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Abstract

The price mechanism is extremely well suited to finding efficient allocations in convex

market economies. However, if either tastes or production possibilities are not convex,

then competitive equilibria may fail to exist. The price mechanism will not lead to an

efficient outcome in this case. We must therefore look elsewhere for mechanisms to allocate

resources in economies that exhibit such elementary and important non-convexities as

externalities in production or consumption, and increasing returns to scale. In this paper

a new mechanism is proposed in which the various firms in the economy are asked to

report feasible points in the region of the goods space about which the central planner

is the least informed. These reports are used to make simultaneous estimates of the

firms' production sets from above and below. This contrasts with the approach used by

Malinvaud(1967), Weitzman(1970), and others, in which the firms are questioned about

production possibilities near the most preferred point of the current estimates of their

feasible sets. In addition to being a Quantity-Quantity type algorithm as first discussed

by Cremer(1977), the new procedure has the advantages of allowing systematic removal of

entire regions of the production frontier from consideration as more information is gathered

by the central planner, of providing an upper bound on the speed of convergence in order

to facilitate comparison to other planning mechanisms, and of giving an estimate at every

stage of how close the current plan is from an optimal one.





1. Introduction

The price mechanism is extremely well suited to finding efficient allocations in convex

market economies. However, if either tastes or production possibilities are not convex,

then competitive equilibria may fail to exist. The price mechanism will not lead to an

efficient outcome in this case. We must therefore look elsewhere for mechanisms to allocate

resources in economies that exhibit such elementary and important non-convexities as

externalities in production or consumption, and increasing returns to scale. Many earlier

writers on economic planning were motivated by an interest in socialist economies. It

would be a mistake, however, for economists at large to ignore the area as a consequence

of this history. The central message of the literature is that there exist mechanisms for

making efficient resource allocation decisions other than the Walrasian price mechanism.

This should be of general interest given that the Walrasian mechanism cannot be used in

all economic situations.

The problem of economic planning is usually framed in terms of a central planning

board (called the planner hereafter) charged with the task of finding a production plan

that is optimal under a given social welfare function. Needless to say, this is only one of

many possible interpretations. We could just as easily use such a mechanism to examine

to problem of a centrally managed firm trying to allocate production over several different

plants, or of a personnel manager trying to distribute various kinds of tasks to individual

workers. In any event, the task is complicated by the generally maintained assumption that

all the information about the production possibilities is privately held by the subsidiary

economic units (call them firms). The planner solves the problem by using an iterative

procedure in which questions about production possibilities are asked of each firm, and

the answers used to name a tentative production plan and devise a new set of questions to

ask the firms. The questioning continues until the tentative plan gets satisfactorily close

to an optimal one.

The purpose of this paper is to present a new mechanism that represents an improve-

ment over older ones in several respects. It builds on Cremer's (1977) quantity-quantity
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algorithm and shares the two main advantages of this kind of procedure. In particular,

firms need only be able to check whether or not a given commodity bundle can be pro-

duced. They are not required to know anything about the neighborhoods of feasible points

(supporting hyperplanes, for example). Also, convexity of the production sets and the

preference order is not required.

The main innovations are the way that the planner decides which regions of the

production set to ask the firms questions about, and the way that the resulting information

is used. The traditional approach is for the planner to somehow construct an estimate of

the firms' production sets and then ask the firms to report feasible points near the most

preferred part of the estimate. For example, the procedures of Cremer, Weitzman (1970),

and Malinvaud (1967), all use this technique. In the new procedure, however, the firms

are asked to report feasible points in whatever region the planner currently knows the

least about. The planner comes to know a set of approximately evenly spaced, feasible

points along each firms' production frontier as a result. This allows the him to construct a

measure of his ignorance about the production possibilities that systematically decreases

with each iteration. It also permits an upper bound on the speed of convergence to be

calculated.

The novelty in information usage is based on the observation that it is possible to

construct a lower bound as well as an upper bound on the production set using the feasible

points reported to the planner by the firm. We then notice that any part of the overestimate

that is inferior in the planner's preference ordering to any part of the underestimate cannot

lie above an optimal point. Such regions may therefore be forgotten about and the planner's

information refined only in the remaining areas of the production set. This is a significant

advance over previous procedures which could not reject any part of the production frontier

as non-optimal until convergence actually took place. The consequent ability to narrow the

area of search speeds convergence, and reduces the memory requirements of the procedure.

Most importantly, it allows the planner to estimate how close the tentative plan is to

an optimal plan. Such a estimate is essential if the procedure does not converge in a

finite number of iterations and so the planner has to make a decision about when to stop

searching.



2. Planning Procedures

The purpose of this section is to give a general introduction to the planning literature

and to show how the current paper fits in. Let us start by discussing the basic criteria

by which planning procedures should be evaluated. Malinvaud, for example, suggests

five properties that a good mechanism ought to have. (1) Well definedness: There never

arises a situation in which the firm is faced with a question for which there is no truthful

answer. (2) Feasibility: Each tentative production plan is feasible. (3) Monotonicity:

Each successive tentative plan is better than the previous one. (4) Convergence in utility:

As the number of iterations of the procedure increases without bound, the utility of the

tentative plans tend to the utility of an optimal plan. (5) Finiteness: Convergence takes

place in a finite number of iterations. These items are of varying importance. No one would

dispute the necessity of well definedness or convergence in utility. Indeed, one might wish

to strengthen the latter condition to require that the tentative plans converge to an actual

optimal plan. Feasibility, and monotonicity are important if the procedure is likely to be

stopped before convergence actually takes place. This will usually be the case since finite

convergence can be expected only under special circumstances.

At any rate, this list certainly does not exhaust the set of desirable traits that a plan-

ning procedure might have. Consider the following: (6) Simple messages: The messages

that are passed between planner and firm are "small" in some sense. The smaller mes-

sages, all else being equal, the less time consuming and error prone is the procedure likely

to be. Since for all the mechanisms discussed in this paper, the messages are drawn from

Euclidian spaces, "small" will be taken to mean that the messages have low dimension.

This is not, of course, the only imaginable measure of simplicity. It has the advantage

of being easy to quantify, and in any event, is desirable unto itself. (7) Generality: The

procedure can be applied to a wide class of economic environments. This is important not

only because it makes an algorithm more likely to be useful, but because it may be hard

to check whether or not an economy really falls within a particular domain. The broader

the domain, the smaller the chance of mistakenly using a procedure which does not ap-



ply, and for which convergence cannot be guaranteed. (8) Discrimination: The procedure

identifies parts of the production frontier where optimal plans cannot lie and refrains from

spending time searching there. The better a procedure is at this, the less likely it is to

waste time proposing tentative plans far away from optimal plans. (9) Fast convergence:

The procedure converges in as few iterations as possible. In practice, evaluating this means

calculating an upper bound on the number of iterations it takes a procedure to start giving

tentative plans that are no more than a specified distance from an optimal plan. Notice

that this is stronger than merely calculating how long it takes a procedure to start giving

tentative plans that are close to optimal in utility terms. The requirement is written this

way in order to avoid the necessity of giving the planner's utility function any cardinal

content.

Now let us consider several procedures in light of the criteria given above. Malinvaud

and Weitzman each describe planning procedures that exploit the special features of convex

economies. In Malinvaud's, the planner calls out a price vector at each iteration, and the

firm 1 responds by sending the planner a profit maximizing output vector. The convex hull

of these feasible points is taken as an estimate from below of the production set. Obviously,

this estimate gets more accurate as more points are revealed by the firm.

In Weitzman's procedure, the planner asks the firm to produce the most preferred

output vector on the current estimate of the production set. If the request is not feasible,

the firm suggests a nearby feasible point as a compromise, and also gives the planner

a supporting hyperplane to the production set at that point. By convexity, the upper

halfspace of such a hyperplane cannot contain any feasible points. The intersection of all

the lower halfspaces generated in this way may therefore be taken as an estimate from

above of the true production set.

Both of these procedures are well defined, and the questioning is done in a way that

guarantees convergence. Malinvaud's tentative plans are elements of an underestimate of

the production set that gets larger with each iteration. Consequently, the plans are both

feasible and monotonic. Weitzman's tentative plans are elements of an overestimate of

Only the one firm case is considered here. The procedures don't fundamentally change when more firms

are added, but the ease of exposition is diminished.



the feasible set which gets smaller with each iteration. As a result, his tentative plans are

neither feasible nor monotonic. 2 In both cases, finite convergence can be expected only if

the true production set is polyhedral. The only one of the other criteria that these two

algorithms satisfy is that the messages be simple; they are just price and quantity vectors.

Neither procedure can be successfully applied to non-convex economies, nor identifies ir-

relevant parts of the production frontier. Neither author supplies an estimate of the speed

of convergence. 3

Cremer proposes a procedure that addresses some of these problems. He works on a

domain of economies that will be called comprehensive in this paper. By this is meant the

class of economies for which preferences are monotonic, and production takes place under

free disposal. In his algorithm, the planner first chooses a point known to lie above at least

one optimal plan. The comprehensive hull of this point is taken as an initial estimate of the

relevant part of the feasible set.
4 The planner then maximizes his utility over the estimate

and demands that the firm produce a most preferred point. Obviously, this optimization

takes place at the initial overestimate for the first iteration. If the point is not feasible, the

firm offers as a compromise to produce some point on the boundary of the production set

that is strictly dominated by the point the planner demands. By free disposal, the planner

knows that all the points that dominate the compromise point are not in the feasible set.

He therefore truncates the estimate of the feasible set by removing such points from the

initial estimate. This is the natural analogue for comprehensive economies to Weitzman's

technique of removing upper halfspaces as infeasible. The algorithm iterates as follows:

the planner asks for the most preferred point on the current overestimate of the production

set. The firm responds with a compromise dominated by the demand. The planner then

truncates the current estimate by eliminating all points strictly larger than the compromise

In fact, the procedure is inversely monotonic.

It seems hard to imagine how one would go about constructing such an estimate. Both of these procedures
search the goods space for an optimal plan in a very unsystematic way. This is also true for the Cremer
procedure, which is discussed next.

That is, the planner takes the space that lies below this first point as his initial overestimate of the feasible

set. See expression refcomp for a formal definition of the comprehensive hull.



and demands the new most preferred point. This continues until the planner demands a

feasible point at which time, the procedure has obviously converged. The algorithm is

illustrated in figure one.

Cremer's algorithm does well by the criteria on the list. It is well defined, although as

in Weitzman's, the tentative plans are not feasible. Since the tentative plans are elements

of an overestimate that contracts towards the true production frontier, it is also inversely

monotonic. The procedure is convergent, and even in a finite number of iterations under

certain restrictive assumptions. Like the other procedures, the message space is simple.

The most important advantage of this algorithm over the first two is that it can be applied

to a much more general class of economies. However, it does not discriminate, and Cremer

does not give an estimate of the speed of convergence.

The procedure described in this paper is a hybrid of Cremer's and Malinvaud's. It is

a Quantity-Quantity algorithm defined on the domain of comprehensive economies, and

employs Cremer's method of constructing an overestimate of the production frontier. The

message space is therefore small, being of the same dimension as the goods space, and

the same large class of economies can be considered. The tentative plans, however, are

taken from an underestimate that is constructed by taking the comprehensive hull of the

feasible points reported by the firm. Thus, as in Malinvaud's procedure, the tentative plans

are feasible, and converge monotonically to an optimal plan. In addition, it turns out to

be possible to use the overestimate and underestimate together to discriminate against

irrelevant parts of the production frontier. It will also be shown that the way that the

planner decides which regions of the goods space to ask the firm questions about makes it

possible to calculate an upper bound on the speed of convergence.
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Figure 1: The Cremer procedure



3. A New Procedure

3.1 Definitions and Assumptions

This section lays out the basic definitions and assumptions that are used in the rest

of the paper. First, consider the following notion of minimal "distance": 5

u(A,B)=mi M \\x-y\\ (1)
y€B x£A

where A and B are sets in Rm , and • denotes the Euclidean norm, v gives the

length of the smallest gap between two sets. Thus, if two sets, A and B, intersect, then

v(A, B) = 0. A useful property of v is given in lemma 1.

Lemma 1. If A' C A C Rm and B' C B C Rm , are ail bounded then, v{A' ,B') >

v(A,B). &

Proof/

By the definition of v, and of compact sets, there must be two points, o! G closure(^4'),

and b' E closure(B') such that v(A',B') > i/(a',6'). But then, a' € closure(A) and 6' 6

closure(B). So u(A'', B') > v(a'', 6') > i/(A, B). •

Let the planner's preference relation over the consumption set X C Rm be symbolized

by >- and y for strong and weak preference respectively. The weak upper and lower contour

sets of this relation for any subset Z C X are denoted by U(Z) and L(Z) respectively.

Note that v is not a measure of distance in a mathematical sense. In particular, it does not satisfy the

triangle inequality.

The three types of vector inequality will be symbolized by > for the weak inequality between all elements

of the vectors, > for weak inequality between all elements of the vectors and strong inequality between at

least one pair, and ^> for strong inequality between all elements of the vectors. If x > y, then x is said to

weakly dominate y. If x 3> y, then x is said to strongly dominate y.
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Formally:

U(Z) = {x 6 X |
x y x' for some x' G Z} (2)

and,

L{Z) = {x G X |
x ^ x for some i'g2). (3)

The boundary of a set is denoted by "<9". Thus dL(Z) is the boundary of the lower

contour set of Z. Under the appropriate assumptions (like A5, A6, and A7) this is the

indifference surface containing the least preferred point of Z (if Z is closed). The usual

notion of set summation is used:

t

^TZ* = {xeRm \z = z
1 +2 2 + --- + 2

1 and2 1'

G Z {

for i = 1,2, . . . ,r}. (4)

i=l

This will be written Z l + Z 2
if only two sets are involved. The set of optimal production

plans is called X*:

X* = {xeY \xhyVyeY}. (5)

Two assumptions are made on each of the K firms' production sets Y C Rm :

7

Al) Y l
is closed for I = 1, . .

. , K.

A2) If y G Y l
, then y' < y implies y' € Yl for I = 1, . .

.

,K.

(Free disposal in production, or identically, comprehensiveness of Y e
.)

Two assumptions are also made on the consumption set:

A3) X is closed.

A4) If x G X then x' > x implies x' G X.

(Adding more to a consumption vector does not take you out of the consumption set.)

Superscripts run from 1 to K, and index firms. The absence of a superscript indicates that a global object
is being referred to. Note that making assumptions Al and A2 for each firm results in the same two

Y .



Three assumptions are made on the planner's preferences:

A5) >: is a complete and transitive order over X.

A6) For all iGl, U(x), and L(x) are closed.

(Preferences are continuous.)

A7) If x > x' then x >- x'

.

(Preferences are strongly monotonic.)

Finally, one assumption is made about the planner's information.

A8) For some x G X* , and x 1 G Y 1
,
x 2 G Y 2

,
. •

. , x
K G YK , such that J2t=i x * = x

i
the

planner knows some:

(a) 6J, 6§, . .
.

, b£ such that 6j > a;' for I — 1,2, . .
.

, A'.

(b) u;o,ti>o? • • • ^iT sucn trmt u;q < x^ for I = 1,2, . .. ,.K\

Assumption 8 says that the planner knows an overestimate and an underestimate of at least

one optimal plan, and also knows an overestimate and an underestimate of an element of

each of the firms' production sets such that the sum of these elements equals this optimal

plan. This is not a very strong assumption given that these initial estimates can be very

far above or below the optimal plan.

Now consider the following definitions:

R™ = {x G Rm |
x < 0}. (6)

{R£+ }
c = {z G Rm |x>0}. (7)

in words, R^ is just the negative orthant, including the boundary, and {R!^+ }
c

is the

complement of the strictly positive orthant. Notice that both are closed sets.

The next two correspondence are used to construct estimates of the production sets.

For any set Z C Rm , define the comprehensive hull of Z as follows:

ch(Z)= |J(x + R^) (8)

x6Z

10



This is the set of vectors in Rm that are weakly dominated by some vector in Z. Now

define the inverse comprehensive hull of Z to be:

ich(Z) = f](x + {K^+ Y) (9)

xEZ

This is the set of vectors in Rm that do not strictly dominate at least one vector in Z.

Note that both the comprehensive hull and inverse comprehensive hull a finite collection

of vectors is closed.

3.2 The Algorithm

The algorithm is based on the observation that it is possible to construct a lower bound

as well as an upper bound on the production set of each firm based on the information

acquired through the Cremer procedure. The planner is then able to use these two together

to narrow the area of search for an optimal plan with each iteration. Basically, this is done

by removing from consideration all parts of the overestimate of the production possibilities

that are inferior to some part of the underestimate.

Cremer constructs an overestimate of the production set of each firm by using the fact

that free disposal implies that any point that strictly dominates a point known to be on

the production frontier cannot be feasible. Formally, he constructs the Upper Estimate of

the Hh firm's production set at iteration n thus:

UE'^ichiX'jOchibi) (10)

where X„ is the set of points that firm I has reported as being on its production frontier

as of the nth iteration, and b^ is the initial point that the planner demands of the firm as

described in A8. UE„ is a closed and comprehensive set as the intersection of two such

sets.

Free disposal, however, can be applied in the "other direction" equally well. If a point

x is known to be feasible, then all points that x dominates must also be feasible. The

11



i t i
3,

x

4 ,

x

5 }

Bi = {bi,l4,bi,blt>ll>l)

Ci = {(M,wf);(M,u^);(»S,wi);(i4.«"i);(»S.»!);(*S,te|)}

Figure 2

planner may therefore take the comprehensive hull of all known feasible points as a lower

bound on the production set. Thus, the Lower Estimate of the Ith firm's production set

at iteration n is defined as:

LE'n = ch(Xl

n ). (11)

In figure 2, the upper and lower estimates of a firm's production set are illustrated.

Notice that the set theoretical difference between them is a union of "cubes". 8 This will

also be true in higher dimension. Each cube may be uniquely characterized by a point 6,

The use of the word "cube" is not meant to imply that these objects have equal sides, or that they arc

three dimensional. We use "cube" as a substitute for the more accurate, but awkward "hyper-rectangle".
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which strictly dominates all other points in the cube (called the best point), and a point

u;, which is strictly, dominated by all other points in.the cube (called the worst point) via

the correspondence:

C(b,w) E{x6Rm |fe>i>4 (12)

Notice now that the upper estimate can also be defined as the comprehensive hull of all

the best points. That is:

UEn = ich(X'n ) f|
ch(b

e
)
= ch(B e

n ). (13)

The algorithm itself involves the iterative updating of four sets of quantity vec-

tors and the naming of a tentative production plan p
l
n for each firm, for each iteration.

The first of these is C£, a set of ordered pairs {(&i,u;f), (62,^2)5 ••! (tfjwf), . .
. ,

}
=

{cf , C2, . .
.

, c\ , . .
. , } such that when these pairs are used to form cubes, their union equals

the set theoretical difference between UE„ and LE„. The next two are B l
n and W„, the

sets of best and worst points in C„ (that is, the set of all first and second elements, re-

spectively, in the set of ordered pairs C£). It is notationally convenient to construct these

sets separately even though all the information contained in them is also contained in C„.

Last is X„, which is a set of points known to lie exactly on the firm's production frontier.

All of the sets above are constructed individually for each firm. The next set of

definitions show how they are used to construct overestimates and underestimates of the

global production frontier.

K
Bn = J2 Bn (14)

1=1

UEn = ch{Bn ) (15)

K

i=\

13



LEn = ch(Xn ) (17)

The algorithm is initiated as follows:

K
B l = {&<} ioTt=l,...,K B = {b } = {Y,

bi
o

W' = {w<}foi£=h...,K

C l

o = {4} = {(b
( ,w l

)} for£ = !,...,# (18)

Xi = {w<} for I = 1,. . .,K X = {wo} =
| J2

wo
\

Po = {^o} for^= l,...,/\ po = {w } = \Yl wo\

where 6q and Wq are overestimate and underestimate of the firm ^'s contribution to an

optimal plan (as described in AS).

The reader will notice that neither a set of global cubes nor a set of global worst points

is collected. This is because the global best points are constructed in such a way that their

comprehensive hull gives an overestimate of the production set. The comprehensive hull

of the known points Xn , on the other hand, gives an underestimate. These two estimates

are all that are needed at the global level. Cubes are useful only in that their size is a

measure of the planner's ignorance about a particular firm's production possibilities. The

planner will end up asking the firms questions about the part of the production frontier

contained in the "biggest" cube. Since no analogous question is ever asked at the global

level, global cubes, and consequently, global worst points are not needed.

It will sometimes be necessary to recall exactly how a global object was constructed.

The following convention is used. Each global object z (for example, a global best point or

14



feasible point) is the sum of one element from each of the Z*'s. That is, z = z 1 +z2 + . . .+zK

where z l £ Z* for I = 1, . . . ,K. Call this set of K elements that sum to z, z.

K
z = (z\z l ,...z") e RmxK (19)

Clearly then, for the case of a set Z this becomes:

( z\ \
' z 1 .K-\

1-5

Z = { Zi } = { z\
,

~> z s >
L Z 1

H'

'lfc'

'36'

C 1

. «C e R

.K-l

(20)

where zj 6 Z^ for all j , and all ^ = 1, . .
.

, K. We are finally ready to define the algorithm.

Each iteration is broken down into five steps. Figure 3 gives an illustration for the one

firm case.

Step 1) The first step for any given iteration n is to name a global tentative plan pn . This

is done by taking the most preferred point on the global lower estimate for the previous

iteration, LEn -\. Since LEn -\ = c/i(Xn _i), and the planner's preferences are monotonic,

this maximization must take place at some element ofXn -\ . Each element x € Xn -\ has a

known decomposition x = (x 1
, x

2
, . .

.
, xK ) where x* £ X

x̂_ l
C K for £ = 1, . . . ,K. Thus,

pn may be decomposed into pn , which in turn is taken as a specification of a tentative

production plan for each firm. Formally:

1) Some pn £ {x £ LEn -\ \
x y y V y £ LEn -\] is found and pn is declared to be the

tentative production plan for each firm.

Step 2) The second step is to find all elements of Bn -\ that are strictly inferior to pn , and

discard them to form the new set Bn . We do this because any element of the overestimate

is inferior to a feasible point pn certainly cannot lie above an optimal plan. Such points

may therefore be safely removed from future consideration. Likewise, elements that are

known to be feasible, but which are nevertheless dominated by a discarded element of Bn

may be thrown away. Formally:

15



3a) Step 1: xi is the most prefered point on

LEn and is declared the tentative plan pn .

3b) Steps 2 and 3: b2 is found to be inferior

to pn and so 62,^25 and c-i are discarded

h(b2,w2,x)

3c) Step 4: The xth edge of the second cube is 3d)Step 5: c2 is divided in two along the x

found to be the longest. Case 1 holds and axis and replaced with the two new cubes,

the firm reports a point in the intersection ancl appropriate best and worst points,

of h(b2 ,w 2 ,x) and the PPF. {

Figure 3: The new procedure
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2) Bn = {be Bn _!
I Pn r< 6}

X„ = < x G X„_i |
6 > x for some 6 G Bn >

Step 3) Having found and discarded the irrelevant elements of the global sets Bn -\ , and

Xn _i, the next step is to find the irrelevant elements of the sets collected from each of

the firms. What makes an element of B
l̂
_ l

irrelevant? If some b
e G B t

n_ l
is only used to

create global best points that are known to be inferior to a feasible point (this is identical

to saying that b
e

is only used to create global points that are not in the set Bn ), then it

can be concluded that the firm £ will never be called upon to produce b
e

, or any point that

b
f dominates. In other words, a best point may be discarded if no matter what the rest

of the firms do, the point can never lie above a part of an optimal plan. Furthermore, all

points of the sets W*_
x
and Cfl

_ 1
that are associated with discarded best points, and all

elements of X
l̂
_ 1

that are dominated by discarded points of Bfl
_ 1

may also be forgotten

about. Formally:

3) (BlBl---,B^) = (k)

and for each I = 1,2, . .
.
, K:

Wl
n = {wl G P^_j

|
3 (&', w e

) = c
e G C^_j where b* G B £

n }

Ci = {(b',w') = c< eCUlb* e B£)

X l
n = {x e G X£_j

|
b
e > x t for some 6' G B e

n }.

Step 4) Having discarded irrelevant information about each of the firms' production sets,

the next step is to gain more information about relevant parts of them. In this algorithm

the planner tries to get information about the part that he knows the least about. This is

done in the following way. First notice that each cube has m edges radiating out from its

best point. We are interested in the cube whose longest edge is longer than every other

cube's longest edge. Let (e
1
'', e

2 ^, . .
.

, e
m,e

) be the lengths of the m edges of the cube c
e

reorganized in descending order9 (thus, e
l,t > e

2
'
e > ... > e

m,e
). In all cases the first

superscript refers to a component of a vector while the second refers to the firm. Let E„ji

be the set whose elements are the lengths of the longest edges of each of the cubes in

the set C£. That is to say, E\' e = {ej'', t\
l

,
.

.
, e]'

1

,
. . .}. Clearly, this set must have at

(b — w ) is the vector of these lengths.
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least one maximal element e*', and there must be some cube cr whose longest edge has

length e
1

'
1 = e**. Then suppose that the longest edge of this cube is the ]th edge. Let

h : Rm x Rm x {1,2, .. . m) —> Rm be defined as the hyperplane which is perpendicular

to the )th edge and bisects the cube c:

h(b',w',j) h{i6R"| x> =
{bl '' + Wl,t)

X . (21)

The firm is asked to report some point on the production frontier within the cube c
e

, and

on h(b£
, w*,j). That is to say, the firm is asked to report some point in the set:

PPF(be ,w l
J) = {h(be,w l

,;) n dY e nc(bl ,u/)} . (22)

If such a point exists, it is added to the set X^ to create X^. The set PPF(be,w e
,j),

however, may be empty. In that case, the production frontier must be either completely

above or completely below the hyperplane within the cube. This is because of the assump-

tion that Y is closed, which implies that the production frontier is continuous. If either

one of the above is true, the firm reports this instead of a point. In both cases, X l
n is put

equal to X^. It is now possible to conclude that the procedure is well defined since this

is the only question that the firms are ever asked, and cases (a), (b), and (c), below, are

exhaustive. Formally:

4) For each t = 1, 2, . .
.

, K, some cube cl € C l for which it is true that e
1 '* > e

{

' for all

ej' 6 E^'* is found. Let j be the longest edge of the cube c
e

. The firm is asked to

report any point in the set PPF(be,w e
,j). The firm makes one of three responses:

(a) PPF(be,w e
,j) ^ 0, and the firm reports some element of the set, x f

n .

(b) PPF(be ,w l
,j) = I and K y V i G C(be ,w l

) D h{bf,w e
,j) and y <E BY1 n

(c) PPF(be,w e
,j) = I and i > y V i G C(be,w e

) fl h(b e ,w e
,j) and y G dY e D

C(6'X).

Incase(a),^ = {^u4}.
In case (b) and (c), X„ = X^.

Step 5) The fifth and final step of the algorithm, which is illustrated in figure 4, is to

update the sets B*n _ l , W^_j, and C'_j. This was partially accomplished in step 2 when

18



these sets were turned into B„ , etc. The updating is completed in different ways depending

on what the firm reports at step 4. The first possibility is that the set PPF(be ,w* ,j)

is not empty, and the firm reports some element x e
n to the planner. In this case, the

cube ce
is divided in two along the j axis, and c* is replaced with the two new cubes.

Appropriate best and worst points are added to create B l
n and W*. The second possibility

is that PPF(be,w l
,j) is empty and h{bl,w e,j)nC(b e ,w e

) is below dY e C\C(be ,w e
). In this

case c
l

is truncated by moving its worst point halfway up the longest edge of the cube.

The last possibility is that PPF(be ,w e
,j) is empty and h(b£

, w e
, j) nC(b

e,w e
) is above

dY e C)C(be,w (
). Here, the opposite is done. The best point of the cube is moved halfway

down the longest edge. Formally:

5) For each I — 1, 2, . .
.

, A", if case (a) obtains:

B'n = {(B'n \ 6<)UftfU6<}

where 6' = b
e

and 6< = (*M b
2 ^, . .

.
, tf-M £f±a£i ,&»+!,«, . .

.
, b
m >')

W' = {(W£\ w^Uw'iUwl]

where w\ = (w 1
'
1

, w 2
>
1

,
. . . id*- 1

*
1

,^y , w>+M , . .
.

, wm <),

and Wj = w e

C< = {(C<\ c')Uc<Uc<}

where c\ = (&', tof) and c^ = (b^Wj)

In case (b):

B^ = {(B^\ b
l)Ub<}

where &f
= 6'

H* = {(TV' \ u,') u w\ }

where tof = (to
1
'', io

2 -', . .
.

, u^'
-1

-',
b>,'\w'''

,wj+1 -', ..., wm >(
)

C^ = {(C^\c')Ucf}

where c\ = (6f,u;f)

In case (c):

Bi = {(B'n \bf)Ubf)

19



PPF(b,w,l)

xn , the point the

firm reports

4a) In this example, assume that e* = e
1 = (b

1 — w 1
). Then the cube c is to be divided

according to case a) since PPF(6,ty,l) 7^ 0. As can be seen in the figure, c is divided

exactly in half along the 1st edge creating two new cubes C{ and cy, whose union equals c.

h(b,w,l) Y

4b)Here,PPF(6, w, 1) = and 37He is below 4c) Here,PPF(6, u>, 1) = and dK flc is above

/i(6, to, 1). Case b obtains and u> is moved /i(6, iy, 1). Case c obtains and 6 is moved
up to Wi and the dotted area is discarded. down to 6t

- and the dotted area is dis-

carded.

Figure 4: The three ways to divide a cube
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where 6f
= (&'•<, 62 ><, . .

.
, h>~l >\ V'€^'\ fei+L^ . .

.
, b
m >')

W' = {(W<\ w<)Uwi)

where w\ = w l

C'n = {(C l
n \c')Uc\)

where c\ = (b^wf)

These five steps constitute one complete iteration of the algorithm. The next few

lemmas substantiate the claim that the comprehensive hulls of Bn and Xn do indeed give

upper and lower estimates of the production set.

Lemma 2. For y G dY e
, ify G IJc€C< Cfaw), then y G UceC C(b,w).

Proof/

It must be shown that no part of the production frontier of a firm that is in some

cube after step 3 is removed as a consequence of step 5. Since only one cube is altered by

step 5, attention may be focused there. Step 5 can do three different things to the cube,

c', which is to be divided, depending on the circumstances. In case(a), c
l

is removed, and

two cubes:

c\ = [(6
1
-*,

. .
.

, 6
m

''); (w 1
*
1

, w2
*, . . . u;'-

1
'',
WVV3,

\w^ 1 ^, . .
.

, wm"^1
, wm >

e

)}

and

are added to C l
n to form C l

n . But it is clear that C{be,w e
) = C(b\,w\) U C(6<,w<). Then

trivially, since no y G C(be ,w e
) is removed, no y G dY e

f\ C(be,w e
) is removed.

In case(b), it need only be shown that the parts of dY e inside the cube that is to be

divided remain inside the resulting cube. Again, this is immediate since this could only be

false if there were some xj
l G dY l DC(6',ty'), and y

J»* < v
' ^™3 '

. But this is a violation

of the conditions under which (b) is invoked. Similarly, in case (c), failure of the lemma

implies for some y
e G dY e

(~)C(b
l,w e

), y
ht > b'' 1^' , which violates the conditions of

the case. •
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Lemma 2 says that no part of the production frontier of a firm that is in some cube

after step 3 is removed in step 5. Now consider the following definitions:

K K
Cn = J2C l

n and Cn = J2 Cn- (23)

These objects are the subject of the next two corollaries. Note that global cubes are not

actually collected. Neither do they play any role in the definition of the procedure. They

are briefly used here to help prove corollaries L2.1 through L2.3. Corollary L2.1 is just the

global analogue of lemma 2.

Corollary L2.1 For y £ dY if y € LUc„ C{b,w), then V £ Uc€Cn
C(b,w).

Proof/

Immediate from lemma 2, and the definition of Y, Cn , and Cn . •

Corollary L2.2 For y £ dY f)C(b ,w ), ify >z pn , theny £ \Jcecn C0>,w).

Proof/

This will be shown by induction. Since (JcGC7 C(b,w) = C(bo,wo) = C(Y^ Cq) and po =

wo = Yl w o->
f°r deration the statement reads: {y £ dYC\C(bo,wo)

\ y b ^o} C C(bo^wo).

This is obviously true. Assume the statement is true for n. To show that it is true for n+1

it must be proven that the containment is preserved as Cn is changed into Cn+i, and as

Cn -f-i
is changed into Cn+i- To see this for the first transition, take any y £ (Jcec C(b,w)

and suppose that y $ (Jcec C(b,w). By the induction hypothesis, there is some cube

c £ Cn such that y £ C(b,w) but c ^ Cn+\. But then, according to step 2, if c is removed

from C„ then b -< pn+i- Since y < b for any y £ dY H C(b,iu), it follows by monotonicity

of preferences that y -< pn+i- To prove that the containment is preserved during the

second transition, it is sufficient to show that for any y £ dY, if y £ |Jc€£ C(b,w), then

y ^ Ucgc C{b,w). But this is immediate from corollary L2.1. •

Corollary L2.2 says that no feasible point on the production frontier is ever discarded

if it is at least as good as the tentative plan.
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Corollary L2.3 For y £ dY nC(b ,w ) ify y p„, then y £ UEn .

Proof/

Notice that \Jc€Cn C(b,w) C ch(Bn )
= UEn . Apply corollary L2.2. •

Corollary L2.3 states that the upper estimate at each iteration is indeed an overesti-

mate of all the interesting parts of the production frontier.

Lemma 3. LEn C Y.

Proof/

This follows directly from the definition of the LE as the comprehensive hull of feasible

points and the assumption of free disposal. •

Lemma 3 shows that the lower estimate at any iteration n is as advertised.

Lemma 4. For all iterations n, W„ C LE„.

Proof/

First we show by induction that for all n, and for all c £ C*, there exists an x £ X„

such that x £ C(6, w). The statement is true for n = since Cq is the only element of

^0' ^o ^ -^o> and obviously Wq £ C(6q,u>q). See equations 18. Now suppose that the

hypothesis is true for iteration n. Consider the following two classes of cubes:

1) First take the cubes c £ C' + 1
such that it is also the case that c £ C£. By the

induction hypothesis, there is some x £ Xn such that x £ C(b,w). But since b £ £?n+i

and b > x, by step 3 of the algorithm, x £ Xn+\

2) Now consider cubes c £ C£+1 such that c $l C l

n . This new cube has to have been

the result of a division at step 5 of some cube c £ C„ C C£+1 . In case (a) of step

5, the firm reports a point x £ h(b,w,j), and this point is added to X„+1 . But the

point x is in both of the cubes that result from division since it is in on their common

boundary In cases (b) and (c), by the induction hypothesis, there exists an x £ X„

such that x £ c. But since x £ dY e
, by the hypothesis of the case x must still be in

the one cube, c that results
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Thus, for all n, and for all c G C*, there exists an x G X„ such that x G C(b,w). But

then for all n, and for all iu G W* there exists an x G .X* such that x > w. Therefore,

W* C ch(X'n ) = LE'n . .

Lemma 4 is a technical fact which will be useful in proving future lemmas.

3.3 Technical Results on Cube Size

The purpose of this section is to prove some technical results. Lemmas 5-8, show

that it is possible to find an upper bound of the length of any edge, of any cube, of any

firm, at every iteration n, and to show that this bound decreases as n goes to infinity in a

predictable way. The superscripts that would normally signify firms are omitted to avoid

excessive notation. It should be clearly understood that lemmas 5 through 8 apply to the

size of cubes of any particular firm, and not to global cubes. Lemma 9 uses lemma 8 to

show that there is an upper bound on the v(L(pn ), U(X*)) at every iteration n. Readers

uninterested in the details of how these bounds are calculated should skip directly to the

next section.

Recall that the consequence of applying step five of the algorithm to a cube is its

division into two cubes in case (a), or into one cube of half the original size in cases (b)

and (c). We will call the cube or cubes that result from such a division resultant cubes.

More generally, we will want to keep track of resultant cubes, cubes resulting from divisions

of resultant cubes, and so on. The following notation will be used to indicate the pedigree

of these classes of cubes. Consider the set of cubes C„ and let some unspecified number

of iterations pass. Then the sets C T
n ,C

r
n , C„ , . . . will refer to the sets of cubes that are

the result of a single division of a cube in Cn ,
two successive divisions, three successive

divisions, etc. We may now state lemma 5.

Lemma 5. Suppose a cube cr results from the division of a cube c through step 5 at

iteration n of the algorithm. If the jth edge of c is the edge to be divided then (bJr — w3
r )
=

±(bj _ wj) = Icl < I c*

.

Proof/
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Consider any cube cr that results from a division along the \th edge of a cube c. The

cube cr must have resulted from application of one of cases (a), (b), or (c) in step 5. In

case (a), cr can take two forms:

hi 4_ mi
{b\b\...,V-\V,V+\...,bm),(w\w\...,w>-\?-^,w>+\..., Wm )

or

\b2,...,V-\^^,V+\...,b™),{w\w\...,wi-\W>,wi+\...,wm )(!>

In case (b), only one form is possible:

«i-»,*±2L,,^«...,«-)
(6

1
,6

2,...,o>- 1 ,o'',o'+V..,o
ra

),(to
1
,to

2
,...,

Likewise, in case (c), cr must take the form:

{b\h\...,V-\^^,V+\...,bm ),(w^

Then since either,

(i) H - wl =b>- b-^- = ^d. - I e
i

or

(ii) bi - wl = b-^- - w> = ^- = \e\

(bl — u>l) = ^(b3' — w3
). But since a cube is always divided along it longest edge, and no

edge of any cube can be longer that e* at iteration n by definition, {b\. — w3
r ) = ^{b3 —w3

)
—

le 1 < ±e* •
2
C — 2 n

Lemma 6. For any crm G C£
m

, ej.m < |e*.

Proof/

We start by distinguishing two exhaustive subclasses of cubes in C„ .

1. First consider cubes crm in C„ for which no edge has ever been subjected to

to two separate divisions. That is, cubes that are the result of m divisions of an

original cube in Cn , and for which each of the m edges has been divided exactly
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once. By lemma 5, (b
l

rm — w l

rm) = \{b l — w %

) for all i = 1 . . . m. But by definition,

(6
l — w l

) < e
1 < e* for all i. Thus, for cubes in this class, e* m <|e*.

2. Now consider cubes crm in C£ for which at least one edge has been subjected to

at least two separate divisions. Without loss of generality, suppose that edge j is

the longest edge of the original cube c, and so is the first to be divided. Then by

lemma 5, (b3. — wl) = ^(b3 — w 3
). But by assumption, |(6

J — w3
) > ^(b l — w*)

for all i ^ j. So if any edge is divided twice through step 5, then the }th edge

is also divided twice. But since only the largest edge is ever subject to division,

|e* > |e ! = |(V — w3
) > (6j.m — w l

rm) for all i = 1 . . . m. Thus, for cubes in this

class as well ej.m < |e* . The lemma is proven. •

The point of lemma 6 is that if a cube is a result of m divisions of some original cube

c, one of two things must be true: either each of the m edges of the resultant cube have

been divided exactly once, or at least one of the edges has been divided twice (or more).

In the former case, all the edges of the resultant cube are exactly half the length of those

of c. So e\m = \t l < \t*n since e
1 < e* for all c E C„. In the latter case, if some edge

is divided twice, then the }th edge must also have been divided twice (since the }th edge,

being the longest edge, would be the first to be divided twice). But then half the length

of the jth edge of the original cube must be longer than any other edge of the cube cr™,

which proves the lemma.

Corollary L6.1 For any c G C„
m

form' >m,e l < |e*.

Proof/

From lemma 6, e
1 < |e* for any c £ C£ • Since it is impossible for any edge of any

cube to be increased as a result of a division, e*m , < |e* for m' > m. •

Corollary L6.1 generalizes lemma 6 to show that the conclusion holds for cubes that

are the result of more than m divisions of an original cube.

Lemma 7. If at some iteration n there are at most Q cubes in the set Cn , then after

Q(2
m — 1) more iterations, there will be at most Q2m cubes in the set C[n+Q(2m_i)] and

e[n+Q(2--i)] ^
2
e "'
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Proof/

The first part is easy to show. Each iteration can add at most one cube. This is

because the step 3 eliminates cubes, if it does anything at all, and (a) of step 5 adds one

additional cube while (b) and (c) leave the number of cubes unchanged. Thus, an upper

bound on the number of cubes at the end of iteration n + Q(2
m — 1) when there were at

most Q cubes at iteration n is Q + Q(2
Tn - 1) = Q2m .

To see the second part, suppose initially that each of the cubes in Cn is divided once

before any of the cubes is redivided. Then after Q iterations, Cn C[n+ Q] = 0. Also,

C[m_|_Q] will consist of at most 2Q cubes. Now let each cube in Cn+Q be divided once

before any is divided a second time. Since C[n+ Q] contains at most 2Q cubes, this will

take at most 2Q more iterations. At the end of these iterations C[n+Q+2Q] wiU contain

at most Q2 2 cubes, and by construction, Cn C\ C[n+ Q+2Q] = and C T
n f) C[n+Q+2 Q]

= 0-

Suppose that this process continues, and each cube in the set C„ is divided before any

cube in CJ*
+1

is. Then by the end of n + Q + 2Q + Q22 + Q23 + . . . + Q2m
~ 1

iterations,

there are at most Q2m cubes and

Cn HI C[n+Q+2Q+Q2 2+Q2 3+,...,+Q2'"- 1
]
=

for all x < m. Pausing to show:

0(1 + 2 + 2
2
+, . .

. , +2
m - ]

) = Q{2
m - 1)

(2 - 1)(1 + 2 + 2
2
+, . .

. , +2m
" 1

) = (2
m - 1)

(2 - 1 + 2
2 - 2 + 2

3 - 2
2+ , . .

. , +2m - 2
m_1

) = (2
m - 1)

2
m - 1 =2m - 1,

we may conclude that all elements of C[n+ Q(2m -i)] are elements of some C„ where

m' > m. But by corollary L6.1, e
l

m , < e*m , < |e* for any crfn > 6 C r™ for all m' > m.

Therefore:

* ^ l *
e[n+Q(2"»-l)] — 2

en -

Now suppose that things do not develop so neatly and some cubes in C£ are divided

before some in C„ . Then assume some cubes have been divided less than m times by the
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end of iteration n + Q(2
Tn — 1) (or else corollary L6.1 can be applied directly as in the first

case). Then since one cube must be divided at each iteration, if some cube is divided less

than m times, some other cube must have been divided more than m times by the end of

iteration n+Q(2m — 1). Thus at some stage, (say iteration n' where n < n' < n+Q(2m — 1)),

some c G C„ is divided. But this can only happen if e
1 > ej for all Cj G Cn '- Then

trivially, e
1 > e\ for all c, E Cn+Q(2m -i)- Since by corollary L6.1 e

1 < |e*, we conclude:

Lemma 7 extends the argument of corollary L6.1 to say that if at iteration n, there

are Q cubes, then after Q(2
m — 1) more iterations, each of the original Q cubes must have

been divided exactly m times, or at least one of the original cubes must have been divided

more than m times. In both cases corollary L6.1 may be applied to conclude that the

longest edge of any cube in Cn+Q(2m -i) 1S a^ most half the length of the longest edge of

any cube in Cn .

Lemma 8. At iteration I(t) = (2
m - 1) J2l=o 2 *m

> e
/(t)

< ^Vr e o-

Proof/

This is shown by induction. For t = 0, I(t) = 2m — 1, so it must be shown that

e
f*2
m -il — 2

eo- At iteration n = 0, there are Q = 1 cubes in Co, so by lemma 7, after

1 x (2
m — 1) additional iterations,

e[o+(2m -i)]
= e

[(2
m -i)] — 2

eo-

Now assume that the statement is true for t. Then e^x < 2rVr e o- Since each iteration

adds at most one cube, and there exists only one cube at iteration 0, after I(t) iterations,

there are at most

7(0 + 1 =

(2
m -l)(^23m

J

+1 =

t+i t \

^2 2
sm
_Y^2

9m
\ +1 =

,3=1 3= /
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2"i(*+i)

cubes in Cj^)- Then by lemma 7, after at most 2m (*+1 )(2m — 1) more iterations,

e
[/(t)+2"*(< + i)(2™-l)] - 2

e/(0

-
2 2*+i °

- ^T2
e

But

7(0 + 2
m(<+1)

(2
m -l) =

(2
m - 1)

[
^ 2

3Tn

J

+ (2
m - l)2

m(<+1

,3=

t+1

(2--i)r>>s3J7l
,3=

1 «• .So at I(t+1), cj(t+1) < ^rre*

Lemma 8 builds on lemma 7 to consider "blocks" of Q(2
m — 1) iterations in order to

calculate how many iterations must pass before e* is smaller than ^€.q.

The lemmas stated so far in this section have been about individual firms. Lemma 9

is about the global production set.

Lemma 9. For n > /(*), v(L(pn ),U(X*)) < £*, ^#
Proof/

Consider any x* 6 X*r\C(bo,w ). By corollary 2.2, x* € C{b,w) for some c € C„. Then

there exist some cubes c
l — (b

e,w e
) 6 C£ I — 1, . . . ,K such that J^=1 b

e = b > x* and

^/=1 ur = tu < x*. But then there are x*'* such that 6' > x*^ > w e and X)/Li x *'* = x *

•

Since by lemma 4, w l G £-£?£, it follows that:

i/(L££,s*'<) <
|| x*>

1 - iu
e

||
< \\b

e - w t

||
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But by lemma 8, b
{

>
e - w**1 < ^r for all ce € C*, i = 1, . . . ,m, and £ = 1, . . . ,K.

Thus, recalling the definition of Euclidian distance:

e „*.*-v{LElx^)<
\

J2(b^
e - w^f < \ m

i=l

e
e*y/m

2 t+ 1 ) ' 2*+* '

el'eo

and so,

K" f* i
—

(TT? *\^ V^ e Vmv(LEn ,x )<}^-^T-

But x* £ U(X*). So by lemma 1, v(LEn , U(X*)) < Y%=1 4^- Similarly, by step 1

of the algorithm, and lemma 3, LEn C L(pn ). Thus, by lemma 1 v(L(pn ), U{X*)) <

EK e * y/rn

(=1 2' + ! '

Lemma 9 uses the limit given in lemma 8 on the length of any edge, of any cube in

C l
n to find the maximum distance that any two points can be from one another provided

both are in a given c, £ Cn . It is then noted that X* C (Jc€C ^(^' w ) ^OT a^ n by corollary

L2.2. Also, pn > w for all w £ Wn Therefore, some cube in C„ contains both elements of

L(pn ) and U(X*). Thus an upper bound may be found for the minimum distance between

these two sets for every iteration.

3.4 Results

At last we come to the results. Theorem 1 shows that the procedure is monotonic and

gives feasible tentative plans.

Theorem 1. The set of tentative production plans, {pn}'^-^ are feasible, and monotoni-

cally increasing in the preference order.

Proof/

pn £ LEn-\ = ch(Xn -i). By monotonicity of preferences, pn = x for some x £ Xn -\.

But by construction, x = ]|T] x for some x l £ Y l for £ = 1, . . . ,K. Thus pn = x and so

p„ = x G Y f
for all £ = 1,2,..., A'. The tentative plans are therefore feasible.
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Step 1 of the algorithm stipulates that pn £ {x £ LEn -\ \
x >z y V y £ LEn-i}. But

pn-\ is also an element of LEn-\ since only elements of LEn-2 that are strictly inferior

to pn -i are removed to form LEn -\. It is immediate from the above that pn y pn-i for

all n. Thus, {pn }'^Lzl is monotonically increasing in the preference order. •

Theorem 2 uses lemma 9 to show that the utility of the tentative plans converges to

the utility of the optimal plans.

Theorem 2. Given an economy satisfying A1-A8, the procedure converges in utility.

Proof/

Assumptions A5, A6, and A7 are sufficient, according to Debreu(1954), to assure

that y may be represented by a continuous utility function. Recall that by lemma 9, for

n > J(t), i>(£(Pn), U{X*)) < ££i £#• Thus, asn^oo, i/(L(p„), U(X*)) -* 0. Then

it is possible to choose a point x* £ X* and a sequence {y
n

} such that y
n £ L(pn ) for all

n, and
|| y

n — x*
\\

— 0. So for any particular continuous representation u : C(&o, ^o) —*• R?

u(yn )
—> u(x*). But since u(y n ) < w(pn ) < u(x*), w(pn )

—* u(x*). •

Theorem 3 strengthens theorem 2 to show that the tentative plans converge in quantity

terms to actual optimal plans.

Theorem 3. Given an economy satisfying A1-A8, the sequence of tentative plans {pn }

converges to the set of optimal plans X*

.

Proof/

Since {pn } is drawn from the compact set C^o^o), we need only show that the

limit point of every convergent subsequence is an element of X*. So take any convergent

subsequence {pn } and suppose that pn —> p* . But by theorem 2, u(pn ) —* u(x*). Then by

continuity u(p*) = u(x*), and since by theorem 1 every tentative plan is a feasible element

of C(6o,u>o), P* €X*- •

Theorem 4 gives an upper bound on the speed of convergence in utility terms. Such

an estimate is important because it gives the planner a basis to compare different planning

procedures and decide which is best to solve his specific problem.
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Recall from real analysis that all real continuous functions on a compact metric space

are uniformly continuous. We will be forced to strengthen this somewhat in order to

actually calculate a bound on the speed of convergence. In particular, we will assume that

the utility function is proportionally uniformly continuous. In economic terms this means

essentially that if two indifference curves are close to each other somewhere, then there is

a proportionate bound on how far apart they can ever get from one another in the rest of

the goods space. One interpretation of this is that marginal rates of substitution do not

change very much in a small neighborhood.

A9) For any representation u of >:, 3 A > such that V x G C(&o,u>o)> if
|||
x — y ||

< e,

then
|
u(x) — u(y)

\
< Ae.

(Proportional uniform continuity of utility.)

Theorem 4. Given an economy satisfying A1-A9, for any n > I(t), u(x*) — u(pn ) <

Proof/

By lemma 9 for n > I(r), v(L(pn ), U(X*)) < Y,?=i 4^- Thus
'
for every n - JW'

there exist x n 6 U(x*) and y
n G L(pn ) such that

||
x n - y

n
\\
< Y,*i=\ %+?

'

• But then

by Assumption A9, and the fact the x n >z y
n

, u(x
n

) — u(y n
) < A^^=1

e °
t^1

m
. Therefore,

since xn y x* and y
n < p

n
, the theorem is proved. •

Unfortunately, it does not seem to be possible to extend theorem 4 and find a general

bound on the speed of convergence in quantity terms. To do so we would have to know

much more about the interactions between the preferences and the feasible set. For some

subclasses of economies (convex economies for example), it may be possible to find useful

characterizations of these interactions. But this will not be attempted in the current paper.

Finally, we turn to the question of stopping rules. Except in very special cases, finite

convergence cannot be expected. So in practice, the planner will have abandon the search

at some point and produce the current tentative plan. The planner must therefore devise a

rule to stop the procedure when then the tentative plan is sufficiently "close" to an optimal

plan. If the planner is satisfied with defining "closeness" in utility terms, stopping rules

are very easy to implement. All he need do is subtract the utility of the tentative plan from
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the the utility of the most preferred element of the Upper Estimate, and stop the search

when this number falls below a pre-specified threshold. If the planner insists on making a

stopping rule in quantity terms, then things are slightly more complicated. The planner

must find an upper bound on the distance in goods space between the current tentative

plan and the set of optimal plans. Recall that the algorithm discards information as it

progresses. Then since we know that all X* £ UcGC C(b,w), one way to find an upper

bound is to take the maximum distance between the points in this union. Unfortunately,

it will not always be the case that this bound goes to zero as the number of iterations

goes to infinity. So a planner who uses a quantity stopping rule like this can never be sure

that he will ever actually stop. Stopping is more likely, however, the closer set of optimal

plans are to one another. In particular, if the set of optimal plans is a singleton, stopping

is guaranteed.
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