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Autocorrelation and Conditional Heteroskedasticity:

A Random Coefficient Approach

Anil K. Bera and Sangkyu Lee

Department of Economics, University of Illinois at Urbana-Champaign

1206 S. Sixth Street, Champaign, IL 61820

ABSTRACT: We consider a linear regression model with random coefficient autoregres-

sive disturbances which provides a convenient framework to analyze autocorrelation and

autoregressive conditional heteroskedasticity (ARCH) simultaneously. Under our frame-

work, the necessary and sufficient conditions for the process to be stationary are easily

derived, and these conditions further reveals the interaction between ARCH and auto-

correlation. Next we discuss tests for ARCH in the presence of autocorrelation and vice

versa. A joint test for autocorrelation and ARCH is also suggested. An empirical example

is provided to illustrate the usefulness of our analysis.

KEY WORDS: ARCH; Random Coefficient Model; Autocorrelation; Stationarity condi-

tion; Lagrange multiplier test; Price Expectations; Unbiasedness hypothesis.





1. INTRODUCTION

Recently, the autoregressive conditional heteroskedastic (ARCH) model introduced

by Engle (1982) and its different generalizations have become popular in modeling the

behavior of monetary and financial variables [see, for example, the references cited in Engle

and Bollerslev (1986), Bera et. al (1988) and Bollerslev et. al (1988)]. Earlier researchers

used to consider only unconditional heteroskedasticity, that too as an arbitrary function

of some exogenous variables. In contrast, ARCH models provides a systematic way to

specify conditional heteroskedasticity.

ARCH models are applicable exclusively for time series data. For a long time, econo-

metric tradition has been to incorporate autocorrelation in the model to capture the time

series dynamics [see Hendry and Mizon (1978)]. Nevertheless, curiously enough, none

of the above applied papers considers explicitly serial correlation and ARCH simultane-

ously. In some cases, the absence of serial correlation was reported using Durbin-Watson,

Durbin-h and other tests separately prior to testing for ARCH which was found to be

significant. In the presence of ARCH , the usual tests for autocorrelation are not valid. In

a recent paper, Diebold (1986) demonstrated that the presence of ARCH invalidates the

asymptotic distributions of the sample autocorrelation and the Box-Pierce and Box-Ljung

test statistics for serial correlation. Furthermore, as indicated in Engle et al. (1985, p. 75),

the presence of autocorrelation could be mistaken for ARCH even when there is no con-

ditional heteroskedasticity. In light of increasing use of ARCH type models and current

econometric practice, there is a need to study the interrelationship between autocorrelation

and ARCH . The purpose of this paper is to investigate this interrelationship in terms of

stationarity of the time series process, testing and estimation.

The presence of ARCH could be interpreted in a number of ways such as non-

normality of the disturbance term [Engle (1982, p.992)] and nonlinearity of the process

[Higgins and Bera (1988, 1989)]. In a recent paper, Bera and Lee (1988) established a close

link between autocorrelation and ARCH through parameter heterogeneity. They applied

the White's (1982) information matrix (IM) test to the standard linear regression model



with autocorrelated errors and found that the Engel's (1982) Lagrange multiplier [LM)

test for ARCH is a special case of one component of the IM test. Given Chesher's (1984)

interpretation of the IM test as a test for parameter variation, it can be said that the pres-

ence of ARCH is equivalent to random variation in the autocorrelation coefficients [see also

Tsay (1987)]. This leads us to consider the regression model with random autocorrelation

parameters. In section 3, we show how this formulation helps to study stationarity of the

resulting process, after discussing the model in section 2. Next in section 4, we discuss

how the tests for ARCH are affected by the presence of autocorrelation and vice versa.

An empirical example of testing the unbiasedness of experts' expectation of inflation using

the Livingston survey data is provided in section 5. Finally, some concluding remarks are

offered in the last section.

2. THE MODEL

To analyze the autocorrelation and the ARCH simultaneously, we need to specify a

general framework which encompasses, as special cases, models which are encountered in

practice. For this purpose, we consider a linear regression model with random coefficient

autoregressive disturbances,

yt
= x'

t + et

p

St = /ZfatSt-j +u«
y=i

= X)(^+»7yt)e«-y+«t (2.1)

3=1

where yt
is the t-th. observation on the dependent variable, xt is a k x 1 vector represent-

ing the t-th. observation on k fixed regressors with a k x 1 vector of unknown constant

coefficients (3, et is the disturbances which follow a stochastic p-th order autoregressive

process with <j>3
- constant and r/Jt stochastic for all /. For the model (2.1), a number of

fairly general assumptions are made.



ASSUMPTION 1. : Let {r)
t
= (rj lt ,... ,rjpt )',t = 1,2, •••,7V} be a sequence of identically

and independently distributed random vectors with E(r]t ) = Opx 1 and E{n t r}'
t ) = E, where

E is a p x p positive semidefinite matrix.

ASSUMPTION 2. ; {u
t
,t = 1,2, •••,N} is a sequence of identically and independently

distributed random variable with E(u t ) = and E(uf) = o^.

ASSUMPTION 3. : {r}t ,t = 1,2, ---.N} and {u t ,t = 1,2,- " 9 N} are mutually indepen-

dent.

A wide range of models is encompassed as special cases of the model (2.1). Let v£
t _ :

be the information set available at time t. There are many ways to summarize the available

information at time t. In particular, a series of the past innovations {et -i |
* = 1,2, • • •} is

assumed to belong to ty t -i- Then the conditional mean and variance of the disturbance

et under Assumptions 1-3 can be represented as

p

\it =E{et
I
#,_,) =E[Y^(4>]

+r)]t )et . }
+ u

t \
%_ x ]

3 = 1

p

= 4>% (2.2)

where
<f>
= [fa

,

-

m
' ,

<f>P )' and ^ = (e
t _ 1} • • • ,et - p

)' and

p

h t =Var(e t |
# t _ ,

) - £[(]T r,jt et -

,

+ u t f \%. x
]

y=i

= ^[^'17^;^ + 2«teL'i7< +u t

2

I

* t -i]

^^'E^ + a* (2.3)

Interestingly, we can observe the two kinds of conditional heteroskedasticity process from

(2.3). The diagonality of E specifies the linear ARCH process proposed by Engle (1982),



while the non-diagonality of E specifies another ARCH process with additional cross-

product terms of the past innovations. We call the latter the augmented autoregressive

conditional heteroskedasticity (AARCH) to differentiate it from the simple ARCH.

As summarized in Table 1 below, a variety of linear regression models are obtained

as special cases of the model (2.1) according to the specification of <j> and E. Furthermore,

our unified framework is quite flexible since the order of autocorrelation can be selected

differently from that of ARCH without any major adjustment to the model. This can be

done by specifying
<f>

and E so that irrelevant elements should be placed by zeros. For

example, the mth-order autocorrelation combined with the A;th-order ARCH will be ob-

tained by formulating
<f>
—

(<f>x , <f>2 ,
• • •

,

^

m , 0, • • • , 0)' and E =diag (7i ,73 , • • •
, 7* , 0, • • • , 0).

For analytical convenience, the same orders for both AR and ARCH processes will be

maintained throughout.

The model (2.1) could be generalized by making the regression parameters (5 also

stochastic. It will introduce the unconditional heteroskedasticity indirectly [see Breush

and Pagan (1979)]. However, for the purpose of considering autocorrelation and ARCH
simultaneously, the model (2.1) is sufficient. We should also mention that there are various

ways to introduce autocorrelation and ARCH jointly. For example, another way would

be to take

et
= (u t + <j>'£t){l + e/EeJ*

so that E(et \
V

t -i) = ^'fJl+f/EeJ*" and Var(e
t |

#
t -i) = o2

u ( 1 + e± EeJ However, the

advantage of the model (2.1) is that it allows us to handle the verification of stationarity

conditions, testing for different restrictions and estimation much easier. Moreover, note

that our model could be generalized further to broaden the information set ty
t _ x

[see Tsay

(1987)].

3. CONDITIONS FOR STATIONARITY

In this section we examine the necessary and sufficient conditions for the process of

random coefficient autoregressive disturbances to be covariance stationary. Then we show



that the stationary conditions for the pth-order linear ARCH process discussed in detail

in Engle (1982) can be easily derived as a special case.

In statistics literature, the stationarity conditions for the autoregressive series with

random parameters has been extensively studied. Andel (1976) derived the necessary and

sufficient conditions for a univariate autoregressive series with stochastic coefficients and

showed that the covariance function of a stationary autoregressive series with random

parameters satisfies the same Yule-Walker equations as in the usual autoregressive model

with fixed parameters. Nicholls and Quinn (1982) extended the results of Andel to the

multivariate autoregressive model with random coefficients. Based on Andel (1976) and

Nicholls and Quinn (1982), Nicholls (1986) provided simple conditions that are easy to

check for second-order stationarity of the univariate autoregressive series with random

coefficients [see also Ray (1983)]. Following Nicholls (1986), we now state the stationarity

conditions for the error process of the model (2.1) as Proposition 1.

PROPOSITION 1. : In addition to Assumptions 1-3, let E t be the o-field generated by

{u B ,r) s ;s < t} and

M _ °( P -i)xi h-i
4>v <t>'- P j

where
(p _ 1)x x is the (p — 1) x 1 null vector, Ip _ x is the (p — 1) x (p — 1) identity matrix

and 4>-p — [4>p- ij" ' * j0i)'- Then the pth-order autoregressive disturbances process with

random coefficients [et = Y7= i (<£/ + Vj^^t-j + v>t , where u t is a white noise) has a unique

E t -measurable second-order stationary solution if and only if (1) M has all its eigenvalues

within the unit circle and (2) (vec(Y,))'a < 1, where a is the last column of the matrix

{I-M&M)- 1
.

PROOF: see Theorem 2 and Lemma 3 of Andel (1976) and Corollary 2.3.2 of Nicholls and

Quinn (1982).

This result shows that the stationarity conditions for a particular disturbance process

discussed in section 2 can be derived simply by imposing some restrictions on
<f>
and E. It is



easily seen that the eigenvalues of the matrix M are the same as the roots of the polynomial

zp —
<f) 1 z

p ~ 1 —
<f>2 z

p ~ 2 — • • • —
<f>p

=0. This implies that condition (l) of Proposition 1

describes the stationarity condition for the pth-order autoregressive (AR(p)) process. If

there is no autocorrelation, all the eigenvalues of the matrix M are zeros and condition (1)

is automatically satisfied. Condition (2) of Proposition 1 can be viewed as the stationarity

conditions for conditionally heteroskedastic process in the presence of autocorrelation. If

there is no autocorrelation and E is a diagonal matrix, this condition turns out to be exactly

identical to the stationarity condition for the simple ARCH as discussed in Theorem 2 of

Engle (1982) and Theorem 1 of Milhoj (1985). If there is no conditional heteroskedasticity,

E becomes the null matrix and condition (2) is automatically satisfied.

To investigate the validity of the stationarity conditions for the Engle's ARCH process

in the presence of autocorrelation, we first consider the pth-order linear ARCH process

specified as h t = o2
u + iie

2
_ l H ^Ip^-p- In this case, E = diag(ii,~j2 ,- '

' ,1P ) and a is

a p
2 x 1 vector with one as elements corresponding to 7y,j = 1,2, • • • ,p. Given regularity

conditions 7y > 0,j = 1,2, •••,p, the required stationarity condition is summarized as

Yl
P

=i lj < 1- However, Proposition 1 can be easily used to show that this condition is not

sufficient to ensure stationarity in the presence of autocorrelation. We now consider the

pth-order linear ARCH combined with AR(p) process. For this special case, after some

simplications we can state the two conditions for stationarity as u>(0) Yl
P

=i lj < *> wnere

u(-) is a function of {(f> x , </>2 ,
• • • , <f>p ), and the roots of the polinomial zp —<f> l z

p ~ l

—<t>2 z
p ~ 2 —

P = lie inside the unit circle. It is clear that the influence of autocorrelation which

is exercised through u>((f)) may invalidate the stationarity conditions for the simple ARCH
process. To see it clearly, let us consider an AR(2) process with a second-order ARCH.

For this case,

M = 1

<f>2 <f>l

and it can be shown that the stationarity condition (2) is w(<£)('-(1 + 72 ) < 1, where

u{4>) =

6



To simplify it further, take the case of first- order ARCH with an AR(l) process, so

that
<f>2 = 72 — 0. Then the stationarity condition reduces to 7i/(l — 4>\) < 1. In the

absence of autocorrelation the condition is only 7i < 1. Figure 1 illustrates this case.

Given <f>\, the range of 7j for stationarity is given by [0,7^). This range of 7 : is a subset

of the interval [0, 1) which is the stationarity region in the absence of autocorrelation.

This example makes it clear that the presence of aucorrelation can make a stationary

ARCH process nonstationary and as a consequence close attention should be paid to the

interaction between AR and ARCH processes. In the next section, we will investigate

how the tests for AARCH or ARCH are affected by the presence of autocorrelation and

vice versa.

4. THE TEST STATISTICS

4.1 The Likelihood Function and The Information Matrix

Before proceeding to derive the test statistics, some discussion of the likelihood func-

tion and the information matrix is provided because the approach will be based on the

Lagrange multiplier (LM) test of Rao (1948) and Silvey (1959). It is assumed that the

stationarity conditions for our model are satisfied. Recognizing that E is symmetric, let

7 = uec/i(E), where vec/i(E), the 'vector-half of E, is a column vector obtained by stacking

the elements of the lower triangle of E [see Nicholls and Quinn (1982), p. 12]. To rewrite

Var(e
t \
V t -i) in terms of 7 instead of E, we define a selection matrix Kp such that for a

matrix A, vech(A) = Kp vec(A) [see Nicholls and Quinn (1982), pp. 12-13]. Rewriting the

conditional variance,

h t =Var(et \%- l)=iZt +o2
u (4.1)

where Zt
= Kp vec{et

£
t
').

Let LN (6) denote the likelihood function conditional on V t -i ,where# = (/?',<£', 7', <?„)'

is an [k + p + (

p(p
2

f x)

) + 1] vector of all parameters in the model and N denotes the

total number of observations which are used effectively. The likelihood function LN (6) is



assumed to be the true one and to be sufficiently regular to give the familiar asymptotic

results. Under the normality assumtion, the log-likelihood function lN (6) is

1
N

1
N

1
lN (6) = const - -^ln(ht )

- - ]T - (e* - <f>'«fc)

s

t= i

2 ^ /it
t= i

(4.2)

Note that v
t
= et —<f>'£t_ is a function of (3 and 0. Explicitly, v

t
= (yt

—yt '<j>) — (xt —x^' </>)'/?,

where yt
= (yt-i»* "»y*-p)' and a^ = (xt _ l5 • • • ,xt _ p

)'. The first and second partial

derivatives of lN (6) with respect to 6 can be expressed as follows

dlN (6)

36

lAl (dkt\ lr^J_
~2^h t V dO J

~ 2^/i
t

2

t=i x 7 t=i *

2
"' (Sf) *

d/i
t

d0~
(4.3)

and

d2
lN {6)

d$d$

61 l x-±(

- E

dht

~dd

dh t

86

d2 h t

2 *-* ht \d6d0'
t= i

N

t= i

AT

+ iE
t=i L *

1 / d2
vt

h t

2Vt
\d6d6'

1 a ^2
/i

t

dOdO'

1

d0~

dv
t

-Tl*Vt

dv
t

~dd

dht

'dO'

.2
v

t

1 2
- u 2*

2
<9/i t \ / dht

36 36'
(4.4)

The detailed derivation with respect to each parameter vector is provided in the Appendix

A.

Now we define the asymptotic information matrix 1(6) as 1(6) = —jj-E
(

d

d

l

9

N
a \V )

•

Using the property of iterated expectation on the information set ^
t -i, we can simplify

our expectation procedure greatly. Then the information matrix 1(6) is found to be block

diagonal between 0, and 62 , where 6 = (6[,6'2 )' with 6 l
= (/?',<£')' and 62 = (y,

a

2
)'. Here

6i and 62 could be regarded as mean parameters and variance parameters, respectively

[see equations (2.2) and (4.1)]. The detailed derivation of the information matrix 1(6)

is given in the Appendix B. In practice, it will be necessary to get a consistent estimate

of the information matrix 1(6), say /, if we wish to carry out tests of hypotheses. From



the results of the Appendix B, it is quite a straightforward matter to construct /. The
A

submatrices of / are given by

/ =

r/ll o

1 22

-*33 {34

. L J44 .

(4.5)

where

'" =
n 5Z t~(

Xt " *L ^)(x«
~ *L$Y

t=i h*

'22

[33

if 1..,

r?*.

--Lf i-ii-
2N ^ h.

2
t= 1 t

i --Lf ij.

t= 1 "*

Note that when carrying out the LM tests, quantities with the hat are evaluated at the

maximum likelihood estimates (MLE) of $ under the null hypothesis. The LM test is

based on the score vector d = dlN (6)/d0, which can be partitioned as d = (d[ , d'2 , d'z , d4 )'

A

to be conformable with 9 = (/?',</>', 7', C2
,)'. Let d be the score vector evaluated at the

restricted MLE of 6. Then the LM statistic is LM — ^-d'I~ l d which, under the null

hypothesis, has a limiting x
2 distribution with m degrees of freedom , where m is the

number of restrictions imposed by the null hypothesis. From the expression of /22 , it is

clear that the tests for autocorrelation crucially depend on the estimate of 7 (through h t )

and therefore standard tests for autocorrelation will give misleading results if the presence

of ARCH is neglected. In the next sections, we discuss the tests for AARCH or ARCH
in the presence of AR and vice versa.

4.2 Testing for AARCH (ARCH) in the Presence of Autocorrelation



In our model, to test for the AARCH (or ARCH) process is to test whether or not

the coefficients of autoregressive disturbances are varying. Obviously, the hypothesis to

be tested is that H : 7 = vech(Y,) = 0. However, some analytical difficulties appear

since under the null hypothesis the values of 7 lies on the boundary of the parameter

space. In this context, the standard theory associated with tests based on maximum

likelihood estimators will not be valid. Large sample properties of the maximum likelihood

estimators and associated tests in boundary situations have been examined by Chernoff

(1954), Moran (1971), Chant (1974) and Self and Liang (1987). One important general

result from their investigation is that the Wald (W) and the likelihood ratio {LR) tests

in the boundary situation will not follow their usual asymptotic x
2
distribution, while the

asymptotic properties of the LM test are not altered. As a result, it has been argued

that the LM test is paricularly suitable for testing the hypotheses under which parameter

values are at the boundary of the parameter space [see Godfrey (1988), p.95].

Following Moran (1971) and Chant (1974)'s findings, a LM statistic for testing H :

7 = in the presence of autocorrelation, denoted by LMAARC h\ar , is derived. Under

the null hypothesis, our model is reduced to a linear regression model with AR(p) process.

The restricted maximum likelihood estimates of /?,</> and o\ are easily obtained from the

most of computer packages. Then we can define the two kinds of residuals it and u t as

it
= yt

— x'
t
/3 and ut = it — ftit, respectively. The basic results are formally stated as

Proposition 2.

Proposition 2. : Let£L = (et-i,-",et-p)' and Z
t
= Kp vec{i t

i
t
') andW

t
= (i,Z[)'.

Then the LM statistic for testing H : 7 = vec/i(E) = in the presence of autocorrelation

{LMAARCH
\
AR ) can be expressed as one half of the explained sum of squares from the

regression of ft
= (^- — 1) on Wt and has an asymptotic \

2 distribution with p ^
p+ ^

degrees of freedom when the null hypothesis is true.

PROOF: Using the block diagonality of the information matrix 1(0), and hence its con-

sistent estimate /, discussed in section 4.1 and the inverse matrix formula, LMAARC h\ar

10



can be written as

where

1 ~, -i *

-1

9 N Z^ A4 *2AT ^ a."
t= i

(4.6)

2*«
ttt v^ /

C = (J33 — /43J44 J43)

Letting Z = y J2t= 1 ^< »
we can rewr ite C *

u t= 1

Then the statistic can be expressed as

LMAARC«\AR=\(J2ftZt
] (J2(zt

- Z)(Zt
- zy) (J2fJt

where ft
— f jf — 11 . To write LMAARCh \ar in matrix form, define / = (/x ,

• • • ,fN )', Z =

(Zi ,
• • • , ZN )' and 1 as an (N x 1) unit vector. Then the statistic takes the form of

(4.7)

LMaarch \ar = \f'Z [(Z - lZ'Y(Z - iZ')]'
1

Z'f

Using the fact that ft = 0, we have

LMAARCHlAR =
l

-f'{Z - lZ') [(Z - lZ')'(Z - iZ')]'
1

(Z - iZ')'f

(4.8)

= -f'W(W'W)- x W'f (4.9)

where W = {i<,Z), which is equal to one half of the explained sum of squares from the

regression of / on W . By the asymptotic properties of the maximum likelihood estima-

tors, LMAARC h\ar follows an asymptotic x
2 distribution with £lg±H degrees of freedom.

Q.E.D.

11



A simple form which is asymptotically equivalent to and is also computationally more

convenient than LMAARC h\ar can be derived by noting that under the conditional nor-

mality assumption, Var(ft |
$ t -i) = 2 and plim [j/-] — 2. The alternative statistics

LMlAMOMiAM = NrWW ,W)- lWf _ NR,
(4 10)

where R2
is the square of the multiple correlation in the regression of / on W . Since

the squared multiple correlation of a linear regression is not altered by adding a constant

to the dependent variable and by multiplying it by a scalar, R2 can be easily calcu-

lated from the regression of u2 on (\,Z[
t
,Z'2t )' where Zu = (i

2
_ 1

,i
2
_ 2 i

' '

' ^t- P
)' an(^

%it = (l( -i£t-2)£t-i^-3) ,,, )^- P +i£«-p)'- Note that Zu is a vector of p lagged squared

residuals and Z2t is a p * p ~ ^ x 1 vector of distinct cross products among p lagged residuals.

Following the line of argument in Koenker (1981) and Koenker and Bassett (1982), it is

expected that when the u t are not normally distributed, LMAARCH >AR is still an appro-

priate statistic while LMAARC h\ar may have asymptotically incorrect size and its power

which is extremely sensitive to the kurtosis of the distribution of u
t

.

By the same argument, we now can derive the LM test for ARCH in the presence

of autocorrelation [LMARC h\ar) simply by assuming that the covariance matrix E is

diagonal. If E is a diagonal matrix, Zt is reduced to Zlt , a vector of p lagged values of i2
.AAA A A

Let Z1
— (Zu , Zl2 ,

• • •
, ZlN )' and define Wx

= (l^Zx). Then the statistic can be written

as

LMARCH]AR = \rWxWWxY xWU (4.11)

and a simple statistic which is asymptotically equivalent to LMARCH
\

AR is given by

^M|.=^M^/ = ,, „ 12)

where R2
is the square of multiple correlation between / and W^ . The R2 of LM'*

R c

H

, A

R

is easily calculated from the regression of u 2 on (l,f^_ 15
• • • ,e^_

p ). The statistic will follow

asymptotically a x
2 distribution with p degrees of freedom.

12



LMARC h\ar and LMARCH , AR can be regarded as the tests for ARCH disturbances

which are 'robust' to autocorrelation. However, it should be noted that the validity of

these tests again depends on the correct specification of the AR process. The Engle's LM
tests for ARCH process, denoted by LMARCH and LMARCH , are also easily constructed

in our framework by assuming no autocorrelation (<f>
= pX

x

) in addition to the diagonality

of the covariance matrix E. The statistics take the same forms as (4.11) and (4.12) except

that u t
and b\ should be replaced by the OLS residual it for the model yt

= x'
t /3 + et

and

the estimated residual variance b2 = J2t=i ^t /-^respectively, and the elements of Wlt are

one and p lagged values of the squared OLS residual i
2

.

From our framework, the AARCH process appears quite naturally as a form of con-

ditional variance. It can be regarded as an extension of the Engle's original ARCH

.

Clearly, in our framework, the LM tests for AARCH process in the absence of autocorre-

lation {LMAARC H and LM*AARCH ) are similar in form to LMARC h and LMARCH except

that Wl with the OLS residuals should be replaced by W with the OLS residuals. Then

LMAARCH can be calculated as NR2
, where R2

is the square of multiple correlation from

the regression of i
2 on (1,£

2
_ x ,

• • • ,i
2
_ p

,i t - i£t-2, ' '
' ,£t- P + i^t- P )- The statistic will have

an asymptotic x
2 distribution with Eig±ii degrees of freedom.

4.3 Testing for Autocorrelation in the Presence of AARCH (ARCH)

In this section, a simple LM test for autocorrelation which is specifically robust to a

specified form of AARCH or ARCH disturbances will be developed. Since a specific form

of conditional heteroskedasticity is parameterized, it is obvious that the performance of the

test will depend on how accurate the AARCH or ARCH representation of the conditional

variance is. The null hypothesis is formulated as H :
<f>
— 0. Under the null hypothesis,

our model is reduced to a linear regression model with the AARCH disturbances. Let

6 be the maximum likelihood estimators for the AARCH ( or ARCH if E is diagonal
)

regression model. Then we can define it
= yt

— x[0 and ht
= 7' Zt +£„• The derivation of

the tests is very simple since under the null hypothesis vt
= e t and hence E(vt \

^ t - 1) =0
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and E(et |

^ t _i) = 0, for all t. Furthermore E[et £t
') becomes a diagonal matrix which

can be consistently estimated by f2 = diag(i^_
1
,- • - ,i^_

p ). The basic result is stated in

the following proposition.

PROPOSITION 3. : Let i^ = (£*_!,• •-,£«_„)' and Z
t
= Kp vec{£t

it
'). Then the LM

statistic for testing H : 4> = (no autocorrelation) in the presence of AARCH distur-

bances is

LMARlAARCH = f^i^J EM (E^£l) <
4 - 13

)

where ht
= i'

Z

t + b2
u with 7 = AARCH estimate of 7 and f2

t
=diag (£%_ !,••*, e?_

p ) and

this has an asymptotic \
2 distribution with p degrees of freedom when the null hypothesis

is true.

PROOF: Under the null hypothesis,

JL,
A. A ., A

LMAR
\

AARC H — "77^2^22 "2

Where d2 — zZ t =i h~ l et £± and 722 = jj- 2Jt=1 /i
t

_1 n t . Hence the results. Q.E.D.

Here, we note that the statistic LMAR
\
AARCH can be built based on the transformed

residuals which are obtained by deviding the residual and the lagged residuals by the

estimate of the conditional "standard deviation" for the tth. observation. Let it
= it /vh t

and let £t _y = £t _y/v/it , j = 1,2, • • • ,p. Also define it_ = {it - i,£t -2> ' '
' ,£t- P

)' and

Q t
= diag [P

t _ 1 ,
e]_

2 ,
• • •

,

e\_ ) . Then LMA r
\

AAR ch can De expressed as

n \ ' / n \
1

/ n

LMARlAARCH = \Y^^it_) y^nt y^g«it
,t=i / \t=i / \t=i

It is clear that LMA r\arch wiH have the same formula as LMAR
\
AARC h except that E is

a diagonal matrix and all terms with hat are evaluated at the MLE of parameters for the

Engle's ARCH regression model. In the above discussion, we showed that LMAR
\

AARCH

and LMar
\
ARC h can be constructed on the basis of the transformed residuals. As a con-

sequence, they are applicable in more general circumstances. In this sense, our results can
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be constrasted with the ^.RCif-corrected tests for autocorrelation suggested by Diebold

(1986) in the time series framework, which are based on the sample autocorrelation.

If we remove the AARCH (ARCH) effect, LMar
\
AARC h (LMAR

\

arch ) will be

ended up with the familiar LM test for autocorrelation (LMAR ) In this case, our model

is reduced to a standard linear regression model under the null hypothesis. The AARCH

(ARCH) residual it and the estimated conditional variance ht should be replaced by the

OLS residual i
t
and the OLS estimated variance a\ — ^- £Zt=1 &t • ^et ^ be ^ne residual

autocorrelation of order k defined by fk = ^ t=i ^t^t-kl X^=i ^t • Then after some algebra,

we can get

-

1

N

Y,^k
j= i

k=l yN
i2

(4.14)

Since for a large JV, ^t=1 £
t

2
_ fc

= J2t=i ^t> A; = 1,2, • • • ,p, we can derive an alternative

LM test which is asymptotically equivalent to LMAR . Let us denote it as LM*AR and

define r = (t^ ,
• • • , fk )'. Then we get

LMAR =Nf'f (4.15)

which is exactly the conventional LM test for autocorrelation proposed by Breush (1978)

and Godfrey (1978). It will have an asymptotic x
2 distribution with p degrees of freedom

when the null hypothesis is true.

4.4 Testing for Autocorrelation and AARCH (ARCH) Jointly

As one way to overcome partially the lack of robustness of one- directional specifica-

tion test which is constructed to test the validity of one specification at one time, Bera and

Jarque (1982) suggest developing joint tests which are capable of testing various specifica-

tion errors simultaneously. Interestingly, a joint test statistic can be obtained, in certain
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situations, by adding up the component statistics under the null hypothesis. This is called

the additivity property. For our discussion, the formal definition of additivity is provided.

DEFINITION. : Let the null hypothesis be composed of the two exclusive restrictions (HA

and HB ). Let TAB be a joint test for both restriction, TA the test for HA with the

restrictions of HB imposed and TB the test for HB with the restrictions of HA imposed.

Then a test based on a particular testing principle is said to be additive for the null

hypothesis ifTAB = TA + TB .

Recently, Bera and McKenzie (1987) discuss conditions for the additivity of the three

testing principles: the LR, W and LM and recommend the LM approach in developing

a joint test because of its computational advantage. In particular, they found that the

necessary and sufficient condition for the LM test to be additive is the block diagonality

of the information matrix among the testing parameters of the component hypotheses.

In this section, we discuss briefly the test statistics for testing autocorrelation and

AARCH (or ARCH) jointly. The additivity condition holds in our case since the infor-

mation matrix is block diagonal between the two testing parameter vectors, 4> = and

•7 = 0. Then the LM test for autocorrelation and AARCH(ARCH) jointly, denoted by

LMA r + AA rch {LMA r + arch), will be constructed as the sum of LM statistics for testing

the components of the null hypothesis separately as follows

LMar + AA r CH =LMAR +LMAARC H (4.16)

LMAR + ARCH = LMAR +LMARCH (4.17)

It is straightforward to get the alternative statistics which are computationally simple and

asymptotically equivalent to LMA

R

+ A A R c

H

and LMA r + ARO h- The test statistics are

LM'An + AARCH = LMAR + LMAARCH (4.18)

LM*AR + ARCH = LMAR + LM*ARCH (4.19)
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Note that since our model becomes a linear regression model with no autocorrelation

and no conditional heteroskedasticity under the null hypothesis, all relevant quantities are

obtained from the OLS estimation procedure. The additivity property of the LM tests

derived above allows us to apply the individual tests separately and to combine them in

order to form a joint test.

5. AN ILLUSTRATIVE EXAMPLE

To illustrate our methodology, we consider the problem of testing whether forecasts

are unbiased estimates of the actual inflation rate using the Livingston biannual survey

data from June 1952 to December 1985. Since July 1, 1946, this survey has reported

experts' semi-annual predictions of a set of key economic variables including consumer price

index. Starting with Turnovsky (1970), the Livingston data have been used extensively

in the literature to test different economic hypotheses regarding price expectation [see, for

example, Chan- Lee (1980), Brown and Maital (1981) and Figlewski and Wachtel (1981)].

The underlying model for testing unbiasedness of forecasts is

yt =ft +07 xt
+e

t (5.1)

where yt is the actual rate of inflation and xt is the expected rate. Forecasts are said to be

unbiased if H : j3 x
= 0, /?2 = 1 is true. This is essentially a test of weak-form of rationality

in which actual and expected inflation rates are the same up to a white noise error term.

To test H , a proper specification of the distribution of et is crucial, and we will emphasize

this point in the following discussion.

The first entry in Table 2 gives the OLS estimates. LM statistics for testing the

presence of autocorrelation and ARCH based on the OLS residuals are given in the second

columns of Table 3 and Table 4. These tests indicate the presence of autocorrelation and

ARCH up to second order. We can also draw similar conclusion from the results in

Table 5 where we present the autocorrelation of OLS residuals and their squares. As

we noted before, these individual tests for AR [ARCH) are not valid in the presence of
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ARCH (AR). The MLEs with different orders for ARCH and AR are also given in

Table 2. These estimates are obtained using the IMSL subroutine ZXMIN . First we

note that augmented ARCH part is not significant. When a second-order ARCH model is

estimated, the first-order ARCH coefficient is also not significant. With only AR model,

both first and second-order AR coefficients are found to be significant. However, the first-

order AR coefficient becomes insignificant when AR is combined with ARCH as seen from

the estimates of Model (7). Looking at the log-likelihood function, we note that there is no

improvement where only either AR or ARCH is incorporated. However, when both AR

and ARCH are considered simultaneously, there is a substantial improvement from 213.456

to 219.719. Using these estimates we modify the conventional LM statistics (LMAR and

LMAR ch )• The results are summarized in Table 3 and Table 4. It is interesting to note

that LMARC H is not effected very much in the presence of AR whereas LMAR is effected

substantially in the presence of ARCH] e.g., LMAR reduces from 10.7732 to 5.4564 when

ARCH (12) residuals are used, although in both cases the statistics are significant.

Given all the results, it appears that Model (7) in Table 2 may be an acceptable one.

Further support for Model (7) comes from the results shown in Table 5 and Table 6. In

Table 5, the autocorrelation of the standardized residuals

it - 4>iit -i - <t>2^t-2
s t =

and their squares do not indicate any kind of dependence. Moreover, from Table 6 which

summarizes the White (1980) 's test, we see that unlike the OLS residuals these standard-

ized residulas do not suffer from the presence of unconditional heteroskedasticity.

Lastly, coming back to the issue of testing the unbiasedness of experts' expectations,

we present the relevant results in Table 7. The numerical magnitudes of the statistics

are quite different. Except for AR(4> 1 ,4>2 ) model, in all cases we reject the unbiasedness

hypothesis. Surprisingly, the OLS model gives similar result to our preferred Model (7). As

also seen from Table 2, separately, ARCH and AR have opposite effects on the estimates

of X and 2 . Possibly, due to this interaction, the results for OLS regression where both

18



AR and ARCH are ignored are similar to those for a model that incorporates AR and

ARCH.

6. CONCLUDING REMARKS

It is clear that if we misspecify the conditional first moment (mean), inferences on

higher order conditional moments will be very misleading. Within our framework, a num-

ber of interesting problems could be investigated. First, as we have done in the context

of hypothesis testing, it would be interesting to study analytically the effect on estimation

if we ignore (or misspecify) the autocorrelation or conditional heteroskedastic structure.

Even if we concentrate only on heteroskedasticity, it would be interesting to see whether

we will still get consistent estimates if AARCH is misspecified as ARCH . A recent paper

by Pagan and Sabau (1987) sheds some light on this question. Second, it appears that

with our random coefficient approach, we can express the ARCH type models in Kalman

filter framework. This might facilitate the estimation procedure particularly under a mul-

tivariate setup.
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APPENDIX A

THE PARTIAL DERIVATIVES OF THE LOG-LIKELIHOOD FUNCTION

For our model the log-likelihood function (lN (6)) conditional on the information set

^t-i is given in the equation (4.2). Recall that ht
= 7' Zt + o\ and vt

— et
— <j>'Et_ =

(yt
— yt '<f>)

— {x t
— x^4>)'P. Then the first and second partial derivatives with respect to

9 — (/?',<£', Y,<J„)' are easily obtained. The first derivatives are

dlN {$)

a0 =E £»•(*. -a'*)
t=x

dlN (0) ^ 1

^T = hV'*

diN (6)

t= 1

1 t=X l t=l *

dlN {6)

do?. 2^ ht
+ 2^ h2

t

Vt

t= 1 t= 1 *

and the second derivatives are

d2
lN {0

dpd/3'

d2
lN (6

d(j>dp

d2
iN (e

d(f>d<f>'

d2
lN {0

d-)d(3'

d2
lN {6

d2
lN (6

) 1

t= 1
*

) r 1

t= 1 '

t= 1 *

t= 1
e

H££*«-££«*«
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d2
lN (0 )

daldp

d2
lN (6 )

do\ d<f>

.=1 "<

) fi ,

anN ($)

t = 1

N N
) - * Y^ * 7' Y^ * *>

2 7'

APPENDIX B

THE DERIVATION OF THE INFORMATION MATRIX

Let l t (0) be the log-likelihood function for the £-th observation. Then the 1(6) can be

redefined as

d*lt (0)\
1(9) = -E

dQdO'

We now define

' e > yde
t
d6'.

where Bi9 $j = /3,4>,7,ol.

Using our earlier specifications E(e
t |

^ t -i) = <f>'^t_ and Var(et |
^ t -i) = h t , we have

E(v t \%. t )
=E(et |*t. 1)-^£t =

E(v 2
t \y t . l )=Var(et \*t . 1)=ht

where v
t
= e t

— <%>' £t_. Now, taking expectation conditional on ^ t -\ iteratively, we can

easily show that /^ 7 , I<t>1 , !$„> and I^^i are null matrices. Further, we note that I
0<i>

is

also a null matrix since each element of £t_//i t is an odd function of the lagged residuals

6t_ which has a symmetric distribution. From these results, it is clear that the information
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matrix 1(0) is block diagonal between 6i = (0',<f>')' and 62 = {l',^l)', and it is given by

±(x
t -Xt»(x, -x^<t>)'

1(6) = E
Et £t

'

J^ Zt Zt ZZf
z*

1 yi 1

2fc
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Table 1: Processes of Disturbances

Disturbance Process

* = pxl

* T^Opx,

4> = Opxi

* = pxl

<^opxl

*7*0pxl

E = 0,

E = 0„

pxp

E: diagonal

E. not diagonal

E: diagonal

E: not diagonal

white noise

AR

ARCH

AARCH

AR and ARCH

AR and AARCH

Table 2: Parameter Estimates of ARCH and AR Models

Model A <$>i Ti 7a 53 Ik(«]

(l)OLS .004146 1.054500

(2.178) (12.036)

213.456

(2)AARCH .003728 1.127542

(71,73,-73) (3-375) (14.237)

.000026 .226007 .622228 .214326 215.050

(2.238) (1.381) (1.920) (.509)

(3)ARCH

(Tl. "»)

.003787 1.117095

(3.462) (13.976)

.000028 .182881 .702878

(2.359) (.989) (2.354)

214.871

{4)ARCH(n) .003728 1.115447

(.034) (15.457)

.000038

(3.209)

.777891

(2.862)

213.631

{5)AR{((>i) .005149 .990161 .359050

(053) (7.584) (2.794)

.000089

(5.769)

213.990

(6) /t /?(<*!, $2 ) .005930 .938918 .250781 .340140 .000081

(1.537) (5.685) (3.460) (3.190) (5.677)

214 143

(7)ARC H(".2 ) .004504 1.037797 .268719 332031 000037

+ AR[4u42) (2 293) (15.817) (1.387) (3.048) (3.373)

507311

(2.341)

219719

NOTE: Values in parentheses are f-statistics.



Table 3: LM Statistics for ARCH in the Presence of AR

lag LMaRCH LMArch\AR(4> 1 )
LMA RCH\AR(<t> l ,<t> 2 \

1 3.3264 1.2804 3.6920

2 8.4305 6.9940 8.1705

3 0.6528 1.4464 3.0912

4 3.3705 0.9891 0.7245

5 1.7732 1.2400 1.5810

6 1.1102 0.9638 0.9699

NOTE: Values are the LM statistics for individual lag components which follow an asymptotic x
2 distribution

with 1 degree of freedom. The asymptotic critical values at 5 and 1 % significance levels are 3.841 and 6.635,

respectively.

Table 4: LM Statistics for AR in the Presence of ARCH

lag LMar LMar
\
A rch[-j 7 )

LMAR
\
AR cH(-n,T2)

1 7.6836 7.3849 4.4134

2 10.7732 5.4564 5.6407

3 0.0013 0.2788 0.0016

4 0.0595 2.4827 1.0473

5 2.8760 1.6129 2.3710

6 0.5661 1.4537 0.5191

NOTE: Values are the LM statistics for individual lag components which follow an asymptotic \
2 distribution

with 1 degree of freedom. The asymptotic critical values at 5 and 1 % significance levels are 3.841 and 6.635,

respectively.



Table 5: Autocorrelation of OLS and Standardized Residuals and Their Squares

lag *(*«) r(5.)
£(^2
(*?) r(5?)

1 0.33865 0.07013 0.22379 0.05175

2 0.40402 0.10426 0.35769 -0.09205

3 -0.00449 -0.11381 0.09894 0.06651

4 -0.03048 -0.14551 0.22649 0.22819

5 -0.21365 -0.20876 0.16546 -0.10028

6 -0.09557 -0.05931 0.13142 -0.05300

NOTE: it and St denote OLS and standardized residuals, respectively. The approximate standard error for

these autocorrelations is
y/N

= 0.1213.

Table 6: Tests for Unconditional Heteroskedasticity

Model: i2 (or s
2

)
= a.\ + a.2xt + az x2 + vt

Residuals «1 a2 a3 NR<

OLS 9.56 x 10~ 8 6.34 x 10
-2 -9.70-3

(0.003) (1.806) (0.126)

Standardized 0.6576 10.673 333.73

(1.613) (0.248) (0.359)

17.279

2.821

NOTE: Values in parentheses are t-statistics. it and a t denote OLS and standardized residuals, respectively.

NR2 follows an asymptotic x
2 distribution with 2 degrees of freedom and its asymptotic critical values at 5

and 1 % significance levels are 5.991 and 9.210, respectively.



Table 7: Testing Unbiasedness of Forecasts

Model X
2"Statistics

(1) OLS 16.906

(3) ARCH{iu i2 )
30.688

(6) AR{<t>u <t>2 )
3.380

(7) ARCH{i2 ) + AR{4>i, 4>2 )
13.503

NOTE: Each x
2
-statistics has 2 degrees of freedom. The asymptotic critical values at 5 and 1 % significance

levels are 5.991 and 9.210, respectively.



Figure 1: Stationarity Region of ARCH(l) in the Presence of AR(l)
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