THE
INDIAN CALENDAR

T HE

INDIAN CALENDAR

WITH TABLES FOR THE CONVERSION OF HINIUU ANI MUHAMMADAN INTO A.D. DATES, ANI) VICE VERSÁ

ROBERT SEWELL Lati of Mor Meyestr's Indian Cï'll Sorvice

AND

SANKARA BÂLKRISHNA DİKSHIT

Training Collige, Poona.

WITH TABLES OF ECLIPSES VISIBLE IN INDIA

BY
Dr. ROBERT SCHRAM
Of IThnna.

LONDON
SWAN SONNENSCHEIN \& Co., LTi.
Paternoster Square
1896

PREFACE

I.

Tins Volume is designed for the use, not only of those engaged in the decypherment of Indian inscriptions and the compilation of Indian history, but also of Judicial Courts and Government Offices in India. Documents bearing dates prior to those given in any existing almanack are often produced before Courts of Justice as evidence of title; and since forgeries, many of them of great antiquity, abound, it is necessary to have at hand means for testing and verifying the authenticity of these exhibits. Within the last ten years much light has been thrown on the subject of the Indian methods of time-reckoning by the publications of Professor Jacobi, Dr. Schram, Professor Kielhorn, Dr. Fleet, Pandit Sankara Bàlhrishṇa Dîkshit, and others; but these, laving appeared only in scientific periodicals, are not readily accessible to officials in India. The Government of Madras, therefore, desiring to have a summary of the subject with Tables for ready reference, requested me to undertake the work. In process of time the scheme was widened, and in its present shape it embraces the whole of British India, recciving in that capacity the recognition of the Secretary of State for India. Besides containing a full explanation of the Indian chronological system, with the necessary tables, the volume is enriched by a set of Tables of Eclipses most kindly sent to me by Dr. Robert Schram of Vienna.

In the earlier stages of my labours I had the advantage of receiving much support and assistance from Dr. J. Burgess (late Director-General of the Archreological Survey of India) to whom I desire to express my sincere thanks. After completing a large part of the calculations necessary for determining the elements of Table I., and drawing up the draft of an introductory treatise, I entered into correspondence with Mr. Sankara Bâlkrishụa Dikshit, with the result that, after a short interval, we agreed to complete the work as joint authors. The introductory treatise is mainly his, but I have added to it several explanatory paragraphs, amongst others those relating to astronomical phenomena.

Tables XIV. and XV. were prepared by Mr. T. Lakshmiah Naidu of Madras.
It is impossible to over-estimate the value of the work done by Dr. Schram, which renders it now for the first time easy for anyone to ascertain the incidence, in time and place, of every solar eclipse occurring in India during the past 1600 years, but while thus briefly noting his services in the cause of science, I cannot neglect this opportunity of expressing to him my gratitude for his kindness to myself.

1 must also tender my warm thanks for much invaluable help to Mr．H．H．Turner，Savilian Professor of Astronomy at Oxford，to Professor Kielhorn，C．I．E．，of Gottingen，and to Professor Jacobi．

The Tables have been tested and re－tested，and we believe that they may be safely relied on for accuracy．No pains have been spared to secure this object．

R．SEWVELL．

H．

It was only in September，1893，that I became acquainted with Mr．R．Sewell，after he had already made much progress in the calculations necessary for the principal articles of Table I．of this work，and had almost finished a large portion of them．

The idea then occurred to me that by inserting the a, b, c figures（cols．23，24，and 25 of Table I．）which Mr．Sewell had already worked out for the initial days of the luni－solar years， but had not proposed to print in full，and by adding some of l＇rofessor Jacobi＇s Tables published in the Indian Antiguary，not only could the exact moment of the beginning and end of all luni－ solar tithis be calculated，but also the beginning and ending moments of the nakshatra，yoga， and karana for any day of any year；and again，that by giving the exact moment of the Mesha sankrânti for each solar year the exact European equivalent for every solar date could also be determined．I therefore proceeded to work out the details for the Mesha saikràntis，and then framed rules and examples for the exact calculation of the required dates，for this purpose extending and modifying Professor Jacobi＇s Tables to suit my methods．Full explanation of the mode of calculation is given in the Text．The general scheme was originally propounded by M．Largeteau，but we have to thank Professor Jacobi for his publications which have formed the foundation on which we have built．

My calculation for the moments of IIesha sankràntis，of mean intercalations of months （Mr．Sewell worked out the true intercalations），and of the samvatsaras of the cycle of Jupiter were carried out by simple muthods of my own．Mr．Sewell had prepared the rough draft of a treatise giving an account of the Jindu and Mulammadan systems of reckoning，and collecting much of the information now embodied in the Text．But I found it necessary to re－write this， and to add a quantity of new matter．

1 am responsible for all information given in thes work which is either new to European scholars，or which differs from that generally received by them．All points regarding which iny difference of opinion seems possible are printed in footnotes，and not in the Text．They are not，of course，fully discussed as this is not a controversial work．
livery precaution has been taken to avoid error，but all corrections of mistakes which may have crept in，as well as all sugrgestions for improvement in the future，will be gladly and thankfully recciverl．

S．BALKRISHNA DIKSHIT．

table of contents.

PART I.

The Hindu Calendar.

l'age
Art. I. Introductory I
Elcments and Dcfinitions.
Art. 4. The pañchànga 2
" 5. The vàra, or week day 2
Days of the week 2
,, 6. Time divisions 2
Subdivisions of the day 2
,, 7. The tithi, amàvàsyà, pùrụimà 3
,. 8. The nakshatra 3
,, 9. The yoga 3
,, io. The karaṇa 3
", II. The paksha. 4
, I2. Lunar months 4
,, I3. Amànta and pùrṇimànta systems 4
,, 14. Luni-solar month names 5
,, 15. The solar year, tropical, sidereal, and anomalistic 5
,, 16. The Kalpa. Mahàyuga. Yuga. Julian Period 6
,, 17. Siddhânta year-measurement 6
," i8. Siddhaintas now used for the same 7
The Siddhaintas and other Astronomical IV'orks.
Art. 19. Sïddhàntas, Liaranas, bîja, Hindu schools of astronomers 7
,, 20. Note on the Siddhantas, and their authors and dates 7
,, 21. Authorities at present accepted by Hindus 9Further details. Contents of the Pañchaniga.
Art. 22. The Indian Zodiac, ràśi, aniśa 9
,, 23. The Sankràntis. Names given to solar months 9
,, 24. Length of months 10
Duration of solar months. Table IO
,, 25. Adhika màsas. Calendar used II
,. 26. True and mean sankràntis. Sodhya IIArt. 28. The beginning of a solar month
lage
Rule I. (a) The midnight Rule (Bengal).,, I. (b) The any-time Rule (Orissa)., 11. (a) The sunset kule (Tamil)., II. (b) The afternoon Rule (Malabar).
,. 29. Panchàngs, tithis 13
, 30. Extract from an actual pañchânga 13
The Ahargana 16
., 3I. Correspondence of tithis and solar days. 16
Performance of religious ceremonies, śrâddhas, vratas 17
., 32. Adhika and kshaya tithis 17
,, 34. Variation on account of longitude 18
., 35. Examples of the same 19
., 36. True and mean time 19
Mean sun, mean moon, true and mean sumrise 19
., 37. Basis of calculation for the Tables 20
Elements of uncertainty 20
,. 38. Nakshatras 21
Yoga-tàràs. Equal and unequal space systems. Garga and liralima Siddharnta systems 21
Table. Longitude of Ending-points of Nakshatras 22
,, 39. Auspicious Yogas 22
,, 40. Karaṇas 23
.. 40a. Eclipses 23
Oppolzer's Canon. Note by l'rofessor Jacobi 23
,. 41 Lunar montlis and their names 2.4
Season-names, star-names 24
,, 42-44. Modern names of, derived from the nakshatras 24
Table shewing this derivation 25
,. 45. Adhika and kshaya màsas. Rules 25
Table: 26
,, 46. Their names. Rules 26
., 47. Their determination according to true and mean systems 27
Change of practice about $\mathrm{A} . \mathrm{D}$. 1100 27
Sripati. Bhiskarichairya 28
.. 48. Rules given in another form 28
,. 49. Difterent results by different .Siddhàntas 29
. 50. Some peculiarities in the occurrence of adhika and kshaya masas 29
., 5 t . Intercalation of months by pirnimanta scheme 30
Viars and (jrics.
., 52. The llindu New Y'ear's Diy in solar and luni-solar reckening 31
When the first month is intercalary 32
1)iffers in different tracts 3:
.. 53. The sixty year cycle of Jupiter 32
Page
Art. 54-55. Kshaya samvatsaras 33
56-57. Variations in expunction of samvatsaras 33 33
Jyotisha-tattioa Rule 33
,, 58 . To find the current samvatsara 34
,, 59. Rules for the same 34
(a) By the Simya Siddhânta 34
(b) By the dirya Siddthanta 34
(c) By the Sirrya Siddhanta with the bija 35
(d) Brihatsamhiti and Jyotishatattva Rules 35
" 60. List of Expunged Samvatsaras by different authorities. Table 36
,, Gi. Earliest use of Jupiter's cycle 36 36
,, 62. The southern (luni-solar) sixty-year cycle 36
,, 63. The twelve-year cycle of Jupiter. 37
Two kinds of Do. 37
, 64. The Graha-paravritti and Onko cycles. 37
PART II.
The Various Eras.
Art. 65. General remarks 39
,, 66. Importation of eras into different tracts 39
,. 67. Examples of Do. 39
68. Eras differently treated by the same author 39
,. 69. Only one safe deduction 40
, 70. Current and expired years. Explanation 40
.. 7I. Description of the several eras 40
The Kali-Yuga. 40
The Saptarshi Kàla Era. 41
The Vikrama Era 41
The Christian Era 42
The Śaka Era 42
The Chedi or Kalachuri Era 42
The Gupta Era 43
The Valabhi Era 43
The Bengali San 43
The Vilâyatî Year 43
The Amli Era of Orissa. 43
The Fasali Year 44
The Luni-solar Fasali Year 44
The Mahratta Sûr San, or Shahûr San 45
The Harsha Kàla 45
The Màgi San 45
The Kollam Era, or Era of Paraśuràma 45
The Nevàr Era 45
The Châlukya Era 46
The Sinina Samvat 4^{6}
l'age
The lakshmana Sena Era 4^{6}
The llihi Era 4^{6}
The Malratta Rija Śaka Era 47
Art. 72. Names of llindi and N. W. Fasali montles 47
PART III.
Description and Explanation of the Tables.
Art. 73-102. Table I. (general) 47
Art. So. "Lunation-parts" or "tithi indices", or " t." explained 49
,. 81. Relation of "tithi-index" and "tithi-part" 50
.. 82 . To convert " t." into solar time 50
., 83-S6. Lunar conditions requisite for the intercalation or suppression of a month 50
.. 87. Keasons for adopting tithi-index notation 51
., 90. Methoot for arriving at correct intercalated and suppressed months 52
,. 9I. Plan of work adopted for Table I. 52
., 96. Moments of Mesha-sankranti differ according to Arya and Sûrya Siddhantas 54
Table shewing difference 55
, 102. a, b, c. (cols. 23, 24, 25) fully explained 56
Table. Increase of a, b, c, in a ycar and in a day 57
,, 103. Table Il., Parts i. and ii. Correspondence of amànta and purpumànta months, and of months in different eras 57
104. Table II., Part iii. Do. of years of different eras 58
Rules for conversion of a year of one era into that of another 58
,, 105. Table III. (Collective duration of months) 59
.. Io6. Tables IV., V. (a, a, b. c for every day in a year, and for hours and minutes) 59
.. 107-IIO. 'Tables V1., VII. (I unar and solar equations of the centre 60
Equation of the centre explained 60
.. ini. Tables Vill., Vilia., Villis. 62
,, 112-117. Tables LX. to XV1. 62
PART IV.
Use of the Tables.
Art. 118. Purposis for which the Tables may be used $6=$
,. 119 . To find the corresponding year and month of other cras 6
,, 120 . To find the samvatsarat 63
,, 121. To find the added or suppressed month 63
., 122 129. To convert a llindu date into a date A.1). and vice versai 63
By methods A, B, or C 63
 6.
Explanation of work for makshatras and yogas 64
134. To convert a solar date into a luni-solar date, and vice versì σ_{5}
Page
Art. 135-136. Details for work by Method A 65
Art. 135. (.) Conversion of a Hindu solar date into a date A.D. 65
(B) Do. of a date A.D. into a Hindu solar date. 66
.. 136. (.1) Do. of a I Iindu luni-solar date into a date M.D. 67
(1) Do. of a date A.D. into a Hindu luni-solar date 68
,, 137-138. Details for work by Method B 69
Art. 137. (A) Conversion of Hindu dates into dates A.D. 69
(a) Luni-solar Dates 70
(b) Solar Dates 73
., 138. (B) Conversion of dates A.D. into Hindu dates 74
(a) Luni-solar Dates. 75
(b) Solar Dates 76
,, 139-160. Details for work by Method C 77
Art. 139. (A) Conversion of Hindu luni-solar dates into dates A.D. 77
,. 142. A clue for finding when a tithi is probably repeated or cxpunged 78
," I44. To find the moment of the ending of a tithi 78
.. \quad 445. Do. of its beginning 78
,, 149. (B) Conversion of Hindu solar dates into dates A.D. 86
,. 150. (C) Conversion into dates A.D. of tithis which arecoupled with solar months 8989
,. 151. (1) Conversion of dates A.D. into Hindu luni-solar dates 90
,, 152. (E) Conversion of dates A.D. into Hindu solar dates 93
., 153. (F) Determination of Karaṇas 96
,, 156. ((i) Do. of Nakshatras 97
,. 159. (11) Do. of Yogas. 97
,, 160. (1) Verification of Indian dates 9^{8}
PARTV.
The Muhammadan Calendar.
Art. 161. Epoch of the Hijra LOI
,, I62. Leap-years IO2
, 163. The months. Table. 102
.. I64. A month begins with the heliacal rising of the moon 102
,, 165. Occurrence of this under certain conditions 103
," 166 . Difference in,-caused by difference in longitude 103
, 167. Days of the Week. Table. 103
,, 168. Compensation for New Style in Europe 103
,, 169. Rules for conversion of a date A.H. into a date A.D. 104
,, I70. Rules for conversion of a date A.D. into a date A.H. 105
Dr. Burgess's Perpetual Muhammadan Calendar (105) 1061

APIENDIX.

Eclipses of the Sun in India by Dr. Robert Schram. Table A
,. 13

109 to 11%
,. B
117 to 12%
128 to 137.
,. C
13 s.
,. I) .
139 to 148.

Additions and Corrections
149 to 16 r .
Index
163 to 169 .

THE INDIAN CALENDAR.

$P A R T I$.

THE HINDU CALENDAR.
i. In articles iff to 134 below are detailed the various uses to which this work may be applied. Briefly speaking our chief objects are three; firstly, to provide simple methods for converting any Indian date-luni-solar or solar-falling between the years A.D. 300 and 1900 into its equivalent date A.D., and zice zersí, and for finding the week-day corresponding to any such date; secondly, to enable a speedy calculation to be made for the determination of the remaining three of the five principal elements of an Indian panchinigg (calendar), viz., the hakshatra, yoga, and karana, at any moment of any given date during the same period, whether that date be given in Indian or European style; and thirdly, to provide an easy process for the verification of Indian dates falling in the period of which we treat.
2. For securing these objects several Tables are given. Table I. is the principal Table, the others are auxiliary. They are described in Part III. below. Three separate methods are given for securing the first of the above objects, and these are detailed in Part IV.

All these three methods are simple and easy, the first two being remarkably so, and it is these which we have designed for the use of courts and offices in India. The first method (A) (Arts. I35, 136) is of the utmost simplicity, consisting solely in the use of an eyc-table in conjunction with Table I., no calculation whatever being required. The second (B) is a method for obtaining approximate results by a very brief calculation (Arts. 137, 13S) by the use of Tables I., III. and IX. The result by both these methods is often correct, and it is always within one or two days of the truth, the latter rarely. Standing by itself, that is, it can always, provided that the era and the original bases of calculation of the given date are known, be depended on as being within two days of the truth, and is often only one day out, while as often it is correct. When the week-day happens to be mentioned in the given date its equivalent, always under the above proviso, can be fixed correctly by either of these methods. ${ }^{1}$ The third method (C)

[^0]is a methor by whech contitely correct results may be obtained by the use of Tables I. to XI. (.Arts. 139 to 160), and theugli a little more complicated is perfectly simple and easy when once studied and undesterod. Firm these results the nakshatra, yoga, and karana can be easily calculated.
3. Calcutation oi a date may be at once begun by using Part IV. below, but the process will be more intelligible to the reader if the nature of the ladian calendar is carefully explained to him beforchand, for this is much more intricate than any other known system in use.

Filements and Definitions.

4. Thi pañhainga. The pañhinga (calendar), lit. that which has five (fancha) limbs (añ σs). concerns chiefly five elements of time-division, viz., the vara, tithi, nakshatra, yoga and karana.
5. The retra or weteday. The natural or solar day is called a stizana dizasa in Hindu Astronomy. The days are named as in Europe after the sun, moon, and five principal plancts, ${ }^{1}$ and are called zaras (week-days), seven of which compose the week, or cycle of varas. A vara begins at sunrise. The week-days, with their serial numbers as used in this work and their various Sanskrit synonyms, are given in the following list. The more common names are given in italics. The list is fairly exhaustive but does not pretend to be absolutely so.

Days of the Week.

1. Sundoy. Addi, ${ }^{2}$ Aditya, Roži, Ahaskara, Arka, Aruma, Bhațàraka, Aharpati, Bhâskara, Bradhna, Bhànu etc.
2. Ilonday. Soma, Abja, Chandramas, Chandra, Indu, Nishpati, Kshapakara, etc.
3. Tucsday. Maügala, Anggàraka, Bhauma, Mahisuta, Rohitànga.
4. Wichuesday'. Budha, Baudha, Rauhineya, Saumya.
5. Thursday'. Guru, Ȧngirasa, Bṛihaspati, Dhishaṇa. Suricharya, Vachaspati, etc.
6. Firiday'. Sutira, Bhàrgava, Bhṛigu, Daityaguru, Kàya, U'anas, Kavi.
7. ${ }^{3}$ Saturday. Sani, Sauri. Manda.

Time-Divisions.

6. The Indian time-diãisions. The subdivisions of a sular day (siàana dizasa) are as follow:

A prativipala (sura) is equal to o.oo6 of a second.
60 prativipalas make 1 vipala (para, kaishtha-kalà) $=0.4$ of a second.
Go vipalas do. 1 pala (vighați, vinaḍi $=24$ seconds.
to palas do. 1 ghațiki (ghaṭi, daụla, nạli, nàlikii) $=2.4$ minutes.
no ghatikàs do. I divasa (dinat, vâra, vàsara) $=1$ solar day.
Again

$$
\begin{array}{cl}
10 \text { vipalas } & \text { do. } 1 \text { prina }=4 \text { scoonds. } \\
6 \text { pranas } & \text { do. } \\
1 \text { pala }=4 \text { seconels. }
\end{array}
$$

[^1]7. The tithe, "mazaisyâ, purmimat. The moment of new moon, or that point of time when the longitudes of the sun and moon are equal, is called ameiziosyit (lit. the "dwelling together" of the sun and moon). A tithi is the time vecupied by the moon in increasing her distance from the sun by 12 degrees; in other words, at the exact point of time when the moon (whose apparent motion is much faster than that of the sun), moving eastwards from the sun after the amàvisyì, leaves the sun behind by 12 degrees, the first tithi, which is called pratipadir or pratifad, ends; and so with the rest, the complete synudic revolution of the moon or one lunation oceupying 30 tithis for the 360 degrees. Since, however, the motions of the sun and moon are always varying in speed ${ }^{1}$ the length of a tithi constantly alters. The variations in the length of a tithi are as follow, according to Hindu ealculations:

	$5 h$.	$p a$.	ripa.	k.	m.	s.
Average or mean length	59	3	40.23	23	37	28.092
Greatest length	65	16	0	26	6	24
Least length	53	56	0	21	34	24

The moment of full moon, or that point of time when the moon is furthest from the sun,astronomically speaking when the difference between the longitudes of the sun and moon amounts to 180 degrees-is called purnimit. The tithi which ends with the moment of amavasyà is itself called "amàvàsyà", and similarly the tithi which ends with the moment of full moon is called "pûrnimà." (For furthor details sei Arts. 29. 31. 32.)
8. The nakshatra. The 27 th part of the eeliptic is called a nokshatra, and therefore each nakshatra occupies $\left(\frac{360^{\circ}}{27}=\right)$ I $3^{\circ} 20^{\prime}$. The time which the moon (whose motion continually varies in speed) or any other heavenly body requires to travel over the 27th part of the eeliptic is also ealled a nakshatra. The length of the moon's nakshatra is:

	sh.	$p a$.	cifa.	h.	m.	s.
Mean	60	42	53.4	24	17	9.36
Greatest	66	21	0	26	32	24
Least	55	56	0	22	22	24

It will be seen from this that the moon travels nearly one nakshatra daily. The daily nakshatra of the moon is given in every panchang (native almanack) and forms one of its five articles. The names of the 27 nakshatras will be found in Table VIIl., column 7. (Sie Arts. 38 . f2.)
9. The yoga. The period of time during which the juint motion in longitude, or the sum of the motions, of the sum and moon is increased by i 3 " 20 ', is called a yoga, lit. "addition". Its length varies thus:

	s / h.	$p a$	$i \neq q$	h.	m.	s.
Mean	56	29	21.75	22	35	44.7
Greatest	61	31	0	24	36	24
1.east	52	12	0	20	52	48

The names of the 27 yogas will be fourd in Table VIll., col. 12. Sic Art. .i9.
1o. The karana. A karana is half a tithi, or the time during which the difference of the longitudes of the sun and moon is increased by 6 degrees. The names of the karanas are given in Table VIII., cols. 4 and 5. (Sa Art. fu)

[^2]11. The paksha. The next natural division of time greater than a solar day is the paksha (lit. a wing ${ }^{1}$) or moon's fortnight. The fortnight during which the moon is waxing has several names, the commonest of which are sutila or suddlua (lit. "bright '", that during which the period of the night following sunset is illuminated in conscquence of the moon being above the horizon). The fortnight during which the moon is waning is called most commonly krishna or hahula or iadya (lit. "black", "dark ", or the fortnight during which the portion of the night following sunset is dark in consequence of the moon being below the horizon). The first fortnight begins with the end of amâvasyà and lasts up to the end of pùrnimà; the second lasts from the end of purnimà to the end of amâvàsyà. The words "puirva" (former or first) and "apara" (latter or sccond) are sometimes used for sukla and krishṇa respectively. "Sudi" (or "sudi") is sometimes used for sukla, and "vadi" or "badi" for krishṇa. They are popular corruptions of the words "śuddha" and "vadya" respectively.
12. Lunar montlls. The next natural division of time is the lunation, or lunar month of two lunar fortnights, viz., the period of time between two successive new or full moons. It is called a chindra masa, or lunar month, and is the time of the moon's synodic revolution. ${ }^{2}$

The names of the lunar months will be found in Table II., Parts i. and ii., and Table IIl., col. 2, and a complete discussion on the luni-solar month system of the Hindus in Arts. f^{1} to 51. (For the solar months sec Arts. 22 to 2f.
13. Amânta and furmimânta systims. Since either the amàvàsyà or pûrṇimà, the new moon or the full moon, may be taken as the natural end of a lunar month, there are in use in India two schemes of such beginning and ending. By one, called the amanta system, a month ends with the moment of amâvàsyà or new moon; by the other it ends with the pûrṇimà or full moon, and this latter is called a purnimânta month. The pûrụimata scheme is now in use in Northern India, and the amânta scheme in Southern India. There is epigraphical evidence to show that the purnimanta scheme was also in use in at least some parts of Southern India

1 An apt title. The full moon stands as it were with the wasiug half on oue side and the waning half on the other. The week is all arbitrary division.

2 The "synode revalution" of the menu is the perind during which the moon completes one series of her successise phases, mughly $291 / 2$ days The period of her exact orbital revolution is called her "sidural revolution". The term "synodic" was giveu breanse of the sun and moon being then tugether in the heavens ($f f$. "synod"). The sidereal revolution of the monn is less hy about two days than her syoulue revolntion in consegnene of the forward movement of the earth on the ecliptix. This with be best seen by the accompanying figure, where SI' is a fixed tir, S the sun, E the earth, C the weliptic, M M the mon. (A) the position at one new moon, (B) the position at the next new mom. The circle M M M1 representing the sidereal revolutiou, its synodic revolution is M to Ml^{1} plus Ml^{1} to N . [R. S.]

	d.	h.	m.	8.
Mean symulic month (new monn to new moon)	29	12	41	2684
Sideral month	27	7	43	11.545
'Tropical month (equinos to equanos)	27	7	43	4.65
Anomahstie month (prikere to prigee)	27	13	18	37.41
	27	5	:	33.41

up to about the beginning of the $y^{\text {th }}$ century A.I. ${ }^{1}$ The Narvidis of Northern India Whe, originally from Minwar, have come to or have settled in Southern India still use their purnimanta arrangement of months and fortnights; and on the other hand the Dakhanis in Northern ludia use the scheme of amanta fortnights and month common in their own country.
I.t. Lnni-solar month namis. The general rule of naming the lunar months so as to correspond with the solar year is that the amanta month in which the Misha sañiranti or entrance of the sun into the sign of the zodiac Mesha, or Aries, occurs in each year, is to be called Chaitra, and so on in succession. Forthe list and succession see the Tables. (See Arts. f1-4.)
15. The solar yar-tropical, siderat. and anomalistic. Next we come to the solar year, or period of the earth's orbital revolution, i.c., the time during which the annual seasons complete their course. In Indian astronomy this is generally calledat'arsha, lit. "shower of rain", or "measured by a rainy season ".

The period during which the earth makes one revolution round the sun with reference to the fixed stars. " is called a sidereal year.

The period during which the earth in its revolution round the sun passes from one equinox or tropic to the same again is called a tropical year. It marks the return of the same season to any given part of the carth's surface. It is shorter than a sidereal year because the equinoxes have a retrograde motion among the stars, which motion is called the precession of the equinoxes. Its present annual rate is about $50^{\prime \prime} .264 .^{3}$

Again, the line of apsides has an eastward motion of about $11^{\prime \prime} .5$ in a year; and the period during which the earth in its revolution round the sun comes from one end of the apsides to the same again, i. c., from aphelion to aphelion, or from perihelion to perihelion, is called an anomalistic year. *

The length of the year varics owing to various causes, one of which is the obliquity of the ecliptic, ${ }^{5}$ or the slightly varying relative position of the planes of the ecliptic and the equator. Leverrier gives the obliquity in A.D. 1700 as $23^{\circ} 28^{\prime} 43^{\prime \prime} .22$, in A.D. 1800 as $23^{\circ} 27^{\prime} 55^{\prime \prime} .63$, and

1 See Fleet's Corpus Inscrip. Indic, vol III., Introduction, p. 39 note; Ind Ant., XVII, p. 141 f .
z Conpare the note on p .4 on the moon's motion. R S ?
3 This rate of annual precession is that 6sed by modera European Astronomy, but since the efact orconrenee of the equinuses can never hecome a matter for observation, we have, io dealing with Hindu Astronomy. to be fuided by Hindu calculations alone. It must therefore be borne in mind that almust all practical Hindu norks (Karanas) fix the annual precession at one miuute, or $\frac{1}{\text { ma }}$ thif a

+ The anomaly of a planet is its augular ditance from its perihelion, or an aogle contained between a line drawn frotn the sun to the planet, called the radius rector, and a line dramn from the sun to the perithelion point of its orlit. In the case in print, the earth, after completing its sidereal revolutinn, has not arrived quite at its perbelion lecause the apsidal poiut has shifted sightly eastwards. Hence the year occupied in travelioy from the uld peribelion to the new perihelion i , alled the auomalistir year. A planet's true anomaly is the actual ande as abore whatrver may be the varations in the planet's velocity at different periods of its orbit. Its mean anomaly is the angle which would be whtained were its motimn hetween perihclimu and aphrion uniforn un time. and subject to no variatiou of velveity-in other words the angle drseribed hy a uniformby resolving ralius veetor. The ang! hetween the true and meau anomales is called the equation of the centre. True anom. $=$ mran unam. +equation of the centre.

The equation of the centre is zero at perihelion and aphelion, and a maximum tuidway leetween them. In the caae of the sun its greatest value is nearly 1°. σ^{\prime} for the present, the sun getting alteroately that anmut alcal of, and behind, the proition it would orcopy if its motion were unifirm. (f. A Ymug, tieneral Astronomy, Fetht of 1499, p. 125.)
 of the noit of $360^{\circ} ; b$. the muon's mean anomaly: c. the sun's mean anmaly; the two late expressed in floothe of the unt of 360°. The respective equatime of the centre are given in Tables 11 and VII. [$\mathrm{R} \quad \mathrm{s}$.]

5 "The eeliptic slightly and very s whly shifts its position anong the stars, thus altering the latitudes of the stars and the angle hetween the erliptir and equator, i.e., the chliquity of the ecliptic This oblipuity is at presert abont $2+$ thes than it was 2000 years ato. and it is still decreasing abous half a second a year it is computed that this diminution will continur for ahome 15,000 years, reducing
 each side of the mean" (C. A. Young. General Astronomy, p. 123.)
in A.1). 1900 as $23^{\prime \prime} 17^{\prime} 08^{\prime \prime} .03$. The various year-lengths for N.D. 1900, as calculated by present standard authorities. are as follow

		d.	h.	m.	s.
Mean Sidereal solar year	365	6	9	9.29	
Io. Tropical do.	365	5	4.	45.37	
Do. Anomalistic do.	365	6	13	48.61	

16. Kalpa. Mahajusa. V'uga. Fulian Period. A kalpa is the greatest Indian division of time. It consists of 1000 mahâyugas. A mahajuga is composed of four yugas of different lengths. mamed Lerita, Friti, Dicipara, and Kali. The Kali-yuga consists of 432,000 solar years. The Dvapara yugra is clomble the length of the Kali. The Treta-yuga is triple, and the Krita-yuga quadruple of the Kahi. A mahnyuga therefore contains ten times the years of a Kali-yuga, viz, 4, 3こ0,000. According to Indian tradition a kalpa is one day of Brahman, the god of creation. The Kaliyugit is current at present; and from the beginning of the present kalpa up to the beginning of the present Kali-yuga 4567 times the years of a Kali-yuga have passed. The present Kaliyuga commenced, according to the Siurga Siddhinta, an authoritative Sanskrit work on Ilindu astronomy, at midnight on a Thursday corresponding to 17 th- 18 th February, 3102 B . C., old style; by others it is calculated to have commenced on the following sunrise. viz.. Friday, 18 th February: According to the Suryg and some other Siddhintas both the sun and moon were, with reference to their mean longitude, preciscly on the beginning point of the zodiacal sign Aries, the Hindu sign Mesha, when the Kali-yuga began.

European chronologists often use for purposes of comparison the 'Julian Period' of 7980 years, beginning Tuesday ist January, $4713 \mathrm{~B} . \mathrm{C}$. The 18 th February, $3102 \mathrm{~B} . \mathrm{C}$., coincided with the 588,4 fi6th day of the Julian Period.
17. Siddhinta viar-miasurement. The length of the year according to different Ilindu authorities is as follows:

> Sudahâmar.

```
Thu Prulanga J!otinha
The l'aitamaha Siddhàntal
T'me Romaki ."
The Paulica: ..
The orgemal Sima Sodhanta
The Promen mirya, binintha, cikalya-1
    Brahma Rumahat,s soma sidthuntos(
T'be firul irga sidhhatata (1. 1. &99
The Brahmu Sudlhamta lọ Brahtua-gupta (A, I, 62%)
Ther uromd Arya Sudduint:z
Thw R'avimara Sudhuinta I
Kayamrutunhat: .. (\begin{array}{ll}{1}&{1}\end{array})10&2
```

lliudu rackubing					European reckoniom.			
ders	$\mathrm{Eb}^{\text {b }}$	pa	rip	yra v	dave.	${ }^{1}$		${ }^{\text {tic }}$
366	0	0	0	0	$36 t i$	0	0	0
365	21	2.5	11	11	365	8	34	11
365	14	48	${ }^{1}$	${ }^{1}$	36.5	5	5.	$1:$
365	15	30	1	0	313	f	1:	0
36.5	15	31	30	${ }^{1}$	365	ti	1:	36
365	15	31	31	24	315	6	1:2	36.56
365	15	31	1.	0	36.5	6	1:	$31)$
365	15	30	$\because 2$	30	365	t	12:	$!$
365	15	31	17	i	36.)	6	12	30.8 .4
36.5	15	31	15	30	36.5	fi		31.4
36\%	1.	31	17	17.8	36.3	ti	12	30.915

[^3]It will be seen that the duration of the year in all the above works except the first three approximates closely to the anomalistic year; and is a little sreater than that of the sidereal year. In some of these works theoretically the year is sidereal; in the case of some of the others it camot be said definitely what year is meant; while in none is it to be found how the calculations were made. It may, however, be stated roughly that the Lindu year is sidereal for the last 2000 years.
18. The year as given in each of the above works must have been in use somewhere or another in India at some period; but at present, so far as our information goes, the year of only three works is in use. viz, that of the present Sïrya Siddhamta, the first Ary'a Siddhanta. and the Rajamprgraikka.

The Siddhantas and other astronomioal atorks.

19. It will not be out of place here to devote some consideration to these various astronomical works; indeed it is almost necessary to do so for a thorough comprehension of the subject.

Many other Siddhintas and Kiaranas are extant besides those mentioned in the above list. We know of at least thirty such works, and some of them are actually used at the present day in making calculations for preparing almanacks. ${ }^{1}$ Nany other similar works must, it is safe to suppose, have fallen into oblivion, and that this is so is proved by allusions found in the existing books.

Some of these works merely follow others, but some contain original matter. The Karanas give the length of the year, and the motions and places at a given time of the sun, moon, and planets, and their apogees and nodes, according to the standard Siddhinttr. They often add corrections of their own, necessitated by actual observation, in order to make the calculations agree. Such a correction is termed a bijict. Generally, however, the length of the year is not altered, but the motions and places are corrected to mect requirements

As before stated, each of these numerous works, and consequently the year-duration and other elements contained in them, must have been in use somewhere or another and at some period or another in India. At the present time, however, there are only three schools of astronomers known; one is called the Soura-paksha, consisting of followers of the present Siarya Siddhinta: another is called the Arya-paksha, and follows the first Arya Siddhanta: and the third is called the Brahma-paksha, following the Rajamyiginika, a work based on Brahmagupta's Brahma Siddhinta, with a certain bifo. The distinctive feature of each of these schools is that the length of the year accepted in all the works of that school is the same, though with respect to other elements they may possibly disagrec between themselves. The name Rijumrigainka is not now generally known, the work being superseded by others: but the year adopted by the present Brahma-school is first found, so far as our information gocs, in the Rajampriginko. and the three schools exist from at least A. D. 1042, the date of that work.
20. It is most important to know what Siddhaintas or Karamas were, or are now, regarded as standard authorities, or were, or are, actually used for the calculations of panchangs (almanacks) during particular periods or in particular tracts of country. ${ }^{2}$ for unless this is borne in mind we shall often go wrong when we attempt to convert Indian into European dates. The sketch which follows must not, however, be considered as exhaustive. The original Siritr-

I Karanas aud other practimal works, contaning tables hased on one or other of the Suldhantas. are hed for these calculations. [$\mathrm{S} . \mathrm{B} \quad \mathrm{D}$.

2 The positions and motions of the sun and mone amd ther aporeses mast neecsarily be fised aud known for the eomert malrulation of a tithi, nak hatra, yoga or karana. The length of the year is ahen an itupertant rement, and in the samvatsara is goverucal
 moon, their aprogee, the leosth of the year, and dupiter. The sketch is the test os siven chutly kepine in siew these clements. When one authority differ from another in any of the first tive of these sin element the tith as caldulated by ene will differ from that derised from another. is B 1 .

Sïddhanth was a standard work in early times, but it was superseded by the present Siurga-Siddhanta at some period not yet known, probably not later than A.D. 1000 . The first Airua-Siddhainta, which was composed at Kusumapura (supposed to be Paṭâ in Bengal). came into use from A.D. 499. ${ }^{1}$ Varâhamihira in his Pañchasiddhàntikía (A.D. 505) introduced a bija to Jupiter's motion as given in the original Sarya-Siddhanta, but did not take it into account in his rule (sce Art. 62 below) for calculating a samvatsara. Brahmagupta composed his Lrahma-Siddhinta in A. D. 628. He was a native of Bhillamala (the present Bhinmal), 40 miles to the north-west of the Abu mountains. Lalla, in his work named Ihei-i widdhida, introduced a bija to three of the elements of the first Arya-Siddhanta, namely, the moon, her apogee, and Jupiter, i.c., three out of the six elements with which we are concerned. Lalla's place and date are not known, but there is reason to believe that he flourished about A.D. 63 S. The date and place of the second Aiya-Siddhanta are also not known, but the date would appear to have been about A.D. 950 . It is alluded to by Bhâskarachàry'a (A.D. It 50), but does not seem to have been anywhere in use for a long time. The Râjamrigâika (A.D. 1042) follows the Brahma-Siddhinta, ${ }^{2}$ but gives a correction to almost all its mean motions and places, and even to the length of the year. The three schools-Saura, Arya and Brahma-seem to have been established from this date if not carlier, and the Brahma-Siddhanta in its orginal form must have then dropped out of use. The Karana-prakiasa, a work based on the first firgaSiddhànta as corrected by Lalla's bija, was composed in A.D. Iogz, and is considered an authority even to the present day among many Vaishọavas of the central parts of Southern India, who are followers of the Sirra-Sïdhànta. Bhàskaràchàrya's works, the Siddhainta Siromani (A.D. I 50) and the Larama-Kutuhala (A.D. II83) are the same as the Rajampigaika in the matter of the calculation of a panching. The lakkia-Karalla, a work of the Arya school, scems to have been accepted as the guide for the preparation of solar pañchàngs in the Tamil and Malayalam countries of Southern India from very ancient times, and even to the present day either that or some similar work of the Arya school is so used. A Karana named Bhidsioti was composed in A. D. 1099, its birthplace according to a commentator being Jagannatha (or Puri) on the east coast. The mean places and motions given in it are from the original Sirrra. Siddhantar as corrected by Varahamihira's bija, ${ }^{3}$ and it was an authority for a time in some parts of Northern India. Vàvilala Kochchanna, who resided somewhere in Telingaṇa, composed a Karana in 2 2g A.D. Ife was a strict follower of the present Sirra-Siddminta, and since his day the latter Siddhinta has governed the preparation of all Telugu luni-solar calendars. The Makaranda, another Karaṇa. was composed at Benares in A.D. 1478 , its author following the present Sierm-Siddhinta. but introducing a bija. The work is extensively used in Northern India in the present day for panchaiga calculations. Bengalis of the present day are followers of the Saura school, while in the western parts of Northern lodia and in some parts of Gujarat the Brahma school is followed. The Graho-lishara. a Karana of the Saura school, was composed by Ganesa Davjnia of Nandigrama (Nindgam). a village to the South of Bombay, in A. I). 1520. The same author also produced the lifilat and Laghuththichintimanis in A.1). 1525, which may be considered as appendices to the Graho-laghana. Ganesa adopted the present Sierga Siddhinta determinations for the length of

[^4]the year and the motions and places of the sun and mon and their apogees, with a small correction for the moon's place and the sun's apogee; but he adopted from the diry Siddhinta as corrected by Lalla the figures relating to the motion and position of Jupiter.

The Graha-laghata and the Laghutithichintimani were used, and are so at the present day, in preparing pañchangs wherever the Mahrathi language was or is spoken, as well as in some parts of Gujarat, in the Kanarese Districts of the Bombay and Madras Presidencies, and in parts of Haidarabàd, Maisùr, the Berars, and the Central Provinces. Mahratha residents in Northern India and even at Benares follow these works.
21. It may be stated briefly that in the present day the first Arya-Siddhanta is the authority in the Tamil and Malayàam countries of Southern India; ${ }^{\text {b }}$ the Brahma-paksha obtains in parts of Gujarat and in Rajputina and other western parts of Northern India; while in almost all other parts of India the present Sierya-Siddhinta is the standard authority. Thus it appears that the present Surrya-Siddhinta has been the prevailing authority in India for many centuries past down to the present day, and since this is so, we have chiefly followed it in this work. a

The bija as given in the Makaranda ($\mathrm{A} . \mathrm{D} . \mathrm{I}_{4} 8$) to be applied to the elements of the Sirrya-Siddhinta is generally taken into account by the later followers of the Sirra-Siddhanta, but is not met with in any earlier work so far as our information goes We have, therefore, introduced it into our tables after A.I). 1500 for all calculations which admit of it. The bija of the Makaranda only applies to the moon's apogee and Jupiter, leaving the other four elements unaffected.

Further details. Contents of the lankianga.

22. The Indian Kodiat. The Indian Zodiac is divided, as in Europe, into 12 parts, each of which is called a râśi or "sign". Each sign contains \jmath^{0} degrees, a degree being called an anitśa. Each amsa is divided into 60 kolas (minutes), and each kalà into 60 rikulis (seconds). This sexagesimal division of circle measurement is, it will be observed, precisely similar to that in use in Europe. ${ }^{3}$
23. The Saikranti. The point of time when the sun leaves one zodiacal sign and enters another is called a saikraimi. The period between one sankranti and another, or the time required for the sun to pass completely through one sign of the zodiac, is called a saura misa, or solar month. Twelve solar months make one solar year. The names of the solar months will be found in Table II., Part ii., and Table III.. col. 5. A sankrinti on which a solar month commences takes its name from the sign-name of that month. The Mesha sankrintimarks the vernal equinox, the moment of the sun's passing the first point of Aries. The Karka sankrànti, threc solar months later, is also called the dakshinizama ("southward-going") samkrimit it is the point of the summer solstice, and marks the moment when the sun turns southward. The Tula sankrinti, threc solar months later, marks the autumnal equinox, or the moment of the sun's passing the first point of Libra. The Makara sankranti, three solar months later still, is also called the uttarayana sankrinti ("northward-going"). It is the other solstitial point, the point or moment when the sun turns northward. When we speak of "sankrintis" in this volume we refer always to the nirayam sankrantis, i.c., the moments of the sun's entering the zodiacal signs, as calculated in sidereal longitude-longitude measured from the fixed point in. Aries-taking no account of the annual precession of the equinoses-(nirurom - " without movement". excluding the precession of the solstitial—ayana-points). But there is also in IJinduchronology the simana sankrinti(sa-ajama- "with

1 It is probable that the first irya-Siddhanta nas the standard anthority for South ladian solar reckoning from the earlitst times. In Bengal the Suipa-Siddhanta is the authority sibue abont . I. 1). 1100, but in earliev times the tirst .iring-Siddhanta was apparently the standard. [S. B. D.]

2 When we allude simply to the Surya or Aryd Siddhanta, it must be borne in mind that we mean the Present Suirya and the First Arya-Siddhintas. 3 Sce note 1, p. 2 above [R. S]
movement". including the movement of the arana points), i.c., a sankranti calculated according to tropical longitude-longitude measured from the vernal equinox, the precession being taken into account. According to the present Sirya-Siddhanta the sidereal coincided with the tropical signs in K. Y. 3600 expired, Sakia 421 expired, and the annual precession is $54^{\prime \prime}$. By almost all other authorities the coincidence took place in K. V. 3623 expired, Saka $44+$ expired, and the annual precession is (1') one minute. (The Siddhinta Siromami, however, fixes this coincidence as in K. Y. 3628). Taking either year as a base, the difference in years between it and the given year, multiplied by the total amount of annual precession, will shew the longitudinal distance by which, in the given year, the first point of the tropical (siyana) sign precedes the first point of the sidereal (nirayana) sign. Professor Jacobi (Epig. Ind. I'd. I, p. f22, Art. 39) points out that a calculation should be made "whenever a date coupled with a sankrinti does not come out correct in all particulars. For it is possible that a sidama sankranti may be intended, since these sankrantis too are suspicious moments." We have, bowever, reason to believe that say ana sankràntis have not been in practical use for the last 1600 years or more. Dates may be tested according to the rule given in Art. 160 (a).

It will be seen from cols. 8 to 13 of Table 11., Part ii, that there are two distinct sets of names given to the solar months. One set is the set of zodiac-month-names ("Mesha" cte.), the other has the names of the lunar months. The zodiac sign-names of months evidently belong to a later date than the others, since it is known that the names of the zodiacal signs themselves came into use in india later than the lunar names, "Chaitra" and the rest. ${ }^{1}$ Before sign-names came into use the solar months must have been named after the names of the lunar months. and we find that they are so named in Bengal and in the Tamil country at the present day, ${ }^{2}$ 2. Lomoth of months. It has been already pointed out that, owing to the fact that the apparent motion of the sun and moon is not always the same, the lengths of the lunar and solar months vary: We give here the lengths of the solar months according to the Surya and Arya-Siddhintas.

[^5]For calculation of the length by the Sierg-Siddhimta the lengitude of the sun's apogee is taken as $77^{\prime \prime} 16^{\prime}$, which was its value in $\lambda .1$. 1137 , a date about the midlle of our Tables. Even if its value at our extreme dates, i.i., either in A.1). 300 or 1900 , were taken the length would be altered by

The average (mean) length in days of solar and hunar months, and of a lunar year is as follows:

$$
\begin{aligned}
& \text { Solar month (} 1_{12}^{1} \text { of a sidereal year) } \quad 30.438229707 \quad 30.438030 . \\
& \text { Lunar month } 29.530587946 \text { 29.530588. } \\
& \text { Lunar year (iz lunations) } 354.36705535 \text { 354.367056. }
\end{aligned}
$$

25. Adhika maisas. Calcndar used. A period of twelve lunar months falls short of the solar year by about eleven days, and the llindus, though they use lunar months, have not disregarded this fact; but in order to bring their year as nearly as possible into accordance with the solar year and the cyele of the seasons they add a lunar month to the lunar year at certain intervals. Such a month is called an adizika or intercalated month. The Indian year is thus either solar or huni-solar. The Muhammadan year of the Hijra is purely lunar, consisting of twelve lunar months, and its initial date therefore recedes about eleven days in each year. in luni-solar calculations the periods used are tithis and lunar months, with intercalated and suppressed months whenever necessary. In solar reckoning solar day's and solar months are alone used. In all parts of India huni-solar reckoning is used for most religious purposes, but solar reckoning is used where it is prescribed by the religious authorities. For practical civil purposes solar reckoning is used in Bengal and in the Tamil and Malayalam countries of the Madras Presidency; in all other parts of the country luni-solar reckoning is adopted.
26. Truc and mean sainkrintis, Sodhya. When the sun enters one of the signs of the zodiac, as calculated by his mean motion, such an entrance is called a mean sankkrànti; when he enters it as calculated by his apparent or true motion, such a moment is his apparent or true ${ }^{2}$ sankrànti. At the present day true sankràntis are used for religious as well as for
 fusion, thercfore, we use only the sign-name: (Meshot, ete.) in framing our rules.

1 The leugths of months by the irya-hudthinta here siven are somentat differen irme thase given by Waren. But Warren seems 10 have taken the longitude of the sums apurge by the Surya-seddhinta in caleulatug the duration of months by the Aryr-Seddhinta, which is wrong. He seems also to have takeu into aceount the chater. * (See his Kila Santalita. 1/. 11. art. 3, p. 22, explanation of Toble
 equinox each year and the fixed point in Arion which i required for fiuding the chure in calculating the lenythe of months. The chare is not tbe same at the beginuing of any giben solar month for all plates or for all pars Hene it is wrong to une it for
 proof, for they are practically the same as thon given by him according to the iryot-soldhainta, and that this canoot be the case is mifeevident to all who have any eaperienee of the two sidelhintes. [s. B. D

* The chara:-"The time of risine of a heavenly buly is assmed to take place sis hours before it comes to the meridian. Actually this is not the case for an, locality not on the equatur, and the chare is the currection required in consequence, i.e., the exees or defert from sis honr, of the the between rising and remehing the meridian The name is aloo applied to the colestial are deseribed in this time."

 ing) and kifla (time). In the Fhgtioh Nantual thanare the word "apparem" is used to cover almost all cases where the Sanskrat word spashta would be applied, the word "tru" beine sumetimes, but rarely, wat " Ipparent," therefore, is the best word to use in mes opinion: and we have alopted it prominents, in spite of the fat that previnhs "riters un Himin Astronomy have chietly used the word "true." There is as a faet a little difference in the meaniog of the phrase "apparent" and "true," but it is almost unknown to Indian Astronomy, and we hawe therefore used the two words as synonyms. [S. B. D.]
civil purposes. In the present position of the sun's apogee, the mean Mesha sambanti takes place after the true sankrinti, the difference being two days and some ghatikàs. This difference is called the sodlera. It differs with different Sïddhantas, and is not always the same even by the same authority. We have taken it as 2 d .10 gh .14 p .30 vipa. by the Sürya-Siddhanta, and $2 \mathrm{~d} .8 \mathrm{gh} .5^{1} \mathrm{p} .15 \mathrm{vipa}$. by the Arya-Siddhanta The corresponding notion in modern European latronomy is the equation of time. The sodhya is the number of days required by the sun to catch up the equation of time at the vernal equinox.

27. It must be remembered that whenever we use the word "sankranti" alone, (e.g., "the Mesha-sankrinti") the apparent and not the mean nirayana sankrinti is meant.
28. The hegrinning of a solar month. Astronomically a solar month may begin, that is a sankrànti may occur, at any moment of a day or night; but for practical purposes it would be inconvenient to begin the month at irregular times of the day. Suppose, for example, that a Makara-sankranti occurred 6 hours 5 minutes after sunrise on a certain day, and that two written agreements were passed between two parties, one at 5 hours and another at 7 hours after sunrise. If the month Makara were considered to have commenced at the exact moment of the Makara-sankrinti, we should have to record that the first agreement was passed on the last day of the month Dhanus, and the second on the first day of Makara, whereas in fact both were executed on the same civil day. To avoid such confusion, the Hindus always treat the beginning of the solar month as occurring, civilly, at sunrise. Hence a variation in practice.
(1) (a. In Bengal, when a sankrànti takes place between sunrise and midnight of a civil day the solar month begins on the following day; and when it occurs after midnight the month begins on the next following, or third, day. If, for example, a sankrànti occurs between sunrise and midnight of a Friday, the month begins at sumrise on the next day, Saturday; but if it takes place after midnight of Friday ${ }^{1}$ the month begins at sunrise on the following Sunday. This may be termed the Fengral Rule. (b) In Orissa the solar month of the Amli and Vilayati eras begins civilly on the same day as the sankranti, whether this takes place before midnight or not. This we call the Orissa Ruli:
(2) In Southern India there are two rules. (a) One is that when a sankranti takes place after sumise and before sunset the month begins on the same day, while if it takes place difer sunset the month begins on the following day; if, for example, a sankranti occurs on a liridiy between sunrise and sunset the month begins on the same day, Friday, but if it takes place at any moment of Friday night after sunset the month begins on Saturday. ${ }^{2}$, b) By another rule, the day between sunrise and sunset being divided into five parts, if a sambrinti takes place within the first three of them the month begins on the same day, otherwise it begins on the following day. Suppose, for example, that a samkrinti occurred on a Friday, seven hours after sunrise, and that the lensth of that day was 12 hours and 30 minutes; then its fifth part was 2 hours 30 minutes, and three of these parts are equal tor 7 hours 30 mimutes. As the sankranti took place within the first three parts, the month began on the same day, Friday; but if the samkrinti had occurred 8 hours after sumrise the month would have begun on Saturday. The latter (b rule is observed in the North and Sonth Malayalam country, and the former (d in other parts of Southern India where the solar reckoning is used, viz., in the Tamil and Tinnevelly countries. ${ }^{3}$ We call a. the Tamil Kule: b. the Matatar Ruth:

[^6]

29．Pañhings．Before proceeding we revert to the five principal articles of the panchang． There are 30 tithis in a lunar month． 15 to each fortnight．The latter are generally denoted by the ordinary numerals in Sanskrit，and these are used for the fifteen tithis of each fortnight．Some tithis are，however，often called by special names．In panchaings the tithis are generally particularized by their appropriate numerals，but sometimes by letters．The Sanskrit names are here given．${ }^{1}$

$\stackrel{\text { 雨 }}{ \pm}$	Sanskrit Names．	Vulgar Names．	盛	Sanskrit Names．	Vulgar Names
1	Pratipad，Pratipada． Pratham：	Piolvâ，Pâdyami	3	Navami	
2	Dvitị̂a	Bija，Vidiya	10	Vaśanî	
3	Tritryî	Tija，Tadiya	11	Ekidasî̀	
4	Chatiorthi	Chanth，Chanthi	12	Dvâdasî	Biras
f	Pañchanî		13	Trayôdasî̀ ．．．．	Tras
${ }_{6}$	Shashthî．	Sath	14	Chaturdasif	
7	Saptam		15	Pîrnimâ，Pamrumá Pîrnamâsi，Pañchadaśi	Punava，Punnamí
，	A slitamî		30	Amârâsyâ，Darsáa， Pañchadaŝ́	

The numeral 30 is generally applied to the amâvâsya（new moon day）in pañchàngs，even in Northern India where according to the purniminta system the dark fortnight is the first fortnight of the month and the month ends with the moment of full moon，the amara $\dot{a} s y a \dot{a}$ being really the 15 th tithi．

30．That our readers may understand clearly how a Hindu pañchàng is prepared and what information it contains，we append an extract from an actual pañchàng for Saka 18 I 6 ， expired，A．D．1894－95，published at Poona in the Bombay Presidency．${ }^{2}$
corroborated by information kindly sent to the from Itowrah hy Mr．G．A．Grierson through br．Fleet．It mas also amply corrobarated by a set of Bengal Chronologieal Tahles for A．D．1892，mblished under the authority of the Calcutla Ifigh（＇ourt，a copy of which was sent to me by Mr．Sewell．I owe the Orissa Rale to the Cbronological Tables pablished by Girishchandra Tarkalaukar，who follows the Orissa Court Tables with regard to the dmli and Vilayati years in Orissa．Dr．J．Burgess，in a note in Mr．Kṛishuassâmi Naidu＇s＂South Indian Chronological Tables＂edited by Mr．Sewell，gives the 2 （a）Rule as in use in the North Malayatam country． but I do not know what his authority is．I ascerta ned from Tamil and Tinneselly panchônigs that the 2 （a）rule is in use there， and the fact is corroborated by Warren＇s Kita Saihklita；］ascertained also from some Sonth Malayàlam paürhânus published at Cochin and Trevaodrum，and from a North Nalayalan pañhaing publinatd at Calicut，that the 2 （b）rule is followed there S．B．II ］

Notwithstanding all this I have no certain suaramter that these are the only roles，or that they are inaariably followed in the tracts mentioned．Thus 1 find from a Tamb solar painchâing for Śaka 1515 current，published at Madras，and from a Telugu luni－solar pañchang for Śaka lloy espirel，also published at Madras，in which the solar months also are given，that tle rule observed is that＂when a sankranti occurs becwecn sumrise and midnight the month begius on the same day，otherwise on the following day＂， thus differing from all the four rules given above．This varying fifth rule again is folloned for all solar months of the Vilayati year as given in the ahove－mentioned Bengal Chronulugival Tahles for 1882，and by its use the month regnlarly begius une day io advance of the Bengàli month．I find a sixtb rule in some Bombay and Benares lunar pañchâigs．viz．，that at whatryer time the sañkrânti may occur，the month begins on the mext day；but this is not found in any solar pañehàag．The rules may be further classified as（1．a）the midnight rule（Bengal），（1．b）any time rule（ 1 rissa），（2．a）the suast rulf（Tamil），（9．b）the afternoon rule（Malabar）． The fifth rule is a variety of the midaight rule，and the sisth a varicty of the any time rulc． 1 ranuot say for how many years past the rules now in use in the several prowinces have been in force and effect

An inscription at Kamanûr，a village 5 miles north of Sritangam near Trichinopnly（spe Eprinraph，Indic．，rol．III．，p．10，date．Vo．Ir．． note 3，and $\mu .8$ ），is dated Tuesday the thirtecnth tithi of the bright fortuight of Sravana in the gear Prajapati，wheh correspunded with the 2th day of the（solar）month A！li（harka．）From other sonves the year of this date is known to be A．I．1271：and on carefully calculating I find that the day corropponds with the 2lst July，and that the karka sankrinti took place，hy the fry／a－siddhinta， on the 27th June，Saturday，shortly before midnight．From this it follens that the month illi beran civilly on the 2sth lute，and that one or the other of the two rules at present in ase in Southern India was in use in Trichimopoly in A．D．1271．is．B I．，

1 We cannot ennmerate the vulgar or popular names which obtain in all parts of India，and it is not necessary that we should do so．
 tithichintamani．［S．B．D．

三	luma	wh．pa	Nakshatrio．	Fl Pa．	1 1ugat	4．4．pat．	harmat．	［1］1：4		哭	年	鹈	
1	1ri．	$43 \quad 59$	P＇ura Phatguî：	（1）13：	Siddhal	3122	Kinislughat	1630	Sirima＊l：	$\begin{array}{cc} \text { gh. } \\ 30 & \text { pa } \\ \hline 18 \end{array}$	16	29	31
\because	sat．	3948	V laata Phalyuní：	$37 \quad 37$	Kîdhèit	23：3	Batava	$11 \quad 33$	Kaụ̂̀	$30 \quad 37$	17	30	1
3	Sin．	3631	11 astia	$36 \quad 2!$	Sublia	$19 \quad 31$	Taitila	9 9	h：m！${ }^{\text {an }}$	$30 \quad 54$	1＊	1	2
4	3101	3423	Chitrâ	$36 \quad 7$	Sukia	$14 \quad 30$	Yanij	； 27	hanụ̂̀ ti	$30 \quad 52$	19	2	3
5	Turs．	3326	Svàti	$36 \quad 52$	Brahman	11 i	Baya	351	Tulâ	$30 \quad 49$	20	3	4
${ }^{1}$	Wid．	33 in	Viâ̂alhâ	38 is	Aimdra	$8 \quad 24$	haulava	342	Tulâ 23	30 \％	$\because 1$	4	5
7	Thurs．	$35 \quad 29$	Anuriulhâ	$42 \quad 19$	Vaidhrit	$6 \quad 36$	Gara	4 ＋1	Trischi：	$30 \quad 44$	22	5	6
5	Fri	3816	Jueshthî	$46 \quad 48$	Vishkamblat	$5 \quad 19$	\checkmark Visti	$6 \quad 53$	Vris： 77	$30 \quad 41$	23	6	\hat{i}
9	Sal．	423	Mâla	5213	Priti	62	Bâlava	$10 \quad 13$	Dhanns	3018	$2 \downarrow$	7	8
10	Sun．	46 th	P＇ìrva Ishâthî	5811	A̧mshunt	$6 \quad 53$	Taitila	1429	Dhaturs	30 31	25	8	9
11	Mon．	51．43	Ittara Ashâlhâ	60） 6	Saubhîysa	81	Vanij	19 11；	19at 15	$30 \quad 33$	26	9	10
12	Thes．	$56 \quad 44$	I tara A＝hîlhai	＋ 35	suoblaua	$9 \quad 29$	Bava	$24 \quad 14$	Dakara	$30 \quad 30$	27	10	11
13	Hed．	$60 \quad 0$	Shavala	$10 \quad 59$	Atigam！a	$10 \quad 58$	haulava	293	Makia： 4	30） 24	23	13	12
13	Thurs	123	Thamishthit	1645	Sukamum	1154	＇laitila	123	K umbtar	3018	29	12	13
14	rri．	$5 \quad 18$	Sutabhishaij	$21 \quad 32$	Thriti	1226	Tauji	； 18	Kumbla	3022	30	13	14
15	Sat．	$\times 11$	l＇ûrsa Bhadta：	$26 \quad+$	silith	127	Bava	811	hum： 10	$30 \quad 24$	31	14	1.

Imanta Bhadrapada krishnapaksha．

1	Sul．	9	59	Vitara Blaulra：	28	is	Latala	10	15	Kinlava	9	59	Vlina	30	17	1	15	16
\because	ग\％m．	10	30	Revatî	30	10	1 riddhi	＊	310	Gilai	10	30	M113a 31	311	1.5	2	16	17
3	Thu：	9	35	Anvini	31	4	11ncusa	5	11	Vishti	9	35	Urshat	311	12	3	17	18
4	Wed	7	26	13harani	30	2	Syught：	＂	$\begin{aligned} & 50 \\ & 52 \end{aligned}$	Batava	\％	24	H1． 45	30	10	1	15	19
5	Tlurs．	4	19	Kritiok	28	36	1 ajm	19	13	Taitila	1	19	Iriolta	30	7	．	19	20
${ }^{6}$	Pri．	$\begin{array}{r} 0 \\ 5.5 \end{array}$	$\begin{aligned} & 115 \\ & 14 \end{aligned}$	Ruhmi	2.5	29	suldin	13	1	Vanij	0	1 i	1 ri it	30	5	6	20	21
\％	Sill．	49	55	Mrizantis	$\stackrel{2}{2}$	13	\：atupat：	3.5	$\therefore 8$	Paisava	$2:$	15	Mithun：	310	2	i	21	2
9	Suli．	14	9	irdrâ	1.8	is	Larimas	24	24	Taitula	16	2	Withuma	311	0	8	212	23
10	110n			P＇unariaxy	11	55	P＇ariyhat	20	4.	\amij	11	9	Withu：1	29	37	4	23	21
11	Tim．	32	8	Prasleg：	10	17	Sun	13	2	Bava	\％	9	harcha：	4	二）	10	21	2.1
12	ln	24	17	A－10．há	6	44	Sutulla	5	$\begin{aligned} & \because 1 \\ & 31 \end{aligned}$	Taitia	24	17	har：\％	24	32	11	25	26
13	＇Thars．	20	t．）	Mashuit	$\begin{array}{r} 3 \\ 56 \end{array}$	$\begin{array}{r} 4 \\ 51 \end{array}$	Suhlan	51	1	\：mij	${ }^{2}$	1.1	Sisila	219	19	12	26	27
14	1 m	1．7	＋	Citura Plaskmi	$5 i$	2.	Suli．	11	3.7	Sahmin	15.	1	Sui 14	231	17	13	27	24
30	$\checkmark!$	11	16	11aッ！	5.	34	1rahnuan	：3 4	16	Sins	11	10	kumyu	$2!9$	$1+$	11	2	23

actual Panchánga.
and Kanya: Bhathamadan months Safar and Rubi-mbanaral. IEnglish months Ausust and September.

(Püruimanta Asuina krislunapaksha.)
Prasitions of Planits at sumrise Amâvâsyâ, Suturday.

[^7]The above extract is for the amânta month Bhàdrapada or August 3 ist to September 29th, 1894. The month is divided into its two fortnights. The uppermost horizontal column shews that the first tithi. "pratipadà", was current at sunrise on Friday, and that it ended at 43 gh .59 p . after sunrise. The moon was 12 degrees to the east of the sun at that moment, and after that the second tithi, "dvitîyà", commenced. The nakshatra Pürva-Phalgunî ended and Uttara-Phalgunì commenced at 40 gh .16 p . after sunrise. The yoga Siddha ended, and Sâdhya began, at 3 I gh .22 p . after sunrise; and the karana Kinstughna ended, and Bava began, at 16 gh .30 p . after sunrise. The moon was in the sign Simha up to 15 gh . after sumrise and then entered the sign Kanyà. The length of the day was 30 gh .59 pa . (and consequently the length of the night was 29 gh . ${ }^{1}$ pa.). The solar day was the 16 th of Simha. ${ }^{1}$ The Muhammadan day was the 2gth of Safar, and the European day was the 31 st of August. This will explain the bulk of the table and the manner of using it.

Under the heading "other particulars" certain festival days, and some other information useful for religious and other purposes, are given. To the right, read vertically, are given the places of the sun and the principal planets at sunrise of the last day of each fortnight in signs degrees, minutes, and seconds, with their daily motions in minutes and seconds. Thus the figures under "sun" shew that the sun had, up to the moment in question, travelled through 4 signs, 29 degrees, 27 minutes, and 9 seconds; i.c., had completed 4 signs and stood in the 5 th. Sinha,-had completed 29 degrees and stood in the $30 t h$, and so on; and that the rate of his daily motion for that moment was 58 minutes and 30 seconds. Below are shown the same in signs in the horoscope. The ahargana, here $34-227$, means that since the epoch of the Grahalig ghaza. ${ }^{2}$ i.e., sunrise on amànta Phàlguna krishṇa 3oth of Saka 1441 expired, or Monday 19 th March, A.D. 1520,34 cycles of 4016 days each. and 227 days, had elapsed at sunrise on Saturday the 15 th of the bright half of Bhâdrapada. The horoscope entries are almost always given in pañchàngs as they are considered excessively important by the Hindus.
31. Tithis and solur duys. Solar or civil days are always named after the week-days, and where solar reckoning is in use are also counted by numbers, $c \cdot s_{s}$. , the ist, 2nd, etc., of a named solar month. But where solar reckoning does not prevail they bear the names and numerals of the corresponding tithis. The tithis, however, beginning as they do at any hour of the day, do not exactly coincide with solar days, and this gives rise to some little difficulty. The general rule for civil purposes, as well as for some ordinary religious purposes for which no particular time of day happens to be prescribed, is that the tithi current at sunrise of the solar day gives its name and numeral to that day, and is coupled with its week-day. Thus bhidrapodar sukla chaturdasís Sukrazurar (Fiday the $14^{\text {th }}$ of the first or bright fortnight of Bhàlrapada) is that civil day at whose sunrise the tithi called the 14 th sukla is current, and its week-day is Friday. Suppose a written agreement to have been executed between two parties, or an ordinary religious act to have been performed, at noon on that Friday at whose suncise Bhadrapada Lukla chaturdasi of Saka 1816 expired was current. and which ended wat the tahle 5 gh. is p.. (about 2 h .7 m.) after sunrise, or at about 8.7 a.m. Then these two acts were actually done after the chaturdasi had ended and the purnimat was current, but they would be generally noted as having been done on firiday sukla chaturdasî. It is, however, permissible, though such instances would be

[^8]rare, to state the date of these actions as "Friday purnimi:" and sometimes for religious purposes the date would be expressed as "chaturdasi yukta purnima" (the 14 th joined with the purnimà). Where, however, successive regular dating is kept up, as, for instance, in daily transactions and accounts, a civil day can only bear the name of the tithi current at its sumrise.

Some religious ceremonies are ordered to be performed on stated tithis and at fixed times of the day. For example, the worship of the god Ganeśa is directed to take place on the Bhadrapada sukla chaturthi during the third part (madhy'zha) of the five parts of the day. A sriddha, a ceremony in honour of the fityis (manes), must be performed during the $4^{\text {th }}$ (aparalina) of these five periods. Take the case of a Brâhmana, whose father is dead, and who has to perform a sraddha on every amàasyà. In the month covered by our extract above the amavasyà is current at sunrise on Saturday. It expired at in gh. 40 p . after sunrise on Saturday, or at about io. 40 a.m. Now the aparahna period of that Saturday began, of course, later than that hour, and so the amàvàsyà of this Bhàdrapada was current during the aparàhṇ, not of Saturday, but of the previous day, Friday. The sràddha ordered to be performed on the amàvisyâ must be performed, not on Saturday, but on Friday in this case. Again, suppose a member of the family to have died on this same Friday before the end of the tithi krishna chaturdasíi, and another on the same day but after the end of the tithi. A sraddha must be performed in the family every year, according to invariable Hindu custom, on the tithi on which each person died. Therefore in the present instance the sfàddha of the first man must be performed every year on the day on which Bhàdrapada krishṇa chaturdasísi is current, during the aparahna; while that of the second must take place on the day on which the amàvàsyà of that month is current during the aparihua, and this may be separated by a whole day from the first. Lengthy treatises have been written on this subject, laying down what should be done under all such circumstances. ${ }^{1}$

At the time of the performance of religious ceremonies the current tithi, vâra, and all other particulars have to be pronounced; and consequentiy the tithi, nakshatra, ete., so declared maydiffer from the tithi, etc., current at sunrise. There is a vrata (observance, vow) called Saikitashta-nâśsana-chaturthî, by which a man binds himself to observe a fast on every krishụa chaturthî up to moonrise, which takes place about 9 p.m. on that tithi, but is allowed to break the fast afterwards. And this has of course to be done on the day on which the chaturthî is current at moonrise. From the above extract the evening of the 18 th September, Tuesday, is the day of this chaturthi, for though the 3 rd tithi, trititiyà, of the kṛishṇa paksha was current at sunrise on Tuesday it expired at 9 gh .35 pa . after sunrise, or about $9.50 \mathrm{a} . \mathrm{m}$. If we suppose that this man made a grant of land at the time of breaking his fast on this occasion, we should find him dating his grant "hṛishụa chaturthî, Tuesday." though for civil purposes the date is kṛishụa tritiya, Tuesday.

The general rule may be given briefly that for all practical and civil purposes, as well as for some ordinary religious purposes, the tithi is connected with that week-day or solar day at whose sunrise it is current, while for other religious purposes, and sometimes, though rarely, even for practical purposes also, the tithi which is current at any particutar moment of a solar day or week-day is connected with that day.
32. Adhika and kshay'a tithis. Twelve lunar months are equal to about $35+\mathrm{t}$ solar days (sec Art. $2+$ abore), but there are 360 tithis during that time and it is thus evident that six tithis must somehow be expunged in civil (solar) reckoning. Ordinarity a tithi begins on one day and

[^9]ends on the following day, that is it touches two successive eivil days. It will be seen, however, from its length $/ 1 / \%$; abore that a tithi may sometimes begin and end within the limits of the same naturat day; while sometimes on the contrary it touches three natural days, occupying the whole of one and parts of the two on each side of it.

A tithi on which the sun does not rise is expunged. It has sustained a diminution or loss Rshara). and is called at kshayd tithi. On the other hand, a tithi on which the sun rises twice is repeated. It has sustaned an increase (ariddhi), and is called an adhika, or added, tithi. Thus, for example, in the panchàng extract given above (Art. 3o) there is no sunrise during krishna saptamî (7 th), and it is therefore expunged. Kṛisha shashthí (σ th) was current at sunrise on Friday, for it ended 16 palas after sunrise ; while kṛisha saptami began 16 palas after that sunrise and ended before the next sunrise; and krishna ashtami (Sth) is current at sumrise on the Saturday. The first day is therefore named civilly the (Gth) shashthhî, lriday, and the second is named (Sth) ashtami, Saturday; while no day is left for the saptami, and it has necessarity to be expunged altogether, though, strictly speaking, it was current for a large portion of that Friday. On the other hand, there are two sunrises on Bhàdrapada sukla trayodaśi (sukla 13 th), and that tithi is therefore repeated. It commenced after 56 gh . 44 pa . on Tuesday, ic., in European reckoning about 4.2 a.m. on the Wednesday morning, was current on the whole of Wednesday, and ended on Thursday at 1 gh .23 pa . after sunrise, or about 6.33 a m . It therefore touched the Tucsday (reckoned from sunrise to sunrise) the Wednesday and the Thursday; two natural civil days began on it ; two civil days, Wednesday and Thursday, bear its numeral (13) ; and therefore it is said to be repeated. ${ }^{1}$

In the case of an expunged tithi the day on which it begins and ends is its week-day. In the case of a repeated tithi both the days at whose sunrise it is current are its week-days.

A clue for finding when a tithi is probably repeated or expunged is given in Art. ift2.
Generally there are thirteen expunctions (kshay'as) and seven repetitions (oriddhis, of tithis in twelve lunar months.

The day on which no tithi ends, or on which two tithis end, is regrarded as inauspicious, In the panching extract above (irt. so) Bhàdrapada sukla trayodasif Wednesday, and Bhadrapada kprishụa shashthî, Friday (on which the saptamî was expunged), were therefore inauspicious.
33. It will be scen from the above that it is an important problem with regard to the Indian mode of reckoning time to ascertain what tithi, makshatra. yoga, or karana was current at sumrise on any day, and when it began and ended. Our work solves this problem in all cases.
34. I'ariation on account of longritude. The moment of time when the distance between the sun and moon amounts to 12 , or any multiple of 12 , degrees, or, in other words, the moment of time when a tithi ends, is the same for all places on the earth's surface; and this also applies to nakshatras, yogras, and karanas. Hut the moment of sunrise of course varies with the locality, and therefore the ending moments of divisions of time such as tithis, when reforred to sunrise, differ at different places. For instance, the tithi Bhadrapada sukla pormimi (sec aboit . Irt. io) ented at Poona at 8 gh. 11 pa. after sunrise, or about 9.16 a.m. At a place where the sun rose 1 gh. earlier than it does at I'oona the tithi would evidently have ended one ghatikitlater, or at 9 gh. 11 pat. after sumrise, or at about 9.40 a.m. On the other hand, at a place where

the sun rose I gh. later than at Poona the tithi would have ended when 7 gh . 11 pa. had elapsed since the sumrise at that place, or at about $8.52 \mathrm{a} . \mathrm{m}$.
35. For this reason the expunction and repetition of tithis often differs in different lucalities. Thus the nakshatra P'ùrvashadhà (sec pañhàg extrad irt. jo was 58 gh .11 pa. ${ }^{1}$ at Poona on Sunday, sukla 1oth. At a place which is on the same parallel of latitude, but ite degrees eastward, the sun rises 2 gh. earlier than at Poona, and there this nakshatra ended ($58 \mathrm{gh} . \operatorname{lt} \mathrm{pa} .+2 \mathrm{gh}=160 \mathrm{gh} . \mathrm{I} 1 \mathrm{pa}$. after sunrise on Sunday, that is at it pa. after sumrise on Monday: It therefore touches three natural days, and therefore it (Pùrvashaḍhi) is repeated. whereas at Poona it is Uttarashidhai which is repeated. On the other hand, the makshatra Maghà on Krishṇa 13 th was 3 gh. 4 pa.. and Pûrva-phalgunî was ($3 \mathrm{gh} .+$ pa. $+56 \mathrm{gh} .{ }^{2} 51$ pa. $=$) 59 gh .55 pa . at Poona. At a place which has the same latitude as loona, but is situated even at so short a distance as 1 degree to the east, the nakshatra Pûrva-phalgunit ended 60 gh . 5 pa after sunrise on Thursday, that is 5 pa. after sunrise on Friday; and therefore there will be no kshaya of that nakshatra at that place, but the following nakshatra Uttara phalguni will be expunged there.
36. True or apparint. and mian, time. The sun, or more strictly the earth in its urbit, travels, not in the plane of the equator, but in that of the ecliptic, and with a motion which varies every day; the length of the day, therefore, is not always the same even on the equator. But for calculating the motions of the heavenly bodies it is evidently convenient to have a day of uniform length, and for this reason astronomers, with a view of obtaining a convenient and uniform measure of time, have had recourse to a mean solar day, the length of which is equal to the mean or average of all the apparent solar days in the year. An imaginary sun, called the mean sun, is conceived to move uniformly in the equator with the mean angular velocity of the true sun. The day's marked by this mean sun will all be equal, and the interval between two successive risings of the mean sun on the equator is the duration of the mean solar day, viz., it hours or 60 ghațikàs. The time shown by the true sun is called true or apparent time, and the time shown by the mean sun is known as mean time. Clocks and watches, whose hands move. at least in theory, with uniform velocity, evidently give us mean time. With European astronomers "mean noon" is the moment when the mean sun is on the meridian; and the "mean time" at any instant is the hour angle of the mean sun reckoned westward from 0 h. to $2 f$ h., mean noon being o h. for astronomical purposes.

Indian astronomers count the day from sunrise, to sunrise, and give, at least in theory, the ending moments of tithis in time reckoned from actual or true sunrise. The true or apparent time of a place, therefore, in regard to the Indian panchang, is the time counted from true (i.c., actual) sunrise at that place. For several reasons it is convenient to take mean sunrise on the equator under any given meridian to be the mean sunrise at all places under the same meridian. The mean sumrise at any place is calculated as taking place at o gh. or o h.-roughly 6 a.m. in European civil rechoning; and the mean time of a place is the time counted from o gh. or o h.

The moment of true sunrise is of course not always the same at all places, but varies with the latitude and longitude. Even at the same place it varies with the declination of the sun, which

[^10]varies every day of the year. And at any given place, and on any given day of the year, it is not the same for all years. The calculation, therefore, of the exact moment of true sunrise at any place is very complicated too complicated to be given in this work, ' the aim of which is extreme simplicity and readiness of calculation, and therefore mean time at the meridian of Ujiain a or Lanks is used throughout what follows.

All ending moments of tithis calculated by our method C (fits. I.ig to 160 , are in Ujjain mean time; and to convert Ujjain mean time into that of any other given place the difference of longitude in time-4 minutes (10 palas) to a degree -should be added or subtracted accurding as the place is east or west of Ujjain. Table Xl. gives the differences of longitude in time for some of the most important places of India.

The difference between the mean and apparent (true) time of any place in India at the present day varies from nil (in March and October) to 26 minutes (in January and June) in the extreme southern parts of the peninsular. It is nowhere more than 65 minutes.
37. Basis of calculation for the Tables. All calculations made in this work in accordance with luni-solar reckoning are based on the Sirya-Siddhanta, and those for solar reckoning on the Siarga and Liva Siddhantas. The elements of the other authorities being somewhat different, the ending moments of tithis etc., or the times of sankrantis as calculated by them may sometimes differ from results obtained by this work; and it must never be forgotten that, when checking the date of a document or record which lays down, for instance, that on a certain week-day there fell a certain tithi, nakshatra, or yoga, we can only be sure of accuracy in our results if we can ascertain the actual Siddhanta or other authority used by the author of the calendar which the drafter of the document consulted. Prof. Jacobi has given Tables for several of the principal Siddhintas in the lipigraphica India (I'J. Il., ph. fo; at scq.), and these may be used whenever a doubt exists on the point.

Although all possible precautions have been taken, there, must also be a slight element of uncertainty in the results of a calculation made by our Tables owing to the difference between mean and apparent time, independently of that arising from the use of different authorities. Owing to these two defects it is necessary sometimes to be cautious. If by any calculation it is found that a certain tithi, makshatra. yoga. or karana ended nearly at the close of a sular day-as, for example, 55 ghatikis after mean sumrise on a Sunday, i.c.. 5 ghatikàs before sunrise on the Monday-it is possible that it really ended shortly after true sunrise on the Monday'. And, similarly, if the results shew that a certain tithi ended shortly after the commencement of a solar day,- for instance, 5 ghatikis after mean sumrise on a Sunday,--it is possible that it really ended shortly before the true termination of the preceding day, Saturday:

[^11]Five ghatikis is not the exact limit, nor of course the fixed limit. The period varies from mil to about five ghatikàs, rarely more in the case of tithis, nakshatras, and karanas; but in the case of yogas it will sometmes reach seven ghaṭikis.

Calculations made by our method C will result in the finding of a "tithi index " (t), or a nakshatra or yoga-index (n. or,$\dot{\prime}$), all of which will be explained further on; but it may be stated in this connection that when at any ascertained mean sunrise it is found that the resulting index is within 30 of the ending index of the tithi, (Table l'll/., (ol. .3), nakshatra or karana (id. col. S, 9,10), or within 50 of the ending index of a yogra (id. col. , .3), it is possible that the result may be one day wrong, as explained above. The results arrived at by our Tables, however, may be safely relied on for all ordinary purposes.
38. Nakshatras There are certain conspicuous stars or groups of stars in the moon's observed path in the heavens, and from a very remote age these have attracted attention. They are called in Sanskrit "Nakshatras". They were known to the Chatdeans and to the ancient Indian Âryas. Roughly speaking the moon makes one revolution among the stars in about 27 days, and this no doubt led to the number ${ }^{1}$ of nakshatras being limited to 27 .

The distance between the chief stars, called yonga-tàràs, of the different nakshatras is not uniform. Naturally it should be $13^{\prime \prime} 20^{\prime}$, but, in some cases it is less than $7^{\prime \prime}$, while in others it is more than 20°. It is probable that in ancient times the moon's place was fixed merely by stating that she was near a particular named nakshatra (star) on a certain night, or on a certain occasion. Afterwards it was found necessary to make regular divisions of the moon's path in her orbit, for the sake of calculating and foretelling her position; and hence the natural division of the ecliptic, consisting of twenty-seven equal parts, came into use, and each of these parts was called after a separate nakshatra (see Art. S). The starry nakshatras, however, being always in view and familiar for many centuries, could not be dispensed with, and therefore a second and unequal division was resorted to. Thus two systems of nakshatras came into use. One we call the ordinary or equalspace system, the othe the unequal-space system. The names of the twenty-seven stellar nakshatras are given to both sets. In the equal-space system each nakshatra has $13^{\prime \prime} 20^{\prime}$ of space, and when the sun, the moon, or a planet is between 0°, i.c., wo degrees, and $13^{\prime \prime} 20^{\prime}$ in longit ide it is said to be in the first nakshatra Aśviní, and so on. The unequal-space system is of two kinds. One is described by Garga and others, and is called here the "Garga system." According to it fifteen of the nakshatras are held to be of cqual average (mean) length-i.c., $13^{\circ} 20^{\prime}$, -but six measure one and-a-half times the average-i.t., $20^{\prime \prime}$, and six others only half the average, viz., 6° 40'. The other system is described by Brahmagupta and others, and therefore we call it the "Brahma-Siddhanta" system. In its leading feature it is the same with Garga's system, but it differs a little from Garga's in introducing Abhijit in addition to the twenty-seven ordinary nakshatras. The moon's daily mean motion,- 13 degrees, 10 minutes, 35 seconds,-is taken as the average space of a nakshatra. And as the total of the spaces thus allotted to the usual twenty-seven nakshatras, on a similar arrangement of unequal spaces, amounts to only 355 degrecs, 45 minutes. 45 seconds, the remainder, -4 degrees, 14 minutes, 15 seconds, - is allotted to Abhijit, as an additional nakshatra placed between Uttara-Ashạ̣̣hà and Sravaṇa.

The longitude of the ending points of all the nakshatras according to these three systems
1 The man length of the mon's revolution anong the stars is 27.32166 days (22 32167 tarcording to the Sierya Sirdthinta). Its least dumation is 27 days, 4 hour, and the aremest about 7 homr longer. The unmber of days is thus betwen 27 and $2 \cdot$, and
 (See Table VIII, col. 7.) [S. B. D.]
is given below. The entrics of " $1 / 2$ " and " $1^{1} / 2$ " in subcolumn 3 mark the variation in length from the average.

The nakshatras by any of these systems, for all years between 300 and 1900 A. D., can be calculated by our Tables (see method "C", Arts. 139 to 160). The indices for them, adapted to our Tables, are given in Table Vlli., cols. 8, 9, 10.

The ordinary or equal-space system of nakshatras is in general use at the present day, the un-equal-space systems having almost dropped out of use. They were, however, undoubtedly prevalent to a great extent in early times, and they were constantly made use of on important religious occasions. ${ }^{1}$

Longtitudes of the Ending-points of the Nakshatras.

Order of the Nakshatras.		System of Equal Spaces.		Systems of Unequal Spaces.								
		Garga System.	Brahme-Siddhànta System.									
	1			2		3	4			4		
		Deg.			Deg.	Min,		Deg.	Min	Sec.		
1	Aívinî		20^{\prime}		13°	20^{\prime}	0	13°	10^{\prime}	$35^{\prime \prime}$		
2	Bharanî			\%	20	0	0	19	15	. $221 / 2$		
3	hritikit		0	.	33	20	0	32	56	271%		
d	Rohinî		20	$11 / 2$	53	20	0	52	12	20		
5	Mricasiras		40		66	40	${ }^{0}$	65	52	55		
6	Arluai .		11	1/2	73	20	$1)$	72	28	$121 / 2$		
7	Pumarvasu		20	$11 /$	93	20	0	92	14	5		
8	Pushy:	106	40	.	106	40	0	105	24	40		
9	A l coshâ	120	0	$1 / 2$	113	20	0	111	59	5 $5^{1 / 2}$		
10	Marbat	133	20	.	126	40	$1)$	125	10	$32{ }^{1}$		
11	I'ürva-Phalgunt	146	10		140	0	0	13 s	21	$7{ }^{1}$		
12	Tilam-Platgui	160	$1)$	11/2	160	0	0	1:8	i	0		
13	Hasta	173	20		173	20	0	171	17	35		
11	Chitrai	186	40		1×6	41	1	18.4	28	10		
15	Svali	200	0	$1 / 2$	193	20	0	191	3	$27^{1}=$		
16	\isithikit	213	20	$11 / 2$	213	20	0	210	49	20		
17	Anuridhâ			- .	226	40	0	223	54			
18	Jucohthâ.	210	10	$1 / 2$	233	20	0	230	35	$12^{1 / 2}$		
19	Miòla	2.33	20	. .	246	(1)	0	243	15	$47^{1}=$		
20	Pirra-Ashath hit	266	40)	\cdots	260	0	0	256	56	221%		
21	1 thara-h hanlha	280	0	1%	280	0	0	296	42	15		
	(Abhijii)			(Batame)				280	56	30		
22	Sravana		20		293		0	291	7	5		
23	Whanishthâ ur Sravinh thâ	3015	10		306	10	${ }^{1}$	30%	17	40		
21	Sutatàrakat or satablanhay	320	0	$1 / 2$	31.3	20	0	313	B	$37^{1 / 2}$		
2.5	l'îra Blablapaida	33.3	20	\ldots	326	10	$1)$	32%	3	$321 / 2$		
26	VItara-Bhadrapodia	3.46	111	$11 / 2$	316	10	${ }^{1}$	346	19	2.		
27	Revati	360	$1)$		360	0	11	360	11	1		

30. Auspicious ligras. Besides the 27 yogas described above (.tor. g), and quite different from them, there are in the Indian Calendar certain conjunctions, also called yoras, which only. occur when certain conditions, as, for instance, the conjunction of certain viras and makshatras, or vinats and tithis are fulfilled. Thus, when the nakshatra llasta falls un a sunday there ocrurs

[^12] on the $2 n d$, 5 th and 18 th of September. It is considered an auspicious yoga, while some yogats are inauspicious.
40. Kordmas. A karana being half a tithi, there are 60 karanas in a humar month. There are seven karanas in a series of eight cycles-total 56 -every month, from the second half of sukla pratipadi (ist) up to the end of the first half of krishna chaturdasi (1 the . The other four karanas are respectively from the second half of krishna chaturdasi (1.fth) to the end of the first half of sukla pratipadi.. ${ }^{1}$

Table VIII., col. 4. gives the serial numbers and names of karanas for the first half, and col. 5 for the sccond half, of each tithi.
foa. Eclipses. Eelipses of the sun and moon play an important part in inscriptions, since, according to ancient Inclian ideas, the value of a royal grant was greatly cnhanced by its being made on the occasion of such a phenomenon; and thus it often becomes essential that the moments of their occurrence should be accurately ascertained. The inscription mentions a date, and an eclipse as occurring on that date. Obviously we shall be greatly assisted in the determination of the genuineness of the inscription if we can find out whether such was actually the case. Up to the present the best list of eclipses procurable has been that published by Oppolzer in his "Canon der Finstornisse" Denkschriften der Kaiserl. Akademie dor IVissenschaften. I"ionha, I\%/. LII., , but this concerns the whole of our globe, not merely a portion like lndia; the standard meridian is that of Grecnwich, requiring correction for longitude; and the accompanying maps are on too small a scale to be useful except as affording an approximation from which details can be worked out. Our object is to save our readers from the necessity of working out such complicated problems. Prof. Jacobi's Tables in the Indian Intiquary (Vol. XVll.) and Epigrapliar India (Vol. 11.) afford considerable help, but do not entirely meet the requirements of the situation. Dr. Schram's contribution to this volume, and the lists prepared by him, give the dates of all eclipses in India and the amount of obscuration observable at any place. His article speaks for itself, but we think it will be well be add a few notes.

Prof. Jacobi writes (Epig. Ind., II., p. $\neq 22$: - " The celipses mentioned in inscriptions are not always actually observed eclipses, but calculated ones. My reasons for this opinion are the following: Firstly, eclipses are auspicious moments, when donations, such as are usually recorded in inscriptions, are particularly meritorious. They were therefore probably selected for such occasions, and must accordingly have been calculated beforchand. No doubt they were entered in pañchangs or almanacs in former times as they are now. Secondy, even larger eclipses of the sun. up to seven digits, pass unobserved by common people, and smaller ones are only visible under favourable circumstances. Thirdly, the Hindus place implicit trust in their Sistras, and would not think it necessary to test their calculations by actual observation. The writers of inscriptions would therefore mention an celipse if they found one predicted in their afmanacs."

Our general Table will occasionally be found of use. Thus a lunar eclipse can only occur at the time of full moon (firmimit), and can only be visible when the moon is above the horizon at the place of the observer; so that when the purbima is found by our Tables to occur during most part of the daytime there can be no visible eclipse. But it is possibly visible if the purnima is found, on any given meridian, to end within + ghatikis after sunrise, or within + ghațikàs before sunset. A solar eclipse occurs only on an amavisya or new moon day. if
 present practice of Western Iudia, wheh is supported by Varahamihira and Brahmarnpta.
the amivisy:i ends between sunset and sunrise it is not visible. If it ends between sunrise and sunset it may be visible, but not of course always.
41. Lunar months and their names. The usual modern system of naming lunar months is given above (Art. 14), and the names in use will be found in Tables II. and III. In early times, however, the months were known by another set of names, which are given below, side by side with those by which they are at present known.

The names "Madhu" and others evidently refer to certain seasons and may be called seasonnames ${ }^{1}$ to distinguish them from "Chaitra" and those others which are derived from the nakshatras. The latter may be termed sidereal names or star-names. Season-names are now nowhere in use, but are often met with in Indian works on astronomy, and in Sanskrit literature generally.

The season-names of months are first met with in the mantra sections, or the Samhitas, of both the Yajur-Vedas, and are certainly earlier than the sidereal names which are not found in the Samilitios of any of the Vedas, but only in some of the Brilhmarlas, and even there but seldom. ${ }^{2}$
42. The sidereal names "Chaitra", etc., are originally derived from the names of the nakshatras. The moon in her revolution passes about twelve times completely through the twenty-seven starry makshatras in the course of the year, and of necessity is at the full while close to some of them. The full-moon tithi (pirnimà), on which the moon became full when near the nakshatra Chitri, was called Chaitrì: and the lunar month which contained the Chatri purmime was called (Caitre and so on.
43. But the stars or groups of stars which give their names to the months are not at equal distances from une another; and as this circumstance,-together with the phenomenon of the moon's apparent varying daily motion, and the fact that her synodic differs from her sidereal revolution-prevents the moon from becoming full year after year in the same nakshatra, it was natural that, while the twenty-seven nakshatras were allotted to the twelve months, the months themselves should be named by taking the nakshatras more or less alternately. The nakshatras thus allotted to each month are given on the next page.
44. It is clear that this practice, though it was natural in its origin and though it was ingeniously modified in later years, must often have occasioned considerable confusion: and so we find that the months gradually ceased to have their names regulated according to the conjunction of full moons and nakshatras, and were habitually named after the sular months in which they occurred. This change began to take place ab ut 1400 B. C., the time of the

[^13]ledingrajotesha; and from the time when the zotiacal-sign-names, "Mesha" and the esst, came into use till the present day, the general rule has been that that amantit lunar month in which the Mesha sablinti occurs, is called Chaitra, and the rest in succession.

Derivation of the Names of the Lunar Months from the Nakshatras.

Names and Gromping of the Nakshatras.

Krittikut; Rohinui
Mrigasimas; Ardrî
Punarvasu; P'ushỹa
Asleslıá: Vioh
Pûrva-Phalegnî́; Uttara-Phalguni; Itasta
(hitrù; svâti
Visâkhâ: A ourâdlhâ
Jyushthâ: Xûla
Pûurve- Ishâtlha; l'tara-Ashậĥt ; (Ahhijit)
(Abhijit); Sravana; Dhanishtbâ .
Satatảrakâ; Pûrva-Bhnumpadí; ('ftum-Bhadropadâ
Revalí; Asvinî; Rharanî

Names of the Vonths

Kârtika.
Márrgasiroba.
Pinsha.
Mấrha.
Phâlguma.
('haitra.
Vaisâkha.
Jyishtha.
Ashâdha
S'avaua.
Bhâllrapada
Asvina.
45. Adhika and kshaga masas. It will be seen from Art. 2f that the mean length of a solar month is "greater by about nine-tenths of a day than that of a lunar month, and that the true length of a solar month, according to the Sierya-Siddhanta, varies from 29 d .7 h .38 m . to 31 d .15 h .28 m . Now the moon's synodic motion, viz., her motion relative to the sum, is also irregular, and consequently all the lunar months vary in length. The variation is approximately from 29 d .7 h .20 m . to 29 d .19 h .30 m ., and thus it is clear that in a lunar month there will often be no solar sankrànti, and occasionally, though rarely, two. This will be best understood by the following table and explanation. (Sic $t .26$.

We will suppose (sce the left side of the diagram, cols. 1,2 . that the sun entered the sign Mesha, that is, that the Mesha sankranti took place, and therefore the solar month Xesha commenced,shortly betore the end of an amanta lunar month, which was accordingly named "Chaitra" in conformity with the above rule (Art. 1 . . or $\not \mathrm{ft}$); that the length of the solar month Mesha was greater than that of the following lunar month; and that the sun therefore stood in the same sign during the whole of that hunar month, entering the sign Vrishabha shortly after the begimning of the third lunar month, which was consequently named Vaisakha because the Vrishabha sankranti took place, and the solar month Vrishabha commenced, in it,-the Vrishabha sankrinti being the one next following the Mesha sankrinti. Ordinarily there is one samkinti in each lunar month, but in the present instance there was no sankranti whatever in the second lunar month lying between Chaitra and Vaisàkha.

The lunar month in which there is no sankranti is called an adhika (added or intercalated) month; while the month which is not adhika, but is a natural month because a sankranti actually. occurred in it, is called mija. i.c.. true or regular month. ${ }^{1}$ We thus have an added month between natural Chaitra and natural Vaisikha.

1 Professor Kielhorn is satisfied that the turms udhikn and nijure are quite modern, the nomenclature usually adopted in documents nod insuriptions earlier then the prosent century bring prathama (tirst) aud devitini (rcemd). 11t alluded to this in Ind Int., XX . p. 4ll. [R S $]$

The next pecularity is that when there are two sankrantis in a lunar month there is a kshapa misa, or a complete expunction of a month. Suppose, for instance, that the Vrischika sankrinti took place shortly after the beginning of the amanta lunar month Kàrttika (see the lower half of the thagram col. 2): that in the next lunar month the Dhanus-sankranti took place

shortly after it begran, and the Makara-sankranti shortly before it ended, so that there were two sankrantis in it; and that in the thard month the Kumblaa-sankrinti took place before the end of it. The lumar month in which the Kumbha-sankrinti occurred is naturally the month liagha. Thus between the natural Kirttika and the natural Magha there was onty one lunar monthinstead of two, and consefuently one is sais to be expunged.
46. Their mames. It with be seen that the gencrat brief rute (strt. ff) for naming lunar months is altogether wanting in many respects, and therefore rules had to be framed to meet the enorgency. But different rules were framed by different teachers, and so arose a diference in practice. The rule followed at present is wiven in the foltowing verse.

 12h century I 11 , ara followed in this dastam.
"The twelve lunar months, at whose first moment the sun stands in Mina and the following [signs|, are called Chaitra, and the uthers |in succession|."

According to this rute the added month in the above example (Art. 45) will be named Vaisakha, since the sun was in Mesha when it began; and in the example of the expunged month the month between the natural Kirttika and the natural Migha will be named Mirgasirsha, because the sun was in Vrischika when it commenced, and lausha will be considered as expunged.

This rule is given in a work named Kälatatio-sitechana, and is attributed to the sage Vyasa. The celebrated astronomer bhaskarachirya (A. D. II50) secms to have followed the same rule, ${ }^{1}$ and it must therefore have been in use at least as carly as the I th century A . D. As it is the general rule obtaining through most part of India in the present day we have followed it in this work.

There is another rule which is referred to in some astronomical and other works, and is attributed to the Brahma-Siddhanta. It is as follows:
"Meshâdisthe Saz̃itari yo yo misah prapûryate chàndrah| Chaitrâdyaḷ sa jñcyah pûrtida'itve 'dhimaso 'ntyah."
"That lunar month which is completed when the sun is in [the sign| Mesha etc., is to be known as Chaitra, etc. [respectively]; when there are two completions, the latter [of them] is an added month."

It will be seen from the Table given above (p. 26) that for the names of ordinary months both rules are the same, but that they differ in the case of added and suppressed months. The added month between natural Chaitra and natural Vaiśakha, in the example in Art. 75 , having ended when the sun was in Mesha, would be named "Chaitra" by this second ule, but "Vaisàkha" by the first rule, because it commenced when the sun was in Mesha. Again, the month between natural Kàrttika and natural Màgha, in the example of an expunged month, having ended when the sun was in Makara, would be named "Pausha" by this second rule, and consequently Màrgasîrsha would be expunged; while by the first rule it would be named " Hàrgasirsha" since it commenced when the sun was in Vrischika, and Pausha would be the expunged month. It will be noticed, of course, that the difference is only in name and not in the period added or suppressed. ${ }^{3}$ Both these rules should be carefully borne in mind when studying inscriptions or records earlier than $1100 \mathrm{~A} . \mathrm{D}$.
47. Their detcrmination according to trite and macan systems. It must be noted with regard to the intercalation and suppression of months, that whereas at present these are regulated by the sun's and moon's apparent motion.-in other words. by the apparent length of the solar and lunar months-and though this practice has been in use at least from A.D. 1100 and was followed by Bhaskaràchàrya, there is evidence to show that in carlier times they were regulated by the mean length of months. It was at the epoch of the celebrated astronomer Sripati. ${ }^{\text {t }}$ or about A. D. Io.40, that the change of practice took place, as evidenced by the following passage in his Siddhânta Śckhara, (quoted in the FJotisha-darpana, in A. D. 1557.)

[^14]
Madhyama-Kazi-sankrainti-prazesa-rahito bhaned adhikaht
 Madhyaś (haindro màso madhyàdhika-lakshanam chaitat

 Kuryult sphuta-mantma hi yato 'dhikalh spashta cira syàt.

"The lunar month which has no mean sun's entrance into a sign shall be a mean intercalated month. This is the definition of a mean added month. The learned Âchàryas should leave off |using| the mean added months, and should go by apparent reckoning, by which the added month would be apparent (true)."

It is clear, therefore, that mean intercalations were in use up to Sripatis time. In the $V \boldsymbol{C}$ diniga Jyotisha only the mean motions of the sun and moon are taken into account, and it may therefore be assumed that at that time the practice of regulating added and suppressed months by apparent motions was unknown. These apparent motions of the sun and moon are treated of in the astronomical Siddhantas at present in use, and so far as is known the present system of astronomy came into force in India not later than $400 \mathrm{~A} . \mathrm{D}^{1}{ }^{1}$ But on the other hand, the method of calculating the ahargana (a most important matter), and of calculating the places of planets, given in the Sirrya and other Siddhântos, is of such a nature that it seems only natural to suppose that the system of mean intercalations obtained for many centuries after the present system of astronomy came into force, and thus we find Sripati's utterance quoted in an astronomical work of the 15 th century. There can be no suppression of the month by the mean system, for the mean length of a solar month is longer than that of a mean lunar month. and therefore two mean sankràntis cannot take place in a mean lunar month.

The date of the adoption of the true (apparent) system of calculating added and suppressed months is not definitely known. Bhàskarachàrya speaks of suppressed months, and it seems from his work that mean intercalations were not known in his time (A. D. II50.) We have therefore in our Tables given mean added months up to A. D. inoo. and true added and suppressed months for the whole period covered by our Tables. ${ }^{2}$
48. For students more familiar with solar reckoning we will give the rules for the intercalation and suppression of months in another form. Ordinarily one lunar month ends in each solar month. When two lunar months end in a solar month the latter of the two is said to be an whiki (added or intercalated) month, and by the present practice it receives the name of the following natural lunar month, but with the prefix adhika. Thus in the Table on p. 25, two lunar months end during the solar month Mesha, the second of which is adhikd and receives. by the present practice, the name of the following natural lunar month. Vaisiklat. When no lunar month ends in a solar month there is a kikay masa, or expunged or suppressed month; i.c., the name of one lumar month is altogether dropped, viz., by the present practice, the one following that which would be derived from the solar month. Thus, in the Table above, nolunar month ends in the solar month Dhanus. Margasirsha is the name of the month in which the Whanus sankratiti occurs; the name Pausho is therefore expunged.

The ruke for maming natural lunar months, and the definition of, and rule for naming, added

[^15]and suppressed months, may be summed up as follows. That minta lunar month which the Mesha sankranti uccurs is called Chaitra, and the rest in succession. That amanta lunar month in which there is no sankranti is adhika and receives the name (1) of the preceding natural lunar month by the old frahma-Siddhinta rule, (2) of the following natural lunar month by the present rule. When there are two sankrintic in one aminta lunar month, the name which would be derived from the first is dropped by the old Pirathas Siddthanta rule, the name which would be derived from the second is dropped by the present rule.
49. Different risults by different Siddhintas. The use of different Sïdhantas will sometimes create a difference in the month to be intercalated or suppressed, but only when a sankranti takes place very close ${ }^{1}$ to the end of the amavasyi. Such cases will be rare. Our calculations for added and suppressed months have been made by the Siarya-Siddhantu, and to assist investigation we have been at the pains to ascertain and particularize the exact moments (given in tithi-indices, and tithis and decimals) of the sankrantis preceding and succeeding an added or suppressed month, from which it can be readily seen if there be a probability of any divergence in results if a different Siddhanta be used. The Special Tables published by Professor Jacubi in the Epigraphia Indica (Vol., II.. pp. 403 ff .) must not be relied on for calculations of added and suppressed months of Siddhintors other than the Sirya-Siddhanta. If a different Siddhinta happened to have been used by the original computor of the given Hindu date, and if such date is near to or actually in an added or suppressed month according to our Table I., it is possible that the result as worked out by our Tables may be a whole month wrong. Our mean intercalations from A. D. 300 to 1100 are the same by the original SiuryaSiddhânta, the present Sîrya-Siddhanta, and the first Airya-Siddhanta.
50. Some peculiaritics. Certain points are worth noticing in connection with our calcula. tions of the added and suppressed months for the 1600 ycars from A. D. 300 to 1900 according to the Surrya-Siddhanta.
(a) Intercalations occur generally in the 3 rd, 5 th, Sth, 1t th. 14th, 16th and 19th ycars of a cycle of 19 years. (b) A month becomes intercalary at an interval of 19 years over a certain period, and afterwards gives way generally to one of the months preceding it, but sometimes, though rarely, to the following one. (c) Out of the seven intercalary months of a cycle one or two are always changed in the next succeeding cycle, so that after a number of cycles the whole are replaced by others. (d) During our period of tGoo years the months Margasîrsha, Pausha, and Magha are never intercalary. (c) The interval between years where a suppression of the month occurs is worth noticing. In the period covered by our Tables the first suppressed month is in A.D. f_{4}, and the intervals are thus: $19,65.38,19,19,46,19,141,122,19,141,141,65,19,19,19,19,46$. $76,4^{6}, 141,141$, and an unfinished period of 78 years. At first sight there seems no regularity, but closer examination shews that the periods group themselves into three classes, viz. (i.) 19 , 38. 76 ; (ii.) 141 ; and (iii.) 122.65 and 46 years; the first of which consists of 19 or its multiples, the second is a constant, and the third is the difference between (ii.) and (i.) or between $14 t$ anda multiple of 19 . The unfinished period up to 1900 A.D. being 78 years we are led by these peculiarities to suppose that there will be no suppressed month till at earliest (122 years 二)

[^16]. .D. 19.4., and possibly mot till (1.41 years =) X.D. $1963 .{ }^{1}$ (d) Migh t is only once suppressed in Saka 139 S current, Marer 1 sitrsh.t is suppressed six times, and Pausha 18 times. No other month is suppressed.

Bhiskaricharya lays down ${ }^{2}$ that Kirttika, Màrgasirsha and Pausha only are liable to be suppressed, but this seems applicable only to the Brahma-Siddhinta of which Bhatskaracharya was a follower. He further states, "there was a suppressed month in the Saka year 974 expired, and there will be one in Saka 1115,1256 and 1378 all expired". and this also seems applicable to the Prahma-Siddhanta only. By the Sharga-Siddhinta there were suppressed months in all these years except the last one, and there was an additional suppression in Saka is ex expired.
 grandson, in his commentary on the Siddhamta-Siromani, says. "By the Sirjo-Siddhanto there will be a suppressed month in Saka $1.462,1603,1744,1885,2026,2045,2148,2167,2232,2373$, 2392, 2514, 2533, 2655, 2674, 2796 and 2815, and by the IIrya-Sidthanta ${ }^{3}$ there will be one in 1481, 1763. 190.4, 2129, 2186, 2251 (all expired)." The first four by . sury calculations agree with our results.
51. By the piemimionta scheme. Notwithstanding that the purnimanta scheme of months is and was in use in Northern India, the amanta scheme alone is recognized in the matter of the nomenclature and intercalation of lunar montls and the commencement of the luni-solar year. The following is the method adopted-first, the ordinary rule of maming a month is applied to an amanta lunar month, and then, by the purnimànta scheme, the dark fortnight of it receives the name of the following month. The correspondence of amanta and pirnimanta fortnights for a year is shown in Table II., lart i., and it will be observed that the bright fortnights have the same name by both schemes while the dark fortnights differ by a month, and thus the purnimanta scheme is always a fortnight in advance of the aminta scheme.

The samkrintis take place in definite aminta lunar months, thus the Makara-sankranti invariably takes place in aminta Pausha, and in no other month; but when it takes place in the krishapakshit of aminta l'ausha it falls in purnimanta Migha, because that fortnight is said to belong to Magha by the purnimanta scheme. If, however, it takes place in the sukla paksha. the month is Pausha by both schemes. Thus the Makara-sankrinti, though according to the aminta scheme it can only fall in Pausha, may take place either in Pausha or Magha by the purnimanta scheme; and so with the rest.

The following rules govern piruminta intercalations. Nonths are intercalated at first as if there were no purbiminta scheme, and afterwards the dark fortnight preceding the intercalated month receives, as usual, the name of the month to which the following natural bright fortnight belongs, and therefore the intercalated month also receives that name. Thus, in the example griven above (Art. 5.5), interalated amanta Vaisikia (as named by the first rule) lies between natural amanta Chaitra and natural aminta Vaisiblha. But by the purnimanta scheme the dark half of natural aminta Chatra acquires the name of matural Vassiklat then follow the two fortnights of adhika Vaisaliat; and after them comes the bright half of the (nija) natural purnimanta

[^17]Vaisàkha. Thus it happens that half of natural purnimanta Vaisikha comes before, and half after, the intercalated month. ${ }^{1}$

Of the four fortnights thus having the name of the same month the first two fortnights are sometimes called the "First l'aisikha," and the last two the "Scomd l'aisakha."

It will be seen from Table Ih., P'art i., that amanta Phatguna kp̣ishua is purniminta Chaitra krishoga. The year, however, does not begin then, but on the same day as the amanta month, i.c., with the new moon, or the beginning of the next bright fortnight.

Having discussed the lesser divisions of time, we now revert to the Ilindu year. And, first, its beginning.

bears and Cocles.

52. The Hindu Ne'u-year's Day. -In Indian astronomical works the year is considered to begin, if luni-solar, invariably with amanta Chaitra Sukla ist,-if solar with the Mesha sankrànti; and in almost all works mean Meshı sarkranti is taken for convenience of calculations. very few works adopting the apparent or truc one. At present in Bengal and the Tamil country, where solar reckoning is in use, the year, for religious and astronomical purposes, commences with the apparent Mesha-sankranti, and the civil year with the first day of the month Mesha, as determined by the practice of the country (Sec abore Art. 28). But since mean Meshasankranti is taken as the commencement of the solar year in astronomical works, it is only reasonable to suppose that the year actually began with it in practice in earlier times. and we have to consider how long ago the practice ceased.

In a Karana named Bhàsiati (A. D. 1099) the year commences with apparent Mesha sankrànti, and though it is dangerous to theorize from one work, we may at least quote it as shewing that the present practice was known as early as A. D. itoo. This date coinciding fairly well with Sripati's injunction quoted above (Art. f7) we think it fair to assume for the present that the practice of employing the mean Mesha sankranti for fixing the beginning of the year ceased about the same time as the practice of mean intercalary months.

The luni-solar Chaitridi ${ }^{2}$ year commences, for certain religious and astrological purposes, with the first moment of the first tithi of Chaitra, or Chaitra sukla pratipadia and this, of course, may fall at any time of the day or night, since it depends on the moment of new moon. But for the religious ceremonies connected with the beginning of a samvatsara (year), the sunrise of the day on which Chaitra śukla pratipadà is current at sunrise is taken as the first or opening day of the year. When this tithi is current at sunrise on two days, as sometimes happens, the first, and when it is not current at any sunrise (i.e., when it is expunged) then the day on which it ends, is taken as the opening day. For astronomical purposes the learned take any convenient

[^18]moment,-such is mean sunrise, noon, sunset, or midnight, but generally the sumrise,-on or before Chaitra sukla pratipadi, as their starting-point. ${ }^{1}$ Sometimes the beginning of the mean Chaitra sukla pratipadit is so taken.

When Chaitra is intercalary there seems to be a difference of opinion whether the year in that case is to begin with the intercalated (adhita) or natural (nija) Chaitra. For the purposes of our Table 1 . (cols. 19 to 25) we have taken the adhika Chaitra of the true system as the first month of the year.

But the year does not begin with Chaitra all over India. In Southern India and especially in Gujarat the years of the Vikrama era commence in the present day with Kirttika sukla pratipada. In some parts of Katthiàvàd and Gujaràt the Vikrama year commences with Ashạdha sukla pratipada. ${ }^{2}$ In a part of Ganjam and Orissa, the year begins on Bhadrapada sukla 12 th. (Sec ander Oinko rockoning, Art. 6.f.) The Amli year in Orissa begins on Bhadrapada sukla 12th, the Vilayati year, also in general use in Orissa, begins with the Kanya sankranti; and the Fasli year, which is luni-solar in Bengal, commences on purnimanta Ásina kṛi. ist (viz., \& days later than the Vilayatio.

In the South Malayàam country (Travancore and Cochin), and in Tinnevelly, the solar year of the Kollam era, or Kollam andu, begins with the month Chingam (Simha), and in the North Malayilam tract it begins with the month Kanni(Kanya). In parts of the Madras Presidency the Fasli year originally commenced on the ist of the solar month Âdi (Karka), but by Government order about A.D. 1800 it was made to begin on the 13 th of July, and recently it was altered again, so that now it begins on ist July. In parts of the Bombay Presidency the Fasli year begins when the sun enters the nakshatra Mrigasirsha, which takes place at present about the 5 th or 6 th offune.

Alberuni mentions (A.D. IO3O) a year commencing with Hârgasiorsha as having been in use in Sindh. Multan, and Kanouj, as well as at Lahore and in that neighbourhood; also a year commencing with Bhidrapada in the vicinity of Kashmir. ${ }^{3}$ In the Mahibhitarata the names of the months are given in some places, commencing with Mirgasirsha. (Anuśasana paràa adhyouras 106 and 100). In the Vrdinga Jyotisha the year commences with Migha sukla pratipada.
 but are named in succession from a list of 60 names, often known as the "Brihaspati samuatsara chakra," " the wheel or cycle of the years of Jupiter. Each of these years is called a "smmatsara." The word "sanvatsara" generally means a year, but in the case of this cycle the year is not cqual tu a solar year. 1t is regulated by Jupiter's mean motion; and a Jovian year is the period during which the planct Jupiter enters one sign of the zodiac and passes completely through it

[^19]with reference to his mean motion. The cycle commences with Prablava. See Table i., cols. 6. 7 . and Table XII.
54. The duration of a Bàrhaspatya samvatsara, according to the Sary'a-Siddhânta, is about 361.026721 days, that is about 4.232 days less than a solar year. If, then, a samwatsara begins exactly with the solar year the following samvatsara will commence 4.232 days before the end of it. So that in each successive year the commencement of a samvatsara will be 4.232 days in advance, and a time will of course come when two samvatsaras will begin during the same solar ycar. For example, by the Sirya-Siddhinta with the bija, Irabhava (No. I) was current at the beginning of the solar year LSaka 1779. Vibhava (No. 2) commenced 3.3 days after the begimning of that year, that is after the Mesha sankranti; and Sukla (No. 3) began 361.03 days after Vibhava, that is 364.3 days after the beginning of the year. Thus Vibhava and Sukla both began in the same solar year. Now as Prabhava was current at the beginning of Saka 1779. and Sukla was current at the beginning of Saka 1780 , Vibhava was expunged in the regular method followed in the North. Thus the rule is that when two Barhaspatya samvatsaras begin during one solar year the first is said to be expunged, or to have become kshaja; and it is clear that when a samvatsara begins within a period of about 4.232 days after a Mesha sañkrânti it will be expunged.

By the Sûrya Siddhanta $85_{\frac{65}{65}}^{\frac{5}{2}}$ solar ycars are equal to $86_{\frac{25}{65}}$ Jovian years. So that one expunction is due in every period of $85 \frac{6 i}{211}$ solar years. But since it really takes place according to the rule explained above, the interval between two expunctions is sometimes 85 and sometimes 86 years.
55. Generally speaking the samvatsara which is current at the beginning of a year is in practice coupled with all the days of that year, notwithstanding that another samvatsara may have begun during the course of the year. Indeed if there were no such practice there would be no occasion for an expunction. Epigraphical and other instances, however, have been found in which the actual samvatsara for the time is quoted with dates, notwithstanding that another samvatsara was current at the beginning of the year. ${ }^{1}$
56. l'ariations. As the length of the solar year and year of Jupiter differs with different Siddhântas it follows that the expunction of samvatsaras similarly varies.
57. Further, since a samvatsara is expunged when two samvatsaras begin in the same year, these expunctions will differ with the different kinds of year. Where luni-solar years are in use it is only natural to suppose that the rule will be made applicable to that kind of year, an expunction occurring when two samvatsaras begin in such a year; and there is evidence to show that in some places at least, such was actually the case for a time. Now the length of an ordinary luni-solar ycar (354 days) is less than that of a Jovian year (361 days), and thercfore the beginning of two consecutive samvatsaras can only occur in those luni-solar ycars in which there is an intercalary month. Again, the solar year sometimes commences with the mean Mesha-sañkrànti, and this again gives rise to a difference. ${ }^{2}$

The Jyotisha-tattia rule (given below Art. 59) gives the samvatsara current at the time of the mean, not of the apparent, Mesha-sankranti, and hence all expunctions calculated thereby must be held to refer to the solar year only when it is taken to commence with the mean Mcshasankrânti. ${ }^{s}$ It is important that this should be remembered.

[^20]58. To find the current samiotsara. The samvatsaras in our Table I., col. 7, are calculated by the Siry'a-Siddhimta without the bija up to A.D. 1500 , and with the bija from A D. 1501 to 1900 ; and are calculated from the apparent Mesha-sankranti if the samvatsara current on a particular day by some other authority is required, calculations must be made direct for that day according to that authority, and we therefore proceed to give some rules for this process.
59. Rules for finding the Barhaspatya samvatsara current on a particular day. ${ }^{1}$
a. By the Sirrya-Siddhinta. ${ }^{2}$ Nultiply the expired Kali year by 2fi. Subtract 108 from the product. Divide the result by 18000 . To the quotient, excluding fractions, add the numeral of the expired Kali year plus 27. Divide the sum by 60. The remainder, counting from Prabhava as I, is the samvatsara current at the beginning of the given solar year, that is at its apparent Mesha-sankranti. Subtract from 1 Sooo the remainder previously left after dividing by 18000 . Multiply the result by 361 , and divide the product by 18000 . Calculate for days, ghatikàs. and palas. Add 15 palas to the result. The result is then the number of day's, etc., elapsed between the apparent Mesha-sankranti and the end of the samvatsara current thereon. By this process can be found the samvatsara current on any date.

Example 1.-Wanted the samvatsara current at the beginning of Saka 233 expired and the date on which it ended. Śaka 233 expired $=$ (Table 1.) Kali 3412 expired. ${ }^{\frac{3412 \times 214-108}{24000}}=39^{17-954} \cdot 39+3412+27$ $=3478$. $\frac{3788}{60}=57 \frac{58}{60}$. The remainder is 58 ; and we have it that No. 58 Raktikshin (Tab/o ITII.) was the samvatsara current at the beginning (apparent Mesha-sankranti) of the given year. Again; ${ }_{1} 8000-17824=176 . \frac{176 \times 361}{18000}=3$ d. 31 gh. 47.2 p. Adding 15 pa. we have 3 d. 32 gh. 2.2 pa. This shews that Raktakshin will end and Krodhana (No. 59) begin 3 d. 32 gh .2 .2 pa. after the apparent Meska sankrànti. This last, by the Sûrya Siddhinta, occurred on 17th March, A.D. 311, at 27 gh .23 pa . (sce Table I., col. I3, and the Table in Art. 96), and therefore Krodhana began on the 20 th March at 59 gh .25 .2 pa., or 34.8 palas before mean sunrise on 21 st March. We also know that since Krodhana commences within four days after Mesha it will be expunged (Avt. $5+$ aboict.)
b. By the Ȧrya Siddhênta. Multiply the expired Kali year by 22. Subtract in from the product. Divide the result by 1975 . To the quotient excluding fractions add the expired Kali year +27 . Divide the sum by 60 . The remainder, counted from Prabhava as 1, is the samvatsara current at the beginning of the given solar year. Subtract from 1875 the remainder previously left after dividing by 1875 . Multiply the result by 361 . Divide the product by 1875 . Add 1 gh . 45 pa . to the quotient. The result gives the number of days, etc., that have elapsed between the apparent Mesha-sankrànti and the end of the samvatsara current thereon.

Example 2.-Required the samvatsara current at the beginning of Saka 230 expired, and the time when it ended.

Saka 230 expired $=$ Kali 3409 expired, $\frac{349 \times 29-11}{1875}=39_{1676}^{1-62} 39+3409+27=3475$, which. divided by 6o, gives the remainder 55 . Then No. 55 Durmati (Table ITh.) was current at the

1 By all these rukes the restults will be rorret within two ghatikas where the moment of the Meshasmanranti aecording to the emblhrity neel is known
? The rule for the present I'asishtha, the Sidialya Brahma, the Romatio, and tbe Soma Siddhanters is exnetly the same. That by the original Sirya-talhinta is alon similar, but in that rase the result will be incorreet by about 2 ghatihns (18 minutes). For

 1100 to 1900 The same monent for all yars between A.D. 390 mod 1100 can be fomed by the Table in Art. 96, If the Arya
 and of minuten) The Thble should be referered to

45 pa., we get 2 d .3 t gh. 55.56 pa . Add this to the moment of the Mesha sankranti as given in Table 1., cols. 13-16, viz., 16 th March, 308 A.D., Tuesday, at $4^{1} \mathrm{gh} .40 \mathrm{p}$., and we have 19th March, Friday, 13 gh .35 .56 p . after mean sunrise as the moment when Jurmati ends and Dundublii begins. Here again, since Dundubhi commences within four days of the Mesha sankrânti, it will be expunged.
c. By the Sîrya-Siddhanta with the bija to be used for y'cars after about 1500 A.D.). Multiply the expired Kali year by 117 . Subtract 60 from the product. Divide the result by 10000. To the figures of the quotient, excluding fractions, add the number of the expired Kali year plus 27. Divide the sum by 60. And the remainder, counted from l'rabhava as 1 , is the samvatsara current at the beginning of the given solar year. Subtract from toooo the remainder left after the previous division by 10000 . Multiply the difference by 361 , and divide the product by 10000 . Add 15 pa . The result is the number of days, etc., that have elapsed between the apparent Mesha sankrânti and the end of the samvatsara current thereon. ${ }^{1}$

Example.-Required the samvatsara current at the beginning of Saka 1436 expired, and the moment when it ends. Saka 1436 expired $=$ Kali 4615 expired (Table 1.). $\frac{4615 \times 115-60}{1,000}=53 \frac{9995}{100000}$ $\frac{33+6615+27}{60}=78 \frac{15}{60}$. The remainder 15 shews that Vrisha was current at the Mesha-sankrànti. $\frac{(\text { amaoo-9995 } 361}{\text { Impoin }}+15 \mathrm{p} .=3 \mathrm{~d} .47$ gh. $25.8 \mathrm{p} .+15 \mathrm{p} .=3 \mathrm{~d} .47 \mathrm{gh} .40 .8 \mathrm{p}$. Table I. gives the Neshasañkrànti as March $27 \mathrm{th}, 44 \mathrm{gh} .25 \mathrm{p} .$, Monday. $27 \mathrm{~d} .44 \mathrm{gh} .25 \mathrm{p} .+3 \mathrm{~d} .47 \mathrm{gh} .40 .8 \mathrm{p} .=31 \mathrm{~d}$. 32 gh .5 .8 p ; and this means that Vrisha ended at 32 gh .5 .8 p . after mean sunrise at Ujjain on Friday, 3 Ist March. At that moment Chitrabhànu begins, and since it began within four days of the Mesha-sankrànti. it is expunged.
d. Brihatsainhitâ and Jyotishatuttioa Rules. The rules given in the Brihatsamithitô and the Jyotishatatto a seem to be much in use, and therefore we give them here. The Jyotishatattia rule is the same as that for the Arya-Siddhanta given above, except that it yields the year current at the time of mean Mesha-sankranti, and that it is adapted to Saka years. The latter difference is merely nominal of course, as the moment of the beginning of a samvatsara is evidently the same by both. ${ }^{2}$ We have slightly modified the rules, but in words only and not in sense.

The Jyotishatattva rule is this. Multiply the current Saka year by 22. Add 4291. Divide the sum by 1875 . To the quotient excluding fractions add the number of the current Saka year. Divide the sum by 60 . The remainder, counted from Prabhava as 1 , is the samvatsara current at the beginning of the given year. Subtract the remainder left after previously dividing by 1875 from 1875. Multiply the result by 361. And divide the product by 1875. The result gives the number of days by which, according to the Arya-Siddhânta, the samvatsara ends after mean Meshasañkrânti. The mean ${ }^{3}$ Mesha-sankranti will be obtained by adding 2 d .8 gh .5 t pa. 15 vipa. to the time given in Table I., cols. 13 to 18 .

Work out by this rule the example given above under the Arya-Siddhinta rule, and the result will be found to be the same by both.

The Burihatsanilhiti rule. Multiply the expired Śaka year by 44. Add 8589. Divide the sum by 3750 . To the quotient, excluding fractions, add the number of the expired Saka year

[^21]phus 1. Divide the sum by 60 . The remainder, counted from Prabhava as I , is the samvatsara current at the beginning of the year. Subtract from 3750 the remainder obtained after the previous division by 3750 Multiply the result by 36 I , and divide the product by 3750 . This gives the number of days by which the samvatsara current at the beginning of the year will end after the Mesha sankranti. ${ }^{1}$
60. List of Expunged Samzatsaras. The following is a comparative list of expunged samvatsaras as found by different authoritics, taking the year to begin at the mean Mesha sankrânti.

List of Expunged Samvatsaras. ${ }^{2}$

First Arya-Siddhunta, Brikatsamhitu, Ratnamälä, Iyotrshatattava Rules.			Sürya-Siddhinta Rnle without bija up to 1500 A D., and with bija afterwards.			First Arya-Siddhinta. Brihatsaiuhitư, Ratnamáli, Jyotishatattara Rules.			Sürya-Siddhünta Rule witbout biga up to 1500 A. D.. and with bija afterwards.		
	A. D.	Expunged Samvatsara.		A. 1).	Espunged Samvatsara.		A. 11.	Expmored Samvatsara.		A. 11.	Expunged Samvatsara.
232	309-30	57 Rudhirodgâriu	234	311-12	59 Krodhans	1084	1161-62	19 Pâthiva	1087	1164-65	22 Sarvadhârıa
317	391-95	23 Virodhin	$319 *$	396-97	25 Khara	1169	1246-47	4.) Virodhakrit	1172*	1249-50	45 Ânanda
402	479-80	49 Râksbasa	404*	481-82	51 Pingala	1254	1331-32	11 îvara	1258	1335-36	15 Yrisl
48 \%	564-65	15 Vrisha	490	567-69	15 Târaụ	1840	1417-18	38 Krodhin	1343	1420-21	41 Plavañga
372	649-50	41 Plavaiga	575*	652-53	44 Sâdhâraut	1425	1\%02-03	4 Pramoda	1437	1514-15	16 Chitrabhânu
658	735-36	8 Bhâva	660*	737-38	10 Ithatrị	1510	1587-88	30 Humukha	1522*	1599-	42 kîlaka
743	820-21	34 Śârvari	746	823-24	37 Sobhana						
828	905-06	60 Kıbaya	831	908-09	3 Sukla	1595	1672-73	56 Dandubhi	1608	1653-86	9 Ynvan
913	990-91	26 Nandana	916*	993-94	29 Manmatha	1680	1757-58	22 Sarvadhârin	1693*	1770-71	35 Plava
999	1076-77	53 Siddharthin	1002	1079-80	36 Dundubhi	1766	1843-44	49 Rûkslasa	1779	1856-57	2 Vibhava

If we take the years to commence with the apparent Mesha-sankranti the samvatsaras expunged by Särya Siddhânta calculation will be found in Table I., col. 7; and those by the Arya Siddhinta can be found by the rule for that Siddhainta given in Art. 59 above.
61. The years of Jupiter's cycle are not mentioned in very early inscriptions. They are mentioned in the Sarra-Siddhimta. Dr. J. Burgess states that he has reason to think that they were first introduced about A.D. 349, and that they were certainly in use in A.D. 530 . We have therefore given them throughout in Table I.
62. The southom (luni-solar) sixty-year cych. The sixty-year cycle is at present in daily use in Southern India (south of the Narmadi), but there the samvatsaras are made to correspond with the luni-solar year as well as the solar; and we therefore term it the luni-solar Go-year cyele in contradistinction to the more scientific Barhaspatya cycle of the North.

1 It is not stated what Meshasankmini is meant, whother mean or appmrent. The rule is here given as anemernty

 The remblt is for the mean Mruhasmakmuti" In this form it is the same as the irym-Siddhinta or the Jyotrshotattea rule, and ran be atsily explained (S . J3. W)

2 ln this Thale the Brihatsamith rule is worked as 1 interpret it But as interpreted by others the expunctions will differ, the differeaces being in Sakn (rurrent) 231, the 56th; 994, the 52nd; 1339, the 37th.
 Table I., eot 7, being in each e日se one carliar; the rest are the same. (s 13 in)

There is evidence ' to show that the cycle of Jupiter was in use in Southern India before Saka 828 (A.D. 905 -6); but from that year, according to the dirya Siddhanta, or from Saka 831 (A.D. 908-9) according to the Siarya-Siddhanta, the expunction of the samvatsaras was altogether neglected, with the result that the 6o-year cycle in the south became luni-solar from that year. At present the northern samvatsara has advanced by 12 on the southern. There is an easy rule for finding the samvatsara according to the luni-solar cycle, viz., add it to the current Saka year, and divide by 60 ; the remainder is the corresponding luni-solar cycle year. It must not be forgotten that the samvatsaras of Jupiter's and the southern cycle, are always to betaken as current years, not expired.
63. The taidie yeur cycle of $\mathscr{F u p i t e r}$. There is another cycle of Jupiter consisting of twelve samvatsaras named after the lunar months. It is of two kinds. In one, the samvatsara begins with the heliacal rising ${ }^{2}$ of Jupiter and consists of about 400 solar days, one samvatsara being expunged every 12 years or so. ${ }^{3}$ In the other, which we have named the "twelve-year cycle of Jupiter of the mean-sign system", the years are similar in length to those of the sixty-year cycle of Jupiter just described, and begin at the same moment. Both kinds, though chiefly the former, were in use in early times, and the latter is often employed in modern dates, especially in those of the Kollam cra. The samvatsaras of this heliacal rising system can only be found by direct calculations according to some Siddhâhta. The correspondence of the samvatsaras of the mean-sign system with those of the sixty-year cycle are given in Table XIl. They proceed regularly.
64. The Graha-paria?itti and Oinko cycles. There are two other cycles, but they are limited to small tracts of country and would perhaps be better considered as eras. We however give them here.

The southern inhabitants of the peninsula of India (chiefly of the Madura district) use a cycle of 90 solar years which is called the Graha-parivritti. Warren has described the cycle, deriving his information from the celebrated Portuguese missionary Beschi, who lived for over forty years in Madura. The cycle consists of 90 solar years, the length of one year being 365 d . 15 gh .3 I pa. 30 vi ., and the year commences with Mesha. Warren was informed by native astronomers at Madras that the cycle consisted of the sum in days of 1 revolution of the sun, 15 of Mars, 22 of Mercury, 11 of Jupiter, 5 of Venus and 29 of Saturn, though this appears to us quite meaningless. The length of this year is that ascertained by using the original Sürya-Siddhanta; but from the method given by Warren for finding the beginning of the years of this cycle it appears that astronomers have tried to keep it as nearly as possible in agreement with calculations by the Arya-Siddhanta, and in fact the year may be said to belong to the Arya-Siddhanta. The cycle commenced with Kali 3079 current (B. C. 24) and its epoch, i.c., the Graha-parivṛitti year o current ${ }^{4}$ is Kali 3078 current (B. C. 25).

1 See Corpus Inscrip. Indic., Vol. 111., p. S0, note; Ind. Antiq., XVII., p. 142.
2 The beliacal rising of a superior planet is its first risible rising after its conjunctions with the sun, i,e, when it is at a sufficient distance from the sun to be firsi sion on the horizon at its rising in the morning before sunrise, or, in the case of an inferior planet (Mercury or Venus), at its setting in the evening after sunset. For Jupiter to he visible the sun must be abont 11° below the horizon. R. S.]

3 It is fully described by me in the Indian Antiqnary, vol. XVII [S. B D.

+ In practice of course the word "current" cannot be applied to the year 0 , but it is applied here to distinguish it from the year 0 eomplete or expired, which means year 1 rimsent. We use the word "epoch" to mean the year 0 corrent. The epoch of an era given in a year of another era is useful for turbisg years of one into years of another era. Thus, by adding 3078 (the umber of the Kali year rorrespouding to the Graha-pariwritti cycle epock) to a Graha-parivritti year, we can get the equivalent hali yar; and by subtracting the same from a hali year we get the correspondiug Graha-parivritti year.

To find the year of the Graha-parivritti cycle, add 72 to the current Kali-year, 11 to the current Saka year, or 24 or 23 to the A.D. year, viz., 24 from Mesha to December 31st, and 23 from January 1 st to Mesha; divide by 90 and the remainder is the current year of the cycle.

The Onko ${ }^{1}$ cycle of 59 luni-solar years is in use in part of the Ganjam district of the Madras l'residency. Its months are purnimanta, but it begins the year on the 12 th of Bhadrapada-suddha, ${ }^{2}$ calling that day the 12 th not the 1 st. In other words, the year changes its numerical designation every 12 th day of Bhâdrapada-śuddha. It is impossible as yet to say decidedly when the Onko reckoning commenced. Some records in the temple of Jagannātha at Puri (perfectly valueless from an historical point of view) show that it commenced with the reign of Subhannideva in 319 A.D., but the absurdity of this is proved by the chronicler's statement that the great Mughal invasion took place in 327 A.D. in the reign of that king's successor. ${ }^{3}$ Some say that the reckoning commenced with the reign of Chodaganga or Chōrganga, the founder of the Gāngavaninsa, whose date is assigned usually to 1131-32 A.D., while Sutton in his History of Orissa states that it was introduced in 1580 A.D. In the zamindari tracts of Parlakimeḍi, Peddakimeḍi and Chinnakimedi the Oriko Calendar is followed, but the people there also observe each a special style, only differing from the parent style and from one another in that they name their years after their own zamindars. A singular fcature common to all these four kinds of regnal years is that, in their notation, the years whose numeral is 6 , or whose numerals end with 6 or o (except 10), are dropped. ${ }^{*}$ For instance, the years succecding the 5 th and 19 th Onkos of a prince or zamindar are called the 7 th and 2 ist Onikos respectively. It is difficult to account for this mode of reckoning; it may be, as the people themselves allege, that these numerals are avoided because, according to their traditions and śastras, they forcbode evil, or it may possibly be, as some might be inclined to suppose, that the system emanated from a desire to exaggerate the length of each reign. There is also another unique convention according to which the Onko years are not counted above 59, but the years succeeding 59 begin with a sccond series, thus "second 1 ", " second 2 ", and so on. It is also important to note that when a prince dies in the middle of an Onko year, his successor's ist Onko which cummences on his accession to the throne, does not run its full term of a ycar, but ends on the 11th day of Bhadrapada-siuddha following; consequently the last regnal year of the one and the first of the other together occupy only one year, and one year is dropped in effect. To find, therefore, the English equivalent of a given Onko year, it will be necessary first to ascertain the style to which it relates, i.e., whether it is a Jagannātha Onko or a Parlakimedi Oǹko, and so on ; and secondly to value the given year by excluding the years dropped (namely, the ist - possibly, the Gth, 16 th, 20 th, 26 th, 30 th, 36 th, 40 th, 46 th, $50 t h, 56$ th). There are lists of Orissa princes available, but up to 1797 A.D. they would appear to be perfectly inauthentic. ${ }^{5}$ The list from

1 Or Arkik.
2 On the llth according to some, but all the evidene tunds to shew that the year begins on the $12 h_{\text {h }}$.
${ }^{3}$ The real date of the Mahammadan invasion neems to be 1568 A.D. (.I. A S. B. for 1883, LII., p. 233, note). The insasion alloded t" is evidently that of the "Yavanas", but as to these dates these temple chroniches most never be believed. (R, S]

1 Some say that the first year is also dropped, simbiarly; but this appears to be the result of a misunderstanding, this
 yeare abd every fear that has a 6 or a 0 in it tue omatted", so that the 37 th Ouhu of the reign of Ramachandra is really his 2 sth
 bewn mabled about the lient two yearb.
"S.well's sketch of the Dynasties of Southern India. P. Git Archrological Surrey of Southerm India, vol. II.. p. 204
that date forwards is reliable, and below are given the names of those after whom the later Onko years have been numbered, with the English dates corresponding to the commencement of the and Onkos of their respective reigns.

$P A R T 11$.

THE VARIOUS ERAS.
65. General remarts. Different eras have, from remote antiquity, been in use in different parts of India, having their years lumi-solar or solar, commencing according to varying practice with a given month or day; and in the case of luni-solar years, having the months calculated variously according to the amànta or puruimànta system of pakshas. (Art. I2 aboic). The origin of some eras is well known, but that of others has fallen into obscurity. It should never be forgotten, as explaining at once the differences of practice we observe, that when considering "Indian" science we are considering the science of a number of different tribes or nationalities, not of one empire or of the inhabitants generally of one continent.
66. If a number of persons belonging to one of these nationalities, who have been in the habit for many years of using a certain era with all its peculiarities, leave their original country and settle in another, it is natural that they should continue to use their own era, notwithstanding that another era may be in use in the country of their adoption; or perhaps, while adopting the new era, that they should apply to it the pecularities of their own. And aice aersâa it is only natural that the inhabitants of the country adopted should, when considering the peculiarities of the imported era, treat it from their own stand-point.
67. And thus we actually find in the panchangs of some provinces a number of other eras embodied, side by side with the era in ordinary use there, while the calendar-makers have treated them by mistake in the same or nearly the same manner as that of their own reckoning. For instance, there are extant solar panchàngs of the Tamil country in which the year of the Vikrama era is represented as a solar Meshàdi year. And so again Śaka years are solar in Bengal and in the Tamil country, and luni-solar in other parts of the country. So also we sometimes find that the framers of important documents have mentioned therein the years of several eras, but have made mistakes regarding them. In such a case we might depend on the dates in the document if we knew exactly the nationality of the authors, but very often this cannot be discovered, and then it is obviously unsafe to rely on it in any sense as a guide. This point should never be lost sight of.
68. Another point to be always borne in mind is that, for the sake of convenience in calculation a year of an era is sometimes treated differently by different authors in the same province, or indeed even by the same author. Thus, Ganeśa Daivajna makes Saka years begin
with Chaitra sukla pratipadia in his Grahalaghaza (A.D. 1520), but with mean Mesha sankrinti in his Tithichintamani (A.D. 1525.)
69. It is evident therefore that a certain kind of year, c.g., the solar or luni-solar year, or a certain opening month or day, or a certain arrangement of months and fortnights and the like. cannot be strictly defined as belonging exclusively to a particular era or to a particular part of India. We can distinctly affirm that the eras whose luni-solar years are Chaitrâdi (i.e., beginning with Chaitra sukla pratipadà) are always Meshàdi (beginning with the Mesha sankrànti) in their corresponding solar reckoning, but beyond this it is unsafe to go.
70. Current and expired years. It is, we believe, now generally known what an "expired" or "current" year is, but for the benefit of the uninitiated we think it desirable to explain the matter fully. Thus; the same Saka year (A.D. 1894) which is numbered 1817 vartamana, or astronomically current, in the panchings of the Tamil countries of the Madras Presidency, is numbered 1816 gata (" expired ") in other parts of India. This is not so unreasonable as Europeans may imagine, for they themselves talk of the third furlong after the fourth mile on a road as "four miles three furlongs" which means three furlongs after the expiry of the fourth mile, and the same in the matter of a person's age ; and so September, A.D. 1894, (Saka 1817 current) would be styled in India "Śaka 1816 expired, September", equivalent to "September after the end of Saka 1816 " or "after the end of 1893 A.D". Moreover, Indian reckoning is based on careful calculations of astronomical phenomena, and to calculate the planetary conditions of September, 1894, it is necessary first to take the planetary conditions of the end of 1893, and then add to them the data for the following nine months. That is, the end of 1893 is the basis of calculation. It is always necessary to bear this in mind because often the word gata is omitted in practice, and it is therefore doubtful whether the real year in which an inscription was written was the one mentioned therein, or that number decreased by one. ${ }^{1}$

In this work we have given the corresponding years of the Kali and Saka eras actually current, and not the expired years. This is the case with all eras, including the year of the Tikrama ${ }^{2}$ era at present in use in Northern India.
71. Descrittion of the seiterel eras. In Table 11., Part iii., below we give several cras, chicfly those whose epoch is known or can be fixed with certainty. and we now proceed to describe them in detail.

The Kali. Yuga.-The moment of its commencement has been already given (Art. 16 aboite). Its years are both Chaitradi (honi-solar) and Meshadi (solar.) It is used both in astro-

[^22]nomical works and in pañchangs. In the latter semetimes its expired years, sometimes current years are given, and sometimes both. It is not often used in epigraphical records. ${ }^{1}$

Saptarshi-Kala.-This era is in use in Kashmir and the neighbourhood. At the time of Alberuni (1030 A.D.), it appears to have been in use also in Multan and some other parts. It is the only mode of reckoning mentioned in the Raja-Tarangini. It is sometimes called the "I Lau-kika-Kala" and sometimes the "Sistra-Kala". It originated on the supposition that the seven Rishis (the seven bright stars of Ursa Major) move through one nakshatra (27 th part of the ecliptic) in 100 years, and make one revolution in 2700 years; the cra consequently consists of cycles of 2700 years. But in practice the hundreds are omitted, and as soon as the reckoning reaches ioo, a fresh hundred begins from 1. Kashmirian astronomers make the era, or at least one of its cycles of 2700 years, begin with Chaitra sukla ist of Kati 27 current. Disregarding the hundreds we must add 47 to the Saptarshi year to find the corresponding current Saka year, and 24-25 for the corresponding Christian year. The years are Chaitràdi. Dr. F. Kiethorn finds ${ }^{2}$ that they are mostly current years, and the months mostly purnimànta.

The Vikrama era.-In the present day this era is in use in Gujarat and over almost all the north of India, except perhaps Bengal. ${ }^{3}$ The inhabitants of these parts, when migrating to other parts of India, carry the use of the cra with them. In Northern India the year is Chaitràdi, and its months pùrnimànta, but in Gujaràt it is Kirttikàdi and its months are amànta. The settlers in the Madras Presidency from Northern India, especially the Màrvàdis who use the Vikrama year, naturally begin the year with Chaitra sukla pratipada and employ the pùrnimànta scheme of months; while immigrants from Gujaràt follow their own scheme of a Kàrttikàdi amànta year, but always according to the Vikrama era. In some parts of Kàthiàvàd and Gujaràt the Vikrama era is Âshàdhàdi ${ }^{4}$ and its months amànta. The practice in the north and south leads in the present day to the Chaitràdi pûrụimànta Vikrama year being sometimes called the "Northern Vikrama," and the Kàrttikàdi amànta Vikrama year the "Southern Vikrama."

The correspondence of these three varieties of the Vikrama era with the Saka and other eras, as well as of their months, will be found in Table II., Parts ii. and iii.

Prof. F. Kielhorn has treated of this era at considerable length in the Ind. Antiq., vols. XiX. and XX., and an examination of 150 different dates from 898 to 1877 of that cra has led him to the following conclusions (ibid., M.1., p. igs ff./.
(I) It has been at all times the rule for those who use the Vikrama era to quote the expired years, and only exceptionally ${ }^{\text {j }}$ the current year.
(2) The Vikrama era was Kàrtikidi from the beginning, and it is probable that the change which has gradually taken place in the direction of a more general use of the Chaitràdi year was owing to the increasing growth and influence of the Saka era. Whatever may be the practice in quite modern times, it seems certain that down to about the 1.4th century of the Vikrama era both kinds of years, the Kàrttikaidi and the Chaitràdi, were used over exactly the same tracts of country, but more frequently the Kàrttikidi.
(3) While the use of the Kàrtikàdi year has been coupled with the purnimànta as often as with the

1 Corpus Inserip. Ind., Vul. III.. Introduction, 1.69 , note.
2 Ind. Ant., Vol. XX., p. 149 ff .
3 In Bengàli panchângs the Vikrama Samvat, or Sambat, is given along with the saka year, and, like the North-Indian Vikrama Samvat, is Chaitradi purnimânta.

4 See Ind Ant., rol. XTII., p. 93 ; also note $3, \mathrm{p} 31$, and connected Text.
5 See, however, note 2 on the previons page.
amanta scheme of months, the Chaitràdi year is found to be more commonly joined with the purnimanta scheme: but neither scheme can be exclusively connected with either the Kàrtikàdi or Chaitraidi year.

The era was called the "Malava" era from about A.J. 450 to 850 . The earliest known date containing the word "Vikrama" is Vikrama-samvat 898 (about A.D. 840); but there the era is somewhat vaguely described as "the time called Vikrama"; and it is in a poem composed in the Vikrama year 1050 (about A.I). 992) that we hear for the first time of a king called Vikrama in connection with it. (See Ind. Antiq., XX., p. 404).

At the present day the Vikrama era is sometimes called the "Vikrama-samvat ", and sometimes the word "samvat" is used alone as meaning a year of that era. But we have instances in which the word "samvat" (which is obviously an abbreviation of the word samiatsara, or year) is used to denote the years of the Saka, Simha, or Valablii eras ${ }^{1}$ indiscriminately.

In some native panchanigs from parts of the Madras presidency and Mysore for recent years the current Vikrama dates are given in correspondence with current Saka dates; for example, the year corresponding to A.D. 1893-94 is said to be Saka 1816, or Vikrama 1951. (Sef remarks on the Śaka era above.)

The Christian era. This has come into use in India only since the establishment of the English rule. Its years at present are tropical solar commencing with January ist, and are taken as current years. January corresponds at the present time with parts of the luni-solar amânta months Mârgasîrsha and Pausha, or Pausha and Màgha. Before the introduction of the new style, however, in 1752 A.D., it coincided with parts of amànta Pausha and Màgha, or Màgha and Phàguna. The Christian months, as regards their correspondence with luni-solar and solar months, are given in Table 11., Part ii.

The Saka cra.-This era is extensively used over the whole of India; and in most parts of Southern India, except in Tinnevelly and part of Malabar, it is used exclusively. In other parts it is used in addition to local eras. In all the Karanas, or practical works on astronomy it is used almost exclusively. ${ }^{2}$ Its years are Chaitràdi for luni-solar, and Meshàdi for solar. reckoning. Its months arc puruimanta in the North and amanta in Southern India. Current years are given in some panchangs, but the expired years are in use in most ${ }^{3}$ parts of lndia.

The Chadi or Kalachuri cra.-This era is not now in use. Prof. F. Kielhorn. examining the dates contained in ten inscriptions of this era from 793 to 934 . 4 has come to the conclusion

1 See Ind. Ant., vol XII., pp 213, 293; X1., pr. 242 .tl
2 I have seen only two examples in which authors of Karanas have used any other era along with the Saka The anthor of the Rima-vinoda gives, as the starting point for ealculations, the Aktar year 35 tugether with the saka year, 1512 (expircl), and the author of the Phattesúhaprukiser fixes as its starting-pmint the 48 th year of "Phatestha" coupled with the Saka year l620. [S. 13 1).]

3 Certain Telugn (luni-solar) and Tamb (solar) pañhangs for the last few years, which 1 have promed, and which were printed at Jadras and are elenrly in ane in that leresidency, as well as a Ganarese pañehâing for A. 1), 1493, (Sakî 1816 current,
 doubt whether the authors of the panchings are themselves arguanted with the distinction betwen so-called curcont and expred years. For instance, there is a panthang annually preparel by Mr. Apua Aygaigar, a resident of kanjnuir to the Tanjore histrict, which tupears to be in general use in the Tamil conutry, und on that for the selar Mrshati year corresponding to 1 s 8 z - 85 be uses the espired saka year, fallong this $[809$, whibe in those for two other yours that 1 haw seen the current saka gear is used 1 have conversed with sewral Thmil mentlemen at loman, and learn from them that in their part of lodia the generahy of prople are acquanted only with the nume of the aamvatara of the $60-\mathrm{ye}$ ar ercle, and give no nomerical value to the gears. Where the yearare numbered however, the expired sear is in gederal use. I am therefore inclined to beliese that the soeralked current suka years

that the ist day of the ist current Chedi year corresponds to Asvina sukla pratiparda of Chaitrâdi Vikrama 306 current, (Saka 171 current, 5 th Sept., A.I). 248); that consequently its years are Ásinàd; that they are used as current years; that its months are pirnimânta; and that its epoch, i.e., the beginning of Chedi year o current, is A. 1. 247-48.

The era was used by the Kalachuri kings of Western and Central India, and it appears to have been in use in that part of India in still earlier times.

The Gupta era.-This cra is also not now in use. Dr. Fleet has treated it at great length in the introduction to the Corpus. Inscrip. Ind. (Vol. III, "Gupta Inscriptions"), and again in the Indian Antiquary (Vol. XX., pp. 376 ff .) His examination of dates in that cra from 163 to 386 leads him to conclude that its years arc current and Chaitràdi; that the months are pùrnimànta; and that the epocl, i.c., the beginning of Gupta Samvat o current, is Sakia 242 current (A. D. 319-20). The era was in use in Central India and Nepal, and was used by the Gupta kings.

The Valabhi era.-This is merely a continuation of the Gupta era with its name changed into "Valabhi." It was in use in Katthiàvậ and the neighbourhood, and it seems to have been introduced there in about the fourth Gupta century. The beginning of the year was thrown back from Chaitra sukla ist to the previous Karttika śukla ist, and therefore its epoch went back five months, and is synchronous with the current Kârttikidi Vikrama year 376 (A.D. 318 - 19 , Saka 241-42 current). Its months seem to be both amànta and pùrnimanta.

The inscriptions as yet discovered which are dated in the Gupta and Valabhi era range from the years 82 to 945 of that era.

The Bengali San.-An era named the "Bengali San" (sometimes written in English "Sen ") is in use in Bengal. It is a solar year and runs with the solar Saka year, beginning at the Mesha sankrànti; but the months receive lunar-month names, and the first, which corresponds with the Tamil Chaitra, or with Mesha according to the general reckoning, is here called Vaisakha, and so on throughout the year, their Chaitra corresponding with the Tamil Phàlguna, or with the Mina of our Tables. We treat the years as current ones. Bengali San i 300 current corresponds with Saka 1816 current (A.D. I 893-94.) It epoch was Saka 516 current, A.D. 593-94. To convert a Bengali San date into a Saka date for purposes of our Tables, add 516 to the former year, which gives the current Saka solar year, and adopt the comparison of months given in Table II., Part. ii., cols. 8, 9.

The l'ilayati year.-This is another solar year in use in parts of Bengal, and chiefly in Orissa; it takes lunar-month names, and its epoch is nearly the same as that of the "Bengali San "', viz., Śaka $515-16$ current, A.D. $592-93$, But it differs in two respects. First, it begins the year with the solar month Kanyà which corresponds to Bengal solar Âsvina or Ássin. Secondly, the months begin on the day of the sankrànti instead of on the following (2nd) or 3rd day (see Art. 28, the Orissa Rule).

The Amli Era of Orissa-This era is thus described in Giriśa Chandra's "Chronolegical Tables" (preface, p. xvi.): "The Amli commences from the birth of lndradyumna, Rajà of Orissa. on Bhadrapada sukla 12 th, and each month commences from the moment when the sun enters a new sign. The Amli San is used in business transactions and in the courts of law in Orissa." ${ }^{1}$

1 The Vilayati era, as given in some Bengal Guvernment annual chronologiral Tables, and in a Reusali pañebâing pribted is Calcutta that I have seen, is made identical with this Amli era in almost every respect. exept that its months are made to commence civilly in accordance with the second variety of the midnight rule (Art. 28). But facts nerm to be that the vilatati year commences, not on lunar Bhâdrapada sukla 12th, but with the Kanyâ sankranti, while the Amli year dues begin on lunar Bhadrapada sukla 12th. It may be remarked that Warren writes-in A. I) I 825 -(Kallasankalik, Tables p. WY.) that the "Yilaity rear is reckoned from the lst of the krishna paksha in Chaitra", aud that its numerical designation is the same with the Bengali San. [S. B. I).]

It is thus luni-solar with respect to changing its numerical designation, but solar as regards the months and days. But it seems probable that it is really luni-solar also as regards its months and days.

The Kanyà sankrànti can take place on any day from about 11 days previous to lunar Bhidrapada sukla 12 th to about is days after it. With the difference of so many days the epoch and numerical designation of the $A m l i$ and Viliyati years are the same.

The Fasali yoar.-This is the harvest year introduced, as some say, by Akbar, originally derived from the Muhammadan year, and bearing the same number, but beginning in July. lt was, in most parts of India, a solar year, but the different customs of different parts of India caused a divergence of rechoning. Its epoch is apparently A. II. 963 (A.1). 1556), when its number coincided with that of the purely lunar Muhammadan year, and from that date its years have been solar or lunisolar. Thus (A.H.) $963+337$ (solar years) $=1300$, and (A. D.) $1556+337=1893$ A.D., with a part of which year Fasali 1300 coincides, while the same year is A.H. izıo. The era being purely official, and not appealing to the feelings of the people of India, the reckoning is often found to be loose and unreliable. In Madras the Fasali year originally commenced with the 1 st day of the solar month $\hat{A} d i$ (Karka), but about the year 1800 A.D. the British Government, finding that this date then coincided with July 13 th, fixed July 13 th as the permanent initial date; and in A.D. 1855 altered this for convenience to July 1st. the present reckoning. In parts of Bombay the Fasali begins when the sun enters the nakshatra Mṛigasirsha, viz., (at present) about the 5 th or 6 th June. The Bengàli year and the Vilayatí year both bear the same number as the Fasali year.

The names of months, their periods of beginning, and the serial number of days are the same as in the Hijra year, but the year changes its numerical designation on a stated solar day. Thus the year is already a solar year, as it was evidently intended to be from its name. But at the present time it is luni-solar in Bengal, and, we believe, over all North-Western India, and this gives rise to a variety, to be now described.

The huni-solar Fasali year.-This reckoning, though taking its name from a Muhammadan source, is a purely Hindu year, being luni-solar, purnimànta, and Ávinadi. Thus the luni-solar Fasali year in lengal and N. W. India began (pùrṇimànta Âsvina kṛishṇa pratipadà, Saka 1815 current =) Sept. 7th, 1882. A peculiarity about the reckoning, however, is that the months are not divided into bright and dark fortnights, but that the whole runs without distinction of pakshas. and without addition or expunction of tithis from the ist to the end of the month, beginning with the full moon. Its epoch is the same as that of the Vilayati year, only that it begins with the full moon next preceding or succeeding the Kanyà sankrinti, instead of on the samkrinti day.

In Southern India the Fasali year 1302 began on June 5 th, 1892 . in Bombay, and on July ist, 1892, in Madras. It will be seen, therefore, that it is about two years and a quarter in advance of leengal.

To convert a luni-solar Bengali or N. W. Fasali date, approximately, into a date easily workable by our Tables, treat the year as an ordinary luni-solar purnimanta year; count the days after the 15 th of the month as if they were days in the sukla fortnight, 15 being deducted from the given figure; add 515 to make the year correspond with the Sakit year, for dates between Asvina ist and Chaitra $15 \operatorname{th}_{1}(=$ amanta Bhadrapada krishua ist and amanta Phalguna krishata 3oth)—and 516 between Chaitra 15 th and Asvina ist. Thus, let Chaitra 25 th 1290 be the given date. The 25 th should be converted into sukla roth; adding 516 to 1290 we have 1806 , the equivalent Saka year. The corresponding Saka date is therefore amanta Chatra sukla roth.

1806 current. From this the conversion to an A.1). date can be worked by the Tables. For all exact equivalent the sankrinti day must be ascertained.

The Mahratha Sur-san or Shahirsan. - This is sometimes called the Mrabi-san. It was extensively used during the Mahratta supremacy, and is even now sometimes found, though rarely. It is nine years behind the Frasali of the Dakhan, but in other respects is just the same; thus, its year commences when the sun enters the nakshatra Mrigasirsha, in which respect it is solar, but the days and months correspond with Hijra reckoning. It only diverged from the Hijra in A.D. 1344, according to the best computation, since when it has been a solar year as described above. On May 15th, A D. 1344, the Hijra year 745 began. But since then the Shahûr reckoning was carried on by itself as a solar year. To convert it to an A.D. year, add 599.

The Harsha-Käla.-This era was founded by Ilarshavardhana of Kanauj, ${ }^{1}$ or more properly of Thaṇesar. At the time of Alberuni (A.I). 1030) it was in use in Mathurà (Muttra) and Kanauj. Its epoch seems to be Saka 529 current, A.D. Go6-7. More than ten inscriptions have been discovered in Nepal ${ }^{2}$ dated in the first and second century of this era. In all those discovered as yet the years are qualified only by the word "samvat ".

The Màgri-San.-This era is current in the District of Chittagong. It is very similar to the Bengali-san, the days and months in each being exactly alike. The Mâgi is, however, 45 years behind the Bengali year, ${ }^{3}$ e.g.. Mâgi $1200=$ Bengali 1245 .

The Kollam cra. or cra of Paraśurama. - The year of this era is known as the Kollam andu. Kollam (anglicé Quilon) means "western", ându means "a year". The era is in use in Malabar from Mangalore to Cape Comorin, and in the Tinnevelly district. The year is sidereal solar. In North Malabar it begins with the solar month Kanni (Kanyà), and in South Malabar and Tinnevelly with the month Chingam (Sinha). In Malabar the names of the months are sign-names, though corrupted from the original Sanskrit; but in Tinnevelly the names are chiefly those of lunar months, also corrupted from Sanskrit, such as Sittirai or Chittirai for the Sanskrit Chaitra, corresponding with Mesha, and so on. The sign-names as well as the lunar-month names are given in the pañhàngs of Tinnevelly and the Tamil country. All the names will be found in Table II., Part ii. The first Kollam àndu commenced in Kali 3927 current, Śaka 748 current, A.D. $825-26$, the epoch being Saka $747-48$ current, A.D. 824-25. The years of this era as used are current years, and we have treated them so in our Tables.

The era is also called the "era of Paraśuràma", and the years run in cycles of 1000 . The present cycle is said to be the fourth, but in actual modern use the number has been allowed to run on over the 1000, A.D. I894-95 being called Kollam 1070. We believe that there is no record extant of its use earlier than A.D. 825, and we have therefore, in our Table I., left the appropriate column blank for the years A.D. $300-825$. If there were really three cycles ending with the year 1000 , which expired A.D. $824-25$, then it would follow that the Parasurama, or Kollam, era began in Kali 1927 current, or the year 3528 of the Julian period. '

The Nezâr era. This era was in use in Nepal up to A.D. 1768, when the Saka cra

[^23]was introduced. ' Its years are Kirttikidi, its months aminta, and its epoch (the beginning of the Nevàr year o current) is the Kàrtikidi Vikrama year 936 current, Saka 80 - - 2 current, A.D. 878-79. Dr. F. Kiethorn, in his Indian Antiquary' paper on the "Epoch of the Newàr era" ${ }^{2}$ has come to the conclusion that its years are generally given in expired years, only two out of twenty-five dates examined by him, running from the 235 th to the 995 th year of the era, being current ones. The era is called the "Nepàl era" in inscriptions, and in Sanskrit manuscripts; "Nevàr" seems to be a corruption of that word. Table 1I., Part iii., below gives the correspondence of the years with those of other eras.

The Châlukya cra. This was a short-lived era that lasted from Saka 998 (A.D. 1076) to Saka 1084 (A.D. 1162) only. It was instituted by the Chàlukya king Vikramâditya Tribhuvana Malla, and seems to have ceased after the defeat of the Eastern Chàlukyas in A.D. II 62 by Vijala Kalachuri. It followed the Saka reckoning of months and pakshas. The epoch was Saka 998-99 current. A.D. 1075-76.

The Simka Samtat.-This era was in use in Katthiàvạ̀ and Gujaràt. From four dates in that era of the years 32, 93, 96 and 151, discussed in the Indian Antiquary (Vols. XVIII. and $\mathbb{X I X}$. and elsewhere), we infer that its year is luni-solar and current ; the months are presumably amànta, but in one instance they seem to be pùrpimânta, and the year is most probably Âshaḍhâdi. It is certainly neither Kârtikàdi nor Chaitràdi. Its epoch is Saka 1036-37 current, A.D. III3-14.

The Lakshmana Sena era.-This era is in use in Tirhut and Mithila. but always along with the Vikrama or Saka year. The people who use it know little or nothing about it. There is a difference of opinion as to its epoch. Colebrooke (A.D. 1796) makes the first year of this era correspond with A.D. 1105 ; Buchanan (A.D. I810) fixes it as A.D. 1105 or 1106 ; Tirhut almanacs, however, for the years between A.D. 1776 and 1880 shew that it corresponds with A.D. 1108 or 1109 . Buchanan states that the year commences on the first day after the full moon of the month Áshàḍa, while Dr. Rajendra Làl Mitra (A.D. 1878) and General Cunningham assert that it begins on the first Màgha badi (Màgha krishụa Ist). ${ }^{3}$ Dr. F. Kielhorn, examining six independent inscriptions dated in that era (from A.D. II94 to 1551), concludes ${ }^{\text {t }}$ that the year of the era is Karttikàdi ; that the months are amànta; that its first year corresponds with A.D. 1119-20, the epoch being A.D. III8-19, Saka 1041-42 current; and that documents and inscriptions are generally dated in the expired year. This conclusion is supported by Abul Fazal's statement in the Akbarnâma (Saka 1506, A.D. 1584). Dr. Kielhorn gives, in support of his conclusion, the equation "Laksh: sam: $505=$ Saka sam: $1546^{\prime \prime}$ from a manuscript of the Smpitituttiotmeitu, and proves the correctness of his epoch by other dates than the six first given.

The Ilàhi cra.-The "Tarikh-i Ilihihi," that is "the mighty or divine era." was established by the emperor Akbar. It dates from his accession, which, according to the Tabakiat-i-Akbari, was Friday the 2nd of Rabî-us-sanîi, A.11. 963, or 14 th February, ${ }^{5} 1556$ (O. S.), Saka 1478 current. It was employed extensively, though not exchusively on the coins of Akbar and Jahangir, and appears to have fallen into disuse carly in the reign of Shàh-Jahàn. According to Abûl Fazal. the days and months are both natural solar, without any intercalations. The names of the months and days correspond with the ancient Persian. The months have from 29 to 30 days each.

[^24]There are no weeks, the whole 30 days being distinguished by different names, and in those months which have 32 days the two last are named roz o shab (day and night), and to distinguish one from another are called "first" and "sccond". " I Iere the lengths of the months are said to be "from 29 to 30 days cach", but in the old Persian calendar of Yazdajird they had 30 days each, the same as amongst the Parsecs of the present day. The names of the twelve months are as follow. -

1	Farwardîn	5	Mirdàd	9	Ader
2	Ardi-behisht	6	Shariùr	Io	Dêi
3	Khurdâd	7	Mihir	1I	Bahman
4	Tî̀r	8	Abân	12	lsfandarmaz

The Mahratta Raja Śaka cra. This is also called the "Rajjyabhisheka Śaka". The word "Śaka" is used here in the sense of an cra. It was established by Śivajî, the founder of the Mahratta kingdom, and commenced on the day of his accession to the throne, i.c., Jyeshtha sukla trayodaŝî (13 th) of Saka 1596 expired, 1597 current, the Ananda samvatsara. The number of the year changes every Jyeshṭha śukla trayodaśi ; the years are current; in other respects it is the same as the Southern luni-solar amànta Saka years. Its epocly is Saka 1596-97 current, A.D. 1673-74. It is not now in use.
72. Vames of Hindi and N. W. Fasali months.-Some of the months in the North of lndia and Bengal are named differently from those in the Peninsula. Names which are manifestly corruptions need not be noticed, though "Bhàdûn" for Bhâdrapada is rather obscure. But "Kuar" for Âśvina, and "Âghàn", or "Aghràn", for Màrgaśîrsha deserve notice. The former seems to be a corruption of Kumàrî, a synonym of Kanyà (二Virgo, the damsel), the solar sign-name. If so, it is a peculiar instance of applying a solar sign-name to a lunar month. "Âghân" (or "Aghrân") is a corrupt form of Agrahâyana, which is another name of Màrgaśirsha.

$$
P A R T I / I .
$$

DESCRIPTION AND EXPLANATION OF THE TABLES.

73. Table I.-Table I. is our principal and general Table, and it forms the basis for all calculations. It will be found divided into three sections. (I) Table of concurrent years; (2) intercalated and suppressed months; (3) moments of commencement of the solar and luni solar years. All the figures refer to mean solar time at the meridian of Ujjain. The calculations are based on the Sürya-Siddhânta, without the bija up to 1500 A.D. and with it afterwards, with the exception of cols. I 3 to 17 inclusive for which the Arya-Siddhâta has been used. Throughout the table the solar year is taken to commence at the moment of the apparent Mêsha sankrànti or first point of Aries, and the luni-solar year with amânta Chaitra śukla pratipadà. The months are taken as amànta.
74. Cols. I to 5.-In these columns the concurrent years of the six principal eras are

1 Prinsep's Indian Antiquities, $I I .$, Uspfiul Tables, p. 171.
given. (As to current and expired years see Art. 70 above.) A short description of eras is given in Art. 7I. The years in the first three columns are used atike as solar and luni-solar, commencing respectively with Mesha or Chaitra. (For the beginning point of the ycar see Art. 52 above.) The Vikrama year given in col. 3 is the Chaitrâdi Vikrama year, or, when treated as a solar year which is very rarely the case, the Meshâdi ycar. The Âshâdhâdi and Kàrttikâdi Vikrama years are not given, as they can be regularly calculated from the Chaitradi year. remembering that the number of the former year is one less than that of the Chaitràdi year from Chaitra to Jyeshtha or Asvina (both inclusive), as the case may be, and the same as the Chaitradi year from Ashaḍla or Kàrtika to the end of Phàguna.

Cols. \nrightarrow and 5. The eras in cols. 4 and 5 are described above (Art. 7I.) The double number is cntered in col. 4 so that it may not be forgotten that the Kollam ycar is non-Chaitrâdi or non-Meshàdi, since it commences with cither Kanni (Kanyà) or Chingam (Sinha). In the case of the Christian era of course the first year entered corresponds to the Kali, Saka or Chaitradi Vikrama year for about three-quarters of the latter's course, and for about the last quarter the second Christian year entered must be taken. The corresponding parts of the years of all these eras as well as of several others will be found in Table II., Parts ii. and iii.
75. Cols. 6 and 7.-These columns give the number and name of the current samvatsara of the sixty-year cycle. There is reason to believe that the sixty-year luni-solar cycle (in use mostly in Southern India) came into existence only from about A. D. go9; and that before that the cycle of Jupiter was in use all over India. That is to say, before A. D. 909 the samvatsaras in Southern India were the same as those of the Jupiter cycle in the North. If, however. it is found in any case that in a year previous to $\Lambda . \mathrm{D} .908$ the samvatsara given does not agree with our Tables, the rule in Art. 62 should be applied, in order to ascertain whether it was a luni-solar samvatsara.

The samvatsara given in col. 7 is that which was current at the time of the Mesha sankranti of the year mentioned in cols. 1 to 3 . To find the samvatsara current on any particular day of the year the rules given in Art. 59 should be applied. For other facts regarding the samvatsaras, sec Arts. 53 to 63 above.
76. Cols. S to 12, and Sa to 12a. These concern the adhika (intercalated) and kshaya (suppressed) months. For full particulars sce Arts. 45 to 51 . By the mean system of intercalations there can be no suppressed months, and by the true system only a few. We have given the suppressed months in italics with the suffix "Ksh" for "kshaya." As mean added months were only in use up to A.B. 1100 (Art. 77) we have not given them after that ycar.
77. The name of the month entered in col. 8 or $8 a$ is fixed according to the first rule for naming a lunar month (Art. f^{6}), which is in use at the present day. Thus, the name Aishetha. in cols. 8 or $8 a$, shows that there was an intercalated month between matural Jyeshtha and natural Ashàdha, and by the first rule its name is " Adhika \hat{A} shạdha ", natural \hat{A} shadha being " Nija $\hat{\Lambda}$ shạ̀ha." By the second rule it might have been called Jyeshtha, but the intercalated period is the same in either case. In the case of expunged months the word "Pausha", for instance, in col. \& shows that in the lunar month between natural Kirttika and natural Miagha there were two sankrintis; and according to the rule adopted by us that lunar month is called Margasirsha, ’ausha being expunged.
78. Lists of intercalary and expunged months are given by the late Prof. K. l. Chatre in a list published in Vol. 1., No. 12 (March 1851) of a Mahrathi monthly magazine called Fömaprasâaka, formerly published in Bombay, but now discontinued; as well as in Cowasjee

Patell's "Chronolosy", and in the late Gen. Sir A. Cunningham's "Indian liras," I But in nonc of these three works is a single word said as to how, or following what authority, the calculations: were made, so that we have no guide to aid us in checking the correctness of their results.
79. An added lunar month being one in which no sankrinti of the sun occurs, it is evident that a sankranti must fall shortly before the beginning, and another one shortly after the end, of such a month, or in other words, a solar month must begin shortly before and must end shortly after the added lunar month. It is further evident that, since such is the case, calculation made by some other Siddhanta may yield a different result, even though the difference in the astronomical data which form the basis of calculation is but slight. Hence we have deemed it essential, not only to make our own calculations afresh throughout, but to publish the actual resulting figures which fix the months to be added and suppressed, so that the reader may judge in each case how far it is likely that the use of a different authority would cause a difference in the months affected. Our columns fix the moment of the sankrànti before and the sankrânti after the added month, as well as the sankrànti after the beginning, and the sankrànti before the end, of the suppressed month; or in other words, determine the limits of the adhika and hshaya màsas. The accuracy of our calculation can be easily tested by the plan shewn in Art. go below. (See also Art. $\mathcal{S S}$ below.) The moments of time are expressed in two ways, viz., in lunationparts and tithis, the former following Prof. Jacobi's system as given in Ind. Ant., Vol. XVII.

8o. Lunation-parts or, as we elsewhere call them, "tithi-indices" (or " t ") are extensively used throughout this work and require full explanation. Shortly stated a lunation-part is $\frac{1}{10020}$ th of an apparent synodic revolution of the moon (see Note 2, Art. 12 above). It will be well to put this more clearly. When the difference between the longitude of the sun and moon, or in other words, the eastward distance between them, is nil , the sun and moon are said to be in conjunction; and at that moment of time occurs (the end ot) amâz'âsyâ, or new moon. (Arts. 7.29 $a b o \sigma^{\prime} e$.) Since the moon travels faster than the sun, the difference between their longitudes, or their distance from one another, daily increases during one half and decreases during the other half of the month till another conjunction takes place. The time between two conjunctions is a synodic lunar month or a lunation, during which the moon goes through all its phases. The lunation may thus be taken to represent not only time but space. We could of course have expressed parts of a lunation by time-measure, such as by hours and minutes, or glaṭikàs and palas, or by space-measure, such as degrees, minutes, or seconds, but we prefer to express it in lunation-parts, because then the same number does for either time or space (see Art. So below). A lunation consists of 30 tithis. $\frac{1}{30}$ th of a lunation consequently represents the time-duration of a tithi or the space-measurement of 12 degrees. Our lunation is divided into 10,000 parts, and about 333 lunation-parts ($\frac{1}{10000}$ ths) go to one tithi, 667 to two tithis, 1000 to three and so on. Lunationparts are therefore styled "tithi-indices", and by abbreviation simply " t ". Further, a lunation or its parts may be taken as apparent or mean. Our tithi-, nakshatra-, and yoga-indices are apparent and not mean, except in the case of mean added months, where the index, like the whole lunation, is mean.

[^25]Our tithi-index, or " t ", therefore shows in the casc of true added months as well as clsewhere, the space-difference between the apparent, and in the case of mean intercalations between the mean, longitudes of the sun and moon, or the time required for the motions of the sun and moon to create that difference, expressed in 10,000 ths of a unit, which is a circle in the case of space, and a lunation or synodic revolution of the moon in the case of time. Briefly the tithiindex " t " shews the position of the moon in her orbit with respect to the sun, or the time nccessary for her to gain that position., $\epsilon . g$. " " 0 " is new moon, " 5000 " full moon, " 10,000 " or "o" new moon; " 50 " shews that the moon has recently (i.e., by $\frac{51}{1 . m 00}$ ths, or 3 hours 33 minutesTable A.. col. 3) passed the point or moment of conjunction (new moon); 9950 shews that she is approaching new-moon phase, which will occur in another 3 hours and 33 minutes.
81. A lunation being equal to 30 tithis, the tithi-index, which expresses the 10,000 th part of a Junation, can easily be converted into tithi-notation, for the index multiplied by 30 (practically by 3), gives, with the decimal figures marked off, the required figure in tithis and decimals. Thus if the tithi-index is 9950 , which is really 0.9950 , it is equal to ($0.9950 \times 30=29.850$
 a figure given in tithis and decimals divided by 30 expresses the same in 10,000 ths parts of a lunation.
82. The tithi-index or tithi is often required to be converted into a measure of solar time, such as hours or ghaṭikàs. Now the length of an apparent lunation, or of an apparent tithi, perpetually varies, indeed it is varying at every moment, and consequently it is practically impossible to ascertain it except by elaborate and special calculations; but the length of a mean lunation, or of a mean tithi, remains permanently unchanged. Ignoring, therefore, the difference between apparent and mean lunations, the tithi-index or tithi can be readily converted into time by our Table X., which shews the time-value of the mean lunation-part ($\frac{1}{19000}$ th of the mean lunation), and of the mean tithi-part ($\frac{1}{\text { nomp }}$ th of the mean tithi). Thus, if $t=50$, Table X. gives the duration as 3 hours 33 minutes; and if the tithi-part ${ }^{1}$ is given as 0.150 we have by Table $\mathrm{X} .(2 \mathrm{~h} .22 \mathrm{~m}$. $+1 \mathrm{~h} .11 \mathrm{~min} .=) 3 \mathrm{~h} .33 \mathrm{~m}$.

It must be understood of course that the time thus given is not very accurate, because the tithi-index (t) is an apparent index, while the values in Table X. are for the mean index. The same remark applies to the nakshatra (n) or yoga (y^{\prime}) indices, and if accuracy is desired the process of calculation must be somewhat lengthened. This is fully explained in example 1 in Art. 148 below. In the case of mean added months the value of (t) the tithi-inclex is at once absolutely accurate.
83. The sankrantis preceding and succeeding an added month, as given in our Table l., of course take place respectively in the lunar month preceding and succeeding that added month.
84. To make the general remarks in Arts. 80, 81, 82 quite clear for the intercalation of months we will take an actual cxample. Thus, for the Kali year 3.403 the entries in cols. 9 and 11 are 9950 and 287 , against the true added month $\hat{\Lambda}$ svina in col. S. This shews us that the sankrinti preceding the true added, or Adhika, Ásvina took place when 9950 funation-parts of the natural month Bhitdrapada (preceding Adhika Asvina) had elapsed, or when (10,000-9950=) 50 parts had to clapse before the end of Bhadrapada, or again when 50 parts had to clapse

[^26]before the beginning of the added month; and that the sankrinti succeeding true λ dhika Asvina took place when 287 parts of the natural month Nija Aśvina had clapsed, or when 287 parts had elapsed after the end of the added month Adhika Ásvina.
85. The moments of the sankrantis are further given in tithis and decimals in cols. 10 , 12, $10 a$ and $12 a$. Thus, in the above example we find that the preceding sankranti took place when 29.850 tithis of the preceding month Bhadrapada had clapsed, i.c., when ($30-29.850=$) 0.150 tithis had still to clapse before the end of Bhàdrapada; and that the succocding sankranti took place when 0-86I of a tithi of the succeeding month, Ásvina, had passed.

To turn these figures into time is rendered easy by Table X. We learn from it that the preceding sankrànti took place (50 lunation parts or 0.150 tithi parts) about 3 h .33 m . bcfore the begimning of Adhika Asvina; and that the succeeding sankranti took place (287 lunation parts, or 861 tithi parts) about 20 h .20 m . after the end of Adhika Asvina. This time is approximate. For exact time sec Arts. \$2 and 90.

The tithi-indices here shew (see Art. SS) that there is no probability of a different month being intercalated if the calculation be made according to a different authority.
86. To constitute an expunged month we have shewn that two sankràntis must occur in one lunar month, one shortly after the beginning and the other shortly before the end of the month; and in cols. 9 and to the moment of the first sankrânti, and in cols. 11 and 12 that of the second sankrànti, is given. For example see the entries against Kali 3506 in Table I. As already stated, there can never be an expunged month by the mean system
87. In the case of an added month the moon must be waning at the time of the preceding, and waxing at the time of the succeeding sankranti, and therefore the figure of the tithiindex must be approaching 10,000 at the preceding, and over 10,000 , or beginning a new term of 10,000 , at the succeeding, sankrànti. In the case of expunged months the case is reversed, and the moon must be waxing at the first, and waning at the second sankranti; and therefore the tithi-index must be near the beginning of a period of 10,000 at the first, and approaching 10,000 at the second, sankrànti.
88. When by the Sârya-Siddhânta a new moon (the end of the amàvàsyà) takes place within about 6 ghațikàs, or 33 lunation-parts, of the sankrànti, or beginning and end of a solar month, there may be a difference in the added or suppressed month if the calculation be made according to another Siddhinta. Hence when, in the case of an added month, the figure in col. 9 or $9 a$ is more than $(10,000-33=) 9967$, or when that in col. 11 or $11 a$ is less than 33 ; and in the case of an expunged month when the figure in col. 9 is less than 33 , or when that in col. II is more than 9967 , it is possible that calculation by another Siddhinta will yield a different month as intercalated or expunged; or possibly there will be no expunction of a month at all. In such cases fresh calculations should be made by Prof. Jacobi's Special Tables (Epis. Ind., I'ol. II.) or direct from the Siadhintar in question. In all other cases it may be regarded as certain that our months are correct for all Siddhintas. The himit of 33 lunation-parts here given is generally sufficient, but it must not be forgotten that where Silddhantas are used with a bija correction the difference may amount to as much as 20 ghatikàs, or 113 lunation-parts (See aboz'e, note to Art. 79).

In the case of the Sirya-Siddlanta it may be noted that the added and suppressed months are the same in almost all cases, whether the bija is applied or not.
89. We have spared no pains to secure accuracy in the calculation of the figures entered in cols. 9 to 12 and $9 a$ to $12 a$, and we believe that they may be accepted as finally correct,
but it should be remembered that their time-equivalent as obtained from Table X . is only approximate for the reason given above (Art. S's.) Since Indian readers are more familiar with tithis than with lunation-parts, and since the expression of time in tithis may be considered desirable by some European workers, we have given the times of all the required sankrantis in tithis and decimals in our columns, as well as in lunation-parts; but for turning our figures into time-figures it is easier to work with lunation-parts than with tithi-parts. It may be thought by some readers that instead of recording the phenomena in lunation-parts and tithis it would have been better to have given at once the solar time corresponding to the moments of the sankràntis in hours and minutes. But there are several reasons which induced us, after careful consideration, to select the plan we have finally adopted. First, great labour is saved in calculation; for to fix the exact moments in solar time at least five processes must be gone through in each case, as shewn in our Example I. below (.4rt. 1f8) It is true that, by the single process used by us, the time-equivalents of the given lunation-parts are only approximate, but the lunation-parts and tithis are in themselves exact. Secondly, the time shewn by our figures in the case of the mean added months is the same by the Original Sitrya, the Present Siorya, and the Arya-Siddhinta, as well as by the Present Sirya-Siddhanta with the bija, whereas, if converted into solar time, all of these would vary and require separate columns. Thirdly, the notation used by us serves one important purpose. It shews in one simple figure the distance in time of the sankrantis from the beginning and end of the added or suppressed month, and points at a glance to the probability or otherwise of there being a difference in the added or suppressed month in the case of the use of another authority. Fourthly, there is a special convenience in our method for working out such problems as are noticed in the following articles.
90. Supposing it is desired to prove the correctness of our added and suppressed months, or to work them out independently, this can easily be done by the following method: The moment of the Mesha sankranti according to the Sûrya-Siddhanta is given in cols. 13. If and $15 a$ to $17 a$ for all years from A.D. IIOO to 1900 , and for other years it can be calculated by the aid of Table D. in Art. 96 below. Now we wish to ascertain the moment of two consecutive new moons connected with the month in question, and we proceed thus. The interval of time between the beginning of the solar year and the beginning or end of any solar month according to the Surya-Siddhânta, is given in Table IIl., cols. 8 or 9 ; and by it we can obtain by the rules in Art. 151 below, the tithi-index for the moment of beginning and end of the required solar month. i.c., the moments of the solar sankrantis, whose position with reference to the new moon determines the addition or suppression of the luni-solar month. The exact interval also in solar time between those respective sankrantis and the new moons (remembering that at new moon " t " $=10,000$) can be calculated by the same rules. This process will at once shew whether the moon was waning or wasing at the preceding and succeeding sankrantis, and this of course determines the addition or suppression of the month. The above, however, applies only to the apparent or true intercalations and suppressions. For mean added months the Sodhy (2 d .8 gh .51 p .15 vi.) must be added (sec Art. 26) to the Mesha-sankranti time according to the Lirya-Siddhanta (Tabli l., col. 15), and the result will be the time of the mean Mesha sankranti. For the required subsequent sankrantis all that is necessary is to add the proper figures of duration as given in Art. 24, which shews the mean length of solar months, and to find the "a" for the results so obtained by Art. 151. Then add 200 to the totals and the result will be the required tithi-indices.
91. It will of course be asked how our figures in Table I. were obtained, and what guarantee we can give for their accuracy. It is therefore desirable to explain these points. Our calcula-
tions for truc intercalated and suppressed months were first made according to the method and Tables published by Prof. Jacobi (in the Ind. Ant., Vol. NI'/I., pp. 175 to 181) as corrected by the crrata list printed in the same volume. We based our calculations on his Tables i to Io, and the method given in his example 4 on P1. 152-53, ${ }^{1}$ but with certain differences, the necessity of which must now be explained. Prof. Jacobi's Tables 1 to 4 , which give the dates of the commencement of the solar months, and the hour and minute, were based on the Arya-Siddhanta, while Tables 5 to 10 followed the SarraaSiddhanta, and these two Siddhintas differ. In consequence several points had to be attended to. First, in Prof. Jacobi's Tables i to + the solar months are supposed to begin exactly at Ujjain mean sunset, while in fact they begin (as explained by himself at p. 147) at or shortly after mean sunset. This state of things is harmless as regards calculations made for the purpose for which the Professor designed and chiefly uses these Tables, but such is not the casc when the task is to detcrmine an intercalary month, where a mere fraction may make all the difference, and where the exact moment of a sankrànti must positively be ascertained. Secondly, the beginning of the solar year, i.c., the moment of the Mesha-sankranti, differs when calculated according to those two Siddhântas, as will be seen by comparing cols. 15 to 17 with cols. $15 a$ to $17 a$ of our Table 1., the difference being mil in A.D. 496 and 6 gh 23 pa. 41.4 pra. vi. in 1900 A.D. Thirdly, even if wc suppose the year to begin simultaneously by both Siddhântas, still the collective duration of the months from the beginning of the year to the end of the required solar month is not the same, ${ }^{2}$ as will be secn by comparing cols. 6 or 7 with cols. 8 or 9 of our Table 111 . We have applied all the corrections necessitated by these three differences to the figures obtained from l'rof. Jacobi's Tables and have given the final results in cols. 9 and 11 . We know of no independent test which can be applied to determine the accuracy of the results of our calculations for true added and suppressed months; but the first calculations were made exceedingly carefulty and were checked and rechecked. They were made quite independently of any previously existing lists of added and suppressed months, and the results were afterwards compared with Prof. Chhatre's list ; and whenever a difference appeared the calculations were completely re-examined. In some cases of expunged months the difference between the two lists is only nominal, but in other cases of difference it can be said with certainty that Prof. Chhatre's list is wrong. (Sce note to Art. . fo.) Moreover, since the greatest possible error in the value of the tithi-index that can result by use of Prof. Jacobi's Table is 7 (sce his Table $p .16 \not)_{\text {) , whener the tithi-index for added and sup- }}$ pressed months obtained by our computation fell within 7 of 10,000 , i. ε., whenever the resulting index was below 7 or over 9993, the results were again tested direct by the Süryo-Siddhinta. ${ }^{3}$

As regards mean intercalations every figure in our cols. $9 a$ to $12 a$ was found correct by independent test. The months and the times of the sankràntis expressed in tithi-indices and tithis were calculated by the present Sirrya-Siddhâuta, and the results are the same whether

1 For finding the initial date of the luni-solar years Prof Jacohi's Tables J. to XI. were used, and in the course of the caleulations it was necessary to intruduce a few alterations, and to correet some misprints which had crept in in addition to those noted in the alrady published errata-list. Thus, the earliest date noted in Tables I. to IV., being A 1). 354. these Tables had to be exteuded backwards by alding two lines mure of figures above those alrealy given. In Table VI., as corrected by the errata, the bija is taken into aecount only from A.D 601, whereas we consiter that it should be introducel from A D 1501 (see Art. 21). la Table VT. the eentury correction is given for the New (Gregoriau) Style from A.D 1600 aecording to the practice in the most part of Europe. 1 have prefersed, however, to introduce the New Style into our Tables from Sept. A.D 1752 to suit Eaglish readers, and this uccessitated an alteration in the century data for two centuries [R. S]

2 It is the same accordiur to Warren, but in this renpect he is in error. (See nute to frt. 24.)
342 ealeulations were thus made ditert by the Sírya-Siddhinta with and without the bija, with tbe satisfactory result that the error in the final figure of the lithi-iuter oriminally arived at was generally only of 1 or 2 units. while in some cases is was nil It was rarely 3 , and only once 4 Jt never exceeded 4 it may therefore he fairly assumed that our results are accurate. [S.B D]
worked by that or by the Original Sûrya-Siddhanta, the First Arya-Siddhànta, or the Present Sin roor-Siddlhanta with the bija.

We think, therefore, that the list of true added and suppressed months and that of the mean added months as given by us is finally reliable.
92. Cols. 1.3 to 17 or to 17 a. The solar year begins from the moment of the Mcsha sankrànti and this is taken as apparent and not moan. We give the exact moment for all years from A.D. 300 to 1900 by the Lirga-Siddhinta, and in addition for years between A.D 1100 and 1900 by the Siarya-Siddhântas as well. (Sic atso Art. 96). Every figure has been independently tested, and found correct. The weck-day and day of the month A.D. as given in cols. I 3 and $1+$ are applicable to both the Siddhantas, but particular attention must be paid to the footnote in Table 1., annexed to A.D. 1117-18 and some other subsequent years. The entries in cols. 15 and $15 a$ for Indian reckoning in ghaṭikàs and palas, and in cols. 17 and $17 a$ for hours and minutes, imply that at the instant of the sankrànti so much time has elapsed since mean sunrise at Ujjain on the day in question. Ujjain mean sunrise is generally assumed to be $6.0 \mathrm{a} . \mathrm{m}$.
93. The alteration of week-day and day of the month alluded to in the footnote mentioned in the last paragraph (Table I., A.I). 1117-I 8) is due to the difference resulting from calculations made by the two Siddhantas, the day fixed by the Siry'a-Siddhanta being sometimes one later than that found by the Arra-Siddhanta. It must be remembered, however, that the day in question runs from sunrise to sumrise, and therefore a moment of time fixed as falling between midnight and sunrise belongs to the preceding day in Indian reckoning, though to the succeeding day by European nomenclature. For example, the Mesha sankrànti in Saka 1039 expired (A.D. II 17) took place, according to the Alya-Siddhânta on Friday 23 rd March at 58 gh . 1p. after Ujjain mean sunrise (23 h .12 m . after sunrise on Friday, or 5.12 a.m. on Saturday morning, 2.th); while by the Sierya-Siddhanta it fell on Saturday 2 .fth at o gh. 5 I pa. ($=0 \mathrm{~h} .20 \mathrm{~m}$. after sunrise or $6.20 \mathrm{a} . \mathrm{m}$.). This only happens of course when the sankranti according to the Aly'a-Siddhinta falts nearly at the end of a day, or near mean sunrise.
94. In calculating the instant of the apparent Mesha-sankrantis, we have taken the sodhya at 2 d. 8 gh. 5^{1} pa. 15 vipa. according to the Arya-Siddhinta, and 2 d. 10 gh. I. 4 pa. 30 ripa. according to the Sirya-Siddhinta. (See Art. 26.)
95. The figure given in brackets after the day and month in cols. 13 and 19 is the number of that day in the English common year, reckoning from January 1st. For instance, 75 against 16 th March shows that 16 th March is the 75 th day from January ist inclusive. This figure is called the "date indicator", or shortly (d), in the methods of computation " B " and " C " given below (Fart $/ l^{\circ}$.), and is intended as a guide with reference to Table 1X., in which the collective duration of days is given in the English common year.
96. The fixture of the moments of the 1600 Mesha-sankrantis noted in this volume will be found adrantagcous for many purposes, but we have designed it chiefly to facilitate the conversion of solar dates as they are used in Bengal and Southern India. ${ }^{1}$ We have not given the moments of Mesha-sankrantis according to the Sirrya-Siddhinta prior to A.I. I 100 . so that the Arya-Siddhinta computation must be used for dates earlier than that, even those uccurring in Bengal. There is little danger in so doing, since the difference between the times of the Meshasankrintis according to the two Siddhantas during that period is very slight, being nil in $\mathbf{A} .1$. 496 . and only increasing to 1 h .6 m . at the most in $1100 \mathrm{~A} . \mathrm{H}$. It is, howerer, advisable to give a correction Table so as to ensure accuracy, and consequently we append the Table which follows, by which the difference for any year lying between A.1). 496 and 1100 A.1). can be found. It is

[^27]used in the following manner. First find the interval in years between the given year and A.D. 496. Then take the difference given for that number of years in the Table, and subtract or add it to the moment of the Mesha-sankrinti fixed by us in Table l. by the Arra-Siddhimia, according as the given year is prior or subsequent to A.D. +9 . The quotient gives the moment of the Mesha-sankranti by the Sürya-Siddhanta.

> TABLE

Shewing the difference between the moments of the Mesha-sankranti as calculated by the Present Surya and the first Arya-Siddhântas; the difference in A.D. 496 (Saka 496 current) being o.

$\begin{gathered} \text { No. } \\ \text { of } \\ \text { years } \end{gathered}$	Difference Expresed in			$\begin{aligned} & \text { No. } \\ & \text { of } \\ & \text { years. } \end{aligned}$	Difference Expressed in			No. of years.	Ihfletence Expressed in		
	ch.	pa.	minutes.		yh.	p pr	minutes.		$g \mathrm{~g}$.	pa.	minutes
1	0	03	11.1	10	0	2.7	1.1	100	0	27.3	10.9
2	0	0.5	0.2	20	0	5.5	2.2	200	0	54.6	21.9
3	0	11 s	0.3	30	0	4.2	3.3	300	1	2.0	32.4
1	0	1.1	0.4	40	0	111.9	1.4	400	1	19.3	43.7
5	0	14	0.5	51	0	13.7	5.5	500	2	16 if	$5+.7$
6	0	1.6	07	6	0	[6. 4	6, 6	tiol	2	$1+10$	65.6
7	0	1.3	0.8	70	0	19.1	7.7	7110	3	11.3	76.7
8	0	2.2	0.9	SU	0	21.9	4.7	800	3	35.6	87.5
9	0	2.5	1.0	90		24.6	9.8	900	1	i) 0	93.4

E.ramplé. Find the time of the Mesha sankrânti by the Sirrya-Siddhinta in A.D. 1000. The difference for $(1000-496=) 504$ years is $(2 \mathrm{gh} .16 .6 \mathrm{pa} .+1.1 \mathrm{pa} \Rightarrow) 2 \mathrm{gh} .17 .7 \mathrm{pa}$. Adding this to Friday, 22nd March, 42 gh . spa., i.c., the time fixed by the Arya-Sidalhanta (Table I.. cols. 14.15), we have $4+\mathrm{gh} .22 .7 \mathrm{pa}$. from sunrise on that Friday as the actual time by the Sûrya-Siddhinta.
97. Cols. 19 to 25 . The entries in these columns enable us to convert and verify Indian luni-solar dates. They were first calculated, as already stated, according to the Tables published by Prof. Jacobi in the Indian Antiquary' (Vol. XVIl.). The calculations were not only most carefully made, but every figure was found to be correct by independent test. As now finally issued, however, the figures are those obtained from calculations direct from the Siurga-Siddhinta, specially made by Mr. S. Bàlkṛishṇa Dîkshit. The articles a, b, c, in cols. 23 to 25 are very important as they form the basis for all calculations of dates demanding an exact result. Their meaning is fully described below (Art. 102.).

The meaning of the phrase "moon's age" (hcading of iols. 21, 22) in the Nautical Almanack is the mean time in days elapsed since the moon's conjunction with the sun (amade $\hat{a} \mathrm{~s}^{\prime} \hat{a}$, new moon). For our purposes the moon's age is its age in lunation-parts and tithis, and these have been fully explained above.
98. The week-day and day of the month A.D. given in cols. 19 and 20 shew the civil day on which Chaitra sukla pratipadà of each year, as an apparent tithi, ends. ${ }^{2}$ The figures given in cols. 21 to 25 relate to Ujjain mean sunrise on that day.

1 See note 1 to Art. 9]
2 We have seen before (.frts. 45 etc. ahore) how months and tithis are sometimes added or cxpunged. Fow in case of (hailra sukla pratipadâ being current at suncise on two sucerssive days, as sometimes bappons, the lirst of these cisil days, io.. the day prorious to that given by us, is taken an the first day uf the Indian luni-solar year (see Art. 52) This dues not, however, treate any con-
 as for our methods A and 13, the day noted by us is more convenient

99 When an intercalary Chaitra occurs by the true system (Arts. 75 etc. aboce) it must be remembered that the entries in cols. 19 to 25 are for the sukla-pratipada of the intercalated, not the true, Chaitra.
100. The first tithi of the year (Chaitra sukla pratipadà) in Table I., cols. 19 to 25, is taken as an apparent, not mean, tithi, which practice conforms to that of the ordinary native panchàngs. By this system, as worked out according to our methods A and B, the English equivalents of all subsequent tithis will be found as often correct as if the first had been taken as a mean tithi ;-probably more often.
101. The figures given in cols. 21 and 22, except in those cases where a minus sign is found prefixed (e.g., Kali 4074 current), constitute a first approximation showing how much of chaitra sukla pratipadà had expired on the occurrence of mean sunrise at Ujjain on the day given in cols. 19 and 20. Col. 21 gives the expired lunation-parts or tithi-index, and col. 22 shews the same period in tithi-parts, i.e., decimals of a tithi. The meaning of both of these is explained above (Arts. So and \mathcal{S}_{I}). We differ from the ordinary panchangs in one respect, viz., that while they give the portion of the tithi which has to run after mean sunrise, we have given, as in some ways more convenient, the portion already elapsed at sunrise. Thus, the entry 286 in col. 21 means that 286 lunation-parts of Chaitra sukla ist had expired at mean sunrise. The new moon therefore took place 286 lunation-parts before mean sunrise, and by Table X., col. 3, 286 lunation-parts are equal to ($14 \mathrm{~h} .10 \mathrm{~m} .+6 \mathrm{~h} .6 \mathrm{~m} . \Rightarrow 20 \mathrm{~h} .16 \mathrm{~m}$. The new moon therefore took place 20 h .16 m . before sunrise, or at $9.44 \mathrm{a} . \mathrm{m}$. on the previous day by European reckoning. The ending-moment of Chaitra sukla pratipadâ can be calculated in the same way, remembering that there are 333 lunation-parts to a tithi.

We allude in the last paragraph to those entries in cols. 21 and 22 which stand with a minus sign prefixed. Their meaning is as follows:-Just as other tithis have sometimes to be expunged so it occasionally happens that Chaitra sukla ist has to be expunged. In other words, the last tithi of Phàlguna, or the tithi called amàvàsyà, is current at sunrise on one civil day and the 2nd tithi of Chaitra (Chaitra sukla dvitiyà) at sumrise on the following civil day: In such a case the first of these is the civil day corresponding to Chaitra sukla 1 st ; and accordingly we give this civil day in cols. 19 and 20 . But since the amàvàsyàtithi (the last tithi of Phalguna) was actually current at sunrise on that civil day we give in cols. 21 and 22 the lunation-parts and tithiparts of the amàvàsyà-tithi which have to run after sunrise with a minus sign prefixed to them. Thus, "-12" in eol. 21 means that the tithi-index at sunrise was $10,000-12=$ or 9988 , and that the amàvasyâtithi (l'hâlguna Kṛishụa 15 or 30) (Table VIII.. col. ;) will end 12 lunation-parts after sumrise, while the next tithi will end 333 lunation-parts after that.
102. (a, b. c, cols. 2.3, 2., 25). The moment of any new moon, or that moment in each lunation when the sun and moon are nearest together, in other words when the longitudes of the sun and moon are equal, cannot be ascertained without fixing the following three elements.(a) The eastward distance of the moon from the sun in mean longitude. (b) the moon's mean anomaly (ilrt. 15 and note), which is here taken to be her distance from her perigee in mean longitude, (o) the sun's mean anomaty, or his distance from his perigee in mean lungitude. And thus our " a ", " b ", " $\iota^{\prime \prime}$, have the above meanings; " a " being expressed in ro,oooths of a circle reluced by 200.6 for purposes of convenience of use, all calculations being then additive, " h " and " c " being given in rooths of the circle. To take an example. At Ujjain mean sumrise on Chaitra sukla pratipada of the Kali year 3402 (Friday. Sth March, A.D. 300), the mean longitudes calculated direct from the Surya-Siddhanta were as follow: The sun, 349 $22^{\circ} 27^{\prime \prime} .92$.

The sun's perigec, $257^{\circ} 14^{\prime} 22^{\prime \prime}$. 86 . The moon, $355^{\prime \prime} 55^{\prime} 35^{\prime \prime} .32$. The moon's perigee, $33^{\prime \prime} 39^{\prime} 55^{\prime \prime \prime} .03$. The moon's distance from the sun therefore was ($\left.355^{\prime \prime} 55^{\prime} 35^{\prime \prime} \cdot 32-349^{\prime \prime} 22^{\prime} 27^{\prime \prime} .92=\right) 0^{\prime \prime} 33^{\prime \prime}$ $7^{\prime \prime} .4=.0182$ of the orbit of 360 . This (1.0182) reduced by $0.0200,6$ comes to $0.999^{8} 4$; and consequently " a " for that moment is $999^{8} 1.41$. The moon's mean anomaly " b " was (355 " $55^{\prime} 35^{\prime \prime} \cdot 32-33^{\circ} 39^{\prime} 58^{\prime \prime} .03 \Rightarrow 322^{\circ} 15^{\prime} 37^{\prime \prime} .29=895 \cdot 17$. And the sun's mean anomaly " $C^{\prime \prime}$ " was ($349^{\prime \prime}$ $\left.22^{\prime} 27^{\prime \prime} .92-257^{\circ} 14^{\prime} 22^{\prime \prime} .86=\right) 92^{\circ} 8^{\prime} 5^{\prime \prime} .06=255^{\circ} 93^{\prime}{ }^{1}$ We therefore give $a=99^{\circ} 1, b-895$. $c=256$. The figures for any other year can if necessary be calculated from the following Table, which represents the motion. The increase in a, b, c, for the several lengths of the luni-soliar year and for I day, is given under their respective heads; the figures in brackets in the first column representing the day of the week, and the first figures the number of days in the year.

Increase of a, b, c, in one year, and in one day.

Number of days in the year.	a.	b. wothout biju	b. with bija.	c.
$354(4)$	9875.703337	8.77 .2197487	847.220646	969.1758567
$355(5)$	214.335267	8835113299	883.512230	971.9136416
$383(5)$	9696.029305	899.675604	899.676575	48.57161909
$384(6)$	34661235	935.967185	935.96815\%	51.3094039
$385(0)$	373.293166	972.25.5i66	972.2597-2	54.04789
1(1)	338.6319303:3	36.291581211	36.291583746	2.73778 .4906

103. Table 11.. Part i., of this table will speak for itself (sec also Art. 51 aboik'). In the second part is given, in the first five columns, the correspondence of a cycle of twelve lunar months of a number of different eras with the twelve lunar months of the Saka year 1000: : which itself corresponds exactly with Kali 4179. Chaitràdi Vikrama 1135, and Gupta 738. Cols. 8 to 13 give a similar concurrence of months of the solar year Saka 1000 . The concurrence of parts of solar months and of parts of the European months with the luni-solar months is given in cols. 6 and 7 , and of the same parts with the solar months in cols. 14 and 15 . Thus. the luni-solar amànta month Âshàcha of the Chaitràdi Saka year 1000 corresponds with amanta Âshàdha of Kali +179, of Chaitràdi Vikrama 1135, and of the Gupta era 758; of the Âshàḍàdi Vikrama year 1135, and of the Chedi or Kalachuri 828; of the Kìrttikàdi Vikrama year 1134, and of the Nèvàr year 198. Parts of the solar months Mithuna and Karka, and parts of June and July of 1077 A.D. correspond with it; in some years parts of the other
[^28]4 This year Śska 1000 is chosen for convenience of addition or substraction when calchatiog other years, and therefore we bave not take into account the fact that $\mathrm{S}^{\prime} \mathrm{l} 000 \mathrm{was}$ really an intercalary ycar, having suth an Adhika Jyentha and a Nija Jyeshtha month. That peculiarity affucts only that one yar and not the coneurreace of other months of previons or snbsegneat sears in otber ecas.
two Christian months noted in col. 7 will correspond with it. In the year Saka 1000, taken as a Meshadi solar year, the month Simha corresponds with the Bengali Bhadrapada and the Tamil Avaṇi of the Meshadi Kali 4179 , and Meshadi Vikrama it 35 ; with Avani of the Simhadi Tinnevelly year 253: with Chingam of the South Malayalam Simhàdi Kollam âṇu 253, and of the North Malayalam Kanyàdi Kollam aṇ̣lu 252. Parts of the lunar months Sràvaṇa and Bhàdrapada correspond with it, as well as parts of July and August of the European year 1077 A.D; in some years parts of August and September will correspond with it.

All the years in this Table are current years, and all the lunar months are amanta.
It will be noticed that the Tulu names of lunar months and the Tamil and Tinnevelly names of solar months are corruptions of the original Sanskrit names of lunar months; while the north and south Malayalam names of solar months are corruptions of the original Sanskrit sign-names. Corruptions differing from these are likely to be found in use in many parts of India. In the Tamil Districts and the district of Tinnevelly the solar sign-names are also in use in some places.
10.4. Table //.. Part iii. This portion of the Table, when read with the notes printed below would seem to be simple and easy to be understood, but to make it still elearer we give the following rules:
I. Rule for turning into a Chaitràdi or Meshâdi year (for example, into a luni-solar Saka, or solar Śaka, year) a year of another era, whether earlier or later, which is non-Chaitrâdi or nonMeshàdi.
(a) For an carlicr cra. When the given date falls between the first moment of Chaitra or Mesha and the first moment of the month in which, as shewn by the heading, the year of the given earlier era begins, subtract from the given year the first, otherwise the second, of the double figures given under the heading of the earlier era along the line of the year o of the required Chaitradi or Meshàdi era (e.g., the Saka).
E.ramples. (1) To turn Vaisàkha Sukla 1st of the Áshaḍhàdi Vikrama year 1837, or Sràvaṇa sukla ist of the Kârtikadi Vikrama year 1837 into corresponding Saka reckoning. The year is (1837-134=) 1703 Saka. The day and month are the same in each case. (2) To turn Màgha sukla ist of the Kàrtikadi Vikrama samvat 1838 into the corresponding Saka date. The year is $(1838-135 \Rightarrow 1703$ S. Saka. The day and month are the same. (3) Given ist December, 1822 A.D. The year is $(1822-77=) 17+5$ Saka current. (4) Given 2nd January, 1823 A.1). The year is ($1823-78 \Rightarrow 17+5$ Saka current.
(b) For a later cra. When the given day falls between the first moment of Chaitra or Mesha and the first moment of the month in which, as shewn by the heading, the later era begins, add to the number of the given year the figure in the Table under the heading of the required Chatradi or Heshadi cra along the line of the year 0,1 of the given later era. in the reverse case add that number reduced by one.

Fitamples. (1) To turn the 1 st day of Mithuna 1061 of the South Malayalam Kollam Andu into the corresponding Saka date. The year is $(1061+748=)$ Saka 1809 current. The day and month are the same. (2) To turn the ist day of Makara 1062 of the South Malayalam Kollum Andu into the corresponding Saka date. The year is $(1062+747=)$ isog Saka current. The day and month are the same.
11. Kule for turninss a Chaitradi or Neshadi (c.g., a Saka) year into a non-Chatradi or non- Meshadi year of an earlier or hater era.
(a) For an carlior ira. When the siven day falls between the first moment of Chaitra or Mesha and the first moment of the month in which, as shown by the heading, the year of the
earlier era begins, add to the given Chaitradi or Meshadi year the first, otherwise the second, of the double figures given under the lieading of the earlier era along the line of the year o of the Chaitràdi or Meshaddi cra given.

Examples. (1) To turn l3hadrapada krishna joth of the Saka year 1699 into the corresponding Kartikidi Vikrama year. The year is $(1699)+134=1833$ of the Kârttikidi Vikrama era. The day and month are the same. (2) To turn the same Bhridrapada krishạa 3oth, Saka 1699, into the corresponding Ashadhadi Vikrama year. The year is $(1699+135=) 1834$ of the Ashàdhadi Vikrama era. The day and month are the same.
(b) For a later era. When the given day falls between the first moment of Chaitra or Mesha and the first moment of the month in which, as shown by the heading, the later era begins, subtract from the given year the number under the heading of the given Chaitradi or Meshàdi era along the line of the year $0 / 1$ of the given later era; in the reverse case subtract that number reduced by one.

Examples. (1) To turn the 20th day of Simha Saka 1727 current into the corresponding North Malayâlam Kollam Andu date. The day and month are the same. The era is a Kanyâdi era, and therefore the required year is $(1727-748 \Rightarrow 979$ of the required era. (2) To turn the 2oth day of Siriha Saka 1727 current into the corresponding South Malayalam (Tinnevelly) Kollam Ậlu date. The day and month are the same. The era is Sirinhadi, and therefore the required year is ($1727-747=$) 980 of the required era.

III Rule for turning a year of one Chaitràdi or Meshàdi cra into one of another Chaitràdi or Meshàdi era. This is obviously so simple that no explanations or examples are required.
IV. Rule for turning a year of a non-Chaitràdi or non-Meshàdi era into one of another year equally non-Chaitràdi or non-Meshàdi These are not required for our methods, but if any reader is curious he can easily do it for himself.

This Table must be used for all our three methods of conversion of dates.
105. Table IHI.-The numbers given in columns $3 a$ and 10 are intended for use when calculation is made approximately by means of our method " B " (Arts. 137, 138).

It will be observed that the number of days in lunar months given in col. $3 a$ is alternately 30 and 29 ; but such is not always the case in actual fact. In all the twelve months it occurs that the number of days is sometimes 29 and sometimes 30 . Thus Bhadrapada has by our Table 29 days, whereas it will be seen from the panchang extract printed in Art. 30 above that in A.D. I894 (Saka 1816 expired) it had 30 days.

The numbers given in col. Io also are only approximate, as will be seen by comparing them with those given in cols. 6 to 9 .

Thus all calculations made by use of cols. $3 a$ and to will be sometimes wrong by a day. This is unavoidable, since the condition of things changes every year, so that no single Table can be positively accurate in this respect; but, other elements of the date being certain, calculations so made will only be wrong by one day, and if the week-day is given in the document or inscription concerned the date may be fixed with a fair pretence to accuracy. If entire accuracy is demanded, our method " C " must be followed. (Sie Arts. 2 and 126.)

The details in cols. 3, and 6 to 9 , are exactly accurate to the unit of a pala, or 24 seconds. The figure in brackets, or week-day index ($i i^{\prime}$), is the remainder after casting out sevens from the number of days; thus, casting out sevens from 30 the remainder is 2 , and this is the (i°) for 30. To guard against mistakes it may be mentioned that the figure " 2 " does not of course mean that the Mesha or Vrishabha sankrinti always takes place on (2) Monday:
106. Tables H^{\prime}. and I. These tables give the value of (a) (week-day) and (a) (b) and
(c) for any reguired number of civil days, hours, and minutes, according to the Siurgu Siddhanta. It will be seen that the figures given in these Tables are calculated by the value for one day given in Art. Ioz.

Table I I'. is I'rof. Jacobi's Indian Antigutry (Vol. XV1l.) Table 7, slightly modified to suit our purposes; the days being run on instead of being divided into months, and the figures being given for the end of each period of $2+$ hours, instead of at its commencement. Table V. is Prof. Jacobi's Table 8.
107. Tables 1% and 1%. These are Prof. Jacobi's Tables 9 and 10 re-arranged. It will be well that their meaning and use should be understood before the reader undertakes computations according to our method "C". It will be observed that the centre column of each columntriplet gives a figure constituting the equation for each figure of the argument from o to 1000. the centre figure corresponding to either of the figures to right or left. These last are given only in periods of 10 for convenience, an auxiliary Table being added to enable the proper equation to be determined for all arguments. Table V1. gives the lunar equation of the centre, Table VIl. the solar equation of the centre. (Art. 15 note 3 abocit). The argument-figures are expressed in 1000 h. s of the circle, while the equation-figures are expressed in lo,oooths to correspond with the figures of our " a, ." to which they have to be added. Our (b) and (c) give the mean anomaly of the moon and sun for any moment, (α) being the mean longitudinal distance of the moon from the sun. To convert this last (a) into true longitudinal distance the equation of the centre for both moon and sun must be discovered and applied to (a) and these Tables give the requisite quantities. The case may perhaps be better understood if more simply explained. The moon and earth are constantly in motion in their orbits, and for calculation of a tithi we have to ascertain their relative positions with regard to the sun. Now supposing a railway train runs from one station to another twenty miles off in an hour. The average rate of running will be twenty miles an hour. but the actual speed will vary, being slower at starting and stopping than in the middle. Thus at the end of the first guarter of an hour it will not be quite five miles from the start, but some little distance short of this, say m yards. This distance is made up as full speed is acquired. and after three-quarters of an hour the train will be rather more than 15 miles from the start, since the speed will be slackened in approaching the station.-say n yards more than the 15 miles. These distances of m yards and n yards, the one in defect and the other in excess. correspond to the "Equation of the Centre" in planetary motion. The planetary motions are not uniform and a planet is thus sometimes behind, sometimes in front of, its mean or average place. To get the true longitude we must apply to the mean longitude the equation of the centre. And this last for both sun for earth) and moon is what we give in these two Tables. All the requisite data for calculating the mean anomalics of the sun and moon, and the equations of the centre for each planct, are given in the Indian Siddhantas and Lraral!as, the details being obtained from actual observation; and since our Tables generally are worked according to the Sirga Siddhanta. we have given in Tables VI. and VH. the eguations of the centre by that authority.

Thus, the Tables enable us to ascertain (a) the mean distance of moon from sun at any mument. (h) the correction for the moon's true (or apparent) place with reference to the earth, and (o) the correction for the earth's true (or apparent) place with reference to the sun; and with these corrections applied to the (a) we have the true (or apparent) distance of the moon from the sum, which marks the escurrence of the true (or apparent) tithi; and this result is our tithi index, or (t). From this tithi-index (f) the tithi current at any given moment is found from lable Vlll., and the time copuivalent is found by Table X. Full explanation for actual work is given in lart M: helow (.) Drts. 139 - 1400).

The method for calculating a nathshatra or yogen is explatined in Art. 133.
ro8. Since the planet's true motion is sometimes greater and sometimes less than its mean motion it follows that the two equations of the centre found from (b) and (d) by our Tables V1. and Vll. have sometimes to be added to and sometimes subtracted from the mean longitu dinal distance (a), if it is required to find the true (or apparent) longitudinal distance (o). But to simplify calculation it is advisable to climinate this inconvenient element, and to prepare the Tables so that the sum to be worked may always be one of addition. Now it is clear that this can be done by increasing evety figure of cach equation by its largest amount, and decreasing the figure (a) by the sunn of the largest amount of both, and this is what has been done in the Tables. According to the Sirgra Siddhinta the greatest possible lunar equation of the centre is $5^{\circ} 2^{\prime} 47^{\prime \prime} .17$ (=.0140.2 in our tithi-index computation), and the greatest possible solar equation of the centre is $2^{\prime \prime} 10^{\prime} 32^{\prime \prime} .35(=.0060,4)$. But the solar equation of the centre, or the equation for the earth, must be introduced into the figure representing the distance of the moon from the sun with reiersed sign, because a positive correction to the earth's longitude implies a negative correction to the distance of moon from sun. This will be clear from a diagram.

Let S be the sun, M the moon, E the earth, P the direction of perigee. Then the angle SEM represents the distance of moon from sun. But if we add a positive correction to (ic.. increase) the earth's longitude PSE and make it PSE (greater than PSE by ESE ${ }^{I}$) we thereby decrease the angle SEM to SE $^{I} \mathrm{I}^{1}$, and we decrease it by exactly the same amount, since the angle $\mathrm{SEM}=\angle \mathrm{SE}^{1} \mathrm{~N}^{1}+\angle \mathrm{ESE}^{1}$, as may be seen if we draw the line EX parallel to ES^{t}; for the angle $\operatorname{SEX}=\angle \mathrm{ESE}^{1}$ by Euclid.

Every figure of each equation is thus increased in our Tables VI. and VII. by its greatest value, i.c., that of the moon by 140,2 and that of the sun by 60,4 , and every figure of $\{(a)$ is decreased by the sum of both, or ($140,2+60,4=$) 200,6. ${ }^{1}$

In conclusion, Table VI. yields the lunar equation of the centre calculated by the Surrort Siddhanta, turned into 10,000 ths of a circle, and increased by 140.2; and Table VII. yields the solar equation of the centre calculated by the Sirra Siddhanta, with sign reversed, converted into $10,000 t h$ of a circle, and increased by 60.4. ${ }^{2}$ This explains why for argument o the equation given is lunar 140 and solar 60 . If there were no such alteration made the lunar equation for Arg. o would be ± 0, for Arg. 250 (or 90°) + 140 . for Arg. $500\left(180^{\circ}\right) \pm 0$, and for Arg. 750 (or 290°) -140, and so on.
109. The lunar and solar equations of the centre for every degree of anomaly are given

[^29]in the Makaranda, and from these the figures given by us for every $\frac{1}{100}$ th of a circle, or 10 units of the argument of the Tables, are easily deduced.

Ilo. The use of the auxiliary Table is fully explained on the Table itself.
111. Table l/l/. This is designed for use with our method C, the rules for which are given in Arts. 139-160. As regards the tithi-index. see Art. 80. The period of a nakshatra or yoga is the 27 th part of a circle, that is $13^{\circ} 20^{\prime}$ or $\frac{10000}{27}=370_{27}^{10}$. Thus, the index for the ending point of the first nakshatra or yoga is 370 and so on. ${ }^{1}$ Tables VIII.A. and VIll.B. speak for themselves. They have been inserted for convenience of reference.
112. Table $/ . \mathrm{K}$. is used in both methods l and C. See the rules for work.
113. Tathe X. (See the rules for work by method C.) The mean values in solar time of the several elements noted herein. as calculated by the Sirya-Siddhanta. are as follow:-

$$
\begin{array}{lll}
\text { A tithi } & =1417.46822 & \text { minutes. } \\
\text { A lunation } & =42524.046642 & \text { do. } \\
\text { A sidereal month } & =39343.21 & \text { do. } \\
\text { A yoga-chakra } & =36605.116 & \text { do. }
\end{array}
$$

From these values the time-equivalents noted in this Table ${ }^{2}$ have been calculated. (See also note to Art. S2.)
11.4. Table $.1 \%$ This Table enables calculations to be made for observations at different places in India. (Sce Art. .36, and the rules for working by our method C.)
115. Table. \mathbf{W} / I. We here give the names and numbers of the samvatsaras. or years of the sixty-year cycle of Jupiter, with those of the twelve-year cycle corresponding thereto. (Ser the description of these cyeles given aboie, Arts. 53 to 63.)
116. Table $.1 / / /$. This Table was furnished by Dr. Burgess and is designed to enable the week-day corresponding to any European date to be ascertained. It explains itself. Results of calculations made by all our methods may be tested and verified by the use of this Table.
117. Tables $\mathrm{I}^{\prime} / \mathrm{l}$. and . IV. are for use by our method A (set the ruldes). and were invented and prepared by Mr. T. Jakshmiah Naidu of Madras. Table $.1 / \%$ is explained in Part V.

$$
P A R T H V
$$

USEOFTHETABLES.
1I8. The Tables now published may be used for several purposes, of which some are emmerated below.
(1) For finding the year and month of the Christian or any lndian era corresponding to a given year and month in any of the eras under consideration.

[^30](2) For finding the samvatsara of the sixty year cycle of Jupiter, whether in the sonthern (huni-solar) or northern (mean-sign) scheme. and of the twelveyear cycle of Jupiter, corresponding to the beginning of a solar (Meshadi) ycar. or for any day of such a ycar.
(3) For finding the added or suppressed months, if any, in any year.

But the chief and most important use of them are;
(4) The conversion of any hndian date-huni solar (tithi) or solar-into the corresponding date A.D. and vice versà, from A.D. 300 to 1900 , and finding the week-day of any such date;
(5) Finding the karana. nakshatra, and yoga for any moment of any Indian or European date, and thereby verifying any given Indian date;
(6) Turning a Hindu solar date into a luni-solar date, and vice versà.
(7) Conversion of a Muhammadan Hijra date into the corresponding datc A.D., and vice versà. This is fully explained in Part V. below.
119. (I) For the first furpose Table 1., cols. I to 5. or Table H., must be used, with the explanation given in Part HI. above. For eras not noted in these two Tables see the description of them given in Art. 7 I . In the case of obscure eras whose exact nature is not yet well known, the results will only be approximate.
(N.B.—It will be observed that in Table II., Part ii., portions of two solar months or of four ' Christian months are made to correspond to a lunar month and vice versà, and therefore that if this Table only be used the results may not be exact).

The following note, though not yielding very accurate results, will be found useful for finding the corresponding parts of lunar and solar months. The tithi corresponding to the Meshasankrànti can be approximately ${ }^{2}$ found by comparing its English date (Table I.. col. 13) with that of the luni-solar Chaitra sukla ist (Table 1.. col. 19); generally the sañkrantis from Vrishablua to Tulà fall in successive lunar months, either one or two tithis later than the given one. Tulà falls about 10 tithis later in the month than Mesha; and the sankràntis from Vṛischika to Mina generally fall on the same tithi as that of Tulà. Thus, if the Mesha sankkrànti falls on sukla pañchamí (5th) the Vṛishabha sankrànti will fall on śukla shasṭhî (6 th) or saptamî (7 th), the Mithuna sañkrànti on śukla ashṭamî (Sth) or navamîi (9th). and so on.
120. (2) For the samiatsara of the southern sixty-year cycle see col. 6 of Table I., or calculate it by the rule given in Art. 62. For that of the sixty-year cycle of Jupiter of the mean sign system, according to Surry Siddhinta calculations, current at the beginning of the solar year, i.c., at the true (or apparent) Mesha sankrànti, see col. 7 of Table I.; and for that current on any day in the year according to either the Sirya or Arya Siddhantas, use the rules in Art. 59. To find the samvatsara of the twelve-year cycle of the mean-sign system corresponding to that of the Jupiter sixty-year cycle see Table XII.
121. (2) To find the added or supfressed month according to the Surya Siddhinta by the true (apparent) system see col. 8 of Table I. throughout; and for an added month of the mean system according to either the Original or Present Surra Siddhantas, or by the firga Siddlhanta, see col. Sa of Table 1. for any year from A. D. 300 to 1100.
122. (4) For contersion of an Indian date into a date A. D. and aice versì, and to find the weck day of any giaen datc, we give below three methods, with rules and examples for work.
123. The first method A (Arts. 135, 136), the invention of Mr. T. Lakshmiah Naidu of

1 Of course only two in a single case, but fur during the entire period of 1600 yars covered by our Tables.
2 The exact tithi can be calculated by Ants 149 and 151.

Madras, is a method for obtaining approximate results without any calculation by the careful use of mere eye-tables, viz., Tables XIV. and XV. These, with the proper use of Table l., are alone necessary. But it must never be forgotten that this result may differ by one, or at the utmost two. days from the true one, and that it is not safe to trust to them unless the era and bases of calculation of the given date are clearly known. (Sce Art. 126 belou'.)
124. By our second method B (Arts. 137, 138), which follows the system established by Mr. W. S. Krishṇasvimi Naidu of Madras, author of "South Indian Chronological Tables" (Hadras 1589), and which is intended to enable an approximation to be made by a very simple calculation, a generally accurate correspondence of dates can be obtained by the use of Tables l., 1II., and $I X$. The calculation is so easy that it can be done in the head after a little practice. It is liable to precisely the same inaccuracies as method A, neither more nor less.
125. Tables II. and 111. will also be sometimes required for both these methods.
126. The result obtained by either of these methods will thus be correct to within one or two days, and as often as not will be found to be quite correct; but there must always be all element of uncertainty connected with their use. If, however, the era and original bases of calculation of the given date are certainly known, the result arrived at from the use of these eye-Tables may be corrected by the week-day if that has been stated; since the day of the month and year will not be wrong by more than a day, or two at the most, and the day of the week will determine the corresponding civil day. Suppose, for instance, that the given Hindu date is Wednesday, Vaiśâkha śukla 5 th, and it is found by method A or method B that the corresponding day according to European reckoning fell on a Thursday, it may be assumed, presuming that all other calculations for the year and month have been correctly made, that the civil date A.D. corresponding to the Wednesday is the real equivalentof Vaisâkha sukla 5 th. But these rough methods should never be trusted to in important cases. For a specimen of a date where the bases of calculation are not known see example xxv., Art. 160 below.
127. When Tables XIV. and XV. are once understood (and they are perfectly simple) it will probably be found advisable to use method A in preference to method B .
128. As already stated, our method " C " enables the conversion of dates to be made with precise accuracy; the exact moments of the begiming and ending of every tithi can be ascertained; and the corresponding date is obtained, simultaneously with the week-day, in the required reckoning.
129. The week-day for any European date can be found independently by Table Xlll.. which was supplied by Dr. Burgess.
$\mathrm{I}_{3} \mathrm{I}^{\prime}$ (5) To find the karana. nakshatra, or yega current on any Indian or European date; and to acrify any Indian date.

Method C incluctes calculations for the karana. nakshatra and yoga current at any given moment of any given day, as welt as the instants of their beginnings and endings; but for this purpose, if the given date is other than a tithi or a European date, it must be first turned into one or the other according to our rules f.1\% 1.39 to 152.
132. It is impossible, of course. to verify any tithi or solar date unless the week-day, nakshatra, karana, or yoga, or more than one of these, is also given: but when this requirement is satisfied sur method C will afford proof as to the correctness of the date. To verify a solar date it must first be turned into a tithi or European date. (Art I. if or 1.49.)
133. For an explanation of the method of calculating tithis and half-tithis (karanas) see . Irt. 107 above. Our method of calculation for makshatras and yogas reguires a little 1 Art. 130 has brea amithed
more explanation. The moon's nakshatra (Arts. 8,38) is found from her apparent longitude. By our method C we shew how to find $t=$ the difference of the apparent longitudes of sun and moon), and equation ${ }^{1} c$ ($二$ the solar equation of the centre) for any given moment. To obtain (t) the sun's apparent longitude is subtracted from that of the moon. so that if we add the sun's apparent longitude to (t) we shall have the moon's apparent longitude. Our (c) ('Table l., last column) is the sun's mean anomaly, being the mean sun's distance from his perigee. If we add the longitude of the sun's perigee to (c), we have the sun's mean longitude, and if we apply to this the solar equation of the centre (+ or -) we have the sun's apparent longitude. ${ }^{2}$ According to the Sürya-Siddhanta the sun's perigee has only a very slight motion, amounting to $3^{\prime \prime} 5^{\prime \prime} .8$ in 1600 years. Its longitude for A.D. 1100 , the middle of the period covered by our Tables, was $257^{\circ} 15^{\prime} 55^{\prime \prime} .7$ or .7146 .3 of a circie, and therefore this may be taken as a constant for all the years covered by our Tables.

Now, true or apparant sun $=$ mean sun + equation of centre. But we have not tabulated in Table V1l., col. 2, the exact equation of the centre; we have tabulated a quantity (say x) the value of which is expressed thus;-
$x=60,4$-equation of centre (sec Art. ro8).
So that equation of centre $=60.4-x$.
Hence, apparent sun $=$ mean sun $+60,4-x$.
But mean sun $=c+$ perigee, (which is 7146,3 in tithi-indices.)
$=c+7146,3$.
Hence apparent sun (which we call s) $=c+7146,3+60,4-x$.

$$
=c+7206,7-x ; \text { or, say, }=c+7207-x
$$

where x is, as stated, the quantity tabulated in col. 2, Table Vll.
(c) is expressed in loooths, while 7207 and the solar equation in Table VII. are given in 10000 ths of the circle, and therefore we must multiply (c) by $10 . t+s=$ apparent moon $=n$ (the index of a nakshatra.) This explains the rule given below for work (Art. 156).

For a yoga, the addition of the apparent longitude of the sun (s) and moon (n) is required. $s+n=y$ (the index of a yoga.) And so the rule in Art. 159.
134. (6) To turn a solar date into its corrosponding lumi-solar date and wite tersầ.

First turn the given date into its European equivalent by either of our three methods and then turn it into the required one. The problem can be worked direct by anyone who has thoroughly grasped the principle of these methods.

Method A.

APPROXIMITE COMPUTAIION OF DATES PY USE OF THE ENE-TABLE.

[^31]usually give the number of the expired year, and not that astronomically current, (e.g., Kaliyuga 4904 means in full phrase "after 4904 years of the Kaliyuga had elapsed")-but when using the name of the cyclic year they give that of the one then current. All the years given in Table 1. are current years. The Table to work by is Table NIV.

Rule I. From Table I., cols. I to 7, and Table II., as the case may be, find the year (current) and its initial date, and week-day (cols. 13, I.4, Table 1.). But if the given Hindu date belongs to any of the months printed in italics at the head of Table XIV., take the next following initial date and week day in cols. 13, 14 of Table l. The months printed in the heading in capitals are the initial months of the years according to the different reckonings.

Rule II. For either of the modes of reckoning given at the left of the head-columns of months, find the given month, and under it the given date.

Rule III. From the given date so found, run the cye to the left and find the week-day in the same line under the week-day number found by Rule 1. This is the required week day.

Rule \sqrt{V}. Note number in brackets in the same line on extreme left.
Rule V. In the columns to left of the body of the Table choose that headed by the bracket-number so found, and run the eye down till the initial date found by Rule I . is obtained.

Rule VI. From the month and date in the upper columns (found by Rule Il.) run the eye down to the point of junction (vertical and horizontal lines) of this with the initial date found by Rule V. This is the required date A, D.

Rule VII. If the date A. D. falls on or after Ist January in columns to the right, it belongs to the next following year. If such next following year is a leap-year (marked by an asterisk in Table 1.) and the date falls after February 28 th in the above columns, reduce the date by one day.
N.B.-The dates A.D. obtained from this Table for solar years are Old Style dates up) to Sth April, i753, inclusive.

EXAMPLE. Find date A.D. corresponding to zoth Panguni of the Tamil year Rudhirodgàri, Kali 4904 expired.

By Rule 1. Kali 4905 current. 2 (Monday), 1 ith Λ pril, 1803.
,. ., II. Tamil Panguni 20.
., ,. III. (under " 2 ") Friday.
,. ". lV. Bracket-number (5).
,. .. V. $\left\langle\right.$ Under (5)]. Run down to $\Lambda_{\text {pril }}$ ith.
., ". VI. (Point of junctions) March 31st.
.. ., V1I. March 3oth. (ISO4 is a leap year.)
Ansaicr.-Friday, March 30th, 180.4 N.S. (See example it, p. 7..)
(B.) (ontersion of a date A.D. into the corresponding Mindu solar dati. (See Rule V... method B. Art. 137, p. 70.) Use Table XiV.

Kule 1. From Tables 1., cols. 1 to 7 and 13, 14, and Table 11., as the case may be, find the lindu year, and its initial date and week-day, opposite the given year A.D. If the given date falls before such initial date, take the next previous Hindu year and its initial date and week-day \.1).

Rule II. From the columns to the left of the body of Table XIV. find that initial date found by Rule I. which is in a line, when carrying the eye horizontally to the right, with the given , I.D. date, and note point of junction.

Rule III. Note the bracket-figure at head of the column on left so selected.
Rule IV. From the point of junction (Rule II.) run the eye vertically up to the lindu date-columns above, and select that date which is in the same horizontal line as the bracket-figure on the extreme left corresponding with that found by Rule 111. This is the required date.

Rule V. If the given date falls in the columns to the right after the 28 th February in a leap-year (marked with an asterisk in Table l.), add 1 to the resulting date.

Rule VI. From the date found by Rule IV. or V., as the case may be, carry the eye horizontally to the week day columns at the top on the left, and select the day which lies under the week-day number found from Table I. (Rule I.). This is the required week-day.

Rule VII. If the Hindu date arrived at falls under any of the months printed in italics in the IIindu month-columns at head of Table, the required year is the one next previous to that given in Table I. (Rule I.).

Example. Find the Tamil solar date corresponding to March 3oth, 1804 (N.S.).
(By Rule 1.) Rudhirodgàri, Kali 4905 current. 2 (Monday) April 1 ith. (March 30th precedes April IIth.)
(By Rules H., III.) The point of junction of March 3oth (body of Table), and April inth, (columns on left) is under "(4)." Other entries of April iIth do not correspond with any entry of March 30).
(By Rule IV.) The date at the junction of the vertical column containing this " March 3oth" with " (4)" horizontal is 19th Panguni.
(By Rule V.) ($1 \mathrm{SO}_{4}$ is a leap-year) 2oth Panguni.
(By Rule V1.) Under " 2 " (Rule I.), Friday.
Ansacr.-Friday, 2oth Panguni, of Rudhirodgàri, Kali 4905 current. (See example 15, p. 76.
136. (A.) Conersion of a Hindu luni-solar date into the corresponding date A.D. Work by the following rules, using Tables XV.A., and XV.B.

Rule I. From Table 1. find the current year and its initial day and week-day in A.D. reckoning, remembering that if the given Hindu date falls in one of the months printed in italics at the head of Table XV. the calculation must be made for the next following A.D. year. (The months printed in capitals are the initial months of the years according to the different reckonings enumerated in the column to the left.)

Rule II. (a.) Find the given month, and under it the given date, in the columns at the head of Table XV., in the same line with the appropriate mode of reckoning given in the column to the left. The dates printed in black type are krishua, or dark fortnight, dates.
(b) In intercalary years (cols. \& to $12,8 a$ to $12 a$ of Table I.), if the given month is itself an adhika màsa (intercalary month), read it, for purpose of this Table, as if it were not so; but if the given month is styled $n i j a$, or if it falls after a repeated montl, but before an expunged one (if any), work in this Table for the month next following the given one. as if that and not the given month had been given. If the given month is preceded by both an intercalated and a suppressed month, work as if the year were an ordinary one.

Rule III. From the date found by Rule II. carry the eye to the left, and find the weekday in the same horizontal line, but directly under the initial week-day found by Rule 1 .

Rule IV. Note the number in brackets on the extreme left opposite the week-day last found.

Rule V. In the columns to the left of the body of the Table choose that headed by the
bracket number so found, and run the cye down till the initial date found by Rule 1 . is obtained.
Rute V1. From the Hindu date found by Rule II. run the eye down to the point of junction, (vertical and horizontal lines) of this date with the date found by Rule V. The result is the required date A.D.

Rule VII (a.) If the date A.D. falls on or after January ist in the columns to the right, it belongs to the next following year A.D.
(b.) If it is after February 2 Sth in a leap-year (marked by an asterisk in col. 5, Table 1.) reduce the date by one day, except in a leap-year in which the initial date (found in Table I.) itself falls after February 28 th.
(c.) The dates obtained up to April 3rd, A.D. 1753, are Old Style dates.

Example. To find the date A. D. corresponding to amànta Kàrttika kṛishọa and of Kali 4923 expired, Saka 1744 expired, Kirttikàdi Vikrama 1878 expired, Chaitràdi Vikrama 1879 expired (ISSo current), "Vijaya" in the Brihaspati cycle," Chitrabhànu" in the luni-solar 6o-year cycle.
(By Rule 1.) (Kali 4924 current), 1 Sunday, March 24th, 1822.
(By Rule 11.) (Kirttika, the 8 th month, falls after the repeated month. 7 A sivina, and before the suppressed month, 10 Pausha), Màrgasirsha ḳ̣ishua zod.
(By Rule 1II.) (Under " '"), I Sunday.
(By: Rule IV.) Bracket-number (I).
(By Rule V.) Under (1) run down to March 24th (Rule 1.)
(By Rule VI.) (Point of junction) December ist.
Answcr.-Sunday, December ist, 1822.
(B.) Conversion of a date A. D. into the corresponding hun-solur Mindu date. (See Rule V. method B, 1, 67 below). Use Tables XV.A., XV.B.

Rule I. From Table I. find the Ilindu year, and its initial date and week-day, using also Table H., Parts ii.. iii. If the given date falls before such initial date take the next previous llinda year, and its initial date and week-day.

Rule 11. In the columns to the left of the body of Table XV. note the initial date found by Rule l., which is in the same horizontal line with the given date in the body of the Table.

Rule III. Carrying the eye upwards, note the bracket-figure at the head of the initial date-column so noted.

Rule IV. From the given date found in the body of the Table (Rule 11.) run the eye upwards to the Hindu date-columns above, and select the date which is in the same horizontal line as the bracket-figure in the extreme left found by Rule 111 . This is the required llindu date.

Rule V. Note in Table 1. if the year is an intercalary one (cols. \& to 12 , and $s a$ to $12 a$). If it is so, note if the llindu month found by Rule IV. (a) precedes the first intercalary month. (i) follows one intercalated and one suppressed month, (c) follows an intercalated, but precedes a suppressed month, (d) follows two intercalated months and one suppressed month. In cases (d) and (b) work as though the year were a common year, i.c., make no alteration in the date found by Rule IV. In cases (c) and (d) if the found month immediately follows the intercalated month, the name of the required limelu month is to be the name of the intercatated month with the prefix "nija," and not the name of the menth actually found; and if the found month does not immediately follow the intercalated month, then the required lindumonth is the month immediately preceding the found month. If the foumd month is itself intercalary, it retains its mame, but with the prefix "adlikia." If the found month is itself suppressed, the required month is the month immediately preceding the found month.

Rule Vl. If the given date A.D. falls after February $2 g$ th in the columns to the right, in a leap-year (marked with an asterisk in Table I.), add 1 to the resulting lindu date.

Rule VIl. From the date found by Rule IV. carry the eye horizontally to the week-day columns on the left, and select the day which lies under the initial week-day number found by Rule 1. This is the reduired week-day.

Rule VIII. If the Hindu date arrived at falls under any of the months printed in italics in the lfindu month-columns at head of the table, the required year is the one next previousto that given by Table I. (Rule 1. above.)

Examile. Find the Telugu luni-solar date corresponding to Sunday, December 1st, 1822.
(By Rule 1.) A.1). 1822-23, Sunday, March 24th, Kali 4923 cxpired, Saka 744 expired, Chitrabhànu samvatsara in the luni-solar 60 -ycar or southern cycle reckoning, Vijaya in the northern cycle.
(By Rules II., III.) (Bracket-figure) I.
(By Rule IV.) Màrgaśirsha kṛisḥ̣a 2nd.
(By Rule Vi.) (Asvina being intercalated and Pausha suppressed in that year), Karttika krishụa end.
(By Rule VI.) The year was not a leap-year.
(By Rule VII.) Sunday.
(By Rule Vlli.) Does not apply.
Ansacr.-Sunday, Kàrttika krishua znd, Kali 4923 expired, Saka $17+4$ expired. (This can be applied to, all Chaitridi years.) (See example 12 below, p. 75.)

Method B.

APPROXIMATE (OMPUTATION OF DATES BY A SMPLE PROCES.

This is the syytem introduced by Mr. W. S Krishuastimi Naidu of Madras into has "South-Iudian Chronolorical Tables"
137. (A.) Coniersion of Mindu dates into datis A.D. (See Art. 135 above. para. 1.)

Rule I. Given a Hindu year, month and date. Convert it if necessary by cols. 1 to 5 of Table I., and by Table II., into a Chaitradi Kali or Saka year, and the month into an amanta month. (Sce Art. 104.) Write down in a horizontal line (d) the date-indicator given in brackets in col. 13 or 19 of Table I., following the names of the initial civil day and month of the year in question as so converted, and (wi) the week-day number (col. 14 or 20) corresponding to the initial date A.D. given in cols. 13 or 19. To both (d) and (a^{i}) add, from Table III., the collective duration of days from the beginning of the year as given in cols. 3 a or 10 as the case may be, up to the end of the month preceding the given month, and also add the number of given Hlindu days in the given month minus 1 . If the given date is luni-solar and belongs to the krishat paksha, add 15 to the collective duration and proceed as before.

Rule II. From the sum of the first addition find in Table IN. (top and side columns)
the required English date, remembering that when this is over 365 in a common year or 366 in a leap-year the date A.I. falls in the ensuing A.D. year.

Rule Ill. from the sum of the second addition cut out sevens. The remainder shews the required day of the week.

Rule IV. If the Hindu date is in a luni-solar year where, according to cols. 8 to 12 , there was an added (adhika) or suppressed (kshaya) month, and falls after such month, the addition or suppression or both must be allowed for in calculating the collective duration of days; i.e., add 30 days for an added month, and deduct 30 for a suppressed month.

Rule V. The results are Old Style dates up to, and New Style dates from, 1752 A. $)$. The New style in England was introduced with effect from after 2nd September, 1752. Since the initial dates of 1752,1753 only are given, remember to apply the correction (+11 days) to any date between end September, 1752, and 9th April, 1753, in calculating by the Hindu solar year, or between 2 nd September, 1752, and $4^{\text {th }}$ April, 1753 , in calculating by the I Iindu lunisolar year, so as to bring out the result in New Style dates A.D. The day of the week requires no alteration.

Rule VI. If the date A.D. found as above falls after February 29th in a leap-year, it must be reduced by onc day.

(a) Lani-Solar Dates.

Example i. Required the A.D. equivatent of (luni-solar) Vaisákha sukla shashṭi (6th), ycar Sàrvari, Saka 1702 expired, (1703 current).

The A.D. year is 1780 (a leap-year). The initial date $(d)=5$ th April (96), and $\left(a{ }^{\prime}\right)=4$ Wednesday, (Table 1., cols. 5, 19, 20).

The result gives 130 (Table 1X.) = May Ioth, and $4=$ Wednesday. The required date is therefore Wednesday, May roth. A.1. 1780 .

Fximma: 2. Required the A.J. cquivalent of (huni-solar) Kärtika sukla panchamî (5th) Saka togs expired (troge current).

The . 1.). year is 1776 , and the initial date is $(d)=20$ th March (80), (ai) $=$ Wednesday (4). This is a leap-year, and the Table shews us that the month (6) Bhidrapada was intercalated. So there is both an adhika Bhadrapada and a nija Bhadrapada in this year, which compels us to treat the given month Karttika as if it were the succeeding month Margasirsha in order to get at the proper figure for the collective duration.

	d.	is.
The given figures are	80	4
Collective duration (Table III.), for Màrgasitrsha .	236	236
Given date (5)-1	4	4
	$\begin{aligned} & 320 \\ & -1 \text { (Rule VI.) } \end{aligned}$	
	319	244

$319=$ (Table IX.) November 15 th. $6=$ Firiday
Ansaicr. liriday, November 15th, A.1). 1776 .
Example 3. Required the A.I). equivalent of Karttika krishụa panchami (5 th) of the same luni-solar year.

| As before | | d. | w. | |
| :--- | :--- | :--- | :--- | ---: | ---: |
| Collective duration (Table ill., col. | 3a.) | 236 | 4 | |
| Given date $(5+15)-1$ | . | . | . | 236 |
| | | 19 | 19 | |

$$
\frac{335}{-1} \text { (Rule V1.) } \frac{-}{234} \div \div \text {, Rem. } 0
$$

$334=($ Table 1...) November 30th. o = Saturday.
Insuicr. - Saturday, November 3oth, A.D. ${ }^{1776}$.
E.hmple 4. Required the A.D. equivalent of Màgha krishụa pàdyami (ist) of K.Y. 4923 expired (4924 current). This corresponds (Table l., col. 5) to A.D. 1822, the Chitrabhann samvatsara, and col. 8 shews us that the month Asvina was intercalated (adhika, and the month Pausha suppressed fishazal. We have therefore to add 30 day's for the adhika month and subtract 30 days for the kshaya month, since Magha comes after Pausla. Hence the relative place of the month Magha remains unaltered,

Table I. gives 24 th March (83), (t) Sunday, as the initial day.
$d . \quad a$.
Initial date 83 I

Collective duration (Table III., col. 3a) . 295295
Given date $(\mathrm{I}+\mathrm{I} 5)-\mathrm{I}$. 15 (Rule I.) 15
$393 \quad 311 \div 7$, Rem. 3.
$3=$ Tuesday. $393=$ January 28 th of the following A.D. year (Table LX.).
Ansaucr.-Tuesday, January 28th, A.1. 1823.
This is correct by the Tables, but as there happened to be an expunged tithi in Migha sukla, the first fortnight of Migha, the result is wrong by one day. The corresponding day was really Monday, January 27 th, and to this we should have becn guided if the given date had included the mention of Monday as the week-day. That is, we should have fixed Monday, January 27 th. as the required day A.D. because our result gave Tuesday, January 28 th, and we knew that the date given fell on a Monday,

Eximple: 5. Required the A.D. equivalent of Pausha sukla trayodasi (13th) K.Y. 4853 expired, Angiras samvatsara in luni-solar or southern reckoning. This is K. Y. 4854 current.

The year (Table 1., col. 5) is A.D. 1752, a leap-year. The initial date (cols. 19, 20) is 5 th March (65), (5) Thursday. The month Ashâdha was intercalated. Therefore the given month (lausha) must be treated, for collective duration, as if it were the succeeding month Magha.

	d.	ω.
Initial date	65	5
Collective duration (Table 111., col. 3a)	295	295
Given date (13)-1.	12	12
	$\begin{array}{r} 372 \\ -1 \end{array}$	
	371	312

We must add eleven days to the amount 371 to make it a New Style date, because it falls after September 2nd, 1752, and before 4th April, 1753, (after which all dates will be in New Style by the Tables). $371+11=382=$ January 17 th (Table IX.). $4=$ Wednesday.

Answer.-Wednesday, January ifth, A.D. 1753.
EXample 6. Required the A.I. equivalent of Vikrama samvatsara i 879 Ashạ̀ha kṛishṇa dvitiyà (2nd). If this is a southern Vikrama year, as used in Gujaràt, Western India, and countries south of the Narmadai, the year is Kàrtikâdi and amanta, i.e., the sequence of fortnights makes the month begin with sukla 1 st. The first process is to convert the date by Table II., Part iii., col. 3. Table 11., J'art ii., and Table I., into a Chaitràdi year and month. Thus- Ashàdha isthe binth month of the year and corresponds to Ashàdha of the following Chaitràdi Kali year, so that the given month Ashạtha of Vikrama 1879 corresponds to Àshactha of Kali 4924. Work as before, using Table f. for Kali 4924. Initial date, 24th March (83), (1) Sunday.

	d.	a
Initial date		1
Collective duration (Table III., col. 3 a)	89	89
Given date ($2+15$-1	16	16
	188	106
188 (Table 1X.) = July 7 th. $1=$ Sunday:		

Ansaicr.-Sunday, July 7th, A.I). 1822.'
If the year given be a northern Vikrama year, as used in Malwa, Benares, Ujain, and countries north of the Narmada, the Vikrama year is Chaitradi and corresponds to the Kati qoz3. except that, being purnimanta, the sequence of fortnights differs (see Table 1l., l'art i.). ln sucha case Ashatha krishna of the Vikrama year corresponds to Jyeshṭa krishat in amanta months. and we must work for Kali fyz3 Jyeshtha krishana zud. By Table 1. the initial date is April grd (93), (3) Tuestay. The A.1). year is $1821 \ldots 2$.

[^32]

Answer.-Sunday. June 17th, A.1). i821.

(b) Solar Dates.

Example 7. Required the date A.D. corresponding to the Tamil (solar) 18 th Purattạsi of Rudhirodgàrin $=$ K.Y. 4904 expircd, or 4905 current.

Table I., cols. 13 and 14, give $(d)=$ April 11 th $(101),(w)=(2)$ Monday, and the year A.D. 1803 .

274 (Table 1 N.$)$ gives October 1st. $0=$ Saturday.
Answer.-Saturday, October 1st. A.I). 1803.
Example 8. Required the equivalent A.I). of the Tinnevelly Andu 1024, 2oth Avani.
The reckoning is the same as the Tamil as regards months, but the year begins with Avaṇi. Àndu $1024=$ K.Y. 4950. It is a solar year beginning (see Table I.) 11th April (102), (3) Tuesday, A.D. 1848 (a leap-year).

Anszuer.--Saturday, September 2nd, A.D. 1848 .
Example 9. Required the equivalent date A.D. of the South Malayalam Aplu roz4, 20th Chingam. The corresponding Tamil month and date (Table $11 .$. l'art ii., cols. 9 and II) is zoth Avani K.Y. 4950, and the answer is the same as in the last example.

Exinmple 1o. Required the equivalent date A.D. of the North Nalayalam (Kollam) Andu 1023, 20th Chingam. This (Clingam) is the 12 th month of the Kollam Andu year which begins with Kanni. It corresponds with the Tamil 2oth Avaṇi K.Y. 4950 (Table II., Part ii., cols. 9, 12, and Table 11., Part iii.), and the answer is similar to that in the two previous examples.
[The difference in the years will of course be noted. The same Tamil date corresponds
to South Malayalam Audu 102.4, zoth Chingam, and to the same day of the month in the North Nalayatam (Kollam) Andu 1023, the reason being that in the former reckoning the year begins with Chingam, and in the latter with Kanni.]

Eximple 11 . Repuired the A.D. equivalent of the Tamil date, zoth Panguni of Rudhirodgràin, K.Y'. 4905 current (or 4904 expired.)

Table I. gives (d) ith April (101), 1803 A. D. as the initial date of the solar year, and its week-day (w) is (2) Monday.

	d.	i'.
Initial date	101	2
Collective duration (Table 111.. col. ro)	335	335
Given date. (20)-1	19	11)
	$\begin{array}{r} 455 \\ -1 \end{array}$	
	454	356

$6=$ Friday ; 454 (Table IN.) = March 3oth in the following A.D. year, 180.4.
Answier.-Friday, March 3oth, 1804. (See example I, above.)
138. (13.) Conaresion of dates A.D. into Hindu datis. (See Art. 135 above, par. 8.)

Rule 1. Given a year, month, and date A.D. Write down in a horizontal line (d) the dateindicator of the initial date in brackets (Table I., cols. 13 or 19 , as the case may be)] of the corresponding IIindu year required, and (w) the week-day number of that initial date (col. if or 20), remembering that, if the given date A.D. is earlier than such initial date, the (d) and (w) of the previous Hindu year must be taken. Subtract the date-indicator from the date number of the given A.D. date in Table $\mathrm{I}^{\text {..., remembering that, if the previous Hindu year has been taken down, the number to }}$ be taken from Table $L \mathcal{K}$. is that on the right-hand side of the Table and not that on the left. Firom the result subtract (Table 111.. col. $3 a$ or 10) the collective-duration-figure which is nearest to, but lower than, that amount, and add 1 to the total so obtained; and to the (a) add the figure resulting from the second process under (d) , and divide by 7 . The result gives the required weekday. The resulting (d) gives the day of the Hindu month following that whose collective duration was subtracted.

Rule II. Observe (Table 1., cols. 8 or 8a) if there has been an addition or suppression of a month prior to the month found by Rule I. and proceed accordingly.

An easy rulc for dealing with the added and suppressed month is the following. When the intercalated month (Table $1 .$, col. $\&$ or 8 a) precedes the month immediately preceling the one found. such immediately preceding month is the required month; when the intercalated month immediately precedes the one found, such immediately preceding month with the prefix "nija," natural. is the required month; when the intercalated month is the same as that found, such month with the prefix "adhika" is the reguired month. When a suppressed month precedes the month found, the required month is the same as that found, because there is never a suppression of a month without the intercalation of a previous month, which nullifies the suppression so far as regards the collective duration of preceding days. But if the given month falls after two intercalattions and one suppression, act ab above for one intercalation only.

Rule 111. See Art. $137(i)$ Rule V'. (p. zo), but subtract the cleven days instead of adding.
Rule N: If the given A.1). date falls in a leap-year after deth februmy, or if its date-number
(right-hand side of Table IX .) is more than 365 , and the year next preceding it was a leap-year, add 1 to the date number of the given European date found by Table IX., before subtracting the figure of the date-indicator

Kule V. Where the required date is a Hindu luni-solar date the second total, if less than 15 , indicates a sukla date. If more than 15 , deduct 15 , and the remainder will be a krishna date. Kṛishṇa 15 is generally termed krishṇa 30 ; and often sukla 15 is called "purnimà" (fullmoon day), and krishna 15 (or " $30^{\prime \prime}$) is called amaivasyà (new-moon day).

(a) Luni-Solar Dates.

Example 12. Required the Telugu or Tulu equivalent of Vecember ist, 1822. The luni-solar year began 24th March (83) on (1) Sunday (Table l., cols. 19 and 20.)
(d) and (w) of initial date (Table 1.) 831
(Table IX.) Ist December (335) (335-83 $=$) 252252
(Table 1ll.) Collective duration to end of Kàrttika -236
Add 1 to remainder $16+1=17 \quad 253 \div 7$, Rem. I .
17 indicates a krishṇa date. Deduct 15. Remainder 2. The right-hand remainder shews (I) Sunday.

The result so far is Sunday Màrgasirsha kṛishna znd. But see Table I., col. S. Previous to this month Asvina was intercalated. (The suppression of Pausha need not be considered because that month comes after Màrgasirsha.) Therefore the required month is not Màrgasírsha, but Kàrttika; and the answer is Sunday Kàrtika krishṇa 2nd (Telugu), or Jarde (Tuḷu), of the year Chitrabhànu, K.Y. 4923 expired, Saka 1744 expired. (See the example on p. 69.)
(.Vote.) As in example 6 above. this date is actually wrong by one day, because it happened that in Karttika sukla there was a tithi, the 12 th, suppressed, and consequently the real day corresponding to the civil day was Sunday Kàrttika krishạa 3rd. These differences cannot possibly be avoided in methods it and B. nor by any method unless the duration of every tithi of every year be separately calculated. (See example xvii., p. 92.)

Eximple 13. Required the Chaitradi Northern Vikrama date corresponding to April 9 th 1822. By Table I. A.D. IS22-23 = Chaitradi Vikrama 1880 current. The reckoning is luni-solar. Initial day (d) March 24th (83), (a') I Sunday

This is Tuesday, amanta Chaitra krishua 2nd. ${ }^{1}$ But it should be converted into Vaisàkha krishna 2nd, because of the custom of beginning the month with the full-moon (Table Il., Part i.).

[^33]Since the Chaitradi Vikrama year begins with Chaitra, the required Vikrama year is i88ocurrent, 1879 expired. But if the required date were in the Southern reckoning, the year would be 1878 expired, since 1879 in that reckoning docs not begin till Kirttika.
(b) Solar Dates.

Exhmile 14. I. Required the Tamil equivalent of May 30th, 1803 A.J.
Table 1. gives the initial date April ifth (ioI), and week-day number 2 Monday.

The day is the 19 th; the month is Vaiyasi, the month following Sittirai; the week-day is (z) Monday.

Ansectr.-Monday, Igth Vaiyàsi of the year Rudhirodgàrin, K.Y. 4904 expired, Saka 1725 expired.

Bexmile 15. Required the Tamil equivalent of March 3oth. 1804. The given date precedes the initial date in 1804 A.1). (Table 1., col. 13) April 10 th, so the preceding lindu year must be taken. Its initial day is itth April (IOI), and the initial week-day is (2) Monday. 1804 was a leap-ycar.

Adel I \quad| 19 |
| :---: |
| +1 |

Ansater. Friday zoth Panguṇi of the year Rudhirodgairin K.Y. 4904 expired, Saka 1725 expired. (See the example on p. (6.)

Exiniple: 16 . Required the North Nalayalam Andu equivalent of September 2nd, 18.48 . Work as by the Chatradi year. The year is solar. 1848 is a leap-year.

From Table 1.

$$
d . \quad \pi
$$

(Table \mathbb{N}.$) september and (245) 1$ for leap year 246 102-144 1.f.
Coll. duration to end of Karka -125
Adle 1 ${ }^{10}$
$20147 \% 7$ Rem. o

Ansaer.-. Saturday zoth Chingam. This is the reth month of the North Makayam \dot{A} ndu which begins with Kanni. The year therefore is 1023 .

If the date required had been in South Malayalam reckoning, the date would be the same, zoth Chingam, but as the South Malayalis begin the year with Chingam as the first month, the required South Malayilam year wouhd be Anḍu roz.4.

Method C.

EXACT CAL. (ULATUN OF DATES.
(a.) Coniersion of lindu luni-solar dates into dates A.D.
139. To calculate the wodk-day, the cquivalent date A.D., and the moment of beginning or ending of a tithi. Given a Hindu year, month, and tithi.-Turn the given year into a Chaitradi Kali, Saka, or Vikrama year, and the given month into an amanta month (if they are not already so) and find the corresponding year A.D., by the aid of columns i to 5^{1} of Table I., and Table 11., Parts i., ii., iii. Referring to Table I., carry the eye along the line of the Chaitradi year so found. and write down ${ }^{2}$ in a horizontal line the foliowing five quantities corresponding to the day of commencement (Chaitra sukla pratipada) of that Chaitradi-year, viz., (d) the date-indicator given in brackets after the day and month A.D. (Table I., col. 19), (w) the week-day number (col. 20), and (a). (i). (c) (cols. 23. 24, 25). Find the number of tithis which have intervened between the initial day of the year (Chaitra sukla pratipada), and the given tithi, by adding together the number of tithis (collective duration) up to the end of the month previous to the given one (col. 3. Table III.), and the number of elapsed tithis of the given month (that is the serial number of the given tithi reduced by one), taking into account the extra 15 days of the sukla paksha if the tithi belongs to the krishạa paksha, and also the intervening intercalary month, ${ }^{3}$ if any, given in col. 8 (or $8 a$) of Table 1 . This would give the result in tithis. But days. not tithis, are required. To reduce the tithis to days, reduce the sum of the tithis by its 60 th part, ${ }^{4}$ taking fractions larger than a half as one, and neglecting half or less The result is the (d), the approximate number of days which have intervened since the initial day of the Hindu year. Write this number under head ((l), and write under their respective heads, the (a). (a). (b). (\dot{c}) for that number of days from Table IV. Add together the two lines of five quantities, but in the case of (a') divide the result by 7 and write only the remainder, in the case of (a) write only the remainder under 10000 , and in the case of (b) and (c) only the remainder under $1000 .{ }^{5}$ Find separately the equations to arguments (b) and (c) in Tables V1. and VII. respectively, and add them to the total under (a). The sum (t) is the tithi-index, which, by cols. 2 and 3 of Table Vlll., will indicate the tithi current at mean sunrise on the week-day found under (w). If the number of the tithi so indicated is not the same as that of the given one, but is greater or less by one (or by two in rare cases), subtract one (or two) from, or add

[^34]une (or two) to, both (d) and $(w i)^{1}$ subtract from, or add to, the (a) (b) (c) already found, their value for one (or two) days (Table 1V.); add to (a) the equations for (b) and (c) (Tables V1. and V11.) and the sum (t) will then indicate the tithi. If this is the same as given (if not, proceed again as before till it corresponds), the (a ') is its week-day, and the date shewn in the top line and side columns of Table IX. corresponding with the ascertained (d) is its equivalent date A.I). The year A.1). is found on the line of the given Chaitridi year in col. 5, Table 1. Double figures are given in that column; if (α) is not greater than 365 in a common year, or 366 in a leap-year, the first, otherwise the second, of the double figures shows the proper A.D. year.
140. For all practical purposes and for some ordinary religious purposes a tithi is connected with that week-day at whose sumrise it is current. For some religious purposes, however. and sometimes even for practical purposes also, a tithi which is current at any particular moment of a week-day is connected with that week-day. (See Alt. is aboic.)
141. In the case of an expunged tithi, the day on which it begins and ends is its weekday and equivalent. In the case of a repeated tithi, both the civil days at whose sunrise it is current, ${ }^{2}$ are its week-days and equivalents.
I.42. A chue for findins when at tithi is probably ropated or cxpunged. When the tithiindex corresponding to a sunrise is greater or less, within 40 , than the ending index of a tithi, and when the equation for (b) (Table VI.) is decreasing, a repetition of the same or another tithi takes place shortly after or before that sumrise; and when the equation for (b) is increasing an expunction of a tithi (different from the one in question) takes place shortly before or after it.
143. The identification of the date A.D. with the week-day arrived at by the above method, may be verified by Table XIII. The verification, however, is not in itself proof of the correctness of our results.
144. To find the moment of the conding of a tithi. Find the difference between the (t) on the given day at sunrise and the (t) of the tithi-index which shews the ending point of that tithi (Table VHI.). With this difference as argument find the corresponding time either in ghatikis and palas, or hours and minutes, according to choice, from Table X . The given tithi ends after the given sunrise by the interval of time so found. But this interval is not always absolutely accurate. (Sic Art. S2). If accuracy is desired add the $(a)(b)(c)$ for this interval of time (Table V.) to the (a) ($b)(c)$ already obtained for sumrise. Add as before to (a) the equations of (b) and (c) from Tables V1. and V11., and find the difference between the (t) thus arrived at and the (/) of the ending point of the tithi (Table VIll.). The time corresponding to that difference, found from Table X., will show the ending of the tithi before or after the first found time. If still greater accuracy is desired, procecd until (t) amounts exactly to the (t) of the ending point (Table VIII.) For ordinary purposes, however, the first found time, or at least that arrived at after one more process, is sufficiently accurate.
145. The moment of the begimning of a tithi is the same as the moment of ending of the tithi next preceding it; and this can be found either by calculating backwards from the (t) of the same tithi, or independently from the (t) of the preceding tithi.
146. The moment of begiming or ending of tithis thus fonnd is in mean time, and is applicable 1 , all places on the meridian of Ujain, which is the same as that of lanki. If the

[^35]
exact mean time for other places is required, apply the correction given in lable X X , according to the ruke given under that Table. If after this correction the ending time of a tithi is found to fall on the previous or following day the (d) and (ii) should be altered accordingly.

Menn time is used throughout the parts of the Tables used for these rules, and it may sometimes differ from the true, used, at least in theory, in Ifindu paichaings or almanacks.

The ending time of a tithi arrived at by these Tables maty also somewhat differ from the ending time as arrived at from authorities other than the Sirrya Siddhanto which is used by us. The results, however, arrived at by the present Tables, may be safely relied on for all urdinary purposes. ${ }^{1}$
1.47. N.F. i. Up to 1100 A.I). both mean and true intercalary months are given in Table l. (sie Art. 47 aboic). When it is not certain whether the given year is an expired or current year, whether it is a Chaitradi year or one of another kind, whether the given month is amànta or pûrụimànta, and whether the intercalary month, if any, was taken true or mean, the only course is to try all possible years and months.
N.B. ii. The results are all Old Style dates up to, and New Style dates from, 1753 A.D The New Style was introduced with effect from after 2nd September, 1752. Since only the initial dates of 1752 and 1753 are given, remember to apply the correction (+11 days) to any date between 2nd September, 1752, and 9th April, 1753, in calculating by the Hindu solar year, and between 2nd September, 1752, and 4 th April, 1753, in calculating by the Hindu luni-solar year, so as to bring out the result in New Style dates A.D. The day of the week requires no alteration.
N.B. izi. If the date A.D. found above falls after February 28 th in a leap-year, it must be reduced by 1 .
N.B. iz. The Hindus generally use expired (gata) years, while curront years are given throughout the Tables. For example, for Saka year 1702 "expired" 1703 current is given.
148. Examile i. Required the week-day and the A.D. year, month, and day corresponding to Jyeshṭha śukla panchamî (5th), year Śàrvari, Śaka year r702 expired (1703 current), and the ending and beginning time of that tithi.

The given year is Chaitràdi (see N.B. ii., Table II., Part iii.). It does not matter whether the month is amànta or purruimanta, because the fortnight belongs to Jyeshtha by both systems (see Table 11., Part i.). Looking to Table 1. along the given current Saka year 1703, we find that its initial day falls in A.D. 1780 (see note 1 to Art. 139), a leap-year, on the 5 th April, Wednesday; and that d (col. 19). 20 (col. 20). $a(\mathrm{col} .23$), b (col. 2.4) and c (col. 25) are $96,4,1,657$ and 267 respectively. We write them in a horizontal line (see the working of the example below). From Table I., col. S, we find that there is no added month in the year. The number therefore of tithis between Chaitra ś. 1 and Jyeshṭha s. 5 was 64, viz., 60 up to the end of Vaisàkha (see Table III., col. 3), the month preceding the given one, and 4 in Jyeshtha. The sistieth part of 64 (neglecting the fraction $\frac{4}{60}$ because it is not more than half) is 1 . Reduce 64 by one and we have 63 as the approximate number of days between Chaitra s. 1 and Jyeshṭha s.s. 5. We write this number under (d). Turning to Table IV. with the argument 63 we find under (w) (a) (b) (c) the numberso, 1334 , 286, 172, respectively, and we write them under their respective heads, and add together the two quantities under each head. With the argument (b) (9.43) we turn to Table VI. for the equation. We do not find exactly the number 943 given, but we have 9.40 and 950 and must see the difference between the corresponding equation figures and fix the appropriate figure for 943 . The auxiliary table given will fix this, but in practice it can be easily calculated in the head. (The

[^36]full numbers are not given so as to avoid cumbrousness in the tables.) Thus the equation for (b) $(9+3)$ is found to be 90 , and from Table Vilf. the equation for (c) is found to be 38 . Adding 90 and 38 to (a) (1335) we get 1463 , which is the required tithi-index (t). Turning with this to Table VIll., col. 3. we find by col. 2 that the tithi current was sukla 5 , i.e., the given date. Then (a) 4 . Wednesday, was its week-day; and the tithi was current at mean sunrise on the meridian of Ujjain on that week-day. Turning with (d) 559 to Table IN., we find that the equivalent date A.D. was 8th June; but as this was after 2 Sth February in a leap-year, we fix 7 th June, A.D. 1780. (see N.B. iii., Art. 147) as the equivalent of the given tithi. $\Lambda s(t)$ is not within 40 of 1667 , the (t) of the 5 th tithi (Table VIII.), there is no probability of an expunction or repetition shortly: preceding or following (Art.142). The answer therefore is Wednesday, June 7th, A.D. 1780.

To find the conding time of the tithi. (t) at sunrise is $1+63$; and Table VIII., col. 3, shews that the tithi will end when (t) amounts to $1667 . \quad(1667-1463 \Rightarrow 204=$ (Table X.) 14 hours, 27 minutes, and this process shews us that the tithi will end 14 hours, 27 minutes, after sunrisc on Wednesday, June 7 th. This time is, however, approximate. To find the time more accurately we add the increase in (a) (b) (c) for 1.4 h .27 m . (Table V.) to the already calculated (a) (b) (c) at sumrise; and adding to (a) as before the cquations of (b) and (c) (Tables VI. and VIl.) we find that the resulting (t) amounts to $1686.1686-1667=19=1$ hour and 21 minutes (Table N.). But this is a period beyond the end of the tithi, and the amount must be deducted from the 14 h . 27 m . first found to get the true end. The true end then is 13 h .6 m . after sunrise on June 7 th . This time is accurate for ordinary purposes, but for still further accuracy we proceed again as before. We may either add the increase in (a) (b) (c) for 13 h .6 m . to the value of $(a)(b)(c)$ at sunrise. or subtract the increase of $(a)(b)(c)$ for 1 h .21 m . from their value at 14 h .27 m . By either process we obtain $(t)=1665$. Proceed again. $1667-1665=2=$ (Table X.) 9 minutes after 13 h .6 m . or 13 h .15 m . Work through again for 13 h .15 m . and we obtain $(t)=1668$. Proceed agrain. $1668-1667=1=($ Table X. $) ~+$ minutes before 13 h .15 m . or 13 h .11 m . Work for 13 h .11 m ., and we at last have 1667 , the known ending point. It is thus proved that 13 h . II m . after sumrise is the absolutely accurate mean ending time of the tithi in question by the Sirya-Siddhanta.

To find the heginning time of the gieven tithi. We may find this independently by calculating as before the (t) at sunrise for the preceding tithi, (in this case sukla fth) and thence finding its ending time. But in the exmple given we calculate it from the (t) of the given tithi. The tithi begins when (t) amounts to 1333 (Table V113.). or (1463 -1333) 130 before sumrise on Junc 7th. 130 is (Table X.) 9 h .13 m . Proceed as before. but deduct the (a) (i) (6) instead of adding. and (see working below) we eventually find that (t) amounts exactly to 1333 and thercfore the tithi begins at 8 h .26 m . before suntise on June 7 th, that is 15 h . $3+\mathrm{m}$. after sumrise on Tuesday the Gth. The beginning and ending times are by Ujain or Lanki mean time. If we want the time, for instance, for Benares the difference in longitude in time, 29 minutes, should be added to the above result (See Table Xl.). This, however, does not affect the day.

It is often very necessary to know the moments of beginning and ending of a tithi. Thus our result brings out Wednesday, June 7 th. but since the 5 th tithi began 15 h . 34 m. after smarise on Juesday, i.t.., about $9 \mathrm{~h} .34 \mathrm{~m} . \mathrm{p} . \mathrm{m}$. . it might well happen that an inseription might record a ceremony that took place at $10 \mathrm{p} . \mathrm{m}$., and therefore fix the day at Tuesday the 5 th tithi, which, unless the facts were known, woukd appear incorrect.

From Pable Xil. we find that 7 th fune. A.1). 1780 was a Wednesday, and this helps to lix that dity at current.

We now eive the working of Fixhulle: 1.

WORKING: (OF ECAMPLE 1 .

(t) gives śukla 5 th (Table VIll., cols. 2. 3) (the same as the given tithi).
(d)-I, (N. B. iiii., Art. 147), or the number of days elapsed from

January ist, $=$. 158
$158=$ June 7 th (Table IX.). A.D. 1780 is the corresponding year, and 4 (w) Wednesclay is the week-day of the given tithi. Ansaver.-Wednesday, June 7 th, 1780 A.D.
(b) The ending of the tithi Jyeshtha suk. 5. (Table VIII.) $1667-1463=204=(14 \mathrm{~h} .10 \mathrm{~m}$. +oh. 17 m .) $=14 \mathrm{~h} .27 \mathrm{~m}$. (Table X.). Therefore the tithi ends at 14 h .27 m . after mean sunrise on Wednesday. For more accurate time we proceed as follows:

i686-1667 (Table VIII.) $=19=1 \mathrm{~h} .21 \mathrm{~m}$; and 1 h .21 m . deducted from 14 h .27 m . gives 13 h .6 m . after sunrise on Wednesday as the moment when the tithi ended. This is sufficient for all practical purposes. For absolute accuracy we proceed again.

$$
1665=t
$$

Actual end of the tithi
$1667=t$.
Thus 13 h .11 m . after sunrise is the absolutely accurate ending time of the tithi.
(c) The beginning of the tithi, Jyeshtha suk. 5. Now for the beginning. 1.463 (the original t. as found) - 1333 (beginning of the tithi, (Table VIII.) $=130=($ Table N.$)(7 \mathrm{~h} .5 \mathrm{~m} .+2 \mathrm{~h} .8 \mathrm{~m})=.9 \mathrm{~h} .13 \mathrm{~m}$. ; and we have this as the point of time before sunrise on Wednesday when the tithi begins.

$$
1321=t
$$

(The beginning of the tithi) $1333-1321=12=$ Table X.) 51 m . after the above time (9 h 13 m .) , and this gives 8 h .22 m . before sunrise. We proceed again.

$1334-1333=1=4 \mathrm{~m}$. before the above time (viz., 8 h .22 m .) i.e., 8 h .26 m . before sunrise. Procecd again.

The result is precisely the same as the beginning point of the tithi (Table VIll.), and we know that the tithi actually began 8 hours 26 minutes before sunrise on Wednesday, or at 15 h .34 m . after sunrise on Tuesday, 6th June.

Example II. Required the week-day and equivalent A.D. of Jyeshṭha śuk. dasamî (10 th) of the southern Vikrama year 1836 expired, 1837 current. The given year is not Chaitrâdi. Referring to Table I1., Parts ii., and iii., we find, by comparing the non-Chaitràdi Vikrama year with the Saka, that the corresponding Saka year is 1703 current, that is the same as in the first example. We know that the months are amânta.

(d) $(164)-\mathrm{I}(N$. B. iii., Art. 147) $=163$.

The result, 3309, fixes the day as śukla 1oth (Table Vill., cols. 2, 3), the same as given.
Answer.-(By Table IX.) $163=$ June 12 th, $2=$ Monday. The year is A.D. 1780 (Table II., Part ii.). The tithi will end at ($3333-3309=24$, or by Table X.) 1 h .42 m . after sunrise, since 3309 represents the state of that tithi at sunrise, and it then had 24 lunation-parts to run. Note that this (t) (3309) is less by 24 than 3333, the ending point of the Ioth tithi; that 24 is less than 40 ; and that the equation for (b) is increasing. This shows that an expunction of a tithi will shortly occur (Art. 142.)

Example 1iI. Required the week-day and equivalent A.D. of Jyeshṭtha sukla ekàdaśi (i ith) of the same Saka year as in example 2, i.e., S. 1703 current.

This figure $1 t=3668$) by Table V11I., cols. 2, 3, indicates sukla 12 th.
$d-1($ V.B. iii., Art. 147$)=164$ and Table IN. gives this as June 13 th. The $\left(a^{\prime}\right)$ is $3=$ Tuesday. The year (Table 11. Part iii.) is 1780 A.D.

The figure of $(t), 3668$, shows that the 12 th tithi and not the required tithi (1th) was current at sunrise on Tuesday; but we found in example 2 that the foth tithi was current at sunrise on Monday, June 12 th, and we therefore learn that the irth tithi was expunged. It commenced 1 h. 42 min. after sumrise on Monday and ended 4 minutes before sumrise on Tuesday, $13^{\text {th }}$ Junc. ${ }^{1}$ The corresponding day answering to sukla 10 th is therefore Monday, June 12 th, and that answering to sukla 12 is Tuesday the 13 th June.

Exhmpe N: Required the week-day and equivalent A.D. of the purṇimànta Ashadha kṛishana dvitiyà (z) of the Northern Vikrama year 1837 expired. 1838 current. The northern Vikrama is a Chaitradi year, and so the year is the same as in the previous example, viz., A.D. 1780-I (Table 1I., Part iii.). The corresponding aminta month is Jyeshtha (Table II.. Part i.). Work therefore for Jyeshṭha kṛishṇa end in A.D. 1780-1 (Table I.).

(d)-1 (N.B. iii., Art. 147) $=170=$ (Table IX.) 19 th June. (2) $=$ Monday. The year is 1780 A.D. So far we have Monday, 19th June, A.D. 17 So. But the figure 5685 for (t) shows that kri. jrd and not the 241 was current at sumrise on Monday the 19th June. It commenced ($5685-5607=18=$) 1 h. 17 m . before sumrise on Monday. (t) being greater, but within 40 , than the ending point of kri. and, and the equation for (b) decreasing, it appears that a repetition of a tithi will shortly follow (but not preecde). And thus we know that Sunday the 1 Sth June is the equivalent of kri. end.

Bixnnme: V. Kequired the weekeday and equivalent A.D. of the amanta Jyeshtha kri. zrd of the Saka year 1703 current, the same as in the last 4 examples.

[^37]

This indicates krishṇa 3 rd , the same tithi as given. $(d)-1=171=20$ th June, 1780 A.D.
From these last two examples we learn that krishṇa zrd stands at sunrise on Tuesday zoth as well as Monday 19th. It is therefore a repeated or iriddlit tithi, and both days igth and zoth correspond to it. lt ends on Tuesday ($6000-5999=1=) 4$ minutes after sunrise.

Example VI. Required the week-day and A.D. equivalent of Karttika sukla 5 th of the Northern Vikrama year 1833 expired (1834 current). (See example 2, page 70.)

The given year is Chaitràdi. It matters not whether the month is amànta or pûrụimànta because the given tithi is in the sukla fortnight. The initial day of the given year falls on (Table I., col. 19) 20th March (So), (col. 20) 4 Wednesday; and looking in Table 1. along the line of the given year, we find in col. 8 that the month Bhàdrapada was intercalated or added (adhika) in it. So the number of months which intervened between the beginning of the year and the given tithi was 8 , one more than in ordinary year.

This indicates, not kri. 5 as given, but kṛi. \& (Table VIII.)
Adding 1 to (d) and ($2 v$) (see Rule above, Art. 139) 3210 $a-1$ (N.B. ïi., Art. 147) $320=$ (Table IN.) Nov. 16th, A.D. $1776.0=$ Saturday.
(t) being not within 40 of the ending point of the tithi there is no probability of a repetition or expunction shortly preceding or following, and therefore Saturday the 1 Gth November, 1776 A.D., is the equivalent of the given tithi.

Example vir. Required the week-day and A.D. equivalent of amanta Magha krishua ist of Kali 4923 expired, 4924 current. (See example 4, page 7 I.)

The given year is Chaitradi. Looking in Table l. along the line of the given year, we see that its initial day falls on 24th March (83), 1822 A.D., I Sunday, and that (col. 8) the month (7) Âsinina was intercalated and (IO) Pausha expunged. So that, in counting, the number of intervened months is the same, viz., 10 , as in an ordinary year, Maigha coming after l'ausha.

The figure 5472 indicates (Table VIII.) kri. 2nd, i.e., not the same as given (Ist), but the tithi following. Wc therefore subtract I from (d) and (w) (Art. I 39) making them 392 and 2.

Since (t) is not within 40 of the ending point of the tithi, there is no probability of a kshaya or wriddhi shortly following or preceding. (w) $2=$ Monday. $392=$ (Table IX.) 27 th January. And therefore 27th January, A.D. 1823, Monday, is the equivalent of the given tithi.

Example viil. Required the week-day and the A.D. equivalent of sukla 13 th of the Tulu month Puntelu, Kali year 4853 expired, 4854 current, "Angiras samvatsara" in the luni-solar or southern 60 -year cycle. (See example 5, page 72.)

The initial day (Table I.) is Old Style 5th March (65), A.D. 1752, a leap-year, (5) Thursday; and Âshâdha was intercalated. The Tulu month Puntelu corresponds to the Sanskṛit Pausha (Table II., Part ii.), ordinarily the loth, but now the IIth, month on account of the intercalated \hat{A} shâḍha.

The result, 4110 , indicates sukla 13 th, i.e., the same tithi as that given.
$(d)-1($ N.B. iii., Ait. 1.77) $=371=$ (by Table IX.) January 6th, A.D. 1753 .
We must add in days to this to make it a New Style date, because it fallsafter September 2nd, 1752, and before $4^{\text {th }}$ April, 1753, the week-day remaining unaltered (sce N.B. ii., Art. 147), and 17 th January, 1753 A.D., is therefore the equivalent of the given date.

(B.) Coniorsion of Hindu solar dates into dates A.D.

149. To calculate the aect-day and the equizalent date A.l). Turn the given year into a Meshâdi Kali, Saka, or Vikrama year, and the name of the given month into a sign-name, if they are not already given as such, and find the corresponding year A.D. by the aid of columns 1 to 5 . Table I., and Table 1I., Parts ii., and iii. Looking in Table I. along the line of the Meshadi year so obtained, write duwn in a horizontal line the following three quantities corresponding to the
commencement of that (Meshadi) year, viz., $\langle d$) the date-indicator given in brackets after the day and month A.1). in col. 13, (\hat{w}) the week-day number (col. 1.f), and the time-either in ghatikis and palas, or in hours and minutes as desired-of the Mesha sankrànti according to the dryo-Siddhintar (cols. 15, or 17). For a Bengali date falling between A.1). 1100 and 1900, take the time by the Sarya-Siddhanta from cols. $15 a$ or $17 a$. When the result is wanted for a place not on the meridian of Ujjain, apply to the Mesha sarikrinti time the correction given in Table Ki. Under these items write from Table IIl., cols. $6,7,8$, or 9 as the case may be, the collective duration of time from the beginning of the year up to the end of the month preceding the given one-days under (d) week-day under (a), and hours and minutes or ghatikais and palas under h.m., or gh. p. respectively. Add together the three quantities. If the sum of hours exceeds 24, or if the sum of ghațikàs exceeds 60 , write down the remainder only, and add one each to (w) and (d). If the sum of (w) exceeds 7 , cast out sevens from it. The result is the time of the astronomical beginning of the current (given) month. Determine its civil beginning by the rules given in Art. 28 above.

When the month begins civilly on the same day as, on the day following, or on the third day after, the sankrânti day, subtract 1 from, or add O , or I , to both (d) and (w), and then to each of them add the number of the given day, casting out sevens from it in the case of (w). (w) is then the required week-day, and (d) will show, by Table IX., the A.D. equivalent of the given day.
$N . R . i$. When it is not certain whether the given year is Meshâdi or of another kind, or what rule for the civil beginning of the month applies, all possible ways must be tried.
N.B. ii. See .V.B. ii., iii., iz', Art. 147, under the rules for the conversion of luni-solar dates.

Eximple 1N. Required the week-day and the date A.D. corresponding to (Tamil) 18th Puraṭạasi of Rudhirodgàrin, Kali year 4904 expired, (4905 current). (See example 7, p. 73.)

The given year, taken as a solar year, is Meshàdi. The month Puratṭàdi, or Puraṭtàsi, corresponds to Kanyà (Table II., Part ii.), and the year is a Tamil (Southern) one, to which the Arya Siddhanta is applicable (sec Art. 2I). Looking in Table I. along the line of the given year, we find that it commenced on 1ith April (col. 13), A.D. 1803 , and we write as follows:-

This shows that the Kanyà sankkànti took place on a (4) Wednesday, at 20 h .35 m . after sunrise, or $2.35 \mathrm{a} . \mathrm{m}$. on the European Thursday. (Always remember that the Hindu week-day begins at sunrise.) The month Kanyà, therefore, begins civilly on Thursday. ${ }^{1}$ ($\operatorname{Kiule} 2(a)$, Art. 28.) We add, therefore o to (d) and $(a\rangle$

Add IS, the serial number of the given day, to (d) and, casting out sevens from the same figure, 18 , add 4 to ($i i^{\prime}$)

18	4
275	1

Then $(w)=1$, i.c., Sunday, and $275=$ (Table 1X.) 2nd October.
Ansaicr.-Sunday, 2nd October, iSo3 A.D.
Example \times. Required the week-day and A.D. date corresponding to the 2oth day of the Bengali (solar) month Phàlguna of Saka 1776 expired, 1777 current, at Calcutta.

[^38]The year is Meshadi and from Bengal, to which the Sûrya Siddhanta applies (see Art. 2I). The Bengali month Phitguna corresponds to Kumbha (Table Il., Part ii.). The year commenced on 11 th April, 1854, A.D. (Table I.).

(Table 1.. cols. 13, 14, 17a)	$\begin{aligned} & d . \\ & \text { IoI } \end{aligned}$	3		3
Difference of longitude for Calcutta (Table XI.)				
Collective duration up to the end of Makara (Table 11I., col. 9.)	305	4	2	2
	406	O	20	5

This result represents the moment of the astronomical beginning of Kumbha, which is after midnight on Saturday, for 20 h .5 m . after sunrise is 2.5 a.m. on the European Sunday morning. The month, therefore, begins eivilly on Monday (Art. 28, Rule I above).

Add, therefore, 1 to (d) and (w). 11
Add 20 (given day) to (d), and, casting out sevens from 20 , add 6 to (${ }^{\prime}$)
$20 \quad 6$

$$
0=\text { Saturday, } 427=3 \text { rd March (Table IX.) . . . } \quad 4270
$$

Ansaver.-Saturday, 3 rd March, A.D. 1855.
Eximple: Ni. Required the week-day and A.D. date corresponding to the Tinnevelly Andu 1024, 20th day of Avaṇi. (See example 8, p. 73.)

The year is South Indian. It is not Meshàdi, but Simhâdi. Its corresponding Saka year is 1771 current; and the sign-name of the month corresponding to Avani is Simha (Table 1., and Table II., Parts ii., and iii.) The Śaka year 1771 commenced on 11 th April (102), A.D. 1848 (a leap-year), on (3) Tuesdáy. Work by the Arya-Siddhanta (Art. 2I).

The month begins civilly on the same day by one of the South Indian systems (Art. 28, Rule 2, a); therefore subtract 1 from both (d) and (w) 1

Add 20 , the serial number of the given day, to (d) and (less sevens) to (ω) .

$$
-\overline{226} 1
$$

$$
\begin{array}{r}
206 \\
-260
\end{array}
$$

Deduct I for 29 th lecbruary (N.Fi. ï., Art. 149 and N.B.iii., Art. 147) _

$$
0=\text { Saturday: } 245=(\text { Table IX. }) \text { Sept. 2nd. }
$$

Ansater．－Saturday，September 2nd， 1848 A．D．
Eximilef Nin．Required the week－day and A．D．date corresponding to the South Malayàlam Ậ̣u 1024，19th Chingam．（The calculations in Example si．shew that the South－ Malayalam month Chingam began civilly one day later（Art．28，Kule 2b）．Therefore the Tamil 2oth Avani was the 19th South－Nalayalam．）

Referring to Table H．，Part ii．，we sce that the date is the same as in the last cxample．
Eximirle XiII．Required the week－day and A．D．date corresponding to the North Mala－ yàlam Ậlu 1023，zoth Chingam．

Referring to Table II．，Part ii．，we see that the date is the same as in the last two examples．

（c．）Conacrsion into dates A．D．of tithis which are coupled with solar months．

150．Many inscriptions have been discovered containing dates，in expressing which a tithi has been coupled，not with a lunar，but with a solar month．We therefore find it necessary to give rules for the conversion of such dates．

Parts of two lunar months corresponding to each solar month are noted in Table II．，Part ii．， col．14．Determine by Art．119，or in doubtful cases by direct calculation made under Arts． 149 and 151 ，to which of these two months the given tithi of the given fortnight belongs，and then proceed according to the rules given in Art． 139.

It sometimes happens that the same solar month contains the given tithi of both the lunar months noted in Table 11．，Part ii．，col．14，one occurring at the begiuning of it and the other at the end．Thus，suppose that in a certain year the solar month Mesha commenced on the luni－ solar tithi Chaitra sukla ashṭami（Sth）and ended on Vaisàkha sukla daśamí（Ioth）．In this case the tithi sukla navamí $\{0$ th）of both the lunar months Chaitra and Vaiśakha fell in the same solar month Mesha．In such a case the exact corresponding lunar month cannot be determined unless the vàra（week－day），nakshatra，or yoga is given，as well as the tithi．If it is given，examine the date for both months，and after ascertaining when the given details agree with the given tithi，determine the date accordingly．

Examile Niv．Required the A．D．year，month，and day corresponding to a date given as follows；－＂Saka IIS7，on the day of the nakshatra Rohiṇí，which fell on Saturday the thirteenth tithi of the second fortnight in the month of Mithuna．＂${ }^{\text {t }}$

It is not stated whether the Saka year is expired or current．We will therefore try it first as expired．The current year therefore is in 88 ．Turning to Table 1．we find that its initial day，Chaitra sukla ist，falls on 20th March（79），Friday（6），A．D．i265．From Table II．，Part ii．， col．14，we find that parts of the lunar months Jyeshṭha and Âshatha correspond to the solar month Mithuna．The Mesha sankrinti in that year falls on（Table I．，col．I 3） 25 th March，Wednesday， that is on or about Chaitra sukla shashṭhî（ 6 th），and therefore the Mithuma sankrànti falls on （about）Jyeshṭha sukla daśamî（loth）and the Karka sankrànti on（about）Âshạdha sukla dvàdasî （I2th）（sec Art．119）．Thus we see that the thirteenth tithi of the second fortnight falling in the solar month of Mithuna of the given date must belong to amânta Jyéshṭha．

1 This date is from an actual inscription in Southern India．（Sce Ind．Ant．，XXII．，／\％219）．
S. 1188, Chaitra s. 1st (Table 1., cols. 19, 20, 23, 24, 25)

Approximate number of days from Ch. s. 1st to Jyesh. kri. I 3 th $(87$ tithis reduced by Goth part $=86$) with its $(w)(a)(b)$ (c) (Table IV.)

$\begin{gathered} d . \\ 79 \end{gathered}$	$\begin{aligned} & \pi \\ & 6 \end{aligned}$	$\begin{gathered} a . \\ 287 \end{gathered}$	$\begin{gathered} b . \\ 879 \end{gathered}$	$\begin{gathered} c \\ 265 \end{gathered}$
86	2	9122	121	235
165	1	9409	\bigcirc	500
		140		
		60		
		9609		

The resulting number 9609 fixes the tithi as krishạa 1 th (Table V1ll., cols. 2, 3), i.e., the tithi immediately following the giventithi. There is no probability of a kshay or ryiddhi shortly before or after this (Art If f_{2}). Deduct, therefore, 1 from (d) and (w)
$16_{4}=($ Table IN.) 13 th June; $0=$ Saturday.
Answer.-13th June, 1265 A.D., Saturday, (as required). ${ }^{1}$

(D.) Conversion of dates A.D. ${ }^{2}$ into Hindu luni-solar dates.

151. Given a year, month, and date A.D., write down in a horizontal line (io) the weekday number, and (a). (b). (c) (Table I., cols. 20, 23, 24. 25) of the initial day (Chaitra s. 1) of the Hindu Chaitradi (Śaka) year corresponding to the given year; remembering that if the given date A.D. is earlier than such initial day, the (ai) (a) (b) (c) of the previous Hindu year ${ }^{3}$ must be taken. Subtract the date-indicator of the initial date (in brackets. Table 1.. col. 19) from the date number of the given date (Table IN.), remembering that, if the initial day of the previous Hindu year has been taken, the number to be taken from Table 1 X . is that on the right-hand side, and not that on the left (set also N.B. ii. below). The remainder is the number of days which have intervened between the beginning of the Hindu year and the required date. Write down, under their respective heads, the $\left(a i^{\prime}\right)(a)(b)(c)$ of the number of intervening days from Table IV.. and add them together as before (sce rules for conersion of luni-solar dates into dates A.D.). Add to (a) the equation for (b) and (c) (Tables V1., Vil.) and the sum (t) will indicate the tithi (Table V1ll.) at sunrise of the given day; (w) is its week-day. To the number of intervening days add its sistieth ; part. See the number of tithis next lower than this total 's (Table IlI.. col. 3) and the lunar month along the same line (col. 2). Then this month is the month preceding the required month, and the following month is the required month.

When there is an added month in the year, as shown along the line in col. s or $s a$ of Table I., if it comes prior to the resulting month, the month next preceding the resulting month

[^39]is the required month; if the added month is the same as the resulting month, the date belongs to that added month itself; and if the resulting month comes earlier than the added month, the result is not affected.

When there is a suppressed month in the year, if it is the same as, or prior to, the resulting month, the month next following the resulting month is the required month. If it is subsequent to the resulting month the result is not affected. If the resulting month falls after both an added and suppressed month the result is unaffected.

From the date in a Chaitràdi year thus found, any other llindu year corresponding to it can be found, if required, by reference to Table Il., Parts ii., and iii.

The tithi thus found is the tithi corresponding to the given date A.D.; but sometimes a tithi which is current at any moment of an A.D. date may be said to be its corresponding tithi.
N.B. i. See N.P. ii., Art. 147; but for "+ 11" read "-I!".
N.B. ii. If the given A.D. date falls in a leap-year after 29th February, or if its date-number is more than 365 (taken from the right-hand side of Table IX.) and the year next preceding it was a leap-year, add I to the date-number before subtracting the date-indicator from it.

Example xv. Required the tithi and month in the Saka year corresponding to 7 th June, 1780 A.D.

The Saka year corresponding to the given date is 1703 current. Its initial day falls on (4) Wednesday, 5 th April, the date-indicator being 96.

$$
\begin{array}{cccc}
i i^{\prime} . & a . & b . & c .
\end{array}
$$

$$
\text { (Table 1., cols. 20, 23, 24, 25) } 4 . \quad 1657267
$$

$$
\text { 7th June }=. \quad . \quad . \quad \text { i } 58 \text { (Table IX.) }
$$

$$
\text { Add }+1 \text { for leap-year (N.B. ii.) }
$$

$$
\text { I } 59
$$

Deduct 96 the (d) of the initial date —— (Table I., col. 19).
Days that have intervened 63. By Table IV. $63=\ldots . \begin{array}{llllllll} & 1334 & 286 & 172\end{array}$

Equation for (b) (943) (Table V1.) .

4	1335	943	439

Do. (c) (439) (Table VII.)

$$
-\frac{38}{4}-\frac{163}{}=t
$$

Sukla 5 th (Table VIII.) is the required tithi. and (4) Wednesday is the week-day: Now $63+\frac{63}{60}=64 \frac{3}{60}$. The next lowest number in col. 3. Table III., is 60 , which shows Vaisàkha to be the preceding month. Jyeshttha is therefore the required month.

Ansu'cr.-Saka 1703 current, Jyeshṭha sukla 5 th, Wednesday.
If the exact beginning or ending time of the tithi is required, proceed as in example i above (Art. 1f8.)

We have seen in example 1 above ($1 \% \%$. $\not \subset S$) that this Jyeshṭha 5 th ended, and sukla 6 th commenced, at 13 h .1 Im . after sunrise on the given date; and after that hour sukla 6th corresponded with the given date. Sukla 6th therefore may be sometimes said to correspond to the given date as well as sukla 5 th.

Example xvi--Required the tithi and month in the southern Vikrama year corresponding to 12 th September, 1776 A.D.

The Saka year corresponding to the given date is 1699 current. lts initial date falls on 2oth March (80), + Wednesday. A.D. 1776. Bhàdrapada was intercalated in that year.

This indicates (Table VIll.) krishṇa 30 th (amàvàsyà, or new moon day), Thursday.
The intervening tithis are $176+\frac{176}{60}=179$. The number next below this in col. 3 , Table 111., is 150 , and shows that Śràvana preceded the required month. But Bhadrapada was intercalated this year and it immediately followed Sravana. Therefore the resulting tithi belongs to the intercalated or adhika Bhâdrapada.

Answer.-Adhika Bhàdrapada kṛi: joth of Saka 1699 current, that is adhika Bhadrapada kri. 3oth of the Southern Vikrama Kirttikàdi year 1833 current, 1832 expired. (Table II., Part ii.).

Eximple xiti. Required the Telugu and Tulu equivalents of December ist, i822 A.D.
The corresponding Telugut or Tulu Chaitràdi Saka year is 1745 current. Ásina was intercalary and Pausha was expunged (col. 8, Table I.). Its initial date falls on 24 March (83), A.D. 1822, (1) Sunday.

Table 1., cols. 20, 23, 24, 25) $1 . \begin{array}{llllll}12 & 899 & 229\end{array}$
1 st INecember $=. \quad .335$ (Table 1N.)
Deduct $\$_{3}$ (The d. of the initial day)
Days that have intervened $252=$ (Table IV.) $0 \quad 5335$ 145 690

Ecpuation for (b) (44) (Table IV.)
$15547 \quad 44 \quad 919$
Do. (c) (919) (1)o. VII.) 90

The results give us kịishạa 3. Sunday (1), (Table VIII.). . $1 \quad 5817=1$.
$252+\frac{202}{60}=256$. The number next below 256 in col. 3, Table 1H., is 240 . and shews that Kirttika preceded the required month, and the required month would therefore be Marga-

Sirsha. But Ásina, which is prior to Margasirsha, was intercalated. Kârtika therefore is the reguired month. Pausha was expunged, but being later than Kirttika the result is not affected.

Ansaicr.--Sunday, Karttika (Telugu), or Jarde (Tulu) (Table 11., Part* ii.), kr. 3rd of the year Chitrabhanu, Saka 1745 (174.4 expired), Kali year 4923 expired.

Eximile Xvin. Required the tithi and purnimanta month in the Saka year corresponding to 18 th January, 1541 A. D .

The given date is prior to Chaitra sukla 1 in the given year. We take therefore the initial day in the previous year, A.D. 1540, which falls on Tuesday the gth March (69). The corresponding Saka year is 1463 current.
(Table I., cols. 20, 23, 24, 25) 3108756229
18th January $=. \quad .383$ (Table 1X.)
Add for leap-year . . 1 (V.B. ii., latter part.)

$$
384
$$

Deduct 69 (The d. of the initial day.)
No. of intervening days. . $315=$ (by Table IV.) 06669432 862

Equation for (b) (IS8) (Table VI.) 269
No. (c) (91) (Do. VHI.) 28

The result gives us krishṇa 7th, Tuesday (3) (Table VIII.).
$315+\frac{315}{60}=320$ tithis. The next lower number to 320 in col. 3, Table Ill., is 300, which shews Pausha as preceding the required month, and the required month would therefore be Màgha. Âsvina, however, which is prior to Màgha, was intercalary in this year; Pausha, therefore, would be the required month; but it was expunged; Màgha, therefore, becomes again the required month. Adhika Âsina and kshaya Pausha being both prior to Magha, they do not affect the result. By Table II. amànta Màgha kṛishṇa is pûrṇimànta Phâlguna kṛishụa. Therefore pùrṇimànta Phàlguna kp̣ishụa 7 th, Tuesday, Saka 1463 current, is the required date.

(E.) Conaersion of A.D. dates into Hindu solur dates.

152. Given a year, month, and date A.D., write down from Table I. in a horizontal line the (d) (w) and (h) (m) (the time) of the Mesha sankrinti, by the Arya or Suirya-Siddluinta ${ }^{1}$ as the case may require, of the Hindu Meshàdi year, remembering that if the given day A.D. is earlier than the Mesha sankranti day in that year the previous ${ }^{2}$ Hindu year must be taken. Subtract the date-indicator of the Mesha sankrânti day from the date-number of the given date (Table LX .), remembering that if the Mesha sankranti time of the previous IIindu year is taken the number to be taken from Table [X. is that on the right-hand side. and not that on the left (sec also Art. 15I, N.B. ï.) ; the remainder is the number of days which intervened between the Mesha sankranti and the given day. Find from Table HII., cols. $6,7,8$ or 9 , as the case may be, the number next below that number of intervening days. Write its three quantities $(d),(w)$, and the time of the sankranti ($/ \mathrm{l} . \mathrm{m}$.), under their respective heads, and add together the three quantities separately (Scc Art. $1 \not 19$

[^40]abotc). The sum is the time of the astronomical beginning of the required month, and the month next following that given in col. 5 , on the line of the next lowest number, is the month required.

Ascertain the day of the civil beginning of the current required month by the rules in Art. 28. When it falls on the same day as the sankrianti day. or the following, or the third day, respectively, subtract I from, or add o or I to, both (d) and (w). Subtract (d) from the date-number of the given date. The remainder is the required Hindu day. Add that remainder, casting out sevens from it, to (w). The sum is the week-day required.

From the Meshadi year and the sign-name of the month thus found, any other corresponding Hindu year can be found by reference to Table Ill., Parts ii., and iii.

Obscrve the cautions contained in N.B. i. and ii. to Art. 151.
Example xin. Required the Tamil, Tinnevelly, and South and North Malayâlam equivalents of 30 th May. 1803 A.D. (See example 14, p. 76.)

The corresponding Meshàdi Śaka year current is 1726 . Its Mesha sankkrânti falls on April IIth (IOI), 2 Monday. The Arya Siddhânta applies. (Sec Art. 2r.)

Intervening days 49
The number next below 49, (Table Ill., col. 7), for the end of Mesha and beginning of Vrishabha, is 30 , and we have $30 \quad 2 \quad 22 \quad 12$
[Total of hours $=32$. I day of 24 hours carried over to (d) and (w).] Astronomical beginning of Vrishabha $132 \quad 5 \quad 8 \quad 19$
By all South Indian reckonings, except that in the South Malayatam country, the month begins civilly on the same day as the sankrànti. Subtract, therefore, 1 from (d) and ((w)
$\underset{131}{1} \frac{1}{4}$

Subtract 131 (d) from the number of the given date . . 150
Remainder, 19, is the required date in the month of Vrishabha. 19
Add i9, casting out sevens, to (w)
5

Recquired week-day
Answer.-Monday, 19th day of the month Vrishabha, Tamil Vaigàsi, of Saka 1726 current (1725 expired); Kali 4904 expired (Table I., or Table II., Part iii.); Tinnevelly Âdu 978, Vaigàśs 19th; North Malayaḷam Ạ̣̣u 978, Eḍavam 19th.

The Vrishabha sankranti took place 8 h .19 m . after sumrise, viz., not within the first $\frac{3}{5}$ ths of the day. Therefore by the South Malayalam system the month Vrishabla began civilly, not on (5) Thursday, but on the following day (6) Friday. Therefore we have to add or subtract nothing from 132 and 5 . Subtracting 132 from 150 , the remainder, isth, is the required day: Adding $(18 \div 7)$ to $\left.5(i)^{\prime}\right)$ we get (2) Monday as the required week-day. Therefore Monday isth of Edavam, Kollam Ạdu 978, is the required South Malayatam equivalent.

Eximplef dx. Required the week-day and Bengali date at Calcutta corresponding to March 3 rd, 1855 A.D. The Surya-Siddhinta is the authority in Bengal. The given day is earlier than the Mesha sankranti in the year given. We must take therefore as our starting. point the Mesha sankrânti of the previous year, which falls on ith April (10I), Tuesday, (3) Saka 1777 current, A.D. 1854.

Intervening days . . . 326
The number next below 326 (Table III. col. 9), for the end of Makara and beginning of Kumbla is 305422

The astronomical beginning of Kumbha, after midnight on Saturday $=\begin{array}{llll}406 & 0 & 20 & 5\end{array}$
The civil beginning falls on the third day, Monday (Art. 28). We add therefore 1 to (d) and (w) .
$-\frac{1}{407} \frac{1}{1}$

Subtract (d) 407 from the date number of 3 rd March . . . 427
Remainder 20, and the required date is 20th Kumbha. . . 20
Add 20 to (wi) casting out sevens 6
The required week-day is Saturday
The Bengali month corresponding to Kumbha is Phàlguna (Table II., Part ii.). Answer.-The 20th day of Plitguna, Saturday, Saka, 1776 expired. (See example x above.)

Example Niv. Required the South Indian solar dates equivalent to 2 nd September, 1848 A.D.
The corresponding Meshâdi Saka year (current) is 177 I. It commenced on IIth April (IO2), Tuesday (3).

The number next below 144, (col. 7, Table III.), for the end of Karka and beginning of Sinha is 125 , and we write

The astronomical beginning of Simha is $227 \quad 2 \quad 118$
This is the civil beginning by one of the Southern systems.

The equivalents are therefore:-(see Table Il., l'art ii.)
Saturday 19th Chingam, South Malayâlam Âṇu 1024 (See example XII., p. 89.) Do. 20th Do. North Do. 1023 Do. 2oth Avaṇi Tinnevelly Ârdu 102.4 1). 20th Do. Tamil Saka year 1771 (current).
(f.) Detcrmination of Karanas.
153. We now proceed to give rules for finding the karanas on a given day, -the exact moments of their beginning and ending, and the karana current at sunrise on any given day, or at any moment of any given day.

The karanas ${ }^{1}$ of a given tithi may be found by the following rule. Nultiply the number of expired tithis by two. Divide this by 7; and the remainder is the karana for the currenthalf of the tithi. Erample.-Find the karana for the second half of krishṇa 8th. The number of expired tithis from the beginning of the month is $\left(15+7 \frac{1}{2}=22 \frac{1}{2} .22 \frac{1}{2} \times 2=45\right.$. Casting out sevens the 3 rd, or Kaulava, is the required karana.
154. To find the exact moments on which the karanas corresponding to a given tithi begin and end. Find the duration of the tithi from its beginning and ending moments, as calculated by the method given in Arts. 139, I44, and 1.45 above. The first half of the tithi is the period of duration of its first karaṇa, and the second half that of the second.

Eximble xxil. Find the karanas, and the periods of their duration, current on Jyeshṭha sukla panchami (5th) of the Saka year 1702 expired (1703 current). From Table Vlll., cols. 4 and 5 we observe that (1) Bava is the first, and (2) Balava is the second, karana corresponding to the 5 th tithi. In the first example above (1 trt. $1 \not f^{5}$) we have found that the tithi commenced on Tuesday, Gth June, A.I). 1780 at 15 h .34 m . after mean sumrise, and that it ended on Wednesday, 7 th June, at 13 h . 11 m . after mean sunrise. It lasted therefore for 21 h .37 m . (8 h .26 m . on Tuesday and 13 h . 11 m . on Wednesday). Half of this duration is $10 \mathrm{~h} .4^{8} \mathrm{~m}$. The Bava karaṇa lasted therefore from 15 h . 3.4 m . after mean sumrise on Tuesday, June 6 th, to 2 h .2 m . after mean sunrise on Wednesday, Jume 7 th, and the Balava karana lasted thence to the end of the thit
155. The karatia at suntise or at any other time can of course easily be found by the above method. It can also be calculated independently by finding the (t) for the time given. Its beginning or ending time also can be found, with its index, by the same method as is used for that of a tithi. The index of a karana can be easily found from that of a tithi by finding the middle point of the latter. For example, the index of the middle point of sukla $1 . f$ th

[^41]is 4500 , or 4333 t half the difference between 4333 and 4667 (Tahle V/I/), and therefore the indices for the beginning and ending of the 5 th karana on sukla 14 th are 4333 and 4500 , and of the Gth karana on the same tithi 4500 and 4667 .

Fximple xxif(a). Find the harana at sunrise on Wednesday the 7th June, A.D. 1780, Jyeshṭha sukla 5th, Saka 1702 expired (1703 current).

In examples i. and xv. above we have found (t) at the given sunrise to be 1463 . Turning with this to Table VIll. we see that the karana was the ist or end. The index of the first is 1333 to 1500 , and therefore the first karana, Bava, was current at the given sunrise.
(i) Determination of Nakshatras.
156. To fund the nakshatra at sumrise, or at any other moment, of an Indian or European date. If the given date be other than a tithi or a European date, turn it into one or other of these. Find the (a) ($(i)(c)$ and (t) for the given moment by the method given in Arts. 139 , 148 or 151, (E.ramples i. or xi.) above. Multiply (c) by ten; add 7207 to the product, and from this sum subtract the equation for (c) (Table Vll.). Call the remainder (s). Add (s) to (f). Call the result (n). Taken as an index, (n) shows, by Table VIII., col. 6, 7, 8, the nakshatra current at the given moment as calculated by the ordinary system.
157. If the nakshatra according to the Garga or Brahma Siddhanta system is required, use cols. 9 or 10 respectively of Table Vlil.
158. The beginning or ending time of the nakshatra can be calculated in the same manner as that of a tithi. Since (c) is expressed in roooths, and rooooths of it are neglected, the time will not be absolutely correct.

Eximple xxim. Find the nakshatra current at sunrise on Wednesday, Jyeshṭha sukla 5th. Saka 1702 expired, (7th June, 17 So A.D.)

This result (n) gives Aśleshâ (Table VIII., cols. $6,7,8$) as the required current nakshatra
The (n) so found 3022-2963 (index to beginning point of Asleshà) $=59$. Therefure Asleshà begins 3 h .52 m . (Table X., col. 4) before sunrise on the Wednesday.

3333 (end of Aśleshà) -3022(n) $=31 \mathrm{I}$, and therefore Asleshà ends ($\mathrm{I} 9 \mathrm{~h} .40 \mathrm{~m} .+43 \mathrm{~m} .=$) 20 h .23 m . after sunrise on the Wednesday.

For greater accuracy we may proceed as in Example 1 (Art. 1.fS.)
(1.) Determination of Yogas.
159. The next problem is to find the yoga at sunrise or at any other moment of an Indian or European date. If the given date is other than a tithi or a European date, turn it
into one or the other of these. Jind (a)(b)(c)(t)(s) and (n) for the given moment as above (.1rt. 156). Idd (s) to (13). Call the sum (y). This, as index, shews by Table V1II., cols. 11, 12, 13 , the yoga current at the given moment.

Exhmple Axis. Find the yoga at sunrise on Jyeshṭha sukla 5th, Saka 1702 expired, 7th June, 1780 A.I).

$$
\begin{array}{lll}
\text { As calculated in example xviii. } & (s)=1559 & (n)=3022 \\
\text { Add }(n) \text { to }(s) . & . \quad . & (n)=3022
\end{array}
$$

Required yoga $(y)=. \quad . \quad 4581=(13)$ Vyàghâta (Table VIIl.).
We find the beginning point of Vyaghata from this.
The $\left(y^{\prime}\right)$ so found $4581-4444$ (beginning point of Vyàghàta) $=137=(6 \mathrm{~h} .6 \mathrm{~m} .+2 \mathrm{~h}$. 15 m. \#) 8 h .21 m . before sunrise on Wednesday (Table X., col. 5).

The end of Vyâghata is found thus:
(End of Vyàghàta) $4815-4581(y)=234=(12 \mathrm{~h} .12 \mathrm{~m} .+2 \mathrm{~h} .4 \mathrm{~m} .=) 14 \mathrm{~h} .16 \mathrm{~m}$. after sumrise on Wednesday.

(1.) Verification of Indian dates.

160. (Sec Art. 132.) The following is an example of the facility afforded by the Tables in this volume for verifying lndian dates.

ExAMPLE NXY. Suppose an inscription to contain the following record of its date, "Saka 666, Kàrttika kṛishụa amâvàsyà (30), Sunday, nakshatra Hasta." The problem is to verify. this date and find its equivalent A.D. There is nothing here to shew whether the given year is current or expired, whether the given month is amanta or purniminta, and whether if the year be the current one, the intercalary month in it was taken as true or mean. ${ }^{1}$
liirst let us suppose that the year is an expired one (667 current) and the month amanta. There was no intercalary month in that year. The given month would therefore be the eighth, and the number of intervening months from the beginning of the year is 7 .

This gives us Tuesday, sukta ist (Table VIII.). Index, $t=263$, proves that 263 parts of the tithi had expired at sunrise on Tuesday, and thence we learn that this sukta ist commenced on Monday, and that the preceding tithi kri. 30 would possibly commence on Sunday. If so, can we connect the tithi kri. 30 with the Sunday? Let us see.

This index gives us krishṇa i4th (Table VIII.) as current at sunrise on Sunday (I). The tithi ended and kṛi. 30 commenced ($9667-9595=72 \Rightarrow$) 5 h .6 m . after sunrise on Sunday. This kri. 30 therefore can be connected with a Sunday, and if the nakshatra comes right-Hasta -then this would be the given date. We calculate the nakshatra at sunrise on Sunday.

This index (n) gives nakshatra No. 16 Visâkhà (Table VIIl., col. 6, 7, 8). Therefore No. 13 Hasta had already passed, and this proves that the date obtained above is incorrect.

Now if Kàrttika in the given record be pûrṇimànta, the amànta month corresponding (Table II., Part i) would be \hat{A} śvina, the 7 th month, and it is possible that Ávina kri. 30 , falling back as it does 29 or 30 days from the date calculated, might fall on a Sunday. Let us sce if it did so.

The result gives us Monday, sukla 2nd. ${ }^{1}$

[^42]State the figures for this.
Subtract value for two days (Table IV.)

This gives Saturday kṛishṇa (30), amâvâsyâ, i.e., that tithi had ($10,000-9782$) 218 parts to run at sumrise on Saturday. Therefore it ended on Saturday, and cannot be connected with a Sunday. Here again we have not the correct date.

Now let us suppose that the given year 666 is a current amanta year. Then the given month, Kàrtika, is amànta, and the intercalary month was Bhidrapada. The given month would be the gth.

This gives us Friday, sukla 1st. The preceding day is krishṇa amavitsyì, and this therefore ends on Thursday and can in no way be connected with a Sunday. This date is therefore again wrong. The amàvàsyà of the previous month (29 days back) would end on a Wednesday or perhaps Tuesday, so that cannot help us. If we go back yet a month more, it is possible that the krishụa amàvisyà might fall on a Sunday. That month could only be called Karttika if it were treated according to the pûrnimanta system and if there were no intercalary month. The given month would then be the 7 th in the year. We test this as usual.

This gives Tuesday, sukla end, two tithis in advance of the reguired one.

[^43]We may either subtract the value of (a) (a) (b) (c) for two days from their value as already obtained, or may add the value for $(206-2=) 20+$ days to the value at the beginning of the year. We try the latter.

This gives us krishụa amàvàsyà, (1) Sunday, as required.
$(d)=265=($ Table 1N.) 22nd September, 743 A.D. (Table I.). From Table XIII. we sec that the week-day is right. If the nakshatra Hasta comes right, then this is the given date. We calculate it according to rule.

This result gives No. is Hasta (Table VIII.) as required.
This therefore is the given date. Its equivalent A.D. is 22nd September, 743 A.D. The data were imaginary. If they had been taken from an actual record they would have proved that mean and not true intercalary months were in use in A.D. 743, because we have found that there was no intercalary month prior to the given month Karttika. The mean intercalary month in that year (Table I.) was the gth month. Màrgastirsha, and of course Kàrttika was unaffected by it. $160(A)$. See page of Addenda and Errata.

$$
P A R^{\prime} T V \text {. }
$$

THE MUHAMMADAN CALENIAR.

161. The Muhammadan era of the Hijra, or "flight," dates from the flight of Muhammad (Anglice Mahomet) which took place, according to the Hissabi or astronomical reckoning, on the evening of July 15 th, A.D. 622 . But in the Hclali, or chronological reckoning, Friday, July 16 th, is made the initial date. The era was introduced by the Khalif Umar.
162. The year is purely lunar, and the month begins with the first heliacal rising of the moon after the new moon. The year is one of 354 days, and of 355 in intercalary years. The months have alternately 30 and 29 days each (but see below), with an extra day added to the last month eleven times in a cycle of thirty years. These are usually taken as the $2 \mathrm{nd}, 5 \mathrm{th}, 7 \mathrm{th}$, Ioth. 13 th, 15 th, 18 th. 21 st, 24 th, $26 t h$, and 29 th in the cycle, but Jervis gives the 8 th, 16 th, 19 th, and 27 th as intercalary instead of the 7 th, 15 th, 18 th and 26 th, though he mentions the usual list. Ulug beg mentions the 1 oth as a leap-year. It may be taken as certain that the practice varies in different countries, and sometimes even at different periods in the same country.

30 years are equal to $(354 \times 30+11 \Rightarrow 10,631$ days and the mean length of the year is $354_{s, 1}^{\prime \prime}$ days. ${ }^{1}$

Since cach Hijra year begins 10 or 11 civil days carlier than the last, in the course of 33 years the beginning of the Muhammadan year runs through the whole course of the seasons.
163. Table XV1. gives a complete list of the initial dates of the Muhammadan IIjra years from A.D. 300 to A.1). 1900. The asterisk in col. I shews the leap-years, when the year consists of 355 days, an extra day being added to the last month Zill-hijjat. The numbers in brackets following the date in col. 3 refer to Table IX. (sce aboce, Art. 95), and are for purposes of criculaten as shewn below.

Muhammadan Months.

		Bays.				Days.	为
1	2	3	4	1	$:$	3	+
1	Muharram	30	30	7	Rajab	30	207
2	Safar	29	59	8	Sha'bàn	29	$\therefore 36$
3	Rabi-ul awwal	30	89	9	Ramazàn	30	266
4	Rabî-ul àkhir, or Rabi-us sànî.	29	118	10	Shawwil	29	295
5	Jumàda'l awwal	30	148	11	Zi-1-ka'da	30	325
6	Jumȧda'l àkhir, or Jumàda-s sànî	29	177	12	Zî-l-hijja .	291	$35+1$
					In leap-ycars	301	3551

164. Since the Muhammadan year invariably begins with the heliacal rising of the moon. or her first observed appearance on the western horizon shortly after the sunset following the new-món (the amâtasyà day of the Hindu luni-solar calendar), it follows that this rising is due about the end of the first tithi (sukla pratipada) of every lunar month, and that she is actually seen on the evening of the civil day corresponding to the ist or 2 nd tithi of the sukla (bright) fortnight. As, however, the Muhammadan day-contrary to llindu practice, which counts the day from sunrise to sunrise-consists of the period from sunset to sunset, the first date of a Muhammadan month is always entered in Hindu almanacks as corresponding with the next following Ilindu civil day. For instance, if the heliacal rising of the moon takes place shortly after sunset on a Saturday, the ist day of the Muhammadan month is, in Ilindu panchangs, coupled with the
[^44]Sunday which begins at the next sunrise. But the Muhammadan day and the first day of the Muhammadan month begin with the Saturday sunset. (Sec Irt. 30, and the punchang cotrat attached.)
165. It will be well to note that where the first tithi of a month ends not less than 5 ghatikas, about two hours, before sunset, the heliacal rising of the moon will most probably take place on the same evening; but where the first tithi ends 5 ghatikisis or more after sunset the heliacal rising will probably not take place till the following evening. When the first tithi ends within these two periods, i.c., 5 ghatikas before or after sunset, the day of the heliacal rising can only be ascertained by chaborate calculations. In the panchang extract appended to . Irt. 30 it is noted that the heliacal rising of the moon takes place on the day corresponding to September ist.
166. It must also be specially noted that variation of latitude and longitude sometimes causes a difference in the number of days in a month; for since the beginning of the Nuhammadan month depends on the heliacal rising of the moon, the month may begin a day earlier at one place than at another, and therefore the following month may contain in one case a day more than in the other. Hence it is not right to lay down a law for all places in the world where Muhammadan reckoning is used, asserting that invariably months have alternately 29 and 30 days. The month Safar, for instance, is said to have 29 days, but in the painching extract given above (Art. .3o) it has 30 days. No universal rule can be made, therefore, and each casc can only be a matter of calculation. ${ }^{1}$ The rule may be accepted as fairly accurate.
167. The days of the week are named as in the following Table.

Days of the Week.

	Hindustim.	Persian.	Arabic.	Hindi.
1. Sun. 2. Mon. 3. Tues. 4. Wed. 5. Thurs. 6. Fri. 7. Sat.	Itwàr. Somwàr, or Pîr. Mangal. Budh. Jum'a-ràt. Jum'a. Sanichar.	Yak-shamba. Do-shamba. Sih-shamba. Chahàr-shamba. Panj-shamba. Âdina. Shamba, or Hafta.		Rabib bàr. Som-bâr. Mangal-bàr. Budh-bàr. Brihaspati-bir. Sukra-bar. Sanî-bàr.

Old and New stylc.
168. The New Style was introduced into all the Roman Catholic countries in Europe from October 5 th. 1582 A.D., the year 1600 remaining a leap-year, while it was ordained that 1700. 1800, and 1900 should be common and not leap-years. This was not introduced into England till September 3rd, A.D. 1752. In the Table of Muhammadan initial dates we have given the comparative dates according to English computation, and if it is desired to assimilate the date to that of any Catholic country, 10 days must be added to the initial dates given by us from Hijra 991 to Hijra 1111 inclusive, and 11 days from H. 1112 to 1165 inclusive. Thus, for Catholic countries H. 1002 must be taken as beginning on September 27 th, A.D. 1593.

[^45]The Catholic dates will be found in Professor R. Wistenfeld's " Virglachungs-Tabollon der Muhammadanischen und Christlichen \%itrechnung" (Leipzic 1354).

To conert a date A.H. into a date A.D.

169. Rule 1 . Given a Muhammadan year, month, and date. Take down (w) the weekday number of the initial day of the given year from Table XV1., col. 2, and (d) the date-indicator in brackets given in col. 3 of the same Table (Art. 163 and 95 ahooc.) Add to each the collective duration up to the end of the month preceding the one given, as also the moment of the given date minus 1 (Table in Art. $16 ;$ abore). Of the two totals the first gives the day of the week by casting out sevens, and the second gives the day of the month with reference to Table IX.

Rule 2. Where the day indicated by the second total falls on or after February 29th in an English leap-year, reduce the total by one day.

Rule 3. For Old and New Style between Hijra 991 and 1165 see the preceding article.
Exampie 1. Required the English equivalent of 20th Muharram, A.H. 1260.
A.H. 1260 begins (Table XV1.) January 22nd, 1844.
(w) Col. 2
(d) Col. 3
2
22

Given date minus $1=19$
19
$21 \quad 4^{1}=($ Table IX.) Feb. Ioth.
Cast out sevens $=\quad 2$ I

$$
\mathrm{o}=\text { Satırday }
$$

Ansaer.-Saturday, February 10th, A.D. 1844 .
Example 2. Required the English equivalent of 9th Rajab, A.H. 1311.
A.H. 1311 begins July 15 th, 1893 .

$$
\begin{aligned}
& \text { a. } \quad d \text {. } \\
& 0 \quad 196 \\
& \text { 9th Rajab }=(177+8)=185 \quad 185 \\
& 7 \mid 185 \quad 381=\text { Jan. } 16 \mathrm{th}, 1894 . \\
& \text { (26) } 3=\text { Tuesday. }
\end{aligned}
$$

Answer.-Tucsday, January 16th, A.D. IS9.4.
This last example has been designedly introduced to prove the point we have insisted on viz., that care must be exercised in dealing with Muhammadan dates. According to Traill's Indian Diary, Comparative Table of Dates, giving the correspondence of Euglish. Bengali, N.W. Fatali, "Samvat", Muhammadan, and Burmese dates, Rajab ist corresponded with January gth. and therefore Rajab oth was Wednesday, Jamary 17 th, but Letts and Whitaker give Rajab ist as corresponding with January 8th, and therefore Kajab gth $=$ Tuesday, January 10 th, as by our Tables.

To coneert a date A.D. into a date A.H.
170. Rule 1. Take down (a) the week-day number of the initial day of the corresponding Muhammadan year, or the ycar previous if the given date falls before its initial date, from Table XVI., col. 2, and (d) the corresponding date-indicator in brackets as given in col. 3. Subtract (d) from the collective duration up to the given A.I). date, as given in Table IN., Parts i. or ii. as the case may be. Add the remainder to (ai^{i}). From the same remainder subtract the collective duration given in the Table in Art. 163 above which is next lowest, and add 1 . Of these two totals (ii) gives, by casting out sevens, the day of the week, and (d) the date of the Muhammadan month following that whose collective duration was taken.

Rule 2. When the given English date is in a leap-year, and falls on or after February 20th, or when its date-number is more than 365 (taken from the right-hand side of Table 1 N .), and the year preceding it was a leap-year, add I to the collective duration given in Table 1 X .

Rule 3. For Old and New Style see above, Art. 167.

Example. Required the Muhammadan equivalent of January 16 th. 89.4 A.D.
Since by Table XVI. we sce that A.H. 1312 began July 5th, 1894 A.D., it is clear that we must take the figures of the previous year. This gives us the following:

Pirpctual Mhuhammadan Calendar.

By the kindness of Dr. J. Burgess we are able to publish the following perpetual Muhammadan Calendar, which is very simple and may be found of use. Where the week-day is known this Calendar gives a choice of four or five days in the month. But where it is not known it must be found, and in that case our own process will be the simpler, besides fixing the day exactly instead of merely giving a choice of several days.

Firom the llijra date subtract the nest greatest at the head of the first Table, and in that column find the Dominical letter corresponding to the remainder. In the second Table, with the Dominical letter opposite the given month, rum down to the week-lays, and on the left will be found the dates and vice versa.

Exampli. For Ramadan, M.II. 1310. The nearest year abose is ingo, diference 20 ; in the same column with 1290, and in line with 20 , is F . In line with Ramadan and the column F: we find Sunday 1 st , Sth, 15 th, 22 nd , 2gth, etc.

TABLES.

TABLE I.

1) Kroulhalla, No. 59, wan anpliterom.

［1 ADUED $1 / 1$ NaR MONTHS
（contenued）
Vrat

Natn＂of mont ${ }^{2}$ ．	Neall	
	＇Time of the preceding sankrânti ＂yprossed in	Time of the sucereding suikrûtui eypromed in

HI．IOMMENOEMENT いF゙THF

TABLE 1.
Lunulion-purits =10,u10ths of "1 rirctes. A tithi $={ }^{1}$ suth of the moon's synodir revolution.

TABLEI.
Lanation-purts $=10,000$ ths of at vircle. It tithi $={ }^{1}$ suth of the mon's synodic revolution.

11．AnloEl W「NAR MONTHS
（contmupd．）

III COMJENOENEN＇OF TIIE

$41 \quad 52 \quad 16 \quad 4527$ Feb．（ 55123101

$1:$	5	5	10	6 Mar，（66）
；Thur．				

 43 ．57 17 3．5 15 Mar．（64 2 310．
 15 （1） $602 \geqslant$ Feh 53 \＆Wed．

$46 \quad 2$ Is 251 Mar．（60）O Sat
$\begin{array}{llll}1 & 34 & 0 & 37 \\ 15 \text { Feb } & 49 \\ 4\end{array}$ Wed．

 \begin{tabular}{ll|lll}
32 \& 36 \& 13 \& 2 \& 25 Feb

（5f） \& 3

 $\left.\begin{array}{rr|rr|r|l}48 & 7 & 19 & 15 & 16 \mathrm{Nar}(75) & 6 \mathrm{Fri} \\ 3 & 39 & 1 & 37 & 6 & 17 \mathrm{ar} \\ \hline\end{array} 65\right)$

3 \& 39 \& 1 \& 27 \& 1

ar． \& (65) \& + Wed

 $\begin{array}{ll}19 & 10\end{array} \quad 7 \quad 4023$ Feb．$\left(5 \frac{1}{2}, 1\right.$ Sun．

34 \& 41 \& 13 \& $5:$ \& 13

Mar．（ $2: 2$ \& 0 \& Sat．
\end{tabular}

$50 \quad 12 \quad 20 \quad 5 \quad \therefore$ Mar $(61)+$ Wed．
5 44 2 1719 「＇eb（50） 1 Sun
2115 S 30 Mar．（fo9 0 Sat． 3646 5217 ） 20 5517 Mar．（ 66 ）Tue $\begin{array}{rrrr} & 49 & \text { i } & \text { Nar．（titi）} 1 \text { Sut．}\end{array}$ $23 \quad 20 \quad 9 \quad 2025$ Feb（56） 6 Fri．

| 9 | 54 | 3 | 5 | 21 Feb．(52) b Fri． |
| :--- | :--- | :--- | :--- | :--- | :--- |

aj 25 10 10 111 Nar．（71） 3 Thar

af 2个 22 351 Feb $(+8)$ \＆Fi
115944 （ Mar．（67） 5 Thur $27 \quad 3011 \quad 026 \mathrm{Feb}(.57) 3$ Thes．

58	32	23	25	6 Mar (65)	11 Sat．

209	．1221	9995	414	\sim	．3668
		30	359	$2 \sim 9$	9
	． 531	9905	137		
		20	80		
304		1.5	16		
		30	8		
		2 $\ddagger+$	76	218	
		279	653	2	
20.			530	23	
，	． 009	9726	237	25	18
		$99+1$	1	$2:$	
				－ 1	
42	． $2+4$	tis	82\％	21	34ど

100.300100363283
26.0759476620 236 3454

32 ．094 93．31 457 20．3 3＋45

$4 \% .12696202120635$

203 ． 60911 601 24934ヶ9
317． 951 22． $94!2213190$

$135 \cdot 11+136$ 722 $2+23+92$
94.27411 5ัเ 21134！3
$\begin{array}{lllll}17.31 & 41 & 310 & 212 & 3494\end{array}$
172 sli942： 352313495
$74.2229601215,2043196$

21）$\dot{2} 2=16 \quad \because 42233+94$

'TA BLE I.
Lunation-parts $=10$, (notiths of a circle. A tithi $={ }^{1}$ suth of the moon's synodir recrulution.

TABLE I .
(Col. 23) a $=$ Dislunce of moon from sun. (Col. 21) $b=$ mon's mean anomaly. (6 ol. 25) $c=$ sun's mean anomaly.

T A BLE I.
Ianution-parts $=10$, ,urnths of " circte. A tithi $={ }^{1}$ suth of the moon's synodir rexolution.

TABLE I .
Lunution-parts $=10,000$ ths of a circle. A tith $=1 / 30$ th of the moon's synodic revolution

5) Kûlaykta, No. 52, wan suplrestad.

TABLE I.

Lunation-parts $=10,000$ ths of a circle. A tith $={ }^{1} / 3$ th of the moon's synodic revolution.

'I」にLE I.

(Col.23) $a=$ Distance of moon from sun. (Col.21) $b=$ moon's mean anomaly. (Col. 25) $c=$ sun's mean anomaly.

© See Test, Art. 101, para. 2.

TABLE 1.
Lunution-parts $=10,000$ ths of "circle. A tithi $={ }^{1}$ suth of the moon's synodir retolution.

'I A BLE I.
(Col. 23) a = Dishunce of moon from sun. (Col. 21) $h=$ mom's mean anomuly. (Col. 25) a sun's mean unomuly.
11. ADDED LI'NIR MONTIS
(continued.)
111. COMMENCEMENT OF THE

TABLE I.
Lunation-parts $=10,000$ ths of a circle. A lithi $={ }^{1}$,nth of the moon's synodic recolution.

1. Timana. So it. wa suppresed.

11 ADDED LUNAR MONTIS
(comtinued)
2. COMMENC FMENT OF THE

TABLE I.
Iunation-parts $=10,000$ th.s of a circle'. A tithi $={ }^{1} / 30$ th of the moon's synodie recolution.

1. CONCIRRENT TEA?

I I BLA I.

11. ADIDED LAN:SR MONTILS
(comtinuet.)
III. ('OMMENGEMENT OF THE

Lunation－jurts $=10,000$ ths of＂t circle．A tithi $={ }^{1} 130$ the of the moon＇s synodis rexolution．

Kıli．	Saka	1．（ONCI：RRENT YEAR．							11．ADDED LUNAR MONTIIS．					
				Kollam．	A． 11 ．	Samvatsara．			True．					
						（Southern．）		Brihaspati rycle （Northern） enrent af Mesha sañkrânti	Name of month．	Time of the preceding saikrânti expressed in		Time of the succeeding sankrânti expressed in		
										$\stackrel{i}{\underline{E}}$	为	走		
1	2	3	3a	4	5	6			7	8	9	10	11	12
3720	541	676	cos	－	61 9－19	\qquad 9 Yuvan．								
3721	342	677	26	－	619－20	$\begin{array}{ll} \ldots \ldots & 9 \mathrm{lu} \\ \ldots \ldots & 10 \mathrm{D} \end{array}$	Dhâtr		2 Vaisâkha	9469	28.407	35	0.105	
3722	543	$6{ }_{6} 8$	27	－	＊（620－2）		isar							
3723	544	679	28	－	621－22	．．．．．．．12 B	Bahu	ânya	6 Bhâdrapada	9467	28.401	92	0.276	
3724	545	（is）	29	－	622－23	．．．．．．． 13 P	Pram	hin．．						
3725	546	681	30	－	623－2．4	．．．．．．． 14 Vi	Vikra							
3726	547	682	31	－	＊624－25	．．．．．．． 15 Vr	rish		3 Srivaua．	9942	29.826	520	1．560	
3727	548	683	32	－	$625-26$	．．．．．．．16 Ch	Chitr	hâluı．．						
3728	549	691	33	－	6206－27	$\ldots . . .{ }^{17} \mathrm{Su}$	Suth	n．						
3729	550	685	34	－	627－2S		Târaụ		3 Jyeshtha	9580	$29 \% 40$	358	1.074	
3730	551	686	35	－	＊629－29		Pârth	．．．．．						
：3731	552	687	30	－	629－30	．．． 20 Vy	＇yay		\％Asvina．．．． 10 Paushal Sh	9640 101	29.920 0.303	19 9969	$\left.\begin{array}{\|c}0.057 \\ 29.904\end{array}\right\}$	
3732	553	689	37	－	6，30－31	\ldots ． 21 sa	Sarva		1 Chaitra．	98.0	29.610	$i 0$	0.210	
373：3	55.	6999	38	－	6331－32		Sarva	tirin．						
37.34	555	690	39	－	＊632－33	$\begin{aligned} & \cdots \cdots \\ & \cdots \\ & \cdots \end{aligned} \cdot .$			5 Srâkaua．．	9406	28.218	7	0.021	
3735	5506	691	40	－	63：3－34	．．．．．．．2t Vik	Vikri							
37.36	557	69：	41	－	6i34－35	．．．．．．． 25 k	khar							
37.37	558	693	42	一	6：35－36		Nand		＋Ashâ！lha	9890	29.6711	644	1932	
3738	559	691	43	－	＊ $636 \mathrm{i}-37$	$\ldots . . .27{ }^{2} \mathrm{Vij}$	$V \mathrm{~V}$ y							
3739	560	695	44	－	633－38	．．．．．．． 28 Jay	Jaya							
3～41	361	696	45	－	635－39	．．．．．．． 29 M	Han	ha．	2 Vaisiblat	95.51	24．653	31	0093	
3741	562	697	41	－	639－10	．．．．．．．30 100	Darn	ba						
3712	5613	698	47	－	＊ 5 （ $40-41$	．．．．．．31 11	1 cm	mba．	（i）Bhadrapada	9504	25.512	90	0150	
3743	564	699	18	－	$15+1-12$	．．．．．． 32 Vi	Vilan							
$37+1$	565	700	49	－	（f） $42-13$	．．．．．． 33 Vi	rikar							
3745	506	701	50	－	6，43－44	．．．．．．． 34 sia	ה̂rva		4 Anhadha	9109	24.224	129	0.357	
3 at	510	702	51	－	－614－45	．．．．．．． 3.1 l	Plata							
3317	568	703	52	－	645－46	．．．．．．． 36 su	subb							
3714	569	\％0．4	53	－	641－47	．．．．．． 37 Subhama．．．．．．．．．．．．			3 Jyeshtha．．	955.	34.6645	323	0.969	
3519	$\therefore 70$	70：	it	－	1．77－19	．．．．．．． 38 hrulhin ．．．．．．．．．．．．								
35011	551	\％0ti	55	－－		．．．．．． 39 Vi	Vinı	1.	－Kàrtiha	4931	29．98：	111	0.513	
3751	522	807	54	－	6） 19 － 50	．．．．．． 40 l＇a	l＇arà	a．						

T I BLE I.

II. AHOES LANAR MOXTHIS
(continued.)

TABLE I.
Lunation-parts $=10,000$ ths of " circle. A tithi $={ }^{1}$,sult of the moon's synodic rerolution.

1. S'rodhah rit. Ad bis, waw atprowad.
(Col. 23) $a=$ Dislance of moon from sun. (iol. 2. $) ~ h=$ monn's mean anomaly. (Ciol. 2.5) $c=$ sun's mean unomuly.

 I ABLE I．

\1い1

11 Whm：H IIINTR MONTIS
（contumited．）

111．COMMENGEMENT OF THE

Solar yar
Lmi－Sular sear， 1 ＇ival day uf thatra Sukda lat．）

At sunrise on
meridata of Uyatn．

41 i9 16i 17 5 Mar（6it）s＇thar
$73023 \quad 02 \geqslant$ Feb．（53）$\because 310 \mathrm{n}$
13 1 ；1212 Nar．（71）］Sum．

$41+1737 \because 0$ Har． 79 ＋Wed
$3!35 \quad 2: 3 \quad 50 \quad 8$ Mar．（65） 1 Suv
3．$i \quad$ i $\because 2 i$ Fel．（â ofri
30 3i 1： 1517 Mar，（ 66 ）Thur

I $10 \quad 1 \quad 4024$ Feb．（ $0510 \mathrm{~s}_{\mathrm{in} 1}$ ．
1711 （i 5213 Mav （72）万 Thu
$3: 4213 \quad \underset{\sim}{2}$ Mar（6） 2 Mun
$45 \quad 1419 \quad 1720$ Feb．（bl） 0 sat．
；\＆\％ $1 \quad 3010 \mathrm{Mar} .70,6 \mathrm{Fri}$
1916 i 4227 Feb （58i3 Ties．

50 $19 \quad 20 \quad 7 \quad 8$ Mar，（67） 0 Sat．
$5.50 \quad \stackrel{3}{2} 025$ Feb．$(56)+$ Wed
$21 \quad 21 \quad 8 \quad 3215$ War．（7t）；Thes
3 3i $8: 1+45+\operatorname{Mar}(63) 0$ sit
$52 \quad 24-3 \quad 5721$ Feb $(52,+$ Wed．

| 7 | 3 | 31 | 11 Mar．（71）3 Thes |
| :--- | :--- | :--- | :--- | :--- | $23 \quad 26 \quad 9 \quad 221$ Mar 601 Sun． $36 \quad 5 \% 15 \quad 35 \geq 0$ Mar．（9） 0 Sat

if 29 ？ 17 47 Mar．（69）\＆W゙ed． 10（1 \＆ 027 reh．（58） 2 Mon．
 11 2 14 ：\％ 6 Mar．（tiŏ）：\％Thur
 12 is $\quad+5013$ ไar．（73） 1 Sun $293+11 \quad 2 \quad 2 \mathrm{Mar}$（i） 3 ） 5 Thur $43 \quad 117$ 1520 Feb．（51） 3 Thes

233 1i99 1 th（ilti 233i 3i4．

1．36 ． 474 ［82 859 こ70 337！2

$294 ; 565222$ i561 2113394
$77.2519918 \quad 479$ 2．57 379\％
57．1719793 320 $20293 \% 94$
257 ntil $x \quad 210 \quad 2013597$
293.579 12 $1+6$ 2．533：14

53 ． $1.599918 \quad 4938201: 3799$
32.0964983 92？！？2 2 34111

1ia．201 53 litio $213.3502+$

111 428 9953 143－335 34114
$105.32+9424 \quad 290 \quad 20333405$
$142 .+269864$ 2．26 25 5 3 406
3018.924 is 1102263807
$\because 41.45 \% 113 \quad 4 t ; 2538114$
411．120！994 $4932+73509$

$\because 31,723237213$ 2033511
 209.6279989 407 205 3813

$314.45+113 \quad 732013415$ ？！9ti S84 1f $\quad 12523617$

TABLE I.

TABLE I .
Luatathon-parts $=10,060$ ths of a circle. A tithi $={ }^{1}$ 3uth of the morn's synotir rerolution.

TABLE I．

1）sobhatat su 37 ，wat suppremend

TABL」 I 。

11 ADDED BLNAR MONTHS
(continued.)
111. TOMMENGEMENT OH THE

\odot Sice 'Jest. Art 101 : ibure, patio. 2.

TABLE I.

Iunation-parts 二 10,000 ths of " rircle. I tith $={ }^{1}$ suth if the moon's synodic recolution.

11 .DDEL LINAR MONTIS
(conlinued)
[11. COMMEN(EMENT UF THE

Lunution-purets $=10,0000$ hss of a rirrle it tithi $={ }^{1}$ suth of the moon's symodir recolution.

11．AbHEH BINAR MONPHA
（continutid．）
（contern

（6）Sice Tent．Art． 101 ：abowe，para． 2

1（ONC＇T RRENT VENR

hollam． （1）
A． 11.

11 M川HED LENAR MONTHS

\square True

\backslash \ame of month	Time of the prestding sunkrânti ＂Mrresed in		Time of the swereeding sunkranti expressed in	
		号	$\begin{aligned} & \text { E } \\ & \text { 会 } \end{aligned}$	年
8	9	10	11	12

41－h．i
！10！-10 4i－4ii

46；－4
410－11
3 siskla．．．．．．．．
4 Pramonla．．．．．
5）I＇raîajati．
¿̀ Pruatapati ．．．．G Augira．
110 Parshen Kish 10 m
0.3 .21

1 Chaitra．．．．．
－956 \qquad 29
12
$181 \quad 0.343$
（s Ausira－．．．．
8 stimukhat．
－Bhîa．a．
4）Youan ．．．．
．．．．
；ப்：
－．．
\qquad \cdot
19
1017 4．3n 978.322
！（1－！！
$415-16$
9 Juvall ．．．．．． 10 hhâtri ．．．．．．
11 川hâṛi ．．．．．． 11 i．vara．．．．．．．

$42-43$
917－1ヶ
i

13 Pratmithin．．．．It likrama．．．．．
$\begin{array}{lllll}1023 & 4 & 42 & 97 & 326\end{array}$
$111-95$
（119－21）
11 Viliama．．．．．．\}s
5 Vrisha ．．．．
15 Vrisha．．．．．． 16 Chitrabhâm．．

14 Prarala ．．．．． 19 Parthiva．．．．．．．．．．．．．．．．．．．．．
42．5－21
12067
920 3－
－！2゙ローシ！
！2： $2-30$

．

2．Vikivit．．．．
示

シャ diyis．．．．．．．．．．．
\＆！Unatmatlat．．．
ail｜narmakha．（3）｜tannlamb：t
3 J Manlala．
31 Acmalamba ．． $3:$ Vilamba
3：Vilamba．．．
33 Vikirim
$3: 3$ Yihiuiu ．．．． 31 vĭrvari

11．AbHF：Li＊NA MONTHS （contonuel．）

11 SOHF:W I.1 NTR MONTIN
(romentured.)

Sular year

(-) Sre Tent. Art. JUl abone, jamar. $\stackrel{\rightharpoonup}{\sim}$.

TA BLE I.

Lanution-furts $=10,000$ ths of a cirrle. I tithi $=1$ suth of the moon's symoutre montution.

小入にはに

11 ．HHFI I．I N \R MON゙Tl
（comlculteql．）
Hean．

II ADOED ILTMK VONTIS
（rontanued）

111．COMMEVMEMENT OH TILE

（rontamed．）

Nathe of munth．	$\begin{gathered} \text { Time } \\ \text { prt } \\ \text { nat } \\ \text { ant } \end{gathered}$	of the din： ritat sed in	＇Timu of tha －nderedin： a anhriuti expromed ils	
		走	E	㧰
8 a	9 a	10a	11a	12a

Solay yar			
$\begin{aligned} & \text { \|tay } \\ & \text { and Vunth } \\ & \text { 1. } 1 \text {. } \end{aligned}$	（Time ul the What samkertmil		
	Weth	By the	irya
		tilh．l＇a	11．II
13	14	15	17

3 Jyentlia ．．．．977 29．332 $45 \mid 0.35 t$

 23 Mar． 82,3 Tues． $3: 35133023$ Feb 543 Tues．
 8 Kirtiha ．．． 9720.29 .267 bi3 0.149 ．．．．．．．．．．．．．．

\qquad

\square ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．23 Jar．Impll hat．

\qquad
\square
\cdots.

\qquad
\qquad
\qquad

'T.JILLE I.

（contimusel）

リ1：3

11．＇O\VENGEUENT OF THE

$3311: 3$ 12 2 上5 Feb（afit Wed is 32 19 2516 Mar 17513 ＇lues 111375 Mar．6tios sat．
 $3.5614 \quad \ddot{\sim} 12 \mathrm{Mar}, 7113$ Thes． $\begin{array}{cccc}30 & 3 i & 20 & 1 \% \\ 1 & N_{11} . & 60,0 \text { Sat．}\end{array}$
 21 H）$\quad 10,8$ Mar．（6si3Tues． $35111452 \because 2$ Feb 1591 Sun． $521 \because 21 \quad 517 \mathrm{Min}, 1 \% 60$ Sat． $\therefore 11 \quad 3 \quad 177$ Mar．（6is）\rightarrow Thur．

 $1019+322$ Mar $1811+$ Wed $2 ; 50 \quad 10 \quad 2010$ Mar．（10）I Sun．
 56 52 22 tis 18 Mar．$(\pi 7)+11$ ed． $12 \because 1 \quad 4$ 54 $\times 1: 11^{\circ}+(f i):$ Mon． 27 5． 111026 Fib （5\％）जat 43 26 1 个 22 16 Mar ATMif Fri． $54 \quad 54 \quad 23$ 35 5 Mar． 16413 Tues． $1129 \quad$ क $2523 \mathrm{Mar}+521 \mathrm{Sun}$ 30 （1） $1: 2 \quad 0 \quad 1 \approx$ Mar， $1 \underset{\sim}{2}$ ti Fri．

 16340 3i 9 月ar．（tim ti lati
 $173019 \approx 17$ Min 176 3 Pues．

 3t 10 13 4013 Mar．（83）Tum，

134． 412122 fing تin 1171
110.3309999 － 333 2th 117.7

lis．Ft 33 34．3 260 11ヶ0

130 ．3！41 1：3 713 $202+142$

266 万ith bi $43: 273+1$ ais
291 60303！11 2411 $2+3+1515$

th 1449434 6：3 2103 4104
161.143 （is 416 235 $+14!1$

$241.723 \quad 1!336332 \% 2+15 \%$
 32h ．9nt 103 3！16 ath 1144

171． 313104 910 204 1194
［6is ．Fha $1: 34$ a 76 2til 1199
23 ．064 14 6993 230 t2017

－3）25．54935 17～250 1202

TABLE I.

111 (OHVENTEUENT OF MILE

'T. I I L E I.

T」BLE

III. COMMENCEHEN'T OF THE

\dagger Ser fontonte p. liii abuse.

TABLE I .

TABLE I．

111．COMMENGEMBNT OF THE

Sular year：						Luni－Sinlar yenr．（Civil day of Chaitra Śukla lat， At Sunrisi on meradian of Ujaam．							
$\begin{gathered} \text { Day } \\ \text { and Month } \\ \text { 1. } 11 \end{gathered}$	（Time of the Mesha sankrâuti．）												
						$\begin{aligned} & \text { Way } \\ & \text { and Month } \\ & \text { A 1) } \end{aligned}$	Week day．				1.	r	hali．
	Wiek day	By the irya siddhânta		By the Sirya Siddbûnta．									
		Gh． Pa	11.	Gb．Pa．	11．M．								
13	14	15	17	15a	17 a	19	20	21	22	23	24	25	1
24 Mar．（83）	6 Fri	5t 1	$21 \quad 37$	$57 \quad 7$	$22 \quad 31$	23 Mar．（82）．．	5 Thur．	54	． 162	9973	931		1269
24 Mar．（94）	1 Suu	（1）35	3.30	$12 \quad 39$	53	12 Mar．（72）．．	3 Tues．	198	． 594		814		4270
24 Mar（83）．	2 Mm	2 j	10	2410	11 16	1 Mar（60）．．	O Sat．		． 255		662		4271
24 Mar（83）．	3 Tues．．．	$40 \quad 37$	16） 15	13.12	$17 \quad 29$	20 Mar．（79）．．	${ }_{6}$ Fri．		． 411		595	26%	1272
24 Mar．（8．3）	＋Wed	516	22	$39 \quad 13$	2311	9 Mar （68）．．	3 Tues．		． 4×3	9973	145	236	＋2\％ 3
24 Mar．（84），	6． F	1180	140	14 15	5 54	2 Fifb．（57）．．	0 Sat．	127.	． 3×1	9849	292	205	＋274
24 Mar ．（83）	0 s	$27 \quad 11$	10 S2	3016	12	16 Mar．（75）．．	${ }^{6} \mathrm{Fr}$		． 4899	$95 n+$	22 s	236	12\％
24 Mar．（83）	1 Sun．	12 L 2	17 \％	45 45	$18 \quad 19$	6 Mar（65）．．	4 Wed．		． 987		112	22.5	4276
2t Mar（93）．．	23	5h 14	2317	¢19	$\dagger 0$ 3：	23 Feb．（54）．．	I Sun．	81.	． 243	997.	959	197	42π
24 Mar．（44）．	${ }_{4} 11$	13 5	i 30	$16 \quad 51$	644	13 Mar（73）．．	0 Nat．		． 1×3		895	249	4278
24 Mar（83）	5 T	$29 \quad 16$	11 42	32 22	$12 \quad 37$	3 Mar（62）．	5 Thar	227.	．681		738	221	4279
24 Mar（83）	（i） F	$44 \quad 47$	17 5\％	47 5t	1910	22 Mar．（\＄1）．	4 Wed．．．．		． 743		714	272	＋250
2．5 Mar：（84）	1 S	（1） 19		325	1 ］ 2	11 Mar （\％）．．	1 Snn ．	220	． 660		561	24	＋281
2f Mar．（84）．	2 Hoa	$15 \quad 50$	（1）$\quad 0$	185	35	28 Feb ．（59）	5 Thur．．．	227.	． 651	3	409	210	4282
24 Mar ．（33）	3 Tues	$31 \quad 21$	1233	3428	1347	18 Marr（77）．	4 Wed	299.	．$\times 97$		345	26	4283
24 Mar．（83）	4 Wed．	46 52	14.45	50	20	7 Mar．（66）．	1 Sun		．570	9919	192	231	1254
25 Mar．（84）．	61	$2 \quad 24$	${ }^{3} 503$	31	213	24 Frb．（55）．．	5 Thur．．		－．eni： 9		34	200	428.5
2t Mar．（84）．．	0 Sat	$17 \quad 55$	710	213		15 Mar（75）	5 Thar	318.	．954	168	11	25	＋286
24 Mar．（93）．	1 S	$33 \quad 26$	1302	3635	$14 \quad 38$	4 Mar．（63）．	2 Mon		．22s	4	858.	223	428
24 Mar，（83）．．	2 Mon	$15 \quad 57$	1935	526		23 Mar（82）．	1		． 252		795	274	4288
25 Mar．（84）．．	411	429		38	$3 \quad 3$	13 Mar．（72）．．	6 Fri	307.	． 921	293	$6 \mathrm{Si}_{5}$	24	4289
24 Mar．（84）．	5 Thar	$20 \quad 0$	40	$23 \quad 9$	$9 \quad 16$	1 Mar．（61）．．	3 Tues	289.	． 867	169	525	215	1290
24 Mar．（83）．	6	3531	$14 \quad 12$	34.11		19 Mar．（\％8）．	1 Sun	69.	． 2079		425	264	4291
24 Mar （83）．	0	51 2	$20 \quad 25$	5412	2141	S Mlar．（6）${ }^{\text {a }}$ ．	5 Thur	19.	． 0579	9740	272	$\because 33$	1292
25 Mar．（84）．	2 Mon	$6 \quad 34$	$2 \quad 37$	9 ¢	$3 \quad 53$	26 Feb ．（57）．	3 Tue	213.	． 6399	99．3．：	156	205	4293
24 Mar．（84）．．	3 Tue	$22 \quad 5$	50	2515	$10 \quad 6$	16 Mar．（76）	2 Mon．		． 6189		92	．	4294
\}24 Mar. (83) . .	4 Wed．	$37 \quad 36$	15 2	419	$16 \quad 19$	6 Mar（65）．．．	11 Sa		915	204	975	224	＋29\％
24 Mar．（53）．	5 T	53	21 15	5618	2231	23 Feb．（54）．．	4 Wed	96	240		422	198	4296
25 Mar．（54）．	0 s	$8 \quad 39$	$3 \quad 27$	1150	44	14 Mar．（73）．．	3 Tues．	114.	． 342		Tish	249	＋29
24 Mar（sy）．	1	2410	940	$27 \quad 21$	$10 \quad 57$	$2 \mathrm{Mar}^{\text {ar }}$（62）．．	$0^{0} \mathrm{Sat}$		．1329 9	1990	606	218	294
$2)^{2}$ Mar．（83）．	2 Mon	3941	15 52	1233	179	21 Mar．（80）．．	6 Fri		． 384		541	269	299
24 Mar．（83）．	3 Tues	35 12	22 5	$58 \quad 24$	$23 \quad 22$	10 Mar. （69）．	3 Tues．．．．	131.	． 3939	9900	389	$239+$	＋300

\dagger See foothote jr．liii sbove．
－Sere Text．Art． 101 ：abore，para．：

TABLE I．

111. (OMMEACDMEST OF THE

\dagger See footnote p. liii above.

Iunation-pats $=10,000$ ths of a circle. A tithi $={ }^{1}$ isuth of the moon's synodic revolution.

1) Kahahatis. Do. 1!1, wam suppraned til the morth

IIt. (OMMENCEMENT OF THE

 24 Mat 14315 Thar... is 26

 25 Mar int 4 Wed... 0 3 31 " 1203 it 1

 25 Mar. ist $|$| | 1 | Wed.... | 33 | 39 | 13 | if | $3 i$ | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 14 | 19 | | | | | | | |

 25 Mar (m) 3 Thes... \& it 36

 lay Mar. (84) : Mun.... 26 25 10 35 24 it 11 in

 25 Mar. 4 \& 1 sun.... 41 \& 17 3i ti 33 13 1

2t Mar. (8t). \& Wed... lbin 504111 602 237433 t

11 Mar. (in) (if Fri..... 204 612 9432 196 2414346

$2+$ Nar. 43 . (i Fri.....
12 Mar is?.. 3 Turs
\& Mar (61) ! 1 Sue....

Lunation-pusts $=10,000$ ths of a rircle. A tithi $={ }^{1}$ 'soth of the moon's synodic recolution.

111. COMMENEEMENT' OF THE

solar year.						Lani-Solar year. ('ivil day of thaitra Śnkla Ist.)							hali.	
$\begin{aligned} & \text { Day } \\ & \text { and Mouth } \\ & \text { A. D. } \end{aligned}$	(Time of the Mrsha saukrinti.)					$\begin{gathered} \text { Way } \\ \text { and Month } \\ \text { A. D. } \end{gathered}$	Week day.	At Sunrise on mertitan of Ujiain						
								a.	b.	c.				
	Week day.	By the Arya Siddhînta.		By the Sirya Siddhâuta.										
		Gh. P'a.	11. M.	Gh. Pa.	II. M									
13	14	15	17	$15 a$	17 a	19		20	21	22	23	24	25	1
24 Mar. (84).	2 Mou .	$59 \quad 35$	$23 \quad 30$	t3 5	+1 14	29 Feb . (60).	6^{6} Fri.	(0-31	-.063 9	9914	907	211	4366	
25 Mar. (84).	4 Wed	156	f) 2	$18 \quad 36$	$7 \quad 27$	20 Mar. (79)..	6 Fri.	330	. 990	2×3	879	265	4367	
25 Mar (84).	5 Tbur.	30) 37	$12 \quad 15$	$34 \quad h$	$13 \quad 39$	9 Mar (65)..	3 Tues.	165	. 495	163	726	234	436%	
25 Mar. (84).	6 Fr	$46 \quad 9$	$18 \quad 27$	$49 \quad 39$	$19 \quad 52$	26 Feb. (57)..	0 Sat.. ..	118	. 354	38	574	203	4369	
25 Mar (85).	1 Sur.	$1{ }^{1} 0$	$0 \quad 40$	511	24	16 Mar. (76)..	6 Fri.	204	. 612	73	310	255	4370	
25 Mar (84)	2 Mob	$17 \quad 11$	6 ¢ 2 2	$20 \quad 42$	- 17	5 Mar. (64).	3 Tues.	≥ 00	. 6009	9949	357	224	4371	
25 Mar. (84).	3 Tues.	3242	$13 \quad 5$	$36 \quad 14$	1430	24 Mar. (83).	2 Mon..	239	. 7779	99×3	293	275	4372	
25 Mar (84).	4 Wed.	4814	$19 \quad 17$	$51 \quad 46$	$20 \quad 12$	13 Mar (72).	6 Fri	107	. 3219	98.99	140	24.4	4373	
25 Mar . (85)	6 Fri..	$3 \quad 45$	30	$7 \quad 17$	$\because 55$	2 Mar. (62)..	4 Wed	235	. 705	73	23	216	4374	
25 Mar. (84).	0 Sat.	$19 \quad 16$	42	$22 \quad 49$	9 9	21 Mar (80)..	3 Tues...	212	. 636	108	959	267	4375	
25 Mar. (8t)	1 Sun	$34 \quad 47$	$\begin{array}{ll}13 & 55\end{array}$	3 s 20	1.5 20	10 Jar . (69).	0 Sat	-i	-.021 9	9954	807	237	4376	
25 Mar. (84).	2 N	$50 \quad 19$	$20 \quad 7$	5352	$21 \quad 33$	28 Feb . (59)..	5 Thur		. 630	198	f.90	208	4377	
25 Mar. (85).	4 Wed	5 50	220	923	345	18 Mar. (78)..	4 Wed..			233	626	260	4378	
25 Mar. (84).	5 Thur.	$21 \quad 21$	¢ 32	$24 \quad 35$	93	7 Mar. (66)..	1	212	. 636	109	473	229	4379	
25 Mar. (84).	6 Fri.	36 22	$1+\quad 45$	$40 \geq 6$	$16 \quad 10$	25 Mar. (8.5)	${ }^{6}$ Fri.	4.3	. 1359	94() 1	373	278	13.880	
25 Mar. (84).	0 Sat.	$52 \quad 24$	$20 \quad 57$		2203	15 Mar (\%)	4 Wed.	299	. 597	19	$25 i$	249	4381	
25 Mar. (85)..	2 Mon .	$7 \quad 55$	310	1129	+ 36	3 Mar (63)..	1 Sun..		. 3639	9894	104	219	4382	
25 Mar. (84)..	3 Tues.	$23 \quad 26$	922	27	$10 \quad 48$	2. Mar (81)..	0 sit..		. 3129	9929	40	270	43×3	
25.3 Mar (84)	4 Wel	36 37	$15 \quad 35$	$42 \quad 32$	171	12 Mar. (71)..	5 Thur.	217	. 651	143	923		4.38.4	
25 Mar (84).	${ }_{5}{ }^{\text {a }}$ Thar..	$54 \quad 29$	2] 4%	3t	2314	1 Mar (60).	2 Mon..		.066	19	\% 30	211	4355	
25 Mar. (85)	0 Sat	100		133	$5 \quad 26$	19 Mar ((79).	1 Num		. 173	54	706	263	4386	
25 Mar. (84)	1 S	$25 \quad 31$	10 12	29	$11 \quad 39$	8 Mar. (6).	5 Thar...		. 0669	9330	5.54	232	'	
25 Mar. (84)	2 Mou	412	$16 \quad 25$	4438	17	25 Feb. (56).	2 Mon....	31	. 0939	9405	401	201	4388	
25 Mar (84)..	3 T	$36 \quad 34$	$22 \quad 37$	$\dagger 0 \quad 10$	+1) 4	16 Mar. (55).	1 Sun....	300	. $300{ }^{9}$	9n40	337	252	4389	
25 Mar. (85).	5 Thur.	$12 \quad 5$	$+50$	154	$6_{6} 17$	з Mar. (65). .	${ }^{6}$ frio		. 996	5.4	220	22	1390	
25 Mar. (84)	6 Pri	2736	$11 \sim$	$31 \quad 13$	$12 \quad 29$	23 Mar (82).	4 Wrd	(\%) 4	ハะ 9	97,0	120	2	+391	
25 Mar. (84).	0 Sat.	43 \%	17 15	46 44	14.2	13 Mar. (72)..	z Mon....	109	3279	9965	t	24	1392	
25 Mar. (84).	1 Sun	5\% 39	238	ti2 16	+0) 51	3 Mar. (62).	(1) sat.....	$\because 2 m$.6a 4	179	457	21	4393	
25 Mar. (85)..	3 Tues...	1410	. 40	17 ts	7 7	21 Mar. (81).	fi Fri.	224	681	214	\$2.3	26	4394	
25 Mar (84).	4 Wed.	2941	1152	$33 \quad 19$	$13 \quad 20$	10 Mar. (69).	3 Tu* ...	106	. 314	49	670	237	13395	
25 Mar. (84).	5 Thur.	$45 \quad 12$	185	45 51	1932	27 Feb. (58)..	0 sat. . .	\| 91	1.2739	9965	517	206	4396	

TABLE I.

11I. ' 'OMMENCEMENG' OF THE

1) Irinhit, St, li, was anppremat ill the moth.

111 FOMVEDEEMENO OF THE

TABLEI.
Lunution-purts $=10,000$ ths of th rirctes. I tithi $={ }^{t}$ ssuth of the moon's synodic retolution.

111 (OMMEVCEMENJ' OF THE

\Varangle See fortmote p. liii : ibuve.
'TABLE I.
Lunation-parts $=10,000$ ths of'" rircle. I tithi $={ }^{1}$ suth of the moon's synodic recolution.

T \ BLE I.

111. COMMENCWMENTOF THE

; See fintmote p liii above.
＇「」にはに I．

1）Plavang Ao． 11 wat anpletwed in the borth

TABLE 1.

IH COUMENCENEN'I' OF 'TUE

\dagger sice footuote p. liii above.

TABLE 1.

\therefore See fortuote p. Lii abose.

Lanution－purts $=10,000$ ths of a rircle．A tithi $=1 / 30$ th of the moon＇s synodic recolution．

1 conct rrent year．								11．ADDEU LUNAR MONTHS				
hali．	Suhal			hollam．	A．1）．	Samvatsara．		True．				
						$\begin{gathered} \text { Lani-Sular } \\ \text { 'ycle. } \\ \text { (Sonthern.) } \end{gathered}$	Brihaspati cycle （Nurthern）	Name of month．	Time of the preceding sankrântí apressed in		Time of the succeeding sankrânti espressed in	
							current at Mesha sañkrâuti．			号	令	雨
1	2	33	3 a	4	5	6	7	8	9	10	11	12
45851	14061	$15+1$	490	656－59	1483－84	37 Sohhana．．．． 4	44 Sâdhârana．					
45861	1407 l	1542	×91	659－60		$38 \mathrm{Krodhin}{ }^{4}$	45 Virodhakrit．	1 Chaitra	9679	29.037	41	0.123
45851	14081	1543	892	660－61	14ha－ 76	39 Viśvâvasn．．．． 4	46 Paridhâvin					
4.5881	14091	1544	－93	661－6i\％	1486－ 57	40 Parîbhava．．．．${ }^{4}$	47 Pramâdio	5．Śâcama．	92.99	27.372	18	0144
4554	14101	1545	－924	66i2－633	1＋4．7－ 5 －	41 Jlavanga．．．． 4	48 Sbanda．					
45901	1 11］ 1	15.46	59.5	663－64	＊1488－m！	4？kilaka．．．．．． 4	49 Ràkshasa					
45911	$1+121$	1542	296	664－65	14n9－90	43 Sanmya，．．．．．${ }^{5}$	50 Anala．．	4 Ashâtha	9.951	24.353	170	0.510
［59221	1－1／3 15	1545	597	645－3－66	1 1990－91	44 Sâdhâraṇa ．．．${ }^{\text {a }}$	5］Pingala					
45931	$1+141$	15.49	898	1666－6\％	1491－92	45 Virudbakrit．．． 5	52 Kâlayukta					
4594	1415	1550	839	667－6\％	＊1．492－93	16 Paridhâvin．．．	53 Siddarirthin	2．Vamikha	9575	24.725	9	028%
45951	$1+16$	1551	900	（fifs－69）	1493－9t	47 Pramâdin	54 Randra．					
4596	1417	15552	901	669－70	1494－95	th Ananda．．．．．	55：1）urmati	（i）Bhâdrapada．	9569	24.815	35	0．225
4597	1118	1553	902	670－71	1195－96	49 Râk－hasa	56 Dandubhi					
4595	1419	1554	903	（17）－72	＊1496－97	$50 \mathrm{Anala}$. ．	57 Rndhiradgîrin					
4599	1420	1555	90.4	672－73	1．197－95	51 Piougal	58 Raktîksha	\therefore Sràma	9649	29.067	175	1.431
H600	1121	1556	90：2	673－74	1194－99	52 hâlayukta ．．	59 krudhana					
Hiol	$1+2{ }^{2}$	10．5\％	90\％	$6 \pi 5-55$	$1493-500$	53 Siddhirthin	60 Kshaya．					
4602	$21+23$	1255	907	16\％－76	＊1500－ 1	54 Raudra	1 Prablava	3 Jyeshthat	9790	24.80	167	0.501
1603	31724	15.59	908	676－77	1501－～	55 Murmati	2 Vikhava．					
1664	＋1125	15.50	909	677－7ヶ	15け2－ 3	56 Dunduhhi．	3 Sukla．					
4605	1－126	15.511	910	（17\％\times－ 79	1503－ 4	57 Rndhirodgrarin	4 Pramuda	1 Chaitra．	9653	24．95！	1	0．01：
$\mid 4696$	（120	1562	911	699－80	＊ 1504 －i	s＇s laktâksha，	$5^{\text {5 P Prajûpati．}}$					
460%	\％ 1122 ¢	156：3	312	640－51	150．3－6	59 krodhana	6 Angiras．．．．	\therefore Śrivana	922．	27125	2	0.041
Hios	$\times 1.429$	11564	41913	681－920	1506－7	60 hstaya．．．．．	7 Śrimukta．					
46193	91.430	${ }^{1} 1565$	5914	$65^{2}-53$	1505－	1 Prauhava	8 Bhâva．．					
8610	01133	11566	6 915	6ら3－nt	＊150m－ 9	2 Jibhava	9 \ихаロ	1 islurdha	9630	25．390	269	0×07
4611	11182	21567	（ 316	64－4．7	1509－10	3 sukla ．．．．．．	10 Dhâtri．					
4612	21433	3156 ck	¢ 517	6－5－36	1510－11	4 1＇rammia	11 Sivara					
4613	311834	－ 1564	9314	6infi－si	1：11－12	5 Prajipati ．	12 Bahuthâoya	$2{ }^{2}$ Vaisiklu	95：1	2゙ 65%	137	0． 111
［tilt	＋1 1835	51570	（9） 919	6hitsh	＊1512－13	6 Ahigiras．．．．．．	． 33 Pramâthin．．．					
161.5	511336	$4)^{1.51}$	1 9211	（ima－n！	15，13－11	7 Śrîmukhit ．．．	－1f Vikrama	（f）Bhîdrapada	9351	ご，「ごせ	11.5	0． 435
Hfai	4） 1437	71.57	2921	（50） 9 － 90	$1511-15$	8 Bhâva．．．．．．	． 15 V risha ${ }^{1}$ ）		．．			
4617	$7143 n$	－15：3	3922	fit $90-91$	153\％－16	9 1ura	1\％Subhầnu．					

TABLE I.

1H. (ODNDENCEMENT OF THE

Iunution－futs $=10,000$ ths of a rircle．A tithi $={ }^{1}$ suth of the moon＇s symodne secolution．

T.JI:I, E I.

111. 'OMMENTEMENT' OI' TIIE

\dagger sice footate p. liii above.

TABLE I ．

111. COMMENTEMENI OF THE

III IONMENGEMEN＇Y W＇THE

＇I \lil，E I．

TABLE I.

T A BLE 1.

1II. COMAENCEMENT OF THE

（Col．23）$"=$ thislance of moon from sun．（fol．21）$b=$ moon＇s mrtan anomuly．（f＇ol．25）$e=$ smis memn anomaly．

TAにLE I.
Inenction-purts $=10.000$ thes of a certh \quad I tithi $=1$.uth of the momen's synolic revalution.


```\|:\ ami Month A. I).```	colar smas．				
	（＇Vimu of the Meshat samkrimti）				
	$\begin{aligned} & \text { Wreh } \\ & \text { day. } \end{aligned}$	By the itya sulihhinta．		By the anc： Ninlilhanta．	
		Cili．I＇a．	11． 11	Gilı．I＇a．	11．I］
13	14	15	17	$15 a$	17 a


l，uni－sular war．（＇ivil das of（＇haitra sukla Int）



13 Mar．（73）．．

3 Mar．（62）．．
I1 Mar．（ 12 ）．．
11 Mar． $1701 \ldots$

7 Mar．（66），． 1
$1+$ Man。（f1）．．
4 IIar．（153）．．
23 Mar（mi）．．
12．Nar，（6）．．
29 Feh．（fi（1）．．
19 Mar．（大ち）．．
क Mar．（fi）
${ }^{2} 7$ Mar．（n6）．．
16 Mat．（76）．．
5）Matr．（tist．
－3t Nat．（531．．
14 Mar．1431．．
$\because$ Mar．16：3．． 3 Thes．．
2］Nar．（ato．．© Non，．
10 Mar．（ti9）．．© Fri．．．．
2！）Mar．（hnt．．5 Thur．
17 Mar．ทิ！．． 2 Mou．．．
7 Mar．（figh．． 0 sat．．．．




6 Fri．．．．． 13 ． 0399957 6．32 256 th20


1 Wed．．．． 250175099 ma 166 ：3l4 1421



1 Su世．．．6！．20\％ 23 614 2301429


+ Weak．． $1.54 .4749933399231+831$


5＇Thur．．．25．5 56.5 58 titi 243 44．3t
2 Hon ．．． 3 （00！ $9431 \quad 913$ 213 4 4 35


13t 402 ，is 540 205 thisk






T ABLE 1.
Lunution－pttits $=10,000 t_{h s}$ of a rircle．A tithi $=1 / 30$ th of the woon＇s synodic recolution．

h：lic．	Sohki．	J					II．ADDED LUNAR MONTHS				
			hollam．	11.	Samvatsara．		True．				
					Lani－Solar   rycle．   （Soutluru．）	Brihaspati   ryele   （Northern）   current   at Mesha   sañkrànti．	Name of month．	Time of the precteding quikrânti expressed in		Time of the sarceeding saikrâuti （apressed in	
								$\begin{aligned} & \text { B } \\ & \text { 要 } \end{aligned}$	家	佥	为
1	2	3 3a	4	5	6	7	8	9	10	11	12
18141	1665	Inotilty	915－18	1752－43	56 Vumiubhi．	6 Augras．					
1－15 1	1 166i	15011150	91x－19	12＋3－41	57 Rudhirodgâtin	7 Šrimuklıa					
1ntil	1667	1402，15．8	919－20	＊ $174+45$	58 Raktâksha．	8 Bháva	＋islhatha	9969	298178	839	2.517
＋htil	Ifion	$1 \times 031152$	920－－21	1745－46	59 Krodbana	9 Ynam					
1－381	1669	I 40.41153	921－22	1746－47	60 K Khaya．	10 Ihaitri．．					
	Ifiro	1503 1154	92：－23	1717－48	I Prabhava．	11 Îsvara．	1 Chaitra	98.37	29.511	73	0.219
tha 01	16if1	1416， 1155	423－24	＊174 ${ }^{\text {c }}$－ 49	2 Vibhava．	12 Bahudhâņa					
	1652	140，1156	92＋－25	17＋9－5）	3 Śukla．	13 Pramathin．	6 Bhâlrapata．	9993	29979	164	1．212
455： 1	1673	150h 11.58	925－26	17．30－51	4 Pramoulia．	14 Vikrama．					
14．3．3］	1674	I 41991154	926－27	1751－52	5 Prajâpati．．	Is Virisa．．					
12．3＋1	1675	18101159	927－24	＊1752－53	6 Angiras	16 C＇hitralhânu	＋islath ha．	9509	28.505	350	1．15\％
以边1	1696	1－111160	92b－29	1753－54	7 Srîmukha	（1）Subhânul．．					
1－．86	16.5	141221141	929－30	1754－55	8 Bhîva	18 Târaua．					
15．5．	Ition	14331402	930－31	175．9－54	9 Yuvan．	19 Pâthiva．	3 Juchila	94830	29.790	3119	1327
18．3） 1	1649	Inlf116：3	（931－3\％	＊1736－5\％	10 Dhâtri	20 V yaya					
14．39	16501	161．81164	932－33	1757－56	11 Lisuara．	21 Sarvajit．．	7 Thsina．．	9474	29.63 .4	143	0429
14.61	1 161	1476；116is	（133－34	1753－59	12 Bahndhainua	22 Sarvadharin					
tatil	1682	1417 $116 i 6$	934－35	17：39－60	13 Pramâthin．	23 Virodhin．．					
14621	16 n 3	1414 1165	935－3fi	＊ 17601 －63	14 Vikrama	2.4 Vikrita	5 Srâtaua．．．	9924	29.782	657	1971
1ヶ6i3	10 M 1	1499116	936－37	1713－6is	15 Vrisha	2.5 Klara					
Lesil		1m201169	937－3n	17932－633	16 c＇hitrabhâun．	26 Nandana					
4－46i．3	16isis	$142111 \% 11$	93n－39	1763－64．4	17 Subhûn	27 Vijapit	3 Juc－htha．	9394	24．194	；	0.1115
4－sitit	14ins	1m22 1171	934－40	＊1762－65	18 Thitrana	$\because 5 \mathrm{Jaya}$					
1465	liting	1ヶ231172	$94(1)-41$	1765－665	19 Pârthiva．．	29 Nlanmatha．					
trais	165：3	15.41173	941－12	1\％6iti－6\％	20 Vyaya．．．	． 30 1 hurmukha	1 Chaitra	！ 9 an	29，64	194	10．sine
tater	1690	1525117 t	$9+2-43$	17618－64	21 Sarvajit．．．	． 31 Hemalambar．．					
1－871	16991	1426 1175	913－4t	＊1764－69	2.2 Sarvatharin．	． 32 Vilamba．	5 Ststana	19835	24．34\％	154	（1．4．t
	16.92	142\％ 1176	914－45	1769－50	23 Virudhin．．．	33］Vikîrm．					
5－2	1693	1×24 117\％	915－16	1750－71	21 Tikria	． 34 Sitrarm					
14．3	16994	142．111\％	94fi－47	1731－72	25 Khama	3.5 Plama 1.	1 ishartha	$930: 4$	29337	312	11206
14．31	1695	18．30 3150	915 5 ＋	＊ 1728 － 38	26 Samdana．	37 Sobhana．					
14is	16936	；12311140	94n－t！	1733－74	27 Vijnya．．．．．．	． 38 kroilliu					

## 



Lumution-pats $=10,000$ ths of "t rircle. I tithi $={ }^{1}$ suth of the moon's synodic rrenlution.



## 



## HII. COMMENO EMENT OH TIIE


$\dagger$ Sce fortnote p. liii above.

TAIBLE I .



「」にはE 1.
（Col．23）＂＝Dishance of moon from sun．（（＇ol．24）＂三 moon＇s menn anmmaly．（Col．25）i＝sun＇s mean anomuly．
111．TOMMENOEMENT OF THE：


See fontnote $p$ liii above．



HI IOMMENEMENT OH THE


T I BLE I.
Innation-parts $=10,000$ thes of a circle. I tithi $={ }^{1} / 30$ th of the moon's synodic recolution.



## 「」にはE I．



## 111 （UMMEN（FMENT＇OH THE



[^46]\[

$$
\begin{array}{l:l}
: & \vdots
\end{array}
$$
\]

TABLE II. PARTI.
CORRESPONDENE E OH IDANTA ANO PTRNISANTA MONTHS
(See Art. 51)


Sukba $=$ Suddla and other synomyms.
Krishua $=$ Bahula, Vadya, and other syouyms.

TABLE II. PARTII.

(Ser Irt. 103 of the Tist.)


N B. i. All the suars are rurmen, and the lunar-months are amatat.


#  


(Sier int I 113 of the Text.)

SOLAR IEAR								Wther monthe corre-pondine to Solar months	
	Meshîdi.			Sinishûdi.		Kauyûdi.			
	$\begin{gathered} \text { Sivnt } \\ \text { names } \end{gathered}$	Beneali names.	'Tanil names.	Tinnevelly names.	South Malayalam nambes	North   Malayitam names	(hrissa names	Lutar: monthe.	Mouths A. II
	8	9	10	11	12	13		14	15
	$\begin{array}{lr} \text { Kali } 4179 . & 1 \\ \text { saha } 1000 . & B \mathrm{Be} \end{array}$		Sikrama 1135.   Beugali San 494	Tinuerdly 2.52.	Kollam 252.	Kullam 252.	$\left\lvert\, \begin{gathered} \text { Vilayatí } \\ 484 \end{gathered}\right.$		A. 11 10\%7
	Mesha.   Trishabla   Mithua.	Taisalkha (Baisik). Jumhtha (Juistle).	Chittirai (śittirai).	Chittirai (Sittirai)   Vaigâtis (Vayyài)	Metam	Mêlam.	Baisâk	Chait., Vaiśs.	Mar., Apr., May.
			Vaigàsi, Vaiyûai.		Elavam.	Ectavam.	Joistho.	Vais., Jyesh.	Apr, May, Junc.
		Âshâtha (A>arı)	Ani	Vaigitel (layyint).	Midunam.	Midnnam.	tsar.	Jyesh., îshit	May, Jume, July.
4	harka.	Srivaua (Shrîban)	i	idi.	harkadakam	Karkadakam.	Sакпи.	îshî, Ṡ̇̇ı̂r.	June, July, Ang.
5	Sitilla.	hrapala (Bhâdro).	îvani.	$\hat{\text { axani. }}$	Chingam.	('biugam	Bhâdru.	Śrâv., Bhâd.	July, Aug, Sept.
(	Kanya.	Aivina (isoin)	Turattinli - (Purattî́íi).	$\begin{aligned} & \text { Purattâdi } \\ & \quad-\text { Purattấsi }) \end{aligned}$	Kami.	Kanni.	Ȧssiu.	Bhâl., Âsw.	Aug., Sept., Oet
	Tulâ.	rtika (Kirt	$\begin{array}{r} \text { Aippasi } \begin{array}{c} (\text { Arppisi, } \\ - \text { Appisí) } \end{array} . \end{array}$		Tulâm.	Tulatm.	Kärtik.	Ári., kârtt.	Sept . Oct., Nuv
	Vrischika.	Mîrga*îrshal (îghrân)	Kîrtiçai.	Kirttigai.	Vriśchikam	Vrischikam.	ìghrial	hârt., Mirer	Oct., Nor., Hec.
	Ihanus	Pausha (Pans)	Mârqali.	Mâquali.	Dhanu.	Dhanu.   Makaram.	Paus.	Mirs, Paus.	Vor., Dec., Jan.
	Makara.	Mâgh	Tai	Tai	Makaram.		$\begin{aligned} & \text { Mâtha } \\ & \text { Falgûn } \\ & \text { Choitru. } \end{aligned}$	Paus., Migh.	Dee., Jan., Frb.
11	Kımhba.	Phâlgura (Falgîn).	Mâsi.	Mâsisi.	Kumhham.	Kimblam		Mâzh., Phâl.   Phầ., Chait.	$\begin{aligned} & \text { Jan., Fub., Mar. } \\ & \text { Mrh, Mar. Apr. } \end{aligned}$
12	\îua.	Chaitra (Cluntro).	I'augmai.	Pauguni	Mînam.	Мймат.			



## TILE INDIAN CALENDAR

## TABLE II．PARTII．



N．B．The munth in whuth the year of a non．Chatridi or unn－Mtestaidi era hegins is given in brankets in the beading．


NB in．To turn a realr of one era into that of another，use the ？ear 11 under one and the corresponding jear od the same orizontal line under the ot her．Fir instance，to turn a Saka year intur a Vikrama year and vice versa，saka $0=$ Chatradid
 Art． 104 of the teat

$3044-5$	3015－4	11－1	\％	（January）			
$3101-2$	$3015-6$	57－h	37－n	${ }^{1}$	Saha．		
8179	3153	133	134－5	กi－s	u	$\begin{gathered} \text { Chedi } \\ \text { (i.vina) } \end{gathered}$	
$33+4-511$	3323－4	307－6	$\begin{aligned} & 315-6,6 \\ & 3014-5 \end{aligned}$	247－8	170－1	0	$\begin{aligned} & \text { Valabhi } \\ & \text { (hârttika) } \end{aligned}$


$3+2011$	3394－5	376－i	$\begin{gathered} 376-7 \\ 376 \\ 376 \end{gathered}$	$31 \times-9$	2＋1－2	31－2	11	Gupta．				
$3+21$	33.35	377	376－7	$319-20$	$2+2$	31－2	（1－）	11	$\begin{gathered} \text { Fanal of } \\ \text { sonth } \\ \text { what , July } \end{gathered}$			
3692－3	Statif－i	nitu－9	Risk－9 6.7 6	3940－1	513－4	342－3	$273-2$	$271-2$	${ }^{1}$			
3694－5	3ffin－${ }^{\text {a }}$	＊ 6 \％ 4	$\begin{gathered} \operatorname{tin}(0)-1 \\ 6+4-54 \end{gathered}$	592－3	513－6	34＋－5	273－4	273－4	2－3	0	Bungals．	
3695	36\％！	451	（t51）－1	393－4	536	$345-6$	$274-5$	27.	2－3	（0－1	1	$\begin{aligned} & \text { Gilr-san } \\ & \text { (Juawe } \end{aligned}$
3ヶ11－2	зhis	1,5	6550－	599－6	322－3	$351-2$	2415	2せ11	n－4	6－7	fi－7	


35116	$3+6$	nit ${ }^{\text {a }}$	663－4	Siok－i	329	356	$2 n i-b$	2	15－6	13－4	13	8－7	${ }^{11}$	May	$\begin{aligned} & \text { K.llam } \\ & \text { smba, } \\ & \text { hanyal } \end{aligned}$
3740	3.14	1946	8：45－6	63x－9	561	399－1	314－24	319	4i－b	${ }^{13-6}$	4	$35-4$	32	0	
3424－7	$399 \mathrm{Ht-1}$	4， －$^{-3}$	$\begin{aligned} & 4 x,-3 \\ & x,-31-2 \end{aligned}$	924－5	itioh	5i6－3	505－4；	$565-6$	234－5	$\begin{gathered} 231-2 \\ 232 \end{gathered}$	231－2	225－6	21－9	190－7	${ }^{11}$
39801－1	3454－5	3 $366-7$	${ }_{438}^{935-6 t}$	878－9	501－2	$6331-2$	564	（59－64	24ヶ－4	2nior	2ni－6	279－34	272－3	$241-1$	34－
＋17\％－8	＋151－2	1133－4	1133－4	1075－1；	9：48－9	52ヶ－9	757－h	856－7	＋45－6	4．3－4	＋48－3	476－7	$464-711$	$437-4$	251－2
＋215－6	＋1＊4－30	1171－2	$\begin{gathered} 1171 \\ 11 \tau 0-1 \end{gathered}$	1113－4	1436－7	8ヶ¢̇－6	744－5	798－5	$\begin{aligned} & 522-3 \\ & 523-4 \end{aligned}$	320－1	320－1	$\begin{aligned} & 21+-5 \\ & 518-4 \end{aligned}$	507－4	＋25－6i	24ヶ－9
＋220－1	4144－5	1156－7	$\begin{gathered} 1176-7 \\ 1176 \end{gathered}$	1114－9	1011－2	$871-2$	519	799－x19		5：26－7	52－6	519－20	512－3	＋a（1）－1	24－5
	${ }^{403030-1}$	1612－3	1612－3	1355－6	1＋75－k	1317－4	1233i－${ }^{\text {a }}$	1283－4	96，4－5	966－3	961－2	（15．i－13	4，	：140－7	730－1
4735－4	4740－50）	1731－2	1730－1	1673－4	1596－7	1225－6	135 1－5	1354－5	10： $2-3$	10n1－2	16）（4）－1	11193－4	1067－s	1033－4	－ヶー9

## TABLE III.




* The fisures in brackets in columne $6,7, i, 9$ give the (or) or weekday index.
* The moment of the Mesha samkinti coincides whth the exact berinning of the solitr wen'


## TABLE III．

（OABCILVK DI RSTION OF WONTHS．

＊The figures in brackets in columns $6,7,5,9$ give the（r）or werkiday inder．
＋The moment of the Mesha sankranti coincides with the exact beginning of the solar war

TABLE IV．
（H）（A）（ $(f)$（f）FOR EVERY DAY IN TIIE YEAR．
（Prof：Jacobi＇s Table $\hat{i}$ in Ind．Ant．，I＇ul．IV II．，modified and correcled）．

$\begin{aligned} & \text { No. } \\ & \text { uif } \\ & \text { days. } \end{aligned}$	（c）	（n）			$\begin{aligned} & \text { No. } \\ & \text { uf } \\ & \text { days. } \end{aligned}$	（ic）	（a．）	（b．）	（r）	No．   of days	（c）	（t）	（b．）	（c．）
1	1	339	3 it	3	43	1	4561	561	118	85	1	－int	85	233
$\because$	$\geq$	677	\％ 3	5	H	2	1900	597	120	n6	$\because$	9122	121	235
3	3	1016	109	8	4.	3	5238	633	123	－ 7	3	9161	157	238
1	1	135．）	14\％	11	16	1	53.7	669	126	4s	$t$	9400	19 t	$\stackrel{1}{2}$
i	\％	1693	141	1.4	15	5）	518	706	124	49	5	13 s	230	$2+1$
${ }^{\text {i }}$	${ }_{6}$	20.32	218	16	15	1	6895	it2	131	91	（i）	477	266	216
7	0	2380	251	19	49	$1)$	${ }_{6} 6593$	\％$\%$	134	913	11	416	303	249
，	1	2709	$\pm 90$	$2 \sim$	50	1	6932	615	137	12	1	115．4	339	252
9	$\because$	3014	327	0	51	$\stackrel{2}{2}$	\％270	451	1.46	93	2	1.193	385	25．5
10	3	3356；	363	27	52	3	7609	487	112	94	3	$1 \times 3.31$	111	257
11	$t$	3725	399	30	53	4	7917	923	$15 \%$	95	4	2170	415	264
12	：	4064	13．）	33	\％ 1	5	S2bi	$!60$	115	116	；	2509	14t	263
13	1.	＋1\％	172	36	的	${ }^{6}$	4625	996	1.1	97	${ }^{\text {f }}$	$2 \times 17$	－2011	$\because 66$
14	1	1711	50\％	38	56	0	5963	32	153	！	11	3104	53\％	26
15	1	5179	all	11	57	1	9302	69	1．56	49	1		593	271
16	$\geq$	5115	541	14	is	2	9611	105	1.99	101	$\because$	386i3	6\％9	27.4
17	3	5757	617	17	59	3	9979	141	16：	101	3	1202	66t\％	278
14	1	6419\％	6.93	49	60	1	314	$17 \%$	361	10：	1	4540	てい！	279
19	；	（14．3）	69\％	52	61	5	6.57	21.4	162	103	\％	小年3	734	2いご
20	${ }^{1}$	1733	726	5.7	$6 \%$	15	905	230	170	104	6	521m	7.4	26．
21	1	7111	762	$5 \%$	63	0	13334	2 26	3\％	105	1	503t	411	かって
$\pm 2$	1	74．00	89 n	60	67	1	16\％	323	17\％	1116	1	5495	47	290
23	2	5759	4．3．3	fi3	65.	$\stackrel{3}{2}$	2011	$35!$	17\％	110	$\because$	623．3	ns． 3	293
29	3	－12\％	nil	$66^{\circ}$	66	3	$\because 350$	395	14］	103	3	6.50	919	296
$\because$	1	． $286 i^{\circ}$	907	fin	17	＋	2645	432	14.3	1109	4	6011	956	$29 n$
21	．	Ablat	374	$\%$	（is	5	3027	168	146	110	；	72.50	942\％	311］
$\because$	${ }^{6}$	9143	940	71	（i9）	${ }^{1}$	3366	501	149	111	${ }^{1}$	Ti，ins	24	33.4
シャ	${ }^{1}$	9198	11.	77	71	${ }^{\circ}$	3714	5.0	192\％	112	0	7597	6.3	3148
－9	1	9ヶ20	S	99	71	1	4043	5.9	197	113	1	$\therefore 20$	101	314， 3
30	$\because$	1.59	4！	$\because$	\％2	2	＋3，${ }^{\text {a }}$	613	197	111	$\because$	－tiot 4	132	312
31	3	19 n	12\％	5	73	3	＋721	（i） 4	$\underline{200}$	115	3	5918	171	31.5
32	$t$	5365	141	is	74	$t$	5051	（ist	2013	116	1	！どい1	211	314
33	5	11\％	19 n	90	\％	，	8397	72	205	117	5	96	$\because 14$	3211
31	${ }^{6}$	1．153	23 2	93	84	${ }^{1}$	5736		209	11.	1	（19， 9	ごいて	323
35	11	155：		96	77	0	1015	\％91	211	119	1	24	319	326
313	1	2191	3111	99	is	1	6， 113	431	214	120	1	（336）	395	329！
37	2	25：39	313	101	69	2	fitis	ntiô	236	121	2	9il	391	331
34	3	2ntio	$37!$	111：	40）	3	ใ0：0］	！103	2111	132	3	1313	＋2\％	334
	1	3207	11.5	1117	41	＋	¢＋¢	910	2	123	1	36，5\％	His	333
111	＂	3．4．5	152	110	$\cdots$	．	Titin	926	$\underline{21}$	12\％	5	1090		$33!$
11	${ }^{6}$	3から，	int	11：2	4．3	1	－10\％	12	2－2－7	129	is	$23 \times 9$	33ic	312
1.1	11	4223	52\％	11．\％	int	11	n＋193	14	$\pm 30$	126	1		5.83	31.



$\begin{aligned} & \text { l" } \\ & \text { "if } \\ & \text { days. } \end{aligned}$	（ $\kappa$ ．$)$	（1）	（b．）	（r．）	$\begin{aligned} & \text { Yo. } \\ & \text { of } \\ & \text { olins. } \end{aligned}$	（ir）	（11）	（b．）	（c）	$\begin{gathered} \text { No. } \\ \text { uf } \\ \text { days } \end{gathered}$	（ir）	（a．）	（1）	（r）
$1: 7$	1	31416	6099	31，	131	3	T906	216	16.	215	：	2416：	80， 3	5 5 ： 1
124	2	3354．	6iti	350	17\％	1	20．45	242	4．1	216	$f$	31.41	－39	3：1
129	3	3651	64：3	3.53	173	3	9．543	2\％	471	217	$1)$	3） $4 \times 3$	5\％\％	S． 21
1：40	1	＋1022	714	3.56	171	6	－ $9 \times 2$	31．5	476	214	1	$3 \mathrm{C2} \mathrm{\%}$	912	597
131	－	4361	751	359	17\％	0	9261	3.31	179	219	2	4169	ont	（6014）
13：	i	4699	\％90	361	176	1	95.99	3 n \％	14：	220	3	4199	9nt	60：
133	0	50334	8：2	316.4	177	$\stackrel{\sim}{\sim}$	993\％	$\because 1$	14.5	221	4	44．35	2	800， 0
1：31	1	8337	463	3 nin	175	3	276	Hi\％	447	22.	5	51\％	97	bils
13.5	$\because$	571．5	499	370	17！	4	（615）	496	190	223	6	5515	93	（i）
1336	3	606．） 4	936	372	141	5	95	332	493	224	11	54．51	129	（i）． 3
1：37	1	（i3933	972	375	1．1	1	1292	369	496	28	1	61：2	164	616
135	3	65：31	$\checkmark$	374	14.2	0	163］	60．\％	494	226	2	65331	202	（61）
1339	6	\％6\％	1．5	301	14.3	1	1950	$6{ }^{6} 1$	50.	$\therefore 2 \hat{}$	3	6nti9	－34	6i21
110	$1)$	ヶ\％ロ	$\pm 1$	34.3	14．	$\because$	2306	6in	504	224	1	720以	271	122
111	1	37	117	34is	14.5	3	26.45	\％1t	306\％	229	5	554\％	311	627
142	$\stackrel{\sim}{2}$	alab	1.33	34：9	146	4	29\％	750	509	230	6	7ncis	317	1830
143	3	4124	190	392	14.	5	33221	in	53\％	231	0	¢224	353	6：322
115	1	－963	28	394	188	1	3406	823	515	$23: 2$	1	4．563	120	68.5
15.5	\％	9102	268	$39 \%$	189	$1)$	$4100]$	－． 39	537	233	$\cdots$	8901	450	（i3）
116	6	9450	299	401	190	1	4340	$8: 5$	520	23.4	3	9211	192	（6） 1
117	11	975	33．3	H2\％	191	$\because$	1679	932	523	235	4	957！	529	64.3
114	1	11＊	371	10.5	192	3	3017	$96 \times$	526	236	5	9917	56.5	616
149	2	1.56	$40 \%$	410	193	！	23．36	4	5ご	233	6	2.56	601	649
1.00	3	\％9．		111	19.4	\％	269\％	11	531	235	${ }^{1}$	391	$6: 37$	692
1，51	$t$	113：3	440	113	19.5	6	66133	3	2334	239	1	93：3	67.	6.4
152	5	1152	816	416	1！\％	17	63\％	113	537	240	2	12？	710	6．5
1.3	$6^{6}$	1.11	3.93	419	197	1	6730	119	23：3	211	3	1610	\％ 46	（iti）
1.51	${ }^{1}$	2149	349	12：2	194	：	7119	196	24\％	212	！	196	－3	fitis
1\％5	］	－2が	68.5	421	199	3	2354	ロ2	9．5	213	\％	22.24	419	616．5
156	$\geq$	2427	6 6i］	427	2011	4	75.26	2．9	514	214	6	2626	4.5	6i6
1.57	3	3165	69，	430	211	5	20163	29，	550	21.5	${ }^{1}$	2964	－ 91	671
15 s	$t$	3304	734	4333	202	${ }^{\prime}$	－ 40.4	33.1	583	246	1	330：3	924	10.3
159	5	3ヵ4．2	70	43．3	2113	11	－7\％	$36 \%$	5．0	247	$\sim$	3612	964	13.6
164	6	＋131	h07	435	201	1	904］	． 103	5．9！	$\because 14$	3	3941	11	By
161	0	4．920	－1：3	411	24.5	2	9120	419	361	21！	$t$	4319	37	6in
162	1	45.5	49	414	206	3	875	420	364	250	．	40.54	i3	fint
163	2	5197	916	416	202	1	97	512	367	251	${ }^{6}$	4997	109	fint
164	3	2．336	952	149	204	$\cdots$	43．）	549	569	232	${ }^{\prime}$	533．3	14\％	1690
16.5	4	5nt	9 yb	452	209	${ }^{6}$	724	\％．	572	2 3	］	26\％4	122	（693）
16 if	5	6213	24	451	211	$\theta$	1113	（i） 1	3i5	2.51	2	60113	215	69.5
167	${ }^{1}$	6552	（i）	45	211	1	1451	fis\％	37－	25	3	6，351	2.4	899
16	${ }^{1}$	6493	97	460）	212	2	1730	69 t	540	2310	1	（6690）	291	\％ 101
169	1	T2 29	133	163	213	3	2129	730	543	25	S	702	327	704
170	2	7567	120	（6）．	$21+$	1	2467	766	540	254	${ }_{6}$	\％367	363	706

'TABLE IV. anomed


## TABLEV.


(Prof: Juculies Int, Int., Tieble फ).

Iturs.	(a)	(1.)	(c)	31 inиtes.	(it)	(1.)	(1)	Мıй tes.	(a)	(b)	(c.)
1	11	2	11	1	0	0	0	31	7	1	11
2	2	3	11	2	11	1	0	32	$\checkmark$	1	${ }^{1}$
3	12	5	11	3	1	10	0	33	4	1	${ }^{1}$
1	56	6	11	1	1	1	11	34	$\checkmark$	1	1
5	71	$\checkmark$	1	i	1	1	1	35	,	1	1
1	5	9	1	6	1	$1)$	11	36	8	1	${ }^{1}$
7	93	11	1	7	2	0	${ }^{1}$	37	9	1	${ }^{1}$
$\rightarrow$	113	12	1	s	2	$1)$	0	38	9	1	0
9	127	14	1	9	2	0	11	39	9	1	0
[11	111	1.5	1	$11)$	2	$1)$	${ }^{1}$	10	9	1	0
11	15\%	17	1	11	3	${ }^{1}$	1	41	10	1	0
12	169	15	1	12	3	0	11	12	111	1	1
13	153	20	1	13	3	0	1	43	111	1	1
11	194	$\because 1$	$\because$	1 1	3	0	0	4	111	1	0
(\%)	212	23	2	15	$t$	0	1	45	11	1	11
16	226	21	2	16	1	0	0	41	11	1	${ }^{1}$
15	24	26	$\because$	17	1	0	0	17	11	1	0
15	2.51	$2 \hat{2}$	$\because$	is	1	1	1	th	11	1	11
19	264	$2!9$	:	19	1	0	11	49	12	1	${ }^{1}$
20		30	2	21	\%	1	$1)$	50	12	1	${ }^{1}$
21	296	32	2	21	5	1	11	51	12	1	0
22	310	33	3	2	5	1	11	52	12	1	${ }^{\prime}$
23	32 5	35	3	23	\%	1	${ }^{1}$	33	12	1	0
21	339	36	3	24	$1{ }^{1}$	1	${ }^{1}$	it	$1: 3$	1	11
-	-	-	-	$\therefore 5$	${ }_{6}$	1	11	3	13	1	${ }^{1}$
-	-	-	-	26	${ }^{\text {(i }}$	1	11	is	13	1	${ }^{0}$
-	-	-	-	27	6	1	1	3	13	1	${ }^{1}$
-	-	-	-	24	7	1	$1)$	in	11	1	${ }^{1}$
-	-	-	-	29	7	1	1	- 9	1.1	1	$1)$
-		-	-	30	7	1	$1)$	60	11	2	$1)$

## TABLE 「

 （（tits．10～1．11ヶ）．
Angimbint（b）．
Sls The equation in col ：correspond to cilher of the arcuments in erols．I an！： 3
（This is Irof．Iacolisis Ind Ant．，Vol VII，Table：！，

Ar｜ch	E／q	Itern．
1	2	3
11	180	5014
111	179	
21）	1.56	tho
$31)$	166	150
10	1\％	460
50	141	4.50
fill	192	140
70	200	130
413	$\because 14$	120
911	21：	110
1111	223	100
1111	2331	390
120	236	3401
1331	$\because 42$	$3 \% 11$
111	24.4	360
150	253	354
（til）	254	314
170	$\because 63$	3：31
140	2102	320）
$1!11$	270	310
$2(16)$	9\％3	$36+1$
210	236	290
200	$\geq 77$	＂400
2301	279	271
271	2h\％	260
2006	2no	2501


Argno．	Equ．	Ar：ch．
1	2	3
5010	$1 \% 11$	10160
S． 11	131	！ $10 \times 1$
二20	$12:$	90
530	117	970
－ 40	10．5	960
5．s）	96	9.50
560	is	！ 11
	4）	9331
S4ll	72	9201
590	（is）	9111
fill	$5 \%$	9100
610	50	－ 911
（i：21）	＋+	640
1330	38	mil
（i） 40	32	Stiol
（2．0）	27	－ 511
1650	$\cdots 2$	410
1in）	17	－ 311
fine	13	H20
	10	410
700	7	4101
710	$f$	790
720	3	740
731	1	7511
710	1	8130
750	0	7.50


Amen．	bun．	A ${ }^{\circ} \mathrm{Cl} 1$
1	2	3
11	130	500
111	5	190
29	83	In（ 3
30	19	170
41	4.5	$1 \mathrm{i})$
511	1］	1.50
60	34	＋10
71	31	1330
4）	31	f：3
90	$\because 4$	110
100	\％	100
110	2：	3：10
$1: 30$	1：1	340
130	16	3îl
110	11	360
150	11	320）
164	$!$	3.30
1211	7	330
14.1	1	320
196	1	：310
206	3	3010
$\therefore 111$	$\cdots$	290
220	1	$\because$ い1
238	0	$\therefore 20$
240	$1)$	$\because 60$
250	0	$2{ }^{2} 51$


Amen	Equ	Arim．
1	2	3
500	（i）	1000
5111	64	980
529	68	（1）0
5330	7\％	970
510	76	9tit
S． 51	79	9.50
Stio	53	9810
530	Sti	980
Shl	90	
593）	93	910
1000	91	$1 H 0$
（6）0	99	490
6：30	$10 \%$	Sult
（13）${ }^{\text {a }}$	10.5	Sor
641）	$10 \%$	helo
6.51	109	min）
titit	11：	SH1）
fist	113	4．30
6 G 0	115	－20
6901	117	\＆ 311
8611	114	h（0）
710	$13!$	\％90
720	120	F60
7311	1201	\％ 3
741	121	510）
750	$1: 21$	\％${ }^{3}$

AI VIIAARY＇LABHE＇NO TUBLEK II AND VH

Difth renel   in equation．	Last ligitic uf linil ut vit								
	9	8	7	6	｜ 5 ！		3	2	1
	Amb on subtumt								
9	s	7	is	is	1010	1	：	$\because$	1
8	7	${ }^{\prime}$	fi	5	1	3	$\ddot{\sim}$	$\ddot{\sim}$	l
7	1	$1{ }^{1}$	5	1	［3－1］ 1	3	$\ddot{2}$	1	1
6	5	i）	1	1	3	2	$\geq$	1	1
5	1005	1	3011	3	20r：3	2	1012	1	110.1
4	1	3	3	2	2	2	1	1	11
3	3	2	$\because$	$\because$	114：	1	1	1	11
2	2	$\because$	1	1	1	1	1	11	［1
1	1	1	1		$(1 / 1)^{1}$	11	11	（1）	11

None the difference in the（Tables V1，V11）eruation－figure for the nearest figures of the argmonen．Take this differme in （1）lefthand eohamo of this Table，and ran the ese to the risht all it racher the ligute stambur under the last firare of the given argament．＇The resnlt is to be athed to or sub－ tractad from the equation－fience for the lower of the twonater


 11 ther Anviliary Trable＂fpasite is and under $f$ is：The fropur tupation therfore is atis－2 or atil

 ryation thereforr is $17+3=20$ ，or $17+1=21$ ．



* us Kibutughna.
* Vishti is also called Bhadri, Kalnemí.
* or stravishthit.
†i or śatatàrakí.
§ ur Asrij.

TABLEVIII．
LONGITEDES OF ENDING．POINTS OF TITLIS．

Thithi－Index （Lhnation－ parts） （t．）	Tithi．	Hearrees．
1	2	3
333	1	1200
6 ti	2	$24^{\circ} 0^{\prime}$
1000	3	360
1333	4	4830
1667	5	$60^{\circ} 0^{\prime}$
2000	6	
2333	7	$84^{\circ} 0$
2667	＊	$96^{\circ} 0^{\prime}$
3000	9	$108^{\circ} 0^{\prime}$
3333	10	$120^{\circ} 0^{\prime}$
3667	11	$3320^{\prime}$
4000	12	$144^{\circ} 0^{\prime}$
4333	13	$156^{\circ} 0^{\prime}$
4667	14	$165^{\circ} 0^{\prime}$
5000	15	$180^{\circ} 0{ }^{\prime}$
5333	16	$192{ }^{\circ} 0^{\prime}$
5667	17	20.40
6000	18	$216^{\circ} 1^{\prime}$
6333	19	2280
6667	20	$240^{\circ} 0^{\prime}$
7000	21	25820
\％333	22	僻 $0^{\prime}$
2667	23	$2760^{\circ}$
8000	24	$288^{\circ} 0^{\prime}$
8333	25	$300{ }^{\circ} 0^{\prime}$
9867	26	$312^{\circ} 0^{\prime}$
90¢\％	27	$321^{\circ} 6^{\prime}$
93333	$2{ }^{2}$	$3360^{\circ}$
9687	24	$315{ }^{\circ} 0^{\prime}$
10000	30	$3661{ }^{\circ}$

For bucituden of ending－points of Nakshatras and Yogas，sen （ext，Table Art．3h．

TABLEVIIP．
LONGITUDES OF PARTS OF TITIUS，NAKSHATRAS AND YOGAS

TuTH1			S．AKSHATRA AND YOGA．		
1	2	3	4	5	6
33	0.1	$1^{\circ} 12^{\prime}$	33	0.09	$1^{\circ} 12^{\prime}$
di6	13.2	$2^{\circ} 24^{\prime}$	66	0．15	229
100	0.3	$3^{\circ} 36{ }^{\prime}$	1 （1）	0.97	$3^{\circ} 36$
204	$1) 6$	$7^{\circ} 12^{\prime}$	200	0.54	\％12
300	1） 9	$10^{\circ}+5^{\prime}$	300	0.61	$10^{\circ} 44^{\prime}$
400	1.2	$11^{\circ} 24^{\prime}$	490	1.105	$15^{\circ} 94$
500	1.5	$15^{\circ} 0$	500	1.335	$15^{\circ} 0$
600	1.8	$21^{\circ} 36$	600	1.68	$21^{\circ} 36$
700	21	$25^{\circ} 121$	706	1．89	$25^{\circ} 12$
500	2.4	2ヶ\％＋¢	800	2.16	$24^{\circ} 45^{\prime}$
900	2.7	$32024^{\prime}$	900	2.13	32024
1000	3.0	$36^{\circ} 0^{\prime}$	1000	2.50	$36^{\circ} 0^{\prime}$
1100	3.3	$39^{\circ} 36^{\prime}$	1100	2.97	33983
1200	3.6	$43^{2} 122^{2}$	1200	3.21	$13^{\circ} 12^{\prime}$
1300	3.1	463	1300	3.51	$46^{\circ}+4$
1400	4．2	3020	1400	3.75	5029
1500	4.5	540	15100	7．05	$54^{\circ}$
1600	f．6	if 36	1 tiol	1.32	5736
1700	5． 1	（6） $1 \sim^{\prime}$	1200	4.39	$61512{ }^{\circ}$
1800	5.4	（64） $5^{\text {a }}$	14.10	1．46	ift the
$1!6 \%$	5.7	6以 21	1900	5.13	（in 24
2000	（6．）	72 0	2 ¢H0\％	5.40	$72^{\circ}$
2100	6.3	\％ 3 36	2100	5.68	$\therefore$ ㄱ＊ 36
2800	6.6	7912	2200	5.94	\％9＞12＇
2300	6.9	いで兄	23000	6.21	－2 +5
2400	7.2	$56^{\circ} 24^{\prime}$	2400	（6．${ }^{4}$	sfi ： 2
2 OHO	7．3	¢\％${ }^{\prime}$	2504	（1．） 75	！ 9100
$\because 600$	7.4	$933^{\circ} 38^{\prime}$	2600	7．02	$43^{\circ} 33^{\prime}$
$22^{200}$	－， 1	9\％12	2700	7． 29	3712
2916）	n． 4	1005	2a010	$7 . .31$	$100{ }^{\circ}$ 心
2900	9.7	104024	29\％\％	\％．43	
31000	9.0	1119 6	3000	5． 10	105 $0^{\prime}$
3100	9.3	11153	3100	4.37	$111^{\circ} 36^{\prime}$
3200	9.6	11.5032	32010	s．fit	$115^{\circ} 12^{\prime}$
33000	9.9	115 心	3331010	¢． 91	115 14
3400	10．2	1223 ${ }^{1}$	3100	9.15	129024




Tlins.			NAKSILATR A ANu		rama.
					-
1	2	3	4	5	6
3500	10.5	$126^{\circ} 0^{\prime}$	35001	9.45	$1260^{\circ} 0^{\prime}$
3600	10.4	$129336^{\prime}$	3 Brom	9.72	$12933{ }^{\prime}$
3700	11.1	$1333^{\circ} 12^{\prime}$	3700	9.99	183512
3800	11.1	$1366^{\circ} 48^{\prime}$	$3 \times 60$	10.26	136 $0^{\circ}$
3900	11.7	$140^{\circ} 23^{\prime}$	3900	10.83	$140^{\circ}$ 2 ${ }^{\prime}$
4000	12.0	$1+50^{\prime}$	4000	10.80	$144^{\prime}$
4100	12.3	$145^{\circ} 36^{\prime}$	4100	11.07	$147^{\circ} 36{ }^{\prime}$
4200	12.b	$1512^{\circ}$	1200	11.34	$1: 1512$
4300	12.9	15\%	1300	11.6 fl	1515
$440 \%$	13.2	15n ${ }^{\text {a }}$	4400	11.45	1.5024
4510	13.5	$162^{\circ} 0$	1500	12.15	$16{ }^{2} 0^{\prime}$
4600	13.5	$165^{\circ} 36$	4600	12.42	$16.5{ }^{\text {c }} 36$
4700	14.1	$169^{\circ} 12^{\prime}$	4700	12. 64	16912
$18(4)$	14.4	$172{ }^{\circ}+4^{\prime}$	$4 \times 00$	12.96	170
$490 \%$	14.7	$1766^{\circ} 21^{\prime}$	1900	13.23	$176{ }^{2}{ }^{\prime}$
50 (m)	15.1	$150{ }^{\circ} 0^{\prime}$	5000	13.50	$1510^{\circ} 0^{\prime}$
5100	15.3	$183^{\circ} 366^{\prime}$	:300	13.77	$183{ }^{\circ} 36^{\prime}$
5200	15.6	$150^{\circ} 122^{\prime}$	5200	14.04	$150^{\circ} 12^{\prime}$
5300	15.9	$190^{\circ} 45^{\prime}$	5300	11.31	$190^{\circ} 48^{\prime}$
5400	16.2	$194^{\circ} 24^{\prime}$	5400	11.55	$194^{\circ} 24^{\prime}$
5500	16.5	$195^{\circ} 0^{\prime}$	5500	14.85	$195^{*} 0^{\prime}$
5600	16.8	$201^{\circ} 36{ }^{\prime}$	5600	15.12	$203^{\circ} 36$
5700	17.1	245 ${ }^{2} 121$	5700	15.39	20.5 $0^{\circ} 12$
5400	17.7	$205^{\circ} 45^{\prime}$	5800	15.66	20.5048
5900	17.7	$212^{\circ} 24^{\prime}$	5900	15.93	$21202{ }^{\prime}$
6000	15.0	$216^{\circ} 0^{\prime}$	6000	16.20	$216^{\circ} 9^{\prime}$
6100	15.3	$219^{\circ} 36^{\prime}$	6100	16.4\%	$219^{\circ} 366^{\prime}$
6200	15.6	$223{ }^{\circ} 12^{\prime}$	6200	16.74	$223{ }^{\circ} 12^{\prime}$
6300)	18.9	$226^{\circ} 44^{\prime}$	6300	17.01	$2265^{\circ} 4$
6400	19.2	$230^{\circ} 24^{\prime}$	6400	17.24	$230^{\circ} 24^{\prime}$
6500	19.5	$234^{\circ} 0^{\prime}$	6500	17.55	$234^{\circ} 0^{\prime}$
6600	19.8	$237^{\circ} 36{ }^{\prime}$	6600	17.82	$237^{\circ} 366^{\prime}$
6800	20.1	$241^{\circ} 12^{\prime}$	6700	18.09	$241^{\circ} 12^{\prime}$
6800	20.4	$245^{\circ} 48^{\prime}$	6800	18.36	$245^{\circ} 45^{\prime}$
6900	20.7	$245^{\circ} 24^{\prime}$	6900	18.63	$245^{\circ} 24^{\prime}$
7000	21.0	$2.20^{\circ} 0^{\prime}$	7000	18.90	$252^{\circ} 0^{\prime}$
7100	21.3	$255^{\circ} 366^{\prime}$	7100	19.17	255036
7200	21.6	$259{ }^{\circ} 12^{\prime}$	7200	1944	$25 y^{\circ} 12$


	T]TIIt.		NAK-IITRA ANH \OOA.		
	\%				-
1	2	3	4	5	6
7300	21.9	26\% it	7300	19.71	2620 $4 x^{\prime}$
\%100	22.2	$260^{\circ} 24^{\prime}$	7460	19.95	$266^{\circ} 24^{\prime}$
\%.500	22.5	$2700^{\circ}$	7500	20.25	2700
7600	22.4	$273^{\circ} 36^{\prime}$	7600	20.52	$273{ }^{\circ} 36^{\prime}$
T700	23.1	$27 \%^{\circ} 12^{\prime \prime}$	7700	20.75	$27 \%^{\circ} 12$
Fseno	23.1	$280^{\circ} 45^{\prime}$	7800	21.66	$250 \%$ -
7900	23.7	2ヶ40 24'	5900	21.33	24t゚ 24
8000	24.0	$2 \mathrm{xbo} 0^{\prime}$	5000	21.60	$2 \mathrm{Sk}^{\circ} \mathrm{O}$
8100	24.3	$291^{\circ} 36^{\prime}$	8100	21.83	$2910^{\circ} 36$
5200	2.46	$29.9{ }^{\circ} 12^{\prime \prime}$	-200	22.14	$295{ }^{\circ} 12^{\prime}$
8300	24.9	$29 x^{2}+5 \times$	8300	22.41	$296^{\circ}$ i $9^{\circ}$
8400	25.2	$302^{\circ} 2 \vdash^{\prime}$	$\rightarrow 100$	22.65	$302024^{\prime}$
8500	25.5	$306^{\circ} 0^{\prime}$	8500	22.95	$3060^{\circ} 0$
8600	25.8	$309^{\circ} 36^{\prime}$	5600	23.22	$309{ }^{\text {P }} 36$
5300	26.1	$313^{\circ} 12^{\prime}$	$8 \% 00$	23.19	$313^{\circ} 12^{\prime}$
8800	26.4	$316^{\circ} 48^{\prime}$	8800	23.76	$316^{\circ} 44^{\prime}$
5900	26.7	$320^{\circ} 2 z^{\prime}$	8900	24.03	$3200^{\circ} 24^{\prime}$
9000	27.0	$324^{3} 0^{\prime}$	9000	24.30	$324^{\circ} 0^{\prime}$
9100	27.3	$327^{\circ} 36^{\prime}$	9100	24.57	$327^{\circ} 36^{\prime}$
9200	27.6	$331^{\circ} 12^{\prime}$	9200	24.84	$331^{\circ} 12$
9300	27.9	$334^{\circ} 45^{\prime}$	9300	25.11	$334^{3} 45^{\prime}$
9400	28.2	$333^{\circ} 24^{\prime}$	9400	25.38	$335^{\circ} 24$
9500	23.5	$342^{\circ} 0^{\prime}$	9500	25.65	$342^{\circ} 0^{\prime}$
9600	25.8	$345^{\circ} 36^{\prime}$	9600	25.92	$345^{\circ} 36$
9700	29.1	$349^{\circ} 12^{\prime}$	9700	26.19	$349^{\circ} 12^{\prime}$
9800	29.1	$352^{\circ} 4^{\prime}$	9500	246.46	$35204{ }^{\prime}$
9900	29.7	$356^{\circ} 2 \ddagger^{\prime}$	9900	20.73	$356{ }^{\circ} 24^{\prime}$
10000	30.0	$360^{\circ} 0^{\prime}$	10000	27.00	$360^{\circ} 0^{\prime}$

## 

TABLE GIVNG THE SERIAL NTMBER OF DAS IROM THE ENO OF A IEAK I II FOR TWO
（OXSECTTTVE I D TEARS．

## PAにт 1.

Vinmber of days reckned from the lat of danuary of the same year．

	Jan．	lcb ．	March，	Ipril．	May．	June	July．	Aug．	Scp．	Oct．	Nus	bere	
1	1	32	（ii）	41	121	152	152	213	24	274	30.5	3：35	1
2	2	33	61	12	1：2\％	15：3	153	211	24.5	29	3016	3386	2
3	3	31	（i）	43	123	15．	151	215	216	2：9	307	335	3
4	1	3.5	13.3	94	12t	15．5	15.5	216	212	$2 \%$	304	335	4
5	5	36	6.7	9.8	12．5	$15 \%$	15 fi	217	215	$2 \pi$	309	339	5
6	6	37	15.7	96	126	$15 \%$	$15 i$	215	249	279	310	340	6
7	7	38	618	97	127	1.5	145	219	230	$2 \times 1$	311	341	7
8	8	39	67	98	124	159	159	220	2.51	$\because \checkmark 1$	312	342	8
9	$!$	10	65	99	124	180	190	221	222	242	313	343	9
10	10	11	69	100	1311	1 （1）	191	$22 \%$	253	283	314	314	10
11	11	42	70	101	131	162	192	203	2.84	ごら	31.5	34．	11
12	12	13	71	102	132	163	193	224	25.5	2 $5 \bigcirc$	316	346	12
13	13	41	22	103	133	16.4	1114	22.5	256	2 s 6	315	347	13
14	14	4\％	33	104	134	16.5	19\％	224	$25 \%$	250	31.	34.	14
15	15	16	7\％	10.3	135	166	1116	2\％	255	206	319	349	15
16	16	47	75	116	136	167	197	225	259	209	321	3.90	16
17	17	th	76	$11 \%$	$13 \hat{3}$	16 n	198	229	2617	290	321	3.5	17
18	15	（！）	$\pi$	］ 10	134	169	193	23.11	$\because 61$	291	32.2	3：2	18
19	19	50	is	109	$13!$	170	290	231	$\geq 2$	2412	323	3．3	19
20	211	51	79	110	110	171	201	232	263	293	324	351	20
21	21	i2	80	111	141	172	212	233	264	291	32.5	35.5	21
22	22	53	81	112	112	173	203	231	26.5	29.5	32 ti	3516	22
23	23	51	42	113	14.3	17.4	204	23.5	$2{ }^{2}$	2915	327	3.5	23
24	24	5.5	83	114	114	17.5	20.5	2316	26	294	324	35	24
25	2.	51	－ 4	115	115	176	201	233	264	295	329	35.4	25
26	26	5	4.5	$11 / 6$	111	177	204	234	269	294	330	36	26
27	27	54	$4 i$	117	115	17	205	$23!$	$\because 0$	306	3311	361	27
28	2	29	4	114	114	179	209	241	271	301	332	336	28
29	29	（6i）	44	119	119	1411	211	$2+1$	22.2	3412	333	3143	29
30	311	－	49	120	1.10	lnl	211	212	238	3013	331	314	30
31	31	－	9	－	151	－	21.	213	－	304	－	36.5	31
	dill	Pib．	Vamb．	April	May．	June	Jい！	Alus．	$\therefore$	O．t．	\an．	Wer．	

## 




$$
\text { ! I : T } 11 .
$$

Niumber of days reckoned froun the list of Jamury of the prevaling war．

	Jinn．	l＇rb．	Matels．	Ipril．	M1：．	Jロ1ヵ．	J11］．	AıL．	S＇10	Oct．	Vin．	10\％	
1	336	345	$42 \%$	15， 6	14if	517	517	575	6i）9	639	（i）0	7 （10）	1
2	367	354	496	$4 \%$	147	715	－3th	53：	6111	（1）1）	（iin）	301	2
3	340	3！ 39	$12 \%$	1.54	154	51！	\％19	840	611	6it	6is：	210	3
4	369	1001	12゙	159	151	20\％	5.50	56］	612	61：	153	7113	4
5	370	101	129	4611	190	521	5.51	5xi	（1）3	618	（i） 1	801	5
6	371	$10: 3$	430	［6］	191	52.2	5.52	543	6］ 1	1614	6in	70.5	6
7	37：	4103	1331	162	492	5\％3	5．53	ごち	（i） 5	（5．4）	6\％6	806	7
8	373	401	132	163	493	$5 \geqslant 4$.	551	Shir	（ilif	6．46	677	707	8
9	374	10：\％	433	164	191	525	53.5	5 yci	617	647		705	9
10	33	106	133	16.5	495	5： 6	$554 \%$	$56 \%$	6］ 4	6！	（in）	$30!$	10
11	376	407	435	166	$4!6$	527	5.37	56in	619	（i）！	650	［111	11
12	377	405	436	467	$49 \%$	5ごら	5.54	549	6ion	6．5）	6il	711	12
13	375	409	437	46	495	529	5.59	590	（i\％）	6is 1	65：	71：	13
14	379	410	435	469	493	530	560	$5!1$	6i23	（in）	683	713	14
15	3 SO	411	439	150	530	531	5fl		623	6.43	（ist	71 t	15
16	381	11：	410	411	501	532	562	593	624	6.51	6 6i，	ili	16
17	352	413	411	172	\％n\％	338	51i3	591	（i2）	（0，5，5	658	\％16	17
18	353	11.1	412	473	503	531	56 f	\％9\％	620	（i．）6	087	717	18
19	3 St	415	443	571	501	535	565	296	627	8.78	6ss	718	19
20	34.3	41 i	44．	47\％	\％ 0.5	536	566	$59 \%$	625	（6．58	689	T19	20
21	356	417	44.5	150	506	537	567	595	699	0.99	690	720	21
22	347	$\pm 18$	446	$17 \%$	$50 \%$	536	56 s	599	1330	1360	1291	T＊1	22
23	3 3	419	447	だ	505	534	569	（\％）	631	liil	692	「2．0	23
24	3 s ！	420	448	59	5109	540	970	801	bi3：	1962	693	223	24
25	390	421	449	180	510	541	51	802	133：3	fifis	6914	7！1	25
26	391	422	450	451	511	512	572	60.3	63.31	B6）	695	725	26
27	392	123	4.1	$48 \pm$	512	543	973	604.	635	（365	（i9）	720	27
28	393	124	452	143	513	514	374	（\％）	636	disfo	69\％	72\％	28
29	391	12：3	453	456	514	545		806	6337	G6\％	139\％	72h	29
30	395	－	454	$45 \%$	515	546	576	607	6，3\％	litis	（6：9）	729	30
31	396	－	15.5	$\cdots$	． 16	－	$37 \%$	60 s	－	669	－	730	31
	Jall．	Feb，	March．	April．	May．	Jı1\％．	Jaly ．	Ang．	Scp．	Chet．	Nos	1\％9	

## ＇I」BLE X．

HOR CONVERIING TITHIPARTS，AND INDIOES OF TITHIS，NAKSHATRIS，AND IOGAS INTO TIAE
N 13．In this Table a tithi
is supposed to eoutain $\qquad$ 1，600 parts．


.	.	$"$
.	.	.

$\qquad$ 10.000

Therefore：
In the ease of Tithi－parts the argument sluens．．．．．．．．．．．．．．．．． $1,000 \mathrm{th}_{\text {he }}$ of a tithi．
$\qquad$
$\qquad$ Iumation．
．．．．．．．，Nakshatra－index（ $n$ ）
Yuga－inder（，（1）
．．．．．．．．．．．．．．．． 10,000 ths ．，，，sidereal month．
，．，．．Jogar－chakra？．

新	Time equivalent of									Time equivalent of									Tiner equivalent of							
	产离		$\stackrel{E}{\tilde{y}} \underset{E}{\dot{E}}$		总总总														乘							
	11.		11.	11.	11.	11.		I．		11.	N.	11．	11.	11.	31.	II	11.				11.	II．		11.	11.	M．
1	11	1	0	$t$	0	1	${ }^{1}$	$\pm$	41	${ }^{1}$	56	2	54	2	41	$\stackrel{2}{2}$	30	81	1	55	5	44	5	19	＋	37
2	1	3	0	9	0	8	0	7	42	1	11	2	59	2	45	2	31	42	1	56	5	49	5	23	5	11
3	$1)$	1	0	13	0	12	$1)$	11	43	1	1	3	3	2	49	2	37	83	1	54	5	53	\％	27	5	4
4	1	6	0	17	1	16	11	15	44	，	2	3	7	$\stackrel{1}{2}$	53	2	41	84	1	59	5	57	5	30	5	7
5	11	7	0	21	0	${ }_{2} 0$	0	15	45	1	t	3	11	2	37	2	45	8.5	2	0	6	1	5	34	5	II
6	1）	9	0	26	0	24	$1)$	22	66	1	5	3	16	3	1	2	15	86	$\geq$	2	6	0	5	35	5	15
7	$1)$	10	${ }^{6}$	30	0	25	11	26	17	1	7	3	20	3	5	2	52	8	2	3	6	10	5	42	5	10
$\checkmark$	0	11	0	34	11	31	0	29	48	1	S	3	$\underline{21}$	3	9	2	54	48	2	5	6	$1+$	5	419	5	22
9	$1)$	13	0	38	0	35；	1	33	49	1	9	3	25	3	13	2	59	49	2	6	$6^{6}$	15	5	． 50	5	26
10	$1)$	14	0	43	0	39	11	37	5	1	11	3	33	3	17	3	3	90	2	8	－	23	－	51	5	29
11	$1)$	16	0	47	0	43	1	40	51	1	12	3	37	3	21	3	\％	9	2	9	6	27	5	54	5	33
12	$1)$	17	0	51	0	47	11	44	52	1	14	3	4	3	25	3	10	！ 2	2	10	6	31	${ }^{\text {i }}$	2	5	37
13	0	18	0	55.	1	51	$1)$	45	53	1	15	3	45	3	29	3	11	93	$\because$	12	${ }^{6}$	3：	$i$	6	5	10
14	11	24	1	1	${ }_{0}$	55	11	51	54	1	17	3	50	3	32	3	14	！ 1	2	13	6	40	（i）	10	5	14
15	1	21	1	4	0	59	$1)$	55	55	1	18	3	54	3	36	3	21	49	2	1.5	6	44	B	11	5	in
16	11	23	1	8	1	3	0	59	56	1	19	3	54	3	40	3	25	96	$\geq$	16	6	48	6	15	5	51
17	1	24	I	12	1	7	1	2	57	1	21	4	$\because$	3	44	3	29	9	2	17	6	i2	（i）	20	5	55
18	11	213	1	17	1	11	1	i）	58	1	22	$t$	7	3	is	3	32	9	2	19	6	54	15	24	5	54
19	$1)$	27	1	21	1	15：	1	10	59	1	24	$t$	11	3	52	3	36	99	2	20	$i$	1	ii	24	6	$\geq$
20	$1)$	25	1	25	1	$1!$	1	13	（6）	1	2.5	4	1.5	3	． 6	3	11	［109．	2	22	7	5	6	33	6	0
21	11	30	1	29	I	23	1	17	${ }^{6} 1$	1	20	4	1！	4	0	3	43	200	4	13	11	10	13	7	12	12
22	$1)$	31	1	34	1	27	1	21	62	1	$2{ }^{2}$	4	24	$t$	4	3	17	301	7	5	21	16	19	40	1＊	14
23	11	33	1	34	1	31	，	$\because 1$	fi3	1	29	4	24	1		3	51	1010	$!$	27	24	21	－	－	－	－
$2!$	$1)$	34	1	12	1	34	1	28	tit	1	31	4	32	1	12	3	5t	Su1	11	19	3.5	吅	－	－	－	－
25	0	3.5	1	46	1	35	1	32	85	1	$3 \pm$	1	36	4	16	3	5	600	$1+$	10	12	31	－	－	－	－
26	$1)$	37	1	31	1	12	1	35	lif	1	31	4	11	$t$	20	4		700			41		－	－	－	－
27	1	35	1	5.5	1	46	1	39	${ }^{\text {A }} 7$	1	35	1	1.5	$t$	$\because 1$	4	5	800		51		12			－	－
24	11	（1）	1	59	1	50	1	42	64	1	36	1	49	4	2n	4	4	5100		110		15			－	
29	11	11	2	3	1	54	1	16	（i）	1	34	$t$	33	4	31	4	13	1000	23		70		－	－	－	－
30	$1)$	$4: 3$	2	4	1	58	1	50	i1	1	39	$t$	5in	4	35	4	16									
31	$1)$	14	$\stackrel{3}{2}$	12	2	$\stackrel{\sim}{\sim}$	1	53	$7!$	$!$	11	\％	2	4	39	1	20									
32	$1)$	15	2	16	2	${ }^{1}$	1	37	72	1	12	5	4	4	43	4	24									
33	11	17	2	$21)$	2	111	$\stackrel{2}{2}$	1	73	1	13	\％	10	$+$	17	$t$	27									
34	11	45	$\stackrel{2}{2}$	2.5	$\stackrel{\sim}{\sim}$	11	2	1	i！	1	4.5	5	15	1	51	1	31									
35	11	51	2	29	2	14	2	4	\％	1	41	5	19	＋	2．	$t$	35									
3 it	11	51	$\stackrel{3}{\sim}$	33		22	2	12	76	1	14	i	23	4	59	1	34									
37	11	52	2	33	2	26	2	15	3	1	19	5	27	5	3	1	12									
34	${ }^{1}$	51	2	1：2	2	311	2	19	\％	1	51	5	33	5	7	4	46									
34	${ }^{6}$	5．5	2	41	$\because$	338	2	23	79	1	：2	5	36	：	11	1	19									
81）	1	57	2	50	2	37	2	26	80	，	53	5	（1）	5	15	4	53									

## TABLE XI.

## LATITIDES ANO GONGTTDE OF PRINCIPAJ PLACE

##  and the plare in question.)




To convery Ujjain mean time, as fonnd by the presions Tables, into local mean time, add to of whbtract ir on the furmer the mimutes of longitude of the plave in question, as indicatel by the sen of phe or minus in this table,

N.IME of llat	N.   latitnle.	Lous. E frum Greemwich.	Long. from Uliant in minntus of thes. $\|$	NIVE of PLACH:	$\therefore$.   Latitulc.	$\begin{aligned} & \text { lang. E: } \\ & \text { trom, } \\ & \text { Gownom. } \end{aligned}$	
Abui (Arbuda)	$24^{3} 36$	T2 30	- 12	Bumbay (it, Trier Statima)..	$1)^{3} 34^{\prime}$	7-32	-- 12
Aspa (Fort)	$27^{\circ} 10$	- ¢	+ 9	Broach Bhriwnhachat	$21^{\circ} 12$	\% ${ }^{\prime \prime}$	11
Ahmadibud.	$23^{\circ} 1^{\prime}$	\% 3 3	$-13$	Bund	$2.53{ }^{2}$		1
Ahmaduaga	$19^{\circ} \mathrm{k}^{\prime}$	71 4	- 1	Burhánpur.	$21^{2} 19 \%$	iti 14	+
Ajanta	$20^{\circ} 3 z^{\prime}$	$73^{\circ} 4 y^{\prime}$	- 0	Calcutta (Fort Williaus)	$22^{2} 333^{\prime}$	¢ \% ${ }^{\prime}$	+ 30
Àjûtr	$2 i^{\circ} 30^{\prime}$	$77^{\circ} 4{ }^{\prime}$	- 1	(alingapatam (ser halliugapatam)	-	-	
Alimolb (Allyghr	$27^{\circ} 52$	in ${ }^{\text {a }}$	$\bigcirc 9$	Cambay (khambit, Sthambaratí	2:3 14	(22 41	$-13$
Allahâbâl (Prayâra).	$25^{\circ} 26^{\prime}$	410 51'	+ 24	Camupure (hâbupmr, Old City).	263 $3^{29}$	40 2\% 2	1.14
Amarivatî (on thr krıshuti)...	$16^{5} 34^{\prime}$	$40^{2} \cdot 25^{\prime}$	$+15$	Cochin.	$y^{2}$ -	\%13	+ 2
Amarâkatí (Amratio Oomra-				(ongreeveram (spe kûñ (hi).	-	-	
wuttee, in Berar) .	$20^{\circ} \mathrm{B} \mathrm{y}^{\prime}$	7\% $\square^{\circ} 4 y^{\prime}$	+	Cuttaek (see Katak)	-	-	-
Amritsar	$31^{\circ} 3 \%^{\prime}$	\% $4^{\circ} 56$	- 4	Jacea (Dhaka)	$233^{\circ}+33^{\prime}$	400 27	+5n
Anhilvâl (Pâtan)	$23^{\circ} 51$	72 $2^{\circ} 11$	$-1.5$	Dehli (1)elhi, Old City)	24 3 39'	\% 14	+ 6
Arcot (Arkâlı	12054	$7924^{\prime}$	$+1+$	Deragiri ( ${ }^{\text {autulatailul). }}$	$19^{\circ} 51$	Tis 17	- 2
Aurangâbail..	$19^{\circ} 54$	7\% 24	- $\quad 2$	1)hârì (Dhar)	$\pm 2336$	$\pi 5^{2} 22^{\prime \prime}$	- :
Ayollyŷa (see (ndde).....	-	-	,	Dhârvậ! (Dharwar)	15	$\because$	- 3
Bâlimimi.................. . .	1595	$7{ }^{\circ} 5$	- 11	Dhôlpur (City)	$26^{\circ}+1$	Ti su	$\div 3$
Balagà ${ }^{\text {a }}$, or Balagáalive.	$14^{\circ} 23^{\prime}$	75 14	- 2	Ithulia	$20^{\circ} 51$	\%1 30	- 1
Banavî́si.	$14^{\circ} 3 z^{\prime}$	\% ${ }^{3}$	- 3	Đıârakî	20 11'	(6) ${ }^{2}$	- 27
Bardhyân (Burdwan).	$\geq 3^{\circ} 14^{\prime}$	-75	+ 45	Vhura (lêlîpur:	$20{ }^{\circ}$	T.5 111	- 2
Baroda (Bathola).	$22^{\circ} 1{ }^{\prime \prime}$	$73^{\circ} 16^{\prime}$	$-10$	Faruhhibid (Furruck	$27^{\circ} 233$	\%3 $3{ }^{1}$	+ 15
Bârsîi..	$15^{\circ} 13$	$\therefore 166^{\prime}$	- 11	Gayyi.	$\because 1{ }^{2}$	$4 \mathrm{t}^{\prime}$	+3i
Belraum. .	150 51	71.35	- 5	( h hizizipur	2.5 35\%	43 3 3!	$+31$
Brnares.	$25^{\circ} 147$	$43^{2} \quad 4$	+ 29	Girnâr..............	$21{ }^{\circ} 83$	(1) 36	$-23$
Bhâgalpur (Bensal)...........	$85^{\circ} 1.5$	$4 \square^{\prime \prime}$	+ 45	Gua (Gôpakapatama).	1.5 30,	73 5\%	- $\quad$,
Bharatpur (Bhurtpoor)........	$27^{\circ} 13$	ir 33	+ 7	Gorakhapur (Gorurk]wer)	20 45	43	+ 311
Bhelsiil.	2300321	ก10 $\overbrace{}^{2}$	+ \$	Gurkhâ.	27 an	-1 30	+ 35
Bhopâl.	$233^{\circ} 13^{\prime}$	त	+ ${ }^{\text {j }}$	Gwalior	26.14	in 14'	$+10$
Bihar (Brhar, in Bengal) . . . .	2.5011	$45^{\circ} 3{ }^{2}$	$+39$	Maidarìuâl (1).klan).	$1722^{\prime}$		$+11$
Bijâpur (Berjapour) . . . . . . .	$16^{\circ}: 00^{\prime}$		$-0$	Haidarîbâll (Sindb)	25.33	on $26 ;$	-311
Bijuagar (spe Vijayamagar) ....	-	-	-	Hardâ (in Gwalior)	22021	$\because$	T is
Bîkûuêr......	$28^{\circ} \quad 0^{\prime}$	73029	$-10$	Hardwir...................	$23^{\circ} \mathrm{5}$	is $14^{\prime}$	$+11$

## 

S．SME，0\％llate	N．   Latitule．	Lethe E irima Gremwidy．		NiME of Pluse	N．   Latitude．	Luns．E： from Greenwith．	Long from tuan in minutes oi time．
Hoshatribind．	220	ir 40	＋	Oude（huth．A！ôlhy ${ }^{\text {a }}$ ）	26：以		$+26$
Indure．	23． 43	75 50	－ 0	P＇nithion．	14－ 29	可吅	－2
Jabalpur（Jubbulpure）	23） 11	41） $0^{\prime}$	＋ 17	Pauthiphir	$17^{\circ} 411$	\％ 51	－ 2
Jagauththıpurí．．	1：9＇ $\mathrm{m}^{\prime}$	$45^{5} 5$	＋ 40	Pâtan（sere Auhilual）．．．．．．．	－	－	－
Jalraum．．．．．．．．．．．	：13 1	750	1	Patan（seet Romuthlyatan）．．．．．	－	－	－
Fay pur（Jeypure，in Ritjutimal）		［50 531	0	Patiilli	$310^{\circ} 19 \%$	76＂2゙	＋ 3
Jlûnii．．．．．．．．．．．．	2－0 ${ }^{\circ}$	岳3 3	＋ 11	Pätar	$25^{2} 36^{\prime}$		$+37$
Jîulhpur	$20^{\circ} \mathrm{l}$	$33^{\circ} 5$	－ 11	Peshawar．	$34^{\circ} 11$	（1） $10^{\prime}$	$-17$
funaưqulth	$21^{\circ} 31$	（1） 311	－21	Powual（Punĉm）．	15 301	730	4
halimpatam（alimeapatami）．．	14．20	41 11	＋ 33	Poome l＇uri，se alazamat hapurî	－	－	－
haly in Bumbay ．．．．．．．．	$19^{3} 15$	［3）11＇	$-11$	Purniyà（Pommeah）		$43^{-1}$	$+4 i$
haly th Kallianner，Nizan＇s				Ribursara（Rameshwus）	1） 11	7！ 231	＋ 11
（1）	$15^{\circ} 53$.	$\pi{ }^{3}$	＋．	Ratuágiri．	170	$73^{5} 21^{1}$	$-10$
Кайй ．．．．．．．．	$27^{\circ} \quad 3$	\％	＋ 17	Rîvâ（Ruma，Riwitia）．	24.31	421	＋22
himbli（or Cousteratar）	$1 \approx 5$	T9 10＇	＋ 16	Sugur（Sangory	$23^{\circ} 50$	in $\begin{aligned} & \text { a }\end{aligned}$	＋12
hatak（Gutark）．	20102		＋ 41	Suhert Malut（sravanti）？	21：31	いう	$+25$
KLâtmâula	$27^{\circ} 364$	¢ $5^{\circ} 19$	＋ 35	Samblat ${ }^{\text {anar }}$（Sumbulporr）	シ1 ジ	－1 $z^{\prime}$	＋ 33
Kollapme（Kulhapme）．	$16^{\circ}+11^{\prime}$	$74^{\circ} 17$	－ 6	sitaira	$17^{\circ} \mathrm{11}$	it 3＇	－i
Lailôr Wahur	3103.9	\％4． 23＇$^{\prime \prime}$	－ 6	Serinapatam（sibahuspatama）	12.8	iti ${ }^{\text {a }}$	＋+
Lakhum（lachnuw）．．．．．．．．． ．	$26^{\circ}$ 51	4105	＋21	Shôapur	1541	75 5u	＋ 1
Madhura（Madural，Malras l＇res．）	$9^{2} 5{ }^{3}$	－ $5^{511}$	＋！	Sirtmi．	21	\％$\%$	＋
Madras（1），mervatory）	$13{ }^{\circ} 1^{\prime}$	40 14＇3＇	$+14$	Somathluatan	$20 \cdot 33$	（1）2い	－
Mai-ir (M! arte) . . . .	1：314	\％17 13	$\pm 1$	Srimagar（in K：shmir）．	340	74．32＇	－ 4
Malhbiot Minyakheta	1． $12^{\prime}$	if 13	$+6$	Surat．	$21^{\circ} 12^{\prime}$	72 $2^{3}$	－12
Mimbai（in（＇uteh）．	23 3 ， $0^{\prime}$	69\％	－ 24	Tanjurn（＇Tanjichir）	$11^{2} \mathrm{~F}$	7！12＇	$\pm 11$
Mancalher（Mabgalore）	$12 \mathrm{~s}{ }^{\prime}$	［15 5， $4^{\prime}$	－ 1	Thatuat（Taunah，	$14^{\circ} 1 \gtrless^{\prime}$	（3） 11	－ 11
Mathurit（Mutra \．V．P	$\because 20$	7\％ 4.5	＋ 4	Trasament（Timbarkaitu）．	－ $11^{\prime}$	i5 198	＋ 6
Whusir for Vmixtêr）．	20． $2 \times 3$	$40^{\circ} 38$	＋13	Trichiuopoly	$11^{\circ} 19$	「い 1．7	$+13$
Multin（Mbultan）．	（3i1）12＇	$71.32^{\prime}$	－ 17	＇Trisumbrimi．	－39，	潞 $0^{\prime}$	＋ 5
Natpar（ Aagrove）	21	7！10）	＋ 13	Vidajpar（hodeyporct．．．	2134	－3． 4.5	$\checkmark$
Nitih ．．．．．．．．	2110＇	（3） 511	－ 4	Vj，jain 3．．．	$233^{-11}$		$\pm 0$
Ormanuther（ere Ammatati．．	－	－	－	Vijay magar ．．	$15^{\circ} 19$	\％15 3	＋ 3






## TABLE XII.

(s)e Arts. in to tiz.)

Samvataras of the   60 -3ear rych	simurat-ara of the twherevear cescle of the mean-nign $\because$ stell.	Man-wien of dupiter lng his me:n lungitude.	Sambit antas of the 60-s.ar cyelle	Simnal-ara of the thetheresear "yche of the mran-ign systrm.	```Mran-sum of J"piter by hi- mean longitnd".```
Jupiter.	sixts-yar cock uf	$\begin{aligned} & \text { 1". samuatwra of the } \\ & \text { by mean-ign system } \end{aligned}$	Jupiter.	('oreresponding tu nisty-year mime of	he samsatsara of the the mean-aixn stitrm.
1	2	3	1	2	3
1 Prabhava.	5 Stitrana	11 Kumahar.	31 Ilemahamba.	11 Misha..	i) Silima.
$\approx$ Vibhava.	f Bhaulrapada.	12 บй	32 Vilauba.	12 Phâlguna	(f) hamba
3 Śnkla.	- Lisina	1 Nesha,	333 Vikatin	1 Chaitra	i Tulai.
1 l'ransoda	- hirtika.	2 Vrishabla	34 Sitrari	2 Vaisikha.	4 Vriachika.
[) Prajôphat.	9 viargasiona	3 Mithuna.	3.5 Plava.	3 Jycritlia.	9 Dhanus.
6 . ${ }^{\text {digiras. }}$	10 Pausha	4 Karka.	36 Śnblakrit	+ Ashâlla	10 Makara.
? Śrimzukta	11 Migha.	\% Suinha,	37 Śsobhaua.	5) Śrivalua	11 humblia.
- Bhiva	12) Philleuta	(6) Kauyi.	3 K Kinalhia.	6 Bhâdrapaila.	[2 Mina.
9 Yuvan	1 Chaitra	7 Tuli.	39 Vişâvasu	7 Asvina	1 Mesha.
10 Intitri.	2 Vaisikha	4 Vrischika.	10 Parâhhasa	S Kinttika	2 Vrishabla
$1]$ Livara	3 Jywhtha	9 1)hanas.	41 Plavainga	9 Maireastriha.	3 Mithuna.
1:2 Bahudhâu!	\% íshâtha	10 Jakara.	12 kilika	10 Pansha	+ Karkn.
13 Praruathiu	5 Srìvaua	11 kimubba.	43 Saumya.	11 Mâcha.	5) sitioha.
14 Vikrama	6 Bbâdraprula	12 Mîna.	14 Sullhairaza	12 Phâlguna	6 Kany th.
1.) Vrista	7 Abvina	1 Mesha.	4.) Virothakrit	1 Chaitra	7 Tulâ.
if Chitrahhâıu	- Kârttika.	2 Vrishatha.	${ }^{16}$ Paridhâvin	2 Vaisakha.	4 Vrischika.
17. Subhânu	9 Mârgasîrsha	3 Slithnna.	15 Pramâdiu	3 Jyeshtha	9 Dhanus.
is Târauna.	10 Paush	1 Karka.	ts Anamda	f Áshîtha	(0) Makara.
19 Pârthiva	11 Môzha	5 Sitima.	49 Râk hatıa	5 Śrîaun	$11 \mathrm{humbha}$.
${ }^{2} 0$ Vyaya	12 Phâlguna.	(f) Kanyî.	3) Anala	6 Bhâdrapala.	12 Mina.
21 Sarvajit	1 Chaitra	\% Tuki.	31 Pingala	T Aivina.	1 Mrsha.
22 Sarvadhartin	2 Vainûkha.	4 Vrisichika,	5: hilayukta	b hârtika	2 Vrishablar
23 Viroulhio	3 Jucshtha..	9 Dhanus.	53 Suddhärti	9 Margasîrsha...	3 Mithuma.
21 Vikrita.	4 Àshâlla	10 Maknta.	it Remdra	10 Pansha.	1 Karka.
2.5 Khara	5 Śrûtaum	11 Kumbba.	5i) Burmati	11 llâ̧ha.	5 Sitiha.
26 Mandana	6 Bhâlrapada	12 Mina.	is Dundublis	12 Phâlguna .....	
27 Vijaya.	7 Âśma..	1 Mraha.	St Rudhirodgarin..	1 ('haitra.	- Tulit
2) Jaya	8 Kïrtika	2 Vrishabin.	is Raktâksh	2 Vaisikba	- Mrinthika
29 Manmatba	9 Mitrasirsha	3 Mithuna.	59 Krod	3 Jyr-hthat	${ }^{3}$ D Dhame.
30 Durmukha.	10 l'ansha	\& karka.	(i) Kshaya.	4 ishâlha	10 Makara.

N.B. i. The samvatsara and sign (cols. 2 3.) correspund to the samvatsara in col. 1 unly when the latter is taken as the samvatsara of the mean-sign (Northern go-year "ele (Table I, col. i).

I B. ii. Jupiter's sign by his apparent longitude is either the same, as ur the nulf preceding, or the urst sureeding his mean-sign Thus, in Prabhava Jupiter stands in muan humbha, when be may have been cither in apparent Makara, humbha, or Mì̀a

## T I BLE XIII.




Wdel Years of the Centurins			$\begin{aligned} & \text { 言 } \\ & \text { 年 } \end{aligned}$	$\begin{array}{r} 3010 \\ 111006 \\ 1701 \end{array}$	$\begin{array}{r} 1(100 \\ 11(60 \\ 1460 \end{array}$	$\begin{array}{r} 5191 \\ 1: 2101 \end{array}$	$\begin{array}{r} 6161 \\ 13(16) \\ \ldots \end{array}$	$\begin{array}{r} 7010 \\ 1+00 \end{array}$	$\begin{array}{r} 5110 \\ 15010 \\ - \end{array}$	$\begin{array}{r} 9010 \\ 160101 \\ \hline \end{array}$	
			-	$\begin{aligned} & 1.500 \\ & 19001 \\ & 1 ; i^{*} \end{aligned}$	$\begin{gathered} 1600 \\ 2000 \\ - \end{gathered}$	-	$\begin{gathered} 1700 \\ 21100 \\ 1 \end{gathered}$	-	$\begin{gathered} 15101 \\ 2.2101 \\ \mathrm{E} \end{gathered}$		
$\begin{aligned} & 0 \\ & 1 \\ & \vdots \\ & \vdots \\ & 3 \end{aligned}$	24 29 39 31 31			$\begin{aligned} & n! \\ & 4 i \\ & 4 i \\ & 4 i \end{aligned}$	$\begin{gathered} \text { Gif } \\ \text { } \\ 11 \\ 11 \\ i \end{gathered}$	$\begin{gathered} 1 G \\ f \\ f \\ 1 \\ 1 ; \end{gathered}$	$\begin{gathered} B, \\ 1 ; \\ \text { r } \\ \text { E } \end{gathered}$	$\begin{gathered} \text { 'B } \\ \text { A } \\ \text { i } \end{gathered}$	$\begin{gathered} 16 \\ 13 \\ 1 \\ 6 \end{gathered}$	$\begin{aligned} & \text { EI } H \\ & 1 \\ & 13 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{IE} \\ & 11 \\ & 1 \\ & 1 \end{aligned}$
1 5 6	3.3 3.3 3.1 3.8	160 161 $6: 2$ $1 ; 3$	$\begin{aligned} & 44 \\ & 49 \\ & !11 \\ & 91 \end{aligned}$	$\begin{gathered} \mathrm{BA} \\ 1 \mathrm{i} \\ \mathrm{i} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} 1 \mathrm{~B} \\ A \\ A \\ \mathrm{i} \end{gathered}$	$\begin{gathered} 1 H \\ 13 \\ i \\ 1 ; \end{gathered}$	$\begin{gathered} \text { E1 } \\ 1 \\ 13 \\ 1 \end{gathered}$	$\begin{aligned} & \text { YE } \\ & 11 \\ & \vdots \\ & 1 ; \end{aligned}$	$\begin{gathered} \text { GI } \\ 1: \\ 11 \\ 10 \end{gathered}$	$\begin{aligned} & A f_{i} \\ & F^{\prime} \\ & \text { E } \\ & 1) \end{aligned}$	
4 111 11	34 34 36 34 34	lif lis lis lif iji	$\begin{aligned} & 128 \\ & 93 \\ & 93 \\ & 98 \end{aligned}$	$\begin{aligned} & 11 \mathrm{C} \\ & 18 \\ & 1 \\ & 1 \\ & 6 \end{aligned}$	$\begin{gathered} 111 \\ 1 \\ 13 \\ 1 \end{gathered}$	$\begin{aligned} & \text { I' } \\ & \text { ! } \\ & \because \\ & 1 \end{aligned}$	$\begin{aligned} & \text { iF } \\ & \text { E } \\ & 11 \\ & 10 \end{aligned}$		13 $i$ $i$ $i$ $i$	Cl d Ci f	
$\begin{aligned} & 12 \\ & 10 \\ & 11 \\ & 1 . \end{aligned}$	111 11 1. 18 18	65 649 609 71	$\begin{aligned} & 9110 \\ & 97 \\ & 97 \\ & 99 \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { U } \\ & \text { 1 } \end{aligned}$	$\begin{gathered} G F \\ E \\ \text { I } \\ \text { H } \end{gathered}$	$\begin{gathered} \text { IG } \\ \text { F } \\ \text { H } \\ i 1 \end{gathered}$	$\begin{gathered} \text { R.I } \\ G \\ \mathrm{H} \\ \mathrm{E} \end{gathered}$	$\begin{gathered} C B \\ 1 \\ G \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} 16 \\ B \\ 1 \\ i \\ i \end{gathered}$	$\begin{gathered} 1: 11 \\ i \\ 13 \\ 1 \end{gathered}$	
$\begin{aligned} & 16 \\ & 17 \\ & 16 \\ & 1!3 \end{aligned}$	14 4. 46 17	$7 \%$ $\vdots 3$ $i 4$ $7 \%$	-	$\begin{gathered} 1 G_{i} \\ F \\ { }_{i} \\ 1 \end{gathered}$	$\begin{gathered} B .1 \\ G \\ \mathrm{~F} \\ \mathrm{E} \end{gathered}$	Cl d d i l	110 13 1 0	101 $C$ $B$ $C$	$1 \%$ 11 18 13	$\begin{gathered} \text { (i) } \\ \vdots \\ 1 \\ 1 \\ i \end{gathered}$	
$\begin{aligned} & 211 \\ & 21 \\ & 20 \\ & 23 \end{aligned}$	14 +4 +9 51 51	78 74 79 79	-	$\begin{gathered} c 13 \\ 1 \\ 1 \\ k \\ k \end{gathered}$	$\begin{aligned} & 11( \\ & B \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { EI } 1 \\ ( \\ 13 \\ 1 \end{gathered}$	$\begin{aligned} & 11 \\ & 1! \\ & 1 \\ & 1 \end{aligned}$		Aic	$\begin{gathered} 13.1 \\ i \\ i \\ 1 \\ 1: \end{gathered}$	
24 24 25 24 27		611 4 4.3 83	-	$\begin{gathered} \text { E1 } 1 \\ \text { C } \\ 1 \\ A \end{gathered}$	FE B C 13	$\begin{gathered} \text { GI } \\ \text { E } \\ \text { I } \\ C^{\prime} \end{gathered}$	$\begin{gathered} A G \\ F \\ \mathrm{~F} \\ \mathrm{~J} \end{gathered}$	$\begin{gathered} 18.1 \\ 1 \\ 1 \\ \text { E } \\ \text { E } \end{gathered}$	$\begin{gathered} c 13 \\ i \\ i \\ i \\ i \end{gathered}$	119 13 1 $i 8$	









 lat Vasth in fonme with 15 for low Thumat.





THL HINDC CHENDTA





## TABLE XV左





Hijra sear．	1 chameroment of the sar				Hijr： sear	Commencment if the var．				Hiyratyear	Cimmernemat of the ？			
	Wrehilay	Wate A ${ }^{\text {a }}$				Nexhlay．   2	1）ate A 1 ，				Werhilay	16．te 1．1）		
1	2	3			1			3		1	2		3	
1	（i）Iri．	1i）Inly	12：${ }^{\text {a }}$	（11：7	34	（1）Sait	9 小ия	6．i）	（160）	$\therefore$	$11 \sim 11$	$2{ }^{2}$	6：19	$\because$
$\because$	3 Thurs	－Juy	$12 \pm 3$	（1）	34	1 Wid．	－M！	6．5：！	1119	，it	$1 \mathrm{~W}, 1$	$\because 1$.	69\％	111
：	1 －	2t Jume	62： $6^{*}$	（17i	＊ 41	1 sum ．	17 Mas	（ifil）${ }^{\text {a }}$	13\％	$i$	$\because 110$.	111.	4，${ }^{\text {a }}$－	161
t	5 Thurs．	1：お里	62：	（115	11	（i）lif	¢ 1：3	6it 1	12	i	is Iri．	30 Var	197	（！）
＊	2 \11．	$\therefore$ dune	60，	（1；3）	12	（3）＇ıus：	2f ${ }^{\text {apm }}$	66t：	（110i）	$5!$	$\pm$ Wid．	24，Mar．	－4，	：！
ti	${ }^{1}$ Sas．	23 Vay	12\％	（163）	＊ 43	（1）Sut．	I．） $\mathrm{l}^{10}$	fif\％ 3	（110，${ }^{\text {a }}$	41	1 ） 1 \％	9 Mar	（19）	64
$\because$	1 Weal．	11 May	1i2い＊	13：2	11	；Thurs	＋A $\mathrm{m}^{\prime}$	6ifit＊＊	（9．）	＊ 4	；Thur－	26 Fab	T116．	i
	$\therefore$ 11m．	1 May	12：？	1121	1．）	$\because 311+10$	$2 \%$ Untio．		い31	$\square$	3 Tues．	1．）Fibs．	；0］	（16）
$!$	（i）Irio．	20.10 ．	（6：34	（110）	－ 19	6 rit	13 \110．	15：6	（\％	43	1）Sat	1 Fib	711：	331
－111	（3）Turs．	3 Apr	8331	（93）	17	\＆Wed	3 Vat．	ditio	1 i 2	－$n$ t	$t$ Wral．	21 ，Jam．	703	$\because 1$
11	11 smı．	29 Var．	63：＊	（49）	＊	1 －un	2） 1 d，	bilin＊	（3）	－	－リnan	14.1 mue．	701＊	（1）
12	（5）Thurs．	If Hat．	1233	（3）	49	（1）1rim	3 Fib．	tif！	＋1	－hi	（i）lin．	$\because$ dan．	；11．	2
－13	2 Mon．	$i$ Mar．	6334	（1ib）	50	3 Turs	2！Jam．	1190	（29）	$\checkmark$	1 Wral．	23）	215	1335
14	（1）Sat．	2 s lib．	63.5	（ib）	＊ 5	11 sat．	15． I ： 11	$6 \% 1$	（1）	ns	1 smu．	$1:$ Her．	614	1316，
1.7	＋Wed	1t lit．	63．310＊	（4．）	22	\％Thurs．	－d：un．	61：		＂ 49	；Thers	1 bra	－いi	133．71
${ }^{*} 16$	1 sim．	$\because$ Fub	683	（33）	33	$\therefore$ リrn．	$2 \%$ ber．	6\％）＊	（362）	（1）	（3）Tu＊	$\therefore 10$ Vos．	ご心＊	138．7
17	A Pri	23 ． F an．	163	（23）	－\％	1 t tri	16 Des．	15.3	13．0）	91	${ }^{11}$ sat．	9 X	709	313，
＊	3 Tums	12 ． ma	13.31	（12）	\％	1 IVal．	（i）ber．	（1） 1	13101	＊！	1 11 cod	290.4	：10	$\cdots$
19	1 Sm	2 I：m．		2）	＊ 26	1 siun．	2）	1iaj	29	40\％	$\because 110 \mathrm{~m}$	（1）O．t．	［11	29
$\because 11$	i Thume	21 May	15！	（3：3）	3	（i）Pri．	1\％X	（i）19＊	（319）	［11	（1）Fri．	\％bot．	712＂	ごい1。
＊21	$\because \mathrm{V}$	111 ler．	111	（3） 3 ）	is	（3）Vimer	3 Yuv	135	13051	41.	3 Tıu．	$26 x^{5}$	713	269
$\pm 2$	11 sut．	30 Sus	1it？	（33） 7	5， 5	（1）sat．	$2{ }^{2} 36$.	1i¢	2！15		1 Sun．	16 sp	il	234
$\because 3$	$f \mathrm{Hed}$	19 Nor	16.3	（323）	（6）	is Thurs．	$1: 3 \mathrm{tar}$	11.9		9	Thurs：	5）Spr	；1：	24
$\cdots 1$	1 sum．	－\or	（1）$)^{*}$	（31：）	61	$\geq$ Ufun．	1 bit．	（6）${ }^{\text {a }}$	（20）	リー	3 Tuc，	$\because$ ¢ lut	－110＊	23
2.	if Hri．	2 O．t．	6．t．	（311）	H2	if lri	20 Sep．	inl	\％	94	10 S	14 ling	717	
＊26	3 Ties．	17 lect．	6tti	（290）	（i3）	1 Wed．	10 srp ．	隹	33	＊100	+ Hesh．	3 Sug．	714	21.5
2	1 Sun．	7 O．t．	615	（2ヶ0）	lit	1 sum．		6的3	（212）	101	$\therefore \mathrm{Mn口}$	$\because 2 \mathrm{dml}$	［1：	（20）
$\because$	；Thur－	25 sup．	6ヶヶ＊	（ 26.1	－15	is Thars	in luy．	6int＊	31	10：	16 lrim	1：dul？	（21）＊	（19）
＊29	2 Man．	It sep．	619	（2．i	（it	：3 Tues．	Alı	fins	（20以	＊103	13 Tw－	1 dul	i $\because 1$	（1）2，
31）	11 Sit．	4 Scp	1500	（25\％）	＊${ }^{\text {a }}$	（1）Sit．	2－Jい！	fint	（19）	114	1 －III．	21.112	7－2	（102）
31	\＆Wed．	24 Aug．	15.51	（23ii）	lis	\％Thurs．	In July	lini	194	11.5	i）Thar	311.1 ，min	－23	1161
＊32	1 Sun．	1：Aug．	2＊＊	（2．？ 2 ）	69	$\because \mathrm{Mm}$	（6．Sul	6以い＊	いいい	＊114；	$\because$ Mons	？！May	こご＊	（1） $\mathrm{H}_{1}$
33	（i）Fri．	2 Aug．	6633	（21）	：11	16 Iri	2．）June	6－3	湤	105	（1）Mat	15 Vaa	－2，	1394
31	3 Tues	2：July	1i．） t	（2103）	$\because 1$	1 Wed．	1．5 dune	6901	：6	111）	＋ 11.1.	－May	识㤩	1ご
＊3．5	1）Sat．	11 July	6 S （	（192）	iz	｜sum．	＋Jmı	691	1 sis	119	$\therefore$ Brn．	in Apr．	－2\％	（1）
36	is Thurs．	331 June	6．30＊	（1－2）	73	5 Thurs．	23 Mas	69\％${ }^{2 \times}$	12.	1111	（6） P	16 lpr．	－2い	はいす。
＊3i	$\because$ Mun．	19 June	65\％	（120）	it	3 Tues．	13 May	693	（183）	＊111	：3 Turs．	5． 1 pr ．	？ $2!$	（9，$)^{\text {a }}$

.

#  


N.B. i. Anterishs malleate Lerap-yours.



INTTIU．DAIS OI MH：HAMMADAN YESRL OF THE HHRA．
N13．i．Istereshs indicate Leap－yemes．


11iji： ！ar	Commenement of the year．				Hijril ！ear．	Commrncement of the year．				$\begin{aligned} & \text { Hijra } \\ & \text { yar } \end{aligned}$	（＇mmuenrement if the year			
	Wrehday	Itate 1．1）				Werkdey．		C 1.1			Itrektay．		1 D ．	
1	2	3			1	2		3		1	2		3	
11：	1 Sim	$\therefore 6 \mathrm{l}$ Mar．	230	（6i）	＊14＊	1 sull．	16 lab ．	718i	1i）	$1 \times 6$	$2 \mathrm{Mom}$.	10 ．1：～．	4is	（10）
$11: 3$	is Thurs．	1．5 Mar．	731	（1）	150	${ }_{6}{ }^{1}$ Pri．	${ }^{6} \mathrm{Cid}$	OHis	（3i）	11si	6 Fri	30 Der ．	90：	（36\％）
＊111	$\because 1101$	3 Har．	73：${ }^{*}$	（63）	151	3 Turs．	$22^{6}$ Jan．	\％69	（3）	ins	1 Wed．	（2） $10 \times$	41.3	13．3．4
115	11 sat	$\because \mathrm{l}$ Keli．	733	（5i）	＊15：	0 sat	1 f Jan	76\％	（1）	1 n ： 1	1 Sum．	¢ bec	411．	（34．3）
＋116	1 Wed．	10 Lebs．	731	（11）	153	：Thurs．	$t$ Jan．	Tir	1\％	＊ 1 （ 4 ）	\％Thur－	27 Nos	405	（33）
115	2 Mon．	313 lan．	73．）	（31）	151	2 Mon	at 160．	251	（3）	191	3 Tues．	17 Nur．	S14\％	（32）
114	（i）I＇ri．	こ1）dan．	$736{ }^{\circ}$	（20）	＊15．5	（i）Pri	13 Der	T11	（310）	102	10 satt．	6 Nor	407	（31）
－119	3 Turs．	－Jans．	235		156	+ Wrid．	2 lee	\％ 72	$1333 \%$	＊193	1 Wed．	${ }^{2} \mathrm{OH}$	40ヶ\％	（29431
121	1 sum	29 Dar	i3i	（36i3）	＊159	1 Sun．	21 Nor．	733	（32．5）	194	2 Mou．	150 cr ．	9199	（2んか）
121	5 ＇Tlurs	36 Dee．	73.5	（350）	15\％	（i）liri．	11 Nos．	71	（315）	10．	fi liri．	$+\mathrm{Oct}$	10	205
4129	2311.	\％Dee	739	（313）	$15!$	3 Turs．	31 （10．0．	\％$\%$	1304	＊19，	3 Tues．	2，3 Scp．	－11	26お
123	（1）sil	26 Vors	¢ 11$)^{+}$	（3：31）	－160	0 sat．	19 fet．	726	2931	197	1 sun．	1：s．p	12＊	2．ti）
1：4	＋Weal	1．s Suv．	741	（319）	1 （i）	\％Thurs．	30 OM．	7	（2nご	－19m	5 Thurs	1 sp	13	（21）
${ }^{+125}$	1 sum．	1 Nos．	$1 \sim$	（30） m	16i\％		24．Sep．	7	［2\％］	1919	3 Tues	$\stackrel{\sim}{2} \sim$ Ang	41	2，231
120	（6）Pri	2 OH	i4：3	（29a）	＊163	6 Fri．	17 smp	729	（2lal）	2001	0 sat．	11 Im	1.5	2231
＊120	3 Turs．	13 Oct	711．	（2hi）	16.	\＆Wrad．	© Stp．	in	2．\％）	－201	1 Wed．	30）Jul？	$1 i^{*}$	（2） 2 ）
124	1 sum．	$3)^{3} \mathrm{~L}$	1.5	$2 \begin{gathered}\text { a }\end{gathered}$	16.5	1 sun ．	26 Aner	ins	（23m	$20: 2$	$\therefore$ Mon．	$\therefore 0.1015$	417	201
129	is Thurs．	$\stackrel{2}{\sim}$	16	（2fi．）	＊166	$\therefore$ Tlurs，	15．Ing	「－1	2号い	2103	（；）1ri．	（1）July	15	$1!0$
＊130	$\because 110 n$.	11 spp．	त17	2．54	167	3 Tues．	5 ． log	753	（21\％）	＊ $2 ⿰ 口 口$	3 Turs．	in June	419	11：9
$1: 31$	11 Sit．	31 Tuer．	15＊	2111	＊16	（）Sat	2t July	T－1	（20）	215	1 sim．	17 Jnix	－10	（169）
132	＋Writ．	211 ln ¢	749	（23：${ }^{(20)}$	169	（3 Thur	$11 . \mathrm{Jn]}$	in：	195）	＊ 2115	；Thurs．	（i）Jul	21	15
－133	1 sun．	9）Ang．	7．51）	（22］）	170	211 on ．	3 ． $\mathrm{ul}_{3}$	Inti	141，	217	3 Tums．	2\％Mny	－ 2	115i
131	（i） 1 i	30. hus	11	211	＊171	（6）J＇ri．	$2 \cdots$		13	214	1）sat．	14i lay	213	，134
13：	$\therefore$ Turs．	14 July	2\％ 1	（210）	17：	$t \mathrm{Winl}$ ．	11 Jum．	－	16：3）	＋ 0 暏	1 Wed．	＋Mat	$\because 10$	12．
＋136	11 Sut．	i July	53	（14．）	173	1 sims．	31 May	74，	1.11	$\because 10$	2 Hon．	24.10	－ 2	1114
137	；＇Thurs	$\because 7$ June	it	159	＊171	\％Thurs．	211 May	290	（110）	211	（i）I＇ti．	13.18	21i	1183
＋130	2 ${ }^{12}$ an．	16.5 an	25.8	167	17.5	3 Tuc．	111 May	\％91	1301	＊$\because 12$	3 Thes．	$\because \mathrm{A}$ 1p	27	（ $2 \times 1$
13：9	11 siat	5．Jume	7．35＊	（15）	＊1719	（）sit．	2n 1 pr．	－12	119	$\because 13$	1 sun．	$\therefore 2.10$	ごい	－
111	+ Wrid．	25.3010	7.51	148	177	．s Thurs．	In Apr．	2！3	10\％）	211	，Thurs	11 Var	－－！	（अ）
－111	1 sum．	11 Has	¢ 1	134	17n	$\because$ Mon．	\％Apr	39	（19）	－ 215	$\because$ Mom．	24 1cb	－\％11	（i）
112	（i） F	＋May	51	1：1	＊13！	（i）Jri．	2\％Mar	\％9	4 （i）	216	11 Sill．	is licb．	431	169
113	3 Turs	$2{ }^{2} \mathrm{Am}$	76i）＊	11：31	141	1 lied．	11 i \ar．	5	1815	$\because$	1 Wial	\％1．ch．	$432 \times$	341
＋111	11 Sul．	11 Apr ．	［1	101	$\|\mathrm{m}\|$	1 sum，	if Mar	\％！7	6	214	$\because \mathrm{Mm}$	27.1 mm ．	4.33	は2）
11.7	\％＇Thurs．	1 Ipr．	Tit	（90）	－142	\％Thurs．	$2 \sim 1$ lb．	$7!1$	（53）	$\because 19$	ti Pri．	16 Jan	4， 1	（16）
－114；	$\because 110$	Q1 Har．	7193	140）	14.3	3 Turs．	12 Frb ．	749	131	－2．21	3 Tms	is Jam．	－3．3	
11.	11 ऽ：1．	10 War．	2 H	（50）	1－1	11 sals．	1 Prb．	HIII	（32）	221	1 Sum．	2f Dee．	43.3	（36）
114	111 cal	$\therefore$ 1el	76.5	（\％）	－14．i	1 Wed．	20 ． 1 an	4111	（20）	22：	；Thur－	11 16er	$436^{\circ}$	（3） 4

## 


S.B. i. Inveristis embicale Lemp-ymurs.



## 


A.B. i. fotcriskes memerater Liap-yrars.
ii. If to Merm 11 fi in inclusive. the A. It. dutes are thd Style:


#  

NNTIML DAYS OH NI DAMMADAN YEARS OH THE HLAR．I
AB，i Asteresiss indicate Leap－yrars．


Hijm yar．	Commemement of the sear		11 ijus year．	（immorament of the sar．		Ilijra your．	Commentumat of the ？（ars．	
	Weekdas．	Hate 1 \％		16 （ehdiey．	1rate（1）．		Wrektay	late 11 l
1	2	3	1	2	3	1	2	3
145	$6^{6}$ Fri．	$23 \mathrm{Apr.1053}$（113）	－12	（6）Irio	Lf Mar．16：3（ 7.5 ）	519	9） sat	7 fib ．1125
－144	3 Tucs	12 Apr． 10.51 （102）	153	1 Wed．	（i）Mar．10\％\％（fin）	${ }^{5} 520$	＋Weat	27 din． 1126 （2i）
415	1 sun．	2 Apr．10\％（92）	thl	1 smu ．	23 Veb .1091 （5）	521	2 3mm．	17 Jath．1127（17）
14.	5 Thurs．	31 Mar． $10565^{*}$（4）	－	5 Tburs．	12 1ch．10：2\％（63）	520	（6）Pri	6．lan．1129（fi）
＊ $14!$	2 Mon．	10 Mar losit（69）	¢い）	3 Tucs．	1 leb． 1093 （3：）	＊5：3	3 Turs．	25 lle ，1129＊（360）
4.50	$1) \mathrm{sat}$	ith l＇cb，10．54（5il）		0 sat．	21 dan 10：9（2W）	i2t	1 sum．	15 1 Hec 112！（349）
451	1 Wed．	15 leb lobe（15）	1ss	\％Thums．	11 dm ． 10905 （11）	525	5 Thum－	1 Dee 1130）（3：3ヶ）
－4．92	1 Sun．	6 Feb．lot60＊（3）	＋49	z Mon．	31 Deer 1095（36i．）	＊5 26	2 Hon ，	23 Nus 11：31（327）
453	（i）Pri．	2t．dau．1081（26）	＊ 490	6 tri．	19 Dee．1096＊（35）	527	0）Sal．	［2 Sow，1132＊（317）
454	3 Turs．	1．5 Jan．J06\％（15）	891	1． Hacd	！Dee． 1097 （36：3）	－．50	\％Weal	1 Nos．1133（305）
－ 5 5．${ }^{\text {a }}$	11 sat．	4 dan Iotio（b）	192	1 Sun．	2h Sav． 1095 （3322）	529	$\because \mathrm{Mon}$	29 Oct 1131（293）
156）	5 Thurs．	2．Wee 1063（359）	＊ 193	5 Thurs．	17 Nuv．1090（321）	830	6 Iri	1100 cc 1135（2゙み）
－ 50	2 Mon．	13 Der．10t．4＊（35）	294	3 Tues．	（s）Nos．1100＊（311）	＊531	3 Thes．	$29 \mathrm{sep} 11360^{*}$（273）
185	10 sat．	3 Dee．1065（337）	49.5	${ }^{1} \mathrm{Sat}$ ．	2 2f Oct． 1101 （2！99）	532	1 Sum．	19 Sep 1183（282）
4.9	：Wred．	$\underset{\sim}{22}$ Nu以 1066 （326）	＊ 896	\＆Weld．	15 （10t．1102（2）	533	5 Thurs．	－5 sop．113s（251）
＊ 460	1 Smu．	11 Nus．106ĩ（315）	197	2 Mon ．	万）6．t． 1103 （2）¢	＊ 532	2 n	
（6）	6 Fri．	31 Oct．1166＊（303）	－192	${ }^{6}$ Fri．	$23 \mathrm{Scp.110} \mathrm{\% *} \mathrm{(265)}$	535	0 sat．	15 Aug． 11 10＊（230）
162	3 Tues．	$\because 0)$ Oct 1069 （293）	199	416 cd ．	13 sep 110.0 （250）	＊ 336	4 Weal．	6 Ang． 1171 （215）
＊163	0 sat．	$9 \mathrm{nct}$.1080 （2n2）	． 90	1 Sun．	2 Sep．1106（245）	537	2 Mon ．	$2 \hat{2}$ fuly 1122 （20m
$14 \%$	5 Thur－	29 sep． 1071 （272）	＊501	5 Thurs	$\cdots 2$ Ang． 1107 （234）	338	（i）Fri．	16 Jul 1143 （19\％）
16.5	$\because$ Mon．	17 Sep．1012＊（261）	502	3 Tues．	11 Aug 1105＊（220）	＊． 339	3 Tues．	1 Juty 11＋1＊（1＊6）
＊ 166	6	6 sep． 1673 （249）	503	（）Sat．	31 duly 1109 （2l2）	840	1 Sun．	24 Junc 11\％（105）
His	1 Wed ．	27 lug 1074（239）	＊ $50 \%$	1 Wed．	20）July 1110 （201）	541	5 Thurs．	13 June 11 tis（164）
＊His	1 Sun．	16 Aug．1075（224）	505	$2 \mathrm{Blon}$.	10 Jnly 1111 （191）	＊．942	$\geq$ Mon．	$\therefore$ June 11ti（1；3）
169	${ }^{1} \mathrm{~F}$	¢ Aug 1076＊（214）	＊ 504	6 Fri．	2）June 1112＊（140）	513	0 Sat．	$22.3 \mathrm{lay} 1115^{\circ}$（143）
471	3 Tues．	2.5 duly 1076 （206）	$50 \%$	4 Wed．	15 June 1113 （169）		$t 1 \mathrm{ed}$ ．	11 May 1149（131）
$\cdots+71$	0 sat．	14 Juls 10is（195）	510	1 sun．	\％June 1114 （154）	＊ 54.5	1 sun．	30.10 rar 11．50（120）
Fiz	5 Thums．	1 July 10\％）（14．\％	＊． 509	；Thurs．	27 Hay 1115（175）	566	${ }^{3} \mathrm{Pri}$	2）Apr． $11: 81$（110）
$5 \%$	2 Blon．	22 June 1090$)^{*}(15 \%)$	510	3 Turs．	16 Hay 1116（13i）	＊54	3 Tues．	－Ipr．11520＊（963）
＊it	（i）Fri．	11 Jone 1081（162）	311	${ }^{1}$ Sat	5 May 1117 （12．）	54	1 Sun．	2！，Mar． 1153 （い4）
12.5	1 Wed．	1 June 104．2（15\％）	＊512	$t$ Wed．	2t ． 1 pr． 1114 （11t）	519	5 T＇burs．	In Mar． 1154 （15）
＊ 1.15	1 Sun．	21 May 1083 （1H1）	\％13	$\because \mathrm{Mou}$ ．	11.1 pr 1119（10t）	＊5．50	$\geq 310 \mathrm{n}$ ．	7 Mar．115．（66）
1.7	6 Fri．	10 May 104t＊（1：31）	311	16 fri		5.51	（1） $\mathrm{Sa}_{\mathrm{al}}$	25 Feb ． $1156^{*}$
に，	${ }^{3}$ Tucs．	29 Apr．105：（119）	\％ 5.15	3 Tus，	22 Mar．11：1（b1）	5in	$\pm \mathrm{Wm}$	13 leb．11s\％（1）
＊179	（1）Sat．	15 Apr． 1086 （10s）	314	1 sum．	12 Mar．112：（i）	＊55：3	1 sun．	2 Feb．1154（33）
（1）	5 Thars．	\＆Apr．l0si（98）	\％ 517	，Thurs．	1 Mar． 1123 （fi0）	554	${ }_{6} \mathrm{Pri}$ ．	23 Jan． 1159 （283）
thl	$\because 31 \mathrm{~mm}$ ．	2\％Mar．Juch＊（ni）	314	3 Thes	19 Feb．1124＊（50）	5.9	3 Tues．	12 Jau lltio＊（12）

## T A BLE XVI. (oxtixam.)

## 

ソ13. i. Asterashs meltiole lemp-yrais.
ii If' to Minct 11 fin inclusine, the 1 It. dotes are old Yi,te.


## 






## TABLE XYI．（Contivem）

## INETAL BAMS OF MUHAMMADAC YEALS OF TIE HIJR．

\B．i．Isterisks mdicatr Lemperats．
ii If to IIjiren 11 tis incluszer，the I．I）．daters are Md Myld

$\begin{aligned} & \text { Hijira } \\ & \text { sear. } \end{aligned}$	Commeratment of the sar．		$\begin{aligned} & 11 \mathrm{tra} \\ & \text { !ar. } \end{aligned}$	Timmenememt of the yar．		1 lijra   ！ear	Commenerment of the erar	
	Werkilay	－Al		Herckilay			Weekilay	Date A O．
1	2	3	1	2	3	1	2	3
715	+110 cl ．	21 May 13\％6＊（12）	＊ 51.7	13 lal	13 1pr 11120（104）	$85 \%$	i）Thum．	：Mar．1110＊（tis
＊ 73	1 Sum．	10）May 13i7（130）	816	2 110	3 ipr． 1413 （913）	0.33		21 tide 14：（30）
That	is liri	30 Apre 1378（1：20）	＋ 417	6 l ri ．	23 Mar． 1111 （－2）	hit	（1）Sat．	14 Fith 1451（ti）
क1	3 Tu，	19 Apr．13\％9（109）	－14	1 Wid．	13 V：m．1115（i2）	－\％	$t 11 \mathrm{~cd}$ ．	3 Ficb 1451（34）
＊ご	（1）sat	7 Apr．13nが（9\％）	－1！）	1 Sum．	1 Var．11］${ }^{\text {r }}$（6i）	－ 5.36	1 Stıl．	23 J：an．1152＊（23）
$7 \times 3$	is Thurs．	a Mar．13－1（n）	＊ $0^{201}$	5 Thurs．	1s 19b． $1+15$（19）	83.5	（i）Pro．	123 J＊i．1153（12）
ist	2 Mnı．	17 Mar．134\％（ati）	－ 1	3 Tur	8 Peb．1th（39）	－nion	3 Tu．	1 Jill． 1151
＊－ヶ゙，	（i） Pr	6 Mar．1893（ti．3）		11 sit．	24．Jath．1119（25	459	1 Sinl．	$2 \because$ Her，1154（35ti）
万人）	111 cod	$\because$ t libe 134t＊＊（\％）	＊－23	1 Wed．	17 ．lan．1120＊（17）	（iill	5 Thur－	11 leee．145s（35．5）
＊¢ ¢	1 Sun．	12 lel .135 .0 （13）	821	$\because 3 \mathrm{~mm}$	［5 Jan．1120（ii）	［813］	z Mun．	$2!$ Non， $11515 *(334)$
ind	6 Fin．	2 limb，13nci（33）	82.0	${ }^{5}$ Frio．	2t Her 1：21（3tiol）	nit	（0） Sat ．	197 フus． 1450 （323）
T¢！	3 Tuc．	22 dau．13ヶ\％（22）	＊－26	3 Turs．	1．）Der，122．2（3th	$\checkmark$ いi3	$1{ }^{16} \mathrm{cal}$	－Nus．145（312）
＊ 3 ！ 10	11 sat．	11 Jam．1385＊（11）	27	1 sim．	5 Hece 1123（330）	－864	1 sum．	20（1）．1．1454（301）
291	5 Thurs．	31 ther 1：5S㐌（366）	－824	\％Thurs．	23 Sus 1124＊（32\％）	－（i．）	（i）Iri．	If wat．I Hillo（291）
792	$\geq \mathrm{Mm}$.	20 bee 13399（350）	－？ 9	3 Turs	13 Nus． 112.5 （317）	＊stili	3 Tues．	
＊983	（i）Fri	9 1rece 13！0（343）	4311	$10^{\text {sitat．}}$		$1 \mathrm{li}_{7}$	1 sun．	2 Li Scp． 1468 （269）
i＋1	4 Wed．	29 Now 1391（333）	＋ 4.31	＋ 110 col	哏 Oct． 1120 （29．7）	8 tis	，Thars．	15splatis（254
295	1 sim．	17 Now．1392\％（32\％）	－3：	$\because$ Mom	11 （10t．1424＊（25．3）	＊¢i：	211 ml	3 Sc （ $1464^{*}(2+5)$
－\％9i	5 Thens	$1)^{15}$ Nor． 1393 （3！0）	－33	（i）Pri．	30 Sop． 1129 （2－3）	Sil	0 Sat．	$\because 2$ Aug． 1403 （ 23313
897	3 Turs．	2\％Ort．［39\％1300）	＋ 4.31	3 Turs．	$1!9$ s．p． 14301203	sil	＋Ved．	13 Mag 1413i（2－2）
＊ 394	11		43.	1 Sun	！）－ep． 11331 （2．52）	$\cdots \cdots$	1 Sии．	$\because$ Bug 1467（ 214 ）
70：	5 Thurs．	$51 \mathrm{ct} .18966^{+}(279)$	＋434i	；Thurs．	$\therefore$ 2 Ang．1432＊（ $2+1$ ）	sis	is Pri．	
h001	$\because \mathrm{M}$		439	3 Tues，	15 10\％ 12333 （230）	8.1	3 Turs：	11 July 1469（19\％）
－ 801	（i） 1	13 sup．13：9（250）	43	0 Sut．	7 Aur 1131 （219）	$=-9.5$	14 Sat．	30 ，Ни世 1171（lal）
412	1 Hel ．	3 Sep．13：99（2lia）	＊ 439	＋Wrat．	27 Anly 113\％（20）	95	\％Thurs	211 Junce lial（15）
403	1 sum．	$22.14 .1+00^{*}$（23）	St 0	$\because \mathrm{Mon}$ ．	1ti ．July 1 1 ．3ti＊（194）	＊ 57	2 Mon．	－Anue 112z\％（100）
＊ 404	\％Thums．	11 Aug． 1 1411（22：3）	811	G Fri．	is July 1：37（196i）	9	11 －at．	2！Mas 1173（119）
805	3 Turs．	1 Ame 110：（21．3）	＊ 812	3 Thues．	$2{ }^{2}$ 1 Jmme 1635 （173）	Si！	1 Wicl．	1s May lift（130）
＊¢ 715	11 －mit	$\because 1.101511033$（202）	84：3	1 Nun．	14．lune 13：3（16is）	－¢ 0	1 Sum	？May 11：3（12\％）
407	5 Thurs．	10．July $1101^{*}$（192）	－11	，Thanr．	2.1 Hex 140＊（150）	Sil	1）Fm．	di Apr．175\％（115）
404		2！）Jume 1105（1－11）	4.5	$\because$ Mus	22．Vas 1tal（162）	ss：	3 Turs．	
－809	（i） 1		$41 i$	11 －	12 May $1+4.2$（132）	＊ 28.3	11 Sus．	1 Apr．117（9＋）
411	i 110.	－Jnue 1 20ia（15：4）	＊ 46	＋Wird．	1 May 1：13（120）	いht	\％Thum	
411	11 sum．		is	$\because \mathrm{M}$（1）．		$\cdots$.	2 M，	
－ 12	5 Thur	168 Mas 1 105（136）	8！	i）Tlurs．		い41	（i）I＇ri．	$\because$ Mar．live（tit）
41：3	3 Tom	（i）\a， 1110 （120）	－8．011	（3）Ther		Sh：	1 Heit．	201 c
411	11 sit．	$\therefore$ 1pr． 1111 （11）	4.1	1 sun．	）！Var． 116 （\％）	いい	$\therefore 11$	a 19b．11：3（H1）

## 


N．B I Asérnkis twhenter heap－meors．


$\begin{aligned} & \text { Hijra } \\ & \text { yenr } \end{aligned}$	Commenement of the sar．		$11 i j r a$ sar．	Tommenerment of the year		$\begin{aligned} & \text { Hijra } \\ & \text { y:ar. } \end{aligned}$	Cimmenmernent uf the way	
	Werkilay	Wate 1．1）．		Weckita．	Dat．A P．		Wuckdi！	Hat．A．I．
1	2	3	1	2	3	1	2	3
	（1）1ri．	30 Jam．limi＊（30）	＊ 920	（3）rim	23 Wer．1519（350）	963	（1）sat．	
ง！！	3 Turs．	in dim． 11950 （h）	927	1 Wrol．	1：Her 1520＊（347）	66． 4	1 Weal．	1 Nus． $1 \mathrm{Loti*}$（3019
－ 4 ！ 1	11 sat	7 Jam．1this	$!24$	1 sum．	1 Bm .1521 （335）	＊ 96.	1 Sun．	21 190t． 15.57 （297）
－$!$ ！	\％Thars	2S Der．Law	－！$!$ ！	5 Thars．	20 Nov．152： $3: 34$	3it	${ }^{6} \mathrm{I}$ Iri．	
$4!13$	约 Mm．	15 10\％．1f5（351）	9330	3 Thers．	10 Nıル，1523（314）	＊ 364	3 Tur．	3 Oct．lasal（2iti）
－5， 4	（i）Yri．	5）D19．1thら＊（3）	931	$0_{1}$ Sat．	29 （14．15：1＊（303）	llin	1 Sim．	22 srp．15tio＊（2titit
49.5	$t$ Wicl．		＊ 932	1 Hed．	Is（0et． 1525 （2th ）	969	5 Thurs．	11 scp .1 mbl （2at
＊ 4,16	1 sun．	11 Now 11！0）（31s）	933	2 Mm ．	8 Wet．1526（281）	＊9\％ 0	$\because$ Non．	31 Aug． 1.562 （2）3
49	${ }^{6} \mathrm{Fri}$ ．	4 Nov． 1 t9（305	431	（i）1ri．	27 Sep 1527（2\％	971	0 sit．	21 lage latis（233）
419	3 Turs．	23 Ort．1 192\％（297）	＊！33）	3 Tues．	15 s．p．15こ5＊（259）	972	+ Wed．	9 Aur．15tit＊（222）
＊ 819	（t）sat．	12（104．1193（24．3）	936	1 Sun．	5 sep． 3 S09（2）	＊！23	1 Sum．	29 duly lism（210）
（\％\％）	\％Thure	2 （1et． 1194 （275）	－937	：Thurs．	2．）Aus 1530（237）	974	（i）Fri．	19 duly latif（2）0n
（\％）1	$\therefore$ Mor．	21 Stp．1495（264）	938	3 Turs．	15）Aur 15331 （227）	9\％	3 Thes．	S July 156it（149）
＊ 902	（i）lif	$9 \mathrm{scp} .1696^{*}$（253）	939	0 Sat．	3 ，luy．1532＊（2） 6 ）	＊976	0 Sat．	
503	$t$ Wed．	30 Aug． 1.197 （212）	＊9 910	1 Wid．	23 July 1533 （204）	975	5 Thurs．	16 June 1．569（16\％）
904	1 sum．	19 Aus． 1495 （231）	941	2 Man．	13 July 1534（194）	＊978	2 Mont．	5 Jume 15\％0（156）
＊！ 10.5	5 Thurs．		912	（6）Pri．	2 July 1535 （143）	979	$1 \mathrm{Sa}_{\text {at．}}$	$26.17 a y 1571$（146）
906	3 Tues．	$\geq 9 \mathrm{Jmly} \mathrm{1500*}$（210）	＊94，3	3 Tues．	20 Junk 1536＊（172）	951	4 Wid．	14 May 15\％2＊（185）
＊！ $10 \%$	0 Sit．	17 July 1501 （198）	941	1 Sum．	10 Jmur 1537（1fi）	＊！＜1	1 Smm．	3 May 1573（123）
909	［5 Thars．	7 July lsoz（1ヶめ）	915	5 Thurs．	30 May 1533 （150）	902	（ Frri．	23 Apr．157t（113）
909	2 Mon．	2f Jume 15083 （15）	＊ 916	2 Al ，	14 May 1.539 （139）	$9 \times 3$	3 Tues．	$12 \mathrm{Apr} .155^{5}$（102）
＊！ 914	16 Fri．	12 June 1501＊（166）	917	11 Sat．	¢ Min $1540 *$（129）	＊94．	11 sat．	31 Mar：15\％6＊（11）
911	4 Wed．	$t$ June 1505（155）	＊919	+ Wed．	27 Apr．154］（117）	19．）	5 Thurs．	21 Mar． 1507 （80）
912	1 sun．	2t 3ay 1506（14）	949	2 Mon．	$17 \mathrm{Apr} .154 \%$（10\％）	＊9sif	2.3 Mn．	10 Mar．15\％4（69）
＊913	${ }^{3}$ Thurs．	133 M： 13 1507（133）	950	is Fri．	6）Apr．1543（964	$9 \times 7$	${ }^{17}$ Siat．	29 Feb．1579（59）
914	3 Tues，		＊ 93.1	3 Tues．	25 Mar 154t＊（4．）	gns	1 Wral．	17 Feb．1580＊（th）
915	19 Sit．	21 Apr． 1509 （111）	152	1 sun．	15 Mar ， $15 \%$（6）	＊989	1 sum．	5 Prb．1561（36）
＊919	＋Wed．	111 Apr．1510（100）	153	5 Thurs	1 Mar．1546（63）	990	（1）Fri．	26 dma．15：$\left.{ }^{1}\right)^{26}$
$93 \%$	2 Mon．	31 Mar．1513（901）	＊ 01.5	$\because$ Mom．	21 Prb．15ta（52）	991	3 Tues．	15 Jant．154．3（15）
＊918	（i）Pri．	19 Mar，1512＊（a）	135	（0）Sat．	11 ドb． $1515^{*}$（\％）	＋9932	0 Sat	t Jatn．154t＊（1）
919	1 Wed．	9 Mar．1513（fin）	＊ 9.8 \％	1 Well．	30）Jan．1599（30）	993	\％Thums．	$\underline{*}$＋bee 154t＊（359）
920	1 Sun．	26 Fel）．1514（57）	9.3	$\because$ Mon．	20 Jan．1850（20）	994	$\stackrel{y}{2}$ Yı．	13 Dm 154\％（36\％）
＊921	5 Thurs．	15 Teb．1515（46）	9.58	（i）Fri．	！）Jaw．15．5］（3）	＊99．5	（3）Pri．	2 Dec． 1586 （336）
922	3 Tues．	5）Feb．1516＊（3if）	＋959	3 Tues．	29 Dec．15．31（363）	996	＋Wid．	22 Now．1547（326）
923	0 Sat．	21 Jan． 1517 （21）	140	1 Sun．	In 1）er，15．52＊（353）	＊997	1 Sun．	10 Nov．15ns＊（315）
＊921	4 Wid．	$13 \mathrm{Jam}$.1514 （13）	961	\％Thars．	F Wee Josis（3＋1）	998	（1）Pri	31 （14．1549（304）
925	$2 \mathrm{Mon}$.	3 Jan． 1519	＊ 42	$2 \mathrm{Mon}$.	20 Nov． $15.5+$（330）	999	3 Tues．	20 （b．t．1590（293）






## TABLE NYI．（continemp）

MNTHAL DAYS OF MIHAMMAHAN YEARS OF THE HIJRA
N．B．i．Asternsks intlicute Leath－nears．
ii I＇l to Higra 116 inctusire＇，the A．II．dotes are Old Stulle．

11，jr： var．	Commenemmot the san		Hijr： sar．	Commemenment of the yar．		Hijra sar．	Cismmenerment oi the ？arat．	
	Wechdas．	Date A 1 ．		Wrekday．	Watr $11 \%$ ．		Weekdia．	Bate A．D．
1	2	3	1	2	3	1	2	3
＊10101	10 sat．	9 （1et． 1591 （2na）	11037	1 sinn	$\because$ Sep．16\％（ 204	＊10） 1	1 Sun．	$2(6)$ Jul 166538
1061	5．Thars．		${ }^{10} 1034$	5）Thurs．	2）Suge 1620＋ 1234	102．	（i）frio．	1．July 166\％＊（195
100\％	2 N1us．	If Sep． 1593 （26\％）	$1113!$	3 Tues．		＊10，${ }^{\text {a }}$	3 Tues．	1 July 16if\％（195）
＊1063	6 Fri．	（\％Scp． 1594 （3）${ }^{\text {a }}$	11070	11 Sat．	31 Jnly 1630 （\％）：	1007	1 Sum．	2t June 1666i（165）
1004	4 Hed ．	27 Ing．154．7（239）	＊1041	4 Woal．	20 July 1633	135	\％＇thurs．	13 Jume 166\％（16\％）
10005	1 Sun．	15 Aug．1596＊（\％ッら）	104\％	2 310\％．	9 July 1632＊（191）	＊1034	231010	1 Joue 164in＊（153）
＊1006	，Thurs．	\＆Aus． 1547 （216）	1043	6 Fri．	2 S June 1633 （139）	1070	0 sat．	22.2 May 1669（12\％）
1007	3 Tues，	2.5 July 1598（206）	${ }^{+1044}$	3 Tums．	17 June 1634 （165）	lowl	＋Wid．	11）May 169\％（136）
＊100n	0）Sat．	14 July 1599 （19．5）	1045	1 sinn．	T June 163：（1：58）	＊104．	1 Sun．	311 Ajpr．1631（120）
10109	${ }^{5}$ Thurs．	$3 \mathrm{July} \mathrm{16,40*} \mathrm{(185)}$	＊3046	5 Thur	26 May 1636＊（15	11153	（i）Pri．	14.1 pr ． $1672^{*}$（110 ${ }^{\text {a }}$
1010	2 Mon．	22 June 1601（173）	1047	3 Turs	1f May 163a（136）	linat	3 Tues．	¢ Aprr 1673（95）
＊1011	（i）liri．	11 June 1602（162）	1045	（1）sat．	i May 1634（125）	＊115，	19 Sut．	2，Mar．16it（a）
1012	4 Wed．	1 Inne 3603 （152）	＊1049	+ Wed．	24 Apr． 1639 （111）	1196i	5＇Thurs．	In Mar．16i．5（0）
1013	1 Sur．	20 May 1604＊（1＋1）	1051	2 Mon．	13 Apr．1640＊（104）	＊105	$\because \mathrm{Mon}$ ．	（）Mar．16，6\％＊（66）
＊101 4	5 Thurs．	9 Mas 1605（199）	10.1	（i）Pri．	$\stackrel{2}{2} \mathrm{Apr} .1641$（92）	10 nc	${ }^{1)} \mathrm{Sit}$ ．	24 Feb． 1637
1015	3 Tues．	29 A pr． 1606 （119）	＊ 1052	3 Tues．	22 Mar．1642（81）	110．9	4 Wel．	13 reb．1674（t．4）
＊101\％	0 Sat ．	15 Apr． 1607 （105）	10.53	1 Sun．	12 Mar． 1643 （a）	＊10960	1 sum．	2 Feb．1693（33）
1017	5 Thurs．	7 Apr．1604＊（98）	10.4	5 Thurs．	29 Feb．1644＊（60）	1091	（i）Iri．	$23 \mathrm{Jan} 1680)^{*}$（23）
1115	$\because$ Mon．	27 Mar．1609（96）	＊ 1055	2310 m ．	17 Yeb 1645（t）	109：2	3 Tues．	11 Jan． 1691 （11）
＊101！	${ }^{6} \mathrm{Eri}$ ．	16 Mar．1610（is）	10.56	（6）Sat．	7 Feb．1646（39）	＊1093	11 Nat．	31 Wee．lfisl（36．5）
1120）	t Weal．	6 Mar． 1611 （tis）	＊ 10.57	1 Wed．	2\％Jan．1647（27）	1094	\％Thaurs．	21 Dee 160．2（35\％）
119：2	1 Sun．	23 Fcb 1612＊（54）	1115	2 310n．	1\％Jan．1645＊（1\％	1098	2 Mon．	10 Dee．lish（344）
${ }^{+1022}$	5 Thurs．	11 Ftb． 1613 （12）	1155	（i）liri．	c）Jam．164）（i）	＊109］	（i）Pri．	24 Nov．168．4＊（333）
1023	3 Tues．	1 Feb．1限t（32）	＊ 11060	3 Tues．	2．De 1699 （359）	1095	1 Wed．	14 Nov．16ヶら（322）
102\％	${ }^{11}$ Sat．	21 Jan．161．5（21）	10fil	1 Sun．	15．Dre 16．0）（349）	＊1014im	1 Sun．	7 Nus．16ati（311）
＊102\％	1 Hed ．	10 Jan．16ifo＊（10）	11160	5 Thurs	4 Hece lisl（3：39）	1099	（6）Tri．	
10：2	$2 \mathrm{Man}$.	30 Dece 1616\％（365）	＊ 10403	$\because$ Mon．	$22 \sim$ Now．1682＊（3\％）	11011	3 Turs．	16 O．t．1655＊（290）
＊ 1027	${ }^{\text {a }}$ I lri．	19 Dee． 1617 （353）	106\％ 4	（1）Sut．	12 Nor．16，33（316）	＊ 110$]$	（1）sat，	5 O．t．160．9（2T）
1029	1 Hed ．	4 H6\％．1fils（343）	1065	＋Wiol．	1 Nor．16．5．t（30．3）	110：	\％Thurs	$\therefore \mathrm{as}$ Sp． 1690 （2tim）
1029	1 Sun．		－106\％	1 sum．		1103	2 Mom．	1t sep． 1691 （235）
＊103：3	，Thurs．	16 Now 1620＊（3：3）	1067	（i）l＇ri．	10 Oct．16．50＊（290）	＊11114	（i）lri	$\because$ Sup 1602＊（240）
1031	3 Turs．	6）Now，1621（316）	＊106\％	3 Thues．		110.9	1 Wed．	23 Ang．10：3（230）
14382	11.		1069	1 Sun．		－1116i	1 sum．	12 Aug．16：4（ did 2
－10133	\＆Wrd．	150 tt 1023（24）	110711	5＇thurs．	5 sep．16．99（2．51）	1110	（1）liri．	
10131	$\because$ Mon．	1 Oet．162t＊（2ix）	＊1071	\％Mon．	$22^{\text {a }}$ Aug．16i60＊（210）	1104	（3）Tues．	21 July 16940（203）
11135	${ }^{1} \mathrm{~F}$ Fri．	23 Sop ． 1 fios（2liti）	1105	11 sut ．	17 lur．16itil（2，（2）	＊110！	11 sat．	10 July 16：\％（190）
－11336	3 Tı＂		1053	1 Hacl ．		1111	［）＇thurs	（30）June 1695（1al）

#  <br> INITAL D.SK OF MI HASMADAN IEALS OH THE HJRA <br>  <br>  





# TABLE SVI．（contivem） 


N．B．i．Asterisks indicate Lerap－years．
ii．If to Hijore 110.5 inchusire，the ．t．D．dates are old Style．

1ijn sear．	Commencement of the year．		Hijra sear．	Commenement uit the sar．		$11 i j r a$ year．	Commenement of the year．	
	Wrekday	bate A．D．		Wrekda！．	Date 1．1．		Weekday	Whe A．D．
1	2	3	1	2	3	1	2	3
1222	$t$ Wed．	11 Mar． 1 ¢0\％（\％）	12.55	1 Sun．	17 Har． 1539 （60）	1284	（5）Thurs	23 Mar．18il（62）
12：3	1 Smo．		＊ 1250	\％Thurs．	5）Mar．Ln $10^{*}$（fig）	＊ $12 \checkmark 9$	$\approx$ Mon．	11 Mar．1ヶi2＊（\％）
＊ 1224	5 Thurs．	16 leb． 1409 （17）	12.57	3 Tues．	23 Fobl 1－11（5）	1290	0 Sat．	1 Mar． 14.3 （60）
1220	3 ＇tuers．	（i）1ab．Inso（3i）	1254	（1）Sat．	12 Feb．142：（13）	1291	$t$ Wed．	15 Fide．init（19）
＊1226	11 sat．	2t Jan．1bll（26）	＊1259	$t$ Wel．	1 Fecb．14：3（32）	＊1292	1 Sim．	7 Feh，15\％\％（34，
1227	3．Thurs．	16 Jan．1bl：${ }^{*}$（ 16	1260	2 Mon	22 Jan．147\％（22）	1243	6 Fri．	出 Jan．16ヶ6＊＊（2め）
1224	2 Mon．	t Jan．1813（f）	1201	（i）Pri．	10 Jan ．1845（10）	1294	3 Turs	$16 \mathrm{Jam} .15 \mathrm{7i}$（16in
＊1229	${ }_{6} \mathrm{Fri}$ ．	2t Dee．1413（354）	＊12tiz	3 Tues．	30）Dee．1545（364）	＊129\％	11 sat．	5 Jan．14in（5）
1230	4 Wrd．	11 Dec．1514（348）	1263	1 Sun．	20 Hee．1stt（3．）${ }^{2}$	1296	\％Thurs．	26 Dee 185（ 360
1231	1 Sun．	3 Dec．1515（33\％）	1267	5 Thurs．	9 Dee． 1957 （313）	＊1297	2 Mou．	1．5 bee 1879（3．49）
＊1232	¢ Thurs．	21 Nov． $1416{ }^{*}$（326）	＊126．	2 Mon．	27 Nov．1815＊（332）	1295	0 Sat．	
1233	3 Tues．	11 Nov． 1417 （355）	1266	0 Sat．	17 Nov 1819 （321）	1299	1 Wed．	23 Nor 1451（327）
1234	0 Sat．	31 Oct．1815（304）	＊1267	$t$ Wed．	（）Nov． 1850 （310）	＊）300	1 Sum．	12 Nov．14n2（316）
＊1235	4 Wed．	20 Oct． 1919 （293）	126	2 Mon．	27 （4．t． 1851 （306）	1801	（6）Fri．	2 Nor． 1483 （306）
1236	2 Mou ．	$9 \mathrm{med}. \mathrm{1520*} \mathrm{(293)}$	1269	（i）Fri．	15 Oct．1852＊（259）	1302	3 Tues	$210 \mathrm{ct} .188 \mathrm{~F}^{*}(295)$
＊1237	${ }^{6} \mathrm{Fri}$ ．	28 sip 1821（271）	＊1270	3 Tues．	1 Oct． 1853 （275）	＊1303	0 Sat．	$1610 \mathrm{ct}$.1845 （293）
1238	4 Wed．	15 Sep．1822（2fil）	1271	1 Sun．	21 Sep． 1951 （267）	1304	5 Thurs．	30 Sep．1856（273）
1239	1 Suu．	7 sep .1523 （250）	1272	5 Thurs．	13 Sep .1505 （250）	1305	2 Mon．	19 Scp．15nt（262）
＊ 1240	5 Thurs．	26 Aug．15：2 ${ }^{*}$（ 2339 ）	＊1273	2 Non．	1 sep．15．56＊（245）	＊1306	${ }_{4} \mathrm{Fri}$ ．	7 Scp．14．in＊（25）
1241	3 Tues．	16 Aug．1825（22め）	1274	$0^{0}$ Sat	22 Alut 18.57 （234）	1307	1 Wed．	28 Aus．1849（240）
124：	0 Sat．	5 Aug．1826（217）	$12 \%$	1 Wed．	11 Aug．19．54（22．3）	＊130	1 sum．	15 Sur 1890 （239
＊1213	$t$ Wed．	2.5 July 1627（206）	＊1276	1 Sun．	31 July 1859（212）	1309	6 Pri	7 Aus．149）（219）
124\％	2 Mon．	11 July 152．3＊（196）	127	（6）Pri．	20 July 1560＊（202）	1314	3 Tucs．	$26 \mathrm{July} \mathrm{1592*} \mathrm{(209}$,
124．5	（i）Pri．	$3 \mathrm{July}^{1929}$（154）	＊127s	3 Tues．	9 July latil（190）	＊1311	0 Sat．	15．Jul！3－93（196）
＊1246	3 Tues．	22. June 1830（173）	1279	1 sum．	29 dune 1462（180）	131\％	5 Thurs．	5 July 1s9t（140）
1247	1 Sun．	12．June 1431（16：3）	1280	5 Thurs	15.1 мй 1 ¢6i3（169）	1313	$\because \mathrm{Son}$ ．	2t Jume 189．0（17．5）
＊1245	5 Thurs．	31 May 1932＊（152）	＊1281	2 Mon．	if $^{\text {June }} 15684^{*}$（159）	＊1311	${ }^{6}$ Fri．	12．Jube 1896\％＊（16t）
1249	3 Tues．	21 May l－33（1 10）	1292	10 Sat．	27 May 18650 （ $5+6$ ）	1315	4 Wed．	$\because$ ，Inur 1847（153）
12 m	10 sat．	11）May 18334 （1301）	124．3	4 Wed．	16 May lstit（136）	＊1316	1 Sum．	29 May 14.95 （142）
＊1251	7 Wed．	29.158 .1435 （119	＊1291	1 Sun．	5 N1：3 185\％（10．3）	1317	（i）l＇ri．	12 May 1899（132）
1292	2 Mon ．	18 Apro 1436＊＊（1009	1295	（ ${ }^{\text {Prim}}$	24.1 pr．1465＊（115）	1314	3＇Tues．	1 May 1900 （121）
1253	（\％Fri．	7 Apr．1837（97）	＊1246	3 Tues，	13 Apr．1869（103）			
＊12．5	3 Thera．	$23.30 r .1839$（nti）	1247	1 sum．	3 Apr． 1870 （93）			

## A P P E N D I X.

.

# ECLIPSES OF THIE SUN IN MNHA.' 

By Dr. Robert Schram.

A complete list of all eclipses of the sun for any part of the globe between the years 1200 B.C. and 2160 A.D. has been published by Oppolyer in his "Canon der Finsternisse", (Denkischriften der methomatisch maturaissenschaftlichen Classe der Lazis. Akendemie der Wissen-
 for the calculation of the path of the shadow on the earth's surface, and of its beginning, greatest phase, and end for any particular place. But inasmuch as the problem is a complicated one the calculations required are also unavoidably complicated. It takes considerable time to work out by the exact formula the time of the greatest phase of a given eclipse for a particular place. and when, as is often the case with Indian inscriptions, we are not sure of the year in which a reported celipse has taken place, and it is therefore necessary to calculate for a large number of eclipses. the work becomes almost impussible.

The use, however, of the exact formule is seldom necessary. In most cases it is sufficient to make use of a close approximation, or still better of tables based on approximate formule.

Such tables 1 have published under the title "Tafeln zur Berechnung der naheren Umstande der Sonnenfinsternisse", (Denkschriften der mathematisch naturaissensihafthichen Classe der Kais. Akademie der W'issenschaften in Wion, Vol. LI. IS'S6) and the Tables B, C, and D, now given are based on those. That is to say. they contain extracts from those tables, somewhat modified and containing only what is of interest for the continent of India. Table $A$ is a modified extract from Oppolzer's Canon, containing only eclipses visible in India and the immediate neighbourhood. All others are eliminated, and thus the work of calculation is greatly diminished, as no other eclipses need be examined to ascertain their visibility at the given place.

Oppolzer's Canon gives the following elements:
Date of eclipse and Greenwich mean civil time of conjunction in longitude.
$L^{\prime}=$ longitude of Sun and Moon, which is of course identical at the middle of the eclipse.
$Z=$ Equation of time in degrees.
$\varepsilon=$ Obliquity of the ecliptic.
$\underset{\log p f}{P} p \sin \mathrm{P}$ being equal to $\frac{\sin \left(1,-h^{\prime}\right)}{\sin \left(T-\pi^{\prime}\right)}$ where $b$ and $b^{\prime}$ denote the moun's and sun's latitude, $\pi$ and $\pi$ ' their respective parallaxes.
$\log _{q}^{2} \quad q \cos Q$ being the hourly motion of $p \sin \mathrm{P}$.

1 I propose to publinh, ritber in a second edtiten of this work, if such should ber collded fir, or in one of the srientitic periodicals, tables of lunar eclipses, compiled from Oppolzer's Canon der Finsternisse, and routaimog those vaible in ludia during the perion comprised in the present volume. [R. S.]
$\mathrm{u}_{\mathrm{n}}^{\prime}=$ radius of shadow.
$\mathrm{f}_{\mathrm{s}}=$ angle of shadow's cone.
$\gamma=$ shortest distance of shadow's centre from earth's centre.
$\mu=$ Sun's hour-angle at Greenwich at the moment of this shortest distance.
$\log n=$ hourly motion of shadow's centre.
$\log \sin \delta^{\prime} /$ Sun's declination.
$\log \cos \dot{o}^{\prime}$
$\mathrm{N}^{\prime}=$ angle of moon's orbit with declination circle $\left(\mathrm{N}^{\prime}=\mathrm{N}-\mathrm{h}\right.$, where N is the angle of the moon's orbit with latitude circle, and $\tan \mathrm{h}=\cos \mathrm{L}^{\prime} \cos \varepsilon$.
G $\quad \sin g \sin G=\sin \delta^{\prime} \sin N^{\prime}$.
K $\quad \sin g \cos G=\cos N^{\prime}$.
$\sin g \quad \quad \cos g=\cos \delta^{\prime} \sin N^{\prime}$.
$\sin k \mid \sin k \sin K=\sin N^{\prime}$.
$\cos g \sin ^{\cos k} \cos k=\sin \delta^{\prime} \cos N^{\prime}$.
$\cos k \quad \quad \cos k=\cos \delta^{\prime} \cos N^{\prime}$.
With these elements the calculation of the moment of greatest phase of eclipse at a given place, whose longitude from Greenwich is $\lambda .$. and whose latitude is $P$, is found by the formula:

$$
\log \phi_{1}=0,9966 \log \phi
$$

$\mathrm{m} \sin \mathrm{M}=\gamma-0,9966 \cos \mathrm{~g} \sin \Phi_{1}+\cos \Phi_{1} \sin \mathrm{~g} \sin \left(\mathrm{G}+\mathrm{t}_{a}\right)$.
$m \cos M=\left(t_{0}-\lambda-\mu\right) \frac{11}{15}-0,9966 \sin \phi_{1} \cos k+\cos \phi_{1} \sin k \cos \left(K+t_{0}\right)$.
$\mathrm{m}^{\prime} \sin \mathrm{M}^{\prime}=-0,2618 \cos \phi_{1} \sin \mathrm{~g} \cos \left(\mathrm{G}+\mathrm{t}_{\mathrm{o}}\right)$.
$m^{\prime} \cos \mathrm{M}^{\prime}=\mathrm{n}-0,2618 \cos \phi_{1} \sin \mathrm{k} \sin \left(\mathrm{K}+\mathrm{t}_{n}\right)$.

$$
\mathrm{t}_{1}=\mathrm{t}_{0}-\mathrm{I} 5 \frac{\mathrm{~m}}{\mathrm{~m}^{\prime}} \cos \left(\mathrm{M}+\mathrm{M}^{\prime}\right) .
$$

Making firstly $t_{o}=\lambda+\mu$, this formule gives the value of $t_{1}$. This value is put in the formule instead of $t$, and the calculation repeated, and thus we get a closer value for $t$; which, again put in the place of $t_{0}$, gives a second corrected value of $t$. Calculation by these formula must be repeated as long as the new value of $t$ differs from the former one, but. as a general rule, three or four times suffices. The last value of $t$ is then the hour-angle of the sun at the given place for the moment of greatest phase at that place. With the last value of $m$ we find the magnitude of the greatest phase at the given place in digits $=6 \frac{u^{\prime},-m}{u_{n}^{\prime}-1.27 .30}$.

These calculations are, as will be seen, very complicated, and for other than astronomical problems it is hardly ever necessary to attan to so great a degree of accuracy. loor ordinary purposes they may be greatly simplified, as it suffices to merely fix the hour-angle to the nearest degree.

The angle N is very nearly constant, its mean value being $\mathrm{N}=84^{\circ} 3$ or $\mathrm{N}=95^{\circ} 7$ according as the moon is in the ascending or descending node. Which of these is the case is always shown by the value of P . as P ' is ahways near $\mathrm{O}^{\prime \prime}$ when the moon is in the ascending, and near $180^{\circ}$ when she is in the descending node. Taking also for $\varepsilon$ a mean value, say $\varepsilon=23^{\circ} 60$, and making the calcutations separately for the cases of the ascending and descending node, we find that $\dot{b}^{\prime}, h, N^{\prime}, \sin g, \cos g, \sin k, \cos k, G$ and $k$ are all dependents of $L^{\prime}$, and can therefore be tabulated for single values of L , say from 10 to 10 degrees.

The second of the above formulae

$$
m \cos M=\left(t_{1}-\lambda \quad-\mu\right)_{15}^{11}-0,9966 \sin \oplus_{1} \cos k+\cos \phi_{1} \sin k \cos \left(k+t_{0}\right)
$$

will give for $t$ the value
$\mathrm{t}=(\lambda+\mu)+\frac{15}{11} \times 0,9066 \sin \hat{\phi}_{1} \cos \mathrm{k}-{ }_{11}^{15} \cos \phi_{1} \sin k \cos (\mathrm{~K}+\mathrm{t})+{ }_{i 1}^{15} \mathrm{~m} \cos \mathrm{M}$.
The angle M being, at the moment of greatest phase, always sufficiently near $90^{\circ}$ or $270^{\prime \prime}$, $\frac{15}{n} \mathrm{~m} \cos \mathrm{M}$ can be neglected; and, introducing for $\frac{15}{n}$ its mean value 27,544 , and identifying $⿹_{1}$ with $Q$, the value of $t$, can simply be determined by the expression

$$
\mathrm{t}=(\lambda+u)+27,447 \sin 0 \cos \mathrm{k} \quad 27,544 \cos 0 \sin \mathrm{k} \cos (\mathrm{~K}+\mathrm{t})
$$

instead of determining it by the whole of the above formule. Now in this last expression $k$ and $k$ are mere dependents on $L^{\prime}$, and therefore the valucs of $t$ can be tabulated for each value of $I^{\prime}$ with the two arguments $\lambda+\mu$ and $\hat{c}$. Table $D$ is constructed on this formula, only instead of counting $t$ in degrees and from true noon it is counted, for Indian purposes, in ghaṭikas and their tenths from true sunrise.

The value of $t$ for the instant of the greatest phase at the given place being found, it can be introduced into the formula

$$
m \sin M=\gamma-0,9966 \cos g \sin \oplus_{1}+\cos \Phi_{1} \sin g \sin (G+t)
$$

As $M$ is always near $90^{\circ}$ or $270^{\prime \prime}$, sin M can be considered equal to $\pm 1$, so we have

$$
\pm m=\gamma-0,9966 \cos g \sin \varphi+\cos \varphi \sin g \sin (G+t)
$$

where the sign $\pm$ is to be selected so that the value of may always be positive.
The second part of the above expression

$$
-0,9966 \cos g \sin \phi+\cos \varphi \sin g \sin (G+t)
$$

(which, for the sake of brevity, may be called by the letter $\mathrm{r}^{\prime}$ ) contains only values which directly depend on $L^{\prime}$, such as $\cos g$, $\sin g$, $G$, or which, for a given value of $L^{\prime}$, depend only on $\nu+\mu$ and $\Phi$, and therefore the values of $\Gamma^{\prime}$ can be tabulated for each value of $L^{\prime}$ with the two arguments $\nu+\mu$ and $\phi$. This has been done in the Table B which follows, but instead of $\Gamma^{\prime}$ the value $1+\Gamma^{\prime}=\Gamma$ has been tabulated to avoid negative numbers. The value of $m$ can then be found from

$$
m= \pm\left(\gamma+\Gamma^{\prime}\right) .
$$

Both Tables B and D ought to consist of two separate tables, one containing the values of $L^{\prime}$ from $0^{\circ}$ to $360^{\prime \prime}$ in the case of $\mathrm{P}^{\prime}$ being near $\mathrm{o}^{\prime \prime}$, the other containing the values of $\mathrm{I}^{\prime}$ from $0^{\circ}$ to $360^{\circ}$ for the case of P being near $180^{\prime \prime}$. To avoid this division into two tables, and the trouble of having always to remember whether $P$ is near $O^{\prime \prime}$ or $180^{\prime \prime}$, the two tables are combined into one single one; but, whilst in the case of $\mathrm{l}^{\prime}$ being near $\mathrm{o}^{\circ} \mathrm{L}^{\prime}$ is given as argument. in the case of P being near I So" the table contains, instead of $L^{\prime}, L^{\prime}+400^{\prime \prime}$ as argument. We need therefore no longer care whether the moon is in the ascending or descending node, but simply take the argument as given in the first table.

With the value of $m$, found by $m= \pm\left(\gamma+\Gamma^{\prime}\right)$, we can find the magnitude of the greatest phase in digits $=6 \frac{u_{s}^{\prime}-m}{u_{s}^{\prime}-0,275^{6}}$, which formula can also be tabulated with the arguments $u_{a}^{\prime}$, and m , or with $\mathrm{u}_{\mathrm{a}}^{\prime}$ and $(\gamma+\Gamma)$. This has been done in Table C. As $\mathrm{u}_{\mathrm{a}}^{\prime}$ when abbreviated to two places of decimals has only the six values $0.53,0.54,0.55,0.56,0.57$ and 0.58 , every columm of this Table is calculated for another value of $u_{a}^{\prime}$, whilst to $\gamma$ the constant $;$ has been added so that all values in the first Table may be positive. Instead of giving $u^{\prime}$ directly, its last cipher is given as tenths to the value of $\left(\gamma+\Gamma^{\circ}\right)$ su that there is no need for ascertaining the value of $u_{a}^{\prime}$.

Of all elements, then, given by the Canon we want only the following ones:-
Date of eclipse, and Greenwich mean time of conjunction in longitude.
$L^{\prime}=$ longitude of sun and moon.
P (only indication if $\mathrm{l}^{\prime}$ is near $0^{\circ}$ or near $180^{\circ}$ ).
$\mathrm{u}_{\mathrm{a}}^{\prime}=$ radius of shadow.
$\gamma=$ shortest distance of shadow's centre from earth's centre.
$u=$ Sun's hour-angle at Greenwich at the moment of this shortest distance.
(There is no necessity for attempting any further explanation of all the other elements and formula noted above, which would be impossible without going into the whole theory, of edipses. Such an attempt is not called for in a work of this kind.)

These elements are given in Table A in the following form:-
Column 1. Date of eclipse,-year, month, and day; Old Style till 2 September, 1752 A.D., New Style from 1.f September, 1752.
Column 2. Lanka time of conjunction in longitude, counted from mean sunrise in hours and minutes. Column 3. $\mathrm{L}=$ longitude of sun and moun in degrees, when P is near $\mathrm{o}^{\prime \prime}$; or longitude of sun and moon plus $400^{\circ}$, when $P$ is near $180^{\circ}$; so that numbers in this column under $360^{\circ}$ give directly the value of this longitude, and indicate that P is near $\mathrm{O}^{\circ}$, or that the moon is in the ascending node, whilst numbers uver $400^{\circ}$ must be diminished by 400 when it is desired to ascertain this longitude. At the same time these last indicate that P ' is near $180^{\prime \prime}$, that is that the moon is in the descending node.
Column 4. $\mu=$ Sun's hour-angle at Greenwich at the moment of shortest distance of shadow's centre from earth.
Column 5. $\quad \gamma^{\prime}=$ ten times the second decimal cipher of $u_{a}^{\prime}+5+\gamma$. So the tenths of the numbers of this column give the last cipher of $u_{3}^{\prime}$, whose first ciphers are 0.5 , and the rest of the number diminished by 5 gives the value of $\%$.
For instance: the line $9751114,0 h 52 \mathrm{~m}, 730^{\circ}, 202^{\circ}, 74.66$ shows that on the 14 th February, A.D. 975, the conjunction took place at oh 52 m after mean lanka sunrise, that the longitude of sun and moon was $330^{\circ}$ (the moon in the descending node), $\mu=202^{\circ}, u_{a}^{\prime}=0,57$. and $\gamma=-0,34$.

## Use of the Tables.

Table $A$ gives, in the first column, the year, month, and day of all eclipses visible in any part of India, or quite close to the frontiers of thdia. The frontiers are purposely taken on rather too large a scale, but this is a fault on the right side. The letters appended shew the kind of eclipse; "a" stands for annular, "t" for total, "p" for partial. Eclipses of the last kind are visible only as very stight ones in India and are therefore not of moch importance. When the letter is in brackets the meaning is that the eclipse was only visible quite on the fronticrs or even beyond them. and was without importance. When the tetter is marked with an asterisk it shews that the eclipse was either total or anmular in India or close to it, and is therefore one of greater importance. The second column shews, in hours and minutes counted from mean sunrise at lanka, the time of conjunction in longitude. This column serves only ats an indication as to whether the eclipse touk phace in the morning or afternoon; for the period of the greatest phase at any particular phace may differ very sensibly from the time thus given, and must in every case be determined from Table 1 , if reguired. The third, fuurth, and fifth columns, headed respectively 1 . $\mu$, and $\gamma$ '. furnish the arguments for the fullowing Tables $13, \mathrm{C}$, and 1), by which can be found the magnitude and the moment of the greatest phase of the ectipse at a particutar place.


Table 13 (as wetl as lable 1 ) eonsists of serentyotwo different lables, cath of which is cabculated for a particular value of $L$ taten in tens of deesrecs. Fiach of these bitte tables is a table with a doubte argument, giving the value of $z^{\prime \prime}$. 'lhe arsmonests are, vertically the latitude . and horizontally the longitude: of the eriven place, the latter being stated in tegrees from Grcenwich and atumented by the vatue of $u$ griven in Table $\therefore$. The reader selects that table which is nearest to the value of 1 , given by lable $A$, and determines from it, by interpolation with the aresuments $=$ and $\dot{\beta} \%$. the value of $\%$. If a greater desree of accuracy is desired, it is necessary to determine, with the arguments $\$$ and $\%+\mu$, the value of "by both tables preceding and following the given value of 1 , and to interpolate between the two values of $\gamma^{\prime \prime}$ so found.

The final value of $?^{\prime \prime}$ is added $w$ the vabue of ${ }^{\prime}$ spiven by table $A$, and this value of $z^{\prime}+z^{\prime \prime}$ serves as argument for Table $C$. which gives directy the matgiturke of the greatest phase at the given place in digits, or twelfthes of the sun's diameter.

Table 1) is arransed just like Table 13 , and wives, with the arguments $P$ and $\%+\mu$, the moment of the greatest phase at the siven place in ghatikas and their tenths, counted from true sunrise at the given place.

The first value in each line of Tables $B$ and 1 ) corresponds to a moment before suncise and the last value in each line (o a moment after sunsct. Both values are given only for purposes of interpulation. Therefore in both cases the graatast phase is invisible when $\%+p$ coincides exactly with the first or last value of the line. and still more so when it is less than the first or greater than the last value. But in both cases. when the difference between $\%$. $\%$ and the last value griven does not exceed 15 degrees, it is possible that in the given place the ind of the eclipse might have been visible after sunrise, or the leginning of the eclipse before sunset. As the tables give only the time for the greatest phase this question must be decided by direct calculation.
EXAMPLES.

LXAMHLE I. Was the eclipse of the zoth June, A.D. 540 , visible at Jahna, whose latitude $\uparrow$. is $19^{\circ} 48^{\prime} \mathrm{N}$. , and whose longitude, $\therefore$, is $75^{\circ} 54^{\prime} \mathrm{J}$. ?
Table A gives: 540 VI 20, $7 \mathrm{~h} 57 \mathrm{~m} \quad \mathrm{~L}=490 \quad$ \& $=3144^{\prime \prime} \quad y^{\prime}=35.34$

$$
\quad y^{\prime}=35.34
$$

Jalna has $\hat{\psi}=20^{\circ}$, and

$$
\begin{aligned}
\therefore & =76 \\
\lambda+\mu & =30^{\prime \prime}
\end{aligned}
$$

Table B. $\mathrm{L}=490$ gives, with $\varphi=20^{\circ}$ and $\%+\mu=30^{\circ}, \ldots .2^{\prime \prime}=0.86$

$$
z^{\prime}+z^{\prime \prime}=36.20
$$

Table $C$ sives, with $y^{\prime} \gamma^{\prime \prime}=36,20$, the magnitude of the greatest phase as nearly 8 digits.
Table D. $L=490$ gives, with $\hat{Y}=20^{\circ}$ and $\lambda+\mu=30^{\circ}$, for the moment of the greatest phase, 24.8 ghatikis or 24 gh .48 pa. after true sunrise at Jilna.

Exinhpe: 2. Was the same celipse visible at Nultan, whose latitude o is $30^{\prime \prime} 13^{\prime} \mathrm{N}$. . and whose longitude, i., is $71^{\prime \prime} 26^{\prime} \mathrm{li}$. ?

Multan has $0=30^{\circ}$ and

$$
\frac{\lambda=7 r^{\prime \prime}}{\lambda+\mu=25^{\prime \prime}}
$$

Table B. $1=490$ gives, with $\hat{P}=30^{\circ}$ and $\lambda+\mu=25^{\circ} . \quad . \quad \gamma^{\prime \prime}=0,76$
I (diff. between 10.80 and $0.7^{2}$ )
$\gamma^{\prime}+\gamma^{\prime \prime}=36,10$

Table C gives, with $y^{\prime}+y^{\prime \prime}=36,10$, the magnitude of the greatest phase as exactly 10 digits. Table D. $\mathrm{L}=490$ gives. with $\hat{Y}=30^{\circ \prime}$ and $\alpha+\mu=25^{\circ}$, for the moment of the greatest phase, 24,0 ghațikis. or 24 gh . o pa. after true sumrise at Multân.

EXiMille 3. Was the eclipse of the 7 th June, A.D. 913 , visible at Trivandrum, whose

Table A gives: 913 Vl $7,8 \mathrm{~h} .35 \mathrm{~m} . \quad \mathrm{L}=480 \quad \mu=323^{\circ} \quad \gamma^{\prime}=44,98$
Trivandrum has, $\hat{\psi}=S^{n}$ and.

$$
\frac{\lambda=77^{\circ}}{\lambda+\mu=40^{\circ}}
$$

Table B. $\mathrm{L}=480$ gives, with $\hat{\psi}=8^{\circ}$ and $\lambda+\mu=40^{\circ}, . . . . . . \quad . \quad \gamma^{\prime \prime}=\mathrm{r}, 02$
Table C shews, with $\gamma^{\prime}+\gamma^{\prime \prime}=46,00$, that the eclipse was total at Trivandrum.
Table D. L $=480$ gives, with $\hat{q}=8^{\circ}$ and $\lambda+\mu=40$, for the moment of totality 26,2 ghaṭikâs or 26 gh . 12 pa. after true sumise at Trivandrum.

Examile 4. Was the same eclipse visible at Lahore whose latitude, $\hat{\varphi}$, is $31^{\circ} 33^{\prime} \mathrm{N}$., and longitude, $\lambda, 74^{\circ}$ I $\sigma^{\prime}$ E.?
Table A gives: 913 VI $7,8 \mathrm{~h} .35 \mathrm{~m} . \quad \mathrm{L}=480 \quad \mu=323^{\circ} \quad \gamma^{\prime}=44,98$ Lahore has $\hat{\varphi}=32^{\circ}$ and
$\overline{\gamma^{\prime}+\gamma^{\prime \prime}}=46,0 \overline{0}$
h. 35 m .

$$
\begin{array}{r}
\mathrm{L}=480 \\
\cdot \cdot \cdot \\
\quad \cdot \quad \begin{array}{r}
\mu=323^{\circ} \\
\lambda+\mu
\end{array}=34^{\circ}
\end{array}
$$

Table B. $\mathrm{L}=480$ gives, with $0=32^{\circ}$ and $\lambda+\mu=37^{\circ}, ~ . \quad . \quad . \quad . \quad . \quad \gamma^{\prime \prime}=0,69$

$$
\gamma^{\prime}+\gamma^{\prime \prime}=45,67
$$

Table C gives, with $\gamma^{\prime}+\gamma^{\prime \prime}=45,67$, the magnitude of the greatest phase 4,8 digits.
Table D. $L=480$ gives, with $0=32^{\circ}$ and $\lambda+\mu=37^{\circ}$, for the moment of the greatest phase 26,9 ghaṭikâs, or 26 gh .54 pa . after true sumrise at Lahore.

In all these examples the value of L (Table A) was divisible by 10 , and therefore a special table for this value was found in Table B. When the value of $L$ is not divisible by 10 , as will mostly be the case, there is no special table exactly fitting the given value. In such a case we may take the small table in Table $B$ for the value of $L$ nearest to that given. Thus for instance, if L is 233 we may work by the table $\mathrm{L}=230$. or when L is $4^{8} 7$ we may work by the Table $\mathrm{L}=490$ and proceed as before, but the result will not be very accurate. The better course is to take the value of $z^{\prime \prime}$ from both the table next preceding and the table next following the given value of $L$, and to fix a value of $\gamma^{\prime \prime}$ between the two. ${ }^{1}$ Thus for $L=233$ we take the value of $z^{\prime \prime}$ both from Table 230 and from Table 240 and fix its truer value from the two. But where the only question is whether an eclipse was visible at a given place and there is no necessity to ascertain its magnitude, the first process is sufficient.

Eximple 5. Was the eclipse of the 15 January, A.I. 1032 , visible at Karachi, whose latitude, $\phi$, is $24^{\circ} 53^{\prime} \mathrm{N}$. , and longitude, $\%, 66^{\circ} 57^{\prime} 1 \ldots$ ?
Table A gives 1032 I 15, 10h.Im. $\quad L=701 \quad \mu=342^{\circ} \quad \gamma^{\prime}=45,46$
Karachi has $\phi=25^{\circ}$, and . . . . . . . . . . $\lambda+67^{\circ}$

$$
\lambda+\mu=49^{\circ}
$$



[^47]Table C gives, with $\gamma^{\prime}+\gamma^{\prime \prime}=46.10$, the magnitude of the greatest phase as 10,0 digits.
Table 1). L 700 gives, with $0=25$ and $\lambda+\mu=49^{\prime \prime} \ldots 25.7$, or for L. 701, for the moment Table 1). L. 710 of the greatest phase, 25.7 ghaṭikàs, or 25 gh .42 pa . after true sumrise at Karàchi.

ENAMILE 6 . Was the same eclipse visible at Calcutta, whose latitude, $\hat{4}$, is $22^{\circ} 36^{\prime} \mathrm{N}$., and longitude, $\lambda .8^{\circ} 23^{\prime}$ E.?
Table A gives $1032115,10 \mathrm{~h} .1 \mathrm{~m} . \quad \mathrm{L}=701 \quad \mu=342^{\prime \prime} \quad \gamma^{\prime}=45,56$ Calcutta has $\varphi=23^{\circ}$, and

$$
\frac{\lambda=88^{\circ}}{\lambda+\mu=70^{\prime \prime}}
$$

$\lambda .+\mu$ is greater than the arguments for which values are given in Table B, 700 and 710 . This indicates that the greatest phase of the eclipse takes place after sunsct and is therefore invisible. '

Eximple. 7. Was the eclipse of the 3ist. December, A.D. 1358, visible at Dhaka, whose latitude, $\phi$, is $23^{\circ} 45^{\prime} \mathrm{N}$., and longitude, $\lambda ., 90^{\circ} 23^{\prime} \mathrm{E}$. ?
Table A gives: 1358 XII 31, 1 h. $28 \mathrm{~m} . \quad \mathrm{L}=288 \quad \mu=213^{\circ} \quad \gamma^{\prime}=45,48$
Dhaka has $\varphi=24^{\circ}$, and

$$
\cdot \frac{\cdot \cdot \lambda=90^{\circ}}{\lambda+\mu=303^{\circ}}
$$

Table B. L 280 gives, with $\phi=24^{\circ}$ and $\lambda+\mu 303^{\circ}, \ldots \gamma^{\prime \prime}=0,421$
Table B. L 290
$\gamma^{\prime \prime}=0,35 y^{\prime}$
or for L $288 \ldots \gamma^{\prime \prime}=0,36$

$$
\gamma^{\prime}+\gamma^{\prime \prime}=45,84
$$

Table $C$ gives, with $\gamma^{\prime}+\gamma^{\prime \prime}=45,84$, the magnitude of the greatest phase as 8,5 digits.
Table D. L 280 gives, with $\phi=24^{\circ}$ and $\lambda+\mu=303^{\circ}, \ldots 0,0$ ।
Table D. L 290 ", ", ", ", ".. o,2 , or for L 288 , for the moment of the greatest phase 0,2 ghaṭikàs, or o gh. 12 pa. after truc sunrise at Dhaka.

Example S. Was the same eclipse visible at Bombay whose latitude, $\Phi$, is $18^{\circ} 57^{\prime} \mathrm{N}$., and longitude, in $72^{\circ} 51^{\prime}$ E.?
Table A gives: 1358 XII 31, $1 \mathrm{~h} .28 \mathrm{~m} . \quad \mathrm{L}=288^{\circ} \quad \mu=213^{\circ} \quad \gamma^{\prime}=45,48$
Bombay has $\varphi=19^{\circ}$

$$
\frac{. \lambda=73^{\circ}}{\lambda+\mu=286^{\circ}}
$$

$\lambda+\mu$ is less than the arguments for which there are values given in Table B 280 and B 290.
This indicates that the greatest phase of the eclipse took place before sumrise and was therefore invisible. "
Example 9. Was the eclipse of the 7 th June, A.D. 1415 , visible at Srinagar, whose latitude, $\phi$, is $34^{\circ} 6^{\prime} \mathrm{N}$., and longitude, $\lambda,=74^{\circ} 55^{\prime} \mathrm{E}$. i
Table A gives: 1415 VI 7, $6 \mathrm{~h} .14 \mathrm{~m} . \quad \mathrm{L}=484 \quad \mu=289^{\circ} \quad \gamma^{\prime}=35,58$
Srînagar has $\varphi=34^{\circ}$, and . . . . . . . . . . . . . $\lambda=75^{\prime \prime}$


$$
\gamma^{\prime}+\gamma^{\prime \prime}=36,39
$$

Table C gives, with $\gamma^{\prime}+\gamma^{\prime \prime}=3^{6,39}$, the magnitude of the greatest phase as 3,3 digits.

[^48]Table D 48o gives, with $0=34^{\circ}$ and $2+\mu=4^{\circ}, \ldots 18,8$,
Table D 490 , , , , $\quad$, , $\quad$, $\quad, \quad \ldots \quad$ I 8.9 , or for $L 484$, for the moment of the greatest phase 18.8 ghatikàs, or 18 gh .48 pa. after true sunrise at Srinagar.
liNMnle io. Wias the same eclipse visible at Madras, whose latitude, $\mathcal{T}=13^{\circ} 5^{\prime} N$. , and longitude. $\lambda, 80^{\prime \prime}$ 1ך' E..
Table A gives: 1415 V[7, $6 \mathrm{~h} .14 \mathrm{~m} . \quad 1 .=48.4 \quad \mu=289^{\circ} \quad \gamma^{\prime}=35,58$
Nadras has $e=13^{n}$, and

$$
\frac{. \lambda=80^{\circ}}{\lambda+\mu=\frac{9^{\circ}}{\lambda}}
$$



$$
y^{\prime}+y^{\prime \prime}=36,72
$$

$\gamma^{\prime}+\gamma^{\prime \prime}$ is greater than the values contained in Table C.
This indicates that Madras is too much to the south to see the eclipse.
EXAMPLE I1. Was the eclipse of the 2oth August, A.D. 1495, visible at Madras, whose latitude, $\quad$. is $13^{\prime \prime} 5^{\prime} \mathrm{N}$., and longitude, $\lambda ., 80^{\circ} 17^{\prime}$ E.:
Table A gives: 1495 VIll 20, $4 \mathrm{~h} .55 \mathrm{~m} \quad \mathrm{~L}=155 \quad$ ィ $=269^{\prime \prime} \quad$ ン' = 54.62 Madras has $\hat{0}=13^{\circ}$ and.

$$
\therefore=80^{\circ}
$$

$$
\therefore+\mu=349^{\circ}
$$


Table B. $1.160 \quad . \quad \cdots \quad \cdots \quad{ }^{\prime} \quad \cdots \quad \gamma^{\prime \prime}=1,011 \quad \gamma^{\prime}+\gamma^{\prime \prime}=55,65$
Table C gives, with $\gamma^{\prime}+\gamma^{\prime \prime}=55,65$, the magnitude of the greatest phase as 4.4 digits.
Table D. L 150 gives, with $0=13$ and $\gamma+\mu=349^{\circ}$; . $12,1 /$ or for L 155 , for the greatest Table D. L, 160
,, . . 11,81
phase 12.0 ghatikis, or 12 gh. o pa. after true sumrise at Madras.
LNAM11LE 12. Was the same eclipse visible at Srinagar whose latitude, $\widehat{0}=34^{\circ} 6^{\prime} \mathrm{N}$. , and longitude, $\quad$.. $74^{\circ} 55^{\prime}$ ľ.?
Table A gives: 1495 V1ll 20, $41.55 \mathrm{ml} . \quad \mathrm{L}=155 \quad$ \& $269^{\circ} \quad \gamma^{\prime}=54,62$
Srinagar has $0=34^{n}$.

$$
\frac{i=75^{\circ}}{x+12=3+4^{\circ}}
$$

Table B. L 150 gives, with $\varphi=34^{\prime \prime}$ and $\gamma+\mu=344^{\prime \prime}, \quad \gamma^{\prime \prime}=0,721$, or for L $155 \quad . \quad \gamma^{\prime \prime}=0,71$ Table B
$\left.\gamma^{\prime \prime}=0,69\right)^{\text {, or for L I } 55}$
$y^{\prime}+\gamma^{\prime \prime}=55,33$
$\gamma^{\prime}+\gamma^{\prime \prime}$ is less than the values contained in Table $C$.
This indicates that Srinagar is too much to the north to see the eclipse.
It was intencled that these tables should be accompanied by maps shewing the centre-lines, across the continent of India, of all eclipses of the sum between A.D. 300 and 1900 , but it has not been found possible to complete them in time, owing to the numerous calculations that have to be marle in order that the path of the shatow maty be exactly marked in each case. Such maps would plainly be of considerable value as a first appoximation, and 1 hope to be able soon to publish them separately.

Viemma, November, 1895.
R. SCHRAM.

## 

Prate I．1，	$\underset{\substack{\text { Lanka time } \\ \text { of } \\ \text { cunjunction } \\ \text { measured } \\ \text { frumed } \\ \text { winrise. }}}{ }$	L	$\mu$.	$\therefore$ ：	Mate 10		1.	＊	\％＇			1.	＊．	；
301 IV	6h．	43.	2－4	15．160	361411117	1 h 12 m	114	2.1	665．14日＂	75． 1198	2h．${ }^{2} 7 \mathrm{~m}$	120	23\％	65．9．7，
$304 \quad 1129$	12	$\sim_{3}$	301	相如＂	363118	23 3	6ine	191	行．384	$\begin{array}{lll}11 & 19 & 10\end{array}$	10	110	364	15．35 $0^{\circ}$
305 V 111	＋ 19	13.4	2.59		36， 61116	11 in	5	3	4， 5	$1518 \times 11$	189	15.52	－	4；1．2 21
$\begin{array}{llll}306 & 1 & 31\end{array}$	2	762	20	14．192，（t）	36\％V1 \％	$11 \%$	\％	203	56．35（1／）	\＃121110	（） 41	1；341	297	T1． 51
306 V11 27	（1） 26	123	204	\％ $17 \times$	3657810	： 1.	3 3	2\％	5． 3.75	22， 1118	729	4		河，刮 $a^{*}$
307 ทI	130	OH	26.9	11	365153	2	1.5	（i）	－5．90\％	225 1111	945	；	341	I $(t)$
$308 \quad 81 \quad 29$	238	6,49		T． 3 伯（a）	$111 \times 11$	1111	3.5	\％	65． 10.11	路 111119	43	541	$\because 17$	＋t
$310 \times 1$	12	62\％		71.01 （e）	3711188	32	$1:$	302	$35.3314^{*}$	11	$9 \quad 16$	514	3.3	t
31312	H	366	26	18．699		223	314	22	33.966 （1）	12	$3 \quad 23$		343	，
311111	3319	3	$1 \mathrm{H}_{5}$	$36.06{ }^{2}$	373 v1 711	1132	176	11	\％t	11	III	12i		$1 /$
316 V 11	4	503	$\underline{25}$	65．2ba＊	376	9 6	234	$3: 33$	45．21t		－ 24	194	1	\％．12a
$316 \times 1131$	14	24	24.5	$351 a^{*}$	$33_{5} \mathrm{xl} 10$	113	24	5	4.547	2911	11412	1	348	$a^{*}$
320 1r 25	11	3	219	5＋．76 ${ }^{\text {a }}$	11	111	166	$3+4$	T，23．${ }^{\text {a }}$	4371120	21	38	26\％	5 $\mu^{\prime}$ ）
$320 \times 14$	（i） 3	206	301	4．5．23t	11124	1127	$15 \%$		6．5．94］a	11	$i$			61／4＊
32411	10 32	223	316	44．6．4，	3601124	24	05	2611	666．07 ${ }^{2}$	435 V171 60	37	7	219	51
325		671	2 2f	66.03 p	3311227	i 52	4	310	\％－39a＊	$136 \quad 11 \quad 3$	6 15	3	291	71．76．1
326	$7 \quad 37$	660	310	\％ $3.37 /$	11	： 32	115	232	34.75	436 XII 3	1.1	2		4．5． $19 t^{*}$
$327 \quad 11$	$+$	4	256	$34.961 t^{*}$	34.1	$7 \quad 1$	692	298	T1． $71{ }^{\text {a }}$	12	2	1.	215	5.6121
329	535	596		16.12	3931111	13	630	16	16．151／	29	40	－	294	95．6． 6 \％
331111	$2 \quad 16$		226		2	228	36	174	15\％．0na	13	45	29.5	3119	$a$
332111	¢ 29	3	301	56.01 （ $\mu$ ）	：	． 17	25	79	55．431	1 H V11 111	30		217	
$\begin{array}{llll}333 & 11 & 1\end{array}$	$9 \quad 1$	3		＋ $0202(6)$	； 11	104	34	35：	83．94（p）	$2!$	348	97	2.0	
$333 \mathrm{V1125}$	8 1s	22.5	321	$76.09{ }^{\text {\％}}$		5.	itc	$31+$	$15.5 .31 /{ }^{*}{ }^{*}$	$\begin{array}{llll}49 & V & 8\end{array}$	204	14		73.
33.	14	30.3		44.80 （t）	392 $\mathrm{ll}^{\text {\％}}$	14	Ti	$27+$	55．017．a＊	454 VIll 50	111	3.		5．23：${ }^{*}$
334 VII 17	$10 \quad 3 \mathrm{~s}$	514		65.31 a	393 V 27	$3 \square$	46	323	74．2：31（1）	＇		127		66.113
338 V	$8 \quad 11$	5		is $\times 33 a^{*}$	393 1120	9311	239	337	4， 871	湤 O	$13: 2$	，	219	\％${ }^{4}$
$339 \times$	T	2016		¢9，	395 IV ；	1 12	416	2 s 5	4．5．54［ ${ }^{\text {＊}}$	$\cdots$	$23 \quad 55$	53		54．41a
$3+1111$	511	\％ 4		$55.40 t^{*}$	11	（11） 9		H	is（t）	$454 \times 2010$	$10 \quad 35$	ii	35.	$3 t$
$346 \mathrm{V1}$	$+3 n$	，		64，	40	$2 \quad 13$	107	233	$43.42 l^{*}$	1.99 Y is	4	$\bigcirc$	220	（ 1$)^{\prime}$
3.48	33	6		$17 \times$	Hig $V$ in	45	35	9	74．23（a）	112	10 ！2	保		$2(p)$
348	${ }^{\prime}$	34		$1.5 t^{*}$	102 Ol	－ 26	630	$323$	45． 49 ／	15	1111	！		4．4．4）
$3+9 \mathrm{lV}$	914	5		2 $\times^{*}$	4173	5 31		29	（呩似先＊	ir	$\therefore 3 t ;$		$1: 1$	19＊
35211	$10 \quad 2$	31.4		－ $1^{*}$	1071123	$2: 3+11$	336	at	25．32．a	161 1． 200		9	201	$2 t^{\circ}$
353 V11 17	$3 \quad 13$	31		16．61\％	19	1 5t	546	222	＋1．79 t *	16211117	－ 22			－5．97\％a
3.51	5	292		76.11 p	（10） 1113	$4+$	32.	258	3699	414 V11 20	14	－	369	的， $10 a^{*}{ }^{*}$
355 Y	$+15$	$4 f i b$	2 Bi	$45 . \operatorname{cis} 1$	（19） $11 \times 9$	$\because$	97	$\pm 2$	15．91 ${ }^{\text {a }}$	［3	；if	9．）	2169	1．3．191
：356	${ }^{1}$ ）is	$228$		21	41	1159			65． 16.4	91	10 If	04		it lis
355	5） 11	，	271	160.23 （／1）	41018112	$\because \quad 19$	202	36	25．21，	16\％ H Y 19	！	\％		（1）
359	2	$166$		64． 559	113811	1155	199	$\because 13$		165 ה113	1）$\quad 17$			
360 III	3	7．4		14.70 （t）	H：W	29				16	in			
360 V1112s	259	15	2334	i5．28	30	$1) 32$	157	209	7515 a	1658	0	21	199	00a

## TABLEA．

1rate A If		$L$	12	$7^{\prime}$	Jate A．${ }^{\text {a }}$		$L$	13.	$\overbrace{}^{\prime}$	1rate－ D ．	$\begin{aligned} & \text { Lanka time } \\ & \text { uf } \\ & \text { comjunction } \\ & \text { measured } \\ & \text { from } \\ & \text { surnse. } \end{aligned}$	1.	$1 /$	$\therefore$＇
469 X 21	2 h 13 m ．	209	239	65． 310	51911111	6 h .6 m	539	2゙ヶ4	it siba＊	567 VII 21	22 h .49 m ．	120	173	35
472111120	－ 51	148	326	小，小 40	$321 \mathrm{V1} 20$	7 \％ 36	490	311	$16.02 \%$	56 s V］ 11	76	h：	304	＋4．041（t）
$4541+$	$\pm$ 31）	（isti	$2{ }^{2}$	$46.35 p$	52 J \11 15	3 ！	266	213	71．35 19	569 XI 4.4	$5 \quad 30$	64.9	274	$45.01 t$
4751719	$8 \quad 34$	8	319	64.65 a	22\％Y1 10	$0 \quad 27$	$4 \bigcirc$	03	$35: 26 t^{*}$	572 1X 23	311	58：	246	75.75 a
$455 \times 314$	$8 \quad 3: 2$	$2{ }^{2} 1$	3\％－2	61．31＂	$522 \mathrm{Xl3} 4$	${ }^{0} 11$	25.4	199	T5．69a	$5 \% 31119$	736	1	306	35．033 ${ }^{*}$
4793	－5t	1	2	55．13／4	5－2 3123	39	24.34	242	65.71 a	573 1N 12	311	571	243	75．04 ${ }^{\text {＊}}$
479 A 1	10 12	559	349	14.95 （ $)$	526 1． 22	－ 30	141	323	35．0．）	$3 \% 4118$	1） 14	350	193	45．itl
150 IX 20	28	＋	2	14．26	5243116	6 1；	719	3	46．14 ${ }^{(1)}$	3241 Cl	532	560	276	64.37 （a）
483 ［1］ 13	7 24	339	301	3is 39 （p）	529 V11 23	$1+6$	11！	266	6it．44	56611111	2\％$\quad 39$	311	179	3545
484314	5 51	291	2－4	ndit	533015	105	fi94	341	154．93 u	577 1 5	$0 \quad 33$		200	75．04a
455 X1 23	b 53	213	3：3：	71.10 （a）	5331 V1 30	740	$9 \cdot+$	307	35.95 （t）	57511125	430	276	260	$65.73 a^{*}$
486 V－ 39	$9 \quad 30$	6．59	3338	$35.11{ }^{\text {\％}}$	532 Xl 12	23 45	63.3	19.3	65． 72 （11）	580 X 24	9 12	214	336	i4．99a
456 A1 12	$8 \quad 1$	232	314	75．117a	$\begin{array}{llll}333 & \text { V } & 10\end{array}$	$\because 5$	514	243	64．91a	533 V11123	20	151	232	54．25a
487 V 9	231	149	23：	44.37 （h）	$53+3109$	（1） 10	$4)$	286	i5．69a	54.413	$10 \quad 37$	731	$3+4$	61．54 $a^{*}$
497 XI I	10 25	$20^{2}$	35：	125．76＂	534 \ 23	343	612	252	4．3．32t	585 V V111 ］	${ }_{6}{ }^{3} 31$	130	253	$35.75 t$
45511129	249	410	239	46.30 （ $p$ ）	5351818	$6 \quad 1$	571	$2!+$	54．3．4（／）	556 113 16	30	687	21	35．72a
449 ill 18	4 \％ 9	\％ 59	261	75．601a＊	53581115	43	329	304	4．5．41t	$55 \% 1] 11$ 2	$23 \quad 13$	$\square$	14.4	64.66 （a）
489 1． 11	139	169	$2 \underline{2} 1$	12．41t	$539 \times 1126$	14	275	$3: 33$	74．34．a	5th V 31	311	3	2110	75．44 $a^{*}$
490 131 7	$\therefore 1$	718	$2 \sim 1$	\％1．57 ${ }^{\text {a }}$	540 以 20	$7 \quad 57$	4！0	314	$35.34 t^{*}$	589 V 20	217	61	21	$610.15(p)$
49131124	10 5\％	737	52	it 15 （a）	540 \11 14	21	26,5	9.	75．0．3 a	559 \ 15	$6 \quad 21$	604	\％	$66.44(p)$
493 V111 21	150	3	${ }^{2} 9$	13．5． 93 （0）	$541 \quad 6110$	$0 \quad 316$	811	13	＋1．5st	$590 \quad 1$	10 45	593	－	75．74a＊
493 1＋	$4 \quad 46$	1546	265	4550	543 14 ${ }^{0} 0$	27	431	19	\％5 40， 2	59］ 11 －3 1	1031	552	35.	75．05a
$\begin{array}{llll}494 & 11 & 19\end{array}$	$0 \quad 56$	88		15．37t＊	543 \ 11	49	12	1	1433 l	59211119	15	1	，	45．70
496 X 22.	（i） 55	611	3113	65． $8011{ }^{*}$	544	45	0	2.35	65．04a	294120	17	310		it．33a
$500 \quad 1185$	3 \％	32.4	321	5t．14t	5i5 113 ご	10 i	19	4	5429	591611 23	635	520	293	33.55 t
50117130	23 21	528	1s：	71．79 ${ }^{\text {a }}$	5．1120	9	151	96	65\％	545116	33.3	299	19	75．03 $\mathrm{a}^{*}$
502V1120	13	515	206	04．05（a）	517 136	41	39	291	t5． 55 1 ${ }^{*}$	59613115	$0 \quad 39$	27	199	$48.35(z)$
51131110	$0 \quad 17$	179	2	15．931	5th 11120	5.5	$11!$	14	45 151	59410	2317	152	4b，	65.21 ia
505 V 19	$9 \quad 57$	15：1	31.3	14．111	519 \11 \％	55	56	13	If 4tit）	299 ハ 30	19	4		4.45 ？
506 X1 3	4	221	26	56， 34 （ $/$ ）	5in 3124	17	til	3	（i．） 72 u＊	60113110	21	35	301	5． 6.46
5041.833	1130	0	20：	5.5 .097	5.51	45	（i）	3	6t $3.32^{*}$	tiol I $\%$	$3 \quad 30$	1		6． 17 （ $\mu^{\prime}$ ）
509 Y11131	38	51	0	（i．j） $86 / 4$	4 11119	2	1	1	11．311	604 \il 20 L	10	1is	34 i	
53218	$3: 1$	fir	216	6t 42＂	\％is 111 s	$23 \quad 31$	330	1	2． $5^{2} 12$	605 W 29	5 5	92	い	61．58 a
$532 \mathrm{Y17} 80$	$8 \quad 11$	94	1	15	\％V1 23	$7 \quad 51$	490		15 6ifit	till 1711	5：			$35{ }^{4}$
573 11 19，	111	84	）	36	511）XII 3	11	\％	231		609811	－19	2	3017	14．35
51t Y 10	921	S1	334	． 23	$56]$ IV 30	$\checkmark 1$	＋11	14	－${ }^{2}$	609118	$23 \quad 21$	虽	$\checkmark 5$	$3+.92(1)$
51． 12	312	611	11.	＋1．9！	562 N 19	111	＋31	311	$65.112^{4}$	6131112	5 52	52：		＋1．93t＊
316 M 17	383	$2!$			36： 1 14	11 哏	203	10	． 00 ／1＊	¢ft F	3		27	tios．
517 小	$1) 1$	1	190		，10：3 1 1 3	is	19：3	$1{ }^{1}$	\％，湤，	\％6 \1 1\％	$\because$	236		＋ 96
	13	（1） 0	1	1i．i．till．／	615118	35	T 21			6i3 11 b	735	2	1	． 70.10
5151115	（； 56	32，	？ 91	15．11 ${ }^{*}$	566 TIII 1	i $2 \%$	（130）		45．090	618 111 31 2	23	41：3		36.35

TABLEA．

Date A II	Laska time u！ rombunction mbasured trom sumrive．	$L$	$\mu$ ．	$\therefore$＇	Iratr 111		1.	12.	$7^{\prime}$	Wate I 1）	fanka timi． 11    m＂ancel tralit － 1112 に右	I．	$\mu$.	$\gamma^{\prime}$
618 \ 枵	7 h ， 8 l m	213	30 t	71． 304	dibi \ 12	$22 \% 2111$	it	171	$3180(t)$	T14｜l｜｜ 1	$2311+m$	$11+1$	$181)$	71．bia
62011110	$2 \quad 10$	752	221	6．2． 9610	66．）IV ： 1	3	33	237	56．34（1）	71.51111	$1 \quad 77$	131	223	65.61 a
620 ［X	5 4	162	282	＋1．93 $t^{*}$	667 V1I 25	48	$55^{5}$	230	5．． $115 t^{*}$	71611123	$1: 3$	123	10	$46.32(11)$
62：M11 2 ？	8 9	678	315	4． 0.021	6701123	$\because 20$	493	231	5.554	719 V $2: 3$		$6{ }^{6}$	192	$5 \mathrm{fi.17} \mathrm{P}$
$62+$ SIl lis	23 54	665	192	＋1．3．5	6718 Mll is	i3 46	2711	2.51	6．t．95a	721 ［ ${ }^{2}$ 2 6	：3 \％\％	54.	256	5in．It $t^{\circ}$
626 X 26	$\because 1 \mathrm{~N}$	615	235	75833	671 \11 7	75	25	313	$35 \mathrm{is} a^{*}$	721 『11 ：\％	$\begin{array}{ll}23 & 13\end{array}$	525	18.3	555014
627 IV 21	7 9	$3: 3$	302.		672 Vl I	5 36	173	$\because 77$	$34.15,10$	$72 \%$ 1 1！	50	303	2616	61918
$627 \times 15$	142	601	2233	\％．） $114 t^{*}$	$67 \%$ XI 25	7 13	$21 \sim$	301	46.36	72，VII 11	11 1！	514	3	$1501 t$
625 1V ！	23 5t	23	191	45，（6） 6	674 IV 12	$1) 13$	421	198	（5）12a	$7 \because 6$ I 8	$8 \quad 17$	29	313	二6，6a
628 X 3	139	59.3	26.5	$6 \pm 13 a$	674 S 5	6 24	19．3	29.4	b． 4.3 t	\％26 VII 1	1 ： 3	301	253	$3427 t$
630 VIII 13	$\because 3$	543	176	$35, \mathrm{Hin}^{2} /$	6i\％I 25	10 25	712	316	4.9 .0 ¢ $t$	726 入11 2	$\hat{4}$	$\geq 0$	3010	$76 \quad 333(p)$
631117	0） 17	321	194	－1．901a	678 V11 9．t	935	123	337	75．01 $a^{*}$	727 V 2.5	$1: 3$	Hif	2］	$16.69{ }^{\prime}$
\＄32 1 27	5） 47	310	27.	25．69 a＊	6\％！V1I 13	124	113	12	$155.76{ }^{4}$	725 \16	－ 19	ごの	323	44．79t
633 V1 12	$9 \quad 1 \%$	483	314	76． $\mathrm{I}^{1} /{ }^{\prime}$	6sth $\mathrm{SI}: 27$	$\because 17$	649	233	$85.5 \%$ a	$7: 9$ 1－27	017	217	201	15． 16 t
634 XI 26	1110	24	356	6．6．97（a）	「iS1 V 23	5 52	64	294	34．65t	$73 \% 11105$	（i） 1	18.5	295	71．40a
637 111 31	237	414	18：	$45.74 t$	（is）XI 16	28	1337		$75.19{ }^{*}$	733 111114	97	111	329	6．5．35 ${ }^{*}$
637 1N 24	133	193	22.2	$54.138(0)$		$22 \times 1$	51	171	45． 14 t	$734 \times 1130$	$2 \quad 29$	642	$23 \%$	$45.89 a$
638 III 21	941	403	338	6．5． $90 a^{*}$	6n：\1 ；	－ 10	626	27.4	64 小！$(a)$	73\％V11 25	＋ 17	96	260	$31.43 t$
639 1X 3	$6 \quad 14$	162	247	35.59 t	68611 20	68	343	：8］	55．61t	73\％\11 19	51	671	$2 \div 3$	75．20 $a^{*}$
6.4117	312	500	$2+1$	5n $73 a^{*}$	6ss Vll 3	912	5114	3334	55 bifia	737 x 29	717	619	311	16．54 ${ }^{(p)}$
642 X11 27	850	639	321	41.35 （t）	69\％ 1528	715	435	304	$6.5 .19{ }^{\prime *}$	74115	$5 \quad 3$	15	273	$45.47 t^{*}$
643 V1	236	92	171	6.5 .93 a	693 IV 11	15	4\％ 4	339	1．4．43 $a$	$7 \pm 11115$	6 25	53：3	248	55．86a
6 ES X1 17	715	634	310	66.48 （ 1	693 X	6	195	302．	45．50t＊	716 V 25	$3 \quad 39$	1866	251	6．5． 134
1．44 M－	1014	626	3.51	$75.85 a^{*}$	$695 \quad 11 \quad 19$	1.13	733	2.5	$55.78 t^{*}$	ilf V 14，	$53 \%$	156	275	7466
645 X 25	930	（1） 5	311	75．16a	6971 こら	11 ＋	712	354	14．37	75 Nl	91	2ご	33：	$15.45{ }^{\prime \prime}$
$6+6$［V 21$]$	7 3	33	30t	$45.54 t$	9＊\1］s	$10 \quad 33$	860	353	85.87 （7）	719 11］ 23	111	116	254	45.891
64811129	7 34	343	307	74．21a	699 入］ 27	！）3－1	619	310	75．13：12	3.381	1112	693	351	95． $90(1,1)$
$648 \mathrm{V111} 24$	$5 \quad 57$	5.33	$\because 85$	$35.72 t$	700818	547	（5）	241	＋5． 3317	753 N11 29	10 ：3	fin：	314	－5．21a
$\begin{array}{llll}649 & 11 & 17\end{array}$	7 5s	3：3：	310	it．96 ${ }^{*}$	70\％以 ${ }^{2}$	452	15	269	7t．117	754 ll 25	3 ：31	96	217	$4510 \%^{\circ}$
650 Vlll 3	53 s	533	$\pm{ }_{-5}$		702 IN： 26	$6 \quad 21$	こ～6	$29+$	$45.84 t$	756 X 84	7 5l	6119	318	$4.5 .91 /$
65l 1 2\％	219	310	$228!$	$40.32 \%$	$703111: 2$	f 16	$t$	287	（it 43 a	557 W 23	3317	36	$\because 49$	lif．633a
651 NI］18	730	＊69	308	＋4．24t	7011 d	33	56.5	239	64．34a	759 17	35	597	$21!1$	\％ 4.50
65311	65	473．	281	＋4．71t＊	7（1．） $11 \underset{\sim}{2} \times$	44	313	$\because 4!1$	［6． $2+1$	7.59 118 2	$+11$	15	2．j	$36.11(p)$
653 Xl 25	23 45	$\stackrel{2}{2}+7$	191	\％5．69（17）	70.81118	11	$5 \% 5$	12	76 53（p）	\％60） $11 \times 1$	11 \％	3：36 ${ }^{\prime}$	35！	＋4．20，
6551 V 12	6 46	$4 \% 4$	298	$45.80 t$	71H； 19	944	30.3	339	$44.27 t$	Thl Vlll	$\because \quad 25$	53.5	230	$4.514 \ell^{*}$
658 IX 3	5．${ }^{5}$	16.3	279	16．29 ${ }^{\prime \prime}$	$70 \%$ V11 +	3.50	501	25.2	$11.94 t^{*}$	762 1 30	0 1	314	189	75.63 a
659 V11 25	1 \％	124	224	$6+33 a$	70781180	111	2 a	194	\％5．6ia	763 I I5	23823	30）3	174	76．31 11$)$
660 1 15	145	701	$\because 17$	45 $03 t$	30！ 1714	$+\quad 57$		$\cdots$	$16.01(m)$	$764 \mathrm{V1} 1$	1017	17	3.31	6r．5］ $1 t^{*}$
660 V11 13	35	113	234	$75.09 a^{*}$	$710 \times 26$	23 3n	217	192	＋4． $0_{0}$ ，	Tit $11: 30$	$\because \quad 11$	2.50	207	$11.78 t$
661 V1I 2	5 1s	102	271	65．8）${ }^{\text {a }}$	$712 \times 5$	63	14，5	24.3	56.20 p	The $\backslash 1$	713	2．！	30.3	$56.17 p$
$662 \quad$ V 23	531	6.4	281	$43.97(p)$	11\＆11 19	$3 \quad 27$	73.4	242	$15.09 t^{*}$	767 IV 3	1156	117	1.5	45．9\％$(t)$

TABLE A.


## TABLE



## TABLE 1.



TABLEA.


TABLEA.


TABLEA.

	I.	$\mu$	$7^{\prime}$		1.	14	$\%^{\prime}$.			$L$.	k	"
1495 11 25 \% h 69 m .	745	234	5.) $311 t^{*}$		447	313	65. 5.511	159511823	11 h .14 m	990	8	(6) 1:
1495 V111 20.455	153	S9	62.	$1545 \times 11+2$	$26: 2$		$5{ }^{\text {a }}$ (t)	[5:H IN	3	9	3	15: 14
$\begin{array}{llll}1496 & 11 & 1410\end{array}$	73.	3.40	74.57a	$\begin{array}{llllll}15.46 & \text { X] } & 80 & 10\end{array}$	251	35	75.26 (a)	1597111	23	35.	164	9.3. 193
	13.5	23	$35.09(p)$	15.7 V 151938	$16 \%$		14.29?	5991115	$13 \quad 3.5$	336	201	$f(p)$
$1495 \times 1113+11$	671	25 s	$21^{*}$	154911120420	H.8.	231	$55.43{ }^{\text {c* }}$	000 Vl 301	$11 \quad 35$	519		
1499 V'1 צ2\% $1+$	6	167	02 ${ }^{12}$	49 1X 21 411	145	201	31.4nt	00 XII 25	11	1	$\pm$	4(a)
1500 V 2\% 22 5	is	$11 \hat{1}$	! ${ }^{1}$	5011115885	$1 /$	32	74.6.4a	01 V120	: 11	495	25	34.516
$1501 \times 12617$	604	29.5	$06.17{ }^{\prime \prime}$	1551 V1113112 3	167	$1: 3$	5: 92 (t)	(1)3 1 1	$0 \quad 11$	()	$20 \%$	$55.811 l^{*}$
1502 IN 7 4 46	26	267	$4 t$	1553 1 11 i 25	201		4.5. 43.1 \%	04 IN 1!	(i) 12	3!	2 Z	7+ 8\% ${ }^{\circ}$
$\begin{array}{llllll}1502 & \mathrm{X} & 1 & 7 & 30\end{array}$	597	311	$75.49 a^{*}$	555 VI 18.238	915	1.	$5626{ }^{\prime \prime}$	180. IV 8	639	12 n	291	74.11(a)
1503 I11 272183	16	156	35. 29 (t)	$\begin{array}{llll}1555 & \mathrm{Xl} & 1 & 6\end{array}$	611	292	71.24 $\left(y^{\prime}\right)$	16071116	8	737	314	4.) $17 t^{*}$
$\begin{array}{llllll}1503 & 1 \times & 20 & 75\end{array}$	580	315	6 (a)	556 V 9 3 19	58		34.391	081116	0	727	192	
1\%06 $1224+53$	314	65	$74.61 \text { (a) }$		630		75.5s $a^{*}$	1609 XII 16	0831	675	295	76.2ヶ ${ }^{\text {\% }}$
1506 V11 2012	5	24	$45.21 t$	$1357 \times 22080$	619	30	7t.87 (a)	0 V] 11	214	89	236	$3414(t)$
$\begin{array}{llllll}1507 & 1 & 13 & 6 & 23\end{array}$	302	286	$65.31 a^{*}$	1558 IV $1 \times 11150$	35		25. 90 (t)	10 X1I 5	$6 \quad 2$	663		55.62 $a^{*}$
1507 V11 10 \% 13	5	224	$54.13{ }^{\text {t }}$	$\begin{array}{lllll}60 & 11 & 26 & 3 & 57\end{array}$	$3+7$	35	74.53 (a)	1 XI 24	7	652	303	71, 320
$\begin{array}{lllllll}1509 & \mathrm{XI} & 12 & 5 & 56\end{array}$	240	332	54.57 (t)	;0 VII1 2111129	55.		$45+4{ }^{t}$	20	95	69	339	(1) $t$
$\begin{array}{lllll}1510 & \mathrm{~V} & 8 & 0 & 17\end{array}$	456	199	5t.89 $t$	61 1114 6 44	36		$65.25 a^{*}$	41 C 23	11	5970	4	$45.55{ }^{\text {c }}$
1513 HII 710 51	7	356	55.34 (t)	31 V111023 32	547		51.64a	161511119	6	S	281	$6515 a^{*}$
$151+\mathrm{ClII} 20383$	156	245	$35.31 t^{*}$	63 X11 15 10 52	3		54.55 (t)	6 1N 1	0 5	1	207	051.
$\begin{array}{llllll}1516 & \text { I } & 2 & 26\end{array}$	693	231	$66.16 \mu$	64 11 821 27	\%		$55.12 t$	7 V11 22	$10 \quad 19$	99	1	$66 i .17 \%$
1517 VI 19 4 40	97	264	64.94a*	67 IV 9,10	429		55.4ncl	019 V11 1	9 37	09	:336	34.59 (t)
1517 XII 13	671	2.55	$44$	$\begin{array}{lllllll}63 & 1 . & 21 & 3 & 24\end{array}$	15.5		${ }^{5} 516 l^{*}$	21 V 211	749	460	4	$55.65{ }^{\text {a }}$
$\begin{array}{lllll}1518 & \text { VI } & 5 & 5 & 21\end{array}$	$\checkmark 6$	3	65.70 ${ }^{\text {a }}$	$\begin{array}{lllllll}0 & 11 & 5 & 3 & 23\end{array}$			46.19	$2 \times 24$	$\pm$	2.21		4.08 t
1521 IV 7 5 29	27	76	35.2.4.t ${ }^{*}$	11 V11 220	129		8	9	$3 \quad 30$	759		5625 ( $1 / 2$
1523 VIII 11 3 23	5	247	35.99 (t)	$\begin{array}{lllllll}72 & 1 & 15 & 6 & 43\end{array}$	705		$14.766^{*}$	261116	$8 \quad 43$	738	1	$44^{4} 80$
$\begin{array}{lllll}1526 & 1 & 12 & 23 & 33\end{array}$	302	1	$5.5 .97(t)$	72 V11 10.0089	117		$65.14{ }^{\text {a }}$	27 Vill 1	$3 \quad 30$	38		5594 (a)
1527 V 30.110		216	65.76	75 V 10 $\pm$ 38	58		${ }_{60} t^{*}$	29 Y1 11	3	90	239	$34.54{ }^{2}{ }^{\text {a }}$
$\begin{array}{llllll}1525 & \mathrm{~V} & 18 & 7 & 22\end{array}$	466	305	$7 f^{*}$	75 111 \& 11122	358		74.49 (a)	330 XI 233	$23 \quad 50$	22	192	54.212
	24	$3: 3$	$65.27{ }^{\text {c* }}$	79 VTl1 22.686	555		54.70 a	1 V 20	$23 \quad 16$	69		66.65 (1)
1529 XI 1 ¢ 17	22 s	239	$75.99$		(		$12 t^{*}$	1631 入 15	55			$5(p)$
1530111295	418	273	$46.07(\mu)$	1592 V1 20.780	493		$55.20 t^{*}$	1632 IV 9	$\therefore 0$	30	39	33.2
$1532 \text { V } 1113011 \quad 20$		4	35.25 1				T5.2.a ${ }^{\text {a }}$	3 11 23	5 5	590		$64.96 a^{*}$
1533 V11120 +14	156	255	$97(t)$	43 X11 $4+2$	262		$45.95 a$	3411119	37		15	$22 t$
1535 VI 3011	107	0	64.851	1587 IX 22	145		4.) 512	36 VII $2^{2}$	57	29		43) ${ }^{\text {d }}$
1536 V1 18111 51	96	9	$65.61 a^{*}$	9 11 1123 39			$45.45{ }^{2}$	1 16	$3 \quad 54$	0.		$75.23{ }^{12}$
1539 X 1123 +	608	193	74.84 (a)	89511118030			i4.6019	1638	6	295	250	334
1540 IV 74	27	256	55.95 t	90 VII 21.754			$351{ }^{\text {* }}$	$311 \quad x \geqslant 1$	4	2	269	$6 t^{*}$
$1541 \text { VIII } 211110$			$5$	33 V 2012 ?	69		34.99 (t)	16431110	0 16	759	205	$45.52 /{ }^{\circ}$
1542 VIII 11 3849	5t	251	45.34t	1593 X1 122020 55	61		74.91 (a)		$\because$	(1)	211	74.39 ${ }^{12}$
	314	310	55.96 t	1594 V $10 \sim 33$	39	231	35.75	$1644 \mathrm{V1112}$	30	139	2.51	$65.131{ }^{\circ}$


	1.	$\mu$	；＇．		2.	$\mu$	$\gamma^{\prime}$ ．	Wate A U）	$\begin{gathered} \text { Lanka tume } \\ \text { of } \\ \text { cunnethm } \\ \text { measnred } \\ \text { frum } \\ \text { sunase. } \end{gathered}$	$L$	14.	${ }^{\prime}$
16．4．5 111111910 hram	1＋！	35.3	$53.48 t$	1693 \1：2311 1.25 m.	502	S	$54.100 \%$	1741 X1 2 2	th． 43 m	656	267	Ts 100
16ta 11 2：2 10 23	1110	3.01	34.75 （t）	$\begin{array}{lllllllllllllllll}169 \% & 81 & 26 & 6 & 85\end{array}$	255	293	$55.73 t^{*}$	2 V 242	23	12	191	$35.46{ }^{\text {c }}$
	$\bigcirc$	14：	74．93a	1696151104	43：	18	3.5 ¢¢ $t^{*}$	1744 11 242	23	593	196	75 （t）
16， 6 IT 10：33 53	10	190	5．5．55 ${ }^{*}$	$\begin{array}{lllllll}1697 & \mathrm{X} & 5 & 11 & 29\end{array}$	202	204	71．21a	174511122	215	12	227	75． 0.0
$\begin{array}{lllllll}1650 & \mathrm{X} & 15 & 3 & 19\end{array}$	612	249	5．5．6］t	H IN 2121136	191	221	6．1．97 $a^{*}$	1746 III 11	216	1	224	75．78 $a^{*}$
$\begin{array}{lllllllllll}1652 & 111 & 29 & 9 & 34\end{array}$	19	335	$15 \% 3(t)$		41］	311	$34.13{ }^{1}$	$47 \mathrm{YIL1} 26$	$7 \quad 52$	533	314	66.25 （p）
	！	215	3615 （7）	$\begin{array}{lllllll}1699 & 1 \times & 13 & 9 & 27\end{array}$	131	6	$5.50 l^{*}$	$17+8$ V1I 141	$10 \quad 25$	523	350	T5．52 $a^{*}$
16．5 1118	32.9	1	5＋． 50.4	1 1\％01 \11 $2 t$ ¢ 32	132	322	44.55	$49 \mathrm{X11} 28$	$8 \quad 12$	289	321	5．5．72 2
165t V11］ 29316	S40	3333	$45111)^{*}$	$\begin{array}{llll}1 & 17 & 0 & 43\end{array}$	9	201	44．95 ${ }^{4}$	51 V 132	23 5\％	16.3	19.	35.51 t
1655 I 25］1 55	8	$\square$	\％ 5	$\begin{array}{lllll}33 & 1 & 6 & 10 & 37\end{array}$	697	19	54 26 （t）	ew Style				
	！	$20]$	31	16） 4 32	645	26.	$5567 t^{*}$	52 入 6	1） 52	＋	211	$64.88 a^{*}$
$\begin{array}{lllll}1657 & 11 & 1 & 121 & 46\end{array}$	1	163	55	（06 V l ¢ Hf	51	25	45.60 t	1753 Y 3	6 72	443	296	54．3 4 a
16is8 V	411	2，${ }^{\text {d }}$	6.	1707 IV 2J 104	41	15	$363 \mathrm{I}, \ldots$	$1753 \times 26$	932	213	$3: 39$	$55.59 \ell^{*}$
$\begin{array}{llllll}1039 & \mathrm{~V} & 11 & 2 & 51\end{array}$		236	a	04 III I1 5 5 50	2	8］	412	555186	，	163	303	41.35 （t）
	4］11	328	$t$	08 1X 3 it $0^{4}$	572	316	［ $1^{*}$	17561111	112	［4］．	209	65.00 a
16tiz III lill 1	760	14		¢ 1121	351	2	$t($（1）	$1758 \times 11130$	1617	809	259	$55.69 a^{*}$
166\％1， 2101055	170	33.3	$6^{5} 510$	323 35	1	59	$3.1 .93 t$	60 VI 13	$7 \quad 17$	S3	302	$35 \quad 391$
	708	292	7631 （p）	$11 \begin{array}{llll}18 & 8 & 57\end{array}$	57	2s	44.36		$0 \quad 38$	3	201	36．12p
$\begin{array}{ll}1665 & 1 \\ 1605 & 6\end{array}$	697	285	85．64 $a^{*}$	22135	502	58	$75.3+4(a)$	162 IV 24	$\pm 39$	31	266	26 （a）
1665 N11 26 ¢ 1	（is）	313	6＋94a	$\begin{array}{llllllllllllllll}11 & 0 & 31\end{array}$	2\％7	$2(1)$	45.04	$1762 \times 17$	757	604	319	$8 t^{*}$
	10	293	$55+7 t$	15 15 5 5   15	12	32.5	35.71 t	1763 IN 13	95	$\pm 3$	335	75．00 $a^{*}$
1667 \11 1112	90	4	66.29 p	$\begin{array}{llllll}15 & 11 & 11 & 1 & 3 t\end{array}$	432	218	11．94	663 x 62	23 42	593	193	45.08 t
1669 15 2044 40	10	20	$5 \pm 98 t^{*}$	$16 \mathrm{X} \quad 4.9811$	202	33i）	64．93 a	6641 V	（3） 31	12	334	73 （a）
1671 V11124 ${ }^{\text {a }}$ I2	5 51	306	66.33 （ $p$ ）	$\begin{array}{lllllll}5 & 1 X & 13 & 7 & 31\end{array}$	51	1	1633 （ $\mu$ ）	1766 l1 11	11	$32]$	359	44.34 （t）
1673 V111 2 \％ 810		315	$34 \times 11$ ？	$11 \sim 50$	1		55．6ina＊	$1767 \times 30$	32	10	236	45.02 ＇t
1074 V11 231121		211		$\begin{array}{lllll}20 & 1 & 24 & 5 & 5\end{array}$	119	，	$6496 a^{*}$	的 11114	11 53	1：	201	08 （1）
1655 WI 13 4 34	492	266	$55.92(a)$	20 V1I $\because 43$	22	4	$24 a^{*}$	66918		5	215	$17(p)$
	4 4 J	3：19	$a^{*}$	2］Vll 138 \＆ 24	121	6	1＋	63 ll	724	t	3118	35.90 t
	254	294	4500.5	$\begin{array}{lllll}23 & \text { V } & 23 & 2 & 7\end{array}$	72	20	at．ist	770	$0 \quad 33$	16.	$20+$	$15.17{ }^{\circ}$
$\begin{array}{lllllll}1675 & \mathrm{~V} & 21 & 9 & 25\end{array}$	1711	t	61.112	1732	2	5	34.99 t	$\begin{array}{\|ccc\|}170 & \text { X1 } & 17\end{array}$	－ 55	3	32	（i）${ }^{\text {a }}$
16011 111 20 \％3n	111	337	$459.8 t^{*}$	24 012	515	5	$1+25 t$		8 $\quad 37$	211	324	$p$
1659 IA 2.15 55	11	219	$55.55 t$	311 V11 \＆ 309	12	25	75． 1314	\％3 111 23	＋32	103	$\geq 63$	isa
16ヶ3 \11 1415	123		11 $6: 2$	$\begin{array}{ll}11 & 289 \\ 9 & 23\end{array}$	245	333	4．） $03.3 l^{*}$	Fit 111 12	$9 \quad 10$	\％	229	$03 a^{*}$
16inj XI leis \％\＃i	（44）	ごら	（14．34）	31 \I 23 4 55	12	266	（i）．066 a＊	774156	，	63	210	5．04 $a^{*}$
Jrimi V 12\％ 516	61	$\because 21$	$66^{12}$	31811172385	276	31	72 2	－5 VIII 26	$+11$	153	255	3.81 a
16581111 H	51	1：			3	3	$195 l^{*}$		15	701	203	$3: 3(p)$
	12.3	6．	64．93	5 A 5 1	02	16	55.02 t		$23 \quad 30$	10.3	$1{ }^{3}$	$4.55(t)$
1685 JV 201 1	11	10	，${ }^{\text {＊}}$	$+2331$	3	184	17．11t	681 X 17	－59	604		$45 \mathrm{ll} \mathrm{l}^{\text {t }}$
1690111121016	261		1568	＋110 6	12	3.	5． 176	1782 X 6\％2	23 51	594		1．391
$\begin{array}{lllllll}1698 & 11 & 14 & 3 & 15\end{array}$		1	75． 176	1739 \11 19 ${ }^{173}$	18	32	16．320（ $p^{\prime}$	＋ 111115	2：1 ： 1 ¢	514	1s－	7， 6.68
149： 11 it 3 12	2	21.3	，	1511 Y1 29315	\％	334	14.808	1745 I1 31	11 46	321	\％	45.01 （f）

## ＇TABLEA．

Wate A． 11		$L$	$\mu$	$i^{\prime}$	Date 111		$L$	12.	$\gamma^{\prime}$	1）ite 1 11		1.	14	$\therefore$＇
15n的 V111	（）h 43 m ．	5333	203		－17 11	（1）L． 51 m	624		4.515	18．5． 15	11.56	1 i	2711	右
1766 1 30	京	310	214	$55.310^{\circ}$	1818 V 5	（i） 27	17	290	7．5\％${ }^{\text {a }}$	$14.661 \times 29$	12 is	5b		
175s V11	1	17	316	15．25\％	1519 IX 191	115	54	17	66.53 （ $/$ ）	15：5 1N In	$1+3 n$	\％；		$6314 a^{\circ}$
1799 X1 16	$2 \quad 19$	23.5	231		1821111	5.	34.3	215	4.97	Inis 111 1：	311 17	38．）	359	Ts． 60.8 （tr）
1791 小 3	50	1.4	13	75． $\mathrm{H}_{2}($（1）	152311111	$2 \%$	32．2	222	Tit．46（p）	Intil 111	1232	291	$2 \times 11$	1it 42
1791 H 27	39	145	17	1 42.51$)$	$1424 \times 12042$		19.5	186	＋5． 10 t	1－6til 111	－117	$\therefore 16$	212	तf．iv，
1792 IS	－ 14	174	32011	64．9a）	142.4 N11 20	941	269	341	（i1． 5312	1462 X11 21	14	243	254	$16.16{ }^{\prime}$
$1 \% 9311112$	5 11	752	2 2	44．35）$(t)$	1425 V1 1611	11 24	145	5	$51682(t)$	156418	； 2314	$1+6$	（）	25． 2401
1793 18	2	16.3	358	is is $a^{*}$	1827 IV 26	5	135	224	6． 93.1	18651118	（\％） 512	ifs	324	65.75
$179+111125$	31	152	2	66i． $46 .(p)$	1825 IV 14	－ 2	124	320	5．5．15 ${ }^{1 *}$	1865 V1111］	－ 1 1i	14.5	230	314．95） $6^{\circ}$
$\begin{array}{lll}1695 & 1 & 202\end{array}$	26	701	195	55.71 （a）	1824 ．	2311	$1 \%$	15.	61．8ya	14.1 V1 18	913	¢6	21	7t．ist＂
$1795 \quad 11116$	610	114	23	＋1．1il	1829 1才 2 ¢	0	185	2094	T．5． 62 a	14.1 X11 12	3 3	bifit	$\because 2$	1．） 19.4
17961110	\％ 20	690	172	\％．02a	153011123	3 5t	73.	2.3	14 i .37 （ $p$ ）	14.2 Vl 6	8） $2 \quad 24$	\％ 6	231	$6.5 .31 a^{\circ}$
$1790 \mathrm{Vl1}+$	9	104	26.5	$35.24 t$	32 Vll 2 i	13 is	＋	29	33．09 09	14．7t X 1010	106	597	352	\％9 9 \％
1\％98 XI	19）	6i2f	210	15． $\mathrm{S3} 3$（t）	$1833 \mathrm{Wl1} 17$	（i） 21	＋		$3.553 t$	i．If 6	；$\overline{3} \quad 40$	16	279	$15.48 t^{*}$
1799 V	1	17	189	7．4．87（a）	$1535 \times 1120$	935	637	312	45．151	$18 \% 5$ IX 29	$11 \quad 59$			15．5．27（11）
1800 IV 23	36	34	13.	\％3．61 a	368818	$0 \quad 39$	$92 \sim$	204	34.47	571115	51 is	3.5		75．39 $P$
1801 IV 13	$3 \quad 27$	23	242	$66.32(p)$	1580 111	310	314	237	35（ir）${ }^{\text {＊}}$	1879122	10 54；	312	3 ar	
1502 V11129	6 8	354	289	75．76a	18.40 V111：5	$5 \quad 49$	5.5	229	54.38 .1 （）	1499 V11 19	－ 510	14	311	54． 5 ¢ 2
1403 V11117	7 2	513，	305	（65） $00 a^{*}$	1842 \11 8	6	6	246	4．）． 71 t	1581 V $2 \pi$	12 10	tif	8	lifi $1+\mu$
18041111	$10 \quad 29$	3：2	346	55.71 （t）	1643 Sll 21	41 t	269	257 ．	$55.52 t^{*}$	18n2 V 17	（i）3n	btis	295	$5.533 l^{*}$
1805 \1 26：	22	－	172	$36.05 \%$	1845 V 6	9	416	333	$66.100(a)$	1057 V1111！	1113	1tis		5．5 1331
18066 X 1110	22	2.5	217	64．54a	$1546 \times 20$	6 ＋	$20 \%$	300	64.35 a	1－49 V11 2 ¢	4	97	311	it 1614
1807 V1 6	＋ 23	45	260	54．54t	1947 IV 15	$5 \quad 2 i$	＋20	274	1447 t	159017	19 2	nf	3：29	15． $20.90^{\circ}$
1807 XI 291	10 53	$\because 46$	359	55.54 （t）	5\％X 9	－12	195		75．58 $a^{*}$	1490 \1］1：	2 15	1		54，501
1sos XI is	46	$2:$	221	46.19 （p）	$18+511220$		194	323	$716.28{ }^{\prime \prime}$	14．3）IV fit	；3 3	$14:$	234	$51 *$
1810 IV 4	0 15	11	205	55．10\％	1949 11 23		731	201	（6．5．75 $a^{*}$	1，91 1． 29.9	15		267	14．itl
1813111	7 55	T1	311	65．72a $a^{*}$	11114	＋ 37	14.3	2lit	＋3．23t	V111211	120			36.39
1814 V11 17	$5 \quad 37$	1	6	$35.16 \ell^{*}$	$\begin{array}{lllll}1850 & 11 & 12\end{array}$	$5 \quad 33$	723	27	\％ 5054	Inde Vlll 9	$+$	331		5．in
1815 VII 6	$22 \quad 57$	104	115	35.91 t	1452 XII 11	$2 \quad 36$	659		1．3． 86 t	94 I 22	268	812		15．31 6
$\begin{array}{llll}1816 & \text { X1 } 19\end{array}$	$9 \quad 13$	1837	33	5． $51 t^{*}$	1455 V 16		2.	211	$56.12 p$	$1900 \times 12$	15 21	210	293	$13 \%$（a）
1817 Y 16	f） 0	55	286	－ 5.79 a＊										

## TABLE B.





TABLE B.




## T A BLE B.



## 


'TABLE IB.


## 'TABLE 13.



## 'TABLE B.



## 



## ＇TABLE C．

$z^{\prime}+z^{\prime \prime}$		$\gamma^{\prime}+$ \％＇		$\gamma^{\prime}+\gamma^{\prime \prime}$		$\gamma^{\prime}+\gamma^{\prime \prime}$ ．				$\gamma^{\prime}+z^{\prime \prime}$	
35． 17	11	45.46	${ }^{1}$	55.45	0	65.41	${ }^{1}$	75.43	0	勺3 12	${ }^{6}$
35.51	1	＋5． 50	1	5550	1	$65 \quad 19$	1	75.48	1	55． 47	1
35.56	2	4555	2	55.54	2	65.54	2	75.53	2	85.52	2
35.60	3	$+5 \quad 59$	3	55.59	3	65.58	3	75.58	3	85.57	3
35 bt	$1 \%$	45.63	4	55.638	4.	65.63	4	75.63	4 ィ	45.62	$4 \%$
35.68	5	45.65	5	55.68	5	65.68	5	75.6	5	85.68	5
35．73	¢	45.73	侣	55.73	6 呇	65.73	6 ¢	75.73	$6 \stackrel{\text { ¢ }}{\text { ¢ }}$	45.73	6 ¢
35.77	7 m	45.73	75	5.8 .77	7 \％	65 if	7 「	75	「引	85.75	75
35．81	${ }^{8}$	45.82	$\bigcirc$	5582	$8^{\text {t }}$	65.42	8 ＂	75.53	4	S5 43	$8{ }^{\circ}$
35.85	9	45.46	9	55.86	9	65.87	9	75.57	4	85.58	9
3590	10	45.90	10	35.91	10	65.92	10	\％5．92	10	85.93	10
35.94	11	45.95	11	55.96	11	65.97	11	75.97	11	55.98	11
35.98	12	45.99	32	56.00	12	－	－	－	－	－	－
31.100	Total	46.60	Total	36.06	T＇utal	668.00	Amunar	76.00	Annular	86.00	Annular．
36.02	12	46.01	12	56.00	12	－	－	－	－	－	－
3606	11	44； 115	11	56 （1）	11	66.03	11	7603	11	86.02	11
36.10	10	46.11	111	56.09	10	fit． 08	10	76.08	10	86.07	10
3615	9	46.14	9	56.14	9	66.13	9	\％6． 13	9	86.12	9
36.19	8	46.18	8	56.18	4	66.18	8 \％	76.17	${ }^{5}$	$56.1 \%$	5
3623	7 \％	46， 23	7 \％	515．23	$\bigcirc \stackrel{\text { ¢ }}{ }$	66.93	7	76．22	7	86．22	$7 \pm$
31.27	（\％	45.27	隹	54.27	$6 \stackrel{\text { ¢ }}{\substack{4 \\ 0}}$	664．23	¢	76．27	$6 \stackrel{\text { and }}{ }$	S6 27	fi
36.32	5	46．3\％	：	50，32	5	606．32	ら	76.32	三	s6．32	「三＇
346.36	$4^{\text {\％}}$	4ti． 36	1 \％	80.38	1 \％	631.35	$1{ }^{3}$	76.37	${ }^{\text {＋}}$	n6．34	$4^{\text {\％}}$
36．40	3	16.41	3	5641	3	¢f． 72	3	76．42	3	86.13	3
36.44	2	14 ； 5	2	56.46	2	666.76	2	\％6． 47	2	86.15	2
364．4！	1	Hi， 51	1	54．30	1	696.51	1	76．52	1	86，．33	1
3653	11	16.51	${ }^{1}$	54.5 .5	${ }^{1}$	60.54	$1)$	36.58	1	86.55	0




## 'I ABLE I)



TABLに 1 .


## 'TABLE I)



## T，\にはに I．



TABLE I 。


## 



TABLE J.



＇TABL」 L 。

$\lambda \mu$	260	270	230	200	300	310	330	1380	310	3．50	0	$10^{\circ}$	$\because 0^{\circ}$	$30^{\circ}$	$10^{\circ}$	$50^{\circ}$	$180^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$	$100^{\circ}$
$1.107 .50{ }^{\circ}+10^{\circ}$			54． 7	0.3	2.2	4．2	6． 2	¢． 5	19.8	13.3	16.0	1 $\times .5$	$\geq 0.4$	230	25.2	2	24． 7	30.3			
30				59.8	1.7	3.5	5.7	S． 0	10.5	132	16.0	187	21.2	233	25.52	27．3	29.2	30.4			
211				59．3	1．2	3.0	5.0	7.3	10.0	12.7	15.7	18． 5	21.2	23.5	255	27.5	292	30.4			
111				59.2	0.4	2.7	4.7	7.0	9.7	12.5	15.5	14.3	21.2	235	25.72	27.7	29.3	31.0			
11				53.0	0.7	25	4.5	6．）	9.3	12.2	15.2	14．2	21.0	23.5	25.7	27.7	9．3	31.0			
］．$=7611^{-}+=11^{-1}$			53．：	0.8	2.7	47	6.7	8.8	11.3	13.8	16.3	1ヶ． K	21.3	23.5	25.5	27.5	29.2	304			
30			\％．$\%$	0.2	2.11	40	0.0	8.2	10.7	13.5	16.2	¢	21.3	23.7	25． 8	27.7	29.5	31．2			
211				54.7	1.5	3.8	5.3	7.5	10.2	13.0	$15 . m$	$15 i$	213	23.7	$25 . h$	27.8	$29 \quad 5$	31.2			
10				59.3	1.0	2．5	4.5	70	9.7	12.5	15.5	14．3	21.2	23.7	25 h	278	295	312			
11				54.0	0.7	2.5	4.5	6.7	9.2	12.0	15.0	1ヶ．0	20.8	23.3	25． 5	27.5	293	310			

## ADDITIONS AND CORRECTIONS.

Art. 2. 万. 0.
A better description of the sankrintis may begiven thus. The sayana Meshat satikrint, also called a Vishuva sankranti, marks the vernal equinox, or the moment of the sun's passing the first point of Aries. The sayana Karka sankranti, three solar months later, is also called the dakshiṇiyana (southward-going) sankranti. It is the point of the summer solstice, and marks the moment when the sun turns southward. The sâyana Tulà sankrànti, three solar months later, also called a Vishuva sankranti, marks the autumnal equinox or the moment of the sun's passing the first point of Libra. The sayyana Makara sankranti, three solar months later still, is also called the uttarayana (northward-going) sankranti. It is the other solstitial point, the moment when the sun turns northward. The nirayana (or sidereal) Mesha and Tula sankrântis are also called Vishuva sankrantis, and the nirayana Karka and Makara sankrintis are also, though erroneously, called dakshinayana and uttaràyana sankràntis.
Art. yo, of. 52.
Line 6. After "we proceed thus" add;-"The interval of time between the initial point of the luni-solar year (Table I., Cols. IV, 20) and the initial point of the solar year by the Sarya Siddhinta (Table I., Cols. 13, 14, and 15a, or $17 a^{1}$ ) can be easily found.

Line 9. After "Art. 151 " add;-"or according to the process in Example 1, Art. 148." Linc 16. After "intercalations and suppressions" add;-We will give an example. In Professor Chhatre's Table, Kirttika is intercalary in Saka 551 expired, A.D. 629-30 (see Ind. Ant., IVII/. p. 106); while in our Table Âsina is the intercalary month for that year. Let us work for Asvina. First we want the tithi-index $(t)$ for the moments of the Kanyà and Tulà sankrantis. In the given year we have (Table l., Col. 19) the initial point of the luni-solar year at sunrise on 1st March, A.D. G2g. $(=60)$, and $\left(\right.$ Cols. $I_{3}, 17$ ) the initial point of the solar year by the Ary'a-Siddhanta ( $=17 \mathrm{~h} .32 \mathrm{~m}$. after sunrise on March igth of the same year). By the Table given below (p. 151) we find that the initial moment of the solar year by the Siory Siddhanta was 15 minutes later than that by the Airya Siddhanta. Thus we have the interval between the initial points of the luni-solar and solar years, according to the Sirra Shddhinta, as is days. I 7 hours, and 47 minutes. Adding this to the collective duration up to the moment of the Kanya and Tula sankrintis (Table I/I., Col. 9), i.c., 156 days, 11 hours and 52 minutes, and 186 days, 22 hours and 27 minutes respectively, we get 175 days, 5 hours, 39 minutes, and 205 days. 16 hours, 14 minutes.

We work for these moments according to the usual rules (Method C, p. 77).

 Siirya Siddhánta. The time of the Mesha satikrintis by the iryot Sietdhánta from 1 I). 1101 tu 1900 is given in Table 1. That for years from A If 300 to 1100 can be whtained from the Thble on p. 151.


This proves that the moon was waning at the Kanyà sankrànti, and waxing at the Tula sankrinti, and therefore $\hat{\Lambda}$ sivina was intercalary (sce Art. 75). This being so, Kàrttika could not have been intercalary.

The above constitutes an easy method of working out all the intercalations and suppressions of months. To still further simplify matters we give a Table shewing the sankrantis whose moments it is necessary to fix in order to establish these intercalations and suppressions. Equation $c$ is dways the same at the moment of the sankrantis and we give its figure here to save further reference.

Months.	Saikrântis to be fived	Equation c
1.	2	3.
1. Chaitra	Mina . . . Mesha	3
2. Vaisitha	Mesha . . . Vrishabha	1
3. Jyeshtha	Vrishabha. . . Mithuna .	15
4. Ashiolla	Mithuna . . Karka.	42
5. Sravalua	Karka . . . . Siriha.	75
6. Bhielrapada	Simha . . . Kanya	103
7. Asvina	Kanya . . . Tula	119
8. Kirttika	Tulit . . . . . Vṛischika	119
9. Mirgasirsha	Yrischika . . . Dhanus	104
10. Pausha	Dhanus . . . Makara	78
11. Misha	Makara. . . . Kumbha.	47
12. Phthymat	Kumbha . . . Mîma	$\therefore 0$

Al. ys, Fable, p. 5.5.
Instead of this Table the following may be used. It shews the difference in time between

save the trouble of making any calculation according to the Table in the text．But if great accuracy is reguired the latter will yich results correct up to 2t second：while the new Table gives it in minutes．

## TABLE

Shewing time－difference in minutes between the moments of the Mesha sankranti as calculated by the Present Sûrya and First Arya Siddhântas．

TThe sign－shews that the ．Hesha sankranti according to the Surya Siddhinta twok place before． the sign + that it took plate after，that according to the dirva Siddhintal．

Years   A．b．	1）iff． in minutes．	Years   A1）	$\begin{gathered} \text { biff } \\ \text { in } \\ \text { mimetes } \end{gathered}$	Year，   A1）．	$\begin{gathered} \text { Dus: } \\ \text { in } \\ \text { minutes } \end{gathered}$	lear．   （1）	13． ill диінит
	－		＋		＋		＋
300－5	21	501－9	1	703－11	23	$904-12$	45
309－17	20	$510-19$	2	712－20	2.	913－21	46
315－27	19	$520-28$	3	721－29	25	$922-30$	4
$32 \mathrm{n}-36$	18	529－37	4	730－38	26	931－39	45
$337-45$	17	538－46	5	739－47	27	940－4	49
346－54	16	547－5．5	6	748－56	28	949－5	50
$355-63$	15	\％ $56-64$	7	757－66	29	9：59－67	51
364－72	14	565－73	8	767－75	30	96ヶ－ 76	52
373－81	13	574－83	9	766－8t	31	$972-55$	33
$382 \rightarrow 91$	12	584－92	10	785－93	32	986－94	54
$392-400$	11	593－601．	11	794－802	33	995－1003	5.
401－9	10	602－10	12	803－11	34	1001－13	56
410－18	9	611－19	13	812－20	35	1014－22	57
＋19－27	8	620－29	14	821－30	36	1023－31	58
423－36	7	629－38	15	831－39	37	1032－40	59
$437-45$	6	$639-47$	10	810－49	38	1041－49	60
446－55	5	648－56	17	849－57	39	10．50－5s	61
456－64	4	657－65	18	858－66	40	1059－6．7	62
$465-73$	3	666－7t	19	867－75	11	106ヶーi7	63
474－82	2	$675-83$	20	876－84	＋2	1078－80	4）
483－91	1	684－92	21	885－9．4	43	108i－95	65
492－500	0	693－702	22	595－903	4.	1096－1104	66

Art．10з，to．56， 57.
From the initial figures for the ci．a．b．c．of luni－solar Kali 3402，A．D．300－1，given in the first entry in Table I．，and the figures given in the Table annexed to this article
(which gives the increase in a. a. b. c. for the different year-lengths) it is easy to calculate with exactness the initial $i$. a. b. c. for subseguent luni-solar years. Thus-

For Kiali 3402 355 days	a'	$\begin{gathered} a . \\ 9981.41 \\ 214.34 \end{gathered}$	$\begin{gathered} b \\ \mathrm{~S} 95 \cdot 17^{\mathrm{SS}_{3} \cdot 51} \end{gathered}$	$255.93$$971 \cdot 91$	(0ur chtries in Table l.)			
					$\frac{\pi}{6}$	$\begin{gathered} a . \\ 99_{1} \end{gathered}$	$\begin{gathered} b \\ 895 \end{gathered}$	$\begin{gathered} c \\ 256 \end{gathered}$
For Kiali 3403 384 days	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{array}{r} 195 \cdot 75 \\ 34 \cdot 66 \end{array}$	$\begin{aligned} & 778 \cdot 68 \\ & 935 \cdot 97 \end{aligned}$	$\begin{array}{r} 227 \cdot 84 \\ 51 \cdot 31 \end{array}$	4	196	779	228
For Kiali $3+04$ etc.	$\begin{gathered} 3 \\ \text { etc. } \end{gathered}$	$\begin{gathered} 230 \cdot 41 \\ \text { etc. } \end{gathered}$	$\begin{gathered} 71+65 \\ \text { etc. } \end{gathered}$	$\begin{gathered} 279.15 \\ \text { etc. } \end{gathered}$	$\begin{gathered} 3 \\ \text { etc. } \end{gathered}$	$\begin{aligned} & 230 \\ & \text { etc. } \end{aligned}$	$\begin{aligned} & 715 \\ & \text { ctc. } \end{aligned}$	$\begin{aligned} & 279 \\ & \text { etc. } \end{aligned}$

To ascertain how many days there were in each year it is only necessary to use col. 19 of Table I. with Table IX. Kali 3403 began 26th February. Table IX. gives the figure 57 on left-hand side, and 422 on the right-hand side, the former being entered in our Table 1 .

But since A.D. 300 was a leap-year we must take, not 422 , but 423 , as the proper figure. Kali 3402 began Sth March (68). 423-68 $=355$, and this in days was the length of Kali 3402 . Similarly ( 17 th March) $4+1-(26$ February $) 57=384$, and this was the length of Kali $3+03$; and so on.

It may be interesting to note that in every century there are on an average one year of 385 days, four years of 383 days, twenty-three years of 355 days, thirty-two years of $38+$ days, and forty years of 354 days.

1. g

To cnd of $A \%$. 160 , add the following:-" $160(a)$. To find the troprial (sayana) as well as the sidereal (nirayana) samkrinti. Find the time of the nirayana sankrinti (sec Art. 2.3) required, by adding to the time of the Mesha sankranti for the year (Tabli l., Cols. 1; 1017a) the collective duration of the nirayana sarkrànti as given in col. 5 of Table IH., under head "samkràntis." Then, roughly, the sayama samkrinti took place as many ghaṭikis before or after the nirayana one as there are years between Saka 445 current, and the year next following or next preceding the given year, respectively.
"For more accurate purposes, however, the following calculation must be made. Find the number of years intervening between Saka 445 current, or Saka 422 current in the case of the Siorga Siddhanta, and the given year. Multiply that mumber by $\frac{1}{6 n}$, or : an the case of the Sorrya Siddhanta. Take the product as in ayanamsas, or the amount of precession in degrees. Multiply the length of the solar month (.1\%.2 ) in which the siyana sankrinti occurs (as shewn in the preceding paragraph) by these ayamimsas and divide by 30 . Take the result as days: and by su many days will the siyana sankrinti take place before or after the mirayana sankranti of the same name, according as the given year is after or before Saka +45 (or Saka 422). This will be found sufficiently accurate, though it is liable to a maximm error (in A.D. 1900) of 15 ghatikits. The maximum error by the first rule is one day in A.D. Igoo. The smaller the distance of the given date from Saka $4+5$ (or 422 ) the smaller will be the error. For absolute accuracy seceial lables wonk have to be constructed, and it secms hardly necesary to do this.

The following example will shew the method of work.
Wanted the moment of occurrence of the nirayana Makara samkrinti and of the sityana Nakara (or uttariyana) sankrànti in the year Saka rooo. current.

Moment of Mesha sankrànti (Table I.)	March 23	$\begin{gathered} d \\ (82) \end{gathered}$	$\begin{gathered} \pi \\ 5 \\ \hline \end{gathered}$		52
Add collect. duration to begiming of Makara (Tathe //1.)	. . .	275	2		43
Then the moment of the nirayana Makara sankranti is . (One day being added because the hours exceed 2.4.) $358=$ Vecember $24^{\text {th }} . \quad 1=$ Sunday.	. . .	35	1		35

The nirayana Makara sankranti, therefore, vecurred on Sunday, December 24 th, at 6 h .35 m . after sunrise. Now for the sayana Makara sankrinti. By the Table given above we find that in the given year the sayana sankranti took place 9 days, 6 hours before the nirayana sankranti; for A.D. $1000-445=555$ ghatikis $=9$ days $15 \mathrm{gh} .=9$ days, 6 hours, and it took place in nirayana Dhanus.


This shews that the sayana Makara sankranti took place on Friday. 1 eec. 15th, at 35 minutes after sunrise.
(2) For more accurate time we work thus. $1000-445=555$. Multiplying by $\frac{1}{6 i n}$ we have $9_{60}^{13}$, or $9^{\prime \prime} 15^{\prime}$ in ayanamśas. The length of the month Dhanus is $29 \mathrm{~d} .8 \mathrm{~h} .24 \mathrm{~m} .4^{8} \mathrm{~s}$. (Table. t . Ior).

$$
\frac{29 \mathrm{~d} .8 \mathrm{~h} .24 \mathrm{~m} .4^{8} \mathrm{~s} . \times 9^{1 / 4}}{30}=9 \quad 1 \quad 11 \quad 39
$$

We take 11 m .39 s. as $=12 \mathrm{~m}$., and deduct 9 d .1 h .12 m . from the moment of the nirayana Makara sankrànti, which we have above.

	d.	zi.	h.	m.
24	Dec.	358	1	6
9	9	2	1	12
9		$3+9$	6	5

This shews that the sayana Makara sankranti took place on Dec. 15 th at 5 h .23 m . after sunrise, the day being Friday. '
"The following Table may be found useful. It may be appended to Table VIll. and called "Table VIII. C".

1 Actual calculation by the Arya Siduainta proves that the sîyma saikrâuti in question luoh phace only 1 minute after the there so fonnd. [s. 13 B.]

Table of Râśis (signs).
[The moments of the sankrintis are indicated by the first of the two entries in cols 2 and 3 . Thas the moment of the sitiba satikrati is shewn by $x=3333$, dearecs $=120^{\circ}$.]

Râis (signa)	See Arts 133 and 15 fi.)	Degrees.	Nakshatras forming the Râsis.
1	$\because$	3	4
1. Mesha	(1-533	$0^{\circ}-311^{\circ}$	1 Liviuî: 2. Bharauí: 3 First quarter of hrittikî.
2. Vrishatha	433-1667	$311^{\circ}-6 i l l$	3. Last three quarters of Krittikû; 4. Rohinî; 5. First half of Mrigasiras.
3. Mithana	1667-2500	$619-90$	3. Latter half of Mrigasiras ; A. Ardrà \% First three quarters of Punarcasu.
4. Karka	$2500-3333$	$90^{\circ}-120^{\circ}$	7. Last quarter of Punarvasu; 8. Pushya; 9. Asleshé.
3. Sinha	3333-416i	$120^{\circ}-150^{\circ}$	10. Maghâ; 11 Pâra-Phalgunî; 12. First quarter of Uttara-Phalguni.
6. Kanyit	$416 i{ }^{\text {- }}$-5000	1.50 $0^{\circ}-140$	12. Last threr quarters of Cttara-Phalrunî; 13. Hasta; 14. First half of Chitrî
-. Tulâ	5000-5833	$180-210$	14. Secoud half of 'bitrâ; 15. Svâti; 16. First three quarters of Visâkhâ.
Q. Vrischikî	5833- li66it	$210^{\circ}-210$	16. Last quarter uf Vizîkhâ; 17. Anurâdhấ; 19 Jyeshthî.
9 Dhamus	6665-i500	$240^{\circ}-290$	19. Mulâ; 20 Pûrva-Ashâdhât: 21. First quarter of Uttara-Ashâdhầ
10. Makara	7500-8333	$2710^{\circ}-3110$	21. Last threc quarters of Littara-Ashîdhâ; 22. Śravaụa; 23. First half of Dhanishthâ (or Śravishthî.)
11. Kumbha	8333-9167	$3100-330$	24. Sccond half of Dhanishthâ (or Śrasishthî); 24. Śatatâraka (or Satabhishaj), 2.5. First three quarters of Pûrra Bhadrapadai.
12. Nina	9167-10000	$330{ }^{\circ}-360^{\circ}$	25. Last quarter of Pôrva Bhadrapadî; 25. Uttara-13hadrapadâ; 27 Revatî.

" $160(b)$. The following is a summary of points to be remembered in calculating and verifying dates. The list, however, is not exhaustive.
A. A luni-solar date may be interpreted as follows:-
(1.) With reference to current and expired years, and to amanta and purrnimanta months. (A) When the year of the given era is Chaitradi.
(a) For dates in bright fortnights, two possible cases; (i.) expired year, (ii.) current year.
(b) For dates in dark fortnights, four possible cases; viz., expired year, or current year, according to both the purnimanta and amanta system of months.
(i) When the year is both Chaitradi and non-Chaitradi.
(a) For dates in bright fortnights, three possible cases; viz.. (1) Chaitradi year current, (2) Chaitradi year expired $=$ non-Chaitradj year current, (3) non-Chaitradi year expired.
(位) Dates in dark fortnights, six possible cases; viz.. the same three years according to both the phrnimanta and amanta system of montlos.
For months which are common to Chaitridi and non-Chaitridi years, the cases will be as in (A).
(II.) With reference to the tithi.

All the above cases, supposing the tithi was current. (1) at the given time as well as at sunrise of the given day, (2) for the given time of the day, but not at its sunrise.
B. A solar date may be interpeted as follows:-
(1.) With reference to current and expired years.
(.1) When the year of the given era is Meshadi, two possible cases; (a) expired year, (f) current ycar.
(k) When the year of the given era is both Neshadi and non Weshadi, three possible
 current, (i) non-Meshadi year expired.
(11.) With reference to the civil begimning of the month, all the cases in Art. 28 .
C. When the era of a date is not known, all known possible erats should be tried.
D. (a) According to Hindu Astronomy a tithi of a bright or dark fortnight of a month never stands at sunrise on the same week day more than once in three consecutive years. For instance, if Chaitra sukla pratipadia stands at sunrise on a Sunday in one year, it camot stand at sunrise on Sunday in the year next preceding or next following.
(b) It can only, in one very rare case, end on the same week-day in two consecutive years, and that is when there are thirteen lunar months between the first and second. There are only seven instances ${ }^{1}$ of it in the $f$ Goo years from A.D. 300 to 1900.
(c) It cannot end on the same week-day more than twice in three consecutive years.
(d) But a tithi can be connected with the same week-day for two consecutive years if there is a confusion of systems in the naming of the civil day, naming, that is, not only by the tithi current at sunrise, but also by the tithi current during any time of that day. Even this, however, can only take place when there are thirteen lunar months between the two. 1f, for instance, Chaitra sukla ist be current during, though not at sunrise on, a Sunday in one year; next year, if an added month intervenes, it may stand at sunrise on a Sunday, and consequently it may be connected with a Sunday in both these (consecutive) years.
(c) A tithi of an amanta month of one year may end on the same week-day as it did in the purnimanta month of the same name during the preceding year.
( $f$ ) The interval between the week days connected with a tithi in two consecutive ycars, when there are 12 months between them, is generally four, and sometimes five; but when thirteen lunar months intervene, the interval is generally one of six week days. For instance, if Chaitra sukla ist ends on Sunday ( $=1$ ) in one year, it ends next year generally on $\{1+4 \quad 5$ )Thursday. and sometimes on $(1+5-6-)$ Friday, provided there is no added month between the two. If there is an added month it will probably end on $(1+60)$ Saturday.
$(g)$ According to Hindu Astronomy the minimum length of a lunar month is 29 days, 20 ghaṭikàs, and the maximum 29 days and 43 ghatikis. Hence the interval between the weekdays of a tithi in two consecutive months is generally one or two. If, for instance, Chatra sukla pratipada falls on a Sunday, then Vawakha sukla pratipada may end on Monday or Tuesday. But by the existence of the two systems of naming a civil day from the tithi current at its sunrise, as well as by that current at any time in the day. this interval may sometimes be increased to three, and we may find Vaisiskha sukla pratipadi, in the above example, connected with a Wednesday:
E. (a) A sankranti cannot occur on the same week-day for at least the four years preceding and four following.
(b) See Art. 119, par. 3.
$160(c)$ To find the apparent longitude of Jupiter. Sic Art. O.i, p. .i. and Table - 17l.)
I. To find, first, the mean longitude of Jupiter and the sum.
(i.) Find the mean longitude of Jupiter at the time of the Mesha sankrinti by the following

Table W. That of the sun is $\mathrm{O}^{\prime \prime}$ at that moment.
(ii.) Add the sodhya (Art. 26, p. 11, Art. 90, p. 52) given in the following Table Y' to

1 They are A.1) $440-1 ; 776-7 ; 835-9,857-8 ; 1153-1 ; 1201-5$ 1:51-2.
the time of the apparent Mesha sankranti (as given in Table l., cols. 13 to 17, or 17a). The sum is the moment of the mean Mesha sankranti. Find the interval in days, ghaṭikàs, and palas between this and the given time (for which Jupiter's place is to be calculated). Calculate the mean motion of Jupiter during the interval by Table $Y$ below, and add it to the mean longitude at the moment of mean Mesha sankranti. The sum is the mean place of Jupiter at the given moment. The motion of the sun during the interval (Table $Y$ ) is the sun's mean place at the given moment.
11. To find, secondly, the apparent longitude.
(i.) Subtract the sun's mean longitude from that of Jupiter. Call the remainder the "first commutation". If it be more than six signs, subtract it from twelve signs, and use the remainder. With this argument find the parallax by Table Z below. Parallax is minus when the commutation is not more than six signs, phus when it is more than six. Apply half the parallax to the mean longitude of Jupiter, and subtract from the sum the longitude of Jupiter's aphelion, as given at the bottom of Table $Z$ below. The remainder is the anomaly. (If this is more than six signs, subtract it from twelve signs, as before, and use the remainder.) With this argument find the equ tion of the centre' by Table 7. This is minus or plus according as the anomaly is o to 6 , or 6 to 12 signs. Apply it to the mean longitude of Jupiter, and the result is the heliocentric longitude.
(ii.) Apply the equation of the centre (plus or minus) to the first commutation ; the sum is the "second commutation". If it is more than six signs, use, as before, the difference between it and twelve signs. With this second commutation as argument find the parallax as before. Apply it (whole) to Jupiter's heliocentric longitude, and the result is Jupiter's apparent longitude.

Example. We have a date in an inscription.-"In the year opposite Kollam year 389, Jupiter being in Kumbla, and the sun is days old in Mina, Thursday, 10 th hunar day of Pushya " ${ }^{\prime}$

Calculating by our method "C" in the Text, we find that the date corresponds to Saka 1138 current, Chaitra sukla dasamî (Ioth), Pushya nakshatra, the 18 th day of the solar month Aina of Kollam 390 of our Tables, or March I2th, A.D. $1215 .^{3}$

To find the place of Jupiter on the given day.


350 , then, is the interval from mean Mesha sankranti to 12 gh .23 pa . on the given day. The interval between Saka 1 current and Saka 1137 current is $113^{6}$ years.

[^49]

As this is more than six signs we deduct it from 12 signs. Remainder, signs $0,26^{\circ}$ $59^{\prime} 50^{\prime \prime}$. Call this $27^{\circ}$.

Parallax for $27^{\circ}(\sec$ Table $Z)=4^{\circ} 20^{\prime}$.


4 signs, 20 degrees $=140$ degrees. Equation of centre for argument $140^{\circ}-\left(\right.$ Table Z) $3^{\circ} 25^{\prime}$. Deducting this from Jupiter's mean longitude found above (los. $17^{\circ} 57^{\prime} 49^{\prime \prime}$ ) we have 10 s. $14^{\prime \prime}$ $32^{\prime} 49^{\prime \prime}=$ Jupiter's heliocentric longitude; and deducting it from the first commutation (I is. $3^{\circ}$ $0^{\prime} 10^{\prime \prime \prime}$ ) we have, as second commutation, los. $29^{\circ} 35^{\prime} 10^{\prime \prime}$. Remainder from 12 signs, is. $0^{\circ} 24^{\prime} 50^{\prime \prime}$. Parallax for 1 sign, or $30^{\prime \prime}$, (Table $\%$ ) $=4^{\circ} 49^{\prime}$. Applying this (adding because the commutation is over 6 signs) to the heliocentric longitude of Jupiter we have (tos. $14^{\prime \prime} 3 z^{\prime} 49^{\prime \prime}+4^{\circ} 49^{\prime}=$ ) 10s. $19^{\circ} 21^{\prime} 49^{\prime \prime}$ as the apparent (true) longitude of Jupiter.

From this we know that Jupiter was in the 11th sign, Kumbha, on the given date.

TABLE W.
/For finding the mean place of Jupiter. Argument $=$ number of years between Saka $I$ and the given Saka yoar.I


TABLE Y.
[Mean motion of Jupiter and Sun. Argument $=$ number of days /ghatikits and palas) betacen moan . Hesha satikranti and the gievon momont. 1
(This is applicable to all the Siddhintas).

	Jupiter.				sun.			
days.	s.	0	,	"	s.	n	,	"
1	4	0	4	59	0	11	3.9	,
2	0	0	9	58	0	1	58	16
3	${ }^{0}$	$1)$	14	57	0	2	53	25
4	0	0	19	57	1	3	36	33
5	0	0	2.4	56	0	4	55	41
6	${ }^{6}$	${ }^{6}$	29	55	0	5	51	49
7	0	0	34	51	1	$f$	53	57
8	0	()	39	53	0	7	53	5
9	0	0	44	52	0	8	22	$1 \pm$
10	0	0	49	51	0	9	51	22
20	0	1	39	43	0	19	42	43
30	0	2	29	34	$1)$	29	34	5
40	0	3	19	26	1	9	25	27
50	11	4	9	17	1	19	16	
60	0	4	59	7	1	29	$s$	10
70	0	5	49	0	2	8	59	32
80	0	6	38	52	$\because$	is	50	34
90	$1)$	$i$	28	43	2	24	42	15
100	0	8	18	35	3	8	33	37
200	0	16	37	9	6	17	7	14
300	0	24	5.5	4	9	25	4)	51


Motion for ghatikis $=$ as many minutes and seconds as there are degrees and minutes for the same number of days. Motion for palas $=$ as many seconds as there are degrees for the same number of dass.

Example. The motion of Jupiter in fonr ghatikhs is $19_{6 \overline{9}}^{5 \cdot \prime}$, or (say) 20 seconds. The motion of the sun in five palas is $4 \frac{555^{\prime \prime}}{6}$, or (8ay) 5 seconds.

TABLE $Z$.
fFor Equation of centre. Argument $=$ Fupiter's anomaly.
For Parallax. Argument $=$ commutation./


Lumpitude of the Aphelion of dupiter. by sírya sidduanta $=5$ signs 21 dearees
. . . . . . . . irua sidhata = 6 .. 0 .,


## I N D E X.


" $a$." " $b$." " $c$." in Table I explained. Art. 102, p. 56.
Abul Fazal, on the Lakshmana Sena Era, Art. 71, p. 46.
Adhika mîsas, or interculated monthy, system cxplained, Art. 25, p. 11; adhika tithis, mles governing, Art. 32, p. 17; variation on aecount of longitude, Art. 3.t, p. 19; detailed rules governing, Arts. 45 to $5 \mathrm{I}, \mathrm{pp}$. 25 to 31: Arts. 76 to 79, pp. 48, 43; (see also under Interculation, Lunar month, Titht).
Ahargana, meaning of, Art. 30, and not. 2, p. 16; Art. 47, 1225.

Akbar, established the Fasali Era, Art. 7I, p. 44; and the Ilàhi Era. Art. 71, p. 46.
Aㄴbarnima, The, of Abûl Fazal, Art. 71, p. 46.
Alheruni, Saptarshi Kâla Era used in Multân in hin day, Art. 71, P. 41; and the Itarsba-kîla Era in Mathura and Kananj, Art 71, 1. 45.
Imânta system oí lunar months, definition, Art. 13, p. 4; compared with purrumànta system in tabnlar form, Art. 4.), p. 25 ; how it affects interealation of months in luni-solar system, Art. 51, 1. 30.
Amârâsyâ, definition of, Art. 7, p. 3; nume of a tithi, id.; ends a paksha or fortnight, Art. I1, p. 4; sce also Art. 13, 1. 4; Art. 29, p. 13.

Amli Fra of Orissa, The, Art. 71, p. 43. .
Amrita Siddhi Yoga, Art. 39, p. 23; in an artual painchâniga, 1. 15.

Aisin, or degree of angular $n$ asurement, Art 22, p. 9.
Aúgas $=$ limbs; pañchâugra, Art. 4, 12.
Anomalistie, Length of - lnam month, Art. 12, note 2, p. 1 ; - solar year, definition and length of. Art. 35, and note 3, 1. 5.

Anomaly of a planet, true and mean, defined, irt. Is, note 4, p.:"
Apara paksha. (See Paksha).
Apogee, Sun's, longitule of, in A.D. J137. Art. 2t, p 11.
Apparent, saikranti, defined, Art. 26, p Il; maning of word "apparent", Art. 26, note 2, p. 11; "apparcut time", Art. 36, p. 19.

Apsides, Line of, in reference to length of amomatistio nolar year, Art 15, and mote, p. 5 .
"Arabi-sna" The. (See Mutiratha Sir san).
Aries, first point of, Art. 14. ן. 5; sidereal longitude masured from, Art. 23, p. 9.
Arya-paksha sehool of astronomers, Arts. 19. 20, p $7,8$.
Aryas, Ancient, were acquainted with the starry makshatras, Art. 38, p. 21.
Irye Siddhuinta. 'The First, Art. 17, p. 6; the Sccond, id. : Icugth uf year according to lirst, now in usr, Art. 18, p. 7 ; aceount of the, Arts. 19, 20, $2 \mathrm{I}, 1 \mathrm{p} .7$ to 9 , and nutes. Basis of solar reckeming in this work, Art 37, p. 20 ; mean interpalations arcording tu, Art. 49, p. 29; Rnle of, for finding the samvatsara current un a particular day, Art. 59, p. 34; List of expunged samvatarat of the 60-year "erle of Iupites according to the rule of the, Art. 60. 1. 36: where used in the Table's as basis of calculation, Art. 73, p. 47; diffrenee betweeo moment of Meshawaikrinti ats calculated by the - and tbe Sirrya Sildhunta, Art. 96, p. 5t, and table.

Ayamainis. Warren's use of the, Art. 24, wote 1, p. 11.
Badi, or Vadi paksha. (Sce Paksha.)
Babula paksha. (Ser Paksha.)
Bârhaspatya samvalsara. (Soce Beihasuati chakra)
Bengai. Solar reckoming used in, Art. 25, p. 11; use of the "Bengiti Su" Era in, Aut. 71, p. 13; of thu. Vilatatít Eta in, id.; Nel Year's Das in. Art. 52, p. 32.
Bengîlis, fullowers of the Samra sehool of astronom?, Art. 20, p. S.
"Bungili Sa口" Era, The, Art. 7I, p. 13.
Berars, Gaucen Daivajina's worhs followed in, Art. 20, p. ${ }^{9}$
Bhâskarairhatry (A.I). lls0) mention, the Second irya sidhhimen, Art. : f), p. $s$; follows the rule eiven in the Kilatatravivechant fur maming adhika and kshay misas, Art. 16, p, 27; suppresed month actording tu, Art. 47, p 27; Art, 50, p 30.
Bhisrati, a hirama, (A1) 1099), Art. 20. p. 5; Art. 52. 1. 31.
Bija, or corrotion. Art. 19, p 7 ; Art. 20 and motes, 1 lי l . 7 to 9, Varthamihira's, Art. 20 , I. 8 ; Lallai-. id ; in the RajjemCigaika, id. .1. m ; in the Mataranda, ill p, 8 ; Ganesa Daivajua's, id. p.s.

Bomhay, New year's day in. Art. 52, p. 32.
Brahmagupta $\mathrm{H}_{2}$, Brahme Siddhinta, Art 17, p. 6; Art 19, p. i: Ant 20 , note 1. 1. 8 ; his sistem of takshatra measurmeot, Art 38, p. 21: Art. 40, note 1, p. 23.
Brahmanas, The. Art +1. p. $2 t$.
Rrahma-paksha school of astronomers, Arts 19. 20. p. ©, 8 .
Rrahma Budhinta of Brahmagupta, Art. 17. p. 6; Art. 13, p. तf Art 20, p. 8; system of nakshatra measurement aceorling tu, Art 38, p. 2]; rule for naming intercalated and rapunted months, Art 46, p. 27; Art. 50, p. 30
Brihaspati samvateara-chakra, or sixty-gcar cyele of Jupiter, Arts. 53 to $62 . \mathrm{pf} 32$ to 37 ; duration of a yrar of the, Art. 54 [3. 33; Expunction of a year of the, Arts. 54 to 60, pp. 33 to 36 ; Rules for finding the year curreot on any day, Art. 59, p. 34.
Br hat samhiti, Rule for finding the samvatsara current on a partionlar day, Art. 59. p. 35; List of expunged samvatsaras of the 60 -yrar cyrle of Jupiter according to the - rule, Art. 60. p. 36.

Brihat Tethichintúmani, The, by Gauéa Dairajīa, (A.D. 1527) Art. 20, p. 8.
Burhanan, on the Lakshmana Sona Era, Art. il, p. 46.
Canon der Finsternisse, by Oppolzer, Art. 40a, p. 23. See Dr. R Schram s Artic'e on Eelipses, pp, 109-116.
Central Proviaces, Gapesa Daisajīa's works folloned in, Art. 20, p. 9.
Cermonics, Religions, performance of, how regnlated with reforence to tithis, Art 31, p. 17.
ChaitıAdi Vikrama year The. Art. 7I, p. 41.
Chaldoa. Names of lliodu days of week derival from, Art. 5, note 1, ]. 2.
Chaldoass, were acquainted with the starry makshatras, Art. 34, p. 21.
Chîlukyab Era, The, Art. 71. p. 46.
Chândra mâsa, or lnnar munth. Sec Lunation, Lunar month
Chara, The. defined, Art. 24, note 1, p 11.
Chedi Era, The, Art. 71, p. 12.
Chhatre, l'rofesser, list of intercalated and suppressed months, Art. 46, note 3. p. 27, and Art. 78, and note 1, p. 49.
Chnoa Kimedi, Th. Onko cacle io, Art. 64 p. 34.
Chittagong, The Dâgi-san Era nsed in, Art. 71, p. 4o.
Chrint un Eira, The, current or rapirtd gears (?) Art. S0, note 2, p 311 . 'ee of, in ludia, Art. 71, p. 42.
C'wil duy, Thue. (Sere holar day).
Couhm, New lar's Day iu, Art. 52, p. 32.
Collemonke, on the Lakshmaoa sena Lra, Art. il, p 46.
I'unajee latell, List of intercalated and anperesed months in hin "rhronoteog!," Art. 46, note 3, p. 27, and Art. is, and mite 1, p. 49.
Cunamehan, Gencral sir Arthur'. Indian Fras, hist of iutercalatel and suppremed wonthe, Ast. +6, note 3, p. 27, and Art. in. and mote 1, p. 4!. On the Lahshurana Seua Eita, Art. 71, 1. 46
Carrat yar, defined, Art. $30, \mathrm{p}$ + 0 .
Cyble, Sixty-9tar of Anpiter, Arts 53-1i2, fp, 32-31;
 tion of, 131 luseraztions, Art 61, p. 36, The southern

60-year, or luni-solar, cycle Art. 62, pp 36, 37; Tuelve. year - of Jupiter, Ait. 63, p 33, and Table XII.; Grahaparirritti - of 90 yrars, the, Art. 64. p. 37 Ointo the, Art 64. p 38.
Dakbâni system of lutar fortnightr. Alt. 13, p. 5.
Dakshinâyaoa saùkrâoti. (See Saikkrínti).
Danda. Length of Art. 6. 1. 2.
Dins of the werk, Names of Hiodn, Art. 5. p. 2.
Definitiona and general ex lasation of names and Indian divisions of time. 4rts. $4-17$, pp 2-7.
Dhikotidn, a Karana by Šị̂ati, Art. 47, and note 4, p 27.
Dhi-ruddhida, n work by Lallh, Art. 20, p. 8.
Dina, or solar day, Art. 6, p. 2.
Divasa, Sîtvana $-=$ solar day, Art. 6, p. 2.
Division of time amongst the llindus, Art. 6. p. 2.
Diryasimhadeva, prince of Orissa, Art. 64, p. 39.
Drâpura Yuga. (Sce Iuga).
Eclipses, aote on, Art. 40a, p, 23; oute by Professor Jacobi on id.; Dr. Schram's paper on, and Tables, pp. 109-138.
Ecliptic, synotical and sidereal revolntions of moon, Art. 12, note $2, p 4$.
Elemeots and Definitions, Arts, 4-17, pp, 2-7.
"Equal-space-system" of nakshatra, Art. 35, 1. 21.
"Equation of the ccatre", defradd, Art. 15, note 4, p. 5 ; term explained, Art. 107, p 60; greatest pussible, according to the Sírya-Siddhuinta, Art. 108, p. 61; given for every degree of anomaly in the Makaranda, Art. 109, p. 61.
Eras, The varions, treated of, Arts. 65-71, pp. 39-47; ase of, by emigrant races, Arts. 66, 67, p 39.
Expired year, defioed, Art. 70, 1. 40.
Expunction. Of tithis, rules governing, Art 32, p. 17; Variation on acrount of lougitude. Arts. 34, 35, pp. 18, 19; of nakshatras, Art. 35, p. 19; - of months, Arts. 45 to 51 , Pp. 25 to 31, and Ar1s 77 to 79, pp. 48, 49; alluded to by Bhâskarâ-chârya, Arls. 46, 47, p. 27. (See Lunar nonth); - of a samvatsara, Art. 54, p. 33; variations in practice, Art. 55, 1. 33 ; list of ex lunged samvats:ras, Art. 60 and Table p 30 ; - of samsatsaras in the 12 -year eycle of Inpiter, Art 63, p. 37.
Fasali year, The, Art. 71, p. 44. Do. luni-solar, id. New Year's Day in Madras, Art. 52, 132 ; New Year's Day in Bengal, id.
Fised poiot in Aries, The, sidereal lungitude measured from, Art. $\because 3, \mathrm{p}, 9$.
Fleet, Dr. F , Art 21, p. 40. note 1; on the Chedi Era, Art. 71, 1. 42, note t; on the Gupta nad Salabhi Eras, Art. 71.142.

Flight, Nuhammad's. Art. Itil. P J01.
Gaursa Davajina, author of the Grehahighard, a karaua in A 1) 1:2n, and of the Brihat and Layhn Tithichnntumanis
 months arrording to, Art. 51, p. 30; different treatment of Saka yars by, Art. 65, p. 39.
Ganjan, New Year's bay in, Art. 32, p. 32; The Oike eycle, Art 6t, p. 3i.
Gargais symtem of nak-hatras, Art. 3n. p. 21.
Gata, a - ycar defincl, Art. $\hat{0} 0 \mathrm{p} .40$.

Ghati. (See ghatikel.)
Ghatikî, lemgth of, Art. 6. p. 2.
Giriśa Chanlra, "Chronological Tables" by. Art 11, p. 13. Grethaldyhara. The, a harana, written by Gupesit Duivajinia (A.D. 1520), Art. 20. p. 8; Art. 50. p. 30; Art i8, p. 10.

Graha-parisritti rycle, The, Art. 6t, p. 37; equation of, id., and wote 4.
Gregorian year, Length of, conpared with that of the Mijm, Art. 162. p. 102, mote 1
Gujarât, The Brahma school uf astronomy followed in, Arts 20 , 21, JP. S, 9; a@d the Girahalayhavz and Iaghu Tithichintámani of Gaućs Daivajũa Art 20, p 9; Xew Year's Day in, Art. 52., p: 32; use of the Vikrama Era ia, Art. 71, p. 41 ; and by settlers from - in S, ladia, id.
Gupta Era, The, Art. 71, p. 43.
Hailarîbâd, Gancés Dainajña's works followed in, Art. 20, 1. 9.

Harsha-Kâla Era, The, Art. 71, p. 45.
Harshava dhana of hanauj. King, establishes the Ilarsha-Kîla Era, Art. 71, p. 45.
Helali, The, Art. 161, p. 101.
Heliacal rising of a planet, defioed, Art. 63, note 2, p. 37
Hijra, Year of the Its origin, Art. J61, p 101 Length of - and Gregorian years compared, Art. 162. p. 102; begins from heliacal rising of moon, dirt. 164, p. 102.
Ilissabi, The, Art. 161, p. 101.
Ilabi Era, The, Art. 71. p. 46.
Ioauspicious days, C'ertain, Art 32, p. 17.
Indrayumna, Rajn of Orissa, date of his birth is the eporh of the Amli Era. Art. 71, p. 43.
Intrrealation of months in llindu ralendar, system explained, Art. 25, p. 11; - of tithis. Art. 32, p. 17; variation on acconnt of longitude, Art. 34. p is: - of nakshatras, Art. 35, p. 19; detaled rules poverning the - of months, Art. 45 to $51, \mathrm{PP} .25$ to 31 ; order of - of monthe recurs in rycles, Art. 30, p. 29 ; arcording to true and neean systems, Art 47, p. 27; by different Siddhântas, Art. 49, p. 29; by amânia and purromânta systems, Art. 5l, p. 30. See also Arts. 76-79, pp, is 19.
Jacobi, Professor, not on eclipses, Art. 40a, p. 23.
Jabâagir, used the llâhi Era, Art. 71, p. 46.
Jolian period, Art. 16, p. 6.
Jupiter. Bîja, or correction, spulied in A.D 505 to bis motion, by Varâba-mihira, Art. 20, p. 4, and by Lalla, id ; sixtyyear cyule of, Arts. 53-6id. pp. 32 ff.; twelve-year eyle of. Art. 63, p. 37 , and Table XII.; beliacal riving of, marks beginoing of year in one systroz of 12 -year cyele, Art. 63, P 37. twelve-year cycle of the mean-siga syotem, Art, 63, p. 37, and Table XII.

Jyotisha-darpuna, The, Rule for mean intercalation of montlis, Art 47, p. 27.
Jyotishatatina rule for expunction of a samvatsata, Arts, 57 , 59. pp 33. 34; role for finding the samvatsara enrecat on a particolar day, Art. 59. p 35; List of expunged samvatsaras of the 60-year cycle of Jupiter accurding to the - rule, Art. 60, p. 36.
Kalachurı Era, The, Art. 71, p. 42.

Kilatatua-viverhana, 'The, a work attribated to the sage Syisa Ant th. $\mathrm{p}: 28$
Kali-juca, The, Fita durriberi, Art. 71, p. 80.
halpa, lathth of, Art. If, p. 6 .
Kanarese Di-triets follow the Giraholdyhara and Layhu Tithichentiment of Ganéa Davajna, Irt. 20, p. 9.
hanauj, Vere of Harshat kila Era in, Irt. 71, p. 5.7.
Karnua, Art. 1, p 1; Art. 2, p. 2; definition of, Art. 10, pp 3. t; natues of, l'able lill, cols. $t$ and is: data coneerning them, in on actunl pañolaniza, Art. 30, p. 1t: "harana indes", Art. 37, p. 20; farther detall, conermiag, Art. fo, p 23.
Karana, An astronomical treatise, Art 17, noti 1, p. B; the Poücha Siddhinttki,,$d$; acromnt of srme of the Karanas, Arts. 19 to 21, PI. 7 to 9; Vâvilala howhehna's - A Att. 20. p. S: the Makaramia, id; the Cirahulighana, id.; the Bhisistati -, Art. 52, p. 31.
Ketrana-prgkiva, an astronemmal work, Art. 20, p. S.
Küttikâtli likrama year, The, Art. T1, P. 11.
Kashonir, Snptarshi-Kâla Era, The, ured in, Art. 71, p. 11 : New Year's Day in, aceording to Alberwai, Art. 52, p. 32. Kâththat-kili, Length of, Art. 6, p. 2.
Kâthrấsid. Nưw Year's Day in, 1rt. 52, P. 32; use of the Vikraas Era in, Art. 71, p, 41; do, of the Valahhi Era, Art. 71, p. 43.
Khalif Umar, Art 161, p. 101.
Khaudthhidye of Brahmagupta, The, (A.D. Gifin), Art. 20, p. $S$, note 1 .

Kielhorn, Dr Fr, on the Saptarshi-kila Era, Art. T1, p 4]; on the Vikrama Era, id., PJ 40, note 2, H1 ; m the Cbedi or Kalarhuri Era, ǐl., p. 42, and note 4; on the Nevîr Era, Art. 71, p. 45; on the Lakshmana Nroa Era, Art. 71, p. 16.

Kollam Era, Description of the, or Era of Parasurama, Art, 71. p. 45 ; - uindu. id.

Krishuna paksha (Sce Pakisha).
Krita yuga (See fuyff).
Kishaya, meaning of word, Art. 32, p. 1k.
Kshaya tithis, gencral rules coverning Art. 32, p. 1i ; variation on acrount of longitule, Arts. $34,35, \mathrm{p}$ iff hshay a mâas,
 Arts. 7f to 79 , 1P. 44, 49: - samvatsara, Att. 5t, p. 33; list of. Art. 60, and Table, p, 38. (Sce Expunction, Lunar month).
Layhu Tuthichintimuni, The, a wurk by Ganéa Daisajŭa (.11). 1322) Art. 20, p 8

Lahare, New Year's Day in, mecording to Albernmi, Art. 52 , p. 32

Lak-hmana Eema Era, The. Art il. p. 16.
I alla, anthor of the Dhi-ruddhida. Art. 20, p. S. introduced a bija to Firet irya seldhhiutia, id
Lankî, latitud ani lomethde of, Arl. 3f, and note 2, p 20.
Lamkika hûla Eira The. (Sce Soptarshi hâla)
Longitude, variation in time paused by, Arts 3.4, 35, pp. 19, 19.
Lunar month. (See also Puks'a, Aminta, l'arniminta, Lunthon.) Detini ion of the term, Art. $1: 2 a$ and note, $p$; pames of the nooths, Art. 41, p. 2t and note 1 ; originally derned from
the nakshatras，AM．43，and Table，Pp．24，路；afterwards from the names of the solar montho，Art．it，f．2t； detailed rules goveruing intercalaton and expmation of，
 Art．15，p．： 2 S．name of interealated and expunged munthe
 and in the Brahma－hiddhinta，ill．fous and meau systems． Art．4i，p．27；4upprewion of a month impussible amder the latter，$d$ ．p．2t：intrualation of months recurs in ryeles， Art． $50, \mathrm{p} .29$ ；preculiarities observable in the order，itt．； intreabation by anainta and purpimanta systems．Art．＂］， p．30：Arlo．7f to 79，Pp．48， 19 ；names uf the lliadu lumar months，Table Il．，Part i．，cols． 1 to 3；Part ii．，cols． 1 tos； Table Ill．，cul．\＆．
lamation，a natural division of time，Art， 12 ，p． 4 ；sy norlieal rumlution，id．note ${ }_{\sim}$
Lumation－parts．（Sue Tithi－inder．）
Luni－sular month－nauses，general rule，Ant．］•t，p 5：Art． 41. 1．24；season－names，star－hames，Art 14，p．5：the furmer fisst met with in the Fijur Vedas，id ；modern names derived from star－names，Arts．42 to 44，111．24，25．
 p．3］；rule when that day is vither alhika or kishaya，dd． P．31；rulu when Cbaitra is intrealar！，id．p． 32 ；sontheru （14 lumi－solar ryele of Jupiter，Art．62，${ }^{2}$ ． 36 ；The－Fasali yar，Art．71，p． 44.
Auni－solar reckoning used ie most part uf 1udia，Art．25，p． 11.
Madhyama，$=$ mean，Art． 26 ，note $2, \mathrm{p} .11$ ．
Whri－San Era，The，Art．71，p． 45.
Mahbhirnla，Buginming of year mentionel in the，Art．52，\}3 32.
Mahṭ̂ugat，length of，Art．1G，P．6．
Uahontta Sinr－San Era，The．Art．71，p，45．Kâja－Saka Era，hThe， Art． $71,32.47$.
Waisûr，Cimecia Dinivajū＇s work followed in．Art，2（।，p．h．
Makaranla，The，a karama（A．D．1176），Art，20， 1 ． 8.
Fifuation of the eentre for every degree of anomaly wiven in the，Art．10：？，p．is．
Vababar．Ine of the saku era in，Ant．Tl，p．42；nac of kullam and！in，Art．71，1． 45.
Nalana Ema，＇the，＝lhe Vikman Era，An ol p．te．
Xiklayham，shoul of astrombume use the Vikitya－liaraza，Art．
 sular reckoning used in，Ant．2．7，p．11；Nen Visar＇s lay iu the－romntrs，Art．52，p． 32.
 chonlamazi．Art，20．p． 9.












Meridian lised in the TabJes，Art．73，p． 47.
Dtsha sankranti，the weueral rule for naming luni－sular mouth．，Art．1t．Pr．5；Art．14．p．21：the mean－takes plare after the true－at the preseat day，Art．26，p．11； fises the besinning of the solar year，Art．52．p． 31 ；differeneq in calculation between the Present Sürya and First Arya Sidhh（intas，Art．If，Table，P． 55.
Wethuls，three，A，B，C，for calculation of dates by the Tables， pueliminary romark，Art．2，3，1p．1，2；fully detailed，Irts． 135 to $\left.160, \mathrm{p}^{3}\right]^{3}$ ． f 5 5 to 101.
Nithila，I＇se of the Lakstonana Sena Era in，Art．Tl，p． 4 f．
Auntb，Lunar，lengths of sywodical，sidereal，tropical，asoma－ listic，nodical．Art．12，aote 2，p． 4 ；names of－ia the Hâhi Era，Irt．71，p．46；Muhammadan，Table of，Art． 163 p．102．
Moun，ber motion in longitude marks the lithi，Art．7，p．3； one synodic revolution constitutes 30 tithis，id．；hija applitd to leer motion by Lalla，Irt．20，p． 8 ；and to ber apogee， id．；mean length of her sidereal revolntion，Art．39，p．2l ； how the moon＇s motion causted the naming of the luas months after the naksbatras，Art．43，p．2f；luaar equation of the：rentre eaplained，Art．107，pp． 60 f ．
＂Mooa＇s ngc，＂term used in＇Table I，its meaning，Art．97，p． 55.
Muhammad，date of his flight，Art．16i，p． 101.
Hnhammadan calendar，perpetual，by Dr．Burgess p． 106
Inhammadin moaths，Table of，Art． 163 p． 102.
Mukundadrva，prince of Orissa．Art．64，p 39.
Multûn，The Saptarshi Kâla Era used in，Art．© 1，］．4l．New year＇s day int，according tu Albermi，Ar1．52， 1.32
Wintra（See Mathuri）．
Stadî，Length of，Irt．（i，p． 2
Nêlikî，Length of，Art is，p． 2 ．
Nakhatra，Art．1，P 1 ；Art．4，p．2；Art．3S，p 21 ；definition of， Art．8．p．3；length of，ill ；data concerning，ia an actual pañehanga，A1t．30，p． 16 ；interealation and expunction of， Art．35，1＇ 19 ；－or＂nakahatra index，＂Art．37，p．21； ［qual and unegual space systems of，Ari．38，p．2］；langitudea of ending puints uf．＇Table shewng，Art 3s，p．2\％；gave their Hames to the lnuar months，Arts．43，44，and Table，
 13． 64
Nepal（or N（barr）Era，The，Ar1．71，p． 45 ；use of Harsha Kôla Fira in，iu．；use of Gupta kra in，irt．71，p．43．
Nirat Fra，＇The，Ar1．71，p 45.
＂Sew stylr＂in Fiurope，Art．16s，p． 103.
New l＇ear＇s lay，＇The Ilindu，Irt．52，p．31；Varies in varions localities，id．，and mote 3，p．32．
Xija mísas．（Siee tidhetar misass）．
Nirnyana sankriuti．（hee sumkrinti）．
Vermathesimhlhet Thw，A＇t 31，note，1F． 17.
Nudiral lunar month，lameth of，Art 12．note 1，1．t．
＂（1）h style＂in Furnle，Alt．168，p．103．

Oppolzar＇s＂Canon der finsteraisse＂．Art 40a， P 23.
（brissa．Vew luar＇s bay in，Irt．be．p，is；the Onko ryele in，Irt．If，p． 37 ；use of 1 mli Ema in，Art 71，p． 43 ．


Paksha, or moon's fortaight, Definition uf, Art. 11, p. I; sukla ${ }^{\circ}$, suddha ${ }^{\circ} \cdot$, krishua ${ }^{\circ} \cdot$, bahula ${ }^{\circ}{ }^{\circ}$, puirva ${ }^{\circ}{ }^{\circ}$, apara ${ }^{\circ}$., id Pala, Ienuth of, Int fi, p. 2.
Pañehânge, Art. 1, p. 1; definition of, Art. 4, p. 2; calculated areording to one or wher of the Siddhintus, Art. 19. p. 7 ; the priacipal articles of, treated in detail, 1 rt. 292051 , pp. 13 to 31 ; specimen paye of a, Art. 30. pp. 1t, 1:
Pä̈cha Siddhintoke, The, of Variha.Mihira, Art. 20, p 8; Art. 17, note 1, p. 6.
Para, Length of, Art. 6, p. 2
Parísara Siddhinta, The, Art. 17, 126.
Paraín Ratma Era, The, Art. 71, p. 45.
Parla Kimedi, The Onko eycle in. Art. 64, p. 37.
Paulisa Sidelhinta, The, Art. 17, p. 1i.
Pedda Kimedi, The Oinko eycle in, Art. 64, p. 37.
Persim, old calendar of Yazdajirl, Art 71, 1, 47 .
Phattesíhaprakisa, The, .1rt. 71, p. 42, note 2
Pitri, Ceremony in honowr of, pruper day for parformiog, Art. 31. p. 17.

Prina, Length of, Art. 6, p. ${ }^{2}$.
Pratipadî, or first tithi of the month, Ead uf, luw determined, Art. 7, p. 3.
Prativipala, Length of, Art 6, p. 2.
Precession of the equinoyes, in reference to the length of tropical solar year, Art. 15, p. 5; and to the coinridenee of sidereal and trepical signs of the zodiac, Art. $23, \mathrm{p} .10$.
Prirnimú, detinition of, Art. 7, p. 3 ; name of a tithi, id.; ends a fortnight, or paksha, Art. 11, p. 4. See also Art. 13, p. 4 ; Art. 29, p. 13.

Pûrnimûnta system of lunar months, definition, Art. 13, p. 4; compared with amânta system in tabular form, Art. 4.), p. 25; how it affects iotercalation of month, in lani-sular system, Irt. 51, p. 30.
Pêran paksha. (See Paksha).
Quilon. (Sce Kollam).
Radius vector, Art. 15, note 4, p. 5.
Rajamritúnka Siddluinta, The, Art. 17, p. 6; length of year according to, now in nse, Art. 18, p. 7; Art. 19, p. 7 ; Art. 20, p. $x_{\text {; }}$ corrections iatroduced in the, Art. 20, p. is

Raja-Sakn Fra. The, of the Mahrattas, Art. i1, p. ti.
Raja Tarangini, The, nse of the Soptarsbi hilla Era in, Art. 71, p. 41.
Râjendra Lail Mitra, Dr., on the Lakshmana Sena Era, Art. 71, p. 46.
Râjputîna, residents in, follow the Brahma-paksha school of astrunomy, Art. 21, p. 9.
Râjyâbhisheka Era, The, of the Mahrattas. Art 71, p. 47.
Râmachandradeva, prince of Orissa, Art. 64, p. 39.
Rúma-rinoda, The, Art. 71, nute 2, p. 12.
Râsi, or sign of the zodiac. Art. 22, p. 9.
Ratnamálía of Śrípati, Art. 59, nate 2, p. 35; list of cspanged sanvatsaras of the 60-year cycle of Jupiter, acentding to the rule of the -, Art. 60, p. 36.
Religions ceremonies, day for performanee of, how regulated, Art. 31, p. 17.
Romaka Siddhinta, The, Art. 17. p. f; Art. 59, note 2, p. 34. Saka Era, The, sometimes represented in Beugal and the
'Tamil conotry as solar, Art. fi7, p. 39, deteription of the trt. 71, p. 42.
Nikalya Bralonut Suldhinta, The, Art. 17. p. B; Art. By, note 2, p. 3.t.
Siaishituis. (Sere I'da).

 Art. 5t, p. 33: expmaction if a, ikhaya namvatatia) Art. 5 t, P. 33; variature in practice, Am, 5t tutio, 14 33 to 3t; rule for fiuding the - eurrent on a particular day, Art. 59, H1, 3tf: list of expunged - Art. fio and Table, $\mathrm{p}^{2}$. 36 ; of the 12-yene cylle of Jupiter, Art. 633, ן. 37, and Table AIt.; of the 12 -year rycle of Jupher of the mean-igo statem, Art. 63, [. 37 , and Table AII.
Sankashanâáana-chaturthi, a certain religious observance, proper dety fur performing, Art. 31, 1, 17.
Sankriati, definition uf, Art. 23, p. 9; true aod mean, dis. tinguished, Art. 26, p. 11 ; use of the word in this work, Art. 27, 1. 12. how the ineideare of the - afferth intercalation and expuaction of months in the luni-solar calendar, Art. 15. p. 25, and Table; Art 79, 1. 49; Mesha - , table shewing diffreace of moment of, a calculated by the Ary/e and Sirya Siddhintas, Irt. 9t, p. 54, and Table. (Sre alse the Additions and Corrections, pp. 149-161).
Saptarshi Kîla Era, The. Irt. 71. p. 41.
Sústra killa Era, The. (Sce Siptarshi hïla).
Saura mîsa, or solar month. (Sice Solur months).
Saura-paksha school of a,tronomers, Arts. 19. 20. 1p. i, 8.
Sùyada saikrûti. (See Sarikrainti).
Sexagesimal division of the carcle in India, Art. 22, p. 9.
Shâh Jahinn used the llithi Era, Irt. il, l. Hf.
Shatûr-San Era of the Mahrattas, The, Art 71, p. 45.
Siddhuntas, Year-measuremeat aceurding to the difiereat - .
Art. 17, p. 6. what is a Siddhainter, id., note 1; accoment of the various, Arts. 19 to 21, pp. 7 to 9 ; differences in resilts when reckoning hy differot. Art. 37, p. 20: especially it the matter of adhika and kuhaya misas, Art. 49, p. 29.
Siddhinte Sekhara, The, of Sripati, Art. 1i. p. 27.
Siddlinnta Siromuni, The, Art. 50, 1. 3 t; coincidence of sidereal and tropical sinhs of zodiac actording to, Art. 23, p. 10.
Sidereal revolution of mom, Art. 12, note $2, \mathrm{p}$. $\&:$ lensth wif - luar month, Art. 12, note 2, p. \&; - sular year, delinition, and length of, Art. 15 and mote 3, p. 5 ; - revo lution of earth, id.
Sinha Samvat Era, The, Art. 71, p. $\ddagger 6$,
Sindh, New lear's Day in, aceording to Alberuni. Art. 52. p. 32. Sivaji, Rija, cstablished the Mahratta Rija Śaka Era, Art. 71 p. 17.

Simrithtatteimeita, The, Art. 71, p th.
Sodhya, defioed, Art. $26, \mathrm{p}, 11$; Arı. 90, p 32
Solar days, rorreponduce of, with tithin for purposes of preparing calendars, Art. 31. p. 1t; ; how named. Irt 31. p. 16; "mean -", Art. 36, p 19; varmation in lemgth of. its eanse, id.
Solar months, The. Irts, 23 to $28,1 \mathrm{p} \mathrm{p}^{2}$ to 13 ; zodiacal aames of, Int. 23 , and note 1. p. 10; aamed after luoar months,

Art 23 and ont. $2, \mathrm{P} .10$; lemelhe of, according to dafferent Siddhintas, in tabular form, Ant 2t. p 10; inaccurate longths given by Warcon, Art. 2f, note 1, ए 11 : beginalne of, Art. 24, p. 12: varying rulis gwerning the beganiog of, ikl. Solar year, varintie, of the, defined. Art J5, p. 5 ; beains with Mrsha sankeanti, Art. $52, \mathrm{p} .31$.
Sular reckonmg ued in Bengal, Art. 25 P 11.
Soma Saldhinta, l'be. Art. 17. 1" 6; Art. 59, dote 2, p. 34. soathern India, system of lanar formixhts, Art. 13, y. 4 ; New Year's 1 ay in, Art $52, \mathrm{P} 32$
Spashta, $=$ true or apparent. Art 26, nute 2, 111
Srabuba ectemoty, Proper day for ferformiog a, Art. 31, p. 17. Śripati, a celebrated astronemm. Alt 47, wad note 4, p 27; his Ratnamilii, Art. 59 , note 2. p. 35
Śudlha palisha. (Sue l'aksha)
Sadi, or Sudi, jaksha (ser Paleshut).
Sokla paksta. (Sue Ithsha).
Sun, moon's distance from. in longitnde fixes the tithi, Aıt 7 . f. 3; longitnde of his apogee io A 1), 1137. Art. 24, 1111.
"mean sud," Alt. 36, p. 19: solar equation of the centre Art. 107, p. 60 i
Suppression of samvatsaras, months, and tithis. (See Erpunction). Sura, Ievgtb of, Art. 6. p. 2.
Sûr-San Era of the Mabattas, The, Art. 71. p. 45.
Surya Siddhinta, eporh of hali-yuga acourdiag to the. Alt. 16 . p. 6, length of year acoording to, Art. 17, p. 6 and Art. 18 p. 7; aecount of the, Arts 19, 20, 21, pp. 7 t0 9, and notes Lasis of ladi-solar reekoding in the Tables, Art 37. p. 20 ; true length of solar momih- according to, Art. 45, p, 25, Art. 50, f 29 ; list of supprensid months according to the, Art. 50, p. 29; duration of a Barhaspatyu samvatsura, or sear of the 60-year ryche of Jupher aceording to the, Ant. 54. p 33 ; - rule for findigg the samvatsara curcent on a particular das, Ait. 54, and notu 1, p. 34, list of expugged samvatsaras of the Golyar eyele of Iupiter areording to the - Role, Irt. (i0), J. 36 ; hifference betwee momeat of Mestasaikrâuti as ealenlated by the - and the ifya Siddhainta, Ait. 96, p. 54, and Table: greatest pusable cquation of ecutre according to the, Art. 10 , p. © 61
Synodie, revolntion of moon, (sere: Lunation). Lemgth of mean - lnare month, Art. 12, note 2, p. 4.

Tabakát-i-Akbarl, Tlus, Art. 71, 1' 16
Tabler in this worh. Deaription aod explanation of, Arts. 73 to $117,1 \mathrm{P} .47$ to 62.
Tamil conntries, salar repkoning need in, Art. 25, p. 11.
 p 5 . and the iryn Suldhinta, Arl 21, p. 9.
Türikhi Mähi. The, Irt. 7l, p Ifi.
Telugns, 'the, follow the prowent Gierya Sidellainta for astromumal raleulations vime A.O. 1294, Irt. :00, p. 4 .
'Kimedivasions, llunda, Art 6, p. a.
Tiuncendly. the Suhn kita tised in, Art il, P iz; ust of


Toth, whe of the elvient, of a painhôuza, Art. 1, 12.
 astronomical reasun lior wryme lingth uf, Ar. $\boldsymbol{i}$, mote $I$,
p. 3; details conceraing the, anl names of, Art. 29 p I3; corresmodeoce of, with solar days for porposes of preparing caleadar, Art. 31, p. I6; intercalation and expunction of (adhika and hohaya tithis), Art $32, \mathrm{p} .17$; varies in different lumbities, Art 35. p 19
Tithi-mdex, Art. 37, p. 20; Art. S0, p 49; conversion of - into lanation-parts, Art. 81, p. 50; do. iuto measures of sohar time, Art. 82. p. 50.
Travancore, New Year's Day in, Art. 52, p. 32.
Treta yuga. (Sec Yuga),
Tropical. Length of - lunar month, Art. 12, note 2, p. 4; - solar year, dufintion and length of, Art. I5, and note, p. 5 True sankrûntl defiord, Art 26, and nete 2, p. 1]; meaning of word 'true", Art. 26, note 2. p. 11; "true time", Art. 36, jr 19; true and mean systems regalatiag intercalation and suppresoion of months in logi-solar calendar, Art. 47. p 27.
Ujjait, (see Lankî). "Ujjain mean time", Art. 36, p. 20; loggimde of, ill, note 2 ; meridiaa of, used in the Tables, Art. 73, 1. 47.
1 mar Khalif, Art. 161, p. 101.
"Lnequal-spare system" of nakinatras, Art. 38, p. 21.
Utpala, a writer on Astrodomy, Art. 17. mote a, p. 6.
Uttarịyans sankrâoti. (Sue sarikreinti).
Vadi, or bud, paksha. (See Paksha).
İihlya karana, The, an astronomical work, Art. 20, p 8.
Valıbhi Era, 'lhe, Art. 71, p. 43.
Vara, or week-day, Art. 4, p. 2; names of days of the week, Hindu, A.t. 5, p. 2.
Varâhamihira, author of the Paürha Siddhántiká, Ant. 1Ti, notes 1, 2, P. 6 ; Art. 20, ; 8; Art. 40 , note I, p. 23 .
Sar-ha, or solar year, Art. 15. p. 5.
Vartumâoa, a - year defieed, Art. $70, \mathrm{p} 40$
Yâsura, = solar day, Art f; p. 2
Visishtha Siddhántt, The, Art. I7, p. 6: Art. 59, note 2, p. 3\&

Gûvilila Kochehanna, author of a Karana, A.D 1299, Art. 20, p. s.

Veda, The Jájur 一, Art. 41, p. 24.
Vedinga Jyotisha, Thr, Art. 17, p. 6; Art 44, p. 25; Art. 47. p. 2Q; berinamg of year according to, Art. 52, p. 32.

Vighatî. Length of, Art. 6. p. 2.
Yijala Kalachum, lefeat of Eastern Chatukyas by, Art. it, p. Hi. V'ikrama, "Kine""(\%), Ant, il, p. 42.
Vikrama Era, sometmo expresented by Tamil ealendar makers as sular and Steshâd, Art. 6i, p. 39 ; not nsed by llindn Astronsmers, Art. TO, note $2, \mathrm{p}, 40$; The - dessrabed, Ar1. 71, [3. 41 ; "Northers -" and Sonthern -" iid, "— samvat ", p. $\ddagger 2$.
Vikr:mâdityn I'rbhmsana Malls, cotablished the C'nâluhya Era, Art 71, p. 46
Vihisali y"ar, Nuw Vear's Day, Art. 52, p. 32, Art. il, p 13.
Finath. Laneth of. Art. A., p. :2.


Srata l'roper day for performanee of a, Art. 31, p. 17.
Pfindht, memniog of word. Art. 3:, p. 18.

Warren Ilis Kílasinkalita, Art. 24, note 1, p. 11, inaccurate lengths of solar mbuths recorded in, $d$; on the C'lirintian Era. Art. 71, [. 40. note 2; on the Vilayati Era, Art 71, p 43 , note 1; on the Kollam kira. Art. 71, p. 45, note 4 ; on the Graha-parirpiti ryele, Art 64. p, 37.
Week-la! names, Ilinilu, Art. 5, p. 2.
Yazilajird, Ond l'ersian calendar of, Art. il, p. 47.
Year. The lladn, solar, lum-solar, or lnnar, Art. 25, p. 11; heginaing of. Art. $52, \mathrm{p} .31 ; 69$-year cycle of Jupiter, Arts. 53 to $62,1 \mu .32$ to 37 ; twelve-year cyele of Jupiter.

Art 6i3 P 37; cursent (martaming) and "xpired (fata) yrare distinzuinbod. Art. 70. 1. 40.
loga. Art 1. p. 1; Art. 1, p 2 ; drfinition of, Art. 7. p. 3; lemeth of, id.; data courormog, in an artual panchiniza, Art 30, p 13, " - index', Art. 37, p. 20; aperial ynets, and

Yogas. Wrthod for calcolating, fully explouod Ait 133, p. 6t, Yoga taris, or chicf stars of the nakshatras, Art. 3s, $p=21$. Yugit, Leugth of Art. $16, \mathrm{p} .6$.
Zodar, The llindu, Art. 22, p. 9.

BOOK MUST BE CHARGED
WITH CASE


## RETURN TO the circulation desk of any University of California Library or to the

NORTHERN REGIONAL LIBRARY FACILITY
Bldg. 400, Richmond Field Station
University of California
Richmond, CA 94804-4698

## ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

2 -month loans may be renewed by calling
(510) 642-6753

1-year loans may be recharged by bringing books to NRLF
Renewals and recharges may be made 4 days
prior to due date

DUE AS STAMPED BELOW DEC16 1994

## JANI 2 19ge

Santa Cruz Jit.
SEP 1:1994
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

UNIVERSITY OF CALIFORNIA, BERKELEY


[^0]:    1 See Art. 12 $6^{\circ}$ below

[^1]:    
    
    
    

[^2]:    1 The variation is of course really in the motions of the earth and the mon it is cansed by actual alterations in rate of rapidity of motion in consequence of the elliptical form of the orbits and the moun's actual perturbations; and by apparent irregularities of motion in eopsequence of the plane of the mom's urbit being at an anere to the platu of the ecliptic. [R S.]

[^3]:    
    
    
    
    
    
    
    
    
    
    

[^4]:    
    
    
    
     had undembedly come into nas before the date of the Bhis'ati, \&S. B. D.

[^5]:     not eather that the formor or later than the latters. is if 11
    

[^6]:    
     dater are often wrong by one day for those trats where the $\neq 2$ rale is in wis

[^7]:    * These figures show ghatikûs and palas. † This is the name of a peenlar suga, the declination of sum and moou bring then ideutical.

[^8]:    
    
    
    

[^9]:    1 The Virnayasinthu is one of these anthorative works, and is in general use at the present time in mont parts of India.

[^10]:    1 Instead of writing at full length that such and such a tithi "ends at so many ghatikis after suncise", Indian astronomers say for brevity that the tithi "is so many chatikits". The phraser is so used in the teal it this sense".

    2 In the case of kshayas in the panchanig cxtract the ghatikas of expmged tithi- cte., are to be counted after the cod of the
    

[^11]:    
    
    
    
    
    
    
    
    
    
    
     t. laniz. का raqume R. $\rightarrow$

[^12]:     of the Ind. Ant. (p. 2 If.) $\therefore 1 \mathrm{~B} . \mathrm{Ir}$

[^13]:    1 Madher is "honey", "sheet mping". Midhora, "the sweet one". Siudra and smehi both memn "bright". Vabhas. the rain!
    
     are Iedie words.
    
    

[^14]:    1 See his Siddhántu-Siromani, madhyamithikitu, ulhimásanirnaya, verse 6, and his own commentary on it [s. B. D.]
    2 It is not to be fond in either of the Brahma-Siddhentas referred to above, but there is a hird Brahma-Siddhânta which I have not seen as yet. [S. B. D.]

    3 In Prof. Cbattre's list of adted and suppresed months, in thoer published in Mr Comasjer latells' 'hronology, and in General Sir A. Conningham's Indien Efets it is often noted that the same unonth is both added and suppressed. But it is elear from the above rules and definitions that this is impossible. A month cannot be botb added and snppressed at the same time. The mistake arose probably from resort being made to the first rule for uaming adhika months, and to the second for the snppressed months,

    4 Thanks are due to Mr. Mahadeo Chiminaji Apte. B.A., L.I, B, wery recently dereased, the fonnder of the Anandasrama at Poona, for his discovery of a part of Sripati's Karana named the Dhikotidh, from which I got siripati's date. I find that it was written in Śaka 961 expired (A.D. 1039-10). [S. B. D.]

[^15]:    
    
    

    - I aur indind to bedieve that of the two rule for maming lanar months the second was ronnected with the mean stemt
    
    

[^16]:    1 It is dificult to define the esart limit, becanse it varies with different Siddhintas. and even for one ciddhinta it is not always the same. It is, however. senerally not more than sir ghatikis, or about 33 of our tithi-indices (t). But in the cose of some Siddhúntas as corrected with a bija the difference may amount sometimes to as much as 20 ghatiking or 113 of our tithi-indices. It would be very rare to find any difference in true addel month; but in the case of suppressed months we might expect some divergence, a month suppressed by one authority not being the same as that suppressed by another, or there being no suppression al all by the latter in some cases. Differences in mean added months would be wery rate. exeept in the rase of the Brahmo-sidithintu. (isee frt. An)

[^17]:     of a munth whinh dors not comborm to it
    
    
    
    
    

[^18]:    1 such an anomaly with regard to the pirnimanta scheme eonld not occur if the two rules were applied, one that "that purnimânta month in which the Meshat saikranti urenrs is always called Chaitra, and so on io surcession." and the uther that "that pûruimanta month in which no sankrinti oreurs is called an iutercalated month." The rules were, 1 believe, in use in the sixth century A D. (Soe my remarks Ind. Int., IX., $p .50 f$ ) But the added mouth mider such rules would never agree with the amanta added months. There would be from $1+1017$ month' difference in the interalated months betwera the two and much inconvenience would arise thereby it is for this reason probably that the pirnimanta scheme is not recugnised in uaming months, and that purpimânta months are named arbitrarily, as described in the first para. of Art. 51 . This arbitrary rule was certainly in use in the Ilth century A.D) (See Inf. Ant., rol. VI., $p$. 53, where the Makara-sankânti is said to have taken plawe in Mâgha.)

    After this arbitrary rule of naming the purpimâpta months once came into general use, it was impossible in Northern India to continue using the second, or Brahma-Sialthinta, rule for oaming the months. For in the example in Art. 45 above the interealated month would by that rule be named Chaitra, hat if its preceding furtnight be a fortnight of Vaisâkba it is obvious that the interealated month eannot be named Chaitra, In Southern ladia the praetice may bave continned in use a little longer. [S. B. D]

    2 Chailrádi, "beginning with Cbaitra": Kárlikadi, "beginning with Karttika; Meshich, with Mesha: amd so on

[^19]:    
    2 I have myself sern a paichanig whin mentions this begiming of the year, nad have also fromd some instances of the use
    
    
     momb bhalrapma... Wh the prople wha jalaht the comery betwern Bardari and Mirisala begin the gar with the month
    
    
    
    
    
    
    

[^20]:    1 See Ind. Ant., Vol. X1N., pp. 27, 33, 187.
    2 These points have not yet beeu noticed by any Europan writer on Indian Astronomy. [S. B D.]
    :3 As to the wean Mesha-sankrànti, see Art 26 above.

[^21]:    1 In these three rules the apparent Mesha-sankrânti is taken. If we omit the subtraction of 103, 11, and 60, and do not add $15 \mathrm{p} ., 1 \mathrm{gh} .45 \mathrm{p}$, and 15 p . respectively. the result will be correct with respect to the mean Mesha-sarikrânti.

    2 I have not seen the Jyotishatattva (or "Jyotishtura" as Warren ealls it, but whieb stems to be a mistake). but I find the rule in the Ratnamálá of Śripati (A.D. 1039). It must be as old as that by the .irya-Sildhainta, since both are the same. [S. B. D.]

    3 If we add 4280 instead of 4291 , and add 1 gh .45 pa . to the final result, the time so arrived at will be the period elapsed since
    

[^22]:    1 Sice 'ralculations of Hindre dates', by Dr. Flect, in the Ind. Ant., vols. XVl. io IIX: and my notes on the date of a Jain l’urína in Dr. Bhândârkar's "Roport on the search for Sankrt manuscripts" for 1883-188. A. D., p.p. 429-30 §§ 36, 37. (S. 13. 1).]
    $\because$ The Vikrama era is never used by Indian astronomers. Oht of 150 Vikrama dates evamiued by Dr. Kielborn (Ind. fut, XIX.), there ure only sis wheh have to be taken as curbent yoars. Is it not, however, possble that all likrama years are realls eur-
    
     Ind Ant, (vol XX, p 19]). The year was alrendy 3155 erment. but the number given by the writer of the imseriptien is 1156 , an if 1155 hat bern the expired year.

    An a matter of fact 1 do wot think that it in positively known whether the gears of the Christian era are themselves really
    
    
    
    
     aslronomichl was, such as the Vikrama, Gupta, and many others, mat be taken as currut ouss. (Sere, however, Vuti 3 , p. 12 , below.) (S. B II

[^23]:    1 Alberuni's ludia, English translation hy Sachan, Sol. II., p. 3.
    2 Corpus Inscrip. Indic., Vol. III., Introd., 1 . 177 ff .
    ${ }^{3}$ Girisa Chandra's Chronological Tables for A.I). 1764 to 1900.
    4 Warren (Kálasaikatita, p. 298) makes it commence in "the year 3537 of the Julian period, answering to the 1926th of the Kali yug". But this is wrong if, as we believe, the Kollan years are current years, and we know no reason to think thent otherwise. Warren's account was based on that of Dr. Buchanan who made the 977 th year of the third cycle commener in A D. 1800 But according to the present Nalabar use it is $q$ nite clear that the year commencing in 1800 A.1), was the 976 th Kollam year.

[^24]:    1 Cieneral Sir A Cunningham's Indian Eras, p. it
    $\because$ Ind Int., Vol. XUsi, p. 246 II .
    3 This murh information is from Generat C'unningham's "Indian Eras"
    4 Ind Ant., XIX., p. I IS.
    

[^25]:    1 Gen. Cnnningham admittedly (p. 91) follows Cowasjee Patell's "Chronology" in this respect, and on examination I find that the added and suppressed months in these two works (setting aside some few mistakes of their own) agree throurhout with l'rot. Chhatre's list, even so far as to inelude certain instances where the latter was incorrect. Patell's "Chronolony" was published fifteen years attur the publieation of Prof. Chhatre's list, and it is not improbahle that the former was a copy of the latter. It is odd that not a siogle word is said in Cowasjee Patell's work to shew how his ealculations were made, thongh in those days he would have required months or even years of intrieate calculation before he could arrive at his results. [S B. I.]

[^26]:     lunation is equivalont th 7 lumers 5 minutes, and thiw is too large; so that we have to take the l0000th of a lanation as our unit, which is equal to +25 minutes, and this suflices for all practieal purposes $\mathrm{l}_{\mathrm{a}}$ this work therefore a lunation is treated of as having 10.000 parte and a tithi 1000 parte

[^27]:    1 Sur drt. 21. and the first foutnote appended to $1 t$.

[^28]:    1 Calfulatiag by Prof Jacobi's Tables, $a, b, c$, are 9980.896 and 255 , earh of which is wrong by 1
    The above fignres were submitted by me to Dr Dowaing oi the Nautical Almanack ottice, witb a reignst that he would test the results by scientific European methods In reply be gave me the following quantities, for the sum from Leverrier's Tables, and and for the moon from Hansen's Tables (for the cjoch 1.b. 300, Mareh 8th, 6 i am, for the meridian of Ljaia). Man long of sun $345^{\circ} 51^{\prime} 47^{\prime \prime} \cdot 7$, Do. of sua's perigee $253^{\circ} 54^{\prime} 58^{\prime \prime} 5$, Do of moon $353^{\circ} 0^{\prime} 36^{\prime \prime} .0$, Do. of meon's perivee $36^{\circ} 9^{\prime} 18^{\prime \prime \prime}+$ the also verified the statement that the sumbe on the moroing of Mareb Sth was that immediately following new moon The ditleruce in result is partly cansed bs the fact that Leverrier's and Han-cu's longitudes are tropical, and thoe of the Siryn-Siddhinta sidereal
     of the results ohtained from the ane of (1) purely Hiodn (2) purely Enropean methods is romarkable On: Trable being for ludian documents and iascriptions we of conrse work by the formor. [R. S.]

[^29]:    1 Prof. Jacobi gives this as 200.5, but after most careful calculation I find it to be 2006 . [S B D.]
    ? Prof. Jacobi has not explained these Tables

[^30]:    
    
    

[^31]:    This is the method iuvented by Mt: T. Lahshmiab Naidu, nephow of the hate W S. Krishonvâmi Naidu of Matras, author of "Sonth Indian Chronologieal Tables."

    Results foned by this method may be: inavenrate by as much as two days, but not more. If the wra and bases wf ealeulation of the given Ilindu date are clearly kmown, nud if the giren date mentions a week-day, the day fomm by the Tables may be altered to suit it. Thus, if the Table yehl result Ian. IOhh. Thursday, but the iuseription mentions the werk day as "Tuesday ", then Turadas. Janary Sth, may be assemed to be the corret date A.D. cortesponding to the given Hindu date, it the prine fille on shich the Hindu date was fixed is knowis. If not, this method must not be trusted to
    135. (A.) Conarsion of a Hindu solar datio into the iowisponding dati A. I). Work by the following rules, always bearing in mind that when using the Kaliyuga or Saka year Hindus

    - Equation $c$ is the equation in Table Vil.

    2 Reference to the diagram in Art. 108 will make all this plain, if PSE be takera as the sm's mean anomaly, and ESE' the equation of the centre, PSE' + longitude of the sum's prequer being the sun's tras or apparent longitude

[^32]:    
    
    
     made "yprovinately

[^33]:    1 The actual date was Tuesday, amatata Chaitra krsshı̣a 3rd, the differemee bejng caused bs a fithi havink beenexpunced in the sisla fortnight of the same month (sece note to examples 6 and 12 aboce).

[^34]:    1 The initial days in cols 13 and 19, Table I , belong (o) the first of the donble years A 1 , given in col 5
    2 It will be well for a beginner to take an example at once, and work it out aceording to the rult After a liftle practice the calculations can be made rapidl! .

    3 Wheu the intercalary month is Chaitra, connt that also See Art. 99 above.
    4 This number is taken for easy caleulation lroperly speaking, to convert tithis into days the 64th part shenld be subtracted. The difference does not introdue any material error

    5 Generally with reward to (cc), (a), (b), (c) in working addition sums, take only the remainder respectively over t, 10000, 1000 and 1000 ; and in subtracting, if the snm to be subtracted be greater, add respectively $7,10000.1000$ and 1000 to the firure above.

[^35]:    1 Than fiar the groerss will give the comet result if there be no probubility by the rule given below of the expurtion
    
    

[^36]:    ${ }^{1}$ See Arts. 36 and 37 in whicb all the points noted in this article are fully treated of.

[^37]:    

[^38]:    1 It would have so begon if the sankranti ucenred at 7 p.m. on the Wednestay, or at any time aitur sumset (6 p.m.)

[^39]:    It is found by artual ealculation nader Art. 156 that the given nakshatra falls whe same date, and therefore we knon that the above resull is corrent.

    2 This problem is caser thm its conserse, the number of intervening das bere beiag certain
    $\therefore$ If the Rule $1(1)$ in $\mathbf{A}$ 't $\mathbf{1 0 t}$ (Table: Il., Jart iii.) be applied, this datter part of the rule necewarily foblows.
    
    
    
    
    

[^40]:    1 See Art. 21, and notes 1 and 2, and Arts. 93 and 96.
    2 See note 4, p. 90.

[^41]:    

[^42]:    1 Note that this approximate calculation, which is the same as that by method B, comes out actually wrong by two days.

[^43]:    

[^44]:    
    

[^45]:    1 Sn far as I know no Eurobean whonolugist of the present century has notiod this point Tables could be constructed for the heliacal rising of the moon in every month of ewery year, but it wouk be too great a work for the present publimation [S. B D]

[^46]:    Ser fontante pr liii above．

[^47]:    1 Hete the auxilary table to Table VI. and Vill abose may be used. [R id]

[^48]:    1 For the visibility of the beginning of the eclipse sce page 111 .
    2 For the visibility of the end of the eclipse see pare: 111.

[^49]:    
    
    
    
     and I an incliond tw Hink that ibe word uned for "opposite" in used to denole "urpired" (gator). The phrase "Is days old" is nand to shew thee Inik day of the whlar month. is IS II)

