NOAA Technical Memorandum NMFS

JANUARY 1988

ICHTHYOPLANKTON AND STATION DATA FOR CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATIONS SURVEY CRUISES IN 1967

David A. Ambrose
Richard L. Charter
H. Geoffrey Moser

Bradley S. Earhart

NOAA-TM-NMFS-SWFC-98

[^0]NOAA Technical Memorandum NMFS

The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources. An organizational element within NOAA, the Office of Fisheries is responsible for fisheries policy and the direction of the National Marine Fisheries Service (NMFS).

In addition to its formal publications, the NMFS uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series, however, reflect sound professional work and may be referenced in the formal scientific and technical literature.

NOAA Technical Memorandum NMFS

ICHTHYOPLANKTON AND STATION DATA FOR CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATIONS SURVEY CRUISES IN 1967

David A. Ambrose
Richard L. Charter
H. Geoffrey Moser
Bradley S. Earhart

Southwest Fisheries Center National Marine Fisheries Service La Jolla, CA 92038

NOAA-TM-NMFS-SWFC-98

U.S DEPARTMENT OF COMMERCE
C. William Verity, Jr., Secretary
Nationai Oceanic and Atmospheric Administration Anthony J. Calio, Administrator
National Marine Fisheries Service
William E. Evans, Assistant Administrator for Fisheries

CONTENTS

Page
List of Figures iii
List of Tables iv
Abstract 1
Introduction 1
Sampling Area and Pattern 2
Sampling Gear and Methods 3
Laboratory Procedures 4
Identification 5
Computer Entry and Editing 9
Species Summary 10
Explanation of Tables 10
Acknowledgments 11
Literature Cited 12
Figures 15
Tables 19
Index 100

LIST OF FIGURES

Page
Figure 1. Composite arrangement of diagrammatic charts showing areas sampled on each CalCOFI cruise during 1967 15
Figure 2. Station pattern for CalCOFI Cruise 6706 showing tracks for each vessel 16
Figure 3. Station pattern for CalCOFI Cruise 6712 17
Figure 4. The basic station plan for CalCOFI cruises from 1950 to the present 18

LIST OF TABLES

Page
Table 1. Station and plankton tow data for CalCOFI cruises in 1967 19
Table 2. Pooled occurrences of fish larvae taken during calCOFI cruises in 1967 25
Table 3. Pooled numbers of fish larvae taken during calCOFI cruises in 1967 28
Table 4. Numbers of fish larvae taken on stations occupied during CalCOFI cruises in 1967 31
Table 5. Summary of pooled occurrences of fish larvae taken on CalCOFI cruises from 1961-1969 96

ABSTRACT

This report provides ichthyoplankton and associated station and tow data from California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruises conducted off California and Baja California in 1967. It is the seventeenth report in a series that presents these data for all biological-oceanographic CalCOFI surveys from 1951 to the present. A total of 258 stations was occupied during 2 cruises over a survey area which extended from Pt. Conception, California to Cape San Juanico, Mexico and seaward to several hundred miles. The data are listed in a series of 5 tables; the background, methodology, and information necessary for interpretation and quantitative analysis of the data are presented in an accompanying text. All pertinent station and tow data, including volumes of water strained and standard haul factors, are listed in the first table. Another key table lists, by station and month, standardized counts of each of the 123 larval fish categories identified from survey samples. This and previous and subsequent reports make the calCOFI ichthyoplankton and station data available to all investigators and serve as guides to the newly developed computer data base.

INTRODUCTION

This report, the seventeenth of a series, provides ichthyoplankton and associated station and tow data from California Cooperative Oceanic Fisheries Investigations (CalCOFI) joint biological-oceanographic survey cruises conducted in 1967. This program was initiated in 1949, under the sponsorship of the Marine Research Committee of the State of California, to study the population fluctuations of the Pacific sardine (Sardinops sagax) and the environmental factors that may play a role in such fluctuations. CalCOFI, known as the California Cooperative Sardine Research Program from 1949 to 1953, was made up of representatives of the South Pacific Fisheries Investigations (SPFI) of the U.S. Fish and Wildlife Service [now the La Jolla Laboratory, National Marine Fisheries Service (NMFS)], the Scripps Institution of Oceanography (SIO), the California Department of Fish and Game (CDFG), the California Academy of Sciences (CAS) and the Hopkins Marine station of stanford University. The first three of these agencies supplied ships and personnel to conduct the sea surveys. NMFS processed the plankton samples and analyzed the ichthyoplankton from them. SIO processed and analyzed the hydrographic samples and measurements and also analyzed invertebrate groups from the plankton samples.

The boundaries, station placement, and sampling frequency for the CalCOFI survey area were based on the results of joint biological and oceanographic cruises conducted by NMFS and SIO during 1939-41. Those cruises were designed to collect sardine eggs and larvae and associated hydrographic data over the entire areal and seasonal spawning range of the species. On these survey cruises, plankton tows were made to 70 m , a depth which
encompassed the vertical distribution of sardine eggs and larvae. Wide-ranging joint biological and oceanographic survey cruises were resumed in 1949 with sardine as the focus; however, an increasing interest in other biological components resulted in the deepening of standard tows to 140 m in 1951 . This marked the beginning of truly quantitative ichthyoplankton sampling on CalCOFI surveys.

Data resulting from CalCOFI surveys in 1967 have been published in a number of forms. Hydrographic data (Univ. of Calif., SIO, 1969) were presented in a standard format. Distributional maps of larvae of two taxa taken on CalCoFI surveys during 1967 are presented in the CalCOFI Atlas series: rockfish (Sebastes spp.), Ahlstrom et al., 1978; northern anchovy (Engraulis mordax), Hewitt, 1980.

A computer data base for eggs and larvae of sardine and anchovy, for larvae of hake (Merluccius productus), jack mackerel (Trachurus symmetricus) and Pacific mackerel (Scomber japonicus), and for eggs of Pacific saury (Cololabis saira) was established in 1969. The development of a data base for other fish larvae is a complex undertaking because competency of identification has evolved steadily over the past 38 years. We began the task of producing a calcofI ichthyoplankton data base and associated data report series in 1983. All available original records for 1967 were subjected to an extensive verification and editing process to produce this report. This and previous (Ambrose et al., 1987a,b,c; 1988; Sandknop et al., 1987a,b; 1988a,b; Stevens et al., 1987a,b,c; 1988; Sumida et al., 1987a,b; 1988a,b) and subsequent reports make the CalCOFI ichthyoplankton and station data available to all investigators and serve as guides to the computer data base. The data base will be modified when additional errors are discovered and when composite taxa from the earlier years are reidentified. These reports are the fundamental reference documents against which subsequent changes in the data base can be compared.

SAMPLING AREA AND PATTERN

In 1967, CalCOFI survey cruises were conducted only in JuneJuly (Cruise 6706) and December (Cruise 6712). Cruise 6706 is designated as 6707 in the hydrographic data reports (Univ. of Calif., SIO, 1969). A total of 258 stations included in this data base was occupied on these 2 cruises (170 stations on 6706 and 88 stations on 6712). Coverage of the survey station pattern varied between cruises and the entire survey area was not covered on any single cruise (Figures 1-3, Table l). The area off northern California (lines 40-57) and central California (lines 60-77) was not covered. The area between Pt. Conception, California and Pt. Abreojos, Baja California (lines 80-130) was surveyed in June-July on Cruise 6706. The area from Cape San Quintin to Pt. San Juanico, Baja California (lines 107-137) was surveyed in December on Cruise 6712. Coverage extended seaward to station 140 (approximately 450 miles offshore) on lines 90 and

93 (Cruise 6706) but typically did not extend beyond station 80 (approximately 200 miles offshore) ${ }^{1}$. Several inshore stations were occupied during Cruises 6706 and 6712 which were not covered on early calcofl surveys. These stations were included in the data base (Table 1) but omitted from the station plots (Figures 2 and 3).

Two SIO vessels were employed on these cruises: the Ellen B. Scripps (Cruise 6706) and the Horizon (Cruise 6712) (Univ. of Calif., SIO, 1969).

SAMPLING GEAR AND METHODS

The standard CalCOFI net used from 1949 to 1969 had a $1-m$ diameter mouth opening ($0.785 \mathrm{~m}^{2}$ area) and an overall length of about 5 m . The net was constructed of $30 x x x$ gauze, a heavy duty grade of silk bolting cloth, with a mesh size of 0.55 mm after shrinkage. The last 40 cm of the cone and the cod end were constructed of 56 xxx grit gauze which had a mesh size of 0.25 mm after shrinkage. The net ring was fastened to a short 3-lead bridle connected to several meters of line which attached to the towing cable by a clamp. A current meter was suspended in the center of the net mouth to measure volume of water filtered (see Kramer et al., 1972, for further details).

The standard tow from 1951 through 1968 was an oblique haul to 140 m depth (to 15 m of the bottom in shallow areas) designed to filter a constant amount of water per depth interval (ca. $3 \mathrm{~m}^{3} / \mathrm{m}$ of depth) over the vertical range of most ichthyoplankters. Hauls were made at a ship speed of $1.5-2.0$ knots and initiated by clamping the net line to the towing cable with the 45 kg terminal weight about $10-15 \mathrm{~m}$ below the surface. The net was lowered to 140 m depth by paying out 200 m of wire over a 4 minute period (35 m of depth/min.). After fishing at depth for 30 seconds, the net was retrieved at $20 \mathrm{~m} / \mathrm{min}$. (14 m depth/min.). The angle of stray of the towing cable was recorded every 30 seconds and maintained at $45^{\circ}\left(\pm 3^{\circ}\right)$ by adjusting the ship speed and course. After reaching the surface, the net was washed down and the

[^1]samples preserved in 5\% formalin buffered with sodium borate. Flowmeter readings were made at the beginning and end of each tow. Detailed descriptions of gear and methods are given by Ahlstrom (1953), Kramer et al. (1972), and Smith and Richardson (1977).

LABORATORY PROCEDURES

Laboratory processing began with the determination of a displacement volume for each sample (methods described in Staff, SPFI, 1953 and Kramer et al., 1972). Sorting involved the removal of ichthyoplankton from the sample and identification and separation of: eggs and larvae of Pacific sardine and northern anchovy; larvae of Pacific hake; and eggs of Pacific saury. Usually, each sample was sorted completely; however, one sample (Cruise 6706, 97.30) was fractioned into aliquots using a Folsom plankton splitter (McEwen et al., 1954) prior to sorting.

A "standard haul factor" (SHF) was calculated for each tow to make them comparable and allow estimations of areal abundance. This factor adjusts the number of eggs or larvae in a haul to the number in $10 \mathrm{~m}^{3}$ of water strained per meter of depth fished. If the vertical distribution of the species has been encompassed, then the adjusted value is equivalent to the number under $10 \mathrm{~m}^{2}$ of sea surface. The SHF is calculated for each haul by the formula:

$$
\mathrm{SHF}=\frac{10 \mathrm{D}}{\mathrm{~V}}
$$

$$
\text { where } \begin{aligned}
\mathrm{D}= & \text { depth of haul }=\text { cosine of the average angle } \\
& \text { of stray of the towing cable multiplied by } \\
& \text { cable length }(\mathrm{m}) \\
\mathrm{V}= & \text { total volume of water }\left(\mathrm{m}^{3}\right) \text { strained } \\
& \text { during the haul } \\
\mathrm{V}= & \mathrm{R} \cdot \mathrm{a} \cdot \mathrm{p}
\end{aligned}
$$

where $R=$ total number of revolutions of the current meter during the haul
$a=$ area $\left(m^{2}\right)$ of the mouth of the net
$p=$ length of column of water (m) needed to produce one revolution of the current meter.

Tow depth, volume of water strained, and standard haul factor are listed in Table 1 for each tow taken during 1967. Detailed descriptions of factors involved in calculating these values are presented in Ahlstrom (1948), Kramer et al. (1972), and Smith and Richardson (1977).

IDENTIFICATION

Identification of ichthyoplankton species beyond those separated during the sorting process was carried out by a separate group of specialists. Ontogenetic stages of fishes are inherently difficult to identify and this is further complicated by the large number and diversity of species which contribute to the ichthyoplankton of the California Current region. Most identifications were accomplished by establishing ontogenetic series on the basis of morphology, meristics, and pigmentation and then identifying these series by relating them to known metamorphic, juvenile, or adult stages with overlapping features (Powles and Markle, 1984). A total of 121 taxa was identified for 1967, with 70 taken to species, 26 to genus, 20 to family, and 5 to order or suborder. Beginning in 1961, larvae in the families Paralepididae and Labridae were identified to genus or species.

The task of producing a reliable and equitable ichthyoplankton data base required extensive procedures to verify, correct, and edit the original identifications. The primary data source was the original identification sheets (see Kramer et al., 1972, for examples); however, a critical resource used in all phases of this process was the CalCOFI ichthyoplankton collection in which the samples are archived. Throughout the course of CalCOFI ichthyoplankton studies, samples have been identified to the lowest taxon possible. In reviewing these identifications for the data base, our approach has been conservative and we have preserved those identifications and counts which we could confirm, while correcting as many of the errors as possible. After computer entry of coded data, taxonomic errors and inconsistencies in the data base were corrected and the most obvious identification errors were corrected. Our current knowledge of ichthyoplankton techniques coupled with a precise understanding of the development of identification competency in the program over the years allowed us to critically judge the historical records. Identifications were changed to different taxa, lumped to a higher taxonomic category, or given a more precise taxonomic name. In some cases, identifications of a taxon were inconsistent among cruises in a year. These records were made equitable by lumping to the higher taxonomic category to avoid biases that could result in quantitative misinterpretations.

Next, statistical, seasonal, and geographic outliers were identified, employing a series of graphic summaries and listings. Examination of geographic outliers proved to be especially effective because of our accumulated knowledge of species distributions. In the course of examining samples for these outliers, other identification errors were discovered and eventually all taxa were scrutinized to some extent. Lastly, certain taxa were reexamined in all samples for the entire CalCOFI time series. These taxa were selected because of their commercial, ecological, phylogenetic, or zoogeographic importance or because taxonomic confusion was at the ordinal level. The
following is a list of the taxa for 19,57 which received special attention, with explanations and caveats intended to aid in quantitative interpretations:

Anguilliformes - tentative and sporadic identifications to family or lower taxon lumped to order.

Sardinops sagax - all specimens south of line 120 checked for misidentification of Opisthonema spp.

Engraulis mordax - some nearshore samples of small E. mordax may contain other anchovy genera which could not be differentiated.

Nansenia spp. - all specimens checked and identified as N. candida or N. crassa; all specimens of these species near their range boundaries checked.

Bathylagus spp. - includes small and/or disintegrated specimens of Bathylagus or Leuroglossus stilbius.

Stomiiformes - all specimens checked and identified to genus or species; residuals are small, poorly preserved or unavailable specimens.

Vinciguerria lucetia - specimens taken seaward of station 100 checked for misidentification of V. poweriae; some V. poweriae may remain in these samples because small larve of the two species could not be differentiated; sporadic identification of V. poweriae began in 1961.

Sternoptychidae - tentative and sporadic identifications of hatchetfishes to genus were lumped to family.

Bathophilus spp. - all specimens checked.
Tactostoma macropus - all specimens checked.
Paralepididae - all specimens examined and identified to species.
Scopelarchidae - tentative and sporadic identifications to genus lumped to family.

Lampanyctus spp. - tentative and sporadic identifications to species lumped to genus.

Lampanyctus regalis - underrepresented because of inability to differentiate small larvae ($<5 \mathrm{~mm}$) from those of other species of the genus; counts may include other species of the genus because of difficulty in identifying larvae of this large and complex genus.

Lampanyctus ritteri - comment for L. regalis applies to this species.

Stenobrachius leucopsarus - all specimens taken seaward of station 100 checked.

Triphoturus mexicanus - specimens taken seaward of station 100 checked for misidentification of T. nigrescens.

Diogenichthys atlanticus - all specimens at margins of range checked.

Diogenichthys laternatus - all specimens at margins of range checked.

Electrona rissoi - recognition of this species was inconsistent and others may be included in Protomyctophum crockeri or Myctophidae.

Hygophum spp. - all specimens reidentified to species.
Hygophum atratum - all specimens checked.
Hygophum reinhardtii - all specimens checked.
Physiculus spp. - specimen examined.
Ophidiiformes - this category did not exist originally and ophidiiform larvae were included in Brosmophycis marginata, "Otophidium", "Zoarcidae", and "blenny"; identifications of B. marginata proved to be mostly correct and "Zoarcidae" to be a yet unidentified ophidiiform species; all "Otophidium" and "blenny" were reexamined and the former included Chilara taylori and other ophidiiform taxa (moved to order); "blenny" contained C. taylori, and other ophidiiform taxa in addition to true blennioids.

Atherinidae - tentative and sporadic identifications to genus were lumped to family.

Trachipteridae - tentative and sporadic identifications to genus were lumped to family.

Melamphaes spp. - all identifications ascribed to Melamphaidae were reexamined and assigned to genus (Melamphaes, Poromitra) or species (Scopelogadus bispinosus); larvae originally identified as Melamphaes spp. were not reexamined and this category may contain other melamphaid genera.

Cottidae - all specimens checked; tentative and sporadic identifications to species were lumped to famlly.

Zaniolepis spp. - all specimens checked.
Sebastes spp. - category may contain other scorpaenid genera, particularly in samples south of line 120.

Blennioidei - this is the residual of the completely reexamined "blenny" category, which also contained various misidentified ophidiiforms, and is now restricted to members of northern stichaeioid families and true blennioids (other than Hypsoblennius spp.) in the southern part of the pattern.

Labridae - all specimens originally identified to family were reexamined and assigned to genus (Halichoeres spp.) or species (Oxylebius californica, Semicossyphus pulcher); residuals are small, poorly preserved or unavailable specimens.

Mugil spp. - specimen checked.
Apogonidae - all specimens checked and identified as Howella brodiei; in this report we list H. brodiei in Apogonidae for convenience, recognizing that its systematic affinities are not resolved.

Carangidae - all specimens checked; tentative and sporadic identifications to genus or species (except Trachurus symmetricus and Seriola lalandi) were lumped to family.

Seriola lalandi - all specimens checked.
Gerreidae - tentative and sporadic identifications to genus were lumped to family.

Girella nigricans - all specimens checked.
Medialuna californiensis - all specimens checked.
Caulolatilus princeps - all specimens checked.
Sciaenidae - tentative and sporadic identifications to genus lumped to family.

Scombridae - all larvae originally identified to this family or constituent taxa (except Scomber japonicus) were reexamined and reassigned; residual are small, poorly preserved or unavailable specimens.

Trichiuridae - tentative and sporadic identifications to genus lumped to family.

Pleuronectiformes - all available specimens of this category (originally called "flatfish") were examined and reidentified; residual is a small, poorly preserved specimen.

Bothidae - all specimens examined and reassigned; most were assigned to various paralichthyid genera.

Citharichthys spp. - all larvae identified to species were lumped to genus except C. stigmaeus; category includes larvae of Etropus spp.

Citharichthys stigmaeus - includes larvae larger than C. 4.5 min; smaller larvae are in Citharichthys spp.

Paralichthys spp. - all specimens of this genus were examined and most were assigned to P. californicus or Xystreurys liolepis.

Xystreurys liolepis - originally misidentified as Paralichthys californicus; all specimens reidentified.

Lepidopsetta bilineata - all specimens examined; originally identified as Psettichthys melanostictus.

Microstomus pacificus - all specimens examined.
Pleuronichthys spp. - all larvae of this genus and constituent species were examined and assigned to species; residuals are small, poorly preserved or unavailable specimens.

COMPUTER ENTRY AND EDITING

Each taxon on the original identification sheets was given a 3-digit code based on the list of codes in Haight et al. (1979). Taxon codes and counts from these sheets were keypunched by cruise and station, along with pertinent station and tow data and entered into the VAX $11 / 780$ computer at the University of California, San Diego, Computing Center. After entries were completed for an entire year, print-out listings of taxa and counts on each station were compared with the original data sheets to eliminate keypunch errors. Next, data in the file were cross-checked with data on an existing file which contained: station and tow data; numbers of eggs of sardine, anchovy, and saury; numbers of larvae of sardine, anchovy, hake, jack mackerel, and Pacific mackerel; total number of fish eggs; and total number of fish larvae.

Discrepancies in ichthyoplankton data in these two files were corrected by inspecting original records from the sorting laboratory, the original ichthyoplankton identification sheets, and the samples themselves. Station and tow data discrepancies between the two files were corrected by reviewing ships' logs and deck tow sheets, original records from the sorting laboratory, cruise announcements, publications, header information on the ichthyoplankton identification sheets, and station plots generated for each cruise. Eventually all station and tow data were checked by comparing these sources.

The corrected ichthyoplankton data base was then examined statistically and outliers were found and checked as above. Distributional plots were then prepared for each taxon and these were checked by reviewing the data sources mentioned above and by examining archived specimens. A listing of each taxon by station (Table 4) was produced, which became the primary document for subsequent checks. Misidentifications found in geographic outlier
checks and other misidentifications and data problems discovered in the course of examining archived samples resulted in several iterations of Table 4. Finally, totals in Table 4 were checked against annual summaries of incidence and abundance (Tables 2 and 3). Ecological analyses of the data were conducted concurrently with editing procedures and provided cross-checks that allowed correction of errors.

SPECIES SUMMARY

Larvae of northern anchovy (Engraulis mordax) represented 41% of all fish larvae taken on CalCOFI cruises during 1967 and numbered over three times as many as the sanddab category Citharichthys spp., the next most abundant taxa with 12% of the total larvae (Table 2, 3). Northern anchovy also ranked first in incidence; Citharichthys spp. ranked 5th. The next most abundant species was the gonostomatid Vinciguerria lucetia also with 12% of total larvae; it ranked 3rd in occurrence. The myctophid Triphoturus mexicanus ranked 4 th in abundance (8%) and 2 nd in incidence. A deepsea smelt, Bathylagus wesethi, ranked 5 th in abundance and 6th in incidence. Larvae of Pacific sardine (Sardinops sagax) and the myctophid Diogenichthys laternatus ranked 6 th and 7 th in abundance respectively; however, in incidence these species ranked only 26 th and 13 th respectively, suggesting relatively large sample sizes. Jack mackerel (Trachurus symmetricus), Sebastes spp. (a composite of about 70 species of rockfish), and the gonostomatid genus cyclothone spp. completed the 10 most abundant taxa ranking 8 th, 9 th, and 10 th respectively; these taxa also ranked in the top 10 in incidence (l0th, 8th, and 9th respectively). These 10 top-ranking taxa contributed 85% of all larvae taken during 1967. The remaining 15% was represented by 111 taxa plus the unidentified and disintegrated categories. of the 10 taxa, 5 were midwater species or generic groupings, 2 were coastal demersal species or generic groupings, and 3 were coastal pelagic species.

EXPLANATION OF TABLES

Table 1 - This table lists by cruise the pertinent station and tow data for 1967, the volume of water filtered and standard haul factor for each tow, the percent of sample sorted, and the total numbers of fish eggs and larvae. CalCOFI cruises are designated by four digits; the first two indicate the year and the second two the month. Within each cruise the data are listed in order of increasing line and station number (southeriy and seaward directions) ; the order of station occupancy is shown on the station charts (Figures 2-3). Stations are designated by two groups of digits; the first set indicates the line and decimal fraction and the second set indicates the station on the line. Time is listed as Pacific Standard Time at the start of each tow in 24-hour designation. Methods for determining tow
depth, volume of water strained, standard haul factor, and percent sorted were described in the methods section. The values for total fish eggs and larvae represent raw counts (unadjusted for percent sorted or standard haul factor). Ship codes are: EB, Ellen B. Scripps and Ho, Horizon.

Table 2 - This table lists pooled occurrences of all larval fish taxa taken during 1967 in ranked order.

Table 3 - This table lists pooled counts of all larval fish taxa taken during 1967 in ranked order. Numbers are adjusted for percent sorted and standard haul factors.

Table 4 - This table gives numbers of fish larvae for each taxon, listed by station and calendar month in which the tow was taken. Counts are adjusted for percent of sample sorted and standard haul factor. The orders are listed in "phylogenetic" sequence modified from Nelson (1984). Subtaxa within each order are listed alphabetically. Page numbers for each taxon are given in the index at the end of the report.

Table 5 - This table is a summary of pooled occurrences of all larval fish taxa taken on CalCOFI surveys from 1961 to 1969. Taxa are listed in the same order as in Table 4.

ACKNOWLEDGMENTS

Lois Hunter originally identified larvae from CalCoFI cruises of 1967. Ronald Whyte coded each larval fish taxon or type and Rita Ford entered them into the computer. Debby Snow efficiently assisted in all aspects of data editing and retrieval. Cindy Meyer, Larry Zins, and James Ryan provided programming assistance. Dorothy Roll designed the CalCOFI data acquisition system and provided data processing support. Ken Raymond, Roy Allen, and Henry Orr helped with graphics and production of the report. Lorraine Prescott and Diane Forsythe prepared the manuscript for printing. Paul Smith determined statistical outliers, provided assistance during geographical outlier checks and offered helpful suggestions throughout the project. Izadore Barrett, Director of the Southwest Fisheries center and Reuben Lasker, Chief, Coastal Fisheries Resources Division, SWFC, provided the support critical to the completion of the project. James Thrailkill planned CalCOFI surveys and supervised cruises, data handling, and plankton sorting from 1949 to 1986 and is largely responsible for the high quality of these eperations. Without the vision and direction of Elbert Ahlstrom and Elton Sette and the dedicated efforts of the many people who collected, processed, and analyzed the samples, this data base would not exist.

Ahlstrom, E. H. 1948. A record of pilchard eggs and larvae collected during surveys made in 1939 to 1941. U.S. Fish Wildl. Serv. SSRF 54, 82 p.

Ahlstrom, E. H. 1953. Pilchard eggs and larvae and other fish larvae, Pacific Coast - 1951. U.S. Fish Wildl. Serv. SSRF 102, 55 p.

Ahlstrom, E. H., H. G. Moser, and E. M. Sandknop. 1978. Distributional atlas of fish larvae in the california Current region: rockfishes, Sebastes spp., 1950 through 1975. CalCOFI Atlas No. 26:xxi +178 p .

Ambrose, D. A., R. L. Charter, H. G. Moser, and C. R. Santos Methot. 1987a. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1951. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 79, 196 p.

Ambrose, D. A., R. L. Charter, H. G. Moser, and C. R. Santos Methot. 1987b. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1955. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 83, 185 p.

Ambrose, D. A., R. L. Charter, H. G. Moser, and C. R. Santos Methot. 1987c. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1960. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 88, 253 p.

Ambrose, D. A., R. L. Charter, H. G. Moser, and B. S. Earhart. 1988. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1963. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 94, 209 p.

Haight, C. A., H. G. Moser, and P. E. Smith. 1979. Data entry programs: CalCOFI. II. Fish eggs and larvae identification sheet. National Marine Fisheries Service, Southwest Fisheries Center, La Jolla, Admin. Rept. No. LJ-79-25.

Hewitt, R. 1980. Distributional atlas of fish larvae in the California Current region: northern anchovy, Engrauilis mordax Girard, 1966 through 1979. CalCOFI Atlas No. 28:ix + 101 p.

Kramer, D., M. Kalin, E. G. Stevens, J. R. Thrailkill, and J. R. Zweifel. 1972. Collecting and processing data on fish eggs and larvae in the California current Region. NOAA Tech. Rep. NMFS Circ. $370,38 \mathrm{p}$.

McEwen, G. F., M. W. Johnson, and T. R. Folsom. 1954. A statistical analysis of the performance of the Folsom Plankton Sample Splitter, based on test observations. Arch. Meteor. Geophys. Bioklim. Ser. A, 7:502-527.

Nelson, J. S. 1984. Fishes of the world. John Wiley and Sons, N.Y., 523 p.

Powles, H. and D. F. Markle. 1984. Identification of larvae, p. 31-33. In: ontogeny and systematics of fishes. H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, Jr., and S. L. Richardson (eds.). Spec. Publ. No. 1. Amer. Soc. Ichthyol. Herpetol., 760 p.

Sandknop, E. M., R. L. Charter, H. G. Moser, and J. D. Ryan. 1987a. Ichthyoplankton and station data for California Cooperative oceanic Fisheries Investigations survey cruises in 1952. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 80, 207 p.

Sandknop, E. M., R. L. Charter, H. G. Moser, and J. D. Ryan. 1987b. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1958. U.S. Dep. Commer. NOAA Tech. Memo., NMFS, SWFC, No. 86, 248 p.

Sandknop, E. M., R. L. Charter, H. G. Moser, C. A. Meyer, and A. E. Hays. 1988a. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 196l. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 92, 167 p.

Sandknop, E. M., R. L. Charter, H. G. Moser, C. A. Meyer, and A. E. Hays. l988b. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1964. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 95, 222 p.

Smith, P. E. and S. L. Richardson. 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fish. Tech. Pap. No. 175, 100 p.

Staff, South Pacific Fishery Investigations. 1953. Zooplankton volumes off the Pacific Coast, 1952. U.S. Fish Wildl. Serv. SSRF 100, 41 p.

Stevens, E. G., R. L. Charter, H. G. Moser, and M. S. Busby. 1987a. Ichthyoplankton and station data for Califorria Ccoperative Oceanic Fisheries Investigations survey cruises in 1953. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 81, 186 p.

Stevens, E. G., R. L. Charter, H. G. Moser, and M. S. Busby. 1987b. Ichthyoplankton and station data for california

Cooperative Oceanic Fisheries Investigations survey cruises in 1956. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. $84,189 \mathrm{p}$.

Stevens, E. G., R. L. Charter, H. G. Moser, and M. S. Busby. 1987c. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1959. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 87, 273 p.

Stevens, E. G., R. L. Charter, H. G. Moser, and L. R. Zins. 1988. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1965. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. $96,220 \mathrm{p}$.

Sumida, B. Y., R. L. Charter, H. G. Moser, and D. L. Snow. 1987a. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1954. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 82, 207 p.

Sumida, B. Y., R. L. Charter, H. G. Moser, and D. L. Snow. 1987b. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1957. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 85, 225 p.

Sumida, B. Y., R. L. Charter, H. G. Moser, and D. L. Snow. 1988a. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1962. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 93, 179 p .

Sumida, B. Y., R. L. Charter, H. G. Moser, and D. L. Snow. l988b. Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1966. U.S. Dep. Commer., NOAA Tech. Memo., NMFS, SWFC, No. 97, 287 p.

University of California, Scripps Institution of Oceanography. 1969. Data report: physical and chemical data, CalCOFI Cruises 6707, 6712. SIO Ref. 69-8.

Figure 1. Composite arrangement of diagrammatic charts showing areas sampled on each CalCOFI cruise during 1967.

Figure 2. Station pattern for CalCOFI Cruise 6706 showing tracks for each vessel. Stations with plankton tows are indicated by a dot; circles designate hydrographic stations and diamonds signify STD recordings. Figures 2 and 3 modified from charts in Univ. of Calif., SIO (1969) to include only those stations listed in Table 1 of this report; see Table 1 for inshore stations not shown on charts.

Figure 3. Station pattern for CalCOFI Cruise 6712. Symbols as in Figure 2.

Figure 4. The basic station plan for CalCOFI cruises from 1950 to the present.

のが
$\stackrel{4}{0}$
 MNNMMNNMNNHMHHMNNHNNNNMMNNNNNNNNNNNNMNNNNNN
 Vol． Water
Strained
（cu．m）

 Tow Depth
（m）
Time
（PST）

 NNNNNTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

 OMmONONDNMOGOMONLOOOOOOOONOONNH6OOOOLNOOONO

\qquad

000 ○ᄋᄋᄋ

 Total

15

rneH

 $\overbrace{B}^{3} \underset{\sim}{c} \underset{\sim}{c}$

NNNの

 Nom ーかの円ー

 Total

000

 Tow Depth
(m)

Tow Date Time

出

 -

 Mー

0000000000000000000000000000000000000 0000000000000000000000000000000000000

 oonnmonoooonn－mooonooooonnuooooonninno

 NNNNNNNNNNNWNNNTNNNNNNNNNNNNNNNNNNNNN
000000000000000000000000000000000000

0000000000000000000000000000000000000
 ココニコニココNNNNNNNNNNNNNNNNNNNNNNNNNNMMMM

 Vol. Strained $3 \underset{\sim}{0} 0$
 YI. m

[^2]

000 000

 $\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

 3 号

תOOLOOOOOONOOODOOOLOODNOONGNONNNONOONOOUOO

000 OOOOOOOOOOOMmmmmmmNNNNNRNOOOOOOOOMmmMmNNNNN

TABLE 2. Pooled occurrences of fish larvae taken during CalCOFI cruises in 1967.

Rank
Taxon
Engraulis mordax 150
Triphoturus mexicanus
142
Vinciguerria lucetia 121
Protomyctophum crockeri 109
Citharichthys spp. 108
Bathylagus wesethi 99
Disintegrated fish larva 84
Sebastes spp. 81
Cyclothone spp. 80
Trachurus symmetricus 76
Melamphaes spp. 68
Lampanyctus spp. 67
Diogenichthys laternatus 63
Unidentified fish larva 60
Diaphus spp. 46
Lampanyctus ritteri 43
Leuroglossus stilbius 43
Diogenichthys atlanticus 38
Symbolophorus californiensis 38
Ceratoscopelus townsendi 37
Lestidiops ringens 36
Gobiidae 36
Tetragonurus cuvieri 36
Myctophidae 33
Sciaenidae 32
Stenobrachius leucopsarus 31
Sardinops sagax 31
Scopelarchidae 29
Bathylagus ochotensis 28
Sternoptychidae 28
Merluccius productus 25
Pleuronichthys verticalis 24
Stomias atriventer 24
Synodus spp. 23
Oxyjulis californica 23
Serranidae 23
Peprilus simillimus 22
Argentina sialis 21
Hygophum atratum 21
Hypsoblennius spp. 19
Citharichthys stigmaeus 19
Icichthys lockingtoni 18
Gonichthys tenuiculus 16
Diogenichthys spp. 16
Chilara taylori 15
Idiacanthus antrostomus 15
Scomber japonicus 14
Microstomus pacificus 13

48
50
50
52
52
54
54
54
54
54
54
60
60
60
60
64
64
64
67
67
67
67
67
67
73
73
73
73
73
73
73
73
73
82
82
82
82
82
82
82
89
89
39
89
89
89
89
96

Paralichthys californicus 13
Hippoglossina stomata 12
Lampanyctus regalis 12
Myctophum nitidulum 11
Notoscopelus resplendens 11
Ophidiiformes 10
Lampadena urophaos 10
Trichiuridae 10
Pleuronichthys spp. 10
Tarletonbeania crenularis 10
Symphurus spp. 10
Clinidae 9
Chauliodus macouni 9
Stomiiformes 9
Microstoma microstoma 9
Scorpaena spp. 8
Scombridae 8
Nansenia crassa 8
Etrumeus acuminatus 7
Macroramphosus gracilis 7
Zaniolepis spp. 7
Hygophum reinhardtii 7
Sphyraena argentea 7
Notolychnus valdiviae 7
Nansenia candida 6
Medialuna californiensis 6
Parophrys vetulus 6
Syngnathus spp. 6
Bathylagus spp. 6
Scopelosaurus spp. 6
Chiasmodontidae 6
Trachipteridae 6
Poromitra spp. 6
Ichthyococcus spp. 5
Agonidae 5
Anguilliformes 5
Brosmophycis marginata 5
Seriola lalandi 5
Cottidae 5
Chromis punctipinnis 5
Semicossyphus pulcher 4
Halichoeres spp. 4
Scbastalobus spp. 4
Cyclopteridae 4
Scopelogadus bispinosus 4
Lyopsetta exilis 4
Xystreurys liolepis 4
Girella nigricans 3
Blennioidei 3

```
TABLE 2. (cont.)
```

96 96 100
100
100
100
100
100
100
100
100
100
110
110
110
110
110
110
110
110
110
110
110
110
110
110

Cololabis saira 3
Tactostoma macropus 3
Macrouridae 2
Atherinidae 2
Pleuronichthys ritteri 2
Notolepis risso 2
Lepidopsetta bilineata 2
Bathophilus spp. 2
Labridae 2
Aristostomias scintillans 2
Gerreidae 2
Carangidae 2
Mugil spp. I
Centrobranchus spp. I
Coryphaena hippurus l
Loweina rara l
Brama spp. 1
Howella brodiei 1
Physiculus spp. I
Scorpaenidae l
Sarda chiliensis I
Porichthys spp. 1
Caulolatilus princeps l
Pleuronectiformes l
Diplophos taenia l
Pleuronichthys coenosus I

TABLE 3. Pooled numbers of fish larvae taken during CalCOFI cruises in 1967. Counts are adjusted for percent of sample sorted and standard haul factor (see text).

Rank

1
2
3
4
5
6
7
8

Taxon
Engraulis mordax
Citharichthys spp.
Vinciguerria lucetia
Triphoturus mexicanus
Bathylagus wesethi
Sardinops sagax
Diogenichthys laternatus
Trachurus symmetricus
Sebastes spp.
Cyclothone spp.
Diaphus spp.
Count

Ceratoscopelus townsendi 896
Ceratoscopelus townsendi 722
Protomyctophum crockeri 711
Unidentified fish larva 631
Sciaenidae 547
Lampanyctus spp. 495
Lampanyctus ritteri 474
Lestidiops ringens 426
Disintegrated fish larva 410
Melamphaes spp. 402
Stenobrachius leucopsarus 395
Symbolophorus californiensis 384
Merluccius productus 342
Peprilus simillimus 334
Myctophidae 308
Diogenichthys atlanticus 298
Serranidae 289
Tetragonurus cuvieri 238
Pleuronichthys verticalis 224
Argentina sialis 188
Leuroglossus stilbius 186
Diogenichthys spp. 183
Synodus spp. 181
Scomber japonicus 180
Oxyjulis californica 157
Bathylagus ochotensis 139
Bypsoblennius spp. 130
Gobiidae 129
Scopelarchidae 128
Icichthys lockingtoni 122
Etrumeus acuminatus i2i
Scombridae 108
Sternoptychidae 103
Idiacanthus antrostomus 99
Stomias atriventer 82
Hygophum atratum 80
Citharichthys stigmaeus 70
48 Trichiuridae 69

49 Chilara taylori 63
$50 \quad$ Gonichthys tenuiculus 55
51 Scorpaena spp. 53
Tarletonbeania crenularis 53
Sphyraena argentea 53
Lampanyctus regalis 52
Hippoglossina stomata 52
Paralichthys californicus 51
Cottidae 50
Nansenia candida 46
Notoscopelus resplendens 43
Xystreurys liolepis 40
Microstomus pacificus 40
Gerreidae 40
Myctophum nitidulum 40
Lampadena urophaos 39
Symphurus spp. 37
Bathylagus spp. 37
Stomifformes 34
Microstoma microstoma 33
Ophidiiformes 32
Clinidae 32
Pleuronichthys spp. 31
Hygophum reinhardtii 30
Chauliodus macouni 28
Nansenia crassa 27
Zaniolepis spp. 26
Cyclopteridae 24
Parophrys vetulus 22
Anguilliformes 22
Notolychnus valdiviae 21
Chromis punctipinnis 21
Scopelosaurus spp. 21
Medialuna californiensis 20
Macroramphosus gracilis 19
Chiasmodontidae 19
Seriola lalandi 19
Lyopsetta exilis 18
Agonidae 16
Poromitra spp. 16
Trachipteridae 16
Bathophilus spp. 15
Semicossyphus pulcher 14
Ichthyococcus spp. 13
Scopelogadus bispinosus 13
Brosmophycis marginata 12
Tactostoma macropus 10
Labridae 10

TABLE 3. (cont.)
Rank

Taxon
Count
95 Atherinidae 10
95
Sebastolobus spp. 10
Cololabis saira 9
Blennioidei 9
Aristostomias scintillans 9
Syngnathus spp. 9
Carangidae 9
Notolepis risso 8
Halichoeres spp. 8
Girella nigricans 7
Pleuronichthys ritteri 7
Howella brodiei 6
Macrouridae 5
Caulolatilus princeps 5
Lepidopsetta bilineata 5
Loweina rara 3
Brama spp. 3
Pleuronectiformes 3
Diplophos taenia 3
Scorpaenidae 3
Physiculus spp. 3
Sarda chiliensis 3
Mugil spp. 3
Centrobranchus spp. 3
Pleuronichthys coenosus 3
Porichthys spp. 2
Coryphaena hippurus 1
Total 85911
TABLE 4. Numbers of fish larvae taken on stations occupied during CalCOFI cruises in l967. Counts are given for stations occupied twice during a single month. Unoccupied stations are indicated
Anguilliformes

S'PATIO		JAN.	FEB.	MAR	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV .	DEC.
120.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	7.2
120.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	3.0
123.0	37.0	-	-	-	-	-	-	0.0	-	-	-	-	3.2
123.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	5.9

Etrumeus acuminatus

STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OC''	NOV.	DEC .
120.0	24.0	-	-	-	-	-	-	8.2	-	-	-	-	0.0
120.0	40.0	-	-	-	-	-	-	83.7	-	-	--	-	0.0
120.0	50.0	-	-	-	-	-	-	2.4	-	-	-		0.0
123.0	37.0	-	-	-	-	-	-	1.9	-	-	--	-	0.0
130.0	35.0	-	-	-	-	-	-	0.0	-	-	\rightarrow	-	3.2
137.0	23.0	-	-	-	-	-	-	-	-	-	-	-	1.5
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	20.5

STATIO		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
97.0	29.0	-	-	-	-	-	-	5.8	-	-	-	-	-
97.0	30.0	-	-	-	-	-	-	17.8	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	81.5	-	-	-	-	-
100.0	30.0	-	-	-	-	-	-	54.9	-	-	-	-	-
103.0	29.0	-	-	-	-	-	-	2.1	-	-	-	-	--
103.0	30.0	-	-	-	-	-	-	51.7	-	-	-	-	-
107.0	31.0	-	-	-	-	-	-	1.8	-	-	-	-	3.4
107.0	32.0	-	-	-	-	-	-	71.0	-	-	-	-	0.0
110.0	32.0	-	-	-	-	-	-	0.0	-	-	-	-	11.6
110.0	35.0	-	-	-	-	-	-	14.3	-	-	-	-	5.4
110.0	40.0	-	-	-	-	-	-	29.6	-	-	-	-	0.0
113.0	35.0	-	-	-	\cdots	-	-	8.1	-	-	-	-	0.0
118.0	39.0	-	-	-	-	-	-	0.0	-	--	-	-	2.6
120.0	24.0	-	-	-	-	--	-	226.6	-	-	-	-	0.0
120.0	30.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	40.0	-	-	-	-	-	-	1141.1	-	-	-	-	0.6
120.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	7.2
120.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	8.4
123.0	36.0	-	-	-	-	-	-	24.1	-	-	-	-	98.8
123.0	37.0	-	-	-	-	-	-	17.4	-	-	-	-	39.8
127.0	33.0	-	-	-	-	-	-	0.0	-	-	-	-	5.9

STATIO		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JUI,Y	AUG.	SEP.	ОСТ.	NOV.	DEC.
127.0	34.0	-	-	-	-	-	-	0.0	-	-	-	-	2.1
130.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	19.0
133.0	23.0	-	-	-	-	-	-	-	-	-	-	-	1.7
137.0	22.0	-	-	-	-	-	-	-	-	-	-	-	33.3
137.0	23.0	-	-	-	-	-	-	-	-	-	-	-	71.0
Engraulis mordax													
STATIO		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
80.0	51.0	-	-	-	-	-	185.4	-	-	-	-	-	-
80.0	52.0	-	-	-	-	-	87.4	-	-	-	-	-	-
80.0	55.0	-	-	-	-	-	463.4	-	-	-	-	-	-
80.0	60.0	-	-	-	-	-	82.9	-	-	-	-	-	-
82.0	47.0	-	--	-	-	-	221.8	-	-	-	-	-	-
83.0	40.0	-	-	-	-	-	15.8	-	-	-	-	-	-
83.0	43.0	-	-	\sim	-	-	813.0	-	-	-	-	-	-
83.0	51.0	-	-	-	-	-	233.2	-	-	-	-	-	-
83.0	55.0	-	-	-	-	-	1135.0	-	-	-	-	-	-
83.0	60.0	-	-	-	-	-	79.8	-	-	-	-	-	-
83.0	65.0	-	-	-	-	-	1.9	-	-	-	-	-	-
87.0	33.0	-	-	-	-	-	252.8	-	-	-	-	-	-
87.0	35.0	-	-	-	-	-	1833.3	-	-	-	-	-	-
87.0	40.0	-	-	-	-	-	1856.9	-	-	-	-	-	-
87.0	45.0	-	-	-	-	-	327.5	-	-	-	-	-	-
87.0	50.0	-	-	-	-	-	207.4	-	-	-	-	-	-
87.0	55.0	-	-	-	-	-	485.1	-	-	-	-	-	-
87.0	60.0	-	-	-	-	-	3.4	-	-	-	-	-	-
87.0	70.0	-	-	-	-	-	31.2	-	-	-	-	-	-
90.0	28.0	-	-	-	-	-	972.2	-	-	-	-	-	-
90.0	32.0	-	-	-	-	-	442.8	-	-	-	-	-	-
90.0	37.0	-	-	-	-	-	2178.5	-	-	-	-	-	-
90.0	45.0	-	-	-	-	-	162.3	-	-	-	-	-	-
90.0	53.0	-	-	-	-	-	635.1	-	-	-	-	-	-
90.0	60.0	-	-	-	-	-	249.1	-	-	-	-	-	-
90.0	65.0	-	-	-	-	-	13.9	-	-	-	-	-	-
90.0	70.0	-	-	-	-	-	266.9	-	-	-	-	-	-
90.0	80.0	-	-	-	-	-	24.0	-	-	-	-	-	-
90.0	90.0	-	-	-	-	-	27.3	-	-	-	-	-	-
90.0	100.0	-	-	-	-	-	10.4	-	-	-	-	-	-
93.0	28.0	-	-	-	-	-	-	524.4	-	-	-	-	-
93.0	30.0	-	-	-	-	-	-	615.6	-	-	-	-	-
93.0	35.0	-	-	-	-	-	-	781.1	-	-	-	-	-
93.0	40.0	-	-	-	-	-	-	1467.2	-	-	-	-	-
93.0	45.0	-	-	-	-	-	-	1285.5	-	\sim	-	-	-
93.0	50.0	-	-	-	-	-	-	753.5	-	-	-	-	-

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
117.0	25.0	-	-	-	-	-	-	16.2	-	-	-	-	0.0
117.0	26.0	-	-	-	-	-	-	299.7	-	-	-	-	87.1
117.0	30.0	-	-	-	-	-	-	967.3	-	-	-	-	14.4
117.0	35.0	-	-	-	-	-	-	597.6	-	-	-	-	146.1
117.0	40.0	-	-	-	-	-	-	8.2	-	-	-	-	0.0
117.0	45.0	-	-	-	-	-	-	2.4	-	-	-	-	70.5
117.0	50.0	-	-	-	-	-	-	2.4	-	-	-	-	52.4
117.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	90.2
117.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	17.0
117.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	163.1
118.0	39.0	-	-	-	-	-	-	16.0	-	-	-	-	211.4
119.0	33.0	-	-	-	-	-	-	157.1	-	-	-	-	141.0
120.0	24.0	-	-	-	-	-	-	20.6	-	-	-	-	48.3
120.0	25.0	-	-	-	-	-	-	212.0	-	-	-	-	433.2
120.0	30.0	-	-	-	-	-	-	50.5	-	-	-	--	184.2
120.0	35.0	-	-	-	-	-	-	369.9	-	-	-	-	51.1
120.0	40.0	-	-	-	-	-	-	334.8	-	-	-	-	4.6
120.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	74.1
120.0	50.0	-	-	-	-	-	-	24.0	-	-	-	-	1008.6
120.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	8.5
120.0	65.0	-	-	-	-	-	-	2.8	-	-	-	-	13.9
123.0	36.0	-	-	-	-	-	-	70.3	-	-	-	-	0.0
123.0	37.0	-	-	-	-	-	--	56.0	-	-	-	-	0.0
123.0	42.0	-	-	-	-	-	-	9.1	-	-	-	-	0.0
123.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	14.1
123.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
123.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	81.2
127.0	33.0	-	-	-	-	-	-	90.5	-	-	-	-	38.2
127.0	34.0	-	-	-	-	-	-	235.7	-	-	-	-	0.0
127.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	8.3
127.0	45.0	-	-	-	-	-	-	5.3	-	-	-	-	0.0
130.0	28.0	-	-	-	-	-	-	0.0	-	-	-	-	3.2
130.0	30.0	-	-	-	-	-	-	5.8	-	-	-	-	1.8
130.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	3.2
130.0	60.0	-	-	-	-	-	-	-	-	-	-	-	2.6
133.0	23.0	-	-	-	-	-	-	-	-	-	-	-	15.3
133.0	30.0	-	-	-	-	-	-	-	-	-	-	-	43.8
137.0	22.0	-	-	-	-	-	-	-	-	-	-	-	61.6
137.0	23.0	-	-	-	-	-	-	-	-	-	-	-	160.1
137.0	30.0	-	-	-	-	-	-	-	-	-	-	-	136.1
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	52.7

STATI		JAN .	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
80.0	55.0	-	-	-	-	-	2.6	-	-	-	-	-	-
83.0	51.0	-	-	-	-	-	1.3	-	-	-	-	_	-
87.0	33.0	-	-	-	-	-	1.9	-	-	-	-	-	-
87.0	45.0	-	-	-	-	-	3.0	-	-	-	-	-	-
93.0	28.0	-	-	-	-	-	3.0	2.8	-	-	-	-	-
97.0	32.0	-	-	-	-	-	-	2.7	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	2.6	-	-	-	-	-
107.0	32.0	-	-	-	-	-	-	5.5	-	-	-	-	0.0
113.0	35.0	-	-	-	-	-	-	2. 7	-	-	-	-	0.0
113.0	55.0	-	-	-	-	-	-	5.3	-	-	-	-	0.0
117.0	30.0	-	-	-	-	-	-	26.5	-	-	-	-	0.0
117.0	35.0	-	-	-	-	-	-	34.9	-	-	-	-	0.0
117.0	40.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
117.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	5.4
117.0	50.0	-	-	-	-	-	-	2.4	-	-	-	-	0.0
117.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	3.1
118.0	39.0	-	-	-	-	-	-	18.7	-	-	-	-	20.9
120.0	45.0	-	-	-	-	-	-	11.1	-	-	-	-	0.0
120.0	50.0	-	-	-	-	-	-	28.8	-	-	-	-	0.0
133.0	35.0	-	-	-	-	-	-	-	-	-	-	-	2.9

Microstoma microstoma

STATION		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP	OCT.	NOV.	DEC.
83.0	55.0	-	-	-	-	-	3.3	-	-	-	-	-	-
83.0	70.0	\sim	-	-	-	-	3.3	-	-	-	-	-	-
87.0	55.0	-	-	-	-	-	3.1	-	-	-	-	-	-
90.0	28.0	-	-	-	-	-	2. 2	-	-	-	-	-	-
93.0	90.0	-	-	-	--	-	5.6	-	-	-	-	-	-
97.0	40.0	-	-	-	-	-	-	3.0	-	-	-	-	-
00.0	50.0	-	-	-	-	-	-	6.8	-	-	-	-	-
07.0	32.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
10.0	45.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0

Nansenia candida

STATION		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
80.0	70.0	-	-	-	-	-	5.5	-	-	-	-	-	-
80.0	80.0	-	-	-	-	-	2.8	-	-	-	-	-	-
83.0	70.0	-	-	-	-	-	13.3	-	-	-	-	-	-
83.0	80.0	-	-	-	-	-	9.2	-	-	-	-	-	-
87.0	90.0	-	-	-	-	-	11.9	-	-	-	-	-	--
93.0	45.0	-	-	-	-	-	11.9	3.2	-	-	-	-	-

TABLE 4. (cont.)

STATIO		JAN.	FEB.	MAR.	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
103.0	55.0	-	-	-	-	-	-	2.7	-	-	-	-	-
110.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
110.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
117.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.4
120.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	9.0
120.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
123.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
130.0	60.0	-	-	-	-	-	-	-	-	-	-	-	2.6
Bathylagus spp.													
STATION		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.
90.0	80.0	-	-	-	-	-	6.0	- 7	-	-	-	-	-
113.0	65.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
117.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	8.4
117.0	65.0	-	-	-	-	-	-	9.4	-	-	-	-	0.0
120.0	40.0	\rightarrow	-	-	-	-	-	5.6	-	-	-	-	0.0
127.0	45.0	-	-	-	-	-	-	5.3	-	-	-	-	0.0
Bathylagus ochotensis													
STATIO		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	ОСт	NOV.	DEC.

DEC.
$1 \begin{array}{lllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

1111111111111111111111

1111111111111111111111

111111111111111111111111111

11111111111111111111111111

 $\begin{array}{llllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ $1 \begin{array}{lllllllllllllllllllll}1 & 1\end{array}$
 $1 \quad 1 \quad 1$ 0000000000000000000000
 0000000000000000000000 $0_{0} 00$ MmmN人 0 OO O OMMMmmmmmi

STATION	JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
97.045 .0	-	-	-	-	-	-	2.8	-	-	-	-	-
97.050 .0	-	-	-	-	-	-	7.7	-	-	-	-	-
97.055 .0	-	-	-	-	-	-	2.9	-	-	-	-	-
$100.0 \quad 40.0$	-	-	-	-	-	-	2.8	-	-	-	-	-
$100.0 \quad 45.0$	-	-	-	-	-	-	5.7	-	-	-	-	-
$110.0 \quad 40.0$	-	-	-	-	-	-	3.0	-	-	-	-	0.0
Bathylagus wesethi												
STATION	JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC .

[^3]| STATI | | JAN | FEB | MAR . | APR . | MAY | JUNE | JULY | AUG . | SEP | OC's. | NOV. | DEC. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 97.0 | 40.0 | - | - | - | - | - | - | 9.1 | - | - | - | - | - |
| 97.0 | 45.0 | - | - | - | - | - | - | 8.6 | - | - | - | | - |
| 97.0 | 60.0 | - | - | - | - | - | - | 22.2 | - | - | - | - | - |
| 97.0 | 65.0 | - | - | - | - | - | - | 10.8 | - | -- | - | | - |
| 97.0 | 70.0 | - | - | - | - | - | - | 29.0 | - | - | - | - | - |
| 97.0 | 80.0 | - | - | - | - | - | - | 53.4 | - | - | - | - | - |
| 100.0 | 35.0 | - | - | - | - | - | - | 8.6 | - | - | - | - | - |
| 100.0 | 40.0 | - | - | - | - | - | - | 16.6 | - | - | - | - | - |
| 100.0 | 45.0 | - | - | - | - | - | - | 5.7 | - | - | - | | - |
| 100.0 | 55.0 | - | - | - | - | - | - | 12.4 | - | - | - | - | - |
| 100.0 | 60.0 | - | - | - | - | - | - | 7.0 | - | - | - | - | - |
| 100.0 | 65.0 | - | - | - | - | - | - | 54.4 | - | - | - | - | - |
| 100.0 | 70.0 | - | - | - | - | - | - | 30.2 | - | - | - | - | - |
| 100.0 | 80.0 | - | - | - | - | - | - | 12.8 | - | - | - | | - |
| 103.0 | 35.0 | - | - | - | - | - | - | 76.3 | - | - | - | - | - |
| 103.0 | 40.0 | - | - | - | - | - | - | 62.6 | - | | - | - | - |
| 103.0 | 45.0 | - | - | - | - | - | - | 96.6 | - | - | - | - | - |
| 103.0 | 50.0 | - | - | - | - | - | - | 55.8 | - | - | - | - | - |
| 103.0 | 55.0 | - | - | - | - | - | - | 35.4 | - | - | - | | - |
| 103.0 | 60.0 | - | - | - | - | - | - | 22.2 | - | - | - | - | - |
| 103.0 | 65.0 | - | - | - | - | - | - | 48.1 | - | - | - | - | - |
| 103.0 | 70.0 | - | - | - | - | - | - | 33.2 | - | - | - | - | - |
| 103.0 | 80.0 | - | - | - | - | - | - | 24.8 | - | - | - | - | 0.0 |
| 107.0 | 31.0 | - | - | - | - | - | - | 1.8 | - | - | - | - | 0.0 |
| 107.0 | 32.0 | - | - | - | - | - | - | 5.5 | - | - | - | - | 0.0 |
| 107.0 | 35.0 | - | - | - | - | - | - | 87.6 | - | - | - | - | 0.0 |
| 107.0 | 40.0 | - | - | - | - | - | - | 89.0 | - | - | - | - | 0.0 |
| 107.0 | 45.0 | - | - | - | - | - | - | 50.2 | - | - | - | | 0.0 |
| 107.0 | 50.0 | - | - | - | - | - | - | 75.1 | - | - | - | - | 0.0 |
| 107.0 | 60.0 | - | - | - | - | - | - | 0.0 | - | - | - | - | 28.3 |
| 107.0 | 65.0 | - | - | - | - | - | - | 23.6 | - | - | - | - | 0.0 |
| 107.0 | 70.0 | - | - | - | - | - | - | 22.7 | - | - | - | - | 2.7 |
| 107.0 | 80.0 | - | - | - | - | - | - | 4.4 | - | - | - | - | 8 |
| 110.0 | 35.0 | - | - | - | - | - | - | 5.7 | - | - | - | - | 1.8 |
| 110.0 | 40.0 | - | - | - | - | - | - | 0.0 | - | - | - | - | 8.0 |
| 110.0 | 45.0 | - | - | - | - | - | - | 21.0 | - | - | - | - | 0.0 |
| 110.0 | 50.0 | - | - | - | - | - | - | 12.5 | - | - | - | - | 6.8 |
| 110.0 | 60.0 | - | - | - | - | - | - | 0.0 | - | - | - | - | 6.2 |
| 110.0 | 70.0 | - | - | - | - | - | - | 0.0 | - | - | - | - | 5.4 |
| 110.0 | 80.0 | - | - | - | - | - | - | 2.5 | - | - | - | - | 10.7 |
| 113.0 | 30.0 | - | - | - | - | - | - | 10.3 | - | - | - | - | 0.0 |
| 113.0 | 35.0 | - | - | - | - | - | - | 21.6 | - | - | - | - | 4.6 |
| 113.0 | 40.0 | - | - | - | - | - | - | 2.9 | - | - | - | - | 0.0 |
| 113.0 | 60.0 | - | - | - | - | - | - | 8.1 | - | - | - | - | 0.0 |
| 113.0 | 70.0 | - | - | - | - | - | - | 2.5 | - | - | - | - | 2.7 |
| 117.0 | 35.0 | - | - | - | - | - | - | 5.0 | - | - | - | - | 2.8 |

TABLE 4. (cont.)

STATI		JAN.	FEB	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT .	NOV.	DEC.
117.0	40.0	-	-	-	-	-	-	2.7	--	-	-	-	3.0
117.0	45.0	-	-	-	-	-	-	0.0	-	-	--	-	2.7
117.0	60.0	-	-	-	-	-	-	35.2	-	-	-	-	0.0
118.0	39.0	-	-	-	-	-	-	26.7	-	-	-	-	2.6
120.0	45.0	-	-	-	-	-	-	8.3	-	-	-	-	0.0
120.0	50.0	-	-	-	-	-	-	4.8	-	-	-	-	0.0
120.0	60.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
120.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
120.0	80.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
Leuroglossus stilbius													
STATION		JAN.	FEB.	MAR.	APR.	MAY	JUNE	JUL.Y	AUG .	SEP.	OCT.	NOV.	DEC.
80.0	60.0	-	-	-	-	-	3.1	-	-	-	-	-	-
80.0	65.0	-	-	-	-	-	3.4	-	-	-	-	-	-
80.0	80.0	-	-	-	-	-	2.8	-	-	-	-	-	-
82.0	47.0	-	-	-	-	-	6.2	-	-	-	-	-	-
83.0	55.0	-	-	-	-	-	19.7	-	-	-	-	-	-
83.0	65.0	-	-	-	-	-	1.9	-	-	-	-	-	-
87.0	35.0	-	-	-	-	-	2.7	-	-	-	-	-	-
87.0	40.0	-	-	-	-	-	2.9	-	-	-	-	-	-
87.0	45.0	-	-	-	-	-	3.0	-	-	-	-	-	-
87.0	55.0	-	-	-	-	-	3.1	-	-	-	-	-	-
90.0	28.0	-	-	-	-	-	4.5	-	-	-	-	-	-
90.0	37.0	-	-	-	-	-	2. 7	-	-	-	-	-	-
90.0	45.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	53.0	-	-	-	-	-	5.6	-	-	-	-	-	-
90.0	60.0	-	-	-	-	-	2.9	-	-	-	-	-	-
90.0	65.0	-	-	-	-	-	2.8	-	-	-	-	-	-
93.0	28.0	-	-	-	-	-	-	2.8	-	-	-	-	-
93.0	30.0	-	-	-	-	-	-	9.7	-	-	-	-	-
93.0	40.0	-	-	-	-	-	-	5.6	-	-	-	-	--
93.0	45.0	-	-	-	-	-	-	3.2	-	-	-	-	-
93.0	55.0	-	-	-	-	-	-	3.1	-	-	-	-	-
93.0	60.0	-	-	-	-	-	-	2.8	-	-	-	-	-
93.0	80.0	-	-	-	-	-	-	2.9	-	-	-	-	-
93.0	90.0	-	-	-	-	-	2.8	-	-	-	-	-	-
97.0	32.0	-	-	-	-	-	-	8.2	-	-	-	-	-
107.0	32.0	-	-	-	-	-	-	0.0	-	-	-	-	3.0
110.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	1.8
110.0	50.0	-	-	-	-	-	-	5.0	-	-	-	-	0.0
110.0	55.0	-	-	-	-	-	-	5.5	-	-	-	-	0.0
110.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
113.0	30.0	-	-	-	-	-	-	3.4	-	-	-	-	0.0
113.0	35.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0

TABLE 4. (cont.)

STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JUI,Y	AUG .	SEP	OCT .	NOV.	DEC.
113.0	45.0	-	-	-	-	-	-	0.0	-	-	-		2.9
117.0	45.0	-	-	-	-	-	-	2.4	-	-	-	-	8.1
118.0	39.0	-	-	-	-	-	-	0.0	-	-	-	-	7.8
120.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	4.8
120.0	50.0	-	-	-	-	-	-	7.2	-	-	-	-	2.5
123.0	37.0	-	-	-	-	-	-	0.0	-	-	-	-	1. 6
127.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
127.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	3.1
137.0	30.0	-	-	-	-	-	-	-	-	-	-	-	7.6

Stomiiformes

STATI		JAN.	FEB .	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV .	DEC .
83.0	70.0	-	-	-	-	-	3.3	-	-	-	-	-	-
83.0	90.0	-	-	-	-	-	11.8	-	-	-	-	-	-
90.0	110.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	120.0	-	-	-	-	-	2.8	-	-	-	-	-	-
110.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	1.8
117.0	65.0	-	-	-	-	-	-	4.7	-	-	-	-	0.0
123.0	37.0	-	-	-	-	-	-	0.0	-	-	-	-	1. 6
127.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	2. 9

JULY AUG. SEP. OCT. NOV. DEC. STATION

 $\begin{array}{llllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

 $1 \begin{array}{llllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

으응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅡ

$1 \begin{array}{lllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

TABLE 4. (cont.)

Statio		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	ост.	NOV.	DEC.
123.0	42.0	-	-	-	-	-	-	2.3	-	-	-	-	0.0
123.0	60.0	-	-	-	-	-	-	2.6	-	-	-	-	2.9
127.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	3.1
133.0	40.0	-	-	-	-	-	-	-	-	-	-	-	2.3
Diplophos taenia													
StATIO		JAN.	FEB.	MAR	APR.	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.
113.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
Ichthyococcus spp.													
STATIO		JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG .	SEP.	ост.	NOV.	DEC.
103.0	35.0	-	-	-	-	-	-	2.5	-	-	-	-	-
103.0	40.0	-	-	-	-	-	-	2.6	-	-	-	-	
107.0	45.0	-	-	-	-	-	-	2.8 2.8	-	-	-	-	0.0 0.0
$\begin{aligned} & 107.0 \\ & 113.0 \end{aligned}$	50.0 35.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
Vinciguerria lucetia													
Statio		JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG .	SEP.	ост.	NOV.	DEC.
87.0	80.0	-	-	-	-	-	12.2	-	-	-	-	-	-
87.0	90.0	-	-	-	-	-	30.9	-	-	-	-	-	-
90.0	110.0	-	-	-	-	-	11.0	-	-	-	-	-	-
90.0	130.0	-	-	-	-	-	+ 5.3	-	-	-	-	-	-
90.0	140.0	-	-	-	-	-	320.0	-	-	-	-	-	-
93.0	65.0	-	-	-	-	-	-	8.0	-	-	-	-	-
93.0	70.0	-	-	-	-	-		3.2	-	-	-	-	
93.0	110.0	-	-	-	-	-	549.4		-	-	-	-	-
939.0	120.0 130.0	-	-	-	-	-	411.6	-	-	-	-	-	-
93.0	140.0	-	-	-	-	-	246.4	-	-	-	-	-	-
100.0	60.0	-	-	-	-	-	-	7.0	-	-	-	-	-
100.0	65.0	-	-	-	-	-	-	62.2	-	-	-	-	
100.0	70.0	-	-	-	-	-	-	20.2	-	-	-	-	-
100.0 103.0	80.0 35.0	-	-	-	-	-	-	20.6 39.4	-	-	-	-	-
103.0	40.0	-	-	-	-	-	-	608.1	-	-	-	-	-
103.0	45.0	-	-	-	-	-	-	473.8	-	-	-	-	-
103.0 103.0	50.0 55.0	-	-	-	-	-	-	337.6 255.7	-	-	-	-	-

TABLE 4. (cont.)

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OC'I.	NOV	DEC.
120.0	65.0	-	-	-	-	-	-	327.3	-	-	-	-	19.5
120.0	70.0	-	_	_	-	-	-	328.9	-	-	-	-	69.7
120.0	80.0	-	-	-	-	-	-	297.4	-			-	0.0
123.0	42.0	-	-	-	-	-	-	2.3	-	-		-	2. 9
123.0	45.0	-	-	-	-	-	-	2.5	-			-	14.1
123.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	8.1
123.0	55.0	-	-	-	-	-	-	0.0 23.7	-	-	-	-	7.7
123.0	60.0	-	-	-	-	-	-	23.7	--	-	-	-	2.9
127.0	33.0	-	-	-	-	-	-	0.0	-	-	-	-	5.9 8.5
127.0	34.0	-	-	-	-	-	-	0.0	-		-	-	8.5 20.9
127.0	45.0	-	-	-	-	-	-	13.2	-		-	-	20.9 5.2
127.0	50.0	-	-	-	-	-	-	20.2	-	-	-	-	5.2 0.0
127.0	55.0	-	-	-	-	-	-	2.4	-	-	-	-	12.3
127.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	12.3 5.4
130.0	40.0	-	-	-	-	-	-	0.0	-	-	-		50.4 10.0
130.0	45.0	-	-	-	-	-	-	-	-				12.0
130.0	50.0	-	-	-	-	-	-	-	-		-		12.3
130.0	60.0	-	-	-	-	-	-	-	-		-		13.7
133.0	40.0	-	-	-	-	-	-	-	-	-	-		13.7
137.0	35.0	-	-	-	-	-	-	-	-				5.9
137.0	40.0	-	-	-	-	-	-	-		-	-	-	5.7

Sternoptychidae

JUNE


```
+\infty0\Omega
```


MAY
$\begin{array}{lllllllllllllllllllll}1 & 1\end{array}$
APR.
1111111111111111111111
MAR .

FEB
JAN
111111111111111111111
00000000000000000000

STATION

STATI		JAI	FEB	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OC'T.	NOV	DEC.
87.0	90.0	-	-	-	-	-	2.4	-	-	-	-		-
90.0	120.0	-	-	-	-	-	2.8	-	-	-	-		
90.0	140.0	-	-	-	-	-	2.6	-					
93.0	130.0	-	-	-	-	-	2.5	-	-	-	-	-	-
97.0	70.0	-	-	-	-	-	-	2.9	-	-	-		-
100.0	65.0	-	-	-	-	-	-	5.2	-	-			-
103.0	40.0	-	-	-	-	-	-	5.2	-				-
103.0	45.0	-	-	-	-	-	-	2.3	-	-	-		-
103.0	60.0	-	-	-	-	-	-	2.8					
103.0	80.0	-	-	-	-	-	-	2.8					
107.0	32.0	-	-	-	-	-	-	0.0	-	-		-	3.0
107.0	35.0	-	-	-	-	-	-	9.4	-	-			0.0
107.0	60.0	-	-	-	-	-	-	0.0					2.8
110.0	50.0	-	-	-	-	-	-	0.0	-	-		-	2.3
110.0	60.0	-	-	-	-	-	-	2.8		-			0.0
110.0	65.0	-	-	-	-	-	-	2.8	-	_			0.0
113.0	40.0	-	-	-	-	-	-	2.9					0.0
113.0	55.0	-	-	-	-	-	-	5.3	-	-		-	0.0
117.0	35.0	-	-	-	-	-	-	0.0	-	-		-	5. 6
117.0	60.0	-	-	-	-	-	-	3.2	-	-	-	-	0.0

TABLE 4. (ccnt.)

Aristostomias scintillans (cont.)													
STATION		JAN .	FE'B .	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT	NOV.	DEC.
87.0	90.0	-	-	-	-	-	7.1	-	-	-	-	-	-
		Bathophilus spp.											
STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JUL,Y	AUG .	SEP.	OCT	NOV.	DEC.
$\begin{aligned} & 87.0 \\ & 93.0 \end{aligned}$	$\begin{array}{r} 80.0 \\ 120.0 \end{array}$	-	-	-	-	-	$\begin{array}{r} 12.2 \\ 2.5 \end{array}$	-	-	-	-	-	-
Tactostoma macropus													
STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JUL,Y	AUG.	SEP	OCT.	NOV.	DEC.
$\begin{array}{r} 87.0 \\ 90.0 \\ 103.0 \end{array}$	$\begin{array}{r} 90.0 \\ 100.0 \\ 45.0 \end{array}$	-	-	-	-	-	2.4 5.2	- 2.3	-	-	-	-	-
Stomias atriventer													
STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT .	NOV.	DEC.
87.0	70.0	-	-	-	-	-	2.4	- 3.0	-	-	-	-	-
97.0 107.0	40.0 32.0	-	-	-	-	-	-	3.0	-	-	-	-	6.1
107.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	$5 . ?$
107.0	45.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
107.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
110.0	35.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
110.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
110.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	6.2
110.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	8.0
113.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	2.3
113.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	3.6
113.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
113.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
117.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	3. 0
117.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	3.3 0.0
118.0	39.0	-	-	-	-	-	-	2.7	-	-	-	-	2. 8
120.0	65.0	-	-	-	-	-	-	2.8	-	-	-	-	2.8
120.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
123.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
123.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
130.0	50.0	-	-	-	-	-	-	-	-	-	-		3.1
130.0	60.0	-	-	-	-	-	-	-	-	-	-	-	2.6

STATION	JAN.	FEB .	MAR.	APR.	MAY	JUNE	JULY	AUG .	SEP.	OСT.	NOV.	DEC.
83.065 .0	-	-	-	-	-	1.9	-	-	-	-	-	-
87.080 .0	-	-	-	-	-	4.1	-	-	-	-	-	-
87.090 .0	-	-	-	-	-	14.3	-	-	-	-	-	-
90.060 .0	-	-	-	-	-	2.9	-	-	-	-	-	-
90.0110 .0	-	-	-	-	-	5.5	-	-	-	-	-	-
$90.0 \quad 120.0$	-	-	-	-	-	8.3	-	-	-	-	-	-
$90.0 \quad 130.0$	-	-	-	-	-	2.6	-	-	-	-	-	-
93.065 .0	-	-	-	-	-	-	2.7	-	-	-	-	-
93.0120 .0	-	-	-	-	-	2.5	-	-	-	-	-	-
93.0130 .0	-	-	-	-	-	12.6	-	-	-	-	-	-
100.065 .0	-	-	-	-	-	-	18.1	-	-	-	-	-
100.070 .0	-	-	-	-	-	-	17.6	-	-	-	-	-
100.080 .0	-	-	-	-	-	-	5.1	-	-	-	-	-
103.035 .0	-	-	-	-	-	-	9.8	-	-	-	-	-
103.040 .0	-	-	-	-	-	-	26.1	-	-	-	-	-
103.045 .0	-	-	-	-	-	-	13.8	-	-	-	-	-
103.050 .0	-	-	-	-	-	-	30.7	-	-	-	-	-
103.055 .0	-	-	-	-	-	-	21.8	-	-	-	-	-
103.060 .0	-	-	-	-	-	-	5.5	-	-	-	-	-
103.070 .0	-	-	-	-	-	-	18.1	-	-	-	-	-
103.080 .0	-	-	-	-	-	-	30.4	-	-	-	-	-
107.032 .0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
107.035 .0	-	-	-	-	-	-	9.4	-	-	-	-	0.0
107.040 .0	-	-	-	-	-	-	19.5	-	-	-	-	0.0
107.050 .0	-	-	-	-	-	-	5.6	-	-	-	-	2.9
107.070 .0	-	-	-	-	\cdots	-	107.9	-	-	-	-	0.0
107.080 .0	-	-	-	-	-	-	2.2	-	-	-	-	-
110.080 .0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
113.040 .0	-	-	-	-	-	-	2.9	-	-	-	-	0.0
113.060 .0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
113.070 .0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
117.040 .0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
117.060 .0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
118.039 .0	-	-	-	-	-	-	2.7	-	-	-	-	2.6
Notolepis risso												
STATION	JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC .
$93.0 \quad 110.0$	-	-	-	-	-	5.4	-	-	-	-	-	-
107.070 .0	-	-	-	-	-	-	2.8	-	-	-	-	0.0

Scopelosaurus spp.													
STATI		JAN .	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
83.0	90.0	-	-	-	-	-	4.7	-	-	-	-	-	-
87.0	90.0	-	-	-	-	-	4.8	-	-	-	-	-	
93.0	130.0	-	-	-	-	-	2.5	-	-	-	-		
93.0	140.0	-	-	-	-	-	2.8	-		-	-	-	
103.0	80.0	-	-	-	-	-	-	2.8	-	-	-	-	O
107.0	35.0	-	-	-	-	-	-	3.1	-	-	-	-	0.0
Scopelarchidae													
STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
87.0	60.0	-	-	-	-	-	13.5	-	-	-	-	-	-
87.0	90.0	-	-	-	-	-	2.4	-	-	-	_	-	-
90.0	130.0	-	-	-	-	-	2.6	-	-	-	-	-	-
93.0	120.0	-	-	-	-	-	7. 5	-	-	-			-
93.0	130.0	-	-	-	-	-	2.5	$\overline{7}$	-	-	-	-	-
100.0	65.0	-	-	-	-	-	-	7.8	-	-	-	-	-
103.0	35.0	-	-	-	-	-	-	2.5	-	-	-	-	-
103.0	50.0	-	-	-	-	-	-	2.8	-	-		-	-
103.0	55.0	-	-	-	-	-	-	2.7	-	-	-	-	-
103.0	60.0	-	-	-	-	-	-	2.8	-	-	-		-
103.0	80.0	-	-	-	-	-	-	$5 \cdot 5$	-	-	-		- 0
107.0	35.0	-	-	-	-	-	-	3.1	-	-	-	-	0.0
107.0	45.0	-	-	-	-	-	-	19.5	-	-	-		1.8
107.0	50.0	-	-	-	-	-	-	8.3	-	-	-	-	C. ${ }^{1}$
107.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
107.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	5. 0
107.0	65.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0
107.0	80.0	-	-	-	-	-	-	2.2	-	-	-	-	2.7
110.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	2. 8
113.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	1.8
113.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
117.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8 2.8
117.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
117.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	5.3
120.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
120.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
127.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
130.0	55.0	-	-	-	-	-	-	-	-	-	-	-	3.0

TABLE 4. (cont.)

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP	OCT	NOV.	DEC.
87.0	70.0	-	-	-	-	-	2.4	-	-	-	-	-	-
90.0	32.0	-	-	-	-	-	5.2	-	-	-	-	-	-
90.0	65.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	120.0	-	-	-	-	-	2.8	-	-	-	-	-	-
93.0	35.0	-	-	-	-	-	-	110.4	-	-	-	-	-
93.0	40.0	-	-	-	-	-	-	28.0	-	-	-	-	-
93.0	45.0	-	-	-	-	-	-	3.2	-	-	-	-	-
93.0	90.0	-	-	-	-	-	5.6	-	-	-	-	-	-
93.0	130.0	-	-	-	-	-	2.5	-	-	-	-	-	-
100.0	50.0	-	-	-	-	-	-	6.8	-	-	-	-	-
103.0	35.0	-	-	-	-	-	-	2.5	-	-	-	-	-
107.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
107.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
107.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
107.0	80.0	-	-	-	-	-	-	6.6	-	-	-	-	-
110.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	5.3
110.0	55.0	-	-	-	-	-	-	5.5	-	-	-	-	0.0
110.0	60.0	-	-	-	-	-	-	13.9	-	-	-	-	0.0
110.0	80.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
113.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	2.3
113.0	50.0	-	-	-	-	-	-	5.2	-	-	-	-	0.0
113.0	65.0	-	-	-	-	-	-	5.4	-	-	-	-	0.0
113.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	5.4
117.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	7.9
117.0	80.0	-	-	-	-	-	-	12.4	-	-	-	-	36.3
120.0	50.0	-	-	-	-	-	-	2.4	-	-	-	-	0.0
120.0	80.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
123.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
127.0	55.0	-	-	-	-	-	-	2.4	-	-	-	-	0.0
130.0	50.0	-	-	-	-	-	-	-	-	-	-	-	3.1

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE:	JULY	AUG.	SEP.	ОСТ.	NOV.	DEC.
93.0	140.0	-	-	-	-	-	106.4	-	-	-	-	-	-
100.0	65.0	-	-	-	-	-	-	10.4	-	-	-	-	-
100.0	80.0	-	-	-	-	-	-	5.1	-	-	-	-	-
103.0	40.0	-	-	-	-	-	-	75.7		-	-		-
103.0	45.0	-	-	-	-	-	-	34.5	-	-	-	-	-
103.0	50.0	-	-	-	-	-	-	19.5	-	-	-	-	-
103.0	55.0	-	-	-	-	-	-	13.6	-	-	-	-	-
103.0	60.0	-	-	-	-	-	-	8.3	-	-	-	-	-
103.0	65.0	-	-	-	-	-	-	5.1	-	-	-	-	-
103.0	70.0	-	-	-	-	-	-	30.2	-	-	-	-	-
103.0	80.0	-	-	-	-	-	-	16.6	-	-	-	-	-
107.0	40.0	-	-	-	-	-	-	17.4	-	-	-	-	0.0
107.0	45.0	-	-	-	-	-	-	22.3	-	-	-	-	0.0
107.0	50.0	-	-	-	-	-	-	8.3	-	-	-	-	0.0
107.0	65.0	-	-	-	-	-	-	0.0 19.9	-	-	-	-	2.8
107.0	70.0	-	-	-	-	-	-	19.9	-	-	-	-	2.7
107.0	80.0	-	-	-	-	-	-	39.8	-	-	-	-	0
110.0	45.0	-	-	-	-	-	-	7.9	-	-	-	-	0.0
110.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	3.7
110.0	80.0	-	-	-	-	-	-	9.8	-	-	_	-	2.7
113.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	2.3
113.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
117.0	40.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	70.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
80.0	60.0	-	-	-	-	-	30.7	-	-	-	-	-	-
80.0	65.0	-	-	-	-	-	3.4	-	-	-	-		-
83.0	60.0	-	-	-	-	-	28.5	-	-	-	-		
83.0	65.0	-	-	-	-	-	35.9	-	-	-	-		-
83.0	70.0	-	-	-	-	-	43.3	-	-	-	-		-
83.0	80.0	-	-	-	-	-	16.0	-	-		-		-
83.0	90.0	-	-	-	-	-	94.4	-	-	-	-		-
87.0	35.0	-	-	-	-	-	10.8	-	-	-	-		-
87.0	60.0	-	-	-	-	-	54.1	-	-	-			-
87.0	65.0	-	-	-	-	-	31.2	-	-	-			
87.0	70.0	-	-	-	-	-	19.2	-	-				-
87.0	80.0	-	-	-	-	-	81.2	-	-	-	_	-	-
87.0	90.0	-	-	-	-	-	9.5	-	-		-	_	-
90.0	45.0	-	-	-	-	-	19.3	-	-	-	-	-	-
90.0	60.0	-	-	-	-	-	99.6	-	-	-	-	-	-
90.0	65.0	-	-	-	-	-	13.9	-	-	-	-	-	-
90.0	70.0	-	-	-	-	-	33.7	-	-	-	-	-	-

TABLE 4. (cont.)

STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP	OCT.	NOV .	DEC.
90.0	80.0	-	-	-	-	-	36.0	-	-	-	-	-	-
90.0	90.0	-	-	-	-	-	10.9	-	-	-	-		
90.0	100.0	-	-	-	-	-	10.4	-	-	-	-		
90.0	110.0	-	-	-	-	-	22.1	-	-			,	-
90.0	120.0	-	-	-	-	-	5.5	-	-				
90.0	130.0	-	-	-	-	-	2.6	-	-				
90.0	140.0	-	-	-	-	-	23.0	I	-	-		-	-
93.0	40.0	-	-	-	-	-	-	11.2	-	-	-	-	
93.0	45.0	-	-	-	-	-	-	16.1	-	-	-	-	-
93.0	50.0	-	-	-	-	-	-	9.0	-	-	-	-	-
93.0	55.0	-	-	-	-	-	-	3.1	-	-	-		-
93.0	60.0	-	-	-	-	-	-	14.0	-	-	-	-	-
93.0	80.0	-	-	-	-	-	-	20.1	-	-	-	-	-
93.0	90.0	-	-	-	-	-	11.2	-	-	-	-	-	-
93.0	140.0	-	-	-	-	-	2.8	3. 0	-	-	-	-	-
97.0	40.0	-	-	-	-	-	-	3.0	-				-
97.0	55.0	-	-	-	-	-	-	2.9	-	-	-	-	-
97.0	70.0	-	-	-	-	-	-	2.9	-	-	-	-	-
97.0	80.0	-	-	-	-	-	-	9.4	-	-	-	-	-
100.0	40.0	-	-	-	-	-	-	2.8	-	-	-	-	-
100.0	55.0	-	-	-	-	-	-	12.4	-	-	-	-	
100.0	65.0	-	-	-	-	-	-	2.6	-	-	-		
103.0	40.0	-	-	-	-	-	-	5.2	-	-			
103.0	70.0	-	-	-	-	-	-		-				-
103.0	80.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
107.0	35.0	-	-	-	-	-	-	3.1	-	-	-	-	0.0
113.0	35.0	-	-	-	-	-	-	5.4	-	-	-	-	0.0
120.0	45.0	-	-	-	-	-	-	2.8	-	-		-	0.0
120.0	65.0	-	-	-	-	-	-	2.8	-	-		-	0.0

\footnotetext{
Lampadena urophaos

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP .	OCT.	NOV	DEC.
87.0	90.0	-	-	-	-	-	2.4	-	-	-	-	-	
90.0	140.0	-	-	-	-	-	2.6	-	-	-			
93.0	120.0	-	-	-	-	-	2.5	-	-	-			
93.0	140.0	-	-	-	-	-	8.4	-	-	-	-	-	-
103.0	65.0	-	-	-	-	-	-	2.5		-		-	- 0
107.0	40.0	-	-	-	-	-	-	2.2	-	-	-	-	2.7
107.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	5.4
110.0	80.0	-	-	-	-	-	-	0.0	-	-	-		2.8
120.0	55.0	-	-	-	-	-	-	0.0	-	-	-		0.0
120.0	80.0	-	-	-	-	-	-	7.6	-	-	-	-	0.0

TABLE 4. (c)nt.)

Lampanyctus spp. (cont.)													
STATI		JAN	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP	OCT.	NOV.	DEC.
117.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
117.0	40.0	-	_	-	-	-	-	2.7	-	-	-	-	0.0
117.0	60.0	-	-	-	-	-	-	3.2	-	-	-	-	0.0
117.0	80.0	-	-	-	-	-	-	2.5	-	-	-	-	3.3
118.0	39.0	-	-	-	-	-	-	0.0	-	-	-	-	5.2
120.0	25.0	-	-	-	-	-	-	2.3	-	-	-	-	0.0
120.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	4.9
120.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	5.7
120.0	60.0	-	-	-	-	-	-	2. 5	-	-	-	-	3.0
120.0	65.0	-	-	-	-	-	-	5.5	-	-	-	-	5.6
120.0	70.0	-	-	-	-	-	-	7.8	-	-	-	-	5.4
123.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
127.0	55.0	-	-	-	-	-	-	2.4	-	-	-	-	2.9
130.0	50.0	-	-	-	-	-	-	-	-	-	-	-	6.

Lampanyctus regalis

STATI		JAN.	FE'B.	MAR .	APR.	MAY	JUNE	JUL, Y	AUG .	SEP.	OCT	NOV.	DEC.
80.0	60.0	-	-	-	-	-	6.1	-	-	-	-	-	-
83.0	60.0	-	-	-	-	-	3.8	-	-	-	-		
83.0	65.0	-	-	-	-	-	7.6	-	-				
83.0	70.0	-	-	-	-	-	3.3	-					
87.0	40.0	-	-	-	-	-	2.9	-					
87.0	65.0	-	-	-	-	-	2.6	-	-				
87.0	70.0	-	-	-	-	\rightarrow	2.4	-	-	-	-		
90.0	60.0	-	-	-	-	-	8.8	-	-	-			
90.0	80.0	-	-	-	-	-	3.0	-	-	-	-		
93.0	40.0	-	-	-	-	-	-	5.6	-	-			
93.0	100.0	-	-	-	-	-	3.1	-	-	-			
93.0	130.0	-	-	-	-	-	2.5	-	-	-	-	-	-

[^4]| STATI | | JAN. | FEB. | MAR . | APR . | MAY | JUNE | JULY | AUG . | SEP. | OCT. | NOV. | DEC. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 80.0 | 60.0 | - | - | - | - | - | 9.2 | - | - | - | - | - | - |
| 80.0 | 70.0 | - | - | - | - | - | 8.2 | - | - | - | - | | |
| 80.0 | 80.0 | - | - | - | - | - | 8.3 | - | - | - | - | | |
| 83.0 | 65.0 | - | - | - | - | - | 1.9 | - | - | - | - | | |
| 83.0 | 80.0 | - | - | - | - | - | 6.9 | - | - | - | - | | |
| 83.0 | 90.0 | - | - | - | - | - | 16.5 | - | - | | - | | |
| 87.0 | 35.0 | - | - | - | - | - | 5.4 | - | - | - | | | |
| 87.0 | 40.0 | - | - | - | - | - | 8.6 | - | - | | - | | |
| 87.0 | 65.0 | - | - | - | - | - | 5.2 | - | - | - | - | | |
| 87.0 | 70.0 | - | - | - | - | - | 14.4 | - | - | - | - | - | |

TABLE 4. (cinNt.)
Lampanuctus ritteri (cont.)

STATI		JAN.	FEB .	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT	NOV	DEC.
87.0	80.0	-	-	-	-	-	109.6	-	-	-	-	-	-
87.0	90.0	-	-	-	-	-	52. 4	-	-	-	-		-
90.0	65.0	-	-	-	-	-	22.2	-	-	-	-		-
90.0	70.0	-	-	-	-	-	5.6	-	-	-	-		-
90.0	120.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	130.0	-	-	-	-	-	7.9	16.	-	-	-		-
93.0	45.0	-	-	-	-	-	-	16.1	-	-	-	-	-
93.0	110.0	-	-	-	-	-	2.7	-	-	-	-		-
93.0	120.0	-	-	-	-	-	2. 5	-	-	-	-	-	-
93.0	130.0	-	-	-	-	-	15.1	-	-	-	-	-	-
97.0	55.0	-	-	-	-	-	-	5.8	-	-	-	-	-
97.0	60.0	-	-	-	-	-	-	8.3	-	-	-	-	-
97.0	65.0	-	-	-	-	-	-	10.8	-	-	-	-	-
97.0	70.0	-	-	-	-	-	-	20.3	-	-	-	-	-
100.0	40.0	-	-	-	-	-	-	2.8	-	-	-	-	-
100.0	60.0	-	-	-	-	-	-	7.0	-	-	-	-	-
100.0	65.0	-	-	-	-	-	-	15.5	-	-	-	-	-
100.0	70.0	-	-	-	-	-	-	2.5	-	-	-	-	-
103.0	30.0	-	-	-	-	-	-	5.4	-	-	-	-	-
103.0	40.0	-	-	-	-	-	-	10.4	-	-	-	-	-
103.0	45.0	-	-	-	-	-	-	4.6	-	-	-	-	6
107.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
107.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	14.7
107.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	8.6
110.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	5.7
110.0	50.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
113.0	45.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
113.0	65.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
113.0	70.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
117.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	5.5
117.0	55.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
118.0	39.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	6.0

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OC'I.	NOV.	DEC .
87.0	80.0	-	-	-	-	-	2.0	-	-	-	-	-	-
93.0	140.0	-	-	-	-	-	2.8	-	-	-	-	-	-
97.0	60.0	-	-	-	-	-		2. 8	-	-	-	-	-
100.0	65.0	-	-	-	-	-	-	2.6	-	-	-	-	-
103.0	60.0	-	-	-	-	-	-	5.5	-	-	-	-	- 0
107.0	70.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
107.0	80.0	-	-	-	-	-	-	2. 2	-	-	-	-	-

STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
87.0	80.0	-	-	-	-	-	2.0	-	-	-	-	-	-
93.0	110.0	-	-	-	-	-	5.4	-	-	-	-	-	-
93.0	130.0	-	-	-	-	-	2.5	-	-	-	-	-	-
103.0	50.0	-	-	-	-	-	-	11.2	-	-	-	-	-
103.0	55.0	-	-	-	-	-	-	2.7	-	-	-	-	-
103.0	80.0	-	-	-	-	-	-	2.8	-	-	-	-	-
107.0	45.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
107.0	50.0	-	-	-	-	-	-	5.6	-	-	-	-	0.0
107.0	70.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
110.0	80.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
120.0	65.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0

Stenobrachius leucopsarus

STATI		JAN.	FEB .	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV .	DEC.
80.0	51.0	-	-	-	-	-	12.4	-	-	-	-	-	-
80.0	52.0	-	-	-	-	-	4.5	-	-	-	-	-	-
80.0	55.0	-	-	-	-	-	46.1	-	-	-	-	-	-
80.0	60.0	-	-	-	-	-	12.3	-	-	-	-	-	-
80.0	65.0	-	-	-	-	-	6.9	-	-	-	-	-	-
80.0	70.0	-	-	-	-	-	2.7	-	-	-	-	-	-
80.0	80.0	-	-	-	-	-	2.8	-	-	-	-	-	-
82.0	47.0	-	-	-	-	-	15.4	-	-	-	-	-	-
83.0	43.0	-	-	-	-	-	16.3	-	-	-	-	-	-
83.0	51.0	-	-	-	-	-	2.6	-	-	-	-	-	-
83.0	55.0	-	-	-	-	-	42.8	-	-	-	-	-	-
83.0	60.0	-	-	-	-	-	5.7	-	-	-	-	-	-
83.0	65.0	-	-	-	-	-	1.9	-	-	-	-	-	-
83.0	70.0	-	-	-	-	-	3.3	-	-	-	-	-	-
87.0	40.0	-	-	-	-	-	25.8	-	\cdots	-	-	-	-
87.0	45.0	-	-	-	-	-	26.6	-	\cdots	-	-	-	-
87.0	50.0	-	-	-	-	-	2.2	-	-	-	-	-	-
87.0	55.0	-	-	-	-	-	3.1	-	-	-	-	-	-
90.0	37.0	-	-	-	-	-	2.7	-	-	-	-	-	-
90.0	45.0	-	-	-	-	-	5.5	-	-	-	-	-	-
90.0	53.0	-	-	-	-	-	16.9	5	-	-	-	-	-
93.0	35.0	-	-	-	-	-	-	5.5	-	-	-	-	-
93.0	40.0	-	-	-	-	-	-	44.8	-	-	-	-	-
93.0	45.0	-	-	-	-	-	-	25.8	-	-	-	-	-
93.0	50.0	-	-	-	-	-	-	12.0	-	-	-	-	-
93.0	55.0	-	-	-	-	-	-	9.3	-	-	-	-	-
93.0	80.0	-	-	-	-	-	-	5.7	-	-	-	-	-
93.0	90.0	-	-	-	-	-	19.6	-	-	-	-	-	-
93.0	110.0	-	-	-	-	-	2.7	-	-	-	-	-	-
93.0	120.0	-	-	-	-	-	5.0	-	-	-	-	-	-

TABLE 4. (cont.)
Stenobrachius leucopsarus (cont.)

STATION	JAN.	FEB.	MAR	APR .	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV .	DEC.
100.050 .0	-	-	-	-	-	-	6.8	-	-	-	-	-
Triphoturus mexicanus												
STATION	JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.

 11

00
 \circ
+
+
\sim 00

TABLE 4. (cont.)

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.
103.0	60.0	-	-	-	-	-	-	2.8	-	-	-	-	-
Diogenichthys spp.													
STATI		JAN.	F'EB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV .	DEC.
97.0	45.0	-	-	-	-	-	-	2.8	-	-	-	-	- 6
110.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	3.6
110.0	55.0	-	-	-	-	-	-	36.0 7.9	-	-	-	-	0.0
113.0	55.0	-	-	-	-	-	-	7.9 18.9	-	-	-	-	0.0 0.0
113.0	60.0	-	-	-	-	-	-	18.9 5.4	-	-	-	-	0.0
113.0	65.0	-	-	-	-	-	-	2. 4	-	-	-	-	-
117.0	70.0	-	-	-	-	-	-	2.8 14.9	-	-	-	-	0.0
120.0	60.0	-	-	-	-	-	-	14.9 38	-	-	-	-	0.0
120.0	65.0	-	-	-	-	-	-	23.3	-	-			0.0
120.0	70.0	-	-	-	-	-	-	23.3 5.0	-	-	-	-	0.0
120.0	80.0	-	-	-	-	-	-	5.0	-			-	0.0
123.0	37.0	-	-	-	-	-	-	1.9	-	-		-	0.0
123.0	42.0	-	-	-	-	-	-		-	-		-	0.0
123.0	45.0	-	-	-	-	-	-	4.9	-	-	-	-	0.0 0.0
123.0	50.0	-	-	-	-	-	-	8.1	-	-	-	-	0.0
123.0	55.0	-	-	-	-	-	-	8.1	-	-	-	-	0.0

Diogenichthys atlanticus												
STATION	JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
80.070 .0	-	-	-	-	-	2.7	-	-	-	-	-	-
80.0880 .0	_	-	-	-	-	2.8	-	-	-	-	-	-
83.080 .0	-	-	-	-	-	4.6	-	-	-	-	-	
83.090 .0	-	-	-	-	-	9.4	-	-	-	-		
87.070 .0	-	-	-	-	-	2.4	-	-	-	-		
87.080 .0	-	-	-	-	-	18.3	-	-	-	-	-	
87.090 .0	-	-	-	-	-	19.0	-	-	-	-	-	-
90.060 .0	-	-	-	-	-	2.9	-	-	-	-	-	-
$90.0 \quad 100.0$	-	-	-	-	-	2.6 35.9	-	-	-	-	-	-
90.0110 .0	-	-	-	-	-	35.9	-	-	-	-		-
90.0120 .0	-	-	-	-	-	2.8	- 7	-	-	-	-	-
93.065 .0	-	-	-	-	-	-	2.7	-	-	-	-	-
93.0880 .0	-	-	-	-	-	20	5.7	-	-	-		-
93.0120 .0	-	-	-	-	-	20.1	-	-	-	-		-
$93.0 \quad 130.0$	-	-	-	-	-	7. 6	-	-	-	-		-
93.0140 .0	-	-	-	-	-	8.4	2.9	-	-	-		
97.070 .0	-	-	-	-	-	-	2.9	-	-	-		
100.065 .0	-	-	-	-	-	-	5.2	-	-	-	-	
100.070 .0	-	-	-	-	-	-	2.5	-	-	-	-	-

TABLE 4. (cont.) Diogenichthys atlanticus (cont

 $1 \quad 1 \quad 1$
 1 1 1 1 1 1 1 1 1 1 1 1 $1 \begin{array}{llllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
 1111111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111

 00000000000000000000000
 STATION ST 00000000000000000000000

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP	OCT	NOV.	DEC.
117.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	13.6
117.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.4
117.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	24.9
117.0	60.0	-	-	-	-	-	-	6.4	-	-	-	-	36.9
117.0	65.0	-	-	-	-	-	-	7.1	-	-		-	47.3
117.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	85.8
118.0	39.0	-	-	-	-	-	-	0.0	-	-	-	-	52.2
119.0	33.0	-	-	-	-	-	-	0.0	-	-	-	-	2.3
120.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	9.8
120.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	135.8
120.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	53.8
120.0	65.0	-	-	-	-	-	\cdots	0.0	-	-	-	-	125.5
120.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	34.8
120.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	26.4
123.0	36.0	-	-	-	-	-	-	0.0	-	-	-	-	1.1
123.0	37.0	-	-	-	-	-	-	0.0	-	-	-	-	1.6
123.0	42.0	-	-	-	-	-	-	0.0	-	-	-	-	5.8
123.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	25.4
123.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	35.0
123.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	51.6
123.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	26.1
127.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	96.3
127.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	14.0
127.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	17.2
127.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	3.1
130.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
130.0	45.0	-	-	-	-	-	-	-	-	-	-	-	13.3
130.0	50.0	-	-	-	-	-	-	-	-	-	-	-	64.5
130.0	55.0	-	-	-	-	-	-	-	-	-	-	-	26.6
130.0	60.0	-	-	-	-	-	-	-	-	-	-	-	2.6
137.0	30.0	-	-	-	-	-	-	-	-	-	-	-	7.6
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	11.7
137.0	40.0	-	-	-	-	-	-	-	-	-	-	-	8.6

[^5]TABLE 4. (cont.)

STATI		JAN .	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC .
120.0	60.0	-	-	-	-	-	--	5.0	-	-	-	-	0.0
120.0	65.0	_	-	-	-	-	-	0.0	-	-	-	-	2.8
120.0	70.0	-	-	-	-	-	-	7.8	-	-	-	-	0.0
120.0	80.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
133.0	40.0	-	-	-	-	-	-	-		-			4.6
137.0	35.0	-	-	-	-	-							2.9
137.0	40.0	-	-	-	-	-	-	-	-	-	-	-	2.8

Gonichthys tenuiculus (cont.)

STATIO		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
107.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	1.8
110.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	7.3
110.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
113.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
113.0	60.0	-	-	-	-	-	-	0.0		-		-	5.5
113.0	70.0	-	-	-	-	-	-	0.0		-	-	-	5.4
113.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
117.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	5.7
117.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
120.0	45.0	-	-	-	-	-	-	5.5		-	-	-	0.0
120.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
120.0	60.0	-	-	-	-	-	-	2.5	-	-	-	-	2.0
120.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
120.0	70.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
120.0	80.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
127.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
127.0	45.0	-	-	-	-	-	-	0.0	-	-		-	3.5
127.0	55.0	-	-	-	-	-	-	0.0		-	-	-	6.8
133.0	40.0	-	-	-	-	-	-	-	-	-		-	5.0
137.0	30.0	-	-	-	-	-	-			-			3.0
137.0	35.0	-	-	-	-	-	-		-	-		-	2.9
Hygophum reinhardtii													
STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP	OCT.	NOV.	DEC.
90.0	140.0	-	-	-	-	-	2.6	-	-	-	-	-	-
93.0	110.0	-	-	-	-	-	2.7	-	-	-	-	-	-
93.0	120.0	-	-	-	-	-	2.5	--	-	-	-	-	-
93.0	130.0	-	-	-	-	-	2.5	-	-	-	-	-	-
93.0	140.0	-	-	-	-	-	11.2	7.8	-	-	-	-	-
103.0	50.0	-	-	-	-	-	-	2.8	-	-	-	-	-
103.0	80.0	-	-	-.	-	-	-	5.5	-	-	-	-	-

TABLE 4. (cont.)

STATION		Loweina rara											
		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT .	NOV .	DEC.
97.0	70.0	-	-	-	-	-	-	2.9	-	-	-	-	-
		Myctophum nitidulum											
STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV .	DEC.
83.0	80.0	-	-	-	-	-	2.3	-	$-$	-	$-$	-	-
90.0	140.0	-	-	-	-	-	2.6	-					-
93.0	120.0	-	-	-	-	-	2.5	-	-	-	-	-	-
93.0	140.0	-	-	-	-	-	2.8	- 5	-	-	-	-	-
100.0	70.0	-	-	-	-	-	-	2.5	-	-	-	-	-
103.0	50.0	-	-	-	-	-	-	11.2	-	-	-	-	-
103.0	60.0	-	-	-	-	-	-	5.5	-	-	-	-	0.0
107.0	40.0	-	-	-	-	-	-	2. 0	-	-	-	-	2.7
107.0	70.0	-	-	-	-	-	-	0.0 0.0	-	-	-	-	2.7
110.0	80.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
117.0	40.0							2.7					
					Protomyctophum crockeri								
STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT .	NOV.	DEC.
80.0	60.0	-	-	-	-	-	6.1	-	-	-	-	-	-
80.0	70.0	-	-	-	-	-	2.7	-	-	-	-	-	-
83.0	55.0	-	-	-	-	-	3.3	-	-	-	-	-	-
83.0	60.0	-	-	-	-	-	5.4	-	-	-	-	_	-
83.0	90.0	-	-	-	-	-	2.4	-	-	-	-	-	-
87.0	45.0	-	-	-	-	-	3.0	-	-	-	-	-	-
87.0	55.0	-	-	-	-	-	3.18	-	-	-	-	-	-
87.0	60.0	-	-	-	-	-	6.8	-	-	-	-	-	-
87.0	70.0	-	-	-	-	-	2.4	-	-	-	-	-	-
87.0	80.0	-	-	-	-	-	2.0	-	-	-	-	-	-
90.0	53.0	-	-	-	-	-	2.8	-	-	-	-	--	-
90.0	60.0	-	-	-	-	-	2.9	-	-	-	-	-	-
90.0	65.0	-	-	-	-	-	5.6	-	-	-		-	-
90.0	70.0	-	-	-	-	-	5.6	-	-	-	-	-	-
90.0	80.0	-	-	-	-	-	3.0	-	-	-	-	-	-
90.0	90.0	-	-	-	-	-	2.7	-	-	-		-	-
90.0	100.0	-	-	-	-	-	2.6	-	-	-	-	-	-
90.0	110.0	-	-	-	-	-	8.3	-	-	-	-	-	-
90.0	120.0	-	-	-	-	-	2.8	- 2.8	-	-		-	-
93.0	28.0	-	-	-	-	-	-	2.8	-	-	-	-	-
93.0	30.0	-	-	-	-	-	-	13.8	-	-	_	-	-
93.0	35.0	-	-	-	-	-	-	13.8	-	-		-	-
93.0	40.0	-	-	-	-	-	-	14.0	-	-	-	-	-
93.0	45.0	-	-	-	-	-	-	3.2	-	-	-	-	-

OR?

00.
 STATION

\square

00

STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT	NOV.	DEC .
113.0	65.0	-	-	-	-	-	-	2.7	-	-	-	-	21.4
113.0	70.0	-	-	-	-	-	-	7.4	-	-	-	-	10.7
113.0	80.0	-	-	-	-	-	-	2.8	-		-		8.2
117.0	35.0	-	-	-	-	-		5.0					16.9
117.0	40.0	-	-		-	-		8.2	-	-	-	-	3.0
117.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
117.0	50.0	-	-	-	-	-	-	2.4	-	-	-	-	0.0
117.0	55.0	-	-	-	-	-	-	5. 0	-	-	-	-	0.0 5.7
117.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	5.7
117.0	65.0	-	-	-	-	-	-	4.7	-	-	-	-	2.6
117.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	9.9 13.0
118.0	39.0	-	-	-	-	-	-	0.0	-	-	-	-	13.0
120.0	50.0	-	-	-	-	-	-	0.0	-	-	-		2.5
120.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	5.7
120.0	60.0	-	-	-	-	-	-	0.0			-		3.0
120.0	70.0	-	-	-	-	-	-	0.0	-		-		2.9
120.0	80.0	-	-	-	-	-	-	0.0	-	-	-		2.9 2.7
123.0	50.0	-	-	-	-	-	-	0.0	-	-	-		7.7
123.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	7.7
123.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
127.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	12.3
127.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	12.3

1111111111111111111

1111111111111111111 11111111111111111111 1111111111111111111111

MAY
 $\begin{array}{lllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ 111111111111111111111111

0000000000000000000
 STATION
TABLE 4. (ccnt.)

					$10 p$	5	Orn	is	nt.				
STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP	OCT	NOV .	DEC.
100.0	70.0	-	-	-	-	-	-	2. 5	-	-	-	-	-
103.0	35.0	-	-	-	-	-	-	9.8	-	-	-		-
103.0	40.0	-	-	-	-	-	-	5.2	-				-
103.0	45.0	-	-	-	-	-	-	9.2	-		-		-
103.0	70.0	-	-	-	-	-	-	9.1					
103.0	80.0	-	-	-	-		-	13.8					0.0
107.0	40.0	-	-	-	-	-	-	6.5	-	-	-	-	0.0
107.0	45.0	-	-	-	-	-	-	8. 4	-	-	-	-	0.0
107.0	50.0	-	-	-	-	-	-	8.3	-	-	-		0.0
107.0	55.0	-	-	-	-	-	-	0.0	-	-	-		8.8
107.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8 0.0
107.0	70.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
110.0	45.0	-	-	-	-	-	-	2.6	-	-	-		0.0
113.0	35.0	-	-	-	-	-	-	10.8	-	-	-		0.0
113.0	40.0	-	-	-	-	-	-	5.7	-	-	-		0.0
113.0	70.0	-	-	-	-	-	-	2.5	-		-		0.0
118.0	39.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	45.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
123.0	42.0	-	-	-	-	-	-	2.3	-	-	-	-	0.0

Tarletonbeania crenularis

SIATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OСT.	NOV.	DEC.
80.0	55.0	-	-	-	-	-	2.6	-	-	-	-	-	-
80.0	60.0	-	-	-	-	-	18.4	-	-	-	-	-	-
83.0	65.0	-	-	-	-	-	5.7	-	-	-			
90.0	53.0	-	-	-	-	-	2.8	8					
93.0	35.0	-	-	-	-	-	-	2.8	-	-	-		-
93.0	40.0	-	-	-	-	-	-	5. 6	-	-	-		
93.0	50.0	-	-	-	-	-	-	6.0	-	-	-		-
93.0	80.0	-	-	-	-	-	-	2.9	-	-	-		
100.0	60.0	-	-	-	-	-	-	3.5	-	-	-	-	29
107.0	50.0	-	-	-	-	-	-	0.0	-	-	-	$-$	2.9

[^6]TABLE 4. (cont.)

STATI		JAN.	FEB .	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP .	OCT	NOV .	DEC.
118.0	39.0	-	-	-	-	-	-	0.0	-	-	-	-	7. 8
120.0	24.0	-	-	-	-	-	-	0.0	-		-	-	1.4
120.0	25.0	-	-	-	-	-	-	0.0	-	-	-	-	9.8
120.0	30.0	-	-	-	-	-	-	0.0	-	-	-	-	6.2
120.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	19.1
120.0	50.0	-	-	-	-	-	-	0.0	--				2.5
120.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
120.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	3.0
120.0	65.0	-	-	-	-	-		0.0	-	-	-	-	2.8
123.0	36.0	-	-	-	-	-	-	0.0	-	-	-	-	6.7
123.0	37.0	-	-	-	-	-	-	0.0	-	-	-	-	31.8
123.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
123.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	5.8
127.0	33.0	-	-	-	-	-	-	0.0	-	-	-	-	1. 5
133.0	30.0	-	-	-	-	-	-	-	-	-		-	2.9
137.0	23.0	-	-	-	-	-	-	-	-	-	-	-	1.5

1111111111111111111111111111

00000000000000000000000 noriognnonginginvinino on
STATION

STATI		JAN.	FEB.	MAR .	APR	MAY	JUNE	JULY	AUG .	SEP .	OCT.	NOV .	DEC.
80.0	55.0	-	-	-	-	-	2.6	-	-	-	-	-	-
80.0	60.0	-	-	-	-	-	6.1	-	-	-		-	
83.0	51.0	-	-	-	-	-	1.3	-	-	-			
83.0	60.0	-	-	-	-	-	3.8	-	-	-		-	
90.0	80.0	-	-	-	-		6.0	-	-		,	-	
93.0	40.0	-	-	-	-	-	-	8.4	-				
97.0	55.0	-	-		-	-	-	2.9	-	-			1.8
107.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
117.0	30.0	-	-	-	-	-	-	0.0	-	-	-	-	2.1
117.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	13.6
117.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	11.9
117.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	28.0 2.6
117.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6 60.0
118.0	39.0	-	-	-	-	-	-	2.7	-	-	-	-	60.0
120.0	45.0	-	-	-		-	-	0.0	-	-	-	-	23.9 7.8
123.0	36.0	-	-	-	-	-	-	0.0	-	-	-	-	7.8.8
123.0	37.0	-	-	-	-	-	-	1.9	-	-	-	-	36.6 2.6
123.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6 25.3
130.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	25.3 8.8
133.0	30.0	-	-	-	-	-	-	-	-			-	8.8 45.6
133.0	40.0	-	-	-	-	-	-	-	-	-	-	-	45.6
137.0	30.0	-	-	-	-	-	-	-	-	-	-	-	12.6
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	23.4

TABLE 4. (cont.)
Physiculus spp.

STATIO		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	ост.	NOV.	DEC.
113.0	40.0	-	-	-	-	-		0.0	-	-	-	-	2.8
Macrouridae													
STATIO		JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG .	SEP.	ост.	NOV.	DEC.
93.0	55.0	-	-	-	-	-	-	3.1	-	-	-	-	$\overline{2} 3$
Ophidiiformes													
Statio		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	ост.	NOV.	DEC.
80.0	51.0	-	-	-	-	-	3.1	-	-	-		-	-
80.0	55.0	-	-	-	-	-	2.6	-	-	-	-	-	
83.0	60.0	-	-	-	-	-	3.8	-	-	-	-	-	-
90.0	90.0 45.0	-	-	-	-	-	2.7	3.2	-	-	-	-	-
97.0	30.0	-	-	-	-	-	-	5.9	-	-	-	-	-
100.0	30.0	-	-	-	-	-	-	2.9	-	-	-	-	-
123.0	37.0	-	-	-	-	-	-	0.0	-	-	-	-	3.2
133.0	23.0 23.0	-	-	-	-	-	-	-	-	-	-	-	
137.0	23.0	-	-	-	-	-	-	-	-				
Brosmophycis marginata													
STATIO		JAN.	FEB.	MAR.	APR.	MAY	JuNE	JULY	AUG.	SEP.	ост.	NOV.	DEC.
80.0	55.0	-	-	-	-	-	2.6	-	-	-	-	-	
82.0	47.0	-	-	-	-	-	3.1	-	-	-	-	-	
83.0	51.0	-	-	-	-	-	1.3 1.9	-	-	-	-	-	
$\begin{array}{r} 83.0 \\ 110.0 \end{array}$	$\begin{aligned} & 60.0 \\ & 35.0 \end{aligned}$	-	-	-	-	-		$\overline{2.8}$	-	-	-	-	$\overline{0.0}$
Chilara taylori													
Station		JAN.	FEB.	MAR .	APR.	MAY	June	JULY	AUG	SEP.	OCT.	NOV.	DEC.
100.0	30.0	-	-	-	-	-	-	2.9	-	-	-	-	-
100.0	35.0	-	-	-	-	-	-	2.9	-	-	-	-	-
100.0	${ }^{40.0}$	-	-	-	-	-	-	2.8	-	-	-	-	
103.0 107.0	30.0	-	-	-	-		-	0.0	-	-	-	-	3.0
110.0	40.0	-	-	-	-	-	-	3.0	-	-	-	-	0.0
113.0	35.0	-		-	-	-	-	13.5	-	-	-	-	0.0
117.0	30.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0

TABLE 4. (cont.)

STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JUL,	AUG.	SEP.	OCT.	NOV.	DEC.
117.0	35.0	-	-	-	-	-	--	5.0	-	-	-	-	0.0
117.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	4.8
117.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
120.0	35.0	-	-	-	-	-	-	11.0	-	-	-	-	0.0
120.0	55.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0
123.0	36.0	-	-	-	-	-	-	0.0	-	-	-	-	1. I
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	2.9
Porichthys spp.													
STATI		JAN.	FEB	MAR .	APR.	MAY	JUNE	JUL,Y	AUG .	SFP.	OCT.	NOV.	DEC.
113.0	30.0	-	-	-	-	-	-	0.0	-	-	-	-	2.2
Cololabis saira													
STATI		JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC
97.0	60.0	--	-	-	-	-	-	2.8 3.5	-	-	-	-	-
117.0	45.0	-	-	-	-	-	-	2.4	-	-	-	-	0.0
Atherinidae													
STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
$\begin{array}{r} 97.0 \\ 113.0 \end{array}$	$\begin{aligned} & 29.0 \\ & 29.0 \end{aligned}$	-	-	-	-	-	-	5.8 4.7	-	-	-	-	-0.0
Trachipteridae													
SIATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JUL, Y	AUG.	SEP.	OCT.	NOV.	DEC.
83.0	65.0	-	-	-	-	-	1. 9	-	-	\cdots	-	-	-
90.0	65.0	-	-	-	-	-	2. 8	-	-	-	-	-	-
90.0	70.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	90.0	-	-	-	-	-	2.7	-	-	-	-	-	-
93.0	40.0	-	-	-	-	-	-	2.8	-	-	-	-	-
100.0	50.0	-	-	-	-	-	-	3.4	-	-	-	-	-
Melamphaes spp.													
STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP .	OCT.	NOV.	DEC.
80.0	65.0	-	-	-	-	-	$\begin{aligned} & 3.4 \\ & 5 \end{aligned}$	-	-	-	-	-	-

 AUG
\qquad

1
- 1111

JUNE

6 N N

TABLE 4. (cont.)

STATI		JAN.	FEB .	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT	NOV.	DEC.
110.0	70.0	-	-	-	-	-	-	0.0	-	-		-	2.7
110.0	80.0	-	-	-	-	-	-	2.5	-	-		-	0.0
113.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	2.3
113.0	40.0	-	-	-	-	-	-	2.9	-	-		-	2.8
113.0	60.0	-	-	-	-	-	-	2.7	-	-	-		0.0
113.0	70.0	-	-	-	-	-	-	0.0			-		2.
117.0	40.0	-	-	-	-	-	-	0.0					3.0
117.0	65.0	-	-	-	-	-		0.0					2.6
117.0	70.0	-	-	-	-	-	-	2.8	-	-	-	-	2.6
118.0	39.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
120.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
120.0	60.0	-	-	-	-	-	-	2.5					0.0
120.0	65.0	-	-	-	-	-		0.0	-	-	-	-	2.8
123.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.7
127.0	40.0	-	-	-	-	-	-	0.0	-	-			5
127.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	5.
127.0	60.0	-	-	-	-	-	-	0.0	-	-	-		6.
130.0	50.0	-	-	-	-	-	-	-	-		-		
137.0	30.0	-	-	-	-	-	-	-	-	-	-	-	2

Poromitra spp.

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT	NOV.	DEC.
103.0	45.0	-	-	-	-	-	-	2.3	-	-	-		
103.0	65.0	-	-	-	-	-	-	2.5	-		-		2.7
110.0	70.0	-	-	-		-		0.0	-				2.7
113.0	45.0	-	-	-		-	-	0.0					2.9
117.0	35.0	-	-	-	-	-	-	2.5					0.0
117.0	55.0	-	-	-	-	-	-	0.0	-		-	-	3.1

APR . MAY JUNE JULY - 0.0

Macroramphosus gracilis

STATION	JAN.	FE'B.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP .	OCT	NOV.	DEC.
90.0140 .0	-	-	-	-	-	5.1	-	-	-	-	-	- 9
107.055 .0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
110.080 .0	-	-	-	-	-	-	0.0	-	-	-		2.7
120.065	-	-	-	-	-	-	2.8	-	-	-	-	0.0

Macroramphosus gracilis

11

11

11
2.7
0.0

JUNE
11

MAY

品
E
4

MAR .
11

1
11

JAN .
11

0
$n 0$
n
STATION
0
mo
0
$=1$
110.0
TABLE 4. (cont.)

TABLE 4. (cont.)

TABLE 4. (cont.)
Sebastes spp. (cont.)

STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.
113.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	13.9
117.0	26.0	-	-	-	-	-	-	0.0	-	-	-	-	1.3
117.0	30.0	-	-	-	-	-	-	2.7	-	-	-	-	2.1
117.0	35.0	-	-	-	-	-	-	12.4	-	-	-	-	22.5
117.0	40.0	-	-	-	-	-	-	0.0	-	-	-	-	23.7
117.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	8.1
117.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	9.5
117.0	55.0	-	-	-	-	-	-	0.0	-	-	-	-	6.2
117.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
117.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	5.3
118.0	39.0	-	-	-	-	-	-	0.0	-	-	-	-	2.6
120.0	35.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	40.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
120.0	50.0	-	-	-	-	-	-	4.8	-	-	-	-	0.0
123.0	36.0	-	-	-	-	-	-	1.9	-	-	-	-	0.0
						bas	obus						
STATION		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP .	OCT.	NOV.	DEC.
83.0	60.0	-	-	-	-	-	1.9	-	-	-	-	-	-
83.0	80.0	-	-	-	-	-	2.3	-	-	-	-	-	-
90.0	60.0	-	-	-	-	-	2.9	-	-	-	-	-	-
90.0	65.0	-	-	-	-	-	2.8	-	-	-	-	-	-
Blennioidei													
STATION		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	ОСт.	NOV.	DEC.
83.0	43.0	-	-	-	--	-	2.7	-	-	-	-	-	-
90.0	53.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	80.0	-	-	-	-	-	3.0	-	-	-	-	-	-
Hypsoblennius spp.													
STATION		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	ОС'.	NOV.	DEC.
83.0	40.0	-	-	-	-	-	2.3	-	-	-	-	-	-
87.0	33.0	-	-	-	-	-	1.9	-	-	-	-	-	-
90.0	28.0	-	-	-	-	-	11.2	-	-	-	-	-	-
93.0	28.0	-	-	-	-	-	-	5.5	-	-	-	-	-
93.0	30.0	-	-	-	-	-	-	6.5	-	-	-	-	-
97.0	29.0	-	-	-	-	-	-	16.3	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	2.6	-	-	-	-	-
103.0	29.0	-	-	-	-	-	-	6.2	-	-	-	-	0
107.0	31.0	-	-	-	-	-	-	3.5	-	-	-	-	0.0

		Hypsoblennius spp. (cont.)											
STATI		JAN.	FEB .	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OC'	NOV.	DEC .
110.0	32.0	-	-	-	-	-	-	9.2	-	-	-	-	0.0
110.0	35.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
110.0	40.0	-	-	-	-	-	-	8.9	-	-	-	-	0.0
113.0	29.0	-	-	-	-	-	-	15.5	-	-	-	-	0.0
113.0	30.0	-	-	-	-	-	-	17.1	-	-	-	-	0.0
120.0	24.0	-	-	-	-	-	-	4.1	-	-	-	-	0.0
127.0	33.0	-	-	-	-	-	-	8.8	-	-	-	-	0.0
127.0	45.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0
130.0	28.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0
137.0	22.0	-	-	-	-	-	-	-	-	-	-	-	2.0

-

STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OC'I .	NOV .	DEC.
82.0	47.0	-	-	-	-	-	12.3	-	-	-	-	-	-
87.0	50.0	-	-	-	-	-	2. 2	-	-	-	-	-	-
103.0	29.0	-	-	-	-	-	-	4.2	-	-	-	-	-
103.0	30.0	-	-	-	-	-	-	2.7	-	-	-	-	-
107.0	31.0	-	-	-	-	-	-	3.5	-	-	-	-	1.7
110.0	32.0	-	-	-	-	-	-	1.3	-	-	-	-	1.5
113.0	29.0	-	-	-	-	-	-	0.0	-	-	-	-	2.3
Gobiidae													

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP .	OCT.	NOV .	DEC .
80.0	60.0	-	-	-	-	-	3.1	-	-	-	-	-	-
82.0	47.0	-	-	-	-	-	12.3	-	-	-	-	-	-
83.0	43.0	-	-	-	-	-	10.8	-	-	-	-	-	-
83.0	51.0	-	-	-	-	-	2.6	-	-	-	-	-	-
83.0	60.0	-	-	-	-	-	3.8	-	-	-	-	-	-
90.0	28.0	-	-	-	-	-	2.2	-	-	-	-	-	-
90.0	37.0	-	-	-	-	-	2.7	-	-	-	-	-	-
90.0	45.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	70.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	80.0	-	-	-	-	-	3.0	-	-	-	-	-	-
90.0	90.0	-	-	-	-	-	2.7	-	-	-	-	-	-
93.0	28.0	-	-	-	-	-	-	2.8	-	-	-	-	-
93.0	50.0	-	-	-	-	-	-	3.0	-	-	-	-	-
93.0	55.0	-	-	-	-	-	-	3.1	-	-	-	-	-
93.0	90.0	-	-	-	-	-	2.8	-	-	-	-	-	-
97.0	29.0	-	-	-	-	-	-	4.8	-	-	-	-	-
97.0	30.0	-	-	-	-	-	-	5.9	-	-	-	-	-
97.0	32.0	-	-	-	-	-	-	5.4	-	-	-	-	-
100.0	30.0	-	-	-	-	-	-	5.8	-	-	-	-	-

TABLE 4. (c)nt.)

STATIO		JAN .	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP .	OCT .	NOV .	DEC.
100.0	45.0	-	-	-	-	-	-	2.8	-	-	-	-	-
107.0	31.0	-	-	-	-	-	-	1.8	-	-	-	-	0.0
107.0	32.0	-	-	-	-	-	-	2.7	-	-	-	-	3.0
110.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	1.8
110.0	40.0	-	-	-	-	-	-	3.0	-	-	-	-	0.0
113.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
113.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.5
117.0	35.0	-	-	-	-	-	-	5.0	-	-	-	-	0.0
117.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.4
119.0	33.0	-	-	-	-	-	-	2.3	-	-	-	-	0.0
120.0	24.0	-	-	-	-	-	-	0.0	-	-	-	-	1.4
120.0	25.0	-	-	-	-	-	-	4.6	-	-	-	-	0.0
120.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.5
123.0	37.0	-	-	-	-	-	-	0.0	-	-	-	-	1.6
127.0	34.0	-	-	-	-	-	-	3.3	-	-	-	-	0.0
137.0	30.0	-	-	-	-	-	-	-	-	-	-	-	2.5
Labridae													
STATIO		JAN.	FEB	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV .	DEC.
$\begin{aligned} & 120.0 \\ & 120.0 \end{aligned}$	24.0	-	-	-	-	-	-	4.1	-	-	-	-	0.0
Halichoeres spp.													
STATIO		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP .	OC'	NOV.	DEC.
103.0	35.0	-	-	-	-	-	-	2.5	-	-	-	-	2,
123.0	36.0	-	-	-	-	-	-	0.0	-	-	-	-	2.2
123.0	37.0	-	-	-	-	-	-	0.0	-	-	-	-	1.6
137.0	23.0	-	-	-	-	-	-	-	-	-	-	-	1.5
Oxyjulis californica													
STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP .	ОСТ .	NOV .	DEC.
83.0	43.0	-	-	-	-	-	2.7	-	-	-	-	-	-
83.0	55.0	-	-	-	-	-	3.3	-	-	-	-	-	-
87.0	40.0	--	-	-	-	-	2.9	-	-	-	-	-	-
87.0	70.0	-	-	-	-	-	7.2	-	-	-	-	-	-
90.0	60.0	-	-	-	-	-	5.9	-	-	-	-	-	-
90.0	90.0	-	-	-	-	-	2.7	-	-	-	-	-	-
93.0	28.0	-	-	-	-	-	-	2.8	-	-	-	-	-
93.0	45.0	-	-	-	-	-	-	16.1	-	-	-	-	-
93.0	60.0	-	-	-	-	-	-	2.8	-	-	-	-	-

STAT10		JAN .	FEB.	MAR .	APR .	MAY	JUNE	TULY	AUG .	SEP.	OCT	NOV .	DEC.
93.0	80.0	-	-	-	-	-	-	5.7	-	-	-	-	-
97.0	32.0	-	-	-	-	-	-	2.7	-	-	-	-	-
97.0	40.0	-	-	-	-	-	-	12.1	-	-	-	-	-
97.0	50.0	-	-	-	-	-	-	2.6	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	10.5	-	-	-	-	-
100.0	30.0	-	-	-	-	-	-	26.0	-	-	-	-	-
103.0	30.0	-	-	-	-	-	-	10.9	-	-	-	-	-
107.0	31.0	-	-	-	-	-	-	5.3	-	-	-	-	0.0
110.0	35.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
113.0	35.0	-	-	-	-	-	-	13.5	-	-	-	-	0.0
120.0	30.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	35.0	-	-	-	-	-	-	5.5	-	-	-	-	0.0
120.0	50.0	-	-	-	-	-	-	4.8	-	-	-	-	0.0
120.0	55.0	-	-	-	-	-	-	5.2	-	-	-	-	0.0
Semicossyphus pulcher													
STATIO		JAN.	FEB .	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.
97.0	30.0	-	-	-	-	-	-	5.9	-	-	-	-	-
110.0	40.0	-	-	-	-	-	-	3.0	-	-	-	-	0.0
120.0	30.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	35.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
Chromis punctipinnis													
STATIO		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.
90.0	28.0	-	-	-	-	-	4.5	-	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	2.6	-	-	-	-	-
100.0	30.0	-	-	-	-	-	-	8.7	-	-	-	-	-
113.0	55.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0
120.0	35.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
Mugil spp.													
STATIO		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
117.0	35.0	-	-	-	-	-	-	0.0	-	-	\sim	-	2.8
Howella brodiei													
STATIO		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
93.0	40.0	-	-	-	-	-	5.6	-	-	-	-	-	-

TABLE 4. (cont.)

Brama SPP.												
STATION	JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC .
93.0140 .0	-	-	-	-	-	2.8	-	-	-	-	-	-
Carangidae												
STATION	JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
97.0 32.0	-	-	-	-	-	-	5.4	-	-	-	-	0.0
117.060 .0	-	-	-	-	-	-	3.2	-	-	-	-	0.0
Seriola lalandi												
STATION	JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
117.055 .0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
$119.0 \quad 33.0$	-	-	-	-	-	-	$2 \cdot 3$	-	-	-	-	0.0
$120.0 \quad 50.0$	-	-	-	-	-	-	7.2	-	-	-	-	0.0
$127.0 \quad 34.0$	-	-	-	-	-	-	3.3	-	-	-	-	0.0
130.035 .0	-	-	-	-	-	-	3.0	-	-	-	-	0.0

STATION	JAN.	FEB	MAR .	APR .	MAY	JUNE:	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
80.060 .0	-	-	-	-	-	30.7	-	-	-	-	-	-
80.065 .0	-	-	-	-	-	20.6	-	-	-	-	-	-
80.070 .0	-	-	-	-	-	54.6	-	-	-	-	-	-
83.060 .0	-	-	-	-	-	41.8	-	-	-	-	-	-
83.065 .0	-	-	-	-	-	15.1	-	-	-	-	-	-
83.070 .0	-	-	-	-	-	53.3	-	-	-	-	-	-
83.080 .0	-	-	-	-	-	6.9	-	-	-	-	-	-
83.090 .0	-	-	-	-	-	26.0	-	-	-	-	-	-
87.060 .0	-	-	-	-	-	27.0	-	-	-	-	-	-
87.065 .0	-	-	-	-	-	13.0	-	-	-	-	-	\cdots
87.070 .0	-	-	-	-	-	127.2	-	-	-	-	-	-
87.080 .0	-	-	-	-	-	4.1	-	-	-	-	-	-
87.090 .0	-	-	-	-	-	23.8	-	-	-	-	-	-
$90.0 \quad 53.0$	-	-	-	-	-	2.8	-	-	-	-	-	-
90.060 .0	-	-	-	-	-	172.9	-	-	-	-	-	-
90.065 .0	-	-	-	-	-	16.7	-	-	-	-	-	-
$90.0 \quad 70.0$	-	-	-	-	-	33.7	-	-	-	-	-	-
90.080 .0	-	-	-	-	-	6.0	-	-	-	-	-	-
$90.0 \quad 90.0$	-	-	-	-	-	35.5	-	-	-	-	-	-
90.0100 .0	-	-	-	-	-	2.6	-	-	-	-	-	-
90.0110 .0	-	-	-	-	-	44.2	-	-	-	-	-	-
90.0120 .0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0140 .0	-	-	-	-	-	10.2	-	-	-	-	-	-

NOV

11

-iNON

 00

TABLE 4. (cont.)

STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.
113.0	30.0	-	-	-	-	-	-	3.4		-		-	0.0
113.0	35.0	-	-	-	-	-	-	5.4	-	-	-	-	0.0
113.0	45.0	-	-	-	-	-	-	5.5	-	-	-	-	0.0
113.0	50.0	-	-	-	-	-	-	7.9	-	-	-	-	0.0
117.0	35.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
120.0	55.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0
123.0	42.0	-	-	-	-	-	-	4.5	-	-	-	-	0.0

STATION JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEP. OCT. NOV. DEC.

STATION	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEP.
137.0	22.0	-	-	-	-	-	-	-	-
137.0	23.0	-	-	-	-	-	-	-	-

STATION	JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	ОСт.	NOV.	DEC.
$113.0 \quad 35.0$	-	-	-	-	-	-	2.7	-	-	-	-	0.0
$120.0 \quad 45.0$	-	-	-	-	-	-	0.0	-	-	-	-	2.4
$123.0 \quad 37.0$	-	-	-	-	-	-	0.0	-	-	-	-	1.6
Medialuna californiensis												
STATION	JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV .	DEC.
90.060 .0	-	-	-	-	-	2.9	-	-	-	-	-	-
93.060 .0	-	-	-	-	-		2.8	-	-	-	-	-
97.045 .0	-	-	-	-	-	-	5.7	-	-	-	-	-
$97.0 \quad 60.0$	-	-	-	-	-	-	2.8	-	-	-	-	-
$100.0 \quad 35.0$	-	-	-	-	-	-	2.9	-	-	-	-	-
113.055 .0	-	-	-	-	-	-	2.6	-	-	-	-	0.0
Caulolatilus princeps												
STATION	JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.
119.033 .0	-	-	-	-	-	-	4.6	-	-	-	-	0.0

STATI		JAN.	FEB	MAR .	APR .	MAY	JUNE	JUL, Y	AUG .	SEP .	OC'	NOV	DEC.
80.0	55.0	-	-	-	-	-	2.6	-	-	-	-	-	-
90.0	37.0	-	-	-	-	-	5.5	-	-	-	-	-	-
93.0	28.0	-	-	-	-	-	-	13.8	-	-	-	-	-
93.0	35.0	-	-	-	-	-	-	2.8	-	-	-	-	-
97.0	29.0	-	-	-	-	-	-	1.0	-	-	-	-	-
97.0	30.0	-	-	-	-	-	-	17.8	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	239.3	-	-	-	-	-
100.0	30.0	-	-	-	-	-	-	17.3	-	-	-	-	-
103.0	29.0	-	-	-	-	-	-	4.2	-	-	-	-	-
103.0	55.0	-	-	-	-	-	-	5.4	-	-	-	-	-
107.0	31.0	-	-	-	-	-	-	1.8	-	-	-	-	82.1
107.0	32.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
107.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	3.1
110.0	32.0	-	-	-	-	-	-	0.0	-	-	-	-	20.3
110.0	35.0	-	-	-	-	-	-	2.8	-	-	-	-	1.8
110.0	40.0	-	-	-	-	-	-	8.9	-	-	-	-	0.0
110.0	50.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
113.0	29.0	-	-	-	-	-	-	0.0	-	-	-	-	16.1
117.0	30.0	-	-	-	-	\cdots	-	42.4	-	-	-	-	0.0
117.0	35.0	-	-	-	-	-	-	10.0	-	-	-	-	0.0
119.0	33.0	-	-	-	-	-	-	11.6	-	-	-	-	0.0
120.0	25.0	-	-	-	-	-	-	4.6	-	-	-	-	0.0
120.0	30.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	35.0	-	-	-	-	-	-	5.5	-	-	-	-	0.0
120.0	45.0	-	-	-	-	-	-	2.8	-	-	-	-	2.4
120.0	50.0	-	-	-	-	-	-	2.4	-	-	-	-	0.0
130.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	3.2
137.0	22.0	-	-	-	-	-	-	-	-	-	-	-	3.0
137.0	23.0	-	-	-	-	-	-	-	-	-	-	-	4.5

TABLE 4. (ccnt.)

STATI		JAN .	FEB.	MAR	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
123.0	36.0	-	-	-	-	-	-	5.6	-	-	-	-	3.3
123.0	37.0	-	-	-	-	-	-	1.9	-	-	-	-	3.2
123.0	45.0	-	-	-	-	-	-	0.0	-	-	-	-	2.8
123.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
127.0	45.0	-	-	-	-	-	-	5.3	-	-	-	-	0.0
127.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	3.1
137.0	30.0	-	-	-	-	-	-	-	-	-	-	-	52.9
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	102.6
Scombridae													
STATI		JAN.	FEB	MAR.	APR.	MAY	JUNE	JUKY	AUG .	SEP.	OCT.	NOV.	DEC .
93.0	28.0	-	-	-	-	-	-	2.8	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	26.3	-	-	-	-	-
100.0	30.0	-	-	-	-	-	-	46.2	-	-	-	-	-
107.0	32.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	50.0	-	-	-	-	-	-	4.8	-	-	-	-	0.0
127.0	34.0	-	-	-	-	-	-	16.6	-	-	-	-	0.0
127.0	50.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
130.0	35.0	-	-	-	-	-	-	6.1	-	-	-	-	0.0
Sarda chiliensis													
STATI		JAN.	FEB	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.
107.0	32.0	-	-	-	-	-		2.7	-	-	-	-	0.0
Scomber japonicus													
STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE:	JULY	AUG .	SEP.	OCT .	NOV.	DEC.
90.0	130.0	-	-	-	\cdots	-	18.5	- 9	-	-	-	-	-
97.0	30.0	-	-	-	-	-	-	5.9	-	-	-	-	-
97.0	32.0	-	-	-	-	-	-	10.9	-	_	-	-	-
97.0	40.0	-	-	-	-	-	-	3.0	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	2.6	-	-	-	-	-
107.0	40.0	-	-	-	-	-	-	13.0	-	-	-	-	0.0
110.0	40.0	-	-	-	-	-	-	8.9	-	-	-	-	0.0
113.0	35.0	-	-	-	-	-	-	18.9	-	-	-	-	0.0
117.0	35.0	-	-	-	-	-	-	10.0	-	-	-	-	0.0
119.0	33.0	-	-	-	-	-	-	13.9	-	-	-	-	0.0
120.0	35.0	-	-	-	-	-	-	35.6	-	-	-	-	0.0
120.0	40.0	-	-	-	-	-	-	11.2	-	-	-	-	0.0
137.0	30.0	-	-	-	-	-	-	,	-	-	-	-	25.2
137.0	35.0	-	-	-	-	-	-	-	-	_	_	-	2.9

TABLE 4. (cont)

STATION	JAN .	FEB .	MAR	APR .	MAY	JUNE	ЈULY	AUG .	SEP.	OCT.	NOV.	DEC.
93.0140 .0	-	-	-	-	-	5.6	-	-	-	-	-	-
$119.0 \quad 33.0$	-	-	-	-	-	-	2.3	-	-	-	-	0.0
$120.0 \quad 35.0$	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.060 .0	-	-	-	-	-	-	0.0	-	-	-	-	3.0
120.065 .0	-	-	-	-	-	-	0.0	-	-	-	-	8.4
$123.0 \quad 37.0$	-	-	-	-	-	-	0.0	-	-	-	-	1.6
123.045 .0	-	-	-	-	-	-	0.0	-	-	-	-	28.2
127.034 .0	-	-	-	-	-	-	0.0	-	-	-	-	8.5
127.055 .0	-	-	-	-	-	-	0.0	-	-	-	-	5.7
127.060 .0	-	-	-	-	-	-	0.0	-	-	-	-	3.1
Sphyraena argentea												
STATION	JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT .	NOV.	DEC.
93.028 .0	-	-	-	-	-	-	5.5	-	-	-	-	-
97.0 32.0	-	-	-	-	-	-	5.4	-	-	-	-	0
107.032 .0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
$117.0 \quad 30.0$	-	-	-	-	-	-	2.7	-	-	-	-	0.0
$120.0 \quad 35.0$	-	-	-	-	-	-	11.0	-	-	-	-	0.0
120.040 .0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
127.034 .0	-	-	-	-	-	-	23.2	-	-	-	-	0.0
Icichthys lockingtoni												
STATION	JAN.	FE'B.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.

[^7]| Peprilus simillimus | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STATI | | JAN． | FEB． | MAR ． | APR． | MAY | JUNE | JULY | AUG ． | SEP． | OCT． | NOV． | DEC． |
| 93.0 | 28.0 | － | － | － | － | － | － | 8.3 | － | － | － | － | － |
| 93.0 | 55.0 | － | － | － | － | － | － | 6.2 | － | | － | | － |
| 97.0 | 29.0 | － | － | － | － | － | － | 1.0 | － | － | | － | |
| 97.0 | 30.0 | － | － | － | － | － | － | 5.9 | － | － | | － | － |
| 97.0 | 32.0 | － | － | － | － | － | － | 10.9 | － | － | － | | － |
| 97.0 | 40.0 | － | － | － | － | － | － | 3.0 | － | － | － | － | － |
| 100.0 | 29.0 | － | － | － | － | － | － | 13.2 | － | － | － | － | － |
| 100.0 | 30.0 | － | － | － | － | － | － | 5.8 | － | － | － | － | － |
| 110.0 | 50.0 | － | － | － | － | － | － | 27.5 | － | － | － | － | 0.0 |
| 113.0 | 35.0 | － | － | － | － | － | － | 2.7 | － | － | － | － | 0.0 |
| 117.0 | 26.0 | － | － | － | － | － | － | 0．0 | － | － | － | － | 1.3 |
| 117.0 | 30.0 | － | － | － | － | － | － | 84.8 | － | － | － | － | 0.0 |
| 117.0 | 35.0 | － | － | － | － | － | － | 52．3 | － | － | － | － | 0.0 |
| 117.0 | 55.0 | － | － | － | － | － | － | 0.0 | － | － | － | － | 6.2 |
| 119.0 | 33.0 | － | － | － | － | － | － | 9.2 | － | － | － | － | 0.0 |
| 120.0 | 30.0 | － | － | － | － | － | － | 8.0 | － | － | － | － | 0.0 |
| 120.0 | 35.0 | － | － | － | － | － | － | 65.8 | － | － | － | － | 0.0 |
| 120.0 | 45.0 | － | － | － | － | － | － | 2.8 | － | － | － | － | 4.8 |
| 120.0 | 50.0 | － | － | － | － | － | － | 4.8 | － | － | － | － | 0.0 |
| 127.0 | 34.0 | － | － | － | － | － | － | 6.6 | － | － | － | － | 0.0 |
| 127.0 | 60.0 | － | － | － | － | － | － | 3.5 | － | － | － | － | 0.0 |

\footnotetext{

TABLE 4. (cont.)

STATI		JAI	FFB	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV	DEC .
120.0	55.0	-	\sim	-	-	-	-	2.6	-	-	-	-	116.0
120.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	41.9
120.0	65.0	-	-	-	-	-	-	0.0	-	-	-	-	86.
123.0	36.0	-	-	-	-	-	-	33.3	-	-	-	-	124.3
123.0	37.0	-	-	-	-	-	-	30.9	-	-	-	-	216.2
123.0	42.0	-	-	-	-	-	-	61.3	-	-	-	-	0.0
123.0	45.0	-	-	-	-	-	-	12.4	-	-	-	-	8.5
123.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	13.5
123.0	55.0	-	-	-	-	-	-	8.1	-	-	-	-	25.8
123.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	130.5
127.0	33.0	-	-	-	-	-	-	40.9	-	-	-	-	20.6
127.0	34.0	-	-	-	-	-	-	136.1	-	-	-	-	0.0
127.0	40.0	-	-	-	-	-	-	5.3	-	-	-	-	8.3
127.0	45.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0
127.0	50.0	-	-	-	-	-	-	5.1	-	-	-	-	15.7
127.0	55.0	-	-	-	-	-	-	4.9	-	-	-	-	54.5
127.0	60.0	-	-	-	-	-	-	7.0	-	-	-	-	3.1
130.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	9.
130.0	50.0	-	-	-	-	-	-	-	-	-	-	-	6
133.0	23.0	-	-	-	-	-	-	-	-	-	-	-	42.
133.0	30.0	-	-	-	-	-	-	-	-	-	-	-	2.9
137.0	22.0	-	-	-	-	-	-	-	-	-	-	-	7.1
137.0	23.0	-	-	-	-	-	-	-	-	-	-	-	31.7
137.0	30.0	-	-	-	-	-	-	-	-	-	-	-	45.4
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	14.7

TABLE 4. (cont.)

STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV.	DEC.
118.0	39.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	60.0	-	-	-	-	-	-	0.0	-	-	-	-	3.0
Hippoglossina stomata													
STATION		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP .	OCT	NOV.	DEC.
80.0	60.0	-	-	-	-	-	3.1	-	-	-	-	-	-
110.0	50.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
113.0	45.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
119.0	33.0	-	-	-	-	-	-	11.6	-	-	-	-	0.0
120.0	25.0	-	-	-	-	-	-	2.3	-	-	-	-	0.0
120.0	35.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
120.0	45.0	-	-	-	-	-	-	5.5	-	-	-	-	0.0
123.0	36.0	-	-	-	-	-	-	7.4	-	-	-	-	0.0
123.0	37.0	-	-	-	-	-	-	7.7	-	-	-	-	1.6
127.0	34.0	-	-	-	-	-	-	3.3	-	-	-	-	0.0
133.0	23.0	-	-	-	-	-	-	-	-	-	-	-	1.7

Paralichthys californicus

STATIO		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	ОСт.	NOV.	DEC.
83.0	43.0	-	-	-	-	-	5.4	-	-	-	-	-	-
93.0	28.0	-	-	-	-	-		2.8	-			-	-
97.0	29.0	-	-	-	-	-	-	1.0	-	-	-	-	-
97.0	32.0	-	-	-	-		-	5.4	-			-	-
100.0	29.0	-	-	-	-	-	-	2.6	-	-	-	-	
107.0	31.0	-	-	-	-	-	-	1.8	-	-	-	-	. 1
117.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.4
120.0	24.0	-	-	-	-	-	-	6.2	-	-	-	-	1.4
120.0	40.0	-	-	-	-	-	-	13.9	-	-	-	-	0.0
123.0	42.0	-	-	-	-	-	-	2.3	-	-	-	-	0.0
137.0	22.0	-	-	-	-	-	-	-	-	-	-	-	1.0
Xystreurys liolepis													
Station		JAN.	FEB.	MAR .	APR.	MAY	JuNE	JULY	AUG.	SEP.	ост.	NOV.	DEC.
119.0	33.0	-	-	-	-	-	-	16.2	-	-	-	-	0.0
120.0	35.0	-	-	-	-	-	-	11.0	-	-	-	-	0.0
123.0	36.0	-	-	-	-	-	-	9.3	-	-	-	-	0.0
123.0	37.0	-	-	-	-	-	-	3.9	-	-	-	-	0.0

TABLE 4. (cont.)

Lepidopsetta bilineata													
STATION		JAN.	$F^{\prime} \mathrm{E}^{\mathbf{C}}$ B.	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	OCT .	NOV .	DEC.
$\begin{aligned} & 82.0 \\ & 87.0 \end{aligned}$	$\begin{aligned} & 47.0 \\ & 50.0 \end{aligned}$	-	-	-	-	-	3.1 2.2	-	-	-	-	-	-
Lyopsetta exilis													
STATION		JAN.	FEB.	MAR.	APR.	MAY	JUNE	JUL.Y	AUG .	SEP.	OCT.	NOV.	DEC.
80.0	51.0	-	-	-	-	-	6.2	-	-	-	-	-	-
80.0	55.0	-	-	-	-	-	2.6	-	-	\sim	-	-	-
82.0	47.0	-	-	-	-	-	6.2	-	-	-	-	-	- 0
117.0	26.0	-	-	-	-	-	-	2.9	-	-	-	-	0.0
Microstomus pacificus													
STATION		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP	OCT.	NOV .	DEC .
80.0	60.0	-	-	-	-	-	3.1	-	-	-	-	-	-
80.0	80.0	-	-	-	-	-	2.8		-	-	-	-	-
83.0	60.0	-	-	-	-	-	3.8	-	-	-	-	-	-
90.0	60.0	-	-	-	-	-	2.9	-	-	-	-	-	-
90.0	65.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	70.0	-	-	-	-	-	2.8	-	-	-	-	-	-
90.0	80.0	-	-	-	-	-	3.0	-	-	-	-	-	-
93.0	40.0	-	-	-	-	-	-	2.8	-	-	-	-	-
93.0	50.0	-	-	-	-	-	-	3.0	-	-	-	-	-
93.0	80.0	-	-	-	-	-	-	2.9	-	-	-	-	-
100.0	55.0	-	-	-	-	-	-	4.1	-	-	-	-	0.0
107.0	35.0	-	-	-	-	-	-	3.1	-	-	-	-	0.0
110.0	40.0	-	-	-	-	-	-	3.0	-	-	-	-	0.0
Parophrys vetulus													
STATION		JAN .	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV .	DEC.
87.0	33.0	-	-	-	-	-	1.9	-	-	-	-	-	-
90.0	28.0	-	-	-	-	-	2.2	- 5	-	-	-	-	-
93.0	28.0	-	-	-	-	-	-	5.5	-	-	-	-	-
93.0	30.0	-	-	-	-	-	-	6.5	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	2.6	-	-	-	-	
120.0	35.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
Pleuronichthys spp.													
STATION		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	OCT.	NOV .	DEC .
80.0	55.0	-	-	-	-	-	5.1	-	-	-	-	-	-

TABLE 4. (cont.)

Pleuronichthys spp. (cont.)													
STATIO		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	ОСт.	NOV.	DEC.
83.0	43.0	-	-	-	-	-	2.7	-	-	-	-	-	-
83.0	51.0	-	-	-	-	-	1.3	-	-	-	-	-	-
83.0	55.0	-	-	-	-	-	3.3	-	-	-	-	-	-
87.0	${ }_{40.0}$	-	-	-	-	-	4.3	$\overline{2.8}$	-	-	-	-	-
93.0 100.0	40.0 29.0	-	-	-	-	-	-	2.6	-	-	-	-	-
110.0	32.0	-	-	-	-	-	-	1.3	-	-	-	-	0.0
120.0	24.0	-	-	-	-	-	-	2.1	-	-	-	-	0.0
120.0	45.0	-	-	-	-	-	-	5.5	-	-	-	-	0.0
Pleuronichthys coenosus													
Statio		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG.	SEP.	оСт .	NOV.	DEC.
83.0	43.0	-	-	-	-	-	2.7	-	-	-	-	-	-
Pleuronichthys ritteri													
Statio		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	оСт.	NOV.	DEC.
120.0	24.0	-	-	-	-	-	-	0.0	-	-	-	-	1.4
120.0	40.0	-	-	-		-	-	5.6	-				0.0
Pleuronichthys verticalis													
STATION		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	ОСт.	Nov.	DEC.
80.0	60.0	-	-	-	-	-	3.1	-	-	-	-	-	-
82.0	47.0	-	-	-	-	-	3.1	-	-	-	-	-	-
83.0 87.0	40.0 33.0	-	-	-	-	-	2.3 1.9	-	-	-	-	-	-
93.0	30.0	-	-	-	-	-	-	3.2	-	-	-	-	-
97.0	29.0	-	-	-	-	-	-	6.7	-	-	-	-	-
97.0	30.0 32.0	-	-	-	-	-	-	11.9 5.4	-	-	-	-	-
103.0	30.0	-	-	-	-	-	-	2.7	-	-	-	-	
110.0	35.0	-	-	-	-	-	-	2.8				-	0.0
110.0	50.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0 0.0
113.0 117.0	30.0 26.0	-	-	-	-	-	-	6.9 11.6	-	-	-	-	0.0
117.0	30.0	-	-	-	-	-	-	10.6	-	-	-	-	0.0
117.0	35.0	-	-	-	-	-	-	39.8	-	-	-	-	0.0
119.0	33.0	-	-	-	-	-	-	18.5					0.0
120.0	25.0	-	-					6.8 21.3	-	-	-	-	0.0 0.0
120.0 120.0	30.0 35.0	-	-	-	-	-	-	21.3 27.4	-	-	-	-	0.0 0.0

TABLE 4. (cont.)

©

00

$3-1$ 00

STATI		JAN.	FEB.	MAR .	APR.	MAY	JUNE	JULY	AUG .	SEP.	OC'	NOV.	DEC.
120.0	40.0	-	-	-	-	-	-	2.8	-	-	-	-	0.0
120.0	45.0	-	--	-	-	-	-	2.8	-	-	-	-	0.0
120.0	70.0	-	-	-	-	-	-	5.2	-	-	-	-	0.0
120.0	80.0	-	-	-	-	-	-	0.0	-	-	-	-	2.9
123.0	36.0	-	-	-	-	-	-	5.6	-	-	-	-	0.0
127.0	33.0	-	-	-	-	-	-	0.0	-	-	-	-	1.5
127.0	34.0	-	-	-	-	-	-	13.3	-	-	-	-	2.1
130.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	3.2
133.0	23.0	-	-	-	-	-	-	-	-	-	-	-	5.1
137.0	22.0	-	-	-	-	-	-	-	-	-	-	-	3.0
137.0	23.0	-	-	-	-	-	-	-	-	-	-	-	1.5
137.0	30.0	-	-	-	-	-	-	-	-	-	-	-	2.5

Unidentified fish larva

STATI		JAN.	FEB	MAR .	APR.	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV .	DEC .
80.0	52.0	-	-	-	-	-	2.2	-	-	-	-	-	-
82.0	47.0	-	-	-	-	-	3.1	-	-	-	-	-	-
83.0	43.0	-	-	-	-	-	2.7	-	-	-	-	-	-
87.0	35.0	-	-	-	-	-	8.1	-	-	-	-	-	-
87.0	50.0	-	-	-	-	-	2.2	-	-	-	-	-	-
87.0	80.0	-	-	-	-	-	2.0	-	-	-	-	-	-
90.0	28.0	-	-	-	-	-	2.2	-	-	-	-	-	-
90.0	37.0	-	-	-	-	-	8.2	-	-	-	-	-	-
90.0	130.0	-	-	-	-	-	18.5	-	-	-	-	-	-
93.0	28.0	-	-	-	-	-	-	2.8	-	-	-	-	-
93.0	80.0	-	-	-	-	-	-	2.9	-	-	-	-	-
93.0	120.0	-	-	-	-	-	2.5	-	-	-	-	-	-
97.0	29.0	-	-	-	-	-	-	4.8	-	-	-	-	-
97.0	32.0	-	-	-	-	$-$	-	2.7	-	-	-	-	-
97.0	40.0	-	-	-	-	-	-	114.8	-	-	-	-	-
100.0	29.0	-	-	-	-	-	-	7.9	-	-	-	-	-
100.0	30.0	-	-	-	-	-	-	5.8	-	-	-	-	-
100.0	65.0	-	-	-	-	-	-	2.6	-	-	-	-	-
103.0	29.0	-	-	-	-	-	-	6.2	-	-	-	-	-
103.0	40.0	-	-	-	-	-	-	5.2	-	-	-	-	-
103.0	50.0	-	-	-	-	-	-	2.8	-	-	-	-	-
103.0	55.0	-	-	-	-	-	-	10.9	-	-	-	-	-
103.0	60.0	-	-	-	-	-	-	2.8	-	-	-	-	-
103.0	80.0	-	-	-	-	-	-	5.5	-	-	-	-	-
107.0	31.0	-	-	-	-	-	-	10.6	-	-	-	-	0.0
107.0	70.0	-	-	-	-	-	-	48.3	-	-	-	-	0.0
110.0	32.0	-	-	-	-	-	-	1.3	-	-	-	-	0.0
110.0	40.0	-	-	-	-	-	-	8.9	-	-	-	-	0.0
110.0	45.0	-	-	-	-	-	-	21.0	-	-	-	-	0.0

TABLE 4. (cont.)

STATI		JAN.	FEB.	MAR .	APR .	MAY	JUNE	JULY	AUG .	SEP.	ОСТ.	NOV.	DEC.
110.0	50.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
110.0	80.0	-	-	-	-	-	-	2.5	-	-	_	-	10.7
113.0	35.0	-	-	-	-	-	-	2.7	-	-	-	-	0.0
117.0	30.0	-	-	-	-	-	-	15.9	-	\cdots	-	-	0.0
117.0	35.0	-	-	-	-	-	-	2.5	-	-	-	-	0.0
117.0	50.0	-	-	-	-	-	-	0.0	-	-	-	-	2.4
119.0	33.0	-	-	-	-	-	-	0.0	-	-	-	-	2.3
120.0	30.0	-	-	-	-	-	-	26.6	-	-	-	-	2.1
120.0	35.0	-	-	-	-	-	-	8.2	-	-	-	-	1.3
120.0	40.0	-	-	-	-	-	-	108.8	-	-	-	-	0.6
120.0	45.0	-	-	-	-	-	-	2.8	-	-	-	-	2.4
120.0	50.0	-	-	-	-	-	-	26.4	-	-	-	-	2.5
120.0	55.0	-	-	-	-	-	-	2.6	-	-	-	-	0.0
123.0	36.0	-	-	-	-	-	-	3.7	-	-	-	-	4.4
123.0	37.0	-	-	-	-	-	-	38.6	-	-	-	-	0.0
123.0	42.0	-	-	-	-	-	-	2.3	-	-	_	-	0.0
127.0	33.0	-	-	-	-	-	-	5.8	-	-	-	_	1.5
127.0	34.0	-	-	-	-	-	-	3.3	-	-	-	-	0.0
130.0	35.0	-	-	-	-	-	-	0.0	-	-	-	-	3.2
137.0	22.0	-	-	-	-	-	-	O	-	-	-	-	3.0
137.0	23.0	-	-	-	-	-	-	-	-	-	-	-	3.0
137.0	30.0	-	-	-	-	-	-	-	-	-	-	_	5.0
137.0	35.0	-	-	-	-	-	-	-	-	-	-	-	11.7

MーI

1967

1964

1963

1962

1961

NAME
Anguilliformes
Etrumeus acuminatus
Opisthonema spp.
Sardinops sagax
Engraulis mordax
Argentina sialis
Microstoma microstoma
Nansenia candida
Nansenia crassa
Bathylagus spp.
Bathylagus milleri
Bathylagus ochotensis
Bathylagus pacificus
Bathylagus wesethi
Leuroglossus stilbius
Dolichopteryx spp.
Macropinna microstoma Macropinna Osmeridae
Stomi formes Stomi if ormes Cyclothone spp.
Diplophos taenia Ichthyococcus sppia Vinciguerria poweriae Woodsia nonsuchae Sternoptychidae
Chauliodus macouni
Idiacanthus antrostomus
Aristostomias scintillans Bathophilus spp. Eustomias spp. Photonectes spp. Tactostoma macropus
Stomias atriventer Evermannellidae Evermannellidae
Paralepididae Lestidiops ringens Notolepis risso paralepis atlantica Stemonosudis macrura Sudis atrox
Scopelosaurus spp.
Scopelarchidae

Myctophidae
Ceratoscopelus townsendi
Diaphus spp.
Lampadena urophaos
Lampanyctus spp.
Lampanyctus regalis
Lampanyctus ritteri
Notolychnus valdiviae
Notoscopelus resplendens
Parvilux ingens
Stenobrachius leucopsarus
Triphoturus mexicanus
Triphoturus nigrescens
Benthosema pterota
Centrobranchus spp.
Diogenichthys spp.
Diogenichthys atlanticus
Diogenichthys laternatus
Electrona rissoi
Gonichthys tenuiculus Gonichthys te
Hygophum spp. Hygophum atratum
Hygophum reinhardtii Loweina rara Protomyctophum crockeri
Protomyctophum thompsoni Symbolophorus californiensis Tarletonbeania crenularis Synodus spp. Bregmaceros spp. Microgadus proximus
Merluccius productus Merluccius productus
Physiculus spp. Physiculus spp.
Macrouridae
Ophidi iformes
Brosmophycis mater
Brosmophycis marginata Carapidae
Chilara ta
Chilara taylori
Ophidion scrippsae
Ophidion scrippsae
Porichthys spp.
Ceratioidei
Gobiesocidae
Exocoetidae
Bemiramphidae
Atherinidae
Trachipteridae
Eutaeniophoridae

 ถi

 ت゙ Scorpaenichthys marmoratus
Cyclopteridae
Hexagrammidae Hexagrammidae
Ophiodon elong Ophiodon elongatus
Oxylebius pictus Zaniolepis spp. Scorpaenidae
Scorpaena spp. Scorpaena spp. Sebastolobus spp. Prionotus spp Acanthuridae Blennioidei
Hypsoblennius spp. Clinidae Icosteus aenigmaticus Labridae Halichoeres spp. Oxyjulis californica
Semicossyphus pulcher Chromis punctipinnis Hypsypops rubicundus Mugil spp. Apogonidae
Howella brodiei Brama spp.

Carangidae Seriola lalandi rrachurus symmetris

Coryphaena hippurus Chaetodipterus zonatus
$\begin{array}{cc}0 \\ 0 \\ 0 & 0 \\ 0 \\ 0-1 \\ 0 & \\ 0 & 1 \\ 4 & 0 \\ 0 & 0 \\ 0\end{array}$ Girella nigricans Caulolatilus princeps Mullidae

INDEX

This index lists taxa included in Table 4 with their page numbers.

Page
Anguilliformes 31
Clupeiformes
Clupeidae
Etrumeus acuminatus 31
Sardinops sagax 31
Engraulidae
Engraulis mordax 32
Salmoniformes
Argentinidae
Argentina sialis 35
Microstoma microstoma 35
Nansenia candida 35
Nansenia crassa 36
Bathylagidae
Bathylagus spp. 36
Bathylagus ochotensis 36
Bathylagus wesethi 37
Leuroglossus stilbius 39
Stomiiformes 40
Gonostomatidae
Cyclothone spp. 40
Diplophos taenia 42
Ichthyococcus spp 42
Vinciguerria lucetia 42
Sternoptychidae 44
StomiatoideaChauliodontidaeChauliodus macouni45
Idiacanthidae
Idiacanthus antrostomus 45
Malacosteidae
Aristostomias scintillans 45
Melanostomiidae
Bathophilus spp. 46
Tactostoma macropus 46
Stomiidae
Stomias atriventer 46
Myctophiformes
Alepisauroidei
Paralepididae
Lestidiops ringens 47
Notolepis risso 47
Chloropthalmoidei
Notosudidae
Scopelosaurus spp. 48
Scopelarchidae 48
MyctophoideiMyctophidae48
Lampanyctinae
Ceratoscopelus townsendi 49
Diaphus spp. 50
Lampadena urophaos 51
Lampanyctus spp. 52
Lampanyctus regalis 53
Lampanyctus ritteri 53
Notolychnus valdiviae 54
Notoscopelus resplendens 55
Stenobrachius leucopsarus 55
Triphoturus mexicanus 56
Myctophinae
Centrobranchus spp. 59
Diogenichthys spp. 59
Diogenichthys atlanticus 59
Diogenichthys laternatus 60
Gonichthys tenuiculus 61
Hygophum atratum 62
Hygophum reinhardtii 62
Loweina rara 63
Myctophum nitidulum 63
Protomyctophum crockeri 63
Symbolophorus californiensis 65
Tarletonbeania crenularis 66
SynodontoideiSynodontidae
Synodus spp. 66
Gadiformes
Merlucciidae
Merluccius productus 67
Moridae
Physiculus spp. 68
Macrouridae 68
Ophidiiformes 68
BythitidaeBrosmophycis marginata68
Ophidiidae
Chilara taylori 68
Batracoidiformes
Batracoididae
Porichthys spp. 69
Beloniformes
Scomberesocidae Cololabis saira 69
‥theriniformes
Atherinidae 69
Lampriformes
Trachipteridae 69
Beryciformes
Melamphaidae
Melamphaes spp. 69
Poromitra spp 71
Scopelogadus bispinosus 71
Syngnathiformes
Macroramphosidae
Macroramphosus gracilis 71
Syngnathidae
Syngnathus spp. 72
Scorpaeniformes cottoidei
Agonidae 72
Cottidae 72
Cyclopteridae 72
Hexagrammidae
Zaniolepis spp. 73
ScorpaenoideiScorpaenidae73
Scorpaena spp. 73
Sebastes spp. 73
Sebastolobus spp. 75
Perciformes
Blennioidei 75
Blenniidae
Hypsoblennius spp. 75
clinidae 76
Gobioidei
Gobiidae 76
Labroidei
Labridae 77
Halichoeres spp. 77
Oxyjulis californica 77
Semicossyphus pulcher 78
Pomacentridae
Chromis punctipinnis 78
Mugiloidei
Mugilidae
Mugil spp. 78
Percoidei
Apogonidae
Howella brodiei 78
Bramidae
Brama spp. 79
Carangidae 79
Seriola lalandi 79
Trachurus symmetricus 79
Coryphaenidae
Coryphaєna hippurus 81
Gerreidae 81
Kyphosidae
Girella nigricans 81
Medialuna californiensis 81
Malacanthidae
Caulolatilus princeps 81
Sciaenidae 82
Serranidae 82
Scombroidei
Scombridae 83
Sarda chiliensis 83
Scomber japonicus 83
Trichiuridae 84
Sphyraenoidei
Sphyraenidae
Sphyraena argentea 84
Stromateoidei
Centrolophidae
Icichthys lockingtoni 84
Stromateidae
Peprilus simillimus 85
Tetragonuridae
Tetragonurus cuvieri 85
Trachinoidei
Chiasmodontidae 86
Pleuronectiformes 86
Pleuronectoidei
Paralichthyidae
Citharichthys spp. 86
Citharichthys stigmaeus 88
Hippoglossina stomata 89
Paralichthys californicus 89
Xystreurys liolepis 89
Pleuronectidae
Lepidopsetta bilineata 90
Lyopsetta exilis 90
Microstomus pacificus 90
Parophrys vetulus 90
Pleuronichthys spp. 90
Pleuronichthys coenosus 91
Pleuronichthys ritteri 91
Pleuronichthys verticalis 91
Soleoidei
Cynoglossidae
Symphurus spp. 92
Disintegrated fish larva 92
Unidentified fish larva 94

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost $\$ 4.50$. Recent issues of NOAA Technical Memorandums from the NMFS Southwest Fisheries Center are listed below:

NOAA-TM-NMFS-SWFC- 88 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1960. D.A. AMBROSE, R.L. CHARTER, H.G. MOSER, and C.R. SANTOS METHOT (September 1987)

89 Summary of distribution records of the spinner dolphin, Stenella longirostris, and the pantropical spotted dolphin, S. attenuata, from the western Pacific Ocean, Indian Ocean and Red Sea. J.W. GILPATRICK, JR., W.F. PERRIN, S. LEATHERWOOD, and L. SHIROMA
(October 1987)
90 Summary of worldwide locality records of the striped dolphin, Stenella coeruleoalba. C.E. WILSON, W.F. PERRIN, J.W. GILPATRICK, JR., and S. LEATHERWOOD (December 1987)

91 Micropatch sampler data.
R.W. OWEN and C.A. KIMBRELL (December 1987)

92 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1961. E.M. SANDKNOP, R.L. CHARTER, H.G. MOSER, C.A. MEYER, and A.E. HAYS
(January 1988)
93 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1962. B.Y. SUMIDA, R.L. CHARTER, H.G. MOSER, and D.L. SNOW (January 1988)

94 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1963. D.A. AMBROSE, R.L. CHARTER, H.G. MOSER, and B.S. EARHART (January 1988)

95 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1964. E.M. SANDKNOP, R.L. CHARTER, H.G. MOSER, C.A. MEYER, and A.E. HAYS
(January 1988)
96 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1965. E.G. STEVENS, R.L. CHARTER, H.G. MOSER, and L.R. ZINS (January 1988)

97 Ichthyoplankton and station data for California Cooperative Oceanic Fisheries Investigations survey cruises in 1966. B.Y. SUMIDA, R.L. CHARTER, H.G. MOSER, and D.L. SNOW (January 1988)

[^0]: U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration

[^1]: ${ }^{1}$ CalCOFI lines (Figure 4) are arranged perpendicular to the coastline and extend from the Canadian border (line 10) to below Cape San Lucas, Baja California (line 157). Stations were established on the basis of a perpendicular to line 80 (off Pt. Conception) at a point designated as station 60. Stations were plotted seaward and shoreward from station 60 on each line. Cardinal CalCOFI lines (those ending in "0") are 120 miles apart and usually bracket two ordinal lines (ending in "3" or "7"), so that lines are 40 miles apart over most of the pattern. Cardinal stations are 40 miles apart and typically these are separated by a station number ending in "5" so that stations are 20 miles apart out to station 90 on most lines. Stations are placed at closer intervals near the coast and islands to accommodate these features (see Kramer et al., 1972 for further details).

[^2]:
 mmm

[^3]: DEC.

 11111111111111111111111111111111111111 11111111111111111111111111111111111 11111111111111111111111111111111111111
 00000000000000000000000000000000000
 00000000000000000000000000000000000

[^4]: Lampanyctus ritteri

[^5]: $\infty m+\infty r \infty 0$ । NNMーNしo

 11111111

 11111111

 11111111

 00000 nN
 $100000 N N$
 $\begin{array}{llllllll}\text { Ni } \\ \text { N } & 1 & 1 & 1 & 1 & 1\end{array}$

 1111111111

 111111111
 $\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

 JAN. FEB.
 11111111

 00000000 $\dot{\circ} \dot{\circ}$
 STATION
 00000000
 No Nommin

[^6]:

 | 0 |
 | :--- |

 $\dot{\sim} \dot{\sim} \infty \dot{\circ}$

 1111111

 1111111

 1111111

 1111111

 0000000
 0000000
 Synodus spp.
 JULY AUG. SEP

 JUNE
 1111111

 MAY
 1111111

 艺
 1111111

 MAR .
 1111111

 JAN. FEB.
 1111111

 AN.
 11111111

 0000000
 mormarno
 S'ATION

[^7]:

