UNIVERGITY OF
ILLINOIS LIBRARY
AT URBANA CHMMPAIGN
BOOKSTACKS

Digitized by the Internet Archive in 2011 with funding from
 University of Illinois Urbana-Champaign

$B 385$
no. 368
Cop. 2

Faculty Working Papers

INFORMATION CRITERIA FOR THE CHOICE OF REGRESSION MODELS

Takamitsu Saw
\#368

College of Commerce and Business Administration University of Illinois at Urbana-Champaign

FACULTY WORKING PAPERS
 College of Commerce and Business Administration University of Illinois at Urbana-Champaign

January 4, 1977

INFORMATION CRITERIA FOR THE CHOICE OF REGRESSION MODELS

Takamitsu Sawa
\#368

```
!.:**.n*:!i
```


- リドロッタ.

Taformation Criteria fur the
 Choice of Regression Models

Takamitsu Sawa

Associate Professor, Economic Department

$$
\text { Janvar, } 1 / 1977
$$

1. Introduction

In most statistical analyses it is taken for granted that the family of the probability distribution functions, say $\mathbf{F}(\mathrm{y} \mid \theta)$, may be correctly specified on a priori grounds. Uncertainty exists, therefore, only with reference to the values of parameters θ involved in the specified family of probability distribution functions (p.d.f.). In practice, however, we are seldom in such an ideal situation; that is, we are more or less uncertain about the family to which the true p.d.f. might belong. It may be very likely that the true distribution is in fact too complicated to be represented by a simple mathematical function such as is giver in ordinary textbooks.

In practice we approximate the true distribution
by one of the alternative p.d.f.'s listed in the textbooks. Needless to say, we try to choose the most adequate $\mathfrak{R} . d . f$. with due thought to a priori considerations. The p.d.f. specified by a convenient mathematical function is usually termed the model. For further analysis the model is identified at least centatively with the true distribution. To put it differently, in the process of conventional statistical analysis a sharp distinction is seldom drawn between the model and the true distribution.

To avoid the arbitrariness that inevitably occurs in the process of model building, nonparanetric sta*istical methods have been extensively developed in the past decade. It seems to me, however, that these methods have not been used very successfully in practical data analysis.

In fact, most statistical inferences are based on some specific parametric model, often on the nodel of normal distribution.

In recent years, however, more and more emphasis has been laid on the problem of model identification; that is, how to identify the model when it cannot be completely speciried from a priori grounds. The main purpose of the present paper is to propose and analyze a statistical criterion for model identification in regression analysis. Our basic attitude toward the problem is to recognize the fact that a certain amount of discrepancy inevitably exists between the true distribution and the model. The best we can do in trying to cope with this sort of situation is to identify the most adeguate model among a given set of alternatives. The adequacy of a model needs co be quantified by introducing a suitable measure of the distance of the model from the unknown true distribution.

It is expected intuitively that the more complicated model will provide the better approximation to reality. Rut, on the contrary, the less complicated model should oe preferred if we wish to pursue accuracy of estimation. To illustrate this point, iet us consider the situation where two alternative denstity functions $f_{1}(\cdot \mid \theta)$ and $f_{2}(\cdot \mid \zeta)$, are given as possible models of the density $g(\cdot)$ of the true distribution, where θ and ζ are vectors of unknown parameters. Even if $f_{1}(\cdot \mid \theta)$ is the better approximation to the true density $g(\cdot)$ in the sense that $\underset{\theta}{\inf \left\|f_{1}(\cdot \mid \cdot \oint)-g(\cdot)\right\|<\inf _{\zeta}\left\|f_{2}(\cdot \mid \zeta)-g(\cdot)\right\|}$ where $\|\cdot\|$ is a suitably defined distance, it is quite likely that $E_{\hat{\theta}}\left\|f_{1}(\cdot \mid \hat{\theta})-g(\cdot)\right\|>E_{\hat{\zeta}}\left\|f_{2}(\cdot \mid \hat{\zeta})-g(\cdot)\right\| i f \operatorname{dim} \theta>\operatorname{din} \zeta$ where $\hat{\theta}$ and $\hat{\zeta}$ are estimates for θ and respectively.

The above consideration leads us naturally to the so-called principle of parsimony. That is, more parsimonious use of parameters should be pursued so as to raise the accuracy of the estimates of the parameters. In general, closeness to the true distribution is incompatible with parsimony of parameters. These two criteria form a trade-off. That is, if one pursues one of the criteria, the other must be necessarily sacrificed. The multiple correlation coefficient adjusted for the degrees of freedom may be the most commiy used statistic that incorporates the two incompatible criteria into a single statistic.

Akaike [1] has proposed a more general as well as more widely applicable statistic that ingeniousiy incorporates the two criteria. Since it is based on the Kullback-leibler Information Criterion, Akaike's statistic is called the Akaike Information Criterion and is abbreviated as AIC. Indeed, the procedure developed here is also based on the Kullback-Leibler Infomation Criterion, but the criterion for the choice of a regression model inplied by our procedure is considerably different from that implied by AIC. The disagreement stens from a difference between Akaike's and our views on the true distribution.

In Section 2 we briefly review the Kullback-Leibler
Information Criterion and the Akaike Information Criterion. In Section 3 we develop a criterion for the choice of a regression model and compare it with a criterion implied by the Nkaike criterion. In Section 4 the Bayesian approach to the problem is considered and a different criterion is derived from Bayesian point of view. The bias of the three criteria is discussed in Section 5 .

2. Information Criterion

Suppose that we are concerned with the probabilistic structure of a vector randon variable $Y^{\prime}=\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)$. Let $G(y)$ be the true joint distribution of Y. On the basis of a priori knowledge we postulate a model $F(y \mid \theta)$ to approyimate the unknown true distribution $G(y)$, where θ is a vector of unknown parameters.

The adequacy of a postulated model may be measured by the Kullback-Leibler's Information Criterion (KLIC).
(2.1) $\quad I(G: F(\cdot \mid \theta))=I_{G}\left[\log \frac{g(Y)}{f(Y \mid \theta)}\right]$

$$
=\int \log \frac{g(y)}{f(y \mid \theta)} \mathrm{dC}(y)
$$

where g and f are density (or probability) functions of, respectively, G and $F ; E_{G}(\cdot)$ stands for expectation with respect to the true distribution G; the integration is over the entire range of Y . It can be easily shown that the KLIC is nonnegative
(2.2) $\quad I(G: F(\cdot \mid \theta)) \geq 0$
with equality only when $\mathcal{F}(y \mid \theta)=G(y)$ almost everywhere in the possible range of Y; namely, only when the model is rorrect. (See, for instance, Rao [5] pp. 58-59.) Incidentally, the Jegative value of the KLIC is termed the entropy of a probability distrebution $G(y)$ with respect to $F(y \mid \theta)$. Noting the inequality (2.2) as well as an obvious equality
(2.3)

$$
I(G: E(\cdot \mid 0))=\int \log g(y) d G(y)-\int \log f(y \mid \theta) d G(y),
$$

we are led to propose the following rule for a comparison of alternative models or estimates.

Rule 2.1: (i) A model $F_{1}(\cdot \mid \theta)$ is rogarded as a better approxination to the true distribution $G(\cdot)$, i.e. a better model than an alternative model $F_{2}(\cdot \mid \zeta)$ if and only if
(2.4) $\quad \underset{\theta}{\inf } I\left(G: F_{I}(\cdot \mid \theta)\right)<\underset{\zeta}{\inf } I\left(G: P_{2}(\cdot \mid \zeta)\right)$
or equivalently

$$
\begin{equation*}
\sup _{\theta} E_{G}\left[\log E_{1}(Y \mid \theta)\right]>\sup _{\zeta} E_{G}\left[\log f_{2}(Y \mid \zeta)\right] . \tag{2.5}
\end{equation*}
$$

(ii) Given a model $F(\cdot \mid 0)$, an estimate \hat{A}_{I} is regarded as a better estimate than $\hat{\theta}_{2}$, if and only if

$$
\begin{equation*}
E_{\hat{\theta}_{1}}\left\{E_{G}\left[\log f\left(Y \mid \hat{\theta}_{1}\right) \mid \hat{\theta}_{1}\right]\right\}=E_{\hat{\theta}_{2}}\left\{E_{G}\left[\log \mathrm{f}\left(\mathrm{Y} \mid \hat{\theta}_{2}\right) \mid \hat{\theta}_{2}\right]\right\} \tag{2.6}
\end{equation*}
$$

where $E_{\hat{\theta}_{1}}$ and $E_{\hat{\theta}_{2}}$ stand for erpectations with respect to the sampling distributions of \hat{e}_{1} and $\hat{\theta}_{2}$, respectively. (Note that when we first take an expectation with respect to G the estimate $\hat{\theta}_{1}$ or $\hat{\theta}_{2}$ should be treated as if it were a constant.)

$$
\text { It was pointed out by Alaike }[1] \text { that if the } Y_{j}^{r} s \text { are independent }
$$ and identically discributed the maximuin likelihood estimate may be regarded as an estimate that minimizes the estimated KLIC, or equivalently maximizes the estimated entropy because the log likelihood function divided by the sample size n

(2.7) $\quad \frac{1}{n} \sum_{j=1}^{n} \log f\left(y_{j} \mid 0\right)$
may be regarded as a reasonable estimute for $\mathrm{L}_{\mathrm{C}}[\log f(\mathrm{Y} \mid \theta)]$ whatever $G(y)$ is.

Apparently, the above rule for a comparison of models is not directly applicable in praction, becausa tho criteria are totally dependent on the unkrown true probability distribution. To establish a practical usable criterion for model idontification on the basis of the KLIC, we need to replace unknown in (2.5) by their reasonable estimates. In fact, the Akaike Information iriterion (AIC) has been derived as an approximately unbiased estimate for the KLIC, neglecting its irrelevant constant terms and based implicitly on a fairly strong assumption.

For the sake of convenience in developing our argument we give the following definition:

Definition: Given a model $F(\cdot \mid 6)$, a parameter value θ_{0} such that

$$
\begin{equation*}
I\left(G: F\left(\cdot \mid H_{0}\right)\right) \leq I(G: F(\cdot \mid \theta)) \tag{2.8}
\end{equation*}
$$

for any possible θ in the admissible porameter space is called a pseudo-true parameter value.

If the true eistribution $G(y ;$ and a model $F(y \mid \theta)$ satisfy due regularity conditions, the pseudo-true parameter θ_{0} must satisfy

$$
\begin{equation*}
E_{G}\left[\frac{\partial}{\partial \theta} \log f(Y \mid \theta)\right]_{\theta=R_{0}}=4 . \tag{2.9}
\end{equation*}
$$

The model $P\left(y \mid \theta_{0}\right)$ may be regarded as the most adequate relatively within the family of models $F(y \mid \theta)$ in the sense that the KIIC for $F(y ; \theta)$ is minimized by $F\left(y \mid \theta_{0}\right)$.

Assuming tinat $G(y)=F(y \mid \theta)$ almost everywhere, Akaike [I] derives his criterion
(2.10)

$$
\operatorname{AIC}(F(\cdot \mid 0))=-2 \log -(y \mid 0)+2 k
$$

as an almost unbiased estimate for $-2 \mathrm{E}_{\mathrm{C}}\{\log \mathrm{f}(\mathrm{Y} \mid \theta)\}$, where θ is the maximum likelihond estimate for 3 based on observations y and k is the number of the unknown parameters, i.e. the dirension of θ. The procedure of choosing a model that minimizes the AIC is called the Minimum AIC (MAIC) procedure. The first terto of the AIC measures the grociness of fit of the model to a given set of rata, because $f(y \mid \hat{\theta})$ is the maximized likelinood function. The second term is interpreted as representing a penalty that should be paid for increasing the number of parameters. The increase in the number of parameters almost necessarily improves the fit but only at the cost of sacrificing accuracy of estimation. In this sense the AIC may be regarded as an explicit formulation of the so-called principle of parsinong in model building.
Indeed, the assuration that
(2.11) $\quad E\left(y \mid 0_{0}\right)=G(y)$
simplifies the derivation substantially, but there is no denying that this simplifying assumption lessens the plausiblity of the AIC to some extent. In the next section, confining ourselves to a linear regression, we derive another criterion without assuming (2.11) and compare it with the AIC to see what difference might arise depending on whether or not we assume (2.11).
3. Identification cf a Regression Morel

We are interested in investigating a joint distribution of a vector random variable $Y^{1}=\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)$. Each of $Y_{i}{ }^{\prime}$'s may be an observation on a cestain chasarteristic of a randomly chosen individual; or Y_{i} 's may constitute a sequence of observed time series. The distribution function $G(y)$ is unknown, but each Y_{i} is assumed to possess finite variance. We denote the mean vector and the variance-covariance matrix, respectively, by 4 and Ω, where μ is a vector of n components and Ω is $a n d n$ positive definite matrix. Unless we place more a prioni restrictions on the element: of u and Ω, we can make no inference at all about the joint distribution of Y.

What me usually in is to assume that μ belongs to a linear subspace of lower dimension than n and Y_{i} 's are mutually uncorrelated. Then we have a familiar line regcession model

$$
\begin{equation*}
E(Y)=X B \cdot V(Y)=\sigma^{2} I_{n} \tag{3.1}
\end{equation*}
$$

where X is an $x k$ merix of known consrants, the k colums of which constitute a basis of the eutrpacs to which μ is assumed to belong; β is a vector of k unknow parameters; σ^{2} is an unlnown positive constant; I_{n} is an identity mats $\%$ of order n. In most practical situations the colums of X are vectore 0 observations on certain characteristics considered to be associated with Y. Then the model implies that the j-th man μ_{i} is represented as a linear function of
k explanatory variables, i.e., $\mu_{i}=\sum_{j=1}^{k} \beta_{j}$ mij where $^{k}{ }_{i j}$ is the (i, j)-th element of x. By assuming a rcstession model we can reducf tive number of unknown parameters from $n+n(n+i) / 2$ to $k+1$.

In additior to (3.1) we often assume the nomal distribution for Y, and postulate a trodel
(3.2) $\quad \vee \sim\left(K \beta, \sigma^{2} I_{n}\right)$:
or

$$
Y=X R+u, \quad u \sim N\left(0, \sigma^{2} I_{n}\right)
$$

which is termed a linear normal regreseion model.

Lemma 3.1: The pseuto true values for parameters $\theta^{\prime}=\left(6^{\prime}, \sigma^{2}\right)$ are
(3.3) $\quad \beta_{0}=\left(X^{\gamma} X\right)^{-1} X^{\dagger} \mu$
(3.4) $\quad \sigma_{0}^{2}=\frac{1}{n} H^{\prime}\left(I-X\left(X^{\prime} X\right)^{-I_{X}^{\prime}}\right) \mu+\frac{I}{n} \operatorname{tr} \quad$.

The above results are easily sbtrined by solving the equations

$$
\begin{equation*}
\mathrm{E}\left[\frac{\partial}{\partial \beta} \log f(Y \mid \theta)\right]=0 \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
E\left[-\frac{\partial}{\partial \sigma^{2}} \log f(X \mid \theta)\right]=0 \tag{3.5}
\end{equation*}
$$

where $f(y ; 0)$ is the density furction of $f\left(X \beta, \sigma^{2} I\right)$ and the espectation fre with respect to the true distribution. Geometrically speaking, XB is a projection of the unknown mean vector u into the space spanned by the k colums of X, while no ${ }_{O}^{2}$ is the sum of the variances of the $Y_{j}{ }^{i}$ s plus tine squared length of the perpendicular from H to the space. The error of approximating H by $X k$ is absorbud into the error variance.

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{i} y, \quad \sigma^{2}=\frac{1}{1} y^{i}\left[I-X\left(X^{\prime} X\right)^{-1} x^{\prime}\right] y \tag{3.7}
\end{equation*}
$$

for β and σ^{2} in the ncmal cogression dodel (3.2) have the following property.

Lemma 3.2
(3.8) $\quad E(\hat{\beta})=B_{0}$,
(3.9) $\operatorname{plim}\left(\sigma^{2}-\sigma^{2}=0\right.$, if $\Omega=\omega^{2} \tau_{n}$

This lema implies trat win th incorrect model the objects of our estimation are psendo true parmmeter rajues. To put it differently, What we ordinarily cos the true parameter values are the parameter values that minimize the dirner ce betiefit the true unknown distribution and the postulated parametrir nocei, where the distance is measured by the KIIC. Moreorer, it shrild be moted that if Y_{i} 's are uncorrelatod, i.e., $\Omega=\omega^{2} I_{n}$, then $\hat{\beta}$ and o^{i} are mocorelated.
Along the lines of the nrevious section, one car
measure the loss incurred ly mioiling $G(y)$ by $F(y \mid \sigma)$ with some estimate θ in place $"$ unkrown G_{0} by ihe quantity

Where $f(y \mid \theta)$ is the dets "y fumction of the paseudo-true model
$N\left(X B_{0}, \sigma_{0}^{2} I\right)$, i.e., the lirelilnox function of the model. It should be noted that the expectation on tho righthand side of (\%.lo) refers only to the argument Y of the density function.

Lemma 3.3:

The loss incurted by noralling the $0=21$ bution of by $F(y \mid \hat{y})$ with an estimated volue σ substituced for 0 is evaluated :o
(3.11) $\quad W(E(\cdot \mid \hat{\theta}))=\log (2 \pi)+\log \left(\sigma^{2}+\frac{\sigma^{2}}{\sigma^{2}}+-\frac{1}{\sigma^{2}} \|\left.\alpha(\hat{\beta}-\beta)\right|^{2}\right.$,
where if : if the Eivlidear wrot

The proof is given in the Appensix.
In this section we adherc to the sampling theocy amorow, and
hence we base our decision about model selection on the rist function derived by integxating the loss function with respect to the sampling distribution of the estimane ∂. Stince bee ML estimare θ possesses the nice property in lema 3.?, even when a postulated model is incorrect, se define the risk of postulating modol $F(y \mid \theta)$ by an incegral of the loss furction of $F(y \mid \hat{\theta})$ with respect to the sampling distribution of the ML estimste θ.

Theorem 3.1: Suppose that $\Omega=\omega^{2} I_{i}$ and ecch Y_{j} is symmetrically distributed ith tre some watosis ab a mormal diztribution then the risk of a model $F(-6)$, i. , the expected value of $W(F(\cdot|a\rangle)$, is evaluared to orcier $0, a^{-1}$, ao

$$
\left.P(F(\cdot \mid 0))=I 68(2 \pi)+i 0 g()^{2}\right) \cdot 1+\frac{12+2}{n}\left(0^{2}-\frac{1}{2} \cdot \frac{1}{n}\left(\frac{0^{2}}{2}\right)^{2}+0\left(n^{-2}\right)\right.
$$

The proof is given ir. tie Apwidix. at momba be noted that o ${ }_{0}{ }^{2}$ jncreases With the addition of oxpinatory varimles. i.e. the inctease of k.

$$
\text { To develot a peacticud and } u \epsilon^{\circ} \text { ul critarion for model. }
$$

identification, the rist finctior inw vong whonon parametars needs to be som thow estimated Erom a aiven set of ofservations.

Theorem 3.2: Suppose tha: an asymptotically unbiased estinte, say $\hat{\omega}^{2}$, for w^{2} is obtamed fron zoro wurce available a prioy and ot is statistically independer, of ón. When

The proof is given in the Argendir. If we equir: w to $\hat{\sigma}^{2}$, the BTC is identica? with the AtC. As was pointed out in the preceding section, the AIC is based or the asumption that the erue jietribution
 nameny, t^{2} is equetnd to ${ }^{2}$ in u process of deriving tif AIC.

 reciprocal $\hat{j}^{2} / \hat{\omega}^{2}$ (\geq 1) may be interitueted as a discountiac factor for the panally that hes to be paid for increasirg the runot of paramaters. Therefore, when tw cowfie two regresstin dels, tor Whth idens astianatut Varlaties st poorer Fit, the thes with more entancory variailes and better ite, the bro is more favorsbl to the rione parsturious budal than che 4IC. 'The ofloring
 is far from neglagibie.

Let us develon a decicino ruie to choose one E it tow
altermaidive regresafon aouels

$$
\begin{aligned}
& F_{I}: \quad i \sim N\left(X_{I} E_{1}: \sigma_{i}^{2} I_{n}\right)
\end{aligned}
$$

where X_{1} and X_{2} are respectivety $n \times p$ and $n x q$ matrices of known constants, β_{1} and β_{2} are respectively $P \times I$ and $q \times 1$ vectors of unknown parameters, and c_{1}^{2} and o_{2}^{2} are positive unknowns. The true distribution is assumed to be $N\left(u, \omega^{2} I_{n}\right)$. In practice, we carnot expect to obtain an estinate for ω^{2} from some independent source. Therefore, assuming that the more complicated model F_{2} is nearly true, we substitute the Mu entimate $\hat{\sigma}_{2}^{2}$ of σ_{2}^{2} for $\hat{\omega}^{2}$ in (3.13). Our decision rule is described as colluws: we choose F_{1} if $B I C\left(F_{1}\right)<$ BIC (F_{2}) and vice versa.

It is straightforward to show that the decision rule based on the BIC is equivalent to a decision based on the magnitude of the F-statistic that is customarily used to test the null-hypothesis $\beta_{2}=0$. That is, we decide to chouse F_{1} if an observed value of the F-statistic falls below a critical point determined by the inequality, $\operatorname{BIC}\left(F_{1}\right)<\operatorname{BIC}\left(F_{2}\right)$ and choose F_{2} otherwise. The critical point varies depending on n, p, and q.

Confining ourseives to the case when $q=1$, we tabulate the critical points implieł by the minimm BIC principle, say MBIC critical points, in Table 3.1. Since the t-statistic is more familiar to us than the F-statistic in the case of $q=1$, these critical valves refer to the t-statistic. We decile to choose F_{1} if the observed value of the t-statistic, the \mathbb{M} estimate of \mathcal{B}_{2} divided by its estimated standard deviation. falls beiow a critical point read from the table, and vice versa.

To examine how much the $F B I C$ procecure differs from the MAIC procedure, the critical points implied by the AIC ace also tabulated in Table 3.2. Both of these approach, although very slowly,
$\sqrt{2}$ asymptotically. We note a renarkable difference, namely that the MAIC critical potnt approaches $\sqrt{2}$ from below whereas the MBIC approaches from above. Moreover, as the number of variables already included increases, i.e., as p becomes iargez, the MBIC procedure incleasingly discriminates against the inciusion of additional variables: whereas the converse is true for MAIC.

To see a connexion between our procedure and the preliminary t-test, for some chosen cases, we tabulate the level of significance, i.e., the probability that $|t|$ exceeds the critical point when F_{1} is true. Roughly speakirg, for moderate values of p, the significance level for the MAIC procedure varies over the wide range from 30% to 16% as the number of degrees of freedor increases; on the other hand, for the ABIC procedure, it varies over a relatively narrow range from 10% to 16%. Both procedures share a common property in their more generous attitude toward inclusion of addftional variables than the traditional preliminary test with the significance level 5% or 10%. It should be noted, however, that these two asymptotically equivalent procedures will very often lead us to different decisions for small samples. Based on the minfax regrat principle with the squared exror of prediction as a loss functon, Sawa and Hiromatsu [6] calculated the optimal significance point for the preliminary t-test. Their minimax regret significance points are quite insensitive to the change in the number of degreas of freedom. That is, it remains constant at 1.37 to two decimal places, unless the number of degrees of freedom is extremely small, say less than 10. Indeed it is difficult to establish a clear-cut connection between the two basically different approaches, but it would
be worth noting that if a loss function is specified in terms of the prediction error, the more prodigal model is likely to be preferred. We often encounter a situation where we have to choose one of two unnested alternatives:

$$
Y \sim N\left(X_{1} \beta_{1}, \alpha_{1}{ }^{2} I_{n}\right) \text { ard } v \sim N\left(X_{2} \beta_{2}, \sigma_{2}{ }^{2} I_{n}\right) \text {, }
$$

where the true distribution of Y is $N\left(\mu, \omega^{2} I_{n}\right)$. In this kind of situation the unknown true variance ω^{2} may be reasonably estimated from a regression of y on all the explanatory variables $X_{1}\left(X_{2}\right.$. Another reasonable estimate of ω^{2} may be the smallest value of "unbiased" estimates of variances for all possible regressions of y on a subset of $X_{1} \mathrm{UX}_{2}$.

The difficulty in estimating ω^{2} does admittedly place a serious limitation to the practical usefulness of the MBIC procedure. However, it should be noted that the same difficulty is shared by Mallow's [4] procedure which is based on what he calls C_{p} statistic. Incidentally, Mallow's procedure gives a decision rule essentially similar to the AIC. It is also worth noting that according to Akaike's procedure ω^{2} is estimated by $\hat{\sigma}_{1}^{2}$ when we evaluate the AIC for the model F_{1} and by $\hat{\sigma}_{2}^{2}$ when we ivaluate the AIC for the model F_{2}. This means that, given a class of nested alternative models, the AIC for each model is evaluated assuming it is true. On the other hand, the BTC for each model is evaluated assuming that the most compley model within the class would be true.

Tarle 3.1

MBIC Critical Points for the Preliminary t-Test

	1					
10	1.525	1.646	1.816	2.036	2.264	-
12	1.500	1.561	1.715	1.882	2.092	-
14	1.484	1.557	1.652	1.778	1.943	2.678
16	1.473	1.533	1.610	1.709	1.836	2.758
18	1.465	1.516	1.580	1.660	1.761	2.665
20	1.458	1.504	1.558	1.625	1.707	2.494
25	1.448	1.482	1.522	1.568	1.624	2.192
30	1.442	1.469	1.500	1.536	1.576	1.912
50	1.430	1.445	1.462	1.480	1.449	1.625
100	1.442	1.429	1.437	1.445	1.453	1.499
200	1.418	1.421	1.425	1.429	1.433	1.453
500	1.416	1.417	1.419	1.420	1.421	1.429
1000	1.415	1.116	1.416	1.417	1.418	1.421

n is the sample sizt and p_{1} is the number of the explanatory variables already included in the whe The decision rule is described as follows: if the t-value for an optimal variable exceeds the MBIC critical point, we decide to augment the model by the optimal variable, and vice versa. Note that the MBIC critical point apmr whes slowly to $\sqrt{2}$ as \bar{n} tends to infinity for every $?$

Table 3.2
MAIC Critical Points for the Preliminary t-Test

10	1.331	1.245	1.153	1.052	. 941	-
12	1.346	1.278	1.205	1.127	1.043	. 426
14	1.357	1.300	1.239	1.176	1.108	. 679
16	1.365	1.316	1.264	1.210	1.154	. 816
18	1.371	1.328	1.283	1.236	1.188	. 907
20	1.376	1.337	1.297	1.256	1.213	. 973
25	1.384	1.354	1.323	1.291	1.258	1.000
30	1.389	1.364	1.339	1.313	1.286	1.144
50	1.400	1.385	1.370	1.355	1. 340	1.262
100	1.407	1.400	1.393	1.385	1.378	1.341
200	1.411	1.407	1.404	1.400	1.396	1.378
500	1.413	1.411	1.410	1.409	1.407	1.400
$1 p 00$	1.414	1.413	1.412	1.411	1.431	1.407

n is the sample size and p is the number of the explanatory variables already included in the model. The decision rule is described as follows: if the t-value for an optional variable pxceeds the MAIC critical point, we decide to augment the model by the optional variable, and vice versa. Iote that the MAIC critical point approaches slowly to $\sqrt{2}$ as n tends to infinity for every p.

Table 3.3 Significance Levels Implied by the BIC Procedure

n^{p}	1	2	3	4	5
10	.1658	.1438	.1193	.0974	.0863
12	.1645	.1461	.1247	.1019	.0814
14	.1636	.1478	.1295	.1091	.0879
16	.1629	.1492	.1334	.1155	.0962
18	.1625	.1503	.1364	.1208	.1037
20	.1621	.1509	.1388	.1250	.1099
25	.1611	.1525	.1430	.1326	.1209
30	.1604	.1534	.1457	.1371	.1281
50	.1592	.1551	.1505	.1458	.1544
∞	.1574	.1574	.1574	.1574	.1574

Table 3.4 Significance Levels Implied by the AIC Procedure

m^{p}	1	2	3	4	5
10	.2199	.2532	.2928	.3410	.4000
12	.2080	.2332	.2626	.2969	.3371
14	.1998	.2202	.2436	.2698	.3001
16	.1938	.2109	.2302	.2516	.2753
18	.1893	.2040	.2203	.2383	.2578
20	.1857	.1988	.2130	.2283	.2452
25	.1796	.1895	.2001	.2114	.2236
30	.1758	.1833	.1922	.2011	.2107
50	.1679	.1726	.1773	.1822	.1871
∞	.1574	.1574	.1574	.1574	.1574

4. Bayesian Decision Rule

In this section we look at the problem another way, from the Bayesian point of view. Given a model $F(\cdot \mid \Theta)$ coupled with a prior distribution $P(e)$ we define the Baves risk, say $B(\tilde{\theta} \mid F)$, for an estimate θ by the expectation of the loss function (3.10) with respect to the posterior distribution, that is,

$$
\begin{equation*}
B(\tilde{e} \mid F)=\int W(F(\cdot \mid \tilde{\theta})) d P(\theta \mid y) \tag{4.1}
\end{equation*}
$$

Where $P(\theta \mid y)$ is the posterior distribution for θ given an observation y. If there exists an estimate $\hat{0}^{\text {t. }}$ such that

$$
\begin{equation*}
B(\tilde{\theta} \mid F)=\min _{\tilde{\theta}} B(\tilde{n} \mid T) \tag{4.2}
\end{equation*}
$$

then it is called the Bayes estimate of θ. Recalling that $W(F(\cdot \mid \hat{\theta}))$ measures the discrepancy of a morel $E(\cdot \mid \theta)$ from the true distribution $G(\cdot)$, we take $B\left(\sigma^{2}, \vec{F}\right)$ as a measura of the adequacy of a model $F(\cdot \mid \theta)$ associated with a prior distribution $P(\theta)$. That is, along the lines of previous sections, if we compare two alternative models, say, $F_{1}(\cdot \mid \theta)$ with $P_{1}(\theta)$ and $F_{2}(\cdot \mid \zeta)$ with $P_{2}(\zeta)$, then we decide to choose F_{1} or F_{2} according to wherber or not $B\left(\theta^{*} ; F_{1}\right)<B\left(\zeta^{2 x} \mid F_{2}\right)$.

In what follows let us ie specific to a linear normal regression model for a vector randon variable y :
(4.3) $\quad F: \quad Y \sim N\left(X B, G^{2} X_{n}\right)$
where Y is $n \times 1, X$ is $n \times k, \beta$ is $k \times 1$, and u is $n \times 1$; the true
distribution of y is $N\left(\mu, \omega^{2} I_{n}\right)$ with unknowns μ and ω^{2}. If we assume a diffuse prior for β and σ^{2}, the minimum attainable Bayes risk is evaluated as follows:

Lemaa 4.1. Given a model F with a diffuse prior, the minimum attainable Bayes risk is

$$
\begin{equation*}
\mathrm{B}\left(\tilde{\beta}^{*}, \tilde{\sigma}^{2 *} \mid \mathrm{F}\right)=-\frac{2}{n} \log f\left(y \mid \hat{\beta}, \hat{\sigma}^{2}\right)+\log \left(\frac{n+k}{n-k-2}\right), \tag{4.4}
\end{equation*}
$$

where $\hat{\beta}$ and $\hat{\sigma}^{2}$ are the M estimates for β and $\sigma^{2}, \tilde{R}^{*}$ and $\tilde{\sigma}^{2 *}$ are the Bayes estimates, and f is the density function of $N\left(X \beta, \sigma^{2} I_{n}\right)$.

Let us make a comparison of two nested alternatives F_{1} and F_{2} given in (3.14). The Bayes decision rule, based on the magnitude of the minimura attainable Bayes risk, leads us to the following decision rule which is again described in terms of a familiar F-statistic.

Theorem 4.1. A decision rule based on the minimum attainable Bayes risk is equivalent to: choose F_{1} if
(4.5) $\quad W<\frac{2(n-1)(n-p-q)}{(n+p)(n-p-q-2)}$;
choose F_{2} otherwise, where
(4.6) $\quad W=\frac{(n-p-q)\left(\hat{\sigma}_{1}^{2}-\hat{\sigma}_{2}^{2}\right)}{\hat{q \sigma}_{2}^{2}}$
is a F-statistic conventionally employed to test the hypothesis that $\beta_{2}=0$.

The proof is given in the Appendix.

We call the right-hand side of (4.5) the Bayes critical point, which tends to 2 asymptotically, increases with q, and decreases with p if n is moderately large. Limiting ourselves to the case of $q=1$, We tabulate the numerical values of the square root of the Bayes critical point in Table 4.1 which is comparable to Tables 3.1 and 3.2.

Table 4.1
Bayes Critical Points for the Preliminary t-Test

n	1	2	3	5	
10	1.477	1.449	1.441	1.464	1.540
12	1.454	1.421	1.398	1.387	1.393
14	1.442	1.409	1.383	1.363	1.351
16	1.435	1.403	1.376	1.354	1.336
18	1.430	1.401	1.374	1.351	1.332
20	1.427	1.399	1.374	1.352	1.332
25	1.422	1.398	1.376	1.356	1.337
30	1.419	1.399	1.380	1.362	1.345
50	1.416	1.403	1.390	1.378	1.366
100	1.415	1.403	1.401	1.395	1.388
200	1.414	1.411	1.407	1.404	1.401
1000	1.414	1.414	1.418	1.412	1.411

It is interesting to note that the Bayes critical point varies quite little arcoxding to the changes in the values of n and p. Also, it is very close to the minimax regret critical point in Sawa and İiromatsu [6].
5. Bias of Decision Rules

Now we return to Sectin, 3 and reconsider the problem from the viewpoint of sampling theory. When we compare the two nested alternative models given in (3.14), our decision rule should be in principle based on the risk function given in Theorem 3.1. That is, we should choose F_{1} if $R\left(F_{1}\left(\cdot \mid G_{1}\right)\right)<R\left(F_{2}\left(\cdot \mid \theta_{2}\right)\right)$ and vice versa.

Lemma 5.1 If $\delta=\sigma_{1}{ }^{2}-\sigma_{2}{ }^{2}=0\left(n^{-1}\right)$, then
(5.1) $\quad R\left(F_{1}\left(\cdot \mid \theta_{1}\right)\right)-R\left(F_{2}\left(\cdot \mid \theta_{2}\right)\right)=\frac{\delta}{\sigma_{2}^{2}}-\frac{q \omega^{2}}{R \sigma_{2}^{2}}+0\left(n^{-2}\right)$.

The proof is given in the Appendiz. It should be recalled that when we derived the BIC the terms of $0\left(a^{-2}\right)$ were neglected. It is, therefore, consistont that we evaluate the difference of risk only to order $O\left(n^{-1}\right)$. The difference Eetween the pseudo-variances, δ, is assumed to be $0\left(n^{-1}\right)$. This assumption may seem to be somewhat uncomfortable. However, it may le justified by the fact that the model discrimination procedure would be unnecessary unless the difference between the two alternatives is as small as the reciprocal of the sample stze.

Hence we can legitimateiy define a correct decision rule as
follows: choose the nodel F_{1} if $n j / \omega^{2}<q$ and choose F_{2} if $n \delta / \omega^{2}<q$.

Based on the preceding consideration, we introduce the notion of unbiasedness of a dectsion rule: a decision rule is said to
be unbiased if the probability of choosing F_{1} is greater than $1 / 2$ when $\mathrm{n} \delta / \omega^{2}<\mathrm{q}$ and less than $1 / 2$ when $\mathrm{n} \delta / \omega^{2}>\mathrm{q}$. If the probability decreases continuously with the increase of $n \delta / \omega^{2}$, the condition of unbiasedness is simply described as follows: the probability of choosing F_{1} (or F_{2}) is $1 / 2$ when $n \delta / w^{2}=q$. Note that when $n \delta / w^{2}=q$ we are indifferent to the two alternative models. If the above probability exceeds $\bar{i} / 2$, then the decision rule is said to be bjased toward a simpler model; if it falls below $1 / 2$, then the decision rule is biased toward a more complex model.

All decision rules considered so far are based on whether or not an observed value of W, given by (4.6), exceeds a constant which changes with n, p, and q. Under the assumption that $Y \sim N\left(\mu, \omega^{2} I_{n}\right), W$ is distributed as a doubly noncentral F with ($q, n-p-q$) degrees of freedom and the noncentrality parameters

$$
\begin{equation*}
\delta_{1}=\frac{n \delta}{\omega^{2}}=\frac{\mu^{\prime} X_{2}^{*}\left(X_{2}^{*{ }_{2}^{*}} Y_{2}^{*}\right)^{-I_{X_{2}^{*}}^{*}}{ }_{2}^{2}}{\omega^{2}} \tag{5,2}
\end{equation*}
$$

and

where $X_{2}^{*}=X_{2}-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}{ }^{\prime} X_{2}$. It would be worth noting here that a decision is correct if we decide to choose F_{1} when the noncentrality parameter of the numerator $1 s$ less than its degree of freedom and vice versa.

In Table 5.1 we tabulate the probability that W exceeds the BIC critical point when $n o / \omega^{2}=q$, i.e., when F_{1} and F_{2} are indifferent. It can be observed from the Table that the BIC procedure is considerably biased toward a simpler model.

Tahle 5. 3

Bias of the BTC Decision Rule

Fach entry in the table is the probabilisy tirat a doubly non-central F variate, with noncentrality parameters $\left(\delta_{1}: \delta_{2}\right)$ and (1, n $-p-1$) degrees of freedom, falls below the BIG critical point when $\delta_{1}=1$. The noncentrality is $\delta_{2} /(n-p-1)$, i.e. the nokmalized noncemtrality parameter of the demominator in F, where Bin $_{2}$ is given by (5.3).

Appendix:

Proof of Lemma 3.1

The log likelihood function is
(A.1) $\quad \log f(y \mid \theta)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)$

$$
-\frac{1}{20^{2}}\|y-x \beta\|^{2},
$$

where $\theta^{\prime}=\left(\beta^{\prime}, \sigma^{2}\right)$ and $\|\cdot\|$ stands for an Euclidean norn. Differentiating it with respect to B and σ^{2}, we have
(A.2) $\frac{\partial \log f(y \mid \theta)}{\partial \beta}=\frac{1}{\sigma^{2}} X^{\prime}(y-X B)$,
(A.3) $\quad \frac{\partial \operatorname{Iog} f(y \mid \theta)}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}\|y-X B\|^{2}$.

Then
(A.4) $E\left[\frac{\partial \log ^{2} E(Y \mid \theta)}{\partial B}\right]=\frac{1}{\tau^{2}} X^{\top}(H-\alpha B)$
(A.5)

$$
\begin{aligned}
E\left[\frac{\partial \log f(X: \theta)}{\partial \sigma^{2}}\right] & =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \tilde{\|Y-X \beta\|^{2}} \\
& =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}\left(E\|Y-\mu\|^{2}+\|\mu-X B\|^{2}\right) \\
& =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}}\left(\operatorname{}\|+\| \mu-X B \|^{2}\right) .
\end{aligned}
$$

Equating (A.4) and (A.5) to zeroes and solving ther ylelds the pseudo-true parameter values B_{0} and $\sigma_{0}{ }^{2}$ given, respectively, by (3.3) and (3.4).
(A.6) $\quad E(\hat{B})=\left(X^{\prime} X\right)^{-1} X^{*} \mu=B_{0}$
(A.7) $\quad E\left(\hat{\sigma}^{2}\right)=\frac{1}{n} \operatorname{tr} \bar{P}_{X}\left(\mu \mu^{2}+\omega^{2} I_{n}\right)$

$$
=\frac{n-k}{n} \omega^{2}+\frac{I}{n} u^{\prime} \bar{p}_{x^{H}}
$$

Where $\bar{P}_{X}=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$. Then
(A.8) $\quad \operatorname{Iim} E\left(\hat{\sigma}^{2}\right)=\operatorname{Iim} \sigma_{0}^{2}$

Proof of Lemma 3.3

From (A.1) we have
(A.9) $\quad-\frac{2}{\mathrm{n}} \log f(Y \mid \hat{\theta})=\log (2 \pi)+\log \hat{\sigma}^{2}+\frac{1}{\mathrm{n} \hat{\sigma}^{2}}\|Y-\hat{X B}\|^{2}$
where Y is a vector randon variable independent of $\hat{\theta}$. Taking expectation of (A.9) and substituting
(A.10) $\quad E\left[\|Y-\hat{X B}\|^{2} \mid \hat{B}\right]=E: Y-X \beta_{0} \|^{2}-2 E\left[\left(Y \cdots X \beta_{0}\right) X\left(\hat{B}-\beta_{0}\right)\right]$

$$
\begin{aligned}
& \quad+\left\|X\left(\hat{\beta}-\beta_{0}\right)\right\|^{2} \\
& =\pi 0_{0}^{2}-2 \mu_{X} X\left(\hat{\beta}-\beta_{0}\right)+\left\|x\left(\hat{\beta}-\beta_{0}\right)\right\|^{2} \\
& =\pi W_{0}^{2}+X\left(\hat{\beta}-\beta_{0} \|^{2}\right.
\end{aligned}
$$

therein, we obtain (3.11).

Proof of Theorem 3.1

The risk function is
(A.11) $\quad R(F(\cdot \mid \theta))=E[[F(F(\cdot|\theta|)]$

$$
\begin{aligned}
=\log (2 \pi) & +\log \left(\sigma^{2}\right)+E\left[\log \left(\frac{\sigma^{2}}{\sigma^{2}}\right)\right]+E\left(\frac{\sigma^{2}}{\sigma^{2}}\right) \\
& +\frac{1}{\square \sigma^{2}} E\left(\frac{\sigma^{2}}{\sigma^{2}}\right) E\|X(\hat{\beta}-\beta)\|^{2}
\end{aligned}
$$

where use is made of the independence of $\hat{\sigma}^{2}$ and \hat{B}, and the suffix 0 of σ_{0}^{2} and β_{0} is dropped. We have the following power series expansions:
(A.12) $\quad \log \left(\frac{\hat{\sigma}^{2}}{\sigma^{2}}\right)=\log (1+\Delta)=\Delta-\frac{1}{2} \Delta^{2}+\cdots$
(A.13) $\quad \frac{\sigma^{2}}{\sigma^{2}}=\frac{1}{1+\Delta}=1-\Delta+\Delta^{2}+\cdots$
where
(A.14) $\Delta=\frac{\hat{\sigma}^{2}-\sigma^{2}}{\sigma^{2}}$

Note that under the assumptions stated in the Theorem the expectations of higher order terms in the expansions are of order $0\left(n^{-2}\right)$.
(A.15)

$$
\begin{aligned}
\Delta & =\frac{1}{n \sigma^{2}}\left[Y^{\prime} \bar{F}_{X} Y-n \omega^{2}-\mu^{\prime} \bar{P}_{V^{H}}^{\mu}\right] \\
& =\frac{1}{n \sigma^{2}}\left[V^{\prime} \bar{P}_{X} V+2 \mu^{\prime} \bar{P}_{X} V\right]-\frac{w^{2}}{\sigma^{2}}
\end{aligned}
$$

where $V=Y-u$. Under the assumptions in the Theorem
(A.16)

$$
E\left(V \cdot \bar{P}_{X} V\right)=\omega^{2} \operatorname{tr} \bar{P}_{X}=(n-k) \omega^{2}
$$

(A.17)

$$
\begin{aligned}
E\left(V^{\prime} \bar{P}_{X} V\right)^{2} & =\omega^{4}\left[\left(\operatorname{tr} \bar{P}_{X}\right)^{2}+2 \operatorname{tr} \bar{P}_{X}\right] \\
& =\left[(n-k)^{2}+2(n-k)\right] \omega^{4}
\end{aligned}
$$

(A.18)

$$
E\left(\mu^{\prime} \bar{P}_{X} V\right)=E\left[V^{\prime} \bar{P}_{X}{ }^{v} \mu^{\prime} \bar{p}_{X} X\right]=0
$$

(A.19)
$E\left(\mu^{\prime} \bar{P}_{X} V\right)^{2}=\omega^{2} \mu^{\prime} \bar{E}_{X}{ }_{\mu}=\pi \omega^{2}\left(\sigma^{2}-\omega^{2}\right)$
Hence, rearranging the terns, we obtain
(A.20) $E(\Delta)=-\frac{k}{n}\left(\frac{\omega^{2}}{\tau^{2}}\right)$,
(A.21) $E\left(Q^{2}\right)=\frac{4}{n}\left(\frac{\omega^{2}}{0^{2}}\right)-\frac{2}{\square}\left(\frac{u^{2}}{\sigma}\right)^{2}+D\left(a^{-2}\right)$.

Also, we have
(A.22)

$$
\begin{aligned}
E\|X(\hat{\beta}-\beta)\|^{2} & =E\left\|X\left(X^{\prime} X\right)^{-1} X^{\prime} V\right\|^{2}=w^{2} \operatorname{tr} X\left(X^{\prime} X\right)^{-I_{X}} \\
& =k \omega^{2}
\end{aligned}
$$

Therefore,
(A.23) $E\left[\log \left(\frac{\sigma^{2}}{\sigma^{2}}\right)\right]+E\left(\frac{\sigma^{2}}{\sigma^{2}}\right)=1+\frac{1}{2} E\left(\Delta^{2}\right)+O\left(n^{-2}\right)$

$$
=1+\frac{2}{n}\left(\frac{w^{2}}{2}\right)-\frac{1}{n}\left(\frac{w^{2}}{2}\right)^{2}+0\left(n^{-2}\right)
$$

(A.24) $E\left(\frac{\sigma^{2}}{\sigma^{2}}\right) E\|X(\hat{B}-B)\|^{2}=k \omega^{2}+O\left(n^{-1}\right)$

Substituting (A.23) and (A.24) into (A.11), we finally obtain (3.12).

Proof of Theorem 3.2

From (A.12), (A.20) and (A.21)
(A.25)

$$
\begin{aligned}
E\left(\log \hat{\sigma}^{2}\right) & =\log \sigma^{2}+E(\Delta)-\frac{1}{2} E\left(\Delta^{2}\right) \\
& =\log \sigma^{2}-\frac{k}{n}\left(\frac{\omega^{2}}{\sigma^{2}}\right)-\frac{2}{n}\left(\frac{\omega^{2}}{\sigma^{2}}\right)+\frac{1}{n}\left(\frac{\omega^{2}}{\sigma^{2}}\right)^{2}+0\left(n^{-2}\right) .
\end{aligned}
$$

Moreover, we have
(A.26) $E\left(\frac{\hat{\omega}^{2}}{\sigma^{2}}\right)=\frac{0^{2}}{\sigma_{0}^{2}} E\left(\frac{\sigma_{0}^{2}}{\sigma^{2}}\right)=\frac{\omega^{2}}{\sigma_{0}^{2}}\left(1+0\left(n^{-1}\right)\right)$
.
and
(A.27)

$$
E\left(\frac{\hat{\omega}^{2}}{\hat{\sigma}^{2}}\right)^{2}=\frac{\omega^{4}}{\sigma^{4}} E\left(\frac{\sigma^{2}}{\sigma^{2}}\right)=\frac{\omega^{4}}{\sigma^{4}}\left(I+O\left(n^{-1}\right)\right)
$$

Noting that

$$
\text { (A.28) } \quad-2 \log f(y \mid \hat{\theta})=n \log (2 \pi)+n \log \hat{\sigma}^{2}+1
$$

and combining the above expectations, we obeafn
(A.29)
$n \operatorname{E}[\operatorname{BIC}(F(\cdot \mid \theta))]=\operatorname{nR}(F(\cdot \mid \theta))+0\left(\mathrm{n}^{-1}\right)$.

Proof of Lemma 4.1

If we assume a linear nornal regression model $Y \approx N\left(X B, \sigma^{2} I\right)$ with diffuse prior for β and σ^{2}, the conditional posterior distribution of β, given σ^{2}, is $N\left(\hat{B}, C^{2}(X X)^{-1}\right)$ where $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$ is the maximum likelihood estimate, and also the marginal prior distribution for \propto^{2} is the inverse gama distribution with the density function
(A.30) $\frac{2}{\Gamma(\nu / 2)}\left(\frac{\nu s^{2}}{2}\right){ }^{\nu / 2} \frac{1}{\sigma^{v+1}} \exp \left(-\frac{\nu s^{2}}{2 \sigma^{2}}\right)$
where $v=n-k$ and $s^{2}=n \hat{\sigma}^{2} /(n-k)$. The proof is given by Zellner [8]. The conditional expectation of $\|X(\tilde{\beta}-\beta)\|^{2}$ with respect to the posterior distribution is
(A.31) $E_{\beta \mid y, \sigma}\|X(\tilde{B}-\beta)\|^{2}=E_{B \mid y, \sigma}\|X(\beta-\hat{\beta})\|^{2}+\|X(\hat{\beta}-\tilde{B})\|^{2}$

$$
\begin{aligned}
& \geq E_{B \mid y, \sigma}\|X(\beta-\hat{B})\|^{2} \\
& =k \sigma^{2}
\end{aligned}
$$

where the lower bound is attainable when $\tilde{\beta}=\hat{\beta}$; i.e., the Bayes estimate \tilde{B}^{*} of G is nothing but the ML estimate. A straightforward integration
yields
(A.32) $E_{\sigma^{2} / y}\left(\alpha^{2}\right)=\frac{v}{v-2} s^{2}=\frac{n-k}{n-k-2} s^{2}$
as long as $v>2$. Hence
(A.33) $E_{B, \sigma^{2} \mid y}[W(F(\cdot \mid \theta))] \geq \log (2 \pi)+\log \sigma^{2}+\frac{n+k}{n-k-2}\left(1+\frac{k}{n}\right) \frac{s^{2}}{\sigma^{2}}$

The Bayes estimate of σ^{2} is σ^{2} that minimizes the right-hand side of the above inequality; í.e.

$$
\text { (A.34) } \quad \tilde{\sigma}^{* 2}=\frac{n+k}{n-k-2} \hat{\sigma}^{2}
$$

where $\hat{\sigma}^{2}$ is the M estimate of σ^{2}. Substituting this into the right-hand side of (A.33), the minimum attainable Bayes risk is evaluated as follows:
(A.35)

$$
\begin{aligned}
B\left(\beta^{\sim}, \sigma^{*} \mid F\right) & =\log 2 \pi+\log \tilde{\sigma}^{\sim} 2+1 \\
& =\log 2 \pi+\log \hat{\sigma}^{2}+1+\log \left(\frac{n+k}{n-k-2}\right) \\
& =-\frac{2}{n} \log f(y \mid \hat{\theta})+\log \left(\frac{n+k}{n-k-2}\right) .
\end{aligned}
$$

Proof of Theorem 4. 3

Let B_{1} and B_{2} be the minimum attainabie Rayes risks, respectively, for F_{1} and F_{2} with diffuse prior for parameters. The difference between B_{1} and B_{2} is
(A. 36)

$$
B_{1}-B_{2}=\log \left(\frac{\hat{\sigma}_{1}^{2}}{\sigma_{2}^{2}}\right)+\log \left[\frac{(n+p)(n-p-q-2)}{(n+p+q)(n-p-2)}\right]
$$

If this is negative, we should choose F_{I}, and vice versa. By the monotonicity of the logarithm transformation, $B_{1}-B_{2}<0$ is equivalent to
(A.37) $\quad \frac{\hat{\sigma}^{2}}{\sigma_{2}^{2}}<\frac{(n+p+q)(n-p-2)}{(n+p)(n-p-q-2)}$
which is again equivalent to (4.5),

Proof of lemma 5.1
(A.38) $R\left(F_{1}(\cdot \mid \theta)\right)-R\left(F_{2}(\cdot \mid \theta)\right)=\operatorname{Iog}\left(\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\right)+\frac{p+2}{n}\left(\frac{1}{\sigma_{2}^{2}}-\frac{1}{\sigma_{1}^{2}}\right) \omega^{2}$

$$
-\frac{0}{\mathrm{n}} \frac{\omega^{2}}{\sigma_{2}^{2}}+\frac{1}{\mathrm{n}}\left(-\frac{1}{\sigma_{2}^{4}}-\frac{1}{\sigma_{1}^{4}}\right) \omega^{4}+0\left(\mathrm{n}^{-2}\right) .
$$

If we assume that
(A.39) $\quad 0=\sigma_{1}^{2}-\sigma_{2}^{2}=0\left(n^{-1}\right)$,
we have an expansion
(A.40) $\log \left(\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\right)=\log \left(1+\frac{\delta}{\sigma_{2}^{2}}\right)=\frac{\frac{6}{2}}{\sigma_{2}^{2}}+0\left(n^{-2}\right)$.

Also, it follows that the second and third terms on the right-hand side of (A. $\ddagger 8$) are of order $0\left(\mathrm{n}^{-2}\right)$. Hence. if we neglect the terms of order $O\left(n^{-2}\right)$, we cen assert that $R\left(F_{1}(\cdot \mid \theta)\right)<R\left(F_{2}(\cdot \mid \theta)\right)$ if and only if (A.41) $\frac{n \delta}{w^{2}}<q$
and vice yersa.
[1] Akaike, II. (1972) "Tnformarion Theory and an Extension of the Maximum Likelihood Princlple," in Proc. 2nd Int. Symp on Information Theory, pR. 267-281.
[2] Akaike, K. (1974) "A Liew Look at the Statistical Model. Identification," IrEE, Transagtions on Automatic Control, Vol. AC-19, No. 6, pp. 716-723.
[3] Kullback, S. (1959) Information Theory and Statistics, New York, John Wiley and Sons.
[4] Mallows, C. I. (1972) "Some Comments on Cp", Technometrics, Vol. 15, pp. 661-675.
[5] Rao, C. R. (1973) Linear Statistical Inference and its Application, 2nd ed., New work, John Tiley and Sons.
[6] Sawa, T. and T. Hiromatsu (]973) "Minimax Regret Significance Points for a Prelimirary Test in Regression Analysis," Econometrica, Voi. 41. pp. 1093-1101.
[7] Takeuchi, Kei (1076) "On Samplang Distribution of Criteria for Selection of Independent Variables Related wth C - Statissic," mimeographed, presented at International Biometric Conference at Boston, August 1976.
[8] Zeliner, A. (1971) An Introcuction to Byesian Inference in Econometrics, New York, John Wiley and Sons.
-
-
v
.

