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Abstract

A new algorithm for computing quantile regression estimates for problems in which the

response function is nonlinear in parameters is described. The nonlinear / \ estimation

problem is a special (median) case. The algorithm is closely related to recent

developments on interior point methods for solving linear programs. Performance of the

algorithm on a variety of test problems including the censored linear quantile regression

problem of Powell (1986) is reported.
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1. Introduction

About a century ago Edgeworth observed that methods of estimation based upon minimiz-

ing sums of absolute residuals could be far superior to least-squares methods under non-

Gaussian error conditions. Laplace had drawn similar conclusions a century earlier. See Stigler

(1986) on this early history. But computation of l[ -estimators, even for linear regression,

remained a major impediment to applications until the emergence of the simplex algorithm for

linear programming in the 1940's. Papers by Chames, Cooper and Ferguson (1955) and Wagner

(1959) provided a foundation for modern algorithms for linear l\ -regression by Barrodale and

Roberts (1973), Bartels and Conn (1980) and others. These algorithms are readily extended to

linear quantile regression, Koenker and Bassett (1978), of which / \ -regression is an important

(median) special case.

The current state of algorithms for nonlinear quantile regression is far less satisfactory.

Certainly nothing comparable to the venerable Gauss-Newton algorithm for nonlinear least

squares problems has emerged. Despite a flurry of interest by prominent numerical analysts in

the 1970's and early 1980's, see, e.g., Osborne and Watson (1971), Murray and Overton (1981)

and Bartels and Conn (1982), occasional applications of nonlinear quantile regression have

relied on the Nelder and Mead (1965) algorithm and other generic optimization methods. An

excellent statement of the current state-of-the-art is provided in the thesis of Busovaca (1985).

In contrast, the statistical theory of nonlinear quantile regression has developed rapidly in

recent years. Powell (1986) has emphasized its value in the analysis of censored and truncated

responses. Asymptotic theory for independent errors has been developed by Oberhofer(1982),

Dupacova(1987), and Powell(1991). Theoretical developments by Weiss (1991) and White

(1991) have stressed applications to time-series analysis. Applications of Horowitz and Neu-



mann (1987), Chamberlain (1990), and others have demonstrated its value in applied

econometrics.

In this paper we will describe a new approach to the computation of nonlinear quantile

regression estimators based on recent interior point methods for solving linear programs. In the

next section we review interior point methods for strictly linear problems. Section 3 describes

our approach to nonlinear problems, and Section 4 describes our computational experience.

2. Interior Point Methods for Linear Programs

In this section we provide a brief discussion of interior point methods for solving strictly

linear programs including the linear quantile regression problem. Our exposition will follow

closely that of Vanderbei, Meketon, and Freedman (1986) and Meketon (1986). We should

emphasize that in our experience interior point algorithms for linear quantile regression do not

appear to be competitive in efficiency terms with existing simplex method algorithms. See

Koenker and d'Orey(1987) for a description of a simplex based algorithm for linear quantile

regression. However, unlike simplex based methods they do appear to offer a natural extension

to nonlinear problems. Thus a clear understanding of the linear case is an essential first step in

our exposition.

2.1. A Canonical LP

Consider the equality constrained linear program

min {c'co|coe Q={coe R£, Au = b } } (2.1)

where R+ denotes the positive orthant of Rn
. Given a feasible point in the interior of the con-

straint set, co e int (H), interior point methods proceed in two steps. First we transform coordi-

nates to reposition co so it is centered relative to the set Q. Then a (projected) gradient step is



taken toward the boundary of Q. Repeating this process brings us arbitrarily close to a solution,

and a stopping criterion is eventually invoked.

To flesh out this brief description, let D = diag (co) and consider the transformation

co -»D -1
co

We have D _1
co = 1„, an ^-vector of ones, so the transformation D has the effect of centering co

relative to the orthant boundaries of CI. Correspondingly, we may define A = AD and c = Dc. In

the transformed coordinates we wish to move in the gradient direction -c, but to preserve feasi-

bility we should instead project c onto the null space of A to insure that the equality constraints

are satisfied.

Let c denote this projection, i.e.,

c={I -A'{A'AT l A)c

Clearly, c is a direction of descent; and we now move toward the boundary of Q in this direction.

Let

.A

ot = max {e{c }

; = 1 n

where e
t
is the i unit basis vector for R". For some fixed r\ e (0, 1), consider

co <- co - (r\/a)Dc

which defines a sequence of iterations co^ = r(co^). Since at each iteration

c'co* +1 =c
,

(ak-(r\/a)c'Dc =c'coj.-(r|/a)||c||,

we expect to see an improvement in the objective function at each iteration.

Proposition. If c < the problem (2.1) is unbounded, unless c = in which case every co e Q is



optimal. Otherwise, the problem is bounded and the sequence {c'co* } is stricdy decreasing.

Proof. Since the proof of this proposition, found in Vanderbei, Meketon and Freedman (1986), is

both elementary and revealing we repeat it here for the sake of completeness. If c = 0, there

exists a vector z such that c = A'z, hence Dc - DAz and since co € int (Q) it follows that c = Az.

But then for any co e Q.,

c'o) = z'Aa) = z'b

which is independent of co, establishing that c'co is constant on all of Q. Next consider c < 0.

Note that

c'co! = c'co - 7(co)c'c = c'co - 7(co) || c
II

2

(2 -4)

where y(co) = r\/a. Since c < 0,

co
p
= co - pDc

is feasible for any p > and

c'cOp=c'co-p || c \\i

implies that c'co
p
-> -oo as p -> <». Finally, if c > 0, then since 7(co) > and c'co! < c'co follows

from (2.4), establishing that the step is a direction of descent.

2.2. Linear / \ -regression

In the linear model

y t
=Xj'$ + Uj i = 1, • • •

, fl,

as noted in the introduction, the / j -estimator of (3 which minimizes



R(b)= £|y, -Xi'b |.

1=1

may be formulated as a linear program. The dual problem may be written as

max [y'd \d e Q = { d e [-1, If , X'd = } }

where y is the ^-vector of responses, and X is the n x p design matrix. To solve the dual problem

we proceed as before, except that the centering is slightly altered to accommodate the altered

form of Q.. For any initial feasible point d, e.g., d = 0, following Meketon (1986), set

D = diag (min { \+dt
, \-d, } ).

In the transformed coordinates D~ l d the projected gradient is

Du = (I -DX\X'D 2Xy lX'D)Dy = D(y -Xb)

where b = (X'D~X)~ [ D~y. Note that as in the former case the transformation has the effect of

centering the point d in the feasible set Q.. Now let

e
x
D u -e

t
D u

a = max { max
{

,
} }

\+di l-di

and again for r\ e (0, 1) we take the step

d <r- d + (r\/a)D
2
u.

Note the change in sign since we are now maximizing. The iteration sequence d^+i =T(d/
c ) in

the dual vector implicitly defines a corresponding primal sequence with

bk = (X'DiXY'X'Dly.

As Meketon notes, the duality theory yields a natural stopping criterion. Since

y'dk ^Z \yi-*i%\



with optimality if and only if equality holds, it is reasonable to stop iterating when the differ-

ence between the dual and primal values is less than a specified tolerance.

2.3 Linear Quantile Regression

If we replace the (symmetric) / 1 -criterion with an asymmetric linear criterion so we minim-

ize

*e(*)=£ Pete -*.*)
1=1

p e (w) = (6 - I(u < 0))u, we obtain the regression quantiles of Koenker and Bassett (1978). The

dual problem is now,

max [y'd\d€ Q={de [0-1, 0]", X'd = 0] )

This leads to an algorithm identical to the / 1 special case except that now

D =diag(min(Q-d;, 1-0+4))

and

' e{Dc -e{Dc
a = max (max 0-^' 1-0 + 4

3. Nonlinear Quantile Regression

To extend these ideas to the case of nonlinear response functions we begin by considering

the nonlinear l
{
problem

min £|)5(0I (3.1)

where, for example,



fi(0 = yi-fo(xi,0.

As noted by El Attar, et al (1979) a necessary condition for t to solve (3.1) is that there exists a

vector d e [-1, 1]" such that

J(t*)'d = (3.2)

A**)'* =Z !//('*)
I (3.3)

where/ (r) = (/•(*)) and/(r) = 0/(0%)

Thus, as proposed by Osborne and Watson (1971), one approach to solving (3.1) is to solve

a succession of linearized l\ problems minimizing

Il/i(0-i,(0'5| =ll/--/5|h,

choosing a step length, X, at each iteration, by line search in the resulting directions 5. The

difficulty, as we see it, with this approach is not only that we must expend the effort to solve an

1 1 linear program at each iteration, but, perhaps more significantly, the resulting directions may

actually be inferior to directions determined by incomplete solutions to the sequence of linear-

ized problems.

Let t be the value of the parameter at the current iteration, and consider the dual problem

max [f'd e [-1, If, J'd = 0}. (3.4)

If the model were linear so

f{s)=f{t)-K{s-t)

for some fixed matrix K, then a solution can be found by applying Meketon's algorithm to find

d to solve (3.4), computing



5* = (K'D 2K)- l K'D 2
f.

where D = diag (min { 1-d; , 1+d, }) and setting t = t + 5 . When / is nonlinear there is no

longer a compelling argument for fully solving (3.4) at each iteration, indeed, in our experience

only a few iterations to refine the dual vector is preferable. In the version of the algorithm we

have implemented to conduct the tests reported in the next section we take two dual steps

between successive updates of /and J. A detailed description of the algorithm is now provided.

3.1. Dual Step

For any feasible d in the interior of the constraint set of (3.4) we refine d, following Meke-

ton, as follows. Let

D =diag (min (1-d,-, \+d, })

s =D 2
(I -J(J'D 2JT lJD 2

)f.

d <r-d + (r\/a)s

where

a = max { max {$,7(1 - dfi, -5,7(1 + d,-) } }

and r\ e (0, 1) is the constant chosen to insure feasibility. Following Meketon, we use r\ = .97.

Updating D, s, and the new d continues the iteration. This process is embedded in a sequence of

primal iterations in which we update /and J as follows.

3.2. Primal Step

The dual step yields the primal direction



b = (J'D
2jy l J'D 2

f'

which we explore by line search. Our current implementation uses Brent's (1973) algorithm

from the PORT3 library Fox (1984). Updating we have

t <- t + \*h

where X = argmin \\f(t + A.S)||i, and we then update /and J. However before returning to the

dual step we must adjust the current d so that it is feasible for the new value of/. This is accom-

plished, somewhat naively, by projecting the current d onto the null space of the new /, i.e.

d = (/ -J(J'J)~
l
J')d and then shrinking it to insure that it lies in [-1, 1]", so

d <- d/(max { | di \
} + e)

for some tolerance parameter e > 0. Obviously, when the problem is linear, so J is fixed, this

"adjustment" is nugatory since d is already in the null space of 7, and the algorithm is essentially

like Meketon's.

3.3. Stopping

The algorithm currently terminates when the new iterate fails to improve the objective

function by a specified tolerance. Exploration of alternative stopping rules is a topic for future

research.

3.4 Related Literature

Gill, Murray, Saunders, Tomlin, and Wright (1986) and Bayer and Lagarias (1991) have

recently pointed out the close relationship of "projected Newton barrier" methods (see Fiacco

and McCormick (1965)) and interior point methods. Algorithms closely related to the one

described above could presumably be formulated employing logarithmic barrier functions in the
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dual vector d.

3.5. Quantile Regression

As in the case of the linear problem the generalization of the /
j
problem to other quantiles

is straightforward involving only a modification of the constraint set [-1, 1]" to [0-1, Q]
n

for

some 9 e (0, 1).

4. Numerical Experience

In this section we describe our computational experience with a variety of test problems.

To facilitate comparison with existing results in the literature we have chosen problems from

Busovaca(1985) and Wormersley(1986). We focus exclusively on the I \ case since there are no

comparable results in the literature for other quantiles. The problems used are described in

detail in Appendix A. We have attempted to investigate all of the problems reported on by

Busovaca, however in several cases we were unable find a complete description of the problem.

The problem taken from Wormersley is included to explore the important special case of piece-

wise linear reponse functions which arise in Powell's(1986) formulation of the quantile regres-

sion problem for censored data.

In Appendix B we provide explicit versions of our algorithm in both S, Becker, Chambers

and Wilks(1988), and Gauss. All of the reported tests were carried out in S on a Sun 3/50. Note

that the line search algorithm in the S and Gauss versions are different. To implement a simple

version of the Osborne and Watson(1971) algorithm in S we employ the S function 11 fit

which does l\ regression using the Barrodale and Roberts(1973) algorithm. The S function

lsf it carries out the corresponding weighted least squares computations for the interior point

algorithm.
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A summary of our experience on the test problems appears in Tables 5.1 and 5.2.. For

Wormersley's(1986) censored regression problem (Problem 1) our version of the interior point

algorithm converges to Wormersley's reported solution. However, it should be noted that the

solution to this problem is notoriously nonunique. Busovaca's algorithm cannot be employed on

Problem 1 due to the fact that the Hessian of the response function is identically zero almost

everywhere. The remaining problems are all taken from Busovaca, and generally our interior

point solutions correspond closely to his. In Problems 7 and 13 there are small discrepancies

favoring Busovaca; in Problem 9 there is a larger descrepancy favoring the interior point

method. Results for our implementation of the Osborne and Watson algorithm are somewhat

less satisfactory. It fails completely on Problems 11 and 12, performs poorly in Problems 1, 4b,

and 13, but does slightly better than the interior point method on Problem 5. All three algorithms

fail for Problem 4a which is highly degenerate at the specified initial point. At an alternative

starting point, the interior point algorithm performs well.

5. Some Concluding Remarks

We have described a simple approach to computing quantile regression estimates for prob-

lems with nonlinear response functions. The approach is based on recent developments on inte-

rior point methods for linear programming, but may be viewed as a variant of well-known itera-

tively reweighted least squares. While the algorithm seems to perform well on a variety of test

problems, there is considerable room for improvement. Handling rank deficiency in the model

Jacobian is critical. Alternative stopping criteria also should be explored.
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Figure 5.1

Algorithmic Performance on Several Test Problems

Interior Point Algorithm Osbome-Watson Algorithm Busovaca Algorithm

Example Starting Optimal Number of Optimal Number of Optimal Number of

Point Objective Iterations Objective Iterations Objective Iterations

l.Wormersley (0,0) 3.032544 3 5.234825 3 NA

2.Bard (1.1,1) 0.1243555 6 0.1243383 5 0.1243406 13

3.Beale (1,0.1) 0.2928905e-07 6 0.154761 le-06 6 0.3695488e-05 8

4.a.Biggs (1,1,1,1,1,1) F F F

b.Biggs (1,8,2,2,2,2) 0.0 11 0.7289559 45 NA

5.Brown&Dennis (25,5,-5,-1) 903.3648 29 903.2406 113 903.2343 2

6.E1-Attar 5.1 (1,2) 0.47042 10 0.4704267 6 0.4704247 8

7.E1-Attar5.2 (1.1.1) 7.902733 13 7.904731 22 7.894227 5

S.Madsen (3,1) 1.0 16 1.000010 11 1.000002 13

9.0sborne 1 (0.5,1.5,-1,0.01.0.02) 0.0293912 14 0.0293914 10 0.8203727 55

1 O.Osborne 2 (1.3,0.65,0.65,0.7,0.6,

3,5,7,2,4.5,5.5)

F F F

11.Powell (3,-1,0,1) 0.1272e-07 15 F 0.29039e-08 3

12.Rosenbrock (-1.2,1) 0.0 15 F 0.506642e-06 51

B.Watson (1,1.1,1) 0.6487749 25 1.278432 5 0.6018584 24

H.Wood (0,0,0,0) 0.0 7 0.000003 10 0.0 25

|
See Appendix A for a detailed description of the test problems.

F indicates the algorithm failed to meet convergence criteria for the problem.

NA indicates results are not available for this entry.



Table 5.2

Optimal Points for Several Test Problems

Example Interior Point Algorithm Osborne-Watson Algorithm Busovaca Algorithm

l.Wormersley -6.74166.4.59299 -7.29804,4.74178 NA

2.Bard 0.10095. 1.52545. 1.97182 0.10094, 1.52516, 1.97211 0.10094, 1.52513, 1.97214

3.Beale 3.0.5 3,0.5 2.99999, 0.49999

4a.Biggs F F F

b.Biggs 1, 10, 1,5,4,3 1.82143,81.94978.2.27882 NA

5.Brown&Dennis -9.70273. 11.74096, -0.442O4 -10.0227. 11.91354,-0.44026 -10.2236, 11.90843, -0.45804

0.55827 0.55823 0.58032

6.E1-Attar5.1 2.84250, 1.92018 2.84250. 1.92018 2.84250, 1.92018

7.E1-Attar 5.2 0.53558, -0.00139, 0.02871 0.53148,-0.00004,0.02751 0.53606,0.0,0.00319

8.Madsen 0.0,0.00016 0.0, 0.0022 0.0, -0.00205

9.0sbome 1 0.37706,2.19244,-1.72549 0.37706.2.19246,-1.72552 1.06716, 1.80257,-1.80731

0.01332,0.02129 0.01332,0.02129 0.00345. 0.00109

lO.Osbome 2 F F F

11.Powell 0.7268e-O4. -0.7268e-05 F 0.5588e-08, -0.3725e-09

0.1162e-04.0.1163e-04 0.1250e-08,0.1716e-08

12.Rosenbrock 1.0, 1.0 F 0.99999, 0.99999

13.Watson -0.37526, 1.14089 -0.23584, 1.03241 -0.44271, 1.19321

-0.42239, 0.39683 -0.22747,0.41384 -0.47676, 0.38449

14.Wood 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0



Appendix A

Test problem 1 (Wormersley, 1986)

The results of temperature accelerated life tests on electrical insulation in 40 mo-

torettes are recorded in Table A.l. This data is originally from Schmee and Hahn (1979).

Ten motorettes were tested at each of four temperatures. Testing was terminated at dif-

ferent times at each temperature. The model used to fit the data is

1000.t 2
loqiQii = xi + — h e,y

(T + 273.2)

where H is the failure time and T is the temperature.

Table A.l : Data for motorettes example

150

Test temperature T°C

170 190 200

Failure times H in hours 1764 408 408

2772* 408 408

3444 1344 504

3542 1344 504

3780 1440 504

4860

5196

8064 5448 1680 528

10 units 3 units 5 units 5 units

Termination time H

* Wormersley gives the second failure time at 170° as 2722, but his results are consistent

with the values recorded here from Schmee and Hahn.



At each temperature there is an upper bound H (the time at which testing was

stopped) on the observed failure times, so the algorithms of the observed failure times are

given by

. /, r
-
r 1000x 2

min loq inH , x, H——
(- e

V (T + 273.2)

Test problem 2 (Bard, 1970)

( U
i

Ji\x) =Vi- [xi +
V{X 2 + WiX 3

where i = 1,2, • • •
, 15, Ui = i, V{ = 16 — i, iv

t
= mm(w,-,Vj), and

i y t
i Vi i Vi

1 0.14 6 0.32 11 0.73

2 0.18 7 0.35 12 0.96

3 0.22 8 0.39 13 1.34

4 0.25 9 0.37 14 2.10

5 0.29 10 0.58 15 4.39

Test problem 3 (Beale, 1958)

fi(x) = Vi -3l(l -*2)»

where z = 1,2,3, y1 = 1.5, y2 = 2.25 and y3 = 2.625.

Test problem 4 (Biggs, 1971)



fi(x) = x 3 exp(-t t xi) - x 4 exp(-t 1
x 2 ) + x 6 exp(-t l

x 5 )
- y 2 ,

where i = 1, • • • , 13, £
z
= (O.l)z and

yi = exp(-ti) — bexp( — 10t l ) + 3exp( —4t{).

Test problem 5 (Brown and Dennis, 1971)

fi(x) = (xi + tix 2 - exp(ti))
2 + (x 3 + i4«in(<,-) - cos(i

2 ))
2

,

Test problem 6 (El-Attar 5.1, 1979)

/i(ar) = *}+z 2 -10

/2 (x) = xi + x\ - 7

f3 (x) = x\-x\-l

Test problem 7 (El-Attar 5.2)

fi(x) =x\ '+ x\ +x\ - 1

/2(x)=x; + xl+(x3 -2)
2

/3 (x) = xi +x 2 + x3 - 1

/4 (x) = Xi + x 2
- x 3 + 1

/5 (ar) = 2x\ + 6x
2

2 + 2(5x 3 - Xl + l)
2

/6 (x) =x\- 9x 3

Test problem 8 (Madsen, see Overton and Murray, 1981)

f\(x) = x\ + xl 4- xix 2

f2 (x) = sin(xi)

f3 {x) = cos{x 2 )



Test problem 9 (Osborne 1, 1972)

fi(x) = m - (zi + x 2 exp(-t l
x 4 ) + x3exp(-tiXs))

where i = 1,2, • • • ,33, t
z
= 10(i — 1), and

i Vz i Vi i y%

1 0.844 12 0.718 23 0.478

2 0.908 13 0.685 24 0.467

3 0.932 14 0.658 25 0.457

4 0.936 15 0.628 26 0.448

5 0.925 16 0.603 27 0.438

6 0.908 17 0.580 28 0.431

7 0.881 18 0.558 29 0.424

8 0.850 19 0.538 30 0.420

9 0.818 20 0.522 31 0.414

10 0.784 21 0.506 32 0.411

11 0.751 22 0.490 33 0.406

Test problem 10 (Osborne 2)

fl (x) =y l
- (xiexp(-t t

x 5 ) + x 2 exp{-(ti - x 9 )

2
x 6 )

-\-x 3 exp(-{t t
- x 10 )

2
a-7) + x 4 exp(-{ti - xu )

2
x$))

where i = 1,2, ••• ,65, t
z
= (i — 1)/10, and



i Vi i Vi i Vr

1 1.366 23 0.694 45 0.672

2 1.191 24 0.644 46 0.708

3 1.112 25 0.624 47 0.633

4 1.013 26 0.661 48 0.668

5 0.991 27 0.612 49 0.645

6 0.885 28 0.558 50 0.632

7 0.831 29 0.533 51 0.591

8 0.847 30 0.495 52 0.559

9 0.786 31 0.500 53 0.597

10 0.725 32 0.423 54 0.625

11 0.746 33 0.395 55 0.739

12 0.679 34 0.375 56 0.710

13 0.608 35 0.372 57 0.729

14 0.655 36 0.391 58 0.720

15 0.616 37 0.396 59 0.636

16 0.606 38 0.405 60 0.581

17 0.602 39 0.428 61 0.428

18 0.626 40 0.429 62 0.292

19 0.651 41 0.523 63 0.162

20 0.724 42 0.562 64 0.098

21 0.649 43 0.607 65 0.054

22 0.649 44 0.653

Test problem 11 (Powell, 1962)



/l(x) =Xi + 10X2

/2 (x) = 5
1 /2 (.r 3 -^4)

f3 (x) = (x 2 -2x 3 )

2

f4 (x) = l0
1/2

(x 1 -x4 )

2

Test problem 12 (Rosenbrock, 1960)

Mx) = I0(x 2 - x
2
,)

f2 (x) = 1- x 1

Test problem 13 (Watson, see Kowalik and Osborne, 1968)

fi(x) = Y^(j
- l)xjt{-

2 - f^xj*}" 1

)
-1,

where i = 1, • • • , 29, U = i/29, f3o(x) = x
{
and /3i(x) = x2 - arf - 1.

Test problem 14 (Wood, see Colville, 1968)

f l
(x) = 10(x 2 -x 2

)

f2 (x) = 1 - Xi

h(x) = 901/2(x,-x 2
)

/4 (x) = 1 - x 3

f5 (x) = l^ 2
(x 2 +x 4 -2)

f6 (x) = 10- 1 / 2 (x 2 -x 4 )



Appendix B

"nlrq" <-

function(x, y, model, t, theta, k = 2, eps = le-06, big = le+20, eta = 0.97)

{

# This is a function to compute nonlinear 11 estimate.
# Input
# model - user-provided function which returns components
# f=(f_i (x_i , t)

# J=(grad f_i )

# t - vector of initial values of the unknown parameters
# theta - desired quantile
# k - number of Meketon's iterations used to calculate the
# dual step
# eps - small positive number
# big - big positive number
# eta - 0.97
# Output
# t - vector of estimated parameters
# f function value at minimum
#

n <- length(y)
zero <- rep ( , n)

w <- zero
d <- rep(l, n)

m <- model (x, y, t, theta)
snew <- sum(abs (m$f )

)

sold <- big
while (sold - snew > eps) {

z <- mekrq(m$J, m$f, w, theta, k, int = F, eps, big, eta)
step <- z$coef
# Calculate an optimal step length lambda
lambda <- step . length ( t , step)
t <- t + lambda * step
m <- model (x, y, t, theta)
sold <- snew
snew <- sum(abs (m$f )

)

w <- z$w
w <- lsfit(m$J, w, int = F) $resid
if (max (abs (w) ) >= 1)

w <- w/ (max (abs (w) ) + eps)

}

f <- snew
return(t, f)

}

"mekrq" <-

function(x, y, w, theta, kmax = 1000, int = T, eps, big, eta)
{

# Compute linear regression quantile estimate (Meketon, 1985).
# However, note that W is not initialized and the maximum number of
# iteration is given by kmax.
#

if(int == T) x <- cbindd, x)

sr <- big
k <- 1

while(k <= kmax & sr - crossprod(y, w) > eps) (

d <- pmin (theta - w, 1 - theta + w)

z <- lsfit(x, y, d~2, int = F)



sr <- sum(abs (z$resid)
)

k <- k + 1

s <- z$resid * d~2

alpha <- max(pmax(s/(theta - w) , - s/(l - theta + w)

w <- w + (eta/alpha) * s

}

coef <- z$coef
returnfcoef , w)



/*
* *

**
**
**
* *

**
**
* *

**
**
*•
*•
**
**
**
**
**
**
**
**
**
*

*

*

*

*
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/*
*

*/

This procedure is a function to compute nonlinear regression
quantile estimate.

PROC NLRQ
FORMAT

{ t,f } = nlrq( x,y, Smodel, start , theta, k, eps, big, eta
)

INPUT
model - user-provided function which returns components

f = (f_i (x_i,t))
J = (grad f_i)

start - vector of initial values of the unknown parameters
theta - desired quantile

k - number of Meketon's iterations used to calcuate
the dual step

eps - small positive number (le-06)
big - big positive number (le+20)
eta - 0.97

OUTPUT
t - vector of estimated parameters
f - function value at minimum

The following procedure is a function to compute linear
regression quantile estimate (Meketon, 1985). However, note
that W is not initialized and the maximum number of
iterations is given by kmax.

proc ( 2 ) = mekrq(x,y,w, theta, kmax, inter, eps, big, eta)

;

local sr,k,wy,wx,d,t,r, s, alpha;
if inter eq 1;

x = ones (rows (x) , 1
) -x;

endif

;

sr = big;
k = 1;
do while k <= kmax and sr - y'*w > eps;

d = minc( (theta-w)
' |

( 1-theta+w)
' )

;

d = vec(d)

;

wx = x.*d;
wy = y.*d;
{ t > = olsqr (wy,wx)

;

r = y - x*t;
sr = sumc (abs (r

) )

;

k = k + 1;
s = r.*d A

2;
alpha = maxc (maxc (( s. / (theta-w) )'

|

(-s./( 1-theta+w) )

') )

;

w = w + eta/alpha*s;
endo;
retp( t,w)

;

endp;



proc ( 2 )
= nlrq(x,y, Smodel, t, theta,kmax,eps,big,eta) ;

local n,d,w, f , J, snew, sold, step, lambda, t, tl , p, inter,
model :proc;
n = rows (y )

;

w = zeros (n, 1 )

;

d = ones(n, 1 )

;

{ f,J > = model (x,y,t)

;

snew = sumc (abs (f
) )

;

sold = big;
inter =0;
do while sold - snew > eps;

{ step,w } = mekrq( J, f ,w, theta, kmax, inter , eps,
big, eta)

;

/* Calculate an optimal step length lambda */

{ lambda } = stepl ( J, f ,t, step, &model,eps )

;

t = t + lambda*step;
{ f,J } = model (x,y,t)

;

sold = snew;
snew = sumc (abs ( f) )

;

{ tl,w,p } = olsqr2(w,J);
if maxc(abs(w)) >= 1;

w = w/ (maxc (abs (w) ) +eps)

;

endif

;

endo;
retp( t, snew)

;

endp;
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