SCIENTIFIC INSTBUMENTS B Y L. CASELLA

Sura N. Denny. "ane 8\} ~

THE LIBRARY OF

THE UNIVERSITY OF CALIFORNIA

PRESENTED BY
PROF. CHARLES A. KOFOID AND MRS. PRUDENCE W. KOFOID

A IN
エエエUSTエAT®コ
and
DESCRIPTIVE CATALOGUE OF SURVEYING，

PHILOSOPHICAL，MATHEMATICAL， OPTICAL，PHOTOGRAPHIC，

STANDARD METEOROLOGICAL

エINSTRUIMENTS，
 manufactured by

工．CASELIA，

SCIENTIFIC INSTRUMENT MAKER ©a tye $\mathfrak{Z x m i r a l t y , ~}$
board of trade，board of ordnance，the governments and observatories op india， russia，spain，portugal，the united states，and the brazils； THE BRITISH METEOROLOGICAL AND THE ROYAL GEOGRAPHICAL SOCIETIES，THE ROYAL OBSERVATORIES AT KEW，CAPE OF GOOD HOPE，AND OF THE WAR DEPARTMENT； THE UNIVERSITIES OF CAMBRIDGE，OXFORD，AND LONDON；
THE LEADING HOSPITALS AND INFIRMARIES ；AND THE OBSERVATORIES OF ARMAGH，WASHINGION，

147，HOLBORN BARS，LONDON，E．C．，

> Removed From 23, HATTON GARDEN.
D. Lane, Steam Printer, 310, Strand, London, W.C.

Q185

CONTENTS.

page.
Addressv to vii
Standard Meteorological Instruments 1 to 32
Hygrometers, Rain Gauges, and Anemometers 18 to 30
Hypsometers and Ozonometers 30 to 32
Aneroid Barometers, Pedometers and Chronographs 33 to 36
Clinical Thermometers
Books on Meteorology, Etc.36 and 37
Meteorological Instruments37 and 38Barometers, Sympiesometers and Thermometers39 to 55Agricultural and Gardening Barometers, Etc.39 to 5145 to47
Chemical, Manufacturing and Brewing Thermometers, Etc. 51 to 55
Gauging Instruments
Gavang Institutes 55 to 57
Surveying Instruments 58 to 75
Prismatic, Surveying, Mining and Pocket Compasses 66 to 69
Drawing Instruments 76 to 85
Sun Dials and Metric System 85 to 88
Nautical Instruments and Books 88 to 96
Optical Instruments 96 to 132
Spectacles and Eye Glasses 96 to 102
Microscopes, Telescopes, Stereoscopes, Etc. 102 to 132
Photographic Apparatus 132 to 150
Magic Phantasmagoria Lanterns and Dissolving View Apparatus and Slides 151 to 165
Electrical Machines and Apparatus 165 to 172Magnetic and Electro-Magnetic InstrumentsVoltaic or Galvanic Apparatus and Batteries172 to 176
Electro-Metallurgical Instruments 179 to 180176 to 179

Electro-Galvanic and Mageto-Electric Machines and ApparatusThermo-Electrical Instruments and Galvanometers184 to 185
Pneumatic Apparatus 185 to 192
Hydrostatics and Hydraulics 192 to 194
Diving Apparatus and Soda Water Machines 194 to 196
Steam Pressure and Vacuum Gauges and Gauge Glasses. 196 to 201
Gas Gauges and Apparatus
202 to 204
Mechanical and Dynamical Apparatus, Etc. 204 to 206
Models of Crystals, Steam Engines, Boats, Etc. 206 to 211
Mineralogy, Geology and ConchologySpecific Gravity Instruments212 to 218
Surgical and Medical Instruments and Apparatus 218 to 220
Chemical and Assay Balances 220 and 221
Chemical Apparatus, Cabinets and Books 222 to 234
Globes, Orreries, Drawing Materials, Papers, Colours, Etc. 234 to 241
Vulcanized India-rubber Tubing, Etc. 241
Addenda and Index 241 to 260

CRCR

ADDRESS.

The previous editions of this General Catalogue having been out of print for some time, I have now great pleasure in presenting this new and extended impression.

Had my object been the mere enumeration of the names and prices of instruments, etc., the present edition would have been completed long since ; but my desire was to unite with these a brief description of many of them, including not only those of recent design, but also of others for which explanations are often required.

Amongst the new arrangements, I may mention the Deep Sea Thermometer, with which the real temperature of the sea at any depth has at length been determined ; the Pocket Standard Barometer, by means of which the highest mountains or deepest shafts can be measured accurately; the extremely portable Traveller's Transit Theodolite, Pocket Altazimuth, Pocket Spirometer, and various important arrangements of Solar Radiation Apparatus, Anemometers, etc.

To self-registering instruments much of my attention is constantly given, and several of them are now described for which I was honoured with the only Prize Medal awarded to this class of instruments at the Great Exhibition of 1862 , as well as the much extended patronage of the leading Governments and Observatories of the world, as shown on the title page.

For clinical, general medical and physical investigations of temperature, my arrangement of Self-registering Thermometers is now used exclusively, and many instruments of my design for these purposes are now also regarded as indispensable.

To Directors of Meteorological Observatories and other Institutions, the beginning of this Catalogue presents a practical selection of Standard Instruments, and in many, I believe, will be found a degree of excellence that is unequalled ; in proof of this, I may state that the Standard Thermometers for most of the important investigations at the Kew Observatory, as well as those of the equally comprehensive researches of the most eminent Professors of Cambridge, Oxford, London, etc., have been made at my establishment. I may also mention the arrangements which I designed to meet the requirements of various Scientific Expeditions and Geographers of our own and other countries, including Livingstone, Burton, Speke, Grant, Hooker, Baker, ete., whilst the whole series of Portable Meteorological Instruments for Travellers, as now used, were expressly designed by me to meet the desires of the Alpine Club.

To amateurs and others, desirous of taking plain trustworthy meteorological observations, other instruments are described of a simpler kind, at a moderate cost, the indications of which will bear the strictest examination.

The numerous changes and additions to the Microscope, and at reduced cost, have also received my best care, as shown by the illustrations and descriptions; whilst Telescopes and Field Glasses have been so improved and simplified, as to enable me with much pleasure to refer to their respective lists in the Catalogue.

I have also great pleasure in referring to the improvements which I have made in Aneroid Barometers, whether for indicating changes of the weather, or for measuring great heights or low elevations, which they now do with a degree of precision hitherto unlooked for in these instruments, as described on pages 33,34 , and 35.

Though many instruments are enumerated in Optics, Mechanics, Surveying, etc., in which great changes are often being made, my attention is constantly given to such as are really practical and useful, whilst an extended intercourse with the leading authorities and scientific bodies enables me to introduce every novelty of interest as soon as it appears.
vii.

The greatest care is taken to adapt each instrument to the climate and conditions in which it is required to be used; and, as all are plainly and truthfully described, intending purchasers may at once know the real capabilities of any they may desire to select.

A Table of Contents, and general Index, referring to the number of each article, together with ample illustrations, will enable the reader readily to find any instrument or apparatus required.

The utmost attention is given to shipping, packing, etc., so that even trivial loss from this cause is of the rarest occurrence.

With orders from the country or abroad, instructions should be given as to the mode of conveyance, shipment, etc. ; and, in all first transactions, it is requisite to send either a reference or approximate remittance, or order for payment in London.

Merchants, Shippers, Agents, etc., sending orders, will find the most liberal attention given to meet their interests and desires.

> LOUIS P. CASELIA.

147, Holborn Bars, London, E.C.
August, 1871.
Removed from 23, Hatton Garden.
N.B.-I regret to have to caution intending purchasers (particularly at a distance) against false imitations of many of my articles, not only by evasive descriptions, but even to the extent of affixing my name. To prevent this as far as possible, consecutive numbers are affixed to all my specialities and first-class instruments. Purchasers are therefore respectfully solicited to apply for them either direct, or to respectable agents only; see that the name is properly spelt, and give direct intimation of any such attempt which may come under their notice, that every care may be taken to meet such conduct as it deserves.

$3 A 120+2320:$
3. 3 :

STANDARD METEOROLOGICAL INSTRUMENTS,

MANUFACTURED BY

L. CASELLA.

BAROMETERS.

1. Standard Barometer (figs. 1 and 1*, p. 3). The construction of this barometer is that known as Fortin's, in which the mercury in the cistern is adjusted, at each observation, to a fixed ivory point, which is the zero of the scale. The mercury is boiled in the tube, which is 0.45 inch. internal diameter. The cistern is made partly of glass, to admit of the zero of the scale being visible, and the mercury is adjustable to the zero, or ivory point, by means of a thumb-screw acting upon a flexible base. The vernier reads to $1-500$ th part of an inch, or, by estimation, to 001 inch, and is adjusted by a rack and pinion motion. In front of the barometer a thermometer is attached, in contact with the tube, with divisions etched on the stem. For facility of reading, a sheet of white note paper should be placed behind the scale. The barometer is mounted in a brass frame, and suspended from a bracket at the top of a mahogany board, so as to ensure perpendicularity. At the bottom of the board is a socket, with clamping screws for steadying the barometer in a vertical position, when an observation is made. The instrument is so mounted that it can be turned at pleasure to any source of light

$$
£ 10 \quad 0 \quad 0
$$

2. Standard Barometer, precisely as above, but not so highly finished, inside diameter of tube, $0 \cdot 40 \mathrm{inch}$. - £8 100
(If with Millimetre Scale additional, £1 00 extra.)
3. Standard Barometer of extra large size, tube 0.7 inch. internal diameter, with a thermometer immersed in a tube of mercury (at the side) of the same diameter as the barometer tube ; specially suited for public observatories
£22 $0 \quad 0$
Barometers on Fortin's principle are the most reliable. The index error can suffer no change from lapse of time, because it is independent of the loss of mercury from oxidation, etc.; and, should any air find access into the tube, it can be easily known, and readily removed. To know if air has entered the tube, take down the barometer and incline it gently till the mercury reaches the top, when, if air be present, a soft dull tap will be heard; but if there is no air present, then a sharp clear click will be elicited. To remove air from the tube, incline the instrument gently as above, and invert it so as to allow the air to pass slowly into the cistern. If the quantity be very small, the head may be tapped slightly on the ground to facilitate its exit. It is best, however, to prevent the admission of air whenever possible.
Instructions. - When sent into the country or abroad, the barometer is packed apart from the mahogany board, in some soft elastic material, the mercury being screwed up so as to fill the tube and cistern. It should be unpacked carefully, bat not handled until a position has been selected for it. The barometer may be placed in any convenient room, where it is not near a fire or exposed to the sun's rays. It should be in a good light, with the scale about five feet from the ground, so that the zero point in the cistern, and the vernier on the scale may
be easily seen. First, hang the board on the wall, then insert the lower part of the cistern through the bottom bracket, and suspend the instrument as in $f i g .1, \mathrm{p} .3$. When the barometer is thus suspended, unturn the thumb-screw till the mercury falls in the cistern to the level of the ivory point

To Set the Barometer.-First read the attached thermometer, then adjust the mercury, by means of the thumb-screw, so that it barely touches the ivory point in the cistern, which, with its reflection will then appear as a double cone; the height of the column is then taken by adjusting the lower edge of the vernier, so that it shall exactly form a tangent to the convex surface of the mercury in the tabe, just excluding the light by keeping the eye in the same plane with the back and front lower edges of the vernier. Every care should also be used to avoid influencing the temperature whilst making the observation.

How to Read the Vernier (fig. 1**, p. 4).-By means of the annexed diagram, the ase of the vernier in ensuring accurate measurement is readily understood. $c d$ represents part of the fixed scale of the barometer, and $a b$ is the sliding scale, or vernier. The scale $c d$ is divided into inches, tenths and half-tenths of an inch, so that each division of the scale is $\cdot 05-a b$ is made equal to 24 divisions of the scale, and is divided into 25 equal parts. It follows, therefore, that each division of the vernier is smaller than each division of the scale, by the 25 th part of 05 ; which is 002 inch . The lower edge of the vernier, a, is set to the top of the barometrical colomn, and hence we have to find the height of a. First, we read on the scale $29 \cdot 15$; next, we look along the vernier until we find one of its lines which lies evenly with a line of the scale. As shown in the figure, this line is the second above 3. Now, each of the figures engraved on the vernier count as handredths, and each intermediate division as two thousandths (.002) ; hence the vernier shows $\cdot 034$, and this added to the scale reading $29 \cdot 15$, gives the reading songht $29 \cdot 184$.
4. Standard Barometer, to revolve on cast-iron pedestal, as designed for the Committee of the Royal Kew Observatory, and most of the leading Foreign Observatories ; size of tube 08 in . internal diameter (fig. 4, p. 3) $\begin{array}{llll}\text { (24 } & 0 & 0\end{array}$
5. Standard Barometer for observatories, with extra large column of mercury, in neat skeleton iron frame, arranged to revolve in brackets from the wall, or on pedestal, precisely as the Kew standard, for reading off by means of the cathetometer
£18 $10 \quad 0$
6. Cathetometer, large size, precisely as used at the Kew Observatory (fig. 6, p. 4) $\begin{array}{lllll}£ 18 & 0 & 0 & \text { and } & £ 21 \quad 0\end{array}$
7. Standard Barometer, on the Kew principle, in which the graduations of the scale are arranged to compensate for the rise and fall of mercury in the cistern, by which the necessity of reading from a point in the cistern is obviated. The mounting, etc., the same in every respect as No. 1 standard barometer
£8 $10 \quad 0$
8. Standard Barometer, as No. 7, in plainer mounting
$6 \quad 0 \quad 0$
9. The Student's Standard Barometer, on the Kew principle (as No. 7), with similar compensation, etc., but smaller in size, for those who do not at first desire a more expensive standard
£4 150
10. Standard Barometer, on the Kew principle as No. 8, but with handsome bold ivory or metal scale, with plain and broad graduations for easy reading, revolving in brackets on oak or mahogany board

Fig. 6.

Fig. 1**.
12. Glass Case for Standard Barometer, of black polished wood, with plate-glass sides and front, forming a neat and elegant protection against dust, etc., for either of the Standard Barometers
£3 $0 \quad 0$ to $£ 400$
13. Standard Marine Barometer on the Kew principle, as used by the Admiralty and Meteorological Office, and recommended by the Brussels Conference, for making correct meteorological observations at sea. The cistern is made of bronzed polished iron. The frame is brass bronzed, and revolves in gimbals, having a stout spring arm for suspension. The scale reads to 500 ths of an inch, and the tube is contracted to prevent oscillations during the heaviest rolling of the ship (fig. 13, p. 5)

14. Gun Barometer, being a special modification of No. 12, to enable it to withstand the concussion arising from the discharge of the largest modern guns on board ships of war at sea. This is really the ne plus ultra of marine barometers, possessing the utmost attainable accuracy combined with the best security against breakage. It is expressly made for H. M.'s service .
£5 $10 \quad 0$
15. Standard Mountain Barometer, on the same principle as the Standard Barometer No. 1, but much reduced in size of frame, by which it is rendered so portable as to remove nearly every difficulty hitherto found by travellers in carrying a mercurial barometer. With English and millimetre scale and tripod stand, complete, in Casella's improved leather-covered shield case (figs. 15 and $15 *$)

Fig. 18.

Fig. 17.
16. Mountain Barometer, Gay Lussac's syphon tube, with vernier to each limb, reading to - 002 of an inch, the difference between the two readings giving the height of the barometer. In improved leather-covered shield case
$\begin{array}{lll}£ 6 & 6 & 0\end{array}$
(If with tripod stand, similar to that for No. 15, £8.)
17. Self-Registering Aneroid Barometer. In this elegant arrangement a vertical cylinder is caused to revolve by means of clockwork, and the barometric variations accurately marked at every hour on ruled metallic paper by the action of a large and strongly made Aneroid Barometer, the paper being changed once a week. By connecting the lines (as in No. 18) an accurate barometric diagram, showing dates and times of changes is obtained, whilst the clock and aneroid respectively, form excellent instruments for showing exact time as well as constant changes in the weather (fig. 17)
£22 0
18. Self-Registering Mercurial Barometer, or Barograph, for recording the barometric variation on ruled metallic paper. In this arrangement a vertical cylinder of about 4 inches diameter, is made to revolve once every seven days, by means of clock-work. A metallic pencil rising and falling with the mercury marks this paper at every hour, the paper being changed once a week. The date, time, etc., of every change of pressure is thus correctly indicated, and being connected by lines drawn from point to point gives a correct continuous diagram of whatever changes may have occurred. The mercurial column and timepiece are also observable at any moment, the instrument thus forming an ordinary barometer as well as an excellent eight-day clock (fig. 18). The size being about 13 inch. wide $\times 8$ inch. deep $\times 36$ inch. high .
£18 10)
19. King's Barograph, or Self-registering Barometer, as erected in the Liverpool Observatory. In this construction the barometric column may be caused to range from five to ten inches for each inch in the ordinary barometer, and to record continuously the smallest as well as the largest fluctuations which may occur in the pressure of the atmosphere.
£25 00

Fig. 20.

Barograph and Thermograph, Self-registering (Beckley's). These interesting arrangements were designed by Mr. Beckley at the express desire of the Kew Committee of the British Association for the Advancement of Science. They faithfully and permanently record the varying changes in atmospheric pressure, temperature, and moisture, by means of photography. And together with the anemometer No. 82 are now in constant use at their observatory. Where ordinary gas is at hand its light is employed, but, when otherwise, a convenient form of lamp is arranged, in which colza or paraffine oil is used, and although requiring rather more care, is even preferable to gas. The knowledge of photographic manipulation in these arrangements is easily attained, and the time and attention required for this purpose is reduced to a minimum by using prepared paper and changing it every twenty-four hours
20. Barograph. The design of this instrument is to record the varying changes of barometric pressure by means of photography, as shown on fig. 20. £68 $0 \quad 0$

When in use the upper part is enclosed in a mahogany box or cover, which is here removed to show the various parts. Artificial light alone is employed, and is admitted only through the verticle slit in the shield $k . \quad a$ is the cylinder, or drum, on which the photographic paper is placed, and is turned round once in twenty-four hours by means of the clock b. Besides turning the cylinder the clock also liberates the small shutter c, which then turns sharply round once every two hours, thus stopping off the light for four minutes each time, leaving white lines on the photographic curve which represent intervals of two hours each. g is the burner or light; f a condensing lens through which the rays pass over the top of the mercurial column. On the light passing through the slit at k, from the lamp g, it passes through the photographic lens h, and thence on to the cylinder $a ; p$ is the barometer, the mercury of which rises and falls immediately behind the shield $k ; q$ is a screw by which the barometer is lowered.

Fig. 22.
or raised when adjustment is required ; $n n$ are two zinc rods firmly screwed at their lower end s to the verticle slab A, and at their upper end a plate and socket are fixed which carries the e short pendant glass rod j, together with small rollers by which its movements are kept free on the slab A; the lower point presses on the horizontal glass lever d, near the fulcrum l; by this arrangement the expansion and contraction of the zinc rods from varying temperature are so expanded as just to compensate for the thermometric changes in the mercurial column, an undulating line being thus formed which is always the zero line of the curve; r is a glass tab e of the same internal diameter as that of the barometer, and is half filled with mercury in which the bulb of a standard thermometer is immersed.
22. Thermograph. This instrument is designed to show changes of atmospheric temperature and moisture, by means of photography; and when in use is enclosed in a mahogany box, for the exclusion of light in the same way as the barograph; in this case, however, the artificial light to the paper is only admitted through an air-speck in each thermometer, separating the mercury in the same manner as that arranged by L. CASELLA to detach the index in his maximum registering thermometer. An ingenious arrangement supports the thermometer bulbs in the open air, they project about one foot from the wall, upon the edge of which the slab rests. The general arrangement being as in fig. 22
m. Wet bulb thermometer. l. Atmospheric thermometer. g. The screw for adjusting the thermometers to the height required. a a. Artificial lights. $f i$. Condensers to throw the light on the mirrors $k n$. $k n$. The mirrors passing light through the air-speck in each thermometer. oo. The slits through which the light passes from the mirrors kn. ee. The lens throwing an image of the air-speck of each thermometer on to the cylinder c on which the photographic paper is placed. d. The clock which turns the cylinder conce round in forty-eight hours. b. The shatter which cuts off the light from the prepared paper for four minutes, every two hours, and thus leaves a white line in the photographic indication.

Fig. 24.

Fig. 26.

STANDARD THERMOMETERS.

Besides the precision with which thermometers may be graduated, where excellence is wanted, the greater part really depends on the care and skill employed in constructing the tube. In this respect L. Casella has much pleasure in referring to the guarantee afforded by his name, as well as that most critical test, viz., his well-known success in constructing thermometers for mountain measurement, as also his self-registering thermometers for clinical purposes; with which he believes he almost exclusively supplies the profession, and was alone identified with them full five years before they were adopted for general use. At the Exhibition of 1862, L. Casella obtained the only prize medal for registering meteorological instruments.
23. Independent or Natural Standard Thermometer, engine divided on the stem, the internal diameter of the bore being carefully calibrated, and the exact value of all its parts further determined by comparison at the freezing and boiling points of water
£5 50
24. Standard Thermometer, Comparative, carefully tested in all its parts, tube 15 inches long, engine divided on the stem, and figured on raised metal or porcelain scale, 0° to 215° Fahrenheit, or 102° censigrade, in maroon case, with verification from the Royal Kew Observatory (fig. 24)
£2 50

Fig. 28.

Fig. 39.
25. Standard Thermometer, Comparative, as No. 24, with porcelain scale on mahogany, for out-door use, range about 0° to 130°, as made by L. C. for various departments of the Government ($\mathrm{fg} .25, \mathrm{p} .9$) . $\begin{aligned} & \text {) } \\ & 5\end{aligned}$
26. Kew Observatory Thermometer (Meteorological Office and Admiralty pattern), 12 inches long, with divisions etched on the stem, and the figures indelibly burned on the poreelain scale, range about 0° to 120°; with verification from the Kew Observatory, as arranged at the Brussels Conference, for taking reliable observations at sea. This is an excellent instrument, by which others may at any time be compared, within the range stated, and is, moreover, the only kind of thermometer which can be used at sea without deteriorating from the corrosive action of salt-water and damp, in copper case (fig. 26, p. 9)
£0 $15 \quad$ G
N.B.-A set of six thermometers as No. 26, with two copper cases, in a neat box, as supplied by L. Casella to the Board of Trade and Admiralty
£3 30
27. Kew Observatory Thermometers, a set of six, as above, with 1 each maximum and minimum thermometers, for use on board of ship . £4 $10 \quad 0$

CASELLA'S STANDARD MAXIMUM THERMOMETERS.

These registering instruments are made on the principle designed by Professor Phillips, F.R.S., of Oxford, and were first employed for meteorological purposes at the Royal Kew Observatory in 1851, by John Welsh, F.R.S., director of that establishment. Next to its ingenious inventor, L. Casella claims the exclusive merit of the introduction and arrangement of these most perfect maximum thermometers. In the report of the Kew Committee of the British Association for the Advancement of Science in 1856, they are described as "valuable for their extreme simplicily," "capable of greater accuracy than any others," "the most convenient form of all maximum thermometers." In 1862 they were amongst the chief rauses of the decision of the

Fig. 29.

Fig. 30.
jury in awarding the only prize medal for registering meteorological instruments to \mathbf{L}. Casella, and since then their adoption may be called universal. Thus, on this principle only, are those now made that are used by the faculty in the delicate investigations of the temperature of the body. It is exclusively used in registering thermometers for travellers, as well as for mines, deep wells, on ship-board, and indeed in any position in which portability and a true and reliable registration of temperature is required. The great advantage of this arrangement consists in the index, being formed of a small portion of the mercury itself, which is detached from the rest and made of any required length, according to the kind of thermometer to which it is applied ; thus, for stationary instruments, it is kept sufficiently long to be set by merely lowering the bulb, whilst in others it is made short, so as to retain its indication in whatever position the thermometer may have to be used, whether erect or inverted. Thus, as a medical thermometer for clinical investigations, no other arrangement is of any service (see Nos. 127 to 130), whilst for safety of transit also, this principle leaves nothing to be desired.
28. Maximum Thermometer, for ordinary registration; engine divided on the stem and indelibly figured on Casella's improved porcelain scale, which effectually resists frost and all effects of weather (fig. 28, p. 10)
£1 0
29. Solar Radiation Thermometer, maximum, with black bulb; tube divided and figured on the stem, and enclosed in glass shield for protection (fig. 29) £1 0
For other maximum thermometers, see Nos. 30, 46, 47, 48, 128, 176, and 204.
Directions for Using the Maximum Thermometer.-Suspend the instrument by means of the brass loops attached to the back, so as to keep it fairly horizontal, as shown in fig. 28, p. 1C. To set the index, disengage and lower the bulb end to allow the detached portion of mercury to approach the rest, which it will do within about one-quarter of a degree. On an increase of temperature the mercury will rise as in an ordinary thermometer, and continue to do so as long as the heat increases, propelling the detached porticn to whatever extreme the heat may attain. On a decrease of temperature the mercury will contract and recede in the usual manner, leaving the detached portion to indicate the highest temperature, which it does at the end furthest from the bulb.
30. Casella's Insulated Solar Maximum Radiation Thermometer (fig. 30, p. 11), as first arranged by him agreeably to the suggestions of Sir J. Herschel (see 'Admiralty Manual of Ssientific Enquiry'). In this arrangement, the thermometer being in nearly perfect vacuo, the maximum registration of the heat of the sun's rays is obtained, divested of the influence of vapour or passing currents of air. Indeed, this is the only form of therruometer suitable for making comparable observations on solar heat
£1 50

30* Stand for the above, as described by Mr. Stow (fig. 30^{*}, p. 16)
110

From an admirable series of experiments by the Rev. Fenwick W. Stow, of Hawsker, near Whitby, on the principle and action of this instrument, important improvements have been made, by which uniformity of action is secured, and the indications of temperature thus obtained rendered perfectly comparable. (See following interesting description by the Rev. Mr. Stow.)

The insulated solar maximum thermometer, usually called the black bulb in vacuo, is a sensitive maximum thermometer, having the balb and a given portion of the stem covered with lamp-black, the whole being enclosed in a glass tube fig. 30 , p. 11, from which all air and moisture have been removed, so that the heat of the sun's rays are thus obtained, divested of the influence of vapour or passing currents of air. In an extended series of experiments with a number of these thermometers as usually made, Mr. Stow found that when the stem within the large bulb was not properly blackened, the bulb lost much of its heat by induction, and that the indication of different thermometers so varied as not to be fairly comparable with each other. Mr . Stow also recommends that a stand like fig. $30^{*}, \mathrm{p} .16$, be adopted, and that the following rules should be observed :-
1.-Place the instrument four feet above the ground, in an open space, with its bulb directed towards the S.E. It is necessary that the globular part of the external glass should not be placed in contact with, or very near to, any substance, but that the air should circulate round it freely. Thas placed its readings will be affected only by direct sunshine and by the temperature of the air.
2.-One of the most convenient ways of fixing the instrument will be to allow its stem to fit into, and rest upon two little wooder collars fastened across the ends of a narrow slip of board, which is nailed in its centre upon a post steadied by lateral supports.
3.-The maximum temperature of the air in shade should be taken by a thermometer placed on a stand in an open situation. Any stand which thoroughly screens it from the sun and exposes it to a free circulation of air, will do for the purpose.
4.-The difference between the maxima in sun and shade thus taken is a measure of the amount of solar radiation.

The Rev. Mr. Stow will be glad to receive from time to time copies of observations made according to these rales.
32. Melio-pyrometer, as arranged by T. Southall, Esq., at his observatory, near Birmingham, by which the following extraordinary results were obtained :July 11 th, 1859 , maximum temperature of air 87°-in the sun 216°

$"$	12	$"$	$"$	$"$	$"$	$89 \cdot 1-$	$"$
$"$	13	$"$	$"$	$"$,	$80 \cdot 5-$	$"$

Fig. 35.

Fig. 42.

Fig. 36.

It is thus described by Mr. Southall:-

"The helio-pyrometer is an instrument which I have adopted for ascertaining as far as practicable the heating power of the sun's unconcentrated rays. A self-registering maximum thermometer with black bulb, made by Casella, on Professor Phillips's principle, is fixed on a cushion at the bottom of a box, the sides of which are also cushioned, and a thick piece of plate-glass is laid upon the top to prevent currents of air carrying off the heat, also with the view of preventing the cooling effects of terrestrial radiation. The box is placed in such a position that the sun's rays may fall as nearly as possible perpendicularly on the glass, and it may require a change of position two or three times in the day to accomplish this; if, however, the sky be free from clouds from $111 / 2$ to $121 / 2$, the maximum heat will be then obtained, and no change of position will be required. A portion oí the sun's heat, the amount of which may be calculated, is necessarily lost by reflection from the two surfaces of the glass, but, as this amount bears an uniform proportion to the intensity of the sun's rays, its loss is of no practical importance. A black bulb thermometer placed on grass, according to the usual method, is much influenced by the cooling effects of evaporation from the grass and soil, and the effect of the sun's direct rays is sometimes nearly lost by the counteracting power of strong currents of air, and at all times the reading of the thermometer is lowered by a current which is generated by the heat of the thermometer itself, as well as by terrestrial radiation. A small vessel has since been added, in which watcr boils violently in the box, with a piece of tube to carry off the steam."

Price, complete
£2 $5 \quad 0$
33. Solar Intensity Apparatus, invented by Padre Secchi, for measuring the comparative heat of the sun's rays. Two thermometers are here kept immersed in a fluid at any temperature, and a third surrounded by the same conditions, but not immersed, is exposed to the rays of the sun. The increase of temperature thus obtained is found to be the same irrespective of the temperature of the fluid which surrounds it. Cylindrical form, about 3×10 inches. Price, with the requisite three thermometers
£3 18 0
Tripod stand, with universal joint, by which the above may be kept in any position at any temperature
£0 176
34. Actinometer (Sir John Herschel's), for ascertaining the absolute heating effect of the solar rays, time being considered one of the elements of observation. To take an observation, the Actinometer is placed in the shade for one minute and read off; it is then exposed for one minute to the sun's rays, and its indication taken; it is finally restored to the shade, and its reading also taken, the mean of the two readings in the shade subtracted from that in the sun, gives the actual amount of expansion of the liquid produced by the sun's rays in one minute of time. (See Report of the Royal Society on Physics and Meteorology).
£5 $18 \quad 0$
35. Pouillett's Pyrheliometer (fig. 35), for ascertaining the effect of the sun's heat upon a given area by the number of degrees of heat imparted to mercury in five minutes, as described in Dr. Tyndal's 'Heat Considered as a Mode of Motion.'
£4 40

J
Fig. 38.
36. Athrioscope, the invention of Sir John Leslie, for ascertaining the absolute intensity of terrestrial radiation, with which instrument time is an element of an observation (fig. 36, p. 13)

37. Fluctuation Thermoscope, as designed by Dr. B. Stewart, of the Royal Observatory, Kew
 £1 $10 \quad 0$

In this arrangement two stems with unequal bores are united to one bulb, and the instrument used horizontally, the scale extending to one hundred divisions. On setting the mercury to the zero, every increase of temperature raises the mercury in the large stem, whilst every reduction in temperature abstracts it from the small one, illustrating a principle in the action of fluids well worthy of extended investigation.
38. Casella's Mercurial Minimum Thermometer, on porcelain scale, with hardwood back, and divided on the stem (fg .38) . . . £2 10 . 0
This is the only practical mercurial minimum thermometer hitherto invented, and the result of quite ten years universal effort to achieve. Mercury is the only fluid employed in its make. The bulb and column are of the same size as in the standard maximum thermometers; and cold is thus registered under precisely the same conditions as heat; no steel or other index is employed; whilst the annoyance arising from vaporization, and breakage of the column in the spirit minimum, is entirely avoided. The general form is shown in fig. 38 ; d being a tube with large bore, at the upper end of which a flat glass diaphragm is formed by the abrupt junction of the small chamber $a b$, the inlet to which at b is larger than the bore of the indicating tube. The result of this is, that having set the thermometer, the contracting force of the mercury in cooling withdraws the fluid in the indicating stem only; whilst on its expanding with heat, the long column does not move, the increased bulk of mercury finding an easier passage through the larger bore into the small pear-shaped chamber attached. It is here most interesting to notice that the weakest natural force is thus capable of resisting the action of the heaviest fluid, as adhesion or capillary attraction seems to be the only force which holds the mercury, and prevents its recession from this point. Great care and a steady situation are essential in asing this instrument.

Directions for Using the Mercurial Minimum Thermometer.-Place it in a horizontal position, with the back plate e suspended on a nail, and the lower part supported on a hook f. The bulb end may now be raised or lowered, causing the mercury to flow slowly until the bent part d is full, and the chamber $a b$ Quite empry. At this point the flow of mercury in the long stem of the tube is arrested by adhesion to the diaphragm b, and indicates the exact temperature of the air at the time. On an increase of heat the mercury will expand into the small chamber $a b$; and on a return of cold will cause its recession from this chamber only, until it reaches the diaphragm b to which it adheres. Any further diminution of heat withdraws the mercury down the bore to whatever degree the cold may attain, where it remains until further withdrawn by increased cold, or till reset for future observation. When out of use, or after transit, it may be that raising the bulb may not, at first, cause the mercury to flow from the small chamber as above ; in such a case a slight tap or jerk with the hand on the opposite end with the bulb ap , or the application of the extreme tip of the chamber to the flame of a candle, will readily cause it to do so.

Fig. 40.

Fig. 43.
The Value of this Instrument is shown by the following Testimonials:-From Sir Henry James, R.E., F.R.S., Director of the Ordnance Survey and Topographical Depôt of the War Department, Anthor of 'Instructions for Taking Meteorological Observations,' with Tables, Notes, \&c.:-
"I have great pleasure in stating that, after having had one of your Mercurial Minimum Thermometers carefully observed and registered at this office, and one at Southampton, during a period in which we have had a great range of temperature, I have found it to act perfectly, and never once to get out of order. I therefore think you have achieved a great success, and hope you will receive its reward."
B. Stewart, LL.D., F.R.S., Director of the Kew Observatory, in his Description of the instrument before the meeting of the British Association for 1862, said :-
"Before bringing this instrument to the notice of this association I have carefully tested its action at the Observatory, and find its indications in every way satisfactory."

From T. Lawrence, Esq., Medical Staff, Mooltan, Punjaub :-
"Your Mercurial Minimum Thermometer works admirably. It seems to me the only instrument adapted for minimum registration in this climate."
39. Minimum Thermometer, filled with pure alcohol, for ordinary registration, engine divided on the stem, and mounted to correspond with the Standard Maximum, No. 28 (fig. 39, p. 10)
£1 $0 \quad 0$
40. Minimum Thermometer, for terrestrial radiation, divided and figured on the stem, which is enclosed in a glass cylinder for protection (fig. 40) \&1 00
42. Minimum Thermometer, on brass pedestal stand (fig. 42, p. 13)

140
43. Casella's Extra Sensitive Minimum Thermometer for terrestrial radiation.

- The unavoidably high price of Casella's Mercurial Minimum Thermometer, as well as the care required in using it, has induced him to design the one shown in fig. 43, in which the bulb, being extended in the forked form therein shown, exposes a much increased surface to the air, and thus renders it little, if anything, less sensitive than the mercurial thermometer. It is really interesting to note the increased sensitiveness of this over standard instruments of the usual form
$\begin{array}{lll}£ 1 & 5\end{array}$

44. Casella's Extra Sensitive Minimum Thermometer, forked as fig. 43, on porcelain scale, with hardwood back to correspond with standard maximum, No. 28
£1 50

Fig. 30*.

Fig. 48.
45. Warth Thermometer, for ascertaining the temperature below the soil, or the heat developed in hay-stacks, pine and melon pits, etc., with pointed copper tube, from (according to length)
£0 $18 \quad 6$
46. Maximum and Minimum Thermometers ; the pair, in a neat pocket mahogany case for travellers, as arranged for Dr. Livingstone and Captains Burton and Speke. They are divided on the stem, and cannot be injured in travelling, unless by actual breakage
47. Maximum and Minimum Thermometers, of smaller size, as specially designed by L. Casella for the Alpine Club, and for use at sea; very portable, and admirably adapted for travelling invalids (fig. 47)
£ 50
In these improved portable maximum thermometers, the index will not shift its position by disturbance, or in unsteady situations, as on shipboard, etc., whilst the instrument may be used either erect, inverted, or in any other position, and is certainly the most portable, and of more extended application than any other registering thermometer, whether it be in meteorological observations, or in physical or clinical researches.

Directions.-To set the index of Maximum Thermometers Nos. 46 and 47 , bring it to its place with a moderate swing of the arm, keeping the bulb down at the time. This will bring it within about a degree of the rest of the mercury, at which point also it shows the existing temperature, the reading being taken from the end furthest from the bulb. To set the minimum index of Nos. 46 and 47, raise the bulb as No. 39. It may then be either laid down or suspended, as convenient, with the bulb kept a little lower than the opposite end.

Directions for Using the Spirit Minimum Thermometer, No. 39, etc.-Suspend it by the loops, or lay it down with the bulb a good half inch lower than the opposite end; and, to set the thermometer, disengage the bulb end, and raise it up until the index flows to its place in
the spirit, viz., to the extreme edge. Then suspend or lay it down as before; and, as the temperature decreases, the spirit will recede and take the index back with it; but, on an increase of temperature, the spirit will advance, leaving the index to mark whatever extreme of cold may have occurred; this it does at the end furthest from the bulb, whilst the spirit itself indicates the temperature at the time. If in transit the spirit is separated, it is easily united by a swing or two of the arm, holding the bulb downwards, and when thus united, let the thermometer hang with the bulb down for about ten minutes, to allow the fluid to settle from the sides of the tube.

Deep Sea Maximum and Minimum Thermometer on Six's principle. For registering

 past extremes of heat and cold, and showing present temperature.This most ingenious and useful thermometer is named after the inventor, Mr. James Six, of Canterbury, and was described by him in the Philosophical Transactions of 1782. Excepting one or two arrangements of metallic thermometers, including a very ingenious instrument by Henry Jo hnson, Esq., F.R.A.S., this is the only thermometer which registers both extremes, in a vertical position. These metallic instruments, however, together with other forms tried, being found wholly inadequate for their purpose, and this alone being selected by the Government, as well as the Royal Society, for registering deep sea temperature, would seem to warrant its description here. As originally made, the Six's thermometer consisted of a long cylindrical bulb, united to a smaller tube of more than twice its length, bent up and down in the form of a syphon, with the cylinder in the centre, and terminated in a smaller oval-shaped bulb at the top. The lower portion of the syphon being filled with mercury, the long bulb, the other part of the tube, and about a third of the small bulb with rectified alcohol; the remaining part of the small bulb being filled with highly compressed air, which acts as a spring to depress the mercury and cause it to rise in the opposite tube on any contraction (from cold) of the spirit. A steel index enclosed in glass, moves in each limb of the syphon. The two indices are terminated at top and bottom wi th flattened projecting glass ends, to enable them to move with the least possible friction and prevent the mercury from passing them. They are supported in their position by means of a delicate hair spring. On this principle strictly, but in modified form, the deep sea thermometer has lately been made. Instead, however, of the long centre bulb, a short bulb filled with spirit is joined to the upper end of the syphon, about parallel with but rather lower than the opposite bulb (see form of the tube fig. 210, p. 49), thus keeping the instrument more strong and compact with but one bend, and adapting it better for the comparative rough usage to which it is subjected. The extent to which sea pressure at great depths might effect thermometric indications, however, was not yet known, and therefore the authorities at the Hydrographic Office having applied to the Royal Society on the subject, at their desire, towards the end of 1869, L. Casella constructed an hydraulic machine in which to make this interesting test. The result was startling, as, at a pressure equalling 2500 fathoms in depth equal 3 tons per square inch, the error equalled 12 to 13 degrees Fahrenheit in excess, whilst in other kinds of registering thermometers, it reached the extraordinary extent of 70 degrees. To remedy this, Dr. W. A. Miller, Vice-President of the Royal Society, suggested an effective remedy, which he thus describes in the 'Proceedings of the Royal Society,' No. 113, 1869 :-

Self-registering Thermometers adapted to Deep Sea Soundings.-"Several of these thermometers have been prepared for the purpose with unusual care by Mr. Casella, who has determined the conditions of strength in the spring and diameter of tube most favourable to accuracy. He has also himself had an hydraulic press constructed expressly with the view of testing these instruments. By means of this press the experiments hereafter to be described were made.
"The expedien t adopted (as suggested by Dr. Miller) for protecting the thermometers from the effects of pressure, consisted simply in enclosing the bulb of such a Six's thermometer in a second or outer glass tube, which was fused upon the stem of the instrument in the manner shown in the accompanying figure $48, \mathrm{p}$. 16. This outer tube was nearly filled with alcohol, leaving a little space to allow of variation in bulk due to expansion. The spirit was heated to displace part of the air by means of its vapour, and the outer tube and its contents were sealed hermetically.
"In this way, variations in external pressure are prevented from affecting the bulb of the thermompter within, whilst changes of temperature in the surrounding medium are speedily transmitted through the thin stratum of interposed alcohol.

[^0]In sea-water of sp. gr. 1.027, the pressure in descending increases at the rate of 280 lbs . upon the square inch for every 100 fathoms, or exactly one ton for every 800 fathoms.

On completing this arrangement, a few of the instruments were immediately forwarded by Captain Richards from the Hydrographic Office to Dr. Carpenter and Dr. Wyvell Thompson then on board Her Majesty's Ship Porcupine, Captain Calver, at that time on a voyage of deep sea investigation in the North Atlantic, the results of which were shortly afterwards given to the Royal Society by Dr. Carpenter (see "Proceedings of the Royal Society," 1870), and this thermometer, under the name of the Casella-Miller Thermometer was at once exclusively adopted by the Government for all investigations of deep sea temperature, with the guarantee of Mr. Casella to the authorities, that all should be subjected in his apparatus to an hydraulic pressure of not less than two and a half tons to the square inch= 2000 fathoms depth in the sea.

Instructions.-The Six's thermometer is used vertically, and should always be kept apright or with the head well raised-especially in carriage. Before observation the indices should be set by applying the ends of the accompanying magnet close to the glass, and drawing them gently down to the surface of the mercury in each stem. On a rise of temperature, the spirit will expand and depress the mercury in the left-hand stem, while it raises it in the other, carrying up with it the index to whatever degree the heat may attain. A retarn of cold will contract the spirit in the bulb, allowing the elastic force of the compressed air in the opposite bulb to depress the mercury in the right-hand stem, which then rises on the opposite side, raising the index in like manner to register the extreme of cold; the indication in each case is at the end nearest the mercury, whilst the mercury at each end shows the temperature of the time being. The greatest heat is shown at the too of the right-hand stem, and at the bottom of that on the left.
43. The Casella-Miller Deep Sea Self-Registering Thermometer, as above, protected in vulcanite mounting, with black divisions, etc., on glass, very legible, in round copper case $7 \frac{1}{4}$-inch. by $1 \frac{1}{4}$-inch. outside (fig. 48) p. 16 £2 5

For other Six's Thermometers, see Nos. 203, 204, 204*, 210.
49. Babinet's Apparatus, with two thermometers, for taking the exact temperature of the air (fg. 49) p. 21
£1 100
The slow and unequal transmission of heat by air and water is well known; the temperature of a body of the latter being only obtainable by its constant agitation. The above arrangement gives the same means of agitating the ambient air in order to ascertain its true temperature as well as the effect of its friction on the thermometer bulb.

HYGROMETERS.

50. Mason's IIygrometer (wet and dry bulb) with metal scales, mounted on mahogany board for suspension. The thermometers are divided on the stem, and the figures indelibly burnt in on porcelain slips at the side, as supplied by L. Casella to the various Government Departments and the Members of the British Meteorological Society (fig. 50) p. 19

Fig. 50.

53. Mason's IIygrometer', exact as No. 50, but mounted on brass pedestal (fg. 53)
£2 20
55. Mason's Hygrometer, as fig. 50, but of extra size, with expanded graduations, the tubes being fifteen inches long, and divided to 0.2°
£3 $10 \quad 0$
56. Mason's Hygrometer, with 18 -inch. tubes, divided to 5 ths for delicate investigations £5 50
57. Portable Pocket Wet and Dry Bulb Hygrometer. A most convenient form of instrument for travellers, especially designed by L. Casella as a companion instrument to his Alpine, or pocket maximum and minimum registering thermometers, Nos. 46, 47, and pocket aneroid barometer, No. 118, and Livingstone's rain gauge, No. 62
£2 20
The wet and dry bulb hygrometer or psychrometer may be fairly said to supplant the use of all others as an easy and practical means of indicating the humidity of the air. It consists of two thermometers placed parallel, about four inches apart, with their graduations as nearly as possible identical. The bulb of one is covered with thin muslin, from which trail a few threads of lamp cotton; these, being first wetted, are passed into a small attached vessel of water, two or three inches distant, and the bulb thus kept continually moist, causes this thermometer to indicate a lower temperature in proportion to the rate of evaporation, whilst the dry bulb thermometer shows the temperature of the air. From the readings of the dry and wet thermometers, the dew-point is obtained by means of the accompanying table. During frost, however, when the capillary action of the cotton is stopped, the bulb should be wetted
by means of a camel-hair brush, with water as near 32° as possible. In such cases it is not necessary to remove the ice from the bulb, but merely remove the drop which first forms from the water, the temperature will then speedily settle so as to indicate the point of evaporation. A piece of cotton-wick, well washed in clear soft water, is usually supplied with the instrument, and used to cover the bulb instead of the muslin. In placing fresh covering on the bulb, it should be loosened as is shown in the sketch above, and care taken not to restrict capillary action by tying it beneath the bulb.

The porcelain employed in all these instruments is of an improved kind, especially made for L. Casella, and warranted impervious to all changes of the weather.

Table of Factors by which the difference of readings of the dry bulb and wet bulb thermometers is to be multiplied in order to produce the difference between the readings of the dry bulb and dew-point thermometers.

Reading of Dry Bulb Thermometer.	Factor.								
10°	8.78	29°	4.63	47°	2.12	65°	1.82	83°	1. 67
II	8.78	30	4.15	48	2.10	66	1.81	84	1.66
12	8.78	31	3.70	49	2.08	67	1.80	85	1.65
13	8.77	32	3.32	50	2.06	68	1.79	86	1.65
14	8.76	33	3.01	51	2.04 ,	69	1.78	87	I. 64
15	8.75	34	2.77	52	2.02	-70	1.77	88	1.64
16	8.70	35	2.60	53	2.00	71	1.76	89	1.63
17	8.62	36	2.50	54	1.98	72	1.75	90	1.63
18	8.50	37	2.42	55	1.96	73	1.74	91	1.62
19	8.34	38	2.36	56	1.94	74	1.73	92	1.62
20	8.14	39	2.32	57	$\underline{1.92}$	75	1.72	93	1.6I
21	7.88	40	2.29	58	1.90	76	1.71	94	1.60
22	7.60	4 I	2.26	59	1.89	77	1.70	95	1.60
23	7.28	42	- 2.23	60	1.88	78	1.69	96	I. 59
24	6.92	43	2.20	6 I	r. 87	79	1. 69	97	1.59
25	6.53	44	2.18	62	1.86	80	1.68	98	1.58
26	6.08	45	2.16	63	1.85	85	I. 68	99	1.58
27	5.61 5.12	46	2.14	64	1.83	82	1. 67	100	1.57

In order to obtain all the data deducible from the wet and dry bulb thermometers, Glaisher's Hygrometrical Tables should be used.
58. Danicl's Hygrometer ; the thermometers divided on the stems, with ether test, complete in mahogany case (fig. 58) p. 21
£3 $10 \quad 0$
This elegant instrument consists chiefly of a bent glass tube, with two balls-a black one, about one-fourth filled with the highest rectified ether. The stem incloses a sensitive thermometer with the bulb placed rather below the centre of the ball, and a white one covered with thin muslin, the interior of the tube being thoroughly deprived of air and the greatest care observed not to over-boil or impoverish the ether.

Directions for Using Daniel's Hygrometer.-Turn the instrument up so that by applying the warm hand to the covered bulb all the ether goes into the black bulb, then place it upright as shown in the sketch, and pour ether upon the muslin enveloping the white ball, and when sufficient cold is produced by evaporation of the ether from the black ball to condense the moisture of the atmosphere upon its surface, in the form of a ring just below the centre, the internal thermometer will show the exact temperature at which the deposition of dew takes place, which is called the dew-point.
59. Regnault's Condensing Dew-Point IIygrometer (Casella's Improved,) with ether bottle, etc., complete in mahogany case (fig. 59) p. 21 £4 4.0

[^1]

Fig. 59.

Fig. 49.

Fig. 58.

Although Mason's Hygrometer has for some time been in general use, yet Regnault's is still much employed for taking direct observations of the dew-point. It consists chiefly of two sensitive thermometers, one exposed to the action of the atmosphere and the other to the infiuence of a current of air passing through ether. An important part of this instrument is the small polished silver bottle into which, through a stopper, one of the thermometers is inserted. On one side, within the bottle a small silver tube descends nearly to the bottom; the other end passing outwards is connected with a small flexible aspirating tube. Supporting the bottle is a hollow bent neck connecting it with a telescopic stand that is also hollow, by which the air freely escapes at the base.

Directions for Using Regnault's Hygrometer.-Pour just as much ether into the silver cup as will cover the thermometer bulb, and insert the thermometer as shown in the drawing. On causing the air to bubble slowly through the ether, by breathing through the tube, the immersed thermometer will show a decline in the temperature; and when a film of moisture forms on the larger part or shoulder of the silver bottle, the temperature at that instant indicates the dew-point. The observer should stand so as not to allow the breath or heat of the person to affect the instrument.
60. Atmidometer (Dr. Babington's), for measuring the evaporation from water, ice, or snow; exhibited at the meeting of the Royal Society, by Dr. Babington, F.R.S., and explained to the Society in his paper on "The Spontaneous Evaporation from Various Fluids," November 24, 1859.

Fig. 63.

Fig. 68.

Fig. 65.

RAIN GAUGES.

The increasing importance attached to a knowledge of rainfall, as well as evaporation, in various localities, has for some time contributed to the exercise of considerable skill in arranging the most suitable instruments for these purposes. The instruments, however, being simple in themselves, the great question was, as to the most desirable size, as well as height. from the ground on which they should be placed, large areas as a rule obtaining the preference. In an extended series of careful experiments, however, liberally conducted by Colonel Ward, at his own expense, and assisted by that eminent authority on rainfall, Mr. Symons, it was found that the best sizes were between five and eight inches of circular area ; Mr. Glashier, F.R.S., then President of the Meteorological Society, also preferring the latter size, the following are made according to this result. The height again is fixed at ten to fourteen inches above the surface of the ground, the rain caught decreasing in quantity in proportion as gauges are raised above that height.
62. Rain Gauge (Dr. Livingstone's portable), expressly arranged by L. Casella for the Zambesi expedition, with receiving surface of 3 -inch diameter, whereby (See Stratton, " New Edinburgh Philosophical Journal,") the greatest accuracy is obtained, with graduated jar, in maroon case for the pocket
£0 $16 \quad 6$
63. Rain Gatge, as described by Howard in his "Climate of London" (fig. 63), in which evaporation is prevented and the rain collected in a stone bottle by a copper funnel of five inches diameter; turned brass ring, and strong glass measure divided to 100 th of an inch depth of rain

64. Rain Gange, of stout copper, height twelve inches, receiving surface ten inches square, and funnel formed inside to prevent evaporation, with jar graduated to hundredths of an inch, and small receiver to prevent the necessity of lifting the gauge when measuring the rain (fig. 64) . \&2 $10 \quad 0$
65. Rain Gauge (Casella's), pedestal form, 3 feet high, receiving surface 8 inches in diameter, made of stout copper japanned, with strong glass tube graduated to show 3 inches of rain in tenths and hundredths, with extra stop-cock for frosty weather. In this arrangement the rain is measured as it falls, being visible at all times in the glass tube, and is poured off by simply turning the stop-cock, without removing the gauge from its place (fg. 65) p. 22 . £3 100
66. Rain Gauge, cylindrical form, of stout copper, 8 -inch. diameter, with deep brass rim, and inside receiving-can or bottle, by which large or small quantities are measured without disturbing the gauge, and efficient protection secured against evaporation or frost or of overflow during the heaviest rains of the tropics
£3 150
67. Rain Gauge (Casella's Tropical), to measure up to 40 inches of rain, in 100ths of inches, in japanned tin, with brass rim
£1 $10 \quad 0$
68. Rain Gauge (Symon's), 5 -inch. diameter, japanned tin, with receiving-bottle etc. (fg.68) p. 22 £0 156
69. Rain Gauge (Symon's), of copper, for durability . . $\quad 1 \quad 1 \quad 0$

Instructions for Use.-The funnels of this rain gauge and the five preceding ones are made to lift on and off the cylinder, and a can or bottle for receiving the rain from the funnel is placed inside. When rain is to be measured, remove the funnel, take out the can, and pour the rain collected into the glass measure, which is graduated to represent hundredths of an inch, up to 0.50 , or half an inch. Place the glass upon a table or other horizontal surface for support and steadiness, bring the eye on a level with the surface of the water and read off. Should more than half an inch of rain have been collected, successive measurements will be necessary. For instance, having measured half an inch, or 0.50, empty the glass, fill up again from the collecting-can, and add the result of this second measurement, to the half-inch measured previously. For example, should the second reading be 0.07 , the two readings added together will give the total rainfall or 0.57 of an inch.

Fig. 72.
70. Evaporating Dish or Gauge, of copper, with wirework edge for protection from birds, etc. The receiving surface of same diameter as the gauge with which it is used, say five inches, with graduated glass measure
71. Evaporating Gauge, as above, eight inches diameter inside

140
Instructions for Evaporating Gauge. - Nearly fill it with water, measured by the graduated glass measure, and place it out-of-doors freely exposed to the air. After exposure, again measure the water, and the difference between the first and second measurement shows the amount that has evaporated. Should rain have fallen, however, during the interval, the quantity equal to that collected in the adjoining rain gange must first be deducted from the evaporator, the remainder, compared with the measured quantity put in, shows the amount that has evaporated. For districts which are subject to very heavy rainfall, an evaporating gauge, with overflow pipe to meet any exigency, may be had at a slight increase in the price.
72. Self-recording Evaporimeter or Tide Gauge (fig. 72) shows the general design of this new and interesting instrument. It answers equally well for a rain gauge as for either of the above-named purposes, or for the rise and fall of water in a river, canal, lock, or any other body of water, the rate of evaporation, etc., showing the exact time at which any increase or reduction may have occurred
Description- a is a 30 -hour timepiece of best English make; b the carriage carrying the pencil which marks the paper on the cylinder g; c pulley over which the cord runs to communicate with the float-wheel d; e small wheel communicating with d, from which the line is connected with the float resting on the water. The paper is changed every 24 hours. The angles of pulleys, etc., may be altered to adapt it for almost any position.
73. Rain Gauge, improved self-registering, receiving surface 100 inches diameter, 10 inches square. In this arrangement the rain is measured to tenths and hundredths of inches, and a continuous record is kept to the depth of 100 inches of the quantity of rain fallen (fig. 73) p. 23
£4 $10 \quad 0$
The registering parts are all of copper, carefully tinned, and the arrangement so simple that any one can clean the works when needed, or adjust the gauge to the greatest nicety; indeed, this adjustment is so simple that it may be as well for the purchaser to test it on receiving it, or at any time after its removal; thus the small measure, when quite full, holds five cubic inches of water; this quantity passed through the instrument should move the hand of the handredth circle five divisions, or half-way round, and is equivalent to half a tenth of an inch in depth of rain; and the receiving trough being ten inches square at the top or $=100$ superficial inches, five cubic inches equals one-twentieth, or half a tenth of an inch $=0.05$.

Fig. 75.

ANEMOMETERS.

The anemometers and air meters in the following list include only such as are approved of by the highest authorities, and in constant use at the present time. The table for converting velocity into force is introduced on account of the little confidence usually felt in reports of the wind's force; the authoritative course now followed being almost exclusively confided to reports of velocity, from which the comparative force is thus easily obtained.
74. Anemometer (Lind's), in which the pressure or force of the wind is shown by the depression and elevation of a column of water below and above the zero of the scale ($f g .74$) p. 31
£2 20
75. Casella's Air Meter, for Mines, Hospitals, and other public buildings. The object of this little instrument is to give correct means of measuring the velocity of currents of air passing through coal and other mines, and the ventilating spaces of hospitals and other public buildings. It was first constructed for Dr. Parkes, F.R.S., of the Royal Victoria Hospital, Netley, for measuring the state of ventilation in that large military establishment, and declared to be the most perfect instrument of the kind in use. Since then it has been adopted in our Houses of Parliament, the United States Senate, most of our northern mines, and many of the leading prisons and hospitals throughout the country. The graduations for each instrument are obtained by actual experiment by means of machinery made for the purpose, so that the indications of all are as comparable with each other as the weight or measure of ordinary substances. The indications are shown by means of the large dial and hand, and five smaller ones, as shown in the annexed plate. The whole circumference of the large dial is divided into 100 parts, and represents the number of feet up to 100 traversed by the current of air. The five smaller dials are each divided into ten parts only, one revolution of each being equal to ten of the preceding dial, and representing $1000,10,000,100,000,1,000,000$, and $10,000,000$ respectively. By means

Fig. 78.
of the large dial the low velocity of fifty feet per minute may be measured, and by the smaller ones continuous registration is extended up to $10,000,000$ feet, or 1893 miles, being practically beyond what the most extended observations can require, whilst jewelling in the most sensitive parts, ensures the utmost delicacy of action, forming also an admibable pocket anemometer for travelinga, (fg. 75) p. 25 £4 40
76. Air Meter, as above, with large dial to 100 , and only one smaller dial to 1000 .
£3 $10 \quad 0$
77. Anemometer (Robinson's), plain, with four index wheels, registering successively $100,1000,10,000$, and 100,000 revolutions. In this arrangement the cups travel at the rate of one-third the wind's velocity, and each revolution represents 3.14 feet; thus, $3.14 \times 3=9.42$ feet, being the distance travelled by the wind for each revolution. This, multiplied by the number of revolutions indicated on the dial, shows the distance the wind has travelled between one observation and another. The dials are read from right to left, and the amount indicated at the last observation is to be deducted from that shown on the dials at the time of the current observation $\begin{array}{llll}3 & 3 & 0\end{array}$
78. Anemometer (Robinson's Improved), for registering the velocity of the wind in miles and tenths, up to 505 miles, and described by Sir Henry James, R.E., F.R.S., in his 'Instructions for taking Meteorological Observations' (fig. 78)
£4 40

79. Robinson's Ancmometer, as No. 78, with extra dial extending the registration to 5050
 £5 50

Robinson's Anemometer consists essentially of four hemispherical cups, having their diametrical planes exposed to a passing current of air. They are carried by four horizontal arms attached to a vertical shaft, which is caused to rotate by the velocity of the wind. Dr. Robinson found that the cups, and consequently the axis to which they are attached, revolve with one-third of the wind's velocity, which is here measured by a simple arrangement of two wheels, working in endless screws, and, by means of two indices, shows, on inspection of the dial, the velocity of the wind. The outer, or front wheel, which revolves once for every five miles, is furnished with two graduated circles, the interior circle being sub-divided to miles and tenths of miles, whilst the outer circle is divided into 101 parts, each part being equivalent to five miles, so that it measures 505 miles of wind. The stationary index at the top of the dial marks on the inner circle the number of miles (UNDER five) and tenths, that the wind may have traversed, in addition to the miles shown by the traversing index, which revolves with the dial and indicates on the outer circle the transit of every five miles. This anemometer is rendered extremely portable by the arms which carry the cups being made to take off. When in use it may be screwed on a shaft or ordinary piece of iron pipe which accompanies it, and may be fixed in any desirable position, their construction being such as to adapt them to withstand the most violent storms, and the simplicity of their make enables the observer to clean and lubricate them at pleasure, twice a year being sufficient.

To Place the Anemometer, No. 78, and take the first reading.-If after placing the instrument the hands are at 0 , the next observation will show the distance travelled by the wind during the interval; but if the hands stand otherwise, then read them as they are, by noting down the divisions and figures indicated by the traversing hand and stationary index at the top. Thus, say that the former points to 125 , and the latter to 2.6 , making together 127.6 , this will now be the starting-point of the gauge.
I. Example.-Let the traversing hand point to any increased number on the outer circle, say 375 , and the stationary index to 3.6 ; these two numbers added together give the true reading, i.e. (378.6) miles. From this reading 378.6 must now be subtracted the first reading of the instrument, viz., 127.6 , giving 251 miles as the distance traversed by the wind during the interval.
II. Example.-Let the traversing hand now point to 425 , and the stationary index to 4.7, adding these two together we have 429.7, from which take the last reading, viz., 378.6, and the remainder, 51.1 , will be the velocity of the wind for the interval between the two readings.
III. Example.-Lastly, let the traversing hand be at 175, and the stationary index at 2.8; here it is evident that the traversing hand, which at the last reading was at 429.7, must have passed the highest number marked on the dial, viz., 505. Hence, to obtain the true reading in this case, we must add together the three numbers, viz., 505,175 , and 2.8 , together making 682.8; from this, taking the last reading 429.7, we have 253.1 miles as the distance travelled by the wind in the interval.

To save time and dispense with figures, it is usual, when the traversing hand has passed the 505 , to place an asterisk at this point in the register, to denote that 505 must be added to the next reading.

To read the Anemometer, No. 79.-The divisions and figures on the left-hand dial are precisely the same as those in No. 78, and are read off in the same way. Each division on the dial to the right represents 505 miles, the subdivision of which are shown on the lefthand dial.

Example.-Take the reading of both dials as they are found to be at the time, say the left-hand dial showing 275.4 and the one to the right 505 , and a little over a half; these figures added give 780.4 as the true reading, from which must be deducted the former reading, if any, to show the distance traversed by the wind in the interval.
80. Casella's Embossing Self-recording Anemometer, for registering the velocity and direction of the wind and the time of its various changes.

Fig. 80. The general principle of this instrument is that of Dr . Robinson, of Armagh, in which four hemispherical cups revolve with the pressure of the wind, and give action to most of the other parts. The registering parts of the instrument, however, as well as the vane are entirely new, and the result of the joint efforts of myself together with those of Mr. Beckley, the ingenious engineer of the Royal Kew Observatory. The Force-andDie principle of embossing is the means of registration herein adopted. The paper employed is a narrow strip, wrapped round a small attached roller, from which it is drawn, and embossed on one edge by the action of the rollers, as shown in the sketch. The rollers are divided to represent miles; they are figured at every ten, and one revolution shows the wind to have travelled fifty miles. The clock (a) raises the small hammer (b) which falls once in every hour, impressing the other edge of the paper with a small arrow \longrightarrow whose movements are identical with the larger one at the top, and thus shows the exact direction of the wind at the time, as well as its rate of speed during each preceding hour. The paper is of sufficient length to last from four to six weeks without being changed, and the clock may be wound up daily or weekly, as may be desired. The projection (c) contains metal balls, which firmly support the top, and aid in giving freedom of action. The square box (d) is of cast iron, and contains the

Fig. 82.
stronger portion of the wheelwork; it has holes on the flange for screws or nails, by which means it is easily fixed to the roof of a house, or to a pole placed in a garden, or field, or by the seaside. The chains (e e) act on improved rollers, over which they cannot pass without turning them, and are brought into connection with the clockwork and registering parts, placed in a room or box for protection, at any vertical distance from the base (d), say from three to twenty-five feet. In size, the height of the upper part is thirty-nine inches from the base of the box (d), the diameter over the cups is twenty-four inches, and its strength and general construction such as to bear the vicissitudes of the severest storm. Where frequent absence is requisite, or in places of difficult access, the little attention required in using this instrument can hardly be over-estimated. A small dial showing time, and another the direction, is also attached to the self-recording apparatus in the room. The action of each one is tested and guaranteed to give the same rate of speed as that of the standard anemometer constructed by L. Casella for the Kew Committee and other Observatories belonging to the Government (fg. 80) p. 28
£38 $0 \quad 0$
82. Enlarged Anemometer, or Anemograph, for harbours and public observatories, as recently constructed by L. Casella for the Kew Observatory and the other observatories of the Meteorological Office of the Government. In this arrangement the cups revolve in the same manner as in the smaller instrument, but the registration is obtained by means of a revolving cylinder to which paper is attached, and the direction as well as velocity is continuously shown for every minute of time by means of a clock which forms part of the instrument. The exposed portion of this anemometer may be placed at any height, whilst the registering part is kept in a room or other covered place for observation. For the purposes of comparison, the registering papers supplied with these anemometers are similar to those used with the Government instruments, several more of which are now being erected (fig. 82) p. 29
£70 0
83. Enlarged Anemometer, or Anemograph, if made to register in a lower room of the building
$£ 75$ to $80 \quad 0 \quad 0$
84. Anemoscope, or Dr. IIalleur's Portable Wind Yane, for travellers, with compass, bar needle, etc., showing the direct course of the wind to half a point of the compass (fig. 84) p. 31
£2 20
85. Casclla's IIypsometer, for measuring mountain heights by the vapour of boiling water. The improvements effected in this instrument by L. Casella render it the most certain and portable means we have of measuring great elevations. The thermometer, strong, with small bulb, is divided and figured on the stem, and is sheltered from cold when in use by a double telescopic chamber, into which it is placed to any required depth through a loose piece of india rubber, which rests on the top. The proper depth is, with the bulb, not quite so near the water as is shown in the sketch. The chamber being filled with vapour from the boiling water beneath, and the inner chamber and tube thus enveloped, the vapour descends in the outer chamber, and escapes by the outlet. By this means the mercury, both in the bulb and stem, is immersed in pure vapour, whatever kind of water may be employed; less than a wine-glass full of water and half as much spirits serve for several observations. The thermo-

Fig. 74.
meter is kept in a light metallic case, lined with india rubber. The portable leather case ($\mathrm{fg} .85^{*}$) p. 32, contains the whole when packed for travelling. Price, with one thermometer, divided to $0^{\circ} 1$, as arranged and made by L. Casella for the Government (fig. 85) p. 32
£4 150
86. Pocket IIypsometer. The success attending the above has induced L. Casecla to construct a still smaller instrument on the same principle, which is much used by Alpine travellers. It may be carried with ease in the pocket, and by those a little experienced in its use, is often preferred for its simplicity and certainty to the mountain barometer. With one thermometer divided to $0^{\circ} 2$, as supplied to the Royal Geographical Society
£2 $10 \quad 0$
Wherever the measurement of mountain heights is required to be taken by other means than the theodolite, or standard barometer, or where there may be danger of damage or breakage of either, without an easy means of comparing or replacing them, this cheap and simple means of measuring heights will be found as efficient as it is handy, and at all times a reliable test of the aneroid or any other instrument, which from time to time require to be compared and adjusted.
87. Casella's Tables, with instructions for using the hypsometer, second edition £0 1 0

[^2]

88. The Boylean Mariotti Barometer, or Patent Mercurial Pocket Standard Barometer. In

 this elegant and interesting arrangement the mercury is raised from the cistern to the fiducial or zero point by means of a screw, a portion of air being admitted and compressed at each observation. The body and cistern may be separated at pleasure for convenience of carriage in the pocket or knapsack. As a portable barometric test or standard instrument for mining purposes, or measuring any extent of mountain heights, it is believed to have no equal. For fig. and description, see addenda.

Fig. 85*

Fig. 85.
89. Ozonometer (Dr. Schonbein's), consisting of strips of paper prepared with iodide of potassium and starch. The papers are to be suspended so as to be exposed to the free access of air, but sheltered from wet and the direct rays of the sun; when affected by ozone, they become tinged, the intensity of which is measured by a graduated scale of twelve tints, which accompanies the ozonometer. L. Casella is the sole agent for Dr. Schonbein's ozone test papers. In case to last one year. 0 . 6
90. Dr. Moffatt's Ozonometer $0 \quad 8 \quad 6$
91. Sedan's Ozonometer $0 \quad 8 \quad 6$
92. Ozone Cage of fine wire gauze, as recommended by Sir Jas. Clark . $\quad 0 \quad 12 \quad 6$
93. Smaller Size, ditto, for travellers 0126
94. Casella's Forms for Registering 0zonometer Indications \quad. $\quad 0 \quad 1 \quad 6$
95. Casella's Forms for Registering Meteorological Observations, with concise remarks and instructions, in twelve monthly forms for one year £0 4.0
96. Portable Meteorological Register and Note Book (Strachan's), with weather diagrams, tables, and instructions, second edition

Fig. 119.

THE ANEROID BAROMETER.

This ingenious and elegant instrument is now regarded as almost indispensable to all who take interest in the weather, whilst, to travellers in particular, it presents advantages which hitherto they could not obtain. Before the introduction of the aneroid, limited indeed were the means of those, who, moving from place to place, desired in their progress to take reliable notice of meteorological phenomena, whilst the measurement of heights by any convenient or simple and portable arrangement was quite out of the question. Not only are all these difficulties entirely overcome by this instrument, but the older fragile form of barometer used at sea is almost entirely superseded. The action is obtained by the compression by the atmosphere of a thin, flat, circular metallic box, which is deeply corrugated to increase its elasticity, and from the interior of which the air has been carefully removed; the upper and lower surfaces are held in a state of tension or separation from each other by means of strong springs; the atmosphere pressing with varying force on these surfaces, conveys action to smaller springs, and thus show by hands on the dial the variation of heights, as well as changes of the weather.

No. 100 shows the general interior arrangement. In the measurement of small differences of height, as well as great elevations, the improved aneroid is alike interesting and valuable; not only does it show with precision the differences in height between one room and another, or the varying gradients in travelling on a railway, but it is now so improved as to show with much precision elevations up to fifteen to sixteen thousand feet.

The sizes vary from those of a small watch, to those of the largest dials; the form being usually circular, though that is also varied according to the position or place, such as large halls, public buildings, etc., for which it may be required.

97. Ancroid Barometer, with $4 \frac{1}{2}$-inch. dial, in neat leather case $£ 100$ and $£ 150$
98. Aneroid Barometer, with silvered metal dial
1100 and
1150
99. Aneroid Barometer, with thermometer .

250
100. Aneroid Barometer, with $4 \frac{1}{2}$-inch. open dial, showing the interior mechanism, with thermometer (fg. 100, p. 33)
£3 0
If with stand as $f g$. $100^{*}, 15 \mathrm{~s}$. 6 d . extra.
102. Aneroid Barometer, cylindrical form, more finely divided and engraved, with extra compensation for temperature, with or without thermometer, as supplied to Her Majesty's Navy (fg. 102, p. 35)
£4 40
103. Aneroid Barometer, extra sensitive, with greatly extended graduations, divided to 001 -inch. each barometric inch being equal to nearly four inches, with circular thermometer and richly engraved $4 \frac{1}{2}$-inch. dial . £5 100 The extreme sensitiveness of this instrument is very remarkable.
104. Aneroid Barometer, in bronze metallic frame with 8 -inch. dial, for use at sea
105. Aneroid Barometer, as above, with thermometer

2150
106. Aneroid Barometer, with handsome turned wood frame, oak or imitation of ebony, 10 -inch. dial £4 40
107. Aneroid Barometer, with 18 -inch. dial, very bold and handsome, for large halls or public institutions . . . £15 00 to $£ 2500$
108. Aneroid Barometer of superior finish, with richly engraved $4 \frac{1}{2}$-inch. dial, raised circle, and revolving index, with or without thermometer . $\begin{aligned} & \text { £ } \\ & 0\end{aligned}$
109. Pedestals of various designs, for aneroid barometers for the mantel-piece £0 $7 \quad 6$ to $£ 110$
110. Aneroid Barometer, for the pocket, in maroon case, $2 \frac{3}{8}$-inch. by $1 \frac{1}{8}$-inch., finely divided and compensated, very sensitive, for indicating changes in the weather, or measuring heights up to 1000 feet, with revolving index £4 40
112. Aneroid Barometer (plain), for the pocket, in neat leather case $2 \frac{3}{4}$ inches by $\frac{1}{4}$, for indicating changes of the weather or measuring heights up to about 7000 feet
£2 100

Fig. 102.

Fig. 124.
113. Aneroid Barometer, with revolving index to about 8000 feet. $\begin{aligned} & \text { d3 } 0\end{aligned}$
114. Aneroid Barometer, rather smaller in size, and carefully compensated $310 \quad 0$
115. Aneroid Barometer, with scale of heights . . . 4100
116. Aneroid Barometer, with circular thermometer and raised barometric circle, carefully compensated for measuring up to 10,000 to 12,000 feet $£ 410 \quad 0$ 117. Aneroid Barometer, pocket size, in neat case, about $2 \frac{3}{4}$ inches by $1 \frac{1}{4}$, carefully compensated for temperature, with superior compass and thermometer; an excellent traveller's companion
£4 $10 \quad 0$
118. Alpine Aneroid Barometer, very carefully compensated and tested for measuring heights up to 15,000 feet (small pocket size)
£5 100
If in silver
660
119. Ancroid Barometer, with extra small dial, about the size of a small Geneva watch, carefully tested and compensated, with every improvement, graduated from about 23 to 31 inches, or more if desired (fig. 119, p. 33) f5 0 - 0
120. Aneroid Barometer, same size, in silver, with double back to open with spring (fig. 120, p. 34)
N.B.-A scale of altitudes accompanies any of the above instruments gratis, or may be engraved on the dial of either, from No. 108, at an extra charge of 7 s .6 d .

[^3]For other Simpiesometers, see Nos. 142, 143, and 144.
Registering Aneroids, Barometers, etc., see Nos. 17 to 22 inclusive.

THE PEDOMETER.

The pedometer consists of a simple arrangement of weight and pendulum acting on plain toothed wheels, by which the distance walked by the wearer is accurately measured. In size and form it resembles a small watch, the annexed plate being rather over the real size. The figures and divisions represent one to twelve miles, divided into halves and quarters. To the invalid lady or gentleman requiring limited walking exercise, as well as to the hearty active pedestrian, it is equally valuable and trustworthy. It may be worn suspended from the neck, or placed in a front or waistcoat pocket, being kept upright by means of the small hook (a). The pedometer is adjusted with perfect ease to the step of the wearer, however long or short, and altered at pleasure to any step required.
124. Pedometer, in silver case with strong crystal glass (Fig. 124, p. 35) £2 150
125. Pedometer, in German silver case 250

IMPROVED CHRONOGRAPH,

For the correct registration of any number of rapidly passing objects, as at regattas and races, as well as eclipses and occultation of stars, the exact speed of machinery, etc., by merely touching a spring without removing the eye from the objects. In size and form the chronograph precisely resembles a watch; it is made of silver, and consists of an ordinary quick train lever movement, with the addition of a centre seconds-hand, which traverses the dial as in a stop seconds watch. By this means time is taken to the tenth of a second, in either scientific or sporting pursuits, without the confusion and anxiety of taking the eye from the object.
126. Chronograph, as above

CLINICAL THERMOMETERS.

CASELLA'S Clinical Thermometers, as expressly arranged by Dr. Aitkin of the Royal Hospital, Netley, for use at that great military establishment. In Aitkin's arrangement two thermometers are used, the one bent for reading in situ, the other straight for reading by registration where the danger of fever, defective sight, and other causes might render direct observation difficult, or even dangerous. Of the many uses to which Casella's Maximum Thermometers are now applied, perhaps none are equal in importance to their application for clinical purposes, and though many desultory efforts were made at various times, none certainly assumed the distinct form of applying this principle until taken up by Dr. Aitkin. See Aitkin's "Science and Practice of Medicine," 1st, 2nd, and 3rd Editions which show that his description of clinical temperature by registration, considerably precedes all other names associated with it. This thermometer registers the greatest heat of the body in any position. It may be inserted in the mouth, the axilla, or between the thighs, so as to be well covered, and in two and a half to three minutes removed to the light and read off at leisure. Length 9 inches, divided and figured on the stem from 80° to 115° or 120° in 5ths of degrees.
127. The two in neat pocket case, as above

Fig. 134*.

Fig. 128.
 No shorter Non-Registering Clinical Thermometer than this should be used.
If silver case for the 4 or 5 -inch. size extra \&0 50
If ivory case for the 5 or 6 -inch. size „ 030

133. Dr. Aitkin's Clinical Chart of Temperature, Pulse, Respiration, and Excreta, arranged for thirty-one days, with comparative scale of Fahrenheit and centigrade degrees, per dozen.
 £0 18
 134. Guy's Hospital Chart, per dozen . . . 0 . 1

N.B.-The 7 -inch. Clinical Thermometer is also now much ased by veterinary surgeons, for the treatment of animals in cases of fever, etc., during the cattle plague especially, when applied in the rectum, no other first symptom was found so distinctive and positive as the indication thas obtained.

134* The above-named thermometer, especially arranged for the treatment of cattle, with instructions, and shield for protection 10-in. (fig. 134*) fo $14 \quad 0$

BOOKS ON METEOROLOGY, ETC.

1. "A Manual of Scientific Enquiry," by Sir John Herschel and Robert Main. £0 106
2. Arago, F., "Meteorological Essays," translated by Sabine. . . . 0100
3. Beardmore, N., "Manual of Hydrology." 1150
4. Blodget, L., "Climatology of the United States." $100^{\text {* }}$
5. Buchan, A., "Handy Book of Meteorology," 2nd edition. . . . 086
6. Casella, L. P., new edition of "Wells on Dew," with notes and appendix
by R. Strachan, F.M.S.
"On Climate" 4th
$\cdot \quad 076$
7. Clouston, Rev. Dr., "Explanation of Popular Weather Prognostics. . 016
8. Dalton, J., "Meteorological Observations," 2nd edition. . . . 010 0*
9. Daniell, Professor J. F., "Elements of Meteorology," 3rd edition, 2 vols. 0160
10. Dove, Professor, "The Law of Storms," translated by Scott . . 0106
11. Drew, J., "Practical Meteorology," 2nd edition. £0 50
12. Espy, J. P., "The Philosophy of Storms." 012 6*
13. Fitzroy, Admiral R., "Weather Book." 0126
14. Forster, T., "Researches about Atmospheric Phenomena," 3rd edition. 010 6*
15. Galton, Francis, "Art of Travel." 05 0*
16. Galton, F., "Meteorographica or the Art of Mapping the Weather" 0 9 0*
17. Glaisher, J., "Hygrometrical Tables." 026
18. " " "Daily Range." 016
19. Gurot, A., "Meteorological and Physical Tables." 0^{*}
20. Harris, Sir W. Snow, "On Thunder Storms." 076^{*}
21. Herschel, Sir J., "Meteorology." 050^{*}
22. Howard, Luke, "On the Modification of Clouds," new edition. 010 6*
23. Howard, L., "Climate of London," 2nd edition, 3 vols. 015 0*
24. James, Colonel Sir H., "Instructions for taking Meteorological Observa- tions." 076
25. Jenyns, Rev. L., " Observations in Meteorology." 010 6*
26. Kaemtz, Professor, "Meteorology," translated by Walker 012 6*
27. Laughton, J. K., "Winds and Currents." 0140
28. Loomis, Elias, "Treatise on Meteorology." 0120
29. Lifell, Sir Charles, "Elements of Geology." 090
30. Lyell, Sir Charles, "Principles of Geology," 2 vols. 0160
31. Maury, M. F., "Physical Geography of the Sea and its Meteorology." 05 0*
32. Meteorological Office.-Publications, consisting of Parliamentary Reports, Quarterly Weather Report, Charts, and Papers. Prices varying, butlow.
33. Meteorological Society, Proceedings, per vol. 100
34. Morris, A. J. T., "Treatise on Meteorology." 046
35. Muller, Professor, " Physics and Meteorology," in German. 0120
36. Muller, Professor, " Physics and Meteorology," English edition. 0106
37. Odling, Dr., "Chemistry," by Simmons. 076
38. Peterman's, Hydrographical Map of the British Isles, folded in case. 0150
39. Piddington, H., "Horn Book of Law of Storms." 7 6*
40. Reid, Colonel, "Law of Storms." 14 0*
41. Reid, Colonel, "Variable Winds." 010 0*
42. Rowell, G. A., "On the Cause of Rain." 050
43. Scottish Meteorological Society, Quarterly Journal, per year 0100
44. Simmonds, G. H., "Meteorological Tables." 026
45. Sмүтн, C. P., "Teneriffe, or an Astronomer's Experiment," with photographs. 07 6*
46. Somerville, Mrs." Connection of the Physical Sciences," portrait, post 8vo. 05048. Steinmetz. A., "Sunshine and Showers."076
47. Strachan, R., " Weather-casts and Storm Prevision." 020
49* Stewart, Balpour, "Elementary Treatise on Heat." 076
48. Symons, G. J., "British Rainfall," 1865, and subsequent years, per year. 050
49. " " "Monthly Meteorological Magazine," per year. 050
50. " " "Rain, how, when, where, and why it is measured." 20
51. " " "Meteorological Register with Instractions," paper cover, per year 0 20
52. $\#$ " " " \quad half bound, for five years $0 \quad 76$
"Barometer and Thermometer Diagrams." . per year 0 0 10 55. " " "Barometer and Thermometer Diagrams."
003
53. " " "Rainfall Register," single sheet folio
07 6*
54. Tном. A., "Nature and course of Storms."
0140
55. Trndal, John, "Glaciers of the Alps, with three years Observations and Experiments on the General Phenomena." 0106
56. Trndal, "On Heat, considered as a Mode of Motion." 07 6*
57. Webster, W. H. B., "Recurring Atmospheric Periods."
58. Webster, W. H. B., "Recurring Atmospheric Periods."

Note.-As many of the above works are out of print and several are very scarce, L. Casella cannot bind himself to supply at the prices to which an asterisk (*) is affixed, but he will use his best efforts to accommodate purchasers.

Fig. 144.

Fig. 143.

BAROMETERS.

Besides the standard instruments as most of those described in the preceding pages, the following are those most employed by the farmer, mariner, etc., as well as for weather glasses for ornamental and general use, a few forms and arrangements only are given, but they may be had of any design to correspond with the architecture of halls, libraries, and public buildings, perfect efficiency in the cheapest as well as the most costly being the first consideration, few things keeping nature's laws better before us than such efficient means of seeing and estimating the varying condition of the pressure and heat of the atmosphere.

MARINE BAROMETERS AND SYMPIESOMETERS.

The great change effected in the use of these instruments since the time of the Brussels Conference, as well as the introduction of the aneroid and Bourdon's barometers
must greatly curtail the length of this list. Besides, however, the rigid form suggested at the above conference and adopted by our Government, as shown in fig. 13, p. 5, a few other ornamental kinds as fg. 136, p. 59, continue in use, being still liked for their handsome appearances. As weather instruments also, when of proper make, they are undoubtedly excellent, though their general construction does not admit of their indications being comparable with the same decree of precision as in the pattern adopted by our Admiralty authorities.
136. Marine Barometer, bow front, neatly carved (fig. 136, p. 39), with thermometer in front, ivory plates, double rack, verniers reading to 100 th of an inch, revolving in centre ring and brass gimbals, complete, rosewood, mahogany, or oak
£3 150
137. Marine Barometer, bow front, as 136, single rack and gimbals, complete $\begin{array}{llll}3 & 5 & 0\end{array}$
138. Marine Barometer, in solid rosewood frame, round top, thermometer in front, double rack, ivory scales, vernier reading to 100 th of an inch, protected with stout plate-glass, etc.
£3 100
139. Marine Barometer, complete, with single rack-work

330
140. Marine Barometer, of plain simple construction, perfectly reliable, in solid mahogany, with ivory plates and gimbals, complete . . £2 20
142. Marine Station Sympiesometer, in bold oak frame, the scale elongated to about three times the usual length, adapting it as a valuable guide where more expanded graduation and greater sensitiveness are required
£4 $10 \quad 0$
143. Marine Barometer and Sympiesometer combined, by which the indications of each are at-all times comparable, the tubes of both being contracted to prevent oscillation ; rack-work to sympiesometer, and double rack-work to barometer ; very handsome, in rosewood, walnut, etc., with gimbals, complete (fig. 143, p. 39)
£6 $10 \quad 0$
144. Sympiesometer (Casella's moch Improved) especially arranged for use at sea, the tube contracted to prevent oscillation in stormy weather, in solid rosewood case with stout plate-glass front, the scale reading to the 50 th of an inch (fig. 144, p. 39)
£3 3
For Mountain Sympiesometer, see No. 123.
145. The Fisherman's or Storm Barometer, as expressly approved by Admiral Fitzroy, Board of Trade, etc., for Lifeboat Stations
£5 50
This instrument consists of a strong tube with large bore, and very correct and bold thermometer mounted in a solid oak frame, firmly screwed together. The scales are of porcelain, boldly engraved, and impervious to any injury from the weather; the vernier reading is to $1 \cdot 100$ ths of an inch. It is strongly recommended as a sound and excellent instrument, admirably adapted for the sea coast and public institutions.
146. Miner's Barometer.-The numerous accidents occurring in coal mines in particular, and the close connection of these with diminished atmospheric pressure, as shown by a low state of the barometer, has induced L. Casella to arrange an economic and highly portable form of instrument for this purpose ; it is plain, hardy, sensitive, and adapted alike for all climates. No manager of mines should be without it
£1 $10 \quad 0$
147. Mincr's Barometer, more elaborately finished

Fig. 150.

Fig. 153.

Fig. 154.

Fig. 149.
148. The Aneroid Barometer, of plainest form ; when well made is also perfectly adapted for this purpose (see also page 34) . . £1 $10 \quad 0$ to £2 $10 \quad 0$ 149. Plantation Barometer (fig. 149) (see also Nos. 180 and 182) $1 \begin{array}{llllll}10 & 0 \text { to } & 2 & 0 & 0\end{array}$

PORTABLE OR PEDIMENT BAROMETER'.

In these instruments the action of the mercury is direct and free from mechanical influence; and, when the relative proportions of the cistern and tube are properly arranged on the barometer scale, the nearest approach to a standard barometer is attained.
150. Portable Barometer, extra size, very bold, handsomely carved, in rosewood, mahogany or oak, plate-glass in front, with extra large tube 0.45 inch internal diameter, double rack-work, ivory plates, and attached thermometer, suited for large halls or public buildings .
£7 $\quad 7 \quad 0$ £8 $8 \quad 0$ and $£ 10 \quad 10 \quad 0$
152. Portable Rosewood Barometer, handsomely fitted up, inlaid with pearl, plateglass in front, double rack-work, and verniers reading to the 100th of an inch

$$
£ 6 \quad 6 \quad 0 \text { to } £ 8 \quad 8 \quad 0
$$

153. Portable Barometer, extra size, tube 0.4 inch internal diameter, and cistern 2.75 inch ditto, ivory plates, with verniers reading to 100 th of an inch, carved top and sides ; thermometer in front covered with plate-glass, floating gauge, for plain standard adjustment when required (fig. 153, p. 41) . £8 100
154. Portable Barometer, with. large tube and cistern, the graduation of the scale compensating for variation in the level of the mercury in the cistern; handsomely engraved ivory plates, with German silver mountings, and double vernier, each reading to the 100th of an inch; combining every excellence of which this description of barometer will admit (fig. 154, p. 41) £4 $10 \quad 0$
155. Portable Barometer, plain pattern, thermometer in front, ivory plates, rackwork, and vernier reading to the 100th of an inch, portable screw and plate glass, in rosewood or mahogany ($\mathrm{fg} .155, \mathrm{p} .41$)
£2 $10 \quad 0$
156. Portable Barometer, with open face and ivory plates, vernier reading to 100 th of an inch; thermometer at side, and portable screw; in rosewood, oak, mahogany, etc., being a good and hardy instrument, adapted alike for home use or transmission to all parts of the world (fig. 156, p. 41)
£1 50
157. Agricultural or Cottage Barometer, expressly designed by L. CAsella as a cheap, portable, and popular weather glass, accompanied with plain description and instructions (fig. 188, p. 47) .
£0 $12 \quad 6$
For barometers of this construction, see also Nos. 188, 189, and 190.
158. Long Range Barometer (Descartes).-This interesting arrangement consists of a syphon tube filled with mercury, and having the column of ordinary length, the upper part of the tube and short limb being say half an inch in diameter; to the latter a length of tube is united, extending to the top, the interior diameter being, say one-eighth of an inch. This tube and lower limb of the instrument being partly filled with a fluid of very light specific gravity, the rise and fall of the mercury is shown by it, but extended in length in proportion to the difference in capacity of the two tubes. In this way the ordinary barometric inch may be extended to from seven to ten inches, which being moderately subdivided, the barometric action or changes during a storm are often visible. This instrument, however, is not very portable, and should only be carried by hand from place to place
£2 $10 \quad 0$

CIRCULAR OR DIAL BAROMETERS.

This popular and interesting arrangement of household instrument was first designed by that able philosopher Doctor Hook, who took great pains to make it perfect, so much so, that had his plans been carried out with fair progressive improvement, and the instrument been of a slightly more portable character, any other arrangement of weather indicator for general use might almost be considered superfluous; the clear and expanded graduations on the dial, as well as its well-known 'response to the simple tap so frequently given "to see which way the mercury is going," is familiar to all.

Not only did the Doctor attach a thermometer to it, but a hygrometer also, and even a level for the purpose of carrying out his arrangement with greater delicacy;

the ultimate rude combination, however, of these, from commercial competition has brought an unmerited distrust on the design, and hence its recent unpopularity. As regards the hygrometer, however, the simplicity and efficiency of the wet and dry bulb has subsequently caused it to supplant almost every other form. The following brief list, therefore, combines only instruments in which the desire of the Doctor is fully carried out, excepting that the above-named hygrometer (wet and dry bulb) is advised and its use recommended as a separate instrument.
159. Circular or Dial Barometer, in rosewood, walnut, oak, and mahogany, either plain or elegantly carved to any style of furniture or architecture, for halls, libraries. etc. (fig. 159)
£5 50 to £21 0
160. Ten-inch Dial Barometer, handsomely inlaid with buhl work, plate-glass over dial, and attached thermometer (fg. 160, p. 44) $\Varangle 550$ 162. Ten-inch Dial Barometer, Egyptian pattern as (fig. 162), very chaste, in rosewood, walnut, oak, etc., with plate-glass over dial and bold thermometer

163. Twelve-inch Dial Barometer, best rosewood, elegantly inlaid with variegated buhl work, with best eight-day pendulum timepiece and attached thermometer, particularly suited for mansions and club houses
£21 0
164. Ten-inch Dial Barometer, richly carved in rosewood, oak, or mahogany, with bevelled plate-glass in front, very handsome (fg .164) - 17100
165. Wight-inch Dial Barometer, same pattern as No. 160 (fig. 160) $410 \quad 0$
166. Eight-inch Diat Barometer, same pattero as No. 162, or (fig. 166)
£3 30
167. Ten-inch Dial Barometer (Casella's), richly carved in walnut, oak, or rosewood (fig. 167, p. 43), with bevelled plate-glass, and best double ring and thermometer, very chaste and handsome
£5 100
169. Ten-inch Diax Barometer, very neat, in rosewood or mahogany, with hygrometer, thermometer, and level, equal as a sensitive and accurate instrument with any of the above .
£3 100
170. Light-inch Dial Barometer, same pattern as No. 160

Fig. 179.

Fig. 178.

Fig. 175.

Fig. 174.

Fig. 176.
172. Ten-inch Dial Barometer, a very neat, good, and practical instrument, in rosewood or mahogany £2 20
173. Eight-inch Dial Barometer, same pattern as No. 172

When the better sorts of dial barometers are required for transmission abroad, they are supplied with steel stop cocks to render them portable, so that on reaching their destination they merely require to be suspended and the stop cocks turned to put them in action, the extra charge being 7s. 6 d . to 12 s .

HORTICULTURAL AND GARDENING BAROMETERS, THERMOMETERS, ETC.,

Embracing several simple weather instruments and appliances; the prices of some are purposely very low with the view of extending their use even to the cottage; the name being affixed to all, however, the fullest confidence may be placed in their precision. The barometers especially are equally available for use along the coast.
174. Garden Thermometer, good plain, 8-inch, on boxwood scale (fg. 174, p. 45)
$\begin{array}{lll}£ 0 & 1 & 8\end{array}$ or per doz., 17 s . ; half doz., 9 s . ; perfectly adapted for the greenhouse, stable, dairy, etc.
175. Garden Registering Minimum Thermometer, to show present temperature, and register the extreme of cold during absence, for pits, greenhouses, and outdoor use ($f \mathrm{fg}$ 175, p. 45) 0036
176. Garden Registering Maximum Thermometer, to show present temperature and register the extreme of heat during absence, for greenhouses, etc., as above ($\mathrm{fg} .176, \mathrm{p} .45$)
£0 $8 \quad 6$
177. The Gardener's Window Thermometer, in revolving frame, to turn to any angle (fig. 177, p. 47) £0 46
178. The Gardener's Ground Thermometer, with brass end for temperature of the ground when sowing seeds (fig. 178, p. 45) . . . £0 4.6
179. Ilot-bed Thermometer (fg .179, p. 45), especially adapted for pine and melon pits, as well as ground temperature to 18 inches below the surface, with pointed copper tube for protection and plunging into the earth; a small thermometer is also affixed to the door, by which a comparison of internal and external heat is obtained

- $£ 018 \quad 6$ to $£ 150$

180. Greenhouse or Garden Thermometers, enamel tubes, boxwood scales and japanned cases for protection, range from 0° to $120^{\circ}, 8$ inch., 2 s . ; 10 inch.,
£0 30
*** The above greenhouse thermometers may be had with porcelain scales, from 1s. to 1s. 6d. each extra.
181. Dairy Thermometer (insulated) in glass tube (fig. 182, p. 47) especially adapted for testing milk £0 1 . 8
182. Milk Test or Lactometer, for detecting adulteration and showing the relative value of milk from different cows
£0 46
183. Cbeam Test for showing the difference in quantity of cream between one cow and another, with examples
£0 36
184. The Gardeners Wet and Dry Bulb IIygrometer, for showing the exact state of moisture in the greenhouse or open air, with improved porcelain scales (fig. 185, p. 47)
£0 176
185. The Gardener's Rain Gauge, as described in Symon's work on "Rainfall," and from which many of the results quoted in his monthly returns are obtained £0 $12 \quad 6$ and £0 156
186. School or Garden Microscope to be used, either simple or compound, with rack-work six powers, with mirror, condenser, infusioria box, forceps, object and glasses, arranged by L. Casella to meet the constant wants of the florist and gardener in examining seeds, animalculx, etc.
£1 50
187. *The Gardener's or Cottage Babometer (fg. 188, p. 47) . 0126

[^4]

Fig. 188.

Fig. 177.

Fig. 182.

Fig. 185.

189. Plantation or Farm Barometer .

190. Plantation or Farm Barometer, more ornamental (fig. 182)

This instrument has been carefully prepared under the suggestions of Dr. Mann, Vice-President of the Meteorological Society, to meet the special need of a trustworthy indicator of the weather for farmers and planters. It is scrupulously correct, and has the further advantage of being made portable or otherwise by the most inexperienced without possibility of injury.

THERMOMETERS.

The extended application of the use of thermometers to the various branches of the arts and manufactures, as well as the precision and delicacy required in their construction, renders a complete description here of all the varieties impossible. In all branches of chemistry thermometers have long been indispensable, and but few processes of manufacture are now conducted without their use. For most of these purposes the following list will be found to contain the most suitable arrangement, and fresh lists are published by L. Caselia from time to time of every new kind brought into use. Besides the actual make of many of these thermometers, the mode of dividing is of the greatest importance; this is done on all Caselia's thermometers of precision by means of a very beautiful arrangement of dividing engine, devised by the great Ramsden, and now applied with the utmost facility to this purpose, certain
points being marked upon each tube, the stems are coated with black, or immersed in a preparation of hot wax, the tube is then laid upon the engine, the distances of the respective marks calculated and arranged. On setting the engine the divisions are then made on the wax with the dividing needle with mathematical precision, by turning a wheel and shifting and re-arranging the tube from time to time. The tube being then immersed in a preparation of fluoric acid for a few seconds, the divisions are thus etched in, the tube is then washed in water and the wax removed, after which the marks are filled in with a preparation of black. Another great improvement consists in the use of porcelain slips or scales. The divisions on these are first made on a coating of wax or black, as in the case of the tubes, then cleaned off, and painted together with the figures, and permanently burnt in, whilst an improved preparation of porcelain has been arranged by L. CASELLA, by which they are rendered impervious to all the influences of dyes or coloring-matters, or changes arising from frost or moisture when exposed to the weather.

DRAWING-ROOM AND HOUSE THERMOMETERS.

Drawing-room Thermometers, ivory, on ebony or boxwood, double scales, i.e., graduated according to Fahrenheit and Reaumur, or Centigrade, with enamel tubes and German silver mountings; very neat and easily read.
192. 6 inch.
193. 7 inch. . . 076
£0 90
*** Where no particular kind of graduation is ordered, Fahrenheit in the plainer kind, and Fahrenheit and Centigrade in the better kinds of thermometers is usually sent.
196. Drawing-room Thermometers, ivory scales upon papier máché, in various colors, black, blue, or green, of various shades, very neat, double graduations, viz., Fahrenheit and Reaumur, De Lisle or Centigrade (fig. 196, p. 50), seven inch., 9s. 6d. ; eight inch.
£0 $10 \quad 6$
197. Drawing-room Thermometers, polished boxwood, elliptic form, bevelled edges, very neat, with German silver or fancy mountings, graduations as above, eight inch, 4s., ten inch, 6s. 6d., twelve inch ($f \mathrm{fg} .197$, p. 50) $\begin{aligned} & 90 \\ & 9\end{aligned}$
An excellent and cheap thermometer, very suitable for libraries, churches, etc.
198. Drawing-Room Thermometer divided into half-degrees, very sensitive, with mountings, etc., as above, twelve inch .
£ 140
199. Drawing-room Thermometer, eleven inch, on opal, mounted on ebony, with plain clear black figures and divisions, bold and very handsome £0 160
200. Drawina-boom Thermometer, on opal and mahogany, as above

0160
201. Boxwood Thermometer polished, for ordinary use, double scale and enamel tube, 8 inch.
£0 30
202. Boxwood Thermometer, eight inch, plain, good, and reliable, well adapted for bed-booms, pantries, wine cellars, etc.

18s. per dozen Or, if less than $3,1 \mathrm{~s}$. 8 d. each.
203. Six's Self-Registering Thermometers for wine cellars, greenhouses, etc., to show present temperature and register the past extremes of heat and cold du ring any period of absence, in japan case with magnet, 8 in., 12s. 6 d. ; 10 in. £ $^{15} 6$
204. Six's Thermometers, as above, 12 in., 18s. 6d. ; 14 in.

110

Fig. 209.

Fig. 207.

Fig. 205.

Fig. 210.

204* Six's Thermometer, as No. 204, on improved porcelain scale for out-door use, 10 inch., £1 50 ; 12 inch. or 14 inch.
£1 $10 \quad 0$
205. Pedestal Thermometer with ivory scale, on neat ebony base (fig. 205), with glass shade and German silver mountings, suitable for mantle-pieces, libraries, or bed-rooms, six inch, 7 s .6 d . to 9 s . 6d.; seven inch.
£0 $10 \quad 6$
A most convenient form of thermometer, being movable at pleasure to any part of the house.
206. Pedestal Thermometer, ivory on papier mâché, on ebony base with glass shade, graduations, etc., as No. 205, very beautiful . . $£ 0156$
207. Pedestal Thermometer, ivory, handsomely carved, with magnetic sun-dial, arranged to order for any part of the globe (fg .207)
£1 $10 \quad 0$
208. Pedestal Thermometers in various elegant designs, handsomely carved in ivory, with ebony base and glass shade (fg .208), p. 50 £1 10 to £3 30

WINDOW THERMOMETERS.

209. Window Thermometer, ivory scale, enclosed in glass cylinder, mounted to revolve to any angle of sight, in mahogany frame, with copper roof for protection from rain (fig. 209), 8 inch, 15s. 6d.; 10 inch. 1110 210. Window Thermometer (Six's self-registering), showing past heat and cold during absence, as well as present temperature, very clear and distinct, on opal or improved porcelain, with indelible black figures and divisions, on mahogany bracket to revolve to any required angle (fig. 210), 10 inch., $£ 1$ 15s.; 12 inch. or 14 inch.
£2 $0 \quad 0$
As an out-door registering window thermometer this arrangement leaves nothing to be desired. See description of this principle p. 17.

Fig. 190.

Fig. 208.

Fig. 197.
212. Window Thermometer (non-registering), on opal glass or improved porcelain scales, revolving in brackets on mahogany frame, etc., as No. 210, 10 inch.
£1 120
213, Cottage Window Thermometer, with boxwood scale, revolving in mahogany frame, economically arranged for general use, 4 s .6 d. ; or with double graduations (fig. 177), p. 47
£0 50

TRAVELLING OR POCKET THERMOMETERS,

Plain, self-registering, or in neat morocco cases, with ivory scales, range 0° to 130° more or less, as required for climate, graduated according to Fahrenheit, Reaumur, Centigrade, etc., or to any language.
214. 3 inch.
215. 4 inch.
216. 5 inch.
on IVORY SCALES.

The eight-inch on metal scale, 6 s . 6 d . to 8 s . 6 d .
220. Sensitive Pocket Thermometer, on delicate ivory or metal scales, $3 \frac{1}{2}$-inch, in cylindrical ivory or German silver cases, about $\frac{3}{8}$-inch diameter (fig. 220) 8s. 6d. to £0 106
222. The same, in revolving German silver or light brass cases, $\frac{5}{8}$-inch diameter, (fig. 222)
£0 $9 \quad 0$
*** In ordering thermometers from a distance, it is well to state the country or general purposes they are for, when care will be taken to send them in every way suitable.

223, Alpine Maximum and Minimum Thermometer, divided on the stems, on polished boxwood, in pocket case, very portable and convenient (fg. 47), p. 16 £1 50
224. Pobtable Maximum and Minimum Thermometer, on metal scales, larger size, divided on the stems, as arranged by L. Casella for Dr. Livingstone, and Captains Burton, Speke and Grant, in mahogany case , £2 20
225, Maximum Thermometer, as designed by L. Casella for the Alpine Club, divided and figured on the stem , £0 106
226. Minimum Thermometer, ditto, ditto - . . . 086

227, Plain Thermometrr, ditto, ditto - . . . 076
The three in small mahogany case, $£ 110 \mathrm{~s}$.
228. Solar Radiation Maximum Thermometer, black bulb, figured and divided on the stem . £0 116
229. Alpine Hygrometer, wet and dry bulb, in moroceo case, 6 inches long by 2 wide, and 1 inch deep £2 20
230. Rain Gajge, as arranged for Dr. Livingstone, 3 inches in diameter 0176

Other instruments for travellers. See Aneroid, No. 112, etc.; Pocket Hypsometer, No. 86; Pedometer, No. 124; Altazimuth, No. 521; Chronograph, No. 126, Nos. 88 , 592, and pages 66, $67,68,69,70$, etc., etc.

CHEMICAL AND MANUFACTURING THERMOMETERS,

The scales of these thermometers are either etched upon the glass stems, or they are written on paper or milk glass, enclosed in glass tubes, without fittings of metal or wood, so that they can be safely immersed in hot, caustic, or acid liquors ($\mathrm{fg}, 242$), p. 52.

The lowest point on the scales of these thermometers is generally about 40° or 30° Fahrenheit. The highest point to which each ranges, as cited below, is approximate. It may range a few degrees above or under the quotation.

Thermometers with long scales (or wide spaces between the degrees) cost 1 s. to 1s, 6d. extra.

Cardboard boxes for the thermometers are included in the following prices:-

With Fafrenteit's Scale.		212°	350°	500° to 600°
232	Paper Scales, outer tube, $\frac{1}{2}$ to $\frac{5}{8}$ inch	2s. 3d.	3s. 0d.	4s. 0d.
233	Paper Scale, outer tube, $\frac{3}{8}-i n c h . ~$	2s. 9d.	3s. 6d.	4s. 6d.
234	Milk-glass Scale, outer tube $\frac{1}{2}$ to $\frac{5}{8}$-in.	3s. 6d.	4s. 0d.	5s. 6d.
235	Milk-glass Scale, outer tube, $\frac{3}{8}$-inch.	4s. 0d.	5s. 0d.	6s. 0d.
236	Scale on Tube with white back, $\frac{3}{8}$-inch.	4s. 6d.	5s. 6d.	5s. 6d.

[^5]

Fig. 242.

Fig. 252.

Fig. 264.

Wrti Centigrade Scale.			100°	200°

The thermometers Nos. 236^{*} to 239 are all contained in tubes of $1 / 4$ or 38 -inch. diameter; and the bulls are narrow and cylindrical, to permit the passage of the thermometer through corks for insertion into retorts, etc.
240. Thermometers as above, with two scales, Fahrenheit and Centigrade, 1s. 6 d . each . more than if one scale only.
242. Chemical Thermometers of greater precision, all glass (fig. 242), etched on the stem for more delicate experiments scales Fahrenheit or Centigrade 8 inch. in paper case to 212 Fahrenheit, 100 Centigrade .
£0 76
243. Chemical Thermometer, 9 -inch. to 320 cent. . . . $0 \quad 90$
244. Chemical Thermometer, 12 to 15 -inch. to 650 Fahrenheit $=320$ cent. 0116
245. Chemical Thermometer, 25 inches long, filled with pare alcohol, tube very carefully calibrated, divided and figured on stem from 100° below zero to 90° above (or as required) in brass case
246. Chemical Registering Thermometer, improved on Professor Phillip's principle for registering high temperatures in any position
£0 $15 \quad 6$ to $£ 110 \quad 0$

Fig. 262.

Fig. 266.

Fig. 276.

Fig. 278.

FIg. 254.

MANUFACTURING AND VATTING THERMOMETERS.

247. Manufacturing Thermometer, for determining the temperature of oil, tallow, stearine, etc., the scale in copper case about 14 inches long, ranging from 212° to 660°, and furnished with a long projecting copper tube for the preservation of the lower part of the stem, about 4 feet below the scale

$$
£ 210 \quad 0
$$

248. Ditto, as above, if five feet below the scale

> *** Extra lengths at prices increasing in proportion.
249. Vatting Thermometer, for brewers and sugar refiners, with hard wood frame and metallic scale, range 30° to 212° (or as required,) projecting 3 feet below scale

$$
£ 180
$$

250. Vating Thermometer, as above, 4 feet below the scale

1120
252. Vatting or Gyle Tun Thermometers, 10 -inch., with bold figures and divisions, double flanges, the tube bent back, and protected, for inserting the bulb into the sides of vats or mash tuns and projecting into the fluid, the temperature of the fluid being thus always visible outside. Range 30 to 120 or 40 to 212 (fig. 252), p. 52
£1 50
253. Vatting of Gyle Tun Thermometer, of larger size, bolder, and to any required temperature
£1 150
254. Oren Thermometer on cast iron base, to equalize the temperature (fg .254), range 60° to 450° with baking heats marked on the scale
£0 126
255. Oren Thermometer, the same as No. 254, to register extreme heat, on Professor Phillip's principle £0 $17 \quad 6$
256. Pyrometer (Daniell's), for measuring the expansion of metals, being the best means we have for ascertaining high temperatures
£4 40
257. Pyrometer (Gauntlett's), as much used in the metal foundries of the north £4 100
258. Pyrometer, improved for general chemical manufacturing purposes, graduated to $1200^{\circ} \mathrm{Fah}$. , and warranted very efficient, and true up to 900° to 1000°
£4 4

BREWING THERMOMETERS (Fig. 252), p. 53,

With plain and enamel tubes on metal or porcelain scales. In these instruments the utmost care has been taken to prevent error, so that all enumerated below may be used with perfect confidence either for baths or brewing purposes.
259. Brewing Thermometers, plain tubes and metal scales, in japanned cases, range 20° to $212^{\circ} ; 8$ inch., $3 \mathrm{~s} .6 \mathrm{~d} . ; 10$ inch., 4 s .6 d . ; 14 inch., 5 s .
260. Brewing Thermometers, enamel tubes, metal scales and japanned cases, 8 inch., 4s. 6d. ; 10 inch., 5s. 6d. ; 14 inch., 7s. 6 d.
262. Brewing Thermometers, enamel tubes, metal scales and copper cases, 8 inch., 5s. 6d. ; 10 inch., 6s. 6d. ; 14 inch., 11s. 6d.
${ }^{*}{ }^{*}$. Any of the above may be had with porcelain instead of metal scales, at an average of 8d. to 1s. 6d, extra.
263. Brewing Thermometers, of extra strength, with best enamelled tube, showing 30° to 212°, in strong rivetted copper case, as used in large brewing establishments, 10 inch., 11s. 6d. ; 14 inch.
£ 160
264. Blind Scale Thermometer, with ivory pocket scale for reading off, and sliding index to fix at any required temperature, enamelled tube in stout rivetted copper case as above, 10 inch., 16s.; 14 inch. (fig. 264) p. 52 £0 186
265. Brewing Thermometer, open range, i.e., 40° to 110° in copper case in single degrees, 8 inch., 6s. 6d. ; 10 inch., 7s. 6d.; 14 inch.
£ 0126

276. Mash Tun Thermometers, enamelled tubes, single degree showing 100° to 212° same size as above (fig. 276), p. 53

5 s . each extra
277. Steam or IIot Water Thermometer, small size, to 220°, brass tube, plain and bold, 7 -inch. scale, with nut screw, for showing the temperature of water pipes above 2 inches diameter in heating apparatus; carefully packed and water-tight, with screw plug for closing the tube when the thermometer is not in use
£1 $8 \quad 0$
278. Steam or Hot Water Thermometer, of larger size, with porcelain scale, the tube projecting 4 inches, (fg .278), p. 53
£1 120
279. Superheated Steam Thermometer, as made by L. Caselia for the Government
£1 $8 \quad 0$
280. Iron Mercury Cup, occasionally used with the above, or for closing the opening when the thermometer is not in use
£0 $3 \quad 6$
282. Varnish Maker's Thermometer, 3 feet long, with 12 -inch. brass scale, in iron case .
£1 150
283. Int Blast Thermometer, of milk glass for testing hot air at iron works
£0 6
284. Vinegar Maker's Thermometer, to 120° Fahrenheit . . $\quad \begin{array}{llll}0 & 1 & 6\end{array}$ Gas thermometers, see Gas Gauges.
285. Sugar Boiling Thermometers, 3 feet, with 12 -inch. scales to 280°, in japan cases .
£1 100
286. Sugar Boiling Thermometers, in copper cases

1150

GAUGING INSTRUMENTS, FOR MALSTERS, DISTILLERS, TIMBER MERCHANTS, ETC.

287. Complete set of Gauging Instruments, as used by the Board of Customs, with book of directions and boxwood calipers for warm climates .
£3 136
288. Complete Set of Gauging Instruments, also adapted for oil gauging 4 4 4
289. Inull Calipers, for measuring square timber, 12 inches, 25s.; increasing 1s. for every 2 inches up to 36 ; and 2 s . ditto, up to 48 inches
290. Bow Calipers, for round timber, 10 inches 17 s . ; increasing 1 s . per inch up to 48 inches
Iron Bar Measures for use with the above:-
291. 3 feet $\frac{3}{4}$-square, divided on four sides £0 150
292. 3 feet $\frac{5}{8}$-square, divided on two sides, with handle . . . 0110
293. Plank Rule Caliper, 12-inch. 0 . 46
294. Scribing Iron 0 3 6

296. Pocket Scribing Iron

297. Norway Rag Stones
£0 36
298. 6 feet Tape, with inches on one side and qr. girt on the other

010
Timber Contenting Rules:-
299. 18 inch.
300. 24 inch.

0 96
302. 36 inch.

0136
303. Timber Cubing Rules, 3 feet

0186
304. Combined Timber and Plank Rules, 18 inch.

0160
. . $\quad 180$
305. Timber Measuring Rods, painted, 5, 10, 16 and 20 feet, in feet and quarters 5s. 6d., 8s. 6d., 14s., and £1 $0 \quad 0$
306. Timber Measuring Rods, 5, 10, 16 and 20 feet, in feet and inches 8 s ., 12 s ., 19s., and £1 60
If jointed, each joint extra 4s.
307. Spirit Rules, showing the quantity in any spirit cask whose capacity does not exceed 20 gallons, with line of inches and tenths, and diagonal line, 3 to 6 feet, 4 to 12 fold
308. Spirit Rules, same as above in one piece

5s. 6 to $£ 110$ each
5s. to 7s. 6d. "
309. Screw Spile Rods, boxwood, with line of inches and tenths and diagonal, 30 to 60 inches

6 s. to 9 s. each
Same price with vinegar dips when required.

Fig. 319.
310. Table Rods for the outs of Casks, 4 and 5 feet, lancewood, imperial or old wine £0 56 and $\begin{array}{lll}£ 0 & 6\end{array}$
312. Table Rods for the outs of Cashs, 4 and 5 feet, brass, ditto ditto $£ 212 \quad 6$ and $£ 3 \quad 0 \quad 0$ 313. Dip Tape, in inches and tenths with plumb £0 26 314. Vllage and Casting Rules, $4 \frac{1}{2}$ to 24 -inch., boxwood 6s. 6d. to 12s. each
315. Ullage and Casting Rules, $4 \frac{1}{2}$ to 12 -inch., ivory
316. Valuation and Reducing Rules, 6 to 24-inch., boxwood 12s. 6d. to $£ 180$

3s. to 8 s . ,
317. Valuation and Reducing Rules, 6 to 12 -inch., ivory 10s. to $£ 100$
318. Steel 0il Rods, 3 to 6 feet, round, in inches, tenths and diagonals
$\begin{array}{lll}£ 1 & 0 & 0\end{array}$ to $£ 160$
319. Becr Rulc or Dipping Rod, 4 feet (fig. 319)

0	5

320. Beer Rule or Dipping Rod, superior, for hot climates

066
322. Beer Rule or Dipping Rod, 3 to 4 feet, 4 to 8 fold. 5s. 6d. to 11s. 6 d . each.

Directions for Use.-This rule will show the ullage in any regular made cask, let it be either lying or standing. Example :-Suppose a barrel or 36 -gallon cask is present on ullage, and that it is standing, or S.S.; seek for such on the rule, viz., barrel 36 gallons, S.S.; dip the cask perpendicularly, and the wet inches on that line will be the number of gallons therein. Should the cask be lying, or S.L., seek for such, viz., barrel 36 gallons, S.L., the wet will also indicate the contents, or ullage. Whatever be the full contents of the cask, a similar result will be found by looking on that part of the rule where such is denoted, observing that each size cask has two scales, or lines, viz., for S.L. and S.S.

To find the full contents of a cask when such is not marked thereon, or known, with that part of the rule marked "imperial gallons" dip the cask as in the engraving, and the mark at B is the number of gallons it will contain when full.
323. Boxwood Screw Stick, for malt gauging, with line of inches, tenths and diagonal, 30 to 72 inches . . . 6s. to 10 s . 6d. each
324. Lancewood Malt Rods, in one piece with line of inches, and tenths and diagonal, 24 to 60 inches . . . 2s. 6d. to 5s. 6d. each
325. Flat Malt Rods, in brass, with line of inches and tenths, 24 to 60 inches, 10 s . to 20 s. each.
326. Flat Malt Rods, steel, 24 to 60 -inch.
327. Mali Float, brass, for metal rod

7 s .6 d . to 14 s .
328. Brass Plate, with handle
329. Brass Plate, to fit small screw stick
330. Malt Receivers, three sizes

2s. 6d., 5s., and $0 \quad 6 \quad 6$
£0 60
026
016
332. Corndrometer, see Specific Gravity Instruments.
333. Rule or Gauge, for measuring horses, to close up in form of walking stick £1 0
334. Cattle Gauge, with tape measure and plain instructions, showing the exact weight and value of the animal £0 $8 \quad 6$ 335. Malt Dippers, 18 to 24 inches . . . 2s. 6d. to 3s. each
336. Malt Tapes, best linen, in box (Casella's improved corrected), 400 inches 8 s . ; increasing 1s. per 100 inches to 1000
337. Malt Rules or Veries, 6 to 24 inch, boxwood . 6s. 6d. to $£ 0140$
338. Malt Rules or Veries, ivory 6 inch 15s., 9 inch 26s., 12 inch. $£ 1130$
339. Bale Calipers, with satinwood blades for measuring ships' cargoes, 3 feet 12 s . ; increasing 1 s . per foot to 9 feet; and 2 s . 6 d . ditto, from 9 to 14 feet
340. Bale Calipers, with mahogany blades, inlaid with boxwood, for measuring indigo, etc., 4 feet, 18 s .; 5 feet, 20s.; 6 feet, 22 s .; 7 feet fl 410
342. Gauge for Measuring Rope, boxwood with brass caliper . 040
343. Gauge for Measuring Rope, ivory with German silver ditto 0150
344. Float Gauges, with satinwood blades, 2 feet, 4 s . 6 d .; increasing 6 d . per 6 inches to 8 feet; and 1 s . ditto from 8 to 12 feet.
345. Club Caliper, boxwood, brass bound for measuring tea chests, etc. £1 150

Copper Measures:

58. Graduated Glass Measures : 1 gill, cylinder shape, graduated in tenths, 3s.; 4,6 , and 8 gill, graduated in quarters, 6s., 7s. 6d., and fo 90 All measures are in strict conformity with Her Majesty's Exchequer.
359. Set of Standard Measures, gun metal, from $\frac{1}{2}$ gill to 1 gallon, in oak case with lock and key, and 7 plate glasses in separate oak case, complete $£ 15100$

Fig. 375.

SURVEYING INSTRUMENTS.

THEODOLITES, LEVELS, CIRCUMFERENTERS, ETC.
In submitting the accompanying list of instruments to surveyors, engineers, architects, etc., care has been taken to enumerate such only as embrace the latest improvements.

Where extra strength or rigidity has been required for any particular service, this has been carefully given, and where lightness or great portability has been wanted, as in light and handy instruments for travellers, or preliminaryosurveys, the utmost care has been taken to retain sufficient rigidity and to adapt all to the present advanced state of mechanical science.

Fig. 366.
360. Theodolite, 3 -inch, of the most approved construction, reading to one minute divided on silver, in mahogany case, with tripod stand, complete $\begin{array}{llll} & 0 & 0\end{array}$ 362. Theodolite, 4-inch., ditto, ditto 19100 363. " 4-inch., ditto, with two telescopes . . 2400 364. " 5 -inch., ditto, with one telescope . . . 22100
365. " 5-inch., ditto, with two telescopes. . . 27000
366. " 6 -inch., verniers reading to 20 seconds, divided on silver, in mahogany case and tripod stand, complete (fig. 366) . $£ 28100$ 367. Theodolite, 6-inch., ditto, with two telescopes . . 34100 368. $\quad 7$-inch., with extra large telescope, verniers reading to 10 seconds, divided on silver, with case and stand as above . . $\quad £ 3500$ 369. Theodolite, 7 -inch., ditto, with two extra large telescopes . $\quad 44 \quad 0 \quad 0$
*** The above Nos. 360 to 369 if with locking plate and tripod screw adjustment (as fig. 375), instead of the usual parallel plates are for the 3 inch., $22 \mathrm{~s} ., 4$ inch., 30 s ., 5 inch., 45 s ., 6 inch., 60 s ., 7 inch., 75 s . each extra; and if divided on the brass circles instead of on silver, 3 inch., 22 s ., 4 inch., 30 s., 5 inch., 37 s ., 6 inch., 45 s ., 7 inch., 60 s . each less in price.
370. The Traveller's Transit Theodolite, arranged by L. Casella as a small light portable instrument for Alpine and military surveying, and occasional astronomical observations. In designing this instrument the object has been to condense into the least possible bulk the smallest instrument with which useful results can be obtained. Its telescope gives it the advantage of optical power, and it has complete 3 -inch. circles, both horizontal and vertical, with verniers showing to one minute; it can therefore be used not only as a theodolite for terrestrial surveying, but also as an altazimuth for determining time, latitude, and azimuth, astronomically. It will be found convenient in

use, its diagonal eye-piece admitting of zenith stars being observed with perfect facility. It is supplied with a reflector for illuminating the wires at night, a dark glass for solar observations, a finely divided level, a compass, and the means of performing all the adjustments necessary in such instruments. It packs in a mahogany case, 4 inches by 5 inches, and $6 \frac{3}{4}$ inches long (outside measure), the whole weighing only $3 \frac{1}{2}$ lbs., a light tripod staff is also added. A paper descriptive of the instrument was read at the meeting of the British Association at Exeter, 1869, in section E, by Lt.-Col. A. Strange, F.R.S., Inspector of Scientific Instruments, India Department (fig .370). . \quad £15 150

[^6]372. Traveller's Transit Theodolite, as above, with the telescope in centre, the supports being raised to allow it to revolve vertically. In this arrangement though the height is increased, the zero or centre is found more exact in very close measurements, and an arrangement is added by which the horizontal circle may be set to zero at each observation without disturbing the adjustment
£18 0
373. Transit Theodolite, 4 -inch., with locking plate, etc., as 375 , the circle divided on silver, with verniers reading to one minute, in mahogany case and tripod stand, complete
£25 $10 \quad 0$
374. Transit Theodolite, 5 -inch., verniers reading to 30 seconds, divided on silver, complete, with locking plate, as above. . . . £29 10 0
375. Transit Theodolite, 6 -inch., with locking plate for stability, transit axis and vertical circle (may be used as an altitude and azimuth instrument), in maho gany case, with tripod stand, complete (fg .375), p. 58 £34 $10 \quad 0$
376. Transit Theodolite, as above, with illuminated axis, axis level and lantern $£ 3800$
377. Transit Theodolite, as above, with two telescopes $4510 \quad 0$
378. Transit Theodolite, 7 -inch., with transit axis and vertical circle, axis level and lantern, with tripod base, etc., as No. 375 above . £43 100
379. Transit Theodolite, 8 -inch., as above

5100

Fig. 382.
380. Transit Theodolite, 12 -inch., for horizontal angles only $\quad £ 40 \quad 0 \quad 0$
*** The above theodolites from 373 to 380 have improved locking plates or tripod screw adjustment (as $f g .375$), for stability, etc., but the 4,5 , and 6 inch. may be had with parallel plates if preferred, at 30 s ., 45 s ., and 60 s . each less respectively ; and if divided on the brass circles instead of on silver, the $4,5,6$, and 7 inch. would be 30 s ., 37 s ., 45 s ., and 60 s . each less in price.
382. Everest's Theodolite (fig. 382), 4-inch., with verniers reading to one minute, divided on silver, with triple adjusting screws, separate triangular locking plate ($\mathrm{fg} .382^{*}$), p. 60, mahogany case and tripod stand, complete £19 100 383. Everest's Theodolite, 5 -inch., as above, reading to thirty seconds 2200 384. Ererest's Theodolite, 6 -inch., verniers reading to twenty seconds, divided on silver, complete as above

TRANSITS AND CIRCLES.

Portable Transit Instruments with divided circles, double verniers and microscopes, cross axial level, three micrometric eye-pieces, diagonal eye-piece, illuminating lanterns, graduated scales to levels, adjusting screws, etc., complete (fig. 393), p. 62, packed in red deal case:-

with cast iron stands.

386. Fourteen inch., $1 \frac{1}{2}$-inch. object glass as above, much used for testing and timing chronometers £20 00
387. Twenty-inch., $1 \frac{3}{4}$-inch., ditto, ditto 22100
388. Twenty-four-inch., 2-inch., ditto, ditto 2500
389. Thirty-inch., $2 \frac{1}{2}$-inch., ditto, ditto 38100

WITH BRASS STANDS.
390. Twenty-inch., $1 \frac{3}{4}$-inch. object glass 2600
392. Twenty-four-inch., 2-inch. object glass 2900
393. Thirty-inch., $2 \frac{1}{2}$-inch. object glass 4400

Fig. 393.
394. Transit Instrument of superior construction, furnished with two setting circles divided to minutes, and especially adapted for mounting on stone piers, 42 inch., $3 \frac{1}{4}$-inch. object glass
£67 100
395. Reflecting and Repeating Circles, of various construction to order.
396. Altitude and Azimuth Instruments with circles, divided on silver, reading micrometers, etc., complete to order.
*** For astronomical telescopes, see index.

CIRCUMFERENTERS OR MINERS' DIALS, CROSS SIGHTS, ETC.

*** Circumferenters are now much employed in woody countries and mining districts; the three last Nos. in particular being so constructed as to replace the ordinary plain theodolite, and may be used for obtaining either horizontal or vertical angles, with great facility.

The sizes quoted are those of the dials, the sights being much further apart. (See fig. 400), p. 63. 397. Circumferenter, 4 -inch., with folding sights, in mahogany case, and jointed oak stand, with extra points for using at half-length
£5 50
398. Cibcumferenter, 5 -inch., as above, with divided cover
$7 \quad 7 \quad 0$
399. Circumferenter, 5 -inch., with divided circle to compass, sights, cross levels, stand, etc., complete as above £9 0. 0
400. Circumferenter, 6 -inch., improved, with rack adjustments, divided cover, vernier reading to three minutes, cross levels, folding sights, ball and socket joint and jointed legs, with spare points to use at half length ($f_{5} .400$), p. $63 £ 1010 \quad 0$

Fig. 400.

Fig. 402,
401. Circumferenter, 5 -inch., improved, with telescope, rack adjustments, centre quadrant, divided compass, with vernier reading to three minutes, cross levels and shifting folding sights, ball and socket joint and stand, with jointed legs and spare points to use at half length (fg .402) - . £15 00 402. Circumperenter, 6 -inch., improved, as above . . 16100 403. Miners' Safety Lamps. (See Chemicals).
404. Headley's DIAL, much improved, with telescope, extra large compass (6-inch.), with brass cover, spare sights, raised arc divided to 1 minute, with capstan head, screw adjustment, paral. lel plates, and jointed legs to use at whole or halflength (fig. 404) $£ 16100$ 401* Headley's Dial, as above, with ball and socket joint without telescope £13 100
As plain, stout, practical instruments for rough work in mines, etc., these instruments can hardly be excelled.

Fig. 409.

LEVELS.

405. Y. Level, 12 -inch., with parallel plates, divided silver ring to compass, two eyepieces, screw drivers and levers, tripod stand, etc., complete in mahogany

406. Y. Level, 15 -inch., complete as above
$1310 \quad 0$
407. Y. Level, 18 -inch., complete as above

1500
408. Y. Level, 20 -inch., complete as above
$18 \quad 0 \quad 0$
409. Gravatt's, or Dumpy Level, 10 -inch., with parallel plates, divided silver ring to compass, tripod stand, etc., complete in mahogany case (fig. 409) £13 $10 \quad 0$
410. Gravatt's Level, 12 -inch., complete as above . . $\quad 14 \quad 0 \quad 0$
411. Gravatt's Level, 14-inch., complete as above . . 14100
412. Gravatt's Level, 16 -inch., largest size, with extra large telescope, 2 -inch. object glass, 5 -inch. compass, etc., complete as above £15 150
*** Either of the above four levels, without compass, £1 10s. less.
413. A Simple Level, with parallel plates and one eye-piece, in mahogany case, and light tripod stand
414. Tronghton's Level, 14-inch., with compass and tripod stand, complete $11 \quad 10 \quad 0$
415. Troughton's Level, 20 -inch., complete as above
$1310 \quad 0$
416. Drainage Level (Improved), with superior telescope, cross lines etched on the glass, ball and socket joint, tripod stand, and station staff complete, as strongly recommended by the Royal English, the Royal Irish, and the Highland Agricultural Societies, in mahogany case (fig. 416), p. 65 . $\begin{array}{llll} & 5 & 5 & 0\end{array}$
417. Drainage Level, brass, with plain sights, and ball and socket joint, in plain case £1 40 to £2 $8 \quad 0$
419. Mountain Barometers and Casella's Improved Hypsometrical Apparatus, being now much used by travellers abroad as handy and reliable for measuring heights in rough mountain districts, may be also classed amongst surveying instruments. See Nos. 15, 16, 85, and 86, also the Mariotti, or Boylean pocket standard barometer, No. 88 and Addenda.

Brass Pocket Levels, with adjusting screws, in maroon cases (fg. 420):
420. 4 inch. . . £0 $7 \quad 6 \left\lvert\, \begin{array}{llllll}\text { 424. } 10 \text { inch. . . } & 18 & 0\end{array}\right.$ 422. 6 inch. . . 0106 423. 8 inch.

0136
426. Spirit Levels (fg. 426), mounted in mahogany frames, with brass plates, 6 inch., 3s.; 8 inch., 3s. 8 d.; 10 inch., 4s. 6d.; 12 inch.
£ 56
427. Chinometer Level, brass, 6 -inch., with level, sights and graduated are, for determining inclination of strata, etc., etc., in neat case with socket for staff, (fig. 427), p. 66
£1 140
428. Clinometer Level, as above, 9 -inch., available also for draining and levelling, £2 15 O
429. Plain Drainage Level, with sights, spring adjustment beneath, brass-pointed tripod stand in mahogany case, Ordnance pattern . . £4 50
430. Burrell's Reflecting Level, in maroon case . . . 150
431. Surveyor's Cross, octagonal form (fig. 431), p. 66 . . 0106
432. Surveyor's Cross, with movable head, and divided circle and compass 220
433. Surveyor's Cross, with ball and socket 210 0
434. Surveying Square or Pantometre (brass), with compass, telescope, and rackwork,
divided body with screw adjustment, inverted divided semicircle, and level triangular base with adjusting screws, in case, with tripod stand $\begin{array}{lll}\text { L5 } & 0 & 0\end{array}$
434*. Surveying Square or Pantometre, as above, with universal joint, without stand
£4 0
435. Optical Squares, for showing right angles . . 15s. 6d. to 110

The last six instruments are useful for setting out perpendiculars and horizontals, the optical square in particular being very portable; a survey involving right angles only may be effected very expeditiously by it.

LEVELLING STAFFS, With Foreign or English Graduations.

436. Levelling Staff, Sopwith's, 14 feet, 3 -draw, brass mounted, ofbest make £2 50
437. Sopwith's Leveliing Staff, as above, 16 feet . . 2150
438. Sopwith's Levelinga Staff, as above, with socket fittings, 3 -joint 300

Fig. 427.

Fig. 431.

$$
\begin{aligned}
& \text { 439. Levelling Staff, Gravatt's, } 17 \text { feet, } 3 \text {-draw } \\
& \text { 440. Metford's Levelling Staff, } 13 \text { feet }
\end{aligned}
$$

Abstract

441. Levelling Staff, half-round, for hot climates, with improved readings by which they are clearly visible at full one half greater distance than those of ordinary make, especially arranged for India by Colonel A. Strange, F.R.S., chief of the Scientific Department of the Indian Government £3 30

442. Levelling Staff, 14 feet, 3-draw, half-round, as especially made for the Ordnance and Indian Government (Sopwith's) . . £3 3 0
The above staffs are figured and divided on sheets thoroughly prepared against wet, and all the influences of climate and the weather; some, however, prefer them painted on the wood, in which case they are 10s. each extra.

They are also painted in foreign measure as Metric, Danish, Rhineland or Prassian, at 3s. each extra.
443. Levelling Staff, 10 feet, folding in two, light and handy, for drainage

444. Levelling Staff, as above, 8 feet 120

PRISMATIC, SURVEYING, AND MINING COMPASSES, ETC.

445. Prismatic Compass, with sights plain, in maroon or sling case, $1 \frac{1}{2}$-inch, £1 40 ; 2-inch., £1 86 ; $2 \frac{1}{2}$-inch., £1 136 ; 3-inch., £1 186 ; 31 $\frac{1}{2}$-inch., £2 26 ; 4 -inch.
£2 60
446. Prismatic Compass, with sights, shades, and mirror, in maroon or sling case (fig. 446), p. 67, $1 \frac{1}{2}$-inch., £1 100 ; 2-inch., £1 186 ; 21 $\frac{1}{2}$-inch., £2 36 ; 3-inch., £2 86 ; $3 \frac{1}{2}$-inch., £2 136 ; 4-inch.
£2 $16 \quad 0$
Either of the above with extra light aluminium ring, 10s. to 14s. additional.
447. Prismatic Compass Tripod Stand, plain, with horizontal motion \quad £1 5
448. Prismatic Compass Tripod Stand, with ball and socket joint for horizontal and vertical motions
£1 120
449. Prismatic Compass, $2 \frac{3}{4}$-inch., with sights, aluminium ring, in maroon case ; Ordnance and War Office pattern
£2 100
450. Kater's Azimuth Pocket Compass, with magnetic floating card and folding sight, for estimating angular distances on land or at sea
£2 $10 \quad 0$

Fig. 486.

Fig. 485.

Fig. 470*.

Fig. 470.

Fig. 447.

MINERS' COMPASSES,

In square mahogany boxes $\frac{1}{4}$ to 1 -inch thick outside, with sights and covers, bar needles, agate caps and stops.
452. Miners' Compasses,

3 -inch. square.
£1 10

4 -inch. square. $\quad 5$-inch. square. $\begin{array}{llllll}£ 1 & 3 & 0 & £ 1 & 5 & 0\end{array}$
453. Miners' Compasses, with floating card, same sizes and prices as above.
454. Miners' Compasses, with silvered divided ring, bar needle, etc.:

4 -inch. square. $\quad 6$-inch. square. $\quad 8$-inch. square.
$\begin{array}{llllllll}£ 1 & 6 & £ 2 & 0 & 0 & £ 2 & 10 & 0\end{array}$
455. Miners' Compasses, with silvered divided ring, etc., as above, and two levels :

4-inch. square.	6-inch. square.	8-inch. square.	
£2 20	$£ 2100$	$£ 217$	6

456. Mining or Surveying Compass, on mahogany, with cover, $7 \frac{1}{2}$-inch. divided metal dial with needle and stop, raised divided metal circle, telescope and two levels £3 30
456*. Mining or Surveting Compass, with tangent screw adjustment to telescope and triangular base, with adjusting screws and tripod stand, complete $£ 810 \quad 0$
For tropical climates or glaring light, Nos. 456 and 456 (of foreign make), can have black dials and white figures when preferred.

For preliminary surveys as well as for general bearings from time to time, these plain hardy instruments are justly held in high estimation.

MAGNETIC POCKET COMPASSES,

Of superior quality, the indications of which may be fully relied upon irrespective of price. The most sensitive and durable being those with bar needles, with agate stones or jewels in the centres.

Pocket Compasses, of a perfectly reliable character and superior manufacture, either plain or ornamental, with blue steel needles :

Mahogany cases* with Round leather
lid and stops (fig. 457) p. 67. casest
2 to 4 -in. square.
2 -in. circle,

Round ivory
cases.t
4s. 6 d.
7 9

No. 1 to 6 in mahogany, if with floating card, 6 d . each extra.

* In mahogany cases, if with rounded edges and French polished, 6d. extra.
\dagger Stops to any of those thus marked (\dagger), 1s. each extra.
Pocket Compasses, with floating cards, or with bar needles and best agate caps and stops :

Pocket Compasses, in the form of a watch (fg. 470 and 470^{*}), p. 67 , with best bar needles, stops, and enamel plates:
Gilt or electrum. Silver.

Gilt or electrum. Silver.

473*. „ 5 . 120
Pocket compasses same sizes, in form of hunting watches, at a small extra cost.
474. Moonlight Compass, with transparent dial, clear and visible by star or moonlight, No. 1, with bar needle, agate cap and stop, 17 s .6 d . ; moonlight compass No. 2
$\begin{array}{lll}£ 1 & 4 & 0\end{array}$
475. Moonlight Compass, with divided ring £1 10 and $1 \quad 8 \quad 0$
476. Equestrian or Gregory's Compass, especially arranged for use on horseback, in brass case, plain, 10s. 6d. ; jewelled
£0 136
476*. Equestrian or Gregory's Compass, watch form, gilt, 21s.; silver 1100
477. Dipping Needle Compass (Casella's), with 3-inch. needle and hard chrysolite bearings, for showing the dip of the needle in any locality, as well as its declination, in neat pocket case
£1 10
478. Improved Magnetic Indicator or Equestrian Compass, in which a powerful flat bar needle on jewelled centres is placed beneath the compass dial, with the usual index above, the movement of the needle being so firm and sensitive as to adaptitadmirably for use on horseback, watch form, 2 -inch. (outside) £1 100
479. Casella's Compass for the Blind, this compass is of strong make, in neat mahogany case, $2 \frac{1}{2}$ inch. square by $\frac{1}{2}$ inch. thick, with raised letters and stop, so arranged that blind persons (by feeling with their fingers) can with confidence and ease tell their exact local position or bearing, independent of any other object, within 2 or 3 degrees
. £0 76 to £0 150

Boating or Yachting Pocket Compasses, with floating dials and gimbal movement, by which the dial is always perfectly horizontal :
482. Gimbal Pocket Compasses, with chrysolite cap and floating card, in round polished metal cases with lid; size of compass card :

1/4/4inch.	11⁄2-inch.	2 -inch.	$21 / 2$-inch.	3 -inch.
14s. 6 d .	15 s .6 d .	17s. 6d.	£1 00	£1 30

If silver-plated 3 s . to 7 s . extra.
483. Boating Compasses, richly gilt, in morocco case, about $1 \frac{3}{4}$-inch. diameter £0 $18 \quad 6$
484. Boating Compasses, silver-plated

0156
485. Gilt Gimbal Compasses, in mahogany case, very excellent and reliable for
boating or yachting purposes (fig. 485), p. 67
486. Singer's Patent Compass, for bad light or defective vision, this arrangement consists of a white or mother-of-pearl card plate, having one half painted black, with the usual divisions (fig. 486), p. 67; the effect in obscure light is very striking, the points being clearly visible in the darkest night; it is applied to the boating, pocket, or any of the preceding compasses at a slight extra cost, pocket sizes for travellers, $7 \mathrm{~s} .6 \mathrm{~d} . ; 12 \mathrm{~s} .6 \mathrm{~d}$. ; and
£1 10
487. Singer's Patent Compasses, boating sizes, in neat polished mahogany cases with jewelled centres, very superior and sensitive, 4_{4}^{3} inch. outside $£ 112 \quad 0$
488. Singer's Patent Compasses, boating sizes, $4 \frac{1}{4}$ inch. outside . 180
489. Larger sizes in brass, for boats or ships, with best needle and agate cap, £1 4s. ; £2 2s.; and £3 30
490. Trinket Compasses, in form of lockets, globes, half globes, with gimbals, small watches, etc., in neat designs for the watch chain or waistcoat pocket, in gold, silver, gilt, etc., $\frac{1}{4}$ inch and upwards, from . 2s. 6d. to £2 20
492. Damp Detectors, being a very easy and sensitive means of ascertaining the exact state of damp or dryness of sheets or clothes; small size for the waistcoat pocket, in morocco case
£0 56
493. Damp Detectors, with pendants $0 \quad 7 \quad 6$
494. Damp Detectors, strongly gilt.
$010 \quad 6$

CLINOMETERS AND BOX SEXTANTS.

495. Clinometer, or Geological Compass, for ascertaining the dip or inclination of strata, hills, etc., with index, showing the inclination in degrees and inches per yard, in square mahogany box, $4 \frac{1}{2}$ inch. by $\frac{3}{4}$ inch. thick . £0 $10 \quad 6$
496. Clinometer, or Geological Compass, 3-inch. . . 076
497. Clinometer, or Geological Compass, smaller size . . 066 495 to 497 , if with best bar needles, 2 s . each extra.
The inclination scale upon these clinometers, gives the value of any angle, as follows:-The angle having been ascertained from the divided arc upon the instrument, refer to that degree in the column marked Angle, and opposite, in another column, will be found the rise or fall in any given measured distance; thus, say the degree shown on the divided arc is 18 , opposite to this number on the scale is 3 , this indicating one part rise or fall in three, one foot in three, etc.

Fig. 507.

Fig. 502.
498. Clinometer, 12 -inch., plain boxwood, with divided semicircle, inclination scale and plumb, for roughly estimating the inclination of roads, drains, strata, etc. The divisions on the arc show degrees and inches of elevation per yard. Price, in pull off case
£ $16 \quad 6$
499. Chinometer, 12 -inch., boxwood, brass jointed, with divided are and inclination scale, forming also a pocket rule
£1 $0 \quad 0$
500. Clinometer, with spirit level, magnetic compass, and inclination scale, folding to 6 inch.
£1 50
502. Clinometer, with two levels and sights, compass, inclination scale, and scale of fathoms in 6-inch. case. Best quality (fig. 502) . . £1 $17 \quad 6$
503. Clinometer, with bar needle to compass, and independent motion in the joint
504. Vivian Clinometer, in mahogany case $4 \frac{1}{2}$-inch. square by $1 \frac{1}{2}$-inch. thick, with two levels, divided are and scales, very complete
£2 20
505. Clinometer, brass, 6 -inch., with level, sights, arc of inclination, etc. 1140
506. Box Sextant, plain, in maroon case 3100
507. Box Sextant, with telescope, in case (fig. 507) . . \quad 4 4.0
508. Box Sextant, with telescope and supplementary are, in case . $\quad \begin{array}{lllll}5 & 5 & 0\end{array}$
509. Box Sextant, as above, with levels, in case . . . 5150
510. Box Sextant, with telescope, levels, supplementary are, and divided circle for difference of hypothenuse and base \quad \&6 0
512. Leather Sling Case for Box Sextant, with strap for portability $\quad 0 \quad 7 \quad 6$
513. Perambulator. An instrument of great utility for measuring the distance of places from each other, the length of roads, etc. It consists of a large wheel of known circumference, having its axis attached to a frame and handle; a system of wheels connected with the axis of the large wheel registers the number of its revolutions upon a dial in English measure, or it may be divided to any foreign measure if required. Plain mahogany (fig. 513), p. 71
514. Perambulator, with metal-bound wheel, for hot climates . 12120
515. Perambulator, with metallic wheel, East India Company's pattern, expressly for India and tropical climates
£14 $10 \quad 0$

Fig. 513.

Fig. 521.
516. Opiesometer, or Pocket Perambulator, for measuring curved lines on maps, etc. 3s. 6 d . and 4 s .6 d .
517. Trocheameter, for registering the revolutions of a carriage wheel, and thereby determining the distance travelled; applicable also for counting the rotations of machinery with certainty, however high the velocity. (See also engine counters and steam gauges) .
£2 $10 \quad 0$
518. Current Meter, for showing the rate of flow of tide in any stream or river, and the amount in gallons per hour flowing off (fg .518) p. 72 £5 $10 \quad 0$
519. Cubrent Meter (Double), in case 7 inch. by 2 inch., circuit representing twelve miles; answering also for ascertaining the rate of a ship's speed $£ 610 \quad 0$
520. Tide Gauge (Self-Recording) (fig. 72), p. 24, for showing the rise and fall of water in rivers, canals, locks, or any bodies of water, the rate of evaporation, etc., showing the exact time at which any increase or reduction may have occurred; see also No. 72
£32 00
521. Pocket Altazimuth, Casella's, for travellers and military surveys, improved and modified by the kind assistance of Francis Galton, Esq., F.R.S. Altitudes, azimuths, compass-bearings, clinometric degrees and levels, are all obtainable by this strong and handy, but accurate little instrument, whose diameter is $2 \frac{1}{4}$ inches, thickness $1 \frac{1}{8}$ inch., and weight $5 \frac{1}{2}$ oz. The advantages of its use have been so increased by the recent addition of an excellent telescope, as to make it really perfect for the various purposes to which it can be applied (fg. 521)
£5 50

LAND CHAINS.

522. Land Chains, best machine made, Government pattern, with three sawn oval connecting rings, brass swivel handles, and usual marks. Two pole, 5s.; fifty feet, 5 s . 6d.; Gunter's four pole, or sixty-six feet, 7s. 6d.; one hundred feet, 8s,
523. Land Chains, same pattern as above, rather lighter, 6d. to 1s. each less, or with only two intervening oval rings, 1s. to 2 s . each less.
524. Land Chains, machine made, of best steel wire, hardened, tempered, and japanned with three sawn oval connecting rings, best swivel handles and marks, two pole, 7s.; fifty feet, 7s. 6d.; Gunter's four pole, or sixty-six feet, 13s.; one hundred feet, 14s.

Strong, light, and very convenient.

Fig. 518.
525. Arrows for Land Chains, of best japanned steel wire, hardened and tempered, 15 inch. long, 10 to the set for No. 524, 1s. 6d. per set.
526. Arrows for Land Chains, 15 inch. long, 10 to the set for No. $522,1 \mathrm{~s} .2 \mathrm{~d}$. per set. 527. Tape Measures, to wind up, in leather cases, with folding handles, and best fine linen tape :

528. Best Tapes only (without cases), for the above :

24 feet.	33 feet.	40 feet.	50 feet.	66 feet.	75 feet.	100 feet.
1 s.	2 d.	$1 \mathrm{~s} . ~$	6 d.	$1 \mathrm{~s} . ~$	10 d.	2 s.

529. Tape Measures as No. 527, with tapes of second quality, 6 d . each less.
530. Tape Measures, patent metallic, in hard leather cases, with folding handles:

531. Tapes only (without cases), for the above:

532. Tape Heasures (Casella's improved corrected), in best hard leather cases with folding handles. The usual tendency of all tape measures to increase by expansion has induced L. Casella to give his best care to arresting this defect; the following list therefore of Casella's corrected tapes he can confidently recommend as greatly improved in this particular, and certainly the most correct of any he has met with (fig. 533), p. 73 :

533. Measuring Tape (Ordnance pattern), 50 feet, corrected as above, with yards, feet, inches, one 10 ths and one l00ths, in strong leather case, with folding handles and rollers
£0 12 ©
534. Patent Mexible Stecl Tapes, in hard leather cases as above, marked with links on the back, 33 feet or 2 poles
$\begin{array}{lll}£ 1 & 1 & 0\end{array}$
535. Patent Flexible Steel Tapes, 66 feet or 4 poles

1160
537. Patent Flexible Steel Tapes, 9 feet, 9 s. 6d.; 6 feet, 7s. 6d.; 3 feet, for the pocket

Fig. $5: 3$.

Fig. 538.
538. Improred Spring Pocket Tape Measures, with linen or electrotyped steel tapes, in brass, German silver, pearl or shell cases, with or without stops, 3 to 6 fcet tapes; brass, from 1s. to 2s. 6d. each; German silver (fg. 538)

2s. 6 d . to 050

SCALES, SQUARES, RULES, ETC.

539. Metford's Improved Set of four Pocket Scales, for architects and surveyors, in Russia leather čase, $£ 216 \mathrm{~s}$., or two in separate case £1 $10 \quad 0$

Each scale is 6 inches in length, and a right-angled triangle in form; two of them are divided into decimals or tenths, and the other two into duodecimals or twelfths. Their contents are marked on the ends of each. In the triangular form the divisions are placed on the edges, the most useful scales on the acute angles, and a table of constants on the rectangles. The scales thus obtained are 17 in number, fully divided, and reading off at the edges, viz., $1,2,3,4,6,8$, and 10 chains of 66 feet to the inch, and 6 inches to the mile; the mechanical scales are $\frac{1}{16} \frac{1}{8} \frac{1}{10} \frac{1}{5} \frac{1}{4} \frac{1}{2}$ and $\frac{3}{4}$ inch, besides the French mètre, the Rhineland foot $=$ the Prussian and Danish foot. The Spanish vara, Russian vershokes, or any other foreign measure may be substituted if preferred.
Plotting Scales, ivory, divided on both edges, single or in sets :
540. 12 inch., $10 \times 10,20 \times 20$, to $50 \times 50,8 \mathrm{~s} .0$ d.; 6 inch. ditto . £0 50
542. 12 inch. 60 to 70, 9s. 0 d. $; 6$ inch. . $\quad 0 \quad 6 \quad 0$
543. 12 inch.

80 to 100,10 s. 6 d .; 6 inch.
080
Plotting Scales, boxwood, divided on both edges:
544. 12 inch., $10 \times 10,20 \times 20$, to $50 \times 50,2 \mathrm{~s} .2 \mathrm{~d} . ; 6$ inch. . . 018
545. 12 inch. 60 to $70,2 \mathrm{~s} .4 \mathrm{~d} . ; 6$ inch. . . $\quad 0 \quad 1 \quad 9$
546. 12 inch.

80 to 100, $2 \mathrm{~s} .9 \mathrm{~d} . ; 6$ inch.
020
547. Offset Scales to match the 12 -inch. ivory scale, 10 to 70,2 s. 6 d. ; 70 to 100
548. Offset Scales to match the 12 inch. boxwood scales

8 d . and $0 \quad 010$

SETS OF SCALES IN CASES.

549. Chain Scales, 12 -inch. and offsets, set of 6 , either with both sides alike or in feet and links, in mahogany case with lock; boxwood, 21s.; ivory, 50 s . and 60 s . the only difference being in the quality of the ivory.
550 . Chain Scales, 18 -inch., boxwood
£1 120
550. Architects' or Engineers' Scales, 12-inch., fully divided, 6 in mahogany case; boxwood, 18s.; ivory . . . £2 20 and £2 100
551. Metre Scales, 12 -inch., with offsets, 6 in a case, $\cdot 001, \cdot 002, \cdot 003, \cdot 004, \cdot 005, \cdot 006$; boxwood, 25s. ; ivory
£3 3
552. Metre Scales, same as above, with English on the opposite edge, boxwood, 25s. ivory
£3 30
553. Chain Scales, 6 -inch., set of 6 in morocco case ; boxwood, 10 s. 6 d .; ivory $£ 11 \mathrm{ls}$. and $£ 150$
554. Chatn Scales, 4-inch., as above, ivory

0150
557 . Chain Scales, 6 -inch., set of $3 ; 10,40,20,50,30$, and 60 , in morocco case, ivory, 12s. 6d.; 4-inch. ditto £0 96
558. Offset Scales, 6-inch., $1 \frac{3}{4}$ inch. wide, set of 6 in morocco case ; boxwood, 12s. 6d.; ivory.
£1 160
559. Offset Scales, 4 -inch., ivory, set of 6 in morocco case, 25 s .; 3 inch. ditto, ivory.
£1 10
560. Offset Scales, set of 3 in morocco case, ivory 6 inch., 20 s.; 4 inch., 14s.; 3 inch
£0 $10 \quad 0$
562. Two Small Ivoby Scales, 3 -inch., in one case, one 20, 30, 40 , and 50 , the other $\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{3}{16}, \frac{3}{8}, \frac{3}{4}, 1 \frac{1}{2}, 6 \mathrm{~s}$.

Scales, fully divided, Architects' or Engineers', to sixty divisions to the inch, may be had in any of the above cases in place of chain scales.
563. Computing Scale, much improved, containing any two of the following scales, $1,2,3,4,5$, and 6 chains to the inch.
£0 180
564. Universal Computing Scale, as used in H. M. Tithe Commission Office, containing $1,2,3,4,5,6$ chains to the inch, and 6 inches and 5 feet to the mile complete in mahogany case
£3 00
565. Extra Scales made to the above

040
566. Computing Horn Paper $10,20,30,40,50$, or 60 per sheet

040
567. Universal Scale, builders', 12 -inch., containing 14 scales, boxwood, 2s. 6d.; ivory, 8s. 6d.
568. Universal Scale, architects' and engineers', 12 -inch., containing 17 scales, boxwood, 5s., ivory, 12s. 6d., 18 inch. boxwood, 8s. 6d.
569. Tebay's Universal Planning Rule, ivory, 16s. 6d.; boxwood, 8s. 6d.

Marquois Scales.-In mahogany cases, as supplied to the Cadets' College, at Sandhurst:

Engineer's Slide Rules.-Newest design.

579. Routledge's, ivory, with book, £1 10s.; boxwood . . 076
580. Hawthorn's, ivory, with book, £2 10s.; boxwood . . 0116
581. Iloare's Double Slide Rule, boxwood, with book . . 086
582. Bailey's Double Slide Rule 150
583. Improved Slide Rule, 24-inch., with single, double, and cube radius, new gauge points, designed and arranged by James Watt and Co. $\begin{array}{llll}1 & 1 & 0\end{array}$
584. Engineer's Rule, 2 feet, 4 fold, designed by Col. Hyde Mint, Calcutta, beautifully made, with German silver slides, one with calipet end, fitting flush with end of rule, and divided by vernier to 001 of inch., with metre scale and Birmingham wire gauge, improved gauge points, and engraved on the joint, most complete
£2 0

Pocket Rules:

586. 1 foot, 4 fold, ivory, 2s. 6d. to 5s. 6d.; ditto, boxwood, 1s. 6d. to $£ 0 \quad 26$
587. 2 foot, 4 fold, ivory, 6s. 6d. to 11s. 6d.; ditto, boxwood, 2s. 6d. to 0046
588.2 foot, 4 fold, ivory, bevelled edges, with chain scales for engineers, 15 s . to 21 s .; boxwood, ditto, 6s. 6d. to 9s. 6d.
588. Sectors, ivory, 4s. to
£0 $8 \quad 6$
Every variety of scales, English and foreign, ivory and boxwood, including Ordnance and Board of Health scales, kept in stock and made to order.

STATION POINTERS.

Station pointer or double arm protractor, with which two angles relative to a base may be taken together; a convenient instrument for plotting or sketching in new countries where magnetic bearings may lead to error, from local and various causes unknown.

590. 12 inch., with 6 -inch. circle £6 $660 \mid 593.24$ inch., with 7-inch. circle $£ 8100$ 592. 18 inch., with 7-inch. circle | 7 | 0 | 0 | 594. | 30 inch., with 8 -inch. circle | 11 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 595. 36 inch., with 10 -inch. circle, divided on silver to 1 minute $£ 1616 \quad 0$

PENTAGRAPHS,

As supplied to the Indian Government, much improved, for copying or extracting portions of plans of land to a reduced scale, enlarging drawings, etc.,
complete in mahogany cases.

597. 24 inch. . . $\quad 5 \quad 0 \quad 0 \mid 599.36$ inch. . . $\quad 7100$ 600. 42 inch. (fg. 600), p. 76 . . . £8 180
602. Lidograph, Professor Wallace's, admirably adapted for reducing plans, as in proportion 1 to 2, 9 to 25 , etc., 30 -inch., $£ 10 \quad 0 \quad 0$; 36 -inch. £11 176

Fig. 600.

Fig. 614.

Fig. 621.

PROTRACTORS,

ivory, six inch.

 604. Same, more fully divided | 0 | 4 | 0 | 606 . Same, with roller | 0 | 15 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 607. IIorn Semicircular (fig. 607), p. 77, 3 to 8 inch., 0s. 6d. to . 020

608. Horn Circular, 2s. Od. to

Semicircular (fig.609), p. 77.

	Brass.	German Silver.		Brass.		German Silver.
609. 6 inch.	£0 7	£0 100	611. 8 inch.	£0 11	0	$£ 015 \quad 0$
610. 7 inch.	09	0120	612. 9 inch.	013	0	017 0
613. 10 inch.				015	0	100
614. 8 inch.,	vernier	in mah	ny case (fig.	40	0	415

Circular.

620. 6 inch., with one vernier, reading to one minute, in mahogany case :
$\begin{array}{ccc}\text { Brass. } & \text { Brass divided on Silver. } & \text { German Silver. } \\ £ 218 & £ 3126 & £ 3100\end{array}$ £2 18 0
£3 $12 \quad 6$

Brass Circular Protractors,

Furnished with clamp and tangent screws, folding arms, and double verniers, divided to twenty-seconds, in mahogany cases (fig. 621) :

$$
\begin{array}{r}
\text { Divided on silver } \\
\text { £5 } 15 \\
6 \\
6 \\
15
\end{array} 0
$$ £5 00

$6 \quad 0 \quad 0$
6150
621. 6 inch.
622. 7 inch.
623. 8 inch.
624. Architects' Curves in great variety, from 6s. 6d. the set of twelve (fig. 624).

Fig. 624.

Fig. 635.

Fig. 642.

Fig. 669.

Fig. 669*.

Fig. 607.

Fig. 609.

Radii or Railway Curves of the strictest precision.
625. A Set of Fifty Railway Curves in cardboard, from 5 to 110 inches radius, in solid mahogany case.
£2 20
626. A Set of One Hundred Railmay Curves, from 1 inch. to 25 feet radius in solid mahogany case £4 0
627. A Set of One Hundred Railway Curves, in pear-tree or mahogany, in strong 628. A Set of Fifty Railway Curves, ditto, ditto . . 2180
629. A Set of Fifty Railmay Curves, in zinc or brass, in extra strong mahogany case
£6 $10 \quad 0$
630. Slopes, for railway work, set of eight, 6 inch., 9 s . ; set of eight, 8 inch., 11 s .
632. Mechanical or Ship's Curves. The Admiralty or Trinity House set of twentyfive, in pear-tree or vulcanite .
£1 10
633. Ditto, ditto, in brass 250
634. Batterns Lancewood, for ship draughtsmen, set of twelve

0106

PARALLEL RULES,

Ebony (fig. 635).
635. 6 inch.

£0	0	9	638.15 inch.
0	1	6	639.18 inch.
0	2	3	640.21 inch.

$$
\begin{array}{rrr}
£ 0 & 3 & 6 \\
0 & 4 & 3 \\
0 & 5 & 0
\end{array}
$$

636. 9 inch.

0616 639. 18 inch.
637. 12 inch.
641. 24 inch.

$$
£ 060
$$

Rolling Parallel Rules, ebony (fig. 642) :

	Plain edges.	Divided			Plain edges.	Ivory edges.	
642. 6 inch.	046	07	0	644. 12 inch.	086	012	6
643. 9 inch.	066	09	6	645. 15 inch.	0106	015	6
46. 18 i					013		

647. Rolling Parallel Rules, ebony, with brass bridges, from 6 to 9 inches long, per inch, 1s.; 12 to 24 inches long, per inch, 11 d.
648. Rolling Parallel Rules, ebony, with brass bridges and divided edges, from 9 to 12 inches long, 1s. 1d. per inch.; 12 to 24 inches long, 1s. per inch.

Fig. 656*.
Fig. 656.
649. Rolling Parallel Rules, brass, from 6 to 9 inches long, per inch, 1s. 10d.; from 12 to 24 inches long, with lift screws, per inch, 1 s . 10 d .
** The above (649), with divided edges, the figures engraved, 6 d . per inch extra.
650. Rolling Parallel Rules, German silver, from 6 to 9 inches long, 2s. 8d. per inch; from 12 to 24 inches long, with lift screws, 2 s . 6 d . per inch ; if with divided edges, 4 d . per inch extra.
652. Captain Field's Parallel Rule, an improved and simple means of setting off ship's courses and bearings on charts, with instructions.
15 inch.
£0 76
£0 96
24 inch.
£0 130

Gaptain Field's Improved Rolling Parallel Rule, engine divided to degrees and compass points:

T SQUARES, EBONY.

Shifting bevel piece Plain heads. and clamp screw.

Plain heads. (Fig. 656).

Shifting bevel piece and clamp screw. (Fig. 656*).
656. 18 inch.
657. 24 inch. 658. 27 inch. (F.
£0 46 £0 36
046

056 662. 30 inch.

056
066

659. 33 inch.	\&0	6	8
660. 36 inch.	0	7	6
661.	42 inch.	0	9
6			

£0 86

The above sizes, in mahogany, with plain heads, one-third less in price than the ebony, *** The above sizes, in mahogany, with plain head,
T Drawing Square, with mahogany angular blade, solid ebony edges, double rabitted, and screwed on :
663. 18 inch.

663* 24 inch.
664. 30 inch.

£0	3	0
0	4	6
0	5	6

This plan allows the set square to pass over the head and the edge of the drawing board, it is very strong, easily repaired, and has been more commended than any other kind of square.
669. Angles and Set Squares, in every variety, from 3s. 6d. per doz. (fg. 669, 669*), p. 77.

Set Squares, 30° or 45°, in mahogany frames, with solid ebony edges and corners keyed with brass :

674. 18 inch.
£0 $8 \quad 6$
These angles can be made to any required size, and are warranted for all climates.
675. Set Squares, improved vulcanite, very hard, will bear washing, and suitable for any climate $45^{\circ}, 4$-inch., 10 d . ; 5 -inch., 1s. ; 6 -inch., 1 s .3 d. ; 7 -inch., 1 s .4 d .; 8 -inch., 1s. 8d.; 9-inch., 2s. 2d. ; 10-inch.
£0 30
675*. Set Squares, improved vulcanite, as above, 60°, 4 -inch., $9 \mathrm{~d} . ; 5$-inch., 10 d .; 6 -inch., 1s. ; 7-inch., 1s. 3d.; 8-inch., 1s. 4 d. ; 9-inch., 1s. 8d.; 10-inch. £0 22
Straight Edges, for architects and engineers, with one edge bevelled.
Stratgit Edge, in mahogany or pear-tree:
 685. 72 inch.
£0 46
Straight Edge, ebony edged.
 695. 72 inch
£0 66
Straight Edaes, best bright steel.
 705. 72 inch.
706. Drawing Board, 脜-inch, pine, with clamps 1s. 6 d .
707. Drawing Board, $\frac{5}{8}$-inch, brass slot ledged 2s. 6d.
708. Drating Board, improved ebony edge \mid 5s. 0d. 8s. 0d. 12s. 6d. 18s.
709. Drawing Board, 5 feet 10 inch. by 3 feet, 30 s .; ditto, 5 feet 10 inch by 4 feet 2 inch.
£2 20
710. Tracing Board, plate-glass, rising frame, $23 \times 16,30 \mathrm{~s}$.; $31 \times 23,40 \mathrm{~s}$.; 42×29
£2 100
712. Trestles of solid make, in hard wood, 14s. and 18s. the pair.

MATHEMATICAL DRAWING INSTRUMENTS

Arranged at first in cheap sets, beginners seldom requiring separate instruments; each instrument, however, may be had separately, both of the best and plain kinds, care is taken to combine with each set only such parts as are most useful in proportion to the price; this rule extends to the finest sets and instruments enumerated; the arrangements of joints and needle points being of the latest improved, and the pens such only as are found to give the highest satisfaction.

Fig. 713.
Fig. 724.

Fig. 717.
713. Set, consisting of compasses, usual size, with pen and pencil point, black lead pencil, and divided scale ($f \mathrm{fg} .713$), 3s. 6d., or in mahogany case, 4s. 6d.
714. SET, consisting of compasses with pen and pencil point as above, one pair of short compasses, and boxwood scale in black pocket case, 4 s .6 d ., or in mahogany case £0 56
715. Set, with large and small compasses, bow pen and pencil point, extra bow pen, drawing pen, dotting wheel, black lead pencil, and divided scale in mahogany case
£0 $8 \quad 6$
716. SET, with large and small compasses, etc., etc., as No. 715, but better finished, with bow compass and horn protractor extra . . . £0 126
717. Set, as No. 716, with ivory scale and ebony parallel rule extra, in fish skin case (fig. 717), 15s. 6d., or in mahogany case with lock . $£ 0176$
718. SET, in mahogany case, with compasses, ink and pencil points, 5 -inch. divider, bow pen and pencil, drawing pen, pencil, sector, protractor, ebony parallel rule, and steel key
£1 10
Well suited, in brass or electrum, for schools or public institations.
719. Set, as No. 718, with instruments in electrum
£1 $8 \quad 0$
720. Set, as used at Addiscombe Training College, with 6 -inch. best brass compasses with sector joints, ink and pencil points, lengthening bar, bow pen and pencil, 5 -inch. best divider, large and small drawing pen, knife key, military protractor, sector, parallel rule, and set of marquois scales, in 13 -inch. polished mahogany box with lock and key
£2 60
722. SEt, as above, with instruments in electrum, . \quad £2 $12 \quad 6$ and £3 50
723. SET of electrum instruments in rosewood case, lined with silk velvet, containing 6 -inch. compasses, best sector joint, with ink and pencil points and lengthening bar, bow pen and pencil, set of three spring bows, hair divider, large and small drawing pen, pricker, knife key, and three ivory scales
£3 50
724. Set of Electrum Instruments, in rosewood case, 7 -inch.; with silk velvet lining, bound with electrum for warm climates, with best tumbler lock and key, containing 6 -inch. compasses, pen and pencil points, all with best sector joints, and improved points for needles, bow pen and pencil, lengthening bar, hair divider, set of three spring bows, large and small drawing pen, pricker, and knife key, with either three architect's or engineer's scales, or ivory sector, protractor and parallel rule (fig. 724)
£5 00
725. Set, the same as No. 724, but with case not bound and the points not to hold needles
£4 106
726. Set of best electrum instrunerits in walnut or rosewood case, lined with silk velvet and bound with electrum, with best tumbler lock and key, containing improved 6 -inch. compasses with pen and pencil points, bow pen and pencil with best double joints and improved points for needles, lengthening bar, improved 5 -inch. hair divider, set of three spring bows, with points to hold needles, proportional compasses engine divided, large and small drawing pens, railway or road pen, pricker, knife key, with three best ivory scales for architects or engineers, or ivory protractor, sector, and rolling parallel rule
£7 $15 \quad 0$
727. Set of Superior Electrum Instruments, in walnut case, bound with electrum, with silk velvet lining, two trays, and Hobbs's patent lock and key, containing 6 -inch. compasses with pen and pencil points, bow pen and pencil all with best double joints and improved points for needles, long and short lengthening bar, 5 -inch. hair divider, set of three spring bows with improved points for needles, best proportional compasses engine divided, railway or road pen, three assorted drawing pens, pricker, knife key, improved vulcanite angles and curves, best ivory protractor, rolling parallel rule, sector, and set of three metrical or duodecimal scales
£10 150
Electrum instruments of highest finish and quality in 13-iuch. magazine cases, Nos. 728 or 729 being admirably adapted for public presentation.
728. Set of Electrum Instruments, in handsome walnut case, bound with electrum with best silk velvet lining, two trays, and Hobb's patent lock with two keys, containing 6 -inch. compasses, bow pen and pencil, all with double joints and improved points for needles, pen and pencil points, with long and short lengthening bar, needle pointed beam compasses, with fine screw adjustment, triangular compasses, 9 -inch. proportional compasses engine divided, $4 \frac{1}{2}$. inch. best double jointed compasses with ink and pencil points, and improved needle points, 5 -inch. divider, 4 -inch. best hair divider, three best spring bows, with improved points for needles, best railway or road pen, wheel pen with improved set of dotting wheels, four assorted drawing pens, needle pricker, screw keys for instruments, 6 -inch. circular protractor, six 12 -inch. best boxwood scales with offsets, 12 -inch. electrum rolling parallel rule, with metrical and duodecimal divisions, set of angles and curves, ten cakes of colors, Indian ink, camels' hair and sable brushes and pallet
£21 0
729. Set of Electrum Instruments, in handsome walnut case, bound with electrum and lined with best silk velvet, with drawer for colors, two trays, and best patent lock with two keys, containing 6 -inch. compasses, bow pen and pencil all with double joints and improved points for needles, pen and pencil points, with long and short lengthening bar, needle-pointed beam compasses, with fine screw adjustment, 9 -inch. proportional compasses engine divided, $4 \frac{1}{2}$-inch. best double jointed compasses with ink and pencil points and improved needle points, 5 -inch. hair spring divider, three spring bows, three drawing pens assorted, dotting wheel pen with set of wheels, railway or road pen, screw keys for instruments, needle pricker, tracer, six architect's scales, or six chain scales with offsets, 12 -inch. rolling parallel rule with electrum bridge and ivory edges, divided metrically or duodecimally, set of angles and curves, and horn protractor, with ten cakes of color, Indian ink, pallet, and best sable hair brushes
730. Set of Electrum Instruments, in handsome walnut case, bound with electrum, best patent lock, and silk velvet lining, containing 6 inch. compasses, with double joints and improved points for needles, pen and pencil points and lengthening bar, 4 -inch. double jointed compasses with pen and pencil points, and improved point for needles, bow pen and pencil with double joints and needle points, set of three spring bows, hair spring divider, beam compass heads with ink and pencil points and fine adjustment, proportional compasses engine divided, three assorted drawing pens, dotting wheel pen with set of wheels, railway or road pen, needle pricker, tracer, knife key, six 12 -inch. best boxwood chain scales with offsets, 12 -inch. rolling parallel rule with ivory divided edges, protractor, angles and curves .
£9 150
732. Set of Electrum Instruments, in rosewood, walnut, or mahogany case with silk velvet lining and Hobbs's lock and key, containing 6 -inch. best compasses with double joints, pen and pencil points and lengthening bar, hair spring divider, bow pen and pencil with double joints, proportional compasses engine divided, beam compass heads with ink and pencil points and fine screw adjustments, three spring bows, three drawing pens assorted, railway or road pen, needle pricker, tracer, knife key, 12 -inch. rolling parallel rule with ivory edges, set of three chain scales with offsets, horn protractor, angles and curves
£7 126
733. Set of Electrum Instruments, in rosewood or mahogany case, with silk velvet lining, and tumbler lock and key, containing 6-inch. compasses with best sector joints, pen and pencil points, lengthening bar, bow pen and pencil, railway or road pen, hair spring divider, needle pricker, large and small drawing pen, set of three spring bows, beam compass heads with pen and pencil points, and knife key, 12 -inch. ivory engineer's or architect's scale, 12 -inch. rolling parallel rule, set squares, curves, and horn protractor £5 $10 \quad 0$

Abstract

Sets of Instruments, in pocket cases of best Russian or morocco leather, with best electrum instruments, assorted to order at corresponding prices.

Military and Govermment Sets of Cases as follow:-
734. Set of Instruments, in skin cases (Sappers' and Miners') . $\begin{aligned} & \text {) } 12 ~ \\ & 6\end{aligned}$
735. Set of Instruments, East India Company's pattern . . 140
736. Set of Instruments, Woolwich pattern . . . 1126
737. Set of Instruments, Ordnance pattern . . . 2150
738. Set of Instruments, Admiralty pattern . . . 310 o
*** The above five sets of instruments, in German silver will be one third extra.

DRAWING INSTRUMENTS WITHOUT CASES.

739. Drawing Instruments without Cases, half-set, viz., compasses 6-inch. or $4 \frac{1}{2}$ inch. with best sector joint, ink and pencil points, lengthening bar and knife key.
Brass.

Electrum.
£0 176
Extra Quality.
£1. 20

Fig. 776.
740. Drawing Instruments without Cases, half-set, as No. 739, with one knee-joint to compass (fig. 740).

Brass.
£0 $15 \quad 6$

Electrum.
£1 20

Extra Quality. £1 50
742. Drawing Instruments without Cases, half-set, as above, with double joint to compass (fig. 742), p. 84.

743. Drawing Instruments without Cases, half-set, as above, best double joints with improved points for needles.
Electrum.
Extra Quality. £1 $10 \quad 0$
£1 160
744. Drawing Instruments without Cases, half-set, with 9 -inch. compasses, points, etc., as No. 739, for large drawings.

\[

\]

745. Plain Compasses, 6 -inch., with ink and pencil point only (fig. 745), 1s. 8d., 2s. 6d., 5 s ., and 7s. 6d. each.
746. Tubular Compasses, 5 or 7 -inch., with improved slides and best joints in electrum £1 126
747. Tubular Compasses, with improved points for needles \quad. $117 \quad 6$
748. Maroon Case for ditto, if required . . . 0 4 6
749. Triangular Compasses (fig. 749), 5 -inch., best electrum with movable bar £0 $17 \quad 6$
750. Beam Compass Heads; or Trammels, electrum, with steel points and ink and pencil points £0 106
751. Beam Compass IIeads, with improved needle points and screw adjustment £0 $17 \quad 6$
752. Beam Compass Heads, as used in the India Office, with eccentric adjustment f2 20

Fig. 759.

Fig. 754.

Fig. 742.
754. Beam Compass Heads, Ordnance pattern, divided to read to 01 inch. (fig. 754).

\[

\]

756. Electrum Tubular Beam Compass, with screw adjusiment, and improved points for needles £2 50
757. Proportional Calipers, 12 -inch., £2 5s.; 9 inch. . . 1180
758. Proportional Compasses, 6-inch., electrum, fully divided (fig. 759) 150
759. Proportional Compasses, with adjustment . . . 1126
760. Proportional Compasses, 9-inch., electrum fully divided . 1150
761. Proportional Compasses, with adjustment . \quad. 80

If in maroon case, extra, 2 s .6 d . and 3 s .6 d .
764. Wholes and Halves or Bisecting compasses in electrum

110

POCKET COMPASSES.

765. Pillar Compasses, in electrum, with reversing ends, forming a complete set of drawing instruments, best quality only . . 51
766. Pillar Compasses, with lengthening bar

1150
767. Napier Compasses, in electrum, with ink and pencil point to revolve, best
768. Napier Compasses, in silver

220
769. Pocket Divider, with sheath, 3 to 5 inches
£0 46 to $0 \quad 5 \quad 6$

DIVIDERS OR COMPASSES.

770. DivideaSectorJoint (fig.770), p. 83, best quality, brass, 2s. 6d.; electrum 046
771. Divider Sector Joint, with hair spring, brass, 5 s . 6 d . ; electrum

772. Opisometer or Map Metre, very convenient for measuring curved distances on
maps (in case)
773. Six Very Best Drawing Pens, assorted, to fit one handle in maroon case £0 $13 \quad 6$
774. Lithographic Crow Quill or Mapping Pen, with handle, per dozen $0 \quad 2 \quad 0$

Particular attention is requested to the excellence of all the above pens and the constant satisfaction they are giving.
790. Centrolinead, improved, 42-inch. bar, with brass joints and studs $\begin{array}{ll}12 & 6\end{array}$
792. Semi-elliptic Trammels, of best make, brass, £2 10 ; electrum $\quad 3 \quad 3 \quad 0$
796. Camera Lucida, and Claude Lorraine Glasses, see Nos. 1567 and 1572.
797. Eidograph, see No. 602.
798. Pentagraph, see Nos. 599 to 600.
799. Drawing Boar ds, see Nos. 706 to 710.
800. Paper and Colors, see index.

THE METRIC SYSTEM.

On account of the importance attached by scientific and commercial men to the use rf the metric system of weights and measures, and its gradual extension throughout the world, and at the request of James Yates, Esq., F.R.S., the oldest and most active vice-president of the association formed to aid in its universal adoption, the following list of articles is here inserted. They are nearly all of English manufacture, and are selected from an immense variety on account of their fitness for teaching the system and their adaptation for use in scientific pursuits, in commerce, foreign and domestic, and in trades and employments of every kind.

WEIGHTS.

801. Brass Weights, viz., 1 kilogram to $\frac{1}{2}$ milligram, very exact, in mahogany case, per set
£3 150
802. Beass Weights, viz., the $\frac{1}{2}$ kilogram to $\frac{1}{50}$ of a gram, in mahogany case, per set £3 30
ou3. Set of Weights, $\frac{x}{2}$ gram with its subdivisions to $\frac{1}{1000}$ of a gram, platinum, in ebony case, $£ 110 \mathrm{~s}$. ; aluminium in mahogany case
£1 50
803. Weights, from 50 grams to 1 milligram, for scientific chemists 1150
804. Nest of Brass Weights from the $\frac{1}{2}$ kilogram to the gram . 0100
805. Set of Cast Ibon Weights, viz., 5, 3, 2, 1 kilogram. . 0106

Several of the coins of the metric system are weights, e.g., the franc, which is silver, weighs 5 grams. The piece of 20 centièmes, also of silver, weighs 1 gram. The centième, which is bronze, weighs 1 gram. (See Tarnier's "Tableaux du Système Métrique.")

MEASURES OF CAPACITY.

807. Rodwell's Cubic Decimetre, showing the origin of the litre . £0 60
808. Cubic Decimetre, with top layer divided into 100 cubic centimetres 1000 809. Litre, Double Litree, and Double Decilitre, in wood, mounted with tinplate
£0 10
809. Litre, Half Litre, Double Decilitre, Decilitre, Half Decilitre, Double Centilitre, of pewter £0 76
810. Litre Wine Bottle, 0 0 6
811. Glass Bottles, litre and half-litre.
812. Apothecaries' Measure, cubic centimetres compared with fluid ounces, £0 10
813. Hectolitre, principal measure for corn, etc.
814. Dowling's Synoptic Table, showing the measures and weights of the system in their real dimensions, and in their relation to one another, with hand-book £0 150

MEASURES OF LENGTH.

817. British Association Mural Standard, showing the metre and yard in apposition, for the comparison of measures in public situations, on white porcelain, in a mahogany frame
£5 00
818. Metre, consisting of five links, which are connected by four hinges with springs of blue steel
£ 76
819. Rickabd's School Metre, with printed questions and answers. $\quad 0 \quad 6 \quad 6$
820. Metre, with yard graduated, paper or tape . . . 001
821. Metre, with hinges, four fold, of boxwood . . . 030
822. IIalf Metre or Cubit, four fold, of boxwood

026
824. Metre, of steel riband, in maroon case, roulette

016
825. Measuring Tape, with steel wire inserted, double dekametre, or chain (i.e. 20 metres) or 100 links £0 76
826. Land Chain of 100 links or double decimetres, $=20$ metres, of varnished steel, with appendages of brass
£0 120
827. Link, or Double Decimetre, of hard steel, graduated to fifths of millimetres,
828. Cubit, or Half Metre, graduated to fifths of millimetres, of hard steel 0050
829. Line, or Double Decimetre, of pearwood, folding with a hinge

016
830. Iland, or Decimetre, solid £0 1 o
832. Hand, or Decimetre, divided with hinge so as to fold . . 010
833. Link, or Double Decimetre, bevelled, graduated to half millimetres, scale of three links, with slide £0 6
834. Æsthestometer, for measuring sensation . . . 110
835. The Anglo-French Ready Reckoner or Guide to the Metric System with comparative tables of capacity, weights, and lineal measure. By R. Rickard, Professor of Mathematics, at King Edward's School, Birmingham fo 10

Fig. 840.

SUN DIALS

Vertical and horizontal, adapted to every position and latitude, of various forms.
836. Magnetic Dials, for the pocket, suitable for any latitude, in neat polished hardwood box, with cover and best agate cap (fig. 836), p. 89, 2-inch. \&C 50
837. Magnetic Dials, in polished mahogany case . . . $0 \quad 5 \quad 6$
838. Mignetic Dials, in bronzed round metal case . . . $0 \quad 6 \quad 6$
839. Magnetic Dials, plated or gilt, 5s. 6d. and 7s. 6d. extra.

The above are handy and strong, and well suited for travellers ; a stop to either 1s. extra.
840. Universal Sun Dial, for any position north or south of the line, with folding arc and gnomon, by which it is set at pleasure to any latitude (fg .840), p. 89, in morocco case, $2 \frac{1}{2}$-inch. divided circle, £1 40 ; 3 -inch., £1 60 ; $3 \frac{1}{2}$-inch. £1 140
842. Universal Sun Dial, with two levels, adjusting screws, bar needle agate cap and stop, divided circle, $2 \frac{1}{2}$-inch., £2 100 ; 3 -inch., £2 180 ; $3 \frac{1}{2}$-inch. £3 80
843. Universal Sun Dial, with improved gnomon, bar needle, two levels, and adjusting screws, in morocco or mahogany case, $2 \frac{1}{2}$-inch., divided circle, £3 80 ; 3-inch., £3 150 ; 31 -inch., £4 $40 ; 4 \frac{1}{2}$-inch. $£ 5 \quad 5 \quad 0$
In ordering either of the above, it should be stated whether it is for north or south latitude.
844. Universal Sun Dial, as above, but divided to serve for both latitudes : $2 \frac{1}{2}$-inch., divided circle, £4 4 ; 3-inch., £4 12 ; $3 \frac{1}{2}$-inch., £5 ; $4 \frac{1}{2}$-inch. $£ 6 \quad 6 \quad 0$
845. Universal Ring Sun Dial, in the form of a ring, answering for both latitudes, in polished mahogany case, 3 inch. to 5 minutes, $£ 114 ; 4$ inch., $£ 22$; 6 inch. to 2 minutes
£2 150
846. Crucial Sun Dial, in bronze (fig. 846), p. 88. In this interesting arrangement the figures and divisions are marked on the sides of the cross, the angles and corners serving as the gnomon, the adjustment consists in simply raising it to the co-latitude of the place in which it is used, it thus becomes truly universal, and suited alike to both latitudes, 12 inch. by 9 inch.
$\begin{array}{lll}£ 8 & 8 & 0\end{array}$
847. Crucial Sun Dial, as above, $3 \frac{1}{2}$ inch. by $2 \frac{1}{2}$ inch., in leather case for the pocket £2 100

IIorizontal Sun Dials, for Gardens or Lawns, brass.

848. 6 inch., divided to 5 minutes $£ 1$| 1 | 0 | 850 . 12 inch., divided to 2 minutes $£ 4$ | 4 | 0 |
| :--- | :--- | :--- | :--- | :--- | 849. 8 inch., divided to $5 \quad, \quad 210 \quad 0 \mid 852.15$ inch., divided to $2 \quad, \quad 5150$

IIorizontal Dials, very superior, with Equation Table, brass.
 854. 12 in., divided to 1 minute $5 \quad 5 \quad 0 \mid 856.18$ in., divided to 1 ,, 12150 *** Pedestals for dials and vertical dials made to order.

NAUTICAL INSTRUMENTS. SEXTANTS AND QUADRANTS,

Including such only as combine the latest improvements and are in constant general use. The metal quadrant having greatly supplanted those in ebony, has in no way however lessened the care given to their construction; the rigidity and seasoning of the wood in these instruments will therefore be found to adapt them to the utmost for the varying climates in which they are used.
857. Pillar Sextant (superior), 7-inch. radius, divided on silver, with verniers reading to ten seconds, four telescopes, spring tangent screw, seven neutral shades, star finder and swing reflector, very superior, in best polished mahogany case
£15 100
858. Pillar Sextant, as above, with platinum arc and gold verniers $\quad 17 \quad 10 \quad 0$
859. Best Plain Pillar Sextant, with four telescopes, best colored shades, divided on silver to ten seconds, with swing reflector
£12 00
860. Metal Sextant, with bridge handle, very superior, with capped adjustment, spring tangent screws, four telescopes, seven shades neutral tint, divided on silver to ten seconds, with swing reflector, in polished mahogany case \quad £11 10.0 If with star finder, 12s. 6d. extra.

862. Metal Sextant, with bridge handle, four telescopes and seven shades, divided on silver to ten seconds, with swing reflector, in polished mahogany case ($f \mathrm{fg} .862$) £10 $10 \quad 0$
863. Metal Sextant, best triangular oval or diamond limb (fig. 863), complete as above
£9 50
864. Metal Sextant, plain, flat limb, with three telescopes, seven shades, divided on
silver to ten seconds, in mahogany case, a good plain practical instrument silver to ten seconds, in mahogany case, a good plain practical instrument
865. Ebony Sextant, with best centre, three telescopes, seven shades and ground glass reflector, divided on ivory to fifteen seconds, in polished mahogany case £4 150
866. Box Sextants, see Surveying Instruments, p. 70.
867. Ebony Ilandle Quadrant or IIalf Sextant, divided on ivory to half minutes, with best centre, seven shades and vertical adjustment, in mahogany case £3 150
868. Ebony Handle Quadrant, or Half Sextant, with plain centre $\quad 3126$ 869. Best Metal Quadrant, or Half Sextant, divided on silver to fifteen seconds, with best centre, seven shades, reflector, and adjusting screw, in mahogany case .
£4 150

> 870. Metal Quadrant, divided on silver to fifteen seconds, with best centre, shades, etc., as above
872. Metal Quadrant, with plain centre

450
873. Ebony Quadrant, plain, divided on ivory to one minute, in polished mahogany
874. Ebony Quadiant, double tangent (fig. 874)

220
875. Ebony Quadrant, double tangent, divided to one minute, with three back shades, and vertical screw adjustment, in mahogany case . £2 10 o

Fig. 887.

Fig. 919.

Fig. 897.

Fig. 880.

ARTIFICIAL HORIZONS.

876. Artificial IIorizon, of perfectly parallel black glass, with level and adjusting screw, in mahogany case, for the pocket, $2 \frac{1}{4}$-inch. reflector, $£ 110 \mathrm{~s}$. ; $2 \frac{1}{2}$-inch. £1 150
877. Abtificial Horizon, plain, mercurial, with hard-wood bottle, trough, ete., in mahogany case
£2 150
878. Artificial IIorizon, mercurial, of the best construction, Ordnance pattern, metal-roof, trough and iron bottle £3 150
879. Abtificial Horizon, as above, smaller size

350

SHIPS' COMPASSES AND BINNACLES.

The following ships' compasses, with hard sapphire and ruby centres, are constructed and arranged with the utmost care to adapt them for the altered conditions of ship building, those in particular described as for iron ships are found by the increasing sale to be superior in permanence and power of magnetic adjustment to any other arrangement.

Ship-Steering Compasses, with brass bowls, in gimbals and strong oak cases. (fig. 880):
880. 6-inch. outside

£0 10 0	884.	9 -inch. outside

£0 150

883. 8-inch. " . 01300886 11-inch. ", . 0180

The same, with wooden bowls instead of brass, one-half the price.
887. IIanging or Tell-tale Compass, with beam plate and clamp screws, large size $6 \frac{1}{4}$ inch. card (fig. 887) £1 139
888. Hanarna or Tell-tale Compass, mid size, 5 -inch. card . 110
889. Hanging or Tell-tale Compass, small size, 4-inch. card. . $017 \quad 6$
890. Amplitude Compass, in oak box, with shifting sights for land bearings, 10 -inch.,
£1 40 ; 11 -inch.
£1 60
892. Storm Compass, with bell gimbals, in oak box, 10 -inch, fl 40 ; 11 -inch.,

907. Dipping Needle Compass, large size, with storm card and cone centre, in oak
908. Dipping Needle Compass, with double dipping needle, transparent storm card and cone centre, $6 \frac{1}{2}$-inch.
909. 7 -inch. . . $£ 200 \mid 912.8$-inch. . . 2100
910. $7 \frac{1}{2}$-inch.

2	5	0	$913.8 \frac{1}{2}$-inch

300
914. Best Brass Arms (square form), from Nos. 897 to $913,6 \mathrm{~s}$. to 7 s.6d. per pair extra.
915. Best Prismatic Azimuth Compass (Sir Snow Harris'), with ring of pure copper, revolving wheel and edge bar needle card with sapphire centre cap, in mahogany box, particularly suited for iron vessels. Though slow in action, this is perhaps the most reliable and permanent compass made . $£ 10 \quad 0$
916. Transparent Compass, for iron vessels, with pure copper ring, $7 \frac{1}{2}$-inch. card, best needle and sapphire centre cap
£5 50
917. Steering Compass, for iron vessels, with pure copper ring, in oak box, $7 \frac{1}{2}$-inch. card, best needle, etc., as above
£4 40
918. Best Prismatic Azimuth Compass, Admiralty pattern, with divided ring and shifting sights, in mahogany box (fig. 918), p. 90 . . £5 50
919. KniaHt's Azimuth Compass, with folding sights, in mahogany box (fig.919), p. 90
£4 $10 \quad 0$
920. Best Tripod Stands, for either of the above compasses . 140
923. Plain Azimuth Compass, in oak case 2150
924. Liquid Compass, much improved, especially suited for iron steamships, with best needle and sapphire centre, in oak case, 5 -inch, card .
£3 $18 \quad 0$

Boat Compasses, small and very portable, brass, with gimbals, agate caps, etc. : | 927. No. 1, card, $1 \frac{1}{4}$-inch. \quad £0 126 | 629 . No. 3, card, 2 -inch. | £0 166 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 928. No. 2, card, $1 \frac{1}{2}$-inch. $01500 \mid 930$. No. 4, card, $2 \frac{1}{2}$-inch. 0176 932. No. 5, card, 3-inch.

$$
£ 1 \quad 10
$$

For surveying compasses, see pages 66 and 67 .
For other boating compasses and pocket and trinket compàsses, see pages 68 and 69.
933. Best Steel Needles, for ships' compasses, from 3 to $6 \frac{1}{2}$ inches, 6 s. per doz. ; 7 to $7 \frac{3}{4}$ inches., 7 s . per doz. ; 8 inches, 7 s . 6 d . per doz. ; 9 inches, 8 s .6 d. per doz.
934. Metal Caps with best agate centres of superior hardness for the above needles 9s. 6d. per doz.
935. Best Metal Capz, with ruby centres, per doz.
£0 126

Fig. 956.

Fig. 955.

Fig. 954.

Fig. 953.
936. Best Metal Caps, the finest and hardest made, with sapphire centres, 1s. each extra
937. Hard Metal Caps, 4s. 6d. each extra.
938. Best Mounted Talc Compass Cards, covered, with agate caps, £1 1s., £1 4s., and £1 8s. per doz.
939. Talc Flies for Ships' Compasses, not mounted.
940. 9 -inch. . £0 7×1 944. $7 \frac{1}{2}$-inch. . £0 50

943. 8 -inch. . $0 \quad 5 \quad 6 \quad 1946.6 \frac{1}{2}$-inch. . $0 \quad 4 \quad 6$
950. Ships' Chronometers, eight days, by the best London makers $\quad £ 42 \quad 0 \quad 0$
951. Best Brass Binnacle Tops, with lamps attached, of the helmet, globe, or lighthouse form, for ships’ binnacles, 9 -inch., £4 4s.; 10 -inch., £4 10 s.; 11-inch.
£5 $0 \quad 0$
952. Best Binnacle Tops, as above, without lamps, 9 -inch., £2 5 s .; 10 -inch., £2 10 s ; 11-inch.
£2 $18 \quad 0$
953. Ship's Binnacle, best make, of French polished mahogany (fig. 953), with much improved lanterns, lamps and shade with deck plates and bolts, $10-\mathrm{inch}$., $£ 74 \mathrm{~s} . ; 11$-inch., $£ 717 \mathrm{~s} .6 \mathrm{~d}$. ; 12 -inch., $£ 810 \mathrm{~s}$. ; 13 -inch.
£9 $10 \quad 0$
954. Ship's Binnacle, dolphin pattern, all brass, japanned and gilt (fig. 954), with improved lamps, etc., as above, 11 -inch., £10; 12 -inch., $£ 10$ 10s. ; 13-inch., £12 5s. ; 14-inch.
£13 $10 \quad 0$
955. Ship's Binnacle, with twisted bright brass body (fig. 955), with lamps, etc., as above, 12 -inch., £12 15s. ; 13 -inch., £14 5s. ; 14-inch.
$£ 15150$
956. Ship's Binnacle, best make, highly finished, bright brass, plain pattern (fig. 956), 10 -inch., £12; 11-inch., £13 10s. ; 12-inch.,
$£ 1500$
957. Boat Binnacle, in square mahogany, with lamp on top $\quad 2126$

957*Yacet Binnacle, all brass, with lamps . . . 5100
958. Mast Head Binnacle, 12-inch., with one lamp and band for mast $\quad 5 \quad 0 \quad 0$
N.B.-Compasses are not included in any of these prices, the extra cost for usual kinds being 12s. to £1 10s.

SHIPS' SCUTTLES, DECK LIGHTS, ETC.

Ships' deck lights of stout glass lenses and prisms of the following sizes most in use, all other sizes being kept and made to order:-
959. Prism Deck Lights, 10 -inch. $\times 4$-inch., 6 d . per lb. ; average weight, $7 \frac{1}{2} \mathrm{lbs}$. each. .
960. Prism Deck Lights, 11 -inch. $\times 4 \frac{1}{2}$-inch., 6 d . per lb. ; average weight, $8 \frac{1}{2}$ lbs. each.
961. Circular Deck Lights of stout plano-convex lenses, 6 -inch., 2s. 3d. each, average weight $4 \frac{1}{2} \mathrm{lb} . ; 7$-inch., 3 s . each, average weight $6 \mathrm{lb} . ; 7 \frac{1}{4}$-inch., 3 s .6 d . each, average weight 7 lb .
962. Flat Glass Circular side lights, with ground edges, $6 \frac{1}{2}$-inch. diameter $\times \frac{1}{2}$-inch thick, 2 s . 2 d . each; $6 \frac{1}{2}$-inch. diameter $\times \frac{5}{8}$-inch. thick, 2 s .7 d . each.
Ships' Scuttles, glazed, complete in very stout brass:

> 972. Ships' Lamps and Signal Lights, made strictly according to the last Admiralty order, by which the small size side lights hitherto in use for port and starboard are prohibited; No. 1, port or starboard, allowed for small vessels only, say under 50 or 100 tons, but even this size might cause trouble in foreign ports. The next size, or No. 2, is suited for all vessels of whatever size or tonnage.
973. Port and Starboard Lamps, Japanned, best quality, No. 1, £1 16s. per pair ; No. 2, £2 8s. per pair.

No. I, per pair. No. 2, per pair. 974. Port and Starboard Lamps, Japanned, 2nd quality $£ 1 \begin{array}{llll}10 & 0 & £ 2 & 2\end{array}$ 975. Port and Starboard Lamps, Copper, stout, best quality 316 976. Port and Starboard Lamps, Copper, 2nd quality $\quad \begin{array}{lllllll}3 & 4 & 0 & 4 & 2 & 0\end{array}$

The difference in quality consists in one being of stronger and heavier make than the other.
977. Circular Anchor Lamps, Japanned, best quality, 11s., 13s., and. \&0 166
978. Circular Anchor Lamps, Copper, best quality, £1 6s., £1 12s., and 1160
979. Globular Anchor Lamps, Japanned, best quality . . 066
980. Globular Anchor Lamps, Copper, best quality . . 0140
982. Mast-head Lamps, Japanned, best quality, £1 4s., £1 10s. . 200
983. Mast-head Lamps, Copper, best quality, fl $15 \mathrm{~s} ., f 2$ 2s. . 2160
984. Tricolor Steering Lamps, Japanned, best quality, £1, £1 3s. 180
985. Tricolor Steering Lamps, Copper, best quality, £1 12s., £1 16s. $\quad 2 \quad 5 \quad 0$

Cabin, boiler, engine-room, binnacle lamps, etc., etc., and hand lanterns of every form.
986. Fog IIorns, best Japanned, per dozen, 10s., 18s., £1 6s. . £1 160
987. Fog Horns, best Brass, per dozen, £1 2s., £1 19s., £2 10s. . 370
988. Double Fog Horns, best Japanned, per dozen . . 0180

Double Fog Illorns, best Brass, per dozen . . . 1180
990. Key's Patent Fog Signal, giving a louder and longer blast than the fog horn
£0 $10 \quad 6$ to $£ 0150$
990* Speaking Trumpets, in brass, small size, 4s. 6 d. ; middle size, 6 s . ; large size, each .
£0 76

Fig. 995.

Fig. 994.

Fig. 997.

Fif. 1000.

Fig. 1002.
992. IIand Fog Bells, turned edges and crown, from 8s. 6d. upwards.
993. Hand Fga Bells, polished, about 2s. extra.
994. Ships' Bells, with turned brass bracket supports (fig. 994), 6-inch., £1 11s.; 8 -inch.
£2 140
995. Ships' Bells, with lyre frame bracket support (fig. 995) 6 -inch., $£ 1$ 18s.; 8 -inch. £3 00 996. Shirs' Bells, very handsome with dolphin bracket . . 10100

The following ships' logs and sounding machines are well known and appreciated; they include only such as are used on board her Majesty's vessels and the principal mercantile marine :-
997. Massey's Patent Log, in box, with directions (fig. 997) £3 30
998. Massey's Patent Improved Frictionless Propeller Log (fig. 998), p. 95350

Durability, constant and regular action, with lightness and facility in towing, are the great recommendations of this \log.
999. Massey’s Patent Sounding Machine . . . £3 50
1000. Walker's Patent IIarpoon Ships' Log, No. 1 (fg. 1000) . 2126
1002. Walker’s Patent Harpoon Ships' Log, No. 2 (fg. 1002) . 2126
1003. Walker's Patent detached log, No. 3. . . . 2126
1004. Walkerss Patent Sounding Machine (fig. 1004), p. 95, to use vith the ordinary ship's lead
£2 126
1005. Friend's Patent Log, in box 500
1006. Friend's Patent Sounding Lead
$310 \quad 0$
1007. Burt's Patent Sounding Machine or Buoy Nipper, with rachet improvement for showing the vessel's speed
£1 100
1008. Powder Magazines, of strong sheet copper, tinned inside, with three lids and padlocks of brass to hold
$\therefore \quad 10 \mathrm{lbs} . \quad 25 \mathrm{lbs} . \quad 30 \mathrm{lbs} . \quad 50 \mathrm{lbs}$ 100 lbs.

Fig. 1004.

Fig. 998.
1009. Current Meter (Double), to be used as a \log (see surveying instruments, No. 519, page 71).
1010. Time Glasses, in plain oak frames, 2 hours, 3s. 6d.; 1 hour, 1s. 8d.; $\frac{1}{2}$ hour, 1s. 6d.; $\frac{1}{4}$ hour . . £0 1

[^7]1014. Auctionecr's One Minute Time Glasses, in neat turned wood case, for the waistcoat pocket
£0 $5 \quad 6$
Bunting in every variety.
Signal Flags " "
Codes of Signals ",
Royal Standards, Ensigns, Union Jacks, and Foreign Flags, of every kind.
In addition to the preceding List of Nautical Instruments, there are several others in constant use referred to under their respective classes, thus:-
Marine Barometers and Sypiesometers, see "Meteorological Instruments," pages 4,5 , and 40.
Aneroid Barometers (now much required for marine purposes), pages 34 and 35.
Ordinary Marine and Deep Sea Thermometers-Nos. 26, 27, 48, Salinometers, etc.
IIygrometers (now much used at sea, especially in connection with the barometer, the best form for marine purposes being Mason's), see Nos. 50 to 57, and 185.
Anemometers and Air Meters, for measuring the force and velocity of the wind and currents of air, see pages 25 to 30 .
Marine Telescopes, see pages 119 and 120.
Improved Binocular and Night Glasses, see pages 125 to 127.
Amongst the books supplied by L. Casella which bear on the theory and practice of navigation, great circle sailing, the law of storms, etc., are also the maps, charts, and sailing directions, published by the Admiralty, and others including the latest surveys and discoveries, books and maps of the Ordnance Survey of Great Britain, and others. English and foreign publications of the meteorological department of the Board of Trade, as wind and current charts, etc., etc.

The Epitome of Navigation, by Mrs. Janet Taylor	£0 16
by Norie	016
Captain Liddle's "Seamanship"	0
Russell's Great Circle Sailing, diagram and chart of the world (Mrs. Taylor's)	0
Reid, Sir William, on Rotatory Storms, 2 vols., $£ 1$ 1s. Each vol. may be had separately, vol. 1, 12s.; vol. 2.	0
Piddington's "Horn Book of Storms"	010
Birt's "Hand Book of the Law of Storms," 5s. ; Birt's "Hurricane Guide"	030
Birt's "Sailor's Guide" .	006
Nautical Almanacs	026
Hannay and Dtreschin's ditto	0
Log and Cargo Boors, etc.	
Ganot's Physics, 4th edition, enlarged by Dr. Atirinson, omitted from p.	015

Fig. 1033.

Fig. 1022.

Fig. 1035.

Fig. 1082.

1074. 1081.

Fig. 1040.

SPECTACLES .

In the following list the utmost care has been taken to adapt all, not only to the sight, but also to the features, and even to the country in which they are likely to be used.

In the general list given below, a few of a good plain description are ins erted at very low prices for asylums, workhouses, prisons, and charitable institutions, every care being taken as to the correct working and arrangement of the glasses; the reduction in price being effected chiefly by the plain character of the mounting as well as their being sold only by the dozen.

1015. Good Plain Blue Steel Spectacles, per doz., 10s., 12s., and
 £0 150

1016. Good Plain White Metal or German Silver Spectacles, much used in warm or moist climates, per doz., 9s. 6d., 11s. 6d., 15s., 18s., and £1 10
1017. Fine Steel Spectacles, single joint, best glasses, for either short or weak sight

> 1024. Fine Steel Spectacles, slanting or angular, with best periscopic glasses to suit the curve of the eye, for very delicate and sensitive vision £0 10 1025. Fine Steel Spectacles, slanting or angular, with periscopic pebbles 0136
1026. Fine Light Steel Spectacles, blue or straw coloured, invisible, with best groovedglasses, and with sides to curl round the ears, for riding, etc.
1027. Extra Fine Light Steel Spectacles, as above 0146
1028. ", ", with best Brazilian pebbles $017 \quad 6$
1029. Fine Light Steel Spectacles, with corrective bridge for very prominent eyes or low noses, with best round glasses.
1030. Fine Light Steel Spectacles, as above, pebbles 0186
1032. " ", " neutral tint glasses (any shade) £0 $14 \quad 6$
The above Nos. 1026 to 1032 are much liked and recommended for fishing, riding, or shooting with.
1033. Best Lye-protectors, double joints, with tinted glasses, front and side, horse-shoe shape, small size, very neat (fig .1033), p. 96 . . £0 14 0
1034. Best Eye-protectors, as above, large size - £0 76 to $£ 0150$
1035. Best Eyc-protectors, double joints, with fine blackened brass-wire gaaze shields,and neutral tint glasses (admirable for India and other warm climates)(fg .1035), p. 961036. Best Eye-protectors, as above, with crape shields01761037. " ", as No. 1035, with plain dark-wire gauze shield $0 \quad 7 \quad 6$1038. Best Eye-protectors, full size, in strong best blue steel frames, with globularor concave convex neutral tinted glasses, various shades . £0 $10 \quad 6$
1039. Best Eye-protectors or Goggles, with elastic sides, fine gauze shields and neutral tint glasses, for protection against snow, dust, or in railway travelling
£. 36 to £0 86
1040. Occhiombras or Transparent Eye-shades (Calkin's patent), in four colors, viz., brown, black, green, and blue ($f \mathrm{fg} .1040$), p. 96 . . £0 66
These eye-protectors are of very light framework covered with thin transparent gauze, the support on the nose being almost invisible; they protect the eyes from wind and dust as well as the sun, giving at the same time perfect ventilation, and may thus be used during even violent exercise.
1042. Other eye-shades of the most approved kinds, for shading and protecting the eyes, without obstructing the free circulation of air on the forebead, from

1043. Best Steel Spectacles, doublejoints, with cataract glasses $£ 0106$ to £0 150 1044. " \quad, \quad cataract pebbles $0 \quad 15 \quad 6$ to 1110 1045. Best Steel Spectacles, with prismatic or cylindrical lenses, carefully arranged for various distortions and imperfections of vision . $£ 015 \quad 6$ to $\begin{array}{llll}15 & 1 & 0\end{array}$
1046. Fine Steel Spectacles, richly gilt, for warm climates, for short or weak sight.
£0 106
1047. Fine Steel Spectacles, as above, single joints, best Brazilian pebbles 0136

SILVER SPECTACLES AND EYE-GLASSES, ETC,

1048. Silver Spectacles and Eyc-glasses, in about the same forms and varieties as the above, per pair extra . £0 $5 \quad 6$ to $£ 0 \begin{array}{ll}7 & 6\end{array}$
Silver pins and screws only are employed in their make. They are thus particularly recom. mended for India and other warm or moist climates, where steel is liable to corrode.

GOLD SPECTACLES AND EYE-GLASSES,

with best crystal glasses or pebbles.

1049. Fine Gold Spectacles, for near or weak sights, single joints, for ladies $£ 1 \quad 7 \quad 6$ to 250 1050.
", " , with double joints, for gentlemen £1 $10 \quad 0$ to $£ 210 \quad 0$ Either of the above, if with Brazilian pebbles, 5 s . per pair extra.
1050. Fine Gold Spectacles, slanting or angular, with best periscopic glasses to suit the curve of the eye, for very delicate or sensitive vision $£ 1 \begin{array}{llllllllllll}10 & 0 & \text { to } & 10 & 0\end{array}$ 1053. The above, if with Brazilian pebbles 5s. per pair extra
1051. Fine Gold Spectacles, perlevisean, or invisible (for riding), with best grooved glasses, with sides to curl round the ears £1 $10 \quad 0$ to $£ 220$
1052. Or if with Brazilian pebbles

5s. per pair extra.
1056. Fine Gold Spectacles, with corrective bridge, for very prominent eyes or low noses, with best glasses, grooved edges . . £1 150 to $£ 2100$ 1057. Fine Gold Spectacles, as above, with Brazilian pebbles 2000 „ 2150

The above Nos. 1054 to 1057 are much liked, and recommended for fishing, riding, or shooting with. Any of the above fitted with neutral tinted glasses of any tint or shade required. The forms are all oval, but if preferred round, in glasses 5 s ., in pebbles 7 s . 6 d . to 10s. per pair extra.
1058. Eye-glasses, fine gold, oval eyes, with two springs and light spring bridge for thin or narrow nose (fig. 1058)
£1 160 to $£ 250$

Fig. 1068.

Fig. 1059.
Fig. 1064.
Fig. 1069.

Fig. 1062.
1059. Eye-glasses, fine gold, oval eyes, Japanese, most agreeable to wear, and adapted for every variety of features (fig. 1059) . £1 $16 \quad 0$ to $£ 210 \quad 0$
1060. Lye-glasses, fine gold, oval eyes, Parisian or double elastic bridge, for medium or narrow features
£1 $16 \quad 0$ to $£ 210 \quad 0$
1062. Eye-glasses, fine gold, oval eyes, with spring centre, double or reversing action, to fit on the nose or hold in the hand, richly chased, much liked for ladies (fig. 1062)
£2 $10 \quad 0$ to £3 100
1063. Eye-glasses, fine gold, round eyes, with light spring bridge and fancy handle (fig. 1063), p. 98, adapted for full sized features, $£ 2, £ 210 \quad 0$ and $£ 3<0$
Locket or Folding IIand Lye-glasses for ladies, with self-acting springs; with best crystal glasses, oval and oblong square (figs. 1064, 1068, and 1069):
1064. Eye Glasses, fine gold, 15 to 18 carat, solid sides, richly chased (fig. 1064)
$\begin{array}{lll}£ 8 & 8 & 0\end{array}$ to $£ 1010 \quad 0$
 £11 0
1066. " ", silver gilt, oval floral pattern, enamelled £2 20 £2 100 and £3 $3 \quad 0$
1067. " ", "richly chased £1 $10 \quad 0 £ 2 \quad 2 \quad 0$ and $£ 2150$ 1068. " ", fine ivory or pearl, and best gilt (fg. 1068) £1 50 to £1 150 1069. " " tortoise-shell sides, with fine gilt mountings, best quality (fig. 1069) £1 $1 \quad 0$ and $£ 110 \quad 0$
Besides the above locket eye-glasses a great variety in various mountings are kept in Ivory, Shell, Pearl, Ormolu, and Gold, of the richest patterns and most elegant designs.

Single Lye-glasses, in fine gold mountings, for ladies or gentlemen :
1070. \square
"
with fine gold handle and no rim (fg. 1070), p. 98 £0 17.6 1072. " \quad with fine gold, eye-rim . . . 0146 1073. Single Eye-glasses, in fine gold, with neat handles for ladies $\begin{array}{rlllll}51 & 0 & £ 1 & 12 & 0 \\ \text { and } & £ 2 & 0 & 0\end{array}$

Single Eye-glasses, in Tortoise-shell Mounting, for ladies and gentlemen :
1074. Exe-glass, with tortoise-shell rim (fig. 1074), p. 96, best crystal glass £0 26 1075.
best Brazilian pebble
046

1076. Eyc-glass, with tortoise-shell rim and handle, best crystal glass £う 40
1077. " " \quad, Brazilian pebble . £0 76
1078. Eye-glass, with steel rim let into the groove glass . . $0 \quad 3 \quad 0$
1079. " " " pebble . \quad " $\quad 0 \quad 6$
1080. Exe-glass, with milled edge and with hole for cord, glass . $0 \quad 2.0$
1081. " , " ", pebble (fg. 1081), p. 96 £ $5 \quad 6$
Folding or Double Eye-glasses, in tortoise-shell or steel frames:
1082. Folding or Double Eye-glasses, in best tortoise-shell mounting, without spring (fg . 1082), p. 96 • . . £0 5
1083.
7r
\qquad with centre spring
$\begin{array}{lllll}0 & 8 & 6\end{array}$ to $012 \quad 6$
1084. Folding or Double Eye-glasses, in best tortoise-shell mounting, with light steel spring bridge £0 $7 \quad 6$ to £0 $12 \quad 6$
1085. Folding or Double Eye-glasses, in best tortoise-shell mounting, with fine gold spring bridge, very handsome
1086. Folding or Double Eye-glasses, fine steel mounting, with double springs and light steel bridge
£0 $7 \quad 6$ to £0 106
1088. Folding or Double Eye-glasses, fine steel, straw color, with double springs, and light steel bridge, Japanese pattern (as No. 1059), most agreeable to wear and adapted for every variety of features
£0 116
The above spectacles when supplied singly are all in suitable cases. When cases are required for the eye-glasses they are charged extra, average 1s. Fancy cases in morocco, velvet, plaid, chagrine, shell, etc., etc., for spectacles and eye-glasses in every variety.

SPECTACLE TRIERS.

1089. Spectacle Triers, a set of eight pairs of convex glasses of graduated sights, with the sights marked, from plain preservers to those required for middle age, in neat horn mounting

Fig. 1098.

Fig. 1097.

Fig. 1100.

Fig. 1106.

1089*. Spectacle Triers, containing eight pairs, from middle age to oldest sights, in neat horn mounting £1 50
1090. Spectacle Triers, for near or short vision, consisting of seven pairs of concave glasses of graduated sights, with the focus marked on each from No. 1 to No. 7, in neat horn mounting £1 $8 \quad 0$
1092. Spectacle Triers, as above, from No. 8 to No. 14, in neat horn mounting £1 120
1093. Trial Lenses, a complete series for every sight, consisting of 36 pairs of convex and 36 pairs of concave spherical lenses, 18 pairs convex and 18 pairs concave cylindrical glasses, with 12 prisms, 2 blank dises, 4 discs with small apertures, 3 colored glasses assorted, of most approved tints, with graduated adjusting frame for holding the various lenses, in mahogany case complete $£ 700$
1094. Trial Lenses, as above, consisting of 24 pairs convex and 24 pairs concave spherical lenses, 9 each convex and concave cylindrical glasses, 6 prisms, 2 blank discs, 2 discs with small apertures, 3 colored glasses of most approved tints, with graduated adjusting frame for holding the various lenses, in mahogany case complete
$£ 510 \quad 0$
1095. Iland Reading Glasses, of best make, for examining maps or photographs, in German silver, with polished ebony or ivory handles (fig. 1095), p. 100:

The above glasses in brass (gilt) 1s. to 3s. 6d. each extra.
1096. Hand Reading Glasses, oblong square, in German silver, with polished ebony handles (fig. 1096), p. 100; $2 \frac{3}{4}$ inch., 3s. 6d. ; 3 inch., 4s.; $3 \frac{1}{4}$ inch., 4s. 6d. ; $3 \frac{3}{4}$ inch.
$\begin{array}{lll}£ 0 & 5 & 6\end{array}$
1097. IIand Reading Glasses, as No. 1095, in polished hardwood frames, with brass sockets (fig.1097) ; 3inch., 7s. 6d.; $3 \frac{1}{2}$ inch., $8 \mathrm{~s} .6 \mathrm{~d} . ; 4$ inch., 10s. $6 \mathrm{~d} . ; 4 \frac{1}{2}$ inch., 12s. 6d. ; 5 inch., 15s. 6d. ; 6 inch., £1; 7 inch.
£1 4 0
1098. Magnifying Lenses, single, in horn or shell mountings, folding for the pocket, very convenient for florists, mineraiogists, etc. (fig. 1098), 1s. to \quad £0 4.6
1099. Magnifying Lenses, double, in horn or shell mountings, 2s. to $\quad 0 \quad 7 \quad 6$
1100. " triple, to use together or separately, in horn or shell mountings (fig. 1100), 3s. to .
£0 106
1102. Improved Magnifying Lens, being a combination of three lenses, mounted in tortoise-shell, for use together or separately, with diaphragm and large field Coddington at opposite end, for suspension or the waistcoat pocket (fg. 1102), p. 100
1103. Coddington Lenses, of high magnifying power, very useful for opaque objects, as minerals, etc., in German silver (fig. 1103), p. 100, 4s. 6d., 5s. 6d. and £0 $7 \quad 6$
1104. Stanhope Lenses, in German silver mountings, 3 s .6 d . to
$\begin{array}{lll}0 & 5 & 6\end{array}$
1105. Linen or Cloth Provers, to fold, for the pocket (fig. 1105), p. 100, 1s. 6d. to £0 56
1106. Watchmakers' Eye-glasses (fig. 1106), p. 101, 1s. 6d. to

MICROSCOPES.

In the following list of microscopes the desire has been not so much to describe the most costly as the most useful and practical kinds. With this view every real improvement has been adopted and described, whether as desirable refinements, or such as are really required in the practical working and use of the instrument. The fact being kept
in view, that the high refinements of the most costly, are by no means essential for the interesting practical investigations of the chemist or physician; who are often unwilling to incur an outlay that is cheerfully expended on the highest refinements of powers or the elegant arrangement embodied in instruments for presentation.

BEST COMPOUND MICROSCOPES, WITH MUCH IMPROVED EXTRA WIDE BAR TO RACK-WORK.
 FIRST SERIES.

1107. Superior Large Compound Microscope, of latest improved construction, with long divided draw tube, bar motion, extended to work with 4 -inch. objective, improved thin goniometer stage for oblique light, divided to 360 degrees, with 1 -inch. rectangular motion and best object-holder with spring clip, the whole stage being worked round by means of a rack and pinion, concentric with the axis of the object glass. The fine adjustment is of the best lever construction, with divided milled head for correcting the objective to the thickness of glass covering the object, improved sub-stage, with rotary motion and rectangular adjustment divided to 360 degrees, especially adapted for correctly centering the illuminating apparatus, with plain and concave mirrors, on jointed arm for oblique light illumination, improved expanding diaphragm, 2 Heugenian eye-pieces, A and B, and eccentric clamp for fixing the instrument at any inclination required (fg. 1107), p. 102
£29 $10 \quad 0$
1108. If in polished mahogany cabinet, with 3 drawers, packing, etc., complete, extra £2 126
1109. Or, in best Spanish mahogany case, with mouldings, extra . 3150 1110. The above microscope, with Wenham's binocular arrangements, with divided draw tubes and 2 -inch. rack and pinion motion for adjusting to different widths of eyes, and 2 extra eye-pieces, A and B . . £35 $10 \quad 0$
The binocular part of this instrument is so arranged that the bodies can be readily removed so as to use it either as a binocular or monocular instrument of the very finest description, price, if so arranged with both bodies
$£ 37100$
1110. Superior Large Compound Microscope, with divided draw tube and improved
thin compound stage, having rotating plate, object-holder, and 1 inch. of
motion in rectangular directions, best lever fine adjustment (similar to the
preceding), sub-stage with rotating wheel divided to 360 degrees, and complete
adjustments for centering illuminating apparatus, plain and concave mirrors,
on double-jointed arm for oblique illumination, improved expanding diaphragm
and 2 eye-pieces, A and B (fig. 1112), p. 104
1111. If in polished mahogany cabinet, with 3 drawers, packing, etc., complete, extra
£2. 50
1112. Or, in best Spanish mahogany case, with mouldings, extra . $\begin{array}{llll}3 & 3 & 0\end{array}$
1113. If with Wenham's binocular arrangement, similar to No. 1110, with suitable additional eye-piece, extra
£6 100
1114. Superior Microscope Stand, as above, but of smaller size, with $\frac{3}{4}$-inch rectangular motions to stage, rotating plate to thin top stage, object clamp and best lever fine adjustment, complete sub-stage, double jointed arm to mirrors, diaphragm, and 2 eye-pieces, A and B
£17 $10 \quad 0$
1115. If with Wenham's binocular arrangement with $1 \frac{1}{2}$-inch. rack and pinion motion to draw tubes, and 1 additional eye-piece, extra
£5 50

Fig. 1112.
1118. Improved Binocular Microscope Stand, as No. 1116, but without the sub-stage £15 150
1119. If in polished mahogany cabinet, with packings for apparatus, extra $\quad 1 \quad 8 \quad 0$
1120. Or, in best Spanish mahogany case, with mouldings, extra . 200
1122. Superior Monocular Microscope, as No. 1116, but without sub-stage 1310 0
1123. If in polished mahogany case with packing for apparatus, extra. 150
1124. Or, in best Spanish mahogany case, with mouldings, extra . 220
1125. Binocular Microscope Stand, like No. 1118, but of smaller size, with $\frac{1}{2}$-inch motions to stage, diaphragm and sliding plate, with fitting for apparatus, lever fine adjustment, double mirrors with jointed arm, and 2 eye-pieces, A or B £14 $10 \quad 0$
1126. The above microscope, if monocular

1100

Fig. 1129.
1127. Presentation Binocular Microscope, of extra large size, and very superior and elegant finish. The thin concentric stage is the latest improved, and divided to 360 degrees. The stage plates are divided to the 50th of an inch in rectangular directions, with vernier for measuring the natural size of objects under examination, and acting also as a finder in viewing diatoms, etc., being worked round by means of an inverted crown rack. The substage is also of the newest construction, with complete universal motions, etc., divided as above, clamp to axis of stand, best lever fine adjustment, doublejointed arm to mirrors with clamp milled head. The bodies are of extra large diameter, improved expanding diaphragm, stage and bottle forceps, pliers, extra large condenser on stand with 3 -inch. condensing lens, polarizing apparatus, with extra large prisms and complete set of eye-pieces, viz., two each of A, B, and C . $£ 5510 \quad 0$
1128. IIandsome Glass Shades, with richly moulded black stand, are often supplied with either of the foregoing and most of the following microscopes, instead of mahogany cases, at 12 s . 6 d . to $£ 110 \mathrm{~s}$. each.

Fig. 1135.

Fig. 1139.

IMPROVED MICROSCOPES.

second series.

The reduction in cost of the following microscopes is chiefly obtained by their great popularity and the numbers that are made at a time. Though so moderate in cost and less elaborate in finish, they are optically quite equal to the dearer kinds, whilst the stability and precision of movement being carefully seen to, purchasers ordering from a distance may do so with the utmost confidence.
1129. Superior Binocular Microscope, with goniometer stage, divided to 360 degrees and worked round by the hand, $\frac{3}{4}$-inch rack and screw motion in rectangular directions, improved object-plate and clamp, lever fine adjustment, 2 -inch. rack motion to divided draw tubes, simple sub-stage, with vertical motion for focussing achromatic condenser, etc., jointed arm to mirrors, and one pair of eye-pieces, A or B (fig. 1129), p. 105 . . . £18 10 0
1130. If in polished mahogany case with packing complete, extra
1132. An improved adaptation of analysing prism to the above renders it really the best microscope (at moderate cost) in use, extra
£1 50
N.B.-The advantages of this arrangement are effectual illumination in both bodies, the analyser being placed above the binocular prism, the transmission of a greater amount of light without the distortion, consequent upon a reduction of the distance between the objective and binocular prism.
1133. Large Microscope, with crane-formed arm, with sufficient bar motion for the 4 -inch. objective, improved compound stage, with $\frac{3}{4}$-inch motion in rectangular directions, rotating plate and object-holder, improved lever fine adjustment with divided milled head, as No. 1107, jointed arm to mirror, 2 eye-peices, A and B, stand condenser, live box, dipping tubes in case, stage forceps and pliers, in mahogany case, complete
$£ 18 \quad 0 \quad 0$

> 1134. Wenham's Binocular Arrangement to this stand, instead of the above monocular form, with $1 \frac{1}{2}$-inch. rack and pinion motion to draw tubes, and 2 extra eye-pieces, A and B, extra
1135. Improred Binocular Microscope, as used by the Royal Microscopic Society of London. The stand of this instrument is highly approved by the best authorities, and has sufficient bar motion to work with the 4 -inch. objective, with rotating object plate and clamp, mechanical stage, with $\frac{3}{4}$-inch motions in rectangular directions, lever fine adjustment, Wenham's binocular arrangement, with $1 \frac{1}{4}$-inch. rack and pinion motions to draw tubes, jointed arm to mirrors, and pair of eye-pieces, A or B (fig. 1135), p. 106
$£ 1200$
1137. If in polished mahogany case, extra

120
1138. The above instrument of monocular construction with mirrors and 2 eye-pieces, A and B
$\begin{array}{lll}\text { £ } 9 & 9 & 0\end{array}$
1139. Superior Six Guinea Monocular Microscope, consisting of improved brass stand, with extended bar motion to work with 4-inch. objective, lever fine adjustment, sliding or spring stage, with revolving diaphragm of apertures, plain and concave mirrors, on jointed arm, and one eye-piece, A or B (fig.1139), p. 106 £6 0
1140. If in polished mahogany case, extra

0156
1142. The Student's Improved Binocular Microscope, similar to the preceding, with fine adjustment for high powers, improved lifter motion to draw tubes, for adjusting to the width of the eyes, sliding stage mirrors and pair of eye-pieces, A or B (fig. 1142), p. 108
£6 60
1143. The spring stage (fig. 2), p. 108, can be adapted to the above at an extra cost of £0 66
This instrument forms an excellent basis for a compound stand, the lever stage or the ordinary compound rack and screw stage, can be readily adapted to it; it is also provided with tu be fitting to receive all requisite accessory apparatus; the following is very suitable for this instrument:-

1144. Polarizing Apparatus

1145. Parabola.

0180
1146. Spot Lens
$\begin{array}{lll}0 & 9 & 0\end{array}$
1147. Stage Forceps
$\begin{array}{lll}0 & 3 & 6\end{array}$
1148. Live Cage
$\begin{array}{lll}0 & 3 & 6\end{array}$
1149. Double Nosepiece 0126

Fig. 1143.
Fig. 1158.
1150. Stand Condensers £0 100
1152. Wenham's White Cloud Illuminator . . . 0120 1153. Frog Plate $0 \quad 5 \quad 6$
1154. Mahogany Cabinet, with packings for all the above apparatus 0150
1155. The above stand and apparatus, if taken in one . . . 1100
1156. The Student's Complete Monocular Microscope, with rack motion to bar and lever fine adjustment for high powers, large sliding stage, plain and concave mirrors, one eye-piece, A or B, stand condenser, live box, stage forceps and pliers, superior English achromatic objective to separate, forming 1-inch, $\frac{1}{2}$-inch and $\frac{1}{4}$-inch power, in neat polished mahogany case (fig. 1156), p. 109 £6 6
1157. To this microscope is sometimes added a polarizing apparatus, $£ 11$ s., and also an improved lever stage, with $\frac{1}{2}$-inch rectangular motions by which it is especially adapted for use with large zoophyte trough or stage plate $\quad £ 1 \begin{array}{lll}13 & 6\end{array}$
1158. Cassella's Popular Educational Hicroscope (fig. 1158), consisting of an excellent and convenient stand, with coarse and fine adjustments, tube fitting to stage for apparatus, large diaphragm, one eye-piece, A or B, an excellent English achromatic forming 1 -inch, $\frac{1}{2}$-inch, and $\frac{1}{4}$-inch, powers of 40 degrees angular aperture
£3 $10 \quad 0$
1159. Or in mahogany cabinet case

400

Fig. 1156.
1160. Small Popular Microscope, as above, with foreign objective of nearly similar powers, with rack-work, spring clip to stage, concave mirror, animalculæ cage, and one eye-piece, with forceps and 9 objects in drawer, in mahogany case complete
£2 50
1162. Garden or Seed Microscope, a simple and compound instrument expressly arranged by L. Casella, for the various requirements of gardeners, and also as an excellent companion to the aquarium and the sea side ($f \mathrm{fg}$. 1162), p. 111, in mahogany case 4 inch. $\times 3$ inch., and $1 \frac{1}{2}$ inch. deep; with plain practical instructions
£1 50

MICROMETERS.

1163. 100-mhread Screw Micrometer, of best construction, with drum divided to 100

よ5 50
1164. Jackson's Eye-piece Micrometer, with adjusting serew

130
1165. Exe-piece for the above 150
1166. Micrometer Circle to fit eye-piece 076
1167. " on 3×1 inch. glass slide . . . 060

ACHROMATIC OBJECT GLASSES FOR MICROSCOPES.

The utmost care being taken in the construction of these lenses, the fullest confidence may be placed in their excellence, their power of definition and penetration being unsurpassed.

	Object Glasses.	Angular Aperture.	Magnifying Powers with the various						Price.	Lieberkuhns, In brass box.
			A	B	C	D	E	F		
1168	4-inch.	9 degs.	9	16	25	38	59	82	$\begin{array}{ccc}2 & \text { s. } \\ 1 & 5 & 0\end{array}$	£ s. D.
1169	3	12 "	13	20	35	56	84	112	$2 \begin{array}{lll}2 & 0 & 0\end{array}$	
1170		15	20	32	55	90	135	180	$2{ }^{2}$	015
1172	12 ${ }^{1}$	20 ",	25	40	70	112	168	224	200	0140
1173		25	37	60	105	170	255	340	200	0 0 126
1174		22	37	60	105	170	255	340	$1 \begin{array}{lll}1 & 6 & 0\end{array}$	0100
1175		52	60	100	145	270	405	540	$\begin{array}{llll}3 & 0 & 0\end{array}$	0100
1176	$\frac{3}{3}$ 为"	35 ",	60	100	145	270	405	540	2100	0100
1177	$\frac{1}{2}$ "*	90 ",	95	153	265	420	630	840	4.100	0100
1178	$\frac{1}{2}$ "	55	95	153	265	420	630	840	300	For Binocular
1179	$\frac{4}{10}$, *	110	140	220	370	650	975	1300	$\begin{array}{lll}5 & 5 & 0\end{array}$	0100
1180	$\frac{1}{4}$ "*	120	195	310	540	850	1275	1700	4150	
1182		100	195	310	540	850	1275	1700	350	
1183	$\frac{1}{5}$ ", *	135	225	400	612	860	1040	1460	$\begin{array}{llll}5 & 5 & 0\end{array}$	
1184		140 "	320	510	700	910	1360	1820	$\begin{array}{lll}5 & 15 & 0 \\ 7 & 7 & 0\end{array}$	
1185	$\frac{1}{8}$, *	150 "	420	670	900	1200	1800	2400	$\begin{array}{lll}7 & 7 & 0\end{array}$	

Those marked * have an adjustment for covered and uncovered objects.

SECOND SERIES.

1186.	3 -inch.	
1187.	2	$"$,
1188.	1	$"$,
1189.	$\frac{1}{2}$	$"$
1190.	$\frac{1}{4}$	$"$,
1192.	$\frac{1}{4}$	$"$
1193.	$\frac{1}{4}$	$"$

10			degs.
13	$"$		
18	$"$		
40	$"$		
85	$"$		
75	$"$		
60	$"$		

.	£1 50
. . .	150
	150
For Binocular	$2 \quad 20$
. . .	2100
- . .	2 5 0
	1150

third SERIES-Separating Glasses.

Fig. 1162.
1198. Improved Achromatic and Tinted Condenser, of 90 degrees angular aperture; constructed as a perfect substitute, at a moderate cost, for a large number of the separate pieces of illuminating apparatus; it is also an excellent sub-stage, so essential to the compound microscope, and is applicable to all microscopes having sufficient depth beneath the stage. It is suitable for all objectives from the 2 inch. to the one-fifth, and is tinted for correcting the yellow rays of artificial light ; with rack and pinion motion for focussing, and is an excellent spot lens; large diaphragm with rotating cap, in which are fitted three discs for stops for oblique light, small diaphragm of apertures, polarizing prism, selenite diaphragm with two selenite films and clear aperture, for illuminating with low powers £4 12 6
1199. Or with parabola

5100
1200. An extra combination of 135 degrees angular aperture can be adapted for use with powers from 1 inch upwards
£1 $10 \quad 0$
1902. Improved Achromatic Condenser, with diaphragm for dark ground and oblique illumination, being a modification of No. 1198

Fig. 1208.

Fig. 1211.

Fig. 1212.

Fig 1210.

STAND CONDENSERS.

1203. Improved Stand Condenscr, with universal motions £1 120
1204. Large Stand Condenser, same size as above. 180
1205. Medium Size Stand Condenser, 15s. 6d.; small ditto 0126
1206. Improved Stage Condenser, with complete universal motions, 017 0
1206*. Smaller size 010 0
1207. Parabolic Reflector* (on stem) in case 150

* By means of this reflector the objective in use can be removed and another one substituted without altering the adjustment of the reflector. It is also applicable to all powers from 4 inch. upwards.

CAMERA LUCIDAS.

 1211. Beales's Neutral Tint Camera Lucida, with 3 glasses of different shade (fig. 1211) £0 9 6
1212, Simple Form of Ditto (fig. 1212)
056

STAGE FORCEPS.

1213. Large Size Best Stage Forceps	08
1214. " " Mineral Forceps	016
1215. Forcers, with arm and universal joint	012
1216. Second Quality Large Stage Forceps	05
1217. " „ Small	03

PLIERS.

Fig. 1224.

Fig. 1225.

Fig. 1229.

Fig. 1226.

Fig. 1227.

COMPRESSORS.

1224. Piper's Reversible Compressor, for high and low powers, and rotating disc (fig. 1224) £1 60 1225. Lever Compressor, of best construction (fg. 1225) . . 150

Fig. 1230.

Fig. 1238.
28

Fig. 1242.

Fig. 1244.
1226. Smaller Compressor, of best construction (fig. 1226), p. 113 . £1 1
1227. Spring Compressor (fig. 1227), p. 113

0160
1228. Wenham s Compressor, for use with the parabola and high powers
£0 $9 \quad 6$
1229. Small Compressor (fig. 1229), p. 113 . . . 0120
1230. Compound Selenite Stage, and set of 3 films in box (fig. 1230), p. 1132100
1232. Improved \quad, \quad and set of 3 compound films in box 2150
1233. Series of Selenites, mounted to sub-stage 250
1234. Tourmaline adapted to above, with rotary holder $\quad £ 1 \quad 4 \quad 0$ to $6 \quad 6 \quad 0$ 1235. Rotary Stage, with selenite films fitted to eye-piece, and spring box for carrying tourmaline or prism
£3 30
DISSECTING INSTRUMENTS (fg.1238). SCALPETS, PROBES, AND SCISSORS.

FINE STEEL AND WHITE IVORY HANDLES.

Fig. 1245.
1245. Improved Microscopic Lamp (fig. 1245). In this arrangement, utility and
convenience are combined to the utmost; a clear and brilliantlight is obtained
and may be subdued, altered in tint, etc., and brought to bear upon any point
with the greatest facility, with silvered glass reflector for condenser illumina-
tion, porcelain non-conducting lamp shade, circle of blue glass to neutralize
the artificial rays, £2 2s.; or without case. .

If with papier machie shade, 3 s . 6 d . extra.

APPARATUS FOR COMPOUND MICROSCOPES.

1263. Gillett's Achromatic Condenser, with diaphragm and spots . £4 150
1264. Webster's Achromatic Condenser, with diaphragm for dark ground and oblique illumination
£2 80
1265. Webster's Achromatic Condenser, with graduating diaphragm 3120
1266. Rack and Pinion Adjustment to above, if required .

0126
1267. Graduating Diaphragm to Microscope

150
1268. Kinsley's Condenser, with diaphragm

330

1269. Wenham's White Cloud Illuminator, for binoculars $£ 0$| 14 | 6 | to |
| :--- | :--- | :--- | :--- | :--- |
1270. Reade's Hemispherical Condenser, with adjusting diaphragm and shutter £1 150
1271. Spot Lens
£0 6
1272. Paraboloid, for dark ground illumination, with high powers
£0 120 to 1100
1273. Amicis Prism, mounted on stand . . . 120 to 2126
1274. " " mounted to sub-stage . . . 1150 to 280
1275. Improved Achromatic Prism, with all adjustments, fitted to tail-piece of microscope £2 50 to £3 50
1276. Rectangular Prism, mounted as above . . 120 to 280
1277. Nachet's Prism for oblique light, mounted to sub-stage . 150
1278. Reade's Diatom Prism 014 6 to 1150
1279. Lister's Dark Wells (set of three) and holder . . 0126
1280. Rainey's Light Modifier 050 to 076
1281. Maltwood’s Finder 070
1282. Frog Plates 056 to 0126
1283. Sets of Dipping Tubes, in case . . . 016 to 060
1284. Glass Troughs 050 to 090
1285. Morris's Universal Stage Plate . . . 056 and 086
1286. Goniometer, for measuring the angles of crystals . . 3150
1287. Pair of Double Image Prisms, and selenite film, with fittings to eye-piece, and brass plate with holes
£2 100
1288. Polarizing Apparatus to Microscope . . £1 40 to 3150
1289. Selenite Films, various $0 \quad 1 \quad 6$ to $0<90$
1290. " \quad in brass slides . . . 030 to 0126
$\begin{array}{lllllllrll}\text { 1295. Crystals, cut to show the optic axis } & \text {. } & \text {. } & \text {. } & & \text {. } & 0 & 6 & 0 \\ \text { 1296. Tourmalines, mounted } & \text {. } & \text {. } & \text {. } & \text {. } & 0 & 6 & 0 & \text { to } & 12 \\ 0 & 0 & 0\end{array}$
1291. Micro-Spectroscope, adapted to any microscope, will show two spectra in the field of view at the same time
£6 60
1292. Pocket Spectroscope, will show Fraunhofer’s lines, and the bright lines of the
metals, etc., £l 5 s. ; with adjustable slit . . .

1293. Collecting Stick, with screw bottle and ring, cutting hook, and net ring
1294. Smiti's Mounting Instrument, for preparing objects free from air bubbles
£0 $10 \quad 0$
1295. Machine for Cutting Sections of Wood, etc. £O $12 \quad 6$ to $2 \quad 2 \quad 0$
1296. Brass Table and Spirit Lamp, for heating objects in mounting $\quad 0 \begin{array}{llll}0 & 6\end{array}$
1297. Glass Stage Plates, various £0 1
1298. Glass Dissecting Troughs, various . . . 046 to 0126
1299. Instrument for Cutting Thin Glass Circles . 140 and 10100
1300. Injecting Syringe, with stopcocks . . . $010 \quad 0$ to 0126
1301. Writing Diamonds from $0 \quad 5 \quad 6$
1302. Cutting Diamonds 0150
1303. Canada Balsam, Asphalt, Gold Size . . per bottle $0 \quad 1 \quad 0$
1304. Deane's Gelatine Medium, Glycerine, etc. . . „ 020
1305. Thin Glass, in circles and squares, per oz., 6s. and . . $0 \quad 4 \quad 6$
1306. Plate Glass Slips, with ground edges, 3 inch. by 1 inch, per gross 0120
1307. Flattened Cbown ditto " 080
1308. Labels for covering objects, per 100 $0 \quad 20$
1309. Glass Celis, square, round, oblong, and with solid bottoms, per doz., 2s. 6d. to

MICROSCOPIC OBJECTS.

Owing to the difficulty of forming a fairly complete list of these objects, a few only are here enumerated, all interesting new varieties are, however, made up as they appear, and specimens and sections of every kind are prepared to order.

Geological Microscopic Sections prepared with the utmost care.

Sections of limestones from Bath, Bristol, East Indies, West Indies, Germany, Italy, Ireland, Lancashire, etc.

Transverse and longitudinal sections of Fossil wood from Australia, Antigua, Bristol, Cromer, Dudley, East Indies, West Indies, Egypt, Folkstone, Isle of Portland, Isle of Sheppey, Isle of Wight, and other parts of England.

Sections of Flint, containing ammonites, sponge, etc.
Transverse and vertical sections of Bone, various.
Scales of Fishes, various. Sections for the Polariscope. Alabaster, English and Italian Agate. Ammonites, Brighton Pebble, black and white Marble, Granite, various, Labrador and other Spar.
1332. IIuman Bone, a set of twelve slides, illustrating its growth and structure, each £0 116
1333. Urinary Deposits, set of twelve, each slide $0 \quad 1 \quad 6$
1334. Injected Preparations, and other animal tissues, each slide . $\quad 0 \quad 1 \quad 9$
1335. Recent and Fossil Bones of mammals, reptiles, birds, and fishes, transverse and vertical sections, each slide
£0 13
1336. Recent and Fossil Teeth, transverse and vertical sections, each slide $\begin{array}{lllll}0 & 1 & 3\end{array}$
1337. Blood Discs, pigment cells, skin, etc., each slide . . $\begin{array}{lllll}0 & 1 & 3\end{array}$
1339. Blood Discs-Syren and lepidosyren 0
1340. Spicules and Gemmules of sponges and gorgonias, each slide $\quad \begin{array}{llll}0 & 1 & 3\end{array}$
1342. Shells, sections of various species of, each slide. . . $0 \quad 1 \quad 3$
1343. Echini Spines, sections of, in great variety, each slide. . $0 \quad 1 \quad 3$
1344. Entomological Preparations-antennæ, eyes, feet, hairs, scales, skins, spiracles, stings, stomachs, tongues, tracheæ, wings, acari, and parasites, each slide
£0 13
1345. Vegetable Preparations-sections of woods, petals, siliceous cuticles, spiral and other vessels, ducts, spores, pollens, hairs, etc., each slide . £0 13
1346. Fossil Woods, sections of various exogenoús and endogenous woods, each $\begin{array}{llll}0 & 0 & 8\end{array}$
1347. Coasl, sections of (many varieties), each slide
$\begin{array}{lll}0 & 0 & 8\end{array}$

TELESCOPES .

In the following list care has been taken to represent the several telescopes, with their powers and capabilities, precisely as they will prove to the purchaser.

The fabulous descriptions so often put forward are strictly avoided, so that intending purchasers may see from the description given, the exact article they intend to have, being assured that any statement made in its favour will be amply justified by the result. In first trying a telescope attention should be given to the difference between a heavy or dull atmosphere and that of a bright and clear one, as in viewing a clock or signal at four miles' distance under the former condition, it would not show so well as at twelve miles, or even greater distance under the influence of a light and clear atmosphere.

Fig. 1369.

Fig. 1374.
1348. Day or Night Telescope, specially for use at sea, being so arranged as to admit the greatest amount of light in dark or foggy weather, with mahogany body and spray shade, one or two draw
£0 $18 \quad 6$
1349. Day or Night Achromatic Pilot Telescope, one or two draw, with sunshade, and covered with leather, . . £0 $17 \quad 6$ and $£ 150$
1350. Day or Night Telescope, of superior quality, with large object glass (fig. 1350) £1 $10 \quad 0$
1352. Deck Telescope, very superior, with larger object glass, and increased means of illumination, mahogany or covered with leather
£2 100
1353. The Midshipman's Telescope, of taper form, one draw $1 \frac{5}{8}$-inch. object glass, light and portable, covered with leather, 2 feet when shut, with sling straps £2 20
1354. Midshipman's Telescope, $1 \frac{3}{4}$-inch. object glass, Government regulation pattern, 2 feet when shut, with navy signals, sun-shade and sling straps (fig. 1354) p. 122
£2 100
1355. The Navy Telescope, 30 -inch., one draw, taper form, with 2 -inch. object glass and straps
£2 150
1356. Signal Telescope, 3 feet, with taper body, covered with leather, one draw, with $2 \frac{1}{4}-$ inch. object glass £3 10 0
The above three telescopes, as well as the three following, combining as they do great light and power, together with superior portability, are fast supplanting all others in the Royal and Mercantile Nary.
1357. Marine Telescope, taper form, much improved, 30 inches when shut, drawing out to 36 inches, with extra large eye-piece for increase of light, $2 \frac{2}{4}$-inch. object glass, with caps and portable strap attached, as useful and good an instrument as a naval officer need have
£4 0
1358. Merchant or Navy Signals, affixed to either, at 5s. 6d. extra.
1359. Compass, fitted to cap of ditto, 5 s . 6 d . to 15 s .
1360. Marine Telescope, one draw, 40 inches when shut, $2 \frac{3}{4}$-inch. object glass, with pancratic tube to increase or diminish the power, and adapt it at pleasure for dark or clear weather, the light and power of this glass showing clearly an amount of distant detail, often of the utmost importance on board ship £5 $10 \quad 0$
1362. Taper Telescope, as above, 50 inches when closed, with $3 \frac{1}{4}$-inch. object glass, an important instrument, as also No. 1366 or 1367, for pilotstations, lighthouses, as well as telegraph signal stations along the coast
£7 $10 \quad 0$
1363. Plain Out-d90r Stands, with double motion for No. 1357, or 1360, or 1362
1364. Stout Mahogany Stands, with double motion for No. 1357, or 1360, or 1362
£3 $3 \quad 0$
1365. Marine Telescope, improved, and much used in the Indian navy, with two eyepieces, viz., one for clear and the other for hazy weather, with magnifying powers of thirty-five and twenty times respectively, $1 \frac{7}{8}$-inch. object glass, the body covered with black leather, in mahogany case, with lock f5 50
1366. Marine Telescope, improved, etc., etc., as above, the two eye-pieces magnifying sixty and thirty-five times respectively, $2 \frac{1}{8}$-inch. object glass, covered body, three feet when closed, in mahogany case, an excellent form of marine telescope for the deck
$£ 7 \quad 10 \quad 0$
1367. Sea Coast or Station Telescope, with 4 foot brass body, vertical rack, and horizontal motions, two terrestrial and one astronomical eye-piece, with powers varying from 35 to 120 times, 3 -inch. object glass and sun-shade, in strong case with lock, and strong mahogany stand, admirably suited for observation over an extensive range of country, for telegraphic or sea coast stations, or for occasional astronomical observation
$£ 2100$

PORTABLE OR TOURISTS' TELESCOPES FOR THE POCKET (as fig. 1369) p. 119.

Lightness and portability, with great power and clearness, are the chief characteristics of the following, the smallest of which shows Jupiter's satellites very beautifully.

Length when shut.	Length when in use.	Aperture of object glass.	Magnifying power in ciameters.	Price in plain mountings.
1368. 3-inch.	12-inch.	1-inch.	12 times	1110
1369. $5 \frac{1}{2}$-inch.	15-inch.	$1 \frac{1}{4}$-inch.	15 times	1100
1370. 8-inch.	22-inch.	$1 \frac{3}{8}$-inch.	20 times	$2 \quad 20$
1372. 13-inch.	28-inch.	$1 \frac{3}{4}$-inch.	25 times	2100

[^8]
MILITARY OR RIFLE TELESCOPES.

1374. Casella's Improved Military or Target Telescope, 30 inch., 2 draw, closing up to 12 inch., $2 \frac{1}{8}$-inch. object glass, with pancratic eye-draw to increase or diminish the power, for dark or clear weather, with sling caps and strap, as used by the leading members of the rifle corps (fig. 1374), p. 119. In clear weather the rifle-hits at 1100 yards are perfectly visible with this telescope, whilst in ordinary weather they are seen with it at 1000 yards off. It will show the time by a clock at six miles distance, and the form of the rocks of Calais from Dover, a distance of twenty-one miles
£3 $10 \quad 0$
1375. Casella's Improved Military or Target Telescope, as above, 3 feet 4, draw closing up to 11 inch., $2 \frac{1}{8}$-inch. object glass, with caps and straps (fig. 1375), p. 122
£4 0
1376. Short Micrometer Telescope, for showing the distance of soldiess, as used by the Prussian military staff, with $1 \frac{1}{10}$-inch. object glass, £1 4s. 0 . $; 1 \frac{4}{10}$ inch., £1 10s. Od.; $1 \frac{7}{10}$-inch.
£1 150

DEER-STALKING OR RIFLE TELECOPES.

The increased light and wider field of view required for deer-stalking are carried to their utmost limits in these telescopes, which are guaranteed to be unsurpassed by any in use ; they are equally adapted for military or rifle purposes.
1377. Deer-stalking Watchman's Telescope, as No. 1373 above
£2 150
1378. Deel-stalking Telescope, 30 inch., 3 draw, closing up to 10 inch., $2 \frac{2}{4}$-inch. object glass, black bronzed, covered with black morocco, with sunshade in black sling case
£6 100
The ne plus ultra of a deer-stalking telescope. A micrometer eye-piece can be added to the above, by which the exact shooting distance of the deer or antelope may be known. Extra, 15s. 6 d . 1380. Casella's Improved Target Telescope, with pancratic eye-draw, rack adjustment, $2 \frac{1}{4}$-inch. object glass, and firm light tripod stand with attached board, lined, for registering the marks ; length when in use, 44 inches, in strong 3 foot case, with lock
£9 $9 \quad 0$

> With this target telescope signal marking is dispensed with, as it shows the hits or ballet marks clearly at 1200 yards range; it is also an excellent telescope for private use on raised situations, or any position commanding an extensive view of the sea.
1382. Telescope Clip or Holder, to fasten to the window frame £0 150 to $£ 200$ 1383. Brass Tripod Table Stands, from

200 to 400
1384. Round Mahogany Staff ob Stand, with telescope clip for either of these telescopes
£2 00 to $£ 250$

PORTABLE ASTRONOMICAL TELESCOPES,

 with stands in cases complete.The growing taste for the study of astronomy, together with the comfort of a convenient form of traveller's telescope, for celestial as well as terrestrial observations, is fully met by the following short list of telescopes. The powers quoted are such as are thoroughly suited to the instrument even in the hands of inexperienced observers, though in each case higher powers could be added with advantage if required.
1385. Pocket Astronomical Telescope, 1 foot, 6 draw, closing to $3 \frac{3}{4}$ inch., with small clip support, and extra astronomical power, in morocco case, showing Jupiter's satellites very beautifully, powers 12 to 20 times (f ig. 1335), p. $122 £ 250$
1386. Portable Astronomical Telescope, 2 foot, 4 draw, closing up to 8 inches, $1 \frac{7}{10}$-inch. object glass, one extra astronomical power, shade, and clip stand, powers 25 to 60 times, in mahogany case
£6 100
1387. Portable Astronomical Telescope, 30 -inch., 4 draw, closing up to $10 \frac{\pi}{2}$ inch., 2 -inch. object glass, shade, sun-shade, extra astronomical power, stand and clip, powers 30 to 80 times, in mahogany case
£7 100

Fig. 1375.

Fig. 1385.

Fig. 1354.
1388. Portable Astronomical Telescope, 3 foot, 4 draw, closing to 12 inches, $2 \frac{1}{4}$ inch. object glass, powers 36 to 100 times, stand, etc., in case, complete £9 0

ASTRONOMICAL TELESCOPES.

1389. Astronomical Telescope, with brass body, 30 -inch., object glass $2 \frac{1}{8}$-inch. clear aperture, two terrestrial and two astronomical eye-pieces of $30,50,80$ and 110 powers respectively, rack-work, sun-shades, or dark glasses to eye-pieces, vertical rack and horizontal motion, with handsome brass tripod stand, in mahogany case, complete (fig. 1389)
£11 100
Shows clearly Jupiter's satellites and ordinary double stars.
1390. Strong Garden Stand, to suit the above.

1150
1392. Astronomical Telescope, 3 feet focal length, $2 \frac{1}{2}$-inch. object glass, with pancratic eye-draw, giving powers 35,45 , and 55 , and astronomical powers of 80 and 150 respectively, rack work, sun shades, or dark glasses to eye-pieces, with stand, etc., etc., complete, as above
£18 100

Fig. 1389.
1393. Astronomical Telescope, $3 \frac{1}{2}$ feet focal length, $2 \frac{7}{8}$-inch. aperture, with pancratic day-draw, giving powers $35,45,60$ and $70 ; 3$ astronomical powers of 100, 150 , and 200 respectively, star-finder, vertical rack, and rack adjustment, dew cap and 2 dark glasses or sun-shades to 2 eye-pieces, with pillar and claw stand, in mahogany case, with lock
£25 00
If without finder, in which form it is mostly supplied, £2 less.
ASTRONOMICAL TELESCOPES AND STANDS,
with universal axis.
1394. Astronomical Telescope, $3 \frac{1}{4}$-inch., clear aperture, 4 foot focal length, mounted in polished brass, with sliding draw and rack adjustment, star-finder, dew cap, pancratic day-draw, giving powers of $40,50,60$, and $70 ; 3$ astronomical eye-pieces, magnifying to 100,150 , and 200 respectively, with different shades, of glass to sun caps, in stained pine case £25 0
1395. Astronomical Telescope, $4 \frac{1}{2}$ feet focal length, $3 \frac{1}{2}$-inch. object glass, complete, as above £28 $0 \quad 0$
1396. Astronomical Telescope, as above, 4 feet 9 -inch. focal length, with $3 \frac{3}{4}$-inch., aper- ture, four day powers of $45,55,65$, and 75 , four astronomical powers of $100,150,200$, and 250 respectively, and diagonal eye-piece, in case, as above

$$
£ 35 \quad 0 \quad 0
$$

1397. Astronomical Telescope, 5 foot focal length, and precisely as No. 1394, but with 4 -inch. aperture and 5 astronomical powers, viz., 100, 150, 200, 250, and ,300, in case, complete £45 $0 \quad 0$
1398. Astronomical Telescope, with $4 \frac{1}{2}$-inch. aperture, and astronomical powers of $100,150,200,250$, and 300

EQUATORIAL MOUNTINGS.

1399. Universal Equatorial Axis, to carry Nos. 1394, 1395, or 1396 telescopes, with 6 inch. hour or declination circles, divided on silver, with the latest improved motions, in strong pine case .
£33 00
1400. Universal Equatorial Axis, of larger size, to carry Nos. 1397 or 1398 tele-
scopes in strong pine case $40 \quad 0 \quad 0$
1401. Strong Out-door Lath Oak Stand, for axis, No. 1399 or $1400 \quad 6 \quad 6 \quad 0$
1402. Iron Pillar, for ditto 7100
1403. Higher Powers, added to either of the above telescopes, at $£ 0150$ to
1404. Diagonal Eye-pieces fitted to either of the above telescopes, £1 3s. to £1 $10 \quad 0$ 1406. First Surface Reflection Prism, for the sun . . 0176
1405. Total Reflection Prism, for the sun 1100
1406. Illuminating Apparatus 2126
1407. Astronomical Eye-pieces (Huyghenian), Nos. 1 and 2 magnifying to 65 and 85 £0 $15 \quad 6$
1408. Astronomical Exe-pieces (Huyghenian), Nos. 3, 4, and 5, magnifying to 125, 200, and 250 .
£1 10
1409. Astronomical Exe-piece (Huyghenian), No. 6, magnifying to $400 \quad 1 \quad 6 \quad 0$
1410. Astronomical Lye-piece (Huyghenian), No. 7, magnifying to $600 \quad 111 \quad 6$
1411. Achromatic Eye-pieces, in which the field is more limited, but applied to reflecting telescopes, on the planets their power is very superior, average cost 5 s . to 15 s . dearer than the above.
1412. Annular Micrometer, with eye-piece .
£1 50
1413. Micrometer, on glass, divided to parts of inches or in millimètres £0 126
1414. Parallel Wire Micrometers, $£ 3$ 3s. Od., £4 10s. od., and . $610 \quad 0$
1415. " " " with position circles, $£ 410$ s. 0d., £6 10s. 6d., and £13 00
1416. Slipping Piece for use, with ditto 3100
1417. Double Image Dynameter

3100
1422. Pearl Scale ". 100
1423. Reading Micrometers, from 4100

OBJECT GLASSES-FIRST QUALITY.

in brass cells.

OBJECT GLASSES-SECOND QUALITY.

 without celle.
Diameter.

1436. 1-inch.
1437. $1 \frac{1}{8}$-inch.
1438. $1 \frac{7}{16}$-inch.
1439. $1 \frac{1}{2}$-inch.
1440. $1 \frac{5}{8}$-inch.
1441. $1 \frac{3}{4}$-inch.
1442. 2-inch.
1443. $2 \frac{1}{8}$-inch.
1444. $2 \frac{1}{4}$-inch.
1445. $2 \frac{3}{8}$-inch.
1446. $2 \frac{1}{1} \frac{1}{6}$-inch.
1447. 3 -inch.
1448. $3 \frac{3}{16}$-inch.
1449. $3 \frac{3}{8}$-inch.
1450. $3 \frac{3}{4}$-inch.

Focus Average.
9 -inch.
10-inch.
15-inch.

Pric ${ }^{\circ}$. £0 $\quad 2 \quad 8$ and £0 $3 \quad 6$ $\begin{array}{lll}0 & 3 & 6\end{array}$ $\begin{array}{lllllll}0 & 3 & 6 & \prime & 0 & 4 & 3\end{array}$

18-inch.
18-inch.
20-inch. $0 \quad 6 \quad 0 \quad, \quad 0 \quad 8 \quad 6$
27-inch. $0 \quad 8 \quad 0 \quad, \quad 0 \quad 8 \quad 6$
20-inch.
. 0106
30-inch. 0126 , 0130
34-inch. $017 \quad 0 \quad$, 110
42-inch. 150 , 180
42-inch. 1126 , 220
42-inch. 2150 , 2160
48-inch. 4000 , 5000
48-inch.

BINOCULAR, OPERA, FIELD, OR PILOT GLASSES.

The great convenience of binocular glasses in the opera and picture gallery, as well as for out-door use and at sea, is well known; they should however as far as possible be especially adapted for each of these purposes; thus, as a rule, large glasses are most suitable for use at sea, whilst portability, with reduced size and weight, expanded range, and clear sharp definition, are for the opera and field.
Single Achromatic 0pera Glasses in flexible cases.
1453. Small size Perspective Glass, for waistcoat pocket, covered with black or dark fancy morocco, 1 -inch object glass. An excellent companion for the picture gallery or lecture hall
1454. Perspective Glass, ditto, ditto, ivory and gilt

0126
1455. Perspective Glass, ivory and gilt, $1 \frac{1}{8}$ object glass

0166
1456. Perspective Glass, with fancy morocco . . . 0106

If with six glasses and higher power 5 s . and 7 s . 6d. each extra.
Binocular Achromatic Opera Glasses, in flexible cases, covered with black or dark fancy morocco.
1457. Object glass $1 \frac{1}{10}$ diameter £0 $15 \quad 6 \left\lvert\, \begin{array}{ll}1459 \text {. Object glass } 1 \frac{7}{10} \text { diameter } £ 1 \quad 2 & 0\end{array}\right.$
 Well suited for the opera and picture gallery.

Binocular Opera Glasses, covered, etc., as above, finest quality, with twelve glasses. 1462. Object glass $1 \frac{1}{10}$ diameter £1 10	10	1464 . Object glass $1 \frac{7}{10}$ diameter £1 180

The following binocular opera glasses, of the finest quality, with carefully connected triple achromatic object glasses and eye-pieces in the various fancy mountings described, in handsome velvet cases, will be found admirable as presents, their quality and beautiful appearance being unsurpassed.

Ivory and Best Gilt, with Twelve Glasses (fg . 1469), p. 126, 1466. Object glass $1 \frac{1}{10}$ diameter $£ 118 \quad 0 \left\lvert\, \begin{array}{ll}1468 \text {. Object glass } & 1 \frac{7}{10} \text { diameter } £ 2120 \\ 2 & 12\end{array}\right.$

Shell and Best Gilt, with Twelve Glasses,

 Ormolu with Twelve Glasses, with rich ornamental bodies engraved; colored, and best gilt, very chaste, and beautiful,
1475. Object glass $\frac{1}{10}$ diameter £2 $18 \quad 0 \mid 1477$. Object glass $1 \frac{7}{10}$ diameter £3 170

Fig. 1489.

Fig. 1469.

\section*{Pearl and Best Gilt, with Twelve Glasses,} 1479. Object glass $1 \frac{1}{10}$ diameter $£ 2$| 5 | 0 | 1482 . Object glass. $1 \frac{7}{1.0}$ diameter $£ 30$ |
| :--- | :--- | :--- | 0 1480. " " $\left.1 \frac{3}{10} \# 2120 \right\rvert\, 1483 . \quad, \quad 2$ in. „ 3100 With engraved white chased Audminium bodies, extra light, with twelve glasses, 1484. Object glass $1 \frac{1}{10}$ diameter $£ 380 \left\lvert\, \begin{array}{lllll} & 8 & 0 & \end{array}\right.$ Together with larger sizes and others in various fancy mountings.

Binocular Field or Opera Glasses, covered with black or dark fancy morocco, in flexible cases, with shade and sling, small size, finest quality, with twelve glasses (fig. 1489), the larger sizes with stout patent leather sling cases,
1486. Object glass $1 \frac{1}{10}$ diameter £2 $220 \left\lvert\, \begin{array}{ll}1488 \text {. Object glass } 1 \frac{7}{10} \text { diameter £2 } 10 & 0\end{array}\right.$ 1487. " " $\left.1_{\frac{3}{10}}^{\frac{3}{10}} \quad 2 \quad 6 \quad 0 \right\rvert\, 1489 . \quad, \quad 2$ in. , 2180

The same sizes and quality covered as above, in Aluminium, being about one-third the weight, and much liked for warm climates, with cases,
1490. Object glass $1 \frac{1}{10}$ diameter $£ 410 \quad 0 \mid 1493$. Object glass $1 \frac{5}{10}$ diameter $£ 6$
 1495. Ditto, as above, extra large, object glass $2 \frac{3}{10}$ diameter $£ 7 \quad 7 \quad 0$

Binocular Vield or Marine Glasses, covered with black or dark morocco ; Emperor pattern and size, with sun or spray shades. Finest quality, with twelve glasses, the size and weight being reduced to the utmost, in best sling case (fg . 1498) ,
1496. Object glass $1 \frac{3}{4}$ in. diameter £3 $00 \mid 1497$. Object glass 2 in. diameter $£ 3100$ 1498. Object glass $2 \frac{1}{4}$ diameter . . . £4 00

The above are excellent glasses for military purposes, owing to their power, and extended field of view.
Binocular Field or Marine Glasses, as the above, having same appearance but in Aluminium, being about one-third the weight; an important reduction in these sizes for warm climates.
1499. Object glass $1 \frac{3}{4}$ in. diameter $£ 660 \mid 1500$. Object glass 2 in. diameter $£ 770$ 1502. Object glass $2 \frac{1}{4}$ diameter
£7 $15 \quad 0$
A neat firm sling case of black or patent leather, or of natural colour (for India) is supplied with these glasses.

Captains' and Pilots' Binocular Glasses. These glasses, from their perfect definition, as well as convenience in use, have not only superseded the old inverting night glass, but are now regarded as indispensable for look-out glasses, both in the navy and merchant service.
1503. Captains' and Pilots' Glasses, bronzed and covered with black leather, object glass $2 \frac{1}{4}$ in. diameter $£ 440$
These glasses from the large field of view and moderate cost, are recommended with much confidence, as great farourites in the service.
1504. Captains' and Pilots' Glasses of Finest Quality, with twelve glasses, and increased power ; same color as the above, object glass $2 \frac{1}{4} \mathrm{in}$. diameter $£ 6150$
Binocular or Field Glasses, superior, with eight glasses and increased power, though of smaller field in proportion to the object glass; japanned and black leather mounting, with sling case and strap,

1505. Object glass $1 \frac{5}{10}$ diameter $£ 1$| 17 | 6 | 1507 . Object glass 2 in. diameter $£ 2$ |
| :--- | :--- | :--- |
| $£$ | 5 | 0 | 1506. " " $1 \frac{7}{10}$ " $220 \mid 1508 . \quad, \quad 2 \frac{1}{4} \quad$, 2150

Binocular, Field, and 0pera Glasses (black morocco), with three revolving eye-pieces to increase or diminish the powers, and adapt them at pleasure, for the opera, the country, or the seaside; both long and short vision are fully met in this excellent arrangement, whilst even in the theatre this combination of powers is found of great convenience. In collapsing sling case,
1509. Object glass $\frac{5}{10}$ diameter £3 $60 \left\lvert\, \begin{aligned} & \text { 1512. Object glass } 2 \text { in. diameter } £ 3180\end{aligned}\right.$
1510. ", " $1 \frac{7}{10}, \quad 3120 \mid 1513 . \quad$, $2 \frac{1}{8}$, 440 If with spray or sun-shade, 12s. each extra.
Three Change Opera Glasses as above, Aluminium, in collapsing sling cases,
 1515. " " $1 \frac{7}{10}$ " 660 1517. ", $2 \frac{1}{4}$ " 7150

Marine, Pilot, or Field Glasses, three change, covered with black morocco, in aluminium, of extra light weight as above, with sun or spring-shades extra, also very convenient for tourists,
1518. Object glass $\frac{5}{1} \frac{5}{10}$ diameter $£ 6180 \mid 1520$. Object glass 2 in. diameter $£ 7150$
 1523. Object glass $2 \frac{1}{4}$ in. diameter . . £9 $0 \quad 0$

Single Military Field Glasses, three change, as No. 1509, with sling cords or straps and sun or spray shades.
1524. Object glass $1 \frac{7}{10}$ diameter £1 $600 \left\lvert\, \begin{array}{llllll}1526 & \text { Object glass } 2 \frac{1}{8} \text { diameter } & £ 1 & 12 & 6\end{array}\right.$
 Distance telescopes as used by the Prussian military staff, see Telescopes, No. 1376.

STEREOSCOPES.

These admirable instruments are now well known and valued, alike for their, scientific worth and the means they afford for viewing objects and scenes from all parts of the world, with an interest only next to seeing the real object, or being on the spot; thus, in union with photography, Palestine, Syria, China and Japan, hitherto known as it were but in name, may now be regarded as almost brought to our dwellings, whilst the daily increasing demand and supply seems to bid fair for their becoming almost as noble a means of instruction as printing itself.
1528. Stcreoscope, plain, transparent, with best cosmoramic fixed lenses and reflector, in mahogany .
£0 76
1529. Stereoscope, as above, in walnut or rosewood .

090
1530. Stereoscope, of superior make, transparent, etc., as above, with hinged top mahogany, 11s. 6d.; walnut, 13s. 0d.; rosewood, 14s. ; zebra wood £0 166
1532. Stercoscopes, of the best quality, with silvered reflectors, and German silver mountings, in the following fancy woods, viz., walnut, rosewood, zebra, tulip, Hungarian ash, etc.
£1 10
1533. Stereoscope, cosmoramic, square, with sliding body for focal adjustment, hinge front and best reflector, in various fancy woods, as above, mahogany, £1 13s.; walnut, £1 18s.; rosewood
£2 0
*** Stands for the above, with vertical, horizontal and elongating motion, clamps, etc. in brass, 12s. 6d., or richly turned wood, 17s. 6d. to £1 10s.
1534. Stereoscope (extra size), panoramic, holding nine dozen slides, revolving at pleasure and admitting two persons to look at the same time, very elegant, in walnut or mahogany. Price, without slides £5 $10 \quad 0$ to $£ 710 \quad 0$
1535. Cabinet or Panoramic Stereoscope, with convex top for 100 paper or 50 glass slides, with double reflectors and superior achromatic lens, with rack and pinion, revolving at pleasure and admitting two persons to look at the same time. In this arrangement the slides are always clean, being kept in their position in the stereoscope, instead of separate as in the ordinary way, in walnut or mahogany
£5 $10 \quad 0$ to $£ 800$
An elegant ornament for the Crawing-room.
1536. Cabinet or Panoramic Stereoscope, the same as above, arranged for one observer only
£5 50

STEREOSCOPIC SLIDES,

Including only the very best of each kind, the difference in price arising from the greater or less difficulty attending the production of the object. The great variety of stereoscopic slides now before the public receiving as it does daily additions, prevents a general and fixed price list being given; the following, however, will convey a general idea of their prices and kinds, every interesting variety being added as it appears :-

GLASS STEREOSCOPIC VIEWS.

1537. Glass Stereoscopic Views, by the leading artists, including Wilson, England, Blanchard, Ferrier, etc., of the chief scenes of interest in the following places, at 4s. 6d. to 5s. 6d. each:-

England.
London and Environs.
Scotland, by Wilson.
Ireland.
France.
Spain.

Russia.
Constantinople and Athens.
America.
Egypt and Nubia, including the leading scenes of the Abyssinian War, and the Suez Canal.

STEREOSCOPIC VIEWS-Continued.

Italy.
Rome.
Switzerland.
Venice.
Germany and the Rhine.
Belgium and Holland.
Denmark.
Norway.
Sweden.

Holy Land and Syria, with the chief scenes of Scripture History.
China.
Japan.
Siam.
Molluccas.
Java.
India, including the leading scenes of the last great East Indian Rebellion.

BEST CARD STEREOSCOPIC VIEWS.

1538. Best Card Stereoscopic Views of the following places, 10s. to 15s. per dozen :-

England.
Scotland.
Wales.
Ireland.
English Lake Scenery.
Exteriors and Interiors of English Cathedrals.
Series of London Views.
Egypt and Nubia.
Holy Land.

India.
China.
Italy.
Switzerland.
America.
France.
Belgium.
Spain.
Holland.
Herculaneum and Pompeii.
1539. Haes's well-known Series of the Animals in the Zoological Gardens, 18s. per dozen.
1540. Stercoscopic Slides, interesting coloured groups, 10s. 6d., 12s. 6d., and 15s. per dozen ; best ditto, 18s. per dozen.
1542. Groups from Life, Rustic Scenes, Cattle, Domestic and Comic Groups. Still Life Subjects : Game, Flowers, Fruit, Vegetables, etc., coloured, each 1s. to 2s.
1543. Crystal Palace Views, showing the various courts and points of greatest interest, 13s. per dozen ; transparent on glass, 5 s . each.
1550. Illuminated Views and Groups, showing two effects (day and night), 2s. to 2s. 6d.
1552. Instantaneous Stereoscopic Pictures of the Moon, Clouds, Waves of the Sea, etc., on glass, from
£0 $6 \quad 0$
1553. Instantaneous Stereoscopic Pictures of the Moon, Clouds, Waves of the Sea, etc., on paper
1554. Elegant fancy boxes, to hold from three to six dozen slides, 1s. 6d. to 10s. 6d.

Fig. 1560.

Fig. 1567.

CAMERAS, PRISMS, MIRRORS, ETC.

Neomonoscopes, for giving stereoscopic effect to Carte-de-Visite portraits, of which it holds twelve.
1556. Neomonoscope, covered with plain cloth . . . £0 10
1557. Neomonoscope, in mahogany polished, with large lens . . 026
1558. Neomonoscope superior, in ebony, and gilt or red; large lens . $\quad 0 \begin{array}{llll}0 & 6\end{array}$

Graphoscopes, for developing and giving beautiful stereoscopic effect to landscapes, and the various productions of photography, forming also an excellent stereoscope for opaque or transparent objects (fig .1560):
1559. Graphoscope in mahogany, in neat case, complete . . $£ 2126$
1560. Graphoscope in walnut
3. 30
1562. Graphoscope in walnut; extra large size

550
1563. Anorthoscope, or Magic Pictures, with twelve diagrams, by which masses of colours and apparent distortions are made to revolve and represent interesting and beautiful figures and pictures
£1 20
1564. Phantoscope, for projecting figures in air, being one of the illusions of the concave mirror
£2 100
1565. Polemiscope, by which an object is seen, though an opaque body be placed before it, 12s. to
£1 100
1566. Cylindrical or Distorting Mirrors, in rosewood frames, 8 inch. by 6 inch., £1 10s. 0d.; 9 inch. by 7 inch.
£2 0
1567. Camera Lucida (Wollaston's), by means of which objects are shown on a sheet of paper, so that a correct drawing can be made even by those unaccustomed to use the pencil. In sketching from nature it is of the greatest use, as by its means an indifferent draughtsman may correctly portray the view before him. Portraits may also be taken the size of life, or to any less size; whilst pai ntings, prints, maps, drawings, machinery, etc., may be drawn in true perspective to any scale. Price, in maroon case, for the pocket, with instructions (fg. 1567) £1 126 and £2 50

Fig. 1572.

Fig. 1569.

Fig. 1574.
1568. Portable Mahogany Drawing Board and Tripod Stand, occasionally used with the camera lucida
£1 50 and £1 150
1569. Camera Obscura, for making sketches and portraits from nature, best make, for pictures, 7×5 (fig. 1569) .
£0 $10 \quad 6$ and £0 150
1570. Portable Field Camera, for sketching from nature direct upon the drawing paper
£3 00 to $£ 510 \quad 0$
Photographic cameras, etc., see photographic apparatus, pages 138 to 141.
1572. Claude Lorraine or Convex Black Glass Mirrors, in morocco cases, much used to facilitate the delineation of landscapes in perspective (fig. 1572), $5 \frac{1}{8}$ by $6 \frac{1}{4}$, 15s. 6 d .; $5 \frac{1}{8}$ by $7 \frac{1}{2}$, £1; $6 \frac{1}{4}$ by $8 \frac{3}{4}$, £1 76 d .; $7 \frac{1}{2}$ by $9 \frac{1}{2}$. £1 $15 \quad 0$
1573. Coloured Glasses or Claude Lorraine Tints, to illustrate the effect of colours on pictures, in horn or tortoise-shell case, 3s. 6d. to . £0 $12 \quad 6$
1574. Optical Diagonal Mirror, for viewing prints in perspective, and increasing their size to an extent almost approaching to nature, on richly turned mahogany pedestal (fig. 1574)
£2 20
1575. Interesting Coloured Prints, for the above, consisting of views of the chiet cities in Europe, showing their principal forts, public buildings, etc., per dozen
£0 150
1576. Dental Mirror (concave), for magnifying and examining at pleasure the inner surface of the teeth, in folding silver frame, for the pocket £0 $16 \quad 6$
1577. Opthalmoscope, of much importance, for viewing the interior and back surface of the eye 15 s .6 d . to
1578. Optical Model of Pyramid, proving that the intensity of light must be
inversely as the square of the distance
1579. Optical Model, showing long-sighted, short-sighted, and perfect vision. Nine rays of light, from an object entering a $3 \frac{1}{2}$-inch. glass eye are refracted by its lens, showing the object inverted on the retina . . £4 $0 \quad 0$
1580. Optometer (SMEE's), for assisting to ascertain the power of glasses required to remedy defective vision, with instructions for use
£2 100
1582. Glass Prisms, plain, 2s. to

050
1583. Glass Prisms, of superior flint glass, for illustrating the decomposition of light, on stand with ball ànd socket-joint, 15s. to
£1 10

PHOTOGRAPHY.

In the following list of photographic lenses and apparatus, including only the latest improvements, for beginners, a few complete and economic sets are arranged as under, to show the cost at which any one may practically enter upon the subject, completing their work without any extra cost; the perfection, however, to which the photographic art has attained, requiring that each article should be separately enumerated, the list of cameras and chemicals include only the latest improved, and such as are perfect for their purpose in every way. The stands and other appliances are of the same character.

The following lenses by the most eminent English and foreign makers are perfectly adapted to the various cameras enumerated, and are supplied at the same price as charged by the makers. The lower priced lenses, though not so extensively known, are however selected with the utmost care, and are found to give every satisfaction. A specimen portrait of these last-named lenses may be had with the lens, when required, without any extra charge.

Sets of Photographic Apparatus, with chemicals, etc., etc., complete.
1584. No. 1. For portraits on glass with double achromatic lens, in brass mounting with rack and pinion, expanding camera with stand, ground glass focussing screen, and dark slide for three sizes of plates, gutta-percha bath and dipper, plate box and glass plates; 6 oz . nitrate of silver solution, 2 oz . sensitive collodion, 1 pint each developing and fixing solution, 2 oz. each black and white varnish, in stoppered bottles, the whole packed in box complete £2 100
1585. No. 2. Larger Set of Apparatus, as above, for plates $4 \frac{1}{4}$ by $3 \frac{3}{4}$, and under, with lenses, camera, stand, etc., larger in proportion, and increased quantity of chemicals
£5 50
1586. No. 3. Superior Set of Apparatus for portraits and views up to $4 \frac{1}{4}$ by $3 \frac{1}{2}$, either on paper or glass, consisting of best double achromatic lens in brass mounting, with rackwork and waterhouse diaphragms complete, superior double-bodied camera in polished mahogany with tripod stand, ground glass focussing screen, dark slide and plate holders for three sizes of plates, porcelain bath and dipper, 3 doz. glass plates and 3 plate boxes, funnel, pressure frame,
graduated glass measure, set of scales and weights, porcelain dishes, positive and negative collodion, nitrate of silver solution, acetate of soda, pyrogallic acid, albumenized and litmus paper, filter papers, alcohol, prota-sulphate of iron, cyanide of potassium, glacial acetic acid, hyposulphite of soda, chloride of gold, black and white varnishes, etc., in suitable stoppered bottles, in case complete with lock and key
£5 $10 \quad 0$

1587. No. 4 Set for Carte-de-Visite and Stereoscopic Pictures, with folding tripod for camera and every requisite, complete in box with lock and key £7 100

1588. No. 5. Consisting of Larger Set of Apparatus of finest quality, adapted for plates of $6 \frac{1}{2}$ by $4 \frac{3}{4}$ and under, with apparatus, chemicals, etc., complete, in proportion, adapted for both portraits and views, in case with lock and key £11 0

MOUNTED LENSES.

Improved portrait combination of achromatic lenses, fitted with Waterhouse diaphragms, and rack and pinion adjustment. The focus is measured from the back lens to the ground glass, and taken from an object placed at the usual distance for portraits.

Diameter.
1589. $1 \frac{5}{8}$-inch.
1590. $2 \frac{1}{8}$-inch.
1592. $2 \frac{3}{8}$-inch.
1593. $2 \frac{3}{8}$-inch.
1594. 3-inch.

Combined Focus.
$3 \frac{1}{2}$-inch.
$5 \frac{1}{2}$-inch.
6 -inch.
7 -inch.
$10 \frac{1}{2}$-inch.

Size ot Portrait.

$4 \frac{1}{2} \times 3 \frac{1}{4}$	$£ 2$	0	0
Carte-de-Visite.	4	0	0
Carte-de-Visite.	4	0	0
$6 \frac{1}{2} \times 4 \frac{3}{4}$	4	4	0
$8 \frac{1}{2} \times 6$	9	9	0

$$
\text { mounting complete, with rack and pinion adjustment } £ 1100
$$

*** The definition of these lenses is beautiful and clear to the edge of the picture, the chemical and visual foci are coincident, and the arrangement of the brass work so simple and effective as to require no extra mounting, the whole being in every way equal to those sold at much higher prices; they may be had in pairs or sets of four for taking several pictures on one plate.

ROSS'S IMPROVED PHOTOGRAPHIC LENSES.

PORTRAIT LENSES.

These lenses give fine and correct definition, both at the centre and margin of the picture, and have their visual and chemical-acting foci coincident.
1596. No. 1. Portrait Lens, consisting of two achromatic combinations, mounted in tubes, with rack and pinion movement, the lenses $1 \frac{3}{4}$-inch. diameter, and $4 \frac{1}{2}$ inch. focal length from the back glass, producing pictures on plates $4 \frac{1}{4}$ by $3 \frac{1}{4}$ inch. and under
£5 0
1597. A Set of Waterhouse Diaphragms, in morocco case, for ditto 0150
1598. No. 2. Portrait Lens, the lenses $2 \frac{1}{4}$-inch. diameter and 6 -inch. focal length, for pictures on plates 5 by 4 inch. and under
£8 $0 \quad 0$
1599. A Set of Waterhouse Diaphragms, in morocco case, for ditto 100
1600. No. 2A. Portrait Lens, the lenses $2 \frac{1}{2}$-inch. diameter and $7 \frac{1}{2}$-inch. focal length, for pictures on plates 5 by 4 inch. and under. This lens produces larger portraits than the above
£10 $10 \quad 0$
1601. A Set of Waterhouse Diaphragms, in morocco case, for ditto

150
1602. No. 3. Portratt Lens, the lenses $3 \frac{1}{4}$-inch. diameter and 10 -inch focal length, for pictures on plates 6 by 5 inch. and under . . £16 00
1603. A Set of Waterhotse Diaphragms, in morocco case, for ditto

1100
1604. No 3a. Portrait Lens, the front lens $3 \frac{1}{4}$-inch. diameter, the back lens 4 -inch. diameter, 12 -inch. focal length, for pictures on plates $8 \frac{i}{2}$ by $6 \frac{1}{2}$-inch., and under £25 0
1605. A Set of Waterhouse Diaphragms, in morocco case, for ditto 1150
1606. Portrait Lens, the lenses $4 \frac{1}{2}$-inch. diameter, 15 inches focal length, for pictures on plates 10 by 8 inches and under £36 00
1606*. A Set of Waterhotse Diaphragms, in morocco case, for ditto 200
1607. Portratt Lens, the front lens $3 \frac{1}{4}$ inches diameter, the back lens 5 inches diameter, 20 inches focal length, for pictures on plates 16 by 14 inches and under £30 0
1607*. A Set of Waterhouse Diaphragms, in morocco case, for ditto $\quad 2 \quad 5 \quad 0$

QUICK-ACTING CARTE-DE-VISITE LENSES,

with waterhouse diaphragms and rack and pinion movement.

1608. No. 1. Carte-de-Visite Lens, consisting of two actinic combinations, $1 \frac{3}{4}$-inch. diameter, $4 \frac{1}{4}$-inches focal length, ; requires from 13 to 14 feet between the subject and the focussing screen of camera
£5 150
1609. No. 2. Carte-de-Visite Lens, $2 \frac{1}{10}$-inch. diameter, $4 \frac{3}{4}$-inch. focal length; requires from 15 to 16 feet between the subject and focussing screen of camera $£ 610 \quad 0$ 1610. No. 3. Carte-de-Visite Lens, $2 \frac{1}{2}$-inch. diameter, 6 -inch. focal length; requires from 19 to 20 feet between the subject and focussing screen of camera $£ 1110 \quad 0$ 1611. No. 3 a. Carte-de-Visite Lens (extra rapid), $3 \frac{1}{4}$-inch. diameter, 6 -inch. focal length; requires the same working space as No. 3, and may be used with full aperture for large vignettes of children
£25 0
The following table, showing the greatest distance required between the subject and the focussing screen, to produce figures $2 \frac{3}{1}$ inch. and 3 inch . with each of the lenses (the standard being 6 feet), is given as a guide to photographers in their selection of a lens suitable for the length of their operating rooms:-

No. 1. Carte-de-Visite Lens		14 feet.	$13 \frac{1}{4}$ feet.
No. 2. Carte-de-Visite Lens	.	16 feet.	$14 \frac{3}{4}$ feet.
No. 3. Carte-de-Visite Lens	.	20 feet.	$18 \frac{3}{4}$ feet.
No. 3a. Carte-de-Visite Lens	.	20 feet.	$18 \frac{3}{4}$ feet.

[^9]
LENSES FOR CABINET PORTRAITS.

These lenses have a flat field, and give remarkably brilliant pictures. They have Waterhouse diaphragms and rack and pinion movement.
1616. No. 1. Cabinet Lens, $2 \frac{3}{4}$-inch. clear aperture, 6 -inch. focus; should be placed at 14 feet from the sitter
£13 0
1617. No. 2. Cabinet Lens, $3 \frac{1}{4}$-inch. clear aperture, 8 -inch. focus; should be placed at 18 feet from the sitter.
$£ 1710 \quad 0$
1618. No. 3. Cabinet Lens, $3 \frac{1}{2}$-inch. clear aperture, 10 -inch. focus; should be placed at 20 feet from the sitter
£19 $10 \quad 0$

NEW ACTINIC DOUBLET LENSES,

FOR LANDSCAPES, ARCHITECTURAL SUBJECTS, ENLARGING, AND COPYING.
1619. Ordinary Doublets. Angle subtended by diagonal of plate, about 74°; ditto by horizontal base line, about 60°.

Size of Plate.	Diameter of Lenses.	Back Focus.	Equivalen: Focus.	Price.	Adapter for Single Lens \dagger
Inch. Inch.	Inches.	Inches.	Inches.		
5×4 and $7 \frac{1}{4}$ by $4 \frac{1}{4}$		4	$4 \frac{1}{2}$	4 4 100	26
6 " 5 and 7 $\frac{1}{4}$ by $4 \frac{1}{2}$	$1 \frac{4}{10}$	6	$6 \frac{3}{4}$	$410 \quad 0$	26
8 " $4 \frac{1}{2}$.	$1 \frac{1}{2}$	64 ${ }^{\frac{1}{4}}$	$7 \frac{1}{4}$	4150	30
$8 \frac{1}{2},{ }^{\frac{1}{2}}$.	$1 \frac{3}{4}$	$6{ }^{3}$	$7 \frac{3}{4}$	5100	30
10 , 8	2	8	9	7150	30
12 „ 10	212	93	1114	9100	36
15 „, 12	3	12^{4}	$13 \frac{3}{4}$	1200	40
18 „, 16	$3 \frac{3}{4}$	$16 \frac{1}{2}$	182	1700	50
*22 ", 20	$4 \frac{1}{2}$	$19 \frac{1}{2}$	22	$\begin{array}{lll}26 & 0 & 0\end{array}$	56
*25 \# 21	$5 \frac{1}{8}$	$21 \frac{1}{1}$	24	$40 \quad 0$	80
*30 „ 24	6	25	28	$60 \quad 0 \quad 0$	100

* These sizes are made only to order.
\dagger The prices in this column refer to a lengthening tube, which must be screwed on between the front combination and the diaphragms when the lens is used as a single combination. For architectural subjects, when the camera requires tilting, the single lens should be used in front of the diaphragm plate; at other times behind.

1620. NEW SERIES OF DOUBLETS, designated "small-angle,"

Giving the same amount of subject as the ordinary single combination landscape lens. Angle subtended by diagonal of plate, about 46°; ditto by horizontal base line about 37°.

Size of Plate.	Diameter of	Back Focus.	Equivalent Focus.	Price.
Inch. Inch.	Inches.	Inches.	Inches.	$\chi_{\text {c }} \mathrm{s}$. d.
$5 \times 4 *$ and under .	1	$5 \frac{1}{2}$	6	3150
8 , 4 ${ }^{\frac{1}{2} \text {. }}$	$1 \frac{3}{4}$	9	10%ㅜㄴ	5000
$8 \frac{1}{2}$, $6 \frac{1}{2}$.	$2 \frac{1}{10}$	11	$12^{\frac{1}{2}}$	7100
10 " 8 .	$2 \frac{1}{2}{ }^{\text {a }}$	13	15	900
12 ", 10	3	16	18	$1010 \quad 0$
15 ", 12	$3 \frac{3}{4}$	20	22	1500
18 ", 16	$4 \frac{3}{4}$	25	28	$24 \quad 0 \quad 0$

[^10]1622. Stereographic Compound Lens, for portraits, groups, views, and interiors; diameter of front combination $1 \frac{3}{10}$-inch., of back ditto $1 \frac{7}{16}$-inch.; $3 \frac{1}{2}$-inch. focal length ; this lens has a rack and pinion movement, a set of Waterhouse diaphragms, and works instantaneously
£4 0
1623. Stereographic Compound Lens, without rack and pinion

380
1624. Stereographic Single Liens for views, ete., $4 \frac{1}{2}$-inch. focal length, $1 \frac{1}{4}$-inch. diameter
£1 80
1625. Stereograpitic Single Lens, with rack and pinion . . . 200
1626. Stereographic Single Lens, 6 -inch. focal length, 1 - -inch diameter 1880

1626*.Stereographic Single Lens, with rack and pinion . . 200
1627. Pair of Stereographic Single Lenses of either $4 \frac{1}{2}$ or 6 -inch. focal length, with combined rack motion
1628. "The Wilsonian," a single lens (for stereo. and 5 by 4 -inch views), 6 -inch. focal length, $1 \frac{1}{2}$-inch diameter
£2 0
1629. "The Wilsoniln," with rack and pinion

2150

DALLMEYER'S IMPROVED PHOTOGRAPHIC LENSES. patent portrait lenses (B). Quick acting lenses.

1630. No. 2 B Patent Lens, with rack and pinion movement. Diameter of lenses 2_{4}^{3} inch. and back focus 6 inch.; especially constructed for carte-de-visite portraits; distance between subject and lens for a standing figure, 18 feet $£ 120$
1631. A Set of Waterhouse Diaphragms, in case for ditto . . 150
1632. No. 3 B Patent Lens, diameter of lenses $3 \frac{1}{2}$ inch. and back focus 8 inch. especially constructed for the new cabinet portraits; distance between subject and lens for a standing figure, 18 feet . . £18 100
1633. A Set of Waterhouse Diaphragms, in case for ditto . . 1100
1634. No. 4 B Patent Lens, diameter of lenses $4 \frac{1}{2}$-inch, and back focus 12 -inches: for pictures $8 \frac{1}{2}$ by $6 \frac{1}{2}$-inch. Distance for a cabinet portrait, 25 feet £38 00 1636. A Set of Wateriouse Diaphragms, in case for ditto .

200

1637. PATENT PORTRAIT AND GROUP LENSES (D).

The prices marked below include a set of Waterhouse central diaphragms, and with the exception of No. 3 D , the lenses are mounted in rigid sittings, i.e., without rack and pinion movement.

	Diameter of Lens.	Back Focus	Size of Group.	Size of View.	Price.
	Inches.	Inches.	Inches.	Inches.	\dagger_{8} s. d.
No. 3 D* Patent	$2 \frac{1}{8}$	$10 \frac{1}{2}$	$8 \frac{1}{2}$ by $6 \frac{1}{2}$	10 by 8	8100
No. 4 D* Patent	27	13	10 , 8	12 , 10	13100
No. 5 D Patent	$3 \frac{1}{4}$	16	12 ,, 10	15 „, 12	17100
No. 6 D Patent	4	192	15 „, 12	18 „, 16	2500
No. 7 D Patent	5	24	18 „, 16	22 „, 20	$42 \quad 0$

[^11]New Patent Stereographic Lens, especially constructed for "instantaneous views," small portraits, groups, interiors, landscapes, etc.

Diameter of front and back combinations, $1 \frac{1}{2}$-inch. and $1 \frac{1}{4}$-inch. respectively, and $3 \frac{5}{8}$-inch. focus from the back glass (equivalent focus 5 inches). 1638. In sliding mount, with Waterhouse central diaphragms, each
£4 50 1639. New Patent Stereographic Lenses, as above, with rack and pinion movement, each
£4 $15 \quad 0$
N.B.-The front combination can be used alone, as it is (focal length 8 inches), simply by nnscrewing and dispensing with the back combination, when, with a small-sized stop, it will be found to cover the $7 \frac{1}{4}$ by 4 -inch plate.
1640. NEW WIDE-ANGLE LANDSCAPE LEṄS (PATENT).

The lenses are mounted in "rigid" tubes or settings, with "rotating" stops.

No.	Size of Plate.	Diameter of Lenses.	$\begin{gathered} \text { Equivalent } \\ \text { Focus. } \end{gathered}$	Price.	Remarks.
1 A	$\begin{aligned} & \text { Inches. } \\ & 5 \times 4 \end{aligned}$	Inches. $1 \frac{3}{8}$	Inches. $5 \frac{1}{4}$		
1	$7 \frac{1}{4}$, $4 \frac{1}{2}$	$1{ }^{\frac{5}{8}}$	7	${ }_{3}^{3} 150$	
2	$8 \frac{1}{2} \# 6 \frac{1}{2}$	17	$8 \frac{1}{2}$	4100	No. 1A and No. 1
3	$10^{2}, 8$	$2 \frac{1}{8}$	10	5100	into the same flange
4	12 , 10	$2{ }^{\frac{1}{2}}$	12	700	as No. 1 triple achro-
5	15 " 12	$2 \frac{5}{8}$	15	8100	matic lens.
6	18 " 16	3	18	10100	No. 2 and 3 screw
7	22 " 20	$3 \frac{5}{8}$	22	1400	into No. 2 triple achromatic flange.
8	25 " 21	$4 \frac{1}{4}$	25	$19 \quad 0 \quad 0$	

1642. RAPID RECTILINEAR LENS-PATENT.

Size of View or Landscape.	Size of Group or Portrait.	Diameter of Lenses.	Back Focus.	Equiva lent Focus.	$\begin{gathered} \text { Price, Rigid } \\ \text { setting. } \end{gathered}$	$\begin{gathered} \text { Price } \\ \text { Sliding tube } \end{gathered}$	Price, rack and pinion.
by 4 in .	$4 \frac{1}{4}$ by $3 \frac{1}{4} \mathrm{in}$.	1 in.	$5 \frac{1}{2}$ in.	6 in.	¢f. 4 4	¢¢ 4 4	
6 \% 5 in.	5 \% $4 \frac{1}{4} \mathrm{in}$	$1 \frac{1}{4} \mathrm{in}$.	$7 \frac{1}{2}$ in.	$8 \frac{1}{1} \mathrm{in}$.	510	60	6100
$7 \frac{1}{4}$ \# $4 \frac{1}{2} \mathrm{in}$.	5 \# $4 \frac{1}{\frac{1}{4}} \mathrm{in}$.	$1 \frac{1}{4} \mathrm{in}$.	$7 \frac{1}{2}$ in.	$8 \frac{1}{1} \mathrm{in}$.	510		
$8 \frac{1}{2} \# 6^{\frac{1}{2}} \mathrm{in}$.	6 \% ${ }^{5} 5 \mathrm{in}$.	$1 \frac{1}{2} \mathrm{in}$.	$10 \frac{1}{4} \mathrm{in}$.	11 in .	70	710	80
10 , 8 in.	$8 \frac{1}{2} \# 6^{\frac{1}{2}} \mathrm{in}$.	$1{ }^{\frac{3}{4}} \mathrm{in}$.	$12{ }^{\frac{1}{4}} \mathrm{in}$.	13 in.	90	910	10
12 , 10 in .	10 " 8 in .	2 in .	15 in.	16 in .	110	1110	12
15 " 12 in .	12 \# 10 in.	${ }^{2 \frac{1}{2}} \mathrm{in}$.	18 in.	$19 \frac{1}{2}$ in.	140	1415	
18 ", 16 in .	15 " 12 in .	${ }^{3} \mathrm{in}$.	23 in .	$24{ }^{\frac{3}{7}} \mathrm{in}$.	180	190	
22 " 20 in .	18 " 16 in.	$3^{\frac{3}{4}} \mathrm{in}$.	28 in.	$30 \frac{1}{2}$ in.	250	$26 \quad 0$	
25 , 21 in .	22 , 20 in .	4 in.	31 in .	$33 \frac{1}{2}$ in.	300	3110	

QUICK-ACTING PORTRAIT LENSES, SPECIALLY CONSTRUCTED FOR CARTE-DE-VISITE PORTRAITS.

1643. No. 1 B Portratt Lens, consisting of two achromatic combinations, mounted in tube, with rack and pinion movement, the lenses 2 -inch. diameter, and $4 \frac{1}{4}$-inch. focal length from the back glass, producing pictures on plates, $4 \frac{1}{4}$ by $3 \frac{1}{4}$-inch. and under
£5 100
1644. A Set of Waterhouse Diaphragms, in morocco case . . 0150

Distance between the subject (5 feet 8 inch. high) and the lens, for a figure, $2 \frac{3}{4}$ inch., from 12 to 13 feet. The lenses can be had in pairs, or four, of exactly equal foci.
1645. No. 1 B (Long). Diameter of lenses $2 \frac{1}{8}$ inch., back focus $4 \frac{3}{4}$ inch., distance from 14 to 15 feet for above standard £6 0
This lens is constructed to meet the requirements of those photographers who require to use a longer focus lens than No. 1 B, but who have not sufficient length of gallery for No. 2 B.
1646. No. 2 B Portrait Lens, the lenses $2 \frac{3}{4}$ inch. diameter, and 6 inch. focal length from the back glass, for pictures on plates 5 by 4 inch. and under . £11 110

1647. A Set of Waterhouse Diaphragms, in morocco case

150
Distance between the subject (5 feet 8 inch. high) and the lens, for a figure $2 \frac{3}{4}$ inch., from 18 to 19 feet.

Fig. 1648.

NEW BINOCULAR CAMERA ($f g .1648$),

For which the only Prize Medal of the Scotch Society was awarded. Focussing from $3 \frac{1}{2}$ to 10 inch. can be used for stereoscopic views, cartes-de-visite, or for single pictures on the full size plate, i.e., $7 \frac{1}{2}$ by 5 , with swing back, screw adjustment for focussing; the bellows body is divided into two distinct chambers by a movable elastic partition.
1648. With one single back for plates $7 \frac{1}{4}$ by $4 \frac{1}{2}$
£4 150
1649. " " $7 \frac{1}{2}$ by 5 . . . 418 0
1650. " " $\quad 8$ by 5 . . 500
1652. Double backs for two prepared plates $7 \frac{1}{4}$ by $4 \frac{1}{2}$, or $7 \frac{1}{2}$ by 5 . 100
1653. Double backs for two prepared plates 8 by 5 . . 120
1654. Leather cases for either of the above, with sling strap and lock $\quad 1 \quad 20$
*** Fig. 1648 is fitted with the improved folding sideboard, as shown in fig. 1658, p. 139. This allows the camera to be used on end when vertical pictures are required.
" It is altogether a most convenient, economical, and portable instrument, well adapted for the combined purpose for which it is intended."-(Vide Report of Jury, Class XIV.)
1655. Enlarging Cameras, for the field or studio, of good Honduras mahogany, with double bellows body, screw adjustment, bottom folding back and front, sliding action for adjusting negatives either vertically or horizontally. With inner and negative frames for the different sizes from carte-de-visite to 12 by 10 .
£10 $10 \quad 0$
1656. Enlarging Camera, as above, with inner and negative frames for the different sizes from carte-de-visite to 15 by 12
£15 00
1657. Enlarging Camera, as above, with inner and negative frames for the different
sizes from carte-de-visite to 18 by 16
£18 00

Fig. 1658.

Fig. 1658*.

1658. IMPROVED NEW FOLDING OR BELLOWS CAMERA

(Figs. 1658 and 1658*).
This camera is similar in construction to the already well-known binocular camera, and possesses the following advantages : No screws are required for fixing; the focussing is effected from the back by the screw adjustment; the focussing-screen is attached to the camera, and the bellows body is parallel. This will be found of great advantage when using wide angle lenses. It is available either for the studio or field, the range of focus permitting the use of the shortest focus stereoscopic lenses, or any of the wide angle, doublet, or view lenses, as well as the carte-de-visite or cabinet lenses.

These cameras deserve especial examination as well for the perfection of their workmanship as for their perfect adaptation to the purposes for which they are designed.

Cameras for taking Pictures.		Swing Back extra.	Brass Binding.	Russia Leather Bellows.
$8 \frac{1}{2}$ by $6 \frac{1}{2}$	£5 160	£0 150	£1 00	£0 120
$88^{\frac{1}{2}}$, $8 \frac{1}{2}$	6100	0150	100	0120
10 , 8	6160	100	150	014
10 , 10	$710 \quad 0$	100	150	0140
12 , 10	$8 \quad 0 \quad 0$	150	1100	0180
12 , 12	8150	150	1100	0180
15 , 12	$10 \quad 0 \quad 0$	1100	200	150
15 , 15	11100	1100	200	150

The above prices include one single back and two inner frames. Double backs can be adapted to the above. For prices, see page 142.

From $8 \frac{1}{2}$ by $6 \frac{1}{2}$ to 12 by 12 inclusive the cameras are fitted with movable centre partitions and loose inner frame for $7 \frac{1}{4}$ by $4 \frac{1}{2}$ plates.
*** If fitted with swing back, the square camera is recommended.
1659. Leather Cases for the above, of best solid leather, with sling, straps, lock and handle $-8 \frac{1}{2}$ by $6 \frac{1}{2}$ or $8 \frac{1}{2}$ by $8 \frac{1}{2}, £ 14 \mathrm{~s}$. ; 10 by 8 or 10 by $10, £ 16 \mathrm{~s}$. ; 12 by 10 or 12 by 12 , $£ 114$ s.
1660. Leather Sling Cases, for lenses, from 5s. each.

Fig. 1662.

Fig. 1663.
1662. Improved Cameras for the portrait room (fg. 1662), of best Spanish mahogany, French polished, with screw and rack and pinion action, swinging back for bringing objects at different distances into correct focus, one single back, two inner frames, and focussing screen.

Square. Size. * $6 \frac{1}{2}$ inch., for plates $6 \frac{1}{2}$ by $4 \frac{3}{4}$					Price.		Brass Binding		
					£6 12	0	£1	0	0
$8 \frac{1}{2}$	"	" "	$8 \frac{1}{2}$	" $6 \frac{1}{2}$	910	0		5	0
10	"	" "	10	, 8	120	0		15	0
12	"	"	12	„ 10	14.0	0	2	0	0
15	"	"	15	, 12	180	0		15	0
18	"	" "	18	, 16	220	0		15	0
24	"	" "	24	, 20	300	0		410	0

If the above cameras are framed and panelled, which is recommended, especially for the larger ones, from $£ 2$ 10s. extra.

* This camera is adapted for any of the new cabinet lenses.

1663. Improved Camera for portraits (fig. 1663), with screw adjustment for focussing, one single back and two inner frames.

Folding cones can be adapted to the above cameras for copying. Prices from 15s. Double backs can be fitted to the above, also repeating backs for taking two or more pictures on one plate.

Cartes-de-Visite Cameras for the Studio (fg. 1664), p. 141,
1664. With one single back only, for plates 5 by 4 , or $4 \frac{1}{4}$ by $3 \frac{1}{4}$
£1 $18 \quad 0$
1665. Carte-de-Visite Camera, with repeating back only, for taking two pictures with one lens, on plates $7 \frac{1}{4}$ by $4 \frac{1}{2}$, or $6 \frac{1}{2}$ by $4 \frac{3}{4}$
£3 50
1666. Carte-de-Visite Camera, with repeating back only, adapted for either one or two lenses, with back for four pictures on plate $8 \frac{1}{2}$ by $6 \frac{1}{2}$, or two pictures on plate $6 \frac{1}{2}$ by $4 \frac{1}{4}$
£6 $10 \quad 0$
Swing back extra for Nos. 1664 and 1665, 15s.; for No. 1666, £1; brass binding extra, for Nos. 1664, 16s. ; 1665, £1; 1666, £1 10s.

Fig. 1664.
1667. Box Ilood Shutters to No. 1664 to 1666, from . . . £1 00
1668. Rack and Pinion Adjustment to ditto, extra . . 015 0
1669. Cabinet Portratt Camera, with one single collodion slide only, for plates $6 \frac{1}{2}$ by $4^{\frac{3}{4}}$
£2 100
1670. Cabinet Portrait Camera, with repeating back, for taking two pictures with one lens, on plates $8 \frac{1}{2}$ by $6 \frac{1}{2}$, or $9 \frac{1}{2}$ by $6 \frac{1}{2}$
£4 50
Swing back, 15s. extra. Brass binding, $£ 1$ extra. Rack and pinion adjustment, 15s. extra.
1672. Improved Diamond Camco Camcra, can be used as an ordinary 5 by 4 camera, or fitted with repeating back for taking two carte-de-visite pictures on one plate, as fig. 1664; price of diamond cameo camera and holder, with 5 by 4 back and glass frame, etc.
£3 0
Swing Back, extra 0150
Rack and Pinion Adjustment, extra 0150
1673. Diamond Cameo Holders fitted to cameras, from

160
1674. Dies and Presses
£3 30 and $44 \quad 0$
1675. Cards, bearing registration mark, by which photographers are licensed to work the diamond cameo portraits, per 1000
£2 150
1676. Albums, Passe-Partoutes, etc., suitable for the diamond cameo portraits.
1677. Sliding-body Camcras (fg. 1677), p.142, French polished, with one single back, focussing glass, and two inner frames:

Fig. 1679.

Fig. 1677.

Fig. 1679*.
1678. Improved Mounted Glass Baths.-German glass baths, in mahogany cases, French: polished, water-tight, for plates of sizes as below :-

			Indiarubber top.		Brass-bnd. extra.		Glass top extra.		In Polished Pine Case, watertight, Indiarubber top.		Pine Case with hinged top for		
5	by 4		$£_{018}$	0	£0 10	0	£0 4	0	£0 14	0	£0		0
$6 \frac{1}{2}$, 4	$4 \frac{3}{4}$	11	0	012	0	04	0	016	0		8	6
$7 \frac{1}{4}$, 4	$4 \frac{1}{2}$, or $7 \frac{1}{2}$ by 5 ,	14	0	012	0	0 - 4	0	018	0	0	8	6
$8 \frac{1}{2}$, 6	$6 \frac{1}{2}$, or 9 by 7,	18	0	016	0	05	0	12	0	010	10	6
10	, 8	8	112	0	018	0	06	0	15	0	013		6
11	9	9	117	6	018	0	07	0	19	0	015	15	0
12	„ 10		22	0	12	0	08	0	112	0	017	17	0
15	, 12		30	0	18	0	010	0	26	0	111	11	
18	, 14	4	40	0	114	0	013	0	30	0	211	11	0

1679. SINGLE AND DOUBLE BACKS,

OF BEST SPANISH MAHOGANY.
Single Backs, including two inner frames for collodion (fg, 1679), and double backs, for paper or prepared plates (fig. 1679*) :

Size.
5 by 5

Double Backs.
£0 $18 \quad 0$
£0 160

Brass bdg. ex. $£ 040$
$6 \frac{3}{4}, 3 \frac{1}{4}, 6 \frac{1}{2}$ by $4 \frac{3}{4}, 6 \frac{1}{2}$ by $6 \frac{1}{2}$,

If the hinges are fitted with silver rivets, 2 s . each extra.
1680. Inner Frames, with silver wire corners for holding plates in single backs ; outside size of frame, 5 by $5,1 \mathrm{~s}$. 6 d . ; 6 by $6,1 \mathrm{~s} .9 \mathrm{~d}$. ; $7 \frac{1}{2}$ by $5,1 \mathrm{~s} .9 \mathrm{~d} . ; 7 \frac{1}{2}$ by $7 \frac{1}{2}, 2 \mathrm{~s}$.; $8 \frac{\mathrm{I}}{2}$ by $8 \frac{\mathrm{I}}{2}, 2 \mathrm{~s} .3 \mathrm{~d} . ; 10$ by $10,2 \mathrm{~s} .6 \mathrm{~d} . ; 12$ by $12,3 \mathrm{~s} . ; 15$ by $15,4 \mathrm{~s} . ; 18$ by 18 , $5 \mathrm{~s} . ; 24$ by $24,7 \mathrm{~s} .6 \mathrm{~d}$.

Fig. 1682.

Fig. 1696.

CAMERA STANDS.

1682. Table Stands in oak, French polished (fig. 1682) . . £1 100
1683. Table Stands in oak or white wood 140
1684. Table Stands in pine, French polished, with rack adjustment . 3100
1685. Table Stands in oak or mahogany, French polished . . 500 1686. Table Stands larger, in oak or mahogany, for support of large cameras, rack adjustment
£8 $0 \quad 0$
1686. Table Stands larger, with heavy triangular base, in "oak, rack adjustment
$£ 120$
1687. Ash Tripod Stand, 5-inch. brass triangle top, $\frac{3}{4}$-inch . . 0180

1688. Large Tripod Stand (fig. 1696), with 10 -inch. triangular top, of mahogany, adapted for large camera £2 $10 \quad 0$
1689. Large Tripod Stand, 12-inch. top, of mahogany, adapted for large camera £2 150
1690. Large Tripod Stand, 14-inch. top, of mahogany, adapted for large camera £3 $0 \quad 0$
1691. Light Tripod Sliding Stand for small cameras, the latest improved 1100

IMPROVED PRINTING FRAMES.

1700. Pressure Frames, in pine or oak, with hinged bars and pressure board, so that the negative can be examined without disturbing its position :

1701. Improved Printing Frames, with indiarubber cushions, which possess the following advantages :-Equal pressure over the surface of the negative ; no risk of breakage in printing; and, being perfectly water-tight, protect the negative from wet.

Price to take plates up to 5 by $4, \quad$ In Pine. $\quad £ 110 \quad 0$ per dozen. . | In Oak or Mahogany. |
| ---: |
| $£ 1160$ per dozen. |

$6 \frac{1}{2}$ by $4 \frac{3}{4}, 7 \frac{1}{4}$ by $4 \frac{1}{2}$, or $7 \frac{1}{2}$ by 5

$8 \frac{1}{2}$ by $6 \frac{1}{2}$	2	8	0	$"$
10 by 8	3	0	0	$"$

In Oak or Mahogany.
2100 "
$\begin{array}{llll}3 & 5 & 0 & \\ 4 & 0 & 0 & "\end{array}$
4000 "
"The importance of keeping out the wet from the negative cannot be overrated. These frames effectually prevent breakage and keep out wet."-Mr. V. Blanchard.

1703. Portable Printing Frames:

In Pine. In Oak.
In Pine. In Oak. 5 by 4 per doz. £0 18 0£1 $0<0$ $6 \frac{1}{2}$ by $4 \frac{3}{4} \quad, \quad 1 \quad 0 \quad 0 \quad 110$ $7 \frac{1}{4}$ by $4 \frac{1}{2}$ per doz. £1 $000 £ 110$ $8 \frac{1}{2}$ by $6 \frac{1}{2} \quad$ " 110
1704. Plate Boxes. Boxes for holding one or two dozen glass plates, in white wood or mahogany polished, with V -shaped grooves. These boxes are perfectly lighttight, and can be used for storing prepared plates:

For Plates.

	$2 \frac{3}{4}$	£0 1	9	£0 2	9	£0 3	6	£0 4	
$4 \frac{1}{4}$	$3 \frac{1}{4}$	02	3	03	3		0	05	
5	4	02	9	03	6	04	6	06	0
$6{ }^{\frac{1}{2}}$	$4 \frac{3}{4}, 7 \frac{1}{4}$ by $4 \frac{1}{2}$, or $7 \frac{1}{2}$ by 5	03	3	04	0	05	3	07	6
7	6 , or 8 by 5	03	9	04	6		6	08	0
$8 \frac{1}{2}$	$6 \frac{1}{2}$	04	0	05	0		3	08	6
9	7	0 4	3	05	6	07	0	$0 \quad 9$	0
10	8	04	9	06	0		0	010	0
11	9	05	6	07	0	09	6	012	0
12	10	06	3	07	9	010	6	013	0
15	12	08	0	011	0	016	0	10	0
18	16	010	0	012	0	018	0	14	

1705. Common Plate Boxes for Storing Negatives:

1706. Pine Grooving for fitting up shelves or cupboards for negative racks, price 1s. per foot, 11 inches wide.

1707. DRAINING BOXES,

For Wet Negatives with Gutta-Percha V-shaped Grooves, and Indiarubber Cushions,
For Plates 5 by 4 £0 50

Improved Edward's Tent, combining all the qualities necessary in a portable dark room, can be erected ready for use in less than two minutes, and is the only Tent in which perfect ventilation in secured.
1708. Edward's Tent, in pine polished, for working plates up to $8 \frac{1}{2}$ by $6 \frac{1}{2}$, complete with tank, trays, spring-clip and tube, and tripod stand
£6 $10 \quad 0$
1709. Edward's Tent, as above, for plates 10 by 8 . . . $7 \quad 0 \quad 0$
1710. " ". " 12,10 . . . 710 0
1712. , " " \quad, 15,12 . . . $8 \quad 0 \quad 0$
1713. Edward's Tent, brass-bound, of good Honduras mahogany, for India, complete as above, for plates $8 \frac{1}{2}$ by $6 \frac{1}{2}$
£8 100
1714. ", as above, for plates 10 by 8 . . . $9 \quad 0 \quad 0$
1715. , ", " 12,10 . . . 1000
1716. „ ", " $\quad, \quad 12$. . 11100
1717. Loose White Calico Covers for the above, each 12s. 6d., 15s., 17s. 6d., £1.

The following fittings may be had for the above :-
1718. Mounted Glass Bath, in mahogany case, $8 \frac{1}{2}$ by $6 \frac{1}{2}, £ 18 \mathrm{~s}$; 10 by 8 ,

1719. Plate Draining Box, which is made to fit inside the water tank, $8 \frac{1}{2}$ by $6 \frac{1}{2}$, $8 \mathrm{~s} . ; 10$ by $8,10 \mathrm{~s}$.; 12 by $10,12 \mathrm{~s}$. ; 15 by 12
£0 150
1720. White Square Bottles for tents, $16 \mathrm{oz} ., 10 \mathrm{~d}$. each; 4 oz . ditto, 4 d . each.
1722. Pneumatic Plate Holders, 3s. 6d. and 4s. 6d. each.
1723. Filtering and Blotting Paper, circular, in packets of 100,6 inch., 9 d . ; $7 \frac{1}{2}$ inch., $1 \mathrm{~s} . ; 10$ inch., 1s. $4 \mathrm{~d} . ; 13$ inch., 1s. $10 \mathrm{~d} . ; 16$ ineh.
£0 23
1724. Best White Blotting Paper, per quire
$\begin{array}{lll}0 & 1 & 6\end{array}$
1725. Mounts, carte-de-visite, best quality, per 100 , 1s. ; per 1000

080
1726. German Glass Baths:

Inside Measure.	Each.	Inside Measure.	Each.	Inside Measure.	Each.
$5 \frac{1}{2}$ by $3 \frac{3}{4}$	$0 \quad 30$	8 by 6	050	14 by 11	010
$6 \frac{1}{2}$, $4 \frac{1}{2}$	$0 \quad 36$	6 , 8	0 053	$17 \frac{1}{2}$, , $13 \frac{1}{2}$	12
8 , 4	$0 \quad 39$	10,7	060	20,15	20
$8 \frac{1}{2}$, $5 \frac{1}{2}$	$0 \quad 4 \quad 9$	12 , $8 \frac{1}{2}$	0880		

Levelling tops of baths for mounting, 2d. per inch on width of bath.
1727. Dippers of fluted glass, 6 inch., 5 d.; 8 inch., $6 \mathrm{~d} . ; 9$ inch., $7 \mathrm{~d} . ; 11$ inch., 9 d. ; 13 inch., 11d.; 16 inch., 1s. 2d.; 18 inch., 1s. $6 \mathrm{~d} . ; 21$ inch. . £0 20
1728. German Glass Dishes, inside measurement, 7 by $3 \frac{1}{2}, 1 \mathrm{~s} .8 \mathrm{~d} . ; 6$ by 5 , 1 s .8 d .; 8 by $6,2 \mathrm{~s} .6 \mathrm{~d} . ; 10$ by $8,4 \mathrm{~s} .3 \mathrm{~d} . ; 12$ by $9,6 \mathrm{~s} .3 \mathrm{~d} . ; 14$ by $12,9 \mathrm{~s} .9 \mathrm{~d} . ; 17$ by 14,19 s. ; 20 by 16

1729. CHANCE'S BEST GLASS PLATES.

Size.	Best Patent Plate. Gross.	Extra-thick Polished Crown. Gross.	Usual substance Polished Crown Gross.	Extra for Bevelled edges Gross.
	£ s. d.	E s. d.	$£$ s. d.	$£$ s. d.
2 L by 2	050	046	030	$0 \begin{array}{lll}0 & 4 & 0\end{array}$
$3 \frac{1}{4}$, $2 \frac{3}{4}$	0106	$\begin{array}{llll}0 & 7 & 6\end{array}$	050	$0 \begin{array}{lll}0 & 4 & 0\end{array}$
$4 \frac{1}{4}$, $3 \frac{1}{4}$	140	0130	$\begin{array}{llll}0 & 8 & 6\end{array}$	$\begin{array}{llll}0 & 4 & 0\end{array}$
5 , 4	1150	019 0	0120	050
$6 \frac{3}{4}$, $3 \frac{1}{4}$	1180	100	0140	060
$6 \frac{1}{2}$, $4 \frac{3}{4}$	2140	1130	0190	066
$7 \frac{1}{4}$, $4 \frac{1}{2}$	2196	1176	130	066
$7 \frac{1}{2}$, 5	3120	240	190	070
8 , 5	3140	270	1110	070
$8 \frac{1}{2}, 6 \frac{1}{2}$	5110	330	1190	$\begin{array}{llll}0 & 8 & 0\end{array}$
	Dozen.	Dozen.	Dozen.	Dozen.
9 , 7	0100	$0 \quad 6 \quad 2$	$\begin{array}{llll}0 & 4 & 2\end{array}$	$0 \quad 010$
10 , 8	01210	$0 \quad 710$	$0 \quad 53$	$0 \quad 011$
11 ,, 9	0173	098	$\begin{array}{lll}0 & 7 & 3\end{array}$	0110
12 ,, 10	$\begin{array}{lll}1 & 1 & 8\end{array}$	0126	$\begin{array}{llll}0 & 9 & 8\end{array}$	$\begin{array}{llll}0 & 1 & 3\end{array}$
15,12	1160	116	0163	$\begin{array}{lll}0 & 1 & 6\end{array}$

1730. Vignette Glasses, $2 \frac{1}{2}$ by 2 , 6 d . ; $3 \frac{1}{4}$ by $2 \frac{3}{4}, 8 \mathrm{~d}$. ; carte-de-visite, or $4 \frac{1}{4}$ by $3 \frac{1}{4}, 1 \mathrm{~s}$. ; 5 by $4,1 \mathrm{~s} .3 \mathrm{~d} . ; 6 \frac{3}{4}$ by $3 \frac{\mathrm{I}}{4}, 2 \mathrm{~s}$. $; 6 \frac{1}{2}$ by $4 \frac{3}{4}$, 1 s . 9 d . ; $7 \frac{\mathrm{I}}{4}$ by $4 \frac{\mathrm{I}}{2}, 2 \mathrm{~s} . ; 8 \frac{1}{2}$ by $6 \frac{1}{2}$, $2 \mathrm{~s} .3 \mathrm{~d} . ; 9$ by 7, 2s. $6 \mathrm{~d} . ; 10$ by 8 , 3s. 3d. ; 11 by $9,3 \mathrm{~s} .9 \mathrm{~d} . ; 12$ by $10,4 \mathrm{~s} . ;$ 15 by 12

1732. Ebonite Baths:

InsideMeasure.		Plain.	Air-tight top fcr Travelling.	Dipper.
		¢ s. d.	¢ s. d.	\pm s. d.
5 by	$3 \frac{5}{8}$ for $4 \frac{1}{4}$ by $3 \frac{7}{4}$	0300	070	0 0 1 0
$7 \frac{3}{4}$,	$5 \frac{3}{4}$ „ $6 \frac{1}{2}$ „ $4 \frac{3}{4}$	$\begin{array}{llll}0 & 4 & 9\end{array}$	0113	$\begin{array}{llll}0 & 1 & 3\end{array}$
$9{ }^{\text {I }}$ ",	$5 \frac{\mathrm{x}}{2}$, $7 \frac{1}{4}$, $4 \frac{\mathrm{I}}{2}, 7 \frac{\mathrm{I}}{2}$ by 5 , or 8 by 5	060	0136	$\begin{array}{llll}0 & 1 & 6\end{array}$
10	7 " $8 \frac{1}{2}$ " $6 \frac{1}{2}$	066	0146	$0 \begin{array}{lll}0 & 1 & 7\end{array}$
12	$8 \frac{1}{2}$, 10 , 8	$0 \quad 90$	017 0	02
$14 \frac{1}{2}$ "	$10 \frac{1}{2}$, , 12 , 10	011 6	126	02
172 ${ }^{\frac{1}{2}}$	13 , 15 , 12	018 0	1100	03

1733. Ebonite Trays, inside measure, 5 by $3 \frac{5}{8}$, 2 s .6 d . ; $7 \frac{3}{4}$ by $3 \frac{3}{4}, 3 \mathrm{~s}$. ; 8 by $6,3 \mathrm{~s} .9 \mathrm{~d}$.; $8 \frac{1}{2}$ by $6 \frac{1}{2}, 4 \mathrm{~s}$. ; $9 \frac{1}{2}$ by $7 \frac{1}{2}, 4 \mathrm{~s} .3 \mathrm{~d}$.; 11 by 9 , 5 s . 3 d .; $11 \frac{1}{2}$ by $9 \frac{1}{2}, 5 \mathrm{~s} .6 \mathrm{~d}$.; 12 by $10,6 \mathrm{~s} .3 \mathrm{~d}$. ; $12 \frac{1}{2}$ by $10,6 \mathrm{~s} .9 \mathrm{~d} . ; 13$ by $11,7 \mathrm{~s} .6 \mathrm{~d}$. ; 14 by $11,10 \mathrm{~s}$.; 15 by $13,13 \mathrm{~s} .6 \mathrm{~d}$.; 16 by 13
£0 166
Any other size ebonite baths or dishes to order.
1734. Ebonite Funnels : 1 oz., 8d.; 2 oz., 10d.; 3 oz., 1s. 1d.; 4 oz., 1s. 3d.; 6 oz., 1s. $5 \mathrm{~d} . ; 8$ oz., 1s. $8 \mathrm{~d} . ; 10 \mathrm{oz} ., 1 \mathrm{~s} .11 \mathrm{~d} . ; 12 \mathrm{oz} ., 2 \mathrm{~s} .1 \mathrm{~d} . ; 16$ oz., 2s. 7d. ; 20 oz., $3 \mathrm{~s} . ; 30 \mathrm{oz} ., 3 \mathrm{~s} .6 \mathrm{~d} . ; 40 \mathrm{oz}$.
£0 44
1735. Ebonite Bottles ; 1 oz., 1s. 6d.; 2 oz., 1s. $8 \mathrm{~d} . ; 3 \mathrm{oz} ., 1 \mathrm{~s} .10 \mathrm{~d} . ; 4 \mathrm{oz} ., 2 \mathrm{~s}$. ; 6 oz ., $2 \mathrm{~s} .4 \mathrm{~d} . ; 8 \mathrm{oz} ., 2 \mathrm{~s} .7 \mathrm{~d} . ; 10 \mathrm{oz} ., 3 \mathrm{~s} .2 \mathrm{~d} . ; 12 \mathrm{oz} ., 3 \mathrm{~s} .6 \mathrm{~d} . ; 16 \mathrm{oz} ., 4 \mathrm{~s} . ; 20 \mathrm{oz}$., $4 \mathrm{~s} .8 \mathrm{~d} . ; 24 \mathrm{oz} ., 5 \mathrm{~s} .2 \mathrm{~d} . ; 30 \mathrm{oz}$.
£0 $6 \quad 2$
1736. Ebonite Developing Cups, in sets of three, per set . . $\quad 0 \quad 2 \quad 3$
1737. " ", flanged, in sets of two, per set . $\quad 0 \quad 2 \quad 6$
1738. " Pincers, each $0 \quad 0 \quad 9$
1739. Pneumatic Plate IIolders, ball pattern $\quad 0 \quad 3 \quad 6$
1740. ", ", cup pattern $0 \quad 4 \quad 6$
1741. " ", lever pattern . . . 0 4 6
1742. " " ball with handle pattern . . $0 \quad 46$
1743. Backgrounds, any shade, in flatted oil, painted upon Irish linen, to obviate all damp:-

$$
\begin{aligned}
& 7 \text { by } 8 \text { feet } 6 \text { inch. } \\
& 8 \text {, } 8 \text { „ } 6 \text {. . . } 180 \\
& 10 \text { " } 8 \text { " } 6 \text { • • む2 } 20
\end{aligned}
$$

" 8 " 6 . . . 1100 If panelled or painted views, 10s. extra.
The usual size, painted on calico in flatted oil, plain, 8 by 6 feet, 16s.; if panelled or painted views, $£ 11 \mathrm{~s}$.; baton and roller, 2 s .6 d . extra.
1745. Porcelain Trays :-shallow : 5 by 4, 8 d. ; 8 by 6,1 s. ; 10 by 8,1 s. $4 \mathrm{~d} . ; 12$ by 10 , $2 \mathrm{~s} . ; 14$ by $12,4 \mathrm{~s} . ; 16$ by $14,5 \mathrm{~s} .6 \mathrm{~d} . ; 19$ by $15,7 \mathrm{~s} .6 \mathrm{~d}$. ; 24 by $19,15 \mathrm{~s} .6 \mathrm{~d}$. Deep : 5 by $4,1 \mathrm{~s} ; 8$ by $6,1 \mathrm{~s} .3 \mathrm{~d}$. ; 10 by $8,1 \mathrm{~s} .9 \mathrm{~d}$. ; 12 by $10,2 \mathrm{~s} .6 \mathrm{~d}$. ; 14 by $12,4 \mathrm{~s} .9 \mathrm{~d} . ; 16$ by $14 ; 7 \mathrm{~s} .6 \mathrm{~d} . ; 19$ by $15,9 \mathrm{~s}$. ; 24 by 19 . £1 0
1746. Porcelain Baths, for plates 5 by 4 , $2 \mathrm{~s} .6 \mathrm{~d} . ; 6 \frac{1}{2}$ by $4 \frac{3}{4}, 3 \mathrm{~s} . ; 8 \frac{1}{2}$ by $6 \frac{1}{2}, 3 \mathrm{~s} .6 \mathrm{~d}$.; 10 by $8,6 \mathrm{~s} .6 \mathrm{~d} . ; 12$ by $10,9 \mathrm{~s} . ; 16$ by 12 . . . £0 180
1747. Dippers, for plates 5 by 4,8 d.; $6 \frac{1}{2}$ by $4 \frac{3}{4}, 9$ d. ; $8 \frac{1}{2}$ by $6 \frac{1}{2}, 1 \mathrm{~s} .2 \mathrm{~d}$. ; 10 by 8 , $1 \mathrm{~s} .9 \mathrm{~d} . ; 12$ by $10,2 \mathrm{~s} .3 \mathrm{~d} . ;$ and 16 by 12
£0 26
1748. Porcelain Funnels, 3 inch., $6 \mathrm{~d} . ; 4$ inch., $8 \mathrm{~d} . ; 5$ inch., 1s. ; 6 inch., 1s. 3 d. ; 8 inch.
£0 23
1749. Glass Cutting or Shaping Plates, with bevelled and polished edges, any shape, $2 \frac{1}{2}$ by 2 , or $3 \frac{1}{4}$ by $2 \frac{3}{4}, 6 \mathrm{~d}$. ; $4 \frac{1}{4}$ by $3 \frac{1}{4}$, or carte-de-visite, 9 d. ; 5 by 4 , 1s. ; $6 \frac{1}{2}$ by $4 \frac{3}{4}$, or cabinet, $1 \mathrm{~s} .4 \mathrm{~d} . ; 8 \frac{1}{2}$ by $6 \frac{1}{2}, 1 \mathrm{~s} .6 \mathrm{~d} . ; 10$ by $8,2 \mathrm{~s} .3 \mathrm{~d} . ; 12$ by 10 , £ 46

Special sizes extra.

1750. Graduated Glass Measures, 1 dr., 9d.; 2 drs., 10d.; 1 oz., 8d.; 2 oz., 9d.; 4 oz., 1s. 1d.; 5 oz., 1s. 3d. ; 8 oz., 1s. 9d.; 10 oz., 2s.; 16 oz., 2s. 3 d. ; 20 oz., 2s. 6d. ; 32 oz., 4 s. ; 40 oz.
£ 50
1751. Graduated and Stoppered Bottles, 1 oz., 1s. 6d.; 2 oz., 2s.; 3 oz., 2s. 6d. ; 4 oz., 3s.; 6 oz., 3s. 6d. ; 8 oz.
£ 40
1752. Graduated and Capped Collodion Bottles, 2 oz., 2s. 6d.; 4 oz., 3s. 6d.; 6 oz . 4 s . ; 8 oz.
£ 50
1753. Cometless Collodion Bottles, 2 oz., 2s. 6d. ; 4 oz., 3s. 6d.; 6 oz., 4s. 6d.; 8 oz., £0 $5 \quad 6$
1754.

$$
\text { 5s. }{ }^{\prime \prime} \text { d. ; } 8 \text { oz." }
$$ graduated, 2 oz., 3s.; 4 oz., 4s. 3d.; 6 oz., £0 66

1756. Spirit Lamps, 1s. 6d., 2s., and

030
1757. Developing Measures, three in a nest, per nest . . $\quad \begin{array}{lll}0 & 1 & 6\end{array}$
1758. " \quad flanged, each . 0
1759. Glass Funnels, 2 inch., 3d.; 3 inch., 4 d. ; 4 inch., 5 d.; 5 inch., 6 d.; 6 inch., 10d. ; 8 inch. .
£0 20
1760. Glass Stirring Rods, per doz., 1s. 6d., 2s., and . . $0 \quad 30$
1762. Dropping Bottles, with neck, 1s. 6d. each ; octagon, ditto, 9d., 1s., and $0 \quad 1 \quad 6$
1763. Argentometer, 2s. 9d. ; solution glass for ditto . . $0 \quad 0 \quad 9$
1764. Glass Pestle and Mortar, 2 oz., 1s. 3d.; 4 oz., 1s. 6d.; 8 oz., 2s.; pints and quarts, 1s. 6d. per lb.
1765 Collodion Filters, each £0 66
1766. Scales and Weights: grain scales in oak box, round beams, 2s. and $\quad 0 \quad 2 \quad 6$
1767. " " " in mahogany box, glass pans . $0 \quad 5 \quad 0$
1768. " " " brass pillar, one brass and two glass pans, in mahogany box with drawer
£1 50
1769. Head Rest, simplest form, each

036
1770. " " with cast-iron foot, pillar sliding tube, and rack adjustment for steadying the head
£1 50
1772. Head Rest, with flat iron foot, double sliding tube suited for adults and children, with ball and socket movement at top
£2 100
1773. Developing Stands 4 inch., 2s. 6d.; 6 inch., 3s. 6d.; 8 inch., 5 s .; 12 inch. £0 66
1774. Folding Plate Drainers up to $8 \frac{1}{2}$ by $6 \frac{1}{2}, 3 \mathrm{~s} .6 \mathrm{~d}$. ; 12 by $10,5 \mathrm{~s}$.; 15 by 12 £0 66
1775. Plate Holders for holding glass plates up to $8 \frac{1}{2}$ by $6 \frac{1}{2}, 4 \mathrm{~s}$. $; 12$ by 10 , 6s.; and 15 by 12
£0 80
1776. Filter Stands, with three rings, each, 3s. 6d., 4s. 6d., and

056
1777. Stills, with refrigerator and connecting tube, for the distillation of water with the aid of common fire in tin, $\frac{1}{2}$ gallon size, 14 s .; 1 gallon size, 18 s . ; 2 gallon size, 27 s . ; body of copper, $\frac{1}{2}$ gallon size, 25 s .; 1 gallon size, $40 \mathrm{~s} . ; 2$ gallon size
£2 100

1778. Photographic Sundries:

Indiarubber $\mathrm{W}_{\text {ater }}$ Bags, with handle stop, to hold 3 quarts, 10 s.; 1 gallon, 12s. ; $1 \frac{1}{2}$ gallon, 15s.; American Wood Clips, 9d. per doz.; glass ditto, 1s. 6d. per doz.; Chamois Leathers, 1s., 1s. 6d., and 2s. each ; Towels, 9d. each, 8s. per doz. ; Yellow Twill for tents, 1s. 3d. per yard; black, 1s. per yard; black velvet,per yard,1s.3d.; non-actinic Muslin,4s.per yard; Indiarubber Gloves, 6s. 6d. per pair; Indiarubber Thumb and Finger Stalls, 4s. per doz.: Circular Spirit Levels, 1 inch. diameter, 2s. 6d.; $1 \frac{1}{2}$ inch., 3s. 6d.; 2 inch., 4s. ; Corrundum Files, 1s. each; Diamonds for writing, 5s. 6d. ; Diamonds for cutting glass, 12s. 6d., 15s., and 20s.; finest ground Patent Plate-glass for focussing screens of cameras: 5 by $4,6 \mathrm{~d}$. $; 6 \frac{1}{2}$ by $4 \frac{3}{4}, 8 \mathrm{~d}$.; $7 \frac{1}{2}$ by $5,9 \mathrm{~d}$.; $8 \frac{1}{2}$ by $6 \frac{1}{2}, 10 \mathrm{~d} . ; 10$ by $8,1 \mathrm{~s} .6 \mathrm{~d}$. $; 12$ by $10,2 \mathrm{~s} .6 \mathrm{~d}$. ; 15 by 12 . 0036
1779. Pure Photographic Chemicals, of the best quality only, prepared by the first manufacturing chemists in London.

Fig. 1787.
1785. Carte-de-Visite Press, with steel rollers, 4 inches long .
£1 130
1786. " \quad with metal plate, and polished steel plate $3 \frac{1}{2}$ by $718 \quad 18$ 1787. Amateur , " $\quad, \quad 6$ by 9 (fig. 1787) $3 \quad 5 \quad 0$ 1788. Double Geared Machine, No. 1, and polished steel plate 12 by $18 \quad 7 \quad 0 \quad 0$
1789. Ditto ditto ditto $\quad 15$ by 21
1790. Ditto ditto ditto 18 by 241200
1792. Bevel Gearing, for lowering both ends at once, 12 by $18, £ 115 \mathrm{~s}$; ; 15 by 21 , £1 15s.; 18 by 24, extra
£2 $0 \quad 0$
1793. Double Geared Machine, No. 2, with much thicker steel plate roller shafts, running in gun metal bearings, etc., 12 by 18 . . $£ 10100$
1794. Ditto ditto, as above 15 by 12 . 13150
1795. Ditto ditto, as above 18 by $24 \quad . \quad . \quad 17 \quad 5 \quad 0$

Fig. 1828.

Fig. 1796.

Fig. 1808.

PHANTASMAGORIA AND MAGIC LANTERNS,

DISSOLVING VIEW APPARATUS, ETC.

The whole are of the most approved make, and as each is carefully tested before it is sent out, purchasers may fully rely on their efficiency. The slides also are selected with great care and embrace every novelty; none being included but such as are calculated to improve the mind or contribute to innocent and mirthful recreation.
1796. Magic Lanterns, with brass mountings, for exhibiting humorous, astronomical and other subjects, Nos. 1 to 5, giving well-defined pictures of the average size of $2,3,4,5$, and 7 feet respectively (fig. 1796)
1797. No. 1. Magic Lantern, with 12 slides in box, and 4 pictures or views on each slide .
£0 $7 \quad 0$
1798. No. 2. Magic Lantern, with 12 slides of 50 figures or views . 0100
1799. "3. " " with 2-inch. condensing lens . . . 0100
1800. One Dozen Comic Slides, of 50 figures or views in box, for the above 0106
1802. No. 4. Magic Lantern, with $2 \frac{1}{2}$-inch. condensing lens . 0146
1803. One Dozen 12-inch. Comic Slides, of 50 figures, or views in box, for the above
1804. No. 5. Improved Magic Lantern (superior), with 3 -inch. condensing lens, solarized Argand lamp and brass sliding front yielding a disc of 7 feet; in case
£1 126
The Comic Slides for No. 5 Lantern are 14 inch. long, in sets of 12 slides, see Nos. 1842 and 1843.
1806. No. 1. Set Nubseby Tales
£1 36
1807. "2. Set Natural History and Views

136
It is also adapted for movable comic slides, No. 1857, or natural history No. 1848.

PHANTASMAGORIA LANTERNS.

These celebrated phantasmagoria lanterns are manufactured by L. Casella, with every improvement in the lamps and lenses, as well as in mechanical arrangements, by which the exhibitor obtains a much larger and brighter picture than can be had with lanterns of the old construction.

To schools, mechanics' institutions, etc., they offer peculiar advantages, and are extensively used by the managers of such institutions in aiding the progress of science and education.
1808. Casella's Improved Phantasmagoria Lantern, with lenses $3 \frac{1}{2}$-inch. diameter, and powerful solarized Argand fountain lamp and reflector; very suitable for schools or public lectures, in case complete ($f \mathrm{fg} .1808$), p. $151 \quad £ 2180$ 1808*. Or with rack and pinion adjustment to focus the object tube, extra $\quad 0 \quad 7 \quad 6$
L. Casella strongly recommends this lantern, the size of the lenses enabling the exhibitor to show any of the following pictures or views.
1809. Casella's Improved Phantasmagoria Lanterns, with mahogany body, lined with tin, $3 \frac{1}{2}$-inch. condensing lenses, rackwork to focus object tube, and Casella's improved solarized Argand fountain lamp with best reflector, in case complete.
£4 40
1810. Improved Phantasmagoria, as above, very superior, with $4 \frac{1}{2}$-inch. condensing lenses
£5 150

- These extra-sized lenses secure the perfect definition to the extreme edge of the largest pictures in the following list.

DISSOLVING VIEW APPARATUS.

The beautiful optical effect termed dissolving views, is produced by means of two phantasmagoria lanterns, arranged as No. 1812, standing so that the projected centres of the discs or pictures are coincident, and the dissolving or blending of the pictures affected by the rackwork contrivance in front, which gradually shuts off the image of one lantern, whilst the other becomes clearer and more developed, a fresh picture being in the meantime put into the darkened lantern, and is reproduced or dissolved by reversing the action.

Fig. 1812.
1812. Casella's Improved Dissolving View Apparatus, with condensing lenses $3 \frac{1}{2}$-inch. diameter, dissolvers moved by rackwork, improved solarized Argand fountain lamps, suitable for lectures or parlour use, and capable of showing with clearness and brilliancy any of the pictures or views referred to in this catalogue, in case complete (fg. 1812).
£8 80
1813. Dissolving View Apparatus, as above, with French polished tin lined mahogany bodies to the lanterns to prevent heating, the whole packed in case, as adapted by the Hon. Council of Education
£10 0
This apparatus, as well as the next following, is strongly recommended and particularly adapted for the purposes of instruction or amusement, where the expense or treatment of the ox yhydrogen or oxycalcium lights cannot be conveniently undertaken.
1814. Dissolving View Apparatus, with condensing lenses, $4 \frac{1}{2}$-inch. diameter, rack adjustment to focus the object tubes, improved solarized Argand fountain lamps, with stout mahogany bodies, etc., in case complete
£12 120
The improved oxy-calcium light may be applied at pleasure by the purchaser to any of the lanterns from No. 4 inclusive, they being equally adapted for this or the Argand lamps which accompany them.
1815. The apparatus complete for one lamp, £5 5s. ; for two lamps, $£ 66 \mathrm{~s}$. ; see Nos. 1822 to 1828, and figs. 1822, 1825, 1827, and 1828.
1816. Improved 0xy-IIydrogen Dissolving View Apparatus, adapted for lectures and public institutions, condensing lenses 6 inch. in diameter, with best mahogany bodies, brass fronts and rack adjustment, gas jets, best indiarubber gas bags, to contain supply for two hours, pressure boards, clockwork movement for the lever cylinder, gas retorts for the oxygen and hydrogen gases, flexible connecting tubes with stop-cocks, etc., complete in case, with plain instructions for making the gas, etc., etc. .
£36 00

1817. Oxy-IIydrogen Microscope, suitable for No. 1816 lantern, with three magnifying powers, animalculæ, flat cell for live animalculx, the decomposition of water by voltaic action, etc., complete in mahogany case with lock and key £7 100

Abstract

1818. Kaleidoscope for ditto, complete in mahogany case with slide

220 1819. Polariscope, with rack adjustment

880 1820. Objects for ditto, from 3s. 6d. to 10s. each.

MAGIC LANTERN APPARATUS.

1822. Improved Vulcanized Indiardbber Gas Bag, wedge-shape, with stop-cock, size 38 by 26 , and 20 -inch. wedge ($f g$. 1822)
£3 30
1823. Pressure Boarls, jointed, for the above . . . 0126
1824. Solid Indiarubber Tubing, $\frac{5}{16}$ inch, per foot . . $0 \quad 0 \quad 5$
1825. Ibon Retort (fg. 1825), with tube for making oxygen gas . 0126
1826. Gas Mixture for making oxygen gas, per lb. . . $\quad 0 \quad 1 \quad 4$
1827. Zinc Purifier (fig. 1827) for the above retort . . 0
1828. Oxycalcium, or IIouse Gas Jet (fig. 1828), p. 151, with stop-cocks and platinum nipple to be connected with an ordinary gas burner .
£0 16 0
1829. Oxycalcium, of Spibit Lamp Jet (fig. 1829), with platinum nipple, to be used when house gas is not available.
£0 160
1830. Lime Cylinders, in one dozen tins, soft, 2s. ; hard

026
1832. Microscope, Improved, with two powers, to attach to any of the lanterns for exhibiting insects, wings, sections of wood, etc. . . £1 18 o
1833. Objects for the Gas Microscope, prepared in Canada Balsam, consisting of insects, wood sections, ferns, etc., each
£0 20
1834. Improved Solarized Argand Fountain Lamp, with silvered reflector, lamp glass, and cotton stick
£0 126
1835. Improved Solarized Argand Hountain Lamp, for $4 \frac{1}{2}$ inch. lantern $017 \quad 6$.
1836. Lamp Glasses for the $3 \frac{1}{2}$-inch. phantasmagoria lantern, each . 0008 :
1837. Lamp Cottons ", ", per dozen $0 \quad 0 \quad 10$

> 1838. Transparent Screens for exhibiting the pictures through the sheet by any of the apparatus, 7 feet square, 8s. $6 \mathrm{~d} . ; 10$ feet.
1839. Opaque Screens of canvas, covered with paper and mounted on roller, for exhibiting pictures on the sheet, 7 feet square, 14s. 6d.; 10 feet
£1 80

Fig. 1845.

Fig. 1862.

Fig. 1859.

SLIDES FOR MAGIC LANTERNS.

1840. Comic Slides, in boxes of 12 slides, with 4 pictures of humorous figures or views to each, for No. 1 lantern, 3s. ; No. 2 lantern, 3s. 6d.; No. 3 lantern, 10s ; No. 4 lantern .
£0 150
1841. Comic Slides and Views for No. 5 lantern, painted on 3 -inch. circles, in boxes of 6 or 7 each, consisting of Fairy and Nursery Tales, as Cinderella, Robinson Crusoe, Blue Beard, John Gilpin, Robin Hood, Jack and the Bean Stalk, Tale of a Tub, Old Man and his Ass, Whittington and his Cat, etc., etc., each

$$
£ 110 \quad 0
$$

1843. Comic, Moyable, or Slipping Glass Slides, showing a variety of figures and subjects, with heads or limbs moving as in nature, for Nos. 3 and 4 lantern, 1s. 4 d . each ; No. 5 lantern, 1s. 8d. each.

A Ballet Girl
A Naval Engagement
A Pigeon Pie
A Resurrectionist
A Sonambulist
A Vegetarian
A Woodman
"Adieu," in Wreath of Flowers
Artist and Brigand
Barber Shaving
Beware of the Gorilla
Black Drummer
, Draught
Bottled Porter
Boy Bird's-nesting
British Port
, Tar
Bull Tossing Dog

Clown falling to pieces
", moving Eyes " Tumbling " on Kicking Donkey
Combat with Smuggler
Cook and Flying Goose ", and Chimney Sweep
", and Calf"s Head

Lighthouse in Storm
Lion and Horse
London Porter
Man Swallowing Rats
Mischievous Monkey
Monkey Dipping Cat
Napoleon's Grave
Parrot Pulling off Man's Wig
Cottage, with Bridge \& Boats Peacemakers
Countryman and Dog chang- Performing Elephant ing Heads
Dentist Drawing Teeth
Elephant Tossing Keeper
Excursionist and Diver
Farmer carrying Pig
Fisherman and Cat
Ghost (Donkey in Churchyard)

Acrobats
Performance on Two Chairs
Rabbits 0
Sambo Lecturing
Serpent Charmer
Soldiers Drilling (heads shot off)
Tailor and Cabbage Butterfly, Grub, \& Chrysalis " Good Night," in Wreath of Topsy (moving eyes) Cat and Fish in Globe Flowers Turk's Head (moving eyes)

Comic, Movable, or Slipping Glass Slides-(Continved).

Cat's-meat Man
Chinese Punishment
" Pyramid
Chip of the Old Block Cobbler at Work

In this Style, 1s. (Portrait of a Donkey's Head)
Irishman Dancing
Lecture on Tobacco

Vesuvius in Eruption
Woman Beating Boy
„ with Cat's head
" Beating Man

ASTRONOMY.

1844. Astronomical Slides, with 34 paintings $2 \frac{1}{2}$ inch. diameter, and telescopic views of the moon, planets, comets, etc., for illustrating the various phenomena of the heavens; with 2 movable and 1 lever slide, for Nos. 4 and 5 lanterns £2 126

Descriptive Book, 1 s .

1845. Astronomical Diagrams (fg. 1845), a series of 10 beautifully painted, with rack and pinion movement, by which in 36 diagrams the images produced are made to revolve and illustrate the solar system, theory of the tides, day and night, eclipses, the rotundity of the earth, etc., in case, for Nos. 1808 and 1809 phantasmagoria
£5 50
1846. Astronomical Diagrams as above, for No. 1810 phantasmagoria $\begin{array}{llll}7 & 0 & 0\end{array}$ Both admirably adapted for public lectures.
1847. Geological Slides, $3 \frac{1}{2}$-inch. pictures, a series of 32 diagrams, showing the ordinary formations, slips, faults, dykes, fossils, fish, shells, and the extinct animals, with book, in case .
. £3 30 and £4 40
1848. Natural IIistory Slides, the set of 12 , with 4 to each or 48 correct pictures, $3 \frac{1}{2}$ inch. diameter, of mammalia, birds, fishes, reptiles, insects, etc., £2 2 s .; £ 3 3s., and .
£4 40
The above are adapted for Nos. 4 and 5 lanterns.
1849. Series of Slides,
181lustrating Ancient and Modern History
1850.
1851.
1852. " ", Places and Mountains mentioned in the Bible
1853. " " " Manners and Customs of the Chinese $\begin{array}{lll}3 & 3 & 0\end{array}$
1854. " " Conchology and Botany . . 3 3 0
1855. Portratts of Celebrated Individuals, from . . 0100
1856. Comic Movable and Shifting Glass Slides (or slip slides); a diversity of subjects, by which the magnified images appear to have life and motion, 2s. 6 d ., 3s., 3s. 6d., and
£0 50
1857. Landscapes, Marine Views, and Railways, with movable figures, shipping, railway trains, etc. .
1858. Lever Slides (fg. 1859), by which the movements of animals, etc., are imitated, as the horse or swan drinking, etc., for lanterns from No. 4, 5s. 6d. to 7s. 6d. each, and including

Woodman Do	Doctor and Patient	Children in Boat
Lady Riding $\quad \cdots \mathrm{Pa}$	Pat's Welcome to his Pig	Fiddler
Ship at Night Cold	Cobbler at Work	Monkey and Fish
Monkey Dipping Cat Mo	Moving Chin	Rubbing in, or Gouty Le
Cow Drinking Dy	Dying Camel	The Entimologist in full chase
Beggar Fra	Fractious Child	
Grooming Horse		
1860. Rackwork Slides, with m	th moving effects, 10s. 6 d	: incluaing
Aquarium, with moving Fishes	hes Rolling	Effect, 17s. 6d.
Curtain Slide, for giving the curtain being raised in tront	the effect of a The Eidot nt of a stage metal d	pe, two revolving perforated cs
Fountain Playing, beautiful very effective	Watermill, Windmill,	Wheel, revolving ails, revolving, Daylight
Rat Slide, Man swallowing Rat	Rats	ils, revolving, Moonlight
62. Chromatropes (fig. 1862) the changes of the kalei 6s. 6d.; larger size, 10 windmill, 10s. 6d. ; fo	862), showing a series of b kaleidos cope, fountains, e, 10s. 6d. ; revolving sc ; fountain, 10 s .6 d . ; cur	revolving designs, including llower, etc., for No. 4 lantern, th view in centre, 12s. 6d. roll up £0 $10 \quad 6$
63. Chinese Fireworis, designs such as butter	s, consisting of one 3 -inc tterflies, Prince of Wales'	romatrope with 12 different thers, etc., in box $£ 150$
4. Panoramic Views, cons scenes, etc., for lantern including:	consisting of a beautiful ser terns 3 and 4, 5s. 6d. each	of moving figures, moonlight r larger sizes, 9 s . 6 d . each,
Eton College, with Boat Sailin	ailing Au	is, with Reindeer and Sledge
Lake of Como	Bay of	
Tower of London, with Shipping	ping View of R	
Greenwich Hospital	Rialto of	enice
Constantinople		

VIEWS IN GREAT BRITAIN AND IRELAND,

On single slides, $3 \frac{1}{2}$-inch. pictures, for any of the lanterns above No. 4, 6s. to 7s. 6d. each. 1865. ENGLAND AND WALES.

Alnwick Castle	Kenilworth Castle	Snowdon and Llanberis
Arundel	Map of England	Stonehenge
Berwick-on-Tweed	" Saxon England	Tintern
Canterbury Cathedral	Europe	Warwick
Cardiff Castle	Menai Bridge	Winchester Cathedral
Fountains Abbey, Day	Netley Abbey	Windsor Castle, Day
Moonlight	Osborne House	Moonlight
Hampton Court Palace	Shakspere's House	York Minster

1866. LONDON. Descriptive Book, 3d.		
Bank of England	Houses of Parliament	Somerset House
British Museum	London, General View	Temple Bar
Buckingham Palace	Monument	Thames Tunnel
Custom House	Post Office	Tower
Greenwich Hospital	Royal Exchange	Trafalgar Square
Guildhall	St. Paul's	Westminster Abbey
	1867. OLD LONDON.	
Almonry, Westminster	Old Royal Exchange	Savoy Palace
Lambeth Palace	Palace Gate, St. James's	Southwark Palace
Newgate on Fire	St. John's Gate	Whitehall
Old London Bridge	St. Paul's Cross	

1868. SCOTLAND.

Abbotsford	Dryburgh Abbey	Lake Menteith
Balmoral	Dunfermline Abbey	Linlithgow Palace
Bell Rock Lighthouse	Edinburgh, Calton Hill	Loch Leven Castle
Ben and Loch Lomond	Castle	Melrose Abbey, Daylight
Bothwell Castle	Falls of Bracklinn	Moonlight
Castle of St. Andrew's	Fast Castle, Dunbar	Roslin Castle
Church of Iona	Fingal's Cave, Staffa	, Chape!
Moonlight	Glencoe	Stirling Castle
Doune Castle	Jedburgh	

	1869. IRELAND.	
	Descriptive Lecture, 1s.	

CONTINENTAL VIEWS,

Beautifully painted, $3 \frac{1}{2}$-inch. pictures, 6 s . 6 d . to 9 s . 6 d . each. 1870. ITALY.

Bellinzona
Genoa, Doria Palace
Itri, Town and Castle
Map of Italy
Milan Cathedral, exterior
Mount Etna and Catania
" Vesuvius, going up

Rome, from the Forum
,, Appii Forum
,, Arch of Constantine
, Arch of Titus
, Catacombs, interior
,, Ditto, ditto
, Coliseum, Moonlight
" ", Daylight
,, Lion and Gladiator

Rome, Tomb of Curiatii
Tivoli
Turin
Venice Arsenal
, Bridge of Sighs
", Doge, Portrait of
,. Ducal Palace
", " interior
," Fisherman

Naples, Bay of	Rome, St. Peter's	Venice, General View
„ Grotto of Posilipo	, interior	Gondola
" Maccaroni Shop	Panorama of Tiber	" Palace La-Cad'Oro
Neapolitan Carriage	from Capitol	" Rialto
Pisa, Leaning Tower	The Vatican	, St. Mark's
" Cathedral	", ", interior of library	" ", interior
Pompeii, General View	Tarpeian Rock	" Campanilla
, Temple of Venus	Rome, Temple of Jupiter	Water Carrier
Pompeii, Sketch in		
1872. SWITZERLAND.		
Castle of Chillon	Mount Grand Mulets	St. Bernard Convent, Day
" \quad Interior of	Plateau	" ", Moon-
Dungeon	Mer de Glace	light
Lake of Como	, de la Côte	Winter
,, Geneva	De Saussures' Cabin	" " Alarm Bell
Lucerne	Travellers ascending	" " Dogs
Mount Blane and Chamouni	The Summit	Valley of Inn, Innsbrück
,, Chalêt at Chamouni	Coming Down	Via Mala
", Cascade de Pelerins	Hotel de Londres	Zermatt
" Disaster, Aug., 1820		

1873. VIEWS ON THE RHINE.

Amsterdam	Godesberg	and the Seven Saint Goar, General View
Bonn	Hills	
Braubach, Castle of Marks-	Heidelberg Bridge Castle	Schaffhausen
burg	Stolzenfels Castle	
Coblentz	"	Court Yard

Archangel	Ice Hills, Artificial	Prisoners going to Siberia
Balaclava	Ice Sledges	St. Petersburg
Blessing Waters of Neva	Kremlin, Moscow	\quad St. Mary's Cathedral
Cossacks on the Don	Malakoff, Storming of	Sebastopol
Cronstadt	Statue, Peter the Great	Warsaw

1875. OVERLAND ROUTE TO INDIA.

Thirty-one slides, $3 \frac{1}{2}$-inch. pictures, exhibiting the principal scenery and incidents of the journey, 6s. 6d. to 8s. 6d. each :

Southampton
Osborne, Isle of Wight
Needles, by Moonlight
Bay of Biscay
Cintra
The Tagus

Alexandria, by Moonlight Departure from Suez
Mahmondi Canal Red Sea, Moonlight
Boulac, Torchlight Jeddah
Cairo, by Night Mocha
The Cemetery of Cairo Aden
The Dead Camel in the Desert Point-de-Galle, Ceylon

	Overland Route to India-(Continoed).	
Cape Trafalgar	The Central Station	Madras
Tarifa	Moorsand Arabs on horseback Calcutta	
Gibraltar	Encampment by Night	Bombay
Algiers	Women drawing Water	Hong Kong
Pantelaria Galeita	Joseph's Well	
Malta		

1876. VIEWS IN INDIA.

6 s .6 d . to 9 s . each. Lecture on India, 1 s .
Agra
" Taj Mahal
", ",

Benares
Bolan Pass, Dadur
Bombay
Bull Idol Temple

Calcutta
Cawnpore
Cave Temple, Ellora
Ellora Skeleton Group
Delhi, General View
, Great Mosque
" Jehunger's Palace

Lucknow
Madras
Map of India
Mosque of Alee Khan
Point-de-Galle
Temple of Juggernat
Travelling in Madras
1877. CHINA.

6s. 6d. to 9s. 6d. each.
Hong Kong, West Point Pootoo, Temple of
, Harbour
Honan, interior of Temple
Tartar General and Troops
Itinerant Doctor
Joss House
Nankin Porcelain, Tower
Pekin, Western Gate

Tea Garden
,, Plantation
The Emperor
Travelling Tinker
Visit of Ceremony
1878. JAPAN.

6 s .6 d . to 9 s . 6d. each. Lecture on Japan, 1s.

Ambassador to England
Buddhist Temple
Costumes
Domestic Life
Girl Painting
Governor going to a Fire

Imperial Palace
Jugglers and Tumblers
Night Guard, Palace
Simoda Bay
Soldiers at Drill

Spiritual Emperor and Wives
Street in Hakodadi
Temporal Emperor and Wife
Vassal Prince
Wrestlers
1879. AUSTRALIA AND NEW ZEALAND. 6s. 6d. to 9s. 6d. each.

Adelaide
Bee Hunting
Bush Road
Chief's Hnt, N.Z.
Collecting the Horses
Dingoes at Sheepfold
Heke and his Wife, N.Z.
Kangaroo Hunt

Lyre Bird
Melbourne
, Collins Street
Port of
Merri Creek, Natives
Natives with Shield
Native Pah, N.Z.
Portrait of Chief, N.Z.

River Murray
Sydney
,, University
Tattooing a Chief, N.Z.
War Canoes
" Clubs ",
", Dance ",
", Speech "

1880. WONDERFUL PHENOMENA IN NATURE.

 Beautifully painted 6 s .6 d . to 9 s .6 d . each.| Air Volcanoes | Falls of Zambezi | Natural Bridges |
| :---: | :---: | :---: |
| Blue Grotto, Capri | Giant's Causeway | Rapids |
| Boiling Spring | Grotto of Antiparos | Sand Storm |
| Cave of Adelsburg | Montserrat | Snow Bridges |
| " Adullam | Icebergs | Stromboli |
| Arta | Jorulla, Mexico | Submarine Volcano |
| , Fingal | Land Storm, Rainbow | Waterspouts |
| Coral Reef | Mirage in Desert | Whirlpools |
| Dropping Well | " Arctic Regions | |
| 1882. VIEWS IN CANADA AND AMERICA. 6s. 6d. to 9s. 6d. each. | | |
| America, Map of | Indian Medicine Man | River St. Lawrence, Rapids |
| Charleston | Mississippi, Moonlight | and Rafts |
| Falls of Montmorency | Montreal | San Francisco |
| " Niagara | Victoria Bridge | Thousand Isles |
| , Trenton, Moonlight | New York | Quebec |
| Indians and Squaws | Richmond | Washington |
| Indian Buffalo Dance | River St. Lawrence | „ President's House |

1883. ARCTIC REGIONS.

6 s .6 d . to 9 s .6 d . each.

Breaking open Cairn	Greenland Whalers	Map, Parry's Discoveries
Building Snow Huts	Hecla and Griper	Rescue of Sir John Ross
Erebus and Terror	Icebergs	Sledging Expedition
Exploring Party	M‘Clintock's Interview	Terror thrown on Ice
Field of Ice	M‘Clure in Arctic Dress	Winter Quarters

1884. SOUTH AMERICA.

6 s. 6d. to 9 s .6 d . each.

Bahia, from Public Gardens	Indian Sorcerer	Reception of Columbus by	
Bay of Carthagena	Lima, Capital of Peru	Ferdinand and Isabella,	
Catching Wild Cattle	Pizarro entering on Conquest	1493	
Chincha Guano Islands	of Peru, 1531	Rio de Janeiro	

1885. AFRICA AND THE AFRICANS.

6 s. 6 d . to 9 s .6 d . each.

Agades in the Desert Negro Town Slave Ship, interior of
Amazon of Dahomey tramp- Katema on shoulders of his
ling on her Victim
Capture of Slave
Foola Village
Hamlet of Kanembo
Mesurata Chief
Moorish Horsemen

Minister
Lake Tchad
Sierra Leone in 1800
1856
Slaves driven to Coast in Chains
, Capture of, by British Cruiser
Zambesi Falls, near view " Bird's-eye view
Zulu Kaffirs, Natal
1886. ABYSSINIAN EXPEDITION.

$$
6 \mathrm{~s} .6 \mathrm{~d} . \text { to } 9 \mathrm{~s} .6 \mathrm{~d} . \text { each. }
$$

Halting-place of Hilailcea, Tekonda Pass Group of Shohos at the Hamhamo Spring Shoho Village of Akoo, head of Annesley Bay
Woman Grinding Corn
Battle of Arogee, before Magdala, April 13 Storming of Magdala, April 13

King Theodore as he lay dead at Magdala
Houses where English Prisoners were confined
Destruction of Magdala
Dejatch Alamaeo, son of King Theodore
Departure of the released Prisoners from Head-quarters' Camp
1887. PARIS.

6s. 6d. to 9 s .6 d . each.

General View with the Seven Bridges
Arc de Triomphe du Carrousel
Palace of the Tuileries
The Louvre
Hôtel de Ville
Column of July on the Place de la Bastile
The Madeleine

Column of Austerlitz, Place Vendôme
Hôtel des Invalides
Conciergerie (the prison of Marie Antoinette) and Pont-aux-Change
Notre Dame
Porte St. Denis
Abbey of St. Denis -
1888. VIEWS OF THE FRENCH REVOLUTION.

7s. 6d. to 11s. 6d. each.

Marie Antoinette, Queen of France
Procession of Tiers Etat, in Paris
Attack on the Bastile by the Revolutionists, A.d. 1789

Portrait of M. Necker, the Director- The Temple, where Louis and his Family General
The People driving Foulon from Vitry to Paris
March of the Women of Paris to Versailles

Portrait of Mirabeau
Lafayette preserves the Life of the Queen
Fête of the Federation in the Champ de Mars, A.D. 1790
were imprisoned
The Populace compelling Louis XVI. to adopt the "Red Cap," A.d. 1792
Execution of Louis XVI., A.D. 1793
1889. LIFE OF BUNYAN AND HIS PILGRIM'S PROGRESS.

Twenty-seven views, 6s. 6d. and 9s. 6d.
1890. The Seasons-Spring, Summer, Autumn, and Winter. Storm, with moving sky, and lightning. Rainbow in winter after a heavy fall of snow, and aurora borealis, 10 subjects, $2 \frac{1}{2}$ inch., $£ 210 \mathrm{~s}$. and $£ 310 \mathrm{~s}$. ; 3 inch., $£ 44 \mathrm{~s}$. ; $3 \frac{1}{2}$ inch. £7 $15 \quad 0$ and $£ 10 \quad 0 \quad 0$
1892. Wreck of an Emigrant Ship, 6 subjects, $2 \frac{1}{2}$ inch., $£ 2$ 5s. 6 d.; 3 inch., $£ 4$; $3 \frac{1}{2}$ inch.
£4 40
1893. Mill of Llanrwst, summer and winter, rainbow, moving sky, clearing off of clouds, ripple in water, aurora borealis, etc., $2 \frac{1}{2}$ inch., £2 8s. ; 3 inch., £3 10s. ; $3 \frac{1}{2}$ inch.
£5 50

1898. ROBINSON CRUSOE.

5s. 6d. each.

Crusoe Shipwrecked
, loading his Raft
steering his Raft from Wreck
discovers Goats on the Island
kills a Goat, captures a Kid
finds Turtles and Penguins
Family at Home
alarmed at Footprints
in his Fort

Crusoe rescues Friday from Savages
Friday instructed in Boat-building
Crusoe and Friday rescue Spaniards
" sees an English Ship
Capt. of Mutineers hung at Yard-arm
Crusoe arrives at Lisbon
Friday's antics with the Bear
The Wolves driven off
Crusoe settles in England
1899. TALE OF A TUB.

5s. 6d. each. Descriptive Book, 9d.

The Tiger Asleep	The Artful Dodge	Increasing the Interest of the
Awake	Look before you Leap	Tail
Approach to Disturbance	Under Cover	Climax, a Knotty Point

1900. PUSSY'S ROAD TO RUIN.

5s. 6d. each. Descriptive Book, 1s.

Dame Tabby's Advice	The Moonlight Walk	Advice Neglected
Industrious Habits	Its Ill Effects	Vanity her Ruin
Pussy's First Mouse	A Garotte Robbery	Captured and Condemned
Grimalkin's Temptation	Robs her Best Friend	Repentance in Prison

1902. THE MILLER, HIS SON, AND THE ASS. 5s. 6d. each.

Feeding Ass, last time
Driving him to Market
The Boy rides

The Ass falls over the Bridge
Moral over a dead Ass :

Sets out for London
Employed by the Merchant
Purchases a Cat
Sends the Cat in his Master's Ship
Whittington's Stone and Bow Bells

The Old Man rides
They both ride
They carry the Ass

Advice Neglected
Vanity her Ruin
Captured and Condemned
Repentance in Prison
1903. DICK WHITTINGTON.

5s. 6d. each.

1904. WILD SPORTS OF THE WORLD.

9s. 6d, each.

Bear Hunt among the Kangaroo Hunt, Australia Tiger Hunting on Elephants		
Chippeways	Killing the Panther	" spring the Death

1905. LIFE AND JOURNEYS OF ST. PAUL.

M‘Leod’s Travels of St. Paul (Descriptive Book), 1st, 2nd, and 3rd journeys and voyage to Rome, 70 subjects, including Ancient Jerusalem, Stoning of St. Stephen, Conversion of Saul, Saul andElimas the Sorcerer, Ancient Athens, the Ephesians burning their Books, Jerusalem, Paul before Agrippa, together or separately, 7 s .6 d . to 10 s . 6 d . each.
1906. Nineveh and its Remains, 14 subjects, together or separately, 6 s . to 7 s . 6 d . each, including City of Mosul from Tigris, Obelisk found at Nineveh, etc.
1907. VIEWS IN THE HOLY LAND.
$3 \frac{1}{2}$-inch. paintings, 5 s .6 d . to 7 s . each, 90 subjects. M‘Leod's Book on Palestine, 1s. 6d.

Ajalon, Valley of	Ephesus	Mount Hor
Askelon	Elim, Pillar of Cloud	" Lebanon
Baalbec, Ruins of	Gethsemane	", Olives
Babylon	Hebron	Sinai and Horeb
Beirout	Jerusalem, Ancient	Summit
Bethany	Modern	Pool of Hezekiah
Bethlehem	Golden Gate	Siloam
, Rachel's Tomb	Mosque of Omar	Ramah (Arimathea)
Cana of Galilee	Street in	Red Sea
Capernaum	Jericho, Plains of	Sardis
Cæsarea	Lake of Tiberias	Sidon, from the Sea
Church, Holy Sepulchre	Map of Wanderings of Is-	Smyrna
Damascus, General	raelites	Street in
" interior of House	Mount Ararat	Sodom, Destruction of
Mosque	Carmel	Tripoli, in Syria
Dead Sea	, Hermon	Valley of Jehoshaphat

Druse Marriage
1908. SCRIPTURE HISTORY SCENES.

9s. 6d. each, 80 views or subjects.
Garden of Eden
Death of Abel
Deluge
Ark and Dove

Concealing of Moses
Finding of Moses by Pharaoh's Daughter
Departure of the Israelites
Israelites Pursued by the Egyptians

Scripture History Scenes-(Continued),

Assuaging of the Waters
Noah's Sacrifice
Burial of Sarah in Cave of Machpelah
Eliezer and Rebekah at the Well
Joseph Dreams
" Cast into the Pit
, Sold to the Ishmaelites
" Coat of many Colours
, Interprets Dreams in Prison
, Interprets Pharaoh's Dream
Simeon detained
Cup found in Benjamin's Sack
Joseph makes himself known
Jacob sets out for Egypt
Meeting of Jacob and Joseph
Jacob before Pharaoh
Embalming of Joseph

Passage of the Red Sea
Miriam the Prophetess
Moses striking the Rock
Balaam and Balak's Sacrifice
Fleeing to the City of Refuge
The Child Samuel Praying
David and Goliath
Elisha Raising the Shunammite's Son
Daniel in the Lion's Den
" Interprets Writing on the Wall
The Wise Men from the East
Adoration of the Magi
" ", Shepherds
Christ Walking on the Sea
Good Samaritan
Miraculous Draught of Fishes
1909. THE BOTTLE.

Eight scenes by Cruikshank, 9s. 6d. each.

The Bottle introduced at Home
Pawn their Clothes to Supply it
An Execution on the Furniture
Driven into the Streets to Beg

Death of a Child from Want
The Fearful Quarrel
Results in Murder
The Maniac and his Children

Fig. 1910.

ELECTRICAL INSTRUMENTS AND APPARATUS.

The increased interest attaching to electricity in its various extensive applications, induces the utmost care in the efficiency and workmanship of the following:

. Fig. 1919.

Fig. 1953.

CYLINDER ELECTRICAL MACHINES,

The essential parts of which consist of a hollow glass cylinder as the electric, an insulated rubber and prime conductor, the whole mounted in a plain useful manner (fig. 1910), p. 165; an excellent instrument, but for the difficulty of fitting and replacing the cylinder when broken.
1910. Cylinder Electrical Machine, on mahogany frame, with brass conductor and glass cylinder, 6 inch. by 4 ($f g .1910$), p. 165 . . £1 0 1912. Cylinder Electrical Machine, 7 inch. by 5 . . 180 1913. " \quad " 8 inch. by 6 . . 200

Plate Llectrical Machines, of the most improved construction, with brass conductors, arranged so as to take the whole of the electricity from both sides of the plate, brass clamps and improved rubbers, mounted upon polished mahogany frames (fg. 1919) :
1914. Plate Electrical Machine, 9 inch., a good plain practical instrument £1 126

1918. Plate Electrical Machine 15 inch., of best make, with double receiving forks £6 100

Fig. 1934.
1923. Plate Electrical Machine, on mahogany frame, with massive cylindrical brass conductor, mounted on two glass pillars, new form, inexpensive and efficient, 16 -inch. plate . . $£ 40$
1924. Plate Electrical Machine, as above, 18 -inch. £5 50
1925. Ebonite Plate Electrical Machine, mounted in mahogany, with cylindrical brass conductor, on two pillars as above, with plate 16 inches diametər . . . £4 00
1926. Ebonite Plate Electrical Machine, as above, 18 inch. diameter
£5 50
The strength and durability of the plates of these machines adapt them admirably for carriage to India and the colonies.
1927. Woodward's Double Circular Glass Plate Electrical Machine, in handsome mahogany frame with negative and pusitive conductors, 12 -inch. $£ 11110$
1928. Woodward's Double Circular Glass Plate Electrical Machine, as above, 18-inch.
£16 $16 \quad 0$
1929. Harris's Circular Glass Plate Electrical Machine, 18 -inch., with mahogany open rectangular frame, mounted with brass negative and positive conductors,
£18 $0 \quad 0$
1930. Harris's Cibcular Glass Plate Electrical Machine, as above, 24-inch. £21; 3-feet.
£42 $10 \quad 0$
Winter's Plate Electrical Machine (fig. 1934), with insulated mounting, and metallic covered ring by means of which the length of an electric spark may be greatly increased; thus the 6 inch. plate gives about a 3 inch. spark, the 12 inch. about 5 to 6 inch., 18 inch. 9 to 10 inch., and the 24 inch. 10 to 12 inch.
1934. Winter’s Electrical Machine, as above, 9 inch., £2 6s.; 12 inch., £3 16s.; 18 inch., £6 15s.; 24 inch., £12 15s.; if with insulated cushion $£ 1600$
1935. Holtz's Electrical Machines made to order.
1336. Circular Glass Plates, for electrical machines, with polished edges and centre holes:
9-in. diameter. $\frac{1}{4}$-in. thick. £0 96 12 -in. 0116 16 -in. ", $\frac{s_{6}^{4}}{16}$-in. ", 0176

$20-\mathrm{in} . \quad$ " $\quad \frac{3}{8}-\mathrm{in} . \quad$ " $\quad 190$

24-in. diameter.	${ }^{3}$-in. thick.	£1 18
30-in.	$\frac{3}{8}-\mathrm{in}$.	213
36-in.	$\frac{1}{2}$-in.	4.17
48-in.	$\frac{5}{8}$-in.	100

1937. Electrical Tube, closed and rounded at both ends, with small hole at one end, 24 inch. long by $\frac{3}{4}$ inch, 1 s. 3 d .; 36 inch. long by 1 inch
£0 16

Electrical Machines with Apparatus, fitted in box with lock and key.

1938. Set of Electrical Apparatus, consisting of cylinder machine, 7 inch, by 5 inch., with brass conductor, Leyden jar, hand spiral, head of hair, image plate, 2 pith figures, whirl, discharger, brass chain and amalgam, in case,
£2 60
1939. Set of Electrical Apparatus, consisting of a best 12 -inch. plate machine on polished mahogany stand, with double brass conductor, 1 pint Leyden jar, jointed discharger with glass handle, head of hair, hand spiral, image plates, pith ball stand and 6 pith balls, 2 figures, set of 3 bells, 3 yards of chain, box of amalgam, and stout brass clamp in box complete
£5 $10 \quad 0$
1940. Set of Electrical Apparatus, consisting of a handsome 16 -inch. plate machine on polished mahogany stand, with improved double brass conductor, battery of 6 quart Leyden jars, in tray with cover forming case, jointed discharger with glass handle whirl, spiral and head of hair, image plates, 3 pith figures, pith balls, set of 3 bells, orrery, Bennett's and Henley's electrometers, insulated stool, exhausting syringe, falling star in vacuum tube; thunder-house, pistol, brass clamp, chain and amalgam, complete in case
$£ 1010 \quad 0$
$*^{*}{ }^{*}$ In electrical experiments it is important that all parts of the apparatus should be slightly warmed at a distance from the fire, and the old amalgam removed, the rubbers taken off, warmed and scraped, and fresh amalgam applied. The machine should be firmly clamped to the table, and carefully cleaned with a warm silk handkerchief. The room, also, should be both warm and dry, or should it be at all damp and without fire, two or three heated irons placed near the machine and renewed at intervals so as to radiate heat, and the free use of a warm silk handkerchief to dust and rub all the parts, will add to its efficiency. The amalgam, if too dry, may be moistened by adding a very small portion of lard.
1941. Glass Cylinder, for showing electrical excitation, when rubbed with a warm and dry piece of silk or fur
£ 16
1942. Brass Cylinder, mounted with insulating handle, for showing that metals, $\begin{array}{lllll}\text { if properly insulated, become charged when excited by silk or fur } & £ 0 & 4 & 6\end{array}$
1943. Solid Cylinders of shellac and sealing wax, for illustrating the resinous electrical excitation, 5s. 6d. and
£0 $8 \quad 6$
1944. LEYDEN JARS and BATTERIES, for accumulating electricity :

Electrical Batteries or combinations of Leyden jars varying in numbers and size of jars, mounted in frames, with this arrangement quantity and intensity of electricity may be obtained to any extent.

										4	0
1946.	"	"	"	4	" 3	"	"	"		12	6
1947.	"	"	"	6	, 3	"	"	"		5	0
1947*.	"	"	"	12	, 4	"	"	"		0	

1948. Automatic Рhotostat for electric light. By this simple instrument the battery current is made to regulate the distance between the carbon points, so that a steady and continuous light is maintained (fg .1948) $£ 118 \quad 0$

Fig. 1948.
1949. Improved Photostat, by which a
powerful and uniform light is unin.
terruptedly maintained $£ 9 \quad 9 \quad 0$
ELECTROMETERS, etc., for measuring elec*
trical tension:
1950. Cavallo's Pith Ball Electrometer
(fg. 1950), p. 170
1952. Henley's Quadrant Electrometer, with boxwood graduated are, 3s. 6d. ; with ivory are (fig. 1952), p. 170 £0 76
1953. Bennett's Gold Leaf Electrometer (fig. 1953), p. 166, with an improved mode of insulation and stand, with $\frac{1}{2}$ pint, 1 pint, and 1 quart jars, 6 s., 11 s ., £0 $15 \quad 0$
1954. Singer's Electroscope, with conden-- sing plate and joint
£1 176
1955. Hä̈y's Needle Electroscope. This portable and delicate instrument is employed chiefly in ascertaining the electrical state of mineral substances £0 80
1956. Hare's Single Leaf Electroscope, 15 s . to . . £1 0
1957. Tate's Electroscopes, viz., small collection as described in Tate's "Electricity," per box . £0 $7 \quad 6$
1958. Gutta-percha Insulating Supports, 5 inch. high, with needle tops for the
above, per pair

$$
\begin{array}{lll}
£ 0 & 1 & 6
\end{array}
$$

1959. Gutta-percha Insulating Supports, with flat tops, per pair $\begin{array}{lll}0 & 1 & 6\end{array}$
1960. Lane's Discharging Electrometer, large size with jar 0126
1961. Cuthbertson's Discharging Electrometer $210 \quad 0$
1962. Coulomb's Torsion Electrometer, for measuring small quantities of electricity with precision and its attractive and repulsive force (fig. 1963), p. 170, from £1 $15 \quad 0$
1963. Harris's Unit Jar Electrometer, with graduated slide for charging other jars or batteries with known proportion of electricity £1 $10 \quad 6$
1964. Harris's Balance Beam Electrometer, for estimating in grains the attractive force exerted between two surfaces oppositely electrified, as the outer and inner coatings of a battery or Leyden jar (fig. 1965), p. 170

APPARATUS.

1966. Insulating Stools, polished mahogany, with. glass legs, 12 by 10 inches, 10s. ; 14 by 12 inch., 14 s. ; 16 by 14 inch. . . . £G $18 \quad 0$
1967. Electrophorus, best, with two metallic and an intervening ebonite plate, for obtaining the electric spark
£1 0
1968. Egg-shaped Glass, with stop-cock, to show light in vacuo . 1150
1969. Electrical Nask, with brass cap and valve for exhaustion \quad. $\quad \begin{array}{lll}0 & 6 & 6\end{array}$
1970. " Sportsman, consisting of Leyden jar, carved figure of sportsman, and pith birds on brass conductor (fig. 1970), p. 171 . $\begin{array}{llll} & 18 & 0\end{array}$
1971. Diamond Jar, 1 pint 0.06
1972. Brass Chain, per yard .
$\begin{array}{lll}0 & 0 & 4\end{array}$
1973. Bucket and Syphon
$0 \quad 4 \quad 6$
1974. Elegtrical Swing, for show ng the repulsion of bodies similarly electrified (fig. 1975)

$$
\begin{aligned}
& \text { 1976. Electrical Swan, placed on the surface of a vessel of electrified water, will be } \\
& \text { attracted by presenting the finger }
\end{aligned}
$$

1977. Electrical Spider, when electrified will be attracted by a ball, but repelled by a point
£0. 10
1978. Electrical Whirl or Fly Wheel, rotating by dispersing electricity from the points $\because \quad . \quad$ £0 2 9
1979. Electrical Pistol, for exploding oxyhydrogen gas . . $\begin{array}{lllll}0 & 5 & 6\end{array}$
1980. " See-SAW (fg. 1980), p. 170

096
1982. Electrical Figures, carved in cork, representing Neptune, mermaids, etc. (fig. 1982), each
£0 40
1984. Set of Three Bells, on brass beam to suspend from the conductor, and made to ring by the alternate blows of a brass ball suspended by a silk cord £0 . 5 6 to
$\begin{array}{lll}0 & 8 & 6\end{array}$
1985. French Bell Experiment, for illustrating the chiming of bells, one bell being connected with the inner, and the other with the outer coating of a Leyden jar
£0 116
1986. Electrical Orrery, representing the motions of the sun, earth, and moon
£0 70
1987. Gamut of Eight Bells, on a mahogany stand, with an electrical fly or whirl carrying a clapper, and supported by a glass spiral luminous revolving tube, the clapper at the same time striking each of the bells in succession $£ 110 \mathrm{~s}$., or carefully tuned
£2 100
1988. One Spiral or Luminous Tube, with whirl at the top, which, when charged, revolves and presents a moving spiral stream of electric light fo $10 \quad 6$
1989. Hand Spiral or Luminous Tube, consisting of two glass tubes with brass caps, the inside one covered with spangles of tin-foil, giving a spiral stream of electric light
£0 36
1990. Falling Star or Aurora Tube, with valve for exhaustion . $010 \quad 6$
1992. Henley's Unitersal Discharger, for voltaic or frictional electricity, with press and table for deflagrating metals or exposing various substances to electrical action; also charcoal forceps for showing the electric light, mounted on mahogany table
£1 50

2006. Luminous Names or Words, on glass plates, with pieces of tin foil. May be rendered luminous in the dark by means of electric light, 7s. 6d. to £0 $10 \quad 6$
2007. Two Glass Electrical Jars, one of them belted and supported on a glass insulated pillar. This apparatus was employed by Franklin for the analysis of the principles of the Leyden jar . . . £0 $10 \quad 6$ to £0 $18 \quad 0$
2008. Tin Foil, per roll $0 \quad 2 \quad 0$
2009. Mahogany Model of an Obelisk, to illustrate the properties of lightning conductors
. £0 $6 \quad 6$ to £0 $11 \quad 0$
2010. Balloons of Goldbeaters' Skin, they readily ascend when filled with ordinary gas, 9 -inch., 1s.; 10 -inch., 2s. 3d.; 12-inch., 2s. 9d.; 16-inch. £0 36
2012. Balloons, pear or fish shape, 5 s. 6d., and upwards.
2013. Tate's Book on Electricity .
$0 \quad 09$

MAGNETIC AND ELECTRO-MAGNETIC INSTRUMENTS AND APPARATUS.

Instruments classed under the foregoing head are employed to exhibit magnetic phenomena, whether produced naturally or artificially; but more especially their relation in respect to each other, their reciprocal action and the direction they assume when freely suspended.
2014. Magnetic Steel Needles, of various lengths and forms, with central hard metal caps for suspending on pointed stands, for illustrating the influence of terrestrial magnetism as to the horizontal directive force, and the polarity of a magnetic body, by its attractive and repulsive qualities in relation to similar and dissimilar poles (fg. 2014), p. 175, 5s., 7s. 6d., 10s., and £0 150

Fig. 2020.

Fig. 2019.
2015. Horizontal Steel Bar Needles, for delicate magnetic investigations. These needles are of various shapes and dimensions, mounted with central agate or ruby caps, and every precaution taken in selecting the finest steel as well as its treatment in forming the needles, and the method employed in the magnetization; 2-inch., 2s. 6d.; 3-inch., 4s. 6d.; 4-inch., 6s.; 6-inch. £0 76
2016. Brass Stand, with fine steel point for the suspension of horizontal magnetic needles (fg . 2016), p. 175 £0 26 to £0 4
2017. Pouillet's Astatic Needles, composed of a pair of steel needles alike in their form and intensity, placed parallel one above the other on a common centre of motion with the similar magnetic poles in opposite directions, by which the directive tendency of the earth's magnetism is nearly neutralized if not overcome (fig. 2017), p. 175 £0 76 to £1 1 0
2018. Small Dipping Needle, with slender brass graduated quadrant, upon which the needle shows the dip. If this be moved along a bar magnet, it illustrates the relative situations and tendencies of a needle when acted upon by the earth's magnetism. For when placed on the middle or equatorial part, the mutual actions of the north and south poles balance each other, and cause the needle to stand exactly parallel to the bar; but as the needle is slid towards either extremity, it will be inclined according to its distance from the magnetic poles (fig 2018), p. 175

- £0 $18 \quad 0$ to $£ 110 \quad 0$

2019. Small Dipping Needle, with graduated circular brass ring, on which the needle shows the inclination or dip due to terrestrial influence. When the apparatus is passed over a bar magnet, a popular illustration is afforded of the action of the earth's magnetism (fig. 2019) .

- £0 180 to $£ 110$

2020. Magnetic Needle, arranged to admit of its moving in a vertical as well as in a horizontal plane. This arrangement of the needle, with its standard and graduated arc, furnishes an instrument adapted well to show the real influence of terrestrial magnetism on magnetic bodies, having free motion in all directions (fig. 2020)
. £1 10 to $£ 150$
2021. Magnetic Needles, mounted on stands, for ascertaining the polarity of mineralogical specimens
2022. Magnetic Toys, consisting of floating swans, ducks, fishes, ships, mermaids, etc., showing magnetic attraction and repulsion, each £0 $\begin{array}{llllll}6 & 6 & \text { to } & £ & 5 & 0\end{array}$
2023. Pith Figures of Hen and Women, with a soft iron wire passed vertically through the centre of the figure, to illustrate in a pleasing manner magnetic attraction
. £0 26 to £0 50
2024. Assortment of Magnetic Apparatus, i.e., permanent steel magnets, to show attraction and repulsion. Soft iron balls, rings, cylindrical rods, swans and fishes, to illustrate the action of the magnet on ferruginous bodies. Horizontal and dipping needles, to exhibit their magnetic directive polarity and inclination or dip. With this apparatus many interesting experiments may be performed to elucidate the facts in magnetic science $\begin{array}{llllll}2 & 2 & 0 & \text { to } & £ & 3\end{array}$
2025. Apparatus to lllustrate Barlow's Magnetic Compensator, for neutralizing the effect of local attraction on the ship's compass. Consists of a magnetic compass with a piece of soft iron placed so as to represent the guns, anchors, cables, etc., with another mass of iron to compensate for the derangement of the compass produced by the iron in the vessel $\begin{array}{llllll} & 3 & 0 & \text { to } & £ 5 & 5 \\ 0\end{array}$
2026. Natuial Loadstone, mounted in soft iron cheeks for concentrating its power, with soft iron armature for increasing its lifting power, and to preserve its magnetic properties £3 30 to $£ 500$
2027. Siiced Pieces of Loadstone or Natubal Magnet . £0 $14 \begin{array}{lllll}6 & \text { to } & 0 & 7 & 6\end{array}$

BAR MAGNETS,

Adapted for the experimental elucidation of that property conferred on bodies composed of iron, whereby, under certain conditions, they acquire the powers of polarity, attraction of unmagnetic iron, attraction and repulsion of magnetic iron, and the influence of inducing magnetism in other iron not previously magnetic.
2029. Bar Magnets, strongly magnetized, of the best steel, in boxes, per pair, 6 inches long, 2s. 6d. ; 7 inches long, 3s. 6d. ; 8 inches long .
£0 46
2030. Bar Magnets, of cylindrical steel, for sustaining rotating apparatus, or revolving on their axis, or inserting within hollow wire coils to illustrate the elementary experiments on magneto-electricity, 5s., 7s. 6d., 10s., and . . 0150
2032. Magazine or Battery of Straight Bar Magnets, united by screws; a useful arrangement for impregnating other bars with the magnetic properties $\begin{array}{lllll}£ 1 & 1 & 0 & \text { to } & \AA 10 \\ 0\end{array}$
Ilorse-shoe Magnets. In this form of the artificial magnet both poles are brought near to each other, and the extremities being made smooth, the magnet acquires an increased power of sustaining weights (fig. 2035), p. 175 :
Long.
Per dozen.
Long.
Each.
2033. $2 \frac{1}{2}$ inch.
2034. 4 inch.
2035. 7 inch.

£0	2	6
0	6	6
1	2	0

2036. 11 inch.
£0 46
2037. 15 inch.
$\begin{array}{lll}0 & 7 & 0\end{array}$ 2038. 20 inch.

0130

Fig. 2044.

Fig. 2017.

Fig. 2016.

Fig. 2035.

Compound Horse-shoe Magnet, of several single horse-shoe magnets held together by screws, and having a proper armature greatly increases the magnetic power, not only for suspending weights but also in capability of making other magnets ($f \mathrm{fg} .2044$) :

Long.

2039. 3 inch. 2040. 6 inch. 2042. 9 inch. 2043. 12 inch. 2044. 4 inch. 2045. 8 inch. 2046. 10 inch. 2047. 12 inch.

Bars.

Each.			
$£ 0$	1	8	
0	6	6	
0	8	6	
0	13	6	
0	5	0	
0	11	0	
0	15	6	
1	0	0	

Bars.	Each.
4	£0 106
4	0156
4	100
4	150
6	0150
6	120
6	1100
6	1150

With intermediate and proportionate prices according to size and number of bars, as 10 -inch. with 12 bars, $£ 33 \mathrm{~s}$. ; 14 -inch. ditto, £5 5 s .; up to 30 -inch. with 12 bars, £15.
2058. Bar $\mathrm{M}_{\text {agnets, }}$ in pairs, from 12 to 24 inches long, very powerful and permanent, as used for adjusting iron vessels, per lb.
£0 12
The Weights vary slightly, but the average weight of a pair 24 inch . long, of usual width and thickness, viz., $1 \frac{1}{2}$ inch. by $\frac{1}{4}$ inch is about 5lbs. 3oz.
Ditto, ditto, 18 inch . long, $1 \frac{1}{2}$ inch. by $\frac{1}{4}$ inch is about 4 lbs.
Ditro, Ditto, 12 inch. „ 1 inch by $\frac{1}{4}$ inch is about $1 \frac{3}{4}$ lbs.

Fig. 2063.

Fig. 2069.

2063. Electro Magnet on Stand (fg. 2063), consisting of a bar of very soft iron bent in the form of a horse-shoe, and covered with insulated copper wire. If a current from a galvanic battery, even a small one, be passed through it, an intense magnetic power is produced, continuing only so long as the battery is in contact
£0 $14 \quad 0$

VOLTAIC OR GALVANIC APPARATUS, ETC.

Voltaic instruments are employed to exhibit a peculiar form of electric influence, obtained under particular circumstances by chemical action producing certain effects on bodies not usually obtained in the ordinary course of electrical excitation, as friction, etc., etc.

Daniell's Constant Battery.-This form of battery consists of a cylindrical copper vessel, in which is placed a porous earthen tube, containing a rod or slip of amalgamated zinc; dilute sulphuric acid is put in the porous tube and a saturated solution of sulphate of copper into the copper vessel. Where a longcontinued and uniform current is required this battery stands pre-eminent.
2065. Danieli's Batteries, copper cylinders, 6 by 3 inches, 5 s .; 9 by $3 \frac{1}{2}$ inches, 7 s . 6 d .; 12 by 4 inches
£ $10 \quad 6$
2066. Sets of Daniell's Constant Batteries, with copper cylinders 20 inch. by $3 \frac{1}{2}$, in wooden frames. The compound circuit readily exhibits both the quantity and intensity effects. Any number of batteries may be used as a set, but Daniell preferred a series of ten. Ten batteries with suitable connexions in wooden frame.
£4 40
2067. Sets of Daniell's Constant Batteries, a compound circuit of six batteries 6 inches high, complete with connexions on mahogany tray .

SMEE'S VOLTAIC BATTERY.

The great advantages of this battery consist in its power, as well as simplicity, and the ease with which it is put in action, no obnoxious or unpleasant gases are evolved from it, and the attachment being made by the binding screws, old plates may be removed and new ones added with perfect ease, thus with one acid solution and no porous diaphragm, continuous action for several hours is obtained.

The solution consists of one part of concentrated sulphuric acid and seven parts of water; in preparing it put the water first into a glass vessel and add the sulphuric acid slowly (to prevent much heating), a little only at a time; there must be no other acid added to it, nor salts of any kind ; let the mixture become cold before putting it into the battery.
2068. Smce's Battery, single cell with platinized silver plate and two amalgamized zinc plates, in round earthenware or glass jar, with two binding screws, 1 pint, 7 s. ; 1 quart, 9 s . 6d.; 2 quart £ 160
2069. Smee's Battery, a set of 6 in square poreelain cells, in mahogany tray with plates, and appendage for raising the plates from the acid when required, etc., pint size, $£ 3$; a set of 6 ditto, ditto, quart size (fig. 2069), p. $176 £ 310 \quad 0$
The general arrangement of this set, and the facility with which the leading facts connected with galvanism, as the decomposition of water, deflagrating metals, etc., etc., may be shown by it, adapts it admirably for public instruction.
2070. Elucational Set of Apparatus, viz., electro-magnetic coil machine, Smee's battery, galvanometer, Ritchie's experiment, Oersted's ditto, electro-magnet on mahogany stand, Barlow's wheel and permanent magnet, in coloured deal case, with lock and key £5 50

GROVE'S BATTERY.

The solutions required for this battery are concentrated nitric acid unmixed, in the platinum or porous cell, and diluted sulphuric acid in the zinc or glass cell, the proportions being 7 of water to 1 of sulphuric acid.
2072. Grove's Platinum Battery (single), in flat glass cell, with porous lining, pair of zinc plates, 2 brass connectors, size of platinum, 4 inch. by 2 inch. £0 $12 \quad 6$
2073. Grove's Batterx, as above, 5 cells in mahogany frame, the platinum plates $6 \frac{1}{2}$ by 3 inch., the proper size (for safety) to use with Ruhmkorff's coil $£ 410 \quad 0$
2074. Grove's Battery, of 8 cells, the platinum plates $6 \frac{1}{2}$ by $3 \frac{1}{2}$ inch., in handsome polished mahogany frame with brass fittings complete
£6 100
2075. Grove's Battery, mounted in plainer form, with 10 cells in black wood frame, the platinum plates 2 by $3 \frac{1}{2}$ inch.
£4 50
2076. Grove's Battery, with set of 8 cells

3120
2077.
" " " \quad " 2000 cells each
for producing electric light, 40 cells, in 4 batteries of 10 £17 0
2079. Grove's Battery, of greater power, with larger platinum plates, viz., 3 by 5 inch., 10 cells in black wood frame
£6 100
2080. A combination of 4 of these forms, a powerful battery for giving electric light, being so constructed that nearly the whole surface of the platinum is exposed to the action of the acid
£25 00
2082. Bottle Batteries (fg. 2082), p. 183. The neatness of these batteries, together with the effectual way in which evaporation is prevented, renders them most popular where appearance and cleanliness is desired ; $\frac{1}{2}$ pint size, 10 s . $6 \mathrm{~d} . ; 1$ pint size, 12s. 6d.; 1 quart size, £1; 2 quart size, $£ 115 \mathrm{~s} . ; 4$ quart $£ 2150$
The 2 quart and 4 quart size have 5 carbon plates and 2 zinc, the former exposing 48 square inches surface and the latter 112 square inches.
Bunsen's Carbon Batteries, with zinc cylinders, square carbon blocks, porous cells, glass cells, and connecting screws, complete:
2083. Finst size, carbon $1 \frac{1}{4}$ by $4 \frac{1}{4}$ inches . : . . £0 6
2084. Second size, " $1 \frac{1}{2} \not{ }^{\frac{1}{4}} \quad$. $0 \quad 9 \quad 0$
2085. Third size, " $1^{\frac{3}{4}}{ }^{3} \quad 8$. . . . 0106

The solutions for these batteries are concentrated nitric acid for the porous or carbon cell, and diluted sulphuric acid for the glass cell, the proportions being 1 of acid to 7 of water.
2086. Carbon Cups, of best make, $\frac{3}{8}$ to $\frac{1}{2}$ inch diameter and 3 inch. long, for deflagrating metals, per dozen
£0 70
2087. Carbon Points, for electric light, per foot, 1 s .
2088. Carbon Plates and Blocks:

Carbon cut for battery plates, blocks, trays, and cups, points for electric light, crucibles, experimental work, etc., etc., and platinized to order.

DR. CALLAN'S CAST-IRON BATTERIES,

Consisting of flat cast-iron cells with porous linings and flat amalgamated zinc plates, a binding screw connected with the iron cell, and a copper band soldered to the zinc.

The solution for the porous or zinc cell being 1 of strong ordinary sulphuric acid to 7 of water, and for the iron cell concentrated nitric acid.
2089. First size, with iron cell, $5 \frac{1}{2}$ inches long by $5 \frac{1}{2}$ inches deep, and $1 \frac{3}{8}$ inches wide

Fig. 2106.

Fig. 2099.

Fig 2103.

2094. DR. CALLAN'S MAYNOOTII BATTERY.

For the Maynooth battery, as above, it is said that the most effective solutions are a mixture of equal parts of concentrated nitric and sulphuric acids for the iron cell, and a mixture of 2 parts of sulphuric and 1 of nitric acid with 18 parts of water for the zinc cell.

This battery is said to be far more powerful than Groves's, see Brooks's "Natural Philosophy, 1867," page 434, price rather lower than No. 2089.

2095. MANGANESE BATTERY.

The porous cell that contains the plate of carbon is filled up with a pulverized peroxide of manganese and water, the porous cell stands in a glass cylinder containing a stout zinc rod, and a solution of sal-ammoniac in water, quart cell . \quad £0 486

This battery is said to continue in constant action for one year, having a little water occasionally put to it; it is much used for telegraphs, especially in houses, as it gives off no fumes.

Davy's Sulphate of Mercury Battery, in which the acid of the carbon cell is replaced by a paste of powdered sulphate of mercury and water, and the dilute acid of the zinc cell by water only; it is very constant, and its power is $1 \frac{1}{4}$ times that of Daniell's. Much used in France for telegraphy :
2097. Small size, 2s. 6d. ; larger size consisting of a pint glass bottle (square) with a carbon plate, zinc rod, and fittings complete . . . \&0 56

ELECTRO-METALLURGICAL APPARATUS.

Electrotype apparatus, extensively used for obtaining by voltaic action exact copies of medals and plaster casts, ancient and modern, as well as fac-similes of engraved copper plates, wood engravings, etc.
2098. Electrotype Apparatus, consisting of glazed earthenware jar, porous pot, zinc rod, and wire for mould, pint size, 2s. 6d. ; quart size
£0 36
2099. Single Cell Apparatus (fig. 2099), very convenient in form and simple in operation, with porous cell, zinc plate, wire and binding screw, suitable for copying medals, seals, plaster casts, etc., 5s. 6d., 7s. $6 \mathrm{~d} .$, and .
£0 $10 \quad 6$
2100. Electrotype Trough, with sliding bars, on which to place the object to be copied, 1 porous cell, 1 copper plate, 2 wires for moulds, 4 movable binding screws, complete in mahogany box, 7 inch. by 8 inch., and $7 \frac{1}{2}$ inch. deep £0 146
2102. Smee's Battery Apparatus, with separate precipitating trough for several small medals at once, and plaster casts . . . £1 0 0 2103. Smee's Battery Apparatus, for larger medals or casts (fig. 2103), p. 1791126

Electro-plating and gilding are also now extensively carried on by this process, and from its perfection as well as simplicity, must almost in time become familiar in every household; fig. 2106, p. 179, represents the apparatus in action, and the small hand book "Electro Metallurgy," price 2 s ., gives every further requisite information.

$$
\begin{aligned}
& \text { 2104. Apparatus for Electro-Gilding or Plating, with glass precipitating trough and } \\
& \text { 1 Smee's battery } \\
& \text { 2105. Apparatus, with } 2 \text { Smee's batteries } \\
& \begin{array}{l}
\text { 210 }
\end{array} \text {. } \\
& \text { 2106. }
\end{aligned}
$$

2107. Apparatus, for coating metallic bodies with aluminium and silicium, 7 s .6 d . to £0 $10 \quad 6$
2108. Platinized Silver, averaging about 4 oz . to the square foot, as required, per oz. £0 110
2109. Gold Wire and Plate, per dwt., 8s. ; silver ditto, per oz. . $0 \quad 8 \quad 0$
2110. Copper Wire and Plate, of any thickness; amalgamated zinc plates of all

2111. Sulphate of Copper, per lb. $0 \quad 0 \quad 0$
2112. Gold and Silver Solution, per lb., 1s. 9d. and . . $0 \quad 30$
2113. Binding Screws, of various forms and descriptions, each 6d., 8d., $10 \mathrm{~d} .$, and £0 14
*** Porons cells, superior plaster of Paris medallions, and all other apparatus for the
above useful arts of any size or description, supplied to order.
2114. Volta-meter or Apparatus for Decomposing Water, with separate tubes for collecting the oxygen and hydrogen gases, small size 8s. 6d. to $£ 0 \begin{array}{lll}15 & 6\end{array}$
2115. Volta-meter or Apparatus for Decomposing Water, large size, very suitable for the lecture table, from £1 0
2116. V Tube, for decomposing neutral salts, etc., with platinum plates and brass support, on mahogany frame $£ 0$
2117. Glass Globe, for exhibiting brilliant voltaic light in vacuo . 1120
2118. Gassiot's Vacuum Tubes, the various forms for showing the electrical stratifications in discharges, as first manufactured by L. Casella, for the extended and interesting experiments of Mr. Gassiot, and exhibited by him in illustration of his Bakerian lecture at the Royal Society, and also at the meetings of the British Association, 1858 and 1859 (see Royal Society's Reports, etc). In every variety, 7 s . 6 d . to
£1 $10 \quad 0$

Fig. 2123.

ELECTRO-GALVANIC MACHINES,

FOR ADMINISTERING MEDICAL GALVANISM.

Amongst other enumerations of diseases in which the following machines are effective, are tooth-ache, tic-doloreux, neuralgia, rheumatism, paralysis, spasms, ague, etc. On this subject Abernethy says, "Electricity is a part of surgical practice that may be considered unique-all other means operate on the surface, but electricity will pervade the very centre of the body." E. W. Tuson, F.R.S., says, in The Medical Times, " Medical agents will do much in the treatment of disease, but magneto-electricity does more." On consulting the opinions of the highest medical authorities on this subject, it would seem that for most diseases a power of mitigation or removal is thus given as startling as it is effective.

Nectro-Galvanic Machines, of the most improved form for administering medical gal vanism ; so arranged as to yield a current of the galvanic fluid of great quantity, flowing in one direction only, with the power of regulating it so that it may be applied alike to the strongest or most delicate person, without producing the least unpleasant sensation
2122. Electro-Galvanic Machine, with a pint Smee's battery, galvanic coil, a pair each of cylinder and sponge directors, and medical apparatus, packed in mahogany case
£2 $10 \quad 0$
2123. Electro-Galvanic Machine, of larger size, with a quart Smee's battery, vaginal director and surgical dises, medical apparatus, etc., as above, ccmplete (fig. 2123)

Fig. 2120.

Fig. 2157.
2124. Electro-Galvanic Machinc, of great power, arranged so that the galvanic current may be regulated to the greatest nicety, which allows it to be administered either in its mildest form or its greatest intensity, with two Smee's batteries, pair each of cylinder and sponge directors, vaginal director, directors for the mouth, ears, eyes, etc., foot plate, surgical dises, conducting wires, etc., in mahogany case
2125. Electro-Galvanic Apparatus, arranged especially for hospitals or foreign service, with all the necessary apparatus, directors, etc., very elegant and complete
£14 00
2126. Magneto-Electric Machine and Apparatus. A most convenient and portable apparatus for the administration of Medical Electricity; no acid or other fluids are required; it is always ready for use, and so arranged that the strength of the current is regulated at pleasure for the most feeble or strongest person ($f g .2126$). Admirably adapted for exportation, and suitable alike for all climates
£2 20
2127. Magneto-Electric Machine and Apparatus, improved, with lever motion to work with the hand or foot, by means of which the patient can apply it personally without requiring assistance
2128. Improved Magneto-Electrical Machine, with circular magnet, arranged to pass the currents only in one direction, and of any strength required by either the most robust or delicate patient, on mahogany stand, either in case or with glass shade
£2 100
2129. Insulated Plates, for directing the current, per pair .

086
2130. Needle Director

030
2131. Improved Magneto-Electrical Machine, very powerful, with double wires, movable coils, mahogany stand, etc., available for diagnetic experiments

$$
£ 10 \quad 0 \quad 0
$$

2132. Small Self-acting Electro-Magnetic Coil Machine, for medical purposes £0 186
2133. Medical Galvanic Coil, much improved and can be regulated for application to an infant as well as the most obstinate cases, in mahogany box $£ \& \begin{array}{lll} & 0 & 0\end{array}$

Fig. 2137.

Fig. 2138.

Fig. 2082.

Fig. 2136.
2134. Medical Coil, improved, with sulphate of mercury battery, very portable, in form of a book £4 0 2135. Primary Corl, with handles for giving shocks, and very useful for increasing the intensity of galvanic batteries
2136. Rhumkorff's Induction Coil, small size, with vacuum tubes and illustrated description complete, for showing a number of very beautiful and instructive experiments (fig. 2136)
£う 50
2137. Commotators of various sizes, for reversing the action of the galvanic current (fg . 2137), 10s. and upwards.
2138. Universal Dischargers ($f g .2138$), 8s. 6d. to . . £1 50 IMPROVED RIIUMKORFPS COILS OR INDUCTORIUMS.
2139. IndUCTORIUMS, each from . . . £5 0 o to £10 $0 \quad 0$
2140. " " : to give $2 \frac{1}{2}$-inch. spark in air . . . 12100
2141. " " \quad " 15100
2142. " " \quad. \quad. . . 210

Inductoriums of larger size made to order, the spark being strictly proportioned to the length of wire employed.
2143. Magnetic Electric Exploder, in mahogany case with 2 keys . £16 100
2144. " ", " \quad, \quad. 17100
2145. Induction Coil, especially arranged for blasting purposes, in strong oak case £9 150
2146. Insulated Wire, for connections, per 100 yards . . 0186
2147. Apparatus for Exploding Gunpowder. Improved magnetic exploder
2148. Abel's Fusees, per dozen
2149. Conducting Copper Wire, with two coatings of gutta-percha, per yard, $4 \frac{1}{2} \mathrm{~d}$.
2150. A Set of Five Grove's Batteries, with platina plates, 5 by $2 \frac{1}{4}$ inch., in tray
£2 $18 \quad 0$
2152.
" " "
$6 \frac{1}{2}$ by 3 inch.
$410 \quad 0$
2153. Gassiott's Vacuom Tubes, in all their varieties as improved and constructed by L. Casella for Mr. Gassiott.
2154. Improved Model Telegraph with apparatus, book of signs and instructions, complete
£4 50

TILERMO-ELEOTBICAL INSTRUMENTS.

These instruments are for demonstrating the evolution of electric currents by unequally heating dissimilar metals.
2155. Compound Bar of Bismuth and Antimony, for exhibiting the production of thermo-electricity by heating its extremity, by which the needle of a delicate galvanometer is deflected £0 8 6
2156. Compound Bar of Bismuth and Antimony, of larger size, on brass stand £0 156
2157. Melloni's Thermo-Electric Battery ($f g .2157$), p. 182, in mahogany frame, on brass pedestal £2 100
2158. Melloni's Thermo-Electric Battery, of large size, with movable cone, polished and silvered inside, on massive stand, with lengthening and jointed motion, exceedingly sensitive, as used by Professor Tyndal . £4 40
2158*. Extra Cone for the above
0106
2159. Seebeck's Thermo-Electric Apparatus of bismuth and antimony, in which a magnetic needle is suspended; an electric current is manifested by the deflection of the needle on applying the flame of a spirit lamp to either corner.
£0 150
2160. Thermo-Electric Rotation Apparatus, consisting of a horse-shoe magnet fixed on a stand, having a spirit lamp between its poles, upon which are mounted two frames of silver and platinum; upon lighting the lamp the frames rotate in contrary directions.
£1 6
2162. Apparatus for Oersted's experiments, showing the deflection of the magnetic needle and its tendency to form a right angle with the wire transmitting the current of electricity, with 2 cups and 3 inch. needle . $\quad \mathrm{£}_{0} 76$
2163. Ditto, ditтo, of larger size cups and 6 -inch. needle . . $0 \quad 9 \quad 6$
2164. " " " " . . 0126 galvanoneters, for measuring galvanic currents.
2165. Galvanoscupe, with upright spiral coils, for close approximation to a suspended magnet, by which the existence of a feeble current is beautifully exhibited, complete, with glass shade
£1 80
2166. Cumming's Gold Leaf Galvanometer

180
*** This instrument is mounted between the poles of a powerful horse-shoe magnet, and consists of a strip of gold leaf, which forms part of a galvanic current when connected with a battery, the direction of the current being shown by its tendency towards either pole of the magnet.
2167. Gourjon's Improved Galvanometer, adapted for the lecture table. It consists of a firm mahogany base, furnished with levelling screws, on which is placed a graduated metallic circle and coil of fine insulated wire; in these a pair of astatic needles, about 6 inches long, supported on an agate cap, vibrate freely when connected with a battery.
£3 50 to £5 0
2168. Bachoffner's Galvanometer, with astatic needles, on mahogany stand and glass shade, complete.
£0 $18 \quad 0$
2169. Torsion Galvanometer, the astatic needles of which are delicately suspended in a glass tube, with a torsion circle and key very delicately balanced, with screw adjustment
£2 180
2170. Melloni's Magnetic Galvanometer, improved by Prof. Wheatstone, with reading microscope for measuring very feeble currents of electricity $\quad £ 510 \quad 0$
2172. Galvanometer, for detecting and measuring electric currents by the extent of deflection of a magnetic needle, when subjected to the action of a conducting wire
£0 $7 \quad 6$ and £0 10 ©

'NEUMATIC APPARATUS,

FOR DEMONSTRATING THE PRINCIPLES OF ELASTIC FLUIDS, MORE ESPECIALLY THE MECHANICAL PROPERTIES OF AIR.
The following air pumps are of the newest forms, being nearly all on the double piston principle of Professor Tate, now exclusively used where the highest amount of exhaustion is required.

By a recent improvement the valves are easily removed or replaced by the owner at pleasure for purposes of cleansing, etc.

The screws and attachments are all of the same thread, so that the several pieces may be easily fitted to each other.

When the pump is out of use for a length of time, a little oil should be applied by pouring a small quantity, say half a tea-spoonful in the centre hole a (fig. 2193), p. 187, when a few strokes of the piston will convey it over all the working parts of the pump; a little tallow should be rubbed over the edges of the receiver, before fixing it on the plate; stop-cocks should always be kept open, and when the pump is not in use the various parts should be well cleaned, and the nut screws be screwed in at a and c to prevent the admission of dust.

The practice of testing pumps by means of the syphon gauge, though much in use, is often deceptive, thus : a speck of air at the closed end of the gauge will give a fallacious appearance to the action of the pump by depressing the mercury more or less according to the size of the air-speck; a full length gauge in which the mercury is drawn up, though inconvenient on account of its length, is therefore far preferable where a delicate test of vacuum is required.
2173. Air Pump, small size, with receiver for preparing microscopic objects £0 126 2174. Air Pump, single barrel, $\frac{7}{8}$-inch diameter, 5 inches high, $4 \frac{1}{2}$-inch. ground plate, mounted on mahogany stand.
£1 10
2175. Receiver, for the above

030
2176. Air Pump, sloping barrel, 9 inches by $1 \frac{3}{8}, 5 \frac{1}{2}$-inch. plate, bell glass receiver, and stop-cock, to retain a vacuum when removed from the pump, on mahogany stand (fig. 2176), p. 189
£2 50
2177. Tate's Double Action Air Pump, with 2 pistons in one barrel, for exhausting. or condensing purposes. On this plan the air is drawn from the receiver in the centre of the barrel, and expelled at the two extremities, the exhaustion being more perfect than can be obtained by any other arrangement. Length of barrel 16 inches, bore $1 \frac{1}{8}$ inches, stroke $8 \frac{1}{2}$ inches, size of plate 7 inch. diameter, mounted on stout brass clamp, with key, syphon gauge, and screw piece for connecting flexible tube, complete . £3 140
An excellent instrument, will exhaust in a receiver of 80 cubic inches to $1-10$ th inch, and readily freeze water over sulphuric acid in a receiver of 300 cubic inches.
2178. Bell Guass Receiver, for ditto
£ 56
2179. Tate's Improved Air Pump, size and form as above, but mounted on a solid iron plate, with 4 legs, for screwing or clamping to the table, with syphon gauge £3 $14 \quad 0$

Separate Appliances, if wanted, as on fig. 2186, p. 188, viz.
2181. Clamp (J)
$\begin{array}{lll}0 & 3 & 6\end{array}$
2182. Extra Screw between the pump plate and the stop-cock, for connecting extra plate (н) when required, with spare nut
£0 36
2183. Extra Plate (घ), of cast-iron, with three legs, very convenient for drying chemicals in vacuo, or freezing water over sulphuric acid, with plate-glass surface, air tube, and stop-cock, complete, as shown by a F , three sizes, viz., 8 inch., 14s. 6d. ; 10 inch., 18s. 6d.; 12 inch.
£1 50

The exhaustion of either of the separate plates is shown by the attached syphon gange. One connecting tube serves for any number of the separate plates, each having a stop-cock to retain the vacuum ($f i g .2186$).
2186. Tate's Double Action Air Pump, for exhausting or condensing, as above, with extra fittings, viz., screw for adapting flexible tube to the pump, 1 extra plate 8 inches diameter, with stop-cock, pan for sulphuric acid, connecting tube and joint, flat glass receiver $6 \frac{1}{2}$ inches diameter, glass capsule for evaporation in vacuo as Leslie's experiment for freezing water, etc., with strong iron clamp, complete (fg. 2186), p. 188
£5 150
2187. Tate's Air Pump, as above, but about double the size and power, with 17 -inch. barrel, of $1_{\frac{3}{4}}^{3}$-inch. bore and $9 \frac{1}{2}$-inch. stroke, mounted on strong iron stand with iron legs, etc., 10 -inch. plate, with extra joint and arm, and syphon gauge, being the largest and most powerful form of Tate's pump which can be worked without rack-work or other mechanical arrangement
£8 80

Fig. 2193.
2188. Tate's Air Pump, of extra large size, for easy and rapid action, worked by winch, crank, and fly-wheel, with 12 -inch. upright barrel, of $2 \frac{1}{2}$-inch. bore and 6-inch. stroke, the valves working in oil, with iron framework, polished mahogany stand, 10 -inch. raised plate, syphon gauge, and ascending mercurial gauge of 33 inches
£19 00
With this pump a vacaum to within quarter of an inch is easily obtained in large vessels within five minutes, by which it is found of mach value in many preparations connected with the arts and manufactures.

2i89. A Small Portable Barometer, to accompany the above, for comparison with the ascending syphon gauge when required . . £1 50 to $£ 2100$
2190. Double Barrel Air Pump, with 5 $5 \frac{1}{2}$-inch. plate and clamp . 3100
2192. " " \quad " \quad, \quad, 4 0
2193. Air Pump, double barrel $6 \frac{1}{2}$ inches long by $1 \frac{1}{2}$-inch. bore, 5 -inch. stroke, and 8 inch. plate, on mahogany stand, with stop-cock ($f \mathrm{fg} .2193$) £8 $10 \quad 0$
2194. Ditro, without gauge plate, gauge, and key . . . 710 0
2195. Arr Pump, double barrel 7 inches long, with $1 \frac{3}{4}$ inch. bore and $5 \frac{3}{4}$ inch. stroke, 10 -inch. plate, on mahogany stand with pillars, small gauge plate, syphon gauge, clamp and key, very perfect and handsome
£12 120
2196. Treble Barrel Air Pump, being the most improved arrangement for rapid exhaustion at lectures, or the more perfect vacuum required in delicate researches, with 7 -inch. apright barrels, of $\frac{13}{4}$-inch. bore and $5 \frac{1}{2}$-inch. stroke, 10 -inch. plate, with raised pillars, and syphon gauge, on mahngany stand, with Tate's single horizontal barrel in addition for very accurate exhaustion, very handsome
$£ 17 \quad 0 \quad 0$
In this admirable arrangement large receivers are quickly exhausted in the ordinary way till the mercury falls, say to $\frac{1}{2}$ or $\frac{1}{4}$ inch, when Tate's attached horizontal barrel is bronght into action and the exhaustion reduced by it to, say 1-10th or 1-20th of an inch at temperature 60, or even more at lower temperatures.

Fig. 2186.

Fig. 2204.
2197. Treble Barrel Air Pump, with two upright and one single barrel as No. 2196, on high mahogany stand, 12 -inch. plate with barometer gauge, syphon gauge and key
£35 $0 \quad 0$
The gauges having the mercury boiled in them and absolutely deprived of air, these pumps will exhaust them to $1 \cdot 20$ th inch at a tem perature of 60 , or $1-40$ th at lower temperatures, a degree of perfection but seldom obtained in pumps of the ordinary construction, at much greater cost.

Larger pumps with fly-wheels or other modifications made to order.
Pneumatic Apparatus, in sets, by means of which with either of the pumps, the whole action of air, with its wonderful influence of 15 lbs . pressure on every square inch may be demonstrated
2199. Set of Pneumatic Apparatus, for performing a number of interesting experiments, consisting of air-pump with 6 -inch. sloping barrel, $4 \frac{1}{2}$-inch. ground plate on mahogany stand, upright open receiver with glass plate to make it close when required, bladder and hand glass, skin balloon, fruit and taper stand and mercurial cup and saucer, in case complete
£2 $10 \quad 0$
2200. Educational Societies' Set of Pneumatic Apparatus (larger size), consisting of air-pump on mahogany stand, with sloping barrel $1 \frac{1}{2}$ inch diameter and 9 inches long, $5 \frac{1}{2}$-inch. brass plate with stop-cock to retain the vacuum when separated from the stand, so as to answer for a transfer or fountain plate, brass table clamps, bell-shaped and open receiver with glass plate, brass fountain jet, glass jar, Madgeburg hemispheres with handles and stand, bladder glass, bladder frame with lead weights, filtering mercurial cup and saucer, guinea and feather apparatus, fruit and taper stand, stand for egg experiment, bulb-tube and glass, glass balloon and car, in case, complete
£6 6

SyRINGES, WITII FRMALE SCREWS AT TIIE END.

If with stop-cocks, 3s. each extra.

2203. Exhausting Sybinge, 6 -inch. barrel, $\frac{3}{4}$-inch bore, 5 s. 6 d. ; ditto 8 -inch. barrel, $1 \frac{1}{4}$-inch. bore, 12s. 6d.; ditto 9 -inch. barrel, $1 \frac{3}{4}$-inch bore . £1 5
2204. Exhausting and Condensing Syringes, with clamp and cross-piece (fig. 2204), to screw to a table or board, 6 -inch. barrel, $\frac{7}{8}$-inch. bore, 17 s .6 d. ; ditto 8 -inch. barrel, $1 \frac{3}{4}$-inch. bore .

Fig. 2176.

Fig. 2223.

Fig. 2223.*

2202. Tallow Holder of polished mahogany, with screw (fig. 2205), p. 190 £0 16 Vacuum gauges for air pumps, etc., see Nos. 2321 to 2323.
Brass Connectors and Stop-cocks, carefully ground and of best quality; the same in polished iron, being one-half extra in cost:
2207. Stop-cock, with 2 male screws ($f g .2207$), p. 190 . . £0 30

2208 . " with 1 male and $\mathbf{1}$ female screw (fg. 2208), p. $190 \quad 0 \quad 3 \quad 0$
2209 . ", with male or female thread at one end, and the other conveniently turned for connecting caoutchouc tube . . . £0 30
2210 . Stop-cock, with male or female screw and union joint for attaching flexible tube (fg. 2210), p. 190
£ 50

POLISIIED BRASS CONNECTORS.

2212. Connectors, with two male or two female screws (fig. 2212), p. 190 0 10 2213. " with one male and one female screw . . . 010
2213. Blank Nuts to stop openings or cover screws when not in use, each $0 \quad 1 \quad 0$
2214. Three Way or Four Way Connectors with male or female screws as required, (fig. 2215), or (fg. 2215*), p. 190, each
2215. Bladder Piece, or socket to tie in the neck of a bladder with female screw for stop-cock
£0 00
2216. Ditro, ditro, with longer end for connecting flexible tube to brass fittings, with male or female thread

Fig. 2215*。

Fig. 2215.

Fig. 2212.

Fig. 2207.

Fig. 2208.

Fig. 2210.

Fig. 2276.
2218. Connectors, with smooth end for uniting different sized flexible tubes, 6d. and upwards.
2219. Union Joints for ditto, 1s. 6d. and upwards.
2220. Iron and Brass Clamps for fastening air-pumps, etc., 1s. 6d., 3s. 6d. and upwards.
2222. Brass Key or Spanner for screwing up the joints of air-pumps, connectors, etc., with single opening, 1s. 6d. ; double ditto . . £0 20

GLASS RECEIVERS, FOR AIR-PUMPS (fgs. 2223 and 2223*) p. 189,
With flanged rims, ground, ready for use:
2223. Bell Receiver for Tate's pump, No. 2177, 7 inch. in diameter, 8 inch. high £0 46
2223*. Flat Bell Receiver for Tate's pump, $6 \frac{1}{2}$ to 7 inch. in diameter, and $3 \frac{1}{2}$ to 4 inch. high, for use in freezing water in vacuo $\quad £_{0} \quad 2 \quad 6$ and $£ 030$
2224. Tall Bell Receivers for the large pumps : 7 inch. wide, 11 inch. high, 5s. 6d.; 8 inch. wide, 12 inch. high, 9 s. 6d.; $8 \frac{1}{2}$ inch. wide, $10 \frac{1}{2}$ inch. high, 6s. 6d.; 9 inch. wide, 12 inch. high, 10s. 6d.; $9 \frac{1}{2}$ inch. wide, 14 inch. high $£ 0176$
2225. Flat Bell Receivers for large pumps : 8 inch. wide, 6 inch. high, 4s. 6d.; 9 inch. wide, $6 \frac{1}{2}$ inch. high
£0 76
2226. Tall Bell Receiver for the small air-pump, No. 2174, 4 inch. wide over flange, 6 or 7 inch. high
£0 36
2227. Receivers, bell shape or cylindrical, with ground flange at bottom, and neck with ground flange at top. The upper diameter from 2 to $2 \frac{1}{2}$ inch. ; 7 inch. wide, 6 inch. high, 4s. 6d.; $7 \frac{1}{2}$ inch. wide, 10 inch. high, 7s. 6 d .; $7 \frac{1}{2}$ inch. wide, 12 inch. high, 9 s. 6d.; 8 inch. wide, 11 inch. high, 10s. 6d.; 10 inch. wide, 14 inch. high
£0 156
2228. Receiver, cylindrical form, ground flange at the bottom; at the top a narrow neck closed by a brass cap having a female screw ; 7 inch. wide, 8 inch. high, 7s.; $8 \frac{1}{4}$ inch. wide, 10 inch. high, 11s.; $10 \frac{1}{2}$ inch. wide, 12 inch. high
2229. Madgeburg IIemispheres, consisting of two hollow half globes of brass, ground and fitted to each other so that their rims when touching are air-tight; the lower one has a stop-cock attached. This apparatus demonstrates the pressure of the air which nearly equals 151 lbs . for every square inch. of surface, 11s. 6d., 15s. 6d., and
£1 26
2230. Set of Two Mills, consisting of two separate axles, with four thin vanes of equal length, breadth, and weight. One set of vanes has its planes at right angles to its axle; the planes of the other set are parallel to it £1 126 to £2 $0 \quad 0$
2232. Guinea and Feather Apparatus, showing that the resistance of air diminishes the velocity of falling bodies more or less according to their densities, whilst in vacuo both fall at the same rate ; one fall, 9 s . ; two falls, 12 s .; three falls £0 176
2233. Artificial Fountain, produced by the elasticity of air. It consists of a vessel to be partly filled, with a tube reaching nearly to the bottom. When under the receiver, and the air exhausted, the spring of the confined air on the water forces it up in a pleasing jet, $5 \mathrm{~s} .6 \mathrm{~d} ., 7 \mathrm{~s} .6 \mathrm{~d}$., and
£0 106
2234. Single Transit Plate, with jet pipe and stop-cock; a tall receiver being placed upon the plate and the air removed from it, if the tube be immersed in water and the stop-cock turned, the water will be forced up the pipe, thus forming a beautiful fountain within the receiver
£0 $8 \quad 6$
2235. Double Transferer, on stand with fountain jetand 2 glass receivers 220
2236. Bacchus Experiment, illustrating the elasticity of air . 110
2237. Glass Model of the Diving Bell, loaded at the bottom sufficiently to sink it. A condensing syringe is furnished for supplying fresh portions of air under the bell, likewise a stop-cock as an outlet for impure air. Painted wooden fig ures are supplied, and a burning spirit lamp may be placed under the bell.
£1 50
2238. Glass Flasks, with brass cap and stop-cock, illustrating the influence of diminished pressure in facilitating ebullition; they may also be employed for weighing air or any other gaseous fluid
£0 $7 \quad 6$
2239. Bladder and Weight in frame. If this apparatus be placed under a receiver, and the air removed, the air contained in the bladder will expand and raise the leaden weight, thus illustrating the elasticity of air 7 s .6 d . to $£ 012 \quad 6$
2240. Expansion and Compression Bottles, to illustrate the pressure and expansive power of air, each
£0 13
2242. Valves for ditto, each 1s. ; cage for ditto . . . $\quad \begin{array}{llll}0 & 3 & 0\end{array}$
2243. Fruit and Taper Stand, each 020
2244. Flint and Steel Apparatus, for proving that sparks cannot exist without air £0 18 6
2245. Beam and Stand, with cork or globe 0100
2246. Copper Bottle, beam and stand, for weighing air and gases . $\quad 220$
2247. Filtering Cup, for mercurial shower, with receiver ${ }^{2}$ £0 $\quad 5 \quad 6$ to 0106
2248. Plate, with wooden disc, for proving the porosity of vegetables $\quad 0 \begin{array}{lll}0 & 5\end{array}$
2249. Respiration Glass, illustrating the inspiration, etc., of the lungs £0 60
2250. Hand and Bladder Glasses, mounted for illustrating the pressure and per- cussion of the atmosphere £0 220 and £0 26
2252. Leslie's Apparatus, for freezing water in a vacuum, with receiver 5 inches diameter, 6s. 6d. ; $7 \frac{1}{2}$ inches £0 $12 \quad 6$
2253. Bell Experiment, for illustrating that air is essential to sound 066
2254. Sliding Rod, plate, and collar of leather £0 $\quad 9 \quad 6$ and 0126
2255. Torricellian Experiment, with connections and flexible tube 0156
2255*. having the barometer fixed in the cap of the glass receiver (the column to descend) £1 10
2256. Syringe and Lead Weight 0100
2257. Pocket Condensor or Fire Syringe, for instantaneous light, with amadou £0 36
2258. Model of Water Pump, with glass barrel 150
2259. Condensed Air Fountain, with syringe and jets, complete $317 \quad 6$
2260. Mercurial Vacudm Gauge $\begin{array}{lll}0 & 3 & 6\end{array}$
2262. Philosophical or Water Hammer £0 300 to $0<5 \quad 6$
HYDROSTATICS AND HYDRAULICS,

Comprising such instruments and apparatus as illustrate the properties of fluids and that part of mechanical science which relates to their forces and motion.
2263. Iydrostatic Equilibrium Apparatus, showing that fluids will seek and maintain the same level, irrespective of the sizes of the channels through which they rise
£1 150
2264. Ditto, in glass .
$0 \quad 4 \quad 6$
2265. Hydrostatic Paradox, illustrating the principle, that the smallest column of water of a given altitude, will balance one of any size of the same height, 15 s . to
£1 $10 \quad 0$
2266. Hydrostatic Bellows, illustrative of the principle that fluids give equal pressure in all directions, the force being proportionable to the perpendicular height of the column of fluid .
-£1 150 to £3 30
2267. Bramah's Hydrostatic Press (working model), highly finished to scale, with
keys and breaking irons, complete to 30 cwt
An iron bar 6 inches long by $\frac{1}{2}$-inch. thick may be broken by it.
2268. Hydrostatic Press (working model), of smaller size, for pressing substances or
raising weights to 400 lbs .
2269. Hydraulic Press, for pressing or lifting, giving a measured gauge pressure up to
$\begin{array}{llllll}3 & \text { tons on the square inch, with pressure plates arranged to order } & £ 25 & 0 & 0\end{array}$ Various forms and sizes made to order.

Fig. 2270.

2270. HYDRAULIC TESTING APPARATUS (fig. 2270),

As expressly constructed by L. Casella by desire of the Admiralty, for determining the effect of deep sea pressure on the thermometers employed for testing its temperature £35 00

Fig. 1 shows a section of the apparatus, a being a strong cast-iron cylinder abont 27 inches long by 13 inches wide, a is a hollow receptacle about 16 inches deep by 6 inches wide; b a steel plug of proportionate size; and d a receptacle through which the steel key $d d$ in Fig. 2 passes to hold the plug down; the other general arrangement is that of the usual hydraulic pump, the water being forced through the connecting tube m.

Fig. 2 shows the general end view of the apparatus.
The pressure to which it is generally used for testing the deep sea thermometers is $2 \frac{1}{2}$ to 3 tons on the square inch $=2500$ fathoms depth in the sea. (See deep sea thermometers, p. 17.)
2272. Montgolfier's IIydraulic Ram, in which the velocity of water flowing through a long pipe is obstructed, and being connected with a smaller pipe, the column thus reduced is considerably raised
£4 40
Hydraulic pressure ganges, see pressure gauges, p. 198.
2273. Archimedes Screw, consisting of a tube wonnd round a cylinder revolving obliquely, an ingenious and primitive method of raising water, 15 s .6 d . to
£1 $10 \quad 0$
2274. Apparatus to illustrate that more water flows from a vessel through a short pipe than from a mere aperture of equal size -
2276. Tantalus Cup (fig. 2276), p. 190, consists of a glass vessel with a carved figure, having a syphon concealed in the body; when water is poured into the vessel, level with the chin of the image, it is immediately emptied by the syphon £0 $8 \quad 6$ to $£ 012 \quad 0$
2277. Cylindrical Glass Jar, containing water and a delicate hollow glass balloon or figure floating in it, with air-tight cover to the jar. This pleasing philo-

2278. Centrifugal Pump, for raising water by centrifugal and atmospheric pressure, in which a fan is made to revolve that gives rotation to the water, the centrifugal power of which drives it up the tube
£4 40
2279. Forcing Pump (working model), with glass barrel, exhibiting also the operation of the fire engine
£2 20
2280. Lifting and Forcing Pumps, together, on high mahogany stand, with cisterns for supplying water .

- £2 20

2282. Household Lifting Pump (working model), with glass barrel; the escape valve is here placed within the piston, so that the same barrel raises the water in a continued line, and the piston thus raised rests on the fixed valve when depressing it.
£0 $17 \quad 6$ and £1 $10 \quad 0$
2283. Capillary Attraction, shown by a set of tubes, with bores of different diameters, mounted
£0 66
2284. A Set of Four Tubes, serving to illustrate the tensions of aqueous vapour, and of the vapours of alcohol and ether, which are respectively seen by the heights at which the mercury stands in three of the tubes as compared with that in which no vapour exists \quad. $\quad £ 018 \quad 6$ to £l 5
2285. Mariotti's Tube, on stand, illustrating his admirable law of the compression of elastic fluids \quad. $0.10 \quad 6$ to $£ 1$
2286. Hydrostatic Balances with steel or brass beams, in neat mahogany cases, with all requisite apparatus for determining the specific gravity of both liquid and solid bodies, $£ 33 \mathrm{~s} ., £ 414 \mathrm{~s} .6 \mathrm{~d} ., £ 88 \mathrm{~s} .$, and
£16 $16 \quad 0$
*** Hydrometers, etc., see specific gravity instruments, pages 212 to 217. Current meter, see r. 71.

Fig. 2287.

IMPROVED DIVING APPARATUS,

For deep-sea work, pearl or coral fishing, sponge diving, construction of bridges, embankments, breakwaters, etc. The fig: 2287 represents an important application of this apparatus employed in recovering the guns from the wreck of the "Royal George,"
and repairing a leak under water. A being diver equipped in dress and helmet, \mathbf{B} an air-tight tube for supplying the diver; c signal or life line; D attendants at signal line; E the three barrelled atmospheric air engine ; F ladder line for use in thick water; G rope ladder for ascending and descending; \boldsymbol{H} weight to steady the ladder; I diver stopping a leak under the water line; J anchors, guns, and cable to be strung. By means of this improved apparatus, the diver can remain many hours under water, and where the services of a practised diver cannot be had, the instructions which accompany it are so simple as to enable any intelligent labouring man to use it with perfect ease; he can raise himself with it by merely placing his finger on the valve, which rights itself, and without assistance can open his helmet, which is so constructed that the front eye can never become tight or be lost. The indicator constantly shows the depth the diver is at; the condensing box secures a constant stream of air, and it has also a copper cooling cistern for great depths.

This improved apparatus is in constant use at all her Majesty's dockyards, as well as in the construction of the various breakwaters throughout the kingdom; it was also employed day and night at the construction of the numerous new bridges lately built over the river Thames ; whilst for pearl and coral fishing, and sponge diving in Greece, Spain, and Australia it is most popular and in constant use.
2287. The Apparatus consists of a treble barrel air engine, with gun metal barrels, 2 fly-wheels with handles, crank, condensing chamber, cooling cistern, dial indicator, with wrenches fitted to all the parts, mounted in mahogany chest with till containing extra gun metal joints for repairs, extra union, crank ends, helmet nuts, bucket leather, etc., etc. ; the tinned copper helmet with screws, lead weights, helmet cushion, 100 feet best vulcanized indiarubber tube with gun metal unions, etc., etc., are packed separately and also a seaman's chest with 2 diving dresses, strong boots with lead soles, and all necessary and suitable changes of warm clothing, with signal line, shot belt, ladder, and ample instructions for use, repairs, and keeping in order, etc., etc., complete in strong suitable package, $£ 100, £ 125$, and .
$£ 20000$

SODA WATER AND LEMONADE MACHINES.

Being often applied to for the best machines for manufacturing mineral waters, the following are prices of the latest improved, and such as are found to give the utmost satisfaction ; they are admirably adapted for exportation, being securely packed without being taken to pieces, so that soda water, lemonade, etc., may be made from them within an hour after their arrival. Seltzer, Carrara, and other tonic waters, nectar, champagne, cyder, etc., are also made with these machines.
2288. Direct Action Machines, as above, producing by hand labour per day 300 dozen

									05
2289.	0	0							
2290.	$"$	$"$	$"$	$"$	$"$	200	dozen	60	0
0									

The above are hand power machines, but if required for both hand and steam, will be from $£ 4$ to $£ 5$ extra.

Fig. 2300.

| 2294. Improved Bottling Apparatus | . | . | . | e9 | 0 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2295. Dial Pressure Indicator . | . | . | . | . | 4 | 0 | 0 |

2296. Improved Acid Tap, for sulphur.c and other acids. In this tap the working paits are composed of stout glass and lead, it is thoroughly efficient, practical, and durable, and indeed free from all the defects known to exist in the various acid taps in use ; it supersedes them wherever it is tried \quad £2 176
2297. Small Gadge, for testing the pressure of the waters when bottled, see No. 2308.
2298. Wire Mask, for protecting the head whilst bottling . . £0 56
2299. Wire Gauze Spectacles $0 \quad 20$

STEAM PRESSURE GAUGES. IMPROVED PATENT DIRECT ACTING PRESSURE AND VACUUM GAUGES.

The great improvement in these gauges consists in the pressure, whether of steam or water, being direct, by means of a small elcngated endless screw with intervening diaphragm, pressing upon the spring; in this way the whole circle of the gauge is employed, for whatever pressure (high or low) it is made to indicate, see fig. 2300. The metallic spring, etc., in the Bourdons, being dispensed with, they can neither become strained or distorted. They are equally suitable for all positions, stationary or otherwise, and cannot be injured by frost as water does not remain in them; the principle admits of their being made of the small size of fig. 2305 for pocket gauges with the same precision as if made of the ordinary size without increasing the cost.
2300. Metallic Pressure Gauge, as above, in handsome brass frame 3 or 4 inch. (fig. 2300)
£1 0

Full Size.

Fig. 2308.

Fig. 2305.
2301. Metallic Pressure Gauge, as No. 2300, 5 inch. .
£1 30
2302. " " \quad " 1660
2303. " " $\quad 7 \quad$. 110 0

If with stop-cocks (of best gun metal), 3s. 6 d .; with iron syphon, extra $00 \begin{array}{llll} & 1 & 6\end{array}$
Vactum Gauges, same sizes and prices, as above.
2304. Iron Gauges, as above, and at same prices, especially adapted for soap and candle manufacturers and chemical works, where caustic potash and its influences are destructive to every other arrangement.
2305. Pocket Water Pressure Indicator, for showing any pressure up to a column of 600 feet, much used for testing the strength of mains, and showing the constant actual height or pressure of water (fig. 2305) . £l 50
2306. Five-inche, ditto

100
2307. Small Model Pocket Pressure Gauge, size of fig. 2305, for testing model machinery at any pressure up to 300lbs. on the inch. . £1 50
2307*. Inspectors' Pressure Gauge for the pocket, showing up to 300lbs. or upwards, thickly silvered, with the three different sized connections, in morocco case .
£2 0
2308. Bottle Testing Pressure Gauge, thickly silvered and highly finished, size of No. 2305, with tap and screw complete (fig. 2308), in morocco case, for testing the amount of air in soda water and other aërated beverages. To the maker, as well as the purchaser, the value of this test can hardly be over estimated. The tap may also be used separately where a portion only of the beverage is required to be used at the time
£2 150
Bourdon's Pressure and Vacuum Gauges of usual sizes and best make:
2309. Pressure Gauge, 7 inch. diameter, with central or eccentric hand (fig. 2309 or 2309^{*}), p. 198, to indicate any pressure up to 200 lbs . on the square inch, and fitted with gun metal cock

Fig. 2309*.

Fig. 2309.

Fig. 2313.
2310. Pressure Gajge, as No. 2309, 6 inch. diameter
2311. Pressure Gauge, 6 inch. diameter, with central hand (fig. 2309), to indicaue :rv pressure up to 150 lbs . on the square inch, and fitted with gun metal coc... $\begin{array}{lll}£ 1 & 8 & 6\end{array}$
2312. Pressure Gajge, 5 inch. diameter (fg . 2313), to indicate any pressure up to 120 lbs. on the square inch, and fitted with gun metal cock
£1 40
2313. Pressure Gauge, 4 inch. diameter (fg. 2313), ditto,

120
2314. Pressure Gajge, 3 inch. diameter (fg. 2313), ditto,

110
Vacuum gauges, $4,5,6$, or 7 inch. diameter, same prices as the above pressure gauges.
*** These gauges, as well as the next following, are guaranteed for two years if properly fixed, and any becoming deranged before that time will be replaced by new instruments.

If the gun metal tap is not required on the Bourdon gauges, 3s. 6d. each is deducted from the price.
*** With orders for any of the above, the pressure to which the gauge is required should be stated, the usual ranges being approximately $50,100,150,200$, and 3001 lbs .
2315. IIydraulic Pressure Gauges (carefully tested), in 6 inch. circular brass frames, registering up to 2 tons per square inch
£3 0
2316. Hydraulic Pressure Gauges, as above, to any pressure up to 10 tons per square inch, with maximum pointer
£4 20
2317. Hydraulic Pressure Gauge, for showing the exact pressure on hydraulic presses whilst in operation. The testimonials in favour of this gauge are of the highest order, and are from the leading metropolitan and provincial firms employing hydraulic pressure .
£6 0 *** Any of the above gauges repaired, adjusted, or any part renewed.
Caselha's mercurial pressure and vacuum gavges, the action being according to Boyle or Marriot's "Law of Compressed Air." The great attention given by L. Casella to the construction of gauges on this principle, renders them in every way, but portability, the safest, most permanent, and accurate gauges in use.
2318. Mercurtal Pressure Gauge, in polished mahogany frame, 25 inch: long by 5 wide, with strong union joint, to any pressure from 30lbs. to 300 lbs . per square inch (fg .2318), p. 199
£2 0

Fig. 2318.

Fig. 2326.

Fig. 2319.
2319. Mercurial Vacuum Gauge, with scale of 21 to 31 inch., in round brass case, with door, stop-cock, etc. (fig. 2319) .
2320. Mercurial Vacuum Gauge, with scale of 14 to 31 inch . $18 \quad 0$
2321. Syphon Vacudm Gauge, with brass nut and screw, for air pumps, etc. £0 4 0
2322. Ditto, ditto, with glass scale, the gavge enclosed in glass tube with stop-cock (fig. 2322), p. 203
£ 90
2323. Mercurial Vacuum Gauge, on mahogany frame, with adjusting scale, divided from 0 to 31 inch., glass cistern, brass tube and union joint, for first-class engine-rooms, connecting with air pump, etc.
£1 180
2324. Thermometric Pressure Gauge, on which the pressure is shown by the temperature of the steam from 5lbs. to 70 lbs ., about 10 inch . long, in round brass case for protection
£1 $15 \quad 0$
2325. Mercurial Pressure Gauge to any length, on painted board, for showing pressure by the height of the mercurial column, arranged so as to prevent overflow of mercury, to 20 lbs ., £2 5s. ; to 30 lbs ., £2 15 s . and upwards, according to pressure.
2326. Improved Steam Engine Indicator, for high and low pressures, for registering with precisicn the rate of speed on the engine, in mahegany case, with steel tap and ivory scale (fig. 2326)
£5 $10 \quad 0$
2327. Improved Steam Engine Counter, for registering the number of revolutions or strokes made by an engine, whether stationary or marine, up to $1,000,000$, with clock, in handsome brass frame, for the engine-room (fig. 2327), p. 200

Fig. 2337.

Fig. 2327.
2328. Improved Engine Counter, in metal frame, for same purposes as No. 2327, and also for counting or tally machines at entrances of docks, bridges, warehouses, etc., with 4 dials or figures to count up to 10,000 . £2 $13 \quad 6$

2329. Ditто	5	$"$	$"$	$"$	100,000	3	0	0	
2330.	6	$"$	$"$	$"$	$1,000,000$	3	7	6	
2332.	$"$	7	$"$	$\#$	$"$	$10,000,000$	3	15	0

2333. Transmission Instrument, for transferring the figures of the above, either to tens or hundreds, for counting very high speeds, revolutions of spindles in cotton mills, etc., running up to 10,000 per minute, for transferring the revolutions, so that the first figure indicates either tens or hundreds $£ 012 \quad 6$ 2334. Trocheameter, for registering the revolutions of machinery or carriage wheels of any size, showing the distance travelled from place to place, etc. (fig. 2334), p. 201. See also No. 517
£2 $10 \quad 0$
2334. Water Gauge, $\frac{3}{4}$-inch, of best gun metal, with screw-bottom taps, and centre guard
£1 15 0
2335. Ditto, Ditto, $\frac{1}{2}$-inch
2336. Improved Small Safety Valve, with wrought-iron lever and weight, by which it may be adjusted to 10 lbs ., 20lbs., $30 \mathrm{lbs} ., 40 \mathrm{lbs}$., or 50 lbs . on the inch (fig. 2337), p. 200, with $\frac{1}{2}-$ inch way, $9 \mathrm{~s} .6 \mathrm{~d} . ; \frac{3}{4}-\mathrm{inch}, 11 \mathrm{~s} . ; 1$-inch, 13s. ; $1 \frac{1}{4}$-inch, 15 s . ; $1 \frac{1}{2}$-inch
£1 $0 \quad 0$
2337. Railway or Engine Whistles, of best make, $1 \frac{1}{4}$-inch, brass, 12s. 6d.; $1 \frac{1}{2}$-inch £0 140
2338. Railway or Engine Whistle, gun metal, 2-inch

0186
2340. Break Whistles, gun metal

1120
2342. ヵ \quad extra large

280

Fig. 2331.

2343. Lubricators with caps, 3s. 6d.; 5s. 6d.; and
£0 60

2344. Gun Metal Gauge Taps, Homersham's much improved, which admit of being cleaned out without removal from the boiler, 9s. 6d., 10s.6d., and $£ 0126$ *** Gauge taps, steam taps, full-way taps, etc., etc.
2345. Casella's Improved Gauge Glasses for Steam Boilers, warranted to bear any temperature or pressure either in or out-of-doors, irrespective of whatever vibration may be caused by locomotive or stationary engines. The tint or colour is light green, the material very hard as well as light, and the price considerably below that of the ordinary glass in use. There is nothing which L. Casella has more confidence in recommending than these gauge glasses:

PRICE LIST.

Inches. Diameter		「er doz.			Inches. Diameter			Per doz.		Inches. Diameter			Per doz.	
10	\times	$\frac{1}{2}$	£0 4	2	10	\times	$\frac{11}{16}$	£0 5	4	10	\times	$\frac{7}{8}$		76
12	\times		04	8	12	\times		05	6	12	x		0	86
14	\times		05	3	14	\times		06	6	14	\times		0	910
16	\times		05	10	16	\times		07	6	16	\times		011	112
18	\times		06	ù	18	\times		08	6	18	\times		01	126
20	\times		07	0	20	\times		09	8	20	\times		013	138
22	\times		07	7	22	\times		010	10	22	\times		01	1410
24	\times		08	2	24	\times		012	0	24	\times		016	160
10	\times	$\frac{9}{16}$	04	9	10	\times	$\frac{3}{4}$	05	6	10	\times	$\frac{15}{16}$	0	$9 \quad 0$
12	\times		05	0	12	\times		06	0	12	\times		010	$10 \quad 0$
14	\times		05	8	14	\times		07	2	14	\times		01	114
16	\times		06	4	16	\times		08	4	16	\times		012	128
18	\times		07	0	18	\times		09	6	18	\times		01	14.0
20	\times		07	8	20	\times		010	6	20	\times		015	15
22	\times		08	4	22	\times		011	6	22	\times		017	174
24	\times		09	0	24	\times		012	6	24	\times		019	19 0
10	\times	$\frac{5}{8}$	04	6	10	\times	$\frac{13}{16}$	07	0	10	\times	1	0	96
12	\times		05	0	12	\times		07	6	12	\times		010	106
14	\times		06	0	14	\times		08	8	14	\times		012	122
16	\times		07	0	16	\times		09	10	16	\times		013	1310
18	\times		08	0	18	\times		011	0	18	\times		015	156
20	\times		09	0	20	\times		012	4	20	\times		017	17
22	\times		010	0	22	\times		013	8	22	\times		019	192
24	\times		011	0	24	\times		015	0	24	\times		021	210

Figs. 2355 , 2356.

Fig. 2357.

Fig. 2352.

GAS GAUGES AND APPARATUS.

2346. Glass Tube Pressure Gauges, with union joint and brass bend with socket (fig. 2346), p. 203:
Ivory Scales. Boxwood Scales.

Larger sizes to order.

2347. Pressure Gauges, viz., stout glass tube about $\frac{1}{2}$ inch. bore, with brass cap, union and boxwood scale on polished mahogany :

2348. Gas Pressure Gauges, of stout glass tube, about $\frac{1}{2}$ inch. bore without bend, on mahogany boards with boxwood scale, connected brass cap and union at top, and brass socket and plug below to admit of cleaning without unfixing the gauge:

2349. Gas Gauges, in brass frames, for protecting the tubes in exposed situations:

6 -inch. ivory scales	£0 100	10 -inch. ivory scales	£0 14.6
8 "	0120	12	0180
6 ", boxwood scales	0886	12 ", boxwood scales	0150
8	096	24	220
10 " "	0120	30	2119

Gas Pressure Gauges on Casella's improved porcelain scales, with clear black indelible figures and divisions, sizes and forms of No. 2348, at a slight extra cost.
2350. Inspectors' Pocket Gauge, 3 -inch. scale, with the 2 usual adapters, elbow, and pliers with burner brooch, in maroon case, complete

2352. Large Size Inspectors' Gauge, with bent brass work, ground elbow and socket with 3 adapters and extra elbow adapter, much used by the London Gas Company, complete (fig. 230๊2), p. 202
£1 126
2353. Ditto, Ditto, with small tap and burner

1156
23554. King's Pedestal Pressure Ganges, in form of small time-piece with circular dial, in which the whole circle of each gauge is employed, in neat ornamental forms; for 3 inch. pressure, £1 15 s .; for 6 and 12 inch. pressure, $£ 210 \mathrm{~s}$.; for 24 inch. pressure, £3 3s. ; 36 inch. pressure
£4 $4 \quad 0$
2355. Gas Thermometer, 8 -inch. scale, in brass case, straight for horizontal pipes, with ground sorket and screw plug (fig. 2355), p. 202
£1 10
2356. Ditto, ditto, bent, for perpendicular pipe, with socket and plug, as above (fig. 2356), p. 202
£1 20
2357. Extra Sockets and Plugs ífig. 235̄7), p. 202, each .

020
2358. Sensitive Thermometer, small size, on neat ivory scale, $4 \frac{1}{4}$ inch. extreme with projecting bulb for taking the temperature of gas in pipes, etc. £0 4,6
2359. Ditto, ditto, with ground socket and screw plug . . $\quad 0 \quad 8 \quad 6$
2360. Separate Ground Sockets with screw plugs, each

040
2362. Specific Gravity Apparatus, consisting of light balloon of 1 cubic foot capacity, proof scales, with grain weights, each grain being equal to the weight of 1.728 cubic inches of air, in case complete . . . £2 50

With this apparatus the difficulties of taking the specific gravity of coal gas are removed, and reduced to a simple operation of a few minutes.
2363. Experimental Meter and Pillar, the pillar having micrometer adjustment, and pressure gauges affixed, with 2 regulating cocks, and large tube pressure gauge
£5 14, 0
2364. Inferential or Jet Photometer (Lowes'), for measuring the illuminating power of gas. In this arrangement the length of the gas flame from the photometer is constantly measured by the graduations on the attached glass chimney, and the uniformity of pressure shown by the index on the graduated circle (fg .2361). This gauge is a decided favourite with the managers and practical men of the various gas works around London
£3 150
2365. Photometer as No. 2364, in polished mahogany case with glazed front $£ 550$
2366. Photometer (Wheatstone's), for estimating the relative value of two lights. It is founded on the principle of their intensities decreasing according to the squares of their distances, so that the bead dise being made to revolve, and the distance of each measured from the instrument, the relative value of each light may at once be known (fig. 2366), p. 203
£1 80
2367. The Same, with a variety of silvered bead discs, which, when applied, present an almost endless variety of eliptical curves and brilliant lines of light £1 150
2368. Cooper's Tube Apparatus, consisting of graduated glass tube with water cylinder, water dish or pan, flexible tube with glass end and pipette for reagents, the tube being of Mann's improved form, with opening at bend, by which the difficulty in using these tubes is entirely obviated $£ 110 \quad 0$
By means of this apparatus an expeditions and inexpensive analysis of gas sufficiently correct for all practical purposes may be readily obtained.
2369. Cooper's Tube, as above, improved by Mr. Mann, engineer of the City of London Gas Works
£0 76
2370. Sulphur Test (Letheby's), viz., glass condensing cylinder and combustion tube, long outlet tube, glass funnel with metal end-piece and ammonia bottle, complete on polished wood stand
£2 $10 \quad 0$
2372. Mann's Improved Thompson's Apparatus for testing the heating power of fuel. This ingenious and practical apparatus consists of a combination cylinder with movable weighted base, small copper furnace with tube and tap, and 5 spare taps, 2 short glass water tubes, graduated to 29,010 grains, small sensitive thermometer in copper case, 3 Mann's protective diaphragms, scales with grain weights, small iron pestie and mortar, hair sieve and canister with oxygen mixture, in polished mahogany case with drawer, lock, and key \&5 50
2373. Testing Gas IIolder, of best make, to hold 2 cubic feet, with copper bell and double divided scale, balance wheel on friction rollers, cycloid and weights, gun metal inlet and outlet cocks, and pressure gauge complete, handsomely japanned, suitable for a laboratory .
$£ 1810 \quad 0$
2374. Testing Gas Holder, for testing meters, as above, to hold 5 cubic feet, with cast-iron tank, bell with scale, double divided to 5ths and 1-100ths, cycloid and weight, balance weights, 3 tube pressure gauge, etc., warranted to give the same continuous pressure, handsomely painted and accurately adjusted
£28 0
2375. Testing Gas Holder, as above, to hold 10 cubic feet, very perfect and complete £38 $0 \quad 0$

Gas Apparatus, Gas Tubing, and Appliances, in every variety, on the best terms.

MECHANICAL AND DYNAMICAL APPARATUS, GEOMETRICAL FORMS, ETC.

The models, etc., quoted in this section include only such as will be found of value to the teacher and student of the laws and science of motion and mechanics, besides their use in these studies, the solids form excellent drawing models, owing to the symmetry of their shape and the variety of shadows which each object affords.
2376. Model Apparatus for Exhibiting the Mechanical Powers, viz., levers, simpleand compound, pulleys of various kinds, inclined plane, wheel and axle, screwsof various sizes and pitch, capstan, wedges, etc., in mahogany and boxwood;in case, with weights, $£ 11$ s., $£ 3$, and
£5 0
2377. Ditto, ditto, more highly finished, and complete with brass pulleys, etc.$£ 107 \mathrm{~s}$. to £15 10 0
2378. Set of Levers, mahogany, of the first, second, and third orders and bent form, on stand, with friction rollers and graduated scales, $£ 11 \mathrm{ls}$. to £1 $10 \quad 0$
2379. Set of Levers, in brass, £4 and $410 \quad 0$
2380. A SET of three-toothed wheels and pinions, for showing the relation of power to weight £1 $16 \quad 0$
2382. Set of Compound Levers, in wood, with stand, $£ 1$; ditto, in brass 4100
2383. Sets of Pulleys, for making different combinations, 3s. to $010 \quad 0$
2384. A Set of Three Brass Pulleys, in frame, of the first, second, and third orders £1 180
2385. A Pair of Three-inch White’s Pulleys, fl 16s.; ditto, of 6-inch 2126
2386. Inclined Plane, 24-inch., with locomotive, and graduated arc of 90 degrees, toexplain the law of gradients, and showing that an angle of 10 degrees increasesthe resistance of the load nine times .$£ 315 \quad 0$
2387. Inclined Plane, mahogany, with graduated are and roller, for increasing or reducing the angle, 10 s. 6 d . to £1 $10 \quad 0$
2388. Models, to show the principle of the screw and nut, to illustrate the action ofscrews of different degrees of inclination, the compound and endless screw, 15 s .to
£1 50
2389. Ferguson's Compound Eingine, in which all the simple mechanical powers move together £4 $10 \quad 0$
2390. A Set of Six Brass Valves, highly finished, on 4-inch. mahogany blocks, showing the flat, clack, conic, ball, throttle, and side valves £2 20
2392. Ditto, ditto, of 5 , viz., the butterfly valve, bellows valve, round spring valve,conical valve, and oil-silk valve, in stained hard wood, each 6 inches in dia-meter, the set£0 106
2393. Whirling Table, improved form, as adopted in the military schools, for de- monstrating the laws of planetary motion and central forces, including the Keplerian law, etc. £13 100
2394. Whirling Rings, for proving the oblate figure of the earth 110
2395. Apparatus to illustrate the centre of gravity, consisting of 2 equal parallelopi- peds of a rhomboidal form. They stand firmly on end when separate, but fall when placed on one another £0 20
2396. Leaning Tower or Oblique Cylinder, in 2 pieces. They stand firmly on end when separate, but fall when placed on each other £O 20
2397. An Irregular Board, with 2 strings attached, with lines drawn to show how the centre of gravity of an irregular surface may be found £0 16
2398. Semicircle of brass, weighted at the two ends, supported on a brass stand, with a knife edge, to show the centre of gravity £0 36
2399. Double Cone and Inclined Plane, to show the descent of the centre of gravity, though the cone apparently moves upwards
£0 56
2400. Apparatus for demonstrating the parallelogram of forces, with weights and board complete, 18s. 6d. to .
£1 50
2402. Attwood's Fall Machine, with large pendulum, in finely polished wood, carefully graduated
£10 $10 \quad 0$
2403. Apparatus to show that a body in rotating, if free, always selects the shortest axis
£2 20
2404. Small Ground Brass Plates to illustrate the attraction of cohesion $012 \cdot 6$
2405. Cometarium, for showing the elliptic:l orbit of a comet, laid off to explain the law of equal areas in equal times
£2 150
2406. Geometrical Solids, in case, with book and illustrated text for stereometry and stereography
£0 $8 \quad 6$
2407. Trinomial Cube Dissected, for showing the relation between geometry and algebra ; large, 7s. 6d.; small
£0 50
2408. The Gyroscope, a modification of Bohnenberger's machine, by M. Foucault, arranged to illustrate the following principles:-That inertia is a property of matter in motion, as well as when at rest; that axial and orbital motion are closely related, and that the speed of one may affect or regulate the other; that the unstable state of equilibrium retained by various bodies is explained by the fact of their rotation; that bodies in motion endeavour to maintain their original plane of rotation; that the power of overcoming the force of gravity possessed by shots when fired from Armstrong's gun is due to the gyratory motion given to them by the internal formation of the gun. It also illustrates beautifully the precession of the equinox. Price of the simple form, on stand
£1 10
2409. Ditro, compound or most complete form in cabinet

2100
A very interesting illustrated paper on the gyroscope and experiments performed with it by M. Foucault accompanies each instrument.

Working models of steam engines, see pages 208 to 211.

MODELS OF CRYSTALS,

Of very accurate construction, designed with the utmost care.
2410. Glass Models, to illustrate the six systems of crystallography. The set of six, uniform with the 2 or the 3 -inch. cube, £3 3 s .; uniform with the 4 -inch. cube
£5 50
1.-The Cube, containing the Tetrahełron, Octahedron, Intersecting Cube, and Rhombic Dodecahedron.
2.-The Square Prism, containing the Acute and Obtuse Octahedrons, and Long and Short Square Prisms.
3.-The Rectangular Prism, containing the Rhombic Octahedron and Prism.
4.-Tee Oblique Pbism, containing the Oblique Rhombic Octahedron and Prism.
5.-The Doubly Oblique Prism, containing the Doubly Oblique Octahedron and Prism.
6.-The Hexagonal Prism, containing the Obtuse Rhombohedron, and Scalenohedron of Carbonate of Lime.

> 2412. The Crystal Cube, containing the Octahedron and two Intersecting Tetrahedrons, 3-inch., with an explanation .

2413. The Cube, containing the Octahedron, Intersecting Cube, two Intersecting Tetra-

 hedrons, and Cube-octahedron, with the Macles's Section, 3-inch. £0 106.2414. The Cube, containing the Octahedron, Intersecting Cube, Rhombic Dodecahedron, Trapezohedron, and Tetrahexahedron, 3-inch. . . $£ 015$ 0
2415. Models in Wood, illustrating "Dana's Manual of Mineralogy," $\frac{3}{4}$-inch, 12s.; $1 \frac{1}{2}$-inch.
£1 1.0
The small sizes are in white wood, and the larger in mahogany.
2416. Models in Wood, to illustrate the section on Crystallography and Mineralogy in Orr's "Circle of the Sciences," 1-inch, 10s. 6d. ; $1 \frac{1}{2}$-inch . f0 18 0
2417. Models in Wood, to illustrate Ansted's "Elementary Course of Mineralogy," $\frac{3}{4}$-inch, 10s. 6d. ; $1 \frac{1}{2}$-inch
£1 10
1.-Regular:-Cube-octahedron, Octahedron, Cube, Rhombic Dodecahedron, Tetrahexahedron, Pentagonal Dodecahedron, Tetrahedron, Ex-octahedron, Ex-cube, Fluor Spar Native Copper, Grey Copper.
2.-Square Prismatic:-Short Square Octahedron, Long Square Octahedron, Tin Ore, Zircon, Zircon, Idocrase, Zircon.
3.-Hexagonal :-Hexagonal Dodecahedron, Rhombohedron, Quartz, Calc Spar, Hexagonal Prism.
4.-Rномвic:-Long Rhombic Octahedron, Sulphur, Topaz, Heavy Spar, Prehnite, Sulpharet of Antimony.
5.-Oblique :-Oblique Rhombic Octahedron, Malachite, Gypsum, Pyroxene.
6.-Doubly Oblique :-Doubly Oblique Rhombic Octahedron, Sulphate of Copper, Axinite.

Twin Crystals or Macles:-Staurotide, Gypsum.
2418. Models in Wood, to illustrate Dr. Pereira's "Materia Medica," 1-inch, 15s.; $1 \frac{1}{2}$-inch.
£1 $10 \quad 0$
2419. Models in Wood, to illustrate Fownes's "Elementary Chemistry," 1-inch, 6s.; $1 \frac{1}{2}$-inch.
£0 106
2420. Models of Diamonds, in glass, the Koh-i-noor or Mountain of Light, Star of the South, Nassuck or Indian, Pitt or Orleans, Maximilian or Austrian (yellow), Great Russian, George the Fourth or Blue Diamond, etc., each $\quad \mathrm{E}_{0} \quad 8 \quad 0$
2422. Wire Models. The six prisms with their contained forms, in wire, uniform with the 8 -inch. cube .
£5 50
2423. The Six Prisms, in wire, with their axes, uniform with the 6 -inch. cube $\begin{array}{llll}1 & 1 & 0\end{array}$
2424. Ditto, with movable Octahedrons, etc., in wood, coloured . 220
2425. Models in Wood. Geometrical solids. The Platonic or five regular solids. The Tetrahedron, Cube, Octahedron, Dodecahedron, and Icosahedron, with a description, 1 -inch, 1s. $6 \mathrm{~d} . ; 1 \frac{1}{2}$-inch., 2 s .6 d . The same forms in wire, 4 -inch., 7 s .6 d . Short set, 1 -inch, 6 s .; $1 \frac{1}{2}$-inch., 10s. 6 d . Complete set, 1 -inch, 10s. 6. ; $1 \frac{1}{2}$-inch.
£0 18 0
Complete Set.-Tetrahedron, Hexahedron or Cube, Octahedron, Rhomboidal Dodecahedron, Trapezohedron, Tetrahexahedron, Excube, Cuboctahedron, Exoctahedron, Triexoctahedron, Pentahedron, Dodecahedron, Icosahedron, Tricacontahedron, Hexacontahedron, Exdodecahedron, Icosadodecahedron, Exicosahedron, Acute Rhombohedron, Obtuse Rhombohedron, Scalene Dodecahedron, Bipyramidal Dodecahedron, Tetradodecahedron, Pentagonal Dodecahedron, Trapezoidal Dodecahedron, Triangular Prism, Triangular Pyramid, Quadrangular Pyramid, Hexagonal Prism, Hexagonal Pyramid, Cone, Sphere, Cylinder.

DISSECTED CONES, PAINTED BLACK.

2429. Goniometer, Pepys's, for measuring the angles of crystals, in case, for the pocket
2430. Goniometer, for measuring the angles of crystals

3150
2431. Goniometer, Wollaston's, reflecting .

550

Fig. 2432.

WORKING MODELS OF STEAM ENGINES, STEAMBOATS, ETC.

The following list includes only such models as are carefully tested, and the fullest confidence may be placed in their working with perfect efficiency. The marine engines named (or larger sizes) can be applied to suitable working model ships if required.
2432. Marcet's Steam Apparatus, with barometer, thermometer, stop-cock, etc.; for illustrating the principal experiments connected with high or low pressure steam and latent heat (fg .2432) £4 $0 \quad 0$ and $£ 4100$
2433. Locomotive Engine, 18 inches long, boiler heated by charcoal or spirit lamp, with fixed cylinders, slide valves, tubular boiler, steam cocks, for high and low water-marks, water gauge, steam whistle, safety valve, lamp, spring buffers, etc., best make
£30 00
2434. Drtro, drtro, as above, with reversing gear . . . 3600

2434*. Tender for the above, with spring buffers
400

2436. Locomotive Engine, 16 inches long, with oscillating cylinders inside framing, double crank, steam chest, safety valve, steam cock, two cocks for high and low water marks, whistle, spring buffers, and spirit lamp, highly finished £14. 00
2436*. Tender for ditto
180
2437. Locomotive Engine, $8 \frac{x}{2}$ inches long, with oscillating cylinders inside frame-
work, whistle, steam cock, buffers, and safety valve, £4; or to run
straight
2438. Locom otive Engine, 9 inches long, with 4 wheels, cylinders, outside framework, steam cock, safety valve and spirit lamp
£3 30
2439. Tender for ditto 0116
2440. Small Brass Locomotive Engine, 6i $\frac{1}{2}$ inches long, with outside cylinders, steam cock, safety valve, and spirit lamp
£1 $18 \quad 6$
2442. Tender for ditto $0 \quad 8 \quad 0$
2443. Locomotive Engine and Tender in one (fig. 2443), p. 208, 10 iuches long, with polished brass boiler, and brass frame, oscillating cylinders outside frame, steam cock, safety valve, buffers, and spirit lamp . . £2 50
2444. Same as the above, with japanned tin boiler . . . 220
2445. Ditto, Ditto, the same as No. 2443, with 4 wheels, and without tender 220
2446. Ditto, Ditto, same as above, but with japanned tin boiler . 1120
2447. Small Cheap Locomotive (fig. 2447), p. 210, 7 inches, with one cylinder, bright brass frame, japanned tin boiler, buffers, and spirit lamp; works well £1 00
2448. Locomotive Engine, of brass, highly finished, with cylinders inside frame, double crank, steam cock, whistle, buffers, and safety valve, japanned tender, carriage, and brass circular railway, 3 feet 9 inches diameter (fig. 2448) £9 $10 \quad 0$
2449. Locomotive Engine, as No. 2436, with tender and brass railway, 5 feet diameter
£20 0
2450. Turn T ables, models of, for turning and shifting locomotives and carriages on railroads

STATIONARY STEAM ENGINE MODELS.

2452. IIorizontal Steam Engine, with polished brass boiler, cylinder, steam cock, safety valve, lamp and fly-wheel, on japanned stand, 7 inches long fo 18 0 2453. Ditтo, same as above, working a small lathe fixed on bed plate, with polished mahogany stand, best finish .
£1 130
2453. Horizontal Steam Engine, with fixed cylinder, slide valve, boiler, steam cock, safety valve, fly-wheel 5 inches diameter fixed on bed plate 7 inches long, with polished mahogany stand .
£3 50
2454. Higi Pressure Beam Engine, with fixed cylinders, slide valve, parallel motion, cocks, governors, boiler, etc.
£5 0
2455. Vertical Steam Engine, on brass boiler, with cylinder, fly-wheel, steam pipe, spirit lamp, etc. (fig. 2456)
£0 156
2456. Oscillating Engine, with detached boiler, steam cock, ete., on French polished mahogany stand, 7 by 5 inches
£1 180
2457. Steam Saw Oscillating Engine, with 5 -inch. fly-wheel, circular saw in bed plate, and separate boiler, supported by 4 brass pillars, on mahogany stand £3 150
2458. Higi Pressure Beam Engine, with slide valve, fly-wheel $5 \frac{1}{4}$ inches diameter, and brass boiler
£9 $10 \quad 0$

MARINE STEAM ENGINES.

2460. Pair of Marine Steam Engines, with paddle wheels $3 \frac{1}{2}$ inches diameter, oscillating cylinders, double crank, steam cock, copper boiler, safety valve and lamp; to drive a boat 3 feet 6 inches or 4 feet long . . $\begin{array}{llll} & 0 & 0\end{array}$
2461. Ditto, of larger size, with 5 -inch. wheels and reversing gear, to drive a boat of 4 to 5 feet
£4 100

Fig. 2473.
2463. Pair of Marine Engines, of superior make and extra power, with 4-inch. wheels, reversing gear, copper boiler, cocks, safety valve - £5 50
2464. Ditro, same construction as above, with 6 -inch. paddle wheels, to drive 5 to 6 feet boat
£9 000 to $£ 12$ 0
2465. Dirto, with 7 -inch. wheels, to drive 7 to 8 feet boat $\begin{array}{llllll}13 & 0 & 0 & \text { to } & 18 & 0\end{array} 0$ Larger sizes made to order.
2466. Woollaston's Apparatus, showing the action of the atmosphere, or condensing engine
£0 76 and £0 $10 \quad 0$
2467. Paddle Wheel Steamboats, suitable for marine engine No. 2460, with rigging, etc., complete, 4 feet long, £8 10s.; 3 feet 6 inches long
£7 0
2468. Ditro, ditro, extra finished, 4 feet long, £11; 3 feet 6 inches $910 \quad 0$
2469. Screw Steamboats, suitable for marine engine No. 2460, rigged, etc., complete, 4 feet long, $£ 715 \mathrm{~s}$. ; 3 feet 6 inches long
£5 100
2470. Ditro, ditto, extra finished, 4 feet, $£ 10$ 10s.; 3 feet 6 inches long 900
2472. Models of Paddle and Screw Steamers (not working), including the "Irena," " Trinity Yacht," "Cosmopolitan," etc., 2 feet long, each £3 $10 \quad 0$
2473. Model of the "Great Eastern," rigged, etc., complete, made to scale, very accurate, 32 feet to the inch, length of model $21 \frac{3}{8}$ inches, under glass case (fig. 2473), £3 10s. ; or extra finished
£6 0

[^12]
MINERALOGY, GEOLOGY, AND CONCHOLOGY.

To assist beginners in the study of these interesting and useful sciences, the following educational collections are arranged in neat cabinet cases, with glass covers ; all are named, carefully labelled, and accompanied with brief descriptions of their uses in the manufactures and-arts.
2474. Minerals, small collection, 24 specimens, 2s. ; ditto, larger specimens fo 50
2475. Minerals " 40 " 0 s.; ", , 0100

SPECIFIC GRAVITY INSTRUMENTS.

The increasing use of these instruments in the arts and manufactures is intended to be met in the following list, in which economy, as well as precision, has been studied alike in those for manufacturing purposes, as well as the most refined investigations. L. Casella having manufactured about one thousand hydrometers for the English and American Governments, the following official reports were made respecting them :-"Those made by Casella are the best adapted for practical work, In shape and strength they are by far the best. In respect to accuracy, Casella's are incomparably the best, and he deserves credit for the care with which he has made them."-Report of the Kew Observatory Committee to the British Association, 1854-5.

HYDROMETERS, SACCHAROMETERS, ETC.

2493. Sykes's IIydrometer, Excise pattern, best make and strongly gilt, with comparative and reducing rule, ivory thermometer, book of tables, trial glass and instructions, complete
£4 $4 \quad 0$
2494. Ditto, ditto, without rules 3180
2495. Ditto, ditto, plain, slightly gilt, as used by most distillers

330

Fig. 2508.

Fig. 2509.
2496. Small Pocket Syees's Hydrometer, best double gilt, with ivory thermometer, enamelled tube, book of table, and trial glass, complete
£3 150
N.B. When either of the above are required for warm climates, the book of tables is made up to 100° of temperature, and the thermometer to proportionate higher range at 7 s .6 d . extra.
2497. Syees's Hydrometer, glass, with ivory or paper scales expressly arranged to suit the tables used by her Majesty's Excise, with thermometer, trial jar, and book of tables, in case, complete
£1 $10 \quad 0$
*** This instrument being anti-corrosive and invariable in its adjustment, is much used as
a standard of comparison with which to test brass instruments.
2498. IIydrometer, glass, for spirit, showing the per centage of proof spirit from 70 above to 40 per cent. under proof, in tin case, with tables £0 56 2499. Dirto, the same, with tables of heat up to 100° for hot climates $\quad 0 \quad 6 \quad 0$
2500. Brewer's Saccharometer, best electro-gilt, with one weight, showing to 52lbs. per barrel, with rule, tables, instructions. Thermometer, etc., in case, with lock and key .
£4 4.0
2502. Ditto, ditto, electro-gilt, of plainer make, without rule . 3 3 0
2503. Richardson's ditto, ditto, to 60lbs. 3100
2504. Allen's Saccharometer, best gilt, chiefly used in Scotch breweries, with slide rule, trial jar, etc., in case complete $£ 410$ 0
2505. SACCHAROMETER, glass, for brewers, with thermometer, in mahagony case, also glass jar, improved tables of gravity, and temperature, etc. (fig. 2505), p. 215
2506. SaCCHAROMETER, glass, in round case, with tables of heat, as above $\quad \begin{array}{llll}0 & 5 & 6\end{array}$ 2507. Saccharometer, glass, for British wine making, as described in Robert's "Wine Maker's Guide "
Corndrometer or Corn Balance. A portable and convenient instrument for showing the real weight per bushel, etc., of corn, as wheat, oats, barley, etc., from the weight of a small quantity, thus, the measure Δ being filled with corn and attached to the beam \mathbf{B}, the sliding weight is passed along till the corn is balanced, and the exact weight or value is thus shown. The sizes quoted are imperial English measures, but foreign ones can be made, if preferred, at a slight extra cost.
2508. Corndrometer, in mahogany case, complete (fig. 2508), 1 pint, £3 5s. ; $\frac{1}{2}$ pint, £2 15s. ; $\frac{1}{4}$ pint, £2 5 s .; $\frac{1}{8}$ pint
£2 20

FIG. 2513.
2509. Corndrometer, complete as No. 2508, with attached funnel (fig. 2509), p. 213, 1 pint, £5; $\frac{1}{2}$ pint, $£ 4 ; \frac{1}{4}$ pint, £3 10s.; $\frac{1}{3}$ pint . . £3 30
The advantage obtained by this arrangement is uniformity in filling the measure; the funnel is placed in a projecting position, over the end of the box, beneath which, at a fixed distance, the bucket is placed to receive the corn; the funnel is then filled with the sample to be tried, and a slide being removed the corn passes gradually into the measure at a uniform rate, when the top is levelled off with a small accompanying straight edge.
2510. Alcoholmeter, for brewers, Field's patent improved, for indicating by the boiling-point the amount of alcohol contained in any sample of beer or ale, together with its specific gravity and pounds weight per barrel $\begin{aligned} & \text { £5 } \\ & 15\end{aligned} 0$
2512. Acidometer, for use with the above, where the amount of acid in old beer, or in other acetous fermentations is required to be known
£1 50
2513. Alcoholic or Wine Test, as used in the laboratories of her Majesty's Board of Customs for the estimation of proof spirits in wine, liquors, etc. (fig. 2513), and including 12 flexible washers, 1 each measure, bottle, trial jar, 12 feet flexible tube, stirring thermometer, and plain strong case
2514. Spare Flasks, with screw collar to fit the still, each . . $0 \quad 26$
2515. Spare Standard Measure Glasses, each

016
The heating lamp may be for gas or spirit, as under :-
2516. Improved Gas Lamp .
$\begin{array}{lll}0 & 8 & 6\end{array}$
2517. Or Argand Spirit Lamp, to slide on telescope stand

0150
The strength of the alcohol obtained by this apparatus is then shown by any of the hydrometers in the usual way, see Nos. 2493 to 2497.
2518. Wine Test, small and portable, for testing the amount of alcohol contained in small samples of wine, with glass hydrometer and thermometer, complete, in case £1 60
2519. Salinometer (patent), of stout cast metal, for attaching to the boilers of steam vessels, with hydrometer, thermometer, and best metal cock and valves, for showing at any time the gravity of the water by the amount of salt contained in the boiler
£8 150

2520. Salinometer IIydrometer, best glass, adjusted to 200° Fahrenheit (or Centigrade or Reamur), if required, for showing the quantity of salt in the boilers of steam engines, and the proper time for blowing it off, in tin case $\begin{array}{llll} & 4 & 0\end{array}$
2522. Ditto, Ditto, of gilt metal, in tin case
0186
2523. Ditto, Ditto, in mahogany case, with thermometer . . . 160
2524. Thermometer, protected, etc., for ditto . . . 040
2525. Engine Counters or Metebs for steam vessels, see steam gauges, Nos. 2327 to 2334.
2526. Milk Test or Lactometer, for detecting adulteration, and showing the relative value of milk from different cows (fig. 2526)
£0 36
2527. Cream Test, for showing the difference in quantity of cream between one cow and another, with instructions also for the lactometer (fig. 2527) fo $\begin{array}{llll} & 6 & 6\end{array}$

No one using these appliances would ever again be without them.
2528. Acetom eter, for vinegar and other light acids $0 \quad 5 \quad 0$
2529. Barktro meter, with open graduations, for tanning . . 060
2530. Oleomet er, for testing the quality of oils, in round case . $\quad 0 \quad 46$
2532. Ditro, with thermometer and glass jar, in mahogany case . 0160
2533. IIydro meter, for showing the specific gravity of salt-water, from 0 to 40 , as de signed for and supplied to the Admiralty and United States Government by L. Casella
2534. Hydrometers, a pair of, as No. 2533, in mahogany case, the scales ranging from 0 to 20, and from 20 to 40
£0 126
2535. Twaddle's IIfdrometer (glass), pear shaped, Casella's improved, small and strong, with ivory scales, No. 1 to 3, 2s. 6d. each ; No. 3 to 6, each £0 30
2536. The set of 6 in mahogany case .

110
2537. Round Cardboard or Tin Cases, each
$0 \quad 0 \quad 3$
No. 1 - \quad Range 0 to $24 \left\lvert\, \begin{gathered}\text { No. 4 . . Range 74 to } \\ 102\end{gathered}\right.$

The Twaddle's hydrometers*, are so called after Mr. Twaddle of Glasgow, who first designed them; the graduations extend from 0 or water to 170 , on 6 separate hydrometers, as shown in Nos. 1 to 6, each division representing 5 of sp. gr. For manufacturing purposes the arrangement is most convenient, the graduations being distinct, and workmen required to test various gravities do so with one number only, without endangering the whole. To find the gravity of any part of the scale, say 140 , multiply it by 5 placing 1 in front, thas 140 by $5=700$, with 1 for water in front $=1700 \mathrm{sp}$. gr.
*.Twaddle's hydrometers, and Beaumes's hydrometers and saccharometers adjusted to 84° Fah., for the West Indies, 6d. each extra.
2538. Hydrometer, for heavy fluids, with specific gravity scale, 1000 to 1900, and Beaumes's scale, 0 to 70 (figs. 2538), p. 215 . $£ 0 \quad 76$
2533. Hydrometer, for light fluids, with specific gravity scale 1000 to 800 , and Beaumes's scale, 10 to 45
£0 76
2540. Beadmes's Hydrometer, 0 to 45 for syrups, soap, leys, etc. . $\quad 0 \quad 5 \quad 6$

This hydrometer being extensively used abroad, as well as in connection with chemicals imported into this country, the following short comparative tables will be found convenient.
Specific Gravities Corresponding to Degrees of Beaumes's Hydrometer for Liquids Heavier than Water.

Degrees.	Sp. Gr.	Degrees.	Sp. Gr.	Degrees.	Sp. Gr.
1	1.007	15	$1 \cdot 109$	29	1.235
3	1.020	17	$1 \cdot 126$	31	1.256
5	1.034	19	$1 \cdot 143$	33	1.277
7	1.048	21	$1 \cdot 160$	35	1.299
9	1.063	23	1.178	37	1.321
11	1.078	25	1.197	39	1.345
13	1.094	27	1.216	41	1.369
				43	1.395
				50	1.490
				60	1.652
				70	1.854

For Liquids Lighter than Water.

Degrees.	Sr. Gr.	Degrees.	Sp. Gr.	Degrees.	Sp. Gr.
12	0.986	27	0.896	42	0.820
15	0.967	30	0.880	45	0.807
18	0.948	33	0.864	48	0.794
21	0.930	36	0.849	51	0.781
24	0.913	39	0.834	54	0.768

2542. Saccharometer, for sugar-boiling, Beaumes's scale 0 to 40 , of stout brass gilt, in tin case
2543. Three Mydrometers in one set, for testing the gravity of spirits, ether, etc., from water to 700, viz., No. 1, from 700 to 800 ; No. 2, 800 to 900 ; No. 3, 900 to 1000 , arranged by L. Casella with extreme care as instruments of standard precision, £1 10s., or in one case
£1 146
2544. A Set of Three Hydrometers for heavy fluids, by L. Casella, of standard precision, as above: No. 1, 1000 to 1300 ; No. 2, 1300 to 1600 ; No. 3, 1600 to $1900, £ 16$ s., or in one case
£1 100
2545. Hydrometer for spirits, with Cartier's and specific gravity scales $\quad 0 \quad 5 \quad 0$
2546. Beads for showing specific gravity, of 1000 to 1500 every five degrees, in sets of any number, in round case, per dozen
£0 6
2547. Spirit Bubbles or Beads*, for showing approximately the strength of spirits, much used abroad in the manufacture of rum, etc., being very strong, and unlikely to break, in round case, with instructions, a set of $12,5 \mathrm{~s} .6 \mathrm{~d}$. ; of 18 , 8 s . ; of 24
£0 106

* Spirit bubbles adjusted to 84° Fah., ditto, ditto, without extra charge.

2548. Parting Glasses or Sinking Phials, for East India, per dozen $0 \begin{array}{llll}0 & 7 & 0\end{array}$
2549. Salt-water Beads or Bubbles, for aquariums, in pairs (Lloyd's arrangement) with instructions
£0 20
2550. Aquarium Hydrometer (Lloyd's), for adjusting the salt-water to its proper density
£0 26
2551. Argentometer, for ascertaining the proportion of nitrate of silver, in solution by chloride of sodium, for photographic purposes, 7 s . 6d., or in morocco case £0 126
2552. Photographic Hydrometer, for showing grains per ounce of nitrate of silver in solution
£0 46
2553. Hydrometers, Saccharometers, and Alcoholmeters, according to Beaume, Tralles, Richter, Gay-Lussac, etc., for showing the strength and gravity of fluids both heavier and lighter than water ; from 1s. 6d. to 2s. 6d. each, in every variety.
2554. Spectific Gravity Bottles, of 1000 grains capacity, with counterpoise, in tin case, japanned, 10 s .6 d. ; ditto to 500 grains, 8 s . 6 d . ; ditto to 250 grains, 6s. 6d.; ditto to 100 grains, 5s. 6d. ; ditto to 1 cubic inch. . £0 56
2555. Specific Gravity Bottles, of stout glass, with solid stoppers, with a slit down the side, at the same price.
2556. Nicholson's Gravimeter, in japanned tin, for showing the specific gravity of gold, minerals, etc., with marked stem and directions for use . fo $7 \quad 6$
2557. Nicholson's Gravimeter, very accurate, in glass or gilt brass, for showing the specific gravity of gold, metals, minerals, or other solid substances, with silver cup and weights, ranging from $\frac{1}{10}$ of a grain to 1000 grains, in case, complete £2 20
Urinometers; the great care taken by L. Caselia in the design, as well as precision of these instruments, obtains for them a decided preference wherever they are tried.
2558. Ubinometer (Provt's) for ascertaining the specific gravity of urine, strong and
very sensitive, in sheath case fo 36
2559. Ubinometer (Prout's), in round case, with 2 oz. graduated glass jar £0 6
2560. Urinometer, with graduated jar, delicate thermometer and test papers, in maroon case £0 116
2561. Ditto, ditto, very handsome, with thermometer, 2 oz . graduated jar, spirit lamp, 2 acid bottles, 9 test tubes, test papers, and dropping tube $\begin{array}{llll} & 6 & 0\end{array}$
2562. Ditro, ditto, in mahogany case, with large bottles and lamp; large dropping and test tubes, thermometer, test papers, evaporating dishes, forceps, etc., very complete
£2 0
2563. Urinary Cabinet, as selected by Dr. Lionel Beale, consisting of urinometer in case, graduated 2 oz . measure, pipette, stirring rod, microscopic slides, and thin watch glasses, washing bottle for precipitates, tube holder, test tube, forceps, blow pipe, platinum foil and wire, spirit lamp with ring, test papers, and 7 Highley's dropping bottles for nitric acid, acetic acid, ammonia, potash, nitrate of bysitas, nitrate of silver, and oxilate of ammonia .
£2 100
2564. Metal Ubinometer, gilt or electro-plate, in round sheath case 0110
2565. Codding ton Lens in German silver, 4s. 6d. to 7s. 6d. ; Stanhope ditto, 3s. 6d. to
£0 56

SURGICAL AND MEDICAL INSTRUMENTS AND APPARATUS.

The following brief list enumerates a few of the medical appliances mostly required from L. Casella, all other varieties, however, of the most approved and useful kinds are forwarded to order, on the lowest terms.
2569. Lar Illuminator (Jordan's) £1 20
2570. Auriscope (Brunton's) much improved . . . 180
2571. Toynbees, set of silver tubular specula of 3 sizes, round or oval, with handle £0 $17 \quad 6$
The clear bright light, natural or artificial, thrown into the ear by these instruments is most efficient; they are also used as auxiliaries to the speculum.

2576. Stethescopes, in every variety, each . . $\begin{aligned} & 0 \\ & 2\end{aligned} \quad 6$ to $\begin{array}{llll}6 & 6\end{array}$
2577. Lancets for bleeding, for the gums, for vaccine, abcess lancets, etc., per dozen £0 $3 \quad 6$ and £0 56
2578. Silver, Morocco, and Tortoise-shell Lancet Cases $\begin{aligned} & 0 \\ & 0\end{aligned} 6$ to 015 0
2579. Knives and Corn Files, for chiropodists, the set $\begin{array}{llllllll}0 & 7 & 6 & & 0 & 15 & 6\end{array}$
2580. Ditro, ditto, mounted in ivory, with nail nippers, scissors, spring forceps, and double tantaculum, in neat pocket case
£1 106

Fig. 2589.

Fig. 2573.

Fig. 2572.
2582. Eyc-lid Retractors (Bowman's, Critchett's, Pellier's, and Adams's), each £0 $\quad 3 \quad 3$ to £0 60
2583. Hearing Trumpets, bronze and electro-plated, the latest improved, 3 s ., 6 s ., 9 s ., each, and upwards to
£2 $10 \quad 0$
2อ84. Ear Cornets, each fol 20 to 0106
2585. Conversation Tubes, covered with silk, plain and taper, in ivory and ebony mountings £0 $16 \quad 0$ to £1 10
2586. Opthalmoscope, of much importance, for viewing the interior and back surface

2587. Spirometer (Dr. Hutchinson's), for measuring the vital capacity of the lungs, with tables and instructions, complete
£4 40
2588. Weighing and Measuring Machine, to be used in conjunction with the above £7 $10 \quad 0$
2589. Improved Portable Spirometer, for measuring the capacity and power of respiration of the chest and lungs (fig. 2589). The principle of this new and very beautiful instrument is that of the sensitive air meter No. 75, with a special arrangement for directing the action of the breath direct upon the fan, so that no portion of it is lost, the indications being thus rendered absolutely uniform and correct. With this really portable instrument the profession can with ease and certainty test the chest and lungs of their out-door patients, whilst in many instances it is believed they will direct it to be used by the patients themselves. In neat mahogany case, 6 inches by 4 inches $£ 410 \quad 0$
2590. Stethometer (Dr. Quain's), for determining the expansion of the chest, in watch case, for the pocket
£1 $8 \quad 0$
2592. Laryngoscope (Dr. Johnson's), in pocket case, may also be used as an excellent
$\begin{gathered}\text { ophthalmoscope }\end{gathered}$
$\begin{array}{lllrl}\text { 250.s. }\end{array}$
2593. Ditto (MAckenzie's)

CHEMICAL AND ASSAY BALANCES,

Including those at low price, as well as others for strict scientific investigations; in each case the utmost precision and care may be relied on.
2600. Plain Balance, with 6 -inch. beam, brass pans and weights from $\frac{1}{2}$ grain to $\frac{1}{4}$ ounce, in oak case, 3s. 6d.; 7 -inch., 4s. 6d.; 8 -inch. £0 56
2600*. If with glass pans, to 1 ounce, per pair extra . $\begin{array}{llllll}0 & 1 & 0 & \text { and } & 0 & 1\end{array}$ 2602. Drtro, with glass pans and box-end beam, in mahogany case, 10s. 6d., 12s. 6d., and .
£0 156
2603. Dispensing Scales (fine grain), for surgeons and chemists, with glass pans, 8 -inch. box beam, handsome brass fittings, with raising pulley, apothecary and grain weights from $\frac{1}{4}$ to 200 grains, in 10 -inch. French polished mahogany box
£1 80
2604. Apothecaries' $\mathrm{W}_{\text {bights, }}$ in sets of 6 from 2 drams to $\frac{1}{2}$ scruple, per set 0000
2605. Grain Weights, as ordered by British Pharmacopoia, in sets of 6 weights from 200 to 10 grains, per set
£0 10
2606. Grain Weights, in sets of 7 weights from 10 to $\frac{1}{2}$ grain, per set $\quad 0 \quad 0 \quad 6$
2607. Chemical Balance, with fine box-end beam on slide pillar, weights 1000 grains to $\frac{1}{10}$, tweezers, etc., complete, in polished mahogany box
£3 30
2608. Separate Weights, for analytical purposes, in mahogany box, with tweezers, 1000 grains to $\frac{1}{10}, 12$ s. 6 d . ; 1000 grains to $\frac{1}{100}$
£0 176
2609. Chemical and Analytical Balance, with 12 -inch. beam, to carry 800 grains, and turn with $\frac{1}{50}$ of a grain, with divided beam, for slide weight, in French polished mahogany box, on which also it stands for use
£4 50
2610. Ditto, the same, in glass case, with adjusting screws

660
2612. Chemical Balance, with 12 -inch. beam, to carry 1000 grains in each pan, and turn with $\frac{1}{100}$ of a grain, divided beam with straight knife edges at the ends, on which the pans are suspended by agate planes, fixed apparatus to move slide weight, with short pan for specific gravities, etc., in glass case, with adjusting screws
£8 10
2613. The Same, in glass case, on 3 feet, without draw or apparatus to move slide weight, particularly suitable for pupils in the laboratory
$\begin{array}{lll}£ 6 & 6\end{array}$
2614. Chemical Balance, with 14 -inch. beam for 1500 grains, turning when loaded with $\frac{1}{1000}$ grain, knife edges, agate centre and agate planes, divided beam, slide moving apparatus, short pan for taking specific gravities, in glass case, with adjusting screws, complete
£15 0
2615. Chemical Balance, 16 -inch. divided beam, to weigh $1 \frac{1}{2} \mathrm{lbs}$. to 2 lbs ., turning when loaded with $\frac{1}{100}$ of a grain, slide moving apparatus, in glass case, with adjusting screws, $£ 14$; or with agate edges .
£15 $10 \quad 0$
2616. The Same, for general use in the laboratory, weighing to 2 lbs ., and turning to $\frac{1}{10}$ grain, in glass case
£8 $10 \quad 0$
2617. Assay Balance, with 8 -inch. beam, to carry 50 grains in each pan, and turn to $\frac{1}{200}$ of a grain
£5 $10 \quad 0$
2618. Assay Balance, with 10 -inch. beam to carry 500 grains in each pan, turning distinctly with $\frac{1}{1000}$ of a grain, in glass case, with adjusting screws $£ 12120$
2619. Assat Balance, with 8 -inch. beam, to carry 200 grains in each pan, turning distinctly with $\frac{1}{1000}$ of a grain; the beam is constructed with 3 edges of agate, and the pans are supported by agate planes, with apparatus for moving the sliding weight
£18 $10 \quad 0$
2620. Bullion Balances, to weigh 300,1000 , to 2000 ozs. at $£ 30$, £50, and $70 \quad 0 \quad 0$
2622. Set of Grain Weights, in mahogany boxes, containing the following weights : $10,000,6000,3000,2000,1000,600,300,200,100,60,30,20,10,6,3,2,1$, $\cdot 6, \cdot 3, \cdot 2, \cdot 1, \cdot 06, \cdot 03, \cdot 02, \cdot 01$.
£3 120
2623. Set of 6000 Grains to $\frac{1}{100}$ grain, $£ 33 \mathrm{~s}$.; set of 1000 grains to $\frac{1}{100}$ grain, $£ 115 \mathrm{~s}$.; set of 600 grains to $\frac{1}{100}$ grain, $£ 110 \mathrm{~s}$.; set of 10,000 grains to 1000 grains
£2 $5 \quad 0$
*** Gramme weights, as above, of proportional subdivisions, at about the same prices.
2624. Set of Troy Weights, from 10 ozs. down to $\frac{1}{100}$ of an ounce, in box $\begin{array}{lllll} & 3 & 0\end{array}$
2625. Set of Weights, of $100,50,40,30,20 \mathrm{ozs}$. . . . $5 \quad 50$
2626. Single Weight of 200 ozs. £2 $20 \left\lvert\, \begin{array}{lllll}\text { 2628. Single Weight of } 400 \mathrm{ozs} . ~ & 4 & 4 & 0\end{array}\right.$ 2627. " " 300 " $330 \mid 2629$." „ 500 „ $5 \quad 5 \quad 0$

Fig. 2659.

Fig. 2656.

CHEMICAL APPARATUS. APPARATUS FOR EXPERIMENTS WITH GASES.

2630. Gas Jars, cylindrical, with ground ends, so that they may be closed with a plate of glass, for collecting and preserving gases, a set of 7, size from 6 to 50 oz . 10 s .6 d .; or separately from 9 d . to 2 s .6 d . each.
Deflagrating Jars, bell-shaped, stoppered, with ground base, for collecting and preserving gases:
 2633. 3

Gas or Transfer Jars, with brass caps:

	Without Stop-cock.		With two Stop-cocks. Union Ferule bladder, etc. (Fig. 2636).	
Cubical Contents.	Plain.	Graduated.	Plain.	Graduated.
2636. 100 inches	3s. 6d.	6s. 6d.	13s. 0d.	16s. 0 d .
2637. 150 "	40	70	136	166
2638. 200	46	76	14.0	17 0
2639. 250	50	86	14.6	180

2640. Glass Plates, for covering air jars, funnels, etc., each, 2d. to 9d.
2641. Trays for Air Jars, for removing jars filled with gas from the pneumatic trough and preventing the access of air, 4 inches diameter, 1 s . ; 6 -inch., 1 s .3 d. ; 8-inch.
£0 16
2642. Mercurial Pncumatic Trough, porcelain \quad. $\quad \begin{array}{lllllll} & 2 & 2 & 6 & \text { to } & 0 & 3\end{array} 6$
2643. Pneumatic Trough, japanned tin, with movable shelf and tray, 3s. 6d.; 22 inches by 16 inches

2644. Bladders, prepared for containing gases, with brass ferule and stop-cock £ 50
2645. Vertical Pncumatic Troughs, jars with expanded mouths, 8 -inch. high, $1 \mathrm{~s} .3 \mathrm{~d} . ; 12$-inch. by 2 -inch., 1s. 6d.; 16-inch. by $2 \frac{1}{2}$-inch., 2s. and £0 26
2646. Woulff's Bottles, best make, the necks carefully rounded for the cork, with 2 necks, $\frac{1}{2}$ pint, 1s.; 1 pint, 1s. 3d.; 1 quart, 1s. 6d.; 3 pint, 2s. With 3 necks, $\frac{1}{2}$ pint, 1s. 8d. ; 1 pint, 1s. 10d.; 1 quart, 2s. 4d.; 3 pint
£0 29
2647. Safety Funnels, for gas bottles, with round or long bulbs, each 0110
2648. Crum's Tube, for the collection of nitric oxide in the analysis of nitrates; thoroughly annealed .
£0 50
2649. Stop-cocks, glass in the middle of straight tubes \quad| | | 2 | 6 | to | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | $7 \quad 6$
2650. Stop-cocks, brass, with male screw at each end, or with male and female screw, or with straight tube at each end for connection . . £0 30
2651. Pinch-cocks (Mohr's) 0 0 6
2652. " (Bunsen's lever) 0
2653. Improved Acid Tap, see No. 2296.
2654. Gas Holders (Pepys's) (fig. 2656), p. 222, of japanned zinc, receiver 16 inch. by 12 inch., with three brass stop-cocks . . . £2 100
2655. Same size, copper 500
2656. Gas Holders, glass, about 6 gallons, with brass cap and stop-cock 2100
2657. Gas Holders, stoneware, with japanned funnel, brass stop-cock (fg . 2659), p. 222, $1 \frac{1}{2}$ gallon
£0 100
2658. Ditto, 3 gallons 0150
2659. Gas Holder, Glass (Bunsen's), for mercury, complete . 076
2660. Apparatus for the Electrolysis of Water, Smee's cells, platinized silver and zinc
plates, about 5 inch. by 4 inch., each . . . £0 7 0
2661. Groves's Cells, platinum and zinc plates, from . . 0
2662. Pair of Tobes, for collecting the H and O produced by decomposition of water £0 76
2663. Bunsen's Apparatus, for preparing pure detonating gas for analytical purposes
2664. Marsh's Apparatus, for detection of arsenic ; tube with 2 bulbs, etc. £0 60
2665. Arsenic Apparatus, consisting of hydrogen-generator, fitted with tube for chloride of calcium and ignition tube of hard glass (fg .2668), p. 223 £0 $\begin{array}{llll}4 & 6\end{array}$

APPARATUS FOR DISTILLATION.

2669. Still, working model, suitable for the student or lecture table (fig. 2669), p. 223, $\frac{1}{2}$ pint size, $£ 1$ 10s. ; 1 pint, £1 18s.; 1 quart
£2 $10 \quad 0$
2670. Stills, of stout copper, tinned inside, with tub and pewter worm, complete for use on common fire, 1 gallon size, $£ 1$ 18s. ; 2 gallon ditto . £2 150
2671. Stills, of stout tin, 1 gallon size, $£ 1 ; 2$ gallon ditto . . 180
2672. Stills, portable, of stout copper, tinned inside, best make, galvanized iron tub, pewter worm, strong iron furnace and frame, 2 gallon size, $£ 5 ; 3$ gallon, £5 10s. ; 4 gallon, £6 6s. ; 5 gallon .
£8 00
2673. Retorts, of thin hard German glass (fig. 2674), p. 222, per dozen :

2674. Receivers, plain, tubulated and stoppered, about same capacity and price as retorts.
2675. Retort Stands, small, on iron foot, with 2 rings \quad £ 019 and £0 $\quad 2 \quad 6$
2676. Retort Stands, 13 inches high, with 3 rings . . . $0 \quad 3 \quad 4$
2677. Ditto, ditтo, more massive, 16 inches, 4 s . ; 20 inches, 5 ss ; and 24 inches high, with larger rings
£0 $10 \quad 6$
2678. Gay Lussac IIlder, or vice for fixing retorts, iron or brass (fg. 2679), p. 228, £0 36 to £0 50
2679. Tube Holder to affix to the retort stand, brass . . $0 \quad 2 \quad 6$
2680. Alembics of hard German glass, 2 oz . size, with movable heads $\begin{array}{lll}0 & 2 & 0\end{array}$
2681. " of glass, large size (fg. 2683), p. 225, 5s., 6s. 6d., 7s. 6d., and 0100
2682. Tube Alembics, for fractionizing small quantities of liquids . 0
2683. Adapters, straight or bent glass; width of neck, 1 inch., 8 d. ; 2 inch., 1s.; 3 inch. .
2684. Liebia's Condensers; glass tube in japanned tin, 30 inch., 7s. 6d.; 40 inch. £0 90
2685. Support for the same, with universal joint
$\begin{array}{ll}0 & 6\end{array}$
2686. ", mahogany polished
$010 \quad 0$
2687. Liebig's Condenser, entirely of glass, fitted complete, the condensing tube 36 inch. long
£0 56
2688. Tubes for Liebig's condensers, 1s. 6d., 2s., and .

026

GRADUATED GLASS APPARATUS-ALKALIMETERS.

2692. Bink's Alkalimeter, for Centigrade testing (fg. 2692), p. 225, graduated into 100 divisions, equal to 100 decimillems, 700 or 1000 grains of water, or 50 cubic centimetres, 5 s. ; or upon glass stand (f g $.2692 *$), p. 225 £0 $5 \quad 6$

Fig. 2697.

Fig. 2692.

Fig. 2692*

Fig. 2693.

Fig. 2700.
2693. Gay Lussacs's Alkalimeter, divided as No. 2692 (fig. 2693) $\begin{aligned} & \text {) } \\ & 5\end{aligned}$
2694. Schuster's Alkalimeter, 9d.; Clarke's tube retort and receiver 010
2695. Mohr's Burette, with pinch-cock and caoutchonc tabe (fig. 2697):

In cubic centimetres.				In decems. $=$ yograins.		
10 c.c. in $\frac{1}{10}$.	£0	3	0	50 dec. in $\frac{1}{5}$ ths.		46
25 c.c. in $\frac{1}{5}$	0	3	0	50 dec . in $\frac{1}{10}$ th		50
25 c.c. in $\frac{1}{10}$.	0	4	0	100 dec . in $\frac{1}{1}$ th	0	50
55 c.c. in $\frac{1}{2}$	0	4	9			
60 c.c. in $\frac{1}{10}$.	0	6	0			
100 c.c. in $\frac{1}{1}$	0	6	0			
100 c.c. in $\frac{1}{2}$	0	6	6			
100 c.c. in $\frac{1}{5}$	0	8	0			

This is the most generally useful form.

Fig. 2683.

2696. Mohr's Burette, with glass stop-cock instead of pinch-cock, from 1s. to 1s. 6 d . more.
2697. Wooden Screw Clamps for holding burettes (fig. 2697), blackened wood, 4s.; mahogany
£0 50
2697*. Ebdmann's Float
£0 16

2698. Pipettes, with mark on the neck, 5 c.c., 8 d. ; 10 c.c., 10d.; 25 c.c. \&0 13 2699. Flasks for measuring, with mark on the neck, 250 c.c., 1s. $6 \mathrm{~d} . ; 500$ c.c., 2 s. ; $\frac{1}{2}$ pint, 1s. 6d.; 1 pint, 2s. 3d.; 1 litre
£0 30
2700. Stoppered Test Mixers (fig. 2700), p. 225, 1 litre in 100 divisions $\begin{array}{llll}0 & 9 & 0\end{array}$ 2702. Cylinders, graduated : 1 deci-gallon in 100 divisions, 5 s. ; $\frac{1}{2}$ litre ditto, 5 s.; 1 litre ditto
2703. Glass Measures (fig. 2703), p. 225, conical or cylindrical, accurately graduated :

2704. T Tube for filling Mohr's burette from below by means of a syphon, 9 d.; or with I R tube and extra pinch-cock (fig. 2704)
£0 16
Ludiometers, for the analysis of gases :
2705. Eudiometer, Mitscherlich's, graduated to $\frac{1}{100}$ of a cubic inch. 100
2706. ". Ure's (fig. 2706) $0 \quad 7 \quad 0$
2707. \quad, \quad Volta's (fig. 2707), p. 228, about 50 c.c. to show $\frac{1}{10}$ c.c. $0 \quad 4 \quad 6$
2708. " Bunsen's, 30 inch. long, divided to millimetres (fg. 2708) $010 \quad 0$
2709. " Bunsen's, transfer, 12 inch. long, divided as above $\quad 0 \quad 5 \quad 6$
2710. Bunsen's Syphon Barometer, in millimetres, with stand and plummet 150
2712. Cathetometer, the telescope with micrometer, on stand

3100

BLOW-PIPES AND LAMPS.

2713. BLow-PIPE, plain brass, 6d. ; Black's japanned body
$\begin{array}{llll}£ 0 & 0 & 8\end{array}$
2714. Black's Japanned Ditto, with ivory mouth-piece, 1s. 9d.; ditto, ditto, brass
2715. Cronsted's Blow-pipe, with condensing bulb, 2s.; ditto, with ivory mouthpiece and two jets, 3s.; Wollaston's pocket portable blow-pipe
$\begin{array}{lll}£ 0 & 3 & 6\end{array}$
2716. Pepys's ditto, with ivory mouth-piece and two jets
$0 \quad 30$

Fig. 2735.

Fig. 2730.

Fig. 2724.
2717. Spirit Lamps, with brass wick holders and ground glass caps (fig. 2717), p. 226, 2 oz . size, 1s. 6 d .; 3 and 4 oz., each, 2 s . ; 5 to 7 oz., each £0 26
2718. Argand Lamp, chemical, with supports, cotton and adapter complete $\begin{array}{llll}0 & 7 & 0\end{array}$
2719. " ", larger size, 5s. 6d. ; ditto, with double, concentric wick 014.6
2720. Spirit Lamp, on stand, with concentric wick and double current of air, embracing the improvements of Faraday, Rose, Liebig, etc. . £0 18 0
2722. Gas Lamp or Burner, with 4 inch. brass cylinder and gauze, for burning common gas mixed with air, giving intense heat without smoke, very useful in laboratories, for boiling, distilling, etc.
£0 60
2723. Hofmann's Gas Lamp, with Argand burner, jet for blow-pipe, wire gauze and three-way stop-cock; by turning which it is adapted for a large flame or the blow-pipe
£ $10 \quad 6$
2724. Spirit Lamp or Blow-pipe, self-acting, on the Russian principle, with copper ball (fg . 2724)
£0 $7 \quad 6$
2725. Davt's Safety Lamp, for coal-mines, etc. . . . $0 \quad 8 \quad 0$
2726. Ditto, ditto, with lamp to lock 0100
2727. Davy's Lamp (Dr. Clanny's Improved) with glass cover to show the flame, without disturbing the gauze cover
£2 $0 \quad 0$
2728. Bunsen's Gas Burners, for burning a mixture of gas and air ; single jet, brass tube, 1s. $6 \mathrm{~d} . ;$ ditto, with rose cap, 2 s . ; ditto, larger, 4s. 6d. and £0 60
2729. Water Oten, copper ; outside measure, 9 inch. square $\quad 220$
2730. Hot Air Bath (Taylor's), the body 9 inches diameter and 5 inches high, japanned iron, with movable tray (fig. 2730)
£0 150
2732. Ditto, with copper body, tinned inside 1100
2733. Hot Oil Oven, of stout copper, rivetted, 7 inch. square by 6 inch. high 250
2734. Ditto, ditto, 9 inch. square by 8 inch. high
$212 \quad 6$
2735. Glass Blowers' Bellows, best double action (full size), with table, brass mountings, lamp, improved jet holder, three jets and scissors (fig. 2735) \quad £2 $18 \quad 6$

The above bellows, with screw-joints for exportation, 10 s .6 d . extra.
2736. Glass Blowers' Bellows, circular, in round pedestal, with square table top, lamp, jet, etc., as above, much used in laboratories .
£4 40

Fig. 2707.

Fig. 2779.

Fig. 2802.

Fig. 2679.
2737. Hofman's Combustion Furnace, with 5 rows of burners, £7; ditto, with 3 rows of burners
£5 50
2738. Clay Burners for the above, per doz., 2s. ; fire-clay tiles, per doz. . 020

APPARATUS FOR SOLUTION, EVAPORATION, AND FLLTRATION.

2739. Beaker Glasses (best German), of uniform substance and annealed, sold only in sets :

No.	Contents.	Height.	Diameter.	No.	Contents.	Height.	Diamet
1	$2 \frac{1}{2}$ ozs.	$2 \frac{1}{2}$ inches	$1 \frac{1}{2}$ inches	7	36 ozs.	$6{ }_{4}^{1}$ inches	$3 \frac{1}{2}$ inches
2	4.	3 "	$1 \frac{3}{4}$	8	46		
3	6	$3 \frac{1}{2}$,	2	9	78	$8 \frac{1}{2}$ º,	$4 \frac{1}{2}$
4	9	4	$2 \frac{1}{4}$	10	110	9	5
5	14.	$4 \frac{1}{2}$	$2 \frac{1}{2}$	11	145	$9 \frac{3}{4}$	5
6	21 "	$5 \frac{1}{4}$,	3	12	180	10	$6 \frac{1}{4}$

2740. Nests of the above, No. 1 to 12, 12s.; No. 1 to 8, 5s.; No. 1 to 5, 2s. 6d.; No. 1 to 3
£0 16
2741. Evaporating Capsules, Berlin porcelain, round bottoms; $2 \frac{3}{4}$ inch. diameter, $4 \mathrm{~d} . ; 3 \frac{1}{4}$ inch., $5 \mathrm{~d} . ; 3 \frac{1}{2}$ inch., $7 \mathrm{~d} . ; 3 \frac{3}{4}$ inch., $7 \mathrm{~d} . ; 4$ inch., $10 \mathrm{~d} . ; 4 \frac{1}{2}$ inch., 1 s .; $4 \frac{3}{4}$ inch., 1s. 3 d . ; 6 inch., 1s. 7 d . ; $7 \frac{1}{4}$ inch., 2s. ; $8 \frac{1}{2}$ inch., 2s. $8 \mathrm{~d} . ; 10$ inch., $4 \mathrm{~s} . ; 12$ inch., $6 \mathrm{~s} .6 \mathrm{~d} . ; 14$ inch., $7 \mathrm{~s} .6 \mathrm{~d} . ; 15 \frac{1}{2}$ inch. (holding about 18 pints)
£1 40
2742. Evaporating Capsules, Berlin semi-porcelain, shallow, round bottoms; $3 \frac{1}{2}$ inch. diameter, $5 \mathrm{~d} . ; 4 \frac{1}{4}$ inch., $5 \mathrm{~d} . ; 5 \frac{1}{4}$ inch., $6 \mathrm{~d} . ; 6 \frac{1}{2}$ inch., $8 \mathrm{~d} . ; 8$ inch., $1 \mathrm{~s} . ; 9$ inch., $1 \mathrm{~s} .4 \mathrm{~d} . ; 10 \frac{1}{2}$ inch., $2 \mathrm{~s} . ; 11 \frac{1}{4}$ inch., 2s. $9 \mathrm{~d} . ; 12$ inch., $3 \mathrm{~s} .6 \mathrm{~d} . ; 12 \frac{1}{2}$ inch., $4 \mathrm{~s} .6 \mathrm{~d} . ; 13 \frac{1}{4}$ inch., 5 s . 3 d . ; $14 \frac{1}{4}$ inch., 6 s . ; 16 inch., $7 \mathrm{~s} .6 \mathrm{~d} . ; 18$ inch. £0 126
2743. Evaporating Capsules, of glazed porcelain with handles, without spout, $1 \frac{1}{2}$ ozs. to 18 ozs., each
£0 $0 \quad 6$ to $£ 0 \quad 2 \quad 0$
2744. Capsules, small and extra thin, for weighing the results of analysis $\frac{1}{8}$ to $1 \frac{1}{2}$ ozs., each
£0 $0 \quad 4$ to $£ 0 \quad 1 \quad 0$
2745. Platinum Capsules, for blow-pipe experiments, approximate prices, $\frac{1}{4}$ inch. diameter, 1s. 3d. ; $\frac{3}{8}$ inch., 1s. 9 d . ; $\frac{1}{2}$ inch., 2s. 6d.; $\frac{3}{4}$ inch., 4 s . 1 inch.
£0 40
2746. Flasks, of hard German glass, for resisting varying and extreme temperatures, flat or round bottoms, per dozen:
 $2 \mathrm{~s} .0 \mathrm{~d} .3 \mathrm{~s} .0 \mathrm{~d} . \quad 3 \mathrm{~s} .0 \mathrm{~d} . \quad 3 \mathrm{~s} .6 \mathrm{~d} . \quad 4 \mathrm{~s} .6 \mathrm{~d} . \quad 5 \mathrm{~s} .0 \mathrm{~d} . \quad 6 \mathrm{~s} .0 \mathrm{~d} . \quad 8 \mathrm{~s} .0 \mathrm{~d} . \quad 10 \mathrm{~s} .0 \mathrm{~d}$.
2747. Florence Flasks
£0 $0 \quad 3$
2748. Washing Bottle, with double tubes, by which a continuous stream of water can be directed upon precipitates, etc., pint size
£0 16
2749. Test Tubes, of the best hard German glass:

Diameter.	Length.	Per dozen.	Dia	Length.	Per dozen.
$\frac{1}{4}$ inch	2 to $2 \frac{1}{2}$ inch.	£0 0	$\frac{3}{4}$ inch	6 inch.	£0 112
"	3 inch.	0 0 006	$\frac{3}{4}$ "	7 "	$0 \begin{array}{lll}0 & 1 & 4\end{array}$
	6 "	0 1 10		7 "	$\begin{array}{llll}0 & 1 & 9\end{array}$
$\frac{5}{8}$ "	6	$\begin{array}{llll}0 & 1 & 1\end{array}$	$1 \frac{1}{4}$ ",	8	02

2753. Ditto, dirto, with 8 holes and pegs for drainage, 1s. 2d. ; ditto, with 12 ditto
2754. Test Tube Stand, of polished mahogany, for 24, 5s.; for 36 $\begin{array}{lllll}36 & 6 & 0\end{array}$
2755. Test Glasses, for the lecture table, each, 6d., 9d., 1s., and . $0 \quad 1 \quad 6$
2756. Glass Jars, on foot, for hydrometers, cold solutions, etc. (fg. 2756), p. 231 :

Height.	Diameter.				
8 inch	$1 \frac{1}{2}$ inch.	£0 0	12 inch.	2 inch.	£0 1
9 "	$1{ }^{\frac{3}{4}}$	$\begin{array}{llll}0 & 0 & 9\end{array}$	13		01
10 "	$1{ }^{\frac{3}{4}}$	$0 \quad 010$	14		0

2757. Best Bottles, London flint glass, stoppered, price per dozen, as below; or singly at a slight increase of price:

	Narrow Mouth.	Wide Mouth.		Narrow Mouth.	Wide Mouth.
$\frac{1}{2}$ and 1 ounce	5s. 6d.	5 s . 6d.	8 ounce	£0 130	£0 14
2 "	80	80		0150	0160
3	90	90	1 quart	110	140
	${ }^{9} 6$	100	3 pint	180	1130
6 "	110	120			

2758. Botrless, capped and stoppered, for acids and volatile fluids, 1 and 2 ozs., 1s. 6 d. ; 4 ozs., 2s. ; 8 ozs.
£0 30
2759. Bottles, of gutta-percha, for containing fluoric acid, $1 \mathrm{oz} ., 6 \mathrm{~d} . ; 2$ ozs., 7 d. ; 4 ozs., 9d.; 6 ozs.
£0 14
2760. Pestles and Mortars, of best Berlin porcelain, biscuit or glazed, of 2 inch. (inside) diameter, 9 d .; $3 \frac{1}{2}$ inch., 2 s . ; $4 \frac{1}{2}$ inch., 2 s . 6 d .; 5 inch. £ $^{2} 3$
2761. Pestles and Mortars, best quality, to resist acids:

Diameter:	21/-i	/2-i		3Y/in.	$3^{3 / 2}$-in.	$43 /$-in.	${ }^{61} / 2$-in.
In Wedgewood	0s. 10d.	1s. 0 d .	1s. 0d.	1 s . 2 d .	1s. 4 d .	1s. 10d.	4s. 3d.
In Stout Glass	10	1	20	2	30	3	

2763. Pestles and Mortars, agate, the prices of which are approximate, and vary according to size and soundness of material employed ; $1 \frac{5}{8}$ inch. diameter, 5 s .; $1 \frac{3}{4}$ inch., 5 s. $6 \mathrm{~d} . ; 1 \frac{7}{8}$ inch., 6 s. 6d. ; 2 inch., 7 s. ; $2 \frac{1}{4}$ inch., 8 s. 6 d. ; $2 \frac{1}{2}$ inch. ; 12 s . ; $2 \frac{3}{4}$ inch., 15 s .; 3 inch. 18s.; $3 \frac{1}{2}$ inch., $£ 18 \mathrm{~s}$. ; 4 inch. £2 120
2764. Digesters, best porcelain, with handle and ground lid, 8 ozs., $2 \mathrm{~s} . ; 16$ ozs., 2s. 6d. ; 20 ozs.
£0 30
2765. Funnels, of best form, to prevent injuring or straining the paper :

2766. Funnels, glass, small size, with long necks for filling retorts, etc., 4 d . to $£ 0$ ($\quad 16$
2767. Funnel, separating, with stop-cock, 3 inch., 4s. 6d.; 4 inch., 5 s.; 5 inch., 5 s . 6d.; 6 -inch.
£0 60
2768. Funnel Stands, similar in form to retort stands, with ring; small, for 1 funnel, black wood, 1s.; ditto for two funnels, ditto . . . £0 20 The same in mahogany, 1s. 6d. and 3s.
2769. Larger ditto, for 1 funnel, black wood, 3s. 6d.; ditto, 2 funnels $\begin{array}{llll}\text { £ } & 4 & 6\end{array}$ The same in mahogany, 5s. and 6s.
2770. Filtering Paper, best white, per quire
$\begin{array}{lll}0 & 1 & 6\end{array}$
2771. " " Swedish, "

030
2773. Filters, circular, ready cut, in packets of 100 each, various, per packet, from £0 004 to $0 \quad 2 \quad 6$

MISCELLANEOUS.

2774. Arsenic Tubes, of hard German glass, for the reduction of compounds containing arsenic, Berzelius's, Rose's, Clarke's, or Liebig's pattern, per dozen $\begin{array}{lll}0 & 1 & 0\end{array}$
2775. Water Hammer
£0 30 to $0 \quad 5 \quad 6$
2776. Flint Glass Tubing, soft and easily worked, 18 to 36 inches, or longer, per lb. £0 16
2777. Flint Glass Tubina, best, assorted bore for thermometers, sealed when drawn, 4 s .6 d . per lb. ; enamelled ditto, per lb .
£0 70
2778. German Glass Tubing, without lead, $\frac{1}{4}$ inch and under, 2s. 6d.; $\frac{1}{2}$ to $\frac{1}{4}$ inch., 2s. 3d. ; $\frac{3}{4}$ to $\frac{1}{2}$ inch., per lb. £0 20
2779. Syphon, plain, 6d. to 1s. 6d.; ditto, with improved suction tube (fig. 2779), p. 228 £0 26
2780. Nitrogen Bulb (Horsford's), improved (fig. 2780), p. 225 . 008
2781. Potash Apparatus (Mitscherlich's) (fg. 2782), p. 231 . 0
2782. Potash Apparatus (Liebig's) (fg. 2783), p. 231 . . 0
2783. Cork Borers, of polished brass, set of 6 , 3s. 6d. ; set of 12 . $0 \begin{array}{llll} & 5 & 6\end{array}$
2784. Cuff's Scale of Chemical Equivalents, with slide rule . $\quad 0 \quad 6 \quad 6$
2785. Glaziers' Diamonds, very superior . . £0 156 and 018 6
2786. Diamonds, mounted, for writing on glass . $\quad 0 \begin{array}{llllll}0 & 0 & 0 & 8 & 0\end{array}$
2787. Files for Cutting Glass, 9d.; rasps for corks $\begin{array}{llllllll}0 & 0 & 9 & 0 & 1 & 0\end{array}$
2788. Carbonic Acid Apparatus (Fresenius and Wills), for analysing carbonates of potash, soda, lime, etc. (fg. 2789), p. 231
£0 16
2789. Carbonates (Parnell's) testing apparatus (fig. 2790), p. $231 \quad 0 \quad 1 \quad 3$

Fig. 2789.

Fig. 2783.

Fig. 2782.

Fig. 2790.

Fig. 2756.
2792. Chloride of Calcium Tubes, for drying gases, straight with 1 bulb $£ 0008$ 2793. " " V shape, with 2 bulbs . 010 2794. Test Papers, (litmus, turmeric, starch or lead), in books, per dozen $\begin{array}{llll}0 & 1 & 6\end{array}$ 2795. Crucibles and Covers, best glazed porcelain \quad £0 0004 to 00 2796. Dirto, Hessian triangular, in nests of 3 to 8 , per nest 00 2797. Ditтo, fire clay, best London make, 3 to 9 inch., per dozen $0 \quad 1 \quad 6 \quad$, $0<13 ~ 6$ Covers for above, at the same prices as the crucibles.
2798. Crucibles, black lead, 20 sizes, $2 \frac{1}{2} \mathrm{~d}$. to 21 s . ; covers about two-thirds extra. 2799. Crucible Tongs, black iron, straight or bent, 18 inch., 1s. 9d.; 25 inch.

$$
£ 0 \quad 26
$$

2800. Crucible Tongs, small; iron, 1s. 2d. and 1s. 6d.; brass, 1s. 9d. and
£0 26
2801. Drifing Tube (fig. 2802), p. 228 $0 \quad 1 \quad 0$

Platinum Boilers and other Apparatus. Gold, silver, platinum, palladium, iridium, osmium, rhodium, ruthenium, aluminium, indium, magnesium, etc., etc., pure and chemically pure, in their various varieties.

CHEMICAL CABINETS.

The increasing importance of the study of chemistry, and the alacrity with which it is followed by youth has led to the following simple combinations of apparatus.

Fig. 2803.
Each small cabinet contains every requisite properly labelled, to enable the youthful student to perform with pleasure and ease such experiments as with moderate care are calculated to lead to the higher attainments in the science, whilst the larg er sets include such apparatus and materials as fully meet the wants of the lecturer, farmer, agricultural gentleman, and occasional experimentalist. As an article for exportation it presents the most practical arrangement and compact form in which chemical apparatus has yet been offered.
2803. Youth's Chemical Cabinet (fig. 2803), containing upwards of 60 chemicals, tests, and apparatus, without strong acids or other dangerous articles, No. 1, in fancy paper case, 5 s .6 d. ; No. 2, in cedar case, 7s. 6d.; No. 3, in stout mahogany case, with lock and key
£0 $10 \quad 6$
2804. Student's Chemical Cabinet, No. 1, fitted up with 48 boxes and 12 bottles filled with chemicals, and re-agents, also a large assortment of apparatus of a practically useful size, containing in all upwards of 100 articles, carefully arranged, with labels, in mahogany cabinet, with lock and key (fig. 2804), p. 233
$\begin{array}{lll}£ 1 & 1 & 0\end{array}$
2805. The Following Set of Apparatus, employed and recommended in the Laboratory of the Pharmaceutical Society of Great Britain, is a practically useful collection, particularly suitable for medical and pharmaceutical students :

A set of evaporating basins :-
One $6 \frac{1}{2}$ inch.
One $8 \frac{1}{2}$ inch. One 4 inch.
One 7i $\frac{1}{4}$ inch. Two 3 inch.
One retort stand and 3 rings
Two test glasses
One half-pint flask
One half-quire filter paper
Two porcelain crucibles
One measure glass, 5 ozs .
One pair of 8 -inch. brass crucible tongs
Two glass funnels
One dozen test tubes (German glass)
One Black's blowpipe
Packed in a neat case

One test tube brush
Two soup plates
One flat plate
Two spatula knives
One pair of scissors
One round file
One triangular file
One half-pound glass rod
One half-pound glass tubing
One foot small indiarubber tubing
Three dozen corks of various sizes
Platinum wire and foil
Test papers
A nest of 3 beakers
2806. Student's Cabinet, No. 3, in neat mahogany case, with 70 chemicals and same apparatus as No. 1, with stoppered bottles and turned wood boxes $£ 2 \begin{array}{llll} & 2 & 0\end{array}$

Fig. 2804.
2807. Student's Cabinet, No 4, with upwards of 70 chemicals, etc., in round boxes, with large size bottles, stoppered and plain; comprising requisite articles for manipulating with gases, in handsome case, with lock and key (fig. 2807)
2808. Student's Chemical Cabinet, No. 5, more elaborate and extended than the foregoing, especially arranged for qualitative analysis, including apparatus for testing in the humid way ; also blow-pipe apparatus, fluxes, and tests for ores and minerals, the whole arranged according to the works of Rose, Fresenius, Liebig, Galloway, etc., a great acquisition to naval or military officers, carefully packed for abroad
£8 80

Fig. 2807.
2809. Agricultural Test Chest (No. 1), includes about 100 re-agents and apparatus for qualitative analysis of soils, manures, etc., the tests are pure, in best stoppered bottles, and the solutions are of the proper testing strength, the apparatus of convenient size and superior make, with bottle racks, trays, scales, weights, etc., etc., in strong case, with handles, lock and key .
£3 30
2810. Agricultural Test Chest (No. 2), with larger and more extended apparatus £5 50
2811. Ditto ditto (No. 3)
$8 \quad 8 \quad 0$
Johnson's "Catechism of Agricultural Chemistry" is recommended with the above chests.
2812. Toxicological Test Chests, containing all such re-agents and apparatus as are requisite for the accurate analysis of any substance suspected to contain poison, arranged in strict accordance with the present advanced state of this branch of chemical science, No. 1, £2 2s. ; No. 2, £3 3s.; No. 3
£5 50

BOOKS,

IN WHICH THE USE OF THE APPARATUS IS DESCRIBED.
Exercises in Practical Chemistry; qualitative analysis, A. G. Vernon Harcourt, F.R.S., and H. G. MAdan, crown 8vo. . . . £0 76

Chemistry for Students, by A. W. Williamson, F.R.S., etc., extra f. cap 8vo. .
£0 $8 \quad 6$
Lessons in Elementary Chemistry, by Henry Roscoe, F.R.S., 18mo, cloth £0 46
Chemistry: General, Medical, and Pharmaceutical. J. Attrield, Ph. D., post 8vo. £0 126
Mandal of Chemistry. G. Fownes, F,R.S., f. cap 8vo. . . 0140
Laboratory Teaching; or, Progressive Exercises in Practical Chemistry, by C. L. Bloxam, crown 8vo.
£0 56
First Step in Chemistry, by R. Galloway, F.C.S. . . $0 \quad 5 \quad 0$
Qualitative Analysis, by R. Galloway, post 8vo. . . $\quad 0 \quad 8 \quad 6$
Practical Chemistry. H. Bowman, f. cap 8vo. $0 \quad 0 \quad 6$
Qualitative Analysis. Fresenius, 8vo. $0 \quad 9 \quad 0$
Qualitative Analysis. Fresenius. By A. Vacher, 8vo. . 0126
Elements of Chemistry, by W. A. Miller, LL.D., F.R.S., 3 vols. I. Physics, 15s.; II. Inorganic Chemistry, fl 1s.; III. Organic Chemistry £1 40
Handbook of Chemical Manipulation, by C. Greville Williams, F.R.S., 8vo. .
£0 150
Ganot's Phisics, translated by Atkinson, 8vo. . . . 0150
Inorganic Chemistry, by W. A. Miller, F.R.S. $0 \quad 3 \quad 6$
Text Book of Practical Chemistry, by W. G. Valentine, F.C.S., with engravings, 8vo. £0 $10 \quad 6$
Theory and Practice of the Metric System of Weights and Measures, by Professor Leone Levi, F.S.A., F.S.S. £0 16

GLOBES AND ORRERIES

Of best make, adapted for any climate, and containing all the latest discoveries.
2813. Globes in mahogany box (fg. 2813), p. 235, $3 \frac{1}{2}$ inch., 3 s. 6 d .; $2 \frac{1}{2}$ inch., ter. only, 2s. 6d.; $1 \frac{3}{4}$ inch., ter. only £0 16
2814. Globes in fancy cardboard boxes (fig. 2814), p. 235, with and without glass tops, $3 \frac{1}{2}$ inch., 3 s . ; $2 \frac{1}{2}$ inch., ter. only, 2 s . ; $1 \frac{3}{4}$ inch., ter. only $£ 010$

Fig. 2819.

Fig. 2824.

Fig. 2820.

Fig. 2813.

Fig. 2814.
2815. Globes on pedestals, mahogany, 12 inch., £1 5s.; 10 inch., £1 1s.; 6 inch., 7 s. 6 d . ; $4 \frac{1}{2}$ inch., 4 s . 6 d . ; $3 \frac{1}{2}$ inch., 3s. 6 d .; 3 inch., 3s. 6 d . ; $2 \frac{1}{2}$ inch., ter. only, 2s. 6d. ; $1 \frac{3}{4}$ inch., ter. only
£0 $1 \quad 6$
2816. Globes on Pedestals, rosewood, 12 inch., £1 11s. 6d.; 10 inch., £1 5s.; 6 inch., 10s. 6d.; $4 \frac{1}{2}$ inch., 6 s. ; $3 \frac{1}{2}$ inch., $4 \mathrm{~s} .6 \mathrm{~d} . ; 3$ inch., 4 s . $6 \mathrm{~d} . ; 2 \frac{1}{2}$ inch., ter. only, 3s. $6 \mathrm{~d} . ; 1 \frac{3}{4}$ inch., ter. only
£0 26
2817. Slate Globes, with parallels of latitude and longitude marked. These globes may be drawn on with an ordinary slate pencil ; on 3-legged black frame, 16 inch., $£ 2$ 10s.; 12 inch., $£ 1$ 10s. ; on pedestal, 12 inch., £1 5s.; 10 inch. £1 10
2818. Globes for suspension to the ceilings of rooms, with rack and pulley, 18 inch., with bronzed iron meridian, £2 7s. 6d. ; 16 inch., ditto, $£ 117 \mathrm{~s} .6 \mathrm{~d} . ; 12$ inch., ditto
$\ldots 110$
These globes can be used at any desired height, and drawn up to the ceiling when no longer required.
2819. Globes in 3-legged black frame (fig. 2819), with bronzed iron meridian, 18 inch., per pair, £7; 16 inch., $£ 5$; 12 inch., $£ 3$; the single terrestial or celestial globe may be had at about half price ; in mahogany frame, 18 inch., per pair, £9 9s. ; 16 inch., $£ 77 \mathrm{~s}$. ; 12 inch.
£4, $10 \quad 0$
2820. Compass Boxes may be had with the above globes, at per globe, 18 inch., 6 s .6 d. ; 16 inch., 5s. 6d. ; 12 inch.
£0 4.6
2822. Globes in relief, with elevations, showing the mountains, twelve inches in diameter, on wooden pedestal, or for suspension, $£ 110 \mathrm{~s}$.; in metal frame, with marble stand
£2 $10 \quad 0$
2823. Globes in mahogany frame, 18 inch., per pair, £9; 16 inch., $£ 7 ; 12$ inch., £4 4s.; 10 inch., £3 3s.; 6 inch., £2 2s. ; in black frame, 18 inch., per pair, $£ 810 \mathrm{~s} . ; 16$ inch., $£ 610 \mathrm{~s} . ; 12$ inch., $£ 318 \mathrm{~s}$. ; 10 inch. . £3 0
The single terres trial or celestial globe may be had atabout half the price of the pair. Compasses in mahogany cases, may be had to fit on the horizon of these globes, see Nos. 457 to 469.
2824. Globes in handsome carved mahogany tripod frame (fig. 2824), 18 inch., per pair, £16 16s. ; 16 inch., $£ 13$; 12 inch.
£ $70 \quad 0$
The single terrestial or celestial globe may be had at about half the price of the pair.
2825. Globes in carved mahogany, pillar and claw frame (fig. 2825), 18 inch., per pair, $£ 1313 \mathrm{~s} . ; 16$ inch., $£ 10$ 10s. ; 12 inch., . . £6 100
The single terres tial or celestial globe may be had at about half the price of the pair.
2826. Armillary Spheres. The armillary sphere is a skeleton of the celestial globe. It contains the earth, fixed on its axis in the centre, the sun and the moon. It serves to explain the phenomena of night and day ; 12 inch., on high mahogany stand, £6 6s.; ditto, on low mahogany frame . . $\begin{aligned} & 55 \\ & 5\end{aligned}$ The globe in the centre representing the earth is $3 \frac{1}{2}$ inches in diameter.
2827. A Model of the Moon, 4 inch. in diameter, on pedestal
2828. Quadrants of Altitude, 18 inch., $6 \mathrm{~s} .6 \mathrm{~d} . ; 16$ inch., $5 \mathrm{~s} . ; 12$ inch., 3s. $6 \mathrm{~d} . ; 10$ inch., 3s.; 6 inch.
£0 20
2829. Quadrants for the cheap school globes, with iron rings, 16 inch., 4s. 6d. ; 12 inch.
£0 26
2830. Leather Cloth Còvers for Globes, high stand, per pair, 18 inch., £1 10s. ; 16 inch. £17s. 6d.; 12 inch., 17s. 6d.; low stand, per pair, 18 inch., £1 1s.; 16 inch., £1 1s.; 12 inch.
£0 15 0.
Brown Holland covers at lower prices than the above.
2832. Orrery, complete, $17 \frac{1}{2}$ inch. zodiac, showing the planets and their satellites, the diurnal and annual motions of the earth, revolutions of the moon, Mercury, Venus, and all the planets, with rack motion, in case, complete £10 10 0
2833. Planetarium, $17 \frac{1}{2}$ inch., the earth, moon, and two planets only having rack motion
£5 50
2834. Ditto, ditto, as above, the movements being without rack

3136
2835. Orrery, on $13 \frac{1}{2}$ inch. zodiac, showing the earth, sun, the moon with its phases ; Mercury and Venus, a lamp and gilt ball are used to represent the sun (one by night the other by day), it has rack and winch movement, carefully calculated to time; the earth revolving in the proportion of 1160 miles per minute; in case, complete
£4 $10 \quad 0$
2836. The Ordnance Maps of England and Wales, at 2s. 6d. per sheet; half

2837. The Ordnance Maps of London, per sheet
$\begin{array}{lll}0 & 1 & 0\end{array}$
All other maps and charts published by the Ordnance and Admiralty departments supplied to order.

Fig. 2592.

Fig. 2889.

DRAWING MATERIALS, PAPERS, AND TRACING CLOTHS,

Of best quality, and at the prices charged by the manufacturers; other kinds or makes are supplied to order on the same terms. The prices are nett, but on large quantities discount is allowed in proportion to the extent of the order.

DRAWING AND CARTRIDGE PAPERS.

2838. Whatman's Best Hand Made Drawing Paper, plain surface or hot pressed*:

2839. Whatman's Machine Made Drawing Paper, Turkey mill, nearly equal in strength and finish to the best hand made papers, the quality and finish, being as suitable in every respect for highly finished drawings:

	Size. 40 by 27 inches		Price, per quire.	
Double elephant			£0 10	0
Imperial	30 , 22	"	06	60
Royal	24 , 19	"	03	36
Medium	22,17	"	02	29
Demy	20 , 15	"	02	2
Foolscap	17 , $13 \frac{1}{2}$	"	01	- 6

The above, of 2 nd quality, about 20 per cent. less.
2840. Best Drawing Cartridge: double elephant, 40 by 27 inch., 12s. 6 d . per quire; imperial, 30 by 22 inch., per quire
£0 76
2842. Ditto, ditto, machine made, 10 sizes, about 30 per cent. less.
2843. Continuous Drawing Cartridge Paper, to any required length without a join, takes ink and colour well, and will be found most useful for cartoons or diagrams for lectures: first quality, 54 inch. wide 1 s . per yard ; second quality, 54 inch. wide, 10d.; 60 inch. wide, 1s.; third quality, 54 inch. wide, $7 \mathrm{~d} . ; 60$ inch. wide
£0 $0 \quad 9$
2844. Mounted Drawing Papers, antiquarian on brown holland, per square foot

2848. The Best Iland Made Drawing Paper (double elephant), mounted on brown holland and on union cloth, of the following widths always in stock : 26 inch. at per yard run, brown holland, 2s. 9d.; union, 2s. 2d. 39 inch., brown holland, 4s. ; union, 3s. 3s. 52 inch., brown holland 5s. 6d.; union $£ 044$

TRACING PAPERS.

2849. No. 1. Transparent Tracing Paper, double crown			Per quire.
		30 by 20	£0
2850	Ditto, double double crown	40 „ 30	06
2852	Best ditto, double crown	30 , 20	$\begin{array}{llll}0 & 4 & 0\end{array}$
2853	Ditto, ditto, double double crown	40 ,, 30	0880
2854	Ditto, ditto, triple double crown	60 , 40	0160
2855	Glazed Tracing Paper	30 , 20	
2856	Ditto, ditto, finest	30 , 20	060

2857. Best Irench Tracing Papers, of the most delicate and transparent texture. These papers are greatly esteemed on the Continent, and have obtained the highest approval of the engineers of this country, by whom they are in constant use : finest thin, about 30 by 40 inch., 7 s . per quire, or $£ 6$ per ream ; thick, about 30 by 40 inch., 10 s . per quire, or per ream
£9 $0 \quad 0$
2858. Continuous Tracing Paper, in rolls of $21 \frac{1}{2}$ yards by 43 inches wide: thin, finest quality, 15 s . per piece; thick ditto, 17 s .; thin, second quality $£ 0100$
2859. Carbonic or Transfer Paper, black 1 side, 4s. 6d.; black both sides 066
2860. Ditтo, pirto, blue, red, or white 1 side, 5 s . 6 d .; black lead, per quire 00486
2861. Oiled Royal, for copying machines, per quire

066
Superfine French vegetable papers in all sizes, parchment, and other tracing paper.
2863. Patent Vellum Tracing Cloth or Linen, the texture of which is remarkably fine and transparent; it is manufactured in pieces of about 24 yards each, and will be found very valuable for tracing, letter-press and copper-plate printing, and as a substitute for paper for all purposes where durability and strength are required:

No.	Width.	Quantity in each piece.	Price.		No.	Width.	Quantity in each piece.	Price	
4	18 inch.	24 yards	£0 15	0	8	38 inch.	24 yards	£1 16	0
5	30	24 "	16	0	10	41	24 "	118	0
6	36 "	24 "	110	0					

The above widths are approximate only. The vellum cloth should be kept in a dry place, and not subjected to pressure.
2864. Black Lead Pencils, of pure Cumberland lead and of finest quality, all lettered as to hardness, etc., per dozen
£ 50
2865. Students' Drawing Peneils, assorted and lettered, much recommended for schools, per dozen £0 30
2866. Black Lead Points, to fit compasses, bows, etc., very best, per dozen $0<1$
2867. Wolff's Creta Levis Pencils, in flat leather cases, assorted tints: case containing 12 tints, 7 ss ; ditto, 18 tints, 10s.; ditto, 24 tints 14s.; ditto, 36 tints
£1 10

Fig. 2876.

Fig. 2883.
2868. Best Steel Peus, carefully selected, in boxes, with all the latest improvements, per gross £0 16 to $£ 050$
2869. Best Steel Pens, for drawing, mapping, and lithographic printing, per gross, 6s., 8s., 10s., and £0 120
Penholders, plain, silver, ebony, etc., etc. Qaills and quill pens in small boxes, or in large quantities for exportation.

ARTISTS' MATERIALS,

Of superior manufacture, for the use of artists, architects, and engineers, including : 2870. Superfine Water Colours, in cakes, per dozen, from $\quad £ 0 \begin{array}{lllllllllll} & 7 & 6 & \text { to } & 10 & 0\end{array}$ 2872. Carmine, French blue, pink madder, malachite green, etc., per cake $\begin{array}{llll}0 & 3 & 0\end{array}$ 2873. Superior Oil Colours in patent collapsible tubes, per doz. £0 6 to $\begin{aligned} & 1 \\ & 4\end{aligned} 0^{\text {- }}$ 2874. Polished Mahogany Sliding Boxes, with cakes of colours or cups of moist colours, brushes, pencils, saucers, and 6 whole colours, $7 \mathrm{~s} . ; 12$ ditto, 12 s. ; 18 ditto, 18s. ; 24 ditto £1 40
2875. Or half colours 6 cakes, etc., as above, $4 \mathrm{~s} .6 \mathrm{~d} . ; 12$ ditto, $7 \mathrm{~s} . ; 18$ ditto, 10 s .6 d. ; 24 ditto
$\mathrm{E}_{\mathrm{O}} 14 \quad 0$
2876. Student's Colour Box, of polished mahogany, with lock and tray, best selected colours, camels' hair brushes, pencil slab, etc. (fig. 2876) £0 160
2877. Ditto, ditto, as above, with 12,18 , and 24 whole colours, set of best camels ${ }^{*}$ hair brushes, slabs, pencil, etc., each, $£ 1, £ 18 \mathrm{~s} .$, and £1 150

2878 . Or with half cakes, $10 \mathrm{~s} .6 \mathrm{~d} ., 15 \mathrm{~s}$., and
100
2879. Engineers' and Architects' Mahogany Colour Boxes, with lock, tray, and slabs, 12 selected colours, sable and camels' hair brushes, etc. £1 10
2880. Superior Boxes, with ink slab, water, glass, Indian ink, indiarubber, chalk stumps, porte crayon, brush rests, brushes, pencils, and slope tiles, 12 cakes, £1 1s. ; 18 cakes

Fig. 2882.
2881. Superior Boxes, with 24 cakes, extra price colours, sable hair brushes, etc., in superior case .
£3 30
*** Very eleg ant boxes of colours, inlaid or brass bound for abroad, fitted with every requisite to order.
2882. Best Japanned Sketching Boxes, with folding pallet, lid, and space for brushes containing 3 to 30 cups or half cups of the improved moist water colours, selected, for figure, landscape and miniature painting, with sable or camels' hair brushes, washing brushes, etc. (fig. 2882) :

2883. Japanned Thumb Hole Boxes (fig. 2883), p. 239, with 20 whole and half cups, the best and most useful selection for figure and landscape (recommended) £1 150
2883*. Japanned Thumb Hole Boxes, all half cups . . $\quad 100$
2884. Superfine Camels' Hair Brushes (gold and silk bound like sables), with best handles, per dozen, 1s. 6d., 2s., 3s., and 4s. ; swans' quills, each, 6d., 9d., 1 s ., and
£0 16
2885. Sky and Washing Brushes, wire bound, with best handles, each, 1s., 1s. 6d., and £0 26
2886. Sup erfine Sable Brushes (silk and gold bound), with best handles, each, 6 d ., $9 \mathrm{~d} ., 1 \mathrm{~s} .$, and $1 \mathrm{~s} .6 \mathrm{~d} . ;$ swan and eagle quills, each, $2 \mathrm{~s} .6 \mathrm{~d} ., 3 \mathrm{~s} ., 4 \mathrm{~s}$., and 050 Every description of brushes for oil and water colour paintings.
2887. Best Block Drawing Books, half-bound, of all sizes with leather backs and

2888. Slabs, Pallets, etc., for artists' use.
2889. Slant Tiles (fig. 2889) p. 236, with 3 deep spaces, 4 by $2 \frac{1}{2}, 6 \mathrm{~d}$.; ditto, 6 deep spaces, $7 \frac{3}{4}$ by $3 \frac{1}{8}, 1 \mathrm{~s}$. 3 d .; ditto, 12 deep spaces, $7 \frac{5}{8}$ by 6 , with centre well

2892. Cabinet Nest of six Saucers (fig. 2892), p. 236, fitting over each other to keep the colours moist and clean when not in use: small size, 1s. 3d.; middle size, 1s. 6d.; large size, per set
£0 20
2893. Or, in round leather case, each, 2 s .9 d ., 3s, and
036
2894. Circular Tile Cup or Basin, for sponge . . . 030
2895. Colour Saucers, per dozen, from
£0 110 to $0<1 \quad 6$

VULCANIZED INDIARUBBER TUBING, ETC.

2896. Best Elastic Tubing, of pure indiarubber, the most flexible that is made.

Internal diameter. $\quad 1 / 8-\mathrm{in} .3 / 4-\mathrm{in} .3 / 8-\mathrm{in} . \quad 1 / 2-\mathrm{in} . \quad 5 / 8-\mathrm{in} . \quad 3 / 4-\mathrm{in} . \quad \mathrm{I}-\mathrm{in} . \quad 1 / 4-\mathrm{in}$. Price, per foot . $3 \frac{1}{2} \mathrm{~d} . ~ 4 \frac{1}{2} \mathrm{~d}$. $5 \frac{1}{2} \mathrm{~d}$. $7 \frac{1}{2} \mathrm{~d} .11 \mathrm{~d} .1 \mathrm{~s} .1 \mathrm{~d} .1 \mathrm{~s} .7 \mathrm{~d} .2 \mathrm{~s} .3 \mathrm{~d}$.
2897. Drab Tubing, firmer and less elastic than the above, about 10 per cent. less in price. Either kinds of the above, with spiral wire, up to 1 -inch. diameter, about the same price as without.
2898. Glazed Gas Tubing, for portable gas lamps, surgical purposes, etc.:

External diameter. $\quad 1 / 4-\mathrm{in} . \quad 3 / 8-\mathrm{in} . \quad 1 / 2-\mathrm{in} . \quad 5 / 8-\mathrm{in} \quad 3 / 4-\mathrm{in} . \quad 3 / 8-\mathrm{in} . \quad 1$-in.
Price per ft. $\quad 4 \frac{1}{2} \mathrm{~d} . \quad 4 \frac{1}{2} \mathrm{~d}$. $\quad 6 \frac{1}{2} \mathrm{~d} . \quad 9 \mathrm{~d} . \quad 1 \mathrm{~s} . \quad 1 \mathrm{~s} .4 \mathrm{~d} . \quad 1 \mathrm{~s} .7 \mathrm{~d}$.
2899. Washers, best quality, for glass gauges, steam boilers, etc., flat form, 8s.; round ditto, 10 s. per lb.
2900. Vulcanized Indiarubber, in sheets, 2 s . to 6 s .6 d . per lb. according to thiclzness and quality.
2902. Washers, Buffers, Bearing and Check Springs, Valves, etc., in any size or quantity, on the best terms.
Indiarubber Cushions, Pillows, and Swimming Belts, circular and square.

2905. Swimming Belts, of best make
$\begin{array}{lllll}0 & 7 & 6\end{array}$ „ $010 \quad 6$

ADDENDA.

2905*. Disinfecting Thermometer, self-registering, for showing the exact heat or registering part temperature in any part of disinfecting apparatus, 15 s .6 d.
2906. Dynes' IIygrometer, with which the exact dew-point is more readily and distinctly shown than by any other means. The fluid employed is iced water, by which the dew is made to deposit on a flat surface of black glass, thus combining the neat delicacy of Daniell's or Regnault's, giving at once a perfectly plain indication, without the difficulty of obtaining highly rectified spirit

Hydrostatic Weighing Machines, for any weight from 1 ton up to 100 tons, or for showing the force exerted in ploughing, etc. The action of these machines is to weigh goods by suspension as in the ordinary circular balance, so that the mere act of lifting them by crane for shipment, etc., shows the weight at the same time. Attached at the end of the chain or pulley with which the objects as hogsheads, cannon, timber, plate armour for ships, etc., are slung or lifted, their value can hardly be over-estimated.

Sizes, Prices, and Weights of the Machines.
2908. Three ton machine, of about 50lbs. weight . . . £14 100

The system admits of no limit in power, and machines may be made to order up to any capacity. Those of $10,20,30,40$, and 50 cwt . capacity, same price as three ton machines.
2915. Map Metre (Improved), with scale divided to 176 , each division being equal to 5 yards, to correspond with the Ordnance Survey of 6 inches to the mile £0 14.6
2916. Sounding and Dredging Apparatus, as used by the Admiralty for measuring: great depths in the sea, or bringing specimens from the bottom. Price according to size and depth for which it is required $£ 220$ to $£ 1010 \quad 0$
2917. Telescopes for tourists, in aluminium, very light, viz., about one-third the weight of the usual kinds, with caps and straps, as figs. 1354,1374 , and 1375 , 4 draw with $1 \frac{1}{8}$-inch. object glass, $£ 4,4 \begin{array}{llllll} & 4 & 0 & 4 \text { draw with } 1 \frac{7}{1.0} \text {-in. object glass } £ 6 & 6 & 0\end{array}$
" " $1 \frac{4}{10}$-inch. ", " $5150 \mid \quad, \quad$, 2 -inch. ", " 7160 2918. Telescopes, marine, in aluminium, of light weight, as above:

I N D E X

TO

L. CASELLA'S CATALOGUE.

THE REFERENCES BEING TO THE CONSECUTIVE NUMBERS PLACED
AGAINST EACH ARTICLE.

A

Abel's (Professor) Fusees, 2148.
Acetometer, 2528.
Achromatic Condensers for Microscopes, 1198 to 1202.
Achromatic Eye-pieces for Telescopes, 1414 Object Glasses for Microscopes, 1168 to 1197.
Acidometer, 2512.
Acid Tap, 2296.
Actinometer, Sir J. Herschel's, 34.
Adapters, Chemical, 2685.
\#sthesiometer, 834.
wthrioscope, 36.
Agricultural Barometer, 157.
Test Chests, 2809 to 2811.
Air Meters, 75 and 76 .
„, Pumps, Double Barrel, 2190 to 2195.
" " for Microscopes, 1306 \& 2173.
" " Single Barrel, 2174.
" „ Sloping , 2176.
" 218 " Tate's Double Action, 2177 to 2188.

Air Pumps, Tate's, Barometer for, 2189. " 18 " separate appliances for, 2181 to 2185.
Air Pumps, Treble Barrel, 2196 and 2197. Albumenized Papers, 1780 to 1784.
Alcoholmeter, Field's Patent, 2510.
Gay Lussac's, Richters', and Tralle's, 2554.
Alcoholic or Wine Tests, 2513 and 2518.
Alembics, 2682 to 2684.
Alkalimeter, Bink's, 2692.
, Gay Lussac's, 2693.
„ Schuster's, 2694.
Alpine Aneroid Barometer, 118.
" Hygrometer, 57 and 229.
, Sympiesometer, 123.
". Thermometers, 223, 225 to 227.
Altazimuth, Pocket, 521.
Altitude and Azimuth Instruments, 396. Aluminium Telescopes, 2917 and 2918.
Amalgam, 1998.

Amplitude Compass, Ship's, 890 .
Anemometers, 74 to 83.
80 to " 83.
Anemoscope, 84.
Analytical Weights, 2608.
Aneroid Barometers, 97 to 122 and 148.
" ${ }^{\prime}$ Self-registering, 17.
Angles or Set Squares, 669 to 675.
Annular Micrometer, 1415.
Anorthoscope, 1563.
Apothecaries' Weights, 2604 to 2606.
Apparatus and Mounting Materials for Mieroscopes, 1303 to 1330.
Apparatus, Arsenic, 2668.
" Babinet's, 49.
" Bunsen's for preparing gas,
2666.

Apparatus, Capillary Attraction, 2283.
, Carbonic Acid, 2789.
„ Cooper's Tube, 2368.
" Dissolving View, 1812 to 1814.
" Diving, 2287.
" Electro-gilding or Plating, 2104 to 2106.
Electrotyping, 2098 to 2103.
Flint and Steel, 2244.
for Compound Microscopes, 1246 to 1302.
, Decomposing Water, 2115 and 2116.
, Demonstrating the Parallelogram of Forces, 2400.
," Detection of Arsenic, 2667.
", Explaining Mechanical Powers, 2376 to 2377. Exploding Gunpowder, 2147.
" Oersted's Experiments, 2162 to 2164.
" the Electrolysis of Water, 2663 and 2664.
Guinea and Feather, 2232.
Hydraulic Testing, 2270.

Apparatus, Hydrostatic Equilibrium, 2263 and 2264.
„ Illuminating for Telescopes, 1408.

Leslie's forfreezing Water,2252 Magnetic, 2025.
Mann's Improved, for testing the heating power of fuel, 2372.

Oxycalcium Light, 1822 to 1829.

Parnell's Carbonates Testing, 2790.

Polarizing, 1157 and 1292.
Potash, Liebig's, 2783.
" Mitscherlich's, 2782.
Sets of Chemical, 2803 to 2812. ", , Electrical, 1938 to 1940.
", "Photographic, 1584 to 1588.
,, Pneumatic, 2199 and 2200.
Solar Intensity, 33.
Sounding and Dredging, 2916. Steam, Marcet's, 2432.

Woollaston's, 2466.
Sturgeon's, 2005.
Thermo-Electric Rotation, 2160
Seebeck's, 2159.
to illustrate Barlow's Magnetic Compensator, 2026.
to illustrate the centre of gravity, 2395 and 2399.
to illustrate the flow of water, 2274.
to illustrate the laws of spouting fluids, 2275.
Aquarium Hydrometer, 2550 .
Archimede's Screw, 2273.
Architect's Curves, 624.
Argand Lamps (Chemical), 2718 and 2719.
" " Solarized, 1834 and 1835.
Argentometers, 1763 and 2552.
Armillary Spheres, 2826.
Arms, Brass for Ship's Compasses, 914.
Arrows for Land Chains, 525 and 526.
Arsenic Apparatus, 2668.
Tubes, 2774.
Artificial Fountain, 2233.
Horizons, 876 to 879 .
Assay Balances, 2617 to 2619.
Astronomical Eye-pieces for Telescopes, 1409 to 1413.
Telescopes, 1385 to 1398.
"
" 1388.

Atmidometer, Dr. Babington's, 60.
Attwood's Fall Machine, 2402.
Auriscope, Brunton's, 2570.
Automatic Photostat, 1948 and 1949.

Azimuth and Altitude Instruments, 396.
" Compasses, Ship's, 919 and 923.
" Pocket Compass, Kater's, 450.
Babinet's Apparatus, 49.
Bacchus' Experiment, 2236.
Bachoffner's Galvanometer, 2168.
Backgrounds for Photography, 1744.
Backs, Single or Double, 1679.
Bailey's Double Slide Rule, 583.
Balances, Assay, 2617 to 2619.
" Bullion, 2620.
" Chemical, 2600 to 2603, 2607 to 2616.

Hydrostatic, 2286.
Balloons, 2010 and 2012.
Barktrometer, 2529.
Bar Magnets, 2029, 2030 and 2058. Magazine of, 2032.
Barograph, 20.
" King's, 19.
Barometer, Agricultural or Cottage, 157 and 188.
Aneroid, 97 to 122 and 148.
", " Self-registering, 17.
", Boylean Mariotti, or Patent

- Mercurial Pocket Standard, 88.

Circular or Dial, 159 to 173.
", Fisherman's or Storm, 145.
", Gun, 14.
", Long Range (Descartes'), 158.
," Marine, 136 to 140.
", " with Sympiesometer, 143.

Mercurial Self-registering, 18.
" Miners', 146 and 147.
„ Mountain, Gay Lussac's, 16.
" Plantation, 149, 189 and 190.
" Portable, for Tate's Air Pump, 2189.
" Portable or Pediment, 150 to 157.

Standard, 1 to 15.
", " Marine, 13.
" \quad Mountain, 15.
", ", Student's, 9 .
Baths, Ebonite, for Photography, 1732.
" Glass, " " 1678 and 1726.

Hot Air, Taylor's, 2730 and 2732.
" Porcelain, 1746.
Battens for Ship's Dranghtsmen, 634.
Battery of Straight Bar Magnets, 2032.
Batteries, Bottle, 2082.
" Bunsen's Carbon, 2083 to 2085.
" Cast Iron, Dr. Callan'š, 2089 to 2093.

Batteries, Davy's Sulphate of Mercury, 2097.
" Electrical, of Leyden Jars, 1945 to 1947*.

9
Galvanic, Daniell's, 2065 to 2067.

Galvanic, Groves', 2072 to 2080. " Smee's, 2068 to 2070.
و
و Manganese, 2095.
Maynooth, Dr. Callan's, 2094.
Beads for Specific Gravity, 2546.
„ Salt Water, 2549.
" Spirit, 2547.
Beaker Glasses, 2739 and 2740.
Beam and Stand, 2245.
„ Compass Heads, 750 to 754.
„ Compasses, Tubular, 755 and 756.
Beaume's Alcoholmeters, 2554.
Hydrometers, 2538 to 2540 and 2554.

Saccharometers, 2542 and 2554.
Bell' Experiment, French, 1985.
B, \quad Pneumatic, 2253.
Bellows, Glass Blower's, 2735 and 2736. Hydrostatic, 2266.
Bells, Gamut of Eight, 1987.
" Hand Fog, 992 and 993.
" Set of Three, 1984.
"Ship's, 994 to 996.
Bennett's Gold Leaf Electrometer, 1953.
Binding Screws, 2114.
Bink's Alkalimeter, 2692.
Binnacle, Boat, 957.
" Mast Head, 958.
", Ship's, 953 to 956 .
" Tops, 951 and 952.
" Yacht, 957*.
Binocular Glasses, Captain's or Pilot's, 1503 and 1504,1518 to 1523 .
"
Glasses, Field, 1486 to 1502, 1505 to 1523.
"
Glasses, Marine, 1496 to 1502, 1518 to 1523.
"
Glasses, Opera, 1457 to 1495, 1509 to 1517.
Bisecting Compass, 764.
Bismuth and Antimony, Compound Bar of, 2155 and 2156.
Black Lead Pencils, 2864 and 2865.
Points, 2866. .
Bläder and Weight, 2239.
" for Gas, 2645 .
" Glasses, 2250.
" Piece for Air Pumps, 2216 and 2217.

Blind Scale Thermometer, 264.
Blow Pipe, 2713.
" "Black's, 2713 and 2714.
" ". Cronsted's, 2715.

Blow Pipe, Pepy's, 2716.
" " Russian, 2724.
Wollaston's, 2715.
Boards, "Drawing, 706 to 709.
Tracing, 710.
Boat Binnacle, 957 .
Boating or Yachting Compasses, 482 to 489, 927 to 932.
Books, Drawing, 2887.
" Meteorological, etc., pages 37, 38.
„ Nautical, page 96.
" on Chemistry, etc., page 234.
Bordering Pens, 780.
Bottle Batteries, 2082.
Bottles, Gutta-percha, 2759.
, Specific Gravity, 2555 and 2556.
„ Stoppered, 2757.
"
" Washing, 2749.
". Woulffs, 2647.
Bottling Apparatus, Soda Water, 2294.
Bow Pens or Pencils, 773.
Bows, Pencil or Ink, 774 and 775.
Steel Spring, 776 and 777.
Box Sextants, 506 to 510.
Boxwood Thermometers, 201 and 202.
Boxes, Draining, 1707 and 1719.
", for Stereoscopic Slides, 1554.
" of Colours, 2873 to 2883*.
" Plate for Photography, 1704 and 1705.

Boylean or Mariotti Barometer, 88.
Bramah'sHydrostatic Presses, 2267 \& 2268.
Brass Chain, 1973.
" Plates for illustrating the attraction of cohesion, 2404.
" " for use in Gauging, 328 and 329.

Break Whistles, 2340 and 2342.
Brewing Thermometers, 259 to 276.
Brunton's Auriscope, 2570.
Brushes for Artists, 2884 to 2886.
Bubbles, Salt Water, 2549. ,, Spirit, 2547.
Bucket and Syphon, 1974.
Bullion Balances, 2620.
Bunsen's Apparatusforpreparing Gas, 2666.
" Carbon Batteries, 2083 to 2085.
" Eudiometers, 2708 and 2709.
" Gas Burners, 2728.
" ", Holders, 2662.
" Lever Pinchcocks, 2654.
", Syphon Barometer, 2710.
Burettes, Mohr's, 2695 and 2696.
Wooden Screw Clamps for, 2697.
Burrell's Reflecting Level, 430.
Cabinet, Urinary, 2566.

Calipers, Bale, 339 and 340.
" Bow, 290.
, Club, 345.
" Hull, 289.
" Plank Rule, 294.
", Proportional, 758.
Camera Lucida, 1567.
" , for Microscopes, 1208 to 1212.

Obscura, 1569.
Photographic, 1648 to 1677.
Portable Field, 1570.
Stands, 1682 to 1699.
Caps, Metal for Compass Needles, 934 to 937.

Capsules, Evaporating, 2742 to 2744.
," Extra Thin, 2745.
". Platinum, 2746.
Captain Field's Parallel Rule, 652.
" , Rolling ", " 653 and 654.
" Toynbee's Parallel Rule, 655.
Captain's and Pilot's Binocular Glasses, 1503, 1504, 1518 to 1523.
Captain's and Pilot's Binocular Glasses, three change, 1518 to 1523 .
Carbon Batteries, Bunsen's, 2083 to 2085
Cups, 2086.
" Plates and Blocks, 2088.
, Points, 2087.
Carbonates Testing Apparatus, Parnell's, 2790.

Carbonic Acid Apparatus, 2789.
Cards for Photographers, 1675.
Carte-de-Visite Mounts, 1725.
Presses, 1785 to 1787.
Case for Standard Barometer, 12.
Case, Leather Sling, for Box Sextant, 512.
, Maroon, for Tubular Compass, 748.
Cases, Leather, for Cameras, 1654 and 1659.
Sling, for Lenses, 1660.
Cast Iron" Batteries, Dr. Callan's, 2089 to 2093.

Cathetometer, 6 and 2712.
Cattle Gauge, 334.
Plague Thermometer, 134*.
Cavallo's Pith Ball Electrometer, 1950.
Centrifugal Pump, 2278.
Centrolinead, 790.
Chain Scales, 549, 550, 555 to 557.
Chains, Land, 522 to 524.
Charts, page 95.
Clinical, 133 and 134.
Chemical Apparatus, Sets of, 2803 to 2812. , Balances, 2600 to 2603, and 2607 to 2616.
Cabinets, 2803 to 2812.
Chemicals, Photographic, 1779.
Chemical Thermometers, 232 to 246.
Chloride of Calcium Tubes, 2792 and 2793.

Chronograph, 126.
Chronometers, Ship's, 950.
Circles, Reflecting and Repeating, 395.
Circular Deck Lights, 961.
, Glass Plate Electrical Machines, Harris's, 1929 and 1930.
" Glass Plate Electrical Machines, Woodward's, 1927 and 1928.
Glass Plates for Electrical Machines, 1936.
or Dial Barometers, 159 to 173.
", Side Lights, 962.
Circumferenters, 397 to 404*.
Clamps for Air Pumps, 2220.
", Wooden Screw, for holding Burettes, 2697.
Claude Lorraine Mirrors, 1572. Tints, 1573.
Clinical Chärts, Dr. Aitken's, 133.
, Thermometers, 127 to 132.
Clinometer Levels, 427 and 428.
Clinometers, 495 to 505.
Cloth or Linen Provers, 1105.
Coddington Lenses, 1103 and 2568.
Coil, Induction, for Blasting, 2145.
" " Rhumkorff"s, 2136, 2139 to 2142.
„ Machine, Self-acting, 2132.
, Medical, 2134.
," Galvanic, 2133.
", Primary, 2135.
Collodion Bottles, 1753 to 1755. Filters, 1765.
Coloüring Pen, 780.
Colours, Boxes of, 2874 to 2883*. Oil, 2873.
" Saucers for, 2892 to 2895
" Water, 2870 and 2872.
Combustion Furnace, Hofmann's, 2737.
Cométarium, 2405 .
Commutators, 2137.
Compass Cards, mounted Talc, 938.
Compasses, Bisecting, 764.
" Boat, 482 to 489, 927 to 932.
" Dipping Needle, 477.
", Drawing, Plain, 745.
", Equestrian or Gregory's, 476 and 476*.
„ for the Blind, 479.
", Geological, 495 to 497.
„ Heads, Beam, 750 to 754.
" Kater's Azimuth Pocket, 450.
, Miner's, 452 to 456 *.
" Moonlight, 474 and 475.
" Napier, 767 and 768.
" Pillar, 765 and 766.
". Pocket, Magnetic, 457 to 486.
", Prismatic, 445, 446 and 449.

Compasses, Proportional, 759 to 763.
", Ship's Amplitude, 890 Dipping Needle, 907 to 913.
" " Hanging or Tell Tale, 887 to 889.
Knight's Azimuth, 919.
Liquid, 924 to 926.
Plain Azimuth, 923.
Prismatic Azimuth, Admiralty Pattern, 918.
Prismatic Azimuth, Sir Snow Harris's, 915.
Steering, 880 to 886.
", " for Tron Ships, 916 and 917.
" " Storm, 892 to 896.
" " Transparent, 897 to 906 and 916.
Singer's Patent Night, 486 to 488.
Triangular, 749.
", Trinket, 490.
", Tubular, 746 and 747 " ", Beam, 755 and 756.
Compressors for Microscopes, 1224 to 1229.
Computing Horn Paper, 566.
Scales, 563 and 564.
Concentric Stage for Microscope, 1297.
Condensed Air Fountain, 2259.
Condenser or Fire Syringe, 2257.
" Kingsley's for Microscopes, 1268.
" Reade's Hemispherical, 1270.
Condensers, Achromatic, 1198 to 1202, 1263 to 1265.

Liebeg's, 2686 and 2689.
"
$"$ " Supports for, 2687 and 2688.
Tubes for, 2690.
" Stage, 1206 and 1206*. Stand, 1203 to 1205.
Conducting Copper Wire, 2149.
Cones, Dissected, 2426 to 2428.
Connectors, Brass, for Air Pumps, 2212 to 2215 and 2218.
Conversation Tubes, 2585.
Cooper's Tube, 2369.
", ", Apparatus, 2368.
Copper Bottle, Beam and Stand, 2246.
" Measures, 346 to 3 ว̄7.
, Plate, 2110.
" Sulphate of, 2112.
" Wire, 2110.
Cork Borers, 2784.
Corndrometers, 2508 and 2509.
Cottage Barometer, 157 and 188.
Coulomb's Torsion Electrometer, 1963.
Counters for Steam Engines, 2327 to 2332.
Cream Test, 184 and 2527.

Cronsted's Blow-Pipe, 2715.
Cross, Surveyor's, 431 to 433.
Crucial Sun-Dials, 846 and 847.
Crucibles and Covers, 2795 to 2798.
Tongs, 2799 and 2800.
Crum's Tube, 2649.
Crystals, Models of, 2410 to 2414.
Cuff's Scale of Chemical Equivalents, 2785.
Cumming's Gold Leaf Electrometer, 2166.
Current Meters, 518, 519 and 1009.
Curves, Architect's, 624.
". Radii or Railway, 625 to 629.
Cushions, Air-Tight, 2904.
Cuthbertson's Discharging Electrometer, 1962.

Cylinder, Brass, 1942.
„. Electrical Machines, 1910 to 1913
", Glass, 1941.
", Solid, 1943.
Cylinders, Graduated, 2702.
D
Dairy Thermometer, 182.
Damp Detectors, 492 to 494.
Daniell's Galvanic Batteries, 2065 to 2067
, Hygrometer, 58.
" Pyrometer, 256.
Davy's Safety Lamps, 2725 to 2727.
, Sulphate of Mercury Battery, 2097.
Day or Night Telescopes, 1348 to 1350.
Deck Lights, Circular, 961.
, Prism, 959 to 960.
", Telescopes, 1352.
Deep Sea Thermometers, Six's, 48.
" " " \quad Hydraulic Test,

Deflagrating Jars, 2632 to 2635.
Dental Mirror, 1576.
Descartes' Long Range Barometer, 158.
Developing Measures, 1757 and 1758.
Stands, 1773.
Dew Point Hygrometer, 59 and 2906.
Diagonal Eye-pieces for Telescopes, 1405. Mirror, 1574.
Dial or Circular Barometers, 159 to 173.
Dials, Headley's, 404 and 404*.
", Sun, 836 to 856.
Diamond Cameo Holders for Cameras, 1673.
Diamond Jar, 1972.
Diamonds for Cutting, 1318 and 2786.
" "Writing, 1317 and 2787.
" Models of, 2420.
Dies and Presses for Photography, 1674.
Digesters, 2764.
Dippers, Malt, 335.
Dipping Needle Compass, Pocket, 477.
" " Compasses, Ships, 907 to 913.
, Rods, 319 to 322.

Discharger, Jointed, 1996.
" Small, 1997.
" Universal, 2138.
" " Henley's, 1992.
Disinfecting Thermometer, 2905*.
Dissecting Instruments for Microscopes, 1236 to 1244.
Microscopes, 1303 and 1304.
Dissolving View Apparatus, 1812 to 1816.
Dividers, Pocket, 769.
Sector Joint, 770 and 772.
Diving Apparatus, 2287.
, Bell, Model of, 2237.
Dotting or Wheel Pen, 784.
Drainage Levelling Staffs, 443 and 444.
, Levels, 416, 417 and 429.
Drainers, Folding Plate, 1774.
Draining Boxes, 1707 and 1719.
Drawing Boards, 706 to 709.
for Camera Lucida, 1568.
" Books, 2887.
", Compasses, 74 , to 769.
" Instruments, Half Sets of, 739 to 744.

Instruments, Sets of, 713 to 738.
Paper, 2838 to 2848.
Pencils, 2864 to 2867.
Pens, 778 to 789.
Room Thermometers, 192 to 200.
T Squares, 656 to 668.
Dropping Bottles, 1762.
Drying Tube, 2802.
Dumpy or Gravatt's Levels, 409 to 412.
Dynameters, 1420 and 1422.
Dynes' Hygrometer, 2906.

E

Ear Cornets, 2584.
Illuminator, Jordan's, 2569.
Specula, Toynbee's Set of, 20571.
Syringes, 2572 to 2575.
Earth Thermometer, 45.
Ebonite Baths, 1732.
Bottles, 1735.
", Developing Cups, 1736 and 1737.
", Funnels, 1734.
", Pincers, 1738.
", Plate Electrical Machines, 1925 and 1926.
Trays, 1733.
Edward's Photographic Tents, 1708 tol716. Covers for, 1717. Fittings for, 1718 to 1722.
Eidograph, Professor Wallace's, 602.
Electrical Apparatus, Sets of, 1938 to 1940.

Electrical Batteries of Leyden Jars, 1945. to 1947**
Figures, 1982.
Flask, 1969.
Glass Jars, 2007.
Machines,Cylinder, 1910 to 1913.
", Machines, Ebonite Plate, 1925 and 1926.
Harris's Plate, 1929 and 1930. Holtz's, 1935.
Plate-glass, 1914 to 1934.

Winter's Plate, 1934.
Woodward's " 1927 and 1928.
Orrery, 1986.
Pistol, 1979.
See-Saw, 1980.
Spider, 1977.
Sportsman, 1970.
Swan, 1976.
Swing, 1975.
Tubes, 1937.
Whirl, or Fly Wheel, 1978.
Electro-Galvanic Machines, 2122 to 2125.
,, Gilding or Plating Apparatus, 2104 to 2106.
, Magnet on Stand, 2063.
Electrometer, Bennett's Gold Leaf, 1953.
" Cavallo's Pith Ball, 1950.
„ Coulomb's Torsion, 1963.
", Cuthbertson's Discharging, 1962.

Harris's Balance Beam, 1965.
", He", Unit Jar, 1964.
", Henley's Quadrant, 1952.
" Lane's Discharging, 1960.
Electrophorus, 1967.
Electroscope, Hare's Single Leaf, 1956.
$" \quad$ Haüy's Needle, 1955.
$" \quad$ Singer's, 1954.
", Tate's, 1957.

Electrotype Apparatus, 2098 to 2103.
Embossing Self-Recording Anemometers, 80 to 83.
Engine Counters, 2327 to 2332.
Engineer's Rule, 585.
Slide Rules, 579 to 584.
Engine, Ferguson's Compound, 2389.
Engines, Models of Steam, 2433 to 2465.
Equatorial Axis for Telescopes, 1399 and 1400.

Equestrian Compass, or Magnetic Indicator, 478.
Equestrian, or Gregory's Compass, 476 and 476*.
Erdmann's Float, 2697*.
Eudiometer, Bunsen's, 2708 and 2709.

Eudiometer, Mitscherlich's, 2705. " Ure's, 2706.
" Volta's, 2707.
Evaporating Capsules, 2742 to 2744. Gauges, 70 and 71.
Evaporimeter, Self-Recording, 72.
Everest's Theodolites, 382 to 385.
Exhausting and Condensing Syringes, 2203 and 2204.
Expansion and Compression Bottles, 2240. " " " , Valves and Cage for, 2242.
Experimental Meter and Pillar, 2363.
Exploder, Magnetic Electric, 2143, 2144 and 2147.
Eye-Glasses, Gold, double, 1058 to 1063.

" " " Folding Hand, or | Locket, 1064\& 1065. |
| :--- |
| $, \quad, \quad, \quad$ Single, 1070 to 1073. |

$", \quad$ Single, 1070 to 1073.	
$"$	$"$ Ivory or Pearl, Folding Hand,
or Locket, 1068 .	
$" \quad, \quad$Milled Edge, Single, 1080 and 1081.	

Silver Gilt, Folding Hand, or Locket, 1066 and 1067.
Steel, Folding or Double, 1086
, " Single, 1078 and 1079.
", Tortoiseshell, Folding orDouble, 1082 to 1085.
" ", "Folding or Locket, 1069.
", " ," Single, 1074 to 1077.
" ," Watchmaker's, 1106.
E"yelid R̈etractors, 2582.
Eyepieces for Microscopes, 1246 to 1255. ", "Telescopes, 1405, 1409 to 1414.

Eye Protectors, 1033 to 1042.
", Shades, 1040 to 1042.

Falling Star or Aurora Tube, 1990.
Fall Machine, Attwood's, 2402.
Farm Barometer, 189 and 190.
Ferguson's Compound Engine, 2389.
Field Glasses, Binocular, 1486 to 1502, 1505 to 1523.

Files for Cutting Glass, 2788.
Filtering Cup, 2247.
Papers, 2770 and 2772
Filters, 2773.
Collodion, 1765.
Filter Stands, 1776.
Fisherman's Barometer, 145.
Flasks, 2747.

Flasks, Florence, 2748.
, Glass, 2238.
," Measuring, 2699.
Flint and Steel Apparatus, 2244.
Float Gauges, 344.
, Malt, 327.
Fog Bells, 992 and 993.
" Horns, 986 and 987.
" ", Double, 988 and 989.
", Signal, Key's, 990.
Forceps, Stage, 1213 to 1217.
Forms for Registering Ozonometer Indications, 94.
", ", Meteorological Observations, 95.
Fossils, Collections of, 2482 and 2483.
Fountain, Artificial, 2233.
, Condensed Air, 2259.
", Plates, 2234 and 2235.
Frames, Inner, for Photographers, 1680.
,, Printing, ,, 1700 to 1703.
Fruit and Taper Stand, 2243.
Funnels, 2765 to 2767.
" Safety, 2648.
Funnel Stands, 2768 and 2769.
Fusee's, Professor Abel's, 2148.

G

Galvanic Apparatus, Educational Set of, 2070.

Batteries, Daniell's, 2065 to 2067.
", " Grove's, 2072 to 2080.
" ", Smee's, 2068 to 2070.
Galvanometer, 2172.

$"$	Bachoffner's, 2168. $"$ Cumming's, Gold Leaf, 2166 $"$ Gourjon's, 2167. ", Melloni's, Magnetic, 2170. Torsion, 2169.

Galvanoscope, 2165.
Garden Miscroscope, 187.
Thermometers, 174 to 180.
Gardener's Barometer, 188. Hygrometer, 185.
" \quad Rain Gauge, 186. Thermometers, 174 to 180.
Gas Burners, Bunsen's, 2728.
, Experimental Meter and Pillar, 2363.
Holders, 2373 to 2375.
,, Bunsen's, 2662.
" Glass, 2658.
" Pepys's, 265 and 2657.
" Stoneware, 2659 and 2660.
Gas Inspector's Gauges, 2350 to 2353.
,, Jars, 2630 to 2639.
", Lamp, Hofmann's, 2723.
", or Burner, 2722.
Photometers, Lowe's, 2364 and 2365.

Gas Photometers, Wheat'stone's, 2366 and 2367.

Pressure Gauges, 2346 to 2349.
King's Pedestal, 2354.
Specific Gravity Apparatus, 2362.
Thermometers, 2355 to 2359.
Sockets and Plugs for, 2357 and 2360.
Gassiott's Vacuum Tubes, 2119.
Gay Lussac's Alkalimeter, 2693.
" " Holder or Vice for Retorts, 2679.

Mountain Barometer, 16.
G̈auge G̈lasses, 2345.
" Taps, Gun Metal, Homersham's, 2344.

The Gardener's Rain, 186
Gauges, Bourdon's Pressure and Vacuum, 2309 to 2314.
Cattle, 334.
Direct Acting Pressure, 2300 to 2303.

Evaporating, 70 and 71.
Float, 344.
" Gas, 2346 to 2354.
" Horse, 333.
" Hydraulic Pressure, 2315 to 2317.
" Inspector's Pressure, 2307*, 2350 to 2353.
Iron for Soap Works, etc., 2304.
Mercurial Pressure, 2318 and 2325 " Vacuum, 2319, 2320 and 2323.
Rain, 62 to $69,72,73$ and 230. , Self-registering, 72 and 73. Rope, 342 and 343.
Small Model Pocket Pressure, 2307
Soda Water, 2297.
Syphon, 2321 and 2322.
Thermometric Pressure, 2324.
Tide, 72.
Water, 2335 and 2336.
Gauging Instruments, Sets of, 287 and 288.
Gauntlett's Pyrometer, 257.
Geological Compasses, 495 to 497.
Geometrical Solids, 2406.
Glass Baths for Photographers,1678\&1726
Glass Blower's Bellows, 2735 and 2736.
Dippers, 1727.
Dishes, 1728.
Egg-shaped, 1968.
Flask, with cap and stop-cock, 2238. Funnels, 1759.
Globe for Voltaic Light, 2118.
Jar and Figure, 2277.
Jars for Hydrometers, 2756.
Measures, Graduated, 2703.
Pestle and Mortar, 1764.
Plates, 1729.

Glass Plates, Circular, 1936.
" " Cutting and Shaping, 1749.
" ", for Covering Air Jars, etc., 2640.

Stirring Rods, 1760.
Tubing, Flint, 2776 and 2777.
, ". German, 2778.
Glasses, Beaker, 2739 and 2740.
, \quad Gauge, 2345.
" Log, 1011 and 1012.
" Test, 2755.
" Time, 1010, 1013 and 1014.
, \quad Vignette, 1730.
Globes, 2813 to 2825.
, Compass Boxes for, 2820.
" Covers for, 2830.
Goggles, 1039.
Gold Leaf Electrometer, Bennett's, 1953.
Galvanometer, Cumming's,2166
" Plate, 2109.
" Solution, 2113.
" Wire, 2109.
Goniometers, 1289, 2429 to 2431.
Gourjon's Improved Galvanometer, 2167.
Graduated Glass Measures, 358 and 1750.
" and Capped Collodion Bottles, 1753.
and Stoppered Bottles, 1752.
Graphoscopes, 1559 to 1562.
Gravatt's Levelling Staff, 439.
or Dumpy Levels, 409 to 412.
Gravimeter, Nicholson's, 2557 and 2558.
Great Eastern, Model of, 2473.
Greenhouse Thermometers, 180.
Gregory's Equestrian Compass, 476 and 476*.
Ground Thermometers, 178 and 179.
Grove's Batteries, 2072 to 2080.
Sets of, 2150 and 2152.
Guinea and' 'Feather Apparatus, 2232.
Gunter's Scales, 575 to 578.
Gyle Tun Thermometers, 252, 253, 266, to 275.
Gyroscopes, 2408 and 2409.

H

Half Sextants, Ebony, 867 and 868. Metal, 869.
Hand and'Bladder Glasses, 2250.
" Reading Glasses, German silver frames, 1095 and 1096.
, Reading Glasses, polished hardwood frames, 1097.
Hanging or Tell-Tale Compasses, 887 to 889.

Hare's Single Leaf Electroscope, 1956.
Harris's Balance Beam Electrometer, 1965.
" Circular Glass Plate Electrical Machines, 1929 and 1930.

Harris's Unit Jar Electrometer, 1964.
Haüy's Needle Electroscope, 1955,
Hawthorne's Slide Rule, 580.
Head of Hair, 1993.
Headley's Dials, 404 and 404*.
Head Rests, 1769 to 1772.
Hearing Trumpets, 2583.
Helio-pyrometer, 32.
Hemispheres, Madgeburg, 2229.
Henley's Quadrant Electrometer, 1952.
Universal Discharger, 1992.
Hoare's Double Slide Rule, 582.
Hofmann's Combustion Furnace, 2737. " Gas Lamp, 2723.
Holtz's Electrical Machines, 1935.
Homersham's Gun Metal Gauge Taps, 2344
Horizons, Artificial, 876 to 879.
Horizontal Sun Dials, 848 to 856.
Horse Shoe Magnets, 2033 to 2038.
" "
Compound, 2039 to 2056.

Horsford's Nitrogen Bulb, 2780.
Hot Air Baths, Taylor's, 2730 and 2732.
Hot-bed Thermometer, 179.
Hot-blast

, 283.

Oil Ovens, 2733 and 2734.
", Water Thermometers, 277 and 278.
Household Lifting Pump, Model of, 228.2.
Hydraulic Press, 2269.
Pressure Gauges, 2315 to 2317.
" Ram, Montgolfier's, 2272.
" Testing Apparatus, 2270.
Hydrostatic Balances, 2286.
" Bellows, 2266.
", Equilibrium Apparatus, 2263 and 2264.
Paradox, 2265.
Presses, 2267 and 2268.
" Presses, \quad Bramah's, 2267 \& 2268.
" Weighing Machines, 2908 to 2914.

Hydrometers, Aquarium, 2549 and 2550.
Beaume's, 2538 to 2540 and 2554.
" Cartier's, 2545.
„ for Acids, etc., 2528.
" ", Heavy Fluids, 2538.
" " Light Fluids, 2539.
" "Oils, 2530 and 2532.
" "Soap Leys, etc., 2540.
" ". Spirits, 2493 to 2499 .
" Photographic,2552 and 2553.
" Sets of Three,2543 and 2544.
„ Syke's, 2493 to 2497.
" Twaddle's, 2554.

Hygrometers, Alpine, 57 and 229.
" Daniel's, 58.
" Dew Point, 59 and 2906.
" Dyne's, 2906.
" Garden, 185.
„ Mason's, 50 to 56.
" Regnault's Condensing Dew Point, 59.
Hypsometer, 85.
Pocket, 86.
", Tables for, 87.
I
Illuminating Apparatus for Telescopes, 1408.

Inclined Planes, 2386 and 2387.
India-rubber Tubing, 2896 to 2898.
Vulcanized in Sheets, 2900.
Induction Coils for Blasting, 2145.
" Rhumkorff's, 2136, 2139 to 2142.
Induction Conductor, 1994.
Inhalers, 2597 and 2598.
Chloroform, Snow's, 2598.
Inhaling Tubes, 2599.
Ink or Pencil Bows, 774 and 775.
Instruments, Altitude and Azimuth, 396.
" Dissecting for Microscopes, 1236 to 1244.
" Drawing, Half Sets of, 739 to 744.
Drawing, Sets of, 713 to 738.
", Gauging, Sets of,287 and 288.
Transit, 386 to 394.
Insulated Plates, 2129.
Wire for Connecting, 2146.
Insulating Stools, 1966.
" Supports, 1958 and 1959.
Irregular Board, 2397.
Iron Bar Measure for Gauging, 292 and 293
Iron Gauges for Soap Works, 2304.
" Scribing, 295 and 296.

J

Jars, Gas, 2630 to 2639.
" " Covers for, 2640.
" ", Trays for, 2642.
", Glass, for Hydrometers, 2756.
" Leyden, 1944.
Jordan's Ear Illuminator, 2569.

K

Kaleidoscope, 1818.
Kater's Pocket Azimuth Compass, 450.
Key, or Spanner for Air-Pumps, 2222.
Key's Fog Signals, 990.
King's Barograph, 19.
Knives, Corn, and Files, 2579 and 2580.

Lactometers, 183 and 2 2526.
Lamp Cottons, 1837.
" Gas, 2722.
9
Glasses, 1836.
Microscopic, 1245.
Spirit, on Stand, 2720.
Russian, 2724.
Lamps, Ärgand, Chemical, 2718 to 2719.
„. Davy's Safety, 2725 to 2727.
Lamps, Ship's, 972 to 985.
" Solarized Argand Fountain, 1834 and 1835.
, Spirit, 2717.
Lancets, 2577.
Cases for, 2578.
Land Chains, 522 to 524.
Lane's Discharging Electrometer, 1960.
Lanterns, Dissolving View, 1812 to 1816. Magic, 1796 to 1804.
" $\#$ Slides, 1840 to 1909.
" Phantasmagoria, 1808 to 1810.
Laryngoscope, Dr. Johnson's, 2592. Mackenzie's, 2593.
Leaning Tower or Oblique Cylinder, 2396.
Lenses, Coddington, 1103.
" Magnifying, 1098 to 1102.
" Photographic, 1589 to 1647.
" Stanhope, 1104.
„, Trial, 1093 and 1094.
Leslie's Freezing Apparatus, 2252.
Letheby's Sulphur Test, 2370.
Levelling Staffs, Drainage, 443 and 444.
Gravatt's, 439.
" ". Half-Round, 441 and 442.
" "Metford's, 440.
" " Sopwith's, 436 to 438 and 442.

Levels, Brass Pocket, 420 to 425.
Burrell's Reflecting, 430.
Clinometer, 427 and 428.
Drainage, 416, 417 and 429.
Gravatt's or Dumpy, 409 to 412. Simple, 413.
Spirit, 426.
Troughton's, 414 and 415.
Y, 405 to 408.
Levers, Set of, 2378, 2379 and 2382.
Leyden Jars, 1944.
" " Batteries of, 1945 to 1947*.
Liebig's Condensers, 2686 and 2689.
Lights, Circular Deck, 961.
„ Circular Side, 962 .
" Prism Deck, 959 and 960.
Liquid Compass, 924 to 926.
Lime Cylinders, 1830.
Linen or Cloth Provers, 1105.

Lithographic Crow Quill, 789.
" Pen, 782.
Loadstone, Natural, 2027 and 2028.
Locomotive Engines, Models of, 2433 to 2449.

Log G̋lasses, 1011 and 1012.
Logs, Ship's, 997 to 1005 and 1009.
Long Range Barometer, Descartes', 158.
Lubricators, 2343.
Luminous Names or Words, 2006.

M

Machine, Self-acting Electro-Magnetic Coil, 2132.
Machines, Electrical, 1910 to 1935.
Electro-Galvanic, 2122 to 2125.
" Hydrostatic Weighing, 2908 to 2914.
„ Magneto-Electric 2126 to 2128, and 2131.
Soda Water, 2288 to 2293.
Madgeburg Hemispheres, 2229.
Magic Lanterns, 1796 to 1804.
" " Slides, 1840 to 1909.
Magnetic Apparatus, 2025.
" Indicator, or Equestrian Compass, 478.
Needles, 2014 to 2022.
", Sun-Dials, 836 to 839 .
„ Toys, 2023.
Magneto-Electric Exploders, 2143, 2144 and 2147.
, Machines, 2126 to 2128 and 2131.
Magnets, Bar, 2029, 2030 and 2058.
" ," Magazine of, 2032.
Electro, on Stand, 2063.
Horse Shoe, 2033 to 2038.
" Compound, 2039 to 2056.
„ Mahogany Boxes for, 2059 to 2062.

Magnifying Lenses, 1098 to 1102.
Malt Dippers, 335.
," Float, 327.
" Receivers, 330.
" Rods, Flat, 325 and 326.
" " Lancewood, 324.
". Rules or Veries, 337 and 338.
" Tape, 336.
Manganese Battery, 2095.
Mann's Improved Thompson's Apparatus, 2372.

Manufacturing Thermometers, 232 to 286.
Map Metre, 787 and 2915.

Mapping Pen, 789.
Marcet's Steam Apparatus, 2432.
Marine Barometers, 136 to 140.
" " with Simpiesometer, 143.
„, Glasses, Binocular, 1496 to 1502, 1518 to 1523.

Three-Change,
1518 to 1523.
Standard Barometer, 13.
Station Sympiesometer, 142.
Steam Engines, Models of, 2460 to 2465.

Telescopes, 1357 to 1367 and 2918.
Mariotti Barometer, 88.
" Tube, 2285.
Marquois Scales, 570 to 574.
Marsh's Arsenic Apparatus, 2667.
Mash-Tun Thermometers, 266 to 276.
Mason's Hygrometers, 50 to 56.
Mast-Head Binnacles, 958.
Mathematicál Drawing Instruments, 713 to 800 .
Maximum and Minimum Thermometers, Alpine Pocket, 47, 223, 225 and 226.
Maximum and Minimum Thermometers, Deep Sea, 48.
Maximum and Minimum Thermometers, Dr. Livingstone's Pocket, 46 and 224.
Maximum Thermometers, Standard, 28 to 30 .
Maynooth Battery, Dr. Callan's, 2094,
Measures, Copper, 346 to 357.
, Graduated Glass, 358.
", of Capacity, Metric System, 807 to 816.
of Length, Metric System, 817 to 833 . Set of Standard, 359.
Measuring Rods, Timber, 30 ā and 306. ". Tapes, 527 to 538.
Mechanical Powers, 2376 and 2377.
Medical Galvanic Coils, 2133 and 2134.
Melloni's Magnetic Galvanometer, 2170. " Thermo-Electric Batteries, 2157 and 2158.
Merchant and Nary Signals for Telescopes, 1358.
Mercurial Barometer, Self-registering, 18. , Minimum Thermometer, 38.
", PocketStandard Barometer, 88.
", Pressure Gauges, 2318 to 2325.
", Vacuum " 2260, 2319, 2320 and 2323.
MetalCapsfor Compass Needles, 934 to 937.
Meters, Current, 518 , 519 , and 1009.
Meteorological Register or Note Book, Strachan's, 96.
Metford's Levelling Staff, 440.
„ Scales, Set of, 539.

Metre Scales, 553 and 554.
Metric System, 800 to 835.
Micrometers, 1415 to 1418, and 1423.
" for Microscopes, 1163 to 1167.
Micrometer Telescopes, 1376.
Microscope, Crane Arm, 1133.
" for Magic Lantern, 1832.
" Garden or Seed, 1162.
" Oxy-hydrogen, 1817.
Presentation, 1127.
School or Garden, 187.
Students, 1142.
" Apparatus for, 1144. to 1155.
Complete Monocular, 1156.
Microscopes, Binocular, 1110 to 1142.
" Compound, 1107 to 1162.
" Dissecting, 1303 and 1304.
" Polarizing Apparatus for, 1157.

Microscopic Air Pump, 1306.
" Apparatus, 1246 to 1302.
" Lamp, 1245.
", Mounting Materials and Apparatus, 1303 to 1330.
Objects, 1332 to 1347.
Midshipman's Telescopes, 1353 and 1354.
Military Glasses, Single, three change, 1524 to 1527.
Telescopes, 1374 to 1376.
Milk' Test, 183 and 2526.
Mills, Set of Two, 2230.
Minerals, Collections of, 2474 to 2478 , and 2484 to 2486.
Miner's Barometers, 146 to 148.
" Compasses, 45\% to 456*.
" Dials, 397 to 404*.
Minimum Thermometers, Standard, 39 to 44.
,, "Extra Sensitive, $43 \& 44$.
Mirrors, Claude Lorraine, 1572.
Cylindrical or Distorting, 1566.
", Dental, 1576.
" Mouth, 2594 to 2596.
", Optical Diagonal, 1574.
Mitscherlich's Eudiometer, 2705.
Model of Bramah's Hydrostatic Presses, 2267 and 2268.
Diving Bell, 2237.
" Household Lifting Pump, 2282.
„, Hydrostatic Presses, 2267 and 2268.

Lifting and Forcing Pump, 2280.
", Moon, 2827.
", Obelisk, Mahogany, 2009.
", Telegraph, 2154.
", Water Pump, 2258.

Models in Wire, 2422 to 2424.
,, Wood, 2415 to 2419, and 2425. of Crystals, 2410 to 2414.
,, Diamonds, 2420.
,, Steam Boats, 2467 to 2473.
Engines, 2433 to 2465.
Optical, 1578 and 1579.
Showing Principle of Screw and Nut, 2388.
Moffatt's, Dr., Ozonometer, 90.
Mohr's Burettes, 2695 and 2696.
,, Pinchcocks, 2653.
Montgolfier's Hydraulic Ram, 2272.
Moonlight Compasses, 474 and 475.
Mountain Barometer, Gay Lussac's, 16.
Standard, 15.
Sympiesometer, 123.
Mouth Mirrors, 2594 to 2596.

N

Napier Compasses, 767 and 768.
Natural Loadstone, 2027 and 2028.
" Standard, or Independent Thermometer, 23.
Navy Signals for Telescopes, 1358.
Telescopes, 1353 to 1360.
Needle Director, 2130.
Pricker, 785.
Needles for Ships' Compasses, 933. Magnetic, 2014 to 2022.
Neomonoscopes, 1556 to 1558.
Note Book, or Meteorological Register, Strachan's, 96.
Nicholson's Gravimeter, 2557 and 2558.
Nitrogen Bulb, Horsford's, 2780.

Object Glasses for Microscopes, 1168 to 1197.

Object Glasses for Telescopes, 1424 to 1452.
Objects for Gas Microscope, 1833.
, for Polariscope, 1820.
Occhiombras, 1040.
Oersted's Experinents, Apparatus for, 2162 to 2164.
Offset Scales, 547, 548, 558 to 560.
Oleometer, 2530 and 2532.
Opaque Screen, 1839.
Opera Glasses, Binocular, 1457 to 1495. " Single, 1453 to 1456.
", Three-Change,1509 to 1517
Opiesometer, or Map Metre, 516 and 787.
Opthalmoscope, 1577 and 2586.
Optical Diagonal Mirror, 1574.
" Model, 1579.
", " of Pyramid, 1578.
Optical Squares, 435.
Optometer, 1580.

Ordnance Maps of England and Wales, 2836.

Ordnance Maps of London, 2837.
Orreries, 2832 and 2835.
Oven, Hot Oil, 2733 and 2734.
Thermometers, 254 and 255.
Water, 2729.
Oxy-calcium, Light Apparatus, 1822 to 1829.

Oxy-hydrogen Dissolving ${ }^{\text {EV }}$ View Apparatus, 1816.

Microscope, 1817.
Ozone Cages, 92 and 93.
Ozonometers, 89 to 91.
, Forms for, 94.

P

Pallets, 2890.
Pantometres, 434 and 434*.
Paper, Carbonic or Transfer, 2859 and 2860
Drawing, 2838 to 2848.
" Filtering, Chemical, 2770 and 2772.
" " Photographic, 1723 and 1724. Oiled Royal, 2862. Photographic, 1780 to 1784.
", Tracing, 2849 to 2858.
" Continuous, 2858.
", " French, 2857.
Parabolic Reflector, 1207.
Paraboloid, 1274.
Paradox, Hydrostatic, 2265.
Parallel Rules, 635 to 655.
Parting Glasses or Sinking Phials, 2548.
Pedestal Thermometers, 205 to 208.
Pedestals for Aneroid Barometers, 109.
Pedometers, 124 and 125.
Pencil or Ink Bows 774 and 775.
Pencils, Black-lead, 2864 and 2865.
," Bow, 773.
", Wolff"s Creta Iævis, 2867.
Pens, Bordering or Colouring, 780.
, Bow, 773 .
", Dotting or Wheel, 784.
" Drawing, 778, 779 and 788.
", Lithographic, 782.
, Mapping, 789.
, Railway or Road, 783.
" Steel, 2868 and 2869.
Pentagraphs, 596 to 600.
Pepys's Blow-Pipe, 2716.
" Gas Holders, 2656 and 2657.
Perambulators, 513 to 515.
Pocket, 516.
Pestle and Mortar, Glass, 1764.
Pestles and Mortars, 2760 to 2763.
Phantasmagoria Lanterns, 1808 to 1810.
Phantoscope, 1564.

Philosophical or Water Hammer, 2262.
Photographic Apparatus, Set of, 1584 to 1588.
„, Cameras, 1648 to 1677.
" Chemicals, 1779.
,, Lenses, 1589 to 1647.
", Papers, 1780 to 1784.
", Plate Boxes, 1704 and 1705.
", Presses, 1785 to 1787.
", Printing Frames, 1700 to 1703.

Rolling Machines, 1788 to 1795.

Stills, 1777.
Sundries, 1778.
Tents, 1708 to 1716.
Photometer, Lowe's, 2364 and 2365.
Wheatstone's, 2366 and 2367
Photostats, 1948 and 1949.
Pillar Compasses, 765 and 766.
Pinchcocks, 2653 and 2654.
Pipettes, 2698.
Pith Ball Stand, 2000.
Figures, 1999 and 2024.
Image Plates, 2002.
Plain Compasses, Drawing, 745.
Planes, Inclined, 2386 and 2387.
Planetariums, 2833 and 2834.
Plantation Barometers, 149, 189 and 190.
Plate Boxes, Photographic, 1704 and 1705. ,, Electrical Machines, 1914 to 1934.
", for Proving Porosity of Vegetables, 2248.
, Holders, 1775.
Plates, Glass, 1729.
Platanized Silver, 2108.
Platinum Capsules, 2746.
Pliers for Microscopes, 1218 to 1223.
Plotting Scales, 540 to 546.
Pneumatic Apparatus, Sets of, 2199 and 2200.

Pneumatic Plate Holders, 1722, 1739 to 1743.

Pneumatic Troughs, 2643 to 2646.
Pocket Altazimuth, 521.
, Aneroid Barometers, 110 to 122.
," Compass, Kater's Azimuth, 450.
", Dividers, 769.
,, Hygrometer, 57.
,, Hypsometer, 86.
" Levels, Brass, 420 to 425.
, Measuring Tapes, 538.
„. Mercurial Standard Barometer, 88
," Perambulator, 516.
" Rules, 586 to 588.
,, Sympiesometer, 123.
, Telescopes, 1368 to 1373.
", Thermometers, 214 to 228.
Points, Black Lead, 2866.

Polariscope, 1819.
Objects for, 1820.
Polarizing Apparatus, 1292.
Polemiscope, 1565.
Porcelain Baths, 1746.
,, Dippers, 1747.
,, Funnels, 1748.
", Trays, 1745.
Portable Astronomical Telescopes, 1385 to 1388.

Portable or Pediment Barometers, 150 to 157.

Potash Apparatus, Liebig's, 2783. Mitscherlich's, 2782.
Powder Magazines, 1008.
Presentation Microscope, 1127.
Press, Hydraulic, 2269.
Presses, Photographic, 1785 to 1787.
Pressure Gauge, Bottle Testing, 2308.

$"$	Inspector's, 2307*.
$"$	Small Model Pocket, 2307
$"$	Thermometric, 2324.

Pressure Gauges, Bourdon's Metallic, 2309 to 2314.
Pressure Gauges, Direct Acting, 2300 to 2303.

Pressure Gauges, Hydraulic, 2315 to 2317. " Mercurial, 2318 to 2325. " Indicator for Soda Water, 2295. ", " for Water, 2305 and 2306.

Pricker, Needle, 785.
Printing Frames for Photography, 1700 to 1703.

Prints, Coloured, for Diagonal Mirror, 1575
Prismatic Azimuth Compasses, 915 and 918.

Prismatic Compasses, 445, 446 and 449.
" " Tripod Stands for, 447 and 448.
Prisms for Microscopes, 1275 to 1280 and 1290.
, for Telescopes, 1406 and 1407.
,, Glass, 1582 and 1583.
Proportional Calipers, 758.
, Compasses, 759 to 763.
Protectors, Eye, 1033 to 1042.
Protractors, Circular, Brass and German Silver, 615 to 623.
Protractors, Circular Horn, 608.
, Ivory, 603 to 606.
", Semi-circular, Brass \& German
", Silver, 609 to 614.
Semi-circular, Horn, 607.
Prout's Urinometers, 2560 and 2562.
Provers, Cloth or Linen, 1105.
Pulleys, Set of, 2383 to 2385.
Pumps, Air, 1306, 2173 to 2197.
" Centrifugal, 2278.

Pumps, Models of, 2279 to 2282.
Pyrheliometer, Pouillett's, 35.
Pyrometers, 256 to 258.

Q

Quadrants, Ebony, 873 to 875. " for Globes, 2829.
" Metal, 869 to 872.
" of Altitude, 2828.
" or Half-Sextants, Ebony, 867 and 868.

R

Radii or Railway Curves, 625 to 629.
Rag Stones, Norway, 297.
Railway or Radii Curves, 625 to 629.
Pen, 783.
" Whistles, 2338 and 2339.
Rain Gauges, 62 to 69,73 and 230 .
" " Garden, 186.
" ", Self-Registering, 72 and 73.
Reading Glasses, 1095 to 1097.
Micrometers, 1423.
Receivers, Chemical, 2675.
" for Air Pumps, 2175, 2178, 2223 to 2228.
Malt, 330.
Refleeting and Repeating Circles, 395.
Level, Burrell's, 430.
Registering Meteorological Forms, 95. Ozonometer " 94.
Respiration Glass, 2249.
Retorts, 2674. Stands, 2676 to 2678.
Rhumkorff's Induction Coils, 2136, 2139 to 2142.
Road Pen, 783.
Rocks, Collections of, 2479, 2480, 2483, 2487 and 2488.
Rods, Dipping, 319 to 322.
„ Malt, 324 to 326.
", Screw Spile, 309.
" Steel Oil, 318 .
" Table, 310 and 312.
\#. Timber Measuring, 305 and 306.
Rolling Machines, Photographic, 1788 to 1795.

Rolling Parallel Rules, 642 to 654.
Rope Gauges, 342 and 343.
Rotary Stage, 1235.
Routledge's Slide Rule, 579.
Rules, Beer, 319 to 322.
Engineer's, 585.
Slide, 579 to 584.
9
, Parallel, 635 to 641
" Parall,
, 9

Rules, Parallel, Capt. Toynbee's, 655.
, Pocket, 586 to 588.
, Rolling Parallel, 642 to 654.
Spirit, 307 and 308.
", Tebay's Universal Planning, 569.
,, Timber, 299 to 304.
,, Ullage and Casting, 314 and 315.
,, Valuation and Reducing, 316 and 317.

S

Saccharometers, Beaume's, 2542 and 2554. " Gay Lussac's, Richter's, and Tralle's, 2554. Gilt, 2500 to 2504. Glass, 2505 to 2507.
Safety V̋alve, 2337.
Salinometer Hydrometers, 2520 to 2523.
„ Patent, 2519.
, Thermometer for, 2524.
Salt Water Bubbles or Beads, 2549.
Saucers for Colours, 2892 to 2895.
Scales and Weights, Photographic, 1766 to 1768.
Scales, Arehitect's, or Engineer's, 552.
" Chain, 549, 550, 555 to 557.
" Computing, 563.
„ Gunter's, 575 to 578.
" Marquois, 570 to 574.
„ Metford's, 539 .
" of Chemical Equivalents, 2785.
" Offset, 547, 548,558 to 560 .
" Plotting, 540 to 546.
„, Small Ivory, 562.
" Universal, 564,567 and 568.
Schonbein's, Dr., Ozonometer, 89.
School or Garden Microscope, 187.
Schuster's Alkalimeter, 2694.
Screens, Opaque, for Magic Lanterns, 1839.
" Transparent, " ${ }^{\circ} 1838$.
Ncrew Stick for Malt Gauging, 323.
Scribing Irons, 295 and 296.
Scuttles for Ships, 963 to 970.
Sea Coast or Station Telescopes, 1362, 1366 and 1367.
Sectors, 589.
Sedan's Ozonometer, 91.
Selenite Stages, 1230 to 1233.
Self-Recording Anemometers, 80 to 83, and 75 to 80.
Self-Registering Chemical Thermometers, 246 and 2905*. DeepSea Thermometers, 48. Rain Gauges, 72 and 73. Thermometers, Six's, 203 to 204*.
Tide Gauge, 72.
Semi-circle, Brass, to show centre of Gravity, 2398.

Semi-elliptic Trammels, 792.
Set of Chemical Apparatus, 2803 to 2812.
Electrical Apparatus, 1938 to 1910.
, Two Mills, 2230.
Set Squares or Angles, 669 to 675*.
Sets of Battens for Ships' Draughtsmen, 634.

Sets of Brass Valves, 2390 and 2392.
Drawing Instruments, 713 to 738.
", Grove's Batteries, 2150 and 2152.
,". Hydrometers, 2543 and 2544.
", Levers, 2378,2379 and $2382 .{ }^{\circ}$
", Mechanical Curves, 632 and 633.
" Photographic Apparatus, 1584 to 1588.
, PneumaticApparatus,2199and2200
„ Pulleys, 2383 to 2385.
", Railway Curves, 625 to 629.
", Slopes for Railway Work, 630.
", Three-Toothed Wheels and Pinions, 2380.

Sextants' Box, 506 to 510.
Ebony, 865.
Metal, 860 to 864.
Pillar, 857 to 859.
Shells, Collection of, 2489 and 2490.
Ship's Bells, 992 to 996.
Binnacles, 953 to 956.
Chronometers, 950.
Compasses, 880 to 926.
Fog Horns, 986 and 987.
" ," Double, 988 and 989.
Lamps, 972 to 985.
Logs, 997 to 1005 and 1009.
or Mechanical Curves, 632 and 633.
Scuttles, 963 to 970 .
Sounding Lead, 1006.
" Machines, 999, 1004 and 1007.
Speaking Trumpets, 990 *.
Signal Telescopes, 1356 and 1362.
Signals, Merchant and Navy, 1358.
Silver Solution, 2113.
Simple Level, 413.
Singer's Electroscope, 1954. Patent Compasses, 486 to 489.
Six's's Self-Registering Thermometers, 203 to 204*.
Slide Rules, 579 to 584.
Slides, Magic Lantern, 1840 to 1909. Stereoscopic, 1537 to 1553.
Sliding Rod, 2254.
Slopes for Railway Work, 630.
Smee's Batteries, 2068 to 2070.
Soda Water Bottling Apparatus, 2294.

Soda Water Machines, 2288 to 2293.
" \quad Pressure Indicator, 2295.
Solar Intensity Apparatus, 33.
Sopwith's Levelling Staffs, 436 to 438, and 442.

Sounding Lead, Ship's, 1006.
," Machines,Ship's, 999, 1004, and 1007.
and Dredging Apparatus, 2916.
Speaking Trumpets, Ship's,990*.
Specific Gravity Apparatus, Gas, 2362.
Bottles, 2555 and 2556 .
Spectacle Thiers, 1089 to 1092.
Spectacles, Gold, 1049 to 1057.
" Silver, 1048.
" Steel, 1015 to 1038, 1043 tc 1047.

Spectroscopes, 1298 to 1302.
Spiral Hand, 1989.
One or Luminous Tube 1988.
Spirals, Five, 1995.
Spirit Bubbles or Beads, 2547.
", Lamps, 2717, 2720 and 2724.
" Levels, 426.
", Rules, 307 and 308.
Spirometer, Hutchinson's 2587.
Portable, 2589.
Spring Bows, 776 and 777 .
Squares, Optical, 435.
" Set, or Angles, 669 to 675*.
" Surveying, or Pantometres, 434 and 434*.
T, 656 to 668.
Stage Condensers, 1206 and 1206*.
,"Forceps, 1213 to 1217.
," Rotary, 1235.
". Selenite, 1230 to 1233.
Stand Condensers, 1203 to 1205.
for Thermometer, 30*.
Standard Measures, Set of, 3559.
Stands, Developing, 1773.
, Filter, 1776.
„, for Cameras, 1682 to 1699.
", "Equatorial Axis, 1402 and 1403.
" "Funnels, 2768 to 2769.
" ", Retorts, 2676 to 2678.
" "Telescopes, 1363, 1364, 1382 to 1384 and 1390.
, Test Tubes, 2752 to 2754.
", Tripod, for Prismatic Compass, 447 and 448.
Stanhope Lenses, 1104.
Station Pointers, 590 to 595.
Steam Apparatus, Marcet's, 2432. Woollaston's, 2463.
", Boats, Models of, 2467 to 247%.
", Engine Counters, 2327 to 233".
" Indicators, 2326.

Steam Engines, Models of High Pressure, 2455 and 2459.
Steam Engines,Models of, Horizontal, 2452 to 2454 .
Steam Engines, Locomotive, 2433 to 2449.
," ", Marine, 2460 to 2465.
", ", Oscillating, 2457 and 2458
" \quad Vertical, 2456.
", Pressure and Vacuum Gauges, 2300 to 2325.
Thermometers, 277 to 279.
Steel Oil Rods for Gauging, 318.
Steering Compasses, Ship's, 880 to 886 and 917.

Stereoscopes, 1528 to 1536.
Stereoscopic Slides, 1537 to 1553.
Stethescopes, 2576.
Stethometer, Dr. Quain's, 2550.
Stills, 1777, 2669 to 2673.
Stop-cocks, 2650 and 26552. ", for Air Pumps, 2207 to 2210.
Stoppered Test Mixers, 2700.
Storm Barometer, 145.
Compasses, Ship's, 892 to 896.
Straight Edges, 676 to 705.
Student's Chemical Cabinets, 2803 to 2812. ,, Microscopes, 1142 and 1156.
" Standard Barometer, 9.
Sturgeon's Apparatus, 2005.
Sugar Boiling Thermometers, 285 and 286.

Sulphur Test, Letheby's, 2370.
Sun-Dials, Crucial, 846 and 847.
," Horizontal, 848 to 856.
", Magnetic, 836 to 839.
" Universal, 840 to 844.
" ", Ring, 845.
Superheated Steam Thermometer, 279.
Supports for Liebig's Condensers, 2687 and 2688.
Surveying Compasses, 456 and 456^{*}.
," Squares or Pantometres, 434, and 434*.
Surveyor's Cross, 431 to 433.
Swimming Belts, 2905.*
Sykes' Hydrometers, 2493 to 2497.
Sympiesometer, Alpine or Pocket, 123.

$$
\text { " Improved, } 144 .
$$

", Marine Station, 142.
Syphon Barometer, Bunsen's, 2710.
,, Plain, 2779.
Syringe and Lead Weight, 2256.
Syringes, Exhausting and Condensing, 2203 and 2204.

T

T Squares, 656 to 668.
T Tube for Mohr's Burette, 2704.

Talc Compass Cards, 938.
„, Flies tor Ship's Compasses, 939 to 949.

Tallow Holder for Air Pumps, 2205.
Tantalus Cup, 2276.
Tapes, Dip, 313.
" Malt, 336.
,, Measuring, 527 to 538.
", Timber, 298.
Target Telescopes, 1374, 1375 and 1380.
Tate's Air Pumps, 2177 to 2188.
$"$ Book on Electricity, 2013.
", Electroscopes, 1957.

Tebay's Universal Planning Rule, 569.
Telegraph, Model of, 2154.
Telescopes, Aluminium, 2917 and 2918.
", Astronomical, 1385 to 1398.
" " Portable, 1385

Day or Night, 1348 to 1350.
", Deck, 1352.
", Deer'Stalking, 1377 and 1378.
", Marine, 1357 to 1366 and 2918.

Midshipman's, 1353 and 1354.
", Military or Target, 1374 to 1376 and 1380.
Navy, 1353 to 1360.
", Portable or Tourists, 1368 to 1373 and 2917.
Sea Coast or Station, 1362, 1366 and 1367.
Signal, 1356 and 1362.
," Stands, 1363 and 1364, 1382 to 1384 and 1390.
Tents, Photographic, 1708 to 1716.
" ", Fittings for, 1718 to 1722.
Test Chests, Agricultural, 2809 to 2811. Toxicological, 2812.
", Glasses, 2755.
", Mixers, Stoppered, 2700.
", Papers, 2794.
," Tubes, 2750.
Stands, 2752 to 2754.
Testing "Gas Holders, 2373 to 2375.
Tide Gauge, Self-recording, 72 and 520.
Tile Cup or Basin for Artists, 2894.
Tiles, Slant, for Artists, 2889.
Timber Measuring Rods, 305 and 306. Rules, 299 to 304.
Time Glasses, 1010, 1013 and 1014.
Tin Foil, 2008.
Theodolites, 360 to 385 .
, \quad Everest's, 382 to 385.
", Transit, 370 to 380.
" Traveller's Transit, 370 and 372.

Thermo-Electric Apparatus,Seebeck's, 2159 " " Batteries, Melloni's, 2157 and 2158. Rotation Apparatus, 2160.

Thermograph, 22.
Thermometers, Alpine Maximum and Minimum, 47 and 223 to 226

Boxwood, 201 and 202.
Brewing, 259 to 276.
Cattle Plague, 134*.
Chemical, 232 to 246*.
Clinical, 127 to 132.
Dairy, 182,
Deep Sea Maximum and Minimum, 48.
Disinfecting, 2905*.
Drawing Room, 192 to 200.

Earth, 45.
Garden, 174 to 180.
Gas, 2355 to 2359.
Ground, 178 and 179.
Gyle Tun, 252, 253 and 266 to 275.
Hot Bed, 179.
," Blast, 283.
Independent or Natural Standard, 23.
Livingstone's, Dr., Maximum and Minimum, 46 and 224.
Manufacturing, 232 to 286.

Mash Tun, 276.
Maximum, 28 to 30, and 176.

Solar Radiation, 29 and 228.

Solar Radiation, Insulated, 30
Mercurial Minimum, 38.
Minimum, 38 to 44, and 175.

Oven, 254 and 255.
Pedestal, 205 to 208.
Six's, 48, 203 to 204*.
Standard Comparative, 24 and 25.
Kew Observatory, 26 and 27. Maximum, 28 to 30.
Minimum, 38 to 44.
Steam or Hot Water, 277 to 279.
Sugar Boiling, 285 and 286.

Thermometers, \quad Superheated Steam, 279.
,

Travelling or Pocket,214 to 228.
Varnish Maker's, 282.
Vatting, 249 to 253.
Vinegar Maker's, 284.
Window, 209 to 213.
Thermoscope, Fluctuation, 37.
Thunder House, 2004.
", and Powder House, 2003.
Tongs, Crucible, 2799 and 2800.
Toricellian Experiment, 2255 and 2255*.
Torsion Galvanometer, 2169.
Tourists' Telescopes, 1368 to 1373.
Tourmaline for Microscopes, 1234 and 1296
Toxicological Test Chests, 2812.
Tracer, 786.
Tracing Boards, 710.
" Cloth, Patent Vellum, 2863.
" Paper, 2849 to 2858.
" " Continuous, 2858.
" " French, 2857.
Trammels, Semi-elliptic, 792.
Transfer Jars, 2636 to 2639.
" or Carbonic Faper, 2859 and 2860.

Transit Instruments, 386 to 394.
" Theodolites, 370 to 380.
Transmission Instrument for Engine Counters, 2333.
Transparent Compasses for Ships, 897 to 906 and 916.
Traveller's or Pocket Thermometers, 214 to 228.
, Transit Theodolites, 370 and 372.

Trestles, 712.
Trial Lenses, 1093 and 1094.
Triangular Compasses, 749.
Triers, Spectacle, 1089 to 1092.
Trinket Compasses, 490.
Trinomial Cube Dissected, 2407.
Trocheameter, 517 and 2334.
Troughs, Pneumatic, 2643 to 2646.
Troughton's Levels, 414 and 415.
Tube Alembics, 2684.

Pair of, for collecting, H. and O, 2665.

Set of, for Tension of Vapours, 2284. ,, to Illustrate Capillary Attraction, 2283.
Test, 2750.

Tubing, Flint Glass, 2776 and 2777.
, German Glass, 2778.
" India-rubber, 2896 to 2898.
Tubular Beam Compasses, 755 and 756.
Compasses, 746 and 747.
Turn Tables, Models of, 2450.
Twaddle's Hydrometers, 2535 and 2536.
" " Cases for, 2537.

Ullage and Casting Rules, 314 and 315.
Universal Computing Scale, 564.
, Dischargers, 2138.
" Ring Sun-Dials, 845.
" Scale, Builder's, 567.
", " Engineer'sand Architect's, 568.

Sun-Dials, 840 to 844.
Ure's Eudiometers, 2706.
Urinary Cabinets, 2566.
Urinometers, 2560 to 2567.

V

V Tube, 2117.
Vacuum Gauges, Mercurial, 2260, 2319, 2320 and 2323.
Vacuum Gauges, Syphon, 2321 and 2322. Tubes, Gassiott's, 2119.
Valuation and Reducing Rules, 316 and 317.

Valves, Sets of, 2390 and 2392.
Varnish Makers' Thermometers, 282.
Vatting Thermometers, 249 to 253.
Vice for Fixing Retorts, 2679.
Vignette Glasses, 1730.
Vinegar Makers' Thermometer, 284.
Vivian Clinometer, 504.
Volta-Meters, 2115 and 2116.
Volta's Eudiometers, 2707.

W

Wallace's, Professor, Eidograph, 602.
Watch Maker's Eye-Glasses, 1106.

Water Gauges, 2335 and 2336.
,, Hammer, 2262 and 2775.
", Oven, 2729.
", Pressure Indicators, 2305 and 2306.
," Pump, Model of, 22 อ58.
Washers, India-rubber, 2899.
Weighing and Measuring Machine for Spirometer, 2588.

Machines, Hydrostatic, 2908 to
2914.

Weights, Analytical, 2608. Apothecaries', 2604 to 2606. for Metric System, 801 to 806. Sets of Grain, 2622 and 2623. „ Ounce, 2625.
" Troy, 2624.
Single, 2626 to 2629.
and Scales, 2600 to 2629.
" Photographic, 1766 to 1768.

Wheel Pen, 784.
Whirling Rings, 2394.
, Table, 2393.
Whistles, Break, 2340 and 2342.
," Railway, 2338 and 2339.
Wholes and Halves, or Bisecting Compasses, 764.
Window Thermometers, 209 to 213.
Wine Tests, 2513 and 2518.
, Lamps, etc., for, 2514 to 2517.
," Small, 2518.
Winter's Plate Electrical Machines, 1934.
Wire Models, 2422 to 2424.
Woodward's Double Circular Glass Plate Electrical Machines, 1927 and 1928.

Y
Y Levels, 405 to 408.
Yacht Binnacle, 957*.
Youth's Chemical Cabinets, 2803 to 2812.

Z
Zinc Plates, Amalgamated, 2110.

$\begin{aligned} & \text { RETURN CIR } \\ & \text { TO } \Longrightarrow \quad 20^{\prime} \\ & \hline \end{aligned}$	CIRCULATION DEPARTMENT 202 Main Library		642-3403
LOAN PERIOD 1 HOME USE	2	3	
4	5	6	

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS 1-month loans may be renewed by calling 642-3405 6-month loans may be recharged by bringing books to Circulation Desk Renewals and recharges may be made 4 days prior to due date DUE AS STAMPED BELOW

MAR 71977	4	
Paters SEP 1676		
	\cdots	
	\cdots	\square
		2
		-

UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA 94720
 C061401399

[^0]: " Notwithstanding the great pressure to which these instruments had been subjected, all of them, without exception, recovered their original scale-readings as soon as the pressure was removed."

[^1]: *** Agreeable to the suggestions of Colonel Sykes, F.R.S., and Dr. Miller, F.R.S., L. Casella has adapted to this instrument a black glass bottle, with silver neck and tabe, which may be had instead of the silver bottle, or extra, at an additional charge of 20 s.

[^2]: "For the elevation of great mountain masses and continuously elevated areas I conceive that hypsometrical results are as good as barometrica' ones; forthe general purposes of botanical geography, the boilingpoint thermometer supersedes the barometer in point of practical utility, for under every advantage the transport of a glass tube full of mercury, nearly three feet long, and cased in metal, is a great drawback to the unrestrained motion of the traveller."-Dr. J. D. Hooker's "Himalayan Journals" Vol. II.

[^3]: *** The larger sized aneroids, as $41 / 2$ inch., can have self-registering indices added, by which the highest and lowest point during absence may be registered at, extra
 £1 10
 123. Sympiesometer (Casella's Improved) for measuring mountain heights up to 15 to 21,000 teet, as adopted by some of the leading members of the Alpine Club, in neat mahogany case with straps
 £4 0

[^4]: * "The barometer is equal to one in our possession at ten times the price. The thermometer, self-registering and accurately graduated, has proved upon trial to be equally efficient."-Gardener's Chronicle, Sept. 19th, 1857.
 "These instruments should be in the hands of every farmer." "My next month's observations will be made with them."-Mark Lane Express, Sept. 14th, and Oct. 5th.
 "Would adorn alike the gardener's cottage or the hall of the mansion. We are much obliged to Mr. Casella for thus popularizing these useful instruments. His name is a guarantee for the character of any instrument."-Cottage Gardener, Oct. 27, 1857.
 "Casklla's cottage barometer has lately been brought under our notice, very much to our delight and profit. They have registered with unerring faithfulness the recent changes in the weather."-The Field, Nov. 7, 1857.

[^5]: The thermometers Nos. 233,235 , and 236 , have narrow cylindrical bulbs, to enable them to ke passed through corks for insertion into retorts, etc.

[^6]: *** For mining surveys where closer dividing, as well as angles below the base line, are required, the size of this instrument is increased to 4,5 , or 6 inch. circles, divided to 30 or 20 seconds, with larger telescope and compass in proportion, the handy portable character of the instrument still being preserved; the prices are $£ 19$ 10s., $£ 24$, and $£ 30$.

[^7]: *** These glasses, if with metal sand or fancy hardware frames, would be about double the above prices.
 1011. Log Glasses, 14 or 28 seconds, in oak frames, with best metal sand, per pair £0 2 6
 1012. Log Glasses; in brass frame, hermetically sealed, per pair . 050
 1013. Tea Brofer's Sample Time Glass, in plain wood frame . $0 \quad 1 \quad 6$

[^8]: * No. 1372 is sometimes coverd with black leather, with end caps and straps for suspension, at an additional cost of 10 s .6 d . A pancratic eye-draw is also often applied, by means of which the power may be increased at pleasure to 28 and 32 , which should however only be used in very clear weather ; extra charge, 7 s .6 d .

 1373. Tourists' Telescope, in black morocco, 2 draw, 18 -inch., drawing out to 24 inch., and closing up to 8 inches, $1 \frac{3}{4}$-inch. object glass, with sun-shades, caps and straps .
 £2 $15 \quad 0$
 A variety of other pocket telescopes at lower prices, are kept as well as others, with a greater number of draws and ornamental mountings. All varieties may be had in German silver mounting, at about one-fifth extra charge.
[^9]: *** In order that the whole image may be in focus, the camera should be placed level and midway of the subject, or thereabouts; however, some little latitude may be allowed, and the camera placed somewhat higher, when it will require tilting a little. But if the camera be put at an elevation of about five feet, it must be tilted considerably, and a swing back to the camera will be indispensable to get the picture all in focus.

[^10]: * This lens is suitable for instantaneous stereoscopic marine views.

 LARGER SIZES MADE TO ORDER.

[^11]: * Distance for a cabinet portrait with No. 3 D 18 feet, with No. 4 D 25 feet.

[^12]: *** Sections, models, or working models of ships of any description made to order on scale, from draughts or drawings.

