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ABSTRACT

The purpose of this paper is to study the basic properties of the integral of
a Banach-valued correspondence. In particular, we study the convergence,
compactness and convexity properties of the Bochner and Gel 'fand integrals of
a set valued function. The above properties are applied to prove the
existence of an equilibrium for an abstract economy with a continuum of
agents

.
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1. INTRODUCTION

The classical model of exchange under perfect competition known as

the "Arrow-Debreu-McKenzie model" was formulated in terms of a finite

set of agents taking prices as given and engaging in sale and purchase

of commodities. Aumann (1966) argued that the classical model is

clearly at odds with itself as the finitude of agents means that each

individual is able to exercise some influence and therefore the assump-

tion of price taking behavior is not sensible. In a path breaking

paper, Aumann (1966) resolves this problem by assuming that the set of

agents is an atomless measure space and consequently the influence of

each agent in the economy as a whole is "negligible." Hence, the

"Aumann economy," that is, an economy with an atomless measure space

of agents, captures precisely the meaning of perfect competition.

In order to prove the existence of a competitive equilibrium in a

perfectly competitive economy, Aumann (1966) faced the following

fundamental problem. What is the definition of the aggregate demand

set if the set of agents is an atomless measure space? For instance,

if we denote the set of agents by T and denote by D(t,p) the demand

set of agent teT, as prices p, we know that if T is finite, the aggre-

gate demand set is given by the summation of the individual demand

sets, i.e., £ D(t,p). However, if T is an atomless measure space,

teT
then we have to integrate the set D(t,p). But what does it mean to

integrate a set-valued function? In a seminal paper Aumann (1965)

introduced the notion of the integral of a set-valued function (or

correspondence) and proved some basic results needed to tackle the

problem of the existence of a competitive equilibrium in an economy



-2-

with an atomless measure space of agents, and with a finite dimen-

sional commodity space.

However, if one wishes to allow for perfectly competitive econo-

mies with an infinite dimensional commodity space, then an extension

of the work of Aumann (1965) is required. In particular, from the

integration of finite dimensional-valued correspondences we must now

pass to integration of Banach-valued correspondences.

The main purpose of this paper is to study the integral of a

Banach-valued correspondence and prove some basic theorems needed in

general equilibrium and game theory. Results due to Debreu (1967),

Datko (1972), Diestel (1977), Hiai-Umegaki (1977), Khan (1982, 1984,

1985), Papageorgiou (1985), Khan-Majumdar (1986), Balder (1988),

Yannelis (1988, 1988a, 1989), Rustichini (1989), and Castaing (1988)

have drastically influenced the present paper which in a way may be

considered as a synthesis of the work of the above authors.

2. PRELIMINARIES

2.1 Notation

R denotes the n-fold Cartesian product of the set of real numbers R,

conA denotes the convex hull of the set A.

conA denotes the closed convex hull of the set A.

2 denotes the set of all nonempty subsets of the set A.

denotes the empty set.

/ denotes the set of theoretic subtraction.

dist denotes distance.

proj denotes projection.

If A C X, where X is a Banach space, cilA denotes the norm closure of A.
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If X is a linear topological space, its dual is the space X* of

all continuous linear functionals on X, and if p e X* and x e X the

value of p at x is denoted either by <p,x> or p«x.

If {F : n=l, 2, ...} is a sequence of nonempty subsets of a

Banach space X, we will denote by s - LsF and s - LiF the set of itsJ n n

(strong) limit superior and (strong) limit inferior points respec-

tively, i.e.
,

s - LsF = {x e X: x = s - litnx , x e F , k = 1, 2, ...}

k+» k \ \
s - LiF = {x £ X: x = s - limx , x e F , n = 1, 2, ...}.

n n' n n ' '

n+°°

A w in front of LsF (LiF ) will mean limit superior (limit inferior)
n n

with respect to the weak topology w(X,X*).

2. 2 Definitions

Let X and Y be sets. The graph of the set-valued function (or

Y
correspondence),

<J>
: X * 2 is denoted by G, = {(x,y) e X*Y: y e 4>(x)}

Let (T,T,y) be a complete, finite measure space, and X be a separable

X
Banach space. The correspondence $ : T + 2 is said to have a

measurable graph if G e t ® 3(X), where 3(X) denotes the Borel

a -algebra on X and <2> denotes product a -algebra. The correspondence <J>:

T » 2 is said to be lower measurable if for every open subset V of X,

the set {teT: ^(t)D V * 0} is an element of x. Recall [see for

instance Hiramelberg (1975), p. 47 or Debreu (1966), p. 359] that if

<j> : T + 2 has a measurable graph, then 4> is lower measurable.

Furthermore, if <}>(•) is closed value and lower measurable then
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<j> : T - 2 has a measurable graph. A. well-known result of Aumann

(1967) which will be of fundamental importance in this paper [see also

Himmelberg (1975), Theorem 5.2, p. 60], says that if (T,x,y) is a

complete, finite measure space, X is a separable metric space and

$ : T + 2 is a nonempty valued correspondence having a measurable

graph, then <j>(*) admits a measurable selection , i.e., there exists a

measurable function f : T -* X such that f(t)e<J>(t) y-a.e.

We now define the notion of a Bochner integrable function. We

will follow closely Diestel-Uhl (1977). Let (T,T,y) be a finite

measure space and X be a Banach space. A. function f : T + X is called

simple if there exist x. , x_ , . . . , x in X and a, . a« , .... a in tc— 12 n 12 n
n

such that f = I x.x , where y (t) = 1 if tea. and y (t) = if
. , i o. o. i a.
i=l i i i

t^a. . A. function f : T + X is said to be \i -measurable if there exists

a sequence of simple functions f : T * X such that lim Of (t) - f(t)ll
n n

= for almost all teT. A y-measurable function f : T X is said to

be Bochner integrable if there exists a sequence of simple functions

{f : n=l, 2, ...} such that
n

lim / If (t) - f(t)Hdy(t) = 0.

n+» T
n

In this case we define for each Eex the integral to be / f(t)dy(t) =

E

lim / f (t)dy(t). It can be shown [see Diestel-Uhl (1977), Theorem 2,

n->-» E

p. 45] that, if f : T + X is a jj-measurable function then f is Bochner

integrable if and only if / llf (t ) lldy (t ) < °°. It is important to note

T

that the Dominated Convergence Theorem holds for Bochner integrable

functions, in particular, if f : T # X, (n=l, 2, ...) is a sequence of
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Bochner integrable functions such that lira f (t) = f(t) y-a.e., and
n->-°°

Bf (t)H _< g(t) y-a.e., where g£L..(y,R), then f is Bochner integrable

and lira / nf (t) - f(t)Hdy(t) = 0.
™, n

n-xoo t

For 1 _< p < °°, we denote by L (y,X) the space of equivalence

classes of X-valued Bochner integrable functions x : T X norraed by

1

Hxll = (/ Bx(t)lldy(t))P .

P T

It is a standard result that normed by the functional 11*11 above,
P

L (y,X) becomes a Banach space [see Diestel-Uhl (1977), p. 50].

We denote by S^ the set of all selections from A : T 2 that
<P

belong to the space L (y,X), i.e.,

S
P = {xeL (y,X) : x(t)e<J>(t) y-a.e.}.
4> P

We will also consider the set S, = {xeL (y,X): x(t)e<f>(t) y-a.e.}, i.e.,
<f>

l

S is the set of all Bochner integrable selections from <f>(*). Using

the above set and following Aumann (1965) we can define the integral

of the correspondence <j> : T * 2 as follows:

/ <J>(t)dy(t) = {/ x(t)dy(t) : xesh.
T T *

In the sequel we will denote the above integral by /$. Recall that

the correspondence
<f>

: T * 2 is said to be integrally bounded if

there exists a map heL, (y,R) such that sup{Bxll : xe<J>(t)} _< h(t) y-a.e.

Moreover, note that if T is a complete measure space, X is a separable

Banach space and $ : T + 2 is an integrally bounded, nonempty valued

correspondence having a measurable graph, then by the Aumann measurable

selection theorem we can conclude that S. is nonempty and therefore
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j 4> ( t )du ( t ) is nonempty as well. It should be noted that the measur-

ability of <j> is a sufficient condition for the nonemptiness of /<f>, but

it is not necessary. In fact, |<j> may be nonempty even if
<f>

does not

have a measurable graph [see Schechter (1989) for an example to that

effect]

.

A. Banach space X has the Radon-Nikodym Property with respect to

the measure space (T,t,u) if for each y-continuous vector measure

G : t + X of bounded variation there exists g £ L (u,X) such that

G(E) = / g(t)dy(t) for all E e x. A Banach space X has the Radon-

Nikodym Property (RNP) if X has the RNP with respect to every finite

measure space. Recall now [see Diestel-Uhl (1977, Theorem 1, p. 98)]

that if (T,t,u) is a finite measure space 1 _<_ p < °°, and X is a Banach

space, then X* has the RNP if and only if (L (u,X))* = L (y,X*) where

i + i-i.
p q

Let A , (n=l, 2, ...) be a sequence of nonempty subsets of a

Banach space. Following Kuratowski (1966, p. 339) we say that A

converges in A (written as A + A) if and only if s-LiA = s-LsA A.2— n J n n

Also, we say that A converges in the Kuratowski-Mosco sense to A

K-M
(written as A * A) if and only if s-LiA = w-LsA = A. It may

n n n

be useful to remind the reader that LiA and LsA are both closed sets
n n

and that s-LiA C s-LsA [see Kuratowski (1966), pp. 336-338].

Let X be a metric space and Y be a Banach space. The correspon-

dence
<J>

: X * 2 is said to be upper semicontinuous (u.s.c.) at x_eX,

if for any neighborhood N(<|>(x
n )) of <J>(x ), there exists a neighborhood

N(x
Q

) of x such that for all xeN(x
Q
), <j>(x) CN(<t>(x

Q
)). We say that

<f>

is u.s.c. if <j> is u.s.c. at every point xeX. Recall that this
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definition is equivalent to the fact chat the set {xeX : <j>(x) C V} is

open in X for every open subset V of Y [see for instance Kuratowski

(1966), Theorem 3, p. 176].

Let v be a small positive number and let B be the open unit ball

Y
in Y. The corresondence

<J>
: X * 2 is said to be quasi upper-

serai continuous (q.u.s.c.) at xeX, if whenever the sequence x
,

n

(n=l, 2, ...) in X converges to x, then for some n_, $(x ) C <J>(x) + vB

for all n >_ n„. We say that <j> is q.u.s.c. if <\> is q.u.s.c. at every

point xeX. It can be easily checked that if <$> is compact valued,

quasi upper-seraincontinuity implies upper-semicontinuity and

vice-versa.

Let now P and X be metric spaces. The correspondence F : P + 2

is said to be lower semi continuous (l.s.c.) if the sequence p ,

(n=l, 2, ...) in P converges to peP, then F(p) C LiF(p ). Finally

recall that the correspondence F : P -* 2 is said to be continuous

if and only if it is u. s.c. and l.s.c.

3. WEAK COMPACTNESS IN L (y,X)
P

The result below has found several applications in general equi-

librium and game theory [see for example Khan (1986), Yannelis (1987)

and Yannelis-Rustichini (1988)] and it is known in the literature of

economics as Diestel's theorem on weak compactness in L.(p,X).

Theorem 3.1 : Let (T,T,y) be a complete finite measure space, X be

X
a separable Banach space and

<J>
: T -*• 2 be an integrally bounded, convex,

weakly compact and nonempty valued correspondence. Then S is weakly

compact in L,(u,X).
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Proof: First note that (L,(y,X))* = L (y,X ) [see for instance
1 °° w*

JL

Tulcea-Tulcea (1969)]. Pick, an arbitrary x e L (u,X .). If we show
oo w*

that x attains its supremum on S, the result will follow from James's
9

theorem [James (1964)]. To this end, let

sup f.x = sup / (f (t)«x(t))du(t).

'•si ««si
teT

9 9

By Lemma 1 in Debreu-Schmeidler (1972) or Theorem 2.2 in Hiai-Unegaki

(1977) we have that

sup / (f(t)*x(t))dy(t) = / sup (g*x(t))dy(t)

e e l teT teT ge<j)(t)
t eb

9

Define the correspondence 8 : T » 2 by

0(t) = {ye<j>(t): yx = sup g*x}.

g£9<t)

X
Since the correspondence 9 : T + 2 is weakly compact valued we have

that 0(t) * for all teT. Define the function F : TxX [-00
,
00

] by

F(t,y) = y'x - sup g*x. Note that for each fixed teT, F(t,*) is

ge$(t)

continuous and for each fixed yeX, F(*,y) is measurable. Hence, by a

standard result [see for instance Himmelberg (1975, Theorem 6.1)],

F(*,*) is jointly measurable and consequently the set

F
_1

(0) = {(t,y)eTxX : F(t,y) - 0} belongs to t0S(X).

Since 9(
#

) has a measurable graph, the set G = {(t,y) e TxX : ye9(t)}

is an element of t 6(X). Observe that
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G
Q

= f"
1
(0)Og^.

Since F (0) and G. belong to t ®B(X) so does G. , i.e., 9(«) has a

measurable graph. By the Auraann measurable selection theorem, there

exists a measurable function z : T * X such that z(t) e 9(t) y-a.e.

Hence z e S, and

sup g.x = / (z(t)*x(t)) du(t) = z*x.

1 teT
SeS

<fr

Since xeL (y,X .) was arbitrary, we can conclude that every element
00 tyTS J J

* 1
of (L (y,X))* = L^CujX ^) attains its supremum on S . This completes

the proof of the Theorem.

Remark 3.1 : Note that if (T,t,u) is a finite measure space,

and X is a Banach space then (L (p,X))* = L (u,X ^) where 1 <_ P < °°

,

P q w

— + — = 1 [see Tulcea-Tulcea (1969)1. Hence, in Theorem 3.1 we can
p q

replace the fact that S, is weakly in L..(u,X) with the statement that
<P l

S^, (1 <^ p < <») is weakly compact in L (p,X).

Bibliographical notes : Theorem 4.1 was proved by Diestel (1977)

in a less general form [see also Byrne (1978)]. However, it should be

noted that Castaing had earlier proved a related result to that of

Diestel's. Also, Datko (1973) proved a version of Diestel's theorem

for a reflexive separable Banach space. The proof of Theorem 4.1 is

based on the celebrated theorem of James (1964) and it is patterned

after that of Khan (1982, 1987) and Papageorgiou (1985). Recently,
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Balder (1990) has given an alternative proof of Diestel's theorem

using a.e. convergence of arithmetic averages.

4. WEAK SEQUENTIAL CONVERGENCE IN L (u,X)
P

We begin by proving the following result:

Theorem 4.1 : Let (T,t,jj) be a finite measure space and X be a

separable Banach space. Let (f^: X e A} (A is a directed set), be a

net in L (u,X), 1 '. p < °° such that f. converges weakly to f e L (jj,X).
P * p

Suppose that for all X e A, f>(t) e F(t) u-a.e., where F : T 2 is a

weakly compact, integrably bounded, convex, nonempty valued correspon-

dence. Then we can extract a sequence {f : n=l , 2, ...} from the

n

net {f : X £ A} such that:
A

(i) f converges weakly to f, and
A

(ii) f(t) e con w-Ls{f. (t)} y-a.e.
n

Proof : We begin the proof of Theorem 4.1 by stating the following

result of Artstein (1979, Proposition C, p. 280).

Proposition 4.1 : Let (T,T,y) be a finite measure space and let

I
f : T > R , (n=l, 2, ...) be a uniformly integrable sequence of func-

tions converging weakly to f. Then,

f(t) e con w-Ls{f (t)} u~a.e.
n

Using Artstein's result we can prove the following proposition.
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Proposition 4.2 : Let (T,x,y) be a finite measure space and X be a

separable Banach space whose dual X* has the RNP. Let {f : n=l, 2, ...}

be a sequence in L (p,X), 1 < p < °° such that f converges weakly to
p — n

f e L (y,X). Suppose that for all n, (n=l, 2, ...), f (t) e F(t) y-a.e.

X
where F : T * 2 is a weakly compact nonempty valued correspondence.

Then

f(t) e con w-Ls{f (t)}y-a.e.
n

Proof: Since f converges weakly to f and X* has the RNP, for any
n

ijj e (L (y,X))* = L (y,X*) (where - + - = 1), we have that <ij> , f > =
p q P q n

J T
< <KO,f

n
(t) > dy(t) converges to <ij>,f> = J T

«Kt),f(t)> dy(t).

Define the functions h : T » R and h: T + R by h (t ) = <ty(t), f (t)>
n n n

and h(t) = <^(t), f(t)> respectively. Since for each n, f (t) e F(t)

y-a.e. and F(') is weakly compact, h is bounded and uniformly inte-

grable. Also, it is easy to check that h converges weakly to h. In
n

fact, let g e L^CyjR) and let M = IgB^, then,

|/ Tg(t)(h(t)-h(t))dy(t)|= |/_g(t)(«Kt),f (t)> - «Kt), f(t)»dy(t)

(4.1)

< M <i(> , f > - <i|> , f>—
' n

and (4.1) can become arbitrarily small since as it was noted above

<^,f > converges to <ij;,f>.

By Proposition 4.1, we have that y-a.e., h(t) e con w-Ls{h (t)} C
n

con w-Ls{h (t)}, i.e., y-a.e., <i|>(t), f(t)> e con w-Ls{<^(t), f (t)» =
n n

<^(t), con w-Ls{f (t)}> and consequently,
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(4.2) J «Kt), f(t)>dy(t) E /T
<t|»(t), x(t)>du(t), where x(-) is a

selection from con w-Ls {f (•)}•
n

It follows from (4.2) that:

(4.3) f e Sf . rp x .
con w-Ls{f }

n

To see this, suppose by way of contradiction that f 4 Si T r

c

i ,rr J J con w-Ls{f }

1
then by the separating hyperplane theorem , there exists

i|> e (L (y,X))* = L (y,X*), ip * such that <ty,f> > sup{«J>,x>:
P q

xe sJL_
w_Ls{f }

}, i.e. , / T
,<i|;(t),f(t)>dy(t) > / T

<^ (t ) ,x(t )>dy (t ) ,

n

where x( #
) is a selection from con w-Ls{f (')}> a contradiction to

(4.2). Hence, (4.3) holds and we can conclude that

f(t) e con w-Ls{f (t)} y-a.e. This comletes the proof of Proposition

4.2.

Remark 4.1 : Proposition 4.2 remains true without the assumption

that X* has the RNP. The proof proceeds as follows: Since

f converges weakly to f we have that <<}> , f > converges to <<|>,f> for

all <{> e (L (y,X))*. It follows from a standard result [see for

instance Dinculeanu (1973, p. 112)] that <j> can be represented by a

function $ ' T * X* such that <ty,x> is measurable for every x £ X and

I'M £ L (y,R). Hence, <4>,f > = J T
<^(t), f (t)> dy(t) and <<j> , f > =

/^^(t), f(t)>dy(t). Define the functions h : T R and h: T + R by
T n

h (t) = <Mt), f (t)> and h(t) = <^(t),f(t)> respectively. One can
n n

now proceed as in the proof of Proposition 4.2 to complete the argu-

ment.
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We are now ready to complete the proof of Theorem 4.1. Denote the

net {f, : X e A} by B. Since by assumption for all XeA, f (t)eF(t)
A A

U-a.e. where F: T •* 2 is an integrably bounded, weakly compact,

convex, nonempty valued correspondence we can conclude that for all

XeA, f lies in the weakly compact set Si, (recall Diestel's theorem
X F

on weak compactness, Theorem 3.1). Hence, the weak closure of B,

i.e., w-cilB, is weakly compact. By the Eberlein-Smulian Theorem

[see Dunf ord-Schwartz (1958, p. 430)], w-cJIB is weakly sequentially

compact. Obviously the weak limit of f , i.e., f, belongs to w-cAB.
A

2
From Whitley's theorem [Aliprantis-Burkinshaw (1985, Lemma 10.12, p.

155)], we know that if f e w-cZB, then there exists a sequence

{f : n=l, 2, ...} in B such that f converges weakly to f. Since
A A
n n

the sequence { f . : n=l, 2, ...} satisfies all the assumptions of

n

Proposition 4.2 and Remark 4.1 we can conclude that

f(t) e con w-Ls{f^ (t)}y-a.e. This completes the proof of Theorem
n

4.1.

An immediate conclusion of Theorem 4.1 is the following useful

corollary.

Corollary 4.1 ; Let (T,T,y) be a finite measure space and X be a

separable Banach space. Let {f : n=l , 2, ...} be a sequence of

functions in L (u,X), 1 <^ p < °° such that f converges weakly to

f e L (u,X). Suppose that for all n, (n=l, 2, ...), f (t) e F(t) u-a.e.,
P n

where F : T 2 is a weakly compact, integrably bounded, nonempty

valued correspondence. Then
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f(t) e con w-Ls{f (t)} y-a.e.
n

Foo tnotes: Note that the set Si— , r _ , is nonempty. In fact,
con w-Ls{f }

r J '

since w-Ls{f } is lower measurable and noneratpy valued so is con w-Ls{f }
n n

Hence, con w-Ls{f } admits a measurable selection (recall the
n

Kuratowski and Ryll-Nardzewski measurable selection theorem). Obviously

the measurable selection is also integrable since con w-Ls{f } lies in
n

a weakly compact subset of X. Therefore, we can conclude that

_ , , -, is nonempty.
on w-Ls{f }

sZ

a

2
See also Kelley-Namioka (1963, exercise L, p. 165).

Bibliographical Notes : Theorem 4.1 and its proof are due to Yannelis

(1989). Corollary 4.1 generalizes previous results of Artstein (1979)

and Khan-Majumdar (1986). A related result to Corollary 4.1 has also

been obtained by Balder (1988) and Castaing (1988). Khan-Yannelis

(1986) and Ostroy-Zame (1988) have used Corollary 4.1 in order to prove

the existence of an equilibrium in economies with a continuum of agents

and commodities.

5. PROPERTIES OF THE SET OF INTEGRABLE
SELECTIONS FROM A CORRESPONDENCE

We begin by proving s-Li and w-Ls versions of Fatou's Lemma for

the set of integrable selections.

Theorem 5.1 : Let (T,T,y) be a complete finite measure space and

let X be a separable Banach space. If
<J>

: T 2 , (n=l, 2, ...) is a
n



-15-

sequence of integrably bounded correspondences having a measurable

graph, i.e. , G £ t ® 3(X), then,
n

S
1

T . C s-Li s} .

s-Li d> d>T n n

Proof: Let x £ S T . , , i.e. , x(t) £ s-Litb (t) y-a.e. , we must
s—Lio n

1
n

show that x £ s-Li S . First note that x(t) £ s-Lid> y-a.e. implies
<b n
n

that there exists a sequence {x : n=l, 2, ...} such that s-lim x (t) =

x(t) y-a.e. and x (t) £ $ (t) y-a.e., which is equivalent to the fact

that lira dist(x(t), 6 (t)) = y-a.e. For each n, (n=l, 2, ...) define
n

n*°°

the correspondence A : T 2 by A (t) = {y £
<J>

(t): lly-x(t)ll < dist

(x(t), (j> (t)) + — }. Clearly for all n, (n=l, 2, ...) and for ail t £ T,

A (t) * 0. Moreover, A (•) has a measurable graph. Indeed, the func-
n n

tion g: T x X t^30
,
00

] defined by g(t,y) = lly-x(t)ll - dist (x(t), <}> (t))

is measurable in t and continuous in y and therefore by a standard

result [see Hiramelberg (1975; Theorem 2, p. 378)] g(*,*) is jointly

measurable with respect to the product a -algebra t <8> 3(X). It is easy

to see that:

G
A

= {(t,y) £ T x x : g(t,y) <^nG = g
_1

( [- , ±] ) C\ G .

n T n n

Since <}> (•) has a measurable graph and g(*,*) is jointly measurable,

we can conclude that G belongs to t 3(X), i.e., A (•) has a measur-
A n
n

able graph. By the Auraann measurable selection theorem there exists a

measurable function f : T + X such that f (t) £ A (t) y - a.e. Since
n n n

x(t) £ s-Li<J> (t) y-a.e., lira dist (x(t), <j> (t)) = y-a.e. which

implies that lim II f (t) - x(t)ll = y-a.e. Since f (t) £ <}> (t) y-a.e.
n n n

n+»
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and $ (*) is integrably bounded, by the dominated convergence theorem

[see Diestel-Uhl (1977, p. 45)], f (*) is Bochner integrable, i.e.,

f £ L.(UfX). Hence, x e s-Li S, and this completes the proof
n 1 9 n

of Theorem 5.1.

Theorem 5.2 : Let (T,T,y) be a finite measure space, X be a

separable Banach space and let
<J>

: T 2 , (n=l, 2, . . . ) be a sequence

of nonempty, closed value correspondences such that:

(i) For all n, (n=l, 2, ...), ? (t) C F(t) u-a.e. , where F: T 2
X

is an integrably, bounded weakly compact, convex, nonempty-valued cor-

respondence. Then,

w-Ls S ± C S
d» con w-LsiT n T n

Moreover, assume that w - Lsd> (•) is closed and convex valued. Then,
n

w-Ls S A C S T
d> w-LsoT n n

Proof: Let x e w-Ls S, , i.e., there exists x, £ S, , (k=l, 2, ...)

^n ^ *%
±

such that x, converges weakly to x. We wish to know that x £ S
k. ° J con w-Ls<}>

n

Since x, converges weakly to x and x, lies in a weakly compact set, it

follows from Proposition 4.2 that x(t) £ con w-Ls{x^(t)} y-a.e. and

therefore x(t) £ con w-Ls4> (t) y-a.e. Since by assumption for each

n,
<J>

(•) lies in the integrably bounded convex set F( #
), we can

conclude that x £ S T . This completes the proof of the fact
con w-Ls* v r

n

that:

(5.1) w-Ls S* C si _ . .

<J)
con w-Lsij)

n n
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Since w-Ls<}> (•) is closed and convex (hence weakly closed) we have

that w-Ls<J> (•) = con w-Ls
<J>

(•) and therefore,
n n

(5.2) s
1

T = a
1

w-Ls<l> con w-Lsd)
n n

Combining now (5.1) and (5.2) we can conclude that

w-Ls S, C S . This completes the proof of the theorem.
d> w-Ls* r r

n n

Combining Theorems 5.1 and 5.2 we can obtain the following

dominated convergence result for the set of integrable selections from

a correspondence.

Corollary 5.1 ; Let (T,T,y) be a complete finite measure space

and X be a separable Banach space. Let
<J>

: T + 2 (n=l, 2, ...)

be a sequence of closed valued and lower measurable correspondences

such that:

(i) For each n, (n=l, 2, ...), <j> (t) C F(t) u-a.e. , where F : T 2
n

is an integrably bounded weakly compact, convex, nonempty valued cor-

respondence,

K-M
(ii) <j> (t) > <{>(t) U-a.e., and

(iii) <J>(*) is convex valued.

Then

1
K"M

1

*n *

Proof : First note that since for each n, (n=l, 2, ...) <(> (•) is

closed valued and lower measurable, G, ex® 3(X), i.e.,
<J>

(•) has a
m n
n

measurable graph and so does s-Li <j> (•)• Now if <J)(t) = s-Li <j> (t) =

w-Ls
<J)

(t) u-a.e., it follows from Theorems 5.1 and 5.2 that:
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Sx = S
1

TJx C s-LiS* C w-Ls S,
1

C S*
T

= S*.
<J>

s-Li<|) <}>
<J>

w-Ls<p
<J>

n n n n

Therefore

S = s-Li S = w-Ls S x ,

* *n *n

I
K"M

1
and we can conclude that S A > S . . This completes the proof of the

*n *

Corollary.

The lemma below will be used to prove Theorem 5.3.

Lemma 5.1 : Let (T,T,y) be a complete finite measure space, X be a

separable Banach space and F : T 2 be a nonempty closed valued and

lower measurable correspondence. Let {f. : i=l,2,...} be a sequence

in s£, (1 < p < °°) such that F(t) = cZ{f.(t) : 1=1,2,...} u-a.e.
r — 1

Then, for each f e SI, and 5 > 0, there exists a finite measurable
r

partition {A n , A., ..., A } of (T,x) such that12 m

m

If - I x. fJ < <s.

1=1
A
i

i P

Proof : Consider a strictly positive v e L. (u >R) such that

/ v(t)dy(t) < 5*/3. We can find a countable measurable partition
teT

{B.} of (T,t) such that:

lf(t)-f.(t)l < v(t), for almost all t £ B. , 1 > 1.
l p l -

Pick an integer m so that
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E / Hf(t)ll dy(t) < (6/2) p /3,
i=m+l B.

P
1

00

Z / Ilf (t)ll dy(t) < (y)
P
/3,

i=m+l B.
P

l

and define a measurable partition {A., , ..., A } as follows
1 m

00

A = B \J ( U B.), A. = B. for j = 2, ..., m.

i=m+l J J

Then it can be easily seen that:mm °°

f- I Xa fJI = £ / Hf(t)-f.(t)ll dy(t)+ I / Ilf(t)-f
1
(t)ll dy(t)

*_, A_. l p p ,__.-,' 1 p

i
i=l "i

ip MB. 1 P i=m+l

oo

< / v(t)dy(t) + I 2
P

/ (llf(t)ll + Ilf .(OH )dy(t) < 5

T i=m+l B

Theorem 5*3 : Let (T,T,y) be a complete finite measure space, X be

a separable Banach space and F:T + 2 be a closed, nonempty valued and

lower measurable correspondence. Suppose that S
p

, (1 \ p < °°) is non-
F

empty. Then

si!— „ = con S
P

.

con F F

X
Proof : Define the correspondence F : T 2 by F(t) = con F(t).

It can be easily checked that F(') is lower measurable and obviously

closed and convex valued. Moreover, S?, is closed and convex. Clearly,
r

con S
P C S

P
^ since S

P C sf ^. To prove that sf „ C con S
P

F con F F con F r con F F

consider the sequence {f. : i=l,2,...} in S
p where

i F

c£{f.(t) : 1*1,2,...} = F(t) y-a.e. Define the set



-20-

n n

U = {g: I X.f., X. > 0, rational, Z X. - 1, n > 1}.iii — i —
1=1

x
1=1

Observe that U is a countable subset of si.— _, and con F(t) =
con F

c£{g(t ) :geU} u-a.e. It follows from Lemma 5.1 that for each fesi-— _430 con F

and for each 6 > we can find a finite measurable partition

{A.. , A , ..., A } of (T,t) and functions g. , g_, ..., g in U such
1 I m i L m

that:

m

k=l \ K P

We can now find an integer n so that, for

1 < k < m, g. = I X. .f . where X, . > 0, EX., = L— — '
&k . 1 ki i ki —

. n ki
i=l 1=1

Observe that

m m n

1 X
A,

gk
= S X

A,
( E X

ki
f
i

}

k=l \ K
k=l \ 1=1

K1 X

m
1 (X

li »
'••» X

mi
)( l X

A,
f
i

} '

(i., ..., i ) 1 m k=l k k
1 m

where (i,, •••» i ) is taken for 1 < i < n, k=l , ..., m. Therefore,
1 m — k —

m
E X . g, is a convex combination of functions in S„ and we can
k=l \ k F

conclude that f e con Si,. This completes the proof of Theorem 5.3.

Below we consider correspondences of two variables and assume that

they are measurable in the one variable and u.s.c. or l.s.c. in the

other. We then ask the question as to whether the set of all

integrable selections of the correspondence is either u.s.c. or l.s.c.



-21-

Theorem 5*4 ; Let (T,T,y) be a complete, finite measure space, P

v
be a metric space and X be a separable Banach space. Let ip : TxP * 2

be a nonempty valued, integrably bounded correspondence, such that for

each fixed t£T, if>(t,.) is q.u.s.c. and for each fixed peP, <K. ,p) has

a measurable graph. Then

S (• ) is q. u. s. c.

Proof ; Let B be the open unit ball in L,(p,X) and v be a small

positive number. We must show that if {P : n=l, 2, ...} is a sequence

in P converging to peP, then for a suitable n , S,(p ) C S. (p) + vB

for all n >_ n
n

.

We begin by finding the suitable n~. Since for each fixed teT,

ijj(t,.) is q.u.s.c. we can find a minimal M such that

(5.3) <Kt,p ) C <Kt,p) + <SB for all n > M .

n — t

where 6 =
3u(T) *

We now show that M is a measurable function of t. However, first we
t

*

make a few observations. By assumption for each fixed p and n,

c c
G, , x -„ e t Q 8(X) and so does (G, , n.xt,) » (where S denotes
i>(' ,p )-hsb iK» ,p -wb

n n

the complement of the set S). It is easy to see that

«K',p)^
(
S(*,Pn

)-*5B

U = {(t,x)eTx X
:

(t,x)s
S(-,p)

n(Sc,pJ-HSB
)C}

belongs to t ® 3(X).

G
iu(- n^H «W. „ ^r

)C
e T • 6(X) - Therefore, the set

n
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It follows from the projection theorem [see for instance Hildenbrand

(1974), p. 44] that

proj
T
(U)£T

Notice that,

proi (U) = {teT : «Kt,p) t <Kt,p ) + 66}
T n

= {teT : iKt,p)/0Kt,p
n

) + SB) * 0} .

By virture of the measurability of the above set we can now conclude

that M is a measurable function of t. In particular, simply notice

that,

{teT: M =ra} = f\ {teT: *(t,p ) C ^(t
,
p)-HSB} H{ teT: i|Kt,p -,) t *(t,p)+6B}

t . n m—

I

n>m

We are now in a position to choose the desired n_. Since <!>(*>*) is

integrably bounded there exists heL..(u,R) such that for almost all

teT, sup{ llxll : xeij;(t,p)} <, h(t) for each peP.

Choose 5 such that if y(S) < 6 (S C T), then / h(t)du(t) < j.

Since M is a measurable function of t, we can choose n_ such that

u({teT : M >. nr) ) < 5 • Tnis ls the desired n
Q

. Let n > n and

yeS,(p ). We must show that yeS,(p) + vB.J
ty n J

ty

By assumption, for each fixed peP, ^(*,p) has a measurable graph

and ij>( *
,

* ) is nonempty valued. Hence, by the Aumann measurable selec-

tion theorem there exists a measurable function f : T X such that

f (t) e '^(t,p) y-a.e. Define the correspondence <}> : T + 2 by

9(t) = ({y(t)} + 6B>n i|»(t,p). It follows from (5.3) that for all
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teT
Q

= {t : M
t

_< n }, 8(t) * 0. Moreover, 6(') has a measurable

graph. Another application of the Aumann measurable selection theorem

allows us to guarantee the existence of a measurable function

f : T * X such that f (t) z 9(t) y-a.e. Define f : T X by

f(t) for til

f (t) for teT
Q

.

Then f(t)eij;(t,p) u-a.e. and since (/>(•>•) is integrably bounded we can

conclude that feS (p). If we show that llf-yll < v then yeS.(p) + vB

and we will be done. But this is easy to see. We have

f-yll = J , »f,(t) - y(t)lldy(t) + / II f (t)-y(t )lldy (t

)

1

< 2/ h(t)dy(t) + / 6dy(t)
T/T T

Q

<f + 6y(T) -|L + _^. U(T ) =v.

This completes the proof of the theorem.

Remark 5.1 : If in addition to the assumptions of Theorem 5.4, it

is assumed that S ,(*) is compact valued, then we can conclude that

S ,(*) is u.s.c. Moreover, by adding in Theorem 5.3 the assumption

that ^C*,') is convex valued and that for all (t,p)eT*P, ^(t,p) CK

where K is a weakly compact, convex, nonempty subset of X, then it

follows from Theorem 3.1 that S ,(') is weakly compact valued and we

can conclude that S (•) is weakly u.s.c, i.e., the set {peP : S C V}

is open in P for every weakly open subset V of X.
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Theorem 5.

5

: Let (T,t,u) be a complete, finite separable measure

space, P be a metric space and X be a separable Banach space. Let

$ : T*P + 2 be a nonempty, closed, convex valued correspondence such

that:

(i) for each fixed teT, ij;(t,.) is weakly u.s.c.

(ii) for all (t,p) e Txp, \|>(t,p) ^ K(t) where K : T 2
X

is an

integrably bounded, weakly compact and nonempty valued cor-

respondence.

Then

S ,(*) is weakly u.s.c.

Proof : First note that by Theorem 3.1 S is weakly compact in

L.(u,X). Since for each peP, S.(p) is a weakly closed subset of S ,

it is weakly compact. Since the measure space (T,T,y) is separable

and X is a separable Banach space, L-(y,X) is separable. Hence, S
i K.

is metrizable as it is a weakly compact subset of L..(y,X)

[Dunf ord-Schwartz (1958, Theorem V.6.3, p. 434)]. Consequently, in

order to show that S (•) is weakly u.s.c, it suffices that to show

that S.(') has a weakly closed graph, i.e., if {p : n=l, 2, ...} is a

sequence in P converging to peP, then

(5.1) w-Lss}(p ) C sj-(p).

To this end let xew-LsS (p ), i.e., there exists x, , (k=l, 2, ...) in
y n K

L..(y,X) such that x, converges weakly to x£L..(u,X), and x, (t)e^(t,p )

1
*

y-a.e., we must show that xeS.(p). It follows Theorem 4.1 that

x(t )econw-Ls{x, (t )} y-a.e. and therefore.
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(5.4) x(t )econw-Ls^(t ,p ) p-a.e.
n

Since for each fixed teT, ij;(t,.) has a weakly closed graph we have

that:

(5.5) w-Ls^(t,p ) C i|> ( t , p) u-a.e.

Combining (5.2) and (5.3) and taking into account the fact that $ is

convex valued we have that x(t )eij;(t
, p) y-a.e. Since \\> is integrably

bounded, we can conclude that xeS (p). This completes the proof of

Theorem 5. 5.

Alternatively, Theorem 5.5 can be proved by means of the Mazur

lemma. As noted above, it suffices to show that S ,(*) has a weakly

closed graph. To this end let (p ,y )eG_l be a sequence such that p
n n S

,

n

converges (in the metric topology) to p and y converges weakly to y.

We must show that y e S,(p). Since y e S,(p ), we have thatJ
ij;

J n ty

r n

y (t) e t(t,p ) y-a.e. By Mazur's lemma there exists

z (•) e con 17 y (• ) such that z (•) converges in norm to y(*)«
n V J n_ n & J

n_>n0—

Without loss of generality we may assume (otherwise pass to a subse-

quence) that z (t) converges in norm to y(t) for all t e T/S, where S

is a set of measure zero. Fix t e T/S. Since by assumption i|>(t,.) is

weakly u. s.c. for every small positive number 6, there exists n such

that for all n
n >_ n, tp(t,p ) C i^(t,p) + 6B, where B is the open unit
U n

Q

ball in X. But then con {J \|>(t,p) + ^ B anc* consequently

y(t) e i|»(t
, p) + 5B. Hence, y(t) e t|)(t,p) by letting 5 converge to

zero. Since t was arbitrary, y(t) e i^(t,p) y-a.e. Finally, since
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<J>(*) is integrably bounded, we can conclude that y e S. (p). This

completes the proof.

Theorem 5.

6

: Let (T,T,y) be a complete, finite measure space, X

be a separable Banach space and P be a metric space. Let $ : Txp + 2

be an integrably bounded correspondence such that for each fixed teT,

9(t,.) is l.s.c. and for each fixed peP, 9(*,p) has a measurable

graph. Then

S. (• ) is l.s.c.
<J>

Proof : Let {p : n=l, 2, ...} be a sequence in P converging to

peP. We must show that S, (p) C LiS, (p ). Since by assumption for
9 (J>

n

each fixed teT, <J>(t,») is l.s.c. we have that <J>(t,p) C Li(J)(t,p ) for

all teT, and therefore,

(5.6) Bj(p) C S^(pn).

It follows now from Theorem 5.1 that (5.6) can be written as:

shp) C S
T

1
..(pn ) C LiS^(pn ).

<p L19 n 9 n

Hence,

S, (* ) is l.s.c.

The Corollary below follows directly from Theorems 5.4, 5.6 and

Remark 5.1.
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Corollary 5.6 : Let (T,t,u) be a complete, finite measure space, P

be a metric space and X be a separable Banach space. Let \\> : Txp - 2

be an integrably bounded, nonempty valued correspondence such that for

each fixed peP, i|;(*,p) has a measurable graph and for each fixed teT,

^(t,*) is continuous. Moreover, suppose that S (*) is compact valued.

Then

S
.

(
• ) is continous.

Bibliographical Notes . Theorems 5.1, 5.2 and Corollary 5.1 are

taken from Yannelis (1989). Theorem 5.3 and its proof is due to

Hiai-Umegaki (1977). Theorems 5.4 and 5.6 are variations of some

results given in Yannelis (1988a). The proof of Theorem 5.5 is taken

from Yannelis (1988a). The alternative proof of Theorem 5.5 is due to

Khan-Papageorgiou (1988).

6. PROPERTIES OF THE INTEGRAL OF A CORRESPONDENCE

In this section we present an infinite-dimensional generalization

of the work of Aumann (1965).

Theorem 6.1 : Let (T,T,y) be a finite measure space and X be a

separable Banach space. Let
<J>

: T + 2 be a correspondence satisfying

the following condition:

X
(i) <J>(t) C K(t) u-a.e., where K:T + 2 is an integrably bounded,

weakly compact, convex, nonempty valued correspondence.

Then /con<J> is weakly compact.
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Proof : Note that since con<J>(*) is (norm) closed and convex so is

S , . It is a consequence of the Separation Theorem that the weak
con$

and norm topologies coincide on closed convex sets. Thus, S A is
con<})

weakly closed. Since S , is a subset of the set ST, and the latterJ
con<j> K

set is weakly compact in L (u,X) (recall Theorem 3.1), we can conclude

that S , is weakly compact. Define the mapping iJ;:L..(u,X) * X by

ip (x) = / x(t)dy(t). Certainly ip is linear and norm continuous. By
teT

Theorem 15 in Dunf ord-Schwartz (1958, p. 422), \\> is also weakly con-

tinous. Hence, i^ (

S

, ) = {(i|;(x): xeS ,} = Jconij) is weakly compact.

This completes the proof of the Theorem.

Theorem 6.2 : Let (T,T,y) be a finite atomless measure space, X be

a Banach space and <j>:T 2 be a correspondence. Then c&/<j> is convex.

Proof : Let x,y be elements of clffy, we must show that for any

6 > and Xe(0,l) there exists z e cij<\> such that II z-(Ax+(l-A )y)ll < 5.

Fix 6 > and choose x- ,y~ in /<}> , such that II x-x. II < 6/2 and

lly-y. II < 6/2. By the definition of the integral of the set- valued

function <{> , we have that there exist h,g in S. such that

(Jhjg) =
(x5»yfi)«

Define the vector measure V: T + XxX by

V(S) = (/
s
h, / g

g).
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Since the measure space (T,t,u) is atomless it follows from Uhl's

theorem [see for instance Uhl (1969) or Diestel-Uhl (1977, p. 266)]

that the norm closure of V is convex. Note that V(0) = (0,0) and

V(T) = (/ T
h, / Tg).

Hence, we can find ft e T such that

IIV(ft)-XV(T)ll < 5/2.

Define the function z : T •* X by

h(t) if t e ft

z(t) =.;

g(t) if t 4 ft.

Then z = Jz(t)dy(t) e f$ and it can be easily checked that

llz-(Xx+(l-X)y)H _< llz-(Xx
6
+(l-X)y )ll + Xllx -xll + (1-X) lly.-yll < 5.

This completes the proof of Theorem 6.2.

Define the mapping tt : T * X by tt(x) = / x(t)dy(t). Note that

teTXI 1
the integral of the correspondence <J>:T+2 isir(S)= {tt(x):x£S }.

<P

With this observation in mind the reader can easily see that the

result below is an immediate conclusion of Theorems 5.3, 6.1 and 6.2.

Theorem 6.3 : Let (T,T,y) be a finite atomless measure space and X

be a separble Banach space. Suppose that the correspondence <f>:T 2

satisfies assumption (i) of Theorem 6.1. Then

con /<J) = f confy = c£/<f>.
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The results below are w-Ls and s-Li versions of the Fatou lemma

and follow directly from Theorems 5.1 and 5.2 respectively.

Theorem 6.4 : Let (T,T,y) be a complete, finite measure space and

X be a separable Banach space. If <j> : T •* 2 ,
(n=l, 2, ...) is a

sequence of integrably bounded correspondences having a measurable

graph, i.e., GA e T ® S(X), then
*n

fs-Li<f> C s-Li U .
J r n J n

Theorem 6.

5

: Let (T,T,y) be a finite measure space, and X be a

separable Banach space. Let <}> : T •* 2 , (n = l, 2, ...) be a sequence
n

of nonempty closed valued correspondences such that:

X
(i) For all n, (n=l, 2, .. . ), <j> (t) C K(t) y-a.e. , where K: T 2

is an integrably bounded, weakly compact, convex, nonempty-

valued correspondence.

Then

w-Ls U C cl fw-Ls <j> .
J r n J T n

Furthermore, if w-Lsd> (•) is closed and convex valued then
n

w-Ls (<j> C (w-Ls<J> .
J n J T n

As a corollary of Theorems 6.4 and 6.5 and we obtain a Lebesgue-

Aumann-type dominated convergence result for the integral of a

2
correspondence.

Corollary 6.1 : Let
<J>

: T + 2 (n=l, 2, ...) be a sequence of

correspondences satisfying all the assumptions of Theorems 6.4 and

6. 5. Suppose that
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K-M
(i) $ (t) > <J>(t) u-a.e.

Then,

K-M

Moreover, if <J>(*) is convex valued, then

K-M

/<*> > /-

It should be noted that Theorems 6.1, 6.3 and 6.5 have been estab-

lished using stronger assumptions than those adopted by Aumann (1965).

However, the following example below will show that Aumann f s results

are false in infinite-dimensional spaces. In particular, without

assumption (i) of Theorems 6.1, 6.3 and 6.5, all these results become

false.

Example 6.1 : Let X in Theorem 6.1 be equal to £„, i.e., the space

i i
2 V2

of real sequences (a ) for which the norm II a II = (E a ) is finite,n n n ' n 1

and let T = [0,2ir], t the Borel sets in [0,2tt] and y the Lebegue

measure on (T,t). Let K = {xe£
?

: llxll < 4tt} . Since the space X =

Z_ is reflexive the weak and weak* topologies coincide and thus by the

Alaoglu theorem we can conclude that K is weakly compact. Choose a

complete orthogonal system {w : n = 0, 1, ...} in L_(y) such that each

w assumes only the values +1, w_ = Xr^ -. i and f w (t)du(t) =
" ° [0 »

27T]
tx [0,2*]

n

for n = 1, 2, ... . For each n and each Eei let

1 + w (t)

X (E) = 2~n
/ (

~ )du(t).
n

teE
2
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Define the vector measure V: t * l~ by

V(E) = (X (E), X^E), ...).

Then IIV(E)II < 2y(E) for each Eei. Therefore, the vector measure V is

countably addite, V is of bounded variation and it is obviously

atomless. Clearly, and V(T) are in V(t) = {xei
?
:x=V(E) , Est} and

note that y V(T) is the convex hull of V(t). The argument now of

Lyapunov adopted by Diestel-Uhl (1977, p. 262) can be used here to

prove that there is no Est such that V(E) = y V(T), i.e., the fl
?
-valued

atomless vector measure V of bounded variation is nonconvex .

Observe now that £
9

has the RNP. Hence, there exists a function

g e L.(y,0 such that for each Est, V(E) = / xw (t)g(t)dy (t). Since

teT
the norm closure of the range of V is convex [Theorem 10, p. 266 in

Diestel-Uhl (1977)] we can conclude that y V(T) is in the closure.

Consequently, there exists a sequence {E : n = 1, 2, ...} in t such

that lim V(E ) = y V(T). For each n, define
<f>

: T > l
?

by

n*<»

(J>
(t) =

Xtt (t)g(t). It can be easily checked that w-Ls<}> is
n E n

n

measurable [see for instance Yannelis (1989b), Lemma 3.12 and Remark

3.1]. We now show that the inclusion w-Ls /<£ C /w-Ls<f> does

not hold. In particular, since s-Ls/<J> C w-Ls /<j> we will prove a

slightly stronger result, i.e., the inclusion s-Ls /<{> C w-Ls
J<j>

does

not hold. Note that for each n, $ (t) e (0,g(t)} y-a.e. and so

w-Ls<{> C {0,g(t), {O,g(t)},0}. For any
<J>

e S we have that
n

4>(t) = x 17
( t )g( t ) y-a.e., for Eei. In order now for the inclusion

E

s-Li/<J> C Jw-Ls(j) to hold, we must have that y V(T) e Jw-Ls<}> , i.e.
,

y V(T) = / g(t)du(t) = V(E). But as it was remarked above no such

teE
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Eet exists (since the vector measure V is not convex). Hence, the w-Ls

version of the Fatou Lemma fails in infinite-dimensional spaces . Note

that the above example also showed that the integral of the closed

valued correspondence F:T 2 defined by F(t) = (0,g(t)} is not

3
compact (in fact it is not even closed!). Finally, note that

y V(T) - = / g(t)dy(t) e con /f and — V(T) 4 /F, i.e. , the integral
• teT *2 4

of the correspondence F:T * 2 is not convex .

The results below follows directly from Theorems 5.4, 5.6 and

Corollary 5.2.

Theorem 6.6; Let (T,t,u) be a complete, finite measure space, P

be a metric space and X be a separable Banach space. Let ty : T*P * 2

be a nonempty valued, integrably bounded correspondence, such that for

each fixed teT, ^(t, #
) is q.u.s.c. and for each fixed peP, iK* ,p) has

a measurable graph. Then

ji\> (t , • ) is q.u. s. c.

Theorem 6.7 : Let (T,T,y) be a complete, finite measure space, X

X
be a separable Banach space and P be a metric space. Let

<J>
: T*P * 2

be an integrably bounded correspondence such that for each fixed teT,

<j>(t,*) is l.s.c. and for each fixed peP, <t>(*»p) has a measurable

graph. Then

/<J> (t ,
* ) is 1. s. c.

Remark 6.1 : If in addition to the assumptions of Theorem 6.7, it

is assumed that J^(t,*) is compact valued, then we can conclude that

JiKt ,
* ) is u. s. c.



-34-

Corollary 6.2 : Let (T,t,u) be a complete, finite measure space, P

be a metric space and X be a separable Banach space. Let <|i : TxP -»• 2

be an integrably bounded, nonempty valued correspondence such that for

each fixed peP, iK*,p) has a measurable graph and for each fixed teT,

i^(t,*) is continuous. Moreover, suppose that /_if>(t, • )dy(t) is compact

valued. Then

/ ^(t,*)du(t) is continuous.

Below we prove a s-Ls version of the Fatou Lemma in infinite dimensions

Theorem 6.8 : Let (T,T,y) be a complete, finite measure space and

X be a separable Banach space. Let
<f>

: T 2 , (n=l, 2, ...) be a

sequence of nonempty valued, graph measurable and integrably bounded

correspondences, taking values in a compact, nonempty subset of X.

Then

s-LsL<i> (t)dy(t) C elf s-Ls<f> (t)dy(t).
T n J

T
n

Moreover, if Ls$ (•) is convex valued, then

s-Ls/_<J> (t)dy(t) C f s-Ls* (t)du(t).
T n J n

Proof : Denote by P the interval [0,1). Define the correspondence

<p : TxP > 2
X

by

»(t,p) = ^ „<«=) U »n+i
(t) if p 'TTT

Ls<J> (t) if p = 0.
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It can be easily checked that for each fixed t£T, ij;(t,*) is u.s.c. and

that for each fixed peP, <K*,p) has a measurable graph. Moreover, i>

is integrably bounded. Hence, ty satisfies all the assumptions of

Theorem 6.6 and thus, / jj>(t, • )dy (t ) is q. u.s.c. Let now

x £ Ls/ <j> (t)du(t), i.e., there exists x such that lira x = x,

x e /_$ (t)du(t), (k=l, 2, ...). We wish to show that
n
k

T n
k

x e c£/<J> (t)dy(t).

Since / jf»(t,
# )du(t) is q. u.s.c. (see Section 2 for a definition)

it follows that if p converges to then / ij>(t,p )dy(t) C

/ i|>(t,0)dy(t) + vB for all sufficiently large k (where v is a small

positive number and B denotes the open unit ball in X). Consequently,

x e / \J/(t,0)dy(t) + vB for all sufficiently large k and therefore,

xecif^(t ,0)dy (t ) = c£/_s-Ls<i> (t)dy(t) as was to be shown. If now
J T ' I n

Ls<t> (*)> is convex valued (recall that s-Ls<t> (•) is closed valued as
n n

well) it follows from Theorem 6.1 and the first conclusion of Theorem

6.8 that

s-LsL<{> dy(t) C cl\ s-Ls<|> (t)dy(t) = / s-Ls<f> (t)dy(t).
J T n _ n

T
n

This completes the proof of the Theorem.

We close this section by obtaining the following dominated con-

verge result:

Theorem 6.9 : Let (T,T,y) be a complete, finite measure space and

X
X be a separable Banach space. Let

<J>
: T •*- 2 , (n = 1, 2, . . . ) be a

sequence of integrably bounded, nonempty valued correspondence having

a measurable graph, such that
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(i) For all n, (n = l, 2, . . . ) , <f>
(t) C K y-a.e. , where K is a

Tl

compact, nonempty subset of X, and

(ii) * (t) + <j>(t) u-a.e.

Then

/ T
4>

n
(t)du(t) + cA/

T
<J>(t)du(t).

Moreover, if <}>(•) is convex valued then

/ d> (t)du(t) * / 4(t)dy(t).In l

Proof: Since by assumption <j> (t) <J>(t) u-a.e., i.e., <j>(t) =
n

s-Li(J> (t) = s-Ls<}> (t) u-a.e., it follows from Theorems 6.4 and 6.8
n n

that:

(6.1) /<j) = /s-Li<J> C s-Li/<|> C s-Ls/<|> C dl/s-Ls<}> = dt/<fr.

Therefore,

dt/ T4>(t)dy(t) = s-Li/_* (t)du(t) = s-Ls/<J> (t)du(t),
Tr n J Tr n

l. e.
,

/ T* n
(t)dy(t) c£/

T
<J)(t)du(t).

If now <J>(*) is convex valued, (6.1) can be written (recall the second

conclusion of Theorem 6.8) as:

/<{> = /s-Li4» C s-Li/<j> C s-LsJ$ C /s-Ls<|> = /<J)

.
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Thus,

J T
<Kt)dy(t) = s-Li/

T<J>n
(t)dw(t) = s-Ls/

T<J> n
(t )du (t)

,

i.e.
,

J T
4>
n
(t)du(t) + / T

<j>(t)du(t),

and this completes the proof of Theorem 6.9.

Footnotes ; Note that the assumption that X has the RNP is not needed

for proving that the norm closure of the vector measure V is convex.

Alternatively, Corollary 6.1 follows directly from Corollary 5.1.

3
Recall that Aumann (1965) demonstrated that if X is finite diraen-

sional and F : T -*- 2 is integrably bounded and closed valued, then /f

is compact.

4
Note that when X is finite dimensional the well-known result of

Richter (1963) assures that J¥ is convex.

Bibliographical Notes : A version of Theorem 6.1 is proved by Yannelis

(1988). Theorem 6.2 is due to Datko (1973). The proof given here is

taken from Khan (1985). It should be noted that Theorem 6.2 is the

infinite dimensional version of a well-known result of Richter (1963).

Theorem 6.3 is an infinite dimensional version of Theorem 2 of Aumann

(1965) [see also Debreu (1967)] and it was first proved by Datko

(1973) for X being a reflexive separable Banach space. The reflex-

ivity assumption was subsequently relaxed by Khan (1985). Rustichini-

Yannelis (1988) showed that if the dimensionality of the measure space
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is bigger than the dimensionality of the space X, then the conclusion

of Theorem 6.3 can be strengthened to j con$ = /<{>.

The Example 6.1 is due to Lyapunov [see also Diestel-Uhl (1977,

p. 262)]. The argument used to prove that several of the properties

of the Aumann integral fail in an infinite dimensional setting is due

to Rustichini (1989). Theorems 6.6-6.9 are due to Yannelis (1988a).

Related results to Theorems 6.6-6.9 were obtained by Debreu (1967).

7. THE GEL'FAND INTEGRAL

Let (T,t,u) be a finite measure space and X be a Banach space.

Let f : T + X* be a function such that <f,x> e L.(u) for all xeX, then

for each Aet the element x. in X* is called the Gel 'fand integral of f
A a

over A, where

C(x) = / < f(t), x > djj(t) for all xeX.
'A

1

We denote by (S,)* the set o f all Gel f
f and integral selections from

<P

X*
the correspondence

<f>
: T * 2 , i.e.,

(sj)* = (xe(L
1
(u,X))*: x(t) e *(t) y-a.e.}

= {xgL (y,X*): x(t) e d>(t) u-a.e.}.
00

X*
The Gel'fand integral of the correspondnece $ : T * 2 is defined

as follows:

J>(t)du(t) = {/<f(t),x>dy(t): fe(S
1
)* for all x e X}.

Note that the above integral may be empty unless
<J>

admits weak*

measurable selections. A very useful result due to Khan (1985) which



-39-

has found several applications in game theory and general equilibrium

is the fact that the weak* closure of the Gel' f and integral of a

correspondence is convex. This result can be proved adopting a

similar argument used to prove Theorem 6.2 except that instead of

using Uhl's Theorem one can now appeal to a result of Kluvalek

[Kluvalek (1973, p. 46, Lemma 5)]. We state below a very useful

result for the Gel' fand integral of a correspondence.

Theorem 7.1 : Let (T,t,u) be a complete finite measure space, X*

X*
be the dual of a separable Banach space and

<J>
: T * 2 be a corre-

spondence with a weak* measurable graph (i.e., G e t ® 3 *(X), where

a.(X) are the Borel subsets of X* in the weak* topology of X*) such
w*

that <j>(t) is weak* closed and bounded for almost all t in T. Then for

all Aex

,

w* - elf <J)
= / w*-con<j>.

A A

Moreover, / w*-con<J> is weak* compact and convex.
A

Bibliographical Notes : Theorem 7.1 is due to Khan (1985) and it has

found important applications in general equilibrium theory [Rustichini-

Yannelis (1987), Ostroy-Zame (1988)], game theory [Cotter (1988), Khan

(1986)] and demand theory [Border (1987)].
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8. APPLICATIONS

In this section we will indicate how some of the results in

Yannelis (1989b) as well as theorems of this paper can be used to

prove the existence of an equilibrium in an abstract economy with a

measure space of agents.

An abstract economy r is a quadruple [ (T,t ,u ) ,X,P ,A] , where

(1) (T,t,u) is the measure space of agents,

y
(2) X : T * 2 is the strategy correspondence (where Y is a

linear topological space),

1 Y
(3) P : T x SY + 2 is a preference correspondence such that

x

P(t,x) CX(t) for all (t,x) s T x S , and
x

1 Y
(4) A : T x Sv 2 is a constraint correspondence such that

A

A(t,x) C X(t) for all (t,x) e T x s^.

1 Y
The interpretation of the preference correspondence P : T x S - 2

A.

is as follows: We read y e P(t,x) as "agent t strictly prefers y to

x(t) if the given strategies of other agents are fixed." Throughout

this section we set Y = R and endow S with the weak topology.
X

An equilibrium for T is an x* e Sv such that for almost all t in
x

T the following conditions hold:

(i) x*(t) e A(t,x*)

(ii) P(t,x*)fi A(t,x*) = 0.

Below we state the assumptions needed for the proof of our equilibrium

existence theorem.

(8.1) (T,x,u) is a complete finite separable measure space.
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R
n

(8.2) X : T 2 is a correspondence such that:

(a) It is integrably bounded and for all t e T, X(t) is a

closed convex nonempty subset of R ;

(b) X( • ) is lower measurable.

1 R
n

(8.3) A : T x S - 2 is a correspondence such that:

(a) for each fixed t e T, A(t,«) is continuous;

(b) A( •
,

• ) is closed, convex and nonempty valued;

(c) for each fixed x e Syi A(»,x) is lower measurable.

1 R
n

(8.4) P : T x S > 2 is a correspondence such that:
x

(a) for each fixed t e T, P(t,«) has an open graph in

,-,1 „n
S
x

x R ;

(b) x(t) i conP(t,x) for all x e Sy , y-a.e.;

(c) for every open subset V of R , the set

{(t,x) e T x S : A(t ,x) C\ conP(t ,x) (\ V * 0} belongs to
A.

T ® 8 (Sv ), where 3 (S ) denotes the Borel a-algebra for
w X w X

the weak topology on Sy
.

We are now ready to state the following result:

Theorem 8.1 : Let T = [(T,x ,u) >X,P, A] be an abstract economy

satisfying (8.1)-(8.4). Then an equilibrium in T exists.

1 R
n

Proof : Define the set-valued function i|i : T x S + 2 by
A.

ij>(t,x) = conP(t,x). It can be easily checked that for each fixed

t e T, i|;(t,») has an open graph in Sv x R [see for instance Lemma 4.1
X

1 R
n

in Yannelis (1987)]. Define the set-valued function f : T x Sv 2
x
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by <J>(t,x) = i|)(t,x) (] A(t ,x). It follows from Lemma 4.2 in Yannelis

(1987) that for each fixed t s T, <}>(t,») is weakly l.s.c, i.e., for

every open subset V of R , the set {x z S : <j>(t,x) (] V * 0} is
x

weakly open in S„. By assumption (8.4)(c), $(•,•) is lower measur-

able. Let U = {(t,x) e T x S : <j>(t,x) * 0} . By Theorem 4.2 in

Yannelis (1989b) we can guarantee the existence of a Caratheodory-type

selection, i.e., there exists a function f : U + R such that

f(t,x) e <f>(t,x) for all (t,x) e U and for each t e T, f(t,») is

continuous on U = {x e S : 4>(t,x) * 0} and for each x e S , f(»,x)
t X X

is measurable on U = {t £ T : <J>(t,x) * 0}. Moreover, f(«,») is

1 R
n

jointly measurable. Define the set-valued function F : T x Sv
* 2

X

by

C {f(t,x)> if (t,x) £ U

F(t,x) = /

I A(t,x) if (t,x) i U.

It follows at once from the l.s.c. of <J>(t,») that for each t £ T the

set U = {x £ S : <f>(t,x) t 0} is weakly open in S . Thus, by Lemma
t X X

6.1 in Yannelis-Prabhakar (1983) for each fixed t £ T, F(t,») is

weakly u.s.c. in the sense that the set {x £ Sy
: F(t,x) C V} is

weakly open in S for every open subset V of R . As in Yannelis
A.

(1987) one can easily check that for each x £ SY , F(«,x) has a measur-

able graph. Also, F(«,«) is closed, convex and nonempty valued.

i <
Define the set-valued function 9 : SY 2 by

9(x) = {y £ S : y(t) £ F(t,x) u-a.e.}.
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Note that by Theorem 3.1, S is weakly compact in L (y ,R ). Since the

measure space (T,x,y) is separable, L. (y ,R ) is a separable Banach

space. Since, weakly compact subsets of a separable Banach space are

metrizable, we can conclude that S is rnetrizable. Hence, it follows
A.

from Theorem 5.5 that 9(») is weakly u.s.c, i.e., for every weakly

open subset V of S
y

the set {x e S : 9(x) C V} is weakly open in

S . Appealing to the A.umann measurable selection theorem, we can con-

elude that 9(») is nonempty valued. Similarly, the set S is nonempty.

Obviously 9(») is convex valued and so is the set Sy
. It follows from

the Fan-Glicksberg fixed point theorem that there exists x* e S such
A.

that x* e F(x*). It can be easily now checked that the fixed point is

by construction an equilibrium for the abstract economy r.

Bibliographical Notes : This section is based on Yannelis (1987) where

we refer the reader for related results. However, we must point out

that the notion of an equilibrium for an abstract economy is due to

Debreu (1952) which in turn generalizes the notion of a noncooperative

equilibrium for a game in normal form introduced by Nash (1951). For

more applications of Caratheodory-type selections theorems as well as

recent results on integration of set-valued functions we recommend,

the papers of Kim-Prikry-Yannelis (1989), Yannelis-Rustichini (1988)

and Balder-Yannelis (1988). Finally a paper by Debreu (1967) uses

measure theory and measurable selections extensively.
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