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PREFACE.

This book has been written as a companion volume to my
Treatise on the Differential Calculus, and in its construction

I have endeavoured to carry out the same general plan on

which that book was composed. I have, accordingly, studied

simplicity so far as was consistent with rigour of demonstra-

tion, and have tried to make the subject as attractive to the

beginner as the nature of the Calculus would permit.

I have, as far as possible, confined my attention to the

general principles of Integration, and have endeavoured to

arrange the successive portions of the subject in the order

best suited for the Student.

I have paid considerable attention to the geometrical ap-

plications of the Calculus, and have introduced a number of the

leading fundamental properties of the more important curves

and surfaces, so far as they are connected with the Integral

Calculus. This has led me to give many remarkable results,

such as Steiner's general theorems on the connexion of pedals

and roulettes, Amsler's Planimeter, Kempe's theorem,

Landen's theorems on the rectification of the hyperbola,

Gtenocchi's theorem on the rectification of the Cartesian oval,

and others which have not been usually included in text-

books on the Integral Calculus.

A Chapter has been devoted to the discussion of Integrals

of Inertia. For the methods adopted, and a great part of the

|w?,0rj1 52



vi Preface.

details in this Chapter, I am indebted to the kindness of Pro-

fessor Townsend. My friend, Professor Crofton, ofWoolwich,
has laid me under very deep obligations by contributing a

Chapter on Mean Yalue and Probability. I am glad to be

able to lay this Chapter before the Student, as an introduc-

tion to this branch of the subject by a Mathematician whose

original and admirable Papers, in the Philosophical Transac-

tions, 1868-69, and elsewhere, have so largely contributed to

the recent extension of this important application of the

Integral Calculus.

In this Edition a short Chapter on Multiple Integration

has been introduced, which I hope will be found a useful

addition to the Book.

Trinity College,

April, 1884.
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INTEGKAL CALCULUS

CHAPTEE I.

ELEMENTARY FORMS OF INTEGRATION.

i. Integration.—The Integral Calculus is the inverse of

the Differential. In the more simple case to which this

treatise is principally limited, the object of the Integral
Calculus is to find a function of a single variable when its

differential is known.

Let the differential be represented by F (x) dx, then the

function whose differential is F(x) dx is called its integral, and
is represented by the notation

\F(x)dx.

Thus, since in the notation of the Differential Calculus we
have

df(x)=f(x)dx,

the integral of f'(x) dx is denoted by f(x) ; i.e.

j/(*)<fc
-/(*),

Moreover, as f{x) and f{x) + C (where C is any arbitrary

quantity that does not vary with x) have the same differen-

tial, it follows, that to find the general form of the integral of

f'{x) dx it is necessary to add an arbitrary constant to f(x) ;

hence we obtain, as the general expression for the integral
in question,

f/» <&=/(*) + 0. (i)

[1]



2 Elementary Forms of Integration.

In the subsequent integrals the constant C will be omitted,
as it can always be supplied when necessary. In the appli-
cations of the Integral Calculus the value of the constant is

determined in each case by the data of the problem, as will be
more fully explained subsequently.

The process of finding the primitive function or the inte-

gral of any given differential is called integration.
The expression F(x) dx under the sign of integration is

called an element of the integral ;
it is also, in the limit, the

increment of the primitive function when x is changed into

x + dx (Diff. Calc, Art. 7) ; accordingly, the process of inte-

gration may be regarded as the finding the sum* of an infinite

number of such elements.

We shall postpone the consideration of Integration from
this point of view, and shall commence with the treatment of

Integration regarded as being the inverse of Differentiation.

2. Elementary Integrals.—A very slight acquaint-
ance with the Differential Calculus will at once suggest the

integrals of many differentials. We commence with the

simplest cases, an arbitrary constant being in all cases under-

stood.'

On referring to the elementary forms of differentiation

established in Chapter I. Diff. Calc. we may write down at

once the following integrals :
—

f m j ^ fl

[dx - 1

xm dx m .
— = (a)

J m + 1 )x
m (m -

i)x
m~l v '

(J
=
log(*). (4)

f . , cosmx C _ sin mx
sin mxdx =

, cos mx dx =
. (c)

J m J m w

—
j- = tan x, -r-^- = - cot x. (d)

J co§
2
a; J sm2 # x '

* It was in this aspect that the process of integration was treated hy Leib-

nitz, the symbol of integration J being regarded as the initial letter of the word

sum, in the same way as the symbol of differentiation d is the initial letter in

the word difference.



Fundamental Forms,

These, together with two or three additional forms which
shall be afterwards supplied, are called the fundamental* or

elementary integrals, to which all other forms,f that admit
of integration in a finite number of terms, are ultimately re-

ducible.

Many integrals are immediately reducible to one or other

of these forms : a few simple examples are given for exercise.

Examples.

dx i

Ans. .

Cdx

x

f dx

, zyx.

I tana; dx. „ -log (cos a?).

xn - x dx t i[xn
- l dx f i

, ,

r xdx

I

i

sin 9<
secfl.

eaxdx. „ — ea *.

* The fundamental integrals are denoted in this chapter hy the letters a, b, c,

&c. ; the other formulae hy numerals i, 2, 3, &c.
t By integrahle forms are here understood those contained in the elementary

portion of the Integral Calculus as involving the ordinary transcendental func-
tions only, and excluding what are styled Elliptic and Hyper-Elliptic functions.

[la]
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Integration by Substitution.

sin Cm + n) x sin Cm — n) x
4. f cos mx cosnxdx. Ans. —;

— H ;
—

.

J 2 (m + ri)
2 (m

-
n)

sin (m — n) x sin (m + n)x
c. f sin mx amnxdx. ,, -. r -.

—
.J J

2(m-n) 2(m + n)

6. I . / dx. „ a sin-1 \/«2 - #*•

J \ « — x a

Multiply the numerator and denominator by y a + x.

7. j x \/x + a dx. Ans. - (x + af a (x 4- af.

8. — —
. „ —

(
(x + a)

- x
)

.

Multiply the numerator and denominator by the complementary surd

V x + a — yx.
C a + bx . bx ab' - ba

'

.
,

9. I -—— dx. Ans. — + ——— log (a + b'x).
] a + bx b b z

_ a + bx b ab' — ba'
Here ——— =

77 + tttt
a' + b'x V b' (a' + b'x)'

4. Integration toy Substitution.—The integration of

many expressions is immediately reducible to the elementary
forms in Art. 2, by the substitution of a new variable.

For example, to integrate (a + bx)
n
dx, we substitute z for

a + bx; then dz = bdx, and

(a+bx)
n dx =

\

— = - — = v-
7

'-—
.

J
v '

J b (n + 1) b (n + i)b

Again, to find

J

x2 dx

(a
+

bx)
nt

we substitute z for a + bx, as before, when the integral be-

1 f (2
-

#)
2

i

* gn
»

2a

b \{n
-
3)s^

3

(n
-

2)z
1l~2

+
(n

-
i)^"

1

)*



6 Elementary Forms of Integration.

On replacing z by a + bx the required integral can be ex-

pressed in terms of x.

The more general integral

f xm dx

(a + bx)
ni

where m is any positive integer, by a like substitution be-

comes

i C(z-a)
m dz

Expanding by the binomial theorem and integrating each

term separately the required integral can be immediately
obtained.

Again, to find

f
dx__

}x
m

(a + bx)
n'

we substitute 2 for - + b. and it becomes
x

1 Hz-b)
mHl-2 dz .

which is integrable, as before, whenever m + n is a positive
eater than unity,
for example, we have

f dx _ 1 . / x \

J x {a + bx) a °\a + bx)

integer greater than unity
Thus,

"

It may be observed that all fractional expressions in which
the numerator is the differential of the denominator can be

immediately integrated.
For we obviously have, from (b),



) a -it-

Integration of——
Examples.

sin x dx J log (a+b cos x)
Ans. s

; -.

b cos a;

-££=. „^-.(*)
4

.

J */ as _ #8 4 W
3-

>v/a
8 - #8

jlog*-.

J a? log a;*

f s2 <&
5 *

J (a + h*W

log:

i

6. f_^_
(a + bxY

xdx

»
2 (log*)

2
-



8 Integration of
a + zbx + ex2

'

In like manner, since

i i

(x-a){x-(3) a-P\x-a x -
/3j'

, [ dx i . x - a
we have

j 7 r—-^ =
log 3. 6)

J (a-
-

a) (x
-

|3) a -
j3

& x -
)3

w

Examples.

C dx t . <r - 3
1. -5 . Am. -

log -.
Js2 -9 6 6

z + 3

f
<te 1 x- 3

2 '

]<*+*)(• -3)*
"

5
g ^T2-

f <fa

lo
* + 4

J #» + 9# + 20'
"

* + 5'

J * 3 2^/3 *+v"3

6. Integration of \ -.

a + zbx + ex1

This may be written in the form

cdx

(ex + b)
2 + ac-b2 '

or, substituting z for ex + b,

dz

z2 + ae- b
2

'

This is of the form (/) or (h) according as ac - b
2
is positive

or negative.

[ence, if ac > b
2 we have

dx 1
,

ex + b , v
tan r r.

' (7)+ 2bx + ex2

yaV^b2

<Jae - b
2



Integration of—-—-r—
1-—

;. 9
a + zbx + ex2

If ac < b
2
,

dx i _ . ex + b - *Jb2 - ac ,_ x

lo% : 7t^=- (
8
)a + 2bx + ex2

2 */b
2 -ac cx + b + */b

2 ae

This latter form can be also immediately obtained from (6).

In the particular case when ac = b
2

,
the value of the inte-

gral is

- i

7. Integration of

ex + b'

(p + qx) dx

a + 2bx + ex2

This can at once be written in the form

q (b + ex) dx pc -
qb dx

c a + ibx + ex2 c a + 2bx + ex2
*

The integral of the first term is evidently

—
log (a + 2bx + ex2

),

while the integral of the second is obtained by the preceding
Article.

For example, let it be proposed to integrate

(x cos -
i)dx

x2 -2xcos9+ 1"

The expression becomes in this case

cos (x
- cos 6) dx sin2 Odx

x2 - 2x cos + 1 (x
- cos 0)

2 + sin
2 6

9

hence

((x
cos 6 -

1) dx cos 9 ,

-3 5 = log (x
2 - 2X COS 6 + I)X2 - 2X COS B + I 2

& V '

• a l 1
x - cos

/ \-sin& tan-1—
. - . (o)

sin v
v '



10 Elementary Forms of Integration.

When the roots of a + 2bx + ex2
are real, it will he found

simpler to integrate the expression by its decomposition into

partial fractions. A general discussion of this method will

be given in the next chapter.

Examples.

I r. Ana. —yz tair1
[
——

) .

J i + * + *« ,/j \ ty l
J

I STMTS' - tan-1(, + 2
).

4* + 5

f dx r i^ + a

5 '

J 5** +4*+ 8*
" 6

tan "e
-

*

f x2 dx i . / 1 + «3\

8.
(
^—-. „ W(2*-i).

J I - 2X + 2X*

8. Exponential Value for sin and cos 0.—By com-

paring the fundamental formulae (/) and (h) the well-known

exponential forms for sin and cos can he immediately

deduced, as follows :

Substitute z */- i for # in both sides of the equation

and we get

f dz _J , /i +s v/:~i\ ,

= 7= log [ 7=r + C0WS£./



Exponential Forms of sin 9 and cos 6> 11

or, by (/), tan" 1
z = '_ iog

I
* * *

_J
J
+ const.

Now, let z = tan 0, and this becomes

„ i
, (\ + V7"- i tan0\

=—
7=. Jog I =: + const.

2*/- i \i - v- i tan 0/

When 6 =
o, this reduces to o - cowstf.

xt .«r; cos + a/- i sin
,

. /
—

. „. ,

Hence e
2^-1 =

;

— =
(cos + V- i sin 0)

2

,

cos 6 - v - i sin 6

or e^ = cos + */- i sin 0,

e-H-i = Cos - v^- i sin 0.

dx
g. Integration of

*/x" ± a2

Assume* ^/x
% ± a2 = z -

x,

then we get ± a2 = s
2 -

2xz,

hence (2
-

x) dz = zdx. or = —
;'

Z - X z

f
dx rjz•

J7^T^
=
Ji

=
log ^

= log(^ +^2±a2) - w

This is to be regarded as another fundamental form.

By aid of this and of form (e) it is evident that all ex-

pressions of the shape

dx

*/a + zbx + ex
2

* The student will better understand the propriety of this assumption after

reading a subsequent chapter, in which a general transformation, of which the

above is a particular case, will be given.



12 Elementary Forms of Integration,

can be immediately integrated ; a, b, c, being any constants,

positive or negative.
The preceding integration evidently depends on formula

(t), or (e), according as the coefficient of x2
is positive or

negative.

Thus, we have

, . ;

=
~~r log (

ex + b + yTCa + zbx + ex2
) , (10)

)y/a+2bx + cx2 */c \ 7

r dx i . ,
/ ex - b \ , x= — sm-1

], (il)

J *fa + zbx - ex 1

*/c \^/ac + bv

c being regarded as positive in both integrals.
When the factors in the quadratic a + ibx + ex2 are real,

and given, the preceding integral can be exhibited in a

simpler form by the method of the two next Articles.

dx
10. Integration of

v/(«-a)(«-^)

Assume x - a = s
2
,

then dx = 2zd%
;

dx
= 2dz

;

hence

^/x - a

dx

*/(x-a)(x-$) ^/3
2 + a-j3

,

dx f dz

yo^oF3 ^)

~ 2

J yz*+ a -p

= 2 log (* + V? + a -
0), by (t),

or
f dx /bfa-a^-ar 210^-^^7^ (I2)



Exponential Forms of sin 9 and cos 6. 13

dx
ii. Integration of

\/>-a)(j3-a?)

As before, assume x - a = z
2
,
and we get

dx idz

V(x -
a) (j3

-
X) V$-a- s

2
'

Hence, by (e),

dx . \x - a—T = 2 sm J73 •

W(x-a)(P-x) VP-a

Otherwise, thus :

assume x = a cos2 + j5 sin
2

0,

then
/3

- x =
(j3

-
a) cos

2

0, a?
- a =

(j3
-

a) sin
2

0,

and dfe = 2(j3
-

a) sin cos 6 dd
;

hence r — = zdO ;

13)

20=2 sin 1 /a?
- a

JA-«)(/3-^) V/3

12. Again, as in Art. 7, the expression

(p + qx) dx

va + ibx + cxz

can be transformed into

q (b + c#) dx pc -
qb dx

c ^/a + 2bx + ex* c ^/a + ibx + ex*

and is, accordingly, immediately integrable by aid of the

preceding formulae.



14 Elementary Forms of Integration.

Examples.

f
dx

\/az -
'• """J;-

5 *

J J^
—

7 rf* = vA* + «)(* + *) + («-*) log {\/x + a +• \/a; + b).

Multiply the numerator and denominator by ^/x + a.

f
dx

'

W7^x~

3 "

/ . =• » asin-iv/*-i.
J V l* - x2 - 2

4- [-7==.. „ log (2a; + 1 + 2\/l + s +&).
J v 1 + x + %•

d*
. . . 2X+

°-
1

-
,

—
. Ans. sin"1

v/i-s-x2 ^5

8. Show, as in Art. 8,. by comparing the fundamental formulae (e) and (i),

that

13. Integration of

Let x - p = -, then

+ ^/_ 1 sin = e
6**.

dx

(x
-
p)V a + ibx + ex7.

dx dz , 1 +
and x =

a? - p z z

f dx f - dz

J (x -p)*/a + 2bx + ex2
J ^/az

z + 2bz(i +pz) +c(i +pz)
2

f
dz

J yd + 20'z + c
f

z
2

'

where a' = c, b' = b + cp, c' = a + ibp + cp
2

.

The integral consequently is reducible to (10), or (11), ac-

cording as c is positive or negative.



dx

V*8 — a

dx
Integration of -.

———
. 15"

{a + ex
2

)*

Examples.

Ans. - cos"1
(
-

)

a \xj

f dx
, /a/ i + x% - i\

J x^/x* + I V * /

r dx
Jl
— X

4- I
— . Ans. —— log ( jr

— —-
1 .

J x\/ a + 2bx + ex2 *y a \a + bx + \/«y a+2bx + cx I

f dx M \ . I bx — a \
5-

—
, =• -4»*.

~tt.
sin-i

(

—
)

.

J ^V c#2 + 2## - a V" \xyac+b2 '

A f
^ ' • 1 l*\/~Z \6. -

. „
—— sm-1

I

)
.

J
(i + a;)\/i + 2^ -ic2 \/2 V 1 ^^/

7- . „ sia-i
(

—
J.

J
(i + x)*/ 1 +x-x* \(i+x)VS'

14. The transformation adopted in the last Article is one
of frequent application in Integration. It is, accordingly,

worthy of the student's notice that when we change x into

1
1 dx dz .. . _ .. 1 dx dz- we nave — =

; and, m general, 11 # = -,
—

•

2 x z
°

• z x nz

These results follow immediately from logarithmic differ-

entiation, and often furnish a clue as to when an Integration
is facilitated by such a transformation.

For example, let us take the integral

I

dx

x(a + bxn
)'

Here, the substitution of - for xn gives

1 f dz

n J az +
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The value of which is obviously

log (az + b) y
or — log(

—
)•na & v n na °\a + bxnJ

Again, to integrate

dx

x y/ax" + b

assume xn = -, and the transformed integral is

2( dz

» J </~a + bi2

This is found by (e) or (i) according as b is positive or

negative.
dx

15. Integration of -. -r..

(a + cx2

)$

Let # « - and the expression becomes

zdz

(az* + c)%

*

the integral of this is evidently

1 x
a or

a (az
2 + c)% a (a + cx2

)V

Hence -. -jr.
=
-7 nr%. (14)

J (a + as
2

)* a (a + c#2

)*

16. To find the integral of

dx

(a + ibx + ex2

)*'

This can be written in the form

c^dx

{ac
- b* + (ex + by}*'

which is reduced to the preceding on making ex + b = z.
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sm 9

Hence, we get

f dx b + ex

J {a + 2bx + cx
2

f
"

{ac- b
2

) {a + ibx + cx
2

)^'
^ 5 '

Again, if we substitute - for x,
z

xdx
becomes

(a + 2bx + cx2

)% {az
2 + 2bz + c)$

and, accordingly, we have

f xdx a + bx

J (a + 2bx + ex
2

)* {ac
- b

2

) {a + 2bx + ex2

)*

Combining these two results, we get

f {p + qx) dx bp
-
aq + (cp

-
bq) x

J {a + 2bx + ex2

)* {ac
- b

2

){a + 2bx + ex
2

)*

_ M dO
17. Integration of -—* and -„.

sm 9 cos 9

:«6)

It will be shown in a subsequent chapter that the integra-
tion of a numerous class of expressions is reducible either to

that of -—7j, or of 7, : we accordingly propose to inves-
sm 0' cos 9 & J r *

tigate their values here. For this purpose we shall first find

the integral of -r—s ^sm 9 cos 9

dO

H d9 cos
2
fl ^(tanfl) .

sin 9 cos 9 tan 9 tan 9
9

-r-Tj 7j
= log (tan 0) . (17)sm 9 cos 9 °

M
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Next, to find the integral of

dO

sin 0'

This can be written in the form

eg
. e e 9

2 sin- cos -
2 2

and, by the preceding, we have

JA:*K> <•>

Again, to determine the integral of —
^
we substitute

- -
(f)

for 0, and the expression becomes -r-^ : the integral

of this, by (
1 8), is

-
log I tan

|J,

or log (cot
^\

or log
jcot

f

^
-
-Jj

.

Accordingly, we have

fJ»-*Krf-*M;*I))- <">

This integral can also be easily obtained otherwise, as

follows :
—

f dO _ r cos OdO _ r ^(sin0)

J COS0 J cos
2

J cos2

Let sin =
x, and the integral becomes

Jdx
i . fi + x\ i . (\ + sin 0\

The student will find no difficulty in identifying this

result with that contained in (19).
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a + cos ft

18. Integration of
# + 6 cos 0'

This can be immediately written in the form

£0

(a + b) cos3 - + (a
-

b) sin
2 -

sec2- <#0
2

or

a + b + (a
-

b) tan2 -

on substituting z for tan - this beoomes

a + b + (a
-

b)z
z

Consequently, by Ex. 6, Art. 2, we get

(1) when a > b,

)7Tb^re
-

y=frp
tan_1

1 fel
tan

!j-
(
2°)

(2) when < 5, by formula (h),

r JQ j I
</b + a + </b-atfm- I

J.-TTc^-rTp^
10^ , ,—

—
ef'

{21)

*/b + a - v # - « tan -

If we assume a = b cos a, we deduce immediately from
the latter integral

f a-B
f jg

I

10
J

cos~
J cos a + cos sin a °^

] a+
cos

L 2

The integral in (20) can be transformed into

f d9 1
x
lb + a cos 0)

)a + b cos 0~ v/^~f*
C°S

(a+&cos0J*

[2 a]
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In a subsequent chapter a more general class of integrals
which depend on the preceding will be discussed.

19. Methods of Integration.—The reduction of the

integration of functions to one or other of the fundamental
formulae is usually effected by one of the following methods :

—
(1). Transformation by the introduction of a new va-

riable.

(2). Integration by parts.

(3). Integration by rationalization.

(4). Successive reduction.

(5). Decomposition into partial fractions.

Two or more of these methods can often be combined
with advantage. It may also be observed that these different

methods are not essentially distinct : thus the method of

rationalization is a case of the first method, as it is always
effected by the substitution of a new variable.

We proceed to illustrate these processes by a few ele-

mentary examples, reserving their fuller treatment for sub-

sequent consideration.

20. Integration by Transformation.—Examples of

this method have been already given in Arts. 4, 10, &c. One
or two more cases are here added.

Ex. 1. To find the integral of sin2 a; ao&xdx.

Let sin x =
y, and the transformed integral is

Jif^-W*'-J/*-{»'*-j-5--X"
surx

Ex. 2.
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Consequently the integration of an expression of the form
udv can always be made to depend on that of the expression
vdu.

The advantage of this method will be best exhibited by
applying it to a few elementary cases.

xdxn f •
, j •

. f xdx
Ex. I. em'1 xdx = a?sin_1 # -

J J <yi ~ %'

= x sin-1 # + <Si - x2
.

Ex. 2. x log xdx.

x2

Let u =
log x, v = —

,
and we get

f . . x2

\6gx i f ,<fo a?Vi x\

j

x log * dx =—-S- - -
j

^_ = -
(tog

« -
-J.

Ex. 3. e
ax xdx.

eax

Let a; p u,
— =

0, then
a

I #ea*d# = — dx= — [x .

J a ] a a \ a)

Ex. 4. I e
ax sin mx dx.

e
ax

Let sin mx = u. — = v. then
a

J
n/r . , e°* sin mx mC m
e™ sin m# dx = e

oa; cos mxdx.
a a)

. ., ,
|*

_ e°*cosm# #? f „„ .

Similarly, e°* cos mx dx = + — \eax sin w# dk.
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Substituting, and solving for J e
ax sin mxdx, we obtain

f „, . , eax (a sin mx - m cos mx) , „

e"
x sin wacfo = —i

'-. (23)
J a2 + m2 v '

In like manner we get

f „ , «"* (a cos mx + m sin w#) . .

e
ax cos *w# dx = —s = \ (24)

J a2 + m2 v ^7

Ex. 5. ^a2 + xt
dx.

Let \/a
2 + #2 =

w, then

v^tf
2 + a? dx = # \/a

2 + #2 -1 ; ;
J J yV + ?

also fy^2^ = a2 f^JL,J^=.

Hence, by addition, and dividing by 2,

\</77*dx
= "^

+ ^
+
£ log(^+ v/^T^). (25)

Ex. 6.
J

i g (^ + yx* ± a
»j
^

Here
J
i g (^ + y^jji ± a

2) ^ = x \ g (% + y/^ ±^

yV ± a2

= x log (a?
+ \/x

2 ± a2

)
- \Zx

2 ± a2
. (26)
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Expanding by the Binomial Theorem and integrating the
terms separately, the required integral can be immediately

xn dx
found. It is also evident that the expression can

(a + bx)t
be integrated by a similar substitution.

q$m+i fa
23. Integration of

\a + carp

where m is a positive integer.

Let a + ex7, = z
2

; then xdx = —
, x7, =

; and the
c c

transformed expression is

(z*
-

a)
m dz

This can be integrated as before. It can be easily seen

/g2m+l fa
that the expression is immediately integrable by

(a + ex2)*
the same substitution.

A considerable number of integrals will be found to be
reducible to this form : a few examples are given for illustra-

tion.

Examples.

f &** a (
l - *2)* /

1. 1
—

. Am. '- -
(1

- x2)i.

f afidx z6 2z3 , , -«

2. I ——=. „ + z
; where z = y 1 + x2.

Jyi+x* 5 3

c a?dx - {2a + $cx*)

J (a + afifi

"
3c

2
(a + cxrf'

24. It is easily seen that the more general expression

f(x
2

)
xdx

</a* + cx"

where f(x
2

)
is a rational algebraic function, can be ration-

alized by the same transformation.
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—
A
—

-j——. -?. 259
(
A + Cx2

) (a + cx2

)*

Again, if we make x = - the expression

dx

xn (a + cx2)*

transforms into

zn^dz

and is reducible to the preceding form when n is an evenposi-
tive integer.

Hence, in this case, the expression can be easily integrated

by the substitution [a + cx2

)*
= xy.

It will be subsequently seen that the integrals discussed

in this and the preceding Articles are cases of a more general
form, which is integrable by a similar transformation.

Examples.

f &x a V* - J
/ •> N

T7i—u- Am -
~—

;
—

(
2X + 0-

y/x2 -

^ (*
2
+i)* ( Q 4

,

I + x2)i'

25. Integration of

f dx

J X* (I + X

dx

2)r
"

i5x r x*
+

{A+ Cfc») (a* +«&*)*"

As in the preceding Article, let (a + cx
2

)*
=

xz, or

a + cx2 = x2
z2 : then, if we differentiate and divide by 2x, we

shall have

j ,j 7 dx dz
cdx = z2dx + xz dz. or — =

1,
xz c - z*

dx
'

(a + cx2

)* c-z2 '

and the transformed expression evidently is

(27)

(Ac'- Co)
- Az*
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This is reduoible to the fundamental formula
(ti),

or (/),

,. Ac - Ca .

according as -.— is positive or negative.

Hence, (i) if ^
> °> the integral is easily seen to be

T . (*/Aia + ex2
) + x^/Ac - Ca\ . n ,

lQg
'

i 7==F • (
28

)

2v/^ (^c
-

Ca)
&
\</A{a + ex

2

)
- x^Ac - Ca

(2). If — < o, the value of the integral is

. x^/Ca -Ac . x
tan"1

-7
—

(29)
v^-4 (

C« - Ac) *yA (a + ex2

)

Examples.

[
dx r / 52; \

2 '

J (3 + 4*<) (4 -3*2
)>'

"
77i VTT^^-J-

f <&
2. 1

2a/3 + 4*
2 + 5*

3 '

J (4 -3^(3 + 4^* M 2O l0g
2^/3T^_ 5a;

-

26. Rationalization by Trigonometrical Trans-
formation.—It can be easily seen, as in Art. 6, that the

irrational expression ^/a + zbx + ex2 can be always trans-

formed into one or other of the following shapes:

(I) («*-«•)», (2) (a* + **)!, (3)(**-a>)i;

neglecting a constant multiplier in each case.

Accordingly, any algebraic expression in x which con-

tains one, and but one, surd of a quadratic form, is capable
of being rationalized by a trigonometrical transformation :

the first of the forms, by making z = a sin
; the second, by

z = a tan ; and the third, by z = a sec 0.
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For, (i) when z = a sin 0, we have (a
2 - s2)^

= a cos 9, and

ofe = a cos 0^0.

(2). When s = a tan 0, .... (a
2 + s

2

)*
= a sec 0, and

adO

cos*
5

*/

(3). When 2 = a sec 9, .... (z
2 -

a~)*
= a tan 0, and

afe = a tan seo9d9.

A number of integrations can be performed by aid of one

or other of these transformations. In a subsequent place this

class of transformations will be again considered. For the

present we shall merely illustrate the method by a few ex-

amples.

Examples.

dxr dx

J*2
(I + s2

)i

e

J

cos dd _ c

sin2
=

J

Let x = tan 0, and the integral becomes

cos dd C d(sin 0) I \/ I

sinz sin

f <&

J
(a

3 - &f
Let a; = a sin 0, and we get

dd tanf tf0 _ tan _
J cos2

™
"a2- 7

This has heen integrated by another transformation in Art 15.

dx

1*'

Let a; = sec 0, and the integral becomes

3- f

dx

f <> „ 7„ -l / > .
sin cos

I cos* d dQ ; or, by (3) Art. 3, +

accordingly, the value of the integral in question is

\/x2 - 1

2X*
+

2
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J ('+*')*

Let x = tan 0, and we get

e"0 (a cos + sin 0)
cose^dO] or by (23), i+«2

f <fa; c« tan"
1
*

(a + x) ea tAa
~ 1'

*

Hence - = .

J (i+s2
)

3
(1 + a2)(l+s

2
)*

5. <fc sin" 1
[
——

)
.

Let = sin2 0, or x — a tan2 6, and the integral becomes
a + x

a^e rf (tan
2
0), or a $6 d (sec

2
0) : (since sec2 = I + tan2

0).

Integrating by parts, we liave

j$d (sec
2
0)
= sec2 -

J sec2 Qdd = d sec2 - tan :

hence the value of the proposed integral is

[a + x) tan"

It may be observed that the fundamental formulae
(e)

and (/) can be at once

obtained by aid of the transformations of this Article.

27. Remarks on Integration.—The student must

not, however, take for granted that whenever one or other of

the preceding transformations is applicahle, it furnishes the

simplest method of integration. "We have, in Arts. 9 and 13,

already met with integrals of the class here discussed, and
have treated them by other substitutions: all that can Be
stated is, that the method given in the preceding Article will

often be found the most simple and useful. The most suit-

able transformation in each case can only be arrived at after

considerable practice and familiarity with the results intro-

duced by such transformations.

By employing different methods we often obtain integrals
of the same expression which appear at first sight not to

agree. On examination, however, it will always be found
that they only differ by some constant

; otherwise, they could

not have the same differential.
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28. Higher Transcendental Functions.—Whenever
the expression under the radical sign contains powers of x

beyond the second, the integral cannot, unless in exceptional

cases, be reduced to any of the fundamental formulae ; and

consequently cannot be represented in finite terms of x, or of

the ordinary transcendental functions : i. e. logarithmic, ex-

ponential, trigonometrical, or circular functions. Accord-

ingly, the investigation of such integrals necessitates the

introduction of higher classes of transcendental functions.

Thus the integration of irrational functions of cc, in which
the expression under the square root is of the third or fourth

degree in x, depends on a higher class of transcendentals

called Elliptic Functions.

29. The method of integration by successive reduction is

reserved for a subsequent place. The integration of rational

fractions by the method of decomposition into partial frac-

tions will be considered in the next chapter.

30. Observations on Fundamental Forms.—From
what has been already stated, the sign of integration (J) may
be regarded in the light of a question : i. e. the meaning of

the expression j F(x) dx is the same as asking what function

of x has F(x) for its first derived. The answer to this ques-
tion can only be derived from our previous knowledge of the

differential coefficients of the different classes of functions, as

obtained by the aid of the Differential Calculus. The number
of fundamental formulae of integration must therefore, ulti-

mately, be the same as the number of independent kinds of

functions in Algebra and Trigonometry. These may be

briefly classed as follows :
—

(1). Ordinary powers and roots, such as xm
7
xq

, &c.
(2) . Exponentials, ax

, &c, and their inverse functions ;

viz., Logarithms.
(3). Trigonometric functions, sin#, tan#, &c, and their

inverse functions
;
sin"1

^, tan-1#, &c.

This classification may assist the student towards under-

standing why an expression, in order to be capable of inte-

gration in a finite form, in terms of x and the ordinary
transcendental functions, must be reducible by transforma-
tion to one or other of the fundamental formulae given in
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this chapter. He will also soon find that the classes of in-

tegrals which are so reducible are very limited, and that the

large majority of expressions can only be integrated by the

aid of infinite series.

The student must not expect to understand at once the

reason for each transformation which he finds given : as he,

however, gains familiarity with the subject he will find that

most of the elementary integrations which can be performed
group themselves under a few heads ; and that the proper
transformations are in general simple, not numerous, and

usually not difficult to arrive at. He must often be prepared
to abandon the transformations which seemed at first sight
the most suitable : such failures are not, however, to be con-

sidered as waste of time, for it is by the application of such

processes only that the student is enabled gradually to arrive

at the general principles according to which integrals may be

classified.

Many expressions will be found to admit of integration
in two or more different ways. Such modes of arriving at

the same results mutually throw light on each other, and will

be found an instructive exercise for the beginner.
31. Definite Integrals.—We now proceed to a brief

consideration of the process of integration regarded as a sum-

mation, reserving a more complete discussion for a subsequent

chapter.
If we suppose any magnitude, u, to vary continuously by-

successive increments, commencing with a value a, and termi-

nating with a value /3, its total increment is obviously repre-
sented by /3

- a. But this total increment is equal to the sum
of its partial increments

;
and this holds, however small we

consider each increment to be.

This result is denoted in the case of finite increments by
the equation

2 (Aw) = -a;
a

and in the case of infinitely small increments, by

(30)du =
(5
- a ;
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in which |3 and a are called the limits of integration : the

former being the superior and the latter the inferior limit.

Now, suppose u to be a function of another variable, x,

represented by the equation

u =f{x) :

then, if when x =
a, u becomes a, and when x = b,u becomes

j3, we have

Moreover, in the limit, we have

du =/'(#) d#,

neglecting* infinitely small quantities of the second order

(See Diff. Calc, Art. 7).

Hence, formula (30) becomes

1.
/(*) dx =/(J) -/(«) ; (31)

in which 5 and # are styled the superior and the inferior limits

of a?, respectively.

Tt should be observed that the expression f(x)dx9
re-

presents here the limit of the sum denoted by S (/'(#) A#),

when Ax is regarded as evanescent.

In the preceding we assume that each element f\x) dx is

infinitely small for all values of x between the limits of inte-

gration a and b ; and also that the limits, a and b, are both
finite.

A general investigation of these exceptional cases will be

found in a subsequent chapter : meanwhile it may be stated,

reserving these exceptions, that whenever /(#), i.e. the integral

oif'(x)dx, can be found, the value of the definite integral

I f(x) dx is obtained by substituting each limit separately

* In a subsequent chapter on Definite Integrals a rigorous demonstration
will be found of the property here assumed, namely that the sum of these

quantities of the second order becomes evanescent in the limit, and consequently
may be neglected. Compare also Art. 39, Diff. Calc.
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instead of x in /(«), and subtracting the value for the lower
limit from that for the upper.
A few easy examples are added for illustration.

i:

Examples.

x*dx. Am. .

n+ i

I BinOdd. „ i.

f° dx ir

J o a2 + *»'
"

40

it

Jsw?xdx. „ -.
o i 4

5. i m&xdx.
Jo

6. 1 . Bm2xdx.
Jo

dx

I!

Joi +

IT I

8 "4
IT

2*

ir

9. cos5 #ate. ,,
——

.

Jo 3-5
f
3 xdx 1 ,

IO- ),t& " ;
l0« 3 -

rP dx

Ja\/«-a)(j8 -*)
See Art. II.

12. I xsin*^. „ 1.

f ate t
13. 7 -, where a > b. „

J a + b cos 6' ya» _ b2

C* dx ir

Jo I - 2a cos#+ a 1
' " i-«2*
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32. Change of Limits.—It should be observed that it

is not necessary that the increment dx should be regarded as

positive, for we may regard x as decreasing by successive

stages, as well as increasing.

Accordingly we have

["/(•)
dx =/(«) -/(b)

= -
f /(*) <**. (32)

Jb J a

That is, the interchange ofthe limits is equivalent to a change

of sign of the definite integral.

Also, it is obvious that

re re rb

<j)(x)dx=\ <p(x)dx+\ <j)(x)d%;

and so on.

Again, if we assume x to be any function of a new variable

2, so that $(x)dx becomes \p(z)dz, we obviously have

r> -A. *Z

<j>(x)dx
-

^{z)dz, (33)
J#o J So

where Z and z are the values which z assumes when X and
x are substituted for x, respectively.

dx
For example, if x = a tan *, the expression

— ^ be-
(a + x )

s

comes 5
—

;
and if the limits of x be o and a. those of

a?
'

s are o and -. Consequently

f
a dx 1 f7 1

)o(a
2 + x*)t a* } a*y2

Also, if we substitute a - z for x9 we have

{a
ro ra

<j>(x)dx
= -

<p(a
-

*)<&
=

<j>(a
-

z)dz.

[3]
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Since neither x nor 2 occurs in the result, this equation

may evidently be written in the form

j <p(x)dx
=

\
<p[a

-
x)dx. (34)

Jo

For example, let
<j>(x)

= sinw#, then
<j>

I - - x
)

= cosn#, and

we have

smnxdx = coanxdx.

And, in general, for any function,

f{smx)dx =
\f{G0sx)dx. (35)

Jo Jo

33. Values of siiimx&mnxdx, and cosmxcomxdx.

Since

2 sin mx sin nx = cos (m
-

n) x
- cos (m + n) x,

and
2 cos mx cos nx = cos (m -

n) x + cos (m + w) #,

we have

f . . 7 sin (m -
n) x sin (m + 5TTa?

sm mx smnxdx =—
7 7 ; ^— ,

J 2{m -
n) 2 (m + n)

-,
f 7 sin Cm -

n) x sin (m + n) xand cosmxeosnxdx =—) f- + —^ ~
.

I 2 (m -
n) 2 (m + n)

Hence, when m and w are unequal integers, we have

sin mx sin nxdx =
o, and cos mx cos w#d# = o. (36)

"When m =
n, we have

sin
2nxdx =

1 - cos 2nx , x sm 2nx
dx =

,
2 2 4n

sin
2nxdx = -, when n is an integer.
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In like manner, with the same condition, we have

cos3 nxdx = -. (37)

Again, to find the value of

n
V {x-a) (fi-x)dx.

Assume, as in Art. 1 1, x"• a cos2 + j3 sin
2

; then, when

6 =
o, we have x = a ; and when = -, x =

|3.

Hence, as in the article referred to, we have

[ </(x-a)(p-x)dx - 2 O -
a)

2

j
W cos

2
0tf0.

it n

Also 2 fWecosWe = J
['sin'

z 6d9

j
V(« -o) (0 -*)&- 1 (0-a)

2
. (38)

[3 a]
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Examples.

(i + cos x) dx ^,11Am.
J

(i + cos x) da

(x + sin x)
3 2 (x + sin x)

2
'

2. Izsin:r<fc. „ Bin x - x cos x.

3-
Jj~j[<to.

» » log (I + *)-*.

J.

. . . . (a + &r»)
m+1

(a + bx»)
mxn-i dx. „ i— 1— .

v ' "
n(m + i)b

x2dx 2 If x'dx

J(«
8 +*3

)3
"

3(«3 + ^)r

6 '

Id+^x - "
log(tan-^

c dx . . \x + i

7- > n asin-U—--.

f 3^* I
, /**

~ " \
8 '

) ^ + ^-a ' "
9
l08 V^T7J-

9 '

Ja2 cos2 s + ^sin2 a;*
" ^ tan_1

[a
^nX

)
'

Jtanxdx
i , ,..,,

,

, . Z || —77 x
loS (« C0S * + * 8m X

)'a + b tan2 a?
"

2 {b
-

a)
'

f cos(log#)<fc .

J g
• n sin (log a).ii.

dx
12. Show that the integral of — can be obtained from that of xmdx.

"Write the integral of xmdx in the form : and, by the method of

indeterminate forms, Ex. 5, Ch. iv. Din7. Calc, it can easily be seen that the

true value of the fraction when m + 1 = o is log ( -
J

,
or log x, omitting the

arbitrary constant.

13. je
ax sin mx cos nx dx.

This is immediately reducible to the integral given in formula (23).

f dx . » f4+5tan^
14. 1 : . Ans. - tan-1 I—— /•

J 5 + 4 sin* 3 \ 3 /
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[x^^ xdx . e^^'iax- i)

15. ,—. Ans. ! '-.

J (i+*»)* (1 + a*)(i +*»)*

* f / , \u 3 (« + *) (4*
-

3«)

J 4.7

f xz dx 20 + bx2

I? '

J (a +**»)*'
" *<a+W

Let a + fo2 = z2 .

f (j» + £ cos f)<k
18. 1 .

J a + cos x

This is equivalent to

f qdx pb- qa C dx

) b b J a + b cos x'

and accordingly can be integrated by Art. 18.

f xe*

? J(TT I + x

2

C xdx

J 1 + **'

(a + te»)*"

"
3a(a + **2

)*'

s. f
^

£ lo
AA+s8 - A

J s<v/*» +1 3 \\/i +»3 + 1/

Let z3 + 1 = z2.

f ±£L £ 1
/V 1 +g»- A

J x<s/x» + 1 w
Vv/i + 3" + 1/

a + b cos

# + « cos

a + 5 cos 0*

The expression transforms into

dx

24. Integrate

by aid of the assumption x

\/(a* - P) (1
- a2)

integr

^= log (x + Sx^T), &c.

accordingly, when a > b, its integral is sin-1 a;
;
and when < £, it is

V^«2 - m
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25. Deduce Gregory's expansion for tan' 1* from formula (/).

When * < 1, we have

- - 1 - a* + s* - x* + &o. ;

1 + X'

. C dx x3 x6 x*
.: tan-1 a; = I = x +

Ji + s2 3 5 7
+ &c.

No constant is added since tan"1 x vanishes with x.

26. Deduce in a similar manner the expansions of log (1 + a;), and sin-1 x.

dd
27. Find the integral of : :

—-.
' a + b cos $ + c sin

This can be reduced to the form in Art. 18, by assuming
- = cot a, &c.

f dx
t8. —=..

{ (a + bx) */ 1 + x*

a + bx
Am. log

</cfi + b2 ib-ax + */ (a
2 + b2){i +**)}'

This can be integrated either by the method of Art. 13 or by that of Art. 23.

29. I
—

. Am. - sec"1

(
x*

J
.

J xy/xn - 1 » \ /

IT

J

4"sin a; ia;
<.

cos a;

Jo cos a;

f
2 dx

33. J </a*-x*d*.

34. I a; versin- 1
1
-

J
dx.

IT

J04+35-
5 sin a;

3«. \' ». .

Jo 5 + 4 sin a:

»>
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CHAPTER II.

INTEGRATION OF RATIONAL FRACTIONS.

34. Rational Fractions.—A fraction whose numerator
and denominator are both rational and algebraic functions of

a variable is called a rational fraction.

Let the expression in question be of the form

axm + bxm~ l + cxm~2 + &c.

dxn + b'xn
~l + cV*"2 + &c.'

in which m and n are positive integers, and a,b, . . . a\ b\ . . .

are constants.

In the first place, if the degree of the numerator be

greater than, or equal to, that of the denominator, by division

we can obtain a quotient, together with a new fraction in

which the numerator is of a lower degree than the deno-
minator : the former part can be immediately integrated by
Art. 3. The integration of the latter part in general comes
under the method of Partial Fractions.

35. Elementary Applications.—Before proceeding to

the general process of integration of rational fractions, we
propose to consider a few elementary examples, which will

lead up to, and indicate in what the general method really
consists.

We commence with the form already considered in Art. 7 ;

in which, denoting by ax and a2 the roots of the denominator,
the expression to be integrated may be represented by

Assume

(p + qx)dx

(x -a 1)(x- a 2)

p + qx A x Ai

(x
— a x ) (x

- a2) X — a\ x — a2
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Multiplying by (x
- a

x ) (x
- a2) we get

p + qx = -
(Aia2 + A2a x) + (A l + A2)x.

Hence, we get for the determination of A x and A 2 the

equations

p = - Aict2
- A 2ah q = Ai + A2 ;

whence we obtain

A - P + Va i A P + 4P*
M-i —

,
JL2

=
.

cti
— a2 a x

— a2

Consequently

C
(p + qx)dx _ p + get! f

jg jt?
+ qg2 f dx

)(x- a y) (x
- a2) ai - a2 J x - a x ai - a2 J x - a2

= ~
-\{P + Oa 1)log(x-a l)-~{p + qa2)log(x-a2)\.«1 — «2 \ J

In like manner

p + qx
2

Ay Ax

(x
2 -

ai) (x
2 - a2)

x2 -
ai x2 - a2

where A x and «4a have the same values as above ; hence

f
(p + qx

2

)
dx _ p + qa x C dx p + qa2 f dx

(x
2 -

ai) (x
2 - a2)

at
- a2 ) x

2 - ax ai
- a2 ] x

2 - a2

But each of the latter integrals is of one or other of the
fundamental forms (/) and (h) of Chapter I.

; hence the

proposed expression can be always integrated.

Again, let it be proposed to integrate an expression of

the form

(p + qx + rx2
)
dx

(x
-

ai)(x
- a2)(x- a3)'

We assume

p + qx + rx2 Ax A 2 A 3

(x
- a x) (x

- a2) (x
- a3)

X - ai X - a2 x-a*
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then clearing from fractions, and identifying both sides by
equating the coefficients of x2

,
of #, and the part independent

of x, at both sides, we obtain three equations of the first

degree in A lt A 2iA 3 ,
which can be readily solved by ordinary

algebra ; thus determining the values of A x , A 2> A3 in terms
of the given constants.

By this means we get

f (p + qx + rx2
) dx . f dx . f dx . f dx

\-

K-£~
ry r = AA + A2

\

+ A3
\

J {x
-

ai) [x
- a2) {x

- a3) J x - en J X
- a2 J x - a3

= A x log (x - en) + A2 log (x
- a 2)

+ A z log (*
- a3).

We shall illustrate these results by a few simple examples.

Examples.

••

fe^n&i"
^.

5
-iog(i-3) + iiog (, +J) .

C xdx "5 i

# — I I

Ji^r* w
;

l0g ^TT--2 tan"
Ia; -

J<?#
r

, i x—t— ^—— . „ - tan-1^ - - tan-1 -.

f xdx I a;2 - 1

J^T7- » J
los5-

6 a^-2)dx
) x4- -

3*2
- 4

4
° *2 + I

I, /z2 -2^
+ tan-1 x.

1. /*3 -2\-
log [

—
]

f(z
3 + X-l)dX r I, , , T, .

Here the denominator is equal to #(«
—

2) (**+ 3) ;
and we have

x~ + x - 1 _ -^1 -^2 -^3

*(* -
a) (* + 3) * x - 2 # + 3

'
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hence xl + x - I = A\{& + x - 6) + A 2x(x + 3) + ^3^ (*
-

2) ;

.*. the equations for determining Ax, A2 and A% are

Ai + A2 + A3 = I, -4i + 3^2 - 2^3 = fi 6 Jj = 1,

whence we get

Ax = -, ^2 = -, A 3 = -.023
f {2X

3 + 2x* + a,x + 1) dx . m . . .
8.

v

5
2 2—

. A.m. x2 + log (s
2 + x + 1).

J x' + X -^ 1

We now proceed to the consideration of the general
method, and, as it is based on the decomposition of partial

fractions, we begin with the latter process.

36. Partial Fractions.—The method of decomposition
of a fraction into its partial fractions is usually given in

treatises on Algebra ; as, however, the process is intimately
connected with the integration of a large class of expressions,
a short space is devoted to its consideration here.

For brevity, we shall denote the fraction under con-

sideration by -A-4.

Let aiy o 2, a3, . . . a» denote the roots of <p(x) ; then

<t>(x)
= (x - ax)(x

- a2)(x
-

a») . . . (x
-

a»). (1)

There are four cases to be considered, according as we
have roots, (1) real and unequal; (2) real and equal; (3)

imaginary and unequal ; (4) imaginary and equal.
We proceed to discuss each class separately

37. Real and Unequal Roots.—In this case we may
assume

P(n„\ A A A A

(*)

where AXi A2i . . . . An are independent of x. For, if the

equation be cleared from fractions by multiplying by #(#),
on equating the coefficients of like powers of x on both

sides we obtain n equations for the determination of the n
constants A lf A2) . . . An .

f(x) Ax A2 A3
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Moreover, since these equations contain Ah A2 , &c, only
in the first degree, they can always be solved : however, since

the equations are often too complicated for ready solution,

the following method is usually more expeditious :
—

The question (2), when cleared from fractions, gives

f(x)
=A x(x- a 2) (x

- a3)
. . {x

-
a„) +A 2 (x- ai) (x

- a 3)
. . (x

-
a„)

+ &c. +An (x
-

ai) (x
- a2)

. . (x
- an.i) ;

and since, by hypothesis, both sides of this equation are

identical for all values of x
} we may substitute a x for x

throughout; this gives

/(ai)
= Ai(ai

- a 2)(a 1
- a3) . . . (ai

- an),

In like manner, we have

A _ fM A _/M A _ /(«») /_.

(a2) tf> (a 3) (a„)

Hence, when all the roots are unequal, we have

Accordingly, in this case

firl * - tH log (•
-

«>) +
f
-¥k log (*

-
«•) + 4c

J0O») #'(0,)
6V '

4>'(a2)
s ^ '

+-g^ log (•-«,). (5)

The preceding investigation shows that to any root (a),
which is not a multiple root, corresponds a single term in the

integral, viz.

£g log (*-«);

•(4)
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one which can always be found, whether the remaining roots

are known or not
;
and whether they are real or imaginary.

38. Case where Numerator is of higher Degree
than Denominator.—It should also be observed that even
when the degree of x in the numerator is greater than, or

equal to, that in the denominator, the partial fraction cor-

responding to any root (a) in the denominator is still of the
form found above.

For let

m H Wf
where Q and R denote the quotient and remainder, and let

A R
be the partial fraction of —

j-r corresponding to a single

root a
; then, by multiplying by <j>(x)

and substituting a in-

stead of x, it is easily seen, as before, that we get

For, example, let it be proposed to integrate the ex-

pression

x5dx

X3 - 2X2 - $x + 6

Here the factors of the denominator are easily seen to be

x -
1, x + 2, and x -

3 ;

accordingly, we may assume

x5

2 Q A B C
= or + ax + p + + +

x3 - 2x2 - $x + 6 a? — 1 x + 2 x -
3

To find a and /3, we equate the coefficients of xi and x3 to

zero, after clearing from fractions : this gives, immediately,
a =

2, and )3
=

9.

Again, since
<j>(x)

= x3 - 2x% -50 + 6, we have

<t>\x)
= 3X

2 - 4x- 5.
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Accordingly, substituting 1,-2, and 3, successively for x

in the fraction

x*

3#
2 -40-5'

1

*--3£. c = 243

we get

and hence

x5
. 1 32 243

7 = Of +205 + 9 -77 -

;
r + y rj

x* - 2xz - $x + 6 6(a?-i) 15 (a; +2) 10(05-3)

f x5 dx x3

2 log (a;- 1)
" *

J x
3 - 2X* - 50? + 6 3

y
6

32 243
-—log (05

+ 2) +—log(oj-3).

39. Case of Even Powers.—If the numerator and
denominator contain x in even powers only, the process can

generally be simplified ; for, on substituting % for o?
2
,
the

fraction becomes of the form

m
Accordingly, whenever the roots of 0(2) are real and

unequal, the fraction can be decomposed into partial fractions,
and to any root (a) corresponds a fraction of the form

m r
$'(a) s - «'

The corresponding term in the integral of

is obviously represented by

/(«) f dx

${*) \x2 -a



46 Integration of Rational Fractions.

This is of the form (/) or (h), according as a is a positive
or negative root.

The case of imaginary roots in
<f>(z)

will be considered in

a subsequent part of the chapter.
It may be observed that the integrals treated of in Art. 5

are simple cases of the method of partial fractions discussed

in this Article.

Examples.

f {2x + i)dx

J X* + Z2 - 2X

Here the factors of the denominator evidently are x
}
z -

1, and x + 2
;
we

accordingly assume

_2£_fj__ A B G
Zz + X2 - IX X X — I x + 2

Again, as <£ (x)
= x* + x2 - zx, we have <p'(x)

=
3a;

2 + iz - 2
;

• /(*) =
** + 3

<t>'(z) $X* + 2T - 2

Hence, hy (3) we have

2 3 6

consequently

IVix
+ 3) dx 3 , 5 , , 1 , / »

* + + -2M —\** * +
J'

08 (— *>" 8 l0S (X + *

f dx
2 '

'

J {z* + a*){z* + b*)'

Here

- ' / ' !_V
(z

2 + IFjfoP + £2) a2 - b* W + P «* + «V
'

hence the value of the required integral is

f=u6 ,,*i

(t) -?**©!
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Substitute z for x2 and the transformed integral is

J2(2 +

dz

a) {z + b)

Consequently the value of the required integral is

.2

4-
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In order to determine the coefficients,MifM2, &c. . . . Mn
clear from fractions, and we get

f(x)
= M4{x) +M2 (x

-
a)\P(x) +M3(x- ay^(x) + &o. . . . (6)

This gives, when a is substituted for x,

f(a)=M4{a),0TMl

J^L. (7 )

Next, differentiate with respect to x, and substitute a

instead of # in the resulting equation, and we get

f{a) = M4\a) + M4(a) ; (8)

which determines M2 .

By a second differentiation, Mz can be determined
;
and

so on.

It can be readily seen, that the series of equations thus
arrived at may be written as follows—

f(a)=M4'(a) +l.M4(a),

/'(a)
= Mrf'ia) + 2 . M4\a) + I . 2.M4{a\

/"'(«)
= M4'"(a) + 3 • M4"(a) + 2.3 .Mrf(a) +1.2. 3 . Jf^(a),

/*(a) = M.f^a) + 4.M4'"(a) + 3-4-M4"W + 2. 3 . 4 .Ifrf'(«i)

+ 1.2.3.4. M4{a),

in which the law of formation is obvious, and the coefficients

can be obtained in succession.

The corresponding part of the integral of

f(x) dx

(x
-

a)
r
\p {x)

evidently is

Mr., I Mr-2 Mx

if, log (»-,)-
— --— -••-

(,,_ l)(g
_ar

. (9)

If <j>(x) have a second set of multiple roots, the cor-

responding terms in the integral can be obtained in like

manner.
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41. Imaginary Roots.—The results arrived at in

Art. 37 apply to the case of imaginary, as well as to real

roots
; however, as the corresponding partial fractions appear

in this case under an imaginary form, it is desirable to show
that conjugate imaginaries give rise to groups in which the

coefficients are all real.

Suppose a + b */- 1 and a - b >/- 1 to be a pair of con-

jugate roots in the equation <p(x)
= o

; then the corresponding

quadratic factor is

(x
-

a)
2 + b

2

;
which may be written in the form x2 + px + q.

We accordingly assume

(j>(x)
m (x

2

+px + q)\p(x) f

and hence

f(x) Lx + M P
$(x) x2 + px + q Q'

P
where

-^ represents the portion arising from the remainingH

roots, and — is the part arising from the roots
x2 + px + q

s °

a ±b */- 1 .

Multiplying by $(x) we get

p
f{x)

= (Lx + M) \p (x) + (x
2 + px + q) -^ ^ (x). (10)

If in this,
-

{px + q) be substituted for x2
,
the last term

disappears ; and by repeating the same substitution in the

equation

f(x)=^{x){Lx + M),

it ultimately reduces to a simple equation in x : on identify-

ing both sides of this equation, we can determine the values
of L and M.

42. In many cases we can determine the coefficients Z,M
more expeditiously, either by equating coefficients directly,
or else by determining the other partial fractions first, and

subtracting their sum from the given fraction.

It will also be found that the determination of many
[4]
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integrals of this class can be much simplified by a trans-

formation to a new variable, or by some other suitable

expedient.
Some elementary examples are added for the purpose

of illustration.

Examples.

f xdx
U

J (i+*)(i + *V
Assume

x A Lx * M
(i +x){i + a;

2
)

_
i-i x I 4 x1

'

clearing from fractions, this becomes

x= A (i + x2) + {Lx + M)(i + x).

Equate the coefficients, and we get

L + A = o, L + M=i, A + M=o.

Hence

L-
1
-, *-i, Am-1
2* 2* 2

and accordingly

x II i i +x

(l + x)(l + X2
)

~~

2 l+X 2I+»2'

f xdx i I i +• #2 I

I

f dx
2.

Let

i ^ Lx +M
i +x3 i+x i — # t x2

'

consequently, ^4 = -, by formula (3). Substituting and clearing from fractions

we have

3 = 1 - x + x2 + 3 {Lx + M){i + x) ;

hence, dividing by 1 + #, we have

2 -
3; = 3 {Lx + M).
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Consequently

idx
_ i

j*

dx i {'(2 -x)dx
i + a;

3
~~

3 J I + a; 3 J i -
a; + a;

2

= -log(i + *)-]Uog(i -x + x2
) + -^ztan-

1

(^-^-).
3 b /3 V Vl '

C dx . 1. / 1 +x + x*\ 1 /2* + l\
3. I . Ans. -

log 3 + —- tan" 1 —j= J
.

This can be got from the last by changing the sign of x.

f dx
4 -

J T=&
In this case we have

1 _ 1 / 1 1 \

1 — *•
™

2 \i —** 1 + *y
'

f aj'dir . I .
( (*

4
-i)2 )

1 (2*4+1)
c. —

. Ans. —log] —L—
\ +——itan-

1
]

— L5
J*12 -i 24

6
Ub + *4 + iJ 4v/ 3 I v/ 3 )

Let a;
4 =

2j and the integral becomes

1 f z<fe

C x2 dx

J(#-i)*(«» + iy

Assume

a:
8 .4 Z Xs+Jf

+
(*- i)

2
(x

2 + I) (<c-l)
2 a?- 1 i + a;

2
*

To find L and Jf, clear from fractions, and by Art. 41 the values of L and M
are found by making xz= - 1 in the following equation :

a;
2 = {Lx + JK)(* - I)

2
.

This gives immediately Z =—
,
M= o.

2

Again, by Art. 40, we get immediately A = -.

To find J?, make x = o in both sides of our identity, and we get

M; .'.

[4a]

o =A- £ + M; .:B = A = -.
2
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Finally

II ii IX
+ -

(*
-

l)2(*
2 +1) 2 U - 2 2 * - I 2 I + X*

*

•••I(Tr^gr7o--i.-ri +
i
k
*<'-')-?log(** +,)-

f dx

J a8 + a;
7 - a:

4 - a;3
*

Here the denominator is easily seen to be a?(x- i)(s + i)
2
(a:

2 + i), and the

expression becomes

f dx

)x*(x- i)(*+ i)
2
(*

2 + i)*

Assume a; = -
, and the transformed expression is evidently

z

f Z«<fe

Iff- I)(« +!)»(«»+ I)*

The quotient is easily seen to be z - i
; and, by the method of Art. 38, we may

(z
- 1 )(z + 1

)
2

(z
2 + 1)

" Z " l +
z - 1

+
(z + i)

2
+

z + 1
+

z« + I
*

Hence (Arts. 37, 40), we have

1 ,> 1

Next, L and Jf are found by making z2 = - 1, in the equation

z« = (Xz + jf)(z
-

»)(* + J
)
2

;

.-. 1 = 2(Zz + M)(z + 1)
= 2 {Z*2 + (Z + Jf)z + Jf },

which gives

i+Jf=o, Z-Jf=--;

4 4

In order to find the remaining coefficient C, we make z = o, when we get

o = -i-A + £+C+M; .V0«|.
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hence we have

z6 i I 9 s - I

-.Z-I+— r-
, , .„ +

(*-l)(«.+ !)«(«»+ 1) '8(Z -i) 4(^ + i)
2

8(z+i) 4(z
2
+i)'

f zsrfz Z2 I I

+ | log (f + i)
- i

log («» + I) + - tan- 1
;OO4

Hence

dxf dx 1 1 a; 1 1 - a=
2

a; + 1 X . 1

J ajS +^-^-a3
"

2as*

~
x
+
4(x+ I)

+
8

°g
i + a*

+ °S ~x~
+
4
^

*

8. —-——-i
,. -4«s. -

log .

J (#
-

i)
2

(a? + 3) 2
e

a; + 3 x - I

43. Multiple Imaginary Roots.—To complete the

fix)
discussion of the decomposition of the fraction

—j-t, suppose

the denominator <p(x) to contain r pairs of equal and imaginary
roots, i. e. let the denominator contain a factor of the form

\{x
-

a)
2 + b

2

}

r
; and suppose <j>(x)

=
{{x

-
a)

2 + b
2

}

r
$ x (x)

In this case we assume

f(x) L x x + Ml L2x + M2

(x
-

a)
2 + b*}

r
fr(x) {(x-a)

2 + b2

}

r
{{x

-
a)

2 + b
2

}*-
1

Lrx + Mr P
+ • . • + 5 r= ™ +

.(x~a)
2 +b2

0i(»)

the remaining partial fractions being obtained from the other

roots.

There is no difficulty in seeing that we shall still have
as many equations as unknown quantities, X x , Mi, L2,

M2)
. . .

when the coefficients of like powers of x are equated on both

To determine Lif Ml9 L2i &c.
; let the factor (x

-
a)

2 + ¥
be represented by X, and multiply up by Xr

, when we get

^r = LiX + Mi+ [L2 x + M2)X + &c. + (£r x + Mr) X^ + ^- •

(
I i)
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The coefficients L t and Mx are determined as in Art. 4 1 .

To find L2 and M2 ;
differentiate with respect to x, and sub-

stitute a + by/ - 1 for x in the result, when it becomes

d_

dx

r f(x\ "I
'—
j-r

= Z x + 2(ar
-
a)(L2 x + M2 ),

l<pi{X)Jo

where # = a + Jy^ - 1 .

Hence, equating real and imaginary parts, we get two

equations for the determination of L2 and M2 . By a second

differentiation, L3 and Mz can be determined, and so on.

It is unnecessary to go into further detail, as sufficient has
been stated to show that the decomposition into partial frac-

tions is possible in all cases, when the roots of <p(x) =0 are

known.
The practical application is often simplified by transfor-

mation to a new variable.

44. The preceding investigation shows that the integra-
tion of rational fractions is in all cases reducible to that of

one or more fractions of the following forms:

dx dx (A + B)dx (Lx + M)dx
x-J (x-af {x-ay + b

2'

{(x
-

a)
2 + b

2

}

r
'

The methods of integrating the first three forms have been

given already. We proceed to show the mode of dealing
with the last.

45. In the first place it can be divided into two others,

L [x -
a)dx (La + M)dx

{{x-af + Vy* [(x-a*)+by

The integral of the first part is evidently

2
(
r _ 1) [(x

-
a)

2 + b
2

}

r~l

To determine the integral of the other part, we substitute

2 for x -
a, and, omitting the constant coefficient, it becomes

f dz

J (z
2 + by
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Again

dz

(z
2 + b

2

)

r b
2

(z
2 + b

2 -z2

)

(*
2 + b*y

But we get by integration by parts

f z
2dz zdz i

J (s
2 + vy

=
J

z '

(s
2 + b

2

y
= "

^(T- 1) j

i r c?s i

=
&\](s

2 + fry-
1 '??

z
2 dz

(s
2 + £

2

)'-

zd
(s

2 + fc
2

)'-
1

2(r- i)(z
2 + b'

2

)
r- 1

2(r-i),

Substituting in the preceding, we obtain

ds 2r-

(z
2 + b

2

y~
i

'

{z
2 + b

2

)

r
2(r

-3 f dz

i)b
>

J{z
i + bi)

r-1
2(r-i)b'

i

(z
2 + by-

1
' (12)

This formula reduces the integral to another of the same

shape, in which the exponent r is replaced by r - i. By
successive repetitions of this formula the integral can be re-

duced to depend on that of
(z

2 + b
2

)

The preceding is a case of the method of integration by
successive reduction, referred to in Art. 19. Other examples
of this method will be found in the next Chapter.

The preceding integral can often be found more expedi-

tiously by the following transformation :
—Substitute b tan 9

dz
for 2, and the expression j-% 7— becomes, obviously,

The discussion of this class of integrals will be found in

the next Chapter.

46. We shall next return to the integration of
v

/ ,

#(# )

which has been already considered in Art. 39 in the case
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where the roots of
<j*(z)

are real. To a pair of imaginary

roots, a ± b */- i
, corresponds a partial fraction of the form

(Ax
2
±B)dx (Ax

2 + B)dx
(x

2 -
a)

2 + P>
°r

x* - 2ax2Tc2'

where c* = a2 + b
2
.

In order to integrate this, we assume a = c cos 20, when
the fraction becomes

(Ax
2 + B) dx

X4, - 2X2
C COS 20 + C

2
'

The quadratic factors of the denominator are easily seen

to be

x2 - 2xVc cos + c, and x2 + ix \/c cos
<f>
+ c.

Accordingly we assume

Ax2 + B Lx + 3f L'x + M'

X4, - 2X2
C COS 20 + C

2 X2 - 2X ^/c COS + C X2 + 2X ^/ COS +C

hence it can be seen without difficulty that

4 C- COS 2C

and after a few easy transformations, we find

f (^#
2 + B)dx Ac - B

1
/V - 2a; >v/^ cos + c

J
#*-2a;2

ccos20 + c
2

8cos0c*
S

\a* + 2x </c gob
<j>
+ c,

4sm0c* V c-a?

47. Integration of
{x

_
a)t\x

_ bf

This expression can be easily transformed into a shape



dx
Integration of -. r—-:

—
. 57* J

(x
-

a)
m
(x

-
b)

n

which is immediately integrable, by the following substitu-

tion :
—

Assume x - a = (x- b) z; then

a - bz (a- b)z 7 a - b 7 (a-b)dzx=
;

.'. x-a = - —
,
x-b =

,
ax = ~, rr-;

I -* i - z i -z (i
-
zy

and the expression transforms into

(i
- z)"""^

(a
-

5)
m+w-1 2m#

Expand the numerator by the Binomial Theorem, and the

integral can be immediately obtained. (Compare Art. 4.)

For example, take the integral

dx

(x
-

a,y(x- by

Here the transformed expression is

f(i
-

z)
z dz

{a-byz*'
or

^rjjij (?
~
I
+ 3

"*)*
"
(^V I?"

3* + 3 logs +
i

/*» /»

Substituting = for 2, the integral can be expressed in
x

terms of x.

48. Integration of -

(a + cx2

)

n

where m and n are integers.
Let a + ex

2 =
z, and the expression becomes

(z-a)
m dz

%

2Cm+l Zn
'

a form which is immediately integrable by aid of the Bino-
mial Theorem.
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It is evident that the expression is made integrable by the
same transformation when n is either a fractional or a nega-
tive index.

It may be also observed that the more general expression
f(x

2

)
xdx

(a + ex'

f{x
2

)
denotes an integral algebraic function of x2

.

can be integrated by the same transformation, where

Examples.

Jx^dx
. a* x2 „, , .

tt 5i- Ans. — + - + a2 log (a
2 - x2

).

(a
2
-x-)- 2(a?-x-) 2

fidx laf x*dx

J (a + ex2)*'(a + ex2)*
"

4c
2
(a + ex2

)

2 6c2 (a + ex2
)
3

f x5dx 1 11

dx
49. Integration of

af - i'

where n is a positive integer.

Suppose a an imaginary root of xn - 1 = o, then it is evi-

dent that a"1
is the conjugate root : also, by (3), the partial

fraction corresponding to the root a is

a
or

nan
~
l

(x
-

a)' n(x
-

a)'

If to this the fraction arising from the root a"1 be added,
we get

I ( a a~l

)
I { x(a + a"

1

)
- 2

-
{

+
,}, or - T/— t\n [x

- a x - a"
1

)
n [x

2 -
(a + a

*)
X + 1

But, by the theory of equations, a is of the form

2&7T / . 2kir
cos + v- 1 sin ,

n n
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where k is any integer ;

ikn
.'. a + aT1 = 2 COS— .

n

Hence, if 9 be substituted for —
,
the preceding fraction

n
becomes

2 x cos 9 - I

The integral of this, by Art. 7, is

cos 9 , „ .„ 2 sin 9 , Jx - cos 9
s

n
i , a ..x

2 sm , j /* - cos 0\
log (1

- 2# cos + a?-) tan * —
:
—

^
—

.
' n \ BW.V J

There are two cases to be considered, according as n is

even or odd.

(1). Let n = ir : in this case the equation x%r - 1 = o has

two real roots, viz., + 1 and - 1 ; and it is easily seen that

[ dx 1 . x - 1 I _ kir, , kn lN
-=- = — log + — S cos — log (I

- 2X cos — + X*)
J
aF - 1 2r ° x + 1 2r r ° K r '

[ k^
, / x - cos —

--Ssin^tan- *JL\ (13)
r r \ . kir

\
sinv

where the summation represented by S extends to all integer
values of k from i tor- i.

(2). Let n = 2r + i, we obtain

f tf# log(aj-i) I „ 2krr , / 2&7T A
3=1 = -^ L+ SCOS log I-2#C0S + X*)

J#
2m -i 2r+i 2r+i 2r+i &

\ 2r+i J

2r + 1
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where the summation represented by 2 extends to all integer
values of k from i up to r.

50. Integration of , where m Is less than n + 1.
xn - 1

As before, let a be a root, and the corresponding partial

am
~l am

fraction is m ,
. r or— r ; hence the partial fraction

no*1'1

(x-a) n(x
-

a)
r

arising from the conjugate roots, a and a"*, is

1/ am cl™ \ _ I x{a
m + a m

)
-

(a
"1
-1 + glm

'1
))

n\x - a x-a~l

) n x2 -
(a + a-1

)
x + 1

2 x cos mO - cos (m -
i)0

« x1 - 2X cos 6/ + 1
'

where is of the same form as before.

The corresponding term in the proposed integral is easily-

seen, by Art. 7, to be

j l
/p COS \j\-

Jcosm01og(#
2 - 2#cos0+ 1)

- 2 sinmfltan-1—
=-"5-[* (

J 5)

n
By giving to k all values from 1 to— 1, when n is even, and

M T

from 1 to when n is odd, the integral required can be

written down as in the preceding Article.
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Examples.

f dx a l
i (x + 2 \

*« 1 -s
—

p t.-
Am. -log [ J.

J x2 + 6x + 8 2
&
\# + 4/

2 *

j^,^.^ » alog(*-a) + log(* + i).

f(^ + £a;2)^ -4, Ba-Ab, ,

J x(a + &£*) « 2«o

Ix
2dx I, a;-l a/2, , / # \

-7 ^ . „ -log + -— tan-1 !——:).
x* + x2 -2 "

6 6x + i 3 Vv/z/

f<for

i . #s 4 2:^/2 + 1 I
, fx\/ 2\

* + 1 V 2 x2 -xy
/
2 + I 2/2 \l-x°~J

f (2x- 5)dx 7
,

IT w /
g+ M'

J(*4 3)(*+i)
3

' "
2(^+i)

+
4

g U+3/'

f <fo 1 1 / x2 \

7 *

)x(a+ bx2
)
2

' "
2a (a + bx2

)

+
za?

°S
\a + bx2 )

'

8 f dx I .
(_J^__\

1

. • (z-by^dz
Let 4- fon = #% and the transformed expression is - -

Jx dx III—
. Ans. -

log (x2 + 1
)
- -

log (x 4 1) 4 - tan- 1
;*;.

oP + xz + x + 1 4 2 2

f <fe 2
(a: + 2)

2
3 I

12. Apply the method of Art. 47 to the integration of -—-—
£-.

(1 + z)-
n-*dz

The transformed expression is - -—
g-^-

.

f x2dx . 1 xCi +x2
) 1 . 1 + x
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14. Prove that

I
—

; rz transforms into
J Wi -x-

dx
. f (1 + z)

m+»-z dz
. r- transforms into - K——± _.

if we make x =
1 + z

dxdx . 1 . . x 1 x
l5 '

Jsin*(« + *cos*)- ^^a 10* 81*,"^ 1^08
;

Multiply by sin x, substitute u for cos x, and the integral becomes

.6.
J 3 si

dx

n

3 sin x + sin ix

f

~ du

J (I -«*)(« + **)•

^«s. -
log sin - -

log cos
|
+ -

log (3+2 cos x).

^J *«-. (tutf
(I-*-)** V3. .! /f+f_

2
\ », /*4 + *2 +.\

Let a;
2 = -, &c.

z

18. Prove that

dx 1

J 1 +
— 2 cos

v -
2n 2n log ( 1 - 2# cos - — + xA

(ik- i),
. X — cos

. (2&~ l)ir I 2»
+ - 5 sin i ~- tan- 1

< , ,

—
2n . (2k- I)tt

sin
291 J

where & extends through all integer values from 1 to «, inclusive.

f dx log (1 + a?)
1 „ (2&-1W / (2k-i)ir \

19- 5—;
=

;

— —Scos- —
log! i-2zco^ —\x%

)7
J I+a;2n+l 2W+I 2W+I 2tl + I

6
\ 2tt + I /

(2A"-I)7rl

+ 2 sm v — tan"1 <
2H + I 2» + 1

2W + I

2»+ I

where # assumes all integer values from 1 to n inclusive.



( 63

CHAPTER III.

INTEGRATION BY SUCCESSIVE REDUCTION.

5 1 . Cases in which sin™ cosn d9 is immediately In-

tegrate.—We shall commence this Chapter* with the dis-

cussion of the integral

to which form it will be seen that a number of other expres-
sions are readily reducible.

In the first place it is easily seen that whenever either m or

n is an odd positive integer the expression sinm cos"0^0 can

be immediately integrated.

For, if n = ir + i, the integral becomes

Jsin
m cos 2r+1

0e?0, or, j &m
m 9 (cos

2

9)
r d (sin 9),

If we assume x = sin 0, the integral transforms into

jx
m
(i -x

l

)

r
dx\ (i)

and as, by hypothesis, r is a positive integer, (i
-

x*)
r can

be expanded by the Binomial Theorem in a finite number of

terms, each of which can be integrated separately. In like

manner, if the index of sin be an odd integer, we assume
X = cos 0, &c.

A few examples are added for the purpose of making the

student familiar with this principle.

* It may be observed tbat a large number of the integrals discussed in this

Chapter do not require the method of Successive Reduction: however, sinco
other integrals of the same form require this method, it was not considered

advisable to separate the discussion into distinct Chapters.
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Examples.

f cos*'
i. Isin3 0tf0. Ans. cos 0.

2 . sin5

-sm3
0-f .

3 5

Icos5 0rf0. „ sin0 sin3 0-f

Isin^cos7 ©^.

J

COS1O cos8

io
"

8

/sin
5 0^0 i cos3

-=E- » —„ + 2 cos0 -

K
cos2 cos0 3

2 sin^0 2 sin50
" "1 F

sin3 0<f0 2 cos^0 - 2 cos* 0.
6. -7=-'

JV cos

fcos30rf0 . . 3 . 1
7. J-^. „

3Sini0-^sm*0.

52. Again, whenever m + n is an even negative integer
the expression sinm cosn d9 can be readily integrated.

For if we assume x = tan0, we have

; , sin0 =
j
and dQ

v/i + x2 yi + x* * + «*

and the expression transforms into

a^efo

(1 + *2

)

2

Hence, if m + n = -
2r, this becomes

a^ii +x2

)

r~ 1

dx,

a form which is immediately integrable.
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Take, for example, tjt-.

Let x = tan 0, and we get

\ x2

(i + x2

) dx, or— - + - —
.

Next, to find
J si]

3

dd

sin cos
5

'

Making the same substitution, we obtain

x2

)

2dxPx

Hence, the value of the proposed integral is

tan4

4

dd

+ tan2 + log (tan 0).

Again, to find -r-^ ^.°
J sm*0 cos2

. (i + x2

)dxHere the transformed expression is ^— ,
and ac

cordingly the value of the proposed integral is

-tan§0
3 tan20*

In many cases it is more convenient to assume x = cot 0.

For example, to find -t-tji.r
J sm

4

dQ
Since d(cot0) = -

-T-rri, if cot = #, the transformed
v ' sm2

integral is

-
I (i + x2

)dx, or - cot .

The following examples are added for illustration ;
—

M
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f sitfddd

J CO86

f
de

J COS60*

f dd

sin cos3

sini0<?0

cos*0

5-

Examples.
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In like manner, if the integral be written in the form

-
[sin

m- 1 0cosn 0^(cos0),

we obtain

f
sin-0 ootf»0rf0=— [ sin-

2
cos«

+2
tf0 - sm

""
l6lcos?m fl

.
(3 )

It may be observed that this latter formula can be de-

rived from (2) by substituting
—

$ for 0, and interchanging

the letters m and n in it.

54. Case of one Positive and one Negative Index.—The results in (2) and (3) hold whether m or n be positive
or negative ; accordingly, let one of them be negative (n sup-

pose), and on changing n into -
n, formula (3) becomes

f sinm sin^A . m-i f sinm
-2

fl

,

J cos"0
™ "

(n
-

1) cos-1

"
n - 1 J cos^0

*"' [ ]

in which m and n are supposed to have positive* signs.
sin^

By this formula the integral of »d0 is made to de-J &
cos*

pend on another in which the indices of sin and cos are

each diminished by two. The same method is applicable to

the new integral, and so on.

If m be an odd integer, the expression is integrable im-

mediately by Art. 51. If m be even, and n even and greater
than m, the method of Art. 52 is applicable ; if m =

n, the

expression becomes J tan
m
0<i0, which will be treated subse-

quently ;
if n < m, the integral reduces to that of sin

m_w dd.

—
7^Tn>cos u

* The formulae of reduction employed in practice are indicated by the capital
letters A, B, &c.

; and in them the indicesm and n are supposed to have always
positive signs. By this means the formulae will be more easily apprehended
and applied by the student.

[5 a]
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and if n < m. it reduces to 7i
—

. The mode of find-
J COS0

ing these latter integrals will be considered subsequently.

Again, if the index of sin be negative, we get, by
changing the sign of m in (2),

fcos"0 a cos""1 n- 1 f cos"-
2

J sinm
~

(m
-

1) sin
m_1

~
m-i J sin"*-2 ©

'
^ '

We shall next consider the case where the indices are

both positive.

55. Indices both Positive.—If sinm (1
- cos

2

0) be

written instead of sinm+2 in formula (2), it becomes

f ma nnjn cos""
1

Bin"1"
sm"^ cos"0e?0 =

J m + 1

cos"" 1 sinm+1

m + 1

+ -—!
f sin"

1

(cos""
2 - cos" 0) dO =

m+ 1
J

v '

+ ?—± f sin
m cos""

2
0tf0 - ——

[ sinm Gosn 0dB:
m+i) m + 1 J

hence, transposing the latter integral to the other side, and

,. .,. , m+n ,

dividing by , we get

sin"»0 cos"0 dO = - +— sin™0cos"-2
0rf0. ((7)

In like manner, from (3), we get

fBm"0 cofl»0rf0 =— f
sin-2

cos" 0^0 - S^H^1
. (2>)

By aid of these formulae the integral of sinm cos" BdO is

made to depend on another in which the index of either

sin 0, or of cos 0, is reduced by two. By successive appli-
cation of these formulas the complete integral can always be
found when the indices are integers.
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56. Formulae of Reduction for sinM dO and cosn0dd.

These integrals are evidently cases of the general formulae

(C) and (D) ; however, they are so frequently employed that

we give the formulae of reduction separately in their case,

f - ,„ sin0 cos^fl n-i [ „ 9/1 7n , .

cosw BdB = + cos"-
2

dB. (4)
J

• n n J

suin ddO = + sinw_2 0^0. (5)
J w w J

The former gives, when n is even,

f <m»0d6 = —fcos^O + -— cos"-
3

J w \ n - 2

+
.-, (—3

cos„-5 g + &c .

(W
-

2)(W
-

4)

+ (^~ Q(^-3)(^-"5) • - '
,

w («
-

2) (11
-

4) ... 2 (6)

A similar expression is readily obtained for the latter

integral.

Examples.

f . , „ sin0 cos 0/ . „ 3\ 3
1. sin4 <?0. -4ws. I sm2 + - + § 0.

f „ . , ,
sin0 cos 0/ sin4 sin2 i\

2 .

]«*«.,<««.
„ ——(— --n--?)+rt-

f „ sin0cos3 0/ ,. <\ </, \

3. cos6 0<?0. ,, 7 (cos2 +
-J

+
-^(sm0cos0

+
0j.

57. Indices both Negative.—It remains to consider

the case where the indices of sin 6 and cos 6 are both

negative.

Writing
- m and - n instead of m and n

9
in formula (C),

it becomes

(
dO - i n+ i

(•

dO .

J sinm cosw
™
(m + w)cos

w+, sin1"-1©
+
m + rcj sinw cosn+2

'
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or, transposing and multiplying by ,

ft T I

d$f dd i m + n f

J sin
m cosn+2

~
(n + i

)
cosn+1 sinm_1 n + i J siisinm0cosn0'

Again, if we substitute n for n + 2 in this, it becomes

d0 1

sinm cosn (w
- 1

)
cosn_1 sin"1"1

m + n - 2 f <£0
+

n-i Jsin
m0cos"-2

0*
v '

Making alike transformation* in formula (2)), it becomes

r dO -I
J sinm0cos"0

"
(m- 1) sin"*-

10cosn
"1

m + n- 2C dO± n-2C__dd__
71-1 Jsin

m~20cosn0' v ;
+

m

In each of these, one of the indices is reduced by two

degrees, and consequently, by successive applications of the

formulae, the integrals are reducible ultimately to those of

one or other of the forms —- or -s
—^ : these have been

cos v sin

already integrated in Art. 17.

The formulae of reduction for -.
—-

n and 7: are so
smM cosn

important that they are added independently, as follows :
—

* It may be observed tbat formulas (2?), (D), and (F) can be immediately-
obtained from (A), (C), and {E), by interchanging the letters m and n, and

substituting <p
instead of 0. For, in this case, sin 0, cos Q, and dd, transform

into cos <p, sin
<f>,

and - d<p, respectively.
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f dO
m

sin0 n -2 f dO

J cosw
"

(»
-

1) cos"-^
+
n - 1 J cos

n-2
0*

^ 7 '

fdO
- cos0 n - 2 f dO . .

sinn
=

(w
-

1) sin*"
1

+
rc - 1 J sin""

2
0'

''

It may be here observed that, since sin2 + cos
2 =

1, we
have immediately

f dO
= [__JA__ f gg

J smm6 eosn6
~

J sin^G eosnd
+

J sinm cosw
"2 ; ^

and a similar process is applicable to the latter integrals.
This method is often useful in elementary cases.

Examples.

f dd CsmOdO [ dd 1
, t

1. I
- -- —

\ 1-
I =

1- log tan -.
Jsin0cos2

J cos»0 J sine cos a 2

f dd _ f sin Odd
f

dd

Jsin0cos4
J cos4 J sin cos2 0*

and is accordingly immediately integrated by the last.

f dO . cos0 1 .

3-
J 335.

An*.-—^ + -log tan
2sina 2

°
a

J

(f0 1 cos0 3

sin3 cos2 0*
" c^siTim2?"

1
"

2
°g an?

58. Application of Method of Differentiation.—
The formulae of reduction given in the preceding Articles

can also be readily arrived at by direct differentiation.

Thus, for example, we have

d /sinm 0\ msinm_1 n sinmfl

dO\cos
n
6J cosw

-J cosn+1

and, consequently,
x

f sinm+1 _ 1 sin™0 mf sinffl-x

Q
J cosw+1

"
n cosn n J cosn_1

This result is easily identified with formula (A).
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Again,

-^ (sni^fl cosw0) - m sin™
-^ cosn+1 - n sinm+1 cos"

-
^.

If we substitute for cosn+1 its equivalent cosn-1
(
i - sin

2

0),
we get

-^ (sin^ cosn0)
= m sinm_1 cos""

1© -
(m + n) sinm+1 cosn_1 ;

hence we get

(.
-*** „ ,/» 7/1 sinm0cosw m f . m ,_ . ,. 7

_

sin^cos"-^^ = + sm^flcos"-^^,m + n m + nj

a result easily identified with (D).
The other formulae of reduction can be readily obtained

in like manner.

59. Integration of tann0^0 and -—
^.tan (7

These integrals may be regarded as cases of the preceding :

they can, however, be arrived at in a simpler manner, as

follows :
—

Since tan2 = sec
2 -

1, we have

[
tann tf0 =

[
tan»"2

(sec
2 -

1) dQ =
[
tann

~2 d (tan 0)

-ftan»-
20^0 = ^l -(tan»-

20^0. (10)

By aid of this formula we have, at once,

f A iflJfl tann-1 tanW_3 tanW_5
st 1 \tann dB = + &c. (11)

J n- 1 n- 3 n -
5

( 1.) If n = 2r + 1, the last term is easily seen to be

(- i)
r+1

log(cos0).

(2.) If n = 2r, the two last terms may be represented

by (- i)
m

(tan0-0).
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In a similar manner we have

J tan
w

"
J tann J tanw

"2
~

(n
- i

)
tanw

-!

J
tan"-2

0'
l
* 2

j
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Examples.

Jx*dx
I . 3 . a;\/ 1 - rr

2
,__ . ^ j-3m-., - v_ (3 + „,,.

C dx I . I - \/l -X2
*/~\ -Z*

2 -

)77f^ " 5 log
—

s sr-

f cfo x x9

3 '

J (a
2 + x*)l'

»
a* (a

3 + a2
)*

"
3a«(a

2
+"*«)S*

The integrals considered in this Article admit also of

a more direct treatment. We shall commence with the

following :
—

xm dx
6 1 . Cases in which - is immediately inte-

grahle. (« + erf)*

We have seen, in Art. 48, that the proposed expression is

integrahle immediately when m is an odd positive integer.

Again, when m is an even integer, if we assume a + ox
2

= tf z
2
,
the transformed expresssion is

-



dx

(a + ex2
)

x2dx

Binomial Differentials. 75

Examples.

x ( ex2

;

2\f"

'

a* {a + ex2)* \ 3{a + cxZ
)',

f-ig
J
(« + «**)*

'

aMa + c*2
)

1 * 3 5(«+<a2
))

r z3tf#z3tf# -
(2«2 + 3^)

(a* + **)**

"
3 (a

2 + *»)*

f dx

J xi
(a + cx2f

The differentials considered in this Article are eases of a

more general class called binomial differentials.

62. Binomial Differentials.—Expressions of the form

xm {a + bxn
)
p
dx,

in which m, n, p denote any numbers, positive, negative, or

fractional, are called Binomial Differentials.

Such expressions can be immediately integrated in two

cases, which we proceed to determine by transformations

analogous to those adopted in the preceding Article:—

(1). Let a + bxn = z
;
then x

and dx = — I —7— )
dz ;

i. */ x „x« 7 (z- a)
n

z?dz
hence xm{a + lxnydx = * ~~

;
.

Consequently, whenever is a positive integer, the
n

transformed expression is immediately integrable after ex-

pansion by the Binomial Theorem,



76 Integration by Successive Reduction.

(2). Again, if we substitute - for x, the differential
y

becomes
_

y-«P-m-*(ayn + b)*>dy.

This is immediately integrable, as in the preceding

case, whenever - is a positive integer ;
i. e. when

+ p is a negative integer. In this latter case the inte-

gration is effected by the substitution of z for ax"" + b.

Examples.

x5 dx 2(1 +a?)i(a?-2)——
. Ans. .

c dx x

<£r (1 + jc*)i
3 "

J s2 (i + «*)8

# " " *

4 "

J *(i + *»)*'

"
(TT^)i*

When neither of the preceding processes is applicable, the

expression, ifp be a fractional index, is, in general, incapable
of integration in a finite number of terms. Before proceed-

ing with this investigation we shall discuss a few simple
forms of integration by reduction, involving transcendental

functions.

63. Reduction of emx xn dx,

where n is an integer.

Integrating by parts, we have

f xn e
mx n f

xn e
mx dx m af-'e™ dx. (13)

J m m)
K °>

By successive applications of this formula the integral

is made to depend on e
mx

dx, i. e. on -
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m

(log x)
n dx. 77

Cemx

Again, to find — dx.
J x

Assuming u = e
mx

,
v =

-;
——

,
and integrating by

[ft I ) x

parts, we have

[e
mx dx m Cemx dx . .

^Tj^r- (I4)
J xn (n

-
i)x

V{

By means of this the integral is reduced to depend on

[e
mxdx

The value of this integral cannot be obtained in a finite

form; it however may be exhibited in the shape of an
infinite series

; for, expanding e
mx and integrating each term

separately, we have

[e
mxdx , mx mfx2 m?xz

_ . s= logx +— + 1+ + &c. (15)
J X °

I I . 2
i

I . 2 . 3
2 '

The integral of a'aPdx is immediately reducible to the

preceding, since ax = e* l0
s°. Consequently, by the substitu-

tion of log a for m in (13) and (14), we obtain the formulae

of reduction for

fa
Txn dx and — dx.

Jx"

In like manner we have immediately

j e~
xxndx = - e-*xn + n j e^x"-

1
dx. (

1 6)

64. Reduction of j x
m
(logx)

n
dx.

Let y = log x, and the integral reduces to that discussed

in the last Article.

The formula of reduction is

f
xm (log xY dx =

^1(1°g^ —
f x
m
(log x)

n~l dx. (17)
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Examples.

J a [ a a? az )

2.
\z>(logx)-dx.

'

„
^{(log*)3-!^

+
l}.

65. Reduction of fx
n cos axdx.

tt f « , ** sin ## w f „ . . _

Here xn cos axdx = xn
~x smaxdx;

J a a]

ngain

xn
"x sm axdx = + xn 2 cos aa; da\

J a a J

hence

fa;""
1

(## sin ax + n cos ax) n (n - 1) f „ a .

aJ* cos axdx = * =
' —1-^ [x

11-2 cos axdx.
a2 a2

J

The formula of reduction for xn sin axdx can be obtained

in like manner.

Again, if we substitute y for sin*
1

x, the integral

/ (sin"
1

^)" dx

transforms into

J y
n cos ydy,

and accordingly its yalue can be found by the preceding
formula.

Examples.

1. a? cos xdx. Am. x3 sin x + 3a;
2 cos x - 3 . 2 . x sin x - 3 . 2 . 1 . cos x.

2. \x*smxdx.

Am. - x* cos x + 4.Z
3 sin x + 4 . 3 . x? cos a; - 4 . 3 . 2 . a; sin a; - 4 . 3 . 2 . 1 . cos x.
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66. Reduction of je
ax GOSnxdx.

Integrating by parts, we get

fcosw# e
ax n f

e
ax

Q $nX(jx m + _ \

e
ax

cosn-i^ Sin xdx.
a a)

Again,

e
ax Qo$n

-lxmixdx

e
ax cos75

j

~^x sm x if
e
ax

(cosn# -
(n

-
i) GO%n

-%x%m i

x)dx

= + -—t-1- e
ax eosn

~2xdx - -
\e

ax cosn xdx
a a J aj

substituting, and solving for j e
ax eosnxdx

f we get

e
ax cos»'i^ ($ cos x + nsin x)

\
e
ax co&nxdx

a* + n'

n(n -
i)

-V ^ f e
ax cosn

~2xdx. ( 1 8)
a2 + IT J

v y

The form of reduction for e
ax sinnxdx can be obtained in

like manner.

67. Reduction of J cos™# sin nxdx.

Integrating by parts, we get

cosw#cosw# m.
cosm# sm nxdx «= cos"1"^ cos nx smxdx :

n n,
COSm'

replacing cos nx sin x by sin nx cos x - sin (n
-

1) x
f
after one

or two simple transformations we get

m . 7 cosm#cosw#
cos^smw^aa? =

m + n

m
m
—— ao^~l x sin(w

-
1) xdx. (19)

The mode of reduction for cosm# cos nxdx, sinw# cos nxdx,
and sinm# sin nxdx can be easily found in like manner.
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Examples.

e** sin x

4 + «2 v"" """7
~r

a(4 + a8
)'

f - • • j . ««8ini. . „ 2e"x
ea* &\v*xdx. Ans. (a sins - 2 coss) + -7

2. I cos's sin 4* rfs. ,

J t> 12 24

3. U"* cofPxdx. „ (cos's
- sin 2* + 2).

J 5

68. Reduction by Differentiation.—We shall now
return to the discussion of the integrals already considered in
Arts. 60 and 61

;
and comjnence with the reduction of the

xm dx
expression -. rrr. This, as well as other formulae of re-r

(a + ex
2

)*

duction of the same type, is best investigated by the aid of a

previous differentiation.

Thus we have

Y \x
m~l

{a + cx2

f J

= (m -
i)x

m~2
(a + ex2

)* +
***

MX
\ j \Cl + ex{a + cxz

)k

(m - 1
)
xm

~2
(a + ex2

)
+ ex™

(a + cx
2

)^

(m -
1) ax

m~2 mcxm
+

(a + cx2

)* (a + cx2

)*'

hence, transposing and integrating, we obtain

fafdx
_ ^(a + ex2

)* _ (m -
i)a f xm

~2 dx

(a + ex2

)* mc mc J (a + ex2

)*'
^ '

By this formula the integral is reduced to one or more
dimensions ;

and by repetition of the same process the ex-

pression can be always integrated when m is a positive

integer.
The formula (20) evidently holds whether m be positive



f xm dx
0/
}(a + cx2

)
n 'Reduction of -. rr~. 81

or negative ; accordingly, if we change m into -
(m

-
2), we

obtain, after transposing and dividing,

f dx _ (a + ex
2

)* (m
-

2) c f dx

J x
m
(a + cx%

y*

= ~
(m

-
1)^m- x

"
(m

-
ijaj^"^

3

(a + ex2

)*'

^2I '

69. More generally, we have

—
{x
m~l

[a + cx
2

)

n
]
= (m- \)x

m~2
(a + cx 2

)

n + mcxm (a + cx
2

)

n~l

=
(a + ex2

)*
1'1

{ (m
- 1 )ax

m~2 + (m + 2n- i)cx
m

]
.

Hence

\x
m (a + cx2

)
n-'dx = *

f-

J (m+ zn- i)c

-
,

(
M ~ 1

)
a

[x
m-2 ia + ^H dXm ( 22 \

(m + 211-1) c]
v ' x J

Consequently, when m is positive the integral can he

reduced to one lower hy two degrees. If m be negative,
the formula can be transformed as in the preceding Article,

and the integration reduced two degrees.
We next proceed to consider the case where n is negative.

^ f xm dx
70. Reduction or -.

—
,

J {a + cx2

)

n

m and n being both positive.

_ f xm dx f m . xdx
Here

7 ^- = xm~x
-, —.

){a + cx2

)

n
J (a + cx2

)

n

C XL
Let xm

~x =
u, and

;

xdx

cx~

I

2 (n
-

i)c(a + ex2)"-
1

~

and we get

f xmdx - x™"1 m - 1 r «m~2<^ .
,

J (« + c#2

)

n
"
2~O-i)c(a+C0

2
)
n-1

+
2~(w

-
i)cj (a + cx

2

)

n~1
' ^ 3;

w
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By successive applications of this form the integral admits
of being reduced to another of a simpler shape. We are not

able, however, to find the complete integral by this formula,
T

unless when n is either an integer, or is of the form -, where

r is an integer.

f x™dx
71. Reduction of - - —

.

J (a + 2bx + cx
2

)*

By differentiation, we have

—
{x
m~l

{a + ibx + ex2

)*}
= (m -

i)x
m~2

{a + ibx + ex2

)*

xm
~'

i

(b + cx) _ (m - i
)
ax™-2 + (2m - 1

)
bxm

~l + mcxm

{a + 2bx+ ex2

)* (a+ 2bx + ex2)*

h [
xm dx _ xm

-l

(a+ 2bx + cx2)i

J (a + 2bx + ex2

)* me

(2m -
1) b f xm

~l dx (m- i)af xm-2 dx

mc J (a + 2bx + ex2
)* mc J (a + 2bx + ex2

)*'

^

This furnishes the formula of reduction for this case : by
successive applications of it the integral depends ultimately
on those of

xdx _ dx
and

(a + 2bx + ex2

)* (a+ 2bx + ex2

)*'

These have been determined already in Arts. 9 and 12.

Again, the integral of -—-.
;

ttt can be reduced to& xm (a+ 2bx + cx2

)*

the preceding form by making x = -.
z

72. The more general integral

f xmdx

J (a + 2bx + cx2

)

n

admits of being treated in like manner.
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J (a + 2bx + cx2

)

n

For if a + ibx + ex2 be represented by T, we have, by
differentiation,

d fxm~l \ _ (m
-

i)x
m~2

2 (n
-

i)&** (b + ex)

dx \YnZl
) T** T»

(m- i)x
m-2

(a+ 2bx + ex2

)
- 2 (n

-
1) x

m~^
(b + ex)

(m
-

1) ax
m~2

2b(m
-

n) x
m"1

(2n
- m -

i)cx
m

"J ~mn iVn rfn

Hence, we get the formula of reduction

2{m-n)b Cxm
~1 dxCxm dx _

- xm~l 2{m-n)b C,

J ~T"
=
{in-m-\)cT

n- x
+
{2n-m-i)c) T

(m- i)a [x
m~2dx

+
(2n

- m
% [x

m~2dx . .

TTc\-T^-
(25)

xmdx
By aid of this, the integral of -^ ,

when m is a positive

integer, is made to depend on those of -=^ and -?=-n
. Again,

x dx
it is easily seen that the integral of -=^ is reduced to that of

dx

Cxdx 1 r (b + cx)dx b C dx

J ~T^
=

c J Yn cj ~Tn

- 1 b
[dx"

2(n- i)cT
n~l

c) Tn
' {2 '

[6 a]
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f dx
73. Reduction of ;

—
20X + cx

2

)
n

In order to reduoe -^ we have

d fb+cx\ _ c 211 (b + ex)*

c

Tn

Hence
Jdx

J'n+i
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dx

b cos x)
n*

Hence, transposing and integrating, we get

dxf dx -b&mx (211
-
3)a f d

J U*
=
(»- i)(a

2 -b2

)U^
x
+
(n- i)(a

2 -b2

) J IP

n - 2 C dx~
(n-i){a

2 -b2

)]Tr^'
( '

By this formula the proposed integral can be reduced to

depend on

J.-

dx

+ b cos x'

the value of which has been found in Art. 1 8.

75. The integral considered in the last Article can also

be found by aid of a transformation, whenever a is greater
than b, as follows :

—
dr dx

(a + 6cos.r)
n

i, , N , x , , v . 4#jv y

j
(0 + b) cos- - + (a

-
6) sm

2 -

f 1 + tan2 -
]
dx

(A cos
2 - + i?sin 2 -

J (^4
+ 2? tan2

-J

(where A = a + b, B = a -
b).

x jA
Next, assume tan - = l-=r tan #, then

2 \-£>

( 1 + tan2 -
)

dx = 2 /— (1 + tan2

<£) <sfy>
:
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and we get

x\n ( A Y1"1

i + tan2-
J
dx FT (

* + ~» tanV
)

d$

B -4n seo
2

"->

2 (B cos2 +A sin
2

<ft)

n-x

d<j>

{AB)
n-h

Hence, replacing A and B by a + b and a -
b, we get

f fifo f (a
- b cos 2<f>)$-

1

d<p

)(a+bcosx)
n
~ 2

) {a
2

-b*)»-h
'

^
2 9J

When n is a positive integer, the integral at the right-
hand side can be found by expanding (a

- b cos 20)
n-1

, and

integrating each term separately by formula (4).

Again, if in (28) we make b = a cos a, and 2$ =
y, we

obtain

7
" ^ =

•
2 n 1 v

1 - cos a cos y)
n~l

dy, (30)
J (1 +cosacos#)

n sm2n x

aJ
v ' w '

where tan - = tan - tan -.
2 22

Hence, if we take o and - as limits for x, we have
2

7T a

.
=

. . . (1
- cos a cosy)

n- l

dy.
J (i + cosocosic)

n sin2n
- 1

aj
v

/(«) dx
76. Integration of

W/fl + 2bx + cxt

"We shall conclude this Chapter with the discussion of the

above form, where /(a?) and <p(x) are supposed rational alge-
braic functions of x.

Hf(x) be of higher dimensions than <p{x), the fraction

may be written in the form
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Integration of
—- 87

<j>(v)v a + 20X + c^2

Again, since Q is of the fornix + qx + rx2 + &c, the inte-

gration of can be found by the method of

*/ a + zbx + ex*

Art. 71.
r>

The fraction —r-r can be decomposed by the method of

partial fractions (Chap. II.). To any root a, which is not a

A
multiple root, corresponds a term of the form

,
and the

x — a

corresponding term in the expression under discussion is

Adx

(x
-

a) */a + zbx + ex2

The method of integration of this has been given in Art. 13.

Next, to a multiple root correspond terms of the form

Bdx

(x
-

a)
r\/a + zbx + ex2

This is reducible to the form of Art. 71 on making

x - a - -. Again, to a pair of imaginary roots corresponds

an expression of the form

(Ix + m)dx

{ (x
-

a)
2 + /3

2

) <\A + zbx + ex
2

'

'or x -
a, i

(Lz + M) dz

(z
2 + /3

2

) VA + zBz +~Cz*

If z be substituted for x -
a, the transformed expression

may be written

where L, M, A, B, C, are constants.

To integrate this form
; assume* % =

)3 tan (6 + 7), where

* For this simple method of determining the integral in question I am
indebted to Mr. Cathcart.
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is a new variable, and 7 an arbitrary constant, and the

transformed expression is

(Z/3 sin (0 + y) + Mcos (0 + y)\dB

(3^Acof?(6 + y) + 2Bp eos(0 + y) Bm(8 + y) + Cp sm\8 + y)'

Again, the expression under the square root is easily
transformed into

±{A + <?j3
2 + (A- Cp

2

)
cos 2 (0 + y) + 2B(5 sin 2(0 + 7)}

= %\a + C/3
2 + cos 2d[(A- 0/3

2

)
cos 2y + iB$ sin 2y J

+ sin 20 {2i?j3 cos 2y
- (A -

Cfi
2

)
sin 27} .

Moreover, since y is perfectly arbitrary, it may be assumed

so as to satisfy the equation

2B[5 cos 27
- (A -

<7j3
2

)
sin 27 = o, or tan 27

=
. _ „„t

:

and consequently the proposed expression is reducible to the

form

(Z'cos0 + M' amO)dd

-/P+ QCOS20

(in which L', M% P and Q are constants), or

XW(sin0) If'rf(eos0)

yP+ Q- 2Q sin2 yP-Q+ 2Qcos
2
0*

each of which is immediately integrable.
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Examples.

I. I cos3 sin20<£0. Ans. -

2. * 8 cos3Ode.
,

5

sin3 sin5
I sir

3. sin5 cos5 <?0. „ - —
j

cos 20 - - cos3 20 + - cos5 20
j

.

fcos*0<?0 cos3 , / 0\
4 '

J"^0- " — + cose + log
^tonjj.

fcos4 0tf0 / 3 \ 1 3, /0\

J(i+x2
)5

\5-3 3 /(l+S2
)*

J,
.. , ,

_ (a + fow)
J>+i

{ (p + 1) &r» - a}

w(jt? + l)(^ + 2)5
2

8. I r*cos3 ar<fr. „ —
J
3 (sin a

- cos #) + cos2#(3sina:-cos3:)(.

f dO A
f

dd

J sin™ cos"
~

sin»»-
1 0cosn

-1
J sinm"2 cos" 0*

determine the values of A and B by differentiation,

(z
2 - a2)*?*f (a;
2 - a^da

''

J (s
2 + a2

)

3

f sin2 <?0

J (I+COS0)
2
'

Jsin

w dd f sinmd> «?d>
-— transforms into 2m_nfl 1

—= ,

(I + COS0)
n

J cos2
"-™^

. sin2 dd
"• \-—:

—
• Ans. 2tan-

where = 2$.
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r dx
I3 '

J {a + b cos *)
2

"

.
- bsinx 2a

, ( /a- £\» a;)^W5 - /I 5T7 1 f + ; tan-1
( ) tan -

.

{a*
-

b*){a + b cos x)
(4

, _ 4,ji
t \« + V 2)

f cosflrffl (j sin 8
, f

n
2 \

14. 1
-

jjj. Ans. -
. tan 1

!
—

.

J (5 + 4 cos 0)
2

9 5 f 4 cos 27 \ 3 /

15. I (sin
1

*:)
4 dx = x

{ (sin*
1
a;)

4 -4.3. (sin
_1

a;)

2 +4.3.2.1}

+ 4\/i -*2 sin" 1
a; {(sin

-1
a;)

2 -
3 . 2}.

z- t. 1 » A .t . « , f(co3x)dx
16. Prove by Art. 74, that any expression of the form . ,

—'—— u
{a + b cos x)

n

capable of being integrated when /(cos x) consists of integral powers of cos x.

17. Show, in like manner, that the expression

/(cos x, ainx)dx

{a + b cos x)
n

can be integrated when /(cos x sin x) consists only of integral powers of cos x
and sin x.

C dx
+

)a + bx + cz*

find the values of P, Q, and H.

fdd
(a + b)d> {a

-
b) sin 2d>

. Ans. >
Y-

-
,

(a cos? + 3 sin2 0)
2 2 (a£)* 4 (a£)*

where tan £ = r tan 0.

20. Find the values of n for which f f
— is integrable in finite

terms.

2 1 . Prove that

x*dx

\/a*n - x2n

— =
. „ , (1

- cos a cos y)
n-x

<

Jo (1 + cos a cos x)
n sin2"-1 a J
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CHAPTER IV.

INTEGRATION BY RATIONALIZATION.

77. Integration of Monomials.—If an algebraic expres-
sion contain fractional powers of the variable x it can

evidently be rendered rational by assuming x = zn
,
where »

is the least common multiple of the denominators of the

several fractional powers. By this means the integration of

such expressions is reduced to that of rational functions.

For example, to find

(1 + xi)dx

I + X*

Let x = s
4
,
and the transformed expression is

z)dz
(
V(i + z

1 +z-

Consequently the value of the integral is

AX%— + 2xh -
^xi + 4 tan"1

^) - 2 log (1 .+ x*).
o

Again, any algebraic expression containing integral
powers of x along with irrational powers of an expression
of the form a + bx is immediately reduced to the preceding,
by the substitution of z for a + bx.

Examples.

Am. Z2L
[5z3 + 6x2 + u + l6

-j
#

Wx-i 5-7

Jxdx
2 (20 + bx)

(a + bxf
"

b*
*/* + b*

J x + y x - 1 Y 3 * V3 '
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78. Rationalization of F(x, </a + zbx + cx2

)dx. It

has been observed (Art. 28) that the integration, in a finite

form of irrational expressions containing powers of x beyond
the second, is in general impossible without introducing new
transcendental functions. "We shall accordingly restrict our

investigation to the case of an algebraic function containing

a single radical of the form */'a + 2bx + ex
2

,
where a, b, c are

any constants, positive or negative.

Integrals of this form have been already treated by the

method of Reduction (Art. 76). We shall discuss them here

by the method of rationalization.

f (gyi /Fw

The expression* ^-7-4 ,
can be made ra-

0W */a+2bx+cx2

tional in several ways, which we propose to consider in

order :
—

(1). Assume «/a + ibx + ex2 = z - x </c. (1)

Then a + zbx = z
2 - 2xz ^/c ; .*. bdx = zdz - */c (xdz + zdx) 9

or dx (b + z a/c)
=
dz(z

- x y^c)
= dz */a + zbx + ex2

;

dx dz . „

(2)

-y/a + zbx + c& b + z^/c

Also x =
~*

(3)

2(b + z*/c)

This substitution obviously renders the proposed ex-

pression rational
;
and its integration is reducible to that of

the class considered in Chapter II.

* It will be shown subsequently that the integration of all expressions of

the form

F(x, *y a + zbx + ex2
)
dx

is reducible to that of the above when F is a rational algebraic function.

It may also be observed that, in general, the most expeditious method of in-

tegration in practice is that of successive Reduction (Arts. 71, 72, 76).
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When b =
o, we get

c?# cfe n s
2 - a . . . .— = ——

,
and a; = —

(see Art. 9).
V « + C#2

S^ C 22^/0

By aid of the preceding substitution the expression

dx

(x
-
p) */a + zbx + ex

transforms into

(Art. 13)

z
2 -

2zp ^/c - a -
2pb

f dx
For example, to find —

.

J (p + qx) y l + x*

z
2 - 1 dx 2<

Here x =
, and

2Z (p + qX) */\ + x* qf + 2pz- q

.
r dx

=
' - io

UzJr P- yp2+f\
J (p + qx) \/i + x2

*/p
2 + £

2

\qz + p + */p
2 + q

2
J

"When the coefficient c is negative the preceding method
introduces imaginaries : we proceed to other transformations

in which they are avoided.

(2). Assume* */a + 2bx 4- ex2 = */a + xz. (4)

Squaring both sides, we get immediately

zb + ex = 2z ^/a + xz2
;

.\ dx(o
- sa)

= 2dz(^/a+ xz)
= 2dz \/a + 2bx + ex2 .

t-t dx 2dz .
,

Hence —====== = . (5)
y/0+2fo? + C#2 C-Z2

* This is reducible to the preceding, by changing x into -, and then em-

ploying the former transformation.
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a j 2(%\/a-b)And x = \
V
_ gZ

>
. (6)

This substitution also evidently renders the proposed
expression rational, provided a be positive.

For example, to find

[•

dx

J X^/l - X2

Assume *y i - x2 = i -
xz, and we get

\7y7^
'

j?
- lo» 2 - los

(

'"

/"^
(3). Again, when the roots of a + ibx + c#2 are real, there

is another method of transformation.

For, let a and j3 be the roots, and the radical becomes
of the form

-v/c (x
-

a) (x
-

j3), or </c(x
-

a)(fi
-

x),

according as the coefficient of x2
is positive or negative.

In the former case, assume */x - a = z */x -
/3, and we

get

a - Bz2
. a _ 3 dx 2zdz

x = '—
; hence x -

/3
= -„ ;

.*. 3 =
,.

1 - z
2 ^

1 - z
2 x - [5 1 - z

2

Accordingly

dx dx 2 dz

\/c(x-a)(x-l3) z{x-^)^
rc t/ci-z*

In the latter case, let ^/x - a = z ^/j5
-

x, and we get

(7)

x =
a + j3s

2

1+21 9

, dx 2 dz
and „ =

§
/8 )

\/c(x-a)(fi-x) */c i+z2
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For example, the integral

f dx

J (p+qx) a/ i -x2

transforms into

}{p + q)z
2 +p-q

i

z2 - I

on making x

The student can compare this method of integrating the

preceding example with that of Art. 13, and he will find no

difficulty in identifying the results.

It may be observed that in the application of the fore-

going methods it is advisable that the student should in each

case select whichever method avoids the introduction of

imaginaries.

Thus, as already observed, the first should be em-

ployed only when c is positive : in like manner, the second

requires a to be positive; and the third, that the roots

be real.

It is easily seen that when a and c are both negative, the

roots must be real
;
for the expression

/
-
7

- lb
2 -ac- (ex -

b)
2

</- a + 2bx - ex*, or /
—

is imaginary for all real values of x unless b
2 - ac is positive ;

i.e. unless the roots are real.

Accordingly, the third method is always applicable when
the other two fail.

From the preceding investigation it follows that the

expression

F(x, */a + ibx + ex
2

)
dx

can be always rationalized
;
F denoting a rational algebraic

function of x and of ^/a + zbx + ex2
.
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Examples.

t dx i
, \/4 + 2a;-V 2-as

'. . Ana. —^ log
—= .

J
(
2 + 3*)v 4~*2 4V» -s/4+2^ +^2-*

2 *

] [(a- + x2)i + *]*'

Assume « = (a
2 + a2)* + x, and we get for the value of the proposed integral

2
A 2 —

3 ~5^*

p* + * v^2 + a;
2 - 2

3. cteV x + v 2 + x2
. Ant.

J 3 Vaj +y/^
4. f xm { (a

2 + x2
)i + x}

n dx.

Making the same assumption as in Ex. 2, the transformed expression is

(z
2 - a2)" (a* +z2

)dz

which is immediately integrable when m is a positive integer.

r <to [(i +«»)* + a?]*
1

[(1 -f s2
)* + a;]"-

1

5 '

J {(i+**)l-*}»
m '

2(»+l)
+

2(»-l)

<&?

>v/a + 2&r + cs2 (\/a + 2&p + ^2 * %v ej

Let -v/* + 2^ + ca;
* ± xV c = z

» then, as in Art. 78, we get

dx dz

\/a + 2bx + cx2 b±z^/e

hence the proposed expression transforms into

dz
&c.

(b ± z\/c)
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79. General Investigation.—The following more

general investigation may be worthy of the notice of the

student.

Let R denote the quadratic expression a + zbx + ex2

;

then, since the even powers of \/R are rational, and the odd

contain */ .R as a factor, any rational algebraic function of x

and of v R can evidently be reduced to the form

p + Q<y~R

F+Q'yi?

where P, Q, P/

, Q* are rational algebraic functions of x.

On multiplying the numerator and denominator of this

fraction by the complementary surd P r - Q
f

vR, the deno-

minator becomes rational, and the resulting expression may
be written in the form

M+N-/R,
where M and JV are rational functions.

The integration of Mdx is effected by the methods of

Chapter II.

at f ,- [NRdxAlso
\N</ Rdx=\—/^',

which is of the form

f f(x) dx

J <p (x) ^/a + zbx + ex2

Let, as before, \/a + zbx + ex
2 = vc(x -

a)(x
-

|3), and

substitute vt —, ^-= instead of x, when the radical becomes

\/c{\-aK' + 2(fjL-an')z + (v- av) z2 } {\ - ftA.' H- 2 (/x~j8aQ z + {v
-

fly')
z2 }

A' + 2u'z + i/'z
2
.

(9)

Again, if the quadratic factors under this radical be made
each a perfect square, the expression obviously becomes

rational.
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The simplest method of fulfilling these conditions is by
reducing one factor to a constant, and the other to the term

containing s
2
.

Accordingly, let

A - aX =
o, fi

-
afi

=
o, fi

-
j3//

=
o, v -

fiv
= o

;

Or fi
=

O, //
=

O, A = aX, v =
fiv.

On making these substitutions the expression (q) becomes

(g-q)«^XV while „ =
«V + PvV

X'+vV X'+vV

In order that a/- cAV should be real, A' and v' must have

opposite signs when c is positive, and the same sign when c

is negative.
It is also easily seen that without loss* of generality we

may assume X = i
,
and v = ± i .

/3 2

Hence, when e is positive, we get x =
^-y, and when

a + /3s
2

c is negative, x = —
.&

i + z
2

These agree with the third transformation in the preced-

ing Article.

More generally, when the factors in (9) are each squares,
we must have

(ji
-

afi')
2 -

(A
-
aX)(v

-
av')

=
o,

or
ju

2 - \v + (Av + vX -
2/ufi) a +

(fi

2 - AV) a2 =
o, (

i o)

and a similar equation with j3 instead of a.

Moreover, by hypothesis, a satisfies the equation

a + 2ba + ca
2 = O.

* For the substitution of y
2 for —— transforms

A.

aA' + fr/V . a+ft/2 .—
= r^- into r ;

.'. &c.
A' + v'z

1
1 +y2
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Accordingly (10) is satisfied if we assume the constants

A, ju, &c, so as to satisfy the equations

/uL

2 -\v =
a, Xv \-\v'-2pfi=2b 9 f/

2 -Xv = c. (n)

Again, solving for f from the equation

x(X + 2flZ + vV) = X + 2[AZ + vz
2

, (12)

we obtain

(v
-
Xv) Z + fl-X[/

=vV - Xv + (X v' + Xv - 2flfl) X + (f/
2 - XV)

=*/a+ 2bx + ex2
. (13)

Also, by differentiation, we gejb from (12),

(X' + 2/llz + vV) dx=2[p + vz-x(fi+ vz) }
dz

= 2 v a + 2bx + cx2 dz
;

dx 2dz

Va + 2bx+ ex2 X + 2/ui'z + vz2
' (H)

Now, since we have but three equations (11) connecting
X, ju, &c, they can be satisfied in an indefinite number of

ways.
"We proceed to consider the simplest cases for real trans-

formations.

(1). Let a be positive, and we may assume v =
o, and

fi
= o

;
this gives

fi
= v «, Xv' = 2 b, XV = - c.

Again, without loss ofgenerality, we may assume v'=- 1,

which gives

\ 1 \' -u 2(z^/a-b)X = -
20, X = e

;
whence x = —^—^ =

—->

c - z*

, dx 2t
and

2*

^/a + 2bx + ex2 - z

These agree with the results in (5) and (6).

[Taj
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(2). In like manner, if c be positive we may assume

v o, fx
=

o, and v =
1,

which gives

fx
= \/c, X = -

a, and X = 2b
;

z
2 - a , cfa> ofe

x = and
2

(ft
+ 2V^) v # + 26a; + c#

2
J + 2^/c

as in (2) and (3).

It may be observed that since these results do not contain

the roots a and j3, they hold whether these roots be real or

imaginary; as already shown in Art. 78.

It is easily seen that if we make fi
=

o, and //
=

o, we

get the third transformation.

80. If the expression to be integrated be of the form

f{x)dx

v/a + 2bx + cx
2

where f(x) is a rational algebraic function of x, it is often

more convenient to proceed as follows :
—

The substitution of 2— for # transforms the proposed

ac - b
2

into
^ c' -. where a'=

ya' + cz
2 c

If the even and odd powers be separated in the expan-

sion of/( 2 - -
J,

it can plainly be written in the form

and the proposed integral becomes

f
<j>(z

2

)dz C z\P(z
2

)dz

J */d + cz
2 J */d + cz

2

The former of these is rationalized (Art. 24), by making

yV + cz
2 =

yz, and the latter by making */d + cz
2 =

y.
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It may be observed that in general the expression

fix") dx

0(#
2

) a/ a + ex*

is also made rational by the transformation

^/a + ex2 = xy.

81. Case of a Recurring Biquadratic under the
Radical Sign.—As the solution of a recurring equation of

the fourth degree is immediately reducible to that of a

quadratic, it is natural to consider in what case an Elliptic

Integral (Art. 28), in which the biquadratic under the radi-

cal sign is recurring, is reducible by the corresponding sub-

stitution.

Writing the expression in the form

$(x)dx (j>(x)dx

*/a +2bx + cx2 + 2 bx* + ax* m \T\ 1 \ , / i\

and, assuming x + - = 2, the radical becomes*/a%
% + 2bz + c-2a;x

, , dx f i
and also — [x—

x \ x

Consequently, in order that the transformed expression
should be of the required type, it is obvious that $ (x) must
be reducible to the form

In this case

transforms into

(-34*-:)

^/a + 2bx + cx2 + 2bxd+ax4

f(z)dz

*Saz
2 + 2bz + c - 2a
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In like manner, the expression

*/a + ibx + ex* - 2 bx* + ax4.

transforms into
^ -

, by the assumption
y/az* -

i

x— = z.
X

When b = o the expression can in some cases be reduoed

by assuming either

XT X

Examples.

C(x
2 -l)dx l+x2 + y/i + z*

, -• Ans. log
-

J xv i + x4- x

C(x
2 + i)dx xz- l+ v/i + tfi

J
i + z2 */i + x*> y 2 \i + x*)

f r+a;8 dx

J I - x2 \/i +x*

i + x1 dx I v/i +a^ + a"v/2

=5* " "7= log
^x4-

*/ 2 i - a?
2

This and the preceding were given by Euler {Calc. Int., torn. 4) : the

connexion, however, of their solution with the method of recurring equations
does not appear to have been pointed out by him.

f (**- »)*» . \A* + x2 + I

a;
2\/^ + #2 + 1

z, &c

(x
2 -

I)

Let x2 + — = z, &c.
xi

*/{x
2 + ax + 1) (x

2 + fix + 1)*

. \/x2 + ax + 1 + */x* +0z +
Ans. 2 log x

f <.-*)*
**.*»-(•).
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[
xdx .3 [2b*

-
3»)

8. t r-7-.. -4«s. — 77^
—: (a + bxf.

J (a+bx)i 10b2
'

^
rl_+_x>

dx _I_ kg y/JT^±^±Xy/3

Ji _ ^y'l +«* + «*
'

v/ 3 1 -a;2

I0 '

J (1 + *4
){(i + *«)i

- a;
2
}*'

" Sm"

\(i + z^jl)

'

Assume x —
(
1 + ic

4
)! sin 0, &c.

11. i . „ surV 1 .

J (1 + s2»){(i +a;2
")"

- z2
}* \(i + *2

»)
2V

I2 -

J (1 + *)i + (x + X)V

Assume 1 + x = z6 .

I3 '

J (i
—

«*)(i +«*)*"

-4w*. —— log ^ i —
+ tan" 1 —-.

4/2 1 - x2 4a/ 2 xy 2

C(i + xi
)dx x

J
(i-«*)» (1 -«*)»

I5 '

J I-X*
'

A
T

, A/l + a;
4 4 ary^N 1 , x^/z

-4«s. — ~
log

Z _ +—— tan- —- .

iyj \ 1 -a;2
/ 2^2 v/l +^4

1 - x2 dx
.6. f_!

J I +

•7. pJ 1 +

2aX+X* ^/ 1 + 2ax + 2^2 + 2az3 + &
i - «#3 <£k

ax2 \/i + 2c#2 + a2 z4

1
,

#a/ 2 (c - a) 4- a/ 1 + 2C#2
4- »* a;

4

/~7 : log
-

,
when c> a.

\/ 2(0-0) 1 + ax2 '

(x</2 {a-cy1 . . /x^/2(a-c)\ ,

„
—

, sin-1 (
—~ —rt

—
] , when a

*/% («
*

0)
V I + «*- /
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CHAPTER V.

MISCELLANEOUS EXAMPLES OF INTEGRATION.

w M „ ^ M cos # + 2? sin # + C)dx
82. Integration of a

;
—

:
-—

.

a cos x + b sin x + c

Let « cos# + b sin # + c = u, then - a sin x + b cos x = —
.

Next assume

A cos # + B sin a? + O = Xu + a— + v,

and, equating coefficients, we have

-4 = \a + fib, B = \b -
fia, C = \c + v.

Solving for A, p, v, we get

_ Aa + Bb
_ Ab-Ba (Aa + Bb) c

A ~
a2 + b

2 ' M "
«2 + &2 ' V ~ C ~

<f + b
2

'

„ f (A cos a; + J5 sin x + C) dx
Hence * —. —

J a cos x + sin x + c

(Aa + 2?&) x Ab - Ba , . . .

*
a2 + &

2
+
~¥T¥~ log (

" cos * + * Bmx + c)

(a
2 + b

2

)C-(Aa + Bb)cC- (Aa + Bb)c C dx

a2 + b
2

J a cos x + b sin x + c

The latter integral can be readily found ; for, if we make
a = r cos a,b = r sin a, we get

a cos x + b sin x = r (cos # cos a + sin # sin a)
= r cos (x

-
a).



-r , ,. /. ficosx, smx) dx mAm
Integration of

-^
;
—r-*

. lOo
a cos x + b sin x + c

On making x - a =
6, the integral reduces to the form con-

"

in Art. 18.

As a simple example, let us take

f (A + B tan x) dx

A A. i

Here

J a + b tan x

A + JB tan x A cos x + B sin x

a + b tail a? a cos x + b sin x
'

and we evidently have

f (A +B tan x) dx (Aa + Bb) x Ah - Ba
a + b tan x a2 + b

2 a2 + b
2

/(cosx, sinx)dx

log(«cos# + 5sin#).

83. Integration of
a cos x + b sin x + c

'

where /is a rational algehraic function, not involving frac-

tions.

As in the preceding Article, assume x = 6 + a, and the

expression becomes of the form

(j> (cos 9, sin 0) d9

A cos 6 + B

Again, since sin2 6 = 1 - cos
2

0, any integral function of sin 6

and cos 6 can be transformed into another of the form

(pi (cos 6) + sin $2 (cos 0).

Accordingly, the proposed expression is reducible to

^(cos 6)d0 <p 2 (cos 6) sin 6 d9

AcosB +B A cos + B

The latter is immediately integrable, by assuming

A cos 6 + B = z.

To integrate the former, we divide by A cos + B, and

integrate each term separately.
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84. Integration of

/(cos x)dx

(«i + bx cos x) (a2 + b2 cos x) . . . . {an + bn cos x)'

where/, as before, denotes a rational algebraic function.

Substitute z for cos x and decompose

m
{ax + bl z)(a2 + b2z) ....(«„ + bn z)

by the method of partial fractions : then the expression to be

integrated reduces to the sum of a number of terms of the form

dx

A + B cos x
f

each of which can be immediately integrated.

Examples.

,. [_* , ^.J. log /L±4^)-A to-1 fci).
J cos x (5 + 3 cos x) 10 \i— sin a;/ 10 \ 2 /

2 *
i

• 2 / 1 r» wnen « > *•
J sin2 a; (a + £ cos a;)

J -a cos a; £2
, /J + ascosaA

Ans. cos-1
[ )

.

(a
2 -*2

)
sin a; (a*-*

2
)* \a + *cosa;/

f dx . tana; £, /ir x\ b2 C dx
3- I

—
, ; ,

, r. Ans. rlogtan -+-)+- I .

J cos2x (a + b cos x) a a2 °
\4 2/ a* J a + bcosx

85. Integration of {/{x)+f(x)}e
x dx.

The expression e*Pdx is immediately integrable whenever
P can be divided into the sum of two functions, one of which
is the derived of the other.

For, let P = f(x)+f{x),

then j e*Pdx =
J" <Pf(x) dx + j &f(x) dx.
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Again, integrating by parts, we have

J e
x
f(x) dx -/(») e

x -
J* e*f (x) dx.

Accordingly,

J I/W+/W} **-</(•)•

For instance, to find

i'^ -riOX.
xY

Here
(i + x)

z
i + x (i + xy

e
r

consequently the value of the proposed integral is .

I T X

Examples.

[. \ e* (cos x + sin x) dx. Am. ex sin x.

f i + x log x „
-

a;2 + i a; - r

3 *

# + i

f *2 + '
.,

4- H^Tp)**
86. Differentiation under the Sign of Integra-

tion.—The integral of any expression of the form <p{x, a)dx,
where a is independent of x, is obviously a function of a as

well as of x.

Suppose the integral to be denoted by F(x, a), i. e. let

F(x, a)
=

/ (j>(x, a) dx,
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Again, differentiating both sides with respect to a, we
have, since x and a are independent,

<P . F(x, a) _ d . <p(x, a)

dadx da 9

or (Art. 119, Diff. Calc),

— (
d ' F

(
x>*)\ _ d . <p(x, a)

dx\ da J da

Consequently, integrating with respect to x, we get

d . F(x, a
) _ C d . 0(ar, a)

da ) da
'

In other words, if

w =
J" (a?, a) dx.

.. du Cdd> _

then — =
-p- ok,

aa J aa

provided a he independent of x ; in which case, accordingly, it

is permitted to differentiate under the sign of integration.

By continuing the same process of reasoning we obviously

get

d»u
[
*>*(x,a)

da«~) dan ^ W

where u =
\4>{x, a)dx, a being independent of x.

For example, if the equation

J
e9*

eP*dx = —
a
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be differentiated n times with respect to a, we get

J'-*-(0(t)

(See Art. 49, Diff. Oalo.).

Again, in Art. 21 we have seen that

(eP* (a sin mx -m cos mx)
e°* sin mx ax =—s

: : -,

m? + or

Accordingly,

f.
. d \

n
(e

*
(a sm mx-m cos mx)

e°* sm ma? efe = [
—

We now proceed to consider the inverse process, namely,
the method of integration under the sign of integration.

87. Integration under the Sign of Integration.—
If in the last Article we suppose <j)(x, a) to be the derived

with respect to a of another function v, i.e. if

, dv

then v =
j<f>{x, a) da.

Also by the preceding Article we have

Hence \v dx = F(x, a) da.

(x} a) dx = F(xy a)

In other words, if

F(x, a)
=

\(j) (x, a) dx,
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then F(x, a) da =
[J (x, a) da] dx. (3)

It may be remarked that the results established in this

and in the preceding Article are chiefly of importance in
connexion with definite integrals. Some examples of such

application will be given in the next Chapter.
88. Integration by Infinite Series.—It has been

already observed that in most cases we fail in exhibiting the

integral of any proposed expression in finite terms. In such

cases, however, we can often represent the integral in the
form of a series containing an infinite number of terms.

An example of an integral exhibited in such a form has
been given in Art. 63.

The simplest mode of seeking the integral o£f(x)dx'm the
form of an infinite series consists in expanding f(x) in a
series of ascending powers of x, and integrating each term

separately : then if the series thus obtained be convergent, it

represents the integral proposed.
It can be easily seen that if the expansion oif(x) be a

convergent series, that of jf(x) dx is also convergent.
For let

f(x) = a + a x x + a2x
2 + . . . anx

n + &c,

then

J.,
» , ayx

7,

a^x* anX"*
1

fix) dx = a x + + + . . . + — + . . .23 n+ 1

Now (Diff. Calc, Art. 73), the expression for f(x) is

a x
convergent whenever — is less than unity for all values

of n beyond a certain number
;
and the latter series is con-

yi ax
vergent provided

— be less than unity, under the same

conditions.

Accordingly, the latter series is convergent whenever the

former is so.
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Examples.

T . 1 C -rl6

+ &C.
f dx _ * I

ij; IjJ ^ i . 3 • 5 £
Jy^i — a;5 i 26 2.411 2.4.6 il

f As /-.
— / 1 sin2 # 1 . 3 sin4 # \

2. 1 .
= 2 \/ sin a; 1 r + + +...).

J y sin a; \ 25 2.4 9 /

f p / 1 pc xn p(p - g)c
2 x2n . \

2. (I + cxn)qx
m 'l dx = xm — + + £^-—^ — + &c. .

89. Expansion of log (1 + 2mcoa% + m2

)
dx.

We shall conclude by showing that the integral

log (1 + 2m cos x + m2

)dx

can be exhibited in the form of an infinite series.

For we have

1 + 2m cos x + m2 =
(1 + mex _1

)(i + mer**-1

).

Hence

log (1 + 2m cos ^ + m2

)
=
log (1 + m^1

)
+ log (1 + me~x>J~l

)

.
= m {e**-

1 + e~
x"Zl

)
-—

(e
2**^ + e

2x
^) + &o.

( m2 ms
\= 2 [m cos a? cos 2X + — cos 30 - &c. .

\ 2 3 J

Accordingly

fi / 2\j ( •
2
sin2# „ sin 337 \

\log(i+2mco8x+m
2

)dx=2lmsmx-m
2—

5— +mz—
5 J. (4)

This series becomes divergent when m is greater than

unity. In that case, however, the corresponding series can be

easily obtained.
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For i + 2m cos x + m2 = m2
1 i + ] (

i + ),

V » J\ ™ J
and accordingly
, , ov , /cOSiC COS 2X COS IX p \
log(i + 2mcosx +m2

)
= 2loe;m + 2[ — +—^--&c. .6V ' 6

V m 2m2
3m3

J

Consequently, when m > 1
,
we have

(\ , 2\ 7 1 fsmx sin 2x sin 3a; \
log(i + 2mcos#+w

2
)a#=2#lo2rm+2 r-—+ a . -... .

J
' °

\ m 2
2m2 3W J

From the ahove it is easily seen that the integral

Jlog(i + acosx)dx

can be exhibited in the form of an infinite series when a is

less than unity : for making a = we haveJ &
1 + m2

log (1 + a cos#)
=
log (1 + 2m cos x + m2

)
-
log (1 + m2

).

The relation between m and a admits of being exhibited

in a simple form ; for let a = sin a, and we get m = tan -.

Making this substitution in (4), we get

log (1 + sin a cos x) dx = 2x log (
cos - 1

(".

a . , , a sin 2X \ , .

tan - sin x - tan2 — + &c. 1. (5)
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Examples.

1(2

cos x + 3 sin x) dx . 12a; 5. ,
). 1-=—?—*—

. -4«s- —
log (3 cos x + 2 sin #).

3 cos x + 2 sm a? 13 13

in
r <?* (x

a -

1
(i

J sin 20 -sin 6

sin4

e* (a;
3 + x + i)dx

„ -tan0 + -—-^ tan-1 (tan 0^/2).
V 12

efx

S7T

log (
1 + cos 0) + -

log (1
- cos 0)

- -
log (1

- 2 cos 0) .

sin- tan -t
2 2

y 2 sin - + 1

1 + sin r* \v:
6. "When x% < 1, proye that

r dx _x 1 **
,

1 . 3 »

J V^Thm? i 25 2.49

. 3 *9 1-3-5 f^
2 . 4 . 6 13

+ - - .;

and when x2 > 1

r <fa
_ =

1 1 1 1 . 3 1 1-3-5 1

J
-v/i + a4 a; 2 5a;5 2 4 9a;

9 2.4.6 13a;
13

7. Prove that

a b + x a2 (b + x)C eax , .(. ,, . a b + x a

and determine when the series is convergent, and when divergent.
8. Prove that

I sin'* adoo = —— +
/*+ 1 I .2 ^ + 3

(A2 + l2)(A
8 + 32) Sin

M+5
q,

1.2.3.4 ,1 + 5

Substitute » for sin"1
a; in the expansion of e

Ksm lx
(Dif. Calc, Art. 87), &c.

snv (a da
sin^w \ (A.

2 + 22
) sin^c

1
/* + 2 2.3 /* + 4

\(A
2 + 22)(\

2 + 4
2
)sin^

P
a>

1.2.3.4.5 /* + 6
"*

[8]
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CHAPTER YI.

DEFINITE INTEGRALS.

90. Integration regarded as Summation.—We have in

the commencement observed that the process of integration

may be regarded as that of finding the limit of the sum of

the series of values of a differential/ (x) dxt
when x varies by

indefinitely small increments from any one assigned value to

another.

It is in this aspect that the practical importance of inte-

gration chiefly consists. For example, in seeking the area of

a curve, we conceive it divided into an indefinite number of

suitable elementary areas, of which we seek to determine the

sum by a process of integration. Applications of finding
areas by this method will be given in the next Chapter.
We now proceed to show more fully than in Chapter I.

the connexion between the process of integration regarded
from this point of view and that from which we have hitherto

considered it.

Suppose (x) to represent a function of x which is finite
and continuous for all values of x between the limitsX and x

;

suppose also that X - xQ is divided into n intervals xx
- x

,

xi - x
lf x3

- x2f . . . X - xn_i; then by definition (Diff. Calc,
Art. 6), we have

Xi-X '

in the limit when Xi = xQ ; accordingly we have

0(#O
- #M =

[xx
-

0j>)(0'(<ro) + fo),
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where e becomes infinitely small along with xl
- x . Hence

we may write

W -
<i>W -

(^i
-

#<>) {^'(«o) + to) ,

(*•)
-
^ (*0 fa

-
»J to'O&i) + £

i) »

</> (a?8)
-

(a?a)
=

(»s
-

<fc) W(& + e2 },

(X)
-

(«fc_i)
= (X - aw) (0>„_i) + f«-i)>

where £
» d . . • e»-i become evanescent when the intervals are

taken as infinitely small.

By addition, we have

<p (X) -
<j> (x )

-
(»i

-
#o) 0'(«o) + («2

-
#i) 0'(a?i)

+ • . .

+ (X - a?»_i) 0'(ar«-i) + (#i
- x

) *o +(a% r^i) fi + . . . + (X- a?„_i) cn-i.

Now if rj denote the greatest of the quantities s
, ci, . . . £M-i,

the latter portion of the right-hand side is evidently less

than (X - x
) r/ ;

and accordingly becomes evanescent ulti-

mately (compare Din\ Calc, Art. 39).
Hence

<p (X)
-

<j> (x )
= limit of

[(a?!
- x ) <j>'(x )

+ (#2- #1) #'(#i) + • • .

+ (X-xn_1)<p'(xn_1)l, (1)

when w is increased indefinitely.
This result can also be written in the form

(f> (X)
-
$ (x )

=
S0'(a>) dfc,

where the sign of summation 2 is supposed to extend through
all values of x between the limits x and X.

91. Definite Integrals, limits of Integration.—
The result just arrived at, as already stated in Art. 31, is

written in the form

f(X)-f(x )
=

\

X
f(x)dx, (2)

where X is called the superior, and x the inferior limit of the

integral.

[8 a]
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Again, the expression

x
dx

is called the definite integral of <j>(x)dx between the limits x
and X, and represents the limit of the sum of the infinitely
small elements (x) dx, taken between the proposed limits.

From equation (i) we see that the limit of

(*i -*o)/W + {*%
~ *0/(*0 + • • • +

(
x '

*n-i)/0»-i),

when ti
- x

,
x2

- x
ly . . . X - #«_i become evanescent, is got

by finding the integral off(x) dx
(i. e. the function of which

f(x) is the derived), and substituting the limits x
,
X for x in

it, and subtracting the value for the lower limit from that for

the upper.
If we write x instead of X in (2) we have

/(*)-/(*)-(" /(«)*. (3)

in which the upper limit* x may be regarded as variable.

Again, as the lower limit x may be assumed arbitrarily, f(x )

may have any value, and may be regarded as an arbitrary
constant. This agrees with the results hitherto arrived at.

In contradistinction, the name indefinite integrals is often

applied to integrals such as have been considered in the pre-
vious chapters, in which the form of the function is merely
taken into account, without regard to any assigned limits.

As already observed, the definite integral of any expres-
sion between assigned limits can be at once found whenever
the indefinite integral is known.
A few easy examples are added for illustration.

* The student should ohserve that in (3) the letter x which rtands for the

superior limit and the x in the element f'{z) dx must he considered as heing
entirely distinct. The want of attention to this distinction often causes much
confusion in the mind of the heginner.
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Examples.

rr» dx. Am.
n + i

f 4 sin dd
2 -

Jo "^7- " ^2 - r -

3* / /=• » ~\/a (v/2 -
I).J

o vn« + V« 3 v yv '

r d%
*_4 *

Jo a2 + s2
' "

2a

f« (fa;

Jo x/a*-x*

6. 1 era* rfa; (a positive).
Jo

.
f

l *
.

JO I + 2X COS
<J>

+ X2

dx
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The first relation is evident from (31), Art. 32.

Again, integrating by parts, we have

fs»-l

(i
-

x)
m-*dx - £ (1 -x)"" + 2^-± L»(i -

x)'

Moreover, since n and m - 1 are positive, the term

a^(i
-

a?)

m_1 vanishes for both limits ;

\ [ ^(i-x^dx = ^—?

[V(i -#)
m~2^.

The repeated application of this formula reduces the in-

tegral to depend on xm*nr~2dxi the value of which is .

Jo m + n - 1

Hence we have

» (« + 1) . .. . (n + m- 1)I
This formula, combined with the equation

J

x»-
1

(1 -x)
m~l dx =

I

aP-> (1
-
«)***>,

shows that when either m or ft is an integer the definite

integral

xn
~l

{i -x)
m-l dx

I
oan be easily evaluated.

When m and n are both fractional, the preceding is one
of the most important definite integrals in analysis.
We purpose in a subsequent part of the Chapter to give

an investigation of some of its simplest properties.

Examples.

'•
I a*{i-x)*dx. Ans. £
; o .> - 7 11

I. \ «*(i -z)idx.

'3
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93. Values of smnxdxa,vkA GO$nxdx.

One of the simplest and most useful applications of

definite integration is to the case of the circular integrals
considered in the commencement of Chapter III.

We begin with the simple case of

&mn xdx.

If in the equation (Art. 56)

f . m . cos # sin"'"
1
a? »- if. ., .

smn# dx = + smn-*xdx
J n . n J

7r . ,. ., ,, , cos a; sinn_1 a;- for limits, tJ

2

for both limits, and we have

we take o and - for limits, the term vanishes
2 n

IT IT

f* . fi — 1 f* .

smn #ete = siD.
n~2 xdx.

Jo w Jo

Now, if n be an integer, the definite integral can be

easily obtained ;
its form, however, depends on whether the

index n is even or odd.

(1). Suppose the index even, and represented by 2m,
then

It IT

J

2 2wi — i rs*

&\Vi
mxdx = sm2m~z xdx.

2m Jo

Similarly,

r^ 2^ — ? fs

sin2wi-2^ = - sin2m
-4
a?^;

Jo 2m-2j

and by successive application of the formula, we get

it

f5
"

• o , I . 3 . 5 . . . . (2m- i) 7T , .

8m2mxdx = ^—
-I

2 s
. -.

(5 )

Jo 2 . 4 . 6. ... 2m 2
w/
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(2). Suppose the index odd, and represented by zm + 1,

then

it it

fT 2m, f*
sin2m+1#dk = sin

2"*"1 # da?.

Jo 2m + ij

Hence, it is easily seen that

P«in"™*«fc - 2.4.6.. 2m
v (6)

Jo 3.5.7 (2m+i)

Again, it is evident from (31), Art. 32, that

cosn x dx sinn #efc,

and consequently (5) and (6) hold when cos x is substituted

for sin x.

it

94. Investigation of sinm#cosn #da>.
Jo

From Art. 55, when m and n are positive, we have

it it

f 2"
. w — 1 P7

.

smni#cosn#d# = &mm xcos>n
-2 xdx9

Jo m + n]o

it it

and ammxco8nxdx = sinm
-2 a;cosn#^.

Jo m + n)

Hence, when one of the indices is an odd integer, the

value of the definite* integral is easily found.

* The result in this case follows also immediately from Art. 92, hy making
cos2 x = z

;
for this substitution transforms the integral into

1 f 1

j
(
1 - z)

m z 2 dz.
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For, writing 2m + 1 instead of m, we have

m

f2

2VYt C%

sin2m+1# cosn# e?# = sin
2"1"1^ cosn # d#.

2«* + n + 1 J

Hence

sin2m+1 ffCOSn #<fo

2m (2m -
2) .... 2

(2m + n+ i)(2m + n- 1)
. . . .

(

2.4.6 ... (2m)

j;

(»+ i)(» + 3) . . . (w + 2m + 1)'

In like manner,

r sin# cosn#d#
^+3)Jo

(7)

7T 7T

T"2 2M I P^"

sin2m#cos2n#d# = —. r sin2w,#cos2n
~2#d#.

Jo 2(m + n)}

Hence
n ir

2

sin2m# cos2n# <fo = .

! ' 3
'^'"

2W "\ 2

sin2m# dx
Jo (2W+2) . . . (2m+2W)J

_
I . 3 . 5 . . . (2tt- i) . I . 3 . 5 . . . (2m- i) 7T ,

g
.

2.4.6 (2W+2W)'2
> V

in which m and n are supposed both positive integers.

Many elementary definite integrals are immediately re-

ducible to one or other of the preceding forms.

For example, on making x = tan 0, we get

[**!_ -LnM = '•3.5.--(*»-3)
.

*
(9)

Jo(l+#
2

)
n

Jo 2 . 4 . 6 . . . (2»-2) 2
W/

Ca -
Similarly, by a? = a sin 0, #w

(a
2 - a2

)

2
d# transforms into

an+m+i

|

2

Sinn0 cos»«+i0^.
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fa

*

{zax -x*)
2
dx,

e

on making x = a (i
- cos 0), becomes

smm« Odd.am+x I ah

The expressions for these integrals, when m and n are

fractional in form, will be given in a subsequent Artiole.

Examples.

f 2* 4*
sin7x cos* x dx. Ans. -

.

Jo 3.5.7. II

*xdx.I sin'j

I

[ (I
- x2

)
ndx.

J

fi a*"

u77f

5 . 10 . 20 . 30 . 40
"

9- 19. 29.39-49*

1.2.3... (»*-*)
" w. (»+i) . . . (n + m- 1)*

2.4.6... (2n)
"

3.5.7..- (2»+l)*

1 a2»<fa; i . 3 . 5 . . . (in
-

—
7

• »>

•y^i-*2 2.4.6... 2»

6.

1 a.2n+l^ 2 . 4. . 6
»»

Jo^Ta/i-*2 3.5 .7... (2n+i)

7. Deduce Wallis's value for * by aid of the two preceding definite integrals.

• x»dx A
2 . 4 . 6 ...(»- 1) 1

8. . Ans. ,

, (.+»^H 3.5.7.... » a/"*"1

when n is an ocfc* integer.

9. I ^{zax-xrfdx.
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95. Value of I r* xn dx, when n is a positive integer.

In Art. 63 we have seen that

e~
x xn dx = - e~

x xn + n e~
r xn

~1 dx.

of
1

Again, the expression
— vanishes when x =

o, and also

when x = 00 (Din
2
. Calo., Art. 94, Ex. 2).

Hence erx xn dx = n e~
x xn

-l dx. (10)

Consequently \ e^x" dx = 1 . 2 . 3 . . . n. (11)

Many other forms are immediately reducible to the pre-

ceding definite integral.
For example, if we make x = az we get

jW*-
1

-^;--"
, (.2)

in which « is supposed to be positive.

Again, to find %m (log x)
n dx ; let x = e"

z
, and the in-

tegral becomes

(- 1)" ["#***»** =
(- 1)*

I

;

2 ' 3
;';

n
.

•

Jo (w+i)»
+l

Since log a? = -
log (

-
],

this result may be written in the

form
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The definite integral e~*afi*cb is sometimes known as

The Second* Eulerian Integral, and is fundamental in the

theory of definite integrals. Being obviously a function

of n
} it is denoted by the symbol T[n) 9

and is styled the

Gamma-Function.
It follows from (10) that

'

l\A

r{n+ i)
=
nr{n). (14)

Also, when n is an integer we have

r(n+ 1)
= 1 .2.3 .. .n. (15)

Again, when x is less than unity, we have

= 1 + x + x* + x* + &c ;

1 - x

log#.
=

loga?(i +x + x* + ...)dx

(by a well-known result in Trigonometry).
In like manner we get

I

1

log x dx IT
2

, I + X 12

An account of the more elementary properties of Gamma-
Functions will be given at the end of this Chapter.

* The integral I xm~l
(1
-

a;)
w- 1

dx, considered in Art. 92, is sometimes called
Jo

the First Eulerian Integral ;
we shall show suhsequently how it can he ex-

pressed in terms of Gamma-Functions.
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Examples.

I

|
log f -

] |
dx. Ans. i . 2 . 3 ... ft.

*xn dx.
i . 2 . . . n

(log a)

IT
2

f
1 ^ (log a)

2""1
,

. T I I "1

f
1 dx . 1 1 + x\ ir

2

\
— log (

I . Ans. — .

J x
b

\i -xj 4

96. If u and v be both functions of x
9
and if v preserve the

same sign while x variesfrom x to X, then we shall have

rx ex
I uvdx » U I vdx,
J *o J x

where TJ is some quantity comprised between the greatest and the

least values of u, between the assigned limits.

For, let A and B be the greatest and the least values of

u, and we shall have, when v is positive,

Av > uv > JBv ;

when v is negative,

Av < uv < Bv.

Consequently, for all values of x between xQ and X the

expression uvdx lies between Avdx and Bvdx, and accord-

ingly, if the sign of v does not change between the limits,

rx
t

rx rx
uvdx lies between A \ vdx and B vdx,

JXq J Xq J Xq

which establishes the theorem proposed.
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Cor. If f(x) he finite and continuous for all values of a?

between the finite limits x and X, then the integral

r rw*

will also have a finite value.

For, let A be the greatest value of f(x), and B the least,

then f{x)dx evidently lies between the quantities

rx rx
A dx and B\ dx;

Jx JxQ

.•i f{x) dx>B{X- x
)
and < A (X - x

).

97. Taylor's Theorem.—The method of definite inte-

gration combined with that of integration by parts furnishes

a simple proof of Taylor's series.

For, if in the equation

f(X +
h)-f(X)=^ f(x)dx

we assume x = X + h -
z, we get dx = -

dz, and also

CX+h rh

f{x)dx = f{X + h-z)dz;
JX J

.-. ,/(X + h) -f{X) = P/'(X + h -
z)dz.

Again, integrating by parts, we have

\f\X + h-z)dz = zf{X + h-z) +
\ zf\X + h- z)dz.

Hence, substituting the limits, we have

JV(X + h -z) dz = hf\X) +
J"
zf(X +h-z) dz.
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In like manner,

\zf(X
+ h- z)dz^f(X + h-z) +^f"(X+h-z)dz,

which gives

[

h

znX+h-z)d* = -f'(X)+[
h

-f'\X + h-s)d*;
Jo 2 J o 2

and so on.

Accordingly, we have finally

ax + h) =/(x) +i/(2) + JLr<n+.~. +
jjrr/^'KJ)

+
fA z*1

"1 dz

Jo/<.>(x
+
*-,)£* ( l6)

This is Taylor's well-known expansion
*

98. Remainder in Taylor's Theorem expressed
as a Definite Integral.—Let Bn represent the remainder

after n terms in Taylor's series, then by the preceding Article

we have

/W(
x+
*-,)g ( I7 )

There is no difficulty in deducing Lagrange's form for

the remainder from this result.

For, by Art. 96, we have

J # I. 2. 3.. .(»-!) i.2...n

where U lies between the greatest and least values which

fW (X + h -
z) assumes while z varies between o and h.

* The student will observe that it is essential for the validity of this proof

(Art. 90), that the successive derived functions, /'(#), /'#'(?)» &c., should be

finite and continuous for all values of x between the limits X and X + h.

Compare Articles 54 and 75, Dif. Calc.
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Hence, as in Art. 75, Diff. Calc. (since any value of z between
o and h may be represented by (1

-
6) h, where > o and < 1

) ;

we have

Bn = - /W(X+0h)
1 . 2 . . . n v '

where is some quantity between the limits zero and unity.
99. Bernoulli's Series.—If we apply the method of

integration by parts to the expression f(x)dx we get

\f(x)dx
= xf[x)-[xf(x)dx;

/.
Jy(s)

dx = Xf(X) -/*/(*)
*<fe

In like manner,

and so on.

Hence, we get finally

]"*/(«)*
=f/(X) -

^/(X) +J—r/TX)-4c .- (18)

Compare Art 66, Diff. Calc, where the result was obtained

directly from Taylor's expansion.
100. Exceptional Cases in Definite Integrals.—

In the foregoing discussion of definite integrals we have sup-
posed that the function fix), under the sign of integration,
has a finite value for all values of x between the limits. We
have also supposed that the limits are finite. "We purpose now
to give a short discussion of the exceptional cases.* They may

* The complete investigation of definite integrals in these exceptional cases

is due to Cauchy. For a more general discussion the student is referred to

M. Moigno's Calcul Integral, as also to those of M. Serret and M. Bertrand.
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be classed as follows:— (i). When/(#) becomes infinite at

one of the limits of integration. (2). "When /(a?) becomes
infinite for one or more values of x between the limits of

integration. (3). "When one or both of the limits become
infinite.

In these cases, the integral f(x)dx may still have a

finite value, or it may be infinite, or indeterminate : depend-
ing on the form of the function f(x) in each particular case.

The following investigation will be found to comprise the

cases which usually arise.

101. Case in which /(a?) becomes infinite at one of
the Limits.—Suppose that f(x) is finite for all values of x
between x and X, but that it becomes infinite when x = X.

The case that most commonly arises is where f{x) is of

the form
.jl'

,
in which \p(x) is finite for all values

(Jl
-

x)
between the limits, and n is a positive index.

Let a be assumed so that \p(x) preserves the same sign
between the limits a and X; then

(
x

^{x)dx _ f' \jj{x)dx [

x
\fj{x)dx

(X-x)
n

J a (X

The former of the integrals at the right-hand side is

finite by Art. 96. The consideration of the latter resolves

into two cases, according as n is less or greater than unity.

(1). Let n < 1, and also let A and B be the greatest
and least values of \p(x) between the limits a and X : then,

by Art. 96, the integral

t^M—r- lies between A 7= r- andB -7= r-,

Moreover, since n < 1, we have evidently

C
x dx _ (X -

a)
l-n

J a (X-*)»~ i-n '

and consequently, in this case, the proposed integral has a
finite value.

[»]
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(2). Let n > 1, and, as before, suppose A and B the

greatest and least values of \p(x) between a and X; then

1:
, Jl lies between A y= r- and B ,-==- :-.

{X-x)
n

) a {X-x)
n

) a {X-x)
n

Again, we have

fdx
i

(X-x)n== (n- i)(J(X-x)
n

(n- i)(X-x)
n-1

Now 7= r
—

7 becomes infinite when x = X, but has a
(X -

x)
n~l '

finite value when x = a
; consequently the definite integral

proposed has an infinite value in this case.

f dx
When n =

1, -^=
r = -

log (X -
x). This becomes

J (JC
—

x,

infinite when x = X
;
and consequently in this case also the

proposed integral becomes infinite.

The investigation when f(x) becomes infinite for x = x

follows from the preceding by interchanging the limits.

102. Case where f(x) becomes infinite between
the Limits.—Suppose f{x) becomes infinite when x =

a,

where a lies between the limits x and X; then since

f f(x) dx m
\

a

f{x) dx+\ f (x) dx,

the investigation is reduced to two integrals, each of which

may be treated as in the preceding Article.

\L(x)
Hence, if we suppose f(x) =

. . n ,
it follows, as in

the last Article, that f(x)dx has a finite or an infinite
JXq

value according as n is less or not less than unity.
The case in which.f(x) becomes infinite for two or more

values between the limits is treated, in a similar manner.
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For example, if

f((h)
= », /(«»)

=
oo, . . . /fa) - oo,

where au a% . . . an lie between the limits X and # ; then

c
x

c
a
\ f°2 f

z

f(x)dx = f(x)dx+\ f(x)dx + &Q. +
\

f(x)dx,
}x J* *K Ja»

each of which can be treated separately.

103. Case of Infinite Limits.—Suppose the superior

limit X to be infinite, and, as in the preceding discussion, let

f{x) be of the form .

*J
;

,
where $(x) is finite for all values

of x.

As before, we have

f(x)dx= f(x)dx + \ f(x)dx.

The integral between the finite limits x and a has a finite

value as before. The investigation of the other integral con-

sists again of two cases.

(1). Let n > t, and let A be the greatest value of ^(x)
between the limits a and 00, then

f "dj(x\ dx f

, . is less than A
Ja(*-«)

n
Jo

dx

(x
-

a)
n

[

x dx 1 1
_

1 1

J a (x
- af n-i L(a

-
a)""

1

(X -
a)-*J

The latter term becomes evanescent when X= 00 : accord-

ingly in this case the proposed integral has a finite value.

In like manner it is easily seen that if n be not greater than

unity, the definite integral

C
x

dx

) a.{x-a)
n

T9a]
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has an infinite value ; and consequently

("" \p(x)dx

is also infinite, provided \p(x) does not become evanescent for

infinite values of x.

Hence, the definite integral

\p(x)dx

Jx (x
-

a)
n

has, in general, a finite or an infinite value according as n is

greater or not greater than unity : \p(x) being supposed finite,

and x being greater than a.

IfX become -
oo, a similar investigation is applicable; for

on changing x into - x
9 we have

f(x)dx =
-\ f(-x)dx,

Jx J-*

in which the superior limit becomes oo.

104. Principal and General Values of a Definite

Integral.—We shall conclude this discussion with a short

account of Cauchy's* method of investigation.

Supposef{x) to be infinite when x = a, where a lies be-

tween the limits x and X ; then the integral / (x) dx is re-

garded as the limit towards which the sum

fa-fit
fZ

f(x)dx+ f{x)dx
JX Ja+vc

approaches when e becomes evanescent
; jm and v being any

arbitrary constants.

* This and the four following Articles have been taken, with some modifica-

tions, from Moigno's Calcul Integral.
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This value depends on the nature of/(#), and maybe
finite and determinate, or infinite, or indeterminate.

If we suppose fi
=

v, the limiting value of the preceding
sum is called the principal value of the proposed integral ;

while that given above is called its general value.
ex

flx
For example, let us consider the integral

—
.

Here I* *-fcmt [[*- + H*!

Also, making x = -
2,

—
islogf—1; while

its general value is log (
—

j

+
logf-j.

The latter expres-

sion is perfectly arbitrary and indeterminate.

('X

tfx
-r.

-^0 x

- £$-=-i—I

.*. -r = limit — + —
.

J-*o
x2

Li«£ ve X xj

Consequently, both the principal and the general value of the

integral are infinite in this case.

* dx _ 1 1
<

_a: «2

/U£ #
'
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In like manner,

Hence the general value of the integral is infinite, while

its principal value is -
(

— - — \

It may be observed that the principal value of

J_^-
is equal

to|^-.
This holds also whenever f{x) is a function of an odd

order: i.e. when/(- x)
= -/(#).

For we have

f f{x)dx=\

X

°f(x)dx +
f° /(*)<fo.

J-*o J° J-*

But r /{»)& = - r /(
-

x) dx = r°/( -a& ;

J^o J*o Jo

.-.
\*° Ax)dx=\

X

°{f(x) +f(-x))dx. (19)
J -* Jo

Accordingly, if/(- #)
=
-f(x), we get

f*0
f(x) dx = o.

J-*o

Again, iffix) be of an even order, i.e. if/(-%) =/(#)> we
have

f*0 f*0

/(#) da? = 2 /(#) d#.

105. Singular Definite Integral.—The difference

between the general and the principal value of the integral
considered at the commencement of the preceding Article is

represented by
Ca + fie

f(x) dx,
Ja + ve

in which /(a) =
00, and e is evanescent.
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Such an integral is called by Cauchy a singular definite

integral, in which the limits differ by an infinitely small

quantity. The preceding discussion shows that such an in-

tegral may be either infinite or indeterminate.

1 06. Infinite JLimits.—If the superior limit be infinite,
1

regard f(x) dx as the limit of f(x) dx, when e becomes
J #n J *0

we

evanescent.

Also f(x) dx = limit of f(x) dx when s is evanescent.

In the latter case the value of the definite integral when

fi
= v is, as before, called the principal value of

I f(x)dx.

In this we assume thatf(x) does not become infinite for

any real value of x.

fix)
107. Example.—Suppose '-^j\

*°^e a ra^onal algebraic

fraction, in which f(x) is at least two degrees lowering than

F(x), and suppose all the roots of F(x) = o to be imaginary,
it is required to find the value of

r /M ,

From the foregoing conditions it follows that ==4 cannot
l<[x)

become infinite for any real value of x : accordingly the true

value of the integral is the limit of

when £ vanishes.
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f(x\

To find this value, suppose 4nr4 decomposed by the me-

thod of partial fractions, and let

A-B^/^l . A + By^l-= and
x - a - b^/- i x - a + b*/- i

he the fraotions corresponding to the pair of conjugate roots

a + by/- i and a - b^/~ i, of F(x) = o
;

then the corresponding quadratic fraction is the sum of

A - By^i . A + By~i
and

x - a -
b*/- i x - a + by/- i

2A (x
-

a) + 2Bb
1,e *

(x
-

a)
z + b*

'

1

•*• I T : xi r?
= 2ttB when e vanishes.

}-—(x -
a)

2 + b
2

1

•'•

j m± (A
. _ ay + J»

" °g
( v

2

(1 + ^ E
)

2 + 6y6»)

= 2^4 log-, when e = o.
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i

r™ {2A{x-a) + 2B}dx fu\
Hence )

' '— = 2^ log
^ + 2tt5. (20)

m«

Now, suppose F(x) to be of the degree in in #, and let the

values ofA and B, corresponding to the n pairs of imaginary-

roots, be denoted by A l9 A2, . . . Any and Bly B%)
. . . Bm re-

spectively ;
then we have

1

fte

+ 27r(i?1 + i?2 + • • • + i?n).

Again, since f(x) is of the degree 2n - 2 at most, we have

Ai + A2 + . . . + A„ = o.

For, if we clear the equation

f(x) 2A x (x-a x) + 2J#A 2An (x
- an) + 2Bnbn

F (x) [x
-
atf + bx

2
(x

- anf + bj

from fractions, the coefficient of x2*1"1 at the right-hand side is

evidently

2 (Ax + A2 + . . . + An) ;

which must be zero, as there is no corresponding term on the

other side.

Accordingly we have, in this* case,

[.^)*"
2' (2,, + * +, -- +A)- (2I)

* It may be observed that when f(x) is hut one degree lower than F(x) y

the principal value of I "L. dx is still of the form given in (21).
J -» * [x)
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"We prooeed to apply this result to an important example,

r x2md

Jo i+%
x2m dx

1 08. Value of —— when m and n are Positive

Integers, and n > m.

Let a be a root of x2n + 1 = o, and, by Art. 37, we have

2WO'""1 2U

Again, by the theory of equations, a is of the form

iik + iW •— . (2k + iW
cos — + a/- 1 sin s —

,

in 2n
•

in which k is either zero or a positive integer less than n ;

.*. a2m+1 = cos (2k +1)6 + a/^~i sin (2k + 1) 0,

where = .

2n

Hence B =— —
; and accordingly we have

2n

^! + B2 + . . . + Bn =— (sin + sin 30 + . . . + sin (2w
-

1) 0) .

2W

To find this sum, let

8 = sin + sin 30 + . . . + sin [m -
1) ;

then

2#sin = 2 sin
2 + 2 sin sin 30 + . . . + 2 sin sin (2»

-
1)

= 1 - cos 20 + cos 20 - cos 40 + . . . + cos [in
-

2)
- cos in9

if
= 1 -cos in9= 2sin2w0 = 2sin2

(2m+ 1)
- = 2

;

...s- sm0 . 2»» + i)ttsm —
2n
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i + x2n

Accordingly, we have

r x2m dx y

J ,. I + #2"
"

• (2m+l)7T*J w sm —

Hence, by (19),

,a>

x?
m dx if" a2OT

flfo tt i

i + #2n
~

2J_w i+a;
2/*
"

2w . (2m + i)tt"
^
22 '

sm
2W

"We now proceed to consider the analogous integral

("

x2m dx
-, where m and n, as before, are positive integers,

»
1 *" x

and n > m. ^
f* #2ff*

109. Investigation of —-—-dx.
Jo * ~ x

"We commence by showing that

fdx
This is easily seen as follows :

r" e?# r
1 d# r" dx

J 1-0* ~J I -«" Jil -#3
'

Now, transform the latter integral, by making x = -, and

we get

Jll-Vjll-*" Jol ~^" JoI-^
;

.*. =
- o.

Again, proceeding to the integral

r x2m

L 1 -
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we observe that i + x and i - x are the only real factors of

i - x2n
, and that the corresponding partial quadratio fraction

in the decomposition of

xim . I

is
i - x*n n ( i - x2

)

Consequently, the part of the definite integral which corre-

sponds to the real roots disappears.

Moreover, it is easily seen that the method of Arts. 107
and 108 applies to the fractions arising from the n - 1 pairs
of imaginary roots, and accordingly

x%m dx ,_ _ „ .- = 2tt{Bx + B2 + . . . + ftuji

where Bl9 B2, . . . Bn.\ have the same signification as before.

Again, since the roots of xZn - 1 = o are of the form

kir /
—

. kir
cos— ± a/- 1 sin —,

n n

it follows, as in Art. 108, that

Bx + Bt + . . . + 2?„_i = — [sin 2d + sin 40 + . . . + sin 2 (n
-

i)0],
211

_ n (2m + i)tt , -

where = —
,
as before.

271

Proceeding as in the former case, it is easily seen that

sin 20 + sin 40 + ... + sin 2 (n
-

1)

COS0 -cos (2ft- i)0 . 2m + 1- cot ir.

2 sin 2n

Hence
x2mdx
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Again, if we transform (22) and (23) by making x~
n = z

_ 2m + 1 ,

and a =
, we get

2U °

Cza~l dz 7T C*za
- l dz

, v=
,

= 7TCOta7T. [24]
J I+8 BinflJT J 1

- z

The conditions imposed on m and w require that a should

be positive and less than unity.

Moreover, since the results in (24) hold for all integer
values of m and n, provided n > my we assume, by the law of

continuity, that they hold for all values of a, so long as it is

positive and less than unity.
1 10. The definite integrals discussed in the two preceding

Articles admit of several important transformations, of which
we proceed to add a few.

For example, on making u = za in (24), we get

f" du a-n- f" du ,

i
= -

; 1
= air cot

J 1 + ua sin air Jo 1 -ua
aw.

If - =
r, these become

a

fdu
ir f" du IT . IT . ;

rsm
r

where r is positive and greater than unity.

Again

["
xn dx _ p

xndx C xn dx

Jo 1 + & Jo 1 +x2+ ) x i +zz
'

Now, if in the latter integral we make x = -, we get
z

p*
xn dx

_ _ f° z^dz _ f
1 x^dx

J , I + X2
"

J , I + S
2
"

I

"
#n e?#

1 +

1 + ar
dx.

(2.6)
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Moreover, from (22), when n is less than unity, we have

(27)

x"dx

I « i + x2 nw
2 cos

2

Accordingly

X + X~l X W7T
2 cos—

2

(28)

In like manner, it is easily seen that

= — tan— . (29)

'
X
X*

1 - ST" dx 7T , M7T

2

It should he noted, that in these results n must he less than

unity.

Again, transform (28) and (29) hy making x = e~
irZ and

nw =
a, and we get

r e
az + e-az 1 a C e

az -e~az
1

1
,

a
, N

-cfe=-sec-, — -efe=-tan- (30)
J enz + e** 2 2' J e

nz - e~*
z 2 2

We add a few examples for illustration.

Examples.

r a dx it

J ,
i#

'

. 7T*

(a* — sc
n

)
n wsin-

dxf dx

Jo^ +a^ + i2?

3- ti
dx

2ab (a + b)

IT

&

ta.nn 9d9, where n liea between + I and - i.

Jo nir
2C08—

2
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C l x"*+x'm dx ,
I

,
where n > m. Ans.

Jo xn + xr n x
in cos—

zn

a b
2 cos - cosf« (eax + e-ax\(^bx _|_ e-bx) 2 2

1 ax. ,, .

Jo en* + e~vx cos + cos b

fJo
(
e«T + p-ax^bx _ e-bx\ ^ $

ax.
enx _ g-n-x cosa + cos 6

It should be observed, that in these we must have a -f b < ir.

8. Hence, when b < ir, prove that

I cos ax ax =
Jo eTT' + e-K*

cos axdx
Jco ct* - em*

ebx 4. e-5x

sin ax dx =

U* + *
2

Jcos^
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Au =
[<j>(x, a + Act)

-
<p(x, a)}dx;

• — « f

*
^(^ a + Aa) -0(a?, a)

Aa J a Aa

Hence, on passing to the limit,* we have

du _ Cb dtp (x, a)

da L da

Also, if we differentiate n times in succession, we ob-

viously have

d^u =
f» ^(a?, q)

tfa* Ja tfa
n

The importance of this method will be best exhibited by a
few elementary examples.

112. Integrals deduced by Differentiation.—If
the equation

p
OB

e~
ax dx = -

Jo a

be differentiated n times with respect to a, we get

JVr»«fa-
'- 2

air- -,

as in Art. 95.

Again, from the equation

f
"

dx \ 7T 1

Jo #2 + a
~

2 fll*

we get, after n differentiations with respect to a,

P" db _ 7r 1 . 3 . 5 . .. (in -
1) 1

Jo (X*
+

fl)

n+1 "22.4.6... 2tt 0^i
;

which agrees with Art. 94.

* For exceptions to this general result the student is referred to Bertrand's

Calcul Integral, p. 1 8 j .
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Again, if we take o and oo for limits in the integrals (23)
and (24) of Art. 21, we get

Je"
ax cos mx dx = — =, e"

ax sin mx dx = —
,. (31)a?+m2

Jo a2 + m2 v '

Now, differentiate each of these n times with respect to a>

and we get

fax xn cos mx fa m t
j
\n f \ ( g \

Jo \daj \a
2 + my

|_w.cos(w
+ i)0

(a
2 + m2

)'

Ti »

f — « • ^ » . sin (w+ i)0

n+_l > U 2
/

(a
2 + m2

)
^

where w = a tan 0. (See Ex. 17, 18, Diff. Calc, pp. 58, 59.)

Next, from (24) we have

r x^_dx _

Jo 1~X~
COt «7T.

Accordingly, if we differentiate with respect to a, we have

(

°°

af^1

log x dx _ 7T
2

Jo 1 - x sin
2
air'

Again, if the equation

JV*-i
be transformed, by making y = 7-, it evidently givesa + ox

x71^ dx 1r of-1

Jo (a + i

[10]
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Now, differentiating with respect to a, we have

J (a + bx)
M2

~
n(n + i)a

2
6»'

If we proceed to differentiate m - i times with regard to

a, we have

f" x"

lo (a +

af'^dx i . 2 . 3 . . . (m-i)
o (a + bx)

m+n
n.(n+ i)(n + 2) . . . (n + m -

1)

'

am 6
n *

113. By aid of the preceding method the determination
of a definite integral can often be reduced to a known integral.
We shall illustrate this statement by one or two examples.

Ex. 1. To find

j:

log(i + sin a cos a*)~—~-—~~~""""——~~~^^^— ax.
cos#

Denote the definite integral by u, and differentiate with

respect to a ; then

du

da

f* cosaefo .,
.

, rt
.

=
:

= 7T (by Art. 18).
J 1 + sm a cos x s '

Hence, we get

dxlog(i + sin a cos a?

I?
= 7ra.

COS#

No constant is added since the integral evidently vanishes

along with a.

-™ e~
ax sm mx 7

J.
In this case

a
e"
ax cos mx dx

dm Jo a2 + m?

f dm . fm\
.\ u = - - tan"1 —

.

Ja
2 + m2

\aj

No constant is added since u vanishes with m.
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Ex. 3. Next suppose

4- n?^
dx.

-.
log(i + #V)

Here
da

1 + &V

2ax2 dx

(1 + a2

x*)(i + b
2 x2

)

1 r r 2adx
_
r zadx "I

J 1+6V J i+aVj-62

I /fl \ 7T
(

_w f da
U
~b}aT

- =
I" log (a + J) + const.

To determine the constant : let a = o, and we obviously
have u = o.

Consequently, the constant is - ? log b;

The method adopted in this Article is plainly equivalent
to a process of integration under the sign of integration.
Before proceeding to this method we shall consider the case

of differentiation when the limits a and b are functions of

the quantity with respect to which we differentiate.

114. Differentiation where the Limits are Va-
riable.—Let the indefinite integral of the expression

<p(x, a)dx be denoted by F(x, a) ; then, by Art. 91, we have

rb

u =
<j>(xt a) dx

= F(b, a)
-
F(a, a);

du d . F(b, a) , ,. .

[10 a]
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and — = - = -d>{ai a).dx da r\ > /

Again, taking the total differential coefficient of u re-

garding a and b as functions of a, we have

du f
b
d<j>(x, a) du db du da

da ja du db da da da

1*

d<b(x. a) _ .. s db . .da ,
.

,^*+*<*. «)£-(*«)£• (33)

By repeating this process, the values of— ,
—

, &c, can

be obtained, if required.
115. Integration under tbe Sign of Integration.—

Eeturning to the equation

u =
<f>(x, a)dx,

where the limits are independent of a, it is obvious, as in

Art. 87, that

uda =
<i>(®, a) da dx,

provided a be taken between the same limits in both cases.

If we denote the limits of a by a and al} we get

uda =
<J>(%, a) da dx,

Ja Ja\_Ja J

(p(x, a)dx \da= <p(x, a) da \dx. (34)or

This result is easily written in the form

' a x ft

<j>(xt a)dxda=\ <j>(x, a)dadx, (35)
J a Ja Ja J a
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These expressions are called double definite integrals, as in-

volving successive integrations with respect to two variables,

taken between limits.

It may be observed that the expression

'da

is here taken as an abbreviation of

<j>(x, a)dX(
J aa Ja

.c
(j)(x, a)dx da,

in which the definite integral between the brackets is sup-

posed to be first determined, and the result afterwards

integrated with respect to a, between the limits a and a x .

The principle* established above may be otherwise stated,

thus : In the determination of the integral of the expression

<j>(x, a)dxda

between the respective limits x0i xx ,
and a

,
a x ,

we may effect the

integrations in either order, provided the limits of x and a are

independent of each other.

In a subsequent chapter the geometrical interpretation of

this, as well as of a more general theorem, will be given.
We now proceed to illustrate the importance of this

method by a few examples.
1 1 6. Applications of Integration under the Sign J.

Ex. i . From the equation

we get

i

1

, J i

x*'
1 dx = -

££*•*- C*-*®
* It should be noted that this principle fails whenever 4>(a?, a), or either of

its integrals with respect to o, or to x, becomes infinite for any values of x and a
contained between the limits of integration. The student will find that the

examples here given are exempt from such failure.
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Henoe

Again, if we make x - e~
z in this equation, we get

£=**£*&
Ex. 2. "We have already seen that

Je
-"* cos m#cfo; = -= -

o a3 + m%

Henoe

feudal cos m#d# =
„

a a
=

JLa J Ja «2 + ^2

I . (a? + m2\

or cosmxdx = - log —
r = .

Jo • 2
&W + m2

J

Ex. 3. Again, from the equation
/.OS

er
* sin »Mrdb = -= -,

J a* + m29

we get

Jo J« J ao
a2 + m2 '

sin mxdx = tan-1
(

—
)
- tan"1

[
— \

Jo x \mj \mf

Compare Ex. 2, Art. 113.
If we make ao = o and a x

= 00 in the latter result, we
obtain

J

sin ma? , 7T
dx = -.

x 2
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e~
x2dx.

Ex. 4. To find the value of

f e~
xa dx.

Denoting the proposed integral by k
}
and substituting

ax for xy we obviously have

[
e-**

x°adx = k;

.-. f e'^^adx = ke-°-\

[ e°-*^x*)adadx=k
[

e~
a*da - 7c

2
.

J
2I+08

2j I+»2
4

Hence f'*'

\ tr^dx-k^-^/H. (36)
Jo 2

This definite integral is of considerable importance, and
several others are readily deduced from it.

117. For example, to find

Hence

But

-X*
Z2
dx.

Here

(A) •-£

du _ f" -«a

-ji dx

da Jo x2
'

Again, let s =
-, and we getx
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.'.
— = - 2M

; hence w = Ce*2a.

da

To determine (7, let a = o, and, by the preceding example,

i# becomes ^— .

2

Consequently

]/ -^=Y e
"2a

- (37)

Again, to find

(B) m -
j

<r°
9*9cos ibxdx.

Here

— = - 2 I e""
*3©^ 2&i?#dk.

But, integrating by parts, we have

f n*r* • t 7 e BiIL2bx 2b f _-, , _

2
\
e~
a x sm 2bxxdx = = + — e-°

* cos 2bxdx:
J a2 a2

J

.*. e"°
2a;a sin 2bxxdx = -r e

-03*3

cos 2&rflfc.

Jo a2

J o

Heroe

du _ 2bu du _ 2bdb

db~~~tf'°
T
^"

=
"*"*

Hence u = Ce a
*;

Also, when b = o, u becomes —— ;

2a

.'. [ e-"'*' cob 2bxdx =
YLe~

a\ (38)
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Again, if we differentiate n times, with respect to a, the

equation

t
e~
aX*dx

2>/a

and afterwards make a =
i, we get

i . z . s .. . (m- i)

(C)

Next, to find

(0)

We obviously have

/"

cosmxdxC cosm

Jo i +

ae-ft3M4 =
i + xi >

-j:
a e~a2 (

1+a;2
) cos mxdx d<

But, by (38), we have

2 e^*** cos mxdx

.'. */v e~
aZ~wda

f cos mxdi
a = r

Jo 1 + sr

= -— e ^
a

)
m
cos m,

1 +

cos mxdx
,2

Hence, by (37), we have

fcos~i

cosmxdx

+ X" 2

Again, differentiating with respect to m, we obtain

'sinmxdx ir _#sn

Jo 1 + af
e '".

(39)

(40)
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Theorem of Frullani.

ir

f 2 7T
= log (sin 2&)dQ

—
log 2.

Jo 2

Again, if 2 = 20, we have

ir

log (sin 20)e?0
= -

log (sin z)dz
2J

= -
log (sin z)c?s +

-
log (sin s)cfe ;

2 J 2 J
7T

2

but, since sin (n
-

z)
= sin 2,

log (sin s)cfe
=

log (sin s) cfe.

2"

Consequently
ir ir

['log
(sin 20)d0

=
['log

(sin 0)48 ;

155

.-. Iog(sin0)tf0
= --log(2). (41)

Jo 2

Again, to find

[*0 log (sin 0)d0.

Here

[* log (sin 0) dO
=

[" (ir
-

0) log (sin 0)^0 ;

.-. [* 01og (sin 9)49
= - flog (sin 0)^0 = - -

log (2).
Jo 2 J 2

119. Theorem of Frullani.—To prove that

rK„~,
^
yv,~ ; ^ _ ^^^$(a#)

-
0(for)
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Let u = — 21Li ^2
j
substitute ax for s, and we get

Jo 2

h

Jo X

If we substitute b for «, we get

'^W-^o)^

h

Jo X

ft

p<b(ax)dx [b(h(bx)dx , x Udx . N , I
, N

j„ * "Jo * -*(°)],7-*<
0)1<«5- (42)

Hence "<b(ax)-6(bx) , fid>(bx)dx .
t
_ /ft\ , N

.. ,
*

*-)»«
—

»(°M«) (43)

a

If we suppose h =
oo, we get

J ; *-.#(€)
fcgjyt

(44)

A

provided £LJ ^ = o when ^ = oo.
\h x
b

For example, let
(j>(x)

= cos a?, and, since the integral

1
'
6 cos bx _

h x

evidently vanishes when h =
oc, we have

f" cos ax - cos bx , , J
d# = log -.

Jo x 3 a
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Frullani's theorem plainly fails when <j>(ax) tends to a

definite limit when x becomes infinitely great. The formulae

can be exhibited, however, in this case in a simple shape, as

was shown by Mr. E. B. Elliott*

For, in (42) let h =
ab, and it becomes

[
h
<b(ax)dx C

a
<b(bx)dx , * , /5\ 1 \

J.VHo *
= * (o)l0gt> (45)

Again, if 0( 00) denote the definite value to which $(ax)
tends when x increases indefinitely, then when h becomes
infinite we may substitute $(oo) instead of <t>{bx) in the

integral
h

6
<j)(bx)

dx\

in which case it becomes

7=*(«>)log(f}

On making this substitution in (43), we get

J#"^^*-j*(-)-#(o)jfcg(;} (46)

For example, let <p(ax)
= tsnrl

(ax) then we have 0(o)
= o,

and ^(oo) = -.

Accordingly we have

tan-1 ax - tan

2 )h x 2 °\bj

* Educational Times, 1875. The student will find some remarkable exten-

sions of the formulae, given above, to Multiple Definite Integrals, by Mr. Elliott,

in the Proceedings of the London Mathematical Society, 1876, 1877. Also by
Mr. Lendesdorf, in the same Journal, 1878.
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119a. Remainder in Lagrange's Series.—We next

proceed to show that the remainder in Lagrange's series

(Diff. Calc, Art. 125) admits of being represented by a

definite integral. This result, I believe, was first given by
M. Popoff (Comptes Rendus, 1861, pp. 795-8).

The following proof, which at the same time affords a

demonstration of the series, of a simple character, is due to

M. Zolotareff :
—

Let z = x + y <f>(z) ; and consider the definite integral

-
{y<j>{u) +x- u}

n
F\u)du.

Differentiating this with respect to x, we get, by (33),

Art. 114,

5£-»«m -**((*)}•W (47)

If in this we make n = 1
,
we get

but s = F{z)
-
F(x) ;

.:F(z)=F(x) + y<p(x)F'(x) + ^. (48)

In like manner, making n =
2, we have

"1 -trim*p® + %:

d 2
s2

Substituting in (48) it becomes

Again,
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i dz
s2

1.2 dx2
I . 2 $dx

2 ((ij)'^W]

i 6?
3
g3

1.2.3 ^3
'

wsn-i = ^
n{^) )"*>) +

<fe'

dn
-l

sn.x dn
-

1 . 2 n - 1 e?#* 1 . 2 . . . ft efa?
w" {*(*))"*»]

r/
J

1.2 . . . n dxn

Hence we get finally

+ &o

_J__(±
1.2... w \db

[y #(*) + * " if\
n
F'(u) du. (49)

Consequently the remainder in Lagrange's series is always

represented by a definite integral.
We next proceed to consider a general class of Definite

Integrals first introduced into analysis by Euler.

120. (Mamma Functions.—It may be observed that

there is no branch of analysis which has occupied the atten-

tion of mathematicians more than that which treats of

Definite Integrals, both single and multiple ;
nor in which

the results arrived at are of greater elegance and interest.

It would be manifestly impossible in the limits of an

elementary treatise to give more than a sketch of the results

arrived at. At the same time the Gramma or Eulerian

Integrals hold so fundamental a place, that no treatise,

however elementary, would be complete without giving at

least an outline of their properties. "With such an outline

we propose to conclude this Chapter.
The definitions of the Eulerian Integrals, both First and

Second, have been given already in Art. 95.
The First Eulerian Integral, viz.,

aP-^i -x)
n-l

dx,

is evidently a function of its two parameters, m and n
; it is

usually represented by the notation B(my n).
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Thus, we have by definition

f

1

of*-1

(i
-

x)
n-l dx = B(m, n).

[ (50)

e~
x xp

-1 dx = T(p).

The constants m, n, are supposed positive in all cases.

It is evident that the result in equation (14), Art. 95, still

holds when p is of fractional form.

Hence, we have in all cases

r(p + i)
=
pT{p). (51)

This may be regarded as the fundamental property of

Gamma Functions, and by aid of it the calculations of all

such functions can be reduced to those for which the para-
meter p is comprised between any two consecutive integers.
For this purpose the values of T{p) y

or rather of log V{p\
have been tabulated by Legendre* to 1 2 decimal places, for

all values of p (between 1 and 2) to 3 decimal places. The
student will find Tables to 6 decimal places at the end of this

chapter. By aid of such Tables we can readily calculate the

approximate values of all definite integrals which are re-

ducible to Gamma Functions.

It may be remarked that we have

r(i) =
i, r(o)=oo, r(-jp)=oo,

p being any integer. For negative values of p which are

not integer the function has a finite value.

Again, if we substitute zx instead of a, where 2 is a con-

stant with respect to x, we obviously have

P'.f
-ap«*;£M 1 (52)

* See Traite des Fonctions Elliptiqim, Tome 2, Int. Euler, chap. 1 6.
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With respect to the First Eulerian Integral, we have

already seen (Art. 92) that

3^(1 -
x)

n^dx =-• xn
~ l

(1
-

x)
m~x

dx\

.'. B (m, n)
= B(n, m).

Hence, the interchange of the constants m and n does not

alter the value of the integral.

Again, if we substitute for x, we get
1 + y

[ xm~Hi -x)
n~l dx =

f J£
Jo Jo (1 +

dy

ft

f y
m dy

Hence -. ^— = B(m. n).
Jo (1 +y)

m+n K ' ; (53)

We now proceed to express B (m, n) in terms of Gamma
Functions.

121. To prove that

B [m, n) = „ ,

'—v.

From equation (52) we have

r(f»)> e-
zx

%
m xm

~x dx.

Hence

T (m) e~
z sM_1 -

,*. T(m) I

e-
z
zn

-1 dz =
\

J JoM
a^^dx.



162 Definite Integrals.

But, if 2 (i + x)
=

y, we get

J (i +x)
m+n

)o (i +#)
m+n

.-. r(m) r(«) = r(m + n) [ (î ^ln
.

»)•

Accordingly, by (53), we have

„, . r(w) r(n) , 1

B(m, n)
= —V— \ (54)v '

r(m + n)

(55)

Again, if m = 1 -
n, we get, by (24),

r(») r(i
-

n)
= = -.

—
.

Jo 1 +x sinw7r

If in this n =
-, we get

This agrees with (36), for if we make #2 =
2, we get

f er^dx = -\ e~* s-4 eft = -A24 (56)

Again, if we suppose in the double integral

^y^dxdy

x and y extended to all positive values, subject to the condi-
tion that x + y is not greater than unity ; then, integrating
with respect to y, between the limits o and 1 -

x, the

integral becomes

»J.*
( X) dX ~

n r(m + n + i)
'^«4),

xm~l

y
n~x

dxdy =
.

v ;—*-^-
; (57)

in which x and y are always positive, and subject to the con-

dition x + y < 1 .
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122. By aid of the relation in (54) a number of definite

integrals are reducible to Gamma Functions.

For instance, we have

f y
m~l

dy f
1

y
m~l

dy +
f y

m'l

dy

Jo (1 + y)
m*n

"
J (1 + y)

m+n
+

J 1 (1 +
2/)

m+"'

Now, substituting- for y in the last integral, we get
x

r y
m~x

dy f
1 x^dx

Ji(i + ^)
w+n= Jo(i+^r

+"'

Hence
fl^ +^ = rwr(«)
(i+^)

m+n T(m + w)

Next, if we make * *-p
we ge^

rj**d*_ ['
y
m-l

dy .

Jo(i+*)—" Jo(«y + J)-
H,f

r y"*-
1^ r(m) V(n)

""'

Jo («y + &)
m+n

~
am bn r{m + n)'

Again,* let # - sin
2
0, and we get

['^(i -a)""
1^ = 2 P sin^Gcos^fldfl;

This result may also be written as follows :

'sin?-' 61 cos'- 9d8= v7 W
.

Jo 2^

(59)

W-ecos-9^=lMi>) (60)
2 r(m + w)

(61)

* These results may be regarded as generalizations of the formulae given in

Arts. 93, 94, to which, the student can readily see that they are reducible when
the indices are integers.
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If we make q =
i, we get

psinP"
1 ddO =^ /

2 '
v . (62)

Jo 2 /p + i\

\ 2 y

Again, if ^?
=

q in (61) it becomes

LAM. = I \mP- l Bco^6dd = -4t h
2TCp) Jo 2*-l

Jo

Let 20 =
2, and we have

8

sin*"1 2 dO = - sinP"
1 zdz =

|
sin*

-1
2 afe

Jo 2J0 Jo

^%
He.ee

r(f)r(*±i)
- £r«.

If we substitute 2m for^?, this becomes

r(»)r(»
+
ij-^r(2»). (63)

Again, make y = tan2 in (59), and we get

T sin^flcos^fl^fl r(m) T{n)

(a sin
2 + b cos

2

0)
m+ft

~
iam bn T(m + w)*

'
4'

123. To find the Value* of

n being any integer.

* This important theorem is due to Euler, hy whom, as already noticed, the

Gamma Functions were first investigated.
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Multiply the expression by itself, reversing the order of

the factors, and we get its square under the form

that is, by (55),

.7r.27r.37r . (n -
i)tt

sin - sin— sin— ... sin
n n n n

To calculate this expression, we have by the theory of

equations

1 -x2n

1 -x2

( « *v 2* a f (»-*)* 2^
=( 1 -2#cos-+#2

If 1 -2#cos— +<r 1...I 1 -2#cos- — +ar 1.

Making successively in this, # =
1, and a? -

1, and re-

placing the first member by its true value w, we get

/ . 7T \y . 27rV f • (n-- QttVw = 2 sin — 2 sin — ... 2sin —
,

\ 2»/ \ 2nJ \ 2n J

( 7r\y 2tt\
2 / (n- i)7rV

ft = 2 COS 2 COS ... 2 COS ,

\ 2)\) \ 2UJ \ 2U J

whence, multiplying and extracting the square root,

„ ,
• w . 27r . (n -

i)ir
n = 2"-1sm — sm — ... sin —

.

n n n

Hence, it follows that



166 Definite Integrals,

124. To find the values of

€*xcos bxxm
~l

dx, and e-°
xsin bx x™-1

dx.

If in (52) a - b*f- 1 be substituted* for z the equation
becomes

,

f" e
-a*

e^^ dx m r(m)_ m r(m)(a + b^T)̂
{a-b*/-\)

m
(a

2 + b
2

)

m

Let a =
(a

2 + &
2

)* cos 0, then 5 -
(a

2 + 6
2

)* sin 0, and the

preceding result becomes

^'(cos bx + »/- 1 sin bx)x
m~l dx

= r(m)
ro (cos 9 + y~i sin 9)

m

(a
2 + J

2

)

1

—i—~
(cos m0 + y/- 1 sin w0) ,

(a
2 + by

Hence, equating real and imaginary parts, we have

e"
uxcos bxxm

' x dx = v
'"7 - cos m9

(a
2 + J

2

)'

<f°
x sin fo^™- 1^ = —'— sin mO

\

Jo
(a

3 +ft2

)

T J

r(m)

(66)

in which 9 = tan-©
7T

If we make a = o. 9 becomes -, and these formulae become
2

* For a rigorous proof of the validity of this transformation the student is

referred to Serrett's Gale. Int., p. 194.
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cos o^«m_1 o$ =
7

V '
cos — ,

Jo bm 2
I

n7 N
>• (67)

f • t «, ! 7 r(m) . m7r I

sm bxxm-1 dx = —£-^ sin—
Jo 5W 2 J

It may be observed that these latter integrals can be ar-

rived at in another manner, as follows :
—

From (52) we have

7 .00

T {n)
—— = e'zx xn

~x cos bz dx ;
z Jo

, , f
*

cos &3 dz
I

"
f

"
, . , ,

•'• rW »
— = e~

zx cos bzz^dxdz.

But, by (32), we have

-co

Jo fr^o2 '

f
°°

cos bzdz _ 1 f
w

#n db

Jo

~~
^ ~I>)Jo PT^2

6* 7T

r(n) rnr 1 /allvv '
2 cos— > by (27),

in which w must be positive and < 1 .

In like manner we find

sin bzdz b^1
tt

zn
~
r(n) . ^ttw 2 sm —

The results in (67) follow from these by aid of the relation

contained in equation (55).
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Examples.

r„ +
,)r("l±i)

ri gm-i(i
-

a;)"-
1^ r(m)r(n)

a '

Jo (o + *)
m+n

' "
««(i+«)»r(»w + «)'

3. Prove that

r
1 x*dx f

1 dx v

J
0(1

-
z*)i Jo(i + a*)* 2^2*

. L r(n+i)coi

4.
j o

C08(W)&. „ -

5- I / -* »
J y/ 1 - x»

C" embx , tr

b. dx. „ -
Jo x "2

(-:)

"

'(H)

123. \umerieal Calculation of Gamma Func-
tions.—The following Table gives the values of log r(p),
to six decimal places, for all values of p between 1 and 2

(taken to three decimal places).
It may be observed that we have r(i) = r(2) =

i, and
that for all values ofjp between 1 and 2, T(p) is positive and
less than unity ; and hence the values of log T (p) are negative
for all such values. Consequently, as in ordinary trigono-
metrical logarithmic Tables, the Tabular logarithm is obtained

by adding 10 to the natural logarithm. The method of

calculating these Tables is too complicated for insertion in

an elementary Treatise.
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Examples.

f« dx ._
r -

I / . Ans. 2y«,

2. lif{x) =/(» + x) for all values of x, prove that

rna ca

\ f{x)dx = n l f(x)dx,
Jo* Jo

where n is an integer.

Jo y m - #*

r 2 dx
4- I

J\X \Zx2 — I

5. I sin-1 ^^.
Jo

f
1 dx «

J°(i +*)a/i + 2ic-«2
'

4 a/2

f
°°

dx ir

I ; :, ao - i2 heing positive. ,,
.

J .. a + zbx + cz»
e * y^ _ $2

8. Prove that

dxJdx v .

r—Jo 1 +9

Jo I +

cos COS #

dx

COS COS »

IT

12
dx

a2 sin2 a; + £2 cos2 #*

f» dx
I2#

Jo (a
2 sin2x + b* cos2xf

Ans.
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TT2fl2 a*

'3-
j i/a* - x 1 ™

.4. r-
J-i (a

a 16 4

-,
a > *.

(a-&r)<\/i-s
2 </a2 -£2

.5. r
J * y/ (x

-
a) Q8

-
a:)

16.
r«+Va»-6» (y

2 + £2)yrfy

01- XT. i. f
Sm "* C0S OX . TT ,. ,

7. Snow that 1 dx = -, or o, according as a > or < b
;
and

that when a = b the value of the integral is -.
4

f
+1 * 1 1 fi + y/ab\

18. , , «£< 1. .4n*. ,_ log
—

_ •

J-iv/Ci-zas + ^Xl-^te + a2
)' ^J \i-*/ab)

IT

19. 1* tan6 £<fc. „ -flog2— J.

J

4 sinxw—
. „ - + tan-1

1 + cos-2 x 4 y=
2 1 . If every infinitesimal element of the side e of any triangle he divided

by its distance from the opposite angle C
t
and the sum taken, show that its

value is

log
[
cot— cot —

J
.

22. Being given the base of a triangle ;
if the sum of every element of the

base multiplied by the square of the distance from the vertex be constant, show
that the locus of the vertex is a circle.

J

a cos 4

.77
i tan

-
'*

A.ns. —
e2 cos2 e2 e3

f 2 cos2 sin 9^0 \/ 1 + e2 log (e + */ \ + e 1

24 '

Jo v/i + ^cosV
"

2*3 2^
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25. Deduce the expansions for sin a; and cos x from Bernoulli's series.

26. Show that the integral

r 1

>dx£w (log#)'
J

can be immediately evaluated by the method of Art. in, when m is an integer.

f

00 tmrl
{ax)dx . -k . .

2 7-
—

, ox -Arts. -
log (1 + a).

Jo x(i + x2
)

2
•(1 + *2

)

28. Find the value of

log (1
- 2a cos x + «2

) fifc,

distinguishing between the cases where a is > or < 1.

Am. a < 1, its value is o.

,,
a > I, its value is 2tt log a.

29. If/ (#) can be expanded in a series of the form

ao + a\ cos x + a% cos 2X + . . . + <rn cos w# + . . .
,

show that any coefficient after a can be exhibited in the form of a definite

integral.

Am. an — —
I /(«) cos nxdx.

IT JQ

30. Find the analogous theorem when f(x) can be expanded in a series of

of multiples of x
;
and apply the method to prove the relation

(sin
2X sin $x „ \

sin # + &c. J
1

2 3/'
when x lies between + ir.

31. Prove the relation

IT JT

32. Express the definite integral

fa <#

Jo,1 \/ 1 — /c
2 sin2

in the form of a series, /c being < 1.

2

^i('*(;)*+WH^)W
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fFlog(i+cos«cos*)tf* ^.I/l?_A**
Jo cos* 2\4 /

34. I xtr^coabxdx, where a > o.

35 -

J.

—
s
— ix-

IT

36. f
2

log (a
2 cos2 6 + j8

2 sin2 0) dd.

it

cl, /a + bBmd\ dd , . 1 /b\
37- log[ r^-^; ) 3TTi a > •• » TSinM-J.

Jo
6
V«-* 8me / *me W

f
1

tf*

3 '

Jo
(
t _ a*)*'

>>
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43. Prove that

fi~ , »»(m —
1) f2 , ,

cosw o; cos nx dx = -4 tt cosm_2 x cos nxdx
;

Jo tw58 - w2
J o

and hence, deduce the values of the integrals

IT 7T

cos2m # cos (2n + i) x dx, and 1 cos-m+1 x cos mx dx,

when m and « are integers.

7T«»

44. I log(i
- 2a cos + a2

)
cos nOdd, when a2 < 1. Ans

45. cos —tf#. 'Js^s~^-> c
,, 1.

J -co 2

f

1
log(l + *) ir

47. Prove the following equation :

f« ^0 I f7T ( . ,

I
;

-
sr- .

—-5 (1
- 24 COS0 + a2

)
n-1 ^0.

Jo (i-2«cos0 + «2
)« (i-«-)"-

1
Jo

*

48. Prove the more general equation

It

siam dde 1 fw sinm0^0

(1
- za cos + a2)

n
~

(1
- a2

)
2""»»- 1

] (1
- 2a cos0 + «2

)
1+'«-*'

in which m + 1 is positive.
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CHAPTER VII.

AREAS OF PLANE CURVES.

126. Areas of Curves.—The simplest method of regarding
the area of a curve is to suppose it referred to rectangular
axes of co-ordinates; then, the area included between the

curve, the axis of #, and the two ordinates corresponding to the

values x and xx of #, is represented by the definite integral

ydx.

For, let the area in question be represented by the space
AB FT, and suppose BV divided into n equal intervals, and
the corresponding ordinates drawn,

(

as in the accompanying figure.
Then the area of the portion

PMNQ is less than the rectangle

pMNQ, and greater than PMNq.
Hence the entire areaABFT is

less than the sum of the rectangles

represented hypJUNQ, and greater
than the sum of the rectangles

PMNq ; but the difference be-

tween these latter sums is the sum
of the rectangles Pp Qq, or (since the rectangles have equal

bases) the rectangle under MN and the difference between

TV and AB. Now, by supposing the number n increased

indefinitely, MN can be made indefinitely small, and hence

the rectangle MN {TV - AB) also becomes infinitely small.

Consequently the difference between the area ABVT and
the sum of the rectangles PMNq becomes evanescent at the

same time.
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If now the co-ordinates ofP be denoted by x and y, and MN
by Aa?, it follows that the area ABVT is the limiting value*

of 2(y Ax) when the increment Ax becomes infinitely small ;

or area ABVT = y dx ; where xx
= J

7
,
# = 0J?.

It should be observed that this result requires that y
continue finite, and of the same sign, between the limits

of integration.
If y change its sign between the limits, i.e. if the curve

cut the axis of x, the preceding definite integral represents
the difference of the areas at opposite sides of the axis of x.

In such cases it is preferable to consider each area sepa-

rately, by dividing the integral into two parts, separated by
the value of x for which y vanishes.

The preceding mode of proof obviously applies also to

the case where the co-ordinate axes are oblique ;
in which

case the area is represented by

sin iu y dx,
J *

where w represents the angle between the axes.

In applying these formulae the value of y is found in

terms of x by means of the equation of the curve : thus,
if y =/(x) be this equation, the area is represented by

^f(x)dx,

taken between suitable limits.

Conversely, the value of any definite integral, such as

} a f(x)dx,

may be represented geometrically by the area of a definite

portion of the curve represented by the equation

V =/0*)-

* This demonstration is substantially that given by Newton (see Principia,
Lib. I., Sect. 1., Lemma 2) ;

and is the geometrical representation of the result

established in Art. 90.
The modification in the proof when the elements of BV are considered

unequal, but each infinitely small, is easily seen. It may be remarked that the
result here given is but a particular case of the general principle laid down in

Arts. 38, 39, && Calc.

[12]
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On account of this property the process of integration was
called, by Newton and the early writers on the Calculus,
the method of quadratures.

Again, it is plain that the area between the curve, the
axis of y, and two ordinates to that axis, is represented by

jxdy,

taken between the proper limits : the co-ordinate axes being
supposed rectangular.

We proceed to illustrate this method of determining
areas by a few applications, commencing with the simplest

examples.
127. The Circle.—Taking the equation of a circle in

the form

x2 + y
2 = a2

, we get y = */a
2 - x\

and the area is represented by

J v a1 - x2

dx,

taken between proper limits.

For instance, to find the area of

the portion represented by APDJE
in the accompanying figure. Let
x = a cos 0, then the area in ques- Fig. 2.

tion plainly is represented by
fa a1

a2 sin2 OdQ - —
(a

- sin a cos a) ;
where a = L DCA.

This result is also evident from geometry ;
for the area

DPAE is the difference between DPAC and DCE, or is

The area of the quadrant ACB is got by making a

7rflr

and accordingly is — : hence the entire area of the circle
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128. The Ellipse.—From the equation of the ellipse

x* y
1

,
b

'

-+|2 =i, wegety = -^ _**,

and the element of area is

b .~
va? - x2

dx\

b
but this is - times the area of the corresponding element of

a

the circle whose radius is a : consequently the area of any

portion of the ellipse is - times that of the corresponding part
a

of the circle. This is also evident from geometry.
The area of the entire ellipse is irab.

Again, if the equation of an ellipse be given in the form

Ax% + By
1 = C, its area is evidently

V AB
As an application of oblique axes, let it be proposed

to find the area of the segment
of an ellipse cut off by any chord

BIT.
Draw the diameterAA\ con-

jugate to the chord, and BB'
parallel to it. Then, C being
the centre, let

CA' = a\ CB' = V,ACB' = w,

X" »*

and the equation of the ellipse is —
%
+ ^ = 1

; henoe the area

BA!If is represented by

b' . C CA
'

j

2 - sin u)
\

va'2 - x2dx = db' sin w (a
- sin a cos a),

a j ce
CE

where cos a =
-^-r,.

Again, a' V sin w =
ab, by an elementary property of the

ellipse, a and b being the semiaxes.

Hence the area of the segment in question is

ab(a
- sin a cos a).

[12 a]
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This result can also be deduced immediately from the

circle by the method of orthogonal projection.
It may be observed that if we denote the area of an elliptic

sector, measured from the axis major to a point whose co-

ordinates are x, y, by S, we may write

x iB
- = COS —- = COS a,
a ab

r = sin —r = sin a.
o ab

129. The Parabola.—Taking the

equation of the parabola in the form

y
2 = px, we get y = \/px.

Hence the area of the portion APN is

f 2,2
pk x^dx, or - p$x*, i.e. - xy.

J o o

Consequently, the area of the seg-
ment PAP', cut off by a chord perpen-
dicular to the axis, is f of the rectangle
PMM'F. S4 '

It is easily seen that a similar relation holds for the seg-
ment cut off by any chord.

More generally, let the equation of the curve be y =
ax",

where n is positive.

f f axnn
Here ydx = a x"dx = + const.

J* J n+i
If the area be counted from the origin, the constant

vanishes, and the expression for the area becomes

or
xy

n + 1 n + 1

Hence, the area is in a constant ratio to the rectangle
under the co-ordinates. A corresponding result holds for

oblique axes. The discussion, when n is negative, is left to

the student.

Example.

Express the area of a segment of a parabola cut off by any focal chord in

terms of /, the length of the chord, and p, the parameter of the parabola.

$pi

Am. -r .
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130. The Hyperbola.—The simplest form of the

equation of a hyperbola is where the asymptotes are taken
for co-ordinate axes

;
in this case its equation is of the form

xy = c
2

.

Hence, denoting the angle between the asymptotes by w,
the area between the curve and an asymptote is denoted by

'

dx
& sin (o\ —

,
or cr sin w log I

—
J & \Xq

where xx and x are the abscissae of the limiting points.
If the curve be referred to its axes, its equation is

a2
b
2

and the element of area ydx becomes

- vx2 - a2
dx.

a

Hence the area is represented by

- */x
2 - a2

dx,

taken between proper limits.

Again, */x
2 - a2dx =

W«?
Also, integrating by parts, we have

J
yV - a2 dx = x*/x2 -a2 -

Adding, and dividing by 2, we get

\/x
2 - a2

x2 dx

's/x
2 - a2

2

x*/x
2

?
dx

V:x~-af

log {x + */x
2 -a2



182 Areas of Plane Curves.

Accordingly, if we suppose the area counted from the

summit A, we have

Again, since the triangle CPN = \xy, it follows that

sectorACP^ log
(j

+
|\

For a geometrical method of finding the area of a hyper-
bolic sector, see Salmon's Conies, Art. 395.

130(a). Hyperbolic Sine and Cosine.—If 8 repre-
sent the sector ACP, the final equation of the preceding
Article becomes

which may also be written

• V

a

introducing a single letter v to denote the quantity

25*m* ab

Hence, by the equation of the hyperbola, we get

- - I - g*
a

Thus, in analogy with the last result of Art. 128, calling the

following functions the hyperbolic cosine and hyperbolic
sine of v, and for brevity writing them cosh v, and sinh v,

e
v + e~

v = 2 cosh#, e
v - e"° = 2 sinhp, (2)

the co-ordinates of any point on the curve are

x . , 28 y . . . . 28- = cosh v = cosh—r,
- = smh v = Sinn -r-.

a ab b ab
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"We might have treated the matter differently by intro-

ducing the angle <p
denned by the equation x = a sec 0, and

therefore y = b tan (for the geometric meaning of this

transformation, see Salmon's Conies, Art. 232); whence (1)

may be written*

|g-,-logfang
+
f):

and we see that the hyperbolic cosine of a real quantity is the

secant, and the hyperbolic sine the tangent of the same real

angle. Also, since

sinh v i,i cosh v
Sin 6 = :

, COS 6 =
:

,
COt <b = -r-i ,

C0S6C 6 = -7—, ,

cosh v cosh v sinn v
T

sinh v

we can obviously extend the names of the other trigonometrical

functions likewise. Again, putting in (2) for 0, u\/ -
1, or

iuy they become, by Art. 8,

cos u = cosh iu, i sin u = sinh iu.

131. The Catenary.—If an inelastic string of uniform

density be allowed to hang freely from two fixed points, the
curve which it assumes is called the Catenary.

Its equation can be easily arrived

at from elementary mechanics, as fol-

lows :
—

Let V be the lowest point on the

curve; then any portion VP of the

string must be in equilibrium under
the action of the tensions at its ex-

tremities, and its own weight, W. F
- ^

Let A be the tension at V; T that

at P, which acts along PR, the tangent at P; lPRM =
0.

Then, by the property of the triangle of force, we have

W:A = PM:RM\
.*. W = A tan0.

* When <p is related to v by this equation, <p is what Professor Cayley
{Elliptic Functions, p. 56) calls the gudermannian of v, after Professor Guder-

mann, and writes the inverse equation <p
= gdv.
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Again, if s be the length of VP, and a that of the portion
of the string whose weight is A, we have, since the string is

uniform,

W=A S
-x

.', s = a tan 0.

This is the intrinsic equation of the catenary.
Calc, Art. 242 (a).)

Its equation in Cartesian co-

ordinates can be easily arrived at. A\
For, on the vertical through V \

take VO =
rt, and draw OX in the

horizontal direction, and assume
OX and OF as axes of co-ordi-

nates. Let

(Diff.

then
PN=y, ON=x,

Hence

-r = tan 0,
dx r
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Consequently,
a (

x - x\
y = -

[
ea + e

a

} (4)

Also s = -(ea -e a

j.
(5)

In the notation of last Article these equations may be
written

- = cosh - and - = sinh -.
a a a a

Again, if NL be drawn perpendicular to the tangent at

P, we have

NL = PN cos ; .*. NL = a. (6)

Also PL = NL tan
<j>;

,\ PL = s = PV. (7)

The area of any portion VPNO is

-
[* (J

+
e"^

<& = - (ea -
/•]

- a (f -
a*)K (8)

Accordingly, the areaVPNO is double that of the triangle
PNL.

Examples.

1. To find the area of the oval of the paranoia of the third degree with a

double point

cy
2 = (x-a)(x- b)

2
.

. A
The area in question is represented by q

_^f 6

/ .

/-I (b - x) v x — adz. _.
Vc) a

K )W
Fig. 8.

Let z — a = zi. and we easily find the area* to be — '-.

2. Find the whole area of the curve a2 y
2 = x3

{la
—

x). Ans. wa2
.

3. Find the whole area between the cissoid xz = y
2
{a
-

x) and its asymptote.

2</ 2* The student will find little difficulty in proving that this area is —-—
times the rectangle which circumscribes the oval, having its sides parallel to the
co-ordinate axes.
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Since x - a = o is the equation

presented by

Areas of Plane Curves.

the asymptote the area in question is re-

x^dx

I o («
-

x)i

Let x = a sin2 0, and this becomes

I.-
2a2 sin*0tf0

hence the area in question is | ira2 .

o

4. Find the area of the loop of the curve

az
y
2 = x*(b + x).

This curve has been considered in Art. 262, Diff.

Calc. Its form is exhibited in the annexed figure ;
and

the area of the loop is plainly

x2\/b + xdx.

Let b + x = z2
,
and it is easily seen that the area

in question is represented by

8.bi

Fig. 9.
3 • 5 • 7 • <*

a

5. Find the area between the witch of Agnesi

xy
1 = 4a

2
(2a

-
x)

and its asymptote. Ans. 4*0?.

132. In finding the whole area of a closed curve, such as

that represented in the figure, we
suppose lines, PM, QN, &c, drawn

parallel to the axis of y ; then, as-

suming each of these lines to meet
the curve in but two points, and

making PM = y2f P'M = yiy the

elementary area PQQ'P' is repre-
sented by (y2

- yx) dx, and the en-

tire* area by
COB'

(y2 -yi)dx; Fig. 10.

J OB

in which OB, 01? are the limiting values of x.

* This form still holds when the axis of x intersects the curve, for the ordi-

nates below that axis have a negative sign, and (1/2
-

y\) dx will still represent
the element of the area between two parallel ordinates.

MN 1TX
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For example, let it be proposed to find the whole area of

an ellipse given by the general equation

ax2 + ihxy + by
2 + 2gx + 2fy + c = o.

Here, solving for y, we easily find

y*-yi =
r */{h

2 -
ab) x

2 + 2 (hf- bg) x +/
2 - be.

Also, the limiting values of x are the roots of the quadratic

expression under the radical sign.

Accordingly, denoting these roots by a and /3, and observ-

ing that h2 - ab is negative for an ellipse, the entire area is

represented by

2 v ab - h

-J v/V-oX/3 x)dx.
b

To find this, assume x - a =
(j3

-
a) sin

2
6

;

then fi-x = (j3-a)cos
2

0,

and we get
IT

1 */{x-a){$-x) dx = 2
(j3

-
a)

2

[

'

Sin
2

COS
2

</0

-f(0-«>-.

Again, (/3-a)
2 = 4-

{hf-bg)
2

+{,/*- be) {ab
- h2

{ab
- h2

y

_ 4b (af
2 + bg

2 + eh2 -
ifgh

-
abc)

Jab^h2

)

2

Hence the area of the ellipse is represented by

ir{of
2 + bg

2 + ch2 -
2fgh

-
abc)

{a~b
- h2

)$

*

This result can be verified without difficulty, by deter-

mining the value of the rectangle under the semiaxes of an

ellipse, in terms of the coefficients of its general equation.
It is worthy of observation that if we suppose a closed

curve to be described by the motion of a point round its en-

tire perimeter, the whole inclosed area is represented by j ydx,
takenfor every point around the entire curve.
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Thus, in the preceding figure, if we proceed from A to A'

along the upper portion of the curve, the corresponding part
of the integral \ydx represents the area APA'&B. Again,
in returning from A to A along the lower part of the curve,
the increment dx is negative, and the corresponding part
of I ydx is also negative (assuming that the curve does not

intersect the axis of 0), and represents the area AFABI?,
taken with a negative sign. Consequently, the whole area of

the closed curve is represented by the integral j ydx, taken

for all points on the curve.

The student will find no difficulty in showing that this

proof is general, whatever be the form of the curve, and
whatever the number of points in which it is met by the

parallel ordinates.

To avoid ambiguity, the preceding result may be stated as

follows :
—The area of any closed curve is represented by

\
y i ds

taken through the entire perimeter of the curve, the element of the

vurve being regarded as positive throughout.
The preceding is on the hypothesis that the curve has no

double point. If the curve cut itself, so as to form two loops,

fdxy
—

ds, when taken round the entire

perimeter, represents the difference between the areas of the

two loops. The corresponding result in the case of three or

more loops can be readily determined.

133. In many cases, instead of determining y in terms of

x
t
we can express them both in terms of a single variable,

and thus determine the area by expressing its element in

terms of that variable.

For instance, in the ellipse, if we make x = a sin 0, we

get y = b cos 0, and ydx becomes db cos2

^ d<j>,
the integral of

which gives the same result as before.

In like manner, to find the area of the curve

©Ml)'-
Let x = a sin3

0, then y = b cos3

<£,
and ydx becomes

3ab sin
2

<j>
cos4

(fxlcp
:
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hence the entire area of the curve is represented by

189

l:
nab

J

sin
2

cos4

0cfy>
= -irab.

Examples.

r. Find the whole area of the evolute of the ellipse

x6 v'
-S + TS - I. Am. 3*-Q

2 -
V'-Y

Sab

2. Find the whole area of the curve

2

(9T+ 9"*-
A, 3.S-0»+').'.3-5...(»l'),A

2.4.6 2(m + «+i)

134. The Cycloid.—In the cycloid, we have (Diff.

Calc, Art. 272),

x = a (0
- sin 0), y = a (1

- cos 9) ;

ydx = a2

(1
- cos 0)

2 d0 = 4«
2

[sin
4
-tf0.

Taking 6 between o and 7r, we get ^na
2 for the entire

area between the cycloid and its base.

The area of the cycloid admits also of an elementary
geometrical deduction, as follows :

—

^^ / M
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Now, if the intervalMN be regarded as indefinitely small,
the sum of the elementary areas PpqQ and P'p'q'Q is equal
to the rectangle under MN and the sum of Pp and P'p', or to

ira x MN.
Again, if the entire figure be supposed divided in like

manner, it is obvious that the whole area between the semi-

circle and the cycloid is equal to ira multiplied by the sum of

the elements MN, taken from B to the centre C, i.e. equal to ira
2

.

Consequently the whole area of the cycloid is 3na2
,
as

before.

The area of a prolate or curtate cycloid can be obtained

in like manner.

135. Areas in Polar Co-ordinates.—Suppose the

curve APB to be referred to polar co-ordinates, being the

pole, and let OP, OQ, OP represent consecutive radii vectores,
and PL, QM, arcs of circles described with as centre. Then
the area OPQ = OPL + PLQ ;

but

PLQ becomes evanescent in com-

parison with OPL when P and Q
are infinitely near points; conse-

quently, in the limit the elemen-
r2d0

tary area OPQ= area OPL =
;

r and 6 being the polar co-ordi-

nates of P.
Hence the sectorial area AOB

is represented by Fig. 12.

dO,

where a and |3 are the values of corresponding to the limit-

ing points A and B.

136. Area of Pedals of Ellipse and Hyperbola.—
For example, let it be proposed to find the area of the locus

of the foot of the perpendicular from the centre on a tangent
to an ellipse.

& y
1

Writing the equation of the ellipse in the form- +
j-= 1,

the equation of the locus in question is obviously

r2 = fl
2
cos

3 + b
2
sin

2
0.
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Hence its area is

a2
f o/iT/i J

2
f . ,„,„ a2 + b2

n a2 -b2
. n a— eotfOdO + — sufOdd = + sm0cos 0.2)2) 44

The entire area of the locus is

-
(a

2 + b
2

).
2

X '

The equation of the corresponding locus for the hyperbola
is

r2 = a2
cos20-62

sin
2
0.

In finding its area, since r must be real, we must have

a2 cos2 - b
2
sin2

positive : accordingly, the limits for are o

and tan-1 7 .

o

Integrating between these limits, and multiplying by 4,

we get for the entire area

ab + (a
2 - b

2

)
tan""

1

7.

In this case, if we had at once integrated between = o

and =
27r, we should have found for the area (a

2 - b
2

)
-.
2

This anomaly would arise from our having integrated

through an interval for which r2
is negative, and for which,

therefore, the corresponding part of the curve is imaginary.
The expression for the area of the pedal of an ellipse with

respect to any origin will be given in a subsequent Article.

Examples.

1. Show that the entire area of the Lemniscate

r2 = a~ cos 26
is a2 .

2. In the hyperholic spiral

rO = a,

prove that the area bounded by any two radii veotores is proportional to the
difference between their lengths.

3. Find the area of a loop of the curve

a2

r2 = a2 cos n$. Am. —
.
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4. Find the area of the loop of the Folium of Descartes, whose equation is

a3 + y
3 = Zaxy.

Transforming to polar co-ordinates, we have

3« cos sin
r = V-r —

.

sin3 + cos3

Again, the limiting values of are o and -
;

_ gar
fl sin2 0cos2 0<f0

ea==_
2"J (sin

3 + cos3 0)
3
*

Let tan =
u, and this expression becomes

9«-

2

f
w u'du _ id*

Jo (l+«3
)
3 ~T #

5. To find the area of the Limacon

r = a cos + b.

Here we must distinguish between two cases.

(1). Let b > a. In this case the curve consists of one loop, and its area is

1 f2»r / a2 \
-I (a cos + b)*dd =(& + -] ir.

lira?
When b = a, the curve becomes a Cardioid, and the area -—

.

(2). Let b < a. The curve in this case

has two loops, as in the figure (see Diff.

Calc, Art. 269), the outer loop correspond-

ing to

r = a cos + b,

the inner to

r = a cos — b.

To find the area of the inner loop, we q
take between the limits o and o, where

a = cos-1 (
-

j
;
and the entire area is

[* (acOBO -b)
2 d0

Jo

=
(a

2 cos2 - iab cos + &) d0
Yi%. 13.

(or I9\ a? .= I — + b l

J
a + — sin a cos a - 2«£ sin a
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It is easily seen that the sum of the areas of the two loops is obtained hy in-

tegrating between the limits o and 2tt, and accordingly is

(?-)•
as in the former case.

137. Area of a Closed Curve by Polar Co-ordi-
nates.—In finding the whole area of a closed curve by-

polar co-ordinates we distinguish between two cases. When
the origin is outside, we sup-

pose tangents OT, OT', drawn
from 0, and vectors OP, OQ, &c,
drawn to cut the curve ; then, if

these lines intersect it in but two

points each, the element of area

PpqQ is the difference between
the areas POQ and pOq ; or, in

the limit, is % (r
2 - r2

2

) dO, where
OP = rl9 Op = r2 .

Hence, the expression

Fig. 14.

taken between the limits corresponding to the tangents OT
and OT% represents the entire included area.

If the origin lie inside the curve, its whole area is in ge-
neral represented by H(r

2 + r2
2

)dd, taken between the limits

0=o, and = 7r.

"We shall illustrate these results by applying them to the

circle

r2 - zrc cos + c
2 = a2

.

If the origin be outside, we have e>a, and r x + r% = 2c cos 0,

and rx r2
= c

2 - a2
\

.

*
. rx

- r2 = 2 ^/a
2 - c

2
sin2

0.

Hence (n
2 - r2

2

)
dO = 4c cos */a

2 - & sin
2 0^0 ; and the

limiting values of are ± sin-1 -.

Hence the whole area is

2C
J

sin-1 ?

cos */a
2

fl3]

(?am°9dd.
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Let c sin = a sin 0, and this integral transforms into

2«
2

2
cob

2

<j>d<f>
= na2

.

Again, if the origin be inside, we have c < a, and

- (n
2 + r2

2
)
= a2 + c

2
cos 20 ;

.*.

[Vi
2 + r2

2

)
tf0 =

["(a

2 + c
2
cos 26)d0 = na\

The method given above may be applied to find the area

included between two branches of the same spiral curve. As
an example, let us consider the spiral of Archimedes.

138. The Spiral of Archimedes.—The equation of

this curve is r = ad,

and its form, for

positive* values of 0,

is represented in

the accompanying
figure, in which
is the pole and OA
the line from which

is measured. Let

any line drawn

through meet the

different branches

of the spiral in

pointsP, Q, R, &c. :

then, if OP=r, and
LPOA =

0,we have,
from the equation
of the curve,

OP = aO, OQ = a(0 + 2tt), OR = a (0 +
4tt), &c.

* It should be noted that when negative values of 6 are taken, we get for

the remaining half of the spiral a curve symmetrically situated with respect to

the prime vector OA.
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Hence PQ = QR = &c., = zarc = c (suppose) ;
i. e. the

intercepts between any two consecutive branches of the spiral
are of constant length.

Again, let OQ = ru OR = r2 = rx + c, and the area between

the two corresponding branches is

(r2
2 - n2

)
dd m c UdQ + -[dS.

Now, suppose MN and mn represent the limiting lines,

and let |3 and a be the corresponding values of ;
then the

area nNMm will be equal to

c\\edB + -\
P

d9 = -(f5
-

a) {aa + a[5 + c)

=
C

-(P- a)(OM + On). (9)

If (5
- a =

7r, this gives for the area of the portion
between two consecutive branches QJE'Q' and MF'B', inter-

cepted by any right line RR' drawn through the pole,

-RQ.QR', i.e. half the area of the ellipse whose semi-axes

are RQ and R'Q.

139. Another Expression for Area.—The formula

in Article 137 still holds, obviously, when AB and ab repre-
sent portions of different curves.

It is also easily seen, as in Art. 132, that if a point be

supposed to move round any closed boundary, the included

area is in all cases represented by - r2

dd, taken round the

entire boundary, whatever be its form
;
the elementary angle

dd being taken with its proper sign throughout.

Again, if we transform to rectangular axes by the rela-

tions x = r cos 9, y = r sin 6, we get

X cos 2 X2

Hence r2dd = xdy -
ydx ;

[13 a]
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and the area swept out by the radius vector is represented by
the integral

-Vxdy-ydx),

a result which can also be

Lambert's Tlieo-

taken between suitable limits
;

easily arrived at geometrically.

140. Area of Elliptic Sector
rem.—It is of importance in

Astronomy to be able to express
the area AFP swept out by the

focal radius vector of an ellipse.

This can be arrived at by inte-

gration from the polar equation
of the curve ; it is, however, a l

more easily obtained geometri-

cally.

For, if the ordinate PN be produced to meet the auxiliary
circle in Q, we have

area AFP = - x area AFQ = -(ACQ- CFQ)

ab . . . .

= —
(u

- e sinw), (10)

where u = lACQ.
By aid of this result, the area of any elliptic sector can be

expressed in terms of the focal distances of its extremities,
and of the chord joining them.

For (Fig. 17), let QFP re-

present the sector, and let

FP = p,FQ = P',PQ = $; then,

denoting by u and u' the eccen'

trio angles corresponding to

P and Q, the area of the sector

QFP, by (
1 o) , is represented by

ab

N A

Fig. 17.

— \u - u' - e(sinw -flinw')f,
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We proceed to show that this result can be written in

the form

—
[6

- 6' - (sin 6
-

sin^')}. (n)

where 6 and 6' are given by the equations

sin- =£ =
i

j
p + p+s

gin £ = i
j
p + P

2 2 \ a
'

2 2 \ «

For, assume that and 6r
are determined by the equations

u - u' = 6 -
<jS,

e (sin u
- sin e/)

= sin - sin
<j>'. (a)

The latter gives

. u - u u + u .6-6 6 + 6
e sin cos = sin -—— cos

i ii £ U + u' 6+6'
or by the former, e cos = cos —

.

2 2 2 2

u + u'

2 2

Again, since the co-ordinates of P and Q are a cos u,
b sin w, and a cos «/, 5 sin u', respectively, we have

S
2 = a2

(cos w
- cos u')

7, + b
2

(sin u - sin w')
2

.
2 u-u'( 2

. u + u' , 2 ,w + w'\
4 sin2 a2

sin2 + b
2
cos2

2 V 2 2 J

u -u' ( .u + u'\act sin
2

i - e
2
cos2

2 V 2 J

— An*

.0-0 •20 + #= 4#
2 sm2 -—- sm2 *—-

;
2 2

•\ 8 = 20 sin -—— sin -—- = a (cos ^'
- cos 6). (b)

Again, from the ellipse, we have

p = a(i
-
ecosu), p =

a(i
-

ecosu'),

, , ,x U + U U - It
, . p + p = 2a — ae (cos u + cos u

)
= 2a — 2ae cos cos

2 2

= za- 2a cos -—*
cos

*—- = za - a (cos ^ + cos 6
f

). (c)



198 Areas of Plane Curves.

Hence, adding and subtracting (b) and (c), we get

p + p' + 8 . , . .<(>- = 2 ( i - cos 6) = 4 sin
2 r

,

a r/
2

p + p'
- S

, ,A . 2 <t>'
-— = 2(i - cos <b ) =4 sin

2 —
,

a v r '
2

which proves the theorem in question.

Consequently, the area* of any focal sector of an ellipse can

be expressed in terms of the focal distances of its extremities, of
the chord which Joins them, and of the axes of the curve.

141. We next proceed to an elementary principle which
is sometimes useful in determining areas, viz. :

—
The area of any portion of the curve represented by the

equation

% ?)

is ab times the area of the corresponding portion of the curve

F(x,y) =c.

This result is obvious, for the former equation is trans-

x II

formed into the latter, by the assumption
- = x'

f
- =

7/ ; and

hence ydx becomes aby'dx' ;

.*. ydx = ab y'dx\

the integrals being taken through corresponding limits—a

result which is also easily shown by projection.
x u^

Thus, for example, the area of the ellipse -? + 77 = 1
a*

* This remarkable result is an extension, by Lambert (in bis treatise entitled :

Insigniorts orbita cometarum proprieties, published in 1761), of the correspond-
ing formula for a parabola given by Euler in Miscell. Berolin, 1743. It

furnishes an expression for the time of describing any arc of a planet's orbit, in
terms of its chord, the distances of its extremities from the sun, and the major
axis of the orbit

; neglecting the disturbing action of the other bodies of the
solar system.
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reduces to that of the circle
;
and the area of the hyperbola

a* V

to that of the equilateral hyperbola #2 - y
% = i .

Again, let it be proposed to find the area of the curve

^ f\~_ as* f
a1

+
¥]~P

+
m2

*

The transformed equation is

(*
2 + tfY =

-jr +
A

or, in polai co-ordinates,

2
a2

cos
7

ft
2
sin

2

r ~
P

+ m%
'

But the whole area of this (Art. 136) is -
(

— + —

Consequently the whole area of the proposed curve is

2 \/
2 my

It may be remarked that the equations

represent similar curves, and their corresponding linear

dimensions are as a : 1. Consequently the areas of similar

curves are as the squares of their dimensions; as is also

obvious from geometry.
142. Area of a Pedal Curve.—If from any point

perpendiculars be drawn to the tangents to any curve, the
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locus of their feet is a new curve, called the pedal of the

original (Diff. Calc, Art. 187).
If p and a) be the polar co-

ordinates of N, the foot of the

perpendicular from the origin 0,
then the polar element of area of

the locus described by iV is plainly
R

/

-—
,
and the sectorial area of any

portion isaccordinglyrepresentedby

- p
2

dto,

taken between proper limits.

There is another expression for the area of a closed pedal
curve which is sometimes useful.

Let 81 denote the whole area of the pedal, and 8 that of

the original curve ; then the area included between the two
curves is ultimately equal to the sum of the elements repre-
sented by NTN' in the figure.

Hence 8X
- 8 + SiVTiT = 8 4-

l- [pN %d». (12)

Again, by the preceding,

8l
=

l- \0N z
dto.

Accordingly, by addition,

C

OP 2
dto. (13)28x

= 8 + -
2

It is easily seen that equation (12) admits of being stated

in the following form :
—

The whole area of the pedal of any closed curve is equal to

the sum of the areas of the curve and of the pedal of its evolute :

both pedals having the same origin.

For, PN is equal in length to the perpendicular from

on the normal at P : and hence -PN^dta represents the ele-
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ment of area of the locus described by the foot of this perpen-
dicular, i.e. of the pedal of the evolute of the original curve.

For example, it follows from Art. 136 that the area 0/

the pedal of the evolute of an ellipse is - (a
-

b)
2
,

the centre

being origin.

143. Area of Pedal of Ellipse for any Origin.—
Suppose to be the pedal

origin, and OM, OM' perpen-
diculars on two parallel tan-

gents to the ellipse ;
draw ON

the perpendicular from the

centre C; let OM = ply OM'
= p2, CJST = p, OC =c, LOGA
=

a, lACN = to; then

Pi = MB - OD = p - c cos (w

pz
=p + C COS

(fa>
-

a) .

Again, the whole area of the pedal is

-
{p

2 + p2
2

)
da) =\ [p

2 + C
2 COS

2

(w
-

a) )
dw

2
J Jo

= p
2
d(v + c

2 cos2 (w
-

a)du)
= -(a

2 + b
2 + c

2

). (14)

That is, the area of the pedal with respect to as origin
exceeds the area of its pedal with respect to by half the

area of the circle whose radius is OC.
If the origin lie outside the ellipse, the pedal consists

of two loops intersecting at and lying one inside the other;
and in that case the expression in (14) represents the sum of

the areas of the two loops, as can be easily seen.

The result established above is a particular case of a

general theorem of Steiner, which we next proceed to

consider.

144. Steiner's Theorem on Areas ofPedal Curves.

Suppose A to be the whole area of the pedal of any closed

curve with respect to any internal origin 0, and A' the area
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of its pedal with respect to another origin Of
; then, if p and

p' be the lengths of the perpendiculars from and (Zona
tangent to the curve, we have

i c
2w

i r2""^ = -
P*du, A' =

\\
P"d^

Also, adopting the notation of the last article,

p' = p - c cos (u)
-

a)
= p - x cos u) - y sin to ;

where a?, y represent the co-ordinates of 0' with respeot to

rectangular axes drawn through 0. Hence we get

i (
2ir

A! - A = -

(x eos& + y Bin
to)

2
dit>

2jo

C2lT T2JT

-x\ pcoswdu) -
y\ pBUKjjdu),

r2jr T27T
f

T27T

But cos2w du) = 7r, sin2
a> G?u> = 7r, sinwcoso) duj = o.

Jo Jo Jo

f2ir T2ir

Also, for a given curve, ^? coseu da) and
jt?
sinwdw are

Jo J

constants when is given. Denoting their values by g and
//, we have

A'-A = ~(x
2 + y

2

) -gx- hy. (15)

This equation shows that if be fixed, the locus of the

origin Of, for which the area of the pedal of a closed curve is

constant, is a circle* The centre of this circle is the same,
whatever be the given area, and all the circles got by varying
the pedal area are concentric.

* It can be seen, without difficulty, from the demonstration given above,
that when the curve is not closed, the locus of the origin for pedals of equal area

is a conic: a theorem due to Prof. Raabe, of Zurich. See Crelle's Journal,
vol. 1., p. 193.

The student will find a discussion of these theorems by Prof. Hirst in the

Transactions of the Royal Society, 1863, m which he has investigated the corre-

sponding relations connecting the volumes of the pedals of surfaces.
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If the origin be supposed taken at the centre of this

circle, the constants g and h will disappear ; and, in this case,

the pedal area is a minimum, and the difference between the

areas of the pedals is equal to half the area of the circle whose

radius is the distance between the pedal origins.

For example, if we take the origin at the centre, the

pedal of a circle, whose radius is a, is the circle itself. For

any other origin the pedal is a limacon; hence the whole

area of a limacon is jr* a
2 + -

J,
as found in Art. 136, Ex. 5.

145. Areas of Roulettes on Rectilinear Bases.
The connexion between the areas of roulettes and of pedals
is contained in a very elegant theorem,* also due to Steiner,

which may be stated as follows :
—

When a closed curve rolls on a right line, the area between

the right line and the roulette generated in a complete revolution

by any point invariably connected with the rolling curve is double

the area of the pedal of the rolling curve, this pedal being taken

with respect to the generating point as origin.

To prove this, suppose to be the describing point in any

Fig 20.

position of the rolling curve, and P the corresponding point
of contact. Let (J represent an infinitely near position of the

describing point, Q' the corresponding point of contact, and Q

* See Crelle's Journal, vol. xxi. The corresponding theorem of Steiner

connecting the lengths of roulettes and pedals will be given in the next Chapter.

By the area of a roulette we understand the area between the roulette, the

base, and the normals drawn at the extremities of one segment of the roulette.
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a point on the curve such that PQ = PQ' ;
then Q is the point

whioh coincides with Q' in the new position of the rolling
curve ; and, denoting the angle "between the tangents at P
and Q (the angle of contingence) by r/w, we have OPO' =

du),

since we may regard the curve as turning round P at the in-

stant (Diff. Calc, Art. 275).

Moreover, QQ' ultimately is infinitely small in comparison
with QP, and consequently the elementary area OPQ'O is

ultimately the sum of the areas POO and QO'P, neglecting
an area which is infinitely small in comparison with either of

these areas.

Again, if OP =
r, we have POO'

=
,
and area QO'P

= QOP in the limit.

Also the sum of the elements QOP in an entire revolu-

tion is equal to the area (S) of the rolling curve. Conse-

quently the entire area of the roulette described by is

S + iJr
2
du>.

But we have already seen (13) that this is double the area of

the pedal of the curve with respect to the point ;
which

establishes our proposition.

Again, from Art. 1 44, it follows that there is one point in

any closed curve for which the entire area of the correspond-

ing roulette is a minimum. Also, the area of the roulette

described by any other point exceeds that of the minimum
roulette by the area of the circle whose radius is the distance

between the points.

For instance, if a circle roll on a right line, its centre de-

scribes a parallel line, and the area between these lines after

a complete revolution is equal to the rectangle under the

radius of the circle and its circumference
;
i.e. is 27m2

; denot-

ing the radius by a.

Consequently, for a point on the circumference, the area

generated is 2-ira
2 + na2

,
or lira

2

;
which agrees with the area

found already for the cycloid.

In like manner, by Steiner's theorem, the area of the or-

dinary cycloid is the same as that of the cardioid : and the

area of a prolate or curtate cycloid the same as that of a

limacon.
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Again, if an ellipse roll on a right line, the area of the

path described by any point can be immediately obtained.

For example, the pedal of an ellipse with respect to a focus

is the circle described on its axis major. Hence, if an ellipse

roll upon a right line, the area of the roulette described by its

focus in a complete revolution is double the area of the auxiliary

circle. Also, the area of the roulette described by the centre

of the ellipse is equal to the sum of the circles described on

the axes of the ellipse as diameters, and is less than the area

of the roulette described by any other point.

146. General Case of Area of Roulette.—If the

curve, instead of rolling on a right line, roll on another

curve, it is easily seen that the method of proof given in the

last article still holds ; provided we take, instead of du, the

sum of the angles of contingence of the two curves at the

point P.
Hence the element of area OPO' is in this case

- OF>dw (1 + —\ or - OP*du (l+A

where p and p' are the radii of curvature at P of the rolling
and fixed curves, respectively.

Hence it follows that the area between the roulette, the

fixed curve, and the two extreme normals, after a complete
revolution, is represented by

'*?&*('.*$}

If a closed curve roll on a curve identical with itself,

having corresponding points always in contact, the formula
for the area generated becomes

S + jr
2
doj.

In this case the area generated is four times that of the

corresponding pedal ;
a result which appears at once geome-

trically by drawing a figure.
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Examples.

i. If A be the area of a loop of the curve r»» = am cos m0, and A\ the area
of its pedal with respect to the polar origin, prove that

-(,-)*
It is easily seen, as in Diff. Calc, Art. 190, that the angle between the radius

vector and the perpendicular on the tangent is md ; and .*. w = (m + i)d
Hence, by Art. 142,

2^! =^+—'jW* [m + 2)A.

2. If a circle of radius b roll on a circle of radius a, and if A denote the

area, after a complete revolution, between the fixed circle, the roulette described

by any point, and the extreme normals
;
and if A' be the area of the pedal of

the circle with respect to the generating point, prove that

Aa + Bb = 2(a + b)A'.

where B is the area of the rolling circle.

3. Apply this result to find the area included between the fixed circle and the
arc of an epicycloid extending from one cusp to the next.

147- Holditch's Theorem.*—If a line CC of a given
length move with its extre-

mities on two fixed closed

curves, to find, in terms of

the areas of the two fixed

curves, an expression for the
whole area of the curve gene-
rated, in a complete revolu-

tion, by any given point P
situated on the moving line.

Let CP =
c, PC = c\ and suppose (xh yO, (%, ?/), and

(#2, 1/2) to be the co-ordinates of the points C, P, and G\ re-

spectively, with reference to any rectangular axes.

Fig. 21.

f This simple and elegant theorem appeared, in a modified form, as the
Prize Question, by Mr. Holditch, under the name of "Petrarch," in the Lady's
and Gentleman's Diary for the year 1 858. The first proof given above is due to

Mr. "Woolhouse, and contains his extension of Mr. Holditch' s theorem.
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Then, if 9 be the angle made by CCf
with the axis of y,

we have evidently

x x
= x - c sin 0, yx

= y - c cos 9,

x2
= x + c sin 0, y2

= y + c
f

cos 9.

Hence we have

yidxL
= ydx - c cos 9 (dx + yd9) + c

2 cos
2 0^0

;

y2dx2
= ydx + c' cos 9 (dx + yd9) + c"

1
cos2 9 d9.

Multiplying the former equation by c', and the latter by <?,

and adding, we get

c'yidxi + cy2dx2
=

(c + c) ydx + (c + c')
cc' cos

2 9d9 ;

..'. c
f

jyidxi + cjy2dx2
=

(c + c')\ydx + (c + c')cc' jcos?9d9.

If we suppose the rod to make a complete revolution, so

as to return to its original position, and if we denote by (0),

(C), (P), the areas of the curves described by the points

C, C, and P, respectively, we shall have (since in this case

the angle 9 revolves through 2tt)

c\C) +c(C) - (&+ c')(P) + tt(c + c')cc\

l^±^)=(P) +^, (.6)

This determines the area (P) in terms of the areas (0),

(C) and of the segments c, c'.

"When the extremities C, C move on the same identical

curve we have (C)
=

(C), and hence (C)
-

(P) ircc'.

Consequently, if a chord of given length move inside any
closed curve, having a tracing point P at the distances c and
c
f

from its ends, the area comprised between the two curves is

equal to ircc
f
.

More generally, if the extremities C, C move on curves
of equal area, we have, as before,

(C)-(P)=^'. (17)

Should the extremities, instead of revolving, oscillate

back to their former positions, then (C) =
o, (C) =

o, and
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.*. (P) = - ircc. The negative sign implies that the area is

described in a direction contrary to that in which the rod re-

volves.

Again, if the rod returns to its original position after

n revolutions, the limits for 6 become o and 2inr, and equa-
tion (i 6) becomes

'

e + J
; ~(P)+W. (18)

If (0) = (C), this gives

(C)
-

(P) = mrcc'. (19)

If the line oscillate back to its former position, without

making a revolution, we have n =
o, and

(
1 9) becomes

(O) =
(P).

Hence, in this case, if two points describe curves of equal
area, then any point on the line joining these points describes

a curve of the same area.

The theorem in
(
1 6) can also be proved simply in another

manner, as follows :
—

Let denote the point of intersection of the moving line

CC with its infinitely near position ; that is to say, the point
of contact with its envelope ;

and let OP = r. Adopting the

same notation as before, let
( 0) represent the area of the en-

velope, and it is easily seen that

(c)
- (oj-fnoo)'«»4 1* («-)««»,

Jo Jo

(C) -
(0) -tJ7oor*-i|j<+.f)*4

(P)
-(0)-±j"(Oi')M»-ij!*<»;

hence
r2ir

c\C)+c(C
f

)-{c + c'){P)=%\ {c'ic-ry+cic'+rY-ic+c'j^cie

= cd (c + C*) IT,

as before.
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A remarkable extension of Holditch's theorem was given

by Mr. E. B. Elliott, in the Messenger of Mathematics,

February, 1878.
Mr. Elliott supposed the length of the moving line C'C to

vary, but that it is in all positions divided in the constant

ratio m : n in a point P.

Then, if C travel round the perimeter of any closed area

(C), and C move simultaneously round another area {C% the

two motions being quite independent and subject to no re-

strictions whatever, except that both are continuous, having
no abrupt passage from one position to another finitely differ-

ing from it, then P will travel simultaneously round the

perimeter of another closed area (P).

Adopting the same notation as before, we have

(m + n) x = mxx + nx2 , (m+n)y = myx + ny2 ;

/. (m + nYydx = (myx + ny2){mdxx + ndx2)

= m2
yidxi + nz

y2dx2 + mn {y2dxx + y x dx2)

= (m + n) (myx dxx + ny2dx2)
-mn (y2

-
yj d [xt

-x x )
.

Integrating for a complete circuit, and dividing by (m + n),
we have

(m + n)(P)=m (C) + n(C')
-
-^-{(^-rid^-xt). (20)
lib + It J

This result is stated as follows by Mr. Elliott :
—

Through any fixed point in the plane of a closed area S
let radii vectores be drawn to all points in its perimeter, and let

chords AB, parallel and equal to the radii vectores, be placed
with one extremity A in each case in the perimeter of a closed

area (-4), and the other B on that of another (B) ; then, if

the points A, P, travel respectively all round the perimeters,
and do not in either case return to their first positions from
the same sides as that towards which they left them ; and, if

[14]
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(C) represent the area describedby a point always dividingBA
in the constant ratio m : n> then the areas (A), (P), (C), (S)
are connected by the following relation :

{C)
JnU) + n

{B) _rnn
m + n (m + n)

z v ' v '

This follows immediately from (20) by altering the nota-

tion.

Areas described in opposite directions of rotation must be
taken with opposite signs.

For particular modifications in this result, as also for its

extension to surfaces, the student is referred to Mr. Elliott's

paper ; as also to Mr. Leudesdorf's papers in the same
Journal.

147 (a), liempe's Theorem.—We next proceed to the

consideration of a singularly elegant theorem* discovered by
Mr. Kempe, and which may be stated as follows :

—
If one plane sliding upon another start from any position,

move in any manner, and return to its original position after

making one or more complete revolutions
; then every point

in the moving area describes a closed curve, and the locus, in

the moving plane, ofpoints which describe equal areas is a circle ;

and by varying the area we get a system of concentric circles for

loci.

This result can be readily de-

duced from Holditch's theorem, for

if we suppose A, B, C, to be three

points which generate equal areas; it

can easily be seen that any fourth

point, D, which generates the same

area, lies on the circle circum-

scribing ABC.
Let AB and CD intersect in P,

then, let (P) represent the area

described by the point P, as before
;

lg * 22 '

and n the number of revolutions made before AB returns

to its original position : then we have, by (19), denoting by

Messenger of Mathematics, July, 1878.
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(C) the common area described by each of the points

A, B, G, D,

(C)-(P)=mrAP.PB,

and, by same theorem,

(C)
-

(P)
= nwCP.PD;

hence

AP.PB = CP.PB;

consequently A, B, C, D, lie on the circumference of the

same circle.

Again, let be the centre of this circle, and join OP and

OA, then the preceding equation gives

(C)
-

(P)
= *w{QA

% - OP).

Hence all points which describe an area equal to that of

(P) lie on a circle, having for centre, and OP for radius,
which establishes the second part of the theorem.

For the effect of two or more loops in the area described

by a moving point see Art. 132.

148. Areas by Approximation.-—In many cases it is

necessary to approximate to the value of the area included

within a closed contour. The usual method is by drawing a

convenient number of parallel ordinates at equal intervals
;

then, when a rough approximation is sufficient, we may
regard the area of the curve as that of the polygon got by
joining the points of intersection of the parallel ordinates

with the curve. Hence, if h be the common distance between
the ordinates, and if

Vo, t/i, y* &c., yn ,

represent the system of parallel ordinates, the area of the

polygon, since it consists of a number of trapeziums of equal
breadth, is plainly represented by

[14 a]
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Hence the rule : add together the halves of the extreme

ordinateSy and the ichole of the intermediate ordinates, and

multiply the result by the common interval.

When a nearer approximation is required, the method
next in simplicity supposes the curve to consist of a number
of parabolic arcs ; each parabola having its axis parallel to

the equidistant ordinates, and being determined by three of

those ordinates.

To find the area of the parabola passing through the

points whose ordinates are y , yXi y* ;
let y = a + fix + yx

1 be

the equation of the parabola, and, for simplicity, assume the

origin at the foot of the intermediate ordinate y x ,
then we

have

yQ
= a- fih + yh

2

, yy
m a, y2

= a + fih + yK\

Again, the area between the first and third ordinate is

(a + fix + yx
2

)
dx = 2h ( a + y

—
J.

But yo + yz= 2yx + 2yh
2

: hence the area in question is

hi- Wo + 42/i + y*

Now, if we suppose the number of intervals n to be even,
and add the different parabolic areas, we get, as an approxi-
mation to the area, the expression

-
{2/o + 2/« + 4(yi + y3+&c. + 2/n_1)

+ 2(y2 + y4 + &c.+y„_2)).
o

Hence the rule : add together the first and last ordinates,
twice every second intermediate ordinate, and four times each

remaining ordinate; and multiply by one-third of the common
interval.

We get a closer approximation by supposing the number
of equal intervals a multiple of 3, and regarding the curve

as a series of parabolse of the third degree, each being
determined by four equidistant ordinates. To find the area

corresponding to one of these parabolic curves, let y0> jfa y2, ys
be four equidistant ordinates, and for convenience assume
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the origin midway between yx and y2 ; then if the equation
of the parabolic curve be

y = a + fix + yx
2 + &c3

,

and the common interval on the axis of x be denoted by 2h,

we have

yo
= a- 3J5h+ gyh

2 - 278A
3

,

y1
= a -

fih + yh
2 - U3

,

y2 a + (3h + yh
2 + SA3

,

2/3
= a + $fih + gyh

2 + 27M3
.

Hence y + y3
= 2 (a + gyh

2

), yx + y2
= 2{a + yh

2

).

Again, the parabolic area between y and ys is

JZh
(a + (3x + yx

2 + §x*)dx
= Sh(2a + 6yh

2

).
-zh

Substituting in this the values of a and 7 obtained from
the two preceding equations, the expression for the area

becomes

V {yo + y3 + 3(^1 + 2/2)}.
4

If the corresponding expressions be added together, we
easily arrive at the following rule :*—Add together the first

and last ordinates, twice every third intermediate ordinate, and
thrice each remaining ordinate ; and multiply by fths of the

common interval.

It is readily seen that these rules also apply to the ap-

proximation to any closed area, by drawing a system of lines,

parallel and equidistant, and adopting the intercepts made by
the curve instead of the ordinates, in each rule.

Since every definite integral may be represented by a

* This and the preceding are commonly called
"
Simpson's rules " for cal-

culating areas
; they were however previously noticed hy Newton (see Opuscula.

Method. Biff., Prop. 6, scholium) as a particular application of the method of

interpolation. By taking seven equidistant ordinates, Mr. "Weddle (Camb. and
Dub. Math. Jour., 1854), ohtained the following simple and important rule for

finding the area:— ToJive times the sum of the even ordinates add the middle ordi-
nate and all the odd ordinates, multiply the sum by three-tenths of the common
interval, and the product will be the required area, approximately. The proof,
which is too long for insertion here, will he found in Mr. "Weddle' s memoir :

and also, with applications, in Boole's Calculus of Finite Differences. The student
is referred to Bertrand's Gale. Int., I. 1, ch. xii., for more general and accurate
methods of approximation hy Cotes and Gauss.
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curvilinear area, the methods given above are applicable to

the approximate determination of any such integral.
In practice the accuracy of these methods is increased by

increasing the number of intervals.

149. Planimeters.—Several mechanical contrivances

have been introduced for the purpose of practically estimating
the area inclosed within any curved boundary. Such instru-

ments are called Planimeters. The simplest and most elegant
is that of Professor Amsler of Schaffhausen. It consists of

two arms jointed together so as to move in perfect freedom in

one plane. A point at the extremity of one arm is made a
fixed centre round which the instrument turns

;
and a wheel

is fixed to, and turns on the other arm as an axis, and records

by its revolution the area of the figure traced out by a point
on this arm. From its construction it is plain that the re-

volving wheel registers only the motion which is perpendi-
cular to the moving arm on which it revolves.

In the practical application of the instrument it is neces-

sary that the two arms, CA and AB, should return to their

original position after the tracing point B has been moved
round the entire boundary of the required area.

We shall commence by showing that the length registered

by the wheel while B has moved round the entire closed area

is independent of the wheel's position on the moving arm ;

i.e. is the same as if the wheel be supposed placed at the joint.

To prove this, suppose P to represent the point on the
arm at which the centre of the

revolving wheel is situated. Let
A'B' represent a new position of

AB very near to AB, and P' the

corresponding position of the

point P. Draw PNperpendicular
to A'If

;
then PN represents the

length registered by the wheel
while the arm moves from AB to

the infinitely near position AB'

.

Next, drawAN perpendicular,
and AL parallel, to A'B".

Let PN= ds\ AN' =
ds,AP =

e,

PAL = d+ ;
then PN=PL + AN',

or ds' = ds + c dd>.
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Now, if we suppose AB after a complete circuit of the

curve to return to its original position, we have obviously
2 (dcp)

= o
;
and therefore 2 (ds)

= 2 (d*), i.e. the whole length

registered by the revolving wheel at P is the same as if it

were placed at A.

Next, let x and y be the co-ordinates of B with respect to

rectangular axes drawn through (7, and let AC =
a, AB =

b,

L ACX = 9
;
and suppose <p

the angle which BA produced
makes with the axis of x

;
then we shall have

x = a cos 9 + b cos
tf>, y = a sin 9 + b sin 0.

Hence xdy - ydx = a2 d9 + b
2

d<j>
+ ab cos (0

-
(p) d{9 +

<f>).

Also ds = AN' = AA! sm.AA!N = ad9 cos (9
-

</>).

But 9 +
<f>

= z9- {9-<t>);

.-. ab coa [9
-

(p)d(9 +
<[>)

= 2ab cos(0
-

(f)d9
- ab cos(0

-
<p) d{9

-
<f>)

= zbds - ab cos (9
-

</>) d{9
-

0).

Consequently

xdy-ydx = a?d9 + b
2

d<j>
+ zbds - ab cos(0- <f)d(9

-
$).

But, by Art. 139, the area traced out by B in a complete

revolution is represented by ^ (xdy
-
ydx) taken around the

entire curve.

Also, since AC and AB return to their original positions,
the integrals of the terms a2

d9, b
2

d<f>
and ab cos (9

-
<j>) d(9- <j>)

disappear ; and hence the area in question is equal to bS, where

S denotes the entire length registered by the revolving wheel.

On account of the importance ~of the principle of this in-

strument, the following proof, for b

which I am indebted to Prof. Ball,

based on elementary geometrical

principles, is also added.

Let C, A, i? represent, as before,
the positions of the fixed centre, the

joint, and the tracing point, respec-

tively ;
and suppose B to represent

the position of the roller, or revolv-

ing wheel
;
then draw CP and RS

perpendicular to AB.
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Let AC =
a, AB =

b, AR =
/, BC = r.

Now, if the instrument be rotated about C through an

angle without altering the angle CAB, it is easily seen
that the circumference of the roller is rotated through an arc

represented by

PJR .0= 1 +
+ b

2

>
Again, if the instrument be rotated about S through a

small angle the roller does not revolve.

Hence a curve can be drawn through B,
such that, if the tracing point B be
moved along it, the roller will not
revolve.

Now, let X/x, XV De the two adjacent
circles described with C as centre, and

suppose aa and (S|3' two adjacent non-

rolling curves, such as just stated : and

suppose the tracing point B to move
round the indefinitely small area aa'fifi : then the arc through
which the roller has turned is represented by

1 +
a2 + b

2 - r2

2b
$#-(!+

a2 + b
2 -

(r + Sr)

2b
:

)
86

=—:
— = area of—!rJ-,
b b

since a|3
= r $0 ; and Sr = aa sin )3.

Now suppose the instrument works correctly for the area

XXVa, then it will work correctly for the area XX'j3'|3 ; for,

start from a to X, X', a', then the area aXXV must be regis-

tered, since the roller does not turn in moving from a' to a ;

proceed then from a' to j3', )3, a, then, by what has been just

proved, the area a 'ft(3a will be added. Hence the instrument
will work correctly for the strip XX'/u'/u*

Again, suppose the instrument works correctly for the

area Xjup, then it will work correctly for X'fip ;
for suppose

we start from X to p, /x, and back to X : then start from X to
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/u, //, X and X ;
the two journeys from X to fi and /u to X

will neutralize each other, and it follows that if the instrument

works correctly for the area Ajup, it will work correctly for

the area Xfip : hence, if the instrument works correctly for

any portion of the area, however small, it works correctly for

the entire area.

The student will find a description of Amsler's Planimeter,
with another mode of demonstration, in a communication by
Mr. F. J. Bramwell, O.E., to the British Association.—See

Eeport, 1872, pp. 401-412.
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Examples,

i. Find the whole area hetween the curve

x2
y
2 + a2 b2 = a-y*

and its asymptotes.
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9. Find the area of the tractrix.

The characteristic property of the tractrix is that the intercept on a tangent
to the curve between its point of contact and a fixed right line is constant.

Denoting the constant by a, and taking the origin at the point for which
the tangent OA is perpendicular
to the axis, we have, P being

any point on the curve

FT- PN=yt

.*. ydx = - \/a2 — y
2
dy.

Hence the element of the area of

the tractrix is equal to that of

a circle of radius a.

It follows immediately that the whole area between the four infinite branches

of the tractrix is equal to ?ra2. This example furnishes an instance of our being
able to determine the area of a curve from a geometrical property of the curve,

without a previous determination of its equation.
If the equation of the tractrix be required, it can be derived from its differ-

ential equation

dx =

from which we get

x + V a2

*/a2 - f-dy
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13. A, B, C, D, are four points rigidly connected together, and moving in

nny way in a plane ;
if they describe closed curves, of areas (A), (B), (C), (2>),

respectively ;
and if x, y, z, he the areolar co-ordinates of D referred to the

triangle ABC, prove that

(D) = x(A) + </{B) + z(C)-7rt\

where t is the length of the tangent from D to the circle circumscribed to the

triangle ABC. Mr. Leudesdorf, Messenger of Mathematics, 1878.
This follows immediately : for let P be the point of intersection of the lines

AB and CD, then, by (18), we get a relation between (A), (B), and (P) ; and
also between (C), (D), and (P). If P be eliminated between these equations we
get the required result.

14. Show that a corresponding equation connects the areas of the pedals of

any given closed curve with respect to four points A, B, C, JD, taken respectively
as pedal origin. Mr. Leudesdorf.

15. If a curve be referred to its radius vector r and the perpendicular p on
the tangent, prove that its area is represented by

51
prdr

Si
16. A chord of constant length (c) moves about within a parabola, and

tangents are drawn at its extremities
;
find the total area between the parabola

and the locus of intersection of the tangents.
ire

2

Ans. — .

2

17. From the centre of an ellipse a tangent is drawn to a semicircle

described on an ordinate to the axis major ; prove that the polar equation of the

locus of the point of contact is

a2 *2

b2 + (a
2 + P) tan2 6

and that the whole area of the locus is

2 V/ «2 -r*2 + *

18. Apply the three methods of approximation of Art. 148 to the calculation

to 6 decimal places of the definite integral I
, adopting

— as the common
Jo 1 +a? 12

interval in each case. Ans. (1), .693669. (2), .693266. (3), .693224.
The 'eal value of the integral being log 2, or .693147, to the same number

of decimal places.

1 9. Prove that the sectorial area bounded by two focal vectors r and r' of a

parabola is represented by

where e is the chord of the arc, and a the semiparameter of the parabola.
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20. Show that the whole area of the inverse of the ellipse
— + — = i is
a* bz

represented by

irk* (r I H_l\ (<>l_P\\

V a* b*]

where a, £, are the co-ordinates of the origin of inversion, and k is the radius of

the circle of inversion.

ai. A given arc of a plane curve turns through a given angle round a fixed

point in its plane ;
what is the area described ?

22. Given the base of a triangle, prove that the polar equation of the locus

of its vertex, when the vertical angle is double one of its base angles is

a (2 cos 2d + i)
r = - .

2 COS

Hence show that the entire area of the loop of the curve is 3 a V. }
t

4

23. is a point within a closed oval curve, P any point on the curve, QPQ'
a straight line drawn in a given direction such that QF = PQ' = PO ; prove that

as P moves round the curve, Q, Q', trace out two closed loops the sum of whose
areas is twice the area of the original curve. Camb. Trip. Exam., 1874.

24. Prove that the area of the pedal of the cardioid r = a (1
- cos 6) taken

with respect to an internal point at the distance c from the pole is

^ (S«8
- 2ac + 2c2

). (Ibid., 1876.)
8

25. The co-ordinates of a point are expressed as follows :

3^ 30
3

x =
03 + l'

* 3 + I
'

find the equation of the curve described by the point, and the area of the portion
of the plane inclosed thereby.
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CHAPTEE VIII.

LENGTHS OF CURVES.

1 50. Length ofCurves referred to Rectangular Axes.
The usual mode of considering the length of a curve is by
treating it as the limit of a polygon when each of its sides is

infinitely small. If the curve be referred to rectangular axes

of co-ordinates, the length of the chord joining the points

(x, y) and (x + dx,y + dy) is */dx
2 + dy

2

, and, consequently, if

s represent the length of the curve measured from a fixed

point on it, we shall have ds = */3& + dy
2

, or, integrating,

Mi 2

dx, (
1

)

taken between suitable limits.

dii
The value of — in terms of x is to be got from the equa-

ctx

tion of the curve, and thus the finding of s is reducible to a

question of integration.
The determination of the length of an arc of a curve is

called its rectification.

It is evident that if y be taken for the independent variable

we shall have

u ^{4) dv-

Again, when x and y are given functions of a single va-

riable 0, we have

mm*
In each case the form of the equation of the curve deter-

mines which of these formulae should be employed.
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The curves whose lengths can be obtained in finite terms

(compare Art. 2) are very limited in number. We proceed to

consider some of the simplest cases.

151. The Parabola.—"Writing the equation of the

dx y
parabola in the form y

% = zmx, we get
dy m

Hence vV + m*

The value of this integral can be obtained from that of

the area of a hyperbola (Art. 130), by substituting y for x,

and m2
for - a2

.

Thus we have

-%(—~^r— }
(
2
)s = y</y*

2m m

the arc being measured from the vertex of the curve.

152. The Catenary.—The equation of the catenary

(Art. 131), is

y = -(e*+ e~"\

Hence

dy

dx

<h_ _ ( dyy
dx

~
\ dx2

)

e
a dx + -

2
e

a dx =

If s be measured from the vertex V, we have

a

the same result as already arrived at in Art. 1 31 .

Again, since PL = P V, andNL is constant, it follows that

the catenary is the evolute of the tractrix (see Ex. 9, p. 219).
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153. Nomi-cubit* ill Parabola.—The equation of this

curve is of the form ay
2 = a?

8
.

h m**
. . *a m ifftf fa « ( ??Y-

fli
'

' "

dx 2 \aj
'

dx \ 40/
'

.'. s =
(

1 +—
)
dx = —

(
1 + —

)
+ const.

If the arc be measured from the vertex, we get

8a (/ gx
S ~

27 l\ 4«.

The semi-cubical parabola is the first curve whose length
was determined. This result was discovered by William

Neil, in 1660.

154. Rectification of Kvolutes.—It may be noted
that the rectification of the semi-cubical parabola is an
immediate consequence of its being the evolute of the ordinary

parabola (see Diff. Calc, Art. 239). In like manner the

length of any curve can be found if it be the evolute of a
known curve, from the property that any portion of the arc

of the evolute is the difference between the two corresponding
radii of curvature of the curve of which it is the evolute.

For, example, we get by this means the lengths of the

cycloid, the epicycloid and the hypocycloid.

Again, since the equation of the evolute of an ellipse is

(ax)% + {byfl
=

(a
2 - b%

the length of any arc of this curve can be at once found.

This can also be readily got otherwise ; for, writing the

equation in the form

© <$.„
and making x = a sin3

^, we get y =
(5 cos3

tf>,
and

ds =
(dx

2 + dy
2

)^
= 3 sin

<j> cos^)(a
2
sin

2 + j3
2
co&

2

<p)^d<p

3(a
2

siuty + j3
2 cos

2

tf>)* , , . 2j 02 .
x

2(a
2

-/3
2

)

(
+ * ^'
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Hence
(a

2 sin2
d> + j3

2 cos2

d>)*
s m ~

, a.
— + const.

a2 -
|3

2

If the arc be measured from the point x =
o, y =

/3, we

get the constant

-
/3

3
, (a

8 sin
2 + |3

2 cos2

0)i-j3
3

and s =
-

j3
2 '

a2 -
]3

S

If a =
j3, the expression for ds becomes 3a sin cos

hence we get s = - a sin
2

^>,
the arc being measured from the

same point as above.

Examples.

1. Find the length of the logarithmic curve y — ca*.

Here log y = x log a + log c ; .-.-— = -, where b = . .

dy y' log a

{b* + y*)ldy f ydy

(*
2 + y''

(J2 + y2)J

Hence ,f(*
2 +^ = f _J^_. f ^dy

=
(b* + y*)l + J log

y

2 « Find the length of the tractrix.

Here, by definition (see fig. 26), we have FT = a
;

.-. sin PTiV = J
-. hence — = - -

;

a dy y

.*. * = - a\ — = - a log y + const.

If the arc be measured from the vertex A, we get

arc AP = a log (
-

J
.

3. Find in what cases the curves represented by am y
n = xmJ" x are rectifiabld.

Here we have

f ( /m 4- n\ 2 /#\
I

[15]
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(m + n)2
2™

Substituting b for —
-, and making i + bx » - z2

,
this becomes

_n_ f l z2 - i \

~mb) \ b )

This expression is immediately integrable when — is a positive integer.

Hence, if — = r, we see that curves of the form ay2r = x2r+l are rectifiable.
2m

Again, if— be a negative integer, the expression under the integral sign

becomes rational, and can accordingly be integrated. This leads to the form

yir = ax2r
~l

. Accordingly, all curves comprised in the equation ay
m = xmtl are

rectifiable, m being any integer. (Compare Art. 62).

155. The Ellipse.—The simplest expression for the arc

of an ellipse is obtained by taking x = a sin 0, whence

y = b cos
<j),

and ds =
{a

2 cos2 + b
2 sin2 #)* d<p ;

.'. s = (a
2
cos

2

^ + b
2 sin2 0)*aty.

It is often more convenient to write this in the form

e2 sin20)*% (3)
•{C

e being the eccentricity of the ellipse.

It may be observed that is the complement of the eccen-

tric angle belonging to the point (#, y).

The length of an elliptic quadrant is represented by the

definite integral

a\ (1
- e

2
sin

2

0)M0.

We postpone the further consideration of elliptic arcs to

a subsequent part of the Chapter.

156. Rectification in Polar Co-ordinates.—If the

curve be referred to polar co-ordinates we plainly have (Diff.

Calc, Art. 180) ds
2 = dr2 + r2 dd2

; hence we get

8

((-£)'". *'-J('^ «
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For example, the length ofthe spiral of Archimedes, r = aO,
is given by the equation

= -[(r* + a*)hdr.

Comparing this with the formula (2) for the parabola, it

follows that the length of any arc of the spiral, measured
from its pole, is equal to that of a parabola measured from its

vertex.

Examples.

1. Cardioid, r = a(i + cos 0).

dr
Here — = - a sin 0, and hence

s = a J { (1 4- cos 0)
2 + Bm2

6}idd = 2a J cos - dd = ±a sin - + constant.
2 2

The constant becomes zero if we measure * from the point for which = o.

2. Logarithmic spiral, r - aO.

Here, if b =
, we get'

log a

r^0
I

;
.-. S =

J"

1

(i + $2)*rfr
=

(i + ft*)l(n
- r

).

Accordingly, the length of any arc is proportional to the difference between
the vectors of its extremities

;
a result which also follows immediately from the

property that the curve cuts its radius vector at a constant angle.

dr
Taking the logarithmic differentials, we get

—— = - tan mO ;rad

ds
.•.
—-- = sec md.
rdd

f
i - 1

Hence « = « (cosw0)
m

dO.

Or, writing <f>
for mQ

i

a r »«

* =
-j (cos^) d<p.

This is readily integrated when — is an integer (see Art. 56).

[15 a]
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Whatever be the value of m, we can express the complete length of a loop of

the curve in Gamma Functions. For if we integrate between o and -, we ob-

viously get the length of half the loop.
Hence the length of the loop (Art. 122) is

s-r(-L)

V 2m J

157. Formula of Legend re on Rectification.—
Another formula* of considerable utility in rectification fol-

lows immediately from the result obtained in Art. 192, Diff.

Calo. For, if this result be written in the form

-^
— =P, we get s - t = fpdw. (5)

Consequently, the total increment of s - t between any two

points on a curve is equal to j pda> taken between the same
two points.

For example, in the parabola we have p =
, andr

cos 01

hence

t = a\ —— = a log tan
(

J cos &> \
+ -

] + const.
4 2,

If we measure the arc from the vertex of the curve, and
dt)

observe that t = ~, this gives

a sin

cos'

w , , fir (i)\- + a log tan (- + -).
m \4 2)

The student can without difficulty identify this result with

that given in Art. 151.

* This theorem is due to Legendre. See Traite dea Fonctions Elliptiques,

tome ii., p. 588.
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It should be observed that when the curve is closed, its

whole length is, in general, represented by
r2ir

pdw.

Equation (5) furnishes a simple method of expressing the

intrinsic equation of a curve, when we are given its equation
in terms ofp and w.

For, ifp =/(w) we have

du)
\pdio =/((*)) + /(<d) da), (6)

taken between suitable limits.

158. Application to Ellipse. Fagnani's Theorem.
In the ellipse we have

p
2 = a2 cos

2
a> + b

2
sin

2
w.

Hence, measuring the arc

from the vertex A, and observ-

ing that in this case PiV'is to be
taken with a negative sign, we
have

arc AP + PN =
j

{a
2 cos2

a> + b
2
sin

2

w)l dw,

where a = lACN.
But, in Art. 155, we have found that if be measured

from the vertex B, the arc is represented by

(a
2 cos

2 + b
2
sin

2

0)*cfy.

Consequently, if we make L BCQ = a = L AQN, and draw
QM perpendicular to the axis major meeting the curve inP',
we shall have

arcBF = arc AP + PN,

or, taking away the common arc PPf

,

BP-APf = PN. (7)
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This remarkable result is known as Fagnanns Theorem*,
and shows that we oan in an indefinite number of ways find

two arcs of an ellipse whose difference is expressible by a right
line.

We add a few properties connecting the points P and 2*
in this construction.

Examples.

i. If (x, y) and {x\ y') be the co-ordinates of P and P', respectively ; prove
the following :

—

(i). «T«—, (a). PN = P'N', (3). CN. CN' = CA . CB,

(4). op* + cn,o~ = ca* + cb*=cp*+ cm.

2. Divide an elliptic quadrant into two parts whose difference shall be equal
to the difference of the semiaxes.

This takes place when P and P' coincide
;
in which case CN = ^/ab, and

PN= a-b.
We shall designate the point so determined on the elliptic quadrant as Fag-

nani's point.

3. Show that if a tangent be drawn at Fagnani's point, the intercepts
between its point of contact and its points of intersection with tlio axes are

respectively equal in length to the semi-axes of the ellipse.

4. If the lines PN and P'N' be produced to meet, show that they intersect

on the confocal hyperbola which passes through the points of intersection of the

tangents to the ellipse at its vertices. Show also that this hyperbola cuts the

ellipse in Fagnani's point.

*
Fagnani, Giornale de' Letterati d'Italia, 17 16, reprinted in his Produzioni

Matematiche, 1750. It may be noted that if we integrate the equation of Art.

1 16, Biff. Calc, taking the angle C as obtuse, and adopting zero for the lowest

limit in each integral, we obtain

J
\/i -Wsv&ada +

f
*/ 1 -frBvxtbdb

=
J s/ 1 -k2 Bm"cdo + k2 sin a sin* sine,

where k is defined by the equation sin C = k sin f, and a, b, c are connected by
the relation

cos e = cos a cos b - sin a sin 5yi - k* sin2 c.

This equation furnishes a relation between three elliptic arcs, from which

Fagnani's theorem can be readily deduced, as well as many other theorems con-

nected with such arcs. See Legendre, Pone. Ellip. ,
tome i., ch. 9.
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The equation of PN is

x sin 9 + y cos d = \/a* sin*0 + b2 cos2
0,

and that of P'N' is

x cos y sin i

If we eliminate 6, we get
* i/»

which represents the hyperbola in question.

159. The Hyperbola.—In the hyperbola we have

p
2 = a2 cos

2
o) - b

2
sin

2
w.

Hence, measuring the arc from the vertex A of the curve,
we find, since <o is measured below the axis,

PN-AP =
(«

2 cos
2
a> - 6

2
sin

2

a>)^a>

where a = LACN.
As we proceed along the hyperbola
the perpendicular p diminishes, and
vanishes when the tangent becomes
the asymptote.

Moreover, as the limit of w in this

case becomes tan-1
T ,

it follows that the

diiference between the asymptote and
the infinite hyperbolic arc, measured
from the vertex, is represented by the

definite integral

rtan-i^

{a
2
cos

2
ay - b

2
sin

2

<*>)
%dw .

Fig. 29.

Examples.

1. If a > b, prove that

/(« + b cos <p)id<p

is represented by an elliptic arc, and that the semiaxes of the ellipse are the

greatest and least values of (a + b cos
</>)*.

2. If a<b, prove that

I {a + b cos <j>)ld<f>

is represented by the difference between a right line and a hyperbolic arc.
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1 60. IJanden's Theorem on a Hyperbolic Arc.—
We next proceed to establish an important theorem, due to

Landen ;* namely, that any arc of a hyperbola can be expressed
in terms of the arcs of two ellipses.

This can be easily seen as follows :
—In any triangle,

adopting the usual notation, we have

c = aoosB + boosA.

Now, representing by C the external angle at the vertex

C, we have C = A + B, and hence

cdC
'

= (acosB + b cosA) dA + (acosB + b cosA) dB.

Consequently, supposing the sides a and b constant, and
the remaining parts variable, we have

\cdC = aco&BdA + b cosAdB + 2asmB + const.,

or

\ya2 + b
2 + 2abGO&CdC= k/«2 -^sin2^ dA+\^b*-a

2
sia

2B dB

+ 2a sin5 + const. (9)

Now, if we suppose a > bA */a
2 - b

2 sm 2A dA represents

(Art. 155) the arc of an ellipse, of axis major 2a and eccen-

tricity -. Also \\/b
2 - a2 sm2BdB represents (Art. 159) the

difference between a right line and the arc of a hyperbola,

whose axis major is b and eccentricity -,.

/ Q Q
Again, */a

2 + b
2 + 2ab eosC = J(a -

b)
2
sin

2

-+(a + J)
2
cos

2
-,

*
Landen, Philosophical Transactions, 1775 ; also, Mathematical Memoirs,

1780.
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and consequently the integral

^/a
2 + b

2 + zab cos CdC

represents an arc of the ellipse whose semiaxes are a + b and
a -b.

Hence, Landen's theorem follows immediately.
It should be noted that the limiting values of A, B and

O are connected by the relations

flsini? = J sinA, and C = A + B.

Again, if we suppose the angleA to increase from o to 7r,

the external angle G will increase at the same time from
o to 7r, while B will commence by increasing from o to a,

and afterwards diminish from a to of where a = sin-1
-).

Moreover, in the latter stage b cosA is negative, and dB also

negative, consequently the term b cosA dB is positive through-
out the entire integration ;

and the total value of

</b
2 - a?8>m

2BdB is represented by 2 ^/b
2 - a

2
sin

2BdB.

C
Hence, substituting <p

for —
,
and integrating between the

limits indicated, we get, after dividing by 2,

it

V {{a + b)
2
sin

2

<p
+ (a

-
b)

2
cos

2

<t>}l df

IT

=
[V

- V &xl
%A)UA + [V

- a2 &m2

B)l dB. (10)

Accordingly, the difference between the length of the asymp-
tote and of the infinite arc of a hyperbola is equal to the differ-

ence between two elliptic quadrants. This result is also due to

Landen.
We next proceed to two important theorems, which may

be regarded as extensions of Fagnani's theorem.
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161. Theorem* of Dr. Graves.—If from any point
P on the exterior of two confocal ellipses, tangents PT and
PTf

be drawn to the in-

terior, then the difference

(PT+PT'-TT') between
the sum of the tangents
and the aro between their

points of contact is con-

stant.

For, draw the tangents
QS and QS' from a point
Q, regarded as infinitely
near to P, and drop the

perpendiculars PN and Fis- 3°-

Qi\T ; then, since the conies are confocal, we have

L PQN=L QPJST; .-. PN' = QN.

Also, PT=TR + RN=TR + RS+ SN-TS+SN
= T8+SQ- QJST.

In like manner

PT' = PN' + S'Q- T'S';

.-. PT + PT = QS + QS' + TS- T'S',

or PT + PT - TT = QS + QS' - SS'.

Hence, PT + PT' - TT' does not change in passing to

the consecutive point Q ;
which proves that PT + PT' - TT'

has a constant value.

* This elegant theorem was arrived at hy Dr. Graves, now Bishop of Limerick,
for the more general case of spherical conies, from the reciprocal theorem, viz. :

—
If two spherical conies have the same cyclic arcs, then any arc touching the

inner will cut from the outer a segment of constant area. (See Graves' transla-

tion of Chasles on Cones and Spherical Conies, p. 77, Dublin, 1841.)
It should he remarked that the theorems of this and of the following article

were investigated independently hy M. Chasles. The student will find in the

Comptes Rendus, 1843, 1844, a numher of beautiful applications by that great

geometrician of these theorems, as well to properties of confocal conies, as also

to the addition of elliptic functions of the first species.
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This value can be readily expressed by taking the point
at B\ one of the extremities

of the minor axis of the

exterior ellipse. Let D be
the point of contact of the

tangent drawn from If, and

drop Dif, and DN perpen-
dicular to CA and CB,
respectively.

Let CA =
a, CB =

b,

CA'=a', CB'=b', e the eccen-

tricity of interior ellipse.

Then, by Art. 155, the length of arc

Fig- 3i"

BD = a

where

Again,

(1
- e

2
sin

2

0)Mc/),

COS a
DM CJST CB b

hence

CB CB CB' r

BD2 = BN2 + DN2

=(b'-b cos a)
2 + a2

sin
2a

C'.-JiM-*).

&D m
j7</b*

- P - <t sin a.

Consequently we have

B'D - BD = a' sin a - a\ (1
- e

2
sin2

Hence, in general,

PT+PT'- TT = id sin a - 2a
f"(i

- e
2
sin

2

tf>)^0,

i>

:«)

where a = cos-1
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The analogous theorem, due to Professor Mac Cullagh,
may be stated as follows :

—
162. Theorem.—If tangents PT, PT be drawn to an

ellipse from any point on a con-
focal hyperbola, then the differ-

ence of the tangents is equal to

the difference of the arcs TiTand
KT.

The proof is left to the student,
and is nearly identical with that

given for the previous theorem.
This result still holds when

the tangents are drawn from a

point on an ellipse to a confocal

hyperbola, provided that the tan-

gents both touch the same branch
of the hyperbola ; as can be seen
without difficulty.

As an application* we shall prove another theorem of

Landen; viz., that the difference between the length of the

asymptote and of the infinite branch of
a hyperbola can be expressed in terms

of an arc of the hyperbola.

For, let the tangent at A meet
the asymptote in Z), and suppose a
confocal ellipse drawn through D.

Then, regarding DT as a tangent to

the hyperbola, it follows, by the
theorem just established, that the

difference between DT and KT is

equal to the difference between DA
and AK.

Consequently the difference be-

tween the asymptote CT and the

hyperbolic branch AT is equal to

DA + DC - zKA. Consequently the

required difference is expressible in
Fig. 33-

terms of given lines and of the hyperbolic arc AK,

* I am indebted to Dr. Ingram for this application of Professor M'Cullagh's
theorem.
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"We next proceed to consider two important curves whose

rectification depends on that of the ellipse.

163. The Tiimat'oii.—From the equation of the limacon,

dv
r = a cos + ft, we get -r= = - a sin 0,

and hence
ds =

(a
2 + 6

2 + 2ab cos 6)$dQ ;

.-. s =
[ |(«

+ b)
2
cos

2 - + («
- by sin

2

!j^0.

Accordingly, the rectification of the limacon depends on
that of the ellipse whose semiaxes are a + b and a - b.

164. The Epitrochoid and Hypotrochoid.—The

epitrochoid is represented by the equations (see Diff. Calc,
Art. 284)

x =
(a + b) cos - c cos —-—

0,

J r\ • a . a + b n
y =

{a + ft)
sin - c sin —7— 0.

Hence

dx
, x (

. Q c . a + b

!=(« +
6)jco

8
0-^
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Consequently the length of an arc of the epitrochoid is equal
to that of an ellipse.

The corresponding form for the hypotrochoid is obtained

by changing the sign of b.

165. Steiner's Theorem on Rectification of
Roulettes.—If any curve roll on a right line, the length
of the arc of the roulette described by any point is equal
to that of the corresponding arc of the pedal, taken with

respect to the generating point as origin.
For (see fig. 20, Art. 145), the element 00' of the roulette

is equal to OPdio.

Again, to find the element of the pedal. Since the angles
at N and N' are right, the

quadrilateral NN'TO is inscri-

bable in a circle, and consequently
NN' = OT sin NON'. But, in

the limit, NN' becomes the ele-

ment of the pedal, and 0Tbecomcs
OP : hence the element of pedal
is OPdw ; consequently the ele-

ment of the pedal is equal to the

corresponding element of the Fig. 34.

roulette
;

.*. &c.

We proceed to point out a few elementary examples of this

principle. In the first place it follows that the length of an
arc of the cycloid is the same as that of the cardioid ; and
the length of the trochoid as that of the limacon. Again, if

an ellipse roll on a right line, the length of the roulette

described by either focus is equal to the corresponding arc of

the auxiliary circle.

Moreover, it is easily seen, as in Art. 146, that, if one
curve roll on another, the elements ds and ds', of the roulette,

and of the corresponding pedal are connected by the relation

ds = ds-ft* p \

In the case of one circle rolling on another, this relation

shows that the arcs of epicycloids and of epitrochoids are

proportional to the arcs of cardioids and of limacons, which

agrees with the results established already.
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1 66. Oval of Descartes.—We next proceed to the

rectification of the Ovals of Descartes, some properties of

which curves we have given in chapter xx., Diif. Calc.

The curve is de-

fined as the locus of

a point whose dis-

tances, rand r',from
two fixed points are

connected by the

equation

mr + 1/ =
d,

where /, m9
d are

constants.

For convenience

we shall write the

equation in theform

mr + lr =
nc, (12)

where c is the dis-

tance between the

fixed points.
g * 35 '

The polar equation of the curve is easily got. For, let F
and Fl be the fixed points, and L F\FP =

0, then we have

/2 _ r2 + c
2 _ 2rc cog Q .

also from (12),
Pr'2 =

(nc
-
mr)

2

,

hence the polar equation of the locus is readily seen to be

2 - I
2

-„ = o.
mn - I

2
cos n n*

2rc —-— + <r —:

mr mr (3)

For simplicity we shall write this in the form

r2 - 2r£l + (7= o. (14)

Solving this equation for r, we get

r = Q + </&- C, otFF1
= Q + >/QF^~C, FP=Q- </& - C.

It can be seen without difficulty that, so long as /, m, n are
real and unequal, the curve consists of two ovals, one lying
inside the other, as in the figure.
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Again we get from (14), by differentiation

(r
- Q) dr = rQ'dB, where O' =

-^ ;

.*.
—

77;
= — = —

. ;
nence —-

n = — —
.

rdd r - Q y& _ Q rdO y^ _ q

or ds =
q a/Q2 + q/2 °

dQ ± SQ* + Q*-Cde, (15)
V G2 — (7

the upper sign corresponding to the outer oval, and the lower

to the inner.

Hence the difference between the two corresponding
elementary arcs is equal to

2v/iFTfl^J, or, 2</a
2 + 2ab cos 6 + b

2

-CdO,

(writing Q, in the form a + b cos 0) ;
this plainly represents

the element of an ellipse. Consequently, the difference

between two corresponding arcs of the ovals can be repre-
sented by the arc of an ellipse. This remarkable theorem is

due to Mr. W. Eoberts (Liouville, 1847, P- x 95)- Some years
after its publication it was shown by Professor Genocchi

(Tortolini, 1864, p. 97), that the arc* of a Cartesian is ex-

pressible in terms of three elliptic arcs.

In order to establish this result we commence by proving
one or two elementary properties of the curve.

Suppose a circle described through F, Flt and P ; and let

PQ be the normal at P to the oval, meeting the circle in Q,
and join FQ and F,Q ;

then let z FPQ =
a>, and F,PQ = w' ;

and since m — + / -7- = o, we have I sin </ - m sin w ;

ds ds

.-. FQ : FXQ = l:m.

* For the proof of this theorem given in the text I am indebted to Mr.
Panton.
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Also, since mr + Ir = nc
;
and (by Ptolemy's theorem)

FP . FtQ + FXP .FQ - FFX . PQ,
we have

FQ = F\Q
==
PQ

I m n

Hence, denoting the common value of these fractions by
u, we have

FQ =
luj FXQ = mu, PQ = nu.

Again

dr a' y&2 - C
tan to =—jt;

= —
; ;

.*. cos o> = —— .

Hence the first term in the expression for ds in (15) is

equal to

QdO c mn - P cos 9 7A= — - dd.
cos a> m* - r cos o>

Again, let LFPFX
» f$ lPFxC =

0,

and we have the two following relations between the angles
% *, 4> :

<f>

= + $, I sin + m sin = n sin
i/>. (16)

Hence

d(j>- dQ =
dip, I cos Odd + m cos QdQ = n cos \pd\p ;

.-. (mn
- I

2 cos 0)d0
= m(n + lcos<l>)d<l>

- n (m + I cos ^)^,
or

#m - P cos _n w + / cos ,
m + / cos \L _

,
.

,—
1 dv = m dd>- n r aw. (17)
COS o> COS (O cos w

Again, from the triangle FPQ, we have

r cos (o = PQ + jPQ cos =
(n + I cos <f)u ;

w + J cos r y
-

s
- -

.\ - = - = v/J
2 + ri* + 2/ft cos 0.

COSw M r

[16]
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In the same manner it can be shown that

m+Zcosi// c /- 7-
= - = v P + rn

2 + zlm cos \p.
COS (t)

Hence we have

[€ldQ mc f j- =
- .

= —5—- vl + n2 + zln cos dd>

Jcosw m2 - I
2

)
r r

tic f j —
-—-

2 */l
2 + m*+2lm cos \pd\p. (

1 8)

Each of these latter integrals is represented by the arc of an

ellipse, and, accordingly, the arc of a Cartesian Oval is

expressible in the required manner.
It should be noted that the limiting values of 0, <j>,

and \p

are connected by the relations given in (16).

Again, it can be shown without difficulty that the axes of
the ellipses are the lines (AB,'CD), (AC, BD), and (AD, BC),
respectively : a result also given by Signor Gtenocchi. First,

with respect to the ellipse whose element is a/q? + Qf2 - CdO,
it is plain that its axes are the greatest and least values of

2 ya2 + Q,'
2

-C, or of 2V/a2 + 6
2 + iab cos - C

;
but

are 2*/(a + h)
2 - C and 2 </(a

-
b)

2 -
C, which are plainly

the same as the greatest and least values of Pl\ ; and, con-

sequently, are AB and CD.

Again, from the equation mr + 1/ =
nc, we get

mFB + l(FB + e)
- nc; .-. FB = &zB*.v '

l + m
In like manner,

FC= (n + l)e
.l+m

Again, since we get the points on the outer oval by
changing the sign of /, we have

FA J»±!)o FD JnzIh
m-l m-l
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and, consequently,

AD=™ BO 2m
m-V I + mf

2mc(n + l) 7>T^_ 2mc(n- l) tA.0 =
5
—™ y

JjJJ — o 72 Jm2 -P m2 - r

but these are readily seen to be the values for the axes of the

ellipses in(i8).
It should be noted that if we substitute in (15) the values

for a and b, the expression for the element ds becomes of the

following symmetrical form :

mc y
-—

= ; T .
nc

*/V + n2+ 2 In cos (j>d<p
—

5
—"-//

2

+^+2/mcosif4?y r r m2 -l

Ic

T9 \/m2 + n2 - 2tnn cos BdO. (19)m2 - I
2

We shall conclude the Chapter with a brief account of

the rectification of curves of double curvature.

167. Rectification of Curves of Double Curvature.
If the points in a curve be not situated in the same plane, the

curve is said to be one of double curvature. The expression
for its length is obtained in an analogous manner to that

adopted for plane curves ; for, if we refer the curve to a

system of rectangular axes in space, and denote the co-ordi-

nates of two consecutive points by (#, y, 2), [x+dx, y+dy, z + dz),

we get for the element of length, ds, the value

ds = */dx
2 + dy

2 + dz2
.

The curve is commonly supposed to be determined by the

intersection of two cylindrical surfaces, whose equations are

of the form

f(x,y) =0, 0(0, s) =0.

From these equations, if -f and — be determined, the formula
dx dx

of rectification is

-JH(2HS)'f* «
[16 a]
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When 2 is taken as the independent variable, this formula

becomes

Ji'*®
1

*®)'-
the limits being in each oase determined by the conditions of

the question.
The simplest example is that of the helix, or the curve

formed by the thread of a screw. From its mode ofgeneration
it is easily seen that the helix is represented by two equations
of the form

z\ . z
x = a cos

\
7 l, y = a sin . .

dx a . fz\ dy a

Hence

.\ ds=l i + —
j

dz, ors = (i +
TjiJ

z
;

the arc being measured from the point in which the helix

meets the plane of xy.
This result can also be readily established geometrically.

Examples,

i. Find the length of the curve whose equations are

a£ x*

2(1
'"-• •-»•

*- »j('+5*£)M(i+S)*—»—•

the arc being measured from the origin. \
This is a case of a system of curves which are readily rectified ; for, in ge-

neral, whenever

(dy\~ _ dz_

\dx)
~ 2

dz'

I dy* dz*\h / dz\
we have

[
1+ d*

+
d7>)

=
{
l+

Tx)>

and therefore ds = dx + dz, or s = x + z + const.
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Thus, if y =f{x) be one of the equations of a curve, we get
—

=/'(*), and

hence, if a second equation he determined from the equation

dz i

dx 2 /»)',

the length of the curve is represented by x + z + const.
;
the value of the con-

stant being determined by the conditions of the problem.
For instance, if y — a sin a;, we get f'{x)

— a cos a;,
and

dz a2 a?—- = — cos2 a;
;

.*. a = — (x + cos x sin x).
dx i 4

x '

Hence the length of the curve of intersection of the cylindrical surfaces

y = a sin x, z = — (x + cos x sin x)
4

is z + it) the length being measured from the origin.

/— 2 &
2. y=2yax-x, z = x J— . -4n*. * = * + y - z.

o ™ »*

2 Z

3.
— - ^ =

I, a; = -
(«° + e °), the length being measured from the point

of intersection of the curve with the plane of xy.

(a2 + b2)l
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Examples.

i. Find the length of any arc of the catenary

a I _5\
</
=
-[**

+ *

»),

and show that the area between the curve, the axis of x, and the ordinates at

two points on the curve, is equal to a times the length of the arc terminated by
those points.

f v df
a. In any curve prove that * = ——==, and hence find the length of a

parabolic arc.

3. Show that the integral l may be represented by an arc of
J \/bx* -&-&

a circle, and find the limiting values of x for its possibility.

Wa
2 — e

1 x2—
2
—r *x

*

where a is the semiaxis major, and e the eccentricity.

5. Express the length of an elliptic quadrant in a series of ascending powers
of its eccentricity.

6. Prove that the integral of

x2dx

yV-j32)(a2
-s»)

can be represented by an arc of the ellipse whose semiaxes are o and £.

7. Show that the rectification of the sinusoid y = b sin x is the same as that

of an ellipse.

8. Prove that the whole length of theirs* negative pedal of an ellipse, taken
with respect to a focus, is equal to the circumference of the circle described on
the axis minor as diameter.

9. Show that the length of an arc of the curve r = a sin nd is equal to that

of an arc of the ellipse whose semiaxes are a and na.

10. If, from the equation of a curve referred to rectangular co-ordinates, we
form an equation in polar co-ordinates, by taking r = y and rdd = dx, then the

lengths of the corresponding arcs of the two curves are equal, and the area J ydx
of the former curve is equal to the corresponding sectorial area of the latter.

11. Prove that the difference between the lengths of the two loops of the

limacon r = a cos d + b is equal to 8b : a being greater than b.

12. Being given three points A, B, C on the circumference of an ellipse,

show that we can always find, at either side of C, a fourth pointB such that the

difference between AB and CD shall be equal to a right line.
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13. If a circle be described touching two tangents to an ellipse and also

touching the ellipse, prove that the point of contact with the ellipse divides the

elliptic arc between the points of contact of the tangents into two parts, whose
difference is equal to the difference of the lengths of the tangents (Chasles,

Comptes Bendus, 1843).

14. Prove that the entire length of any closed curve is represented by

I -— taken round the entire curve
; p being the radius of curvature at any

point, and p the length of the perpendicular from any fixed point on the tangent.

ex + 2x

15. If ev = be the equation of a curve, prove that —- = -
,
and

e* — 1 dz e2x - 1

hence rectify the curve.

16. Calculate approximately, by the tables of Art. 125, the whole length of

a loop of the curve r = a cos - 6.

Here, by Ex. 3, Art. 156, the required length is

, /-
r
(f) yd)2 rtA/

'

—>—(-, or 2«a/ it —^—L .

* r
(?)

r
(')

Hence, taking logarithms, and observing that — = 1.625, and -= 1.125, we
o o

get as the required approximation a x 3.29488. The figure of this curve is

exhibited in Art. 268, Diff. Calc.

17. In a Cartesian Oval whose two internal foci coincide, prove that the

difference of the two arcs, intercepted by any two transversals from the exter-

nal focus, is equal to a straight line which may be found. [The above curve

is the inverse of an ellipse from a focus.]
—Professor Crofton, Educ. Times,

June, 1874.
From (13) Art. 166, it follows, making n = w, that the equation of the

limaqon, in this case, is

I
2 cos 9 - m2

P - m2

which is of the form
r2 + 2r(a cos $ - $) + (a

-
j8)

2 = o.

Hence, by (15), the difference between two corresponding elementary arcs is

/— e
4V aj8 cos - dO.

Consequently, if 0i and 2 be the values of for the two transversals in

question, we get the difference of the corresponding arcs

= 8^ oj8( sin sin- 1 .

Also, it can be readily seen that the distance between the vertices of the

limacon is 4\/ aj8 ;
.-. &c.
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xz v2
1 8. Show that the length of an arc of the ellipse -z + \- - i is represented

a1 b2

by the integral

"•J
(a

2 cos2 + £2 sin2 0)*

we have ds = pdd, an

9. Show, in like manner, that the length of a hyperbolic arc is represented

a2 b2
This result is easily seen, for we have ds = pdd, and p =—- ;

.-. &c

by

*<•(
dl

J
(a

8 cos20-i2 sin2 0)*

20. Hence prove that the integral

dx

\~- bx2)*(a! -b'x
2f

is represented by an elliptic arc when ab' > ba\ and by a hyperbolic arc when
ab' < ba'. .

21. Prove that the differential of the arc of the curve found by cutting in

the ratio n : 1 the normals to the cycloid

y = a + b cos u, x = au + b sin u,

^j(a
+ nb)

2 + 4nab sin2 - du.
2

22. Each element of the periphery of an ellipse is divided by the diameter

parallel to it : find the sum of all the elementary quotients extended to the entire

ellipse. Ans. it.

23. In the figure of Art. 158, if a = L ACN', and £ = L BCN, prove that

tan a _ tan £

24. Find the length, measured from the origin, of the curve

v

x* = a2 (i
- ea

).

Ans. s = a log ( J
- x.

\a-x)
25. Find the length, measured from <p =0, of the curve which is represented

by the equations
x — (2a

—
b) sin <p

-
(a
—

b) sin3 ^>,

y = (2b
—

a) cos <p
-

(b
-

a) cos3
</>.

Ans. s = \(a + b)<p + f (a
-

b) sin <p cos <p.

26. Prove that the sides of a polygon of maximum perimeter inscribed in a

conic are tangents to a confocal conic.—Chasles, Comptes Jftendus, 1845.

27. To two arcs of an equilateral hyperbola, whose difference is rectifiable,

correspond equal arcs of the lemniscate which is the pedal of the hyperbola.
Ibid.
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28. The tangents at the extremities of two arcs of a conic, whose difference

is rectifiable, form a quadrilateral, whose sides are tangents to the same circle.—
Ibid.

29. In an equilateral hyperbola prove that

rds = %a
2 d(tan 26),

and hence show that $rds taken between any two points on the curve is equal to

the rectangle under the chord joining the points and the line connecting the

middle point of the chord with the centre of the hyperbola. Mr. W. S. M'Cay.

30. If

z + s3 z — z3

x = a — ,, y = a -.

1 + a*'
*

I + z4

be any point on a curve, show that the arc is the integral of

r, /Z—= (M. Serret

What curve do the equations represent ?

31. Through any point in a plane two conies of a confocal system can be

drawn. If the distance between the foci be 2c, and the transverse semi-axes of

these conies be fx, v, prove the following expression for any arc of a curve

ds2 =
(jji?

-
1/-) I

— +Kn
t/x

2 - c2 c2 - v

32. Prove that the following relation is satisfied by the \x and v of any point
on a tangent to the ellipse for which ft has the value /*i :

dp dv

VV -
*) J? - /t!

2
) y/{? - V2

) (Ml
2 - V2 )

33. The arc of the envelope of the right line x sin a - y cos o =/(a) is the

integral of (/(o) + /" (o)) da. (Hermite, Cours d'Analyse.)

34. The arc of the curve in which y
2 + a2 x2 - zax - o and zs - b2 x2 + 2bx = o

intersect, if a2 = 1 + b2
,
is

V 2 (a
- b)dx

«yx (2
—

ax) (2
-

bx)

{Ibid).

xm yin

35. Show that the arc of the curve — + — = 1 depends on an integral of

the form

f dz \Za* (1 + z)
k + **(!

-
z)*, where h = —

36. Show that rectification may, in general, be reduced to quadratures as

follows :
—

Produce each ordinate of the curve to be rectified until the whole length is in

a constant ratio to the corresponding normal divided by the old ordinate, then

the locus of the extremity of the ordinate so produced is a curve whose area is in

a constant ratio to the length of the given curve.

By this theorem Van Huraet rectified the semi-cubical parabola nearly simul-

taneously with Wm. Neil.
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CHAPTER IX.

VOLUMES AND SURFACES OF SOLIDS.

1 68. Solids.—The Prism and Cylinder.—The most

simple solid is the cube, which is accordingly the measure of
all solids, as the square is that of all areas. Hence the

finding the volume of a solid is called its cubature. Before

proceeding to the application of the Integral Calculus to

finding the volumes and surfaces of solids we propose to show
how, in certain cases, such volumes and surfaces can be found
from geometrical considerations. In the first place, the
volume of a rectangular parallelepiped is measured by the
continued product of the three adjacent edges ;

and that of

any parallelepiped by the area of a face multiplied by its

distance from the opposite face.

Again, the volume of a right prism is measured by the

product of its altitude into the area of its

base. For example, the volume of the right

prism represented in the figure is mea-
sured by the area of the polygon ABODE,
multiplied by the altitude AA!. Again,
since each lateral face, AB B'A' for ex-

ample, is a rectangle, it follows that the

sum of the areas of all the faces (exclusive
of the two bases), i.e. the area of the sur-

face of the prism, is equal to the rectangle
under the altitude and the perimeter of

the polygon which forms its base.

This and the preceding result still hold

in the limit, when the base, instead of a polygon, is a closed

curve of any form, in which case the surface generated is

called a cylinder. Hence, if V denote the volume of the por-
tion of a cylinder bounded by two planes drawn perpendi-
cular to its edges, h its height, and A the area of its base, we

get V=Ah.

rig. 36.
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Again, if 2 denote the superficial area of a cylinder,
bounded as before, and S the length of the curve which forms

its base, we have S = Sh.

169. The Pyramid and Cone.—If the angular points
of a polygon be joined to any external point, the solid so

formed is called & pyramid. Any section of a pyramid by a

plane parallel to its base is a polygon similar to that

which forms the base, and the ratio of their homologous
sides is the same as that of the distances of the planes from
the vertex of the pyramid. Hence it follows that pyramids
standing on the same base, and whose vertices lie in a plane

parallel to the base, are equal in volume. For, the sections

made by any plane parallel to the base are equal in every

respect ; and, consequently, if we suppose the pyramids
divided into an indefinite number of slices by planes parallel
to the base, the volumes of the corresponding slices will be
the same for all the pyramids ;

and hence the entire volumes
are equal.

Also, if two pyramids have equal altitudes, but stand on
different polygonal bases, the volumes of the pyramids will

be to each other in the same proportion as the areas of the

polygonal bases. For, this proportion holds between the

areas of the sections made by any plane parallel to the base
;

and consequently between the slices made by two infinitely
near planes.

Again, the pyramid whose base is one of the faces of a

cube, and whose vertex is at the centre of the cube, is

the one-sixth part of the cube
; for the entire cube can be

divided into six equal pyramids, one for each face. Hence,
denoting the side of a cube by a, the volume of the pyramid

#3

in question is represented by — ;
i. e. by the product of the

area of its base into one-third of its height.

Now, if we vary the base, without altering the height,
from what has been established above it follows that the

volume of any pyramid is the area of its base multiplied by
one-third of its height*

* This demonstration is taken from Clairaut's Elimens de Geometric The
student is supposed familiar with the more ancient proof, from the property that
a triangular prism can be divided into three pyramids of equal volume.
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If the base of the pyramid be any closed curve, the solid

so formed is called a cone
;
and we infer that the volume of a

cone is equal to one-third of the product of the area of its base

into its height.

If the base of a pyramid be a regular polygon, and the

vertex be equidistant from the angular points of the polygon,
the pyramid is called a right pyramid.

In this case eachface of the pyramid is an isosceles triangle,
whose area is the rectangle under the side of the polygon
and half the perpendicular of the triangle. Hence the

surface of the pyramid is equal to the rectangle under the

semi-perimeter of the regular polygon and the perpendicular
common to each face of the pyramid.

Again, if we suppose the number of sides of the regular

polygon to become infinite, the pyramid becomes a right
cone

;
and we infer that the entire surface of a right cone is

equal to the rectangle under the semi-circumference of its

circular base and the length of an edge of the cone.

Hence, if a be the semi-angle of the cone, I the length of

an edge, and r the radius of its base, wo have r = I sin a, and
the surface of the cone is represented by it I

2
sin a.

If a right cone be divided by two planes ABC, DEF,
perpendicular to its axis, as in figure, the

part intercepted by the planes is called a

truncated cone.

The surface of a truncated cone is

easily expressed ;
for if OA =

/, OD =
I',

the required surface is -n sin a (I
2 - I'

2

),

ac >c

L'

or it {I- l')(l+ sin a.

Now, if the circular section LMN be L /-- -\n
drawn bisecting the distance between / m
ABC&n.di DEF, the circumference of the

circle LMN is iz (I + V) sin o. Hence the

surface of the truncated cone is equal to b

the rectangle under the edge AD and the Fig. 37.

circumference of LMN its mean section.

1 70. Surface and Volume of a Sphere.—To find the

superficial area of a sphere ; suppose a regular polygon in-

scribed in a semicircle, and let the figure revolve around the

diameter AB ; then each side of the polygon, PQ for

example, will describe a truncated cone.
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Fig. 38.

Now, from the centre C draw CD perpendicular to PQ,
and construct, as in figure ; then, by the preceding Article,
the surface generated hjPQ is

equal to 2ir PQ . DI.

Again, by similar triangles,
we have DC:DI=PQ: MN;
.-. PQ.DI=DC.MN.

Accordingly, since the per-

pendicular CD is ofsame length
for each side of the polygon, the

surface generated by the entire

polygon in a complete revo-

lution is equal to 2 tt CD . AB =
47r R2

cos -
; where n repre-

n
sents the number of sides of the polygon, and R the radius of

the circle.

If we suppose n to become infinite, the solid generated

by the polygon becomes a sphere ; and we get qirli* for the

entire surface of the sphere. Hence, the surface of a sphere
is equal to four times the area of one of its great circles.

Again, it is easy to find the surface generated by any
number of sides of the polygon. Thus, for example, that

generated by all the sides lying between the points A and Q
is plainly equal to 2ir CD . AN".

Hence, in the limit, the surface generated in a complete
revolution by the arc AQ is equal to 2tt . AC . AN. Such a

portion of a sphere is called a spherical cap.

Again, suppose the points A and Q connected
; then, since

AQ3 = AB . AN, it follows that the area of the spherical cap
generated by the arc AQ is equal to the area of the circle

whose radius is the chord AQ.
The volume of a sphere is readily found from its surface ;

for we may regard the volume as consisting of an infinitely

great number of pyramids, having their common vertex at

the centre, and whose bases form the entire surface. But the
volume of each pyramid is represented by the product of one-
third of its height (i.

e. the radius) by its base. Hence the
entire volume of the sphere is one-third of its radius multi-

plied by its surface, i. e. — R3
,
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Examples.

1. If a sphere and its circumscribing cylinder be cut by planes perpendi-
cular to the axis of the cylinder, prove that the intercepted portions of the

surfaces are equal in area.

2. Prove that the volume of a sphere is to that of its circumscribing cylinder
in the proportion of 2 to 3 : and that their surfaces also are in the same propor-
tion. These results were discovered by Archimedes.

171. Surfaces of Revolution.—In the preceding we
have regarded a sphere as generated by the revolution of a

circle around a diameter. In general, if any plane be sup-

posed to revolve around a fixed line situated in it, every point
in the plane will describe a circle, and any curve lying in the

plane will generate a surface.

Such a surface is called a surface of revolution ; and the

fixed line, round which the revolution takes place, is called

the axis of revolution.

It is obvious that the section of a surface of revolution

made by any plane drawn perpendicular to its axis is a

circle.

If we suppose any solid of revolution to be cut by a series

of planes perpendicular to its axis, the volume of the solid

intercepted between any two such sections may be regarded
as the limit of the sum of an indefinite number of thin cylin-
drical plates.

Now, if we suppose the generating curve to be referred to

rectangular axes, the axis of revolution being that of x, the

area of the circle generated by a point (x, y) is plainly equal
to iry

2

,
and the cylindrical plate standing on it, whose thick-

ness is dx, is represented by iry^dx.

Hence, the element of volume of the surface of revolution

is ny
2

dx, and the entire volume comprised between two sec-

tions, corresponding to the abscissae a and j3, is obviously

represented by the definite integral

fdx,
a

in which the value of y in terms of x is to be got from the

equation of the generating curve.
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In like manner, the volume of the surface generated by
the revolution of a curve around the axis of y is represented

by ir\x
2

dy, taken between suitable limits.

Again, we may regard the surface generated by any
element ds of the curve as being ultimately a portion of the

surface of a truncated cone, as in Art. 170; and hence the

surface generated by ds in a complete revolution round the

axis of x is represented by iiryds ;
and accordingly the entire

surface generated is represented by

27T [yds

re-

taken between proper limits.

We proceed to apply these formulse to a few elementary

examples.

172. The Sphere.—Let x2 + y
2 = ft

2 be the equation of

the generating circle
; then, substituting a2 - x2

for y
2
s we get

for the volume

(a
2 - x2

)
dx = 7r

(
a2x

]

+ const.

If we take o and a as limits, we get for the volume of
3

the hemisphere ;
.*. the entire volume of the sphere is

,

o

as in Art. 1 70.

To find the volume of a spherical cap, let h be the length
of the portion of the diameter cut off by the bounding plane,
and we get for the corresponding volume

7r (ft
2 - x2

) dx = nh2

( ft
-

}a-h \ 3,

Again, to find the superficial area, we have

i+gY*
( -

dx
=

(
1 + — )dx = - dx: .*. yds = adx.

Hence, the surface of the zone contained between two

parallel planes corresponding to the abscissas xx and xQ is

27r adx = 27rft fa - x
) ;

Jx
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that is the product of the circumference of a great circle by
the breadth of the zone. This agrees with Art. 1 70.

173. Right Cone.—If a denote, as before, the angle
which the right line which generates a cone makes with its

axis of revolution, we get y = x tan a, taking the vertex of the

cone as origin, and the axis of revolution as that of x
;
accord-

ingly, the element of volume is ir t&n2ax2
dx.

Hence, if h denote the height of the cone, we get its

volume equal to

7r tan2
a x2 dx =— tan2

a ;

Jo 3

i.e. - x area of its base, as in Art. 169.
3

Again, to find its surface, we have ds = sec adx ;

r»
.\ 27r j yds = 27r tan a sec a xdx = irk

7, tan a sec a ;

J

which agrees with the result already obtained.

Examples.

1. The base of a cylinder is a circle whose area is equal to the surface of a

sphere of radius 5 ft.
; being given that the volume of the cylinder is equal to

the sum of the volumes of two spheres of radii 9 ft. and 16 ft., find the height
of the cylinder. Ans. 64J ft.

2. A solid sector is cut out of a sphere of 10 ft. radius, by a cone the angle
of which is 1 20

;
find the radius of the sphere whose solid contents are equal to

those of the sector. Ans. sv 2.

3. Two eones have a common base, the radius of which is 12 ft.
;
the alti-

tude of one is 9 ft.
;
and that of the other is 5 ft.

;
find the radius of a sphere

whose entire surface is equal to the sum of the areas of the cones.

Ans. 2*y zi ft.

174. Paraboloid of Revolution.—Writing the equa-
tion of a parabola in the form y

2 = zmx, we get for the
volume of the solid generated by its revolution round the

axis of x

2vm f xdx = nmx2 + const. = -
y

2x + const.
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Hence, the volume of the surface generated by the revo-

lution of the part of a parabola between its vertex and the

point (a?i, yi) is represented by -
y

2x
lt i.e. is equal to half the

volume of the circumscribing cylinder.

Again, to find the surface of the paraboloid, we have

yds = yi i +—
J
dy = -

(y
2 + m2

)hydy.

Hence, the surface of the paraboloid, between the same
limits as above, is represented by

^ j

!

(y
2 + m*)*ydy =^ j^

2 + mj- w

175. Spheroids of Revolution.—If we suppose an

ellipse to revolve round its axis major, the surface generated
by the revolving curve is called a prolate spheroid. If it re-

volve round the axis minor the surface is called an oblate

spheroid.
The volume of a spheroid is easily obtained ; for, taking

-z +
j£

= i as the equation of the curve, we get, on substitut-

ing b
2
( 1 -

X-
J
for y\

a2
x2

)dx = —r-x\a
2

} + const,
*• \ 3

Hence the entire volume is — ab2
. In like manner, the vo-

3

lume of an oblate spheroid is obviously
— ba2

.

176. Surface of Spheroid.—In the case of a prolate
spheroid we have

A ( P*^ 7ds = 1 + —— dx
;

[17]
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Hence, if CN = x
Xi CM = x

, we get for S, the zone gene-
rated in a complete revo-
lution by the arc PQ,

S x2
) dx.

Now, if we take CD = -

and construct an ellipse
whose semiaxes are CD Fig. 39.

and CD, it is easily seen

(Art. 129) that the elementary area between two consecutive
be fa

2

ordinates of this ellipse is
a \e j

x2
dx. Hence it follows

that the area of the zone generated by the arc PQ is tt times
the area of the portion P1Q1Q2P2 of this ellipse.

Again, if AEX be the tangent at the vertex of the original

ellipse, we see that the entire surface of the spheroid is 4ir
x the area BCAEX ;

but this is seen, without difficulty, to be

\7rb' + 27r — sm l

e.
e (»)

In like manner, we get for the surface $ generated by the

revolution of an ellipse round its minor axis

xds = 27r ( a2 +
-Tj- y

2

J
dy

a2
e[

S=27T

If this be integrated, as in Art. 151, we get, after some
obvious reductions,

s =
*f(«*y + *•)* + JlV + (aY +

ffg.

If this be taken between the limits o and
£>, and doubled, we

get fo_: the entire surface of the ellipsoid

27T« + 7T^m CO
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It is readily seen, as in the former case, that the surface

of any zone of this ellipsoid is ic times the area of a corre-

sponding portion of the hyperbola

x% a2
e2y

2

_
a2

"
~~br

" l

bounded by lines drawn parallel to the axis of x.

The area of the surface generated by the revolution of a

hyperbola round either axis admits of a similar investigation.

Examples.

i. Find the volume of tie surface generated by the revolution of a cycloid

round its base.
r

Here, referring the cycloid to DA and WJL _1B
JDB as co-ordinate axes, we have (see DifL

Calc, Art. 272)

x = a(<p + sin^)), y = a(i + cos<p)

Hence

dV= vy1dx = it a3
(
1 + cos <pfd<p ;

Flg ' 4°*

.-. for the entire volume V, we get

J7T

c If <b

(1 + cos $fd<p = i6ira3 cos^ - dtp
Jo 2

IT

m 32ira
3 cos6 0^0, making - = d.

Jo 2

Hence F-5^«3
-

2. Find the whole surface generated in the same case.

Here S = 2ir \y ds = 4«-a
2

I (1 4- cos <f>)
cos -

d<p ;

hence the entire surface is

Jtf

<b . 64irfl
2

cos3 -d<j>
= .

r
2

-1
5

[17 a]
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3. Find the volume and the surface of the solid generated by the revolution
of the tractrix round its axis.

(1). Here we have

y*dx =-{di
-y*)lydy;

hence the volume generated by
the portion AP is

*[* (a*-y*)lydy = -
(a*-y>)l.h 3

The volume generated by the

entire tractrix is — a3 : i. e. half
3

the volume of the sphere whose Fig. 41.
radius is OA.

(2). The surface generated by AP is

2ir I yds = 2ifl dy (see Ex. 2, Art. 134)

= 2ira{a -y).

Hence the entire surface generated is 2ira2
;

i. e. half the surface of the sphere
of radius OA.

4. Find the volume, and also the surface, generated by the revolution of the

catenary around the axis of x.

(1). Here the volume of the solid gene- ^
rated by VP is represented by

x\ y*dx= — ( (e a + e • + z\dx

ira .

= — (ys + ax),

where * = PV.

(2). Again, since

we have

Fig. 42.

2t( yda= — \ y
% dx.
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Consequently the surface generated by TV in a complete revolution is -

x the volume generated ;
i.e. = ir (y« + ax).

5. In the same curve to find the surface generated by its revolution round

the axis V.

Here

Again

S = 27r I xds = 7r i xe° dx + x 1 xe" a dx.

Also the value of

J*

• 5 r* •

xea dx = axea - a \ ea dx=a\
Jo

3 of

f« _*
I xe adz
Jo

a; 1

is obtained by changing the sign of a in the last result.

Hence

xe a dx = a2 — axe " — a2 e a
;

I!

•\ S = v \ia2 + ax (e«- e~"\ - a2 (e" + e~«\
J

=
2ir(a

z + xs — ay).

177. Annular Solids.—If a y
closed curve, which is symmetrical
with respect to a right line, be made
to revolve round a parallel line, then

the superficial area generated in a

complete revolution is equal to the

product of the length of the moving
curve into the circumference of the

circle whose radius is the distance

between the parallel lines.

This is easily proved: for let

APBP' be any curve, symmetrical with respect to AB, and

suppose OX to be the axis of revolution
;
and draw FN, QM

two indefinitely near lines perpendicular to the axis. It is evi-

dent thatPQ = P'Q'. Again, let PJV= y, P'JV= tf, PQ = P'Q'
= ds, DN = b

;
then the sum of the elementary zones described

by PQ and P'Q' in a complete revolution is represented by

27T (y + y') ds = 4irb ds.

Fig. 43-
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Consequently the surface generated by the entire curve is

2irbS, where S denotes the whole length of the curve.

A similar theorem holds for the volume of the solid ge-
nerated : viz., the volume generated is equal to the product
of the area of the revolving curve into the circumference of

the same circle as before.

For the volume of this solid is plainly represented by

jV-y
,2

)tf*,

or by. 7T (y-y')(y + y')dx
= 2-nb\ (y-y')dz.

But the area of the curve is represented by

(y
- y)& :

i

consequently, denoting this area by A, and the volume by V,
we have

V = zirb x A.

In these results the axis of revolution is supposed not

to intersect the curve
;

if it does, the expression 2nb x A
represents the difference between the volumes of the surfaces

generated by the portions of the curve lying at opposite sides

of the axis of revolution ;
as is readily seen. A similar alte-

ration must be made in the former theorem in this case.

If a circle revolve round any external axis situated in its

plane, the surface generated is called a spherical ring. From
the preceding it follows that the entire surface of such a ring
is a^ab ; where a is the radius of the circle, and b the dis-

tance of its centre from the axis of revolution.

In like manner the volume of the ring is 2ir
2
arb.

It would be easy to add other applications of these

theorems.

178. ©uldln's* Theorems.—The results established in

the preceding Article are but particular cases of two general

*
Guldin, Centrobaryica, seu de centro gmvitatis trium specierum quantitatis

contimuc, 1635. Guldin arrived at his principle by induction from a small num-
ber of elementary cases, but his attempt at a general demonstration was an
eminent failure. See Montucla Hist, des Math., torn. ii. p. 34. Montucla has

shown, torn. ii. p. 92, that Guldin's theorems can be established from geome-
trical considerations, without recourse to the Calculus.
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propositions, usually called Gruldin's Theorems, but originally
enunciated by Pappus (see Walton's Mechanical Problems,

p. 42, third Edition). They may be stated as follows :
—

(1). If a plane curve revolve round any external axis,

situated in its plane, the area of the surface generated is equal
to the product of the perimeter of the revolving curve by the

length of the path described, during the revolution, by the centre

of gravity of that perimeter .

(2). Under the same circumstances, the volume of the solid

generated is equal to the product of the area of the generating
curve into the path described by the centre of gravity of the re-

volving area.

To prove the former, let s denote the whole length of the

curve, x, y, the co-ordinates of one of its points, x, y, those

of the centre of gravity of the curve
; then, from the defi-

nition of these latter, we have

.'. 2-nrys
= 27r j yds,

i. e. the surface generated by revolution round the axis of x is

equal to the product of 8, the length of the generating curve,
into 2-n-y, the path described by the centre of gravity.

To prove the second proposition ; let A denote the area

of the generating curve, and dA the element of area corre-

sponding to any point x, y. Also let x, y be the co-ordinates

of the centre of gravity of the area, then

y = —^j— =
A (substituting dx dy for dA) ;

.;. 2-n-yA
= 2-rr jjydxdy =

irj y
2
dx;

where the integral is supposed taken for every point round the

perimeter of the curve : but, from Art. 171, the integral at

the right-hand side represents the volume of the solid gene-
rated

;
hence the proposition in question follows.

For example, tho volume of the ring generated by the

revolution of an ellipse around any exterior line situated in

its plane is at once 2ir
i

abc, where a and b are the semiaxe3
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of the ellipse, and c is the distance of its centre from the axis

of revolution.

It may be noted that these results still hold if we suppose
the curve, instead of making a complete revolution, to turn

round the axis through any angle. For, let be the circular

measure of the angle of rotation, and in the former case we
have

Oys =
j yds.

But By is the length of the path described by the centre

of gravity, and j yds is the area of the surface generated by
the curve

;
.*. &o.

In like manner the second proposition can be shown to

hold.

Again, (xuldin's theorems are still true if we suppose the

rotation to take place around a number of different axes in

succession ; in which case the centre of gravity, instead of

describing a single circle, would describe a number of arcs of

circles consecutively ;
and the whole area of the surface ge-

nerated will still be measured by the product of the length of

the generating curve into the path of its centre of gravity ;

for this result holds for the part of the surface corresponding
to each axis of revolution separately, and therefore holds for

the sum.

Again, in the limit, when we suppose each separate rota-

tion indefinitely small, we deduce the following theorem. If

any plane curve move so that the path of its centre of gravity
is at each instant perpendicular to the moving plane, then the

surface generated by the curve is equal to the length of the

curve into the path described by its centre of gravity.
The corresponding theorem holds for the volume of the

surface generated.
These extensions of Guldin's theorems were given by

Leibnitz {Act. Erud. Lips., 1695).

179. Expression for Volume of any Solid.—The
method given in Art. 1 7 1 of investigating the volume bounded

by a surface of revolution can be readily extended to a solid

bounded in any manner. For, if we suppose the volume
divided into slices by a system of parallel planes, the entire

volume may, as before, be regarded as the limit of the sum
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of a number of infinitely thin cylindrical plates. Thus, if we

suppose a system of rectangular co-ordinate axes taken, and
the cutting planes drawn parallel to that of xy ; then, if Az

represent the area of the section made by a plane drawn at

the distance z from the origin, the entire volume is denoted

by
f Az dz,

taken between proper limits.

The area Az is to be determined in each case as a function

of z from the conditions of the bounding surface.

For example, to find the volume of the portion of a cone
cut off by any plane ;

we take the origin at the vertex, and
the axis of z perpendicular to the cutting plane ; then, if B
denote the area of the base, and h the height of the cone, it

is easily seen that we have

Bz2

Az : B=z2
: h2

,
or As

= -—
;

hr

B[h
i

.*. V = —\ z
2 dz = - B x h: as in Art. 160.

If the cutting planes be parallel to that of yz, the volume
is denoted by fAxdx; where Ax denotes the area of the sec-

tion at the distance x from the origin.
1 80. Volume of Elliptic Paraboloid.—Let it be

proposed to find the volume of the portion of the elliptic

paraboloid
x2

y
2

- +- =
2Z,

p q

cut off by a plane drawn perpendicular to the axis of the sur-
face. Here, considering z as constant, the area of the ellipse

— + — =
22, by Art. 128, is iirz^/pq.

Hence, denoting by c the distance of the bounding plane
from the vertex of the surface, we have

V = 2ir*/pq zdz = ire2 */pq.
J n
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This result admits of being exhibited in another form
;
for if

B be the area of the elliptic section made by the bounding
plane, we have

B = 2nc^/pq.

Hence V = J circumscribing cylinder, as in paraboloid of re-

volution.

181. The ellipsoid.—Next, to find the volume of the

ellipsoid

x2

y
2

z
2

The section of the surface at the distance z from the origin
is the ellipse

or if z
2

— + — = i :

a2
b
2

c
2

the area of this ellipse is

ab, i.e. Az
=

7r(
i ~ — )ab.

Hence, denoting the entire volume by V, we have

f* / s2
\ 4

V=27rab\ (
i - — )dz =-Trabc.

JoV cV 3

182. Case of Oblique Axes.—It is sometimes more
convenient to refer the surface to a system of oblique axes.

In this case, if, as before, we take the cutting planes parallel
to that of 27/, and if w be the angle the axis of 2 makes with
the plane of xy, the expression for the volume becomes

sin to j A z dz,

taken between proper limits, where Az represents the area of

the section, as in the former case.

For example, let us seek the volume of the portion of an

ellipsoid cut off by any plane.

7T I
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Suppose DED'E' to represent the section made by the

plane, and ABA'B' the parallel central section. Take OA,

OB, the axes of this section as axes of

x and y respectively ;
and the conju-

gate diameter OC as axis of z.

Then the equation of the surface

is

x2
y
2

z
2

_

where OA =
a', OB = b\ 00 - c'.

It will now be convenient to transfer the origin to the

point C, without altering the directions of the axes, when the

equation of the surface becomes

x2 y 2% 2

aT2
+ Vi

=
V~"c7

The area Az of the section, by Art. 128, is

™'K?
-
S)

; (3)

hence, denoting C'N by h, the volume cut off by the plane
BED' is represented by

ira

or

'
6
'
sinw

f„

4

(7-^)'
/s'

ira'b' sin to

But, by a well-known theorem,* we have

db'c
r
sin w =

«fo,

where a, b, c, are the principal semiaxes of the surface.

Hence the expression for the volume V in question be-

comes

F--
:«^5-£); (4)

* Salmon's Geometry of Three Dimensions, Art. 96.
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C'N
or, denoting ^ by k,

V = irabck
2

f I

-;}

This result shows that the volume cut off is constant for all

sections for which k has the same value. Again, since

OiV
jrp,

= i - k, the locus of iVis a similar ellipsoid ; and we infer

that if a plane cut a constant volumefrom an ellipsoid, the locus

of the centre of the section is a similar and similarly situated

ellipsoid.

183. Elliptic Paraboloid.—The corresponding results

for the elliptic paraboloid can be deduced from the preceding
by adopting the usual method of such derivation : viz., by
taking

a} =pc, b
2 =

qc,

and afterwards making c infinite
; observing that in this case

the ratio - becomes unity.

Making these substitutions in (4), it becomes

V = 7r y^pqh
2

(
1 A or irh

2

*/pq, since d = 00.

Hence, if a constant length be measured on any diameter

of an elliptic paraboloid and a conjugate plane drawn, then
the volume* of the segment cut from the paraboloid by the

plane is constant.

Again, the area of an elliptic section by (3) is

, T,f 2h h2
\ nabc (ih h2

\^ h

{v-72

)
0X
7^Z>Kl'Y2)

* For a more direct investigation the student is referred to a memoir " On
some Properties of the Paraboloid," Quarterly Journal of Mathematics, June,

1874, by Professor Allman.
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On making the same substitutions, this becomes for the

paraboloid

27r */pq
h.

sin u)

Now, if we suppose a cylinder to stand on this section,

the volume of the portion cut off by the parallel tangent

plane to the paraboloid is obtained by multiplying the area

of the section by h sin w ; and, consequently, is

27T */pqh\

i. e. is double the corresponding volume of the paraboloid.
This is an extension of the theorem of Art. 1 80.

Examples.

1. Prove that the volume of the segment cut from a paraboloid by any plane
is fths of that of the circumscribing cone standing on the section made by the

plane as base.

2. A cylinder intersects the plane of xy in an ellipse of semiaxes OA = a,

OB =
b, and the plane of xz in an ellipse of semiaxes OA =

a, 00 = c
;
the

edges of the cylinder being parallel to BO
;
find the volume of the portion of the

cylinder bounded by the three co-ordinate planes. Am. \ abc.

3. The axes of two equal right cylinders intersect at right angles ; find the

volume common to both. Ans. A
3
& a3

,
where a is the radius of either cylinder.

This surface is called a Groin.

184. 'Volume by Double Integration.—In the ap-

plication of the preceding method of finding volumes the

area represented by Ax,
instead of being immediately known,

requires in general a previous integration ;
so that the deter-

mination of the volume of a surface involves two successive

integrations, and consequently V is expressed by a double

integral.

Thus, as the area Ax lies in a plane parallel to that of yzy

its value, as in Art. 126, may generally be represented by
\ zdy, taken between proper limits. Hence F"may be repre-
sented by

or, adopting the usual notation, by

Jjzdydx9

taken between limits determined by the data of the question.
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The value of z is supposed given by a relation 2 =/(#, y),

by means of the equation of the bounding surface
; hence

fzdy-lf(x,y)dy.

In the determination of this integral we regard x as

constant (since all the points in the area have the same
value of #), and integrate with respect to y between its proper
limits.

Thus, if yx and y denote the limiting values of y, the
definite integral

becomes a function of x : this function, when integrated
with respect to x between the proper limits, determines the

volume in question.
If X\ and x denote the limits of x, V may be represented

by the double integral

dydx.

We shall exemplify this by a figure, in which we suppose
the volume bounded by the plane of xy, by a cylinder

perpendicular to that plane, and
also by any surface.* Let

RPJXQ represent the section of

the cylinder by the plane of xy ;

and suppose PMNQ to be the

section of the volume by a plane
parallel to yz at the distance x
from the origin. Let PL = yu
QL = y ,

then the area PMNQ
is represented by the integral

* The determination of a volume of any form is virtually contained in this.

For, if we suppose the surface circumscribed by a cylinder perpendicular to the

plane of xyy
the required volume will become the difference between two

sylinders, bounded by the upper and lower portions of the surface, respectively.
See Bertrand, Calc. Int. § 447.
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The values* of y x and yQ in terms of x are obtained from
the equation of the curve RPRtQ.

Again, suppose P'M'N'Q' to represent the parallel section

at the infinitesimal distance dx from PMNQ, then the

elementary volume between PMNQ and P'M'N'Q! is repre-
sented by

dx zdy.

Now, if R T and R!Tr

be tangents to the bounding curve,
drawn perpendicular to the axis of x, and if OT = x

lf OT=x0i

the entire volume is represented by

z dy dx.

J *o J Vo

It should be observed that zdydx represents the volume
of the parallelepiped whose height is z, and whose base is the

infinitesimal rectangle having dx and dy as sides
;
and conse-

quently the volume may be regarded as the sum of all such

parallelepipeds corresponding to every point within the area

RPR'Q.
It is also plain that we shall arrive at the same result

whether we integrate first with respect to x, and afterwards

with respect to y, or vice-versa ; i. e. whether we conceive the

volume divided into slices parallel to the plane of xz, or to

that of yz.

"We shall illustrate the preceding by an example.f

Suppose RPR'Q to be the circle

(x-ay+(y-by = R>,

and the bounding surface the hyperbolic paraboloid

xy = cz
;

* In our investigation we have assumed that the parallels intersect the
curve in but two points each

;
the general case is omitted, as the solution in

such cases can be rarely obtained, and also as the investigation is unsuited for
an elementary treatise.

| This and the next example are taken from Cauchy's Applications Ge'ome-

triques du Calcul Infinitesimal^ p. 109.
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then we have

y9
= b-y/&-(x-a)\ y^b + ^/R2 -

(x-a)\
and

Jyi

i fy* x ibx /
zdy =

-\ xydy = —
{y

2

-y
2

)
=— VRi

-{x-af.
y e Jy 2C °

Again, xx
= a + R, x = a - R;

\Zr* -(x-dfxdx.

Now let x - a = R sin 0, and we get

-

2b R2
C
2

V=~\ co8
2

6{a + R sin B)dB.

2

ir it

But
'

cos2
0tf0 = -, f cos

2
sin 0^0 =

o,

v-—
ra

c

.-. V
abR*

Again, if for the cylindrical surface which has for its

base the circle we substitute a system of four planes x = x
,

x = X,y = y ,y = F, we get

= -(^-V)(F2 -^)
4C

= (X- x
) (Y-y ) ,
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in which zly s2 > 83, z4 ,
are the ordinates of the four corner

points of the portion of the surface in question.

Again, from the well-known properties of the surface, in

order to construct the hyperbolic paraboloid it is sufficient

to trace the gauche quadrilateral whose summits are the

extremities of the ordinates z l9 z2, z3 ,
s4 ;

then a right line

moving on a pair of opposite sides of this quadrilateral, and

comprised in a plane parallel to the other pair, will generate
the paraboloid in question.

Hence we arrive at the following proposition :
—

Having traced a gauche quadrilateral on the four lateral

faces of a right prism standing on a rectangular base, if a

right line move on two opposite sides of this quadrilateral
and be parallel to the planes of the faces which contain the

other two sides, then the volume cut from the prism by the

surface so generated is equal to the product of the area of

the rectangular base of the prism by one-fourth of the sum
of the edges of the prism between the vertices of the

rectangle and those of the quadrilateral.

185. Double Integration.—From the preceding Article

it is readily seen that the double integral

J

/(a?, y)dydx

can be represented geometrically by a volume ; and the deter-

mination of the double integral, when the limits are given, is

the same as the finding the volume of a solid with correspond-

ing limits.

For instance, the example in the preceding page is equi-
valent to finding the value of the double integral

xydxdy

taken for all values of x and y subject to the condition

(x-ay+ {y-by-B*<o;
and similarly in other cases.

When the limits of x and y are constants, as in

\dydx,
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the double integral represents the volume cut by the surface

2 -/(*, y)

from the parallelepiped whose base is the rectangle formed

by the lines

x =
a, x = a\ y -b, y = b'.

It is plain that in this case the order of integration is in-

different, as already seen in Art. 115.
186. It is sometimes more convenient to refer the curve

RPR'Q to polar co-ordinates, in which case we conceive the

area divided into infinitesimal rectangles of the type rdrdd.

The corresponding parallelepiped is represented by
zrdrdd, and the expression for V becomes

zr dr dQ,

taken between proper limits.

For instance, if the bounding surface be a sphere, whose
centre is the origin, we have

and the equation becomes

-JJ^
r%

r dr dd ;

but
j
yV^72 r dr = - 1

(a
2 - r2

)*.

Hence, if V denote the volume included between the

sphere and the exterior surface of the cylinder, we shall have

r=ijV-»*)«<»,
where we suppose each radius of the sphere to cut the

cylinder in but one point.
For example, let the base of the cylinder be the pedal of

an ellipse whose major axis coincides with a diameter of the

sphere; then
r2 = a2 cos2 + fc

2
sin

2

0,

and F= -Ha
2 -62

)* J sin3
0rf0.
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If this be integrated between the limits o and - we get

the -J-th of the entire volume
;
hence the entire volume

V=— (a
2 -

b*)K

Examples.

I. A sphere is cut by a right cylinder, the radius of whose base is half that
of the sphere, and one of whose edges passes through the centre of the sphere ;

find the volume common to both surfaces.

27T
Ans. ,

a being the radius of the sphere.
3 9

2. If the base of the cylinder be the complete curve represented by the

equation r = a cos nd, where n is any integer, find the volume of the solid be-

tween the surface of the sphere and the external surface of the cylinder.

187. It is readily seen, as in Art. 141, that the volume in-

cluded within the surface represented by the equation

*6
fx y z

V ~c

is abc x the volume of the surface

F(x, y, z)
= o.

For, let - = x\ t b v\ - =
2', and we shall have

a be
zdxdy = abcz' dx'dy,

and . •. / j zdxdy = abc jj z' dx dy' ;

which proves the theorem.

Hence, for example, the determination of the volume of
an ellipsoid is reduced to that of a sphere.

Again, if the point (x, y, z) move along a plane, the cor-

responding point (x', y\ z') will describe another plane. From
this property the expression for the volume of an ellipsoidal

cap (Art. 182) can be immediately deduced from that of a

spherical cap (Art. 170).

[18 a]
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In like manner the volume included between a cone en-

veloping an ellipsoid and the surface of the ellipsoid is reducible to

the corresponding volumefor a sphere.
1 88. Quadrature on the Sphere.—We next propose

to give a brief discussion of quadrature on a sphere, and
commence with the results on the subject usually given in

treatises on Spherical Trigonometry. In the first place,
since the area of a lune is to that of the entire sphere as the

angle of the lune to four right angles, the area of a lune of

angle A is represented by zRzA
;
where R is the radius of

the sphere, and A is expressed in circular measure.

Again, the area of a spherical triangle ABC is expressed
by R2

{A + B + C -
it) ; for, the sum of the three lunes

exceeds the hemisphere by twice the area of the triangle, as

is easily seen from a figure.

Hence, it readily follows that the area 2 of a spherical

polygon of n sides is represented by

2 = R2

{A + B+ C + &G. -
(«-2)7rj;

A, B, C, &c, being the angles of the polygon.
This result admits of being expressed in terms of the

sides of the polar polygon ; for, representing these sides by
a', b', c, &c, we have

A = tt - a\ B = 7r - b', &c,
and consequently

S = i2
2

{27r
-

(a' + V + c' +&c.)}.

Or, denoting the perimeter of the polar figure by S,

S + BS = 2irR\ (6)

This proof is perfectly general, and holds in the limit,
when the polygon becomes any curve

; and, accordingly, the

area bounded by any closed spherical curve is connected with
the perimeter of its polar curve by the relation (6).

Again, the spherical area bounded by a lesser circle

(Art. 170) admits of a simple expression. If p denote the

circular radius of the circle, or the arc from its pole to its

circumference, the area in question is represented by

2ttR2

(i
-

cos/o) ;
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for (see fig. Art. 1 70) we have

AN=AC- CN=R(i -cos P).

This result also follows immediately as a simple case of

equation (6).

Again, the area bounded by the lesser circle and by two

arcs drawn to its pole is plainly represented by

M2

a(l
-

COS/o),

where a is the circular measure of the angle between the arc?.

We can now find an expression for the area bounded by
any closed curve on a sphere ;

for

the position of any point P on the

surface can be expressed by means
of the arc OP drawn to a fixed

point, and of the angle POX
between this arc and a fixed arc

through 0. These are called the

polar co-ordinates of the point, and
are analogous to ordinary polar
co-ordinates on a plane. Pi~ 46

Now, let OP =
p, and POX - to ;

then any curve on the sphere maybe supposed to be expressed

by a relation between p and w.

Again, suppose OQ to represent an infinitely near vector,

and draw PR perpendicular to OP; then, neglecting in

the limit the area PQR, the elementary area OPQ by the

preceding is represented by

i22

(i
- cos p)d(o.

Hence the area bounded by two vectors from is

expressed by the integral P? (1
-

cosp)c?w, taken between

suitable limits.

If the curve be closed, the entire superficial area becomes

(1
- cos p)du).

The value of cos p in terms of w is to be determined in

each case by means of the equation of the bounding curve.
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J2»r

cos p dto obviously represents the area

included between the closed curve and the great circle which
has for its pole.

The length of the curve can also be represented by a
definite integral ; for, regarding PRQ as ultimately a right-

angled triangle, we have in the limit,

PQ2 = PR2 + RQ2
: also PR =

sinptfw.

Hence ds2 = dr2 + Bm2

p du
2

,

or ds = dto J sin
2

/>
+

(-/-)>

.-.

.-J«foJrinV+(g

Again, it is manifest from (6) that the determination of

the length of any spherical curve is reducible to finding the

area of its polar curve, and vice versa.

Examples.

i. Find the area of the portion of the surface of a sphere which is inter-

cepted hy a right cylinder, one of whose edges passes through the centre of the

sphere, and the radius of whose hase is half that of the sphere.

Here, the equation of the hase may be written in the form r = £ sin w,
-R being the radius of the sphere, and a being measured from the tangent to the
circular base.

Again, from the sphere we have r = B sin p ; .•. p = a is the equation of

the curve of intersection of the sphere and the cylinder ;
hence the area in

question is

5

2i22
f

(I- cos o»)dw = ill* (--i\.

This being doubled gives the whole intercepted area = 2tr JR? — 4-R
2

.

This is the celebrated Florentine enigma, proposed by Vincent Viviani as a

challenge to the Mathematicians of his time, in the following form :
—" Inter

venerabilia olim Graecise monumenta extat adhuc, perpetuo quidem duraturum,

Templum augustissimum ichnographia circulari Almse Geometriae dicatum, quod
Testudine intus perfecte hemisphserica operitur : sed in hac fenestrarum quatuor

aequales areae (circum ac supra basin hemisphserae ipsius dispositarum) tali con-

figuratione, amplitudine, tantaque industria, ac ingenii acumine sunt exstructa?,
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ut his detractis, superstes curva Testudinis superficies, pretioso opere musivo

ornata, Tetragonismi vere geometricisit capax."
—Acta JEruditorum, Leipsic, 1692.

[See Montucla, Histoire des Mathematiques, tome ii., p. 94.]
In general, if r =/(«) be the equation of the base of a cylinder, it is easily-

seen that the equation of the curve of its intersection with the sphere may be
written in the form R sin p =/(«).

For example, let the diameter of the right cylinder be less than half that

of the sphere ;
then writing the equation of the base in the form r = a sin &>,

where a is the diameter of the section, we get R sin p
= a sin ca, or sin p = k sin a>

(where k is < 1), as the equation of the curve of intersection of the sphere and
the cylinder.

Hence the intercepted area is denoted by
it tr

2R*
J (1

- s/i -K2 sin2 o>)rf«
= ttR2 - 2R*

J v^ 1 -/c2 suvWw.

Hence the area in question depends on the rectification of an ellipse.

2. Find the area of the portion of the surface of the cylinder intercepted by
the sphere, in the preceding.

Here the area in question is easily seen to be represented by 2 J zds, where
ds denotes the element of the curve which forms the base, corresponding to the

edge z.

Now (1), when the diameter of the base is equal to the radius of the sphere,
we have

z = R cos w, and ds = Rdw
;

IT

.-. area in question = 2.R2 I cos wdu = 4^ ;
i.e. the square of the diameter of

the sphere.

2. When the diameter is less than the radius of the sphere,

2
J

zds = 2a \/R2 - a2 sin2 «<f« = 2aR \ \/ 1 — K2 sin2 o> do>
;

.-. &c.

189. Quadrature of Surfaces.—In seeking the area

of a portion of any surface we regard it as the limit of a
number of infinitely small elements, each of which is con-

sidered as a portion of a plane which is ultimately a tangent
plane to the surface. Now let dS denote such an element of

the superficial area, and da its projection on a fixed plane
which makes the angle 9 with the plane of the element

; then,
from elementary geometry, we shall have

da = cos OdS, or dS = sec 6 cl'a.

Hence S sec 9 da,

taken between suitable limits.
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The applications of this formula usually involve double

integration, and are generally very complicated ; there is,

however, one mode by which the determination of the area of

a portion of a surface can be reduced to a single integration,
and by whose aid its value can in some cases be found

; viz.,

by supposing the surface divided into zones by a system* of

curves along each of which the angle between the tangent
plane and a fixed plane is constant ; then, if dS denote the

superficial area of the zone between the two infinitely near
curves corresponding to the angles 6 and 9 + dd

; and, if dA
be the projection of this area on the fixed plane, we shall

have dS = sec OdA.
If we suppose the surface referred to a rectangular

system of axes, the fixed plane being that of xy ;
and

.adopting the usual notation, if we take A, /*, v as the direction

angles of the normal at any point on the surface, we get
for dS, the area of the zone between the curves corresponding
to v and v + dv, the equation

dS = sec vdA,

where A denotes the area of the projection on the plane of

ay of the closed curve defined by the equation v = constant.

Now whenever we can express the area A in terms of v

and constants, then the area of a portion of the surface,

bounded by two curves of the system in question, is reducible

to a single integration.
The most important applications of this method are

furnished by surfaces of the second degree, to which we

proceed to apply it, commencing with the paraboloid.
1 90. Quadrature of the Paraboloid.—Writing the

equation of the surface in the form

x1

y
2

p q

* This method has heen employed in a more or less modified form by
M. Catalan, Ziouville, tome iv., p. 323, by Mr. Jellett, Camb. and Dub. Math.

Journal, vol. i., as also bv other writers. The curves employed are called

parallel curveshjM. Lebesgne, Ziouville, tome xi., p. 332, and Curven isokliner

Kormalen, by Dr. JSchlomilch.
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the equation of the tangent plane at the point (x, y, z) is

xX yY
p q

where X, Y, Z are the co-ordinates of any point on the plane.

Comparing this with the equation

X cos X + Y cos
fj.
+ Z cos v = P,

X If

we get cos X =— cos v, cos u = - - cos v :

P q

substituting in the identical equation

COS
2X + COS

2

jU + cos
2
v =

I,

x2
y
2

we get — + — = tan2
v. (7)

p
2

q~
'

Consequently the curve along which the tangent plane
makes the angle v with the tangent plane at the vertex is

projected on that plane into the ellipse

3 + £ - tanV
p

2

q
2

The area A of this ellipse is Trpqk&tfv ; accordingly, we
have

dA =
irpqd (tan

2

v) ;

.*. dS =
irpq sec vc?(tan

2

v)
=

irpq sec vc/(sec
2

v) ;

hence the area of the paraboloidal cap bounded by the curve
v = a is

npq secvd(seG
2

v)
=
%irpq(seG

z a -
1).

Also the area of the belt* between the curves

v = a and v = a is -§77^ (sec
3
a' - sec3

a). (8)

* This form for the quadrature of a paraboloid is, I believe, due to Mr. Jellett:
see Camb. and Dub. Math. Journal, vol. i. p. 65. The proof given above is in
a great measure taken from Mr. Allman's paper in the Quarterly Journal, already
referred to.
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191. Quadrature of the Ellipsoid.—Proceeding in

like manner to the ellipsoid

x2
y
2 z

2

a2
b
2

c
2

the equation of the tangent plane at the point (x, y, z) is

Xx Yy Zz
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Now, if 8 denote the superficial area* between two

curves corresponding to v = a and v =
a', after one or two

reductions, it is easily seen that

where

£ = 7ra
2&V (/+/'), (9)

J'

a'

sin v dv

a (b
2
sin

2
v + c

2
cos

2

v)
1
(a

2
sin

2
v + c

2
cos

2

vj*'

f* sin v dv
'

J a (a
2
sin

2 v + c
2
cos

2

v)% (b
2
sin

2
v + c

2
cos

2

v)2'

It is easily shown that the former of these integrals is

represented by an arc of an ellipse, and the latter by an arc

of a hyperbola ;
it being assumed that a > b > c.

For, assuming a2 - c
2 = «V, and b

2 - c
2 = b

2
e'

2
,
and

making cos v = x, we get

1
ab"

dx

T ("
cos a

r'=— —
«3
&Jcosa (I

eosa(l-e
,2^(l-^y

(i
- e

2x2

)*(i -e'2x2

)h'

Again, let ex = sin 6 in the former integral, and ex = sin 9
in the latter, and we get

<$

-e'2
sin

2

0)^

r g f dB

az

b)(e'
2 -e2 mrQf

Now, since e > e', the former integral represents an
arc of an ellipse, and the latter an arc of a hyperbola. (See
Ex. 19, p. 249).

* This form for the quadrature of an ellipsoid is given by Mr. Jellett in

the memoir already referred to. He has also shown that the ellipse and the

hyperbola in question are the focal conies of the reciprocal ellipsoid ;
a result

which can be easily arrived at from the forms of I and i"' given above.

For application to the hyperboloid, and further development of these results,
the student is referred to Mr. Jellett's memoir.
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192. Integration over a Closed Surface.—We shall

conclude this Chapter with the consideration of some general
formulae in double integration relative to any closed surface.

We commence by adopting the same notation as in Art. 189,
where A, /u, v are taken as the angles which the exterior

normal at the element dS makes with the positive directions

of the axes of x, y, 2, respectively.

Again, let each element of the surface be projected on
the plane of xy, and suppose* for simplicity that each z ordi-

nate meets the surface in but two points : then, if the indefi-

nitely small cylinder standing on any element dA in the

plane of xy intersects the surface in the two elementary por-
tions dSi and dS2 (where dSi is the upper, and dS2 the lower

element), and if v x and v2 be the corresponding values of v, it

is plain that vx is an acute, and v2 an obtuse angle, and we
have

dA = cos vidSi = - cos v2dS2 .

Hence, if we take into account all the elements of the surface,

attending to the sign of cos v, we shall have

jJQOSvdS = o.

In like manner we get

Jj cos XdS =
o, and jj cos fi dS = o

;

the integrals extending in each case over the whole of the
closed curve

These formulae are comprised in the equation

J7 (a cos A + j3 cosju + 7 cos v)dS = o. (10)

Again, if z x and z2 be the values of z corresponding to the

element dA, then, denoting by dVthe element of volume

standing on dA and intercepted by the surface, we plainly
have

dV= (zi
- z2)dA = z\dSi cos vi + z2dS2 cos v2 ,

* It it easily seen that this and the following demonstrations are perfectly

general, inasmuch as each ordinate must meet a closed surface in an evennumber
of points, which may he considered in pairs.
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and the sum of all such elements, that is, the whole volume,
is evidently represented by

jjz cos vdS.

Hence, denoting the whole volume by V, we have

V= jjx cosXdS = jjy cos fid8 =
jj zcosvdS;

the integrals, as before, being extended over the entire

surface.

Again, it is easily seen that we have

jjx cos vdS = o, jjy cos vdS = o, jj x cos /j.dS
= o,

jjy cosX dS =
o, jjz cos \dS= o, jj z cos fidS = o.

For, as in the first case, it readily appears that the elements

are equal and opposite in pairs in each of these integrals.
These results are comprised in the equation

jj(ax + j3y + yz) (a cos X + j3' cos ju
+ y cos v) dS

=
(aa' + /3j3' + 7y')F. (ll)

For a like reason, we have

jj xy cos v d8 = o, jjzx cos fidS =
o, jjyz cosXdS = o.

Also JJV cos vdS =
o, jj x7 cos fidS = o, &c.

Next, let us consider the integral

jjxz cos vdS.

This integral is equivalent to jj xdV; consequently, if

x, y9 s, be the co-ordinates of the centre of gravity of the

enclosed volume F, we get jj xz cos vdS = jjxd V = xV; in

like manner jj xz cos Xd8 =zV.
Again, the integral

jjz
2
cos vdS

consists of elements of the form (si
2 -

zi) dA ;
but

(zi*
- z2

2

)
dA =

(zl + s2) (si
-

S2) dA

=
(zi + z2)dV.
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But the s ordinate of the centre of gravity of dV is

plainly
— 2

,
and consequently

IL2 cos vdS= 2 [ [
Z

-±^dV
= 2zV.

In like manner it can be shown that

jjx
2 cosXdS = 2xV, jjy

2

cosfidS = 2yV.

Accordingly we have

Vx = i jjx
2
cos A dS = H xy cos fidS = jjxz cos vdS,

Vy = jjyx cosXdS = % jjy
2
cos fjidS

= jjyzcosvdS,

Vz =
j j zx cos XdS = jjzy cospdS = ^l\z

2
cos vdS.

193. Expression for Volume of a Closed Surface.—Next, if we suppose a cone described with its vertex

at the origin 0, and standing on the elementary base dS,
its volume is represented (Art. 1 69) by ^pdS, where p is the

length of the perpendicular drawn from to the tangent
plane at the point.

Also, if r be the distance of from the point, and y the

angle which r makes with the internal normal, we have

p = r cos 7.

Hence the elementary volume is equal to
-J-
r cos y dS, and

it is easily seen that if we integrate over the entire surface,
the enclosed volume is represented by

Ifjjr cos ydS.

1 94. Again, if we suppose a sphere of unit radius described

with as centre, and if da) represent the superficial portion
of this sphere intercepted by the elementary cone standing on

dS, then it is easily seen that cos ydS = i^du ;

. COS ydS
.'. dio = —

.

r2

Now if be inside the closed surface, and the integral
be extended over the entire surface, it is plain that jj du> = 47r,

being the surface of the sphere of radius unity ;

COSydS
47T.
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Again, if be outside the surface, the cone will cut the

surface in an even number of elements, for which the values

of cos y will be alternately positive and negative, and, the

corresponding elements of the integral being equal but with

opposite signs, their sum is equal to zero, and we shall have

ff

cos 7 dS
i— = o.

If be situated on the surface, it follows in like manner
that

Hence, we conclude that
*

—^-dS =
47r, 27r, or o, (12)

ff

according as the origin is inside, on, or outside the surface.

The multiple integrals introduced into this and the two

preceding Articles are principally due to Gauss.

The student will find some important applications of

this method in Bertrand's Calc. Int., §§437, 455, 456,

476, &o.
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Examples.

i. A sphere of 15 feet radius is cut by two parallel planes at distances of

3 and 7 feet from its centre ; find the superficial area of the portion of the sur-

face included between the planes approximately. Ans. 376.9908 sq. feet.

2. Being given the slant height of a right cone, find the cosine of half its

vertical angle when its volume is a maximum. . 1

Ans. —-,

3. Prove that the volume of a truncated cone of height h is represented by

—
(JP + JRr + H),

where H and r are the radii of its two bases.

4. A cone is circumscribed to a sphere of radius i?, the vertex of the cone

being at the distance D from the centre
;
find the ratio of the superficial area of

the cone to that of the sphere. IP — Ri
Ans. ———-.

4DE
5. Two spheres, A and B, have for radii 9 feet and 40 feet

;
the superficial

area of a third sphere C is equal to the sum of the areas of A and B
; calculate

the excess, in cubic feet, of the volume of C over the sum of the volumes of A
and J?. Ans. 17558.

6. If any arc of a plane curve revolve successively round two parallel axes,
show that the difference of the surfaces generated is equal to the product of the

length of the arc into the circumference of the circle described by any point on
either axis turning round the other.

If the axes of revolution lie at opposite sides of the curve, the sum of the
surfaces must be taken instead of the difference.

7. Find, in terms of the sides, the volume of the solid generated by the

complete revolution of a triangle round its side c.

Ans.
^ s(s-a)(s-b)(s-e)

'

3 <>

8. Apply Guldin's theorem to determine the distance, from the centre, of the

centre of gravity, ( 1) of a semicircular area
; (2) of a semicircular arc.

4« 2a
Ans. 1 -, 2 —.

3ir ir

9. If a triangle revolve round any external axis, lying in its plane, find an

expression for the area of the surface generated in a complete revolution.

10. Prove that the volume cut from the surface

z» = Ax2 + By2

by any plane parallel to that of xy, is th part of the cylinder standing on

the plane section, and terminated by the plane of xy.
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ii. A cone is circumscribed to a sphere of 23 feet radius, the vertex of the

oone being 265 feet distant from the centre of the sphere ;
find the ratio of the

superficial area of the cone to that of the sphere.

12, The axis of a right circular cylinder passes through the centre of a

sphere ;
find the volume of the solid included between the concave surface of the

sphere and the convex surface of the cylinder.

Ans. ^—
,
where c is the length of the portion of any edge of the cylinder

6

intercepted by the sphere.

This question is the same as that of finding the volume of the solid generated

by the segment of a circle cut off by any chord, in a revolution round the

diameter parallel to the chord.

13. Find the volume of the solid generated by the revolution of an arc of a

(2a
2 + c2

)
sin a

circle round its chord. Ans. 2-rra

3
c

where a = radius, c = distance of chord from centre, and cos a = -.
a

In this we suppose the arc less than a semicircle : the modification when it

is greater is easily seen.

14. If the ellipsoid of revolution,

and the hyperboloid

a2v2

tf-b2

be cut by two planes perpendicular to the axis of revolution, prove that the

zones intercepted on the two surfaces are of equal area.

15. Find the entire volume bounded by the positive sides of the three co-

ordinate planes, and

(-lHf)H)
1- . abe

Ans. — .

90

16. Find the volume of the surface generated by the revolution of an arc of

a parabola round its chord ;
the chord being perpendicular to the axis of the

curve.

g
Ans. — irb2 c, where c is the length of the chord, and b the intercept made

by it on the diameter of the parabola passing through the middle point of the

chord.

17. A sphere of radius r is cut by a plane at distance d from the centre
;
find

the difference of the volumes of the two cones having as a common base the

circle in which the plane cuts the sphere, and whose vertices are the opposite

ends of the diameter perpendicular to the cutting plane.
Ans. %ird (r»

- d2
).

[19]



290 Examples.

1 8. Find the area of a spherical triangle ;
and prove that if a curve traced

on a sphere have for its equation sin A. = f(l), \ denoting latitude, and / longi-

tude, the area between the curve and the equator jf(l)dl.

19. Show that the volume contained between the surface of a hyperboloid
of one sheet, its asymptotic cone, and two planes parallel to that of the real

axes, is proportional to the distance between those planes.

20. Find the entire volume of the surface

(=)•*(?)' G)
z \ i . Airabc-

I. Ans. .

5 • 7

31. The vertex of a cone of the second degree is in the surface of a sphere,
and its internal axis is the diameter passing through its vertex ;

find the volume
of the portion of the sphere intercepted within the cone.

22. Prove that the volume of the portion of a cylinder intercepted between

any two planes is equal to the product of the area of a perpendicular section

into the distance between the centres of gravity of the areas of the bounding
sections.

23. If A be the area of the section of any surface made by the plane of xy,
prov*, us in Art. 192, that

A = fjcosi/dS,

the integral being extended through the portion of tbe surface which lies above
the plwae of xy.

24. If a right cone stand on an ellipse, prove that its volume is represented
by

- (OA . OA')% sin2 a cos a ;

where is the vertex of the cone, A and A' the extremities of the major axis
of the ellipse, and a is the semi-angle of the cone.

25. In the same case prove that the superficial area of the cone ia

- (OA + OA') (OA . OA')l sin a.
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CHAPTER X.

INTEGRALS OF INERTIA.

195. Integrals of Inertia.—The following integrals are

of such frequent occurrence in mechanical investigations,

that it is proposed to give a brief discussion of them in this

Chapter.
If each element ofthe mass of any solid body be supposed

to be multiplied by the square of its distance from any fixed

right line, and the sum extended throughout every element

of the body, the quantity thus obtained is called the moment

of inertia of the body with respect to the fixed line or axis.

Hence, denoting the element of mass by dm, its distance

from the axis by p, and the moment of inertia by 1, we have

I=^p2 dm. (1)

In like manner, if each element of mass of a body be

multiplied by the square of its distance from a plane, the

sum of such products is called the moment of inertia of the

body relative to the plane.
If the system be referred to rectangular axes of co-

ordinates, then the expression for the moment of inertia

relative to the axis of z is obviously represented by
2 (x

2 + y
2

)
dm.

Similarly, the moments of inertia relative to the axes of

x and y are represented by S (y
2 + z

2

)
dm and S (x

2 + z
3

) dm,

respectively.

Again, the quantities '2,x
2
dm, ^y

2
dm, ^z2

dm, are the

moments of inertia of the body with respect to the planes
of yz, xz, and xy, respectively. Also the quantities ^xydm,
^zxdm, ILyzdm, are called the products of inertia relative to

the same system of co-ordinate axes.

In like manner the moment of inertia of the body icith

reference to a point is ^,r
2

dm, where r denotes the distance of

the element dm from the point. Thus the moment of inertia

relative to the origin is 2 (x
2 + y

2 + z
2

)
dm.

[19 a]
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196. Moments of Inertia relative to Parallel
Axes, or Planes.—The following result is of fundamental

importance :
—The moment of inertia of a body with respect to

any axis exceeds its moment of inertia with respect to a parallel
axis drawn through its centre of gravity, by the product of the

mass of the body into the square of the distance between the

parallel axes.

For, let / be the moment of inertia relative to the axis

through the centre of gravity, I' that for the parallel axis,M the mass of the body, and a the distance between the axes.

Then, taking the centre of gravity as origin, the fixed

axis through it as the axis of 2, and the plane through the

parallel axes for that of zx, we shall have

7= 2(z* + y
2

]dm, I' =
2{(« + a)

2 + y
2

}dm.

Hence T - I = 2a^xdm + a2
"2dm = a2

M,

since Sxdm = o as the centre of gravity is at the origin ;

.-./' = /+ a2M. (2)

Consequently, the moment of inertia of a body relative to

any axis can be found when that for the parallel axis through
its centre of gravity is known.

Also, the moments of inertia of a body are the same for

all parallel axes situated at the same distance from its centre

of gravity.

Again, it may be observed that of all parallel axes that

which passes through the centre of gravity of a body has the

least moment of inertia.

It is also apparent that the same theorem holds if the

moments of inertia be taken with respect to parallel planes,
instead of parallel axes.

A similar property also connects the moment of inertia

relative to any point with that relative to the centre of

gravity of the body.
In finding the moment of inertia of a body relative to

any axis, we usually suppose the body divided into a system
of indefinitely thin plates, or lamince, by a system of planes

perpendicular to the axis
; then, when the moment of inertia

is determined for a lamina, we seek by integration to find

that of the entire body.
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197. Radius of Gyration.—If k denote the distance

from an axis at which the entire mass of a body should be

concentrated that its moment of inertia relative to the axis

may remain unaltered, we shall have

Mk2 = I=-2p
2 dm. (3)

The length k is called the radius of gyration of the body
with respect to the fixed axis.

In homogeneous bodies, which shall be here treated of

principally, since the mass of any part varies directly as its

volume, the preceding equation may be written in the form

where dV denotes the element of volume, and F'the entire

volume of the body.
Hence, in homogeneous bodies, the value of k is indepen-

dent of the density of the body, and depends only on its form.

We shall in our investigations represent the moment of

inertia in the form j **„ .

and, it is plain that in its determination for homogeneous
bodies we may take the element ofvolumefor the element of mass,
and the total volume of the body instead of its mass.

Also, in finding the moment of inertia of a lamina, since its

radius of gyration is independent of the thickness of the lamina,
we may take the element of area instead of the element of

mass, and the total area of the lamina instead of its mass.

198. If A and B be the moments of inertia of an infi-

nitely thin plate, or lamina, with respect to two rectangular
axes OX, OY, lying in its plane, and if C be the moment of

inertia relative to OZ drawn perpendicular to the plane, we
have C=A + B. (4)

For, we have in this case A = '2y
2

dm, B = *2,x
2

dm, and

0»X(af + *?)«&*.

Again, for every two rectangular axes in the plane of the

lamina, at any point, we have

"2,x
2dm + 72ly

2dm = const.

Hence, if one be a maximum, the other is a minimum, and
vice versa.

We shall, in all investigations concerning laminae, take C
for the moment of inertia relative to a line perpendicular to

the lamina.
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199. Uniform Rod, Rectangular Lamina.—We
commence with the simple case of a rod, the axis being perpen-
dicular to its length, and passing through either extremity.

Let x be the distance of any element dm of the rod from
the extremity ; then, since the rod is uniform, dm is propor-
tional to dx, and we may assume dm = fidx: hence, the

moment of inertia /is represented by /u2a?
2

d#, or by

.

x*dx
f

where / is the length of the rod.

IX I
3 P

Hence I= — = M-.
3 3

If the axis be drawn through the middle point of the rod,

perpendicular to its length, the moment of inertia is plainly
the same for each half of the rod, and we shall have in this case

12

Next, let us take a rectangular lamina, and suppose the

axis drawn through its centre, parallel to one of its sideSr

Here, it is evident that the lamina may be regarded as

made up of an infinite number of parallel rods of equal

length, perpendicular to the axis, each having the same
radius of gyration, and consequently the radius of gyration
of the lamina is the same as that of one of the rods.

Accordingly, we have, denoting the lengths of the sides

of the rectangle by 2a and 2#, and the moments of inertia

round axes through the centre parallel to the sides, by A and

B, respectively,

A = -Mb\ B=-Ma\ (5)
3 3

Hence also, by (4), the moment of inertia round an axis

through the centre of gravity and perpendicular to the plane
of the lamina, is

- if(a
2 + b

2

). (6)
o

By applying the principle of Art. 196 we can nOw find

its moments of inertia with respect to any right line either

lying in, or perpendicular to, the plane of the lamina.
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200. Rectangular Parallelepiped.— Since a parallel-

epiped may be conceived as consisting of an infinite number
of laminae, each of which has the same radius of gyration
relative to an axis drawn perpendicular to their planes, it

follows that the radius of gyration of the parallelepiped is

the same as that of one of the laminae.

Hence, if the length of the sides of the parallelepiped be

2a, 2b, and 2c, respectively; and, if A, B, Obe respectively
the moments of inertia relative to three axes drawn through
the centre of gravity, parallel to the edges of the parallel-

epiped, we have, by the last,

A = -M(b
2 + c

2

),
B = -M(c'

i + a2

), C = -M(a*+b
2
). (7)

O O o

201. Circular Plate, Cylinder.—If the axis be

drawn through its centre, perpendicular to the plane of a

circular ring of infinitely small breadth, since each point of

the ring may be regarded as at the same distance r from the

axis, its moment of inertia is r2

dm, where dm represents its

mass.

Hence, considering each ring as an element of a circular

plate, and observing that dm = p2wrdr9
we get for C, the

moment of inertia of the circular plate of radius a,

C-2wA*f*dr-^ = M^;
Jo 2 2

Consequently, the moment of inertia of a ring whose
outer and inner radii are a and b, respectively, with respect to

the same axis, is

|» : «4 -V „r a2 + b
2

27TU rdr = TTLL = ML .

J& 2 2

Again, by (4), the moment of inertia of a circular plate
a2

about any diameter is M-, since the moments of inertia are
4

obviously the same respecting all diameters.

In like manner, the moment of inertia of a ring relative

to any diameter is

nr a2 + b °'
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Also, the moment of inertia of a right cylinder about its

axis of figure is

a being the radius of the section of the cylinder.

Again, the moment of inertia relative to any edge of the
3

cylinder is - Ma2
.

202. Right Cone.—To find the moment of inertia of a

right cone relative to its axis, we conceive it divided into an
infinite number of circular plates, whose centres lie along the

axis
; and, denoting by x the distance of the centre of any

section from the vertex of the cone, and by a the semi-angle
of the cone, we have

7r/utan
4 o [

h

1:
x*dx TTfib'h

10

where h is the height of the cone, and b the radius of its base.

Hence, since by Art. 169 the volume of the cone is - b
2

h,

we have

I = ±Mb\
10

(8)

203. Elliptic Plate.—Next let us suppose the lamina

an ellipse, of semi-axes a and b
;
and

let A and B be the moments of inertia

relative to these axes, respectively.
Describe a circle with the axis

minor for diameter, and suppose the

lamina divided into rods by sections

perpendicular to this axis. Let & be

the moment of inertia for the circle

round its diameter.

Then, denoting by dB and dl? the moments of inertia of

corresponding rods, we have

Fig- 47-

dB'.dB =
{np)' : (np'f = (oa)

3
: (ob)

3 = a3
: V

.-. B:B'=a3 :b3
.
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M'b2

to
M' «3

ilf
,

•\ J5 = — — = — a2
.

4 4

Similarly, -4 =— b
2
.

Hence the moment C round a line through the centre of

the ellipse, perpendicular to its plane, is

*(*+»). (9 )

It is plain, as before, that the expression for the moment
of inertia of an elliptical cylinder relative to its axis is of the

same form.

204. Spbere.—If we suppose a sphere divided into an
infinite number of concentric spherical shells, the moment of

inertia of each shell is plainly the same for all diameters
;

and accordingly, representing the mass of any element of a
shell by dm, and by x, y, z any point on it, we have

*2x2dm =
*2y

2dm = ^%% dm.

But 2(x* + y
2 + z

2

)dm= 2r2
dm;

2
.*. S (x

% + y
2

) dm = - *2r
2dm.

3

Hence, (a) the moment of inertia of a shell whose radius

2
is r with respect to any diameter is - mr2

, where m repre-
o

sents the mass of the shell.

Again, (b) for a solid sphere of radius B, since the volume
of an indefinitely thin shell of radius r is $irr

2

dr, we get

2r*eft> = 4?r i
A dr = ^TrR5 = ^VB?

5 5

"When this is substituted, the moment of inertia of a solid

homogeneous sphere relative to any diameter is found to be

-MM 2
. (10)

5
v ;
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205. Ellipsoid.—Let the equation of an ellipsoid be

x2

y
2

z
2

and suppose A t B, C to be the moments of inertia relative to

the axes a, b, c, respectively ; then

C =
juS (*• + y

2

) dV =
/*

[
(x

2 + y
2

) dxdydn.

Now, let

and we get

= *, i
=

t/

y „> * _,

C m
juabc

[l
(a?x'

2 +b2

y'
2

)dx'dy'dz',

where the integrals are extended to all points within the

sphere

x 2 + i/
2 + z'

2 = 1.

But, by the last example we have

\\\x'
2

dx'dy'dz' = [[[y'
2

dx'dy'dz' = —
tt;

.*. C = —
TT/iabc (a

2 + b
2

)= — (a
2 + b

2

). (11)

In like manner,

A = -{b2 + c
2

), B--=—(c
2 + a2

).

It should be remarked that the moments of inertia of the

ellipsoid with respect to its three principal planes are

— a2
,
— b

2
9
— c

2
, respectively.

o o
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206. Moments of Inertia of a Lamina.—Suppose
that any plane lamina is referred to two rectangular axes

drawn through any origin 0, and that a is the angle which

any right line through 0, lying in the plane, makes with the

axis of x
; then, if / be the moment of inertia of the lamina

relative to this line, we have

i" = ^p
2dm = 2 (y cos a - x sin a)

2dm

= cos
2 a '2>y

2dm + sin2 a
y2lx2dm - 2 sin a cos a'Zxydm

= a cos
2 a + b sin

2
a - ih sin a cos a; (12)

where a and b represent the moments of inertia relative to

the axes of x and y, respectively ;
and h is the product of

inertia relative to the same axes.

Again, supposing X and!Fto be the co-ordinates of a point
taken on the same line at a distance R from the origin, we

X Y
get cos a = -s-,

sin a = -=-
; and, consequently,M It

IR2 = aX2 + bY*-2hXY.

Accordingly, if an ellipse be constructed whose equation is

aX2 + bY2 - 2hXY= const., (13)
we have

IE2 = const. ;

and, consequently, the moment of inertia relative to any line

drawn through the origin varies inversely as the square of

the corresponding radius vector of this ellipse.
The form and position of this ellipse are evidently inde-

pendent of the particular axes assumed
;
but its equation is

more simple if the axes, major and minor, of the ellipse had
been assumed as the axes of co-ordinates. Again, since in

this case the coefficient of J7 disappears from the equa-
tion of the curve, we see that there exists at every point in

a body one pair of rectangular axes for which the quantity
h or ^xydm = o.

This pair of axes is called the principal axes at the

point ; and the corresponding moments of inertia are called the

principal moments ofinertia of the lamina relative to the point.
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Again, if A and B represent the principal moments of

inertia, equation (12) becomes

1 = A cos
2
a + B sin

2
a. (14)

Hence, for a lamina, the moment of inertia relative to

any axis through a point can be found when the principal
moments relative to the point are determined.

The equation of the ellipse (13) becomes, when referred

to the principal axes,

AX2 + BY2 = const.

207. Momenta! Ellipse.—Since the moments of inertia

for all axes are determined when those relative to the centre

of gravity are known, it is sufficient to consider the case

where the origin is at the centre of gravity. With reference

to this case, the ellipse

AX2 + BY2 = const. (15)

is called the momental ellipse of the lamina.

Again, if two different distributions of matter in the

same plane have a common centre of gravity, and have the

same principal axes and principal moments of inertia, at

that point, they have the same moments of inertia relative to

all axes.

This is an immediate consequence of (14). Hence it is

easily seen that the moments of inertia for any lamina are

M
the same as for the system of four equal masses, each —,

placed on the two central principal axes, at the four dis-

tances ± a and ± b, from the centre of gravity, where a and b

are determined by the equations

A = -Mb\ B=-Ma2
.

2 2

Again, if two systems of the same total mass, in a plane,
have a common centre of gravity, and have equal moments
of inertia relative to any three axes, through their common
centre of gravity, they have the same moments of inertia for

all
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This follows immediately since an ellipse is determined
when its centre and three points on its circumference are

given.

Again, it may be observed that the boundary of an

elliptical lamina may be regarded as the momental ellipse of

the lamina.

For, if I be the moment of inertia relative to any
diameter making the angle a with the axis major, we have

7= A cos2 a + B sin
2
a.

But, by Art. 203,

4 4

M
/- I- — (b

2
cos2a + a* sin2

a)
4

'

M 97 „/cos
2a sin

= — a2
b
2

[

—— +
4 \ a%

Ma2
b
2

4 r2

in2 a\

Hence the moment of inertia varies inversely as the square
of the semi-diameter r ; and, consequently, the ellipse may be

regarded as its own momental ellipse.

208. Products of Inertia of Lamina.—Suppose the
lamina referred to its principal axes at a point ; and let p
and q be the distances of any element dm from two axes,
which make the angles a and [5 with the axis of x

;
then we

have

^pqdm = S (y cos a - x sin a) {y cos ]3
- x sin j3) dm

= cos a cos j3 ^y
2dm + sin a sin j3 *2x

2dm
- sin (a + (3) ^xydm

= A cos a cos ]3 + B sin a sin j3,

since A =
*2y

2

dm, B = 'Sx^dm, and ^xydm = o.

Hence, if 'Spqdm =
o, we have

A cos a cos /3 + B sin sin/3
=

o,
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and accordingly the axes are a pair of conjugate diameters

of the momental ellipse

AX2 + BY2 = const.

Hence, if two laminae in the same plane have for any point
two pairs of axes for which *2pqdm = o and "Ep^dm =

o,

they have the same principal axes at the point. This follows

from the easily established property, that if two ellipses have

two pairs of conjugate diameters in common, they must be

similar and coaxal.

209. Triangular Lamina and Prism.—Suppose a

triangular lamina, whose sides are a, b, c, to be divided into

a system of rods parallel to a side a
;

and let A represent the moment of

inertia relative to a line parallel to

the side a, and drawn through the

opposite vertex; also let p be the

perpendicular of the triangle on
the side a, and x the distance of an

elementary rod from the vertex; then
Fi g

we have, since the mass dm of the
ax

elementary rod may be represented by /m
—

dx,

axA = ^x2dm = u^x^—dx
P

a [* m , ap
%

= u - xz dx = u— = —f
FJo 4

M
2

In like manner, let B and C be the moments of inertia

relative to lines drawn through the other vertices parallel to

b and c
;
and let q, r be the corresponding perpendiculars of

the triangle, and we have

»-?* 2

Again, if A
,
B

,
C

, represent the moments of inertia
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relative to three parallels to the sides, drawn through the

centre of gravity of the lamina, we have, by (2),

AQ
= -Mp\ B =\Mq\ C = ±Mr\ (16)

Io Io 10

Also, if Ai, 2?i, Cl9 be the moments of inertia relative

to the sides a, b, c, respectively, it follows, in Eke manner,
from (2), that

Ax=
1

tMP\ Bx = \Mq\ Cx -\Mr\ (17)000
Again, it is readily seen that the values of A, A , Ax, &c,

are the same as if the whole mass If were divided into three

equal masses, placed respectively at the middle points of the

sides of the lamina.

Consequently, by Art. 207, the moments of inertia of the

triangular lamina relative to all axes are the same as for

three masses, each — , placed at the middle points of the
o

sides of the triangle.

Hence, if i" be the moment of inertia of a triangular
lamina with respect to the perpendicular to its plane drawn

through its centre of gravity, we have

I=^-M{a
z + 6

2 + c
2

). (18)

This expression also holds for the moment of inertia of a

right triangular prism with respect to its axis*

In like manner the moments of inertia of the triangular
lamina relative to the three perpendiculars to its plane,
drawn through its vertices, are

'A -\ -M(ci + az --\ -A
3/ 4 \ 37 4

and the same expressions hold for a triangular prism relative

to its edges.

* By the axis of a prism is understood the right line drawn through its

centre of gravity parallel to its edges.
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210. Momental Ellipse of a Triangle.—It can be
shown without difficulty that the ellipse which touches at the
middle points of the sides

may be taken for the mo-
mental ellipse of the triangle.

For, let x, y, z be the

middle points of the sides,

and it is easily seen that o

is the centre of this ellipse ;

also, if Ji, 72, I9 be the
moments of inertia of the lg * 49 '

lamina relative to the lines ax, by, cz, respectively, it can be

readily shown from (17), that we have

J» : It : JT, -
(axf

'

(by)*

'

(«)•

(oxy (oyy (ozy

Accordingly, by Art. 207, the ellipse xyz may be taken for

the momental ellipse of the lamina.

211. Tetrahedron.—If a solid tetrahedron be supposed
divided into thin laminae parallel to one of its faces, and if

A, B, C, D represent its moments of inertia with regard
to the four planes drawn respectively through its vertices

parallel to its faces ; then, denoting the areas of the corre-

sponding faces by a, b, c, d, and the corresponding perpen-
diculars of the tetrahedron by p, q, r, s, respectively, it is

easily seen, as in Art. 209, that we shall have

x2 a [
p

A = lux
%dm = a^x^a— dx = u—\ x*dx

f VJo
ap

%
3

In like manner we have

B = ^-Mq\ C^Mr*, D=±Ms\
5 o
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Again, if A 0i B ,
C

,
D be the corresponding moments of

inertia relative to the parallel planes drawn through the

centre of gravity of the tetrahedron, we have, by (2),

Ao =lo Mp\ B.-^Mf, ft-^-K*.
D«=±Ms\ (19)

Also, if Ai, JBi, Ch Dx be the moments of inertia relative

to the four faces of the tetrahedron, we have

A x
=— Mp\ B, =— Mq% d =— Mr\ A =— Ms\ (20)10 10 10 10 v '

212. Solid Ring.*—If a plane closed curve, which is

symmetrical with respect to an axis AB
}
be made to revolve

round a parallel axis, lying in

its plane, but not intersecting the

curve, to prove that the moment
of inertia i" of the generated solid,

taken with respect to the axis of

revolution, is represented by

Fig. 50.

where M is the mass of the solid, q
h the distance between the parallel

axes, and k the radius of gyration
of the generating area relative to its axis.

For, if the axis of revolution be taken as the axis of x
t

and, if y, Y be the distances of any point P within the

generating area from AB, and from OX, respectively ; and,
if dA be the corresponding element of the area, then the
volume of the elementary ring generated by dA is 2k YdA,
and its mass 2irix YdA ;

hence the moment of inertia of this

elementary ring, relative to the axis of X, is 2wfjiY
3dA.

Accordingly, we have

2= 27rfjL^Y
zdA =

27Tfi^(h + yYdA
=

27T/JS (h* + $h*y + shy^ + y
3
)
dA.

* The theorems of this Article were given by Professor Townsend in the

Quarterly Journal of Mathematics , 1869.

[30]
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Moreover, since the curve is symmetrical with respect to

the axis AB, it is easily seen that we have

2ydA =
o, SyHA = o.

Also, by definition, 2y
2dA = AW".

Hence I =
2tt/uhA (h

2 + 3A
2

).

Again, by Art. 177, M'= nrfihA ;

.-. I=M{h2 + sk
2

). (21)

This leads immediately to some important cases.

Thus, for example, the moment of inertia of a circular

ring, of radius a, round its axis is

Mfe+tA.

Again, if a square of side a revolve round any line in its

plane, situated at the distance h from its centre, we have

I = M{h2 + a2

).

There is no difficulty in adding other examples.
213. General Expression for Products of Inertia.—"We shall conclude this Chapter with a short discussion of

the general case of the moments and products of inertia, for

any body, or system.
Let us suppose the system referred to three rectangular

planes, and let p, q, r represent the respective distances of

any element dm from the three planes

x cos a + y cos j3 + z cos 7 = 0,

x cos a + y cos j3' + z cos y = o,

x cos a" + y cos j3" + s cos 7" = o.

Then

'2lpqdm=^l (xco8a+ycosP+zco8y)(xcosa+ycosf5
/

+zco8y
/

)dm
«= cos a cos a 1.x

2dm + cos fi cos (3' ?,y
2dm + cosy cosy' Sz

2dm
+ (cos a cos j3'

+ cos /3 cos a) Sxydm
+ (cos 7 cos a + cos a cos 7') Szxdm

+ (cos /3 cos y + cos 7 cos j3') Syzdm;

and we get similar expressions for Iprdm and Sqrdm.
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Now, suppose that we take

'2x
2dm =

a, ^y~dm =
b, Ss2

c?m =
c,

"Syzdm =/, *2>xzdm =
g, *2xydm = h

;

then the preceding equation may be written

Ypqdm = cos a (a cos a + h cos j3' + g cos 7')

+ cos j3 (h cos a + b cos j3' +/ cos 7')

+ cos 7 (g cos a +f cos
j3'

+ c cos 7') ; (22)

along with similar expressions for 'Srpdm and 'Sqrdrn.

214. Principal Axes.—Next, let us suppose that the

planes are so assumed as to satisfy the equations

'Epqdm =
o, "2rpdm = o, ^qrdm = o

;

then it is easily seen* that these planes are a system of con-

jugate diametral planes in the ellipsoid represented by the

equation

aX2 + bY2 + cZ2 + 2/YZ + 2gZX + 2hXY = const. (23)

Hence it follows that at any point there exists one system of

rectangular planes for which the corresponding products of

inertia, for any body, vanish : viz., the principal planes of the

preceding ellipsoid.^

These three planes are called the principal planes of the

body relative to the point, and the right lines in which they
intersect are called the principal axes for the point.

Again, every two solids have for every point at least one
common system of planes for which *2pqdm = o, *2rpdm =

o,

*2qrdm =
o, ^pq'dm =

o, ILrpdrri =
o, ^q'rdm' = o;

where the unaccented letters refer to the elements of one

solid, and the accented to those of the other.

This is obvious from the property that every two con-

centric ellipsoids have one common system of diametral planes.

*. Salmon's Geometry of Three Dimensions, Art. 72.
t The exceptional cases when the ellipsoid is of revolution, or is a sphere,

will he considered subsequently.

[20 a]
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Again, if two solids have for any point more than one

system of planes for which the foregoing six products of

inertia vanish, they must have the same principal planes at

the point. This follows since the two ellipsoids in that case

must be similar and coaxal.

215. Principal Moments of Inertia.—Let us now

suppose the co-ordinate planes to be the principal planes of

the body for the origin, then the moment of inertia relative

to the plane
x cos a + y cos j3 + f cos 7 = o

is

*2p
2dm = 2 (x cos a + y cos |3 + I cos y)

2dm

= cos2a2#2 c?m + cos
2

j3 *2y
2dm + cos

2

7 ^z2
dm, (24)

since in this case we have

"2xydm =
o, 'Szxdm = o, "2yzdm = o.

Again, let / be the moment of inertia of the body relative

to the line through the origin whose direction angles are

a, j3, 7 ;
then we have

/+ 2p
2dm = 2r2dm = 2(^ + y

2 + z
2

)dm;

,\ I = cos
2 a S (y

2 + z
2

)
dm + cos

2

j3 S (z
2 + x2

)
dm

+ cos2

7 S (x
2 + y

2

)
dm

;

or I = A cos
2 a + B cos

2

j3 f C cos
2

7, (25)

where A, JB, C are the moments of inertia of the body
relative to its three principal axes.

A, B, C are called the three principal moments of inertia

of the body relative to the origin.
If the centre of gravity be taken as the origin, the

corresponding values of A, B, C are called the principal
moments of inertia of the body.

We suppose, in general, that A is the greatest, and C the

least of the three principal moments.
It follows from (25) that the moment of inertia of a body

relative to any line passing through a given point is known,
whenever the angles which the line makes with the principal
axes are known, as also the moments of inertia relative to

these axes.
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216. Ellipsoid of Gyration.—Suppose, as before, the

solid referred to its three principal axes at any point, and let

a, b, c be the corresponding radii of gyration, i.e. let

A = Ma2

,
B = Mb2

,
= Mc%

and /= Mk2

;
then equation (25) becomes

k2 = a2
cos

2
a + b

2
cos

2

/3 + c
2
cos

2

y. (26)

Now, if we suppose an ellipsoid described having the

principal axes for the directions, and a, b, c for the lengths
of its corresponding semi-axes

;
then (26) shows that the

radius of gyration of the body, relative to the perpendicular
from the origin on any tangent plane to this ellipsoid, is

equal in length to this perpendicular. (Salmon's Geometry
of Three Dimensions, Art. 89.)

The foregoing ellipsoid is called the ellipsoid of gyration
relative to the point. It should, however, be observed that

by the ellipsoid of gyration of a body is meant the ellipsoid
in the particular case where the origin is at the centre of

gravity of the body.
217. Honiental Ellipsoid.—If X, Y, Z be the co-

ordinates of a point R taken on the right line through the

origin 0, whose direction angles are a, /3, 7, we have

X= Oleosa, Y=OB cosj3, Z = OR cosy.

Substituting the values of cos a, cos j3, cos y, deduced
from these equations, in (25), it becomes

/. OR2 = AX 2 + BY2 + CZ2
.

Suppose, now, that the point R lies on the ellipsoid

AX 2 + BY2 + CZ2 =
const., (27)

and we get I . OR2 =
A, denoting the constant by A ;

T=m- w
Hence the moment of inertia relative to any axis, drawn

through the origin, varies inversely as the square of the cor-

responding diameter of the ellipsoid (27).
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J

From this property the ellipsoid is called the momenta!

ellipsoid at the point.
When the origin is taken at the centre of gravity of the

body, this ellipsoid is called the central ellipsoid of the body.
If two of the principal moments of inertia relative to any

point be equal, the momental ellipsoid becomes one of re-

volution, and in this case all diameters perpendicular to its

axis of revolution are principal axes relative to the point.
If the three principal moments at any point be equal, the

ellipsoid becomes a sphere, and the moments of inertia for all

axes drawn through the point are equal. Every such axis is

a principal axiB at the point.
For example, it is plain that the three principal moments

for the centre of a cube are equal, and, consequently, its

moments of inertia for all axes, through its centre, are equal.
218. Equimomental Cone.—Again, since

COS
8
a + COS

2

j3 + COS
2

7 =
I,

equation (25) may be written in the form

(A -
/) cos

2 a + (B-I) cos
2

/3 + (G- I) cos
2

7 = o
;

hence the equation

(A -
I) X* + (B -I)Y*+(C-I)Z* = o (29)

represents a cone such that the moment of inertia is the same
for each of its edges. Such a cone is called an equimomental
cone of the body.

Again, the three axes of any equimomental cone, for any
solid, are the principal axes of the solid relative to the vertex

of the cone.

When 1= By the cone breaks up into two planes ; viz.,

the cyclic sections of the momental ellipsoid.
For a more complete discussion of the general theory of

moments of inertia and principal axes, the student is referred

to Routh's Rigid Dynamics, chapters 1. and 11.
;
as also to

Professor Townsend's papers in the Camb. and Dub. Math.

Journal, 1846, 1847.
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Examples.

Find the expressions for the moments of inertia in the following, the bodies

being supposed homogeneous in all cases :
—

i. A parallelogram, of sides a, b, and angle 0, with respect to its sides.

Ans. — b2 sin2 0,
— a2 sin2 9.

3 3

2. A rod, of length o, with respect to an axis perpendicular to the rod and

at a distance d from its middle point.

Ans. M l- + d 2 \.

3. An equilateral triangle, of side a, relative to a line in its plane at the

distance d from its centre of gravity.

Ans.L
*(-**)

4. A right-angled triangle, of hypothenuse c, relative to a perpendicular to

its plane passing through the right angle.

c2

Ans. If-
6

5. A hollow circular cylinder, relative to its axis.

r2 + r'2

Ans. M , where r and r' are the radii of the bounding circles.

6. A truncated cone with reference to its axis.

3M b5 - b'5

Ans. — r=——, where b and b' are the radii of its bases.
10 b3 -b*

7. A right cone with respect to an axis drawn through its vertex perpen-
dicular to its axis.

7M / b2 \
Ans. — [h

2 + — ) , where h denotes the altitude of the cone,
5 \ 4/

and b the radius of its base.

8. An ellipsoid with respect to a diameter making angles a, £, y with its

Ans. — [a
2 sin2 a + b2 sin2 /3 + c2 sin27 J

.

9. Area bounded by two rectangles having a common centre, and whose
sides are respectively parallel, with respect to an axis through their centre

perpendicular to the plane.

. M(a2 + b2)ab-(a'
2 +b'Aa'b'

Ans. —~
, ...

'
.

12 ab - a'b'



312 Examples,

io. A square, of side a, relative to any line in its plane, passing through its

centre.

fl2

Ans. M-.
12

II. A regular polygon, or prism, with respect to its axis.

Ans. —
(
-R

2 + 2r2
J

,
where R and r are the radii of the

circles circumscrihed, and inscribed to the polygon.

u. Prove that a parallelogram and its maximum inscribed ellipse have the

same principal axes at their common centre of figure.

13. Prove that the moments and products of inertia of any triangularM
lamina, of mass M, are the same as for three masses, each —

, placed at the

three vertices of the triangle, combined with a mass -M placed at its centre of
4

gravity.

14. Prove that the moments and products of inertia of any tetrahedron are

M
the same as for four masses, each —

, placed at the vertices of the tetrahedron,

4
2°

combined with a mass -M placed at its centre of gravity.

15. If a system of equimomental axes, for any solid, all lie in a principal

plane passing through its centre of gravity, prove that they envelop a conic,

having that point for centre, and the principal axes in the plane for axes.

1 6. Prove also that the ellipses obtained by varying the magnitude of the

moment of inertia form a confocal system.

17. Prove that the sum of the moments of inertia of a body relative to any
three rectangular axes drawn through the same point is constant.

18. Prove that a principal axis belonging to the centre of gravity of a body
is also a principal axis with respect to every point on its length.

19. Prove that the envelope of a plane for which the moment of inertia of

a body is constant is an ellipsoid, confocal with the ellipsoid of gyration of the

body.

20. If a system of equimomental planes pass through a point, prove that

they envelop a cone of the second degree.

2 1 . For different values of the constant moment the several enveloped cones
are confocal ?

22. The common axes of this system of cones are the three principal axes of
the body for the point ?

23. The three principal axes at any point are the normals to the three sur-
faces confocal to the ellipsoid of gyration, which pass through the point.

(M. Binet, Jour, de VEc. Foly. 1813.)
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CHAPTER XI.

MULTIPLE INTEGRALS.

219. Double Integration.—In the preceding Chapters we
have considered several cases of double and triple integra-
tion in the determination of volumes and other problems
connected with surfaces. We now proceed to a short treat-

ment of the general problem of Multiple Integration, com-

mencing with double integrals.
The general form of a double integral may be written

J x Jy
f{x, y)dxdy,

in which we suppose the integration first taken with respect
to y, regarding x as constant. In this case, F, y0i the limits

of y, are, in general, functions of x
; and the limits of x are

constants.

Let us take for example the integral

r.tf.
xl~ l

y
m~

l

dxdy y

in which / is supposed greater than m.

Here

therefore U= —m

1 fa
2m \

fa
Zm \

x1- 1

[
z—-xm \dx =

P-nf
In many cases the variables are to be taken so as to in-

clude all values limited by a certain condition, which can be

expressed by an inequality : for instance, to find

-ifx^y™'
1

dxdy,

extended to all positive values of x and y subject to the con-

dition x + y < h.

[21]
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Here the limits for y are o and h - x
;
and the subsequent

limits of x are o and h.

Hence

Let x = hu, then

nh-x
xl

-^y
m~ x

dxdy

= -
f xl

-Uh-x)
m dx.

w J
v '

r(/ + w+ 1)
' v '

by Art. 121.

220. Change of Order of Integration.—We have
seen (Art. 115) that when the limits of x and y are con-

stants in a double integral we may change the order of inte-

gration, the limits remaining unaltered. But when the

limits of y are functions of x, if the order of integration be

changed, it is necessary to find the new limits for x as func-

tions of y. This is usually best obtained from geometrical
considerations.

For example, in the integral

U^
a

^f{x,y)dxdy,
the limits for y are given by the right line y = x and the

hyperbola xy = a2
;
and the integral

extends to all points in the space
included by the hyperbola AL> the

right line OA, where A is the ver-

tex of the hyperbola, and the axis

of y. Draw AB perpendicular to

the axis of y. Now when the order

of integration is changed, we sup-

pose the lines which divide the area

into strips taken parallel to the axis

of x instead of the axis of y. Thus
the integral breaks up into two parts

—one corresponding to
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the triangle OAB, the other to the remaining area : hence

U= f(x*y)dydx + fix, y)dydx.

As another example, let us interchange the variables in

the integral

U=
«*'

Vdxdy.
nx

Here, let OC and OD be the

lines represented by y = Ix and

y = mx ; and let OA = a. f
Then the integral is extended to

all points within the triangle OCD.

Accordingly, changing the order,
°

we get

J
'la ra cma rZ

Vdydx+\ Vdydx.
ma Jy J Jy

A X

Examples.

i. Find the value of the double integral

v _\
a

[*
f(y) dxdv

h Jo V(a - x) (x
-

y)

Here, changing the order, the integral becomes

f
B f« f'(y)dydx

h Jy V(a
—

x)(x
—

y)

J
a J*

- = ir: hence Umw{f(a) -/(0)J
v V(a- x){x-y)

2. ProTethat

r2a fV2a*-*a "a •a +V*2
"!'

2

'o K

[21a]

rza ryiax-x* ra .•a + yaa-y2

f{x,y)dxdy = f(x, y),hjdx.
JO JO Jo •'«-v'a2-y9
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j. Iff pee find the value of

j.2« |.V^.
xa

^'(y)(^ + y^xdxdy

Jo Jo *&+-[* + $$'
Ans. ira2

(<J>(ff)
-

<f>(o, }.

4. Change the order of integration in the double integral

[2a rylax

U=\ Vdxdy.
Jo iyfuZ*

The limits of y are represented by the circle x2 + y
2 = 2ax, and the paraboh

y
1 = zax

;
and we readily find that

y
Vdydx 4 „ Vdydx+\ Vdydx.

Jy
3

.0 JaWa'.yz j„ }„i

221. Dirlchlet's Theorem.— The result given in

equation (1) has been generalized by Dirichlet (Liouville's

Journal, 1839), and extended to a large class of multiple

integrals, as follows : Wer* j

Commencing with three variables, let us consider the inte-

gral

-UJ
xl- l

y
m- l zn

-l

dxdydz,

in which the variables are supposed always positive, and
limited by the condition

x + y + z < 1.

In this case the limits of z are o and 1 - x - y ;
those of

y are o and 1 - x
;
and those of x, o and 1 .

r 1 ri-z ri-z-y

Hence U= x _1
y
m~l

z
n~l dxdy dz.

Jo Jo Jo

It is easily seen, from (1), that

n-x
p.x-

y T(m) T(n)

Jo Jo r(*» + » + i)
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therefore

r(m)r(n)
pr{m + n+i)}

v '

r(m) r(») r(flr(« + n+i) r(/) r(m)r>;

r(m + n+i)' T(l+m + n+ i) r(l + m + n + i
\- w

Again, in the same multiple integral, if x, y, g, being
still always positive, are subject to the condition

x + y + s < h,

we get

rr_,^ r(0r(m)rw
r(/+m + n+i)'

V^

This readily appears by substituting # = hx\ y = %',
z =

As', in the multiple integral.
There is no difficulty in extending these results to any

number of variables. We proceed from (3) to the case of

four variables
;
and so by induction to any number.

Thus, the value of the multiple integral

U = HI . . . x1- 1

y
m~J

zn~' . . . dxdydz

extended to all positive values of x, y, z, &c, subject to the
condition

x + y + z + &c. < 1
,

lT
r(i)r(m)r(n)...

T(i + l + m + n + .. .)'
w

Again, in the integral

U *
!!! *

M
V
m~l

sM-1 dxdy dz,
'

suppose the variables to be still always positive, but limited

by the condition
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then making

3- (?)'=• ©'

par
-

/ I m n>
r( i +- + - + -

the integral transforms into

a l bm c
n
C([ --i --i --i

27= up v 9 wr
dudvdw,

pqr JJJ

where >.t + v +u> < i .

Accordingly

v
a'i- C

" r
(p)

r
u)

r

Again, from (3), the value of the triple integral

jjjx^y^z^dxdydz,

extended to all positive values, subject to the condition

x + y + z > u and < u + du9

is

r(or(m)r(n),. . .„... r(/)r(w)r(») , tB1 .

r{i+l+m + n)
K

r{l+m + n)

Hence the multiple integral

JJT-FXtf + y + z) xh
x

y
m-x z""1

dxdydz,

taken between the same limits, has for its value

r(/)r (OT)r>)
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Accordingly, the value of the multiple integral

HIF{x + y + z) x
l~ x

y
m~ x

z
n~ x

dxdydz,

extended to all positive values of the variables, subject to the

oondition

x + y + z < h,

rgrwrw pr(l+m + n) Jo

In like manner it is seen that if the multiple integral

JJ=
[ M(-T+ (?Y+ (*Y|

xl

-'y
m- x zn

- l

dxdydz

be extended to all positive values, subject to the condition

we have

. <A rM££&
pqr r^ + 2 + 5

p q r

rh USA*!
F(u)u

P q '

du. (7)

These results can be readily extended to any number of

variables.

Examples.

1. Find the value of

extended to all positive values, subject to x + y < h.

Ans. -—— (eh - 1).
sin In-

x '
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2. More'generally, prove that

\\F' (*+*)** r*dxdy = -At- {F(h)
-

F(o)},
J J 8111 IfT

where x + y < h.

3. Find the value of

fJJ"
. . dx\ dx% . . . dx„,

extended to all positive values of the variables, subject to the condition

xx
2 + *2

2 + . • . + xn2 <&
'R\ n zs*-
(!)

(-3
4. Prove that

dx dy dz vt

the integral being extended to all positive values of the variables for which the

expression is real.

5. Show in general that

n+_l

e i' r dx\ dx-i dx3 . . dxn tt
2

J J J

"
Vi"-*ia -«2*-. .-Xn2 In +- i\'

under the same condition as in (3).

222. Transformation of multiple Integrals.—We
proceed to consider the transformation of a multiple integral
to a new system of independent variables.

Suppose it be required to transform the integral

SH/fa 1/> z
) dxdydz

to another system of variables, w, v, w, being given %, yy
z in

terms of w, v, to.

This transformation implies in general three parts
—

(1) the expression of f (%, y, z) in terms of u, v, w ; (2) the

determination of the new system or systems of limits
;

(3) the substitution for dx dy dz.

The solution of the first two questions is a purely algebraical
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problem. We here limit ourselves to the consideration of the

third question, and write the integral in the form

jdxjdySf(x,y,z)dz.

In the integration with respect to z, x and y are regarded
as constant

; accordingly, in order to replace z by the new
variable w, we suppose z expressed, by means of the given

equations, in terms of x, y, w; and then we replace dz by

— dw. Again, to transform the integration from y to v, we

must suppose y expressed in terms of vt w, x, and then dy

replaced by ~ dv : we next suppose x replaced by — du
;
and

we finally replace

, , , . dz dy dx _ _ _

dx du dz by — —
-7- da dv dw.J J dw dv du

It should be observed that in each of the latter transfor-

mations a change in the order of integration is supposed.

By this means the transformed expression is

, . dz dy dx _
7 7 ._ x

(u, v, w) -—— -=- du dv aw. (8)^ ' dw dv du '

where (u, v, w) is the transformation of/ (x, y, z).

The preceding would present, in general, a problem of

extreme difficulty, especially in the investigation of the new
limits at each change in the order of integration. The one

matter in every case to be carefully observed is, that the trans-

formed integral or integrals must include every element

which enters into the original expression, and no more.

Again, it may be observed that in the foregoing substitu-

tions for dx dy dz the order may be interchanged in any
manner.

Thus, if we commence by replacing x by w, we must

suppose x expressed in terms of u,y,z; and then replace dx

by -j- du, &c.J du
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As an illustration we shall consider the ordinary trans-

formation from rectangular to polar coordinates, viz. :
—

x = r sin sin 0, y = r sin 9 cos 0, z = r cos 6.

Here we have
x* + y

2 + z
2 = r2

;

therefore x2 = r2 - y
2 - z

8

;

henoe
<fe

fl?r a; sin sin ^'

Again — = - r sin 0, -f = - r sin sin
;au aty

.. . d# dz dy „ . _

therefore -—^ -^ = r2 sm
;

dr dd d$

and for the element of volume dx dy dz we substitute

r2 Bin 6 dr dO d<p,

a result which can be also readily shown from geometrical
considerations.

Next, let us consider the more general transformation

x=r Binflv/i-m'siii
8

^, y=r sin^^/i -n
2
sin

2

0, 3=rcos0cos0,

in which m2 + nl = i.

Squaring, and adding the three equations, we get

x2 + y
2 + z2 = r

2
.

In replacing x by r, we get, therefore,

dx r l

dr x sin <f i - m* sin
2

^'
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Next, to replace y by <j>,
we must express y in terms of ry

<j>,
and 2 : thus

y = r sin
(j> *Sm

2 + n2
cos

3 = sin
<f>

\,m' r* +
COS

2

(f>

Hence
tan $ v/mVcos* (p

+ n2
z
2
.

m2 r2 sin2

(p— = sec
2
d> </m

2 r2 cos
8

<p
-t n2

z
2 - , *

d<p
T r

i/mrr* cos4

<p
+ n£

z*

m2 r2
cos

2

<j>
+ nz

z
2 sec2

<£
r (m

2 cos
2 + n2 cos2

0)
(

y'm
2
r

2
cos

2

(p
+ n2

z
2

cos y/m
2 + w2

cos
2

'

and, finally,
— = - r sin cos

(p.

Hence for dx dy dz we substitute

r2

(m
2
cos

2

<p
+ n2

sin
2

<p)
dr d9 d<p

v i
- mr smin2

v^ 1 ~ ^2
sin

2
(9)

In general (ZW. Calc., Art. 325), the product -—
i-
—

v dw dv du
is the Jacobian of the original system of variables, x, y, z,

regarded as functions of the new system, u, v, w.

Accordingly, the general substitution for dx dy dz is

dx
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we are given equations of the form

Fx {x,y,z t u,v,u>) -o, F,(«,y,i, «*,v,w) =o, -Fl(a?,y,i, w,»,w)
= o,

we have (D/^. Cfl/c, Art. 324), adopting the usual notation

for Jacobians,

d(Fl9 Ft,F9)

d (x, y,z) _
d (u, v, w)

d(ih v,w) d{Flt Ft9 F>y
d Qr, //, z)

And for dx dy dz we must then substitute

-=! du dv dw, (11)

where Jx is the Jacobian of the given system of equations
with respect to the new variables, and Jz their Jacobian

with respect to the original system.

224. Transformation of Element of Surface.—If

the equation of a surface be referred to a system of rectangu-
lar axes it is easily seen, from Art. 1 89, that the element of

its superficial area, whose projection on the plane of xy is

dx dy, is equal to

Accordingly the area of a surface may be represented by

WJ
1 +
{j£W*Y*ixj \dyj

taken between proper limits. In this result z is regarded as

a function of x and y by means of the equation of the

surface.

To transform this expression to new variables u, v, we,

by the preceding Article, substitute

(

-—p - ~ —Adudv instead of dx dy.
\du dv du dv]
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Also
du

dz dx dz dy

dx du dy du'

dz dz dx dz dy

dv dx dv dy dv

therefore
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where Jx and J2 are respectively the Jacobians of the system
of equations with respect to the new, and to the original,

system of variables (compare Biff. Calc, Art 324).
226. Green's Theorems. — We shall conclude this

Chapter with a brief notice of the very remarkable theorems

given by Green (" Essay on the Application of Mathematics to

Electricity and Magnetism," Nottingham, 1828, reprinted,
1 871), as follows:—

If U and V be functions of x, ?/, z, the rectangular coordi-

nates of a point ; then, provided U and V are finite and con-

tinuous for all points within a given closed surface S, we have

1dUdV dUdV dUd
dx dx dy dy dz dzF)

dx dy dz

.

where the triple integrals are extended to all points within
the surface 8, and the double integrals to all points on S

;

aud dn is the element of the normal to the surface at dS,
measured outwards.

For, sinc<

we have
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where x^ #2 , 27i, TT2 , represent the values of x, U, for two

corresponding points of intersection with 8y made by an

indefinitely thin parallelepiped standing on dydz; and 2
denotes the summation extended to all such points of inter-

section. Now, as in Art. 192, let dSi9 dS2i dS3 , &c, repre-
sent the corresponding elementary portions of the surface ;

and Xi, X2 ,
X 3 , &c, the angles that the exterior normals make

with the positive direction of the axis of x
;
we shall have

dydz = cosXi dSi

Accordingly

d

cos X2 dS2
= cos A 3 dSt = - cos X4 dSi = &c.

HI A
U^ U — cos X dS.

dx ('5)

under the same restrictions as to limits as before.

Hence, from (14), we find

jjfss?***
XI —r- cos X dS

ax
U

~dtf
dxdydz >

along with corresponding equations for y and z.

Accordingly

fdUdV
+
dUdV dUdV\

\dx dx dy dy dz dz J

I

r-fdV . dV dV
TJ — cosX + -7- cosu +— cos

\dx dy dx

TT (d*V d*V d*V\, , .

dS

Again, we obviously have

dx

dn'
cosX COS^u

dy_

dn
COS V =

dn

therefore -7— cos X + -7— cos u + -7— cos v = -7— .

a# ay dz dn
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Hence
fdTJdV dUdV dUdV\

d
dy dy dz dz

d*V
dx2

(PV

df

d2 V
dz 1 dxdydz (16)

1

The latter expression is obtained by the interchange of £7" and
V in the preceding.

If ^=T,weget

Ti*V <?V
t

d2V
dx2

dy
2 dz2

) dxdydz.

We shall now determine the modification to be made when
one of the functions, J7for example, becomes infinite within S.

Suppose this to take place at one point P only : moreover, infi-

nitely near this point let TJ be sensibly equal to -, r being

the distance from P. If we suppose an indefinitely small

sphere, of radius a, described with its centre at P, it is clear

that
(
1 6) is applicable to all points exterior to the sphere ;

also since

d* d2 d2
\ i

dx2
+
dy

2
+

dz
2

) r
°'

it is evident that the triple integrals may be supposed to extend

through the entire enclosed space, since the part arising from

points within the sphere is a small quantity of the order of a2
.

Moreover, the part of U— &8* due to the surface of the

sphere is indefinitely sn

to consider the part of

sphere is indefinitely small of the order of a. It only remains

V— dS due to the spherical sur-
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face. Here, as V is supposed to vary continuously, we may
take for its value that [V') at the point P : also

dU dU
d
\r) i

_ _ i_
dn dr dr r* a2 '

consequently the value of V— dS, for the sph

-47rF'.

Thus (16) becomes

ffrr^^cv fffrrA^ d*U d^\ 7 7 7

Lere is

17)

where, as before, the integrals extend over the whole volume
and over the whole exterior surface.

The same method will evidently apply however great

may be the number of points, such as JP, at which either U
or V becomes infinite.

Examples.

r . If U= a cos u + b sin u cos v + c sin wjsin v
,

I /( IT) sin u dudv = 2ir I f(Aw) wdw,
jo Jo J-i

where A=Va2 + b* + c*.

Let x = cos w, y = sin w cos v, r = sin w sin v
;

then (#, y, z) are the coordinates of a point on a sphere of unit radius,
with centre at the origin.

Also let a = Aa, b = A&, c = Ay ; then a, j9, 7 is also a point on the same
sphere, and

a cob m + b sin « cos v + <; sin u sin v = -4 cos 0,

[32]



330 Multiple Integrals.

where 6 is the arc joining the point a, $, y to x, y, t. Again, the element of
the surface of the sphere at the latter point may he represented by sin u du dv, or

by sin $ dQ d<p, indifferently. Consequently

/(acosttf J sin m cos v + csinw Bin v) sin u du dv=f(A cob 6) Bind dd d<l>.

Integrating each of these over the entire surface, we get

rn(2w C2ir[n fir

I* /(U)amududv = \ \ f{A cob $) Bin d dd d<p
= 2n \ /(A cos 6) sin 6 d$.

2. Hence, deduce the following :

I I f{U) sinw coBududv = —— f(Aw)wdtv,

fjrf2»r 2»<?f
+1

I f(U) sm u cob vdudv= —— f(Aw)wdw.
Jo Jo A J_i

These are deduced from (i) by differentiation under the sign of integration.

3. Show that the integral

U = 11f (* + y) s
M

y
m' x dx dy,

supposed extended to all positive values subject to the condition x + y < k, ran

be reduced to a single definite integral, by the substitution

x = uvy y = w(i — v).

Here x 4- y = u, and dx dy becomes udv dv
;
also the limits for u are o and h;

and those for v are o and 1
;
hence

ftf1

U=
I

f f(u) «'+»»- 1 v*-1

(1
-

v)"-
l dudv

J0J0

r (/) r (m) f*"
rV+m)V (M) w,+m

' 1 *"' ^""P"8 Art - 22 0-

4. Show that the foregoing process can be extended to the integral

JJ = jjjf(x + y + 2) a;*"
1
y»>-

1 xn-i dx dy dz,\

when the variables are always positive and subject to the condition

.2
• + y -f z < a.

Substitute for x and y as in last ; then, regarding z as constant, the limits
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for v are o and I, and those for u are o and a — z
; hence

r(< + m) Jo Jo
" '

= r WrW r(«) r. ,^
r (£ + m + ») Jo

y v ;

This process is readily extended to any number of variables.

5. Find the value of the definite integral

By Art. 120 we have
Jo{*(i-v)+<

Jo Jo «'#"»

Transform by the substitution x=uv, y
- u (1

-
v), then, sinoe the limits for

are o and I, and those for u are o and 00
,
we get

«'&w J0J0

A »W (i-v)m
- l dv

therefore f '"(i-*)-1*
= r(/)r(m)

6. Prove that

f f
F{ax+bt/,a'x^b

,

y)dxdy = ^[ f F(x,y)ixdy1

where

7. Prove that
a'b'

W 7T

• 2 r 2
(
w2 cos2 + «2 cos2 <p)ddd<pP2 r2 <m

Jo Jo V(f w2 sin2 0)(i-n
2 sin2

</>)
2'

when m* + n2 = 1.

This is an immediate consequence of (9), Art. 222.

8. Show that Legendre's Theorem connecting complete elliptic integrals
with complementary moduli follows immediately from the preceding example

[22a]
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It IT

J

"5" dd f"5"

o Vl - m3 sin2 Jo

then the result given in Ex. 7 is easily transformed into

F(m) E{n) + £(m) F(n) - F(n) F(m) = -.

9. Prove that the area of a surface in polar coordinates is represented by

taken between suitable limits.

10. Show by actual integration that

cos a + v cos + w cos 7) dS,

where the integrations, respectively, extend through the volume and over a
closed surface S; o, £, 7 being the direction angles of the outward drawn
normal at dS.

11. Transform the multiple integral

J/J]" Vdxdydzcko
by the substitution

x = r cos d cos
<f>, y = r cos sin

<f>,
z = r sin 9 cos

if>,
to = r sin sin ^.

The transformed expression is

JUT Fi r3 sin cos rfrrf0 if <%

where Fi is the new value of V.

«a«8 «3«1 «1«2
12. 11 %i — , x%- , Xz = ,

Ml Mi M3

prove that jjj Vdxy dx% dxz transforms into 4 J/J Viduidu2du3 .
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CHAPTER XII.

ON MEAN VALUE AND PROBABILITY.

227. A very remarkable application of the Integral Calculus

is that to the solution of questions on Mean or Average
Values and Probability. In this Chapter we will consider a

few of the less difficult questions on these subjects, which

will serve to give at least some idea of the methods em-

ployed. We will suppose the student to be already acquaint-
ed with the general fundamental principles of the theory
of Probability.

Mean Values.

228. By the Mean Value of n quantities is meant their

arithmetical mean, i.e. the nth
part of their sum.

To estimate the Mean Yalue of a continuously varying
magnitude, we take a series of n of its values, at very close

intervals, n being a large number, and find the mean of these

values. The larger n is taken, and consequently the smaller

the intervals, the nearer is this to the required mean value.

This mean value, however, depends on the law accord-

ing to which we suppose the n representative values to be

selected, and will be different for different suppositions.

Thus, for instanoe, if a body fall from rest till it attains the

velocity v, and it be asked—What is its mean velocity

during the fall ? If we take the mean of the velocities at

successive equal infinitesimal intervals of time, the answer
will be \ v

;
but if we consider the velocities at equal intervals

of space, it will be f v. The former is the most natural sup-

position in this case, because it is the answer to the question—What is the velocity with which the body would move,
uniformly, over the same space in the same time ?—a question
which implies the former supposition. We might frame a
similar question, of a less simple kind, to whioh the second
value above would be the answer.
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Again, if we wish to determine the mean value of the

ordinate of a semicircle, we might take the mean of a series

of ordinates equidistant from each other
;
or through equi-

distant points of the circumference
;
or suoh that the areas

between each pair shall be equal : in each case the mean
value will be different.

Thus we see that the Mean Yalue of any continuously-

varying magnitude is not a definite term, as might be sup-

posed at first sight, but depends on the law assumed as to its

successive values.

229. Case of One Independent Variable.—We
will therefore suppose any variable magnitude y to be ex-

pressed as a function
<p (x) of some quantity x on which it

depends, and its mean value taken as x proceeds by equal
infinitesimal increments h from the value a to the value b.

Let n be the number of values, then nh = b - a. The mean
value is

-
\<f> (a) + (a + h) +

<j> {a + ih) +

But (Art. 90),
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3. Determine the mean horizontal range of a projectile in vacuo for different

angles of elevation from 45
- to 45 + ; given the initial velocity V.

If a be the angle of elevation, the range is

V*
R = — sin 2a.

9

1 f F2

Hence M= — I
— sin 2ada, between the limits 45

°
±

;

20 J g

, , m, V2 sin 20
therefore M= —

.

g 4 20

2 V2

The mean value for all elevations, from o° to 90 ,
is —

.

7T g

4. A number n is divided at random into two parts ;
to find the mean value

of their product.

M=-\ x(n — z)dz = -n2
.

5. To find the mean distance of two points taken at random on the circum-

ference of a circle.

Here we may evidently take one of the points, A, as fixed, 'and the other, B,
to range over the whole circumference : since by altering the position of A we
should only have the same series of values repeated : let be the angle between
AB and the diameter through A : as we need only consider owe of the two semi-

circles,

2 f
2

M=-\

6. To find the mean values of tbe reciprocals of all numbers from n to 2»,
when n is large : that is, to find the mean value of the quantities

n n n

that is, the mean value of the function —
,
as x goes by equal increments from

i to 2
;

f
2 dx I

therefore M=\ — = -log 2.

Jx nx n

7. To find the mean values of the two roots of the quadratic

x2 — ax + b = o,

the roots being known to be real, but b being. unknown, except that it is

positive :
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That is, b is equally likely to have any value from o to —
;
henoe for the

greater root, o, 4

i r*
r

=r-2 adb
i«

2
Jo

therefore M= 7 a.
6

The mean value of the smaller root is - a.
6

The mean squares of the two roots are — a2
,

— a2 . These might be deduced

from the former results, since

M(*
2
)
- aM{x) + M{b) = o.

8. Find the mean (positive) abscissa of all points included between the axis

of x and the curve

y = ae r . .4ns. — .

Vir

The mean square of the abscissa is |c
2

.

230. If Jf be the mean of m quantities, and M' the mean
of rri others of the same kind, and if /u be the mean of the

whole m + m' quantities, we have evidently

m3f+m'M' . .

Thus if it be required to find the mean distance of one ex-

tremity of the diameter of a semicircle from a point taken at

random anywhere on the whole periphery of the semicircle
;

since the mean value when it falls on the diameter is r, and

the mean value when it falls on the arc is —
,
we have

4r
2r . r + nr— ,

7T 6r

2v + 7rr 2 + tt
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231. Case of Two or More Independent Variables.
—If z =

<p {x, y) be any function of two independent variables,

and x, y be taken to vary by constant infinitesimal increments

h, k, between given limits of any kind, the mean value of the

function z will be

Jjzdxdy
\\dxdy>

{i}

both integrals being taken between the given limits.

The easiest way of seeing this is to suppose x
y y, z the

coordinates of a point ;
and to conceive the boundary, repre-

senting the limits, traced on the plane of xy, and then ruled

by lines parallel to x, y at intervals k, h apart. We have
thus a reticulation of infinitesimal rectangles hk

;
and if at

each angle an ordinate z be drawn to the surface z =
(f>(x, y),

as the number of ordinates will be the same as that of rect-

angles, we shall have

volume jjzdxdy = sum of ordinates x hk
;

also the plane area jj dxdy = number of ordinates x hk
;

so that dividing the sum of the ordinates by their number,
the above expression results.

It may be shown, in like manner, that for three or more

independent variables a similar expression holds.

It is evident that the above expression, viewed geometri-

cally, gives the mean value of any function of the coordinates

of a series of points uniformly distributed over a given plane
area.

Examples.

1. Suppose a straight line a divided at random at two points, to find the

average value of the product of the three segments.
Let the distance of the two points X, Y, from one end A of the line, he

called x, y. Consider first the cases when x > y ;
the sum of the products for

these is half the whole sum
;
hence

M=
~%\ j

y (*
-

y) («
- x

)
dxdy =

>̂

a3-

2. A numher a is divided into three parts ; to find the mean value of one

part.
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Let z, y, a — x — y, be the parts ;

ra ra-x

\ xdxdy
Jo Jo I

M

J

a ra-z
-a.
3

This value might be deduced, without performing the integrations, by consider-

ing that the expression is the abscissa of the centre of gravity of the triangle
OA.B

; OA, OB being lengths taken on two rectangular axes, each = a.

Of course the result in this case requires no calculation ; as the sum of the

mean values of the three parts must be = a
;
and the three means must be equal.

The mean square of a part is - a2.

3. A number a is divided at random into three parts : to find the mean
value of the least of the three parts: also of the greatest, and of the mean.

Let x, y, a - x — y, be the greatest, mean, and least parts. The mean value

of the greatest iaM= {.,

'

: the limits of both -

tidxdy

integrations being given by

x>y>a-x-y>o.
If x, y be the coordinates of a point, referred

to the axes OA, OB, taking OA = OB = a, the

above limits restrict the point to the triangle A VH
{AM being drawn to bisect OB) ; and the above
value of M is the abscissa of the centre of gravity of

this triangle ; i. e. - of the sum of the abscissas of its

angles; hence

„ ! / 1 I \ IIM = -[a+ a +-a] = — a.

3 \ 2 3/1*
The ordinate of the same centre of gravity, viz.,

Fig. S3-

3\2 3 / li

is the mean value of the mean part ; hence the mean values of the three parts

required are respectively

4. To find the mean square of the distance of a point within a given square
(side

= 2a), from the centre of the square.

4« J-a J-a 3
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It is obvious that the mean square of the distance of all points on any plane
area from any fixed point in the plane is the square of the radius of gyration of

the area round that point.

5. To find the mean distance of a point on the circumference of a circle from

all points inside the circle.

Taking the origin on the circumference, and the diameter for the axis, if dS
be any element of the area, we have

M= J-—— = — r2dddr = -—
.

97T

232. Many problems on Mean Values, as well as on

Probability, may be solved by particular artifices, which, if

attempted by direct calculation, lead to difficult multiple

integrals which could hardly be dealt with.

Examples.

1. To find the mean distance between two points within a given circle.

If M be the required mean, the sum of the whole number of cases is repre-
sented by

(*r2)2J/.

Now let us consider what is the differential of this, that is, the sum of the new
cases introduced by giving r the increment dr. If M be the mean distance of

a point on the circumference from a point within the circle, the new cases intro-

duced by taking one of the two points A on the infinitesimal annulus nrrdr, are

irr
2M . 2-irrdr

;

doubling this, for the cases where the point B is taken in the annulus, we get

d. {{irr^M} =4TT*M r*dr.

Now M =— (Ex. 5, Art. 231) ;

9*

therefore •tflr^M— it r*dr;
9 .'0

12S
therefore M = r.

2. To find the mean square of the distance between two points taken' on any
plane area £1.

Let dS, dS' be any two elements of the area, A their mutual distance, and
we have

M=~^A^dSdS\
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Now, fixing the element dS, the integral of A*dS' is the moment of inertia

of the area n round dS
;
so that if K = radius of gyration of the area round dS,

M=-JSK>dS:

let r = distance of dS from the centre of gravity G of the area, k the radius of

gyration round G
;
then

Z2 = r2 + F :

therefore M=k* + -jjr*dS=2k*;

thus the mean square is twice the square of the radius of gyration of the area

round its centre of gravity.

233. The mean distance of a point P within a given area

from a fixed straight line (which does not meet the area) is

evidently the distance of the centre of gravity G of the area

from the line. Thus, if A, B are two fixed points on a line

outside the area, the mean value of the area of the triangle
APB = the triangle AGB.

From this it will follow, that if X, Y9
Z are three points

taken at random in three given spaces on a plane (such that

they cannot all be cut by any one straight line), the mean
value of the area of the triangle XYZ is the triangle GG'G",
determined by the three oentres of gravity of the spaces.

Example.

1. A point P is taken at random within
a triangle ABC, and joined with the three

angles. To find the mean value of the

greatest of the three triangles into which
the whole is divided.

Let G be the centre of gravity ; then if

the greatest triangle stands on AB, P is

restricted to the figure CHGK, and the

mean value of APB is the same as if P
were restricted to the triangle GCK; hence
we have to find the area of the triangle
whose vertex is the centre of gravity of

GCK, and base AB
; Fig. 54-

therefore M = - {ACB + AKB + AGB) = - ( 1 + - + -\ ABC
;

hence the mean value is — of the whole triangle.
Io

The mean values of the least and mean triangles are respectively
- and
9 io

of the whole.

This question can readily be shown to be reducible to Question 3, Art. 231.
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234. If M be the mean value of any quantity depending
on the positions of two points (e. g. their distance) which are

taken, one in a space J/, the other in a space B (external to

A) ;
and ifM'

be the same mean when both points are taken

indiscriminately in the whole space A + B
;
MA ,

MB the

same mean when both points are taken in A, or both in B,

respectively; then

(A + B)
2M f - 2ABM + A2MA + B*MB . (4)

If the space A = B,

4M'=2M+ MA + MB ;

if, also, MA = MM ,

2Mr=M+MA ;

thus if M be the mean distance of a point within a semi-

circle from one in the opposite semicircle, Mi that of two

points in one semicircle, we have (Art. 232)

M+M1
= ^r.
45T

To determine M or Mx is rather difficult, though their

sum is thus found. The value of M is -= r.

Examples.

1. Two points X, Fare taken at random within a triangle. What is the
mean area M of the triangle XYC, formed by joining them with one of the

angles of the triangle ?

Bisect the triangle by the line CD ; let M\ be the mean value when both

points fall in the triangle ACD ; Mz the value when one falls in ACB and the

other in BCD
;
then

2M=Mi + Mi.

But Jfi = -M ;
and Mz = GG'C, where G, G' are the centres of gravity

2

of ACD, BCD, this being a case of the theorem in Art. 233 ;
hence

M2 = -ABC, and M=^-ABC.
9 2 7

2. To find the mean area of the triangle formed by joining an angle of a

square with two points anywhere within it.
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By a similar method this is found to he

-=-r of the whole square.

3. What is the mean area of the triangle formed hy joining the same two

points with the centre of the square ?

We may take one of the points X always in the square OA ;
take the whole

square
as unity ;

then if M be the mean, the sum u n
01 all the cases is

-M= -= Mi + 2 - M2 + - Ms,
4 4

2
4
2

4
2

Mu M2 , Mz being the mean areas when the second

point Y is taken respectively in OA, OB, and OC.
But Ms = M\, for to any point Y in 00 there cor-

responds one Y' in OA, which gives the area

OXY' = OXY;

therefore M = - Mi + -M2 .

2 2 Fig. 55.

But Mi = — .-, M2 =—; hence M= -- of the whole square.*108 4 16 108 *

235. If two spaces A + C, B + C have a common part C,
and M be any mean value relating to two points, one in A + C,
the other in B + C

;
and if the whole space A + B + C = W,

and 31w be the same mean when both points are taken indis-

criminately in W; MA when taken in A, &c, then

2(A + C)(B+C)M=W2Mw+C 2Mc-A2MA-B*MJi, (5)

as is easily seen by dividing the whole number W 2 of cases

into the different classes of cases which compose it.

* In such questions as the above, relating to areas determined by points
taken at random in a triangle or parallelogram, we may consider the triangle as

equilateral, and the parallelogram as a square. This will appear from orthogonal

projection ; or by deforming the triangle into a second triangle on the same
base and between the same parallels, when it is easy to see that to one or more
random points in the former there correspond a bike set in the latter, determining
the same areas. This second triangle may be made to have a side equal to a
Bide of an equilateral triangle of the same area

;
and then be deformed in like

manner into the equilateral triangle itself. Likewise a parallelogram may be
deformed into a square.
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Example.

Two segments, AB, CD, of a straight line have a common part CB; to

find the mean distance of two points taken, one in AB, the other in CD.

lAB . CD. M=AD* .- AD + CBK-CB-ACP.-AC-BD^.-BD,
3 3 3 3

since the mean distance of two points in any line is - of the line
;

AD3 + CBS - AC* - DBZ

therefore M=
ZaWTCD

236. The consideration of probability often may be made
to assist in determining mean values. Thus, if a given

space 8 is included within a given space A, the chance of a

point P, taken at random on A, falling on S, is

8
P =

A'

But if the space S be variable, and M[8) be its mean value,

,-Z®. (6)

For, if we suppose S to have n equally probable values

Si, S2 ,
Sz . . . .,

the chance of any one 5i being taken, and of

P falling on &, is

P^nA l

now the whole probability p = px + p2 + p3 + . . .
;
which leads

at once to the above expression.
The chance of two points falling on S is

P = -^' (7)

In such a case, if the probability be known, the mean value

follows, and vice versa. Thus, we might find the mean value

of the distance of two points X, Y taken at random in a line,



344 On Mean Value and Probability.

by the consideration that if a third point Z be taken at random

in the line, the chance of it falling between X and Y is -
;
as

one of the three must be the middle one. Hence the mean

distance is - of the whole line.

3

2an

Again, the mean nth
power of the distanoe is

[n+i)(n + 2)
f

where a - whole line. For if p is the probability that n more
points taken at random shall fall between X and F,

M{XY)n =an
p.

Now the chance that out of the n + 2 points, X shall

2
be one of the extreme points is

; and if it is so, the
n+ 2

chance that Y shall be the other extreme point is .

n + 1

Examples.

1. From a point X taken anywhere
in a triangle, parallels are drawn to two
of the sides. Find the mean value of
the triangle TJXV.

If a second point X' be taken at

random within ABC, the chance of

its falling in XUV is the same as the
chance of X falling in the correspond-

ing triangle X' U' V
;
that is, of X'

falling on the parallelogram XC. Hence
the mean value of UX V = mean value
of XC. But the mean value of

(
UXV

+ XC) is - ABC; as the whole triangle
o

can he divided into three such parts hy drawing through X a parallel to AB. *

Thus

M(UXV) = ^ABC.6

The mean value of UV ia-AB. For TJV is the same fraction ofAB that the
3

altitude of X is of that of C : see Art. 233.

* The triangle may be considered equilateral : see note, Art. 234.
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Cor. Hence, if p 1

triangle ABC, we get

the perpendicular from X on AB, h the altitude of

M(?) = -h*

If the area ABC he taken as unity, we have, since J7XV: AXB=AXB : ABC,

{AXB)*=UXV.

Thus the mean square of the triangle AXB is -. If two other points Y, Z are

taken at random in the triangle, the chance of hoth falling on AXB is thus the

same as that of a single point falling on TJXV \
i. e. -. Hence we may easily

6
infer the following theorem :—

If three points X, Y, Z are taken at random in a triangle, it is an even
chance that Y, Z hoth fall on one of the triangles

AXB, AXC, BXC. D
2. In a parallelogram ABCD a point X is taken at

random in the triangle ABC, and another Y in ABC.
Find the chance that X is higher than Y.

Draw XH horizontal : the chance is

mean area of AMK -f- ADC.

But AHK=XUV, and the mean area of XUV= \ ACB H
i

6

(Ex. i) ; hence the chance is
^.

A
3. If he a point taken at random on a triangle, and

lines he drawn through it from the angles, to find the

mean value of the triangle JDEF. (Mr. Miller.)

It will he sufficient to find the mean area of the triangle AEF, and subtract

three times its value from ABC. If we put a, |8, 7 for the triangles BOO,
AOC, AOB, it is easy to prove

AEF= 07

(a + 0) (a + 7)
ABC.

If we put the whole area ABC
he the element of the area at 0,

1, and if

'^-\\(^?= 7)'

Fig. 58.the integration extending over the whole triangle.

But if p, q are the perpendiculars from on the sides b, e, it may he easily
shown that the element of the area is

dpdq
sinA be sinA ' '

[23]
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Thus the mean value of AEF becomes

Again, by Art. 95, the definite integral

f^logjS
I - « 6

therefore Jf = - 1 - 2 [ 1 — — ) = — - *.

\ fit 3
*

7T
2

3

Hence the mean value of the triangle BEF is

10 - 7T2
,

that of ABC being unity.

It is curious that the same value, 10 - tt
2
,
has been found by Col. Clarke to

be the mean area of a triangle formed by the intersections of three lines, drawn
from A, B, C to points taken at random in a, b, c respectively.

4. To find the average area of all triangles having a given perimeter (2*).

By this is meant that the given perimeter is divided at random in every possible

way into three parts, a, b, c, and only those cases are taken in which a, b, c can
form a triangle ;

then the mean value of

A = ^/ #(•-•) (t~»)(#^4 A i \ b

Fig. 59-
has to be found.

|f
H Take AB = 2#, let X, Y be the two points of division, AX = x, AY=y:

these are subject to the conditions

x < s, y>s, y-x<».
A

*ow
~7J

=
</('

-
*) (y

-
«) («

" V + *) J

1 [T v7 (•
-

*) (y -«)(«- y + *) • <*y rf*

Again, by Art. 132, we have

I"
y/(s - x) (s

- y + *) dx =
'

(2*
- yf ;

The result is therefore :—Mean area =— (2*)
2

.

In the same case we should easily find

Mean square of area = — .
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5. Three points axe taken at random within a given triangle ; prove that the

mean area of the triangle formed by them is — of the given triangle.

Call the area of the given triangle A, the required mean M : we will first

prove that if M be the mean area when one of the three points is restricted to a

side of the given triangle,

M=-M .

4

Let A receive an increment of area dA, by adding to it an infinitesimal band
included between the base a and a line parallel to it

;
the increase produced in

the sum of all the cases is found by considering one of the random points X
taken in this band ; the additional cases introduced will be

A'2dA . M .

The whole increase is treble this, for we must consider also the cases when
Y, Z fall in this band (the cases when tivo of the three fall on it may be

neglected, their number being proportional to the square of dA). Now the sum
of all the original cases is A3M

;
hence

d(A
3 M) =SA2 ModA.

M
Now — is constant for all triangles (see note,A
Art. 234) ;

hence — d . A* = 3A2M dA ; .-. M= - M .

A 4

Again, to find Jfo, consider the random point X fixed at a particular point
iTof the base a, the other two points, T, Z, ranging all over the triangle. Let
M' be the mean value of BYZ; the sum of all the cases, viz., A2

M', may be

decomposed into three groups : (1) when T, Zaxe in ABB\ (2) both in ACD ;

(3) one in each triangle :

.-. {ABCfW = {ABLf.
4 ABD+ (ACJD)* . -^ACD +zABD .ACX>.^?f

by Ex. (1), Art. 234, and because in case (3) the mean value is the area of the

triangle formed by joining D with the centres of gravity of ABB and ACB
(Art. 233). Let BB =

z, altitude of triangle = p, and we get

Now when the point X falls in the element dx, the sum of all the cases is

[23a]
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ArM'dx
;
and hence, when X ranges from B to C, the whole sum of cases is

Jo jq\ 2 1 2 7 9 )

therefore «AW = (i»)
3 - a4 = - aA3

.

9 9

Hence Mq = -
A'; and therefore M - -M = — A.

9
'

4 12

Cob. Hence, if four points, A, B, C, D, are taken at random within a

triangle, the chance that they determine a re-entrant quadrilateral is -• For •

the chance that D falls in ABC is the mean value of ABC divided by the

whole triangle, that is— ; and we have to add to this the chances that C falls

2
in ABB, &c. The chance that ABCD is convex is -.

6. The mean distance of the vertex of a triangle from all points in the area is

Xal
to its distance from the centre of gravity, measured along a parabolic path,

ch leaves the vertex in the direction of one of its sides, and reaches the
centre of gravity in a direction parallel to the other—the axis of the parabola
being parallel to the base.

Let an indefinite line AP be con- ^
ceived to revolve round A, from the \fr yj^.
direction AC to AB ;

and as it revolves, •
"* /I \\\

suppose that all the mass of the triangle $6/*{ \ \\\ABC which lies to the right of it is tJ^ v'\ X\ ^\
transferred continuously to the vertex^. */"""f\ \\ \^
The centre of gravity of the whole mass / \^ \\ \

will thus describe a curve starting from / q \\ \.
G, and ending at A. When the line is / \\ \^
at AP let the centre of gravity be at g ; -jf '^

V\ _\
and when it is in the consecutive position m

VJ* P

AP', let fhe centre be at /. As the Fig- 6i.

mass of the triangle APP' has been transferred to A, gg' is parallel to^P; also

,
APP' 2 A _

yy ABC 3
2

since - AP is the distance traversed by the centre of gravity of the transferred

portion of the whole mass.*
2

But as - AP is the mean distance of all points in APP' from A, the sum of

2

every element in APP' into its distance from A = APP' x - AP. Hence the

sum of all the elements gg', i. e. the whole arc GA = sum of every element of

ABC into its distance from A, divided by the area ABC,'\. e. the mean distance

required.

* See Rankine, Applied Mechanics, p. 54.
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It is eaay to show that if gT is drawn parallel to BO,

AT* = ^-gT;
3«

so that the curve is the parahola mentioned ahove. For A and g are in directum

with the centre of gravity of ABP; and hence, as g is the centre of gravity of

ABP and a mass at A equal to APC,

AT _BP BP_ _e_— -—
,
and

T
-
AT-

— c

3

PROBABILITIES.

237. The calculation of Probabilities, when the number
of favourable cases, as well as the whole number of cases, is

finite, is not a subjeot for the Infinitesimal Oaloulus. It is

when the number of cases depends on continuously varying

magnitudes, and is therefore infinite, that recourse has to be

made to the methods of the Integral Calculus.

The same remark applies here which we had occasion to

make as to mean values (Art. 228). The value of the pro-

bability will depend on the law according to whioh we select

the series of cases which we take as representing the total

number—that is, it will depend on which variable (or varia-

bles) we suppose to be taken at random, that is, to proceed by
constant infinitesimal increments ;* in other words, to be the

independent variable (or variables). Thus, if we have to find

the chance of the line, drawn from a fixed point to a given
finite straight line, exceeding a given length, the results will

be different if, first, we suppose a series of lines drawn to

points taken at random on the given line, or, seoondly, a

series of lines drawn in random directions from the fixed

point. In many cases, however, the problem has an obvious

sense which precludes any such uncertainty.

238. Let us consider a simple question on chances. Two
integers are ohosen at random from o to 6 inclusive ;

to find

* Of course a large numher of values taken at random for a variable do not

really form an equi-different series : but, as they must give a number of points

(when measured along a straight line) of uniform density, they may be taken,
for the purposes of calculation, as equi-different.
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the chance that the greater of the two exceeds a given value,

suppose 3. Here the whole number of cases, all equally

probable, is easily seen to be

1 + 2 + 3 + 4 + 5 + 6,

and the number of favourable cases is

4 + 5 + 6,

so that the required chance is -.

If, however, the question is not confined to integers, but

the two numbers chosen may have any arbitrary values from
o to 6

;
or as we may state the question :

—Two quantities
are taken at random from o to a

;
find the chance that tho

greater of the two is less than a given value b :
—

Let x be the greater; then for any assigned value of x

the number of cases is measured by x (since the lesser may have

any value from o to x) ;
henoe the number of cases when the

greater falls between x and x + dx is measured by xdx
;
tho

whole number of cases is therefore xdx
; and the favourable

C
b

. b
2

cases are I xdx. The required chance is therefore p = —
2

.

This instance will serve to show how the Integral Calculus

may enter into the estimation of chances. It is true that it

might easily be solved otherwise
;
for if the two numbers are

considered as the distances of two points taken at random in

a line of length 0, from one end of the line, and if we
measure a distance b from that end, the problem is really to

find the chance that both points fall within b
;
which chance

is evidently
— '

239. We prooeed to give a few easy questions on proba-
bilities : general rules can hardly be given for their solution,
the number and diversity of the questions which may be

proposed being so great that no attempt seems to have been
made to classify or conneot them into a regular theory. We
will give, in particular, several on Looal or Geometrical

Probability.
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Examples.

i. If an event B is known to have occurred in a certain century, the chance
that it was not distant more than n years from the middle of the century is of

course — ; hut if three events, A, B, C, are known to have occurred in the
ioo

century, and that A preceded B, and B preceded C, let it he proposed to find

how far this amount of knowledge alters the value of the chance for B.
Let x be the time from the beginning of the century to the event B ;"for

any assigned value of x, the number of triple cases is #(ioo — x) : hence ^the
number of favourable cases divided by the whole number is

JoO+n
#(ioo - x)dx

50-n
* m

Two 3

l a; (ioo
-

x) dx
Jo

--4(-Voo \ioo/

2. Two numbers, x, y, are chosen at random between o and a : find the
a2

chance that the product xy shall be less than — (its mean value).
4

Here P = \\dxdy

the integral being limited by a > x > o, a > y > o, and xy < — . "We have

\ «

accordingly to integrate for y from a to o, when x is between o and -
; and from

4

— to O, when x is between - and a
;
thus

4* 4

a

f
*

C a a2 a2 a2

jjdxdy = adx + 1
— dx = — + — log 4.

JO la \X 44

Hence
1 I

,-+
; log».

3. Two points are taken at random in a given line a; to find the chance
that their distance asunder shall exceed a given value c.

It is easy to see that the distances of two such points from one end of the

line are the coordinates of a point taken at random
in a square whose side is a. Thus to every case

of partition of the line corresponds a point in the

square
—such points being uniformly distributed over

its surface.

Thus, if in the above question x, y stand for the

distances of the two points, from one end of the line,

y being greater than x, we have to find the chance

of y — x exceeding c. The point P whose co-

ordinates are x, y, in the square OJD (side
=

«),

may take all possible positions in the triangle OBD,
if no condition is imposed on it. But if y - x > c,

then if we measure OS =
c, the favourable cases Fig. 62.
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occur only when P is in the triangle BHI ; hence the probability required

BHI /a-cyP ~
OBJ)~ \a~)

'

In fact this is only performing the integrations in the expression

[" [""dxdy

p=^S> .

(" \

V

dxdy
Jo Jo

B Z K N D

4. Two points being taken at random in a line a, to find the chance that no
one of the three segments shall exceed a given
length c.

The segments being as before, x, y — x, a — y,

PH=x, PK=a-y, PI = y - x. There will

be two cases :—

(1). Ho -a; take OU=BV=DZ=BN=c
;

then it is easy to see that the only favourable
cases are when P falls in the hexagon UZNMJV;

P\
OBD- 3. UBZ

OBD (^)

/
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extreme limits are equally probable, the whole number of cases will be repre-
sented by

r
dxdd

Now if the rod crosses one of the lines we must have c > —— ; so that the
CO8

favourable cases will be measured by

tA
coi0

dx = 2C.

2c
Thus the probability required is p = — .

This question is remarkable as having been the first proposed on the subject
now called Local Probability. It has been proposed, as a matter of curiosity,
to determine the value of ir from this result, by making a large number of trials

with a rod of length 2a : the difficulty, however, here consists in ensuring that

the rod shall fall really at random. The circumstances under which it is thrown

may be more favourable to certain positions of the rod than others. Though we
may be unable to take account a priori of the causes of such a tendency, it will

be found to reveal itself through the medium of repeated trials.

240. Sometimes a result depends upon a variable (or

variables) all the values of which are not equally probable, but
are such that the probability of a certain value for a variable

depends, according to some law, on the magnitude of that

value itself (and also, perhaps, on the values of other variables).
Thus a point may be taken in a straight line so that all

positions are not equally probable, but the probability of the
distance from one end having the value x, being proportional
to x itself. This would be in fact supposing the series of

points in question as ranged along the line with a density

proportional to x
; as, e. g., if they were the projections on the

line of points taken at random in the space between the line

and another line drawn through one of its extremities. To
give an example :

—
Two points are taken in a line a, with probabilities

varying as the distance from one end A
; to find the chance

of their distance exceeding a length c.

Let x, y, be the distances from A, and suppose y > x.
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Here the probability of a point falling between x and x + dx
is not proportional to dx, but to xdx

;
and the result will be

xdx

The mean values of the three divisions of the line, in the

same case, will be found to be

8 4 i— a. — a. — a.

15 i5 i. 5

The above value of p is also the value of the chance, that

the difference of the altitudes of two points within a triangle

Q
shall exceed a given fraction

-
of the altitude of the triangle.

a

Examples.

i. Two points being taken on the sides OA, OB, of a square a2 ,
the chance

of their distance being less than a given value b is easily seen without calcula-

tion to be —-, provided b < a ; as it is the chance of a point taken at random in

the square falling within a quadrant of a given circle. Suppose now that two

points are taken on OA, and two on OB, and that we take X, Y, the two points

furthest from on each side, to find the chance that their distance XYis less

than a given length b
; (b < a).

Here the probability of X falling between * and x + dx is proportional to

xdx
;
likewise for y ;

hence

P =
J

I xydxdy

xydxdy

the upper integral being limited by x2 + y
z < bz

;
hence p - —.

Thus it is an even chance that the point determined by the coordinates x, y

shall fall within the quadrant
- no 2

.
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2. In a circular target of area A the area of the bull's eye is «. If a

shot is heard to strike the target, the chance of its having hit the bull's eye is

of course —-.* If, however, two shots have been fired, to find the chance that
A

the best of tbe two has hit the bull's eye.
This is easily solved by elementary considerations ;

as the chance of both

missing the bull's eye is

(A- ay

Hence the required chance of the best shot having hit it is

a ( a \

-^a[ 2

-a)
3. Let it be proposed, however, to find the chance of the best of the two

shots
(i.

e. that nearest the centre) having hit any given area a, traced out on
the target.

The number of cases in which the worst shot falls on any element dS, at a
distance r from the centre, is measured by irr^dS ; hence the chance of the worst
shot striking the area a is

_ $fr*dS (over a) __
m

P
~)$r*dS{oYeTA)~ M'

where M, m are the moments of inertia of A, a round the centre of the target.

Now, the probability of both shots missing a is

A -a\2

£r)'
hence that of a being hit (by one or both) is

m>
and the chance of both hitting it is — . But the chance of a being hit isA

chance of best + chance of worst — chance of both
;

hence if p\ be the required chance, viz., of the best shot striking a,

m a- I A. — a\
' am

where m, M are the moments of inertia above.

Or, we might have considered the number of cases in which the best shot

falls on the element dS, viz., tt(.#
2 - r2)dS, where It = radius of target. This

would have given the required probability

R l a — m
M2A-M'

which is easily shown to be identical with the above value.

_

* That is, disregarding the effect of the aim directing it with greater proba-
bility to the centre of the target. This would be practically correct in the case
of a very bad marksman, who frequently misses the target altogether.
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241. Carve of Frequency.—In questions relating to

a variable the probability of any value of which is a function

of that value itself, it is often

useful to consider what is called

a curve of frequency. Thus, if

the probability of a given value

of x is proportional to (x), and
we draw a curve y

- C #(#),
then when a great number
of values for x are taken, the

number in any element dx is

proportional to the area of the curve standing on that

element ;
the ordinate at any point P representing the

density or frequency of the points at P : the abscissas of all

points taken at random in the area of the curve are equally

probable.

Thus, if two points X, Fare taken at random in a straight
line AB, and X means always that nearest to A, the curve

of frequency for T will be a straight line through A ;
that

for X a straight line through B. This will often simplify

questions : e.g. suppose we have to find what is sometimes
called the most probable value for A Y, i. e. suoh a value

AP that AY is equally likely to exceed or to fall short of it.

Since the curve of frequency for

Y is a line AC, we have only to

find P, so that PD bisects the

AB
triangle ABC ;

i. e. AP = ——

because as many values of AY
exceed AP as fall short of it.

The most probable value is not
2

the mean value, viz.,
- AB, being the horizontal distance of

the centre of gravity of ABC, from A.
A point Y is taken at random in a line AB =

a, and
then a point X is taken at random in AY (or a rod may be

supposed broken in two at random, and one of the pieces
then broken in two), to find the chance of the length of AX
falling within given limits.

Let x, y, be the distances from A
;
for any assigned value
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of y, the chance of X falling between x and x + dx is —
;

hence the chance of X falling between
x and x + dx, and of Y falling between

y and y + dy, is measured by

dxdy

ay
'

hence the whole chance of X falling
between x and x + dx is

dxlx[
a
dy dx , a _ .— — = — 1°£ — - — dx log a?,

if for simplicity we put a = i .

Thus the curve of frequency for X is a logarithmic curve

BR, whose ordinate is

2 = -l0g#,

the frequency at A being infinitely great.
The area of this curve from o to x is

xlog
6

-;
X

and this is the probability of AX being between o and x
;

the whole areaa when x =
i, being i, as it ought to be, as

it is certain that X falls in AB. The chance of X falling
between given limits x', x" is of course

x'log-,-x"log-p.X X

To find the most probable value of x we should have to

solve the equation

x(i
-
logx) = -.

This gives x about one-fifth of the line AB.
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The mean value of x is

xzdx

M mk one-fourth of AB.
zdx

This last result might have been foreseen : because if we
take a point at random in each of the segments AY, YB,
the line AB is divided into four parts, the mean values of

which must be the same, as each of them goes through the

same series of values as the others; the sum of the mean
values being AB.

Examples.

i. A line is divided at random, and one of the parts again divided at random
as above, to find the chance that no one of the three parts shall exceed the sum
of the other two (i.e. that a triangle might be formed by them). {Cambridge
Math. Tripos, 1854.)

The probability that X, Y shall be taken in two assigned elements dz, dy
is (taking a - i),

dxdy

This differential being integrated throughout any limits gives the sum of the

probabilities of X, Y being found in each pair of values for dz and dy which
enter into the summation:—that is, the cases being mutually exclusive, the

probability that X, Y will be found in some one of those pairs.
In the present case the limits are equivalent to

1 1

z<-<y < r, z>y --.

_ f
1

fi dydz ,
I

Hence P =\ = log 2— .

h h-i y 2

2. An urn contains a large number of black and white balls, the proportion
of each being unknown : if on drawing tn + n balls, tn are found white and
n black, to find the probability that the ratio of the numbers of each colour lies

between given limits.

The question will not be altered if

we suppose all the balls ranged in a line

AB, the white ones on the left, the

black on the right, the point X where

they meet being unknown, and all posi-
tions for it in AB being a priori equally ?~ =t it-

probable ;
then tn + n points being taken,

"p
- ar

at random in AB, m are found to fall on 8" "°-

AX, n on XB. That is, all we know of X is, that it is the (w + i)'* in order,
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beginning from A, of m + n + i points falling at random in AB. If AX =
x,

AB =
i, the number of cases for X between x and x + dx is measured by

I m + n
L

xm (i
-

x)
ndx.*

Hence tbe probability that the ratio of the white balls in the urn to the

whole number lies between any two given limits a, £—that is, that the distance

from A of the point X lies between o and >3
—is

xm (i -x)n dx

1 xm
(]

Jo
;i -%ydx

The curve offrequency for the point X will be one whose ordinate is

y = xm (i
-

x)
n

.

The maximum ordinate KV occurs at a point K, dividing AB in the ratio

m : n. This is of course what we should expect : the ratio of the numbers of

black and white balls is more likely to be that of the numbers drawn of each

than any other. The value for p above is simply the area of the above curve

between the values a, fi, of x, divided by the whole area.

Let us suppose, for instance, that 3 white and 2 black balls have been

drawn ;
to find the chance that the proportion of white balls is between -and -

1 3
of the whole—that is, that it differs by less than ± - from -, its most natural

value.

(J
*<*-**

2256 ,8
,

p =
J

-| ^^^ nearly.

The above results will apply to any event that must turn out in one of

two ways which are mutually exclusive, this being the whole of our d priori

knowledge with regard to it—the ratio of the black, or wbite balls to the

whole number, meaning the real probability of either event, as would be

manifested by an infinite number of trials. We will give one more example of

the same kind.

3. An event has happened m times and failed n times in m + n trials. To
find the probability that, on p + q further trials, it shall happen p times and

failf^ times.

* For a specified set of m points, out of the m + n, falling in AX
}
the

\

m + n

number is xm (1
-

x)
ndx ; the number of such sets is -7

—
:
—

.
v '

[

m f n
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That is, that p + q more points being taken at random in AB, p shall fall in

AX, and q in BX. The whole number of cases is as before

[m 4 n
*» (i

-
x)»dx zm (i -#)'»<&;.

When any particular set of j? points, out of the p + q additional trials, falls in

AX, the number of favourable cases is

(i -x)n+*dx.

But the number of different sets of p points is
(p + q)

Hence the probability is, putting a# before I p for

fp + q ^x^p{ir-x)^dx

3 . . . p . I . 2

2 • 3 • • • P,

Pi

[i -It
\ :r"»(l
Jo

x)
ndx

Pi

By means of the known values of these definite integrals (p. 117), we find

\p + q [m+p [
n + q \

m + n + I

[^[^
'

[m[n [m rn + p+ q+l'

For instance, the chance [that in one further trial the event shall happen is

This is easily verified, as the line AB has been divided into m+ n + 2
m + n + 2

sections by the m + n + 1 points in it, including X. Now, if one more trial is

made, i. e. one more point taken at random, it is equally likely to fall in any
section

;
and m + I- sections out of the entire number are favourable.

4. Trace the curve of frequency of the ratio T ;
a and b being numbers taken

at random within the limits + I.

If we measure the values of

the ratio as abscissas along an
axis OX, and make OA =

1,

OA' = -
I, AB= A'B' = I

;

then the line whose ordinates C

are proportional to the fre-

quency will be, for values of

a
- comprised between the limits

+ 1, the straight line BB' ; but, for values beyond these limits, will consist of

the arcs BC, B'C of the curve x2
y = 1.

a
It is thus an even chance that the ratio - lies itself between the limits ± 1 :

this would also appear by a construction such as that given in the next Article.

Fig 69.
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242. Errors of Observation.—One of the most im-

portant, practically, as well as the most difficult, departments
of the theory of Prohahility is that which treats of Errors of

Observation. We will give here an example of the simplest

description.
Two magnitudes A and B are measured

;
each measure-

ment being subject to an error, of excess or defect, which

may amount to ± a, all values between these limits being

supposed equally probable.* To determine the probability
that the error in the sum, A + B, of the two magnitudes,
shall lie within given limits

;
also its mean value.

Thus the horizontal angular distance of two objects A, C
is sometimes found by measuring the angle between A and B,
an intermediate object ;

and afterwards that between B and

(7, and adding the two angles. If each measurement is liable

to an error ± 5', all values being equally probable, to find the

probability of the error of the result falling within assigned
limits : its extreme limits being of course ± 1 o'.

The question is more easily comprehended by means of

a geometrical construction than by B
'

K
integration.

Take AB = 2a
;
then all the values

of the first error are the distances

from of points P taken at random
in AB

; positive when in OB
;

negative when in OA. Make also

A'B' = 2a; the values of the second

error are given by points in A!B\
Take any values, OP = x for the first,

OP' = x for the second : these values

taken as co-ordinates determine a point V corresponding to

one case of the compound error x + x'
;
and such points V

will be uniformly distributed over the square HK. The value
of the compound error c corresponding to the point V is

£ = x + x' = OS,

if VS be drawn at 45 to the axes. Now all values of the

p'
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errors x, x
f

which give x + x the same, give the same value

for t ; hence all points on the line JI correspond to com-

pound errors of amount OS. Take Ss = de
;
the number of

compound errors between e and e + de is the number of

points between JI and a parallel to it through s. Now the

area of this infinitesimal strip is evidently

(2a
-

e)de.

Hence the probability of the error being between e and

€ + de is

(2a —
e) de

4a

This holds for negative values of e, provided we only oonsider

their arithmetical magnitude.
Thus the frequency of an error of magnitude e = OS is

proportional to JI, the intercept of a line through S sloping
at 45 . The probability of the error e falling between any
two given limits OS, OS' is found by measuring these

lengths (with their proper signs) from 0, along AB, and

dividing the area intercepted on the square by parallels

through S, S' sloping at 45 , by 4a
2

,
the area of the whole

square.
Thus the chance of the error falling between the limits

± a (those of the two component errors) is -.

The mean value of the error, strictly speaking, is o
;
but it

is evident that for this purpose we ought to consider negative
errors as positive ;

and consequently take the mean of the

arithmetical values of all the errors, whioh is the same as the

mean of the positive errors only ;
hence the mean error

required is

M(e)=±-a.
3

The most probable value, such that it is an even chance that

the error exceeds it (since the triangle JKI must be - of the

whole square, for that value of OS), is

± a (2
-
0/2) = ± .586 a.
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Let it be now proposed to find the probability of a given
error in the sum of A and i?, assuming, according to the
modern theory of errors, that the probability of an error be-

tween x and x + dx in either is

dx;
V'i

the coefficient —— being determined by the necessary con-

dition that the differential, being integrated from oo to -
oo,

must give unity ;
as the error must lie between these limits.*

Referring to the above construction, the number of values

of the first error between x and x + dx being proportional to

c~ c
°dx,

and the number of values of the second between x and x' + dx

proportional to

X*

e~~*dx,

the corresponding number of values of the compound error is

proportional to
x* +x'<>

e
c* dxdx' .

Hence the number of points, corresponding each to a case

of the compound error, in any element dS of the plane at a

distance r from the origin, is measured by

e~ ca
~dS;

which shows that the points have the same density along any

* It is of course absurd to consider infinite values for an error : but the
X*

curve y = e
c2

tends so rapidly to coincide with its asymptote, the axis of x,
that the cases where x has any large values are so trifling in number, that it is

indifferent whether we include them or not.

[34 a]
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circle whose centre is 0. Now the probability of this com-

pound error being between c and e + dt is proportional to the

number of points between JIand the consecutive line; making,
as before, 08 =

c, Ss = de. But this number is the same
as when the strip JI is turned round through an angle of

45°, because the points lie in concentric circles of equal den-

sity. Hence the number is proportional to

e
-^d J_X c

ca dx =
C

-^e~^de,

as the perpendicular from on JI is —=..

Thus the probability of a compound error between e and
e + de is proportional to

e da;

and as this, when integrated between the limits ± oo
, must

give the probability i, the value of p is

i .H
p = — e 2c* de.

It thus follows the same law as the two component errors,

c v/2 taking the place of c.

243. Various artifices have been employed for the solution

of different interesting questions on Probability, which would
be found extremely tedious, or impracticable, if attempted

by direct integration. For example :

Two points are taken at random within a sphere of radius

r
;
to find the chance that their distance is

less than a given value c.

Let F = number of favourable cases,W = whole number ; then

Let us consider the differential dF
9
or Fis- 7 1 -

the additional favourable cases introduced by giving r the

increment dr, c remaining unchanged.
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If one of the points A is taken anywhere (at P) in the

infinitesimal shell between the two spheres, then drawing a

sphere with centre P, radius c, all positions of the second

point, P, in the lens ED common to the two spheres, are

favourable
; let L = volume ED, then the number of favour-

able cases when A is in the shell is

4irr
2dr.L:

doubling this, for the cases when B is in the same shell,

dF=8irrLdr.

Now it may be easily proved, from the value for the volume
of a segment of a sphere, that

T 27T , 7TC
4

L = — c
3

;

3 $r

hence F = 8tt
2

(- cz r
3 - i c

4 r2 + C

C being an unknown constant
;

i.e. involving c, but not r
;

.,

'

F & q c
4

9 C
therefore p = -r = - - ~

.
- + - —

.r 16 r3 16 r4 2 r
6— 7rV

9

Now the probability
= i if r = - c

;

therefore i = 8 - o + x 64 - ; .*. -C=— c
6

:

2 c
6

2 64

C
3 Q C

4
I C^

therefore = — — + .

r3 i6r4
32 r6

If the two points be taken within a circle, instead of a

sphere, it may be proved by a similar process that

c
2

2 f c
2

\ . c I c f c
2

\ I ?
r" 7r\ r

2

/ 2r 4?r r\ r2

J\ r2
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It is a very remarkable fact, pointed out by Mr. S. Roberts,
that if we draw the chord ED, the probability is, in the case

of the circle,

_ 2 . segment EQD + segment EPD
area of circle EHD

and also, in the case of the sphere,

2 . volume EQD + volume EPD
P =

volume of sphere EHD
These results evidently suggest that there must be some

manner of viewing the question which would conduct" to

them in a direct way.

Examples.

i. Three points being taken at random within a sphere, to find the chance
that the triangle which they determine shall be acute-angled.

As the probability is independent of the radius of the sphere, it is easy to

see that we may take the farthest from the centre of the three points as fixed on
the surface of the sphere. For if p be the probability of an acute-angled triangle
in this case, p will also be the probability of an acute-angled triangle for each

position of the farthest point, as it travels over the whole volume of the sphere.
Hence p will be the probability when no restriction is put on any of the points.

Take then A, one of the points on the surface of the sphere ;
two others, B, C,

being taken at random within it, and let us find the

chance of ABC being obtuse-angled : to do this, we
will find separately the chance of the angles A, B, G
being obtuse : the events being mutually exclusive,
the probability required will be the sum of these

three.

(i). To find the chance that A is obtuse, let us fix

B
; then, drawing the plane A V perpendicular to AB,

the chance required is

volume of segment AST
volume of sphere

Let r m OA, the radius of sphere, p = AB, 6 = L OAB ;
then the volume of

the segment AHV is

£nr3
(i
- cos Bf (2 + cosfl);

therefore when B is fixed the ohance is

£(1 -COS6)
2
(2 + CO3 0).
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Now let B move oyer the whole volume of the sphere, and we have for the

probability Pa, that A is obtuse

J*2r2rcos,0
(2
-
3 cos + oos3 0) p

2 sin ^0 dp.
8r>

Hence P^=— .

70

(2). To find the chance, PB ,
that B is obtuse. Fix B as before

;
then the

chance that B is acute is

segment MEN
sphere

Now, volume MEN = \irr
z ( - + 1 - cos

J
( 2 + cos - -

J
; so that the

chance is

if p p
2

p
3

-
< 2 - 3 cos + cos3 + 3

-
(1
- cos20) + 3

r— COS - h:
4 ( r r* r3

Hence the whole probability (
1 - PB) that B is acute is

jr

^ f2p2rcos0/ p p
2

p
3 \—

\

ja-3cos0 +
cos3 0+3-(i -cos2

0) + 3^cos0-
r

3
j
p
2 sm 6 d8 dp.

Performing the integrations, we find PB = — •

The probability for G is, of course, the same as for B
; hence the whole pro-

bability of an obtuse-angled triangle is

P=Pa + Pb + Pc = — + ^ + — = — .

70 70 70 70

Hence, the chance of an acute-angled triangle is — .

70
For three points within a circle the chance of an acute-angled triangle is

± X

IT
2 8*

2. Two points, A, B, are taken at random in a triangle. If two other points,

C, D, are also taken at random in the triangle, find the chance that they shall lie

on opposite sides of the line AB.
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The sides of the triangle ABC produced divide the whole triangle into seven

spaces. Of these, the mean value of

those marked (a) is the same, viz., the

mean value of ABC; or, & of the
whole triangle, as we have shown in

Art. 236 ; the mean value of those P
marked (IS) being $ of the triangle.

This is easily seen : for instance,
if the whole area = 1, the mean value
of the space PBQ gives the chance
that if the fourth point D be taken
at random, B shall fall within the

triangle ABC: now the mean value
of ABC gives the chance that D shall

/_

fall within ABC
;

but these two
chances are equal. Fig. 73.

Hence we see that if A, B, C be
taken at random, the mean value of that portion of the whole triangle which
lies on the same side of AB as C does is H °f the whole ; that of the opposite

portion is tV
Henoe the chance of Cand JD falling on opposite sides of AB is tV-

244. Random Straight Lines.—If an infinite number
of straight lines be drawn at random in a plane, there will

be as many parallel to any given direction as to any other,

all directions being equally probable ;
also those having any

given direction will be disposed with equal frequency all

over the plane. Hence, if a line be determined by the co-

ordinates p, w, the perpendicular on it from a fixed origin 0,
and the inclination of that perpendicular to a fixed axis

;
then

if p, u> be made to vary by equal infinitesimal increments,
the series of lines so given will represent the entire series of

random straight lines. Thus the number of lines for which

p falls between p and p + dp, and u> between w and w + dw,
will be measured by dpdio, and the integral

jj dpdcjy

between any limits, measures the number of lines within those

limits.

It is easy to show from this that the number of random
lines which meet any closed convex contour of length L is

measured by L.

For, taking inside the contour, and integrating first

for p, from o to jo, the perpendicular on the tangent to the

contour, we have jpdw : taking this through four right angles



Random Straight Lines. 369

for w, we have by Legendre's theorem (p. 232), N being the

measure of the number of lines,

N pdb

Thus if a random line meet a given contour, of length L,
the chance of its meeting another convex contour, of length /,

internal to the former, is

I

If the given contour be not convex, or not closed, iV will

evidently be the length of an endless string, drawn tight
around the contour.

Examples.

1. If a random line meet a closed convex contour, of length X, the chance

of it meeting another such contour, external to the former, is

P =

where X is the length of an endless band

enveloping both contours, and crossing
between them, and Y that of a band also

enveloping both, but not crossing.
This may be shown by means of

Legendre's integral above
;

or as fol-

lows :
—

Call, for shortness, N{A) the number
of lines meeting an area A

; N(A, A')
the mimber which meet both A and A' : then

N{SROQPH) + N(S'Q'OR'P'H') = N(SROQPH + S'QOR'P'H')

+ N(SROQPH, S'Q'OR'P'B'),

since in the first member each line meeting both areas is counted twice. But
the number of lines meeting the non-convex figure consisting of OQPHSR and

OQ'S'H'P'R' is equal to the band Y, and the number meeting both these areas

is identical with that of those meeting the given areas Q., Df; hence

x= r+iV(n, a').

Thus the number meeting both the given areas is measured by X - Y. Hence
the theorem follows.
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2. Two random chords cross a given convex boundary, of length Z, and area
A

;
to find the chance that their intersection falls inside the boundary.
Consider the first chord in any position : let C be its length ; considering it

as a closed area, the chance of the second chord meeting it is

2C

L ''

and the whole chance of its co-ordinates falling in

chord meeting it in that position, is

da, and of the second

2(7 dp da
z^Cdp da.

L jjdpda Z2

But the whole chance is the sum of these chances for all its positions

therefore prob. =— I I Cdpda.

Now, for a given value of a, the value of J Cdp is evidently the area A
;
then

taking a from ir to o,

required probability = -=-.

The mean value of a chord drawn at random across the boundary is

Jj Cdpda irCl

Hdpda Z*

3. A straight band of breadth c being traced on a floor, and a circle of radius

r thrown on it at random, to find the mean area of the band which is covered by
the circle. (The cases are omitted where the circle falls outside the band.)*

If S be the space covered, the chance of a random point on the circle falling
on the band is

M(8)

This is the same as if the circle were fixed, and the band thrown on it at

random. Now let A be a position of the
random point : the favourable cases are when ,--' ~~-^X^
HK, the bisector of the band, meets a circle, / s'

centre A, radius \ c
;
and the whole number

are when HK meets a circle, centre 0, radius

r + \c ; hence (Art. 236) the probability is

P =
27T. JfC

2ir(r + %c)

c

2r+c

This is constant for all positions of A
;

hence, equating these two values of p, the Fig. 75-

* Or the floor may be supposed painted with parallel bands, at a distanoe

asunder equal to the diameter ; so that the circle must fall on one.
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mean area required is

M(S) = —— tit2 .
v

2r + c

The mean value of the part of the circumference which falls on the hand is

the same fraction of the whole circumference.
2r + c

If any convex area Cl, of perimeter Z, be thrown on the band, instead of a

circle, the mean area covered is

ire

M{S) = n.
v ' L + ire

245. Application to Evaluation of Definite Inte-

grals.—The consideration of probability sometimes may be

applied to determine the values of Definite Integrals. For

instance, if n + 1 points are taken at random in a line, /, and
we consider the chance that one of them, X, shall be the last,

beginning from the end A of the line, the number of favour-

able cased, when X is the element dx, is, calling AX, x,

xn dx.

Henoe

1:

xn dx
Jo

p

but the chance must be : we thus have an independent
n + 1

A

proof that

fl

in + i

x»dx =
,

» + I

when n is an integer.

Again, if m + n + 1 points are taken, to find the chance
that X shall be the (m + i)

th
iii order

; the number of favour-
able cases, when X falls in dx, and a particular set of m points
falls to the left of X, is

ir
m

(i
-

x)
ndx

; taking / = 1
;

hence the whole number of favourable cases is

==\ %m (i
-

x)
n
dx;

m\_nj
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this is the required probability, since /
m+n+1 = i. But the

value is
,
as every point is equally likely to fall in

the (m + i)
th

place : we thus deduce the definite integral

|

m [n
xm (i -x)

ndx =
m + n + i

when m
f
n are integers. (See Art. 92.)

246. To investigate the probability that the inclination

of the line joining any two points in a

given convex area £2 shall lie within

given limits.

We give here a method of reducing
this question to calculation, for the sake

of an integral to which it leads, and
QJ

which is not easy to deduce otherwise.

First, let one of the points, A, be
fixed

;
draw through it a chord PQ = C, ^ig ?6

at an inclination 9 to some fixed line
;

put AP =
r, AQ = r'

;
then the number of cases for which

the direction of the line joining A and B lies between 9 and
+ dO is measured by

l(r
2 + r'

2

)dO.

Now, let A range over the space between PQ and a

parallel chord distant dp from it, the number of cases for

which A lies in this space, and the direction of AH
from 9 to 9 + d9, is (first considering A to lie in the

element drdp)

idpd9i (r + r'
2

)dr = iC 3

dpd9.

Let p be the perpendicular on C from a given origin O,
and let to be the inclination of p (we may put dw for d9), then

C will be a given function ofp, to
;
aad integrating first for w

constant, the whole number of cases for which w falls between

given limits a/, a/', is

if" dtu
J
&dp;

the integral j C 3

dp being taken for all positions of C between
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two tangents to the boundary parallel to PQ. The question
is thus reduced to the evaluation of this integral ; which,
of course, is generally difficult enough : we may, however,
deduce from it a remarkable result ; for if the integral

be extended to all possible positions of C, it gives the whole
number of pairs of positions of the points A, B which lie

inside the area
;
but this number is Q,

z

;
hence

JJ(7
3^^ = 3Q

a

,

the integration extending to all possible positions of the

chord C; its length being a given function of its co-ordinates

p,w.
Cor. Hence if L, 12, be the perimeter and area of any

closed convex contour, the mean value of the cube of a chord

drawn across it at random is —=-.
Li

It follows that if a line cross such a contour at random,
the chance that three other lines, also drawn at random, shall

meet the first inside the contour, is 24 — .

Some other cases of definite integrals deduced from the

theory of Probability are given in a Paper in the Philo-

sophical Transactions for 1868, pp. 1 81-199. See also Pro-

ceedings London Math. Soc, vol. viii.

Several Examples on Mean Values and Probability are

annexed
;
some of them, as also some of the questions which

have been explained in this Chapter, are taken from the

Papers on the subject in the Educational Times, by the Editor,
Mr. Miller, as also by Professor Sylvester, Mr. Woolhouse,
Col. Clarke, Messrs. Watson, Savage, and others. Some few
are rather difficult

;
but want of space has prevented our

giving the solutions in the text.

"We may refer to Todhunter's valuable History of Pro-

bability for an account of the more profound and difficult

questions treated by the great writers on the theory of Pro-

bability.
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Examples.

1. A chord is drawn joining two points taken at random on a circle : find the

mean area of the lesser of the two segments into which it divides the circle.

Ans. .

4 »

2. Find the mean latitude of all places north of the Equator.
Am. 32 .704.

3. Find the mean square of the velocity of a projectile in vacuo, taken at all

instants of its flight till it regains the velocity of projection.

Ans. V2 cos2 a + |F2 sin2 a : where V= initial velocity, and a = angle
of projection.

4. If x and y are two variahles, each of which may take independently any
value between two given limits (different for each), show that the mean value

of the product xy is equal to the product of the mean values of x and y.

5. If X, Y are points taken at random in a triangle ABC, what is the

chance that the quadrilateral ABXY is convex ?

Am. -.

3

For, it is easy to see that of the three quadrilaterals ABXY, ACXY, BCXY,
one must be convex, and two re-entrant.

6. Find the mean area of the quadrilateral formed by four points taken at

random on the circumference of a circle.

Am. ~ (area of circle).
v

7. A class list at an examination is drawn up in alphabetical order
;
the num-

ber of names being n. If a name be selected at random, find the chance that the

candidate shall not be more than m places from his place in the order of merit.

2m + I m(m + 1) .„ _, „,, . . » , , . ,Am. 5
—-. UN. 13.—This is not, of course, the value of the

n n*

chance after the selection has been made : tbis may easily be found.)

8. A traveller starts from a point on a straight river and travels a certain

distance in a random direction. Having quite lost his way, he starts again at

random the next morning, and travels the same distance as before. Find the

chance of his reaching the river again in the second day's journey.

Ans. -.

4

9. Two lengths, b, b', are laid down at random in a line a, greater than
either : find the chance that they shall not bave a common part greater than e.

(a-b-b' + c)
2

Ans,
(a-b)(a-b>)
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io. A person in firing 10 shots at a mark has hit 5 times, and missed 5. Find

the chance that in the next 10 shots he shall hit 5 times, and miss 5.

Ans ,
—' ^ • '

. = 21—. If the first 10 shots had not heen fired, so that

19. 17. 13 4199

nothing was known as to his skill, the chance would he — : if he

had heen found to hit the mark half the numher of times out of a

63
large numher, the chance would he —>.

11. If a line I he divided at random into 4 parts, the mean square of one

of the parts is — I
2

: hut if the line he divided at random into 2 parts, and
10

each part again divided into 2 parts, then the mean square of one of the 4 parts

is - 1*.

9

12. Three points are taken at random in a line I. Find the mean distance

of the intermediate point from the middle of the line.

Ans. 4^J.
16

13. A certain city is situated on a river. The prohahility that a specified

inhabitant A lives on the right bank of the river is, of course, ^, in the absence

of any further information. But if we have found that an inhabitant B lives on

the right bank, find the probability that A does so also.

2
Ans. -. (N.B.

—It is here assumed that every possible partition of the

number of inhabitants into 2 parts, by the river, is equally probable
a priori.)

14. If A, B, C, D, are four given points in directum, and 2 points are taken

at^random in AD, and one is taken in BC: find the chance that it shall fall be-

tween the former two.

Ans. -i-_ l±BC*+BC(AB+CD) + 2AB.CD\

15. If z = x + y, where x may have any value from o to a, and y any value

from o to b : find the probability that z is less than an assigned value c (suppose

b<a).
'

Ans. (1) I£c<b, pi- —r.

2ao

(2) If a>c>b, p2 =
C
-^-.

a

nTf (« + b - cf
(3)If*>«, J*-i ^

If we denote the functions expressing the probability in the three

cases by /i(«, b, c), /2 («, b, c), f*(a, b, c), we shall find the rela-

tion

/i(«, h e) +fz{a, b,c) =/2 («, b, c) +f2 (b, a, c).
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1 6. In the cubio equation

p and q may have any values between the limits i I. Find the chance that the
three roots are real.

45

17. Two observations are taken of the same magnitude, and the mean of the

results is taken as the true value. If the error of each observation is assumed to

lie within the limits + a, and all its values to be equally probable, show that it

is an even chance that the error in the result lies between the limits ± 0.293 «•

18. A point is taken at random in each of two given plane areas. Show
that the mean square of the distance between the two points is

ft* + A'2 + A2
;

where A is the distance between the centres of gravity of the areas ; and k, k'

are the radii of gyration of each area round its centre of gravity.

19. The mean square of the area of the triangle formed by joining any three

points taken in any given plane area is - h- k2
;
where h, k are the radii of gyra-

tion of the area round the two principal axes of rotation in its plane.
If one of the points is fixed at the centre of gravity, the value is %h

2 k-.

(Mr. Woolhoxjse.)

20. A line is divided at random into 3 parts. Find the chance—
( 1) that they

will form a triangle ; (2) an acute-angled triangle.

Am. (1). pi = \.

^ (2)- Pi = 3 log 2 - 2.

2 1. A line is divided into n parts. Find the chance that they cannot form a
V_ v^olygon. ,(

_°1 =. An,.
2

,

22. If two stars are taken at random in the northern hemisphere, find the

chance that their distance exceeds 90 .

Am. -.
IT

23. The vertices of a spherical triangle are points taken at random on a

sphere. Find the chance—( 1) that all its angles are acute ; (2) that all are obtuse.

24. Show that the mean value of -, where p is the distance of two point*

. &
taken at random within a circle, is .

3«r
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25. Two equal lines of length a include an angle : find the chance that if

two points P, Q are taken at random, one on each line, their distance PQ, shall be

less than a.

Ans. (1). When - > B > -; p\ = .

- + 2 cos 9.
v '

2 3
*

2 sin

,
IT 7T —

(2). When > -
; p* = —r— .

v '
2 2 sin

Here the functions are connected by the relation F(9) + F(ir
-

0) =/(0) +/(tt-0) .

26. The density of a city population varies inversely as the distance from a

central point. Find the chance that two inhabitants chosen at random within a

radius r from the centre shall not live further than a distance r from each other.

ii, 2 / V3\ 1
f

2 Odd 3 [
2 dde

Ans. p = log 3 + -
(

1 -— 1 + — -r-t + — -r— ;^
3 4

& °
it \ 2/ 27rJoSin0 2TrJ'rsin0

3

whence p = 0.7771. This result is easily obtained by employing
the values given in Question 25.

27. Four points are taken at random within a circle or an ellipse. Show

that the chance that they form a re-entrant quadrilateral is -.

28. Find the mean distance of two points within a sphere. Ans. — r.

29. Three points A, 2?, C are taken within a circle, whose centre is 0. Find
the chance that the quadrilateral ABGO is re-entrant.

1 4

4 3t2

30. Find the chance that the distance of two points within a square shall not

exceed a side of the square.

Ans. p = it —^-.
o

31. In the same case, find the chance that the distance shall not exceed an

assigned value c
;
a being the side of the square.

cz I 8 1 \
Ans. (1). When c<a; p — — [ira

2 ac + ~c2
]

.

, v txt, <?2 . ,« e
2 ±2c*+az

,-
—l c2 c4 I

(2). Whenc>a;iJ = 4-;Sin-
1— ir - + r— Vc2-a2-2 — + -.

^a2 c a2 3 a3 a2 zut 3

32. Three points are taken at random on a sphere; the chance that in

the spherical triangle some one angle shall exceed the sum of the other two

is -. Also the chance that its area shall exceed that of a great circle is 7.
2 o

33. If a line be divided at random into 4 parts, show that it is an even chance
that one of the parts is greater than half the line.

[25]
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^4. Prove that the mean distance of a point within a triangle from the vertex

I (a + b (a-*)(a»-J2) hT-

+
\- a + b + e)

J^aTb^cY3(2 2 C3

where h is the altitude of the triangle. (See Ex. 6, p. 347.)

35. The mean value of the distance between any two points in an equilateral

triangle is

Hil +>ei
)

This question may be solved by proving that M = -M
,
where M is the

mean distance of an angle of the triangle from any point within it. For, let

jlfo = M^> where /x is constant, and A = area of the triangle. Take now any
element dS of the triangle ;

draw from it parallels to the sides to meet the base
;

let 5 be the area of the equilateral triangle so formed : the sum of the whole
number of cases will be equal to

cffs./itf . dS = JfA2,

if dS is made to range over the whole triangle : if we call the whole triangle

unity, and put dS = 2dad& as in Ex. 3, p. 344, 5 = a2
,
and the integral be-

comes — fi
= M. The result then follows from 34.

36. From a tower of height h particles are projected in all directions in

space with a velocity due to a falLthrough h. Show that the mean value of

the range is M = 2h
J ,y l _ #4 # ^x.

(Prof. "Wolstenholme.)

37. In n quantities a, b, c, d . . . .
,
each of which takes independently a

given series of values 01, 02, a3, . . . .
; b\, £2, ^3, • • . &c. (the number of values

is different for each), if we put

2a = a + b + c + d+... .&c,

and for shortness denote " the mean value of x " by Mx, prove that

M2a = Ma + Mb + Mc + . . . . &c. = SMa,

M&af = (ZMaY - 2(Ma)*+ ^M{ai
).

38. Two points are taken at random in a triangle. Find the mean area of

the triangular portion which the line joining them cuts off from the whole

Ans. - of the whole.
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39. A ship at A observes another at B, whose course is unknown. Sup-

posing their speed the same, prove that the chance of their coming within a
2 . d

given distance d of each other is always
- sin-1 -, whatever the course taken

.""
a d

by A ; provided its inclination to AB is not greater than cos" 1 -
: where

AB = a. (Camb. Math. Tripos, 187 1. Prof. Miller.)

40. A random straight line crosses a circle. Find the chance that two

points taken at random in the circle shall lie on opposite sides of the line.

Ans. -. This is deduced at once from the value of M. the mean dis-

45 t2

2M
tance of the two points ;

as the chance = — . If two random lines
2irr

are drawn, the chance that both lines shall pass between the points
. 1

41. A point is taken at random in a triangle. "What is the probability
that if three other points are taken at random, one shall lie in each of the tri-

angles AOB, BOC, COA ?

Ans. — . This may easily be found to depend on the integral jjafiy . 2da d&,

where a, j8, 7 are the three triangles above.

42. A line crosses a circle at random
;
find the chance that a point taken

at random in the circle shall be distant from the line by less than the radius of
the circle. s 2

Ans. 1 .

3^

43. Two points are taken on the circumference of a. semicircle. Find the
chance that their ordinates fall on either side of a point taken at random on the
diameter. 4

Ans. —.

44. In any convex area which has a centre 0, let an indefinite straight line

revolve round 0, and the locus of the centre of gravity of either half into which
it divides the area be traced. Show that the mean distance of from all points

in the area is equal to - the perimeter of this locus. Also,
- of the area enclosed

4
t

4
by this locus = mean area of the triangle OXY; where X, Fare points taken at
random in the given area. (Crofton, Proceedings, Lond. Math. Soc, vol. viii.)

45. The probability that the distance of two points taken at random in a

given convex area Cl shall exceed a given limit (a) is

-M* 3a
2 C+2as

)dpdu,

where C is a chord of the area, whose co-ordinates are p, a
; the integration

extending to all values of p, u>, which give a chord C> a.

[25 a]
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Miscellaneous Examples.

i. If a be the sagitta of a circular segment whose base is 0, prove that the

area of the segment is, approximately,

2 . 8 «3= - ab + — -.
3 15 *

2. Find the area of the inverse of a hyperbola, the centre being the pole of

inversion ;
and show that the area of the inverse of an ellipse, under the same

ciroumstances, is an arithmetic mean between the areas of the circles described

on its axes as diameters.

^. , A, • A , n dx la2 - x2

3. Find the integral of — ,J ———
.

x y x* — 0*

Ans. tan-1
la2 -x* a

,
b la2 - x2

V^T2
+

* a^**~b2
'

4. Prove that

f;W =
,{-«)/<»iog(;^-:),

where | lies between X and #0.

5. In a spiral of Archimedes, if P, Q, and P*
t Q'be the points of section with

any two branches of the curve made by a line passing through its pole ; prove
that the area bounded by the right line and by the two branches is halfthe area

of the ellipse whose semiaxes are PP' and P' Q.

6. Find the value of Jdx
\x + a

x + c\x + b'

7. If an ellipse roll upon a right line, show that the differential equation of

the locus of its focus is

(y
2 + b

*)jx
= v/(2«y + y

2 + b2
) (zay -y2 - b2

).

8. A circle rolls from one end to the other of a curved line equal in length
to the circumference of the circle, and then rolls back again on the other side of

the curve : prove that, if the curvature of the curve be throughout less than
that of the circle, the area contained within the closed curve traced out by the

point of the circle which was first in contact with the fixed curve is six times

the area of the circle. (Camb. Math. Tripos, 1871.)

9. In the same case show that the entire length of the path described is

eight times the diameter of the circle.

10. Prove that the area of the locus formed by the points of intersection of

normals to an ellipse, which cut at right angles, is tt (a
-

b)*.
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ii. Prove that the area between two focal radii of a parabola and the curve

is half the area between the curve, the corresponding perpendiculars on the

directrix, and the directrix.

12. Evaluate the following integrals :

J V tana;' J J (i + x2
) (i + #*)

13. If E = (a? + axf + bx, and u = log
—

,
find the relation

x2 + ax - VR

, . , f dx f x dx
between the integrals

J

—
,

—
Vi2 J Vn

Am cxdx _ a cdx u

14. If a curve be such that the area between any portion and a fixed right
line is proportional to the corresponding length of the curve, show that it is a

catenary.

15. Prove that the volume of a rectangular parallelepiped is to that of its

circumscribed ellipsoid as 2 : W3.

16. Prove that 1
— = I —

,
where sin ^ = « sin a.

Jo vi - k2 sin2 J Vk2 - sin2

17. If any number of triangles be inscribed in one ellipse, and circumscribed

to another ellipse, concentric and similar, prove that these triangles have all the

rb dy
18. Show that the value of the integral I

-

J«Vyw»-i

may be exhibited by the following geometrical construction. Let the curve
m m

whose equation is rm+2 cos « = 1 roll on the axis of x
;
take the points

(#1, y\) fa, y-i) on the roulette described by the pole, such that yi = a, y% = b;

then

I ^=====:
= x% — x\. (Mr. Jellett.)

J a \/ym
_ j

19. If a be the length of the arc of a spherical curve measured to any point
P, and t be the intercept on the great circle touching at P, between the point of

contact and the foot of the perpendicular from the pole, prove that

$ — t=jsin.pdw.

The proof is similar to that of the corresponding theorem in piano. See Art. 158.
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20. Prove that the volume of a polyhedron, having for bases any two

polygons situated in parallel planes, and for lateral faces trapeziums, is ex-

pressed by the formula

where H is the distance between the parallel planes, B and B" the areas of the

polygonal bases, and B" the area of the section equidistant from the two bases.

11. If S be the length of a loop of the curve rn = a"cosw0, and A the are*
of a loop of the curve r2» = a2n cos md, prove that

AxS = .

2n

22. Find approximately the area, and also the length, of a loop of the

curve r* = J cos— . (See Biff. Calc, Art. 268.)

Ans. area = a2 x 0.56616; length =a x 2.72638.

23. Show from Art. 134 that if a parabola roll on a right line, the locus of

its focus is a catenary.

24. If A be the area of any oval, B that of its pedal with respect to any
internal origin 0, and C that of the locus of the point on the perpendicular
whose distance from is equal to the distance of the point of contact from ;

prove that A, B, G are in arithmetical progression.

25. The arc of a curve is connected with the abscissa by the equation *2 = kx ;

find the curve.

a6. If the co-ordinates of a point on a curve be given by the equations

x = csiu 20 (1 + cos 20), y = ecos20(i -cos 26),

prove that the length of its arc, measured from its origin, is - e sin 30.

27. Show how~to|find the sum of every element of the periphery of an ellipse
divided by any odd power (2r+ 1) of the semi-diameter conjugate to that which
passes through the element, and give the result in the case of the fifth power.—

(Mr. W. Roberts.)

-*»'• T-A , (

2

(«
2 cos2 + i2 sin2 0)'-

1 d9.

(a*)
2r - 1

Jo

„.. . 7r(«
2 + 2

)
.

This gives -i_—'when r= 2 .

a3 *3

28. A sphere intersects a right cylinder ; prove that the entire surface of the

cylinder included within the sphere is equal to the product of the diameter of

the cylinder into the perimeter of an ellipse, whose axes are equal to the greatest
and least intercepts made by the sphere on the edges of the cylinder.
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29. Show that the equations of the involute of a circle are of the form

x = a cos
<f>
+ a<f>

sin <p, y = a sin <p
—
af cos <p,

and prove that the length of the arc of this involute, measured from
<f>
= o, is

one half of the arc of a circle which would be described by a radius equal to the
arc of its evolute moving through the angle <p.

30. Show that the area of the cassinoid

r* — 2a2r2 cos 20 + #4 = 3*

is expressed by aid of an elliptic arc, when b > a
;
and by a hyperbolic arc,

when a > b.

31. A string AB, of given length, lies in contact with a plane convex curve
with its end A fixed ; the string is unwound, and B is made to move about A
till the string is again wound on the curve, the final position of B being B'

;

prove that for variations of the position of A, the arc traced out by B will be a
maximum or a minimum, when the tangents at B and B' are equally inclined

to the tangent at A
;
and will be the former or the latter, according as the curv-

ature at A is greater or less than half the sum of the curvatures at B and B'.—
(Camb. Math. Tripos, 1871.)

32. Find the value of f -$ fl'**. Am. J- i
2^ .

Jo V x A//3

33. Find the length, and also the area, of the pedal of a cissoid, the vertex

being origin.

Sa r ira*

Ans.
y -log(a + V3)-4»:

2
•

34. Prove that the length of an arc of the lemniscate r2 = a1 cos zd is repre-
sented by the integral

a r d(p

fz) V 1 - i sin2 d>V2 J V I - f 8111
s

<p

35. Integrate the equation

cos 6 (cos d - sin o sin
<f>)

dd + cos (cos <p
- sin a sin d) d<p

= o.

If thearbitrary constant be determined by the condition that the equation must
be satisfied by the values (o, o) of (d, <p), show that the equation is satisfied by
putting + $ = a.

36. Each element of the surface of an ellipsoid is divided by the area of the

parallel central section of the surface; find the sum of all the elementary quotients
extended through the entire ellipsoid. Ans. 4.

37. Hence, show that

n:
(fi

2 -
j/
2
) djxdv

vV-A2 V F- M
2 VA2 - v3 V A*
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This depends on the expression for an element of the surface of an ellipsoid in

terms of the elliptic co-ordinates of a point. See Salmon's Geometry of Three

Dimensions, Art. 41 1. This proof is due to Chasles (Liouville, tome iii. p. 10).

38. Hence, prove the relation

F(m) F(n) + F(n) E{m) -
F(n) F{m) = -

where
"n n

F(m) = f

2 ——
E{m) =

(

2

V I - w2 sin2 9 dd,
Jo V 1 -m2 sin2 0' Jo

and m2 + w2 1 .

Let v= A sind, and fi
= VA2'sin2

<f> + k2 cos2
<p, in the preceding, and it

becomes

- -

f

2

f

2 A2 sin2
<p + k2 cos2 <p

- A2 sin2 fl

Jo Jo V
/

A2 sin2 ^> + A2 cos2
</)
V^2 - A2 sin2

1

f V A2 sin2 ft + &2 cos2 ft

V*2 -A3 sin2
'rfft +

7T 7T

•2
p2

Jo

V&2 -A2 sin2 fl

VA2 sin2 ft + A2 cos2 ft

rfflt/ft

Jo Jo VA2 sin2
ft +

A2 dd d<p

£2 cos2 ft vT2 -A2 sin2

This furnishes the required result on making A = mk.

The preceding formula, which is due to Legendre, gives a general relation

between complete elliptic functions of the first and second species, with com-

plementary moduli. (Compare Ex. 7, 8, p. 331.)

39. If three curves be described on the surface of an ellipsoid, along the first

of which the perpendicular to the tangent plane makes the constant angle 7 with
the axis of 2, along the second & with the axis of y, and along the third a with the

axis of x, and if the angles be connected by the relations = —— =
;

a c

then, if A3, A2, A\, be the included portions of the ellipsoid surface, prove that

A-i-Az A1-A2 A-i-Ax—
^— + —^—u+

g2
= °-

(
Mr - Jellett.)

40. Show that the results given in Arts. 161 and 162 hold good for

spherical conies, where the tangents are arcs of great circles on the sphere.

41. Prove that

f« dx _ f« dx

]» {(a -*)(*-*)(«-*)}»" J- {(a- *) (6 -*)(•-*)}"

where a, b, e are in the order of magnitude.
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42. If a be an imaginary cube root of unity, show that, if

_ (»- a>
2
)x + a)

2xs dp _ (q>
-

aF) dx
V ~ I-«2

(a>-a,
2
)*

2 '

(I
-

f*)» (I + *>'/)*

~
(1
- *2

)* (I + <*x2
)

1
'

(Professor Cayley.)

43. Prove that the value of

J™

cos bx sin ax , . 7r 7r

dx is o, -, or -,
x 4 2

according as J is >, =, or < a.

44. Prove that : dx = - multiplied by the lesser of the
Jo z2 2

numbers a and b.

45. If e be the eccentricity of an ellipse whose semiaxis major is unity, and

E the length of its quadrant, prove that

(-
=

v
(W. Roberts.)

(1
- «2

) V h2 ~ <? rn/i-h?

46. If S represent the length of a quadrant of the curve rm = am cos md, and

Si the quadrant of its first pedal, prove that

2m

Here (Ex. 3, Art. 156), we have

/- r (-)s=-
2m Im + 1 \

I 2» /

Also, since the first pedal {Biff. Calc. Art. 268) is derived by substituting ^-^
instead of m,

(m+i)fl\/V \ 2m )
81 2m

V am/

+ i)7ra
2 F

\2li1) (m + i]_ (w+ i)7ra
2 x

\ 2w/ = (m+ l)ira
8

\ 2m}
r
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47. In general, if Sn be the quadrant of the nth
pedal of the curve in the last

prove that

mn+ 1

2m

Here it is readily seen that the nth
pedal is got by substituting in-

mn -f 1

stead of m in the equation of the proposed; .-. &c. (W. Roberts, Liouville,

1845, P- I77-)

48. If an endless string, longer than the circumference of an ellipse, be passed
round the ellipse and kept stretched by a moving pencil ; prove that the pencil
will trace out a confocal ellipse.

49. If two confocal ellipses be such that a polygon can be inscribed in one
and circumscribed to the other, prove that an indefinite number of such polygons
can be described, and that they all have the same perimeter. (Chasles, Comp.
Rend. 1843.)

50. To two arcs of a hyperbola whose difference is rectifiable correspond
qual arcs of the lemniscate which is the pedal of the hyperbola. {Ibid.)

51. Prove that the tangents drawn at the extremities of two arcs of a conic,
whose difference is rectifiable, form a quadrilateral whose sides all touch the

same circle. {Ibid.)

52. In the curve

x% + y* = a*,

prove that any tangent divides that portion of the curve between two cusps into

two arcs which are to each other as the segments of the portion of the tangent

intercepted by the axes.

53. If two tangents to a cycloid cut at a constant angle, prove that their

sum bears a constant ratio to the arc of the curve between them.

54. If AB, ab, be quadrants of two concentric circles, their radii coincid-

ing ; show that if an arc Ab of an involute of a circle be drawn to touch the
circles at A, b, the arc Ab is an arithmetical mean between the arcs AB and ab.

55. If ds represent an infinitely small superficial element of area at a point
outside any closed plane curve, and t, If the lengths of the tangents from the

point to the curve, and 6 the angle of intersection of these tangents : prove that

the sum of the elements represented by —
,
taken for all points exterior to

the curve, is 27r2 . (Prof. Crojton, Phil. Trans.
, 1868.)

56. Show that, for all systems of rectangular axes drawn through a given
point in a given plane area,

I \\
^-y*) dxdy f

+ 4
{ \\*ydxdy J\

taken over the whole of the area, is constant ; and that for a triangle, the point

being its centre of gravity, this constant value is

(tVa)
2
(a

4 + b* + e i - b*c* - c^aT- - a*b*).

Mr. J. J. Walker.)
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57. If ab — a'b', prove that

Jo Jo xv

= log (?\ log (^ {^(oo)-^(o)},

provided the limits
<\> (o) and <p (00 )

are both definite.

(Mr. Elliott, Proceedings, L6nd. Math. Soc, 1876.)

58. If 8 denote the surface, and V the volume, of the cone standing on the

focal ellipse of an ellipsoid, and having its vertex at an umbilic
; prove that

tf= ™(33 -c2
)*, V=$*c(b2 -c2

),

where a, b, e are the principal semiaxes of the ellipsoid.

59. Prove that, if p be positive and less than unity,

and

f
1 dx it 1

(xp + x-p) log (
1 + *)

— = —- -a (1),V * pampir p2

J {xp + x-p) log (1
-

x)
-- = -

cotjjir
- -

, (2),
Jo x p p6

where (1) may be deduced from (2) by putting x2 for x.

(Prof. "Wolstenholme.)

60. If /a, v be the elliptic co-ordinates of a point in a plane, prove that the

area of any portion of the plane is represented by

li

(fjr
— v2

) dfidv

taken between proper limits.

61. Prove that the differential equation, in elliptic co-ordinates, of any tan-

gent to the ellipse /*
=

/*i is

d/x dv

VV -
#) G"

2 -
rf) V(c

2 - v2
) {fix

2 - v2
)

how that the preceding differential equal
ntegral.

63. Prove that the differential equation of the involute of the ellipse p = fu is

62. Hence show that the preceding differential equation in ft and v admits
of an algebraic integral.

JSS**J£i?*-*
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64. Show that, for a homogeneous solid parallelepiped of any form and

dimensions, the three principal axes at the centre of gravity coincide in direction

with those of the solid inscribed ellipsoid which touches at the six centres of

gravity of its six faces ; and that, for each of the three coincident axes, and
therefore for every axis passing through their common centre of gravity, the

moment of inertia of the parallelepiped is to that of the ellipsoid in the same
constant ratio, viz., that of 10 to it.—(Prof. Townsend.)

65. Show that the volumes of any tetrahedron, and of the inscribed ellipsoid
which touches at the centres of gravity of its four faces, have the same principal
axes at their common centre of gravity ;

and that their moments of inertia for all

planes through that point have the same constant ratio (viz. 18 V3 : tt).
—

(Ibid.)

66. A quantity M of matter is distributed over the surface of a sphere of

radius a, so that the surface density varies inversely as the cube of the distance

from a given internal point S, distant b from the centre
; prove that the sum of

the principal moments of inertia of M at S is equal to 1M(a
2 - b2).

(Camb. Math. Tripos, 1876.)

67. If (1 -iaz + a*)-*=i +aXi + a2X2 • • • + anXn + • . .
, prove that

f

+

XnXm dx = o, f X }dx = ——.
2»+ 1

68. A closed central curve revolves round an arbitrary external axis in its

plane. Prove that the moments of inertia I and J, with respect to the axis of

revolution and to the perpendicular plane passing through the centre of inertia,

of the solid generated by the revolving area, are given respectively by the

expressions

1= m (a
2 + 3A

2
), /= m Ik* - -\ •

where m represents the mass of the solid, a the distance of the centre of the

generating area from the axis of revolution, h and k the radii of gyration of the

area with respect to the parallel and perpendicular axes through its centre, and
I the arm length of its product of inertia with respect to the same axes.

(Prof. Townsend, Quarterly Journal of Mathematics, 1879.)

69. If U= ["{x-z)"-
l

f{z)dz, find the value of ^. Ans. f(z).
Jo dxn

70. Prove that the superficial area of an ellipsoid is represented by

2irc2 + 2vab
v —:

.

J V(l
- *2*2

) (I
-

tf'
2*2

)

where a2 - #* = aV, J2 - c2 = e72 P.

(Mr. Jellett, Hermathena, 1883.)

71. Find the mean distance of two points on opposite sides of a square whose
side is unity.

Am. 2
.~y_ -flog^+Va).
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72. A cube being cut at random by a plane, what is the chance that the

section is a hexagon ?—(Col. Clarke.)

VI cot-1 V\ - VI cot-1 VI , ,
Ans. — ~ = .04646.

73. Three points are taken at random, one on each of three faces of a tetra-

hedron : what is the chance that the plane passing through them cuts the fourth

face ?—(Col. Clarke.)

Ans. -.

4

74. Two stars are taken at random from a catalogue : what is the chance
that one or both shall always be visible to an observer in a given latitude, A ?—

(Ibid.)

Ans. - versin A + - sin A.
2 4

75. Find the chance that the centre of gravity of a triangle lies inside the

triangle formed by three points taken at random within the triangle.

Am '

27(
2+y log4

)'

76. Two points are taken at random in a triangle, the line joining them

dividing the triangle into two portions : find the mean value of that portion
which contains the centre of gravity.

Ans. — f 470 -\ log 4 J
= .6967, the triangle being unity.

The mean value of the greater of the two portions is —(-
-

log 2 = .6987.

77. Show that the mean distanceM of a point in a rectangle from one angle
is given by

lM = d + — log
-
1
— + — log ,

ia b 2b
° a

a and b being the sides, d the diagonal.

78. Show that the mean distance M of two points within a rectangle
given by

__ as 33 1 a2 b2\ 5 /£2 a + d a2 , b+d\

This result may be deduced from the preceding ;
for if fi

= mean distance of a

point within the rectangle whose sides are x, y, from one of its angles, it is easy
to see that

a2 b2 M=^\ I xyfxdxdy; .-. &c.
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79. Show that if M be the mean distance of two points within any convex
area XI, we have

= h\\™ dpda>,

where 2, 2' are the segments into which the area is divided by a straight line

crossing it; the co-ordinates of the line being p, w
;
and the integration ex-

tending to all positions of the line.

This may be seen by considering that if a random line crosses the area, the

chance of its passing between the two points is -—
,
where L is the length of the

boundary. Again, for any position of the line, the chance of the points lying

on opposite sides of it is —-
;
therefore the whole chance is — M (22'), where

2fi2 fl2
"

if (22') is the mean value of the product 22' for all positions of the line.

80. In the same case we also have

M
Ssfj****

C being the length of the intercepted chord. Hence we have the remarkable

identity

(Crofton, Proceedings, Lond. Math. Soc, vol. 8.)

81. Show that if p be the distance of two points taken at random in the
same area,

'(^sii "**-

This may be applied to the circle. (See Ex. 24, p. 376.)

82. Show that the mean area of the triangle determined by three points
chosen at random within any convex area is

M = n- 3̂ jjtf
3 22«W«,

where 2 = either segment cut off by the chord C
;
but throughout the integra-

tions, as the direction of the chord alters, 2 means always the segment on the
same side of the chord as at first.
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Allman, on properties of paraboloid,

268, 281.

Amsler's planimeter, 214.

Annular solids, 261.

Approximate, methods of finding

areas, 211.

Archimedes, on solids, 254.

spiral of, 194, 380.

area of, 194.

rectification of, 227.

Areas of plane curves, 176.

Ball, on Amsler's planimeter, 215.

Bernoulli's series, by integration by
parts, 128.

Binet, on principal axes, 312.

Buffon' s problem, 352.

Cardioid, area of, 192.

rectification of, 227, 238.

Cartesian oval, rectification of, 239.

Catenary, equation to, 183.

rectification of, 223.

surface of revolution by, 260.

Cauchy, on exceptional cases in defi-

nite integrals, 128.

on principal and general values of

a definite integral, 132.

on singular definite integrals, 134.

on hyperbolic paraboloid, 271.

Chasles, on rectification of ellipse, 234,
248, 386.

on Legendre's formula, 384.

Cone, right, 256.

Crofton, on mean value and probabi-
lity, 333-379, 387, 390.

Cycloid, 189.

Definite integrals, 30, 115.

exceptional cases, 128.

infinite limits, 131, 135.

Definite integrals, principal and gene-
ral values, 132.

singular, 134.

differentiation of, 143, 147.

deduced by differentiation, 144.

integration under the sign J",
148.

double, 149, 313.

Descartes, rectification of oval of, 239.

Differentiation under the sign of inte-

gration, 107.

Dirichlet's theorem, 316.

Elliott, extension of Holditch's theo-

rem, 209.

on Frullani's theorem, 157, 387.

Ellipse, arc of, 226.

Ellipsoid, 266.

quadrature of, 282.

of gyration, 309, 312.

momental, 309.

central, 310.

Elliptic, integrals, 29, 173, 226, 232,
235, 243, 279, 384, 387.

co-ordinates, 249, 387.

Epitrochoid, rectification of, 237.

Equimomental cone, 310.

Errors of observation, 361.

Euler, 102.

theorem on parabolic sector, 198.

Eulerian integrals, 117, 124, 159.

definition of—
T{n) and£(m, n), 124, 160.

T{m + n)
*

T(n)T{i-n) = -.-—, 162.
smmr

,a.ueofr(I)r(?)...r(^)
164.

table of log (m), 169.
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Fagnani's theorem, 229.

Folium of Descartes, 192, 218.

Frequency, curve of, 356.

Frullani, theorem of, 165, 387.

Gamma functions, 124, 159.

Gauss, on integration over a closed

surface, 287.

Genocchi, rectification of Cartesian

oval, 240, 242.

Graves, on rectification of ellipse, 234.
Green's theorem, 326.

Groin, 269.

Gudermann, 183.

Guldin's theorems, 262, 263, 288.

Gyration, radius of, 293.

Helix, rectification of, 244.

Hirst, on pedals, 202.

Holditch, theorem of, 206.

Hyperbola, rectification of, 233.

Landen's theorems on, 232.

Hyperbolic sines and cosines, 182.

Hypotrochoid, see epitrochoid.

Inertia, integrals of, 291.

moments of, 291.

products of, 291, 306.

principal axes of, 307.

momental ellipsoid of, 309 .

Integrals, definitions of, 1, 114.

elementary, 2.

double, 149, 313.

of inertia, 291.

transformation of multiple, 320.

Integration, different methods of, 20.

by parts, 20.

of =*,68.
Xn - I

by successive reduction, 63.

by differentiation, 71, 144.

of binomial differentials, 75.

by rationalization, 92, 97.

bydifferentiation undersign/, 109.

by infinite series, 110.

regarded as summation, 30, 114.

double, 269, 313.

change of order in, 314.

over a closed surface, 284.

Jacobians, 323, 326.

Jellett, on quadrature of ellipsoid, 283,
388.

Zempe, theorem on moving area, 210.

Lagrange's series, remainder in, 158.

Lambert, theorem on elliptic area, 196.

Landen,theorem on hyperbolic arc, 232.
on difference between asymptote
and arc of hyperbola, 233.

Legendre, on Eulerian integrals, 160.
formula on rectification, 228, 369.
relation between complete elliptic

functions, 384.

Leibnitz, on Guldin's theorems, 264.

Lemniscate, area of, 191.

rectification of, 384.

Leudesdorf, 157, 210, 220.

Limacon, area of, 192.

rectification of, 237.
Limits of integration, 33, 115.

Mean Value and probability, 333.
Mean Value, definition of, 333.

for one independent variable, 334.
two ormore independentvariables,

337.

Method of quadratures, 178.

MiUer, 345.

Momental ellipse, 300.

of a triangle, 304.
Moments of inertia, 291.

relative to parallel axes, 292.
uniform rod, 294.

parallelepiped, cylinder, 295.

cone, 296.

sphere, 297.

ellipsoid, 298.

prism, 302.

tetrahedron, 304.
solid ring, 305.

M'Cullagh, on rectification of ellipse
and hyperbola, 236.

Neil, on semi-cubical parabola, 224,
249.

Newton, method of finding areas, 177-

by approximation, 213.
on tractrix, 219.

Observation, errors of, 361.

Panton, on rectification of Cartesian

oval, 240.

Paraboloid, of revolution, 266.

elliptic, 265, 268.
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Partial fractions, 42.

Pedal, area of, 199.

of ellipse, 190.

Steiner's theorem on area of, 201.

Eaabe, on, 202.

Hirst, on, 202.

Roberts, on, 386.

Planimeter, Amsler's, 214.

Popoff, on remainder in Legrange's

series, 159.

Probability, used to find mean values,

343.

Probabilities, 349.

Products of inertia, 301, 306.

Quadrature, plane, 176.

on the sphere, 276.
of surfaces, 279.

paraboloid, 280.

ellipsoid, 282.

Eaabe, theorem on pedal areas, 202.

Radius of gyration, 293.

Random straight lines, 368.

Rectification of, plane curves, 222.

parabola, 223.

catenary, 233.

semi-cubical parabola, 224.

of evolutes, 224.

arc of ellipse, 226.

hyperbola, 231.

epitrochoid, 237.

roulettes, 238.

Cartesian oval, 239, 247.

twisted curves, 243.

Recurring biquadratic under radical

sign, 101.

Reduction, integration by, 63.

by differentiation, 71, 80.

Roberts, W., on Cartesian oval, 240.

on pedals, 386.

Roulette, quadrature of, 205.

rectification of, 238.

Simpson's rules for areas, 213.

Sphere, surface and volume of, 252.

quadrature on, 276.

Spheroid, surface of, 257, 258.

Spiral, hyperbolic, 191.

of Archimedes, 194, 227, 380.

logarithmic, 227.

Steiner, theorem on pedal areas, 201.

on areas of roulettes, 203.

on rectification of roulettes, 238.

Surface of, solids, 250.

cone, 251.

sphere, 252.

revolution, 254.

spheroid, prolate, 257.

oblate, 258.

annular solid, 261.

Taylor's theorem, obtained by integra-
tion by parts, 126.

remainder as a definite integral,
127.

Townsend, on moments of inertia of a

ring, 305, 388.

on moments of inertia in

general, 310.

Tractrix, area of, 219.

length of, 225.

Van Huraet, on rectification, 249.

Viviani, Florentine enigma, 278.

Volumes of solids, 250, 264, 286.

Wallis, value for ir, 122.

"VVeddle, on areas by approximation,
213.

Woolhouse, on Holditch's theorem,
206.

Zolotareff, on remainder in Lagrange'
series, 158.

THE END.
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