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1. Introduction

In most statistical analyses it is taken for granted that the

family of the probability distribution fixnctions, say FCyje), may be

correctly specified on a priori grounds. Uncertainty exists, therefore,

only with reference to the values of parameters G involved in the

specified family of probability distribution functions (p.d.f.). In

practice, however, we are seldom in such an Ideal sitxiation; that is, we

are more or less uncertain about the family to which the true p.d.f.

might belong. It may be very likely that the true distribution is in

fact too complicated to be represented by a simple mathematical function

such as is given in ordinary textbooks

.

In practice we approximate the true distribution

by one of the alternative p.d.f- 's listed in the textbooks. Needless to say,

we try to choose the most adequate p.d.f. with due thought to a priori

considerations. The p.d.f, specified by a convenient mathematical

function is usually termed the model . For further analysis the model is

identified at least tentatively with the true distribution. To put it

differently, in the process of conventional statistical analysis a

sharp distinction is seldom drawn between the model and the true

distribution.

To avoid the arbitrariness that inevitably occurs in the

process of model building, nonparametric statistical methods have been

extensively developed in the past decade. It seems to me, however, that these

methods have not been used very successfully in practical data analysis.
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In fact, most statistical inferences are based on some specific

parametric model, often on the model of normal distribution.

In recent years, however, more and more emphasis has been laid

on the problem of model identification; that is, how to identify the

model when it cannot be completely specified from a^ priori grounds.

The main purpose of the present paper is to propose and analyze a

statistical criterion for model identification in regression analysis.

Our basic attitude toward the problem is to recognize the fact that

a certain amount of discrepancy inevitably exists between the true

distribution and the model. The best we can do in trying to cope ;<n.th this

sort of situation is to identify the laost adequate model among a given

set of alternatives. The adequacy of a model needs to be quantified

by introducing a suitable measure of the distance of the model from

the unknown true distribution.

It is expected intuitively that the more complicated model will

provide the better approximation to reality. But, on the contrary,

the less complicated model should be preferred if we wish to pursue accuracy

of estimation. To illustrate this point, let us consider the situation

where two alternative density functions f (-{O) and f_(-|?), are given

as possible models of the density g(') of the true distribution, where

8 and C are vectors of unknown parameters. Even if f^('|6) is the

better approximation to the true density g(") in the sense that

inf
jl
f,(-!.6) - g(.)il < Inf

li f^(-k) - g(-)|| where
|j

•
|l

is a

suitably defined distance, it is quite likely that

E
II
f,(-|e) - g(-)|| > E,

II f,(-lb ~ g(-)|l if dim 8 > dim ^ where
e t.

6 and t, are estimates for 6 and r respectively.
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The above consideration leads us naturally to the so-called

principle of parsimony . That is, more parsimonious use of parameters

should be pursued so as to raise ttie accuracy of the estimates of the

parameters. In general, closeness to the true distribution is incompatible

with parsimony of parameters. These two criteria form a trade-off. That

is, if one pursues one of the criteria, the other must be necessarily

sacrificed. The multiple correlation coefficient adjusted for the degrees

of freedom may be the most commonly used statistic that incorporates the

two incompatible criteria into a single statistic.

Akaike [1] has proposed a more general as well as more widely

applicable statistic that ingeniously incorporates the two criteria.

Since it is based on the Kullback-Leibler Information Criterion,

Akaike 's statistic is called the Akaike Information Criterion and is

abbreviated as AIC. Indeed, the procedure developed here is also based

on the Kullback-Leibler Information Criterion, but the criterion

for the choice of a regression model implied by our procedure is

considerably different from that implied by AIC. The disagreement

stems from a difference between Akaike 's and our views on the true

distribution.

Ir Section 2 we briefly review the Kullback-Leibler

Information Criterion and the Akaike Infortii.atlon Criterion. In Section 3

we develop a criterion for the choice of a regression model and compare

it with a criterion implied by the Akaike Criterion. In Section 4

the Bayesian approach to the problem is considered and a different

criterion is derived from Bayesian point of view. The bias

of the three criteria is discussed in Section 5.





2. Information Criterion

Suppose that we are concerned with the probabilistic structure

of a vector random variable Y* = (Y , Y^,
*'*

, Y ). Let G(y) be the

true joint distribution of Y. On the basis of a_ priori knowledge we

postulate a Biodel F(y|8) to approximate the unknown true distribution

G(y), where 8 is a vector of unknown parameters.

The adequacy of a postulated model may be measured by the

Kullback-Leibler 's Information Criterion (KLIC).

(2.1) I(G:F(.|9)) = Eg[log|^|^y]

where g and f are density (or probability) functions of, respectively,

G and F; £„(•) stands for expectation with respect to the true distribution G;

the integration is over the entire range of Y. It can be easily shown

that the KLIC is nonnegative

(2.2) I(G:F(-|6)) ^

with equality only when F(y|6) = G(y) almost everirwhere in the possible

range of Y; namely, only when the model is correct. (See, for instance,

Rao [5 ] pp. 58-59.) Incidentally, the negative value of the KLIC is

termed the entropy o^. a probability distribution G(y) with respect to F(yJ0).

Noting the inequality (2.2) as well as an obvious equality
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(2.3) I(G:F(-|0)) = / log g(y)dG(y) - /log f(y|6)dGCy),

we are led to propose the following rule for a comparison of alternative

nodels or estimates.

Rule 2.1 : (i) A model F^(-|a) is regarded as a better approximation to

the true distribution G('), i.e., a better model than an alternative model

FjC* |c) if and only if

(2.4) inf I(G:F (-Is)) < inf 1(G:F^('\0)
e " c,

or equivalently

(2.5) sup E^ [log f^CYle)] > sup E [log f (y|?)].

(ii) Given a model F(-l9), an estim/Jte 6. is regarded as a better estimate

than 8 , if and only if

(2.6) Eg {E^tlog f(Y|9^)ie^]} > Eg {E^[log f(Y|62)|62]}

where Et and E^ stand for expectations with respect to the sampling
®1 ®2

distributions of §, and 6„, respectively. (Note that when we first take
1 z-

an expectation with respect to G the estiimte 6 or 9^ should be treated

as if it were a constant.)

It was pointed out by Akaike [1] that if the Y! s are independent

and identically distributed the raaximun likelihood estimate may be

regarded as an estimate that minimizes the estimated KLIC, or equivalently

maximizes the estimated entropy, because the log likelihood function

divided by the sample size n

(2.7) ^ E log f(v.iP)
^-

j =1 J
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may be regarded as a reasonable estimate for E^[log f(Y|e)] whatever G(y)

is.

Apparently, the above rule for a comparison of models is not

directly applicable in pracfi'^e, because the criteria are totally

dependent on the unkrLOwn true probability distribution. To establish a

practical usable criterion for model id-^ntlflcation on the basis of the

KLIC, we need to replace unknowns in (2.5) by their reasonable estimates.

In fact, the Akaike Information Criterion (AIC) has been derived as an

approximately unbiased estimate for the KLIC, neglecting its irrelevant

constant terms and based implicitly on a fairly strong assumption.

For the sake of convenience in developing our argument we give

the following definition:

Definition : Given a model F(«|e), a parameter value 6_ such that

(2.8) KG: FC-JSq)) < KG: T(-\b)}

for any possible 9 in the admissible parameter space is called a

pseudo-true parameter value .

If the true distribution G(y) and a model F(y|e) satisfy due

regularity conditions, the pseudo-true parameter 6 must satisfy

The model F(y[6 ) may be regarded as the most adequate relatively within

the family of models F(y|e) in the sense that the KLIC for F(y|0) is

minimized by F(y|9 ).

Assuming that G(y) = FCyje^) almost everywhere, Akaikf, [1] derives

his criterion
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(2.10) AIC (F(-J8)) = -2 log i(y|e) + 2k

as an almost unbiased estimate for -2 E [log f(Y|6)], where 6 Ib the

maximum likelihood estiinate for 3 based on observations y and k is the

number of the unknown parameters, i.e., the dimension of 6. The procedure

of choosing a model that minimizes the AIC is called the Minimum AIC

(MAIC) procedure. The first term of the AIC measures the goodness of

fit of the model to a given set of data, because f(y[9) is the

maximized likelihood function. The second term is interpreted as representing

a penalty that should be paid for increasing the number of parameters.

The increase in the number of parameters almost necessarily improves the

fit but only at the cost of sacrificing accuracy of estimation. In

this sense the AIC may he regarded as an explicit formulation of the

so-called principle of parsimony in model building.

Indeed, the assumption that

(2.11) F(y|0p) = G(y)

simplifies the derivation substantially, but there is no denying that

this simplifying assumption lessens the plausiblity of the AIC to some

extent. In the next section, confining ourselves to a linear regression,

we derive another criterion without assuming (2.11) and compare it with

the AIC to see what difference might arise depending on whether or not

we assume (2.11).
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3. Identification cf a Regression Meckel

We are interested in investigating a joint distribution of

a vector random variable Y' = (Y, > Y„, •••, Y ), Each of v.'s niay be12 n 1
'

an observation on a certain characteristic of a randomly chosen

individual; or Y.'s may constitute a sequence of observed time series.

The distribution function G(y) is unknown, but each Y. is assumed to

possess finite variance. We denote the mean vector and the

variance-covariance matrix, respectively, by u and n, where y is a

vector of n components and f2 is a n x n positive definite matrix.

Unless we place more a^ priori restrictions on the elementH of y and Q,

we can make no inference at all about the joint distribution of Y.

What we usually do is to assume that y belongs to a linear

subspace of lower dimension than n and Y.'s are mutually uncurrelated.

Then we have a familiar linear regression model

(3.1) E(Y) = X6. V(Y) = a^l
n

where X is a n x k witrix of known constants, the k columns of which

constitute a basis of the sub^ipace to which y is assumed to belong; g

is a vector cf k unknowa paraiiaters; o is an unknown positive

constant; I is an identity matr;j: of order n. In most practical

situations the columns of X are vectors of observations on certain

characteristics considered to be associated with Y. Then the model

implies that the i-th m^au y, is represented as a linear function of
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k explanatory variables, i.a., \x. = E g.x where x is the (i, j)-th

element of x. By assuming a regression model we can reduce the number

of iinkr!Ox-m parameters from n + n(n + l)/2 to k + 1.

In addition to (3.1) we often assume the norioal distribution

for Y, and postulate a model

(3.2) Y 'V N(XB, o-I^),

or

2
Y = Xg + u, u -v N(0, a I^) ,

which is termed a linear normal regression model.

2
Lemma 3.1 : The pseudo true values for parameters G' = (6', a ) are

(3.3) eg = (X'X)''\'v

(3.4) o^^ = ^ y'Cf - X(X'X)"^x')y + ^ tv Q.

The above results are easily obtained by solving the equations

(3.5) E[-g| log f(YJ0)] =

(3.6) E[~~ log f(Y|e)] =

3a

where f(y|e) is the density fui;ci:ion of N(XB, a I) and the expectation is

with respect to the true distribution. Geometrically speaking, X,6q is

a projection of the unknown mean vector u into the space spanned by the k

columns of X, while no "^ is the sum of the variances of the Y 's plus the

squared length of the perpendicular from p to the space. The error of

approximating y by Xt is absorbed into the error variance.
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The Diaximum likelihooa (ML) estimates

(3.7) 3 = (X'X)~^'y. a^ = -^- y'[l - x(x'x)~-'-x']y

2
for g and o in the ncrmal regression irodel (3.2) have the following

property.

LffTTiTiia 3.2

(3.8) E(3) = Bq,

(3.9) plim (cT^ - <^^) - 0, if n = co^I
U n

This lesma implies that vith an incorrect model the objects of our

estimation are pseudo true parameter values. To put it differently,

what we ordinarily caxl the true pa^-ameter values are the parameter

values that minimize the di^tc-rce between the true unknown distribution

and the postulated parametric model, where the distance is measured

by the KLIC. Moreover, it should be noted that if Y 's are uncorrelated,

i.e., n = 0) I , then B and o*" are uncorrelated.
n

Along the lines of tne previouo section, one can

measure the loss incurred by .ic-ielling G(y) by F(y|e) with some

estimate 6 in place ii unkr.ov:Ti fc( by the quantity

(3.10) W(F(-|9)) = - - E„ f-^.og f(Y!e)fe],

where f(y|8) is the de^'.s'-'y function of the pseudo-true model

2
N(X3„, o I), i.e., tiie likelihood function of the model. It should

be noted that the expectation on th-^- right-hand side of ('^.10) refers

only to the argument Y of the density function.
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Let?jna 3.3 :

The loss incurred by modelling the c-- rtribution of Y by F(y|6) with an

estimated value 8 substituLad for 8 is evaluated as

2

(3.11) K(F(-|e)) = log (lir) + log (a') + (—; + -~ [j X{& - B) j|^
CT na"

where
jj

•
{j is the Euclidear norai.

The proof is given in the Appendix.

In this section we adhere to the sampling theory apnroich, and

hence we base our decision about ir.odel selection on the risk function

derived by integrating the loss functior with respect to the sampling

distribution of the astimaLe 8. Sf.nca the ML estimate 9 possesses the

nice property in Lexrana 3. "2, even when a postulated model is incorrect, we

define t]i<^ risk of postulating -i model F(y|6) by an integral of the losj

function of F(y|6) with respect to the sampling distribution of the ML

estimate e.

Theorem 3.1 : Suppose that Q = w~I and each Y. is symmetrically

distributed uith the same Vuutosi? as a ncrtoal di;-tribution, Tlien the

risk of a model F(-,0), i.e., the e:cpected value >f W(F('|8)), is

evaluated *-o order 0(-\ ~") sc

2,2 2

R(F(.|e)) = log v2ir) + log (0^1 -h 1 + —^ ('^) - ~ (~) + 0(n"^,

2
The proof is given in the Ap;-iendix. It should be noted that a^ increases

with the addition of explanatory var'.ables, i.e., the increase of k.

To develop a practlc^il and use-ful crit.jiion for model

identification, the risk function involving linknowii parameters needs

to be somehow estimated from a given set of observations.
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Theorem 3.2 : Suppose tha; an asymptotically unbiased estincite, say

"2 2
u) , for CO is obtained from samo. source available a p rioi I and 3 1 is

Statistically indepeadei,L of o". Then

2"2 "2

(3.13) BIC (F(-Ie;) --= -2 log £ v'-;^0 + 2(k + 2){T~) - '(%)
a o

is an asymptotically xir.bltvsed HStl.n.ita of nR(F('ie)).

The proof is given in the A^'^endix. If we eqiictt i w' to o ,

the BXC is ideiitictl with the AIC. As was pointed out in tiie preceding

section, the AIC is based on the j:;3umptlon that the true Jistributior;

belajigs to the family of discributior.s specified by a pojj.ulated model;

2 2
namely, fr is equat'^.d to * in Ihe. process ot deriving t] e AIC.

The variance ratlt> lo /o^ increases with succestlve addition

of explanatory varxd^lcs, aud possilly it approache". nae. I^-s

reciprocal a /o) (>^ 1) may be interpreted as a discounting' factor for

the penalty that hen to ba paid for increasing the nuinat i of

paramaterj;. Therefore, when ve c<. jrare two regression mi aels, cae

with less explanatory variables ard poorei fit, the t-the-i

with noTc e-ralan?cory variables and better fit, the BXC As more

favorabli^- to the more parslr-unious mode] than the AIC. Vhe following

numerical evaluations show that the difference betwiien the two critar'.-j

is far from negligible.

Let us dftveloo a decijion rule to choose onsi f -cm tvo

alternative regres5?ion mode] s

F,: Y 'v N(X^tJ, . a,^I )

1 1 1- i n

F.: Y ^ -a^^e^ + V2' ^/^.>
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where X, and X. are respectively n x p and n x q matrices of kno\TO

constants, 3, and 0_ are respectively p x 1 and q x 1 vectors of

2 2
vmknown parameters, rnd a and o' are positive unknowns. The true

2
distribution is assumed to be N(vi, w I ) . In practice, we cannot

n
2

expect to obtain an estiinate for co from some Independent source.

Therefore, assuming that the more complicated model F_ is nearly

~ 2 2 '2
true, we substitute the ML et^timate a

'' of c„ for to in (3.13). Our

decision rule Is described as follows: we choose F^ if BIC (F ) <

BIC (F„) and vice versa .

It is straightforward to show that the decision rule based

on the BIC is equivalent to a decision based on the magnitude of the

F-statistic that is customarily used to test the null-hypothesis

3=0. That is, we decide to clioose F if an observed value of the

F-statistic falls below a critical point determined by the inequality,

BIC (F ) < BIC (Fj) and choose F- otherwise. The critical point

varies depending on n, p, and q.

Confining ourselves to the case when q = 1, we tabulate the

critical points implied by ^he minimum BIC principle, say MBIC critical

points, in Table 3.1. Since the t-statistic Is more familiar to us

than the F-statistic in the case of q = 1, these critical values refer to

the t-statistic. We decide to choose F if the observed value of

the t-statistic, the ML estimate of p- divided by its estimated

standard deviation, falls below a critical point read from the table,

and vice versa .

To examine how much the MBIC procedure differs from the

MA.IC procedure, the critical points implied by the AIC are also

tabulated in Table 3.2. Both of these approach, although very slowly,





v2 asymptotically. We note a reiaarkable difference, namely that the

MAIC critical point approaches /2 from below whereas the MBIC approaches

from above. Moreover, as the number of variables already included

increases, i.e., as p becomes larger, the MBIC procedure increasingly

discriminates against the inclusion of additional variables ^ whereas

the converse is true for MAIC.

To see a connexion b^^.tween our procedure and the preliminary

t-test, for some cliosen cases, we tabulate the level of significance,

i.e., the probability that |tj exceeds the critical point when F is

true. Roughly speaking, for moderate values of p, the significance

level for the MAIC procedure varies over the wide range from 30% to 16%

as the number of degrees of freedom Increases; on the other hand, for

the MBIC procedure, it varies over a relatively narrow range from 10%

to 16%. Both procedures share a common property in their more generous

attitude toward inclusion of additional variables than the traditional

preliminary test with the significance level 5% or 10%. It should be

noted, however, that these two asjinptotically equivalent procedures

will very often lead us to different decisions for small samples.

Based on tne minimax regret principle with the squared error

of prediction as a loss function, Sax^a and Hiromatsu [ 6] calculated the

optimal significance point for the preliminary t-test. Their minimax

regret significance points are quite insensitive to the change in the

number of degrees of freedom. That is, iu remains constant at 1.37 to

two decimal places, unless the number of degrees of freedom is extremely

small, say less than 10. Indeed it is difficult to establish a clear-cut

connection between the two basically different approaches, but it would
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be worth noting that if a loss function is specified in terms of the

prediction error, the more prodigal model Is likely to be preferred.

We often encounter a situation where we have to choose one

of two unnested alternatives:

Y 'v. N (X.,B. , o't^I ) and Y ^ N (X„g,, oj^lj,illn 2/in
2

where the true distribution of Y is N (u, lo I ) . In this kind of
n

2
situation the unknown true variance u may be reasonably estimated from

a regression of y on all the explanatory variables X- fX^- Another

2
reasonable estimate of w may be the smallest value of "unbiased"

estimates of variances for all possible regressions of y on a subset

of X^ t X^.

2
The difficulty in estimating w does admittedly place a

serious limitation to the practical usefulness of the MBIC procedure.

However, it should be noted that the same difficulty is shared by

Mallow's [ 4] procedure which is based on what he calls C statistic.^
P

Incidentally, Mallow's procedure gives a decision rule essentially

similar to the AIC. It is also v7orth noting that according to Akaike's

procedure uj is estimated by a,'^ when we evaluate the AIC for the model

" 2
F^ and by a„ when we evaluate the AIC for the model F- . This means

that, given a class of nested alternative models, the AIC for each

model is evaluated assuming it is true. On the other hand, the BIC

for each model is evaluated assumJ.ng chat the most complex model within

the class vxould be true.
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Table 3.1

MBIC Critical Points for the Preliminary t-Test

10

10

12

14

16

18

20

25

30

50

100

200

500

1000

1.525

1.500

1.484

1.473

1.465

1.458

1.448

1.442

1.430

1.442

1.418

1.416

1.415

1.646

1.591

1.557

1.533

1.516

1.504

1.482

1.469

1.445

1.429

1.421

1.417

1.416

1.816

1.715

1.652

1.610

1.580

1.558

1.522

1.500

1.462

1.437

1.425

1.419

1.416

2.036

1.882

1.778

1.709

1.660

1.625

1.568

1.536

1.480

1.445

1.429

1.420

1.417

2.264 —

2.092 -

1.943 2.678

1.836 2.758

1.761 2.665

1.707 2.494

1.624 2.192

1.576 1.912

1.449 1.625

1.453 1.499

1.433 1.453

1.421 1.429

1.418 1.421

n is the sample size and p^ is the number of the explanatory variables

already included in the model. The decision rule is described as follows:

if the t-value for an optimal variable exceeds the MBIC critical point, we

decide to augment the model by the optimal variable, and vice versa . Note
that the MBIC critical point approaches slowly to fl as n tends to infinity

for every p.
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Table 3.2

MIC Critical Points for the Preliminary t-Test

10

10 1.331 1.245 1.153 1.052 .941 -

12 1.346 1.278 1.205 1.127 1.04 3 .426

14 1.357 1.300 1.239 1.176 1.108 .679

16 1.365 1.316 1.264 1.210 1.154 .816

18 1.371 1.328 1.283 1.236 1.188 .907

20 1.376 1.337 1.297 1.256 1.213 .973

25 1.384 1.354 1.323 1.291 1.258 1.000

30 1.389 1.364 1.339 1.313 1.286 1.144

50 1.400 1.385 1.370 1.355 1.340 1,262

100 1.407 1.400 1.393 1.385 1.378 1.341

200 1.411 1.407 1.404 1.400 1.396 1.378

500 1.413 1.411 1.410 1.409 1.407 1.400

li)00 1.414 1.413 1.412 1.411 1.411 1.407

/
n is the sample size and p is the number of the explanatory variables

P already included in the model. The decision rule is described as follows: if

the t-value for an optional variable exceeds the MAIC critical point, \ie decide

to augmfent the model by the optional variable, and vice versa . Note that the

flAIC critical point approaches slov/ly to \^ as n tends to infinity for every p.
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Table 3.3 Significance Levels Implied by the BIC Procedure

nP 1 2 3 4 5

10 .1658 .1438 .1193 .0974 .0863

12 .1645 .1461 .1247 .1019 .0814

14 .1636 .1478 .1295 .1091 .0879

16 .1629 .1492 .1334 .1155 .0962

18 .1625 .1503 .1364 .1208 .1037

20 .1621 .1509 .1388 .1250 .1099

25 .1611 .1525 .1430 .1326 .1209

30 . 1604 .1534 .1457 .1371 .1281

50 .1592 .1551 .1505 .1458 .1544

oo .1574 .1574 .1574 .1574 .1574

Table 3.4 Significance Levels Implied by the AIC Procedure

nP 1 2 3 4 5

10 .2199 .2532 .2928 .3410 .4000

12 .2080 .2332 .2626 .2969 .3371

14 .1998 .2202 .2436 .2698 .3001

16 .1938 .2109 .2302 .2516 .2753

18 .1893 ,2040 .2203 .2383 .2578

20 .1857 .1988 .2130 .2283 .2452

25 .1796 . 1895 .2001 .2114 .2236

30 .1758 .1838 .1922 .2011 .2107

50 .1679 .1726 .1773 .1822 .1871

00 .1574 .1574 .1574 .1574 .1574
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4. Bayesian Decision Rule

In this section we looV at the problem another v/ay, from the

Bayesian point of view. Given a model F(«|e) coupled with a prior

distribution P(e) we define the Bayes risk, say B(e|F), for an estimate

e by the expectation of the loss function (3.10) with respect to the

posterior distribution, that is,

(4.1) B(e|F) = / W(F(.|e)) dP(ely)

where P(9|y) is the posterior distribution for 6 given an observation

y. If there exists an estimate G such that

(4.2) B(e*iF) = min B(e|F)

then it is called the Bayes estimate of 9. Recalling that W(F('|6))

measures the discrepancy of a model F('J9) from the true distribution

G(')» we take B(6 JF) as a measure of the adequacy of a model F('|e)

associated with a prior distribution P(9). That is, along the lines of

previous sections, if v^e compare two alternative models, say, F (-Is)

with P, (e) and 7^i-\^) with Pp(?), then we decide to choose F^ or F.

according to whether or not B(e jF ) < 3(5 ]F^).

In what follows let us be specific to a linear normal regres-

sion model for a vector random variable Y:

(4.3) F: Y ^u N (X8, ff^I )n

where Y is n x 1, x is n x k, 3 is k x 1, and u is n x 1; the true





- 20 -

2 2
distribution of y is N(u, w 1 ) is»ith unknowns ]i and to . If we assume

2
a diffuse prior for 8 and a , the minimum attainable Bayes risk is

evaluated as follows:

Lenima 4.1 . Given a model F with a diffuse prior, the minimum attainable

Bayes risk is

(4.4) B(B*, a^*|r) = -
I log f (y|3, a^) + log (^ ^ ^ ^ ^)

.

" '7 2 ~* ~2*
where 3 and o" are the ML estimates for |3 and o , 6 and a are the

Bayes estimates, and f is the density function of

N(X6, ohJ.
Let us make a comparison of two nested alternatives F^ and F^

given in (3.14). The Bayes decision rule, based on the magnitude of the

minimum attainable Bayes risk, leads us to the following decision rule

which is again described in terms of a familiar F-statistic.

Theorem 4.1 . A decision rule based on the rainimiam attainable Bayes risk

is equivalent to: choose F if

(4 5) w < 2(n - l)(n - p - q)^""'^^
(n + p)(n - p - q - 2)

choose F- otherwise, vihere

"2 "2
(n - p - q) (o - a, )

(4.6) W- :r-7r^ ^~

is a F-statistic conventionally employed to test the hypothesis that

^2 = 0.

The proof is given in the Appendix.
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We call the right-hand side of (4.5) the Bayes critical point
,

which tends to 2 asyniptotically, increases with q, and decreases with p

if n is moderately large. Limiting ourselves to the case of q = 1,

we tabulate the numerical values of the square root of the Bayes

critical point in Table 4.1 which is comparable to Tables 3.1 and 3.2.

Table 4.1

Bayes Critical Points for the Preliminary t-Test

"\ 1 2 3 4 5

10 1.477 1.449 1.441 1.464 1.549
12 1.454 1.421 1.398 1.387 1.393
14 1.442 1.409 1.383 1.363 1.351
16 1.435 1,403 1.376 1.354 1.336
18 1.430 l.AOl 1.374 1.351 1.332
20 1.427 1.399 1.374 1.352 1.332
25 1.422 1.398 1.376 1.356 1.337
30 1.419 1.399 1.380 1.362 1.345
50 1.416 1.403 L.390 1.378 1.366

100 1.415 1.403 1.401 1.395 1.388
200 1.414 1.411 1.407 1.404 1.401

1000 1.414 1.414 1.41'-'. 1.412 1.411

It is interesting to note that the Bayes critical point varies

quite little according to the changes in the values of n and p. Also,

it is very close to the minimax regret critical point in Sawa and

Hiromatsu [6]

.
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5. Bias of Decision Rules

Now we return to Section 3 and reconsider the problem from the

viewpoint of sampling theory. When we compare the two nested

alternative models given in (3.14), our decision rule should be in

principle based on the risk function given in Theorem 3.1. That is, we

should choose F if R(F ('Is )) < R(F^('|e )) and vice versa .

2 2 -1
Lemma 5.1 If S - a ~

<^o
= (n ), then

2

(5.1) R(F^(.|e^)) -R(F2(-|e2)) =-^--^+0 (n"^) .

o^ na^

The proof is given in the Appendix. It should be recalled that when

-2
we derived the BIC the terms of 0(n ) were neglected. It is,

therefore, consistent that we evaluate the difference of risk only to

order 0(n ). The difference between the pseudo-variances, 6, is

assumed to be 0(n ) . This assumption may seem to be somewhat

uncomfortable. However, it may be justified by the fact that the

model discrimination procedure v7ouid be unnecessary unless the difference

between the two alternatives is as small as the reciprocal of the

sample size.

Hence we can legitimately define a correct decision rule as

2
follows: choose the model F, if nS/w < q and choose F^ if

n6 /u < q

.

Based on the preceding consideration, we introduce the

notion of unbiasedness of a decision rule: a decision rule is said to
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be unbiased if the probability of choosing F is greater than 1/2 when

2 2
nS/o) < q and less than 1/2 when n6/(,j > q. If the probability decreases

2
continuously with the Increase of n6/u , the condition of unblasedness

is simply described as follovjs: the probability of choosing F (or F )

9 2
is 1/2 when n5/a3" = q. Note that when n6/u) = q we are indifferent to

the two alternative models. If the above probability exceeds 1/2, then

the decision rule is said to be biased toward a simpler model; If it

falls below 1/2, then the decision riile is biased toward a more complex

model

.

All decision rules considered so far are based on whether or

not an observed value of W, given by (A, 6), exceeds a constant which

2
changes with n, p, and q. Under the assumption that Y -x. N(p, to I ), W

is distributed as a doubly noncentral F with (q, n-p-q) degrees of

freedom and the noncentrality parameters

y'x,(x X,) X, V

(5.2) «i=-^
= t-~A~^ ^— and

U CO

Vi'[I - X (X,X.) X^ - X,(X X ) X ]p

(5.3) 62= ^—^-^ L__J^_i_-i £

* » _i '

where X = X - X (X X ) X X.^. It would be worth noting here that a

decision is correct if we decide to choose F when the noncentrality

parameter of the numerator is less than its degree of freedom and

vice versa .

In Table 5.1 we tabulate the probability that W exceeds the

BIC critical point when no fui^ = q, i.e., when F. and F^ are indifferent.

It can be observed from the Table that the BIC procedure is considerably

biased toward a simpler model.
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Table 5.1

Bias of the BIC Jlecision Rule

noncentrality n - IC n = 20 n = 30 n = 40 n = 50

P = 2

.0 .696 ,671 .664 .661 .659

.1 .720 .697 .690 .687 .685

.2 .742 .720 .714 .711 .709

,3 .763 .742 .736 .733 .731
.4 .781 .762 .756 ,753 .752
.5 .798 .780 .774 .772 .770
.6 .814 .797 .791 .789 .788

.7 .829 .812 .807 .805 .803

.8 .842 .827 .822 .820 .818

.9 .854 .840 .835 .833 .832
.1.0 .866 .852 .848 .846 .844

.0 .738 .689 .675 .669 .666

.1 .760 .715 .701 .695 .692

.2 .781 ,738 .725 .719 .715

.3 .800 .759 .747 .741 ,737

.4 .817 .779 .767 .761 .758

.5 .833 .797 .785 .779 .776

.6 .848 .813 .802 .796 .793

.7 .861 .828 .817 .812 .809

.8 ,873 .842 .832 .827 .824

.9 .884 .855 .845 .840 .837

1.0 .894 .866 .857 .852 .850

P = 3

Each entry in the table is the i^robability that a doubly non-central F

variate, with noncentrality parameters (6 , 6 ) and (1, n - p ~ 1)

degrees of freedom, falls below the BIC critical point when v5, = 1. The

noncentrality is 6 / (n - p - 1) , i.e., the normalized noncentrality

parameter of the denominator in F, where 6^ is given by (5.3).
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Appendix

Proof of Lemma 3.1

The log likelihood function is

(A.l) log f(y|e) = - ^ log (2Tr) - | log {a')

--^ I!y-x3||^
2a

2
where 6' = (6', c ) and

|]
•

1| stands for an Euclidean norm.

2
Differentiating it with respect to 3 and o , we have

(A.2) ia£|-|(ylei=i_x'(y-x3).

(A.3) l_l£^|(ziil = _ n ^ _1
,, ^ _ ^^ ,j2_

8 a 2a 2a

Then

(A.4) n^^f-^-} -^n^-m
a

(A.5) E[^-i5£-f|li^] . - -H^ + 1 E
II
Y - X3 f

3 a 2a 2a

2a 2a

(E
II
Y - p II

+ p - X8 I )

= - ~ + --r (tr il +
II M - X6 11^).

2a 2a

Equating (A.4) and (A.5) tc zeroes and solving them yields the

2pseudo-true parameter values S and a given, respectively, by (3.3)

and (3.4).
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Proof of Lemma 3.2

(A. 6) E(3) = (X'X) h'v = 6q

(A. 7) Eiah = - trPyCvip' + w^I )n A n

n - k 2,1 ,-

n n A

where P.. = I - X(X'X)''"'"X' . Then
X

(A. 8) lim E(a^) = lim o^^

Proof of Lemma 3.3

From (A-1) we have

(A. 9) - ~ log f(Yl9) = log (2tt) + log a^ + -~ \\ Y - xl \\^

no'"

where Y is a vector random variable independent of 9. Taking expectation

of (A. 9) and substituting

(A. 10) E[|I Y - XP |1-|.6] = Ei! Y - X3^ \\^ - 2 E[(Y - XB^) "XCS - 3^) ]

2

= noQ- +
!i
X(3 -

3(3 II

therein, we obtain (3.11).

-f
II
X(S - 3q)

na^^ - 2y'Pj.X(3 - 3q) +
||
X(0 - 3^) Ij^

2 ,. " ,,">

Proof of Theorem 3.1

The risk function is
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(A. 11) R(F(-!e)) = E[V7(F(.ie))]

^
2 2

= log (271) + log (a ) + E[log (2^)1 + E(^)
a a

+ -^2 E(^) E||x(e - 6) ir
na c

"2
where use is made of the independence of a and S, and the suffix of

2
a^ and S^ is dropped. We have the following power series expansions:

(A. 12) log (^) = log (1 + A) = A -
Y A + •••

G

2

(A. 13) ^ = j~j = 1 _ A + A^ + •••

a

where

^2 2

(A.IA) A = ^
2

"

a

Note that under the assumptions stated in the Theorem the expectations

_2
of higher order terms in the expansions are of order 0(n ).

(A. 15) A = -^ [Y'F^Y - nu;^ - y'P,,y]

na

1
2

T t^'V^ 2^'V^ -^
na o

X'jhere V = Y - y. Under the assumptions in the Theorem

(A. 16) E(V'P--V) = u^trP-^ = (n - k)u)^

(A. 17) E(V'P V)2 = J'[(tr?^-)^ + 2trP^]

= [(n - k)2 + 2(n - k)]J

(A. 18) E(p'P^V) = E[V'P^Vy'P^V] =
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(A. 19) £(y'P V)^ = Jm'Fu = nJi</ - o)")

Hence, rearranging the terms, we obtain

(A. 20) E(A) = - - fe ,
V. /

c

2 2 2

(A. 21) E(A^) = - {—) - - (^) + 0(n~^).
n z n /

a

Also, we have

(A. 22) Ell X(6 - 3) li^ = e|| X(X'X)~-^X'V [1^= w^trX(X'X)"^X'

= kw

Therefore,

2 2 _
(A. 23) E[log (?j)] + E (^) = 1 + J E(A^) + 0(n ^)

2,22
= 1 +- (^) -i (\) + 0(n-2)

n 2 n 2
a

(A. 24) E (^) E|| X(6 - e) ii^'
= kw^ + 0(n"^)

a

Substituting (A. 23) and (A. 24) into (A. 11), we finally obtain (3.12)

Proof of Theorem 3.2

From (A. 12), (A. 20) and (A, 21)

(A. 25) E (log a^) = log a" 4- E(A) - | E (A^)

2 2 2 2

log a (-:r) (-5-) + - i—:^) + 0(n )
n <i n z n z

a a a

Moreover, we have

"2 2 a^^ 2

(A. 26) E(%) = ^ E (^) =^ (1 + 0(n~^-))
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and

^2 2 4 a./ "4 _

(A. 27) E(^) = ~ E(^) =^(l+0(n^)
o a a" a

Noting that

(A. 28) -2 log f(y|e) = n log (2v) + n log a"^ + 1

and combining the above expectations, ve obtain

(A.29) nE [BIC(F(- je))] =nR(F(.J9)) + 0(n""^).

Proof of Lemma 4.1

2
If we assume a linear normal regression model Y '^' N(Xg, I)

2
with diffuse prior for P and o , the conditional posterior distribu-

7 " -i '
. -1 ,

tion of .8, given a", is N (B, c (X'X) ) where 3 = (X'X) X'y is the

maximum likelihood estimate, and also the marginal prior distribution

2
for a is the inverse gamma distribution with the density function

o 2 v/2
,

2
/A nns 2 /VS . 1 , vs .

^^•^°^ rTW2T ^-y) --^i ^^ ( - TT^
a 2a

o »

2

where v = n - k and s"^ = no / (n - k) , The proof is given by Zellner

[8 ]. The conditional expectation of j| X(e - B) || with respect to the

posterior distribution is

(A. 31) E^|y^^
II
X(S - 3) 11^ = E^i^^^ 11 X(P - hf +

II
X(B - 6) H^

= ka2

where the lower bound is attainable v/hen B - B; i.e., the Bayes estimate

3 of 6 is nothing but the ML estimate. A straightforward integration
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yields

iK -JON f (J^\ - V 2 n - k 2
(A. 32) E „ (a )

= s = s
l\ v-2 n-k-2

CT
I y

as long as V > 2 . Hence

2

(A.33) E „ [W(F(- |e))] > log (2tt) + log a^ + " ;^
^"-

(1 + -) %Q^^!„ ~ n-k-2 n2
3, a jy o

2 ~2
The Bayes estimate of a is a that rainimi:;es the right-hand side of the

ahove inequality; i.e.

fK o/N "*2 n + k "2
(A. 34) a =

\
r- a

n - K - z

"2 2
where a is the ML estimate of a . Substituting this into the right-hand

side of (A.33), the minimum attainable Bayes risk is evaluated as

follows:

(A. 35) B(g , a*^|F) = log l-\ + log cr"^ + 1

"2 n 4- k= log 2tt + log cr'' + 1 + log (
-. t)

n - k — /J

f logf(y!9)H-log(-^-±-^-2)

Proof of Theorem 4.1

Let B^ and B„ be the rciniraum attainable Bayes risks, respectively, for

F and F„ with diffuse prior for parameters. The difference between

B^ and B„ is

" 2
a

(A.36, 3, - B, . lo. (.ij, * 10, [f-: ^'^"„,(/.-,^-,f
1

"2

If this is negative, we should choose F^ , and vice versa . By the

monotonicity of the logarithm transformation, E - B„ < is

equivalent to
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"2
cr.

^2

(A.37) 4 < (n + P + q)(n - p -
2,^

2 (n + p)(n - p - q - 2)
'2

which is again equivalent to (4.5).

Proof of Lemma 5 .

1

2

(A. 38) R(F^(-|e)) - RCF^r-le)) = log (-^) +£-^^ (-I- _ .-i_-) ^,2

^2" "" ^2 ^i'

2
q w" ,1,1 1 - 4 , . , -2.

-n— -^n^-4 --T^ (. +0(n )

"2 ^2 ^1

If we assume that

(A. 39) 5 = a^^ - a^^ = 0(n~^),

we have an expansion

2

(A. 40) log(-^) = log (1 +^) = -^2 + 0(n~^)-

Also, it follows that the second and third terms on the right-hand side

of (\.38 ) are of order 0(n ") . Hence., if we neglect the teruis of order

0(n "), we can assert that R(F ('IG)) < R(F (-je)) if and only if

(A. 41) ^ < q

and vice versa

.
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