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Abstract

We study optimal signaling and auditing contracts in an intertem-

poral economy with asymmetrically informed agents. There is a risk

neutral firm and many risk neutral investors. The firm has limited

liability, and wishes to raise finance for a project whose returns follow

a Markov process. The structure of the Markov process is common
knowledge, but only the firm observes the realizations. We derive con-

ditions under which the firm can costlessly signal its state to investors

through its choice of payments. For this to occur, returns must be

such that the firm can be "rewarded" for truthful reports. When sig-

naling contracts do not exist, we characterize the nature of optimal

auditing contracts. We show that if audits occur, they are conducted

only in "bad" states. Finally, we derive the Pareto efficient maturity

structure of both types of contracts endogenously, show how optimal

allocations can be implemented via the appropriate assignment of con-

trol rights, and analyze the implications of control for a firm's capital

structure.
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1 Introduction

Firms generally have better information than investors, and revelation of in-

formation is essential for investment to occur. This paper focuses on two

principal mechanisms commonly used to reveal information: signaling via

payment schedules and costly auditing. The following intertemporal invest-

ment finance questions motivate our analysis:

(i) Do conditions exist under which a firm can costlessly reveal private in-

formation about its state? Can contracts be made contingent on this

information? Can the firm and investors write state contingent contracts

on non-verifiable private information?

(ii) What is the role of costly auditing in an intertemporal setting? When
is it optimal? Should auditing be made contingent on previous firm an-

nouncements or should it be imposed exogenously independent of an-

nouncements?

(iii) What are the implications of investor versus firm control of productive re-

sources? For example, are optimal investment contracts of fixed maturity

or can investors discipline a firm by withdrawing early without incurring

self-defeating liquidation penalties?

We analyze these questions in an economy with a firm and risk neutral

investors who are differentially informed and wish to write multi-period in-

vestment contracts. The investors are endowed with a unit of input (i.e.,

"wealth") at time zero, are potentially infinitely lived, and consume only

once. Their precise time of consumption is uncertain but is determined en-

dogenously. The firm is endowed with a technology whose intertemporal

return follows a two-state Markov process, but is penniless (i.e., "wealth

constrained"). Investors know the structure of the Markov process but only

the firm privately observes the realization each period. A costly auditing

technology is available to verify firm reports, and if misreports are detected

the firm can be penalized. The penalty is bounded, so the firm has limited

liability. We analyze Pareto efficient contracts (relative to the environment)

which specify incentive compatible, state contingent payments by the firm

to investors. The key problem is to derive contracts which truthfully and

efficiently reveal the firm's private information.

Our analysis provides the following answers to the questions posed above.

First, we derive computable incentive constraints which, if satisfied, permit

the firm and investors to write self-enforcing, state contingent contracts that



implement the first best allocation even if the state is not publicly verifiable.

These conditions show that the firm must receive a sufficient "reward" in each

state for such contracts to exist. Second, when signaling contracts do not

exist, we characterize the structure of optimal auditing contracts: If audits

occur they are conducted only in bad states. Finally, we derive the Pareto

efficient length of both types of contracts endogenously and show that the

assignment of control rights is important for implementing optimal contracts.

There is an extensive literature on optimal investment contracts which

has addressed (in isolation) some of the interrelated questions posed at the

outset of the paper. We will comment on three aspects of this literature.

First, the costly state verification model (cf., Townsend (1979) and Gale and

Hellwig (1985)) provides a rationale for the use of debt contracts with costly

auditing in static environments. These static contracts are optimal (under

certain conditions) because they entail fixed payments in non-auditing states

and state dependent payments only when auditing occurs, hence they mini-

mize auditing costs. Signaling is never credible in static models because the

informed individual always has an incentive to report that the worst state

has occurred to minimize payments, and obviously cannot be penalized in the

future for misreports made today. More recently, Border and Sobel (1987)

study static auditing mechanisms and show that they generally involve ''re-

wards" (i.e., rebates) for truth-telling.

Second, one of the first papers on efficient information revelation in dy-

namic, stochastic economies with differentially informed agents is Town-

send (1982). In a stylized two agent intertemporal model with identically

and independently distributed shocks, he shows that multi-period contracts

differ substantially from single period contracts. One agent is risk averse and

subject to endowment fluctuations and the other agent is risk neutral. The
risk neutral agent can sometimes provide consumption insurance to the risk

averse agent without auditing because he/she can be appropriately compen-

sated in future periods as a function of the risk averse agent's past endowment

reports. History dependence is central to this "consumption insurance" ap-

proach, and as Phelan and Townsend (1991) note, this has hampered general

analytic treatments of the problem. A second class of repeated, incentive con-

strained models focuses on deriving conditions under which history does not

matter and optimal multi-period contracts reduce to a series of single period

contracts. Information is revealed (or not revealed) as in static models.

Finally, the problem of who explicitly or implicitly controls the produc-



tion decision has been raised as an independent but important issue in the

contract literature (cf., Hart and Moore (1989) or Aghion and Bolton (1992)).

These "control" or "incomplete contracting" models are often contrasted with

costly state verification models and have the following structure. First, they

assume agents are risk neutral. Second, they assume that contracts cannot

be made contingent on some observable states because these states are too

difficult to describe or verify in court (this is equivalent to assuming that

state verification costs are prohibitively high). Third, they assume that all

agents have symmetric information: When a state u) is realized the firm and

all investors agree upon it but cannot write contracts contingent on u> because

of the second assumption. Fourth, they assume the value of continuation to

investors and the firm differs.
1 The main focus of this literature is to study

how a priori incomplete initial contracts can be renegotiated in a subsequent

period when the commonly agreed upon state is realized.

Our model contains the static costly state verification and incomplete

contracting approaches as particular cases of a dynamic, stochastic, differ-

ential information contracting model. This permits us to simultaneously

analyze questions (i), (ii). and (iii) posed at the outset. This is crucial since

we find that the questions are interrelated. In comparison with the exist-

ing literature, our paper makes the following contributions. First, we show

that intertemporal contracts are important (with and without auditing) be-

cause they permit welfare improving information revelation that cannot be

achieved in static models. Second, we examine the "control problem" in

an economy with differential information where investors and the firm have

the ability to write state contingent contracts which can (if necessary) be

enforced via costly auditing (i.e., verification costs in the model can vary be-

tween zero and prohibitively high levels). In this setting we show: If control

is not an important issue then auditing is unnecessary (i.e., when agents can

write self-enforcing, incentive compatible signaling contracts); but control is

important for implementing auditing contracts.

The paper is organized as follows: Section 2 presents the model. Sec-

tion 3 considers a benchmark version of the model where both the firm and

^art and Moore (1989) assume the liquidation value of assets to investors is less than

the value to the firm, so investors prefer to renegotiate the loan rather than to "pull the

plug" on the firm (because liquidation imposes self-defeating and asymmetric penalties on

them). Aghion and Bolton (1992) study the assignment of control and renegotiation when
investors and the firm have utility functions which differ with respect to effort.



investors have symmetric information. Section 4 derives conditions for the

existence of Pareto efficient signaling contracts and Section 5 analyzes Pareto

efficient auditing contracts. Section 6 provides a general contract problem

which permits both types of information revelation, analyzes contract im-

plementation via the assignment of control rights, and analyzes firm capital

structures. Finally, Section 7 contains concluding remarks.

2 The Model

Consider an economy with m agents where time is indexed by t = 0, 1, 2, . . ..

All agents are risk neutral and have a common time preference rate S. Let

one agent be a "firm" who is distinguished by ownership of a production

technology but no initial wealth. The remaining agents are "investors" who

are distinguished by an endowment of one unit of an investment/consumption

good at t = (i.e., "wealth"). They can either consume the good in the

current time period or invest in the firm. The intertemporal returns from

the firm's technology follow a stationary two-state Markov process with R
t £

{Rg,Ri,} and Rg > R^.
2 The penniless firm wishes to raise finance from the

wealthy investors by offering them contracts with payoffs r(-) which may
be state and/or history dependent. The main problem is that investors are

information constrained: Realization R t
is privately observed by the firm at

the beginning of period £, and only the structure of the Markov process is

common knowledge. Investors have access to an auditing technology which

can perfectly reveal R
t
and the current value of the firm's assets in any period,

but they incur cost c.

To characterize optimal allocations we analyze the problem of an infor-

mation constrained social planner. The planner writes contracts which spec-

ify payments for investors and investment liquidation (i.e., consumption)

times for investors and the firm. The firm's information at time t consists of

Markov process realizations R^ up to and including time t, denoted by J- t ,

the cr-algebra generated by Rk, k = 1,...,£. Investor and planner informa-

tion at time t depends on the firm's announced realizations, which need not

2 Formally, let S = {Rg ,Rb} denote the state space, and p(p,p') denote the transition

probability associated with the Markov process, where p is the state at time t and p' is the

state at t + 1. Then (Q,?, P) is a probability space which describes the Markov process,

where f2 = S (i.e., the countable product of S).



correspond to the true realizations unless further restrictions are imposed.

Denote their information at time t by Tt- They cannot lose information (for-

get), thus Tt C Tt+\? Let r
1 indicate the period specified by the contract

when investors receive payment. Let r 2 indicate the period specified by the

contract when the firm's project is terminated. Clearly, r l

is an integer val-

ued random variable with t 2 > t 1
. These investment "stopping times" must

have the property that an agent's liquidation time t is contingent solely on

the information available to the agent at time t.

Stopping times are defined formally as follows (cf., Ash (1972)):

Definition 1. Let Tt , t £ JN , be an increasing sequence of sub a-fields of

T. Given Tt , a stopping time is a map r: Q — IN such that {r < t} £ Tt

for every t > 0.

Stopping times r are a tool for characterizing history dependent contracts.

History dependence is inherent in our model because the firm's termination

of investment depends on the entire string of actual realizations R\, . .
.

, R t

and the investors' termination time prescribed by the contract depends on the

entire string of announced realizations. These termination rules are stopping

times because they cannot depend on future information the respective agents

do not yet have.

Assume the Markov Process and information are such that:

(Al) Rg > Rb > 0;

(A2) E [S
T

ni=i Rk\Ro — Rb] < 1 for every stopping time r < oo a.e.;

(A3) 6E[Rt\Rt-i = Rg ] > 1; and

(A4) The initial state is known to be good by all agents.

The interpretation of (Al) is obvious. (A2) indicates that if the economy

starts in the bad state, firm finance is not optimal because the expected

discounted return is less than the value of consumption, independent of all

future investment strategies r. (A3) indicates that if the state was good last

period firm finance is optimal this period. (A4) is obvious and is satisfied

by firms that are granted charters or are evaluated by an outside agent (e.g..

the government or an underwriter). 4 The fact that such firms are allowed to

3We consider truthful information revelation, i.e., T% — Tt
for every t, in all contracting

problems. Appendix B shows this restriction is without loss of generality.
4The initial realization can also be drawn from a known distribution.



"start-up" is a signal that the initial state is good. Useful technical results

implied by (A1)-(A4) are proved in Appendix A.

Finally let c, the per-agent cost of state verification, be borne by investors.

This cost may be non-pecuniary (e.g., time lost by agents on verification) or

pecuniary (e.g., money paid to the auditor). If a firm's misreport is detected

by an audit, investors impose a penalty on the firm, denoted by 0. Assume

the following about the auditing technology and penalty function:

(A5) Monitoring costs satisfy < c < oo.

(A6) Audits reveal R t
and x

t
= ]~U-_i Rk(w)-

(A7) Audit reports are public information.

(A8) The penalty function satisfies < <f>{x) < x for every x £ IR.

(A5) indicates that contractable symmetric information (i.e., c = 0), non-

contractable symmetric information (i.e., c = oo), and differential informa-

tion problems can all be accommodated by the model. (A6) indicates that

when auditing occurs, investors learn the current realization (R
g
or R^) and

the current value of the firm's assets x
t
= Y\[=i Rk{^)-

5 (A7) corresponds

to many real world auditing situations where audit results are publicly an-

nounced. If reports were private, opportunities for delegated monitoring

would exist (cf., Diamond (1984) and Krasa and Villamil (1992)). (AS) in-

dicates that the penalties imposed on the firm are bounded by the current

value of its assets. Thus, the firm has limited liability. Note that limited

liability can ameliorate the effect of (A2) because it limits the firm's losses

in the bad state but does not directly affect its profit in the good state.

3 The Symmetric Information Problem

Consider the problem of a social planner who wishes to choose decision rules

for the firm and investors at time zero. The planner must find a state contin-

gent interest rate schedule for the firm to offer investors, r, a stopping time

for investors, r 1
, and a stopping time for the firm r

2 which maximize social

welfare. To establish a benchmark case, suppose a complete description of

the Markov process is common knowledge at time zero and the current re-

alization of R t becomes common knowledge each period. Recall from (A4)

5When the Markov process has two states, (A6) implies that audits reveal the exact

number of past good and bad Markov process realizations. In the multiple state case,

audits are less revealing but the results remain qualitatively similar.



that the initial state is known to be good. The planner solves the following

problem at time zero.

Problem 1. Choose r(-), r
1

, and r
2

to

max E in^-n r(*) n Rk\Ro=Rg

fc=l fc=l / fc=T 1 +l

subject to:

S
Tl

f[r(Rk ) R = R
k=l

> 1. [IR)

The firm's assets at time t
1
(uj) are n[Ji Rki^)- All payments, which are

the firm's liabilities, are made at time t
1 ^) when each investor receives

l[=i r {Rk{^))- If t
2^) > 7

" 1

(
u'') then the investment continues and the

firm receives a return of Yll=^uu \+ \ Rki^) on its remaining assets. Thus,

the objective in Problem 1 is the firm's expected profit. (IR) is an individual

rationality constraint which ensures that investors' expected payoff from firm

finance is at least unity, the value of consumption. 6

Using assumptions (A1)-(A4) it is easy to see that in the case of symmet-

ric information the following arrangement is Pareto efficient. Let r" denote

the optimal stopping time described by the following Lemma.

Lemma 1. Assume there is symmetric information about the realizations

of R t
. Then Pareto efficiency requires investors to continue firm finance as

long as the realizations are Rg
. The first time a realization Rf, is observed

investors withdraw their finance and the firm is shut down, i.e., t
1 = r

2 = r*.

Proof. By (A4) the initial state is g. Thus, (A3) implies it is efficient for

investors to refrain from consumption at t = since the firm's return exceeds

unity. Hence, r 1 > 0. We first show that r 1 = r*, i.e., it is optimal to stop

investment if R
t
switches to Rb. We proceed by way of contradiction. There

are two cases: (i) The state is Rf, but it is not efficient to withdraw; (i) the

state is Rg but it is efficient to withdraw. Case (i) is not optimal by (A2)

6Section 6 and Appendix B consider the general case where r is a function measurable

with respect to investors' information; r is a function of the current state only here.

8



because the firm's expected discounted return is less than unity. Case (ii) is

excluded by (A3).' Thus, investors and the firm can guarantee themselves

higher payoffs by continuing in good states and discontinuing investment

when Ri is announced. Similarly, r 2 = r* since by (A2) it is not optimal for

the firm to continue investment in the bad state. This proves the Lemma.

In the remainder of the paper we study two principal contractual arrange-

ments when the firm and investors have differential information about R
t

:

costless signaling by the firm to investors and costly auditing.8

4 Informative Interest Rates

Suppose the Markov process realizations R t
are known only by the firm. Is

it possible for the firm to reveal its private information truthfully without

auditing (while granting investors at least their reservation utility)? For

example, consider the extreme case where state verification is impossible

because auditing costs are prohibitively high. This assumption is common in

the incomplete contracting literature, and can be interpreted as a situation

where the state cannot be verified in court. This section shows that even

when the state cannot be verified (i.e., c = oo), it is possible to induce the

firm to reveal the state truthfully and terminate investment the first time

the state switches to R^ as indicated by Lemma l.
9 The result requires the

firm's project to be sufficiently profitable and an intertemporal economy (i.e.,

no time period in which the economy ends with probability one). We now

explain the intuition. At any time t the firm has two options: (a) report

truthfully, or (b) misreport. Obviously the firm will choose the option which

7Assume that Rk — R
g

for k < t and that agents withdraw at t. Then the firm's ex-

pected profit at t from continuing one more period is E [6 (R
l — r(R

g )

1

)
R t +\ |

Rt — Rg ]

If investors stay with the firm for one more period then (IR) still holds and the firm's profit

is given by E[S {R^Rt+i - r(Rg Yr(Rk )

t+l
) \

R t
= R

g ]. Since r{Rk ) < Rky for every k

the firm's profit is higher if investors do not withdraw.
! "Brute force" information revelation by bond posting is not possible because the firm

is wealth constrained. Implicit bond posting, by liquidating assets at time t, showing them

to investors to prove the state is good, and reinvesting them at t + 1, is also not optimal

by Lemma 1 since it lowers the base on which the firm earns its return.
9This r* result also holds in the general case where auditing costs are not prohibitively

high (i.e., < c < oo).



maximizes its expected profit. To approximate expected profit in a simple

case, restrict attention to the firm's net-worth at t -\- 1. Further, assume that

the firm announces R^ at t + 1 independent of the actual realization.

First, suppose the economy is in state Rg
at time t. Will the firm report

the good state truthfully? In case (a) the firm reports R
g
truthfully and its

net-worth at £ + 1 is R
g

+l — r*rb if Rt+l = Rg and R
g
Rb — r

g
rb if R

t+i = Rb- In

case (b) the firm reports /?<,, by Lemma 1 investors withdraw their finance,

and the firm is left with x t
= R

g
— r

g

~ l
rb at time t. Because the true state is

good, the firm continues to invest at time t + 1 with residual assets xt , thus

its net-worth at t + 1 in case (b) is x
tRg

if Rt+l = Rg
and x

t
Rb if Rt+{ = Rb .

Simple algebra reveals that there is a gain of r
t

g

~ 1
r b(Rg

— r
g ) > from truthful

reporting if R t+i = Rg , and a loss of r
g

~ l
r b (Rb

— r
g ) < from truthful

reporting if Rt+ i
= Rb-

10 Thus, there are two effects which determine whether

the firm will report Rg
truthfully, but they work in opposite directions: First,

the firm loses by falsely reporting Rb because its assets are reduced from

x t to x t due to withdrawals and profit is an increasing function of total

assets. Second, it may gain from misreporting because it eliminates its future

liabilities. If r
g and the probability of switching from the good to the bad

state (p(g,b)) are sufficiently small (i.e., the project is sufficiently profitable)

the first effect dominates the second and the firm will not misreport in the

good state. The intertemporal structure of the model is important for this

incentive constraint to hold. For example, assume that the economy ends at

time T. In the absence of auditing it is always optimal for the firm to report

the bad state at T independent of the actual realization. This is not the case

in the intertemporal model since an announcement of Rb induces withdrawal

of firm finance which in turn reduces the firm's profit in future time periods.

Now suppose the economy is in state Rb at time t. Will the firm report

the bad state truthfully? If the firm falsely reports Rg
and continues, its

expected return is lowered by (A2). Because limited liability ameliorates the

impact of (A2) in low net-worth states the contract must guarantee the firm

sufficiently high returns in both the good and bad states so it can build up

enough net-worth over time to ensure it has something to lose from lying.

This incentive constraint is not necessary in the last period of a finite (or

one period) model. For example, if the economy ends in some period T

The sign of the two inequalities follows since r
g
< Rg , rj < Rt, and r

g > Rt,. The
inequality r

g > R b is implied by individual rationality.

10



and Rt — Rb, the firm will always report the state truthfully since r b < r
g .

However, in an intertemporal economy where the firm's net-worth in time

period T is sufficiently low and the firm is "protected'
1

by limited liability,

the firm may have an incentive to misreport.

In conclusion, when the returns in each state are sufficient it is in the

firm's interest to report truthfully because lying reduces its expected profit.

The intertemporal structure of the model is essential for ensuring that the

firm reports truthfully in the good state, but it (in conjunction with limited

liability) also gives the firm an incentive to misreport and continue in the

bad state. In the remainder of this Section we derive formally two incentive

constraints which ensure truthful reporting:

(ICCb) ensures the firm truthfully reports the bad state when it occurs; and

(ICCg) ensures the firm truthfully reports the good state when it occurs.

When these constraints are satisfied, investment is terminated according to

Lemma 1 (i.e., the first time Rb is realized).

Consider the following information constrained problem at time zero.

Problem 2. Choose r5 , rb to

max E 'S
T ' (R T;- 1 Rb -r

T

g

'-
l
r b

)
\Ro=R

subject to:

6
T '~ r '- 1

R^Ri-r^n^E

for every stopping time r;

r
9
<

r
g n Ro = Rg

t+ T

> 1:

R t =

Rh

l-6p(g,g)(R
g
-Rb )

(IR)

(ICCb)

(ICCg)

Problem 2 is identical to Problem 1 except that incentive constraints (ICCb)

and (ICCg) are included and it incorporates the Pareto efficient stopping

time r*. We now derive (ICCb) and (ICCg).

11



Derivation of (ICCb). By (A4) the state is publicly known to be good at

the outset. Assume it switches to b at time t. If the firm truthfully announces

b it must pay investors r
t~ l

ri} , and its profit in this case is given by

S>(R<->Rb -r>-
l
n). 1)

If the firm misreports (i.e., announces g so investors continue to invest) it

must pay them r
t+s

at time t + s. In general the time when the firm induces

investors to withdraw is a stopping time r. Given r, the firm's profit from

misreporting is

+

E :t+r R t-\
t+T

Rb lJ Rk —
k=t+l

t+T-l
Rt = Rb (2)

(2) is derived as follows: If the firm is able to honor its payment to investors

(i.e., R t~ l

Rb Ylkt^t+i Rk — r
g

+T ~ lr
b), investors will not know that misreports

occurred, but they will know that misreports occurred if the firm is insolvent

(i.e., R
g

~ l

RbYlktz
T

t+i Rk < r
3

+r-1
n>)- These "off-equilibrium path" misreports

amount to fraud (rather than simple bankruptcy states as in static costly

state verification models), and the firm is penalized by (A8). Hence, the

firm's payoff from fraud is characterized by the positive part of the difference

between its assets and liabilities.
11

(1) and (2) immediately yield (ICCb).

(ICCb) is simplified in Lemma 2 because it has a useful economic inter-

pretation explained after the proof.

Lemma 2. (ICCb) is equivalent to the following constraint:

rb ^ a{ T )Rb, for every stopping time r,

where a(r) is the largest a which fulfills

1 -a
R = Rt < 1.

(3;

(4)

Proof. Define 7, = r
l /R l , for i = g,b. Then (ICCb) becomes

{i-i'-'^R^Rb^E
t+T

S
T \R

g

- x

Rb II Rk-^ T
-'r h

k=t+\

Rt = Rt

n We show it is optimal to set <f)(x) — x in Appendix B.

12



which is (4) when a — 7^ *76-
12 On (— 00, 1], observe that the function

a H* (nl=i ^fcM - ar T

g^Y /l - a is increasing if n*=i ^*M > rjH and

decreasing otherwise. 13 Claim 1 in Appendix A shows the function i\)\ [0, 1) —

»

5? defined by the left-hand-side of (4) is U-shaped and thus assumes only one

local minimum. We now use this fact to prove the Lemma. Fix r in (4). Since

?/> is U-shaped, there exist a^ a2 with < a\ < a 2 < 1 such that (4) holds

for all a with a x
< a < a 2 and it is violated otherwise. From this it follows

that a x
= 0. Assume by way of contradiction that O] > 0. For a = 0. (4)

reduces to (A2) and is therefore fulfilled. However, this is a contradiction to

the assumption that (4) is violated for all a £ [0, <2i). Thus, for every r there

exists an a{r) < 1 such that (ICCb) holds for J
t

g

~ 1

7b < a
(
T )- This must hold

for every t = 1,2, ... and since 7 < 1, this is equivalent to 7^ < a(r). Thus.

(ICCb) is equivalent to (3) and (4). This proves the Lemma.

Remark 1. Lemma 2 shows that (ICCb) bounds the percentage of payoffs

the firm can offer investors in the bad state. When this bound is satisfied, the

firm reveals truthfully the bad state when it occurs. (3) indicates there must

be some u
spread" between R^ and rb for optimal contracts which truthfully

signal Rb to exist, i.e., a(r) is less than one for every r. This follows from (4)

when r\y < R^. Remark 2 will show that r
g < Rg , which means there must

also be sufficient "spread" in the good state for optimal signaling contracts to

exist. The intuitive idea is that the difference between what a firm receives

(R
t ) and what it must pay (r

t )
must be sufficiently large to "reward

1
' the firm

for telling the truth. This finding in our intertemporal model is reminiscent

of Border and Sobel's (1987) finding in a static context that firms must be

rewarded to tell the truth and that such rewards lower expected auditing

costs. In their static model at least some auditing remained necessary, but

in our intertemporal model we show that rewards can sometimes be paid such

that no auditing is necessary (cf., the Example below). In an intertemporal

model the mere threat of seizing the firm's assets can reduce or even eliminate

the ex post inefficiency of auditing that occurs in static models.

Derivation of (ICCg). Assume the state is g at time t, and that the firm

reveals the state truthfully at t and in future periods. Suppose the state

12 Divide both sides by (l — 7' l

ji> ) R} l

Rb, change the summation, and condition with

respect to Rq instead of R t
. This can be done because the Markov process is stationary.

13
Clearly, the function is constant if nl=i' Rk{u) = rj .
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switches to 6 at time t -f k. The investors' payment at time t + k is r^
+A: V^

and the firm's return is R
g

+k~ lRb . Thus, the firm's expected profit is

CO

fc=i

Now consider the alternative case where the firm misreports, announcing b

at time t. This causes investors to withdraw, receiving r
t ~ l

r b . Since the state

is g it is optimal for the firm to induce continued investment until the state

switches to b. The firm's expected profit in this case is given by 14

CO

Ylv{g,g)
k- lp{9^t+k

{[K - r^n] R^'Rb) (6)

fc=l

Without loss of generality assume feasibility holds under truthful reporting,

so R
g

+k~ x R b
- rl

+k- l
rb > 0. Thus, (5) and (6) imply that (ICCg) holds if

CO CO

E **- 1

p(^)
fc~ 1pM)r; < E^"1*,^- 1^^)^' 1^. (7)

fc=i fc=i

Using the formula for the geometric series, (7) immediately simplifies to

rj{\ - 6p{g,g)r
g ) < Rb /(l - 8p{g,g)R

g ), which is equivalent to (ICCg).

Remark 2. (ICCg) can be written in the form r
g
< kR

g , where k =

R b/Rg[l-6p{g,g){Rg -Rb )] < 1. Note that (ICCg) restricts rg , while (ICCb)

depends on r
g
and r b (i.e., sufficient profitability in both states is required).

Very u
high" values of rb and r

g
violate the constraints.

15 Thus, as in Border

and Sobel the firm must be rewarded to make it incentive compatible for it to

announce the true state. This is not possible if R t
is only marginally higher

than r
t

. If the "spread" is not sufficiently large, optimal signaling contracts

will not exist.

A formal proof of existence of perfect signaling contracts is given in Krasa

and Villamil (1993). We now construct a simple example to show how such

contracts are derived. We begin by checking that conditions (A1)-(A3) hold

14
p(9>9)

k ~ 1

p(9ib) is the probability of a string of k — 1 good states and one bad state

and S
t+k (R t

g

+h ~ l
Ri)

— r^
+fc-1

rj) is the discounted return between time t and time t + k.

15 In the extreme case where r
g
= R

g ,
(ICCg) implies R

g
< Rb, a contradiction to (Al).
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(using Lemma A in Appendix A) and assume that (A4)-(A8) hold directly.

Next use (ICCg) to compute the upper bound for r
g , thus finding all r

g

which fulfill (ICCg). From Lemma 2 it follows that a(r) decreases as r
g

decreases (i.e., (ICCb) is more slack the higher r
g ). Next choose r

g
such

that (ICCg) holds with equality. To fulfill (IR), rb must be chosen such

that p(g,g)r
g + p{g,b)rb = 1. Thus, we must show that (4) holds for a =

rb/Rb . To compute (4), use Corollary 2 in Appendix A, which shows that

raaxr6M £ ni=i Rk Ro = Rb — 5p(b,g)R + 6p(b,b)Rb ,
where R = R

g +
Sp(g,b)Rb /(\ — 8p{g,g)Rg ). Hence, Lemma 2 implies that (ICCb) holds if

1 xfuh \p 6p(b,g)p{g,b)Rb ,. ., \
b [p{b,g)R

g + - — — \-p(b,b)Rb < 1. (b)
1-a \ l-6p{g,g)Rg

The following numerical example illustrates this procedure:

Example. Assume Rg
= 1.15, Rb = 0.7, p{g,g) = 0.86, p{b,b) = 0.99, so

p(g,b) = 0.14 and p(b,g) = 0.01. (Al) and (A3) obviously hold; check that

(10) from Lemma A in Appendix A is fulfilled. Thus, by Lemma A condition

(A2) is fulfilled. Now check that (ICCg) holds with equality for rg = 1.1420.

(IR) requires p(g, g)l.\420 + p{g,b)rb
= 1, and hence rb = 0.1282, so a =

rb/Rb = 0.1831. Thus, the left-hand side of (8) is 0.9715, the condition is

fulfilled, and (ICCb) holds, so this is a perfect signaling contract.

5 Information and Auditing

Again suppose the Markov process realizations are known only by the firm.

We now consider the social planner's problem when signaling contracts do

not exist and costly auditing is used to reveal information. We prove three

technical results that are essential for an analysis of control and auditing in

Section 6. Lemma 3 allows us to restrict attention to misreports by the firm

that cannot be detected by auditing. Lemma 4 proves that optimal stopping

time t* from Lemma 1 remains optimal in the auditing model. However, the

equilibrium is no longer first best. Finally, the Theorem proves that if audits

occur they are conducted only in the bad state. Recall from Section 2 that

investors can verify Markov process realizations R t if they bear a cost c and

that audits publicly reveal information. 16 Although audits reveal the state

16Audits reveal the firm's current realization, R
g
or Rf,, and asset value x — \\ k - x

Rk(u;).
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without error, the firm still has a propensity to misreport because of limited

liability (recall that limited liability weakens (A2)).

We begin by modeling firm reports and the investors' auditing decision.

For every k G iV. let h(. be a report function which indicates the Markov

process realization reported by the firm to investors at time k, where u de-

notes the true state and hk'.il — S = {R3 .Rh,} is ^-measurable. Further,

let h(<jj) = (hi{u!), h 2 {^'). . . -).
1 '

For i G IV, let s' be a stopping time which

denotes the ith time investors audit.
18 The information revealed by audits is

reflected in the investors' information sets. In this Section we restrict atten-

tion to full information revelation, so no additional information is revealed

from auditing. In equilibrium audits are purely a disciplinary device which

deter misreports. and there is ex post contract enforcement. Appendix B
considers the general case where audits need not be fully revealing. Assume

that audits do not occur after investors have withdrawn their finance (i.e.. if

s'(^) > r
l
{^)). A truth telling contract is a tuple (t1,^,^)^^, (cfc )*€jv)

which maximizes the firm's profit subject to an individual rationality con-

straint for investors and an incentive constraint. The incentive constraint

specifies that the firm cannot increase its profit by misreporting the state.
19

Appendix B proves the following result.

Lemma 3. h can be restricted to misreporting strategies which cannot be

detected via auditing. Formally, h can be restricted to the set 7i(<;
l ,T l

)
=

{h: If s t
(h(^)) < T l

(h(^u)) for some i then h^i^) = Rki^') for every k <

s,(/iM)}.

If the firm's reports follow h. and misreports are not detected via auditing,

the investors' information set at time t is jF
t , the cr-algebra generated by

/*!, .... /?;.. Investors' decisions regarding when to audit and when to stop

investing are functions of the announced state, which need not be the true

state without additional structure. In particular, the investors' stopping rule

is given by r 1
(h) and the auditing rules by s'(/i). i G IV. In Appendix B we

prove via a revelation principle argument that we can restrict our analysis

17h:Q — Q when Q is identified with S^' . the set of sequences (/?t)tgA' where /?*.- =
{Rg, Rb}-

18
<7

!

is defined with respect to investors' information jT
t , t £ A" such that c'(^) < <r

,+1
(u/)

a.e. for every i E ZV . c
1 = yz yields the case without auditing.

19 Misreporting is the choice of a function h with h(u) 5^ j on a set of positive measure.
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without loss of generality to truth-telling contracts. Thus, the following

Pareto problem results:

Problem 3. Choose (r
1

,
r 2

, (rjfe)jt€jv, (tt)t€jv) to

V(w) r^u/) \ r2 (u/)

max E

subject to:

s
t m

( n Rx(") - n M") n **m ^ = ^

E
rH")

6
t1M '

r k (u) R = R
k=i

- E J2 cn k {u;) R = R,

fc=i

> l; [IR)

s
t2(u) n M») - n r*(") n #*m \ro = r,

/Tl (fc(w)) r» (*(«)) \
+

f 2

*
f2

<
w

> n «*h- n rt(%)) n ^
\ fc=l fc=l / A-=r ] (/i(w))+ l

for all /i € W($, r 1

), and for f 2 with f 2
(u>) > r

!
(/i(u;)) a.e.

.fto = ^c

(/CC)

This Pareto problem with auditing is solved by the planner at time zero. The
objective is the firm's expected profit and (IR) is the investors' individual

rationality constraint. (ICC) is an incentive constraint which restricts the

firm to misreports not ruled out by Lemma 3, where the left-hand side is the

firm's payoff from truthful reports and the right-hand side is its payoff from

misreports h (and the firm replaces r 2 by f 2
).
20

We now show that the symmetric information stopping times remain

optimal.

Lemma 4. If c is sufficiently small, t 1 = t 2 = r* for any optimal contract.

20After investors withdraw, the firm can choose an arbitrary investment policy. Thus,

(ICC) must hold for every f2 > r 1
(h), where h and f2 describe all possible state-contingent

paths for the firms' misreporting strategies.

17



Proof. We proceed by way of contradiction. There are two possible cases:

(a) a state exists with an Rb realization where investors and the firm do not

cease investment; or (b) a state exists with an R
g
realization where investors

cease investment. Consider (a), and let t be the first time that (a) occurs.

The firm's value at t is given by R
g

~ l Rb . From Lemma A in Appendix A
it follows that the loss of expected utility from continuing investment in the

bad state is R t
~ l

R(,l, where

/ = 1 - 6 (p(b,b)Rb + p(b,g)R
g + 6p(b,g)p(g, b)Rb /(l - 6p(g,g)Rg )) > 0.

This loss remains bounded away from zero for every t, since Rg > l.
21 Now

consider (b), and assume that until time t the realizations of R^ are Ra .

The firm's value at t is given by R t

. (A3) implies that the loss in terms of

expected utility from not continuing investment in the good state is given

by R
g
l, where / = E [R^

| Rk-i = R
g ]
— 1 > 0. This term is bounded away

from zero for every t. Finally, consider a contract where r2 ^ r*. Similar

arguments show there is an expected utility loss which remains bounded away

from zero. Thus, if auditing costs are sufficiently small optimality requires

r
1 = t" and r

2 = t*.

Lemmata 3 and 4 prove we can assume without loss of generality that

all contracts involve no detectable misreports and a choice of r
1 = r

2 =
r*, respectively. We now derive the set of information constrained Pareto

efficient auditing rules.

Theorem. Assume an optimal auditing contract exists and that R^ = Rg for

every k < t. At time t the auditing scheme must specify that either auditing

never occurs or auditing occurs only if Rb is announced.

Proof. From Lemma 4 it follows that the optimal contract involves termina-

tion of investment if Rb is announced. Thus, the set of all possible auditing

rules in each time period is given as follows: (a) never audit, (b) audit only

if the good state is announced, (c) audit only if the bad state is announced,

or (d) audit independent of the announced state. To prove the Theorem it

is sufficient to show that only (a) and (c) can occur. Thus, the remainder

of the proof shows that (c) dominates (d) and (d) dominates (b). Hence (c)

also dominates (b).

21 R
g < 1 implies /?(, < 1 by (Al) and hence this violates (A3).
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We first show that (d) dominates (b). Assume a contract requires auditing

at time t if the good state is announced. Replace this contract by uncontin-

gent verification at t + 1 and no verification at t. Expected state verification

costs remain the same if previously there was no auditing at t + 1, and they

strictly decrease otherwise. 22 Further, note that all misreports which are

detected under the original contract are also detected under the alternative

contract. Thus, any contract which specifies auditing in the good state for

some time periods can be replaced by a contract where auditing never takes

place contingent on R
g
being announced. Thus, (d) dominates (b).

We next prove that (c) dominates (d). Assume a contract requires uncon-

tingent verification at time t. Replace this contract with one which specifies

verification at t if R^ is announced and uncontingent verification at t + 1.

Expected auditing costs are the same if the original contract implied no ver-

ification at t + 1 and they strictly decrease otherwise. All misreports which

are detected under the original contract are detected under the alternative

contract. Repeating this argument, replace contracts which specify auditing

of type (d) in some time periods by contracts which imply in any given time

period either no auditing or auditing contingent on R^ being announced.

Thus, expected auditing costs decrease. This concludes the proof.

Remark 3. The characterization of the optimal auditing structure given by

the Theorem is an intertemporal version of Townsend's (1979) static lower

interval result. If auditing occurs, it occurs only in the bad state. In contrast

to the static costly state verification model, our intertemporal model provides

insight into the use of debt versus equity.
23 We consider this capital structure

problem in the next Section.

22
If the original contract did not specify auditing at t + 1, auditing occurs under the

original contract whenever it occurs under the alternative contract. This is the case since

if the good state is announced at t auditing occurs (so no misreporting is possible), and

it is optimal to continue to period t + 1. Alternatively if the bad state occurs, investment

is stopped and t + 1 is never reached. If the original contract specified auditing at t + 1

expected auditing costs obviously decrease.
23The static costly state verification model explains the use of debt, but is unable to

explain the use of equity.
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6 Control and Contract Implementation

In Sections 4 and 5 we characterized Pareto efficient allocations for the firm

and investors. We now ask the following questions: Is it possible to imple-

ment the optimal contract with Pareto efficient stopping time r* by making

the investment termination decision endogenous (i.e., by giving one or both

parties the right to terminate investment)? Further, does the implementa-

tion mechanism provide insight into the firm's choice of capital structure?

The first question is important because contracts are not routinely written

with pre-specified investment termination times. Rather, contracts typically

specify conditions under which one or both parties have the right to de-

cide the firm's future. The second question amounts to asking why firms

choose debt versus equity (or both), a vexing problem in finance. We an-

swer these questions by showing that contracts which assign control rights

"appropriately" implement the constrained Pareto efficient state contingent

investment plan.
24 We focus on the two most commonly observed types of

control contracts: equity (voting and non-voting) and debt. 2 "3 As in Aghion

and Bolton (1992). we regard the distinguishing feature between debt and

equity to be the assignment of property rights (not contract payoffs).

The Section proceeds as follows: First, the results from Section 5 are

used to simplify Problem 3. The resulting Problem 4 is general enough

to include Problem 2 as special case.
26 Next, constraints on the firm and

investors are used to study implementation of the Pareto efficient allocation

characterized by Problem 4 via debt and equity contracts. We show that

by assigning control rights "appropriately" the solution to Problem 4 can be

implemented, and hence optimal investment plan r* can be achieved. We
then classify conditions under which each type of contract is optimal, and

find that the appropriate control structure depends on the primitives of the

24 Methodologically our approach is similar to that in Gale (1991), i.e., we show that in

many cases relatively simple contracts can implement the efficient outcome.
25Voting equity is any contract which assigns all control rights to investors, so they

decide whether or not the firm should continue. Non-voting equity assigns control rights

exclusively to the firm, so it decides whether or not to continue. Debt assigns contingent

control rights: in good states the firm retains ownership, but in bad (bankruptcy) states

ownership is transferred to debt holders. Thus, the firm has control in good states but

investors have control in bad states.
26

In addition, it may be non-recursive because auditing is contingent on the time period.

Stopping times are crucial for characterizing analytic solutions for such problems.
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economy (i.e., which constraints bind). Finally, the implications of these

results for a firm's capital structure are discussed.

Consider first some notation. Given a history dependent payment sched-

ule (rk)keN-, let D
t = nL=i rk{u), where w is any state for which Rk(w) = R

g

for every k = 1, . . . ,t — 1 and Rt{^>) = Rb- Thus, D
t
are the firm's liabilities

at time t after t — 1 good realizations and one bad realization. Let A C W
denote the set of all time periods where audits occur if Rb is announced.

Problem 3 can now be written in the following form.

Problem 4. Choose ((D^^w, A) to

CO

maxJX^r 1^,^' {R'g-'Rb ~ Dt
)

t=i

subject to:

Ep(9,9)
t - l

P(9,W
tD

t -Y, cP(9,9)
t
- 1p(9,b)>l (IR)

t=i teA

>t-i

-

f
\
+ -

6
T iR^Rb [[ Rk " A+r Rt = ^6
\ k=t+ l I

Rl- LRb -Dt >E

for every t in IN and every stopping time r such that t(uj) £ A. {ICb)

CO

Ep(9,9)
s- l

p(9,b)S
t+s (R^Rb - Dt+S

)
s=l

CO

> Ep(9^y-
1p(g^)st+a (Rt

g
- a) R s~ l Rb ,

5=1

for every t £ A. [ICg)

The objective and (IR) in Problem 4 are identical to those in Problem 3 (use

the fact that r 1 = t2 = t* , replace the expectations with probabilities, and

use the D
t
notation), but as in Problem 2 there are two "state-wise" incentive

constraints. (ICb) ensures it is optimal to announce Rb if it actually occurs

(where r in (ICb) corresponds to an undetectable misreporting strategy h

which reports Rb only in time periods t
(fc
A) 27 and (ICg) ensures it is optimal

27h can be completely described by r since investors stop if Rb is announced. Use of

the stopping time r instead of misreporting function h facilitates analysis of the problem.
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to announce Rg if it occurs. As in Problems 1, 2, and 3, (IR) is the individual

rationality constraint at time zero.

To study implementation of the solution to Problem 4 we will analyze

two sets of constraints. First, consider the firm's incentive constraints from

Problem 4. Let (D
t
,A) be a solution to Problem 4. Incentive constraints

(ICb) and (ICg) describe four possible cases for (D
t ,®):

28 (ICb) and (ICg)

both hold; only (ICg) holds; only (ICb) holds; and neither holds. Second,

consider the constraints which affect investors. The intertemporal version of

the investors
1

individual rationality constraint from Problem 4 is:

CO

Dt < Y.P(^9)
k~ lp(g,b)Dt+k , for every t G IN. (IIRg)

fc=i

(IIRg) ensures that investors continue firm finance when the firm announces

Rg , in accordance with optimal investment plan r*. In (IIRg) as well as

in constraint (HCb) below we assume that ''off-equilibrium path" payoffs to

investors are also D
t

. For example, if investors decide to continue firm finance

at some time k despite the fact that the state is bad, they receive a payment

D t
at time t > k if finance is terminated at time t. This assumption simplifies

the analysis and notation. Note that these off-equilibrium path payoffs to

investors are not relevant in Pareto Problem 3 since investors cannot renege

on the contract and continue investing in the bad state.

The following condition ensures that investors terminate finance when

the firm announces R^.

EUini^^n^ Rt = Rb )<D t . (IICb)

for every t and for every stopping time r.
29 Thus. (IlCb) and (IIRg) also

describe four possible cases: (IlCb) and (IIRg) both hold, only (IlCb) holds.

only (IIRg) holds, and neither holds. Finally, (A2) implies that at any time

t, (IlCb) and (ICb) cannot both be violated for the contract (Z)
( ,0). That

is, when auditing does not occur investors and the firm cannot both wish to

28Note that we replace (D t ,A) by a contract with the same payment schedule but no

auditing.
29The left-hand side of (IlCb) is the continuation payoff, which is the minimum of the

two payoffs since the firm cannot make payments in excess of the value of its assets. D
t

is

the investors' payoff if investment stops at time /.
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continue in the bad state because (A2) implies that the payoff from doing so

is too low.

We now discuss how particular types of commonly observed control con-

tracts can be used to implement the optimal solution to Problem 4. Our

results are summarized in the Table below. Let VE denote that a voting

equity contract can be used to implement the optimal solution to Problem 4,

NVE denote that a non-voting equity contract can be used, and D denote

that a debt contract can be used. Let None indicate that none of these three

simple types of contracts can be used to implement the optimal allocation.

The Table summarizes the sixteen possible constraint outcomes that arise

from the two sets of constraints. The "appropriate" control structure clearly

depends on which constraints hold (i.e., the primitives of the economy).

(HCb) (IIRg) (IlCb) (URg) Neither

(ICb) (ICg)

(ICg)

(ICb)

Neither

VE, NVE, D
VE, D
VE
VE

NVE, D
D

None

None

NVE
None

None

None

NVE
None

None

None

The entries in the Table are derived as follows. Consider the first row,

where (ICb) and (ICg) hold for the firm, so it reports truthfully even when

auditing does not occur. When (IlCb) and (IIRg) hold for investors, the

Table indicates that all three types of contracts can be used to implement

the optimal allocation. This occurs because it is optimal for both the firm

and investors to follow the Pareto efficient plan r*.
30 Thus, when all four

constraints hold the firm and investor interests are aligned so it does not

matter which party is assigned control rights. Voting equity, non-voting

equity, and debt can all be used. When the firm's constraints both hold

without auditing but only (IlCb) holds for investors, it does not matter

which party is assigned control in the bad state because firm and investors'

30The argument is as follows. Suppose the firm can unilaterally decide when investment

is terminated, and it chooses time t. Then investors receive D t . Since both (ICb) and

(ICg) hold for A = 0, the firm reports truthfully and terminates investment the first time

Rt switches to Rt,. Now suppose investors can unilaterally decide when investment is

terminated, and they choose time t. They receive D
t

if R
t
switches to Rt, for the first time

at t. Since (IlCb) holds it is optimal for investors to stop at t if the state is bad. Further,

since (IIRg) holds investors do not withdraw finance in good states.
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interests are aligned. However, since (IIRg) does not hold, the firm must be

given control in the good state since investors may wish to stop in some good

states even though this is not Pareto efficient. Both non-voting equity and

debt obviate this problem because they assign control to the firm in the good

state. When the firm's constraints hold but only (IIRg) holds for investors,

the firm must have control in the bad state but it does not matter who has

control in the good states. Only non-voting equity achieves this.
31

If both

firm constraints hold but neither investor constraint holds, only non-voting

equity can be used because it gives the firm control in all states.

Consider the second row of the Table, where (ICg) holds for the firm

but (ICb) does not for (Z)
t ,0), so auditing is necessary to ensure that the

firm reports the bad state truthfully. In this case, if the firm has complete

control (e.g., because of non-voting equity contracts) optimal investment

plan t* cannot be implemented because a time period t and a stopping time

r exist such that continuing at time t using investment plan r is better

than stopping.
32 When the firm has control it will clearly take advantage

of this opportunity. Investors, knowing this, will not sign such contracts at

the outset. Assigning control rights to investors obviates this problem and

allows optimal plan r* to be implemented. Whether debt or voting equity

is optimal depends on the investors
1

constraints. When (HCb) and (IIRg)

both hold either voting equity or debt can be used to implement the optimal

allocation because investors follow r* in both the good and the bad state.

In contrast, when only (IlCb) holds, the firm must be given control in the

good state so only debt is optimal. 33 When only (IIRg) holds or neither

(IlCb) or (IIRg) hold none of the simple contracts we consider can be used

to implement the optimal allocation.

Finally, consider the last two rows of the Table. In case 3 only (ICb)

holds for the firm when (D
t , 0) so the firm truthfully reports in the bad state

31 Debt gives investors control in the bad state and voting equity gives investors control

in all states, hence they cannot be used.
32The left-hand side of (ICb) is the payoff to the firm from stopping at time t. The right-

hand side is the expected payoff from continuing. Since (ICb) is violated, the left-hand

side is strictly less than the right-hand side for this stopping time r.

33When (IIRg) does not hold, investors may stop in some good states. This could occur

in an intertemporal contract if the firm paid investors a premium for entering the contract

at the outset, but made lower future payments. Such contracts can be optimal if interest

rates are time-dependent, and hence the problem is non-recursive. In such "front-end

loaded" contracts, control must be assigned to the firm in good states.
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without monitoring, but auditing is necessary to ensure that the firm reports

the good state truthfully. Thus, control rights must be assigned to investors

in good states. Only voting equity solves this problem. In all other cases

none of the simple debt or equity contracts that we consider can be used to

implement the optimal allocation. In case 4 neither incentive constraint holds

for the firm, so clearly investors must have complete control when (HCb) and

(IIRg) hold. In all other cases none of the simple contracts work.

The results summarized in the Table provide insight into factors which

determine a firm's optimal capital structure. Should a firm raise capital

by issuing debt, equity or some combination of the two? The well known

Modigliani- Miller Theorem provides conditions under which the choice of

debt versus equity is irrelevant. In contrast, the Table classifies situations

under which the choice between the two instruments is irrelevant, situations

where only equity finance is optimal, situations where only debt finance is

optimal, and situations where neither type of simple finance can be used.
34

Most firms and corporate finance practitioners consider the firm's choice

of capital structure to be a substantive problem. Thus, the Modigliani-

Miller Theorem, even when "market imperfections" (e.g., taxes) are taken

into account, is troublesome. Our results suggest that the basic corporate

finance problem—how should a firm raise capital—is affected by at least

two factors: the traditional cost of capital approach and implementation

problems that arise from the economy's primitive structure that are "solved"

by financial instruments with inherently different control properties.

7 Concluding Remarks

This paper contains two main results. First, we derive the structure of op-

timal intertemporal contracts under differential information and show that

there are gains from intertemporal contracting that stem purely from infor-

mation effects. Townsend (1982) and Green (1987) have shown that risk

averse agents can use intertemporal contracts to attain allocations that are

34 In most of the "None" cases, more sophisticated control structures can implement the

optimal allocation. For example, debt contracts with a detailed set of covenants which

assign control to investors in time periods where (ICb) does not hold and to the firm when

(IlCb) does not hold can implement the relevant case (3) and (4) contracts. Recall that

these two constraints cannot both be violated simultaneously by (A2).
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Pareto superior to those attainable with static contracts because such con-

tracts provide agents with consumption insurance. In contrast, our gains

from intertemporal contracting (with risk neutral agents) stem solely from

information revelation that is possible in an intertemporal model but not a

static one. These gains arise from the fact that the intertemporal structure

of the model allows agents to reduce, and sometimes even eliminate, the ex

post inefficiency inherent in the static costly state verification model.

Second, we analyze optimal contract implementation and control under

differential information. Our results indicate that control problems arise in

intertemporal contracting problems when agents have asymmetric continu-

ation values that cannot be internalized. Specifically. Section 4 shows that

asymmetric continuation values can sometimes be internalized via an appro-

priate reward structure. When the conditions for this to occur are satisfied,

control problems do not arise. In contrast, Sections 5 and 6 show that when

the firm has a propensity to cheat (because of limited liability) that cannot be

costlessly internalized, auditing and control become important issues that are

inherently related. The implementation analysis in Section 6 also provides

insight into the role of alternative financial instruments (i.e.. debt versus eq-

uity) in solving control problems in economies with differential information.

The results suggest that our dynamic, stochastic contracting model with dif-

ferential information may prove useful in uncovering the determinants of a

firm's optimal capital structure. A more detailed analysis of this problem

remains for future research.

Finally, in addition to the investment finance questions we address, our

model may be of broader methodological interest. We analyze optimal incen-

tive-constrained contracts in a dynamic, stochastic economy with differential

information. History dependence is a well known and troublesome techni-

cal problem in such economies, and to make history dependence analytically

tractable we introduce a mathematical tool known as "stopping times." His-

tory dependence arises in our model because investment termination deci-

sions may depend on the entire history of Markov process realizations. Fur-

ther, in the auditing model the time period in which audits occur is history

dependent, thus economies with different histories have different information

(and hence payoff) structures. Stopping times are useful because they permit

the characterization of analytic solutions to both recursive and non-recursive

(the more technically troublesome) economic problems.
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Appendix A
We now derive technical results implied by the assumptions.

Lemma A. Assume (Al), (A3) and (A4) hold. Then (A2) is fulfilled iff

6p{b,g)Rg + — — —— + 6p{b,b)Rb < 1. (9
1 -6p{g,g)Rg

Proof. We proceed as follows:
35

(i) Show that a violation of (9) implies a

violation of (A2). (ii) Show that if (9) holds then (A2) must hold.

(i) If investors follow an alternative investment strategy but (9) does not

hold (A2) is clearly violated since an investor would only adopt an alternative

strategy if E [S
T
Yil=i -^fcl^o = Rb] > 1, a contradiction of ( A2).

(ii) Assume (9) holds and let r be an arbitrary stopping time such that

r < oo a.e. (A3) implies that it is always optimal for investors to continue

with the firm in the good state, so without loss of generality we can also

assume this is the case for r. Unless r is already an investment strategy

where no reinvestment is done in bad states, there can be countable many
states Rb where investment with the firm is continued. Thus, there exists a

sequence of stopping times r,, i G W, where

(a) lim,^^ t, = r and t
x is the investment strategy given by the left-hand

side of (9), i.e., continue investment even though the Markov process

realization is Rb until the next Rb realization. Hence

\\ Rk Ro = Rb = 8p{b,g)R + 6p{b,b)Rb < 1. (10)

35
(9) is derived as follows. Suppose the realization at time t is bad but investors choose

to adopt the following "alternative" investment strategy: continue investing until the next

bad realization. The investors
1

expected payoff from this strategy is the left-hand side of

(9) which can be written as: p(b,g)6R + p(b,b)6Rb- The first term is the probability the

state changes from bad to good times the expected discounted payoff from continuing in

the resulting good states until a bad state is realized. The second term is the probability

the state remains bad times the payoff from investing for one additional bad period. R =
Rg + Yll^zi ^plg, g)

l ~ l p{g,b)R % ~ 1

Rb, where R
g

is the initial good realization, p(g,g)
l p{g,b)

is the probability of getting a string of (discounted) good realizations of length i and an

(i + l)st realization which is Rt,. By the formula for the geometric series, R — Rg +
tp(9,b)Rb/(l-6p(g t g)Rg ).
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(b) r, and t1+ i differ only as follows: There exists exactly one state with a Rb

realization where reinvestment takes place under rt+1 but not under r
t

.

36

(9) implies E[S T^ Ul'=i Rk\Ro = Rb] < E[6 T
> Uk=i Rk\Ro = Rb], for every

i £ IN. Note that lim,.^ 8
T

' n[-=i Rk = $
T
Yll=i Rk a.e. since r < oo a.e.

Fatou's Lemma therefore implies

E S
T Y[Rk \R = Rt

it=i

< Jim E
i—»oo

<T- n ^1^0 = Rb
fc=l

< £
Tl

£
ri

}[i2jt|i?o = ^6
fc=l

(11)

(10) and (11) immediately imply that (A2) holds. This concludes the proof.

(A2) implies the payoff from investment is bounded if the state is Rb and

Lemma A establishes this is true in bad states for all stopping times r with

t < oo a.e. We prove the payoff is also bounded in state Rg
in the following

Corollary (used in the proof of Theorem 3).

Corollary 1. (Al)-(A4) imply that E [S
T

FI/Ui Rk] < oc for a^ stopping

times t with r < oo a.e.

Proof. From Lemma 1 it follows that it is optimal for agents to continue

investment as long as the state is R
g
and to stop once the state switches to Rb-

The payoff of such an investment strategy is Y^T=i ^
t

Pi9^9Y~
1

P(9^ b)Rg

~ l

Rb =

8p(g,b)Rb/{l —6p(g,g)Rg ). This is bounded since Sp{g,g) ^ 1, otherwise (9)

cannot hold by Lemma A. This proves the Corollary.

The next Corollary is useful for computing the example in Section 4.

Corollary 2. Assume that (A1)-(A4) hold. Let H be the set of all stopping

times with r > 1. Then maxT€ // E 6
T

Yil=i Rk Rq — Rb — 8p{b,g)R +

8p(b, b)Rb, where R = Rg + 6p(g, b)Rb/{l — 8p(g,g)Rg ).

36
(b) implies that [Sp(b,b)R b + Sp(b,g)R

g
+ S

2p(b,g)p(g,b)R b /{l - 6p{g,g)R
g
)]x < x,

where x denotes an agent's wealth, the left-hand side of the equation is the agent's expected

return from following the ""alternative" investment strategy, and the right-hand side is the

agent's return from liquidating the risky investment when the first R b is realized.
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Proof. The result follows immediately from the proof of Lemma A: (11)

proves r 1
is the optimal stopping time. Thus, (10) proves the Corollary.

We now prove Claim 1 from Lemma 2 in Section 4

Proof of Claim 1. The function ib: [0, 1) — IR defined by

1 -a
Ro = Rt (12)

is U-shaped and thus assumes only one local minimum.

Proof. Assume by way of contradiction there exist points a\ < a < a 2 such

(l,-ar
T,

)

+

that 0(a) > 0(a,), for i — 1,2. (12) can be written as a •—
YITLi A

;

'
g —\-

i — r, \*

Tl^i Pi
—'

i_
9

< where /,- < rTi and ra^ > rTi ?' Without loss of generality

assume that l
t
< /i+1 for every i

' = 1, . . . , m. Let n : [ax, a^] —* ^? be defined

by a ^ E?=i ^» i-a + £?=i ^» 'i-l •
Then limn-cc, Ma) = </'(«) for

every a. To derive a contradiction, it is sufficient to prove that every 0„ is

U-shaped on [01,02]. The derivative of ibn is given by38

a ~ [rr^ (ew - r
i' ) + E*k - ';•

))
•

where k is the first index for which /, — ar T
* > 0, the first sum is always

negative, and the second sum is always positive. As a increases k increases,

thus the derivative can only switch once from a negative to a positive sign as

o increases. This implies that z/'n can have only one local minimum. Thus.

V>n is U-shaped on [0,1), i.e. t/'n (a) < yn {a x ), 1 = 1,2. Take the limit for

n —* oc to get 0(a) < 0(a,), 1 = 1,2. This contradiction proves the claim.

37This follows since the Markov process has a discrete state space. /, and r, denote

one of finitely many possible realizations of nl=i ^ an(^ r '
respectively, and A^ is the

probability that such a realization occurs. The interpretation of m r and /.i
t is similar.

3gObviously, r/> is not differentiate at points a where /, = ar T

g
' for some i. However, it

is sufficient that the left-hand and right-hand derivatives exist.
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Appendix B
In this Appendix we give a revelation principle argument to show that the

restriction that the firm reports truthfully in all problems is without loss of

generality. In addition, we prove Lemma 3. We begin with some definitions.

Contract set C is a set of tuples (r1
, r

2
, (r^g/v, {h^keN, (s/tHe/v, 0)* with

the following properties:

(i) hk'. H —» S, k G IN are report functions measurable with respect to Tk-

(ii) r
1

is a stopping time with respect to agents' information Tk, k G IN.

(iii) r 2
is a stopping time with respect to the firm's information Tk, k G JN

.

(iv) r^: 17 —> IR is a payment function measurable with respect to Tk',

(v) for every j, Cj is a audit stopping time with respect to Tk- k G IN

.

(vi) <p: IR —> IR is a penalty function with < <f>(x) < x, for every x G IR.

Contracts C G C satisfy (i)-(v) and:

(vi) t 2 (u) > r l
(u)) for a.e. u;;

(vii) c*(w) < s
!+1

(u;) for a.e. *;, and for every i G IN.

The investors' information set, Tk, clearly depends on hk, k G IN and on

s
!

. i G iV. However. hk and s
!

in turn are defined with respect to this infor-

mation. We solve this problem by defining the information set inductively. 3 '

Consider the Stackelberg game between the firm and investors:

(a) Investors agree to a contract C if they receive at least their reservation

utility. Let 7Z C C be the set of all contracts that investors agree to.

(b) The firm chooses a contract in IZ which maximizes its expected profit.

We now specify IZ: Denote by EH(C) the firm's expected profit, let Eu(C)

denote the investors' expected utility under contract C, and let h:D. — D.

be defined by h(uj) = (Ai(u;), fi2{u>), .

.

.) = YiT=\ h-ki^)- Thus, h maps any

state ijj into the reported state h{uj). Then 71 is the set of contracts C =
{T\f 2

.{fk )k e wA~hk)keN,{Sk)keN,<t>) € C such that:

(1) C G arg meLXCeC EIl(C), subject to:

(j)
rlH = f^S-^Mo))), a.e.;

(ii) rjt(u;) = rk(h~ l
(h(uj))), a.e. for every k\

39 Let JF^ = s(hi, . . . ,/ifc), i.e., the <r-algebra generated by announcements in the first k

periods. Assume we have constructed the information sets generated by h
:

, j < k and by

q
1

, i < m. Denote these information sets by F™ . Define I, = {u;: c'
n + l

(uj) = i} . Then let

Qi be the d-algebra given by {.4: .4 D L x € fi and .4 \L { ef^}. Thus, f™ + x =
\/,*=i Qi is

the investors' information generated by hj, j < m + 1 and Tu — V^i -^l f° r every k G A'

is the investors' information set.
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(iii) s
k
(uj) = S

k
{h

l
[h(ijj))), a.e. for every k;

(iv) <j>(u) = <f>(uj)) a.e.;

(2) Eu(C) > 1.

The investors' reaction function is completely described by 71: They agree

to contract C if C € 71, and reject it otherwise. (1) specifies that the firm's

report function h and stopping time f 2 are optimal among all possible report

plans h, and all possible stopping times r 2
. Note that nt, q

k
, and f 1 depend

on the investors' information generated by reports h. Thus, these elements of

the contract are implicitly changed when the report function is changed from

h to h. The way in which they are changed (to r*, c
fc

, and r 1

) is formally

described by constraints (i), (ii), and (iii).
40

Constraint (iv) says that cf> is

an aspect of the contract on which the firm cannot renege, i.e., there is an

ex-post enforcement mechanism which preserves the contract. The firm, as

the Stackelberg leader therefore solves:

max£n(C). (13)
Ufc/v

We now we derive the profit function, compute the investors' utility, and

give a revelation principle argument to show that only contracts which in-

volve full revelation of information need be considered. Problem (13) then

translates into the problem of finding an optimal contract subject to an in-

centive constraint and an individual rationality constraint.

To derive the profit function, note that firm misreports can be detected

in two ways:

(a) At time k, the firm makes an announcement which triggers withdrawal.

i.e., t 1
{uj) = k, but ufJi

] Rj < UfJi
} rj(h(u)), (the firm's liabilities

exceed its assets).

(b) At time k, the firm makes an announcement which triggers verification.

i.e., <;
J {to) = k and r !

(u;) > A:,
41 and there was a current or past misreport.

40 For example, consider the following situation which describes a simplified version of the

model. There are three states in 0. denoted by a, 6, and c. h is given by h{a) = a, h(b) = c,

and h(c) = b. Clearly, h generates a cr-algebra, corresponding to full information. Thus,

payment function r defined by r(a) = 1, r(b) = 2, r(c) = 3 is measurable with respect

to the investors' information. Assume the firm switches to report function h defined by

h(a) = h(b) = 6, h(c) = a. Then r(a) = f(h~ l h(a)) = r(c). Similarly, it follows that

r(b) = r(h~ l h(b)) = r(c), and v(c) = r(h~ l
h(c)) — f(a). Thus a payment function r

which fulfills the constraint r(u>) = f(h~ l
(h{uj))) is given by r{a) = r(b) = r{c) — 3, and

r(c) = f(a) = 1, where r is measurable with respect to the information generated by h.

41 This means that investors have not already withdrawn their investment.
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so there exists a j < k such that hj(u>) / Rj(lj).

Misreports are not detected otherwise. We now describe the set of states

in which these two types of misreports can occur. Denote this set by A =

A\ U A 2 , where A\ and A 2 correspond to (a) and (b) above. Thus,

a1 =U: n Rj{*)< n n(H"))
{ 7=1 ;=i

A\ =<Lj:^t

(uf) = k and 3j < fc, hj(u) ^ R
3
{u) and t

1
(u) > k\

a, = u 4
1=1

For all lj £ A, investors can impose penalty 4> on the firm, instead of being

paid according to the payment schedule r. Define B = A
x \ A2 , B\ = A\,

B2 = A\\ A\, and in general B
t
= A\ \ U* =1 B x

. Then the firm's expected

profit is given by

^n(O) = / s
t2m h Rk{i0 )

- n r
h

k (u>)) n ^*h f/p (-')

7QV4 \A=1 fc=l / fc=T i(u;)+l

q ^h-0 n
fc=i V it=i

+/B/
rlM n RkW-tl n ^mJ) <^m

+e// ,(w) n «*m-*i n fl*Mj) ^m-

To compute the investors' utility, note that in the derivation of the firm's

expected profit we assumed that the firm is shut down when a misreport is

detected. In such states, investors impose penalty 4>. On B , the firm reports

it is not able to pay, but there was no previous auditing (A 2 is subtracted from

Bo). Hence the penalty is imposed, and investment is stopped at time r 1

^).
On sets B{, i > 0, misreports are detected by auditing since B

x
contains

all states uj such that a misreport is detected the ith. time auditing occurs

but not previously. Thus, investment stops at time c*(w) and penalty <p is

imposed. This penalty is a transfer from the firm to investors; no deadweight

loss is involved. Thus, an investor's payoff is given by

E(u(C)) = / 6
Tl^ n rfcM)«*P(w)+ / S

Tl^0 I] #*M dP(")
jQ \A ib=i

Jb° \ fc=i /
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EL ^V II RkW) ^H-E I
,k k(

y

VcdPM.

We now give the revelation principle argument. Assume that C is a

solution to Problem (13). Then EU{C) > EU{C) for all C 6 71. We
proceed as follows: We first show that we can replace any contract C by a

contract C for which h(uj) — to, which we call a "truth-telling contract" (thus,

C can be replaced by a truth-telling contract). We then show that under

this transformation Problem (13) becomes Problem 3, where we maximize

over the set of all truth-telling contracts, subject to an individual rationality

constraint and an incentive compatibility constraint.

Let C G C. The corresponding truth-telling contract is denoted by (f
1

,

t 2
, (rk)k€Ni (tk)keN, <f>)'

Derive the new contract by redefining the original

contract on each of the sets B{. We need not redefine the contract on the

complement of A. All components of the contract which we do not explicitly

redefine remain unchanged. Start on B . Let \Vk = {uj:t 1
(lj) = /.} . Define

r
t
on Wk as follows:

(nLftM
)

Clearly, the resulting rk is ^.-measurable on Bo. All other components of

the contract remain unchanged on Bo. Next redefine the contract on each of

the sets #,-, i > 1. Redefine rk as in (14). Further, set t
1
(lj) — s

J

(<^') on B{.

All other components of the contract remain unchanged on £,-, i > 1.

For the redefined contract we therefore get

r*M - hr=i rr-r1 (14]

E(U(C))= / <r
2(w)

J] RkM-U?kM)) II RkHdPM (15)

£?(u(C)) = / <T
lM

[J h{u))dP(u). (16)
'9

fc=i

The constraint in (13) and (16) imply the (IR) constraint E 8
T

111=1 ^k —

E IClli &
kcn k > 1, where n k (uj) = iuj: 3k, <;

k
(uj) = i\.

Since (16) is (IR) in Problem 3 and (15) is the objective, it remains

to derive (ICC). Define t
1 {u) = t 1

{!i{lj)), let <?(u) = <?'(/i(u;)) and rk(u) =
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rk (h(u)). Then r 1 ^) = ^(HfMu))), <*(w) = ^(^(/hM)), and rfc(w) =
rk(h~ 1

(hi(u>))), where h\(uj) — h(h(uj)). Denote this new contract by C.

Conditions (i)-(iv) of (1) in definition of % are satisfied, and we get EU(C) >
EU{C). This means the incentive constraint is

L

T 1
{U>) f1 \ f'(u/)

s*m
I
n Rk(») - n %(<*)) n ^*m^

>/ ^ 2 <*M)
J] Rk{uj) _ J| ^(o,)) J] Rk (u)dP(u)

Q \A \ fc=l fc=l / fc=fl(fc(u/))+l

'^(M")) /^(M"))

+ /fl/
fl(hM)

(
ri ^m-*( ri «fcMjjc/p(w)

+E/B ^
(fcM) n ^M-* n w m«

!=i ""• \ fc=i \ ib=i

for every report function. This concludes the revelation principle argument.

Assume without loss of generality that <j) is as large as possible. In fact,

any solution to the problem of finding an optimal contract C . subject to

(IR) and (ICC) can be supported by a contract with <j>(x) = x instead of the

arbitrary
<t> of contract C. Thus, the incentive constraint becomes

tV) f 1 \ r 2
(u,)

/ <r2M n RkM - n *jm) n «*(<*) dp^)
JQ

\ k=\ k=l J fc=fl(u/)+l

>/ $*»(*<«»
J] flfc(u;)_ J] rt(*M) II Rk(")dP(Lj),

JQ\A \ fc=i fc=i / fc=f»(Mw))+i

for every /*, since all other terms are zero. By Lemma 3 (proved below),

we can restrict our analysis to reporting plans Ti^.r 1
). Nevertheless, it

can occur that r 1
(/i(u;)) = t and the firm's liabilities exceed its asset at t.

In such a case the firm's payoff is zero since the penalty is maximal. This

corresponds to rewriting the right-hand side of the above inequality as in

(ICC) in Problem 3.

Finally, we prove Lemma 3.
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Proof of Lemma 3. Consider an arbitrary report strategy h such that

T l
{h(uj)) < oo a.e. To prove the Lemma, it is sufficient to construct a report

strategy h which is not detectable via auditing, and for which the firm's

profit is higher than under h. We start by defining an event tree: Define the

following equivalence relation onUx IN. Let (u;, t) ~ (u/, t') if and only if

t = t' and Rk{u) = Rk{u') for every k < t. Let S be the set of all equivalence

classes on Q x IN with respect to "~." Then S is the event tree. Introduce

the natural ordering on S: Let S\ — {u\,t\) then ^! < s 2 if and only if

ti < t2 and Rk(uJi) = R^^) for every k < t
x

. Think of h as defined on S.

Let j\A denote the set of all nodes in the event tree such that (a) for every

s E M. the state is misreported; (b) for s E M. no misreport is made at every

s' -< s. Without loss of generality assume that for every 5 £ ;H there is a

way to report the future nodes such that auditing never occurs and agents

withdraw after finitely many periods. Otherwise, it is (weakly) optimal to

report s truthfully since the firm's payoff is zero if a misreport is detected

via auditing.

Assume that for an s = (t,uj) E M., and for some future path of states

•Sf+i, . .
. , Sf+m, the functions /?.^., k = £, . . . ,i+m specify reports which trigger

an audit at st+m .

42 Then choose the largest k with t + m > k > t such

that given the reports in states s^+i? 5t+fc— l it is possible to report future

states such that an audit does not occur before investors withdraw their

investment. 43 By redefining h on St+k+i, l ^ 0, we can therefore avoid a

misreport which is detected via auditing. The firm's payoff must weakly

increase since its profit is zero whenever a misreport is detected. Using this

construction, we can derive a sequence of report functions h n , n E IN such

that h n converges to report function h as (n —> oo) for which misreports are

never detected by auditing. By construction the following property holds:

For every wGO there exists N such that h n (uj) = h{oj) for every n > N . As

a consequence all terms in Problem 3 converge when we substitute h n for h

and take the limit for n — oo. Since the firm's expected profit is at least as

high under hn as under /fcn _i, the firm's expected profit under h is at least as

high as under h. Since h is arbitrary, and since no misreports are detected

by auditing under /*, this concludes the proof.

420bviously, assume that r 1 > t + in i.e., agents have not stopped investing.
43Such a k must exist since it is possible for every s £ .VI to make reports which do not

trigger an audit before investors withdraw.
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