


II E> R.AR.Y
OF THE

UN IVLR.SITY
OF ILLINOIS

620- 1 123

1 1 59/
v. 3-5
cop. 2



The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the
Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons

for disciplinary action and may result in dismissal from
the University.

To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANACHAMPAIGN

CCQ 02 HI81

L161—O-1096





Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/inelasticdesigno35univ





/ ?

WADD TECHNICAL REPORT 60-580

Part III

INELASTIC DESIGN OF LOAD CARRYING MEMBERS

Part III The Significance of an Inelastic Analysis of

Eccentrically-Loaded Members

O.M, Sidebottom

Theoretical and Applied Mechanics

University of Illinois

WRIGHT AIR DEVELOPMENT DIVISION





WADD TECHNICAL REPORT 60-580

Part III

INELASTIC DESIGN OF LOAD CARRYING MEMBERS

Part III The Significance of an Inelastic Analysis of

Eccentrically-Loaded Members

O.M. Sidebottom

Theoretical and Applied Mechanics

University of Illinois

September 26, 1960

Materials Central
Contract No. AF 33(616)-5658

Project No. 7351

Wright Air Development Division
Air Research and Development Command

United States Air Force
Wright Patterson Air Force Base, Ohio





CZ0.IIZ3

,3 ~ 6
ENGINEERING LIBRARY,

• FOREWORD
7-yoo ^3

This report was prepared by the University of Illinois under USAF
Contract No. AF 33(616) -5658 . This Contract was initiated under Project No.

7351 "Metallic Materials", Task No. 73521, "Behavior of Metals". It was

administered under the direction of the Materials Central, Directorate of

Advanced Systems Technology, Wright Air Development Division with Mr. R.F.

Klinger acting as the Project Engineer.

This report covers work conducted from November 1, 1959 to October
31, 1960.

The work was conducted in the Department of Theoretical and Applied
Mechanics in the Engineering Experiment Station, University of Illinois,
Urbana, Illinois. Professor O.M„ Sidebottom was the Project Supervisor.

WADD TR 60-580 Pt III





ABSTRACT

The author has worked with others on ten investigations, sponsored by

Wright Air Development Division, which have considered the theoretical and

experimental inelastic analyses of eccentrically-loaded tension and compression
members. In all cases good agreement was found between theory and experiment

for numbers tested at room temperature and at elevated temperatures . This in-

vestigation was undertaken to consider the significance of an inelastic analy-
sis of eccentrically-loaded members. If the inelastic deformation can be con-
sidered time independent, a choice has to be made between an elastic and an
inelastic solution. A study was made of the effect of several variables on the

ratio of the load necessary to produce a specified inelastic deformation to

the maximum elastic load. If the inelastic deformation is time dependent
(creep), the only choice is an inelastic solution.
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I. INTRODUCTION

Modern design, particularly in the aircraft and missile fields, requires
that load carrying members be used to the limit of their capacity. In many
applications the peak loads are applied only a small number 01 times so tnat
fatigue is not a problem. For the design of these members, the engineer has
to choose between an elastic ana an inelastic analysis. Because of its ease
of application and the confidence which the engineer has in its application,
the engineer wouia prefer to use the elastic solution. However, the elastic
solution is too safe in many applications, and the engineer must use an in-
elastic design to utilize the increase in load carrying capacity which is pos-
sible if small, inelastic strains are allowed. The percentage increase in
load above the maximum elastic load depends upon such variables as type of
member, shape of cross-section, shape of stress-strain diagram of the material,
and the amount of inelastic deformation. In the case of design lor an ele-
vated temperature of sufficient magnitude to produce creep, an inelastic anal-
ysis is always required.

The difficulty of an analysis depends upon the type of relation used to
represent the stress-strain diagram for the material. Linear elasticity uses
one of the simplest relations, namely, a straight line. If the material has
a yield point and the member is designed for strength rather than deformation,
a fully plastic analysis may be used; the resulting solution may be easier to
apply than an elastic solution. *'A fully plastic analysis cannot be used in a
large number of instances if any one of the following conditions are present:

1. The member is made of a material which does not have a yield point.
2. It is necessary to know the load-deformation relation for inelastic
conditions

.

3. The member may become unstable before reaching the fully plastic con-
dition as is the case of an eccentrically-loaded column.

In most cases, the loads on the members are assumed to maintain their same re-
lative magnitude and to increase in magnitude so that a nonlinear elastic
analysis can be used. In deriving the theoretical relations, the stress-strain
diagram of the material is represented by one non-linear function or two func-
tions. At room temperature, two functions are usually used to represent the
stress-strain diagram for metals, and the resulting solution is called an elas-
tic-plastic solution.

Because of the ever increasing interest is the inelastic analysis of load
carrying members, it is necessary that theoretical inelastic analyses be de-
veloped for all types of load carrying members. Furthermore, it is necessary
that these theories be checked experimentally for the following reasons:

1. Frequently simplifying assumptions are used in order to reduce the
complexity of the theory so that the theory can be readily applied by
the design engineer. It is necessary to determine the influence of these
simplifying assumptions on the agreement between theory and experiment.

Manuscript released by author September 26, 1960, for publication as a
WADD Technical Report

.
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2. It is logical that the engineer does not have the same confidence in

an inelastic analysis which he has in an elastic analysis . Experimental
verification of inelastic theories helps promote confidence in those
theories

.

Some of the investigations (1 through 10) sponsored by the Wright Air
Development Division have considered the theoretical and experimental inelas-

tic analyses of eccentrically-loaded tension and compression members. These
investigations have considered a large number of variables, namely:

1. Several types of ductile metals such as S.A.E. 4340 steel, 7075-T

6

aluminum alloy, type 304 stainless steel, 17-7FH stainless steel, and
Ti 155A titanium alloy.
2. Several types of cross-sections such as rectangular .angle , and T-
sections

.

3. Several end conditions for the columns such as fixed ends and pivot
ends with equal and unequal end eccentricities of various magnitudes.
4. Several slenderness ratios for the columns,
5. Both room temperature and elevated temperatures.

In all cases good agreement was found between theory and experiment indicating
that the theory was sufficiently exact to be used in the design of eccentri-
cally-loaded members. Since the theory was found to be reliable, was the in-

crease in load carrying capacity of a member (which resulted from the inelastic
deformation) of sufficient magnitude to justify the increase in labor necessary
to complete an inelastic analysis? Answers to this question vary from yes for
some cases to no for other cases. In order to obtain definite answers to the
question, the theory will be reviewed so that the effect of various variables
on the increase in load carrying capacity of eccentrically-loaded members can
be determined

.

II. THEORETICAL APPROACH

In deriving theoretical, load-deflection relations for eccentrically-
loaded members, the procedure is to equate the internal load and moment at

every section of the member to the applied load and moment. For elastic con-
ditions, Timoshenko (11) has presented closed solutions for rather general
loading conditions. Closed solutions have not been found for inelastic condi-

tions. Several analyses requiring a trial and error solution have been pre-
sented (2,3,5,6,7,8,9,10,12,13,14). In each case, a family of interaction
curves was constructed to give a relation between the internal load, moment,
and curvature at any section of the member. A relation between applied load,
moment, and curvature was obtained by approximating the configuration of the

deformed member

,

* Numbers in parenthesis refer to correspondingly numbered entries in the

Bibliography

.
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At least three different types of interaction curves have been used in

the analyses of eccentrically-loaded columns in which the inelastic deforma-
tion was primarily time independent. Chwalla (13) and Bijlaard (12) used a

family of curves giving the relations between the average stresses of origi-
nally straight, centrally-loaded columns and the post-buckling deflection.
Galambos and Ketter (14) used dimensionless , moment versus curvature curves
for specified loads. Sidebottom and Clark (2) approximated the stress-strain
diagram of the material by two straight lines (see Fig. 1), and constructed
dimensionless, moment versus load curves for constant depths of yielding.
These curves are shown in Fig. 2 for rectangular-section members made of a

material with o^ = (see Fig. 1). In Fig. 2, Pe = %& and M e = 0~
e
I/c

,

It is the author's opinion that constant depth of yielding interaction curves
are the easiest to construct and use.

In case the inelastic deformation is time dependent (creep), Sidebottom,
Clark, and Dharmarajan (6) approximated the isochronous stress-strain diagram
of the material by an arc hyperbolic sine curve of the form

0~~ 0~ arc sinh -gr- (1)

in which CJ and 6 are experimental constants. Since the stress distribu-
tion in the eccentrically loaded member changes with time and <T and 6 were
obtained from constant stress creep curves, Eq . 1 does not accurately repre-
sent the stress-strain relation in the member at a specified time. Good
agreement was found between theory and experiment (9,10) by decreasing <J by
10 per cent for eccentrically-loaded tension members and by increasing 0~ by
10 per cent for eccentrically-loaded columns. Based on Eq . 1, two families
of interaction curves were constructed as indicated in Figs. 3 and 4 for a

rectangular-section member. In these figures A is the distance from the ac-
tion line of the load to the centroidal axis of the member at the point of
maximum deflection, h is the depth of the member, qh is the distance from the
most strained fiber to the neutral axis, and K is Che ratio of the maximum
strain at a given section to £ .

Using the interaction curves shown in either Fig. 2 or Figs. 3 and 4, the
deflection, load, and curvature can be computed for any assumed point on any
of the curves. Another relation for the curvature of an eccentrically-loaded
member is obtained in terms of the configuration of the member. A trial and
error solution is required in order to determine the point on a given inter-
action curve which will make the two curvatures equal. One point on the the-
oretical load-deflection curve for the eccentrically-loaded member may be
obtained from each interaction curve.

Consider the eccentrically-loaded tension member shown in Fig. 5a. Since
the exact configuration of the member was difficult to obtain for inelastic
conditions, the axis of the member was assumed (2,5,6,7,8,9) to deform into a

Diagram obtained by plotting values of stress and strain obtained at a

given time from constant stress creep curves.
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segment of a circle. This configuration assumes that every section has the

same curvature as that for section C. Since every other section has a curva-
ture greater than that at C, the resulting theoretical deflection will be less

than actual, i.e. nonconservative . The error is small if e is large compared
to /.

In the case of an eccentrically-loaded column (see Fig. 5b), Chwalla (13)

and Galambos and Ketter (14) have presented procedures to approximate the con-
figuration of the inelastically deformed column as accurately as desired.

These procedures could also be used in the analysis of eccentrically-loaded
tension members and columns having end conditions other than that shown in

Fig. 5b. However, these exact solutions are extremely time consuming. Since

a column having any known end condition deforms into a sine curve elastically,
Bijlaard (12) suggested that the inelastic column also be assumed to deform
into a sine curve. For the column shown in Fig. 5b, the curve DCF can be rep-
resented by the following relation:

TT x
y = A sin

-
TT~ (2)

The curvature of the column at section C can be obtained from Eq . 2 to be
equated with the curvature obtained from the assumed point on a given inter-
action curve. The correct point on the interaction curve will satisfy the

condition that y = e when x = u . Solutions for general end conditions are

presented in references 10 and 12. Theoretical (12) and experimental (10)

investigations have shown that relatively small errors are introduced by the

assumption that the inelastic column deforms into a sine curve.

In several investigations (3,5,9), the curve ACB was represented both by

a segment of a circle and a sine curve of the form

c . 1? x
y = ^sin-_

(3)

Since neither of these approximations introduced another unknown (such as L

when using Eq . 2), they are easier to work with than Eq. 2. For a given load,

the segment of a circle approximation gives a deflection greater than actual
(conservative), while Eq. 3 gives a deflection less than actual (nonconserva-
tive). Good agreement was found (3,5,9) between theoretical collapse loads
based on Eq . 3 and the experimental collapse loads. Furthermore, the ratios
of collapse loads to maximum elastic loads are nearly identical for theories
based on Eq. 2 and Eq. 3. Computations have been made for eccentricities as
large as 25 per cent of the column depth.
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III. ELASTIC VERSUS INELASTIC ANALYSES

The discussion which follows will consider the ratio of the load neces-
sary to produce a specified amount of inelastic deformation to the maximum
elastic load for eccentrically-loaded members. For a given member this ratio
depends upon the amount of inelastic deformation, the shape of cross-section,
and the magnitude of c^ (see Fig. 1). The ratio is also greatly influenced
by the type of loading. In the case of an eccentrically-loaded tension mem-
ber, the ratio continues to increase with inelastic deformation (limited by
the fully plastic condition when ai = )• The ratio reaches a maximum at the
collapse load in the case of eccentrically-loaded columns. Separate discus-
sions will be presented for each type of member. In each case data will be
presented for the five cross-sections shown in Fig. 6. The I-section member
is assumed to deform without local buckling.

Eccentrically-Loaded Tension Members . As indicated in Fig. 5a, the sec-
tion of an eccentrically-loaded tension member having maximum moment is located
at either end of the member. Since small deformation theory is used, the mo-
ment remains constant and equal to Pe . If the inelastic deformation is
primarily time independent, the stress-strain diagram of the material is ap-
proximated by two straight lines as indicated in Fig. 1, and interaction curves
similar to those shown in Fig. 2 are used in the inelastic analysis. Since
the ratio of moment to load remains constant, the load necessary to produce
any depth of yielding in an eccentrically-loaded tension member may be obtained
from a radial line drawn from point in Fig. 2. The slope of line OB in Fig.
2 is equal to the ratio of M/Me to P/Pe and can be shown to be equal to ec/r2

where c is the distance from the centroidal axis to the outermost fiber of the
member, and r is the radius of gyration of the cross-section with respect to
the same centroidal axis

.

The maximum elastic load and the load necessary to produce any depth of
yielding are easily obtained from the radial line in Fig. 2. The ratio of the
load necessary to produce a specified depth of yielding to the maximum elastic
load increases from 1.00 for G = (centrally-loaded tension member) to a

maximum for a value of between and Tr/<=. When & is equal to n/g , the
member is subjected to pure bending.

The line OB shown in Fig. 2 has a slope of 1.5. The ratio of the load
necessary to produce one half depth of yielding to the maximum elastic load
was computed for a slope of 1.5 for all of the cross-sections shown in Fig. 6.

These data are shown in Table 1 for values of oi =0 and oc =0.20. It will be
noted that an appreciable increase in load carrying capacity resulted from
allowing the inelastic deformation. The increase is greatly influenced by the
shape of cross-section and by the strain hardening factor, o^ . The increase
in deflection for this increase in load may be obtained using the theories pre-
sented in references 2,5,6,7,8, or 9. The deflection necessary to produce one
half depth of yielding at each end of an eccentrically-loaded tension member
is in the neighborhood of twice the maximum elastic deflection.
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In case the inelastic deformation is time dependent (creep), there is no

choice between an elastic and an inelastic design since any design for creep
is based on an inelastic analysis. The load necessary to produce a specified
strain in the most strained fibers can be obtained using the procedure outlined
in references 6,7,8,9, or 10. This procedure uses interaction curves such as

those shown in Figs . 3 and 4

.

Eccentrically-Loaded Columns

.

As indicated in Fig. 5b, the maximum mo-
ment in the eccentrically-loaded column occurs at the section which has the

maximum deflection A „ Thus, an inelastic analysis requires that the load-
deflection curve for the column be obtained. If the inelastic deformation is

primarily time independent, constant depth of yielding interaction curves
similar to those shown in Fig. 2 are used in the inelastic analysis. By the
procedure outlined in references 3,5,9, or 10, a moment-load curve similar to
curve OD in Fig. 2 can be constructed for a given column from which the load-
deflection curve is obtained. It will be noted that the load carried by the
eccentrically-loaded column does not continue to increase with an increase in
depth of yielding but that the load is limited to the collapse load.

The effect of inelastic deformation on the load carrying capacity of ec-
centrically-loaded columns will be indicated by the ratio of the collapse load
to the maximum elastic load. This ratio is influenced by such variables as
cross-section, slenderness ratio, yield strain, strain hardening factor oc ,

and initial eccentricity. The two variables, slenderness ratio and yield
strain, can be replaced by one variable £ (iVr)

.

6

Ratios of the collapse load to the maximum elastic load are shown in
Figs. 7 through 11 for the 5 cross-sections shown in Fig. 6. Data is given
in each case for two initial eccentricities of 5 and 25 per cent of the column
depth and for two strain hardening factors of zero and 0.20. It will be noted
that the ratio of the collapse load to maximum elastic load approaches 1.0
for large values of £p {Q/r} ; furthermore, the effect ofoZ.cn the ratio is
small for large values of £e (iVr) . The magnitude of ££ (P/r} at which
the ratio becomes small depends upon the shape of cross-section and upon the
initial eccentricity. The effect of shaoe of cross-section can be represented,
at least partially, by the variable ch/r where c is the distance from the
neutral axis to the outermost fibers of the member. Consider the dimensionless
product

,

S =
Ch 1

" r2 (1- /h)* ViQ/rV€« (3)

If S is less than or equal to 17, the ratio of collapse load to maximum elas-
tic load will be less than 1.05 for all of the variables considered in Figs. 7

through 11. In the case of the T-section member, the ratio will be less than
1.05 for values of S as large as 28. When these conditions are satisfied, an
inelastic analysis is not justified. The minimum slenderness ratio, for sev-
eral materials and for three eccentricities, necessary to have the ratio less
than 1.05 were calculated and are shown in Table 2 for the cross-sections
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shown in Fig. 6. As indicated in Table 2, there are many applications for
which an inelastic analysis is not justified, particularly for eccentrically-
loaded columns made of high strength, low modulus materials for which the
initial eccentricity is small. It should be noted that the forementioned
values of S are valid for unequal eccentricities if the larger value of e/h
is substituted in Eq. 3.

If S is greater than 28 for the T-section member and greater than 17
for the other cross sections shown in Fig. 6, an inelastic analysis may re-
sult in an appreciable saving in weight and cost. As indicated in Figs. 7

through 11, the ratio of collapse load to maximum elastic load may be as
large as 2.00 in some instances. This ratio will be larger for larger ini-
tial eccentricities.

In case the inelastic deformation is time dependent (creep), the design
of an eccentrically-loaded column must be based on an inelastic analysis.
For centrally-loaded columns with pivot ends, the collapse load is the tangent
modulus load which is easily computed using Eq. 1. Since Eq . 1 does not
accurately represent the stress-strain relation for the material in the column
at the specified time (see Section II), the actual collapse load will be
greater than the tangent modulus load by 10 per cent . The ratio of the col-
lapse load of an eccentrically-loaded column for a specified time to the tan-
gent modulus load for the same time was computed for the rectangular-section,
the T-section, and the I-section and are shown in Fig. 12. For zero initial
eccentricity the column is centrally-loaded and the collapse load is 10 per
cent greater than the tangent modulus load as explained in Section II. The
experimental data presented in references 9 and 10 indicate that , for a given
cross-section and a given initial eccentricity, the ratio of the collapse
load to the tangent modulus load is not influenced by either the slenderness
ratio or the time to collapse if the tangent modulus load is calculated for
the specified time.
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TABLE 1

Ratio of Load Necessary to Produce One Half Depth of Yielding in
an Eccentrically-Loaded Tension Member and Maximum

Elastic Load

Strain
Hardening
Factor

0.2

Ratio when tan = 1.5

Rectangular- Circular- Angle-
Section Section Section T-Section I-Section

1.43

1.66

1.53

1.74

1.51

1.78

1.27

1.62

1.22

1.46
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IjA HI ,Vf 2

Minimum Slenderness Ratios for Eccentrically-Loaded Columns
for which an Inelastic Analysis is Not Justified

Material %
(psi)

e
e

Slenderness Ratio for
Angle-Rectangular- Circular-

Section Section Section T-Section I-Section

Steel
Steel
Steel
17-7PH

30,000 .0010
90,000 .0030

180,000 .0060
183,000 .065

7075-T6 80,000 .0078
Ti 155A 164,000 .0092

Steel
Steel
Steel

17-7PH

30,000 .0010
90,000 .0030
180,000 .0060
183,000 .0065

7075-T6 80,000 .0078
Ti 155A 164,000 .0092

Steel
Steel
Steel
17-7PH
7075-T6
Ti 155A

30,000
90,000

180,000
183,000
80,000

164,000

.0010

.0010

.0060

.0065

.0078

.0092

e/h = 0.05
124

71

50

49
44

41

e/h = 0.25
198

115

81

78

71

65

e/h = 0.50
446
258

182

175

160
147

165

95

67

65

59

54

265

153

108

104

95
87

595

344

243
234

213
196

202

117
82

79

72

67

324

187

132
127
116
107

729

421
298
286
261

240

98

57

40
39

35

32

157

91

64

62
56
52

354

205

145

139

127
117

70

40
29

28

25

23

113

65

46
44

40
37

253

146

103

99
91

83
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Fig. 1 Idealized Stress-Strain Diagram for Time Independent
Inelastic Deformation
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Fig. 2 Constant Depth of Yielding Interaction Curves for
Rectangular-Section Member ( oi =0)
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Fig. 3. Family of Curves for Rectangular-Section Member Giving Relation Between

A, q, and K
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Fig. 7 Ratio of Collapse Load to .vliximum Elastic Load for Rectangulai
Section Eccentrically-Loaded Columns
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ABSTRACT

Two theories were presented for constructing either moment -load or load-

deflection relations as well as the collapse loads for beam-columns. In each case,

trial and error solutions were required which used constant depth of yielding interaction

curves. A "so called" exact theory was presented which gave results as accurate as

desired; however, the theory was not -practical because of the excessive time required.

An approximate theory was presented which gave results in close agreement with the

exact theory and with experimental data. This theory required the elastic solution

for maximum elastic conditions.

The experimental part of the investigation included tests of rectangular - and

T-section columns made of 2024-T4 aluminum alloy, SAE 1020 steel, and 17-7PH

stainless steel. Several slenderness ratios were considered. In addition to the

variable axial load, the columns wer subjected to a constant transverse load either at

midspan of at quarter span which produced a bending stress of 0. 25, 0. 50, or 0. 75 C .
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I. INTRODUCTION

1. Preliminary Statement

In modern design, particularly in the aircraft and missile fields, load carrying

members are, in general, used to the limit of their capacity. This stipulation requires

that the design of many load carrying members be based on an inelastic analysis . If

inelastic action is allowed to penetrate only a small depth into the member, the resulting

deformations will not, in general, become excessive and an inelastic analysis can be used

in design for either strength or deformation. Small amounts of inelastic action have

been found to impart to a member an appreciable increase in the load-carrying capacity

above that associated with initiation of yielding (1-3) .

This investigation was undertaken to examine the behavior of a certain class of

members known as beam-columns, when subjected to loads higher than those necessary

to initiate yielding in the member. The term beam -column is applied to long, slender

members which are subjected to transverse as well as axial loads, i. e. , members that

simultaneously perform the functions of beams and columns.

While the problem of column behavior beyond the elastic range has been examined

extensively in recent years (4-15), that of beam-columns has received very little

attention. Aside from the well-known solutions for the behavior of beam columns in the

elastic range (16), only two-published papers were found that treat the subject of beam-

columns in the inelastic range. The first and the oldest of the two papers was published

by Osgood (17) in 1947. In his paper, Osgood proposed an approximate method which

essentially consisted of replacing the given beam -column by an equivalent eccentrically

loaded column. Available methods were then applied to the resulting eccentrically

loaded column. Theoretical solutions were presented for several cases, but no test

data were given. The second paper was published in 1955 by Ketter (18) who presented

a solution based on the principal of virtual displacements. Ketter 's method is

essentially based on the premise that instability in the beam -column will set in when

the rate of increase of the internal resisting moment (M. ) with respect to the curvature

Numbers in parentheses refer to corresponding entries in the bibliography.

Manuscript released by authors April, 1961, for publication as a WADD Technical
Report.





( $) becomes equal to the rate of increase of externally applied moment (M ) with

respect to curvature. Symbolically, this instability condition may be expressed as

follows:

AM., AM,
mt ext

A| A ip

By assuming ideal plasticity (i. e. non-strain hardening material) and a given configura-

tion for the deflection curve, Ketter determined the combination of axial load and

bending moment that would cause instability in members subjected to constant axial

load with increasing bending moment. However, all cases considered involved

members that were symmetrically loaded.

In the present paper, a new method is proposed that would make it possible to

analyse beam -columns made of materials with any strain hardening characteristics.

The approach is sufficiently general to consider symmetrically and unsymmetrically

loaded members, as well as concentrically and eccentrically applied axial loads.

Furthermore, the shape of cross-section of the member does not influence the case with

which the solution can be performed.

2. Purpose and Scope

The purpose of this investigation was to develop a procedure that would predict

the moment-load curve, or the load -deflection curve as well as the collapse load for

beam-columns which are subjected to constant transverse loads. While the analysis

was applied only to the case of a single concentrated transverse load, it it believed that

the theory is equally valid for cases in which the transverse loading is made up of

several concentrated loads, distributed loads, or any combination of the two.

Two theories are presented for predicting the load -deflection curves for beam-

columns. An exact numerical procedure is outlined in Appendix A. Although this

procedure will yield results as accurate as desired, several hours of computations are

required for a beam-column that is symmetrically-loaded. The amount of time is

increased many folds for an unsymmetrically loaded beam-column Since the exact

theory was found to be impractical, an approximate theory was developed. In this

theory the configuration of the inelastic beam -column was based on the elastic configura-

tion of the member when yielding was impending.

The experimental part of the investigation included tests on 46 beam-columns.

These tests covered several variables as follows:

2





(a) Material: Three different materials were investigated,

namely, 2024-T4 aluminum alloy
:
SAE 1020 mild steel and 17-7PH stainless

steel.

(b) Cross -section: The two shapes of cross sections that were

examined were the rectangular and the T- sections.

(c) Slenderness ratio: In the case of the rectangular section,

slenderness ratios of 50 3 75, and 100 were used. A slenderness ratio of 60

was used in the case of the T- section.

(d) Position of transverse toad: The transverse load was either

applied at midspan or at the quarter point of the member.

(e) Magnitude of transverse load: The transverse load was

maintained constant throughout a given test. The magnitude of this load was

selected so as to produce maximum bending stresses in the member equal to

25, 50, and 75 per cent of the yield strength of the material.

(f) Eccentricity: The axial load was applied either concentrically

or with initial eccentricity of 15 per cent of the section depth. Furthermore,

equal and unequal eccentricities at the two ends of the beam-column were

examined.





II. ANALYSIS

Two methods will be presented for constructing either moment-load or load-

deflection curves for beam -columns. The collapse load is defined as the maximum

load obtained from either the moment -load or load-deflection curve. In order to

construct these curves, two independent relations between the variables axial load,

moment and curvature are developed.

The first axial load-moment-curvature relation is obtained by considering the

equilibrium of internal forces and moments, and is represented graphically by

dimensionless interaction curves together with a moment-curvature equation. In this

investigation, interaction curves for constant depth of yielding are used. The second

axial load-moment-curvature relation is established by equating the interval and external

moments, and by considering the deformation characteristics of the beam-columns.

Using the interaction curves and a numerical procedure described by Chwalla (6),

the configuration of the inelastically deformed member can be derived as accurately as

desired. This so-called exact method is described in Appendix A; however, the method

is considered impractical because of the time required to obtain a solution for even the

simplest problem.

A theory based on certain approximations regarding the configuration of the

inelastically deformed beam -column was found to compare favorably with both the

exact theory and test results. This approximate theory requires that the elastic

solution to the beam -column be known, so that the magnitude of the axial load, maximum

moment, deflection and curvature at the critical section can be determined for

maximum elastic conditions.

1. Interaction Curves

Consider the T-section member shown in Fig. 1 which is subjected to an axial

load, P, at the centroid and to a moment, M. In order to construct interaction curves

for the given T-section, it is necessary to obtain expressions for P and M for any given

strain distribution. These expressions were previously developed by Sidebottom and

Clark (2) using the following assumptions:

The term "critical section" is used in its ordinary sense to signify the section of the

member at which the bending moment has its maximum value.





(a) Plane sections remain plane in both the elastic and inelastic

ranges. This assumption has been shown to be reasonably accurate (19).

(b) The stresses and strains in the beam-column are related in

the same fashion as they are in simple tension and compression. Experimental

evidence exists to justify this assumption (19, 20).

(c) The stress-strain diagram for the material can be approxi-

mated by two straight lines intersecting at a value of stress considered to be the

yield stress of the material as shown schematically in Fig. 2.

(d) The modulus of elasticity in tension is the same as that in

compression.

Let the member shown in Fig. 1 be subjected to a load, P, and moment, M, of

such magnitude that yielding has penetrated to a depth, a., on the compression side and

to a depth, a 2> on the tension side. The remaining depth, a, is elastic. The

expressions for P and M as developed by Sidebottom and Clark (2), are given below

without derivation.

For a ^ t : a a b a
-5- = 1 " -(c, - a.) -£ - -i-s- (1 - a,)—
P a v

1 r<r aA 1 r a
e
l

e
l

2 ,a
2

£
1 %

e
l

2c
2

a
e

albc
2

a %
Nf-ir^ rr~ (1 - a

i
)(ci- t } ~

e e
2

e
2

2
a
9 t.c a

9 ct

e
2

Fora
l^

t
2

:

P 2, ,% al\ n , %T = l- T (c - a)_ + __(i_a
2
)—

e e

(1 - a
x
)

a A
baj - (b - t

1
)(a

1
- t

2
)

C7
e

e
l

(3)





M -
2°

2 '• - **V2
(1 _ a „ V ^e

M a <r a I 2M 2 3 a6 6
2

e
2

-(1-Oj)
2C

2 Vl, , .2,
a+a

2,
a
-^ • (4)
a
e
2

In the above expressions P is the axial load required to initiate yielding when acting

alone; M is the moment required to initiate yielding when acting above; A is the cross

-

sectional area of the member; I is the moment of inertia of the section; and 2<j = a
e e

x+ a . The remaining symbols are as defined in Figs. 1 and 2.
e2'

By making the thickness of the web t. equal to the width of the flange b, the

above equations become applicable to rectangular sections. In this case, however,

only Eqs. 1 and 2 are needed in which c. becomes equal to c„. Furthermore, since

for the materials considered a was equal to or greater than a , it is replaced by
e
2

e
1

a in Eq. 2.
e
i

While expressions for the dimensionless quantities P/P and M/M can be

obtained separately in terms of the properties of the section and those of the material,

there is no simple way of directly relating P/P to M/M analytically. Resort is,

therefore, made to a graphical representation of the above relations in the form of

dimensionless interaction curves for constant depth of yielding as shown schematically

in Fig. 3. The procedure consists of assuming a given depth of inelastic penetration

(or a given value for a). Then values of a and a are assumed such that their sum

is always equal to the depth of plastic penetration. Equations 1 through 4 are then

evaluated to compute the values of P/P and M/M . This process is repeated as

many times as is necessary to obtain a smooth curve for the specified depth of yielding.

The same procedure is used for other depths of inelastic penetration.

A study of Fig. 3 indicates that, with. the exception of the straight line defining

initiation of yielding (i. e. , a = h), all curves consist of two parts, a straight line and a

curve. The combinations of P/P and M/M represented by the straight line portion

are those necessary to cause yielding on one side of the member only, while the other

side is still elastically strained. The point of intersection between the two portions

of the interaction curve defines the combination of P/P and M/M that produce the

specified depth of yielding on one side of the member and incipient yielding on the other

side. The curved portion, however, defines the various combinations of P/P and





M/M that would cause inelastic action on both sides such that the total depth of

inelastic penetration is equal to the specified depth of yielding.

Once the interaction curves for constant depth of yielding are known (see Fig. 3),

they may be used to obtain a relation between axial load, moment, and curvature. It

has been shown by Sidebottom and Clark (2) that the curvature of the member for any

point on any one of the interaction curves shown in Fig. 3 is given by the relation

e + e M/M e + e M/M
e e

2
e e

1
e
2

e

*
=

~~i M /M
=

kh WJM~ ^
u e u e

where e and e define the strains corresponding to the compressive and tensile
6

1
e
2

yield stresses, respectively, as shown in Fig. 2. The quantity k is a proportionality

constant which may vary from zero to unity. M/M is the dimensionless moment

that exists at the given section of the member and M /M is the dimensionless moment

at the upper end of the straight line portion of the interaction curve. The ratio M/M

assumes a constant value of unity in the curved portion of the interaction curve.

A solution for the beam-column cannot be obtained using only the interaction

curves and Eq. 5 since the point on the interaction curve which is valid for a given

section of the beam -column is not known. Another relation between axial load, moment,

and curvature for the inelastically deformed beam -column will be obtained by con-

sidering the equality between internal and external moments as well as the deflection

characteristics of the member. The deflection characteristics of the inelastically

deformed member are developed from the elastic solution of the given beam-column.

2. Elastic Solution for the Beam-Column

For the beam -column shown in Fig. 4, the bending moment at any section a

distance x from the origin is given by the equation

M = P y + e
i

"
J <e

i
" e

2>
+ M

Q
(a)

which applies to sections on either side of the transverse load Q. The symbols e
1

and e„ are the eccentricities of the load P at the left and right ends, respectively, y

is the deflection of the centroidal axis of the member at the point considered, 4 is the

length of the member and Mn is the moment at the section in question due to the

transverse load Q acting alone. Equation a may be written in dimensionless form

by dividing both sides by the quantity M = P /y , in which y is a constant that





depends on the properties of the cross -section. Thus

M . P .

M T VP '
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x
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Q e
(b)

It should be noted that Eqs. a and b are valid for either elastic or inelastic conditions

The differential equations of the elastic deflection curve for the beam-column

shown in Fig. 4 may be expressed as
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where E is the modulus of elasticity and the remaining symbols are as defined

2
previously. Using the notation /3 = P/EI and rearranging terms, the above equations

may be written as
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In the case of a rectangular section, for example, M =
CjA/I

jjt- so that y is equal to 6/h.





The general solutions of Eqs. e and f are given by the following equations

y = C, cos fi x + C„ sin /3 x

. . . . . x L (£ - d)
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From the conditions at the ends of the beam-column (i. e. , y = for x =

and x = i), the constants of integration C, and C, are found to be

C
l

= e
l

'
C
3
=

"C4 tan ^ * + e
2
/cos B * •

(g)

(h)

(i)

The constants of integration CL and C are determined from the conditions at the

point of application of the transverse load Q. At this point, the two portions of the

elastic deflection curve, as defined by Eqs. g and h possess the same values of

deflection and slope. From these conditions, the values of C„ and C. are found

to be
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Substitution of the values of the constants C. . . . . C. into Eqs. g and h,

rearranging terms and simplifying leads to the following equations defining the

elastic deflection curve of the beam -column shown in Fig. 4,
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The elastic curvatures may be obtained by differentiating Eqs. 6 twice, thus

j, = v„ = _
fl
2 sin /?(£ - x) _ 2 sin ff x

* y "
e
l
P sin 4

e
2 P liifpT

" Qpt
Sln// sin^x . . . . x^ (£-d)

P sin /3 £ K v '

ri
- v" P fl

2 sin ff (I - x) 2 sin fix
* " y "

e
l^ sin pi e

2 P ^TnTl

- Q
Mi/fi\'

d) sinMix)....xA (f -d).

The bending moment at any section along the span of the member is then given

by the equation

M = -El(Jp ). (8)

For a given member, the deflection, y , and curvature, ip , at the critical

section may be determined for any value of P from Eqs. 6 and 7, respectively.

Examination of the ratio ip /y revealed that, in general, this ratio did not vary

greatly as the axial load P increased from zero to its maximum elastic value. This

behavior led to the assumption that the ratio ip /y remains constant as the beam-

column is strained inelastically. Essentially, then, a relation between curvature

and deflection at the critical section in the inelastic range is assumed to be of the

form

^ c
=Cy

c
(9)

where the constant C is determined as the rat io of curvature to deflection at the

critical section when yielding is impending.

Eliminating the deflection, y , between Eqs. b and 9. and solving for P/P ,

the required relation between axial load^moment, and curvature is obtained, namely
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M/M - (M /M )

-^- (10)
p
e Y[Vc + ei-V1(ei- e

2>]

where the subscript c designates conditions at the critical section.

3. Method of Solution

The purpose of this article is to show how the various relations established in

the preceeding article may be used to determine the moment -load curve or the load-

deflection curve as well as the load P that causes complete collapse of a beam-column

when it is subjected to a constant value of the transverse load Q.

The value of the axial load P that would initiate yielding in the member may be

determined, by trial and error, using Eqs. 7 and 8. The procedure consists of

first assuming a value for P and determining the quantity /3 = A P/EI. The value of

x locating the critical section is now determined by maximizing Eq. 7. The

maximum moment is then given by Eq. 8 and the maximum stress at the critical

section by the equation

(M ) c. P
=

max 1
+ - . (11)

max.
j A

This process is repeated until the stress determined by Eq. 11 becomes equal to the

compressive yield stress of the material, a

With the value of P that initiates yielding known, the constant C may be easily

found from Eq. 9, in which, the values of y and ip are determined by the use of

Eqs. 6 and 7, respectively. Furthermore, this value of P may be used to locate

the intersection of the moment-load curve and the interaction curve defining the

beginning of yielding (k = 1), see point B in Fig. 3.

The solution is then carried into the inelastic range by means of the inter-

action curves along with Eqs. 5 and 10.

In applying Eq. 10, the assumption is made that the critical section does not

move as the member deforms inelastically. This is equivalent to saying that x

and (M„/M ) retain the same values they assumed at initiation of yielding. With

members which are symmetrically loaded (i. e. , d = 1/2 and e. = e
2), x does

retain the same value, namely H/2, in the inelastic as well as in the elastic range.

However, with members which are not symmetrically loaded (i. e. , d f 1/2 and/or

e
1

f e„), x does not, in general, retain the same value throughout the loading

process. Test data indicated that the above assumption did not introduce a serious

error into the theory.
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Now consider the problem of determining the value of P/P that would produce

a given depth of inelastic penetration (i. e, , k = k. = const), see Fig. 3. The

condition that has to be satisfied is that M/M be of such magnitude that the value of

P/P given by Eq. 10 be equal to that given by the relation P/P = f(M/M ) as expressed

by the interaction curves. To this end some value of M/M is assumed and the

curvature ip is determined by Eq. 5. Equation 10 is then used to obtain a value of

P/P which is compared to that given by the interaction curve corresponding to k = k.

.

This process is repeated until the two values of P/P are the same or very nearly so.

This usually requires not more than three trials. Thus the problem is reduced to

the solution of two simultaneous equations in the unknowns M/M and P/P , The

deflection y , if needed, may now be obtained from Eq. 9.

Once the correct value of P/P is established for k = k
1

, a point is located on

the appropriate interaction curve. Other values of k are then considered and the

same process repeated to establish a set of points such as C, D, E, F, and G in

the inelastic domain, see Fig, 3. The location of point A on the M/M axis is

dictated by the value of the transverse load Q, A smooth curve is then constructed

through the points A, B, .... G to give the moment- load curve. The collapse load

for the beam-column may be obtained from the moment load curve and in dimensionless

form, is the maximum value of P/P .

e

If additional points are needed in the elastic range (i. e. , between points A and

B in Fig. 3) they may be easily determined from the elastic solution, using Eq. 6

and the equilibrium condition expressed by Eq. b.

4. Sample Problem

In this article, a sample problem is solved to illustrate the method used in

deriving the moment-load curve for a given beam-column.

(a) Given Data For a Rectangular SAE 1020 Steel Beam-Column:

A = b x h = 0. 500 x Q625 = 0. 3125 in
2

; I = 0. 01017 in
4

; it = 13. 52 in(4/r = 75)

M = 0. 5 M
g

; d = 0. 25 i ; e = 0. 15h = 0. 09375 in

e =0; a = a =30, 300 psi; P = 9470 lb.
2 e

l
e
2 -4 e

e = € = 10. 1 x 10 in/in.
e
l

e
2

(b) Problem: To determine the moment -load curve for the

beam-column specified above.

12





(c) Solution:

Q 16
"

81(7

a I
e

Q =
3 tc

= 194. 49 lb.

1

From the given conditions it is evident that the critical section occurs either under the

load Q or slightly to the left of this position Maximizing Eq. 7 for x ^ (£ - d) leads

to the condition that the location of the critical section is defined by the equation

tan fix =r c

Q sin fl d - e. fl P cos fl I + e„ fl P

e, fl P sin fl £

Since in this problem e„ = 0, Eq. k becomes

tan fix =H c e. fl P sin fl £

(k)

Q sin fl d - e fl P cos fl £

(i)

By Eqs. 7 and 8 and using the condition e = 0, the maximum moment, M ,

is given by the equation

EI e, r
2

Mmax sinjr sinm ' x
c>

EIQflsinfld
+ sinflx

Psinflf c

The maximum stress, a , will then be given by Eq. 11.

(m)

The computations for the axial load that would initiate yielding are given in

the following table.

Trial P - lb fl-l/in x -in. ^max °max

lb-in. psi

1 3000 0. 0992 10. 14 654. 12 29, 700

2 3200 0. 1024 10. 14 668.03 30, 770

3 3100 0. 1008 10. 14 661. 17 30, 240

4 3110 0.1010 10. 14 661.93 30, 290
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Thus, to initiate yielding P/P = 3110/9470 = 0. 328.

By Eq. 8 for x ^ (I - d), y = 0. 0308 in, for P = 3110 lb.

By Eq. 9 for x ^ (£ d), ip = 21. 69 x 10" 4 l/in,for P = 3110 lb.

C =
if) /y =0. 0704 1/in

y = 6/h = 9.6 1/in
If) 14

At x
c

= 10. 14 =
jj^fi

ft = 0. 75 i , (M„/M
e)c

= 0. 50

Therefore, the equations that apply in the inelastic range are

r c

32. 32 x 10
-4 M/M

M /M
u e

(5)

M/M - 0. 50

P/P
e

=
9. 6 ( 14.2 ip + 0.0234)

- (10)

and the functional relation P/P = f(M/M ) as expressed by the interaction curves

shown in Fig. 7.

A sample calculation is shown for k = 0. 7 in the following table.

Trial M/M
(Assumed)

^c
Eq. 5

P/P
e

Eq. 10

P/P
e

Fig. 7

yc

Eq. 9

1

2

3

0.830

0.832

0.831

34.21 x 10" 4

34. 30 x 10" 4

34. 25 x 10" 4

0.478

0.480

0.479

0.480

0.478

0.479 0. 0487

Thus to produce 0. 3 depth of inelastic penetration (k = 0. 7), P/P = 0. 479, which

locates a point on the moment-load curve. Other points, corresponding to other

values of k may be similarly located.
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III. MATERIALS AND TEST PROCEDURE

1. Materials and Specimens

In order to examine the validity of the analysis discussed in Section II, tests

were performed on beam-columns made of three materials, namely 2024-T4

aluminum alloy, SAE 1020 steel and 17-7PH stainless steel. The 2024-T4 aluminum

samples were tested in the as-received condition The SAE 1020 steel was annealed,

prior to machining, by soaking at 1600 F for 3 hours and furnace cooling. The 17-7PH

stainless specimens were precipitation hardened after machining. The SAE 1020

steel samples were machined from a 3 1/2 in. diameter bar, while the 2024-T4

aluminum and the 17-7PH stainless steel specimens were machined from 1/2 in.

plates. The various beam-columns tested in this program with their physical

characteristics are shown in Table I. Either one or two beam -columns per condition

were tested in this study.

Standard tensile and compressive tests were performed on the aluminum alloy

to determine the various properties needed for the analysis. However, only com-

pressive tests were performed on the mild and stainless steels. Results of previous

tests by Sidebottom and associates (21) on the last two materials have indicated that

the difference between tensile and compressive properties was negligible for all

practical purposes. The various properties used in the present analysis are shown,

for the three materials, in Table II. These values represent an average of at least

six tests.

Using the various properties indicated in Table II, and Eqs. 1 through 4,

interaction curves for the three materials and the two types of cross -section were

developed. These interaction curves are shown in Figs. 5 to 9. Figures 5 and 6

represent the 2024-T4 aluminum interaction curves for rectangular and T-sections,

respectively. Figures 7 and 8 show the SAE 1020 steel interaction curves for

rectangular and T-sections, respectively. And Fig. 9 illustrates the interaction

curves for rectangular sections made of 17-7PH stainless steel. In all instances, k

decreased in increments of one tenth to a minimum value of 0. 4.

This heat treatment consisted of soaking at 1400 F for 90 minutes, cooling to

60° F in 60 minutes, soaking at 60° F for 30 minutes, soaking at 1050° F for

90 minutes and finally air cooling.
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2. Apparatus and Test Procedure

The testing apparatus used in this program is shown in the photograph of Fig.

10. A Riehle testing machine having a capacity of 120, 000 lb. was used to apply the

2
axial load through fixtures provided with knife edges as illustrated in Fig. 11 The

position of the knife edges may be adjusted with respect to the centroid of the specimen

by means of set screws. The transverse load was applied by means of dead weights

through the pulley system shown in the photograph of Fig. 10. The deflection of the

specimen was measured by means of a 1/1000 in. dial indicator which may also be

seen in the photograph as well as in Fig. 11.

The specimen was properly placed in the test apparatus and a small value of

axial load was applied to maintain the specimen in the proper position. The pulley

system was then raised or lowered so as to apply the transverse load at the desired

position along the span of the beam-column. The dial indicator was subsequently

placed in positon and the desired transverse load applied. This transverse load was

maintained at a constant value throughout the test.

The axial load was subsequently increased, and readings of this load and the

corresponding deflection were taken at predetermined intervals of load until the

predicted value of the collapse load was approached. Beyond this point, judgment

was exercised in spacing the readings at reasonable intervals of deflection. Sufficient

readings were taken to make it possible to construct the moment-load curve well

beyond the collapse load.

Once the member was loaded beyond the elastic limit, sufficient time was

allowed for equilibrium conditions to be reached (i.e. , for the axial load to reach a

steady value). In the case of the aluminum and the stainless steel samples, a

period of approximately two minutes was sufficient for the axial load to stabilize.

In the case of the mild steel specimens, due to the presence of an upper yield point,

appreciably more time was required for steady state conditions to be reached. In

3
most instances, up to 20 minutes elapsed before a reading could be taken. It was

discovered, however, that this delay time could be shortened, without appreciably

2 A complete description of these fixtures may be found in a paper by Sidebottom
et al (22). The two end fixtures added a total of 1. 20 in. to the machined length

of the specimen.

3
This time-sensitivity of mild steels was investigated previously by Clark,

Corten, and Sidebottom (20).
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influencing the load-carrying capacity, by prick punching one row of shallow indentations

along the span of the member. These indentations were spaced approximately one-

half inch apart. In a few instances, two tests were performed for the same conditions,

one with and one without indentations. The results indicated the difference between

the load -carrying capacities of the two specimens to be insignificant.
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IV. RESULTS AND DISCUSSION

In this section, a comparison is made between the results of the proposed

approximate theory, and those of the experiments. The comparison is made on the

basis of moment Toad curves (i. e. , M/M vs. P/P ), This method of presentation

was selected over the more conventional load -deflection plots because it conveniently

indicates the value of M^/M to which the beam-column was initially subjected before

the axial load was applied. The various tests that were performed in this program

may be conveniently classified into two types as follows:

1. Symmetrically Loaded Beam -Columns

This class of members include those subjected to end loads with zero or equal

eccentricities and to a transverse load at midspan. They are characterized by the

fact that the maximum moment is located at midspan and possess symmetrical deflection

curves throughout the loading process.

In order to examine the degree of accuracy attainable by the approximate method,

a comparison was made between moment-load curves obtained by this method and those

developed by the so-called exact method (see Appendix A). In view of the fact that the

latter method involves rather lengthy computations, particularly with unsymmetrically

loaded members as indicated in Appendix A, the comparison was limited to two cases

only, namely one 2024-T4 aluminum member and one SAE 1020 steel member. Both

members were symmetrically loaded with zero end eccentricities, had a slenderness

ratio of 75 and were subjected to transverse loads at midspan such that Mn/M was

equal to 0. 50. The results of both methods are illustrated in Fig, 12 together with

the values exhibited by test. In the case of 2024 -T4 aluminum, the two theoretical

moment -load curves were nearly identical and were found to compare very well with

the test values. In the case of SAE 1020 steel, however, a slight difference of about

5 per cent is observed between the collapse loads as predicted by the two methods.

While this difference was in favor of the exact method, it is too small to justify the

added labor required by this method. Furthermore the approximate theory was

conservative.

The actual moment -load curves for symmetrically loaded members are presented

in Figs. 13 to 21 in comparison to curves developed by the approximate method. Figures

13 to 16 illustrate the moment-load curves for members made of 2024-T4 aluminum

alloy; Figs. 17 to 19 show the moment-load curves for members made of SAE 1020

steel; and Figs. 20 and 21 indicate the moment-load curves for members made of
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17-7PH stainless steel. In the case of the 2024-T4 aluminum and SAE 1020 steel, both

rectangular and T- sections were examined. Furthermore, four different slenderness

ratios ranging between 50 and 100 were investigated. In addition, for each of these

two materials, two different values of Mn/M were analyzed, namely 0. 25 and 0. 50

for 2024-T4 aluminum, and 0. 50 and 0. 75 for SAE 1020 steel. In the case of 17-7PH

stainless steel, however, testing was limited to members with rectangular-sections,

having slenderness ratios of 50 and 75, and subjected to values of M^/M equal to

0. 25 and 0. 50.

Examination of Figs. 13 to 21 leads to several interesting conclusions. It is

observed that, in all instances, the predicted curves compare very well with the test

data. In general, the discrepancy between the predicted collapse load and that

exhibited by test is less than about 7 per cent, as shown in Table HI by the ratio of

actual collapse load, P , to theoretical collapse load P . This discrepancy is not

excessive when considered with respect to the scatter that is normally encountered in

materials testing.

In general, when the beam column is symmetrically loaded, the theory always

predicts values of collapse load which are either equal to, or slightly lower than those

exhibited by test. In other words, the theory tends to predict values which are

conservative, as may be seen from Table III by the ratio P /P .

Ccl C L

It is also observed that, in every instance, there is a considerable increase in

the load carrying-capacity above that associated with the beginning of yielding. This

increase in the load carrying capacity is represented in Table III by the ratio of actual

collapse load, P , to the actual load that initiates yielding, P . Evidently, the

increase in the load carrying-capacity (i. e. , P /P - 1) depends upon several
Cci y^-

factors which include, among other things, the slenderness ratio, magnitude of the

transverse load, end eccentricities, material and type of cross -section. While the

tests that were performed are insufficient to evaluate the influence of all pertinent

factors, it is possible to determine qualitative trends regarding the effects of the

slenderness ratio, magnitude of transverse load, material and end eccentricities on

the ratio P /P .

ca ya
Examination of Table III indicates that for a given material and for zero

eccentricities the ratio P /P increases with increase in the magnitude of the trans

-

ca ya &

verse load (i. e. , with increase in the ratio Mn/M ), and with decrease in the slender-
ly e

ness ratio. Furthermore, a comparison of the data corresponding to Mn/M = 0. 50
v e

and zero end eccentricites indicates that P /P is slightly, but consistently, higher
ca ya
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for SAE 1020 steel than for 2024-T4 aluminum. In addition, based on the two tests that

were performed on 17-7PH stainless steel with zero end eccentricities, the ratio P /P* ca ya

for this material was found to be considerably less than that for the aluminum and mild

steel alloys. These trends lead to the conclusion that one of the factors influencing the

ratio P /P is the strain at yielding, namely e . Apparently, the larger the value of
ca ya e

e the less is the ratio P /P for a given slenderness ratio.
e ca ya °

The influence of end eccentricities on the increase in the load-carrying capacity

may also be seen from Table III. A comparison of the values corresponding to Mn/M
in the case of 2024-T4 aluminum, indicates that P /P attain higher values for

ca ya &

members provided with end eccentricities than for members subjected to concentric

axial loads.

2. Unsymmetrically Loaded Beam -Columns

This type of members include those subjected to unequal end eccentricities and/or

to a transverse load not at midspan. They are characterized by the fact that the

maximum moment may not occur at the same section of the member throughout the

loading process, and the deflection curve is, therefore, unsymmetrical.

The actual moment-load curves for beam-columns of the type described above

are presented in Figs. 22 to 27 in comparison to theoretical curves. Figures 22 and

23 illustrate the moment-load curves for members made of 2024-T4 aluminum; Figs.

24 to 26 show the moment -load curves for members made of SAE 1020 steel; and

Fig. 27 indicates the moment-load curve for a member made of 17-7PH stainless steel.

In the case of 2024-T4 aluminum and SAE 1020 steel, testing was performed to include

both rectangular and T-sections, four different values of slenderness ratio ranging

between 50 and 100, and two different values of the ratio Mn/M , namely 0. 50 and 0. 75.

In the case of 17-7PH stainless steel, only one test was performed on a member of

rectangular cross-section having a slenderness ratio of 75 and subjected to a trans-

verse load such that M„/M was equal to 0. 25.

In this series of tests, as in the previous series, very good agreement is

observed between the predicted and the actual test values. The discrepancy between

the theoretical collapse load and that given by test, was found not to exceed about

5 per cent, as shown in Table IV by the ratio P /P .

ca ct

However, in this series, unlike the previous series, the tests did not consistently

yield values of collapse load which were either equal to, or slightly higher than that

predicted by theory. This lack of consistency may be seen in Table IV as the ratio
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P /P varied from a minimum of 0. 95 to a maximum of 1, 05 depending upon the
Ca c r

material, slenderness ratio and loading conditions. This inconsistency in the observed

trends may be explained as follows:

At the beginning of loading (i. e. , when only the transverse load, Q, is acting and

the axial load, P, is zero or very nearly so), the maximum moment occurs at the point

of application of the transverse load. When the axial load P reaches a certain value that;

depends upon the material, the slenderness ratio and the cross -sectional area, the

position of the maximum moment (critical section) begins to move away from the point

of application of the transverse load, Q . The axial load, P, at which movement of the

critical section begins, may occur either within the elastic or within the inelastic range

of the material depending upon the conditions stated previously. The conditions investi-

gated in this program were such that movement of the critical section was always from

the point of application of the transverse load Q towards midspan. In the elastic range,

the influence of the migration of the critical section can be easily included in the anslyses.

However, there is no simple method known by means of which the positon of the critical

section may be determined at any stage of inelastic action. This difficulty was circum-

vented in the present analyses by making the assumption that the critical section, during

inelastic deformation, retains the same position it assumed at initiation of yielding, as

explained previously. Obviously, this assumption cannot be expected to be equally

approached by members made of different materials, possessing different physical

characteristics and subjected to different loading conditions; hence, the lack of a con-

sistent trend observed in the actual behavior of members when compared to theoretical

predictions. However, this lack of consistency does not appear to be detrimental,

since for all cases examined in this program, the theory predicted values of collapse

load which were in close agreement with those exhibited by test.

As in the previous series of tests, an appreciable increase was observed in the

load-carrying capacity beyond that corresponding to initiation of yielding. This

increase may be seen in Table IV by the ratio P /P . Unfortunately., not all the para-

meters that may influence the increase in the load-carrying capacity can be examined

on the basis of the few tests that were performed. However, the remarks made

The dependence of the position of the critical section on the axial load, P, in the

elastic range may be seen from Eq. k.
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previously with regards to the influence of slenderness ratio, material and end
eccentricities on the ratio P

ca
/P

ya
apply equally well in the case of unsymmetrically

loaded beam-columns.
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V. SUMMARY AND CONCLUSIONS

In order to examine the inelastic behavior of beam -columns, two theories were

developed. An exact numerical procedure as outlined in Appendix A, would yield results

as accurate as desired. However, in view of the fact that this method may become

rather lengthy and sometimes prohibitive, an approximate, but relatively simple method

was developed. Essentially, the approximate method requires a trial -and-error

solution of two independent relations betwen the variables axial load, moment and curva-

ture. The first of the two P-M-ip relations is established from considerations of the

equilibrium of internal forces and moments, and is represented graphically by dimension-

less interaction curves along with a moment-curvature equation. The second P-M-$

relation is developed by considering the equality between the internal and external

moments, as well as the deflection characteristics of the member. The proposed

method makes it possible to determine the magnitude of the axial load (concentric or

eccentric) at any stage of inelastic deformation including that at which collapse takes

place, for a beam -column which is initially subjected to a constant transverse load.

To examine the validity of the various assumptions made in developing the

approximate theory, tests were performed on members made of three different

materials, namely 2024 -T4 aluminum, SAE 1020 steel and 17-7PH stainless steel.

Several parameters were investigated within each material. These included the type

of cross section, slenderness ratio, position and magnitude of transverse load, and

eccentricity of the axial load. Dimensionless moment-load curves were constructed

from the test data and compared to those obtained analytically. Furthermore, in two

instances, a comparison was made between the approximate method and the so-called

exact method. The various results lead to a number of significant conclusions which

may be summarized as follows:

1. The results obtained by the proposed approximate method

compared well with those obtained by the exact method. The differences

observed between the results of the two methods are too small to justify the

added labor required by the exact method.

2, Very good agreement was observed, in all instances,

between the moment -load curves predicted by the approximate method and those

obtained by test, particularly up to the collapse load. While close agreement

was generally encountered beyond the collapse load, there were a few instances

in which the discrepancy between the predicted and actual curves became

pronounced.
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3. The difference between the predicted and actual values of

collapse loads was, in general; much less than 7 per cent. Thus the proposed

approximate method was found to be sufficiently adequate for all practical

purposes.

4. In general, inelastic action was found to induce a considerable

increase in the load-carrying capacity beyond that associated with initiation of

yielding. The increase in the load-carrying capacity was observed to range

from a maximum of 159 per cent for SAE 1020 steel, to a minimum of about

2 per cent for 17-7PH stainless steel.

5. The increase in the load-carrying capacity was found to vary

directly with M„/M , and inversely with £/r and e .

6. Members with end eccentricities of 15 per cent of the section

depth attained a much higher increase in load -carrying capacity than members

with zero end eccentricities.
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VII. APPENDIX A

In this appendix, a brief outline is given of another method of approach to the

problem of beam-columns. This method is capable of yielding extremely accurate

results, and is referred to here as the "exact method". Essentially, the exact method

differs from the approximate method described in this paper only in the way of relating

curvature to deflection in the inelastic range. For simplicity in presenting this

approach, a symmetrically loaded beam -column with zero end eccentricities will be

considered, as shown in Fig. 1A.

Fig. 1A

The method of relating curvature to deflection in the inelastic range is similar

in principle to that used by Chwalla (6) in his solutions of column problems. It consists

of subdividing the member into a number of equal segments, X , as shown in Fig. 1A.

The assumption is then made that within each segment, the curvature remains constant

(i. e. , within each segment, the deflection curve is a circular arc). The deflection at

any section of the. member may then be found by the relation
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where ip^, designates the curvature at the Nth section along the member, and y is

the deflection at midspan.

For the beam -column shown in Fig. 1A, Eq. b becomes

MP M
H- - y^)Y + m:^) (b)

e e e

where M is a factor varying linearly from unity at the center section to zero at the end

of the member. Eqs. 1A and b thus provide one P-M-^i relation. The second P-M-V

relation is obtained using Eq. 5 and interaction curves of the type shown in Fig. 3.

The solution of the problem is effected by means of the above relations in the

following manner.

As in the previous solution, point A (see Fig. 3) is determined by the magnitude

of the transverse load Q, and point B is determine from the elastic solution. For a

given depth of inelastic penetration (k = k.), some value of P/P is assumed and the

corresponding value of M/M determined from the appropriate interaction curve. With

M = 1, the value of y is then determined from Eq. b. Equation 5 is mow used to

determine the curvature, # , at the center of the member. The deflection y may

now be determined by Eq. 1A. Using the value of y and the appropriate value for

M in Eq. b, the dimensionless moment, M/M , corresponding to the section of the

1
e

member at y may be established. Then the curvature lj> . is found by Eq. 5. The

values of M /M and k for use in Eq. 5 are found from the interaction curves by inter-

polation. This process is continued until the deflection at the end of the member is

determined. The assumed value of P/P is correct if the computed value of deflection

at the end of the beam -column is zero or very nearly so. Thus to determine one point

on the moment-load curve, this numerical procedure may have to be repeated three or

four times until the boundary condition is satisfied.

In determining the value of M/M from Eq. b for any given section, the procedure
consisted of adding the maximum value due to P, to the average value due to Q. Thus
for example, (M/M^ = 7<P/P

e) yQ
+ 1/2 [(M

Q
/M

e)Q
+ (Mq/M^J
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Theoretically, very accurate results may be obtained by this method of solution

if the segments, X , are made extremely small. This, however, would entail very

lengthy if not prohibitive computational work, particularly if conditions other than those

shown in Fig. 1A are to be met. For example
:
when the transverse load Q is not

applied at midspan, one more unknown is introduced into the problem, namely the slope

of the deflection curve at the point of application of Q. Therefore, in applying the method

outlined above, it becomes necessary to assume a value for this slope in addition to the

value of P/P . The procedure is then applied to both portions of the beam -column until

the conditions at both ends of the member are satisfied (i. e. , until the determined values

of deflection are zero at both ends of the member). Obviously, this method can become

very laborious even when the number of segments considered is small. It would appear

that this method, compared to the approximate solution presented previously, can

become economically feasible only if a technique is developed to program the calculations

on a computing machine.
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Table I. Materials and Physical Characteristics of Specimens Tested in this Program
L/r = Slenderness Ratio

Material

Rectangular Sections T-S

h-
tl

,

ec

4t
]

tions

1 *

T
h

1

1 1/2 t^

kt
l

+ b .>

i/r = 50 */r = 75 i/x = 100 i/r = 60

2024-T4
Aluminum
Alloy

b = 0. 500

h = 0. 625

b = 0. 500

h = 0.625

b = 0. 500

h = 0. 500

t
2
= 0. 100

SAE 1020

Steel

b = 0. 500

h = 0.625

b = 0. 500

h = 0.625

b = 0. 500

h = 500
t. = 0. 100

17-7PH
Stainless

Steel

b = 0. 350

b = 0. 500

b = 0. 400

h = 0. 420
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Table II. Properties of the Three Materials Used in this Investigation.

Material
E

psi x 10
6

a
e
l

6
psi x 10

a

psi x 10

e

in/in x 10

e
e
2 -4

in/in x 10

a
l

a
2

2024-T4
Aluminum
Alloy

10.8 37.5 51.5 34.7 47.7 0.189

SAE 1020
Steel

30.0 30.3 30.3 10. 1 10. 1

17-7PH
Stainless

Steel

28.0 170.0 170.0 60.7 60.7 0. Ill 0.111
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Table III. Values of P
ca

P /P, and P /P for the Various Symmetrically
ca' ct ca ya ' y

Loaded Beam -Columns Studied in this Program. P = Actual Collapse

Load; P . = Theoretical Collapse Load; and P = Actual Yield Load,
ct r ya

Material Shape I/r M
Q
/M

e
e
l

e
2

P
ca

lb.

P /P ¥ca ct
P /P
ca ya

100 0.25 2,130 1.04 1.05

75 0.25 4,240 1.00 1.09

50 0.25
7,750
7,620

1.03
1.01

1.21

1.18

100 0.50
1,680
1.680

1.04
1.04

1.37
1.37

2024 -T 4

Aluminum
Rect. 75 0.50

3,580
3,510

1.05
1.03

1.45
1.43

Alloy
50 0.50

6,360
6,330

1.06

1.05
1.70
1.69

100 0.25 0.15h 0.15h 1,690 1.03 1. 17

75 0.25 0.15h 0. 15h 3,250 1,06 1.28

50 0.25 0.15h 0.15h 5, 130 1.05 1.50

T- 60 0.50 1,850 1.01 1.27

Section 60 0.25 0.15h 0.15h 1,550 1.03 1.21

100 0.50
3,410
3,400

1.07
1.07

1.44
1.44

75 0.50
5,370
5,400

1.05

1.06

1.49

1.50

Rect. 50 0.50
6,400
6,450

1.02
1.03

1.52

1.54

SAE 1020 100 0.75 2, 460 1.06 2.24
Steel

75 0.75 3 980 1.04 2.36

50 0.75
5,260
5,100

1.07
1.04

2.59
2.54

T- 60 0.50 2,450 1.02 1. 17

Section
60 0.50 0.15h 0.15h

1,640
1,680

1.00
1.03

1.30
1.33

75 0.50 4,770 1.00 1.17
17-7PH
Stainless Rect.

50 0.25 13,200 1.01 1.10

Steel 75 0.50 0.15h 0.15h 3,890 1.00 1.30

50 0.25 0.15h 0.15h 9,100 1.04 1.27
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Table IV. Values of P P /P and P /P for the Various Unsymmetrically
ca ca' ct ca ya ' J

Loaded Beam -Columns Studied in this Program P = Actual Collapse
Ca

Load; P = Theoretical Collapse Load; and P = Actual Yield Load,
ct r ya

Material Shape f/r M„/M
Q e

e
l

e
2

P
ca

lb.

P /P .

ca' ct
P /P
ca ya

2024-T4
Aluminum
Alloy

Rect.

100

75

50

0.50

0.50

0.50

1,740
1,710

3,610

6,480
6,490

1.00
0.98

0,96

0.96
0.96

1.22

1.20

1.32

1.58
1.58

T-
Section

60 0.50
1,840
1,890

0.95
0.97

1.15

1.20

SAE 1020

Steel

Rect.

100

75

50

75

75

0.50

0.50

0.50

0.50

0.50

0. 15h

0. 15h

0. 15h

3,660

5,680

6, 530

3,590

4,400

1.05

1.04

1.01

1.00

0.96

1.41

1.47

1.52

1.69

1.47

T-
Section

60 0.75 2,210 1.01 1.28

17-7PH
Stainless

Steel

Rect. 75 0.25 6,480 1.00 1.02
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Fig. 2. A Schematic Representation of Stress -Strain Relations in
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Fig. 3. A Schematic Representation of Interaction Curves for

Constant Depth of Yielding.
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M/M

Fig 5. Dimensionless Interaction Curves for Rectangular Sections
Made of 2024-T4 Aluminum.
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1,8

M'M

1.2

Fig. 6. Dimensionless Interaction Curves for T-Sections Made
of 2024 T4 Aluminum.
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1.6

1.0

Fig. 7. Dimensionless Interaction Curves for Rectangular Section
Made of SAE 1020 Steel.
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2.0

P/P
' e

Fig. 8. Dimensionless Interaction Curves for T-Sections
Made of SAE 1020 Steel.
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Fig. 9. Dimensionless Interaction Curves for Rectangular Sections
Made of 17-7PH Stainless Steel.
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Fig. 10. Test Apparatus Used to Apply Transverse and Axial Loads to Beam-
Columns.
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Fig. 12. Comparison of Moment- Load Curves for Symmetrically

Loaded 2024-T4 and SAE 1020 Steel Beam -Columns Determinec

by Two Theoretical Methods and By Test.
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Fig. 13. Moment- Load Curves for Symmetrically Loaded, Rectangular

2024-T4 Aluminum Beam-Columns. (Mq/M
s

= 25;

e
x

= e
2

= 0)
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1.6

1,0

Fig. 14. Moment-Load Curves for Symmetrically Loaded, Rectangular

2024-T4 Aluminum Beam -Columns. (Mn/M = 0.50;

ei =e
2
=0) Q
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1.6

1.0

Fig. 15. Moment- Load Curves for Symmetrically Loaded, Rectangular

2024-T4 Aluminum Beam -Columns (MQ/M = 0. 25;

ej = e
2

= 0. 15h)
^
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Fig. 16. Moment- Load Curves for Symmetrically Loaded T-Section
Beam-Columns of 2024-T4 Aluminum.

49





0.2 p
p

'

Q

*- 1/2 -»-

1

- p
1 1 k

y

\V
V
\
\
\
\J

0.2 0.4 6 0.8 1.0

P/P
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1.6

1.0

Fig. 18. Moment-Load Curves for Symmetrically Loaded, Rectangular
SAE 1020 Steel Beam -Columns. (MQ/M

= 0. 75; e = e = 0)
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Fig. 19. Moment- Load Curves for Symmetrically Loaded T Section
Beam Columns of SAE 1020 Steel.
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17-7PH Stainless Steel Beam-Columns, (e. = e„ =





1.6

Fig. 21. Moment-Load Curves for Symmetric aily Loaded Rectangular

17-7PH Stainless Steel Beam-Columns, (e = e = 0. 15h)
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Fig. 22. Moment-Load Curves for Unsymmetrically Loaded,
Rectangular 2024-T4 Aluminum Beam-Columns.
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Q
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g
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x
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2
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Fig. 23. Moment-Load Curve for an Unsymmetrically Loaded T-Section
Beam-Column of 2024-T4 Aluminum (M„/M = 0. 50;

e
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Fig. 24. Moment -Load Curves for Unsymmetrically Lpaded,
Rectangular SAE 1020 Steel Beam-Columns (M^/M = 50;
e
x
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2
= 0) V e
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1.0

Fig. 25. Moment- Load Curves for Unsymmetrically Loaded,
Rectangular SAE 1020 Steel Beam -Columns with Equal and
Unequal End Eccentricities.
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Fig. 26. Moment-Load Curve for an Unsymmen ically Loadeu
T-Section Beam-Column of SAE 1020 Steel. (M„/M = 0. 75;
e
x
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= 0) ^ e
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1.0

Fig. 27. Moment-Load Curve for Unsymmetrie ally Loaded, Rectangular

17-7PH Stainless Steel Beam-Columns. (Mn/M = 0. 25;

ei =e2 =0) Q
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ABSTRACT

A theory is presented for constructing load-creep deflection curves for beam-

columns at any specified time. The stress -strain-time relation for the material is

assumed to be represented by an isochronous stress -strain diagram approximated by

an arc hyperbolic sine curve (see Equation 16). A program has been written for the

IBM 650 digital computer to calculate points on moment-curvature curves for a general

I-section. The theory uses these curves and the successive approximations procedure

by Newmark (32).

The experimental part of the investigation included tests of rectangular- and

T-section beam-columns made of 17-7Ph stainless steel and tested at 972°F. Several

slenderness ratios were considered. The beam-columns were subjected to a constant

axial load located either at the centroid of the section or at an eccentricity of 15 per

cent of its depth and to a constant transverse load at midspan of sufficient magnitude

to produce a linear elastic bending stress when acting alone of 0. 50 cr .
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I. INTRODUCTION

1. Preliminary Statement

Since the heating of structural members is unavoidable in many present day en-

gineering applications such as nuclear reactors, missiles, and aircraft, the effect of

creep cannot be neglected. One structural element which is important in this respect

is the creep behavior of a beam-column. It is the purpose of this paper to present a

workable method for the design of beam-columns, whose dimensions and creep prop-

erties are known. The term beam-column is applied to a long, slender member which

is subjected to transverse as well as axial loads, that is to a member simultaneously

performing the function of a beam and column.

The principal difference between the method herein described and the methods

used by other authors is the form of the stress -strain-time law adopted. In previous

investigations (1-16, 18-22, 24-28)* including those on beams, columns, and beam-

columns, the stress-strain-time law has been represented by one of the following

forms:

e = Ba
n

(1)

e = AeBa (2)

€ = B sinh - (3)

o

e = -g + \a (4)

e = Aam cr + B(j
n

(5)

e = p + Act a + Ba (6)

a + / cr Nn /0\m o /0 >e= E ' ( X> +
<"jL> fl

<8>

I = | + XptP-V (9)

e = | + Kan F(t) (10)

Numbers in parentheses refer to corresponding entries in the bibliography.

Manuscript released by authors September, 1961, for publication as a WADD
Technical Report.





a . B<r k /, 1X
€ = g + A e t (11)

e = (e
o
+mtn) sinh -£ (12)

o

e= e +mtn (13)
o

e = | +Kaa
(l-e"

qt)+Bant (14)

a= Ke
m

e
n

(15)

In the above, ct denotes stress, e denotes strain, t denotes time and the dot indicates

differentation with respect to time. The remaining symbols are constants, em-

pirically obtained from constant stress creep curves. One of the difficulties in the

analysis of the beam column is that no beam fiber is subjected to a constant stress.

In order to overcome this difficulty, several investigators (14, 15, 16, 22, 28)

have attempted to follow the stress history of the various fibers of columns or beam

columns but have represented the stress -strain-time relation for the material by

equation 10 with the experimental constants obtained from constant stress creep

curves. Based on a study by Shanley (29), the stress-time curve for a given fiber of

the column is represented by infinitesimal steps. Each step consists of a constant

stress period of time followed by an instantaneous increment of stress. Libove

(14, 15) tested only pin ended columns, and assumed that the inelastic column deform-

ed into a sine curve. Higgins (22) treated only pin ended columns but did not assume

a configuration of the inelastic column. His analysis uses an iterative type of numer-

ical solution which requires six or seven 8 hour days on an IBM digital computer. Lin

(16, 28) has treated both the column and beam-column. His analysis uses a stepwise

method of calculation which is somewhat less involved than Higgins' method. Finnie

and Heller (4) have compared creep curves by Lin and Higgins with test data. The

agreement was not good.

Instead of predicting the creep curve for a given column, some investigators

(30, 33, 34, 35, 38) have considered the problem of predicting the behavior of the

column for a specified time. They have represented the stress -strain -time diagram

of the material by an isochronous stress -strain diagram of the material obtained by

plotting values of stress and strain at a specified time from constant stress creep

curves. Carlson and Manning (30) did not represent the isochronous stress -strain

diagram by a mathematical function so that a graphical solution is required for each

column. Sidebottom, Clark, Costello, Dharmarajan, and Pocs (33, 34, 35, 38) have





assumed that the isochronous stress-strain diagram can be represented by an arc hy-

perbolic sine curve of the form

ct= a axe sinh

—

(16)
o e

o

in which <t and e are time dependent as well as temperature dependent constants.

It should be noted that Eq. 12 is identical with equation 16 for constant time. Further-

more, equation 16 is an integrated form of equation 3 which has been shown by Kauz-

mann (31) to have a theoretical basis.

Equation 16 has many advantages. It is readily integrated or differentiated. It

is characterized by only two material constants, while most of the equations used in

column analyses have three or more. Equation 16 shows extreme versatility. It has

been successfully applied to multiaxial state of stress problems (35, 39) in addition

to beams and columns. Equation 16 will be adopted in this investigation.

Theories based on equation 16 have the same limitations as all other theories in

that the experimental constants are obtained from constant stress creep curves while

stresses in columns and beam-columns are not independent of time. The theory must

be corrected if the behavior of the column or beam-column is to be predicted. In the

case of columns, several different variables have been investigated and the correc-

tion needed to predict the collapse load at any specified time has been found to be in-

dependent of the type of variable. The only correction needed was to increase a

by 10 per cent. It is believed that this correction will be satisfactory for the heam

column if the column action is predominant.

2. Purpose and Scope

The purpose of this investigation is to develop a theory to predict the load -creep

deformation curve and the collapse load at any specified time for columns and beam-

columns subjected to any given loading condition. The validity of the theory has been

checked by tests of 17-7PH stainless steel beam-columns at 972°F.

A program was written for the IBM 650 digital computer to determine points

on the moment -curvature diagram. This program is valid for the general I—section

which includes the rectangular and T-sections as special cases. Using the method

of successive approximations due to N. M. Newmark (32), the load -deflection curve





for a given column or beam-column with any loading can be constructed as accurately

as desired. Furthermore, the resulting load -deflection curve is independent of the

properties of the material so that it can be used to predict the deflection at any load

and the collapse load at any time for which values of cr and e are known.

The experimental part of the investigation included tests of rectangular- and T -

section pivot ended beam-columns of 17-7PH stainless steel tested at an elevated tem-

perature of 972°F. These columns had slenderness ratios of 50.0, 60.2, 75.0, and

100.0. Each column was subjected to a constant transverse load at the center of the

column of sufficient magnitude to produce a maximum linear elastic bending stress

equal to a /2. The axial load was also held constant and was of sufficient magnitude

to cause collapse of each beam-column in 30 minutes. The axial load was applied

through the centroid of the cross section or with eccentricity equal to 15 per cent of

the depth.

Good agreement was found between theory and experiment.





II. THEORY

1. Assumptions

Theoretical load -deflection curves for columns and beam-columns are construct-

ed using a family of moment -curvature interaction curves for constant values of load.

The derivation of these curves are based on the following assumptions:

1. Plane cross-sections remain plane and do not warp with time. The validity

of this assumption for pure bending has been shown independently by at least two in-

vestigators, MacCollough (17) and Tapsell and Johnson (23), Presumably the assump-

tion is poor only for short deep beams when shear stresses are high.

2. The stress -strain-time relationship for the material is given by the iso-

chronous stress-strain relation represented by Equation 16. Since the beam fibers do

not experience a constant stress, this relationship is in error. Previous investigations

(34, 38) have shown that use of the arc hyperbolic sine relationship for eccentrically

loaded columns predicts a collapse load which is ten per cent too small.

3. The experimental constants a and e are assumed to be the same for
o o

tension and compression. If the creep properties are different for tension and com-

pression, the compression properties should generally be used, since compressive

stresses are appreciably greater than the tensile stresses in most columns and beam-

columns. If the stresses due to the axial load are small compared to the bending

stresses, <r and e can be based on the average isochronous stress -strain diagram.

2.

4. The material is assumed to be isotropic and homogeneous.

Moment -Curvature Interaction Curves

Consider the general I-section member shown in Figure 1 which is subjected to

an axial load P, and to a bending moment M locating the neutral axis at a distance qh

from the most strained fibers. With the strain distribution known, the stress distri-

bution is obtained using equation 16, and the magnitude of P and M can be determin-

ed from the equations of equilibrium:

P =
/CTdA

M = f(y-d)adA

Equations 17 and 18 integrate into the following equations:

2

P =

M

a qh
on

b, B„ - b„ B, -b B + b n BK L 1 K 4 1-q v 2 q-u^ 3 q-v
-K K K -I

a q h
o^
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3 ^L kJ

(17)

(18)

(19)

-(q-/3)Ph

(20)





in which K = e,/e . In these equations, the functions BXT and C XT are defined as
1 o ^ N N

follows:

B.N N log
e

(N + V N + 1 )fi /•JN^+ 1 (21)

CN 4
(1 + 2N

2
) log (N + VN 2

+ 1 ) - N V N 2
+ 1 J (22)

N represents the various subscripts for B and C in equations 19 and 20.

If the deformations are considered small, the curvature can be written in terms

of the strain distribution, shown in Figure 1 to give :

A 2d y

a 2
dx

4>
=

R
1 (

qh qh (23)

It is convenient to define the cross sectional area A, by the relation:

A - Dh
2

(24)

and rewrite equations 19, 20 and 24 in dimensionless form as follows:

P q
Act

M
Act h

o
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DK'

h^ _ K

b, B -b„ B + b„ BIk 2 q-u K 3 q-.y K
B
2lLk J

b
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+ b.

K q-v
-b.

K Vl K

(25)

(q-/3)P

Act
o

(26)

(27)

It will be noted that the right sides of equations 25, 26 and 27 are functions of q and

K and are independent of the properties of the material and of the magnitude of the

relative dimensions of the cross -section. A trial and error solution is required if

a dimensionless moment-curvature curve for a specified load is required. A program

has been written for the IBM 650 digital computer to make the necessary calculations.

A description of this program is given in Appendix A.

The dimensionless moment -curvature curves for the rectangular-section
2 1 1

(b =b
4
=D,b =b „=0) are shown in Figure 2 and for the T- section (b.^j.b = -^-.b =0,b.=-g

u= -r, v=0) are shown in Figure 3.





Although an IBM 650 digital computer program was written for the general I-

section, similar programs could be written for any cross-section made up of a finite

number or rectangular elements.

3. Load-Deflection Curves

The load-deflection curve for a given column or beam -column subjected to any

general loading can be computed by a method of successive approximations (32) pro-

vided moment -curvature curves for the given column cross -section are known. See

Figures 2, 3, and 4. In order to illustrate the procedure, a point on the load-deflec-

tion curve will be computed for the T- section beam -column used in this investigation.

Consider the T- section beam-column shown in Figure 4, For convenience in

the calculation of the deflection, the depth is assumed to be unity. The magnitudes of

2 1 11
the dimensionless coefficients in Figure 1 are b,= -^ , b = -y, ^>o

=^> ^4=
~ft>

u~ 4' v=0>

and J3 =0.3393. For a slenderness ratio of 60. 2, its length is 17. 46 inches.

The beam-column is subjected to a concentrated load Q at its midpoint and to

an axial load P at an eccentricity of 15 per cent of its depth. Since the deflections

are symmetric about the center, only half of the column need be considered. The

beam-column has been arbitrarily divided into eight equal segments A = ft/8, the end-

points of which specify station points a,b,c,d and f. The dimensionless moments due

to Q, Mn/cr Ah, have been computed for the specified locations and are shown in Fig-

ure 4 For this example, P is taken of sufficient magnitude to make P/ffA = 0.7.

The moments due to P depend upon the unknown deflections. The first step in de-

termining the deflections is to assume a reasonable value for the deflection at each

station point . The initially assumed deflections shown in Figure 4 are calculated us-

ing the deflection formula for a linear elastic beam-column with E= u /e . The

dimensionless moments Mp
/cr Ah are computed and added to M„/cr Ah to obtain

the total moment M/cr Ah
. For each dimensionless moment, the dimensionless

curvature, h^/e
Q

, is obtained from the curve for P/Aj = 0.7, Figure 3. Since the

curvature is equal to the angle change per unit length, the curvature diagram is some-

times called the angle -change diagram. Using the conjugate beam method , deflections

are calculated by loading the beam through stringers with the curvature diagram. The

number of stringers used corresponds to the number of segments into which the beam
is broken, in our case eight. By equations of statics, the concentrated curvature (i.e.

finite angle change) at each station point can be calculated. This is analogous to the

process of finding a reaction force on a stringer. Assuming the curvature to vary

parabolically between any three station points, this gives:
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€ A

#a
=

"H- <7a + 6b - c)

and
e X

ip

h
= -^-(a + lOb + c)

where ip is the equivalent concentrated curvature, or finite change of angle, at the

station point denoted by the subscript.

Since the member is assumed to be made up of infinitely stiff segments of length
a

X =
o- with concentrated angle-changes at each station point, the slope of each segment
o

is easily computed. The slope is zero at the center so that the slope of the segment

from a to b is 22. 5 e A/12. The slope for the adjacent segment is equal to the slope

of segment a to b plus the angle change at b. In this way the slope for each segment

can be calculated. Beginning at the left hand reaction f where the deflection is zero,

the deflection of the adjacent station point d is seen to equal the product of the seg-

ment length and slope. The deflection of the next station point is equal to this deflec-

tion plus the product of its segment length and slope, i.e.

6 = 126. 4e A
2
/12 + X (100.0 c A/12) - 226. 4e A

2
/12

c o o o

Using the material properties listed in Figure 8, the deflections are computed and com-

pared to the assumed deflections.

The calculated deflections do not coincide with the assumed values so that another

set of assumptions must be made. The calculated deflections may be used as a closer

approximation to the real deflections and the computations repeated. However, the num-

ber of trials can be greatly reduced by doubling the correction. For instance the de-

flection at the center was 0. 017 inches greater than that assumed. For the next trial

assume the center deflection to be :

6
A

= 0.125 + 2 x 0.017 = 0.159 in.A

Let the other deflections be increased in the same proportion, i. e. :

132
6
b

=
07T42

x0 - 159in -

The calculated deflections for the second trial are nearly identical with the assumed

deflections so that only two trials are required. The above calculations locate one point

on the dimensionless load-deflection curve shown in Figure 5.

There are some features to be noted for the convergence of the iteration procedure.

If the assumed deflection locates a point below the curve, the calculated deflection is





less than the assumed. Above the curve, the calculated deflection is greater than the

assumed. Therefore, if the assumed deflection is below or to the left of the actual de-

flection curve, the numerical procedure will converge to the pre-collapse deflection.

The procedure always diverges from the post-collapse deflection.

Since the load-deflection curve can be presented in this dimensionless form, it

is independent of the material. It is valid for any material whose isochronous stress -

strain diagram is adequately represented by Equation 16. It can be used to determine

the collapse load for any magnitude of time for which values of o and e are known.





III. MATERIALS AND METHOD OF TESTING

1. Materials Used, Test Members, and Testing Procedure

All test members were machined from a 1/2 inch by 2 inch bar of 17-7PH stain-

less steel. The compression specimens had square cross sections, 1/2 inch on a side.

The columns had rectangular or T -shaped cross sections with lengths and depths as

indicated in Table 1.

The T- section beam-columns were machined before being precipitation hardened,

while the rectangular section test members were machined after the heat treatment.

The specimens were heated to 1400°F. for 90 minutes, cooled to 60°F. in 60 minutes,

held at this temperature for 30 minutes, then heated to 1050°F. for 90 minutes, and

finally air cooled.

All of the test members were loaded in a Riehle testing machine of 120,000

pound capacity. The machine was equipped with a load holder to maintain any desired

load.

Temperatures were measured by vertically spaced thermocouples along the

test specimens. Two thermocouples were used on the short compression specimens,

while three were used on each of the beam-columns. A piece of asbestos was used to

cover each thermocouple as it was attached to the test member. An asbestos shield

was placed between the test member and the heating coils, and baffles were placed in

the furnace to prevent a chimney effect. Approximately one hour was necessary to

bring the furnace up to temperature. The temperature was manually controlled and

maintained at 972°F. + 2°F. Deformation readings were started as soon as the load

was applied, and were taken every minute thereafter.

2. Properties of Materials

Compression creep properties were obtained for the 17-7PH stainless steel at

972°F. The fixtures and furnace used in making the compression tests are shown in

Figure 6. The deformations were measured with a Riehle dial-type high temperature

creep extensometer with a 2 inch gage length. The compression creep curves for the

material are shown in Figure 7. From these creep curves, corresponding values of

stress and strain were obtained for zero time, for 30 minutes, and for 60 minutes to

give the isochronous stress-strain diagrams shown in Figure 8. An arc hyperbolic

sine curve (Equation 16) was fitted to the data for 30 minutes. The pertinent material

properties for the material are listed in Figure 8.

The heat treatment of the material used in this investigation was carried out at

a temperature 15 to 30°F. higher than in previous investigations (33, 34). This is be-
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lieved to account for a slightly higher value of u than before. Also, the data for zero

time in Figure 8 indicates that some inelastic deformation occurred before the test load

was reached, whereas in the previous tests on eccentrically loaded columns, the load

deformation curve remained linear for zero time.

3. Method of Loading Beam-Columns

The fixtures used in loading the beam-columns, the furnace and the 1/1000 inch

dial indicator are shown in Figure 9. The transverse load was applied by means of

dead weights attached to a wire, which passed over the pulley arrangement seen at the

right of the figure. The axial load was applied to the beam-columns through the knife

edge fixtures illustrated in Figure 10. The length of each knife edge was 2 inches.

This fixture added 0. 60 inches to each end of the beam-column.

In order to offset the effect of any initial crookedness in the beam column, the

eccentricity was measured with respect to its midpoint. The error in measuring the

eccentricity is believed to be less than plus or minus 0.002 inches.

UNiVERsiTy of
11 IUIN0/S

LIBRARY





IV. ANALYSIS OF RESULTS

A total of twenty-one beam-columns were subjected tq constant axial and lateral

loading at 972°F. Four different slenderness ratios, and two types of cross-section

were considered.

Eighteen of the beam-columns had rectangular cross sections. These were split

into three groups of six each with slenderness ratios of 50.0, 75.0, and 100.0. Half

of each group were tested with the axial load applied through the centroid of the section,

zero initial eccentricity, while the other half were subjected to an axial load with 15

per cent initial eccentricity. The deflection-time curves for these beam-columns are

shown in Figures 11 and 12.

The deflection-time curves for the three T- section beam-columns are shown in

Figure 13. Each T-section beam-column had a slenderness ratio of 60. 2. As noted

in Figure 15, two of these had zero initial eccentricity, and the other had an initial

eccentricity of 15 per cent of its depth.

The deflection of each beam-column is shown in dimensionless form in Figures

14 throughl7. The initial deflection, the maximum deflection, and one half maximum

deflection are given. The theoretical load- deflection curves for zero time shown in

these figures are based on the assumption that the material behaves elastically with

E = a /e (37). The actual test data falls to the right of these curves since the ma-

terial did not behave elastically while coming up to test load.

The theoretical load -deflection curves for 30 minutes, shown in Figures

14 through 17 were constructed using the arc hyperbolic sine theory presented in Sec-

tion II. Since the creep curves in Figures 11, 12 and 13 indicate that the deflection of

the beam-column immediately prior to collapse was independent of the time to collapse,

the experimental deflection may be compared with the theory for 30 minutes. It will

be noted that the deflections of the beam-columns corresponding to one half the max-

imum deflections are approximately equal to the deflections at the peaks of the theoreti-

cal load -deflection curves. The theoretical deflection at the collapse load is not high-

ly accurate while for loads appreciably below the collapse load the theoretical creep

deflections are small and quite close to the experimental values. This discrepancy

between the predicted and experimental values of the deflection at the collapse load is

not considered significant, since it is the buckling load which is of primary importance.

Experimental values of P/A are listed in Table 1 for all of the beam-columns

along with the time to collapse. Also listed in Table 1 are computed values of P/A

necessary to cause each beam-column to collapse in 30 minutes. The per cent differ-

ence between the theoretical collapse load at 30 minutes and the theoretical collapse
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load at other values of time was plotted as a function of time. The appropriate per

cent difference was applied to the test load to obtain the adjusted load.

Ratios of the theoretical to experimental collapse loads for 30 minutes are listed

in Table 1 for each beam-column. The theory ranged from 6 per cent conservative to

12 per cent nonconservative, with an average of 2. 6 per cent nonconservative. None of

the variables considered indicated any particular trend. The scatter was no more pro-

nounced for the beam-columns than for the creep specimens. (See Figure 7).
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V. SUMMARY AND CONCLUSIONS

1. Summary

A method is presented for predicting the load- deflection relationship and the

collapse load for beam-columns subject to creep. This method makes use of:

a) a stress -strain-time relation which is obtained by fitting the arc hyperbolic

sine equation to the isochronous stress-strain data.

b) a set of dimensionless moment -curvature interaction curves. The IBM

650 digital computer was used to facilitate the construction of these curves.

c) a method of successive approximations (32) for obtaining the load-deflec-

tion relationship.

To check the accuracy of the method developed, several tests were made on

beam-columns at elevated temperature. In all, twenty-one 17-7PH stainless steel

beam -columns were tested to collapse, at a constant temperature of 972°F. T-section

beam-columns having a slenderness ratio of 60.2 and rectangular- section beam-columns

having slenderness ratios of 50.0, 75.0, or 100.0 were used. Each beam-column was

subjected to a concentrated load at midspan and a constant axial load having an initial

eccentricity of zero or 15 per cent of its depth.

2. Conclusions

1. The arc hyperbolic sine function (Equation 16) adequately represents the

isochronous stress-strain diagram for 17-7PH stainless steel at 972°F for a time dur-

ation of thirty minutes.

2. Since the effect of stress redistribution with time is not directly considered

in the theory, it is recommended that the experimental constant o be increased by

ten per cent when calculating the collapse load or the load -deflection relationship. This

empirical correction is in agreement with the results of previous investigations on

eccentrically loaded columns (34, 36).

3. The IBM 650 digital computer can be conveniently used to calculate points

for dimensionless moment -curvature interaction curves. A program is included in the

appendix, which is valid for a general I-section. This includes the T-section and rec-

tangular-section as special cases. Approximately five to fifteen minutes was required

for the machine to make the computations for the particular cross- sections considered

in this investigation.

4. Since the dimensionless load-deflection relationship is independent of the

numerical values of a and e , these theoretical dimensionless load -deflection curves
o o

are independent of both time and material.
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5. Test data from the twenty-one beam- columns indicated that the theory ranged

from 6 per cent conservative to 12 per cent nonconservative in predicting the collapse

load for thirty minutes. The theory averaged 2. 6 per cent nonconservative. No trend

was noted for any of the variables investigated. The scatter was of approximately the

same magnitude as that exhibited by the compression creep data.
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APPENDIX A

The purpose of this appendix is to present a program for the IBM 650 digital

computer for computing points on constant load moment -curvature interaction curves.

Relations expressing dimensionless load, dimensionless moment, and dimensionless

curvature as functions of the cross section (see Figure 1) and of the variables K and

q are given by equations 25, 26 and 27. Before starting the program it was necessary

to decide on limits for K and q and the dimensionless load P/Aa . Dimensionless

moment- curvature interaction curves were constructed for dimensionless load incre-

ments of 0. 1 as the dimensionless load varied from 0. 2 to 2. 0. At each load, a mo-

ment and curvature were computed for each value of K which was applicable; the

values considered were 1, 1.5, 2, 2.5, 3, 4, 5, 7, 9, 12, and 15. The magnitude of

q was limited by considering only those values which would make 1/q greater than

0.60.

Figure 18 shows the flow diagram for the IBM 650 digital computer program. It

will be noted that there are three different dimensionless loads listed. P, /Aa is the
b' o

dimensionless load for which values of dimensionless moment and curvature are de-

sired: P /Aa is the dimensionless load calculated for assumed values of K and
a o

1/q; P /Aa is the dimensionless load calculated for previously assumed values of

K and 1/q.

The procedure followed in the computations can best be illustrated by consider-

ing Figure 19 which is a plot of P/Aa versus 1/q for a rectangular-section. Con-

sider the problem of calculating the first point on the moment -curvature interaction

curve for Pj
3
/Aa=0.7. The load P,/Aa is computed for initial values of K and

1/q of 1 and 0. 6 respectively. Since this load is below the desired load, the next

value of K is considered. This determines P„/Ao" . This load is above the desired
2 o

load so that increments of 0. 12 are added to 1/q to calculate P /Aa , PJAa , and/H 3' o 4' o

P c /Aa which is below the desired load. This value of load is placed in the location
5 o r

of P /Aa and an increment of 0. 04 is subtracted from 1/q to compute P,/Aer .

Since this load is above the desired load, a linear interpolation between P,- & P, is

used to calculate the desired 1/q. With K and 1/q known, the dimensionless mo-

ment and curvature are calculated.

Table 2 lists the entire program except for the square root (FLSQR) and log

(FLLNX) subroutines. To describe important steps in the program, notes have been

placed on the printed program. These notes correspond to the following commentary:

NOTE 1. Three cards are read into the immediate access storage to locate constants
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which are valid for all the cross sections.

Card 1 Card 2 Card 3

Location Constant Location Constant Location Constant

9000 K = 1 9008 K = 9 9010 K= 15

9001 K- 1.5 9009 K = 12 9011 l/q = 0.6

9002 K= 2 9012 Al/q= 0.12

9003 K = 2. 5 9013 Al/q = 0.04

9004 K= 3 9014 P/Aa =0.2
o

9005 K = 4 9015 AP/Aa =0.1

9006 K = 5

9007 K = 7

NOTE 2. One card is read into the immediate access storage to locate constants

which are peculiar to a given cross section.

Card 4

Location Constant

9020 -u

9021 -v

9022 b
l

9023 b
2

9024 b
3

9025 b
4

9026 D

9027 P

NOTE 3. Initial values for load, 1/q and index registers A, B and C are set.

Index register A is used to keep track of the four values of EL, and C„ in Equations

25 and 26. Index register B specifies the particular value of K being used in the

calculations. Index register C is set to zero after each interpolation to indicate final

calculations.

NOTE 4. This is a subroutine to solve Equations 21 and 22 for the four values of N

in Equations 25 and 26.
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NOTE 5. Absolute values of N (except for N = K) are calculated and sent to the

subroutine to solve Equations 21 and 22. (See NOTE 4.).

NOTE 6. Equation 25 is solved. Calculations were made for the rectangular section

at the first location in the program and for the I- section at the second location.

NOTE 7. Index register C is checked for zero. If zero, goto NOTE 11. If not

zero, the difference between P„/Acr and Pk /Act is computed. (Go to NOTE 8 .)

.

a o do
NOTE 8. The upper accumulator is checked for negative. If P /Act <P, /Act ,

the difference between P /Act and P,/Act is computed. (Go to NOTE 10. ).co bo
NOTE 9. The upper accumulator is checked for zero. If zero, index register B

is increased by one to give new value of K and Equations 21 and 22 are solved for

four new values of N. If non-zero, 1/q is decreased by 0. 04, P /Act is set equal

to P /Act , index register A is set to -2 so as to solve Equations 21 and 22 for

three new values of N.

NOTE 10. The upper accumulator is checked for negative. If positive, 1/q is in-

creased by 0. 12, index register A is set to -2 so as to solve Equations 21 and 22

for three new values of N. If negative, interpolate to obtain correct value of 1/q,

increase index register C by 1, set index register A to -2 so as to solve Equations

21 and 22 for three new values of N.

NOTE 11. The dimensionless load, P /Act , is stored in a print location. The di-
3. O

mensionless curvature, hip/e , is computed and stored in a print location. The two

values of N (see Equations 21 and 22) may be negative. Each of these is checked for

sign and C , N| is made negative. The dimensionless moment, M/cr Ah, is com-

puted and stored in a print location.

NOTE 12. The computer is directed to print the results for one point on one inter-

action curve. Then index register B is increased by one.

NOTE 13. Index register B is checked for zero. If not zero, 1/q is increased by

0. 12 and the computations are repeated. If zero, the difference between Pj/Act

and 2.0 is computed.

NOTE 14. The upper accumulator is checked for negative. If negative, P,/Acr is

increased by 0. 1 and the computations are repeated. If not negative, the computer is

ordered to stop. If the stop is ignored, a new No. 4 card is read and computations

are repeated for a new cross -section. Computations will continue until all of the

No. 4 cards are used up.
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Table I

Comparison of Theoretical and Experimental Collapse Loads

for Beam -Columns at 972°F

Column
Number

Column
Depth

in.

I
r

e/h

%
Time
min.

a Ah

tion Be;

Experimental
Actual Adjusted

to 30 min
psi

P exp. /P theo.

Rectangular-Sec im-Columns

1 0.500 50.0 51 50 33,150 35,640 1.06

2 0.500 50.0 39 50 34,070 35,130 1.05

3 0.500 50.0 26 50 34,950 34,460 1.03

4 0.500 50.0 15 38 50 22, 120 22,770 0.97

5 0.500 50.0 15 23 50 23,450 22,850 0.97

6 0.500 50.0 15 16 50 23,450 21,650 0.92

7 0.420 75.0 34 50 19,880 20,120 1.01

8 0.420 75.0 34 50 19,880 20,120 1.01

9 0.420 75.0 14 50 20,950 19,000 0.95

10 0.420 75.0 15 30 50 14,400 14,400 0.98

11 0.420 75.0 15 50 50 14, 400 15,420 1.05

12 0.420 75.0 15 13 50 15,240 13,680 0.93

13 0.420 100.0 16 50 12,380 11,420 0.93

14 0.420 100.0 9 50 13,020 10,830 0.88

15 0.420 100.0 8 50 13,750 11,240 0.92

16 0.420 100.0 15 38 50 9,890 10,170 1.05

17 0.419 100.0 15 21 50 10,170 9,800 1.02

18 0.420 100.0 15 13 50 10,450 9,250 0.96

T- Section Beam -Columns

19 0.600 60.2 14 50 31,000 27,900 0.88

20 0.600 60.2 15 50 32,300 29,400 0.93

21 0.600 60.2 15 32 50 20,000 20,100 0.96
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Table 2

D:igital C omputer Program

1 LOAD VS CURVATURE
1 ARC HYPERBOLIC SINE
1 GENERAL I SECTION

BLR 0000 0040
BLR 1900 1999
REG L0041 0049

START LDD KEY1
STD 0022 Al

KEY1 00 0088 8888
Al RD1 9000 NOTE 1

R01 9008
R01 9010 A2

A2 RD1 9020 NOTE 2

RSB 0011 NOTE 3

LOO 8006
STD 9033
RAU 9014 A9

A9 STU 9019
STU 9029 A3

A3 RAU 9011 A8
A8 STU 9018

RSC 0001 A10
A10 RSA 0003

RAU 9011 B
LDD CI Bl

Bl STD END NOTE 4

STU B2
FMP 8003
STU B3
FAD 9000
STU B4
FAD B3
STU B5
RAU B4
LDD B6 FLSQR

B6 STU B7
FAD B2
LDD B8 FLLNX

B8 STU 89
FMP B2
FSB B7
STU 9055 A
RAU B7
FMP B2
STU BIO
RAU B9
FMP B5
FSB BIO
STU 9059 A
AXA 0001 END

CI RAU 9000 NOTE 5

FSB 9018
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Table 2 (Continued)

BMI C2
RSU 8003 C2

C2 FMP 9011 B
LOD C3 Bl

C3 RAU
NZU
FMP
FAD
BMI

9020

9018
9000

C9

C5
RSU 8003 C5

C5 FMP 9011 B
LOD C6 Bl

C9 AXA 0001 C6
C6 RAU

NZU
FMP
FAD
BMI

9021

9018
9000

Dl

C8
RSU 8003 C8

C8 FMP 9011 B
LDD Dl Bl

01 RAU
FMP
STU
RAU
NZU
RAU

9011 B
9018
9016
9023

El
9052

NOTE 6

FSB 9053 E6
E6 FDV 9016

NZC D6 NOTE 7

STU 9028
FSB 9019
BMI D3 NOTE 8

RAU 9018
FSB 9011
NZU D4 NOTE 9

AXB 0001
LDD 8006
STD 9033 A10

D3 STU
RAU
FSB

9030
9029
9019

BMI D5 NOTE 1C

RAU 9018
FAD 9012
STU 9018
RSA 0002 CI

OW RAU
FSB
STU
LDD
STD

9018
9013
9016
9028
9029

RSA 0002 CI
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Table 2 (Continued)

05 RAU 9028
FSB 9029
STU 9031
RAU 9030
FOV 9031
FMP 9013
FAD 9018
STU 9018
AXC 0001
RSA 0002 CI

06 STU 0013 NOTE 11

LOO 9016
STO 0015
RAU 90*00

FDV 9018
STU 0014
FSB 9027
FMP 0013
STU 9017
RAU 9023
N2U Fl
RAU 9000
FSB' 9018
BMI D7
RSU 9057
STU 9057 D7

07 RAU 9056
FSB 9057 F6

F6 FDV
FDV
FDV
FSB
STU

9005
9016
9016
9017
0016

WR2 0013 NOTE 12

AXB 0001
N2B D9 NOTE 13

LDD 9019
STD 9029
RAU 9018
FAD 9012 A8

09 RAU
FSB

9019
9002

N2U D8 NOTE 14

RAB 9033
RAU 9019
FAD 9015

08 HLT 0000 A2
El RAU

FMP
STU
RAU
FMP
STU

9055
9024
9055
9053
9025
9053

NOTE 6
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Table 2 (Continued)

E6
Fl RAU 9021 NOTE 11

F2

F3

F4

F5

RAU 9054
FMP 9023
STU 9054
RAU 9052
FMP 9022
FSB 9054
FAD 9055
FSB 9053
FDV 9026
RAU 9021
FMP 9018
FAO 9000
BMI F2
RAU 9059
FMP 9024
STU 9059
RSU 9059
FMP 9024
STU 9059
RAU 9000
FSB 9018
BMI F4
RAU 9057
FMP 9025
STU 9057
RSU 9057
FMP 9025
STU 9057
RAU 9058
FMP 9023
STU 9058
RAU 9056
FMP 9022
FSB 9058
FAO 9059
FSB 9057
FDV 9026

F3

F3

F5

F5

F6
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. 15h

M
Q
/a

o
Ah

Assumed 6

A =5 + e

M
p
/a

Q
Ah

M/a Ah=(M„+M_)/a Ah
o P Q o

h^ e
o

Equiv. Concentrated ij)

Average Slopes

Calculated 6

Calculated 6

f d c b a
Common
Factors

,0159 .0319 .0479 .0638

.050 .219 .113 .125

.150 .200 .219 .263 .275

.1050 .1400 .1673 .1841 .1925

.1050 .1559 .1992 .2320 .2563

1.49 2.22 2.93 3.52 3.96

26.4 35.0 42.1 22.9 6 A/12

126. 4 100.0 65.0 22.9 e A/ 12

126.4 226.4 291.4 314.3 e AY 12
o

.057 .103 .132 .142

Assumed 6 064 115 148 159

A = 6+ e .150 .214 .265 .298 .309

M
p
/o-

o
Ah .1050 .1497 .1855 .2085 .2165

M/a Ah .1050 .1656 .2174 .2564 .2800

h$f€ 1.49 2.35 3.25 3.96 4.98

Equiv. Concentrated ip 28.2 38.8 47.3 25.9 e A/ 12

Average Slopes 140. 2 112 73.2 25.9 - e A/ 12
o

'

Calculated 6 140.2 252.2 325.4 351.3 e A /12

Calculated 6 .064 .114 .142 .159

Figure 4. Sample Deflection Calculation for T-Section Beam -Column
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6/he

Figure 5 Dimensionless Load -Deflection Curve for T-Section Beam-Column

(£/r = 60. 2, Q = 2a I/ci, e/h = 0. 15)
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Figure 7. Compression Creep Curves for 17-7PH Stainless Steel at 972°F„
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Figure 8. Compression Isochronous Stress -Strain Diagrams for 17 -PH

Stainless Steel at 97 2°F.
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Figure 9. Test Apparatus with Beam-Column in Furnace.
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Figure 11. Defiection-Time Curves for Rectangular -Section Beam-Columns Having
Zero Initial Eccentricity, Made of 17-7PH Stainless Steel and Tested
at 972°F.
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Figure 12. Deflection-Time Curves for Rectangular-Section Beam-Columns Having
15 Per Cent Initial Eccentricity Made of 17-7PH Stainless Steel and Test-
edat972°F.
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Figure 13. Deflection-Time Curves for T-Section Beam-Columns Made of 17-7PH

Stainless Steel and Tested at 972°F (I/r = 60. 2).
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Figure 14 Load-Deflection Curves for Rectangular -Section Beam-Columns

Made of 17-7PH Stainless Steel and Tested at 972°F. (£/r = 50.0),
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Figure 15. Load- Deflection Curves for Rectangular-Section Beam-Columns Made
of 17-7PH Stainless Steel and Tested at 972°F (j[/r = 75.0).
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Figure 16. Load -Deflection Curves for Rectangular -Section Beam-Columns Made
of 17-7PH Stainless Steel and Tested at 972°F (£/r = 100.0).
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Figure 17. Load- Deflection Curves for T-Section Beam-Columns Made of 17-7PH
Stainless Steel and Tested at 972°F (£/r = 60. 2).
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Figure 18. Flow Diagram for Digital Computer Program
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