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PREFACE.

THE powers of the mind, like th<M(j|of the body are in-

creased by frequent exertion ; application and industry

supply the place of genius and invention
;
and even the

creative faculty itself may be sftengthened and improved

by use and perseverance. Uncultivated nature is uniform-

ly rude and imbecile, it being by imitation alone that we
at first acquire knowledge, and the means of extending its

bounds. A just and perfect acquaintance with the simple
elements ofscience, is a necessary step towards our future

progress and advancement ;
and this, assisted by laborious

investigation and habitual inquiry, will constantly lead to

eminence and perfection.
Books of rudiments, therefore, concisely written, well

digested, and methodically arranged, are treasures of ines-

timable value ; and too many attempts cannot be made to

render them perfect and complete. When the first prin-

ciples of any art or science are firmly fixed and rooted in

the mind, their application soon becomes easy, pleasant,
and obvious

;
the understanding is delighted and enlarged ;

we conceive clearly, reason distmctly, and form just and
and satisfactory conclusions. But. on the contrary, whea
the mind, instead of reposing on the stability of truth and
received principles, is wandering in doubt and uncertain-

ty, our ideas will necessarily be confused and obscure
;
and

every step we take must be attended with fresh difficulties

and endless perplexity.

m^ -f« ^€ic



iv PREFACE.

That the grounds, or fundamental parts, of every sci-

ence, are dull and unentertaining, is a complaint univer-

sally made, anfl a truth not to be denied ;
but then, what

is obtained with difficulty is usually remembered with ease
;

and what is purchased wth pain is often possessed with

pleasure. The seeds of knowledge are sown in every soil,

but it is by proper culture alone that they are cherished

and brought to maturity. A few years of early and assi-

duous application, never fails to procure us the reward of

our industry ;
and who is there, who knows the pleasures

and advantages which the sciences afford, that would think

bis time, in this case mis-spent, or his labours useless ?

Riches and honours are the gifts of fortune, casually be-

stowed, or hereditarily received, and are frequently abus-

ed by their possesgirs ;
but the superiority of wisdom and

knowledge 1;= a preeminence of merit, which originates

with the man, and is the noblest of all distinctions.

Nature, bountiful and wise in all things, has provided us

with an infinite variety of scenes, both for our instruction

and entertainment ; and, like a kind and indulgent parent,

admits all her children to an equal participation of her

blessings. But, as the modes, situations and circumstances

of life are various, so accident, habit and education, have

each their predominating influence, and give to every mind

its particular bias. Where examples of excellence are

wanting, the attempts to attain it are but few ;
but emi-

nence excites attention, and produces imitation. I'o raise

the curiosity, and to awaken the listless and dormant pow-

ers of younger minds, we have only to point out to them a

valuable acquisition, and the means of obtaining it
;
the

active principles are immediately put into motion, and the

certainty of the conquest is ensured from a determination

to conquer.
But, of all the sciences which serve to call forth this

spirit of enterprise and inauiry. there are none more emi-

nently useful than Mathematics. By an early attachment

to these elegant and sublime studies, we acquire a habit of

reasoning, and an elevation of thought, which fixes the

mind, and prepares it for every other pursuit. From a

few simple axioms, and evident principles,
we proceed



PREFACE. V

gradually to the most general propositions, and remote an-

alogies : deducing one truth from another, in a chain oi*

argument well connected and logically pursued ; which

brings us at last, in the most satisfactory manner, to the

conclusion, and serves as a general direction in all our in-

quiries after truth.

And it is not only in this respect that mathematical learn-

ing is so highly valuable
;

it is, likewise equally estimable

for its practical utility. Almost all the works of art and

devices of man, have a dependence upon its principles, and

are indebted to it for their origin and perfection. The
cultivation of these admirable sciences is, therefore, a thing
of the utmost importance, and ought to be considered as a

principal part of every liberal and well-regulated plan of

education. They are the guide of our youth, the perfec-
tion of our reason, and the foundation of every great and
noble undertaking.
From these considerations, I have been induced to com-

pose an introductory course of mathematical science
;
and-

from the kind encouragement which I have hitherto re-

ceived, am not without hopes of a continuance of the same^
candour and approbation. Considerable practice as a

teacher, and a long attention to the difficulties and obstruc-

tions which retard the progress of learners in general, have
enabled me to accommodate myself the more easily to their

<^apacities and understandings. And as an earnest desire

of promoting and diffusing useful knowledge is the chief
motive for this undertaking, so no pains or attention shall

be wanting to make it as complete and perfect as possible.
The subject of the present performance is Algebra ;

which is one of the most important and useful branches oi'

those sciences, and may be justly considered as the key to

all the rest. Geometry delights us by the simplicity of its

principles, and the elegance of its demonstrations ; Arith-

metic is confined in its object, and partial in its application ;

but Algebra, or the Analytic Art, is general and comprehen=
sive, and may be applied with success in all cases where
truth is to be obtained an'^' proper data can be established.
To trace this science to its birth, and to point out the

various alterations and improvements it has undergone in

A g



vi PREFACE.

its progress, would far exceed the lioiits of a preface.* It

will be sufficient to observe that the invention is of the

highest antiquity, and has challenged the praise and admi-

ration of all ages. Diophanius, a Greek mathematician, of

Alexandria in Egypt, who flourished in or about the third

century after Christ, appears to have been the first, among
the ancients, who applied it to the solution of indetermi-

nate or unlimited problems ;
but it is t» the moderns that

we are principally indebted for the most curious refine-

ments of the art, and its great and extensive usefulness in

every abstruse and difficult inquiry. Ne-wton, Maclaurin^
Sanderson, Simpson, and Emerson, among our own country-
men, and Clairant, Euler, Lagrange and Lacroix, on the

continent, are those who have particularly excelled in this

respect ;
and it is to their works that 1 would refer the

young siudent, as the patterns of elegance and perfection.
The following compendium is formed entirely upon the

model of those writers, and is intended as a useful and ne-

cessary introduction to them. Almost every subject, which

belongs to pure Algebra, is concisely and distinctly ti;;eated

of; and no pains have been spared to make the whole as

easy and intelligible as possible. A great number of ele-

mentary books have already been written upon this sub-

ject ;
but there are none, which I have yet seen, but what

appear to me to be extremely defective. Besides being

totally unfit for the purpose of teaching, they are gene-

rally calculated to vitiate the taste, and mislead the judg-
ment. A tedious and inelegant method prevails through
the whole, so that the beauty of the science is generally

destroyed by the clumsy and awkward manner in which it

is .treated; and the learner, when he is afterwards intro-

duced to some of our best writers, is obliged, in a great

measure, to unlearn and forget every thing which he has

been at so much pains in acquiring.
There is a certain taste and elegance in the sciences, 91

* Those -who are desirous of a knowledge of this kind, may consult the In-

iioduction to my Treatise on Algebra; where they will find a regular histo-

rical detail of tlie rise and progress of the science, from its first rude begin-

nings to the present times.



PREFACE. Tii

well as in every branch of polite literature, which is only
to be obtained from the best authors, and a judicious use

of their instructions. To direct the student in his choice

of books, and to prepare him properly for the advantages
he may receive from them, is therefore, the business of

every writer who engages in the humble, but useful task

of a preliminary tutor. This information I have been

careful to give, in every part of the present performance,
where it appeared to be in the least necessary ; and,

though the nature and confined limits of my plan admitted

not of diffuse observations, or a formal enumeration of par-

ticulars, it is presumed nothing of real use and importance
has been omitted. My principal object was to consult the

ease, satisfaction, and accommodation of the learner ;
and

the favourable reception the work has met with from the

public, has afiforded me the gratification of believing that

my labours have not been unsuccessfully emyloyed.



ADVERTISEMENT.

The present performance having passed

through a number of editions since the time
of its first publication, without any material

alterations having been made, either with re-

spect to its original plan, or the manner in

which it was executed, 1 have been induced,
from the flattering approbation it has constant-

ly received, to undertake an entire revision of
the work ; and, by availing myself of the im-

provements that have been subsequently made
in the science, to render it still more deserv-

ing the public favour.

In its present state, it may be considered as

a copious abridgment of the most practical
and useful parts of my larger work, entitled,

A Treatise on Algebra, in 2 vols. 8vo. published
in 1813 ,• from which, except in certain cases

where a different mode of proceeding appear-
ed to be necessary, it has been chiefly com-

piled : great care having been taken, at the



same lime, to adapt it, as much as possible, to

the wants of learners, and the general pur-

poses of instruction, agreeably to the design

with which it was first written.

With this view, as well as in compliance
with the wishes of several intelligent teachers,

I have also been led to subjoin to li^ by way of

an Appendix, a small tract on the application

of Algebra to the solution of Geometrical

Problems; which, it is hoped, will prove ac-

ceptable to such classes of students as may
not have an opportunity of consulting more

voluminous and expensive works on this inte-

resting branch of the science.

John Bonnycastle.

RoYAi, Military Academy,
Woolwich.

Oc4ober22, 1815,



ADVERTISEMENT
TO

THE SECOND NEW-YORK EDITION.

It would be superfluous to advance any thing
2n commendation of "Bonnycastle's Introduc-
lion to Algebra," as the number of European
editions, and the increase of demand for it
since Its publication in this country, are suffi-
cient proofs of its great utility.
But to make it

universally useful both to
the tutor and scholar, I have given in this edi^
lion, the answers that were omitted by the au-
thorin the original.

In the course of the work, particularly in
Addition, Subtraction, Multiplication, Divi-
sion, Fractions, Simple Equations, and Quad-
ratics, I have added a great variety of prac-
tical examples, as being essentially necessaryto exercise young students in tiife. elementary
principles.

~ "^

Several new rules are introduced, those of
principal note are the

following: Case 12.



XI

Surds, containing two rules for finding any
root of a Binomial Surd, the Solution of Cu-
bics by Converging Series, the Solution of Bi-

quadratics by Simpson's and Euler's methods:
all these rules are investigated in the plainest
manner possible, with notes and remarks, in-

terspersed throughout the work, containing
some very useful matter.

There is also given all the Dipohantine Ana-
lysis, contained in Bonnycastle's Algebra, Vol.
J. 8vo. 1820., being a methodical abstract of
this part of the science, which comprehends
most of the methods hitherto known for resolv-

ing problems of this kind, and will be found a

ready compendium for such readers as may ac-

quire some knowledge of the Analytic Art.

JAMES RYAN,

JVew-York, Jan. 1, 1822.

P. S. A new and correct Key to the present edition, com>
prising in an easy and elegant manner, the solutions of the

questions, is now ready for the press, and will be speedily
published. /. R.

L
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ALGEBIIA.

Algebra is the science which treats of a general me-
thod of performing calculations, and resolving mathemati-
cal problems, by means of the letters of the

alphabet.
Its leading rules are the same as those of arithmetic ;

and the operations to be performed are denoted by the

following characters :

-\- plus, or more, the sign of addition
; signifying that

the quantities between which it is placed are to be added

together.

Thus, a-\-b shows that the number, or quantity, repre-
sented by b, is to be added to that represented by a

; and
is read a plus b.

— minus, or less, the sign of subtraction
; signifying

that the latter of the two quantities between which it is

placed is to be taken from the former.

Thusa— fe shows that the quantity represented by 5
is to be taken from that represented by a

;
and is read a

minus b.

Also, a>rb represents the difference of the two quan-
tities a and b, when it is not known wliich of them is the

greater.

X info, the sign of multiphcation ; signifying that the

quantities between which it is placed are to be multiplied
together.

Thus, aXb shows that the quantity represented by a
is to be multiplied by that represented by b

;
and is read

a into b.

The multiplication of simple quantities is also frequent-
ly denoted by a point, or by joining the letters together in
the form of a word.
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Thus, aXh, 4". hi and ah, all signify the product of a
and b : also, 3 xa, or 3a, vs the product of 3 and a

;
and is

rea(J;3;tipies a"/ ,..•,::

-f-" bij, the sign of division ; signifying that the former
f>i the-tvfa

,qa|ntities^^
between which it is placed is to be

dlvided'by the^ttex .
«''''•'

Thus, a-r-6, shows that the quantity represented by a
is to be divided by that represented by b

;
and is read a

by b, or a divided by h.

Division is also frequently denoted bj"^ placing one of
the two quantities over the otlier, in the form of a frac-

tion.

h
. .

Thus, 6-4-a and - hoth signify the quotient of h di-

vided by a
;

and -"~- signifies that a - 6 is to be divid-

a-\-c

cd by a-f-c.

=
eqxinl to, the sign of equality ; signifying that the

quantities between which it is placed are equal to each
ether.

Thus, x=a -f- h shows that the quantity denoted by x

is equal to the sum of the quantities a and L
;
and is read

X equal to a plus 5.

IT identical to, or the sign of equivalence ; signifying
that the expressions between whieh it is placed are of the

fame value, for all values of the letters of which they are

composed.
* Thus, (.v+a) X. [x

— a) znx^-^a-, whatever nunaeral

values may be given to the quantities represented by x

and a.

* Euler calls a;—l=:x—1 an identical equation; and shows that x is in-

c^eterminate ; or that any number whatever may be substituted for
it:^vhich

equation is to be expressed according to the present notation ; thus, ar—l_i_a:—1 .

In my opinion, Euler's definition of an indentical equation, is preferable to

Bonnycastle's ; See Euler's Algebra page 289. Vol. 1.
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> greater than, the sign of majority ? signifying that

the former of the two quantities between which it is

placed is greater than the latter.

Thus, as^h shows that the quantity represented by a

is greater than that represented by b
;
and is read a great-

er than b.

< less than, the sign of minority ; signifying that the

former of the two quantities between which it is placed is

less than the latter.

Thus,'az.Z> shov/s that the quantity represented by a

is less than that represented by b
;

and is read a less

than b.

: as, or to, and : : so is, the signs of an equality of ra-

tios
; signifying that the quantities between which they

are placed are proportional.

Thus; a : b : : c : d denotes that a has the same ratio

io b that c has to d, or that a, b, c, d, are proportionals ;

and is read, as a is to b so is c to d, or a is to 6 as c

is to d.

^ the radical sign, signifying that the quantity be-

fore which it is placed is to have some root of it extract-

ed.

Thus, ^a is the square root of a
; ^/a is the cube root

of a
;
and \/a is the fourth root of a

;
&.c.

The roots of quantities are also represented by figures

placed at the right hand corner of them, in the form of a

fraction.

Thus, a2 is the square root of a; a^ is the cube root
J.

of a
;
and a" is the nth root of a, or a root denoted by

any number n

In like manner, a" is the square of a
;

a^ is the cube
of a

;
and a'" is the mth power of a, or any power de-

noted by the number m.

CO is the sign of infinity, signifying that the quantity



4 DEFINITIONS.

standing before it is of an unlimited value, or greater than

any quantity that can be assigned.

The coefficient of a quantity is the number or letter

which is prefixed to it.

Thus, in the quantities 3b, — |&, 3 and — | are the

coefficients of b
;
and a is the coefficient of x ia the

quantity ax.

A quantity without any coefficient prefixed to it is sup-

posed to have 1 or unity ;
and when a quantity has no sign

before it, + is always understood.

Thus, a is the same as + a, or -f- la
;
and — a is the

same as — la.

A term is any part or member of a compound quan-

tity, which is separated from the rest by the signs +
or — .

Thus, a and b are the terms of a + ^
;
and 3a, — 2b,

and + 5crf, are the terms of 3a — 26 + 5cd.

In like manner, the terms of a product, fraction, or pro-

portion, are the several parts or quantities of which they
are composed.

Thus, a and b are the terms of ab, or of y; and «,

i, c, d, are the terms of the proportion a : b : : c : d.

A factor is one of the terms, or multipliers which form

the product of two or more quantities.

Thus, a and b are the factors of ab ; also, 2, a, and 6^,

are the factors o{2ab^ • and a — x and b — x are the fac-

tors of the product (a
— x) X (6

—
x).

A composite number, or quantity, is that which is pro-

duced by the multiplication of two or more terms or fac-

tors.

Thus, 6 is a composite number, formed of the factors

2 and 3, or 2X3
;
and 3abc is a composite quantity, the

factors of which are 3, a, b, c.

Like quantities, are those which consist of the same

letters or combinations of letters ;
as a and 3a, or dab

and lab, or 2a^b and 9a''b.
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Unlike quantities are those which consist of different

letters, or combinations of letters
;

as a and b, or 3a and

a2, or 5a62 and la'^b.

Given quantities are such as have known values, and

are generally represented by some of the first letters of

the alphabet ;
as a, b, c, d, kc.

Unknown quantities, are such as have no fixed values,

and are usually represented by some of the final letters of

the alphabet ;
as a;, y, z.

Simple quantities, are those which consist of one term

only ;
as 3a, bob, — Za-b^ &,c.

Compound quantities, are those which consist of several

terms ;
as 2a4-6, or 3a--2c, or a+26-3c, &c.

Positive, or affirmative quantities, are those which are

to be added
;

as a, or -f a, or -f-3a6, k.z.

Negative quantities, are those which are to be subtract-

ed
;

as —a, or — 3a6, or — lab'^ ,
&c.

Like signs, are such as are all positive, or all negative ;

as + and +> or — and — .

Unlike signs, are when some are positive and others

negative ;
as + and —

",
or — and +.

A monomial, is a quantity consisting of one term only :

as a, 26,-3a3^, &c.

A binomial, is a quantity consisting of two terms
; as

a-}-b, or a— b
;

the latter of which is, also, sometimes

called a residual quantity.

A trinomial, is a quantity consisting of three terms,
as a-\-2b— 3c

;
a quadrinomial of four, as « — 26+ 3c—d :

and a polynomial, or multinomial, is that which has many
terms.

The power of a quantity, is its square, cube
, biquadrate,

Sic.
;
called also its second, third, fourth power, &c.

;
as

a"
, a^, c'*, &c>

The index, or exponent of a quaLitity, is the number
which denotes its power or root.

B 2
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Thus, —1 is the index of a- ', 2 is the index of a*,
I

and i of a^ or ^a.
When a quantity appears without any index, or expo-

nent, it is always understood to have unity, or 1.

Thus, a is the same as a', and 2x is the same as 2a;"'
;

the 1, in such cases, being usually omitted.

A rational quantity, is that v/hich can be expressed in

finite terms, or without any radical sign, or fi'actional in-

dex
;

as a, or |a, or 6a, Sic.
* An irrational (Quantity, or Surd, is that of which the

value cannot be accurately expressed in numbers, as the

square roots of 2, 3, 5. Surds are commonly expressed
by means of the radical sign ^ ;

as ^^2, ^a, ^/a^, or a

i —
fractional index

;
as 2^, a^, &c.

A square or cube number, &c. is that which has an ex-

act square or cube root, &c.

Thus, 4 and
-^^a"^ are square numbers

;
and 64 and

^\a3 are cube numbers, &c.

A measure of any quantity, is that by which it can be
divided without leaving a remainder.

Thus, 3 is a measure of 6, la is a measure of 35a, and

^ah of 27 a2&2.

Commensurable quantities, are such as can be each

divided by the same quantity, without leaving a remain-

der.

Thus, 6 and 8, 2y/2 and 3<^2, ha^ and lah^
, are

commensurable quantities ;
the common divisors being

2, ^2, and ah.

Incommensurable quantities, are such as have no com-
mon measure, or divisor, except unity.

Thus, 15 and 16, y2 and y3, and a+6 and a^ + 6^,

are incommensurable quantities.

* Bonnycastie's definition of a surd was errooeous. Dr. Hutton was led info

tiie same error, until his mathematics was published in New-York, revised and

correctf'd by Robert Adrain, LL.D. Professor of Madiematics and JNatural Phi-

losophy Columbia College. Afterwards, Dr. Hutton published the seventh

edition of his mathematics, in which he adopted this definition, (which 1 have

copied from his edition) without mentioning who was the Auiho?: Editor
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A multiple of any quantity, is that which is some exact

number of times that quantity.

Thus, 12 is a multiple of 4, 15a is a multiple of 3a, and

20a2 6* of 5fl&.

The reciprocal of any quantity, is that quantity invert-

ed, or unity divided by it.

Thus, the reciprocal of a, or -, is „ ;
and the recipro-

cal or v IS -•
o a

A function of one or more quantities, is an expression
into which those quantities enter, in any manner whatever,
either combined, or not, with knovpn quantities.

Thus, a-2x,ax-\-3x^, 2x-a {a^ —x^)"^, ax"", a^&c,

are functions of x
;
and axy -f- bx^ , ay -\- x {ax- —hy^)'^,

&c. are functions of a; and y.

A vinculum, is a bar , or parenthesis ( ), made
use of to collect several quantities into one.

Thus, a -\- b X c, OT {a -{- b) c, denotes that the com-

pound quantity a + 6 is to be multiplied by the simple

quantity c
;
and ^ab-\-c'^, or (ab-\- 0^)2, is the square

jroot of the compound quantity afc-j-c^.

Practical Examplesfor computing the numeral Valves of va-

rious Algebraic Expressions, or Combinations of Letters,

Supposing a=-Q, b-=-b, c=4, c/=l, and c=0.
Then

1. a2+2aft— c+c?='36-f 60— 4-f 1= 93.

2. 2a3_3a2fe+c3=432 -540+64=— 44.

3. a2 Xa+6 -?a6c=36X 1 1 -240=156.
1. 2ay/b^ —ac-i-^2ac-\-c2= 1 2 X 1 +8= 20.

5. 3a^2ac+c2, or 3a (2ac-i-c2)^=18^64=144.

6. ^2a" —^2ac+c2 =^72- v'64=v'7FI¥=^64= 8.

2a+3c 46c 12+ 12 80 24 80
7.—^'._.._j_

— — 1 -» =— _i-—=14,
6d+4e^^2ac+c2 6+0 ^^48+16 ^^ 8
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Required the numeral values of the following quantities ;

supposing a, b, c, d, e, to be 6, 5, 4, 1, and 0, respective-
ly, as above.

1. 2a2-f36c— 5fZ=127
2. 5a2&— 10a62-{-2e=--600
3. 7a2+6-cXd+e=253
4. 5ya64-62-2afc-e2=— 7.613871

o.— Xd-^4-2a2e=A
c d

6. 3yc+2av'2a+Z)—d=14
7. a^a2 +6H-3ic^a2 —62 =245.8589862

3. 3a26-fyc2+^2acH-c2=:542. 8844991

g
26+c_V56+3^c+<^_,

*3a-.c 2a+c
"*

ADDITION.

Addition is the connecting of quantities together by
means of their proper signs, and incorporating such as are

like, or that can be united, into one sum
;
the rule for

performing which is commonly divided into the three fol-

lowing cases* :

CASE I.

1

. When the Quantities are like, and have like Signs.

RULE.
/

Add all the coefficients of the several quantities together,
and to their sum annex the letter or letters belonging to

each term, prefixing, when necessary, the common sign.

* The term Addition, which is generally used to denote tliis rule, is too

s-canty to express the nature of ih^: operations that are to be perfonned in it.;

which are sometimes those of addition, and sometimes subtraction, according
as the quantities are negative or positive. It should, therefore, be called by
some name signifying incorporation, or striking a balaace ; iu which case, the

iticongruitj-, here mentioned, >vould be removed.
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veral of the same kind
;
then subtract the least of these

sums from the greatest, and to the difference prefix the

sign of the greater, annexing the common letter or letters

as before.

EXAMPLES.

-3a
+ 7a

+ 80
— a

2a— 3a:2

— 7a4-5a;2
— Za-^-x*

+a— 3x2

.3.T-j-2ai/

x^Qay
2x-^ay

— Ua
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CASE III.

When the Qtianiiiies are unlike ; or some like and others un-

like.

nuLE.

Collect all the like quantities together, by taking their

SUD1S or ditferences, as in the foregoing cases, and set down
those tiiat are unlike, one after another, with their proper

signs.

EXAMPLES.

bxy 2xy— 2x^ 2aa;— 30

4ax 3x^+xy 3x^ -2ax

-xy x'^+xy 5x2—3x2
-Aax 4x^-3xy 3y.T-flO

4xy 6x2 -f xy 8^2 - 20

+ax^ 8a2a;2_3ax 1062-3a2x
^ax^ la X -bxy -h^-y-^a-x-

-|-3ax2 9x y
— bax 60 -\-Qa-x

1

- ax^ 2o2x2-}- xy 0^x2+ 120

-2ax2 10a2x2+5x2/— ax %~+oa-x'^—a^x-\'\':\

+3a2y 2v'x— 18i/ 2a2-.3a^'x
J. 1

—2x1/2 3^xy-\-'[Qx x3-2a=.-r'^

—
3?/2x ^x-y +25?/ 3a2— I3x</

— ^x~y \^xy.—^xy xy •-r32a2

+2x1/2 _8i/ +17x'^ 20 —65x2

oaa?/-3!/2x~8x2i/ |( \2^x + 12x-j/)
37a2 - Sa^^x— ]2x

y-
20

y C \2^x + 12x-j/ )
37a2 ~ 3a^x— 1

fi/+10x-i/ ) f,^
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EXAMPLES FOR PRACTICE.

1. Required the sum of i(a-{-i) and ^{a
—

h). Aus. a.

2. Add 6x — 3a + 6 4- 7 and — 4a — 3a: + 26 — 9 to-

gether.
Ans. 2x — 7a 4- 36 — 2.

3. Add 2a + 36 — 4c - 9 and 5a - 36 + 2c - 10 to-

gether,
'ins. la — 2c - 19.

4. Add 3a + 26 — 5, a 4- 56 --
c, and Ga — 2c + 3 to-

gether. Ms. 10a + 76 — 3c — 2.

5. Add x^ -\- ax^ -j- 6x + 2 and x^ -j- cx'^ + cZa; ~ 1 to-

gether. Ans.^x^ + {a-\-c) x- + (6+d) x -f 1.

5. Add &xy
— 12x2, —4x2-f3a:i/, 4a;2—2xy, and—2xy

+4x2 together. Ans. 4x?/— Sx^-^
7. Add 4ax—l30+3xi, 5rr2+3aa;+9x2, 7a;^—4x2+

90, and^x+40—6x2 together. Ans. 7ax+8x3 +7xj/.
8. Add 2a2—3a6+263—Sa2, 363—2a2+a3—5c3, 4c3

—2Z>3+5a6+100, and 20a6+l6a2—6c—80 together.
• Ans. r3a2+22a6+36='+a3—c^+20—6c.

oax ^a oa x

+6(—y^) together.

. 13a 4c r./bc o6+x^Ans.
_^

—5Vr—3(-—J-).b a T ^ a '

10. Add 3a2+46c—e2+ 10, —5a2+66c+2e2— 15, and—4a2—96c— 10e2+21 together.
Ans. 6c~6a2—9c2+ 16.

SUBTRACTION.

Subtraction is the taking of one quantity from ano-

ther
;
or the method of finding the difference between

any two quantities of the same kind
;
which is performed

as follows*:

* This rule being the reverse of addition, the method of operation must be
-so likewise. It depends upon this principle, that to subtract an affirmative

quantity from an affirmative, is the same as to add a negative quantity to as
affirmative.
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RUtE.

Change all the signs (-f- and — ) of the lower line,

or quantities that are to be subtracted, into the contrary
signs, or rather conceive them to be so changed, and

then collect the terms together, as in the several cases of

addition.

EXAMPLES.

5a2— 2J a;2-2i/4-3 5x?/+8x— 2
c>

Sa^—n —Sx'^-lly+B 2xy+l6x-\-5

5xy—\S 8j/2-2^/— 5 10— Sx-3xy
-.xy-{-12 —

J/2 4-32/-I-2 ^x-{-3-xy

6xy— 30 9y^^5y—7 7—lx—2xy

— 5x~y—8a 4^ax~-2x^y i,x^ -{• ^ x — 4y
-i-Sx^y— lb 3,yax-5xy^ 6a;2 — Qx- xi2

—.8.^-2 ?/--8a + 76 ^ax— 2x^y-\-5xy^ -x^-^8x+2^x— 4y

EXAMPLES FOR PRACTICE.

1. Find the difference of y(«+6) and i(a— J). Ans. b.

2. From 3a; -2a—6+7, take 8- 36+a+4a;.
Ans. 2b'—x- 3a— 1.

3. From 3a-f64-c-2(Z, take 6-8c+2rf-8.
Ms. 3a+9c-4d+8.

4. From 13a;2 -2ax+962, take 5x^—7ax—b^.
Ms. 8a;2+5aa;+1062.

That is,
— 3« taken from -j-oa, is the same v/ith -f 3a added to +5a=4.

8a; because,— 3a+3a=0, and + 5o-f-3a=r-f. 8a
; hence, if I take from+ 8(1, there remains +8a, but, if the same quantity or equal quantities be

added to the subtrahend and minuend, their dillerence continues still to be
thesame as ifnothing was added to them : therefore —3o taken tVom -f 5a
=+8o. And in like manner + 3a taken from— 5a=— 3a— 5a= — 8c.
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X
5. From 20ax-'5^x-\-3a take 4aa;-}-5x2—a.

Jlns. 16ax-~l0^x-{-4a.
6. From5a6+263_c4-6c-.J, take b^ -2ab-\-bc.

Ans. lab+ b^ -c—h.
7. Fromax^ — &a;2-f-c.x~rf, take bx"-^ex-'8,d.

Am. ax^~9.bx^-{-{c-e)x-{-d.
8. From 6a^ 46~ 12c + ISx, take 4a; — 9a

-f-
46—

5c. Ans. 3a + 9.r — 86— 7c.

9. From 6x2^— Sy'^— ^"J/' *^^^ ^'"^^^ "^ ^(•'^^)2
—

Aay. Ans. Sa-^?/
—

6^X2/
—

Sa?/.

10. From the sum of 4a.r — 150 4-4x2, 6x-+ 3ax +
10x2, and 90 — 2ax— 12^x ;

take the sum of 2ax •—

SO + 7x2 , 7xi — 8ax — 70, and 30 — 4^T— 2x2 +
4o2x2. Ans. llax + 60— X2 — 4a2x2..

MULTIPLICATION.

Multiplication, or the finding of the product of two
or more quantities, is performed in the same manner as in

arithmetic ; except that it is usual, in this case, to hegia
the operation at the left hand, and to proceed towards the

right, or contrary to the way of multiplying numbers.

The rule is commonly divided into three cases
;
in each

of which, it is necessary to observe, that like signs, in

multiplying, produce +, and unlike signs,
— .

It is likewise to be remarked, that powers, or roots of

the same quantity, are multiplied together by adding their

indices : thus,
1 i 5-

eXa2, or a'Xa2=a2
; a-Xa^—a^ ; a'^xa''^=a^ ;

and

The multiplication of compound quantities, is also,

sometimes, barely denoted by writing them down, with

their proper signs, under a vinculum, without performing
the whole operation, as
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Sab (a—b), or Sa^as+fta.
Which method is often preferable to that of executing the

entire process, particularly when the product of two or

more factors is to be divided by some other quantity, be-

cause, in this case, any quantity that is common to both the

divisor and dividend, may be more readily suppres.-Jed ;
as

will be evident from various instances in the following part

of the work*.

CASE I.

When the factors are both simple quantities.

RULE.

Multiply the coefficients of the two terms together,

and to the product annex all the letters, or their powers,

belonging to each, after the manner of a word
;
and the

result, with the proper sign prefixed, will be the product

required t-

* The abore rule for the signs may be proved thus : If" b, b, be any two

quantities, of which b is the greater, and b — 6 is to be multiplied by a, it is

plain that the product, in this case, must be less than ob, because b— bis less

than B ; and, consequently, when each of the terms of the former are multi-

plied by a, as above, the result will be

(b
— 6)Xa=aB— ab.

For if it were as + ab, the product would be greater than as, which is ab-

surd.

Also, if B be greater than b, and a greater thana, and it is required to mul-

tiply B — 6 by A— a, the result will be

(b
— 6)X (a

— a)=AB— as— 6a 4. 06

For the product of b — b by a is a (b
—

b), or ab — a6, and that of b— 6

by— a, which is to be taken from the former, is— a(B— b), as has been al-

ready shown ; whence b — b being less than b, it is e% ident that tJie part
which is to be taken away must be less than as ; and consequently since the

first part of this product is— as, the second part must be 4-o6; for ifit were
—ab, a greater part than ob would be to be taken from a(b

^^
6), which is ab-

surd.

f WTien any number of quanthies are to be multiplied together, it is the

same thing iii whatever order they are placed : thus, if 06 is to be multiplied

by c, the product is either abc, acb, or bca, &c. ; though it is usual, in this case,

as well as in addition and subtraction, to put them according to their rank in

the alphabet. It may here also bj observed, in conformity to the rule given
above for the signs, that ( + «) v ( + 6), or (

—
a) X (

— b)=+ab ; and ( -f-e)

X (.-'"), or (-o)X( +6)= -a6.



IS

12a
36



MULTIPmCATION. 17

6a ^ -2x 3^2/

60aa:-5a3 6 —70a: +14ax Sx^^+ary^ -2xy

13x2- a26 SSxiz+Sa" 3x2_xy—S^/S

—2a 13.T2 5x2 ,

— 26ax2+2a36 325x3i/+3ea2x2 I5x*—5x^y -
I0x^y2

CASE III.

FF/te» both thefactors are compound quantities.

RULE.

Multiply every term of the multiplicand separately, by
each term of the multipUer. setting down the products

one after another, with their proper signs ;
then add the

several lines of products together, and their su» will be

the whole product required.

EXAMPLES.

x+y ox+4y x^+xi/—y
x+y 3x—2y X —y

x^-}-xy lox^-\-\2xy x^+x^^—xy^

+xy+y^ — lOry Sy^ —x^y-xy^-^-y^

x^-\-2xy+y' 15x2+ 2xy-Sy^
'

x^ *
—2xy^-\-y^

x-\-y x^-\-y x2-|-xy+3/2

x—y x^-^y X —y

x^+xy x^+x^jf x^4-x2y-f-xi/2

--Xy—y'' +x2y+ J/2 ~x2^/__Xi/2_2/3

t2 * -
2/2 a;4^2x22/+y2 -VpS

*
„^3

c 2
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EXAMPLES FOR PRACTICE.

1. Required the product of a;2 —x^-|-3/2 andx-\-y.
Ans. x^-\-y^.

2. Required the product of x^-\-x^y-\-xy^-^y^ and
re—

2/' ^^ns. x*—y*.
3. Required the product of x^-\-xy-{-y^ and x^—xy-\-

y^' An$. x^+x^y^-^y*.
4. Required the product of 3a;2__2xj/+5, and x^ +2a^/

--3. Ans. 3x«4-4x3j/-4a-22/2— 4a;2+ 16a2/- 15.

6. Required the product of 2a^—3aa;+4a-2 and ba^ —
6ai-2x2, Ans. IOC --27a3a:+34a2a;2 — IBax^ - S.-c".

€. Required the product of 6x3-f-4aar2 4-3a2a;4-a3, and
2x2 -3aa;-f-a2. j9mj. lOx* — Vax^ — a^x^ -Sa^ais-f«*

7. Required the product of 3x^-\-2x^y2-\-3y^ and 2x3
»-3x» 1/3 +52/3.

j3ns. 6x6 — 6x*i/' —Qx* y'^ ^'ilx^y^ +x^y^ -{-Ibx* .

8. Required the product of x^ — ax~^bx—c and x^ —
t?x4-e. ^ns. x^— ax^ — cix^+ (64-ad+e)x3 — (c+^ci+^O

x^+ (cd-\-eh)x—ce.
9. t Required the product of the four following fact-

lors, viz.

L II. III. IV.

{a + b) (a8 +a6+.62) {a— h) and (a^
— a6 + i^),

Ans. a6 — fcs^

10. Required the product of a^ 4" ^a^oc + 3ax2 + x^

and a3 — 3a2x + Sax^ — x^.

Ans. a^ — .3a4x2 + SflSa* — x«.

11. Required the product oi a'^-\-a'^c^-{-c'^ anda^—c^.

Ans. a* — c".

12. Required the product of a^ •\- h^ -\- c^ — ah— ac— he and a -\- b -\- c. Ans. a^ — Sate -\- h'^ -{- c^.

f I would advise the learner to perform the calculation of this example
several ways, viz. First, by multiplying the product of the factors I. and

II. by the product of '.he factors IIL and IV. Secondly, by multiplying the

product of the factors I. and III. bj' the product of the factors II. and IV.

Thii-dly, by rrubiplying the product of the factors I. and IV. by the product
of the factors 11. anS III. The last method is the most concise ; See Euler'b

Algebra page 119. Vol. I.
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DIVISION.

Division is the converse of multiplication, and is per-
forrneJ like that of numbers ;

the rule being usually
Jitided into three cases

;
in each ofwhich like signs give

+ m the quotient, and unlike signs
—

,
as in finding their

products*.
It is here also to be ohserved, that powers and roots of

the same quantity, are divided by subtracting the index of

the divisor from that of the dividend.

Thus, a3-j-a2, or-t=a ; 0=^-7-0% or,-S=a^ ;

J ' 4' or—=a>2
;
and a"'-^a". or——a'^-^

CASE I.

When the divisor and dividend are both simple quantities,

RULE.

Set the dividend over the divisor, in the manner of a

Taction, and reduce it to it simplest form, by cancelling
he letters and figures that are common to each term.

EXAMPLES.

Gab 12ax^
6a6-r-2a, or-^—

=36
;
and ISax^-j. 2x, or— „

—=4ax
;

a a
i-i-a, or -= 1 ; and a -f- — a, or = — 1.

* According to the rule here given for the signs,1t follows that

-f-a6 —ah —ah_ •\-ah

Is'will readily appear by multiplying the quotient by the divisor j the signs of

le products being then the same as would take place in the former rule.
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— 2a ' 111
Also - 2a -r 3a, or -^

——
| ;

and 9x^ -^3x* =3x* ,

1. Divide IGx^ by 8.x, and 12a'' x'^ by -Qa^x.
3x

Ans. 2x, and——*

2. Divide —15ay^ hy Say and — IQax^y by — 8ax.

Ans. —oy, and i

SrDivide—-a *, by Ta2,andax3 by —-a^x*.

^/is. _31, and -^^a^xT^-
2 X

4. Divide na-b'^ by— 30=6, and — Ibay^ by — 3ay^.
Ans. — 46, and dyh

5. Divide — Iba'^x- by 5ax^
,
and 21 o^cs-j-i by — 7a

c^xT. Ans. — 3a, and— 3ax4.

6. Divide — llx^a^c by — 5x^a~c2^ and 24 ^xy by— Ana Hxiaei
»yx?/.

^"^-
^~»and3yxy.

CASE II.

When the divisor is a simple quantity, and the dividend a :

compoimd one.

RUiE.

Divide each terra of the dividend by the divisor, as in

the former case
; setting down such as will not divide in

the simplest form they will admit of.

EXAMPLES

a6+62 a+b
{ab+b^) -f. 26, or-^ = ^a+^b =-^

10a6— 15ax

(10a6— 15ax) — 5a, or =26— 3x.
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30ax-4Bx-
(30ax-48x9) ^ Qx, or

-^-

= ba *~ Bx

1. Let 3x3+6x2 4-3rtar—15.T be divided by 3x.

Ans. a;2+2x+a--6.
s2. let 3abc-\-12ahx—9a^b be divided by 3ab.

Ans. c-\-4x—3a.

3. Let40a363-{-60a2fe2_i7aJ be divided by -ab.
Ans. -.40a^b2—60ab+n.

4. Let ISa'bc —12acx'^-\-dad^he divided by -buc.
12x2 d2

Ans. —3ab-] —
.

5 c

5. Let 20ax3-f 15a.x'+ 10ax+6a be divided by 5a.

Ans. 4x3 4-3.x2-{-2x+l.

C. Let 6bcdz -4- 4bzd^ — 262^^2 be divided by 2bz.

Ans. 3cd + 2(/2 — bz.

7. Let 14a2 — lab + 21ax— 28o be divided by 7a.

Ans. 2a— b -\- 3x — 4.

8. Let— 20ab -f 60ah^ — 12a262 be divided by
— 4ab.

Ans. 5— 1562 _|. 3ab.

9. Let Iba^bc— 12acx2 + bad- be divided by
—5ac.

, .
12x2 ^2

Ans. — Sab H •

CASE III.

When the divisor and dividend are both compound
quantities.

RULE.

Set them down in the same manner as in division of

numbers, ranging the terms of each of them so, that the

higher powers of one of the letters may stand before the

lower.

Then divide the first term of the dividend by the first

term of the divisor, and set the result in the quotient,
ivith its proper sign, or simply by itself, if it be affirma-

i ive.
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This being done, multiply the whole divisor by the

term thus found ; and, having subtracted the result from

the dividend, bring down as many terms to the remainder

as are reqnisite^for the next operation, which perform as

before
;
and so on, till the work is finished, as in cgmmon

arithmetic.

EXAMPLES.

x'^-\-xy

xy+y^
xy-\-y-

4a''x-\-iax^

ox*+x3

a;-3)x3-9x2+27x-27(x2-6a;+9
x3— 3-x2

—6x2 4-:^7x
— 6x2 + 1 8x

9x-27
9x—27
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1,

2.x»— 3ax-}-a2)4x*— 9a=cc2_{_6a3a;-a^(2a;3+3aa;-a=
4a;4—6aa;3+2a3i2

6ax^ - 9a2a;2-f3a3a;

-2a2xa+3a'a— a*

_2a2x2-j-3a3x~a*

Note 1. If the divisor be not exactly contained in the

dividend, the quantity that remains after the division is

finished, must be placed over the divisor, at the end of
:he quotient, in the form of a fraction : thus*.

0/V.3

a+x)a3-a;3(a2—ax + i"

a-\-x

— a~x— x^
— a^x— aa;2

ax^-\-x^

* In the case here given, the operation of division may be considered as

rminated, when the highest power of the letter, in the lirst or leading ternti

the remainder, by which the process is regulated, is less than the power
the first term of the divisor; or when the first term of the divisor is not

imtained in the first term of the remainder ; as the succeeding part of the

lotient, after this, instead of being integral, as it ought to be, v/ould neces-

rily become fractional
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—x^y+y'^

x^y^-\-xy^

-X2/3 4-1/4

—xy^—y*

2y*

2. The division of quantities may also be sometimes

carried on, ad infinitum, like a decimal fraction
;

in which

case, a few of the leading terms of the quotient will gene-

rally be sufficient to indicate the rest, without its being

necessary to continue the operation ; thus,

/
^ a a^ a^ a*

a'\-x

—X

—X

a

X3 g

* Now, it is easy to perceive tliat the next or 6th term of the quotient will

fee — — , and the seventh term
, and so on, alternately /)i«s and minus ;

as a6
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And by a process similar to the above, it may he shown

that

a X a-2 x^ X* x'

Where the law, by which either of these series may be

continued at pleasure, is obvious*.

this is called the law of continnaiion of the series. And the sum of all the

terms when infinitely continued is said to be equal to the fraction —_ .

a+a?

Thus we say the vulgarfraction _ when reduced to a decimal is =22222, &c.

infinitely continued. The terms in the quotient are foimd by divrding the re-

mainders by o, the first term of the divisor ; thus, the first remainder —x di-

vided by o, gives
—^ the second term in the quotient; and the second re-

ft

niainder +— divided by a gives +— the third term, &c.
a a2

* In this example, if a; be less than a, the series Is convergent, or the value

of the terms continually diminish ;
but when a; is greater than a, it is said to

diverge.
To explain this by numbers : suppose a = 3, and x= 2.

Then, H-i . ^-i-r^, &c.
a ' as a2

The corresponding values are,

^ ^3~9~27
R'herc the fractions or terms of the series grow less and less, and the farther

tliey are extended, the more they converge or approximate to 0, which is

supposed to be the last term or limit.

But ifa=2, and x=3.
X x2 xs .

Then, 1 +-+-:r+-T' ^^'
' ' a ' a2 ' a3

The corresponding values are,
3 ,9 .27 .^

•1
I —1_—J— , &c.^2 M~8

In which the terms become larger and larger. This is called a diverging
series.

If a;=l, and a=l in the preceding example :

m a _ X
,
xn x3 ^ .,, , 1

Then, = i
\. ^ &c. will be——-=l_l J.l_l, &c.

Now, because =2", it has been said that 1—1~}"1
—

1, &c. infinitely con-

14-1
tinued, is =! : a singular conclusion, when it is perceived from the terms

themsehes, that their sum must necessarily be either or -^-l, to whateret

D '
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EXAMFLES FOR PRACTICE.

1. Let g2—2oa:+a;2 be divided by a—x. Ms. a— cc,

2. Let x^—3ax2-\-3a~x—a^ be divided by a; -a.

Jlns, x2— 2aa;+a2.

3. Let a3+3a2a;+5aa;2+x3 be divided by a+x.
Ans. a2+4ax+x2.

4. Let 2i/3 -192/3-f 26j/— 16 be divided by y— 8,

Ans. 2if—3y-\-2.
5. Let xs 4-1 be divided by cc+l, and x6— l by x-1.

.^ns. x^ — x3 +x2 - x+ 1
,
and x* +a« +x3 -rx^ +x+ 1.

6. Let 48x3— 76ax2 — 64a3x4-105a3 be divided by 2x

— 3a. .4n«. 24x=-2tJX—35a2.

7. Let 4x4 — 9x3-f-^x-l be divided by 2x2+3x—l.

.3ns. 2x2— 3x4-1 •

8. Let X*—a'x2-|-2a3x— a^ be divided by x2 -ax4-a^.
Ans. x^-\-ax — a^.

9. Let 6x* — 96 be divided by 3x— 6, and a^+x* by a

..^ws. 2x3+4x2+ 8x4-16, and a"— a3x+o2x2-ax3+x''.
10. Let 32x5 4-243 be divided by 2x+3, and x^ — a« by

Ans. 16x*—24x3+36x2—54X+81, andx5+a:*;*+
a2x3+a3x2+a*x+a5.

11. Letfc«--3?/4 be divided hy b—y, anda*+4a2&+
Si by a+ 26.

Jns. 63+52y+jy2 4-y3__2_, anda3-2a26+4a6
o—

2/

1663+246*
+4a62_862 _863+__^-^-.

-xtent the division is supposed to be continued. The real (juestion, however,

results from tlie fractional parts, which (by thedivison) is always + ^ when

the sum of the terms is 0, and —i when the sum is + 1 : consequently i

IS the true quotient in the former case, and 1—i in the other. Editor.
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12. Let x3-f-p.r;+9 be divided by x+Oj and x^ —px^-^
]X-'—r by x—u.

Alls. x-\-p^a-\--——. , and x"-^ (a'-p) x-ap*
x-f-a

x—a
13. Let 1—5x+10x3—10x3+5x*—x^ be divided by

l-2x+x3. Ms. 1—3x+3x2—x'.

14. Let a^ 4-46* be divided by a2_2a6-|-263.

15. a^— Sa^x+lOa^x^— lOa^x^-f-^ax*— xs be divided

bya2-2ax+x2. Ans. o^ — Sa^x-f-SaxS — x^.

16. Let a^-ffc" be divided by a''+ab^2+b^.
A71S. a^ -dh^2-\-i^-

OF ALGEBRAIC FRACTIONS.

Algebraic fractions have the same names and rules of

operation as numeral fractions in common arithmetic
;
and

the methods of reducing them, in either of these branches,
to their most convenient forms, are as follows :

^ CASE I.

Tojlnd the greatest common measure of the terms of afrac-
tion.

RULE.

1. Arrange the two quantities according to the order of
their powers, and divide that which is of the highest di-

mensions by the other, having first expunged any factor,
that may be contained in all the terms ofthe divisor, with-
out being common to those of the dividend.

2. Divide this divisor by the remainder, simplified, if

necessary, as before
;

and so on, for each successive re-

mainder and its preceding divisor, till nothing remains,
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when the divisor last used will be the greatest common
measure required ;

and if such a divisor cannot be found,

the terms of the fraction have no common measure,* -

Note. If any of the divisors, in the coarse of the ope-
ration, become negative, they may have their signs chang-
ed, or be taken affirmatively, without altering the truth of

the result
;
and if the first term of a divisor should not be

exactly contained in the first term of the dividend, the se-

veral terms of the latter may be multiplied by any number,
or quantity, that will render the division complete!.

EXAMPLES.

1. Required the greatest common measure of the frac-

tlOD

'-{-a:'

X^ —X

X +x
or a;2-f 1

z*-{-x^

- .C2— I

—x^ — 1

*
If, by proceeding in this manner, no compound divisor can be found, that

is, if tlie last remainder be only a simple quantity, we may conclude the case

proposed does not admit oi" any, but is already in its lowest terms. Thus, for

instance, if the fraction proposed were to be ~ — '-

; it is

plain by inspection, that it is not reducible by any simple divisor", but to

know whether it may not, by a compound one, I proceed as above, and find

the last remainder to be the simple (juantity 7.i2 : whence I conclude that

the f)-action is already in its lowest terms.

t In findin,'j the greatest common measure of two quantities, either of them

may be multiplied, or divided, by any quantity, which is not a divisor of the

other, or that contains no factor which is common to them both, \» itiiout in any
respect changing the re-sult.

It may here, also, be farther added, that the common measure, or divisor,

of anj number of quantities, may be determined in a similar manner to that

given above, by first finding the common measure of two of th'im, and then

of that common measure and a third ; and so on to the last.
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Whence x^ + l is the greatest common measure required.
2 I'equired the greatest common measure of the frac-

tion — ili

x3+26j:2-f.62a;

*_ 26x2 _ 262x1

orx-i-6 I a;2+26x-f-62(.T+6
a;2 -{-6a;

Z>a;4-62

6a;4-63

Where x-f-6 is the greatest common measure required.
3. Required the greatest common measure of the frac-

.- 3a2-2a— 1

tion •

4rt3 _2a2—3a+l
3^2—2a- l)4a3-2o2~3a4-l

3

12a3_6a2-9a+3(4a
12a3 — 8a2 -4o

2a2 - 5a4-3)3a2 -{-2a- 1

2

6a2_4a-2(3
6a2_15a-}-9

11a— 11 ora— 1

Where, since a— l)2a2- oa-{-3(2a— 3, it follows that the

last divisor a— 1 is the common measure required.

» Here, I divide the remainder—26a:2 —262 x by— 2xb, (its greatest sim-

, pie divisor) and the quotient is x-f-b ; and then 1 divide" the last divisor by
'

x+b, Sic. Editor.
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In which case the common process has been interrupted

in the last step, merely to preventthe work overrunning

the page.

4. It is required to find the greatest common measure

offlmf-.. Ans.x— a.

a;4 o*

5. Required the greatest common measure of the fracr

tion ^':=f
'

'^«^- «^ -^' •

a^.~.a^x — ax2-{- x^

6. Required the greatest common measure of the frac-

tion
x^+a'x^+a' Ms. x^+ax+a^ .

x*-{-ox^ -a3x— a*

7. Required the greatest common measure of the frac-

7a2— 23a6+ 663 . or
tion .

- Ji/is. a—oo.

8. ^Required the greatest common measure of the frac-

tion ^J±^±^^jzl^l5±^''^. Ms. x-f2a.

a-2 —bx-j-2ax—2ab

* This fraction can be reduced bv Simpson's ru'e (page 50) thus :

Fractions that have in them more than two diil'erent letters, and one of the

letters rises only to a single dimension, either in the nujnerator or denomma-

lor, it will be best to divide the said numerator or deiiomniator (whichever

it is) into two parts so that the said letter may be found m every term o4 the

one part, and be totally excluded out of the other : this bemg done, let the

"reatest common divisor of these two parts be found, which will evidently be

Z divisor to the whole, and by which the division of the quantitj- is to be tried ;

as in the following example,"where the fraction given is

a3-^ax2 ^h:'2—2a2 x-\-bax-2ba2

x2—bx-^2ax—2ab

Here the denominator being the least compounded, and 6 rising therein to a

siingle dimension onlv, I divide the same into the parts x2 -}-2a,r, and
—

t-^—
2at ; which, by inspection, appear to be equal to (a:-t-2a) X a:, and {x-i-ja)

X—t Therefore .T-i-2a is a divisor to both the parts, and likewise to the

whole, expressed by (x-f-2«) X (cc~b) ; so that one of these two factors, it

the fraciion given can be reduced to lower terms, must also measure the nu-

raertuor: but the former will be found to succeed, the quotient coming out

X2 —ax -^ bx — ab, exactly : whence the fraction itself is reduced to

x2—a
x-^bx—ab^ which is not reducible fartlier by x—6, since the divi-

sion does not terminate without a remainder, as upon trial will be found.

This rule is sometimes of great utility, because it spares ^eat labour, and

is very exffeditious in reducins several fractions.
' £.aito)
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9. Required the greatest common measure of the frac=

a;*—3a.T3—8g2 a;2+ 5 8a3.r— 8<J-*
.

don —r——r—— . Ans.a;2+2ax—2a2.
x^—ax~ —Ua'x-\-ba^

10. Required the greatest common measure of the frac-

5Q«+ 10a464-5(/3i,2
lion —;— ;

— -_——_, Ans. a-\-b.
a36+i;a262+2a63+Z**

11. Required the greatest common measure of the frac-

tion ; ;r-n TT-. i -.

— • Ans. Sa^—2c3," 9a36—^7a26c—6a6c2-|-l86c3

CASE II.

To reduce fractions to their lovcest or most simple terms.

RULE.

Divide the terms of the fraction by any number, or

quantity, that will divide each of them without leaving a
remainder

;
or find their greatest common measure, as in

the last rule, by which divide both the numerator and de-

nominator, and it will give the fraction required.

EXAMPLES. 1

1. Reduce and——— to their lowest terms.

Here ^h==£^ Ans. And -^—^-^ Ans.
ba^b^ bb ax+x^ a-\-x

2. It is required to reduce-ffltf to its lowest terms.
a^c-\-a-x

Here cx-^x'-

or c-\-x

a^c^a-x
a^c+a^x{a^
a^c+a^x

Whence c+r is the greatest common measure
;

and c4-x) '.— —— the fraction required.
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3. It is required to reduce—1-7- . to its lowest

terms.

— 26a;2-262a;

or x-^b x2+2bx+b^(x+b
a-2 +bx

bx+b^
6x+fe2

Whence x+b is the greatest common'measure
;
and x-f6)

.

~
;=—Z!— the fraction required.

a;a+2/JxU2 x+b

And the same answer would have been found,if tc^— i^^;

had been made the divisor instead of x^-\-2bx+b^.

x^ - a^
4. It is required to reduce to its lowest terms.

x^ — a^x^

Ans. '. J"— .

6. It is required to reduce
^ -; to its lowest^

,
6a2-|-llax+3x2

terms. ^Sa — x

3a-\-x
2-j;3 i6x— 6

6. It is required to reduce —- to its low-

est terras. .^«s. f.

„ ... ... , 9;c5_[.2x3+4x2—r+ 1

7. It IS required to reduce
;

-

16x*— 2x3-fl0x2— x+2
to its lowest terms. a Sx^-fx-' + l

6x2+x+2*
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a2fj2_c3(j3_a2c2 4.c4
8. It is required to reduce

^^^ d—iacd—2ac-- -]-2c'^
^^

its lowest terms. Ans.
iorf^H^c^

'

! CASE III.

'J'o reduce a mixed quantity to an improperfraction.

RULE.

Multiply the integral part by the denominator of the

fraction, and to the product add the numerator, when it is

affirmative, or subtract it when negative ;
then the result,

placed over the denominator, will give the improper frac-

tionrequired.

EXAMPI<ES.

1. Reduce 3| and a to improper fractions.

^ ^^ 3X5+2 15+2 17

Here3|= —=—-—=— Ans.
* 5 5 5

^ ,
h aXc — b ac— b a

And a = = •^»*-

c c c

2. Reduce x-\-~ and x to improper frac-
X X

tions.

,
a xYsX-^-a x^-\-a .

Here x + -= = Ans.XX X

, , ^ a^—x- a:2—fl2+x2 2x2—a^
And a* = = Ans.XXX

* xy,x=x2. In adding the numerator a 2—x2 , the sign
— affixed fu

the frnrtini/'- ^"
,
denotes that the whole of that fraction is to be subfract-

X V

ed, and consequently that the signs of each term of the numerator must be
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2a;
3. Let 1 be reduced to an improper fraction.

Ans.
a

3x— b
4. Let 6a— be reduced to an improper fraction.

- Ans.
.

a

o. Let a: —be reduced to an improper fraction.
^"

„ 2ax—a—x^
Ans. ,

2a
2a;— 7

6. Let 5+ —-— be reduced to an improper fraction.
^^

^ 17i-7
Jins.

3a:

7. Let 1— be reduced to an improper fraction.

a

x—3
8. Let I+2j: be reduced to an improper frac-

ox
tion. ^ 10x2 4-4x-|-3

Ans. .

CASE IV.

To reduce an improperfraction to a whole or mixed

quantity.

RULE.
j

Divide the numerator by the denominator, for the inte-!

gral part, and place the remainder, if any, over the deno-,

minator, for the fractional part ;
then the two, joined to-

gether, with the proper sign between them, will give the

mixed quantity required.

«

changed wl»en it
•

is combined with X2 , hence the improper fraction is

X
xa—as -J-Xg -2x2—o3

'—^ or —
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.1

01:

EXAMPLES.

1. Reduce — and °^"^"- to mixed quantities,

27
Here _=27^5=5| Ans.

5 ^

And =(ax-j-a2)^a:=a+— Ans.
X ^ ^ X

2. It is required to reduce the fraction to a
X

whole quantity. Ans. a— a:^,

3. It is required to reduce the fraction — to a
ab

mixed quantity. ^^^^ j
2a

4. It is required to reduce the fraction — to a
U'-X

(nixed quantity. Ans.a+x+^,
a— x

fv* 3 ,^ qj 3

5. It is required to reduce the fraction — to a

vhole quantity. Ans. x'^+xy-^-y'^.
]0x^ - 5.t+3

6. It is required to reduce the fraction
ox

3
a mixed quantity. Ans. 2x—H .

OX

CASE V.

fo reducefractions to other equivalent ones, that shall have
a common denominator.

RULE.

Multiply each of the numerators, separately, into all the

ienominator?, except its own, for the new numerators, and
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all the denominators together for a common denominu

lor*.

EXAMPLES.

1. Reduce - and - to fractions that shall have a common
c

denominator.

^^"^^^^^^^o (
the new numerators.

bxc=bc the common denominator.

Whence, t and -=7- and 7- >
the fractions required.' o c be be

2x b .

2. Reduce — and -to equivalent fractions having a com-
a c a u"ex 0.0

mon denominator. ji^g — and — •

ae ac

3. Reduce - and —^ to equivalent fractions having a

_,

^
.

,

"
, ac ab+b"-

common denominator. Jins. — and —;

—
be be

3r 26
4. Reduce—, ^:^, and d, to equivalent fractions having

2a oc
Q^^ ^^^j Qacd

a common denominator. ^^s. ,5

—
a
— and

Qac'' 6ac 6ac

3 2.r 4x
5. Reduce -, — and a -j

—
,
to fractions having a com-

4' 3 ^5
mon denominator. 45 AQx 60a-f48x-

Ans. rr:
, ^TT- and

60 ' 60 60

*
It may here be remarked, that if the numerator and denominator

a fraction be either both multiplied, or both divided, by the same numbe:
or quantitj', its value will not i3e altered : thus

2 2X3 6 3 3-r3 1 a ac ab a

3 3X3 9' 12 12-7-3 4' 6 6c be c

which method is often of great use in reducing fractions more readily t

a common denominator.
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b. Reduce -, — , and > to iractions having a cona-.27 a—x
mon denominator. la^ —lax 6ax—6x'' I4a-f.l4.r^

"*
14a- Hrc' 14a- 14a;^ Ha-Ti^'

CASE VI.

7% add fractional quantities together.

RULE.

Reduce the fractions, if necessary, to a conimon deno-
minator

;
then add all the numerators together, and under

their sum put the common denominator, and it \yill give
the sum of the fractions required*.

EXAMPLES.

X • %
1. It is required to find the sum of— and -.

i=3x
I

l=z2x I

Here
"^v^o. o'*^ ^ the numerators.

And 2x3=6 the common denominator.
3x 2x 5x

Whence ifT"'7r=-7-, the sum required.

2. It is required to find the sum of-, -, and ?
b d f

Here aXdXf=adfi
cX b'><f=cbf \ the numerators.

eXbXd=ebdS

• In the adding or subtracting of mixed quantities, it is best to bring
the fractional parts only to a coramon denominator, and then to affix

their sum or difference to the sum or difference of the integral parts, in-

terposing the proper sign.

E .
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And b X. d xf=bdf the common denominator.

adf cbf ebd adf-\-cbf-j-ebd
Whence

^^+^-^^+^^= bdf
^^^ '""^^

3 X' 'Zax
3. It is required to find the sum of a — and 6+—1^.

^ be
Here, taking only the fractional parts,

We shall have
J 2axXb=2abx \

^^e numerators. .

And bXc=hc the common denominator.

3cx2 2abx 2abx - Zcx^
Whence a — —4.6^-7—= a-\-h-\- r the sum.

4. It is required to find the sum of -^ and -r-

Ans. — .

35

5. It is required to find the sum of— and -.

. 15a;+2a.T
Jins.

10a

6. It4s required to find the sum of -, ~, and -

Ans.— .

12
4a; a;— 2

7. It is required to find the sum of — and
7 5

27.T-14
Ans.

35
2x 8a;

8. Required the sum of 2a, 3a
-| and a —— •

5 9

22x
Ans. 60 .

45

.

'

3x a a—x
9. Required the sum of 2a-f— , , and •

Sa^'x—Sax^+bx^
Ans. 2a+2+

5a*— 5ax
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10. Required the sum of 6a;H—— and 4a; — —r—-.

5x2 — 16.r+9
Ans. 9x-

Ux
2a ,a-f-2a;

11. It is required to find the sum of 6a;, --^»
and——

.ins.5x-^ _- -.

CASE VII.

To subtract onefractional quantity from another.

RULE.

Reduce the fractions to a common denominator, if ne-

cessary, as in addition
;
then subtract the less numerator

from the greater, and under the difference write the com-

mon denominator, and it will give the difference of the

fractions required.

EXAMPLES.

2x Sx
1. It is required to find the difference of

-^
and — •

Here |^>^|ZJ^^ I
the numerators.

And 3X6=15 the common denominator.

1 Ox 9 z" X
Whence f^— 77=77, the difference required.

x—a
2. It is required to find the difference of —7- and

2a— 4a;
'^^

3c

TT (x— a") X3c=3c.T— 3ac ) ., .

"^42a~.4r)X26=:4a6-86x ]

'^' ""^^rator.
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And 26x3c=6&c the common denominator.

2,cx— oac Aab—Ux ^cx — 3ac — 4a6 + ^^^
Whence —^——~Gb^^ 667
the difference required.

3. Required the difference of —— and— • Ans. •''c+ol'

l+ 2y
4. Required the difference of \by and — r~ •

118J/-1
.tj?is. .

8

oar GX
5. Required the difference of r and rTT*

^ 2axe
Ans. — ^.

O^— o-

X
' w

Zba—26a;—ex

G. Required the difference ofx~_ andx-f — .

Ans.
2bc

d 3; a-\-x
7. Required the difference of a 4

—r- and a— -—-'
^ a+a; o.—x

2o24-2a;2
Ans. — — .

a^—x2

8. Required the difference of ax + —
^
— a"^ a; —

ffn^ 86x— 99
21

'

.^Mi. flx
f68~~"*

9. Required the difference of 2xH—"——
,

'^'^^ 3x +
^'-'^— ^Q

, 32x4-5
15 ^'J'^*. ^+-1^^-

a— X _

and10. Required the difference of . a +
^. _ ^

j3rts. a-a+ic - ^^

a(a-x)'
«2 •T'
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CASE VIII.

To multiplyfractional quantities together.

RULE.

Multiply the numerators together for a new numerator,
and the denominators for a new denominator ;

and the

former of these, being placed over the latter, will give the

product of the fractions, as required*.

EXAMPLES.
X 2a;

1 . It is required to find the product of '- and -^t--

Here '-= -—=— the product required.6X9 54 27 * ^

2. It is required to find the continued product of

_, and
2' 5 21

TT a;x4.TXlO.T 403:^ ^.r^
Here = =— the product.

2X5X21 210 21
^

3. It is required to find the product of - and -•
a a— X

-^ XX (a+x) x^-\-ax
Here y (=-7; the product.

aX (a—X) a'^—ax

4. It is required to find the product of— and —r-
2 3o

» When the numerator of one of ihe fractions to be maltiplied, and the
denominator of the other, can be divided by some quantity which is com-
mon to each of them, the quotients may be used instead of the fractious

themselves.

Also, when a fraction is to be multiplied by an integer, it is the same
thing whether the numerator be miiUipIied by it, or the denominator di-

vided by it. Or if an integer is to be multiplied by a fraction, or a fraO"
tion by an integer, the integer may be considered as having unity for ifg

denominator, and the two be then multiplied together as usual.

E 2
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6. It is required to find the product of -^
and -_i.

5a

6. It is required to find the continued product of —
,

If!, and 4-. ,
8a.3

7. It is required to find the continued product of

o c
'

26

8. It is required to find the product of 2a-\-— and 3a—
_. 26 62

ax -ins. 6a^-{-3bx ——>.

a; o

9. It is required to find the continued product of 3x^

2a '*°^a +6' 2a2 4-2a6
10 It is required to find the continued product of

flS—a;2 o2—b' , , ax . o^ — a^^
, ,

and a -{- Jins. .

«+6 ax+a;2 a—a: x

CASE IX.

To divide one fractional quantity by another.

RVLK.

Multiply the denominator of the divisor by the nume-

rator of the dividend, for the numerator
;
and the nume-

rator of the divisor by the denominator of the dividend,

for the denominator. Or, which is more convenient in

practice, multiply the dividend by the reciprocal of the

divisor, and the product will be the q.iotieat required*.

• When a fraction is to be ilivided by an integer, it is tlie same thing

•whether the numerator be divided bj it, ov the denominator multiplied

T)V it.
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EXAMPLES.

1. It is required to divide — by —.

X 2x X 9 9x- 3
Here ~^-=.-^X-=-=.^=H .Ans.

'2a , 4c
2. It is required to divide -r- "y -j'

TT ^a d 2ad ad ^Here \/ = = Ans.
b 4c 46c 26c

x-\-a x-\-b
3. It is required to divide

^3-^ by ^^^'
Here ^±^^^Jl J^l±.^Jll±^ Ms.

X—b x-\-b x^ — 6^

4. It is required to divide —rr—7 by
—

;

—
^

a^-\-x^
''

x-\-a
2a;2 ic+a 2x^(x-\-a) Src

Here ~ r~, X =
a3+a;3 x a:(a5+x3) x^—ax+a^

Ix 3 n 7x^
5. It is required to divide -~

by
— '^"**

-|-r*

4x^ 4x
6. It is required to divide —— by Cx. Ans.—,

x-\-l 2x x-4-1
7. It is required to divide —~ by tt- '^"^*

"TT •

8. It is required to divide by -=• Ms. -— .

2ax-\-x^ X
9. It is required to divide —,

—
by •

2a -fx
^n5. --

c- -{-cx-{-x^
'

10. It is required to divide _*"'~^_ by fiil^'.
x2—26x+62 X—6

x2-{-62
.^71$

X

Also, when ihe two numerators or the two denoininators, cati be di-

tided by som« common quantity, that quantity ir.av be thrown out ofeach,
*nd the quatieats ased instead oi the fractions first proposed.
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INVOLUTION.

Involution is the raising of powers from any proposel
root; or the method of finding the square, cube, biquad-

rate, &c. of any given quantity.

RCLE I.

Multiply the index of the quantity by the index of the

power to which it is to be raised, and the result will be

the power required.
Or multiply the quantity into itself as many times less

one as is denoted by the index of the power, and the last

product will be the answer.

Note. When the sign of the root is \-, all the powers of

it will be + ;
and when the sign is —

,
all the even pow-

ers will be -f ,
and the odd powers — : as is evident from

multiplication *.

EXAMPLES.

a, the root.
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- the root.
a

—
=»quare.

a~
-=cube.

-—=4th power.

'lb
4a2x4

the root.

962

8a 2.T®

:square.

+

2763
:cube.

816"
:4lh power.

X—a the root,

a-—a

a;
2—ax

x2—2ax-\-a~ square.
X—d

a;3— 2ax2-fa2x
— ax2-}-2a2x—a'

a3_3ax2 4-3a2x-a3 cube.

.r+a the root.

x-{-a

x2-}-ax

r2 4-2ax4-a" square.
x-{~a

x3+2a.r2-fa2x

;3 4-3ax2-f-3tt2x4-a3 cube.

EXAMPLES FOR PRACTICE.

1. Required the cube or third power, of 2a2.

Arts. 8a«.

2. Required the biquadrate, or 4th power, of 2a2x.

Ans. 16a*x*.

2
3. Required the cube, or third power, of —^x-y^.

o

Ans.-—x^u'-*.

27
3a2 X

4. Required the biquadrate, or 4th power of

Am.

662

"6256"
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5. Required the 4th power of a+.r ;
and the 5th power

of a—?/. Ans. a^-{-4a^x-\-6a~x^-\-4ax^-\-x'^ , and o*

RULE II.

' A binomial or residual quantity may also be readily rais-

ed to any power whatever, as follows :

1. Find the terms without the coefficients, by observing
that the index of the first, or leading quantity, begins with
that of the given power, and decreases continually by 1

,
in

every term to the last ;
and that in the following quantity,

the indices of the terms are 1,2, 3, 4, &c.
2. To find the coefficients, observe that those of the

first and last terms are always 1
;
and that the coefficient

of the second term is the index of the power of the first :

and for the rest, if the coefficient of any term be multi-

plied by the index of the leading quantity in it, and the

product be divided by the number ofterms to that place, it

will give the coefficient of the term next following.
JVote. The whole number of terms will be one more

than the index of the given power ;
and when both terms

of the root are +, all the terms of the power will be -J- ;

but if the second term be —, all the odd terms will be -Ki
and the even terms —

; or, which is the same thing, the

terms will be + and— alternately*.

• The rule here given, which is the same in the case of integral pow
ers as the binoftiinal theorem of Newton, may be expressed in general
terms, as follows ;

'^

2 '23

%
a'

3,

)f.

\

{a—b)m=:am—mam-\l,-{-m.—^a'>n-2bs—m.—^ . —:^ am-^b^, &c.
m— 1 . m—I m—2

T"' 3

which formula? will, also, equally hold when m is a fraction, as will b«

more fully explained hereafter,
It may, also, be farther observed, that the sura of the coefficients U

every power, is equal to the number 2 raised to that power. Thus l-J-i

=2, for the first power ; l-J- 2.f1=4=22, for the square; 1-f 3^-3-t
1=8=23, for the cube, or third power ;

and so on.

f-i,
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EXAMPLES.

1. Let a-{-x be involved, or raised to the 5th power.
Here the terms, without the coefficients, are

a*, a'^x, a^xz,a^x^, ax*, xs.
And the coefficients, according to the rule, will be

5X4 10X3 10X2 5x1
' '

2
' ~3~'~T~' ~1~'

or 1,5, 10, 10, 5, 1,

Whence the entire 5tb power of a+.r is

a^-^5a*x-{-\0a^x2-{-l0a"x3+5ax*+x^.
2. Let a—x be involved, or raised, to the 6th power.
Here the terms, without their coefficients, are

a^, a^x, a*.r2, a^x^, a^x*, ax^
, x^.

And the coefficients, found as before, are

6x5 15x4 20x3 15x2 6x1
' '

-2"' T"' "T"' ~5"' ~6~ '

or 1, 6, 15, 20, 15, 6, 1.

Whence the entire 6th power of a— a; is

a6-.6a5x+15a*.r2 ^20a^x^-\-\5a^x^ —6ax^-i-xG.
3. Required the 4thpower of a+a-, and the 5th power

of a— .T. ^Ins. a* -\-4a^x-{-6a^ x^ -{-4ax^ -\-x''' , and a^—
Sa^x+lOa^x^ — lOa^x^-^oax^—xK

4. Required the 6th power of a+6, and the 7th power
of a—

2/.
Ais. a6+6a56+15a*i2_^20a3^»3_(_i5a254_|_

6ai>5+66, and a-?—7a6i/+2 105 2/2—35

5. Required the 5th power of 2-\-x, and the cube of

a-fca;+c. Ans. 324-80a;+80x2+40a;34-10a;*+.T% and
a3+ 3a2 c+3ac2 -^c^-3^bx— 6acbx—
3c2 &x-f 3o62 x2 -{- 3co2 ;t2 _ fe

3 ^ 3
.

EVOLUTION.

Evolution, or the extraction of roots, is the reverse of

involution, or the raising powers ; being the method of find-

ing the square root, cube root, &c. of an}^ given quantity.
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CASE I.

Tofind any root of a simple qttanttly.

RULE.

Extract the root of the coefficient for the numeral part,
and the root of the quantity subjoined to it for the hteral

part ; then these, joined together, will be the root re-

quired.
And if the quantity proposed be a fraction, its root will

be found, by talcing the root both of its numerator and de-

nominator.

J\i'ote. The square root, the fourth root, or any other

even root, of an affirmative quantity, may be either -f- or

— Thus, ^u2=-i-aor — o, and 4/6^=-j-6 or —b, &c.

But the cube root, or any other odd root, of a quantity,
will have the same sign as the quantity itself. Thus,

^ya^=a; l/
— a^= -a; and V-a5=_a, &e.*

It may here, also, be farther remarked, that any even
root of a negative quantity, is unassignable.

Thus, ^—a^ cannot be determined, as there is no

quantity, either positive or negative, (-}- or —), that,

when multiplied by itself, will produce
—a-.

EXAMPLES.

1. Find the square root of 9x2
;

and the cube root oi

Here v' ^^^
=

v/9 X ^x^ =.3>:a:=3a; Ans.

And 3/3a;3
= 3/8X3/x3=2xa:=2a:. Ans.

* The reason why 4- o and — a are each the square root of 02 i» ob-

vious, since, b}' the rule of multiplication. {+a) X (-f-a) and (
—

a) X
(
—a are both equal to as ,

And for the cube rtot, fifth root, &c. of a neg;ative quantity, it is plain,
from the same rule, tbat

(—a)x(—a)X(—a)=—03 ; and (—a3)X(+a2)=—as.

Aud consequently i.y
— c" ;= — a, and \/ — ao •a.

k.
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2. It is required to find the square root of -—- and

the cube root of ,

2Tc3

ax , „ . Ba^x^ 2*xTT .a~x^ ^a^x2 ax j ,, ^

Here */ =z^ -——
;
and 2/ „^.

4c3 y/4c2 2c
^ 27c3 3c

3. It is required to find the square root of4a'^x^.

Jl7is. 2ax^.

4. It is required to find the cube root of — I25a^x^.

.fins. — 5ax^.

5. It is required to find the 4th root of SS^a^ir^.

Ans. 4ax^.

6. It is required to find the square root of •

Jlns. —-.

3xy

7. It is required to find the cube root of .^
125x6

Jlns. — .

5a;2

8. It is required to find the 5th root of — '—
.

Atis

243
~2ax^

CASE II.

To extract the square root of a compound quantify.

RULE.

1. Range the terms, ofwhich'the quantity is composed,
...according to the dimensions of some letter in them, begin-

ning with the highest, and set the root of the first term in

the quotient.
2. Subtract the square of the root, thus found from the

first term, and bring down the two next terms to the re-

mainder for a dividend.

F



60 EVOLUTION.

3. Divide the dividend, thus found, by double that pari

of the root already determined, and set the result both in

the quotient and divisor.

4, Multiply the divisor, so increased, by the term of

the root last placed in the quotient, and subtract the pro-

duct from the dividend
;
and so on, as in comrjion arithme-

tic.

EXAMPLES.

1. Extract the square root of a;*—4a;3+6a;s—4a;+l;

a;* —4x3+6x2 —4a;+l(x2 -2a;+l
X

2x2— 2x)- 4x3-}- 6x2
— 4x'-|-4x2

2x2 _4x-h 1)2x2 -4x+l
2x2-4x+l

Ms. x" — 2x-\- 1 ,
the root required.

2. Extract the square root of 4a''-|r-12a3x-|-13a?x2-}-6

.4a«+ 12a3x-M3a2x2-}-6ax3+x4(2a2-{-3ax-|-a;2
4a*

4a2-}-3ax(l2o3x-{-13a2x2
12a^a-\-9a2x^

4a2 -{-6ax+x2 )4a2 ^^ -\-6ax^+x*
4a2x2-j-6ax3-f-x*

*

Kote. When the quantity to be extracted has no exact

root, the operation may be carried on as far as is thought

necessary, or till the regularity of the terms shows the law

Vy which the series would be continued.

> EXAMPLE.

1. It is required to extract the square root of 1+x.
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^^^28 ^16 128'

1

^^+i) X

8/4
a;2 a; 3 .^ji

x-2 a;3xa;' .x

64

8 ''Te 64 ' 256

a;3 ic* re* a;^

a;>^

64^64 256

Kfiere
,
if the numerators and denominators of the two

last terms be each multiplied by 3, which will Qot alter

their values, the root will become

2 2.4^2.4.6 2.4.6.8 ~2.4.6.8. 10

where the law of the series is manifest.

EXAMPLES FOR PRACTICE*

2. It is required to find the square root of a*-\-4a^x-{~

6a^x2-i-4ax3+x*. Ans. a^-{-2ax-{-x^.

3. It is required to find the square root of x* -2x3-|-

2 2 ^16
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4. It is required to find the square jroot of 4a;8— 4.r'*4-

12a;3+a:2-6a;+9. -Ans. 2x^ -x-{-3.

5. Required the square root of x^ +4x5 -}-lOx'^ +20x^
+25.T2+24a;+16. Ans. x^-{'2x^+3x+i,

6. It is required to extract the square root of a^ 4-6.

7. It is required to extract the square root of 2, or of^

1+ 1. Ans. l+i-i+TV—A+A.^c.

CASE III.

Tofind any root of a compound quantity.

RULE.

Find the root of the first term, which place in the quo-
tient

;
and having subtracted its corresponding power from

that term,l3ring down the second term for a dividend.

Divide this by twice the part of the root above deter-

mined, for the square root
; by three times the square of

it, for the cube root, and so on
;
and the quotient will be

the next term of the root.

Involve the whole of the root., thus found, to its proper

power, which subtract from the given quantity, and divide

the first term of the remainder by the same divisor as be-

fore
;
and proceed in this manner till the whole is finish-

ed*.

* As this rule, in higt powers, is often tband to be very laborious, it

may be proper to obseine. that the roots of various compound quantities

mav sometimes be easily discovered, as follows :

Extract the roots of ail the simple terms, and coTinect thcM together by

the signs + or —
,
as may be judged most suitable for the purpose \}^^

involve the compound root, thus found, to its proper power, and tt it be

the same with the given quantity, it is the root required. But if it be

found to difler onlv in some of the signs, change them from + to— ,
or

from — to -f-, tili'its power agrees with the given one throughout.

Thus, in the third example next followi.ig, the root is 2a— 3a;, which

is the difference of the roots of the fi«t, and last terms } and in the lourth

example, tiic root is a +6+ c, which is the sum of tiie roots of the tirst, lourOi,

and sixth terms. The same may also be observed ol th^ sixth example.

where the root is found from the first and last terms.
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EXAMPLES.

1 , Required the square root of cf* ~ 2a^x-^3a^ o:^ — 2ax'^

4-x*.

a* — 2a'.T4-3a2 x- — 2ax^-\-x* (a^—ax-^x^
a*

9
2a~)—^2a^x

a*— 2a3a;+a2x2

2a2)2a2a:2

a* — 2rt3a:+'3a2x2
— 2ax^+x-^

2. Required the cube root of x^ + 6.r^— 40x3+96a--»-

a;6^6x5 -40x3-f-96x—64(a;3+2a;—4
x^

3a;<)63

3x*)'-Ux*

,;6_}_6a.5_40x3+96.T-64

3. Required the square root of 4a^ — I2rt;r4-9a:3.

Ans 2a—3x.

4. Required the square root of a~-\-2ab-{2ac-{h^-\-

2bc-\-c^. Ans. fl+i+c.
5. Required the cube toot of x^—Gx^^lox*—2Qx^-{'

16a:2 _6a-|-l. Ans a;— 1.

6. Required the 4th root of ISa* -96a3a:+ 216x2 x^-.

216as:3+81a-^ Ans. 2fl— 3x.

F 2
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7. Required the 6th root of 32x^—QQx'^-\-80x^ — 40x''t

4-IOj:— 1. Ans. 2x— 1.

Of irrational QUANTITIES,
OR SURDS.

Irrational quantities, or surds, are such as have no

exact root, being usually expressed by means of the radi-

cal sign, or by fractional indices
;

in which latter case, the

numerator shows the power the quantity is to be raised to,

and the denominator its root. ,

Thus, ^2, or 2 =
,
denotes the square root of 2

;
and

3/a3, or a3, is the square of the cube root of a, &c. *

CASE I.

To reduce a rational quantity to the form of a surd.

RULE.

Raise the quantity to a power corresponding with that

denoted by the index of the snrd
;
and over this new quan-

tity place the radical sign, or proper index, and it will be

of the form required.

EXAMPLES.

1. Let 3 be reduced to the form of the square root.

Here 3X3=32=9 ;
whence v^9 Ans.

* A quantity of the kind here mentioned, as for instance ^ 2, is called an

irrational number, or a surd, because no number, either wliolc or fractional,

can be found, which when multiplied by itself, will produce 2. But its ap-

proximate value may be determined to any degrree of exactness, by the com-

mon rule for extracting the square root, teing 1 and certain noo periodic de-

tisQals, which uever terminate.

"7
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2. Reduce 2x^ to the form of the cube root. ^

Here(2x2)3=8x« ;
whence 3/8x6, or (8.x«)'-i'

3. Let 5 be reduced to the form of the square root.

Ans. ^{25)
4. Let— 3a; be reduced to the form of the cube root.

Ans. 3/- (27x3).
5. Let—2a be reduced to the form of the fourth root.

Ans. -y(16a4).
6. Let a2 be reduced to the form of the fifth root, and

a/«+i/^- ^^and to the form of the square root.

Ans. V «' ^ x/ (a+2^ab-\-b), v/ (i «). and y/ li-

Note Any rational quantity may be reduced by the

above rule, to the form of the surd to which it is joined,
and their product be then placed under the same index, or

radical sign.

EXAMPLES.

Thus 2^2=^4X^^2=^4X2=^8
And 23/4= 3/8 X 3/4=y8X4= 3/32

Also 3ya=v/9Xya=v'9Xa=y9a
And ^3/4a=3/i-X3/4a=3/yX4a=3/i

J. Let 5^6 be reduced to a simple radical form.

Ans. yd 50).
2. Let ^'v/5a be reduced to a simple radical form.

Ans y(|)
2a 9

3. Let — l/—— be reduced to a simple radical form.
3 4tt2

^

CASE II.

, 2a
Ans. %/-Z'

t3

To reduce quantities of diff'erent indices^ to others that

shall have a given index.

RULE.

Divide the indices of the proposed quantities by the
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given index, and the quotients will be the new indices for

those quantities.

Then, over the said quantities, with theirnew indices,

place the given index, and they will be the equivalent

quantities required.

EXAMPLES.

i i-

1. Reduce 3^ and 2^ to quantities that shall have the in-

dex i. 1116 6
, , . ,Here ;:-f-77=xX-=-=3, the 1st index :

2 6 2 12
And _^_=-X-=-=2, the 2d index.

Whence (33)6 and (22)6, q^ 276 and 46,are the quan-
tities required.

J. 1
2. Reduce 5^ and 6^ to quantities that shall have the

1 J- -.
common index-. Ans. 1256 and 366*

6

3. Reduce 22 and 4* to quantities that shall have the

1 i 1,

common index - Ans. 16^ and 16'"
o

4. Reduce a- and a^ to quantities that shall have the

common index - Ans. o\ tnd .

\

5. Reduce a- and 6^ to quantities that shall have the
1

6*

1 1 _
common index -. Ans. (a^)* and {b*y.

Note. Surds may also be brought to a common index,

by reducing the indices of the quantities to a common de-

nominator, and then involving each of them to the power
denoted by its numerator.
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EXAMPLES.

I

1. Reduce 3^ and 4^ to quantities having a common m-

dex.

Here 32= 3«=<^' '6=21)'

And 43=4«'=42*)^=r6)^

Whence 2l\'^ and 16]^. Ans

2. Reduce 4^ and 6* to quantities that shall have a com-

mon index.

Ans. 256^5 and 125^2.

3. Reduee a^ and d^ to quantities that shall have a com-

mon index.

Ans. aA^ and a^je.
± _i

4. Reduce a"-* and b* to quantities that shall have a com-

mon index.

Ans. aT\h andfe^''2.
J. I

5. Reduce a" and 6"' to quantities that shall have a com-

mon index.

Ans. a^ml and b"lnn.

CASE III.

To reduce surds to their tn-ost simpleforms.

RULE.

Resolve the given number, or quantity, into two factors,

one of which shall be the greatest power contained in it,

and set the root of this power before the remaining part,
with the proper radical sign between them.*

» When the given surd contains no factor that is an exact power of the

kind required, it is aheadv in its niosl simple form.

Tlius, v' 15 cannot be reduced lower, because neither of its factors, 5, nor

3;^
is a square,
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EXAMPLES.

1. Let ^48 be reduced to its most simple form.

Here ^48=^16 X3=4<^3 Ans.
2. Let ^108 be reduced to its most simple form.

Here y108=3/27x4=33/4 Ans.
Aoie 1. When any number, or quantity, is prefixed tc

the surd, that quantity must be multiplied by the root o
the factor above mentioned, and the product be thenjoinec
to the other part, as before.

EXAMPLES.

U Let 2^32 be reduced to its most simple form.

Here 2^32—2^16X2=8^2 Ans.
2. Let 5^24 be reduced to its most simple form.

Here63/24=53/83<3=103/3 Ans.

Note 2. A fractional surd may also be reduced to a mor€
convenient form, by multiplying both the numerator an^

denominator by such a number, or quantity, as will make th«

denominator a complete power of the kind required ;
ant

then joining its root, with 1 put over it, as a numerator
to the other part of the surd.*

EXAMPLES.

2
1. Let v^- be reduced to its most simple form.

the

question <i^i/,c gi>cu, ivjitre 11 is louiiu iiiai 'V^^^'^ V ^^'i "' vvuicu case u

^ oniy necessary to extract the square root of the whole number 14, (or to
find it in some of the tables that have been calculated for this purpose) and
then divide it by 7

; wliereas, othenvise, we must have first divided the nu-
merator by the denominator, and then have found the root of the quotient, for
the surd

{lart; or else have deterrgined the root both of the numerator and
denonjinator, and then divided the one by the other; which are each o^ them
troublesome processes when performed by the common rules ; and in the nex(

example, for the cube root, ie labour would be much greater

7
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ere •?=vii=v'(^X14)=iv't4
Ans.

2. Let 3^- be reduced to its most simple form.

"'' =V^=3Vy||=3y(4x50)=|v50
A„s.

EXAMPLES FOR PRACTICE.

3. Let v/126 be reduced to its most simple form.

Ans. 5^5.
4. Let v'294 be reduced to its most simple form.

Ans. 7^6.
5. Let 1/56 be reduced to its most simple form. _

Ans. 23/7,
6. Let ^192 be reduced to its most simple form.

Ans. 4^3.
7. Let 7^80 be reduced to its most simple form. _

Ans. 28.^5.
8. Let 93/81 be reduced to its most simple form.

Ans. 27^3.
3 5

;}. Let-—^- be reduced to its mostsimjple form.

Ans. ^1^ v^30.

10. Let-^— be reduced to its most simple form. -

Ans. 1^12.
1 1 . Let ^9da-x be reduced to its most simple form.

Ans. la^lx.
12. Let.yz3_a2,x2 be reduced to its most simple form,

Ans. .TV's;
—a^.

CASE IV.

To add surd quantities together.

RULE.

When the surds are of the same kind, reduce them to
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their simplest forms, as in the last case
; then, if the sure

part be the same in them all, annex it to the sum of the

rational parts, and it will give the whole sum required.
But if the quantities have different indices, or the sure

part be not the same in each of them, they can only bf

added together by the signs -\- and—.

EXAMPLES.

1. it is required to find the sura of^27 and ^48.
Here ^21=^9X3 =3^3
And ^48=^16X3=4^/3

Whence 7^3 the sum.

2. It is required to find the sum of 3/500 and l/WS.
Here 3^500=3/125X4=53/4
And 3/ 108=3/ "27X4=33/4

Whence 8^4 the sum.

3. It is required to find the sum of 4^/147 and

v/^o.
Here 4^147=4^^4.9 x 3=2>y3
And 3^ 75=3^25X3=15^3

Whence 43^3 the sum.

2 1

4. It is required to find the sum of 3^- and 2^—
c.

2 „ 10 3
ijtjf

Here3^-=3y-=-^10
;;

Jiff,

And 2v'— =2^ =—v'lO^10 ^100 10^

4
Whence ~x/lO the sum

4t

1.
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EXAMPLES FOR PRACTICE.

6. It is required to find the sum of ^72 and ^^128.
Ans. 14v'(2).

G. It is required to find the sum of ^180 and ^^405.
' Ans. 15^(5).

7. it is required to find the sum of 35/40 and ^135.
Ais. 93/(5).

8. It is required to find the sum of 4^54 and 53/128.
Ans. 323/(2).

9- It is required to find the sum of 9^^243 and 10^363.
Ans. 19V(3).

. 2 27
to. It is required to find the sum of 3^- and 7*/— .

Ans. 3J^^(6).

Jl. It is required to find the sura of 123/- and 33/_
4 32'

Ans. 6^3/(2).
12. It is required to find the sum of | ^a'^b and

^y46.xv. Ans.
(^+^)^6.

CASE V.

Tofind the difference of surd quantities.

RULE.

When the surds are of the same kind, prepare the qnim-
tities as in the last rule

; then the difference of the rational

parts annexed to the common surd, will give the whole
difference required.

But if the quantities have different indices, or the surd
part be not the same in each of them, they can only be
subtracted by means of the sign

—
.

1. It is required to find the difference of v'448 and
v/112.

G
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Here ^^448=^64X7=8^7
And v'112=^16X7=4y7

Whence 4^7 the difference.

2. It is required to find the difference of P/192 and-

3/24.

Here yi92=3/64'x3=43/3
And 3/24 =3/8X3 =2^/3

Whence 23/3 the difference.

3. It is required to find the difference of 5*/20 and

3^/45.

Here 5^20=5^4X5=10^5
And 3^45=3^9X5= 9^/5

Whence ^b the difference.

4^3'

3 2
4. It is required to find the difference of-^-, apd

2 1

6^i-
TT 32363^1^

2 12 6 2 1

Whence ^-v/6 the difference.60

ortinswer required.

EXAMPLES FOR PRACTICE.

1. It is required to find the difference of 2^50 and

^1-8. I p

Ans. 7^(2). I 5
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2. It is required to find the difference ofy 320 and

3/40. Ans. 23/(5).
3 5

3. It is required to find the difference of ^-^nA^/
—

.

Ans. 4*5^/(1^)-

4. It is required to find the difference of 2^/^ and ^Z.
Ans. v/(2)-

5. It is required to find the difference of3 \/\ and y72.
Ans. V(9)-

2 9
6. It is required to find the difference of \/- and

V'^'
Ans. tVVC^S).

7. It is required to find the difference of V SOa^x and

^20o2 x3. Ans. (4o2
— 2ax)y(6x).

8. It is required to find the difference of 8 {/a
3 6 jyid

2ya«6. Ans. (8a-2a2)3/(&).

„Vofe. The two last answers may be written thus,

(2ax—4a2)^(6x), and

(2aa-8a)i/(t).

CASE VI.

To multiply surd quantities together.

RULE.

When the surds are of the same kind, find the product
of the rational parts, and the product of the surds, and

the two joined together, with their common radical sign
between them, will give the whole product required ;

which may be reduced to its most simple form by Case iii.

But if the surds are of different kinds, they must be re-

duced to a common index, aod then multiplied together as

usual

It is also to be observed, as before mentioned, that the

product of different powers, or roots, of the same quanti-

ty, ig found by adding their indices.
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\

EXAMPLES.

J. It is required to find the product of 3^8 and 2^/6.
Here Sy/S
Multiplied 2v'6

Gives 6 v/48=6-v/ 16x3=24^3 Ans.

12 3 5
S. It is required to find the product of-^- and

-%/-^'

Here ~l/-

31ultiplied -3/r^
4*^ 6

3 10 3 5 3 15

1-1
3. It IS required to find the product of 2^ and 3^.

Here 2^=2^= (23)^=8^

And 33=36= (32 )^=9«

Whence (72) i Ans.

4. It is required to find the product of 5\/a and 3^a.
J. ^

Here 5\/a=5a2=5a«

And 33/a=3a3=3a8

Whence 15a6= l5(a^)« or IS^a^ Ans.

EXAMPLES FOR PRACTICE.

S). it is required to find the product of 5^/8 and 3^5.
Ans. 30^(10).

6. It is required to find the product of '^18 and 5^4.
Ans. 10^(9).
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1 2
*

7. Required the product of -,/6 aad—v/9.

Ans- tWC^)-

8. Required the product of -v^l8 and 5^20.

Ans. 15y(10).
9. Required the product of 2^3 and 13i ^5 ^

Ans' 'i7^(15)^ji«^

10. Required the product of 72ia.^ and 120ia*.

Ans. 87061aH-
11. Required the product of 4-f2^'i and 2-^2.

An?. 4.

± X
!2. Required the product of (a+fc)" and (a+i)'"-

Ans. (a+6) M n .

CASE VII.

7'o divide one surd quantity by another.

RULE.

When the surds are of the same kind, find the quotient
of the rational parts, and the quotient of the surd.f. and the

two joined together, with tlieir common radical sign be-

tween them, will give the whole quotient required
But if the surds are of different kinds, they must be

reduced to a common index, and then he divided aa before.

It is also to be observed, that the quotient of different

powers or roots of the same quantity, is found by sub-

tracting their indices.

EXAMPLES.

1. It is required to divide 8 -v/ 108 by SyS.

G 2
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2. It is required to divide 83/512 by 4 ^2.

Here -^^—21/256=21/64X4=81/4 Ang.

3. Itis required to divide-^5 by-^2.

i^5 3 5 3 10 3
'

^ ^Here f5!l^=-^-=-^_=-^10 Ans.
iy2 2^2 2^ 4 4^

4. It is required to divide ^7 by ^/l.

*/7 72 7« 3-2 i
Here ^=1:—=—=78 "=76 Ans.

V 73 7I

5. It is required to divide 6^64 by 3^2.
Ans. 6^3.

6. It is required to divide 43/72 by 2 y 18.

Ans. 23/4.
• , , •, .3 1,21

7. It IS required to diviae ^-:\/-r^T"y-^'\/r-

Ans. 11^3.
5 2 2 3

8. It is required to divide
4;:^'^ by 2 -Vj-

Ans. 14^*2.
1 2

9. It is required to divide 4-^ a by 2- %/ab.

27, a,4

2 3
10. It is required to divide 32 -^ a by 13-^a.

648 A

3 - 9 JL
11. It is required to divide 9-a"by4—a»n.

825 »"-"

424

12. It is required to divide ^20+^ 12 by v'd+^S.
Ans. ^4.

Note, Since the division of surds is performed by sub-
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tracting their indices, it is evident that the denominator of

any fraction may be taken into the numerator, or the nu-

merator into the denominator, by changing the sign of its

index.

o
Also, since — = 1, or = a'""'"=a», it follows, that the

expression a" i-s a symbol equivalent to unity, and conse-

quently, that it may always be replaced by 1 whenever it

occurs.*

EXAMPLES.

_, 1 a-i ,1 a"
i. Thus -=— , or o"^ : and —=—

,
or a".

a \ a" 1
'

^ ., b bu-2
, ^ a-« 1 b"'

2. Also, -r=-7-, or 6a 2
;
and r^=—7-„,or— .

a^ I 6'"* a"6-"» o"

3. Let — be expressed with a negative index.

Ans. a-2.

4. Leta-^ be expressed with a positive index.

* Ans. -^.
ai

5. Let—
I

— be expressed with a negative index.
a-\-x

Ans. (a-fa:)->.

6. Leta(a2—a;2)-J be expressed with a positive index.

Ans
a{a'~x^')x'

* To what is above said, we may also farther observe,
1. That added to or subtracted from any quantity, makes it neithergreat-

er nor less ; that is,

a~\-0=a, and a— 0=a.
2. Also, if nought be multiplied or divided by any quantity, both the pro-

•duct and quotient will be nought ; because any number of times 0, or any
, part of 0, is ; that is,

OXa,or oXOrrO, and - =0.
a

3. From this it likewise follows, that nought divided by nought, is a finite

^antity, of some kind or other.
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CASE VIII.

To involve, or raise surd quantities to any power.

RULE.

When the surd is a simple quantity, multiply its indeii

by 2 for the square, by i for the cube, &c and it will give
the power of the surd part, which being annexed to the

proper power of the rational part, will give the whole

power required. And if it be a compound quantity, mul-

tiply it by itself the proper number of times, according to

the usual rule*

For since OX «=0i or 0=:0 ^a, it is evident, that — -^a.

4. Farther, if any finite quantity be divided by the quotient will be ia-

finite.

Forlet-=.?, then, if 6 remains the same, it is plain, the less o is, the
a

arreater will be^the quotient q ; whence, if a be indefinitely small, g will be

indefinitely great : and consequently, when a is 0, the quotient q will be in-

finite : that is,

Which properties are of frequent occurrence in some of the higher parts of

the science,' and should be carefully remembered.

Since, therefore, "XT is the same as (a+b)
~ '

. Let us suppose, in the

general formula, n .::—1; and we shall have for the coefficients n=—1:

=.—1 ; —^
1

; —7--"=—1, &c. and for the powers3
'

4
oj a we

71 -1 1 n—\ —2 1 n—2 1 71—3 1 .
have a =.a r:r-i« =« — — ;« =— ;a =— &c.

a
— a2 a 3 a 4

-) 1 1 b
,

ij2 b^ b4 b5
so that (a 46) = ;= f-

— ——Ti > &c. which i:

the same series that is found by division. For more on this subject see th« h
Binomial Theorem, (further on) or Eulers

Al'^ebra.
'

* When aav quantity that is affected with the sign of the square root is 1< '*lll

be raised to the second power, or sciuared, it is done by suppressing the sign
Thus.

'

y/a)2 ,
or \^'aX\/a=a; aad (v/a-J-/))3, or v^fl-f-6X\/a+6=a-f-ft

Ifi

JID
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EXAMPLES.

2 J-

1. It is required to find the square of ~a^.

/S i\ 4 1X2 4 f 4

Here(-a»)==^a" =-^a' ^^V-'-
Ans.

2
2. It is required to find tjie cube of

^-v/S.

Here^X3*=|^V'27=lv^93^=|v'3
Ans.

3. It is required to find the square of 5^3.
Ans. 9^9.

4. It is required to find the cube of 17v''21.
Ans. 103173^(21).

6. It is required to find the 4th power of -
-v/

6.

Ans.
-j'g.

6. it is required to find the square of 3+2 v/ 5-

Ans. 29+12^5.
7. It is required to find the cube of ')/x-\-3\^y.

- Ans. x^x-{-21yy/x-{-9xx/y+21y^y.
8. It is required to find the 4th power of ^3—^2.

Ans. 49-20^/6.

CASE IX.

Tofind, the roots of surd quarJities.

RULE.

When the surd is a simple quantity, multiply its index

y i for the square root, by i for the cube root, k.c and

: will give the root of the surd part ;
which bemg; annex-

d to the root of the rational part, will give the whole roev
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required. And if it be a compound quantity, find it« root

by the usual rule.*

EXAMPLES.

1. It is required to find the square root of 9^3.

Here (9y3)2=92 x.33^2=9^X36=36/3 Ans.

2. It is required to find the cube root of r-v/^.
o

Here(iy2)^=(^^^^X(2^^^)=i(2«)=iV'2
Ans,

3. It is required to find the square root of 10'.

Ans. 10^(10).
Q

4. M is required to find the cube root of —-a<.

Ans. fa^a.
16 3.

5. It is required to find the 4th root of —-as.
81

Ans. |a^.
a a

Q. It is required to find the cube root of ^^/e*

Ans. ^|, or ^-i^/iSa).
7. It is required to find the square root of a;^ —Ax^i

-|-4a. Ans. x—2^a.
8. It is required to find the square root of a-}-2y/a6+i

Ans. ^a-\-^h.

* The nth root of the mth power of any number o, or the mtb power c

, ,
. . m,

the nth root of a, is a—.
n

Also, the nth root of the mth root of any number a, or the with root of th

1

nth root of a, IS a
From which last expression, it appears that, that the square root of th

square root of a is the 4th root of a ; and that the cube root of the square iw
of a, or the square root of the cube root of a, is the 6th root of a ;

and so o

/or the fourth, fifth, or any ather numerical root of this kind.
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CASE X.

To transform a binomial, or a residual surd, into

a general surd.

RULE.

Involve the given binomial, or residual, to a power cor-

responding with that denoted by the surd ;
the» set the ra-

dical sign of the same root over it, and it will be the ge-

neral surd required.
EXAMPLES.-

1. It is required to reduce 2+ v/ 3 to a general surd.

Here {2+^sy= 4+3-f 4 y/ 3 = l-\-i^3 ; therefore

2-\-^3=y/l-{-4\/3, the answer.

2. It is required to reduce y'S-j-y'S to a general surd.

Here (y2-f ,-v/3)- =2+3+2^/6 = 6+2 V 6
;

therefore V2+^3= V 6+2^6, the answer.

3. It is required to reduce 3/2+^4 to a general surd.

Here(^/2+V4)3=6+63/2+63/4;
therefore 3/2+

3/4=3/6(1 +v/2+v/4), the answer.

4. It is required to reduce 3— ^5 to a general surd.

Ans. ^(14-6^5).
3. It is required to reduce ^2— 2^6 to a general surd.

Ans. V(26-4v'12).
6. It is required to reduce 4— \/l to a general surd.

Ans. v'(23-8a/7).
7. It is required to reduce 2^/3 - 3^-9 to a general surd.

Ans. C/(1623,9-108;>3-219).
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CASE XI.

To extract the square root of a binomial, or residual surd.
I

RULE.*

Substitute the numbers, or parts, of which the given
surd is composed, in the place of the letters, in one of the

two following formulae, according as it is a binoaiial or a

residual, and it will give the root required.

And if the second part of the binominal, or residual, in

this case, be an imaginary surd, the same theorems will

still hold, by only changing —b into -f-6, as below

^{a+^-b)=^{^a+^^{a^+b))+^{^a~.l^{a^^b))

*
Prop. 1. From the lemma, pagte 16. vol. ii. Bonnycastle's Algebra; it

appears, that if tivo numbers a and b be prime to each other, the fraction

— can never be a whole number.
(iin

Prop. 2. From the same principles it likewise follows, that no whole num-
ber can have a vulgar fraction for its root.

Prop. 3. It may, also, be farther proved, that the square, cube, &c. root

of a whole numb»r, cannqj be partly rational and partly irrational.

For, if possible, let, in the first place, \/a=x+^i/, for the square root.

Then, by squaring both sides, a==X2 +2x^y-\~y ; and by transpositiMi,

^^2Tv/^=a—X2 —y.
(^ ^2—y

Whence, by division, ±\^yssi = a rational quantity; which

is contrary to what has been proved in the last proposition.

Prop. 4. In any equation of die form 3"+: y'y=av^ +6, the rational parts,
on the opposite sides, are equal to Each other, and also their irrational parts.

For, if X be not equal to a, lot it be equal to a+^. Then aHr.ziv'y^a+ vf''> o'" -•- v'^'^— ^:il v'y- 'fhat is, the ^b is partly rational and

partly irrational, vvhich, by the last proposition, has been shown to be impos-
:-ible.

Whence, x=^a, and consequently ^'y=^b.
Prop. 5. It may here also be shown, that the squaite root of a binomial

or residual surd, may sometimes be made equal to the sum, or difference of a
whole number and a surd, or of two surds. Thus, let \/(a+ \/6)=^x-J^j/ ;



IRRATIONAL Q,UANTrf lES, or SURDS. 73

Where it is to be observed, that the only cases that are

useful in this extraction, are when a is rational, and a^ — 6

in the first of these formulee, or a^-\-b in the latter, is a

complete square.

EXAMPLES.

1. It is required to find the square root of l\-\-^l9,-ov

Here,

and

Whence v/(11+6v'~)='^+a/2' *^^ answer required.

2. It is required to find the square root of 3—2^2.
Here,

v/JQ+i-y/a"
- 6=x/|+ ^a/9-- 8^^/t+l=^/2 ;

and

= -1;
Whence v'(3

—2^2)=^2— 1, the answer required.
3. It is required to find the square root of 6±2y/ 5.

Ans. ^5±:i.
4. It is required to find the square root of 23±8^7.

Ans, 4±^7.

jfcen, \/ (a
—y/ h) =x—y. And, by squaring each of these equations,

xve shall have a -f" \/ it = 3:2 •\-2xy + y^ ,
and a — ^6 = xs — 23cy

.
2 2 2 2

J_y2 ; whence, by adaition, 2a=2x •+2y , or a=x -{-y .

And, by multiplying the like sides of the same two equations, there will aj-ise
2 9 '^ 2

(tt't~v/^)^(«
— y/b)=x —y , or ^/(aa—b)=x''—y .

Wherefore, by adding and subtracting,
" + ^^ (''2

—6)=2ia , and a— v' (a2—6)=2y2 ; or

2-"=\/(2«+iV (a2—b)), and y=^{-Ka—L^(a2—b')). Whence,
v/(«+ Vi)=V(i«4-|'^(«2—6))+ v'aa—5v^(a2—ft)), and
^(a—^b)^,/Hn + 14/(0.2—b))

—
s/(\a—i>/(a2—b) .

And, if 6 be negative instead of affirmative, the two formula, in that case,
will become s/ {<^-i- /—b)=->/ (^(1+ 1^-/ {a2+ h))4-'/-{ia—% ^ (as+b))
and ^{a—y —l)—^(^a-f- 4 v/ (as ~\-b))—^(\—l-^ht3'+b)} ; hence
he above rule is evident. Q. E. D.

H
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5. It is required to find the square root of 36 ±. 10

y/ 11. Ans. 5 ± ^ (11).

(^ It is required to find the square root of 33 ± 12^6.
t Ans. 3 ± 2 y6.

7. It is required to find the square root of 1 + 4 y/— 3,

or 1 -f v^ — 48. Ans. 2 + ^—3.
8. It is required to find the square root of 3±4^— I,

or3±:y'-16. Ans.2±^—\.
9. It is required to find the square root of — 1+\/— 8.

Ans. 1 + ^-2.
10. It is required to find the square root of a^-f- 2 x^/

(a2
—

x2). Ads. x + ^ {a x— x").
11. It is required to find the square root of 6 + 2 ^'' 2

- ^ (12)
- V (24). Ans. 1 + ^2 — v/3. ,

For Trisomial, Qcadrin'omial Scrds, &c.

Rule. Divide half the product of any two radicals by
a third, gives the square of one radical part of the root

;

this repeated with different quantities, will give the squares
of all the parts of the root, to be connected by + aud —

.

But if any quantity occur oftener than once, it must be

taken but once.

For if iH-y-r? be any trinomial surd, its square will be

x2 J_
y2 _^ 22 4_ Q-xy

X 2xz + 2]/2 ;
thfitt if half tbc pro-

duct of any two rectangles as 2xj/X2xz (or 2x2 j,r) be di-

2x2wz
vided by some third ^yz, the quotient = x- ,

must

needs be the square of one of the parts ;
and the like

for the rest.

EXAMPLE 1 .

To extract the square root of \0 + y/ (24) + ^ (40';

+ V'vc;o).

V (24) X y/ (40)_ ^ (24) X ^ (60)
""^"

iVT^O)
^' '"^

2 v/ (40)

y9=3,aBd^^^A|L^|^=^(25)
= 5. And the

rootis v/2+-v/3-f v/5.

-tF
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EXAMPLE 2.

It is required to find the square root of 12 + \/(32)
—

V(48) + >/(80) -y(24) + v/(40)
—

v/(60).

Here ^^^ --^^ = '^-^, this prodeces nothing.

^
. v/(32X48) ,,,^. , ,

, y(4Q X 60)

, V V(32X40) ,, „ ^(48X24)= ^(25)=5 ; and^^^-^ =^4=2
;
and

-^-^^^
= V 9 = 3

;
and ^^'7^^ = ^<'^^ = '' ^'* '^'''"

fore the parts of the root are ^4, ^^5, ^3, ^^, ^/'i,
kc.

and the root 2 + ^2 - ^"3 + ^6 ;
for being squared

It produces the surd quantity given.

CASE XII.

To extract any root (c) of a binomial surd.

RULE I*.

Let the quantity be A ± B, whereof A is the greater

part and c the exponent of the root required. Seek the

' w — '

* Let the sum or difference of hco quantities x ani y be raised to apoieer
whose exponent is c, and let the Ist, 3d, 5th, Ith, cfc. terns of that power^
collected into one sum, be called A, and the rest of the terr>is, in the even

olaces, call B ; the difference of the squares of A and B shall be equal tolhe

difference of the snuares of x and y raised to the same power c.

for the tenus in the c power of a;-4- y writing for their coefficients, res-

c c—1 c—^2 c—3
pectively, l,c, rf, c, &c. area; -f c^ y -^ d'x y2 -^-p.x y3-f&c.
=^A •{• B, and the sanie power of x—y (changing- the signs in the even places)

c c— 1 c—2 c—3
s X —c a; y -\. dx y2—e x

J^
3 -f- &c. = A—B, and thei-efore

>+ y) X (^—y) =iA+ B)X (A-B]=A.2 ~~B2 =.)(xiy}X (r-v) I
c

=(xs—y2) . Q. E. D.
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least numbern whose power «' is divisible by A^ — B^ , the

quotitint being Q, com|>ute ^(A-f-BX^Q) in the nearest

integer number, which suppose to be r. Divide A ^ Q,
or by its greatest divisor, ;xnd let the quotient be a, and let

71

?• -f- r—-— =
t, the nearest integer. Then the root =

t s± v/(<2s2— »)

V^
if the c root ofA±B can be extracted.

Let one, or both of the quantities a', y, be a quadratic surd, that is, let
'•

-j-3/'
*'^^ ^ root of the proposed binomial A~j~ £ belong to one of these

forms, p -} i y/ fj,
k \/ p + q, or k^/p -\- l\^q- And it follows : 1. If

,, -{-)/ =p -^l^fj, c being any whole number. A, the sum of the odd terms,
A\ ill be a rational number ; and B, the sum of the terms in the even places,
each of which involves an odd power of y, will be a rational number multi-

plied into the quadratic surd ^/g.
2. Let c, the exponent of the root sought, be an odd number, as we may

ahva} s suppjse it, because if it is even, it may be halved by the extraction of

the square root, till it becomes odd ; and let x -^ y= k ^ p +9. Then A
^vill involve the surd v P, and £ will be rational.

3. But if both members of the root are irrational, (x-i-y=kv p + l\/q)
A and B are both irrational, the one involving \^p, and the othe* the surd

\/q. And in all these cases, it is easily seen that when x is greater than y,

A will be greater than B. From this composition of the binomial A-i~Bj
•ve are led £0 its resolution, as in the foregoing rule, by these steps.

I.

When A is I'ational, and A2 — B2 is a peri'ect c power.
1. By tiie theorera,A2

—B2 =(a-2—y2)3 accurately; and therefore ev
tracting the c i-oot of A 2—Ba it will be x'-i —ij2 , call this root n.

2. Extract in the nearest integer the c ro9t of A-i-B, it will be {nearly)

X "f- y, which put
= r .

3. D;-.ade x2—y2 (=n) t>y x-^-y (= r) the quotient is (nearly) x—y;
and the sum of the divisor and quotient is (more nearly) 2x ; that is, if an

iateger value of a: is to be found, it will be the nearest to T-

2 2 2 2 ^r-j.n^2 2

4. X —{x —y )—y ,,0T, f C ) —n = y -. whence y
—

^'•+!lx2 r-^n
^(f ^ )

—
n), and therefore putting i= T, the root sought = t

\ 2 y 2
-

+ \/ ('2
—

n) ; the same expression as in the rule, when Q= 1, s= 1, thai
.,

IS when As — B2 is a perfect c power, and the greater member A is ra-l ^
tional.
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EXAMPLE.

What is the cube root of ^ 968 -{- 23.

We haveAa — B^ = 343= 7X7 X7. Q,
X7=» = n^

whence «= 7, and Q,= 1. Then y(A + B X >/ Q,)
=

3/56 + = r = 4. A ^ Q. = y 968 == 22 v/ 2, and the

radical part y'S = s, and ^ o c2^ i

.
II.

When A is irrational, and Q= 1. By the same process, at= ^
2

(= T) andy= v'(T3 — w). But seeing A is supposed irrational, and c

an odd number, x will be irrational likewise ; and thty will both involve the

same irreducible surd ^p, or s, which is found by dividing A by its greatest
rational divisor. Write, therefore for x or T, its value t X s, and x -{-y ,—.

<s + \^{t2 s2 —n).

III.

If the c root of As — B2 cannot be taken, multiply
A 2 — B2 by a num-

berQ, such that the product niav be the {least) perfect c power »''(:= A2 Q—B2 Q.) And now (instead of A-f-B) extract thee root of (.\ 5-B)Xv/Q,
which found as above, will be < s

-}- y/ {t2 ns — n) ; and consequently the

- c root of A -f B will be ^ s -j- y/{t2. &3 —n), divided bv the c root of v' Q •

that is, ''+^^''Jr--£L.

In the operation, it is required to find a number Q, such, that {\2 — B2)
X Q may be a perfect c power ;

this will be the case, if Q be taken equal
fo (A 2 — B2)t— I

;
but to find a less number which will answer this condi-

tion, let A2 — B2 be divisible by a, a, (wi) ; 6, b, . . . . (n) \ d,
m » r

d,...,(r);&c. in succession, that is, let A 2 — B2 z= a b d &c. also,

X y z in \.
X n-\-y '+ ^

IetQ = a6 rf &c. (A2 — B2) X Q=a X^ ^ <^ ^^•

which is a perfect cth power, if a, y, z, &c. be so assiuiied that w-f-^s '*+y>

r-f-z, are respectively equal toe, or some multiple of c. Thus to find a

number which multiplied by WO will produce a pcrtect cube, divide 180 as

often as possible by 2, 3, 5, &c. mid it appears that 2. 2. 3. 3. 5 = 180 ; \i,

3 3 iJ o

therefore, it be multiplied by 2 . 3 . 5 . 5, it hiecomes 2 . 3 . 5, or (2 . 3 . 5) ;
a

perfect cube.

If A and B be divided by their greatest common measure, either integer

or qiiadrutic surd, in all cases wh<;re the cth root can be obtained by diis

aiethod, Q will either be unity, or some power of 2, less than 2'.

If the residual A—B be givtn, it is evident from its genesis by involution ,

H g
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nearest integer. And <s=2^2, ^/{i^ s^ — «) = ^{Z -Tj

= 1. 6/(Q=l. And the root is -^-^— = 2 V 2

+ 1, whose cube, upon trial, I find to be ^968 + 25.

RULE n.*

Let the surd, that is to have its root extracted, be of

the form ^/{a -j- v^ *), or ^/(a
— ^ b). Then if a^ —b

thftt the same rule gives its root x—y. See Universal Arithmetic, p. 139.

Dr. Waring's Med. Alg. p 287, or Maclaui-in's Alg. p. 124.

n
* Thus, let^(a + v' t)

= *+ V y i aid we shall have, by involution, I

n
'

An equation which, by expanding the right hand member, and comparing
the rational and irrational parts, gives

«
. n(»—1)

»*—2
,
n (w—1) («—2) (w—3)

«-^ 2

"=^H 2
— * ^"^ 2.3.4 y +&C.

»»—1
.
n (n—1) (/I—2)

^—3
. . „

V'6 = na: v'y+—^—
273

' " y^y+ •+&<^
Or which is the same thing, under a different form,

,
t rt n>

,
t n n>

vfc = 2 M^+v'y)^(^-^y) )

Whence by squaring each of these equations and subtracting the latter

(rom the former, we shall have
2 4 2re 2 » 2n )

a-b=-^}{x+ ^y) +2(a;-y) + («- v'y) $

,
( 2«. 2 71 2n} ,

-Jli^-h^/y) -2(ap-y) + (af-v/y) 5

Or, by rejecting the terms that destroy each, and then multiplying by v,
2 2 w 2 2

j^.
a — b= (x

—
y) , or a; — y= (a — 6)H"

2
Where supposing a— 6 to be a complete power of the nth degree, let

2 i 2 "2
(a
— b)n be put

= c. Then since x — y= c, and consequentlyy=x—c,

«
w(n — 1)

"~2
if this value be substituted for y, in the equation x + ——

jj

—- x y-J.

w(n— 1) («— 2U«— 3)
«— 42

v „ . '•
- -

'

X y + &C' ="1 we shall obtain an equa-

tion in which the value of x, as before mentioned, is rational, when the e^
iracticm requirad is possible.
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ke a perfect integral cube, and some whole number, can

be found, that, when substituted for n, will make

?i3 _ 3 (3/a2
_

6) n = 2 a,

the roots of the two expressions, in this case will be

^(a + v' ^)
= i« ^ i \/("^.

- 'I v«EE3
y{a

- ^ 6)
= In - 1

v/ (n^
- 4 ^a^ -

6)
And if the second part of the binomial, or residual, be an

maginary surd, and a^ -|- ^ be a perfect integral cube, the

sxtraction may be etfected, by finding the integral value

>f n in the following equation as before.

n3 — 3 (3/a2 + h) n = 2a.

In which laist case, the roots of the two expressions
irill be,

;ach of which formulae may be obtained, by barely chang-
ng the sign of b in the former.

i EXAMPLE.

It is required to find the cube root of 10 ± 6 ^ 3, or

I0±y(108).
Here a = 10, and b = 108

; whence ^(a2 _
fe)
= 3^

>00 — 108)
= - 2, and n^ — 3 (s/^i^j n — 20,

or n3 -{- 6n = 20
vhere it readily appears, from inspection, that n = 2.

Vhence ^(10 + v/108) = t + i ^(4 - 4 X -
2> =+ i -v/02)

= 1 + v^3, and i/(lO- V 108) = f - J

/(4
- 4 X -

2)
= 1 - ^ V 12 = 1 _ ^3.

EXAMPLES FOR PRACTICE.

). Required the cube root of 68— .^4374.

Ans.

2. Required the cube root of 11 + 5 ^1.

Ans.^/^+'

i/2

V3
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3. Required the cube root of 2 y/l -\- 3 ^ 3.

Ans.
2

4. Required the tifth root of 29 ^6 + 41 ^/3

Ans. ^^±^.
6. Required the cube root of 45 ± 29 ^2.

Ans 3 -i- ^2, and 3 — ^2.
6. Requi/ed the cube root of 9 ± 4 ^b, or 9 ± ^SO.

Ans 1 + 1 ^5, and |
- | ^ —5.

7. Required the cube root of 20 ± 68 ^ —7.
Ans. 5 + ^ — 7, and 6 — ^— 1.

8. It is required to find ;he cube root of 35 ±69 ^ — P.

An« 6 + ^ — 6. and 5 — V^— 6.

9. It is required to find the cube root of 81 ±. ^ ~

2700*. Ans. -3+2^ -3, and —3— 2^-3.

* Whenever it can be done, the operation, in cases of this kl -d, ought to
bej

abridged, by dividing the given binomial by the gres'^ st cube that itcontainst

and then finding the root of the quotient ; which being multiplied by the root
oj;

the cube, by which the binomial was divided, will give the root required i

Thus iu the example above given, 81 -f v'—2700= 27 X (3 + ^- 2 7 M
I u

where the root^of 34- v'— 2 7 > beingnow more easily found to be — 1+ 2^

—
-5,
— 1 + 3 v*

— 3, we shall have by multiplying by 3, (which is the cub
root of 27),

— 3 -{- 2 v — 3, as above.

Also, this is useful, in Cardaus' rule for cubic equations ; thus, •v/(81 + y*
—3

|_2700)) -f- v/(81— v/ (—2700))=—3x 2=— 6, or= ~ X 2=— 3

or ^ X 2= 9, the imaginary parts vanishing, by the contrariety of their sign
See'De Moivre's appendix to Sanderson's Algebra, Universal Arithnietio, o

Maclaurin's Al-j^bra.
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CASE Xlll.

To find such a multiplier, or multipliers, as will make any
binomial surd rational.

RULE.*

1. When one or both ^f the terms are any even roots,

multiply the given biorainai, or risidual, by the same ex-

*^The demonstration of this rule is evident from the following theorems.

THEOREM I.

mm n—m n—2m m n—2m2irL

Generally, if you multiply a —h by a -f- a 6 + a b

n—47ft 2m ^
4" a b

, &c. continued till tlie terms be in number equal to ^, the

n n
fix
—m n—Hm m n—3/rt 2?« n—4?w

pK>duct«hallbeo
—b : for,( a +« b +a b +«

3m n—m\ m m
h &c. b J X(a —b ).

n
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pression, with the sign of one of its terms changed ;
and

repeat the operation in the same way, as long as there are

?urds, when the last result will be rational.

n—in

least number which is measured by ^, is unit ; let n.= 1, then shall a -f-

n—2m m n—3 to %m 1—i. 1—2 j. o 3 2 i j.

o b -t a b .&c.=a =^+a
^ b^ -\- a b^ --=a^ +aH^

+6^=V (a2) ^'\/(ab)+ \/(62),which multiplied byV a—V6,£ives
a—b.

THEOREM III.

m I n—TO n—2 m I n—3 m (21)

Let a ^6 be multiplied by a Hpa 6-f-a ^^
n—4 TO {31) n M HV
a b -f- &c. and the product shall give o -t-fcw : therefore w must be

taken the least integer that shall give m. also an integer.
n—m n—2 to I n—3 to (2/)_

n—4 to (3Z) o »

Dem. a ZiZa b -f.* * +« ^ i &c. a 6)«—l^Z
TO I

X_(a ±h).
^

n n—TO / n—2 to (2/)
a -f-a b "^a b &c.

n—TO I n—2 TO (20 ^l
itfi b —a b &c. — 6i7t <

« * * » -J- 1^
a ,m .

n_l Vl

The sign of bm is positive only whenm is an odd number, and the binomial
TO I

proposed is a -|- 6 .

If any binomial surd is proposed whose two numbers have different indices,

let these be to and I, and n equal to the least integer number that is measured
m n—TO n—2m T n—3 to (2/) n—3 me (3/)

by TO and by 2 ; and a -|-o b -j-a b 4^a b &.c.

TO I

shall give a compound surd, which multiplied by the proposed a — 6
, shall

give a rational product.
1 wi

Thus %/a—%/b being given, suppose m= %l=s 3^, and T=f, therefore

n—m n—2m I n—3m {21) n—4m{3l) 3—^
n= 3,anda +a 6 +« ^

-f- a b •f&c.=a
"

3—1 J. 3—3 2 14^
-fa 63^a -b'^+ab-i.a'^b'^-{-b^= \/(a5)+ a2-}i\/b +

y/{a^) Xy/b2 ^ab +\/a Xy/b* + %/bS=a2 y/a ^azy.\/b^
«\/ «X\/ fc2 4-06-^6 v/aX V^' + ^v' *«> "'hich mulliplied b;--

n "'

\/«—V (*)i gives o —b m=a 3—62 .
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2. When the terms of the biominal surd are odd roots,
the rule becomes more complicated ;

but for the sum or
difference of two cube roots, which is one of the most
useful cases, the multiplier will be a trinomial surd, con-

sisting of the squares of the two given terms and their

product, with its sign changed.

EXAMPLES.

1. To find a multiplier that shall render 5+ -v^S ra-

tional.

Given surd 5 4- -\/3

Multiplier 5 — ^3

Product 25— 3=22, as required.
2. To find a multipher that shall make ^/o-{- ^3 ra-

tional.

Given surd ^5+^3
Multiplier .^5-^3 ,

Product 5 — 3=2, as required.
3. To find multipliers that shall make yS + V^ ^^'

iional.

Given surd {/b+^/3
~-

J st multiplier y5— 4/3

1st product ^5—^3
2d multipher ^5+^3
2d product 5_3=2, as required.

4. To find a multiplier that shall make \/l-\- 1/3 ra-

ional.

By these Theorems any binomial stJrd whatsoever being; given, you may
nd a surd, which multiplied by it shall ^ive a rational prcduct See Mae-
wriJi's Algebra, page 112.
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Given surd 3/7-f- 3/3

Multiplier ^^1^—1/(7 X3)+^S^

7+ 3//3X73)— y(3X72)«3/(7X32)
+^(7X32)+3

Product 74-3= 10, as was required.
5. To find a multiplier that shall make ^ 5 — ^x ra-

tional. Ans. y/5-\-^x.
6. To find a multiplier that shall make \/ n -\- )/ b ra-

tional. Ans ^a— ^h.
7. To find multipliers that shall make a-\- tj b

ra-|

tional. Ans. a— y/h.
8. It is required to find a multiplier that shall makej

1 - 3/2a rational. Ans. l+^2a+^4a2.
9. It is required to find a multiplier that shall mal

y3-iV2 rational. Ans. y9+X3/6+i3/4.
10. It is required to find a multiplier that shall makt

y(a3) -f- V(63), or a| + 6| rational.

Ans. ya9r-y(a9^2) ^ yfas^e^ _ 4^59.

CASE XIV,

To reduce a fraction, whose denominator is either a simplt ,,

or a compound surd, to another that shaU have a rationc
'

denominator.

RULE.

1. When any simple fraction is of the form —
, mu

tiply each of its terms bv ^a, and the resulting fracticlHere

will be^.

lU
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Or when it is of the form
;;

—
, multiply them by ^o^,

and the result will be -^—
.

a

And for the general form -—
, multiply by ya"-i, and

the result will be -^
.

a
2, If it be a compound surd, "find such a multiplier, by

(he last rule, as will make the denominator rational
;
and

multiply both the numerator and denominator by it, and
the result will be the fraction required.

EXAMPLES.

2 3
1. Reduce the fractions — and

, to others that

shall have rational denominators.

Here -i.=^,X^J=!^ ;
and-^=^X^ =

v/3 v^s v/3 3 '

^y5 xy5 %/h^
. 54/63 64/53 6

,

'

.

r
=—-—

-='ts/\~o the answer required.

. Reduce———-- to a fraction, whose denominator

shall be rational.

\ Here—i— x'^^y::^=^-y:^^=!^^V2__
v/3-^2 V/5+V2 5-2 3

'^

=
V'ij+v^S the answer required.

•v/2
3. Reduce to a fraction, whose denominatoro— Y^ i

shall be rational.

Here-^ - v/2X (3+^/2) _3y2+_2_2-f3^2
'3-v'2 (3- v' 2) X (3+^2) 9—2 T~"

2 3

~7"^7 v^2 the answer required.
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4. Reduce —;-— to a fraction, that shall have a ra-

tional denominator.

4
X

5. Reduce —-. to a fraction that shall have a ration-

al denominator.

. Sx—x^x
Ans.—-—-—

.

9—x
tl /h

6. Reduce —~-r to a fraction, the denominator of

which shall be rational. Ans. ^r—-a^—b

7. Rediice— to a fraction that shall have Si ra-

1/1-%/b
tional denominator.

Ans. 5X(^(49)+V(35)+ \/(25)). ,

3/3
8. Reduce——^-—- to a fraction that shall have a ra-

3/9+3/10
tional denominator.

33/9+33/(10)4-3/(360)Ans. -
.

4
9. Reduce .

—•— to a fraction that shall have a ra-

tlenal denominator.
Ans, -v/(10)-V2+(2—v'5)XV5.
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OF

AKlTHMETiCAL PROPORTION

AND PROGRESSION.

Arithmetical Proportion, is the relation which two

quantities of the same kind, have to two others, when the
difference of the first pair is equal to that of the second.

Hence, three quantities are said to be in arithmetical

proportion, when the difference of the first and second is

equal to the difference of the second and third.

Thus, 2, 4, 6, and a, a-f-6, a-{-2b, are quantities in arith-

metical proportion.
And four quantities are said to be in arithmetical propor-

tion, when the difference of the first and second is equal
to the difference of the third and fourth.

Thus, 3, 7, 12, 16, and a, a-f-6, c, c-^-b, are quantities
in arithmetical proportion.

ARiTHft'ETicAL PROGRESSION is when B scries of quan-
tities increase or decrease by the same common differ-

ence.

Thus, 1,3, 5, 7, 9, &c. and a, a+d, a-{-2d, a-\-3d, kc.
are increasing series in arithmetical progression, the com-
mon differences of which are 2 and d.

And 16, 12, 9, 6, kc. and a, a—d, a— 2d, a— 3d, kc. are

decreasing series in arithmetical progression, the common
differences of which are 3 and d.

The most useful properties of arithmetical proportion
and progression are contained in the following theorems :

1. If four quantities are in arithmetical proportion, the
pum of the two extremes will be equal to the sum of the
two means.

Thus, if the proportionals be 2, 6, 7, 10, or a, b, c, d ;

then will 2+10=5+ 7, and a-f-^=5-}-c.
2. And if three quantities be in arithmetical propor-
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tion, the sum of the two extremes will be double the
meaD.

Thus, if the proportionals be 3, 6, 9, or a, b, c, then
will 3+9=2X6= 12, anda+c=26.

3. Hence an arithmetical mean between any two quan-
tities is equal to half the sum of those quantities.

Thus, an arithmetical mean between 2 and 4 is =—tt—

~3
;
and between 6 and 6 it is = —

;;—=51.
6+6
Y

And an arithmetical mean between a and 6 is .*

4. In any continued arithmetical progression, the sum
of the two extremes is equal to the sum of any two terms
that are equally distant from them, or to double the mid-
dle term, when the number of terms is odd.

Thus, if (he series be 2, 4, 6, 8, 10, then will 2+ 10=
4+ 8=2X6.-=12.

And, if the series be a, a-\-d, a-\-2d, a-^Sd, «+4«?,
then will a+ (a+4ci)=(a+cf)+ (a+3fZ;=2X(a+2J.)

5. The last term of any increasing arithmetical series

is equal to the first term plus the product of the common
difference by the number of terms less one

;
and if the

series be decreasing, it will be equal to the first term rni-

nus that product.
Thus, the nth term of the series a, a-\-d, n+2J, a-{-3d,

«+ 4(i, &-C. is a+ (?i
—

1)(/.

* If tH'o, or more, arithmetical means between any two quantities be pe^

tjuired, they may be expressed as below.

_, 2n 4-6 ,o4-26 .... , j i I

Thus, —5— and—-— = two aritiimetical means betw'een a and 0, a|

being the less extreme and b the greater.

And———, r-^ ,
-= —

, &c. to ——-i^anv number (n)\

€.f arithmetical means between a and b ; where—;— is the common differ-

n-f-1

ence; which beinj^ added to a, g^ives t)ie first of these means; and hei

s^jfiin to this last, give; the second ; and so on.

1
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And the nth term of the series a, a—d, a— 2d, a— St/,

a-4d, &c. is a— (ri— l)d.

6. The sum of any series of quantities in arithmetical

progression is equal to the sum of the two extremes n-iul-

tiplied by half the number of terms.

Thus, the sum of 2, 4, 6, 8, 10, 12, is = (2+ 12) X

£=14X3=42.
2

And if the series be a-{-{a+d)-\-{a-\-2d)-^{a+3d)+

(a+4rf) &c. . . . +/, and its sum be denoted by S, we

shall have S={a-{-l)X-^,
where / is the last term, and n^

the number of terms.

Or, the sum of any increasing arithmetical series may
be found, without considering the last term, by adding the

product of the common difference by the number of terms

less one to twice the first term, and then multiplying the

result by half the number of terms.

And, if the series be decreasing, its sum will be found

by subtracting the above product from t\vice the first
tcrm,^

and then multipljing the result by half the number of

terms, as before.
s , / , cj\

Thus, if tlie series be a+(a+^)+(a+2c/)+(.7+orf)
j^ (^a + 4d), &c. continued to n terms, we shall have

S=
^2a-{-{n-l)dl

X-.

And if the series be a+{a-d)+ {a—2d)-[-{a-^3d)+

U—4d), &c. to n terms, we shall have

S =
J2a-(n-l)cZ| X^(*)-

r*1 The sum of any number of terms (n) of the seiies of natural numbers

l,2,3,4,'6,6,7,&c.is=—2
.

. 100X101 „
Thus, 1 +24.3+4+5, &c. continued to 100 tenns, is= ^

— =iKJ

101 X =5050.
3 2
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EXAMPLES.

1. The first term of an increasing arithmetical series is

3, the common diiference 2, and the number of terms 20
;

required the sum of the series.

First, 3+2(20- 1)=3+2X19=3+38=41, the last

term.
20 20

And (3-1-41)X—=44X—=44 X 10=440, the sum re-
^

quired.
. on

Or, f2X3+(20-l)X2}x^
= (6+19X2)X10=(6

+38)X 10=44X10=440, as before.

2. The first term of a decreasing arithmetical series is

3:00, the common difference 3, and the number of terms

34 ; required the sura of the series.

First, 100-3(34— 1)=100-3X33=100-99=1, the

last term.
34 34

And (1004-1)X--=101X— =101 X17= 1717, the

sum required.
34

Or, {2X100-(34—1)X3]X—=(200-33X3)X17

=(200- 9g)X 17= 101X17=1717, as before.

3. Required the sum of the natural numbers, 1, 2, 3,

4, 5, 6, &c. continued to 1000 terms. Ans. 600500.

4. Required the sum of the odd n^imbers 1, 3, 5, 7, 9j

tc. continued to 101 terms. ^bs. 10201.

A!s«> the sum of any number of terms (n} of the series of odd numbers

1 3 6 7 9 11 &c is =: «2.
'

Thus, i -f 3+ 5+7 4-9, &c. continued to 50 terms, is= 502 _ 2500.

And if any three of the quantities a, d, n, S, be given, the fourth may be

Jgund from the equation ^

S=52«±(«-l)djxJor(«+Zjx|
"Where the uppK>r sign -f- is to be used when the series is increasing, and the

lower sign—when it if ^creasing; also the last {erm/=iO+ {n-~\)d^^%
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5. How many strokes do the clocks of Venice, which

go on to 24 o'clock, strike in a dn^ ? Ans. 300.

6. Required the 365th term of the series of even num-
bers 2, 4, 6, 8, 10, 12, &c. Ans. 730.

7. The first term of a decreasing arithmetical series is

10, the common difference-, and the number of tecvns
o

21; required the sum of the series. Ans. 140.

8. One hundred stones being placed on the ground, in

a straight line, at the distance of a yard from each other
;

how far will a person travel, who shall bring them one by
one, to a basket, placed at the distance of a yard from the

iirst stone ? Ans. 5 miles and 1300 yards.

OF

. GEOMETRICAL PROPORTION

AND

PROGRESSION.

^ GEOMF.TniCAL PROPORTION, is the relation which two

quantities of the same kind have to two others, when the

* If there be taken any four proportionals, a, 6, c, d, which it has been
usual to express by means of points : thus,

a : I : : c : d,
ff c

this relation will be denoted by the equation —= -, ; where the equal ratios
d

are represented by fractions, the numerators of which arc the antecedents,
and the denominators the consequents. Hence, if each of tlie tivo numbers
«if this equation be multiplied by bd, there will arise ad z=zbc. From which
it appears, as in the common rule, that the product of the two extremes of

any four proportionals is equal to that of the means. And if the third c, in

this case, be the same as the second, or c =6, the proportion is said to be

continued, and we have ad =6 2, or, b-—^ad\ where it is e\ident, that the

product of the extremes of three proportionals is equal to the square of the
mean : or, that the mean is equal to the square root of the product of thctwa
extremes.



92 GEOMETRICAL PROPORTION

antecedents, or leaain,ter.s of each pair are the .a.,

parts
of their consequents, or the consequeiu

cedents.
I

A,„ if e«h »™l,ev of .he .equ.tio,
«4 =6c be s»cccs*cly divided by

^
a: C : :t: a

proportions
i

\b:a::d:C

&c.

a b .

~c'~'d
b d

plication, the following equivalent
forms :

— =^ ; ^ rf-

" •
'•'," - " *- (^_ „.,(<;no- fhp term l;

.nt sides of the same eq^iation,
we have ^-^,,.

^r.P
ent sides on

,n . .m . . c'"
• (^"'. In which cases m and

in the form of a
P'-^P^'-^'^P^^^V^n.be^' whatever.

n'rrSrebTtS^^-everal
equations.

-=-, ' which correspond i

b d 1

•^ Z the proportions
\

.

j^
. . i , ^

^ '^^ &C.

weshallhave,bymultiplyingthe«.liketerms,^;^^y^^^<,. ''^il^i'^'j

. . tin^ the expression
into the form of a proportion,

aet &c. . 6

Or, by pmmg the e:.p
a c

^3 ^fore, we shall have,

&c.::c^i&c.:to&c..
Also, taking

-^ =-^,
asbetor ,

.
«« '"'

and by augmenting
or diminishing each side

J.

mult^hcauon, ^
^^-^,^ -^^ ^^nj, ^^«_l,.^eh,-

"

theequationbyl;^J±l-„d^l'^'' . J^_^^ "^6 : -.mc+Ti
,.

^S expres^d in^efonnof apro^rtron.g.ves».±
nd;ovma±nb.mc±ncl..n ^ ^

v,e put by a similar «DV »:

And ?f tbe above mentioned e(riation^=-^,
be put y

i
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And if two quantities only are to be compared together,
the part or parts, which the antecedent is of its consequent,

plicationof its terms, under the form —7-= -^7 and then augmented or dinii-^
qb qd

nished by 1, as in the last case, there will arise pa+qb : pc+ qd : : qb : qd.
Whence, dividing each of the antecedents of these two analogies by their

.. , ... , ma-t-nb nb b .pa-^qb qb
eonseqwents, the result will g:ve =—r:=—r^=^—,i and —— ^

,=r —r
mc-jr_rM nd d pc+:_qd qd

=— . And, consequently, as the two right hand members of these expres-

, 6
, „, ma-^nb pa+ qb

sions are each =—., we shall have -—=—-=. ~.
a ?nc+:»itt pc + qd

Or, b\' converting the corresponding teiTns of this equation into a propor-
tion tna-^nb : mc + nd : : pa^+^qb : pc-jl-qd. Also, because tlie common

a c a b
^ , .

equation
—= -j gives

—=--, if the latter be put under tlie equivalent forme

ma 7nb pa pd . „ u* • u •
-i— =r —-, and —= -r, we shall obtain, by a sunuar process, mo-f-nc :

nc nd qc qd
-^ '^ ' —

/)a+ qc ..mb+ nd:pb+ qd\ which two analogies may be considered as

general formulfe for changing the terms of the proportion a : b : -. c : d, with-

out altering its nature. Thus, by supposing m, n, p, q, to be each=l, and

taking the antecedents with the superior signs, and the consequents with the

inferior, we have a-f- 6 : a—b : : c-f- rf : c—d, and a-\-c : a—c : -. b•^•d -.

I—d
; which forms, together with several of those already given, are the

usual transformations of the common analog}' pointed out above.

In like manner, by taking m, n und p each =T, and 9=0, there will arise

a-hb:a::c-+-d:c, and a+c:a::6+ rf:6; each of which proportions

may be verified by making the product of tlie extremes equal to that of the

means, and observing that ad=-bc.

Lastly, taking any number of equations of the form before used, for ex-
a c e ff

pressing proportions,
as —c=—=-7.^^— :=:&c.

-, which, according to die

common method are called a series of equal ratios, and are usually denoted

by a : b : : c : d :: e :/ g • h :: &c. we shall necesssarily have from the

fractions being all equal to each other --=: 9, ^=9, ^=?, "T=?> ^'^

And by multiplying q by each of the denominators, a^=bq, cr=dq, e=ifq,

g=hq, &c.

^Vhence, equating the sum of all the terms on the left hand side of these

equations, with those on the right, we have a -f c -f e^g -f- &.c.={b-^d-\-
f^h -f &c.)q. And consequently, by division, and the properties of propor-
tionals before shown.

g-l-c-fe-f-g-f&c. __ « __ °4g_"-f c ^ e__ ^
b

-f- d-f/-f A + &c.
~~

6 b-^d" b+d+f
~

which results show, that, in a series of ecjual ratios, the sum of any number
of Oie antecedents is to that of their consequents, as one, or more of the an-

tecedents, is to one, or the same number of consequents, Q. E. D.
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or the consequent of the antecedent, is called the ratio
;

observing, in both cases, always to follow the same method.
Hence, three quantities are said to be in geometrical

proportion, when the first is the same part, or multiple,
of the second, as the second is of the third.

Thus, 3, 6, 12, and a, ar, ar'^
, are quantities in geome-

trical proportion.
And four quantities are said to be in geometrical propor-

tion, when the first is the same part, or multiple, of the

second, as the third is of the fourth.

Thus, 2, 8, 3, 12, and a, ar, b.^ br, are geometrical pro-
portionals.

Direct proportion, is when the same relation subsists

betwen the first of four terms and the second, as between
the third and fourth.

Thus, 3, 6, 6, 10, and a, ar, b, br, are in direct propor-
tion.

Inverse, or reciprocal proportion, is when the first and
second of four quantities are directly proportional to the

reciprocals of the third and fourth :

Thus, 2, 6, 9, 3, and a, ar, br, b, are inversely propor-

tional
; because 2, 6, -, -, and a, ar, -r-,

- are directly
y 3 or b

proportional.
Geometrical Progression is when a series of quan-

tities have the same constant ratio
;
or which increase, or

ecrease, by a common muliplier, or divisor.

Thus, 2, 4, 8, 16, 32, 64, kc. and a, ar, ar''
, ar,^, ar* ,

&c. are series in geometrical progression.
The most useful properties of geometrical proportion

and progression are contained in the following theorems :

1. If three quantities be in geometrical proportion, the

product of the two extremes will be equal to the square
of the mean.
Thus if the proportionals be 2, 4, B, or a, b, c, then

will 2X8=42, and aXc—b^.
2. Hence, a geometrical mean proportional, between

any two quantities, is equal to the square root of their

product.
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Thus, a geometric mean between 4 and 9 is =^36=6.
And a geometric mean between a and 6 is = ^ab*.
3. If four quantities be in geometrical proportion, the

product of the two extremes will be equal to that of the

means.

Thus, if the proportionals be 2, 4, 6, 12, or a, h^c, d;
then will 2X12=4X6, and a Xc?=:6Xc.

4. Hence, the product of the means of four propor-
tional quantities, divided by either of the extremes, will

give the other extreme
;
and the product of the extremes,

divided by either of the means, will give the other mean.

Thus, if the proportionals be 3, 9, 5, 15, or a, b, c, d;

,, ... 9X5 , ,3X15 ^ ,
6Xc - ,

then will =15, and =9 : also, = a, and
3 o a

aXd
c

5. Also, if any two products be equal to each other,
either of the terms of one of them, will be to either of the

terms of the other, as the remaining term of the last is to

the remaining term of the first.

Thus, if ad— he, or 2X 15=6X5, then will any of the

following forms of these quantities be proportional :

Directly, a : 5 : : c : v-Z, or 2 : 6 :: 5 : 15.

Invertedly, 6 : a :: rf : c, or 6 : 2 : : 15 : 5.

Alternately, a : c : : 6 : (Z, or 2 : 5 :: 6 : 15.

Conjunctly, a : a-\-b '.'. c : c-\-d, or 2 : 8 : : 5 : 20.

* If two, or more, geometrical means between any two quantities be re-

quired, they may be expressed as below :

^asb and ^ab2 =:two geometrical means between a and b.

i/a 3 6, \/a2 63 and ^ab 3 = three geometrical means between a and h.

And generally,
1 1 1

'a%f"^^ (a^~ '62)""*"^, (a"~*63)""^^~ ^'^^' ""'"^®'" (") °^ geome-

tncal means between a and 6. Where
(_')Ji +1 is the ratio : so that if a

be multiplied by this, it will give the first of these means ; and th4« last being

again multiplied by the same, will give the second ; and so on.
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Disjunctly, a : b^a :'. c : d^c, or 2 : 4 : : 5 : 10.

Mixedly, b-\~a -.b^a :: d+c : d^c, or 8 : 4 :: 20 : 10.

In all of which cases, the product of the two extremes ia .

equal to that of the two means.

6 In any coatinue.d geometrical series, the product of

the two extremes is equal to the product of any two means

that are equally distant from them
;
or to the square of

the mean, when the number of terms is odd.

Thus, if the series be 2, 4, 8, 16, 32
;
then will

2X32=4X16=82
7. In any geometrical series, the last term is equal to

the product arising from multiplying the first term by
such a power of the ratio as is denoted by the number of

terms less one.

Thus, in the series 2, 6, 18, 54, 162, we shall have

2X3''=2X81= 162.

And in the series a, ar, ar^
, ar^, ar'^

,
kc. continued to n

terms, the last term will be

8. The sura of any series of quantities in geometrical

progession, either increasing or decreasing, is found by
multi[)lying the last term by the ratio, and then dividing

the diflerence of this product and the first term by the

difference between the ratio and unity.

Thus, in the series 2, 4, 8, 16, 32, 64, 128, 256, 312,

we shall have ^^1^^~^= 1024-2=1022, the sum of
2—1

the terms .

Or the same rule, without considering the last term

may be expressed thus :

Find such a power of the ratio as is denoted by the

number of terms of the series
;
then divide the diflference

between this power and unity, by the difference between

the ratio and unity, and the result, multiplied by the fir9^

term, will be the sum of the series.

Thus, in the series a-{-ar-fo»"^4-a»"'+a»'*,^c. tear"',

we shall have
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Where it is to be observed, that if the ratio, or com-

mon multiplier, r, in this last series, be a proper fraction,

and consequently the series a decreasing one, we shall

have, in that case,

a
a-{-ar-\-ar^ -\-ar^ \-ar'* ,

&c. nd infinitum
= .

9. Three quantities are said to be in harmonical pro-

portion, when the first is to the third, as the difference

between the first and second is to the difference between

the second and third.

Thus, a, 6, c, are harmonically proportional, when a : c

y.a— b : b— c, or« : c\\b— a : c — h.

And c is a third harmonical proportion to a and b, when
ab^^

2a-b'

10. Four quantities are in harmonica! proportion, when
the first is to the fourth, as the difference between the

first and second is to the difference between the third and

fourth.

Thus, a, b, c, d are in harmonical proportion, when
a : d : : a—b : c— d, or a : d : : b — a : d~c. And d is

a fourth harmonical proportional to a, b, c, when d=
ac

-, in each of which cases it is obvious, that twice the
2a— 6

first term must be greater than the second, or otherwise

the proportionality will not subsist.

11. Any number of quantities a, b, c, d, e, kc. are in

harmonical progression, if a : c : : a—b : 6— c
;
b : d : :

b—c : c— d
;

c : e : : c—d : d— e
;
&c.

, 12. The reciprocals of quantities in harmonical pro-

gression, are in arithmetical progression.

Thus, if a, b, c, d, e, &c. are in harmonical progrcs-
1 1 1 1 1

„ M, ,
•

,- .• ,

sion, -, -, -, -J, -, &LC. will be m arithmetical progression.
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13. An harmonical mean between any two quantities,
is equal to twice their product divided by their sum.

Thus, —r— = an harmonical mean between a and b*.
a-j-b

EXA^IPLES.

1. The first term of a geometrical series is 1, the ratio

2, and the numb«r of terms 10
;
what is the sum of the

series.

Here 1 X29= l X512=512, the last term.
. . 512X2-1 1024—1 ,_„ ^, . ,And—-—-—= = 1023, the sum required.

2 — 1 I
^

1

2. 1 he first term of a eeometrical series is ^, the ra-

j

* 2

tie --, and the number of terms 5
; required the sum of

the series.

1 /'In" 1 1 1
Here -X{ -

) =_x—=— -, the last term.
2 \3/ 2 81 162
1 1_VJ. ± 1_ 101 ^ 191

And ^—i«=-ili=a—i^=_Xr=~, the sum.
l-i I 243 2 162'

3. Required the sum of 1,2, 4, 8, 16, 32, &c. conti-

nued to 20 terms. Ans. 1048675.

4. Required the sum of 1, -, -, -, — ,
—

, &c. continu-^ '

2' 4 8' 16' 32' J27
ed to 8 terms. Ans. 1—-

128

5. Required the sum of 1, -, -, — ,
—

, &:.c. continued
3 9 27 81 9841

to 10 terms. Ans. 1 ^,,^^.
19683

6. A person being asked to dispose of a fine horse, said

he would sell him on condition of having a farthing for

* In addition to what is here said, it may be obsen'ed, that the ratio •£ I .i

two squares is frequently called duplicate ratio; of two square roots, s^ib- I "

dvplicate ratio ; of two cubes, triplicate ratio ; and of two cube roots, sub- I '^

^m

triplicate ratio ; &c. I
lijj.
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the first nail in his shoes, a half-penny for the second, a

penny for the third, twopence for the fourth, and so on,

doubling the price of every nail, to 32, the number of nails

in his four shoes
;
what would the horse be sold for at

that rale ? Ans. 4473924/. 6s. 3^d.

Of equations.

The DocTRfNE of Equations is that branch of algebra,

which treats of the methods of determining the values of

unknown quantities by means of their relations to others

which are known.
This is done by making certain algebraic expressions

equal to each other (which formula, in that case, is called

an equation), and then working by the rules of the art, till

the quantity sought is found equal to some given quantity

and consequently becomes known.

The terras of an equation are the quantities of which

it is composed ;
and the parts that stand on the right and

left of the sign =, are called the two members, or sides, of

the equation.

Thus, if x=a-\-b, the terms are x, a, and b; and the

meaning of the expression is, that some quantity x, stand-

ing on the left hand side of the equation, is equal to the

sum of the quantities a and b on the right hand side.

A simple equation is that which contains only the first

power of the unknown quantity : as,

x-\-a=3b, or ax=.hc, or 2x-\-Za^ ^^bb^ ;

Where x denotes the unknown quantity, and the other

letters, or numbers, the known quantities.
A compound equation is that which contains two or more

different powers of the unknown quantity ; as,

x^-{-ax—b, or a;3 — 4x2 4-3x=25.

Equations are al?o divided into different orders, or re-

ceive particular names, according to the highest power of

the unknown quantity contained in any one of their terms :
.

as quadratic equations, cubic equations, biquadratic equa-
. tions, &c.
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Thus, a quadratic equation is that in which the unknown

quantity is of two dimexisions, or which rises to the second

{(ower : as,

a-2=20; x2-{-cix=b, or 3x2 -\-10x=100.
A cubic equation is that in which the unknown quantity

IS of three dimensions, or which rises to the third power :

as,

:r3=27
;
Sx^—3.t=35

;
or x^—ax'^+bx—c.

A bi']uadratic equation is that in which the unknown

quantity is of four dimensions, or which rises to the fourth

power: as, a;«=25; 5a:*—4x=^6
;
or x*—ax'^-^-bx^ — ex

And i?o on for equations of the 5th, 6th, and other high-
er orders, which are all denominated according to the

highest power of the unknoivn quantity contained in any
one of iheir terms.

The root of an equation is such a number, or quantity,

us, being substituted for the unknown quantity, will make
lioth sides of the equation vanish, or become equal to each
other.

A simple equation can have only one root ; but every

compound equation has as many roots as it contains di-

mensions, or as is denoted by the index of the highest

power of the unknown quantity, in that equation.

Thus, in the quadratic equation a;3_|_2x=15, the root,

or value of a;, is either + -'^ or — 6; and, in the cubic

equation x^ — 9x -j-26x=24, the roots are 2, 3, and 4, as

Will be found by substituting each of these numbers for x.

In an equation of an odd number of dimensions, one of

its roots will always be real
;
whereas in an equation of

an even number of dimensions, all it roots ma}' be imagin-

ary ;
as roots of this kind always enter into an equation

by pairs.
Such are the^quations a;^—60;+ 14=0, and a;* — Sx^ -

9x2 4yjx+50=0*.

• See, for a more particular account of the general theory of equations,

further on, or Vol. II. of Bomiycastle's Treatise on Algebra, 8vo. 1820.
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OF THE

RESOLUTION ofSIMPLE EQUATIONS,

Containing only one unknown Quantity.

yhe. resolution of simple, as well as of other equations,
is the disengaging the unknown quantity, in all such ex

pressions, from the other quantities with which it is con

nected, and making it stand alone, on one side of the equa-
tion, so as to be equal to such as are known on the other

side
;

for the performing of which, several axioms and

processes are required, the most useful and necessary of

which are the following :*

CASE I.

Any quantity may be transposed from one side of an

equation to the other, by changing its sign ;
and the two

members, or sides, will still be equal.
Thus, if x-|-y=7 ;

then will x=7— 3, or x=4.
And, if x--4+ 6= 8

;
then will a;=84-4— 6=6.

Also, if x—a-{-b=:c—d: then will x=a— b-^c~ d.

And, if 4a;-8=3a;+20; then 4a:- 3x=20+8, and con-

sequently x=9.8.

From this rule it also follows, that if a quantity be found
on each side of an equation, with the same sign, it may

* The operations required, for the purpose here mentioned, are chiefly such
as are derived from the following- simple and evident principles :

1. If tlie same quantity be added to, or subtracted from, each of two equal
quantities, the results will still be equal ; which is the same, in effect, as tak-

ing any quantity from one side of an equation, and placing it on the other

side, with a contrary sign.
2. If all the teniis of any two equal quantities, be multiplied or divided, .

by the same quantity, the products, or quotients thence arising, will be equal.
3. If two quantities, either simple or compound, be equal to each other,

any like powers, or roots, of them will also be equal.
All of which axioms will be found sufliciently illustrated, by the processes

arising out of the several examples annexed to the si& different cas»s given
in the text.

K 2
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be left out of both of them
;
and that the signs of all the

terms of any equation may; be changed from + to—
,
or

from —'^to 4", without aUering its value.

Thus, if x-H5=7+6 ; the.n, by cancelling, x=7.

AticJ,:if:cfr— ^=="6. r;c ; then, by changing the signs, a;—

a=c— b, or x=^a-\-'c^b.
' ' '

EXAMPLES FOR PRACTICE.

1. Given 2a;+3=a;4- 1 7 to find x. Ans. a:=14.
2. Givea 5x — 9=4a:4-'7 to find a:. Ans. a;— 16.

3. Given ar+9— 2=4 to find x. Ans. a;=— 3.

4. Given 9a:— 8=8x— 5 to find x. Ans. x=3.
6. Given 7x+S— 3=6x-{-4 to find x. Ans. .x=— I.

CASE II.

If the unknown quantity, in any equation, be multiplied

by any number, or quantity, the multiplier may be taken

away, b}^ dividing all the rest of the terms by it ; and if it

be divided by any number, the divisor may be taken away,
by multiplying all the other terms by it.

c
Thus, if ax=2ab—c ;

then will a;:=36 .

a

And, if 2x+4=16 ;
then will x+2=0,

orx=8-2=6.

Also, if 1=5+3 ;
then will x=10+6=16.

2x
And, if ——2=4

;
then 2x— 6=12, or, by division,

,:-.3=6, ora;=9.

EXAMPLES FOR PRACTICE.

1. Given 16x-f-2=34 to find x. Ans. x=2.
2. Given 4x — 8=— 3x+ 13 to find X. Ans. x=3.,
3. Given 1 Ox— 19=7x4-17 to find x. Ans. x=12.
4. Given 8x-3+9=-7x+9+27 to find x.

Ans. x=2.
Ad

6. Given ^ax - Zah—Ud. Ans. xt=b-\—r-
0.0
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CASE III.

Any equation may be cleared of fractions, by multiply-

ing each of its terms, successively, by the denominators of

those fractions, or by multiplying both sides by the product
of all the denominators, or by any quantity that is a mul-

tiple of them.

Thus, if--l—=5, then, multiplying by 3, we have x-{-

3x— = 15
;
and this, multiplied by 4, gives 4a; 4" 3« = 60

;

4
60 4

'Whence, by addition, 7a:=60, or x=—=8-
X X

\ And, if—1--=10 ; then, multiplying by 12, (which is a
4 6

multiple of 4 and 6,) 3a:-}-2x=120, or 5x=120, or x=

=24.
5
It also appears, from this rule, that if the same number,

or quantity, be found in each of the terms of an equation,
either as a multiplier or divisor, it may be expunged from
all of them, without altering the result.

Thus, if ax=^ab-\-ac ;
then by cancelling, x=b-]-c.

X h c

And, if—
I

—=- : then a;+6=c, or x=c—b,
a a a

EXAMPLES rOR PRACTICE.

3a; X
1 . Given —=—f24 to find X. Ansx=19i.

2 4 *

2. Given J+^-f^=62 to find x. Ans. x=60.
3 5 2

3. Given ——-f-=20 ^^ to find x.

Ans. x=29f
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4. Given ^l+d:!=i6—^- to find x.

x+a X 2a; a+6
5. Given —

; 1
—=

1 -y- to find xoca a

Ans. x=13.

a^ch — ach^ —a^cd

acd-\-abd—2cbd

CASE IV.

If the unknown quantity, in any equation, be in the

form of a surd, transpose the terms so that this may stand

alone, on one side of the equation, and the remaining
terms on the other (by Case 1) ; then involve each of the

sides to such a power as corresponds with the index of

the surd, and the equation will be rendered free from any
irrational expression.

Thus, if .^x—2=3; then will ^x=34-2=6, or, by

squaring, x=52=25.
And if v^(3a-+4)

= 5
;
then will 3ar+4=25, or 3a;=25

21— 4=21, or a- =—=7.

Also, if V(2a^^+3)+ 4=8 ;
then will l/(2x-\-3)=Q~-4

=4, or 2x+3=43=64, and consequently 2a=64 — 3=61,

or x=-=30-.

EXAMPLES FOR PRACTICE.

1. Given 2^x4-3=9 to find x. Ans. a=9.
2. Given ^(x+1)- 2=3 to find X. Ans. x=24.
3. Given 3/(3x+4)4-3=6 to find x. Ans. x=7|.
4. Given v/(4+x)=4—yx to find x. Ans. x^2i.

5. Given ^(4a^-\-X')= X/(4b*+x*) to find x.

(/,4_4a4\~2~a2~ /•
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CASE V.

If that side of the equation, which contains the unknown

quantity, be a complete power, the equation may be re-

duced to a lower dimension, by extracting the root of the

said power on both sides of the equation.

Thus, if x3=81
;

then a;=^81=9 ;
and if x3=27,

then a;=3/27=3.
Also, if 30-2—9=24

;
then 3x2=24+9=33, or x^=

33—=11, and consequently a;=:^ll.

And, if x2 4-6x+9=27 ; then, since the left hand side

of the equation is a complete square, we shall have, by

extracting the roots, a;+3= v^ 27=^/(9 X3)=3v/3, or a;

=3^^3-3.

EXAMPLES FOR PRACTICE.

1. Given 9a;2—6=30 to find a:. Ans. x=2.

2. Given x-* +9=36 to find z. Ans., x=3.

3. Given x^-\-x+}=— to find x. Ans. x=4.

I

o^ 1
**

4. Giyen x^-\-ax-\-——b'' to find x. Ans. x=&—x-
4 ^

5. Givenx2+ 14x+49=:_-121 to findx. Ans. x=4.

CASE VI.

Any analogy, or proportion, may be converted into an

aquation, by making the product of the two extreme terms

equal to that of the two means.

Thus, if 3x . 16 : : 5 : 6
;
then 3xX 6=16X5, or 18x

80 40 4
^-80, or .=-=-=4-.

2x 2cx
And, if— : a : : 6 : c

;
then will -^=ab,OT2cx=3ab;

o o
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^. A-
3afc

or, by division, a;=— .

Also, if 12—X : ; : 4 : 1
;
then 12—x =—=2x, or 2x

2 2

4-a;=12 ;
and consequently x= -^^^'^-

EXAMPLES FOR PRACTICE.

^.3 , , ^ , , 20ai
1. Given -x : o : : 5oc : ca to nnd x. Ads. x=—5- .

4 3a
2

2. Given 10—x :
- x : : 3 : 1 to find x. Ans. x=S\.
3 *

3. Given 8+8x : 4x : : 8 : 2 to find x. Ans. x= l,

4. Given x : 6—x : •. 2 : 4 to find a;. Ans. x=2,

5. Given 4x : a : : 9^x : 9 to find x. Ans. x=-7:.
16

MISCELLANEOUS EXAMPLES.

1. Given 5x— 15=2x+6, to find the value of x.

Here 6x— 2x=6-f 15, or 3x=6+ 15=21
;
and there-

21
fore x= -x-=7.

2. Given 40-6x- 16= 120- 14x, to find the value of x

Here I4x—6x=120 -40+16 ;
or 8x=136—40=96

;

and therefore x=—-=:12.
8

3. Given Sx^ — 10.t=8x4--'^^9 to find the value of x.

Here 3x— 10=8-)-x, by dividing by x
;
or 3x — x=:8-f'

10=18, by transposition.
18 „And consequently 2x=18, or x=—=9.

4. Given 6ax^ - 12abx^=-3ax^-\-6ax^ ,
to find the value

of X.

9'
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Here 2a;—4b=x-{'2, by dividing by 3ax^
;
or 2a;—a:=

2+46 ;
and therefore x=4h-{-2.

5. Given a;3+2x+ 1= 16, to find the value of ».

Here a;+l=4, by extracting the square root of each

tide.

And therefore, by transpositisn, .r=4— 1=3.
6. Given 5ax—3b=^clx-{-c, to tind the value of x.

Here 5ax^2dx—c-\-3b ;
or {5a— 2d)x=c-}-3b ;

and
c+ 36

therefore, by division. x= --.

3^ X ST

7. Given -A—= 10, to find the value of x.
2 3 4

Here x-—^ =20 : and 3.r-2xH =60 : or Ux
3 4

'

4
'

— 8x+6x=240 ; whence 10x=240, or x=24.
^.^3 -y X 19

8. Given ———[--=20 —
, to find the value of x.

2x
Here x-3-1 =40-x+19 ;or3x—9-|-2x=120— 3x

+57; whence 3x+2x+3x= 120+57+9 ;
that is 8x=

186, or x=23i.
2x

9. Given ^——[-5=7, to find the value of x.

2x 2x
Here ^—=7— 5=2

; whence, by squaring,—=2^=O %j

4, and 2x=12, or x=6.
2a2

10. Given ^ + w'('a^+a;0 = . ; ^.^
to find the

palue of X.

Here x^{a^+x-)-\-a^-\-x~=2a~ ; orx^(a2+x ) ==

a2— x2, and x2(o2+x2)=:a4 -2a2x2+x* ;
whence a^js

+x*=^a'*— 2a3a-2+j;4, anda2xa=a4— 2a2x2
;
therefore 3

a* a2 , ,
a2

%^x^~a*, or X = ——
;^=-^; and consequently x—a/—

J 3 a „ , .
-.=a V o^^'a/q "^v/^* ti^e answer required.O I/O
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EXAMPLES FOR PRACTICE.

1. Given 3x— 2-1-24=31, to find the value of x.

Ans. a;=3
2. Given 4 — 9?/= 14 — 11?/, to find the value of y.

Ans. 2/=5
3. Given a;+18=3x— 5, to find the value of x.

Ans. a;=ll

4. Given x-\-'--\-~=ll, to determine the value of x.

Ans. a:=(

5. Given 2a:—-4-l=5a-— 2, to find the value of x.

Ans. x=XXX 7
6. Given -+-—=—

, to determine the value of x.

7. Given —-—
|

—=4—^ ,
to find the value of x

2
'

3 4

Ans. x=l

Ans. x=3

8. Given 2-{-y/3x= v^4-|-5x, to find the value of x.

Ans. x=l

9. Given x-!-a=—;

—
,
to find the value of x.

a-f-x
Ans. x= —

2(j
10. Given v^x-}-»/a-|-x=—;

—
;

—r to find the valu

^{a+x)
of X. Ans. x=

„. ax~b
,
a bx bx— a ^ , ,

11. Given —
,

—+-=- ,
to find the valu^323 3^

of X.
* Ans. X

3a- S

12. Given ^a^-{'X-=^\/b'*-}-x'^ ,
to find the value of :

b*-
Ans. x=^~—^ 2 a
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13. Given y/a-\-x-\-^a''X—^ax, to - find the value

of X, Ans.
a:=^j;^

a a
14. Given —

-,

—
I =6, to determine the value of x.

l+a; 1—X

Ans, x=<y—7—
15. Given a+x= ^ a2 +x V (6^ ^x^)^o find the value

of X. ^
Ans.

a;=4^-«

16. Given |y(xa+3a8)-iy(a;2-3a2)=a;v/a, to find

the value of x. Ans.
^—Vj^^J^

17. Given v^(a+x)4-^(o-x)=&, to find the value of

X. Ans a;=--v/(4a-6a)

18. Giveni/(a+x)+VC<^—x)=6, to find the value of ar .

Ans.x=^a2-(^-3^;
19. Given v/a+v/a:=^ax, to find the value of x.

Ans. x=-

(x-4~l\

/'x— 1\
-—

T )+V'( "Xt) ~"' *^ determine the

a
value of X. Ans. x=—m==:

v^a2_4
21. Given v'(a2-f-fla^)=a—^(a2 —ax),to find the value

of X. k
^

jc,Ans. x=-^3.

22. Given ^(a2-.x2)+iV("-
"
0=«''a/(1 -*0. *<>

find the value of x. » _* . /«'^ - 1 \Ans. X-
^^^—^^

* Bonnycastle, in his Key, sajs this answer is wrong; the answer which

he gives, is / —
. ; Now these two answrrs give the same value fOi

'

L
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23. Given ^(^x-i-a)=c—y/{^x-{-b), to find the value of .r.

h c 4fec
24. Given -/ —p-+y = y , to find the

value of X. Ans. a;

Of the resolution of simple equations., containing two
unknown quantities.

When there are two unknown quantities, and two inde-

pendent simple equations involving them, they may be re-

duced to one, by any of the three following rules
;

RULE I.

Observe which of the unknown quantities is the least

involved, aud find its value in each of the equations, by
the methods already explained ;

then let the two values,

thuo found, be put equal to each other, and there will arise

x; that is, x=y(-^1-^), or^ ^^ ^ ^ 2a2— 3)
' because if we assume any

value for a, and substitute it in both, ^ve get the same value for a;. Let cc=2,

,
,a2—K 3

,
as— 1 3 ^9

consequently both give the same answer. Or thus, b}' hypothesis ; Let
y-rtS— l^ o2— 1

'v/v«2 4.3/'~'\/(a4 4.2a2— 3)'
_ . a2— 1 a4— 2a2 4-l ^. . ,. 1
By squannar -^ —-

:, Dividins' by aa— 1 we eet =•' ^
^02+3 a4-f.2o2— 3'

^ ^ ^
a2 -f-3

a2— 1—r —, and by multiplication c4 + 2a2—3=a4 4>2a2—3. There-
«4 -\-2a2

— 3 '

fore dif hypothesis is correct.
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a new equation with only one unknown quantity in it, the

value of which may be found as before.*

EXAMPLES.

1. Given \ „ y ,„ > to find the values of x and y.
I 5x—2y=10 y

^

23— 3«
Here, from the first equation, x=—-—

-^

. ^ r , ,
10+2y

And irom the second, a-=

Whence we have

5

23—32/ 10+22/
2 5

'

Or 115-15i/=20+4t/, or 1%=115- 20=95,
rru.- 95

^ , 23-15
^That IS, «=-—=5, and x= =4.'^19 2

2. Given ? ^*y^^ ( to find the values of x and y.

Here, from the first equation, x=a—y^
And from the second, x=6+j/,
Whence a—y=.h-\-y, or 2y=a—b^

And therefore y=———, and x=o — y,

Or, by substitution, x=^a— =
—5—.

3. Given <?T? o?to find the values of x and v.

2t/

Here, from the first equation, a:=14—
^,

And from the second, x=24 -,
2

2« 3t/

Therefore, by equality, 14— -|-=24
—

^,

* This rule depends upon the well known axiom, that things which are

equal to the same thing, are equal to each other ; and the two follovving
methods are founded on principles which are equally simple and obvious.
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And consequently 42— 2t/=72 -^

Or by multiplication 84 — 4i/=144— %;
And, therefore, also 52/= 144— 84=60,

60 24
Or, by division, a;=—=12, andx=14—5-=6'

EXAMPLES FOR PRACTICE,

1. Given 4a-+j/=34, and 4t/+ a:=16, to find the values

of X and y. Ans. x=8, j/=2.
2. Given 2x-{-3y=16, and 3x-2y=ll, to find the va-

lues of X and y. Ans. x=5, 2/=2.

3. G.ven -+f=-, and _+-|=_ to find the va-

lues of X and ?/. Ans. a=^, y=i.

4. Given
| f^j^g^"^

5 to find x and y.

Ans. x=a4"*, and y=^a— Jft.

(-+1=0
1 2 3 r

5. Given < > to find x and y.

V.3 2 J Ans. x=12, andy=6.

w -+^=9
6. Given < 2 3

^ to find x and y

x:?/::4:S) Ans. x=12,andy=9.
2x 3i/

T. Given x+2/==80, and
-^=-j^, to find x and ?/.

N Ans. x=42y\, and j/^STfj.

8. Given ^— 6=-, and x=::y-\-&, to find x and y,

Ans. xc=24, and y=\Z.

RULE II.

Find the value of either of the unknown quantities in

that equation in which it is the least involved
;
then sub-

stitute this value in the place of its equal in the other
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equation, and there will arise a new equation with only one

unknown quantity in it
;
the value of which may be found

as before.

EXAMPLES.

1. Given \ /"^^^^l^ I to find the values of x and y.

From the first equation, x:^l7— 21/ ;
which value, being

substituted for x, in the second,

gives 3{\7—2y)—y=2.
Or 5l--6y-y=2, or 7i/=3 1— 2=49,

49
Whence y =—=7, and x=\'7^2y=3.

2. Given 5
^+2/=^^ ( to find the values of x and y.

I X—y= -i i

From the first equation, x=\3—y ;
which value being

substituted for a;, in the second,

Gives l3-y-y=3, or 2y=\3—5=\0,

Whence ?/= —=6, and a:=13—y=^-

3. Given ^
^ '

i' ,',"'* Mo find the values of x and y.

\
x^ -f-y^=c )

Here the analogy in the first, turned into an equation,

gives bx=ay, or x=—
And this value, substituted for x in the second,

giyes(^y+y'^=c,or^^-{-y^=c,
b3c

Whence we have a'^ y^-\-b''y^=zb^c, or
y''^-^^^

c c

And, consequently, y^^V-Tj^^
^°^ ^=

^^-^TI^-^

EXAMPLES FOR PRACTICE.

1. Given -+72/=99, and|4-7ic=51,
to find the values

f X and y. Ans, x=7, and Sf=14.
.
L.2
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2. Given ^- 12-^+8, and-4^+1-8=^-+27,
-6 4 bo 4

to find the values of x and y. Ans. x^60, i/=40.
3. Given a;+j/=s, and x^-j-yS—.^;^ to fju^j tjjg values of

. s'-\-d s2— d
jc and y. Ans. a;= , y= .

4. Given Sx— 3j/=150, and 10a:+152/=:825, to find*
and y. Ans x==45, and y=25>.

5. Given x-{-y=\6, and x : y : : 3 : 1, to find a; and y.
Ans. x=12, and 2/=4.

6. Given x+ |=12, and 7/-l--=9, to find x and y.

Ans. .'c=10, and y=z4.
7. Given x : y : : 3 : 2, and x2 - i/2 =20, to fiod x and y.

Ans. x=6, and y=4.

8.
Given|-12=|l3+,and^+|+16=?^+ 27,

to find X and y. Ans. x=60, and 2/=20.

RULE in.

Let one or both of the given equations be multiplied, or

divided, by such numbers, or quantities, as will make the
term that contains one of the unknown quantities the same
in each of them

; then, by adding, or subtracting, the two

equations thus obtained, as the case may require, there will

arise a new equation, with only one unknown quantity in it,

which mav be resolved as before*.

* The values of the unknown quantities in the two literal ax -^/)3/=c, and

a'a;-|-6'y=c', may be found in general teims, by multiplying- tlie first bj' a',

and the second by a, and then working- according to die last rule, when the

1 T • 1 -.1 , <»c'—CO' - cb'—bd , . , , .

results, so determined, will be y= ~ r—-, and x=—, pr; which solution
ab—ba ab—ba

may be applied to any particular case of this kind, by substituting the nume-
ral of a, h, a', b', in the place of the letters, and observing, when either of
them is negative, to change the signs accordingly.

"WTiere the numerator is the difference of the pi-oducts of the opposite co-

efficients in the order in which y is not found, and tlie denominator is the dif-

ference of the products of the opposite coefficients taken from the orders that

involve the two unknown quantities. Coefficients are of the same order which
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EXAMPLES.

1. Given
j

"

Tg ^i . ? to find the values of x and y.

First, multiply the second equation by 3, and it will give
3x + 6y=42.

Then, subtract the first equation from this, and it will give

%~5i/=42— 4G, ori/=2.
Whence, also, a;=14— 2j/==14—4=10.

< 2. Given \ „
X^s — ifi i

^° ^'^^ ^^^ values of a; and y.

Multiply the first equation by 2, and the second by 5
;

then lOx— 6?/=18, and igx-f-26?/=80.
And if the former of these be subtracted from the latter

, 62
there will arise 31?/=62, or y=—=2.

O 1

Whence, by the first equation, x=: -=—=3.
5 6

EXAMPLES FOR PRACTICE.

1. Given ^--—
1-6^=21, and ^i-=23-6x, to find a;

and y. Ans. x=4, and y=3.

I

2. Given 3x+72/=79, and 22/=9+-, to find x and
?/.

Ans. x=10, and y=l.
3. Given 30x+40?/=270, and 50a-f-30i/=340, to find

K and y. Ans, a;=&, and y=3.
4. Given Sx— 3i/=2a;+2i/, and x+y : xi/ : : 3 : 5, to

find X and y. Ans. x=10, and i/=2.
5. Given x2i/+ay=30, and x^-{-y^=^Sb, to find x

and y. Ans. x=3, and y=2.

jiAer aiTect no unknown quantity, as c and c': or the same unloiown quantity
n the ditlerent equations, as a and a'. Coefficients are opposite when they
iffect tlie different unknown quantities in the different equations, as a and b',
>('«nd b.
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6. Given ^=~? ^' ^"^ ^
4^2'^3'

find X and y.
Ans. a;=12, and y=6,

7. Given x+J/ : a : : x-y : b, and x^ —y^=c, to fine

the values of a; and y.

a+6' , c a— 6
Ans.

«:=-^v/^,
'-'^-T-^aj

8. Given ax-{-by^c, and dx+ey=f, to find the value:

of ic and y.
ce— bf af-di

Ans. a:= —, y= r
ae-~bd ac-~b(

9- Given x-\-y=a, and a;^ —y^=.b, to find the values o

2a '' 2a

10. Given a;- -j-^2/=«5 and i/2 +arj/=6, to find the valuei

of X and y. k
^ ^

^ Ans. a:=—-—r-riV'^—rr—TT

Of the resolution of simple equations, containing three o:

more unknown quantities

When there are three unknown quantities, and threi

independent simple equations containing them, they ma;

be reduced to one, by the following method*.

RULE.

Find the values of one of the unknown quantities i

each of the three given equations, as if all the rest wer

* The necessity for observing that the given equations, in this and othf

similar cases are so proposed as to be independent of each other, wfil b

obvious from the tbllowing example :

a;-2y+2=5;2a+y_«=7; x+ 3y—2z=2;
where, if it were required to determine the values of x, y and z, it will l

found by eliminating a from each of them, and then equating the results, th-l

5y—3z=—3, and 5y—32^— 3;
which equations, being identical, or both the same, furnish no determina

answer. And, in efl'ect, if the three equations be properly examined, it wi

be found, that the third is merely the difference of the first and second, an ««

consequently involves no condition but what is contained in the other two.

m
M
mi

»T

ml

s

tet
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cnown ;
then put the first of these values equal to the se-

;ond, and either the first or second equal to the third, and

here will arise two new equations with only two unlcnown

juantities
in them, the values of which may be found as in

he former case ;
and thence the value of the third.

Or, multiply each of the equations by such numbers, or

juantities, as will make one of their terms the same in

hem all
; then, having subtracted any two of these result-

ng equations from the third, or added them together, as

he case may require, there will remain only two equa-

ions, which may be resolved by the former rules.

And in nearly the same way may four, five, &c. un-

|:nown quantities be exterminated from the same nutn-

>er of independent simple equations ; but, in cases of this

and, there are frequently shorter and more commodious

oethods of operation, which can only be learnt from prac-

ice*.

EXAMPLES.

1. Given { x+2y-\-3z^62 \ to find x, y, and

» The values of the imknown quantities in the three literaj equations

ax+ iy+ cz=d; a'x+ b'y+ c'2=d'; a"x ^b"y+ c"z=d" ;

nay be exhibited, in general terms, like those before mentioned, as follows ;

__ db'c"—dcb''+ cdb'—bdc'+ hc'd'—ch'd"
^~

ab'c"—acb''+ca'b'—ba'c''.-^bc'a''—cb'a"

ad'c'
'—at d"-\- ca'd"—da'c"-i-dc'a"— cd'a''

*'^a6'c —ac'b" -fca'b'
—ba'c -j-bc'a'

—cb'a''

ab 'd''—a'b"-^ dab
'—ba^d" 4- bd'a —db'a"

^
ab c"— ac' b'

'

-f ca'b''—ba'c" -f-
bed

'— cb'a
'

vhich formula, by substitution, may be employed for the resolution of any
lumeral case of this kind, as in the instance of two equations before given.

The numerator of any of these equations, such as 2, consists of all the dif-

erent products, which can be made of three opposite coeflRcients taken frem

he orders in which 2 is not found; and the denominator consists of all the

products that can be made of the tliree opposite coefficieuts taken fcoa tint

orders which involve the three unknown quantities.
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Here, from the first equation, x=29— y-2.
From the second, x=62— 2y~ Sz,

n i

And from the third, x—20—-u z

Whence 29—
?/
—
2r=:62-2?/-32-,

2 1

And, also, 29 -y^z =20—-y z.

From the first of which y=33-2z.
And from the second, 2/=27 z,

2
3

Therefore 33—2z=27—z, or 2=12,

Whence, also, 2/=33— 22'=9
And a; =29—y-.z=^.

i2x\^y-^2,z=^22\
2. Given } 4x^2y+5z= 18

) to find re, ;y,
and z.

(Sx+ly-z ^63)
Here, multiplying the first equation by 6, the second by

3, and the third by 2, we shall have

12a;4-247/-18z=132,
12.T- Cy+\5z=54,
I2x+\4y~ 2^=126.

And, subtracting the second of these equations succes-

sively from the first and third, there will arise
•

30y^332=7Q,
20?/— 17z=-72.

Or, by dividing the first of these two equations by 3,
and then multiplying the result by 2,

20y— 22z=52,
20y—nz=12.

Whence, by subtracting the former of these from the

latter, we have oz=^ 20, or z= 4.

And, consequently, by substitution and reduction,

y= 7, and x= 3.

. 3. Given x+y-\-z= 53, x+2y-{-3z=l05, and .r+3jf+
Az= t-24, to find the values of x, y, and z.

Ans. a-=24, y=6, and2=23.
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«

y-{--z=l2, to find the values of x, y, and z.

Ans. x=12, 2/= 20, ^=30.
5. Giren lx+5y+2z=19, 8x+7y-{-9z = 122, and x+

4y+52'=56 to find the values of x, y, and z.

Ans. x—4,y=9,z=3.
6. Given a;+i/= a, x-{-z =h, and y+^ =c, to find the va-

lues of X, y, and z.

Ans.
,=^+£,.="+1=5 and .=^±i.

..Given
1+1+1=6., ^+|+i=47.a„a|+|+l.

J8, to find X, y, and z. Ans. x=24, 2/=60, and z= l20.
8. Given z+2/=a;+100, i/-2x=2z - 100, and .?-f-lOO

=3x-\-3y, to find x, y, and z.

!

^
Ans. a:=9JT, 2/=45-j-V, and ^=63/-!-.

9. Given x-\-y-\-z= 7, 2j;— 3 =^y+3z, and 5x + 5^= 3y-{-
19, to find a;, y, and e. Ans. a;=:4, y=2, and 2'=].

^-

10. Given3a-+5!/-4z=2e, 5a;— 2j/4-3z=46, and37/-|-
ii'—a;— 62, to find x, y, and z.

Ans. a;=J, ?/=:8, and z=9.
11. *

Givena:+2/4-2'=13,a;-f?/+«=17, a:+^+ii=18,
ind t/-f2-f-M=21, to find .r, y, z, and u.

Ans. x=2, y=5, 2-= 6, and «= 10.

MISCELLANEOUS QUESTIONS,
PRODUCING SIMPLE EQ,UATI0NS.

The usual method of resolving algebraical questions,
8 first to denote the quantities, that are to be found, by x,
; or some of the other final letters of the alphabet ;

* This can be resolved by proceacling- after the same manner, as equations
ivolvmg three nnknown quantities : but the rcsotufion of it may be greatly
icilitated, by introducing into the calculation, beside the principal unknown
uantities, a new unknown quantity arbitrarily assumed, such as, for example,
le sum of all the rest : 4||d when a little practised in such calculation';, they
ecome tasv. '
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then, having properly examined the state of the qaes

lion, perform with these letters, and the known quanti

ties, by means of the common signs, the same opera

tions and reasonings, that it would be necessary to mak

if the quantities
were known, and it was required to veri

fy them, and the conclusion will give the result sought.

Or, it is generally best, when it can be done, to denot

only one of the unknown quantities by x or y, and the

to determine the expression for the others, from the na

tare ©f the question ;
after which the same method (

reasoaing may be followed, as above. And, in some case:

the substituting for the sums and differences of quantities

or availing ourselves of any other mode, that a prope

consideration of the question may suggest, will greatly fj^

cilitate the solution.

1. What number is that whos€ third part exceeds ii

fourth part by 16?
Let x= the number required.

Then its - part will be -
x, and its -

part
- x.

3 ^ 4 4"

And therefore - a;—-a;=16, by the question,

3
That is X x=48, or 4x—3a:=192,

4

Hence x=l 92, the number required.

2. It is required to find two numbers such, that thej

sum shall be 40, and their difference 16. >

Let X denote the least of the two numbers required,

Then will x4-16= to the greater number,

And x+x-f 16=40, by the question,
24

That is 2x=40- 16, or x= -^=12=
least number

And x+ 16=12+ 1 6=28=the greater number require<

3. Divide 1000/. between a, b, and c, so that a sha

have 111. more than b, and c lOOZ. more than a.

Let x=b's share of the given sum,

Then will x+72=a's shar^
And x+172=c's share.

1^
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Henoe their sum is a;4-a-+72+x4-172.

Or 3a;4-244=]000, by the question,
That is 3x=1000- 244=756,

756
Or x= =252Z. =b's share,

Hence x+72==324L=a.'s share.

And x+172=424L=c.'s share.

Also, as above, 2621. =b.'s share.

Sum of all =1000Z. the proOf.

4. Tt is required to divide lOOOL between two persons,

so that their shares of it shall be in the proportion of 7 to 9'.

Let 0,-= the first person's share,

Then will 1000-ar= second person's share.

And X : 1000—x : : 7 : 9, by the question.

That is 9a=( 1 000- x) X 7=7000 - 7x,

7000 «„, ,^ , ^ ,

Or 9x-f7x=7000, or x = —-5-= 437/. 10s.= 1st share,
lb

and 1000- x=1000- 437/. 10s. = 562Z. 10s. = 2d share.

5. The paving of a square court with stones, at 2s. a

yard, will cost as much as the enclosing it with pallisades,

at 5s. a yard ; required the side of the square.

Let x= length of the side of the square sought,
Then 4x= number of yards of enclosure,

And x^= number of yards of pavement.
Hence 4xX5=20x= price of enclosing it,

And x2 X 2=2x2=: the price of the paving,
Therefore 2r2=20x, by the question,

Or 2x=20, andx=10, the length of the side required.

6. Out of a cask of wine, which had leaked away a

third part, 21 gallons were afterwards drawn, and the cask

being then guaged, appeared to be half full
;
how much

did it hold ?

Let X= the number of gallons the cask is S!jpposed to

have held.

Then it would have leaked away -x gallons.
•5

M
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Whence there had been taken out of it, altogether,

21+-X gallons,

And therefore 2\-\--x=~x, by the question,

3
That is 63+x =-x, or 126-f-2a;=3.r,

Consequently 3x—2x 126, or a;=l26, the number of

gallons reqaired.
7. What fraction is that, to the numerator of which if 1

be added, its value will be -, but if 1 be added to the do-

nominator, its value will be -.
4

X
Let the fraction required be represented by-,

Then =-, and
', . =-, by the question.

y 3' 2/+1 4'
-^ ^

• Hence 3a;4-3=t/, and 4x=y-\- 1
, or x= ,

Therefore 3('^~^+3=y, or 32/+34-12=4y,

r^, ,. , y+I IS-fl 16
,

That IS y=lo, and «= ,
=—-—=—-=4,^ 4 4 4

4
Whence the fraction that was to be found, is— .

?5

8. A market woman bought in a certain number of eggs
at 2 a penny, and as many others at -3 a penny, and having
sold them out again, altogether, at the rate ©f 6 for 2d..

found she had lost 4c?.
;
how many eggs had she ?

Let a;=the number of eggs of each sort,

Then will-x=the price of the first sort.

And ^3r= the price of the second sort.

But 5 : 2 : : 2x (the whole number of eggs) : -r,
o
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4 ,-

\Vhence-T-=--the price of both sorts, when mixetl toge-
b

iher at the rate of 5 for 2d.,

And consequenly -x+-a; =4, by the question,
2 3 o

; That is 15a;+10x—24x= 120, or a;— ISO, the number
of eggs of each sort, a? required.

9. If A ^^n perform a piece of work in 10 days, and b

I

in 13
;

in what time will they tinish it, if they are both set

about it together ?

Let the time sought be denoted by x,

Then —= the part done by a in one day,

And —= the part done by b in one day,

X CO

Consequently
—

-|
—-=1 (the \vh®le work).

That is 13x-f-10x=130, or 23a;=130,

Whence a;= ——=5—days ,
the tiijc required.

10. If one agent a, alone, can produce an effect c, in the

time a, and another agent b, alone in the time b ; in what
time will both of them together produce the same effect ?

Let the time sought be denoted by x.

Then a : e : : x :
—= part of the effect produced by a.

And 6 : e :: x : -r-= part of the effect produced by b.
9

€X ^X
Hence—}—r=c (t^® whole effect) by the question,

a
X X

Or —l"r=^ ^y dividing each side by e.

Therefore x -\
—r-=a, or 6x+ax=a6,

_
,

ab . . ,

Consequently x== ——I= time required.

U. How much rye at 4s. Qd, a bushel, must be mixed
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with 50 bushels of wheat, at 6s. a bushel so that the "mix-

ture may be worth 5s. a bushel ?

Let x^the number of bushels required,
Then 9x is the price of the rye in sixpences,
And 600 the price of the wheat in ditto.

Also (60+a;)X 10 the price of the mixture in ditto,

Wheuce 9x4-600=500+ lO.r, by the question,
Or. by transposition, lOx— 9a=600— 500,

Consequently a;=100 the number of bushels required.

12. A labourer engaged to serve for 40 days, on con-

dition that for every day he worked he should receive

2Qd., but for every day he was absent he should forfeit

^d., : now at the end of the time, he had to receive

1/. lis. Sd.
;
hosv many days did he work, and how many

was he idle ?

Let the number of days that he worked be denoted by

X,

Then will 40— a; be the number of days he was idle,

Also Wx the sum earned, and (40
—

x) x 8.

Or 320— 8a; the sum forfeited,

Whence 20x-(320-8x) — 3Q0d.(=ll. lis. 5d.), by
the question.

That is 20x- 320+8.r=-380,
Or 28a;=380+320 =700,

Consequently x =—-=25, the number of days he

worked, and 40—x=40~ 25=15, the number of days he

was idle.

q,DESTI0NS FOR PRACTICE.

1. It is required to divide a line, of 15 inches in length,

ioto two such parts, that one may be three fourths of the

other. -Alls. 8a and 6^
2. My purse and money together are worth 20s. and

the money is worth 7 times as much as the purse, how

much is there in it ? Ans. l^s. 6d.

3 A shepherd, being asked how many sheep he had in
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his flock, said, if I had as many more, half as many more,
and 7 sheep and a half, I sho ild have just 600

;
how many

had he ? Ans. 197.

4. A post is one fourth of its length in the mud, one
third in the water, and 10 feet above the water, what is-

its whole leni^th.?
• Ans. 24 feet

5. After paying away
- of my money, and then - of the
4 5

remainder, I had 72 guineas left
;
what had I at tirst?'

Ans. 120 guineas
6 It is required to divide 300/ between, a. b, imd c,

so thrit A may have twice as much as b, and c as mwh as

A aad B together. Ans. a l(to/.. b 50/., c ibOl.

7. A person, at the ti-rie he w<is married was ^^ times

as old as his wife
;
but after they had lived together 15

years, he '.va^ only twice as old ; wh.it were their ages on

their wedding day ^

, "". Ans. Bride's age lf>, bridegroom's 45

8. What number i^ that from which, if 5 be subtracted,
two thirds of the remainder will be 40 ? Ans 65

9. At a certain election. 12P6 persons voted, and the

succe-pful candidate had a majority of 120
;
how many

voted for each ?

Ans. 70H for one, and 588 for the other

!0. A's age is double of b's, and b's is triple of c's,

and the sum of all their ages is 140; what is the age of

each ? Ans. a's 84, b's 42. and c's 14

11. Two persons a and b, layout equal sums of mo-

jiey in trade ;
a gains li't;/. and b loses 87/., and a's money

is now double of b's what did e'ach lay out ?

Ans. 300/.

12. A person bought a chaise, horse and harness, for

60?. ;
the horse came to twice the price of the harness,

and the chaise to twice' the jfrice of the horse and har-

nes.s : what did he give Tor each ?

Ans. 13/. 6s. 8d.for the horse, 6/. 13s. 4d,

for the harness, and 40/. for the chaise

13. A person was desirous of giving 3d. apietee to some

beggars, but found he had not money enough in his pocket
M 2
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by 8c?., he therefore gave them each 2c?., and had then Scfe

remaining ; required the number of beggars ?

Ans. 11

14. A servant agreed to Hve with his master for 0»?. a

year, and a livery, but was turned away at the end of
seven months and received only ^l. I3s. Ad. and his livery ;

what was its value ? Ans. 4/. 16s.

15. A person left 560Z. between his son and daughter,
in such a manner, that for every half crown, the son

should have, the daughter was to have a shilling; what
were their respective shares ?

Ans. Son 400/., daughter 160/.

16. There is a certain number, consisting of two places
of figures which is equal to four times the sum of its di-

gits ;
and if 18 be added to it the digits will be inverted ;

what is the number ? Ans. 24

17. Two persons, a and b, have both the same income
;

A saves a fifth of his yearly, but b, byspepdii.g 50/. per
annum more than a, at the end of four years, finds himself
100/. in debt

;
what was their income ?

Ans. 125/.

18. When a company at a tavern came to pay their

reckoning, they found, that if there had been three persons
more, they would have had a shilling apiece less to pay,
and if there had been two less, they would have had a shil-

ling a piece more to pay ; required the number of persons,
and the quota of each ?

Ans. 12 persons, quota of each 5s.

19. A person at a tavern borrowed as much money as
he had about him, and out of the whole spent Is. ; he
then went to a second tavern, where he also borrowed as

much as he had now about him, and out of the whole

Spent Is.
;
and going on, in this manner, to a third and

fourth tavern, he found, after spending his shilling at the

latter, that he had nothing left
;
how much money had he

*t first? Ans. lUc/.

20. It is required to divide the number 75 into two such

parts, that three times the greater shall exceed seven
times the less by 15. Aas. 54 and 21
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2t. In a mixture of British spirits and water, i of the

whole plus 2d gallons was spirits, and ^
part minus b gal-

lons was water
;
how many gallons were there of each ?

Ans. Hb of wine, and 35 of water

22. A bill of 120/. wa's paid in guineas and moidores,

and the number of pieces of both sorts that were used

were just 100
;
how many were there of each, reckoning

the guinea at 21s., and the moidore at 27s. ? Ans. 60.

23. Two travellers set out at the same time from Lon-

don and York, whose distance is 197 miles ;
one of them

goes 14 mites a day, and the other 16
;

in what time will

they meet? Ans. 6 days 13^ hours.

24. There is a fish whose tail weighs 9tb., his head

weighs as much as his tail and half his body, and his body
weighs as much as his head and his tail

;
what is the whole

weight of the fish ? Ans. 72/6.

25. It is required to divide the number 10 into three

such parts, that, if the first be multiplied by 2, the se-

cond by 3, and the third by 4, the three products shrill be

all equal. Ans. 4^*3, o^\. and 2^*^
26. It is required to divide the number 36 into thr«e

such parts, that i the first,
i of the second, and } of the

third, shall be all equal to each other.

Ans. The parts are 8, 12, and 10

27. A person lias two horses, and a saddle, which, of

itself, is worth 50/. ; now, if the saddle be })ut oa the

back of the first horse, it will make his vaiue double that

of the second, and if it be put on the back of the second,
it will make his value tripie that of the first : what is the

value of each horse ? Ans. One 30/. and the other 40/.

28. If A gives B 5s. of his money, b will have twice as

much as the other has left ; and if b gives a 5s. of his mo-

ney, A will have three times as much as the other has left :

how much had each ? Ans. a 13s. and b lis.

29. Whr-d two numbers are those whose difference,
sum and product, are to each other as the numbers 2, 3,
and 5, respv-ctirely ? Ans. 10 and 2

30. A person in play lost a fourth of his money, and
then won back 3s., after which he lost a third of what he
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now had, and then won back 2s
; lastly, he lost a seventh

of what he tlien had, and after this found he had but 12a.

remaining ;
what he had at first ? Ans. 2us.

3i. A hare is 50 leaps before a greyhound and takes

4 leaps to the greyhound's 3. but 2 of the greyliouud's

leaps are as much as 3 of the hare's how many leaps

must the greyhound take to catch the hare ?

An?. 300.

32. It is required to divide the number 90 into four

suih parts, that if the first part be increased by 2, the se-

eond diminished by 2, the third multipln.d by 2, and the

fourth divided by 2, the suai, difference, product, and

Quotient, shall be all equ;.i ?
*

^
Ass. The parts are 18, 22, 10, and 40

33. There are three numbers whose differences are equal;

(that is, the second exceeds the firJt as much as the third

exceeds the second), and the first is to the third as 5 to 7
;

also the sum of the three numbers is ^24, what are tnose

numbers' Ans. 90, 108, and 12G.

34. A man and his \Vife usually drank out a casK ot boer

in 12'davs, but when the man was from home it la-^led the

woman 30 days ;
how many days would the man alone be

in drinking it /
. . ^ ^

Ans 20 days

35 A o'e! eral ranging his army m the torm ot a sulia

square finds he has 284 men to spare, but increasing the

side bv' one man, he wants 2a to fill up the square ;
how

many soldier^ had he ?
.

Ans. 24U00

36. If A and b together can perform a piece ot work m

8 dav« A and c together in 9 days, and b and c in 10 days,

how many days will it take each person to perform the

the same work alone ?
, ^o -

Ans. A 14ff days, b 17|^ and c 2:J-

aUADRAllC EQlTATiONS.

A auADRATic EQUATION, as before observed, is that

jn which the unknown quantity is of two dimensions, or

which rises to the second power ;
and is either simple or

compound.
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A simple quadratic equation, is that which contains only

the square, or second power, of the unknown quantity, as

b ,
h

ax^= b, or X" =- ;
where x=^-.

a a

A compound quadratic equation, is that which contains

both the tirst and second power of the unknown quantity ;

as

a a

In which case, it is to be observed, that erery equation

of thi5 kind, having any real positive root, will fall under

one or other of the three following forms

.* X2 -f flar=6 . . . where a:=—-±v'(—4-^)«

- * It may be observed, with respect to these forms, that

1. Ih the case x2 -J. ax—6:=o, where x=— ia -j. ^(JaE +b), or —ga—
^ (la2 +6), the first value of ;r, must be positive, because \/{\a2 -f.6) is

greater tlian y^/ias, or its equal la ; aud its second value will evidently be

!iegati\e, because each of the terms, of which it is composed ii
negative.^

2. In the casea;2 —ax—6=0, where .x=^a +^ ($a3 +6),or5a— ^/ {^a2

-i-b), the first value of x, is manifestly positive, being the sum of two posi-

tiTe terms: and the second value will be negative,, because ^(:Ja2 -f- 6)

k greater than ia2 , or its equal \a. 1 /i
3. in the case a2—ax-f6;=o, where a:-=^a-J- v'(in2

—
b), or Jo

— ^/(*

a2—b), both the values of x will be positive, when }a2 is greater than 6 ;

for its first value, is tlien evidently positive, being composed of two positiv«

terms; and its second value, wi"ll also be positive: because v'Ci*'^
—

b) is-

le?s than s/ iae , or its equal ^a.

But if la2, in this crise be less than '. the solution of the proposed equa-

tion is unpossible ; because tlic quantity 502 —6, under tlie radical, is the

negative; and consequently y/ i\a2 —b) will be imaginarjs or of no assign-

able value.

4. It may be also further obser\ed, that there is a fourth case of tlie torn*

x3-|-ar-J-fe=o, where a:=:—
^a-}-v'(J-a2-i-fe),

or i-^a—-/(ja^—fc),

the two values of x will be both negative, or both imaginary, accarding as

\a2 is greater or less than b ; the imaginarj' roots, when they occur, being
here of the forms —(n'-f c' v'

—
I) and — (a'

—c ^—1).

From which it follows, that if all the terms of a quadratic equation, when

brought to the left hand side, be positive, its two roots will be both negative,

or both imaginary ;
and conversely, if each of the roots be negative or each

inv.iginary, the signs ot all the terms will be positive.

So that of all quadratic equations, which can have any real positive root,

that of the third form, x2—ax
_ ir=o, is the only one, where the solutioa,

for certain auaieral values of a aud 6, wiii become impossible.
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^
2. X —ax=^b_. . '. where x=+-±v'(-

—
h^J

a^
3. X- — flx=— 6 . . where x=-|--±v/i' -r— ^j-

Or,il the second and last terms be taken either positive-

ly or negatively, as they raay haj^pen to be, the general

equation
b c

ax^ ±bx= die, or x" ±-x= ±-
a a

which comprehends all the three cases above mentioned,

may be resolved by means of the following rule :

RULE.

Transpose all the terms that involve the unknown quan-

tity to one side of the equation, «nd the known terms to

the other ; observing to arrange them so that the term

which contains the square of the unknown quantity may
be positive, and stand first in the equation.

Then, if this square has any coefficient prefixed to it,

let all the rest of the terms be divided by it, and the equa-
tion will be brought to one of the three forms above-

mentioned.
In which case, the value of the unknown quantity x is

always equal to half the coefficient, or multiplier of x, in

the second term of the equation, taken with a contrary

sign, together with ± the square root of the square of this

number and the known quantity that forms the absolute or

third term, of the equation.*

* This rule, which is rr.ore commodious in its practiLai application, tiian

that usually given, is found, d upon t;:e s;»rTie principle ; being derived from

the well kiiown propert}', that in any quadratic
.12 ±nx^s: ±b if the square of half the coefficient a

of the second term of the equation be added to each of its sides, so as to ren-

der it of the form
x2 +ar-}- Ja3= ia3 jr 6

that side which contains the unkno vn quantitv will then be a complete square ;'

and, consequently, hy extracting the root of each side, we sha ll haye
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Ao/c. All equations, which have the index of the un-
known quantity, in one of tbetr terms, just double that of
the other, are resolved like quadratics, by tjrst finding the
value of the square root of thd? first terno. according to the
method used in the above rule, and then taking such a root
or power of the result, as is denoted by the reduced in-

dex of the unknown quantity.

Thus, if there be taken any general equation of this

kind, as

we shall have, by taking the square root of x^'", and ob-

serving the latter part of the rule,

And if the equation, which is to be resolved, be of the

following form.
rn

we shall necessarily have, according to the same principle.

EXAMPLES.

1. Given a;=4-4x=l40,to find the value of x.

Here x~-\r'ix=]40, by the question,
Whence a:= — 2±^(4+l40), by the rule,

Or, which is the same thing, x=—2±^144,

vhich is the same as the rule, taking a and 6 iii -f- or — as they may hap-
>en to be.

It may here, also, be observed, th.itthe ambiguous sign -4^, which denotes

loth -f- and — , is prefixed to the radical part of the value of x iu every ex-

iression of this kind, because the square root of any positive quantity, as as

5 either -{-a or—a
;
for (-f a) X (+<*), or (

—")X(—«) are each = -j-

s ; but the s<iuare root of a negative quantity, as —a^
, is imaginary, or un-

ssif^nable, there being no quantity, either positive or negative, that, when

lultiplied by itself, will give a negative product.
To this we may also further add, that from the constant occurrence of the

ouble sign before the radical part of tlie above expression, it necessarily fol-

)ws, tiiat every qua Iratic equation must have two roofs; which are either

oth real, or both imagmar) according to the nature of the questiua
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Wherefore s=— 2+12=10, or — 2— 12=-U,
Where one of the values of x is positive and the other

negative.
2. Given a;^ — 12a:+30=3, to find the value of x.

Here x^ — 12.t=3— 30=-~27, by transposition,
Whence a; =6± ^Z (36-27), by the rule,

Or, which is the same thing, x==6±y/9y
Therefore r=6+3=9, or =6-3=3,
Where it appears that x has two positive values.

3. Given 2:^2 -j-Ss:— 20=70, to find the value of x.

Here 2a;2-f8x=70+20=90, by transposition,
- And x2-}-4x=45, by dividing by 2,

Whence a;=—2+ ^^(4-1-46), by the rule,

Or which is the same thing, a;=— 2±^49.
Therefore x=—2-f-7=5, or =-2-7=— 9,

""

Where one of the values of x is positive and the oth"er

negative.
4. Given Sx^ —3x-f-6=5i, to find the value of x.

2
Here 3x^ —3x=5i—6=—- by transposition.o

2
And x^ -x= — - by dividing by 3,

1 12
Whence x-=-±-^(^-~-'), by the rule,

^ , , .2^1 1.1
Or, by subtracting

- from -, x= -±^—,
1,^2111

Therefore x=- +
g
= -, or =2-6=3^

In which case x has two positive values.

5. Given -s2 x-j-20i=42| to find the value of x.

Here - x^ x=42|— 20^=221 by transposition,

2 1

Ajod x2 —- a;=44^, by dividing by -, or multiplie<

by 2,

Whence we have «=5±\/(Q+44i), by the rule,
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1 ,
1 400

Or, by adding
- and 44i together, x— -

±-v/""9~'

Therefore a;=-+6f=7, or =-—6|=-6i,
Where one value of x is positive, and the other ne-

gative.
6. Given ax^-\-bx.=c, to find the value of a-.be .

"

Here x^-\— x=- by dividing each side by c.
a a ''

b yb^ c.
Whence, by the rule, x=-—±v'(—4-},

, ,
b

, b^-\-4ac
t)r, multiplying c and a by 4a,x=——±^—^^^ ,

Therefore i—~—+—v/(i2 4.4a<:).

7. Given ax^ —bx-{-c=d, to find the value of x.

Here ax^—bx=d—c, by transposition,

And x^—x= by dividing by a.

b d'^c b^
Whence x——- +^( -i--r^) ^y the rule,

2a-~^ ^ a 4a2''

Or, mult? d-c & a by 4o, a;

~-^±a'\/{'^K^--(^)+^^)

8. Given x*+ax^=b, to find the value of a:.

Here x*-\-ax^=.b, by the question, /

Orx2=
-|+^(^+Jj=-|+ly(a2+4fe), by the

rule,
a 1

Whencex=42y'(— -4^-^(464-a^)) by extraction of

roots.

9 Giv«n-a:6 ar3=— -—
, to find the value of x.

2 4 32 ,

Here-a;^ ""I^^^""^' ^^ ^^^® question,
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And x^ —-x='=——
, by multiplying by ?,

•^ JO

Whence a;3=-±v^(———),=- by the rule,
4 It) lb' 4

1 2 1

And consequently ^^i'^T^ Vo~;5\/^-

10. Given 2x3+3x3=2, to find the value of x
s. 1

Here Sx^-}-3x3=2, by the question,
3- 3 J-

And x'' +o*^= l> ^y dividing by 2,

Wh ¥ 3
, .^9 ,

X 3.5 \

Therefore x=r(-)3=-, or (— 2)3
= -8.

11. Given x*— 12x3-|-44x3 -48x=9009(a), to find^the
value of X.

This equation may be expressed as follows,

*(x2 -6x)3 4-8(x2— 6x)=a,

* The method of expressing a biquadratic equation, by the form of a

quadratic, as above, is found thus :

Let a;4 ^-20x2 -|-5a2a:2 -f4a3a;=rf, be the biquadratic, which I am t»

resolve by a quadratic ; first, find the two first terms of the square root of the

left hand side of the equation, the square of which take from said side ; then,
if the remainder be divisible by the two terras of the root thus found ; tiie

eijuation can be resolved by & quadratic equation.

Example.

354 .J. 2aa;3
iij.

5o2 a;3 + 4ffl3af'=d

jr4
'^

2*3 +«m;)2<ix3 +5(j2 ,t2 {x2 + a%)
2ax3 4- a2xz •

I2 +aa; ) 4a2.r2 ^4a3a(4oa
'

4aa<|2 -J.4a3a;

Hence (x2+(Wl:)3 +4o2(i2 4.aa:)=.r4 -f 2nr3 f 5«2i2 •)-4a3x, ami

consequently (a;2 -f-oa)2 \. 4fl:?(i2 -[. oa)=i/; which can be resolvrd by a

quadratic equation. £</»Y.
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Whence x^—6x=— ^rtv^C^G+a), by the common rule.

And, by a second operation, a;=3jf^(9- 4jf ^(16-{-a))
Therefore, by restoring the value of a, we have

Or by extraction of roots, x=13, the Ans.

EXAMPLES FOR PRACTICE.*

1. Given x^—8x-rlO=l9, to find the value of x.

Ads. a-=9.

2. Given a;^ —x-40=170j to find the value of a:.

Ans. x=\b.
3. Given 3x3 +2a; --9=76, to find the value of x.

Ans. x=5.

4. Given ~x^ —
^a'-f-7t=8,

to find the value of x.

Ans. a.==H-

5. Given -X -x/J=22i, to find the value of x.

Ans. 1=49.
6.t Given x+y<'(5x-}-10)=8, to find the value of x.

Ans. x=3.

* The unknown quantity in each of the following examples, as well as in

those given above, has always two values, as appears from the common rule ;

but the negative and imaginary roots being, in general, but seldom used in

practical questions of this kind, are here suppressed.

f Two values, of x are found, according to the process in resolving this

question; that is, 18 and 3 ; but it appears, that 18 does not answer the con-

dition of the equation, if we suppose that ^{bx-\-\(y) represents (he positive

square root of 5a; -f- 10. The reason is, that 5x+ 10 is the square of — >/{ax
-f- 10) as well as of ,/ (Sx-^-lO) ; thus, by squaring both sides of the equa-
tion ^/(Sa; -f-10)= 8—a:, a new condition is introduced, and a new value of

the unknown quantity corresponding to it, which had no place before. Here,
10 is the value which corresponds to the supposition that x—^{Bx-^IO
:=8).
Besides what is already said, it may be farther remarked, that one of the

two positive roots of a quadratic equation of this kind, is also sometimes ex-

cluded by a condition in the question. Thus, if it were required to find three

numbers in geometrical proportion, such that the sum of the first and second
shall be 10, and the diflerence of the second and third 24.

It will be found, by putting .-rlO—x and 34—x for the three numbers, that

the values of .r, in the resulting equation x(34 a')
= (10 .t)?, as found by

tl.e usual rule, will be 25 and 2.
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7. Given ^(10+x)~V(iO+^)=2, to find the value
^* Arm .y—— fi

8. Given 2a.*-a2+ 96=99, to find the vahie of x.

'

Ans. x=-^6.
9. Given xo+SOa^a- 10=59, to find the value of x.

Ans. x—%/3.
IQ. Given Sx*"—2x''+3=:l I, to find the value of .r.

Ans. ar=V2.
1

^

?1. Given 6^«-3^.T=i-, to find the value of x.

13 I

Ans. 3- or-.

12. Gi^en-Xv/(3+2xa)=-+-a;3,tofindthe value of

^" Ans. x=-v'(^3+3y2).2

13. Giv^n xy(—a?)=i
—^to find the value of x.
^x

2^
Ans. x=(l-|--^2)^

11. Given -v'(l-x3)=x3, to find the value of a:.
X

Ans. x=(-y5-^f .

15. Givenxv^(
—

l)= v^(x2_fc2)^ to And the value

of X. Ans. x;=ia-l—^{^h^-\-a?)

16. Given ^(l-fx-a-2)—2(1 +x-x2)i^-- to find the

value of :», Ans. x=—|--v'41.

But as the sum of the liist and second of the required numbers is, by the

question 10, it is manifest that 25 cannot be one of them ; thei-efore the onlv

proper root of the sum in this cuse is '2 ; anil, consf-quentlv, the proportJonnTi

sought ar« 2, 6, and 33.
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17. Given y/(x )-Ty/{'i
—
-)=x,io finA the value

of rt. Ans. x=\-\-^y/b.
18. Given x^^-Sx^ +x"=6, to find the value of x.

Ans. x=;X(i+iv/13).
19. Given x« — 2x3-f-x=a, to find the value of a;.

Ans.x=.x^.^|?±^(a+l>)|
When there are more equations and unknown quantities

than one, a single equation, involving only one of the un-
known quantities, may sometimes be obtained, by the rules
before laid down for the solution of simple equations
and, in this case, one of the unknown quantities being de

termined, the other? may be found, by substituting its value
in the remaining equations.

EXAMPLES;

1. Given I
^.^ _2g S to find the values of x and y.

no
Here, from the second equation, we have y=— ;

and

784
by substituting this in the first x^-\—~=-Q5, or x 4-- 65x2

=—784. *
. Whence, by the common rule before given, we have

Or, by reducing the parts under the last 'radical, and

extracting the rootx=±^(—±—)=7, or —1, and cob-

,
28 28

sequently, y=-y,
or ——=4 or - 7.

Or the solution, in cases of this kind, may often be more
readily obtained, by some of the artifices frequently made
use of upon these occasions

;
which can only be learned

from experience : thus, taking as before, (1.) x^-\-y^~Z^5,
n2
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(2 ) xu=28, we shall have, as in tbe former method, by

multiplying by 2, 2xy=56, and, by adding this equation to

the first, and subtracting it from the same, x2+2x2/+2/2
—

121, and a-2—2a:y+2/2=9. Whence, by extractmg the

square roots of each of these last equations, there will

arise, x+y=±U, and x-y=±3, and, consequently by

adding and subtracting these we shall have 2x— ±14, or

3=7 or -7, and y=4, or -4. It will also, sometimes

facilitate the operation by substituting for one of the un-

known quantities the product of the other, and a third un-

known quantity which method maybe applied with advan-

tage, whenever the sum of the dimensions of the unknown

quantities is the same in every term of the equation.

2. Given
\ %X'4^=G0 \

^^ ^"^ '^' ^^^^^ '^ " ^""^ ^-

Here, agreeably to the above observation, let x=vy,

then v'y^ +^i/2 =56, and vy' +2^= =60, whence, from the

first of these equations, y'^^-^j-^
and from the second

r=
^Q

. Therefore, by equating the right hand mem-
^+^

60 _ 66

ber of these two expressions, we shall
have^q-^—^^jq;^,

or C0x)2 -f60r=^66r+ 1 12. And, by transposing 66v, and
1 28

airiding the result by 60, r= +Y^^= 15-
^^^^^ ^y ^^®

_ 1 ^1
common rule, for quadratics,

we have^ 30-'^V900

, 28\_. J_4_ll=l, And, consequently, by the for-

'^T5>'"'" 30^30 3
60 60 __ _ ,

per part of the process, 2/='=^^-JTq:^—
^^' °^ ^"^ ^

<18)=3v'2,andx=x'j/=^X3^2=4v/2.
The work

Mjav also be sometimes shortened, by substituting for the

UBkBOvrn quantities,
the sum or difference of two other
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quantities ;
which method may be used, when the un-

known quantities, in each equation, are similarly involved
a

^>r =
12>

3. Given \y x
^ to find the values of x and y.

(x-i-y
Here, according to the above observation, let there be

assumed xzzz-\-v, and yz=.z
— v. Then by adding these

two equations together, we shall have x-{-y=2z=l^^ or

2=6, also, since x=6-\-v, y=6— v, and by the first equa-
tion, x^-^y^= \&xy, we shall obtain, by substitution, (6-j-

v)3-f-(6— u)^
= 18(6+Tj)(6— 1>), or, by involving the two

parts of the first member, and multiplying those of the

second, 432-{-36xj2 =648— IQv^
, whence, by transposition
216

64v3=:216
;
and by division, ^^^-rr^^"* 5

^r t)=±:2.

And, therefore, by the first assumption, and the first

part of the process, we have x=^4-^'=6±2=8, pr 4,

and ?/«=z
— 1'=6±2=4, or 8.

QUESTIONS PRODUCING QUADRATIC
EQUATIONS.

The methods of expressing the conditions of questions
of this kind, and the consequent reduction of them, till

they are brought to a quadratic equation, involving only
one unknown quantity and its square, are the same as

those already given for sample equations.
]. To find two numbers such that their difference shall

be 8, and their product 240.

Let X equal the least number.
Then will x + 8 = the greater.

And x{x 4- 8)=j3 -f. 8a; = 240, by the question,
Whence x =—4 + ^(16 -f- 240)=—4 + V 236 by the

common rule, before given.
Therefore x = 16— 4 = 12, the less number,
And x -j- 8 = 12 + 8 = 20, the greater*
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2. It is required to divide the number 60 into two such

parts, that their product shall be 8G4.

Let X = the greater part,

Then will 60-a; = the less,

And x(60 _3:)=60x—x2
= 864, by the question,

Or by changing the signs on both sides of the equation

a;=-COx = — 864",

Whence a;=30i:v^ (900-864) =30±y 36=30±6, by
the rule,

And'consequently a=30+6=36, or 30-6=24, the two

parts sought.

3. It is required to find two numbers such that their

sum' shall be 10(a), and the sum of their squares 68(6).

Let :B=the greater of the two numbers,
Then will a—a=the less,

And a-a-f(a-~a;)2=2:c3-2ax+a2=:6, by the questioa,

Or 2a;2—2ax=6— a2, by transposition,
6— a2

, ,. . .

And x^ —ax=—-—
, by division.

Whence x=-±^y(-+-2-)=2^2v/(26-aO
by the rule,

And if 10 be put for a, and 58 for 5, we shall have

a;„ l^_|.ly(116— 100)=7, the greater number,

And lO-x=^-^V'(l
^^- 100)=3, the less.

4. Having sold a piece of cloth for 24^, I gained aS;

much per cent, as it cost me
;
what was the price of the

cloth ?

Let x= pounds the cloth cost,

Then will 24—x= the whole gain,

But 100 : X : : X : 24— x, by the question.

Or x2= 100(24 -x)= 2400-lOOx,

Thatis, x2-f-100x=2400, ,
/.

Whence x= - 50+^(2500+2400)= - 50+70=20
by the rule,
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And consequently 20/.= price of the cloth.

5. A person bought a number of sheep for 80/., and if

he had bought 4 more for the same money, he would have

paid 1/. less for each ; how many did he buy ?

Let X represent the number of sheep,
80

Then will— be the price of each,
X

And—
;

—=price of each, if x-\-4 coflt 80/.
a;-t-4

^ 80 80 , -

But—=—
I

—1-1
5 by the question,

X x-{-4

^ 80.-r
, , , . ,. .

Or 80= -j-g, by multiplication.

And 80x+320=80x+a:2-f 4a;. by the same,
Or, by leaving out 80a; on each side, x2+4a;=320,
Whence a:=-24-^(4+320)= -2-f 18, by the rule,
And consequently x=\6, the number of sheep.

6. It is required to find two numbers, such that their

jum, product, and difference of their squares, shall be all

equal to each other.

Let a;=the greater number^ and y= the less.

Then } *T^~^2__ a i^Y *^^ question.

Hence 1=—- - =x— y, or x=y-\- 1, by 2d equation.

And (2/+l)+y=J/(2/4-l) by 1st equation,
Thatis, 2y-|-l=^='+2/; ory^—y^i,

Whence 2/=-+^(I+l)=i+iy5, by the rule,

Therefore j/=-+-^5= 1.6 180 . . .

Anda;=:i/+l=-4--^5=2.6180 ...

Where . . . denotes that the decimal does not end.

7. It is required to find four numbers in arithmetical

>rogression, such that the product of the two extremes
hall be 45, and the product of the means 17.
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Let x= Ifeast extreme, and y^^ coftimon difference,

Then x, x-\-y, x-]-2y, and x-\-:iy, M'ill be the four number*

Hence J '*(^+^^2/)=^'+3xj/=45 }
bvtheaue'

tion,

And 23/3=77 — 43=32, by subtraction,
32

Or ^2=1 =ig by (jiyision, and 2/=y^ 16=4,

Therefore x'-f-3a:j/=a;3-{-12a;=45, by the Ist equatior
And consequentJy a=— 6+ v/C36-f45)=—6+9=3, b

the rule.

Whence the numbers are 3, 7, 11, and 15.

8. It is required to find three numbers in geometricc

progression, such that their sum shall be 14, and th

sam of their squares 84.

Let x, 1/, and z be the three numbers,
Then x2=^y'^ , by the nature of proportion,

And
\ ^.t^+!|!;iL84 \

^y '^^ ^"^^^^°°'

Hence a—}-2'=14 — t/, by the second equation,
And a;2+2za;+23=:]96_282/+t/3, by squaring bof

sides.

Or a;a 4-^2 +2t/2= 196— 282/4-2/^ by putting 'iy- for it

equal 2a-z,

That is x2 4-?/2 4-^2= 1 96 _28y by subtraction,

Or 196—282/=84 by equality,

Hence y=-—-^
— =4, by transposition and division,

1 fi

Again xz=j/2= 16, or a;=— , by the 1st. equation,

1 fi

And x-\-y-\-2-=- f-4+z=14, by the 2d equation.

Or 16+4z4-z2 = 14z, orr2_10z=— 16,

Whence z=5±^(25— 16)=5±3=8, or 2 by the rule

Therefore the three numbers are 2, 4, and 8.

9. It is required to find two numbers, such that thei

sum shall be 13(a), and the sum of their fourth power
4721 (i).
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'

Let a;= the difference of the two numbers sought,

Then will-a-f -x, or^^r-^= the greater number,
2 2 2 .

. ,
I 1 a — x

^, ,

And -a—-x, or —^= '"^ '^sSj

But ^^i:^+fcl^=&, by the question,
16 16

Or (a+a:)*+(a—x)*=165, by multiplication,

)r 2a* 4-120^x3 -f2i*= 166, by involution and additioB,

\nd x'»-i-6u3x-=86— rt*, by transposition and division,

Whence x^=^^ Sa^+^{9a^+U -a*)=^-Sa^ -\-

, ^B{a*+b), by the rule,

^nd x=^-3a3+2^2(a4"+6), by extracting the root,

Where, by substituting 13 for a, and 4721 for b.

we shall have x=3,

Therefore —^=—=8, the greater number,

=—=5, the less number,

The sum of which is 13, and 8« +5* =4721 .

to. Given the sum of two numbers equal s, and their

product =/J, to find the sum of their squares, cubes, bi-

juadrates, &c.

Let X and y denote the two numbers ;
then

(!.) x+i/=s, (2.)a"2/=P-
P'rom the square of the first of thei»e equations take

wice the second, and we shall have

(3.) x3-fy2=s3_2p=sum of the square*.

\Iultiply this by the 1st equation, and the product will be

Prom which subtract the product of the first and second

jquaiioos, and there will remain

(4.) x3 4-j/3=j3_3sp=:sum of the cubes.

Multiply this likewise by the 1st, and the product will be

r*-}-xy3-fx3y+i/*=s*— 3s2p ;
from which subtract the

product of the second and third equations, and there will

remain
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(5.) x* +2/^=5* — 4s'»p+2^2s=: sum of the biquadFates.
And, again multiplying this by the 1st equation, and sub»

tracting from the result the product of the second and ;

fourth, we shall have

(6.) x^-\-y^=s^ ^bs^p-}-5sp'^=s\iTn of the fifth powers.
And so on

;
the expression for the sum of any powers in

general being ar"* + j'"
= «""— fns'^-^p-\'^~^~^s"-^p~

-

?»(m-.4Xm-5) 3 _^m(m^5){m-6){m-l) ^ |

2-3 ^ ^ 2-3-4 P "'

&c.

Where it is evident that the series will terminate when
the index of s becomes = o.

^rESTIONS FOR PRACTICE.

1. It is required to divide the number 40 into two such

jarts, that the sum of their squares shall be 818.

Ans. 23 and 1 7

2. To find a number such, that if you subtract it from

10, and then multiply the remainder by the number itself,

the product shall be 21. Ans. 7 or 3
3. It is required to divide the number 24 into two such

parts, that their product shall be equal to 35 times their

difference. Ans. 10 and 14

4. It is required to divide a line, of 20 inches in length,
into twd such parts that the rectangle of the whole and one
of the parts shall be equal to the square of the other.

Ans. 10^5-10
5. k is required to divide the number 60 into two such

parts, that their product shall be to the sum of their squares
in the ratio of 2 to 5. Ans, 20 and 40

6. It is required to divide the number 146 into such two

parts, that the difference of their square roots shall be 6.

Ans. 25 and 121
7. What two numbers are those whose sum is 20 and

their product 36 ? Ans. 2 and 18
8. The sum of two numbers is 1|, and the sum of their

reciprocals 3^
; required the numbers. Ans. ^ and f
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9. 'J'he difference of two numbers is 15, and half their

product is equal to the cube of the less number ; rec^uired

the numbers. Ans'. 3 and 1«

10. The difference of two numbers is 5, and the differ-

ence of their cubes 1685
; required the numbers.

Ans. Sand 13

11. A person bought cloth for 331, I5s. which he sold

again at 21. 8s. per piece, and gained by the bargain as

much as one piece cost him
; required the number of

pieces. Ans. 15

12. What two numbers are those, whose sum, multi-

plied by the greater, is equal to 77, and whose difference,

multiplied by the less, is equal to 12. Ans. 4 and 7

13. A glazier bought as many sheep as cost him 60/.,

and after reserving 15 out of the number, sold the re-

mainder for 64Z., and gained 2s. a head by them : how

many sheep did he buy ? Ans. 75

14. It is required to find two numbers, such that their

product shall be equal to the difference of their squares,
and the sum of their squares equal to the difference of

their cubes. Ans. iy^S and i(5-f^5)
15. The difference of two numbers is 8, and the dif-

ference of their fourth powers is 14560; required the

numbers.* Ans. 3 and 11

* In the solution of this qiiestipn,
the process brings out the answer in the

ibnn 13 -f-a.r=6
;
which is a cubic equation, and, therefore cannot be resolv-

ed by the ordinary rules for quadratics; but we can sometimes reduce such

equations to the form of a quadratic, and then resolve it according to the
rules already given.

Rule.

Whenever, in the cubic eqsatioH of the form x5-^ax^h ; b can be divided
into two factors, m and n so that, mP. •]- a=n, then the cubic can be resolved

by a quadratic: thus, let the equation be a. 3 -]- 6a?= 20 ; now let 20 be di-
vided into two factors 10 and 2

;
it is evident that 22 ,

or 4 added to 6, the
coefficient of ar, is equal 10, tiie other factor. And, conseciuently, by multi-

plying by X, the equation lx:comes .r'l -f-6t2=20.r, or :i'4 -^6x2 =10X2x';
tlien scjuaring 2r and adding this squaje to both sides we get xi -^10cr2 =
('2z)2 -i-

10 (_2x), by completing the square «4-f-10.r2 -f. 25= (2:c)2 -|.10
(2.t)-J.25,and extracting the square root aS •^S'ss^i+S, by transposition
5» ^Oi- lion/^/i v— ^ IP.?:*

(

a;2 =2i', hence a'=2.
'

Edit.

O
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16. A company at a tavern had 8/. 15s. to pay for their

reckoning; but, before the bill was settled, two of them
went away ; in consequence of which thoae who remained
had 10s. apiece more to pay than before -. how many were
there in company ? Ans. 7

17. A person ordered 7/. 4*. to be distributed among
?onie poor people ; but, before the tnuney was divided,

there came in, unexpectedly, two claimants more, by which
means the former received a shilling a piece less than they
would otherwise have done

;
what was their number at

first ? Ans. 16 persona
18. It is required to find four numbers in geometrical

progression such, that their sum shall be 15, and the sum
of their squares 85. Ans. 1, 2, 4, and 8

19. The sum of two numbers is 11, and the sum of

their fifth powers is 17031
; required the numbers ?

Ans. 4 and 7

20. It is required to find four numbers in arithmetical

progression such, that their common difference shall be 4,

and their continued product 176985.

Ans 15, 19, 23, and 27
21. Two detachments of foot being ordered to a station

at the distance of 39 miles from their present quar-
ters, begin their march at the same time

;
but one party,

by travelling ^ of a mile an hour faster than the other,
arrive there an hour sooner

; required their rates oif

marching ? Ans. 3J- and 3 miles per hour

22. It is required to find two numbers such that the

square of the first plus their product, shall be 140, and

tlje square of the second minus their product 78.

Ans. 7 and 13.

23. It is required to find two numbers, such that their

difference shall be 13 g^/^, and the difference of their cube
roots I-}.

Ans. 15f, and 2^|.
24. It is required to find three numbers in arithmetical

progression, such that the sum of their squares shall be 93
;

andif the first be multiplied by 3, the second by 4, and the

third by 5, the sum of the products shall be 66.

Ans. 2, 5, and 8.

25. The sum of three numbers in harmonical propor-
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tion is 191, and the product of the first and third is 4032
;

required the numbers. Ans. 72, G3, and 66.

!26. It is required to find four numbers in arithmetical

progression, stub that if they are increased by 2, 4, 8 and

15 respectively, the sums shall be in geometrical progres-
sion. Ans. 6, 8, 10 and 12.

27. It is required to find two numbers, such, that if their

difference be multiplied into their sum, the product will be

5
;
but if the difierence of their squares be multiplied into

the sum of their squares the product will be 65.

Ans. 3 and 2

2C. It is required to divide the number 10 into two such

parts, that if the square root of the greater part be taken

irom the greater part, the remainder shall be equal to the

square root of the less part added to the less part.
Ans. 5-fiyl9 and 5—|a/19.

29. It is required to find two numbers, such that if their

product be added to their sum it shall make 61, and if

their sum be taken from the sum of their squares it shall

kave 88. Ans. 7+^2 and 7—^2.
30. It is required to find two numbers, such that their

difference multiplied by the difference of their squares
shall be 576, and their sum multiplied by the sum of their

squares shall be 2336. Ans. 6 and 1 1.

31. It is required to find three number? in continual

proportion, whose sum shall be 20, and the sum of their

squares 140. Ans. 61+^3-^5^, 64, and 65 -.^3-^-^.
32. It is required to find two numbers whose product

shall be 320, and the difference of their cubes to the cube
of their differ'^nce, as 61 is to unity. Ans, 20 and 16.

33. The sUiH of 700 dollars was divided among four

persons, a, b, c and d, whose shares were in geometrical

progression j and the difference between the greatest and

least, was to the difference between the two means, as 37
to 12, What were all the several shares ?

Ans, 108, 144, 192, and 256 Dollars.
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OF CUBIC EQUATIONS.

A cubic equation is that in which the unknown quan-

tity rises to three dimensions ; and like quadratics, or

those of the higher orders, is either simple or compound.
A simple cubic equation is of the form

ax^=b, or x^=-
;
where x=l/-

a a
A compound cubic equation is of the form

a'3-f-ci'.T=6, x^-{-ax'^=^b, ot x^-]-ax' -^bx'=c,
io each of which, the known quantities a, b, c, may be
either -4- or— .

Or, cither of the two latter of these equations may be

reduced to the same form as the first, by taking away its

second term
;
which is done as follows :

RULE.

Take some new unknown quantity, and subjoin to it a

third part of the coefficient of the second term of the

equation with its sign changed ;
then if tliis sum, or dif-

ference as it may happen to be, be substituted for the

original unknown quantity and its powers, in the pro-

posed equation, there will arise an equation wanting its

second term.

JVote. The second term of any of the higher orders of

equations may also be exterminated in a similar manner,

by substituting for the unknown quantity some other un-

known quantity, and the 4th, 5th, fcc. part of the co-

efficient of its second term, with the sign changed, ac-

cording as the equation is of the 4th, 5th, &c. power.*

* Equations may be transformed into a variety of other new equations ; the-

principal
of which are as follows :

1. The equation .t4—4:<.-3
—19.T3-f.106x—120=0, the roots of which are

2, 3, 4, and —5
; hy chang-ins; the signs of the second and fourth terms, be-

comes a;4-}-4w.T
—19a:2—106-r—I20i=0, the roots of which are 5,

—2,
—

T...

smd —4
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EXAMPLES.

1. It is required to exterminate the second term of the

-equation a;3-|-3aa;2 =6, or x^-{-3ax^ —b=0.
3a

Here x=z—^=^— <^t

x^=z^ —3az^+3a2z—a^
Then ( 3ax-= -{-3az^ - Ba'^z+Sa^

—b= -b

Whence z'^ — Sa^z+^a^ -6=0,
Or z3—3a^z=b— 2a^,

•in which equation the second power (^^), of the unknown

quantity, is wanting.
2. Let the equation a:'— 12a;2-f- 3a:==- 16, be tr^ne-

formed into another, that shali want the second term.

Here x=z-\-4,

5(^+4)3=23

4-. l2^2_L48^+64
_ 1 2(z-}-4)2

-—- 12z2 _ 9t-z- 1 92
-

+3(^+4) = +3-4-12

Whence z'^— 45z — 116=— IG

Ov z^-^45z=\0O'^

which is an equatioB where z^
,
or the second terra, it

wanting, as before.

2. The equation a; 3 4x2—10 r+ 8=0, is transformed, by assuming .r=:=j

..—
4, intoj'3

—
]!y2 +30y=0, or3/2— lly+ 30=0; the roots of which are

greater than those of the former b3' 4.

3. The equation j:3—Gx2 +9^-—1=0, may be transformed into one which

shall want the third term, by assuming or=t/-{-€, and in th-i resulting- equa-

tion, let Sea—^12e +9, or e2—4i;.-f-3=0, in which the values of e are 1 and

3: then assume a;=i/+3, or y+1, and the resulthig equation will be 1/3+
b'j/C
—1^=0, an equation wimting the third terra.

4. The equation 6a;3—lla;3 -}. 6a—1=0 by assumuig x=z-, may be tans-

formed i-^toys
—

6y2 +lly—6=9; tlie roots of"which are the leciprocals of

the former. y '

5. The equation 3x3^—137.3 + 14x^-16=01)7 assuming 0=3, into ^3—
"2'j~ +42y-J-144=0, the roots of which are three times those of the fcime:

S 2 -
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3. Let the equation x^ —6x^= 10, be transformed into

another that shall want the second tefm.
Ans. y^

—
12?/-=26

4. Let 1/3
— 132/24-81y=243, be transformed into an

<>quation that shall wan-t the second term.

Ans. x3-j-6x=88
3 7 9

5. Lei the equfition x^-r -a:2-j--x— 77:=:0, be trans-
4 8 16

formed into another, that shall want the second term.

Ans.
i/

=

+|g^/=^
6. Let.the equation x* +8^3 — 5;c2 -f lOx— 4 = 0, be

transformed into another, that shall want the second term,

Ans. y^ -291/3-}- 94!/ -92=0.
7. Let the ecjuation x* — Sx^-j-Sa-^ — 5x—2=0, be trans-

rormed into another that &ha!l want the third term.

Ans. y*-{-y3
—

4?/- 2=0.
8. Let the equation 3x^—2a:-f-l=0, be transformed

into another, whose roots are the reciprocals of the former.

Ans.
2/3
—

2^2_|_s
= o.

9. Let the equation x* —^x^-h^x- —:^x+-f\=0, be

transformed into another, in which the coefficient of the

highest term shall te unity, and the remaining terms inte-

gers. Ans. y* -Sy^-\-\2y= — W9y'{-12=0.

OF tHE SOLUTION OF CUBIC EQUATIONS

RULE.

Take away the second term of the equation when ne

cessary, as directed in the preceding rule. Then, if the

numeral coefficients of the given equation, or of that

arising from the reduction above mentioned, be substituted

for a and b in either of the following formulae, the result

will give one of the roots, as required*.

»
If, instead of the rcfMlar method oi reducing a cubic equation of the

gancral form.
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or

Where it is to be observed, that when the coefficient a,

of the second term of the above equation, is ne^tive,
CL^ ft,—

, as also-, in the formula, will be negative ;
and if the

absolute b be negative,- in the formula, will, also, be ne-

b^ . .

gative ;
but — will be positive.* ^

s 3 -f-aa?+ 63- + c=^0.

to another, wantir.p; tjie second term, as pointed out in the preceding article,

there be put, a;=i{^—a), we shall haye, by substitution and reducdon, y^

+ (96— 3rt3 )y=dab-^27c
—2a 3 ; where, since the value ofy can be deter"

mined, by either of the formula given in this rule, the value of a; will also be

know'i, being a^=i {i/—a). And if 6=0, or the original equation be of the

following,- form a-3 -f- oas-f c==0, the reduced equation will be yo—SaZjf—
w_2a3—27c, where the value oty, being found as above, we shall have, as be-

fore, *=1 (y—a), which formulT, it may be observed, are more convenient,

in some cases, than those resulting fropn the preceding article ; as the coeffi-

'itnts, (hus obtained, are aUvays integers; whereas by the former method

thev are fiequently fractions.
.

/-, i
* This method of solving cubic equations is usually ascribed to Cardan,

a celebrated Italian analyst of the Jetii century; but the authors of it were

.S.ipio Ferrcus, and Nicolas Tartalea, who discovered it about die same

time, indoiiendcntly of each other, as is proved by Montucla, in his Histo-

ire *.; JMuthemaiiqucs, Vol. I. p. 568, and more at large m Button's Mathe-

matical Dklionary, Art. Algebra.
The rule above given, which is similar to that of Cardan, may be demon-

strated as foliovtS :

Let the eCjTJatiftn,
whose root is required, be a?3 -f ar=&.

And assume »/ + 2=:t', and %i=^—n.
'. Tl.pn, by subsiitutina; thos<- \ allies in the given equation, we shall have

=-yT +.i3-.-jx(y+2)+ aX(ifc-'-*)=^. or
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It may, likewise be reraarked, that when the cquatic.
is of the form

a^ h-
and -;;;

is greater than -—, or Aa'^ greater than 276 ,
the

solution of it cannot be obtained by the above rule
;

as

the question, in this instance, falls under what is usually

called the Irreducible Case of"cubic equations.*

And if, from the square of this last equation, there be taken 4 times the

cube of the equation yz=—-^a, we shall have yG— 2y2z3 ^z6=b2 +
_«,(j2, or

But the sum of this equation and ys -j- 23=i, Is 2y2=Jj-}-^' (bz 4,

^%!a3) and their difl'erence is2z3=^b— v'Ciz -J-^-'yas) ; whence 2/c=^(i

6+ v/(d/'3..^'^^«3)),
and

^=y(i6-^/(i62Vj^a3)).
From which it appears, that y+z, or its equal x, is=

v'Ci^ + \/ ii^- +o\a3))-i-^ilb~^{ib2 -f 2\a3)), which is the theo-

rem ;

a
. .,, , ,

a
Or, smoe z is ==——

,
it will be y-j- s=y~—, or oc=

rule.
* It may here be farther observed as a remarkable circumstance in the

history of this science, that the solution of the Irreducible Case above men-

tioned, except by means of a table of sines, or by infinite saricj, has

hitherto bafHed the united edbrts of the meST celebrated mathematicians in

Europe ; although it is well known that all the three roots of the equation

are, in this case, reaJ ; whereas, in tliosc that air resoh able bj the above

formula, only one of the roots is real, so that in fact, the rule is only applica-
ble to such cubics, as have two equal, or two impossible roots.

The reason why the assumptions, irii.de in the note to the former part of

this article with respect to the solution of the equation a- 3—ax= 6, arc found

to fail in the case in cjueslion (and it does not appear that any otiier can be

adopted) is, that the two auxiliary equador.s 3y2=—a and y'J -i-zs^^b,
which in this case, l>ecorae 3yz'= a, and 2/3 + z3 = 6, or y3s3=
—

, andy3-j-«-'=6, cannot take place together; being inconsistent with

each otlier.

For the greatest product that can be formed of the t%Vo quar.titif ? y\ •^- zS

is, ^^hen they are all equal to each other ; or since y3 -^J-aS^i, whe.T each
of these z= Xb ; in whicli case tlieir product iss^lbz .

a3 , «3 62
But, as above shown y^z^=: — , by the question, tnerefore when^ > -r

the two conditions are incompatible vvith each other; and consequently the

solution of the problem, upon that supposition, can only be obtained by iic-

aginary quantities.
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EXAMPLES.

Given2x3 — 12x2+36a;=44, to find the value of x.

He»3 x^ — 6x2— 18*=22, by dividing by 2.

.\nd, in order to exterminate the second term.

Vntx=z-^-=.--z-[-2,

Then -6(^+2)2= -^6z^ -~2iz--U =22

18(^-1-2)
= 18Z+36

Whence z3+6z+20- 22, or 2='+6r=2,

And, consequently, by substituting 6 foro, and 2 for b, in

the first formula, we shall have,

,2 4
, 216,. . .2 A

, 216.,

i. y(14-^(l+8))+ y(l-v/(l+8))=:3/(,^.y9)4.

Therefore x=z-f2==V4- 3/2+2= 2+1.687401-
1.269921= 2.32748, the answer.

2. Given x^ —6x— 12? to find the value of x.

Here a being equal to -G, and b equal to 12, we shall

have, by the formula,

i-_^2.2435+.8967=3.1392
2.2435
Therefore x=3.1392, the answer.

-: 3. Given .t3_2x=~4, to find the value of x.

Here a being =-2, and 6=— 4, we shall have, by the

formula.

r=i/l~2+v/(4-|^)HV{-2_v'(4-^)l.
or
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by reduction, 3/(-2+-i^v/3)- V("'+^^^3)==

3/(-2+ 1 .9245) -3/(2+ 1 .9245)
= 3/(_.0755 -

3/3.9246= —.4226 - 1 .5773= - 1 .9999, or - 2

Therefore x=— 2, the answer.*
Note. When one of the roots of a cubic equation has

been found, by the common formula as above, or in any
other way, the other two roots may be determiued, as fol-

lows :

Let the known root be denoted by r, and put all the

terms of the equation, when brought to the left hand side,

=0
;
then if the equation, so formed, be divided by x±Lr,

according as r is positive or negative, there will arise a

quadratic equation, the roots of which will be the other
two roots of the given cubic equation.

4. Given x*— 15a:=4, to find the three roots, or values

of X.

Here x is readily found, by a few trials, to be equal to

4, and therefore

a;— 4)x3
— 16a;— 4(jc3 +4a;-|- 1

a."
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Wlicnce, according to the note above given,
x3 4-'ii--fl= 0, or x2 4-4.r=— 1

;

the two roots of which quadratic are —-+ V ^ and — 2-
y'S ;

and coiisequently

4,-24--x/3, and--2-v^3,
are the three roots of the proposed equation.

Or, putting c=— 15 and//=4, we shall have,

and c=^> 2-At- 27)n^ S^~v^^'*-^^^^)H

as will be found either by cubing 2-}-^— 1 and 2 —n/ — l.

or by the rule given in case 12 surds.

Whence a+c=2+ y'
_ ] +2— y'

— 1=4,

I- 2+^3,

2-^3 ;

and consequently 4, —2 + ^3, and —'i-^t/'d are tht

three roots of the equation, as before found.

EXAMPLES FOR PRACTICE,

1. Given x^-\-3x- — 6a;=8, to find the root of the equa-
tion, or the value of x. Ans. a==2.

2. Given x3+a;2== 500, to find the root of the equation,
Dr the value of x. Ans. a-=7.616789.

3. Given x^ —3x2=5, to find the root of the equation.w the value of x. Ans. a:= 3. 103803.
4. Given a;3--6«=6, to find the root of the equation,

ar the value of a-. Ans. 3/4^3/2.
5. Given a;3-|-9a-=6, to find the root of the equation,

Dr the value of x. Ans. ^9~^3.
6. Given x3+ 2x2 -2,%= 70, |o ^^^ the root of the

equation, or the value of x. Ans. x= 5.134899.
7. Given x^ — 17x2+54x=350, to find the root of the

equation, or the value of x. Ans. x.=; 14.934068,
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8. Given x^—Sxr=i', to find the three roots of the

equation, or the three vahies of x.

Ans. -2, 1+^/3, and \-^3.
9. Given x^—5x^ +2 r= - 1 2, to find the three roots of

the equation, or the three values of x.

Ans. —
3, l+y'5, and l--v^5.

OF THE

SOLUTION OF CUBIC EQUATIONS
BY

CONVERGING SERIES.
'

This method, which, in some" cases, will be found more

convenient in practice than either of the former, consists

in substituting the numeral parts of the given equation, in

the place of the liberal, in one of the following general

formulae, accorLi.g to which it may be found to belong,

and then collecting as many terms of the series as are suf-

ficient for determining the value of the unknown quantity,

to the degree of exactness required.*
]. x^-{-ax=^b.'\

* The method laid down in this article, of solving cubic equation, by-

means of series was rirst given by Nicole, in the Jilemoirs of the Academy
of Sciences, an. 1738, p. 99 ;

and afterwards at greater length, by Claih.\ut

m his Elemens d'A Igtbi-a.

f With respect to the determination of the roots of cubic equations by
means of series, let there be given, as above, the equation a- 3 -f-n.ar= i, \vhere

tht; foot by transposing the terms of eaci> of the two branches of the cominoa

formula, is

l-l)
J

; or, by putting, for the sake of greater simplicity, ^ {jb
" + 2V" )

:=c:.'!,
and reducing the expression, a- =s¥

>\/^^"^2~-
—
V^^^~'5rM
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_ 26
^i4-^"^r ^'^- >

2.5.8.11
^''

(/{2{21b^+^la'))(
•

6.'9^2r6M-4a3>' 6.9.12.15

. 2763 ., 2.5. 8.11.14.17/ 276^ x )

V276=»+4a3>'^6.9.l2.l5.18.2lV2762+4a3y )

_ 2&
^

2.5. 276= . 8.11

^~3/(^2(2762+4a3))| «5.9U762+4a3^^"^12.15

^ 2762 N 14.17 /- 2763 \ 20.33

V2762+4a3y^'^18.21 V276M-4aV*^ 24.27

~ / 2762

In which case, as well as in all the following ones, a, b,

c, &c. denote the terms immediately preceding those in

which they are first found.

2. x3 _rtx=±6, where 162 is supposed to he greater
than ^'^ a3, or 276^ >4a3.

.^ bi 2 .2762_4a3- 2.5.8 ,2762 ~4a3v,
""

'^2^ 3.6*^ 2762 ; 3.6.9.12^ 276^ ^

^276^-40.3 >

i.18^ 2762 ^
^

2.5.8.11.14 ,2762 _4a3.

3.6.9.12.16.

Hence, extracting the roots of the right hand member of this equation, by

ihe binomial theorem, there will arise V'^^'^o"''^ ^"^ ^^ 2~'
~

Tfi

^2s^ ^3.6.9^s^ 3.6.9.12^ ^s'^
^

2.5 / 6 \3 2.5.8

y'^^""2r-'= '^27^
~

376*^^7'' "37679^ 2;^ -J 6.9.12

(i-)«_&c.
And consequently, if tlie latter of these two series be taken from the former,

ihe re'ult, by making the fii-st term of the remainder a multiplier, will give,

264 t -2.5/ 6x3. „
)

6 X , 27^3
wherev since s= x/ (56

^ + 2 T " '
). «^e shall have (—)

^ =
276^+473

rby,^ (-Jl^—y &c And ?^i= ^* ^
'2^^ ""^7624.403'

' •

6s 6.| ^(2(27t2 +4a3))

Whence, also, by substitution, we hare the above formula.

* The root, as found by the common formula, when properly reduced, is

P
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bi 2 .2762—4a3 5. 8 2762-4<t .

^

11.14 ^2762 _4a3, 17.20 2762- 4a%
V 27A2 J 21.24^ 2763 J

15.18^ 2762

In which case the upper sign must be taken when b is

positive, and the under sign when it is negative ;
and the

same for the first root in the two following cases.

, 3. x^~ ax=±b,
where ^b^ is supposed to be less than a^a', or 21 h'^ /L

4a'

_' ^
bi 2,4a3— 2762.

^2.5.8
.40.3-2762 2

:r=±2^-|l
+g^( ^^1 >'~3.6.9.12^ 2762 -^

^._8JI1 J4_ 4a3-_276S3 _^^
K

^3.6.9.12.15.18^ 2762 V
^

«3 )) ^
. Or, putting,

as in the last case
^v" (i 6^—2T«

^
)' °'" '^= ^^^^^

^7h2-Aa3^l^^^ we shall have ^ = ± 3/| |
^(1 +*)+ V(^^-*) }'^ 276

Whence, extracting: the roots of the right hand member of this equation,

, 2 o .
2.5 3 2.5.8 4, ^

theremllarise3/(l+5)-=l + 3*-3;^«- -+3:6:9* -5:6:912*
+ *'•

, 2. 2 2.5 3 2.5.8 4

3/(l_s)==l-i.-— .'^-g^g^s -3:6:9:12*
-'^'^•

And, consequently, by adding the two series together, and taking the first

be ^2
term of the result as a multiplier, we shall have a:= ±2 ^- |1—Jg*

^5^ _2A8,lJ^^e_^ )
Or, by substituting (^f^)

3.6.9.12 3.6.9.12.15.18 i
' "' ^ ^ 2762

for its equal s, we get the above expiession.

* This expression is obtained from the last series, by barely changing the

sions of tlie numerator and denominator in each of its terms; which does not

alter their value.
. , ,

Hence, in order to determine the other two roots of the equation, let that

above found, or its equivalent expression ^ H6-fv^(| 6^—^'ja ') >

Then, according to the formula that has bceo before given for these roots,

\
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'•"iS.lG^ 2762 ^' 21.24^ 276^ >

which series answers to the irreducible case, and must be

used when 2a^ is less than 2762,

And if the root thus found be put =r, the other two

roots may be expressed as follows :

•"—-
i-2~ 9y2p" (

6.9^ 2762 ^"^6.9.12.15

.4a3_2762 _M:^iiljl4J7_,4a2--2762 ^^
)

^""276^ > "3.6.9.12.15.18.21^ 276= J
•^'

Or, ,

_—. r '•--3
in the former part of the present article, we shall have x \- -±—-—

j3/(46+ x/(i62-3Vo='))-»/(i6—v/(i^-2Ttt3))S
• Or, putting

-x/Ci^^—1T«»"^) = *' ^^ reducing the expression, a:=+-j::

v4.t')3_%/—
3 <

J _j_^^
—3/(1—5) I

. "V^Tience, extracting the cube roots

of the right hand member of this equation, there will arise

, 2 o 2.5 T 2.5.8 .

3/(l+ .)
=
l+is-3-r+3-ggS^-3-^^-s*4-&c.

, 2 a 2.5 3 2.5.8 4 .

^(l_,)
=l_^.__s __-5

-3-;^;9-f2*
-&c.

And, consequently, by taking the latter of these series from the former, and

making the first term of the remainder a multiplier, we shall have a;=ip

r^ s({b)^,/-3 C 2.5 , 2.5.8.11 4 2.5.8.11.14.17
e^.

}

2
—

3 r+6.9 ^6.9.12.15* +6.9.12.15.18 21*
^'^^

5

2 , > 1 t / 2762—4a3 \, 2 2762—4a3
But since 5=-^(.i62__V „3) ^ (^

___
j_^ , =,____=_

l^izl^ii, ,4= (1^^±=?I^) ^ &c., and alg6 3/J- 6 XV-3= t^ J-

2762
' —

V 2762 > ' ' V 3 ^
3"^ V a

v/—3 ,/2762—4a3x ,^,,, /4a3— 2762\
fcXV--/^-276i-^=3yi^X ^(—9-,— )=

— ^^
i, if these values be substituted for their equals, in the last se-

93/262
'

lies, the result will give the above expressions, for the two remaining roots of

the equation.
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r V(4a3~2762) f 2 . 5 Aa3—21b . S.ll

^~^2— 9"^7263 J ^~6T'9^ i762 >^^ "^12.15

.4a3 — 27i3N 14.17.4a3— 2762, 20.23 .4a3 — 276«.

^""2762 Is.Tl^ 27P -/'^''^24.27^' 27A"2 ')

Where — ir, or +i>", mast be taken according as 5 is

positive or negative ;
and the double signs ± must be

.considered as + in one case, and — in the other, as usual.

4. x^ —ax=±6,
where ^b^ ,

is still supposed to be less than ^V^^* ^^ ^Tfi^

A4a3.

_ 26 i 2.5/ 21b^ \
^~—

^3/(2(4a3-2763))^ ^~6^\4a3-276='y'^
2.5.8.11 ^ 2762

^2
2.5.8.11.14.17

^
'2762 3

6.9.12.1oV4a3— 2762/
""

6.9.12.15.I8.2lUa3-2762>'

+ &cJ .
* Or,

* By transposing the terms of the common formula, as in the first case, vre

Sliall have x= 3/
j
V (i*2_^V« +^ b\-l/ \<^(lb

^—aV « ')—

i 6? . Or, by putting, for the sake of simplicity, as before, V {iba
—

sTf

n^)z=s, and reducing the equation ac=3/s | 3^(l +2P~VV~~2s ^
»

AVhence, extracting the roots of the right hand member, as in the formed

instances, , „ , , ^ ,- „ i

f. bs ^ x(l>\ ^(b^i 2.5/6N3 2.5.8

+ &c.
3/^^~27^=^~^^27''~8:6'^^^ "3X9 '^27'' ~3.6.9.12

And, consequently, by taking the latter of these series from the former,

and makini' ihe first term of the result a multiplier, we shall have

2bsi 1,^2.5/6 -.a, 2.5.8.11 ,6 y , J:5^HilI- (i-V.^___
^i + _(^_; +___i^_; +69 12.15.18.21^2.^ ,

> / b \^ 276a

+ &C.
I

. But since j=v'(*6^-^t « ). we shall have (,— ; =276i^a3
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26 ( _2^^
27fc2

N^
8.11

''*''""

^3/(2(403 -2762)) i 6.9\Aa^-^1b^y 12.15

j^ 2762 . 14.17. 2762
20^3^

276^

V4a3-2762/'^'' 'iS^aTMa^ -^76- 3^'^24.27^4a»--2762 ^^

»-&.€., which series also answers to the irreducible case,

= ?!^^,rA) 4^ (_^^i__) ^&c., and '-^=11:=4a3—2762'^ ^s"^ ^4o 3^-2762'^ 6 s 6sf

26 26

Whence, if these values be substituted for their equals in the last series,

there will arise the above expression for the first root of the equation. And,
if we put the root thus found, or its equivalent expression

we shall have, according to the formula before given for the other two roots,

—
-g-fc)

j
. Or, taking, as before, v'(i6^—2V «')=«» and simplifying

the result, ..^+
-r-H*-i^^ j 3/(l+ ^) +3/(l-^) |

. -

Whence, by extracting the i-oots of the right hand side of this equation,
there will arise^6 17 ^ ^ ^ r

^ V 2.5
(

b \3 2.3.8 / 6 y
b\ . 1^6 \ 2 ^ 6 ^2 2.5^6 >^3 2.5.8

3.6.9.12+ «c. 3,( ,_^)=.,_K^)-3T5(^)^-3^,(i)=-,

i^y-"-2s

And, consequently, if the latter of these series tie added to the former, we
shall have, by making the first term of the result a multiplier,

__»• 1 y ^ U 2/6
>,2_

2.5.8 (b X4 2.5.8.11.14
'^—

"^a—*^^ r~ 3:6^25'' 3.6.9.12^2*^ 3.6.9.12.15JS

{— )^—&c. But since s=v'(Jfc2—2V «^)=V—-j27
—

-'"'^''^ sha»

f b \s 2763 2762
o. , ,

alsohave(-)2=^^^_^^_=_^^^-2^^-&c.
and consequently,.

Hence, if these values be substituted for their equals in the above series,

the result will give th« abeve expressions for the two remaining roots of tbe

«quatioE.

? 2



162 CUBIC EqUATIONS.

and must be used when 2a ^ ig greater than 27&3. And if

the root thus found, be put =r, as before, the other two
r 4a 3 — 2762 c

roots may be expressed thus: a;=rp-±^ \ 1+

_2_.
276- . 2.5.8 276= ..a 2.58.11.14

sTdMaS- 27^2 ''""3.C.9.12V4a3 -2762'' "^3.6.9.12.15.18

r. 4a3— 2763t _ 2 , 276^ . 6.8
x=q:-±e/-

C 2, 2763 5.8

\ "^sTeMa'— 2763>'* 9.1i2 ^ 4
^ 3.6 ^4a'— 2763 >' 9.12

. '21b^ . 11.14. 276 2 . 17.20. 276^
^

Ma3-2762''
^ "^

15. 18Ma3— 2762-'*^~21.24Ma3 —2763''

Where the signs are to be taken as in the latter part of
the preceding case.

EXAMPLES.

1. Given rr3+6a;=2. to find the real value of x.

Here a=^&, and 6=2, whence
2762 27X4 11= P

=-
;
and

2762+4a3 27X4+4X216 1+8 9

26 4

^(2(2762+4a''))~3/(2(4X27+4X216))
4 4 23/81 3/648 _ .

--.^^=y——. Consequently,
23/(27+8X2T) 63/9~ 27

~

27

\y formula 1
, we shall have
1 1.0000000 (a)

2 5 1~X- A .0205761 (b)
o.y 9 ^

8.11 1

12.15^9^ -0011177(0)

14.17 1 , ,

•^,X-^c .0000782 (n)

20.23 1
, ,

S,;r,X8» .0<»0062(.)



26.29 1

30.33 9^
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.0000005 (f)

Log. 3.0217787

Log. 1/64B
Colog. 27

No. 3274801

1.0217787

0.0093670
0.9371916
8.5686362

— 1.5151848

Therefore x= .3274801

2. Given x3 — 9a:= 12 to find the real value of or.

Here a-=9 and 6=12 ;

12 ^ ,2763_4a3 27X144-4X272
whence 23y_=23/6 and-^^^^= ^^-^^
_144~108__36 _1

Ui "T44~4'

Consequently by formula 2 we shall have

1

2 1,.
-376^4^^^)

-971-2'^SW
11 14 1, ^

.l!:?2xl(o)21.24 4^ '

23.26 , ,

29. Si- 1, .

•33:^^4^^^

Sum

Comp.

1.0000000 (a

—0277778 (b

-.0025720 (c

- .0003667 (d

—.0000619 (e

—.0000114 (f

- .0000022 (g

-.0307920

.9652080
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Log. 969208

Log. 2%/e or Log. 3/48

—1.9864137
0.5604137

No. 3.522334 ,5468274
therefore a;=3.522334 .

3. Given x'— 12a:=15 to find the three values of x,

Here 0=12 and 6=15
;

b 15 ,4a3— 2762
whence 23/-= 23/—=3/60 and-

2 ^2
4.12 -27.152 256-225 31

276^

27.152 225 225

Consequently by foroiula 3, we shall have
1

2 31

^3~:6 ^225^
5. 8 31— T^r:. X
9.12 225

. 11.14 31

"^15.18 226^
17.20 31

"21.24 223
^

, 23.26_ 31
H X— E
^27.30 225

Sum of + Terms
Sum of — Terms

Difference

Log. 1.0146837

Log. 3/60

No. S.97 1362

+ 1,9000000 (a)
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A i
v/(^«^~2762) __ v/837_^(9X93)_ V93

'^ '

93/262 93/4Z0 9^450 ~33/450 '

and

93/262
4a3_2762 31

2762 225

+ 1

_2^ 31

679^225"*"

^ 8.11 31

"^1X16^225°
14.17 31

18.21 ^225
*^

20.23 31
-I X D
^24.27 223

26.29 31
X:

30.33 225

Sum

Log. 9760683

Log. ^^93
Colog. 3/4.50

Colog. 3

No. .4099445

Also-
r

Last No.

93/450

Hence,

9-^450 33/450

1.0000000 (a)

—.0255144 (e)

+.0017186 (e)

—0001490 (d)

+0000145 (e)

—0000014 (f)

.9760683

— 1.9894802
0.9842415
9.1155958
9.5228787

— 1.6121964

-1.9859810

-t-0.4099445

Resnlt —1.6760365
Or -2.3959256

Whence the three roots or ralues of x are 3.971962,—
1.5760365 and -2.396925.

4. Given x3— 6a:=2 to find the three Talues of ar.

-26 —4
Here

V(2(4a3- 276- )) 3/(2(4.6
3-

27.4))
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_ -4_ -2_ 2^49 and
27&2

33/(2(4.8-4)) 63/7" SS/? 21 4a-'-2-;6a
4.27 _ 1 _1

4.63—27.4~8^l'~7*
Hence by formula 4, we shall have

1

2.6 1

""6:9^7*
8.11 1

12.15^7°
14.17 1

18.21^7*"
20.23 1

"^24.^^7''
26.29 1

,X- E
30.33 7

Log. .9752414

Log. 2

L. 3.49

Colog. 21

No. 339870

1.000(^*000 (a)

-.0264660 (b)

+ .0018476 (c)

— .0001662 (d)

+ .0000168 (e)

-.0000018 (f)

Sum +.9762414

— 1.9891120
0.3010300
0.6633987
8.6777807

— 1.5313214

Therefore one of the negative roots or values of x, is

— .339870= -r.

, . 4a3_27fc3 4.63—27.4
Agam V =V =«/(63- 27) =

«/189 and

4

27^3 1

4a3_-2762 7

Hence,

.
2 1

-^3X^7^

1.0000000 (a)

+0.0168730 (b)



5. 8 1

,
11.14 1

17.20 I

X- D
21.24 7

^27:30^7''
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.0008398 (c)

+ .0000684 (d)

-.0000066 (e)

+.0000002 (r)

Sum 1.0150952

Log. 1.0160952

Log. «/189

No. 2.431741

Therefore -
2

Last number

.0065070

.3794103

.3869173

+.169936

±2.431741

Result +2.601676
Or —2261806

And consequently +2. 601676, -2.261806,and— .33887©
are the three roots required,

EXAMPLES FOR PRACTICE.

1. Given a;3_|_9.T;
= 30, to find the root of-'the equa=

tion, or the value of x. Ans. a.=2. 180849.
2. Given x^— 2 x = 5, to find the root of the equation,

or the value of a;. Ans. x — 2.0945515.
3. Given x^— 3a; = 3, to find the root of the equation,

or the value of x. Ans. 2.103803.
4. Given .r^ — 27 x == 36, to find the three roots or va-

lues of .r. Ans. 5.765722,— 4.320684, and — 1.445038.
5. Given x3-48.i;2 =_ 200, to find the root of the

equation, or the value of x. Ans. 47.9128.
6. Given x^ —22a; = 24, to find the rootof the equation,

>r the value of X. . Ans. 5.162277.
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OF BIQUADRATIC EQUATIONS.

A biquadratic equation, as before observed, is one that

rises to the fourth power, or which is of the general form

x*-{-ax^-}-bx'^-i-cx-{-d=0.
The root of which may be determined by means of the

following formula; substituting the numbers of the given!

equation, with their proper signs, in the places of the i

literal coefficients a, b, c, d.

ROLE I.*

Find the value of 2 in the cubic equation ^^-j-^'ac
—

the former rules ;
and let the root, thus determined, be

denoted by r. Then find the two values of a- in each of

the following quadratic equations.

* This metJiod is that given by Simpson, p. 150 of his Algebra, whicS
consists in supposing the given biquadratic to be formed by taking the diffe'

rence of two complete squares, being the same in principle as that of Fer
rati.

Thus, let the proposed equation be of the form x4 -f-oa:3 +6a.2+ ca-4-^
=^ (l),Wvrhg ail its terms complete; and assume (a;2 -^ ^ax^2>)2—[qx
4-r)3 =a'4-4-oa;3 +6a-2 -J- cr -J- d.

Then, if x3 -J. -kax 4- P and qx+ r be actually involved, we shall have

— 92 I
—
2qr

And, consequently, by equating the homologous terms, there will arise
'

1. 2iJ+ ja2—g2=6
i 2. op—2qr=:C

3. p3—r2 =d
wliere, since the product of the first and last of the absolute terms of the:

equations is evidently equal to j of the square of the second, we shall havi

^P'^+(ia2—b)p2—2dp-^d(jaa~b)= i(a2pa—2acp+c2).
Or. by bringing the unknown quantities to the left hand side, and the known
to me light, and then dfvi<}ing by 2.

2p+ ^a2—b= q2
ap— c =2qr
p2—d szr2

:
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6 ^
^

^ S

and they will be the four roots of the biquadratic required,

EXAMPLES.

1. Given the equation a;«~l Oa;^ -{-35x2— 50x+24=«,
lO tind its roots.

Here a=-10, 6=35, c=— 50, and/i=24 ;

Whence, by substituting these numbers in the cubic equa-
tion

From which last equation p can be determined by the rules before given
i"or cubics.

And since, from the preceding equations, it appears that

q=./(2p + Xa2—b) and r=%^— ,
or x^(p2—d),*

2q
it is evident that the several values of a; can be obtained from the quantities
thus foMnd.

For, because r4 -f aa:3 -j- 5x2 -^cx-^d, or its equal (x2 ^. 2ax-{.p)3
—

(qx-\-r)2^^, it is plain that (xs 4--^ax4-p)2=(qx^r)2 . And, there-

fore, by extracting the roots of each side of this equation, there will arise

x2 -L. Sao. -^p^qx + r ; or a;2 -f (ia—q)i=r—p.

Whence, by substituting the above values of p, q, and r, for their equals,

and transposing the terms, we shall have a:2 -^ ? lal+I^ (2p -f- ^a2
—6) >

X -^p + i/ (jo
2—d)=0. for the case where up—c is positive ; and

a;2 + jianPV (2?-f |a2—5)
J
x^p±s^(p2—d)=^,

for the case where op—c is negative ; which two quadratics give the four

roots of the proposed equation.

And by putting^=« f-
—

,
in the reducing equation (2), in order to destroy

:t3 second term,,the several steps of the investigation may be made to agree
'•Titli the exptesiions given in the above rule .
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we shall have the foUowins reduced equation,

2_13 35
^

"~T2"~"l08'
which being resolved, according to the rule before laid

down for that purpose, gives

But, by the rule for binomial snrds, giveu in the former

part of the work,

y(35-j-18^-3)=|+^v'-3, andy(35-lBv/-3)

=7-1^-3; -

H7 1 7 1 > 7
Wherefore

.=-)--f2v^-3+---^-3|==-.
And if this number be substituted for r, — 10 for a, 35 for

b, and 24 for d, in the ttvo quadratic equations,

=t=+(^<'-v')i°'+-('--50()^=-('-+g*)—/)('•

they will become, after reducing them to their most sim-

ple terms,
x2_3x=— 2, and x" — lx=— 12 :

3 13 1

from the first of wliich :t=-±w'-=-±-= 2 or 1, and

7 17 1

from the second x=-r±^-=-±-=4 or 3
;

2 4 2 2

Whence the four roots of the given equation are 1, 2, 3,

and 4.

Or, when its second term is token away, it will be ef



'• wSucb is caet'slfraTs tut T&iMCir-i : isiA ia tizat £35^ ss

'^ -
. ,- 1

,

J £sz3i r-'Ki i3)t tw» vafaKs <gf X, -1. T - ^ : £he iiafiixvjiig

1 If
aoid t^er vr¥ be the iv&r wte^ e£ t^

- ^ft.

Tfaea, simoE ihes a; ie p^er out, bjs asiii =fti fees

-- J '3 ' :- lus Team* or" Ais -fats: st^HEHHi,

Gt, r— » .- 5-4j!=«-,^^ , J—r=^—- w =.t.

WhaBcf, sjjEiErsciiinr Ac atpacre sa toe jteri af Hhese ftoBi -dioi a Ak ae-
CuuaL, and UiOaB diBii£riB£^ &::' sade< of 'doe iiffiis^kKL. '<i^^ sioiX beiwe

. :>f 'St jj mBFr be sonnE 'Ebt ibe mk befioie :;!»«» £r cntaK sass-

, - I -

r^ta.-:., E..5-V saiTf s^f=» *-f^, wu.*—f= —, ttaBR -wSL x^ia^ tt aii.-
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Or the four roots of the given equation, in this last

case, will be as follows :

2. Given a;*+ 12a;-- 17=0, to find thafour roots of the

equation..
Here fl=0, 6=0, c= 12, and tZ=- 17

;

Whence, by substituting these numbers in the cubic

equation

we shall have, after simplyfying the results,

23-j-i7z— 18,

Where it is evident, by inspection, that z=l.
And if this number be substituted for r, for b, and —

17 for d in the two quadratic equations in the above rule,

iheir solution will give

.^.-^-fV2+v/C-i-x/18)=+iy2+^(-^-3^2)
a:==4.|v2_^(-i-v/18)=+iv/2-y(-^-3y2)
Which are the four roots of the proposed equation ;

the

two first being real, and the two last imaginary.

11 b 1,1 b

where p beiiig known, s and q are likewise known.

And, consequently, by e>ttiacling the roots of the two assumed quadratics

x2 +j9.r 4-9=0, and a;3 -j.r.t-f-s= 0, or its equal .c—^x+Sg=0, we shall

which expressions, when taken in -f ahd —, give
the iour roots of the pro-

posed biquadratic, as was required.
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RULE* III.

The roots of any biquadratic equation of the forms x* -\-

<(,r-+6x+c=0, may also be determined by the following

general formulas first given by Eulkr
;
which are remark-

able for their elegance and simplicity.

~
* This method, which differs considerably from either of tlie former, con-

sists in supposing the root of the given equation,
a;4 4.na'3 ^bx+ 0=0(1),

to be of the following' trinomial surd form
a= v'f + v^ ?+ \/ »

;.

where p, q, ?•, denote the roots of the cubic e<iaation,

of whie h the coefficients J', g, and the absolute term h, are the unkaown

quAntilies tliat are to be determined.

Then, agreeably to the theory of equations Fjefore given, we shall have/*
-f- ij -f. r.^^—f\ pq -f"/"'4" 9^"^^^ i pqr=h. And, by squaring et-ch side of

the formula expressing the valu<», of x,
a: 2 =/y -+- ,7+ } i- 2 v^ ;>9 -f- 2 v*;) >• -F 2 v/ 9 '••

Or, by subslituting/for its equal
—

(p-j-i} •j-r)t
and bringing the term,

so obtained, to the otlier side of the equation

x2+f=2Ypq-^2^^pr+2^qr.
Also, by again squanng-each side f,f this last expression, we shall have as*

^2fx2-j^2=Apq^^4pr-\-iqr-^ 8x/p2 qr-\- S y/ q2pr + 8^ r2pq.
Or substituting -ig for its equal 4pq-^4pr-\-4qr, and bringing the term to

the ollicr side as before.

But since, from v;hat has been above laid down, we have

v';>f4-\/<^'4-s/»-=a', and ^pqr=v h,

if these be put for their equals in the last equation, it will become, by this

substitution,

,T 4 + 2fx2 —8h2x4/2 -4g=0.
Whence, comparing these coefficients with those of the givea equation,
there will arise

1fi=a;-^^h=b;f2^g=!:, or,

And, consequently, by substifutirig these values in the assumed cubic equa-
tion (2), we shall haye

yZ^UyZ^ jg-(«2
_4c)jr=— (3).

the three roots of which last eejuatidn, when substituted for /?, y, and r, io

the formula j,= v';'4- v''"+ v'9i will give, by taking each term of the ex-

pression both in -J- and — , all the four values of x.

Or, in order to render this result more commodious in practice, by freeing
it from fractions, let ij=\z- Then by substitution and reduction, we sha'fl

have the cerresponding equation

^2



174 BiqUADlUTlC EqUATIOiNS.

Find the three roots of the cubic equation ^^-fSa^^-j-

{a'^ —4c)z=b" , by one of the former rules, before given
for this purpose ;

and let them be denoted by r', r'
,
and r".

Then, we shall have

When b is positive,

2

2

'~
2
~ X-

X-

When h is negative,

2
—^r-^s/r—s/r"

2

-\/'''-\/^"+v^^"
2

of the auxiliary
jt jifNote. If the three roots r, r\ r

cubic equation be all real and positive, the four roots of

th» proposed equation will, also, be real
;
and if one of

these roots be ptvitive, and the other two imaginary, or

both of them negative, and equal to each other, two of

the roots of the given equation will be real, and two ima-

ginary ;
which are the only cases that produce real results.

3. Given x« -25x2+ 60a;-36=0, to find the feur roots

of the equation.
Here a=— 25, 6=60, and c= - 36 ;

Whence, by substituting thesevalues for their equals, in

the cubic equation above given, we shall have 2^-2X25
^2+ (252 -f 4x36)^—602, or ^^-SOz^-i- 7692=3600 :

23 -f. 2«s2 +- (a2
—4c)2=52 , (4)

the three roots of which are each, evidentlj', four times those of ihe former.

Hence using this instead of equation (3), and denoting its roots by r', r", r'",

the last mentioned formula, taking each of its terms in
-{-

and —
,
as before,

will give the values of a, as in the above expressions.
JVotc. If we were to take all the possible changes of the signs, in this case,

^hich the terms of the assumed fomiula admit of, it would appear that x
should have eight different values; but it is to be observed, that, accoiding
lO the first part of the above investigation, the product ^p X ^/ qY, >/''=

t/Ti, or ^h\ and, consequently, that when b is positive, either all the three ra-

dicals must be taken in^- , or two in— and one in-j- ;
and when h is mega-

dve, they muft either be all — ,-or two + and one — ; which considerations

,-«du<e tie number tf roots to four.
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the three roots of which last equation, as found by trial,

or by one of the former rules, are 9, 16, and 25, re-

spectively ;
whence

a:=i(-^9+v^l6-i-y25)=i(~3+4+5)=+3

^=l(+v/9+yl6-y25)=i(+3+4-5)=+ l

And consequently the four roots of the proposed equa-
tion are 1, 2, 3, and -6.

EXAMPLES FOR PRACTICE.

1. Given a;« — 55x2 — 302;-!- 504=0, to find the four

roots, or values of x. Ans. 3, 7, —4, and —6.
2. Given x*4-2x3— 7x2 _8a;=- 12, to find the four

roots, or values of x. Ans. 1, 2, —3, and —2,
3. Given x* —8x2+ 14x2 -{-4x=8, to find the four roots,

or values of x, Ans. \ ^j,^' i~~ yc.»

4. Given x* — 17x2 -20x—6=0, to find the four roots,

or values of x. Ans. \
_2'±./2' _2— /2*

6. Given x*— 3x2—4x — 3, to find the four roots, or

values of x. Ans. \ fltt^ ^^' f~t^ %
6. Given x«— 19x3+ 132x2—302x+200=0, to find the

, ,, , ^ . < 1.02804, 4.00000
iour roots, or the values oi x. Aos. <

g 57653 7 '^9543

7. Given x4—27x3+162xa+356x- 1200=0, to find

.,
,. , 1 r A ^ 2.05b08, -3.00009

4he lour roots, or values of X. Ans.
j .^ I'Sofi 14 "^086

8. Given x* —12x2+ 12x— 3=0, to find the four roots,

,
. . i .606018, —3.907378

•r values of x. Ans.
J 2.858083, .443277

9. Given x*— 36x2 +72x—36=0, to find the four roots,
,

f.
. i 0.87298^6, 12679494

«T values ot x. Ans
^ 4 73205O6, -6 8729836'

10. Given x« — 12x3+47x3 -72x+.36=0, to find the

roots, or values of .t. Ans. 1^ 2, 3 and 6«
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11. Given .T''-f24:cS
— 114x3— 24a-4- 1—0, to find the

1 e A ^+-1/197-14.2+^5
roots, or values ot x. Ans. { ^,,r,n i • o /.-

( —^I'dl—i-i, ^-—^/o
12. Given a:* — 6a;3—58a-2-114x— 11=0, to find the

roots, or the values of x.

Ans. ±tv/3+f±v'(17±V-v/3:.

OF THE

RESOLUTION OF EQUATIONS
BY APPROXIMATION.

Eq,uations of the fifth power, and those of higher

dimensions, cannot be resolved by any rule or algebraic
formula that has yet been discovered

; except in some

particular cases, where certain relations subsist between

the coefficients of their several terms, or when the roots

are rational ; and, for that reason, can be easily found by
means of a few trials.

In these cases, therefore, recourse must be had to some
«f the usual methods of approximation ; among which

that commonly employed is the following, which is univer-

sally applicable to all kinds of numeral equations, what-

ever may be the number of their dimensions, and though
ot strictly accurate, will give the value of the root sought
to any required degree of exactness.

*

RULE.

Find, by trials, a number nearly equal to the root

sought, which call r
;
and let z. be made to denote the dif-

ference between this assumed root, and the true root x.

Then instead of x, in the given equation, substitute its

equal r ± z, and there will arise a new equation, involving

oply 2 and knofrn quantities.
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Reject all the terms of this equation in which z is of

two or more dimensions ;
and the approximate value of

z may then be determined by means of a simple equation.

And if the value, thus found, be added to, or subtracted

from that of * according as r was assumed too little or too

great, it will give a near value of the root required.
But as this approximation will seldom be sufficiently

exact, the operation must be repeated, by substituting the

number thus found for r, in the abridged equation ex-

hibiting: the \'alue of z
;
when a second correction of z

will be obtained, which, being added to, or subtracted from

r, will give a nearer value of the root than the former.

And by again substituting this last number for r, in the

above mentioned equation, and repeating the same process
as often as may be thought necessary, a value of x may be

found to any degree of accuracy required.
JVote. The decimal part of the root, as found both by

this and the next rule, will, in general, about double itself

at each operation ;
and therefore it would be useless as

well as troublesome, to use a much greater number of

figures than these in the several substitutions for the

Talues of r.*

EXAMPLES.

1 . Given x^ -{ x -f a; = 90, to find the value of x by

approximation.
Here the root, as found by a few trials, is nearly equal

to 4.

*It may here be observed, that if any of the roots of an equation fee

irhole numbers, they maybe cletenained by substituting I, 2, 3, 4, <fec. suc-

cessively, both in plvs and in mimis, for the unknown quantity, till a result i«

obtained equal to that in the question ; when those that are found to succeed,

will be the roots required.

Or, since the last term of any equation is always equal to the continued

product of all its roots, the num'b< r of these trials may be generally diminish-

ed, by finding all the divisors of that term, ind then substituting them botli in

plus and minus, as before, for the unknown quantity^ when those that give
die proper result will be the rational roots sought ; but if notie of them are

found to succeed, it may be concluded that the equation cannot be resolved

by this mctliod ; the roots in that case, being either irrational »t imaginary.
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Let therefore 4 = r, and r -^ z =x.

Then x^= r^-\-'2,rz-\-z^ =90.
X =r -{-z

And by rejecting the terras z^, 3rr2 and z^
,
as small in

comparison with z, we shall have

r3 + r2 + r + 5r^z -{- 2rz +z,= 90
;

^, e0-r3 _r2 — r 90-64-16—4 6
Whence z =

; ;

—=
;

=—=.10,
3r2 -f-2r + 1 48+8+1 67

And consequently x=4.1 , nearly.

Again, if 4.1 be substituted in the place of r, in the last

equation, we shall have
90—r3~.r2_r 90-68.921 — 16.81-4.1~
3r2+2r+l 60.43+8.2+1

"
'

And consequently a:= 4. 1 +.00283=4. 10283 for a second

approximation.
-

And if the first four figures, 4.102, of this number be,

again substituted for r, in the same equation, a still nearer
value of the root will be obtained

;
and so on, as far as may

be thought necessary.
2. Given a:2+20a;= 100, to find the value of a- bj^ ap-

proximation. Ans. x=4. 1421356
3. Given a;3+ 9x*+4a;=80, to find the value of a; by

approximation. Ans. a:=2. 4721359
4. Givena;*— 38T3+2I0a;2+538x+289=0, to find the

value of X by approximation.
Ans. .T=:30. 53565375

5. Given a;= +6x4 — lOx^ - 1 12x2 _ 207a'+110 = 0, to

find the value of x by approximation.
Ans. 4.46410161

The roots of equations, of all orders, can also be de-

termined, to any degree of exactness, by means of the fol-

lowing easy rule of double position ;
which though it has

Hot been generally employed for this purpose, will be
found in some respects, superior to the former, as it can

be applied, at once, to any unreduced equation, consisting
of surds, or compound quantities, as readily as if it had
been brought to its usual form.



BY APPROXIMATION.- 179

RULE.

Find, by trial, two numbers as near the true root as pos-
sible, and substitute them in the given equation instead of
the unknown quantity, noting the results that are obtained
from each.

/. Then, as the dilTereace of these results is to the differ-
ence of the two assumed numbers, so is the difference be-
tween the true, result, given by the question, a>.d either of
the former, to the correction of the number belonging to
the result used

;
which correction being added to that

number when it is too little, or subtracted from it when it

is too great, will give the root required nearly.
And if the number thus determined, and the nearest of

the two former, or any other that appears to be more ac-
curate, be now taken as the assumed roots, and the opera-
tion be repeated as before, a new value of the unknown
quantity will be obtained still more correct than the first •

and so on, proceeding in this manner, as far as may be judg-
ed necessary.*

* The above rule for Double Position, which is much more simple and
eommodious tlian the one commonly employed for this purpose, is the same
as that which was first given at p. 311 of the octavo edition ofmy Arithmetic
-published in 1810. \ '

To this we may farther add, that when one of the roots of an equation has
been found, either by this method or the former, the rest may be determined
as follows :

Bring all the terms to the left hand side of the equation, and divide the /

whole expression, so formed, by the diftcrence between the unknown quanti-
ty (a;) and th^ root first found; and the resulting equation will then be de-
pressed a degree lower than the given one.

Find a root of this new equation, by appioxi.mation, as in the first instance
and the number so obtained will be a second root of the original equation.

'

Tlien, by means of this root, and the unknown quanuty, depress the se-
cond equation a degree lower, and thence find a third root; axid soon, till
the equation is reduced to a quadratic ; when thi two roots of tliis, togetherWJth the former, will be the roots of the equation required.
Thus in the equation .r3 — 15^2 +mx=^bO, die first root is found by a«-

proximation to be 1.02804. Hence,
' ^

X—
1.02804(a3_l.';a;3 463a-50Gr2~13.9719Sa-4-4S.63627r=K).
And the two roots of the quadratic equation, a;2— 13.97196a=— 43 63627

found in the usual way, are 6.57653 and 7. 39543.
'

'

So that the three roots of the given cubic equation x^—\Bx2 +63a=5d
are 1.02804, 6.57653, and 7. 39543 ; tlieir sum being=15, the coeflicier.t oi~
the second terwof the equation, as it ought to be when they are ri-^ht.
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EXAMPLES.

1. Given x<?+a;2 -fa;=100, to find an approximate value

of X.

Here it is soon found, by a few trials, that the value of

X lies between 4 and 5.

Hence, by taking these as the two assumed numbers, the

operation will stand as follows :

First Sup. Second Sup.
4 . . X . • 5

16 . . x2 . . 25

Therefore

64

84
155
84

Results

125

155

100
84

71 : 1 :: 16 : .225

And consequently a:=4+-226=4.225, Jiearly.

Again, if 4.2 and 4.3 be taken as the two assumed num-

bers, the oper.ition will stand thus :

First Sup. Second Sup.

17.64 . . x2 . . 18.49

74.088

Therefore

95.928

102.297
95.928

Results

. . 4.3

. . 4.2

79.507

102.297
102.297
100

6.369 : .1 :: 2.297 : .03G.

And consequently x=4. 3 --.036=4.264, nearly.

Again, let 4,264 and 4.265 be the two assumed num-
bers

;
then

First Sup. Second Svp.
4.264 . . X . . 4.26o

I0.F81696
77.526752

X-' 18.190225
77.581310

99.972448 Results 100.03653S
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Therefore
100.030535 4.265 100

99.972448 4.264 99.972448

.064087 : .001 :: .027552 : .0004299

And consequently
.T=4.264-f-.0004299= 4.2644299, very nearly.

2. Given {^x^
— isy+x^ x=90, to find an approxi-

mate value of x.

Here, by a few trials, it will be soon iound, that the va-

lue of X lies between 10 and 11 ;
which let, therefore,

be the two assumed numbers, agreeably to the directions

given in the rule.

Then
First Sup. Second Sup.
25 . . (ia-2_i5)2 . .84.64

31.622 . . x^x . .36.482

Hence

56.622
121.122
66.622

Results

11 .

10 .

121.122

121.122
90

31.122 : .482

.482= 10.518.

64.5 : 1 :

And consequently x=^\ 1-

Again, let 10,5 and 10.6 be the two assumed numbera,

Then
First Sup. Second Sup.

49.7026 . . (ix2-15)2 . . 55.830784

34.0239 . . x^x . . 34.31 !099

83.7264

90.341883 .

83.7264

Results

Hence
10.6

10.5

. 90.341883

. 90.341883

. 90.

6.615483 : .1 :: .341883 : .0051679
And consequently

x=10.6—.0051o79=10.5948321, very nearly.
R
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EXAMPLES FOR PRACTICE.

1. Given x^ + lOx^ -f 5.t=2600, to find a near approxi-
mate value of x. Ans. =11.00673

2. Given ^x* - I6x^-^40x^ —30x4-1=0, to find a near
value of X. Aiis. x=l .2847!24

3. Given i5^2x*-f 3r34-4x2+ 6.r=6^321, to find the
value of X. Ans f.U4453

4. Given 3/(7x3+ 4x2 )+.^(20x3 -10a)=28, to find the

Talue of X. Ans. 4.510661
b. Given ^(144x2-(x2 +20)2 )+ y(196x2-(a-2 +24)2)= 114, to find the» value of X. Ans. 7.123883

Of exponential EQUATIONS.
An exponential quantity is that which is to be raised to

some unknown power, or which has a variable quantity for

its index
;

as
X 1

a^, a* , 3^ , or x^, &c-
And an exponential equation is that which is formed be-

tween any expression of this kind and some other quanti-

ty, whose value is known
;

as

ax =b, x^='a. Sac.

Where it is to be observed, that the first of these equa
tions, when converted into logarithms, is the same as

X log. a=b, orx=-; ;
and the second equation x^=a

log. a

is the same as x log. x=log. a.

In the latter of which cases, the value of the unknown

quantity x may be determined, to any degree of exactness,

by the method of double position, as follows :

RULE.

Find by trial, as in the rule before laid down, two num-
bers as near the numbel- sought as possible, and substitute

them in the given equation
.1- log. x=log. «,
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instead of the unknown quantity, noting the results obtain-

ed from each.

Then, as the difference of these results is to the differ-

ence of the two assumed numbers, so is the difference

between the true result, given in the question, and either

of the former, to the correction of the number belonging
to the result used ;

which correction being added to that

number, when it is too tittle, or subtracted from it, when
it is too grent, will give the root required, nearly.

And, if the number, thus determined, and the nearest

of the two former, or any other that appears to be nearer,

be taken as the assumed roots and the operation be re-

peated as before, a new value of the unknown quantity

will be obtained still more correct than the first ;
and so

on, proceeding in this manner, as far as may be thought

necessary.

EXAMPLES.

1. Given a;i^=^100, to find an approximate value of a;.

Here, by the above formula, we have

X log. x=log. 100=2.
And since x is readily found, by a few trials, to be nearly

in the middle between 3 and 4, but rather nearer the Int-

ter than the former, let 3.5 and 3.6 be taken for the two

assumed numbers.
Then log. 3.5=.5440680, which, being multiplied by

3.5, gives 1. 904238 =first result ;

And log. 3.6= 5563025, which, being multiplied by 3.6,

gives 2.002689 for the second result.

Whence
2.002689 . . 3.« . . 2 002C89
1.904238 . . 3.5 . . 2.

.098451 : .1 :: 002689 : .00273

for the first correction ; vi'hich, taken from 3.6, leaves

ar=3. 59727, nearly.
And as this value is found, by trial, to be rather too small,

let 3,59727 aad 3.59728 betaken as the two assumed num-

bers.
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Then log. 3.69728=0.555974243134677 to 1& places
The log. 3.59727=0.555973036847267 to 15 places

which logarithms multiplied by their respective numbers

give the following products :

1.999995025343512 } . *u * * iu i . c
1.9999851226C2298 \

^°^^ ^^"^ *° ^^^ ^^'^ ^g"'^"

Therefore the errors are 4974656488
and 14877337702

and the difference of errors 9902681214
Now since only 6 additional figures are to be obtained,

we may oaiit the three last figures in these errors
;
and

state thus : as difference of errors 9902681 : difference of

sup. 1 :: error 4974656 : the correction 502354, which
united to 3.59728 gives us the true value of -x =
3.59728502354*.

2. Given a;*=2000, to find an approximate value of x.

Ans. x=4.82783263
3. Giveh (6a;)^'=96, to find the approximate value of x.

Ans. a;=l b826432
4. Given a;»= 123456789, to find the value of x.

Ans. 8.6400268
J.

5. Given a;*— a;=(2.T— a:«)^, to find the value of x.

Ans. X— 1.747933.

OF THE

BINOMIAL IHEOREM.
The binomial theorem is a general algebraical expres-

sion, or formula, by which any power, or root of a given

quantity, consisting of two terms, is expanded into a series
;

the form of which, as it was first propesed by Newton,

being as follows :

* The correct answer to this quoslion has been first g-iven by Doctor Adrain,
in his edition of Hu lion's Mathematics, who plainly proves that Hutton's an-

swer, which is the same as Bounvcastle"s, is iHCorrect ; Sec Hutt-on's J\fatke-

maties, Vol. 1. p. 263. jY. Y. Edit.
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,p+r«)„-=..-[i+-«+-(^)."+„(-^)
,7>i
— 2/1. . T

(__),,, &c.]

Or,
w w Tjt m—n m — Sw

m— 3n „

;
DQ, &LC.

Where p is the first term of the binomial, q the second
Hi

term divided by the first,
— the index of the power, of
?t

root, and a, b, c, &.c. the terms immediately preceding
those in which thev are first found, including their signs

+ or-.
"

Which theorem may be readily applied to any particu-
lar case, by substituting the numbeis, or letters, in the

given example, for p, q,, m> and w, in either of the above

fermulae, and then finding the result according to the rule.*

* This celebrated theorem, which is of the most extensive US'* in algebra..

y and -'arious other branches of analysis, raaj be otherwise expressed as fol-

lows :

. x"^ '"ri.'«,^\ mm—n,x^ nim—nm—2nr
(o4.3:)-=a-n4— -)4--.— (-)3 +-.— .—;: (-)3&C.j

m
Or, (a+T)-=

m 'm. .T mtn-tn x inm+nm-^2n x

m
Or, (a^*x)'^=

m. m,a—x^ mm+na— *, mm-{-nn+2/7 a— x

It may here also be observed, that if "' be made to represent any whole, ox

Tractional number, whether positive or negative, the first of ihese expressionj

may be exhibited in a more simple form

wi(m—1)(ot
—

^2) [m—(n—l)]a"a:"»^'' 1.2.3.4 7i

'

"VVhere the last term is called the general term of the series, because if I. t.T

i, 4, &c. be substituted successively for n, it will giv« al! the rest.

k2
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EXAMPLES.

1. It is required to convert (o^+a;)^ into an infinite

series.

Here T=a^, q=— ,
— = -, or m = 1, and n = 2 .-

a^ n 2

whence
m m ±

in \ a X v
- A^=-X-X =-—=B,
n 2 1 a3 2a

'

m—n 1—2 X X x'^

in— 2n _ 1 — 4 x- x _ 3x^ _
3n~^^ 6~ ~2.4a3~ a^~2A.6aJ'~^^"

vi-Sn _l-6 3x3 x_ 3.5a;< _
471

~* ^
8~ 2T476a5 ^ 2.4.6.8*7

~^'

TO—4» __1-B 3.5x^ x_ 3.6.7^5 _—
^-EQ

— -
2.4.6.8"a'^a2"~2.4.6.8.lda9~^'

&c. &c. &c.

Therefore (a«4-a;)2
=

.X x3 .3x3 3.5^4 3.5.7x«
aH —

1- &r
2a 2.4a3 2.4. 6a« 2.4.6.8 a' 2.4.6.8. lOa^

Where the law of formation of the several terms of the

series is sufficiently evident.

2. It is requiied to convert 7—XTTJ* *^^ *^^ equal (a+

i)"2, into an infinite series.

Here p^^, q=-, and —=—2, or ?»=— 2, and n=i ;

"whence mm J

p« = fa") n=a-2 = =A,

m 2 16 26—AQ=—-X—X-= r=»>
™ 1 flS a «3
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fn^n —2— 1 2b b 3b^
B€l= X rX-=—-= G,

2n 2 a^ a a*

1,1— 2n —2-2 3ft» 6 46^— CQ=—-—X—-X-= r=^'3» 3 a* a a^

m-3n —2—3 463 fc 56^
D^= : X --X-=—^=E,

An

&c.

Consequently

4 a6 a" a"^

&c.

1 1 26 362 ^46^ 66*_

«=» a-'

a2
, or its equal tf^3. It is required to convert

/a^—x) 2, into an infinite series.

Here

P=a2 €i= ,
and — =-js-» or m= - 1 and n=2 ;

whence
711 m "1 I

m_ll ^_^_—AQ -X-X ~-
-2^T-B,

in-n -1—2,, X X Sx^
BQ= ;

X—-X
2n

»ft— 2n

2a 3

— 1—4 3x2
-cq: -X

w

X -

2.4a«
=c,

3.5x3

3n
'"

6 2.4a* a2 2.4.6a''

i-.3» -1-6 3.5x3 a; 3.5.7x« _i>Q=—17— Xttti^^X-

^d,

4n
&c.

8
E,

2.4.6a7" jj2 -2.4,6.809

&c. -&C.

Therefore

(o2_x)^ a^2^a3>^2,4V^^2.4.6^a''>'^ 2.4.6.8^a»>'

&.C.

And
3 ,x2v . 3.5 ,x3.«2 ^_ 1 X. 3 ,x2v 3.5 .x3. 3.5.7 .a^.

: .v(o2-.x)'~" 2W'^2l4>a=^^~'"2.4.6^c* •'*"2.4.6 8 ^a^^

-fee.
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4. It is required to convert ^9, or its equal (8+l.'3
into an infinite series.

Here p=-8, q;=-, and — =-, or m==l and n=3
;

8 . no
^ ^ ^

Whence
P"=(8)"=83=2=A.
m _I 2 1 __

1 _

m — n 1 — 3 11 1

-B Q= X X-
2n 6 3.22 023 3.6.2*

m— 2n 1 — 6 1 1

2w 9 3.6.2* 1^ 3.6.9.2V

m—3n 1—9 6 1 6.8
D Q3= X X—= = £,

An 12 3.6. g.S-' 23 3.6.9.12.21 •

,n_4» 1 — 12 5.8 1 5.8.11
.E^= _ X _——-—-- X

bn 15 3.D.9.12.2i« 23 3.6.9.12.15.213

&c. &;c. &c.

Therefore ^9=11.5 5.8
.

5.8.11
'

3.23 3.6.2"
'

3.6.9.27 3.6.9.12.21 <>
'

3.6.9.12 lo.'^i-'

&c.

5. ft is required to convert ^2, or its equal v/(^~rO»
into an infinite series.

* , ,

I 1,3 3.5
,

3.5.7 .

Ans. 1^— \ &c.
2 2.4 2.4.6 2.4.6.8^2.4.6.8.10

6. It is required to convert ^7, or its equal (8
—

l)3i
into an infinite series.

Ape 2"- — -.— ^1^' '

3.22 3.6.2« 3.6.9.27 3.6.9. 12. 2* «

7. It is required to convert ^240, or its equal

(243
—

3)*, into an infinite series.

1 4 4.9 4.9.14
Ans 3— — — oiC

6.33 5.10.37 510.15.311 5.10.15,20.315

S. It is required to convert (a±a:)2 into an infinite series.

> ~2a 2, 4a» ""2.4.6a3 2.4.6.80* \
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0. It is required to convert {a±by into an infinite se-

ries.

¥(,^ ^ 262 2.563 2.6.86*
J

10. It is required to convert (a- 6)* into an infinite

series.

"""
I 4a 4.«a» '4.8. ISo^ 4.8.12.16a* >

11. It is required to convert (a-f x)=' into an infinite

series.

'^

l^3a 9u3^92aa 92 120*^93. 12.15a^ ^

12. It is required to convert (1
—

x)* into an infinite

series.

2x_2.3x3_ 2.3.8x3 2.3.8. 13x''
"^'

6'~6.10
"~

5. 10.T5~ 5.10.16.20

13. It is required to convert i^^^ '^^ equal

(a±x)2

(a±x)
^ into an infinite series.

1 ^ , _x ,
3x2 _ 3.5a;3 3.5.7x4 _ . >

^°^-
-1^-^2^+2:4^. -^2:4:6^"^iX6:8^

"*- ^'-

14. It is required to convert
^,

or its equal

(a±x)3
"i- .

(a±x)
3 into an infinite series.

at X 4x2 4.7x3
.

4.7.10x4 ™, )

J ^3aT3.6a2-^3.6.9a3^3.6.9.12a4 ^

15. It is required to convert
j,

or its equal

(l+x)^ .

"1- .

/l+aj)
^ into an infinite series.

X 6x3 6.9.c3 6.11.16x4
^"''

^"6+5lO~6lO.T5+6.10.15.20~^'''
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(^

Jim.
Jl^

\.X.—- V, or its equeil

(a+x) (a*
—
x^) ^, into an infinite series.

, ,
X x^ x=» 3x* 3x5 6x« Sx'^ „

OF THE

INDETERMINATE ANALYSIS.

In the common rules of Algebra, such questions are

iiaually proposed as require some certain or definite an-

swer; in which case, it is necessary that there should be

as many independent equations, expressing their conditions,

as there are unknown quantities to be determined ;
or

otherwise the problem would not be limited.

But in other branches of the science, questions fre-

quently arise that involve a greater number of unknown

quantities than there are equations to express them
;

in

which ir»taoces they are called indeterminate or unlimit-

ed problems ; being such as usually admit of an indefinite

number of solutions
; although, when the question is pro-

posed in integers, and the answers are required only in

whole positive numbers, they are. in some cases, confin-

ed within certain limits, and in others, the problem may
become impossible.

PROBLEM 1.

To find the integral values of the imknown quantities x

and y in the equation
ax—by=±c, or ax-\-by=!:c.

Where a and b are supposed to be given whole nuna-

bers, which admit of no common divisor, except when it

is also a divisor of c.
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RULE.

1. Let s.'h denote a whole, or integral number ;
and re-

duce the equation to the fornj

by^c c — by .x=—=-wn, or x= -wk.
a a

2. Throw all whole numbers out of that of these two

exprcsisions, to which the question belongs, so that the
numbers d and e in the remaining parts, may be each les6

than a
;
then

dy±e ,
e— dy ,— =Ts)h, or -=wh.

a a
3. Take such a multiple of one of these last formulae,

corresponding with that above mentioned, as will make
the coefficient of y nearly equal to a, and throw the whole
numbers out of it as before.

oyOr find the sum or difference of—
, and the expression

"
ay

above used, or any multiple of it that comes near —
,
and

a
the result, in either of these cases, will still be =wh, a

whole number.
4. Proceed in the same manner with this last result ;

and so on, till the coefficient of y becomes = 1, and the

remainder = some number r
;
then

^^^^^- ^wh.=p, and y=.apz^r.

Where p may be o, or any integral number whatever,
that makes y positive ; and, as the value ofy is now known^
that of X may be found from the given equation, when the

question is possible*.
NoTR. Any indeterminate equation of the form

ax—by='±.c,

* This rule is founded on the roTious principle, that the sum, difference,

or product of any two whole iiunioers, is a whole number; and that, if a

number divides the whole of any other number *nd a part of it, it Trill slscr

divide the remaining part.
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in which a and b are prime to each other, is always possi-

ble, and will admit of an infinite number of answers in '

whole numbers.
But if the proposed equation be of the form

ax-\-byz=:C,
the number of answers will always be limited ; and, m
some cases, the question is impossible ;

both of which cir-

cumstances may be readily discovered, from the mode of

solution above given*. =

EXAMPLES.

1. Given \9x—\'ly=\l, to find x and y in whole num-
liers.

Here a:=—=^—
r
—=^wh., and also -~=wk.

Whence, by subtraction, -~ ——^——=-^—-—z=znh.

%— ^1 ,. 20?/—44 ^ , V—6
Also, JL__x4=:-^-=,-2-f^=.A.
And by rejecting y—2, which is a whole number,

19 ^

Whence we have y=l9p-\-6.
.

- 142/+11 14(19»+6)+ll 266p-{-95_And ^=—^^ 19 ^9

* That the coefficients a and b, when these two formulae are possihfe,
should have no common divisor, which is not at the same time, a divisor of c,

is evident ; for if assmfi, and 6=OTe, we shall have ax+ by^mdx+ mgyig=

c
,• and consequently dx+ey=—. But d, e, x, y, being supposed to be whole

(^

numbers —must also be a whole number, which it cannot be, except whan m
7n

is a divisor of c.

Hence, if it were required to pay 100^ in guineas and moidoi'es only, the

qnestion would be impossible ; since, in the equation 21 t -|. 2'7y=2000 which

represents the conditions of the problem, the coefficients, 21 and 27, are each
divisible by 3, whilst the absolute term 2000 is not divisible by it. See my
Treatise of Algebra, for the method of resolving questions of this kind, by
means of Continued Fractions.
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Up+5.
Whence, if p be taken =0 we shall have x— 5 and y

^6, for their least values
;
the number of solutions be-

ing obviously indefinite.

2. Given 2x+3j/= 25, to determine a; and y in whole

positive numbers.

Hence, since x must be a whole number, it follows that

—^ must also be a whole number.
2

Let therefore —-^=wh==p;
2 *

Then 1 - ?/= 'Up,
ot y=\— 2p,

And since

x=12-j/4-i^-=12-(l-2;7)+p=12+3/)-l,
We shall have a;= 11 +3/7, and i/=l — 2p ;

Where
JO may be any whole number whatever, that will

render the values of x and y in these two equations posi-

tive.

But it is evident, from the value of i/, that p must be

either or negative ;
and consequently, from that of x,

that it must be 0, - 1, —2, or—3.

Whence, if ;3=0, p= - 1
, p= - 2, p= — 3,

Ihen < . o r 17

Which are all the answers in whole positive numbers

that the question admits of.

3. Given 3x=82/ — 16 to find the values of x and y in

whole numbers.

Here a:=-^ =2i/-5-|—^^^^
—=wA

; or-^^
—=wh.

3 33
., 2v— 1 „ 4«-2

, y— 2
,

Also-^ X2= -^-— =y-\-±—-=n:h.
3 3 ^ '

3

Or, by. rejecting y, which is a whole number, there will

• 2/- 2
remam—^^—=^-h.=p.
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.8;,.

Therefore 7/= 3p4-2,

3 3 3

Where, if p be put= l, we shall have a-=8 and y—o,
for their least values

;
the number of answers being, as in

the first question, indefinite.

4. Given 21.T+17?/=2000, to find all the possible val-

ues of X and y in whole numbers.

Here 2000-171/

Or, omitting the 95,

2\y

21

Uy

17?/ ,

Consequently, by addition,
-— +
21

21

5- \ly 4i/4-o

21 21
= a-A. ;

- M 4.v+5^^ 20?/+ 25 .4+20?/
Also,-^ X5=-^p-=l+-^— ==t4/i.

;

4+ 20w
Or, by rejecting the whole number 1,

——r—='wh.

21v 4+20u w-4
And, by subtraction,—-

:> j .

21

.\nd .1=

21 21

Whence ?/= 2 lp+4,
2000 - 1 ly_ 2000 -

17(2 1/?+4)

21
^

21

-wh.^i

92-17/j.

Vvhere if p be put^^O, we shall have the least value ot

2/=4, and the corresponding, or greatest value of a;=92.

And the rest of the answers will be found by adding 21

continually to the least value of y, and subtracting 17 from

the greatest value of x
;
which being done we shall obtain

the six following results :

a=92
y=4

75
25

68
46

41

67

24

88

7

109

These being all the solutions, in whole num,bers, that the

question admits of,

JVote. 1 . When there are three or mor.e unknown quan-
tities, and only one equation by which they can be detei*-

mined. as

ax-\-hy-\-cz=d.
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it will be proper first to find the limit of the quantity that

has the greatest coefficient, and then to ascertain the dif-

ferent values of the rest, by separate substitutions of the

several values of the former, from 1 up to that extent, as

Q the following question.
5. Given 3x+5(/-r72r=100, to tind all the different va-

lues of .T, y, and z, in whole numbers'*.

Here each of the least integer values of a- and y are 1:

by the question ;
whence- it follows, that

-—
7

— 7—7 '^'''

Consequently z cannot be' greater than 13, which is also

the limit of the number of answers ; though they may be

considerably less.

By proceeding, therefore, as in the former rule, we shall

have

And, by rejecting 33—?/
—

22-,

1-2?/—2r
, 3.V . \—2y—z_ y-\-\—z

y-f-1—z
Whence^—-— =p.

And 2/=3/>-f-2^
— 1

;

And consequently, putting p=0, we shall have the least

value of ?/=-
— 1

;
where z may be any number, from I

up to 13, that will answer the conditions of the question.

When, therefore, ^=2 we have j
=

I,

)

* If any indeterminate equation, of the kind above given, has one or more

of its coefficients, as c, negative, the equation may be put under the form

ax:-\-by=d-\.cz,
in which case it is evident that an indefir.ile number of values may be given

to the second side of tlie equation by means of the indefinite quantity z ;
and

consequently, also, to X and y in tlie first. And if the coetficients a, b, c, in

any such equation, have a common divisor, while d has not, the question, as in

the Urst case, becomes impossible.
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Hence, bj taking z=2, 3, 4, 6, &c. the corresponding
values of x and i/, together with those of ^, will be found

to be as below.

z= 2
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EXAMPLES FOR PRACTICE.

i. Given 3x=Sy~-l6, to find the least values of x and

,f
in whole numbers. Ans. a;=8, y=5
2. Given 14x=5y-^l ,

to find the least values of x and

y in whole numbers Ans. x=3, y=t
3. Given 27a:=1600— 16?/, to find the least values of x

and y in whole numbers. Ans. a;=48, ?/=19
4. It is required to divide 100 into two such parts, that

one of them may be divisible by 7, and the other by 1 1 .

Ans. The only parts are 56 and 44

5. Given 9.r4-13j/=2000, to find the greatest value of x
and the least value of y in whole numbers.

Ans. a:=215, y=^b
6. Given lla:-f-5?/=^254, to find all the possible values

of X and y in whole numbers.
Ans. a-=19, 14, 9, 4

; y=9, 20, 31, 42
7. Given 17a-+ 19j/+ 2 1^=400, to find all the answers

in whole numbers which the question admits of.

Ans. 10 different answers
8. Given bx-\-'iy-\^\ \z^=22i, to find all the possicie va-

lues of X, y, and z, in whole positive numbers.
Ans. The number of answers is 59

9. It is required to find in how many different ways it is

possible to pay 20/. in half-guineas and half-crowns, with-

out using any other sort of coin ?

Ans. 7 different ways
10. I owe my friend a shilling, and have nothing about

me but guineas, and he has nothing but louis-d'ors
;
how

must I contrive to acquit myself of the debt, the louis being
valued at 17*. apiece, and the guineas at 21s. ?

Ans. 1 must give him 13 guineasy«and he must

give me 16 louis

11. How many gallons of British spirits, at 12s., 155.,
and 18s. a gallon, must a rectifier of compounds take to

make a mixture of 1000 gallons, that shall be worth 17s, a

gallon ?

Ans. nu,atl2j., nij at 155 ..and 777f at 13^

•s
a
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PROBLEM II.

To find such a whole number, as, being divided by other

given numbers, shall leave given remainders.

RULE.

1 . Call the number that is to be determined x, the num-
bers by which it is to be divided a, 6, c, &.c. and the given

remainders/, g, h, &,c.

2. Subtract each of the remainders from x, and divide

the differences by a, b, c, &c. and there will arise

X—f x-~g x — h

a
'

b
' -, &c. = whole numbers.

x-f
3. Put the first of these fractions—- =p, andsubsti-

a ^

tute the value of a:, as found in terms of p, from this equa-

tion, in the place of x in the second fraction.

4. P'ind the least value of p in this second fraction, by
the last problem, W'hich put=r, and substitute the value

of X, as found in terms of r, in the place of x in the third

fraction.

Find, in like manner, the least value of r, in this third

fraction, which put ^=s, and substitute the value of x, as

found in terms of s, in the fourth fraction as before.

Proceed in the same way with the next following frac-

tion, and so on, to the last
;
when the value of x, thus de-

ermined, will give the whole number required.

EXAMPLES.

i. It is required to find the least whole number, which,

oeing divided by 17, shall leave a remainder of 7, and

ifhen divided by 26, shall leave a remainder of 13.

Let X— the number required.
x—l a:— 1 3

Then and = whole numbers
17 26
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re -7 ^

And, putting
—— ==p, we shall have x=17/5-|-7.

Wiiich value of x, being substituted in the second frac-

17n+7— 13 ilp-G
lion, gives

=—
|^=rfft.

But it is obvious that—-|- is also =re>h.
26

26p

, 2Gp 170-6 9/5+ 6
And

consequently^ ——=-j^=zvh .

r. 9p+6 ,„ 27d-}-18 , p+18 ,

26 26 ^ '

26 .

. . ,
• P+18

-Where, by rejecting /»,
there remains'———=ai/i. =r

Therefore p=26r— 18
;

Whence, if r be taken = 1, we shall have p=8.
And consequently a:=17p+7=I 7 X 8+7 = 143, the

number sought.

2. It is required to find the least whole number, which,

being divided by 11, 19, and 29, shall leave the remain-

ders 3, 5, and 10, respectively.

Let x= the number required.

Then——, ——and ——= whole numbers.

x — Z

I And, putting
—— =p, we shall have a-=l lp+3.

Which value of x, being substituted in the second frac-

; llp-2
ion, gives

——X—='4'a.

. lip— 2 ^ 22p-4 ,
3»-4

-Or —t- X2=—^^^ =«+-£__= Tjyft,

19 19
^^ 19

. 3p—4
And, by rejecting p, there v.'iU remain -=r;/>,

3t_4 18n—24_]8p-5
\lso by multiplication

———Xd=—— -3 5
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Or, by rejecting the 1
,
— - =wh.

But —~- is likewise ='wh.

Whence —^ E^==?Ljl=wh., which put =r,
1 y 1 y 1 y

Then we shall have

p=19r— 5, and z=l 1 (I9r— 5)+3=209r--52.
And if this value be substituted for x in the third fraction.

there will arise

209r—62 „ „ ,
6?^—4 ,

29 ^29
Or, by neglecting 7r—2, we shall have the remaining

Qr—4
part of the expression

—
5^='^^*-/

But by multiplication,
6r— 4 30r—20

,
r— 20

29 29 ^29 '

r — 20
Or, by rejecting r, there will remain =wh. which

put =s.
Then r =29s+20 ; where, by taking s=0, we shall have

r=20.
And consequently

x= 209r-^62=209 X 20—52=4 1 28,

the number required.
3. To 6nd a number, which, being divided by 6, shall

leave the remainder 2, and when divided by 13, shall leave

the remainder 3. Ans. 68

4. It is required to find a number, which being divided
'

by 7, shall leave 5 for a remainder, and if divided by 9,

the remainder shall be 2. Ans. 1 10

5. 't is required to find the least whole aumber, which,

being div ided by 39
,
shall leave the remainder 1 6, aud when

divided by 66, the remainder shall be 27.

Ans. 1147

6. It is required to find theleast whole numberrwhjch>



DIOPHANTINE ANALYSIS. 20.

being divided by 7, 8, and 9, respectively, shall leave the

remainders 5, 7, and 8. Ans. 1727

7. It is required to find the least whole number, which,

being divided by each of the nine digits, 1, 2, 3, 4, 5, 6,

7, 8, 9, shall leave no remainders. Ans. 2620

8. A person receiving a box of oranges, observed, that,

when he told them out by 2, 3, 4, 5, and 6 at a time, he

had none remaining ;
but when he told them out by 7 at

a time, there remained 3 ;
how many oranges were there

in the box? Ans, 180

OF THE

DIOPHANTINE ANALYSIS.

This branch of Algebra, vvhich is so called from its in-

ventor, Diophantus, a Greek mathematician of Alexandria

in Egypt. >vho flourished in or about the third century after

Christ, relates chiefly to the finding of square and cube

numbers, or to the rendering certain compound expressions
free from surds ; the method of doing which is by making
such substitutions for the unknown quantity, as will reduce

the resulting equation to a simple one, and then finding the

Talue of thnt quantity in terms of the rest.

It is to be observed, however, that questions of this

kind do not always admit of answers in rational numbers,
and that, when they are resolvable in this way, no rule

can be given that will apply in all the ca«es that may occur ;

but as fir as respects a particular class of these problems,

'relating to squares, they may generally be determined by
means of some of the rules derived from the following

formulas.

PROBLEM I.

To find such values of x as will make ^{ax^ \-hx-\'c)

rational, or aa;'-+6x+ca=:a square.
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RCLE.

i'. When the first term of the formula is wanting, or a
=0, put he side of the square sought =?j

;
then bx-\-c= n«.

And, consequently, by transposing c, and dividing by
n^ c

the coefficient b, we shall have x=—-—
j where n may

be any number taken at pleasure.
2. When the last term is wanting, or c=0, put the side

ofthe square sought=na-, or, for the sake of greater gene-

rality,^
—

; then, in this case, we shall have ax--i-bx=
m^x^

»2

And, consequently, by multiplying by n^, and dividing

by a-, there will arise an^x4-bn^= m'x, and x= ,

where m and n, both in this and the following cases, may
be any whole numbers whatever, that will give positive
answers.

3. When the coefficient a, of the first term, is a square
number, put it =cZ2

,
and assume the side of the square

, . , w , , , , , , ,
2dm

,
m^

sought =dx-^— : tlien, d2x'^'\~bx-\-c=d^x"-\ x-{-— .

n n n^

And, consequently, by cancelling d^x^ , and multiplying

by n2, we shall have bn^x-\-cn'^=2dmnx-\-in-, and x=

bn^ —2dmn
4. When the last term c is a square number, put it =

nix

c2, and assume the side of the square sought
=

\-e;
71/

then, aar2 -|-6a;+e3= 1 x-^-e-. And, consequent
n^ n

ly, by cancelling c^
,
and dividing by x, we shall have ax-{-

,
m^x

,
2ein . bn^ —2emn

0=—--1
, and a;= —.
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5. When the given formula, or general expression,

can be divided into two factors of the form fx-{-g and/ix-j-

k, which it always can when 6^ -^400 is a square, let there

he t^ken {fx+g)X{hx-}-k)=—{fx+gy ; then, by re-

duction, we shall have x=-, : where it may be

observed, that if the square rootof 62__4ac, whenrationalj
be put =J', the two factors above mentioned, will be

„.+'^, and .+'±i

"And, consequently by substituting them in the place of the

former, we shall have
am^ (6 -J')~ «2 (b-\-^)

2a(re2— am2)
6. When the formula, la=t mentioned, can be separated

into two parts, one of which is a square, and the other the

product of two factors, its solution may be obtained by
putting the sum of the square and the product so, formed,

equal to the square of the sum of its roots, and — times
n

one of the factors, and then finding the values of x as in

the former instances.

7. These being all the cases of the general formula that

are resolvable by any direct rule, it only remains to ob-

serve., that, either in these, or other instances ol a differ-

ent kind, if v/e can find,, by trials, any one simple value of
the unknown quantity which satisfies the condition of the

question, an expression may be derived from this that will

furnish as many other values of it as we please.

Thus, let p, in the given formula ax- -\-bx-\-c, be a value

of X so found, and make ap'-\-bp-\-c=q^ .

Then, by putting z=ij-\-p, we shall have ax^-j-hx-{-c=

°{y-^py i-Ky-{-p)-\-c=ar +{"2ap+b)y-{-ap^ +bp-\-c, or

ax~-{-bx-\-c=ay^ -\-{2ap-\-b'y-{-q2 .

From which latter expression the values of y, and con-

sequently those of X may bo found, as in Case 4.
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Or, because c=»q^
—

bp
—

a/)^, if this value be substitut-

ed for c in the original formula a-x'^+bx+c, it will become

a{x'^—p^)+b{x—p)-\-q^ , or

92 4- (a;
—

p) X{ax + ap-\-h)—a square ;

which last expression can be resolved by Case 6.

Itf may here, also, be farther observed, that by putting

1/2 , , . z—b
the given formula ax"+bx+c= ^, and takmg ^=^-^ \

we shall have, by substituting this value for x in the former

of these expressions, and then multiplying by 4a, and trans-

posing the terms
0^2+ (6--4ac)=z2 ^ or,putting,for the sake

of greater simplicity, 62—\ac—h\ this last expression may
then be exhibited under the form ai/2+6'=z2^ ^vhere it is

obvious, that if a'^j^^\^{h^~^ac), or its equal ai/2+fc', can

be made a square, ax2-f 6a;+c, will also be a square.

And as the proposed formula can always be reduced to

one of this kind, which consists only of two terms, the pos-

sibility or impossibility of resolving the question, in this

state of it, can be more easily perceived.

EXAMPLES.

1. It is required to find a number, such that if it be mul-

tiplied by 5, and then added to 19, the result shall be a

square.
Let .T= the required number

; then, as in Case 1, hx-\-

19=n,2, or x= ;
where it is evident that n may be

5

any number whatever greater than y/19.
Whence, if n be taken =5, 6, 7, respectively, we shall

25— 19 36-19 ^, 49-19 „ ^,

have X——-——\\, or—-—=3|, or—-—=6
;
the

latter of which is the least value of x, in whole numbers,

that will answer the conditions of the question ;
and con-

sequently 5a; -f 19=^5X6-1-19=30+19=49, a square
number as was required.

2. It is required to find an integral number, such that it

shall be both a triangular number and a square.
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it IS here to be observed, that all triangular numbers are

of the form —
;
and therefore the question is reduced

to the making—-—
,
or its equal

— — a square.

Where, since the divisor 4 is a square number, it is the

same as if it were required to make 2a;2-|-2a; a square.

Let therefore
2x'^-{-2x=(^

—
)
=—^^, agreeably to the

method laid down in Case 2.

Then, by dividing by x-, and multiplying the result by
n^

,
the equation will become 2n~ x-^-^'in'-^ ==ifi,^ x, or (m^—

2n-
2n-) x^=2n" ;

and consequently x— —-—-—-
; where, if

^
J" — 2?t-

X^ —
r-jC

nbe taken =2, and m=3, we shall have a;=8, and —-—
64-4-8 72 . .= =—=36, which is i*ne least integral ti ian,'»;ular

2 2
a o

wumber that is at the same time a square.
3. It is required to find the least integral number, such

that if 4 tifnes its square be added to 29, the result shall

be a square.
Here it is evident, that this is the same as to make 4x"

+29 a square.
And, as the first term in the expression is a square, let

4x2+29= (2x-|
—

) =4x2+— 3--f-
—

; agreeably to Case

3,

„, 4m
,
in^ „„ 4m. ^^ ni* .

'

Then, —x+— =29, or— x=:29
;
and conse-

n n^ - n n-

quently x= ; where, if m a.'.d n be each taken^ -' 4mn
29— I= 1, we shall have x= =7, and 4x2+29=4X49+

29=225=(16)' ,
which is a square number, as was re-

quired.
4. It is required to find such a value of x as will ma^e

5x+l a square.:c
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Here the last terra 1 being a square, let these be taken,

according to Case 4.

Then, by rejecting the 1 on each side of the equation,

and dividing by X, we shall have 7x—6=—x ,
and° "^ n^ n

consequently a'=—-—
—-5-; where, it m and ?i be each

2—5 3
taken =1, the result will give x= =-=1^, or by tak-^ 1—7 6 -

43 45
xng n=iS, and jn=8, v/e shall have x^-——-^r=3, which

ol— 63

makes 7X32-3X3+1=49^72, as required.
6. It is required to find such a value of x as will make

8x^-\-\4x-\-6 a square.
Here, by comparing this expression with the general

formula aa-2 -|-^x-[-<;, we shall have a=8, 6=14, and c=6.
And as neither a nor c, in the present instance, are

squares, but b^ ~4ac=196— 192^=4 is a square, the given

expression can be resolved, by Case 6, into the two follow-

ing factors 8.r-}-6, and x-\-\.

Let, therefore, 8a:2+ 14x+6=(8x+6)(a;+l)= —j(.r+

1)2, agreeably to the rule there laid down.

Then there will arise, by dividing each side by x-f:K

8a;-}-6=— (x+1).

And, consequently, by multiplication and reduction, we

shall have, in this case., x=- ;
where it appears.

0?l2— Wl2

that, in order to obtain a rational answer, -— must be less
n2

than 8, and greater than 6.

Whence, bv taking m~5, and 7i= 2, we shall have x=
25-24 1

'

. ^ ,
8

,
14

,

- 400 .20.2

32:12-5=7'
^'^'^^ "'^^^^ 4U+T+ ^=

19-=Ct) ^^'''

cjuired.
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0. It is required to find such a value of x as "tviil make
il.x'^ —2a square.

Here, by comparing this with the general formula oj:- .

rbx-{-c, as before, we shall have a= 2, 6= 0, and c=— 2,

And as neither o nor c are squares, hutb^— 'iac= — 4ac
—

-.4(2 X —2)= 16 is a square, the root of which is 4,

the given expression can be resolved, by Case 5, into the

two factors 2x— 2, and a-f ' . or 2(x-— 1), and (.r+l),
which is evident indeed, in this case, from inspection.

Let, therefore, 2x--2=2(a;-l)X(x+l)=—(xf1)S
fV

agreeably to the rule ;
and there will arise by division

2x—2=— (a;+l). And, consequently, by multiplication,

aad reducing the resultjWe shall havex=7r— ; where,

by taking n= 1, and in=i, we shall have x=3, and 2x^ —
2=18—2= 16= (4)2, or taking 72= 2, and m=3, the re-

sult will givt a-=-- 17.

But as X enters the problem only io its second, +17
may be taken instead of — 17

;
since either of them give

2x2 -2= 676= (24)2.
7. It is required to find such a value of x as will raal^e

5r2-l-3(3a;-f-7 a square.

Here, by comparing the expression with the general

formula, we shall have a— 5, 6=36, and c=7.
And as neither a nor c are squares, but b- —4ac=l296

— 140= J 156=(34)2 ,
is a square, it can be resolved, as in

the last example, into the two factors 5x-rl( and a--|-7.

m-
Whence, putting 5x2 +3Gx + 7 = (.':r-fl)X(a:+7)==

—
(x-^-iy, there will arise, by dividing by x-f 7, 5x4-1=^

—(.r+7).

And, consequently, by multiplication, and reducing the

, „ ,
7m2-?z2

resuUmg expression, we shall have x=-- : waere
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taking m=2, and n=l, the substitution will give ae=

12^-1=.,27, which makes 5X(27)2+36X27-!-7=4624SXl-4 ^ ^

«=(GC)", as required.
8. It is required to find such a value of x as will make

6x2-l-13a-4-lu a square.
Here, by comparing the given expression with the ge-

neral formula ax^ -{-bx-^-c, we have a=6, 6=12, and c^=

10. And as neither «, c, nor 6^ — 4ac, are squares, the

question, if possible, can only be resolved by the method

pointed out in Case 6.

In order, therefore, to try it in this way, let the firsj;

simple square 4, be subtracted from it, and there will re-

DDain, in that case, Qx^ -f 13x4-6.

Then, since (13)2 -4(6 x 6)=169- 144=25, is now a

square, this part of the formula can be resolved by Case h,

into the two factors ;

3x4--2, and 2x+3.
Whence, by assuming, according to the rule, Bx^-\-\Sx

+ 10=44- (3x+2)X(2x+3)= ^
24- -(3x-f2)

T =4 4"

— C3x4-2)-!-— ('3x+2y, we shall have, by cancelhng

4m
the 4, on each side, and dividing by 3x-f-2 ; 2x-t-3——n
m2

And, consequently, by multiplying by n^
,
and transpos-

ing the terms, we have 2n^x— 3m'^x=imn-\-27n'' — Sn^, or

^
2n2— 3m'3

Where putting m==^-2, and n=3, the result will give x=
244-8 —"7 5-~^ —=^-, or ifm be taken = 13, and «=17, we shall
18-12 6

4X17X134-2X(13)3-3X<17)2 355 ^

2(17)2-3(13)2 71
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Which makes 6X(6)2+ 13X 6 +10=225=(15)S as

required.
9. It is required to find such a value of x as will make

13a-2 + ]5a:+7 a square.

Here, by comparing this with the general formula, as

before, we have o=13, 6=15, and e=^l. And as neither

a, 6, nor b^—Aac, arc squares, the answer to the question

if it be resolvable, can only be obtained by Case 6. In

order, therefore, to try it, in that way, let (1
—

.t)^ or 1 —

2x4-.r- be subtracted, from the given expression, and

there will remam li2;r2+ 17.T+6.

And as (17)2—4(6X12), which is = 1, is now a square,

this Mrt of the formuXi can be resolved by Case 5, into

•the two factors 4a.-l-3 and 3a;+ 2. Whence, assuming 13

22 + 15x+7=(I-a:)24-(4.r+3) X {^x-^'i)=\{l-x)+

'^(3a:4-2)J'=(l-:r)^+^"(I-^)X(3:r+2)+^^(3a:
+ -

2)2, we shall have, by cancelling (1
—xY ,

and dividing by

Sa;+2 : 4x+3=— (1 -a;)-|
—

-(3a:+2); and consequent^

ly, by multiplying by n-
, and transposing the terms, there

will arise 4n2x+2m«a;— 3//4-x= 2m«+2m2 — 3-^'>', or .t=
2mn4-2m2 -3re2

4uH-^imr^3m2
'

Where puttitig ?« and n each=^l, we shall have x=
2+2-3 1

, . .
,

^3
,

15 13 45 63 121

~( "^ ) '
33^ requireo.

10. It is required to End such a -value of x as will make

7x2+2 a square.
Here it is easy to perceive that Eeither of the former-

rules will apply.
But as the expression evidently becomes a square v/her.

-=1, let, thcrefore,,j:=l+y, according io case 7, and wt
^hall have

7a;2+2=9+l4i/+7y2, ..

t2
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Or, putting 94-14?/+7?/2==(^3-|--j/)', according to the

rule, and squaring the right hand side, 9-\-l4y-^ly^=9-{-

Hence rejecting the 9's and dividing the remaining terqtis

hyy,weh-Ave'ln~y-\-l4n^==6mn-\-m'-y; and, consequent- ^

6/rm — 1471^ , ,
Qmn—liti^

,

lv»'V=-—— , and a-=l-i ; where it is

evident that in and n may be any positive or negative num-
bers whatever.

I.^, for instance, 7n and n be each taken = 1, we shall

4 1.
have y=— and 2:=—-. Or, since the second power of

X only enters the formuhT, we may take, as in a former in-

stance, .r=-i-, which valae mtikes 7a=-i-2=§+2-=^J+ V'
=2-5 a square.

Or, if m=3 and «=— 1, Ave shall have a;=17, and 7x-

4-2=7 X( 17)2 +^i=2026=(45)2, a square as iai-fore.

And by proceeding in this manner, we may obtain as

many otlier values of x as we please.

^^ PROBLEM II.

To find such values of x as will make y/(ax'^-\-bx^-\-c

x-\-d) rational, or ax^-{-bx--\-cx-\-d= a square. This

problem is much more limited and difficult to be resolved,

than the former
;

as there are but a few cases of it that

-admits of answers in rational numbers
;
and in these the

rules for obtaining them are of a very confined nature
;

being mostly .such as are subject to certain limitations, or

that admit only of a few simple answers, which in the

instances here mentioned, may he found as follows.

RVLE.

1« When the third and fourth terms of the formiila are

wantiiig, or c and d are each =0, put the side of the sguar^

sought ==nx, then aa'3 4-ia:2=7»2j:3.
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And, consequently, by dividing each side of the equa-

, ,
n^— b

,

tion bv a;2, we shall have ax+6=7i-, orx= ,
where

' a

n may be any integral or fractional number whatever.

2. When the last term d is a square, put it =e, and as-

C J 1

sume the side of the required square =e-\-—-x ;
and the

reversed formula is e^ -{-cx-i-bx^ -\-ax^=ze^ -Jrcx-\----x'' ,

Whence, by expunging the terms e^-}-cx, which are com-

mon, and dividing by a;2,we shall have, 4ac'^x-{-4be~= c'^
;

c2..4be2
and, consequently, x=—-

^
.

c
,
46e2_c2-

Or, if, in the same case, there be put e-\-—x-\ r——a-^

for the side of the required square, we shall have, by squar-

ang, e2-|-cj:+6x2-faa;3=e2-j-ca;+6x2H—^—— -x^ -r

i —x^ . And as the first three terms (e- -{-cx-^bx^ ^
64e6 ^

are now common, there will arise, by expunging them, ana

then multiplying by 6\e^, G-iae^x^^^Sce^^-ibe"
—

c'^)x^-{-

(46e2
—

c2)3a;*.

Whence, by dividing each side of this last equation by
x', and reducing the result, we shall have

_64(»c6_8ce3(46e2_c2)^—
(ibe^-c^)^

'

which last method gives a new value of x, different from

that before obtained.

3. When neither of the above rules can be applied to

the question, the formula can be resolved, by first finding,

by trial, as in the former problem, some value of the un-

known quantity that makes the given expression a square ;

in which case, other values of it may be determiricd froiri

this, when they are possible, as follows :

Thus, let p be a value of x so found, and make
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Then, by putting x—y-\-p, we shall have ap^-r-bp^+cp
'^d:=a(y-hpy+y,y-{-py-{-c{y+p)-hd=ay^-{-{3ap+b)y^
+i'ip^+'^p-{-c)yi-up^-\-bp^-\-cp-\-d, or ax3-\-bx^-i-cx-{-

d=ay^+{3ap-\-b)y-^+{^p^-\-2p+c)y-{-gK
From which latter form, the value of y, and consequent-

ly that of X, may be found by either of the methods given
in Case 2.

It may also be further remarked, that, if the given for-

mula, in any case of this kind, can be resolved into factors,
such that one of them shall be a square, it will be sufficient

to make the remaining factor a square, in order to render
the whole expression so

; since a square, multiplied or di-

vided by a square, is still a square.

EXAMPLES.

1. It is required to find such a value of x as will tnalce

ilx^-\-Bx^ a square.
Let the given expression I lx^-\-3x^ ~n^x- : agreeably

to Case 1.

Then, by dividing by a-^
, we shall have lla-fS^n^;

n- —3
and, conseqtienlly-, a;= ;

where n may be any num-

ber, positive or negative, that is greater than V-S-

Taking, therefore, n^=2, 3, 4, 5, &c. respectively, we

shall have, in this case, -=^— , --, — , or 2, the last of

which is the least integral answer that the question admits
of.

2. It is required to find s'ach values of x as will make
x^ ~2x^ -\-2x-\-l a square.

Here, the last term 1
, being a square, let 1 -fSx ^ Sz^ -^

x^=[l-\-xy= 'i-\'2x-{-x" , agreeably to the first part of
Case 2.

Then, since the first two terms, on botb sides of the

equation, destroy each other, we shall have x^ — 2x-^=x-
,

ora:3=3x2, and conseq'iently x=3 ; which, by snbstitu*

lion, makes i+2j;— Sa;^ J-x3=l-}-6-18-f27=I6, asguare
•as required.
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Again, by putting a:=?/4-3, according to Case 3, we shall

have 1+ 2a;- 2x2 -^x^=l+2{y-{-3) - 2(2/+3)^+ (i/-(-3)3

And, c6nsequent]y, by making \6-\-l'7y-r7y^-{-y^
=

\^-i:

17 • 289+—-t/)2
= 1 6 -{- 1 7y-\—-

—
y- , agreeably to the first part of

Case 2, by cancelling l6-\-lly, there will arise '7y^'Ty^=
289

. „ 280——
j/2. orw+7= .

289 ^ £89-446 159
Whence v= 7= =

> '^^^^ x = 3--
-^ 64 t)4 6i

159 192-159 33 . .
,

.
' = =—

, for another value ol x.
64 64 64

"Which number, being substituted in the original formala,

, . . ^ « o . , 429026 .655.2
make l4-2x-2«;9+3:3=^^—=(—-) ,

a square, as

before.

5, It is required to find such values of x as will make
3a;3 — 5a;2-f 6a;+4 a square.

Here, 4 being a square, let 4-{-6x — 5x^-\-3x^={2-{'
|x)'<=4+ 6a:4-f-^^5 as in the first part of Case 2.

Tiien, since the two first terms on each side of the

equation destroy each other, we shall have 3x^ —5x^=^-
z^

, or 3a; — 5=f ; and, consequently, in this case x'=--

5+f^29
3 12*

Whence (2+f X^t;) =^24-^)' (-r) a square, as was
12 o'G

required.

Or, by the second method of the same Case, let A-\-Qx
2Q 87 841— 5.t2 +3x3= (2_j_| X la;2

)2 =4+6x— 5a;2 - x^-^~-
1 o 1 -^Ou

;:^
; then, as the three first terms on each side of this

equation destroy each other, we shall have —-x* x^^ J '

256 16

841 87
—Sps, or-—-X- ——3. or 84]x—1392=768 : and con-

25o lij
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,, 1392-f768 2160 ,. , .

sequently, x = -—- =
, winch is anolher value^ •"

841 84 i

of X, that, being substituted in the original formula, will

naake it a square.
4. It is required to find such values of % as will make x-'

+ 3 a square.
Here, it is evident, that the expression is a square when

.'r=I. Let therefore x=l-^y, and we shall have 3-\-x-

=4+32/4-31/2+^3.
And as the t'lrat part of this is a square, naake accordine

to the first part of Case 2, 4+3!/+32/2+i,3= (2+ fw)- =4
+3?/+/^2/2. Then, because the first two terms on each
side of the equation destroy each other, we shall have v^

^\ hence j/=-^3=-^-=---, aad x=l~
^-^

16— 39 23——
:
—=— -r- ;

which is a second value of x.

3 39
Again, let 4+5y+3y^-i-y^=(2-}--y+—y^y=4-}-3y

117 1521

+31/2+2^34.^^2^4^ according to the second part of

Case 2.

Then as the first three terms on each side of the equa-
1521 117

4ion destroy each other, we shall have y*-\ -1/^=?/",^ '

409tj 128^
-^

1521
,
117 ,

or—-,—vH =1.
4096^ ^128

352 352 1873
Whence, also, y=-——, and a;=I-j ^=

, which•^
1521'

^

1521 1521
is a third value of x.

And by proceeding in the same way with either of these

new values of x as with the first, other values of it may be
obtained

;
but the resulting fraction will become continu-

ally more complicated in each operation.
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PROBLEM III.

To find such values of .r as will make ^(aa;*+6;c3 4-

€x--{-dx-\-e) rational, or ax* -{-bx^-^-cx^ -^ dx-\-e=-- asqnare.
The resolution of expressions of this kind, in which the

indeterminate, or unknown quantity, rises to the fourth

power, is the utmost limit of the researches that have hi-

therto been made on formula affected by the sign of the

square root
;
and in this Problem, as well as in that last

given, there are only a few particular cases that admit of

answers in rational numbers
;
the rest being either impos-

sible, or such as afford one or two simple solutions
;
which

may generally be found as follows :

RULE.

1 . When the last term e, of the given formula, is a square,

put it •—/3, and make /^ + rfa; + cx^ -\- bx^-\-ax'^={f-{-

64/«
Then, by expunging the first three terms, which are

common to each side of the equation, there will remain

bx^+ax^ = -^ ^ ^r^-fi—-— <- x^, And conse-

quently , by dividing by x' ,
and reducing the result, we shall

have ,.-6-^y^-8cy-'(4cA^-^--)

2. When the coefficient, a, of the first term of the for-

mula, is a square, put it =g-i and make g^x*-{-hx^-\-cx^
h 4crr2_52

A-dx-{-e={gx^+—x-\—^^
—Y=gix^-\-hx^ 4- cx2 +

fc(4cg2 -h^y_ , , (4cg2 -&2)2

8^* 64^6

Then. dx-\-e~^—^- ^z-f^—2 -J- and con-
8o-* 64^*=

-'
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(4cs^-b"y-64cg^ ,. , ^
seqviently, oc=-~-^— -

, „ .
.

—
„ ,

-
.

; which form like

wise fails under similar circumstances with the former.

3. When the first and last terms of the formula are both

squares, put a=g^, and e—f^, and make/^+^^+c^'-f-

^x^+g^xK
Then cx^-\-bx^ = (2/^+ ^)x^+^x .

And, consequently, x=^— /{kf
—
jf^
—

•

Or, because g enters the given formula only in its second

power, it may be taken either negatively or positively ;

and, consequently/We shall have x=-—%•

>, ^ , , .
—-• So^ -^

. .
f{¥+dg)

that this mode of solution furnishes two different answers.

Also, if there be taken for another supposition/^-f-cZx-

+c.t2+6:c3 Jrg^-x^^{f+^x-\-gx^^y=.f2j^MxJr{2fg-^%
fc2 bf—
-)x'-^hx^-\-g^x*, hence by cancelling, dx'\-cx^=^-^ x

+(2/^4—^)a;2 ;
and consequently, a;=—^^^—-i^—

"

And because/ enters the given formula only in the se-

cond power, it may be taken either negatively or positively;

g(h^-{bf)
and, consequently, we shall also have x=^-—-—^-r-;^^^ r.

. . . .
f'^-.^n^^/^-^-o

So that this solution likewise furnishes two values of x,

which are each different from the former.

But these forms all fail under similar circumstances with

those of the second Case.

4. When neither the first nor the last terms are squares,
the formula cannot be resolved in any other way, than by
first endeavouring to discover by trials, some simple value

of the unknown quantity that will answer the conditions

of the question ;
and then finding other values of it, accord-

ing to the methods pbinted out in the two last probleaw.
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Thus, let p be a value of x so found, and make 0^*4*

Then by putting x=y-^p, we shall have
ap*-j-^/>3-j-cp2

+dp-\-e=a{y+py+b{y+t*y-{-c{y+pY+d{y+p)+e=
ay'^+ {ap-i-b)y^+ {6ap^+3bp +c)y^+{4ap3-\- 3ijp2^0cp
-\-d)y-\-ap*4-bp^-{-cp^+dp+e, or ax*+bx^+cx^-\rdx4'

€~ay^+ lap-{-b)y^-\-{6ap^+3bp-\-c)y^+ {4ap^+ 3bp^+'2

cp-{-d)y-\-q- . From which last formula the value of
«/, and

consequently that of x, may be found by Case 1.

EXAMPLES.

J. It is required to tind such a value of x, as will make
1—2x-{-3x-—4x^+ ox* a square.

Here, the first term 1, being a square, let l— '2x-\-3:^^

~4x-3+ 5a;*=(l-.'r+.'c2)23=i-2a;+3x2_2i3+a:*, agree-

ably to the method in Case 1 .

Then we shall have ox'^ — 4.T^=a'* ~.2x' .

And, consequently, .^.-c — 4=.^•— 2
;
whence a:=|=A.

And consequently, 1—2a-+3a;2-4x3-{-5x«= l -l+a^i59"
-!—=— : which is a square number, as was required.~1G 16'

^ '1
2. It is required to find such a value of a-, as will make

4x* —2x^—x^-^3x— t a square.
Here the first term being a square, let 4x*— Sa:^ — x^-f-

5 5 "^5

3x—2=^2x=—ix- _)2=4x* -2x3 _ ^2 4._^.^ J__^ ac-

cording to the method in Case 2.

5
,
25 5

Then we shall have 3x— 2=-—x+-—;, or 3x—— x=2'
io 25b 15

25
-j
—

;--. Whence, 768x-80x=5 12+25 ; and, consequently,

512+ 25 537

768—80 688

Of, if we put x=-, the formula in that case will become
y

2{'M j^ y^ y
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And, tberefore, multiplying thisby ?/* ,
which is a squarsc,

it will be 'i — 2y~-y'+3y^-2y*. Where the first term

being now a square, if the expression, so transformed, be

resolved by Case 1, we shall have y=-—- • and x=-=
y

.

^ bol y

-—
, asbeiore.

b-88'

3. It is required to find such values of x, as will make

j+3a;4-7x3 — 2a;3+ 4x« a square.

Here, both the first and last terms being squares, let 1-t-
o 25

3a;-|-7x2-2a;3+4x* = (H-|x'+2x3)a
= l+3x4-— a:?4-6

:c^-\-4x*, according to the method in Case 3.
'" 5

Then, we shall have 6x3+—x2 =7x3 —2x3 ; or6x+2

25 3
x=7 —; and, by reduction, x=—.

And, if we put the same formula l+3x+'ix2—2x^-{-

4a:4=:(l-f|.T— 2x2)*,=l+3x-Jx2— 6a:3+4x*, we shalS

have, by cancelling, Tx^ -2x== -fx3— Gx^ ;
whence Cx

35 35
.^2x=_i-7= --;orx---^.
And, in a similar manner, other values of x maybe found,

by employing the method of substitution pointed out in the

latter part of Case 3.

4. It is required to find such values of x as will make

2x* — 1 a square.
Here, 1 beins; an obvious value of x, let, according to

^'Then 2x^-1-^2(1+2/)* ~l=2(l+ 4t/+62/=^ +43+2/*)
_l= l+ 82/+12j/2+8i/3+ 2y^. And since the first term

of this last expression is novv a square, we shall have, by
Case 1, l+8i/+12y3+8i/3+ 22/*

= (l+42/-22/-)^
= l+%

+ 12y2_i6(/3+ 4t/*»

Whence, as the three first terms of the two numbers of

this equation destroy each other, there will remain 4?/*
—

]G^''=2i/''+8j/'* ; OTy~\2; and, consequently, x= J +a/

= 13
;
which value being substitsted for r, makes 2x* - I
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=57121 =(239)2, as required. And if 13 ba now taken,

as the known value of .r, and the operation be repeated as

before, we shall obtain, for another value of x, the conrfTli

,^ . 1U607469769
cated fraction^^--^.

PROBLEM IV.

To find such values of x as will make ^{ax^ -fhx^-\-cx

-\-d) rational, or ax^+iar^+cx+d— a cube.' This formula,

like the two latter ofthose relating to squares,cannot be re-

solved by any direct method, except in the cases where

the first or last terms of the expression are cubes ; it being

necessary, in all the rest, that some simple number answer-

ing the conditions of the question, should be first found b^
trial, before we can hope to obtain others

;
but when this

can be done, the problem, in each of the cases here men-

tioned, may be resolved as follows.

RULE.

I . When the last term d of the given formula is a cube,

put it =e3, and xa'dkQe^-\-cx-\-bx^-\-ax^=^{e-\-—~xY -'

-

Then, by expunging the two first ternas on eack side of

the equation, which are common, there will remain ax'-f-

6x2= x^A x2 ; whence, by division and reduction,
27e6 3e3

'

we shall have 27a€6x-f276c6=c3x-f-9c3e3^ and consequent-

ly x= ^:
; which form fails when the coeffi-

•^ c3— 27ae6
'

cients b and c, or a and c, are each equal 0.

2. When the coefficient a of the first term is a cube,

fc put it =/3, and
va:ikepx^-\-hx^-^cx-\-d—(Jx-\--^^y

~
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Then, by expunging the two first terms on each side of
h-

tae eqLuatiou, as before, there will remain cx-\-d= -r- x-f

—^ ; whence, by multiplying by 27/"«, we shall have 27

f^cx-\-21df^=9b'^f^x-]-b^, and consequeetly a:=-

9?V"~73--Z»2\ '
^^"^^ ^°^"^ likewise fails, when h and c,

or b and fii, are each =0.
3. When the first and last terms are both cubes, put a=

/2 and rf=e', and make e^ -\-cx-i-bx^ -{-f^x'
=

(e-\-fx)'^
=

e3+3/e2.x-|-3/'2ea:2 +/3x3.
Then, cx-i-bx'^=Sfe^x-\-3f'ex^ ;

.Whence, we shall have bx—Sfsex=3Je^ — c
; and, conse-

o /* o

quently x= r~^pr 5
which formula may be resolved by

either of the two first cases.

4. When neither the first nor the last terms are cubes,
let p be a value of x, found by inspection, or by trials, and
make op^-\-bp- -{-cp-\-d=y^ .

Then, by putting x=y-\-p, we shall have ap^-\-bp^-\-rp

J^d=a{y^py+b {y^py+c(y+p)+d =«2/3+(3ap+A)
1/2+ {Sap" A-2bp-}-c)y^ap^+bp^ -\-cp-\-d, or ax-^+bx^-f
cx+d=ay^+ {3ap-\-b)y^-{-(3ap2+2bp+c)y-i-g^.
From which latter form, the value of y, and conse-

quently that of X, may be found, as in Case 1.

EXAMPLES.

1. It is required to find such a value of x as will make
x^-^x-\- J a cube.

Here, the last term being a cube, let the root of the

cube sought
—

l-f-^a;, according to Case 1.

Then, by cubing, we shall have l+x+ic^r^l-f-x-f-ix^
* 2 1 J

And, since the two first terms on each side of this equa-
tion destroy each other, there will remain x^=^^x^ -^^\x''.
Whence, dividing by x^, we shall have ^'yX+i=1, or

:t4-9=27 ;
and consequently x-=27--9=18 ; which num-
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b.-r, by substitution, makes l+a;+a;2
—

1+ 18+324=343
=7=* a cube number, as was required.
And if we now take this value of a:, and proceed accord-

ing to the method employed in Case 4, we shall obtains= —
137826

, , . , •,,,,:,• ,1
.^^ -

;
which last number will also lead in like man-

60653

ner, to other new values.

2. It is required to find such a value of x, as will make
a;3+3x2+ 133 a cube.

Here, the first term being a cube, let its root ^=-\-\-x.,

according to Case 2.

Then, by cubing, we shall have 133+3x^+13 =(!--!-.= l+ 3a;+3a;2+x3.
And since the two last terms of this equation destroy

each other, there will remain l+3x=13o, or 3x=133 —
132

1= 132
; whence x= =44, and x^ +3x2+ 133=9 11 25

^^(45)=*, a cube number, as was re<^uired.
And if 45 be now taken as a known value of x, other

values of it may be found, as in the last example.
3. It is required to find such a value of x, as will make

3+28x+89x2 — 1:^5x3 a cube.

Here, let the root sought =:l2—5x according to Case 3'

Then, by cubing we shaM have 8+28x+89x2 — 125x=^

= (2-5x)3=8-C0x+150x3- 125x3.

And, since the first and last terms of this equation ties-

ti-oy each other, t-here will remain 28x+89x2=— 60x-}-

150x2.

Whence, by dividing by x, and transposing the terms we
shall have 150x— 89x=28+C0, or 6ax=^8

;
and conse-

88
quently x=—.

bl

And as this formula can also be resolved either by the

first or second case, other values of x, may be obtained,
that will equally answer the conditions of the question,

4. It is required to find such a value of x, as will make
2x' —3x+7 a cube.

Here, —1 being a value of x that is r-eadily foand, by
inspection, let x=3/— !, agreeably to Case 4o
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Then, by substitution, we shall have 2x3^3a;+7=2(r/

And as the last term of this expression is a cube, let 8

+3y-6if-\~2y^={2+^yy
= 8-^3y+-y^+—y^ accord-

ing to Case 1. Then, by expunging the equal terms on

3
,

1

each side, there will remam 2y^
—

Gy^ "^Till^ ""fil^''

Whence, dividing by j/^, and reducing the terras, we
shall have 128;/— 384= i/+24, or 127i/=408 ;

and conse-

408 ,
408

,
281

quently y— , and x= —--— l=T^r:;-4 jy
J27' ,27 127

Which number, by substitution, makes 2x' — 3x4-7=
2X(28n3 281

,
46118016 /356n3

.—^ <- 3X +7= =( -—
) ,

as requir-
(127)3 127^ 2048383 \ 127/

' ^

ed. And, by taking this last as a new value of x, others

may be determined by the same method.

PROBLEM V.

Of the resolution of doubl^nd triple equalities.

When a single formula, containing one or more unknown

quantities, is to be transformed into a perfect power,
such as a square or a cube, this is called, in the Diophan-
tine Analysis, a simple equality ;

and when two formulae,

containing the same unknown quantity, or quantities, are

1o be each transformed to some perfect power, it is then

called a double equality, and so on
;
the methods of resolv-

ung which, in sued cases as admit of any direct rule are as

follows ;

RULE.

S. In the case where the unknown quantity does nx)t

exceed the first degree, as in the double equality
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ax-\-b—0,BTi(i cx-Td=Q,
let the first of these formulas ax-}-b=2^, and the second

.€x-\-d=w^.

Then, by equating the two values of x, as found from

these equations, we shall have cz^ -\-ad
— bc=aw^

,
or acz^

-\-a(ad—bc)~a^w^.
And since the quantity on the right hand of this equation

is now a square, it only remains to find such a value of z

as will make, when the question is resolvable, acz^'\-a(^ad

,-^bc)
= n; which being done, according to the method

pointed out in Problem 1, we shall have x= .

2. When the unknown quantity does not exceed the

second degree, and is found in each of the terms of the

two formulae
;

as in the double equality

0x2+60,== Di and cx^-\-dx = 0.
Let x=|, then, by substitution, and multiplying each of

the resulting expressions by 7j~ ,
we shall have

a-\-by=*a , a»d c-}'dy= Q ,

from which last formula, the value ofy, when the question
is possible, and consequently that of x, may be determined

as in Case 1 .

But if it were required to make the two general expres-
sions

ax* +6.T+c= D ,
and dx^ +ex-j-/= D ,

the solution could only be obtained in a few particular

cases, as the resulting equality would rise to the fourth

power.
3. In the case of a triple equality, where it is required

to make

ax-{-hy= C i cx-^dy'= Q ,
and ex+/?/=n ,

let the first of them ax-\-by=u" ,
the second cx+dy=v^,

and the third ex-\-fy=w^ .

Then, by first eliminating x in each of these equa-

tions, and afterwards y, in the two resulting equations, we
shallhave {af—be)v^ -{cf-de)u^={ad-bc)vc'>
or, putting r=«r, and reducicg the terms, the result will

af — be cf— de w^
jgive the simple equahtv —^

—-z^ —- ——^ ;
"wnere* ^ ^ - ad-~bo ad— be m^
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the right hand member being a square, it only remains to

find a value of z that will make the left hand member a

square ; which, when possible, may be done by Problem 1,

Hence, having z. we have as above, v=siuz ; and the first

.„ . d~ bz^
,

az^ — c
two equations will givex=—;

—
-r-«^» and y=-—; ;-"",^ *= ad —be ^ ad —be

"where u may be any whole or fractional number whatever.

But if the three formulee, here proposed, contained only
one variable quantity, the simple equality, to which it

would be necessary to reduce them, would rise, as in the

last case, to the fourth power ;
and be equally limited

with respect to its solution.

4. In other cases of this kind, ail that can be done is to

find successively by the former rules, several answers,
when one is known ; and, if neither this nor any of the

above mentioned modes of solution are found to succeed,

the Problem under consideration can only be determined

by adopting some artifice of substitution that will fulfil one

or more of the required condition*, and then resolving the

remaining formulae, when they are possible, by the me-
thods already deUvered for that puppose ; but as no gene-
ral precepts can be given, for obtaining the solution in this

way, the proper mode of proceeding, in such cases, must

chiefly depend upon the skill and sagacity of the learner.

EXAMPLES.

1. It is required to find a unmber x, such that a. -{-1 28

and a;4-192 shall be both squares.

Here, according to Case l,letx-}-\28=^w^, and a;-j-192

Then, by eliminating z, and equating the result, we
shall have w^- 128=23- 192, or w''-{-e4=z-.

And, as the quantity on the right hand side of the equation
ES now a square, it only remains to make w^ -\-64 a square.

For which purpose, put its root =w-\-n ;
then ii)2 4-64

=a>' -^2nw-{-n^ , or 2nw-\-n' =C4 ;
and consequently w=

—-—
;
where taking n, wliich is arbitrary, =2, we Bhall
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'have w=—^^=^-1=15
;
and consequently x=^W — 128

4 4
= 132 — 128=225— 128=97, the answer.

2. It is required to find a number a;, such that x^-f-x

and x^ - X shall be both squares.

Here, according to Case 2, of the last Problem, let x=
1 ,1.1,11-

: then we shall have to make—-i— , and—- — -squares ;

:y r y y y

or, by reduction,— (
1 -\-y)

— D > and— (
1 —

2/)
= •

Or, since a sqiare number, when divided by a square

Jiumber, is still a square, it is the same as to make

1+^=D and 1 -i/=n,
-for this purpose, therefore, let l+2/=-2^» or 7/=^- —-1

i

then 1 —y—'i—z^ ;
which is also to be made a square.

But as neither the first nor last terms of this formula,

,are squares, we must, in order to succeed, find some sim-

ple number, that will answer the condition required ;

which, it is evident, from inspection, will be the case

whenzr=i.
Let, therefore, z—\ -tw, agreeably to Problem 1, Case

7, and we shall have 1—^=2—22—2._(i_a;)?= 14-2w
— :ii)2 ; or 2/^=^^ —2a' ;

.or, putting X—n-w for the root of the former of these ex-

pressions, there will arise, by squaring, \-\-tisO'~m'^^^\^-

2ntt'4-n2tiy2.

Whence, expunging the one on each side, and dividing by
ty, we shall have 2~a;=—2n+n2t0 ;

and consequently
^n f-2 - 1 1 (?(24-l)2

xio=-
;

—
, and .r=-

?i3-[_r y «)3— 2ay 4rt—4n^

where, in order to render the value of x positive, n may
be taken equal to any proper fraction whatever.

rii

Or, if for the sake of grenter generality,
— be substi-
n

toted for », we shall then have

3;^^ i L
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wherem and n may now be taken equal to any integral nuiii

bers whatever, provided n be made greater than m.
or

If, for instance, n=2 and m=l, we shall have a;=—

169
and if n=3 and 7ft=2, ^=-r^7: ;

and so on, for any ot]i: <

number.
3. It is required to find three whole numbers in arithme-

tical progression, such, that the sum of every two of the r;

should be a square.
Let X, x-ry, and x+2y, be the three numbers sought ;

and put 2x-\-y=u^,^x-{-2'j=v^, and 2x-f-3y=a'2, agreea-
bly to Case 3.

Then, by eliminating z and y from each of these equa-
tions, we shall have v^ -u^=^w^ ~t>^

, or 2x)2 _ u- =w^ .

And, if we now put y=u2', there will arise 2u^z^ —1*2 =
W

;
or by dividing by u^,^z''—l—— ; where the right

hand member being a square, it only remains to make 2z^
— 1 a square, which it evidently is when z= 1 .

But as this value would be found not to answer the con-
ditions of the question, let z=l —p ; then 2z^ — 1=2(1—
p)'-l= l— 4p-f2/j2.

And, consequently, if this last expression be put =(1 —
np)", we shall have, by squaring, 1 — 4^+2^2= 1 _2np+
n^p^y or ^4-^2p=— 2n-\-n^p ; whence

2»-4 -
,

271— 4 n^—2n-\-2p= and i=l
?i2 _ 2 ?i3 _ ; n-

or, if, for the sake of greater generaUty, — be substituted
n

for n in this last expression, we shall have

_m2 -2?7in-}-2ji2

And since, by the two first equations, y=zv^ —us
—^2 -a

—
u^=(^z2 _l)«2,and x^^{n^ -y)=-}{2-z'')u^. iiis evi-

dent, that 2 must be some number greater than >, and less

than ^s!.
If, therefore, m=^9 and w--=5 we shall have
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_C1 -90+50 41 241 u2 709'
8Ti:50~==3T'^=3F><T""^ 2/=3^I^^'"

Or, taking «=2X31,a;=482, and j/=2880, we have x=
182, x4-2/=3362, and a;+27/=6242, which are the num-
Sers required.

4. It is required to divide a given square number into
wo such parts, that each of them shall be a square.*
Let «2=given square number, and x- and oJ^ ~ x^ its

wo parts. Then since x^ is af juare, i^only remains to
nake a- -x^ a square.
For which purpose let its root —nx—a and we shall have

*'—a;3=n3x3— 2a/?a:-f«3,or—x2=n2x3— 2a72x;whence,

y reduction, x= the root of the first part : and ux

_ 2an2 an2— a^—~rTT~"~ > I r *'^6 J^oot of the second.

Therefore(^^^J^^''and('^^^^-^y
are the parts re-

uired
; where a and n may be 'any numbers taken at

leasure, provided n be greater than 1 .

5. It is required to divide a given number, consisting of
i'o known square numbers, into two other square num-
;rs.

Let a'^-\-h- be the given numbers, and x^, y2 the two
quired numbers, whose sum, x^-fija, is to be equal to
+62.

^ ^

Then it is evident, that if x be either greater or less
an o, ?/ will be accordingly less or greater than h. Let
erefore x=a+j>jz, and y=^—nz, and we shall have a^

Or, by transposition and rejecting the terms which are

To this we may ad-i the following useful property,
f s and r be any two unequal numbers, of which s is the greater, it ca«
a be readily shown, from th^ nature of the problem, that

2rs, $2— >-2 and sn + '"2

1 be the perpendicular base, and hypothenuse of a right-angled triangle,
'rom which expressions, two square numbers may be found, whose sum
difference shull be square numbers; for {2rs)2 +.(*2

— r3)a =(^2 +
2, and (s2 -}-»-2)2

—
(2r«)3 =(52 — »-2)2, or (.s-2 +r3)2—(jS

— rr)«
'2r-;2 ; where s and >• may be any numbers whatevef.
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common to each side of the equation, m^z^'{'n^2^=^inz

.^2atm, or m2 2-fn2z=26n - 2am ;
whence

where m and n may be any numbers, taken at pleasure,

provided their assumed values be such as will render the-

values of x, y, and z, in the above expressions, all posi-;'

6. It is required to find two square numbers, such that'

their difference shall be equal to a given number.

Let d= the given difference ;
which resolve into two ;

factors a. b
; making a the greater and b the less.

;

Then, putting x= the side of the less square, and x-j-..

b= side' of the greater, we shall have (a:+6)2
—x^ =x2"

^2bx+b''-x^=cl{ab) or 2bx+b^=d{ab).
Whence, dividing each side of this equation by b, wei

shall have.x=^^= the side of the less square sought,

and a;+6=^+6=^= the side of the greater.

If, for instance, d—6L\ take aX?»=30X2, and we shall

have x=^-^-14, and ..+2=^=16, or 16^-14=
2 ^

=256 ^ 196=30 the given difference.

7. As arj instance of ihe great use of resolving formula

of this kind into factors, let it be proposed in addition to

what has been before said, to find two numbers x and y,

such that the difference of their squares, x^—y- ,
shall btf

an integral square.
Here the fo.'tors of x^ —y^ , being x+y and x -

y. we

shall have (x+t/) X {x-y)=x^
-

y"" And, since this pro-

duct is to be a squ^^re, it will evidently become so, by mak-

ing each of its factors a square, or the same multiple of |

square. i

Let there be taken, therefore, for this purpose, j

x-\-y=niz^, X—y=^ms^.
Then, by the question, we shall have (x+i/)X(x-t^5

or itsj equal rs ..y^=m''f^s^; which is evidently a square

whatever may be the values of m, r, s. '
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But, by addition and subtraction, the above equations

give, when properly reduced

^"""2 ' y^ 2
'

where, as above said, m, r, and s, may be assumed at plea-

sure. Thus, if we take m=2, we shall have x=r^-{-s^,

and y=r^—s-, which expressions will obviously give in-

tegral values of x and y, if r and s be taken = any integral

numbers.
8. It is required to find two numbers, such that, if ei-

ther of them be added to the square of the other,^ the

"sums shall be squares.
Let X and y be the numbers sought ;

and consequently
x' +i/ and y^ -{-x the expressions that are to be transformed

into squares. Then ifr—x be assumed for the side of the

first square, we shall have x^+y=r'—2rx-\-x^ , or ?/='"''

r^ — y— 2rx
;
and consequently x= -^ ^

.

And if s-\-y be taken for the side of the second square,

we shall have
2/2 -j
—

^_£.=:s2.^2s?/-}.j/2
; or, by reducing

the equation, r^ —y=Arsy-\-'ir$^ ,
and consequently, by re-

,.2— 2rs2 2r=^s-fs2
duction, y—-——-tt—, ana ^——^—TT" 5

where r and s
"^

4rs-fl 4r5-fl

tnay be any numbers, taken at pleasure, provided r be great-

er than 2s2.

9. It is required to find two uMnbers, such that their sum
and difference shall be both squares.

Let X and x^ —a; be the two numbers sought ; then, since

their sum is evidently a square, it only remains to make
their difference, .r^— 2a;, a square.

For this purpose, therefore, put its root =a;—r and we
shall have x^ -^'J;x=x^—2rx + r"

;

Or, by transposition, and cancelling a;^ on each side of

tke equation, 2rx— 2a;=r2
;
whence

^'=2£:2'
^"'^ ^'-^^^K^—i) r-l'
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where r maybe any number, taken at pleasure, provided
it be greater than 2.

10. It is required to find three numbers, such that not

only the sum of all three of them, but also the sum of

every two shall be a square number.
Let 4x, x2 —4a; and 2x-i- 1, be the three numbers s©ugbt,

then4a+ (x2 -4a;)=x-2, (x^— 4x)-f (2x+l)=x2—Zx+l,
and 4^+(x2-4x)-|-(2x-|- l)=x -}-2x+ 1

, being all squares,
it only remains to make 4x4-(2x+l), orits equal, 6x+l,a
square. For which purpose, let 6x-\-l=n*, and we shall

n^— l

have, by transposition and division, x=—:;

—
, whence,

6

4n2—4 (n3_l) 4n^-~4 , 2«2—2
. . .

—6--' 36"
'

6—' «°d-g—+1, or their e-

,
2n2_2 n*— 26n2+25 , n^-{-2

quals
—-—

, —^ , and —-— are the numbers
o ob 3

required.
Where n may be any number, taken at pleasure, pro-

vided it be greater than 5.

QUESTIONS FOR FRACTICE.

1. It is required to find a number x, such that x+l and

X— 1 shall be both squares. Ans. x=|.
2. It is required to find a number x, such that x-\-4 and

x+T shall be both squares. Ans.
|-|.

3. It is required to find a number x, such that lU-f-sc

and 10 — X shall be both squares. Ans. x=6.
4. It is required to find a number x, such thatx^-f-l

and x+1 shall be both squares. Ans. Y*
5. It is required to find three integral square numbers,

-such that the sum of every two of them shall be squares,
Ans. 628, 5796, and 6325.

6. It is required to find two numbers x and y, such that

x2 +2/ and 2/2 4-x shall be both squares,
Ans. x=WV, and i/=t\*

7. It is required to find three integral square numbers,
that shall be in barmonical proportion.

Ans. 25, 49, and 1225.
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8. It is required to 6nd three integral cube numbers,

x'^, y^, and z^^ whose sum may be equal to a cube.

Ans. 3, 4, and 5.

9. It is required to divide a given square number (100)
into two such parts that each of them may be a square
number. Ans. 64, and 36.

10. It is recfuired to find two numbers, such that their

difference may be equal to the difference of their squares,

and that the sum of their squares shall be a square num-

ber. Ans. 4 and ^.

11. To find two numbers such, that if each of them be

added to their product, the sums shall be both squares.
Ans. I and |.

12. To find three square numbers in arithmetical pro-

gression. Ans. 1, 25, and 49

13. To find three numbers in arithmetical progression
such that the sum of every two of them shall be a square
number. Ans. 120i, 840^, and 1560i.

14. To find three numbers such, that if to the square
of each the sum of the other two be added, the three

sums shall be all squares. Ans. 1
, f and ^

15. To find two numbers in proportion as 8 is to 15,

and such that the sum of their squares shall be a square
number. Ans. 576 and 1080

i6. To find two nurabers such, that if the square of

each be added to their product the sums shall be both

squares. Ans. 9 and 16.

17. To find two whole numbers such, that the sum or

difference of their squares, when diminished by unity shall

be a square. Ans. 8 and 9
18. It is required to resolve 4225, which is the square

of 65, into two other integral squares.
Ans. 2704 and 1521

19. To find three numbers in geometrical proportion
such that each of them, when increased by a given num-
ber (19), shall be square numbers. Ans. 81, f and ^ff„

20. To find two numbers such, that if their product be

added to the sum of their squares, the result shall be a

square number. Ans. 5, and 3, 8 and 7, 16 and 5, &c.
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21. To find three whole numbers such, that if to the

square of each the product of the other two be added, the
three sums shall be all squares. Ads. 9, 73, and 328

22. To find three square numbers such that their sum
wh-en added to each of their three sides, shall be all square
Bunabers,

Ans. eVir'/o. iUU-- i^nd i|||i=roots required
23. To find three numbers in geometrical progression

such, that if the mean be added to each of the extremes,
the sums, in both cases shall be squares.

Ans. 6, 20, and 80
24. To find two numbers such, that not only each of

them, but also their sum and their differerce, when in-

i"rea$ed by unity, shall be aH square numbers.
Ans. 3024 and 5624

25. To find three numbers such, that whether their sum
be added to, or subtracted from, the square of each of

them, the numbers thence arising shall be all squares.
Ane 40.6 5_i_8 and V-'

26. J o find three square numbers such, that the sum of
their squares shall also be a square number.

Ans. 9, 16, and V/
27. To find three square numbers such, that the differ-

ence of every two of tJiem shall be a square number.
Ans. 485809, 34225, and 23409

28. To divide any given cube number (8) into three
other cube numbers, Ans. 1, || and VV

29. To find three square numbers such, that the dif-

ference between every two of them and the third shall

be a square number. Ans. 1492, 24 P, and 2692
30. To find three cube numbers such, that if from each

of them a given number (1) be subtracted, the sum of the

remainders shall be a square number.
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OF THE

SUMMATION AND INTERPOLATION OF
INFINITE SERIES.

The doctrine of Infinite Series is a subject which has

engaged the attention of the greatest mathemaficians, both
of ancient and modern times

; and, when taken in its

whole extent, is, perhaps, one of the most abstruse and
difficult branches of abstract mathematics.
To find the sum of a series, the number of the terms of

which is inexhaustible, or infinite, has been regarded by
some, as a paradox, or a thing impossible to be done

;
but

this difficulty will be easily removed, by considering that

every finite magnitude whatever is divisible in infinitum^
or consists of an indefinite number of parts, the aggregate,
or sum, of which, is equal to the quantity first proposed.
A number actually infinite is, indeed, a plain contradic-

tion to all our ideas
;
for any number that we can possibly

conceive, or of which we have any notion, must always
be determinate and finite

;
so that a greater may still be

assigned, and a greater after this
;
and so on, without a

possibility of ever «oming to an end of the increase or ad-

dition.

This inexhaustibility, therefore, in the nature of num-
bers, is all that we can distinctly comprehend by their in-

finity ;
for though we can easily conceive that a finite

quantity may become greater and greater without end, yet
we are not, by that means, enabled to form any notion of
the ultimatum, or last magnitude, which is incapable of
farther augmentation.

Hence, we cannot apply to an infinite series the com-
mon notion of a sum, or of a collection of several particu-
lar numbers, which are joined and added together, one
after another

;
as this supposes that each of the numbers

composing that sura, is known and determined. But as

every series generally observes some regular law, aji4

X 2
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continually approaches- towards a term, or limit, we can

eapily conceive it to be a whole of its own kind, and that

it must have a certain real value, whether that value be

determinable or not.

Thus in many series, a number is assignable, beyond
which no number of its terms can ever reach, or indeed,

be ever perfectly equal to it
;
but yet may approach to-

wards it in such a manner, as to differ from it by less than

any quantity that can be named. So that we may justly

call this the value or sum of the series
;
not as being a

number found by the common method of addition, but such

a limitation of the value of the series, taken in all its infi-

nite capacity, that,, if it were possible to add all the terms

together, one after another, the sum would be equal to that

number.
In other series, on the contrary, the aggregate, or value

of the several terms, taken collectively, has no limitation
;

which state of it may be expressed by saying, that the sum

of the series is infinitely great ; or, that it has no deter-

minate or assignable value, but may be carried on to such

a length, that i\M sum shall exceed any given number what-

ever.

Thus, as an illustration of the first of these cases, it

may be observed, that if r be the ratio, g the greatest

term, aod / the least, of any decreasing geometric series,

the sum, according to the common rule, will be (rg—l)-^

(r
—

1) : and if we suppose the less extreme, I, to be di-

minished till it becomes =0, the sum of the whole series

will be rg^{r— l) : for it is demonstrable, that the sum

of no assignable number of terms of the series can ever

be equal to that quotient ;
and yet no number less than it

will ever be equal to the value of the series.

Whatever consequences, therefore, follow from the sup-

position of rg-T-{r— 1) being the true and adequate valae

of the series, taken in all its infinite capacity, as if all the

parts were actually determined, and added together, no as-

signable error can possibly arise from them, in any ope-

ration or demonstration where the sum is used in that sense ;

because, if it should be said that the series exceeds that
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value ;
it can be proved, that this excess must be less than

any assignable difference
;
which is, in effect, no differ-

ance at all
;
whence the supposed error cannot exist, and

consequently rg-^^r- 1) may be looked ujion as express-

ing the true value of the series, continued to infinity.

We are, also, farther satisfied of the reasonableness of

this doctrine, by finding, in fact, that a finite quantity is

frequently convertible into an infinite series, as appears
in the case of circulating decimals. Thus two-thirds ex-

pressed decimally is |=.66666, &c. = j% + yf^ + r/oo

_j_ y^f p^o + &c. continued ad infinitum. But this is a

geometric series, the first term of which is y\, and the

ratio y'o ;
and therefore the sum of all its terms, conti-

nued to infinity, will evidently be equal to |, or the num-
ber from which it was originally derived. And the same

may be shown of many other series, and of all circulating
decimals in general.
With respect to the processes by which the summation

of various kinds of infinite series are usually obtained,
one of the principal is by the method of differences point-
ed out and illustrated in Prob. iv. next following.

Another method is that first employed by James and

John Bernoulli, which consists in resolving the given se-

ries into several others of which the summation is known
;

or by subtracting from an assumed series,when put =s, the

same series, deprived of some of its first terms
;

in which
case a new series will arise, the sum of which will be
known.
A third method which is that of Demoivre, consists in

putting the sura of the series =s, and multiplying each

side of the equation by some binomial or trinomial expres-

sion, which involves the powers of the unknown quantity

X, and certain known co-efficients
;
then taking x, after

the process is performed, of such a vfilue that the assum-

ed binomial, &c. shall become =0, and transposing some
of the first terms, a series will arise, the sum of which will

be known, as before.

Each of which methods, modified so as to render it

more commodious in practice, together with several other
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artifices for the same purpose, will be found sufficiently

elucidated in the miscellaneous questions succeeding the

following problems.

PROBLEM I.

Any series being given to find its several orders of dif-

ferences.

RULE.

1. Take the first term from the second, the second from
the third, the third from the fourth, &.c. and the remainders
will form a new series, called theJirst order of differences.

2. Take the first term of this last series from the se-

cond, the second from the third, the third from the fourth,
&c. and the remainders will form another new series, call-

ed the second order of differences .

3. Proceed in the same manner, for the third, fourth,

fifth, &c. orders of differences
;
and so on till they termi-

nate, or are carried as far as may be thought necessary*.

EXAMPLES.

L Required the several orders of differences of the se-

ries 1, 22, 3S 43,52, 62, &c.

1, 4, 9, IC, 25, 36, &c.

3, 5, 7, 9, II, &c. 1st diff.

2, 2, 2, 2, &c. 2d diff.

0, 0, 0, &c. 3d diff.

2. Required the several orders of differences of the se-

ries 1, 23, 33, 43, 53, 63, &c.

1, 8, 27, 64, 125, 216, &c.

7, 19, 37, 61, 91, &c. 1st diff.

12, 18, 24, 30, &c. 2d diff.

6, 6, 6, &c. 3d diff.

0, 0, &c. 4th diff.

* When the several terms of the series continually increase, the diflerencei

will be all positive ; but when they decrease, the diifereuccs nill be jicgative
and positive alternately.
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3. Required the several orders of diflferences of the se-

.Ties 1, 3, 6, 10, 15, 21, Lc.

Ans. 1st, 2, 3, 4, 5, &c.
; 2d, 1, 1, 1, kc.

4. Required the several orders of differences of the se-

ries 1, 6, 20, 50, 105, 196, &c.

Ans. 1st, 5, 14, 30, 55, 91, &;c. ; 2d, 9, 16, 25,

^^ 36, &c.
; 3d, 7, 9, H, &c. ; 4th, 2, 2, &c.

Wf' S. Required the several orders of differences of the

.11111.
*^"^^2'i'8'T^'32'^^-

rROELEM II.

Any series «, fe, c, d, e, &c. being given, to find the

first term of the nth order of differences.

RULE.

Let S' stand for the first term of the »th differences.

^, .„ , ,
n— 1 n—l n— 2 ?i— 1

Then will a — 7ib -f- n.———c— 7i.—~—.——a-\-n.—--'

n— 2 n—3
e, &c.to n+1 terms =(J*, when Ji is an even

3 4
number.

n—l
,

n— In— 2 n— In— 2
And — fl + n6—n.-^e+n.—^.—^a-n.-^.-^.

n-3
e .Sic. to n -{- 1 terms =<5", when n is an odd num-

3

ber.*
EXAMPLES.

1. Required the first term of the third order of differ-

ences of the series I, 5, 15, 35, 70, hz.

Here a, 6, e, rf, e, &.c. =«:1, 5, 15, 35, 70, &c and n=3.

\a hence — a -\- 1^*^ — f^'—^
— c-\-n.

—-— .
—-— a = — a

* When the terms of the several orders of differences happen to be verv

great, it will be more convenient to take the logarithms of tlie quantities con-

cerned whose differences will be smaller ; aud when the operation is tiaijhetis

the (quantity answering to the last logarithm may be easily found.
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4-36—3c+£i=— 14-15—464-35=4= the first term re-

quired.
S. Required the first term of the fourth order of differ-

ences of the series 1, 8, 27, 64, 125, &c.
Here a, b, c, d, e, &c. =1, 8, 27, 64, 125, &c. and »=4.

^

•.XT, ,, n-l n— Iti— 2,, n— 1
Whence a—nb-{-n. c~-n. . d+n.

2 2 3
^

2 ,

~^.—^e=a-4b+ec- 4c/+e=l _32-f 162 - 2564-126

?=0
;
so that the first term of the fourth order is 0.

3. Required the first term of the eighth order of differ-

ences of the series, 1, 3, 9, 27, 81, &c.* Ans. 256.
4. Required the first term of the fifth order of difier-

r.i, ,
1 1 1 1 1 t

ences of the series, 1, -, -, -, — ,
—

,
—

, &c.'

2' 4' 8' 16' 32' 64'

Ans. -— .

ob
PROBLEM III.

To find the nth term of the series, a, b, c, d, c, &c.
when the differences of any order become at last equal to
each other.

RULE.

Let d', d", d'\ tZ'^, &c. be the first of fhe several orders
©f differences, found as in the last problem.

Ifaen will a-[ d'-\- . d'A . .^1 ^l 2^123
J,.,

n—1h—2n — 3ra— 4
,. ^ ," + —-—

• o '

-i
•
—

i

—
>""' *^c. =nth term required.

1 ^ o 4

EXAMPLES.

1 . It is required to find the twelfth term of the series
2, 6, 12, 20, 30, &c.

* The labour, in quesiions of this kind may be often abridged, by putting
ciphers for some of the terms at the beginning of the series ; by which means
several of the ditlVrcnct s will be equal to 0, and the answer on that account,
obtaiced La fetrer tertns.
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2, 6, 12, 20, 30, &c.

4, 6, 8, 10, &c.

2, 2, 2, &c.

0, 0, &c.
Here 4 and 2 are the first terms of the differences.

Let, therefore, 4=d', 2=d", and ?i=12.

rr,, . ^ 1 « .
1"" 1 71— -2 „, . „ .

Then a-\ d:+ ---_.__ d =2+ 1 Id +- .55d" = 2112
+44+110=156=12th term, or the answer requu-ed.

2. Required the twentieth term of the series, 1
, 3, 6,

10, 15, 21, &c.

1, 3, 6, 10, 15, 21, &c.

2, 3, 4, 5, 6, &c.

1, 1, 1, 1, &LC.

0, 0, 0, &c.

Here 2 and 1 are the first terms of the differences.

Let, therefore, 2=d', l=d'', and n=20.

Then0+—d'+^^.^^d"= 1 4- 1 9(r+1 7 1 (Z"= 1 +
38+171=210=20th terra required.

3. Required the fifteenth term of the series, 1
, 4, 9, 16,

.25,36, &c. Ans. 225.
4. Required the twentieth term of the series, 1, 8, 27,

64, 125, &c.
,

1 1
5. Required the thirtieth term of the series, 1> g, ^,

10' 15'21'
^-

PROBLEM IV.*

To find the sum of n terms of the series, a, i, c, d^ e,

fee. when the differences of any order become at last

equal to each other.

• When the differences in this or the forn>er rule are finallj^=0, aay term,
or the Slim of atiy number of the terms, may be accurately ^:termined ; but
if the differences do not vanish, the result is only an approximation ; which,
however, may be often very usefully applied in resolving various questions
that may occur in this branch of the subject, and which will beconae conti*

nually nearer the truth as the differences diminish.
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RULE.

Let d', d'', d'", rf", &c. be the first of the several or-

ders of differences..

n-i,,, n— 1 «— 2 71-1
1 hen will na -f-n . a -t-n.—-— .

———d -f-n
2

'

2 3
'

2

n— 2n— 3 „,. ,
n—ln—2n—3n— 4,..——d'"-\-n.——.-—-.-——.——d'\kc. = to the

4 2 3 4 6

sum of n terms of the series.

EXAMPLES.

1. Required the sum of n terms of the series, 1, 2, 3,

4, 5,-6, fee.

Here 1, 2, 3, 4, 5, 6, &c.

1, 1, 1, 1, 1, &.C.

0, 0, 0, 0, &c.

Where 1 and are the first terms of the differences,

Let, therefore, a=l, d'=l, and d"=0.
•II .

^t— 1 „ ,
n'^ —n n^-{-n

Then will na-f-n.—-—d=n-\ —=—-—=sum of n
2 2 2

terms, as re^juired.
2. Required the sum of « terms of the series j 1-, 22,33 J

42, 52, &c., or 1, 4, 9, 16, 25, &.C.

Here 1, 4, 9, 16, 25, &c.

3, 6, 7, 9, &c.

2, 2, 2, &c.

0, 0, &ic.-

Whcre 3 and 2 are fhe first terms of the differences,
•

Let therefore, a=l, d'=3, and d'=2.

1 hen will na-f-n .
—— a -f-n •

—
^
—

•
—
^
— d =n-\-3n.

n-l
,

n-1 «-2 3n2— 3fi
,
n3-3«2+2rt.

--2- +2^--^ 3-
=—

2--+ 3
=

»x(ra+l)X(2n+l) .
^

. .—^^ —^^ ~ = sum of « terms as required.
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3. Required the sum of n terms of the series, P, 2',

33, 43, 53, &,c., or 1, 8, 27, 64, 125, &c.

Here 1, 8, 27, 64, 125, &c.

7, 19, 37, 61, &c.

12, 18, 24, &c.

6, 6, &c.

0, &c.

Where the first terms of the differences are 7, 12, ami

5.

Let, therefore, a=l, d'=l, d"=12, and d'"=6.

n~~l
,. ,

n— In— 2,,. ,
n-l

Then will na + n . —x-d +n • —^-—^^ +" •

~2~

-—-. —-^d:' = n-\-7n.—-—|-12n.-- — + 6fi ,34 2 2 o

,1-1 71—2 n-3 In^—ln c * . vi .

2 3 4^2^
ft^-6?i3+ lln2-.67i 4n Un^~\4.n Sn^— 247t2+ 16/^

4 T"^ 4
'

4

71*— 6ra3-f nn2_6?i 7z*+27i3-|-n2
J = = sum of 71 terms as~

4 4

required.
4. Required the sum of n terms of the series, 2, 6, 12,

. nX(n4-l)X(7i+2)
20, 30, &c. Ans. —^—

|
—^ ^

• 3

6. Required the sum of n terms of the series, 1 , 3, 6,

71 71+1 «+2
10, 13, &c. Ans.

i'-^—
•—
3-

6. Required the sum of n terms of the series, 1, 4, 10,

71 7i-rl n-|-2 71+3
20, -35, &c. Ans. _._^.-^.-^

7. Required the sum of n terms of the series H, 2*,

3S 4S &c., or 1, 16, 81, 256, &c.
. n^ 71*

,
71^ n

8. Required the sum of 71 terms of the series 1^, 2^, 3*,
7i«

.
7i5 571* n-

*^5^&c. ^"'•-F+T+T2""T2
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PROBLEM V.

The series a, b, c, d, e, fcc. being given, whose terms
are an unit's distance from each other, to find any interme-
diate term by interpolation.

RULE.

Let x be the distance of any term y, that is to be inter-

polated, from the first term, and d', d', d", k.c. the terms
of the difl'erences.

Then will a-\-xd'4-x.- d'A-x.
""

. d"'4~x.-^^
2 2 3^

x—2 x—3
,. „

d'% &c. =y.

EXAMPLES.

1. Given the logarithmic sines of 1° O', 1° 1
,

l^* 2' and
1° 3', to find the log. sine of 1" 1' 40".

Here 1*^0' 1"!' 1» 2' I" 3'

Sines 8.2418553 8.2490332 8.2560943 8.26S0424
71779 70611 69481— 1168 • —1130

38
Whence the first terms of the differences are 71779,—

1168, and 38.

Let, therefore, x=l'> l' 40"— 1° 0'=1'40"=1|= dis-

tance of y, the term to be interpolated ;
and ^'=71779, d''

= —1168, and rf''=38.

X 1 , X 1 X 2
Then will y=a-\-xd'-{-x.^-^d''-{-x.

——
. d'''=a-i-

~d+-d——d" — 8.2418553 + .0119631 + 0000694 -
3 ^9 81

.0000002=y.2538876=sine of F 1' 40", as was required.

2. Given the series — ,
—

,-7:,-7:,
—,&c. to find the term

50 5152 53 54
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1

wfcich stands in the middle between the two terms— and

-i- Ans. -—
:

a3' 105

3. Given the natural taogents of 88'' 54', 88^ 55', 80"

56', 88° 57', 88'* 58', 88<> 39', to tind the tangent of 88°

5Q' n''. Ans. b5.y\ll-ii

PROBLEM VI.

Having given a series of equidir'tant terms, a, 6, c, d, e,

kc. whose tirst differences are small
;
to find any interme-

diate term by interpolation.

RULE.

Find the value of the unknown quantity in the equa-

tion which stands against the given number of terms, in

the following table, and it will give the t.erm required.*
1. a~b=0
2. a -26+0=0
3. a-36-f3c-c/=0
4. a— 46-i-6c-4cZ+e=0
5. a-56410c— 10c^+5e-/=0
6. a—6b+l5c--20d-\-15e~Gf-\-g—0

, ,

n— 1 n— 1 w—2, ,

a—nb-\-n .
—r-—c—n .

—-— •
—-—»+•

Or
2 2

n— 1 n— 2 n— 3
n

2
e, &,c. =0.

EXAMPLES.

U Given the logarithms of 101, 102, 104, and 105, to

lind the logarithm of 103.

* The more terms are given, in any series of this kind, the giore accurate-

ly y.nW the equation that is to be used approximate towards the "true result, or

answers required.
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Here the number of terms are 4.

And against 4, in the table, we have a-4b-{-Gc — 4d-\-e

4X[b+d)-(a-\-e)=0
;
orc= ^

;f
—^^^ ^ = value of the unknown

b '

quantity, or term to be found. t,

a:=2.00432]4

Where, taking the logs of fc=2.0086002

iOl, 102, 104, and J03
'

d=2.0170333

)
6=2.0211893

And consequently

4X(6+d)=i6.K)25340
a-{-e= 4.0255107

6)12.0770233

2.0128372= log. of 103, as

required.
2. Given the cube roots of 45, 46, 47, 48, and 49, to

find the cube root of 60. Ans. 3.684031.
3. Given the logarithms of 60, 51, 62, 64, 56, and 56, to

find the logarithm of 63. Ans. 1.7242768695.

PROMISCUOUS EXAMPLES RELATING TO SERIES.

1. To find the sum (s) of n terms of the series, I, 2,

?, 4, 5, 6, &c.

First, 1+2+3+4+6 &c w=s.

And»+(n-l)+(n-2)+(«—3)+(»-4) &c.

+l=s
Therefore, by addition,

(n+l)+(«+l)+(«+l)+(«+l)+(«+l)&c
+(n+l)=2s.

And consequently r/(n+l)=2s ;
or s=—-—=sum re-

quired.
2. To find the sum (s) m n terms of the series, 1, 3, 6,

7, 9, ll,&ic.

First, 1+3+6+7+9 &c (2?i— l)=s.
And (2?i-.l)+(2/i-3)+(2«-6)+ , . . +1=^,
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Therefore by addition,

2n+2n+2rt-f2ra+2w+ &c 2/1=25.
And consequently 2ftXn=2s

;

Or s=——=n3= sum required.
2 *

3. Required the sum (s) of n terms of the series, a+

First, a + {a-\'d)+{a+2d)+{a-i-3d) &LC +
{a-\-{n-])d]=s.
And a-\- (jic/- cZ) 4-a+ {nd~2d) +a+ (nd- 3ti)+a+

^nd— 4d) &.C a=s.
Therefore, by addition, 2a-{-{nd-d)-\-2a+{nd—d)i-

Sa+ (nd~d) &c +2a-\-{nd^d)=2s.
And consequently (2a-\-nd—d)Xn=-2s ;

Or s=^{2a-{-nd
—d)X-= sum required.

Or the same may be done in a different manner, as t'ol'

lows :

a-\-{a+d)+ (a-]-2d)+ {a-\-3d)~\-{a-}-id) &c.

(-{-l + l+ I+ ]+ l&c.)Xa I
_

(+0+l+24-3+4&c.)XfZ I

"^

Butn terras of H-l-j-l+ l+ l Lc.—n.

And n terms of 0+1+2+3+4 kc/''^^\^'\2

-.1'. , 7iX(n—])d f, , ,, ,, ?;

\\ hence s=na+ —- —=\2a -f d (Ji—^jiXc.
»mf At

which is the same answer as before.

4. To find the sum (s) of n terms of the series 1, ar, x^,

a:^, a;'', &c.

First, 1 +x+2;2-f-a:3_|_.a:4^ &c. .... a:"-»=s.

And a;+:r2+.T3+x''+a;5, &,c x"=sx.
Whence, by subtraction, x"— l=sa;~s,

x''. 1

Or s= —= sum required.X— 1
^

And, when x is a proper fraction, the sum of the se-

ries, continued a.d infinitum may be found in the same man
jier.

Thus, putting l+x+x^-j-x^+x^+xSj &c.=Si
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Wr, shall have x-}-x~ -{-x^-t-x'>-\-x^ , &,c.=sx,
And consequently —l=sx— s; ors — sa;=l,

Whence s= = sum of an infinite number of terms,
1 — a;

as was to be found.

6. Required the sum (s) of the circulating decimal

.999999 &c. continued ad vifinitum.
9 9 9 9

First, .999999 &c.=— -i -4 r-4—^— &c.=
' 10~iU0~100U 10000

^^ lT5-^]I.o"^T^+1^+ ^^•^=''

Or, —+—-H—^4—^4- &c. =- .
' 10^100^1000^10000 9

'^^-^^-^'^+1^+4+1^0-0+^-=^'^

And consequently 1=—5-—q—"5^= ^
»

y y y

Whence s=l= sum of the series.

6. Required the sum (s) of the series a2-|-(a-|-c^)^+
(a+2rf)»+ (a+3rf)2-}-(a-[-'lci)2,&ic. continued to 71 terms.

Here

First, a2 —a''

{a-\-dy =c2^2Xlad4-lc?«
(a-i- 2c/)2 =a2 4-2 X 2af^-i-4rf2

(0+3^)2 =a2 _|_2 X 3a(^+9rf2

(a-}-4d)2 =(i2 4-2 X 4ac/-i- 1 Cd2

&c. &.C.

Whence
Sum of n terms of (l+ l+ l+ 14-&c.)a2
+ . . . ditto of (l+ 2+34-4+&c,)2ad
+ . . . ditto of (l+4+94-16+&c.)d
But n terms of l-j-l-|-l-fl+&c.=n.

And of 1+2+3+4 &c.-"^"~^^

Also of 1+4+9+&C.:

1 .2

_«(«— l)(2n-l)
'

1.2.3
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fe Therefore s=na^ +n{n^ 1
) arf+-

^^~^^^^"~^^ d^ =
the whole sum of the series to ?i terms.

7. Required the sum (s) of the series a^-{-{a-\-d)^-{-(^a

-f 2(i)^+ (a<+-3(i)3+ (a+4rf)3 &c. continued to n terms.

First, a 3=: a 3

(a-f2(/) 3=a3 -1-3 X 2a2 d4-3 X 4(/(i2 _{_g(^3

(a -i-3rf)3 =«3 4-3 X 3a2 c^-j-3 X Oaci^ -j-STrf^

(o+4rf)3=ra3-f-3X4a2(^-t-3xl6arf^ +64(^3

(a-f- 5(/)
3=a3 -i-3 X 5a2 d-i-3 X 25ad2 4- 1 25cZ-

&c. &c.

Whence
Sum of n terms of (l-f-l-i-l+ l&c.)a3
4- . . . ditto of (l+2-f34-4&c.)3a«rf
-f . . . ditto of (l+ 44-9+16&c.)3a(/2
4- . . . ditto of (l+ 8-f27-f64&c.)(i3
But » terms of l+l-|-l+ l+ l&c.=:n.

n(^7i— 1)

s=

Ditto

Ditto

Ditto

. . of 1+2+3+4 &LC.

of 1+4+9+16 &c.=

1 2

7J(W--I)(27t— 1)

. of 1+8+27+64 &c.=

Therefore, s=?2a 3

1.2.3
n*-2?l3 4-;i2

(n«—27l3+„2y3_

2X2
n(n-l)3a3£i ,i(n- l)(2n— l)3ad?2

2
'

6

sum of 71 terms, as was to be found.

8. Required the sum (s) of 21 terms of the series 1+3
f-7+ 15+31, &c.
The terms of this series are evidently equal to 1, (1+

2), (1+ 2+4), (1+ 2+ 4+ 8,) &c. or to the successive
sums of the geometrical series, 1, 2, 4, 8, 16, &c.

Let, therefore, a=l and r=-2, and we shall have

a+ar-f-ar--^+Gr3+ar4 &c. =1+2+4+ 8+ 16, &c.
But the successive sums of 1,2, 3, 4, kc, terms of this

series are,
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J.——=(r-l)X-

Therefore s=—-X
- r— 1

r— 1
^ ' r— 1

^ ar'^ — a , . a
2. =fr2-l)X -

r~-\ - '
r — 1

„ ar^—a , ,. a
5 _=(r3-_l)Xr— I

^
r — 1

^
ar* — a , . a

4. _=(r''-l)X

&c. &c.
n terms of r-\-r--\-r"-\-r* &.c.

— Ji, terms of l+ l-j-l-f-l &c.
But 1+ 1-fl+l+l-f 1+1 &C. =71

And r4-r2+r=4-r*+&c.= (r'^
— 1)X—^^ ' r— 1

Whenee s=-!^ --^X - — nX ==2(2"— !)-»=r— 1 r— 1 r— 1
^

Tvhole sum required.
9. It is required to find the sum of n terms of the series.

1 3 7 15 31 63 „

y+2+4+T+61+ 32'
^"'

Here the terms of this series are the succes&ive sums of

the geometrical progression —I 1
j

1 &c

Let, therefore, a=l and r=2, then will

3^1,1.1. ,
a a a a n a„

-4--+-+-&C. =a-\ j
1

1 1 1
&c.

1^2 4 8 r~ r^~ r^ r*~ r^~ r''

But the Successive sums of 1, 2, 3, 4, &,c. terms of this

series are,

(r
— ])X1

^ ^ r—1

(r2-l)Xa , 1, a

(r
— 1)X r

^ r^ r— 1

(r
—

l)Xr2
^

r^'' r— 1

, (r*- l)Xa , K a

(r -l)Xr'
^ r3^ r-1

&c. &c-
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a
;= -X

r— 1

Therefore

n terms of r-{-r-\-r-\-r-\-r &c.

—n terms ot T"r~+~:rH—^^'C.
1 r r- r-^

These being the two series derived from the above ex-

pressions,
But r-^r-^r-\-r-\-r-\-r kc.=^n.r

ill 1
,

r"— 1

i r r-

a

,3 (r— l)r
-»

*

Whence
r»_l ^_(n—O^n+ l _

On- 2
sum requir-

ed.

10. Required the sum (s) of the infinite series of the

reciprocals of the triangular number T+o+g+77;+|T
kc.

T 111 1 p 1 ' j: :
Let—1

—
i 1 &c. ad tnnmium =s.

1~3^6^10

Gr 1 1 1 &c =*=s.

1.1^1.3^2.3^2.5

That is, (|-^)+(^-i)+(l-I)+(i-l)&e.=|.

l+i+i+V+i+l&c.

_1_1_1_1_1_1^^' ~2
2

Or,
1_1_1_1_1^

'

"3 4 6 6 7
'^'

Whence -=- ; or s=2= sum required.
2 1

II. And if it be required to find the sum of n terms 01

1 1 1 1 1

le same series, j+g+e+yQ+j^^c.11111 1

Let.=-+2+3+4+^&c.to-.
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n^. 1 1 1 1 S„ 1

Then.--=-+-+-+-&c.to-.

And 2—--]—_= +-+ 4. &c. to——.
1 n-rl 2 3 4 '

5 71+1

vu c 1 * 1
.

1
>

^
,

1 i I

Jherefoxe -__=^+-+_+-te. to--^.
Or -4T=i+i+A+:4&c. 10-

'

n+1 2
'

6
'

12
'

20
*

n(n+ l)'

Whence—r—=-^ \---\ &c. to .

n+1 1^3^6^10 n(n+l)

Or7+^+^+—+7r&c. to-—--^=——=sumof nterms
1 3 6 10 15

72(n-f-lj ?i+l
of the series, as was required.

12. Required the sum of the infinite series, A
'1.2.3^2.3.4

1_ 1

^3.4.5"^4X6^^'

Let r= ---|---j-_-j--._f._&c. ad infinitum.

ihen
2r_y=--{-_+_+_&;c. by transposition.

And
^~f;2'*'£3"^3'4'^45^^' ^7 subtraction.

Or 1—̂
.=-+_+_+_ &c. by transpositioB.

Whencel=^34-^^+g-A_s.c. by subtraction.

.2 1-2.3^2.3.4^3.4.5^4.5.6
1 111

And--7-2= 1 1 U&c.
2 1.2.3^2.3.4^3.4.5^

But-^2=i ; therefore -4-7;H ^—h--—-\ — ad2 4' 1.2.3^2.3.4^3.4.5^4.5.6

infinitum =-, which is the sum required.



SUMMATION OF INFINITE SERIES. 251

13. And if it were required to find the sum of n terms

of the same series-^+^+^^+^^&c.

Andz-.i+ I =l4.L+J_+l_^l+
1 1

-&c. continued
to^-^^-^^^)

'^''^'^•

Therefore
I_^-^-_=-.|^+^^+^^

&c.

to n terms, by subtraction.

Whencei-^^^^_^/^^^_^^^=^+^^+^-S:c.
ion

terms, by division.

And consequently——+——+--— &c. continued ton

terms =-— ^ ,
^ ,^r i o\

= ^""^ required.
4 2.(n4-l)(»+2)

14. Required the sum (s) of the series-—7+0—7^.+
— —> &c. continued ad infinitum.

Let a;=-and s
2 14-x

Then-4-=a;(l~x+.T2~a:34-a-*&c.^
l-f-x

And ^=(J+x)X(x—x2+t3-. x^+a;5&;c>

Whence, by multiplication,

\-\-x

Whose sum is =a;4-0+0-fU+0&c.
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X
Therefore zsnx, and x—x^ -{• x^— x* +x5&c. =;

1+x

Or- }-- --f—-&c. =—-7—==-=: sum required.
2 4^8 16^32 1+i 3 ^

2 12 3 4
15. Required the sam of the 8eries--f--+r-|—s+^c

'ontinued ad infinitum.

Leta:=lands=^^-y^.

Tben^—-^=x-\'2x^-^3x^+4x*-\-5x^kc.
(1— a;)2

And z=»(l-rc)2 X(a;+2x2+3x3+4a;44-5.r5&c.)
Whence, by multiplication,

a;+2x2 4-3x3+ 4a:* &c.

1— 2x+x2

x+2x2
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Therefore x-\-x-=Zy

. , a-(l+xO
And a;4-4j;2+9,r3+ 16a;*&c.

+^:^j'
Or,

A^l+A^-l^&c. ^iyii^=-=U= sum required.
3^9^27^81 (1-i)' 2

-

a a-\-d ,

17. Required the sum (s) of the series
1 r

JH —j.^II
—: ^, continued ofZ infinitum.

I ''

Let x=-, and $:
r ml 1— x)2

Then—1-^=''-+^-'+"-+?'+'^ &c.

.,
That is,^-=

And z=(l-a;)2 xJa+Ca+rf) a;4.(a-l-2d)x2+ (a+3ri) x^

&c.|-(l
—

x)tt-f-<^a^,

as will appear by actually multiplying by (1 —xY
a

Therefore 2 {l—x)a-\-dx; and consequently \-m
a+d , a-f2d, r {a(r^\)-{-d) . .—1—

-{-
— &c.=^— l-^, ^—->=.sum of the infinite

mr mr~ vi
( (r— 1)2 ^

series required.

EXAMPLES FOR PRACTICE.

1. Required the sura of 100 terms of the series 2, 5, 8,

>.-, 11, IK &•:. Ans. 16050

p 2. Required the sum of 50 terms of the series 1+2*

I .^324.424.52^0, Ans. 42925
". It is renuirad to find the sum of the scries l4-3x+
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G2;2 4-10x3-}- 16x* continued ad infinitum, &.C. when a: ia

less than 1.

^"'; (r--i)J
4. It is required to find the sum of the series l-f-4x

\- \Qx^ -\-^lOx'^ -\-Zbx* , &c. continued ad injinitum, when x~

is less than J.

Ans. ,—

{\-xy
o. It is'requirfed to find the sum of the infinite series

^

\- i_+ J- 4- —Sic. Ans. —, or -

6. Required the sum of 40 terms of the series (1x2)
^l-(3X4)-f-(5X6)+(7x8)&c. Ans. 22960

2jr— 1

7. Required the sum of 7i terms of the series —-—
2.r-3

,

2«-6
,
2a,-7 '

. 2x-n,
i-—— 4- -\ &c. Ans. 7i(—

-—
)

8. Required the sum of the infinite series - -+

L +—i—+—?—&c. Ans. --
.J.H'.'l. 5 3.4.5.(5 4.6.6.7 18

9. Required the sum of the series
T'^j'^T^'^^o'^sE'

3 1

&c. continued c!(Zjn^HJ<«w. Ans. -, or 1^

10. It is required to find the sum of n terms of the se

rieS' l4-8.T-}-27x2 4-64.r-3+ l25.TS &c.

\+4x-^x-
Ans. —r- r--

(1—a;)*

• 1
,

2
1 1 . Required the sum of m terms of the series --f-— -i.

! ^ZC.

1 1 inr+r— 1 )

Ans. y -X r-l""7 7\~ i
(r- \

)
r"

^ (r
—

I
^- ^
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1 1 1

fc^ 12. Required the sum of the ^^^'^^ ^+r"o+g~^

3.12
'^^' ' ' •

'

2»(4+2n)
_ 3 _ 5/i+3n2

Ads.
2-yg,s---|-y—-jq^,

1 11
. j3. Required the sum of the series ;^g+ .j

lo '

"o^Ti;

•

12.20
' '

'^3«(4+4»)
'

1 n
Ans. 2=—-, s=

12' 12-^-12^
6 6 6

14. Required the sum of the series
o~^~^j~[2'^i2~\7

6 . . 6

•17:22
^- • • •

'

(6«-3).(o«+2)"
3 Sn

Ans. S=-, s:
'5' £+5»

1 1 1

15. Required the sum of the series
3~^""g~Q+9n^0

"^

1 1

3X12"^
^*^' ' •

"3<4T2^'
1 n n

^°''
^"^24' ^=2(3+6'^'" 4(6+6n>

2 3 4

16. Required the sum of the series——
^j'^'f'^''

?-.ll"^
• • •

-(l+2ft;. (3+^/0

Ans. S---,s-^2 4(3+4ji*

* The symbol S) made use of in these, and some of tlie following- series,

denotes the sum of an infinite number of terms, andS the sum of n terms.
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.56
17. Required the sum of the series 7-77^+;^-^-^+

7 8
, 4-fn

3.4.5 4.*5. 6
~

n'^l-f/i).(2-t-n)
3 3 2.1

Ans. S=-, s:
*

2 l4-« 2+n

Of logarithms.

Logarithms are a set of nutrsbers that have been com-

'jjuted and formed into tables, for the purpose of facilitate

..,g many difficult arithmetical calculations ; being so con-

trived, that the addition and subtraction of them answers
to the multiplication and division of natural numbers with

which they are made to correspond j.

* The series here treated of are such as are usually called algebraical;

Tvhich, of course, embrace only a, small part of the whole doctrine. Those,

therefore, who may wish for farther iiiformafton on this abstruse but highly
curious subject are referred to the jypscellanea Annlytica of Demoivre, Ster«

ling's Mtthod Differ., James Bernoulli de Seri. Injin , Simpson's Math. Dis.-,

seri., Waring's Medii. Analyt.., Clark's translation of Lorgna's Series, the

Yirious works of Euler, and Lacroix Traite du Cakul Diff. et Int., ivhere

lliiy will find nearly all tlie materials that have been hitherto collected re-

specting- this branch of analysis.'

f This mode »f computation, which is one of the happiest and jnost use-

ful discoi'eriesc-'" modern times, is due to Lord Napier, Baron of Merchiston,
in Scotland, wlio first published a table of these numbers, in the year 1614,
under the title of Cnnon Mtrificum Logaritkmorum ; which performance
was eagerly received by the learned throughout Europe, whose efforts were

innnediatvly directed to the in^provtment and extensions of the new calcu-

lus, that had so unexpci'tfdiy presented itself.

Mr. Henry Brijtgs, in particular, who was, at that time, professor of geom-
cml'm Gicsham College, greatly contribun^d to the advancement of this doc-

1;itif, not only by the \cvy advantageous alieraf'on which he first introduc-ed

.into the sys'vjni of these r.umbf^rs, by making 1 <lic logarithm of 10, instead

of 2 302v>352, as had been dom^ b> Kapler; but also by the publication, in

1624 and 1633,_pf his two great works, the Ariihmttica Logarithmica and
ihe Trigonomciria Jirituniea, both of which were formed upon the principle
above mentioned ; as arc, like'wise, all our common logarithmilic tables, a^

present in use. •
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Or, when taken in a similar but. more general sense,

logarithms may be considered as the exponents of the

powers to which a given, or invariable, number must be

raised, in order to produce all the common, or natural

numbers. Thus, if

then will the indices x, x', x", kc. of the several powers
of

f.',
be tho^^ logarithms of the mimbers y, y', y", &.c. in

the scale, or system of which a is the base.

So, that, from either of t!;ese forraulce it appears, that

the logari'^hm of any number, taken separately, is the in-

dex of that power of some other number, which when in-

volved in the usual way, is equal to the given number.
And since the base a, in the above expressions, can be

assumed of any value, greater or less than 1, it is pl;un
that there may be an endless variety of systems of log?-

ritb.ms, answering to the same natural number.
it is, likewise, farther evident, from the first of x ese

equations, that when y^), x will be =0, whatever mr.y
be the value of a

;
and consequently the logarithm of \ \a

always 0, in every system of logarithms.
And if a-=l, it is manifest from the same equation tliat

the base a will be =-y ;
which base is, therefore the num-

ber whose proper logarithm, in the system to which it

belongs, is 1.

Also, because ax=y, and a'^'=y\ it follows from the

mnlti [plication of powers, that wxa^', ova^*^'=]jy; aed

consequently, by the definition of logarithms, given above,

a;+a-'=log. yy, or

log. yy= log. y-\-\og.y'.
And, for a like reason, if any number of the equa-

tions ax=y, w^'—y, ax"=y", &c. be multiplied together
we shall have

a'x''^'^x''S(c.—yyy' &c. ;
and consequently a;-t'

X'-\-x' Sac. =log. yy'y'%.c. : or

Jog- yy'y" ^c.
; =log. y-{- log. ?/'+ log. y" &c.

S-^e, for farthe'- details on this part of the subject, the Introduction to myTrmiise of Plane and.Spherical Trigonometry, 8vo. 2d Edit. 1313: and for
the consfruction and us-j of the tables consult 'thos<- of Shcnvin, Hr<ttoit,'Tay-
lor, Callet, and Borda, where every necessary information of this kind mav
be readily cblained.

Z 2
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From which it is evident, that the logarithm of the pro-
duct of any number of factors is equal to the sum of the

logarithais of those factors.

Hence, if all the fiictors of a given Rumher, in any case

of this kind, be supposed equal to each other, and the sum
of them be denoted by m, the preceding property will

then become

log. y''=7n log. y.

From vvhich it appears, that the logarithm of the mih

povv'er of any number is equal to m times the logarithm of

that number.
in hke manner, if the equation ««=?/ be divided by a^'=

y, we shall have, from the nature of powers, as before,

—
;, or aT-Wfp- : and by the definition of logarithms, laid

y
down, in the first part of this article, a:— a;'=log.

- or

li>g.-,= log. y-log.y'.

Hence the logarithm of a fraction, or of the quotient

arising from dividing one number by another, is equal to

the logarithm of the numerator minus the logarithm of the

denominator. ^
And if each member of the common equation a^=^y be

m
raised to the fractional power denoted i^v — , we shall

" n
"71 ?Ji

have, in that case, c «" =^« ;

And, consequently, by taking the logarithms, as before,

in , !!' ,

- 1h in

-^-a=log. 1,", or log. J/"—- log. y.

Whcrfe it appears, that the logarithm of a mixed root,

ov fjower, of any number, is found by multiplying the lo-

garithm of the given number by the nvimerator of the in-

dex of that power, and dividing the result by the denomi-

nator.

And if the numerator m, of the fractional indes, be in

this case, taken equal to ], the above formula will then

T>ecome
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log. r =-
log. y,

tv

From which it follows, that the logarithm of the nth

root of any number is equal to the nth part of the loga-

rithm of that number.

Hence, besides the use of logarithms ia abridging the

operations of multiplication and division, <hey are equally

applicable to the raising of powers and extracting ofroots
;

which are performed by simply multiplying the given lo-

garithm by the index of the power, or dividing it by the

number denoting the root.

But although the properties here mentioned are com-
mon to every system of iogiuithms, it was necessary, for

practical purposes, to select some one of them from the

rest, and to adapt the logarithms of all the natural num-
bers to that particular scale.

And as JO is the base of our present system of arithme-

(ic, the same number has accordingly been chosen for the

base of the logarithmic system, now generally used.

So that, according to this scale, which is that of the

common logarithmic tables, the numbers
. . 10S^10- =

, 10-2, 10-', 10% 10', lUS 103, 104, &o.

Or

. . —'^,—'—,—-.—, 1, 10, 100, 1000, 10000, &c.
lOOOU'lOOO lO'J 10

' '

have for their logarithms
. . . -4, -3, -2, -1, 0, 1, i^, 3, 4, &c.

Which are evidently a set of numbers in arithmetical

progression, answering to another set in geometrical pro-

gression ; as is the case in every system of logarithms.
And therefore, since the common, or tabular, logarithm

of any number (n) is the index of that power of 10, which
when involved, is equal to the givea nuaiber, it is plain.,

from the following equi-tion,
1

10c=-r. or 10-^=-,
'/t

ihat the logarithms of a!! the intermediate numbers, in the

above series, may be assigned by aj-proximation, and made
10 occupy their proper places in the general scale.
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It is also evident, that the logarithms ot I, JO, 100,

1000, &.C. being 0, 1,2, 3, &c .respectively, the logarithm
of any number, falling between 0, and 1, will be and
some deciaial parts ;

that of a number between 10 and 100,
1 and some decimal parts ;

of a number between 100 and

1000, 2 and some decimal parts ;
and so on, for other num-

bers of this kind.

And for a similar reason, the logarithms of—, —--,

——
, &c. or of their equals .1, .01, .001, Lc. in the de-

scending part of the .scale, being — 1, —2, —3, &c. the

logarithm of any number, falling between and ]
,
will be

—
1, and some positive decimal parts; that of a number

between .1 and .01, —2 and some positive decimal parts ;

of a number between .01 and .001, —3, and some positive
decimal paits ;

&.c.

Hence, likewise, as the multiplying or dividing of any
number by 10, 100, 1000, &c. is performed bj' barely in-

creasing or diminishing the integral part of is logarithm

by 1,2, 3, &c. it is obvious that ail numbers, which con-

sist of the same figures, whether they be integral, frac-

tional, or mixed, will have, for the decimal part of their

logarithms, the same positive quantity.
So that, in this system, the integral part of any logarithm,

which is usually called its index, or characteristic, is always
less by 1 t^an the number of integers which the natural

Slumber consist of; and for decimals, it is the number
which denotes the distance of the first significant figure
from the place of units.

Thus, according to the logarithmic tables in common
ase, we have

JV«/n6ers.
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Where the sign — is put over the index, instead of be-
fore it, when that part of the logarithm is negative, in or-

der to distinguish it from the decimal part, which is always
io be considered as +, or affirmative.

Also agreeably to what has been before observed, the

logarithm of 38540 being 4.5859117, the logarithms of

any other numbers, consisting of the same figures, will be
as follows :

JVumbers.

3854

385.4

38.54

3.854

.3854

.0385 J

.003854

Logarithms .

3.5859117

2.5859117

1.5859117

5859117

T.58o9117

2 5859117

3.5859117

Which logarithm-!, in this case, as well as in all others

of a similar kind, whether the number contains ciphers
or not differ only in theii' indices, the decimal, or positive

part, being the same in them all*

And as the indices, or integral parts, of the logarithms of

any numbers whatever, in this system, can always be thus

readily found from the simple consideration of the rule

above mentioned, they are generally omitted in the tables,

being left to be supplied by the operator, as occasion re-

quires.

1
;

* The great advantages attending tlie common, or Brig-gean system of lo-

garithms, above all others, arise chiefly from tlie readiness with which we
can always find tiie characteristic or integral part of any logarithm from the

bare inspection of t'-ie natural number to which it belongs, and the circum-

stance,that multiplying or dividing any number by 10, 100, lOOO, &c. only in-

iluenccs the characteristic of its logarithm, without allecting the decimal part.

Thus, for instance, if i be made to denote the index or integral part of the lo-

garitlim of any number n, and d Its decimal part, we shall have log n=» -f-
d ;

N
log. l(imXN^(i+m)-{-d; log.-—

-= (t
—m) + d\ where it is plain that

the decimal part of the logaritlun, in each of these cases, remains the sanie.
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It may here, also, be fjirther added, that when the loga-
rithm of a given number in any particular system, is known,
it will be easy to find the logarithm of the same number in

any other system, by means, of the following equations,
a^ =n, and e^'=:n

;
or log. n=x, and /. n=x'.

Where log. denotes the logarithm of n, in the system of

which a is the base, and /, its logarithm in the system of
which e is the base.

For, since aa^=ea^', or 6P=e, and e~i=a, we shall hsve,

for the base a, -== log. c, or x=x' log. e
;

X
and for the base c,- =/. a, or x,'^=-x I. a.

X

Whence, by substitution, from the former equations,

log. n=l. nXlog. e
;
or log. ti=l. nX t— ,

l.a

Where the multiplier log. c, or its equal -;— expresses

the constant relation which the logarithms of n hare to

each other in the systems to which they belong.
But the only system of these numbers, deserving of no-

tice, except that above described, is the one that furnishes

what have been usually called hyperbolic or Nepedan lo-

garithms, the base e of which is 2.718281828459 . . .

Hence, in comparing these with the common or tabular

logarithms, we shall have, b}' putting a in the latter of the

above formulae= 10, the expression.

log. n=zl. nX-,— , or I. ?i=log. nXl. 10.

Where log. in this case, denotes the common tabulai-

logarithm of the number n, and /. its hyperbolic loga-

rithm
;
the constant factor, or multiplier, y-r- . which is
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-

being what is usually called the 7rfr.iulus o{ ihe common
system of logarithms.*

PROBLEM r.

To compute the logarithm of any of the natural num
bers 1, 2, 3, 4, 5, &c.

RULE. I

1. Take the geometrical series, 1, 10. 100, 1000, 10000,
&c. an J apply to it the arithmetical series, 0, 1,2, 3, 4,

'

&c. as logarithms.
2. Find a geometric mean between 1 and 10, 10 and

100, or any other two adjacent terms of the series, be-
twixt which the number proposed lies.

3. Also, between the mean, thus found, and the near-
est extreme, tind another geometrical mean, in the same
manner

;
and so on, till you are arrived within the propos-

ed limit of the number whose logarithm is sought.
4. Find, likewise, as many arithmetical means between

the corresponding terms of the other series, 0, 1,2, 3,

^4, &c. in the same order as you found the geometrical ones,
9nd the last of these will be the logarithm answering to

tTie number required.

,

EXAMPLES.

Let it be required to find the logarithm of T-.

'

* It may here be remarked^ that, although the common logarithms havesu-

perseded the use of hyperbolic or Neperian logarithms, in ail the ordinary

operations to which these numbers are generally applied, yet the latter are

not without some advantages peculiar to themselves; being of frequent oc-

currence in the application of the Fluxionary Calculus, to many analytical
and physical problems, where they are required for the finding of certain flu-

ent;, which could not be so readily determined wit'iout their assistanci; on

which account great pains have been taken to calculate tables of hyperbolic

logarithms, to a considerable extent, chiefly for this purrejse. Mr. Barlow,
in a Collection of Mathematical Tables iatelv put^lished, nas given them for

the firsi 10000 numbers.
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Here the proposed number lies between 1 and 10.

First, then, the log. of 10 is 1, and the log of 1 is 0.

Therefore ^(lOX l)=v^l0=3. 1622777 is the geo-
metrical mean

;

And i(l-{-0)=4^= -5 is the arithmetical meaa
;

Hence the log. 'of 3.1622777 is .5.

Secondly the log. of 10 is 1, and the log of 3.1622777 is

-5.

Therefore ^(10X3.1622777)=5.6234132 is the geo-
metrical mean

;

And i(l4--5)=-75 is the arithmetical mean
;

Henoft the log. of 5.6234132 is .75.

Thirdly, the log. of 10 is 1, and the log. of 5.6234132
is .75;

Therefore ^(10X5.6234 132) =7.4989422 is the geo-
metrical mean ;

And i(l+ .75)=.875 is the arithmetical mean
;

Hence the log. of 7.4989422 is .875.

Fourthly, the log. of 10 is 1, and the log. of 7.498942^
is .875

;

Therefore ^(10X7.4989422) =8.6596431 is the geo-
metrical mean,
And ^(1-f- -875)

= .9375 is the arithmetical mean
;

Hence the log. of 8.6596431 is .9375.

Fifthly, the log. of 10 is 1, and the log. of 8.6596431 is

.9375.

Therefore y(10X8. 6596431) =9.3057204 is the geo-
metrical mean,
And i(l-f. 9375)

=
. 96875 is the arithmetical mean

;

Hence the log. of 9.3057204 is .96875.

Sixthly, the log. of 8.6596431 is .9375, and the log. of

9.3057204 is .96875 ;

Therefore ^(8.6596431 X9 3057204) =8.9768713 is

the geometrical mean,
And i(.9375+.g6875) =.953125 is the arithmetical

mean ;

Hence the log. of 8.9768713 is .953125.

And, by proceeding in this manner, it will be found, after

25 extractions, that the logarithm of 8.9999998 is .9542425;
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which may be taken for the logarithm of 9, as it difiers

from it so Uttle, that it may be considered as sufficiently

exact for all practical purpose?.
And in this manner were the logarithms of all the prime

i. .numbers at first computed.

RULE 11.

When the logarithm of any number (n) is known, the

logarithm of the next gn^ater number may be readily

found from the following series, by calculating a sufficient

number of its terms, and then adding the given logarithm
to their sum.

Log.(«+])=log.n4-M'
\-^-^i+s{2n+iy +T(iM-T)~

J. I 4 i a. ! kcA
^7(271+0' 9(2n+l)«

'

'11(271+1)"
>

Or,

Log. (n+1) = log. n+ j3-^^+^—-+-^_p^
5c 7d 9e

^^
i

'^'l{2n+iy'^ 9(2714-1)2'^ fl(2«-f 1)-
^'S

WhereA,B,c, &,c represent the terms immediately

preceding those in which they are first used, and m'=

twice the modulus=.8685889638 .... *

EXAMPLES.

1. Let it be required to find the common logarithm of

the number 2.

Here, because n4-l==2, and consequently n=l and 2»

4-1=3, we shall have

* It may here be remarked, that the difference belween the logarithms ol"

any t%vo consecutive iiumbers^^is
so much the less a? thi> numbers are greater ;

and consequently the series whrch comprises the latter part of the above ex-

pression will in that case converge so much the faster. Thus log. Jt and
log".

(n-f- 1), or its equal log. n -\- log. (1 +- ), will, obviously, difief but littlo

from each other when n is a large number.

A a
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m' .86r5889638 , .—= . = .289529654 (a;
2«+l 3 "^ ^

A .289629654
-

. = .010723321 (b)
3(2n+l)2 3.32

3b 3X.01U723321
r-^-== = .000714888 (c)

5(2w+l)2 6.33 ^ ^

5c 5 X.0007 14888 ^^^^ , ,
,

,
. = -—z = .000056737 (d)

7(2»-|-l)2 7.32 ^ '

7d 7 X.000056737

9(2-„+Ty=—935—
= -000004903 (.)

9e 9 X.000004903 ,
, ,

TT(2-„qri7=—inr-
= -000000446 (.)

Uf 1 IX.00000044 6

B(S;.+i)i= 13:3^—
= -000000042 (o)

13g 1 3 X.000000042

-i5(2»+Ty= U,:^
= -000000004 („)

Sum of 8 term? . . .301029995
Add log. of 1 . . , .000000000

Log. of 2 301029995

Which Ingaritbm is true to the last figure inclusively.
2. Let it be required to compute the logarithm of the

number 3.

Here, since n+l—3, and consequently n^=. 2, and 2?;

+ 1=6, we shall have
m' 8C858ft964

2-;:+-,=—6 ---=-nS7I7793(.)
A .173717793

3(2^^4717=—375^—
• =-002316237 (b)

3b 3+ .0023 16 237

-5(2mT)^=
___ =.000065590 (c)

5c 5X 000065590

^^-H)^- TK.
-.000001588 (i>%
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7d 7 X.000001 588 ^^^^„„„ „, ,^= =.000000050 (e)
3;2?i+l)2 9.52 V >

'

9e 9 X.000000050 ^„^„^„o , v
. _= =.000000002 (f)

il(2rt+l)2 11.52 V )

Sum of 6 terms 176091260

Log. of 2 301039995

Log. of 3 477121255

Which logarithm is also correct to the nearest unit \\\

the last figure.

And in the same way we may proceed to find the loga-

rithm of any prime number.

Also, because the sum of the logarithms of any two

numbers gives the logarithm of their product, and the

difference of the logarithms the logarithm of their quo-

tient, &c.
;
we may readily compute, from the above two

logarithms, and the logarithm of 10, which is 1, a great
number of other logarithms, as in the following exam"

pies :

3. Because 2X2=4, therefore >
.30,029995

log. 2
^

Mult, by 2 2

gives log. 4 .GO2059990
4. Because 2 X 3=6, therefore to >

3010299S"'-
log. 2 ^

add log. 3 .477121255

gives log. 6 .778151260

5. Because 23= 8, therefore log. 2 .301029995
nmlt. by 3 3

gives log. 8 .903089985
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6. Because 32=9, therefore log. 3 .477121265
mult, b}' 2 2

gives log. 9 .954242510

7. BecauseV=6, therefore from

I

^_QQ^^^^^^^

take log. 2

gives log. 5 .698970006

8. Because 3X4=12, therefore

to log. 3
.477121255

'»•

add log. 4 .602069991

gives log. 12 1.079181246

And, thus, by computing, according to the general for-

mula, the logarithms of the next succeeding prime num-
bers 7, 11, 13, 17, 19, 23, &.C we can iind. by means of

thesim-^le rules, before laid down for multiplication, divi-

sion and the raising of powers, as many other logarithms
as we please, or may speedily examine any logarithm in

the table.

MULTIPLJCATION

BY LOGARITHMS.

Take out the logarithms of the factors from the table,
and add them together ;

then the natural number answer-

ing to the sum will be the product required.
Observing, in the addition, that what is to be carried

from the decimal part of the logarithms is always affirma-

tive, and must, therelore, be added to the indices, or inte-

gral parts, after the manner of positive and negative quan-
tities in algebra.
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Which method will be found much more 'convenient,
to those who possess a shght knowledge of this science,
^han that of using the arithnietical complements.

EXAMPLES.

1. Multiply 37.163 by 4.086, by logarithms,

37.153 . . . . 1.5699939
4.086 .... 0.6112984

Prod. 151.8071 . 2.1812923

2. Multiply 112.2J6 by 13.958, by logarithms.
A Of. Logs.
112.246 .... 2.0491709
13.958 .... 1.1418232

Prod. 1563.128 . 3.19.39941'

3. Multiply 46.7612 by .3275, by logarithms
J^os. Logs.
46.7512 .... 1.6697928

.3275 .... 1.5152113

Prod. 15.31102 1.1850041

Here, the -f- 1, that is to be carried from the decimals,
cancels the — 1, and consequently there remains 1 in the

'ipper line to be set down.
4. Multiply .37816 by .04782, by logarithms.

JVos. Logs.

.37816 .... r.5776756

.04782 .... 2.6796096

Prod. .0180€36 . 2.2572852

Here the + 1 that is to be carried from the decimals;
<£> si A^
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destroys tlic — 1, in the upper line, as before, and there

remains the— 2 to be set down.
5. Multiply 3.768, 2.053, and .007693, together.

JVbs. Lo^s.
7.768 .... 0.5761109
2 063 .... 0.3123889

.007693 .... 3.8860997
«

Prod. .059511 . 2.7745995

Here the -j- 1 . that is to be carried from the decimals,
when added to —3, makes —2, to be set down.

6. Multiply 3.586, 2.104C, .8372, and .0294, together
Nos. Logs.
3.686 0.554610
2.1046 323170

.8372 r.922829

( .0294 2.468347

Prod^ .1857618 . . T.268956

Here the +2, that is to be carried, cancels the—2, and

there remains the — 1 to be set down.

7. Multiply 23.14 by 5. 062 by logarithms.
An?. 117.1347

8. Multiply 4.0763 by 9.8432, by logarithms.
Ans. 40.12383

9. Multiply 498.256 bv 41.2467, by logarithms.
Ans. 20561.41

10. Multiply 4.026747 by .012345, by logarithms.
Alts. .0497102

11. Multiply 3.12567, .02868, and .12379, together, by

logarithms. Ans. .09109706

12. Multiply 2876.9, 10474, .098762, and .003 1698, by
Jogarithms. Ans, .0968299
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DIVISION BY LOGARITHMS.

From the logarithm of the dividend, as found in the ta

hies, subtract the logarithm of the divisor, and the natural

number answering to the remainder, will be the quotient

required.

Observing, if the subtraction cannot be made in the usual

way, to add, as in the former rule, the 1 that is to be car-

ried from the decimal part, when it occurs, to the index of

the logarithm of the divisor, and then this result, with its

sign changed, to the remaining index, for the kidex of the

logarithm of the quotient.

EXAMPLES.

1. Divide 4768.2 by 36.954, by logarithms,
Mos. Logs.
4768.2 .... 3.0783545
36.964 .... 1.6676616

Quot. 129.032 . . 2.1106930

2, Divide 21.754 by 2.4678, by logarithms.
J^os. Logs.

21.754 . . . . 1.3375,^91

2.4678 .... 0.3923100

Quot. .81518 . . 0.9452291

3 Divide 4.6257 by .17608, by logarithms.

J^os Logs.
4.6257 .... 0.6651725

.17608 .... 1.2157100

Quot. 26.274\ . . 1.4194625
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Here— !, in the lower index, is changed into •i-l,v.'hich
is then taken for the index of the result.

4. Divide .27684 by 6.1576, by logarithms.

JVos. Logs.
.27684 .... T.4422i-88
6.1576 . . . . 0.7124477

Q,«ot. .0536761 . 2.7297811

Here the 1 that is to be carried from the decimals, is tak-
en as— 1

,
and then added to — 1

, in the upper index, which
gives

—2 for the index of the result.

5. Divide 6.9875 by .075789, by logarithms.

JVos. Logs.
6.9875 .... 0.8443218

.075789 .... 2.8796062

Quot. ^2,1967 , . 1.9647156

Here the 1, that is to be carried from the decimals, if

added to —2, which makes -—1, and this put down, with
its sign changed, is -f-l-

6. Divide .19876 by .0012345, by logarithms.
JVos. Logs.

.19876 .... 1.2983290

.0012345 . . . 3.0914911

Quot. 161.0051 . 2.2068379

Here —3, in the lower index, is changed into -\-3, and
this added to— 1 , the other index, gives -\-3 — 1 or 2.

7. Divide 125 by 1728, by logarithms.
Ans. .0723379

8, Divide 1728.95 by 1.10678, by logarithms.
Ans. 1562.144

2. Divide .1023674 fey 4,96523, by logarithms.
Ans. 2.061685
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I
•

!0. Divide 19936.7 by .048235, by logarithms.
Ads. 413739

il. Divide' .067859 by 1234.39, by logarithms.
Ans. .000054964«

THE RULE OF THREE,

OR PROPORTION, PY LOGARITHMS.

for any single proportion, add the logarithms of the se-

cond and third terms together, and subtract the logarithm
©fthe first t"fom their sum, according to the foregoing rules

;

then the natural number answering to the result will be
the fourth term required.
But if the proportion be compound, add together the

logarithms of all the terms that are to be multiplied, and
from the result take the sum of the logarithms of the

other term?, and the remainder will be the logarithm oi"

the term sought.

Or, the same may be performed moEe conveniently thus,
Find the complement of the logarithm of the first term

of the proportion, or what it wants of 10, by beginning at

the left hand, and taking each of its figures fi'om 9, except
the last significant figure, on the right which must be taken
from 10

; then add this result and the logarithms of the

other two terms together, and the sum, abating 10 in the

index, will be the logarithm of the fourth term, as before.

And, if two or more logarithms are to be subtracted, as
in the latter part of the above rule, add their complements
and the logarithms, of the terms to be multiplied together,
and the result, abating as many lO's in the index as there
are logarithms to be stibtracted, will be the logarithm of
the term required ; observing, when the index of the lo-

garithm, whose complement is to be taken, is negative, to

add it, as if it were affirmative, to 9
;
and then take the

yest of the figures from 9, as before
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EXAMPLES.

1. Find a fourth proportional to 37.125, 14.768, and

136.279, by logarithms.

Log. of 37.125 . . . 1.5696665

Complement .... 8.4303335

Log. of 14.768 . . . 1.1693217

I#>g. of 135.279 . . . 2.1312304

Ans. 53.81099 . . 1. 7^308856

2. Find a fourth ppoportionl to .05764, .7186, and

«34721, by logarithms.

Log. of .06764 . . . 2.7607240

Complement .... 11.2392760

Log. of .7186 . . . r.8664872

Log. of .34721 . . . T.5405922

Ans. 4.328681 . . 0.6363554

3. Find a third proportional to 12.796 and 3.24718, by
Jogarithms.

Log. of 12.796 . . l.-!070742

Complement .... 8.8929258

Log. of 3.24718 . . . 0.5115064

Log. of 3.24718 . . . 0.5115064

Ans. .8240216 . . 1.9159386

4. Find the interest of 279/. 5s. for 274 days, at 4-1

per cent, per annum, by logarithms.
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Comp. log. of 100

Corap. log. of 365

Log. of 279.25 .

Log. of 274 . .

Log. of 4.5

8.0000000
7.4377071
2.4459932
2.4377506
0.653-^125

Ads. 9.433296 . . 0.9746634

5. Find a fourth proportional to 12.678, 14.065, and

100.979, by logarithms. Ans. 112.0263
6. Fir.d a fourth proportional to 1.9864, .4678, and

60.4567, by logarithms. Ans. 11.88262
7. Find a fourth proportional to .09658, .24958, and

.008967, by logarithms. Ans. .02317234
8. Find a mean proportional between .498621 and

2.9587, and a third proportional to 12.796 and 3.24718 by
logarithms. Ans. 17.55623 and .8240216,

INVOLUTION,

OR THE RAISING OF POWERS BY LOGARITHM*).

Take out the logarithm of the given number from the

tables, and multiply it by the index of the proposed pow-
er

;
then the natural number, answering to the result, will

be the power required.

Observing, if the index of the logarithm be negative,
that this part (jf the product will be negative ;

but as what

^s to be carried froai the decimal part will be affirmative,

the index of the result must be taken accordingly.

E.XAMPLES.

t. Find the square of 2.7568, by logarithms.
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Leg. of 2.7568 . . . 0.4402477

Square 7.599946 . . 0.8804954

2. Find the cube of 7.0851, by logarithms

3
Log. of 7.0851 . . . 0.8503.'i99

Cube 355.6475 . . . 2.5510197
3. Find the fifth power of .87451, by logarithms,

Log. of .87451 . . . r.9417648
5

;Fifth power .5114695 . 1.7088240

Where 5 times the negative index— 1, being— 5, and +4
to carry, the index of the power is 1.

4. Find the 366th power of 1.0045, by logarithms

Log. 1.0045* . . . 0.0019499
365

97495
116994
58497

Power 5.148888 . 0.7117135

5. Required the square of 6.0598.7, by logarithms.
Ans. 36.72203

6. Required the cube of .176546, by logarithn:)S.

Ans. .005502674

* This answer 5.143P88 though found strictly according to the general
rule, is not correct in \.h'^ last four figures 8888; nor can the answers to such

questions relating' to very hirfi powers be generally found true to 6 places ol

figures by the tablrs ot Log. commonly used ; if any power above the hun-

dred thousandtii were r.;quired, not one figure of the answer here given
could be d( pendod on. The Log. of 1.0045 is 00194994103 true to eleven

places, which muhiplied by 365 gives .7117285 true to 7 places, and the

correspondiiig number true to 7 places is 5.149067. See Doctor Adrain'*

addition of Hut. Math. Voi. I. p. 169.
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7. Required the 4th power of .076543, by logarithms.
Ans. .00003 13269

8. Required the 5th power of 2.97643 by logainthms.
Ans. 233.6031

9. Required the 6th power of 21.0576 by logarithms.
Ans. 87187340

10. Required the 7th power of 1.09684, by logarithms.
Ans. 1.909864

EVOLUTION,

OR THE EXTRACTION OF ROOTS, BY LOGARITHMS.

Take out the logarithm of the given number from the

table, and divide it by 2, for the square root, 3 fur the cube

root, &c. and the natural number answering to the result

will be the root required.
But if it be a compound root, or ene that consists both

of a root and a power, multiply the logarithm of the given
number by the numerator of the index, and divide the pro-
duct by the denominator, for the logarithm of the root

sought.

Observing, in either case.-when the index of the loga^
rithm is negative, and cannot be divided without a remain-

der, to increade it by such a number as will render it ex-

actly divisible ;
and then carry the units borrowed, as so

many tens, to the lirst figure of the decimal part, and divide

the whole accordingly.

EXAMPLES,

I. Find the square raot of 27.465, by logarithiris.

Log. of 27.465 . . 2)1.4387796

Root 6.2407 . . . .7193898

Bb
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2. Find the cube root of 35.6415, by logarithms:

Log. of 35.6415 . . . 3)1.5519560

Root 3.29093 . . . .5173186

3. Find the 5th root of 7.0325, by logarithms.

Log. of 7.0825 . . . 5)0.8501866

Root 1.479235 ... .1700373

4. Find the 365th root of 1.045, by logarithms.

Log. of 1.045 . . 365)0.0019499

Root 1.000121 . . . 0.0000534

5. Find the value. of (.001234)^ by logarithms.

Log. of 001234 . . . 3 0913152
2

3)6.1820304

Ans. .00115047 . . . 2.0608768

Here, the divisor 3 being contained exactly twice in the

negative index —6, the index of the quotient, to be put

down, will be —2.
3

Find the value of (.024554)^ by logarithms.

Log. of .024554 . . . 2.39012^3

2)5.1703669

Ans. .00384754 . . , 3.5851834

Here 2 not being contained exactly in — 6, 1 is added to

if. 'vVhich gives —3 for the quotient ;
and the 1 that is bor
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rowed being carried to the next figure, makes 11, which,
divided by 2, cives .58, kc.

7. Required the square root of 365.5674, by logarithms.
Ans. 19.11981

8. Required the cube root of 2.S87636, by logarithms.
Ans. 1.4402.65

9. Required the 4th root of .967845, by logarithms.
Ans. .9918624

10. Required the 7th root of .098674, by logarithms.
Ans. .7183146

21 ^
1 1. Required the value of(—-)^, by 'logarithms.

.\ns. .146895

112 5
•2. Requifed the value of (j^z^y, by logarithms.

Ans. .1937115

MISCELLANEOUS EXAMPLES I.N LOGARITHMS.

2
1. Required the square root of ——

, by logarithms.

Ans. .12751o3

2. Required the cube root of
. .

,
-
q1 ^y logarithms.

Ans. .6827842
3> Required the .07 power of .00563, by logarithm.'.

Ans. .69588S!
1. 1

4. Required the value of >^
T^"^' by logarithms

Ans. .04279825
15 7

.J. Required the value of -^-X.0123/— ^ by loga-

rithms. Aus. .001165713

6. Required the value of ''^ -
-^ -—-'^ ^

bylo-'

7i3/l2iX.l9*/17i
^

garithms. Ans. .30.09168638
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1. iieq,„red t„e value of
-_-(l>^-^_p, by

logarithms. Aus. 49.o8712

MISCELLANEOUS QUESTIOxNS.

1. A person beir>g asked what o'clock it was, replied
that it was between eight and nine, and that the hour and

minute hands were exactly together ;
what was tlie time ?

Ans 8h. 43min. 38fY sec.

2. A certain number, consisting of two places of fig-

ures, is equa! to the difference of the squares of it? digits,

and if 36 be added to it the digits will be inverted
; what

is the number? Ans. 48

3. What two numbers are those, whose difference, suns,

and product, are to each other as the numbers 2, 3, and 6,

respectively ? Ans. 2 and JO

4. A person, in a party at cards, betted three shillings

to two upon every deal, and after twenty deals found he

had gained live shillings ;
how many deals did he win ?

Ans. 13

5. A person wishing to enclose a piece of ground with

palisades, found, if he set them a foot asunder, that he

should have too few by 150, but if he set them a yard
asunder he should have too many by 70

;
how many had

he? Ans. 180

6. A cistern will be filled by two cocks, a and b, run-

ning together, in twelve hours, and by the cock a alone

in twenty hours
;
in what time will it be filled by the cock

B alone ? Ans. 30 hours

7. If three agents, a, b, c, can produce the effects a,

h,c, in the times e,/, g, respectively ;
in what time would

they jointly produce the effect d.

Ans. cZ-r(-+74--)
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£. What number is that, which being severally added
to 3, 19, and 51, shall make the results in geometrical pro-
gression ? Ans. 13

9. It is required to find two geometrical mean propor-
tionals between 3 and 24

,
and four geometrical mean?

between 3 and 96.

Ans. 6 and 12
;
and 6, 1^, 24, and 48

10. It is required to find six numbers in geometrical

progression such, that their sum shall be 315, and the sum
of the two extremes 165.

Ans. 5, 10, 20, 40, 80, and 160
11. The sum of two numbers is a, and the sum of their

reciprocals is b
; required the numbers.

12. After a certain number of men had been employed
on a piece of work for 24 days, and had half finished it,

16 men more were set on, by whicJi the remaining half

was completed in 16 dnys ; bow ai-'itiy
mun were employ-

ed at first ; and what was the whole e> ru-nce, at Is. 6d. a

day per man ? Ans. 32 the nurr-ber of men
; and the

wboie expence 1 15/. 45.

13. It is required to find two numbers such, that if the

square of the first be added to the second, the sum shall

be 62, and if the square of the second be added to the

first, it shall be 176. Ans. 7 and 13

14. The fore wheel of a carriage makes six revolu-

tions more than the hind wheel, in going lx!0 yards ; but
if the circumference of each wheel was in^-reased by
three feet, it would make only four revolutions more than
the hind wheel in the same space ;

what is the circumfe-

rence of each wheel ? An^. 12 and 15 feet

15. It is required to divide a given number a into two
such parts, x and y, that the sum of rnx and ny shall be

•equal to some other given number b,

. ha— n , am— h
Ans. x~ and s/—m— n in—n

16. Out of a pipe of wine, containing 84 gallons, 10

gallons were drawn off, and the vessel replenished with
B J32
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10 gallons of water
;
after which, 10 gallons of the mix-

ture were againdcawn off, and then 10 gallons more of wa-
ter poured in

;
and so on for a third and fourth time

;

which being done, it is required to find how much pure
wine remained in the vessel supposing the two fluids to

have been thoroughly mixed each time ? Ans. 48| gallons
17. A sum of money is to be divided equally among a

certain number of persons ;
now if there had been 3 clai-

mants less, each would have had 150/. more, and if there
had been 6 more, each would have had 120/. less

; required
the number of persons, and the sum divided.

Ans. 9 persons, sum 2700/.
18. From each of sixteen pieces of gold, a person Mied

the worth of half a crown, and then offered them in pay-
ment for their original value, but the fraud being detected,
and the pieces weighed, they were found to be worth, in
the whole, no more than eight guineas ;

what was the ori-

ginal value of each piece ? Ans. 13s.

19. A composition of tin and copper, containing 100
cubic inches, w^s found to weigh 505* ounces

;
how many

ounces of each did it contain, supposing the weight of a
cubic inch of copper to be 6^ ounces, and that of a cubic
inch of tin 4^ ounces.

Ans. 420 oz. of copper, and 85 oz. of tin

20. A privateer running at the rate of 10 miles an hour,
discovers a vessel 18 miles a head ©f her, making way at

the rate of 8 miles an hour
;
how many miles will the lat-

ter run before she is overtaken. Ans. 72 miles
21. in how many different ways is it possible to pay

iOO/. with seven shilling pieces and dol!ars of 45. 6d.

each ? Ans. 31 different ways
22. Given the «um of two numbers = 2, and the sum

of their ninth powers =32, to find the numbers by a quad-
ratic equation. Ans. \±Ia^/ {b^3i -S3).

23. (iiven y^— ar^=666, and x^+a:?/—406 ;
to find x

and y. Ans. x=7, and y=9.
24. The arithmetical mean of two numbers exceeds the

geome-trical meiin by 13, and the geometrical mean exceeds
the harmonica! mean by 12

; what are the numbers ?

Ans. 234 and 104
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26o Given x^y+y^x=-3, and x^y'^-{-y'^x^=7,{o find the
values of x and y.

Ans. a;=i(v'.5+l),2/=KA/5~l)
26. Given x-\-y-\-z=23, xy-\-xz-^yz=l{jl, and xy2=

385, to find x, y, and z. Ans. x— 5, y=7, z=ll
27. To find four numbers, a-, 2/, z, and tt-, having the

product of every three of them given; viz. xyz=23l,
xyw=4'20, yzw= l540, and :r2'W'=660.

Ans. a-=3, y=l, z—l 1, and w—20
28. Given .r+?/z=384, 2/+a;?=237, and z-fa:j/=192,

to find the values of x, y, and z.

Ans. 3= 10, 2/= 17, and 2'=22
29. Given x^-{-xy=]08, y^-hyz=^6d, and z^+xz=5iiO,

to find the values of .-r, y, and z.

Ans. a,'=9, y=3, and 2=20
30. Given x^+xy-{-y-= 5 and a:*+2;2«3 4-^/*

= l 1, to

find the values of x and y by a quadratic.
2 1 2 1

Ans. x=-^W+-^5,y=jy 10^-^5
31. Given the equation x* —6x3+1 Sx^ — ]2x=5, to

3 1

find the value of x by a quadratic. Ans.-±:-y^29

32. It is required to find by what part of the population
a people must increase annually, so that they may be dou-
ble at the end of every century.

Ans. By 144fh part nearly
33. Required the least number of weights, and the

weight of each, that will weigh any niiniber of pounds
from one pound to a hundred weight.

Ans. 1, 3, 9, 27, 81
.34. It is required to find four whole numbers such, that

the square of the greatest may be equal to the sum of the

squares of the other three. Ans. 3, 4, 12, and 13
35. It is required to find the least number, which being

divided by 6, 5, 4, 3, and 2, shall leave the remainders 6,

4,3, 2, and 1, respectively. Ans. 59
36. Given the cycle of the sun 18, the golden number

S. and the Roman mdiclion lu, to find the year.
Ans. 1717
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37. Given 256.T— 872/=l. to find the least possible values-

of X and
^^

in whole numbers. Ans. ar=52, and 2/=153
38. It is required to find two different isosceles triangles

such, that their perimeters and areas shall be both express-
ed by the same numbers.

Ans. Sides of the one 29, 29, 40 ;
and of the other 37, 37, 24

39. It is required to find the sides of three right angled

triangles, in whole numbers, such, that their areas shall

be all equal to each other.

Ans. 58, 40, 42
; 74, 24, 70

; 113, 15, 112

j_

40. Given a; 3;= 1.2655, to find a near approximate va-

lue of X.

'

Ans. 3.82013

41. Given a;ys«=5OO0, and z/a;
= 3000, to find the values

«f X and y. Ans. 3:=4.691445, and t/=5. 510132

42. Given a-^+2/y=285, and t/^
—xy = 1 4, to find the

values of x and y. Ans. a;=4.016698. and 2/=2.8257l6
43. To find two whole numbers such, that if unity be

added to each of them, and also to their halves, the sums,

in both cases, shall be squares. Ans. 48 and 1680

44. Required the two least nonquadrate numbers x and

V such, that x^-\-]^' and x^^y"^ shall be both squares.
Ans. x=364 and ?/=273

45. It is required to find two whole numbers such that

their sum shall be a cube, and their product and quotient

squares. Ans. 25 and 100, or 100 and 900, &c.

46. It is required to find three biquadrate numbers such,

that their sum shall be a square. Ans. 1 2'»
,

1 5* ,
and 20*

47. It is required to find three numbers in continued

geometrical progression such, that their three differences

shall be all squares. Ans. 667, 1008, and 1792

48. It is required to find three whole numbers such, that

the sum or difference of any two of them shall be ^square

numbers. Ans. 434657, 420968, and 1.50568

49. It is required to find two whole numbers such, that

theiv sum shall be a square- and the sum of their squares a

biquadrate. Ans. 4566486027761 and 1061552293520
60. It is required to find four whole numbers such, that

the difference of every two of them shall be a square num-

ber. Atts. 1873432, 2288168, 2399057, and 6560657
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1 2
bl. It is required to fiod the sum of the series -+q
3 4 ... 3

J
1 +&C. continued to infinity. Ans. -

' 27^81 •'4
52. It is required to find the sum of the infinite series

3 9
,

27 81
,

243 S
-4 &c. Ans. --.

4 16^64 266^1024 7

63. Required the sum of the series 5+6+7-J-8+94-

kc. continued to n terms. Ans.
-^{n-h^p

54. It is required to find how many figures it would take

to express the 25th term of the series 2' +22 4-24+28 -{-

21 ^&c. Ans. .5050446 figures

65. It is required to find the sum of 100 terms of the

series (1X2)+(3X4)+(5X6)+(7X8)+ (9X 10) &c.

Ans. 343800
66. Required the sum of 12+22+32+42 + 52 kc. . .

. +602 which gives the number of shot in a square pile,

the side of which is 50. Ans. 42925
67. Required the sum of 25 terms of the series 35+36

X2+37X3+38X4+39X5 &c. which gives the number
of shot in a complete oblong pile, consisting of 25 tiers,

the number of shot in the uppermost row being 36.

Ans, 16576
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APPENDIX.

OF THE APPLICATION OF ALGEBRA TO

GEOMETRY.

In the preceding part af the present performance, 1 have
considered Algebra as an independent science, and confined

myself chiefly to the treating on such of its most useful

rules and operations as could be brought within a moderate

compass ; but as the numerous applications, of which it is

susceptible, eught not to be wholly overlooked, 1 shall here

show, in compliance with the wishes of many respectable
teachers, its use in the resolution of geometrical problems ;

referring the reader to my larger work on this subject, for

what relates more immediately to the general doctrine of

curves.*
For this purpose it may be observed, that when aay

proposition of the kind here mentioned is required to be

resolved algebraically, it will be necessary, in the first

place, to draw a figure that shall represent the several parts,
or conditions, of the problem under consideration, and to

regard it as the true one.

Then, having pi-operly considered the nature of the

* The learner before he can obtain a conipstent knowled^je of the me-
thod of application above mentioned, must lirst make himself master of the

principal propositions of Euclid, or of those contained in my Elements of Ge-

ometry ; in which work he will find all the essential principles of the science

comprised within a much shorter compass thaji in the former.

And in such cases where it may be requisite to esteud this mode of appli-
cation to trigonometry, mechanics, of any other branch of jnathematics, a

previous knowledge oi" the nature and principles of these eubjects will" be

equally necessary.
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«^u29tion, the ligure so formed, must, if necessary, be still

farther prepared for solution, by producing, or drawing,
such lines in it as may appear, by their connexion or rela-

tions to each other, to be most conducive to the end pro-

posed.
This being done, let the unknown line, or lines, which

it is judged will be the easiest to find, together with those

that are known, be denoted by the common algebraical

•symbols, or letters
; then, by means of the proper geome-

trical theorems, make out as many independent equations
as there are unknown quantities employed ; and the reso-

lution of ihes.e, in the usual manner, will give the solution

of the problem.
But as no s^neral rules can be laid down for drawing

the lines here mentioned, and selecting the propereet quan-
tities to substitute for, so as to bring out the most simple
conclusions, the best means of obtainingexperience in these

matters w*ll be to try the solution of the same problem in

different ways ;
and then to apply that which succeeds the

best to other cases of the same kind, when they afterwards

occur.

The following directions, however, which are extracted,
with some alterations, from Newton's Universal Arithmetic,
and Simpson's Algebra and Select Exercises, will often be
found of considerable ttse to the learner, by showing him
how to proceed in many cases of this kind, where he would
otherwise be left to his own judgment.

1st. In preparing the figure in the manner above men-

tioned, by producing or drawing certain lines, let them be
either parallel or perpendicular to some other lines in it,

or be so drawn as to form similar triangles ; and, if an an-

gle be given, let the perpendicular be drawn opposite to

it, and so as to fall, if possible, from one end of a given
line.

2d. In selecting the proper quantities to substitute for,
let those be chosen, whether required or not, that are
nearest to the known or given parts of the figure, and by
^eans of which the next adjacent parts, may be obtained

by addition er subtractien only, without using surds.
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3d. When in any problem, there are two lines, or quaa-

titles, alike related to other parts of the figure or problem,

the 'ibest w^y is not to make use of either of them sepa-

rately but to substitute for their sum, difference, or rect-

angle, or the sum of their alternate quotients ;
or for some

other iine or lines in the figure, to which they have both

the same relation.

4th. When the area, or the perimeter, of a figure is

given, or such parts of it as have only a remote relation

to the parts that are to be found it will sometimes be of

use to assume another figure similar to the proposed one,

that shall have one of its sides equal to unity, or to some

other known quantity ;
as the other parts of the figure, m

such c.ises. may tken be determined by the known proper^

tions of their like sides, or parts, and thence the resulting

equation required.
These being the most general observations that have

hitherto been collected upon this subject, 1 shall now pro-

ceed to elucidate them by proper examples ; leaving such

farther remarks as may arise out of the mode of proceed-

ing here used, to be applied by the learner, as occasion

requires to the solutions of the miscellaneous problems

given at the end of the present article.

PROBLEM I.

The base, and the sura of the hypothenuse and perpen-

dicular of a right angled triangle being given, it is requir-

ed to determine the triangle.

Let ABC, right angled at c, be the proposed triangle ;

and put Bc=6, aod ac—o;.
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Then, if the sum of ab and ac be represented by s, the

hypothenuse ab will be expressed by s—x.

But, by the well known property of right angled trian-

gles (Euc. I. 47)
AC2-{-BC3=:ab2, Of

a;2-f-62=52_2.v.r+a;^.

Whence, omitting x^ , which is common to both sides of

the equation, and transposing the other terms, we shall

have 2sx=s^~- b^, or

^—
2s-

'
• • • •

which is the value of the perpendicular ac
; where s and

b may be any numbers whatever, provided s be greater
than b.

In like manner, if the base and the difference between
the hypothenuse and perpendicular be given, we shall

have, by putting x for the perpendicular and rZ-j-a: for the

hypothenuse.
x~+2dx+d''-b--\-x^, or

b'-—d=

•zd

Where the base (6) and the given difference
(.d) may

be any numbers as before, provided b be greater than d.

PROBLEM ir.

The difference between the di.igonal of a square and
one of its sides being given, to determine the square.

* Tlie edition of Eudid, referred to in this and all the
fdlloiving' problems

is that of Dr. Simson, Loiidwi, 1801 ; which may also be used in tiie georac-
trital construction of these pi-oblems, should the student be inclined to exer-
cise his talents upon tliis elegant but more difficult branch of the subject

C C
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Let AC be the proposed square, and put the side bc, er

CB>, =a;.

Then, if the difference of bd and bc be put =d, the

hypothenuse bd will be =x-\-d.
""^

But since, as in the former problem, Bc^-f cd-, or 3Be^

=bd2, we shall have

2x2=^x'+2dx'\-d2,OT
x^—2dx=d^.

Which equation being resolved according to the rule

laid down for quadratics, in the preceding part of the

work, gives

x=d-\-dy/2.
Which is the value of the side bc, as was required.

PROBLEM III.

The diagonal of a rectangle abcd, and the perimeter,
or sum of all its four sides, being given, to find the sides.

Let the diagonal ac=</, half the perimeter ab-{-bc=g,
and the base bc=x

;
then will the altitude AB=a— x.

And since, as in the former problem, ab3-|-ec2=ac',
we shall have

a" '-2ax-{-x'' ^x'^ =d^ , or
d' -a3

x*~ax=—-—
.

2

Which last equation, being resolved, as in the former

instance, gives

Where a must be taken greater than d and less than d^5
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PROBLEM IV.

The base and perpendicular of any plane triangle abc

feeing given, to find the side of its inscribed square.

B F D O- C

Let EG be the inscribed square ;
and put bc=6, ad=/),

and the side o( the square eh or ef=x.

Then, because the triangles abc, aeh, are similar, (Euc.

VI, 4,) we shall have
AD : Bc y. Ai : EH, or

/)
: 6 :: (p—x) : X.

Whence, taking the products of the means and extremes,
<here will arise

px=:bp-~bx.
Which by transposition and division, gives

6+/)"
Where h and p may be any numbers whatever, either

whole or fractional.

PROBLEM V.

Having the lengths of three perpendiculars, ef, eg, eh,

drawn from a certain point e, within an equilateral triangle

ABC, to its three sides, to determine the sides.
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Draw the perpendicular ad, and having joined ea, eb,
and Eg, put KF=a, eg=6, eh—c, and bd (which is Ibc)

Then, since ab, bc, or ca, are each =2x, we shall have,
hy Euc. 1, 47,

ad—
./(AB2-BD2)=^(4a:2-x^)=^3a;2=x^3.And because the area of any plane triangle is equal to

half the rectangle of its base and perpendicular, it follows,
that

A ABC=::lBC X AD=xXx^3=X^ ^3,
ABKC=.JBcXEF=a:Xa =ax,
AAKC=iACXEG=a?X6 =bx.
AAEB=iABXEH=a:Xc = ex.

But the last three triangles bec, aec, aeb, are together,
equal to the whole triangle abc

, whence
ar ^3^=ax-}-bx-\-cx

And, consequently, if each side of this equation be di-

vided by X, we shall have

a\/3=a+64-c, or

a-^b-\-c
X= .

Which is, therefore, half the length of either of the
three equal sides of the triangle.

CoK, Since, from what is above shown, ad is = x^3,
it follows, that the sum of all the perpendiculars, dr^wn
from any point in an equilateral triangle to' each of its sides,
iS equal to the whole per; eudicular of the triangle.

PROBLEM VI.

Through a given point p, in a given eircle acbd, to draw
a cord cd, of a given length.
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€)raw the diameter apb
;
and put cd = a, ap = b, PB=e,

and cp=a;
;
then will PD=a—x.

But, by the property of. the circle (Euc. iii. 35,) cpx
PD=APXi'B; tvhence

a;(a— a;)=Ac, or

x-2 —ax=— be.

Which equation, being resolved in the usual way gives

x=ia+ ^{ia^''bc);
Where x has two values, both of which are positive.

vROBLEftf vrr.

TJirough a given point p, without a given circle abdc, to

draw a right line so that the part cv, intercepted by the

circumference, shall ba of a given length.

Draw PAB through the centre o
;
and put CD=a, PAn=:6,

^E=c, and pc=a; ;
then will pd=.t+"-

But, by the property of the circle, (Euc. ni, 36, cor. ;
pcXPt)=PA Xpe ;

whence

a-(x-T-o)=6c, or

x'-' -\-nx=hc.
Which equation being resolved, as in the former prob-

lem, gives

Where one value of x is positivje and the other nega-
tive.*

* The two '.ast problems, with a few slight alterations, may be readily em-

ployed for finding the roots of quadratic equations by construction ; but this,

as well as the metliods frequently given for consti-uctiug cubic and some of

the higher orders of equations is a matter of little importance in the presen;
state of mathematical science; analysis, in these cases, beinjgenerally though.
a.raore-conunodious instrunaent than geometry
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PROBLEM VIII.

The base bc, of any plane triangle ABc.^the sum of the

sides AB, AC, and the line ad, drawn from the vertex to the

middle of the base, being given, to determine the triangle

B D C
Put BD or Dc=o, AV—b, AB-j-Ac^=s, and ab=x; then

will AC=S—X.

But, by my Geometry, B. ii, 19, AB2-fac2=2bd2+^ad2;
wbence

a;2 4-(s—x)3 =2a2 4-262 ,
or

a;2 _sx= 0= 4-62— is2 .

Which last equation, being resolved as in the former

iBstances, gives

for the values of the two sides ab and ac of the triangle ;

taking the sign 4" for one of them, and — for the other and

observing that a'-\-b'^ must be greater than ^s^.

rjlOBLEM IX.

The two sides ab, ac, and the line ad, bisecting the ver-

tical angle, of any plane triangle, abc, being given to find

ihe base bc.

A
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Put AB=a, AC— 6, AD=c, and bc=x
; then, by Eac. vi.

3, we shall have

AB(a) : Ac(6) :: BD ^ DC.

And, consequently, by the composition of ratios (Euc.
y, 18,)

• > » «a;

a-j-b : a :: x : bd-

and

a-\-k : b '.', X : dc!

a+b'

bx

a+&
But, by Euc. vi, 13, bd xdc-{-ao'^=abXa.c ; where

fore, also,

ahx'^—--—--f.c2=a6, or
{a+by
abx^—(-a+byx{nb-c^).

From which last equation we have

, , ,. ab— c"^
;

Which is the value of the base bc, as required.

PROBLEM X.

Having given the lengths of two lines ad, be, drawn
from the acute angles of a right angled triangle abc, to the
middle of the opposite sides, it is required to determine
the triangle.

A

Put AD=a, BE =&, CD or icB=x, and CEor ^ca=i/ ; then,
since (Euc. i, 47) cd2+ca==ad2, and ce^+cb^^^be",
we shall have

a;3_j_42y2=:a2,
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Whence, taking the second of these equationsfromfour
times the first, there will arise

15^2 =40^—1,2^ or

4a2— fc2

^=^/—15-
And in like manner, taking the first of the same equa-

tions from four times the second there will arise

15a;2=4/;2 -a^, or

_ 462—a2

Which values of x and y are half the lengths of the base

and perpendicular of the triangle ; observing that b must

be less than 2a, and greater than iu.

PROBLEM XI.

Having given the ratio of the two sides of a plane tri-

angle ABC, and the segments of the ba«e, made by a per-

pendicular fulling from the verticle angle, to determine th^

:triangle.

Put BD=a, Dcc=6, AB=a;, ac=^, and the ratio of the

sides as m to n.

Then, since by the question, AB : ac : : m : n, and by
B. II, 16, of my Elements of Geometry, ab* —Ac2=BD2-~

Dc2
,
we shall have

X : y '.'. m : n, and

a;2 ^y2=„S ^{,2^

But, hy the first of these expressions, nx=.my^ or y~
"^

; whence, if this be substituted for y in the second.
m
there will arise
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n-'

And consequently, by division and extracting the square
i'oot, ne shall hare

a2-i»2
x=m^-- -, and

a2-62

m2 — n2

wbich are the values of the two sides ab, A€, of the than

gle, 33 was required.

PROBLEM XU.

Given the hypethenuse of a right angled triangle abc,
and the side of its inscribed square do, to find the other two
sides of the triangle.

B E
Put AB=fe, DE, or DF— s, Ac=a', and cb=?/ ; then, by

similar triangles, we shall have

Ac(x) : cb(i/) :: AF(a:
—

s) : fd(s).

And, consequently, by multiplying the means and ex-

tremes,

xy—sy=sx, or

xy=s{a:-\-y), ... (1)
But since, by Euc. I, 47, ac2-{-cb2 =ab2, we shall like-

wise have

x^^y^^-^h^ (2)
Whence, if twice equation (I) be added to equation (2),

there will arise

x^ -\-^xy-{-y^ =h^ -\-2s{x-\-y), or

(x-i-y)2
-

2s(x-\-y)—h'',
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Whicli equation, being resolved after the manner of a

quadratic, gives

Hence, if this value be substituted for y inequation (1),
there veill arise

X
j«-a;±y'(A2+s2)|

=8
js±y(/j2^sa)| ,

or

x"-
{»±v/(/i^+*0ja;=-sjs±^(/t«-f-s2)j

.

And. consequently, by resolving this last equation, we
shall have

aad

Which are the values of the perpendicular ac and base

BC, as nas required.

FROBLEH XIII.

Haring given the perimeter of a right angled triangle
ABC, and the perpendicular cd, falling from the right angle
•o the hypothenuse, to determine the triangle.A

B C
Putp=periraeter, cD=a, ac=x, and Bc=y ;

then ab=

But, by right angled triangles (Euc. i, 47) ac2-{-bc3=
4b2 ; whence

•r, by transposing the terms and dividing by 2

p{x-\-y)-^p''—^y (0
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And since, by similar triangles, ab : bc :; ac: cd, we
shall also have, by multiplying the means and extremes,

abxcd=bcXac, or

ap—a{x+y)=xy (2)
Whence, by comparing equation (I) with equation (2)

there will arise

{a-{-p)'X{x-^y)=ap+ip^.
Where

a+p

And if these ralues be now substituted for x-\-y and y in

equation (2), the result, when simplified and reduced, will

gire

(a-f-/')a;2 ^p{a'\-\p)x—— \ap^ .

From which last equation and the value of y, aboye
found, we shall have

and

And, if the sura of these two sides be taken fromp, the
result will give

Which expressions are, therefore, respectively equal to

the values of the three sides of the triangle.

PROBLEM XIV.

Given the perpendicular, base, and sum of the sides of
an obtuse angled plane triangle abc, to determine the tw*
sides of the triangle.
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C D
Let the perpendicular AD=p, the base bc=6, the sum

©f AE and Ac=s, and their difference =x.
Then, since half the difference of any two quantities

added to half their sum gives the greater, and, when sub-

tracted, the less, we shall have

AB=A(.s+x), and AC=i(s — ar).

But, by Euc. 1, 47, cd2=ac2— ad^, or cd—^\\(s—
a:)2_p2

j

.

and, by B. ii, 12, AB2=Bc2-fac3+2bcXcd ;

whence

And if each of the sides of this last equation be squar-
ed, there will arise, by transposition and simplifying the

result,

(s2_63)a:2=i2^s3. 62)_ 4/^3^2^ or

4h2

-=V(>-r^).
Whence, by addition and subtraction, we shall have

s
. b .. 4p2

AB:
'2+-^^^'-.>. -62

'2

), and

2^ ^ s«— 62

Whichiare the sides of the triangle, as was required.

rRoBLKM xr.

It b required to draw a right line bfe from one of the

angles b of a given square bd. so that the part fe, inter-

cepted by DK and dc, shall be of a given length.
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A- IH

C

Bisect FK in g, and put ab or Bc=rt, Foi or GE=Zf, and

BG =x ; then will BE=a;+^ and BF=a; — 6,

But since, by right angled triangles, ae2=be3 ~ ab^, we
shall have

And, because the triangles bcf, eab, are similar,

BF : BC BE : AE, or

Whence, by squaring each side of this equation, and ar-

ranging the terms in order, there will arise

re" — 2(a2 +^2 )r2 =6= (-2a2
— 62 ).

Which equation being resolved after the manner of a

quadratic, will give

And, consequently, by adding 6 to, or subtracting it from
this last expression, we shall have

BE=-^ jaa+62-j-a^(^i2^4j2)| ^^^ or

BF=^ ja2_{_62-j-a^(a2+462)|
-h.

Which values, by determining the point e, or f, will

satisfy the problem.
Where it may be observed, that the point g lies in the

circumference of a circle, described from the centre »,
with the radius fg, or half the given line.

PROBLEM xvr.

The perimeter of a right angled triangle abc, and the

raiius of its inscribed circle being given, to determine the

triangle.
Dd
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A.

Let the perimeter of the triangle =/), the radius od, or

OE, of the inscribed circle =r, ae=», and bd=i/,

Then, since in the right angled triangles aeo, afo, oe is

equal to OF, and oa is common, af will also be equal ae,

or X.

And, in like naanner, it may be shown, that bf is eqnal to

BD, or y.

But, by the question, and Euc. i, "47, we have

{x-{-7-)+{y-\-r}+{a:+y)=p, and

(^^^ry.^(y+ry={x+yy.
Or, by adding the terms of the first, and squaring those oi

the second,

r(^x-{-y)^^xy— ^"^ •

Hence, since, in the first of these equations, 2/=(^j7—r)

—x, if this value be substituted for y in the second, there

will arise

x-a_(|p_ r)x -—r{lp- r) .

Which 'equation, being resolved in the usual mamefj

gives

and

And, consequently, if r be added to each of these last

expressions, we shall have

AC=:^(^Lp^r)±^ \\[ip-ry-r{ip-r)\
,

and

BC=i(ip+r)q:y \l{^p~ry-r{ip-r)\
,

for the values of the perpendicular and base of the trian-

gle, as was required.
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VROELEM Xvfi.

From one of the extremities a, of the diameter of a

given semicircle ade, to draw a right line ae, so that the

part DE, intercepted by the circumfereace and iipeipendi-
cular drawn from the other extremity, sh?.U be of a givea

Fength.

C

/' \\
^N
\j

Let the diameter AB=<i,DE=a, and AE-=r ; and Join e3j>.

Then, because the angle adb is a right angle, (Euc. m,
31,) the triangles abe abd, are similar.

And consequently, by comparing their like sides, we
shall have

AE : AB : : AB : AD. or
X : d y, d : x—a.

Whence, multiplying the means and extremes of these

proportionals, there will arise
*

x^ -~ax~d^ ,

Which equation, being resolved after the usual manner,

gives

PROBLEM XVtir.

To describe a circle through two given points a,, b, that ^
shall touch a right line cd given in position.

*

C I G^H
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Join AB
;
and through o, the assumed centre of the re-

quired circle, draw fe perpendicular to ab
;
which will bi-

sect it in E (Euc. lu, 3).

Also, join OB
;
and draw eh, og, perpendicular to cd

;

the latter of VY-hich will fall on the point of contact g

(Euc. HI. 18).

Hence, since a, e, b, h, f, are given points, put EB=a,
EF=6, EH=^c, and zo=-x

;
which vvill give OF=h— x.

Then, because the triangle oeb is right angled at e, we
ghail have

OB^ =eo*+eb2 , or

03=^(^x^ -{-a- ).

Butj by similar triangles, fe : eh :; ro : og or oe
;
or

h : c ',; b~x : ob
; whence, also,

OB— -(A— x).

And, consequently, if these two values of ob be put

^.quul to each other, there will arise

^(.,-24. a )=^-{b~x).

Or, by squaring each side of this equation, and simpli-

*ying the result,

(62_c2):c2 4-2ic2a:=fc2(c2_a2).
Which last equation, when resolved in the usual man-

ner, gives

X-

for the distance of the centre from the chord ab
;

where 6 must, evidently, be greater than c, and c greater
han a.

PROBLEM XIX.

The three lines ao, bo, co, drawn from the angular

points of a plane triangle abc, to the centre of its inscrib-

ed circle being given, to find the radius of the circle; and

the sides of the triangle.
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A

B EC
Let o be the centre of the circle, and, on ao produced,

let fall the perpendiculars cd
;
and draw oe, of, or,, to the

.points of contact e, f, g.

Then, because the three angle? of the triangle abc are,

together, equal to two right angles, (Euc. i, 32) the sum
of their halves oac-j-oca+obe will be equal to one right

angle.
But the sum of the two former of these, oac+oca, is

equal to the external angle doc
;
whence the sum of doc

+OBE, as also of doc+ocd, is equal to a right angle ; and,

consequently, oBE"-=ocr>.

Let therefore, Ao=a5 bo=/^, go=c, and the radius oe,

-OF OF 0G=a;.

Then since the triangles boe, cod are similar, bo
t -

OE : I CO : OD, or 6 : a; : : c : od
;
which gives

OD=-|^,
and i:^=^{e- -^^) ov^^^{h"-

^%-).

Also, because the triangle aoc is obtuse angled at o, v?^

-shall have (Euc. ir, 12.)
Ac2=Ac2--['Co2-t-2AoXoD ;

or

,
2ac.T. ,6(a3-l-c2)4-2ncr.

Ac=v^(a^ 4-c^+-^ )
or ^{-^-^^-J^- )

,

.
But the triangles acd, aof, being likewise similars

AC : CD : : AO : OF, or

Ma^-{-c^)-\-2acx. c „
-v/(-^—^-y-^- )

:

-^v^Ci^-x^)
r, a-.'x.

Whence, multiplying the means and extremes, and squar^
ing the result, there v/ill arise

6;c2 1&(a2 +c3)-f-2ac.r| =a^c^{h^ -x"^).

Or, by collecting the terms together, and dividijig oj.
3the coefficient of the highest power of x,

s d 2
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APPLICATION, &c.

From which last equation x may be determined, and
thence the sides of the triangle.*

PROBLEM XX.

Given the three sides ab, bc, cd, of a trapezium aecd.
ini-cribed in a semicircle, to find the diameter, or remain-

ing side AD.

Let AB=a, Bc=6, cd=c, and AD=a;
j then, by Euc. vi,

D, acXbd:=adXbc-)-ab XcD=,^x4-«c.
But ABD, ACD, being right angles, (Euc. iii, 31,) we

shall have

AC==^/(AD3_De3), or s/{x^-c^), and

bd=v(ad2 -AB2),or v'C^^-o'*)-
Whence, by substituting these two values in the former

expression, there will arise

^ (.t2 _c2) X v/ {x^ -a2)=i.r+flc.
Or, by squaring each side, and reducing the result,

a;3— (a3+fc2-f-c2)af=2afcc.
From which last equation the value of jrmay be found,

as in the last problem. t

* This, and the following- problem, cannot be constrticted geometricallj,
or by means only of rigrht lines and a circle, being what the eincients usuallj
denominated solid problems, from the circumstance of their involving an

eC(uation of more than two dimensions ;
in which cases tbey generally employ-

ed tlie conic sections, or some of the higher orders of curves.

f Newton, in his Universal Arithmetic, English edition, 1728, has resolved

this problem in a variety of difierenl ways, in order lo show, that some me-

tiiods of proceeding, in cases of tiiis kinl fr^q'icntly lead to more elej^aut so-

hitions than otliers
; and that a ready knov/ledge of tkese can enly bt obtaiii-

ed by practice.
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MISCELLANEOUS PROBLEMS.

PROBLEM 1.

To find the side of a square, inscribed in a given semi

circle, whose diameter is d.

1

Ans.-d^b6

PROBLEM n.

Having given the hypothenuse (13) of a right angled

triangle, and the difference between the other two sides

(7), to find these sides* Ans. 5 and 12

PROBLEM iir.

To find the side of an equilateral triangle, inscribed in

a circle whose diameter is d
j
and that of another circum-

scribed about the same circFfe.

Ans. \d^3, and d'^o

PROBLEM IV.

To find the side of a regular pentagon, inscribed in a

circle, whose diameter is d. Ans. \d^(\0—2^ o)

PROBLEM V.

To find the sides of a rectangle, the perimeter of which
shall be equal to that of a square, whose side is a, and its

area half that of a square. Ans. a-\-\ay/^ and a — 4ay/2

PROBLEM VI,

Having given the side (10) of an equilateral triangle, to

snd the radii of its inscribed and circumscribing circles,

Ans. 2.8868 and 5.7736

* Such of these qufstioni a? ane prcposod in mimbers, should first be re-

solved gcnerall;-, by means Cf iJi#l>?ual «} mbois and then reduced to the aii-

s^vc^s above given, by substituting the numeral values of the letters iu the re-

sults thus obtained.
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PROBLEM Vri.

Having given the perimeter (12) of a rhombus, and the
sum (8) of its two diagonals, to tind the diagonals.

Ans. 4+ v'2 and4— v/2

PROBLEM VIH,

Required the area of a right angled triangle, whose hy-
pothenuse is x^^ ,

and the base and perpendicular a;^" and
x^. Ans. 1.029085

PROBLEM IX.

Having given the two contiguous sides (a, b) of a paral-

lelogram, and one of its diagonals (cZ),
to find the other

diagonal. Ans. v^ (2a2 4-2^2 —d^)

PROBLEM X.

Having given the perpendicular (300) of a plane trian-

gle, the sum of thetwo sides (1150), and the difference of
the segments of the base (495), to find the base and the

«ides. , Ans. 945, 375, and 780

PROBLEM XI.

The lengths of three lines drawn from the three angles
of a plane triangle to the middle of the opposite sides, be-

ing 18, 24, and 30, respectively :,
it is required to find the

sides. Ans. 20, 28.844, and 34.176

PROBLEM Xn.

In a plane triangle, there is given the base (50), the

-area (798), and the difference of the sides (iO), to find the

-sides and the perpendicular.
Ans. 36, 46, and 33.261

fROBLEM XIll.

Given the base (194) of a plane triangle, the line that

bisects the vertical angle (66)^and
the diameter (200) of

the circumscribing circle, to find the other two sides.

Ans. 8i.365§7 and 157.43865
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PBOBLEM XIV.

The lengths of two lines that bisect the acute angles of

a right angled plane triangle, being 40 and 50 respectively,

it is required to determine the three sides of the trinngle.

Ans. 35.80737, 47.40728, and 59.41143

PROBLEM XV.

Given the altitude (4), the base (8), and the sum of the

sides (12), of a plane triangle, to find the sides.

4 4
Ans. 6+-yoand6— -y'S

PROBLEM XTI.

Having given the base of a plane triangle (15), its area

(.45), and the ratio of its other two sides as 2 to 3, it is re-

quired to determine the lengths of these sides.

Ans. 7.7915 and 11.6872.

PROBLEM XVn.

Given the perpendicular (24), the line bisecting the

base (40), and the line bisecting the vertical angle (25) to

250
determine the triangle. Ans. The base —;-\/7

From which the 'other two sides may be readily found.

PROBLESI XVIII.

Given the hypothenuse (10) of a right angled triangle,
and the difference of two lines drawn from its extremities

to the centre of the inscribed circle (2), to determine the

base and perpendicular. Ans. 8.08004 and 5.87447

PROBLEM XIX.

Having given the ler)gths (a, b,) of two chords, cutting
each other at right angles, in a circle, and the distance (c)
of their point of intersection from the centre, to determine

the diameter of a circle.

Ans. v' J8(a3-|-6«)-f2c3i

PROBLEiM XX.

Two trees, standing on a horizontal plane, are 120 feet

asTinder ;
the height of the highest of which is 100 feet.
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and that of the shortest 80
; whereabouts in the plane must

a person place himself, so that his distance from the top
of each tree, and the distance of the tops themselves, shall
be all equal to each other ?

Ans. 20^^21 feet from the bottom of the shortest,
and 40^3 feet from the bottom of the other.

PROBLEM 2Xr.

Having given the sides of a trapezium, inscribed in a cir-

cle, equal to 6, 4, 6, and 3, respectively, to determine the
diameter of the circle.

Ans. —v/(l30X 153) or 7.061595

rROBLEM XXII.

SupposL-.g the town a to be 30 miles from b, b 25 miles
from c, and c 20 miles from a

; whereabouts must a house
be erected that it shall be at an equal distance from each
®f t^em ? Ans. t6. 11 8556 miles from each

PROBLEM XXIir.

Given the area (100) of an equilateral triangle abc,
whose base bc falls on the diameter, and vertex a in the
middle of the arc of a semicircle

; required the diameter
of the semicircle. Ans. 20*/3

PROBLEM XXIV.

In a plane triangle, having given the perpendicular (p),
and the radii

(r, r) of its inscribed and circumscribing cir-

cles, to determine the triangle.

Ans. The base '^^^~^"-^^"-'").

PROBLEM XXV.

Having given the base of a plane triangle equal to 2a,
the perpendicular equal to a, and the sum of the cubes of
it's other two sides equal to three times the cube of the
base

; to determine the sides.

Ans. a(2+-^6)anaa(2--^6)



ERRATA.

N. B. All the lines in the second column are reckoned from the top.

PAGES. LINES.

xi 4 For Simpson's, read Simpson.
For Addition, read Subtraction.

4c 4c2
For —-, read +—r"-

a a
For 6a read —6a.

8 9 10 For i2ax, —2xy, and 6a6, read \^a^x,
—2a;3y, and Qa*h.

For —y, read -^y^.
For 8b, read 8'j* .

„ 5x2 5jj2

tor——, read -—-.
2

'

26

For , read .

a a2

For Aa^x, road ^a^x.

For x—\, read x^ —2x-\-\.
^^

,
a

For y/—,read */— .

For Xy/x
— a2

,
read x^/{x

— a^ ) ,

For m/a and 2|2/a6, read A\l/a and 2|.

F©r 3/(6(1 +^2-fv^4)), read ^(6(1+
3/24-3/4)).

'

For -v/(a+v^— 6), »"ca<i ^/(a- V'-ft)*
For .^(ax-a:^), r«ad v/(a2-.x2).
For or, (£e/e or.

For — (a;3-iy),
read -(x«-t/»)-

12



ERRATA.

FACES. LINES.

80 4 8 23 For ^9, -i^— 5, and Cardaus', read i/
9,

•—
^v^5, and Cardan's.

86 12 For ^\0-2^2-\-{2-^5)y.\/5, read4

103 23 For 29i, read 9,

114 3 13 /brx2+j/3, read x^-^y^y and /or IS-f,
read +13.

135 37 /or alO— a;, read Of, 10-ar,

155 14 For a+c, read d+c.
157 1 For 2763, ,.gad 27*2.
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