, as was stated above, it is assumed that the cloudy running is free from systematic error, then on an average the afternoon running in sunshine gave a smaller difference in elevation than the morning running in sunshine. Contrary to what might be expected from the data in a previous table, the value of C-SA for one of the lines is negative. All of the other values for C-SA are positive, as is the ease with the values of C-SP.

The average aeeumulated values of C-SA and C-SP for the sections with low grade are small, +0.11 millimeter per section in the former and -0.21 millimeter per section in the latter. These sections are quite numerous as compared with the number of steep sections, and should no doubt be given some considcration before coming to a decision as to whether the morning or afternoon runnings in sunshine give the larger differenees.

The third section of the above table gives the average accumulated discrepancy per section for 296 (C-SA) and for 260 (C-SP) sections, without regarding the amount of the grade. The average (C-SA) value is +0.13 millimeter per section and the average (C-SP) value is only +0.06 millimeter per section. This evidence is weak but it agrees with the conclusion expressed on page 36, that the afternoon running in sunshine gives a greater difference than a forenoon running in sunshine.

The data in the following table were prepared with the view of investigating possible relations between the systematic errors in leveling and the wind and calm during the observations. In the table C stands for calm and W for wind. The strength of the wind, whether strong, moderate, or light, is not considered.

Table 5.
sections with grade exceeding 10 meters per section.

SECTIONS WITH GRADE LESS THAN 10 METERS PER SECTION.

ALL SECTIONS.

The seetions are again divided into two elasses, first those having differences in elevation between the ends of more than 10 meters, and second those sections having a difference in elevation of less than 10 meters. The above table shows that each of the groups of sections has a minus sign for the accumulated value of ($\mathrm{C}-\mathrm{W}$), calm minus wind. (There is only one steep section for the second line.) For the steep sections, 138 in number, the accumulated value per section is -0.43 millimeter. On the low-grade sections the mean value of the aecumulated discrepaney is -0.33 millimeter per section. The mean value for all sections regardless of the grade is -0.35 millimeter per section.

These facts show that the running in wind gave a greater difference in elevation than a running during ealm. The conclusion that this is a general rule might not be justified for other factors enter the case. All of the lines are in the western portion of the United States where it is usually more windy in the afternoon than in the morning. Calm is infrequent there in the afternoon. Therefore the value of $\mathrm{C}-\mathrm{W}$ would be somewhat confused with the value of $\mathrm{P}-\mathrm{A}$.

If both runnings are made in the forenoon or both in the afternoon, then the values of $\mathrm{C}-\mathrm{W}$ should be practically free from the effect of the time of day. In the following table there are given the data for such sections the amount of grade not being considered:

Table 6.
ONLY SUCH SECTIONS ASHAVE RUNNINGS IN BOTH DIRECTIONS EITHER IN THE MORNING OR IN THE AFTERNOON.

The value of $\mathrm{C}-\mathrm{W}$ in the above table is practically free from the effeet of the time of day and also that of cloudy or elear weather. It appears then that the mean aceumulated value of $\mathrm{C}-\mathrm{W}$ is -0.26 millimeters per seetion. This makes the difference in elevation obtained from the running in wind greater than the difference obtained in calm. There are no data collected as to whether the size of $\mathrm{C}-\mathrm{W}$ is a function of the steepness of the grade.

There are 495 sections, each of which had one running in the morning and one running in the afternoon with both runnings made during calm. These sections should have values for P-A which are free from the effect of ealm and wind. The data for these sections are shown below:

Table 7.
ONLY SUCH SECTIONS AS WERE RUN IN BOTH DIRECTIONS DURING CALM.

	San Francisco to Marmoi.	$\begin{gathered} \text { Beowawe } \\ \text { to } \\ \text { Marmol. } \end{gathered}$	$\underset{\substack{\text { Brigham } \\ \text { to }}}{ }$ Beowawe.	Butte Devon.	Pocateilo to Butte.	All lines.
Number of sections P-A, total, positive Mean discrepancy. .	$\begin{gathered} 88 \\ +177.6 \\ +\quad 2.02 \end{gathered}$	55 +112.0 $+\quad 2.04$	44 +73.0 +1.66	33 +119.4 $+\quad 3.62$	39 +121.5 $+\quad 3.12$	$\begin{array}{r} 259 \\ +603.5 \\ +\quad 2.33 \end{array}$
Number of sections. P-A, total, negative Mean discrepancy ..	$\begin{array}{r} 69 \\ -122.1 \\ -\quad 1.77 \end{array}$	62 -119.7 $-\quad 1.93$	43 -75.6 -1.76	-29 $-\quad 86.5$ $-\quad 2.98$	33 -93.6 $-\quad 2.84$	$\begin{gathered} 236 \\ -497.5 \\ -\quad 2.11 \end{gathered}$
Number of sections........ Accumulated discrepancy. Mean accumulation por sect	$\begin{array}{r} 157 \\ +\quad 55.5 \\ +\quad 0.35 \end{array}$	$\begin{aligned} & 117 \\ & -\quad 7.7 \\ & -\quad 0.07 \end{aligned}$	$\begin{gathered} 87 \\ -2.6 \\ -0.03 \end{gathered}$	$\begin{aligned} & \quad 62 \\ & +\quad 32.9 \\ & +\quad 0.53 \end{aligned}$	$\begin{aligned} & \quad 72 \\ & +\quad 27.9 \\ & +\quad 0.39 \end{aligned}$	$\begin{aligned} & 495 \\ &+ 106.0 \\ &+\quad 0.21 \end{aligned}$

The above values for the aeeumulated discrepancy P-A are no doubt somewhat affected by cloudy and elear weather, for in general the forenoons are somewhat more free from elouds than the afternoons, but it is bclieved that this effect is small. The value of $\mathrm{P}-\mathrm{A}$ for the accumulated discrcpancy is +0.22 millimeter per section. The afternoon running gives a larger value for the difference in elevation between the ends of a section than the morning running. The steepness of the grade has not been considered as there were so few P-A sections on stcep grades which were run only in ealm weather. But it is worthy of note that the three lines, the first, fourth, and fifth, which have the greatest mean grade per seetion (see p. 34), have the largest values of $\mathrm{P}-\mathrm{A}$ (both in ealm). The second and third lines have accumulated values of the diserepancy of $C-W$ of only -0.07 and -0.03 millimeter. Therefore the conclusion may be drawn that the size of $\mathrm{P}-\mathrm{A}$, free from the effects of calm or wind, is a function of the grade.

If it is assumed that the running in wind is free from error, then the data for the sections shown below should givo an indication as to whether an afternoon or ferenoon running of a section will givo the greater differcnce in elevation.

$$
\begin{aligned}
& \text { Number ef sections } 256 \text {, total positivo value }(\mathrm{C}-\mathrm{W}) \mathrm{A}+499.2 \\
& \text { Number of sections } 330 \text {, total negative value }(\mathrm{C}-\mathrm{W}) \mathrm{A}-759.0 \\
& \text { Number of sections } 94 \text {, total positive value }(\mathrm{C}-\mathrm{W}) \mathrm{P}+221.7 \\
& \text { Number of scctions } 87 \text {, total negative value (C-W) } \mathrm{P}-182.3 \\
& \text { Mean accumulated discrepancy per section }(\mathrm{C}-\mathrm{W}) \mathrm{A}-0.44 \\
& \text { for } \\
& \text { (C-W) } \mathrm{P}+0.22
\end{aligned}
$$

The term (C-W) A represents ealm minus wind, with the calm running in the forenoon, while ($\mathrm{C}-\mathrm{W}$) P is the samc, excopt that the calm running is in the afternoon.

The indications in the above table aro that the difference in olevation from the calm running in tho forenoon is too small and from the calm running in the afternoon too great. This bears out the conclusion stated on page 36 that the afternoon running gave a greater difference than the forenoon running.

RELATION BETWEEN THE ERRORS OF LEVELLNG AND THE FORWARD AND BACKWARD RUNNING8
OF A LINF.
The values of $\mathrm{B}-\mathrm{F}$ in the following table represent the differenco in elevation between the ends of the sections as given by the two runnings, one forward and ono backward. When the section is up grade in tho lino of progress the difference between the two runnings $\mathrm{B}-\mathrm{F}$ is positive if the backward running gives a greater difference between the two ends than the forward running. The value is negative if the forward running gives tho greater difference.

If the section is down grado in the line of progress the valuo of $\mathrm{B}-\mathrm{F}$ is positive, if the backward running gives the smaller differenco in elevation between the cnds of the section, and is negative when it gives tho larger difference. In gencral B-F is positive if the backward running gives the higher olevation abovo sea level for the bench mark at the forward end of the scction.

In tho following table are given data regarding the aecumulated value of $B-F$ for the five lines considcred in this invostigation.

Table 8.
SECTIONS WITH GRADE EXCEEDING 10 METERS PER SECTION.

	San Francísco to Marmol.	$\begin{aligned} & \text { Beowawe } \\ & \text { to } \\ & \text { Marmol. } \end{aligned}$	Brigham to Beowawe.		$\begin{gathered} \text { Pocatello } \\ \text { to } \\ \text { Butte. } \end{gathered}$	All lines.
Number of sections.	100	2	60	72		
B-F, total, positive	+207.8	+3.1	+145.3	+248.3	+188.3	+792.8
Mean discreparcy..	+ 2.08	+1.6	+ 2.42	+ 3.45	+ 2.85	+2.84 $+\quad 23$
Number of sections..	100	3	45	43	42	233
B-F, total, negative.	-220.1	-7.6	-103.2	-85.7	-125.3	- 541.9
Mean discrepancy...	- 2.20	-2.5	- 2.29	- 1.99	- 2.98	-2.33
Number of sections.	200	5	105	115	108	533
Mean discrepancy..	2.14	2.14	2.37	2.90	2.90	2.50
Accumulated discrepancy.	-12.3	-4.5	+ 42.1	+162.6	+63.0	+250.9
Accumulation per section.	-0.06	-0.9	+ 0.40	+ 1.41	+ 0.58	+ 0.47

SECTIONS WITH GRADE LESS THAN 10 METERS PER SECTION.

The large accumulations occurred on stecp grades, though the evidence is not conclusive that this accumulation is of the same sign. Of the five lines, the one from Beowawe to Marmol should be ignored, for it has only five sections with steep grades. Of the other four lines, one has an accumulated value of -0.06 millimeter per section for $\mathrm{B}-\mathrm{F}$, while the other three have accumulated values ranging from +0.40 to +1.41 millimetcrs. The mean of all steep sections for the five lines is +0.47 millimeter. This indicates a large systematic error on steep grades.

The remainder of the sections which have low grades show no systematic crror in the accumulated values of B-F. Two of the values are ncgative and three positive, while the largest one is -0.18 millimeter and the mean for the 2112 sections of all lincs is 0.00 millimeter. The program followed by the obscrvers scems to avoid troublesome accumulation of error on low grades, but not so on the steep grades.

The difference between the two runnings of a line can not alone disclose any systematic errors due to the azimuth of the line, for there would be no systematic effect from that cause on one running which should not be present on the other. There may possibly be a systematic crror which is a function of the azimuth of the line, but this would be shown only by the errors of closure of the loops.

CONCLUSIONS.

The above discussion (pp. 32 to 43) seems to make justifiable the following conclusions:

1. The average size of the discrepancy between the difference in elevation determined twice under different conditions does not give a clear idea of the magnitude of the accidental errors which may be produced by certain conditions, as the custom is to make the length of sight as great as the conditions will permit. Therefore the extra length of sight may offset otherwise favorable conditions and give a large difference between two runnings of a section.
2. For scetions run twice under different conditions the average accumulated value of the discrepancy is greater for the sections with steep grades than with low grades, the direction of the running bcing ignored and only the actual difference in elevation between the ends of a section bcing considered.
3. On all grades, but more especially the steep ones, the difference in elevation determined in the afternoon is on an average greater than that determined in the forenoon.
4. 'On an average, a running during wind gives a greater difference in clevation than one during calm. The amount of this difference is somewhat greater for the steep than for the low grades.
5. On an average a running when the sky is cloudy gives a larger difference in elevation between two points, on a steep grade, than a running while the sun is shining. For low grades there is practically no difference, on an average, between the runnings under the two conditions.
6. On steep grades the average accumulated value of the backward minus the forward (B-F) running is positive. There is no accumulation for the low sections considered as one group.
7. For steep grades (about 10 meters per kilometer) the probability is that the afternoon running gives, on an average, a result closer to the truth than the forenoon running. The afternoon running should be ended sometime before sundown. The running in wind probably gives results on an average closer to the truth than a running in calm.

While the data in the tables make the above conclusions justifiable, yet, owing to the fact that there are so many conditions to be considered, it is impracticable to obtain at present any reliable numerical values for the effect of any given atmospheric condition or set of conditions.

It is believed that, other things being equal, the running in the afternoon (if not within about an hour of sunset) gives, on an average, more accurate results than the forenoon running; also that, other things being equal, a running in wind is more accurate, on an average, than one in calm; and, other things being equal, a running with a cloudy sky will be more accurate, on an average, than one in sunshine. Hence, the ideal condition would be an afternoon with a moderate wind and a cloudy sky.

It is believed that the mere fact of running backward or forward has no real effect on the result of a running, as the value of B-F may vary in sign for different lines and even for different parts of a single line.

As data accumulate it may be possible to determine accurately the effect of certain weather conditions and a correction might then be applied to the leveling. With our present knowledge it seems safe to follow such a program as that now used in the United States Coast and Geodetic Survey. On level ground or ground with low grades the observer need not be so particular in regard to the relation between the weather conditions and the separate runnings provided the two runnings of a section are made on different days, to meet the requirements of the International Geodetic Association; but on a steep slope it is best not to make observations in the early morning or the late afternoon; the reading of a wire on the rod should never be less than about two decimeters; and whenever part of a day must be taken for setting bench marks or computing, the forenoon should be used for that work and the afternoon for leveling, rather than the reverse.

As was stated on page 22 of Spccial Publication No. 18, it is not believed that the accumulated value of B-F (backward minus forward) gives any accurate indication of the systematic error which may be expected in a line of levels. Let it be assumed that on an average the afternoon running gives a greater difference in elevation than the forenoon running. Then, if the line is on a long steep grade, the accumulated value of B-F may be very small if each section has the two runnings in the forenoon or both in the afternoon, while the accumulated value of $\mathrm{B}-\mathrm{F}$ will probably be large if all of one running is made in the forenoon and all of the other running is made in the afternoon. In each case the actual accumulated systematic error would be the same.

STANDARD ELEVATIONS.

The following list gives the standard elevation, in meters and feet above mean sea level, of each bench mark on the precise level line Brigham, Utah, to San Francisco, Cal.

Elevations of permanent bench marks.

Place.	Designatlon of bench mark.	Standard elevation.		Place.	Designation of benchmark.	Standard elevation.	
		Meters.	Feet.			Meters.	Feet.
Brigham, U	R	1309.150	4295.103	Deeth, Nev		1626.022	${ }^{5334 .} 707$
Do..		1313.399	4309.043	Natchez, N		1614.139	5295.721
		1352.930	4438.738	Halleck,		1594.771	5232.178
Honeyvilie		1301.032	4268.469	Elburz, Nev		1588.379	5204.645
Dewey, Utah		1317.551	4322.665	Near Elburz, N		1580.299	5184.698
Near Corimne,	M	1287.547	4224.227	Ryndon, Nev.		1572.304	5158.467
Corinne, Utah	${ }^{\mathrm{N}}$	1299.0121	4229.047	Near Ryndon,		1570.662 1560	5153.080 5133.717
Near Balfour,	P	1293.550	4243.922	Coin, Nev	${ }^{\text {c }}$	1551.898	51391.519
Balfour, Utah	Q	1294.273	4246.294	Near Ellko,		1546.867	5075.013
Near Hansen,	R	1289.823	4231.694			1548.173	5079.298
Hansen, Utah	S	1290.815	4234.949	Elko, N	F_{6} (U.S. G.S.)	1544.382	5066.860
Near Hansen, Ut		1295.596	4250.635			1540.855	5055.288
Blue Creek, Utah.		1301.447	4269.831	Near Elko, Nev	H	1536.418	5040.731
Near Blue Creek, Utah.	V	1323.993	4343.800	Near A venel, Ne		1533.332	5030.607
Kolmar, Utah...........		1333.590	4375.286	A venel, Nev..		1530.494	5021.296
Surbon, Utah.		1391.661	4565.808	Near Avenel,		1528.957	5009.691
Promontory, Utah.....		1494.255	4902.402	Near Moleen,		1526.558	5008.382
Near Promontory, Utah	Z	1484.824	4871.460	Moleen, Ner.	M	1516.769	${ }^{4976.266}$
Rozel	${ }^{\text {A }}$	1441.217	4728.393 4593.370	Near Moleen,		1515.674 1514.198	4972.674 4967.831
Near Rozel,	C_{1}	1398.971	4589.791	Tonka, Nev	P	1512.654	4962.768
Near Lake,	D_{1}	1325. 579	4349.004	Near Tonka, Ne	Qs	1510.640	4956.158
Lake, Utah		1281.236	4213.364	Near Vivian, Nev	R	1509.118	4951.165
Near Lake, Uta	F	1287.202	4223.095	Vivian, Nev		1498.672	4916.893
Monument, Utah	G	1288.232	4226.474	Carlin, Nev		1492.558	4896.834
Near Monument, Utah.	H_{1}	1292.478	4240. 405	Near Carlin,		1487.450	4880.075
Do.		1287.070	4222.662	Tyrol, Nev		1485.169	4872.592
Near Kelton,		1286.080	4219.414	Palisade,		1476.289	4843.458
Kelton, Utah.		1286.750	4221.612	Gerald, Ne		1469.163	4820.079
Near Kelton, Utah.....		1326.236	4351.159	Harney, N		1455.204	4774.282
Near Peplin, U	M	1384.143 1436.620	4541.142	Cluro, Nev		1441.991	${ }_{4}^{4730.932}$
Near Romola	N	1436.620 1404.128	4713.311 4606.703	Beowawe,		1432.562	4699.997
De.	P	1400.376	4594.400	D	${ }_{C}$	1430.688	4693.849
Near Terrace	Q1	1429.349	4689.456	Ladoga, Ne		1420.740	4661.211
Terrace, Utah	R	1387.724	4552.891	Farrel, Nev		1410.945	4629.075
Near Terrace,		1357.271	4452.980	Mosel, Nev		1397.537	4585.086
Bovine, Utah	T	1325.698	4349.394	Argenta, N		1388.867	4556.641
Near Bovine, Utah		1339.962	4396.192	Rosny, Nev		1380.447	4529.016
Near Umbria Junction,		1350.182	4429.722	Battle Mountain, Nev.		1374.690	4510.129
Lucin, Utah	W_{10}	1362.878	4471.376	Near Battle Mountain,		1372.793	4503.905
Near Umbria Junction,		1370.114	4495.116	Plute, Ner	N_{6}	1373.358	4505.759
Utah.				Mote, Nev		1373.594	4506.533
Do	Y_{1}	1378.304	4521.986	Valmy, Ne	P	1373.821	4507.278
Do	Z	1387.348	4551.658	Near Valmy, Nev		1366.276	4482.524
Gartney, Utah		1405. 550	4611.375	Stonehouse, Nev		1348.823	4425.362
Near Tecoma,	${ }_{1}$	1457.827	4782.887			1343.121	4408.556
Tecoma, Nev.	${ }^{\text {J }}$	1467.322	4814.039	Iron Point,		1333.901	4386.150
Near Te		1466.885	4812.605	Comus, Nev		1333.025	4373.433
		1469.172	4820.108 4827	Near Preble, Nev		1333.524	4375.070
Akbar, Ner Montello,		1471.488	4827.707	Near Golconda,	W8	1327.004	4353.679
Mear Montello, Ne	N	1477.112	4846.158	Golconda, Ne	X	1336.950	4386.310
Montello,	O^{2}	1485.769	4874.560	Eglon, Nev		1318.108	4324.493
Do	P	1485.765	4874.547	Tule, Nev.		1313.059	4307.928
Banvard,	Q	1516.712	4976.079	Winnemuca		1316.225	4318. 315
Noble,		1559.786	5117.398	Benin, Nev	${ }^{1}$	1310.059	4298.085
Ullin, Ne	S_{2}	1604.021	5262.526	Rose Creek,	C_{7}	1318.017	4324.194
Wright,	T	1649.229	5410.845	Lamar, Nev.		1308.180	4291.855
Loray, Ne	U	1705.966	5596.990	Cosgrave ${ }_{2} \mathrm{~N}$		1310.824	4300.595
Omar, N	V	1781.219	5843.883	Dodon, Nev		1296.202	4252.623
Cobre,		1805.230	5922.659	Mill City, N		1287.488	4224.033
Do.	X	1809.808	5937.678	Imiay, Nev	H_{7}	1278.626	4194. 959
Near Cobre,	${ }^{\text {Y }}$	1831.050	6007.370	Humboldt,		1290.045	4232.423
Valley Pass, Ne	Z_{3}	1850.212	6070.237	Valery, Nev.		1304.104	4278.548
Near ValleyPass, Nev..	${ }^{\text {A }}$	1851.795	6075.431	Near Valery, Nev....	K_{7} (S. P.	1294.168	4245.949
Icarus, Nev.	B	1859. 244	6099.870	Near R ye Patch, Nev.	L_{7} (S. 1	1295.933	4251.740
Near lcarus, Ne	C_{4}	1875.226	6152.304	Rye Patch, Nev......		1295. 850	4251.468
Pequop, N	D4....................	1873.173	6145.568	Near Rye Patch, Nev.	$\mathrm{N}_{7}(\mathrm{~S} . \mathrm{P}$.	1294.190	4246.022
Fenelon,	E4-..................	1876.107	6155.194	Near Zola, Nev......	O_{7} (S. P.)	1299.730	4264.198
Near Holbor	F4	1866.993	6125.293	Z ola, Nev .		1289. 858	4231.803
Holborn, N	G.	1860.817	6105.030	Oreana, Nev		1267.348	4157.057
Anthony,	H.	1866.485	6123.626	Woolsey, N		1249.396	4099.060
Moor,	1	1877.788	6160.709	Kodak, Nev..........		1220.988	4005.858
Cedar,		1819.671	5970.037	Near Lovelocks, Nev..		1217.142	3993.240
Kaw, N	K	1777. 134	5830.480	Do.		1216.350	3990.642
Near Wel	L	1740.174	5709.221	Lovelocks,		1211.067	3976.262
Wells,	M	1715. 482	5628.145	Perth, Nev	W	1203.666	3949.027
Do.	N	1715.397	5627.932	Granito Point, Nev.		1194.333	3918. 408
Near Well	0	1711.902	5616. 465	Toulon, Nev......		1197.746	3929.605
Do.	P	1709.278	5607.858	Toy, Ner	z_{7}	1197.949	3930.271
Alazon	P	1705.310	5594. 838	Mirlam, N	${ }^{\text {A }}$		3917.397
ear Tnlasc	R	1677. 398	5503.263	Near Huxle		1186.403	3882.391
Near Nardi, Nev	S	1644. 437	5395.124	Parran, Nev.		1184. 441	3885.953
Near Deeth, Nev.		1631.314	5352.069	Near Desert, Nev..	$\mathrm{D}_{6}(\mathrm{~S} . \mathrm{P}$	1185.857	3590.599

Elevations of permanent bench marks-Continued.

Pisce.	Designatlon of bench mark.	Standard elevation.		Place.	Designatlon of bench mark.	Standard elevatlon.	
		Meters.	Feet.			Meters.	Feet.
Near Desert, Nev.		1189. 596	3902.866	Near Acampo, Cal.		15. 468	50.718
Upsal,	F_{8} (8.	1189.186	3901. 521		M_{0} (U.S. G. S.	16.219	53. 212
Near Failais, N		1190.412 1199.499	3905.543 3935.356	Near Ledil ${ }^{\text {L }}$ al		15. 838 13.972	51.962 45.840
Massie, Nev...	Is....	1211.720	3975. 451	Pearson, Cal.	Jo (U. S. G. S.)	11. 582	37.899
Do.		1216.708	3991.816	Near Hammer, ${ }^{\text {c }}$		10.184	33. 112
Hazen,	K_{8} (S. P	1220.908	4005. 598		Ho (U. S. G. S.).....	8.738	28. 668
Patna,		1220.222	4003.345 4061.632	Near Stockton, Cal.		8. 5.588	28.077 20.568
Near Patna,	$\mathrm{N}_{8}(\underline{S}$.	1242878	4077.676	Stockton, Cal..		7.081	23.232
Argo, Nev..	O_{8} (S.P.)	1241.610	4073.515	Do......		5.994	19.665
		1241.706	4073.830	Near Stockton, Cal.....		5. 312	17.428
Luva, Ne	R	1259.071 1265.124	4127.521 4150.661	Near French Camp, Cal	Bı (U. S. G. B.).....	4. 218 5.402	$\begin{aligned} & 14.055 \\ & 17.723 \end{aligned}$
$\begin{gathered} \text { Fernley, } \\ \text { Do... } \end{gathered}$		1265.124 1265.834	4150.661 4152.990	Do.	Ap..............................	5. 402	$\begin{aligned} & 17.723 \\ & 22.808 \end{aligned}$
Gilpin,		1268.580	4162.000	Near Lathrop,		5.900	19.357
Derby,	U_{8} (S.P.)	1268. 354	4161.258	Lathrop, Cal..		6.870	22.539
Near Derby,	V8	1267.957	4159. 956	Do.	Ws (U.S. G. S.)	6. 194	20. 321
Do.....	W_{8} (S.P.	1269.869	4166.229	Near Lathrop, Ca		8.295	27.215
Thisbe,	X_{8} (S. $\mathrm{S}_{\text {S }} \mathrm{P}$ P	1286.231	4219.909	Near Banta, Cal		${ }_{6}^{6.246}$	20.492
Clark, N	Z_{8} (S.P.)	1294.236	4246.173	Tracy, Cal	S ${ }_{8}$ (U.S. G. S.). ${ }^{\text {S }}$	16.505	54.150
Near Ditho,	A_{9} (S. P.)	1309.489	4296.215	Do.	Rs...	18.342	60.177
Hafed, Ner		1334. 058	4376.822			18.028	59.147
Near Vista,	$\mathrm{C}_{\mathrm{g}}(\mathrm{S} . \mathrm{P}$. $)$	1338. 144	4390.227	Near Tracy, Ca	P_{8} (U. S. G. S.)	31.383	102. 9 +2
Do.	D_{g} (S. P.	1338. 292	4390.713	Midway, Cal.	O_{8} (U.B.G. S.)	107. 125	351. 459
Do.	E_{p} (S. P.	1339. 658	4395.195	Near Midway,		128.917	422955
Vista, N	F_{3}	1339.532	4394.781	Near Cayiey, Cal		150.397	$\begin{aligned} & 4930 \\ & 427 \\ & \hline \end{aligned}$
Sparks,		1347.906 1370.224	4422.255 4495.477	Near Altamont, ${ }^{\text {Do.......... }}$		180.025 219.24	590. 6132 719.237
		1389.031	4557.179	Altamont, ${ }^{\text {cal }}$	J_{8} (Ư. S. cos. $_{\text {s. }}$	225.513	739.871
Lawton, Ne	Jo..............	1415.966	4645.549	Near Altamont, Cai		218. 270	716.107
Near Verdl,		1459.919	4789.751	Near Livermore, Cal		195. 252	640.688
Verdi, Ne	Le (S. P.)	1478.104	4849. 413	no.		163.717	537.128
Marmol,	F_{8}	1511.948	4960.449	LIvermore, Cal..	F_{3} (U. S.	148.645	487.712
Near Marm		1512,388	4991.893 4969.580	Near Llverrmore,		140.422 112.049	480.701 367.614
Calvada,	Y_{10}	1533.870	5032.372	Pleasanton,		102.518	336.344
Mystic, Ca	X_{10}	1573.053	5160.925	Verona, Cal		92.234	302. 604
Icetand, Cal	W_{10}	1648.909	5409.796	Brlghtside, Ca		63.746	225.544
Near Prosser Creek	V_{10}	1709. 909	5609.023	Farweli, Cal	Z (U.S.G.S.	51.053	167.496
Truckee, Cal		1773.860	5819.739	Near Nítes, Cal		37.012	124.383
Tunnel, Cal	T_{10}	1928.122	6325.847	Niles, Cal.		26. 428	86. 699
Near Eder,	${ }_{\text {S }}^{10}$	2075.548	6579.869 6964	Do.......		25.686	84.271
Summlt, Cal	R_{1}	2122.855	6964. 733	Irvington, Cal............		21.315	70.029
Near Spruce,	Q_{1}	1984.75.3	6511. 644	Near Warmsprings, Cal		9.796	32. 139
Cisco, Cal	P_{10}	1805. 200	5922.560 5212.079	Warmsprings, Cal.....		12.821 4.797	42. 064
Blue Canyon, ${ }^{\text {C }}$	${ }^{\mathrm{N}}$	1429.947	4691.418	Near Milpitas, Cal.....		5. 223	17.136
Orel, Cal.	M_{10}	1346. 753	4418.587	Near Wayne, Cal.		20.630	67. 684
Towle, Cal	L_{10}	1135.040	3723.877	San Jose, Cal	$\mathrm{P}_{7}(\mathrm{U}$. S. G. S.)	29.900	98.097
Gold Run, Ca	K_{10}	967.036	3172684			27.400	90.124
Near Wirt,		${ }_{732.023}$	2401.642	Santa Clars Ca		22.997	75. 449
Corander, Cal		736.123 699.753	${ }_{2}^{211505.773}$	Lawrence		20.419 29.800	66.991 97.789
Near Cllppergap,	G_{1}	569.220	1867.516	Mountain Vlew,		23.652	77.598
Do......	F10	535.154	1755.751	Mayfield, Cal.		10.009	32.838
East Auburn, Cal	E_{10}	414. 232	1359. 026	Palo Altó. Cal		18.922	62.080
Near New Castle,	D_{10}	297.432	975.825	Near Palo Alto, C		22.410	73.523
Near Rocklin, Cal	C_{10}	76.758	251.824	Menlo Park, Cal		21.529	70.633
Near Rosevlite, Ca	B_{10}	52.652	172.742	Redwond City, Cal		3. 875	12.713
Noseville,		48.814 44.638	180.151	Ean Carios,	${ }^{\text {D }}$	10.610 10	34.810
Antrlope, Cal	Yg..................	47.759	156.689	Beresford, Cai	C_{7}	6.987	22.923
Near Benall,	X	15.923	52.257	San Mateo, Ca	B_{7}	8.399	27.392
Elvas, Cal..		12.179	39.957	Do.	${ }^{\text {A }}$	7.875	25. 837
Brighton, Cal		15.222	49.941	Burlligame	2.	${ }^{9} .308$	30.538
Near Florin, Cal	U9 (U.S. G. S.)....	11.063	36. 2286	Millbrae, Ca	Y_{8}	5. 618	18. 432
Elk Grote, Cai		11.365 15.194	37.287 49.849	San Bruno, ${ }^{\text {Holy Cross, }}$		8.142 20.885	25.713 88.205
McCourefl',	R9 (U.S. G. S.).....	14.313	46.9599	San Francliso, Cal	Clty	94.789	310.987
Need, Cal		13. 307	43. 658	Do.........	Clity 3	58.661	192. 457
Galt, Cal	P. (U. S. G. S.)....	14. 661	46.132		City 640	59.391	194. 852
Jahant, Cal.	O9 (U. S. G. S.).....	14.888	48. 845	Do	City 635	48.559	159.314

Elevations of top of rail in front of railroad stations.

Place.	Standard elevation.		Place.	Standard elevation.	
	Meters. F	Feet.		Meters. F	Feet.
	1312.89	4307.37 Tr	Troy, Ca	$\begin{aligned} & 1940.73 \\ & 1898.51 \end{aligned}$	$\begin{aligned} & 6367.21 \\ & 6195.89 \end{aligned}$
Brigham, Utah	1289.51	4230.67 T2	Tamarack,	1806.99	5928.43
Corinne, Utah.	1499.61	$4903.57-\mathrm{CL}$	Cisco, Cal.	1754.89	5757.50
Promontory,	1287. 50	4224.07 4423.83	Yuba Pass, Cal.	1711.02	5613.57 5351.01
Poplin, Utah.	13437.21 1437.28	4715.48 Sn	Ymart, Cal.	1830.99 1588.29	5351.01 5210.91
Ombey, Utah.	1410.32	4627.02 E	Emigrant Gap,	1531.61	5024.96
Romola, Utah	1383.26	4472.63 Fu	Fulda, Cal....	1428.88	4687.92
Lucin, Utab.	1465.25	4807.24 Bl	Blue Canyon, Ca	1343.78	4408.72
Tecoma, Nev	1601.98	${ }_{5405}^{5255} 83 \mathrm{O}$	Orel, Cal...	1262.63	4142.48
Wring ${ }^{\text {Wevt }}$ No	1647.75 1712.54	5405.99 5618.56	Midas, Cal.	1190.00	3904.19 3691.59
Loray, Nev.	1779.9.5	5839.72	Towle, Cal.	1125.20 1097.87	3691.59 3601.93
Omar, Nev.	1804.05	5918.79 A	Alta, Cal.	1033.32	3390.15
Cobro, Nov.	1850.39	${ }_{6070.82}{ }^{\text {D }}$	Dutch Flat	982.47	3223.32
Valley Pass,	1801.01	${ }^{6105.68}$ B143.07 M	Mold Runf	883.62	2895.01
Pequon, Ne	1872.41 18780	${ }_{8163.05} 1$	Caporn, CaI	809.61 744.30	2656.20 2441.92
Moor, Nev.	1819.49	5969.44 IV	Wirt, cal.	735.22	2412.13
Cedar, Nev.	1777.38	5831.29 C	Collax, Cal	695. 70	2282.48
$\frac{\mathrm{Kgw}}{\mathrm{W} \text { all }}$, Nev.	1715.26	5627.48	Lander, Cal..	694.23	2277.65
Alazon, NeV	1680.11	5512.18 50	Applegate, Cal . .	614.13 535.52	2014.86 1750.95
Tulasco, N	1675.92	5498.41 C	Clippergap Cal	492.89	1817.09
Starr Nev	1648.91	5409.90	Bowman, Ca	428.78	1400.19
Nard, Nov.	1627.46	5339.42	Nestor, Cal	413.45	1355. 46
Rasld, Nev	1593.04	5226.50 Z	Zeta, Cal.	391.14	1955.18
Halleck, Ne	1585.55	5201.93 N	Newcastle,	189.68	622.31
Elbnrz, Nev.	1571.64	5156.29 P	Penryn, Cal	120.36	394.88
Rypad on, Ne	1503.91	5130.93 r	Loomis, Cal	74.75	245.24
Osino Nev	1553.27	5096.02 -	Rocklin, Cal	48. 51	159.15
Coin, Nevo	1541.86 1530.54	5058.59 5021.45	Roserile,	49. 04 32.59	${ }_{106.89} 16$
A Fenel, Nev	${ }_{1518.85}^{153.54}$	4983.09	Walerga, Ca	15.40	50.52
Moleen, Nev	1511.19	4957.96	Benali, Cal.	15.29	50.16
Tonka, Ner	1498.88	4917.58	Briphton, Ca	13.07	12.88
Vivian, Ne	1493.98	4901. 50	Polk, Cal.	12.66	41.54
Carlin, Nev	1486.11	4875.68	Davis, Cal	12.36	40.55
Tyrol, Nev	1476.35	4843.66	Florin, Cal	12.32	40. 42
Gerald, Nev	1468.55 1455.43	4775.02	Slbeck, Cal.	12.91	42.36 50.07
Harney ${ }^{\text {Ne }}$	1441.86	4730.50	Elk Grove, Cal	14.33	47.01
Cluro, Nev.	1430.53	4693.33	McConnell, C	11.77	38.62
Beowawe, N	1409.94	4625.78	Arno, Cal.	12.82	42.06
Marrel, Nev	1397.05	4583.49	Need,	14.41	47.28
Argenta, Nev	1386.59 1374.65	4510.00	Forest Iake, Coi.	15.12	49.68
Battle Mountain,	1373.77	4507.11	Acampo, Ca	15.71	51.54
Vslmp, Ne\%.	1355.65	4447.66	Lodi Cal.	13.93	45. 70
Stonehouse,	1343.43	4407.57	Mettler,	12.87	42.22
Iron Point, No	1333.05 1334.31	4389.92 4377.65	Armstrong,	12.22	40.09
Comus, Nev-	${ }_{1337.42}^{134.31}$	4387.85	Raclmo, Cal	10.40	34.12
Golconda, N	1317.48	4322.37	Castle Cal	8.98	29.46
Tule, Nev.	1320.27	4331.59	Jarn, Cal.	8.98 7.52	24.67
Winnemucca,	1310.29	4398.8 .8	El Pinal,	5.93	19.48
Mill City, N	1287.98 1278	42193.00	Hislon, dal.	6.81 6.28	20.54
Imalay, Nov.	${ }_{1290.62}^{128.63}$	4234.31	French Camp, Ca	6.218 6.78	22.18
Humboldt, Ne	1296.23	4252.71	I, athrop, Cal.	8.29	27.20
Rye Patch, Ne	1296.84	4156.29	Banta, Cal.	17.81	68.43
Oreana, Nev.	1248.83	4096.55	Tracy, Ca	22.12	72.57
Woolsey Nev.	1195.18	3921.19	Filis, Cal.	108. 61	35.8. 33
Granite Poulon,	1197.05	3930.27	Mldway,	235.08	738.45
Toy, Nev.	${ }_{1188.59}^{1198}$	33894.12	Vlmar, Cal	162.74 147	483.56
Ocala, Nev..	1190.32	3705.24	I.lvermore, Ca	113.93	373.79
Muxley, Nev	1184.25	388.5 .33	Eliot, Cal.	112.84	370.21
Parrant, Nev.	1188.98	3884.23 3907.11	Remdum, Cal.	109.90	360.56 351.02
Upsal, Nev.	1190.80 1204.92	3395314	Pleasanton, Cal	$\begin{array}{r}108.99 \\ \hline 9.18\end{array}$	302.43
Falats, Nev.	1212.17	3976.93	Verona, Cal	79.55	260.99
Massle, Nev.	1222.16	4009.70	Sunol, Cal.	63.65	208.83
Mazen, Ner	1243.23	4078.83	Brightside Ca	58.98	193. 50
Fernley, Ne	1266.09 1288.39	41.53 .83 1161.38	Farwell, Cal	49.81 40.62	163.42
Derby, Nev.	1275.75	4185.52	Alston, Cal	25.81	84.68
Tbisbe Nev	1296.46	4253.47	Niles, Cal.	10.02	-32.87
Ditho, Nev.	1311.74 1333	4303. ${ }^{\text {cio }}$		13.30	- 43.64
Haled, Nev	1333.73 1339.58	4395.94 4394	4 Milpltas, Cal.	6. 04	- 91.11
Vista, Nev.	1347.80	4421.91	1 San Jose, Cal.	23.01	1 75.49
Sparks, Nev	1369.70	4493.76	6 Eanta Clara, Cal	29.89	-98.06
Reno ${ }_{\text {Mogul }}$ Nev...	1443.64	4736.34	4 Sunnyvale Cal.	24.32	279.79
Caguada, Cal.	1536.47 1620.85	5040.90 5317.08	8 Castro, Cal. ${ }^{\text {a }}$ -	17.96 19.11	133.92 62.70
Floriston, Cal	1620.8 1632.37	5335.53	3 Palo Alto, Cal	20.56	6 67.45
Wickes, Cal	1632. 73 168	35530.60	0 Menlo Park Cai	16.07	$7 \quad 52.72$
Boca, Cal. ${ }_{\text {Wial }}$	1743. 90	- 5721.45	5 Fair Oaks, Cal	7.56	$8 \quad 24.80$
Truckee, Cal.	$\begin{array}{r}1772.76 \\ 1950.36 \\ \hline\end{array}$		31 Baresford, Cal	7.18	- 25.13
Tunnel, Cal	2011.74	6600.18	8 San Mateo, Cal.	8.89	$9 \quad 29.17$
Eder, Cal.	2068.15	$5 \quad 6785.26$	8 Burlingame, Cal	8.49	$9 \quad 11.45$
Summit, Cal.	2121.73 2056.93	3 6961.04 6748.44	$4{ }^{4}$ San Brano, Cai.	7.80	8 25.78
Soda 8prings,	20.81 .78 198	8 6534.63			
spruce, Cal..					

DESCRIPTIONS OF BENCH MARKS. ${ }^{1}$

GENERAL NOTES DESCRIBING DIFFERENT FORMS AND MARKINGS OF BENCH MARKS.
Note 1.-This type of bench mark is the red metal disk designed by the Coast and Geodetic Survey, lettered "U. S. Coast and Geodetic Survey, B. M. $\$ 250$ fino or imprisonment for disturbing this mark." The disk is 3 inches in diameter, with a 3 -inch tenon upon the back for setting it, and is set in cement flush with a horizontal or vertical surface. In the latter case a horizontal mark cut on it, or the horizontal mark of a cross, is the bench mark.

Note 2.-This type of bench mark has the same lettcring as that referred to in note 1 , and is a 3 -inch red metal cap, somewhat curved, screwed upon a 4 -foot or $4 \frac{1}{2}$-foct iron pipe set in the ground and usually cemented at the base, from 4 to 6 inches being exposed above the ground. The base of the pipe is split and spread to a diameter of about a foot. For placing the foot of the level rod accurately a square or a small circle was cut in outline in the center of the cap.

Note 11.-The bottom of hole about 25 millimeters squaro and about 4 to 5 millimeters deep, cut in the top of a stone or cement post about 4 feet long and with rectangular top from 4 to 8 inches on a side, projecting about 6 inches from tho ground. The top of the post is lettered "U.S. B.M." Limestone posts are used between Holland and New Braunfcls, Tex., and black lava posts between Pocatcllo and Owyhee, Idaho.

Note 11A.-A red metal disk, like that described in note 1, set in the top of a stone or cement post about 4 feet long and with a rectangular top from 4 to 8 inches on a side, projecting about 6 inches from the ground.

Note 17.-A 3 -inch aluminum or bronze disk ${ }^{1}$ lettered "U. S. Geological Survey B. M. $\$ 250$ fine or imprisonment for disturbing this mark. Elevation above sea - feet. Datum -." Each disk is stamped with the approximate elevation in feet and a letter or letters to indicate the datum plane. This elevation and the datum letter or letters usually form the name by which the bench mark is designated in this publication.

Note 18.-This type of bench mark has the same lettering as that referred to in note 17 , and is a 3 -inch aluminum or bronze cap riveted upon a 3 -inch iron pipe, set in the ground, 5 to 6 inches being exposed above the ground. A cross cut in the center of the top is the bench mark.

DESCRIPTIONS OF PERMANENT BENCH MARKS BETWEEN BRIGHAM, UTAH, AND BEOWAWE, NEV., 1911.

R.-At Brigham, Boxelder County, Utah, 15 meters south of the second road crossing north of the station, in a field west of the tracks, inside and 0.6 meter from tho fence, about halfway between mile poles 21 and 22 and about 1.5 meters above the level of the tracks. Note 11.*
J_{g}--At Brigham, Boxelder County, Utah, about 100 meters south of the Oregon Short Line Railroad station, in the top surface of tho northwest stone pillar of the railroad water tank. Note 1.*
K_{9}.-At Brigham, Boxelder County, Utah, in the eastern vertical face of the south side of the stone steps leading to the west entrance of the Boxelder County Courthouse, about 1.5 meters above the ground. Note 1.*
L_{9}.-At Honeyville, Boxelder County, Utah, in the west face of the concrete foundation of the Oregon Short Line Railroad station, directly beneath the telegraph operator's window and just behind the semaphore tower, about 0.2 meter above the platform. Note 1.*
T.-At Dewey, Boxelder County, Utah, 180 meters south of the depot, on the right of way of the Oregon Short Line Railroad, 15 meters east of the main tracks. Note 11.*
M_{9}.-Near Corinne, Boxelder County, Utah, about 4 telegraph poles west of mile pole 3 on the right of way of the Brigham-Corinne cut-off, 14 meters south of the tracks, 1.2 meters north of the south line fence, about 1.5 meters below the track. Note 11.*
N_{8}.-At Corinne, Boxelder County, Utah, directly south of the middle of the freight station, 42.4 meters west of the west end of the old passenger station, 18.7 meters south of the Southern Pacific Railway main track, one-half meter north of the south line fence, and about 0.6 meter below the track. Note 11.*
O. -Near Corinne, Boxelder County, Utah, between the tenth telegraph pole east of Southern Pacific mile pole 806 and the south line fence 1 meter north of the latter, 150 meters east of the small bridge that crosses the irrigation ditch at the point where the right of way narrows, 14.3 meters south of the tracks. Note 2.*

P $_{0}$.-Between Corinne and Balfour, Boxelder County, Utah, about $1 \frac{1}{2}$ telegraph poles east of mile pole 804, 50 meters east of the whistle post, at the road crossing, on the Southern Pacific right of way one-half meter north of the south line fence and 14.8 meters south of the track. Note 2.*
Q. $_{9}$.-At Balfour, Boxelder County, Utah, about 7 telegraph poles west of mile pole 801, 98 meters east of the westernmost of the two switch stands at the west end of the siding, on the right of way of the Southern Pacific Railway, one-half meter north of the south line fence, 14.8 meters south of the main track and about 1 meter above it. Note 2.*
R_{9}.-Near Hansen, Boxelder County, Utah, about 2 telcgraph poles east of mile pole 798 on the right of way of the Southern Pacific Railway, 0.9 meter south of the north lino fence, 14.3 meters north of the track, and about 1.2 meters above it. Note 11.*
S_{9}.-At Hansen, Boxelder County, Utah, about midway between the ends of the siding, one-half telegraph pole west of the pole that carries the station sign (795.7 miles), in the line of the telegraph poles, 13 meters south of the Southern Pacific main track. Note 11.*

[^4]T9.-Near Hansen, Boxelder County, Utah, about 2 telegraph poles west of mile pole 793 on the right of way of the Southern Pacifie Railway, 8.9 meters north of the south line fence, and 5.8 meters south of the railway track. Note 2.*

Ug.-At Blue Creek, Boxelder County, Utah, situated on the right of way of the Southern Pacifie Railway, opposite the water tank, 14.8 meters west of the west end of the pumping station, 10 meters north of the south line fenee, 12.2 meters eouth of the southernmost siding, 24.5 meters south of the main track. Note 11.*

V9.-Near Blue Creek, and Kolmar, Boxelder County, Utah, about 4 telegraph poles east of milo pole 790, on the Southern Pacific Railway right of way, 0.8 meter north of the south line fence, 14.4 meters south of the railway track. Note 2.*
W_{0}.-At Kolmar, Boxelder County, Utah, about 0.2 telegraph pole south of the pole that earries the station sign (789.1 miles), on the right of way of the Southern Pacifie Railway, 6.7 meters east of the west line fenee, 32.2 meters west of the main track of the Southern Paeifie Railway. Note 11.*
X_{0}.-At Surbon, Boxelder County, Utak, about 2 telegraph poles north of the pole that carries the station sign (786.1 miles), 6.2 meters west of the east line fenee, on the right of way of the Southern Pacifie Railway, 4 meters east of the main track. Note 11.*

Y ${ }_{9}$.-At Promontory, Boxelder County, Utah, on the Southern Pacific right of way, on a line joining tho west end of the railway station with the east edge of the door to the United States post offiee, 45.1 meters north of the main track, 4.2 meters south of the north line fenee, 48.7 meters from the northwest eorner of the station house. Note 11.*
Z. -Near Promontory, Boxelder County, Utah, at mile pole 778 on the right of way of the Southern Pacifie Railway, 0.7 meter north of the south line fenee, 15 meters south of the track, and about 1.2 meters below it. Note 2.*

A $_{10}$.-Near Promontory, Boxelder County, Utah, between Promontory and Rozel, on the right of way of the Southern Pacifie Railway, 3 telegraph poles east of mile pole 775, 8.1 meters north of the south line fenee, and about 1.8 meters above the track. Note 2.*
B_{10}.-At Rozel, Boxelder County, Utah, on the Southern Pacifie Railway, right of way, 46 meters east of the east end of the water tank, 14.6 meters south of the main track, 0.8 meter north of the south line fence. Note 11.*
C_{10}.-Near Rozel, Boxelder County, Utah, one-half meter south of mile pole 770, on the right of way of the Southern Pacific Railway, 15.4 meters south of the main traek. Note 2.*
D_{10} - Near Lake, Boxelder County, Utah, 1.42 meters north of mile pole 766, on the right of way of the Southern Pacifie Railway, 10.8 meters south of the track, and about 1.5 meters below it. Note 2.*
E_{10}.-At Lake, Boxelder County, Utah, 1.8 meters north of mile pole 763, on the right of way of the Southern Pacific Railway, 15.4 meters soutli of the main track, and about 0.6 meter below it. Note 11.*
F_{10}.-Near Lake, Boxelder County, Utah, 1.5 meters north of the fourth telegraph pole east of mile pole 759, on the right of way of the Southern Pacific Railway, 13.2 meters south of the traek. Note 2.*
G_{10}.-A t Monument, Boxelder County, Utah, at the west end of the siding on the right of way of the Southern Pacifie Railway, 0.8 meter south of the seventh telegraph pole west of the pole that earries the station sign, 10.8 meters north of the track. Note 11.*
H_{10}.-Near Monument, Boxelder County, Utah, on the Southern Paeifie Railway right of way, 1.1 meters south of mile pole 752, 19.5 meters south of the track, and about 1.5 meters below it. Note 2.*
I_{10}.-Near Monument, Boxelder County, Utah, 1.2 meters north of mile pole 748, on the right of way of the Southern Pacifie Railway, 14.3 meters south of the traek, and about 1 meter below it. Note 11.*
J_{10} - Near Kelton, Boxelder County, Utah, 1 meter north of the seventh telegraph pole west of mile pole 744 on the Southern Pacifie Railway right of way, 14.5 meters south of the track, and about 1 meter above it. Note 2.*
K_{10}.-At Kelton, Boxelder County, Utah, 36 meters east of the east end of the Southern Pacific freight station, 29.6 meters north of the main track. Note 1.*
\mathbf{L}_{10}.-Near Kelton, Boxelder County, Utah, 1 meter east of a telegraph pole on the right of way of the Southern Pacifie Railway and direetly aeross the track from mile pole 736, 22.8 meters west of the track. Note 11.*
M_{10}. -Near Peplin, Boxelder County, Utah, in the vertieal side of the deep eut 2 telegraph poles east of mile pole 733, 25 meters west of the east end of the eut, 1.5 meters above the track, and 2 meters south of it. Note 1.*
N_{10}.-At Ombey, Boxelder County, Utah, 1 meter northwest of mile pole 730, 14.8 meters southeast of the Southern Pacific Railway main track, 30 meters northeast of the switch stand at the northeast end of the wye, 48.4 meters northeast of the semaphore. Note 2.*
O_{10}.-Near Romola, Boxelder County, Utah, about one-half mile west of the station sign, 6 telegraph poles east of mile pole 724, 16.1 meters south of the Southern Pacifie Railway track, 1 meter north of a telegraph post, 40 meters east of a whistle post. Note 2.*
P_{10} - Near Romola, Boxelder County, Utah, on the right of way of the Southern Pacifie Railway, south of the track, about 1 meter north of mile pole 719. Note 2.*
Q_{10}.-Near Terrace, Boxelder County, Utah, 1.3 meters north of mile pole 712 on the right of way of the Southern Pacifie Railway, 13.7 meters south of the track, and about 1.2 meters above it. Note 2.*
R_{10}.-At Terrace, Boxelder County, Utah, in the northeast eorner of the brick structure of the machine shop, about 1.5 meters above tho ground. Note 1.*
S_{10}.-Near Terrace, Boxelder County, Utah, 1 meter north of mile pole 705 on the Southern Pacifie Railway right of way, 14.7 meters south of the track. Note 2.*
T_{10} - At Bovine, Boxelder County, Utah, on the Southern Pacific Railway right of way about 1.4 telegraph poles east of mile pole 699 and on the opposite side of the track, 36.8 meters west along the track of the section car housc, 14.1 meters north of the main track. Note 2.*
U_{10}--Near Bovine, Boxelder County, Utah, on the right of way of the Southern Pacific Railway, 1.2 meters north of mile pole 695, 14.6 meters south of the track. Note 2.*
V_{10}.-Near Umbria Junction, Boxelder County, Utah, 0.9 meter north of mile pole 690, 14.5 meters south of the Southern Pacific Railway track. Note 2.*
W_{10}.-At Lucin, Boxelder County, Utah, in the top of the southern one of the two westernmost stone pillars under the water tank. Note 1.*
\mathbf{X}_{10}.-About one-half mile east of Umbria Junction, Boxelder County, Utah, between the old Terrace lino of the Southern Pacific Railway and the Lucin Cut-off, 1.4 meters east of the old-line telegraph pole that stands about 75 meters northeast of the whistle post at the crossing on the main line, 53.2 meters north of the eastbound main track, about 45 meters north of the westbound main track and 20.6 meters south of the old Terrace line. Note 11.*
\mathbf{Y}_{10}.-Near Umbria Junction, Boxelder County, Utah, 0.6 meter north of the sixth telegraph pole east of mile pole 679, about one-fourth mile west of the junction; at the west end of the cut that runs west from the junction point; 15.7 meters north of the eastbound track of the Southern Pacific Railway and about 0.6 meter above it. Note 11.*
Z_{10}.-Near Umbria Junction, Boxelder County, Utah, 0.9 meter north of mile pole 677, 14.3 meters north of the eastbound track of the Southern Pacific Railway. Note 2.*

A $_{11}$.-At Gartney, Boxelder County, Utah, directly opposite the station sign, 59.7 meters south of the eastbound track of the Southern Pacific Railway, 0.9 meter north of the south line fence. Note 11.*
I_{3}.-Near Tecoma, Elko County, Nev., in the north side of the granite post which marks the boundary between the States of Utah and Nevada, 19.2 meters south of the Southern Pacific Railway eastbound track. Note 1.*
J_{3}.-At Tecoma, Elko County, Nev., about two-fifths of a mile east of the Southern Pacific Railway station; 6 telegraph poles east of mile pole 670, opposite the east post of a rail-rack; 15.3 meters south of the eastbound track, 0.8 meter north of a telegraph pole. Note 11.*
K_{3}.-Near Tecoma, Elko County, Nev., 73.2 meters south of mile pole 668, 59.8 meters south of the eastbound main track of the Southern Pacific Railway, 1.3 meters north of the south line fence. Note 11.*
L_{3}. -Near Tecoma, Elko County, Nev., situated 47 meters north from mile pole 666, 56.3 meters north from the westbound track of the Southern Pacific Railway, 0.9 meter south of the north line fence. Note 2.*
M_{3}. - At Akbar, Elko County, Nev., about 9 telegraph poles east of mile pole 665 with two scmaphore towers in range, 60.2 meters south of the Southern Pacific Railway main track, 1 meter north of the south line fence. Note 11.*
N_{3}.-About one mile east of Montello, Elko County, Nev., 47 meters north of mile pole 664, 56.5 meters north of eastbound line of the Southern Pacific Railway, 100 meters east of cattle guard, 1 meter south of the north line fence. Note 2.*
O_{3}.-At Montello, Elko County, Nev., in the top surface of the western one of the two northernmost stono pillars under the water tank. Note 1.*
P_{3}.-At Montello, Elko County, Nev., in the southeast corner of the grass plat in front of the Southern Pacific Hotel, about 1 meter from the corner. Note 11.*

Q ${ }_{3}$.-At Banvard, Elko County, Nev., in line with the west side of the section house, 60 meters north of the eastbound track of the Southern Pacific Railway, 1.3 meters south of the north line fence. Note 11.*
R_{3}.-At Noble, Elko County, Nev., directly opposite the station sign on the northwest side of the Southern Pacific Railway track at the rear of the signal tender's dwelling; about 1 meter southeast of the northwest line fence. Note 11*.
S_{3}.-At Ullin, Elko County, Nev., directly opposite the station sign in a fence corner 59.2 meters northwest of the eastbound line of the Southern Pacific Railway, 7 telegraph poles northeast of mile pole 656. Note 11.*

T3.-At Wright, Elko County, Nev., 43 meters northwest of mile pole 654, 57.7 meters northwest of the Southern Pacific Railway track, 1.2 meters southeast of the northwest line fence. Note 11.*
U_{3}.-At Loray, Elko County, Nev., opposite the yellow dwelling house of the section foreman, 1 telegraph pole west of section car house 46, 6 telegraph poles east of mile pole 6 $62,60.3$ meters north of the Southern Pacific Railway main track, 0.9 meter south of the north line fence. Note 11.*
V_{3}.-At Omar, Elko County, Nev., 0.6 meter north of the eleventh telegraph pole east of mile pole 647, 5.6 meters north of the station sign, 15.0 meters north of the main track of the. Southern Pacific Railway. Note 11.*
W_{3}.-At Cobre, Elko County, Nev., 0.9 meter northcast of the fourth telegraph pole northwest of the railway station, 14.2 meters northeast of the main track of the Southern Pacific Railway, about 100 meters northwest of the freight station. Note 11.*
X_{3}.-At Cobre, Elko County, Nev., 0.9 meter northeast of mile pole 645, 14.4 metcrs northeast of the Southern Pacific Railway and about 1 meter below the track. Note 2.*
Y_{3}. Near Cobre, Elko County, Nev., 7 telegraph poles east of mile pole 643, tho top of an iron spike in the top of the north headwall of culvert No. 643A.
Z_{3}.-At Valley Pass, Elko County, Nev., situated I meter south of the first telegraph pole cast of the Southern Pacific Railway station, about 15 meters south of the track and within tho turning wye. Note 11.*

A4.-Near Valley Pass, Elko County, Nev., about 3.7 tolegraph poles east of the mile pole 640, 75 meters west of the crossing, 29.3 meters north of the Southern Pacific Railway track, 1.4 meters south of the north line fence. Note 2.*
B_{4}.-At Icarus, Elko County, Nev., 44 meters north of mile pole 638,60 meters north of the main line of the Southern Pacific Railway, 1.2 meters south of the north line fence. Note 11.*

C4.-Near Icarus, Elko County, Nev., 50 meters west of the mile pole 635, on the east slope of a hill at the east end of a deep cut, 28.9 meters north of the Southern Pacific Railway track, and about on the level with the track near the set-off stand, 0.9 meter south of the north line fence. Note 2.*
D_{4}. - At Pequop, Elko County, Nev., in front of the section hands' quarters, 1 meter north of mile pole 633, 10 meters west of section car house No. 44. Note 11.*
E_{4}.-At Fenelon, Elko County, Nev., about 30 meters east of the Southern Pacific Railway station (628.4), 59.5 meters north of the main track. Note 11.*
F_{4} - Near Holborn, Elko County, Nev., 2 telegraph poles east of mile pole 627, 28 meters north of the Southem Pacific Railway track, 0.9 meter south of the north line fence. Note 2.*

G4.-At Holborn, Elko County, Nev., 40 meters east of section car house No. 43, 17.1 meters north of the main track of the Southern Pacific Railway, 0.8 meter north of a white telegraph pole which is 2 telegraph poles east of the station sign. Note 11.*
H_{4}.-At Anthony, Elko County, Nev., directly opposite the station sign, 6 telegraph poles west of the water tank, 29.9 meters south of the Southern Pacific Railway main track, 1.2 meters north of the south line fence. Note 11.*

I 4 .-At Moor, Elko County, Nev., about 10 meters west of the Southern Pacific Railway station, 1 meter north of a white telegraph pole, 15 meters north of the main track, and about 1.5 meters below it. Note 11.*
J_{1}.-At Cedar, Elko County, Nev., 35 meters east of the station sign, about 2 telegraph poles east and 0.7 meter north of mile pole 614, 16.8 meters north of the Southern Pacific Railway track. Note 11.*
K_{4}.-At Kaw, Elko County, Nev., 1 meter north of mile pole 612, 10.5 meters north of the Southern Pacific Railway main track. Note 11.*

L4. -Two miles east of Wells, Elko County, Nev., 0.9 meter north of mile pole 610, 10 meters north of the Southern Pacific Railway track. Note 11.*
M_{4}.-At Wells, Elko County, Nev., 1 meter north of the telegraph pole opposite the east end of the Southern Pacific Railway station, 12 meters north of maiu track. Note 11.*
N_{4}.-At Wells, Elko County, Nev., in the western one of the two northernmost concrete pillars under the Southern Pacific Railway water tank. Note 1.*
O_{4}.-Near Wells, Elko County, Nev., on the east slope of a hill at the east end of a deep cut, 3 telegraph poles west of mile pole 607, 65.5 meters north of the Southern Pacific Railway track, 1.3 meters south of the north line fence. Note 2.*

P4. -Near Wells, Elko County, Nev., at mile pole 606, 1 metcr south of the north line fence, 27.7 meters north of the Southern Pacific Railway track, and about 1.5 meters below it. Note 2.*
Q.-At Alazon, Elko County, Nev., 4.4 telegraph poles cast of Southern Pacific Railway mile pole 604, one-quarter mile west of the station sign, 28 meters north of the track, 32.4 meters north of Western Pacific Railway track; and 0.9 meter south of the north line fence. Note 11.*
R_{4}.-Near Tulasco, Elko County, Nev., on the Southern Pacific Railway and near Starr, on the Western Pacific Railway at Southern Pacific mile pole 600, $4 \frac{1}{2}$ telegraph poles west of Western Pacific mile pole 709, 29.1 meters south of the Western Pacific track, 33.5 meters south of the Southern Pacific Railway track, 1.3 meters north of the south line fence. Note 11.*
S_{4}.-Near Nardi, Elko County, Nev., one-half mile west of the west end of the siding, 12 telegraph poles west of Southern Pacific mile pole 595, 18 telegraph poles west of Western Pacific mile pole 704, 75 meters west of signal tower 5948 , and 27.9 meters north of the Southern Pacific track, 32.3 meters north of the Western Pacific track, and 0.9 meter south of north line fence. Note 11.*
T_{4}.-About 1 mile east of Deeth, Elko County, Nev., about 200 meters west of the point where the Southern Pacific Railway begins to separate from the Western Pacific Railway, 3 telegraph poles west of Southern Pacific mile pole 592, 7 telegraph poles west of Western Pacific mile pole 701, 4.3 meters south of Southern Pacific track, 5.6 meters north of the Western Pacific track. Note 2.*
U_{4} - At Deeth, Elko County, Nev., about one-half mile west of the Southern Pacific Railway station, 35 meters east of the west end of the siding, 0.7 meter south of the first telegraph pole east of signal tower $590.5,15.5$ meters south of the main track. Note 2.*
V_{4}.-At Natchez, Elko County, Nev., 4 tclegraph poles east of mile pole 587 in range with signal towers 5871 and 5872, 17.4 meters south of the Southern Pacific Railway track; 1.7 meters south of the south line fence, outside the right of way. Note 2.*
W_{4}--At Halleck, Elko County, Nev., 106 meters north of the Southern Pacific main track, 1.6 meters south of the north line fence, in range with the east gable of the railway station and about 1.5 meters above the track. Note 11.*
X_{4}.-At Elburz, Elko County, Nev., 2.8 meters north of mile pole 575, 18.9 meters north of the Southern Pacific Railway track, 20 meters west of section car house No. 38. Note 11.*
Y. -Near Elburz, Elko County, Nev., in the face of the rock at the east end of tunnel No. 5, north of tho Southern Pacific Railway track, and about 0.6 meter above it. Note 1.*
Z_{4}.-At Ryndon, Elko County, Nev., 100 meters east of the station, 12 meters south of the Southern Pacific Railway track, 10 metcrs north of the Western Pacific Railway track, 1 meter west of a telegraph pole. Note 11.*

A5.-Near Ryndon, Elko County, Nev., in the top surfaco of tho west abutment of Southern Pacific Railway bridge No. 25 over Humboldt River, 300 meters east of tunnel No. 3, south of the track. Note 1.*
B_{5}.-At Osino, Elko County, Nev., 50.7 meters east of section car house No. $36,0.9$ meter east of a telegraph pole, 30.3 meters north of the Southern Pacific main track. Note 11.*

C $_{5}$.-At Coin, Elko County, Nev., 6.8 meters north of Southern Pacific Railway mile pole 562, 21 meters north of the Southern Pacific main track, about one-quarter mile northeast of Western Pacific mile pole 670. Note 11.*
D. -About 2 miles east of Elko, Elko County, Nev., 11.8 mcters north of mile pole 560,23.5 meters north of Southern Pacific Railway track, 1.5 meters south of the fence. Note 2.*
E_{5}.-About three-fourths of a milc cast of Elko, Elko County, Nev., 8 telegraph polcs east of mile pole 558, 58.8 meters north of the Southern Pacific Railway track, 1.1 meters south of the north line fence, and about 100 meters east of the cattle guard. Note 11.*

Fs (U. S. G. S.).-At Elko, Elko County, Nev., in the top surfacc, at the west end of the lower step leading to the south entrance of the Elko County courthouse; a cross marks the exact point. Note 17.*

G $_{5}$.-At Elko, Elko County, Nev., 50 meters east of signal tower 567.3 at the west end of the Southern Pacific siding, about one-half mile west of the railway station, 12.7 meters north of the track, and 1.3 meters north of a telegraph pole. Note 11.*
H_{5}.-About 3 miles west of Elko, Elko County, Nev., 1.2 metcrs north of Southern Pacific Railway mile pole 555, 15.5 meters north of the track. Note 2.*
I_{5}.-Near Avenel, Elko County, Nev., 1.2 meters north of milc pole 553, and 15.6 meters north of the Southern Pacific Railway track. Note 2.*
J_{5} - At Avenel, Elko County, Nev., 75 meters east of the station sign, 30 meters west of the crossing, 58.7 meters south of the Southern Pacific Railway main track, and 2.6 meters north of the fence. Notc 11.*
K_{5}.-Near Avenel, Elko County, Nev., 49 meters north of mile pole 550, 64 meters north of Southern Pacific Railway tracks, and 1.9 meters south of the north line fence. Note 2.*
L. -Near Moleen, Elko County, Nev., 34 metcrs north of mile pole $548,48.3$ meters north of the Southern Pacific Railway track, 1.3 meters south of the north linc fencc. Note 2.*
M_{5}.-At Moleen, Elko County, Nev., 3 tclegraph poles west of mile pole 546, opposite the station sign, 1 meter north of the south line fence, 61.3 meters south of the Southern Pacific Railway main track. Note 11.*
N_{5}.-Ncar Molcen, Elko County, Nev., in the top surface of the west abutment of Southern Pacific Railway bridge No. 24 over Humboldt River, north of the track. Notc 1.*
O_{5}.-Near Tonka, Elko County, Nev., at mileage distance 542.6, in the top surface of the west abutment of bridge No 21 over Humboldt River, south of the track. It is the top of an iron pin.
P_{5}.-At Tonka, Elko County, Nev., 3.1 meters north of mile polc 542, 22.4 meters north of the Southern Pacific Railway main track, 39.2 meters south of the north line fence. Note 11.*
Q.-Near Tonka, Elko County, Nev., in the top surface of the west abutment of Southern Pacific Railway bridge No. 20 over Humboldt River, south of the track. It is the top of an iron bolt.
R_{5}. -Near Vivian, Elko County, Nev., in the top surface of the east abutment of bridge No. 19 over Humboldt River, south of the track. It is the top of an iron bolt.
S_{5}.-At Vivian, Elko County, Nev., 65.9 meters south of the station sign, on the right of way of the Southern Pacific Railway, 59.6 meters south of the main track, 1.4 meters north of the line fence between the Southern Pacific Railway and the Western Pacific Railway, 16.3 meters north of the Western Pacific track, 9.3 telegraph poles east of Western Pacific mile pole 647, 2.8 telegraph poles west of Southern Pacific mile pole 539. Note 11.*
T_{5}.-At Carlin, Elko County, Nev., in the grass plot halfway between the Southern Pacific Hotel and the Southern Pacific Railway station, 1 meter south of the front fence. Note 11.*
U_{5}.-About 2 miles west of Carlin, Elko County, Nev., 100 meters west of crossing 534A, 41 meters north of mile pole 534, 56 meters north of the Southern Pacific Railway track, 1.7 meters south of the north line fence. Note 11.*
V_{5}.-At Tyrol, Eureka County, Nev., approximately at mile pole 532.6, 7.5 meters cast of the station sign, 13.7 meters east of the Southern Pacific Railway main track, 1.4 meters west of the east line fence.
$\mathrm{W}_{5}-$ - $\mathrm{\Lambda}$ Palisade, Eureka County, Nev., 75 meters west of the west end of Southern Pacific Railway bridge No. 16 over Humboldt River, 30 meters east of tunnel No. 1, 13.7 meters north of the track, 14.5 meters south of the north line fence, 1 meter east of a telegraph pole. Note 11.*
X_{5}.-At Gerald, Eureka County, Nev., near the fence corner at the west end of the siding, 8 telegraph poles west of the station sign, 29.2 meters south of the Southern Pacific Railway track, 1 meter from the south line fence. Note 11.*
Y_{5}.-At Harney, Eureka County, Nev., 2.4 telegraph poles east of mile pole 518, 6.6 poles west of the station sign, 30 meters north of the Southern Pacific Railway track, 0.6 meter south of the fence. Noto $11 .{ }^{*}$
Z_{5}.-At Cluro, Eureka County, Nev., 3.3 telegraph poles cast of the station sign and of Southern Pacific Railway mile pole $514,5.3$ moters south of the second telegraph polc wcst of tho Western Pacific Railway mile pole 623, 26.8 meters north of the Southern Pacific track, 34.5 meters south of the north linc fence, and 19.1 meters south of the Western Pacific track. Notc 11.*

A $_{6}$.-At Beowawe, Eureka County, Nev., in the top surface of the concrete base of signal tower 510.1 at the east end of the siding. Noto 1.*

B6.-At Beowawe, Eureka County, Nev., in the top surface of the concrete foundation (center pier) of the Western Pacific Railway water tank. Note 1.*

C6.-At Beowawe, Eureka County, Nev., 25 meters west of the west end of the Southern Pacific Railway station, 26 meters south of the Western Pacific Railway track, 19.8 meters north of the Southern Pacific track. Note 11.*
descriptions of permanent bencil marks between beowawe, and marmol, nev., 1912.
G8.-At Ladoga, Eureka County, Nev., 0.3 mile east of the station sign, 75 meters east of mile pole 504, and 19 meters south of the Southern Pacific Railway track. Note 11.*
\mathbf{H}_{8}.-At Farrel, Eureka County, Nev., 120 meters east of the station sign, 10 meters east of section tool house No. 29, and 24 meters north of the Southern Pacific Railway track. Note 11.*

I ${ }_{8}$.-At Mosel, Lander County, Nev., 100 meters east of the station sign, 90 meters west of mile pole 493, 0.8 meter north of the south line fence, and 60 meters south of the Southern Pacific Railway track. Note 11.*
J. - At Argenta, Lander County, Nev., 100 meters east of the west point of the Southern Pacific Railway siding, 1.5 meters north of the south line fence and opposite a white-painted frame ranch dwelling house. Note 11.*
K_{8}.-At Rosny, Lander County, Nev., 30 meters east of the station sign, 1.5 meters south of Southern Pacific Railway mile pole 482. Note 11.*
L_{6}.-At Battle Mountain, Lander County, Nev., on the southwestern one of the four central concrete pillars under the Southern Pacific Railway water tank, 50 meters west of the station. Note 1.*
M_{0}.-About 1.5 miles northwest of Battle Mountain, Lander County, Nev., at Southern Pacific Railway mile pole 474, 51.5 meters north of the track, 9.1 meters south of the north line fence. Note 11.*
N_{8}.-At Piute, Humboldt County, Nev., at the station sign, at Southern Pacific Railway mileage 470.8, 36.6 meters south of the track, 25.2 meters north of the south line fence. Note 11A.*
O_{6}.-At Mote, Humboldt County, Nev., at the station sign, at Southern Pacific Railway mileage 466.3,56.2 meters north of the track, 4.9 meters south of the north line fence. Note 11A.*
P_{8}.-At Valmy, Humboldt County, Nev., on top of the concrete subbase of the southeastern one of the four central pillars under the Southern Pacific Railway water tank. Note 1.*

Q ${ }_{6}$. 1.3 miles west of Valmy, Humboldt County, Nev., 9 meters north of mile polc 460, 28 meters north of the Southern Pacific Railway track, 33 meters south of the north line fence. Note 11A.*
$\mathrm{R}_{6} .-0.3$ mile west of Stonehouse, Humboldt County, Nev., on top of the south headwall of concrete culvert No. 456C over Humboldt River, 3.2 meters south of the Southern Pacific Railway track, and about 1.5 meters below it. Note 1.*
S. At Herrin, Ilumboldt County, Nev., 60 meters west of tho east end of the siding, 28 meters west of a yellow building, 1.4 meters north of a red building, 27.4 meters south of the Southern Pacific Railway track. Note 11A.*

T6.-At Iron Point, Humboldt County, Nev., 100 meters east of mile pole 448, 18 meters west and 36 meters north of the Southern Pacific Railway station, 60 meters north of the track, 0.7 meter south of the north line fence. Note 11A.*
U_{0}.-At Comus, Humboldt County, Nev., 11.2 meters west of the section tool house, 17.6 meters north of the Southern Pacific Railway track, 0.5 meter south of the north line fence. Note 11A.*
V.-Near Preble, Humboldt County, Nev., on the top surface of the east abutment of Southern Pacific Railway bridge No. 441 C , which is bridgo No. 3 over Humboldt River, 2 meters north of the track. Note 1.*
W_{6} (S. P.).-Near Golconda, Humboldt County, Nev., in the top surface of the west abutment of Southern Pacific Railway bridge No. 2 over Humboldt River, north of the track. The bench mark is the top of a round-headed iron bolt. The stone is marked on top with the railroad's value of the elevation, 4348.238 feet.
X_{8}.-At Golconda, Humboldt County, Nev., on the northwestern one of the concrete pillars under the Southern Pacific Railway water tank, 100 meters west of the station, 50 meters south of the track. Note 1.*
Y_{6}.-At Eglon, Humboldt County, Nev., 41.7 meters north of the Southern Pacific Railway track, 29.2 meters north of mile pole 429, 1 meter south of the north line fence. Note 11A.*
Z_{8}. - At Tule, Humboldt County, Nev., 250 meters west of mile polc 423, 100 meters east of the west point of the siding, 29 meters south of the Southern Pacific Railway track, 27 meters north of the south line fence, opposite the derailing switch to the spur, and in line with the telegraph poles. Note 11A.*

A $_{7}$.-At Winnemucca, Humboldt County, Nev., in the foundation of tho Humboldt County courthouse, to the left of the entrance on Bridge Street. Note 1.*
B_{7}.-At Benin, Humboldt County, Nev., opposite the station sign, at Southern Pacific Railway mileage 412.2, 60.4 meters south of the track, 1.1 meters north of the south fence. Note 11A.*
C_{7}. - At Rose Creek, Humboldt County, Nev., 36.4 meters south of the south side in line with the west side of the station, 45 meters south of the Southern Pacific Railway track, 0.9 meter north of the fence. Note 11A.*
D_{7}.-At Lamar, Humboldt County, Nev., 0.2 mile east of the station sign, 40 meters north of mile polo 402, 59.2 meters north of the Southern Pacific Railway track, 1.3 meters north of the fence. Note 11A.*
\mathbf{E}_{7}--At Cosgrave, Humboldt County, Nev., south of the Southern Pacific Railway water tank, 30 meters south of the track, 0.7 meter north of the south line fence. Note 11A.*

Bamcroft Librury
F_{7}.-At Dodon, Humboldt County, Nev., 4 telegraph poles west of mile pole 393, opposite the station sign, 59.8 meters south of the Southern Pacific Railway track, 1.6 meters north of the south fence. Note 11A.*
G_{7}.-At Mill City, Humboldt County, Nev., 175 metcrs west of the Southern Pacific Railwaystation, in the second line of telegraph poles, 0.6 meter east of the east fence around a yellow frame building, 37.6 metcrs south of the track. Note 11A.*
H_{7}.-At Imlay, Humboldt County, Nev., on the top of the northeastern concrete pillar under the Southern Pacific Railway water tank. Note 1.*

I 7.-At Humboldt, Humboldt County, Nev., on the south sido of tho concrete foundation under the yellow-painted building of the Southern Pacific Railway, opposite the water tank, about 75 meters west of the station, 25 meters north of the track. Note 1.*
J.-At Valery, Ifumboldt County, Nev., 300 meters east of the station sign, 200 meters west of mile pole 373, 60 meters north of the track, 1.0 meter south of the north line fence, 4.0 meters east of a gate in the fence. Note 11A.*
K_{7} (S. P.). -3 milcs west of Valery, Humboldt County, Nev., at railroad mileage 369.9, in the top surface of the south headwall of the culvert under the eastbound line of the Southern Pacific Railway. It is the top of a round-headed iron bolt and constitutes a bench mark of the Southern Pacific Railway.
L_{7} (S. P.).-1.7 miles east of Rye Patch, Humboldt County, Nev., at railroad mileage 367.7, south of the track, on the top surface of the east concrete abutment of the small bridge under the eastbound line of the Southern Pacific Railway. It is the top of a round-headed iron bolt and constitutes a bench mark of the Southern Pacific Railway.
M. -At Rye Patch, Humboldt County, Nev., 30 meters north of mile pole 366, 49 meters north of the Southern Pacific Railway track, 35 meters south of the line fence, 20 meters east of the freight house. Note 11A.*
N_{7} (S. P.). 0.6 mile west of Rye Patch, Humboldt County, Nev., at railroad mileage 365.4, in the top surface of the south headwall of concrete culvert No. 365 C . It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.
O_{7} (S. P.).-2 miles east of Zola, Humboldt County, Nev., in the top surfaco of the south headwall of culvert No. 363C. It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.
$\mathrm{P}_{7} .-0.3$ mile east of Zola, Humboldt County, Nev., at railroad mileage 361.7, 46 meters south of the Southern Pacific Railway track, 1 meter north of the south line fence. Note 11A.*

Q ${ }_{7}$-At Oreana, Humboldt County, Nev., at railroad mileago 357.9, on the top surface of the southeastern ono of the four central pillars under the Southern Pacific Railway water tank. Note 1.*
R_{7}.-At Woolsey, Humboldt County, Nev., at railroad mileage $353.6,150$ meters west of the east end of the siding, on the top surface of the south headwall of stone culvert 353D, 10 meters south of the Southern Pacific Railway track, and about 1 meter below it. Note 1.*

S $_{7}$.-At Kodak, Humboldt County, Nev., opposite the station sign, on the south side of the Southern Pacific Railway track, 100 meters west of mile pole 349,1 meter north of the south line fence. Note 11A.*
T_{7}. -2.5 miles east of Lovelocks, Humboldt County, Nev., 0.5 meter north of mile pole 347, 16.5 meters north of the Southern Pacific Railway track. Noto 11A.*

U $_{7} .-2$ miles east of Lovelocks, Humboldt County, Nev., at railroad mileage 346.4, on the south end of the east abut. ment of Southern Pacific Railway bridge 346B over the irrigation canal. Note 1.*
V_{7}.-At Lovelocks, Humboldt County, Nev., 50 meters east of the station, on the north side of the northwestern one of the concrete pillars under the Southern Pacific Railway water tank, 60 meters south of the track. Note 1.*
W_{7}-At Perth, Humboldt County, Nev., opposite the station sign at railroad mileage 340.5 in the second line of telegraph poles, 30 meters south of the Southern Pacific Railway track. Note 11A.*
X_{7}.-At Granite Point, Humboldt County, Nev., 20 meters west of mile pole 336, at the edge of a hummock, 100 meters west of the section foreman's house, 60 meters north of the Southern Pacific Railway track, 2.5 meters south of the line fence. Note 11A.*

Y $_{7}$.-At Toulon, Humboldt County, Nev., at railroad mileage 331.8, 11.4 meters north of the station sign, 18.5 meters north of the Southern Pacific Railway track, in the first line of telegraph poles. Note 11A.*
Z_{7}.-At Toy, Humboldt County, Nev., 30 meters west of the station, 28.5 meters north of the Southern Pacific Railway track, 0.9 metcr outside of tho west fence inclosing the scction foreman's housc, 9.6 metcrs nortll of the southwest angle of the inclosure. Note 11A.*

A8.-At Miriam, Churchill County, Nev., 6.6 meters east of the station, at railroad mileage 324.2, 29 meters south of the Southern Pacific Railway track, 0.8 metcr west of a tclegraph pole in the second line of poles. Note 11A.*
B_{8}. -1 mile east of Huxley, Churchill County, Nev., at mileage 317.6 of the Southern Pacific Railway, on the east abutment of bridge 317A. Note 1.*
C_{8}.-At Parran, Churchill County, Nev., on the south side of the southwest concrete pillar under the Southern Pacific Railway water tank. Note 1.*
D_{8} (S. P.).-1.5 miles east of Desert, Churchill County, Nev., at railroad mileage 308.4, in the top surface of the concrete abutment of the small Southern Pacific Railway bridge. It is the top of a round-headed bolt and constitutes a Southern Pacific Railway bench mark.
$\mathrm{E}_{8} .-0.9$ mile west of Desert, Churchill County, Nev., 1 meter north of mile pole 306, 18.8 meters north of the Southern Pacific Railway track, 50 meters east of the "distant" signal. Note 11A.*
F_{8} (S. P.).-At Upsal, Churchill County, Nev., at Southern Pacific Railway mileage 303.6, 200 meters east of the 1 mile sign at the east side of Upsal, in concrete culvert No. 303A. It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.

G ${ }_{8}$.-At Upsal, Churchill County, Nev., 150 meters west of the station, on the top surface of the east abutment of the small Southern Pacific Railway bridge No. 301A, 2 meters south of the track and about 0.6 meter belew it. Note 1.*
H_{8} (S. P.).-1. 2 miles east of Falais, Churchill County, Nev., in the top surface of the west concrete abutment of the small Southern Pacific Railway bridge 299A. It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.
I_{8}.-At Massie, Churchill County, Nev., at Southern Pacific Railway mileage 293.2, 0.3 mile east of the east end of the siding, on tho top surfacc of the east abutment to bridge 293A. Note 1.*
J_{8}. - At Massie, Churchill County, Nev., at Southern Pacific Railway mileage 291.7, 0.3 mile west of the west end of the siding, on the top surface of the east abutment to Southern Pacific Railway bridge 291A. Note 1.*
K_{8} (S. P.).-At Hazen, Churchill County, Nev., 100 meters east of the cast end of the siding, on the top surface of the east abutment of Southern Pacific Railway bridge 289A. It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.
L_{8}.-At Hazen, Churchill County, Nev., 0.3 mile east of the station, in the southeast concrete pillar under the Southern Pacific Railway water tank, 50 meters north of the track. Note 1.*
M_{3}.-At Patna, Churchill County, Nev., at railroad mileage 284.7, 0.1 mile west of the section foreman's house, on the top of the west concrete abutment of the small Southern Pacific Railway bridge 284B. Note l.*
N_{8} (S. P.).-In Lyon County, 1.1 miles west of Patna, Churchill County, Nev., at railroad mileage 282.8, in the top surface of the west abutment of small Southern Pacific Railway bridge 282 C . It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.
O_{8} (S. P.). -0.5 mile east of Argo, Lyon County, Nev., at railroad mileage 281.4, in the east concrete abutment to bridge 281B. It is the top of a round-headed iron belt and constitutes a Southern Pacific Railway bench mark.

P ${ }_{8}$.-At Argo, Lyon County, Nev., 0.1 mile east of the station sign, at railroad mileage 280.5, 11.3 meters east of the derailing switch, 30.7 meters north of the Southern Pacific Railway track, and 0.4 meter south of the north line fenco. Note 11A.*

Qs.-At Luva, Lyon County, Nev., at railroad milcage 277.8, 4 meters east of the station sign, 29.5 meters north of the Southern Pacific Railway track, 1 meter south of the north line fence, and 16 meters west of the point of the branch line. Note 11A.*
R_{8}.-At Fernley, Lyon County, Nev., at railroad mileage 276.1, 16 meters west of the Southern Pacific Railway station, 59 meters north of the track, 0.8 meter south of the north line fence. The station is soon to be moved about 0.3 mile to the westward. Note 11A.*
S_{8}. (U. S. G. S.).-At Fernley, Lyon County, Nev., 200 meters west of the Southern Pacific Railway station, 60 meters west of mile polc 276,3 meters south of the track, on the south headwall of a concrete culvert. The station is soon to be moved about 0.3 mile to the westward. Note 17^{*} not stamped.

T ${ }_{8}$.-At Gilpin, Washoe County, Nev., 150 meters west of the Southern Pacific Railway water tank, 200 meters east of the station sign, and 15.7 meters south of the track. Note 11A.*
U_{8} (S. P.).-At Derby, Washoe County, Nev., at railroad mileage 269.5, in the top surface of the wost abutment of Southern Pacific Railway bridge No. 13 over the Truckee River. It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.
V_{8} (S. P.). -0.6 mile west of Derby, Washoe County, Nev., at railroad mileage 268.7, in the top surface of the east abutment of Southern Pacific Railway bridge No. 12 over the Truckee River. It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.
W_{8} (S. P.).-1 mile west of Derby, Washoe County, Nev., at railroad mileage 268.2, in the top surface of the east abutment of Southern Pacific Railway bridge No. 11 over the Truckee River. It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.
X_{8} (S. P.).-At Thisbe, Washoe County, Nev., at railroad mileage 264.7, 0.2 mile west of the Derby Dam of the United States Reclamation Service, in the top surface of the east concrete abutment of Southern Pacific Railway bridge No. 10 over the Truckee River which goes under the bridge from north to south. It is the top of a round-headed iron bolt and constitutes a Southern Pacific Railway bench mark.
Y_{8} (S. P.).-At Thisbe, Washoe County, Nev., 0.5 mile west of the Derby Dam of the United States Reclamation Scrvice at railroad mileage 264.5, in the top surface of the east abutment of Southern Pacific Railway bridge No. 9 over the Truckee River. The river goes under the bridge from south to north. It is the top of a round-headed iron bolt and constitutes a bench mark of the Southern Pacific Railway.
Z_{8} (S. P.).-At Clark, Storey County, Nev., 100 meters oast of the east end of the siding, in the top surface of the west concrete abutment of Southern Pacific Railway bridge No. 8 over the Truckee River. It is the top of a roundheaded iron bolt and constitutes a railroad bench mark.
A_{9} (S. P.). -One-half mile east of Ditho, Washoe County, Nev., at railroad mileage 258.1, in tho top surface of the east abutment of Southern Pacific Railway bridge No. 7 over the Truckeo River. It is the top of a round-headed iron bolt and constitutes a railroad bench mark.

B9 -At Hafed, Washoe County, Nev., at railroad mileage 253.1, 40 meters east of the station sign, 29.4 meters south of the Southern Pacific Railway track, on top of a large black bowlder 3 meters high. Note 1.*
C_{9} (S. P.).-Near Vista, Washoe County, Nev., at railroad mileago 251, on the top surface of the east abutment of Southern Pacific Railway bridge No. 6 over the Truckco River. It is the top of a round-hcaded iron bolt and constitutcs a railroad bench mark.
D. (S. P.).-In Storey County, 1.4 miles east of Vista, Washoe County, Nev., on the west abutmont of the small Southern Pacific Railway bridgo 250B. It is the top of a round-headed iron bolt and constitutes a railroad bench mark.
E_{9} (S. P.).-In Storey County, 0.6 mile east of Vista, Washoe County, Nev., at railroad mileage 249.8, on the top surface of the east abutment of Southern Pacific Railway bridge No. 5 over the Truckee River. It is the top of a roundheaded iron bolt and constitutes a railroad bench mark.
F_{9}.-At Vista, Washoe County, Nev., 10.6 meters south of mile pole 249, 25.2 meters south of the Southern Pacific Railway track, 0.2 mile west of the station sign, in the angle formed by the fence at the grade crossing with the south line fence, northwest of the highway. Note 11A.*

G9.-At Sparks, Washoe County, Nev., at railroad mileage 246.3, 250 meters west of the Southern Pacific Railway station, in the angle formed by the high board fence at the grade crossing, 1 meter from fence corner, 14.9 meters north of the track. Note 11A.*
H_{9}.-At Reno, Washoe County, Nev., a brass plate 2 by 4 inches in the granite top of the north balustrade of the east entrance to the city hall. The elevation marked on top is 96.72 feet above the zero of the city system of lovels.
I_{9} (U. S. G. S.).-At Reno, Washoe County, Nev., on the main building of the Nevada State University in the side of the northeast corner stone. ' Note $17{ }^{*}$ stamped 4554.817.
J_{9}.-At Lawton, Washoe County, Nev., 0.3 mile east of tho Southern Pacific Railway station, 120 meters east of mile pole 238, on top of a large brown bowlder 1.5 meters high, 15 meters north of the westbound track. Note 1.*
K_{0}.-2 miles east of Verdi, Washoe County, Nev., at mileage 234.1 on the old lino of the Southern Pacific Railway, on the east abutment of Southern Pacific Railway bridge No. 4 on the Truckee River. Note 1* *.
L_{9} (S. P.).-At Verdi, Washoe County, Nev., the top of the western inside base bolt of signal tower 2329, which is the "distant" signal for the east end of Verdi siding. It constitutes a Southern Pacific Railway bench mark.

DESCRIPTIONS OF PERMANENT BENCH MARKS BETWEEN MARMOL, NEV., AND SAN FRANOISCO, CAL., 1912.

F6.-At Marmol, Washoe County, Nev., at Southern Pacific Railway mileage 230.5, in the cow pasturo opposite a large red building, 75 meters south of the track, 20 meters west of the east pasture fence, 7 meters north of the south pasture fence, 100 meters east of bench mark E_{8}, in the top of a black bowlder. The bench mark is the top of a roundheaded iron bolt.
E_{6}.-At Marmol, Washoe County, Nev., at Southern Pacific Railway mileage 230.5, in the cow pasture opposite a large red building, 65 meters south of the track, 60 meters east of the west pasture fence, 10 meters north of the south pasture fence, on the top of a large bowlder. Note 1.*
D. - About 0.6 mile southwest of Marmol, Washoe County, Nev., on the top of the east abutment of the Southern Pacific Railway bridge over the Truckee River. Note 1.*
Y_{10}-At Calvada, Sierra County, Cal., 5 meters west of the California-Nevada State line, on the top of the north headwall of the stone culvert under the Southern Pacific Railway tracks, and about 1.2 meters below them. Note 1.*
X_{10}.-At Mystic, Nevada County, Cal., 65 meters east of the Southern Pacific Railway station, at railroad mileage 225.8 , on the top of the concrete culvert under the track. Note $1 .{ }^{*}$
W_{10}.-At Iceland, Nevada County, Cal., on the top of the east stone abutment of Southern Pacific Railway bridge No. 220 G over the Truckee River. Note 1.*
V_{10} - Near Prosser Creek, Nevada County, Cal., 0.5 mile west along the Southern Pacific Railway track from the bridge over Prosser Creek, on top of a large volcanic bowlder. Note 1.*
U_{10}.-At Truckee, Nevada County, Cal., 30 meters west of tho Southern Railway passenger station, on the top surface of the northwestern one of the four central pillars under the water tank, about 1.2 meters above the rail. Noto 1.*
T_{10}.-At Tunnel, Placer County, Cal., 0.4 mile east of the Southern Pacific Railway station (tunnel 13), 150 meters east of the eastend of thesnowshed, on the top of the south headwall of stone culvert No. 201F, under the track. Note 1.*
S_{10}.-About $\frac{1}{4}$ mile east of Eder, Placer County, Cal., 15 meters west of Southern Pacific Railway mile pole 198, 100 meters west of tho east end of tho siding, in the snowshed on the inside of the stono retaining wall, about 1 meter above the track. Noto 1.*
R_{10}.-At Summit (Donner post office), Placer County, Cal., on the front wall of the concrete Southern Pacific Railway station, between two front windows, about 1.2 meters above the track. Note 1.*
$Q_{10}-0.5$ mile west of Spruce, Nevada County, Cal., on the top of tho granite abutment of the Southern Pacific bridge, south of the track, and about 0.6 meter below it. Note 1.*
P_{10}.-At Cisco, Placer County, Cal., on top of a large bowlder 50 meters west of the Southern Pacific Railway Station, 10 meters north of the snowshed, about 1.5 meters below the track. Note 1.*
O_{10}.-At Emigrant Gap, Placer County, Cal., on top of a large flat bowlder 3 meters east of the Southern Pacific Railway station, 2 meters outside of the snowshed on the south side of the track, and about 0.6 meter above the track. Note 1.*
N_{10}.-At Blue Canyon, Placer County, Cal., on tho face of the concrete drinking fountain, at the Southern Pacific Railway station, about 1.2 meters above the track. Note 1.*
M_{10}.-At Orel, Placer County, Cal., 200 meters east of the Southern Pacific Railway station, on the top surface of the central concrete pillar under the water tank, about 0.3 meter abovo the track. Noto 1.*
L_{10}.-At Towle, Placer County, Cal., 0.3 milo east of the Southern Pacific Railway station, 90 meters east of milo pole 158, on the top of a bowlder 1 meter high, 20 meters north of the track, and about 1.5 meters above it. Note 1.*
K_{10}.-At Gold Run, Placer County, Cal., 0.6 mile west of tho Southern Pacific Railway passenger station, on the top surface of the south headwall of concrete culvert No. 152D, under the Southern Pacific track, 3.2 meters south of the track, and about 0.6 meter below it. Note 1.*
$J_{10}-0.3$ mile southwost of Wirt, Placer County, Cal., on the top of the east concrete abutment to Southorn Pacific Railway bridge, about 0.6 meter below the track. Note 1.*
I_{10}.-At Colfax, Placer County, Cal., on the top surface of the concrete slab in front of the drinking fountain at the Nevada County exhibit. Note 1.*
H_{10}.-At Lander, Placer County, Cal., on top of the central concrete pillar under the Southern Pacific Railway watcr tank, $4 \frac{1}{2}$ meters abovo the track. Noto 1.*
G_{10}.-One mile northeast of Clippergap, Placer County, Cal., about 1.2 meters from the east end of tunnel O of the westbound line of tho Southern Pacific Railway, on tho south stone wall, 0.6 meter above the top of the rail. Noto 1.*
$F_{10}-0.2$ mile cast of the Southern Pacific Railway station at Clippergap, Placer County, Cal., on top of tho old foundation of tho watcr tank (now removed), about 0.5 metcr below the top of the rail. Note 1.*
E_{10}--At East Auburn, Placer County, Cal., opposite the Southern Pacific Railway passenger and freight station, on the old line (now the westbound line) of the Southern Pacific Railway, on the eastern one of the two northwestern concrete pillars under the water tank, about 1 meter above tho top of the rail. Note 1.*
D_{10}.-About 0.2 mile east of Newcastle, Placer County, Cal., at the west end of the Southern Pacific Railway tunnel, north of the track, on the top surface of the bottom stone of tho tunnel, 0.3 meter above the track. Note 1.*
C_{10}.-About 0.5 mile east of Rocklin, Placer County, Cal., on the west side of the concrete bridgo of the Southern Pacific Railway, which carries the eastbound track over the westbound track; north of the westbound track and about 1 meter above it, about 0.46 meter from the north edge of the pier, and 1.5 meters above the ground. Noto 1 .*
B_{10}.-Near Roseville, Placer County, Cal., about 0.8 mile east of tho Southern Pacific Railway station, on the top surfaco of the granite abutment at the east end of Southern Pacific Railway bridge 107D, on the south side of track, and about 0.5 meter below it. Note 1.*
A_{10}.-At Roseville, Placer County, Cal., on the top surface of the concrete base of signal tower 1067, 70 meters west of the Southern Pacific Railway station; 10 metcrs north of the track, and about 0.6 metcr above it. Note l.*
Z_{0} (U.S.G.S.).-About 2 miles northeast of Antelope, Sacramento County, Cal., at a highway crossing, north of the Southern Pacific Railway track, 7 meters south of the north line fence, 1.6 metcrs from a fence located 18 meters north of the track, and about 3 moters above the track. Note 18,* stamped 146.
Y_{0}.-At Antelope, Sacramento County, Cal., 90 meters west of the Southern Pacific Railway station, on the top surface of the north headwall of the stone culvert under the Southern Pacific tracks, about 1.2 meters below the track. Note 1.*
X_{0}.-1.2 miles northeast of Benali, Sacramento County, Cal., on the top surface of the stone abutment at the east end of the Southern Pacific Railway steel bridge No. 96C, about 0.6 meter below the track. Note 1.*
W_{0}.-At Elvas, Sacramento County, Cal., at mile pole 92, 0.4 mile north of Elvas tower, on the top of the south concrete abutment of the Southern Pacific Railway steel bridge over the American River, east of tho track, and 2.5 meters below the top of the rail. Note 1.*

Vo.-At Brighton, Sacramento County, Cal., 100 meters east of the station, on the top surface of the southwestern one of the four pillars under the Southern Pacific Railway water tank, about 3.4 meters above the ground. Note 1.*
U_{0} (U. S. G. S.).-About 0.8 mile north of Florin, Sacramento County, Cal., at mile pole 130, on the right of way of the Southern Pacific Railway, east of the track; 0.5 meter west of the east fence line. Note 18 " stamped " 36 B."

To (U. S. G. S.).-About 3 miles south of Florin, Sacramento County, Cal., at Southern Pacific Railway mile pole 126, north of the highway crossing, east of the track, 10 meters south of the angle of the fence. Noto 18^{*} stamped "37 B."

S9 (U. S. G. S.).-At Elk Grove, Sacramento County, Cal., at the southwest corner formed by the Southern Pacific right of way with the main street of Elk Grove, west of the track, opposite the north end of the Southern Pacific Railway station between two poles set about 2.5 meters apart. Note 18 * stamped " 49 B ."
R_{9} (U.S. G. S.).-At McConnell, Sacramento County, Cal., 0.2 meter northeast of the northeast corner of the small house, between the Southern Pacific Railway track and the county road. Note 18" stamped " 46 B."

Qo.-At Need, Sacramento County, Cal., 375 meters south of the station sign, 30 meters south of mile pole 115, on the top of the north concrete abutment to the Southern Pacific Railway bridge, about 0.3 meter below the track. Note 1.*
P. (U. S. G. S.).-At Galt, Sacramento County, Cal., on the right of way of the Southern Pacific Railway, in line with the north end of the railway station; 13.1 meters west of the main line, 0.6 meter from the northwest corner of the grass park. Note 18* stamped "46 B."
O_{9} (U.S. G. S.).-At Jahant, San Joaquin County, Cal., 8 meters south of mile pole 108, on the Southern Pacific Railway right of way, at crossing 107F; 0.9 meter north of the north highway fence, 11.3 meters east of the track. Note 18* stamped "48 B."
$\mathrm{N}_{0} .-1$ mile north of Acampo, San Joaquin County, Cal., on the top surface of the north concrete abutment of Southern Pacific Railway bridge No. 107D, about 0.6 meter below the top of the rail. Note 1.*
\mathbf{M}_{9} (U. S. G. S.). -1 mile south of Acampo, San Joaquin County, Cal., at crossing 105A, in the north margin of the road, 16 meters east of the Southern Pacific Railway track, 6.4 meters south of the north crossing fence. Note 18* stamped " 53 B."
L_{8}.-At Lodi, San Joaquin County, Cal., 200 meters north of the Southern Pacific Railway station in the east face of the northeast pillar under the water tank. Note 1.*
K_{9} (U. S. G. S.). $-1 \frac{1}{2}$ miles south of Lodi, San Joaquin County, Cal., 75 meters south along the track from mile pole 102, in the edge of a cultivated field, 16.3 meters east of the Southern Pacific Railway track, 0.9 meter east of the fence corner at the crossing north of the road, about 1.2 meters below the track. Note 18^{*} stamped " 45 B."
J_{θ} (U. S. G. S.).-At Pearson, San Joaquin County, Cal., 7.7 meters north along the track from mile pole 99 on the right of way of the Southern Pacific Railway, 0.3 meter west of the east line fence, 4.8 meters east of the track, and about 1 meter below it. Note 18* stamped " 37 B."
I_{9}.- 1.2 milcs north of Hammer, San Joaquin County, Cal., at railroad mileage 96.8, in the west headwall of concrete culvert 96B, under the Southern Pacific Railway track. Note 1.*
H_{9} (U. S. G. S.).-One-half mile north of Hammer, San Joaquin County, Cal., 11.8 meters north along the track from milc pole 96, on the right of way of the Southern Pacific Railway, 0.8 meter west of the east line fence, 15 meters east of track, and about 1 meter below it. Note 18 * stamped " 28 B ."
$\mathrm{G}_{\mathrm{g}} .-0.8$ mile north of El Pinal, San Joaquin County, Cal., in the north abutment of bridge 93A, west of the Southern Pacific Railway track, about 0.6 meter below the top of the rail. Note 1.*
F_{θ} (U. S. G. S.).-About 2 miles north of Stockton, San Joaquin County, Cal., 10 meters north along the track from mile pole 93, 0.5 meter west of the east line fence on the right of way of the Southern Pacific Railway, 15.7 meters east of the track, and about 1 meter below it. Note 18^{*} stamped " 20 B ."
E_{8}.-At Stockton, San Joaquin County, Cal., in the Western Pacific Railway station, in the west side of the southwest pillar of the portico at the south end. Note 1.*
D_{9}. -At Stockton, San Joaquin County, Cal., in the top of the concrete curbing around a palm tree, in the passageway between the Southern Pacific Railway waiting room and baggage room. Note 1.*
C_{9}.-About 2 miles south of Stockton, San Joaquin County, Cal., in the east headwall of concrete culvert No. 87 B under the Southern Pacific Railway track, 140 meters north of the Western Pacific Railway crossing, about 0.6 meter below the track. Note 1.*

B (U. S. G. S.).-About 1 mile north of French Camp, San Joaquin County, Cal., 0.6 meter east of Southern Pacific Railway mile pole 87, 1 meter below the track. Note 18* stamped " 15 B." This bench mark of the United States Geological Survey, the position of which was originally published as 8 feet south of mile post 88 , was found washed out and relocated as described above.

A9.-About 0.7 mile north of French Camp, San Joaquin County Cal., at railroad mileage 86.7, on the east headwall of concrete culvert No. 86 C of the Southern Pacific Railway, about 0.6 meter below the track. Note 1.*
\mathbf{Z}_{8}. -Near French Camp, San Joaquin County, Cal., in the east headwall of concrete culvert 84A under the Southern Pacific Railway track. Note 1.*
Y_{8} (U. S. G. S.).-Near Lathrop, San Joaquin County, Cal., 40 meters south along the track from Southern Pacific Railway mile pole 84, 0.6 meter south of the north highway fence at the crossing, 11.5 meters east of the Southern Pacific northbound track. Note 18 * stamped " 19 B ."
X_{8}.-At Lathrop, San Joaquin County, Cal., 100 meters north of the Southern Pacific Railway station in the southeast pillar of the water tank. Note 1.*
W_{8} (U.S. G. S.).-At Lathrop, San Joaquin County, Cal., about 75 meters north of the Southern Pacific Railway station, west of the tracks, at the fence line, 15 meters south of the water tank. Note 18 * stamped " 20 B."

V $_{8}$.-Near Lathrop, San Joaquin County, Cal., at railroad mileage 78.1, at the west end of the viaduct leading to the west end of the Southern Pacific Railway bridgc 78B over the San Joaquin River, on the top surface of the bearing stone of the northwest pier, about 1.8 meters below the top of the rail. Note 1.*
U_{8}. -1 mile northeast of Banta, San Joaquin County, Cal., in the top surface of the east abutment to Southern Pacific Railway bridge 74 C , south of the track. Note 1.*
T_{8} (U.S. G. S.).-At Banta, San Joaquin County, Cal., opposite mile pole 74 on the Southern Pacific Railway right of way, 250 meters east of the Southern Pacific station. Note 18^{*} stamped " 22.121 ."
S. (U. S. G. S.).-At Tracy, San Joaquin County, Cal., about 0.3 mile east of the Southern Pacific Railway station 2 meters north of mile pole 71, 0.3 meter south of the line fence on the right of way of the Southern Pacific Railway. Note 18* stamped " 53.927 ."
R.-At Tracy, San Joaquin County, Cal., 150 meters east of the Southern Pacific Railway station, in the top surface of the southwest concrete pillar under the water tank. Note 1.*
Q. - At Tracy, San Joaquin County, Cal., 75 meters west of the Southern Pacific Railway station, in the north face of the northwest concrete pillar under the water tank. Note 1.*
P_{8} (U. S. G. S.).-Near Tracy, San Joaquin County, Cal., 10 meters along the track east of mile pole 68, on the Southern Pacific Railway right of way, 1 meter from the south line fence, about 1 meter below the track. Note 18* stamped ' 102.656 '.
O_{8} (U. S. G. S.).-At Midway, Alameda County, Cal., about 1.5 meters east of mile pole 63, about 150 meters east of the station on the south side of the track on the Southern Pacific Railway right of way. Note 18 * stamped " 351.341 ."
N_{8}.-Near Midway, Alameda County, Cal., in the concrete base of Southern Pacific Railway signal tower 625. Note 1.*

M ${ }_{8}$.-Near Cayley, Alameda County, Cal., 100 meters west of Southern Pacific Railway mile pole 60, 125 meters of the east end of Cayley siding, in the face of a rocky cut, about 1.2 meters above the track. Note $1 .{ }^{*}$
L_{8}.-Near Altamont, Alameda County, Cal., at Southern Pacific railway mileage 57.9, on the north side at the east entrance to Southern Pacific tunnel No. 1, about 0.2 meter from the end of tunnel and 1 meter above the track. Note 1.*
K_{8}.-One-half mile east of Altamont, Alameda County, Cal., on the south abutment to the Western Pacific Railway crossing over the Southern Pacific track, about 1 meter above the Southern Pacific track. Note 1.*

J (U. S. G. S.).-At Altamont, Alameda County, Cal., about 60 meters east of the Southern Pacific Railway station, between the Southern Pacific main track and the county pike, abreast of the derailing switch to the siding. Note 18* stamped " 739.899 ."
I_{8}. - Near Altamont, Alameda County, Cal., at Southern Pacific Railway mileage 53.7, on the south headwall of Southern Pacific culvert 53G, about 0.6 meter below the track. Note 1^{*}.
H_{3}.-Near Livermore, Alameda County, Cal., at Southern Pacific Railway mileage 52.2, on the north abutment of the overhead crossing of the Western Pacific Railway over the Southern Pacific Railway, about 1.2 meters above the Southern Pacific track. Note 1.*
G_{8}.-About 2 miles east of Livermore, Alameda County, Cal., at Southern Pacific mileage 49.1 on the south abutment of the overhead crossing of the Western Pacific Railway over the Southern Pacific Railway, about 1 meter above the Southern Pacific track. Note 1.*
F_{8} (U. S. G. S.).-At Livermore, Alameda County, Cal., on the Farmers' Union Building, which is the large building just east of the Southern Pacific Railway station, north of the track, in the south side wall at the southeast corner of the building. Note 17 * stamped "488."
E_{8}.-About 1 mile west of Livermore, Alameda County, Cal., south of Southern Pacific Railway bridge No. 45A, north of the highway, about 30 meters east of the water tank, on top of the wall to the west abutment of the highway bridge. Note 1.*
D_{8}.-At Radum, Alameda County, Cal., about 1 mile east of Pleasanton, 0.1 mile east of the signal tower, on the east abutment of the Southern Pacific Railway concrete bridge No. 42A, south of the track, and about 3 meters east of the derailing switch. Note 1.*
C_{8}.-At Pleasanton, Alameda County, Cal., $\frac{1}{4}$ mile west of the Southern Pacific Railway station, on the south headwall of highway culvert at Southern Pacific Railway bridge 40 C , about 3 meters north of the track and 0.18 meter above the top of the rail. Note 1.*
B_{8}.-At Verona, Alameda County, Cal., 90 meters west of the Southern Pacific Railway station, 23 meters east of the highway crossing, in the west abutment of the Western Pacific Railway overhead crossing, about 6 meters from the east edge of the abutment and 0.6 meter above the Southern Pacific track. Note 1.*

As.-At Brightside, Alameda County, Cal., about 200 meters east of the station at mileage 34.9 on the Southern Pacific Railway, north of the track on the east abutment of the Western Pacific Railway bridge over Alameda Creek. Note 1.*

Z $_{7}$ (U. S. G. S.).-At Farwell, Alameda County, Cal., about 60 meters east of the Southern Pacific Railway station, 12 meters north of the track. Note 18 * stamped " 167.099. ."
Y. -About 1 mile east of Niles, Alameda County, Cal., east of the track, on the north end of Southern Pacific Railway bridge No. 30D over Alameda Creek. Note 1.*
X_{7}.-At Niles, Alameda County, Cal., about 60 meters west of the railway station, on the southern one of the two easternmost pillars under the wooden water tank. Note 1.*

W $_{7}$--At Niles, Alameda County, Cal., one-half mile south of the railway station, about 9 meters north of the crossing of the Southern Pacific and Western Pacific Railways, east of the track, on top of rock abutment of Southern Pacific Railway bridge over the river. Note 1.*
V_{7}.-At Irvington, Alameda County, Cal., about 90 meters north of the Southern Pacific Railway station, on the west headwall of culvert under the tracks. Note 1.*
U_{7}.-Near Warmsprings, Alameda County, Cal., on the west headwall of culvert 34E under the Southern Pacific Railway track. Note 1.*
T_{7}.-At Warmsprings, Alameda County, Cal., about 90 meters north of the Southern Pacific Railway station, on the west headwall of culvert 36 B under the crossing of the track and the highway. Note 1.*

S ${ }_{7}$.-Near Warmsprings, Alameda County, Cal., in the west headwall of culvert 38A under the Southern Pacific Railway track, and about 0.6 meter below it. This benchmark has probably been destroyed or moved. Note l.*
R_{7}.-Near Milpitas, Santa Clara County, Cal., at Southern Pacific Railway mileage 39.9, in the top surface of the west headwall of the culvert under the county road, about 24 meters east of the track and about 1 meter above the county road. Note 1.*

Q7.-Near Wayne, Santa Clara County, Cal., at mileage 43.9 of the Southern Pacific Railway, in the top of the south abutment to bridge 43 G , east of the track and about 0.5 meter below it. Note 1.*
P_{7} (U. S. G. S.).-At San Jose, Santa Clara County, Cal., on the north balustrade of the east entrance to the Hall of Records, about 1.5 meters above the ground. Note 17^{*} stamped " 98 S . F."

O $_{7}$.-At San Jose, Santa Clara County, Cal., just west of the Southern Pacific Railway station, south of the tracks, in the northwestern one of the four central pillars under the Southern Pacific water tank. Note 1.*
N_{7}.-At Santa Clara, Santa Clara County, Cal., north of Southern Pacific Railway station, in the south end of the large grass park. Note 11A.*
M_{7}.-At Lawrence, Santa Clara County, Cal., opposite the Southern Pacific Railway station, on the right of way, 40.9 meters north of the track, 1.9 meters from the line fence, 8.9 meters west of the road fence. Note 11A.*
L_{7}. -At Sunnyvale, Santa Clara County, Cal., in the east end of the grass park which lies northwest of the Southern Pacific Railway station. Note 11A.*
K_{7}.-At Mountain View, Santa Clara County, Cal., north of the Southern Pacific Railway station, in the south side of the northern one of the two circular grass parks. Note 11A.*
J_{7}.-At Mayfield, Santa Clara County, Cal., in the south end of the small grass park, north of the Southern Pacific Railway station, and west of the track. Note 11A.*
I_{7}.-At Palo Alto, Santa Clara County, Cal., in the north end of the small grass park east of the Southern Pacific Railway, and south of University Avenue. Note 11A.*

H $_{7}$.-In San Mateo County near Palo Alto, Santa Clara County, Cal., west of the track, on the top surface of the stone abutment at the north end of the Southern Pacific Railway bridge over San Francisquito Creek, which forms the boundary between San Mateo and Santa Clara Counties. Note 1.*
G_{7}.-At Menlo Park, San Mateo County, Cal., on the opposite side of the alley from the Oak Grove Villa Hotel, in the top of a concrete sphere on a corner post, about 1.2 meters above the ground. Note 1.*
F_{7}-At Redwood City, San Mateo County, Cal., north of the Southern Pacific Railway station, in tho north corner of the triangular grass park. Note 11A.*
E_{7}.-At San Carlos, San Mateo County, Cal., On the Southern Pacific Railway station, in the east side of the eastern stone post that supports the roof over the passage way, about 0.23 meter above the pavement. Noto 1.*
D_{7}.-At Belmont, San Mateo County, Cal., north of the Southern Pacific Railway station, in the south end of the grass park, midway between the rail and the fence. Note 11A.*
C_{7}. -At Beresford, San Mfateo County, Cal., about 300 meters north of the Southern Pacific Railway station, in the concrete foundation of signal tower 202, west of the track. Note 1.*
B_{7}.-At San Mateo, San Mateo County, Cal., in the top of the concrete wall at the east entrance to the small park at the Southern Pacific Railway passenger station, about 0.3 meter north of the north pillar. Note 1.*

A7.-At San Mateo, San Mateo County, Cal., un Ellsworth Avenue about one-half mile north of the Southern Pacific Railway station, in the south side of the F. A. M. building, about 3 meters from the southeast corner and about 1 meter above the ground. Note 1.*
Z_{8}.-At Burlingame, San Mateo County, Cal., in the foundation on the east side of the Southern Pacific Railway station, in front of the ticket window, about 0.15 meter above the pavement. Note 1.*
\mathbf{Y}_{0}.-At Millbrae, San Mateo County, Cal., in the east wall of the power substation, about 1 meter from the northeast corner and about 1.5 meters above the brick pavement. Note 1.*
X_{6}. -At San Bruno, San Mateo County, Cal., about 15 meters northeast of the Southern Pacific Railway station, the top of the southern inside base bolt of signal tower 108.
W_{6}.-At Holy Cross, San Mateo County, Cal., north of the stone building at the entrance to Holy Cross Cemetery, between the Southern Pacific Railway track and the street, on the eastern side of a large conical rock, on the east side of the fountain. Note 1.*

City 418.-At San Francisco, San Francisco County, Cal., on the north side of Sickles Avenue about 35 meters west of Huron Avenue and just to the left of the entrance to No. 110 Sickles Avenue. The bench mark is a cross on the cement surface at the west end of an iron gateway.

City 386.-At San Francisco, San Francisco County, Cal., on the south side of Ocean Avenue about 12 meters east of San Jose Avenue. The bench mark is a cross at the west end of the bottom step to the side entrance to a saloon.

City 640.-At San Francisco, San Francisco County, Cal., at the intersection of San Jose, Circular, and Joost Avenues. The bench mark is a cross at the southeast corner rail guard around the Southern Pacific Railway gate post, about 1 meter above the ground.

City 635.-At San Francisco, San Francisco County, Cal., on the north side of Bosworth Street opposite Lyell Street. The bench mark is a cross on the head of an iron spike embedded in the top of the dome at the east end of the east concrete retaining wall at the entrance to the culvert under the Southern Pacific Railway viaduct.

[^5]

No. 5

INDEX TO ELEVATIONS AND DESCRIPTIONS OF BENCH MARKS.

[Alpbabetical under each State.]

Place.	Elevstlon.	Descrlptlon.	Place.	Elevation.	Descrlption.	Place.	Elevatlon.	Descriptlon.
CALITORNIA.			California-continued.			NEVADA - continued.		
Acampo	$46,47$	$57,58$	Prosser Creek.	46	${ }_{56}$	Ladoga.	$e_{5}^{\delta_{0}}$	
Alston.	47		Raclmo.	47		Lamar..	45	53
Alta.	47		Radum	46, 47	59	Lawton	46	56
Altamont	46, 47	59	Redwood City	46	60	Loray.	45,47	50
Antelope	46, 47	57	Remillard	47		Lovelock	45	54
Applegate	47		Rocklin.	46, 47	57	Luva.	46	55
Armstrong	47		Roseville	46, 47	57	Marmol.	46	56
Arno......	47		San Brun	46, 47	60	Massle.	46, 47	55
Auburn	47		San Carlos.	46, 47	60	Mill City	45, 47	54
Banta.	46, 47	58	San Francisco	46	60	Miriam.	45	54
Belmont	46	60	San Jose.	46, 47	59,60	Mogul.	47	
Benali.	46,47	57	San Mate	46, 47	60	Moleen	45,47	52
Beresford	46, 47	60	Santa Clara	46, 47	60	Montello	45	50
Blue Canyon	46,47	56	Sibock.	47	..	Moor	45, 47	51
Boca.........	47		Smart.	47		Mosel	45, 47	53
Bowman	47		Soda Springs	47		Mote	45	53
Brighton.	46, 47	57	Spruce......	46, 47	56	Nardi.	45, 47	51
Brightside	46, 47	59	Stockton	46, 47	58	Natchez	45, 47	51
Burlingame	46,47	60	Summit.	46, 47	56	Noble.	45	50
Calvada..	46,47	56	Sunnyvale	46,47	60	Ocala	47	
Caporn.	47		Sunol...	47		Omar	45, 47	50
Castle..	47	.	Tamarack	47		Oreana	45, 47	54
Castro	47		Towle.	46,47	57	Osino	45, 47	52
Cayley	46	59	Tracy.	46, 47	58	Palisade.	45, 47	52
Cisco..	46,47	56	Troy..	47		Parran	45, 47	54
Clippergap	46, 47	57	Truckee	46,47	56	Patna.	46	55
Colfax....	46,47	57	Tunnell	46,47	56	Pertb	45	54
Crystal Lake	47		Ulmar.	47		Pequop.	45, 47	51
Davis.......	47		Verona.	46,47	59	Piute...	45	53
Dutch Flat.	47		Walerga.	47		Preble.	45	53
East Auburn.	46	57	Warmsprings.	46, 47	59	Rasid	47	
Eder.	46,47	56	Wayne.....	46	59	Reno.	46, 47	56
Ellot	47		Wickes..	47		Rose Creek	45	53
Elk Grov	46, 47	57	Winsted	47		Rosny	45	53
Ellis..	47		Wirt..	46, 47	57	Rye Patch	45, 47	54
El Pinal	46, 47	58	Yuba Pass	47		Ryndon.	45, 47	51,52
Elvas.	46	57	Zeta.	47		Sparks. .	46, 47	56
Emigrant Gap.	46,47	56	NEVADA.			Starr Stonehouse	45,47	53
Farwell...	46, 47	59	NEVADA.			Tecoma...	45, 47	50
Flint.	47		Akbar.	45	50	Thisbe.	46, 47	55
Florin	46,47	57	Alazon.	45, 47	51	Tonka.	45, 47	52
Floriston	47		Anthony	45	51	Toulon	45, 47	54
Forest Lake	47		Argenta.	45, 47	53	Toy.	45, 47	54
French Camp	46, 47	58	Argo.	46, 47	55	Tulasco	45,47	51
Fulda........	47		A venel.	45, 47	52	Tule.	45, 47	53
Galt.	46, 47	57	Banvard.	45	50	Tyrol.	45,47	52
Gold Run.	46, 47	57	Battlo Mountain	45, 47	53	Ulin.	45, 47	50
Gorge...	47		Benin...	45, 45	52,53	Upsal.	46, 47	54, 55
Graham.	47		Beowawe Carlin	45, 47	52, 53 52 5	Valery Valley Pas		54 50
Hammer	46	58	Carlin. Cedar.	45,47 45,47	52 51	Valley Pass Valmy	45,47 45,47	50 53
Hislop.....	47		Codar. Clark.	45,47 46,47	51 55	Valmy Verdi	45,47	53 56
Holy Cross	46 46	60 56	Clark. Cluro.	46,47 45,47	55 52	Verdi. Vista.	46 46,47	55,56
Ireland...	46	56 59	Cluro. Cobre.	45,47 45,47	52 50	Vista.. Vlvian	46,47 45,47	55,56 52
Irvington	46,47 46	59 57	Cobre. Coin.	45,47 45,47	50 52	Vlvian Wells.	45,47	52 51
Jahant.	46 47	57	Coin.... Comus.	45, 47	52	Wells......	45,47 45,47	51
Jarn. L , V ie.	47 47		Comus.. Cosgrave	45,47 45	53 53	Winnemuce	45,47 45,47	53 54
Lake View	46,47		Cosgrave	45,47 45,47	53 51	Woolsey. Wright.	45,47 45,47	54 50
Lander...	46,47 46,47	57 58	Deetb.	45, 47	51 55	Wright.	45,47 45	50 54
Lawrence.	46,47 46	58	Derby..	46,47 $45,46,47$	51 54	Zola..	45	54
Llvermore	46, 47	59	Ditbo.	46, 47	55	UTAR.		
Lodl.	46, 47	58	Doden.	45	53			
Loomis.	47		Eglon.	45	53	Balfour.....	45	48
Magra.	47		Elburz	45, 47	51	Blue Crcek	45	49
Mayborg	47		Elko.	45, 47	52	Bovine...	45	50
Mayfield.	46	60	Falais	46, 47	55	Brlgbam.	45,47	48
McConnell.	46, 47	57	Farrel.	45, 47	53	Corinno.	45, 47	48
Menlo Park.	46, 47	60	Fenelon	$4{ }^{45}$	51	Dewey..	45	48
Mettler	47		Fernley.	46, 47	55	Gartney.	45	$\quad 50$
Mldas.	47		Gerald.	45, 47	52	Hansen....	45	48,49
Midway	46, 47	58,59	Gilpln....	45	55	Honeyville	45, 47	48
Millbrae	46, 47	60	Golconda.....	45, 47	53	Kolton.	45,47	49
Milpitas.	46, 47	59	Granlte Point	45, 47	54	Kolmar	45	49
Mountain Vlew.	46,47	60	Hafed.	46, 47	55	Lake..	45,45	49
Mystic.	46	56	Halleck.	45, 47	51	Lucin...	45,47	50
Need.	46,47	57	Harney.	45, 47	52 55	Monumer	45,47	49
Nestor..	47		Hazen.	46, 47	55	Ombey. Peplin.	45,47	49
Newcastle..	46, 47	57	Herrin...	45, 47	53 51 51	Peplin.... . . Promontory	45,47	49
New England Mulis	47		Holborn. Humboldt	45, 47	51 54	Promontory	45,47 45,47	49 49
Niles.	46, 47	59	Humboldt	45,47 45,47	54 54	Romola.	45,47	49 49
Orel.	46, 47	56	Huxley.	45,47 45,47	54 51	Rozel... Surbon.	45 45	49
Palo Alto.	46, 47	60	Icarus.	45, 47	51	Surbon. Terrace.	45	49
Pearson.	46, 47	58	Imiay.....	45, 47	54 53	Terraca	45 45	40
Penryn.	47		Iron Point	45, 47	53 51	Umbrla Junctlon.	45	50
Pleasanton	46, 47	59	Kaw.	45, 47	51			
Polk..	47		Kodak.	45	54			

[^0]: ${ }^{1}$ The orthometric correction and also dynamic numbers are discussed on pp. 49 to 53 of Special Publication No. 18 of the Coast and Geodetic Survey; also at length by Charles Lallemand on pp. 358 to 387 of his "Nivellement đe Haute Précision" in the Encyclopédie des Travaux Publics; Paris et Liege, 1912.

[^1]: ${ }^{1}$ Rejected in field.

[^2]: ${ }^{1}$ The subject, errors in leveling, is discussed at length by Charles Lallemand in "Nivellement de Haute Précision" in the Encyclopédie dea Travaux Publics, Paris et Liège, 1912.

[^3]: ${ }^{1}$ On this and the following pages, the grades are named by the diference in elevation of the two ends of the separate sections. As the average length of these sections is roughly abont 1 Eilometer, a grade of 10 meters as glven here corresponds approximately to a 1 per cent grade.

[^4]: 1 Any person who finds that one of the bench marks here described is disturbed, or that the description is not in accordance with the facts, is requested to notify the Superintendent of the United States Coast and Geodetic Survey, Washington, D. C.

 * See above.

[^5]: * See p. 48.

