

UNIVERSITY OR
ILLINOIS LIBRARY

AT UR3ANA-CHAMPAIGM
ENGINEERING

NOTICE: Return or renew all Libra

each Lost Book is $50.00.

i Minimum Fee for arv Materials! The Minima

Jul (5 6 1988
The person charging this material is responsible for
its return to the library from which it was withdrawn
on or before the Latest Date stamped below.
Theft,

nary a

To ren

UNIVE

derltning of books are reasons for discipli-
wrt in cjismtesalfrorn the University,

oe Center, 333-8400

VNA-CHAMPAIGN

%f ENGINEERING LI3RARY

UNIV. ' ITY OF ILLINOIS '-^^ 'J£ URBANA, ILLINOIS

JfcAIM^V^t"!!

CE ROC
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA. ILLINOIS 61801

CAC Document Number 236

CCTC-WAD Document Number 7616

Research in

Network Data Management and
Resource Sharing

INTELLIGENT TERMINAL

PROGRAMMER'S MANUAL
Volume One of Two Volumes

October 31, 1977

>h»l3brtr
t

<**»

The person charging this material is re-
sponsible for its return to the library from

which it was withdrawn on or before the
Latest Date stamped below.

Theft, mutilation, and underlining of books

are reasons for disciplinary action and may
result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

JUN 6

NAR
3

982
-

L161 — O-1096

CAC Document Number 236
CCTC-WAD Document Number 7516

Intelligent Terminal

Programmer's Manual

Volume One of Two Volumes

Deborah S. Brown
Daniel J. Kopetzky

John R. Mullen
David A. Willcox

Prepared for the
Command and Control Technical Center

WWMCCS ADP Directorate
Defense Communication Agency

Washington, D.C.

under contract

DCA100-76-C-0088

Center for Advanced Computation

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

October 31, 1977

Approved for release:/ yfAM/s^
mes F. Bailey, Principal Investigator

Digitized by the Internet Archive
in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/intelligenttermiOObrow

Table of Contents

Page

INTRODUCTION 1

Structure of Manual 1

Assumptions 2

Reader 2

Support Facilities 2

Hardware 3

Software 3

Documentation 4

Un-Goals 4

PART I: IT HARDWARE AND SOFTWARE

OVERVIEW 7

HARDWARE CONFIGURATION 9

LSI-11 IT 9

Processor 9

Storage 9

Display 9

Touch Panel 11

Keyboard/Control Console 11

Communication Device 11

Level 6 IT 12

Processor 12

Storage 12

Remote Display Head 12

Communication Devices 12

SYSTEM OVERVIEW 15

Operating System Kernel 16

Support Software 18

I/O System 18

Application Support 19

OPERATING SYSTEM 21

Process Creation, Scheduling and Removal 21

System Initialization 24

LSI-11 System Initialization 24

Level 6 System Initialization 26

Process Synchronization 27

Queues 28

Scheduler 31

Memory Management 32

Interrupts and Traps 32

LSI-11 Mechanism 32

Level 6 Mechanism 33

Errors 34

C Program Support 34

I/O SYSTEM AND DEVICE HANDLERS 35

I/O System 35

Device Handlers 38

Purpose 38

Structure 39

Interrupt Routines 39

Naming Conventions 41

Device Names 42

File Names 42

APPLICATION SUPPORT SOFTWARE 45

Plasma Panel 45

Graphics 45

Printing 46

Level 6 Interface 49

Touch Targets 50

General Structure 51

Manipulating Touch Targets 52

Notes 53

String Manipulation 54

Searching Strings 54

String Parsing 55

String Formatting and Conversion 55

Data Display
Table

Bar Graph

Map 58

PART II: BUILDING AND EXECUTING IT SYSTEMS
OVERVIEW 63
COOKBOOK 65

Introduction 65
LSI-11 IT 65

Assumptions fic.

Building an Executable IT System 66
Loading the System onto the IT 69

Level 6 IT

Assumptions 7^

Building an Executable IT System 74
Loading the System onto the IT 77

BUILDING AN IT SYSTEM 79
Introduction "... 70
Building an LSI-11 IT System 79

Naming Conventions 80
Creating Source Files 30
Creating Loadable Object Files 81
Building Libraries 81
Loading the Executable System 84
Some Random Notes on Building Systems 85

Building a Level 6 IT System 86
Naming Conventions 86
Creating Source Files 88
Creating Assembly Language Files 88
Transferring Files to the Level 6 88
Assembling the Files 90

Linking the Executable System 91
Some Notes on Building Systems 93

LOADING A COMPLETED SYSTEM ONTO THE IT 95

Introduction 95

Loading the LSI-11 IT 95

Using Communication Line 95

Using Floppy Disk Bootloader 97

Using SOTS 98

Comparision of Loading Methods 98

Loading the Level 6 IT 99

Using BES Command Processor 100

Using BTGEN on Disk 100

Comparision of Loading Methods 100

DEBUGGING IT SYSTEMS 103

Getting Started 103

Accessing Memory 103

UNIX nm 103

Level 6 MAP 104

Useful Variables 104

ME 104

READY_Q 105

FREE_PTR .105

PROCTAB 105

DEV_TAB 105

KBD_Q, PP_Q, TP_Q, VIP_Q, DSK_Q 105

Registers 106

IT Process Stacks 106

C Conventions 106

Process Stacks 115

IT Post-Mortem 116

PART III: MAINTAINING IT SYSTEM SOFTWARE

OVERVIEW 133

MODIFYING THE I/O SYSTEM 135

Adding I/O Functions 135

Create the Handling Routine 135

Modify Device Handlers 138

Update System Library 139

Adding a Device 139

Interrupt Handlers 141

I/O System Modifications 147

Device Handler 147

System Modification 149

DISK ACCESSING SOFTWARE 151

Disk Format 151

Physical Structure of Disk 151

Logical Structure of Disk 152

Reserved Blocks 152

File Structure 153

Directory Structure 153

Code Structure 156

I/O System 158

Disk Driver 158

Primary File Level Routines 158

File Level Support Routines 161

Block Level Routines 161

Sector Level Routines 162

ACCESSING REMOTE DISPLAY HEAD 165

Driving the Plasma Panel 165

Touch Panel/Keyboard Input 167

BIBLIOGRAPHY 169

APPENDIX A: IT Procedures by Functional Grouping

APPENDIX B: Description of IT Procedures

APPENDIX C: Description of IT Data Structures

APPENDIX D: Character Set Description

APPENDIX E: Interfaces to Plasma and Touch Panels

Table of Figures

Figure Page

1 UNIX directory structure of IT files 3

2 LSI-11 IT 1Q

3 Level 6 IT 13

4 Hierarchial structure of IT system code 1 c

5 How user process accesses device 18

6 Stack of process initialized by creep on LSI-11 IT 23

7 Stack of process initialized by creep on Level 6 IT 23

8 Structure of PROCTAB 25

9 Structure of a semaphore 27

10 Queue structure 29

11 Pool of free queue elements 30

12 Structure of queue of ready processes 31

13 Structure of DEV_TAB entry 37

14 File naming conventions 44

15 Ld using a library 83

16 Subroutine environment linkage - LSI-11 108

17 Subroutine environment linkage - Level 6 110

18 Snapshot of LSI-11 process stack with local variables Ill

19 Snapshot of Level 6 process stack with local variables 112

20 Subroutine linkage - LSI-11 113

21 Subroutine linkage - Level 6 114

22 Process stack - LSI-11 IT 117

23 Process stack - Level 6 IT 118

24 Flow of information and control between processes,

interrupt handler, and device 140

Table of Figures

(continued)

Figure Page

25 Structure of a file 154

26 Structure of a directory entry 155

27 Example of disk directory 157

List of Tables

Table

Page

1 System Namelist . .
 120

2 Level 6 plasma panel task codes and parameters 166

INTRODUCTION

This document is designed to be a reference manual for

programmers writing code to be run on an Intelligent Terminal (IT) as

implemented by the Center for Advanced Computation (CAC) of the University

of Illinois. It serves as an introduction to the IT and its existing

software. The manual also outlines the procedure for utilizing and

modifying existing IT code.

The IT has been a research project at the Center for over two

years. It was designed to be an experiment in the area of using intelli-

gent terminals as active user agents in interfacing to existing data

management systems. To this end, the IT, consisting of a single-user

microprocessor based terminal, was built. The terminal is supported by

software including a multi-processing operating system and several

support routines. This document attempts to describe that software

sufficiently that other programmers can utilize the existing code in

their work with the IT.

Structure of Manual

The body of this manual is divided into three major parts.

The first part is an overall view of the IT and its existing software.

Part I is designed as the programmer's introduction to the IT. The

second part gives detailed explanations of how to build an IT system and

how to load it into the terminal's memory. It includes a step by step

procedure as well as a discussion of the why of each step. The third

part of the manual contains more detailed discussions of certain portions

of the IT software. The sections in this part are designed for programmers

who need to modify the IT system code or to understand it on a detailed

level.

Within the three major parts of the manual, many discussions

are presented twice. This is necessary since there are two Intelligent

Terminals described here. The two ITs which have been built are based

on different minicomputers, and are physically very different. The

software functions described in this manual are provided for both termin-

als. However, the implementation details of individual functions may

differ widely between the two systems. In these cases, the methods for

both terminals are presented.

Many of the sections of this manual make various assumptions

regarding the knowledge of the reader and the availability of support.

These assumptions are stated at the beginning of each part or section.

The major assumptions made throughout the manual are discussed below.

Following these is a disclaimer of what this manual is not.

Assumptions

Reader. The reader of this document is assumed to be a

professional computer programmer interested in utilizing existing IT

software to support a system on a CAC Intelligent Terminal. Further the

reader is assumed to be somewhat familiar with the UNIX system, the C

language, and the operation and hardware of the PDP LSI-11 and Honeywell

Level 6 .

Support Facilities. It is assumed that the reader will have

access to a PDP-11 system running the UNIX operating system developed at

Bell Laboratories. In order to utilize existing IT software, which is

written in C, this system must support the C compilers for the LSI-11

and the Level 6, as well as and other functions necessary to compile and

load C language programs. Additionally, the UNIX system must have

undergone the modifications which allow it to read and write floppy

disks in the IT format.

Hardware. The programmer will need access to a standard CAC

LSI-11 or Level 6 based Intelligent Terminal. LSI-11 terminals must be

capable of being connected to the machine running UNIX, either by a

hardwired connection or by a modem and phone line.

Software. The programmer is assumed to have access to the

source code of all procedures and data structures mentioned in this

document. For ease of reference, this code is assumed to be organized

on UNIX into a standard set of subdirectories off of one main directory.

This directory structure and the contents of each directory is diagrammed

in Figure 1.

devices

device

drivers &
interrupt
handlers

10 sys

I/O system
routines

strings

string
handling
routines

main
directory

disk

file
handling

routines

kernel

OS kernel

routines

support

system startup

and misc

display

data display

routines

panel

plasma

panel
graphic routines

tt

touch
target

routines

includes

include
files

print

plasma

panel
printing

routines

util

utility

programs & support
routines

UNIX directory structure of IT files

Figure 1

Documentation. In addition to this manual, the reader is

assumed to have access to:

1. the UNIX Programmer's Manual [11],

2. the C Reference Manual [10],

3. the LSI-11 PDP-11/03 Processor Handbook [7],

4. Honeywell Level 6 Minicomputer Handbook [6], and

5. Honeywell Level 6 Operator's Guide [8].

Further it is assumed that the programmer will spend time with listings

of the current IT software, in addition to this manual, to gain a de-

tailed level of understanding before trying to implement any changes to

the system.

Within this manual, the names of IT procedures, IT data

structures, and UNIX directories are underlined to reduce ambiguity.

Un-goals

This manual is not designed to be a guide to the types of

systems to be run on the IT. It merely describes the existing software

and how to get the pieces into one usable system after they are built.

The problem of designing and building the application package to go on

the IT is left as an exercise for the reader. CAC ' s experiences with

application systems are described in portions of [2] and [3].

Finally this paper makes no attempt to justify the design

decisions that went into creating the IT.

PART I

IT HARDWARE AND SOFTWARE

OVERVIEW

Part I of this manual is concerned with existing ITs. It

includes:

1. descriptions of the hardware for the LSI-11 IT and the

Level 6 IT,

2. a general description of the IT software, and

3. more detailed descriptions of the IT operating system, the I/O

system and application support routines.

Hardware and software for both the LSI-11 and the Level 6 based ITs is

covered. Discrepancies between the two versions are noted and described.

The sections in Part I are designed to be a tutorial describing

the types of tools available to an IT programmer and constraints on the

use of these tools. Part I should be read, or at least scanned, sequen-

tially before the rest of the manual and before attempting to use or

modify the IT system.

HARDWARE CONFIGURATION

This section describes the hardware comprising an IT. The

hardware is significantly different for an LSI-11 IT than for a Level 6

IT. Accordingly each terminal is described independently. The LSI-11

IT is described first and then the Level 6 IT.

LSI-11 IT

The layout of this terminal is illustrated in Figure 2. Its

components are described below.

Processor. This Intelligent Terminal system is based on the

Digital Equipment Corporation (DEC) LSI-11 processor. The LSI-11 is a

new member of DEC's PDP-11 family of computer systems. It is compatible

with previous members of that family; its instruction set is a duplicate

of the earlier PDP-11/40. The outstanding features of the LSI-11 are

its size and speed, as well as its extended arithmetic and floating

point instruction set capabilities. The processor is contained on a single

printed circuit card measuring 10" by 11". The processor card includes

4K words of random access memory (RAM). However, this 4K section of

memory is not utilized due to the heavy demands it places on the system.

Further details of the processor can be found in [7].

Storage. The CAC LSI 11 system includes a total of 28K words

of RAM memory (exclusive of the 4K that is integral with the processor) .

An Advanced Electronics Design (AED) 3100LP floppy disk system providing

500K bytes of removable storage is also included.

Display. The display device used on the IT is an Owens-

Illinois D-142 plasma panel. The plasma panel is a flat-screen display

composed of a 512 x 512 matrix of dots. Each dot may be turned on or

off independently from any other dot. The plasma panel is interfaced to

sy
nc
h,

co
mm
un
i-
 ca
ti
on
s

H
H

i — i
■ — i

1
H

C/3

asynch.

commun-

ications

•

touch

p
a
n
e
l

p
l
a
s
m
a
 panel CM

CD

M
0

60

•H

k
e
y
b
o
a
r
d

console

Pn

dual

fl
op
py

di
sk
s

28
K

m
e
m
o
r
y

LSI-11

•EIS

•FIS

10

the LSI-11 by means of a custom design controller developed at CAC . It

was necessary to develop this special interface due to the lack of a

suitable commercial product.

The D-142 plasma panel is an unsophisticated device in that it

provides no intrinsic character generation or graphic display capability;

these functions must be supplied by software. Characters of an alphabet

are stored in software as a series of bit masks. Since the shape of a

character is determined by its associated bit patterns, the text display

software can be used to display arbitrary figures formed as a series of

characters.

Touch Panel. The primary input device for the IT is a 32 x 32

touch panel from Carroll Manufacturing Corporation. This device consists

of a grid of 32 pairs of intersecting light beams, and is located on the

face of the plasma panel display. When the user touches a spot on the

display, the touch panel determines the location of his finger and

transmits that location to the software. The software can then perform

various functions depending on the location the user touched. Proper

coordination between displays and touches allow the user to utilize the

Intelligent Terminal without the necessity of typing commands to it.

Keyboard/Control Console. An auxilliary input capability is

also provided by a serial-output, microprocessor controlled keyboard.

This keyboard has been modified so that it can also serve as the system

operator console.

Communication Device. Asynchronous communication between the

IT and a host computer is provided via a standard RS232C interface.

This interface can also be used to connect to a standard modem.

In addition, there is a synchronous interface suitable for

connecting the IT to a 6000 VIP port. The interface is user-settable to

either RS232 or MIL-STD-188C signal levels.

11

Level 6 IT

The configuration of this terminal is illustrated in Figure 3.

Its components are discussed below.

Processor. This Intelligent Terminal system is based on a

Honeywell Information Systems Level 6 model 43 processor. The 6/43 is

a member of a new series of Honeywell minicomputers. Some of the more

noticeable features of this series are intelligent controllers for each

peripheral device and the large amount of directly addressable memory

(up to 512K words on the 6/43). Further details of the Level 6 series

are available in [6],

Storage. The CAC Level 6 system includes a minimum of 64K

words of RAM memory. Two Honeywell dual floppy disk units provide an

additional 1 megabyte of removable storage.

Remote Display Head. Communication with the user is performed

by three microprocessor controlled remote display heads. Each of these

heads have a plasma panel, a touch panel, and a connector for a keyboard.

One keyboard, which may be connected to any of the heads, is also included

The plasma panel and touch panel are the same models as those used on

the LSI-11 terminal. The keyboard is different, in that it is a standard,

unmodified unit. Each remote display head is controlled by a Zilog Z80

microcomputer and is connected to the Level 6 through a standard Multiple

Device Controller (MDC) interface. The cables connecting the heads to

the Level 6 are 100 feet long so the displays may be located remotely

from the system main frame. The details of the remote display head are

contained in [5].

Communication Devices. Both synchronous and asynchronous

communication capabilities are provided through a Multiple Line Communi-

cations Processor (MLCP) interface. This is a programmable interface

12

X.

•
u g

a)
c i c

>■>

o

•H

CO

o
i—l

cO

/ >>

03

CO

4-1

iH

-a

o

p-

CO

e

en

0)

0)

•H

j3

h

T3

>-.

0)

CO

4-1

pH T3

o a

CO

E

05

0) 0)

•H

x;

>~l

TD

>•> 0)

CO

4-1

r- 1
TD

0

o-

CO

e w

0)
OJ

•H

x;

u T3

4-1

T3
c

>-i

03

CO

OJ

e O

s: o-

X

4-1

o

>.

.— 1

0)

c

o)

^

•H

>

cu
CO

T3

-a

a> 4-1

X)

E

>-i

3

0)

o

i— 1

4-1

a U

03

a C

>>

3

•H

CD

03
03

S-i

C

•H

O

CO

•4-1

u

J-l

>>

X)

CO

iH

CO

o
C

0) X)

O X

01

TJ
>, Jj

a;

CO

03

rH

03

3 a c
03 o

03

•H •H

-a

I—l

0) OJ

c
rH

4-1

o
O o •
03 E

•-

H
c

0)

u

cO

o

S-i

OJ

C

CJ

>

•H

Xi

0)

E

0)

U 5

i-l

X

CO

o

OJ

H ffi

4-1

H

CO

^D

0)

M

r- 1

3

OJ

M
>

•H

a)
rH

J

J^
i— 1

a j*;

CO

D-

03

3 O

•H

-o

i— 1

■4-1

TJ

i—l
a. j^

CO

a 03
3 o

•r-

"0

iH

M— 1

T

#XI

■K J-i

cO

l o
y X

/
!>i

/

0)

/
M

J= rH

o

oo

a a)
3 C

O cO N
4-i a-

-a

cO

0)

\ _

\

XJ

\

CO

>,

\

E rH

CO

>
co a>

i-H

CO c

CL

t— I cO 03

Cl D-

•H

T3

0)

4-1

* —

13

which provides two RS232 asynchronous interfaces as well as two MIL-STD-

188C synchronous interfaces.

14

SYSTEM OVERVIEW

There are three categories of software for the intelligent

terminal. The first is the operating system kernel. This consists

primarily of process creation, deletion, and synchronization primitives.

The second is support software. This includes device drivers, the

input-output system, and application-oriented procedures such as graphic

display routines and general purpose touch target routines. The third

category is the actual application software; this is the "intelligent"

portion of the intelligent terminal. The hierarchical structure just

outlined is completely conceptual, since there are no hardware or soft-

ware mechanisms to enforce such distinctions. This structure is diagrammed

in Figure 4.

This section describes the first two of these categories: the

operating system kernel and support routines. Application software is

not described since it varies depending on the application.

application-specific software

support software: includes I/O system,
printing and touch target manipulating
routines

kernel

Hierarchial structure of IT system code

Figure 4

15

Operating System Kernel

The operating system uses the disjoint process as the basic

functional unit. As implemented by this operating system, a process is

simply a procedure (called the process procedure) which has its own

stack. The operating system provides a virgin stack to the first procedure

executed in each process. Any procedures invoked by the process procedure

will use that stack for storing their local data. A benefit of using

this method for local storage is that each procedure is reentrant (i.e.,

more than one invocation of a procedure may be active) . Since each

process has a separate stack, the address of the stack is used to uniquely

identify each process.

Creating a process is very straightforward. First, core for

the process stack is obtained from the dynamic memory allocator. This

block of core is then formatted to look like a stack, which entails

setting five words of control information. Then the stack is modified

to appear as if the process procedure had called the scheduler. Finally

the stack address is added to the ready queue. When the newly created

process is selected for execution, the scheduler "returns" to the first

instruction of the process procedure.

Destroying a process is still simpler. All that is required

is to free the core occupied by the stack and invoke the scheduler. The

scheduler will select some other process to execute, and the old process

simply disappears. This mechanism works because there is no way for one

process to preempt another, which guarantees the integrity of the old

stack until the process has actually gone away. A process can destroy

itself either by intentionally calling the process deletion procedure or

16

by returning from the process procedure, which is equivalent.

The entire operating system is queue-driven. Each process has

an input queue from which it reads its commands, and there is a queue of

processes which are ready to execute. Any process which is not on the

ready queue is blocked waiting for some event to occur, and is on a

queue associated with that event. The mechanism for blocking processes

uses the generalized semaphores and P and V operations proposed by

Dijkstra [4]. Each semaphore consists of a queue of waiting processes

and a count of how many processes are waiting. When a process needs

access to some semaphore-controlled resource, it performs the P opera-

tion on the semaphore. If the resource is available, the process is

allowed to proceed; if it is not available, the process identifier is

added to the sempahore's queue and another process is selected for

execution. When the process that is currently using the resource is

finished with it, it must perform the V operation on the semaphore. If

any processes are queued on the semaphore, the first one is removed and

placed on the queue of ready processes.

The scheduler is responsible for selecting the next process to

run. When invoked, it removes the first process identifier from the

ready queue, and makes the stack of that process become the current

stack. The priority of each process determines the position in the

ready queue of that process' identifier.

The kernel of the operating system is extremely small. The

LSI-11 version requires about 800 16-bit words. The entire kernel, with

the exception of the scheduler, is written in a high-level language.

17

Support Software

I/O system. The structure of the I/O system is somewhat

unorthodox. Associated with each device is a handler process. Any

process which wishes to use the the device must request the handler

process to perform the actual operations on the device. The handler

process also communicates directly with the interrupt routines for th
e

device. The unorthodoxy of the I/O system stems from a design decisio
n

decreeing that only one process may "own" a device. That is, if one

process owns a device, any other process wishing to use that de
vice must

wait until the first process voluntarily relinquishes it. Th
is decision

eliminates the need to multiplex the mass storage device a
nd the communication

line to the remote host. However, it also forces these resou
rces to be

potentially underutilized since the device will not servi
ce the needs of

waiting processes even if its owner is not using it.
Note that the

handler process for a device does not "own" the device
. The user process

that currently "owns" the device communicates its I/O req
uests to the

handler process, which then performs the device-dep
endent actions

needed to fulfill the user requests. This structure
 is diagrammed in

Figure 5.

input queue

user

J device

handler

process process &
(owner) interrupt

data &
routines

def ice

_ —

stat us

Y

control

-« *■ & status

device

data

How user process accesses device

Figure 5

18

The I/O system maintains a table which shows the current owner

of each device and the handler process associated with the device. When

a process requests ownership of a device, this table is inspected to

determine if the device is available. If so, the requesting process

becomes the owner, and requests from other processes are denied. If the

device is unavailable, the requesting process has the option of having

the I/O system block him until the device is available or of simply

being denied use of the device at this time.

The functions provided by the I/O system are very commonplace.

They include reading and writing the device and requesting special ser-

vices from the handler process as well as requesting and relinquishing

ownership of the device. Also included is a routine that indicates how

much data the handler process currently has. This is useful since all

the other functions of the I/O system are synchronous. That is, a read

request does not return until the data is actually returned. Although

other processes can execute during that period, the process that requested

the I/O service is constrained from running.

Application support. By far the largest portion of code falls

into the category of general support software. This includes several

routines to operate on the plasma panel, routines to provide formatted

output, and routines that allow the creation and manipulation of touch

targets. Also included here is the capability to display character sets

other than standard ASCII, so the user can display arbitrary patterns of

any width and up to 16 dots high.

19

OPERATING SYSTEM

The IT operating system consists of a number of routines which

may be called by user application programs. This chapter will describe

those routines which make up the "kernel" of the system. These provide

facilities for the controlling of processes. Specifically, they control

creation and removal of processes, synchronization and communication

between processes using semaphores and queues, and the scheduling of the

processes' use of the processor. In addition, there is a memory manager

which provides for controlled use of a pool of available memory.

The source for the routines discussed in this section are

contained in the subdirectory kernel.

It should be noted that the IT operating system was designed

assuming a single user system with correctly operating application

programs. Therefore, the operating system is not protected from software

errors, or from user-written programs which intentionally try to subvert

the operating system. To relax this restriction would require some

mechanism such as virtual memory or relocation and bounds registers.

Process Creation, Scheduling, and Removal

Any process running on the IT can spawn other processes using

the kernel routine creep. As mentioned in the System Overview, process

creation consists simply of allocating a stack for the process, filling

in the stack base and dummy subroutine linkage areas, and putting the

new process's ID (the address of its stack) into the ready queue.

The newly-created process is in no sense subservient or inferior

to its creator. However, the creating process does set the priority of

21

the new process. In addition, the ID of the new process is returned to the

creating process, so the creating process may kill the new one at its

discretion.

The stack base contains five words used to describe the process

and to store specific registers needed to restart a blocked process.

The values stored in the stack base differ between the LSI-11 and the

Level 6 terminals. For the LSI-11 IT, the stack base contains:

1. the size of the stack, in bytes,

2. two words which will be used by the scheduler to store

the process's linkage information and current stack

pointer,

3. the priority of the process, and

4. a guard word with the octal value 104401, which is used

by the scheduler to check for stack integrity.

A stack base on the Level 6 IT contains:

1. the size of the stack in words,

2. two words which will be used by the scheduler to store

the return address and linkage information pointer,

3. the priority of the process, and

4. a guard word with value and usage as for the LSI-11 IT.

Creep sets up the stack so that the process, when first scheduled,

will start with the procedure whose address is specified as a parameter

to creep. Further, creep initializes the stack so that a return by the

process's main procedure will invoke the routine suicide. Figures 6 and 7

diagram a process stack as created by creep for the LSI-11 and Level 6

systems. Once created, the new process enters into contention for the

22

lo

hi

stack size in bytes.

dummy R5

-3

dummy R6

priority

guard word (octal 104401)

address of process procedure
address of suicide

process id

process parameter

Stack of process initialized by creep on the LSI-11 IT

Figure 6

stack size in words

, dummy B5 - address of process prorednrp
dummv B/

priority

guard word (hex 8901; octal 104401 }

d ummy B 7 • ■».

dummy B5 - address of suicide
0
0

0

0

0

0

0

0

0

0

0

process parameter

process id

Stack of process initialized by creep on the Level 6 IT

Figure 7

23

processor along with all other processes. It has no special privileges

or hinderances as a result of being a new process.

A process can go blocked in one of two ways. The usual way is

when the process needs to wait for some resource to be freed or for some

other process (e.g. a device handler) to do something. This usually

happens when the process calls the kernel routine pee, which in turn

calls the scheduler routine block. Alternatively, a process can volun-

tarily go blocked by calling pause. Pause will block the process only

if there are processes of a higher priority waiting to run. Otherwise,

it lets the current process continue running.

A process can be killed by another process via kill. A process

can kill itself either by returning from its main routine or by calling

suicide. In either case, the process is killed by freeing the memory

used by the process's stack and then entering the scheduler without

putting the process on any queue of blocked processes. The process can

therefore never be re-awakened.

System Initialization

System startup is performed differently on the LSI-11 and

Level 6 terminals. The startup function for each terminal is discussed

below.

LSI-11 system initialization. System startup is performed by

the routine startup which is entered (via a jump instruction at location

0) whenever a system load is completed. Startup will:

1. use routine f ixup to determine how much usable memory there is

on the machine and clear all unused memory,

2. initialize the I/O system using the routine io init ,

24

3. initialize kernel data structures describing the free memory

on the system, the pool of queue elements, and the queue of

processes ready to run,

4. initialize the global variables describing the page, character

set and cursor position to use for printing on the plasma

panel, and

5. create all initially active processes via creep. The user-

supplied table P ROC TAB contains the entry point, stack size,

priority, and one parameter for each initially active process.

Figure 8 diagrams one entry in PROCTAB . The entry for startup

in Appendix B describes the exact format of this table.

When the processes have been started, startup exits via a call

to first block. First block is an alternate entry point into the scheduler

It selects a process to start running without treating startup itself as

a calling process. Thus, startup will never be re-entered unless the IT

is manually restarted by the user.

PROCTAB

stack size

process parameter

process priority

process id
•
•
•

procedure entry point

Structure of PROCTAB

Figure 8

25

Level 6 system initialization. When an IT system is loaded

into the Level 6 terminal, execution will begin with the procedure

entry. Entry is a small section of code written in assembly language

rather than a standard procedure. It performs the functions:

1. change the hardware priority level to the level used for

application programs,

2. calculate the highest memory address on the machine and

point B6 and B7 at this address,

3. push the value of the highest address onto the stack, and

4 . branch to startup.

Startup on the Level 6 is similar to, but slightly different from, the

LSI-11 version. The Level 6 startup will:

1. disable interrupts from the remote display head controller,

2. initialize kernel data structures describing the free

memory on the system, the pool of queue elements, and the

queue of processes ready to run,

3. initialize the controlling semaphore for the plasma panel,

4. initialize global variables controlling printing on the

plasma panel,

5. create all initially active processes in the same way

as on the LSI-11,

6. initialize the I/O system via io init,

7. load the communication controller program, and

8. load and initialize the remote display head controller

and allow interrupts from it.

When these functions are complete, startup calls first block, as on the

LSI-11.

26

Process Synchronization

In order for multiple processes to work in harmony, it is

necessary to have some kind of synchronization facility to allow one

process to wait for another process to complete some task. This facility

is provided by the kernel routines pee and vee which respectively imple-

ment the P and V primitives described by Dijkstra [3], These routines

operate on structures called semaphores . Semaphores consists of two

words. The first word is a count which is either the number of processes

which are blocked on that semaphore or the number of outstanding "wakeups"

The second word is a pointer to the last element in a circularly linked

list. The list contains process ID's for the processes blocked on this

semaphore.

When a process needs to wait for some event to occur, it will

do a P on the semaphore associated with that event. Pee will subtract

semaphore

id of last

process

id of first

process

id of middle

process

Structure of a semaphore

Figure 9

27

one from the count. If the result is negative, it means that the process

must go blocked, so pee will add the process ID to the list of blocked

processes associated with the semaphore and then enter the scheduler to

start another process running.

When a process needs to indicate that an event has occurred,

it will V the semaphore associated with the event. Vee will add one to

the count. If the result is not greater than 0 it means that there is

at least one process waiting for the event. In this case, vee will

remove one process from the list of blocked processes and put it on the

queue of ready processes. This will allow the just unblocked process to

contend with other ready processes for access to the processor.

The structure of the list of waiting processes is identical to

a standard queue, as described in the next section. This allows the

list to be manipulated by the primitives eng and deq.

Queues

Queues provide an easy-to-use facility for passing information

between processes. Processes can write information one word at a time

into a queue, where it can later be read by another process on a first-in,

first-out basis. Generally, when more than one word needs to be trans-

ferred, it is done by passing the address of a string or structure,

rather than using many writes to the queue.

The queue itself is defined by a queue header containing a

pointer to the last element in a circularly-linked list of queue elements,

and a semaphore associated with the queue. The list of queue elements

will contain data values waiting to be read from the queue. The semaphore

will control a list of processes waiting to read data from the queue.

28

Queue header Wait list

0

Semaphore

count = -3

id of last process

<»

id of first process

v

id of middle process

queue header

A queue with waiting processes

data list

lact- a

1 as l en ur y

Semaphore

count = 3 1 '

0 first entry

\<

middle entry

A queue with unread data

queue header

0

Semaphore

J

count = 0
0

An empty queue

Queue structure

Figure 10
29

Since having both unread data and processes waiting for data to read is

an impossible state, at most one of the lists will be in use at any

time. Figure 10 diagrams the two states of a queue and an empty queue.

The kernel routines enq and deq are used to add or remove

entries from the circularly linked list of queue elements. They also

maintain a pool of free queue elements. User programs should access

queues using the routines read q and write q explained below.

FREE-PTR

s
Pool of free queue elements

Figure 11

When a process wants to enter a word into a queue, it calls

write q. Write q will use enq to add the word to the queue. Then, it

will V the queue's semaphore. If there is a process waiting to read

from the queue, the V will allow the reading process to start up.

When a process wants to get information out of a queue, it

calls read q. Read q will first P the semaphore controlling the queue.

If there is data in the queue, pee will return immediately. If there is

not, pee will cause the process to go blocked until another process

writes to the queue. When pee returns, read q will use deq to remove

one entry from the queue.

The system ready queue has a slightly different format from a

normal queue. There is no semaphore associated with the ready queue.

30

Also, it is not a strictly first-in, first-out queue, but rather the

elements are sorted by process priority. The routine enq RQ is used to

add elements to the ready queue to maintain the ordering by priority.

Process ids are added to the ready queue so that processes with higher

numbered priorities are serviced before those with lower numbered priorities

Within each priority, the ready processes are given control of the

processor on a first-in, first-out basis.

READY Q

id of last

process

i i

id of first

process

 1
±

id of middle

process

Structure of queue of ready processes

Figure 12

Scheduler

The scheduler is an integral part of the routine block, which

is called whenever the currently running process must go blocked. After

putting the current process to sleep, block will select the next process

from the ready queue and start it running. If there are no ready processes,

then block will stop until some process becomes ready. On the LSI-11

31

IT, this is done using the WAIT instruction. On the Level 6, block

enters a busy loop to wait for some process to become ready. Usually,

this will happen when an interrupt occurs and the interrupt handler

writes to a queue or V's a semaphore.

Memory Management

The routines alloc and free can be used to dynamically obtain

and release pieces of memory. The table CORETAB contains two word

entries describing the size and address of each currently unused piece

of memory. Alloc will select a piece of memory with the specified size

from CORETAB using a first-fit algorithm. Free can be used to return a

piece of memory back to the free pool. Any integral number of words

may be allocated or freed. No check is made to ensure that memory which

is being freed is currently unused. It is the caller's responsibility

to use alloc and free properly.

Interrupts and Traps

The LSI-11 and the Level 6 handle interrupts and traps differently

The mechanisms for both machines are described below.

LSI-11 mechanism. Due to the way the LSI-11 hardware handles

interrupts, the lowest 400 (octal) bytes of memory must be set aside for

interrupt vectors. The assembly language source in low.s is used to set

these up properly. The first two words defined in low. s contain a

branch to the routine startup. This is used when the system is started

up. The rest of low.s contains interrupt vectors. When an interrupt

from a known device occurs, the process status word will be loaded with

a number whose low-order four bits are an IT device type code, and the

system will branch to the routine int disp. An interrupt from an

unknown device will cause a branch to a halt instruction.

32

All valid interrupts go thru the routine int disp. This

routine uses the device-type code, obtained from the low-order four bits

of the process status word to index into tables of interrupt handlers

and priorities. These tables are used to select which routine should

handle the interrupt, and the priority at which the routine should run.

This scheme allows for a maximum of sixteen devices to be attached to

the IT. When adding and/or deleting devices or device types, it is

necessary to change the interrupt vectors in low.s as well as the tables

internal to int disp.

Traps all go to the trap handler called trap. There is no

valid way to handle traps in the IT system, so any trap is a fatal

error, causing the entire system to halt.

Level 6 mechanism. The Level 6 assigns special meanings to

the values stored in the lowest 100 (hex) words of memory. The assembly

language source in low. a is used to set these up properly. Low will

1. initialize the trap save area,

2. initialize the interrupt save areas for IT devices, and

3. zero areas not used.

When an interrupt occurs at any given hardware level, the hardware will:

1. pick up the interrupt vector for the current level,

2. use this as a pointer to an interrupt save area where the

current registers and the PC are stored,

3. pick, up the interrupt vector for the interrupting level,

4. use this as a pointer to an interrupt save area from

which the registers and PC are loaded, and

5. continue execution at the new level with the new PC

Level 6 IT systems are set up so that all interrupts will be handled by

33

the procedure levlp. All the registers are restored from the interrupt

save area. Two registers have particular values:

1. B6 points to the stack for the interrupt procedure, and

2. B3 contains the address of the interrupt procedure.

Levlp merely calls the procedure indicated by B3, and then does a LEV

when it returns to cause processing to continue at the next ready level.

To accommodate a new device, low. a must be modified to provide

an interrupt vector, an interrupt save area, and an interrupt stack for

the device. It should be noted that levlp, unlike int disp, does not

need to be modified when devices are added to the system.

There is no valid way to handle traps in the IT system, so any

trap is a fatal error.

Errors

When any routine in the system encounters a fatal error, it

calls the routine error. Error prints a message on the plasma panel and

then halts. The processor can be restarted at this point using the

operator console, but the results are (usually) unpredictable.

C Program Support

There are a number of special procedures to supply assembly

language functions to C programs. Specifically, these are mfps, mtps, and

halt. In addition, two procedures ldiv and lrem allow the user to get

the results of doing division on a double word dividend.

34

I/O SYSTEM AND DEVICE HANDLERS

The general structure of the I/O system of the IT is described

in the section System Overview. This section discusses the implementation

of the I/O system in more detail. The structure of standard I/O routines

is presented, followed by a description of the processes which handle

the various system devices. The final subsection describes the naming

conventions used by the IT for referencing devices and disk files.

The source files for the routines directly connected with this

discussion are contained in the subdirectories devices , io sys , and

disk.

I/O System

The IT I/O system provides several functions for accessing

either specific system devices or one or more disk files. Most of the

procedures provide common functions for accessing these resources; some

are less obvious. The functions which access a single resource are:

1. open - obtain ownership of a resource,

2. close - relinquish ownership of a resource,

3. read - input data from a device or file,

4. write - output data to a device or file,

5. peek - get the numbea device,

6. flush - remove any unread data from the device handler

process's buffer,

7. seek - position the read/write pointer in a file,

8. set_mode - a "black hole" function that allows application

programs to communicate in non-standard ways with device

handlers ,

35

9. create - create a new disk file, and

10. delete - remove a disk file.

There are two additional functions available:

1. io_init - initialize the I/O system, and

2. clear_io - cleans up any outstanding I/O requests by the

current process.

These last two procedures are rather straightforward and are described

in Appendix B.

All of the functions which access a single device or file,

except open and create, are very similar in structure. Each of these

procedures performs the following actions:

1. verify that the caller has specified a valid device or file

identifier,

2. check the entry in the system device table DEV TAB to verify

that the calling process owns the resource,

3. format a request block for this action,

4. send the request to the handler for the resource,

5. P the semaphore in the request block, and

6. set caller's return status and return.

The handler for the specified device will actually perform the work

associated with the request. The handler must V the request semaphore

when the task is completed so that the requesting process can continue.

The open routine follows a slightly different format. Initially

it calls determine to convert to an integer the name of the resource being

opened. The integer is used to index into the system device table. Open

then checks to see whether the device or file is unowned or if the

caller owns it. If both of these tests fail, then the caller has the

36

dev entry

id of owner or 0

controlling semaphore

number of waiting croc's

req
uest block for device

type of request

amount of data processed

size of caller's buffer

status

id field

index block for a file

drive number of file

input queue of handler process

list of waiting processes

semaphore controlling access
to this device

^-caller's buffer

Structure of DEV_TAB entry

Figure 13

option of waiting for the resource or having an error code returned. If

the resource is available to the caller, then open will:

1. mark the resource as owned by the caller,

2. send a flush request to the handler,

3. send an open request to the handler, and

4. return the id of the opened resource.

If any errors are encountered, the resource is closed and an error code

is returned.

37

The procedure create has a drastically different format.

Create uses other I/O procedures such as open, close, and read to create

a new disk file. Initially create tries to open the file. If that

succeeds, the file is truncated to zero length and create returns.

Otherwise create opens the parent directory of the file and adds an

entry for the file. It then creates the zero length file on disk.

Finally the new file is opened and create returns.

Each of these I/O procedures is explained further in Appendix B

Notes. More detailed information on the structure of the I/O

system is included in the section Modifying the I/O System.

It should be noted that, for better or worse, the plasma panel

is not treated as a standard device. The I/O routines do not access the

panel, rather each process can perform operations on it directly.

Device Handlers

Purpose. Every device in an IT system, other than the plasma

panel, has its own device handler. Device handlers are used to perform

the device-specific tasks for each I/O function and to buffer incoming

data until it is read. Each handler runs as a queue-driven process,

receiving commands from the interrupt routines for the device and from

the I/O routines. Current IT software supports four devices:

1. keyboard,

2. touch panel,

3. asynchronous communication line, and

4. synchronous communication line.

In addition, named files resident on floppy disks are also supported.

The section on Application Software explains how to access the plasma

panel.

38

Structure. All the device handlers are very similar in struc-

ture. Each of them perform some amount of initialization then enter a

never-ending loop. Within the loop, the handler:

1. reads from its input queue. The handler process will block at

this point until a request is sent to it.

2. interprets the data from the queue. If the command is from an

I/O system routine, the data will be a pointer to a request

block describing a user's request for an I/O operation.

Commands from the interrupt routines are directly encoded in

the data.

3. acts on the command. The action taken will depend on the

specific command. Types of commands include all the standard

I/O functions plus receiving data, noting that the device has

finished a write, and noting whether the device is currently

ready for use.

When the handler finishes some action for an I/O routine, such as

reading or writing data, the handler will V the semaphore associated

with the request. Since the I/O routine P'd the semaphore after initi-

ating the request, this action restarts the requesting process.

Interrupt Routines. The devices of the IT communicate with

their handling processes by interrupt routines. Since the LSI-11 and

the Level 6 have different interrupt mechanisms and device interfaces,

the low level communication between a handler and its device are very

different on the two systems. Each approach is described below.

LSI-11: The LSI-11 can access the registers for its devices

directly, in the same manner it accesses memory locations. This affects

the workings of the device process as well as the interrupt routines.

39

The input interrupt routine for each device gets its data

directly from the device registers. The data is then encoded along with

a flag to the handler, and then sent to the handler via write q .

Input data is stored by each handler in an internal cyclic

buffer. As data is read by other processes, it is deleted from the

local buffer. Any data input when the buffer is full is dropped, typically

with no indication that data has been lost. The entries in Appendix B

for the handlers (kbd driver, ph driver, etc.) give more information on

the exact results of reading from each device.

The device handler communicates with its output interrupt

routine via global variables. To initiate an output, the handler sets a

global count and buffer pointer, and then invokes the output interrupt

routine by enabling output interrupts for this device. When the interrupt

routine has transferred the entire buffer, it sends a special command to

the device handler which then disables output interrupts.

Level 6: The Level 6 cannot access the registers for its

devices directly, rather it must use special 10 instructions. This

affects the interaction between the handler, the interrupt routines and

the device. Also, unlike the LSI-11, Level 6 devices operate in a

direct memory access (DMA) mode when inputting or output ting data.

When an input interrupt routine is invoked, it copies the data

stored in its buffer by the device to the handler process's data buffer.

If the handler's buffer was empty, the interrupt routine sends a message

to the handler telling it of the new data. If there is not enough room

in the buffer for all the data, that data is discarded and a buffer

overflow message is sent to the handler. The DMA capabilities of the

device are not used to input the data directly into the handler's buffer

40

because:

1. it is a cyclic buffer, and the devices will not handle the

wrap around condition, and

2. it is not possible for the device to detect, and avoid,

potential buffer overflow.

On output, the process handler itself initiates the transfer.

The output interrupt routine is invoked only after the entire transmission

is complete. At that point the interrupt routine sends a command to the

handler which then disables output.

Although at the lower levels the device interfaces on the

LSI-11 and Level 6 terminals are very different, to the user application

they appear to act the same. Thus the comments explaining the details

of the results of reading from or writing to a device, as explained in

Appendix B, are the same for both systems.

Naming Conventions

In order to initially obtain ownership of a device or file, a

process must open or create that resource. These two procedures each

take a parameter which specifies the resource to be owned. To insure

access to the correct resource, the process must specify the resource

name exactly as it is known by the I/O system. This subsection briefly

describes the names recognized.

There are two types of names accepted by the I/O system:

names of devices and names of files. Both types of names are repre-

sented by standard C-language character strings. That is a string of

ASCII characters terminated by an ASCII NUL (octal 0) . Any ASCII character

except NUL is valid in a name, but "/" (slash, octal 57) has a special

meaning, described below.

41

Device Names. The names of the devices on an IT are defined

in the file constants. incl and are descriptive of the device with which

they are associated. The names and their defined values are:

1. KEYBOARD: "/dev_kb",

2 . TOUCH_P ANEL : ' '/ d ev_t p" ,

3. PHONE: M/dev_ph*1,

4. VIP: "/dev_vipM,

5. DISKO: M/dev_diskOn,

6. DISK1: M/dev_diskl",

7. DISK2: ,,/dev_disk2M, and

8. DISK3: '7dev_disk3".

Note that DISK2 and DISK3 are defined only on Level 6 systems.

No other names are recognized as referencing a system device.

File Names. Any name not recognized as a device name is

interpreted as a file name. File names are composed of two parts:

1. the name of the disk containing the file, and

2. the name of the file.

The name of the disk must be preceeded and followed by a slash ("/"»

octal 57) which serves to separate the parts of the file name. For

example, the name of file "A" on disk "data_3" is M/data_3/A". The name

of the disk containing the file can be specified in either of two ways:

1. by the name given the disk when it was initialized, e.g.

Mdata_3", or

2. by the name of the drive on which the disk is mounted, e.g.

"dev_diskOM.

In the above example, if the disk named "data_3" is mounted on drive 1,

then M/dev diskl/A" is completely equivalent to "/data 3/A".

42

In addition to the file names just described, the IT software

supports a shorthand method for designating files which reside on the

floppy disk mounted on drive 0. Such files can be referenced by the

name of the file only, without specifying the name of the containing

disk. Under this convention, if the disk "data_3" from the previous

example is mounted on drive 0, then file A can be referenced simply as

"A". File names which start with any character other than / are interpreted

as such shorthand names, and will be looked for or created on drive 0.

Shorthand names, e.g. "A", are completely equivalent to complete names

with a disk name of "dev_disk0", e.g. M/dev_diskO/A" .

Note that the IT procedures which access disk files contain

most of the code necessary to support a tree-structured directory hierarchy

of files, complete with the concept of a user-specified working directory.

Future IT programmers may find the implementation to a multiple directory

hierarchy to be a simple and useful expansion.

43

Drive 0 Drive 1

disk: data_3

files:

a
b

disk: janus_demo

files:

x

y
c

Examples of equivilent names:

M/data_3/aM 5 M/dev_diskO/aH - "a"

*7janus_demo/x" 2 M/dev_diskl/x"

"c" * '7data_3/cM * M/dev_diskO/cM

Note that "c" does not refer to the file c on janus_demo since
it is mounted on drive 1.

File naming conventions

Figure 14

44

APPLICATION SUPPORT SOFTWARE

The largest single group of code for the IT is the general

support software. This includes routines for performing graphics and

printing on the plasma panel, for manipulating touch targets, for

manipulating character strings, and for displaying data. Each of these

types of routines is discussed below. The source code for these routines

is found in the subdirectories panel , print, tt , strings , and display.

Plasma Panel

The LSI-11 IT has a single plasma panel display, and all panel

accessing routines affect this display. The Level 6 terminal, however,

may have up to three plasma panels - one in each remote display head.

This leads to the need to specify which panel (s) are to be affected by a

particular action. When a Level 6 system is started, it will perform

the necessary set up so that panel 0 is initially the only plasma panel

selected. All panel accessing routines will affect all selected panels.

If the user wishes to access a different set of plasma panels, the

procedure set pnl can be used. This allows any combination of plasma

panels to be selected for subsequent accessing. Future use of panel

functions will affect all the plasma panels selected by set pnl. This

will be true until another call to set pnl changes the combination of

panels selected.

When accessing the plasma panel there are two types of functions

available: graphics and printing. Each of these types of functions

is described below.

Graphics. The graphics routines for the panel are very basic.

They allow the caller to light or erase:

45

1. a single dot,

2. a masked vector 16 dots high,

3. a straight line, or

4. all of the dots within a specified rectangular area.

Additionally, all the dots on the panel can be turned off at once.

On the LSI-11 IT, the panel graphic routines access the register:

in the plasma panel interface directly. Appendix E is a detailed discussii

of the meanings of the various register values for this interface.

It should be noted that the map display routines include code

to display an arbitrary collection of closed polygons and to shade the

interiors of these polygons. However the map routines will need to be

extensively revised before they will be generally useful.

Printing. More IT routines are associated with printing on

the plasma panel than with any other single activity, with the possible

exception of the application-specific code. The areas of activity

include:

1. page specification,

2. character set specification,

3. cursor position,

4. printing environment,

5. simple printing, and

6. tokenized printing.

Each of these areas will be briefly explained below.

Page specification: For printing purposes the plasma panel

can be logically partioned into any rectangular sub-portion. The default

page is the entire panel, but the user can set it to any size. The

origin of the page, its lower-left corner, can be any place on the

46

panel, but the page will always be oriented parallel to the edges of the

panel. The page size and position can be set or determined by application

programs .

Character set specifications: A variety of character sets can

be used for printing on the plasma panel. The standard character set

has true upper and lower case characters, and uses a 16x8 dot area for

each character. However, as all characters are drawn on the panel by

software, application programs can use the standard print routines to

display other sizes of characters simply by changing the character set

used. User-defined "characters" may in fact consist of specialized

graphics.

A character set is specified by a cs desc structure (see

Appendix C) and two sets of vectors. Application programmers can create

their own special purpose character sets by the following steps:

1. Create and fill in a cs desc structure. Note that characters

may have any width but cannot be over 16 dots high.

2. Create an array of bytes which is the effector table for the

charset . An entry of 0 indicates that the graphic for the

corresponding character is displayed on the plasma panel when

the character is encountered. Other values indicate format

effectors whose actions are described in Appendix D.

3. Create the integer array of masks corresponding to the new

characters. This array is of the form:

masks [number_of_chars_in_charset] [width_of_each_char] .

When character i is to be printed using this character set,

the width_of_each_char vectors starting with masks [i][0] will

be displayed on adjacent vectors of the plasma panel via put .

47

The dots which correspond to l's in the masks will be turned

on to display the figure.

The application can then use the new character set by calling set charset

with a pointer to the new cs desc structure.

Several routines require parameters or return values specified

in character sizes. These values, which are generally stored internally

in dots, are interpreted using the size of characters in the current

character set. If the character size changes, by switching character

sets, the corresponding values may also change.

Cursor position: The position on the page where the next

character is to be printed is determined by the value of the internal

cursor. This value is stored internally as a pair of dot coordinates

which are relative to the current page definition. If the page is

changed, the cursor position on the panel will change accordingly.

However if the character size changes, printing will continue on the

same line as before using the new character size. The cursor position

can be updated explicitly by the application program or implicitly by

printing on the panel. Appendix D indicates the effect each character

in the standard character set has on the cursor position.

Printing environment: The page specification, the character

set identifier, the cursor position, and the set of selected plasma

panels (for the Level 6 IT) taken together determine the current printing

environment of the IT. Since there is only one system-wide value for each

of these attributes, changing any of them in one process or procedure

will change that attribute for every process and procedure in the system.

As a result it is generally a good idea for each routine that alters the

printing environment either explicitly or implicitly to save the existing

48

environment and to restore that environment when it is finished. Two

routines, get env and set env, make this easy to do.

Simple printing: Formatted output to the plasma panel can be

done via printf . The IT version of printf is similar to the UNIX version

with restrictions on the format specifications. Printf will cause the

formatted output string to be printed on the plasma panel within the

current page. Printing will move the cursor according to the effect of

the character printed. After each character, the cursor position is

checked to ensure that it is still within the specified page area. If

it is outside of the area horizontally, the cursor is moved down a row

and to the left edge of the page. If it is out of range vertically, the

cursor is moved to the top line on the page. This line and page wrapping

occur whenever the cursor is determined to be out of bounds regardless

of the characters being printed, so that wrapping will generally break

words .

Tokenized printing: To avoid the problems of words being

broken at page boundaries, tok print will do tokenized printing. This

routine is similar to printf except that it breaks the formatted string

into words, or tokens, delimited by one of a user-supplied set of characters

Each token is printed and followed by a user-supplied separating string.

Before the token and separator are printed, their combined length is

compared to the remaining space on the current line. If they will not

both fit, the cursor is moved down a line before they are printed.

Level 6 Interface. On the Level 6 terminal, the plasma panel

and the touch panel are part of the remote display head. In this system,

all communication with these devices is performed through a microprocessor

which controls the display. As a result, the low level software routines

49

to access the panel on the Level 6 are significantly different from

those on the LSI-11. The details of these procedures are described in

the section Accessing Remote Display Head. However, the support routines

mentioned in this section, e.g. put, erase, etc., are called and used

exactly the same on both systems.

Touch Targets

Routines have been built for the IT to facilitate the use of

the touch panel for user input. These routines manipulate entities

referred to as "touch targets" or simply "targets". In the minds of

most programmers of the IT, touch targets are linked closely not only

with the touch panel but also with the plasma panel. This association

should be explained before proceeding so that later comments can be

better understood.

Physically the touch panel is a completely separate device

from the plasma panel. However, it is placed in front of the plasma

panel, so that the two surfaces are superimposed and to the casual

observer appear to be one. When a user touches the glass of the plasma

panel, his finger will interrupt a pair of intersecting infra-red light

beams from the touch panel. The coordinates of the interrupted beams

are passed to the IT software and constitute a "touch". The coordinates

of the touch will then be transformed by the software into some internally

meaningful value. The utility of the touch panel is obviously greatly

increased if touches to different portions of the touch panel have

different meanings for the software. To do this, there must be some

mechanism by which the IT system can convey to the user the meanings of

various areas of the touch panel. The IT system uses plasma panel

graphics in positions correlating to meaningful areas of the touch

50

panel. For example, an application may display a rectangular box on

the plasma panel and then wait until the user breaks the touch panel

beams in front of the box before taking some action. Alternatively, the

application may wait for the user to break the light beams and then

display a marker on the plasma directly behind where the interrupted

beams intersect. Since the light beams of the touch panel are invisible,

it appears to the user of this application as if touching the plasma

panel has caused the marker to be drawn. The user tends to ignore the

touch panel and think only of displays and touches on the plasma panel

as being meaningful. As a result there has been a strong tendancy on the

part of IT programmers to closely associate meaningful areas of the

touch panel with a corresponding plasma panel graphic. Both a specific

area of the touch panel and its corresponding graphic are involved in

the concept of a touch "target".

The following discussion describes general attributes of touch

targets and the types of functions which can be performed on them. The

source for the routines mentioned are found in the subdirectory tt .

General structure. On the IT, a touch target is a distin-

quished area of both the touch panel and the plasma panel. The area is

rectangular, but several targets may be combined to form irregularly

shaped targets. Each target has a user-supplied value associated with

it. This can be any value which can be represented in one 16-bit word.

It is supplied for the use of application routines. When user touches

are "read" through the standard target routines, this is the value that

is returned to the calling program. The application program can use

this value to determine what action to take next.

In addition to a size, position, and value, each target may

51

optionally have a text label and a rectangular outline. If these standard

graphics are not used, the application may use its own graphics to

represent touch targets. Finally, associated with each target is a

collection of flags which determine attributes of the target. The most

significant of these flags are the three which determine the remote

display head(s) for which the target is defined. A target can be de-

fined on any combination display heads. If it is defined for more than

one, the graphic for the target will be displayed on multiple plasma

panels and a touch of any of the displays will register as a touch to this

this target. These flags are further explained in the entry for tt create

in Appendix B.

Manipulating Touch Targets. The most commonly used functions

for manipulating a single target include:

1. creating it by filling in a target structure,

2. activating so that user touches to this target will be recognized,

3. erasing an activated target, and

4. deleting an active target.

Activating and deleting a target are asymmetric actions.

Activating a target includes displaying it if it uses the standard

graphics. Deletion does not erase the target, but merely removes it

from the list of active targets. This difference was implemented

primarily due to speed considerations and the way in which targets are

typically used in the IT systems produced to date. In these systems,

individual targets were seldom deactivated without deleting all the

currently active targets and displaying an entirely new page. As a

result, it is much faster to erase the entire screen at once than to

erase each target individually. The procedure tt deactivate can be used

52

to erase and deactivate a single target.

A few routines exist to manipulate groups of touch targets:

1. A group of targets in adjacent spaces and of the same size

will be created by tt arranger.

2. A number of user touches will be read and the values of the

touched targets returned by tt selections.

3. All the active targets can be deleted by tt cleanup.

The routine tt selections is designed to be the standard method for

reading user touches. Application programs can also read touches

one at a time directly via tt read. However tt read does not return the

value of the touched target. Rather, for internal consistency, tt read

returns the index into the system array of active targets, tt current,

of the touched target. Application programs which call tt read directly

will need to do some calculations on their own to determine the value of

the touched target.

Other touch target routines exist. These are less generally

applicable and include functions such as:

1. draw the outline of a target,

2. print the label for a target,

3. light or erase all the dots in the area of the target,

4. distinguish a target by a small mark,

5. reposition a target without changing its other attributes, and

6. change the label on a target.

All of these functions, except the last one, work only on activated

targets.

Notes. The touch target routines assume that the application

routines do not change the values in the system array tt current. If

53

an application routine does modify tt current, attempts to use any

procedure which accesses this array may result in an illegal value being

used as a pointer to a target structure.

The label for a target is stored in the target structure as a

pointer to a character string rather than as a copy of the string. If

the contents of the string are changed after the target is created, then

the label will also change.

String Manipulation

Since the C language has no built-in string manipulating

functions, the IT software includes routines to perform some of the

more common functions. These functions include:

1. searching the contents of a string,

2. parsing a string, and

3. formatting and converting strings.

All of these routines, except as noted, follow the C convention of

expecting character strings to be null-terminated. Appendix B contains

entries for each of these routines explaining in detail how to use them.

The files containing source code for these routines are in the subdirector-

ies strings and print.

Searching Strings. The PL/1 functions index and verify were

implemented to aid in scanning the contents of a string. Index matches

one string to a substring of another. Verify finds the first character

of a string that is not in a second string.

Two strings or parts of strings can be compared for equality

by cmp. Cmp is somewhat different than other string functions since it

takes the length of the strings to be compared as a parameter rather

than acting on everything up to the NUL. This can be used to compare

54

substrings of one or both strings.

String Parsing. A string can be broken into tokens by repeated

use of get token. Get token takes a string to be parsed and a set of

delimiter characters. The returned token string will be the first

substring of the parsed string which consists of non-delimiters and is

surrounded by delimiters.

String Formatting and Conversion. Character strings can be

expanded according to a format specification by In xpand. Ln xpand is

similar to printf in its interpretation of format specification and

parameter replacement. However, instead of printing the string on the

plasma panel, ln xpand returns the expanded null-terminated string to

the caller. This function is very useful for expanding a string before

passing it to some routine such as write which does not do parameter

expansion.

Character strings representing numbers can be converted to the

internal binary format, and vice versa. Converting strings to binary is

done by cvb. This routine will handle octal or decimal numbers. It

follows the standard C convention of using a leading 0 to specify octal

numbers .

Expanding a binary number to its corresponding character

string can be done indirectly by ln xpand or directly by parm xpand.

However, the parameters to parm xpand are rather awkward as it is geared

to work with ln xpand. The easiest way to convert a number to its

string is to call ln xpand with a format of octal, decimal, or hexi-

decimal as desired.

Data Display

This section discusses the IT routines that display data items

55

in various formats. A word of explanation is needed before proceeding,

however. These routines were created as part of a demonstration system

designed to test the feasibility of the IT concept. As a result, they

are very closely tied to that initial application system. There are

several shortcomings in these routines:

1. they make assumptions about the area of the panel that can be

used for display,

2. they assume that all characters use the 16x8 grid,

3. the data value -32765 is interpretted as a special code

indicating missing data, and

4. their internal organization is poor.

The code for these routines will need much revision before they can be

generally useful. They are included primarily as an example of one way

to do things.

These routines described here will display data in three

different formats:

1. tabular,

2. bar chart, and

3 . shaded map .

The three types of display are described below, noting the outstanding

shortcomings of each. The files containing source code for these routines

are in the subdirectory display.

For the remainder of this discussion, the following definitions

will be followed:

1. An "item" or "data item" is an array of logically related

numbers, for example the populations of the counties of Illinois

2. An "element" is one of the entries in an item, for example the

56

population of Cook county.

3. A "value" is the numeric value of an element.

Table. The tabular display function is the most general of

the data display routines. It takes from one to three data items of not

more than twenty-nine elements, and the labels for each row and column

of the display. From this information it produces a horizontally and

vertically centered table of the data. The limited amount of data that

can be shown results from the use of 16x8 characters. If table is

modified to use the variable character sizes provided in the IT system,

more data could be displayed.

The only known bug in table is the assumption that each char-

acter takes 16x8 dots. If table is called using a different size of

characters, the spacing of the resulting display will be incorrect.

Bar graph. This routine will display up to twenty-nine

elements of a data item as a bar chart, labeling each bar and the entire

chart with caller-supplied labels. The caller specifies the area of the

panel to be used. The chart will be centered vertically in this space

and will use the entire width.

Bar graph has one known bug: if the difference between the

largest and the smallest values in an item is large enough to cause

overflow, no bars are drawn for the elements in that item. This bug is

directly related to the scaling algorithm. The scaling algorithm deter-

mines how wide to make the bar for each element, based on the value of

that element and the range of values in the entire chart. The algorithm

sets the minimum value to relative zero, then scales all other values

linearly above this. Problems with this algorithm include:

1. The absolute magnitude of the values are not obvious. For

57

example, an item with values 1,2,3 will produce a graph of

the same size and shape as one with values 1001, 1002, 1003.

2. Values less than zero in an item cause the zero axis of the

graph to be to the right of displayed axis. This is misleading

In addition to the problems related to the scaling algorithm,

bar graph has several other shortcomings. In particular:

1. The assumption of 16x8 characters permeates its internal

calculations .

2. It calls put ascii to print the bar labels. This should be

changed to use printf , a more general routine, for consistency.

Within the limits of these constraints, bar graph works as

advertised and may be sufficiently general to be of some use. It may

also serve as a model for a new bar graph-making routine.

Map. The map display as currently implemented is the most

specific of the three data display functions. It is so geared to one

specific system as to be of virtually no general use. However, portions

of the associated code could easily be modified to be generally useful.

The basic map functions include:

1. drawing the outline of a map,

2. shading the areas of the map according to the value associated

with each area, and

3. displaying one shaded box of the map legend.

The code to perform these functions is driven by external data structures

describing the map, and is fairly general. However this code is current-

ly imbedded in other, more specific, procedures. The data structures

themselves must be built on UNIX and loaded into the IT system when it

58

is built.

The map routines as they stand have two design shortcomings

1. the names of the external data structures are assumed to be

fixed, so that only one map per IT system is allowed, and

2. the entire data structure must be resident in memory.

59

PART II:

BUILDING AND EXECUTING IT SYSTEMS

OVERVIEW

Part II of this manual is concerned with the mechanics of

building an IT application system. It is assumed that the reader has

decided upon the application, and has written the code needed by the

application process. From this starting point, the sections in this

part discuss:

1. how to build and load an IT system, and

2. tips on how to debug a system that doesn't work.

Some discussions are very different for LSI-11 and for Level 6 terminals

In these cases, the two terminals are discussed separately.

63

COOKBOOK

Introduction

This section contains step-by-step instructions on how to

construct an IT system and how to load it into the IT. The procedure

and required tools to build and load systems are very different for the

LSI-11 terminal and for the Level 6 IT. In order to keep the descriptions

of the two procedures as clear as possible, separate discussions are

presented: first for the LSI-11 and then for the Level 6. The reader

needs only to read the subsection of immediate concern.

Within each subsection, the assumptions which have been made as

to the availability of support tools are stated. Following these is an

outline for creating an executable IT system and one for loading it.

LSI-11 IT

Assumptions. It is assumed that the reader has available as

reference guides a UNIX Programmer's Manual [11] and the LSI-11 Processor

Handbook [7] .

Necessary hardware: It is assumed that the following hardware

is available:

a working UNIX system,

operational hardware for the LSI-11 IT,

two floppy disks which are provided with the terminal, one

with the Terminal system and one with the Phoneline Loader

system,

some way to transfer information between UNIX and the IT.

This could be a hardwired line or a dialed-in phone line

65

with a modem connecting the IT to UNIX, or the facility to

write floppy disks on UNIX in the IT format.

Necessary software: It is assumed that the following software

steps have been taken:

the reader can log on to UNIX, and has access to the necessary

routines,

all of the IT system routines have been compiled and archived

in the proper order into /lib/libl.a on the UNIX system,

code for user-supplied application routines has been written,

the interrupt vectors have been assembled and the object

for this is in the file low.o in the same directory as the

application routines, and

the UNIX program "boot" either has been made generally avail-

able or is in the same directory as low.o and the application

routines .

If any of these have not been taken, the reader will need to contact a

more experienced IT programmer so they can be done. Alternatively, the

user can read the sections Building an IT System and Loading a Completed

System onto the IT, and so become such a programmer.

Reader's knowledge: The UNIX commands chdir, cc, sh, Id, nm,

strip, mv, mesg, and stty are used in this outline. It is assumed that

the reader is familiar with these commands or will check [11] for an

explanation of them. Also the reader must be able to initially logon to

UNIX.

Building an Executable IT System. Following are the steps to

take in creating an IT system. Some of the steps note reference sources

to check if problems are encountered.

66

1. Set up the IT as a standard terminal. This requires several

steps:

Turn on the power to the IT if it is off.

Mount the floppy disk labeled "Terminal" on drive 0

of the IT. To properly orient the floppy, during inser-

tion the user should hold the disk by the edge opposite

the oval hole with the label side up.

Push the "Start" button on the IT and the "IPL" button on the

disk to automatically load the terminal simulator program.

After it is loaded, the terminal system will hold a brief

dialogue with the user. When this is complete, the IT

will be set up as a standard terminal.

2. Logon to UNIX [11] .

3. If necessary, change the working directory to the one which

contains the application routines [11], e.g.

chdir IT

4. If the user-supplied application routines have been changed

since the last time they were compiled (or if they have never

been compiled) they should be compiled now. For example:

cc -c main.c subl.c sub2.c [11]

Note that the M-c" option to cc MUST be present. (If any

compilation errors occur here, the affected routine (s) must be

fixed and re-compiled before proceeding to the next step.)

5. Load the user-supplied application programs together with the

system routines using the Id command [11]. For example:

Id -X low.o main.o subl.o sub2.o -II -lc -la

Errors here are usually in the form of undefined external

67

references. This could mean that a subroutine or external

variable name was misspelled in some routine, or that the

files in a library are out of order. These errors must be

fixed, the offending routines recompiled and the system re-

loaded before proceeding.

6. It is useful, but not necessary, to print a list of external

symbols at this point for later debugging use. To do this,

type:

nm -ng a. out pr -4 -wl32 lpr [11]

This will cause the namelist to be printed on the UNIX line

printer.

7. Now, it is also useful to strip the symbol table from the

executable file [11]. This will not effect the execution of

the system, but it will reduce the size of the file, thus

reducing the disk space requirements. Type:

strip a. out

8. Finally, it is a good idea to rename the executable system

file, called "a. out", which has just been produced. If this

is not done, subsequent system constructions, assemblies, or

compilations will destroy this system file. Type:

mv a. out IT_system [11]

"IT_system" in this example is the new name for the system

file. It is not necessary to use this name. The user can use

any valid UNIX file name which is convenient.

The system file has now been created. At this point it is

possible to log off, if desired, or to proceed to Loading the System

onto the IT.

68

Appendix F contains a listing of a file, RUN_ME_raksys , which

can be executed to automatically perform steps 5 through 8 of the previous

sequence. If this set of commands is put into a Unix file, it can then

be executed by the sh command. The assumptions made by RUN_ME_mksys are

included in its description in Appendix F.

Loading the System onto the IT. There are three ways to load

an IT system into the terminal:

1. using the communication line between UNIX and the IT,

2. using the bootstrapping facility on the IT floppy disk, and

3. using the IT utility system SOTS.

Each of these techniques are described below.

Using communication line: Following are the steps to take,

for loading a system into the IT by using the communication line between

the IT and UNIX.

1. If not still logged in to UNIX, re-do the first three steps

of the last session, i.e., set up the IT as a terminal, get

logged in and change the working directory to the one with the

new IT system.

2. Disallow messages from other users by typing:

mesg n [11]

3. Force UNIX to not echo characters input to it by typing:

stty -echo [11]

4. The IT bootload program must be loaded at this time. To do

this, mount the floppy disk labeled "Phoneline Loader" on

drive 0. Push the "Start" and "IPL" buttons to automatically

load and invoke the bootload program.

5. The bootload will use the keyboard display to ask if the

69

system file should be written to disk. To execute the system

type an "n" followed by a carriage return. (New system disks

can be created by copying the system file to disk. To do

this, the user should remove the "Phoneline Loader" disk and

mount a new blank disk, and then type a "y" instead of "n" to

bootload. The bootload program will then write the system

file to disk instead of executing it after it is loaded.) The

bootload will ask for the name of the file to load. When it

does, type the UNIX name of the system file ("IT_system" in

this example), followed by a carriage return.

6. The IT bootloader will then use the UNIX "boot" command to

pull the IT system in over the line. The IT system will be

automatically started when transmission is completed (unless

it is being written to disk) . If the UNIX end of this proce-

dure ("boot") can't find the specified file (usually due to a

misspelling on the part of the user) , then the bootloader will

ask again for the name of the file. Check the spelling of the

name and re-type it.

7. When the bootloader has successfully loaded the IT system for

execution, it will logoff from UNIX and start the new system

program. If it has copied the system to disk, the bootloader

will not log off, but will will loop and ask the user for the

name of the next file to load.

Using floppy disk bootstrap: It is possible to use UNIX facilities

to put a system directly on a floppy disk in the IT bootstrap format. This

technique is generally somewhat simpler and faster than the previous one.

The steps for creating a new bootstrap disk are described below.

70

1. Logon to UNIX, either through the IT as described above or

using a standard terminal.

2. Mount the floppy disk to be used on any of UNIX's floppy disk

drives. In general, any previous contents of the floppy disk

will be lost in the process of writing the bootstrap program.

The user should consider this when selecting a floppy disk to use

3. Invoke the utility to write the system in bootstrap format, by

typing:

put_one_one

4. Put_one_one will hold a short dialog with the user to determine

what needs to be done. After each response, the user should type

a carraige return. In particular, put__one_one will ask:

the number of the drive which contains the floppy,

whether the floppy disk should be initialized, and

the name of the file containing the system to be

put onto the disk.

To specify whether the floppy should be initialized, the user

should type either a 'y' for yes, or an 'n' for no. If the disk

has never been used before, it must be initialized. If the disk

has been used it is not necessary to reinitialize it, but it will

not hurt to do so.

5. When put_one_one has written the system to disk, it will ask

again for the name of the drive to use. Enter a control D

(EOT, octal 4) to return to command level.

6. Logoff of UNIX.

7. Remove the floppy disk and mount it on drive 0 of the IT.

8. Push the "Start" and "IPL" buttons on the IT to automatically

71

invoke the system.

Put_one_one can be used to create more than one bootstrap disk

per invokation. To do this, the user merely continues answering the

questions asked by put_one_one, taking care to ensure that the created

disks are replaced by new floppy disks before reusing any drive. When

all the system disks desired have been written, the user can return to

command level by typing a control D (EOT, octal 4).

Using SOTS: The LSI-11 IT is provided with a utility system

which can load the terminal with a program stored as a file in IT format

on a floppy disk. This utility program is called SOTS and resides in

the util subdirectory of the main it directory.

To load a system using SOTS, take the following steps.

1. Logon to UNIX.

2. Mount a floppy disk on drive 0 on UNIX.

3. Put SOTS on the disk in bootstrap format as described above.

If the disk already contains SOTS as the bootstrap, this step

can be omitted.

4. Write the new IT system on the disk using the utility put.

Using the above example name, this would be done by:

put IT_system <IT_system

5. Logoff of UNIX.

6. Mount the floppy disk with SOTS and the new system on drive 0

of the IT.

7. Press the "Start" and "IPL" buttons on the IT to load SOTS.

8. When SOTS is invoked enter the name of the new system,

IT_system in this example, followed by a carriage return.

Typing errors made when entering the name can be corrected by:

72

typing either backspace (BS, octal 10) of delete

(DEL, octal 177) to delete the previous character, or

typing a cancel (CAN, octal 30) or control X (octal

30) to delete the entire line.

When the name is entered, SOTS will automatically invoke the

new system. Some systems may be too large to load using SOTS. In these

cases, SOTS will print a message saying that it is unable to load the

system because it is too large. Such systems must be loaded using one of

the two methods described above.

Level 6 IT

Assumptions

Necessary hardware: It is assumed that the following hardware

is available:

a working UNIX system, and

operational hardware for the Level 6 IT.

Necessary software: It is assumed that the following soft-

ware steps have been taken:

the reader can log on to UNIX, and has access to the necessary

routines ,

all of the IT system routines have been compiled, trans-

ferred to the Level 6, and assembled with the resulting

object code being located in a file called LIB,

code for user-supplied application routines has been

written,

a copy of the UNIX to Level 6 cross compiler, 16, is

available on UNIX, and

the UNIX utility program tol6 has been made generally

73

available.

If any of these steps have not been taken, the reader will need to

contact a more experienced IT programmer so that they can be done.

Alternatively, the user can read the sections Building an IT System

and Loading a Completed System onto the IT, and so become such a pro-

grammer .

Reader's knowledge: The UNIX command choir and the utilities

16 and tol6 are used in this outline. It is assumed that the reader

is familiar with these commands. Also the Level 6 BES commands DEC2L6,

ASM, LINKER, and AT are used. It is assumed that the reader is

familiar with these commands or will go to [9] or Building a Level 6

System for explanations of them. Additionally, the user must be able

to logon to UNIX.

Building an Executable IT System. Following are the steps

to take when creating an IT system. Some of the steps note reference

sources to check if problems are encountered.

1. Using a standard terminal, logon to UNIX.

2. If necessary change the working directory to the one which

contains the application routines [11], e.g.

chdir IT

3. All user-application routines which have changed since they

were last compiled should be re-compiled at this time using

the UNIX to Level 6 cross-compiler 16. This compiler is used

in approximately the same manner as the cc compiler. For

example:

16 main.c subl.c sub2.c

(Note that 16 does not require a -c parameter.) If any

74

compilation errors occur here, the affected routine(s)

must be fixed and re-compiled before proceeding to the next

step.

4. Transfer the files created by the compilation to the

Level 6. Each file must be transferred individually.

Steps 5 through 8 describe the transfer procedure for one

file.

5. Mount a floppy disk on any drive on UNIX.

6. Write the output file to a floppy disk using the utility

tol6. This utility will hold a dialogue with the user to

determine exactly what needs to be done. An example of this

dialogue which will put the assembly file corresponding to

main.c above onto the disk which is mounted on drive 1 is:

Drive number (0 or 1) : 1

Do you want to initialize this disk? (y or n) : n

Name of file: main. a

(Remote file opened)

Drive number (0 or 1): [EOT]

7. Remove the floppy from UNIX, and mount it on the Level 6.

8. Read the file into the Level 6 file system using the

utility DEC2L6. DEC2L6 assumes that logical file number

1 is attached to the disk which was written by tol6, and

that logical file 3 is attached to the user's library file.

If xxxx is the disk drive with the disk created by tol6,

ULIB is the user's library which is mounted on drive yyyy,

and file. a is the name of the assembly-language file being

75

copied, then enter the BES commands:

AT 1 DSKxxxx DUMMY

AT 3 DSKyyyy ULIB

DEC2L6 FILE. A

(If a number of routines are being copied into the same

library file, the first two lines need only be typed the

first time.)

9. After all files have been transferred to the Level 6, log

off of UNIX.

10. Assemble the transferred files. First enter the BES command

AT 1 = 3

to allow the assembler to read the files that were just

put into ULIB. Then, for each file name. A that was copied,

enter the command:

ASM name NL

(Note that the ".A" suffix is left off of the file name.)

This will produce an object file with the suffix .0 for

each source file.

11. (Optional) To save space in ULIB, it might be useful to

delete the assembler source files from the library. To do

this, assuming ULIBD is the name of the disk on drive yyyy

which contains ULIB, type:

AT 10 DSKyyyy ULIBD

UTILL1

DL ULIB:file.A 10

(Repeat the above line for each file to be deleted.)

QT 76

DT 10

12. Load the files to create the IT system. The file ITSYS.S

in LIB contains the linker commands required to build a

system. To use the linker with these commands, type:

AT 4 DSKzzzz LIB

AT 5 =4

AT 2 LPT0580 Note: this step is used only when there

is a line printer.

LINKER ITSYS.S

where zzzz is the disk drive containing LIB. This will

link all of the object files in ULIB together with the

necessary object files from LIB. The resulting IT system

will be contained in the file ITSYS in ULIB.

The system has now been created. At this point it is

possible to log off of the Level 6, if desired, or to proceed to

Loading the System Onto the IT.

Loading the System Onto the IT

To load the system onto the IT, it is necessary to tell the

BES command processor which file contains the system and what is

the name of the system. If yyyy is the disk containing ULIB, then

the necessary commands to load the system are:

AT 0 DSKyyyy ULIB

ITSYS

77

BUILDING AN IT SYSTEM

Introduction

This section describes, in greater detail than the Cookbook

section, how to build a system for either an LSI-11 IT or a Level 6 IT.

It covers the major phases of system construction, explaining what needs

to be done and why. Again, the methods for creating systems for the

LSI-11 terminal are very different from those for the Level 6 IT, and

are presented in different subsections.

Building an LSI-11 IT System

System creation is done in four major steps:

1. The source code for the system is created in several files.

2. The source files are compiled or assembled, yielding loadable

object files.

3. Object files for system routines and commonly used application

routines are collected together into one or more libraries.

(This step is optional.)

4. The various object files are loaded together using the UNIX Id

command to produce the single, executable system file.

All procedures (application and system) and data structures needed by

the application system must be loaded together in one executable file.

Note that all UNIX commands referenced in this section are explained in

the UNIX Programmer's Manual [11].

Before discussing each of the steps required to produce a

system, there is a brief discussion of UNIX naming conventions. Following

this, each of the major steps is discussed in turn. Finally there is a

brief section of miscellaneous notes.

79

Naming Conventions. The files containing IT code follow a

standard set of naming conventions. By understanding and using these

conventions, programmers can tell a great deal about the contents of a

file simply by its name and can help avoid inadvertently overwriting

files.

Source code file names end with the suffix ".c" or ".s". The

".c" suffix is required by the C compiler for all C language source files.

The ".s" is used to designate assembler code source files.

Loadable object files have the suffix ".oM. This naming

format is followed automatically by the C compiler: compiling name.c

will produce name.o. However the assembler always leaves its output in

the file a. out. In order to avoid overwriting the assembled file, us
ers

should explicitly rename the file to the corresponding ".o"
 name.

For simplicity, executable files have no suffix.

There is a fourth type of file used by the IT code. This is

called an "include file" and is usually, but not always, recognizable by

its ".incl" suffix. Include files are widely used to hold the definition!

of system values or structures. These files may be referenced
by other

files by means of the C "include" construct. This causes the
entire

contents of the included file to be inserted into the source fi
le at the

point it is referenced.

The function of each of these types of files in the process of

building a system is discussed below.

Creating Source Files. Any of the standard UNIX editors
 can be

used to create source files. Souce files may also be loaded
 from a tape

or other machine-readable medium. The include files referenc
ed by IT

source files must also be created, as above, before the so
urce files can

80

be processed. Before compiling the system it may be necessary to change

some of the values defined in these files to reflect the exact requirements

of the application system.

Creating Loadable Object Files. Once each source file (and

all its include files) is available, a loadable object file is created

from it. This is done using the UNIX command "cc" for C language programs

or "as" for assembly language source. It is necessary to use the "-c"

option with cc or the "-" option with as to insure that loadable code

for the routine is produced. Without these options, the cc command will

attempt to create an executable file using the IT routine and the

standard UNIX routines. This will produce erroneous results. Also,

after each assembly, the resulting a. out file must be renamed to avoid

being overwritten by the next assembly or compile. For example, after

assembling the file exam.s, the user should do a "mv a. out exam.o" to

preserve the assembled file.

It should be noted that unless this is the first time the

system is being built, it is not necessary to re-compile all of the

routines. It is only necessary to compile those routines which have

changed since the last compilation.

Building Libraries. It would be possible at this point to

create an executable IT system file from the loadable code files (dis-

tinguished by their .o suffix) produced in the previous step. However,

this would be very tedious since a large number of files would have to

be specifically named. It is extremely useful to first build one or

more libraries containing system routines and any application routines

which will not change frequently. Routines which are still being debugged

and are therefore changing frequently will generally be left out of the

libraries. The use of libraries will make it unnecessary to list all of

the routines in the system when they are loaded. It also has the advantag<

that library routines will automatically be included only if they are

referenced by some other routine, thus minimizing the size of the system.

The UNIX ar (archive) command is used to build a library. A

library is an archive whose members are loadable object files. A library

of system routines is useful for making systems, as the user can pass

the library to Id and all the system routines in the library used by the

current application will be extracted. This manual assumes that such a

library exists in the file /lib/libl.a.

Because of the way libraries are treated by the loader, the

order of files within a library is significant. To understand why, and

to be able to order entries within libraries properly, it is necessary

to know something of how the loader operates.

As the loader loads each file, it will

resolve any external references in the new file that are

supplied by already loaded files,

use the external references in the new file to resolve any

references left over from prevous files, and

add the still unresolved references from the new file to the

list of undefined symbol names.

The arguments to the loader will be scanned in the order they

are listed on the command line. If an argument is an object file, it

will be included when it is encountered. If the argument is a library,

then the loader will look at each file in the library in turn. For each

file in the library, the loader will check to see if that file can

resolve any previously undefined names. If it can, the file is included

in the loaded system. Otherwise, it is not. As a result of this

action, the order of files in a library is important. For example, file

printf .o contains the procedure printf . Printf references the procedure

82

put ascii which is contained in put ascii.o. In order for the loader to

pick both printf and put ascii from the library, printf .o must precede

put ascii.o in the library. Figure 15 is an example of a load using a

library.

Typical problems which occur when the files in a library are

not in the correct order include:

main.o

p2.0

lib. a

contains

main

references

Pl P2

contains

P2

file 1

contains :

Pl

references:

P3

•
•

file 2 contains:

P2

•
•

file 3 contains:

P3

When these files are loaded together by the command
Id main.o p2,o lib. a

the resulting system will include the contents of
main.o, p2.o file 1, and file 3. File 2 will not
be used since p2.o will resolve the reference to p2.

Ld using a library

Figure 15

83

an undefined global variable,

a missing procedure, or

an incorrect version of some procedure or global variable

being included, possibly causing unexpected results when the

system is executed.

Loading the Executable System. The last step required for

producing the executable system file is to load the pieces together.

The order in which parameters are specified to Id is significant since

routines will occur physically in the loaded system in the order in

which they are encountered, and due to the use of libraries. The general

order of the parameters should be:

1. low.o. Because of the way interrupts are handled on the LSI-

11, the first 400 (octal) bytes of memory are reserved for

interrupt vectors. In order for these to be properly initializ
ed,

the file containing the interrupt vectors must be included

first. This will usually be low.o.

2. System specific application routines. Any user-s
upplied

application routines specific to this system should g
enerally

be included next.

3. Application libraries. These are general appl
ication routines

(or libraries containing them) that might be included
 in the

system.

4. The IT system library /lib/libl.a. This may b
e referenced by

the shorthand notation -II.

5. The standard UNIX libraries. These are specified
 by the -lc

and -la options, and make it possible to use standard
UNIX

routines where desired.

84

The result of this load will be an executable system named a. out. This

should be renamed to avoid being inadvertently overwritten.

An example of an Id command to build an IT system, which

assumes that all of the application object code is in one subdirectory

off of the main IT directory, would be:

Id .. /kernel/low. o *.o -II -lc -la

This will produce an output file which contains:

1. the version of low.o in the kernel subdirectory off of the

main IT directory,

2. all of the object files in the application subdirectory, and

3. support facilities from the IT library /lib/libl.a, and

from the UNIX system libraries /lib/libc.a and /lib/liba.a

as needed.

When the load has completed the system should be renamed by doing a

mv a. out X

where X can be any UNIX file name desired. After the system has been

renamed, other systems can be loaded without destroying this system.

For later debugging purposes, the user may want a namelist,

described in Debugging IT Systems, of the new system. This can be

generated by the UNIX command nm. After the namelist is generated, the

symbol table of the a. out file should be removed by the strip command.

Strip will not affect the ability of the file to be executed, but it

will reduce the size of the file as stored on disk.

Some Random Notes on Building Systems. The system initializa-

tion routine startup will create one user process called "main" in

addition to a process for each device in the system. The name of the

85

user process can be changed by changing the values in PROCTAB . c before

building the system.

If the user needs to replace a system routine, this can be

done by explicitly specifying the user file containing the procedure,

with the same name, in the Id command. The file must be specified

before the library which contains the system routine to be replaced.

Building a Level 6 IT System

System creation is done in five major steps:

1. The source code for the system is created in several files

on UNIX.

2. The source code is compiled on UNIX, producing files con-

taining Level 6 assembler code.

3. The assembler files are transferred to the Level 6.

4. Files are assembled on the Level 6.

5. The various object modules are linked together to produce

a single, executable system.

All procedures (application and system) and data structures needed

by the application system must be loaded together in one executable

file. Note that all UNIX commands referenced in this section are ex-

plained in the UNIX Programmer's Manual [11]. BES commands are ex-

plained in Program Development Tools [9].

Before discussing each of the steps required to produce a

system, there is a brief discussion of UNIX naming conventions. Fol-

lowing this, each of the major steps is discussed in turn. Finally,

there is a brief section of miscellaneous notes.

Naming Conventions. The files containing IT code follow

a standard set of conventions. By understanding and using these

86

conventions, programmers can tell a great deal about the contents

of a file simply by its name and can help avoid inadvertently overwriting

files.

Source code file names end with the suffix ".c" or M.a".

The ".c" suffix is required by the 16 C compiler for all C language source

files. The M.a" is used to designate assembler code source files. The

M.a" is used to designate assembler code source files. Output files

from the 16 compiler will automatically contain the ".a" suffix. This

suffix is also required by the Level 6 assembler.

Loadable object files have the suffix M.o". This naming

convention is automatically followed by the Level 6 assembler:

assembling name. a will produce name.o.

For simplicity, executable files have no suffix.

The Level 6 restricts file names to being at most six char-

acters plus a suffix. As a result, the names of files on the Level 6

are generally trucated versions of the UNIX names. For example, com-

piling the file "long_name.c" on UNIX will produce an output file named

"long_name.a". When this is transferred to the Level 6, the name will

have to be shortened. In order to retain the ".a" suffix, the user must

truncate the first part of the name so that "longjiame . a" on UNIX be-

comes "long_n.a" on the Level 6. When this file is assembled, its

resulting object file will automatically be named "long_n.o".

There is a fourth type of file used by the IT code. This

is called an "include file" and is usually, but not always, recogniz-

able by its ".incl" suffix. Include files are widely used to hold the

definitions of system values or structures. These files may be refer-

enced by other files by means of the C "include" construct. This

causes the entire contents of the included file to be inserted into the

source file at the point it is referenced.

87

Creating Source Files. This process is the same for Level 6

systems as for the LSI-11 systems. See the subsection Creating Source

Files in the previous discussion.

Creating Assembly Language Files. Once each source file

(and all its include files) is available, a Level 6 assembly file
is

created from it. This is done using the UNIX to Level 6 cros
s-compiler

16. It should be noted that unless this is the first time th
e system

is being built, it is not necessary to recompile all the
 IT routines.

It is only necessary to compile those routines which ha
ve changed since

the last compilation.

Transferring Files to the Level 6. Files are trans
ferred

to the Level 6 by writing them on floppy disks usi
ng the UNIX utility

tol6, and then reading them using the Level 6 util
ity DEC2L6. Only

one file can be put on a floppy at a time, so if
 several files are to

be copied it is necessary to use several flopp
ies or to read each

file off of the floppy before the next is put
on.

Files are written to floppies using the utilit
y tol6. Tol6

removes any previous file on the disk and t
hen allows the user to specify

the name of a file to write. When it is invok
ed, tol6 engages in a

dialogue with the user, asking the follow
ing questions:

1. Disk to put file onto (0 to 1):

2. Do you want to initialize this disk f
irst (y or n) :

3. Name to initialize disk with:

4. File name:

The possible responses to the first
 two questions are noted in the

questions themselves. (A disk onl
y needs to be initialized the firs

t

time it is used for an IT file.) T
he third question will be asked

88

only if the user responded "y" to the second question, and should be

answered with any ASCII string cf characters indicating the desired

name of the disk. The last question should be answered with the name

of the UNIX file containing the IT file to be transferred to the

Level 6.

The file written onto the floppy is organized as a linked

list of disk sectors. The file starts on track 0, sector 1. The

last two bytes of each sector contain the track and sector number of

the next piece of the file. The end of the file is indicated by a

sector number of zero.

Once a file has been written to a floppy disk, it must be

copied into a BES partitioned file using the utility DEC2L6. (See

the BES utilities manual [12] for instructions on how to create and

format a partitioned file.) DEC2L6 expects logical file number 1 to

be attached to the floppy written by tol6 and logical file number 3

to be attached to the partitioned file which will receive the copied

file. (In standard BES systems, the id's of the two floppy disk

drives are, from left to right, 0400 and 0480.) If xxxx is the id of

the drive containing the disk written by tol6 and yyyy is the id of

the drive with the user's library (partitioned file) called ULIB,

then use the two attach commands

AT 1 DSKxxxx DUMMY

AT 3 DSKyyyy ULIB

Then, to copy each file, type:

DEC2L6 FILE. A

where FILE. A is the name that will be given the file in ULIB.

89

Assembling the Files. Once the assembly-language files have

been copied to the Level 6, they must be assembled. The assembler

reads its input from logical file number 1 and writes its output to

logical file number 3. It is possible to write the object file back

into the same partitioned file that contains the assembler source by

attaching both logical file numbers 1 and 3 to the same file. If an

assembly-language listing of the program is needed, logical file

number 2 must be attached to the line printer. To assemble the file

FILE. A in ULIB on disk yyyy with no listing and put the object into ULIB,

use the commands:

AT 1 DSKyyyy ULIB

AT 3 =1 (This means that logical file 3 is the same as 1)

ASM FILE NL

Note that the ".A" suffix is left off of FILE in the ASM command.

If a listing is desired, use the commands:

AT 2 LPTpppp

AT 1 DSKyyyy ULIB

AT 3 =1

ASM FILE

where PPPp is the id of the line printer. (This
is 0580 in standard

BES systems.)

The assignments made in the AT commands remain u
ntil they

are explicitly changed (or until the system i
s re-booted). Specifically,

the ASM command does not destroy them. Theref
ore, if several files are

to be assembled from the same library it is on
ly necessary to enter

the AT commands the first time.

90

Linking the Executable System, Once all of the necessary

files have been assembled, the object files must be linked together

to form an executable system. The BES linker requires a number of

attach commands. The logical file numbers that must be attached are:

1. This should be attached to the user's library.

2. This is where the linker's list of files included and the

map will be printed. It can be attached to either the

system console or to the line printer.

3. This should be attached to the partitioned file in which

the executable file should be put. It can be the same

library that contains the user's object files.

4. This defines the device or file which contains the linker's

command input. To use the provided command stream ITSYS.S

described below, this should be attached to LIB.

5. Attach logical file number 5 to LIB, the library of IT

system software.

If the IT library LIB is on drive zzzz and the executable

program is to be put into ULIB, use the set of attaches

AT 1 DSKyyyy ULIB

AT 2 LPTpppp

AT 3 =1

AT 5 DSKzzzz LIB

AT 4 =5

The IT library LIB contains a file ITSYS.S containing the linker

control commands required to load a system. The commands included

and what they do are as follows:

91

NAME ITSYS

This command specifies the name of the executable file to

be produced. The executable file produced by ITSYS. S will

always be ITSYS.

HMA X'FDOO'

This specifies that the linker can create a loadable file

up to FDOO (hex) words long.

LINK LOW

This forces the file LOW.O to be loaded first, thus ensuring

that the low end of memory will be set up properly when

the system is executed.

LINKA

This causes all object files (files with a ".0" suffix)

in the file attached to logical file number 1 to be in-

cluded. Therefore, all object files in ULIB will be in-

cluded, even if they are not called by any other routine.

LINK CS8X16,CS6X10

This loads the two character sets.

LINKN END

This defines the external variable END used by startup to

locate the highest address used by the IT system.

MAP

This forces the files mentioned above plus all necessary

files in LIB to be actually read in. A map of procedures

and external variables is printed along with the address

in memory of each. Also printed is a list of procedures

and any undefined external names that have been referenced.

92

If any names are undefined, there is an error. Check

for a spelling error or for a missing object file.

QT
This causes the linker to write out the executable system

file and quit.

To run the linker using the above set of commands in ITSYS.S, do the

indicated attaches and enter the command

LINKER ITSYS.S

There is one important caveat when using the linker. As

the linker finds and includes each object file needed, it prints a

line saying that that file is included. If it cannot find a file

(named, for instance, FILE.O) that is needed it prints the message

FILE.O NT FND

Unfortunately, for files in the user's library, this message is some-

times printed in error. If this message appears in the linker listing,

check the list of undefined names. If there are no unexpected unde-

fined names, then the error message can be safely ignored. If, however,

the name is undefined, then the file was really not found. This is

usually due to a missing file or to a spelling error on the part of

the user.

Some Notes on Building Systems. The system initialization

routine startup will create one user process called "main" in addition

to a process for each device in the system. The name of the user process

can be changed by changing the values in PROCTAB . c before building the

system.

If it is necessary to replace some system routine in a

given IT system with one supplied by the user, this can be easily

93

accomplished by including the new copy of the routine in the user's

library. The LINKA command to the linker will ensure that that

routine gets included, and it will override the system routine with

the same name .

94

LOADING A COMPLETED SYSTEM ONTO THE IT

Introduction

Once an executable IT system file has been created using the

procedures described in Building an IT System, it is necessary to

bootload the file onto the IT hardware. This chapter explains this

process for the LSI-11 IT and then for the Level 6 terminal. For a

step-by-step description of what needs to be done, see the section

Cookbook.

Loading the LSI-11 IT.

As mentioned in the section Cookbook, there are three methods

of loading a system into an LSI-11 IT. One method involves dumping the

system to the IT from UNIX, using the connecting communication line.

The second method involves using UNIX to write the system on a floppy

disk in IT bootstrap format and then bootstrapping from the disk. The

third method involves using the IT utility program SOTS to load the

system. Each of these methods is described below, followed by a discussion

of their relative merits.

Using Communication Line. The bootloading process requires

two cooperating programs, one on the IT and one on UNIX. The program

boot , running on UNIX, sends the IT system over an 8-bit data path. The

bootloader program running on the IT reads this data into successive

locations of the IT memory, starting at location 0. When the entire

system has been read in, the bootloader logs out from UNIX and branches

to location 0, thus starting up the IT system.

Boot first sends a two-byte header which is the length of the

system file in words. Then it sends the file itself one byte at a time.

95

(Note that on some UNIX systems it is not possible to transmit 8-bit

binary data. In this case boot will break each 8-bit byte into two 4-

bit pieces and send each piece as a separate byte. The bootloader on

the IT must then reassemble the two pieces back into one 8-bit byte.)

Doing the bootload: The IT should be set up as a standard

terminal by loading the terminal simulator from the disk labeled Term-

inal. In this mode, the IT should be used to connect to UNIX and to

enter a directory where the system file and boot are both accessible.

It is useful to have made boot a generally available command on UNIX.

Once this has been accomplished, the bootloader program should

be loaded into the IT. This program resides on the disk labeled "Phoneline

Loader" and will overwrite the terminal simulator when loaded. The

bootloader can perform two different types of loads. In one case when

the IT system is loaded, bootload will log off of UNIX and branch to the

location 0 to start executing the system. In the other case, the loaded

system will be written to floppy disk and bootload will loop to the

point of asking for the name of the next file to copy. (In the second

case, bootload will not log off of UNIX.)

When the bootloader is invoked it will ask, using the keyboard

display, whether the file should be written to disk. The user should

respond by typing a "y" if it is, or "n" if not, followed by a carriage

return. The bootloader will then ask for the name of the file to be

loaded. The user should respond by typing the name of the UNIX file.

When this has been done, bootload will send the command "boot X" (where

X is the name of the file to be loaded) over the line to UNIX, thus

starting the file transfer.

Notes: It is assumed that the system file to be bootloaded is

96

in the same format as files created by the Id command.

It is a good safety precaution to disallow messages before

starting up the bootloader. If someone writes to the terminal while a

bootload is in progress, it can garble the system being loaded. This

can be done by typing a "mesg n" command on UNIX. Unfortunately, it is

not possible to disallow broadcast messages in this way.

Using Floppy Disk Bootloader. Under this method, UNIX is used

to write the system onto a floppy disk in IT bootstrap format. After

this has been done, the hardware bootstrap capability of the IT can be

used to load the system into the terminal.

The IT system is written to floppy disk using the UNIX utility

program put_one_one . (This utility can also be invoked by the name pll.

The shorter name is provided for programmer ease.) Put_one_one removes

any previous bootstrap program that was on the disk and then writes

the new IT system onto the disk in the bootstrap format. After the disk

has been written, put_one_one loops to allow the user to write another

bootstrap disk. After the bootstrap system has been written, the disk

can then be mounted on the IT and the disk's hardware bootstrap facility

used to load the system.

When put_one_one is invoked, it will hold a dialogue with the

user in order to determine exactly what needs to be done. The questions

presented to the user are:

1. Disk to put startup program on (0 or 1):

2. Do you want to initialize this disk first (y or n) :

3. Name to initialize disk with:

4. File name:

The possible responses to the first two questions are noted in the

97

questions themselves. The third question will be asked only if the

user responded 'y' to the second question, and should be answered with

any ASCII string of characters indicating the desired name of the disk.

The last question should be answered by the name of UNIX file which

contains the IT system to be written.

An IT bootstrap program on the floppy disk is organized as

a linked list of disk sectors. The program starts in track 0, sector 5.

The last two bytes of each sector contain the track and sector number

of the sector containing the next piece of the program. The end of the

program is indicated by a track and sector number of 0.

Using SOTS. SOTS is an IT system which can load other systems

from floppy disk into the IT and start their execution. The loaded

systems are stored on disk as standard IT files. The advantage of using

SOTS to invoke programs is that several systems can be stored on a

single floppy disk. This significantly reduces the number of floppies

used to hold systems, as compared with the previous method which re-

quires one disk per system.

To load an IT system using SOTS, merely type its name. The

program will be loaded and execution started automatically. In addition,

SOTS can also list the contents of a file. By typing

Is n

it is possible to get a list of the files mounted on drive n. To get

a list of files on all of the drives, type Is with no parameters.

Comparison of Loading Methods. Each of the methods for

loading an LSI-11 IT described above has some advantages and some

disadvantages. Significant points regarding the method using the

communication line include:

98

1. does not require that UNIX support floppy disks or that

UNIX be able to write disks in the IT format,

2. is a slow process since loading is limited by the speed of the

communication line,

3. there is no error detection in the loading process, and

4. unless the system is written to floppy disk when it is loaded,

the entire procedure will have to be repeated in order to

reload the system.

The first point is the major advantage to this method. Significant

points regarding loading an LSI-11 IT from floppy disk include:

1. requires that UNIX have facilities to write floppy disks in

IT bootstrap format,

2. is generally faster to write the system on UNIX and then

bootstrap it on the IT,

3. UNIX facilities do error detection when writing the disk, so

the chance of errors is reduced, and

4. this method automatically creates a disk for future use,

eliminating the need to repeat the entire procedure later.

The first point is the major drawback to this method. If such facilities

do exist on UNIX, then this will generally be the preferable method.

Loading the Level 6 IT i

There are two methods for loading a system onto the Level 6 IT.

The recommended method is to use the BES command processor. It is also

possible to set up a BES system disk that will automatically bootstrap

an IT system instead of the BES command processor. This is useful it

there is no operator console on the IT.

99

Using BES Command Processor. Logical file number
 zero is used

by the BES system to identify which file to loa
d system from. Therefore,

if a system names ITSYS in file UL1B on drive x
xxx is to be loaded,

use the BES commands:

AT 0 DSKxxx ULIB

ITSYS

Using BTGEN on a Disk. The BES program BTGEN can
be used to identify

which program will be bootloaded from a disk.
To create a disk that will

bootload an IT system, some setup must be done.

1. Create the partioned file PROGFILE on t
he disk using the BES

utility package UTILL1. The use of UTI
LLl is described in

[12].

2 . Copy the programs DSKLDR and TRMND into
PROGFILE from the <

file PROGFILE on the BES system disk. Yo
u will need to use

UTILL3 to make the copies.

3. Use BTGEN to identify the name of
 the program to load when

bootloading from the disk. BTGEN is
 described in detail in

[12]. If ITSYS is the name of the pr
ogram to be loaded, the

parameters to use are:

N,N,FFFF,0,, ITSYS

4. Copy or link the system into
 ITSYS in PROGFILE. Linking the

system is described in Building an
IT System.

The disk is now ready. The operati
ons needed to bootload the system

are exactly the same as those used
to bootload a BES system.

^^^^
 Each of the methods for lo

ading

a Level 6 IT described above has adv
antages and disadvantages. The

significant points regarding using
 the BES command processor include

:

100

1. It is relatively less convient and somewhat slower. Several

lines of input must be typed for each execution of an IT system.

2. Several IT systems can be stored on the same disk.

The second point is the major advantage to this method. By comparision,

using BTGEN is:

1. More convient, and

2. wasteful of floppy disk space, because only one program can

be stored on each disk.

101

DEBUGGING IT SYSTEMS

After an IT system has been successfully written, compiled,

loaded, and dumped onto the IT, it may not execute properly due to

system bugs of one sort or another. When this happens a great deal of

information can be obtained by checking the values of various memory

locations of the terminal.

This section includes tips and information useful in performing

such post-mortem investigations on the IT system. It describes:

1. how to locate specific variables in memory,

2. commonly referenced system variables,

3. the organization of a process stack, and

4. an example of a post-mortem.

The discussion assumes that the reader is familiar with the use of the

LSI-11 debugger, described in [7], and the use of the Level 6 console,

described in [5] .

Getting Started

Before the contents of memory locations can be meaningful, the

programmer must know the correspondence between memory locations and the

procedures, variables and data structures on the system. For LSI-11

terminals, the UNIX utility program nm can be used at system creation to

produce a list of such correspondences. For Level 6 terminals, the list

can be generated by a MAP command when the system is being LINKed. Each

of these utilities are described below. A list of this sort is essential

to understanding the contents of the IT memory.

Accessing Memory

UNIX nm. The nm command is used to produce a namelist for

LSI-11 systems. Nm must be run after the entire system is loaded

together and before it is stripped of symbolic information. The output

103

of nm is a printable file referred to as a namelist containing the

memory address of variables in the system.

The exact variables included in the namelist will depend on

the parameters passed to nm. Typically, it will include procedures and

global (external) variables. The value associated with each variable is

the address of the location referenced by the variable. For procedures,

the value is the address of the first instruction of the procedure. For

external variables, the value is the address where the variable is stored

For more complicated data structures the value is the address of the

first byte of the space used by the variable. (Some structures written

in assembler language may not follow this convention.) See [11] for a

complete description of the nm command and its output.

Level 6 MAP. The MAP command can be used in the LINKER to

produce a namelist for Level 6 IT systems. MAP will print the name of

every file linked in the system, the started address of the file, and

the name and address of all external variables defined in the file. The

files in this list are sorted in order of increasing memory addresses.

MAP also prints the starting address for the system, and the names of

any unresolved external references. MAP is further explained in [9].

Useful Variables

Several system variables are particularly useful when debugging

a system. These variables are noted here along with comments on how the

variable is used, where in this manual the structure is diagrammed and

other pertinent information.

ME. This holds the one word identifier of the process that

was running when the system stopped. Since interrupt handlers do not

affect the value of ME, the value of ME will not be correct when an

interrupt is being serviced.

104

READY Q. This is a pointer to queue of processes ready to

run. The ready queue is diagrammed in Figure 12. Note that the currently

running process (ME) will not be on the ready queue.

FREE PTR. This is a pointer to a linked list of free queue

elements. These queue elements are used for building the input queues

for the various processes. If FREE PTR is 0, there are no more available

queue elements. The free queue list is diagrammed in Figure 11.

PROCTAB. This is one of the most useful system variables when

performing post-mortems. PROCTAB is a structure which contains pertinent

information about all the processes created automatically at system

initialization. Most of this information is supplied by the programmer

when the system is created. However, as each of the processes is created

its process identifier is stored in PROCTAB. Since the process identifier

is the address of the base of the process stack, this variable will tell

the programmer where to find the stack for each of these processes.

This is essential to tracing the activities of the system before it

died. PROCTAB is diagrammed in Figure 8.

DEV TAB. This is the device table for the I/O system. It

contains information such as the address of the input queue for the

process handling each device, the identifier of the owner of each device

and the information in the last request block used for the device. This

structure is diagrammed in Figure 13.

KBD Q, PP Q, TP Q, VIP Q, DSK Q. These are the queue heads of

the input queues for the various device processes. Their structure is

diagrammed in Figure 10. These queues can be checked to determine any

commands written to each handler but not yet read by them.

105

Registers. Of course the value of the general registers,

including the PC and the status word, are often useful. The meaning of

the registers depends on the type of IT being investigated.

LSI-11 registers: The meaning of registers R2 through R4 will

vary depending on the currently executing procedure. RO and Rl are used

for returning values from subroutines. R5 is used, by convention, to

mark the base of the current stack frame. This convention is described

further below. R6 and R7 follow the standard PDP-11 convention of being

the stack pointer and program counter respectively.

Level 6 registers: C procedures on the Level 6 follow the

Honeywell convention of using B5 for subroutine linkage. Base register

BA and general registers R6 and R7 are used for returning values from

subroutines. The stack and environment linkage pointers are stored in

B6 and B7 respectively. The use of these registers is further described

below.

IT Process Stacks

Each process on the IT has its own stack space. The contents

of these stacks can be very useful in debugging the system. The stack

structure is described in this section. However before going into the

details of the stack, a discussion of C conventions for stack usage on

the LSI-11 and the Level 6 is presented.

C Conventions. C uses the stack for storing automatic variables,

for passing parameters, for subroutine linkage, and occasionally for

temporary storage space. On the LSI-11 C follows standard PDP-11 conventions,

and uses register 6 (R6) as the top-of-stack pointer. On the Level 6,

base register 6 (B6) is used as the stack pointer. Stacks grow from

larger address locations to smaller addresses, referred to as "up".

Additionally one register (R5 on the LSI-11 and B7 on the Level 6) is

used as the pointer to the base of the current stack frame.

106

As each procedure is called, C sets up a stack frame for it

and points R5/B7 at the base of the stack frame. Below this (at higher

numbered memory addresses) are the stack frames for the calling procedures

The local stack frame is used for:

1. storing register values for the calling procedure,

2. local variables,

3. passing parameters and subroutine linkage, and

4. temporary storage.

Each of these functions is explained below:

Registers: Registers whose contents must be maintained across

subroutine calls are stored immediately upon entrance to a C procedure.

The details of saving these registers differ between the two systems.

In UNIX C, register storage is done by the subroutine csv.

The saved registers are R5, R4, R3, and R2, in that order. Registers 2,

3, and 4 are used for register type variables in user procedures, and so

need to be saved for consistency. R5 points to the base of the previous

stack frame. It is saved so that the previous procedure environment can

be restored upon return. After the registers are saved, R5 is updated

to point to the base of the new stack frame, which is the location where

the previous R5 is stored. Thus, R5 points to the latest link in a

chain of subroutine environments. Figure 16 illustrates this linkage.

In Level 6 C, the two instructions which save the registers

and update B6 and B7 are done in the procedure itself. All registers,

except those which are used for returning values, are stored. Thus the

thirteen registers B7, B6, B5, B3, B2, Bl, I, R5, R4, R3, R2, Rl and M

are put on the stack. They are stored contiguously such that B7 is

stored at the lowest address and M is stored at the highest. By

convention, B7 points to the base of the caller's stack frame. B7,

107

lo
stack size in bytes

R5

R6

priority

guard word (octal 104401)

R2
R3
R4
R5

return address

parameters & local variables

R2

Rl

R4

R5

return address

parameters & local variables

R2 R3

R4

Rl

return address (suicide)

hi I process parameter
^5

Subroutine environment linkage - LSI-11

Figure 16

108

like R5 on the LSI-11, points to the latest in a chain of subroutine

environments. Figure 17 illustrates this linkage for Level 6 IT's.

Local variables: On the stack immediately above the saved

registers is the space used for the automatic local variables of the

procedure. Space for each variable is pushed on the stack in the order

in which the variables are declared in the C procedure. Thus if variable

A is declared before variable B in the procedure, then space for A will

be allocated on the stack before space for B; the memory location of A

will have a larger address than that for B. Space on the stack for

complex variables such as arrays or structures is arranged so that the

lowest address is associated with the beginning of the variable. Figures

18 and 19 illustrate the correspondence between the declaration of

variables and their position on the stack.

Not all internal variables in a procedure will use space on

the stack. In particular variables declared static will not. Static

variables have a fixed amount of space permanently allocated for them in

the system. In UNIX C register variables use the general purpose registers

R2, R3, and R4. The registers are allocated such that R4 is used by the

first declared register variable, R3 by the second and R2 by the last.

On the Level 6, no registers are used for programmer variables so all

internal, non-static variables are stored on the stack.

Parameters and subroutines: To invoke a subroutine, C causes

the parameters to the subroutine to be pushed on the stack in reverse

order, so that the first parameter is on top, and then calls the sub-

routine. The subroutine will then save the general data register values

and set up its stack frame just as the calling procedure had. Figures

20 and 21 illustrate the state of the stack after the subroutine has

been called, but before it has saved any registers.

109

lo
ftfark <1<7P in unrHc

B5 (return address B7

priority

guard word

B7
"B7j-

"BT

B3

hi

B2

Bl
R5

R4
R3

R2 Rl

jwramef.ers & local variables

B7

B6
B5
B3

B2

Bl

R5
RA
R3

R2

Rl

Parameters & local variables 33 B7

B6
B5 (suicide) B3

B2

Bl

RA R3

R2
Rl

process parameter

Subroutine environment linkage - Level 6

Figure 17
110

lo

procedure ()

{

int a;

char b ;

register int *c;

int d;

int e [4];

static char f [100] ;

struct {

int x, y;

char z [4] ;

> g;

int h;

R6

hi

zCI]

zC3]

(unused)

saved

saved

saved

saved

eCO]

eCU

eZ21

eC3]

R2

R3

R4
R5

zC03

zZ21

Note:

The value of c will be in R4.

The character variable b occupies only the low-order by of its word.

Storage for the array f will be in the data section of the system. The loader creates the data section as part of the loading process.

Snapshot of LSI-11 process stack with local variables

Figure 18

111

lo

B6

B7

hi

—
J

—

h

~~ z[0]

z[2]

X

Y_

z[l]

zt3]

~~m

e[0]

e[l]

e[2]

et3l

—

d
c

b <unused>

a
<unused>

saved B7

saved B6

saved B5

saved B3

saved B2

saved Bl

saved I

saved R5

saved R4

saved R3

saved
R2

saved Rl

saved M

procedure ()
{

int a;

char b ;

register int *c;
int d;

int e[4];

static char f[1000];
struct {

int x,y;

char z[4];
> g;

int h;

char * j ;

The character variable b occupies only the high-order byte of its word.

The register variable c is stored on the stack since Level 6 C does not
utilize registers for user variables.

Storage for the array f will be allocated within the body of the system
during the linking process.

Snapshot of Level 6 process stack with local variables

Figure 19

112

lo

hi

return address in proc

Pi

P2

P3

P4

local variables
for proc

saved R2

saved R3

saved R4

saved R5

return address in

proc's caller

This location will be
the base of the stack
frame for sub.

Snapshot of stack after call to subroutine sub by

proc, and before sub has started execution.

Subroutine linkage - LSI- 11

Figure 20

113

lo

B6

B7

hi

Pi
21

P3

P4

local variables for proc

B7 - link to caller's environment

M.
B5 - return address in proc's caller B3

B2
Bl

R5

R4
R3

R2

Rl
M

This will be the
bottom of the stack
frame for sub.

registers saved by proc

proc(. . .)

sub(pl,p2,p3,p4) ;

Snapshot of Level stack after call to subroutine sub by proc, before
sub has started execution.

Subroutine linkage - Level 6

Figure 21

114

On the LSI-11, the calling procedure invokes the subroutine by

doing a "jsr PC" to it. Upon completion the subroutine branches to cret

which restores the stored registers and returns to the caller by doing

an "rts".

On the Level 6, the calling procedure invokes the subroutine

by doing a "LNJ $B5" to it. Upon completion, the subroutine executes a

"RSTR" instruction to restore its saved registers, and then returns to

the caller by doing a "JMP $B5".

Process Stacks . Once C's use of stacks is understood, the

workings of process stacks on the IT is fairly straightforward. Stack

manipulation occurs just as in standard C usage with each process using

its own stack.

Each process stack on the IT has a five word header at the low

address end of it. The data in this header is used by the scheduler

when blocking and restarting the procedure, and is slightly different

for the two types of terminals. On the LSI-11, the fields of the stack

base, in order of increasing address, are:

1. the size of the stack in bytes,

2. the last R5 value for this process,

3. the last R6 (stack pointer) value for this process,

4. the priority of the process, and

5. a guard word.

On the Level 6, the fields, again in increasing order are:

1. the size of the stack in words,

2. the address at which the process should be restarted,

3. the last B7 (environment linkage pointer) value for this

process.

4. the priority of the process, and

5. a guard word.

115

The guard word is set at process creation to 104401(octal) (hex 8901).

If this value is ever changed, the system will assume that the stack

has been overwritten somehow and will print an error message and halt.

The bottom of the stack is set by creep to look as if the main

routine of the process had been called by suicide. If the main routine

ever returns, it will return to suicide which will perform the usual

process termination actions.

Figures 22 and 23 diagram a complete process stack for LSI-11

and Level 6 systems respectively.

IT Post-Mortem

This section is an example of an investigation into an IT

system. It is hoped that this will illustrate some of the points made

in the preceeding discussion. Before starting, five points should be

made.

1. This investigation deals specifically with an LSI-11 system.

As such, the details such as the meanings of particular registers

are not directly applicable to Level 6 systems. However, the

general approach to investigating systems which is illustrated

is applicable.

2. The system being investigated was intentionally stopped by

the operator rather than crashing as a result of a system

bug. Thus this investigation will be exploritory, to see what

can be found out about the system, rather than bug-hunting.

3. The "discussion" will be more of a monolgue, written in first-

person. In any IT post-mortem, the specific approach used

will vary widely between operators. The approach mentioned

here is closely related to the approach evolved in the author's

experience. Others may well find some other approach more

useful for them.

116

P o

pi (...);

Pl (...)

P2 (...);

P2 (...)
{ ;

block ();

10

hi

stock size

R5
"

 R6
priority of process

guard word (0104401)

(unused stack)

information used by block to
restart the process

local variables for p2

R2

R3

R4
R5

return address in pl

parameters for p2

local variables for p I

R2 R3

R4 R5

return address in p

parameters for p

local variables for p

dummy R2

dummy R3
dummy R4

dummy R5

*\

> stack base

.*/

return address of process (suicide)

process parameter

Process stack - LSI-11 IT

Figure 22

117

p 0
{.

pi (...);

}*

Pi (...)

{.

block ();

In
stack size
return address (B5)

. .

•

environment linkage (B7)

priority of process

Ruard word (0104401)

(unused stack)

B7

B6
B5
B3

B2

Bl
I
R5

R4
R3
R2

Rl

M

local variables for pi

B7 "*-
B6

f,

B5
B3
B2

Bl

I
R5

R4
R3

R2
Rl

M

parameters to pi

local variables for p

dummy B7 ^-^.
dummy B6

return address of process (suicide)
dummy B3

dummy B2

dummy Bl
dummy I

dummy R5

dummy R4
dummy R3
dummy R2
durnmv Rl

dumnv M

hi process parameter

process Id

Process stack - Level 6 IT

Figure 23

118

4. All numbers mentioned are in octal. When listing memory

locations and their contents, the form used will be "m:c",

where m is the memory address and c is the contents of that

location. Explanations as to the significance of a particular

location or meaning of a value are included in parentheses.

5. Since the LSI-11 is a byte-addressable machine, the

word-entries examined here always have even addresses. A

similar dump of a Level 6 system which is a word-addressable

machine, would contain odd-numbered word addresses. Also

address of successive locations on the Level 6 increase by

1 instead of by 2 as on the LSI-11 system.

Before much meaningful information can be obtained from the

post-mortem, we need a namelist to tell where things are. The namelist

for this system is included on the next page.

Our first action is to check the register values. These are:

RO: 66772

Rl: 00000

R2: 55334

R3: 64512

R4: 63234

R5: 67226

R6: 67216

R7: 30112

PS: 00000

R7, the program counter, will point to the first instruction after the

instruction where the processor stopped. Comparing the contents of R7

to the namelist we see that the system died in read q. None of this is

immediately useful, so we file it away and go on.

119

0004001
000602T

0007641
0014001
0014641
002072T
0052501
0055741
0042521
0057 12T
0100041
0105461
0107241
0115421
012444T
0156701
014460T
0145741
015134T
016222T
016276T
017736T
020034T
020106T
020164T
021104T
0211441
0212761
0217501
0222761
0224101
0231761
0232261
0235601
0234641
0236261
0243741
0245541
0246201
0251461
0252241
0252761
0254321
0254741
0255521
0257401
0263061
0265201
0267061
0271041

_diag

_mk_curs

_pr_n_cl

_sub
_t_async
_t_graph
_t_print
_t_prior
_t_strin
_main
_t_touch
_tt_ck
_t_ttp1
_t_ttp2
_P3
_t_ttp3
int_disp

_startup

_kb_driv
_kb_inte

_ph_driv
_peeper

_phrint
_phxint
_tp_driv
_tp_inte
_kb_echo
_tt_sele
_tt_read
_tt_acti
_tt_arra
_tt_clea
_tt_crea
_tt_dele
_tt_flas
_tt_labe
_tt_mark
_tt_move
_tt_outl
_tt_rela
_scrunch
_creep
_suicide

_kill
_clear_i

_open
_close
_flush

_peek read

0273061
0274761
0276661
0277721
0300301
0300721
0301261
0302461
0303461
0304261
0305221
0507401
0310761
0312361
0313501
0316041
0316741
0320641
0326121

0350121
0555401
0555521
0555461
0556161
0557001
0557501
0540241
0540541
0541501

0541461
0542121
0542741
0545401
0544721
0545521

0547241
0552641
0555741
0565021
0565761

0564441
0572561
0577021
0405261
0411061
0411661
0412261
0415721
0416101
0416101

..set_mod

_write
_io_init

_pause
_write_q
_read_q

_vee

_pee
_block
_first_b
_enq_RQ
_enq
_deq

_alloc

_f ree
_error

_tiod _tok_pri
_ln_xpan
_parm_xp

_str_num

_get_cha
_e:et_cur

_get_env
_get_pag

_get_pe:

_get_siz _mk_page

_set_cha
_set_cur
_set_env
_set_pag

_get_tok _verify

_index

_printf
_printn
_put_asc
_putchar
_rins:_be
_area_li

_put
_erase
_putline

_putdot _screen_
_cmp

_cvb _get_ps

_mf ps

0416221

0416221
0416501
0416461
0416621
0416621
0416661
0417101
0417421
0420701

0421041

051156D
051176D
051276D

055264D
055472D

056246D
056446D
062524E
062524D
062554b
0627S4B
062756E

062744E
062746E
065156E

065144E
06S152E
065160E
06S166E
065170E
065172B
0655S2E
065554E
065556B
064512B

. mtps
_set_ps

_lrem

_ldiv
_exit
_halt
Eus_erro

Irap

_fixup
CSV

cret

_tg_l6 _ts_52

_labels
_PR0C1AB

_rness
Ascii_la

_CS_6x 1 6

_PAGE _edata
_tt_curr

_ME

_READ^_Q

_FREE_P1

_C0RE1AB _KBP_0

_PP_C
_TP_Q
_MAIN_0

_PH_addr
_PH_coun
_DEV_1AB

_CS_ID _curs_x _curs_y

end

System Namelist

Table 1

120

Remembering that PROCTAB has an entry for each process started

at system initialization, we check the contents of PROCTAB:

(PROCTAB) 55264:

55266:

55270:

55272:

55274:

55276:

55300:

55302:

55304:

55306:

55310:

55312:

55314:

55316:

55320:

55322:

55324:

55326:

55330:

55332:

55334:

55336:

55340:

55342:

55344:

15134

00144

00000

00010

66772

16276

00144

00000

00010

67302

20164

00144

00000

00010

67612

05712

00764

00000

00006

70122

00000

00000

00000

00000

00000

(first word of first entry)

(first word of second entry)

(first word of third entry)

(first word of fourth entry)

(first word of fifth entry)

(an entirely 0 entry, indicates last
entry)

121

The entries in PROCTAB are process structures. These are explained

in Appendix C. The first word of each five-word entry in PROCTAB is the

starting address of the process' main procedure. The fifth word is

filled in by startup to hold the process identifier, that is the address

of the base of the stock. Decoding the appropriate entries we see:

process id

kb driver 66772

ph_d river

tp driver

main

67302

67612

70122

Since this is an LSI-11 system, there is at least one process not in-

cluded in PROCTAB. This is peeper, which is created by ph driver.

Generally, peeper' s stack will be adjacent to main's. To caculate the

address of the bottom (high address end) of main's stack, we get the

size of main's stack in bytes and add it to the address of the stack.

The size of a process' stack can be found (in words) in the second word

of the process' entry in PROCTAB , or (in bytes for LSI-11 systems) in

the first word of the process' stack base. In any case we see that

main's stack is 1750 (octal) bytes long. So we calculate that peeper 's

stack will probably start at 72072 (70122+1750). We check the locations

starting at this address hoping to find a stack base. This consists of

five words following the stack base structure described in Appendix C.

We find:

72072: 00144

72074: 72214

72076: 72202

72100: 177777

72102 104401

122

This is a reasonable stack base, with the proper stack size and priority

for peeper, so we will assume that the peeper process has an id of

72072.

Now we know the internal identifiers of all the processes.

This will allow us to interpret the values in ME and the READY Q.

Checking ME we find that ME is 66772, indicating that the keyboard

process was running when the system died. Ordinarily we would remember

at this point that the system was in read q when it died and would

immediately narrow our investigation to the call to read q in kb driver

to pinpoint the trouble. However in this exploratory example we will

continue the investigation, to see what else we can find. Remember

that we noted initially that the system was not killed by a bug.

Next we check the READY Q. Following the chain we find:

(READY Q) 62736: 64532 (pts to last element)

(last element) 64532: 72072 (id of peeper)

64534: 64532 (pts to 1st element again)

In this case the READY Q has only one ready process, the peeper. At

this point we have examined all of the generally useful system-wide

variables. We will now look at the stacks and input queues of the

various processes. This example will not show the entire stack for the

various processes, since these tend to be fairly large and relatively

uninteresting. The example will include the stack base and the R5 chain

showing the sequence of procedure calls in the process.

We now check the phone process. The phone process input queue

contains:

00000

177777 (-1 indicates 1 process waiting on q)

64526 (ptr to list of waiting processes)

123

(PP_Q) 63144

63146

63150

64526: 67302 (id of waiting process - ph_driver)

64530: 64526 (ptr back to this elt, closing list)

This queue indicates that the phone process is waiting on input data.

Checking the base of the phone process stack we find:

(base of pp stack) 67302

67304

67306

67310

67312

(size of stack, in bytes)

(stored R5)

(stored R6)

(priority)

(guard word)

00310

67526

67512

00010

104401

All of these values are reasonable. The stack size, priority, and guard

word are as they should be. These values are filled in by startup and

should never change, so their value can be verified comparing them to

parameters passed to creep for this process. The stored R5 and R6

values should both be larger than the address of the guard word (67312)

and less than or equal to the address of the bottom of the stack

(67302+310-2=67610 in this case). Also the stored R5 should be larger

than the stored R6. (Note that addresses are treated as 16-bit unsigned

numbers.) Since all the criteria are met, we will assume that this

stack is in good shape and will check the R5 chain. We find:

(pts to previous R5)

(return addr in read_q)

(R5 link)

(return addr in ph_driver)

(dummy R5)

(beginning of suicide)

The reference to suicide is the dummy return address put in the bottom

of the stack by creep during process creation. By tracing the list of

return addresses we see that ph driver called read q which then called

stored R5 points to:) 67526: 67542

67530: 30112

67542: 67604

67544: 16446

67604: 67304

67606: 25432

124

something else not mentioned on the stack. Since the R5 chain only

provides a list of return address when the R5 was also stored there will

be no address in the chain for the current procedure. However there are

several ways of deducing what was called. In the current situation we

know the phone process was not running when the system died (ME is the

keyboard driver), so it must have been blocked. If we guess that the

last procedure called was block, then remembering that block uses a non-

standard subroutine linkage so that the incoming R5 is not saved, we

could guess that pee called block. This is an entirely reasonable

sequence to assume since we know that read q initially calls pee and

that the process will block if there is no data stored in the queue to

be read. We can check our assumptions by inspecting the top word on the

process stack. We find:

(stored R6 points to:) 67512: 30332 (return addr in pee)

Thus the entire calling sequence for this blocked process is the main

routine ph driver called read q which called pee which called block.

Inspecting the touch panel process' input queue and stack

reveals a situation identical to the phone process'.

(TP_Q) 63152: 00000

63154: 177777

63156: 64536

64536: 67612

64540: 64536

(-1 indicates 1 process
waiting on q)

(ptr to list of waiting
processes)

(id of waiting process -

tp_driver)

(ptr back to this elt,
closing list)

(base of tp stack) 67612: 00310 (size of stack, in bytes)

67614: 70032 (stored R5)

67616: 70016 (stored R6)

125

67620: 00010 (priority)

67622: 104401 (guard word)

(stored R6 points to:) 70016

(stored R5 points to:) 70032

70034

70046

70050

70114

70116

30332 (return addr in pee)

70046 (R5 link)

30112 (return addr in read_q)

70114 (R5 link)

20226 (return addr in tp_driver)

67614 (dummy R5)

(beginning of suicide) 25432

This indicates that the main routine tp driver called read q which

called pee which called block.

Since the keyboard process was running when the system died,

its input queue and stack will be somewhat different than those for the

other device drivers.

64542

00000

00000

06401

64542

(KBP Q) 63136

63140

63142

64542

64544

(ptr to list of input data)

(count field)

(no waiting processes)

(last element in list)

(ptr to same elt, indicating 1-elt list)

The keyboard process input queue points to a list of waiting data and

has no list of waiting processes. However the count field (second word)

of the queue is 0 rather than the 1 (for one data element) as might be

expected. We will note this and continue the investigation. Checking

the keyboard stack base we find:

(base of kbp stack) 66772: 00310 (stack size)

66774: 67212 (stored R5)

66776: 67176 (stored R6)

126

67000: 00010 (priority)

67002: 104401 (guard word)

which is not an obviously broken stack base. However we do not use the

R5 and R6 stored in the stack base to investigate the keyboard stack.

Since the keyboard process was running when the system died the stored

R5 and R6 are out of date. They are only accurate when the process is

blocked. For a currently active process an indeterminate number of

procedure calls and returns may have been done since the last time the

process was blocked. To get a handle on the stack in this case we use

the values in the actual system registers R5 and R6. We noted before

that these values are:

R5: 67226

R6: 67216

Chasing this R5 chain we find:

(R5 points to:) 67226: 67274

67230: 15214

67274: 66774

67276: 25432

(R5 link)

(return value in kb_driver)

(dummy R5)

(begining of suicide)

We know from this that the main routine kb driver had called some procedure

but we don't know which one. Since this was the active process when the

system died then the R7 register will hold the address of the instruction

after where the system died. We noted before that R7 is 30112 which is

in read q. So kb driver had called read q. Inspecting the instruction

immediately prior to 30112, we find a call to pee. So we guess that

read q called pee which waited until there was data enqueued on the

keyboard process' input queue and then returned. Immediately after the

return the system died. (This interpretation does in fact correspond

to the way in which the system was actually killed by the operator.) At

this point we return to that apparent inconsistency of a count of 0 for

127

a queue that has one data item on it. This results from a temporary

condition occurring when the system died. The semaphore controlling the

queue and its data has already been pee1 d. Pee has decremented the

count of elements in preparation for the element being removed, so the

count is 0. However the system died before the data was actually

removed catching the queue in an inconsistent state. (It should be

noted that during execution all the queue-manipulating routines make

themselves non-interruptable before operating on the queues to eleminate

the possibility of an interrupt routine catching a queue in a similar

state.)

The only remaining process of any interest in the main user

process. This process does not use its input queue at all, so that

MAIN_Q queue is entirely 0. We can perform the same sort of stack check

on main as we did for the phone and keyboard drivers. We find:

(stack, size, bytes)

(stored R5)

(store R6)

(priority)

(guard word)

(return addr in pee)

(R5 link)

(return addr in read)

(R5 link)

(return addr in tt_read)

(R5 link)

(return addr in tt_selections)

(R5 link)

(return addr in p3)

(base of main stack:) 70122: 01750

70124: 71146

70126: 71132

70130: 00006

70132: 104401

(stored R6 points to:) 71132: 30332

(stored R5 points to:) 71146: 71162

71150: 27252

71162: 71214

71164: 22036

71214: 71232

71216: 21322

71232: 71610

71234: 13520

128

(R5 link)

(return addr in t_ttp3)

(R5 link)

(return addr in main)

(dummy R5)

(beginning of suicide)

In this case we have a blocked process whose main routine main called

t ttp3 which called p_3 which called tt selections which called tt read

which called read which called pee which called block.

71610: 71674

71612: 14434

71674: 72064

71676: 07400

72064: 70124

72066: 25432

129

PART III:

MAINTAINING IT SYSTEM SOFTWARE

OVERVIEW

Sections in this part of the manual provide detailed descriptions

of certain sections of the IT system. They are designed for use by

programmers who are responsible for the maintenance and improvement of

IT system software. Application programmers should, in general, find

the first two parts of the manual sufficient.

This part gives details on

1. the I/O system,

2. the file system, and

3. the Level 6 software interface to the remote display heads.

It is assumed that the reader is thoroughly familiar with the information

contained in Part I.

133

MODIFYING THE I/O SYSTEM

The IT software currently supports a specific set of I/O

functions and a specific set of external devices. For future versions

of IT systems to support new operations or devices, IT programmers will

need to modify the existing system. This section includes a discussion

of how to add a new I/O function. Following that is a discussion of how

to add a new device to the system.

These discussions assume that the new capabilities are to be

added within the basic framework of the existing I/O system. This

system is described in the System Overview and the I/O System and Device

Handlers sections. The reader should be familiar with these sections

before proceeding.

The source for the code referenced in this discussion can be

found in the subdirectories devices, includes , io sys, kernel, and

support.

Adding I/O Functions

Adding a new I/O function is a three step process:

1. Create the handling routine, e.g. read.

2. Modify existing device handlers to perform the new function.

3. Update the library /lib/libl.a to include the modified code.

Each of these steps is elaborated below.

Create the Handling Routine. To implement function X a handling

procedure named X must be created. Typical parameters to X include:

1. the id of the device to perform the action,

2. a pointer to the caller's buffer,

3. the length of the caller's buffer, and

4. a pointer to a word in the caller's space to hold status

information upon return.

135

Not all of these are needed for every function, of course, and some

functions may require others. The read procedure is a good example of

a simple I/O function handler.

The internal structure of X may be modeled on existing I/O

functions such as read and write. This structure includes the following

steps:

1. Verify that the caller has specified a valid device identifier.

The device id should be a number between 0 and one less than

the number of devices on the system inclusive. The number of

devices is determined by the system define number_of_devices

found in the include file constants. incl. This file should be

included in the file containing procedure X so that numb er_of_dev ice

is accessable.

2. Verify that the caller is the owner of the specified device.

The id of the owner of each device is stored in the owner

field of that device's entry in the system device table DEV TAB.

The identifier of the calling process is found in the system

global ME. Thus the check that the caller owns the device

compares ME to DEV_TAB[device_id] . owner . If these are equal,

then the caller owns the specified device.

3. Format a request block. This block is passed to the device

handler which actually performs the necessary action. The

request block is a standard system structure, and one block is

associated with each device entry in the device table. This

block is referenced as DEV_TAB[device_id] .block. The type_req

field of this block must be filled in, and other fields may

need to be set depending on the function to be performed. It

is good practice to zero any unused fields of the request

block.

136

4. Send the request to the appropriate device handler. The

request, represented by a pointer to the request block, is sent

to the handler process by doing a write q to the handler's

input queue. The address of this queue is also stored in the

device table and can be found in DEV_TAB[device_id] .handler_q.

5. P the semaphore associated with the request, blocking this

process. This semaphore is found in

DEV_TAB[device_id] .block . req_semaphore.

The device handler will read the request from its input queue.

When the requested action has been completed, or if it is

impossible, the handler will V the semaphore in the request

block which will restart the requesting process.

6. Set return values and return to the caller. Typically the

status word is set to 0 if the activity was successfully

completed and non-zero otherwise. Meanings of non-zero codes

may vary depending on the device. Additionally, a value such

as the number of characters read or written is generally

returned.

All of the I/O routines in the current IT system, except the

special cases of open and create, follow this basic format. New routines

of course may need to use a different approach. Careful consideration

must be given to any new approach that would either:

1. omit P ' ing the semaphore, or

2. allowing a non-owner to operate on a device.

Both of these constraints are closely tied to the system assumptions

that all I/O is synchronous and that only one process at a time may

access a device. Violating these assumptions may have catestrophic

effects .

137

Modify Device Handlers. Current IT device handlers have a

specific set of commands which they recognize as valid. If they receive

an unknown command they mark the command's status word to indicate an

invalid request and V the requesting process. In order to add a new

command to the I/O system the handler for every device for which the

command is appropriate must be modified to perform the new action.

This is a two step process:

1. recognize the command, and

2. act on it.

To recognize a command, the device handler picks the type_req

value from the request block and performs a switch statement on that

value. If the value corresponds to one of the cases in the switch statement,

then the command is recognized. To recognize a new command, a new case

must be added to the switch. Currently, all cases are specified by

labels such as "case read_type:" or "case write_type:" where read_type

and write_type are system-wide defines included in constants. incl.

A code for the new command should be added to constants. incl. The

new I/O routine should use this code in formating the request block and

the device handlers should add a new case with this value.

The actions performed in the case will of course depend on

the function to be implemented. At the very least the new case will

need to be added, and the workings of the other cases may need to be

changed to support the new command. Whatever changes are made, the

device handler must always V the requesting process either when the action

is completed or when it is determined that the action cannot be done.

If the requestor is not V'd, it will wait forever for the command to

finish.

138

Update system library. After the new I/O routine and the

device handlers have been debugged, they should be placed in the system

library. For LSI-11 systems, this library is located in /lib/libl.a and

is updated via the UNIX utility ar. The ar command is described in the

UNIX Programmer's Manual [11], and the section Building An IT System

includes a more complete discussion of building libraries. For Level 6

systems, the library is a disk file named lib whose members are object

code for the system procedures. The object code for the new procedures

should be copied into lib, replacing the old files for those procedures.

See [12] for an explanation of the copy (cp) command in utill3.

Adding a Device

To support a device new to the IT, several software changes or

additions must be made. These changes are divided into the following

categories:

1. Interrupt handlers are needed for the lowest level of transferring

data from or to the device.

2. The I/O system must be modified to know of the new device.

3. A handler process must be written to interface the device to

the I/O system.

4. The system initialization procedures must be modified to

include the new device handler.

Each of these categories is described further below. It is assumed that

the reader is familiar with the structure of the I/O system, the relationship

to the I/O system of individual device drivers, and the interrupt mechanism

of the LSI-11 or Level 6. The first two of these points are discussed in this

manual in the section I/O System and Device Handlers. The LSI-11 interrupt

structure is discussed in the DEC LSI-11 Processor Handbook [7]. The

interrupt mechanism for the Level 6 is discussed in [6]. Figure 24

illustrates the flow of information between a device and the various

portions of an IT system.
139

90TA3Q

C/3

w

>-i

03 01

QJ 4->

03 03

03 -H
QJ 00 U 0)

O J-i

CO

vjO

CD

>

-J

3 U

3 QJ

CX OJ 3 C

03
u

03 QJ

QJ 4-1

03 03

03 "H

QJ 00
O QJ

O U

CO

\D

3
■p u

3 QJ

O 4-1

4J

a qj 3 3

QJ
3
QJ
3

3

ex

c

•H

QJ

5-i

03
U

0)

03

•H

i— 1

QJ

> T3

CJ

QJ C O
T3

cd

5-i
x:

a

03
03

QJ
a
o

ex

5-i

0)

03

3

QJ |

>

x>

CO

03

•H

x>

5-<

O

QJ

QJ

3 a i— 1

QJ

•H

,0

QJ >

CO

£

QJ

3

4-1

Td

QJ

QJ

Xi

3
i— 1

CO

O

l-i

n

4-1

5-i

c

0)

0

rH

o

T3

3

<r

-3

CO

CN

3 X

CO

QJ

4-J

5-i

3

CX

3
O 3

00

•H

5-1

•H

4-1

5-i

fc

CO

QJ
B

4-1 5-i

3
O

•H

<4-l

3

#*

•H

03

QJ

14-1

03
O 03

QJ

5 O
o O

1—1

S-i

IX,

a n3

CO

e qj
QJ 5-i

4-)

03 •> ̂ v

^ 3 •

03 QJ O

CX 4-1

O O QJ

140

Interrupt Handlers. At the lowest level of the device interface

are the interrupt handlers. These are C language routines which receive

input data from the device and control sending output data to it.

The routines are interrupt driven, which means that they are invoked as a

result of hardware generated interrupts rather than being called as

normal subroutines. Currently, all devices on the IT except the disk are

interrupt driven.

The structure of the interrupt routine will vary depending on

the device, whether it is an input or output routine, and on the system

for which it designed. The general structure of interrupt routines on

the LSI-11 and the Level 6 is discussed below.

LSI-11 interrupt handlers: The general structure of an input

interrupt routine is:

1. read the data from the device input register,

2. encode the data with a special value indicating input data, and

3. send the encoded data to the handler process for this device.

The method of encoding data will vary between devices. The methods used

in the LSI-11 IT system all store the data in the high order part of a

word and an odd input-data code in the low order part. All commands

from interrupt routines to device handlers are odd. This is so they

can be easily distinguished from pointers to request blocks, which are

always word pointers and thus even.

The general structure of output interrupt routines is somewhat

different. The output routine uses a global variable as a pointer to

the buffer of characters to transfer and another global variable as the

count of characters to send. Each time the routine is invoked it transfers

one character and decrements the character count. If there are no more

characters to transfer, the interrupt routines sends a message (a predetermined

141

odd number) to the handler indicating that the transfer has completed.

For output devices such as printers, the interrupt routine may be modified

to do any necessary character padding. This complicates the interrupt

routine but significantly simplifies the device handler.

Typical examples of interrupt handlers in the current IT

system are the phone line routines phrint and phxint .

Level 6 interrupt handlers: the general structure of an input

interrupt routine on the Level 6 is:

1. copy the data from the interrupt handler's buffer to the

driver process's buffer;

2. if the driver's buffer was previously empty, send a message

to the driver telling it that there is now data in the buffer;

3. if not all of the data will fit in the driver's buffer, send

a buffer overflow message to the driver and ignore the rest

of the data in this buffer.

The driver process uses a cyclic buffer, indexed by global variables

X_next and X_free to indicate the next data character and next free

slot respectively. X varies depending on the specific driver, for example

PH next or KB next. Only the interrupt routine adds data to the buffer,

and only the driver removes data. By carefully determining the order in

which data is inserted and indicies are incremented, two different routines

can access the buffer with no synchronization problems.

The general structure of output interrupt routines on the

Level 6 is different both from input routines and from LSI-11 output

interrupt handlers. On the Level 6, the device process accesses the

device directly to initiate the transfer. Since all devices have DMA

capabilities, they can then operate unattended until the transfer is

complete. At that point the output interrupt routine is invoked. The

142

interrupt routine merely sends a message to the device process which

then turns off output from the device.

Typical examples of interrupt handlers for the Level 6 are

phrint and phxint.

Additional modifications - LSI-11: On LSI-11 systems, addition

to the device interrupt routines, the system general interrupt handler

and the device interrupt vectors must be updated. This requires some

understanding of how interrupts are handled on the IT. As on all LSI-

11s, each device has two words of low memory allocated as its input

interrupt vector and two additional words for output interrupts. The

values for these memory locations are determined by the contents of the

object file low.o. When the device causes an interrupt, the LSI-11

performs an interrupt sequence automatically. This includes saving the

current value of the program counter (PC) and the processor status word

(PSW) , and setting them from the two values stored in the designated

interrupt vector. In the IT all interrupt vectors use the same value

for the new PC. This is the address of the general interrupt handling

procedure, int disp. Int disp performs actions such as saving current

register values, then invokes the appropriate handler for the interrupt.

The PSW value set from the interrupt vector is used to specify which

routine to use. In particular, int disp keeps a table of interrupt

handlers in a specified order. The interrupt vectors are set up with a

PSW value of 340 (octal) plus the code for the index into the table of

device handlers. For example, the input interrupt handler for the

phone, phrint, is the fourth entry in the array of handlers, so the PSW

part of the interrupt vector is set to 344 (octal) . The order of handlers

in the int disp table must correspond to the values in the interrupt

vectors set in low.o.

143

To update the general interrupt routine to handle the device:

1. Modify low.s by setting the interrupt vector values in the

vectors used by the device. The low order four bits of the

PSW value will be used as an index into the int disp array of

interrupt routines. .

2. Modify the number of routines defined in int disp (the equate

"table_size") to include the new device.

3. Add the names of the interrupt routines for this device to the

table handler in int disp.

4. Add the priority at which the interrupt routines should run to

the table priority in int disp. The priority entries must

be in the same order as the handler entries. They are used to

set the priority of the interrupt routine as it is invoked.

These changes will allow the new device to be used in an

interrupt driven mode.

Additional modifications - Level 6: On Level 6 systems, in addi-

tion to creating the device interrupt routines, an interrupt vector must be

added to low for the new device. This can be done by following the

example of one of the entries in low. However it is somewhat easier if

the interrupt mechanism on the Level 6 is understood. Every interrupt

on the Level 6 will occur at a specific hardware level, call it n. If n

is less than the level at which the machine is currently operating the

interrupt will be honored, otherwise it will be queued for later attention.

When the interrupt is honored, the hardware will pick up the pointer to

the interrupt save area for level n. This value is stored in memory

location 80 (hex) plus n, and points to an area containing between five

and twenty-one words. The meaning of the first five words of the interrupt

save area is:

144

1. a word which is used by the hardware to store the identifier of

the interrupting device,

2. a bit mask which determines which, if any, of the registers

are to be stored,

3. one word reserved for future use,

4. the address at which execution for this level is to begin,

(in IT systems, this word initially contains the starting

address of levlp) , and

5. the new status word for this level (the only value which is

changed in the status word is the privledged mode bit).

The next sixteen words (maximum) are used for storing registers, according

to the mask in word 2. As processing begins at a new level, the general

registers are loaded with the values in the register save area as part

of the level changing mechanism. The initial values of the registers

are stored in the interrupt save area of the preempted level. The program

counter and status word are loaded from words 4 and 5 of the save area,

and execution proceeds at the new level. When execution at the level

terminates, either because of a higher priority interrupt or because the

level voluntarily relinquishes the processor, then the general registers,

the program counter and the status word are stored in the save area. A

fuller explanation of interrupt on the Level 6 as well as the use of

levels is contained in [6].

In addition to the five values in the interrupt save area, the

register storage area must be initialized properly in order to work

with levlp. Upon entrance, levlp assumes that

1. B3 contains the address of the interrupt handler for this

level, and

2. B6 points to the stack for the interrupt process to use.

145

All other registers should have values of zero to avoid problems.

Also, the word before the first word of the save area should be set to

zero. This word is used for handling traps at this level.

To modify low to support a new device, the programmer must

take the following steps:

1. reserve space for the interrupt stack,

2. create an interrupt save area with the proper values filled

in , and

3. point the interrupt vector for the level at which the new device

will interrupt at the new interrupt save area.

The values in the interrupt save area should all be zero except:

1. the save mask should be all ones (FFFF hex) so that all the

registers are saved,

2. the new PC should point to the beginning of levlp,

3. the new status word should be 4000 (hex),

4. the saved value of B6 should point to the bottom (large address

end) of the interrupt stack, and

5. the saved value of B3 should point to the procedure to use for

handling the interrupt.

The structure of low. a can serve as a guide when adding new devices. In

following the actions caused by handling an interrupt, it is important

to remember two details:

1. the interrupt procedure is a standard C routine which

saves and restores register value upon invocation and

return. Thus the value of B3 upon return still points to

the beginning of the interrupt handling procedure.

146

2. when processing terminates at the interrupt level, the

registers and PC will be saved in the interrupt save area.

This leaves the stored PC pointing at the instruction in levlp

after the LEV. Accordingly, this instruction is a branch to

the beginning of levlp, so that later interrupts can also

be processed.

The procedure levlp does not require any modification to

support new devices.

I/O System Modifications. The I/O system must be modified to

know about the new device being added. Primarily this involves creating

an entry in the device table DEV TAB for the device and initializing

this entry. To do this:

1. Change the define number of devices in constants. incl to be

the number of devices actually supported on the IT including

the new device.

2. Update the procedure io init to initialize the DEV TAB entry

for the new device.

These changes will allow the I/O system utilize the new device, under

the assumption that the device has a standard device handler.

Device Handler. The new device must have a standard device

handler process associated with it. This process will receive commands

from the I/O system and the interrupt handlers for the device. It is

the function of the device handler to correlate the actions of the

device via the interrupt routines with the requests of the I/O system.

Device handlers on the IT are very similar in structure. Each

of them do some initialization such as enabling input interrupts and

setting up buffer pointers, then enter a never-ending loop. Inside the

loop, the following actions are taken:

147

1. The handler reads from its input queue. If there are no

commands in the queue, the handler will block at this point,

and will remain blocked until something is added to its queue.

2. The data read from the queue is decoded. On the LSI-11 IT, if

the data is an even value, it is taken to be a pointer to a

request block. The command to be performed is found in the

type_req field of the block. If the value is odd, it is taken

to be a specially encoded one word value from the interrupt

routines. (Odd values are useful in this situation since

request block addresses will always be even.) On the Level 6

IT, the data is compared against a set of low-numbered pre-

defined codes. If it matches one of them, then it is taken to

be the command. Otherwise, the data is taken to be a pointer

to a request block containing the command. The encoded command

is translated into the corresponding command value in the

handler, and any input data is also decoded.

3. A switch is performed on the decoded command.

The switch will cause specific actions to be taken depending on the

command to be executed; however, some interrelation between commands is

often necessary. For example, if there is not enough data in the local

buffer to fulfill a read request, that request will be saved. As data

is input later, the "data" case will need to V the reading process when

the read is completed. The phone handler ph driver may be useful in

illustrating ways of handling the interdependencies of some cases.

Most cases are straightforward. However, the act of starting

an output transfer on the LSI-11 deserves a word of explanation. When

the handler receives a request to write data, it sets two global variables

One of these points to the user's buffer of characters to be output and

148

the other is the number of characters in the buffer. The handler then

enables output interrupts for the device and notes that it has started a

write. The enabling of output interrupts will automatically cause the

hardware to generate an interrupt which will invoke the output interrupt

routine as described above. This routine then transfers the characters

in the buffer to the device. This transfer is transparent to the handler

process and is asynchronous to it. When the last character is written,

the routine will be invoked as usual. Noting that the global character

count is 0, the interrupt routine will send a done command to the device

handler. Upon receipt of the done, the handler will disable output

interrupts and V the writing process.

System Modification. After all the above changes have been

made, a few system changes need to be made to fit all the pieces together.

These include:

1. The contents of the file PROCTAB. c must be updated to include

the definition of the handler queue for the new device handler

process and the contents of the structure PROCTAB must be

updated to include the new handler as a process that will be

created at system initialization.

2. The name and id of the new device must be added to the constants . incl

file. This will be a define of the form

//define DEVICE "/dev_deviceM

//define DEVICE_LOC n

where n is an integer. The defined ids of the devices must

be assigned so that each device id is greater than or equal to

0, is less than the numb er_of_dev ices value, and so that each

device number is unique. The names of all devices on the IT

are character strings that begin "/dev ".

149

3. The system array dev names must be updated to include a

pointer to the name of the device. This entry should have

the form &DEVICE and be added anywhere before the entry

for DISKO.

4. The array dev types must be updated. The order of elements

in dev types must correspond to the order in dev names. An

entry whose value is -DEvTCE_LOC -1 must be added in the

position corresponding to the new entry in dev types.

When the above changes have been made, all the new routines,

all modified routines, and all the I/O functions must be recompiled.

When these new routines have been tested and debugged, they should replace

the old versions of routines in (or be added to) the system library.

150

DISK ACCESSING SOFTWARE

The portion of the I/O system which supports disk files is

very different from the rest of the I/O system. This section describes

the code which directly relates to disk files on the IT. The source for

the code described here is contained in the directory disk.

Before the discussion of the disk software, a subsection is

included to describe the physical and logical structure of floppy disk

files.

Disk Format

To understand the workings of the IT file system, it is necessary

to have an understanding of the organization of the files on disk. This

includes:

1. the physical structure of a floppy disk,

2. the relationship between that structure and the logical

structure used by the file system,

3. reserved sections of the disk,

4. the logical structure of files, and

5. the logical structure of a directory.

Each of these points is discussed below.

Physical Structure of Disk. A floppy disk is broken into

sectors of 128 eight bit bytes. The sectors are organized into tracks.

Each disk has 77 tracks of 26 sectors each. Tracks are numbered 0

through 76, and sectors are numbered 1 through 26. This is compatible

with the IBM 3740 floppy disk format.

Two sectors of the disk are reserved for bootloader programs.

Track 0, sector 1 contains the bootload program for the AED disk drive

151

used by the LSI-11 IT. Track 1, sector 1
 is reserved for the bootload

program for DEC drives. (Previous versions o
f the LSI-11 IT have used

DEC drives, so all disks have both bootloader
s for compatability consideration.)

There is an additional discrepancy in the way the
 disks are

accessed by the AED and DEC drives. The AED
drive reverses the order of

the data bytes in a word as compared to the orde
r used by DEC. To

nullify this effect, the sector read and write
 routines (s_read and

s write) for ITs with an AED drive introduce
an additional reversal of

the data bytes read or written.

Logical Structure of Disk. To the file system,
the block is

the basic unit of the disk. A block is compos
ed of four logically con-

tiguous logical sectors. A logical sector is equivale
nt to a physical

disk sector except in their ordering. Logical
 sectors are mapped onto

physical sectors in a manner designed to minim
ize the time lost due to

rotational latency in accessing sequential
logical sectors.

Disk blocks are numbered starting at 0. Blo
ck 0 corresponds

to the first four logical sectors of the first
 track of the disk.

Reserved Blocks. Three disk blocks are re
served for special

functions on the disk. These are:

1. Block 0 contains the bootloader for LSI
-11 ITs with an AED

disk drive.

2. Block 4 contains the index block for th
e main directory for

the disk. The meaning of index blocks and th
e structure of a

directory is explained below.

3. Block 6 contains the table of unalloca
ted disk blocks (the

freemap) and the bootloader for LSI-11 ITs
 with a DEC disk

drive.

152

File Structure. IT files are stored as indexed files on the

disk. The contents of each file are stored in a set of blocks. An

additional block, the index block, is used to allow the file system to

find the blocks containing the file in the proper order. The index

block contains 256 one word (two byte) entires. The n entry in the

index block is the number of the block containing the n piece of the

file. Zero entries in the index block are used to indicate portions of

the file that have never been written, either because the file is not

large enough to need the blocks or because the file has an internal

hole. Figure 25 illustrates the structure of a file.

Directory Structure. A directory in the IT system is merely a

file with a known format. It is stored as a regular file and is composed

of a series of 32 byte entries. These entries are dir_entry structures

and describe the files contained in the directory. The structure of the

directory entries is explained below followed by notes on special conventions

used in the directory. Figure 26 illustrates a disk directory entry.

Directory entry: The dir_entry structure is detailed in

Appendix C. In general, the elements of a directory entry are:

1. One word for the type of the file. This is 0 for regular

files, and non-zero for directories.

2. Three words of filler. These are currently unused.

3. Two words encoding the size of the file. The first word is

the number of data blocks in the file minus 1. The second

word is the offset in the last block of the last byte in the

file.

4. One word containing the number of the index block for the

file.

153

data blocks

index block

File has 3422 bytes of
1536 through 2559 have
written and so have no
allocated to them.

(512 bytes of data)

(512 bytes of data)

(512 bytes of data)

(512 bytes of data)

(350 bytes of data)

Structure of file

Figure 25

154

dir entry:

pointer to parent's index block for
directory files; 0 for data files

(unused)

one less than number of data blocks
in file

number of bytes of data in last data
block

pointer to index block for file

name of file

(null terminated)

(17 bytes)

flag: (1 byte)

Structure of a directory entry

Figure 26

155

5. Seventeen bytes containing the name of the file. The name can

be at most sixteen characters, and will be followed by an ASCII

NUL (octal 0) .

6. A one byte flag, used to indicate empty entries in the directory

or files that are not to be deleted.

The dir_entry values contain all the information needed to access a

file.

Special conventions: Some special conventions are followed in

the directory elements. These are:

1. The first entry in the directory describes the directory file

itself.

2. The type code for a directory's entry for itself is the number

of the index block of its parent directory. This allows the

directory structure to be traversed both upwards and downwards.

It should be noted that the root directory for the disk points

to itself as its parent.

3. The information in a directory's entry for a subdirectory is,

in general, only accurate so far as the type, index block

number, and name are concerned. All other information, such

as the size of the subdirectory file, are contained in the

subdirectory's entry for itself.

Figure 27 shows an example of a directory with one file.

Code Structure

The code relating to the IT file system is broken into six

categories. These are:

1. the I/O system,

2. the disk driver process,

3. primary file level routines,

156

03

91 ^—v

4-1

03

>.
4-1

X

03

T3
CM

i— 1

IH

m O

•— N u-<

T3

o

CU

CM

CO

03
rH

3

CU

rH

C

4-1

3

>•,

1

,C

03

03

01

O

4-1

4-t

O

03

>.
<f t3

XI

Nw'

0)

6

oo

• 03 3 ~

3,

o

0)

rH

6

CU

03

1— 1

03

3,
•H

CU

4-1

4-1

M ~

>>

03

42

•H

CU

T3

6
/— V

~

03

O
3 o

T3 <f

0)

CU

+
i rH

CM

03

•H

rH

3
4-1

in

*

iH

^S

CU

CO

a)
03

3

^^

£

•H

O

■H

T3

X U
CO

CO

0)

4-1
3

On

T3

O

•H

rH

03

OJ

>•>

4-1

03

H

V4

3

•H

03
o O

4-1

a ~

05

o

CU

J-i

CU

>•>

6

0J

u

J-l

03

X

•H

o 3 £

T3

4-1

~
a

CU

3
C CU

rH

•H

u

•H

rH

J-l

o

4-1

o

0)

J-l

03

cu

rH

G.

I
X
w

CM

QJ

U

oo

•H

M

CU

^
u

4-1

o
o >. o

J
I— 1

X

rH

4-1

X X
3 / — •.

rH

<U

x <r 1 X

J-t >-^

CU w

4-)

at

03 <f

-a

-3

a

-o

-3

a. s~'
V

3 >i

<3J

CU

3
J

co •H J-l

4-1

0)

•H

^ 3 O
* o 3 o ~

o o 3 o

<r

O 4-1

CU

^-s

J-l

o 3

co

o o

CU

/^\ ^">
4J O 3 X

4J a
E 03 a 3

<r

4-1

E 03

<D

rH

cu

03

0)

cu 03

0)

4-1

J-l X
03

u u

3,

4-1

03

03

J-4 rH

3,

4-1

>^

CU
T3

<3J -H

So

rH T3

CU -H

1

>>

X
4-t X U

•U TD
^ X

•H

J-i

4-1 4-1

0J

X

3 OJ O 3

03

U-i O 3

rH
rH

•H T3 5
•H >-i

■H

1 —

•w

3

•H J-l

•H

r*»

v~'
O 3 o o

T3

rH
o o

4-1

rH

a. -h
co

a. 4-1

-
Vw'

rH
CO

a. m-i

" o

\ \
'

1

^
a

4-j o

O rH * • • •

XI

O o
u
0) 4-1

XI 03

e u
3 -H

3 «4-4

157

4. file level support routines,

5. block level routines, and

6. sector level routines.

Each of these categories are explained below. The procedures and

structures discussed are detailed in Appendix B and Appendix C of this

manual respectively. The source code for these procedures is included

in the UNIX subdirectories io sys, devices, and disk.

I/O System. The I/O system is described in detail in the

section I/O System and Device Handlers.

Disk Driver. The disk driver process is described in the

section I/O System and Device Handlers.

Primary File Level Routines. There are five main file level

procedures in the IT file system. These roughly correspond to the

primary user functions that can be performed on files. The routines

are:

1. fopen,

2. fclose,

3 . f io ,

4. fseek, and

5. fdelete.

These procedures call the file level support routines and the block

level routines to perform the functions indicated. Each of these five

procedures is described below.

Fopen: Opens a file on disk and initializes a file_info

structure to allow access to the file.

Fclose: Writes out the in-memory image of the data buffer for

the file and the directory element for the file. After this is done,

the in-memory information about the file can be thrown away, since all

relevant data has been written to disk.

158

The buffer and directory entry for the file are only written

out if they have changed since they were read into memory. The need to

update the file contents on disk is indicated by the bfflag in the

buffer structure for the file being set to 1 (the defined value of

dirty). The directory entry needs to be updated if the f flags entry in

the file_info structure is set. If this flag is set, the new file

length is written directly to the directory entry.

Fio: This routine performs the standard input and output to a

file. The operation of fio is governed by a flag that indicates whether

it should

1. read data,

2. write data, or

3. flush internal buffers.

Before taking any action specific to the desired function, fio performs

some general setup functions. In particular

1. the read/write position in the file is evaluated to determine

the number of the file block containing the requested position

and the offset into the block.

2. If the portion of the index block in memory does not have the

entry for the required block, then the current subset of the

index block is written to disk if necessary, and the appropriate

subset is read into memory. The index block subset needs to

be written to disk if the ndx_f entry in the file_info structure

for the file is set.

After this initialization, the action of fio depends on the function to

be performed. Each of these are described below.

On input, if the specified length of the read would cause the

read/write pointer to move past the end of the file, the length of the

read is truncated to be the actual amount of unread data in the file.

159

The request is then partitioned into one or more sections, each of

which is contained in one disk block. The requests for reading the

sections are passed to buf io which handles actually transferring the

data to the user's buffer.

Attempts to read past the end of a file will return a data

count of 0, after filling the user's buffer with 0's. If the user reads

data from a hole, the appropriate data count is returned but all data

from the hole will appear to be 0.

Writing is similar to reading in that the request is broken

into sections on block boundaries and then buf io is used to actually do

the transfer. In addition f io will handle allocating disk blocks to a

file when new sections of the file are written. These new sections can

be allocated either at the end of a file or in a hole.

Doing a flush through f io will clean up the f ile_info structure

for the file by causing the in-memory version of the index block to be

written out, if necessary.

Fseek: This routine changes the read/write pointer for the

file. The entries fblkno and foff in the file's file_info structure are

updated to specify the new position. Fseek does not cause any data to

be read from or written to the disk. Any such needed updates will be

done automatically the next time the contents of the file are accessed.

Fdelete: Deletes a file from disk. The file is flushed via

f io, and then truncated via f trunc. The in-memory copy of the disk's

freemap is updated to include all the space previously occupied by the

file. The directory containing the entry for the file to be deleted is

then opened and the figs element of the file's entry is set to the

defined value empty_entry. If every step succeeds, the memory version

of the disk freemap is then written to disk.

160

File Level Support Routines. The primary file level routines

are supported by nine other routines that manipulate data at the file

level. These are:

1. blk_alloc,

2. blk_free,

3. init_fib,

4. init_free,

5. dir_open,

6. ftrunc,

7. pathname,

8. save_free, and

9. xopen.

The function of each of these procedures is described in Appendix B.

Block Level Routines. There are three procedures that manipulate

logical disk blocks. These routines

1. bufio,

2. zero_blk, and

3. zero_sim

know nothing about either the logical structure of the file system or

the physical configuration of the disk. They are used by the file level

procedures for doing block level I/O. They use the s read and s write

routines to actually perform the I/O. Each of these procedures is

discussed below.

Bufio: Performs block level input and output. This procedure

is analogous to the file level routine f io. Where possible, bufio will

transfer data directly between the user's buffer and the disk. If the

user's request is less than a sector long, this is not possible so the

bfstore array in the buffer structure associated with the file is used.

161

When the data in the bfstore array must be overwritten, the previous

contents are written to disk if necessary. Such an update is necessary

if the data in the bfstore has changed, which is indicated by the bfflag

in the buffer structure having the defined value dirty.

Buf io will handle any amount of data from one byte through a

full block. It has three modes of operation, explained below:

1. read: Tranfers data from the disk or the bfstore array to the

user's buffer.

2. write: Transfers data from the users buffer to the disk or

the bfstore array.

3. flush: Cleans up the buffer structure by writing out the

bfstore array if the bfflag is set to dirty.

Zero blk: Writes zeros to an entire disk block. This is used

to clean up a block before allowing it to be allocated to a file.

Zero sim: Simulates buf io when the user is reading a hole.

Fills the user's buffer with zeros.

Sector Level Routines. The lowest level disk routines deal

directly with the disks. They cause one sector of data, the only amount

the drives will accept, to be read or written. Two procedures provide

these functions:

1. s_read, and

2. s_write.

These routines transfer data between the user's buffer and the disk.

Additionally, they perform some mappings to improve the speed and

compatability of the disks. In particular s read and s write:

1. map logical sector numbers into physical sector numbers. This

is done to reduce the time lost to rotational latency when

accessing logically sequential sectors.

162

2. reverse the order of bytes written as described in the section

titled Disk Format.

It should be noted that by replacing the s read and s write routines by

procedures designed to interface to a different drive, the entire file

system will operate on an IT with that type of disk drive.

163

ACCESSING REMOTE DISPLAY HEAD

This section describes the Level 6 IT software used to access

the plasma panel, touch panel, and keyboard of the remote display heads

on these terminals.

One or more of these heads (up to a maximum of three) comprise

the interface to the user of a Level 6 IT. These heads each consist of:

1. a parallel plasma panel,

2. a touch panel, and

3. a keyboard attachment.

One keyboard is provided with the system, and this keyboard can be

attached to any of the remote display heads.

Each of these heads is controlled by a Zilog Z80 microprocessor

The interface to the Level 6 is through one general purpose interface

(GPI) port on a Multiple Device Controller (MDC) interface board.

Further details of this interface are included in [5]. Application

programs can read data from the keyboard or any of the touch panels, and

can display output on any combination of the panels.

Driving the Plasma Panel

Graphic operations and text displays are performed from the

Level 6 processor by sending commands to the plasma panel controller. A

command consists of a task code, which specifies the type of operation

to be performed, and optional parameters. A list of valid task codes

and their parameters is given in Table 2.

Application routines will normally access the plasma panel

thru the panel graphics routines (putdot , putline, etc) . These routines

each format a local buffer with parameters specific to the desired oper-

ation. They then call the routine pp write with the task code for the

operation and a pointer to this buffer.

165

Task

Word Operation Parameters

00

01
02 03

04 05

06

10
12

20
21
22 23

24 25

26 27

26 29

2A
2E

2F

No operation
Erase page
Ring bell
Enable keyboard input
Enable touch input
Disable keyboard input
Disable touch input

Read keyboard
Read touch panel

Erase dots
Write dots

Erase many vectors
Write many vectors
Erase single vector
Write single vector
Erase line
Write line
Erase box
Write box
Erase outline
Write outline

x,y,. ..
x,y,...
x,y, vector , vector , . . . , vector
x,y, vector, vector , . . . , vector
x,y, vector , count, . . .
x,y, vector, count , . . .
xbegin , ybegin , xend , yend , . . .
xbegin,ybegin,xend,yend , . . .
left , bottom, width , height , . . .
left , bottom, width, height , . . .
left , bottom, width , height , thickness,
left, bottom, width, height , thickness ,

Write characters, erasing
ahead one line character, character,..

character , character , . . .
30

Write characters

31
Read cursor

32
Set page

33 Set cursor

34
Set charset

43
Init z80 variables

44 Request space for a
variable 45

Set offset for
writing

46 Write variable

z80 page descriptor

x,y (in dots)
width , height , effector variable, charset variable

none

variable, size in chars

variable, offset
char, char , . . .

Level 6 plasma panel task codes and parameters

Table 2

166

The routine PP-write cooperates with the interrupt service

routine z80 int to put data on the screen. It first calls rsrv pnl

to temporarily gain exclusive use of the panels to be written on. (If

some other process has reserved one of the panels previously, the requesting

process will block until the panel is released.) Pp write initiates an

output transfer to send the command to the appropriate panel controllers.

It then P's a semaphore for each panel accessed. As each panel completes

the operation, the interrupt service routine vee's the appropriate

semaphore. When all operations have completed, the requesting process

will release the panels used by calling rls pnl and continue.

Touch Panel/Keyboard Input

When a character is typed on the keyboard, the controller sets

bit 0 (the least significant bit) in its status byte and buffers the

character. When the touch panel beams are interrupted, the controller

sets bit 1 in the status byte and buffers the coordinates of the touch.

If there is no operation currently in progress (i.e. no write to the

panel or read from the keyboard or touch panel) , the controller initiates

an attention interrupt. When any interrupt is received (attention or

otherwise), the interrupt service routine reads the controller status.

This status is a word value with the status byte from the controller in

the most significant byte, and flags from the MDC interface in the least

significant byte. The interrupt routine checks bits 8 and 9 of the status

word (bits 0 and 1 of the high order byte). If one of these is set,

the routine initiates a read from the appropriate device and remembers

that a read is in progress. When the read completes, the interrupt

routine moves the data into either the keyboard or touch panel input

buffer and signals the appropriate device process.

167

Note that all bits in this discussion are numbered in DEC

format in which bit 0 is the least significant bit. This is the reverse

of the way Honeywell numbers bits.

168

BIBLIOGRAPHY

1. "Assembly Language," July 1976
Honeywell Information Systems Inc., 200 Smith Street,
MS 486, Waltham, Mass. 02154

2. Brown, D.S.

1976, "Humanizing Data Management Systems: An Intelligent
Terminal Approach", Masters Thesis, CAC Document No. 186,
CCTC-Wad Document No. 6502.

3. "CINCPAC Study Report", 1976, CAC Document.

4. Dijkstra, E.J.

1968, "Co-operating Sequential Processes", Programming Languages,
F. Genuys, ed. , Academic Press, New York, 1968.

5. Kopetzky, D.
Description of Remote Display Head Controller, to be
released.

6. "Honeywell Level 6 Minicomputer Handbook", August 1976,
Honeywell Information Systems Inc., 200 Smith Street,
MS 486, Waltham, Mass. 02154

7. "LSI-11 PDP-11/03 Processor Handbook", Digital Equipment
Corporation, Maynard, Massachusetts 01754.

8. "Operator's Guide," July 1976
Honeywell Information Systems Inc., 200 Smith Street,
MS 486, Waltham, Mass. 02154

9. "Program Development Tools," July 1976
Honeywell Information Systems Inc., 200 Smith Street,
MS 486, Waltham, Mass 02154

10. Ritchie, Dennis M.

"C Reference Manual", Bell Telephone Laboratories,
Murray Hill, New Jersey 07947.

11. Thompson, D. , and Ritchie, D.M.

1975, "UNIX Programmer's Manual, Sixth Edition", Bell Telephone
Laboratories, Murray Mill, New Jersey 07974.

12. "Utility Programs," July 1976
Honeywell Information Systems Inc., 200 Smith Street,
MS 486, Waltham, Mass. 02154

169

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (IWimi Data Entered)

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS

BEFORE COMPLETING FORM

1. REPORT NUMBER

CAC Document #236; CCTC-WAD #7616

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Submit)

Research in Network Data Management and Resource Sharing

INTELLIGENT TERMINAL PROGRAMMER'S MANUAL
(Volume One)

3. TYPE OF REPORT ft PERIOD COVERED

Research

«. PERFORMING ORG. REPORT NUMBER

CAC #236
7. AUTHORr*;

Deborah S. Brown, Daniel J. Kopetzky,
John R. Mullen, and David A. Willcox

ft. CONTRACT OR GRANT NUMSERfil

DCA100-76-C-0088

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Center For Advanced Computation
University of Illinois, Urbana, Illinois

10. PROGRAM ELEMENT, PROJECT. TASK
AREA ft WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Command and Control Technical Center
Defense Communications Agency
11440 Isaac Newton Sq . , Reston VA 22090

12. REPORT DATE

October 31 , 1Q77
13. NUMBER OF PAGES 169

14 MONITORING AGENCY NAME ft ADDRESSf// different from Controlling Office) IS. SECURITY CLASS, (of thla report)

UNCLASSIFIED

15*. DECLASSIFI CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

No Restriction on Distribution

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, II different from Report)

18. SUPPLEMENTARY NOTES

Copies of this report may be obtained from (11), above.

19. KEY WORDS (Continue on reverse aide If necessary and Identify by block number)

Intelligent Terminal

20 ABSTRACT (Continue on reverse side If necessary and identify by block number)

The Programmer's Manual for the touch-oriented Intelligent Terminal developed for CCTC-WAD 's Man-Machine Interface Project.

DD , JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

I/. A

C?^

ENGINEERING LIBR
ARY

UNIV. :< '1TY OF ILLINOIS

URBANA, ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA. ILLINOIS 61801

The person charging this material is re-
sponsible for its return to the library from

which it was withdrawn on or before the
Latest Date stamped below.

Theft, mutilation, and underlining of books

are reasons for disciplinary action and may

result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

tmmwM
JUN 6 \m

MAR

CAC Document Number 236

CCTC-WAD Document Number 7516

Intelligent Terminal

Programmer's Manual

Volume Two of Two Volumes

Deborah S. Brown
Daniel J. Kopetzky

John R. Mullen
David A. Willcox

Prepared for the
Command and Control Technical Center

WWMCCS ADP Directorate

Defense Communication Agency
Washington, D.C.

under contract

DCA100-76-C-0088

Center for Advanced Computation

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

October 31, 1977

Approved for release: / lUA^tU/)
1 James F. Bailey, Principal Investigator

APPENDIX A

IT Procedures by Functional Grouping

(For detailed descriptions of these routines see Appendix B.)

9/30/77
Appendix A

System Initialization Routines Kernel Routines

i entry alloc

* fixup block

startup * Bus_error creep

I/O System Routines

deq

clear_io

enq

close enq_R0

create error

delete first_block
flush free

io_init halt

open k int_disp

peek kill
read *

levlp

seek mfps

set_mode
mtps

write

pause

pee

Device Drivers and Interrupt

read_q

handlers suicide

dk_driver fc

Trap

kb_d river * TRPhND

* kb_interrupt vee

* peeper

write_q

ph_driver

phrint St rii ig Manipulating Routines
phxint

cmp

tp_driver cvb

* tp_interrupt
get_token vip_proc index

i vipint ln_xpand
* viprint parm_xpand
* vipxint

verify

i z60_int
PI asma Panel Access Routines

Touch Target Routines area_lite
scrunch erase

tt_activate *
get_pnl tt_arranger i init_pnl

tt_cleanup t
pp_read tt_create i
pp_write tt_deactivate

put

tt_delete k

putchar tt_flash
putdot tt_label
putline tt_lite t rls_pnl

tt_mark * rsrv_pnl

tt_move screen_clear
tt_outline * set_pnl

tt_read * Z80_LD

tt_relabel
tt_selections

i These routines appear only in the Level 6 version of the IT system,

» These routines appear only in the LSI-11 version of the IT system.

9/30/77
Appendix A

Disk Access Routines
blk_alloc
blk_f ree
buf_io
determine
dir_open
fclose
f delete
fio
fopen
fseek
f trunc

i_f reemap
init_drive
init_fib
pathname
s_read
s_write
save_f ree
search
swab

xopen
zero_blk
zero_sim

Data Display Routines
bar_graph
digit_pad
legend
make_bar
map

refilter
scale
sh_map
table

Formatted Printing Routines

eet_charset

get_cursor

get_env
get_paee_size get_pg

get_size_chars
4 ld_cs
i ld_page

mk_page

printf * put_ascii

± put_string
ring_bell
set_charset
set_cursor
set_env
set_page

str_num
tiod

tok_print

Other Routines * cret

CSV io

iold

kb_echo
ldiv
lrem

mk_cursor

pr_n_clear

Communication Interface
± disable_io
i enable_io
± init_ccb
± ld_mlcp
± restart io

J These routines appear only in the Level 6 version of the IT system.
These routines appear only in the LSI- 11 version of the IT system.

APPENDIX B

Description of IT Procedures

(For a breakdown of these routines by function see Appendix A.)

12/7/76 alloc Appendix B

NAME:
alloc

PURPOSE:
Allocates blocks of memory.

USAGE:

int *adr, *alloc(), size;

adr = alloc(size) ;

PARAMETERS:

size An integer which is the number of words to allocate

RETURNS:

-1 If size contiguous words are not available.
Address of allocated memory otherwise.

CALLS:
Nothing

- 1 -

8/30/77 area lite
Appendix B

NAME:

area lite

PURPOSE:

USAGE:

area_lite is used to erase or light a rectangular portion of the
plasma panel.

int x1, y1 , x2, y2 , mode;

area_lite (x1, y1 , x2, y2, mode);

PARAMETERS:
x1 integer

yi

integer
x2 integer

y2

integer
mode integer

RFTURNS:
Nothing

CALLS:

(LSI- 11 version)

put erase

(Level 6 version)

pp_write

Left x coordinate of box
Lower y coordinate of box
Right x coordinate of box
Upper y coordinate of box
0 to erase, non-zero for light

12/7/76 bar_j?raph (OBSOLETE)
Appendix B

NAME :

bar_jgraph

PURPOSE:

USAGE:

Display a data item as a bar graph on the plasma panel.

int x_orig, y_orig, width, height, num__values;
int values[. . .] ;

char *labels[. , .] , *title;

bar_graph (x_orig, y_orig, width, height, num_values, labels,
values, title);

PARAMETERS:

x_orig

y_orig

width

height

num_values
labels

values

title

RETURNS:

Integer Left edge of the area to use for the

graph, in characters
Integer Bottom edge of the area to use for the

graph, in characters
Integer Width of the area to use for the graph,

in characters

Integer Height of the area to use for the graph,
in characters

Integer Number of data values in this item
Array of pointers to characters

Pointers to the labels to use for the
data elements

Array of integers
The data values to display in the graph.

Pointer to character

Points to the name to use for labeling
the graph

Nothing

CALLS:

make_bar

printf
put_ascii
putline
scale
set cursor

(bar graph)

(bar graph)

NOTES:

This routine assumes characters are 8x16. It should be fixed to use the
new variable character sizes.

If num_values is less than or equal to 0, this procedure will bomb.

Under the current scaling algorithm, the minimum data value is set
to be relative 0, and all other values are decremented (or incremented)
accordingly. If the minimum value is less than 0, this produces kind
of funny results. It would be better if, when the minumum is negative,
the axis was moved over and negative values were displayed as bars to
the left of it.

- 1 -

3/12/77 blk_alloc Appendix B

NAME:

blk__alloc

PURPOSE:

Allocate blocks from disk drive freemap.

USAGE:

int drv;
int block;

block = blk_alloc(drv) ;

PARAMETERS:

drv integer Drive number to be allocated from.

RETURNS:

positive integer Block number which has been allocated. (0 - 499)
-1 Error.

CALLS:

zero_block Initializes a disk block to zeros.

- 1 -

3/12/77 blk_free Appendix B

NAME:

blk_free

PURPOSE:

Return a disk block to the freemap.

USAGE:

int drv;
int blk;
int status;

status = blk_free(drv, blk);

PARAMETERS:

drv integer Disk drive number.

blk integer Block number to be returned to the freemap.

hETURNS:

-1 Block number out of range.
0 No error.

CALLS:

nothing

- 1 -

12/7/76 block
Appendix B

NAME:

USAGE

block

PURPOSE:

Block is the process switcher. After saving R5 and R6 on the current

process's stack, it removes a process from the ready queue, restores
R5 and R6 for the new process from the base of its stack, and then
returns to the new process.

block ();

PARAMETERS:
None

RETURNS:

CALLS:

Nothing

deq

error
suicide

- 1 -

3/12/77 bufio
Appendix B

NAME:
bufio

PURPOSE:

USAGE:

Perform buffered transfers of information to and from disk

without knowledge of file structures or disk blocking.

struct buffer *ev;
int blk, o, 1, fen;
char

*buf;

status = bufio (ev, blk, o, buf, 1, fen);

PARAMETERS:

ev

blk
o

buf

length
fen

pointer to buffer structure
Ev indicates the disk drive to use and

supplies a one sector intermediate data buffer,
integer Disk block where data is to be found,
integer Byte offset in the disk block were the transfer

is to begin.

pointer to character

A pointer to the user's buffer,
integer Number of bytes to be transfered.

integer 10 function to perform, READ, WRITE, or FLUSH.
These constants are defined in disksystem. incl
to be 0, 1, and 2 respectively.

RETURNS:
0 No error -1

Error.

CALLS:

s_write
s read

- 1 -

t/30/77 Eus_errcr (LSI-11) Aprendiv B

NAME:

PURPOSE

CALLS:

NOTES:

Eus error

handles bus errors on the LSI-11 IT. Any such errors encountered are
considered fatal, and as such halt the machine.

error

printf

This routine is automatically invoked whenever the terminal encounters

a bus error durins- execution. On the LSI, bus errors cause a trap thru
location 4. The contents of location 4 are set to point to Bus_ error

bv the low.o file, when the system is loaded. Chanpin? the reference
to Eus_error in the low file will result in having a different handler.
Since bus errors are almost always errors, care should be taken in
establishing the handler.

Bus_ error should never be called from user routines. It is not
callable from C routines.

- 1 -

8/30/77 clear io

NAME:

clear_io

PURPOSE:

clear_io removes all references to the calling process frorr
the system i/o table. This requires closing any devices which
have been opened by the process, plus removing the process from
the list of processes waiting to open each device. The Level 6
version of this routine also makes sure that the plasma panel(s)
are released.

USAGE:

clear_io () ;

PARAMETERS:
None

RETURNS:

Nothing

CPLLS:

(LSI- 11 version)
close (io_sys)
deq (kernel)
enq (kernel)

(Level 6 version)
close (io_sys)
deq (kernel)
enq (kernel)
rls_pnl

Appendix B

- 1 -

12/7/76 close
Appendix B

NAME
close

PURPOSE:

Close relinquishes ownership of a device. If there is a list of

processes waiting for the device, close V's the first one on the list.

USAGE

int close(), device_id, status;

if (close (device_id, &status) < 0) { error }

PARAMETERS:

device_id

st_ptr

An integer that uniquely identifies the device to
close. This should be the value returned by open.
Pointer to an integer status word. The status word
(not st_ptr) will be set to the status value returned
by the device process.

RETURNS:

CALLS:

-1

0
device status

If device_id is invalid, if the device is not owned
by the calling process, or if the device process
indicated catestrophic failure.
Normal return.

The status value returned to close by the device
process is returned indirectly to the caller. See
the description of st_ptr under PARAMETERS.

write_q (kernel)

pee
(kernel)

vee (kernel)

- 1 -

12/7/76

cmp

Appendix B

NAME: cmp

PURPOSE:

Compares two strings

USAGE:

int cmp(), length, relation;
char *a, *b;

length = number_of_characters_to_compare;
relation = cmp(a, b, length);

PARAMETERS:
a
b

length

RETURNS: -1

0
1

pointer to character
pointer to character
integer

if a < b
if a = b
if a > b

Pointer to first string
Pointer to second string
Number of characters to compare; usually

the length of the strings.

CALLS:

NOTES:

None

The comparison will terminate when either length characters have been
checked, an inequality has been found, or a null is encountered in either string.

- 1 -

3/12/77 create Appendix B

NAME:
create

PURPOSE :

Create a file on disk. If file already exists and is not
a directory it is truncated to zero length.

USAGE:

int file_id, *status;
char *name;

file_id = create (name, stat_ptr)

PARAMETERS:

name pointer to character pointer to full name of file
stat_ptr pointer to integer status word to be returned.

RETURNS:

-1 Any error. (Unable to find directory, out of disk space,
attempt to create an already existing directory...)

Positive integer
File id, same as returned by open.

CALLS:

blk_alloc
close
ftrunc
open
read
save_f ree
see<
write

- 1 -

2/1/77
creep

Appendix B

NAME:
creep

PURPOSE:

USAGE:

Creep is the procedure that creates processes for the IT operating
system.

int creepO, stack_size, (*procedure) () , parm, priority, process_id;

process_id = creep (stack_size, procedure, parm, priority);

PARAMETERS:

stack_size
procedure

parm

priority

Integer number of words to make the new stack.
Pointer to the procedure that will be the process
procedure .
Integer. This is an arbitrary word that will be passed
to the new process as a parameter. It is not used by creep.

Integer used to specify the priority of the process.
The bigger the number the higher the priority. System
processes have the following priorities:

device drivers -- 8

main (user process) — 6

phone line peeper — -1

RETURNS:

CALLS:

-1 if stack_size contiguous words of memory are not available.

An integer that is the ID of the process. In fact, this is the address
of the base of the stack of the newly-created process.

alloc

enq_RQ

- 1 -

8/30/77 cret (LSI-11) Appendix B

NAME:
cret

PURPOSE:

Restores registers on return from a C-language program.

USAGE:

This routine is jumped to automatically at the completion of a C-
language program. It does not return to the routine that jumped to
it, but rather to the routine that called that routine.

PARAMETERS:
None

FETURNS:
Nothing

CALLS:
None

NOTES:

This routine cannot be called explicitly by C-language programs.

This is a UNIX system routine. The object code for it is located
in /lib/libc.a. Since it is a UNIX routine, the source for it is
not included with the IT code.

- 1 -

8/30/77 csv (LSI-11) Appendix B

NAME:
CSV

PURPOSE:

Save registers upon entry to a C-language routine.

USAGE:

This routine is called automatically at the entry to a C-language
program.

PARAMETERS:
None

RETURNS:
Nothing

CALLS:
None

NOTES:

This routine cannot be called explicitly from a C program.

This is a UNIX system routine. The object code for it is located
in /lib/libc.a. Since it is a UNIX routine, the source for it is
not included with the IT code.

- 1 -

12/7/76 cvb Appendix B

NAME:
cvb

PURPOSE:

This routine converts a numeric character string to internal binary-
format. Input may be decimal or octal, the latter specified by a
leading zero.

USAGE:

int cvb() , length, value;
char *string;

length = <length of string pointed to by 'string'>;
if (cvb (string, length, &value) < 0) { Conversion error }

PARAMETERS:

ptr pointer to character
Pointer to string to be converted

length integer Length of string pointed to by ptr
value_ptr pointer to integer

Place where value is returned

RETURNS:

0 if everything is OK

-1 if a non-numeric character was encountered

The word pointed to by value_ptr is changed. See PARAMETERS.

CALLS:
None

- 1 -

3/12/77 delete Appendix B

NAME:

delete

PURPOSE:

Remove a file from a floppy disk.

USAGE:

char *filename;
int status, *st_ptr;

status = delete (filename, st_ptr);

PARAMETERS:

filename pointer to a character string indicating
the file to be deleted.

st_ptr pointer to an integer status word.

RETURNS:

-1 File not found or an error occurred in the delete operation. 0 No error.

CALLS

open

pee write_q

- 1 -

3/12/77 determine
Appendix B

NAME:

PURPOSE:

determine

Converts a file or device name into an index into the device
table (DEV_TAB). If the name matches one of the fixed device

names in DEV_TAB, the corresponding index is returned.
Otherwise the name is treated as a file name. An attempt is made
to open the file. If successful determine will return the DEV_TAB
slot by which the file may be referenced.

USAGE
char
int

*name;

index;

index = determine (name);

PARAMETERS:
name pointer to character Name of device or file,

RETURNS:

positive integer -1 Index into DEV_TAB.
Error, file or permanent device not found

CALLS

fopen
init_drive
pathname

- 1 -

12/7/76 deq Appendix B

NAME:
deq

PURPOSE:
deq is a general dequeue routine. It will remove the next item from

a queue that is in the standard format. An attempt to dequeue from an
empty queue is disasterous.

USAGE:
int q_entry;
struct queue_head que;

q_entry = deq (&que);

PARAMETERS:
q ptr A pointer to the header of a standard queue.

RETURNS:

The single-word value of the oldest entry on the queue.

CALLS:

NOTES:

mtps (kernel)
mfps (kernel)
error (kernel)

Deq makes itself non-interruptable for most of its operation.

An attempt to deq from an empty queue results in a call to error.
The current version of error does not return, and deq is written with
that knowledge in mind. If error is ever modified to return, deq will
also have to be altered.

- 1 -

12/7/76 digit_pad (OBSOLETE) Appendix B

NAME:

PURPOSE

USAGE

digit_pad

Display a ten key numeric pad and some control keys. Allows the
user to input numeric data by touching the touch panel.

int digit__pad() , touch, top_of_pad, status, entered_num;

entered_num = digit_pad (touch, top_of_pad, &status);

PARAMETERS:
touch

top_of_pad

rtn status

Integer File id of the touch panel, returned by

open
Integer Coordinate of touch grid which is

to be the top of the numeric pad
Pointer to integer

Points to a word which indicates the status
on return. The word is set to -1 if the
user hit Cancel, otherwise it is set to 0.

RETURNS:

CALLS

NOTES:

num Integer The number entered by the user.
(Returns values indirectly through parameters.)

activate

add_command
del_command

get_command
get_cursor
printf
set cursor

(old touch target routine)
(old touch target routine)
(old touch target routine)
(old touch target routine)

This procedure is specifically related to the Janus demo system. It
is included here primarily for completeness since it is referenced by map.
It may be of some use as a guideline if someone writes a general data-
input-via-touch routine sometime in the future.

This routine was written before the print and touch target routines
were updated. It will not run with the new versions of touch
target handlers. It needs to be rewritten to use the new routines.

A lot of the funkyness with labeling in this procedure is done
because calling the old target routines moved the cursor. With
the new print routines this should all get much easier.

- 1 -

3/12/77 dir_open Appendix E

NAME:

dir_open

PURPOSE:

Open a file as if it were the directory.

USPGE:

struct buifer *ev;
struct file_info *fib;
int index_b;
int status;

status = dir_open (ev, fib, index_b);

PARAMETERS:
ev pointer to a buffer structure

Disk data buffer area to use (also defines
the drive number in use).

fib pointer to file_info structure
Eile_info structure to be filled in
so other routines can access the directory.

index_b integer Index block of the file to be used
as a directory.

RETURNS: -1
Error .

0 No error.

CALLS:
fio
init_f ib
xopen

- 1 -

b/30/77 disable_io (Level 6) Appendix B

NAME:

disable_io

PURPOSE:

Turn off input or output for a specified MLCP-type device

USAGE:

int chan;

if (disable_io (chan) != 0) { error }

PARAMETERS:
chan Integer Id of channel to be turned off.

RETURNS:

-1 If io instructions failed.
0 Jf io successfully halted.

CALLS:
io

- 1 -

3/12/77 dk_driver Appendix E

NAME:

dk_d river

PURPOSE:

The disk process allows application programs to read from and write to
the floppy disk.

USAGE:

extern struct queue_head DSK_Q;
struct req_block rb ;

write_o(&DSK_0, &rb);

PARAMETERS:

None in the usual sense. Communication is via the input queue. Items
on the input queue are pointers to reauests blocks.

RETURNS:

Never returns. When an application program request has been handled,

the semaphore associated with the reauest is vee'd.

CALLS:

NOTES:

fio

buf'io
f seek
f close
f trunc

This routine should never be called directly by user programs. Access
should be through I/O routines read, write, open, etc.

This process has a priority of fa.

A read from the disk will return a string- containing the minimum of
the number of bytes requesed and the number of unread bytes in the
specified file. The returned strinc is not null-terminat.pd.

- 1 -

8/30/77 enable_io (Level 6) Appendix E

NAME:

enable_io

PURPOSE:

Allow input or output from an MLCP-type device.

USAGE:

int chan, dev;

if (enable_io (chan, dev) != 0) { error }

PARAMETERS:

chan Integer Id of channel to be started up. If this number
is even, it will be taken to be an input
channel; otherwise it will be assumed to be
output.

dev Integer IT id of device containing this channel. Used
as an index into the list of CCP starting
addresses which is ordered by IT id.

RETURNS:

-1 If any of the io instructions failed
0 If io enabled

CALLS:
io

- 1 -

12/7/76

enq

Appendix B

NAME enq

PURPOSE:

Enq is a general purpose enqueue routine. It is used to add an
element to a circularly linked list of items.

USAGE:

int value;

struct queue_head que;

enq (&que, value);

PARAMETERS:

Q-Ptr A pointer to the head of a standard queue.
value An arbitrary one-word value that will be enqueued.

RETURNS;
Nothing

CALLS:

mtps
mfps
error

(kernel)

(kernel)
(kernel)

NOTES:

Enq makes itself non-interruptable for most of its execution.

Enq calls error if there are no free queue elements. The current
version of error does not return, and enq makes use of that fact. If
error is ever changed to allow returns, enq will have to be modified to account for that.

- 1 -

12/7/76 enq_RQ

Appendix B

NAME:

enq_RQ

PURPOSE:

Enqueue an item on the system ready queue. This differs from a normal
enq in that the ready queue is an ordered list rather than a strictly FIFO
queue.

USAGE:

int value, priority;

enq_RQ (value, priority);

PARAMETERS:
value

priority

An arbitrary single-word value. Normally, this is the
ID of the process which is being added to the ready queue.
An integer specifying the priority of the new item. The
greater this value, the higher the priority of the item.

RETURNS:
Nothing

CALLS:
error
mfps
mtps

(kernel)
(kernel)
(kernel)

NOTES:

enq_RQ makes itself non-interruptable for most of its operation.

If there are no free queue elements, enq_RQ calls error. The current
version of error does not return, and enq_RQ knows this. If error is
modified to return, enq_RQ will have to be modified.

- 1 -

8/30/77 entry (Level 6) Appendix B

NAME:
entry

PURPOSE:

This routine performs some initialization required for starting up a
system on the Level 6. It sets up the stack pointers and finds the
high end of memory that is available for use by the IT system.

USAGE:

This routine is entered only at system startup.

PARAMETERS:

On entry, B3 points to the high end of memory.

RETURNS:

Never - the call to startup never returns.

CALLS:

startup

NOTES:

This routine is not a procedure in the normal sense. It exists as a
section of code in the object module LOW. A.

- 1 -

8/30/77 erase
Appendix B

NAME:
erase

PURPOSE:

Erase is used to perform parallel accesses to the plasma panel,
selectively write each dot in a group of 16 dots arranged
vertically on the panel.

It can

USAGE:

int X, Y, scalor, vector [..], count;

erase (X, Y, scalor, count, 0);
or

erase (X, Y, vector, count, 1);

PARAMETERS:
X

vector

count

flag

An integer that is the X coordinate of the first vector to
erase. All subsequent vectors will be erased at succeeding X coordinates.

An integer that is the Y coordinate of the lower end of the 16 dot vector.

This is either an integer or a pointer to a group of integers.
In either case, the bits in the integer(s) which are set will
cause the corresponding dot to be lit. The low order bit of
the integer corresponds to the lowest dot in the vector.
An integer that tells how many vectors to erase on the panel. If
flag is 0, one vector will be erased count times; otherwise, count vectors will be erased once each.
An integer that tells how to interpret vector, above. If it is
0, vector is considered an integer and is erased out count times.
If flag is nonzero, vector is treated as a pointer to an array of integers that is count long.

RETURNS:
Nothing

CALLS:

(LSI- 11 version)
Nothing

(Level 6 version)

pp_write
rls_pnl
rsrv_pnl

NOTES:

The bus address (in the LSI version) or the channel address (in the
Level 6 version) of the plasma panel interface is "known" by this
routine. If the address ever changes, the address defines will have to
be changed and erase will have to be recompiled.

- 1 -

b/30/77 error Appendix k

NAME:
error

PURPOSE:

Convert an error code into a message and print the message.

USAGE:
int err_no ;

error (err_no);

PARAMETERS:

err-no An integer error code. This should be one of the standard codes defined in constants. incl.

RETURNS:

Nothing Error DOES NOT return to its caller.

CALLS:

(LSI- 11 version)
halt
mf ps
mk_page
mtps

printf
set_page

(Level 6 version)
halt
io
mfps

mk_page
mtps

printf
set_page

NOTES:

No checking is done to ensure that the error code is within range.
A bad error code will result in a garbaee message.

Error does not return to its caller. It should probably be fixpd to knew the difference between fatal and non-fatal errors.

The Level 6 version of this routine snatches the plasma panel awav from
which ever process is currently usins it. Specifically, it sets the Global
variable pp_owner equal to the process id of the current process. It also
turns off interrupts from the remote display head controllers.

- 1 -

3/12/77 fclose Appendix B

NAME:
fclose

PURPOSE:
Close an open file, updating directory if necessary.

USAGE:

struct buffer *ev;
struct file_info *fib;
int status;

status = fclose (ev, fib);

PARAMETERS:
ev pointer to buffer structure

Indicates drive number and where a
temporary buffer can
be found,

fib pointer to file_info structure
The file_info structure of the file being closed,

RETURNS:
0 No error.
-1 Error.

CALLS:
fio
bufio
init fib

- 1 -

3/12/77 fdelete Appendix B

NAME:
fdelete

PURPOSE:

Removes an open file and all its blocks, returning; SDace to the freemap.

USAGE:

struct buffer *ev;
struct file_info *fib;
int status;

status = fdelete (ev, fib);

PARAMETERS:

ev pointer to buffer structure
Indicates where an intermediate buffer
can be found for accessing: the disk.

fib pointer to file_info structure
File_info structure for the file to be deleted.

RETURNS:
0 No error.

-1 Error.

CALLS:

blk_free
bufio
dir_open
fio
fseek
ftrunc
i_freemaD
save free

3/12/77 fi0 Appendix E

NAME:
fio

PURPOSE:

Perform file level input/output without respect to IT device
specifics. Handles holes, extension, multiblock & overlapping block operations.

USAGE:

struct buffer *ev;
struct file_info *fib;
char ^userbuf ;
int 1, fen, status;

status = fio (ev, fib, userbuf , 1, fen);

PARAMETERS:

ev pointer to buffer structure
Data buffer area to be used in accessing the disk

fib pointer to file_info structure
File_info structure which defines the disk
file to be used in obtaining data.

userbuf pointer to character
Indicates where the data will be transfered to.

1 integer length of transfer desired,
fen integer 10 function code, READ, WRITE or FLUSH.

These are defined in disksystem.incl to be
0, 1, and 2 respectively.

RETURNS:

~1 Any error while performing requested operation.
integer Actual number of bytes transfered

CALLS

blk_alloc
bufio
save_f ree
zero sim

- 1 -

12/7/76 first_block Appendix B

NAME:

first_block

PURPOSE:

First_block is a alternate entry point into block. It is used as the
first call to block from startup after the system has been started.

It selects a process from the ready queue and starts it executing.

USAGE:

first_block() ;

PARAMETERS:
None

RETURNS:
Never returns

CALLS:
deq

error
suicide

NOTES:

Should only be called by startup.

- 1 -

fc/30/77 fixup (LSI-11)
Appendix E

NAME:
fixup

PURPOSE:

USAGE:

Fixup is used to determine the amount of memory that is available to
the LSI- 11 IT, and to relocate the stack pointer to point to the top end of memory. It maintains the relationship between R5 and P6 so it
may be called by a C program.

int fixup (), reserve, size;

size = fixup (reserve);

PARAMETERS:
reserve inteerer Amount of space to leave untouched at

the top of memory. This is to leave a
piece of inviolate memory that can be
used for bootloaders, patches, or
anything else which shouldn't be
destroyed by initialization.

RETURNS:

CALLS:

NOTES;

The highest usable address in the machine.

None

The values of any local variables will be destroyed by this call
Therefore, this call must be the first assignment statement.

- 1 -

12/7/76 flush
Appendix B

NAME:
flush

PURPOSE:

Flush causes the process associated with a device to discard
any buffered input and output. It can be successfully invoked only
by the process that currently "owns" the device.

USAGE:

int flushO, device_id, status, length;

length = flush (device_id, &status);
if (length < 0) { error }

PARAMETERS:
device id

st__ptr

An integer that uniquely identifies the device to
be flushed. This should be the value returned by
a call to open.

Pointer to an integer. The integer (not st__ptr)
will be set equal to the status returned by the
device process.

RETURNS:

CALLS:

-1

data length

device status

write_q

pee

If the device does not exist, if the calling process
does not own the device or if the device process
indicates a catestrophic failure.
Under all other circumstances, the data length
field of the request block is returned. Most
device processes set this value to the number of
bytes that were flushed.

Returned indirectly via st_ptr. See the description
of st_ptr under PARAMETERS.

(kernel)
(kernel)

- 1 -

3/12/77 fopen Appendix B

NAME:

fopen

PURPOSE:

USAGE:

Given a file name, disk drive number and current directory
index block, search for and open the file.

char
struct file_info
int

*name; *fib;

drv, root, status;

status = fopen (name, fib, drv, root);

PARAMETERS:
name

fib

drv
root

pointer to character
Represents a character string for the name of
the file,

pointer to file_info structure
If the file is found, this file__info structure
will be initialized to allow the file to be

accessed by other routines,
integer Drive where directory is to be found,
integer The index block of the directory to

where the file is to be found.

RETURNS: -1

0
any failure down the line
success

CALLS:

dir__open
fio

p at h na me
xopen

- 1 -

12/7/76 free
Appendix B

NAME:
free

PURPOSE:

Return memory to the pool of free memory.

USAGE:

int size, *aa;

free (size, aa);

PARAMETERS:

size Integer number of words to return,
aa Address of memory to be freed.

RETURNS:
Nothing

CALLS:
Nothing

NOTES:

The parameter 'aa' is usually the address that was earlier returned by alloc.

- 1 -

3/12/77 fseek Appendix B

NAME:
fseek

PURPOSE:

Change the position of read/write pointer for a disk file.

USAGE:

struct file_info *fib;
int off, type, status;

status = fseek (fib, off, type);

PARAMETERS:

fib pointer to file_info structure
Indicates the file whose read/write
pointer is to be changed,

off integer Offset

type integer Type of seek, (see the "seek" command).

RETURNS:

0 No error.
-1 Error.

CALLS:
nothing

- 1 -

3/12/77 ft rune
Appendix B

NAME:
ftrunc

PURPOSE:

Free space used by a file. Unlinks blocks from the index block.

USAGE:
struct buffer

fev;

struct disk_info *fib;

status = ftrunc (ev, fib);

PARAMETERS:
ev

fib

RETURNS;

CALLS:

-1

0

pointer to buffer structure
Indicates a buffer through which the disk
may be accessed,

pointer to file_info structure
File_info structure for the file to
be truncated.

Error.
No error.

blk_free
bufio
fio
zero blk

- 1 -

12/7/76 get_charset Appendix B

NAME:

get_charset

PURPOSE:

Returns the id of the current character set.

USAGE:

struct cs_desc *get_charset () , *CS;

CS = get_charset() ;

PARAMETERS:
None

RETURNS:

Pointer to the charset currently being used.

CALLS:
Nothing

NOTES :

Complementary function to set_charset.

- 1 -

8/30/77 get_cursor Appendix E

NAME:

get_cursor

PURPOSE:

Fills two variables with the current position of the cursor in character coordinates .

USAGE:
int x, y;

e;et_cursor (&x, &y);

PARAMETERS:

x_ptr = Pointer to integer
Points to variable which is to be set to
the x coordinate value.

y_ptr = Pointer to integer
Points to variable which is to be set to
the y coordinate value.

RETURNS:
Nothing

(Returns values indirectly through the parameters.)

CALLS:

(LSI- 11 version)
Nothing

(Level 6 version)
ld_paee

pp_read

NOTES:

Complimentary procedure to set cursor.

- 1 -

b/30/77 get_env Appendix B

NAME:

get_env

PURPOSE:

Fills an env_desc structure with the values specifying the currently
used charset, page, and cursor position. In the Level 6 version, the
list of selected panels is also saved.

USAGE:

struct env_desc environment;

get_env (^environment) ;

PARAMETERS:

env_ptr = Pointer to env_desc structure
Pointer to the structure which is to be
filled in.

RETURNS:
Nothinsr

(Returns values indirectly through the parameter.)

CALLS:

(LSI- 11 version)
get_charset
get_cursor
get_pg

(Level 6 version)
get_charset
get_cursor
get_pg
get_pnl

NOTES:

Designed to save the current printing environment, usually so it
can be restored later via set env.

- 1 -

12/7/76 get_page_size Appendix B

NAME:

get_page__size

PURPOSE:

Returns the size of the current page in character dimensions.

USAGE:

int page_width, page_height;

get_page_size (&page_wid th , &page__height) ;

PARAMETERS:

w_ptr Pointer to integer
Pointer to the variable to be filled in

with the width of the page.
h_ptr Pointer to integer

Pointer to the variable to be filled in
with the height of the page.

RETURNS:
Nothing

(Returns values indirectly through the parameters.)

CALLS:
Nothing

- 1 -

12/7/76 get_pg Appendix B

NAME:

get_pg

PURPOSE:

Fills in a page__desc structure with the description of the current page.

USAGE:

struct page_desc pg;

get_pg (&pg);

PARAMETERS:

pg_ptr Pointer to page_desc structure
Pointer to the structure to be filled in.

RETURNS:

Nothing

(Returns values indirectly through the parameters.)

CALLS:

Nothing

MOTES:

Complimentary function to set_page.

- 1 -

8/30/77 get_pnl (Level 6) Appendix B

NAME :

get_pnl

PURPOSE:

Used to find out which panel(s) a call to the panel access routines will currently effect.

USAGE:
int ppu;

get_pnl (&ppu);

PARAMETERS:

ppu__p pointer to integer
Address where a word specifying which panels are
currently accessed should be stored.
If this is 1, then future panel operations will go to
panel 0. A value of 2 specifies panel 1 and 4 specifies
panel 2. These values are additive, so a ppu value of
5 (for instance) means future operations will effect
panels 0 and 2.

RETURNS:

Returns values thru parameters.

CALLS:
None

- 1 -

12/7/76 get_size_chars Appendix B

NAME:

get_size_chars

PURPOSE:

Returns the size of a character in the current charset (in dots).

USAGE:

int char_width, char_height;

get_size_chars(&char_width, &char__height) ;

PARAMETERS:

w_ptr Pointer to integer
Pointer to variable to be set to the
width of a character, in dots.

h_ptr Pointer to integer
Pointer to variable to be set to the
height of a character, in dots.

RETURNS:
Nothing

(Returns values indirectly through the parameters.)

CALLS:
Nothing

- 1 -

12/7/76
get_token Appendix B

NAME

get_token

PURPOSE:

USAGE

Parses the next token from a string. The returned token is maximal and contains no delimiters.

int get_token(), token_len;
char *buf_ptr, token[...], delimiters[. . .] ;

token_len = get_token(buf_ptr, token, delimiters);

PARAMETERS:
buf_ptr

tok_ptr

delim_ptr

pointer to character
Pointer to the source string. The

string must be null terminated,
pointer to character

Pointer to where token should be put.
The resulting string will be null
terminated,

pointer to character
Pointer to string of delimiters. The

string must be null terminated.

RETURNS:

CALLS:

NOTES:

integer - Number of characters scanned, or zero if no non-delimiters
were found. Note that this may be greater than the length of the actual token.

verify

There is no checking for token length. It is up to the caller to make
sure that the buffer is large enough to hold the returned token.

- 1 -

6/30/77 halt Appendix E

NAME:
halt

PURPOSE:

Used to halt the processor immediately. The processor is stopped by
a halt instruction, so no further processing is done by any process.

USAGE:
halt ();

PARAMETERS:
None

RETURNS:

This routine never returns to its caller.

CALLS:
None

- 1 -

3/12/77 i_freemap Appendix B

NAME:

i_freemap

PURPOSE:

Initializes the freemap for a drive.

USAGE:

int drv;
int status;

status = i_freemap (drv);

PARAMETERS:

^rv integer Drive number.

RETURNS:
-1 Error.
0 No error.

CALLS:
bufio

- 1 -

12/7/76 index Appendix B

NAME :
index

PURPOSE:

This is the PL/1 index function. It returns the starting position of
the first occurance of the second string within the first string.

USAGE:

int index(), position;
char in_str [...], of_str[. . .] ;

position = index (in__str, of_str);

PARAMETERS:

in_str pointer to character Pointer to string to be searched in
of_str pointer to character Pointer to string to be searched for

RETURNS:

int - Index of second string in first, or -1 if second string does not occur in first,

CALLS:
Nothing

- 1 -

8/30/77 init_ccb (Level 6) Appendix B

NAME:

init_ccb

PURPOSE:

Initialize an MLCP CCB to use a specified buffer.

USAGE:

int chan, buf_size, cntrl;
char buf [] ;

if (init_ccb (chan, buf, buf_size, cntrl) != 0) { error }

PARAMETERS:

chan Integer Channel id of the channel (half of line) whose CCB is to be initialized,
tuf Pointer to character

The buffer the CCB should use.
buf_size Integer Size of the buffer,
cntrl Integer Control word to be sent to the CCB.

RETURNS:

-1 If an error in the io was encountered.
0 Otherwise

CALLS:
io
iold

- 1 -

3/12/77 init_drive Appendix E

NAME:

init_drive

PURPOSE:

Read the first directory entry in the root file of a disk
and initialize the memory resident freemap.

USAGE:

int drv, status;

status = init_drive (drv);

PARAMETERS:

drv integer Drive number.

RETURNS:

-1 Error.
0 No error.

CALLS:

dir_open
fio
fseek
i_freemap

3/ 12/77 init_fib Appendix B

NAME:

init_fib

PURPOSE:

Force suitable parameters into the fib so that file level reads/writes can be done.

USAGE:

struct file_info *fib;
int index_b, off, status;

status = init_fib (fib, index_b, off);

PARAMETERS:

fib pointer to file_info structure
The file_info structure to be initialized.

index_b integer Index block of the file,
off integer Initial offset in the file.

RETURNS:

-1 Index block out of range.
0 No error.

CALLS:
nothing

- 1 -

6/30/77 init_pnl (Level 6) Appendix B

NAME:

init_pnl

PURPOSE:

Performs the initialization necessary to start up the zbO display head controller.

USAGE:

init_pnl ();

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

NOTES:

free

a;et_pnl

pp_write
set_pnl
Z60 LD

This routine is defined only for the Level 6 version of the IT.

This routine is normally called only at system initialization. There
should be no dire effects if it is called at some other time. However,
the z60 won't actually be re-loaded. The character set and page descriptors will be reset.

Init_pnl does a "free" on the in-memory copy of the zbO microcode after
it has been written out. This allows the 3-odd K of memory to be used
for other purposes. It does mean, however, that the z60s can never be
re-loaded without re-loading the IT system from scratch.

- 1 -

fe/30/77 int_disp (LSI- 11) Appendix E

NAME:

PURPOSE:

USAGE:

int_disp

This is the interrupt handler for all valid interrupts. It saves the
registers on the system interrupt stack and selects which routine will
handle the interrupt.

Entered by an interrupt, only.

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

kb_interrupt

phrint
tp_interrupt

phxint
viprint
vipxint

- 1 -

8/30/77 io_init Appendix B

NAME:

io_init

PURPOSE:

Io_init is used to initialize the I/O tables for the IT.

USAGE:

io_init ()

PARAMETERS:
None

RETURNS:
Nothing

CALLS:
Nothing

- 1 -

b/30/77 io (Level 6)
Appendix B

NAME :
10

PURPOSE:

USAGE:

Performs the Level 6 10 instruction. Allows C programs to read or
write control information to the device controllers.

int channel, code, data;

io (channel, code, &data);

PARAMETERS:
channel
code

data_p

RETURNS:

CALLS:

0 -1

None

integer The channel address of the device
integer A function code for the type of

operation to perform. These codes are
described in the Level 6 Minicomputer
Handbook,

pointer to integer
This is either a pointer to the data
to be written to the device controller,
or the address where a word returned
by the controller can be stored.

if io instruction was accepted
if instruction was not accepted. This ususally means that the device is busy.

- 1 -

8/30/77 iold (Level 6)
Appendix B

NAME:

PURPOSE

iold

Performs the Level 6 IOLD instruction. Allows C programs to specify
to a device controller the address and length of data to be transferred
in an io operation.

USAGE:

int channel, count;
char buffer[];

iold (channel, buffer, count);

PARAMETERS:
channel
buffer

count

RETURNS:

CALLS:

0 -1

None

integer The channel address of the device
pointer to character

Address of the buffer for reading or writing,

integer Count of characters to transfer

if the iold instruction was accepted.
if the instruction was not accepted. This usually means
that the device is busy.

- 1 -

8/30/77 kb_driver Appendix B

NAME:

kb_d river

PURPOSE:

The keyboard process allows application programs to read from the
keyboard.

Kb_driver works in conjunction with the keyboard interrupt handler,
kb_int (on the LSI- 11), or the Z&0 interrupt handler, z80_int (on the
Level 6). It accepts data from the interrupt handler and buffers it
until requested by an application program.

USAGE: (See NOTES)
external struct queue_head KBP_0;
struct req_block rb ;
int special_value;

write_q (&KBP_0, &rb);
or

write_q (&KBP_Q, special_value) ; /* special_value must be odd in the
LSI 11 version, and less than 256 in
the Level 6 version. V

PARAMETERS:

None in the usual sense. Communication is via the input queue. Items
on the input queue can be pointers to request blocks, characters from
the keyboard interrupt handler (on the LSI-11), or signals from the
Z80 interrupt handler that there is data in the input buffer (on the
Level 6).

RETURNS:

Never returns. When application program requests have been handled,
their semaphores are vee'd.

CALLS:

(LSI-11 version)
get_size_chars
put_ascii
read_q

ring_bell
vee

(Level 6 version)
get_size_chars
printf
read_q

ring_bell
vee

NOTES:

This routine should never be called directly by user programs. Access
should be thru I/O routines read, peek, etc.

This process has a priority of 8.

A read from the keyboard will return a string containing the minimum of

- 1 -

6/30/77 kb_driver Appendix E

the number of characters requested and the number of characters in the
keyboard buffer. If the buffer is emply, the next character from the
keyboard is returned.

If a second read comes in before the first has been vee'd, the first
will be lost. This is defined to be an impossible situation if the
read subroutine is used, but may occur during direct communication
of user programs with kb_driver.

- 2 -

2/1/77 kb echo
Appendix B

NAME:
kb echo

PURPOSE:

USAGE:

Turns echoing of characters by the keyboard driver on or off,

When turning echoing on, will set the keyboard drivers 's internal
cursor position to be the same as the current printing position.

int kb_id ;

kb_echo (kb_id, 0);
or

kb_echo (kb_id, 1);

PARAMETERS:

kb Integer
mode Integer

RETURNS:

CALLS:

NOTES:

Nothing

get_cursor
set mode

Id of opened keyboard.
1 to start echoing, 0 to stop

This procedure is not part of the IT system software. As such it may
not be revised to be compatible with future versions of the system.
The object code for this procedure is not contained in the system
library libl.a

- 1 -

8/30/77 kb_interrupt (LSI-11) Appendix E

NAME:
kb_interrupt

PURPOSE:

This is the interrupt handler for the keyboard. It forwards characters
from the keyboard to the keyboard process, which eventually gives them
to the application programs.

USAGE:

Called as an interrupt handelr, only.

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

write_q (kernel)

- 1 -

12/7/76 kill Appendix B

NAME:
kill

PURPOSE:

Kill will force a process to commit suicide.

USAGE:

int killO, proc_id;

if (kill(proc__id) < 0) { error }

PARAMETERS:

proc__id The ID of the process to kill

RETURNS:

-1 If the stack of the target process is garbled,
0 Otherwise

CALLS:
Nothing

NOTES:

Any process can kill any other process. There is no "parent-offspring"
relationship between processes.

- 1 -

8/30777 ld_cs (Level 6) Appendix B

NAME:

ld_cs

PURPOSE:

This routine performs the processing required to ensure that the

"current " charset on the Level 6 is the same as that on the z80.

USAGE:
ld_cs () ;

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

get_pnl

pp_write
rls_pnl
rsrv_pnl
set_pnl

- 1 -

8/30/77 ld_mlcp (Level 6) Appendix B

NAME:
ld_mlcp

PURPOSE:

Loads and initializes the multiline communications processor (MLCP)

USAGE:
int ld_mlcp () ;

if (ld_mlcp ()) { error }

PARAMETERS:
None

RETURNS:

-1 if loading the MLCP failed
0 if loading succeeded

CALLS:

ZOMLIN (Honeywell-supplied support routine)

- 1 -

8/30/77 ld_page (Level 6) Appendix B

NAME:

ld_page

PURPOSE:

Loads the current Level 6 page descriptor into the z80 panel controller.
USAGE:

ld_page () ;

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

get_pnl

pp_write
rls_pnl
rsrv_pnl
set_pnl

NOTES:

The page descriptor sent to the zb'O consists of eight words. They
are, in order:

0) The left edge of the page,
1) The width of the page,
2) The bottom of the page,
3) The height of the page,
H) The width of the side page margin - i.e. how far in from the

side edges of the page should printing start,
5) The width of the top and bottom margin of the page,
6) Flags which control printing on the page, (see the write-up

for the 7.80 panel controller for descriptions of these flags) and,

7) The width of the border to be drawn around the page - this is
zero for now.

- 1 -

8/30/77 Idiv Appendix B

NAME:
ldiv

PURPOSE:

Performs unsigned division.

USAGE:

int quotient, divisor, hi_dividend, lo_dividend;

quotient = ldiv (hi_dividend, lo_dividend, divisor);

PARAMETERS:

hi_dividend Integer Higher 16 bits of the 32-bit number to be
divided. This parameter plus the next one
are taken together and are interpreted as an
unsigned 32-bit number.

lo_dividend Integer Lower 16 bits of the dividend,
divisor Integer Number to be divided into the dividend. This

is treated as a standard 2's complement integer.
RETURNS:

quotient Integer Result of integer division performed on the
parameters.

CaLLS:

Nothing

- 1 -

12/7/76 legend (OBSOLETE)
Appendix B

NAME:

legend

PURPOSE:

USAGE:

Draws and shades one box of the legend for the shaded map. Positions
the cursor to the right of the box for labeling.

int x, y, shades;

legend (x, y, shades);

PARAMETERS
x

RETURNS:

CALLS:

NOTES

y

shade

Nothing

Integer

Integer

Integer

Coordinate of the left edge of the box,
in characters

Coordinate of the bottom edge of the box,
in characters
Number of the shade to use

put
put line
set cursor

This uses 8x16 dot characters hard coded in. This should be
modified to use the new variable character sizes in the new print routines.

- 1 -

8/30/77 levlp (Level 6) Appendix B

NAME
levlp

PURPOSE:

This routine controls access to the device interrupt service routines
in the Level 6.

This routine is entered whenever there is an interrupt.

PARAMETERS:
None

RETURNS:
Nothing

On return from an interrupt routine, levlp does an "inhibit" LEV
instruction. This causes the interrupt routine to be deactivated, and
normal processing is resumed.

A device interrupt routine. The interrupt save areas are set up so that
when levlp is entered, the address of the entry point of the appropriate
interrupt routine is contained in register B3.

This routine does not exist as a normal procedure,
section of code in the object module LOW. A.

It exists as a

levlp passes the address of the interrupting device to the interrupt
routine as a parameter. This allows one interrupt routine to handle
more than one of the same kind of device.

- 1 -

Appendix B
8/30/77 ln_xpand

NAME:

ln_xpand

PURPOSE:

To expand a string, performing formatted parameter replacement
similar to printf. The returned string is null terminated.

USAGE:

int ln_xpand(), length;
char out[. . .], *in;

length = ln_xpand(out, in, parml, parm2,...);

PARAMETERS:

out Pointer to character
Points to the array to be filled with the
expanded string

in Pointer to character
Points to the format string, which is the
same as a printf format string.

parms <any parameter to be expanded>
This is the first of the parameters to be
expanded and inserted in the output string.
There can be an any number of such
parameters. The type and meaning of each
such parameter will be interpretted
according to the type of format by which
it is to be expanded.
(Note that floating point parameters are not
handled at this time.)

RETURNS:

Integer The length of the expanded string including the trailing null
(Returns expanded string indirectly through parameter out.)

CALLS:

NOTES:

parm_xpand

No check is made to avoid overrunning the output buffer.

Format specifications must be in the simpler IT printf style. This means no width or precision specifications. This is
is due to simplifying assumptions made in parm_xpand. See the
description of printf for a list of the formats available.

The flag character can be changed by changing the define flag.

- 1 -

8/30/77 lrem
Appendix B

NAME:
lrem

PURPOSE:

USAGE:

Calculate remainder for unsigned division.

int remainder, divisor, hi_dividend, lo_dividend;

remainder = lrem (hi_dividend, lo_dividend, divisor);

PARAMETERS:

hi_dividend Integer Higher 16 bits of the 32-bit number to be
divided. This parameter plus the next one
are taken together and are interpreted as an
unsigned 32-bit number.

lo_dividend Integer Lower 16 bits of the dividend,
divisor Integer Number to be divided into the dividend. This

is treated as a standard 2's complement integer

RETURNS:
remainder Integer Remainder of integer division performed on the

parameters.

CALLS:
Nothing

- 1 -

12/7/76 make_bar (OBSOLETE)
Appendix B

NAME
make bar

PURPOSE:

USAGE

Prints one bar of specified width on the plasma panel.

int x, size, y;

make_bar (x, size, y);

PARAMETERS:
x
size
y

Integer
Integer
Integer

Left edge of the bar, in dots
Width of the bar, in dots
Coordinate of the bottom edge of the
bar, in character lines

RETURNS:

CALLS:

NOTES:

Nothing

put

This uses 8x16 characters
variable character sizes.

It should be modified to use the new

- 1 -

12/7/76 map (OBSOLETE) Appendix B

NAME: map

PURPOSE:

USAGE:

Display one data item as a shaded map along with several touch
targets. The targets allow the user to specif iy that the data
should be replotted as a bar chart or table, to inspect the data
for one county, to change the data for one county, or to proceed.

This procedure interprets the user's touches and will perform the actions of allowing the user to inspect or change data.

int map(), touch, num_shades, values [...], num_areas;
char *map_label;
int touched;

touched = map (touch, num_shades, values, num_areas, map_label);

PARAMETERS:
touch

num__shades
values

num_areas
map_label

Integer File id of touch panel, returned by open
Integer Number of different shades to use on the map
Array of integers

Values to be associated with the counties.
These may be changed by the user.

Integer Number of counties
Pointer to character

Name of data item, used to label map

RETURNS
num Integer Returns the value of the button that was touched

by the user. This value is used by the calling
routine to determine what to do next.

(Returns values indirectly through the parameters.)

CALLS:

activate

add_command
area_lite
cnty_buttons
deactivate

del_command
digit_pad
get_command
printf
put line
set_cursor
sh_map
shade_county

(old touch target routine)
(old touch target routine)

(map routine - not documented)
(old touch target routine)
(old touch target routine)

(old touch target routine)

(map routine)
(map routine - not documented)

NOTES:

This procedure is specifically related to the Janus demo system. It
is included here primarily for completeness. The only generally useful
part of it is the section at the beginning that draws the outline of
the map.

- 1 -

12/7/76 map (OBSOLETE) Appendix B

The map description itself is completely external to all the map
routines. (It is stored in the data structures polys and tmplt.)
However the map procedure makes several assumptions about where
on the plasma panel the map will be and where there will be blank
space for targets.

This routine was written before the touch target and print routines
were updated. It will need to be updated, along with the other
map routines, to use the new routines.

- 2 -

6/30/77 mfps Appendix B

NAME:

PURPOSE:

mfps

Returns the status of the processor. This is an internally coded
value which can be used to determine if the processor is currently

running in the "interruptable" state.

USAGE:

int mfps () , status;

status = mfps () ;

PARAMETERS:
None

RETURNS:

A word giving the processor state. If bit 7 (defined as

"non_interruptable" in constants. incl) is on, the processor is not
interruptable.

CALLS:
None

NOTES:

Complementary routine to mtps.

- 1 -

8/30/77 mk_cursor Appendix P

NAME:

mk_cursor

PURPOSE:
Print or erase a cursor on the panel at the end of the current
printing.

USAGE:
mk_cursor (0);

or
mk_cursor (1) ;

PARAMETERS:

mode Integer 1 to lite, 0 to erase.

RETURNS:
Nothing

CALLS:

get_curscr
cret_size_chars
put line

- 1 -

12/7/76 mk_page
Appendix B

NAME:

PURPOSE

USAGE

mk_page

Fills in a page_desc structure with user supplied information
describing a page.

struct page_desc page;
int left, bottom, width, height;

mk_page (&page, left, bottom, width, height);

PARAMETERS:

p_ptr Pointer to page_desc
Pointer to structure to be filled in

Coordinate of left edge of page in dots from
the left of the screen

Coordinate of bottom edge of page in dots from
the bottom of the screen

Width of page in dots

Height of page in dots

left Integer

bottom Integer

width Integer
height Integer

RETURNS:

CALLS:

NOTES:

Nothing

Nothing

Used to fill in page_desc structure before calling set_page.

All system routines which access page structures assume all coordinates
and dimensions are in dots.

- 1 -

b/30/77
mtps

Appendix B

NAME:

PURPOSE:

USAGE:

mtps

Sets the processor status to a given value. This is primarily used
by IT routines to allow or disallow processor interrupts.

int status;

mtps (status);

PARAMETERS:
status integer The word to set the processor status to,

If bit 7 (defined as non_interruptable
in constants . incl) is on, the processor
will not be interruptable. Otherwise,
interrupts will be enabled.

RETURNS:

CALLS:

NOTES:

Nothing

None

Complementary routine to mfps.

- 1 -

3/12/77 open Appendix E

NAME;

PURPOSE:

open

USAGE:

Open does primary maintainence of the device table for the IT. It
keeps track of the current owner of the device, and maintains a list of
the processes that want to be come owner of each device. Open must be
called to gain ownership of any device or disk file.

int open () ;
char *name;
int flag, status, file_id;

file_id = open(name,flasr,&status);
if (file_id < 0) { error }

PARAMETERS:

name A pointer to a character string. This determines the
physical device or disk file to open. A set of reserved
names have been established for physical devices. These
values are defined in constants. incl to be:

device name value

T0UCH_PANEL "/dev_tp"
KEYBOARD "/dev_kb"
PHONE "/dev_ph"
VIP ''/dev_vip"

DISKO ,,/dev_diskOv'
DISK1 »/dev_disk1"
DISK2 "/dev_disk2"
DISK3 "/dev_disk3"

(Note that DISK2 and DISK3 are only defined in Level 6
IT systems.)

If name does not match one of these pre-defined names,
it is taken to indicate a disk file.

fla£ An integer flag. If it is non_zero, open will wait
for the device to become available. If it is zero, and
the device is currently owned, return -1.

status Pointer to an integer that will be set to the status
value returned by the device process.

RETURNS:

~1 If the name is invalid, if the device is currently owned and flag is 0 or if the device process indicated
a catestrophic failure.

Integer A unique file ID. This value should be used in all
subsequent calls to read, write, close, etc.

- 1 -

3/12/77 open Appendix E

CALLS:
alloc
close
determine
error
free

pee vee
write_q

NOTES:
See the discussion of naming conventions on the section I/O System and
Device Drivers for a more detailed explanation of the interpretation of
file names.

- 2 -

12/7/76 parm_xpand Appendix B

NAME:

parm_xpand

PURPOSE:

USAGE:

To convert a value to a string according to a specified format.

char *parm_xpand() , *how, ̂ expanded;
int *what , count;

expanded = parm_xpand(how, &what , &count);

PARAMETERS:
how

what

count

Pointer to character

This is the format string that determines
how the value is to be interpretted. The string

pointed to by how sould have the format "%x" ,
where x is one of the formats accepted by

printf .
Pointer to pointer to integer

This indicates the parameter to be expanded.
It is a pointer to a pointer so that we

can update the parameter-pointer in the caller's
procedure.

Pointer to integer

Points to one of the callers variables that
is to be updated to hold the count of the
characters used in the current format

specification. This allows the caller to

skip over the format part in the line
expansion. Currently this value is always

set to 2 since we don 't recognize complex format expressions.

RETURNS:

Pointer to character Points to the expanded string. The string
will be overwritten by subsequent calls
to parm_xpand.

CALLS:

NOTES:

str num

The formats accepted by parm_xpand are the same as the ones described
under printf.

This should be fixed to handle long integers. This involves recognizing
formats Id, lu, lo, and lx.

- 1 -

3/12/77 pathname Appendix B

NAME:

pathname

PURPOSE:

USAGE:

Compares character strings. YOUR character string will be comDared
against DIR. The comparison stops on a discrepancy or either of
two terminators encountered in YOUR string. The delimiters are NUL

(octal 000) and '/'. If the strings were identical, a character pointer
is returned pointing at the delimiter in YOUR string.
Otherwise a pointer to YOUR is returned.

char *your, *dir, *matched;
char *pathname () ;

natched = pathname(your,dir) ;

PARAMETERS:

your pointer to character Pointer to your character string,
dir pointer to character Pointer to the disk file name.

RETURNS:
character pointer Pointer into the "your" string.

CALLS:
nothing

- 1 -

12/7/76 pause Appendix B

NAME:

pause

PURPOSE:

Relinquish the processor temporarily. This is typically done as a
courtesy to other processes.

USAGE:
pause() ;

PARAMETERS:
None

RETURNS:
Nothing

CALLS:
enq_RQ (kernel)
block (kernel)

- 1 -

2/1/77 pee Appendix B

NAME:

pee

PURPOSE:

Pee implements Dijkstra's P primitive. It is used to synchronize two (or more) processes.

USAGE:
struct semaphore sem;

pee (&sem);

PARAMETERS:

sem__ptr A pointer to a semaphore

RETURNS:
Nothing

CALLS:

enq (kernel)
block (kernel)
mfps (kernel)
mtps (kernel)

- 1 -

12/7/76 peek Appendix B

NAME:

peek

PURPOSE:
Peek is used to determine how much input is currently available

from a device. It is intended to eliminate the need for non-
blocking read requests. The return value from peek is the number of
bytes of data that are available.

USAGE:

int peekO, length, device_id, status;

length = peek(device__id, &status);

PARAMETERS:

device_id An integer that identifies the device to be
peeked. This should be the value returned
from calling open.

st_ptr Pointer to an integer that will be set to
the device process status.

RETURNS:

-1 If the device_id is invalid, or if the device is not
owned by the calling process, or if the device process
indicates a catestrophic failure,

data length Under all other conditions, peek returns the number of
bytes of data that is available from the device,

status The status of the device process is returned indirectly,
via st_ptr,

CALLS:

pee (kernel)
write_q (kernel)

- 1 -

8/30/77 peeper (LSI-11) Appendix E

NAME:

peeper

PURPOSE:

Keeps an eye on the phone line and periodically informs ph_driver of
its status.

USAGE: (See NOTES)
This process should never be called as a subroutine.

PARAMETERS:

queue Pointer to queue_head structure
The queue to which messages are written.
Generally, this will be the input aueue of the
phone driver.

RETURNS:

CALLS

NOTES:

Never

write_q

pause

Peeper is created as a process by ph_driver. As a proceess it should
not be called by other routines.

This process has a priority of -1. This is lower than all other system
processes to ensure that peeper is only invoked if nothing else is
ready.

- 1 -

8/30/77 ph_driver (LSI-11) Appendix B

NAME:

PURPOSE:

ph_d river

The phone process allows application programs to use the DLV1 1
interface to the phone line.

ph_driver works in conjunction with the phone interrupt handlers,
phrint and phxint. Input characters from the phone are given by phrint
to ph_driver, which saves them until they can be forwarded to an
application program. Write requests to the phone are stored up while
the transmit interrupt routine does the transmission.

USAGE: (See NOTES)
external struct queue_head PP_Q;
struct req_block rb ;
int special_yalue;

write_q (&PP_Q, &rb);
or

write_q (&PP_Q, special_value) ; /* special_value must be odd */

PARAMETERS:

None in the usual sense. Communication is via the input queue.
Items from the queue are either pointers to request blocks, or codes
from one of the interrupt routines.

RETURNS:

Never returns. Application program requests are vee'd after they have been handled.

CALLS:

NOTES:

read_q (kernel)
vee (kernel)
creep (kernel)

This routine should never be invoked directly by user programs. They
should access this routine thru I/O routines read, write, etc.

This process has a priority of 8.

The phone has been defined to be a line-oriented device. Thus, a read
from the phone will return a string containing the minimum of the number
of characters requested and the number up to and including the next

newline. The returned string is null-terminated.

If a second read or second write comes in before the first has been
satisfied, the first read or write will be lost. This is defined
to be impossible if the user calls the subroutines read and write.
It ray happen if the user communicates directly with this process.

Starts up the routine peeper as a process with priority -1 to monitor
the state of the communications line.

- 1 -

8/30/77 ph_driver (Level 6)
Appendix B

NAME:

ph_d river

PURPOSE:

The phone process allows application programs to use the MLCP interface

to the asynchronous communication ("phone") line.

USAGE:

ph_driver works in conjunction with the phone interrupt handlers,
phrint and phxint. Data recieved by phrint is inserted directly into

the phone process' buffer (PH_buf) where it is stored until it can be
forwarded to an application program. Write requests to the phone are
stored up while the MLCP channel program does the transmit ion. When
the write is competed, phxint will notify ph_driver.

(See NOTES)

external struct queue_head PH_Q;
struct req_block rb ;
int special_value;

write_q (&PH_Q, &rb);

or

write_q (&PH_Q, special_yalue) ; /* special_value must be less than 256 */

PARAMETERS:

None in the usual sense. Communication is via the input queue.
Items from the queue are either pointers to request blocks, or codes
from one of the interrupt routines.

RETURNS:

CALLS:

NOTES:

Never returns. Application program requests are vee'd after they have been handled.

io

init_ccb
restart_io
disable_io
read_q
vee
creep

This routine should never be called directly by user programs. Access
should be thru I/O routines read, peek, etc.

This process has a priority of 8.

The phone has been defined to be a line_oriented device. Thus, a read
from the phone will return a string containing the minimum of the number

<~f characters requested and the number up to and including the next
newline. The returned string is null-terminated.

If a second read or second write comes in before the first has been

satisfied, the first read or write will be lost. This is defined
to be impossible to the user calls the subroutines read and write.

It may happen if the user communicates directly with this process.

- 1 -

8/30/77 phrint (LSI-11) Appendix B

NAME:

phrint

PURPOSE:
Phone input interrupt handler

Accepts characters from the phone and forwards them to the phone
process.

USAGE:

Called as an interrupt handler only.

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

write_q (kernel)

- 1 -

8/30/77 phrint (Level 6) Appendix B

NAME:

phrint

PURPOSE:
Asynchronous communication line input interrupt routine,

USAGE:

Called as an interrupt handler, only.

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

ch_id
init_ccb
io
write_q

- 1 -

8/30/77 phxint (LSI-11) Appendix B

NAME:

phxint

PURPOSE:

Phone output interrupt handler

Writes data to the phone line

USAGE:

Called as an interrupt handler only,

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

write_q (kernel)

- 1 -

8/30/77 phxint (Level 6) Appendix B

NAME:

phxint

PURPOSE:

Asynchronous communications output interrupt routine,

USAGE:

Called as an interrupt routine, only.

PARAMETERS:
None

RETURNS:

Nothing

CALLS:

ch_id
io
v*rite_q

- 1 -

8/30/77 pp_write (Level 6) Appendix B

NAME:

pp_write

PURPOSE:
Performs operations on the Level 6 plasma panel by writing
specified control information to the panel controller.

USAGE:
int code, count;
char buffer[];

pp_write (code, buffer, count);

PARAMETERS:

code integer This is the "task code" word to be given to the
panel controller to indicate the type of
operation to be performed,

buffer pointer to character
Pointer to buffer of data to write. This
contains parameters for the specific operation,

len integer Number of characters to write.

RETURNS:
Nothing

CALLS:
10

iold
mtps
mfps

pause
rls_pnl
rsrv_pnl

- 1 -

8/30/77 pp_read (Level 6) Appendix E

NAME:

pp_read

PURPOSE:

USAGE:

Allows processes to read from the z80 plasma panel controller.
Data read can include such things as the cursor position and the

contents of the zbO's memory.

int code, len;
char buffer[. . .] ;

pp_read (code, buffer, len);

PARAMETERS:
code

integer This is the ''task" code word to be given to the
panel controller to indicate the type of
operation to be performed.

buffer pointer to character
Pointer to buffer of data to read

len integer Number of characters to read.

RETURNS:

CALLS

Nothing

10

iold
mtps
mf ps

pause
rls_pnl
rsrv_pnl

- 1 -

&/30/77
printf Appendix E

NAME:

printf

PURPOSE:

USAGE:

To print a string on the plasma panel performing formatted
parameter replacement within the string.

printf ("Format string with formats like %d %o , etc, pi , p2,

);

PARAMETERS:
fmat Pointer to character

Points to the format string.

p1, p2, p3... There are an arbitrary number of replacement parameters. One parameter will be used for
each format specification encountered in the
format string. The type of the specific
parameter will be treated as if it matches
the type indicated by the format.

Parameter replacement is indicated by a ' %» in
the format string. Parameter type is specified
by the character following the •%'. The
following formats are recognized:

RETURNS:
Nothing

CALLS:

(LSI- 11 version)
parm_xpand
put_ascii

(Level 6 version)
parm_xpand
put_striner

NOTES:

d
o
x
1
c
s

signed decimal
octal (will print a leading 0)
hexidecimal (will print a leading X)
unsigned decimal
character

pointer to null-terminated character
string

Printf does not accept all the format specifications of the Unix
printf. In particular, field width and precision specifications
are not implementated.

- 1 -

6/30/77
pr_n_clear Appendix B

NAME:

PURPOSE:

USAGE:

pr_n_clear

Print to the plasma panel while blanking out lines if front of
printing.

char message[. . .] ;
int msg_length;

pr_n_clear (message, msg_length);
or

pr_n_clear ("Null terminated string", -1);

PARAMETERS:
buf

lth

Pointer to character

Points to string of characters to be printed
Integer Number of chars in bufffer. If this number is

less than 0, pr_n_clear assumes that the buffer
is a standard null-terminated string and prints
all characters up to the null.

RETURNS:
Nothing

CALLS:

(LSI- 11 version)
area_lite
get_cursor
get_size_chars
mk_cursor
printf

(Level 6 version)
mk_cursor

pp_write

NOTES:

This procedure is not part of the IT system software. As such it may
not be revised to be compatible with future versions of the system.
The object code for this procedure is not contained in the LSI- 11 system library libl.a.

- 1 -

8/30/77

put

Appendix B

NAME:

put

PURPOSE:

Put is used to perform parallel accesses to the plasma panel,
selectively write each dot in a group of 16 dots arranged
vertically on the panel.

It can

USAGE:

int X, Y, scalor, vector[...], count;

put (X, Y, scalor, count, 0);
or

put (X, Y, vector, count, 1);

PARAMETERS:
X

Y

vector

count

flag

An integer that is the X coordinate of the first vector to
put. All subsequent vectors will be put at succeeding
X coordinates.

An integer that is the Y coordinate of the lower end of the
16 dot vector.

This is either an integer or a pointer to a group of integers.
In either case, the bits in the integer(s) which are set will
cause the corresponding dot to be lit. The low order bit of
the integer corresponds to the lowest dot in the vector.
An integer that tells how many vectors to put on the panel. If
flag is 0, one vector will be put count times; otherwise, count
vectors will be put once each.
An integer that tells how to interpret vector, above. If it is
0, vector is considered an integer and is put out count times.
If flag is nonzero, vector is treated as a pointer to an array
of integers that is count long.

RETURNS:
Nothing

CALLS:

(LSI- 11 version)
Nothing

(Level 6 version)

pp_write
rls_pnl
rsrv_pnl

NOTES:

The bus address (in the LSI version) or the channel address (in the

Level 6 version) of the plasma panel interface is "known" by this
routine. If the address ever changes, the address defines will have to
be changed and put will have to be recompiled.

- 1 -

8/30/77 put_ascii (LSI-11) Appendix B

NAME:

PURPOSE:

USAGE:

put_ascii

Print a character on the plasma panel according to the function
specified for that character in the current charset. Updates the
system cursor according to the character printed.

int X, X;
char ch;

put_ascii (ch, &X , &v);

PARAMETERS

ch

RETURNS

CALLS:

x_ptr =

Character

The character to print.
Pointer to integer

Points to the horizontal coordinate of v/here
to print the character. The value pointed to
will be updated depending on the function of
ch in the current charset.

Pointer to integer

Points to the vertical coordinate of where
to print the character. The value pointed to
will be updated depending on the function of
ch in the current charset.

Nothing

(Returns values indirectly through the parameters.)

y_ptr =

area_lite
ch_to_d
d_to_ch
d_to_l
erase

get_page_size
l_to_d
putchar
ring_bell
screen clear

(parameterized define)
(parameterized define)
(parameterized define)

(in get_set.c)

(parameterized define)

NOTES:

The dot pointed to by x_ptr and y_ptr corresponds to the lower left corner of the printed character.

Formfeed will perform a full screen erase if it determines that the
current printing page is "almost" the entire page. If the page is at least a full screen high, and within one character width of each ed^e
then it is determined to be close enough to a full page, and the entire panel is erased.

Should add a page return function which positions the cursor at the
upper left corner without clearing the screen. Should consider adding superscript and subscript functions too.

- 1 -

8/30/77 putchar (LSI-11) Appendix b

NAME:

putchar

PURPOSE:

Display a character on the plasma panel.

USAGE:
int

x,

y, ch;

putchar ' (x, y, ch);

PARAMETERS:
X Integer

y Integer

ch Integer

Horizontal coordinate of the lower left corner

of where to put the character.
Vertical coordinate of the lower left corner

of where to put the character.
The character to print. The bit masks for
each charset are arranged in the same order
as the characters they will print.

RETURNS:

CALLS:

Nothinc

put

- 1 -

8/30/77
putdot Appendix B

NAME:

PURPOSE;

USAGE:

putdot

Given x and y coordinates of a dot on the plasma panel, this routine
either lights or erases that dot. The position is specified in x and
y dot addresses, where (0,0) is the lower left corner of the screen.

int x, y, mode;

putdot (x, y, mode);

PARAMETERS:

x integer

y integer
mode integer

RETURNS:

Nothing

CALLS:

(LSI- 11 version)
Nothing

(Level 6 version)

pp_write

The x coordinate
The y coordinate
0 to erase, non-zero to light

- 1 -

8/30/77
put line Appendix B

NAME:

PURPOSE:

putline

Writes or erases a line between two points on the plasma panel.

USAGE:

int xa, ya, xr, yr;

putline (xa, ya, xr, yr, 0);
putline (xa, ya, xr, yr, 1);

/* erases a line V
/* writes a line */

PARAMETERS:
xa integer

ya
integer

xr integer

yr
integer

jicde integer

RETURNS:
Nothing

CALLS:

(LSI- 11 version)
Nothing

The x coordinate for the first point
The y coordinate for the first point
The x coordinate for the second point
The y coordinate for the second point
0 to erase line, non-zero to write it

(Level 6 version)

pp_write

NOTE:

The line drawn between two points is unique regardless of the order in
which the end points are specified.

- 1 -

6/30/77 put_string (Level 6) Appendix B

NAME:

put_string

PURPOSE:

Prints a string of characters on the remote display head(s).
USAGE:

char buffer[. . .] ;
int len;

put_string (buffer, len);

PARAMETERS:

buffer pointer to character Pointer to a buffer containing the characters to write

len integer The number of characters to print
RETURNS:

Nothing

CALLS:

ld_cs
ld_page

pp_write

NOTES:

Format effectors and character generation are handled by the zbO panel controller.

No cursor internal to the Level 6 is updated. In order to find the
location of the cursor, programs must call get_cursor.

- 1 -

12/7/76 read
Appendix B

NAME

PURPOSE

USAGE:

read

Read transfers data from a device process to a user program.

int read(), device_id, buf_len, status, len_in;
char buffer[. . .] ;

len_in = read(device_id, buffer, buf__len, &status);

PARAMETERS:

device_id

buffer_ptr

length

st_ptr

An integer that identifies the device to read. This
should be the value returned by open.

Pointer to a user-supplied buffer area large enough
to hold the amount of data requested. This is treated
as a character pointer, so there is no alignment

problem.
The number of bytes to read.
Pointer to an integer that will be set to the value
of the status of the device process.

RETURNS: -1

data length

status

If the specified device is invalid, or if the calling
process is not the owner of the device, or if the
device process indicated catestrohpic failure.

Otherwise, return the number of bytes actually trans-
ferred. This may be less than the number requested,

See st_ptr under PARAMETERS

CALLS:
write_q

pee

(kernel)
(kernel)

- 1 -

12/7/76 read_q Appendix B

NAME:
read_q

PURPOSE:

Remove an element from a queue, Read_q differs from deq in that
read_q will wait for an entry on the queue before it tries to remove

one. This eliminates the "deq from empty queue" error.

USAGE:

int read_q , q_value;
struct queue_header queue;

q_value = read_q(&queue) ;

PARAMETERS:

q_ptr A pointer to a standard queue header,

RETURNS:

The value deq removed from the queue.

CALLS:

pee (kernel)
deq (kernel)

12/7/76 refilter (OBSOLETE)
Appendix B

NAME:
refilter

PURPOSE:

USAGE

Fill in a map outline with the appropriate shadings,

int val[...], old_val[. . .] ;

refilter (val, old_val);

PARAMETERS:
val

old val

Array of integers

Number of the new shade for each county-
Array of integers

Number of the shade currently in each county

RETURNS:

CALLS

NOTES:

Nothing

erase

put

This is one the the relativly obscure parts of the IT map stuff.
This will all most likely be rewritten before it is released (to
make use of the new print and touch target stuff, and to make it
generally more readable). As a result, this documentation is left
somewhat sketchy, assuming it will need to be redone anyway.

- 1 -

8/30/77 restart_io (Level 6) Appendix B

NAME:

restart_io

PURPOSE:

Restore the non-zero elements of the LCT for an MLCP channel, and enable input or output on that channel.

USAGE:

int chan, it_id;

if (restart_io (chan, it_id) != 0) { error }

PARAMETERS:

chan Integer Address of the MLCP channel to be restarted.
it_id Integer IT id of the line (ie, device) that includes this channel.

RETURNS:

0 If everything worked alright.
-1 If any errors were encountered talking to the MLCP.

CALLS:
io

enable io

- 1 -

8/30/77 ring_bell Appendix B

NAME:

ring_bell

PURPOSE:

Ring the bell on the touch panel.

USAGE:

ring_bell ();

PARAMETERS:
None

RETURNS:

Nothing

CALLS:

(LSI- 11 version)
Nothing

(Level 6 version)

pp_write

- 1 -

8/30/77 rls_pnl (Level 6) Appendix E

NAME:
rls_pnl

PURPOSE:
This routine is used by a process to release the remote display heads
to other processes.

USAGE:
rls_pnl () ;

PARAMETERS:
None

RETURNS:

0 if the remote display heads were freed
-1 if the display heads were not owned by this process

CALLS

NOTES:

vee

Complementary routine to rsrv_pnl.

Remote display head reserves (calls to rsrv_pnl) from the same process
are stacked. If two calls are made to rsrv_pnl by a process, it will
take two calls to rls_pnl to release the display heads. This is so
that a subroutine can reserve and release the display heads without
worrying whether or not the calling routine has already reserved them.

- 1 -

6/30/77 rsrv_pnl (Level 6) Appendix B

NAME:
rsrv_pnl

PURPOSE:
This routine is called by to grant a process exclusive access to the
remote display heads. It is used to ensure that multiple processes
do not interfere with each other when doinp i/o to the heads.

USAGE:
rsrv_pnl ();

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

NOTES:

pee

Complementary routine to rls_pnl.

Remote display head reserves (calls to rsrv_pnl) from the same process
are stacked. If two calls are made to rsrv_pnl by a process, it will
take two calls to rls_pnl to release the display heads. This is so
that a subroutine can reserve and release the display heads without
worrying whether or not the calling routine has already reserved them.

- 1 -

3/12/77 s read
Appendix B

NAME:
s read

PURPOSE:

USAGE:

Read one sector from physical disk

int drv, sec;
char

*ubuf ;

int status;

status = s__read(drv, sec, ubuf);

PARAMETERS:
drv
sec
ubuf

integer Drive to be read from.
integer Logical sector number.
pointer to character

Indicates the user's 126 byte buffer
to be filled with data read.
All 126 bytes are used.

RETURNS: -1

0
Error.
No error.

CALLS:

(LSI- 11 version)
swab

(Level 6 version)
io
iold
swab

- 1 -

3/12/77 s_write Appendix B

NAME:

s_write

PURPOSE:

Write one sector to physical disk.

USAGE:

int drv, sec, status;
char fcubuf;

status = s_write(drv, sec, ubuf);

PARAMETERS:

drv integer Drive to be written on.
sec inteeer Logical sector number.
ubuf pointer to character

Indicates the user's 126 byte buffer
where data for the disk resides.

RETURNS:
0 No error.
-1 Error.

CALLS:

(LSI- 11 version)
swab

(Level 6 version)
io
iold
swab

- 1 -

3/12/77 save_free ApDendix B

NAME:

save_free

PURPOSE:

S?ve the "in memory" version of the freeman on the disk.

USAGE:

int drv, status;

status = save_free(drv) ;

PARAMETERS:

drv integer Number of disk drive.

RETURNS:
0 No error.
-1 Error.

CALLS:
bufio

- 1 -

8/30/77 screen_clear Appendix B

NAME:

screen_clear

PURFOSE:

Clear the plasma panel

USAGE:

screen_clear ();

PARAMETERS:
None

RETURNS:
Nothing

CALLS:

(LSI- 11 version)
Nothing

(Level 6 version)
pp_write

- 1 -

12/7/76 scrunch
Appendix B

NAME:
scrunch

PURPOSE:

USAGE:

To remove one or more adjacent elements of an array and scrunch the
remaining pieces back together.

int array[. . .] ;

scrunch (array+first_deleted ,
size-num__deleted-f irst_deleted ,
num_deleted) ;

/* from a array with 'size' entries, this should produce an array with
size-num_deleted entries. A group of 'num_deleted ' entries starting
with 'first_deleted' will be squeezed out */

PARAMETERS:

ptr

size

num

Pointer to integer
The starting address of the hole to be
filled in

Integer Number of elements in the last piece of
array

Integer The number of elements to eliminate in
the array (or the numer of places over
to move)

RETURNS:

CALLS

Nothing

Nothing

- 1 -

12/7/76 set_charset Appendix B

NAME:

set__charset

PURPOSE:

Sets the current charset for printing.

USAGE:

struct cs_desc cs;

set_charset (&cs);

PARAMETERS:

cs_p Pointer to cs_desc structure
Points to new charset to be used.

RETURNS:
Nothing

CALLS:
Nothing

NOTES:

Complimentary function to get_charset.

- 1 -

12/7/76 set cursor
Appendix B

NAME

PURPOSE

USAGE:

set cursor

Positions the cursor on the current page. The position is specified
in character coordinates, using the current character set.

int x, y;

set_cursor (x,y);

PARAMETERS:
x Integer

Integer

RETURNS:

CALLS:

NOTES:

Nothing

Nothing

Horizontal position of the cursor (in
character spaces)
Vertical position of the cursor (in
character lines)

Complimentary function to get_cursor.

- 1 -

12/7/76 set env
Appendix B

set env

PURPOSE:

Sets the global descriptors for the charset, cursor position,
and page.

struct env__desc env;

set_env(&env) ;

PARAMETERS:

env_ptr Pointer to env_desc structure
Points to the structure which has all

the values specifying the new environment.
RETURNS:

Nothing

set_charset
set_cursor
set_page

Complimentary function to get_env.

- 1 -

12/7/76 set mode
Appendix B

NAME:
set mode

PURPOSE:

Set_mode is a "black hole" entry into the I/O system. It is used
to perform device-dependant operations; the definition of the operations
and the parameters they require are left to each device.

USAGE:

int set_mode(), device_id, length, status, ret_val;
char mode[. . ,] ;

ret_val = set_mode (device_id, mode, length, &status);

PARAMETERS:
device id

mode_ptr

length

st__ptr

An integer that specifies the device to operate upon.
This should be the value returned from the call to

open that acquired the device.
A pointer to a byte-aligned buffer. The contents of
the buffer and its size are device dependant.
An integer; the number of bytes pointed to by mode_ptr.
Pointer to an integer that will be set to the value
of the device process status.

RETURNS: -1

Integer

If the device_id is invalid, the caller is not the
owner of the device, or the device process indicated
a catestrophic failure.
Otherwise, return a device-dependant integer.

CALLS:
write_q

pee

(kernel)
(kernel)

- 1 -

12/7/76 set_page Appendix B

NAME:

set_page

PURPOSE:

Sets the global page descriptor. This determines the area of the

plasma panel ("page") which will be used for printing.

USAGE:

struct page_desc page;
int left, bottom, width, height;

rak_page (&page, left, bottom, width, height);

set_page (&page);

PARAMETERS:

page Pointer to page_desc structure
Points to a structure containing the values
describing the new page.

RETURNS:
Nothing

CALLS:
Nothing

NOTES:

Complimentary function to get_pg.

- 1 -

8/30/77 set_pnl (Level 6) Appendix E

NAME:
set_pnl

Pl'RPOSE:
This routine is used to specify which of the three plasma panels should
be effected by subsequent panel routines. Any combination of the three
can be specified.

USAGE:
int ppu;

set_pnl (ppu);

PARAMETERS:

ppu integer
A coded indicator specifying which panel(s) to use. A
value of 1 means use panel 0, 2 means use panel 1, and
4 means use panel 2. These values are additive, so a
parameter value of 5, for instance, means that panels
0 and 2 should be used.

RETURNS:
Nothing

CALLS:
None

- 1 -

12/7/76 sh_map (OBSOLETE)
Appendix B

NAME:

PURPOSE

USAGE:

sh_map

Add the legend and shade the counties on an outlined map.

int num_shades, val[...], old_shades[. . .] , num_vals, master;

sh_map (num_shades, val, old_shades, num_vals, master);

PARAMETERS:

num__shades
val

old shades

num__vals
master

Integer Number of shades to use on the map
Array of integers

Data values for each county
Array of integers

Number of the shade used on each county
the last time it was shaded. If the map
is reshaded, this array will be updated
to hold the current shadings upon return.

Integer Number of parcels to shade
Integer Flag that indicates whether need to do

the legend or shading or both. Values of

legend_no_map, map__no_legend and map_w__legend
are recognized. These values are defined
in map_defines.incl to be 1, 0, and 2,
respectively.

RETURNS:

CALLS:

NOTES:

Nothing

(Returns values indirectly through parameters.)

legend

printf
refilter

(map routine)

(map routine)

This routine may need to be cleaned up when all the map stuff
is updated to use the new touch target and print routines.

- 1 -

8/30/77 startup Appendix B

NAME:
startup

PURPOSE:

This routine performs the one-time initializations necessary to start up
an application system. It initializes the stack and starts up an
initial set of processes.

USAGE:

This is not called by any routine. It can be re-entered in the LSI11
version (thus restarting the system) by branching to location 0.
Eecause global variables cannot be re-initialized in the Level 6
version, systems must be re-started in the Level 6 by reloading
them from disk.

PARAMETERS:
hicore pointer to int (Level 6 version, only)

Address of highest available word of memory.
This parameter is created by a short piece of

code in low, called '"entry", which is entered
at system start-up.

The processes to be started are contained in PROCTAE, which has the
following format:

extern int (*procedure_name)() ;

int PR0CTAB[] {

procedure_name, size_of_stack, parameter, priority, 0,

0, 0, 0, 0, 0
};

where procedure_name is the name of the process procedure, size_of_stack
is the size (in words) of the stack to allocate to the process,
parameter is a one-word value that is passed to procedure_name, priority
is the priority of the process (the bigger the number, the higher the
priority), and the trailing zero will be replaced by the ID of the

process. The last entry in PROCTAP must consist of all zero's.

RETURNS:

Never returns. Exits by a call to first_block

CALLS:

(LSI- 11 version)
alloc
creep

first_block
io_init
mk_page

printf
screen_clear
set_charset
set_page

- 1 -

8/30/77 startup Appendix B

(Level 6 version)
alloc
creep

first_block
init_pnl
io_init
io
ld_mlcp
mk_page
ld_mlcp

printf
screen_clear
set_charset
set_page
set_pnl

- 2 -

8/30/77 str num
Appendix B

NAME:
str num

PURPOSE:

USAGE:

Converts a single precision unsigned integer into its ASCII
representation.

int num, base;
char *place;

str_num(num, base, &place);

PARAMETERS:
num
base

place

Integer The number to convert.
Integer The base to use for conversion. Currently,

this must be between 2 and 16.
Pointer to pointer to character

Pointer to character pointer that tells
where the output is to go. Is updated so that
on return place points one character after the
end of the expanded string.

CALLS:

NOTES:

ldiv
lrem
str num (self)

Complementary function to cvb.

The expanded string is not null terminated. It probably should be,

The maximum base size can be changed by updating the defined
value for Highest_Base and the characters in the possible_digits
defined string.

Should be fixed to do double precision integers, too.

- 1 -

6/30/77 swab (LSI-11) Appendix B

NAME:
swab

PURPOSE:
Swap the bytes of the words in an integer array, high bytes and
low byte are exchanged in each integer.

USAGE:

int array_pt[. . .] , length;

swab (array_pt, length);

PARAMETERS:
array_pt pointer to an array of integers
length integer length of the array, in words

RETURNS:
Nothing

CALLS:
Nothing

NOTES:

The usage of this routine is different from that of the Level 6 routine
with the same name.

- 1 -

8/30/77 swab (Level 6)
Appendix B

NAME:
swab

PURPOSE:

USAGE:

Swap bytes in an array of characters. The first and second bytes are
exchanged, the third and fourth are exchanged, etc.

char buf fer [. . .] ;
int length;

swab (buffer, length);

PARAMETERS:
buffer
length

Pointer to array of characters to swap.
The integer nurrber of pairs of characters to swap.

RETURNS:

CALLS:

NOTES:

Nothing

None

The usage of this routine is different from that of the LSI- 11 routine
by the same name.

- 1 -

8/30/77 tp_d river Appendix B

NAME:

PURPOSE:

tp_d river

The touch panel driver allows application programs to read touches
from the touch panel.

tp_driver works in conjunction with the touch panel interrupt routine,
tp_int. It accepts data from the interrupt handler and buffers it
until requested by an application program.

USAGE: (See NOTES)
external struct queue_head TP_Q;
struct req_block rb;
int special_code;

write_q (&TP_0, &rb);

or
write_q (&TP_0, special_value) ; /k special_value must be odd in the

LSI- 11 version and less than 256 in
the Level 6 version V

PARAMETERS:

None in the usual sense. Communication is via the input queue. Items
on the input queue are either addresses from the interrupt routine, or
pointers to request blocks.

RETURNS:

Never returns. When application program requests have been processed,

they are vee'd.

CALLS:

(LSI- 11 version)
read_q (kernel)
vee (kernel)

(Level 6 version)

get_pnl

pp_write
rls__pnl
rsrv_pnl
read_q (kernel)
set_pnl
vee (kernel)

NOTES:

This routine should never be accessed directly by user programs.
Access should be thru the routines read, peek, etc.

This process has a priority of 6.

A read from the touch panel will return an even-lencth string containing
the minimum of the number of bytes requested and the number of bytes
currently in the touch panel buffer. If the buffer is empty, the
next set of coordinates from the touch panel is returned. After the

read, the x-coordinate of the touch is in byte 0 of the user's buffer

- 1 -

8/30/77 tp_driver Appendix B

and the y-coordinate is in byte 1 .

If a second read comes in before the first has been processed, the
first will be lost. This is defined to be impossible if the user calls
the subroutine read. It may happen if the user communicates directly
with this process.

- 2 -

6/30/77 tp_interrupt (LSI-11) Appendix B

NAME:

tp_interrupt

PURPOSE:

This is the interrupt handler for the touch panel. It forwards

'touches' to the touch panel process, which eventually gives them to
the application programs.

USAGE:

Entered as an interrupt processor only.

PARAMETERS:
None

RETURNS:
Nothing

CALLS:
write_q

- 1 -

6/30/77 Trap (LSI-11) Appendix E

NAME:
Trap

PURPOSE:

Intercepts traps in the LSI-11 IT. Trap prints a message that a
trap occurred, and then calls error.

USAGE:
Entered when a

trap
occurs

PARAMETERS:
None

RETURNS
Never re tturns

CALLS:
error

- 1 -

8/30/77 TRPHND (Level 6)
Appendix B

NAME:
TRPHND

PURPOSE:

CALLS:

NOTES:

Intercepts unavailable resource traps in the Level 6 IT.

error

This routine was included to circumvent an apparent hardware problem
somewhere in th interface to the zbO remote display head controllers.
For some reason, the software occasionally gets unavailable resource
traps when doing an io or iold instruction to the z80. This routine
checks each trap to see if it was caused by an io or iold to one of the
panels. If it was, it restarts the processor at the offending
instruction. The instruction will eventually be accepted. If the
trap is caused by any other problem, TRPHND calls error.

This routine assumes that the offending instructions were issued by the
standard io or iold routines. These routines copy the channel address
into register R6.

- 1 -

12/7/76 tt activate
Appendix B

NAME:
tt activate

PURPOSE:

USAGE:

Activate a target variable. This includes displaying the target (where
applicable) and adding a pointer to the target variable to the list of
active targets.

int tt_activate() , slot;
struct target t;

slot = tt__activate(&t) ;

PARAMETERS:
t_p

Pointer to a target structure
Used to access the target variable containing
the description on the target to be activated,

RETURNS:
slot

-1

The index in tt_current of the element which now points to the
target variable. This index can be passed to other target-
manipulating procedures to work on this active target.
Error return, indicating that the array of active targets is
full.

CALLS:

tt_label
tt outline

- 1 -

12/7/76 tt_arranger
Appendix B

NAME:

tt_arranger

PURPOSE:

USAGE:

Allows application programs to create a collection of related targets
in one area of the screen. The calling program must specify some
specific attributes for each target, and some attributes for the group
as a whole. From these specifications, the procedure will call

tt__create to fill in user-supplied target variables with the necessary
values to make targets in the appropriate positions.

struct target list [..,];
int num, values [...], flags [...], t_width , t_height, mode;
char *labels[. . .] ;
struct cs_desc *cs[...];
struct page_desc area;

tt_arranger (list, num, values, labels, cs, flags, &area,
t_width, t_height, mode);

PARAMETERS:
list Array of

num Integer
values Array of

labels Array of

cs Array of

flags Array of

area_p Pointer t

t_width

t_h eight

mode

Integer

Integer

Integer

target structures
These get filled in by tt_create to
describe the new targets.
Number of targets to position

integers
Values for created targets

pointers to characters
Labels for created targets

pointers to cs_desc structures
Identifiers for charsets to use for
created targets

integers
Flag values for created targets
These are the same as for tt__create.

o page_desc structure
The pointed-to page_desc variable will
be taken to describe the area of the
screen which the group of targets will
fill.

Width of each target in the group (in
dots)

Height of each target in the group (in dots)

Indicates positioning of the group, as a
whole, within the specified area. If
vert_cent bit is on, the group will be
centered vertically in the area. Other-

wise, it will be placed at the top of
the area. If the horiz_cent bit is on,
group will be centered horizontally.

Otherwise, it will be left- justified .
The values for vert_cent and horiz_cent
are defined in tgt__const .incl to be 2
and 1, respectively.

- 1 -

12/7/76 tt__arranger Appendix B

RETURNS:

CALLS:

NOTES:

Nothing

tt create

There is no check to verify that the specified number of targets of the
specified size will fit in the specified area. If the group is too
large for the area, something unknown and bizarre will happen.

The last row of targets may not be correctly centered, as all
centering calculations use truncating divisions.

- 2 -

12/7/76 tt_cleanup Appendix B

NAME:

tt__cleanup

PURPOSE:

To unconditionally deactivate all active targets.

USAGE:

tt_cleanup() ;

PARAMETERS:

None

RETURNS:
Nothing

CALLS:
tt delete

- 1 -

6/ 30/77 tt create
Appendix B

NAME:

PURPOSE

USAGE:

tt create

Fill in the fields of a target variable to describe a specific touch
target.

struct target t;
int x, y, width, height, value, flag;

char *label ;
struct cs_desc cs;

tt_create (&t, x, y, width, height, value, label, &cs, flag);

iTERS:
t_P

Pointer

X Integer

y Integer

width Integer

height Integer
value Integer

label Pointer

cs_p Pointer

flag Integer

to target structure
This structure will be filled in by the

procedure.
Horizontal coordinate of the lower left corner

of the touch target (in dots)
Vertical coordinate of the lower left corner

of the touch target (in dots)
Vvidth of the touch target (in dots)
Height of the touch target (in dots)
Value of the touch target. This is the target
value which is returned by tt_selections. It

can be used by applications programs for
internal identification of the target.

to character

Points to the text used to label this target.
A value of 0 indicates no label.

to cs_desc structure
Indicates the character set to use when

labelling the tareret. This value is meaning-
less if label is 0.

Flags which determine the attributes of
this target. The specific bits used for each
function is specified by the XX_bit defines in
tgt_const . incl . The types of functions

specified are
bit
0: label bit

1 : outline bit

2: flash bit

3: mark_bit

H: frc rtn bit

meaning

off : normal
on : do not label this tareret
used by : tt_label
off : normal

on : do not outline this target
used by : tt_outline
off : normal
on : do not flash this target

used by : tt_flash, tt_read
off : normal

on : do not mark this target
when it is selected

used by : tt_selections
off : normal

- 1 -

6/30/77 tt create
Appendix B

6: other bit

7 : in_use

8: lite bit

13: tt_pnl0

14: tt_pnl1

15: tt_pnl2

on : reading this target will
force tt_selections to
return

used by : tt_selections

5: dup_hits_bit off

on

used
off
on

duplicate hits of this
target will cancel each
other
successive hits of this

target will have no effect
on each other

by : tt_selections
normal

cause tt_selections to
increment count of

max number of targets
to select

used by : tt_selections
off : target variable not active
on : target variable active
used by : set by tt_activate,

reset by tt_delete
off : normal
on : do not lite or erase

this target

used by: tt_lite
off : target not displayed on

remote display head 0
on : target is displayed on

remote display head 0
used by : tt_label tt_lite

tt_mark tt_outline

tt_read
(See NOTES)

Same as tt_pnl0, but causes
target to display on remote

display head 1
Same as tt_pnl0, but causes
target to display on remote

display head 2

RETURNS:

CALLS:

NOTES:

Nothing

(Returns values indirectly through the parameter t_p.)

Nothing

The three flags bits tt_pnl0, tt_pnl1, and tt_pnl2 are used only in the
Level 6 version of the IT system. In that version, any combination of
the three bits may be lit, so the target may be displayed on any of the
three remote display heads. If none of the three bits is lit, then it
is assumed that the target should be displayed on head zero, only.

- 2 -

8/30/77 tt deactivate
Appendix B

NAME:
tt deactivate

PURPOSE:

USAGE:

Opposite function of tt_activate. Erases a target and removes it from
the list of active targets.

int slot;

if (tt_deactivate (slot) < 0) { error }

PARAMETERS:
slot Integer Index into tt_current of pointer to target

variable to be deleted. This corresponds to the
return value from tt_create.

RETURNS:

CALLS:

-1 If slot is not a valid index into tt_current or if
tt_current [slot] is 0

0 Otherwise

tt_delete
tt lite

- 1 -

12/7/76 tt delete
Appendix B

NAME:

PURPOSE:

USAGE:

tt delete

Make a target variable inactive by removing the pointer to it
from the array of active targets (tt_current) . Does not erase the
displayed target.

int tt_delete(), slot;

if (tt delete(slot) < 0) { error }

PARAMETERS:
slot Integer Index into tt_current of pointer to target

variable to be deleted. This corresponds to the
return value from tt create.

RETURNS:

CALLS:

-1 If slot is not a valid index into tt_current or if
tt__current [slot] is 0

0 Otherwise

Nothing

- 1 -

8/30/77 tt_flash Appendix B

NAME:

tt_flash

PURPOSE:
Flash an active target. Will lite and then erase the entire
target area, then re-display the target.

USAGE:
int slot;

if (tt_flash (slot) < 0) { error }

PARAMETERS:

slot Integer Index into tt_current of structure
describing target to be flashed.

RETURNS:

-1 If slot is out of range, or tt_current [slot] is empty,
0 Otherwise.

CALLS:

tt_label
tt_lite
tt outline

- 1 -

8/30/77 tt_label Appendix B

NAME:

tt_label

PURPOSE:
Display the text label for a target variable.

USAGE:
int tt_label (), slot;

if (tt_label (slot) < 0) { error }

PARAMETERS:

slot Integer Index into tt_current of the pointer to the
target variable to be labeled. This corresponds
to the value returned by tt_activate.

RETURNS:

-1 If either slot is out of range or tt_current [slot] is 0.
0 Otherwise.

CALLS:

(LSI- 11 version)
get_env /
get_page_size
get_size_chars
mk_page
set_charset
set_cursor
set_env
set_page
tok_print

(Level 6 version)

get_env
get_page_size
get_size_chars
mk_page
rls_pnl
rsrv_pnl
set__charset
set_cursor
set_env
set_page
tok_print

8/30/77 tt lite
Appendix B

NAME:

PURPOSE:

USAGE:

tt lite

Turns on (or off) all the dots on the panel in the area specified for a
target variable.

int slot, mode, tt_lite ();

if (tt_lite (slot, mode) < 0) { error }

PARAMETERS:
slot Integer

mode Integer

Index into tt_current of the pointer to the
target variable to be lit. This corresponds
to the value returned by tt_activate for this
target.
0 if the area is to be erased; non-zero if all
the dots are to be turned on.

RETURNS:

-1 Error condition indicating that either slot is out of range or
that tt_current [slot] in 0.

0 Normal return

CALLS:

(LSI- 11 version)
area_lite

(Level 6 version)
area_lite
get_pnl
rls_pnl
rsrv_pnl
set_pnl

NOTES:
This routine used to be called tt flash

- 1 -

6/30/77 tt_mark Appendix b

NAME:

tt_mark

PURPOSE:
To visually mark a selected touch target, or to erase such a mark.

USAGE:
int tt_mark (), slot, mode;

if (tt_mark (slot, mode) < 0) { error }

PARAMETERS:
slot Integer Index into tt_current of a pointer to the target

variable to be marked,

mode Integer non-zero indicates that the mark should be
written ; 0 indicates erase.

RETURNS:

-1 Indicates that either slot is out of range, or that tt_current
[slot] is 0

0 Otherwise

CALLS:

(LSI- 11 version)
area_lite

(Level 6 version)
area_lite

get_pnl
rls_pnl
rsrv_pnl
set_pnl

- 1 -

12/7/76 tt move
Appendix B

NAME:

tt move

PURPOSE:

USAGE:

Change the t_x and t_y fields of a target variable without specifying
values for the other fields.

int new_x, new__y;
struct target t;

tt_move (&t, new_x, new_y);

PARAMETERS: t_p

new x

new__y

Pointer to target structure
Points to target variable to be updated

Integer If non-negative, specifies the new left edge of
the target, in dots. If negative, the t_x field
is not changed.

Integer If non-negative, specifies the new bottom edge
of the target, in dots. If negative, the t_y
field is not changed.

RETURNS:

CALLS:

NOTES:

Nothing

Nothing

There is no check made for invalid x and y values.

- 1 -

6/30/77 tt outline
Appendix E

NAME

PURPOSE:

USAGE:

tt_outline

Display the outline for a target variable.

int tt_outline (), slot, mode;

if (tt_outline (slot, mode) < 0) { error }

PARAMETERS:
slot Integer

mode Integer

Index into tt_current of the pointer to the
target variable to outline. This is the value
returned by tt_activate for this target.
1 to draw the outline; 0 to erase it.

RETURNS:

-1 Indicates that either slot is out of range, or that
tt_current [slot] is 0.

0 Otherwise.

CALLS:

(LSI- 11 version)
putline

(Level 6 version)

get_pnl
putline
rls_pnl
rsrv_pnl
set_pnl

- 1 -

6/30/77 tt_read Appendix B

NAME:

tt_read

PURPOSE:

Allows application programs to read user touches in terms of the set of
currently active targets.

USAGE:

int tt_read (), fid, slot;

slot = tt__read (fid);

PARAMETERS:
touch Integer

RETURNS:

slot Integer

CALLS:
flush
read

tt_flas h
flush

The file id of the touch panel; returned by
open for the touch panel.

Index into tt_current of description of touched
target .

(I/O system)
(I/O system)

(I/O system)

- 1 -

12/7/76 tt relabel
Appendix B

NAME:
tt relabel

PURPOSE:

USAGE:

Change the label and value fields of a target variable without specifying
the other fields of the variable.

int slot, value;
struct target t;

char *str;

tt_relabel(&t , str, value, ptr__mode);
or

tt_relabel(slot , str, value, slot_mode);

PARAMETERS:
t_p

str

value
mode

Integer OR pointer to a target structure
Used to access the target variable to be relabeled.

Pointer to character
The new label for the target

Integer New value for the target
Integer A value of slot_mode indicates that t_p is an index

into tt_current. Otherwise t_p is taken to be a
pointer to a target variable. Slot_mode and
ptr_mode are defined in tgt_const.incl to be
0 and 1, respectively.

RETURNS:

CALLS:

NOTES:

Nothing

Nothing

No check is made to verify that a slot-type parameter t is within range.

- 1 -

12/7/76 tt selections
Appendix B

NAME:

PURPOSE

tt selections

Allows application programs to read a number of user touches at once.
This procedure returns as complete a list of user touches as possible.
It will delete duplicate touches from that list and limit the maximum
number of touches in the list, where applicable. Targets whose values
are in the list will be marked.

USAGE:

int tt_selections() , numt;
int touch, max_num_tchs , num, ovrfl, values [.,.], slots [...];

numt = tt_selections(touch, max_num_tchs, num, ovrfl, values, slots);

PARAMETERS:
touch

max num tchs

num

ovrfl

values

slots

Integer File id of the touch panel, returned by

open.
Integer Maximum allowable number of user touches.

Exceeding this number will either cause
a target to be deleted from the selected
list or the procedure to return,
depending on the value of ovrfl.

Integer Number of touches already recorded in
the list.

Integer Indicates what action to take when the
user makes more than the maximum
allowable number of touches. If ovrfl

equals the define ovrflo_rtn, the
procedure will return. Otherwise it will
delete a target from the list,
Ovrflo_rtn is defined in tgt_const .incl
to be 0.

Array of integers
The list that holds the values for the
selected targets

Array of integers
Holds the list of indicies into

tt_current of the targets that have been
selected. These are used for unmarking
targets which are removed from the
selected list.

RETURNS:

CALLS:

num The number of chosen targets. The values for these targets are
stored in the values array, and their corresponding indices into
tt_current are stored in slot.

(Returns values indirectly thru parameters.)

scrunch

tt_mark
tt read

- 1 -

12/7/76 vee
Appendix B

NAME:
vee

PURPOSE:

USAGE:

Vee implements the generalized Dijkstra V primitive.

struct semaphore sem;

vee (&sem);

PARAMETERS:

sem_p A pointer to the semaphore to V

RETURNS:
Nothing

CALLS: deq
(kernel)

enq_RQ (kernel)
mfps (kernel)
mtps (kernel)

- 1 -

12/7/?6 verify Appendix B

NAME:
verify

PURPOSE:

This is the PL/1 verify function. It takes two strings and returns
the index in the first string of the first character which is not
in the second string.

USAGE:

char *s1 , *s2;
int verify () , ndx;

ndx r verify (s1 , s2) ;

PARAMETERS:

s1 pointer to character Pointer to the source string
s2 pointer to character Pointer to verification string

RETURNS:

int - Index of first character in the first string which is not
in the second string, or -1 if all characters in first string
are in second string.

CALLS:
None

- 1 -

8/30/77 vip_proc Appendix B

NAME:

PURPOSE:

vip_proc

The vip process allows application programs to use the interface to the
DN355. It works with the interrupt routines vipxint and viprint (in the
LSI- 11 version) or the interrupt routine vipint (in the Level 6
version) to simulate a VIP7705 terminal.

Input transmissons are parsed and checked for validity by the routine
viprint (or vipint). Input characters are buffered by that routine and
are passed on to application programs by vip_proc. Output from
application programs is put into the appropriate format by vip_proc
and stored in an output buffer. Viprint (or vipint) decides when
the output transmission can be initiated. In the LSI-11 version,
vipxint does the actual transmission. In the Level 6 version, vipint
initiates a DMA output operation.

USAGE: (See NOTES)
extern struct queue_head VIP_Q;
struct req_block rb ;
int special_value;

write_q (&VIP_0, &rb);
or

write_q (&VIP_0, special_value) ; /* special_value must be odd
in the LSI-11 version and
less than 256 in the Level
6 version V

PARAMETERS:

None in the usual sense. Communication is via the input queue. Items
from the queue are either pointers to request blocks, or codes from
one of the interrupt routines.

RETURNS:

Never returns. Application programs requests are vee'd after they
have been handled.

CALLS:

(LSI-11 version)
mfps (kernel)
read_q (kernel)
mtps (kernel)
vee (kernel)

(Level 6 version)
init_ccb
read_q (kernel)
restart_io
vee (kernel)

NOTES:

If a second read or write comes in before the first has been processed,
the first will be lost. This is defined to be impossible if the user
calls the subroutines read and write. It may happen if the user

- 1 -

6/30/77 vip_proc Appendix B

communicates directly with this process.

It is possible for the line to get out of synch. A real vip terminal
has a time-out capability which will cause it to send a quiescent frame
whenever there has been no activity on the line for about four seconds.
This allows recovery if there was some temporary line failure that
caused a complete message to be lost. There is no time-out facility
in the IT system, so this capability is not present. In the Level 6
version, closing and re-opening the vip line should re-start things.
No such provision is provided in the LSI- 11 version. It should
probably be added.

The ''special_value" parameter in USAGE is a code generated by one
of the interrupt routines to give information to vip_proc. The codes
currently recognized are:

3 - An input transmission has been received. If there is a pending
read, it can now be satisfied.

5 - An ack was recieved. Data has been successfully transmitted, so

the currently pending write request can be vee'd.
11 - The vip line has just become ready.
13 - The vip line has just become not ready.

This process has a priority of 6.

The vip interface is defined as a transmission-oriented device. Thus,
a read from the vip will return a null-terminated string which
contains the number of characters requested, or all of the characters
up to the end of one transmission, whichever is smaller.

- 2 -

8/30/77 vipint (Level 6) Appendix B

NAME:

vipint

PURPOSE:
This is the interrupt service routine for the Level 6 version of the
IT vip terminal simulator.

USAGE:
This routine is invoked as an interupt processor, only.

PARAMETERS:
None

RETURNS:
Nothing

CALLS:
error
init_ccb
io
restart_io
write_q

- 1 -

6/30/77 viprint (LSI-11) Appendix E

NAME:

viprint

PURPOSE:

This is the input interrupt processor for the DUV11 vip-simulating
interface. It parses input transmissions and keeps a general eye on
the state of the interface.

USAGE:
This routine is entered as an interrupt processor, only.

PARAMETERS:
None

RETURNS:
Nothing

CALLS:
error (kernel)
write_q (kernel)

NOTES:

See the write-up of vip_proc for a more complete description of the vip
interface.

- 1 -

8/30/77 vipxint (LSI-11) Appendix B

NAME:

vipxint

PURPOSE:
Controls transmission to the DUV11.

USAGE:

This routine is entered as an interrupt processor, only.

PARAMETERS:
None

RETURNS:
Nothing

CALLS:
None

NOTES:

See the write-up of vip_proc for a more complete description of the
vip interface.

- 1 -

12/7/76 write Appendix B

NAME :
write

PURPOSE:

Write is the user-level write interface to the I/O system.

USAGE:

int writeO, len_written, device_id, length, status;
int buffer!!...];

len_written = write (device_id, buffer, length, &status);

PARAMETERS:

device_id An integer that specifies the device to write. This
should be the value returned from the call to open
that acquired the device.

buf_ptr A pointer to the data to be written.
length An integer that is the number of bytes of data to write.
st_ptr A pointer to an integer that will be set to the value

of the status of the device process.

RETURNS:

-1 If the device_id is not valid, or if the device is not
owned by the calling process, or if the device process
failed catestrophically .

Number of bytes of data written Under all other circumstances.

CALLS:

write_q (kernel)
pee (kernel)

- 1 -

12/7/76
write_q

Appendix B

NAME:
write_q

PURPOSE:

Write_q adds an element to a standard queue. It is a counterpart
to read_q, and should be used in conjunction with it.

USAGE

struct queue_header q;
int value;

write_q (&q, value);

PARAMETERS:

q_ptr value
A pointer to a standard queue header.
The item to add to the queue.

RETURNS:
Nothing

CALLS: enq

vee
(kernel)
(kernel)

- 1 -

6/30/77 xopen Appendix B

NAME:
xopen

PURPOSE:

Initialize the file information block given directory information.

USAGE:

struct file_info fib;
int index_b, o;
struct dir_entry slot;

xopen (&fib, index_b, o, &slot);

PARAMETERS:

fib pointer to file_info block to be filled in.
index_b integer index block of directory
o integer offset in directory
slot pointer to a dir_entry structure

RETURNS:
0 always

CALLS:
nothing

- 1 -

3/12/77 zero_blk Appendix E

NAME:

zero_blk

PURPOSE:
Writes zeros to a disk block

USAGE:

struct buffer *ev;
int blk;
int status;

status = zero_blk (ev, blk);

Buffer through which the disk may be accessed
The block to be zeroed.

PARAMETERS:

ev pointer to buffe

blk integer

RETURNS:
0 -1 No error

Error.

CALLS:
bufio
s write

- 1 -

8/30/77 Z80_LD (Level 6) Appendix E

NAME:
Z80_LD

PURPOSE:
Called by init_pnl to get a pointer to the z60 remote display head
microcode.

USAGE:
struct {

int length;
int start;

char microcode [?]; /* this is really "length" characters
long V

} *ptr, *Z60_LD ();

ptr = Z80_LD () ;

PARAMETERS:
None

RETURNS:
Pointer to a structure which contains:

length integer Length of the z80 microcode, in bytes,
start integer Address at which the z60 should be started

microcode character "length" characters, containing the Z60
microcode

CALLS:
None

- 1 -

8/30/77 z80_int (Level 6) Appendix B

NAME:

z80_int

PURPOSE:

This is the interrupt routine for the Zilog Z80 plasma panel, keyboard,
and touch panel controller.

USAGE:

Called as an interrupt handler, only.

PARAMETERS:

channel integer The channel address of the device that
caused the interrupt

RETURNS:

Nothing - Entered as interrupt routine, only

CALLS:
iold
io
vee
write_q

- 1 -

3/12/77 zero sim
Appendix B

NAME:
zero sim

PURPOSE:

This routine will be called by fio when an unallocated
disk block is read (hole). It does the same error checking
and read truncation as bufio.

USAGE:

int d1 ,d2,o,l, fen;

char *userbuf;

zero_sim (d1, d2, o, userbuf, 1, fen)

PARAMETERS:

d1 integer A dummy parameter.
d2 integer Another dummy.
0 integer Offset in block,
userbuf pointer to character

User's buffer to be filled with zeros
1 integer Length of read,
fen integer must be 0 (READ)

RETURNS:
0 -1 No error,

Error.

CALLS:
nothing

- 1 -

APPENDIX C

Description of IT Data Structures

3/12/77 buffer
Appendix C

NAME:
buffer

PURPOSE:

The buffer structure is used to define the environment seen by
disk block 10 routines. It holds the physical number of the
disk drive, the current block number being used, a sector offset
in that block (used for buffering), a flag to indicate whether
the buffer must be restored to disk or not, and a 1 sector (currently
128 byte) character buffer.

TION:
struct buffer

{
char bfstore[b_p_sec] ;
int drive;

int bfblk;

int
rsec;

int
};

bfflag;

size of disk buffer
disk drive no.

block number
relative sector in block

dirty sector switch

NOTES:

Defined in disksystem. incl.

- 1 -

fa/30/77 cs_desc (LSI-11) Appendix C

NAME:

cs_desc

PURPOSE:

This is a character set descriptor.

DESCRIPTION:

struct cs_desc
{

int ch_width; Width of a character in dots
int ch_height; Height of a character in dots (Must be not

greater than 16)

int *chset_ptr; Pointer to vectors used in printing the
characters

char *effector_table; The effect of each character on format control,
e.g. new line, backspace, character delete,
etc.

};

NOTES:

Defined in cinc_structs .incl

A pointer to a cs_desc is generally referred to as a character set id.

ti/30/77 cs_desc (Level 6)
Appendix C

NAME:

cs_desc

PURPOSE:

This is a character set descriptor

DESCRIPTION:

struct cs_desc
{

int ch_width;
int ch_h eight;

int *chset_ptr;

};

Width of a character in dots

Height of a character in dots (Must be not
greater than 16)

Pointer to vectors used in printing the
characters

char *effector_table; The effect of each character on format control,
e.g. new line, backspace, character delete,
etc.

If this character set is loaded into the

remote display head, this is the "variable"
number of the vector table.

If non-zero, this is the "variable" number of
this effector table in the remote display
heads. If zero, this character set is not
loaded into the display heads.

char ch_cs_num;

char ch_eff_num;

NOTES:

Defined in cinc_structs . incl

A pointer to a cs_desc is generally referred to as a character set id.

- 1 -

3/12/77 dev_entry
Appendix C

NAME:

dev entry

PURPOSE:
this structure contains information about a device or file,

DESCRIPTION:
struct dev_entry
{

int owner;

NOTES:

struct queue_head *handler_q;

struct semaphore dev_sem;

struct semaphore *requestor;

struct req__block block;

};

int dindex;

int ddrive;

The process ID of the owner of the
device

Pointer to the input queue of
the handler process

The controlling semaphore for
the device.

Pointer to the semaphore which
controls access to this device

A requset block which may be used
with this device. This block is

used by the various io_sys
routines when communicating a

request to the device handler

process. Index block number if the device

is actually a file.
What drive a file resides on

Defined in structures. incl

- 1 -

/

3/12/77 dev_names Appendix C

NAME:

dev_names

PURPOSE:

This is an array of pointers to character strings. It defines

the "names" by which various resources of the io_system may be indetified,
It is used in conjunction with the integer array dev__types.
The size of dev_names is controlled by the defined name fixed_names
contained in the file disksystem. incl.

DESCRIPTION:

char *dev__names[fixed_names]
{

&"dev_tp",

&"dev_kb", Sample of permanent names used
&"dev_ph", in an IT operating system.
&"dev_rxO" ,
&"dev_rx1"

PARAMETERS:

fixed_names A define indicating the size of the table.

NOTES:
Defined in disk/disk tables. c.

- 1 -

3/12/77 dev_types Appendix C

NAME:

PURPOSE:

dev_types

An integer array used in conjunction with dev__names which
indicates the DEV__TAB slot to be used in referencing an 10 device.
If an entry in dev_types is negative, it represents the ones compliment
of the DEV_TAB slot which is dedicated to the device.
A positive entry indicates that corresponding name in dev_names is
referencing a disk drive. The positive number is the number of the
disk drive.

DESCRIPTION:

int dev_types[f ixed_names]
{

-1, -2, -3, 0, 1
};

PARAMETERS:

The size of the table is determined by the define fixed_names in the
file disksystem.incl.

NOTES:
Defined in disk/disk tables. c.

- 1 -

3/12/77 dir_entry
Appendix C

NAME:

dir_entry

PURPOSE:
This defines the format of the information contained in a directory
slot. An entry with a nonzero file type indicates that the particular
file is a subdirectory and should be opened as such. The first
dir_entry of a directory is a descriptor for the directory itself.
In this case, the file type is the block number of the index block
for the parent of the directory.

DESCRIPTION •

struct dir_
r

_entry
1

int filetype;

int filler[3J;

int mxblk;

int mxoff;

int index;

char file name [b_p_name] ;
char

figs;
};

0 = plain file, else = directory
add new stuff here
max block in index
offset in the highest block
index block for this file
file name

flags, 1 = never delete

NOTES:

Defined in disksystem. incl.

- 1 -

3/12/77 drive info Appendix C

NAME:

drive info

PURPOSE:
This structure holds information about online drives. Contained
therein is a copy of the drive freemap, the dir_entry of the
root directory of the file at the time the disk was first brought
on line, a file_info structure, and a buffer structure. The
last two are used any time the root directory or the drive freemap
must be modified.

DESCRIPTION:

struct drive_info
{

int
struct
struct
struct

f reemap[f ree_sz] ;
dir_entry dslot;
file_info dfib;
buffer denv;

};

freemap for the drive.
dir entry of the root
for accessing the directory
environment to be used by disk for
directory or freemap reads/writes

note;

Defined in disksystem.incl.

- 1 -

b/30/77 env_desc (LSI-11) Appendix C

NAME:
env_desc

PURPOSE:

Used to store print environment descriptors.

DESCRIPTION:
struct env_desc
{

struct cs_desc *e_cs; This holds the character set ID
struct page_desc e_pa«e; This holds the page descriptor
int e_xcursor; The cursor x coordinate
int e_ycursor; The cursor y coordinate };

NOTES:

Defined in cinc_structs .incl

- 1 -

fa/30/77 env_desc (Level 6)
Appendix C

NAME:

PURPOSE:

env desc

Used to store print environment descriptors

DESCRIPTION:

struct env_desc
{

struct cs_desc *e_cs;
struct pac;e_desc e_page;
int e_xcursor;
int e_ycursor;
int e_pnl;

};

This holds the character set ID

This holds the page descriptor
The cursor x coordinate

The cursor y coordinate

The set of currently selected remote
display heads

NOTES:

Defined in cinc_structs . incl

- 1 -

3/12/77 file info
Appendix C

NAME:
file info

PURPOSE:
File information block. This contains most of the information on

a specific file, eg index block subset, disk pointers, file maxima
and directory slot number.

DESCRIPTION:
struct file

_info {
int ndxs[ndxs_sz] ;
int ndxs_off ;

int ndx_blk;
int ndx_f;

int
fblk;

int foff;

int fblkno;

int maxblk;

int maxoff ;

int dir_s_index;
int dir_s_off;
int f flags;

NOTES:

};

Defined in disksystem. incl

index subset
offset in subset

block number of index blk
index flag

file position block addr
file position offest
file position block number

last block in index used
max offset in last block

index of directory for this file
offset in directory

directory information flags

- 1 -

b/30/77 map (LSI-11) Appendix C

NAME: map

PURPOSE:

Defines a piece of free memory for use by the memory management routines

DESCRIPTION:

struct map
{

char *m_size; The size, in bytes, of a piece of free memory
char *m_addr; The address of the piece };

NOTES:

Defined in structures . incl

- 1 -

5/30/77 map (Level 6) Appendix C

NAME: map

PURPOSE:

Defines a piece of free memory for use by the memory management routines

DESCRIPTION:

struct map
{

int m_size; The size, in bytes, of a piece of free memory
int *m_addr; The address of the piece };

NOTES:

Defined in structures . incl

- 1 -

12/7/76
page_desc Appendix C

NAME:

page_desc

PURPOSE:

An instance of this structure is used to describe the "page" (an area
of the plasma panel) to be used for some function, typically printing

DESCRIPTION:

struct page_desc
{

int p_left;

int p_bottom;

};
int p_width;
int p_height ;

Left edge of the page in dots from the left
edge of the screen

Bottom edge of page in dots from the bottom
edge of the screen

Width of the page in dots
Height of the page in dots

NOTES:
Defined in cine structs.incl

- 1 -

12/7/76
process Appendix C

NAME

process

PURPOSE:

This structure contains information used by startup to create a
process at system initialization time.

DESCRIPTION:

struct process
{

NOTES:

int (*procecure) () ;

int size_of_stack;

int parm;

int prty;

struct stack_base *id;
};

A pointer to the entry point of the
procedure to be started as a

process
The size, in words, of the stack that

will be asigned to the process

A one-word parameter to be passed to the

procedure

The process's priority
The process ID. This will be filled

in by startup

Defined in structures. incl

- 1 -

12/7/76 q_element Appendix C

NAME:

q_element

PURPOSE:

This is a single element in a queue.

DESCRIPTION:

struct q_element
{

int value; This is the one-word value which has
been placed in the queue

struct q_element *link; A pointer to the next element in the
queue. The last element in the
queue points to the first element.

}

NOTES:

Defined in structures. incl

- 1 -

12/7/76 queue_head Appendix C

NAME :

PURPOSE

queue_head

This is the header for a circular queue. Generally, any process may
write to a queue, but only one process will read from it,

DESCRIPTION:

struct queue_head
{

struct q_element *queue;

NOTES:

struct semaphore sem;

};

This is a pointer to the first element
in the queue.

This is the controlling semaphore for
the queue. Read_q will pee this
semaphore before reading from the

queue,
Write_q will vee it after writing to the

queue.

Defined in structures, incl

User programs should not modify fields in this structure.

- 1 -

3/12/77 req_block Appendix t-

NAME:

req_block

PURPOSE:
This is the format of a request to one of the device processes.
Normally, request blocks are constructed by one of the io_sys routines
(read, write, peek, etc.) and then the address of the block is sent
to the device process.

DESCRIPTION:
struct req_block
{

int type_req; This is a code specifying the type of request.
The valid values and their mnemonics (defined
in constants. incl) are:

read_type 1
write_type 2
open_tyoe 3
close_type 4
flush_type 5

peek_type 6
setmode_type 7
delete_type 9

int data_len; The actual length of data read or written by
this request,

int buf_len; The length of the user's buffer. By implication, the length of the data he is asking to
transfer,

char *buf_addr; Pointer to the user's buffer
struct semaphore *req_semaphore;

The requesting process does a pee on this
semaphore after sending the request. The
device process will vee it when the request
has been processed,

int status_f lags; Device-dependent status information
int id_field; Equal to the DEV_TAB index minus the constant

first_disk. This is used to index disk tables.
);

NOTES:

Defined in structures. incl

- 1 -

12/7/76 semaphore
Appendix C

NAME

PURPOSE

semaphore

This is the format of the IT implementation of Dijkstra's semaphores.
They are used for synchronization between processes.

DESCRIPTION:

struct semaphore
{

int count;

};

struct q_element *ptr;

If this is greater than zero, it is the

number of outstanding V's on the
semaphore. If it is less than zero it
is the number of processes blocked on
the semaphore.

This is the start of a list of blocked

processes. This linked list contains
a pointer to the stack base of each
process blocked on this semaphore.

NOTES:
Defined in structures. incl

Only the pee and vee kernel routines should alter these fields.

- 1 -

8/30/77 stack base (LSI-1 1)
Appendix C

NAME:

stack base

PURPOSE:

This is the information stored at the base of a process's stack.
It is used when switching processes.

DESCRIPTION:

struct stack_base
{

int stack_size; The size of the process's stack in words
int R5; Place to save register 5
int R6 ; Place to save register 6
int stack_priority; Priority of the process
int guard_word; This is a tag word (currently set to octal

0104401) which is used to check for stack
overflow.

NOTES;
Defined in structures. incl

- 1 -

8/30/77 stack base (Level 6) Appendix C

NAME
stack base

PURPOSE:

This is the information stored at the base of a process's stack on
the Level 6. It is used when switching processes.

DESCRIPTION:
struct stack base
{

NOTES:

int stack_size; The size of the process's stack, in words
int sv_B5; The return address for the process
int sv_B7; Base register 7 - environment linkage
int stack_priority; The priority of this process.
int guard_word; This is a tag word (currently set to octal

0104401) which is used to check for stack
overflow.

Defined in structures. incl

- 1 -

8/30/77 sv__regs (Level 6) Appendix C

NAME:

PURPOSE

sv_regs

This is a template for the registers stored at entry to a Level 6
C program.

DESCRIPTION •

str
{

act sv_regs

int

B7

; Saved value
int

B6;
Saved value

int
B5

; Saved value
int

B3;
Saved value

int

B2;
Saved value

int

B1;
Saved value

int

i;

Saved value
int

R5;
Saved value

int R4 Saved value
int

R3;
Saved value

int

R2;
Saved value

int

R1;
Saved value

int

M;

Saved value
};

of base register 7
of base register 6
of base register 5
of base register 3
of base register 2
of base register 1
of indicator register
of data register 5
of data register 4
of data register 3
of data register 2
of data register 1
of M register

NOTES:
Defined in structures. incl

- 1 -

12/7/76 target
Appendix C

NAME:

PURPOSE

target

This structure is used to define a touch target.

DESCRIPTION:

struct target
{

int t_x ;

int t_y;

int twidth;
int theight ;
int tvalue;

char *tlabel;

int tcharset;

int tflags;

int tother;

X coordinate of lower left corner of target
in dots

Y coordinate of lower left corner of target
in dots

Width of target in dots
Height of target in dots
User supplied value for the target

Pointer to a null-termintaed character string
which is used to label the target. If zero,
there is no label associated with this
target.

ID of the character set to be used when labeling
the target

Miscellaneous flags. These are the same values
that are input to the routine tt_create.

Reserved for future use
>;

NOTES:
Defined in cine structs.incl

- 1 -

APPENDIX D

Character Set Description

This Appendix contains three tables which detail the character set for
the plasma panel used by the IT. The first table lists all 128 of the
ASCII characters and describes the graphic used in printing each one.
The second table gives a detailed explanation of the format effector
characters in the standard ASCII charset. The last table indicates the
values which are used in the Effector Tables for IT charsets.

b/30/77

Table of Characters Displayed on the Plasma Panel

ASCII Charact<

=r

ASCII Character ASCII Character

Octal Name Graphic Octal Name Graphic Octal Name Graphic

000 NUL <Nothing> ! 053 + +
! 12b

V V
001 SOH Inverted A I 054 > >

! 127
W W

002 STX Inverted B ! 055
- -

i 130 X X
003 ETX Inverted C I 05b . •

! 131
Y Y

004 EOT Inverted D ! 057 / /
! 132

Z Z
005 ENQ Inverted E

I ObO
0 0

133

[[
00b ACK Inverted F

I 061
1 1

134
\ \

007 BEL Inverted

G *

0b2 2 2

135

]]
010 BS Inverted

H «

I 063 3 3 13b
A ^

01 1 HT Inverted

I *

Ob 4 4 4

137

012 LF Inverted

J *

0b4 5 5 140
* ■

013 VT Inverted

K *

Obb b b
141

a a
014 FF Inverted

L *

0b7
7 7 142 b b

015 CR Inverted

M *

070 b b

143

c c
01b RRS Inverted N 071 9 9

144
d d

017 BRS Inverted 0 072
• • •

145

e e
020 DLE Inverted P

073

>
•
> 14b f f

021 DC1 Inverted Q
074

< <

147

g s
022 DC2 Inverted R

075
= = 150 h h

023 DC3 Inverted S 07 b > > 151 i i
024 DC4 Inverted T

077
7 9 • 152 J J

025 NAK Inverted U 100 e §

153

k k
02b SYN Inverted V 101 A A

154
1 1

027 ETB Inverted N 102 B B

155

m m
030 CAN Inverted

X *

103

C C 15b n n
031 EM Inverted Y 104 D D

157

o o
032 SUB Inverted Z

105
E E 160 P P

033 ESC Inverted 3 10b F F 161
a q

034 FS Inverted 1
107

G G 162 r r
035 GS Inverted Q 110 H H

163

s s
03b RS Inverted fl 111 I I

164
t t

037 US Inverted n 112 J J

165

u u
040 Space Blank

113

K K 166
V V

041 i !
114

L L

167

w w
042 H H

115
M M 170

X X

043 # # 11b N N 171 y y
044 $ $

117
0 0 i

172
z z

045 % % 120 P P I

173

{ {
04b & & 121 Q Q !

174
1
1

1
1

047 I • 122 R R !

175

} }
050 ((

123

S S I 176

"■

~

051)) 124 T T I

177

DEL

Box *

052 k *
125

U U

"Inverted" characters are printed dark-on-light instead of the normal
light-on-dark.

•These characters are format effectors in the standard character set. For
their effect, see the next table.

b/30/77

IT Plasma Panel Format Effectors

Description of Effect*

Does nothing.
Rings the bell.
Moves the cursor one character to the left.

Moves the cursor to the right to the next b-character tab stoD
Moves the cursor to the start of the next line.
Moves the cursor up one line.

Clears the page and moves the cursor to the top left corner.
Moves the cursor to the start of the current line.
Moves the cursor back to the start of the current line and

erases the line.

177 DEL Moves the cursor one character to the left and erases that
character.

*A11 format effectors work in the subset of the plasma panel which has been
specified as the current page.

ASCII
•ctal Name

000 NUL
007 BEL
010 BS
011 TAB
012 LF
013 VT
014 FF
015 CR
030 CAN

Character Set Effector Code Values

Value** Effect

0 Treat the character as an ordinary graphic.
1 Move the cursor to the left one character. (Backspace)
2 Ring the bell.
3 Move the cursor to the start of the current line. (Carriage return)
4 Move the cursor one character to the left and delete that character.
5 Clear the page and move the cursor to the top left.
6 Erase the current line.
7 Move the cursor down one line. (Line feed)

b Move the cursor to the start of the next line. (New line)
9 Move the cursor to the rieht to the next tab stop. (Horizontal tab)
10 Move the cursor down to the next vertical tab stop. (Vertical tab)
11 Ignore the character. Do not print it or effect the format.

**These are the values stored in the character set effector table. If the
meaning of these values must be changed, then the effector table and the rou-

tine put_ascii must both be chanced.

APPENDIX E

Interfaces: Plasma and Touch Panels

PLASMA PANEL INTERFACE

This section describes the interface to the plasma display

panel and gives an example of its use.

The plasma panel is controlled from the LSI-11 using four

registers. The Control and Status Register, DISPCSR, is for general

control. It selects the operation (write, erase) and mode for the

interface. The X and Y address registers, DISPXADR and DISPYADR, specify

the address of the point or group of points to be operated on. The

Display Data Register, DISPDATA, is used to select a subset of a 16-dot

group to operate on in parallel mode.

Modes of Operation

There are two modes of operation of the plasma panel interface:

serial and parallel.

Serial mode - The serial mode of operation is used to operate

on a single point on the display. In this mode, the point is

addressed by the X and Y address registers. The operation to

be performed is specified in the Control and Status Register.

The contents of the Display Data Register are meaningless in

the serial mode.

Parallel mode - The parallel mode of operation is used to operate

simultaneously on 16 points of the display. In this mode, the

X and Y address registers are used to address a group of 16

points. The contents of the Display Data Register act as a

mask to select which of the 16 points will be effected by the

current operation.

The contents of the X and Y address registers address the

lower end of a vertical group of 16 points on the display

screen. Each point in the group of 16 which corresponds to a

one in the Display Data Register will be affected by the

current operation. Those bits which correspond to zeroes in

the Display Data Register will not be affected. The low order

bit of the Display Data Register corresponds to the lowest of

the 16 vertical points being addressed. Note that the low-

order 4 bits of the Y-address are treated as zeroes. Thus,

every operation in the parallel mode addresses a group of 16

points whose lower end is on a 0 module 16 boundary. The full

X-address is used.

Addressing Modes

There are four different addressing modes used to access the

display panel interface. The addressing mode determines exactly when

the operation specified in the Control and Status Register will be done.

Immediate mode. In immediate mode, the operation is performed

immediately upon loading of the CSR. (In the current interface,

this mode does not work properly.)

After X mode. In this mode, the specified operation is performed

each time the X-address register is loaded.

After Y mode. The operation is performed each time the Y-

address register is loaded.

After data mode. The operation is performed each time the

Display Data Register is loaded. This is allowed in serial mode;

however the contents of the data register will be ignored.

Registers

The addresses of the panel registers, and the meanings of the

various bits are diagrammed below. The register addresses can be changed

by altering the settings of the address selection switches. However,

any programs written that refer to those addresses must be modified

accordingly if these switch settings are changed.

DISPCSR - 177000

ERR DONE
IE

PRT BULK PAR F2 Fl F0

DISPXADR - 177002

— — — — —
X8 X7 X6

X5

X4
X3

X2
XI XO

DISPYADR - 177004

Y8 Y7
Y6

Y5
Y4 Y3

Y2
Yl Y0

DISPDATA - 177006

PD15 ^ PD0 ^
i

Control and Status Register (DISPCSR) 177000

The control and status register is used to provide user-

defined command and status functions for the display unit.

DISPCSR Bit Assignments

BIT NAME FUNCTION

15 ERROR

14-08

07 DONE

06 INTENB

05 PRINT

Not implemented in the current interface design but

is provided for future versions. (Read Only)

Not used

Indicates that the display unit has executed the

previously defined operation and is ready to continue,

Interrupt Enable... not implemented in the current

interface.

Not implemented in the current interface.

BIT NAME FUNCTION

04 BULK Bulk erase command to the display (screen

clear) . (Read/Write)

03 PARALLEL When set, places the interface and display in

the parallel mode of operation. (Read/Write)

02-00 F2-F0 Function bits. Used to define the operation to

be performed on the display. Table #1 describes

these operations. (Read/Write)

TABLE 1 - Display Operations

FUNCTION BITS OPERATION

F2 Fl F0

0 0 0 ERASE "IMMEDIATE"

0 0 1 ERASE AFTER LOADING X-ADDR REGISTER

0 10 ERASE AFTER LOADING Y-ADDR REGISTER

0 11 ERASE AFTER LOADING DATA REGISTER

10 0 WRITE "IMMEDIATE"

10 1 WRITE AFTER LOADING X-ADDR REGISTER

110 WRITE AFTER LOADING Y-ADDR REGISTER

111 WRITE AFTER LOADING DATA REGISTER

Parallel Data Register (DISPDATA) 177006

The parallel data register is a 16-bit read/write register

that may be read or loaded from the processor bus. Information from the

bus is loaded into this register under program control.

A "one" in any bit position (in conjunction with X-ADDR and Y-

ADDR) indicates that the addressed point on the display is to be either

illuminated (written) or extinguished (erased) depending on the contents

of the DISPCSR. The contents of this register have no effect when the

interface is operating in the "SERIAL" mode.

X-ADDRESS Register (DISPXADR) 177002

The X-Address register is a 16-bit read/write register that

may be read or loaded from the processor bus. Information from the bus

is loaded into this register under program control.

This register is used to specify the 9-bit X-Address to be

operated upon on the display. The address should be right-justified in

the register.

Y-Address Register (DISPYADR) 177004

The Y-Address register is a 16-bit read/write register that

may be read or loaded from the processor bus. Information from the bus

is loaded into this register under program control.

This register is used to specify the 9-bit Y-Address to be

operated upon on the display. This address should be right-justified on

the register.

Example of Use

The following section of code will draw the outline of a 16x16

dot box on the plasma display panel. The lower, left-hand corner of the

box will be at address (X,Y). The example is intended to be more illustrative

than efficient.

#define DISPCSR (0177000 -> word)
fdefine DISPXADR (0177002 -> word)
//define DISPYADR (0177004 -> word)
fdefine DISPDATA (0177006 -> word)

struct {int word} ;

box()
{
int xad, yad;

while ((DISPCSR & 0200) == 0) ;

/«

/* loop until the done bit is on to be
sure that the previous operation is

completed */

* Use the serial, write-after-y modes to draw the
* sides of the box
*/

DISPCSR = 3;
DISPXADR = X;

for (yad = Y; yad < Y + 16; ++yad)
{

DISPYADR = yad;

/* set to serial, write after y mode */

/* draw the left side of the box */
/* this will cause one dot to be

written */
while ((DISPCSR & 0200) == 0); /* wait for operation to complete */

DISPXADR = X

15;

/* set x address to write right side of

box */

for (yad = Y; yad < Y + 16; ++yad)

{ /* draw the right side of the box */
DISPYADR = yad; /* write one dot */
while ((DISPCSR & 0200) == 0); /* wait for completion */

}

/* * Use the parellel, write after x modes to write the top and
* bottom of the box at the same time
*/

DISPCSR = 015;

DISPDATA = 0100001;

DISPYADR = Y;

/* Put the panel into parallel, write
after x mode */

/* This will cause each write to effect
the top and bottom dots in each

16-dot group */

for (xad = X + 1; xad < X + 16; ++xad)
{

DISPXADR = xad; /* write one dot at top and one at
bottom of the box */

while ((DISPCSR & 0200) == 0); /* wait for completion */

TOUCH PANEL INTERFACE

The touch panel is interfaced to the LSI-11 through a standard

DEC DRV11 interface. When a touch is made, the panel will send two

characters to the processor via the data register of the interface. The

touch coordinates are encoded in the data register as:

— — — X4 X3
X2

XI
XO

— — —

Y4
Y3

Y2
Yl YO

An X coordinate of zero corresponds to the left of the screen, and a Y

coordinate of zero corresponds to the bottom of the screen.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER

CCTC-WAD Document #7616
CAC Document #236

2. GOVT ACCESSION NO

4. TITLE (and Submit)

Research in Network Data Management and
Resource Sharing

INTELLIGENT TERMINAL PROGRAMMER'S MANUAL (Vol. 2)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT * PERIOD COVERED

Research

6. PERFORMING ORG. REPORT NUMBER

CAC Document #236

7. AUTHORC'J

Deborah S. Brown, Daniel J. Koptezky,
John R. Mullen, and David A. Willcox

8. CONTRACT OR GRANT NUMBERf*)

DCA100-76-C-0088

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Center For Advanced Computation,

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS

Command and Control Technical Center

Defense Communications Agency
11440 Isaac Newton Sq., Reston VA 22090

12. REPORT DATE

October 31, 1977
13. NUMBER OF PAGES
169

U. MONITORING AGENCY NAME ft ADDRESSf/f different from Controlling Office) 15. SECURITY CLASS, (of thle report)

UNCLASSIFIED

15*. DECLASSIFI CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION ST ATEMEN T (of thia Report)

No Restriction on Distribution

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If dltfaranl from Report)

IB. SUPPLEMENTARY NOTES

Copies of this report may be obtainde from (11), above

19. KEY WORDS (Continue on reverae aide If neceaaary and Identify by block number)

Intelligent Terminals

20 ABSTRACT (Continue on reverae side If neceaaary and Identity by block number)

Volume 2 of the Programmer's Manual for the touch-oriented Intelligent
Terminal developed for CCTC-WAD 's Man-Machine Interface Project.

DD (JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

<

UNIVERSITY OF ILLINOIS URBANA
510.84IL63C CDni

3 0112 QQ7264f)fiQ

■Hr

IBhSS

;

mi i
 •'

'

