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PREFACE

THE present work is an expansion of a course of

lectures which I have annually delivered for some

years past at Queen's College, Oxford.

Its primary object is, as was the case in the lecture

room, that of explaining with all the clearness at my
command the leading principles of invariant algebra, in

the hope of making it evident to the junior student

that the subject is attractive as well as important, and

that its early difficulties are only such as he can readily

surmount. Lucidity in mathematical works has often

suffered from undue compression. My constant aim

has been to guard against such a possibility here. In

a book of moderate size dealing with a great subject

much must remain unsaid, if the fundamental con-

siderations are to be presented with the thoroughness

and the perspicuity necessary to enable the student

adequately to realize them, and give him the interest

in them which will prepare him to pursue for himself

the study to which they introduce him.

But, while the interests of the beginner have thus

been given precedence, I am Dot without hope that the

mathematician who is not new to the higher algebra

will, especially in the chapters near the middle of the
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book, find in its pages matter of value to him as an aid

to his researches. In some branches of the theory,

which though of really elementary character are of

comparatively recent investigation, as for instance in

much of the algebra of differential operators, it is

believed that a welcome supplement to previous

treatises is offered.

The title 'Algebra of Qualities' is perhaps one of

my own introduction. It probably needs no defence,

Miid can hardly fail to convey the right meaning. The

mathematical world has now for half a century as-

sociated the algebra of invariants and covariants witli

the name of Cayley, and with his
* Memoirs on Quan-

tics,' so that it may perhaps be regarded as appropriate

that a new work, appearing in the year which has seen

the close of the labours of the renowned author of

those memoirs, and dealing with their subject, should

bear a name which recalls his memory.
To Salmon's Higher Algebra and his other works it

is impossible to say how much I am indebted, both for

direct reference and for guidance to the use of other

authorities. Fail de Bruno's Formes Binaires lias also

been constantly before me. Of Clebsch's Binare For-

men and Gordan's Invariantentheorie less use has been

made, as their symbolical method, arid their successful

application of it to the great problem of the investiga-

tion of complete irreducible systems, have been re-

luctantly passed over with little more than an allusion

in the following pages. A scanty chapter or two on

this subject would have been utterly inadequate, and

inconsistent with the general plan, as stated above, of

an introductory treatise which prefers to omit rather
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than to obscure by condensation. A whole work which

si i all present to the English reader in his own language
a worthy exposition of the method of the great German

masters remains a desideratum.

The reader will not, however, find that the present

work is a compilation from others which have preceded

it, great as has been the help which those others have

afforded. Constant recourse has been had to the

original authorities, particularly of course to Cayley's

series of memoirs, arid to Sylvester's writings in the

Cambridge and Dublin Mathematical Journal, the

American Journal of Mathematics, and elsewhere.

No bibliography of works and memoirs on the subject

has been introduced. All mathematicians who wish

to go deeply into the study of original authorities

will have in their hands Dr. F. Meyer's
' Berich t

tiber den gegenwartigen Stand der Invariantentheorie
'

in the ' Jahresbericht der Dentschen Mathernatiker-

Vereinigurig
'

for 1890-91, which is so full and thorough
a bibliography and analysis of what has been done,

especially in the later period of the history of the

invariant theory, that it is hard to see how more can

be desired. With regard to the originators of particular

results, the difficulty continues, and has grown with

the multitude of investigators, which was felt by
Dr. Salmon when he wrote, 'I can scarcely pretend
to assign to their proper authors the merits of the

several steps; and, as between Messrs. Cayley and

Sylvester, perhaps these gentlemen themselves, who

were in constant communication with each other at

the time, would now find it hard to say how much

properly belongs to each.' To the difficulty wit-h
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regard to Cayley and Sylvester may in particular

be added that of discriminating between what in

Salmon's work should be ascribed to them or others at

all and what to Salmon himself. Throughout the

following pages discoverers' names are very frequently

attached to results
;

but it is too much to hope,

though all care has been taken, that there are not

cases in which the names given are those of authors

in whose writings the results in question have certainly

occurred, rather than those of the authors who first

gave them.

I am indebted to several friends for suggestions and

other help. Among them there is one, Mr. J. Ham-

mond, M.A., one of the most distinguished of living-

researchers in the higher Algebra, to whom my especial

thanks are due for a manuscript on the binary quintic

which has been exceedingly helpful.

Some students, approaching the subject for the first

time, will be advised to omit chapters vii to xi till

part of what follows them has been read.

E. B. ELLIOTT.
OXFORD,

September, 1895.
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AN INTRODUCTION

TO

THE ALGEBEA OF QUANTICS,

CHAPTER I.

PRINCIPLES AND DIBECT METHODS.

1.] Quantics or Forms. A function of any number of

variables X, y, z, ..., which is rational, integral, and homp-

.geneous in those variables, is called a quantic in x, y, z,

The coefficients in a quantic are constants as far as x, y, z, ...

are concerned. The idea of the variability of x, y, z, ... is

rarely introduced. We call them variables only to have
a distinctive name for them.

If there be only two variables x, y, the quantic is spoken
of as a binary quantic ;

if three x, y, z, as a ternary quantic ;

if four, as a quaternary quantic ;
and so on. If there are q

variables, where q is any number, we may call it a q-ary

quantic.

The degree of a quantic in the variables x, y, z, ... is

generally spoken of as its order. Quantics of the first, second,

third, fourth, . ..,pfh orders are called briefly linear, quadratics,

cubics, quartics, . . . p-ics.

Thus for instance ax^ + 3 bx~y + 3 cxy
2 + dy

3
is a binary

cubic, and ax* + by
2 + cz2 + 2fyz + 2gzx + 2kxy is a ternary

quadratic.

By some English and most foreign writers the word Form
is used as synonymous with and instead of the word Quantic.
Both words being well established, they will be used almost

indiscriminately in this work.
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Attention will often be concentrated on binary quantics
alone. The binary >-ic will almost invariably be considered

in the form

a xp +pal x^y
L . &

which it is usual shortly to symbolize by

(a ,a1} a2t a3t ... ap) (x, y)
p

.

It is of course clear that, if a
,
a

x ,
a
2 ,

a3 ,
... ap be capable

of receiving any values whatever, this is neither more nor

less general than the form

b xp + \xp- l

y + b2x
p ~ 2

y
2 + b3x

p
-*y

3
-f . . . + b^xy*-

1 + bpy
p

,

which it is the custom to denote by

(b ,bl ,b 2 ,b.i ,...bpi(x, yy.

The advantages gained by use of the first form, in which
rn f

rft_ J \

the numerical coefficients l,p,
^

\* ,
... in the^>th power1.2

of a binomial are explicitly introduced as factors of the

coefficients in order in the binary >-ic, will become apparent
in the sequel.

Analogous advantages are gained in general, when quantics
in higher numbers of variables are being dealt with, by the

explicit introduction of multinomial coefficients. Thus in

the general #-ary p-ic in the variables #15 x.
2 ,

... x
q

it is

convenient to consider each coefficient to be the product
of a factor denoted by a letter, to which any value whatever

may be assigned, and the coefficient of the corresponding
term in the expansion of (xl + x

2 + . . . + x
q )
p

.

When speaking of the coefficients in a binary quantic

(u , 15 a2 , ... ap) (x, y)
p

} we as a rule mean a , al9 a.
2 , ... ap ,

andnota ,>a15 / 2
a*> > an(* analogously for quantics

in higher numbers of variables.

2.] Linear transformation. If in a quantic we replace
each of the variables by a sum of multiples of first powers
of an equally numerous set of new variables, if for instance,
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the variables originally involved being x, y, z, ..., we sub-

stitute for them according to the scheme

x = I X +m Y+n Z+...,

where there are just as many of X, Y, Z, ... as of 02, y, z, ...,

we are said to make a linear substitution in the quantic, or

to lijiearly transform the quantic ;
and the new quantic in

X, Y, Z, ... which we obtain is spoken of as a linear trans-

formation of the original quantic.
The determinant

, 7
I V) l**l **>

I', m', < ..

whose constituents are the coefficients, in their natural order,

of the new variables X, Y, Z, ... in the expression for the old

ones x, y, z, ..., and which accordingly consists of as many
rows and columns as there are variables in either set, is

called the modulus of the substitution or of the transfor-

mation. It will often be convenient to denote it by a single

letter. The letter which will be as a rule chosen is M.

The original variables x, y, z, ... are as a rule taken to be

all independent. It is unlawful then to substitute for them

any expressions in terms of new variables which are not

all independent. Now if X. Y, Z, ... are all independent the

linear expressions

Y+n Z+ ...,

rn'Y+n'Z+...,

l"X + m"Y+n"Z+..

are or are not all independent according as the modulus M
does not or does vanish. We must impose then on the

generality of the coefficients in a lawful scheme of linear

substitution the one limitation that the modulus M do not

vanish.

We are now in a position to define invariants and covariants.

B 2
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3.] Invariants and Covariants.

An invariant of a single quantic is a function of the

coefficients in that quantic which needs at most to be mul-

tiplied by a factor which is a junction. only of the coefficients

in a scheme of linear substitution to be made equal to

the same function of the corresponding coefficients in the

quantic into which the given quantic is transformed by that

scheme.

An invariant of two or more quantics in the same variables

is a function of the two or more sets of coefficients in those

quantics which needs at most to be multiplied by a factor

which is a function only of the coefficients in a scheme of

linear substitution to be made equal to the same function

of the corresponding coefficients in the quantics into which

the given quantics are transformed by that scheme.

A covariant of a single quantic, or of two or more quantics
in the same variables, is a function of the variables and of

the coefficients in that quantic or those quantics which has

the like property; namely that of needing at most to be

multiplied by a factor which is a function only of the

coefficients in a scheme of linear substitution to be made

equal to the same function of the new variables and of the

corresponding coefficients in the quantic or quantics into

which the given quantic or quantics are transformed by
that scheme.

For instance, let the binary p-ic

(aot alt a2 ,
... ap)(x,y)

p

be transformed by the linear substitution

x = IX +m Y,

and become

where A
, A^ A

2 ,...AP are functions of a
,
a

1 ,
a2 ,...ap ,

and
I, m, I', m': then/(a ,

a]5 az ,...ap )
will be an invariant if an

identity hold of the form

f(A ,
A l} A 2 ,...A p)

=
<j> (I, m,l',m')f(a0) a1 ,a2 ,...ap),
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and F(a ,a1 ,
a2 ,...ap , x, y) will be a covariant if an identity

hold of the form

=
(j> (I, m, I', m') F(a01 alt a

2 ,...ap , x, y).

Again, if the same substitution transforms another binary

quantic in x, y

(a;, a/, a
2',...aV)foy)

P '

into

/(, al5 ...ap ,
a

', a/,...aV) will be an invariant of the p-ic
and the p'-ic jointly if an identity hold of the form

and F (a ,
a 15 . . . ap ,

a ', a/, . . . a'p', x, y) will be a covariant if an

identity hold of the form

F(A ,
A

lt ...Apt
A

Q',A^...A'+Xt Y)
= $ (I, m, l'

t m') F(a -

t a^...ap ,
a ', a^...afp>, x, y).

It will be noticed that covaria'nts include invariants as

a particular case.

4.] In every case the factor depending only on the co-

efficients in the scheme of substitution in the identity which

expresses the fact of invariancy or covariancy is as a matter

of fact a power of the modulus M. In particular for any
invariant or covariant of a binary quantic or binary quantics
the (/> (I, m, l\ m') above is a power of Im'l'm. It is

a departure from usual practice not to apparently narrow
the definition of invariants and covariants by stating this as

a requirement. It will probably be granted that the de-

parture is a proper one, for the necessity is a proposition
which can and will be proved hereafter, and, were there any
functions such as contemplated in the definitions for which

the factor was other than a power of the modulus, their

property would be none the less appropriately described as

invariantic. The fact that there are not really such functions

is one of sufficient interest in itself and of sufficient import-
ance in its applications to deserve proof and prominence.
No limitation requiring functions defined as invariants and
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covariants to be rational and integral has been imposed in

the definitions. There are in fact irrational and fractional

functions which have the property of invariancy and co-

variancy, as well as others which are rational and integral.

The main quest in this work will be however for invariants

which are rational and integral, and for covariants which are

rational and integral both in the coefficients and in the

variables, and the words invariant and covariant will as

a rule be used as meaning rational integral invariant and
rational integral covariant.

There is a greater completeness about a system of rational

integral invariants and covariants than is at first sight appa-
rent, in that all invariants and covariants can be expressed in

terms of such as are rational and integral. The present is not

the stage at which to attempt to prove this fact, but the case

of covariants of a single binary p-ic may be mentioned as

an instance. It will be seen in Chapter III that there cannot

be more than p absolutely independent covariants, including
the p-ic itself and invariants. If then we have p 1

absolutely independent ones, any other can be expressed as

a function of them. Also in Chapter X a system of p
absolutely independent covariants will be found which are

all rational and integral. It will follow that all other Co-

variants, including such as are irrational or fractional, can
be expressed in terms of them.

5.] A little careful consideration will show that we ought
not to be surprised at the existence of invariants and Co-

variants. Consider for instance a binary quantic. It is

equivalent to a product of linear factors, to grant which is

only to grant the fundamental theorem of algebra that every
rational integral equation has a root, and therefore p roots

if its order be p. A relation in the coefficients of the quantic
will be equivalent to the expression of some special fact with

regard to those linear factors. In particular there will be
some relations which express kinds of interdependence among
two or more factors which are not altered by the application
of a linear transformation of the variables. Such a relation

will necessitate the corresponding relation among the co-

efficients in the transformed quantic. In other words the
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function of the coefficients of the given quantic whose

vanishing gives the relation in question must be a factor of

the same function of the corresponding coefficients of the

transformed quantic.
Thus in particular the vanishing of the discriminant of

a binary quantic is the condition, sufficient and necessary,
that the quantic have two identical linear factors. Now, if

it have, so clearly must the result of replacing in it x and y

by IX +mY and I'X + m'Y. Consequently, if the discriminant

of the given quantic vanish, so too must that of the linearly
transformed quantic. In other words the first discriminant

must be a factor of the second. That the remaining factor

must be a function of I, m, I', m' only is to be expected

because, the discriminant being homogeneous, and each co-

efficient in the transformed quantic being linear in the

coefficients of the untransformed, the degrees of the two
discriminants in the coefficients of the untransformed quantic
are the same. It will presently be proved with complete

rigour that the discriminants of all quantics, and not of

binary quantics only, are invariants.

Again, by thinking of the eliminant or resultant of two

binary quantics we can realize that invariants of two or more

quantics jointly are with equal reason to be expected. The

vanishing of the eliminant of two binary quantics is the

necessary and sufficient condition for those quantics to have

a common factor. If they have, so equally must their linear

transformations. In other words, if the eliminant of two

binary quantics vanishes, so must that of the two transformed

quantics. The former eliminant is then a factor of the latter.

6.] To convince ourselves of the a priori reasonableness of

expecting covariants to exist, we shall do well to avail our-

selves of geometrical representation.
Let us take axes of Cartesian coordinates inclined at any

angle, which it is best to regard as unknown, since otherwise

we may be in danger of introducing or implying its value in

functions with which we deal, and so bringing in ideas not

afforded by the quantics and transformation that are before

us. The factors of a binary quantic or quantics correspond
each to a straight line through the origin, the straight line



8 GEOMETRICAL REPRESENTATION. [6

in each case whose equation is obtained by equating to zero

the factor under consideration.

Let us now consider what is effected by the linear substitu-

tion x = IX + mY, y = I'X + m'F, regarding the substitution

not as implying a change of axes but as expressing the co-

ordinates of one point (x, y) in terms of those of another

(X, Y) with regard to the same axes. The first point (x, y)

being definite, so is the second (X, Y). Moreover to different

points (x, y) on a straight line through the origin correspond
different points (X, Y) on another line through the origin, for

Y y
^ is uniquely determined in terms of - In fact we have
A X

l' +mf ~ l
y

l'

y X . Y x- = - ^ > so that -. = -
x , i A , y

l + m y m m -
.A. X

Now the student of geometry will recognize from this that

the two lines on which (x, y) and (X, Y) lie have a definite

homographic or projective correspondence for given values of

I, m, I', m'. The effect then of the linear transformation is to

replace points on lines through the origin by corresponding

points on projectively corresponding lines through the origin.

The pencil of lines representative of any given binary

quantic or quantics is accordingly replaced by any linear

transformation by a projectively corresponding pencil of lines.

Is there any other pencil of lines associated with the first

pencil, whose projective correspondents are associated with

the second pencil exactly as they themselves are with the

first
1

? If so, then the equation of their correspondents may
be formed either by applying the linear transformation to

their equation or by forming an equation from the trans-

formed quantic or quantics in precisely the same way as their

equation was formed from the given quantic or quantics.
In other words, the derived quantic which equated to zero

gives their equation, and that derived in like manner from
the transformed quantic or quantics, are identical, but for

a possible factor independent of the coordinates. Such
a derived quantic will be a covariant if only the factor

involve merely the constants I, m, l
f

,
m' of the transformation

and not also the coefficients in the quantic or quantics. But
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the factor must be of no dimensions in the coefficients of the

quantic or quantics, for each coefficient in the transformed

quantic or quantics is homogeneous and of one dimension in

them. Thus it is to be expected that what is required will be

the case.

Now as a rule there are of course lines associated with

a given pencil in such a way that if they and the pencil are

replaced by others by protective transformation the character

of the association is preserved. In particular harmonic pro-

perties are unaltered by projective transformation.

Thus, for instance, it suggests itself that a binary quadratic
and a linear form have jointly a linear covariant, namely the

harmonic conjugate of the linear with regard to the quadratic
see Ex. 6 below : or again, that two binary quadratics have

jointly a quadratic covariant, their common pair of harmonic

conjugates see Ex. 7 below : or once more, that a binary
cubic has a cubic covariant, composed of the three harmonic

coDJugates of the three factors singly each with regard to the

other two factors a fact which will be established later.

7.] We have now suggested to us a number of classes of

functions which are likely to be invariants and covariants, and

which may be examined by the direct method of substitution.

Ex. 1. To verify that ac 6
2

is an invariant of the binary quadratic
ax~ + 2 bxy + cy

2
,
of which it is the discriminant.

If by the substitution x= IX+m Y, y = I'X+ mf Y.

ax2 + 2bxy + cif become AX Z+ 2BXY+ C F 2

,

we have A = a? + 2 Ul' + cl'\

B = aim + b (Imf+ I'm) + d'mf,

C = am2 + 2 bmmf + cm''1 .

Hence at once

AC-B 2 = Fm'*

Ex. 2. Verify that the eliminant ab' a'b is an invariant of the

two binary linear forms ax + by, ax + b'y.

Ans. AB'-A'B = M(ab'-a'b).

Ex. 3. Verify that the eliminant a&'
2

2&a'6'-f ca' 2
is an invariant

of the quadratic and linear forms ax2+ 2 bxy + cy
2

,
ax+ Vy.

Ans.
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Ex. 4. Verify that ac'+ a'c 2&6' is an invariant of the two binary

quadratics axz + 2 bxy+ c?/
2

,
ax'+ 2 b'xy + c'?/

2
.

4Cf/+ 4 /
(7-2jBJS' = M 2

(ac' + ac-2W). The vanishing
of this invariant is the condition that the two quadratics denote pairs
of harmonic conjugates.

Ex. 5. Verify that ae 4&d+3c2
is an invariant of the binary

quartic ax4+ kbtfy+ Qcx^y
2+ 4dxy*+ ey*.

Ans. AE-4BjD+3C2=Mi

(ae4bd + 3c'
2

).

*, Ex. 6. Verify that b'(ax+ by) a'(bx + cy) is a covariant of the

binary quadratic and linear forms ax^+ Zbxy+cy"
2
,
a'x+ b'y.

Ans. B'(AX+BY)-A'(BX+CY)
= M{b'(ax+by)-a'(bx+ cy)}.

This covariant is the harmonic conjugate of the linear witli regard to

the quadratic form.

Ex. 7. Verify that (ab' -a'b)x?+ (ac' a'c}xy + (bc' Vc)f is a

covariant of the two quadratics ax L+ 2 bxy+ cy*, ax*+ 2 b'xy + c'y*.

Ans. (AB'-A'B}X* + (AC'-A'C)XY+(BC'-B'C) 7
2

=M
{ (ab'afb] x* + (ac

f -
ac) xy+ (be'

-
b'c) if \

.

This covariant is the common pair of harmonic conjugates with regard
to the two quadratics.

Ex. 8. Verify that (ac-b
2

)x*+(ad bc)xy+ (bd
-
c^y* is a co-

variant of the binary cubic ax^+ 3bx*y+ 3cxy
2+ dy

s
.

Ans. (AC-B*}X*+(AD-BC)XY+(BD-C*)Y*

8*] Several of the above examples are particular cases of

general facts, tbe proof of which will next occupy us.

Thus Example 1 is a particular case of the general theorem
that the discriminant, or eliminant of the various first partial
differential coefficients, of any quantic whatever, is an invariant

of that quantic.

Again, Examples 2 and 3 are cases of the general fact

that the eliminant or resultant of any number of quantics
in as many variables is an invariant of those quantics

jointly.

Examples 6 and 7 are cases of the theorem that the

Jacobian or Functional Determinant
( 10) of any number of

quantics in as many variables is a covariant.

Once more, Example 8 is a case of the fact that the Hessian
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>f a quantic, i. e. the Jacobian of its first partial differential

oefficients, is a covariant of the quantic.

9.] Eliminant of linear forms. We may at once prove

t first extension of Example 2, that the eliminant of any
lumber of linear forms in that same number of variables is

invariant of those linear forms.

Let there be n variables x
lt
x

2t
a?3 , ... xw and let the n linear

forms be
anx1 + a12x2 +...+aln xn ,

>

<%?! + a22x2 + ...+a.2n xn ,

and let the scheme of linear substitution

7 V i 7 V i i 7 V"

transform them into *

Then we see at once that, each of r and s being any number

between 1 and n inclusive,

so that, by the ordinary theorem for the multiplication of

determinants,

J25 -"-\n 'n ) ^12' " 1 ^11 > ^12'

'21 22 ' * * ' 2n X

7 7 7
''nl J

Vn1 )
' ''nn

^22
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10.] Jacobians are covariants. If u, v, u>, ... are any number

of quantics in that same number of variables x, y, z, . . .
,
the

Jacobian or Functional Determinant of u, v, iv,... is the deter-

minant
du du du
dx dy dz

dv dv dv
-y > -y ' ~r~ >

dx dy dz

dw dw dw
J

' 7 ' ~7 J

dx dy dz

which it is usual more shortly to write

d (x, y,z,...)

That it is a covariant of u, v, w 9 ... may be seen as follows.

If in any function u of x, y, z, ... we substitute for these

variables according to the linear scheme

x = IX + rtiY + nZ + . . .
,

y= I'X +m'Y+n'Z + ...,

z =

in this way expressing it as a function of X, Y, Z,

at once

du _ du dx du dy du dz

_ 7
du

7,du ,,du
v "j ~T l> ~Z ~T v

~j r . )dx dy dz

all the differential coefficients being partial.

Similarly
du du

, du du
-TP- -y- -j- -r- +dY dx dy dz

du
dZ

du ,du
-T- + ft -7- 4
dx ay

&c., &c.

,,du
1

dz~

we have
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Thus, by the rule for multiplication of determinants of the

ame order,

-

I, m, n, ... du
dx'

dv

dx'

dw
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Ex. 9. Obtain from this result examples 2, 6 and 7 of 7.

Ex. 10. Obtain a linear covariaut of the ternary quadratic and

+ 68?+ 2fyz+ 2gzx+2hxy,
of oc+V y+ c' z,

two linear forms

and interpret it geometrically, by taking for X and Y the two linear

forms, or otherwise.

A ns. (6'c"
-6V) (ax+ hy+ gz) + (c'a' c"af

) (hx + by +fz)

The polar of the intersection of two straight lines with regard to a conic.

Ex. 11. Two ternary quadratics and a linear form have a quadratic
covariant.

Ex. 12. Obtain and interpret geometrically a linear covariant of the

quaternary quadratic and three linear forms

ax2+ by*+ cs
2+ duP+ 2fyz+ 2gzx + 2hxy + 2 pxw + 2qyw + 2rzw,

a'x +b'y + c'z + d'w,

"y +c"z

11.] Hessians are covariants. To prove that the Hessian

d2u d2u d'
2u

dx2
'

dxdy' dxdz'
'

dxdy dydz

dxdz dz2
''

of a quantic u in the variables x, y, z, ... is a covariant of u.

A natural but erroneous form of argument must first

be guarded against. The Hessian of u is the Jacobian of

du du du TT , , , . . . .

T~ T~ ' ~T~ ' Hence by the last article it is a covariant
dx dy dz , j j
. , i. ,, .. du du du T ,

, , ,

or the system 01 quantics -T- , , -, .... It would be un-
dx dy dz

justifiable hence to conclude that it is a covariant of u, for when

u is transformed by a linear substitution -=- , -^ ->... are
7 77 ax dy dz

P , .
,
du du du u

not transformed into -yp.
-r^. t -j^, ...
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A correct method of proving the theorem is the following.

Multiply the Hessian written above by the modulus

I, m, n,

Z', m', < ,
or

of the transforming linear substitution. Using the facts,

employed in 10, that, when the operations are on any
function of x, y, 0, . . . upon the right, and on its equivalent in

terms of X, F, Z, ... upon the left,

A
dZ

d

dY

* +
dx

m H
dx

d
~T~
dy

d
~T T
dz

dm -j-dzdy

&c., &c.

we see at once that the product may be written

d

d

d

dX
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Now multiply again by M, taking this time columns with

columns in forming the product. The same equivalences of

operators as before tell us that the result is

d2u
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12.] Discriminants of Quadratics. The Hessian of a

quantic, proved above to be in general a covariant, is in parti-
cular an invariant if it be free from the variables . This is the

case if the quantic be a quadratic in any number of variables.

We have accordingly the proof of a first generalization of

7, Ex. 1
, namely that the discriminant of any quadratic is an

invariant of that quadratic. For the Hessians of the binary,

ternary, and quaternary quadratics

ax2 + 2 bxy + cy-,

ax2 + by
2 + cz2 + 2fyz +2gzx + 2 hxy,

ax2 + by
2 + cz2 + dw2 + 2fyz + 2 gzx + 2 Jixy

+ 2pxw + 2 qyiv + 2 rzw
t

are, after rejection of the numerical factors 2 2
,
2 3

,
24

,

a, b

b, c

a, h, g

M,/
.4, /, C

P, q,

and, quite generally, that of the g-ary quadratic

n =
<7 m =

(/ 1 n=q

n = 1

is, after rejection of the numerical factor 2

Now these are the eliminants of the first partial differential

coefficients, each divided by 2, of the various quadratics ;

i. e. they are the discriminants of the quadratics.

13.] Eliminants are invariants. Let the q quantics

u, v, ic,... in as many variables aj, y, z,... become U, V, W,...

c
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when x,y 9
z

t
... are replaced according to the linear scheme

x = I X +m Y+n Z+...,

Let It, (a, b, a',...)
denote the eliminant or resultant of u, v, ir,...,

and R (A, B, A',...) that of U, F, Tf,..., a and A, b and

B, of and A', ... being corresponding coefficients in untrans-

formed and transformed quantics. It is to be proved that

R (a, 6, of, . .
.)

is an invariant of u, v, w,....

If R (A, B, A',...) vanish, U, V, TF,... are made simul-

taneously to vanish by some set of values of X, Y, Z, ... which

are not all zero. The above expressions for x, y, z, . . . in terms

of Xy Y, Z,... then determine a corresponding set of values of

x, y, 0, ...which make u, v, iu,.,. vanish simultaneously. If

these are not all zero it must follow that R (a, b, a',...)

vanishes. On the other hand, if they be all zero it is

necessitated that
I m n

i.e. M, vanishes.

Thus if R (A, B, A', . .
.)
= it follows that either

R (a, b, a',. .
.)
= or M = 0.

Again, if M = 0, whether R (a, b, a', . . .)
= or not, the q

linear functions

are not linearly independent, but all vanish when for X, Y,Z,...

are taken the solutions of any q I of them. Consequently, if

this be so, U, V, W, ... can be made simultaneously to vanish

by values not all zero of X, Y, Z, ...
,
and therefore

R(A,B,A',...)=0.
Also if R (a, b, ,'...)= 0, even when M does not vanish,

there are values of x, y, 0,..., not all zero, which satisfy
u = 0, v = 0, w = 0,... simultaneously ;

and these determine

by the above equations corresponding values of X, Y, Z,...
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which satisfy V = 0, V 0. W =
0, . . . simultaneously, so that

Thus the condition R (A, B, A', ...)
= expresses exactly

the same special state of things as do the alternative con-

ditions M = 0, R (a, b, a', ...)
= 0.

Hence, assuming, as we shall prove in the next article, that

the algebraic functionM is not resoluble into simpler algebraic

factors, but not assuming the unproved fact that R (a, b, a',...)

is not so resoluble,

R(A 9
B

t A',...)
= poweTofMxF(u 9 6, a',...),

where F (a, b, a',...), if not R (a, 6, a',...) or a power of it,

is at any rate a product of powers of all the factors of

R (a, b, a', ...), supposing for safety that it may have simpler
factors.

This result is proved for all linear substitutions. It holds

then for every particular linear substitution. Now take

/, r/i', 71",... all units and the other coefficients in the scheme

all zeros, so that the scheme becomes simply x = X, y = Y,

z = Z,..., and M=l, while A, B, A', ...are merely a, b.

a', . . . : then our general result gives

D/ 7^' \ Z/T/ 7 ' \K (a, o, a ,...)
=

(a, o, a ,...),

so that F (a, b, a',...) is really the eliminant of u, v, w,...

itself.

Consequently the general result is

R (A, B, A',...)= power ofMxR(a t b, a',...),

which proves that the eliminant jR (a, b, a',...) is an

invariant.

We now give the proof that M is irresoluble.

14.] The modulus irresoluble into factors. Let us use

a double suffix notation, and suppose, if possible, that

M =

l-^l^k

can be written as a product of two rational factors 6 (p.
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The determinant is of the first degree in every constituent.

Thus ln cannot occur in both factors 6, 0. Suppose that it

occurs in 6.

In the expansion of the determinant no term occurs in

which ln is multiplied by any constituent belonging to its

row or its column. Thus $ can involve no constituent be-

longing to the first row or the first column. Let lrg be

a constituent which does occur in
</>. By similar reasoning

no constituent belonging to the rih row or 8th column can

occur in 0.

Thus two constituents, lrl and lls ,
cannot occur either in

6 or in
<f>.

But the expansion of the determinant involves

every constituent. Our supposition that M can be written as

a product of factors is therefore untenable.

15.] All discriminants are invariants. Of this proposition,

already proved for quadratics, a general demonstration will

now be given.
If u be a quantic in q variables x,y,z,... we have to prove

that its discriminant, i.e. the eliminant of its q first dif-

f A- i az t.

du du du
ierential coefficients -=-t

-j- , -=-
, . . .

,
is an invariant of u.

ax ay dz

The scheme of linear substitution being the usual one, we
have, as in 10,

du



,6]
FAA DE BRUNO S THEOREM. 21

bo vanish by values of x, y, z, ... not all zero, i. e. if the

discriminant A (a, b, ...) of the imtransformed u vanishes,

or (2) if
I, l'

t I",...

m, m', m"
5
...

i. e. M the modulus of the substitution, vanishes.

It follows therefore, since M is irresoluble, that

A (A, 5,...) = power of MX A'(a, 6,...),

where A' (a, b, ...),
if not A (a, 6, ...) itself or a power of it, is

at any rate the product of powers of the factors into which

we might allow the possibility of A (a, b, ...) breaking up.

Apply however the general result to the case of the par-

ticular substitution x = X, y = 7, z = Z, . . . ,
for which M = 1

and A = a, B = b, &c. It becomes

A (a, &,...)
= A' (a, 6,...).

Thus our general conclusion is that

A (A, B, ...)
= power of Jtf x A (a, 6, ...).

Consequently the discriminant A (a, 6, ...) is an invariant.

16.] Determinant expressions for powers of 1m' I'm. For

purposes of direct proofs that large classes of functions in

determinant form are invariants and covariants of binary

quantics, a simple theorem, due to Faa de Bruno, as to a

certain class of determinants, is of great utility. The first

three cases of the theorem are

I, m = Ini'l'm,

l\ Im, m2

2 II', Im' + l'm, 2mm'

I'
2

, I'm',

I
3

, Pm,

m' 2

\ l'*m'
t

= (Jm'-J'w)
3

,

' + l'm2
,
3m2m'

'mm', 3mm' 2

m' 3
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and the general theorem is that the determinant whose first

row consists of the constituents

and whose other rows are obtained in succession by operating

on the constituents of this first row with

/ d l IT d
, -.' & \

2
l fv d

t _, d7/ ci , Ui i /-.. a, . u \ i / 7/ (ju . (ju \
i -T-, +m -; ) ((< -n +m -j ) , ... ( i -r, +m -.

-
) >

6 am 1.2 V dl am' r !
v dt a?)^ y

is a power, namely the Jr (?+ l)th power, of Zm' i'm.

It will be readily seen that we might equally write down
first the last row

Z
/r

,
Z"--1

', r r-2m/2
, ... Tm''-1

,
??i

/r
,

and obtain the other rows in succession upwards by operations
on it with

For the constituents in the (s + l)th column, read downwards,
are the coefficients of the various powers of t in the expan-
3ionof

by Taylor's theorem; and the same, read upwards, are the

coefficients of powers of r in the expansion of

We speak below of the two modes of forming the deter-

minant as the first and second ways of writing it down.
The first case of the theorem is immediate. The second is

at once proved by adding to the first row ^ times them
')??

second and ^ times the third : and the third case is easily

proved in a similar manner. The general theorem is an easy
exercise on the theory of Lagrange's solution of linear partial
differential equations, as we proceed to show.

By the ordinary rule for differentiation of products we
know that the result of differentiating a determinant of the
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rth order can be written as a sum of r determinants, each

obtained by differentiating the constituents of one row, leaving
the constituents of all the other rows unaltered. Now operate
on the given determinant, thinking of it as written down in

its first way, with Z'-^ + m'-p- The result is a sum of r
dl dm

determinants all of which vanish. For the result of operating
on any row except the last is to produce a numerical multiple
of the following row, and the result of operating on the last

row is to produce a row of zeros. If then D denote the

determinant, we have

lfdD
I -rr

dl

,dD'

-j-dm

Hence by Lagrange's theory D involves I and m only in the

connexion Im'l'w,.

Again, think of D as written down in its second way, and

operate on it with I-JT, +m -=, . We obtain in like manner
dl dm

7
dD dD

I TP ^m^f =
dl dm

so that D involves I' and m' only in the connexion lm' I'm.

Thus D is a function of Im'l'm only ; and, being homo-

geneous, must consist of a single power of lm' I'm, with

a possible numerical factor. But this numerical factor is unity,
as we see for instance by taking I =; m' = 1, l

f = m = 0, for

which Imfl'm is unity and D consists of a principal diagonal
of units with all other constituents zero.

That the power of lmf

I'm is the \r(r+ l)th follows from

the fact that D is of dimensions r(r+ 1) in l,m, I', m'.

17.] As a typical application of this theorem let us prove
that

dxdy
li

dx*dy*
'

dxdf
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is a covariant of a binary quantic it, or in particular an in-

variant if u is a quartic.

We will multiply twice, taking columns with columns, by
the determinant expression above for (Im' l'mf, i.e. M3

.

The first multiplication produces, since

d2
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Ex. 20. Obtain a covariant of ihe third order and degree of the

binary quintic (a, b, c, d, e, /) (x, y)
5

.

Ans. Its so called canonizant

ax+ by, bx+ cy, ex + dy
bx+ cy, ex + dy, dx+ ey

cx + dy, dx+ ey, ex+fy
dr+su

Ex. 21. If ur8 denote
8 , prove that

dxr
dy"

u
60 ,

U
5i ,

u. z , u.

is a covariant of a binary quantic u of order greater than 6.

Ans. Factor J/ 12
.

Ex. 22. Prove that the cataleeticant

a, b, c, d

b, c, d, e

c, d, e, f
d, e, f, g

is an invariant of the binary sextic (a, b, c, d, e, /, y) (x, y)
6

.

Ex. 23. Every binary quantic of even order 2n has an invariant, its

cataleeticant, of degree n+ I.

Ans. Factor 1/"(M+1 ).

Ex. 24. Prove that

dxdy' dy*

d?v d2v

dx2 '

dxdy'
d2

dxdy
'

dy*

is a covariant of three binary quantics u, v, w.

Ans. Factor M3
.

*

Ex. 25. Obtain and geometrically interpret the invariant

a, b, c
/ it /

a?', b'\ e"

of three binary quadratics

(a, b, c) (x, y)
2
, (a', b', e') (x, y)

2
, (a", b", c") (x,

Ans. Criterion of an involution.
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Ex. 26. Prove that
j
tfu d2u d2u

dx*
'

dxdy' djj*

dx" dxdy d

y
1

, xy ,
x

is a covariant of two binary qualities u, v.

JUS
Ans. Factor - = M.

Ex. 27. Deduce Ex. 7 of 7.

Ex. 28. Prove that

dx3 '

dxdy dxdtf

*u d"u, d5u

df

2/ y :

is a covariant of a binary quantic u.

Ans. Factor M2
. Multiply first by the determinant expression

for Ms
,
and then by M in the form

I, m,

r,m',o

0, 0, 1

Ex. 29. Prove that

Wo,,

is a covariant of a binary quantic u.

Ans. Factor M 6
. Multiply first by the determinant expression

for J/ 6
,
and then by that for M'\

Ex. 30. Prove that
b, c, d

c, d, e

d, e, f

is a covariant of the binary quintic (a, b, c, d, e, /) (x, y)
5

.
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Ex. 31. Prove that this covariant of the quintic is, but for sign, the

same as the canonizant (Ex. 20).

Ans. Show that the form of Ex. 30 multiplied by

1, 0, 0,

x, y, 0,

0, x, y,

! 0, 0, x, y

is the form of Ex. 20 multiplied by -
y

s
.

18.] Intermediate invariants and covariants. From a given
invariant or covariant of a quantic can always be derived

a series of invariants or covariants, as the case may be, of two

or more quantics of the same order in the same variables. The

method may be illustrated by the deduction of the result of

Ex. 4
( 7) from that of Ex. 1 .

By the substitution x = lX + mY, y = l'X + m'Y let

ax2
+2bxy + cy

2 and a'x?+2b'xy + c'y
2 be transformed into

AX2 ^2BXY+CY2 and A'X* + 2B'XY+C'Y2
respectively.

Then, whatever constant k be,

(a + leaf) x
2 + 2(6 + kb')xy + (c + kc')y

2

is transformed mto(A + kA')X
2
+2(B + kB')XY+(

Consequently, by Ex. 1,

= M2
{ (a + ka') (c + kc')

-
(b + kbj f ;

i.e.

This is true for all values of k. The multipliers of different

powers of k on the two sides must then be separately equal
each to each. Accordingly

C-2BB' =

Of these three equalities the first and third are merely

expressive of the fact of invariancy from which we started.

The second however gives us the additional fact that

2bb'
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is an invariant of the quadratics
ax2 + 2 bxy + cy

2
,
a'a? + 21} xy + c'y

2

jointly. It is said to be the invariant intermediate between

This result is one of great historic interest. With Boole's

discovery of it in 1841 the era of systematic investigation

in the algebra of invariants began. In his original memoir

(Cambridge Math. Journal, Vol. Ill) he showed how to find

from any discriminant the intermediate invariants between

the discriminants of two quantics of the same kind and order.

For another well-known example of the method reference

may be made to the investigation (Salmon's Conic Sections,

370) of the intermediate invariants 0,
'
between the dis-

criminants A, A' of two conies (ternary quadratics).

1
9.]

The method is clearly one of perfectly general applica-
tion when we are given any invariant or covariant whatever

of any quantic whatever. Let P be any invariant or any
covariant of a #-ary p-ic in which the coefficients are a, 6, c, ...

and the variables x, y, z,.... Consider also another q-aryp-iG,
in the same variables, whose coefficients in the same order are

a', 6', c', . . . . Put for a, b, c, .... in P, a + ka', b + kb', c + kc', . .
.,

and expand in powers of k. The multiplier of every power
of k in the result is an invariant or covariant, as the case may
be, of the two g-ary >-ics, the factor, which is a function of

the constants in the scheme of linear substitution, in the

relation expressive of the fact of invariancy or covariancy

being the same as that in the relation which expresses the fact

of invariancy or covariancy of P. The multiplier of the

highest power of k which occurs is P', the result of replacing

a, 6, c, . . . by a', &', c, . . . in P, and the multipliers of other

powers of k are invariants, or covariants, intermediate between
P and P'.

The general form of the invariants or covariants thus

derived from P is

Lf '*. + !'*. a. '^ -i V'p
r*\ da* db*

C
dc

+ '"' '

for this is, by Taylor's theorem, the coefficient of k
r

. Or, again,
it may be written
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where i is the degree in the coefficients a, 6, c, . . . of P. The

values 1,2, 3,...il of r give the intermediates between P
and P'. The values and / give P and P' respectively.

Greater values of r than i are unproductive, for the differential

operation of ^r + b' ~rr + c'-r- + repeated more than i times
da do dc

annihilates P.

In like manner invariants and covariants of systems of

more than two quantics of the same order in the same

variables are derived from invariants and covariants P of

a single quantic of that type. We have only to put in

P, for a, a + k
l
a

1
+k2a.2 + ..., for 6, b + k^ + k^-}- ..., and

similarly for c, d, ..., to expand according to powers and

products of powers of klt k2 ,..., and to take the multipliers of

these powers and products separately. We thus obtain that,

for any positive integral or zero values of r1} r
2 ,

r3 , ... whose

sum lies between and i,

\ r / d
,

d \f / d
,

d \ ,. 7..

is an invariant or covariant of the system of <?-ary p-ics

whose coefficients in the same order are a, 6, c,...; a
t ,

6
15 <?15 ...;

#
2 ,

6
2 ,

c2> ...
;
a 3 ,

6
3 ,

f3) ... ; ..., according as P is an invariant

or covariant of the first #-ary >-ic. The corresponding
invariants or covariants P1?

P
2 , ...of the second, third, &c.

g-ary ^>-ics, as well as their intermediates, and the corre-

sponding invariants or covariants of triads, &c. of <?-ary p-ics

chosen from among the entire system, are all included.

20.] The method admits of a limited application to quantics
of different orders in the same variables ; namely to the case

when the order of one quantic is a multiple of the order of

every other quantic of the system. For instance, if two

quantics u, v in the same variables be of orders p
f

p, p respec-

tively, and if a, b, c, . . . are the coefficients in u and a, /3, y, . . .

the corresponding coefficients in vp ', then the functions

/ d d d \r-r>

where P is any invariant or covariant of u, are invariants or

covariants of u and vp
',
and therefore of u and v.
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Ex. 32. From the invariant ae 4bd+ 3c2 of the quartic

obtain an invariant of that quartic and the quadratic (a', &', c') (x, yY
of the first degree in the coefficients of the quartic and of the second

in those of the quadratic.

Ans. a"2e 4aW+ 2aY+2&'2 c-4&Y&+ c/2 . Factor M 4
.

Ex. 33. If Pbe an invariant or covariant of (- ,
av a.

2,...ap) (x, y)
f

.

prove that the functions

for values of r between 1 and il inclusive, where i is the degree of

P in o
,
av a

2 , ...ap>
are invariants of the p-ic and the linear form

f+iy jointly-
The importance of evectants, as the functions obtained in this

manner from invariants are called, will be seen hereafter.

Ex. 34. From any invariant or covariant of several quautics of the

same order in the same variables the operation

,d t,d ,d

repeated till a vanishing result is obtained, produces a series of

invariants or covariants, as the case may be. Here a, b, c,... and

', &', c',... are corresponding coefficients in any two of the quautics.

Ex. 35. The effect of replacing a, &', c',. . . by , 6, c. . . in an invariant

or covariant of two quantics u, v of the same order in the same

variables, where a, b, c,.,. and a, b', c',... are corresponding coefficients

in u and v, is to give an invariant or covariant of u alone, or else

a vanishing result.



CHAPTER II.

ESSENTIAL QUALITIES OF INVARIANTS.

21.] In the present chapter we shall, at the expense of

some repetition hereafter, confine our attention to invariants,

reserving till the next the analogous consideration of

covariants.

Except where otherwise stated, rational integi'al invariants

are alone dealt with, the words ' rational integral
'

being as

a rule omitted.

And first we consider invariants of a single quant ic only.
Let us denote constantly by u the quantic under considera-

tion, by p its order in the variables, by q the number of those

variables, by small letters a, b, f, ...,#, y,... the coefficients and

variables in its original form, and by capitals A, , C,. ... X, Y,. . .

the corresponding coefficients and variables in the transformed

form to which it is reduced by a linear substitution. Also let

us, except where otherwise stated, consider the scheme of

linear substitution perfectly general as in 2, and denote by
I, m, ...', m', ... the assemblage of the coefficients of X, Y, ...

in the expressions for x, y, These coefficients we will

speak of as the constants of the substitution, or of the

transformation.

Taking the identical equality

F(A, B, ...)
=

4, (Z, m, ... l'
t m',...) F(a, 6, ...),

which expresses that F (a, 6,...) is an invariant of u, our

immediate aim will be to prove

(1) that F(a, 6, ...)
is necessarily homogeneous, and

(2) that $ (I, m, ... Z', m', ...) is necessarily a power of the

modulus M of the transformation, defined in 2.

A knowledge of the first fact must precede a proof of the

second.
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22.] An invariant necessarily homogeneous in the co-

efficients. We shall speak of the dimensions of a homogeneous
function of the coefficients in those coefficients as its degree

1
.

If possible let the invariant F(a, &,...) consist of a sum
of parts

H^aJ,...) + fT
2 (a,6,.. ) + 7/

3 (a, &,...) + ...

of different degrees ir i.
2t i., ...

Since F(a, &,...) is an invariant for all possible schemes of

linear substitution, it is so of course for a particular scheme.

Let us express the fact of invariancy for the scheme

of substitution

x = \X, y = \Y, z =. hZ, , . .
,

which, it is to be observed, has only the effect of multiplying
the jp-ic u by Ap and replacing x, y. z, . . . by X, Y, Z, ... . The

coefficients A,B, (7, ... in the transformed p-ic have then in

this case the values Ap
a, AP6, \pc, .... Any homogeneous

function of degree i in them is accordingly \ ip times the same

function of a, b, c,

Thus, if
\l/(\)

be the form taken by />(, m, ... ,'m', ...) for

the particular substitution we are using, the identical equality

expressive of the invariancy gives us

This is an identity, true for all values of a, >,.... Conse-

quently the terms of each degree in a, 6, ... on the left are the

same as the corresponding terms in each case on the right.

Hence we must have simultaneously

&c., &c.,

1 I should have preferred to use the older term order for this characteristic.

But the practice of speaking of a function (in particular of a covariant),
whose dimensions are i in the coefficients and rs in the variables, as of

degree i and order -cr has of late become almost universal. While regretting
this I feel bound to adopt it consistently throughout.
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/vhich are inconsistent if ilt i.2 ,
?'3 ,

... are different. The sup-
position was therefore unsound, and the invariant F (a, 6, ...)

s of the same degree i throughout.
The proof holds for irrational invariants.

23.] The factor a power of the modulus. The formulae of

the general linear substitution

x = IX +mY + nZ + ...
,

y=l'X +m'Y + n'Z + ...,

z = l"X + rn"Y+n"Z+ ..

...(1)

may we know, by solution for X, Y, Z, . . .
,
be reversed and

written

#*'

2/+^f" z + -J 1
V ...(2)

dM
7 =^5^+ ,

( dm dm
, (dM dM dM

Z = M~ l
\ -j x + -r-f y
[dn dn *

where M denotes the modulus

I, m, 7i, ...

1'
9 m', n', ...

and
(cf. 2) must not vanish.

Looking upon the formulae of substitution for x,y t z,... in

terms of X, F, Z, ... as those of the standard substitution, we

may speak of the formulae for X, Y,Z, ... in terms of x,y,z t
...

as those of the reversed substitution. The reversal of the

reversed substitution reproduces the standard substitution.

The modulus of the reversed substitution is J/- 1
,
the reciprocal

of the modulus of the standard substitution, as immediately
follows from the known fact (cf. Burnside and Panton's

Theory of Equations, 124) that the determinant reciprocal to

a given determinant of q rows and q columns is its (q-l)th

power.
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Our present obj ect is to prove that the factor <
(I,m, . . . I', m', . . .

)

in the equality ( 21) expressive of the fact of invariancy of

F(a, b, ...) is a power of M. We have seen in the last article

that F(a,b, ...)
is homogeneous in a, 6, ..., and therefore

F(A, B, ...) homogeneous in A, B, .... Now A, B, ... are

homogeneous and of degree p in I, m, ... I', m', .... For our

quantic u is transformed from the form

axp +pbxp~l

y + ...

to the form AX*+pBXf~1Y+ ...

by the scheme (I) in which x.y,... are homogeneous and

linear in I, m, ... I', m', . . .
,
so that xp

,
xp

~ l

y. . . . are homogeneous
and of degree p in I, m, ... I', m', .... Thus F(A,B, ...), being

homogeneous, and of degree i say, in its arguments A, B, ...,

which are themselves all homogeneous and of degree p in

l.7)i, ... Z', m', ..., is itself homogeneous, and of degree ip, in

Z, m, ... I', m', ____ Seeing then that it is equal to

$ (Z, m, . . . Z', m', . .
) F(a, 6, . . .),

where the second factor F (a, b, . .
.)

is free from Z, m, . . . Z
r

,
m'. . . .

,

we conclude that
(Z, m, ... Z', m', ...) is homogeneous and of

degree ^9 in its arguments.
We now use the fact that the effect of the reversed sub-

stitution (2) is to bring the <?-ary ^>-ic u back from its second

form AXP + ... to its first axp + ____ The invariant equality

F(A, B, ...)
=

4,(Z,m, ... Z',m', ...) F(a, 6, ..
),

... (3)

applying as it does to all linear transformations of all <?-ary

/>-ics. must hold when we interchange a, b, ... and A, B, ..

and replace Z, m, . . . Z', m', ... by the corresponding coefficient

in the scheme (2). Thus

F(a,b,...)
, ( ., -.dM .dM dM , dM= * (
M -*

M >
M~1

dM

in virtue of the homogeneity of degree ^p possessed by th

function <. Accordingly, by combination of (3) and (4), w
arrive at the identity

dM dM
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Thus Mip breaks up into two rational integral factors, of

which
<f> (I, m, . . . 1'

9 m', . . .
)
is one. But

( 14) M has no factors

but unity and itself. Consequently <
(I, m,..J', m', ...) is

a power of M, or a numerical multiple of such a power.

Suppose then that

<J>(J, w,...Z', m',...)
= kMr

.

By (5) it follows that

dM dM dM dM \ _ 1

" "--

, dSf dJf
r5ut 77- -r,-. j ...-^ > -= -., ... are all ol a 1 dimensions in

dl dl dm dm
I, m,...l', m',..., so that the dimensions in I, m,.. J', m',...of

the second are q 1 times those of the first. Hence

ip T = (ql)r,

ip
i.e. r = .

Z

Accordingly the equality expressive of the fact that F(a, b
t

. .

.)

is an invariant is of the form

,...)
= kMF(a, 6,...),

where & is a numerical constant. That this constant is neces-

sarily unity we see at once by application to the case of the

substitution x^ X,y= Y,z = Z,...,

for which A, B,... are the same as a, b, . . .
,
and M = 1 .

We have proved, then, completely that if F(a, 6,...) is an

invariant of a #-ary p-ic it is necessarily homogeneous, and

that, if its degree is i, the identity expressive of the fact

of its invariancy is

The proof holds for irrational invariants, if we raise the two

sides of
(5), before reasoning from that equivalence, to such

a power /ut
as to make pip, the index of the power of M, an

integer.

24.] A consequence of this last conclusion is that, i being
r> 2
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the degree in the coefficients of any rational integral invariant,

^ must necessarily be integral. For the left-hand member

F (A, 5, ...
),
when expressed in terms of a, b, ... and

I, m,..J', m',..., is rational and integral in I, m, ...I', m',...

as well as in a, b, So too must the right-hand member
ip

be. Thus M v is rational in I, m,...l', m',... . But M is not

a power of any rational function, seeing that it has no factors

but unity and itself. Hence is an integer.

The particular form which this conclusion takes when q 2,

i.e. for the case of binary quantics, should be at once noticed.

It is that i and p cannot both be odd. Hence the theorem :

No binary quantic of odd order can have any invariant

of odd degree.

In the next few articles an interpretation will be given to

i'D
the integer , first in the case q = 2 of binary quantics,

and afterwards generally.

It will be seen, in fact, that there is another characteristic

which is constant throughout an invariant, and equal to this

integer ; namely, its weight.

25.] Weight. In the binary p-ic

(a ,
a

l ,a.2) ...ap)(x i y)
p

we have, as is usually done, given to every coefficient a suffix

equal to the defect below the order p of the index of the

power of x which it multiplies.

This suffix is, it will be remembered, in each case equal to

the dimensions^ in the roots of the equation in x : y obtained

by equating the p-ic to zero, of the symmetric function of the

roots which is equal to the ratio of the coefficient in question
to the first coefficient a . Or, if we choose, as we may,
to regard a as merely denoting a number of abstract

units, and so as being of no dimensions in the roots, we

may say that the suffix attached to every coefficient exactly
measures the dimensions in the roots of that coefficient. The
suffix or degree in the roots of a coefficient is designated its

weight.
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The weight of any product of coefficients is the sum of the

weights of its various factors, i. e. the sum of their suffixes,

and measures the dimensions in the roots of the product in

question. A repeated factor in a product must be reckoned

as many times as it is repeated in estimating the product's

weight. Thus, for instance, the product a/a/a/. . . is of weight

An invariant of degree i of a binary ^9-ic has been proved
to be homogeneous, i. e. to consist of a sum of positive and

negative numerical multiples of products of i factors chosen

from among ,
a1; a.,,...ap , repeated factors being allowed.

The theorem now to be established is that all these products
have the same weight J ip.

A function which is thus of one weight throughout is said

to be isolaric.

26.] An invariant of a binary quantic is isobaric. Apply
to

(a0) al ,a.2 ,...ap)(x) y)
p

the particular linear substitution x = X, y = AF,of which the

modulus is 1,0

O,A

This transforms the quantic into

Consequently, if F (a , %, a.2 ,...ap )
be an invariant of degree

i, the identity expressive of the fact, viz.

tells us that

F(a , ajA, a2
\2,...ap\

p
)
= A*** F(aQ ,

a19 a.2 ,...ap).

The right-hand member here is entirely of degree f ip in A.

So therefore must the left be. Now the term on the left

corresponding to a term

/a/a/ ... in F (a ,
a

T ,
a

2
ap)

is

i.e.
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Consequently for every such term

+ ... = lip.

Thus F(aQ ,
a

x , a2 ,...ap )
is isobaric throughout, the constant

weight of its terms such as a/a/a/ ...being \ip.

This applies even when the invariant is irrational, for an

irrational invariant may be expressed as a sum, not necessarily

finite, of terms to which the reasoning may be applied.

Ex. 1. Ifp = 2n or 2n + 1 there is no term in any invariant of the

binary ^>-ic which has not at least one of a
,
av a

2 ,
... a n for

a factor.

Ex. 2. Every invariant vanishes for a binary p-ic which has

a linear factor raised to the rth power if 2r > p. (Cayley.}

Ans. Take the linear factor for Y.

27.] Weight generalized. A like method and the analogous
conclusion apply in general to a quantic in q variables. Of

these variables call one, singled out as the last, <o, and the

others x,y,z,
In our </-ary p-ic let the suffix given to each coefficient be

the index of the power of o> which it multiplies. Thus, for

instance,

the coefficients of xp
y y

p
,
zp

,
xp

~l

y, y
p~l

z,... have the suffix 0,

2,

xup-\y<*
p
-\z<

p
-\... p-l,

and the coefficient of o>
p has the suffix p.

Our definition of weight is that every coefficient is of weight
measured by its suffix, and that every product of coefficients

is of weight measured by the sum of the suffixes of its various

factors.

Our ideas of the import of weight according to this

definition are made more definite by supposing that the

result of equating our #-ary >-ic to zero is a relation in q 1

quantities of the same kind, x : o>, y : 6u, z : <o, . . . . To be in-

telligible, and not imply more relations than one, it must be of
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the same dimensions throughout in that kind of quantity.
For this to be the case the coefficients which multiply products
of p factors x y, 0, ... without to, those which multiply products
of a) and p 1 factors x, y, 0, . . .

,
those which multiply <o

2 and

p 2 factors x,y,z,..., and so on, must be of dimensions in that

kind of quantity which form an ascending arithmetic pro-

gression of common difference unity. If then, as implies no
real loss of generality, we choose to regard the first class of

coefficients as of no dimensions in the kind of quantity, the

dimensions of the other classes will be 1, 2, 3, ...p respectively.
In other words, the dimensions of the various coefficients are

measured by the suffixes assigned according to the convention

from which we started. The idea of such dimensions is then

identical with that of weight.

28.] All invariants isobaric. We can now prove the con-

stancy and equality to of the weight, defined as above,

for all terms of an invariant of a </-ary p-ic.

Transform the quantic by the substitution

x = X, y Y, z = Z, ... w = \Q,,

which leaves every variable unaltered except co. Its modulus

is A.

The coefficients in the transformed quantic are at once seen

to be the same as those in the untransformed, except that those

with suffixes 0, 1, 2, 3, ... p are multiplied by 1, A, A2
,
A 3

,
... \ p

respectively. Thus, if F
(c/ ,

6 ,..., alt
b

l ,...a.2 , &.,,..., ap)
be

an invariant of degree ,

F(a ,
6

, ...,at A, ^A, ... , 2
A2

,
6
2
A2

, ...,ap \*)
ip

= A" F(a ,bQ , ...,al ,
b

lt ... , a,, b.,,... ,
ap).

Here the left-hand member must be, like the right, a multiple

of a single power, the th, of A. The index of every power

of A which occurs as multiplying a product in the expanded

left, and consequently the weight of every product of co-

efficients in F, must therefore be constant and equal to

This applies even when the invariant is irrational.
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Ex. 3. Every term in any invariant of a <?-ary p-\c must contain

at least one factor with a suffix less than r if qr >p.

Ex. 4. No quadratic in more than two variables can have any
invariant which does not vanish when the quadratic breaks up into

two linear factors.

Ex. 5. Every term in any invariant of a <?-ary p-\c must contain

at least one factor with a suffix greater than r if qr <p.

29.] Absolute invariants. For integral invariants the
ft fY\

degree i
t
and consequently the weight ,

are essentially

positive and different from zero. Thus the power of M in the

equality expressive of invariancy

is essentially a positive power. We cannot then discover any

integral function of the coefficients of a quantic which is what

is called an absolute invariant, that is to say a function of the

coefficients which is absolutely equal to the same function of

the coefficients in the transformed quantic. For an absolute

invariant the power of M above would have to be M
,
or the

degree i, and consequently the weight > would have to

be zero.

If, however, a quantic have two or more distinct integral

invariants, i.e. two invariants which are not powers of the

same invariant, it will have one or more absolute fractional

invariants. For, if F
1 (a, b, ...)

and F
2 (a, b, ...) are two inva-

riants of the same degree i of a <7-ary ^?-ic, we have

and F
2 (A, ,...)

= M F.
2 (a, 6,...);

so that F^A, B,...} _ Fl (at b....)

F
3 (A,B,.~)F^b^:.)

9

which shows that the ratio of F
1
to F2 is an absolute invariant.

Again, if F
1 (a, 6, ...) and F.2 (a, b, ...) are of different degrees

k

i.^ let k be the L. C. M. of ^ and i.2
. Then F^ and
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k

F
2

'2 are two distinct invariants of the same degree k
t
and their

k k

ratio -Fj'
1 -4- Fj* is an absolute invariant.

For instance, we have seen
( 7, Ex. 5) that

is an invariant of the binary quartic (a, b, c, d, e) (x, 2/)

4
. Its

2 4

degree is 2 and its weight 4, which is rightly equal to --
2

We have also seen
( 17, Ex. 19) that the same quartic has

another invariant

J= ace + 2bcd ad 2 b2
e c*

of degree 3 and weight 6. / 3 and J2 are then both of

degree 6 and weight 12, and are distinct from one another.

If then /' and J' are the same functions of the coefficients

in the quartic obtained from the given quartic by a linear

substitution for x and y as / and J are of the coefficients

in the given quartic,

7'3 __ M12 7 3 _ P~ ~ ~
J~2

'

so that I3J~2
is an absolute invariant of the binary quartic.

30.] Limit to the number of independent invariants. A
binary ^>-ic has> 3 independent absolute invariants, if p
exceed 3, and none if p do not exceed 3. The first part of

this statement is one which cannot well be proved at the

present stage; but it may be seen as follows that p 3 is

a superior limit which the number of independent absolute

invariants cannot exceed.

Let (A ,
A

lt
A

2 ,
... A p) (X, Y)

p be the transformed quantic
obtained from (a ,

a
lt a.2 , ... ap) (x, y)

p
by the linear substi-

tution

x = IX + mF, y = I'X + m'Y.

Its coefficients A
Q ,A lt A 2 ,

... A p are at once expressed asp+ I

functions of 0,^0^,0,%, ...ap and the four letters I, m, l
f

,
m'.

If p do not exceed 3 it is impossible to eliminate I, m, l\ m',
and obtain a relation connecting A ,

A
15

. . . A p with a
,
ax ,

. . . u
p

alone. If, however, p exceed 3 it is possible, by elimination
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of I, m, I', m', to obtain p 3 independent relations which must

subsist between A
,
A lt

A
2 ,

... A p and a
,
a

t ,
a

2 ,
... ap ,

but

no more. If, as is in fact the case, these p 3 relations can be

thrown into such a form as to express p 3 equalities of

functions of a
,
a l5

a
2 ,

... ap to the same functions respectively

of -4
, AV A.2J ... A p ,

those p 3 functions are absolute inva-

riants
;
but there cannot be more than that number which are

independent.
It now follows that if p do not exceed 3 there cannot be

two independent invariants which are not absolute, and that if

p exceed 3 there cannot be more than p 2 which are inde-

pendent. For
;

as seen in the preceding article, any two

independent invariants determine an absolute invariant, so

that two, or more than p 2, independent invariants would

determine one, or more than p 3, independent absolute

invariants.

We must not, however, form the erroneous conclusion that,

when p 2 independent rational integral invariants have been

discovered, every other rational integral invariant can be

expressed as a rational integral function of these p 2. The

system ofp 2 invariants is algebraically complete, but another

may be a function of them, as it must be, without being
a rational integral function of them. For binary quantics of

the first four orders there are, as a matter of fact, algebraically

complete systems, 0, 1, 1, 2 in number, in terms of which all

other invariants can be rationally and integrally expressed,
but for the fifth, sixth, &c., orders there is no corresponding

simplicity. For instance, the binary quintic has 3
(
= p 2)

independent invariants of degrees 4, 8, 12, and these are the

invariants of lowest degrees which it possesses. They form

an algebraically complete system. But there is another inva-

riant of the quintic oi: degree 18. This must be a function of

the three first, but it is perfectly clear that it cannot be

a rational integral function of them, for the degree 1 8, which is

not divisible by 4, cannot be expressed as a sum of multiples
of degrees chosen from 4, 8, 12, which are all divisible by 4.

It is found to be the square root of a rational integral function

of the three. Because it cannot be expressed rationally and

integrally in terms of irreducible invariants of lower degrees,
it is said to be itself irreducible.
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That the number of irreducible invariants of a binary p-ic
is finite for all values of p is a proposition of some difficulty

which was first established by Gordan. The number, though
finite, is not known to follow any simple law for all values

of p. A proof of the finiteness due to Hilbert will be given
in a later chapter.

31.] Invariants of two or more quantics. So far in this

chapter we have been dealing with invariants of a single

quantic only. With regard to invariants of a system con-

sisting of two or more quantics in the same variables the

methods of "22 to 28 establish with equal ease the following
theorems.

(1) In any invariant of r quantics of orders pv p.2 ,...pr in

the same q variables, the sum

2 (ip)
= i

1pl + i2 p.2 +...+ irpr

is constant for all terms, i
} ,

i
2 ,...ir being the degrees of any

term in the coefficients of the various quantics respectively.
This is established as in 22.

(2) The factor, depending on the constants of the trans-

formation only, by which the invariant has to be multiplied
to make it equal to the same function of the coefficients in

the transformed quantics, is Mie

,
where M is the modulus, and

This is established as in 23.

(3) The whole weight, i.e. the sum of the r weights in the

sets of coefficients of the r quantics, is the same for every
term of the invariant, and equal to w the index of the power
ofM in (2).

This is established as in 26, 28.

It also follows that, for a rational integral invariant, the

sum 2(ip) is necessarily divisible by q ;
for the weight, a sum

of integers, must be integral.

32.] It will be observed that there is nothing in these

conclusions to prevent our contemplating the existence of

invariants of two or more quantics, which, though isobaric

(i.e. of constant weight throughout), are not homogeneous.
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either in the sets of coefficients of the various quantics

separately, or on the whole. Nothing in the above indicates

that ilt i
2 ,

.. i,. are constant throughout the invariant, or even

that 2i is so.

To contemplate such non-homogeneous invariants is, how-

ever, unnecessary, for the different parts of such an invariant,

which are homogeneous on the whole and also separately in

the coefficients of every quantic of the system, are separately
invariants.

The proof of this may with ease be stated generally. It

will perhaps be made all the clearer by considering an

example only.

Suppose the fact to have been noticed that

is an invariant of the binary cubic and linear forms

ax* + 3 bx2
y + 3 cxy

2 + dy
3

,

a'x -f b'y,

i.e. that, denoting as usual coefficients in the transformed

quantics by capitals,

...}
3
]. ...(1)

The invariant consists of a part of degree 4 in the coefficients

of the cubic and 12 in those of the linear form, and a part
of degree 6 in the coefficients of each form.

Now A, J5, C, D are of the first degree in a, b, c, d, and

A', B' of the first degree in a', b', involving besides, in each

case, the constants I, m, I', m' of the transformation only.

The left-hand member of (1) contains then like the right terms

of partial degrees 4, 12, and terms of partial degrees 6, 6.

Consequently, the equality being an identity holding what-

ever a, b, c, dy a', b' are, the terms of partial degrees 4, 12 on

the left and right must be equal, and also those of partial

degrees 6, 6. In other words,

and {(ac-b
2

)b'*-(ad-bc)a'b'+(bd-c
2

)a*^
are invariants separately.
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A single quantic has, we know
( 22), homogeneous in-

variants only.

33.] We lose then no completeness by considering only
;hose invariants of two or more quantics which are homo-

geneous in the different sets of coefficients separately as

fundamental. Non-homogeneous invariants are linear func-

tions of such homogeneous invariants as have the same whole

weight. Thus with regard to a complete system of invariants

of two or more quantics we have the conclusions :

(1) That they are homogeneous in the coefficients of every

quantic of the system separately, so that also, if ^ ,
i
2 ,

... ir be

the degrees of any invariant in these sets of coefficients, the

whole degree is constant, viz.

(2) that they are isobaric on the whole, any one being of

weight w = -
(i:^ + i

'

2 p.2 + . . . + irpr).

(N.B. There is no reason to expect them to be isobaric in the

coefficients of the quantics separately.)

(3) That the factor which has to multiply an invariant to

produce the same function of the coefficients in the linearly
transformed quantics is Mw

.



CHAPTER III.

ESSENTIAL QUALITIES OF COVARIANTS.

34.] IN accordance with the remark in 4, the considera-

tion of covariants which are rational and integral both in the

coefficients and variables is fundamental. By the word '

co-

variant
'

we, as a rule, mean '

rational integral covariant.'

The conclusions which follow apply for the most part also to

covariants which are irrational or fractional, but this will be

stated where it is important to observe that it is the case.

It is well in the first place to see that we may confine

attention to covariants which are homogeneous in the vari-

ables to covariant quantics, in fact.

35.] A covariant which is not homogeneous in the vari-

ables is a sum of other covariants which are homogeneous in

them.

For in the relation

which expresses that /(a, 6, ..., x, y, ...) is a covariant, the

terms of order OT in x, y, . . . on the right can produce, upon
putting x = lX +mY+ ..., y = l'X + m'Y+..., ..., terms of

order TX only in X, Y, . . .
;
and no other terms on the right

can produce terms of order TS in A', F, .... Consequently, the

relation being an identity, these terms must be identical with

the terms of order w in X, F, . . . on the left. In other words,
if the covariant / is not homogeneous in a;, y, . . . , its various

parts of different orders in x, y, . . . are separately covariants.

This applies also to irrational and fractional covariants,
which by expansion can be expressed as sums of parts, not

necessarily finite in number, arranged according to their

orders in the variables.

The proof deals equally with covariants of one and Co-

variants of several quantics. In the next few articles for
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greater clearness covariants of a single quantic are alone first

considered.

36.] Homogeneity in the coefficients. By the order of

a covariant, now regarded as homogeneous in the variables,

is meant its order or degree in those variables. By degree is

meant, as in the preceding chapter, degree in the coefficients I
.

If possible let the covariant/(&, b. ..., x, y, ...), of the same

order w throughout, be a sum of parts of different degrees
ilf i

2 ,
izt ____ Apply the identity expressive of the covariancy

to the case of the particular linear substitution x = A X,

y = AT, .... As in 22, the coefficients A, B,... in the

transformed quantic are in this case Apa, \p b, ..., while the

variables X, Y, . . . in the transformed quantic are \~ l
x,\~

l

y, ____

Thus ifHr be the aggregate of those terms in/ (a, b,...,x, y, ...)

which are of degree ir , and of order CT, the corresponding
terms in f(A, B,..., X, F, ...) are AV*-

TO Hr . Hence, by

exactly the same argument as in 22, if ^(A) be what

(/> (I, m, ... Z', mf, ...)
becomes for the particular values of

I, m, ... l'y m', . . . which we are considering, \f/ (A) must be

equal separately to A*'*-"
07

, K***-, A^-^, .... The assump-
tion that i

} ,
i
2 ,

^3 , ... are different is then untenable.

Thus, while we lose no real generality by requiring a co-

variant to be of constant order throughout, we are compelled
also to require a covariant of a single quantic whose order is

the same throughout to be of the same degree throughout.
Were we to prefer to deal with a covariant having parts of

different orders w
l5

txr
2 ,

r3 , ... as a single covariant, rather

than as a sum of covariants of orders vrlt r
2 ,
w

8 , ..., our

conclusion come to as above would be that the degrees

ii, i
2 ,

i3 . ... of those parts respectively are connected with

their orders by the equalities

These conclusions apply to irrational and fractional co-

variants.

37.] The factor a power of the modulus.

The proof that the factor $ (I, m,... l
f

, m', ...),
in the rela-

1 See the footnote to 22.
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tion
( 35) which expresses the fact of covariancy of a co-

variant, is a power of the modulus M proceeds exactly as in

23. If 37 be the order and i the degree of the covariant

/(a, 6, ... x, y, ...),
the power is the th, ip nr being

now the degree of the left-hand side/(J., B,...,X, Y, ...) in

the constants of transformation I, m, . . . l\ m', ..., when it is

expressed explicitly in terms of those constants and

a, b, ,.., x, 2/, ....

Thus, if we adopt the notation K(a, b, ...)
f

(x, y, ...)
OT

to

denote a covariant of degree i and order ny, the fact of its

being a covariant is expressed by

K(A t ,...)* (Z, Y, ...f
7 = # Vtf(a, b, ...)' (a, y, ...)

OT
.

All this applies as well to irrational and fractional covari-

ants as to those which are rational and integral.

If the covariant be rational and integral we can at once

draw the conclusion, as in 24, that the index - - cannot

be fractional. It is perhaps well, however, to adopt a different

order, and by introduction of the idea of weight to ascertain

first the import of the integer, or zero, to which it is equal.

38.] Weight in the case of a binary quantic. As in 25

the weight of a coefficient in the binary p-ic,

(a ,
alt a.

2 ,.. t ap ) (x,y)
p

is its suffix. For present purposes we do best to say furth<

that x and y have weights 1 and respectively. This is

accordance with the idea developed in 25 that weighl
measures dimensions in a suppositions kind of quantity

/-v /vi ana
which - contains -

units, and in which ,
-?

> . . .
-^

y y a, a a
Q

of 1, 2,...p dimensions in the values of which make th(

y
quantic vanish, are of 1, 2, ... p dimensions respectively.

With this enlarged conception of weight we may see

follows that K(aQ,a l ,... ajf(x, y)
w

', a covariant of the binarj

>-ic, is of constant weight | (ip + -cr) throughout.
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As in 26 take for scheme of linear substitution the

particular one

of which the modulus M is X. If

be the transformed quantic, the values of A , A lt ... A p are

now a
, a^, ... a

p
\p

, and, as in 26, every product of

powers of A
(} ,
A

lt ... A p is the same product of powers of

a
,
a

l5 ... ap multiplied by A raised to a power whose index is

the weight of the product. Moreover every product Xr Yv~r

of powers of X and F is equal to X~w+r a;
r

y
w~ r

,
i.e. to the

corresponding product of powers xry~ r

multiplied by a

power of X whose index is the weight of the product di-

minished by tn- its order. Thus in the identity

K(A , A,,... AJ (X, F) =^ K(aa , a,, ...)< (x, y)

every term on the left is, for this substitution, the correspond-

ing term in K(aQ ,
a15 ... ap)

f

(x, y) multiplied by X"-*7

, where
w is the weight of the term. The identity then tells us that

for every term

so that w = \(ip + &) for all terms. A covariant is then

isobaric.

So far this applies to irrational and fractional as well as to

rational integral covariants.

39.] For rational integral covariants the weight is a sum of

positive integers, and is therefore itself a positive integer.

Thus ^ (ip + -nr)
is necessarily a positive integer.

It follows that the index of the power ofM in the equality

expressive of the covariancy of a rational integral covariant

is integral, or zero, for it is

\ (ip vr)
= | (ip + sr)

cr = W or,

i. e. is the excess of one positive integer over another.

Moreover it cannot be a negative integer. For, w being
the weight of the covariant, w iz- is the weight of the

coefficient of x in the covariant, and this coefficient being

4*
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a rational integral function of a
,
a
1?

a2) ...ap ,
whose weights

are zero and positive, cannot have a negative weight.

This assumes however that in a covariant of order w the

term in x must necessarily occur. This is the case. Were
it otherwise the covariant would have y for a factor. Now
were it possible for yF(a, 6,..., x, y) to be a covariant we
should have, for any linear substitution whatever,

YF(A, B,...,X 9 Y) = (Im'-l'mYy F(a, &,..., x, y),

which would necessitate that the covariant yF (a, 6, ..., x, y)

have F, i. e.

'

7 , , for a factor, whatever ni, in and
Lin 6m

Im'l'm be. Now this is an absurdity, for yF (a, b, ...,#, y)

has only BT linear factors.

From the fact that \ (ip w} is integral, or zero, we draw

at once the conclusion that ip and OT must be either both odd

or both even. Hence arise the following theorems.

(1) No binary quantic of even order p can have a covariant

of odd order ^.

(2) No covariant of a binary quantic can be of even degree
i (in the coefficients) and of odd order or (in the variables).

(3) No covariant of a binary quantic of odd order p can be

of odd degree i and even order m.

In particular, from (l) and (2) no covariant linear in the

variables can belong to a binary quantic of even order, or be

of even degree in the coefficients.

Ex. 1. Every term in every coefficient of any covariant of a binary

^>-ic must contain one or more of the first r coefficients a
,
a

1?
... ar_ l

of the p-ic as a factor if 2ir>ip+ '&.

Ex. 2. Every covariant of degree i and order w must vanish for

a binary p-ic which has a linear factor raised to the rth power if

Ans. Take the factor for 7.

Fx. 3. Every term in the coefficients of x, x~l

y, .., x*~ p + l

if-
1

in a covariant of order tar and degree i of a binary p-ic must contain

at least one of
,
av a2 , ...,._! as a factor if ir p < %(ip or).

Ex. 4. If the coefficients in a binary jw-ic have such values that

the ^-ic has a linear factor raised to the rth power, a covariant

of degree i and order ta must have that factor to the /oth power,
where p = ir - % (ip -57). (Cayley.)
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If the degree i and order CT of a covariant of a binary ^-ic
be connected by the relation ip OT = 0, show that the covariant can

only be the iih power of the />-ic, or a numerical multiple of that ith

power.

Ans. The coefficient of cc
w

,
i.e. xip

,
must be a\ for its weight

must be zero. Also by Ex. 4 the iih power of every linear factor of

the p-ic must be a factor of the covariant.

Or thus. The ith power of the p-ic is a covariant
;
and there

cannot be another covariant with alxlp for its first term, as otherwise

by subtraction a covariant with y for a factor could be formed.

Ex. 6. If the coefficient of the highest power of x in a covariant of

the general binary p-ic is known, the order -57 is determinate, and
the covariant unique.

40.] Weight in general. With regard to a quantic in q
variables x, y, z

t
... t

a> the estimation of weight explained in

27 requires the supplementary idea that x,y,z t ..., all the

variables except the last one o>, have weight unity, while o is

of weight zero. This being so the weight of the g-ary p-ic is

p throughout. The examination for weight of a covariant of

degree i and order & proceeds exactly as in 38, by the

method of 28. The conclusion is that the weight w is

constant throughout the covariant, being given by

,

so that

This applies to covariants which are not rational and

integral as well as to those which are. For rational integral

covariants we have the further fact that w is a positive integer,

and consequently that

ip TV
ivto- =

3

is an integer or zero. Moreover that it cannot be a negative

integer is proved exactly as in 39, by showing that the terms

free from w in a covariant cannot all be absent.

Ex. 7. If the terms free from o> in a covariant are known, the
covariant is unique.

Ans. Otherwise a covariant with co for a factor could be
formed.

E 2
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Ex. 8. If ta = ip, so that ? = r, the coefficients of the terms free

from CD in a covariant involve only the coefficients of the terms free

from co in the p-ic.

Ex. 9. In this case of w=ip, the terms free from co in a covariant

of a q-B,ry p-ic constitute a covariant of the (q I )ary p-ic, obtained

by replacing co by zero in that c/-ary p-ic.

Ans. Apply a linear substitution which leaves co unaltered and

expresses the other variables x, y, z, ..., \J/ linearly in terms of

X, 7, Z, ...,*. The terms free from co are then transformed by
a (q l)ary substitution.

Ex. 10. Hence, by passing in succession to (q 2)ary, (q 3)ary, ...

binary, p-ics, deduce from 39, Ex. 5, that a covariant of the

g-ary ^;-ic for which -or = ip has for its term in x alone alxlp
,
or

a numerical multiple of this.

Ex. 11. Hence, by returning in succession from a binary, to a

ternary, a quaternary, ... and at length a 0-ary, jp-ic, show from

Ex. 5 and Ex. 7 that a covariant, of a c/-ary /;-ic, for which

<ar=ip, can be only the tth power of that e/-ary p-ic, affected at

most by a numerical multiplier.

41.] Absolute covariants. An absolute covariant is one

which is exactly equal, without any factor which is even

a power of M, to the same function of the coefficients and

variables in the linearly transformed quantic. Thus, if the

function K be an absolute covariant, we must have, in the

identity

K(A, ,...)* (X, F,...)
w = Jf** JT(o, &)' fa &)*,

ip & = 0, i.e. W-CT=O.

Now w TO is the weight of those coefficients in the covariant

wbich multiply products of the variables whose weight is r,

i.e. products, into which tbe last variable co does not enter.

The only rational integral absolute covariants are then those

in which the coefficients of products of the variables into

which the last o> does not enter are of zero weight. In par-

ticular, for a binary quantic, the coefficient of x must be

a function of zero weight of a
, a,, a2 ,...ap ,

and so must be

a mere power of CT
O , or a numerical multiple of such a power.

In 39, Ex. 5, it has been seen that such a covariant can only
be a numerical multiple of a power of the binary quantic of
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which it is a covariant. And in 40, Ex. 1 1
,
the corresponding

fact has been given for quantics in general. Thus powers of

quantics are the only rational integral absolute covariants

of those quantics. Further light will be thrown on this fact

in future chapters.

Fractional absolute covariants may, however, be seen to

exist, as were fractional absolute invariants in 29, whenever

we have t^o or more distinct integral covariants, powers of

the same ^variant not being regarded as distinct, for each of

which ip iv does not vanish. If, for instance, K and K' be

two covariants of a #-ary p-'ic, whose degrees are i, i' and

orders sr, / respectively, and if ^ be the least common multiple

of the integers > > then the ratio of*
q q

is an absolute covariant.

For example, it will be seen later
( 45, Ex. 13) that the

binary cubic

(a, 6, c, d) (x, 2/,
3

has, besides its quadratic covariant ( 7, Ex. 8)

(ac
- b2

)x
2 + (ad

-
bc)xy + (bd-c

2
)y

2
,

a cubic covariant

For these two covariants (ipisr) has the values 2, 3 re-

spectively. The cube of the first divided by the square of the

second is then a fractional absolute invariant.

42.] Limit to the number of independent covariants. A
limit to the possible number of independent covariants of

a binary quantic may be found as follows.

In the equations of linear substitution

in the expression for the modulus

M =lm'-l'
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and in the p 4- 1 equations, in the two sets of coefficients and

I, m, I', m', which are obtained by expressing the identity of

(A^A lt ...A,)(X,YY with (a ,alt ...ap)(a:,y)> t

i. e. with (a , j , . . . ap) (IX +m F, I'X +m Y)
p

,

we have altogether p + 4 relations connecting the old and new

coefficients, the old and new variables, the modulus M, and

I, m, ', m'. The elimination of these last four leaves exactly

p independent relations as all that can connect only the old

and new coefficients and variables and M.

For instance, the first three equations

x = IX+mY, y = l'X + m'79
M = Im'-l'm,

suffice to determine three of I, m, l
f

, m', the last three say, in

terms of the fourth I and x, y, X, F, M, and lead to no relation

free from I, m, I', m'. The expressions for m, l'
y
m' inserted

in the remaining p + 1 equations, produce from them p+l
equations involving one unknown I, the old and new co-

efficients and variables, and M. By elimination of I from

these, exactly p independent relations in coefficients and

variables and M follow.

Now if there were more than p independent covariants,

including the quantic itself, there would be more than p
independent relations in coefficients and variables, old and

new, and M
;

viz. the more than p equalities of the several

covariants, multiplied by proper powers of M, to the same
functions of the new coefficients and variables. The number

p is then a superior limit to the possible number of inde-

pendent covariants of a binary p-ic.

In fact, a little more than this is true. The number p is, as

the same reasoning shows, a superior limit to the possible
number of independent invariants and covariants together,
the quantic being regarded as a covariant of itself.

As a matter of fact p is not only a superior limit to the

number of algebraically independent covariants and invariants,
but the exact number of a complete system. The present
however is not the stage at which to prove this important fact.

The warning of the latter part of 30 should be repeated.
When p covariants and invariants, algebraically independent
of one another, are known, any other covariant or invariant
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is a function of them. But this does not imply that, when p
independent rational integral covariants and invariants are

known, all others can be expressed as rational integral
functions of them. There may be others that are irreducible.

in the sense of not being expressible as rational integral
functions of simpler irreducible covariants and invariants

;

and except for the values 1 and 2 of p this is in fact the case.

Thus for the binary cubic p = 3, but, when the three inde-

pendent covariants and invariants, all covariants in fact, of

lowest degrees have been found, there proves to be a fourth,

an invariant, which, though of course a function of them, is

irreducible in that it cannot be expressed rationally and

integrally in terms of them. So too for the binary quartic

p 4, but there prove to be five irreducible covariants and

invariants. For the quintic, p 5, the facts are even more

striking. All covariants and invariants are functions of the

five independent ones of lowest degrees. But there prove to

be as many as eighteen other covariants and invariants which
are irreducible, in that they are not rational integral functions

of the five, or of those five and others of as low degrees as

themselves among the eighteen.

43]. We have here for clearness adopted a different order

of reasoning from that applied in 30 to invariants alone.

There we first found a limit to the number of independent
absolute invariants, and deduced conclusions as to the number
of independent invariants not necessarily absolute. Here the

idea of absolute covariants and invariants is made the subse-

quent one. In all cases there is one absolute covariant,

namely the quantic itself. We have also seen
( 41, 29)

that there is no other rational integral absolute covariant or

invariant. For the linear quantic. p =
1, there is no other

independent covariant or invariant whatever, and consequently
no other that is absolute. For higher binary quantics, p > 1,

there cannot be more than p 1 independent absolute Co-

variants and invariants. Otherwise a complete system of

p independent covariants and invariants would be absolute,

and consequently all covariants and invariants would be

absolute. But for any value of p exceeding unity there is

( 15) a non-absolute invariant, the discriminant.
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44]. Covariants of two or more Quantics. With regard to

covariants of two or more quantics in the same variables,

the methods of the earlier articles of this chapter yield, in

a manner analogous to that of 31 to 33, conclusions of

which a summary follows.

Such a covariant is, as in 35, either homogeneous in the

variables or a sum of covariants which are homogeneous in

them. Those which are homogeneous in the variables of the

same order throughout form a complete system.
A covariant homogeneous in the variables may or may not

be homogeneous in the coefficients of the various quantics

severally and collectively. If, however, it be not so homo-

geneous, it is a sum of covariants every one of which is

homogeneous separately in the coefficients of each quantic,
and of course therefore in the coefficients of all the quantics

collectively. Covariants, then, which are throughout of con-

stant partial degrees in the various sets of coefficients, and

therefore of constant total degree in all the coefficients, form

a complete system. This is seen as in 33.
0;
.^JUJi

If Pvp-i,... pr be the orders of r ^-ary ^eics, the factor by
which a covariant of order w and partial degrees i^ i.2,... ir in

their coefficients respectively has to be multiplied to be made

equal to the same function of the variables and coefficients in

the linearly transformed quantics is

where M is the modulus of the linear substitution, and

2 . ip =

The whole weight of the covariant is constant throughout,
and exceeds the index of this power of M by , i. e. is

If the covariant is rational and integral this weight must
be a positive integer, and consequently the index

-
{'S.ip 'er} (

= W
iff)

is not a fraction. It is, moreover, not negative, beinsr the
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weight of those coefficients in the covariant which multiply

products of the variables in which the last co does not occur,

which coefficients cannot all be absent, as no covariant can

have co for a factor when the coefficients in the quantics are

general.

45.] Covariants productive of other covariants and invari-

ants. At this point it may be well to prove an important

fact, which, stated for the moment without complete generality,
is that any invariant or covariant of a covariant of a quantic
is an invariant or covariant, as the case may be, of that quantic
itself.

Let (a, 6,... )(#, ?/,... )

p be the quantic u, in any number of

variables, in its untransforined shape,and let (A, B, . . .
) (X, 7,. . .)

p

be its linearly transformed shape. Also let (a', 6', . . .
) (x, y, . . .)

OT

be a covariant of u, so that a', 6', ... are functions, of degree
i say, of the coefficients a, 6,..., and let A', B'.... be the same

functions respectively of A, B,.... We have simultaneously
the identities

(A', B',...)(X, Y,...)' = ^"""V, b',...)(x, y,...)".

If then K (of, b',...y(x, /,... )

w/ be a covariant, or invariant

in case TO' = 0, of the covariant (of, &',...) (#, y,-..), we have

K (A', B',...y(X, ,...)'

and consequently, in virtue of the homogeneity of the co-

variant K,

= M"- K(a', V,... )'>, y,...r,

which, since a', &',... are functions, of degree i, of a, 6,...,

and A', B',... are the same functions respectively of A, B,... ,

shows that K(af, b'....Y(x, y,...)' is a function, of degree i'i



58 EXAMPLES.

and order &' of a, b, . . .
, x, y,... which, when multiplied by

the -(i'^-o/)tk power of the modulus M, becomes the same

function of A, B, ...
, X, Y, ... . It is then a covariant of u, or

r

in particular if m 0, an invariant.

It will be at once seen that only brevity of writing has been

secured by attending to but one covariant (a, b', . . .
) (x, y, . . .

)

p

of but one quantic u. The argument would have been exactly

the same if we had been dealing with more given covariants

than one of a quantic, or a given covariant or covariants of

more quantics than one in the same variables. We may state

in fact the general conclusion, to which the method leads us,

as follows.

Any covariant. or in particular invariant, ofany covariant,

or system of covariants, of any quantic, or system of quantics
in the same variables, is a covariant, or in particular in-

variant, of that quantic or system of quantics.

Ex. 12. The binary cubic (a, b, c, d) (x, y)'*'
has the covariant

( 7, Ex. 8), its Hessian,

(ac
-

which has the invariant ( 7, Ex. 1),

(ad be)
2

4(c-6
2

) (bd-c
z

).

This then is an invariant of the cubic. It is its discriminant.

Ex. 13. Find a covariant of degree 3 and order 3, the cubicovariant,

of the binary cubic.

Ans. (tfd 3a6c+2 3

,
abd-2ac2 + bc, -acd+2b'2d-bcz

,

adz

+3bcd-2J) (x, y)'\

the Jacobian of the cubic and its Hessian.

Ex. 14. Show that the binary quintic (a, b, c, d, e, /) (x, yY has

an invariant of the twelfth degree.

Ans. The discriminant of the canonizant. (Cf. 17, Ex. 20,
and Ex. 12 above.)



CHAPTER IV.

CO3REDIENT AND CONTRAGREDIENT QUANTITIES.

46.] BEFORE proceeding to the further definitions and prin-

ciples on which most of the propositions of this chapter are to

rest, we here first investigate a fruitful method, whose con-

nexion with them will be seen later, for the derivation of

invariants and covariants of binary quantics, and binary

quantics only.
The linear transformation of two variables,

Y',

- (1)

leads, as has been seen in 10, to the equalities of differential

operators
d -.d ,,d

dX
~

dx dy'

d d ,d
W* 4-7)) i

-i -r T "~~ " J 7 ~t~ '
* V

i

"

dY dx dy )

where on the right the operation is on any function of x and

y, and on the left it is on the function of X and F, which is

equivalent to that function of x and y in virtue of (1).

Now the equalities (2) may be written

d_ _
l

_

d
_ +m (-~},}

flit dY ^ dX' /3\

Thus, except for the factor lm' -I'm, i.e. M, the symbols of

operation ,
- are transformed by the same scheme of

dy dx
linear substitution as are the variables x, y.
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Thus iff(x. y) be any homogeneous function, of order OT say,

of x and y, and if F(X, Y) be what this becomes when the

substitutions (1) are made for x and y in it, we have not only

but also

where the operations on the right and left are on any function

of x and y, with or without other arguments independent of

x and
2/,

and on its equivalent in terms of X and Y obtained

from it by means of (1), respectively.

47.] Let us now apply this fact to covariants of one or more

binary quantics. If (/>(, 6,..., x, y) and v//(a, 6,..., x, y) be

any two covariants of the quantic or quantics either or both

of them may be in particular the quantic itself, or one of the

quantics of orders or, / in x and y, and of weights w, iv
f

respectively, we have, 37, 39,

4 (A, B, ..., X, Y) = Mw
-<l>(a, b, ..., x, y),

and + (A, 5, ..., X, Y) = ir'- ro

>(a, 6, ..., aj, y).

We have consequently also, by the preceding article,

and

whence it follows that by operating with either one of this

last pair on either one of the immediately preceding pair, left

on left and right on right, we get a covariant identity.

All the four conclusions are really contained in the one

b, .... ,
- -*(a, b, ...,x, y),

for < and
\l/ may be interchanged, or may be identical.

Thus the result of operating in this way with any covariant,
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one of the quantics. on any covariant, or one of the quantics,
a covariant, or invariant, unless it vanishes. It will

c jrtainly vanish if r the order of $ exceeds CT' that of
i//.

It

\ ill be an invariant, unless it vanishes, if w = -or. It will be
a covariant, unless it vanishes, if or is less than -&'.

The exact powers of M in the above are not essential to

tie argument. It is of interest, however, to verify that the

jower in the conclusion is what it should be in accordance
with 37, 39. In the operating factor on the right the

si ?0"

weight of the coefficient of
(-7- )

is w or, while in the

j actor operated on that of the coefficient of y' is w'. Also

the order is a/ to-. Thus the index of the power ofM should

be
( 39)

\.e. w + 'uf'af
f

t
as is the case.

48.] Invariants of the second degree. One of the most

interesting conclusions from the above is that every binary

quantic of even order has an invariant of the second degree.
For operate on the binary ^>-ic

(a ,al ,a.2 ,...ap)(x,y)
p

with the result of putting -j-
>

-^
for x, y in itself, i.e with

cty doc

. , d d y
(a., ,, O,, ;..,) (^.-^).

We thus get, after division by p I, that

p(p-l)

is an invariant unless it vanishes.

It vanishes ifp is odd, as the first and last, second and last

but one, &c., terms in that case cancel. If, however, p is even

it does not vanish, but the last term is a repetition of the first,

the last but one of the second, and so on till the middle term

which stands alone. Thus, halving, and replacing p by 2n,
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we see that if
( )

denote the number of combinations of

2n things r together,

/2ft N (
c

*n\
l +( a.2a,n. 2 -( Ja3

a2w _ 3 +...

is an invariant of the binary 2n-ie

(a ,a15 a2 ,...a2w)(^2/)
2n

.

In particular the binary quadratic, quartic, sextic, &c.

(a, b, c) (a?, 2/)

2
, (a, 6, c, rf, e) (x, y)*, (a, 6, c, d, e,/, gf) (a, 2/)

6
,
&c.

have the invariants of the second degree

ac 62
,

ae 4 bd + 3 c
2
,

&c.
3

of which the first two have been obtained earlier.

49.] Two different binary quantics of the same order have

in all cases, whether their order be even or odd, an invariant

of the first degree in the coefficients of each quantic, and so of

the second degree on the whole. If the two quantics be

(o ,a1 ,o2 ,...a1,)(aj, y)
p

,

and (1>o,1>i,l>2,~.'1>p)(x,y)
p

,

this joint invariant is in fact

(b ,
b
19

6
2
.... b

p) (x, y)
p

,

which, divided by p !,
is seen to be

p (p I)
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This is called the lineo-linear invariant of the two binary

^-ics.

Of the result Exx. 2, 4 of 7 are particular cases.

We notice that the results of the preceding article are

correctly given from this one by making the b's the same as

the a's, i. e. by making the quantics the same.

We also notice that for an even order p the joint invariant

obtained here for two p-ics is the intermediate ( 19) between

the invariants of the second degree of the two p-ics.

These two observations illustrate the fact that we can

either pass from invariants of one quantic to those of two of

the same kind and order, or from those of two quantics to

those of one, but that the information given by two quantics

as to one is complete, while that given by one as to two is

not so.

Ex. 1. Employ 47 to find the invarant ace+2bcdad2
b'
2
e c*

i
of a binary quartic by aid of the quartic and its Hessian

( 11,

|

Ex. 16).

Ex. 2. Find the invariant of degree 4, the discriminant, of a binary
cubic by operating with the Hessian on itself, or again by operating
on the cubic with its cubicovariant

( 45, Ex. 13).

Ex. 3. Prove that

(a, b, c, d) ( , -j-)
3

{(a, &> c
> d) (

x
, 2/)

3

}

2

is 108 times the cubicovariant of the binary cubic.

Ex. 4. The invariants of the second degree

\ ag6bf+15ce-lQd
2

,
...

of binary quantics of even order are linear functions of determinants

chosen from among

a, b, c, d, e, ...

b, c, d, e, /, ... i (Cayley.)

Ex. 5. The lineo-linear invariant of the x- and y- first differential

coefficients of a binary quantic u of even order is the invariant of the

second degree of u. (Cayley.}

(N.B. The function obtained in the same way from a binary

quantic of odd order is not an invariant.)
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Ex. 6. Two binary qualities of different oiders p, p', (p>p')> have

a covariant of order p p' whose coefficients are lineo-linear.

Ans. The result of operating with the second on the first.

Ex. 7. In particular two binary quantics of orders p, pl, have

a linear covariant, in the variables, which is also linear in the

coefficients of each quantic.

50.] Another result of the close resemblance in form between

the schemes (1) and (3) of 46 is obtained by making (3)

operate on any binary quantic u. We thus get that, when
formulae give x and y linearly in terms of X and F, the

same formulae give M-r and M -=- in terms of -7^ and
, dy dx dY

-r== It follows that if in any covariant of a binary quantic

u, homogeneous as usual in the variables, -y and
^

are

substituted for x and y another covariant of u is obtained.

This theorem is Sylvester's, having been overlooked by Boole

who had given the more far-reaching kindred theorem of

47.

Ex. 8. If in a binary quantic u we replace x and y by

du du
and

,

dy dx

we obtain the product of u and a covariant. (Salmon.)

A ns. That u is a factor we may see as follows. The values of

x, y which make u = make

du du . du du
x T~ 4 y -r~ = 0, i. e. make -7-: =x : y,dx ff

dy dy dx

so that u, a homogeneous function f (x, ?/),
is a factor of

. /du du\

Ex. 9. Hence obtain the cubicovariant of a binary cubic.

51.] Cogredient quantities. If two equally numerous sets

of quantities x, y, z, ... and x', y', z', ... are such that, when-
ever one set x, y, z, ... are expressed in terms of new

quantities X, Y, Z,... by any scheme of linear substitution,
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the second set #', ?/', ',... are expressed in terms of other new
quantities X', 7', Z', ... by the same scheme of linear substitu-

tion, the two sets are said to be sets of cogredient quantities.
For instance, the coordinates of two points in a plane, or

in space, are cogredient sets of three, or four, quantities.

Again in 46 it has been shown that, but for the factor M,

-T- and -=- are cogredient with x and y.

Once more, if the binary

(a ,a1 ,a.2 ,...ap)(x,y)
p

be regarded as a product ofp factors

-x
2y) ... (xyp~xp y),

/vi
/-yi

/*v

so that > ,...- are the roots, and ylt y2 , ...yp may in
2/i 2/2 2/p

fact be chosen arbitrarily subject to
2/1 2/2 "-2/P ao'

quantic be linearly transformed by taking

y = l'X + m'Y,

XX X
into one of which ^

> -=? > -=^
, say, are the roots, we have

X,
i/ -~-

so that without impropriety we take

and similarly for other suffixes 2, 3, ... ,p. We have then
;
in ]

the language of the present article, x
l ,y l ;

x 2 , y%\ ... ; s^yp \

cogredient with x, y.

52.] Emanants. Some functions have the covariant property
with regard to a quantic or set of quantics, though they

involve, not only the coefficients and variables in the quantic
or quantics, but also a set or sets of quantities cogredient
with those variables. Allowing ourselves some freedom of

expression, when no confusion can arise, we may designate
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such functions covariants. We proceed to the consideration

of a very important class of covariants of this kind.

Let u be a p-ic in the q variables x, y, 0, . . . . The functions

/ , d . d . d \..

(x -r + tfj- + ^ :r + )
u>^ dx y

dy dz

for values of the positive integer r from 1 to p inclusive, are

defined as the first, second, ..., pth emanants of u. There

would be some convenience in defining the rth emanant

rather as the above expression multiplied by the numerical

factor
~

t

? but there is no real importance in this, as

a numerical multiple of a covariant is of course a covariant

not distinct from it, and as we have as yet introduced no

convention as to the best numerical multiple of a function,

found to have the property of an invariant or covariant of

any quantic, to denote by a letter and speak of as that

invariant or covariant. Moreover the simplest form is given
to general conclusions by use of emanants as written above.

Inconvenient numerical factors in any conclusions with regard
to quantics of particular orders can be rejected when the end

is reached.

The pih emanant is pi times the quantic u itself with

x,y, z,... replaced by x
r

, y', z', .... For values of r exceeding

p there are no emanants, as (p+l)th differential coefficients

of u vanish.

That the emanants of u are absolute covariants in the

extended sense is readily seen. If we have

x = IX +mY +nZ + ...,

y = l'X + m'Y+n'Z +...,

m"Y+n"Z+..

and af=lX'

'=l'X' +m'Y'
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then, since

67

dX dx dy dz

d d . d ,. d- =m -=- + m ^- + m -=- +dY dx dy dz

d
<L
dx <Tdy -j-dz

where on the right the operations are upon any function of

x, y, z, ..., with or without x', y', z', . . .
,
and on the left they

are upon the equivalent of that function expressed in terms

of X, Y, Z, ...
, with or without X', F, Z', ...

,
we have

d d

, d . d , d= x j- +y j- + * j- + '-
dx *

dy dz

Hence by successive operations on u, any quantic in

#,/),...) or indeed any function of those variables, the

operations on the right and left being upon its original and

transformed forms respectively,

dy

d d , d , d

&c. 5 &c.

Thus the emanants are all absolute covariants.

It may be noticed that the emanants may be otherwise

expressed. Thus
1 / , d ,d ,dAx -j- +y -j- +Z-T +
r\\ dm * dv dzdy

d d d_
dz

f
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where u' is what u becomes when in it #', y', z, ... are put

for x,y,z, ____ This follows at once from the fact that either

side is the coefficient of t
r in the expansion in powers of t of

tf, y + ty', z + tz', ...),
where /(a?, y, 0, ...)

is u.

Ex. 10. Prove that the emanants are absolute covariants by

identifying the results of replacing in u

x,y,z,... by x+tx', y + ty', z + tz*, ...,

and X, 7, Z, ... by X+tX', Y+tY', Z+tZ'.....

53.] Geometrical aspect of emanants. The process of

finding emanants is sometimes called the polar process. The

student of geometry will notice that the theory of emanants,

with regard to ternary and quaternary systems, is that of

polar curves and surfaces.

Thus if the ternary p-ic u be taken as representing a curve,

when equated to zero, its first emanant equated to zero

represents the first polar curve of a point x', y', z' with regard
to u> i.e. a certain curve of order p 1 which possesses the

property, among others, of determining by its intersections

with u all the points of contact of tangents from x\ y',
z
f

.

The second emanant is in like manner the criterion of the

second polar curve of x', y', 0", i. e. of the first polar curve with

regard to the first polar curve
; &c., &c.

That the emanants are covariants is the expression of the

[fact that the various polar curves of a point with regard to

a curve are the same, for the same point and the same curve,

in whatever system of point-coordinates the curve and point
are taken as expressed, and to whatever axes or triangle of

reference they are referred.

In like manner, with regard to quaternary quantics, the fact

that the emanants are covariants is the fact that the polar
surfaces of a point with regard to a surface are the same

surfaces whatever be the reference.

54.] Geometry of binary systems. The occasion is a good
one for a geometrical consideration of binary systems. Their

geometry may be regarded either as that of ranges of points
on a line or of pencils of lines through a point. To begin
with we adopt the former aspect.
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Let a and b be two fixed points of reference on a straight

p line, P any point on that line. Let x and y
~A~~~CI b B denote AaP and ^bP respectively, where A

and
p. are constants. Take A and B two

new fixed points of reference on the same line, and let

X and T denote X'AP and //BP respectively, where A', ju' are

new constants. Suppose that a divides AB in the ratio T : s

and that b divides it in the ratio p : <r. Then

(r + s)aP = sAP + rBP,

so that

Now these may be identified with

x = lX +mY,

by proper choice of -
, -> , A', // in terms of I, m, l

f

,
m' and

s s

A, fji, provided that lm' I'm does not vanish.

Thus
thejnost general linear substitution for x and y is

equivalent to the change of the reference of points (#, y) to

new fixed base points, and the adoption for the~new~~co-

ordinates (X, Y) of new constant multiples of the distances

from those new base points.
A binary p-ic represents a range of p points P. (x

f

, y') is

an additional point P' on the line of reference. The first,

second, c. emanants are first, second, &c. polar ranges of

joI, p 2, &c. points on that line. The property of co-

variancy belonging to the emanants is the expression of the

fact that the polar systems of points are systems of points
determined by strictly geometrical connexions with the p
points and the additional point P', so that their equations
have the same relation to the point x, y' and the p-ic whatever
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be the base points of reference or the constant multiples. The

geometrical connexions are with the p + 1 points only, and

have no reference, for instance, to the point at infinity on the

line, so that they are not metrical connexions.

55.] Or we may adopt a strictly correlative geometrical

representation. We may regard a binary p-\c, equated to

zero, as representing p straight lines through an origin, taking
the x, y of any line through the origin as given constant

multiples of the sines of the angles which that line makes

with two fixed lines. We may take as new lines of reference

any other pair of lines through the origin, and adopt for the

X, Y of the line x, y any new constant multiples of the sines

of the angles which it makes with the new lines of reference.

The substitution for x, y in terms of X, T is readily seen to be

the most general linear substitution, in virtue of the two

degrees of arbitrariness involved in the choice of the new
lines of reference, and the two degrees of arbitrariness in-

volved in the choice of the multiples.
A property of covariancy of a function with regard to the

p-ic is expressive of the fact that the pencil of lines obtained

by equating the covariant function to zero is a fixed pencil of

lines, whatever be the lines of reference or the multiples, the

p-ic equated to zero being a given pencil of lines. In other

words, the relation of the pencils of lines is one of strictly

geometrical connexion, of a nature entirely uninfluenced by
the geometry of other pencils, such as the pencil to the

circular points at infinity. If the cogredient a/, y' enter, as

is the case with emanants, there is no difference, except that

the geometrical connexion of the covariant pencil of lines is

with the p-ic pencil and the line (x', y
/

).

It will be noticed that the aspect of the geometry of co-

variants sketched in 6 differs from that here developed.
There we looked upon a linear substitution as replacing
a pencil of lines by a protectively corresponding pencil, re-

taining the same reference. Here we look upon the substitu-

tion as changing the reference, retaining the same pencil.
There is a corresponding choice when, as in the last article,

we regard the geometry of binary systems as that of ranges of

points on a line.
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56.] Covariants derived from emanants. From the eman-
ints of u, themselves, as has been seen, covariants in an
extended sense, can be derived covariants ofu in the ordinary
sense, i.e. covariants free from the quantities #', y', 2', ... which
are cogredient with the variables. The basis of this fact is

the following theorem.

If any of the emanants of u be expanded and arranged as

a quantic in x', y', z', ..., any invariant of that quantic is

a covariant of u.

Considered as a quantic in x, y', z', ..., the rth emanant

/ / d , d , d v
(x -Y- +y ^- +z -7-+ ) U^ dx y

dy dz '

may be written

,dru d>'u

its coefficients being all the rth partial derivatives of u, and

so functions of x, y, z, ... for values of r less than p. Its

transformed form is, as has been seen in 52, similar, so that

it may be written

, dru dru dru \( V' V 7' V"" dZ" ')(*>*>*>-')'

Now let F(a, 6,... &,...) be an invariant of the quantic

(a, 6, ..., k, ...) (a;', y', z', ...)'',
so that, for some value of p,

F(A, B, ..., K, ...)
= MF(a, b, ...,k, ...),

where (A, B, ..., K, ...) (X/, F, Z', ...)
r

is the transformed

quantic. We conclude that

, dru dru dru \

"" dZri "'

u dru dfu x

But the function F on the left is the same function of the

coefficients and variables in the transformed u as the function
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F on the right is of the coefficients and variables in the un-

transformed u\ for each differential coefficient which occurs

on the left is the same function of the new variables and

coefficients as the corresponding differential coefficient on the

right is of the old ones. Thus

-r,fd

ru dru dru x

* 'i' ~"

is a function of the coefficients and variables which obeys the

definition of covariants.

We see from this theorem that every invariant of a #-ary

?'-ic gives a covariant of any #-ary quantic of order p
higher than r, by taking for the r-ic the rth emanant of

the p-ic.

Moreover the identity expressive of the fact of covariancy,
for any covariant thus derived, involves as its factor M*

exactly the same power of the modulus M as does the

identity which expresses the invariancy of the invariant

from which it is derived. In other words, the weight of the

coefficients of terms free from the last variable co in the

covariant is exactly the weight of the invariant. The degree

(in the coefficients) of the covariant is moreover equal to the

degree of the invariant.

57.] For an example take the second emanant

/ , d . d . d N
2

(x
'

-r- + y
' + z -r~ + ...

)
u.

dx y
dy dz

Written as a quantic in x', y', z', ... this is

d2u , n d2u
-j-^x

2 + 2-irxy + l-frxz + ...
dx2

dxdy dxdz

d2u ,, dzu , ,
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and of this the discriminant, which is
( 15) an invariant, is

d2u d2u dzu
dx2

dxdy dxdz

dxdy dy
2

dydz

d2u d2u d2u
dxdz' dydz dz2

the Hessian of u. Another proof that the Hessian is a covariant

( 11) is thus afforded.

In 12 we saw that a knowledge that Hessians are covari-

ants told us in particular that discriminants of quadratics are

invariants. We now see that the order of reasoning may be

reversed. Discriminants are invariants by 15, and therefore

Hessians are covariants.

The geometrical aspect of the fact that the Hessian of

a ternary quantic is a covariant may be mentioned. In works

on geometry the Hessian of a curve of order p is found as

a curve of order 3 (p 2) which has the property of determin-

ing the points of inflexion on the first curve by its intersections

with it. The covariant property tells us that the curve found

by expressing this fact is the same curve whatever be the

system of point coordinates or the triangle of reference, i.e.

that we do not, when employing different references, obtain

different curves with the one property of determining points

of inflexion in common to them, but identically the same

curve.

Ex. 11. Prove that

d*u d4u

dx4
dy* dx^dy dxdy

3

is a covariant of a binary quantic u of order exceeding 4.

Ana. Factor M\ Use 7, Ex. 5.

Ex. 12. The invariant of the second degree of a binary 2 n-ic gives

a covariant of any binary quantic of order exceeding 2n.

Ex. 13. Deduce the covariant of a binary quantic found in 17

from the catalecticant of a quartic ( 49, Ex. 1).
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Ex. 14. Write down from Ex. 11 a quadratic covariant of a binary

quintic, and a quartic covariant of a binary sextic.

Ex. 15. Every binary quantic of odd order 2 n + I has a covariant of

the second order and second degree.

Ans. The invariant of the second degree ( 48) of its 2 rath

emanant.

Ex. 16. Every binary quantic of odd order 2n+l exceeding 3,

has at least one linear covariant, obtained by operating on it, as in

47, with the nth power of its quadro-quadric covariant (Ex. 15).

(Hermite.)

Ans. For order 3 the result vanishes. For higher orders it

does not. To see this let the substitution be adopted which reduces

the quadro-quadric covariant to the form kXY, and the quantic to

where A w Av A z ,
... A M+1 have consequently to satisfy only

A
Q
A 2n-2nA l

Azn_l + ( ^)A 2
A 2n^-... =

and

The linear covariant derived becomes a numerical multiple of

A nX+ A n+l Y,

and A n = 0, An^ = do not follow from the two conditions when

Ex. 17. For the binary quintic this linear covariant is of degree 5.

Show that there is another of degree 7, and, assuming as suggested by
48 and proved hereafter that a binary quantic of odd order has no

invariant of degree 2, that it must be distinct from the former.

Ans. The Jacobian of the quadro-quadric covariant (Ex. 14) and
the linear covariant of Ex. 16.

58]. Precisely as in 56 we see that if we take more

emanants than one of u, or if we take any emanant or

emanants of a covariant of u, or if we take any emanants

of two or more quantics u,v,w,... in the same variables, or

of covariants of two or more quantics, taking in all of course

the same cogredient quantities #', y', 2', . . .
,
and if we arrange

them as quantics in 05', y', z',..., and write down any invariant
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f the system of quantics in x', y', 0', ... thus obtained, we
iave a covariant of u, or of the quantics u, v, w,... jointly.

Ex. 18. From 9 deduce 10.

Ex. 19. Employ 49 to obtain covariants of two binary quantics.

59.] Symbolical representation of covariants and invari-

ants. For full information as to the system of invariants and

3ovariants of a single quantic, it proves to be necessary to

have recourse to more quantics than one
;
and not to quantics

in one and the same set of variables only, but to quantics in

different cogredient sets of variables.

We here consider binary quantics only.

Let x
l , yl

and x
2 , y.2 be two cogredient pairs of variables, so

that simultaneously

x
l
= IX

V +mYlt x^ = I

y, = I'Xi + m'7, , 2/2
= *'

We notice that

where M is the modulus lm' I'm.
^JL~-

Hence, by 46,^M^*
d d d d ,,/ d d d d

^
dXl dY^ d l dXg

- ^dy2

~
dyida*'

'

so that -^
--

;---j -r- is what may be called an invariant

OX! dy2 dyl
dx.

2

symbol of operation.

Now let u, v be any two binary quantics, and let them be

called u
} ,

v
{
when the variables in them are xl9 ylt and u2 ,

v2

when they are x.2 , y2
. Also let U, V\ U19 Fx ;

U
2 ,
V2

denote

their linearly transformed forms.

We deduce from the above that, for any positive integral

value of r,

d'Ui drV
2 d'Ui drV

2

dXf
'

dY;
T
dX{~

l d F!
'

dX2
dY2

r~l "*

f- 'dyf dxi

r~1
dyl

dx.2 dy

>v
2 1

~ l
j
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In this x
l , 2/x

and x.
2 , y are any cogredient pairs. We may

in the expanded result obtained make them the same x, y.

Thus

dTV drU drV
_

d7 r
~

dXr- l dY dXdYr~l

d^v_ _dTu__ d'v

dy
r dxr'l

dy dxdy
r - 1

^ "
}'

We accordingly have a system of covariants of two binary

quantics u, v. They have already been obtained in 58,

Ex. 19, as the lineo-linear invariants
( 49) of the rth

emanants of u and v. In particular if p is the order both

of u and v, the value p of r gives the lineo-linear invariant

itself, multiplied by (pi)
2

.

Again we may in the expanded result make u and v the

same quantic, and thus get that

dru dru dru d
T

dxr

dy
r dxr~ l

dy dxdy
r~

r(r 1) dru dru
1.2 dxr

~*dy'* dx*dy
r ~2

is a covariant, or invariant if r = p the order of u, of factor

Mr
. For odd values of T the result is nugatory, in that its

first and last, its second and last but one, &c. terms cancel

against one another. For even values of r the last term

repeats the first, the last but one repeats the second, and so

on till the middle term which occurs once only.
These covariants of u have already been obtained

( 57,

Ex. 12) as the invariants of the second degree of the emanants

of even order of u. For r = p, the order of u, we have in

particular a numerical multiple of the invariant of the second

degree ( 48) itself.

So far then the method is only another one for determining
results already known in other ways. It as yet gives us only
the covariants and invariants of u which are of the second

degree in the coefficients. Its convenience is that it suggests
an expressive symbolization for covariants and invariants,

and paves the way to a systematic examination of all forms

which can be covariants or invariants.
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60.1 Hyperdeterminants. The operator -y- ^--- -
dx

l dy2 dy-i dx
2

is denoted by the brief symbol 12. More briefly still the

covariant, or invariant, of u found above by operating r times

with this symbol 12 on the product u-^u.^ and removing all

suffixes in the expanded result when the operations have been

performed, is called the covariant or invariant 12 of u.

To get covariants and invariants of the third degree in the

coefficients of u we may consider the product of three quantics

MI, v2 , Wo, whose suffixes imply that their variables are three

cogredient sets, and operate on the product with

, d d d d S , d d d d / . d d d d S

^dx-^dy.} dyl dx./ \lxz dy3 dy2 dxa
' ^dx2 dy1 dyz dxj

'

thus getting, for positive integral and zero values of r, s, t,

functions seen as in 59 to have the covariant or invariant

property. In the result, after giving it its fully expanded
form, we may replace all three sets of cogredient variables

x
i 2/i >

x
-i > 2/2 > ^'2/3 by the same set x, y, and also make u, v

and w all the same quantic u. We thus get a system of

covariants and invariants of u which may be symbolically
written

12
r

. 23
8

. 31
',

for different positive integral and zero values of r, s and t.

These covariants and invariants are all of the third degree
in the coefficients. It is easy to see the necessary connexions

of r, s, t and p, the order of u, that they may be invariants.

Any term in the covariant or invariant is a product of

differential coefficients of the three factors uuu, the first

being differentiated as many times as the figure 1 occurs in

the symbolic product, the second as many times as the figure

2 occurs, and the third as many times as 3 occurs. Now if

the expansion be an invariant each one must be differentiated

p times, where p is the order of u. For an invariant then the

conditions are

r + s = s + t= t +up.
To get covariants and invariants of the fourth degree we

have in like manner to operate on products of four quantics.
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The symbolical form of such covariants and invariants is

12
i

13
i

and the conditions for an invariant are

In like manner covariants and invariants of the fifth, sixth,

&c. degrees have symbolical expressions involving five, six, &c.

letters, derived from products of five, six,&c. quantics, eventually
made the same. For invariants every figure must occur in

the same number of symbolical factors, and that number must
be the order of the quantic of which they are invariants.

The method is one by which Cayle}^ made great advances

in the systematic exhibition of covariant and invariant forms.

(See, for instance, his collected works, Vol. I, pp. 95-112.) To

develope it is outside the limits of the present introductory
work. For the examination of what symbolical expressions
do not vanish, and the reduction of irreducible systems, the

student is referred to Cayley's original memoirs, and to

Salmon's Higher Algebra, Lesspn XIV, &c. The method, which
is spoken of as that of c

hyperdeterminants/ did not, in its

originator's form, succeed in establishing the finiteness of

complete systems of irreducible covariants in general. That

triumph was reserved for another symbolical method, having
much in common with it, which will be referred to in the

following article.

There is a corresponding theory for ternary and higher

quantics, which will not be entered into. The student will

have no difficulty in seeing that, acting upon a product of

three ternary quantics, d

dx
l

d

d

d

d_ d

d

dz
l

d

dz2

d

which may be called 123, is an invariant operator.

61.] Transvectants. The invariant or covariant 12 (uv),
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/
ft rp\ J

/
rrf /y>\ f

or rather this multiplied by -j^\
~

>
is called the rth

transvectant of i& and v, in German the rth '

Ueberschiebung
von u uber v.' The process of forming transvectants of u and

v is called transvection.

In particular the covariant or invariant 12 of it, i.e. the
'

( ! )
2

covariant or invariant 12 (u u), is
-j

*
'

> times the rth

transvectant of u and itself.

From two binary quantics u, v, whose orders are p, p', of

which p <f; p',
are derived p + I transvectants. For, besides

the values 1, 2, 3,...p of r the value is also admissible.

The Oth transvectant of u and v is the product uv. The
other transvectants of u and v are the covariants, or covariants

and invariant, which are of the first degree in the coefficients

of u and also of the first degree in the coefficients of v, and so

altogether of the second degree. As has been seen, one is the

product uv, and the rest may be found from the first, second,

..., pili emanants of u and of v by writing down the lineo-

linear invariants of corresponding pairs of those emanants as

in 49.

The Oth transvectant of u and itself is u2
. The other

transvectants of u and itself are the covariants of u of degree
2 in the coefficients, obtained by writing down the invariants

of the second degree of the successive emanants of u. The

first, third, fifth, &c. transvectants of u and itself vanish.

In the theory of transvectants symbolic products 12 . 23 ....

involving powers ofmore thanone symbolic factor haveno place.

The Cayleyan notation 12 (uv) for transvectants is the

most concise and easily grasped for the presentation of a par-
ticular covariant, but another symbolical notation, which will

not here be dealt with, is more frequently used, and is best

for the purposes of research into the theory of complete
covariant systems. It is symbolic db initio, denoting a binary

quantic (a ,
a19 a.2t ...ap) (a?, y)

p by (ax + a'y)
p

, where ar
a' p

~ r

means a,., and ar
a'' has no meaning unless r + s is a multiple

of p t
and denoting also a covariant (0 , 1} 2 ,...0W ) (#, 2/)

w

by (0 x +
/

2/)
w in like manner. It is identified with the names

of Aronhold, Clebsch and Gordan.
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The last named succeeded, in fact, by means of it, in

establishing the finiteness of the complete system of irre-

ducible covariants and invariants for any binary quantic or

quantics.
With regard to a single binary quantic u, what researches

with the improved notation of transvectants have succeeded

in establishing is, that all concomitants (this term including
both covariants and invariants) of u which are of the second

degree in the coefficients are transvectants of u, u2 in particular

being the Oth transvectant
;
that all of the third degree in

the coefficients are linear functions of transvectants of u and

concomitants of the second degree, products of u into u2 and

other concomitants of the second degree being included as Oth

transvectants
;
that all of the fourth degree are transvectants

of u and concomitants of the third degree ;
and so on from

degree to degree. Gordan has proved that this continued

process ceases after a time to give new irreducible con-

comitants, so that the determination of a complete system
of irreducible concomitants for any binary quantic is reduced

to the examination for irreducibility of those which are ob-

tained as transvectants up to a certain point. His proof is

a somewhat difficult mathematical induction based upon
showing that if the system is finite for the >-ic it is for the

And the finiteness of the complete system of irreducible

concomitants of a number of binary quantics has also been

established. In the case of two quantics u, v the complete

system is comprised in the complete system of u, the complete

system of v, and a terminating system of transvectants of the

one complete system with the other complete system. In the

case of three quantics u, v, ^v
)
the complete system of con-

comitants is comprised in the complete system of u, v, the

complete system of w, and a terminating system of mutual

transvectants of these complete systems ;
and so on for any

number of quantics.
This grand theory should be studied in Clebsch's Theorie

der BindrenAlgebraischen Formen, or in Gordan's Vorlesungen
uber Invariantentheorie. A brief treatment of it is also given
in Salmon's Higher Algebra, Lesson XX. It lies beyond the

scope of the present treatise.
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Ex. 20. The Jacobian of u and v is their first mutual transvectant,
a numerical factor discarded.

Ex. 21. The Hessian of a binary quantic u is the second transvectant

of u and itself, but for a numerical factor.

Ex. 22. The quadratic invariant
( 48) of a binary 2n-ic is half its

2 ni\\ transvectant with itself.

Ex. 23. The lineo-linear invariant
( 49) of two binary p-ics is their

p{h mutual transvectant.

Ex. 24. The second transvectant of the cubic (a, b, c, d) (x, y)* and
itself is twice the quadratic covariant

(ac
- 6

2

)
a;

2+ (ad
-

be) xy+ (bd
- c

z

)y
z

.

Also the first and third transvectants vanish.

Ex. 25. The first transvectant of the cubic and its second transvec-

tant (Ex. 24) is the cubicovariant
( 45, Ex. 13)

The second mutual transvectant vanishes.

Ex. 26. The first transvectant of the cubic and its cubicovariant is

minus twice the square of the quadratic covariant (ac 6
2

)^
2 + ... .

Their second mutual transvectant vanishes. Their third is minus
twice the discriminant

Ex. 27. The second transvectant of the quartic (a, b, c, d, e) (x, y)
*

and itself is twice the quartic covariant (the Hessian simplified by
omitting a numerical factor)

+ 2 (be cd)xf + (ce
-

and the fourth transvectant is twice the invariant

Ex. 28. The first transvectant of the quartic and the quartic
covariant of Ex. 27 is half a sextic covariant beginning

(a
zd 3abc + 2b3

)x
6
+...i

the second is one sixth of the product of / and the quartic :

the third vanishes : and the fourth is three times the invariant

= ace+

Ex. 29. The binary quintic (a, b, c, d, e, f) (x, y)
5 has a covariant

of the second order and the second degree.

Ans. ae

half the fourth transvectant of the quintic and itself. Of. 57,

Ex. 16.
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Ex. 30. The binary quintic has an invariant of the fourth degree.

Ans. (af 3be + 2cd)* 4(ae 4bd+3 c
2

) (bf 4 ce+ 3 d?),

found as minus twice the second transvectarit of the covariant of Ex. 29

and itself.

Ex. 31. The binary quintic has a linear covariant of degree 5 in the

coefficients.

Ans. The fourth transvectant of the quintic and the square of

the covariant of Ex. 29. Cf. 57, Ex. 17.

Ex. 32. Find a covariant of the fourth order and second degree of

the binary sextic.

4

Ans. 12 .

Ex. 33. A ternary quadratic has an invariant of the third degree
2

whose symbol is 123
;
and a ternary quartic one whose symbol is

4

Ex. 34. A q-ary 2n-ic has an invariant of degree q.

62.] Contragredient quantities. Two sets of quantities
x yt z,...j f, jj, C are said to be contragredient when formulae

of linear substitution for the first set

x = IX + mY+ nZ+...,

y= l'X+m'Y+n'Z+... t

are necessarily accompanied by the associated but differei

formulae of substitution for the second set

H =

in which latter set it is to be noticed that the new quantiti<
are expressed in terms of the old, and not vice versa. Reven

they are

f = Jlf- 1

{AH

where M is as usual the modulus of the scheme of substitutioi
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for x, y, z, . . .
,
and where A., /u, . . .

, A', //, . . .
,
... denote the minors

dM dM dM dM^
dl

' dm
' '

dl' dm' '
"

'

It is convenient to speak of contragredient quantities as

being linearly transformed by schemes of substitution of

which one is the dual of the other. The name is reasonable,

as the duality or reciprocal connexion of the two substitutions

is precise, it being possible, and a good simple exercise in

determinant algebra, to show that the first substitution stands

in precisely the same relation to the second as the second does

to the first. .

63.] Geometrical contragrediency. The duality of trans-

formations of contragredient quantities has its counterpart
and its application in the method of duality in geometry.

Taking ternary systems, we know in fact that if aj, y, z and

, 17, C be point- and line-coordinates of associated systems, so

that fx + r] y + (z = is the condition that the point (x, y, z) lie

on the line (f, r?, ),
or that the line (f, 17, f) pass through the

point (x, y, z\ as, for instance, is the case when the coordinates

of a point are areal and the coordinates of a line the perpen-
diculars upon it from the vertices of the triangle of reference,

then the first scheme of linear substitution of 62 applied to

x, y, z,... reduces this condition to the form

((IX +mY+ nZ) + ^(I'X + m'7+ n'Z)

.e.

which is of the same form,

= 0,

as before if the formulae of substitution for f, 17, be those of

the second scheme in 62.

Thus corresponding systems of point- and line-coordinates

are transformed to corresponding systems by dual linear

substitutions. In other words they are contragredient

quantities.

64.] Another remark of great importance is that the

G 2
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symbols ^- > ^- 5 -y- , . . . are contragredient with the variables
dx dy dz

x, y, z. . . . . For when

x= IX + mY+ nZ+...,

z = l"X + m"Y+n"Z+... t

j

we have, as used frequently already,

* i* +i'* +i-d +...,dX dx dy dz

d d , d ,,
d

dY~ dx dy dz

d d ,d ,,dm __ \
m I iv) _1_

7 r? '*' 7 ~t~ 't' 7 T* ** 7 i j

and these accord with the two dual schemes of 62.

65.] From the formulae of 62 it follows at once that

so that x + riy + z+ ... obeys the absolute invariant law.

We might, in fact, have defined the contragrediency of

x,y,z,... and
, 77, ... by postulating that their corresponding

schemes of linear substitution are such as to leave

unaltered.
.
This has been illustrated by means of the geo-

metrical contragrediency of 63.

In the case of the contragrediency of 64 this persistence
in form of x + rj y + (z + . . . means simply that

v d , d d d d d
X~TV + Y-TTT+ Z -T& + ~ = X -T + y^r + z-r- +... ,dX dY dZ dx *

dy dz

which, when we remember Euler's theorem of homogeneous
functions, we see to be only the expression of the fact that

a homogeneous function of any order in aj, y, z, . . . becomes
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upon linear transformation a homogeneous function of the

same order in the new variables.

66.] Contravariants and mixed concomitants. If u,

a quantic in x, y, z, . . . , be expressed in terms of new variables

X, Y, Z, ... by linear transformation, and if f, r/, ... be

quantities contragredient to x, y, z, ...
,
and accordingly ex-

pressed in terms of new quantities E, H, Z, ... by the sub-

stitution dual to that giving x,y,z,... in terms of X, F, Z, ...
,

there are found to exist functions of f, 17, ... and of the

coefficients in u, which need at most to be multiplied by
factors involving only the constants of the transformation,

always, in fact, powers of the modulus, to be made equal to

the same functions of 5, H, Z, . . . and of the coefficients in the

transformed form of u. Such functions are called contra-

variants of u.

There also exist functions possessing the same property,
which involve both x, y, z, ... and

, r/, . . .
, as well as the

coefficients in u. Such functions are called mixed concomi-

tants of u.

There also exist contravariants and mixed concomitants of

systems of two or more quantics in the same variables

x, y. 0, ....

Invariants, covariants, contravariants, and mixed concomi-

tants are all spoken of as concomitants of the quantic or

quantics to which they belong.
In a certain sense fx + r] y + (z + . . . may be itself spoken of

as a mixed concomitant. It has, however, no particular

reference to any quantic or quantics, but is a function of

persistent form of the two contragredient sets of quantities

only. It is the universal mixed concomitant of all quantics

wx,y,z, ... or in 77, ....

In a better sense, contravariants and mixed concomitants

of a quantic u in x,y, z, ... are regarded as respectively in-

variants and covariants of the system consisting of u and the

linear form

Ex. 35. If $ (x, y, z,...) be a covariant and
\l/ (f, 17, ...) a contra-

variant of u, then

. / d d d
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is a covariant or invariant, and

[67

is a contravariant or invariant. (Sylvester.)

67.] Evectants. It is from the last-mentioned point of viei

that contravariants and mixed concomitants of a quantic 01

quantics are most easily discovered.

The method of 19 may, in fact, be applied to determine

a series of contravariants from any invariant of a quantic
or a series of mixed concomitants from any covariant. W<
have only in any invariant or covariant P to put for ever

coefficient in u the corresponding coefficient in

where p is the order of u, and to take separately the coeffi-

cients of k, k
2

,
... in the expanded result. These separately

are
( 19) invariants or covariants, as the case may be, of

and (x + r\y + z + ...)
p

,
and consequently of u and

In other words, they are, as the case may be, contravariants

or mixed concomitants of u.

The method has, it will be remembered, been already us

for binary quantics in 20, Ex. 33.

If the quantic u be

axp +pbxp- l

y+pb
f
x p~ l z + ...

where the numerical factors of the various coefficients are th(

corresponding coefficients in the expansion of the multinomi?

(x + y + z + ...)
p

,
the rth of these contravariants or mix(

concomitants is

/>., d ,. n , d . d

d
+....)*dc '

The contravariants obtained from any invariant P of u
this way are called the first, second, ... rth, ... evectants of P.
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The same method applies for the determination of contra-

variants and mixed concomitants of two or more quantics in

the same variables. The same operator as before

in which p and a, b, V, ... c, c', ... refer to one of the quantics

only, suffices to derive series of contravariants and mixed
concomitants from invariants and covariants of the system.
The general theory of contravariants is Sylvester's. Evect-

ants are due to Hermite.

Ex. 36. Show that

ef
4

and

(ee -d?)
4-2 (be

-
cd) f

s

rj + (
ae + 2bd-

2 (ad bc)gr]
3 + (ac

- 6
2

) rj

4
,

are contravariants of the binary quartic (a, b, c, d, e) (x, y)*.

Ans. The first evectants of / and J.

Ex. 37. Find a cubic contravariant of a binary cubic as an evectaut

of its discriminant.

Ex. 38. Use the method of evectants to show that the left-hand

side of the tangential equation

(bc-f*)P+... + 2(ffh-<tf)rie+... -
of the conic

u= ax1 + by
2+ cz*+ 2fyz+ 2gzx+ 2hxy=0

is a contravariant of u.

Ex. 39. From the invariant

of two ternary quadratics obtain a contravariant of

axz + ...+2fyz+ ..., a'xz+ ... + 2f'yz+ ...

in which both sets of coefficients occur.

68.] Contravariants of binary quantics not distinct from

covariants. In the case of binary systems there is a con-

nexion between contragrediency and cogrediency which has

nothing analogous to it in the cases of ternary and higher

systems.
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Let x, y and f, rj
be pairs of contragredient variables, so

that with the formulae of linear substitution

y=l'X + m'Y ...(1)

go as companions the formulae

H = l(+l'ri, II = mf+mV ... (2)

These latter may be written

...(3)

where M= lmf
I'm

;
and these differ only by the presence of

the factor M on the left of each from the results of putting

T?j
_ H, -H for x, y, X, 7 in (l). This has already been

encountered in the particular case of 46.

In an extended sense, then, we may say that ry
and f are

cogredient with x and y. The factor M will not affect the

legitimacy of their use as cogredient variables with x and y,

so long as only homogeneous functions are dealt with, pro-

vided, of course, that we pay proper attention to the alteration

of the power of M which occurs as a factor on a side of any

equality we are dealing with.

We may equally say that, when x' and tf are cogredient
with x and y, then y' and xf

are contragredient with x and

y, but for a factor which is immaterial so long as homogeneous
functions are dealt with. In particular we may say that

y and x are, with this reservation, contragredient with

x and y.

If, then, in any contravariant of a binary quantic u, or of

several binary quantics, we replace and
rj by y and x,

we obtain a function of x, y and the coefficients of u, or of u
and the other quantics, which persists in form but for a factor

involving only the constants of transformation, a power of M
t

after any linear transformation. In other words, we obtain

a covariant of u, or of u and the other quantics.
In accordance with what has been said, however, it is clear

that the power of M, which occurs as a factor in the relation

expressive of the covariancy of the derived covariant, is

different from that which occurs in the relation expressive
of the contravariancy of the contravariant from which it is

obtained.
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Ex. 40. Apply this conclusion to 67, Ex. 36.

Ex. 41. Obtain the cubicovariant
( 45, Ex. 13) of a binary cubic

by means of the first evectant of the discriminant. (Of. 67,

Ex. 37.)

69.] Covariants of u are invariants of u and a linear form.

It is a proposition closely associated with the remark of the

preceding article that all invariants, of a complete system

( 33), of a binary quantic or quantics u, v, w, ... and the

linear form xy' x'y are, when in them a/, y
f

are replaced by
x, y, covariants of the quantic or quantics u, v, w, ... ;

and

that conversely all covariants of u, v, w, ... are, when in

them x, y are replaced by x', y', invariants of the system

consisting of u, v, w, ... and the linear form xy' x'y.

This is easy to see ; for, if x', y' are cogredient with #, y, r^S
xy'-x'y = M(XY'-X'Y).

Now a complete system of invariants of u, v, w, ... and

xy' x'y involve a/, y' homogeneously ( 33), so that to

insert MX, MY for x', y' in an invariant is the same thing
as to insert A", Y for them and multiply by a power of M.

If, then, in a supposed invariant of u, v, w,... and xy' x'y, we

put x
} y for x', y', we get a function of the coefficients in

u, v, w, ... and of x, y, which persists in form, but for a power
of M as factor, after linear transformation. In other words,

we get a covariant of u, v, w, . . . . And conversely, if in any
covariant of u, v, w, ... we put x', y' for x, y, we get a function

of the sets of coefficients in u, v, w, ... and xy' xy which

again persists in form, but for a power of M as factor, after

linear transformation. In other words, we get an invariant of

u, v, w, ... and xy' x'y.

A fact closely related to this, and, indeed, a particular case

of the first part of the theorem, is that all invariants of the

binary (p + l)-ic
(xy xy)u

are, when x', y' are replaced by x, y y
covariants of the binary

p-ic u.



CHAPTER V.

BINARY QUANTIC3. INVABIANTS, ETC.. AS FUNCTION^J1F

DIFFEKENC1

70.] IN most of the chapters which follow binary quantics

will alone be considered, except where otherwise stated.

Special methods may be with advantage adopted for the

discovery and examination of their concomitants. Moreover,

it will be seen later that from invariants and covariants

of binary quantics there is a means of passing to those of

a ternary quantic, that, in fact, invariants and covariants of a

ternary quantic are a class of invariants and covariants of

a system of binary quantics. From ternary quantics there is

a like passage to quaternary ;
and so on. Thus there is more

than simplicity of treatment in favour of a close examination

of binary quantics alone in the first place.

71.] Convention as to numerical multiples of concomitants.

If / is an invariant, so is pi, where ^ is any numerical

constant. If IT is a covariant, so is ^K. The invariants

/ and /uJ are not of course regarded as distinct invariants, nor

the covariants K,IJ.K distinct covariants. It will be well now
to adopt some convention which will relieve us from any

ambiguity as to numerical multipliers when we speak of any
invariant or covariant / or K. The following is probably the

best convention as to invariants of a single binary quantic

(a ,a l,a2,...ap)(x,y)
p

.

Take the term or terms in the invariant which involve

to the highest power. If there are more such terms than one,

suppose that ar is the next earliest coefficient which occurs in

any of them. Choose among them the term or terms which

involve ar to the highest power. If there are more than one

of these terms, let a
s be the next earliest coefficient which



CONVENTION AS TO NUMERICAL MULTIPLES. 9 1

occurs in any of them, and take that term or those terms

among them which involve as to the highest power ;
and so

on continually till we get but a single term. Now divide or

multiply the invariant by such a numerical quantity as will

give this term the coefficient -f 1. The invariant thus pre-

pared is what we nearly always henceforth mean when we

speak of the invariant as a precise function.

And as to covariants the convention is similar. Take the

coefficient of the term free from y in a covariant which has

been found. Among the terms of which this coefficient

consists single out one by the same rule as above, and apply
to the covariant the numerical factor which will reduce the

numerical coefficient of this term to +1. By the covariant

we henceforth mean the covariant thus numerically prepared.
The rule may be more briefly stated if we call the co-

efficients in the quantic a, b, c,d,e,... instead of an ,
a13 a2 ,

a
3 ,

6*4 ,... . Suppose the factors of every term in the invariant,

or in the coefficient of xiu the covariant, written from left to

right in alphabetical order. Among all the terms choose the

one which comes first in alphabetical order, i. e. the one which

would stand first in a dictionary. Make the coefficient of this

term -f 1.

Thus, in invariants and covariants of various quantics
which we have already met with,

ac b2
,

(ad
-

be)
2 - 4 (ac

- b2
) (bd

- c
2
),

(a
2
d-3abc+2b*)x

3 + ...,

ace+2bcd- ad2 -b2e- c3
,

the coefficient + 1 is given to the terms ac, a2d2
,
a2dx3

, ae, ace,

respectively, by the above rule.

72.] Covariancy of the factors of a binary quantic. A
method already touched upon in 51 will be now more fully

considered.

W /Y SY

Let
, ,... be the p roots of the general binary p-ic

2/1 y-2 yP

(a ,
a

l ,a2 ,...ap)(x,y)
p

,
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i. e. let them be the roots of the equation in x : y obtained by

equating the p-ic to zero. Moreover let the denominators

y\ > y-ii " yP )
which are of course arbitrary, be so chosen that

Another expression for the p-ic must then be

As explained in 51, we may with propriety say that th

pairs xl9 y^ ;
x.2 , y2 ; ...

;
xp , yp are cogredient with x and y

that every suffixed x and the corresponding suffixed y ar

particular corresponding values of x and y. Thus, going wit!

the formulae of linear substitution

we have, for every value of r from 1 to p inclusive,

xr
= lXr +mYr , yr=l'Xr + m'Fr ,

so that
v \r\ i -i

" " r *
/< \

*

and similarly, r and s being two distinct numbers not ex

CeedinSP' ^/T,Tr YV , , 9
8
-A

s Y,). .,.(2

By means of (l) we have that

(xy1
-
x{y) (xy2 -x.,y)... (xyp-xpy]

= M*>(XY1
-X

1Y)(XY2-X2Y)...(XYP-XP Y)

is an equivalent way of writing the identity

(a ,
a1} a2 ,

... ap)(x, y)
p = (A nt A19 A 2 ,...AP)(X, F)

p
;

and we are consequently told that, ar , any coefficient in the

original form of our^>-ic, being a function of xlt x2 ,
... xp anc

2/n 2/2>*"2/pj ^ne corresponding coefficient A r in the trans-

formed form of the >-ic is Mp times that same function 01

^^...^andF,, F
2,...Fp .

In particular we have

Mp Y Y Y Am i
j
1

2 ... j p A.Q.

73.] Now take Hw any homogeneous function of degree w in

the differences such as xryt
-x

syr , and let H'w be the same
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function of the corresponding differences XrY8
X

s
Yr . By

the equalities (2) above we see that

Should it then be possible to express Hw as a homogeneous
function, of degree i say, of

,
a

l ,
or

2 ,
... ap ,

in which case

//', would be the same function of M~p times the correspond-

ing new coefficients A , A^ A 2 , ... Ap ,
and so, in virtue of the

homogeneity, would be M~ip times the same function of

A
,
A lt A 2 ,

... A p ,
that function will be an invariant of the

p-ic.

Such expression is not always possible. We shall see, how-

ever, that there is no invariant which cannot be given in this

manner.

74.] Invariants functions of differences of roots. Every
invariant of

(a ,al ,a2 ,...ap)(x,y)
p

can be expressed as a function of the differences between pairs

of roots, symmetric in the roots, multiplied by a power of aQ ,

with or without a purely numerical factor.

It may of course be expressed as a product of GT
O*,

where i

is its degree, into a symmetric function of the roots
;
for it

is
( 22) a homogeneous function of ,

al5 a.
2 ,...ap ,

and

, ,...? are symmetric functions of the roots.

o
a
o

ao

To see that only differences between pairs of roots need

occur in the expression for it, it will suffice to prove that it is

unaltered when all the roots are increased or diminished by

any the same quantity.
This is made clear by expressing that the invariant is one

for the particular substitution

x X + mY, y = Y,

of which the modulus is unity, so that by it the invariant is

absolutely unaltered. Now this substitution is that of putting
X

+ m ,
i.e. is that by which the equation given by

equating the p-ic to zero is altered into one whose roots are

all less by m than its own roots.
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An invariant of degree i is then the product of * and

a function of differences between pairs of roots which is

symmetric in the roots. By 'invariant' we of course here

mean ' rational integral invariant.' An irrational invariant

need not be symmetric in the roots. For instance, if a, /3, y, 5

be the roots of a quartic, the anharmonic ratio 7
-

when expressed in terms of the coefficients, is an irrational

invariant. Throughout the following our reasoning is* with

regard to rational integral invariants.

The converse of the proposition of this article is not true.

Every invariant is a product of a power of a and a function of

differences between roots, but it is not every function of differ-

ences between roots, symmetric in the roots, which, when

expressed in terms of the coefficients and made integral in

them by a power of a as factor, gives an invariant.

In the following article functions of the differences between

roots, symmetric in the roots, are examined in the light of

72, 73 to ascertain what classes of them are and what are

not productive of invariants.

Ex. 1. Show that every invariant of a binary p-ic must vanish for

the special p-ic (# + 2/)
p

;
and hence that the sum of the numerical

coefficients of the terms in an invariant must vanish.

75.] What functions of differences produce invariants ?

We have to consider such functions as
/y /v

a,/ x a sum of products of differences like ---
>

yf y*
/v> /-v /vi

the sum involving all the roots , ...- symmetrically.
2/i 2/2 2/P

Note that the idea of this symmetry is not quite identical

/Y* nf*

with that of symmetry in differences like -- - We do best
2/r y.

to avoid the expression
'

symmetric function of the dif-

ferences.'

For the function, when expressed in terms of the coefficient

to be integral, i must be not less than the index of the high(

power to which any root occurs in the symmetric function

for, , 5 ... -^ being all of the first degree in any
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icular root, a symmetric function of the roots whose degree
n any particular one is i' cannot be equal to a function of

legree less than i
f
in , > ...

- so that to make it in-
a a

?
a

tegral the factor cr
*' at least is necessary.

Referring to 72 we may now write the function in the

(2/i y-z
- VpJ ^

{
product of factors like .^-^r

which may also be written

2
{ 2/i

Al
2/2

" 2

Vp
Xp x Product of factors like xrys

-x
syr \,

where A
a ,
A

2 ,
. . . \p are in general not all zero

;
but such as are

not zero are positive.

The indices A
T ,

A
2 , ... X

p will, however, be all zero if in every

product of differences in the summation every root occurs

in the same number i of factors. In such a case the product
takes the form

2 {product of ip factors like xrys
x

g yr } 9

and is consequently such a function as the Hw of 73, for

the value \ ip of iv. Under such circumstances the chosen

function is an invariant by that article.

And this is the only class of cases in which the chosen

function is an invariant. In other cases the integers which

we have called A
I; A

2 ,
... A p are none of them negative and do

not all vanish. Now if to

2
{2/i

Al
2//

2

...2//
p x product of factors like ocrys

x
liyr ]

we apply the substitution x Y, y=X, of which the modulus

is unity, we obtain, remembering the cogrediency with x and

y of every suffixed x and y,

2 {X^XJ*.. .Xp
*p x same product of factors likeXrY8

-X
8
Yr ] ,

and this cannot be the same function of the coefficients in

(XT1
-X

1 T)(ZYt-Xs 7) ... (XYf-Xp Y)

as the form above in small letters is of the coefficients in

(xy^x.y) (xy2
-x

2y) ... (xyp-xp y}
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unless the A's all vanish; as otherwise we should have an

identity

2
(2/i

Al
2//

2
. . . 2//

p x product of factors like xr y, x
s yr }

= 2
{ x-f

1 #2
A2

. . . xp*p x same product of factors
}.

Now this is an impossibility; for, since A
: + A

2 + ... 4- \ p is

positive, the dimensions of the left in the y's collectively

exceed those of the right, and the dimensions of the right in

the oj's collectively exceed those of the left.

Putting then together the results of this and the preceding

article, we have the following complete theorem.

Any homogeneous function of weight w of the differences

between pairs of roots of a binary quantic, which is symmetric
in the roots, and such that in all products of differences of.

which it consists every root is involved in the same number
2w

> or i, offactors, is, when made integral in the coefficients

by the factor a
Q
{

,
an invariant of that quantic : other functions

of the differences, though symmetric in the roots, do not how-

ever produce invariants : nor is there any invariant ivhich

cannot be thus expressed.

We may, however, contemplate the possibility of invariants

which are sums of numerical multiples of different invariants

obtained, as above, from different simple symmetric sums of

differences for which w and i are the same. In other words,

there may be different invariants of the same weight and

degree. This does not conflict with the above general state-

ment.

By
* invariant

'

in the theorem we mean ' rational integral

invariant.' Irrational invariants are given by functions of

differences having all the same properties except that of

symmetry in the roots.

Ex. 2. If a, /3, y, 8 be the roots of a binary quartic

a '2{(a-/3)* (y-8)
2

},
i.e. 2

is an invariant.

On the other hand 2 {(a (3)
4
(y-8)

2
},

i. e. 2 {2/r
4
2/2

~4

2/3~
2

2/4~
2

is not productive of an invariant.
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76.] The identity expressive of the invariancy of an in-

/ariant written down as above is deduced from the result

Hw = M*H'W
D 73 as follows.

Hw is of w dimensions in y^ y.2 ,
... yp . In case it produces

an invariant, what we have is that

2w

HW (y\ 2/2 yp)
p x function of weight w of differences of

roots, symmetric in the roots,

= IW P
(a , a,, a

2 ,
... ap ), say,

where it; denotes the weight, and the degree in

a
,
al} a2t ... ap .

Similarly
A 2M? A A A

'
'

2w

Thus the equality HW=MWH'W becomes

2w^
2w

Iw~p~(A ,
A lt A 2 , ... Ap)

= MWIW
~

(a ,
av a2 , ... ap),

which is in accordance with the result obtained earlier

( 23, 26). that the index of the power of M in the identity

expressive of invariancy is the weight of the invariant, or,

2 iv

writing i for - the degree of the invariant, is -| ip.

77.] Discriminants. The product of the squares of the

differences between roots of a binary p-ic is a single product,

and involves all roots in equal numbers of its factors, viz.

every root in 2 (p
- \

)
factors. It belongs then to the class

of symmetric functions which according to 75 produce
invariants. Now a

'2
(p~1 ^ times this product is the discriminant,

or rather
(cf. 71) is a numerical multiple of the discriminant.

We have then a direct proof that the discriminant of any

binary quantic is an invariant, as has been otherwise seen

earlier
( 15) for all quantics.



98 THE BINARY QUADRATIC AND CUBIC. [78

The weight of the discriminant is p(p l)>
and its degree is

2 (p1). Thus, in accordance with the general theory,

p.

78.] Invariants of quadratics and of cubics. Binary quad-
ratics and cubics have no invariants but their discriminants

and powers of those discriminants.

For the quadratic this is obvious. For there is only one

difference a /^ (3 between two roots a, p, and no function, of

a single weight, of this difference can be symmetric in a and ft

unless it be an even power of a
/3.

For the cubic 30 tells us that there cannot be two inde-

pendent invariants. The discriminant, then, being one, it

follows that there is no other which is not a function of

that discriminant, and consequently, as invariants are of one

weight throughout, none that is not a mere power of the

discriminant.

We may also reason as follows. Let a, /3, y be the roots of

the cubic. Any invariant must, by 75, but for a possible

numerical factor, be of the form

and must be such that every root occurs in the same number
of factors of

(/3 y)
r

(y a)
8

(a j3)
f
. Consequently

s + t = t + r = r+ s
;

-

whence r = s = t.

Moreover, r + s + t must be constant, and equal to the

weight \ip \i^ for all products under 2. There can then

be only one product repeated or not. The invariant is in fact

necessarily

Again, the index \ i of the power of the product must be not

only integral, but even. For an odd power of

(/3-y)(y-a)(a-/3)

is not symmetric in the roots, being altered in sign when two

roots, p and y say. are interchanged. Thus every invariant

of the cubic is a power of
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or a numerical multiple of such a power ;
and this function is

,a numerical multiple of the discriminant.

79.] Discriminants freed from inconvenient numerical
factors. The right numerical multiples of a ~

(a (3)'
2 and

a
o
4

((/3 ~y)(y~ a)(a -/3)}
2
to speak of as the discriminants of

the binary quadratic and cubic, are decided by the convention

of 71.

By elementary processes of the theory of equations it

can be proved, taking for convenience (a, b, c) (x, y)
2 and

(a, b, c, d) (x, 2/)
3 to be the quadratic and cubic, that for the

two cases respectively

a2
(a-/3)

2 = -4(ac-6
2

),

and a4
{(/3-y)(y-a)(a-/3)}

2

= -27{(ad-bc)
2-(ac-b2

)(bd-c
2

)} ;

and it is to the expressions in brackets on the right that, in

accordance with 71, the name of discriminants is properly

given, and not to 4 and 27 times those expressions

respectively.

In Cayley's fourth memoir on quantics the corresponding

multiple to the 4 and 27 above has been found in the

case of the discriminant of any binary quantic. Consider the

binary p-ic (a ,
als a2 ,

. . . ap) (x, y)
p

. The product of the

squares of differences between pairs of its roots is of weight

p(pl), being the product of %p(p 1) factors of two dimen-

sions in the roots, and consequently, being an invariant, is of

degree
-- = 2(pl). That this is the degree also follows

from the fact that any particular root enters in p 1 squared

factors, and so to the degree 2(pl). For the degree in the

coefficients a
{ ,
a

2 ,
. . . ap is the degree in any particular root.

We have, then, to consider the expression for

in terms of the coefficients.

Since p(pl) is the weight, the term a/-
1
a/-

1
,

if it

actually occurs, is the one term in the discriminant into

which a enters to the highest power. This, then, if it

occurs, is the term in the discriminant to which the coef-

H 2
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ficient + 1 is given in accordance with the convention of 71.

Now the term must occur
;
for it is the only one which does

not vanish for the special p-ic a xp -\-apy
p

,
and the discriminant

of this special ^>-ic does not vanish, since no two roots of

the equation a
Q
zp + ap

= are equal when neither a nor ap
vanishes.

Now consider the yet more special p-ic xp'+y
p

. Its roots

are those of zp + 1 = 0, i.e. the p pih roots of 1 . Denote

these by />1} p2 ,...pp . "We know that if plt />2 ,
... pp are the

roots off(z) 0, then

so that /(Pl )
= =

(P1-P2)(P1-P3)...(P1 -PP),
L.Z PiJz = Pl

and so for other roots p2 , p3 , ... pp . It follows, by multiplica-

tion of the p right-hand and p left-hand members, that

the sign being as stated because each of the \p(pl) differ-

ences pr~ps occurs once in the product as pr ps
and once as

Ps pr - In the present case, then, of the equation zp + 1 =0,

so that n(Pr -p8y = (-

Now if, for the general p-ic (a ,
alt a2 ,

... ap ) (x, y)
p

,

<(*-i) n(ar
-

8)

2 = &K*- 1

a/-
1 + ...},

we get as a particular case of this

Consequently k = (-l)**(*-Vp
p

.

Thus the product c^
2 ^- 1

) n (ar a
g )

2 for the binary ^?-ic is

properly spoken of, not as the discriminant, but as

times the discriminant.
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The multipliers 4, 27 for the cases of the quadratic and
cubic accord with this general result.

80.] The binary quartic. The binary quartic(a,6,c,c,e)(#,2/)
4

has not more than two independent invariants
( 30). Now

the discriminant is one ( 15, 77). There are, however,
two of lower degrees than this. It is preferable to regard
them as the two fundamental invariants, and the discriminant

as consequently a function of them. The two are the / and J
of 29.

In fact, a2

2{08-y)
a
(a-8)

2
}

and a3 S { (0
-

y) (a
-

8) (y
-

a)
2

((3
-

8)
2
}

are invariants according to the criterion of 75.

A remark as to the number of terms covered in these and
such like summations will be here in place. There is generally
clearness gained by the wider of two possible interpretations.

In fact we do best to bear always in mind that for purposes
of expression in terms of the coefficients it is symmetry in the

roots rather than in the differences which is fundamental.

Thus, since we may take a first root a in four ways, then

a second /3 in three ways, and then a third y in two ways, we

regard each of the above sums as a sum of twenty-four terms,

even though these are, in the first, three terms eight times

repeated, and, in the second, six terms four times repeated.

The student is recommended to give the close attention

necessary to convince him of this second fact.

Let the four roots be separated into a triad a, /3, y and the

fourth 8, and let
(/3 y) (a-8), (y-a) (3-8), (a-/3) (y-8) be

denoted by u, v, w. Then he will see that the first sum is

eight times 0/ 9N /,\22 2 2
...(I)

and the second four times

^{u^-w^ +v^-u^ +iu^-v2
)}, ...(2)

which latter may, by elementary algebra, equally be written

a 3
{u

2
(v w) + v2

(w u) +w2
(u v)},

or a3
(v iv) (w u)(u v),

or again a3
{ (v

- wf + (w uf + (u v)
3
}

.

The values of the invariants (l) and (2) in terms of the
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coefficients may be calculated by the ordinary methods of

symmetric functions. (See, for instance, Burn side and Panton's

Theory of Equations, 27, Exx. 16, 18.) The results are that

a2

(u
2 + v2+ w2

)
= 24(ae

- 4 bd + 3 c
2

)
= 24 /

and a3
{u (v

2 w2

) + v (w
2 u2

) + w (u
2 v2

)}

ad2 b2e-c3 = 432,7.

This direct process is however unnecessary. For it will be

seen in the next chapter that I and J are the only invariants

of degrees 2 and 3 which the quartic possesses. The invariants

(l) and (2) must then be numerical multiples kly
k'J of / and

/ respectively. This being granted, that k and V have the

values 24 and 432 respectively may be seen by considering
a particular case. Take, for instance, the particular case of the

quartic whose roots are +1, +2.

It will be noticed that in I and J the alphabetically leading
terms ae

y
ace have the coefficient + 1 according to the conven-

tion of 71.

The proof that all rational integral invariants of the quartic
can be rationally and integrally expressed in terms of / and J
is reserved till a later chapter.

81.] Discriminant of quartic. The discriminant, an in-

variant, must, as explained at the opening of the last article,

be a function of / and J. We proceed to see what function.

It is an invariant of degree 6 and weight 1 2
( 77), which

vanishes when the quartic has a square factor, and consequently
when it has the square factor y

2
,
i.e. when a = and 6 = 0.

Now in this case / and J become 3c2 and c3 respectively
Of these no rational integral function vanishes except

(3c
2

)

3

-27(-c
3
)

2

and powers of (3c
2
)

3
27(-c

3
)

2
.

Consequently

whose degree and weight are right, is the discriminant of the

quartic.

The coefficient of its alphabetically leading term ase
3

is

correctly + 1.
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By the general proposition of 79, the invariant

or, in the notation of the preceding article, a
Gu2v2w2

,
which

must be a numerical multiple of the discriminant, is equal
to

4 4
(/

3-27/ 2

)
= 256(/

3
-27<P).

Ex. 3. Prove this also by showing that v w, w u, u v are the
roots of the cubic 2?36a~ 2 Iz+432a~ 3J=. 0, and that 27 2

u'
2
vzw i

is the product of the squares of differences between roots of this

cubic.

Ex. 4. Obtain the same re-ult by showing that 432 2a~V2
is the

product of the squares of differences between roots of the cubic

t*-12a--It-uvw = 0,

whose roots are u, v, w.

Ex. 5. The products au, av, aw are irrational invariants of the

binary quartic.

Ans. Of. 75, or Ex. 4 above.

Ex. 6. The six ratios of u, v, w to one another, which are respectively
minus the six anharmonic ratios of the factors of the quartic, are

irrational fractional invariants.

Ex. 7. Anv anharmonic ratio 7-^
3

; ,

2
^ of any four factors

(a 2
-a

3) (flj-aj
_

of a binary p-ic is an irrational invariant of the p-ic.

Ex. 8. All invariants of a binary quartic can be expressed as

functions of the discriminant and any single anharmonic ratio

of the factors.

Ex. 9. All invariants of a binary ^;-ic are functions of the discrimi-

nant and the p 3 anharmonic ratios of four factors

(/3-q)(y-a4) (/3-a) (y- 5) (/3-a)(y-ap)

(y-a) (/3-a4)' (y-a) (0-a.)
'

'

(y-a) ((3-ap)
'

where a, /3, y are three roots, and a
4 ,

a
5 ,

... ap the rest. (Cayley^)

Ans. These are p 2 independent invariants.

Ex. 10. In a binary quartic for which 7=0 the six anharmonic

ratios of the four factors are equal in sets of three to the two

imaginary cube roots of 1. Geometrically the pencil or range of
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four elements which the quartic denotes is said to be '

equi-anhar-
monic.'

Ans. From u2 + vz+ w2 =0 and u + v+ w =

we have (-) + -
-h 1 = 0. Hence, &c.

M?x V

Ex. 11. In a binary quartic for which J = the six anharmonic

ratios are 1, 1, 2, 2, |, ^ ;
and the pencil or range is harmonic.

82.] Covariants as functions of differences. We now pro-

ceed to notice briefly tbe facts as to covariants of a binary

quantic whicb are analogous to, and in reality include, tbe

facts as to invariants dealt witb in 72 to 76.

Using tbe results (1) and (2) of 72 we can at once write

down the analogue of the first statement in 73
;

viz. that,

if Gw be a homogeneous function of degree w in the two sets

of differences whose types are xyr xry and xrys
x

syr ,
where

, , . . . are the roots of
2/1 2/2 yP

(aQ,a1) a.
2 ,...ap)(x,y)

p
,

and if G'w be the same homogeneous function of the corre-

sponding differences XYr -X,Y, &c., and XrY8
-X

8
Yr ,

&c.

with reference to the roots of the transformed quantic

(A Q,A 19 A 2 ,...AP)(X, 7)*,

then Gw = MW
G'W .

Should it then be possible to express Gw in terms of the

variables x, y and the coefficients a
, c^ , a.2 ,

. . . ap ,
and G'w as the

same function, divided by a power of the modulus, of X, Y
and A

,
A

l ,
A

2 , ... A p , such a function Gw when so expressed
will be a covariant.

Notice that any covariant so obtained must be homogeneous
in the coefficients a ,

alt a
2 ,

... ap . For if the expression for

K(aQt
ali a2 ,...ap ;x t y),

that for G'v is

zf/^o ^1 -^-2
^ p - Y V\>

^Mp ' M*" M~p
"" Mpi ' ''

and this must be homogeneous in the fractions with denomi-
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nator Mp if the equality Gw = MW
G'W take the form

K(At, A 1} A,,...AP ; X,Y) = M*K(a ,al,az ,...ap ; x,y).

It is to be concluded also that Gw ,
or K, is homogeneous in

x and y, i. e. that in every product of differences which is

a part of Gw there must occur the same number of differences

xyr xry, xys x
sy,... of the first type. For, the coefficients

a
,
alt a

2 ,...ap being all homogeneous in x
lf x.^,...xp ,

2/i > 2/2> 2/p tne covariant K, or Gw ,
must be homogeneous in

these quantities. Now any term in Gw which is a product of CT

differences of the type xyr x,.y and, consequently, iv & differ-

ences of the other type x,,ys x
syr) is of dimensions OT + 2 (w w),

i.e. 2 w
-57,

in
ajj, ar

2 ,
... aj>, y lt y ?t ,

...
2/i>-

This then having to

be constant for all products of which Gw consists, r must be

the same for all.

Covariants thus produced are then necessarily of one degree
in the coefficients and one order in the variables throughout.

83.] Now any covariant of degree i and order r of a binary

quantic is necessarily a *2/
w times a function of the differences

between roots and of the differences between - and roots.
y

For it must be unaltered in form by the linear substitution

= Y

of which the modulus is 1
;

that is to say, it must be un-

changed when - and all the roots are diminished by any the
J

same quantity m.
The particular functions of the two sets of differences which,

when prepared by such factors ajy
13

,
are covariants, are

exactly those which when so prepared become functions such

as Gw above.

Such functions of the differences must, of course, for the

covariants to be rational and integral, be symmetric in the

roots, as otherwise they could not be expressed rationally in

terms of the coefficients and x, y at all. They must also be
/v

such sums of products of differences that in every product
-

'/y /vi /M

occurs in a constant number OT of factors, and , , . . .
- p

2/1 y> yP



106 COVARIANTS AS FUNCTIONS OF DIFFERENCES. [83

each in a constant number i of factors, the same number i for

all. The prepared symmetric function is, in fact,

( xx
a n

fyv 2 \ product of or differences like
r

I y y r

sv* /y "^

x product of w & differences like > .

i. e.

(2/i 2/2 2/p)'2/
w 2

j product
of or factors like

'

/v
rty ___

/v fi I "\

x product of w - w factors like ^-
j- ,

y y )

which, as we see by consideration of the denominators, can

only assume the form Gw ,
or

2 1 product of w factors like xyr
- xry

x product of w TZ factors like xrys
x

syr },

if, in every product of differences under the I, y occurs in

or factors and ylt y2 ,
... yp each in i factors, where p, i, w and

or are connected by the relation ip + or = 2 w, the left being
the degree of (y } y2 . . . yp)*y

v in its arguments, and the right
the degree of each product of denominators under the S in the

same.

That products of the two sets of differences which cannot

be prepared by a factor so as to assume the form Gw cannot

produce covariants is established exactly as in 75.

There may be functions which are sums of parts like the

above, which when prepared by factors (^2/2 2/p)*2/
w ^or

different values of i and or which satisfy ip + or = 2w, produce
sums of functions Gw for which w is the same. Such non-

homogeneous covariants are, however, as explained in 35, 36,

with advantage considered as sums of covariants rather than

as single covariants. Meaning then by covariant a rational

integral one which is not a sum of simpler covariant parts, we

may summarize as follows the conclusions at which we have
arrived.

le a binary p-ic of which a l1 a
2 ,...ap are the roots, then

a function of the differences a
x

o
2 ,

<&c. between pairs of roots,
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and of the p differences xa } y, x a.2 y,...x ap y, which is

homogeneous in both sets of differences and symmetric in the

roots, will, when expressed in terms of x, y and the coefficients,

and made integral in these latter by multiplication by the

lowest necessary power of a
,
be a covariant, if and only if

every one of the products of differences of which it consists

involves all roots a in equal numbers of its factors. Moreover

all covariants of <vu are given in this way.

Ex. 12. All covariants, except powers of the p-ic itself, vanish for

the special p-ic (x + y)
p

.

Ex. 13. The sums of the numerical coefficients of the products of

<*o,av c'v~> ap

which occur in K^, Kv KV ...K^, where (KQ ,
Kv Kv . . . Kv) (x, y)

is a covariant of
( ,

av a
2 ,
...ap) (x,y}

p
, all vanish, unless the co-

variant is a mere power of (a ,
av a

2 ,
... a^) (x, y]

p
.

Ex. 14. Every term in the summation which gives a covariant of

a binary p-ic must involve at least one difference between a pair of r

chosen roots if 2ir>ip + vr.

Ans. Cf. 39, Ex. 2.

Ex. 15. Every term in the summation which gives an invariant

must have this property if 2r>p.
Ans. Cf. 26, Ex. 2.

84.] In the preceding article it is clear that OT is the order,

i the degree, and w the weight, reckoning x, y as of weights

1, respectively, of the covariant. That the facts here

exhibited with regard to the order, degree and weight of

a covariant, and with regard to the index in the equality

expressive of covariancy, accord with the results of chap, iii

may be readily seen. The relation ip + w = 2w of 83 is in

fact that of 38.

As to the index of the power ofM in the equality expressive
of covariancy which is derived from

GW = M*G'W ,

we notice that

where the notation denotes a covariant of degree i and order



Io8 THE BINARY QUADRATIC. [85

or, and that in like manner

,
A 19 A,,...A t) y(X, FT.

Thus Gw = MGf

w = M^+^Gf

w gives

, a,, a2 ,
. . . a,) (a?, 2/)

w
,

which is the result, for q = 2, of 37.

The index \(ip ^) is, it may be here repeated, wisr, where

iv is the weight of the covariant, and is therefore the weight of

the coefficient of x in the covariant. The weights of the

successive coefficients in the covariant forms an arithmetic

progression of common difference unity.

85.] The binary quadratic. This can have no covariant

distinct from itself and its one invariant the discriminant.

In fact, if a, ft be the roots of

be a covariant, we have, by the results of 83, that for every

product under the 2

(1) A = constant, by homogeneity in the difference between

roots
;

(2) n + v = constant, by homogeneity in x ay, x /3y;

(3) A + /x
= \ + v = i, since a must occur in as many factors

as j3, viz. in i factors.

Thus ju
= v = constant, and A = constant. Consequently

the covariant is

the summation consisting of two terms, corresponding to a, /3

and /3, a. These two cancel if A is odd, but repeat one another

if A is even. Hence any covariant is, but for a numerical

multiple, of the form

(a
2
(a-/3)

2
}*' {a(x-ay) (x-

i.e. {_4(ac-6
2

)}
A/

{ax
2 + 2bx

There are then no covariants of the quadratic which are not,

but for numerical multipliers, powers of the quadratic itself, or

such powers multiplied by powers of the discriminant ac b
2
.
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In other words, the binary quadratic has for its only
rreducible concomitants one invariant, viz. the discriminant

ic b2, and itself.

86.] Covariants of the cubic. If a, /3, y be the roots of the

Dinary cubic

the cubic has two independent covariants, numerical mul-

tiples of a2

2{(x-ay)
2
((B-y)*}

which, writing 6, $, \jf for

(x-ay)(P-y), (x-(3y)(y-a), (x-yy)(a-^\

are respectively twice and once

and a3
\6

2

((f)\lf) + (f)

2
(\l/ 6) + \l/

2
(0 (f))}

a3
g, say,

That the two obey the criteria of 83, and are consequently

covariants, is at once verified. That there cannot be more
than two covariants, independent of one another and the

cubic itself, is known from 42. All other covariants, and

invariants too, can then be expressed in terms of them and

the cubic. The one irreducible invariant, the discriminant

( 78), is of course not a rational integral function of the

three no rational integral function of them can be free from

the variables. We reserve till a later chapter the proof that

there is no other irreducible concomitant of the cubic, so that

any other concomitant is a rational integral function of the

cubic, the two covariants above, and the discriminant.

The expressions for a2h and a?g in terms of the coefficients

and variables can be effected by elementary methods of the

theory of equations. We know however (cf. 45, Exx. 12, 13)

two covariants of the degrees and orders of a2 h and a?g, viz.

and G = (a
2d- 3 abc + 2 63

,
abd -2ac2 + b2 c,

-acd + 2b'2d-bc2
,
-ad2

+3bcd-2c*)(x,y)
3

,

and we shall see later (see, for instance, 113, Ex. 16) that

these are the only covariants of the degrees and orders in
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question. Hence, for some numerical values of k and k', we

must have tfh = kH,

and a?g = k'G.

This being known, we can find k and k' by consideration of

the values of the covariants in a particular case. Take for

instance the cubic x3
/
3

,
for which a, b, c, d, a, /3, y have the

values 1, 0, 0, 1, 1, co, a;
2

. The above equalities become

= kxy,

whence the values of k and k' are 18 and 27. Thus

a2 h = -18#,
and a3g= -27 G.

In accordance with the convention of 71 we speak

G, rather than of a?h and o?g, as the fundamental covariants.

87.] Syzygy among concomitants of cubic. The cubic u,

its two covariants H and G, and its discriminant

A = (ad
-

be)
2- 4 (ac

- b2
) (bd

- c
2

)

must, as we have seen, be connected by a relation. To find

this relation we may consider the cubic in the form

u = ax3 + dy
3

which is not special, but is, as we have seen in 11, Ex. 14,

one to which the general cubic can be reduced by linear sub-

stitution. For this form

H = adxy,

G = a2dx*-ad2

y* = ad(ax*-dy
z
),

A = a2 d2
;

whence, by elimination of a, d, x, y, the connecting relation

is seen to be Au2 = G2 +

which holds when the general expressions for u, G, H and A

are substituted.

Ex. 16. Prove the same relation by showing that 2

$
2^

2
,
a deter-

minate numerical multiple of the product Aw2
,

is 3~6 times the

product of the squares of the differences between roots of the equation
gfl nhz + g o whose roots are

c/> \//. \|/ 6, 6 0, and so a deter-

minate numerical multiple of the discriminant of this cubic.
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s roots of the cubic equation
re

/3y+ coya+ <o
2

a/3 /3y+ a>
2

;

Ex. 17. If the roots of the cubic equation u = are a, fi, y, the

*oots ofH = are

2

y a+
and those of G = are

2/3y-ya-g/3 2ya a/3 /3y 2a/3-/3y ya

y+ a-2/3
'

a+ /3-2y

88.] The close similarity between the forms, in terms of

differences, of the covariants of a cubic and the invariants of

a quartic will not have escaped notice. It is not accidental,

but is a result of the fact, to which attention has been called

in 69, that the invariants of

(xy'-x'y}u

are, when x and y
f

are replaced by x and y, covariants of u.

Any consideration of covariants of binary quantics above

the third order, and of invariants of binary quantics above

the fourth, is postponed till later chapters.

89.] Several binary quantics. Into a full discussion of the

expressions by means of differences of invariants and covariants

of systems of more binary quantics than one it is not proposed
here to enter

; but the facts may be developed by the same
methods as have been adopted in this chapter.

It will be found, for instance, with regard to invariants

of tiuo binary quantics, that functions of the roots which

produce them must of course, for rationality, be symmetrical
in the roots of each quantic separately, and will in general be

functions of three classes of differences, viz. (1) differences

between two roots of the first quantic, (2) differences between
two roots of the second quantic, and (3) differences between
a root of the first and one of the second. In order to produce
invariants which are not more properly regarded as sums of

simpler invariants, such functions must be homogeneous, not

only on the whole, but in each of the three sets of differences

singly. Any one must, moreover, be a sum of products of

differences, in every one of which all roots of the first quantic
occur in equal constant numbers of factors, and all roots of

the second in equal constant numbers of factors, the numbers
not being, however, necessarily or as a rule the same.



CHAPTER VI.

BINARY QUANTICS CONTINUED. ANNIHILATORS.

SEMINVARIANTS.

90.] Annihilators of invariants. For the calculation of

invariants it is a matter of great importance that / any
invariant of (a ,

alf a2 , ... ap) (x, y)
p must satisfy the two

differential equations

dl dl dl dT
=

Professor Sylvester, to whom and to Cayley the theory is

due, though the idea had also presented itself to Aronhold,

expresses this fact by saying that any invariant / has two

annihilators, called 1 and 0, viz.

The language is a convenient one for expressing that 127 = 0,

and 01 = 0.

We proceed to prove these facts of annihilation.

91.] The annihilator Q,. The property of having H for an

annihilator is one that invariants possess in common with

other functions of the coefficients which, when expressed in

terms of a and the roots, involve only differences of these

latter.

This may be proved by seeing, as we shall later, that the
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operation with il on a function of the coefficients is equivalent
to the operation with

f
d _d_ _d_.

~^d ai
"*"

da2

"*

^da/
on the equal function of a, and the roots a

15
a
2 , ... a^. We

adopt here, however, a different method.

Functions of the coefficients which are equivalent to

functions of aQ and differences between roots are, in fact, equal
to the same functions of the altered coefficients when the

quantic is transformed by the substitution of JT +mFand Y
for x and y, that is to say, when the roots are diminished by
the same (positive or negative) quantity m. Now, this being
so for all values of -m, let m be taken as very small, so that

its square and higher powers may be neglected in comparison
with any finite multiple of itself. The quantic

...+ apy
p

.

becomes in this case, after the substitution,

F+ P
(
P~

*\a, + 2 ma,)X*>-*

1*2

so that the new coefficients are the old ones altered by the

increments

ba = 0, 6a
x
= ma

Q , ba
2
= 2ma

1 , ..., bap =pmap^.

Now / our supposed invariant, or other function of a and

the differences between roots, becomes, by Taylor's theorem

-r /*. d d d cZ\ T7+ (6a ^ + ba,~j+ 5a2 ^ +... + 5a^ ) I,^ da l dal
2 da2

p dap
'

in which quadratic, &c. terms in the 8a's, i. e. in m, are omitted

as vanishing in comparison with the increment retained.

Thus a necessary result of I being unaltered is that

(6a
- +ba-, ^ +8a2T + ... + 8a-T ) 1 = 0,v da
Q

1 da 1
2da 2

p dap
'

i.e. that m(a -= +2%^ +...+pap_1
-
J )J=0,^ da1

I da
2

1 dap
'

i.e. that 127" = 0.

I
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92.] It will be well to give another proof of this, both

because of the convenient symbolical form of results to which

it will lead, and in order to convince ourselves that 117 =
is a sufficient condition to ensure that / is a function equal
to the same function of the coefficients in the quantic obtained

by putting X + mY, Y for x and y in the given quan
whatever constant m be, as well as a necessary consequence
if this persistence is a fact.

If

(A 0)
A lt

A
z ,

... Ap) (X, Y? = K, a1} c*2 , ... ap) (X + mY, Y)*,

where m is not now necessarily very small, the expressions
for the new coefficients are easily seen to be, by use of Taylor'sv
theorem for the expansion of a function of ^ + m in powers

f
x

of >

A =

Ap ap +pap _ l
m + f ap_ 2m2 + . . . + a m

1 . u

where we notice that

dA _ dA
1 _ dA 2 _ ^3_od dA'-~-'~- ~ ---

We draw the conclusion that, if F(AQt A lt A 2 , ...Ap )
be

any function of the new coefficients,

_dF_ dA dF dAi dF dA^ dF dAp~
dA dm dA-L dm dA 2 dm dA p

'

dm
, dF . dF . dF dF^^-'-

Now for -j. ^(^. ,
A lt A 2i ... Ap) to vanish, whatever m

be, is the necessary and sufficient condition that

F(A ,A1) A2J ...A P )
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be independent of m, and so equal to F
( ,

al9 a-29 ... a-p )
which

is its value when m = 0. Thus the condition, both sufficient

and necessary, that

F(AQ ,A lt A z ,...Ap)
=

s

or, replacing capital by small letters,

aa ...a = 0.

93.] We can by this method prove that, if F be any rational

integral function,

F(aQ ,a1 ,a2 ,...ap ),

which may be written symbolically

= emQF(a , alt a2 ,...ap).

In fact we have, by Maclaurin's theorem,

L^mJ
Q '1.2

Now F(A ot A lt A 2,...AP)
is a function of m. Hence, if

A'r denote the result of replacing m by m' in A r ,
we have by

the preceding article

A lt A,, . Ap)]
>

)' i> <> P/-1
...

This is proved, subject to considerations of convergency,
for any function F. When F is a rational integral function

no question of convergency arises. For we notice that F,

&F, &2
F, ... are of weights regularly diminishing by unity,

so that presently we get to a term QWF of zero weight, i. e.

a function of a
,
and beyond this point &W+1

F, &W+2F, &c. all

i a
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vanish. The symbolic series practically consists therefore of

only a finite number of terms.

We have thus another proof that, if a function I persists in

form after the substitution of X + mY, T for x and y when m
is infinitesimal, it does equally when m is finite. For if

J2/ = 0, the condition of 91, then also 122/ = 12121 = 0,

12 3/ = 0, &c.
5
&c.

Of course the student will recognize that 12
2/ denotes the

full expression for the result of operating with 12 on 12 J, viz.

2
d 2I d 2! d 2!

2
d 2I

an 1
-

2" + 4 aQai ~7
-

J--1" 6 aoa2 1-7
--H -M&1 -7

-
7 + . . .

da? da
l
da

2

2
da-^ da3 da<f

dl dl dl
+ l.2aQ -j- + 2.3alT- + 3 . 4a2 -j + ... ,da2

da
?t da^

and not merely the first line of this expression ;
and so for

123/, ft
4
/, &c.

94.] The annihilator 0. We have still to see that, if I be

an invariant, the second operator of 90 is an annihilator

of /, as well as the first 12.

This property invariants have in common with other

functions of the coefficients which persist in form after the

substitution _ -y _ rY , v
oc -A

j y I/ A. -|~ JL
3

i. e. in common with all functions of the coefficients which can

be expressed in terms of ap and the differences between

reciprocals of roots. The substitution is in fact one which

transforms the quantic into another in which ap is unaltered

and the reciprocals of the roots differ by I' from the reciprocals
of the original roots.

The proof is exactly as before, the present substitution

dealing with y and x exactly as that of the preceding articles

has dealt with x and y, and consequently dealing with the

quantic read backwards from its end apy
p

, exactly as the

former substitution dealt with it read forwards from its

beginning a xp
. It will be noticed that exactly corresponds

to 12 in this reversed reading.
We have then that OF = is the necessary and sufficient

condition that F persist in form when for x and y we make
such substitutions as X, I'X + Y.



96] SYMMETRY OF INVARIANTS. 117

95.] Symmetry of an invariant. Skew invariants. If in

an invariant a and ap , a^ and ap_19
a
2 and ap_2,

&c. be inter-

changed, the invariant is unaltered if its weight be even, and

changed only in sign of its weight be odd.

For the substitution x = Y, y = X has for its modulus 1 .

Now the effect of it is to interchange a and ap ,
a

x
and ap_lt

a
2
and ap _2 ,

&c. in the quantic. Consequently, if

be an invariant, we have
( 23, 26, 76)

F(apt ap_lt <v-2 ,...a )
= (-l)

w
F(a ,

alt a2 ,...ap). .

We see then that there is an essential difference in character

between invariants of even and invariants of odd weight.
Those of odd weight are, because of this change of sign, known
as skew invariants.

Skew invariants do not exist for the quadratic cubic and

quartic, and it came as a surprise upon mathematicians

when Hermite discovered the first skew invariant of a

higher quantic; viz. that of degree 18 and weight 45 of

the quintic.

Invariants of odd weight cannot, it is clear, be rational

integral functions of invariants of even weight. Thus when
a binary quantic has one or more skew invariants one at least

of them must be irreducible.

96.] One result of the symmetry to which attention has

just been called is that when we have found a function of the

coefficients which has li for an annihilator it is unnecessary to

test directly whether it is also annihilated by in order to

ascertain whether it is or is not an invariant. If it is altered

I in more than sign when the first coefficient and last in the

I'

quantic, the second and last but one, &c. are interchanged in

pairs, it is not an invariant. If on the other hand it is not so

altered in more than sign it is certainly annihilated by as

well as by 12, for is what 12 becomes when these interchanges

are made.

,
\Ve must prove, however, that any function which is of one

order and one weight throughout, and which is annihilated

both by 12 and by 0, is an invariant.
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97.] A homogeneous isobaric function annihilated by fi

and by is necessarily an invariant.

Consider in succession the substitutions

,

X '=X
'

I (3}T = rX+YS
The result of the succession is that of the performance of

the substitutions

Now these are the most general formulae of linear substitu-

tion
; for, A, //, t, T being arbitrary, so are the coefficients

as is clear by taking them in reversed order. The modulus

\ of the resultant substitution (4) is Aju.

Let the original form of a p-ic be

(a09 a19 a.; 9 ...ap) (x,y)
p
,

and let the forms it successively takes be

, <, a/,... <) (of, yj,

Take F((LQ, a
l ,
a2 ,...ap) a homogeneous isobaric function, of

degree i and weight w, which is annihilated by H and by 0.

We have first that, for values of r from to p inclusive,

a/ =

where the index of the power of /m is the weight of a,., and
that of the power of A is the excess of p over that weight.

Accordingly, because F is homogeneous and isobaric,

, a/,
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Again, because H annihilates F, ^persists in form after the ^
substitution (2). Therefore /->^ CA

F (A ', AS, A;,... A p')
= F

, <, a/, . . . <). J&.
^^X**^ fir \

Once more, because annihilates F
}

F(A Q ,
A 1} A 2 ,...A P) = F(A ', AS, A 2',...AP').

We see then, taking these three facts together, that

F(A , A,, A 2i ...Ap)
- A^-V^ao, a,, a,,...ap). ...(5)

In other words, we see that F is a function of the coefficients,

which needs only to be multiplied by a factor involving only
the constants in the general scheme of linear substitution (4)

to be made equal to the same function of the coefficients

in the quantic into which the given quantic is transformed

by that substitution. By the definition then F is an in-

variant.

Moreover the fact ( 26) that w = p follows. For, by
23, the factor Kip~w

^
w in (5) must be a power of the modulus,

i. e. of V. Thus the indices of Kip~w and p
w must be equal.

Therefore
ip-w = w,

i. e. w = \ip.

Another interesting proof that, when 12 and both annihilate

a homogeneous isobaric function F, the weight and degree of

F must be connected with p by the relation ip
- 2w = 0, will

be afforded when we have seen in the next chapter that

(SlO-0l)F=(ip-2w)F.

For the left-hand member vanishes when li F = and

F= 0. So then must the right-hand member.

98.] A good proof in small compass of all the fundamental

properties of invariants of a binary quantic is afforded by
a method which will also be useful for other purposes.

We notice that, if

u = K, a
lt
az ,...ap) (a, y)

p
,

then Q,u = u, &u=y- u,...

d r

and, generally, Wu =
(y -?-)

u.
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Consequently

e
f n

( ,
a1?

a
2 ,...ap) (x, y)

p = e* & (a ,
a

x ,
aa ,...a,) (x, y}

p

= (a ,
alf a2 ,...ap) (x + ty, y)

u

,

by Taylor's theorem.

Similarly

Ou = x-j- u,
2u = faJj-) ^ ...

cfy
v dy'

d r

and, generally, O ru = (afe) ^ ;

and therefore

1
eT (a ,

al5 a2 ,...ap) (x, y)
p = e

rx
dy(a ,

alt a.
2 ,...ap) (x, y)

p

=
(a ,

a l5 a^...^) (a;,

Hence, performing one operation after the other,

etn eT (aQ ,
al3 az ,...ap) (x, y)

p

= (a ,
al5 a.

2 ,...ap)

and, putting \x, py for a?, 2/ 3

e?
D
er (a ,

a
lt
a

2 ,...ap) (Ax, p.y)
p

= (a ,
a15 ag,...^) ((1

i.e., taking

(1 + tr)\ = l,tiJL
= m, T\ = I', IJL

= m',
so that

- '
/ ??L

^'m/
x _ ^m/ ^/m

^ " ~
m'

' ~
Im'l'm

'

m'

(a , ctj ,
a2 ,

. . . ap) (Ix + my, I'x + m'y)
p

Thus the most general linear substitution of Ix + my,
I'x + m'y for x and

2/ is effected by a substitution of the form

\x, ny followed by a complex differential operation.
This is an identity. If then the expanded left be

(A ,A 19 A 2t ...Ap)(x, 2/)
p

,

we have for all values of r from to p inclusive

-,-
.Ar

= em e lm
- 1

'
111 --

f m/J ar

= (lm'-l'm)
p-rm' 2r-p e m> e lm

'- l
'm ar ,

so that we have a formula for every new coefficient.
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We can readily pass to products of coefficients. For, if

P, Q be two functions of the coefficients,

where 0^ and
2 both mean the same as 0, but the former

and its repetitions act on P only, and the latter and its

repetitions on Q only,

and, in like manner,

o *>o *

t

Hence, if -F(a ,
als a2 ,

...ap) be a product, or a sum of

multiples of products of the same degree i and weight 10, of

coefficients chosen from among ,
alt a2 ,...ap ,

F(A ,AV A,,...AP)
I'm'

elm'-l'm fffa, C^, d2t ...ap),

so that any rational integral homogeneous isobaric function of

the new coefficients A is obtained from the same function of

the old coefficients a by a complex differential operation and

a multiplication.

By reversing the order of the 12 and operations we obtain

in like manner a second expression for F(A Q ,
A

1 ,
J-

2 ,
...A p ) ;

viz.

lm

99.] All the fundamental facts as to invariants flow hence.

These are that an invariant is annihilated by II and by 0,

that its degree and weight are connected with p, the order of

the quantic, by the relation ip 2w = 0, and that the factor

in the equality expressive of its invariancy is the ^(;th power
of the modulus lm' I'm.

To see this, suppose that F(a ,
a15 a.

2 ,...ap),
a homogeneous

isobaric function, is an invariant, so that

F(A ,
A

lt
A

2 ,...A P) = <l>(l t m, I', m')F(a ,
a lf aa ,...a,),
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where the form of is at present unknown. We have then

three expressions for F(A Q ,
A

lt A 2 , ... Ap),
which we can

identify, and obtain

m_
I'm'

(Im'-l'm)*-*'*"-*^ 4*-** F(a ,
alt

a2 ,...ap)

= $(1, m, l'
t m')F(a ,

ai}
a
2 ,...ap)

I' lm

= (Im'-l'mYVv-^J elm
'- i>m

F(a ,
alt a2 ,...a.p).

In the first equality put I' = 0. It becomes

m

ZipWn)-t
fWam' T? (rt n n n \III/ tj JU IW'Qj Ctl, (JLn

) .,,Ujp J

=
$(1, m, 0, m')F(a ,

a1? a2t ...af).

Now &.F is of lower weight than F, and Q2
F, &F, &c. of

lower weights still. The terms of different weights on the

two sides must be separately equal. Hence

IF= 0, &F= 0, &c.

Again, put m = 0. We obtain in like manner

-0
UP-*m'w ei p^ , aj ,

a
2 ,

. . . ap)
=

$(l, 0, V, mf)F(aot %, a2 ,...ap);

whence, by considering terms of different weights, since

operation with increases weight,

OF= 0,0
2F= 0, &c.

Thus the facts that an invariant is annihilated by t and by
are obtained. This being so, the general equalities become

(lm'-l'myv-
w m'* w - iPF= <j>0, m,l',m')F= (Im'-l'mY^-^F,

in which I, m' and lm' I'm are independent. The equality
of the first and third expressions requires then that the

indices of m'2w~ip and *-2w
vanish, and that the indices of

(lm' -l'm)
ip-w and (Im'-l'm)" be equal These are all

satisfied if and only if

ip 2w = 0.

Lastly, using this fact, the value of $ (I, m, I', m') is

(Zm'-Z'mf.

100.] A similar analysis will lead us to a theorem of great

importance which we shall use hereafter.
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By the early part of 98 we have, putting T~ I for t,

a
,
al} a2 ,...ap)(x, y)

p

= (a ,
a

L ,
a

2 ,...ap)(-T-
1
y, rx + y)

p

= e~
T

(aQ) alt a.2) ...ap)(-T-
l
y, TX)

P

= e~
T

(ap ,
ap_ lt ap.2) ...a )(TX,~T~

l
y)

p
;

whence, equating the coefficients of xp
~r

y
r on the two sides

for every value of r from to p inclusive.

We may hence pass to products, and linear functions of

products, of coefficients a
,
al} a 2 ,...ap as in 98, and obtain

that, if F(aQJ
alt a2 ,...ap)

be any rational integral homo-

geneous isobaric function of degree i and weight 10,

.e.

02

Now equate terms free from r on the two sides, as we may
do since the equality is identical, holding for all values of r.

The conclusion is that

, no n2o 2 n 3os
x r

^ F f ir^" 1 2. 2a t32 + "0^(ao gi> q2- ap)

= 0, if zp 2w>0,
but = (l)

w
F(ap ,

ar_j, a,_2 ,...a ), \iip-2w = 0,

Q2w-ip
and = (-!)--__ ^(aj> , ^_1} a,_2 ,...a ),

if ip- 2^< 0.

The first part of the conclusion is the one to which we wish
to draw particular attention. It tells us that, if ip 2w > 0,

no 2
O c n~

(I
2
"

i 2
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i.e. that any rational integral homogeneous isobaric function,

for which ip>2w, can be obtained by operation with li on

another rational integral homogeneous isobaric function.

101.] Formation of invariants by aid of H. We return to

invariants. A rational integral invariant of the binary p-ic

is, we have seen, a rational integral homogeneous isobaric

function, whose degree and weight are connected with p by
the relation ip = 2w, and which is annihilated by 1. These

two requirements are necessary, and we shall see in 112 that

they suffice. They lead to the following method of formation

of all invariants of given degree i.

Write down all possible products of i factors chosen from

among a
,
a1} a2 , ... ap , repeated factors being allowed, which.

are such that the sum of the suffixes in every one is ^ ip, and

take the sum of arbitrary multiples of those products. Operate
on the sum with 12, and express that the result vanishes. This

will give a number of equations in the arbitrary multipliers,

since the multiplier of every distinct product of
,
a

lf
a2 ,

...ap

in the result of operating must vanish separately. If the

number of the arbitrary multipliers be not greater than the

number of independent equations to be satisfied, values of

them different from zero cannot be found to accord with the

requirements, and there is no invariant of degree i. If the

number of independent equations be one less than the number
of arbitrary multipliers, the ratios of these can be chosen in

one way to satisfy them, and there is one invariant. If the

number of independent equations be more than one less than

the number of multipliers the equations can be satisfied in

more than one way. In fact, if the excess of the one number
over the other be r, r of the multipliers may be left arbitrary,
and the equations can still be satisfied by proper choice of the

rest. We thus get an invariant

where A
1?

A
2 ,

... Xr are arbitrary. This is expressed by saying
that there are r linearly independent invariants I

lt
I2 ,

...Ir of

degree i.

It will be proved later, by means of the last article, that all

the equations for determining the multipliers are independent,
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> that the number of linearly independent invariants of degree
is the excess of the number of products of a

,
alt a2 ,

... ap ,
of

egree i and weight ip, over the number of products which

3cur in the results of operating with il on these products,
e. over the number of products of degree i and weight

ipl. By deferring the proof we shall avoid repetition,

s the theorem is a case of a more general one which will be

equired later.

Notice that the number of products of degree i and weight
u is the number of ways in which the number w can be formed

)y the addition of i or fewer numbers, none exceeding p. This

umber of partitions of w is usually denoted by (w ; i, p).

'hus the number of linearly independent invariants of degree
'-> is f ip . ^ ( ip . .

(f ;^)-(Y-I ;i,p).

102.] As an example of this method let us prove the state-

ment made in 80, that I and J are the only invariants of

degrees 2 and 3 respectively of the binary quartic.

Here p = 4. Take first i = 2. Then w = 2 . 4 = 4. Now
the only partitions of 4 into two or fewer parts, none exceeding

4, are + 4, 1 + 3, 2 + 2. The only possible terms in an inva-

riant of degree 2 are, then, a e&4 , OjC&g, a2
2

;
or ae, bd, c

2
say.

Now suppose that ae + hbd + nc
2
is an invariant. The result

of operating on it with H, i.e. with atb + 2b6c + 3cbd + 4:d?>e ,

where, for instance, \ means -^ > is
do

ad
(
4 + A.) + be (3 A + 4

JA) ;

for which to vanish we must have 4 + A = and 3 A + 4/u = 0,

i.e. X = 4, fx
= 3.

Thus I=ae-4&eZ + 3c2

is the only invariant of degree 2, any other being merely
a numerical multiple of it.

Again, take i= 3, so that w = ^ 3 . 4 = 6. The only parti-

tions of 6 to be dealt with are

+ 2 + 4, + 3 + 3, 1 + 1+4, 1+2 + 3, 2 + 2 + 2.

The necessary form is then

ace + Aad2 + fj.b
z
e + i> bed + p c3 ,
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d

= 20, say.

Then any invariant of the system is annihilated by 21 and

by 20. Also, conversely, any rational integral function of

the different sets of coefficients which is homogeneous in each

set, of partial degrees i^, i2 , *3> ... say, and of the same total

weight w in the sets jointly throughout, and which has

both 211 and 20 for annihilators, is an invariant of the

system. Moreover, the possession of these two annihilators

necessitates that the several partial degrees and the total

weight must be connected with one another and the orders

of the quantics by the relation

Also, as in 95, an invariant is unaltered if its weight be

even, or altered only in sign if its weight be odd, when we

interchange a and a
Pi , % and aPrl ,

... ,
6 and bp^ b

: and

bp _ 19 ...
,
c and cp , Cj and cp__1 ,

...
, .... Thus, since these

interchanges make 2H into 20, and vice versa, we need not,

when we have found a function which 212 annihilates, test

by direct operation whether it is also annihilated by 20
before being sure whether it is an invariant. If it have

the correct symmetry of form as above there is no doubt of

the fact.

Ex. 5. Find the invariant of partial degrees 1, 1, and consequently
of weight 2, of the two quadratics

(o0>
av a

z) (x, yy, (6 ,
6
15

6
2) (x, y)\

Ans. Its form must be Xa^+ i^a^ + va^. Now 2H on this

produces (2 A + fx) a^+ (/x+ 2 v] aj> . Thus /ut= 2 A = 2v.

The one invariant is then that of 7, Ex. 4, A( 6
2

2a
1
b
1

Ex. 6. Show more generally that the invariant of 49 is the only
lineo-linear invariant of two binary p-ics.
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Ex. 7. Show that the quartic and quadratic

( , av ...aj (x, y}\ (b ,
bv b

a) (x, y)*

have no lineo-linear invariant.

Ans. The weight would have to be ^(4 + 2) = 3. The only

possible form is then Aa^-f fAaa61+ vo8
6 ;

and 2& on this produces

for which to vanish would require A = 0, /tx
== 0, v = 0.

Ex. 8. No two binary quantics of different orders can have a lineo-

linear invariant.

Ex. 9. Find the only invariant of partial degrees 2, 1 of a linear

form and a quadratic.

Ans. The invariant of 7, Ex. 3.

Ex. 10. Find an invariant of partial degrees 1,2 of a quadratic and
cubic.

Ans. (6,63- l*)-a, (&A-&&) + 0, (bj>2 -b*).
Ex. 11. Find an invariant of partial degrees 1, 1, 1 of three

quadratics.

Ans. That of 17, Ex. 25.

104.] Annihilators of covariants. In 69 it has been seen

that the covariants of a binary quantic u are identical with

the results of replacing x' and y
r

by x and y in the invariants

of u and the linear form xy'x'y.
Now invariants of these two quantics have, by the preceding

article, the two annihilators

r , d ^ , d

It follows that covariants of u have the annihilators

d dH 2/-r-, a;-=-.y dx dy

It seems best, however, to prove this fact and develope its

consequences ab initio, as was done in the matter of invariants.

105.] Let F(aQ , a1} ag , ... ap \ x, y) be a covariant of

(a ,
al9 a2 , ...ap)(x, y)

p
;
and let the quantic be transformed

into

by the substitution

= F,
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i 'hose modulus is unity. We seek first the necessary and
* afficient condition that we may have

A lt A 2 ,...A P ; X, T) F(a ,
a19 a2 ,...ap i x, y),

^ ;hich will be the case when F is a covariant, though not then

cnly.

If A Q)
A I} A.2 ,...A P are expressed in terms of m and

c
,
alt a2 , ... ap ,

we have, as in 92,

dA _ dA
l _ . dA z _ dAp _ .

dm~ '

~dHii.-
A

'

cfrn
= *AI*' :

' d^ =pAp~
1

'

Also the expressions for X and Y in terms of m and x and y
are X = x-my, T = y,

o that

Consequently

= dF^ t dA^ dF dA
dF_ dAv dF_.^. + ^l.^K.dA dm dA

t
dm dAp dm dX dm dY dm

,

dF . dF dF vdF= AQ-J-^ +2A-.-J-T- + ...+pA p _l j-1.
--

Y-jy>dA
l

l dA 2

L dAp dX

Now for the left-hand member here to vanish is the neces-

sary and sufficient condition that F(A , A^ A
2 ,

... Ap ; X, Y)
is a function of a

,
al5 a.

2 ,
... ap -, x, y which is free from m, and

consequently equal to F(aQ ,
al9 a2 ,...ap \ x, y) its value when

m 0. The vanishing of the right-hand member must then

express the same thing. Thus the necessary and sufficient

condition required is that

/ . d d d c T7.c\

A
1)
A.

2)
...AP ', X,Y)=0,

or, replacing capital by small letters, that

(il-2/) F(aQ,
av a.z ,

... ap ; x, y) = 0.
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We have also, as in 93, that even when this condition is

not satisfied -,
v
_ ^ t^J^M

F(A ,A 1)
A

2)
...AP -, X,Y)

d

= e
m(i

"'*^F(av a
1?

a.
2) ... ap ; x, y).

Thus we have the means of writing down the result of apply-

ing the transformation of this article to any function of the

coefficients and variables.

We might also have adopted the method of 91.

106.] In precisely the same way, the necessary and sufficient

condition for the persistence in form of F after transformation

by the substitution

x=X, y = l'

is (0-x--} F(a ,
a

lt
a
2 ,

... ap ; x, y) = 0,

&-y^

where is the second operator of 90.

Any covariant has, then, the two annihilates

A 0-x 9 **
dx dy

107.] Symmetry of a covariant. Again, as in 95, we see

that there is a symmetry in any covariant. The simultaneous

interchange of x and y, of a and ap) a^ and ap_ l ,
&c. in its

expression must, since the interchange means a substitution

of modulus 1
,
have the effect only of multiplying it by

( l)!^-
07

), where i is its degree and w its order. Now
\(ip + tz) is the weight of the covariant (chap iii),

and

\(ip 57) consequently the weight of the coefficient of x in

it. Thus a covariant is unaltered, or altered only in sign, by
these interchanges, according as the weight of its leading

coefficient is even or odd.

Hence for covariants one of the two conditions of 106 is

necessitated by the other and symmetry. The reasoning is

as in 96.

108.] Sufficiency of the two conditions of annihilation. We
can also prove the converse of 106 for homogeneous isobaric

functions. Stated at length, the fact is that any rational

integral function F of , a
} ,
a2 , ... ap and x, y, which is homo-

geneous, of degree i, in the coefficients, homogeneous, of order
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or, in x, y, and isobaric on the whole, reckoning a , a
} ,
a

2 , . . . ap ,

x, y as of weights 0, 1, 2, ... p, 1, 0, and which has both

Q y-r- and oj -=- for annihilators, is a covariant.
^d# cfa/

The proof, which proceeds exactly as in 97, need not be

repeated at length. The only variation is that in passing
fr m

( ,a 1,a2 ,... J,)(^2/)
p

to ,< , a/, . . . ap') (x, y')
p

,

we have, as well as a/ = Ap~'y a->

also x'= X~l
x, y'

=
[jt,-

l

y,

so that x'
8

y'*-
8 = A-V~ m^

2/

w~8

>

where the index of the power of \ is minus the weight of the

product x
s

y
:*~ 8

,
and that of the power of /z is the weight of the

product lessened by w. Also the weight of the function of

a
,
al5 2 , ... ap which multiplies Xs

y
31
'8 in the function F

which we are considering is w s, where ^v is the weight of F.

Thus, in place of the

of 97, what we now have is, since

xip_(M
,_

8)^_8> A
-
8/x8

-W _
^'p-w^w-w

is the same for every s,

^(a ', <,<,...<; x',y')
= \ip-w

n
w
-*'F(a ,a1 ,a2 ,...ap ', x,y).

This difference of the factor will not affect the argument,
The supplementary conclusion, from the fact (37) that when

we have proved F to be a covariant we know, that the factor

must be a power of the modulus, is in this case

ip w = iv iff = ^ (ip iff),

i.e. is ip + iv = 2iv,

which accords with chapter iii.

109.] A covariant completely given by an end term. We
are now in a position to find the covariants of a given degree

and order by a method like that of 101. A further theorem

of great importance will, however, much facilitate the process.

It is due to M. Roberts.

K 2
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Let a covariant of order w of a binary p-ic, be arranged as

a quantic in x and y. We may write it

where C
,
CLy C,2 ,

... C^ are all of degree i in a
,
alt

a
2 ,

... ap ,

and of weights respectively

This is annihilated by H 2/ ~r ' ^e mus^ have then
CLOG

1.2

for all values of a? and y. The various coefficients of x7

x~1

2/,
. . . must therefore vanish separately. In other words,

= o,

0(7, =

We have then the two most interesting conclusions which

follow :

(1) CQ, the leading coefficient in the covariant, is annihi-

lated by H, the first of the two annihilators of invariants.

For this reason it is called a semi-invariant or seminvariant.

(2) When Cw ,
the last coefficient in a covariant, is known,

all the other coefficients are determined from it by mere

operations with 12, i. e. by differentiations only. In fact, we
see that

r = W"r
w 5

and that the whole covariant is
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which, since &W+1
C^, J1W+2 (7W , &c., vanish, the first of them

being only w ! 12C which is zero by the first equality above,

may briefly be written

For this reason C7W ,
which is

( 107) merely the result of

interchanging a and ap ,
a

x
and ap^ly

&c. in
( l)*(

ip-^C
,
has

been called the source of the covariant. In the next article

we shall see that the same name might equally and for a like

reason_be given to C itself.

110.] Express, in fact, precisely as in the preceding article,

that the covariant is annihilated by # -j- The conclusions
1 dy

are that
r\rt ri
UL* Q SJUj

o<V x
= cw ,

OCv = 0.

Thus (1) Ow is annihilated by the second annihilator of

invariants, and may be called an anti-seminvariant
;
and (2)

for every value of the number r from to r inclusive

Cr =
^(^-l)(z*-2)...(OT-r+l)'

C'

'

so that the covariant is

or, as it may be written,

for Ow+1 (7
,
Ow+2

,
... vanish since 00W = 0.

Thus, when we have the seminvariant C which is the

leading coefficient of a covariant, all the coefficients in the

covariant can be obtained from it by mere operations with (9,

i.e. by differentiations.

In fact, given any coefficient in a covariant, all the coeffi-

cients can be found. Successive operations with & give the



134 SEMINVARIANTS. [in

coefficients on the one side of it, and successive operations
with give those on the other.

111.] Seminvariants. We may define a seminvariant as

any homogeneous isobaric function of the coefficients

aQy alt a2t ...ap which is annihilated by ft. We now confine

attention, however, to seminvariants which are rational and

integral.

Looking back at 91, 92 we see that the half invariant

property which seminvariants possess is that of being abso-

lutely invariantic for such linear substitutions as

x = X + mY, y=Y.

(From 97 we gather that they are really invariantic for the

somewhat more general substitution

x - IX + mY, y = m'F,

though the factor for any one is in this case not as a rule

a power of the modulus.)

Consequently, when expressed in terms of and the roots

of the quantic, a seminvariant can involve only differences of

these latter. If of degree i, and not divisible by a
,

it is a

product of a J and a function of the differences, which involves

each particular root to the i-th degree, since the ratios of

(/,, a2 ,
a3 , &c., to a

Q
are all of the first degree in every root.

Conversely, any rational integral symmetric function of the

roots, which can be expressed in terms of their differences

only, becomes a rational integral seminvariant when mul-

tiplied by such a power of that it can be expressed

integrally in terms of the coefficients. The least power of

a which suffices is the i-th, where i is the degree of the

symmetric function in any particular root.

We may now see that in the two preceding articles C may
be any rational integral seminvariant

;
that is to say, that any

rational integral seminvariant whatever may be taken as

the leading coefficient of a covariant, and determines that

covariant uniquely.
Take any rational integral seminvariant $ of degree i, with-

out a for a factor, and write it as aj multiplied into a symmetric
function of the roots a

15
a
2 , ...op . This symmetric function
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will be a function of the differences ar
~ a

8 ,
&c. Now for

every difference a,.
a

s
write

r *
-r . In this frac-

(x-ary)(x-a8y)

tion a r occurs once in the numerator and once in the de-

nominator, and so does a
g

.

Clear the function obtained of fractions by multiplying by
the lowest necessary power, the ^-th, of

(x-a l y}(x-a.,y)...(x-ap y).

In this multiplier alt a
2 ,

... ap occur in equal numbers i of

factors.

The result, when expressed in terms of x, y and coefficients

only, will be a covariant whose leading coefficient C is the

seminvariant 8. That the leading coefficient is S is clear

from the method of construction. That the whole expression
is a covariant follows from the fact

( 83) that it is a power
of multiplied into a function of differences x ay and

differences or <*, which is symmetrical in the roots, homo-

geneous in both kinds of differences, and such that all roots a

occur in equal numbers of factors in any product, and in the

same number in all products.
The covariant is unique of its degree and order; for 110

shows that a leading coefficient C determines a covariant

uniquely, giving -OF as the least number for which Ozzr+1
(7 = 0,

and giving Clt
C

2 ,
... Cv by a succession of operations with

on C . The uniqueness also follows from 39. Note, how-

ever, that the order or depends on,the value of p. For quantics
of different orders p, the same ^^ariant will lead covariants

of different orders -ar. We had above, in forming the covariant

from its seminvariant leader by means of the roots, to divide

terms by products of order 2 u/, where w' is the weight of the

seminvariant, and to multiply through by a product of order

ip. Altogether the covariant obtained is of order ip2w',
which accords with the known fact that w = \ (ip vr).

A seminvariant with a power of a ,
a j

say, for a factor is of

the form a j
S, where 8 is a seminvariant to which the reason-

ing above applies. The unique covariant which it leads is

the product of the covariant led by $ and the j-th power of

the p-ic.

Another proof, making no explicit use of the roots, of the
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important theorem of the present article will be given in the

next chapter. (Of. 126, Ex. 6.)

112.] We now see that the problem of finding covariants

by aid of annihilators is reduced to the much simpler one of

finding seminvariants. We have found, suppose, a semin-

variant of degree i and weight w. Take it for C in 110.

The leading term in the corresponding covariant of the binary

p-ic is C xil'~2w as above, when a is a factor of C as well as in

other cases, where w is the weight of C and not that of the

covariant
;
and the full expression of the covariant is, by 110,

That the order ip 2w of the covariant cannot be negative,
C being a rational integral seminvariant, is clear. For the

procedure of the last article determined a covariant of

essentially non-negative order in x and y from the semin-

variant with which it started. Thus there are no rational

integral seminvariants for which ip 2 w is negative. Should

ip 2w be zero the seminvariant is an invariant. For the

covariant derived from it is of zero order as above and con-

sequently an invariant, and is in fact the seminvariant itself.

It must clearly be borne in mind, however, that we are

dealing only with rational integral seminvariants. The argu-
ment does not apply, for instance, to the fractional seminvariant

-(a
2d babc+2l3

). Here, for the cubic, ip 2w = Q, but
Oi

nevertheless the function is not an invariant of the cubic.

does not annihilate it.

We may, in fact, state succinctly the conclusions arrived at

as to invariants of a binary p-ic. If 12 and annihilate

a function it is an invariant, and ip2w = Q
( 97). If 12

annihilate a function for which ip2w= 0, it is also annihi-

lated by and is consequently an invariant provided it is

rational and integral, but not necessarily if it is fractional.

113.] Determination of seminvariants. The determina-

tion of the linearly independent seminvariants of degree
1 and weight w of a binary p-ic proceeds as in 101. If

ip<2w there are none, as above. If ip^2w, write down all

the products of weight w of i constituents chosen from among



H4] SEMINVAKIANTS OF THE SECOND DEGEEE. 137

a ,a19 a29 ...ap , repetitions of factors allowed, and add together

arbitrary multiples of these. The number of such products
is (w ; i, p), this symbol denoting, as in 101, the number of

different partitions of the number w into i or fewer numbers,
none exceeding p. Operate on this sum with 12, thus obtain-

ing a sum of multiples of the (wl ; i, p) products of degree
i and weight wl. It will be proved in the next chapter
that the (wl ; i, p) coefficients of these products are linearly

independent linear functions of the (w ; i, p) arbitrary mul-

tipliers of the (w ; i, p) products. They have to vanish. Their

vanishing gives (wl ; i,p) relations which have to be satis-

fied by the (w ; i, p) multipliers. If then (w ; i, p) exceed

(wl ; i, p) we can satisfy them and leave

of the multipliers still arbitrary. Suppose that this excess

is r. We have as the most general seminvariant of the

type under consideration a sum of the form

AJ^J + A
2
$2 + . . . + A r Sr

where A
15

A
2 ,

... A,, are arbitrary, and Slt S.2 ,
...Sr are known

linear functions of the products of type w, i. We express
this by saying that there are r linearly independent semin-

variants o o ool5 o2 ,
. t.or

of this type belonging to the p-ic.

114.] Seminvariants of the second degree. As an ex-

ample let us discover all the seminvariants of degree 2 of

a binary p-ic. The condition ip^2w is for this case w^>p.
Two cases will arise.

(1) For an even weight wt
not exceeding p, the general form

to be assumed is

Expressing that 12 annihilates this, we obtain the conditions

1
= 0, (w 1)A 1 + 2A

2
= 0,

3
= 0,... + lA4w_ 1 + wA4w = 0,

the coefficient w in the last of these being double what it
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would be according to the law of all the other second terms.

Solving these for the A's we have a unique seminvariant of

weight w, viz.

w(wl)a aw-wal
aw_ 1 + -^-3'Ww-z

~

.,

/
1
u.^(w-l)...(iw+l) 2

2^1
where the law of coefficients is that of the expansion of (1 +z)

w

up to its middle coefficient, which one alone is halved.

For every even weight not exceeding p there is then a single

seminvariant of degree 2. In particular, of course, it is an

invariant for a weight equal to p ifp is even.

(2) For an odd weight w, not exceeding p, the form to be

assumed is

and the conditions obtained from the annihilation by Q are

w + \
l
=

0, (w 1)A 1 + 2A
2
= 0, (w 2)A2 +3A3

= 0, ...

*( + 3) A4(-3) + Hw- 1 )*4(-i) = 0, AMw _
l}
= 0,

of which the last tells us that A
4 (w_ l ) vanishes, and the rest,

taken in order backwards, tells us that all the other A'f

vanish.

For no odd weight, then, is there a seminvariant oi

degree 2.

Accordingly the complete series of seminvariants of

2 is

4 10a3
2

,

&c.
5 &c.,

the series terminating with the weight p or p I according as

p is even or odd. In the former case the last of the series is

an invariant.

The orders of the corresponding covariants are 2p, 2p 4,

2p 8, ... . They are the covariants of 57, Ex. 12, together
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with the invariant, ifp be even, of 48. In other words, they
are the transvectants

( 61) of the p-ic and itself. Thus we
have the theorem that a binary quantic u has no covariants

of the second degree in the coefficients besides the Oth, second,

fourth, sixth, &c., transvectants of u and itself. The Oth, led

by
2 x2p

,
is u2

.

Ex. 12. Use 110 to write down in full the covariants of

deree 2.

of the binary quintic.

Ans. For the last see 61, Ex. 29.

Ex. 1 3. A binary quantic of order not less than 4 has one and only
one seminvariant of degree 3 and weight 6.

Ans. a2^4+ 2 a^/^ a a
3

2
a^a^ a

2

3
.

Ex. 1 4. Hence obtain the single covariant of degree 3 and order 3

of the quintic.

Ans. (ace+2 bed atf b*e c
3

)
ar

5

+ (acf-ade-b*f+ bee + bd2- tfd^y
f (adf bcf ae2

-f bde+ c
2e cd*) xy*

+ (bdf+ 2fo-cy- W-<P)y*.

Ex. 15. Show that a binary quantic of order not less than 3

has one and only one seminvariant of degree 3 and weight 3.

Ans. ai?
a
a 3 a

i
a
2 + ^ a\-

Ex. 16. Hence, and from what has been proved above, prove the

statement of 86 that H and G are the only covariants of a binary
cubic whose degrees are 2, 3 and orders 2, 3 respectively.

Ex. 17. Show that a binary quartic, or binary quantic of higher

order, has two and only two seminvariants of degree 4 and

weight 4.

Ans. \ a2

(ae
- 4 bd+ 3 c

2

) + n(ac- 62
)

?

,

which may also be written

A (a?e
- 4 a*bd+ 6 atfc- 3 6

4

) +/ (ac
- bz

)

2
.

Ex. 18. Find the sum <r
4

of the six fourth powers of differences

between the roots of the quartic (a, 6, c, d, e) (x, I)
4

.

Ans. aV4
= 720 (ac-6

2

)
2- 16 (a

3e-4a26d + 6a&2
c 364

).

Determine X and // in the second form above by taking two particular

quartics, e.g.
2

(x
2

l) and *
1, in both of which 6 = 0, and in one

of which e = and in the other c = 0.
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Ex. 19. Show that a binary quintic has two and only two indepen-
dent seminvariants of degree 5 and weight 5.

Aus. X (a
4

/ 5 a?be+ 1 a?tfd 1 atfc + 4 6
5

)

+ JA (ac
- 6

a

) (a?d- 3 abc + 2 68

).

Ex. 20. The sum of the numerical coefficients in any seminvariant

which is not a mere power of a vanishes.

Ex. 21. If (C ,
Cv CV ...CV) (x, y} is a covariant of

. , jC )

"*

n n

(o ,
a

a ,
a

2 ,
... ap) (a, y)

p

^ j^

prove from 109 that a C
l

a
i
C

Q
is a seminvariant. (J/. Roberts) :

Ex. 22. By application of this result to the first linear covariant

( 57, Ex. 17) of a binary quintic, prove that the quintic has

a covariant of degree 6 and order 4, and an invariant of degree 18, the

catalecticant of this covariant.

115.] Seminvariants and covariants of several binary

quantics. Referring to 103 for the notation, we define

a seminvariant of a system of quantics in the same variables

x, y as a function of the several sets of coefficients in general
a rational integral function which is homogeneous in each

set separately, and isobaric on the whole, though not neces-

sarily in the sets separately, and which has 2Ii for an anni-

hilator.

The methods which have preceded are applicable to covari-

ants and seminvariants of systems of quantics. It is left to

the student to convince himself, as in 104 or 105, 106,

that every covariant of the system is annihilated by 212~y~r
d

and 20 aJ^-J and, as in 108, that conversely a function

which is homogeneous in the variables and in every set of

coefficients separately, and isobaric on the whole, is a covariant

if these operators annihilate it. He will also see, as in 107,

that if x and y, a and ap
^

,
a

l
and ap _

} , . . . ,
b and b

ft> , \ and

bp _!,..., c and cp ,
c
x
and cp _ 1) ..., ... are interchanged in

a covariant the effect is only to multiply the covariant by
( i)4(s.

</>-)
j
where the index is the total weight of the lead-

ing coefficient, that of X. That this leading coefficient C is

a seminvariant, i.e. is annihilated by 212, he will see as in

109, and that all other coefficients can be derived from it
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by operations with 20 he will see as in 110. In fact, the

covariant may be written either as

or as ye v .

Once more, as in 111, he will see that any rational integral

seininvariant whatever may be taken as the leading coefficient

(7
,
and determines r, the order, and the full expression for the

covariant uniquely. The order w, the partial degrees i
lf

i.2,
i3,...

in the coefficients of the p^ic, the >
2-ic, the p3-ic, &c., and the

weight w of the seminvariant are seen to be connected by the

relation

Thus there is no seminvariant for which 2 . ip 2w is

negative. If 2.ip2w=Q the derived covariant and the

seminvariant are identical. The seminvariant is in fact an

invariant, and is annihilated by 20.

The method of 98-100 also applies ; and the results of

100 hold, when we put 2, 20, 2.ip2w in place of

12, 0, ip 2 iv respectively, for operations on functions of any
or all of the sets of coefficients.

All the linearly independent seminvariants of given weight
w and partial degrees i19 i.

2 ,
i3) ... are found, as in 113, by

writing down the most general rational integral function of

the type in question and determining the multipliers in it so

that it may be annihilated by 212.

Ex. 23. Find a seminvariant of weight 2 and partial degrees, 1, 1

of the quadratic and cubic (a , av a
2) (x, 2/)

2
, (6 ,

bv 6
2 ,

b
s) (x, 2/)

3

,
and

show that the covariant to which it leads is linear.

Ans. The covariant is

(a 6
2

2a^ + 2
6

)
x+ (a 6

3
2 afo + a^) y.

Ex. 24. Find a linear covariant of partial degrees 2, 1 of the

quadratic and cubic.

A ns. (a
2
6
3

3 a
9aj)%+ a a

a&, + 2^*6, apj)^ x

+ a aj>2+ 2a*\- a

Ex. 25. Remembering that a cubic has a cubicovariant ( 45,

Ex. 13) deduce two other linear covariants of a quadratic and cubic.
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Ex. 26. Two different binary qualities of orders p and p' have

a single lineo-linear seminvariant of every weight not exceeding the

smaller of p, p', and none of higher weight than this.

Ans. ab W( ~

Ex. 27. The covariants led by these seminvariants are the mutual
transvectants ( 59, 61) of the two quantics. Hence the mutual
transvectants of u and v are the only covariants of u and v which are

lineo-linear in the coefficients.

ADDITIONAL EXAMPLES.

Ex. 28. Prove that / = 0, J = 0, where /and J are the invariants

of the quartic u = (a, b, c, d, e) (x, y)* are two results which can be

obtained by elimination of x between

d*u d2u tfu
-j-z

= 0, -j-y- =0, = 0. (Cayley)dxz
dxdy dy

z

Ex. 29. If a, /3, y, 5 the roots of (a, b, c, d, e) (x, y}* be taken ii

pairs a, /3 ; y, 6 in any way, the substitution

7,

y = (y+ 6-a-;?) JT_(yo-a/3) F,

transforms the quartic into the same quartic (a, b, c, d, e) (JT, Y)
multiplied by a function of the roots.

Ans. Consider the quartic in its factorized form.

Ex. 30. If in any covariant of (a , a,, a
2,...ap) (#, y}

p we pi

for a
,
av 2 ,

... ap respectively, we deduce the covariant with
same leading coefficient of

( ,
av a

2 ,
... a

p ,
ap+l) (x, y)

*+l
. (Cayley.)

Ans. Symmetrical and annihilated by &p+l y -j-dx

Ex. 31. To substitute (a ,
av ,) (x, y}\ (av 2, 3) (x, y}\..

for a
, a,, av ... is to repeat the same process twice, and to deduc

a covariant of (a ,
av a

2 ,
... ap ,

ap+1 ,
ap+2) (x, y)

p+
*. (Cayley.}

Ex. 32. In any seminvariant or invariant of
( ,

av a
z ,

... ap) (x, y}
p

put k, k 1, & 2, ...,A; |) for a , ar a
2,...ap ,

and equate to the

result of putting Jc, I for a
,
a

a
in the one term, if there be any,
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which involves a
, j only, or to zero if no such term occurs

(i.
e. if

w > i).
The result is an identity for all values of k.

Ans. Follows from the equality of seminvariants of

l

y and kX*-pX*~l Y.

Ex. 33. Hence by giving k the values 0, 1, 2, ... in succession

obtain facts with regard to the numerical coefficients of terms free

from a
,
terms free from av terms free from

2,
... in any seminvariant

or invariant.

Ex. 34. In this way determine the seminvariants of degree 3 and

weight 3, and of degree 2 and weight 4.

Ex. 35. In the same way determine the terms free from b in

the discriminant of the cubic (a, b, c, d) (x, y)
3

,
and deduce the

full expression for the discriminant, by considering the transformation

of the cubic to a form without a second term.

Ex. 36. By consideration of the special binary quantic

prove that if in any seminvariant or invariant a
,
av a

2 ,
a
s ,
a4 ,

... are

replaced by k, k, kl y
k 3, kQ, ...

,
where 1, 3, 6, 10, 15, ... are

the figurate numbers of the third order, the result is equal to that of

replacing a and a
2 by k and 1 in the one term which involves

and a
2 only, or to zero if there be no such term.

Ex. 37. Generally, if in any seminvariant or invariant of a binary

jo-ic we replace a
,
ar ... r_1

all by k, and ar,
ar+l ,

...ap by k
diminished respectively by the first, second,... (p r+l)th figurate
numbers of the (r+ l)th order, the result is equal to that of replacing
a and ar by k and 1 in the one term which involves a and ar only,
or to zero if there be no such term.

Ex. 38. If F
'(a ,

av a
2 ,

... ap} is a rational integral homogeneous
isobaric function, of the coefficients in

( ,
av a.z ,

... ap) (x, y)
p
,
for

which ip 2 w = 0, prove that

(
no wo* wo* .

I
2 r

1
2 .2 2

1
2 .2 3 .32 '"'

{F(a ,
av 2 ,

... aj,)-(-l) F(ap,
ap_v ap _ z ,

... a )}
= 0.

Ans. Use 100.

Ex. 39. In the same case prove that

^(a , oj, a
a,... ap)-(-l)

w F(ap,
ap_r _,...a )

is of the form l(r(a ,
av a

2 ,
... ap),

where G is a rational integral

homogeneous isobaric function.

Ex. 40. Prove that the method of 19 applies to seminvariants,

irrespective of the orders of quantics to which they belong, so that
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from covariants with like seminvariant leaders of two quantics of

different orders intermediate covariants follow.

Ex. 41. If J is the Jacobian (ab' a'b)x
p+p'-*+... of two binary

quantics u, u', and if H and H' are their Hessians

and H" the intermediate covariant

(ac'-fa'c-266') x p+p'- 4
+...

between H and H', prove that

Jz = -u*R'+ uu'H"-u''iH. (Faa de Bruno.

Ans. It suffices to prove the relation among the seminvariant

leaders.

Ex. 42. Any factor of a seminvariant is a seminvariant. (Sylvester .)

Ans. If &Pn = then P^P = 0, i.e. HP = 0. If

IIP P
12 . PQ = 0, then ~ = ^ j whence, if Q Und P have no common

factor, IIP = 0,

Ex. 43. If A = PB+QC, where A, B, C are seminvariants but

P and () are not, then there is a relation A = P',5+ Q'C in which

P' and $' are seminvariants. (Sylvester:)

4. B&P+ C&Q = Q. .-.&P= -C, QQ = K. There-

fore, if # and (7 have no common factor, (if they have, use first Ex. 42,)

P = -Cfl-^+P', <?
= &-lK+ Q'. (Of. 100.)

Ex. 44. If
(f) (a, b, c, d, e, /, g, ...)

be a seminvariant, then

<J>(0, o, 26, 3c, 4d, 5e, 6 /,...), ^ (0, 0, a, 36, 6c, lOd, 15,...),

<J>(0, 0, 0, a, 46, lOc, 20d,...), ..

are other seminvariants, the series of numbers being figurate.



CHAPTER VII.

FUETHEK THEORY OF THE OPERATORS 12, AND 0. RECIPROCITY.

116.] FOR brevity of statement we henceforth use, with

Sylvester, a single word to denote a function of the p quan-
tities a

, a,, a
2 ,...ap which is rational and integral and of

the same degree and the same weight throughout. The name

adopted for such a function is a gradient in
,
alt a2 ,

... ap .

So, too, by a gradient in more sets of quantities aOJ alt
... ap

^
;

6
, &!,... bp ;

c
, Cj ,

. . . rp ;
... than one we mean a rational

integral function of some or all of the quantities which is of

constant degrees throughout in the sets of quantities separately,

and of constant weight throughout in the sets collectively.

For the present we deal with gradients in one set

a
, !, a2 ,...a, only. It is in accordance with what has

preceded to denote in general the degree of a gradient by
i and its weight by w.

We need not always have in view that a
,
aly a.

2 ,
... ap are

the coefficients in a binary p-ic, but may specify that a gradient

involves ap ,
but no element with a greater suffix than p, by

describing it as of extent p.
For instance,

and a a.
2 4 + A a

l
a.2 3 + /ot

a
Q a/

where the coefficients A, //, v, -& are arbitrary but independent
of

,
al) a.2) a3 ,

a4 , 5 ,
are gradients of degrees 2, 3, weights

5, 6, and extents 5, 4 respectively.

117.] Expressions of homogeneity and isobarism. Any
gradient whatever, of given degree and weight, satisfies two

linear differential equations.
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Take 6rw> ,-, p a gradient of weight w, degree i, and extent p.

One of the two differential equations is Euler's equation which

expresses its homogeneity, of degree ?', viz.

/ d d d d \ -

The other expresses that it is isobaric, of constant weight iv

throughout. It is

This also follows from Euler's theorem of homogeneous func-

tions, for constancy of weight has been seen to be the same

thing as homogeneity in magnitudes which are roots of

(a ,
a ly a.2 ,...ap)({C, 2/)

p
,
in which

,
alf a2 ,...ap are homo-

geneous and of dimensions 0, 1, 2, ...p respectively. It is,

however, at once clear when we notice that, if ar
p a* a

t

r
. . . be

any term in Gu>itP ,

118.] Seminvariants as particular Gradients. Referring
to 111 we see that, according to the definition there given,
those gradients G

Wj it p ,
of type w, i, p, whose arbitrary coeffi-

cients are so chosen that they satisfy the third linear differ-

ential equation

, d d d d
where 12 = a

-j +2j^--h3a2 ^ + ...+pap ,-T
-

cto1
I da2

2 das
l dap

are the seminvariants of the p-ic

(a ,
a

1} a2t ...ap)(x, yY,

and are equally seminvariants, though not all the semin-

variants, of the (p + q)-iG

(a ,
alt a

2 ,
... ap ,

aPM> ... ap+q) (x, yY
+

where q is any positive integer.
It has already been shown, and will be otherwise exhibi

presently, that gradients which are seminvariants exist only

dn-

ted
|
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when their weights, degrees, and extents are such as to make

ip 2w<0. It has also been seen that a gradient which is

a seminvariant of type w, i, p is the coefficient of the highest

power of x, i.e. x ip ~'2w
,
in a covariant of

and, more generally, the coefficient of the highest power
xi(p+g)-2w Of ^ in a covariant of the quantic of higher order

( ,
alt a,,... ap ,

ap+l ,
... ap+q )(x, y)

p+q
.

Thus, for instance, a 2 a 3 3a a
1
a2 + 2 c^

3
,
a gradient anni-

hilated by H, for which w = 3, i = 3, p = 3, ip 2w = 3 is

a seminvariant of (a ,
alt a

2 , ... a3+q ) (x, y)
3+q

,
where q is

zero or any positive integer, and is the leading coefficient of

covariants

(a
2
a, 3 a a

x a.2 + 2 a^) x
3 + . . .

(a
2 a3

3 a ^ a
2 + 2 a^) a?

6 + . . .

(a
2 as 3a a

1
a
2 + 2

1
3
)*

9 + ...

&c., &c.,

of the cubic (a ,
a15 a2 ,

a3) (a?, y)
3

,

the quartic (a ,
a

x ,
a2 ,

a3 ,
a4 ) (, 2/)

4
,

the quintic (a ,
als a2 ,

a3 ,
a4 ,

a5) (a?, 2/)
5

,

&c., &c.j respectively.

It has also been seen
( 112) that a gradient GWt it p ,

of type
w

t i, p, which satisfies

and is such that ip 2iu = 0, has the further property of

satisfying the fourth linear differential equation

where = Pa1 +(p-l)a2+ ... + ap ,

so that it is an invariant of the p-ic

(a0)
a1)

a
2 ,...ap)(x,y]

p
,

while still only a seminvariant of the higher binary quantics

(a ,
al9 a2) ...ap ,

ap+l ,...ap+q )(x, y}
p+q

.

L 2
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Thus, for instance,

a 4 4a1
a3 -l-3a2

2
,

for which w = 4, i = 2, p = 4, ip 2iu = 0, is an invariant of

the quartic

(
a

i
a
2
a3> <*A)(> 2/)

4
>

and a seminvariant of the quintic, sextic, &c.,

(a ,
a
ls ... a4 ,

a5)(x,y)
5

,

(a ,
al5 ... a4J a6 ,

a
6 )(flJ, 2/)

6
,

&c.,

being the leading coefficient in covariants

(a 4
- 4a

x
a3 + 3a2

2

)
#2 + . . .

,

&c.,

of the quintic, sextic, &c., respectively.

We need not then dissociate invariants from seminvariants

in searching for them by means of the annihilator 12. A sem-

invariant found will be in particular an invariant for the

binary p-ic, in case the excess (to use another word of

Sylvester's) ip 2w vanishes. It has already been estab-

lished, and will again appear, that there is no rational integral
invariant of a binary p-ic which is not thus given.

119.] A seminvariant ofextentp involves all ofa ,%, a 2 ,. . .ap .

Suppose if possible that a,., where r <p, is absent from a semin-

variant S of extent p. We may write the fact

in the form

(r+l)a -^-S + [a
" d d

N ow, on our supposition, all of the left-hand side but

ar -r2-r da +l
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is free from ar . But the sum vanishes. Therefore

a
d

8u/r ^ to
dar+l

is free from a r . Therefore
-^

8 = 0, i.e. S is free from ar+l .

ctdr+l

A seminvariant free from ar is thus free from ar+1 ,
and

therefore from <xr+2 ,
from ar+3 ,

&c. Finally it is free from ap .

Our supposition then that a seminvariant of extent p exists

which does not contain all of a
,
a15 a2 , ... ap is untenable.

120.] An invariant of a binary p-ic involves all the

coefficients. Being a seminvariant, it must by the preceding
article involve all of a

, a15 a
2 ,...ar if it extend as far as ar .

Also being an anti-seminvariant, annihilated by 0, it must by
the same reasoning involve all of apt ap -i, cip_.2 ,...aQ) since,

reckoning extent from ap back to a
,
it extends to a .

121.] Repeated operations with II and 0. We proceed to

pay attention to the results of operating with H or with 0,

once or any number of times in succession, on any gradient
whatever.

The operator fl = ^ + 2, jL+^.+jw,.,J-

acting on any gradient GWj it p produces another gradient. The

degree of the produced gradient is i, that of Gw>i>p . The

weight of the produced gradient is wl, where ^v is the

weight of Gw>itp . The extent of the produced gradient is

either p, the extent of Gw> it p ,
or less. These facts are clear

when we remark that any term of 12, ra,.^ -y for instance,
CLt1jr

operating on a term involving ar in Gw> ,-yp ,
on ar

p a a
t

r
, . . for

instance, has the effect of replacing that term by another,

prar_ 1 a/-
1 ag

(r

a/..., of the same degree and weight one less,

one suffix being diminished by unity and none increased.

Thus if G be a gradient of weight w, degree i, and extent

not exceeding p, H G is a gradient of weight wl, degree i,

and extent not exceeding p.

Consequently H2
6r = CIMG is a gradient of weight w-2,

degree i, and extent not exceeding p.
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And generally, by r repetitions of the ft process, l
rG is

a gradient of weight w ?-, degree i, and extent not ex-

ceeding p.

This H process cannot be repeated indefinitely without

leading to a vanishing result. For a gradient of negative

weight is an impossibility, the weight of a gradient being
a sum of numbers chosen from among 0, 1,2, ...p. Thus when
we take w + 1 for r, if not sooner, we must have

Qw+10= 0,

and consequently also l
w+-G = 0, nw+3 = 0, &c.

122.] We may reason in a similar way with regard to the

operator

f,
d . . d d

=^%K + (p -- 1

^;fa
1

+ -" +%^-
Operation with this produces from a gradient of extent p or

less another gradient of the same degree, of weight greater

by one, and of extent not greater than p. The term extent

is here used in the sense of the definition
( 116). That

the extent cannot be raised beyond p by operation with

results from the fact that itself is taken as involving no

letter ar with a suffix (extent) greater than p. Thus, G being
of weight w, degree i, and extent not exceeding p,

O rG

is a gradient of weight w + r, degree i, and extent not ex-

c ceding p.

Here, again, the succession of gradients produced is not

indefinitely continued. For the greatest possible weight of

a product of i constituents of weights chosen from among
0, 1, 2, 3, ...p is ip, that of a?p . Consequently

O ip~w G

can be nothing more than a (non-vanishing or vanishing)

multiple of a {

p ,
and therefore

-+i0 =0, Q ip-w+2G = 0, &c.

We may also consider the results of successive operations
with both of ft and in any order on a gradient. The
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( inclusion, drawn readily from the above, is that, G being
j ny gradient of weight w, degree i, and extent p or less,

m
1? m2 ,

m3 , ...
, ?&,, 7i2 , %, ... are positive numbers, or

one or more of them zero, is, unless it vanish, a gradient of

weight
w m-L m.2 m3 ... +% + n2 + n3 + ...,

of degree -, and of extent not exceeding p.

123.] The alternant of H and 0. The operators O, are

linear: but this is not the case with the operators O 2
,
O 1

, HO,
H, &c. Thus, for instance,

d2 d2 d2

j -j
-=

I da
l
da2

92
-=

:,
+ 4 dj -j

-=--h 4 a,
2
-75 -fI l

Moreover the operators H, are not commutative
;

i. e. the

compound operators OO and OH are not identical in meaning.
Thus while

d -- d d

+ terms
involving-^,

+ the same terms in -^ ^ , ... as in HO.
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We thus see, however, that the two compound operators
differ only in their linear parts. The non-linear parts of both

are just the algebraical product of H and 0. This leads us

to consider the difference HO OH of the two compound
operators, the alternant, as it is called, of H and 0. It is

always a fact that the alternant Qfy tyQ of two linear

operators 6 and is a linear operator. In the present case

d / d
a~
+ (p-^ a2 ^+'~

ltt^ GiUjQ

d d

d d d d
T- -f a, -=- -f

Now let the operation be on G a gradient of degree i and

weight w. G satisfies the two linear differential equations of

117, which express its homogeneity and isobarism. Using
the two equations, we see that what we are led to is

.iG-2. wG

124.] An important application of this result has already
been mentioned in 97. Let the gradient G be an invariant
/ of ( ,

aly a2 ,...ap) (x, y)
p

,
so that 111 = and 01 = 0, and

therefore OHI = and HO/ = 0. We have the consequence
that (ip 2w)I = 0, i.e. that the degree and weight of an
invariant of a binary ^9-ic are connected with p by the relation

ip 2w = 0.

As another application let the gradient G be a semin-
variant S. Then &S = 0, and therefore 0&S = 0, so that

108= (ip~2io)S,
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which tells us that the result of operating first with and

then with 12 on a seminvariant of extent not exceeding p is

to reproduce that seminvariant multiplied by a numerical

factor.

This is in accord with the conclusions of 109, 110.

125.] Alternant of fl and O r
. Important information is to

be gathered from the alternants of ft and O 2
,
O3

,
... which,

though not linear, have simple equivalents when the functions

on which they operate are gradients.

It is assumed throughout this article and in what follows,

except where otherwise stated, that the operation is on a gra-

dient G of weight w, degree i, and extent not exceeding p.

For brevity the G is not as a rule written.

The *

excess
'

ip2w, in which p is always the suffix of the

highest element which occurs in fl and 0, and may, it must

be remembered, be greater than the extent of G, is, also for

brevity, denoted by ?;.

Thus instead of writing

we write merely
Now notice that

and also observe that, G which is operated on being of

weight w and degree i, OG is by 122 of weight w+l and

degree i, so that the excess for OG, corresponding to
rj
for G,

is ip 2(w + 1)
=

rj
2. Thus

...(2)

since rj, being numerical, is commutative with 0.

Again

the excess for 0'2 G being ip 2(w + 2), i.e.
TJ 4,

...(3)
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In like manner we notice generally that the excess for

O r G is ip 2(w + r), i.e. rj 2r, and that generally

=
(i,

- 2 . r^l JO''-
1 + (ry

- 2 . r^2) O
r-

Ex. 1. Deduce that

OQ,r-tirO = r
( r?-r+ 1)

Ex. 2. Prove that

I.,)

Ex. 3. In like manner

Or&r = (&0- I.TJ) (120-2. ry + 1) (110-3. ?? +
r.ij+ r

1)

OI2-r? -2)(OI2-2.
:
fHr3)...((9i2-r-

Ex. 4. Prove that

Q.
T Or M'0S = 128 8

. <ar Or

Ex. 5. Prove by mathematical induction that

(Hilbert.)

126.] The excess non-negative for a seminvariant. Use of

the results of the preceding article gives a proof (Sylvester's)
of the fact

( 112) that for no seminvariant can the 'excess
1

ip 2wl*e negative. Since, if 8 be a seminvariant of extent
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or less, IS = 0, the results give

HO .S = r)S,

.S = 2(1-1)08,

.S= 3(r/-2)0
2

>S',

&c, &c.

If
17,

or ip 2w, be negative, the coefficients on the right in

these equalities form a numerically increasing series of nega-
tive numbers. None of them can vanish. Now

( 122) there

must be a number r, equal to or less than ip w+1, for

which and all greater numbers O rS 0, and consequently
flO rS = 0. The rth of the above equalities gives then

and therefore O r~ lS = 0. This necessitates Q,O r- lS=0, and

this again, by the (r 1 )th equality, that

=
(r
- 1

) (r)
- r + 2)O

r~-S
t

i.e. O r~ 2S 0. Proceeding thus backwards step by step, we

eventually find from the first equality that

= n$
i.e. that S = 0,

since r] is negative and not zero. In other words, the sup-

position that there is a seminvariant S for which 77
is negative

is untenable.

We repeat that the 77 which it is here proved cannot be

negative is ip2w where p is the greatest suffix occurring
in II and 0. The extent p' of a seminvariant of

(a ,a l ,a.2 ,...ap)(x,y)
p

,

if not p itself, is less than p. In this latter case the semin-

variant is also one of (a , a,, a.
2 ,...ap>)(x, y)

p'

y
and we might

have taken p' as our p in the above reasoning. Thus, if p'

be the extent of a seminvariant of weight w and degree i,

ip' 2w cannot be negative.
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Ex. 6. Use the results of this and the preceding article to prove the

theorem of 111, that any semmvariant S, of extent not exceeding p t

leads a covariant of order r\ of (a , a,, a
2,,..ap) (x, y f

p
,

i.e. that

-o d
x^e x S is not fractional incc, and is annihilated by l y-.ux

Ans. Q,0 1t+l S = 0. Therefore 1l+1St
whose excess is negative,

= 0. The coefficients in the result of operating with Qy -v~are of
dux

the form
{
&0r-r

(r, r+ I) O
r~ l

} S, i.e. of the form Or
&#,

r ! T !

which vanishes.

127.] It is clear that the above reasoning, which shows

there to be no semmvariant with a negative 77, has no applica-
tion to the cases of

77
zero and

r] positive. In these cases one

of the series of multipliers 77, 77 1, 77 2, 77 3,... on the right
of the equalities of the last article vanishes. Thus from the

fact that Oi +1S = it does not follow that 0*8 = 0. It is

the factor 77 77 on the right of the critical equality which

vanishes, and not the other factor O^S.

For a positive or vanishing 77, a number

has been found in 113, 101 which cannot exceed the

number of linearly independent seminvariants (or invariants)
of weight w, degree i, and extent p or less. It is now to be

proved that we have a means of assuring ourselves that the

number is precise.

This famous theorem, stated by Cayley and much used,

remained long without proof, and was even doubted. The
first demonstration of it was given by Sylvester, by means of

the results of 125. The method to be here given is different

from his, but is based upon the same results, though, as we
shall see, an alternative basis is the theorem of 100.

128.] Exactness of Cayley's number of linearly inde-

pendent seminvariants of given type. Let G be any gradient
whatever of degree i, weight w, and extent not exceeding p.
Let

?; be ip-2w the excess for G. For IG, WG, O 3
G, &c.

the excesses are
77 + 2, 77 + 4, 77 + 6, &c.

Take the operative equalities (1) to (R) of 125, and

operate, not always on G, but on G in the first case, on H G in
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he second, on H 2 G in the third, and so on, so that
T? has to be

eplaced by 77, 77 + 2, rj + 4, 77 + 8,... in the successive cases.

obtain

&c., &c.

Multiply the first of these by -, the second by ----
,

&c.
5
and add. We thus obtain

since for a great value of r the residual multiple of O r
l
r G

does not exist, for 1W+1G vanishes, and therefore O rWG
vanishes if r be w + 1 or more.

Consequently, if
77
be positive, the result of operating on the

gradient

with H is to produce G.

The gradient is a finite one, for though the operative series

is regarded as continuing to infinity it produces really only
a finite number of terms, since Or

l
rG vanishes when r

exceeds w if not earlier.

We have thus proved that any gradient whatever, of weight
w, degree i, and extent p or less, for which 77

= ip 2w is

positive, can be obtained by operating with 12 on some
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gradient or other of weight w+1, degree i, and extent p or

less. The same was otherwise proved in 100.

Now for w write w l. It follows that every gradient of

weight wl, degree ,
and extent p or less, can be obtained

by operation with & on some gradient of weight w, degree i,

and extent p or less, provided that ip 2(w 1) is positive,

i.e. that ip 2iv< 1.

This tells us that if we write down the most general

gradient of weight and degree w, i, and of extent p or

less, where ip 2w< l and operate on it with H, the

result must be the most general gradient of weight and

degree wl,i, and of extent p or less. For the arbitrary
coefficients in the first gradient may be so chosen that th(

derived gradient may be any one of its type we choose, am
so in particular may be any single product of its type w(

choose.

In other words, if the general gradient G' be such

ip 2w< 1 the coefficients in the derived gradient
all linearly independent.

Now, in the notation of 101, 113, G' contains

(w;i,p)

terms, and H G' contains

(w-l -,i,p)

terms. If G /
be a seminvariant IQ' 0, and conversely

i. e. the coefficients of these (wl;i,p) terms have separately

to vanish. These are all independent, by the above,

ip 2w< 1
,
and are linear functions of the (w ; i, p) arbitrary

coefficients in G'. Their vanishing determines then (w 1
; i,

of the coefficients in G' in terms of the rest. In other words

are left arbitrary. This, then, is the exact number of linearb

independent seminvariants of weight w, degree i, and extei

not greater than p.

Ex. 7. It may be proved by aid of 125, Ex. 5 that, when the

operation is on a gradient for which TJ
= ip 2w> 0, the operator of

100, ^ ^ Q2 ^ Q3
1 _ |_ _ _ |_
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md that of the present article,

_ tw ao*& __12 osa2_' " + " '

ire identical. (Proc. Land. Math. Soc. Vol. XXIV. p. 23.)

Ex. 8. If G be a gradient for which
77 is negative prove that

, ,

V~ p * p.2 2
1
2
.2

2
.3

2 "*""/
U

'

and

1.2.1, fo-l) 1.2.3. n(ri-l)(ii-

129.] Arithmetical conclusions. Some arithmetical con-

clusions of interest with regard to numbers of partitions may
be drawn from results at which we have arrived.

Since the most general gradient of type wl,i,p can

when ip~2w< l be derived by operation with H from the

most general gradient of type w, i, p, the former cannot con-

tain more arbitraries than the latter, i. e. more terms than the

latter. Hence if ip 2w< 1

Again, we have shown in 126 and elsewhere that if

ip 2^v<Q there is no seminvariant, and in 128 that if

ip 2w< 1 there are exactly (w ,i,p)(wl; i.p) semin-

variants. The case ip 2w = 1 is included in both cate-

gories. The conclusion from this case of ip 2w = 1, i.e.

of w = \ (ip+ 1), where i and p must clearly both be odd,

is that if i and p be any odd numbers

. ,i\ .

This is only a particular case of the fact that, for any w not

exceeding ip, whatever numbers i and p be,

(w9 i,p) = (ip-w;i,p),

which is immediately seen by noticing that the products of

weight w and those of weight ip w are conjugate in pairs.

If, in fact, a a
<>a

1

a

i...a/
p is one of the first tvpe, the conjugate

one of the second type is a
jp

a
a,p!!1 ...ag

c

*.
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130.] Reciprocal partitions. The number (w\i,p) is, it

will be remembered, the number of ways in which the number

w may be written as a sum of i or fewer numbers, none

exceeding p. It is an important fact that this number is also

the number of ways in which w may be written as a sum of

p or fewer numbers, none exceeding i
;
in other words, that

The following proof is due to Ferrers. Another will present

itself in the next chapter.

Let any partition of w into i or fewer parts, none exceeding

p, be the partition into % + n.
2 + n3 + ...+ n{ , where no part is

greater than p nor than the preceding part, and where one or

more at the end may be zero. Write down n
l
dots in a row.

Next write n2 dots under the first n2 of these dots in a second

row. Then write in a third row n
3
dots under the first ?i

3 of

the n2 dots: and so on, till in all % + n2 + na + . . . +^ = w dots

have been written. We have thus visibly arranged a partition

of w into i or fewer parts, none exceeding p.

Now read the arrangement by columns instead of rows.

WT
e have in the first column a number, m x ,

of dots not greater

than i. In the second column we have, say, m.2 dots where

m
2>m1

and so >i. In the third we have m3 dots where

m
H>m2

and therefore >i : and so on. Finally, in the p
column we have either no dot or a number mp of dots

not greater than any previous m, and so not greater than i.

We have thus visibly arranged a partition of w into

a sum of p or fewer numbers, none greater than i.

Thus to every one of the (w ; i, p) partitions we
a conjugate one of the (w ; p, i) partitions. Similarly, con-

sidering columns first and then rows, to every one of the

(w ; p, i) partitions there is a conjugate one of the (w ; i, p}

partitions. And no two of the one set of partitions have th(

same conjugate in the other set, for a definite arrangement i]

the one way is also definite in the other. Consequently
numbers (w ; i,p) and (w \p, i) are equal.

131.] Hermite's law of reciprocity. Hence we obtaii

a famous and most prolific theorem due to Hermite.
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Since (w ; i, p) = (w ; p, i)

for all numbers w it follows that

Accordingly: The number of rational integral semin-

variants of weight w, degree i, and extent not exceeding p, is

equal to the number of rational integral seminvariants of

weight w, degree p, and extent not exceeding i.

In particular take ip 2 w. We are told that : The

number of invariants (i.e. linearly independent rational

integral invariants) of degree i of a binary p-ic is equal
to the number of invariants of degree p of a binary i-ic.

Again take ip 2w>0, and denote ip 2w by -53-. Then,
since when i, p, w are known 13 is known, we may enunciate:

The number of covariants of degree i (in the coefficients} and
order TX (in the variables) of a binary p-ic is equal to the

number of covariants of degree p and order & of a

binary i-ic.

There are, of course, other ways of arriving at this law of

reciprocity. For instance, we may take ifc in connexion with

the one to one correspondence which clearly exists between

the hyperdeterminant symbols ( 60)

7i 12 n13
w

23
12 13 23 ...,

where the number of figures 1, 2, 3, ... is i, and where

n
i2 + %s + n 23 + is 2 (ip~\ f r covariants of a binary j>ic,

and the root expressions ( 111)

where i is the number of roots, and where

for the seminvariant leaders, divided by powers of a
,
of

covariants of a binary i-ic.

This is, however, probably best regarded as a proof from the

law of reciprocity that hyperdeterminants form a complete

system of covariants, rather than as a proof of the law of

reciprocity from this fact. The idea has been developed by
Sylvester.

M
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Ex. 9. A binary 4n-ic has one invariant of degree 3, and a binary

quantic whose order is not a multiple of 4 has none. (Cayley)

Ans. Since all invariants of a cubic are powers of the discrimi-

nant whose degree is 4.

2 n 2 n 2 n

Ex. 10. The symbol of this invariant is 12 23 31 . Prove that

if u, v, w all denote the quantic the invariant may be written

_ 2n-l _2n-l _2w-
12 23 31

dx2

dxdy

dx 1

dxdy

dx2

dxdy dy
2

where u, v, w are not to be made identical till all the operations are

performed ;
and hence that the invariant is a linear function of the

determinants

(Cayley.)

Ex. 11. A binary p-ic has as many invariants of degree 4 as there

are ways of choosing positive integral or zero values of m and n to

satisfy 2m + 3n = p. (Cayley?)

Ans. Assume, as will be shown later, that 7 and J are the only
irreducible invariants of the quartic.

Ex. 12. A binary j^-ic has a single or no p-ic covariant of the

second degree in the coefficients according as p is or is not a multiple
of 4. (Cayley.)

Ans. Since covariants of equal order and degree of a quadratic
must have the form (ac 6

2

)

n
(ax

2 + 2bxy+ ct/
z
)

zn
.

Ex. 13. The one invariant (Ex. 9) of degree 3 of a 4n-ic is the
lineo-linear invariant of the 4n-ic and the covariant of Ex. 12.

(Cayley.)

Ex. 1 4. A binary p-ic has as many covariants of degree 2 in the

coefficients as there are solutions of 2m+ n = p in positive integers

(and zeros) ; and 2 n is the order of any such covariant in the
variables. (Hermite.)

Ex. 15. A binary quantic of odd order has a covariant of the
second order and the second degree. (Hermite.)

Ex. 16. A binary quantic of order 4n + 2, where n is any number,
has a covariant of the second order and third degree. (Hermite.)

Ans. Use Ex. 15 for the case of the cubic.
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Ex. 17. By the two preceding examples binary quantics whose

orders are of the forms 4ra-M, 4w-f2, 4?i+3 have quadratic
covariants. Use the facts that a quintic has a quadratic covariant of

degree 8, the Jacobian of the cubic covariant of 17, Ex. 20 and the

linear covariant of 57, Exx. 16, 17, and an invariant of degree
4 ( 61, Ex. 30) to complete the proof that every binary quantic

except the quartic has a quadratic covariant whose degree in the

coefficients does not exceed 5. (Hermite.)

Ex. 18. No covariant or invariant of the second degree in the

coefficients can have an odd weight. In particular, no invariant of the

second degree can be skew.

Ex. 19. No invariant of the third degree can be skew.

Ex. 20. A binary quantic of any odd order greater than 3 has

a linear covariant of degree 5. (Hermite.}
Ans. Use the fact that a quintic has linear covariants of

degrees 5 and 7
( 57, Ex. 17) and an invariant of degree 4 (61,

Ex. 30).

132.] Gradients in more sets than one. Just as we have

dealt with gradients in one set of quantities a
,
a

t ,
a

2 ,
. . . ap

in the present chapter, we may deal with gradients in more

sets than one a
,
<x1? a2 ,...aPl ;

b
0)

b
ly b.?) ...bp2 ',

C0t clt c2 ,...cp3 ;
....

We have merely throughout to insert 212, 2O, and

for 12, O, and ip 2w. As in 119 a seminvariant which

involves one letter of any set involves all the previous letters

of that set. As in 120 an invariant of the quantics whose

coefficients are the sets involves all the coefficients of any one

if it involve one of them. As in 125

2 12 (2 O)'
1 -

(SO)'' 2 12 = r (n-r+ 1) (2O)
1"- 1

,

where TJ
= 2 (ip) 2 w.

As in 126 there can be no seminvariant for which 2 (ip) 2w
is negative. As in 128 any gradient for which 2 (ip) 2w
is positive can be written as the result of operating with 2J2

on another gradient, and hence if 2(ip) 2u'< 1 the exact

number of linearly independent seminvariants of weight w
and partial degrees i1} i2t i

s ,... is

(w; ily pl

'

i i.2 ,p2 ; iz,p^.")-(-l; i^Pil ^,^5 *3Ps ;)>

where (w; i^p-^; i.^Pz', *3 ,^>3 ;...) denotes the number of

M a
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ways in which w may be written as the sum of i^ or fewer

numbers not greater than p1 ,
of i

z
or fewer not greater than

p.2 ,
of i

3 or fewer not greater than j93 ,
&c. Finally we have

arithmetical conclusions corresponding to those of 129.

The generalization of 130 is also immediate. It will

readily be seen, by considering as many Ferrers' diagrams
as there are sets of a's, 6's, c's, &c., containing altogether
w dots, that in

(w, i^p!', i>2 ,p.2 ',
*3 , #;)

i
}
and pl ,

or i
2 and p2 ,

or i3 and p2 ,
. . .

,
or more than one or all

of these pairs, may be interchanged without altering the

number of partitions. Hence a generalization of the law of

reciprocity is easy.

Ex. 21. The number of covariants of any degree i and of order p of

a binary jp-ic, i.e. of invariants of partial degrees i, p of a p-ic and
a linear form, is equal to the number of invariants of partial degrees

if 1 of two binary ^;-ics.

Ex. 22. Prove that

(w; iv p, ;
i
z,pz ; iypt;...) = 222 ... (v,; i,, Pl) (v2 ;

i
2) p^) (vs ; vpa )

...
,

where the summations indicate that to v
lt v., t

v
s ,

... are to be given all

positive integral and zero values which make

Vj -f v2 + v
3 + ... =- w. (Franklin.)



CHAPTER VIII.

GENERATING FUNCTIONS.

133.] UNFORTUNATELY no practically convenient algebraical

formula l
is known which gives in all cases the number of

partitions denoted by (w ; i, p], i.e. the number of ways in

which the number w may be formed by adding together i or

fewer numbers, every one of which is one of 1, 2, 3, ...,>, or,

which is the same thing, of i parts, every one of which is one

of 0, 1, 2, 3, ..., p. For tabulation of such numbers of parti-

tions recourse must be had to a method known as that of

lerating Functions.

The origin of the theory of numbers of partitions is due to

hiler. The theory in its application to invariants, &c., was

studied by Cayley with a view to and in his second

memoir on quantics (Collected W&rlcs, Vol. II). The subse-

quent writings on the subject are very numerous. Cayley

himself, Sylvester, Franklin, MacMahon and Hammond as well

as others have devoted themselves to it with remarkable

success.

The investigation of the number (w ; i, p) (w 1
; i, p) of

linearly independent or '

asyzygetic
'

seininvariants of given

weight, degree, and extent by means of generating functions

is only a preliminary object of the researches. The ulterior

dms are the discovery of the number and types of the irre-

lucible concomitants of a binary quantic, and of the relations

>r syzygies which connect those irreducible concomitants.

The subject being a vast one only an introduction to it

can be given here. We consider only quantics of the first

few orders. In passing from order to order the complexity
of the investigations necessary enormously increases.

For a formula due to Brioschi see Faa de Bruno's Formes Binaires, 89.
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134.] Generating function for (w ; i, p). By a Generating
Function we mean a function of one or more variables which,
when it is expanded in powers of that variable, or powers
and products of powers of those variables, has for the general
coefficient of a power or product of powers the number of an

assigned class which is determined by the index of that power,
or the indices of those powers. It may be that only a limited

range of the coefficients is relevant. For instance, the expan-
sion may be an infinite one, but the class of numbers a finite

one given by the coefficients of a limited range of terms, the

indices of other terms being parameters irrelevant to the

matter we have in hand.

We proceed to see that a generating function can be formed
whose expansion is

(0
'

3 i,p) + (l ;i,p)z + (2 -,i,p)z
2 + ...

+ (w ; i, p)z
w+ ... + (ip ; i, p)z

ip
}

and which accordingly, when i and p are known, gives the

number of partitions (w ; i, p) as the coefficient of zw in its

developement.
It is at once clear that, by definition of (w ; i, p), this number

of partitions is the number of ways in which positive integral,
or vanishing, values of r

,
rl5 r

2 ,...rp can be found which

satisfy the two equations

r + r
1 + r

a +... + rp =
i, I ^ {

r
l + 2r2 + ...+prp = w.

Now this number is the coefficient of z
wxi in the product

where the series forming any factor may if we please be
extended to infinity. This product may be written

{(1 ~x) (1 -zx) (1 -z
2

x) ... (1 -z
p
x)}-\

It can also be multiplied out and arranged according to

ascending powers of x. Suppose that, thus arranged, it is
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then UQ 1, and ult U2 ,
... uiy ... are functions of 0. In fact,

+ (w ; i, p)z
w + ...+(ip;i, p)z

ip
.

Notice that (0 ; i, p) denotes 1. This is reasonable, for there

is one partition of zero into i parts not exceeding p, namely,
into i zeros. cr

*
is the one corresponding term when we are

thinking of gradients. In particular, by convention, we may
think of (0 ; 0, p) as denoting 1.

Now in

1 +ux +ux2 + . . . + u4
x* -f . . .

put zx for x, getting

U2
Z2X2 + . . . + U

i
ZiXi

Here multiply through by 1 zp+1 x, and equate the coefficients

of x\ the equality being identical. We obtain

U-Zi
U--. Zp+i = U- U--

l zp+i

so that u
i
= u^ T-

l-zp+i~ l l-zp+i

= u ; .
i~'2 \Zi

l-z*

Consequently (w ; i, p) is the coefficient of z
w in the expansion

of this function in ascending powers of z. Notice that it is

incidentally proved that this expansion is a terminating one

of degree ip, i. e. that the numerator of the generating function

u
t

is divisible by the denominator whatever numbers i and-

p be.

Notice also that u
t
is exactly zip times the result of replacing
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in it z by - Coefficients equidistant from the beginning and

the end in the developement are then equal. We have thus

a proof of one of the facts of 129. i.e. that

(ip-w ;i>p) = (w \i,p).

135.] Generating function for number of seminvariants

of given type. It is easy to deduce a generating function in

which the coefficient of z
w

is the difference of numbers of

partitions (w ; i, p) (w 1
; i, p). This difference is the

number of linearly independent seminvariants of

(a ,
a

15
a
2,...ap )(x,y)

p

whose weight and degree are w and ^, if ip>2w, and the

number of invariants of the type if ip = 2iv. For values

of w, such that ip 2w<0, or rather < 1
,
we are not

really concerned with the difference in connexion with semin-

variants.

Since

u
t

= (0 -,i,p) + (l ;i,p)z + (2 ; i,p)z
2 + ...

-f (w ; i, p)z
w +...+ (ip ; i, p)z

ip
,

the value of (iv ; i, p) (ivl ; i, p), for values of w from

1 to ip inclusive, is the coefficient of z
w in (lz)uit

i.e. in the

developement of

(1 -)(! -a*)... (I-*)

This developement is a terminating one of degree ip+l.
Notice that from the last remark of the preceding article

the middle coefficient in the developement, if there be one,

i.e. if ip is odd, vanishes
;
and that coefficients equidistant

from the beginning and end are equal but of opposite signs.

Now
( 129) we know that when ip 2w< l, i.e. when

w>i(*29 + 1
}s

the difference (w ; i, p) (wl i, p) is never

negative. The developement of the generating function con-

sists then of a series of terms with positive coefficients followed

by a series with the same coefficients taken negatively in

reversed order.

A word as to the first coefficient (0 ; i, p) = 1, which is not

presented as a difference. It is correctly the number of semin-
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rariants of degree i and zero weight. The one is a *. We
nay if we like regard it as a difference (0 ; i, p) (

1
; i, p)

ike the rest. For
(

1
; i, p) is of course zero.

136.] Reciprocity. The generating function of 134 may,

ipon multiplication of numerator and denominator by

(l-*)(l-z
2

)...(l-0").
be written

which is unaltered by interchange of i and p. It may, in fact,

be written

(1 -*)(!-**). ..(I-**)

The coefficient of z
w

in its expansion is then (w ; p, i) for

exactly the same reason that it is (w ; i, p}. Thus we have

another proof of the theorem of 130 that

(w ;i,p) = (w ; p, i),

and of Hermite's law of reciprocity ( 131).
The generating function of 135 may also be written

Ex. 1. Prove by aid of generating functions that

(w; i,p)-(w; i-l,p) = (w-i ; i,p-l).

Ex. 2. Prove that

(w; i
} j))

=
(w -0}p-i + (w-i l,-l+ w-2

;
2

137.] The whole number of seminvariants and invariants

of given degree. The whole number of linearly indepen-
dent seminvariants, including invariants if there be any,
of degree i which a binary p-ic possesses may be found as

follows.

We have seen
( 111, 126) that there are none for which

ip 2w is negative. Thus the greatest weight of any is i ip
or \(ipl)t according as i and p are not or are both odd.

Call this maximum weight W.
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The number of seminvariants (or invariants if W be \ ip)

of weight W is

(W;i,p)-(W-l ii,p);

the number (all seminvariants necessarily) of weight W 1 is

(W-l ',i,p)-(W-2;iiP)i
the number of weight W 2 is

(TF-2;^)-(TF-3;*>);
and so on. Finally the number of weight zero is unity or

(0 ; i, p).

Upon addition we have then for the whole number

(W;i,p).

We restore to W its value, and have the two following results.

(l) Unless i and p are both odd, the whole number of

linearly independent seminvariants and invariants (i.e. of

covariants and invariants) of degree i in the coefficients of

the binary p-ic is /ip

and these consist of

invariants, and
(

1
; i, p]

seminvariants (covariants).

(2) If i and p are both odd the whole number of linearly

independent seminvariants, i.e. of covariants, of degree i in

the coefficients is -

none of them being invariants.

By 134 the whole number of degree i is thus seen to be

the coefficient of z^ ip or z^ (ip~^ as the case may be in the

developement of

or its equivalent

(!-*)(! -*)...(! -a*)
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We can now illustrate by a few simple cases the way in

lich generating functions give information as to the number
a: .d nature of irreducible concomitants.

138.] Has a linear form invariants or covariants? For

tl e linear form ax + by, p = 1. The whole number of linearly

ii dependent sem invariants (including invariants) of degree i is

by the preceding article

co. zw in developement of

where W = \i or \(i 1) according as i is even or odd,

= co. zw in 1 +0 + z2 + . . . + z*

= 1.

Thus of each degree there is a single seminvariant. What
it is is clear. For degree 1 it is a, and for degree i it is a*.

It is a seminvariant and not an invariant, for ip 2w = i > 0.

The covariant which it leads is (ax + by)*, the ^-th power of the

linear form itself.

Thus a linear form has no invariant, and its only covariants

are powers of itself.

139.] Irreducible concomitants of a quadratic. For the

quadratic ax'2 + 2bxy + cy
2

, p = 2. Here W = \2i i. The
whole number of linearly independent seminvariants and

invariants of degree i is then

co. z* in developement of ,

= co. zi in 1

There is, then, one of degree 1, viz. a
;
and there are two of

degree 2, viz. the square a2 of the one of degree 1 and another

distinct from it, which we know otherwise to be the discriminant

ac b2
. Of any higher degree i we see, by considering the

product (1 + z + z2 + z3 + . . .) (1 + z2 + z* + ZQ + . .
.),

that there are

just as many as there are ways of making up the number i as

a sum of multiples, including zero multiples, of 1 and 2
;
and
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these are of course the products of powers of the two indepen
dent ones a, ac b2 of degrees 1, 2. For instance, if r + 2s ii

one of the partitions of i in question, ar

(ac b2

)

s
is a semin'

variant of degree *. All seminvariants of the quadratic an
then rationally and integrally expressible in terms of the twc

a and ac b2
,
without the necessity of introducing any other

The binary quadratic has therefore no irreducible seminvarianl

besides a and ac b2
.

The second of these is an invariant. The first leads th<

quadratic ax2 + 2 bxy + cy
2

itself. Consequently the complete

system of irreducible concomitants of the binary quadratic
consists of the quadratic itself and its discriminant. (Cf. 85/

Had we been looking for the irreducible invariants only
we might have taken the generating function of 135. Foi

the quadratic the weight of an invariant of degree i is \ 2i = i

Thus the number of invariants of degree i

(I
' '

= co. zl in developement of -

.

= co. z* in 1 + z2
-f z* + ZG + ____

There is then no invariant of any odd degree, and a single one

of every even degree. Thus there is one, the discriminant

ac b2
,
of the second degree, and no other which is irreducible,

all others being powers of this. (Cf. 78.)

140.] Invariants of a cubic. Take p = 3, the case of the

binary cubic (a, 6, c, d) (x, y)
3

;
and first consider the question

of invariants only.

An invariant of degree i is of weight . For there to be

one then i must be even.

The number of degree i is, by 135,

?j /I ^i + l
\ f"\ <7

i+ 2\(l ^ + 3\

co. ** in developement of
(

1-liL^Jii
~

(iz )(l z
)
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5* 1
-

: co. z l in developement of /
1 _ g

a\
(1 _,s

3\

- z
co. z- in developement of , Ui_ 2\

= = co. ^ in developement of .
- __ 6

3
.

since the terms 4 and 28 in the numerator cannot when

multiplied by powers of z6 and z1
'2
produce terms of form z3i

,

= co. z3i in developement of --
j-2

= CO.

= co. z{ in 1 + 24 + 8 + z12 +

Thus for a degree not divisible by 4 there is no invariant ;

and for a degree divisible by 4 there is a single one, which

must accordingly be a power of the one of degree 4, i.e. the

discriminant (ad be)
2

4(ac b2

)(bd c
2
).

This then is the

only irreducible invariant of the cubic. (Cf. 78.)

141.] Irreducible concomitants and syzygy for a cubic.

We seek now the complete system of seminvariants and in-

variants of the cubic.

Here, by 137, the number that are linearly independent of
3t 3*-l

degree i is the coefficient of 2 or z 2
, according as i is even

or odd, in the developement of

The two cases may be combined by saying that it is the
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Si-

coefficient of z 2 in the developement of

(1+tf

i.e. in that of

(1 -**)(! _*>)(!-*)
Si 1

= co. z 2 in developement of:
(1,

i

co. z* in developement of

3j J

= co. z 2 in developement of -

1= CO. 23t TT^

in the numerator of which all powers of z with indices not

divisible by 3 have been omitted as incapable of producing
23i when multiplied into powers of z arising from the de-

nominator, where all indices are multiples of 3,

= co. 0< in developement of,, ,Wl
1+

!2Wl *.

1-z

of which the first few terms are
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We have then the following conclusions, gathered from the

form before multiplying out.

(1) There is one seminvariant of degree 1, arising from the

factor (1 0)"
1 in the reduced generating function. This is

the seminvariant a.

(2) Besides the square of this there is another seminvariant

of degree 2, arising from the factor (l z2

)~
l

> This is ac b2
,

the seminvariant which leads the covariant? which in 86 has

been called H. Denote it by //'.

(3) Besides a3 and a(ac 62
) there is another of degree 3.

This is a2d 3 abc + 2 b3
,
the leader of the covariant which in

86 we have called G. Denote it by G'. This arises from

the factor (1-z
3
)-

1
.

(4) Besides the four seminvariants of degree 4 which can

be formed by compounding a, H' and G' rationally, there

is an additional one arising from the factor (1 a?
4

)"
1

. This

is the discriminant (ad be)
2 4 (ac b2

) (bd c2
)
which we

have called A. It is an invariant.

(5) There is no other irreducible seminvariant. For all the

factors of the denominator of the prepared generating function

are now exhausted, and there are no positive terms in the

numerator except 1
;
and this tells us that there is nothing

which in the developement can increase the coefficient of #*,

whatever i be, beyond the number of ways in which i can be

made up of sums of multiples of 1, 2, 3, 4 the indices of the

z, 2?, z3
,
z4 in the denominator.

There are then four, and only four, irreducible seminvariants,

including the one invariant A. All of degree higher than 4

can be expressed rationally and integrally in terms of these

four a, H', G', A.

(6) But there is one fact more, given by the existence of

the negative term ZQ in the numerator of the reduced

generating function. The four a, H', G', A, though irre-

ducible are not independent. A relation, or '

syzygy
'

as it is

called, connects them. And this syzygy is of the sixth degree.

The presence of the ZG reduces the coefficient of ZG in the

developement from 9, which would be its value were the

numerator 1 only, to 8. The number of linearly independent
seminvariants of degree 6 is then one less than the number of

products of degree 6 of powers of a, H', G' and A. These
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products are consequently connected by a linear relation which

reduces the most general linear function of them to one with

8 arbitrary coefficients instead of 9. The products are

a6
,
a4

JT', a*G', a*H'2
,
a2

A, aFtf, H'\ tf'A, G' 2
.

The syzygy which connects them must of course connect

a number of them which are of the same weight. Now their

weights are **

: 2, 3, 4, 6, 5, 6, 8, 6,

the only three of which are the same are those of a2
A, H' 3

and G' 2
. The syzygy then connects these. It is found to be

which is of course the same relation as the

of 87. For a, H\ G' are the seminvariants which lead the

covariants u, H, G
;

and a syzygy connecting the semin-

variant leaders of covariants connects also the covariants led,

as otherwise by means of the syzygy we could form a co-

variant whose seminvariant leader vanishes, i.e. a covariant

with y for a factor, which is impossible.

The complete system of irreducible concomitants of a binary
cubic consists then of itself, its quadratic and cubic covariants

H and 6r, and its discriminant A. The four are connected by
a syzygy of the sixth degree in the coefficients, and, it may be

noticed, of the sixth order in the variables.

142.] Irreducible invariants of the quartic. For the case

p = 4, that of the quartic, we confine attention to the in-

vestigation of the number of irreducible invariants.

Since here \ip = 2i, the number of linearly independent
invariants of degree i is, by 135,

co. 22i in developement of

= co.
2 '' in developement of
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i

= co. z2i in developement of -.

2
>

co. z4 in developement of

1= co. zii in developement of

(l-aa)(l_3*)(l-s)'

for z3 in the numerator can be a factor only of odd powers in

the developement,

= co. z2i in developement of
j- ZTT-, gv

= co. zi

Hence there are two, and only two, irreducible invariants,

one of degree 2 and one of degree 3, since there are just as

many linearly independent invariants of any higher degree
as there are combinations of that degree of these two. The

two are
( 80)

1 = ae 4bd+3c2
,

There is no invariant of higher degree which cannot be

expressed rationally and integrally in terms of them.

143.] Invariants of the quintic and sextic. The applica-

tion of these methods has been continued a good many stages

further. The labour and ingenuity required increase con-

siderably as we advance.

For the case of the quintic, p = 5, the result is that the

number of linearly independent invariants of degree i is the

coefficient of zi in the developement of

N
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There are then four irreducible invariants of the quintic, of

degrees 4
; 8, 12, 18. They are not, however, independent, as

the presence of 36 in the numerator implies. This presence

diminishes the number of linearly independent invariants of

degree 36 to one below the number of ways of making up 36

by means of repetitions of 4, 8, 12, 18. In other words, there

is a '

syzygy,' of degree 36 in a, 6, c, d, e, /, the coefficients

of the quintic, which connects the irreducible invariants of

degrees 4, 8, 12, 18. This syzygy will be exhibited in a

later chapter. It expresses the square of 7
18 in terms of

7
4 ,78 ,and712 .

For the sextic the number of linearly independent invariants

of degree i is the coefficient of zl in the developement of_
(1 _^j (1 -0

4
) (l -z) (1 -z

10
) (1 -z

15
)

There are five irreducible invariants, of degrees 2, 4, 6, 10, 15
;

and these are connected by a syzygy of degree 30, which

expresses the square of 715 rationally and integrally in terms

of /
2 ,
7
4 ,
7

6 ,and/10
.

For the full investigation of these facts reference should be

made to Cayley's second memoir on quantics.

144.] Generating function for concomitants of given

degree and order. A new departure in the use of generating
functions dates from Cayley's ninth memoir on quantics

(Collected Works, Vol. VII). The earlier use of them had not

succeeded in exhibiting complete systems of irreducible co-

variants for higher quantics than the quartic, and indeed

mistaken inferences from it had indicated the erroneous

conclusion that there were not complete systems of finite

number. That there were had meanwhile been conclusively
established by Gordan's method of transvectants. The two
theories have now been completely reconciled, and verify
one another's conclusions. The error arose from considering
all syzygies independent, whereas there are syzygies of

the second order connecting syzygies, for values of p ex-

ceeding 4.

Let us return to 134, where it was shown that the number
of linearly independent partitions of w into i or fewer parts,
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none exceeding p, is the coefficient of W *

(notice that we
have changed the notation) in the developement of

1

in ascending powers of f. and therefore of z
;
and consequently

that the number of linearly independent seminvariants of

weight w and degree i of a binary p-ic,

i.e. (w\i t p)-(w-\\i,p),

is the coefficient of z
w * in the developement of

1-0

Here put x~2 for z and &p for . The number of the

seminvariants is therefore the coefficient of aixip~2w in the

developement of_l-x-2_
(1 -CUB*) (I -oaf-*) (l-ax

p
-*)...(l-ax-

p+
*)(l-ax-

p+2
) (l-ax~

f
)

in ascending powers of a, and powers of x ascending and

descending as they present themselves.

Now ip2w is the order r of that covariant of the p-ic
which any seminvariant of weight ^v and degree i leads. Con-

sequently the number of linearly independent covariants of

degree i and order r, where ta is essentially non-negative, is

the coefficient of a*xv in the developement of this last written

generating function. In particular, the number of linearly

independent invariants of degree i is the coefficient of a* in

the part of the developement which is free from x.

For the quadratic, the cubic, and the quartic the generating
functions are _l-x-2_

(I -ax
2

) (l-a) (1-aor
2
)'_ _

(1 -ax
3
) (I -ax) (I -ax-

1

) (1 -oar 8
)

'

l-x-2

(l-ax4
) (I -ax*) (I -a) (I -ax"*) (l-ax~^'

145.] Heduced generating functions. We need only those

terms in the developement which involve positive powers of
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x as well as of a. Now it proves to be possible to separate

those parts of the generating function, for a given value

of p, which give rise to positive powers of x from those

which give negative powers. It will be verified without

difficulty that the three last written generating functions,

for the cases of the quadratic, the cubic, and the quartic, may
respectively be written

A(x)-x-
2

A(x~
l

),

B(x)-x-
2

B(x~
l
),

C(x)-x~
2

C(x-
1

) )

where

p , , __l-aex6_B
(
x
)
~

(i -ax*) (1 -a2x2

) (1 -a3O (1 -a4
)

'

ri
(T\

( J

6,,12

(I -ax*) (l-a
2

) (1 -aV) (1 -a3
) (1 -CLAXQ

)

Hence the numbers of linearly independent covariants of

degree i and order & for the quadratic, cubic, and quartic are

respectively the coefficients of a*x in the developernents in

ascending powers of a of J. (x), B(x), and C (x).

From A (x) and B (x) we at once gather the information of

139, 141 with regard to the irreducible concomitants of the

quadratic and cubic respectively.

From C(x) we gather in like manner the full information

as to the quartic. It has five irreducible concomitants whose

degrees and orders are given by ax*, a2
,
a2

x*, a3
,
azx6

. The
first is the quartic itself

u = (a, 6, c, d, e) (x, y)* ;

the second is its invariant of the second degree

the third is its Hessian

H=(ac-I 2
)x* + ... = x*e~* (ac-b

2

) ;

the fourth is its invariant of the third degree

J~ace + 2 bcd-ad2 b2e-c3 -
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and the fifth is its covariant of degree 3 and order 6

The second term a6x12 in the numerator tells us that the

five are connected by a syzygy of degree 6 and order 12, which
reduces the number of linearly independent covariants of this

degree and order to one below that of the number of products
of the degree and order in question of u, I, H, J, G. This is

readily found to be

As to invariants alone, the terms in A (x), B (x), and C (x)

which are free from x are the developements of

1
5

I -a2

1

1-a4

1

whence the information that the discriminant is the only
invariant of a quadratic, and that of 140, 142 for the cubic

and quartic, is at once gathered.

146.] Reduced and representative generating functions.

The Quintic. To methods and results for quantics above the

fourth order we have only space to allude. Most of the

investigations are due to Sylvester who, with the collaboration

of Franklin, has obtained for quantics of the first ten and the

twelfth orders the numbers and types of complete systems of

concomitants, or rather, as he himself points out, the types
and numbers of systems which must, if they err from com-

pleteness in the higher cases, err by defect and not by excess ;

the possibility of there being more arising from the fact that

the labour of discovery has been reduced to tractable dimen-

sions by the adoption as a fundamental postulate for all cases

of a fact observed for the first six orders, viz. that new

syzygies and irreducible concomitants do not exist for the

same degree and order. To this postulate Hammond has shown
that there is an exception in the case of the septimic, for
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which the investigations had previously indicated a speciality

not occurring in other cases so far as examined.

The first step in the process is general for all cases, and

consists in showing that, when, as in 145, the ' crude
'

generating function of 144 is written as the difference of

two parts, one of which gives all the terms in the develope-
ment which proceed by positive and zero powers of x, and

the other those which proceed by negative powers, the former

part may be written in the form_
(l-ax

p
) (l-ax

p~2

) (l-ax
p
-*)...(I-a

k
) (l-a?)...

where the order of the numerator in x is less than that of the

denominator, and where (7
,
C

lt
G'

2 ,...are finite rational and

integral functions of a. This is called the reduced generating
function.

The second step is one which has to be performed for the

cases of quantics of successive orders separately. The
numerator and denominator have to be multiplied by such

factors as to reduce the latter to a product of 1 axp and such

factors as
L-oteM-a*,

where i and vr are recognized as the degree and order of an

irreducible covariant, and j as the degree of a known irre-

ducible invariant. In all cases examined but that of the

septimic this has proved to be so possible as to keep the

numerator a finite expression. In the case of the septimic,

however, there is a factor 1 a10 in the denominator, and no

irreducible invariant exists whose degree is 1 or a multiple
of 10. In this case then the denominator can only be given
the required form by multiplying by the infinite series

l+a10 + aLO + a30 + ...,

so that for this case the multiplied numerator does not

terminate.

The reduced generating function thus prepared is called the

representative generating function. For orders of quantics
which have been examined the denominators of the repre-
sentative generating functions are products of 1 axp and
of factors of the simple forms
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For the quintic (p = 5) the numerator of the representative

generating function proves to be

1 + a 3
(#

3 + x5 + #9

) + a4
(x* H x6

) + a5
(x 4- #3 + a?

7
a;
11

)

+ a6

(x
2 + x*} + a 7

(x + x5 - a9

) + a8
(a

2 + a4
) + a9

(ar> +
5 -

a:
7

)

- cc
6 -a10

) + a 17
(-a

7 -a9

) + a 18
(1 -x*-x8 -xin

)

and the denominator

(1-ax
5
) (l-a

2x2
) (l-aV) (l-a

4
) (l-

8

) (l-a
12

).

The third step in the process is one of sifting, or '

tamisage
'

as it is called. We have certain irreducible concomitants, or

say
'

ground forms,' to use a common designation, represented
in the denominator. The earlier terms, after the first 1, in

the numerator are positive, and indicate the existence of other

ground forms. Proceed onwards from term to term in the

numerator. As long as the degree and order of a term atx

in the numerator cannot be made up as a sum of the degrees
and orders of previously occurring terms, we have revealed

the existence of as many new ground forms of that degree
and order as there are positive units in its coefficient. When
we have reached a term whose degree and order can be made

up as a sum of degrees and orders of ground forms whose

existence has been previously revealed by the numerator, not

also those represented in the denominator, the excess of the

coefficient of that term above the number of ways in which

this can be done is the number of ground forms of the degree
and order of the term in question, diminished by the number
of syzygies of the degree and order which connect ground
forms that have previously occurred, in the denominator as

well as in the numerator, but increased, as will presently

happen, by the number of syzygies of the second order which

connect previous syzygies and are of the degree and order in

question.

For instance, regarding the representative generating
function for the quintic above, the eight terms in the
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numerator which immediately follow the first have all the

coefficient + 1
,
and the degree-orders of these terms, azxz

,
cfix

5
,

a3x9
, a*x*, a*x6

,
a5

x, a5
x*, a5#7

,
are such as to make it clear

that none of the terms can be written as & product of powers
of the preceding terms. They indicate, then, that besides the

ground forms of degree-orders (1, 5), (2, 2), (2, 6), (4, 0), (8, 0),

(12, 0) given by factors of the denominator, there are others of

degree-orders (3, 3), (3, 5), (3, 9), (4, 4), (4, 6), (5, 1), (5, 3), (5, 7).

Again, the coefficient of the next term a5xu in the numerator

is 1. This indicates that there must be one syzygy of

degree 5 and order 11 connecting some of the fourteen

ground forms of degree-orders less than (5, 11). It is found

to connect the products Clf5 C4:>6)
C2>2 C3>Q ,

C2i6 CSt5 ,
where

C
r>s

is the ground form of degree r and order s. In particular
Clt6 is the quintic itself.

As soon as the degree-order (i, tsr)
of each new ground form

in succession is found, we may, if we please, alter the form of

the representative generating function by multiplying its

numerator and denominator by 1 a{x, and so put that

ground form in the same position as those whose represen-
tatives were before in the denominator, thus narrowing the

further search by means of the numerator. In particular,
when we know all the ground forms, we may write the

generating function with the product of all their representative
factors 1 a{x, laj

,
&c. in the denominator. The sifting

of the numerator is then a process of search for syzygies only.
This idea has been developed by Hammond. The A(x), B(x\
C(x) of 145 for the quadratic cubic and quartic are generating
functions thus written.

Notice that the terms free from x in the developement of

the representative generating function for the quintic above
are the terms in the developement of the result of putting
x = in it, i. e. of

l+a18

This then is the representative generating function for in-

variants of the quintic. It leads to the conclusions already
stated in 143.

There prove to be twenty-three ground forms of the quintic,
of which four, J4 ,

78 ,
J12 ,

/18) are invariants.
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147.] Sylvester and Franklin have also exhibited gene-

rating functions for the whole number of seminvariants of

any degree for the quantics they have studied.

Moreover, they have obtained representative generating
functions of two or more quantics of low degrees, and studied

their indications as to systems of ground forms.

For these researches, and for the full theories above illus-

trated, reference should be made to the first four volumes

of the American Journal of Mathematics. A few exercises

are here left to the student.

Ex. 3. By 137 the whole number of seminvariants (including

invariants) of degree i of a binary p-ic is
( ; i,p)

or
(^-o *>$*

according as ip is even or odd. Show by the method of 144 that

this number is the coefficient of a{ in the part of the developement of

(l-ax
p

) (l-ax
p
-*)...(l-ax-

p+
*) (l-ax-

p
)

in ascending powers of a, which is free from x.

Ex. 4. Prove that the number of linearly independent seminvariants

of weight w and partial degrees i, i
f
of a p-ic and a jt/-ic is the

coefficient of zwgi

t;

i '

in the expansion of

lz

Ex. 5. Show, as in 144, that the number of covariants of order -or

and partial degrees t, i' of a p-ic and a p'-iQ is the coefficient of

a'a^'as^ in the developement of_l-x- 2__
- axv- 2

)...(I-ax-P+*)(l-ax-P).(l^a'xP')(l-axP'-
2
)...(l-a^

Ex. 6. Show that for two linear forms the reduced generating

function for numbers of concomitants is

(I ax) (l a'x)(laa')

where a refers to one form and a to the other.

Ex. 7. Show that for a linear form and a quadratic it is

l + abx

(l-ax) (I-bx*) (1-6
2

) (l-a
2

6)'

where a refers to the linear form and b to the quadratic.
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Ex. 8. Show that for two quadratics it is

148.] Heal generating functions. From representative

generating functions Cayley has passed to what he calls Reed

Generating Functions.

Let us return to 145. The generating function

A(x) =
(I -ax*) (I -a2

)

for the quadratic has told us that there are two ground forms,

the quadratic u and the discriminant A = ac b'
2

,
and that

there are just as many concomitants of any type as there are

products of that type of powers of u and A. This tells

us that all concomitants of the quadratic are terms which

actually occur in the expansion of

This is the real generating function for the quadratic.

Again, for the cubic, that B (x), which write in the form

1 -faV
(I -ax*) (l-a-x

2

) (1-a
4
)'

is the generating function, has told us that there are as

many concomitants of any type as there are such products of

u, H, A and G of that type as do not involve G to a higher

power than the first. And this information is exactly ex-

pressed by saying that concomitants of the cubic are linear

functions of those products of the four ground forms which

occur in the developement of

l + G

which is the real generating function of the cubic.

Once more, for the quartic, C (#), or

1 -ax*) (I -a*) (1 -aVj (1 -a)
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tells us in like manner that there is a real generating function

such that all concomitants of the quartic are linear functions

of terms which actually occur in its developement, i. e. of the

products into which G2 does not enter.

For the quintic, and beyond, the form of a real generating
function derived from the representative generating function

of 146 is not unique, owing to the number of different ways
in which we may replace the many terms in the numerator

by products of ground forms. Cayley has shown in his

tenth memoir that the most useful form into which a real

generating function of the quintic can be thrown is

2P(l-Q)

where every P and Q, in the products whose sum is the

numerator, are products of ground forms and powers of

ground forms chosen from among the complete system of 23

whose forms will be exhibited in a later chapter. All the 23

occur in the numerator and denominator together.

For invariants alone, real generating functions are

(1) for the quadratic ;

(2) for the cubic not the same A of course as in (l) ;

1

(3) for the quartic
(I-/) (I-/)'

(4) for the quintic



CHAPTER IX.

HILBERT's PROOF OF GORDAN'S THEOREM.

149.] AN irreducible invariant has, it will be remembered,
been defined as one which cannot be expressed rationally and

integrally in terms of invariants of lower degree than its own

belonging to the same quantic or quantics.

Similarly, an irreducible covariant is one which cannot be

expressed rationally and integrally in terms of covariants and

invariants of degree in the coefficients lower than its own.

In the cases of binary quantics of low orders, it has been

seen in the last chapter that the number of irreducible in-

variants and covariants is limited.

And in 61 it has been stated that Gordan, using the

symbolic method of the German investigators, has proved
that a complete system of transvectants is coextensive with

a complete system of covariants and invariants, and does not

comprise an unending series of irreducible forms
;

thus

showing that any binary quantic, or system of binary

quantics, has only a finite number of irreducible covariants

and invariants.

That the same is true for ternary and higher quantics has

been arrived at by Hilbert (Mathematische Annalen, VoL

XXXVI) as a consequence of a far-reaching argument as to

the finitehess of systems obeying exact laws.

To Hilbert is also due (Math. Ann. XXX) the simplest

existing proof of Gordan's theorem of the finiteness of the

concomitant system for the case of binary quantics. This

proof will be here exhibited.

150.] Diophantine Equations. Some lemmas as to the

solutions in positive integers of a system of linear indeter-

minate, or Diophantine, equations are necessary.



SOLUTIONS OF DIOPHANTINE EQUATIONS. 189

(i)
An equation

a
1
a;

1 + a
2
a;

2 4- - +anxn = 0,

where a
l5
a2 ,

... an are given positive integers, is not satisfied

by any set of positive values of x
l ,
x

2 ,
... xn . In fact, the

only values, none negative, which satisfy the equation are

xl
= x

2
= . . . xn = 0.

(ii)
An equation

!! + a
2
x
2 + ..,+anxn = k,

where &, as well as al9 a2 ,
... a n ,

is a positive integer, has, if

any, only a finite number of positive integral solutions, zero

being counted for the purpose a positive integer. For the

whole number of ways in which the number k can be ex-

pressed as a sum of n or fewer positive integral parts is finite,

and the limitation that the parts be integral multiples of

some or all of al9 a2 ,
... an imposes a further restriction.

(iii) An equation of the form in
(i), except that some of

the coefficients are positive and some negative integers, is

satisfied by an infinite number of positive integral, or some

vanishing, values of xl9 xy ,
... xn . But of this infinite number

of positive integral sets of solutions only a finite number are

what may be called simple sets, i. e. sets which cannot be

obtained by adding together other sets of positive integral

solutions.

Let the terms with negative coefficients be transposed to

the other side of the equation, so that this may be written

where every a and every b is a positive integer.

That there are positive integral solutions is clear. For

instance,

and x
l
= bm+2 ,

xm+2 = a
1}

x
2
= x5 =...= xm+l
Xm+ 3

~ Xm+ 4:

~ ' '
:= *^ := ^'

are sets of solutions. Moreover, we may take for #,, 2 ,
...xn

any positive integral multiples, or any sums of positive

integral multiples of the values of xlt X2 ,
... xn) in one or
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a number, respectively, of these particular sets, and thus

obtain another set of solutions. The number of sets is thus

infinite. Not all sets are as a rule obtained in this manner,
for there will as a rule be other sets in considerable number.

for which some or all of x
l ,x2 ,

... xn have smaller non-vanish-

ing values, than in sets of solutions comprised in the above

aggregate.
We have, however, to establish that the number of simple

sets of solutions is in all cases finite.

No set of solutions in which x
l
> bm+l ,

and xm+l >ax ,
where

a
l
x

l
and bm+lxm+l are any terms on the left and right re-

spectively, can be simple. For any such set of solutions is

the sum of the first set of solutions written above and another

set.

Thus in a simple set of solutions, if an x on the left, x^ say,

exceed the greatest coefficient on the right, none of the x's

on the right can exceed a
x ;

and if an x on the right, xm+l

say, exceed the greatest coefficient on the left, none of the

oj's on the left can exceed bm+l .

Simple sets of solutions can then occur only in one or both

of two overlapping classes, the class in which no x on the

right exceeds the greatest coefficient on the left, and the class

in which no x on the left exceeds the greatest coefficient

on the right.

In the first class we have

where a
t
denotes the greatest of alt a2 ,

... am . Now by (ii)

the number of sets of positive integral, and vanishing, sets of

values of x^ ,
x
2 ,

. . . xm for which this is the case, is finite
;

and each set gives for the determination of xm+l) xm +.,. ... orn

an equation like

k = bm+1xm+l + bm+,xm+2 + ...+bu xu ,

of which the number of sets of solutions is, again by (ii),

finite.

And quite similarly in the second class there is only a finite

number of sets of solutions.

Of these sets some will be simple ;
but the vast majority,

as a rule, not so.
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It is, however, completely established that the number of

simple sets of solutions, being part of a finite number of sets

of solutions, is itself finite.

(iv) If a, ,
a
2 ,

... an
-

pl9 /32 ,
... fin ; yl5 y2J ...yM ;... be all the

simple sets of solutions of the equation in
(iii),

now proved
to be finite in number, all sets of positive integral, including

zero, values of xlt x,, ... xn which satisfy the equation are

comprised in the system

where tlt t
2 ,

t
3 , ..., a known finite number of letters, have

positive integral, including zero, values which may be assigned
at will.

For the set x
l ,

x.2 ,
... xn ,

if not simple, can be expressed as

a sum of other sets. These, if not simple, can be expressed
as sums of other sets

;
and so on. Proceeding in this way,

we eventually get the set x
, ., ,

... xn expressed as a sum of

sums of sums of &c. of sets which can no longer be written

as sums of sets, i.e. as a sum of multiples of the simple sets

, , .../ B ; y,, y2 ,
... yn ;

....

(v) What has been proved as to the finite number of simple
sets of positive integral and zero solutions of a single Dio-

phantine equation may now be extended to the case of

a number of such equations. Suppose that we have r such

equations in xlt x.2 ,
x3) ... xp) these variables not all necessarily

occurring in every one of the equations. By (iv) the variables

#! ,
x2 ,

... xn which occur in the first equation must in virtue

of that equation have the forms

where a
I5 ft, yi , ..., a2) /32 , y2 , ..., ...,a n , pn , yn , ... have definite

positive integral or zero values, and tlt
t
z ,ts ,...

are a finite

number of variables to which zero and positive integral

values alone are open. Substitute these expressions for
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xlt xz ,...xn in the remaining r1 equations. These become
rl equations in xn+ ^,xn+z ,

...xp and t
lt

t
z ,tat ..., a finite

number of variables whose generality as positive integers or

zeros is only limited by the rl equations.
The first of these rl equations may now be treated

exactly as the first of the r equations was, and substitution

may then be made in the remaining r 2 equations ;
and so

on continually till we get to a single equation only. To this

the results of (iii)
and (iv) apply. Thus we find eventually,

on successive substitution backwards, that all the p variables

xlt x.
2 ,

... xp can have no more general values than are in-

eluded in

where A
l , B^ Gls ..., A 2 ,

R
2 ,
C

z , ..., ..., A p ,
Bpj Cp ,

... are

definite positive integers, or some of them zeros, and where
r
lt

T
2 , TO, ... are a finite number of arbitraries to which any

positive integral and zero values can be assigned at will.

In other words, a system of any number r of linear Dio-

phantine equations can, if soluble at all in positive integers,

have only a finite number of simple sets of solutions

A l9 A z1
A a ,...-, Bl9 B2,Ba ,...; Cl9 C2,C9,...i &c.,

all other sets of positive integral solutions being sums of

multiples of some or all of this finite number of sets.

Ex. 1. The only simple set of solutions, excluding the all zero set,

of the equations

*

is the set x = 1, y = 1, z I, i = 2.

Ex. 2. The simple sets of solutions, besides the all zero set, of

are those of the table

1, 0, 0, 1, 0, 0, 1

0, 1, 0, 0, 1, 0, 1

0, 0, 1, 0, 0, 1, 1

Ans. It is easy to reduce the given set to

x = u, y = v, z = w, i = u + v + w.



151] INVAKIANTS OF ONE BINAKY QUANTIC. 193

Ex. 3. The only not all vanishing simple sets of solutions of

4(x+ z+ u+ v)
= 2 (2z+ 3w+ 4v),

from which z disappears, leaving the equation 2 x = u+ 2v, are given

by the table

x, z, u, v

0, 1, 0,

"

1, 0, 0, 1

1, 0, 2,

This proves that any product of powers of a
,
a
2 , 3 ,

a
4

for which
4i = 2w is a product of powers of a

2,
a a

4,
a a2

3
.

151.] Application to invariants of one binary quantic.

Now it has been seen in chapter v that if alt a
2 ,

... ap be the

roots of the equation in x : y

(a ,al ,a2,...ap)(x,y)*> = 0,

and if

e = a\ (oj
- a

2)

w"
(ai
_ a3)i3 ( 2

- a
3)

n
23. . .

be a* times a product of diflferences between its roots, such

that nlzt 7i13 ,
7i 23 , ... are all positive integers or some of them

zero, and that all roots occur in the same number i of

factors, so that

then 2 e,

where the 2 means that the roots are permuted in all possible

ways and the sum taken, is, if it do not vanish identically,

an invariant of

(a ,
al3

a
2 ,...ap)(x,y)

p
;

and, conversely, that any invariant can be expressed as such

a sum 2e, or at any rate as a sum of numerical multiples
of such sums for which i is the same though the individual

ns may be different.

We have to prove that any such sum 2 e can be expressed
o
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rationally and integrally in terms of a finite number of ele-

mentary sums of the kind. This will show that any invariant

is a rational integral function of a finite number of elementary
invariants. It will not show that these elementary invariants

are irreducible, but it will that all irreducible invariants occur

among them.

It will be observed that the system of equations above

in i and n
lz , %3 ,

r&23 ,
... is a system of Diophantine equations

such as that contemplated in 150 (v). Bringing to bear

then on the system the theorem which has been proved, we
learn that every such product e as above is a product of

powers of a finite number of elemental products e15 e
2 ,

e
3 ,

... c^

which obey the same laws, one elemental product being given

by every simple set of solutions of the system of Diophantine

equations, so that generally

6 = e
1'-i6/

2 ,..6/> 5

for some set of positive integral, including zero, values of the

indices r
1}

r
2 ,

... rM .

Every invariant is then of the form

2e
1

r
ie/2...e

j0l

'>

for some such set of indices, or a linear function of such

sums
;
and no such sum which does not vanish identically

can fail to be an invariant.

The student must bear very clearly in mind the exact

meaning of the summation denoted by the 2. The summa-
tion is that of the l.2.3...p terms, obtained by patting
for the roots as they occur in the fully written expression
of e/'e/

2 ... 6/> the corresponding roots in every one of the

I . 2 .3 ... p permutations of the p roots a
ls

a
2 ,

a
3 ,

... op of the

quantic under consideration. The number of terms in the

summation is in the first place, and is to be regarded as,

the full number p ! of these permutations, though among them
in any particular case there may of course, and will, be repe-

titions or cancellings or both. Other meanings might, but

must not, be attached to the 2. For instance, the meaning

might be attached that to each of e15 e
2 ,

... e^ separately be

given every one of its p ! permutational values. We should

then get it is true an invariant or an identical zero, but we
should have no security that every invariant is thus obtained.
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An instance of the need for this caution will occur in an

example on the quartic to be given presently.

152.] We now bring in an idea from the theory of equations
which will enable us to complete Hilbert's proof of Gordan's

theorem.

Consider e
1?

one of the elemental products e15 2 ,...eM . It

is one of p \ similar products of which the rest are obtained

from it by permuting the p roots a^ ,
a2 ,

. . . ap in all possible

ways. These p ! products are the roots of an equation

e
1
P ! +P1

e1
P I
- 1 +P2 1

* I
- 2 +...+Pp! =0 J ...(1)

of whose coefficients some will frequently vanish identically.

Those which do not will be rational integral invariants. This

is clear from 75, but another exhibition of the fact is on the

whole preferable here.

By Newton's theorem on the sums of powers of roots

(Burnside and Panton's Theory of Equations, 1 26) P^P^ t
...Pp \

can be expressed rationallyand integrally in terms of s^ ?2 ,
. . . sp .,

the sums of the first, second, ...p ! th powers of the>! values

of
l
which are the roots of the equation. Now slf 92; ... v,

or rather such of them as do not vanish identically, are in-

variants exhibited in a form which is a case of the general
form of 151.

Thus the equation (l) expresses c^
1 as a linear function of

the first p\ 1 powers e^
1
" 1

, 1
pl~ 2

,...el of (
l with an absolute

term, the coefficients and absolute term being invariants

expressible as rational integral functions of i, sz ,...sp i. If

we multiply through by e
x
we obtain an expression for e^

14" 1
,

which upon insertion in it of the already obtained expression
for e/

!

,
becomes a linear function of c^

1
" 1

, e-f
[
~'2

, . . . e
x ,

whose

coefficients and absolute term are rational integral functions

of jj, s
2 ,...sp i. Multiply again by e^ and again replace e/

1

by the expression for it
;
and repeat the same process any

number of times that may be desired. We thus obtain the

fact that, the index i\ being any number not less than p !,

where Q15 Q2,...Qp i
are invariants capable of expression as

rational integral functions of the p\ invariants and zeros

sl5 y2 ,...
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Proceed now in like manner with e2 ,
a second of the

elemental products e
1?

6
2 ,...eM . This again is a root of an

equation of degree pi whose first coefficient is unity and

whose other non-vanishing coefficients are invariants ex-

pressible rationally and integrally in terms of p I sums of

which those which do not vanish are invariants, viz.

2e
2 ,

2e
2
2
,...2e/

!

. Consequently, if r
2 be not less than p!,

we have

where Rt ,
R.

2 ,
. . . Rp ,

are invariants expressible as rational

integral functions of 2e2 ,
2e

2
2

, ...2e/
!

.

In like manner we have like expressions for powers not less

than the pi th of e3 ,
f
4 ,

... eM ,
the remaining elemental products

of powers of a and differences between roots.

153.] The number of irreducible invariants of a binary

quantic is finite. We now return to the general expression
of 151

?*!%/...,>.

There is, in the first place, only a finite number of these

expressions for which none of the exponents r
x ,
r
2 ,

. . . r^ exceeds

pl 1
;
viz. (ptyl.

Take, however, any one in which one or more of rlt r
2 ,

... r^

exceeds p\ l,and express such higher rth powers of elemental

factors in terms under the 2 by the expressions obtained in

the last article in terms of powers less than the p ! th. Having
done so, multiply out the expression obtained. The result is

an identity like

where none of the indices on the right exceeds pi 1, and

where K1} K.2 ,... are rational integral functions of the ^ times

pi sums

which are all rational integral invariants, and are themselves
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all included in the form 2 c-pc^ . .. e//* for values of the indices

not exceeding p ! .

Thus every sum Se/1

*/
2

...*/'*, and therefore
( 151) every

rational integral invariant, is a rational integral function of

a finite number of rational integral invariants
;
viz. of those

included in the form v Vl ,*
!

e
2 . . . e^ M

for values of the indices none of which exceeds p !, and which
are indeed all less than p \ except that one of them may be

equal to p \ when all the rest are zero.

It is well to repeat that the summation is to be taken as

including^?! terms, one corresponding to every permutation of

the p roots.

As already pointed out in 151, it must not be supposed
that we have here the exact number of irreducible invariants,

of which all other invariants are rational integral functions, or

the forms of invariants which are irreducible. The number of

the invariants in terms of which all invariants are here shown
to be capable of rational integral expression is, for quantics of

low orders to which Gordan's method of transvectants and the

arithmetical method of the last chapter have been applied,

vastly in excess of the necessities. Moreover, no precise

number is really assigned at all by the above reasoning, for

even when the elemental products e1} e
2 ,

... eM are known for

any quantic we have still no information as to how many of

the sums 2e
1
vl e2

V3 ...e
jU> vanish identically.

But a finite number of expressions has been definitely

specified, all non-vanishing individuals among which are

invariants, and in terms of which all other invariants can

be rationally and integrally expressed. That some of these

only are strictly irreducible invariants, while the rest are

rational integral functions of them, does not affect the argu-
ment that all invariants are rational integral functions of

a finite irreducible system. A selection from a finite system
is itself finite.

A modification of Hilbert's method has been proposed by

Kempe. He succeeds in using a more readily exhibited system
of products of differences in place of the elemental products

contemplated in this chapter. See his paper 'On Eegular
Difference Terms/ Proc. Lond. Math. Soc. Vol. XXV. p. 343.
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154.] The cubic and quartic. Little is taught us as to the

invariants of particular quantics by exhibiting the method in

their particular cases, but for the light thrown on the method

itself we exemplify it in the cases of the cubic and quartic.

For the cubic (a, b, c, d) (, y)
3

,
whose roots are a, /3, y, any

invariant is a numerical multiple of

where i= s + t= t + r= r + s. Of these equations ( 150, Ex. 1)

the only simple set of solutions is r= s= t=l,i= 2. Thus the

only elemental product is

e = a2

(/3-y)(y-a)(a-/3).

The 3 ! permutations of a, /3, y in this give three products
each equal to e and three equal to e. Thus the equation
with invariant coefficients satisfied by e is

{ e2_ a4
(/3
_

y)
2
(y
_

a)2 (
a_^}3 = 0.

All irreducible invariants are then included among

of which the first, third and fifth vanish, while the second,

fourth and sixth are

6e 2
,
6 4

,
6e 6

.

Of these the second and third are numerical multiples of

powers of the first. Thus 6 fc

2
, or, say,

is the only irreducible invariant of the cubic.

For the quartic (a, ft, c, d, e) (xt 2/)

4
,
whose roots are a, /3, y, 8,

invariants have the form

where i =

of which the simple sets of solutions are given in 150, Ex. 2,

and tell us that the elemental products are
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These are, it will be noticed, as is not the case in general for

the e's corresponding to higher quantics, of one type, and are

the au, av, aw of 80.

The 4 ! permutational values of L are

aw, av, aw, au, av, aiu

each four times repeated ;
and the values of e2 and e3 are the

same in different orders.

The equation with invariant coefficients whose roots are the

24 values of either e
1
or e

2
or e3 is

( 81, Ex. 4)

4 = 0.
...(l)

The irreducible invariants are included in the finite number
like 'Sf*f*f'>* *

1 *2 63

where neither of A, ju, v exceeds 24, and where if either one

is 24 the other two vanish.

This example, then, affords an instance of the great excess

over the number of irreducible invariants of the finite number
of invariants among which they are included according to the

present investigation. For we know from previous chapters
that the only really irreducible invariants are

% 2 = 2e
2
2 = 2e3

2 = 8 a2

(u
2 + V2 +w2

)

and

It also affords an illustration of the care which must be

taken to attach the right meaning (see 151) to the summa-
tion 2. If in 2e

1

2
e
2 ,

instead of taking this as meaning the

sum of 24 terms obtained by permuting the roots as they
occur in e^eg in all possible ways, we had wrongly taken

it as meaning that e
x
is to be given its 24 (or its 6 essentially

different) values, and e2 similar]y, we should have had a sum
of 24 2

(or 62

)
terms which vanishes identically, and should

not have obtained the, in fact irreducible, invariant

a3
{
u2

(v w) + v2

(iv u) + w2

(u v)}

at all. Or, if we had taken it as meaning the sum of the

6 . 5 terms eV, where e and e' are two different roots of the
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equation (l) for 1 or for e
2 ,

the same failure would have

resulted.

155.] To secure clearness we have in the last four articles

restricted our field of investigation as much as possible, and
have confined attention to invariants, and to invariants of

a single binary quantic only. Neither Gordan's theorem,

however, nor Hilbert's line of argument is of such restricted

application.

Equal fulness of treatment is unnecessary in the next two

articles, which deal respectively with the case of covariants of

a single binary quantic and the general case of covariants

and invariants of more binary quantics than one.

156.] The number of irreducible covariants and invariants

of a binary quantic is finite. Let us use the word covariant

as including invariant as a particular case, and also as in-

cluding the quantic itself.

Any covariant of the binary $>-ic

K, a
l ,a.2 ,...ap)(x,y)

p

whose roots are a1} a2 ,
a3 ,

. .. ap is, by chapter v, of the form

where the positive integers, or some of them zeros,

m15 m2 , ... mp ,
n12 ,

rc 13 ,
n
23 , ...

satisfy the Diophantine equations

or is a linear function of such sums for the same values of

i and CT
;
and all sums of this form are covariants. In par-

ticular, those for which the m's are all zero are invariants,
and those for which the n's are all zero are powers of the p-ic
itself.
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Now by 150 (v) the number of simple sets of solutions of

these Diophantine equations for i, ta and the m's and n's is

finite. Every product, such as that under the 2, above, is then

a product of powers of elemental products of the same form

and with the same properties.

If these elemental products be called 7?15 T/2 , ...rj^then, exactly
as in 152, these severally are roots of equations of degree p !

,

in each of which the coefficient of the first term is unity,
and the other coefficients are covariants which are rational

integral functions, in the first case of 2r7 l5 Si^
2
, ,..Sifj

pI
,
in

the second case of Sr/ 2 , 2?] 2
2

,
... Srj/

1

, &c., &c. Hence, as in

153, all covariants can be expressed rationally and integrally
in terms of covariants included in the limited class

where neither of the indices exceeds p 1, and none is in fact so

great as p ! unless all the others vanish.

Remark that, the number of irreducible covariants (in-

cluding invariants) being finite, the number of irreducible

seminvariants (including invariants) is also finite. For, if

any covariant is a rational integral function of other co-

variants, the coefficient of the highest power of x in it is that

same rational integral function of those of them which are

free from x
(i.e. the invariants among them) and the co-

efficients of the highest powers of x in the rest.

Ex. 4. In the case of the cubic the elemental products are

a (x-ay) (x-fiy) (x-yy),

a2

03-y)(y-)(-/3),

and a (x-ay) (/3-y), a (x~py) (y-a), a (x-yy) (a-/3).

157.] Several binary quantics. The proof that all co-

variants and invariants of a finite number of binary quantics
are rational integral functions of a finite number of covariants

and invariants of the system is similar.

For a system of a finite number of binary quantics whose

leading coefficients are a
,
a ', ..., and whose roots are

al9 a
2 , ... a,, in the case of the first, a/, a/, ... a'p

> in the case of

the second, and so on, the general expression for covariants
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of which all other covariants are linear functions of one

degree and order is of the form

2{aQ
ia

Q

'
i

'...n(x-ay).n(x-a'y)...

n(ar-a.).n(a/~a/)...n(ar -a/)...f;

where Tl(x ay) denotes a product of a number of the differ-

ences x ^y, xa.
2y,...x apy and their powers, U(x ay)

a product of a number of the differences x a-^y, x a
2'y,...

xa'p>y and their powers, n (a,.
a

8 ),
n (a/ a/), &c., products of

numbers of differences between two roots of the first, second,

&c., quantics and powers of such differences, and II
(a,. a/), &c.,

products of differences and powers of differences between roots

belonging to different quantics of the system. Also, in a

product under the 2, all roots* al} a.2 ,
... ap of the first quantic

occur in the same number i of factors, all roots a/, a/, ... a'
;/

of the second quantic occur in the same number i
r
of factors,

and so on. The summation I, consists of p\ _//!... terms at

most, obtained by permuting the p roots a15 o
2 ,...ap ,

the p
r

roots a/, a/, . . . a^/, &c., in all possible ways.
The conditions as to degrees in the various a's, a"s, &c., are

expressed by p +p
f

+ . . . linear Diophantine equations in i, i', ...

and the exponents of powers of differences
;
and or, the order in

x, y, is determined by another sum of the exponents. Now
the whole system ofp +p + . . . -f 1 equations in i, *',..., w and

the exponents has, by 150 (v), only a finite number of simple
sets of solutions. To each simple set of solutions corre-

sponds an elemental product. If these elemental products be

oo1} co
2 ,

o>
3 ,..., the general 2 above is, as before, capable of

expression in the form Sto/'fD/aco/s... .

Also, precisely as before, every elemental product w
l
satisfies

an equation of finite degree, in no case exceeding pi p'l... t

whose coefficients, after the first which is unity, are rational

integral functions of a finite number of sums of powers of

&>! and the results of permuting among themselves the various

roots in o^. Hence, as in earlier cases, the sum

can be expressed rationally and integrally in terms of the

finite number of like sums in which r
lt

r
2 ,

r3 ,... do not exceed

definite numbers
;
and these like sums are all rational integral
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covariants and invariants. All rational integral covariants

and invariants of a system of binary quantics are then

rational integral functions of a finite number of such con-

comitants of the system.
In particular, all invariants of the system are rational

integral functions of a finite number of invariants. For if

an invariant, free from the variables, be a rational integral

function of invariants and covariants, we obtain, upon putting

the variables equal to zero in the identity of the invariant

and the function, an identity in which all the covariants are

replaced by zeros while the invariants alone remain.



CHAPTER X.

PROTOMORPHS, ETC.

158.] Recapitulation. We have seen in chapter vi that

the leading coefficient, that of the highest power of x, in any
covariant of

u = (a , (*!, a2 ,...ap)(x, y)
p

is a seminvariant, i.e. is annihilated by

d d d
Q, = a -5 +2ai:r- +...+_p J,_lT ,

da^
1 da2 dap

and consequently possesses the half invariant property of

being invariantic for such linear substitutions as

x = Z +mYt y=Y.
It has also been seen that conversely

S(a ,
alt ct

2 ,...ap),

any gradient of extent not exceeding p which is such as to

satisfy the differential equation

0,8= 0,

and which is consequently a seminvariant, is the leading
coefficient of a covariant whose order w in x

t y is given in

terms of p and i and w, the degree and weight of S, by the

relation

r = ip 2w,

in fact, that the covariant in question may be written

y

xiP-2w e
x
S(a ,

alt a2 , ... ap),

where d . d d
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If CT = 0, the seminvariant is an invariant.

Thus covariants, including invariants as a particular case,

and seminvariants, also including invariants as a particular

case, are equally numerous, and correspond one to another.

If any relation or syzygy connects certain covariants, the same

syzygy connects their seminvariant leaders, and vice versa.

Another expression for the same covariant, whose leader is

the seminvariant S(a , al5 a.2 , ... ap ),
is

where S(ap ,
ap_15

ap_2 ,
... a

)
is the anti-seminvariant obtained

by interchanging a and ap ,
a
x
and ap_ lt &c. in the semin-

variant S(aQ ,
a

ls a.2) ... ap).

159.] Elimination of a; between u and its successive deriva-

tives with regard to x. Two interesting conclusions at once

follow from the results of chapter vi.

Of these the first is that if in any seminvariant

S(aQ ,
alt a2 ,...ap)

of u we replace

ap by u, i.e. by (a ,
a lt a2 , ... ap)(x, y)

p
,
which call op ,

1 (^%
Ofp-j by

-
-j- i.e. by (a ,

al5 a2} ... ap-j)^, 2/j ,

which call <*_,,

i.e. by a oj
2 +2a1^2/ + tt

2 2/

2

which call a
2 ,

byp(^ro ^- Le - by a x+a
>y>_
which call a

lt

by , r -r-7,, i.e. by an ,
which call a

ft
.

^-./.^ i\ OO1 J V ' JO' *

no a; appears in the result, which is merely the seminvariant

itself multiplied by y
w

, where w is its weight.
The result of substitution is annihilated by

d d d
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Now, writing ur for -^ ,
for every value of r from 1 to p in-

clusive, we see that this is

d d d

which, when it operates on a function of u, ult u.2 , ...up) is

merely -j-
The annihilation tells us then that the result of

substitution is free from x. What does not vanish when the

substitution is made in a seminvariant is clearly y
w
into that

seminvariant, for weight is degree in x, y in the result, and

the form of result independent of x is the form we should get

by putting x = first and then making the substitutions.

, The intimate connexion of the theory of seminvariants

with that of elimination between u and its ^-derivatives is

now apparent. For instance, from 137 we conclude that,

if u be any rational integral function of order p in x, the

number of linearly independent rational integral functions

of u and its successive derivatives with regard to x, which

are of degree i in the coefficients and free from x, is f
;' i, p}

or
(
-*--

; i, p^, according as ip is even or odd. And again.

from known facts as to numbers of irreducible seminvariants

of binary quantics of the first few orders we obtain that the

numbers of rational integral functions, of rational integral

expressions of orders 1, 2, 3, 4, 5 respectively in x and their

successive derivatives with regard to x, which are free from

x and none of which, in the five cases respectively, can be

rationally and integrally expressed in terms of the rest, are,

in the five cases respectively, 1, 2, 4, 5, 23.

Once more, from 128 or from 100, we gather that any
rational integral function of u, a p-ic in a;, and its derivatives,

which is throughout of degree i in u and the derivatives, and

in every term of which the sum of the indices r for factors

dru
like

j-f
is constant and equal to ip w, can be written as the

derivative with regard to a? of a rational integral function

of it and its successive derivatives if ip 2w> 0.
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Ex. 1. Integrate the differential equation

dx da?

Ans. u ax*+4t>x* + Gcxz +4:dx+ e, where ae 4&d+3c2 = 0.

Ex. 2. If u = ax3+3bxz +3cx + d, express u(~)dx rationally

... f du d2u dzu
and integrally in terms of u. -5 -=-^,

-
dx dx* dx3

Ans. Here ip2w= 1. Assume the most general form and

determine the arbitrary coefficients by operating with
uX

160.] Covariants obtained by substitution of ^-derivatives.

The second important conclusion referred to at the outset of

the preceding article appears to be due to Faa de Bruno

(Am. J. III). It is that if we make the same substitutions

as in the preceding article for a
,
alt

a
2 ,

... ap in

the anti-seminvariant obtained by interchanging a and ap)

!
and cbp-i, &c., in a seminvariant >S^(a ,

a
1}
a2 ,

... ap)
of weight

iv and degree i, the result obtained will be the covariant of

which that seminvariant is the leader multiplied by ( y)
w

.

Noticing that the substitution of a r for ar is that of y
rA f

r ,

/v*

where A'r is the A v of 92 with - put for m, we see by 93,

bearing in mind the isobarism of weight ipw of

S(ap,ap_ 1 ,ap,2 ,...a ),

that the result of the substitution is

Now by 109, since (l)w
S(ap ,

ap_ 1 ,
...

)
is the last coef-

ficient in the covariant which $(a ,
ar,

a
2 ,...ap) leads, the

covariant going with S is

(-l)yi*-*e*
a

S(ap , a,-lt ap. 2> ... a
).

Of these two expressions the former is
( y)

w times the latter.

Thus from any seminvariant a mere substitution derives

the
corresponding covariant.
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If the seminvariant be an invariant, the substitution has

the effect only of multiplying it by (
-

l)
w
y
ip-w

,
i.e. by (-y)

w
,

since ip 2iv = for an invariant. This accords with the

result of 159.

161.] A seminvariant is given by certain of its terms. In

the substitution of 159 put for x
9
and 1 for y, i.e. for

a

a
,
al9 a2 , ... ap substitute

<V = a
o>

a/ = 0,

/ &i
2

a.2
= a2--f,

\ jf & L ' JP &' v/ \ '
rt '

The result of 159 tells us that

(a ,
alf az ,

a3 , ... ap)
= S(a ', 0, a/, a/, .../),

where $ denotes any seminvariant, or, in particular, invariant.

Thus all rational integral seminvariants are rational integn
functions of the p expressions a

'

(i.
e. a

), a/, a3', . . . ap . The*

expressions are all integral in alt a2 , ... ap) but, after the fin

are fractional in a . They are seminvariants, fractional aft(

the first, for it is easy to see that they are all annihilated b

ii. This will appear in another light presently.
It follows that if we know the terms free from % in an

seminvariant or invariant, we know the whole expression
that seminvariant or invariant. To find this whole expressioi

we have merely to write the values of a/, as', ... a/ instead oi

a
z ,
a3 ,

... ap in the given terms. We shall see presently thi

this substitution may be effected by differential operation.
We shall also notice later a means of obtaining the

free from a
1
in invariants.



QUANTIC DEPEIVED OF ITS SECOND TERM. 209

The search for rational integral seminvariants and invari-

ants may be regarded as the search for rational integral

homogeneous isobaric functions of a
, a/, a

3', ...a/, which,
when the full values of a.2

'

}
a3', ... ap

'
are substituted in them,

are integral in a .

Ex. 3. Given 2
c?

2+4c3
,
the terms free from 6 in the discriminant

of the cubic (a, b, c, d) (x, y)
z

(cf. chap, vi, Ex. 35), obtain the full

expression for the discriminant.

Ex. 4. Verify that a a a
3

'2-
2

'3

a 2 a 2a 3
.

Ex. 5. No seminvariant has a
a
for a factor.

Ex. 6. The number of linearly independent seminvariants of type
w, i of a p-ic, whose terms free from

x
are integral, and whose other

terms are integral in av a.,, a
3,... ap though not necessarily in a

,
is

(w ; i,p) (w-l ;
i l,p).

Ans. Since (w I
;
i 1, p) is the number of products of type

w, i which involve ar this difference is the number of products of the

type of a
, a/, a

3',... a/.

162.] Coefficients of quantic deprived of its second term

are seminvariants. If we inspect the expressions for

a ', a/, a/, . . . a/

in the last article, we notice that they are the coefficients of

Xp
,
XP

~*Y\ XP
~*Y\ ... F* in the result of depriving the p-ic

(a ,alt a.2 ,...ap)(x,y)
p

of its second term by the substitution

of which the modulus is unity.
Now this substitution is one after which a seminvariant as

well as an invariant persists in form, for it has the effect of

altering all roots by the same addition and leaves the

leading coefficient or a
(/ unaltered.

We thus see clearly the meaning of the identity of the last

article

S(a Q ,
a lt

a z , 3 , ...) = (a , 0, a
2', a/, ... a/).

p



210 COMPLETION OF THE THEOREM OF 42. [163

We also see clearly the reason of the fact that a
2',

a3', . . . ap
'

are themselves (fractional) seininvariants. For the roots of

the transformed p-ic are

where al5 a
2 ,

...ap are the roots of the untransformed p-\c;
and

a p
_ (! - a

2) + (a-i
a3 ) + . . . + (ai ap)

P
so that every root of the transformed is a function of the

differences between roots of the untransformed
; which neces-

sitates that > >
, being symmetric functions of the

o
a
o

ao

roots of the transformed ^>-ic, are functions of differences oi

the roots of the untransformed, of course symmetric in these

roots from their rationality. They are then (fractional) semin-

variants of the p-ic.

163.] Completion of the theorem of 42. Consider th<

results of making a.2) aa', . . . a/ integral by powers of a

factors
;
and write

Ai
= a 3

a/ = a 3a4
4 a 2a

x
a

3 + 6 a c^
2 a2

3 a/,

A = a p~l a
' = a p~ l (a a a a ) ( 1 -1/

The degree of every one of these integral expressions is equs
to its weight. They are all seminvariants, being annihilate*

by a
The equality

S(aQ)
al9 a.2 ,

a3 ,
... ap) S(a ', 0, a/, a3', ... ap )

may now be written

.<?// ^ \ _ af,. A -4s ^3 ^P \
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Let $be as usual of weight w and degree i. Notice that every
non-vanishing argument on the right involves a explicitly to

the degree 1 r, where r is its weight. Every product of

i arguments on the right involves then a to the power i iv
t

where w is its whole weight. Consequently, upon multiply-

ing through by
W~* we obtain that

a w
-*(a , alt a,, as ,

... ap )
= 8(1, 0, A 2 ,

A 3 , ... A p ),

which is a rational integral function of A 2t A 3 ,...A P only.

We have here the completion of the theorem of 42. It

was there proved that a binary p-ic cannot have more than

p algebraically independent covariants and invariants includ-

ing itself, but that if 1 distinct from the p-ic itself and

independent of it anctone another can be found, then all others

must be capable of expression in terms of it and them. We
have now proved that there are certainly p 1 covariants

distinct from the p-ic, namely, those whose leading coefficients

are the seminvariants A
2 ,
A Z) ...AP . These are certainly

independent of one another and the p-ic ;
for in the series

a
,
A

2 , AS, ... A p each involves one of the coefficients

a
,
a

2 ,
a3 ,

... ap which is absent from all those which precede
it. We have also shown that the expression for any rational

integral seminvariant or invariant S(a > alf
a2 , ...ap )

in terms

oa ,A2,A 3 ,...Ap iB rational, and is integral in all but the

first a
,
which it involves only in the form of the factor

n -w+ iao

The expression of the covariant (or invariant) whose leading

coefficient is 8 in terms of those whose leading coefficients are

a
,
A

2 ,
J- 3 ,

... A p ,
of which the first is the p-ic itself, follows.

The covariant whose leading coefficient is a seminvariant is

unique (cf. 111, 112). Now, if u be the p-ic, and K the

covariant whose leading coefficient is S(a ,
a
l5

a2 ,
... ap),

the

covariant whose leading coefficient is a tv~ i

$(a ,
alf a2 ,

... ap)

is uw- {K.

Also, if a2 ,
a3 ,...a />

be the covariants whose leading coefficients

are A
2 ,
A

3 ,
... Ap ,

8(1, 0, a2 ,
a
3 ,

...op )

is a covariant. For it is a rational integral function of co-

variants, and is of constant degree and weight throughout,

P 2



212 PKOTOMORPHS. -. [164

and therefore of constant order in x, y, since the degree and

weight of A r the leading coefficient of a,, are both r, and

consequently the order ip 2iv of a,, is r(p 2) so that the

order of any product of a's which occurs is w(p 2) where w
is the constant weight. This covariant is the one whose

leading coefficient is $(1, 0, A 2 ,
A

s ,
... A p ).

Hence the identity

of seminvariants

a
ti

w- i

S(aQ ,al ,
a
2 ,

a3J ...ap)
=

(1, 0, A 2 ,
A

3 ,...A P)

necessitates the identity of covariants

U^K = 8(1,0, a
2 ,a3 ,...ap).

In other words, any covariant or invariant can be expressed
as the result of dividing a rational integral function of

a
2 ,

a
3 ,

... ap by the power uw~ l of u, where w and i are the

weight and degree of the leading coefficient of the covariant

in question.
In particular, any invariant /( ,

a
} ,
a

2 , ... ap] is equivalent

-

for, in the case when K is an invariant, ip = 2w.

We have here reasoned for cases when w<i. The student

can supply the slight modification of reasoning necessary
when w< i. In such a case the result is best written

Any covariant, then, whose leading coefficient is of smaller

weight than degree, has a power of the quantic for a factor.

164.] A complete system of protomorphs is not unique
The seminvariants a

,
A

2 , A^,...A p) or

,
a a

2',
a 2a 3', ... a/-

1

a/,

do not stand alone among rational integral seminvariants as

being a set ofp in terms of which all others can be expresse(

rationally and integrally but for a power of the first, which
when w > i is a negative power, as factor.

A system of p seminvariants possessing this property is

called a set of protomorph'ic seminvariants or protomorphs.
We proceed to see that an allowable system of protomorphsj
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is composed of <a and any set of p 1 rational integral sem-
invariants B2 ,

J33 , ... Bp ,
which are such that

B.
2
is of weight 2 and involves a

2 ,

T) o

BP P ap ;

necessities which require that no coefficient ar of the quantic
occurs in a B

wjfch
a lower suffix than r, and that ar oocurs

in Br multiplied by a power of a only.

To see this, take any seminvariant, and, if ap occur in it,

take the expression for Bp ,

Bp
-

which gives

and substitute in the seminvariant this value for ap . The

seminvariant is then expressed as a rational function of Bp

and , 15 2 > -~ aP-i> integral in all of them but a .

Again, for ap^ substitute in like manner in terms of Bp-i

and
,
alt a2 ,

...ap_ 2 ;
and continue this process as long as

possible. We thus obtain an expression for the seminvariant

(a ,
alt a2 ,

... ap ) = a -F(a ,
al9 B.2 ,

B
?t ,
...Bp }.

But
ttj cannot, as a matter of fact, enter in F. To see this

operate on both sides with 12, which annihilates S and

a ,B2,B,,...Bp . We obtain

A
i.e. T- = 0,

daj

the differentiation being partial with regard to c^ as it occurs

explicitly in F. The conclusion is that it cannot so occur.

It is proved then that

S(aQ , oj, 02, ... ap) = a -^(a ,
5

2 ,
53 ,

... Bp),

for some rational integral form of F and for some integral or

zero value of /x.

Notice the two special conveniences of the protomorphs
A

2 , A^ ... A p of 163. One is that the form of F for them

is at once written down from the form of $; and the other
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that F does not involve a
Q explicitly. For these protomorphs

weight extent and degree are all equal. For others weight
and extent only.

Protomorphs must not be confused with irreducible seni-

invariants. A complete system of irreducible seminvariants

and invariants, proved to exist in the preceding chapter, is

a system in terms of which all rational integral seminvariants

can be rationally and integrally expressed, without the oc-

currence in any of them of a negative power of a as factor.

165.] Protomorphs of lowest degrees. The system of proto-

morphs which has been most used is a system

a
,
C2) (7

3 ,
(74 , ... Cp

in which each is of the lowest possible degree.
Those of even weights 2, 4, 6. ... are of the second degree;

viz. the system of 114

= aa 4

2a4 10a3
2

,

where
( ^ )

denotes the number of combinations of 2 n things

v together.

For odd weights there are ( 114) no seminvariants of the

second degree. In each case, however, there is a protomorph
of degree 3. These can be found by the method of 114, by
determining gradients of degree 3 and the requisite odd

weights which li annihilates.

A readier way of calculating them is afforded by the

theorem of Cayley's that, if S be a seminvariant of degree i

which does not involve a, then

where 3- denotes the operator

d
,-,1da

d
^ f- ...

d
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is another seminvariant whose degree weight and extent are

each one greater than those of S. The facts as to degree

weight and extent are clear. That the gradient educed from

S is annihilated by 12, and is therefore a seminvariant, may be

seen as follows.

By the method of 123 we have the equality of operators

d d

d d

d d

s;
+2a

i35

d d d

f d d d
-(a

1̂

+2a*2

+ - +

d d d \ . . d

Hence, when the operation is on S, a seminvariant (annihi-

lated by 12) of degree i, and by supposition free from ap ,

whence 12{ct 3- a^lS = a iS a iS a^
= 0.

Consequently (a 3- a^)>S"3 being annihilated by 12, is a sem-

invariant.

Use of this theorem gives us, from the even weighted or

quadratic protomorphs C
2 , 4 , 6 ,

... in succession, the odd

weighted or cubic protomorphs <73 ,
C

5 , 7 ,
... in succession; viz.

5 + 20a
1
a.

3

2

SO

&c., &c.
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Ex. 7. The operator S a^i may be written

a*) + (a *-ia)^ + (o4-i)^ + - '

in which the last term is ajOp -y
da,

Ex. 8. Prove that

(a a
2
-2

1

2)~ +2(a a
3-2a1

a2) ^- + 3 (<. -2
0,0,,)-^-

+ ...,

is another operator which educes from seminvariants of a |>-ic which

do not involve ap other seminvariants, and by means of it educe the

same series of cubic protomorphs (73 ,
Cv C

7 ,
...from the quadratic

protomorphs. (Cayley.)

Ex. 9. Prove that a a
l (ip 2w) educes seminvariants from all

seminvariants of a jp-ic, and derives (73 ,
C

6 ,
(7

7,
. . . from (72 , Gv C

{ ,
....

166.] If y2 , y35 ... yp be the covariants whose leaders are the

protomorphs C2) C3 ,...CP) then the expression for a sem-

invariant 8 in terms of them and a
,

where the function F is rational and integral for a rational

integral $, leads to the expression for the covariant K whose

leader is $

This follows by the same argument as in 163. In fact, in

general the expression for a seminvariant or invariant in

terms of any system of protomorphs leads to exactly the same

expression for the corresponding covariant or the invariant in

terms of the covariants led by the protomorphs.

167.] Seminvariants as integrals of lS = 0. Another

aspect of the reason for the expressibility of any seminvariant

or invariant in terms ofp independent ones should be noticed.

A seminvariant is an integral of the differential equation

dS dS dS dS
^ 8a23 t-...+pap -i-j = 0,

a
2da3

* p l
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which is properly regarded as beginning with a vanishing

u- i f dS
multiple oi -=

da
Now Lagrange's theory of linear partial differential equa-

tions (Forsyth, 184) tells us that when we have p indepen-
dent functions S of a ,

al} a2 ,
. . . ap which satisfy this equation,

any other S which satisfies the equation is a function of

those p.

Now in 161, 163, 164, 165 we have sets ofp independent

solutions, viz.

2 ,
a3

'

We thus have it clearly exhibited that any seminvariant or

invariant, even though fractional or irrational, is capable of

expression in terms of a set of protomorphs.

168.] Protomorphs for systems of quantics. A semin-

variant of the system consisting of two binary quantics

(a ,
a1} a2 ,...ap)(x,yy,

is
( 115) a solution of the differential equation

dS dS dS^

in the p +p' + 2 variables a
,
a

: ,
a

2 , . . . ap ;
b

,
b
lt

b
2 ,

. . . bp>. We
need p+p'+l independent solutions of this equation: and

these are afforded by a set of p protomorphs of the p-ic,

a set of p' protomorphs of the _p'-ic, and the one additional

tt ^i~ aibQ - All seminvariants of the system can then be

expressed in terms of these p +p' + 1 seminvariants.

Moreover, we can easily prove a theorem due to Clebsch,

that the expression for any rational integral seminvariant of

the system can be expressed in terms of ct b
1

al
b and sets

of protomorphs a
,
B

2 , B^...BP ;
b

,
B2) BJ,...B'p, in a form
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which is rational, and is integral except as regards a and 6 .

As in 164, we reduce it to the form

a -b -'F(a ,
al5 B2 ,

JB
3 ,

... Bp ;
6

,
b
lt
B

2\ 53', ... 5P'),

where F is rational and integral in its arguments. We also,

upon expressing the annihilation by 212, obtain that

/ d -. d \

(
a
o^ + b

db)
F --

and this tells us that F involves a
lt frj

in the connexion

And, quite generally, rational integral seminvariants (in-

cluding, of course, invariants) of any number of binary

quantics are rational functions of sets of protomorphs of

those quantics severally, and of the leaders

of the Jacobians of one of the quantics and the rest, which are

integral except as to powers of a
,
6

,
c ,..., the protomorphs

that are the leaders of the quantics themselves.

169.] Protomorphs applied to the analysis of irreducible

systems. The Cubic. There is a method due to Cayley foi

finding the complete system of irreducible seminvariants

invariants of a binary quantic, and therefore the system
irreducible covariants and invariants, from a system of protc

inorphs, which is simple for the cases of the cubic and the

quartic.

It is of very little consequence whether we start from the

system of protomorphs a
,
A 2 ,

A
?t,...A p

of 163, or the

system a
,
(7

2 ,
(7

3 ,
... Cp of 165. For the cubic these systems

are the same, since A 2
= C2

and A 3
= C3 .

By 163 any seminvariant of degree i and weight w of th(

cubic (a, 6, c, d) (x, y)* is of the form

Al
where F(A 2 ,

A B)
is rational and integral.

Here, if i > w, the seminvariant is integrally expressed, and

has the positive power a{~w of a as a factor. It is then

a rational integral function of a, A 2 ,
A 3 ,

and is not irre-

ducible, unless it be only a itself.
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If i w the seminvariant is a rational integral function

F(A Z ,
A

3)
of A 2 and J.,, and is not irreducible unless it be

either A
2
or A s itself.

Any irreducible seminvariant, other than a, A.,, A3 ,
must

then be the result of dividing some rational integral function

of A 2 and A 3 by a power of a. Such a function, being divisible

by a, must vanish when a = 0, i.e. when we put for A.2 ,
A 3

the values A '
7,2 A 7>3Jl 2 , ^3 40 .

Now the one rational integral function of these which

vanishes is A'* + 4 A '*

Any other can only vanish in consequence of having this for

a factor. We are thus led to form

= a2
A,

and to conclude that A is a seminvariant it is of course the

discriminant, a full invariant. It is found as one whose

weight exceeds its degree, so that it is not a rational integral
function of a, A 2 ,

A
3

.

We are also led to conclude that any other seminvariant

whose weight exceeds its degree is given by the rejection of

an a factor from a function F(A 2 ,
A

z)
of which

is a factor, and consequently that it has A for a factor, and is

not irreducible, but a rational integral function of a, A2 ,
A

3 ,
A.

Thus all rational integral seminvariants of the cubic are

rational integral functions of some or all of a, A.2 ,
A 3) A,

which alone are irreducible, and are connected by the syzygy

These are the results of 141.

170.] Irreducible system for the quartic. Consider now
the quartic (a, b, c, d, e) (x, y)* ;

and take the protomorphs of

165,

a, C2
= ac-b2

, C3
= a2d3abc + 2bz

,

the terms free from a in which are

0, C' = -b 2
,

C' = 2b*, (7=



220 IRREDUCIBLE SYSTEM FOR QUARTIC. [170

As in the last article we are led to a seminvariant (not now
an invariant)

D = a2d2- 6 abed + 4 ac 3 + 4 b*d -

which may, so far as we know at present, turn out to be

irreducible, though that it was irreducible in the case of the

cubic, for which there were three protomorphs only, affords

no reason why it should be now that there are four. The
terms free from a in D are

Any seminvariant not a rational integral function of these

five will, by 165, be the result of rejecting a factor which
is a power of a from a rational integral function of a, 2 , <7

3 ,
C
4 ;

and such a rational integral function may present itself in the

form
F(a, C,, Ct ,

C
t , D),

where F is rational and integral in its arguments. The result

of putting a = in this is

F(0, Ci, C3', Ct', D'),

and must vanish identically, since F
t expressed in terms of

a, b, c, d, e, has a for a factor.

Now a result, distinct from O3

' 2

+ 4(7
2

' 3

which led to D, of

eliminating b, c, d from

is C
2'C/-iX=0,

and this leads to

C.2C4-D = a(ace + 2bcd-ad2-b2

e-c*)

= aJ,

which shows two things : (l) that there is a new seminvariant

J, an invariant, in fact, which may prove to be irreducible
;

and (2) that D is not irreducible, but is equal to C2 C^ aJ.

We have now further to look for rational integral functions

of a, C2) C3 ,
C4 ,

J" which have a for a factor, so that the same
functions of

0, C
2'=-b2

,
C3

' =
2b*, C/EE-4&CZ + 3C2

,

J' = 2bcd-b2e-c3

vanish identically.
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But there are no such new functions. For (7/ involves

a letter c which does not occur in (?/ or C'3', so that no

relation connects it with them ; and J' involves e which does

not occur in either 6'
2',

(73

'
or (74', so that it again is indepen-

dent of the preceding.

Consequently a, (7
2 ,

(73 ,
(74 ,

J is the complete system of

irreducible seminvariants and invariants of the quartic. Of
these (7

4
is what in previous chapters we have called /. The

result is that of 145.

The one syzygy which connects members of the irreducible

system (cf. 145) is also exhibited. We have, as above,

and C
2C^-D=aJ,

from which, after elimination of the reducible D, there results

4C* = 0.

171.] The method is not suited for extended application to

higher binary quantics. It may be pursued in dealing with

the quintic and the sextic, but the labour is enormous owing
to the number of eliminations and the length and complexity
of the functions dealt with. Moreover serious theoretical

difficulties present themselves, and without guidance by a

knowledge of the results to be obtained those results could

hardly be thus arrived at with certainty.

One general fact should be mentioned. The protomorphs
a

,
(7

2 , 63, (74 ,...Cp are in all cases irreducible; for each

involves its most advanced letter from among ,
a]5

a2 , ... ap
in the first degree only, and is the seminvariant of lowest

degree which exists for its own weight. The same cannot be

said of the other system of protomorphs ,
A.2 , A^,...A P ,

which after the third are of higher degrees than the lowest

possible.

172.] A seminvariant arranged by powers of ar When in

a seminvariant, or, in particular, invariant, the terms free from

a
t
are known, the whole is known.
This has been proved in 161. We have only to replace

in the given terms a
2 ,

az , . . . ap by the a2', a^', . . . ap
'
of that

article.
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Any gradient in a
,
a
2',

a3', ... ap
'
is a seminvariant, but not

necessarily an integral seminvariant.

A seminvariant which is integral may be expressed in its

integral form, when its terms free from a^ are known, by aid

of differentiations only in virtue of the following.

Let Qi be the given terms free from alt and suppose the

whole seminvariant to be

where Q it Qt
.lt Q t

-_2 ,
... Q{

-m are all free from alt and where

m is some number not exceeding i, the degree of S.

If we write

d d

where o> does not involve either a* or -=
, then

da^
d

,0, (a-^Q) = a-^"
1

. ^ft Q + c&
1
'*

. coQ-f a/
4* 1

. 2 -= Q.
da%

Hence, arranging the seminvariant condition QS by

powers of a15 and expressing that the parts of &S with

different powers of ^ for factors must vanish separately, we
have the succession of facts

= 0,

+ 2^Q. =0,
da.2

'

,+<?,-, =o,
rf&2

of which all but the last two suffice to determine from

Qi the expressions for Q^_15 Q t
- 29 ... Q t

-m in succession by

operations with o>, i.e. by differentiations.
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The last equation tells us that the terms multiplying the

highest power of a-^ which occurs in a seminvariant are free

from a
2

.

Ex. 10. State the corresponding facts with regard to anti-semin-

variants, derived from their annihilator 0.

173.] A simpler method of determining the whole semin-

variant S, when its terms Qt
free from a^ are known, is given

as follows.

If G be any gradient whatever, the following is an identity,

For the left-hand member is

+ __^1-
1 2 <

1 (

1 . 2 . 3 a 3
1 . 2 a 2

of which the terms cancel against one another up to a certain

point, and after that point vanish.

Now take Q {
for the gradient G. We obtain that

is annihilated by &, and is consequently a seminvariant if it

do not vanish. But it does not vanish since its terms Q ^ree

from a
t do not.

Its form is apparently fractional, but cannot be really so.

It must, in fact, be exactly

for otherwise the difference of the two would be divisible by
ttj and annihilated by &. Now this is impossible, since no

seminvariant can have a^ for a factor, seminvariants being
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O O

functions of a
,
a
2
--~

> a
3

3 a.2 + 2 -
, . . .

,
which are the

a
o

ao

' a
o

non-vanishing and independent a
,
a2 ,

a3 ,
... when a

l
= 0.

The full expression for a seminvariant is then found by

operating on its terms free from a^ with

Ex. 11. Prove that this operator annihilates any gradient with

a
l
for a factor, and produces from any other gradient a seminvariant,

not necessarily integral, which is also produced from the terms in it

which are free from ar

Ex. 12. If G be any gradient, QfaG) involves as many arbitrages

as G.

174.] Annihilator of terms free from a
}

in invariants.

There does not seem to be a simple general method for find-

ing the terms free from T
in integral seminvariants of given

type. The case is different, however, with regard to invari-

ants, which are at once seminvariants and anti-seminvariants.

The terms free from at in an invariant have an annihilator,

which suffices to determine them. The fact is due to Cayley.

Consider the two annihilators,

d d d d

of invariants of a binary p-ic. Eliminating we have

say,

where <p and ^ do not involve al or ^
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Now let an invariant, arranged by powers of ax as in the
last two articles, be written

We find that, since 12 and 0, and therefore aQ (p
annihilate I, ^ = 0>

=0,

._1 =0,

_m = 0.

Of these the first is the result important for our purpose ;

but before examining it we notice that the last, viz.

tells us that, since -=- -R
f
_m = by 172, we must also have

d .

da*

7 Ri-m 0, i.e. that the terms which multiply the highest

power of
ctj which occurs in any invariant are free from both

a and a
2

.

The more important conclusion, gathered from the first of

the above equalities, is that the terms free from a
L

in an
invariant of a binary p-iG have the annihilator

d d d

Weneed to know converselythatall gradients in a ,
a2 ,

as ,
. . .ap ,

for which ip = 2iv, and which have
\j/

for an annihilator,

are the terms free from
o-j

in invariants. When this is known
we are sure that we have a means, by expressing the annihila-

tion by \l/,
of finding the numerical multipliers in those terms

of invariants of a given degree, and thence, in either of the

ways of 161, 172, 173, the complete expressions of the

invariants.

We shall encounter..a proof of this converse proposition in

the next chapter (cf. 186). It amounts to proving that all
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gradients for which ip=2w in a
, a/, a/, ...a/, the coef-

ficients in the quantic deprived of its second term as in 162,

which are annihilated by x//, the result of accenting the letters

a2 ,
a3 ,...ap in ^, are invariants, i.e. are annihilated by as

well as by 12, which latter must annihilate them since it

annihilates a
,
a2', a3

'

5
ap . Note that no expression fractional

in a can be annihilated by 0.

It is for the present left to the student to arrive at the

proposition for himself by the sequence of theorems of the

following four examples. He will see from Ex. 16 that if

G' satisfy ty' G' = it must certainly satisfy 00' 0, provided

ip 2w = 0, as is the case.

Ex. 13. Prove that, if by the substitution x X+mY, y = Y the

quantic (a ,
av a

2 ,
... ap) (x, y]

p be transformed into

(a , ai,a2,...ap)(X, 7)* so that
( 92)

a
2
= a

2+ 2a
1
m+ a

Q
m2

,
&c. &c.,

then
d d d , d n d

a

and, generally,

= + WJ -\-1Yl + ".. + WI >

du,
Q

c?a c&aj wa
2

da,p

the last case of which is

d

dap

the operations on the left being all upon a function of a
,
ar a

2 ,
...ap,

and those on the right all on the function of a
,
a

1;
a
2 , ...ap to which it

is equal.

Ex. 14. Hence show that the operators

._ _d_ _^ _^_
da

Q

l da
l

p dap
'

d d d
i-i = -^ h 2 a, - + . . . +pa v , ,

aa
1

da
2

dap
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a* d d d
w--- 1 = ^---h 2a2

---
\- ... + pa -

l 2 * p

d d

-

pdap

_^_2*)_ as +(,,_!) +... +aK
; u u j.

"--
'jj i

a* ( d , , d , . d d1 I ,, x, i/^, O\ I//M A\ i

t.
z

p da
t

Zf d d d
h 2a,- h..,

transform into operators of like forms.

Ex. 15. Show that the only necessary modification of the above

when the operation is on a seminvariant, and when m is the non-

constant ---3 and a
, a,, a

2 , . . . ap are consequently the
, 0, a/, a/, a/

o cf,

of 162, is that the undetermined -=, is to be taken as defined by
da^

the persistence in form of i2.

Ex. 16. By this and the fourth of Ex. 14 prove that the effect of

operating with \//,
i. e.

3
> ''-' + - +<,4

on a gradient in
, /> ^ a/ ig *ne same as ^na^ ^ operating on

the equivalent function of
,
a

13
a

2 ,
...ap with a

()

a
l (ip2w),

since i2 annihilates it.

175.] Taking p = 5, i.e. the case of the quintic

(a, b, c,d, ej) (x,y}\

the annihilator
\fs

is

An invariant of the quintic of degree i, and consequently of

weight > if such exist, can then be found as follows. Write

down the most general gradient of the type in a, c, d, e, f.
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Operate on it with the annihilator above, and equate to zero

the coefficients of the various terms in the result. If the

equations can be satisfied by values of the arbitrary co-

efficients in the assumed gradient which are not all zero, we
obtain as many linearly independent invariants of the type as

there are coefficients left arbitrary. If they cannot be so

satisfied there is no invariant of the type.

The terms free from b in the invariant are thus found. If

E
i
be the said terms, the whole expression for the invariant of

which Ri
is part is by 173

where, after the operations are performed, j3 is to be replaced

by :

a

In this way the invariants of degrees 4, 8, 12, 18 of the

quintic may, with much labour in the last two cases, be cal-

culated.

For the sextic (a, b, c, d, e, f, g) (x, y)
Q the annihilator

-fy
of

terms free from b in invariants is

by means of which the invariants of degrees 2, 4, 6, 10, 15 may
be found.

And similarly for higher quantics in succession.

Ex. 17. Integrate by Lagrange's method the differential equation
for the case of the cubic

and thus show, remembering 3i=2w, that an invariant of the cubic

is necessarily a power of a?d'
2

+ 4 ac
/3

,
where

62
,, Bbc 2b*

c =c -- ,d' = d-- + r .

a a a2

Ex. 18. Integrate the differential equation for the case of the

quartic ^= {2ad^ + (ae-9c^d~l2cd\}G = 0,

and show that invariants of the quartic are functions of the invariants
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176.] Seminvariants arranged by powers of their most
advanced* letter. The present is a convenient place for

a theorem or two not directly connected with the rest of

the chapter.
Take a seminvariant S of extent p. We are not necessarily

regarding it as a seminvariant of a p-ic in particular. It is

equally one of course of any binary quantic of order not less

than p, whose first p+l coefficients (after rejection of their

binomial factors) are the a
,
a

t ,
a2 ,

. . . ap involved in &
Arrange S according to powers of api its most advanced

letter, and write it

S= ap
nP + ap -iP

1 + ap -*P2 +...+Pn ,

where suffixes of P's do not of course, as they did in 172,

&c., indicate degree.

Express the annihilation of 8 by H, i. e. by

The terms involving different powers of ap in QS must vanish

separately, for the vanishing is identical. Hence

Q,P = 0,

l
P =0,

From these identities we draw, among others, the following

conclusions.

(1) P ,
the function of a ,

a15 a.2 , ...^^ which is the co-

efficient of the highest power of ap ,
the most advanced letter

which occurs, in a seminvariant 8t
is itself a seminvariant.

(2) When Pn ,
which consists of the terms free from ap ,

the

most advanced letter in a seminvariant, is known, the rest of

the seminvariant can be found by aid of a succession of

operations with 1 and divisions by multiples of ap-lf i. e. by
aid of differentiations and elementary algebraical processes

only.
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Ex. 19. In the case of an invariant, prove that also when the

terms free from a are known the whole invariant can be written

down by aid of differentiations and elementary algebraical processes

only.

Ans. Consider the annihilation by as we have that by 12.

177.] Seminvariants as seminvariants of seminvariants.

Another interesting conclusion which can be drawn from the

identities of the preceding article is that any seininvariant of

a seminvariant of a binary quantic, regarded as itself a binary

quantic in ap : 1, where ap is the most advanced letter in-

volved, is a seminvariant of the original quantic.

If f(Pt ,Pv li,...Z)

be any function of the P's,

by the identities proved.
Now the seminvariant S of the last article is

(P^P^P,,... P.) (!),
and if we write this

(Po,PI',Ps',...PJ (!)",
we have generally

rl

Now, with this change of notation,

which is of the form of 12, and annihilates only functions of the
P's which are seminvariants of S looked upon as a quantic in
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Such, seminvariants are then also annihilated by &, i.e.

they are seminvariants of the quantic whose coefficients are

a
,
alt a.2 ,

as , ....

This includes as a very particular case the result (l) of the

preceding article.

178.] Seminvariants derived by differentiation of semin-

variants. One more fact with regard to any seminvariant

and its most advanced letter ap may be mentioned.

We immediately prove the alternant identity

= o or = _
,

, ,

dap dap dap+l

according as 1 does or does not extend beyond ap .

If then $ is a seminvariant which does not extend beyond a

dS . .

i.e. -; is a seminvariant.
dap

d2S d3S
By repetition it follows that

-j ^
> -=

3,
. . . are seminvariants.

CtO/p ClsCl/p

This again includes as a particular case the result (1) of 1 76.

If ar be a letter short of the last ap which occurs in a sem-

invariant,
d 1 dS

-^ A3
~~ 1& ~Jdar
T da,.^

The theorems of these last articles are partly Cayley's and

pa'rtly Sylvester's.

179.] Passage from discriminant to discriminant. To

Cayley is due an application of 176 (2) to the determina-

tion of the discriminant of a binary p-ic from that of a binary

(^>_ ij-ic. Let us apply it to find the discriminant of a cubic

from that of a quadratic.
The discriminant of (a, b, c, d) (x, y)* is an invariant which,

when we put d = in it, becomes the discriminant of

which is a numerical multiple of the product of the squares

of differences between 0, a, /3, where a, /3 are the roots of
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aaP + Sbxy + Sc^/
2

,
with the factor a4 necessitated by its known

degree. Now this is a numerical multiple of o,
4
(a/3)

2
(a /3)

2
,

i ' e ' of

These then are the terms free from the most advanced

coefficient d in the discriminant of the cubic. The other

terms are determined from them as an example of 176.

180.] Operators which generate seminvariants. Semin-

variants and invariants can be derived from gradients which

are not seminvariants by operations involving differentiation

and elementary algebraical processes only. In fact, all sem-

invariants can be thus obtained. The idea is Hilbert's.

It was proved in 128 that, if G be any gradient in

a
, %. a.2y ...ap ,

or some of them, for which
rj
=

ip 2w is ^

positive,

and in 100 was proved the really equivalent theorem that in

the same case

5

I "P
oo

Now for 6r put 12 .F, where .F is any gradient of degree i and

weight w+1 in a ,alt a.
2 ,...ap or some of them. The two

theorems tell us that

~- on

Now write w instead of w+ 1, so that jFis any gradient of

weight w and degree i in a
,
a1} a2 , ... ap ,

or some of them, for
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which r)
=

ip 2w is greater than 2, i.e. < 1. We have

to put r/ + 2 for
r/,
and deduce that

1

or its equivalent

on
---r + -2

~ 22 +"'
is annihilated by 12, so that it is either zero or a seminvariant.

In particular, taking rj
=

ip 2w = 0, so that the first

expression is

c oa Q 2n2 O 3n 3
>

I 1.2
+
1.22 .3 1.22 .3a .

4
'"j

'

this or the second expression is either zero or an invariant.

If
rj
=

ip 2w = 1 for F} the first expression is

on O2n2 O 3n 3
)

" + ~~ 222 + - 5

and this, or its equivalent the second expression, is necessarily

zero, for there are no seminvariants (cf. 112) for which

ip 2w = 1.

For the sake of unity of statement let us adopt the second

general form, though the former is in most cases the one best

adapted for actual calculation. The general conclusion arrived

at is that if we write down any gradient or sum of gradients

whatever, with arbitrary multipliers, and arbitrary degrees
and weights subject to ip 2w< l, the result of operating
on that sum with

on "
I
2

1
2 .22

is a sum of seminvariants and invariants, except for cases

when it vanishes, as it must in particular for degree weights

subject to ip 2w = I.

181.] We thus obtain all seminvariants and invariants

whatever. To see this it suffices to observe that the result of
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operating on any seminvariant S is to produce S itself, for

Q.S = 0, so that OtlS = 0, 10 2 IS = 0, &c.

If, then, we operate on the most general gradient of weight

w, degree i, and extent in no term exceeding p, which ac-

cordingly contains (w ; i, p) arbitraries, we obtain a result

with (w ; i, p) (w 1
; i, p) arbitraries, which is the most

general seminvariant of the type in question. There is always
the requirement ip2w< l.

We may distinguish between those gradients of type w, i, p
from which the operator

or its equivalent, produces seminvariants, and those which it

annihilates. The latter are those gradients F of the type
which are of the form OF. (Note that if ip 2(ip w), i.e.

2wip, were positive, all gradients F would be of the form

OF, by the duality of Q, and and the fact that when

ip2w is positive all gradients are of the form Q.F". But

we are attending to cases in which ip 2w< 1, for which,

except in the one case where < is replaced by =, there is no

such expression in general possible.)

This we can see as follows. First, if the result of operation

vanishes, F is of the form OF, for the expression of the

vanishing may be written

which is of the form in question. Secondly, the operator
must annihilate an OF. For

n '
O

\F,

i + 3 "I

no
1.2.
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on. no = ao.oa, O 2n2 .no = no.o 2n2
,
... by

125, Ex. 4. Now this must vanish, for
rj + 2 is the

77
of f"

and is positive, so that the expression is operating on

a vanishing result, by the first relation of 180.

The same conclusions may be drawn from the second form

of the operator.

182.] To determine seminvariants and invariants by this

method we naturally operate on the simplest gradients we
can choose, i.e. on single products of letters chosen from

among ,
a

2 ,
a
2 ,

. . . ap . Unfortunately no simple rule presents
itself as to what products can and what cannot be written in

the form OF', i.e. what products lead to seminvariants or

invariants and what to zeroes.

In the next chapter we shall, however, see that when we are

not limited to a particular extent p a like method can be

employed with perfect definiteness, and we can assign an

exact system of products to which there is a one to one

correspondence of seminvariants.

Ex. 20. Obtain the invariant ace + 2bcd ad2
tfe c

3 of a quartic

by operating on a single term of it with

_
1.2 1.2 2

.3 1.2 2 .3 2 .4
n

Ex. 21. If F=OF', where F is of the type w, i, p and

ip 2 w
<j:

1
, prove that

v, =

Hence if F' be general of type w l, i, p, so as to involve

(w 1
; i, p) arbitrary coefficients, F or OF' must also be a sum of

(w 1
; i, p) independent multiples of linearly independent gradients.

Ex. 22. The gradients of type w, i, p, ip 2w^l, which are of

the form OP, are linear functions of the coefficients of xif ~w in pro-
ducts of order ip w+ 1 in x of i quantics chosen from

+a

... +a
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Ex. 23. If /, any invariant of a binary jr;-ic, can be expressed in the

form
4

1
/

1 +4 2
/

2+4J

/
8 +...,

where /
15
7
2 ,
/
3 ,

. . . are invariants, prove that it may be expressed in

the form
A

1
'I

l + A 2
'I

2+ A 3
'I

3 +... }

where A{, A
2',
A

3',... are also invariants. (Hilbert.)

Ans. Operate with either form of generator of invariants,

remembering that L and annihilate /, Iv 7
2 ,
7
3 ,



CHAPTER XL

FURTHER THEORY OF SEMINVARTANTS. THE BINARY

QUANTIC OF INFINITE ORDER.

183.] & expressed by means of roots. We commence this

chapter by a consideration of the expression of seminvariants

by means of the roots of a quantic, and more particularly by
means of the sums of like powers of the roots, which might
well have been given at a much earlier stage.

It was seen in 91 that a seminvariant of

(a ,al5 a
2 ,...ap)(x, l)

p
,

in virtue of its having

for an annihilator, is a function of a and the differences

between roots. It is accordingly annihilated by

~/d\ d d d , .

Sf-y-j^-T- + + ...+ -, ...(2)vca' da
v

da2 dap
where a

ls
a
2 , ... ap are the roots. Moreover, any function of the

roots which has this last for an annihilator is a function of

their differences, by the ordinary theory of linear partial
differential equations.
We can see as follows, what is thus suggested, that the

effects on any function of the coefficients, which is therefore

a function of a and the roots, of the operators (1) and (2) are

identical, but for sign.

If

f(x)
=

(a ,a1 ,a2 ,...ap)(x,I)
p=a (x-al)(x-a 2)...(x-ap) )

U\ 4/ \ <>/ \ M
*. 1

Therefore ^(~
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Now in this identity equate coefficients of the same powers
of x on the left and right. It follows that

Consequently, when operating on any function of

a
,
alt a2t ...ap ,

d

d
da,

(? d d= a
-j

-- 2 &J -^
---

. . . pap, -=
J

184.] 12 expressed by means of sums of powers of roots.

Now by Newton's formulae for symmetric functions (Burnside
and Panton, 126), 15 a2 ,...ap can be expressed, rationally

and integrally, in terms of a
Q and s15 s2 ,

... sp ,
the sums of the

first, second, ... pth powers of the roots. Thus any rational

integral function of a
,
al3 a.

2 ,...ap may be expressed as

a rational integral function of a and s
l ,

s2 ,
. . . sp . Let us find

the expression for 2
(-T-)

which is suitable for operating with

on functions so expressed.

We have at once -7 sr = ra/"
1

,da
L

so that 2 (-=-
)
sr = rsr_T

.

c( ct

In particular 2
( )

s
1
= p = S

, say.
CSu Ot
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Also 2
(-=- )

a =

of CLQ and s
1 ,

s
2 ,

... sp ,

Also 2
(-J- )

a = Thus, the operation being on a function

/ d \ d / d*. d

%(} d
^da' 2

*

ds2

d d d

where s = p.

We conclude that

d d d

d d

i.e. that the & operator is identical in form, but for sign,
when expressed in form for operation on a function of a and
the s's, as when expressed in form for operation on the equi-
valent function of a

, a^ ,
a2 ,

. . . ap . Note however the absence

of a from the s-form of Q.

We gather then that, when a function of a
,
a19 aa ,

... ap is

a seminvariant, so is the same function of s
, i.e. p, and

s1) s.2 , ...sp . The latter function when expressed in terms of

the as will of course have a negative power of a
Q
as factor,

since the s's are functions of the ratios of the a'a to a .

The idea of this duality appears to be due to M. Eoberts.

Ex. 1. If a homogeneous isobaric function of degree ,
in the

coefficients, and weight w, be called ^ when expressed in terms of
a

,
av a

z ,
... ap , and $2 when expressed in terms of a and the roots, <

3

when expressed in terms of a and
,,

s
2 ,

...sp ,
and ^> when no

particular expression is necessarily implied, prove that

Ex. 2. With the same notation

(6
C

*'S
1

+2s^ + - +^&-
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Ex. 3. With the same notation

which by Ex. 1 may also be written

d d d d

Ans. Prove the
<f>v <p.2 equality by considering that, as in 183,

(\
'

the efifect of is that of 21 1 I on the function expressed in terms
X
*~

/

\ /
of ap and av a

2 , ... ap .

Ex. 4. By means of the expressions for the operators in terms

of a and roots prove the known equivalence of an operator and

a multiplier
120-012 = ip2w.

Ex. 5. By Leibnitz' theorem prove ( 125, Ex. 1) that

= r(ip

Ex. 6. By means of the equivalence of

_,/cZ\..cif c?

2
( )

and s -=- + 2s, -f- ...
vc?a/ "^ c?s

2

prove that, if sp+1 ,
sp+2 , ... be regarded as functions of s

l ,
s
2 ,

... s
p ,

+ ... +_p5y_ 1 )
sp+r

- (p + r) sp^._ r
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Ex. 7. By means of Ex. 3 prove that, whether m be less than equal
to or greater than p,

+ 2s
3 + ... + psf+l

-^)s
llt
= Osm .

Ex. 8. Also, even when m exceeds
/;,

185.] It must be borne in mind that two distinct things

may be meant by the expression of a function of a
,
alt a2 ,

. . . ap
in terms of a and the sums of the powers of the roots. We
may mean the expression in terms of a and s15 s

2 , s3 ,
... sp

only. This expression is in all cases unique, and, when the

function of a
, a^ ,

a
2 ,

. . . ap is rational and integral and of

weight not greater than p, is the only expression. When, how-

ever, the weight exceeds p, there will be, as a rule, also other

expressions involving sp+l ,
sp+2 , ... or some of them as well as

lower sums. The above articles contemplate the unique

expression obtained from any correct expression by giving in

it to sp+1 ,
sp+2 , ... their values in terms of s l3 s

2 ,
... sp .

We shall have occasion presently to consider the binary

quantic of infinite order, in which the series a
,
av a2 ,

a3 ,
... of

coefficients is unending. In its case the distinction does not

arise.

Ex. 9. Prove that, if a homogeneous isobaric function of

, a,, a
a , ...Op be expressed in any manner in terms of a and

, 2 ,... sp ,
sp+l ,..., and when so expressed be called

</>4 ,

(2) t'4>
= a
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186.] Completion of 174. It is interesting to gather

from 183, and the examples which follow 184, the following

conclusions fl

which, if we put a' for a+ and similarly as to all the roots,
a
o

i. e. if we transform (a ,
a1} a-2) ... ap) (x, l)

p into

(a , 0, a/, ... a/) (W ^ , l)a
o -

a form without its second term, may be written

the remainders of the right-hand sides vanishing since a/ = 0.

We must not lose sight here of the tacit assumption made that

the function operated on can be expressed in terms of a and

i H
-

2 "I

l
-

> ... ap -i
- which we have called a/, a/, . ,.ap .

a a a
The functions which can be so expressed are, we know, semin-

variants. The second equation really exhibits the fact anew.

The weights w and w' are equal. Consequently that equation

gives 1 = 0, i.e. that the function operated on is a semin-

variant.

In these equalities H', 0' and w' (regarded as an operator)
are the same operators in a

, a/ (= 0), a/, ... ap as 12, and u'

are in a
,
al5 a2 , ... ap . They contain the symbol -7, whose
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meaning is not obvious, but is really defined by the first of the

equalities.

This symbol may be eliminatedby subtracting (p 1)a/times

12' from a times 0'. We have, in fact, since a2
= a

2
>

aQ0'-(p- 1) a2
12' = ^ (ip- 2w)

We may take this in connexion with 174. The operator
on the left is the \// of that article. We have, in fact, here

before us the materials for the proof of the converse propo-
sition there stated, that every gradient in a

, a/, a/, . . . a/ for

which ip 2w = and which has \f/' for an annihilator is an

invariant, i.e. is annihilated by as well as by 12, which last

must annihilate it as it does any function of a
, a/, a/, . . . a/.

We remember that the facts of being annihilated by 12, and

being of properly connected degree and weight, were not

sufficient to assure us of its invariancy in default of evidence

either that it had for an annihilator or that it was integral

in a . We now see that as 12 and v// annihilate it, and as the

relation ip 2w holds, the annihilation by a 0, and therefore

by 0, follows.

Ex. 10. Prove that a a^(ip 2 w) cannot annihilate any function

which is fractional in a and for which ip 2w is zero or positive.

Ans. The terms of highest degree in a~l in the expression of

the annihilation of Pa ~'*+ Qa ~('x
~

1

)+ ... +T must vanish. This

gives P = 0. So Q = 0, &c.

Ex. 11. Any gradient in a
, a,, a

2 , ... ap for which ip2w is

positive and which is annihilated by a a
l (ip 2w), is the product

of a power of a and a gradient which it annihilates and for which

ip 2w = 0.

Ex. 12. Hence \// only annihilates gradients in o
, a/, 3', ...a/

which are invariants or invariants multiplied by powers of a .

187.] Partial differentiation with regard to sl} s2 ,...sp .

fr\ (?}_ 1 )

Let us replace a
, p^,^-^ 7r~^

a
2> >

ap ^Y c
o>

c
i

c
-

c*>
1 . 2

and also replace x : 1 by 1 : y, thus considering the >-ic with-

out binomial coefficients

R 2
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Taking logarithms we have at once

log (c + c,y + c
2y

2 + . . . + cp y
p
)

Now regard c v c
2 ,...cp , and also 8p+ i,8p+ .2 ,... as functions

of C and sl5 s
2 , ... sp . Partial differentiation with regard to sr)

where r<l and >^>, gives us the identity

5 _ nl _^1 ^i _ di^y^L . i

1 r dsr p + 1 csr ^? + 2
"

)

which holds for all values of y. Equating corresponding co-

efficients on the two sides we have

dc
-y^ = 0, ifm < r, anddsr

-~ = -- cm_r ,
ifm lie between r and p inclusive.

The other equations, given by the terms in y
p+l

, y
p+2

,...,

determine for us^1 , ^-2
, .

dsr dsr

Hence, if the operations on the right be on a function of

c
o> ci' C2> c

p? an(i that on the left be on the equivalent of

that function in terms of c and s
l5

s
2 , ...sp ,

d _ dc d dc-L d dc
2

d dcp d
dsr

~
dsr dc ds r dc dsr dc2 ds r dcp

If d d

In particular, taking"^ = 1
,
we have

d ( d d <

Let us here revert to our first notation, replacing

, P(P !)
c
oi

clt c2 ,...cp by ao'^^'
i 2

2' *" a^
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so that sv &c., are the sums of the powers of the roots of

The result obtained is that

2 dd (Id
~T~ = 1

~
tt n "7

ctej (p <^a
1

~-
1 ~T~

p 1
1 dai3d d

188.] H as an annihilator of non-unitary symmetric
functions. A more instructive conclusion is, however, derived

by replacing C
G!

cl5 c
2 , ... cp by 6

,
J

, ^ ,

^,
...

,
so that the

equation of which s1} s 2 , ...sp are the first > sums of the powers
of the roots is

With this notation we obtain that

d
-,

d -. d
-,

d d

whose right-hand side is of the well-known form of 12.

Our conclusion hence is that the seminvariants of

*~
y + a2x^y +... + ap y*>

are identical, but for the factor aj where i is the degree in

each case, with those symmetric functions of the roots of

which when expressed in terms of s15 s
2 ,

... sp are free from s,.

Reference is made to works on the Theory of Equations for

the fact that a symmetric function

of which I +m + n+ . . . is the weight, and the greatest of

l,m,n,... is the least number which can be taken for i that
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upon multiplication by a *
it may become integral in the co-

efficients, may be written as a rational integral function of

so that, if none of I, m, w, . . . is unity, and if the weight
I +m + n + . . . does not exceed p, ^ does not occur, and

a seminvariant is thus obtained.

If, however, either of l,m,n,... is unity no seminvariant is

given.

If, even though this be not the case, the weight I +m + n + . . .

exceeds p, then, though the expression in terms of a and

#i5 S2J S35 3
si+m+n+... does not involve s

1 ,
the same cannot

be said necessarily or as a rule of the expression in terms of a

and sls s
2 ,

... sp ,
for sp+l , &c., expressed in terms of s

1 , s,, ...sp ,

are not free from Sj by 187.

When p is infinite the case of I +m + n + . . . exceeding p does

not arise. Thus in this limiting case s
x
does not occur in the

symmetric function 2 . a^ a
2
TO a3

n
... unless one or more of

I, m, 7i, ... is unity, and does otherwise.

The seminvariants of
( ,

al} a2) ...)(x, y)
p

,
when p is in-

finite, are then what are called the '

non-unitary
'

symmetric
functions of a

15 a
2 ,

a
3 ,

...
,
where

each multiplied by aj, where i is the degree, i.e. is the

greatest of the indices I, m, n, ... in the typical product of

roots summed, or any greater number.

It is from this point of view that MacMahon has discussed

the concomitants of the binary quantic of infinite order.

It will of course be remembered that a seminvariant, of

a quantic of any order (a ,
a

L , a2 ,
... apj^(x, y)

p
, which is only

of extent r, i. e. which involves only a ,
al} a.2 ,

... ar is equally
a seminvariant of each of the lower quantics

(a ,
alf a25 ... ar)(x, y)

r
, (a ,

a
x ,
a2 ,... a,, ar+1)(a?f y)

r+
\ ... .
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Thus, in particular, when we have a seminvariant of a binary

quantic of infinite order, we have in it a seminvariant of

a binary quantic whose order is the extent of the seminvariant

and one of every order higher than this extent. If, in fact,

d d d
aQ j

--t-2ai:^
--\-3a2 ^

--h... to oo
da

1

I da
2

2

annihilates S(a ,
alt a2 ,

...
a,.),

then equally do

d d d d
a ~r~ + 2 hi--\-3a2 -j- + ... + rar_l

-r-
>

Q da
l

1 da2
2 da3

*dar

d d d d , d

&c., &c.

Ex. 13. Prove that, for any positive integral value of p,

(a , 1} a
z ,

...ap) (x, l)
p

/ a, d a* dz d3

Ex. 14. Prove that all the coefficients but that of t in the expansion
in powers of t of

are seminvariants in the letters a
,
a
1}
a
2 ,

a
s , ... ,

fractional in a .

189.] Generating Functions. Perpetuants. Complete
tables of symmetric functions have been calculated up to the

weight 14: for weights 1 to 1 by Meyer Hirsch (cf. Notes to

Salmon's Higher Algebra] : for weight 1 1 by Faa de Bruno

(cf. his Formes Binaires): for weights 12 and 14 by Durfee

(Am. Journal, Vols. V, IX) : and for weight 13 by MacMahon

(Am, Journal, Vol. VI). Thus a complete set of seminvariants

up to weight 1 4, of which all seminvariants whatever up to

that weight are linear functions, is known.

It. has been seen
( 135) that the number of linearly inde-

pendent seminvariants of weight w degree i and extent p or

less is the coefficient of xw in the developement of
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Here make p = 00. It follows that the whole number of

linearly independent seminvariants of weight w and degree i

of the quantic of infinite order, or of a quantic of order not

less than the weight iv, is

co. xw in developement of
-, srr ^ / ^
(1-#

2

)(1 aj
3
)...(l a?*)

We may want also the number of linearly independent

(or asyzygetic) seminvariants of degree-weight i, w which are

asyzygetic with seminvariants of the same weight and lower

degrees multiplied by powers of a . This number may be

found by subtracting from the number of weight w and

degree i the number of weight w and degree il. Thus it is

co. xw in developement of -r -. T r-^-.
(1 x*)(I-x

3
) ...(1 a5*~

1

)(l xl

)

1

The same generating function is given by MacMahonV

theory of non-unitary symmetric functions. The non-unitary

symmetric functions which give such seminvariants are of the

form 2 . a-fa a
3

n
. . . , where one at least of the indices I, m, n,...

is i. and where, as in general, none of them is unity or greater
than i, and their sum is the weight. Now the type-products
of weight w 9 whose summations give such symmetric functions,

are in number equal to the number of ways in which w i

may be made up of i 1 or fewer numbers chosen from

2, 3, ...-, i.e. to the coefficient of xw~ i in the expansion of the

product

i. e. to the coefficient of xw in xl times this product, which is

the developement of

The problem of the enumeration of the irreducible semin-

variants of the binary quantic of infinite order is one which
admits of solution. Indeed it has been solved by MacMahon

by an analysis of non-unitary partitions, and his conclusions
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have been fully confirmed symbolically by Stroll. Irreducible

seminvariants of the quantic of infinite order are called

perpetuants, the name being Sylvester's. A perpetuant is

a seminvariant which cannot be expressed rationally and

integrally in terms of other perpetuants of lower degree. Of
the first degree there is one perpetuant a . Of the second

degree there is one perpetuant of each even weight, viz.

a a.
2 a?, aQ

a4
4 a

x
a
3 + 3 a2

2
. a a

e
6 a

:
a5 + 1 5 a2 a4

1 Oa3
2

, ____

For any higher degree i the number of perpetuants of weight
w is the coefficient of xw in the developernent of the generating
function -

The mistaken idea must not be entertained that when we
know the perpetuants of extent p or less, i. e. the irreducible

seminvariants of extent p or less of the quantic of infinite

order, we know the irreducible seminvariants or ground forms

of a>-ic. This is not the case. There may be seminvariants

of extent p or less, which are not capable of rational integral

expression in terms of lower seminvariants of extent p or less,

but which are in terms of seminvariants of lower degree and

extents some of which exceed p. One instance which we have

met with will suffice to illustrate this. We have found
(

1 69)
that the seminvariant (ad be)

2
4 (ac b2

)(bd c
2

)
is irre-

ducible when we are confined to extent 3, being an irreducible

invariant of the cubic. But
( 170) when we proceed to extent

4 it is no longer irreducible, being capable of being written

It is an irreducible invariant of the cubic, but is reducible for

quantics of higher order, and so is not a perpetuant.
For a synopsis of Stroh's method of investigation (Mathe-

matische Annalen, Vol. XXXVI), see Exx. 35 to 42 at the end

of the present chapter.
The theory of perpetuants has been recently completed by

MacMahon, who has investigated expressions for them in the

notation of partitions. (Proc. Lond. Math. Soc. 1895.)

1^0.] Reciprocity. By Hermite's law of reciprocity there

must be a strictly correlative theory to much of the above in
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which the ideas of degree and extent are interchanged. It

concerns seminvariants of infinite degree, or of degree not less

than weight, just as the above theory concerns seminvariants

of a quantic of infinite order, or of order not less than the

weight of the seminvariants in question.
The number of asyzygetic seminvariants, for which i is not

less than w, of a p-ic, is thus the coefficient of xw in the

developement of

and the number of asyzygetic seminvariants of a p-ic, for

which i is not less than w and which are really of extent p,

so as not to belong to a (p l)-ic equally, is the coefficient

of xw in the developement of

These facts may be independently arrived at. By 163 the

seminvariants in question are rational integral functions of

A 2,A 3 ,...AP ,
i.e. a a

2', a
2a3',... a/-

1

^/, raised to the requi-
site excess of degree over weight by the power aj~

w of a
Q
as

factor.

The theory dual to that of perpetuants is not so obvious.

191.] Power ending products. It has been seen in the last

article that the / v / i \

(w\ oc, p)-(w-l;oo,p)

asyzygetic seminvariants of a ^9-ic whose weight is w and

whose degree is a definite number not less than w have a one

to one correspondence with the

(w;oo, p) (w-l;a>, p)

products of weight w of a
,
a2 ,

a3 ,... ap ,
i.e. with the 'non-

unitary
'

partitions of w.

It is by reciprocity suggested as probable that there is

asystemof
(w; *,,)_(,_! ;i,)

partitions of w into i or fewer parts, i. e. a system of this

number of products of weight w of i of a
,
alt

a
2 ,
a

s,...ap ,

to which there is a one to one correspondence of the
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a ;yzygetic seminvariants of weight w and degree i of the p-ic,

A hen p is infinite or not less than w.

It is also suggested that those partitions of w, or those

I roducts, are the partitions or products which are exhibited

i; i 130 by aid of Ferrers' diagrams as the reciprocals of non-

imitary partitions or products.

Now if we write down the diagram of a non-unitary

product, we see that the absence of a
x

in the product is

exhibited by the fact that the first two columns at least in the

diagram contain equal numbers of dots.

This tells us that in the reciprocal product the letter of

highest suffix which occurs is present to a higher power than

the first.

Products of this class are called by MacMahon and Cayley

power ending products or poiver enders. Let us adopt the

notation a, b, c,...of alphabetical sequence instead of the

notation a
,
al5 a2 , ... of numerical sequence. Power enders

are those products of some of a, b, c, ... which, when their

factors are alphabetically arranged from left to right, end in

a higher power than the first. Thus a2
,
ab2

,
abd3

,
c 3

,
. . . are

power enders, while a, a2
b, ab2

d, c, ... are not.

The whole number of products of weight w of i of a, 6, c, ...

is (w ;
i

t QO), and the whole number of non-power enders is

the number of products which can be derived from products
of degree i and weight w 1 by replacing the last letter in

each, once only, by the next more advanced letter, i.e.

is (w1 ;i', QO). The number of power enders of the type is

then
(**;; *, oo) -(<*;- l;i, oo).

We shall see that there is the expected one to one corre-

spondence of these products with a complete system of

(w ; i, oo) (w 1
;
i

t GO) asyzygetic seminvariants of weight w
and degree i

;
in fact, that the latter complete system may be

derived, one from one, by differential operations on the former

complete system.

192.] An annihilator of all gradients. Let us refer back to

180, and proceed to the limit when p, the order of the

quantic there under consideration, or the extent of 12, is

infinite. Remember, too, that though we consider the quantic
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of infinite order we deal with gradients of finite weight,

involving consequently only a finite series of the letters

a, b, c, d,... .

We have now
& = ad6 +2&d c +3cd (f +... to oo,

where c)
t
as usual denotes -=r We have also

=

where p is infinite,

where the result of operating with (p on a gradient of finite

extent vanishes in comparison with that of operating with

the infinite p .9-.

We have also rj
= ip 2 w,

which is infinite, and consequently always positive, iv being
finite.

The limiting form for p infinite taken by the operator

is hence at once seen to be

This then, by 180, operating on any gradient in a, 6, c, d, . . .
,

and in particular of course on any single product, produces
either zero or a seminvariant of the quantic of infinite order,

or, as is the same thing, of a quantic of order not less than w,

the weight of the gradient.

193.] It is really most convincing and easiest to prove this

independently, and not deduce it as the limit of something
else. The student will have no difficulty in proving by the

method of 123, &c., that, G being any gradient of degree i,

&c., &c.,
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and by addition of properly chosen multiples of these we
obtain the identity

1 flS 1 fl S2
fl

in which the series practically terminates, since lw+1 G = 0,

so that no doubt arising from questions of convergency

presents itself.

This tells us first that any gradient G is of the form 12 F,

when we allow the extent of F to be greater than that of G,

and 12 to be non-terminating. The limitation imposed by
the requirement ofip 2w to be positive in 128 does not of

course arise, p being now infinite.

The result we need follows by putting 12 F, where F is any

gradient of degree i, for G. This gives us that

so that, as in the last article,

f 1 i2 1 . 2 r 1 . 2 . 3

produces from any gradient of degree i a seminvariant or zero.

Ex. 15. Prove in like manner that, <^> being as in 192,

>*-<I>*QI)&G = 3(2w2)<l>*Q*G,
&c. &c.,

and hence that

-2 1
'

(2w-2) (2w-3) 1.2

...,to w+l terms,
4) 1.2.3

produces a seminvariant or a zero from every gradient of weight 2 or

more.

194.] Two generators of all seminvariants. One to one

correspondence of seminvariants and power enders. Now a

gradient F which
-22
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annihilates is of the form $F', for the fact of annihilation

g '

If then we can be sure that no power ending product can be

of the form SF', we shall be sure that the result of operating
on any power ending product is a seminvariant and not

a zero.

Now this is the case. Take any gradient F' whatever, and

let ar be the most advanced letter which occurs in it, so that

where A, B, C, ... are all free from ari and B, C, ... do not all

vanish. It follows that

= ar+l {B + 2arC+ 3ar
2D+ ...

} + terms free from ar+l .

Thus, B, C, D, ... not all vanishing, &F' contains necessarily

a non-power ending term or terms
; namely a term or terms

ending in the first power ar+1 .

iaa 1 32n2

Thus i_j_ + ___...,

which write 1 3X,

generates seminvariants from all power enders.

Moreover, from the complete system of

power enders of degree i and weight w it generates a complete

system of (w ; i, oo) (w 1
; i, oo) seminvariants of that degree

and weight. For, if possible, let the seminvariants

generated from the complete system of power enders of degree
i and weight w, be connected by a linear relation

This would necessitate that
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i.e. that (l-aX)(A1
P

1 + A
2
P

a + A
aP3 +...) = 0,

or A
1
P

1 + A
2
P

2 + A
3
P

3 +... = $. X(A 1
P

1 + A
2
P

2+ A
3P3 +...),

i.e., by the above, that

A
1
P

1 + A2
P

2 + A3
P3 +...

involve at least one non-power ending product. But it does

not.

It is then completely established that there is a one to one

correspondence between a complete system of power enders

and a complete system of seminvariants, the latter complete

system for any degree i being generated from the former by
operation with

.2.3

The theorem of 193, Ex. 15 would lead to the same
conclusion as to one to one correspondence, and afford an

alternative generator of all seminvariants from power enders.

ADDITIONAL EXAMPLES (MISCELLANEOUS).

Ex. 16. A non-unitary symmetric function of the roots of an equa-
tion of order p, i.e. one whose expression in terms of s

15
s
2 ,

... sp does

not involve s
lt or, if p be not less than the weight l+m+n+ ...

,
one

2(a/a2

ma
3

n
...)

in which none of Z, m, n, ...is unity, has its full

expression in terms of the coefficients determinate when the non-

unitary part of that expression, i.e. the part of it free from the

unitary coefficient a
lt

is known, just as the full expression of a senrin-

variant is determinate from its non-unitary portion. (MacMahon.)

Ex. 17. Prove that

and

generate seminvariants from seminvariants. (MacMahon.)
Ans. Form the alternants with the infinitely continued

Ex. 18. If G be any gradient,
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where H is infinitely continued, is either a seminvariant, not neces-

sarily integral, or zero.

Ex. 19. Among the seminvariaiits thus derived from gradients G
all integral seminvariants of the type of G are included.

Ans. For the result of operating on S is to produce S.

Ex. 20. The coefficients of powers of x in the expansion of

1.2.3
' V

/ a2

where is any positive integer, are all seminvariants, except such as

are zero.

Ex. 21. If S be the infinitely continued operator defined in 192,

and if S
lt
S2

be two seminvariants of degrees iv i
t respectively, then

i^S9^rS1 ilS1^St
is a seminvariant. (D'Ocagne.)

Ex. 22. Prove that 12 annihilates the product

Q

(O,-\-b(x y) -f- \x y/~\~ } \Q>~\~b\y #)'t~ ....
{

1 . 2

...{a+ 6 (u v) + ...
} {4-6(* #

) + f>

where a;, T/, 2;, ...?/, v are arbitrary, and the series in brackets extend

infinity ; and hence that all non-vanishing coefficients in the produc

expanded by powers and products of x, y, z, ... u, v are seminvariants.

(S. Roberts.}

Ex. 23. If S be a seminvariant of (a, 6, c, d,...) (x, y)
00

, prove

(2f&3
>

i<f>)S, where the notation is that of 192, is another semii

variant of the same degree, and weight one higher. (Cayley.)

Ans. Cf. 165, and the example 8 which follows it.

Ex.24. If in any seminvariant of (a, 6.1, c.1.2, d. 1 .2. 3,...) (a?, y)'

a, b,c,d,... are replaced by 6, e,d,e,... the result gives the terms free from

a in a seminvariant of the same degree and higher weight. (MacMahon.)

Ex. 25. A seminvariant of (a, 6, c, d, e, .-)(#, 2/)
^s a seminvariant of

the system

(a, 6.1, c.1.2, d.1.2. 3, ...)(, y)
00

(6, c.l, (Z.I. 2, e .1.2.3,...)(tf,2/r

(c, d.l, 6.1.2, ...
) (a, y)

00

&c., &c. (MacMahon.)

Ex. 26. The seminvariant of weight and degree 3 of

(a ,
a

l}
a

2 ,...ap) (x, y)
p
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is a multiple of 3 times the sum of the cubes of the roots of the

equation *p+ y a*""
1 + -%- #p

~2 + ... + ~=0.

Ex. 27. If G be any gradient of weight w degree i and extent p,
and if <r be the sum of its numerical coefficients, then, whatever x be,

Ex. 28. Hence any seminvariant of weight w and degree i is

annihilated by the operator which is the coefficient of xw in the

expansion of

Ex. 29. Referring to 174, Ex. 13 for the notation, show that, if 5r

denote r\ (pr)l -=, and 8/ denote rl (pr)\ -j , bp ,
tip_ lt

... S
ctcir (ji ar

are the same functions of 8/, b
f

p_ v ... 8
' and m as a

,
au ... ap are of

ac ,
a

x ,
... ap and m.

Ex. 30. In the same notation bpt 8p _/, ... 8/ are the same functions

of 8p ,
6p_a ,

... 8 and 7/1 as a
, a,, ... ap are of a

,
a15 ... ap

and w.

Ex. 31. If, upon the substitution of X+mY, Y for x, y,

(a , %, a
2 ,...ap)(aJ, 2/)

P

become (a ,
a

x ,
a
2 , . . . ap) (X, 7)

p
,

then (8P5 -V:. V2'-(-l)^o)(^2/)
P

becomes (/, -Vi. P-. - (-l)'V) (^ ^^ (Sylvester.}

Ex. 32. Any seminvariant of
( , 1?

a2 , ... ap) (a?, y}
p
becomes, when

initSp, 8P _!, 8P_ 2 ,...( 1)
P 5 are put for aoi

a
lt
a
2 ,...ap ,

an operator
which has the same effect on any function of a

, 15
a

2 ,
... ap as the

result of replacing in it 8p ,
Sp _ a ,

... by 8/, 6
/

p _ 1 ,
... has on the equiva-

lent function of a
,
a
1} a.

2 ,
... ap ,

and may be called a seminvariant

operator. (Sylvester.)

Ex. 33. More generally, any operator obtained by writing down
a seminvariant of the two qualities

(a ,
a
1?

a2 ,
... ap) (x, y) (8p , -_,, 8p_ 2 ,

- (- l)*o) (^ vY>

the symbols 8 being written last in every term, is a seminvariant

operator. (Sylvester.)

Ex. 34. Hence obtain the results (cf. 186) that

are four seminvariant operators.

s
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Ex. 35. If Oj, a^ ... a
t
are i symbols, and

(<*-<>f^-otf"(*-*
any product of w differences between pairs of them which is such that

not more than p factors involve any one of the symbols, and if the

product is expanded and multiplied by a \ and in the result is put
a a

for every one of the first powers a
x , c^,...^, for every one of

a a
o

a?, a
2

2
,

. . . a*, and generally for everyone of a/, a/. ... a/ ,
the result

a
o

is a seminvariant of (a ,
a
lt a

z ,
... ap) (x, y^

p of degree i and weight w\
and all seminvariants are linear functions of seminvariants which can

be thus expressed. (Stroh.)

Ans. Such a function- is annihilated by
---h i--H ... + y
ctctj

da
z da^

and a seminvariant is annihilated by H. Now both these operators
are expressed by

Or again, the functions lead hyperdeterminants ( 60).

Ex. 36. If A,, X2 ,
... A

{
be * quantities whose sum is zero, then, after

expansion and substitution as in the last example,

is a seminvariant of degree i and weight w, provided that w do not

exceed p. (Stroh.)

Ex. 37. Ifp be infinite, or not less than w, and if e
1 (= 0), e

2 ,
e
s ,

... e
t

be the elementary symmetric functions

S(A)(=0), 2(A1
A
2), S^A.),..., AA-.A,,

then, when the function of the last example is expanded and expressed
in terms of powers and products of e

z ,
e
3 ,

. . . ep ,
and substitution for the

a's and their powers made as before, the coefficients of the various

products of -e's are a complete system of (w ; oo, i) (w 1
; oo, t)

linearly independent seminvariants of weight w and degree i. (Stroh.)

Ex. 38. If the numbers of powers and products of e
2 ,

e
s ,...ei in the

sum of Ex. 37 be diminished as much as possible by means of the

relations in e
z ,

e
s ,

. . . e
L any one of which expresses that in some way

^ +^+ +^ *s a sum of two sums

each of which vanishes, the coefficients of powers and products of the

e's which remain are non-perpetuant seminvariants, and the number of
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perpetuants of degree i and weight w is the number of powers and

products which have disappeared. (Stroh.)

Ans. Seminvariants which do not disappear are reducible in

terms of seminvariants of lower degree, and others which are not

syzygetic with these are not so reducible.

Ex. 39. Perpetuants of degree i and weight w are just as numerous
as products of e

2 ,
e
s ,

... e
i
and powers of them which when multiplied

are raised to weight w in e-suffixes, i.e. to dimensions w in the A's.

Here

IIA = 6., n (A 1 + A
2)
=

(A1+ A
2) (A 1+ A

3)
... (X2+ A

3) ... (A<_ 1 + A),

&c., and v is \i or \(i 1) according as i is even or odd. (If i is

even, two conjugate sums Aj + A
2 + ... +kv ,

Av+1+ Av+2 -(- ... +A
;
are

not both written in the last product.) (Stroh.}

Ex. 40. The product IIA. U (\ + X
t) .., U (A x + A

2+ ... +\v)
is of

weight 2* 1

1, whether i be even or odd. Consequently the weight
of the lowest perpetuant of degree i is 2*" 1

1. (Stroh.)

Ans. For instance, i even gives the weight

12

Ex. 41. The number of perpetuants of a higher weight w than this,

and of degree i, is the number of solutions in positive integral and
zero values of ;u2 , fx3 , fx4 ,

... of

Ex. 42. Deduce the generating function for perpetuants ( 189),
viz.

S 2



CHAPTER XII.

CANONICAL FORMS, ETC.

195.] WHEN a binary quantic (a ,
alf a

2 ,...ap) (x, y)
p

is

transformed by the linear substitution

x = IX + wF, y = I'X + m'Y,

four constants I, m, V, m' are introduced whose values may be

assigned at will. These may be so chosen that the form of

the transformed quantic is simplified by the absence of certain

of its coefficients, or by relations among certain coefficients.

The quantic is thus reduced to a simpler form without any
loss of generality.

For instance, we know perfectly well that by giving

I, m, l'
t
m' the values 1, 0, 1 the quantic is transformed

a

into, one wanting its second term. The quantic without

a second term is then not a special one, but is in effect just
as general as one with its second term present. Any binary

quantic can be so expressed by means of a linear trans-

formation.

Moreover, it is to be noticed that the deprivation of

a quantic of its second term is not something which can be

done by linear transformation in one way only, but that

there is a wide class of linear substitutions any one of which
will effect the purpose. In fact, if by the general linear

substitution
( ,

al5 a2 ,...ap) (x, y)
p be transformed into

(A ,
A lt J.

2 , ... Ap) (X, Y)
p

, we see at once that

A
l
=

a,

in which we may give to I, m, I' any values we please, and

obtain, by solution of an equation of the first degree, a value

of m' which, going with those values of I, m, i', will make
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A
l
vanish. The usual way of depriving a quantic of its

second term is then only the simplest of many ways.
We see, in fact, that by proper choice of the four quantities

Z, m, ', m' we may in general impose four conditions on the

coefficients in a binary quantic, and still have a form to which
the quantic can be reduced by a linear substitution without

losing its generality. These may not be any four conditions

we choose, for the equations in Z, m, Z', m' which express four

conditions may not prove to be consistent with one another.

In particular, for instance, we can never make four separate
coefficients in the quantic vanish. For to express this we
should have to make I, m, I', m' satisfy four homogeneous

equations, i. e. to choose the ratios > > , three quantities,
771 m m

so as to satisfy four independent equations, which cannot be

done.

196.] Definition of canonical forms. Now the binary ^>-ic

contains p+l coefficients. Taking 4 from this number, we
see that no binary p-ic with less than p 3 perfectly arbitrary
coefficients can be equivalent to a perfectly general binary

p-ic subjected to linear transformation, but that there is

a certain presumption in favour of one which has p 3

perfectly arbitrary coefficients, or whose coefficients involve

p 3 perfectly arbitrary quantities, being equivalent to the

general binary p-ic, which presumption must, however, in

every case be tested before it can be stated as a certainty.

A form of binary p-ic whose coefficients involve p 3

perfectly arbitrary quantities, and which is proved to be

a form to which the general binary ^9-ic can be reduced by
a linear substitution, is called a Canonical Form of the binary

p-ic. There may be different forms for the same value of p
which have equal claims to the name canonical, but in

practice, for the cubic, quartic, &c., respectively, one canonical

form is chosen because of symmetry of shape and convenience

of treatment, and often spoken of as the canonical form.

The case p = 2 of the quadratic stands by itself in that

p 3 is negative. Of course the three coefficients of a binary

quadratic cannot be subjected to more than three conditions.

To each of the simple forms X2 + Y2
,
XY & quadratic can be
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reduced in an infinite number of ways, since one of I, m, l'
y
in'

is arbitrary. Indeed, the general binary quadratic

az? + 2 bxy + cy
2

can be given the form of any quadratic a'JT2 + 2&'JfF+c'F2

whatever whose discriminant a'c'b' 2 does not vanish. The

like fact is true as to quadratics in any number of variables.

197.] Canonical forms have here been defined for binary

quantics only. For quantics in more variables than two the

definition is similar. A form of <?-ary ^?-ic which is a simplest
form to which linear transformation can reduce the general

<?-ary p-ic is a canonical form of the #-ary p-iG, one form

being regarded as more simple than another when of its

coefficients a smaller number are arbitrary, or, as is the same

thing, when its coefficients are known functions of a smaller

number of arbitrary quantities.

The number of coefficients in the ^-ary p-ic being easily

seen to be

and the number of constants in the general scheme of linear

substitution being g
2

,
the number of perfectly arbitrary co-

efficients left in a canonical form will be

when the degree p is sufficiently great for this to be positive.

1,98.] The knowledge of invariants and covariants both

aids^and is aided by the determination of canonical forms of

quantics. On the one hand, as we shall illustrate by examples,
invariants and covariants supply information as to forms

which are canonical and the reduction of general quantics to

those forms, and on the other, since invariants and covariants

of a quantic have relations to one another, expressed by homo-

geneous isobaric syzygies, which hold however the quantic be

linearly transformed, it suffices, in order to discover those

relations, to consider the quantic and the invariants and
covariants in simpler forms which they can assume without

loss of generality.
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Geometrical interpretation of invariants and covariants is

also greatly assisted by the simplification afforded by canonical

forms.

199.] Canonical form of binary cubic. The binary cubic

ax3 + 3 bx2
y + 3 cxy

2 + dy
3

can be expressed in the canonical form

In other words, constants \, p, A/, pf can be found such that

ax* + 3 bx2
y + 3 cxy

2 + dy
3 =

(\x + vy)
3 + (K'x + i/y)

3

is an identity.

A presumption in favour of this is afforded by the fact that

the identification of coefficients of x3
,
x2

y, xy
2
y y

3 on the left

and right gives four equations for the determination of

A, p, A', // ;
but we have to be sure that the four equations

are consistent and independent and can actually be solved.

This will first be proved without any reference to the in-

variant theory.

With a change of notation, we have to see that p, q, a, /3

can be found so as to make

i. e. so as to make simultaneously

p +q =a,

pa +q{3 =b,

=c,

The first three of these are consistent for the determination

of p, q if
1, 1, a

a, /3, b

a2
, /3

2
,

c

=
0,

and the values of pa, q ft which satisfy the second and third

also satisfy the fourth if

1, 1, b

a, /3, c

a2
, /3

2
,

rf

= 0.
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We have thus two equations for the determination of a, /3.

We may write them
Pa + Qb + Rc = 0,

and

where also P + Qa + Ra2 = 0, and P+Qp + R(B
2 = 0. These

are made consistent by taking for a and /3 the two roots of

the quadratic a, b, c = 0.

6, c, d

1, a, a2

Having thus found a and /3, any two of the first set of four

equations suffice to determine p and q. Thus the possibility

of reducing the cubic to the canonical form X3 + Y3 is proved,
and the means of doing it, by solution of quadratic and linear

equations, afforded.

The student should notice that there is failure to effect

what is desired when a, b, c, d have such specially connected

values that the quadratic for a and /3 has equal roots, i.e.

when
(ad-bc)

2
-4(ac-b

2
)(bd-c

2
)
= 0,

that is to say, when the discriminant of the cubic vanishes, so

that the cubic has a square factor. The canonical form for

cubics with a square factor is not X 3 + Y3 but X2 Y.

This leads to the general remark that a canonical form of

the general quantic of any type is one to which a quantic of

that type can be reduced when general, but not necessarily
one to which every special quantic of that type can be

reduced.

Ex. 1. Verify that

Ex. 2. A binary cubic with general coefficients can be linearly
transformed into any other.

Ans. Through X3+ Y* as an intermediary.

200.] The reduction of the cubic to the form

and thence to its canonical form X3 + Y3
is most easily effected

by means of its one quadratic covariant, the Hessian
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Regard the cubic

as the transformed form obtained by the substitution

whose modulus is (B a, from the form px'
3 + qy'

3
.

The Hessian of the transformed is the Hessian of the un-

transformed multiplied by the square of the modulus. Thus

Consequently if the Hessian

(ac-b
2
)x

2 + (a

be broken up into factors

(ac-b
2

the cubic must have the form

p(x + ay)
3

in which p and q may be found by the equations

Thus p^(x + ay) and q*(x + f3y), the X and T of the canonical

form, are found.

The determination of the canonical form of the binary cubic

effects the solution of a cubic equation. (Of. 11, Exx. 14,

15.) For it reduces the cubic equation to the form

i.e. to the three linear equations

The student is advised to illustrate this by an example,

e.g. to solve #3 3#2 tana 3& + tana = 0.

201.] Concomitants of cubic in canonical form. We have

seen in 169 and elsewhere that the cubic

u = 0;X
3 + 3 bxz

y+ 3 cxy
2

-f- dy
3
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has, besides its Hessian

a cubicovariant

=
(a

2d-3abc + 2b3
)x* + 3 (dbd

- 2ac

and one invariant, its discriminant

A = (ad- be)
2

-4(ac- b2
) (bd

- c
2

).

The same functions of the coefficients and variables in the

canonical forms are
^-3 , -^3

XY,

X3-F3
,

1.

Now let M' be the modulus of the substitution which

expresses X and Y in terms of x and y, so that in the two

notations of 199

We remember from chapters ii, iii, that the index of the power
of the modulus, which has to multiply an invariant or covariant

of a binary quantic to produce the equivalent of the same

invariant or covariant of the transformed quantic, is equal to

the weight of the invariant or of the leading coefficient in the

covariant. Thus the information given by invariant algebra
as to a binary cubic a,nd its canonical form is presented in the

four identities _ V3 V3U -A. -f- JL
9

H=M' 2
.XY,

G = M'*(X*-Y*),

A = M' Q
.

Of these the last tells us at once that the modulus of the

substitution which expresses X and Y in terms of x and y,

i. e. the reciprocal ( 23) of the modulus of that which expresses
x and y in terms of X and F, is equal to the sixth root of the

discriminant.

We have also in a clear form before us the fact that
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u, H, G, A, though irreducible in that none of them can be

expressed rationally and integrally in terms of the rest, are

not independent, but are connected by the syzygy (cf. 169)

which is obtained by eliminating X, Y and M'. Moreover, no

other syzygy connects them, for there is no other way of

eliminating those three quantities.

It is of interest to notice that we have also readily given

by these identities the values of the p, q, a, /3 of 199. We
have u = X3 + F3 = p

A-^G = X3 - F3 = p

Thus, taking the full expressions for u and G, and attending

only to the equalities of the coefficients of a3 and x*y,

p + q = a,

pa + q/3 = b,

p-q = A

pa-q(3 = A
whence

2p = a + A-* (a
2d 3 abc + 2 b3

),

2q = a-A-*(a
2d-3a&c + 2&3

),

2p a = b + A-* (abd -2ac
2 + b2

c),

We have also Xz and F3 themselves
;
viz.

\ (u + A-* 6?) and \(u- A~* G).

The solutions of the cubic equation

(a, b, c, d) (x, 2/)

3 =

in x : y are then given by the three linear equations

(u + A-* 0)* + (u
- A-* G)* = 0,

(u + A"* 0)* + a) (u- A~* G) = 0,

(u + A-^ Q)* + <*
2 (u- A-* G)* = 0.

202.] Geometry of concomitants of cubic. Geometrically,

taking (a, 6, c, d) (x, y)*
= to represent three straight lines
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through a point, the reduction of the cubic to its canonical

form is the reference to the lines which form the Hessian.

As examples of geometrical information yielded by the

canonical form the following are left to the student.

Ex. 3. The cubicovariant of a pencil of three lines L, M, N repre-

sents the pencil L
f
,
M f

,
N' which consists of the harmonic conjugate

of L with regard to M and ^V, that ofM with regard to N and L, and

that of N with regard to L and M.

Ans. It suffices to prove that X Y and X+ Tare harmonic

with regard to JT+coY and X+uPY.

Ex. 4. L, L'
; M, M'

; N, N' are pairs of an involution, of which-//

the Hessian represents the double lines.

By means of the expressions for u, B, G, A in terms of

X, Y, M' in 201 we may readily prove the following theorem

due to Cayley.

Ex. 5. The Hessian, cubicovariant, and discriminant of ku+ k'G are

respectively

(&
2-&'2

A)#, (A?-k'*A) (kG+ tf&u), (F-&
/2

A)
2 A.

Ex. 6. If L', M', N' are the harmonic conjugates of L with regard
to M and N, of M with regard to N and L, and of N with regard to

L and M, then Z, M, N are respectively the harmonic conjugates

of L' with regard to M' and N', of M' with regard to N' and L'
,
and

of N' with regard to If and Mf
.

203.] Canonical reduction of binary (2^-l)-ic. The

proposition of 199 is a case of a general one due, like most

of the rest of the theory of canonical forms, to Sylvester.

This is that a general binary quantic of odd order 2nl is

a sum of n (2n l)th powers of linear forms.

As indicating the likelihood of this, we notice that the sum

or its equivalent

is a binary (2n l)-ic with no obvious connexion among its

coefficients, which coefficients are functions of 2n constants

that may be chosen at will, this number 2n being exactly
that of coefficients in the general binary (2n l)-ic
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We have to see, however, that values of the 2 n as and _p's,

to adopt the second notation, actually exist, which make the

sum and the quantic identical. We shall prove that the a's

are the roots of. an equation of degree n, and so do exist,

though general expressions cannot algebraically be found for

them when n exceeds 4, and that, when the a's are known,
the ps are determinate by solution of equations of the first

degree.

For the identity

( ,
alt 2 ,

... a^) (a?, y)
2n~ l =

Pl (x + aiy)^-
1

+p.2 (aj+ cijy)
2 "-1 * ... +pn

to hold, we must have simultaneously

Pi +P-2 + +P*

1'

To prove that values of the letters on the left exist which

satisfy these 2 n equations it will suffice to show that there is

a recurring series, with scale of relation of the nth degree, of

which cr-
,
alf a

2 ,...a2n_ 1
are the first 2n terms. Now n

quantities q19 q2 , ...qn can at once be found to satisfy the

n equations of the first degree

a+2 +tfi-+i +&,, + --. + 2a2
=

'

and thus a scale of relation

2+...+=
of a recurring series to which a , alt a.

2 ,...a.2n- l
in order

belong is determined. .

By the ordinary theory of recurring series the n roots of ^7M
this scale of relation are the a 15 a

2 ,...aB required; and, these

being known, the solution of any n of the 2n equations whose
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right-hand sides are a
,
a15 a^...a2n^ give uniquely the

values ofp l , p2 , p3 ,
. . .pn .

The equation whose roots are 04 ,
a2 ,

. . . on has the form

= 0,

,
a
"- 1 "-2

as is at once seen by elimination of q1} q2 ,...qn -

For the quintic (a, b. c, d, e, /) (x, y)
5

,
and the septimic

(a, b, c, d, <?, /, g, h) (x, y)
1

, n has the values 3 and 4

respectively. Thus the reduction of the quintic to a sum of

three fifth powers, and that of the septimic to a sum of four

seventh powers, can actually be effected algebraically. For

quantics of higher odd orders the actual reduction would

depend on the solution of equations in a of degrees above the

fourth. For such higher cases the quantic is proved to have

an equivalent expression as a sum of powers, but the algebraic
reduction to the form is not effected.

204.] Case of canonizing equation having equal roots.

There is failure to effect the required reduction when the

coefficients in the (2n l)-ic are so specially connected that

the equation of the nth degree in a has equal roots.

The condition for such equality of roots is the vanishing of

the discriminant of the n -ic in a. This is of degree 2 (n l)

in the coefficients of the 7i-ic, which themselves are of degree
n in a

,
al9 a

2 ,...a2n_ 1
. The condition is then the vanishing

of a function of degree 2n(n 1) in the coefficients of the

(2n l)-ic. This function is an invariant, being the dis-

criminant of what will presently be exhibited as a covariant.

For the case of the quintic n = 3, and the invariant is of

degree 12.

Let us discuss the failure for the case of the quintic. The

equations which express that a, 6, c, d, e. f form a recurring
series whose scale of relation is (l ax) (I fix)

2 are not those
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of 203, with n = 3, but

p + q = a,

pa + (q + r){3
= b,

=
e,

of which any three determine p, q, r.

Now these give the quintic the form

.e.

p(x+ ay)
5 + q(x + (3y)

5 + -

{(x + ay)-(x + py)} (x + (3y)
4

,

whose form is

p (x + ay)
5 + 5 r' (x + ay) (x + (3y)* + q' (x + py)

5
.

Thus the canonical form of a quintic which is special in

that its invariant of the twelfth degree above vanishes is most

simply written

in which three consecutive coefficients are wanting.
When a, /3, y are all equal, it is easy to see that the de-

generate form is

(x + ayf {p (x + ay)
2 + 5q (x + ay) y+ lOry

2
},

so that the quintic has a perfect cube for a factor.

205.] Canonical forms of quintic, septimic, &c. In the

identity

(a, b, c, d, e,f) (x, y)
5 =p(x + ay)

5

we may write X for p*(x + ay) and Y for q*(x + fiy), and

consequently \X + /x Y for r *
(x+ yy), where A. and p are con-

stants." We thus have as a canonical form of the general

binary quintic
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which involves two free constants only. More symmetrically
we may write it X 5 + Y5 + Z5

,

where X, F, Z are connected by a linear relation without

constant term
;
or again, we may write it

AV5 + //2/
/5 + /5

,

where
af = 0.

In like manner a canonical form of the general binary

septimic is

and similarly for binary quantics of higher odd orders.

206.] Canonizants. In 200 it was seen that the x + ay,

x + fiy of the cubic have for their product multiplied by
a function of the coefficients a certain covariant, the Hessian,

which may be written in either of the forms

ax + by, bx + cy

bx + cy} cx + dy

a, 6, c \ .

b, c, d

There are corresponding facts for the quintic, septimic, , , .

The covariant whose factors are

x + a^y, x + a
2y, ... x+any

is not, after the cubic, the Hessian, but its form is analogous
to either of the forms of the Hessian of the cubic here written

down.

Regard the equation whose roots are a15 a2) ... an which has

been exhibited in 203 ; and remember that, if al5
a
2 ,

... OM are

the roots of

then x + Oj y, x + a9 y, . . . x + any are the factors of
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We at once gather, altering the arrangement of rows in the

canonizing determinant, that

xn~ 1

y,x
n~2

y
2
, xn~3

y
3
,

^n-l ^n-2 ' ttn-3 >

+ ! >n , M-7

02

Accordingly the determination of the

f ly-t^H)^

of the canonical expression of the (2n l)-ic is effected by the

breaking up of the Ti-ic which is the determinant on the left

into its n factors.

To reduce the determinant to its other form, we best pro-
ceed by multiplying it according to the ordinary rule by
another determinant of the same number of rows and columns,
viz.

y, x, 0, 0,...0,

0, y, x, 0, ...0,

0, 0, y, aj,...0,

0, 0, 0, 0,...y, x

0, 0, 0, 0,...0, 1

whose value is y
n

. Combining rows with rows the product is

3
, ,0 ,

...0
, ( l)"y

,_ Qa? , .. a,y +ajc , an
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i.e. rearranging columns, is

a x +a
l y ) a^x + a./y ,...,<&_!; +any

Ct If* *J~ Cf *?V C/ ^JT \ C/ 1] fJL
/
7* it ft

[207

The omission of the factor y
n from each side now establishes

the identity, but for sign at most, of this last determinant

with the first.

The determinant is a covariant, viz. the ^atalecticant of the

(2n-2)th emanant
( 56, cf. also 17; Ex. 20). In. the last

written form of determinant the convention of 71 as to sign
and numerical multiple will be seen to have been adopted.
The covariant, from the property here developed in con-

nexion with canonical forms, is called the canonizant of

the (2n l)-ic.

207.] To realize the conclusion by particularization let us

restate it for the quintic only. To reduce the quintic

(a, b, c, d, e, /) (x, y)
5

to its canonical form X5 + Y5 + Z5
,
form the canonizant

ax + by, bx + cy, cx + dy
bx + cy, cx + dy, dx + ey

cx + dy, dx + ey, ex+fy

and break it up into three linear factors ^x
X, F, Z respectively are multiples of these. To

determine the multiples assume them arbitrarily. Then, by

equating the coefficients of x5
, 5x*y, I0x~y

2 in X5 + Y5 + Z5 to

a, b, c respectively, we obtain three equations of the first

degree for their determination.

And in like manner for the septimic, nonic, &c.

The failing case when the coefficients are so specially con-

nected that the canonizant has a square factor has

considered in 204.

Ex. 7. If the canonizant of a quintic is a perfect cube the quintic

can be reduced to the form (A , A^, A
2 , 0, 0, 0)

'

(X, JT; and all in-

variants vanish.

Ana. Cf. 204, and 28, Ex. 5.
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Ex. 8. If the canonizant of a septimic is a fourth power the

septimic can be reduced to the form

(A,, A lt A t , A,, 0,0, 0,0,) (X, Y)\

so that all invariants vanish. (Booth.}

208.] Quantics of even order. Catalecticants interpreted.

The general binary quantic of even order 2 n cannot be

expressed as a sum of n 2 nth powers. For the 2^-ic has

271+1 coefficients, and the sum of n terms like (*x + ny)
2n

contains only 2n free constants like A, //,
which cannot

be so chosen as to satisfy 2n + l conditions. On the other

hand, a sum of n+l 2 nth powers contains 2n+2 free con-

stants, one more than the number of coefficients in the 2 n-ic.

We should expect then that the 2 n-ic can be expressed as

a sum of Ti+1 2 nth powers in an infinite number of ways,
and not definitely in one or a few ways. Proper canonical

forms of binary quantics of even order must not therefore

be expected to be mere sums of 2 nth powers. A sum of

n 2 nth powers together with one additional term is, how-

ever, a form to be reasonably anticipated.
Before seeking such a canonical form for the quartic it will

be interesting to investigate the special relation which must
hold among the coefficients of the 2 n-ic

that it may be identical with a sum of n 2 nth powers.
If we pay attention to the method of 203 it will be clear

that the necessary and sufficient condition is that a2n be the

next term in the recurring series, with scale of relation of the

nth degree, which is determined by the first 2n terms

0> 1> 2-" a2-l 3

i.e. that n quantities q lt q.2> <?,
exist which satisfy simul-

taneously the n + 1 equations

+ q l _! + q2
aB_ 2 + . . . + qn a = 0,

t +...+, =0,

= 0.
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Now the necessary and sufficient condition for this is that,

reversing the order of the columns,

a
ol %

a lt a2

a.), a%

**+! , n + 2

i.e. that the invariant defined as the catalecticant (17 Ex-

amples) vanish.

Ex. 9. The binary quartic (a, b, c, d, e) (x, y)* will be a sum cf two
fourth powers if

J = ace + 2bcd acP Ve-c* = 0.

Ex. 1 0. The binary sextic (a, b, c, d, e, f, g) (x, y)
6 will be a sum

of three sixth powers if

a, b, c, d

b, c, d, e

c, d, e, /
d, e, /, g

209.] Catalecticants are invariants. It is instructive to

notice that what we have before us affords a proof that the

catalecticant of a binary quantic of even order is an invariant.

Its vanishing expresses the necessary and sufficient condition

that the quantic may have a special property, that of being
a sum of n 2 nth powers, which is entirely independent of

any linear transformation. If, in fact, the most general linear

substitution possible in (a , al5 a2 ,
...a2n )(x, y)

2n transforms

that 2^-ic into (A ,
A

l ,
A

2 ,
... A 2n)(X, F)

2
", the vanishing of

the same function of ^4
,
A lf A 2 ,

... A.2n expresses the necessary
and sufficient condition for the same special property. More-

over, the A's being of the first degree in the as, the degree in

the a's of the catalecticants of the original and transformed

27i-ics are the same. The one, then, can only differ from the

other by a factor involving merely the constants of the

substitution. The catalecticant is therefore an invariant by
the definition ( 3). That the factor is a power of the modulus
has been established in general in 23.

The student is advised to establish that the canonizant
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of 206 is a covariant of a binary (2n l)-ic by similar

reasoning.

210.] In 208 it is proved that if the catalecticant vanish
the 2 7t-ic is a sum of n 2 nth powers, and that conversely if

a 2n-ic is a sum of n 2 nth powers its catalecticant vanishes.

The latter fact is well exhibited as follows. For brevity of

writing the case of the quartic alone is taken.

The catalecticant of p (x + a y)* + q (x + (3 2/)
4 is

p + q , pa + q(3 , pa
2 + q(3

2

pa'
2 + q(3

2
, pa3

+q(3*

Now this is a sum of 8( = 2 3
) determinants, of which the

p , pa, pa*

pa, pa
2

, pa
z

\ pa
2

, pa
3

, pa*

the other seven being obtained from this one by replacing

p and a by q and /3 in one or more of its columns.

But in every one of these eight determinants there are

either two (p, a) columns at least or two (q, 13)
columns at

least. Moreover, taking one which contains two (p, a)

columns, we notice that the constituents in one of these

two columns are either a or a2 times those in the other of

the two, so that the determinant is either a or a2 times one

with two columns identical, and therefore vanishes. Similarly

every one of the eight which has two (q, /3)
columns vanishes.

All the eight then vanish, and consequently their sum the

catalecticant vanishes.

211.] Canonical form of quartic. We now proceed to show

that the general binary quartic may be reduced to the canonical

form V4: i V4 i c^Y2V2

in favour of which there is a presumption as the form contains

one (
= 4 3, cf. 196) free coefficient m.

We have to see that p, q, a, (3 and /x can be found so as to

make

(a, b, c, d, e) (x, y}*
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an identity. It is not enough to notice that the number of

free constants on the right is equal to the number of coef-

ficients on the left.

Knowledge that a quartic equation has four roots is assumed.

Thus (a, b, c, d, e) (x, yY can be broken up into linear factors,

and consequently into two quadratic factors in three ways,

corresponding to the arrangements (12, 34), (13, 24), (14, 23)

of the linear factors. Let one of the quadratic factorizations

be
(a'x* + 2b'xy + c'y

2

) (a"x
2 + 2 V'xy + c"f\

What we have to prove will be established if we can find

//, q', p", q", a, /3 so that simultaneously

a'a? + 2b'xy + c'y
2 = p

f

(x + ay)* + q'(x + (3 y)\

a"x2 + 2 l"xy + c'y = p" (x + ay)
2 + q" (x + p yf.

The six equations for finding the constants on the rig'ht, that

this may be the case, are

p' + q' =a', p" + q" =a",

p'a + q'P =b', p"a + q"(3 =b",

p'a? + g'/3
2 = c', p"a

2
-f ^/3

2 = c".

Now of these the first three are consistent for the determina-

tion of p
f

, q' if

as we see by eliminating p
f

and q'. and the last three are con-

sistent for the determination of p", q" if

and these two conditions are satisfied by taking

a/3

a'V'-a"V
~
aV7^77?

~"
bV7^^'

i.e. by taking for a, /3 the roots of the quadratic

(a'V'-a"b')a*-(a'c"-a"c')a + b'c"--b"c' = 0,

which are finite and unequal if a', b', c', a", b", c" are uncon-

nected, i.e. if the quartic is general.
We see then that the required reduction is possible, and

possible in three distinct ways, one corresponding to each way
of breaking up the quartic into two quadratic factors.
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The quartic in the form

into which it is now shown capable of being thrown, is given
the canonical form

by taking for X either + p*(x + ay) or + \/ lp*(x + ay), and

for F either q*(x + fiy) or + V lq*(x + (3y). It is thus

seen that m may have either of the two values + (pq)~^>
Each of the three reductions above produces then two varieties

of the canonical form differing only in the sign of m. The

equation to be found for the determination of m should con-

sequently prove to be a cubic in m2
.

We thus encounter a striking difference between the quartic,

and other quantics of even order, and the cubic, and quantics
of odd order, in the matter of canonical forms. The reduction

of the cubic to its canonical form X3 + F3 is unique. On the

other hand, the reduction of the quartic to its canonical form

X4 + F4 + 6mX 2F2
is sixfold.

212.] We now proceed to exhibit the information given by
invariant algebra with reference to the general binary quartic

u = (a, b, c, d, e) (x, y)*

and its canonical form

T4 + F4 + 6mX2F2 =
(1, 0, m, 0, 1)(Z, F)

4
.

Suppose that X and F, expressed in terms of x and y, are

hx + fj.y and \'x + f/y respectively. Let M* denote AJU' AV,
so that M' is the modulus of the substitution which reduces

the canonical form to the general, and consequently M'~l the

modulus of that which reduces the general to the canonical.

By 170 the irreducible concomitants of the quartic are,

including itself, five in number. They are

(l) the quartic itself

u = (a, b, c, d, e) (x, y)*,

(2, 3) its two invariants

J =
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of which the latter is its catalecticant,

(4) its quartic covariant, or Hessian,

H= ax2 + 2bxy + cy
2

,
bx2 + 2cxy + dy

2

bx2 + 2 cxy + dy
2

,
ex2 + 2 dxy + ey

2

of which the seminvariant leader is ac b2
,
and

(5) a sextic covariant of which the seminvariant leader is

a2d 3abc + 2b 3
, which, written at length by the method oi

110, is

(5abe-l5acd+10b
2

d)x*y
2
+(10b

2elOad2

)x
z
y

+ (3cde-be
2
-2d*)y*.

The power of the modulus in the equality expressive oi

invariancy or covariancy of any one of these has for its inde:

it will be remembered, the weight of the invariant or of the

seminvariant leader of the covariant. Thus we have the five

equalities

-..('.

...(2)

...( 3 ;

...(4;

...( 5 ;

The first observation made on an inspection of these equali-
ties is that the two invariants / and J alone supply us with
the equation for the determination of the m's of the six

canonical forms, and with the values of the modulus M',

going with each value of m, of the substitutions which expressX and Y in terms of x and y.
Elimination ofMf

between (2) and (3) gives at once

J3m2 (l-m2

)
2 = J2

(l + 3mz
y, ...(6)

the cubic whose roots are the three values of m2
. To each

value of m there corresponds a value of M'2
given by

l+3m2

Af2 - -*'* TT

l mm
so that with each value of m go two of M', equal but oJ
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opposite signs. This is reasonable, for a canonical form is

unaltered when we interchange X and Y, but the modulus is

changed in sign. The equation for all values of M' should

then be a cubic in Jf'4
,
the two values m of m giving two

values + M'2 of M'2
. This cubic comes at once from elimina-

tion ofm between (2) and (3), and is

J-J
= M -

i.e. (if
/4
-7)(4if

/4

-J)
2 +y^ = 0. ...(8)

%-] j*
The cubic for J/'2m is simpler than either that for m2 or

that for J/'4
,
and is given by taking

J

and so is

4(lf
2
m)

3
-I(If

2
m) + / = 0, ...(9)

which will be recognized as the ordinary reducing cubic of

a quartic equation.
We shall consider this cubic further presently. Meanwhile

let us pay a little close attention to the cubic (6) for m2
,
the

solution of which is the one which at once affords the canonical

forms themselves. Written at length the cubic is

J3
The one parameter involved in it is the absolute invariant -=^

We proceed to draw in the following article certain conclu-

sions as to the reduction of special classes of quartics, which

obey invaliant conditions suggested by the coefficients in this

cubic.

213.] Quartics for which 1=0. If a quartic belong to

the special class for which

= ae 4Z + 3c = 0,

the cubic for m2 becomes

(l+3m
a
)
8= 0,

so that the three pairs of reductions to a canonical form
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coalesce in form into a single pair, the alternative canonical

forms being

and being thus of imaginary shape. From (3) we find, as

corresponding to the values + \/ -| of m respectively,

jr = :Ff</-3j;

so that the values of the modulus as well as of m are all

imaginary.
Since the relation 1 + 3m2 = may be written

1 3m2

6m 1

we see from (1) and (4) that the Hessian of

X4+74 2<v/^3 X2F2

is, but for the factor Jf' 2
m,

Thus a quartic for which I = and its Hessian have reciprocal

properties, each being, but for a constant factor, the Hessian

of the other. Moreover they have, but for a constant factor,

the same sextic covariant G.

Ex. 11. Prove that

_ _
+ (X- YV- I)

4 2 -/-3 (X+ r-/- 1)
2

(X- IV- I)
2

},

thus exhibiting the connexion between the three like pairs of canonical

forms when / = 0.

Ex. 12. Three of the six anharmonic ratios of the range or pencil
denoted by a binary quartic for which 7 = are equal to <o, and the

other three to -co2
, where o> and o>

2 are the imaginary cube roots

of unity.

Ex. 13. When 7=0, M'*m5 = -/.
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Ex, 14. When 7=0,

are perfect squares ;
viz. numerical multiples of the squares of the

products XY for canonical forms.

Ex. 15. When I = 0, Ju? + 4tf*=-G\ Hence also prove
Ex. 14.

214.] Quartics for which J = 0. When the catalecticant

J=ace + 2bcd-ad*-b2e-c3 = 0,

so that
( 208) one canonical form is a sum of two fourth

powers, the cubic (6) or (10) of 212 for m2
is

m2

(m
2

-l)
2 = 0.

The second and third pairs of canonical forms coalesce then in

the shape X4 + F4 + 6X2F2
.

The connexion of the different canonical forms for this case

is exhibited in the identities

_6(X+F)2
(X<v/-l-F"v/-l)

2
},

=
J- { (X + FV"^!)

4 + (X -

By 212 (2), M'*= I goes with m = 0, and M'*= J/ with

m = 1.

Ex. 16. When J = 0, the Hessian is, but for a constant factor, the

square of the product of the X and 7 of the canonical form JT4+ T4
.

Ex. 17. In the same case, the two expressionsu2 I "JETare eight
times the squares of the products XY for the other two essentially
distinct canonical forms, the third and fourth, and the fifth and sixth,

of the above forms not being reckoned as essentially distinct,

Ex. 18. In the same case, (M^H Z

)H = G\
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Ex. 19. The range or pencil denoted by a binary quartic for which
.7 = is harmonic.

Ex. 20. So is the range or pencil composed of any two out of three

pairs of elements which constitute what is denoted by the sextic

covariant G.

215.] Quartics for which P= 27J2
. When the coefficients

in the quartic are such that I* 27J2=
0, i.e. when the dis-

criminant vanishes, so that the quartic has a square factor,

one value of m2
given by 212 (10) is infinite, and the quad-

ratic for the other two values of m2 is

(9m
2

1)
2= 0.

But we are here confronted with a case in which the

reduction to the canonical form X4 + F* + 6mX'2Y2
is im-

possible unless a further condition is satisfied. The value

m = QO would make this canonical form an infinite multiple
of X2Y2

,
i.e. of a perfect square, and the values m = $

would make it X* + F4 + 2 X2 Y'2
, again perfect squares.

Now obviously a quartic with a square factor must have its

conjugate quadratic factor also a perfect square for such

a reduction to be possible.

For the explanation of this we must refer back to 211.

If the two conjugate quadratic factors there assumed have

a common linear factor their eliminant

vanishes, and the quadratic in a has equal roots, so that a = j3,

and the method followed fails to find a distinct X and F, and
indeed fails to lead to any result which is not more obvious

otherwise. And again, if one of the quadratic factors,

ofx? + 2bf

xy + c'y
z

suppose, is a perfect square, so that

tt'c'=&' 2
,
it follows that p'q'(a-(3f= 0, so that either a = 0,

and there is failure as before, or else either p'= or q' =0,
which leads not to the form Z4+F4 + 6mX2F2 but to the

It is this form, or rather its further simplification

which is canonical for a quartic for which I3 27J2= Q.

The more special quantic still which has not only one

square factor but two square factors, i. e. which is a constant
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multiple of the square of a quadratic, can however, it is clear,

be given the form (X
2 + F-)

2 or the form (X* Y2
)

2 as above.

An even simpler form for such a quantic is 6X2Y2
.

Ex. 21. The Hessian of a binary quartic with a square factor has
that same square factor. (This fact is easily proved for a binary
quantic of any order with a square factor.)

Ex. 22. The sextic covariant G of a quartic with a square factor

(lx+ my)
2 has the factor (lx+myy.

Ex. 23. If a binary quartic be the square of a quadratic it is the

same but for a constant factor as its Hessian, so that

ac tf _ ad bc_ ae+2bd3cz _ be cd _ ced?
a 26 6c 2d e

'

Ans. 2 /// = 3 Ju. (Cayley.}

Ex. 24. In the same case the sextic covariant G vanishes identically.
Hence also determine the same conditions as in Ex. 23.

216.] The general binary quartic. We now proceed to

apply the equalities of 212 to the case of the general quartic.
A pair of canonical forms X 4 + F4 + QmX2 Y* are not essen-

tially distinct, the X and F of one being merely the X and

FA/ 1 of the other.

The sextic covariant G helps us to decide what are the

X and F of each of the two other essentially distinct canonical

forms of the same shape as one X* + F4 + 6mX2F2
. This co-

variant G has, 212 (5), the X and F of X4 + F4 + 6mX2F2

for factors. For the same reason it must have for factors the

X and F of each of the other canonical forms. It is in fact,

therefore, but for a factor free from the variables, the product
of the three X's and the three F's of the essentially distinct

canonical forms. We are thus led to expect that X2 Y2 and
X 2 + F2 are but for constant factors the products XY corre-

sponding to the two other forms.

And it is in fact quite easy so to assign k', k", m', m" as to

satisfy the identities

X* + F4 + 6 mX2F2 =
{k'(X + F) }

4 + {V(X- Y) }
4

F)}
2
[k'(X- F)}

2
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Thus for k', m' we have only to secure that

&' 4(2-f 6m') = 1, &' 4
(12 12m7

)
= 6m,

i. e. to take

and similarly for &", m".

217.] Reduction of general quartic to canonical form. Let

us now take the simplest of the cubics of 212, viz. (9)

= 0.

The solution of this affords a ready way of determining the

X and Y of either of the canonical forms. The equations

(1) and (4) of 212 give us at once

M *rn x m'

Solve then the cubic above for M' 2
m, and, taking either of its

roots, form the corresponding Mf '2mu H. This, but for

a multiplier free from the variables, is a perfect square,

namely the square of XY. Break up the square root of

M'2mu H, or any convenient multiple of it, into two

factors gx + hy, g'x + h'y. The identity must hold

u = (a, 6, c, d, e) (x, y)*
=

af(gx + hy)*

+ 6 c' (gx + hy)
2

(g'x + h'y)
2 + e' (g'x + h'y)

4
,

for some values of </, c', e'. These values can be found by

identifying three of the coefficients on the left with those

which correspond on the right. Having found them,

a'*(gx + hy), e'* (g'x + h'y) are X, Y, and c'a'~V~* ism.

218.] Syzygy among u, I, J, H, G. That XY is, but for

a factor free from x, y, the square root of M'2mu H, and

consequently that the product of the three values of X Y for

the three essentially distinct canonical forms is, but for such

a factor, the square root of the product of the three values of

M''2mu H corresponding to the three roots of the cubic for

M'2m
9 tells us, when taken in connexion with 216, that

this product

can only differ by a factor free from the variables from G2
.

{
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Now by the theory of equations

Consequently an identity must hold of the form

That k here is a merely numerical constant, and not

a function of the coefficients, is clear because G 2 and the right-
hand side are both of degree 6 in the coefficients. To find its

value we may either substitute for u, /, J, H, G their values

in terms of X, F, If, m from 212 and examine the identity
of the coefficients of one term, say of X 10 F2

,
on the two sides,

or may notice that 213, Ex. 15 gives us the particular form

which the relation takes when I = 0. We thus find k = 1.

Accordingly the irreducible but not independent con-

comitants u, I. J, H, G of the binary quartic u are connected

by the syzygy

the invariants and seminvariant leaders of the covariants

being themselves connected by the syzygy

Ia2
(ac-b

2

)-4(ac-b
2

)

3-Ja 3 = (a
2d-3abc + 2b 3

)

2
.

These syzygies have been otherwise obtained in previous

chapters.^
219.] Canonical reduction with unit modulus. There is

often convenience in using, not the strictly canonical form of

a quantic, i. e. the simplest form to which the quantic may be

vi reduced by any linear substitution, but the simplest form to

which it may be reduced by a substitution of unit modulus.

If the substitution which reduces the quartic (a,b,c,d, e) (x, y}*

to its canonical form X* + F4 + QmX2 Y2 be

x = IX + mY, y = I'X + mfY,

so that Im'l'ini = If"1 in what precedes, the substitution

(Im'-l'mfix = lx' + my', (Im'-l'ntfy = I'x' +

whose modulus is unity, reduces the quartic to

Thus a
/

(a^ + y
/2

) + 6cVY2 =
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is a form to which the general binary quartic can be reduced

by a substitution whose modulus is unity. We also see that

c' is the M'2m of 212, 217, so that the reducing cubic of the

quartic is the one whose roots are the three values of c. We
may find it very easily as follows. Since the modulus is 1

,

whence, eliminating a'
2

,

Ic'-J=lc'\

the same cubic as that already found for M'2m.

We might equally have found in this way the same cubic

for c' if all that we had assumed were that a substitution of

unit modulus reduces the quartic to the form

Adopting, however, the fact known as above that of and e

may be made equal, the equalities (1) to (5) of 212 are re-

placed by

H = a
f

c
f

(x'* + y'*) + (a'
2 - 3 c'*)x'*tf*,

whose right-hand sides are obviously connected by a syzygy
as they involve only four quantities a',c',x',y'. This i

readily seen to be that of the preceding article.

Ex. 25. Prove that, if #' be the Hessian of the Hessian H of u

Ex. 26. The sextic covariant G' of H is

Ex. 27. Find the Hessian and the sextic covariant of ku+ k'H.

220.] The cubic for c' may be found in a different manner

which exhibits it in a form having its analogue in the case o

higher binary quantics of even order.

It has been seen that the identity

ax* + 4 bx*y + 6 cx2
y
2 + 4dxy'

6 + ey*
=

a'(lx + my)* + e'(l
f

x + m'y)* + 6 c'(lx + myf(l
f
x + m'y)
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is one which can be satisfied simultaneously with

Im'l'm = 1,

and in fact that we may take e' = a'.

Now operate on both sides of the identity with

/, d d\f,fd , d^
(I- m }(l' m V
v dy dx' \

dy dx'

noticing that this annihilates both Ix + my and I'x + m'y, and
that

/7 d
__ d x /,, d . d

= _ 4 (lm
f-

I'm)
2
(Ix + my) (I'x

= 4 (Ix -f my) (I'x + m'y).

Equating coefficients of x2
, xy, y

2 in the results of operating
on the left and right-hand sides of the identity, we obtain

amm' b (lm' + I'm) + ell' = 2 c'll',

bmm'- c (lm' + I'm) + dll' = -
c'(lm' + I'm),

cmm' d (lm' + I'm) + ell' = 2 c'rnm',

equations linear in II', lm'+ I'm, mm'. By elimination of these

we at once obtain the cubic for c'

a ,6 ,
c + 2c' = 0,

b
,

c c', d
c + 2c', d } e

i.e. J Jc' + 4c'3 = 0,

the reducing cubic already obtained otherwise.

Taking either root c' of this cubic we can solve the linear

equations in II', lm' + l'm, mm', and so obtain their ratios, i.e.

the product Il'x2 + (lm' + l'm)xy + mm'y
2 of Ix + my, I'x + m'y

but for a constant factor.

221.] Solution of a quartic equation. When a quartic is

reduced to its canonical form, or to the form a'x* + 6 c
fx2

y
2 + e'y*,

it is at once broken up into quadratic factors and solved.

Two methods suggested by the articles which precede are here
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exemplified. They are not so simple in their use as some of

those given in works on the theory of equations.

Ex. 28. By use of 220 solve the quartic equation

Here a, b, c, d, e have the values 3, 1, 4, 4, 48. Thus

I = 176, J = 448, and the cubic for c is c'
3

-44c'-f 112 = 0, of

which 4 is a root. The corresponding ratios ll
f

: Imf+ I'm, : mm' of

220 are 1 : : 4. The quartic has then the form

and is in fact seen to be

.e.

i.e. (x
z+ 4) (So;

2 4a+ 12) = 0,

so that the roots are +2\/~l and

Ex. 29. To the same quartic apply the method of 217.

Here

H= 3x*-

Also a value of M'"m, or c', is, as above, 4. Thus

c'tt-# = a!
4 -8a;2+16 = {(x + 2) (x2)\*.

Hence the given equation has the form

a"(x+ 2Y+ e"(x 2)
4 +6c'

/

(<c
2

4)
2 = 0,

and the solution is completed as above.

222.] There is a symmetrical expression given by Cayley
for a linear factor of the general binary quartic u.

If cl9 c
2 ,

c3 are the roots of 4c'3 /c' + Jr = 0, it has been

seen in 217 that c^u H, c.2u H, c3u H are multiples of

squares of quadratics in the variables.

Thus

If+v</c3u H
is a rational quadratic function of x and y. We seek A, ^ v

that it may be the square of a factor of u.
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A value of - which makes u vanish, i.e. a root of u, will

make the quadratic function vanish if

= 0,

i.e. if X + JJL + V = 0.

The same value .will make its differential coefficient with

respect to x, i.e.

X
_ _

)

v ( du dHl

dx

( du dH\ _ /n ( du _dH
H^ dx dx ) Vc.u Hi. dx dx

vanish, if it make

du , .dH
_(A + ^ + j;)

-

dx dx

as it will do if the further condition

=
is satisfied.

Now these two conditions are satisfied by taking

X n v

c2 cz~ C3~ c
i

~~
ci~ c

-2

We conclude then that

iU-H+ (c3
-

Cj) Vc2u-H+ (cj
- c

2)
Vc.Au-H

is, but for a multiple not involving the variables, the square
of a linear factor of the quartic u.

Ex. 30. Prove that

(c2-c3)

is the square of a linear factor of the Hessian.

223.] Geometry of concomitants of quartic. The invariant

and covariant geometry of a binary quartic is a geometry of

anharmonic properties. The student of geometry will know

that, if p is an anharmonic ratio of a pencil or range of four

elements, the other five anharmonic ratios are

i-> lp)
P

U 2
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Some parts of the geometry have already been obtained.

Thus ( 213, Ex. 1 2) 1 = is the condition that one an-

harmonic ratio of the pencil or range denoted by the quartic

be co, and consequently that two others be also co, and the

other three -co2
. In fact, if we take for p the anharmonic

ratio --
:
-

, where a, 8, y. 8 are the roots, and notice
y O a o

that this is -- in the notation of 80, we obtain v*- <"

*C<-

I=-a2
(

== a2
(u

2 + u2 2 vw)

= a2
{

1 2

,

so that I = means, unless two roots are equal which would

imply a further invariant condition,

p = co or co
2

.

Again, J= is the condition
( 214, Ex. 19) that the

pencil or range be harmonic, i.e. that one anharmonic ratio

be 1, and consequently the rest 1, 2, -, -, 2. In fact, re-
2 2

ferring again to 80,

so that J = necessitates that p be either 1 or 2 or -.

We have at once, by elimination of aw, the equation whose

roots are the six values of p, i. e. the six anharmonic ratios of

the general quartic ; namely,
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which may be given the simpler shape

P
2-+l 3 27/3

a cubic, in p(lp). The left-hand side of this may also be

written , 3

p

so that it is also a cubic in p + -.

P

To interpret the sextic covariant 6r we remember that it

is, but for a constant factor, the product of the XY's of

the three essentially distinct canonical forms. Now, if the

canonical form X* + 6mX2Y2 + Y4 be broken up into

we recognize that XY represents the common pair of harmonic-

conjugates of the pairs X2 + ^Y 2
,
Z2 + ju"

1 F". We thus con-

clude that G represents the three pairs of common harmonic

conjugates of pairs into which the four factors of the quartic

u can be separated, i.e. the double elements of the three

involutions which are determined by taking the four linear

factors of u in pairs.

It is clear, from the similarity of the canonical reduction

(
212 (4)) of H the Hessian of u to that of u itself, that G

has the same property with regard to H as it has with regard

to u. It has also the same property with regard to ku + k'H,

where k and k' have any values which do not make this

a perfect square.

We notice the further property of G, gathering it from the

canonical reduction, that its six linear factors occur in pairs

XY, X*-Y2
, X*+Y2 such that either pair constitutes the

double elements of the involution determined by the other

pairs of elements.

The geometrical property of H is that of determining with

u an infinite system of quartics ku + k'H, the factors of any
one of which, taken in pairs in any way, have a pair chosen

out of six elements constituting G for the double elements of

the involution which they determine.
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Ex. 31. Find a covariant which represents the four harmonic

conjugates of the factors of u, each with regard to the Hessian of the

other three factors.

A n8t (/s_ 3J
2

)M+ 8IJH. To find it take the quartic in the form

4(a
. + y) (x + ay), so that /= 12 a, J= 4(a

3

+l), and determine

0, so that 0uH, where If is the Hessian of the quartic, may have

x ay for a factor.

Ex. 32. In terms of the roots of u, the quadratic factors of G which

give the products JTFfor canonical forms are

(g + a-^-y, j8y-a8, Sa
</3 + 7)-py (& + )) (*, 2/)

2
,

and two similar.

224.] Higher binary quantics of even order. We now pass

to consider briefly the reduction to canonical forms of 2 n-ics,

where n exceeds 2.

It has been seen
( 208) that a binary 2 n-ic whose cata-

lecticant vanishes can be expressed as a sum of n 2iith

powers.
Now let u be the general binary 2 n-ic, whose catalecticant

therefore does not vanish, and let v be any particular binary

2 n-ic with coefficients definitely chosen, either as constants

or as functions of the coefficients in u, whose catalecticant

does not vanish. Let A be a constant free to have any
value.

Write down the catalecticant of u \v and equate it to

zero. The result is an equation in A. This equation has

a root or roots, i. e. there is a value, or values, of A for which

u \v is a sum of n 2 nth powers.
A right form to assume for the general binary 27i-ic u

is then a sum of n 2 nth powers together with a free

multiple of any particular 2 n-ic v whose catalecticant does

not vanish.

The most natural form to assume for the sextic would

appear to be X6 +Y6 + Z6 + \X2Y2Z2
,

but the reduction to this form has not, as a matter of fact,

been effected.

The octavic however, as we shall presently see, has been

brought by Sylvester to the corresponding form.
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225.] The binary sextic. The usual canonical form for the

sextic is

a/e + ^6 + ^8 4 x'x'y'z
f

(y'-z'}(z'-x')(x'-y'),

or, putting X+ Y, <o(Z + <oF), o>
2
(Z + co

2
F) for x', y', /,

It is convenient to take unity for the modulus of trans-

formation. If x IX + mF, y I'X + m'Fbe the substitution

which reduces the sextic to the above form, the substitution

(lm'-l'm$x = IX + mY, (lm'-l'm)*y = I'X + m'Y,

whose modulus is unity, reduces the sextic to the form

Let us assume only, with apparently smaller particulariza-

tion, that

(a, 6, c, d, e,f, g) (x, y}*

We proceed to show how to find Xs + Y3 and p. Suppose that

afx* + 3b'x2
y+3 c'xy* + d'y*

= X3 + F3
.

Then, by 46, the modulus being unity, we have also the

equivalence of operations

dy*~ dxdy
2

dx*dy
~

dx*~ dY3 dX*

Operate with the left-hand side here upon

(a, b, c, d, e, f, g) (x, y)
Q

,

and with the right on its equivalent in terms of X and F.

Remembering that

we see that the result on the right-hand side is

which is the same as
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This is exhibited as the equivalent of another cubic in x and

y. Equating the coefficients in the two, we have at once

afd 3 b'c + 3 c'b dfa a'p,

a'e3b'd+ 3c'c-d'b = -&>,

a'f 3 b'e + 3 c'd d'c = c'p.,

a'g-3b'f+ Zc'e -d'd = -d'p,

which are made consistent for finding the mutual ratios of

', 6', c', df by choosing jz so as to satisfy

d + n>

f

M, C

,
a

,b

d + -M. c
3

, <*-M

i. e. by solving a quartic equation ;
so that the"re are four such

values of
/ot.

Substitute one of these values of ju. The ratios of : b' : c' : cT

are at once determined by any three of the linear equations
now made consistent. It is now a matter of the solution of

a cubic equation to split up

aV + 3 b'x2

y + 3 c'xy
2
-f d'y*

into its three factors, which must, but for constant multipliers,
be the X + Y, X + o>F, X + co

27 of the canonical form.

The coefficients of the canonizing quartic equation in
p.

must be invariants, as their property is quite independent of

any linear transformation. The equation is in fact

1 1

d, c, b, a +-(ag Qbf+l5ce lQd2
}fji

2 + - l

9 9

e, d, c, b

/, e, d, c

J,/, e, d

whose coefficients are the catalecticant and the quadric in-

variant.

It will be seen that the four values of /u go in pairs
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226.] Another, and perhaps a more useful, canonical form

to which the sextic can be brought by linear transformation

is that of Stephanos and Brill

We may prove the possibility of the reduction as follows.

Taking the form

to which the sextic has been brought by solution of a quad-
ratic (in f/

2

)
and a cubic, put

X = plx + qrtiy, Y Ix + my,

where p q must not be zero. The equations found upon

making the coefficients of x5
y and xy

5 zero are

(p
5 + Wp2

)q + 10p* + l+\(p
5

q-l) = 0,

(q
5 + Wq2

)p + 102
3 + 1 +\(pq*-l) = 0.

Of these the difference has p + q as well as p q for a factor.

The former, which is allowable, makes either equation

which reduces a sextic to the form

giving p = q = (
--

J

6
. Thus we have a substitution

a'aJ
8 + 1 5 c'x^f + 2Qd'x*y* + 1 5 e'xzy* + g'y

G
,

or, altering the notation by putting x and y for a'o; and

the form required.

227.] The binary octavic. The canonical form of the

octavic (a ,
al5 ... a8) (x, y)

B is

X8 + Y8 + Z* + Ws + \X2Y2Z2W 2
,

where X, F, Z, W are linear in x and y. We have to see

that A. and the product

XTZW =
(^x+ m.y) (I2x+ m,y)

=
(a', V, c', d

f

, e') (x, y}\ say,

can be found.
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The operator (a', b', c', d
f

, e') (y- >
7-) annihilates Xs

,

cty doc '

F8
,
Z8

, TP, as is clear, since (l-
--

m-=-) (Ix + my) = 0. We

can further see that the same operator produces from

X2YZZ2W 2 a constant multiple of XYZW. To do so affords

a good example of the use of the concomitants of a quartic.

We have to see, in fact, that

(', V, c', d', e') (, -
J^)V, V, c', A', e') (x, y)<}*

is a constant multiple of (of, b', c', d', e
f

) (xt y)*.

The expression is a covariant of the quartic by 47.

Its degree in the coefficients of the quartic is 3, and its

order in the variables is 4. Now, referring to the complete

list, 212, of the irreducible concomitants of the quartic, we

see that these, u, I, J, H, G, are of degree-orders (1, 4), (2, 0),

(3, 0), (2, 4), (3, 6), and that the only covariant of degree-order

(3, 4) which can be formed by combining them is the product

lu of the first two, i. e. is a constant multiple of u or

(a' t b', c', d'
t e') (x, y)\

d d 4

The result of operating with (of, b', c', d', e') (^- ^)
on the identity of the octavic and its supposed canonical form

is then the production of an identity

(a', &', c', d', e') (1- ,
-

)
.

(a ,
alf ... a8) (xt y)*

= /K^cr,e')K2/)4

of two quartics, // being a constant qua x, y, namely a nu-

merical multiple of the product of A. and the invariant / of

the quartic on the right. Let us write 8 . 7 . 6 . 5 . /^
for //.

We obtain, by equating coefficients of x*, x*y, x2
y'\ xy*, y* on

the two sides, the equations

a'a4 4 b'a3 + 6 c'a.2 4 d'a
t + e\ = a'n,

afa5
4 6'a4 + 6 c'a3 4 d'a.2 + 6'^ = bV,

4 b'a5

6 c'a5 4 d'a

a'a& 4 6'
7 + 6 c'ae 4 d'a 5
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vhich are made consistent for determining of : V : c' : d' : e'

)y taking for
fj,

one of the roots of the canonizing quintic

equation

,
a

a5 ,
a4 + -/u,

= 0,

1

a7 ,
a6 ,

a5 ,
a4 + -^, %

a8 , 7 ,
ae ,

a5 ,
a
4 -//

a quintic all whose non-vanishing coefficients are invariants

of the octavic.

228.] General binary 2?i-ic. The success of the method

adopted with variations in 220, 225, 227 for the canonizing
of a 2%-ic depends on the knowledge, for the cases n = 2, 3, 4,

of an auxiliary n-ic covariant V of an %-ic

, a/, ...an')(x,y)*,

which is such that the derived 7i-ic covariant

,

is of the form

',... a/) (

where & is a function of a/, a/, ...' only.
If in the case of any higher value of n such a covariant V

of the n~ ic can be found, then the method of the preceding
article will establish that the general binary 2 n-ic has the

canonical form

where V is this covariant ofX1
X2

... Xn ,
and jm,

a determinate

constant multiple of A, is any one of the roots of the canoniz-

ing (n + 1 )-ic equation, all whose coefficients are invariants,
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and which for odd values of n is an \(n+ l)-ic in fx
2

only,

= o.

!_

1.2

229.] The ternary cubic. For the reduction to canonical

forms of ternary and quaternary quantics works (e.g. Salmon's)
on geometry of two and three dimensions should be consulted.

The reduction of the ternary cubic is alone given here.

The canonical form, due to Hesse, of the general ternary

cubic is 3

The number of free constants (
= 3x3 + 1 = 10) is the same

as that of coefficients in the general ternary cubic. We have

then an indication of the likelihood of the correctness of the

form.

We shall prove the correctness by showing that, if we take

any cubic which has the form, and give to all its ten coefficients

quite arbitrary infinitesimal increments, the altered cubic also

has the form. This will establish what is desired, for by
continued repetition of a process of giving the coefficients

independent infinitesimal increments one cubic may be made

eventually to become any other.

Take a cubic which can be thrown into the form

Give to X, Y, Z and m the infinitesimal increments

where ex ,
. . .

, rjj ,
. . . , ij ,

. . .
, ju.

are arbitrary infinitesimal con-

stants, ten in number. The consequent increment of the cubic,

obtained by differentiation, is

3 (X
2

+ 3 (F
2
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Now, if we identify this with the most general cubic in

X, Y, Z with infinitesimal coefficients, we obtain ten equations
of the first degree in

x , ..., T/I} ..., i1} ...,/* which are at once

seen to determine these ten constants uniquely. And if X, F, Z
denote Xoc + ^y + vz, \'x + i/y + v'z, \"x + v?'y + v"z

t
whose co-

efficients are known constants, the most general cubic in

X, Y, Z with infinitesimal coefficients is the same as the

most general cubic in x, y, z with infinitesimal coefficients.

We see then that, having a cubic which can be thrown into

the form

the most general cubic obtained by giving its coefficients

infinitesimal increments is also of the same form

+ 6 (m + M) (Z + )(7+

Starting then from the cubic

3 + 6 m'asyz,

which certainly has the form, we may pass by infinitesimal

stages to any other cubic, and see that it must be expressible
in the same form in the way indicated at the outset.

Ex. 33. Apply this method to show
( 199) that Xs + Y3

is

a canonical form of the binary cubic.

Ex. 34. Also apply it to show
( 211) that X4 + 74+ 6mX 2 72

is

a canonical form of the binary quartic.

230.] Catalecticant of ternary quartic. We conclude this

chapter with a theorem due to Sylvester as to the impos-

sibility in general of a reduction which a mere counting of

the constants might lead us hastily to assume possible. This

will illustrate the necessity of a care which in much that has

preceded may have seemed superfluous.
The general ternary quartic

(a, b, c, ...)(, 2/,0)
4

contains fifteen (= 1 + 2 + 3 + 4 + 5) coefficients
;
and the sum

of five fourth powers
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contains exactly the same number of constants, which may be

chosen at will.

It would then be expected that a canonical form of the

general ternary quartic would be a sum of five fourth powers.
But this is not the case. The fifteen coefficients in the sum
of powers are, as we shall see, connected by a relation, which

must consequently also connect the coefficients in the ternary

quartic for the reduction to be possible.

The fact is akin to that of 208, 210, in which, however,
there is nothing in the same way paradoxical, as in the sum
of two binary fourth powers the number of constants is

obviously one less than in the general binary quartic.

The function of the coefficients in a ternary quartic which

must vanish that the quartic may be a sum of five fourth

powers is an invariant, called in analogy with the catalec-

ticant of a binary quartic its catalecticant, i. e. is the eliminant

of its six second partial differential coefficients, which are

linear functions of x2
, y

2
,
z2

, yz, zx, xy. Let us use a triple

suffix notation according to which arft ,
where r + s + 1 = 4, is

the coefficient in the ternary quartic of the term krsi x
r

y
8zt which

occurs in the expansion of (x + y + z)* by the multinomial

theorem. The catalecticant is

400

310 220

a>>

202

a301

220 ^121 ^040 ^031 ^022

!03

The same function of the coefficients in (Ix + my + nz)* is

Z
3m I

2m2
I
2mn lm3 Im2n Imn2

I
3n I2frtm I

2 n2 Im2n Imn2 In3

I
2m2

lirfi lmzn m4 m3n m2^2

I
2 ffin Im2n Imn2 rn3n m2n2 mn3

I
2n2 Imn2 In3 m2n2 mn3 n*

in which it will be noticed that the columns are respectively
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I
2

, lm, In, m2
, mn, n2 times the one column I

2
, Irti, In, m2

, win,

n2
. The columns are then identical, but for different mul-

tipliers applied to them severally.

For the sum of five fourth powers the catalecticant is

a determinant, obtained from that last written by writing
for each constituent in it a sum of five like ones obtained

by giving to I, mi, n, or such of them as occur in it, the suffixes

1, 2, 3, 4, 5 in succession.

Now the determinant thus obtained is a sum of 5 6 deter-

minants like the last written, except that the constituents

have suffixes, which in any one of the determinants are the

same in any column, but not, except in the case of five of the

determinants, the same in all columns. All possibilities of

applying the suffixes 1, 2, 3, 4, 5 to columns, one suffix to each,

in fact occur in different determinants of the whole set of 56
.

But there are six columns and only five suffixes. In every
one of the 5

6
determinants there must therefore be at least

two columns with the same suffix. By the above, then, every
one of the determinants contains two columns which, upon
removal of factors such as I

2
, lm, In, m2

, mn, n2 for some suffix

or other, are identical. Every one then vanishes. Conse-

quently their sum, the catalecticant of the sum of five fourth

powers, vanishes.

231.] The student will easily convince himself in like

manner of the following facts.

The quaternary quartic (a, &,... ) (x, y, t, u)
4 contains thirty-

five coefficients, and the sum of nine fourth powers of linear

forms contains thirty-six constants, apparently one more than

is necessary. Yet a quaternary quartic cannot be expressed
as a sum of nine fourth powers unless its catalecticant, i. e. the

eliminant of its second partial derivatives, vanishes. For ten,

the number of these derivatives, exceeds nine, the number of

squares.

The quinary quartic (a, 6, . . . ) (x, y, 0, u, v)* contains seventy

coefficients, and the sum of fourteen fourth powers of linear

functions of x, y, z, u, v contains seventy free constants. Yet

a quinary quantic cannot be written as a sum of fourteen

fourth powers unless its catalecticant vanishes, since 15 > 14.



CHAPTER XIII.

INVARIANTS AND COVARIANTS OF THE BINARY QUINTIC

AND SEXTIC.

232.] THE study of the binary quintic and its concomitants

has been carried to a high degree of completeness by in-

vestigators, among whom Hermite, Cayley, Sylvester, Salmon,

Clebsch, Gordan, and Faa de Bruno should be named. The

present chapter contents itself with calling attention to the

main facts, and some of the simpler applications thereof. It

is beyond the scope of an introductory treatise to give a full

synopsis of the mass of results at which the theory has

arrived, or to endeavour to reproduce in outline more than

the most elementary of the investigations which have pro-

duced those results.

The three absolutely independent invariants of lowest

degrees have been encountered in previous chapters, and are

of degrees 4, 8, 12 respectively. Any other invariant is

a function of these by 30 : but there is" a fourth of degree 1 8

( 114, Ex. 22), discovered by Hermite, which is irreducible

in that it is not a rational integral function of them, but

is connected with them by a syzygy which will be exhibited

later. A method by which the existence of the syzygy is

proved has been noticed in 143.

The whole number of irreducible covariants and invariants

of the quintic, the quintic itself being counted as one, is

twenty-three, a number which the arithmetical method by

analysis of a generating function, whose beginnings have been

sketched in chapter viii, has been successful in indicating.

The honour, not only of pointing out the number, but of

exhibiting symbolically the concomitants themselves, is

Gordan's. Their explicit forms have been investigated in
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Cayley's second, third, fifth, eighth and ninth memoirs on

quantics.

233.] Canonical and semi-canonical forms. For the detailed

study of the quintic much use has been made of the form to

which it may be reduced

or, say, aX + bY5 + cZ5
,

where X+Y+Z=0.
One of the three coefficients a, b, c may, in accordance with

205, be taken as unity; or, if we allow a, b, c to be all

arbitrary, we may suppose that the modulus of the substitu-

tion which reduces the general quintic to the form is unity.

Chapter xviii of Salmon's Higher Algebra gives the forms,

symmetrical of course in a, &, c and in X, F, Z, of the con-

comitants for this symmetrical shape of canonical form.

A very convenient canonical form is Hammond's

x'5 + 5 b'x'*y' + 5 e'x'y'* + y'
5

,

i.e. (1,^0, 0, </!)(*', /)',

in which the two end coefficients are units and the two middle

ones zero. He uses more the form

(a, b, 0,0 ! e,f)(x> y)
5

,

which contains too many free coefficients to be properly
called canonical, but to which a substitution of unit modulus

reduces any quintic, and which has the advantage of not

excluding some special classes of quintics, whose coefficients

obey invariant conditions, to which the more restricted

canonical form does not apply.
We must see that the reduction to this form is possible.

Take the quintic in the form

from which the most general linear substitution produces

a (Ix + my)
5 + b (I'x + m'y)

5 + c{(l + l')x + (m + m')y }
5

.

In this the coefficients of 10x3
y
2 and I0x'2y

3 are

a 3m2 + bl'
zm'* + c(l + IJ (m + m')

2

and aPm3 + bl'
2m'3 + c(l + lj(m + m')

3
,

x
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which both vanish if

al2m2 = bl'
2m'2 = - C (l + lJ(m + mJ,

i. e. if + a?Im = tfl'm' = c*V^l (I -f I') (m + m'),

which suffice to determine ^ and > j whence Zm' I'm = 1

I m'
derives Irti and l'm\ leaving still one of I, m, ', m' which

may be assigned arbitrarily.

In case (cf. 204) the assumed reduction to the form

is impossible, there is as a rule no exception to the reducibility
to Hammond's form. In fact it has been seen in 204 that in

the ordinary special case, when /3
= y only, the special form

ax5 + 5 exy* +fy
5

is assumed, which is the case of Hammond's when b as well

as c and d is zero. This is the case when J12 ,
the irreducible

invariant of degree 12, vanishes.

In the more special case, when a = ft
= y, we saw in the

article referred to that the form

is taken, and this, if we take for a new y one of the factors of

a'x2 + 5 b'xy +10 c'y'
2
, becomes

x3
(5bxy+10cy

2
).

This is the one case of exception to the general applicability
of Hammond's form.

It might be thought from mere counting of the constants

that it would be possible in general to make the coefficient of

x4

y as well as those of xz
y
2 and x2

y
3 vanish. It will be seen

later, however, that this can only be done when.an invariant

condition J12
= is satisfied. That it can be done when

J12
= has been seen above.

234.] List of concomitants of binary quintic. The twenty-
three concomitants of a quintic, arranged in the order of

Cayley's ninth memoir on quantics, are as follows. Many
of them have been already met with. It will be seen that

all are invariants or covariants from their methods of
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formation. That they are irreducible, and form the complete
irreducible system, it is beyond our scope to establish here.

The best proof reposes on the method of transvectants (cf. 61).
We use the notation C

{ ^ to denote a covariant of degree i in

the coefficients and order w in the variables, and I
i
to denote

an invariant of degree i. The arrangement is according to

degree, and for the same degree according to order.

(1) u or C
1( 5

is the quintic (a, b, c, d, e,f) (x, y)
5
itself.

(2) C
2t 2 is the quadratic covariant whose leading coefficient

is the seminvariant ae4:bd + 3 c
2

. It is the fourth transvectant

of u and itself, or the quadratic invariant a'e' 4b'd' + 3c' 2 of

the fourth emanant of u.

(3) C
2i G is the Hessian of u. Its leading coefficient is

ac-b 2
.

'

(4) C
3i 3 has for its leading coefficient

ace 4- 2 bed ad2
b2e c3.

It is obtained as this invariant of the fourth emanant of i&, or

as the result of putting -r- ,
-=- for # and y in (2) and

operating on u. Let us express this shortly by saying that

it is the result of operating with (2) on u. It is the

canonizant
( 207) of the quintic.

(
5
) ^3, s is tne Jacobian of u and (2). Its leading co-

efficient 'is a2/- 5abe+2 acd + Sb2d-Q be2
.

(6) C3 9 is the covariant whose leading coefficient is

a2d-3abc + 2b*.

It is the Jacobian of u and its Hessian (3).

(7) 74 is the invariant of lowest degree. It is the dis-

criminant of (2), viz.

(8) (74 4
is formed by adding nine times the square of (2) to

the result of operating with (2) on (3), in the manner described

in connexion with (4), and dividing by fifteen. Its leading

coefficient is
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It will be noticed that we have given it a different sign from

that of our general convention in 71.

(9) (74 6 ,
a second sextic covariant, is the Jacobian of u

and (4). Its leading coefficient is

(10) C5 15 the linear covariant of lowest degree in the

coefficients, is the result of operating with (2) on (4), with

sign changed.

(11) (7
5 3 ,

a second cubic covariant, is the Jacobian of (4)

and (2).

(12) C
5i 7

is the Jacobian of (3) and (4).

(13) C^, a second quadratic covariant, is given by opera-
tion with (2) on (8).

(14) C
6 4 ,

a second quartic covariant, is given by operation
with (10) on u.

(15) (7
7 15 a second linear covariant, is the Jacobian of (10)

and (2).

(16) C7>5 ,
a third quintic covariant, reckoning u itself as

one, is the Jacobian of (13) and u. (N.B. The quintic co-

variant (16) of Salmon's Higher Algebra, 232, or Faa de

Bruno's Formes Binaires, No. 12, Table v, is the result of

subtracting from this G
7 5 the product C2 2 C

5 3 of (2) and

(17) J8 ,
the second invariant, is found as the invariant

ac' + a'c ZW of (2) and (13).

(18) (78 2 ,
a third quadratic covariant; is found as the

Jacobian of (4) and (10).

(19) (7
9 3 ,

a third cubic covariant, is the Jacobian of (13)

and
(4). (N.B. The covariant of degree 9 and order 3 in

Faa de Bruno's Formes Binaires, No. 15, Table v, is

96(79>3 -16(72>2 (77il -f7/4 C'5>3.)

(20) C7lltl ,
a third linear covariant, is given by operation

with (2) on (19).

(21) J12 ,
the third invariant, is the discriminant, but for

a numerical factor, of (13) or of (4).

(22) C
]3)1 ,

the fourth linear covariant, is the result of

operating with (19) on (8). (Faa de Bruno's, No. 17, Table v,
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(23) J
18 ,

the fourth irreducible invariant, is the eliminant of

the two linear covariants (10) and (22). It is also the catalec-

ticant of (14).

Thus, to sum up, the irreducible concomitants of a binary

quintic are

4 invariants 74 ,
/

8 ,
7
12 ,

I
1S ,

4 linear covariants (75>1 ,
(77>1 ,

C
llilt C7131 ,

3 quadratic C
2i 2 , <\ 2J (7

8> 2 ,

3 cubic C3i3 , 6i3 ,C9j3 ,

2 quartic C4i4 ,
C6>4 ,

3 quintic u, (7
3< 5 , 7 5 ,

2 sextic <72>6 , (74t65

1 septimic C
6t 7 ,

1 nonic (7
3> 9

.

235.] Forms of the concomitants when c = 0, d = 0. The

kindness of Mr. Hammond has supplied me with the forms

taken by the twenty-three concomitants when the quintic is

given his form (a, 6, 0, 0, e, f) (x, y)
5

,
in which the two middle

terms are wanting, this form being, as we have seen, in effect

general. None of the expressions are of great complexity.

They are

(
1
)
C

lt 5
= u = ax5 + 5 bx4y + 5 exy* +fy

5
,

(2) C
2> 2

= aex2 + (af-3be)xy + bfy*9

(3) C
2> 6

= -(b
2xQ + e

2

y*) + 3 (aex
2 + bfy

2

)
x2

y*

(4) C
z> z

= -{

(5) C
3 5

= (af
+ 8(b

2
fx-ae

2
y)x

2
y

2
,

(6) (7
3j 9
= 2(b

+ (a/+ 1 1 be) (ax
5-fy

5
) x*y*

+ (7 af + 2 9 &e) (&*
3-

+ 16(b
2
fx-ae

2

y)x*y\

(7) I,
= a2f2 -Wabef+9b

2
e2,

(8) (74 4
= (aV-26

3/)^ + (6
2
/
a-2o68

)y*
1 8 b

2
e
2xz

y
2
,
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(9) C4
= (3be-af)(b

2x6 -e2
y
6
)-2(a

+ 2(b
2
f

2 + ae3
)xy

5
-WZ>e(aex

2
-bfy

2
)x

2
y
2

,

(10) C
5t !
=

(11) <76 , 3
=

_
(4 6

3/2- a2
e
2/- 3 a&e3

) xy
2

,

(1 2) <7
5> 7

= 2 (6
4
/a

7 - aeV) + 1 b2
e2 (ax

5
-fy

5
) xy

+ 3 be (a

- 6

(13) 6 2
= (3ae*-b

2
/

2
)b

2x2
-(af-9be)b

2e2xy

(14) (7
6< 4
= (a

3
e
2f-

+ 4 (aV/- 6 ate8- 63/
2
)
bx3

y
- 4 (ab

2
/2-6 b3ef-a

2
e3

) exy*,

(15) (77>1
= (3a

3
e
3/-a2 62

/3-

(16) (7
7i 6
= (a

2
e
2/- 3 abe*-

-
(2 b*f

3- 3 ae3/- 2 7

_(a6
2
/

2- 363
e/- 2a2

e3
)

(17) J
8
= a2

(18) <7
8> 2
=

(19) C\ 3
=

+ 3 (a6
2
/

2

- 3 (a
2
e
2/+ 9a6e3 - 6 6

(20) Cn< !
= (5a

3 e5f-
+ 5b*e*f)b

2

x-(5ab
5f3 -a*b2e

2
f2-27bG

(21) J
12
= b2 e2(a

2 b2
e
2
/

2-4a3
e5 -4b5f3 +
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(22) Cl3il
= (a

5 e
1

- 54 We* ex +

(23) 7
18
= (aV-

236.] Discriminant of quintic. It will be noticed that the

discriminant of the quintic does not occur among the irre-

ducible invariants /4 ,
/
8 ,
J
12 ,

J18 . Its degree is 2 (5 l)
= 8.

It might have been taken instead of I8 , being, as will be seen,

the difference of a multiple of /8 and J4
2

; but, as I
8 itself is

the simpler of the two, we prefer to speak of that and not of

the discriminant as the irreducible invariant.

For the quintic in its form (a, b, 0, 0, e, f) (x, y)
5 the dis-

criminant is easily formed by elimination, following

method, between the two first deriveds

and is found to be

a4/4- 20a3
6e/

3 + 256 (a*e
5 + b5/3

)
- I0a2 b2

e2/2

which may be written

(a
2
f

2 -Wabef+9b2 e2
)

2

- 128 (a
2 6

so that, by 235 (7) and (17), the expression for the dis-

criminant in terms of /4 and J8 is

A = I
4
2-128I

8
.

237.] Syzygy among the invariants. The four invariants

/
4 ,
J8) 712 ,

/18 , though irreducible, must, as we have often seen,

be connected by a syzygy. This may be expected to give the

square of J18 in terms of the others. It is here sought.
As the quintic can be brought to the form

(a, b, 0, 0, e, /) (x, y)
5

by a substitution of modulus unity, it can in general be

further brought to the canonical form

(a', 1,0,0, 1,/')K 2/7

by a further linear substitution which replaces bx*y and

exy* by a;'
4/ and x'y'*. Let the modulus of the resultant
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substitution which brings the quintic from its general to this

last form be M. Then, from the expressions in 235,

-10a/2
/'

2 + 90</" 216}.

It is possible to eliminate a', /' and jM between these four

equations and obtain the syzygy required.

As a guidance see what happens when a! = /' so that

/18
= o. Writing J, /8 ,

J12 for the values taken by I
4 ,
7

8 ,

/
12 ,

we have

(a'-3)
2

(a
/2 + 2a'+ 3)

Jf30J12
= a/4 - 8 a/3 + 1 8 a'2- 2 7 = (a'

-
3)

3
(a' + 1

),

if10

or, writing /u for -^
ft 3

These give, by substitution for of from the last in the others,

by combination of which

We thus have a simple quadratic and cubic from which to

eliminate p.
2

. The result is

It is suggested then to try whether the same function of

74 ,
7
8 ,
/
12 as this on the left is of J4 ,

J8 ,
J12 ,

a function whose
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degree is 36, is of the form A/
18

2
, where A is a constant. This

proves to be the case with A = 16. Thus

16 = /

is the syzygy required.
A usual and elegant way of obtaining this syzygy is to

show that, formed by the methods of 234, the values of the

invariants for the canonical form of unit modulus

lX5 +mY5-n(X+Y)5

are 7
4
= (mn + nl + Imf 4 Imn (I +m + n),

I
8
= I

2m2n2
(mn + nl + Im),

so that I, m, n are the roots of the cubic

and /
]8
2I

12
~* is the product of the squares of differences

between roots of this cubic.

238.] The quintic in a form with invariant coefficients.

Hermite's Formes-types. It is an interesting proposition
that if a quintic be so transformed that its variables are any
two of its linear covariants, the coefficients are all invariants

;

and the same is true for any binary quantic whatever which
has two linear covariants.

Let X = Px + Qy, Y=P'x + Q'y

be any two of the linear covariants (75>1 ,
(7
7>1 ,

On 15 (713(1
of

the quintic (a, b, c, d, e, f) (x, y)
5

. We have

_Q'X-QY _ -P'X+PY~
PQ'-P'Q'

y ~
PQ'-P'Q

'

in which the denominator is the modulus of the (X^ Y) to (x, y)

substitution, and is also an invariant, being the eliminant of

two covariants.

"We have now to show that in

(a, b, c, d, e,f)(Q'X-QY, -P'X +PTf
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all the coefficients are invariants. This will be proved if we
can show that they are annihilated by 12 and by 0, of which

the first is

Now, if u
t
v stand for Q'X-QY, -P'X + PY,

12
(a, b, c, d, e, /) (u, v

)
5 = 5 v (a, b, c, d, e) (u, t>)

4

+ 5 (a, 6, c, d, e) (u, v)^ &u+ 5
(b, c, d, e, /) (u, v)

We may here mean that the operation is not on X and F, but

only on coefficients of powers and products of powers of X
and Y when the quintic is expressed in terms of a, b, c, d, e,f;

P, Q> P', y\ X, Y. Now, since
( 109) 12P = 0, Q.Q = P,

lP' = 0, 12 Q
r = P', the operation being in this sense,

Slu = &(Q'X-QY) = P'X-PY= -v,

and Q,v = 12 (-P'X + PY) = 0.

Consequently

fl(a, b,c, d, e,f)(u,v)
5 = 0,

i.e. fl(a, 6, c, d, e,/)(Q'X-QF, -P'Z + PF) 5 - 0,

the operation not being on X, F, but only on coefficients o

X5 X*Y Y5
**-

i
*\. -L

,
. .

,
-L .

All these coefficients are then annihilated by 12. Similarly
all are annihilated by 0. Accordingly all are invariants.

239.] Quintics for which J12
= 0. In 233 it was stated

that a quintic can only be linearly transformed to the form

(a, 0, 0, 0, e
t f)(x, y)

5
, wanting its second as well as its thirc

and fourth terms, when an invariant condition is satisfied

And it was seen that the said reduction can be effected when
J12 ,

which is the discriminant of the canonizant, vanishes

To prove the necessity of this condition take Hammond's
forms of the invariants

( 235) of (a, b, 0, 0, e, f) (x, y)
5

,
anc

put b =. in them. We get

J= -

of which the third proves the necessity stated.
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From the values here of J4 ,
/

8 ,
1
12 it follows that for a quintic

which can be reduced to the form now contemplated

and this is correctly what the syzygy of 237 becomes when
I
12
= 0.

It is not hard to prove from the expressions for the invari-

ants J
4 ,
J8 ,

1
12 of (a, b, 0, 0, e,f)(x, y)

5
,
which involve of, be

and a3 e5 + b5f3
only, that be, which call /3, is given by the

equation 97-7-2 j

so that the product of all the values which be can have for

reductions of the form (a, b, 0, 0, e, /) (x, y)
5 is

-l

unless the discriminant /4
2 128/8 vanishes, when the product

is still a multiple of /12 . We thus have quite clearly exhibited

that when J12 vanishes some one at least of these values of be

is zero, so that a reduction to the form (a, 0, 0, 0, e, f) (x, y)
5

or the in fact equivalent form (a, b, 0, 0, 0, /) (x, y)
5

is

possible. The conclusion converse to that proved above,

which was in effect arrived at before, as stated already, is

thus confirmed.

A quintic for which /
19 cannot be expressed as a sum

of three fifth powers, as was seen in 204. In fact, the cano-

nizant of ax5 + 5 exy* + y
5
, to which form it can be reduced, is

3i3
= -ae2

xy
2

.

Thus, if the reduction were possible, one of the X, Y, Z would
be a multiple of x and the other two of y. Now

ax5 + 5 exy* +fy
5 = lx5 + my5 + ny5

is an impossibility unless e = 0, i.e. unless 78 = and 7
18
=

as well as J12
= 0.

We are thus guarded against an erroneous conclusion which

might hastily be drawn from the last forms of the invariants

in 237. It might appear from those expressions that, when-
ever J

12
= 0, either 1=0 or m = or n = 3 and therefore

/
8
= and 7

18
= 0. But this is not the case, the forms not

being applicable to the case when /
12
= 0.
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240.] Formes-types when 712
= 0. Another interesting

fact as to quintics for which J12
= may be derived from

observing what the four linear covariants of the quintic
become when 6 = 0, c = 0, d = 0.

Putting b = in (10) (15) (20) and (22) of 235 we obtain

=a*<?f(3ex+fy),

L
13
= <7

13 !
= a5 e*x.

Thus the y and x of the form (a, 0, 0, 0, e, f) (x, 7/)
5

, to which

a quintic for which I
12
= may be reduced by a linear sub-

stitution of modulus unity, are multiples of the linear covari-

ants of the llth and 13th degrees, and are easily expressed
also as sums of multiples of any two of the four linear

covariants. We have, in fact, using the values of 74 ,
/
8 ,
7]8

in 239,
ax5 = a- 2*<r*Z13

6 = 2567
8

~ 8Z
13

5
,

X5/YVJ/4: _ xy-21 /3-35r / 4 _ Q 7" -7 r 7" *ex -^ =- o^ ^iy

Thus the quintic reduced to the form (a, 0, 0, 0, e, f) (x, y)
5

,

with modulus unity, is

Consequently when J
12
= one of the six ways ( 238) of

expressing the quintic with invariant coefficients expresses it

in the reduced form.

Ex. 1 . When 7
12
= prove that the other five expressions of the

quintic with invariant coefficients are

(2) /
8

-18

(~8,0, 0,0, 4/8',
16/

8
9/

]8) (4/]8
Z

11+ /
8

3Z
5 ,

(3) S-'/r*/.-'/,.-
1

^, 0, 0, 0, -81/4

2/
8 , 243///8)

(78Z7

(4) 2-/
]8-(64/4

2
,0,0,0, -2/8 ,

-7
8

(6) 2-''/4
-4
/r

UV1
(2/4

2
, 0, 0, 0, -78 ,

-7
8)

(78
2Z

7
- 47

]8
Z

5 ,
7
8

2
7:

7+ 127
]8
Z

6 )

5
. (Hammond.)
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241.] The classes of quintics for which respectively J4
=

and J8
= will not long occupy us. We content ourselves

with noticing that when J
4
= for the quintic

(a,M, 0, e,f)(x,yY

the condition is, by 235 (7),

(af-be)(af-9be) = 0.

Thus when J
4
= a quintic may be reduced by a substitution

of unit modulus with one degree of arbitrariness in its co-

efficients to one or other of the forms

be
ax5 + 5bx*y+5 exy

4
-\
-- y

5
,a

9 be
ax5

-\-5bx*y + 5 exy* -\
--- y

5
.

a/

By a linear substitution of non-unit modulus it can then be

given one of the forms

ct

g
ax5 + -

y
5 + 5xy (x

3 + y
3
),

ct>

or, equally, one or other of the forms

x5 + y
5 + 5xy (

bx* + -j y
3

)

When 7
8
= 0, provided J12 does not also vanish, by the last

expressions in 237, the quintic can by substitution of unit

modulus be given the form

where T H-- H = 0, i.e. the form
i m n

By a substitution of non-unit modulus it can be given the

form vv> v.5
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When both I
8
= and 7

]2
= 0, or both 7

4
= and J

12
= 0,

we gather from 237 or 239 that also 718
= 0, and the cases

are such as will occur below.

242.] Quintics for which 7
18
= 0. Quintics for which the

skew invariant J
18 vanishes have a special simplicity in that

they are soluble. /
18 is skew, for its weight is } 18 . 5 = 45,

i.e. is odd.

Consider the canonical form of unit modulus

lX 5 +mY5 + nZ5
,

where X+ Y+Z= 0.

Referring to 237, we see that if J18
= 0, and if J12 does not

vanish, so that the reduction to this form is possible,

(m n) (n 1) (I m) = 0,

which requires that two of I, m, n be equal. Thus a quintic
for which J

18
= and J12 ^ can be given by linear trans-

formation of modulus unity the form

l(X
5+Y5)-m(X+Y)5

,

i.e. the form

i.e. (X+Y){(l-m)(X
2 + Y2

)

2

-(l + 4m)XY(X2+Y2
)-(l+4m)X

2Y2

},

which can be broken up into X + F and two quadratic, and

then into five linear, factors.

Thus, so far, a quintic for which /18
= and J

12 ^ can be

solved.

Moreover the factors are of the forms

X +F,

X2 +Y*+pXY,

and of these the single one which comes first is, speaking geo-

metrically, one of the common harmonic conjugates X* Y2

of the other two pairs.

Thus, if for a binary quintic 7]8 = 0, and J12 ^ 0, some one

of its five linear factors is a double element of one of the three

involutions determined by the other four factors taken in

pairs.
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Putting x for X + Y and y for X Y the quintic above may
be written in the form

.e. ax5 +

a form in which all the coefficients of odd weight are wanting.

Conversely, if one of the five factors of a quintic be one of

the common harmonic conjugates of two pairs which together
constitute the other four factors, then J18

= 0.

For such a quintic can be given the form

i. e. ax5 + 10cx ?>

y
2 + 5 exy*,

in which no non-vanishing coefficient, and therefore no non-

vanishing rational integral function of the coefficients, and

consequently, in particular, no non-vanishing invariant, can

be of odd weight.
Now all skew invariants

( 95), and J
18 in particular, are of

odd weight. For such a quintic as contemplated then, J18 and
all other skew invariants vanish.

Granting then, as we shall see in the next article, that the

temporarily reserved case when J
12
= as well as J

18
= is

only special and not exceptional, we have arrived at the fact

that the condition J
18
= is the necessary and sufficient one

that the quintic may have the special property which has been

expressed geometrically above.

We can also conclude that /18
is the only irreducible skew

invariant which a quintic possesses. If J18
= the quintic

has the above property. If it have that property all skew
invariants vanish. Thus every skew invariant vanishes if 7

18

vanishes. J18 is then a factor of every skew invariant, and
the invariant obtained by removing that factor is no longer
skew. If its expression in terms of irreducible invariants

involve another skew invariant, this may be analyzed in like

manner
;
and so on.

Ex. 2. Solve the quintic equation

='
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Ex. 3. By actual substitution, as in 233, prove that

[242

can be transformed with modulus unity into

ax* + 5 b'x*y + 6 e'xy* +fy5
,

where a'V
5 = 6'

5

/'
3

.

Ans. As in 233 a way to make c' = 0, d' = is given by

taking a^lm = afrl'mf = c%(l+ l') (w + m') 5 whence, if

e

I V l + l' a' b'
t = .==-

,
we get

-
: t

5 and = ?.
m' m m+ m' f

Ex. 4. Hence the form of Ex. 2 is a general one for quintics for

which /
18
= 0, but 7

12 ^ 0.

Ex. 5. Prove that

1, /3 + y, /3y

1, 8 + e, 8e

is the condition that x ay be a common harmonic conjugate of the pairs

(x-f3y) (x-yy), (x-Sy) (x-ey\

and that the determinant is a function of differences between pairs of

a, /3, y, 8, e.

A ns. It is annihilated by

d d d d d

da dft dy db dt

It is (a-8) (a-/3) (e-y) + (a-y) (a-*) (8-/3).

Ex. 6. One may be taken out of a, /3, y, 8, e in five ways, and

the rest go in pairs in three ways. Prove that a18 times the product
of the 5x3 = 15 determinants

1, 2 a, a2

i, /3 + y, /3y

1, 8+e, Se

is an invariant of degree 18 and weight 45, and is consequently
a numerical multiple of /

18
. (Cayley.)

Ex. 7. Prove that the product of
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is symmetrical in p, y, 8, e
; and hence also that a18 times the product

of the five products of three such terms, with a, p, y, 8, in suc-
cession taken for a, is a numerical multiple of an invariant 7

I8
.

(Hermite.)

243.] We temporarily reserved in 242 the case of quintics
for which /

12
= as well as /18

= 0.

When /
12
= the quintic can

( 239) be given by substitu-
tion of unit modulus the form

and the condition J
18
= is then

aV/=0,
so that either /= or e = or a = 0.

We also see from the syzygy 16/
18

2 = IJ8\ which holds
when /

]2
= 0, that the conditions 7

]2
= 0, Ils necessitate

also that either I. = or /s = 0.4 o

When /= the form taken is

ax5 + 5exy*,

i.e.

This is the case when J4 = as well as I12
= 0, /18

= 0. There
is no exception here to the geometrical property in 242.

When e = the form taken is

aaf+fy
5
,

i.e. X5 +Y5
,

and again there is no exception. The case is that of quintics
for which /

8
= as well as /12

= o and J
18
= 0.

When a = the form taken is

.e.

for which the property holds in a limiting form, for X + Y or

any other linear form in X and F is one of a pair of harmonic

conjugates, the other being F, of the coincident factors of Y2
.

This last class of cases is included in the class for which all

the invariants vanish, but is not coextensive with that class.

As we have seen in 28, Ex. 3, all invariants vanish for

aquintic X^(X+7)(pX+ qY)
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with a perfect cube for factor, for such a quintic can be given
the form a x*+ Sa^y+lOa^y2

,

and no product of i factors chosen from among a
,
alf a.

2
can

have a weight so great as to satisfy 5i = 2w.

It will be remembered from 233 that this case of a quintic

with a cube factor is the one of irreducibility to Hammond's
form. It is not one of exception to the geometrically expressed
theorem as to quintics for which /18

= 0, for X is one of the

common harmonic conjugates of the pairs

X\ (X+Y)(pX + qY).

244.] The binary sextic. We will only give a list of what

prove to be the complete system of irreducible concomitants

of the sextic.

As indicated in 143 the sextic has five irreducible invari-

ants. Of these four /
2 ,
7
4 ,
7
6 ,
/
10 are absolutely independent.

The fifth, J]5 ,
is skew, and its square is given in terms of the

rest by a syzygy of degree 30.

Clebsch and Gordan have found that the whole number of

irreducible covariants and invariants, including the sextic

itself, is 26, and the method of Cayley and Sylvester by
means of generating functions, which has been referred to in

chapter viii, confirms the result. The complete system has been

exhibited as follows, the arrangement being, as in the case

of the quintic, according to degrees in the coefficients, and for

the same degree according to orders in the variables.

(1) u, or GI 6 , is the sextic (a, b, c, d, e,f, g)(x, y)
6
itself.

(2) 7
2 ,

the invariant of degree 2, is ag 6bf+ 15ce I0d2
.

Cf. 48.

(3) C.
2t 4 , the first quartic covariant, is the covariant whose

leading coefficient is the seminvariant

It is the fourth transvectant of u and itself.

(4) C.
2i 8 ,

an octavic covariant, is the Hessian, whose leading
coefficient is ac b2 .

(5) (73 2
is a quadratic covariant obtained by operation with

u, having replaced in it x and y by -=- and -=- > on the
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Hessian C
2 8 . The seminvariant which leads it is

(ac-b
2

)g-3(ad-bc)f+2ae
2 -bde-3c2e+2cd2

.

It can also be obtained by operation with C.2 4 on u.

(6) C
Si 6 is a sextic covariant whose leader is

ace + 2bcd ad2
b'
2
e c3

( 114, Ex. 13), the catalecticant of the fourth emanant.

(7) (73 12 is a duodecimic with the seminvariant

a?d 3abc + 2b3

( 114, Ex. 15) for leader.

(8) (7
3 8 ,

a second octavic covariant, has for its leader

(

(9) /4 ,
the irreducible invariant of degree 4, is the result of

operating with u on (73 6
. It is the catalecticant

( .208)

a, 6, c, d

b, c, d, e

c, d, e, f
d, e, /, g

(10) (7
4 4 is a second quartic covariant, the Hessian but for

a numerical factor of the first quartic covariant C
2i 4 . Its

seminvariant leader is

where the coefficient 2 is, contrary to the usual convention of

71, given to the alphabetically leading term a2
eg in order

to avoid fractional coefficients.

(11) C4 6 ,
a third sextic covariant, is the Jacobian of u and

G,*.

(12) (74 10 ,
a decimic, is the Jacobian of C2 8 and C

2> 4 .

(13) (75 2 ,
a second quadratic, is the result of operating on

C,>4 with'(7
3> 2

.

(14) C5 4 ,
a third quartic, is the Jacobian of C

2i 4 and (73 2 .

(15) (7
5f 83 a third octavic, is the Jacobian of O.,

t 8 and (7
3 2 .

(16) 76) the irreducible invariant of degree 6, is the dis-

criminant of (73 2
.

Y 2
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(17) C
6 6 ,

a fourth sextic covariant, is the Jacobian of u and

CB. a .

(18) -ST6t6 ,
another covariant of the same degree and order

6, 6 as the last, is the Jacobian of (73 6
and (7

3> 2
.

(19) (7
7 2 ,

a third quadratic, is the result of operating on

C72>4 with'<75>2 .

(20) C
7> 4 , a fourth quartic, is the Jacobian of (74 4

and 3 2
.

(21) C8 2 ,
a fourth quadratic, is the Jacobian (7

3> 2
and 5 2

.

(22) (7
9t 4 ,

a fifth quartic, is the Jacobian of (74 4 and (7
5 2

.

(23) J10 , the invariant of degree 10, is the discriminant of

0.r
(24) Cf

10 2 ,
a fifth quadratic, is the Jacobian of C

3> 2 and (7
7 2

.

(25) (7
12 2 ,

a sixth quadratic, is the Jacobian of C
5> 2

and 6\ 2 .

(26) J
15 , the skew invariant of degree 15 and weight

6 . 15 ~ 45, is the determinant
( 17, Ex. 25) of the quad-

ratics C3 2 ,
C5 o, C

1 2 . It is the criterion for those three

quadratic covariants forming an involution.

245.] There are then altogether for the sextic the following

irreducible concomitants :

5 invariants J2 ,
J4 ,

7
,
7
10 ,

J
]5 ,

of which the last is skew,

6 quadratic covariants C3 2 ,
C

5f 2 ,
(7

7 2 ,
(7

8< 2 ,
(7

10t 2 ,
(712 2 ,

5 quartic C
2> 4 ,

C
4> 4)

(7
5 4 ,

(7
7f 4 ,

C7
9 4 ,

5 sextic -M-, C3i 6 ,
C

4> 6 ,
(7

6> 6 ,
^

6i 6 ,

3 octavic C
2i 8} (73e8 ,

C58 ,

1 decimic C
4> 10 ,

1 duodecimic ^3.12-

None of the covariants are of odd order. Indeed, we have

seen
( 39) that no binary quantic of even order can have

a covariant of odd order. In particular a sextic, or other

binary quantic of even order, has no linear covariant.

We notice the occurrence of two irreducible covariants (7
6 6 ,

K
e 6 of the sixth order and the sixth degree, i.e. of two

covariants of that order and degree which are linearly inde-

pendent of one another, and of the covariants of the same
order and degree which can be formed as products of lower

covariants and invariants. This is the first instance of a state
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of things which often occurs in connexion with quantics above

the sixth order, but only in this one instance up to the sextic

inclusively.

In forming covariants and invariants by operations which

involve only differentiations with respect to variables, as for

instance in the ordinary methods of finding them as hyper-
determinants or transvectants, or, in particular, as Hessians,

Jacobians, or results of operating with one covariant or

quantic on another, we may, it is clear, with safety use

canonical forms. Only operations of this class occur in the

determinations of the more complicated of the above concomi-

tants from the simpler ones. We may apply them to the

canonical form of unit modulus

as to which see 226.

It should be mentioned, however, as of general applicability,

that methods which use differentiations with regard to coeffi-

cients, such as that of evectants
( 67, 68), cannot as a rule

be used in connexion with canonical forms. Such methods

are not contemplated above.

246.] Complete systems of concomitants of the binary sep-

timic and octavic have been symbolically exhibited by Von

Gall, and a good deal has been done with regard to quantics

of a few orders higher. For no higher quantic, however, have

explicit results been arrived at with completeness, except for

that of infinite order, whose theory has been touched upon in

chapter xi.

ADDITIONAL EXAMPLES.

Ex. 8. Prove that a quintic, deprived of its second term by writing
x = X by, y = aY, may be written

a (1, 0, C, D, azE-3C*, azF-2CD) (X, 7)
5

,

where
C = ac-b\ D = a'*d-

and that, if

J = ace+ 2bcd adz
tfe-c*,

the relation Dz = a?J+aiCE4C3 can be used to reduce any

expression to the first degree in D. (Cayley.)
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Ex. 9. If a, (3, y, b, e be the roots of a quintic, prove that

o2 (a-/3)
2

(x-yyY (*-W (*~*2/)
2 = ~ 100 fc6

.

Ex. 10. If a, /3, y, 8, e, f be the roots of a sextic, prove that

aS(a-/3) (x- y2/)
2

(*-8y)' (*-ey)
2

(*-&/)
2 - -180(7,,,.

Ex. 11. For the quintic a4

2(a-/3)
2

(/3-y)
2

(y-a)
2

(8-e)
4

is an

invariant, and must be a numerical multiple of 7
4

.

Ex. 12. For the quintic a? 2 (a /3)'' (y 8)
2

(a? ey)
2
is a covariant,

and a numerical multiple of (7
2) 2

.

Ex. 13. For the sextic a4

2(a /3)
2

(y 6)
2

(a? ey)
2
(x (>yY is

a numerical multiple of (7
2> 4

.

Ex. 14. Prove that

a*2 (a-/3)
2

(/3-y)
2

(y-a)
2

(5-e)
2

(^-Sy)
2

(*-y)

is a covariant of a quintic which vanishes identically when the quintic
has three equal roots. It must be a linear function of C

4 , 4 and C'2<z
.

Show by considering the quintic #5 + lOca;
3
?/
2

,
which has three equal

roots, that it is a multiple of G '

2i 2 3 <7
4i 4

. (Cayley.}

Ex. 15. Prove that

S2 (a -8) (a-e) (/3-o) (/3-e) (y-8) (y-e) (6-e)
2

(ie
_

a2/)
3

(X-/32/)
3

(^-yy)
3

is a covariant of degree 5 and order 9 of a quintic, which vanishes for

a quintic having two pairs of equal roots. It must be a linear

function of uC'\ 2 ,
uC and C

2 6
C

3 3
. Prove that it is a numerical

multiple of SOO^O^ -u (C^+ZC2

^}. (Cayky.)

Ex. 16. Prove that

a*2 (a-/3) (a-y) (a-8) (a-e) (x-pyY (x-yyY (x-lyY (x-tyY

is a covariant of degree 4 and order 12, which vanishes for a quintic

having three roots equal and the other two roots equal, and express it

as &(3w
2
<7

2 , 2
- 25G\ 6). (Cayley)

Ex. 17. For the sextic

I* = ~ irb <*
22 (-/3)

2

(y-o)
2

(c-Q
2

. (Sylvester.}

Ex. 18. For the sextic

120(71 /2

2 + 900/4)
= a42 (a-/^)

4

(y-8)
4

(e-C)
4

- (Sylvester.)

Ex. 19. Show that

a/3, a + /3, 1

y8, y + 8, 1
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whose vanishing expresses that the quadratics

(x-ay)(x&y\ (x-yy) (x-y\ (x-y) (x-&/}

form an involution, is a function of the differences between pairs of

a, /3, y, b, e, .

Ex. 20. The six letters a, /3, y, 8, e, can be divided into pairs

a, /3 ; y, 8
; e, f, in fifteen ways. Take each triad of pairs in a definite

order, and write down the fifteen values of the function of differences

in Ex. 19. Show that the product is symmetric in the roots, and

must be a numerical multiple of a~r'IK ,
where 7, 5

is the skew

invariant of the sextic of which a, ft, y, 8, e, are the roots.

(Joubert.)

Ex. 21. The vanishing of the skew invariant 7
1S

of a sextic is the

necessary aud sufficient condition that the sextic be the product of

three quadratics which form an involution, and consequently that,

except in a very special case, it can be written as a cubic in JT 2
,
7 2

,

where X and Y are linear in the original variables.

Ex. 22. All skew invariants vanish for a sextic which can be

thrown into the form aX6+ 1 5 cX* Y2+ 1 5eXz Y* + g Y
6

.

Ex. 23. From the last two examples a sextic has no irreducible

skew invariant but /
]5

.



CHAPTER XIY.

SEVERAL BINARY QUANTICS.

247.] IT will be remembered
( 103, 115) that an invariant

of several binary quantics

~
a2af-*y* + . . . + apy

p
,

L . 6

&C. 3 &C.,

has the two annihilators

. d . d

20 =
<

+^ria+ -

/ , , d . . d d
(P a

i -T-,>+P - Ia2^r-*' +".+a P'-r-,' * p

that any covariant has the two annihilators

and that any seminvariant, the leading coefficient in a co-

variant, has the one annihilator 212.

It will also be remembered
( 103, 115) that for any

invariant
i'p' + ... = 2w

,
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and that for any seminvariant which is not an invariant

ip + i'p' + ... exceeds 2w, the excess

ip + i'p' + . . . 2w

being the order in the variables of the covariant which the

seminvariant leads. We here and throughout this chapter
mean by seminvariant rational integral seminvariant.

We proceed to illustrate the theory of concomitants of

several binary quantics by consideration of a few early cases.

248.] Linear form and p-ic. Let the linear form and the

v = (a ,al ,a2,...ap )(x,y)
p

.

The linear form alone has no invariant, and no covariant

distinct from itself.

The p-ic alone has a system of invariants and covariants

which, in the preceding pages, have been investigated for

values ofp up to 4, and given for the values 5 and 6 of p.

The other invariants of the system are
( 69) given by

substituting for y and 77
for x in the covariants of the p-ic,

including the p-ic itself. They are the eliminants of u and

the covariants of v. They are also spoken of
( 68) as the

contravariants of v alone, if we regard u as the universal con-

comitant
( 66) of two contragredient systems x,.y ; , rj.

We
shall not dwell on this aspect of them, but the notation is

chosen so as to accord with it.

We seek information as to the other covariants of the

system, or as to the mixed concomitants
( 66) of v. The

quest for these covariants is that for the seminvariants of

the system which lead them.

These seminvariants are rational integral functions of and

7j and a
, c^,... Op, which are homogeneous, of different degrees

i, i' it may be, both in and rj and in a
,
a

15 ... ap ,
and are

isobaric in the two sets of coefficients taken together, and

f\ being of weights 0, 1 respectively. They have the one

annihilator j

Suppose that
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is such a seminvariant, where Pw ,
Pw-i, ... Pw -i are gradients,

all of degree i', in
,
alt ... ap ,

the weight of each being
indicated by its suffix.

Expressing the fact of annihilation by +12, by equating
ct> YI

to zero the terms in the result of operation with it which

multiply *, (
l~ l

r] y
... 77' separately, we obtain

Q,PW + iPw^ =0,

+ (i-l)P.-2 =0,

i+i+ P^t =0,

i
= 0,

of which the last shows that Pw- {
is a semiuvariant of the

p-ic alone, and from which, as in 109, we also draw the

conclusions that

for every value of r from 1 to i inclusive, and that the full

expression for the seminvariant is consequently

which may be written

ff*~$f~
since the addition of terms multiplying iit

'+1P
to ,

li+
'2Pw ,

... is

a mere addition of zeros.

It will also be recognized, from 93 or 160, that this

expression for the joint seminvariant is the result of substitu-

ting in Pw for cr
0>
a

lt
a

2 ,
... ap respectively, the expressions

aa
= a
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e. by the results of replacing x and y by 77
and f in

1 dpv 1 ! eP- 1 ^ 2 ! ^~2v 1 dv

i nd after substitution dividing through by
w
~\

Any seminvariant which is not a mere power of f, or. in

] articular, any invariant, is then a gradient in o
,
o
1 ,

... ap , or

such a gradient multiplied or divided by a power of f. More-

over, any gradient in them is a seminvariant or, in particular,
invariant. For a

,
o19 ...o, are serninvariants themselves the

last of them, in fact, an invariant being all annihilated by

249.] All seminvariants and invariants, including those of

u and v singly, being thus rational integral functions of some
or all of f and a

,
a
ls

a
2 ,

... ap , or such rational integral func-

tions divided by powers of f, the search for the complete

system of irreducible concomitants of u and v is the search

for homogeneous isobaric functions of f and a
, a,, a

2 ,...ap ,

from which, when they are expressed in terms of f, r]
and

c
,
a

]}
a

2 , ... ap , powers of may be removed by division,

leaving the result integral. Such new forms have again to

be combined with f, a
,
a
x ,

a
2 ,

... ap and with one another, or

with such of them as in the process are not excluded as them-

selves composite, and new forms derived by removal of f
1 actors, till the process can be continued no longer. The

method for thus arriving at all the irreducible concomitants

is that illustrated in 169, 170. Two early cases follow.

250.] Case of two linear forms. Let the two forms be

x + riy, ax + by.

The seminvariants
,
a

, aj are

f, a, bar);
and is not a factor of any combination of them. These

then are the only seminvariants and invariant
;

so that

the complete system of concomitants of two linear forms

consists of the two forms themselves and one invariant, their

liminant.
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251.] Case of linear form and quadratic. For the system

u = x + riy,

v = ax2 + 2 bxy + cy
2

,

the independent seminvariants f, a
,
a
l5 a

2
are

a, bf-ar], cf
2
-2&f77 + ai)

2
.

Here, if f were zero, we should have a a2 = c^
2

. Thus

a a2 aj
2
is divisible by f. In fact,

Thus ac 62
is a seminvariant (invariant) newly given. It is

irreducible, for it is no function of the other one a which does

not involve

Further examining the results of putting f = in the sem-

invariants now before us, i.e.

0, a, -rja, Tj

2
a, ac-b2

,

we see that no new relation connects them. We have before

us then the complete system of irreducible concomitants, viz.

(1) the linear form itself, led by ;

(2) the quadratic itself, led by a;

(3) a covariant led by bfarj. It is a linear covariant, the

Jacobian
(fef-ai,) x + (cf

-
617) y.

Geometrically it is the harmonic conjugate of the linear form

with regard to the quadratic ;

(4) an invariant c'2 2br] + aii
2

,
the eliminant ;

(5) an invariant ac - b2
,
the discriminant of the quadratic.

252.] Another method, which might be pursued in examining
the system of a linear form and p-ic, consists in using instead of

f> a
>
a15

a
2 . ... ap

the system of p + 2 protomorphs of 168,

f, bar], a
,
a
Q
a
z -a^ t

a 2a3

A third method, which will be adopted, depends on the fact

that if S be a seminvariant, or invariant, of (x + rjy and v,

which involves and rj,
i. e. which is not either a power of

f or a seminvariant of v alone, then -y- is another.
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The fact is an immediate consequence of the identity of

perators

f ^ d ~\ d d f ,.d
(f-y- + &J-7- = 3-itj-*

4*!
' d/ drj^ drj

tells us that when T- +X1 annihilates $, so that

then f -y- + 12 also annihilates 5- $.
Ciij d!?;

Thus from an invariant

of x + T]y and v, formed as in 248 from i; or a covariant of

v, are derived the series of seminvariants

of which the last is the corresponding seminvariant of v

only.

The way in which, in the following two cases, this is utilized

for the determination of complete systems of (x + riy and v,

when the complete system of v is known, is general. We
shall see that f, the irreducible invariants of v, the invariants

of x + j)y and v obtained by putting rj, f for x, y in the

irreducible covariants of v, and the successive derivatives of

these with regard to rj, constitute together the complete system
of seminvariants and invariants.

253.] Case of linear form and cubic. Take the linear

form

and the cubic

ax* + 3 bx2
y + 3 cxy

2 + dy
3

.

The complete system for the linear form alone is itself.



334 IRKEDUCIBLE SYSTEM FOR [253

The complete system for the cubic alone consists
( 169) of

three covariants

(a, b, c, d) (x, 7/)
3

,
i. e. the cubic itself,

(ac
- b2

)
x2 + (ad

-
be) xy + (bd

- c
2
) y

2
,

(a
2d-3abc + 2b*, abd-2ac 2 + b2

c, -acd + 2b2d-bc2
,

-ad2 + 3 bed- 2 c3
) (x, y)

3
,

and one invariant

(ad
-

be)
2- 4 (ac

- b2) (bd
- c

2
).

Thus the system has

(
1
)
the seminvariant f ;

(2) the invariant (a, b, c, d)(rj, )
3

,

by 248, from which flow, by 252, the seminvariants

(3) KM) (*,-,

(4) a-n-b(9

(5) a;

(6) the invariant (ac-b
2

)ri
2
-(ad-bc)r) + (bd-c

z
)('

2
,

from which flow the seininvariants

(7) 2(ac-b
2

)r)-(ad-bc)&

(8) ac-b2
;

( 9) the invariant (a
2d 3 abc + 2b3

,
abd +2ac2 b2 c,

-acd + 2b2d-bc2
,
ad2-

from which flow the seminvariants

(10) (a
2d-3abc + 2b*, -abd + 2ac2-b2

c,

-acd + 2b2d-bc2
)(r),)

2
,

(11)

(12)

and lastly the invariant

(13) (ad-bc)
2 - 4 (ac-b

2
) (bd-c

2
).

None of these thirteen is a rational integral function of any
of the others. That (5), (8), (12) and (13) are irreducible is

the theory of the single cubic
( 169). That (1) is irreducible

is obvious. We have still to see that none of the rest of the
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thirteen, i.e. none of those which involve and r?, is a rational

integral function of others of the thirteen. Suppose, if possible,
tbat "1- 1

where m is 1 or 2 or 3, and P, Q, . . . Z do not involve f and

77,
is the expansion of a rational integral function of some of

the thirteen, not merely one of them, and proves to be the

same as one of them. The coefficient P of f
ra in a rational

integral function of (I) to (13) must be either a rational

integral function of

a, ac-b2
,
a'

2d-3abc + 2b*
) (ad-bc)

2
-4(ac-b

2
)(bd-c

2

)

or must vanish. Now no rational integral function of this

complete system of irreducible seminvariants of a single cubic

is equal to one of them except that one itself, this being the

fact of their irreducibility ;
and P cannot vanish and yet be

the first coefficient in one of (l) to (13), for none of these is

divisible by rj.

We have still to show that this system of thirteen irreducible

seminvariants and invariants is complete.

254.] The system is complete. We have to see that any
seminvariant or invariant whatever of the linear form and
cubic can be rationally and integrally expressed in terms of

the system (1) to (13) of the preceding article.

Firstly, any seminvariant or invariant in which only a, 6, c, d
occur is a rational integral function of (5), (8), (12), (13), by
the theory of the single cubic.

Secondly, any seminvariant in which a, 6, c, d do not occur

is a mere power of f.

It remains to consider seminvariants and invariants in which

both sets a, 6, c, d and f, rj are represented. Let

be one, from which factors which are powers of have been

removed. P, Q, . . . Z are rational integral functions of degree
i' in a, b, c, d or some of them.

By 248, P is a seminvariant in a, b, c, d. It can there-

fore be rationally and integrally expressed in terms of

a, ac-b2
,
a2d-3abc + 2b3

, (ad-bc)
2

-4(ac-b
2
)(bd-c

2

),

which call a, C, D, A.
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If w be the whole weight of $, we have
( 247)

Now P consists of a sum of positive and negative numerical

multiples of such products as ap CqDr A8

,
where

p + 2q + 3r + <ls = i'.

The term Prf in S is then a sum of numerical multiples of

such terms as apCqDr A8
.r

]

i

)

for which, expressing that i + 3i'<2w, we have

i + 3
(p + 2 q + 3 r+ 4s)< 2 (i + 2 g + 3 r + Q s) ,

i.e. 3>+2<? + 3r<^
= i + , say,

where t is a positive integer or zero. It is important to see

that this implies, among other things, that p, q, r cannot all

vanish, since i does not.

Now in the product

(2)* (6)* (9)'' (13)*

the highest term in
?;

is

and the product

(5)* (8)" (12)' (13)-

is apCqDr A8

-,

and, if in this last we replace one of the p factors (5) by (4), or

one of the q factors (8) by half of (7), or one of the r factors

(12) by (11), we produce a first term

and again, by a like process of retrogression, we produce

and so on. Continuing the process of unit retrogression we
must arrive, before or upon reaching the final first term

at the desired first term

ap C'
qDr A8

. r^+s^+sr-^

i.e. apCqDr ^.-n\

as a rule in a number of different ways.



254] LINEAR FORM AND CUBIC. 337

Similarly for any other term of which Prf consists.

Thus we can, and as a rule in a number of ways, obtain by
composition of (2) to (13) a seminvariant

whose jf term is the same as that of 8.

Subtracting it from 8, and removing the seminvariant factor

(, we obtain a seminvariant

Let the same process be repeated. We can form a combina-

tion of (2) to (13) whose highest term in
17

is (Q Q')tf~
l

*

Subtracting this, and dividing by f, we have a seminvariant

(R-R'-R" ) Tf-2 +... + (Z-Z
f

-Z") f-
a

.

Repeat the process again ;
and continually as long as necessary.

We get, lastly, unless at some stage or other the result of sub-

traction has vanished, in which case the desired expression of

S is obtained, a residual

which is a seminvariant free from
, 17,

and so a rational

integral function of (5), (8), (12), (13).

Thus, finally, we have 8 expressed as

where Slt 8.
2 , 8$, ... S

i
are rational integral functions of (2) to

(13) or some of them.

We see then that every seminvariant or invariant of the

linear form and cubic is a rational integral function of (1) to

(13) or some of them. These were seen to be irreducible. The

proof is now complete that they form the complete system of

irreducible seminvariants and invariants.

The complete system of irreducible covariants and invariants

follows at once from the complete system of irreducible sem-

invariants and invariants. The covariant corresponding to

any one of the seminvariants $ is, by 115,

where <& = i + 3i'2w.
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255.] Case of linear form and quartic. The irreducible

covariants and invariants of the quartic

(a, b, c, d, e) (x, 2/)

4
,

are, 170, the quartic itself, the covariants

(ac b2

)
x* + 2 (ad

-

and *

-3 c
2
)
x2
y
2

+ 2 (be- cd) xy* + (ce
- d2

) y*,

and the invariants

I=ae-4bd+3c2
,

J=ace+2bcd-ad2-b2e-c*.

The invariants of the system consisting of x + tiy and the

quartic are then

(i)-r,

(3) (a,&,M)0?,-)
4

,

(4) (ac-b
2

)-n*-2(ad-

(5) r?
6 e * (a2d

\ / * \

and the other seminvariants are, as in the last two articles,

,
the four successive differential coefficients of (3), the foi

successive differential coefficients of (4), and the six successivt

differential coefficients of
(5),

all with respect to rj.

Altogether we have twenty seminvariants and invariants.

The twenty are all irreducible. This is established exactly

as in 253.

Moreover, as in 254, any seminvariant or invariant what

ever can be rationally and integrally expressed in terms oi

the twenty or some of them. They form, then, the complet
irreducible system of seminvariants and invariants.

From every seminvariant of the system the corresponding
irreducible covariant is formed by the operation and multi-

plication



256] n LINEAK FOEMS. 339

256.] Case of n linear forms. For the case of n linear

an algebraically complete system of concomitants, i.e. a

system of which all other covariants and invariants are

functions, though not necessarily rational integral functions,

consists of the n linear forms themselves and the n 1 in-

variants ^.^ a1
68-a,51> ... ) a16.-a.6I>

which are the eliminants of a chosen one of the forms and the

other nl.
For

are all independent, each involving a letter which does not

occur in any previous one, and their whole number 2 n l

is less by 4, the number of I, m, ', m', than 271 + 2 + 1, i.e.

than the number of equations which express the equalities

of coefficients of X and Y in the given forms and their linear

transformations together with the equations of substitution

and the one equation

M = fai'-l'm. (Cf. 42.)

The complete irreducible system consists of the above and

the other eliminants

of pairs of the n forms. The whole number of the system is

the sum of n, the number of linear forms, and \n(n 1),
the

number of eliminants, i.e. is

We must see that they are all irreducible, and that there is

no other covariant or invariant which is not a rational integral

function of them.

They are all irreducible. For the leaders

of the forms themselves, being different and of the first degree,
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are irreducible, and the eliminants a^ o^, ... are all of

degree 2, so that any one of them if not irreducible would

have to be a linear function of the rest and of the squares
and products of a

l ,a2 ,...an . These last cannot enter with

the others in any linear relation, for they are all of weight

zero, and the rest are of weight 1 : and no linear relation can

connect the eliminants alone, for they are of different partial

degrees in the coefficients of the n forms separately.

To prove that every other seminvariant is reducible in terms

of alt
a

2 , ... an and the eliminants, we may proceed by mathe-

matical induction. Assume it true for the above n forms, and

take an (?i+l)th gx + yy. Exactly as in 254, any semin-

variant of the system of n + 1 forms is a rational integral

function of

and the ^-derivatives of these

a,, a
2 ,...an ,

together with f.

This proves the theorem for n + I forms when we know it for

n. But
( 250) we know it for n = 2. Consequently it is

true for n = 3, 4, 5, ...
,
i.e. universally.

In proofs by the method of 254 the critical fact is that, in

the inequalities like the

of that article, the non-vanishing coefficients on the left are

all positive. This is a universal fact, for every coefficient is

the 2 (ip) 2 -M; of a seminvariant, and this is never negative

( 247).

257.] System of two quadratics. This is the only system
of two quantics neither of which is linear which we shall

discuss at length.

Let the two quadratics be

u = ax2 + 2 bxy + cy
2

,

v = a'x2 + 2 b'xy + c'y
2

.
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Six seminvariants and invariants we have at once the means

of writing down, viz.

(1) a, the leading coefficient of u,

(2) of, the leading coefficient of v,

(3) ac b2
,
the one invariant of u alone, its discriminant,

(4) a'c'b'*, the one invariant of v alone, its discriminant,

(5) ac' + a'c 266', the invariant of u and v intermediate to

(3) and (4), found in 18.

(6) ab' a'b, the leading coefficient of the Jacobian of u
and v.

These six form the complete irreducible system. This may
be seen as follows.

Firstly none of them is a rational integral function of the

rest. This is clearly the case with regard to the two a, a' of

the first degree. As to the rest all are of the second degree.

If any one of them is a rational integral function of the rest

it must be a linear function of a2
, aa', a'

2 and of the other

three of (3) to (6). Now it is clear that every one of (3) to (6)

consists of terms which do not occur in the rest or in a2
, a</, of*.

The six, however, are not all independent, but are connected

by one syzygy. For, combining (1) to (5) so as to get an

expression free from c and c', we find

aa' (ac' + a'c-2 W)- a2

(a'c
f- b'

2
)
- a'

2
(ac

- b2
)

= (aV-a'b}
2

. ...(?)

We have still to see that any seminvariant or invariant can

be expressed rationally and integrally in terms of (l) to (6).

Writing (7, C", T for (3), (4) and (5), we have

_ _
* y C

so that any rational integral function of a, 6, c, a', b', c' may
be written as a sum of such terms as

Xam a'
n
bpVq

(C+ b2
)

r

(C'

where the indices are integers, zero allowed, and, with the

exception of m and ?i, certainly positive. This again is a sum

of such terms as

\'ama'bp'b'qfCr
'C'*'.
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If the sum is a seminvariant or invariant it is annihilated by

f d 7 ^\ f f d _ 7 , d N

(a-jT +2b-r ) + (af-jn+Wj?)'^ db dc' ^ do ac '

which also annihilates a, a', C, C" separately, and so in its effect

on the sum is the same as

d , da
db db'

on it as a function of b and &' as they occur explicitly. Now
the annihilation by this implies, as the theory of partial

differential equations tells us, that b and b' only occur in the

connexion ab'-a'b.

Any seminvariant or invariant is then a sum of such terms as

jut
am/ofn>

(ab' of &)*
Cr'

C'*\

and consequently, by use of the syzygy (7), can be written as

a sum of terms each belonging to one of the types

Terms of both types cannot occur, for the whole weights of

the two types are one even and the other odd.

Thus a seminvariant or invariant is, either a sum of terms

like

or such a sum multiplied by ab'a'b. Here p, <r, T are positive

integers, zero not excluded, and a, j3 are integral or zero, but

not yet proved positive. The factors a, of, C, C', T of any
term are absolutely independent, and the last three are in-

variants.

We have to see that for no term as above can a or /3 be

negative. Suppose if possible that there are terms in which

a, for instance, is negative, and let a be the greatest positive
value of a which occurs in any term. We remember that

the seminvariant must lead a covariant, and that the last

coefficient in the covariant is, but for a numerical factor,

obtained by operating on the seminvariant with

where -, -, -,
-j

o+o' = (2b~+c4} + teb'-^j +c'^;v aa do' ^ da db *
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and w is the order of the covariant, i.e. ^(ip) 2w, in this

case 2(a + /3),
which is accordingly non-negative and constant

throughout. This last coefficient is annihilated by + 0', so

that the seminvariant is annihilated by (0 + 0')
+l

. Now the

result of operating with this upon it, if as supposed it contains

a sum of terms a~a/ 2 (of^Cp Gf(TP r
)

and none with the factor a~a'~ l

,
contains the terms

and no other terms involving a~a'~'U!~ l

against which they can

cancel. The result then cannot vanish
;
and the supposition

was unsound.

It is then completely established that any seminvariant or

invariant is either a rational integral function of (1), (2), (3),

(4), (5), or such a function multiplied by (6).

The system (1) to (6) is then the complete system of

irreducible seminvariants and invariants.

Consequently also the complete system of irreducible co-

variants and invariants consists of the two quadratics them-

selves, the three invariants (3), (4), (5),
and a third covariant,

the Jacobian

(aV- a'b) x
2 + (ac'

-
a'c) xy + (be

-
Vc) y

2
.

258.] Canonical forms of two quadratics. It is easily seen

that by a linear substitution of modulus unity the two quad-
ratics can be given the simultaneous forms

with new values of a, c, a', c'.

For to make simultaneously

all' +b(lm' +Z'm) + cmm' = 0,

a,' II' + b' (lm' + I'm) + c'mm' 0,

we have only so to choose I : m as to make

al + bm bl + cm
a'I + b'm

~~
b'l + c

fm '

i.e. to solve a quadratic, and then to take for I' : m'

bl + cm~
al + bm

*
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The absolute values of I, m and l'
y m', whose ratios in pairs

are thus determined, may then be taken, and still with one

degree of freedom, so as to make l/m'l'm, = 1.

For these canonical forms of unit modulus the six con-

comitants are

ac

ac' + a'c
,

(ac'-a'c)XY.

The X and T of the canonical forms are then factors of the

Jacobian.

The failing case of two quadratics which are special in that

their Jacobian has equal roots is left as an exercise to the

student.

Ex. 1. Interpret geometrically the vanishing of the invariant

ac' + a'c lW.

Ex. 2. The Jacobian of two quadratics represents the double

elements of the involution which they determine.

Ex. 3. Express the seminvariant ab' 2ba'b' + caf
"

in terms of

(1) to (6).

Ans. a'(ac'+ a'c-2W] - a(a'c'-b'
Z

).

Ex. 4. By means of the canonical forms prove that the covariant

led by the seminvariant of Ex. 3, represents the harmonic conjugates
of the factors of aa?

2+ 2 bxy+ cy* with regard to a'x^ + 2Uxy -f- c'y
1

.

Ex. 5. Prove the same by means of 251 (3).

Ex. 6. Find the covariant which consists of the harmonic con-

jugates of the factors of v with regard to u.

Ex. 7. Prove that the covariants of Ex. 4 and Ex. 6 are quadratics
which belong to the involution of Ex. 2.

Ex. 8. Express the eliminant (ac' afcf 4 (db
f

a'b)(bc b'c)

of u and v in terms of the invariants (3), (4), (5) of 257.

Ans. (ac
/ + a/c-266/

)

2

-4(ac-6
2

) (aV-6
/2

).
Use the

canonical forms.
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259.] Linear form and two quadratics. Let the quadratics
be as before = * + 2 Jay + ey",

v = a'x2 + 2 b'xy + c'y
2

,

and the linear form x + rjy.

Of the linear form alone the one seminvariant is

and of the quadratics the irreducible concomitants are

ax2 + 2 bxy + cy
2
,

(aV- a' b) x
2 + (ac'

-
a'c) xy + (be'

-
b'c) y

2
,

ac-b2
,

a'c'-b'2
,

ac' + a'c 2 bb'.

As in 248 the invariants of the system are these last three,

and the eliminants of x + riy, and the preceding three, i.e.

(ab'-a'b) rj

2
-(ac'-a'c) ^+ (be'-b'c) f

2
;

and as in 253, 254 the remaining irreducible seminvariants

of the system are the successive 77-derivatives of these three

last, i.e. _7>

a,

2(ab'-a'b)rj-(ac'-a'c),

ab'-a'b.

The covariants. which these lead are readily written down.
The last, last but two, and last but four, occur above.

Ex. 9. The vanishing of the invariant

(db'
-

a'V) 7f
-

(ac'
-

a'c)rj+ (be'
-

b'c)f
expresses that the linear form is a double element of the involution

determined by the quadratics.
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Ex. 10. The covariant (a?/ &)# + (& T] cf)y represents the har-

monic conjugate of x+ r]y with regard to u.

Ex. 11. Interpret the linear covariants led by

o'lj-.&'f, 2(ab'-a'b)r]-(ac'-a'c).

260.] System of quadratic and cubic. Take the forms

u =. ax* + 2 bxy -\- cy
2

,

v ~ a'x* + 3 b'x2
y + 3 c'xy

2 + d'y*.

For the quadratic only the irreducible concomitants are

(i) ,

and the invariant

(2) ac-b2
.

For the cubic only they are

(3) v,

the covariants

(4) (a'c'
- b'

2
)
x2 + (a'd'

-
b'c') xy + (b'd

f- c'
2

) y\

(5) (a'
2 d'

and the invariant

(6) (
a'd'- b'

The remaining irreducible concomitants of the system prove
to be nine in number. They may be taken to be the following

(7) the Jacobian of u and v

(8) the Jacobian of u and (4)

{a(a'd'-b'c')-2b(a'c'-b'
2

)}x
2
+...,

(9) the result of operating with u on v, after substituting
d d .

-, > 7- lor x, y in u,
dy dx

(ac' + a'c-2 bb') x + (ad' + cb'-2 be') y,

(10) the result of operating with (9) on u

-{a
2d'-3 abc'+ (ac + 2 b2

)
b'- bca'

}
x

+ {cV- 3 bcb' + (ac + 2b2
) c'-abd'} yy



261] QUADRATIC AND CUBIC. 347

(11) the result of operating with u on (5)

{a (
- afc'df + 2 b'

2d'~
b'c'*} + 2 b

(
- a'b'd' + 2 a'c'

2- 6V)
+ c (a'*d'-3a'b'c' + 2b'*)\ X -{c(-afb'd' + 2a'c'*-b'2 c')
+ 2b(-a'c'd'+2b'*d'-b'c'

2

) + a (a'd"
2- 3 bYd' + 2 c'

3
) } y,

(12) the result of operating with (l l) on u, a linear covariant

(the fourth) of degree 2 in the coefficients of u and 3 in those

of v,

(13) the intermediate invariant AC'
'

+ A 'C'- 2 BB' of u and

(14) an invariant of partial degrees 3, 2, the eliminant of

u and v,

(15) an invariant of partial degrees 3, 4, the eliminant of

the two linear covariants (9) and (12), or (10) and (11).

Of the system five are invariants, (2), (6), (13), (14), (15),

four are linear covariants (9), (10), (11), (12), three are quad-
ratics, 16, (4), (8), and three cubics v, (5) and (7).

The above is Salmon's list (Higher Algebra, 198). They
are, though all irreducible, connected by many syzygies, which
have been fully exhibited by Hammond (Am. J. vol. viii).

There is of course a considerable freedom allowed in choosing
the complete list of fifteen, it being allowable to take, in place
of any one of the more complicated ones above, any linear

function of that one and compounds of the right order and

partial degrees of those that are simpler. In fact Hammond
finds it convenient to modify the last linear covariant (12)

and the last invariant but one (14) by addition of products
of others of the set in a way suggested in the next article.

261.] We may, in accordance with the chapter on canonical

forms, reduce the cubic by linear transformation of modulus

unity to the form a
>
xz + d'

yz,

with different a', d', x, y. The same substitution does not

affect the form of aaj
a + 2 bxy + cy

2
,

but only makes the a, 6, c different.

For purposes, then, of the study of the combinations of the

concomitants, it suffices to consider u, v in the forms

u = ax2 + 2 bxy + cy
2

,

v = a'x* + d'y*.
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With this simplification it is easy to form all of (1) to (15)

by the methods described. In the following notation /, L, Q, C
denote respectively invariants and linear, quadratic, and cubic

covariants. The first suffix denotes degree in the coefficients

of u, and the second degree in those of v. The list is, in the

same order as before,

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

= u = ax2 + 2 bxy + cy
2
,

Cn = -b(a'x*-d'y*)-(ca'x-ad'y)xy,

Ql
.

2
=

a'd'(ax
2
-cy

2

) )

Lu = ca'x + ad'y,

(10) L
21
=

(bca
f~a2

df)x

= b (cafx ad'y] (a
2 d'x c

2
afy),

(11) L
13 = afd

f

(cafx ad'y),

(12) Z,3
= a'd' {(a

2 d' + bca') x + (abd' + cV) y}

= a'd' (a
2d'x + c2 a'y) + ba'd' (ca'x + ad'y)

= a'd' (a
2d'x + c

2

a'y) I
12Ln ,

(13) Il2 =-ba'd',

(14) /32 E

(15) /M =

Mr. Hammond's modification is to take instead of L23 am
J
32 the concomitants of like type, but simpler canonical sha]

L'2%
~ L

2% + 712
Lu = a'd' (a

2d'x+ c
2

a'y\

This last is the eliminant of (9) and (10). Its full value in th(

notation of 260 is

cV2 - 6 a2 bc'd'- 6 bc
2
a'b' + 2 (ac + 2 b2

) (ab'd' + ca'c')

+ (ac + S b2

) (ac'
2 + cb'

2

) -2abca'd'-2b(5ac + 4 b2
)
b'c
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Manygood exercises in geometrical interpretation are afforded

by the above canonical expressions.

262.] Linear form quadratic and cubic. From the system
for the quadratic and cubic, the system for them and a linear

form (x + rjy, is derived exactly as in 259.

The invariants of the system are the invariants /
20 ,

J
04 ,

J
I2 ,

7o
)2 ,

/
34 of the quadratic and cubic, and the results of replacing

x by 7]
and y by f in the quadratic and cubic and their

covariants. The other seminvariants are f and the successive

derivatives of the invariants which contain 77 with regard
to 77.

Ex. 12. Any seminvariant of ax3 + 3 bx?y+ 3 cxif+ dy
3
is a rational

integral function of a and invariants of the system

ax+ by, ax2+ 2bxy+ cy*, ax5+ 3 bx*y + 3 cxy
2+ df. (Kempe.)

Ans. It is a rational integral function of

a, ac-b\ a^d-Sabc + Zb3
,
and (ad-bcf-(ac-tf) (bd-c

2

),

of which the second and fourth are invariants of the quadratic and

cubic respectively, and the third is the invariant of the linear

form quadratic and cubic given by 260 (9).

Ex. 13. Any seminvariant of (a, b, c, d, e) (x, y)* is a rational

integral function of a and invariants of the system consisting of the

quartic and its successive derivatives with regard to x. (Kempe.)

Ans. Since it is a rational integral function of

a, ac-6
2
, a?d3abc+2b

s

, ae-lbd+Sc"; ace+2bcd-ad*-b'*ec*.

Ex. 1 4. Express the seminvariant a2

/ 5abe+2 acd -f 8 b*d 6 6c
2 of

extent 5 as an invariant of the quintic and its successive derivatives

with regard to x.

Ans. Form a covariant of the system by operating on the

quintic with its first cc-derivative, and substitute 6 for x and a

for y.

Ex. 15. All invariants of a linear form a quadratic and a cubic are

functions, not necessarily rational integral functions, of the discrimi-

nant of the quadratic and the eliminants of the linear form with the

quadratic, the cubic, the Hessian and cubicovariant of the latter, and

the Jacobian of the quadratic and cubic. (Forsyth.}

263.] Case of p+l binary quantics of orders p, p1,
p2,...l,Q. An algebraically complete system of semin-
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variants, i.e. a system in terms of which all other semin-

variants can be expressed, not of course a complete irreducible

system in terms of which all can be expressed rationally and

integrally, of a system of binary quantics

.. k
,

1
QJ
m

Q )(x, y)
p

,

..^, li)(x,y)
p-\

Q)

in which notice the presence of the last of zero order, a mere

constant which is its own only irreducible concomitant, con-

sists of the results of replacing x and y by bp_ l
and ap- 1

in

the quantics and their successive derivatives with regard to x.

Thus, for the case p = 4, an algebraically complete system
for the five quantics

(OQ, 6
,
c

,
d

,
e

) (x, 2/)
4

, K, b
l3 clt d

(oa, 6
2 ,

c
a ) (x, y)

2
, (a3 , a;,

consists of

-a
3 )

4
, (a ,

6
,
c

,

OJ ,
-a3),

,
-a3 )

2
,

(a2 ,
6
2 ,

c
2

-
tt3)= 0], a

3 ,

Their formation accords with 252. They are all indepen-

dent, for taken from last to first each one involves a coefficient

which has not previously occurred. Also their number, ex-

cluding the always vanishing last but two, is

which is easily seen as in 42, 258 to be the maximum

possible number of perfectly independent concomitants.

The system appears to have been first given by Forsyth.
An alternative algebraically complete system consists, I 1
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252, of sets of p,p 1, p-2 t
... 2, 1, 1 protomorphs of the p + 1

quantics, and the Jacobians of the linear one and the p1 of

higher orders.

264.] Systems of quantics of one order. Combinants. We
will conclude this chapter by allusion, without developement,
to an important class of invariants of several binary p-ics, to

which their first discoverer, Sylvester, has given the name
Combinants. There are also combinants of systems of #-ary

>-ics, for any the same q as well as the same p.
A combinant of a number of p-ics u, v^w,..., in the same

variables, is an invariant which differs only by a function of

A, ju, v, . . .
, A', //,/,...,... as factor, by a power of

in fact, from the same invariant of

It is, in fact, an invariant qua linear transformation of the

p-ics as well as qua linear transformations of the variables.

If a, 6, c, . . .
; a', 6', c', . . .

; a", 6", c", ...;... be corresponding
coefficients in u, v, w, ... it is readily seen that the conditions

for an invariant to be a combinant are that it have the pairs
of annihilators

, d 7/ d . d
-j- + b'-jr + c -T-
da db dc

7/ .

a -j- + b'-jr + c -T- + . . .
,

d
-j fda

d
-rn
db

d
-T-
dc

corresponding to pairs of the p-ics u, v,w, ... .

There are also combinant covariants.

265.] A few of the more obvious facts with regard to com-

binants are the following.
The elirninant or resultant of two binar}^ >-ics u, v is

a combinant. For if u, v have a common factor so have

\'u + p.'v3 so that the eliminant of u, v is a factor
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of that of \U + IJLV, \'u + i/v. The remaining factor involves

X, jut, A/, i/ only, as we are told by consideration of dimensions

in the coefficients of u, v.

The eliminant or resultant of three ternary p-ics is also

a combinant ;
and so on.

A combinant of u, v, w, ... is of equal partial degrees in the

coefficients of u, v, w, ... separately. For, if we denote

, d 7/ d , d
a
da

+b
db

+C
di

+ -'

d , d d
0>j-,t + -JT/ -\-C-j-, +...
do! db dc

by $', (f) respectively,

/ d , d d ^

-Kte +6
<ft

+c& + ->
whose effect is, by Euler's theorem, the same as that of the

multiplier i'-i. Thus if 0(7 = and </>'(?
= the first and

second partial degrees i, i' of C are equal. In like manner
the first and third, the first and fourth, &c., partial degrees are

equal.
An intermediate invariant

( 18, 19) is not a combinant.

Consider two ^>-ics u, v only. The operation < repeated
a number of times on an intermediate invariant produces
the invariant of u only, between which and the same in-

variant of v the supposed invariant is intermediate. This

intermediate invariant is not then annihilated by i/>. In like

manner as to intermediate invariants of more ^9-ics than two.

Let I be any invariant of u, and form the same invariant

of Au + ^ v, as in 18, 19. This is

A*I+
^-V</>'/+

~ V-W2/+ ... + fiWI,
or, as it may be also written,

' *

Call it

Av + isA-v +
*

c A*-v + . . .
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so that

tfA = iB, <j>'B = (i-l)C,

<t>'C=(i
We thus have

where the operator on the right is of the form of 0. In like

manner

where the operator on the right is of the form of 12.

We thus see that any invariant of an invariant of X

regarded as a quantic in X, jx is a combinant of u and v. For

it is an invariant of u and v, being a rational integral homo-

geneous isobaric function of invariants A, B, ... K, and it is

annihilated by < and $'.

In like manner any invariant of an invariant of Ait + pv + vw

regarded as a quantic in A, /A, v is a combinant of u, v, w, by
the principles of the next chapter but one

;
and so in general.

Ex. 16. If u, v be binary quadratics, the combinant which is the

discriminant of the quadratic in A, fj.
which is the discriminant of

Au+ fxv is the eliminant of u, v. (Boole.)

Ex. 17. The lineo-linear invariant of two binary ^;-ics is a com-

binant ifp is odd, but not \i p is even. (Cayley.}

Ex. 18. The criterion of an involution

of three binary quadratics is a combinant.

Ex. 19. A combinant of the fewer than p+ 1

is a function of determinants obtained by erasing columns from

(Sylvester.)

,
62 , c,

A a



CHAPTER XV.

RESTRICTED SUBSTITUTIONS. METRICAL GEOMETRY
OF PENCILS.

266.] BESIDES actual invariants and covariants, which have

the invariantic or covariantic connexion with a quantic or

quantics whatever be the linear substitution for the variables,

there exist functions which possess the property of invariancy
or covariancy for particular classes of substitutions.

Thus, for instance, seminvariants of binary quantics are not

invariants for all linear substitutions, but are invariantic for

the particular class of substitutions x = IX + mY, y m'Y.

A very important class of quasi-invariants and covariants

is that of functions which are invariants and covariants as far

as all substitutions are concerned which in Cartesian geometry

express change of reference from one set of axes to another,

the old and new variables beiDg both sets of coordinates in

the ordinary sense.

Confining attention to plane geometry, the most general

equations of substitution, those which express change from

old axes at an angle o> to new axes at an angle co' = /3 a,

through a point (h, k), and inclined at angles a, /3 respectively

to the old axis of x, are

gin (a) r Bin(fl) ,

sin co sin u>

skta sin0
sin co sin co

w = [*] = i.

Of these, whether h, Jc be present or absent, i.e. whether the
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substitution be taken as ternary or binary, the modulus is

sin (to a) sin (3 sin (<o ft) sin a _ sin a> sin (/3 a)

sin 2
co sin 2

<o

_ sin (/3 a) sin a/

sin a> sin a>

267.] Boolian and orthogonal invariants, &c. The study
of certain invariants and covariants for Cartesian transforma-

tions preceded and led to the investigation of invariants and
covariants generally. The chief early contribution to the study
is in a paper by Boole (Cambridge Math. Journal, Vol. Ill), to

which reference has already been made in 18. It is proposed
here to give the name Boolian invariants and covariants to

functions which have the restricted invariantic and covariantic

properties contemplated, the name being given without in the

least implying that Boole confined his attention to such

restricted invariants and covariants. His work not only
led to the developement of the more general invariant algebra,
but began that developement.
The original theorem was that a binary quadratic

ax2 + 2 bxy + cy
2

has the two Boolian invariants

ac b2
, a + c 2&coso>;

in fact that, if a'X2 + 2b'XY+c'Y2
is the quadratic trans-

formed so as to be referred to new axes at an angle a/,

, , 7/9 /

a'c'b'2 = -r
sin co

a' + c' 2&'coso/ = (r--) (a + c 2&coso>).^ sin CD
} v

The first of these Boolian invariants is known to be an in-

variant for all linear substitutions. The second is not so.

Boole's well-known method depends on the fact that, the

transformation being a binary one, i. e. one with no change
of origin,

x2 + 2xy cos co + y
2 = X2 + 2ZFcos o>' + F2

.

He in fact determines, by his method 18, the invariants in

A a 2,
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the ordinary sense of the system

ax2 + 2 bxy + cy
2

,

cosco + 2
.

Quite generally, the Boolian invariants and covariants

of a binary quantic, among which are included the full

invariants and covariants of that quantic, are the full invari-

ants and covariants of the system consisting of that quantic
and the quadratic ^ + 2 03, COB o> + y*.

If we take cos &>' = cos o> = 0, i. e. if we consider only trans-

formations from one pair to another of rectangular axes,

Boolian invariants and covariants take particular forms which

may be called orthogonal invariants and covariants.

268.] As a first instance of a Boolian covariant we may
take the Jacobian of the quadratic

ax2 + 2 bxy + cy
2

,

and x2 + 2 xy cos to + y
2

,

which proves to be

(a cos co b) x
2 + (a c) xy + (b ccos <*>)y

2
.

This, then, is a pair of lines having an invariable geometrical
relation to the pair of lines denoted by the given quadratic
and the pair of lines x2 + 2 xy cos to -f y

2 to the circular points
at infinity.

To see what the relation is take 2xy for the given quadratic.
The Boolian covariant is at once

2/

2 -*2
,

and so represents the bisectors of the angles between the lines

forming the quadratic 2xy. These bisectors are presented as

the common harmonic conjugates of the lines xy and

x2 + 2 xy cos to + y
2

. .

Quite generally, a Boolian covariant represents a pencil of

lines having an invariable geometrical relation to the pencil

represented by a binary quantic and the pencil

x- + 2xy cos to + 2/
2

from the vertex to the circular points at infinity, i.e. represents
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a pencil having an invariable relation to the pencil represented

by the quantic, into the expression of which relation magnitudes
of angles enter or may enter as well as descriptive and pro-

jective connexions. Conversely, any such pencil is represented

by a Boolian covariant.

The vanishing of a Boolian invariant expresses a geometrical
relation between the lines of a pencil denoted by the binary

quantic to which the invariant belongs, into the expression of

which relation magnitudes of angles may enter as well as

descriptive and protective connexions.

For instance, a + c 2 6 cos w = expresses that a quadratic
denotes lines harmonically conjugate with regard to the lines

to the circular points, i.e. denotes lines at right angles.

269.] The method of emanants
( 52, &c.) applies to Boolian

invariants and covariants. It was proved that any invariant

of an ernanant of u is a covariant, or, in particular, invariant,

of u. Now, just as this was seen, it follows also that any
function which is for a restricted class of substitutions an

invariant of the emanant is for the same class of substitutions

a covariant, or invariant, of u. In particular, this is the case

for the substitutions of Cartesian geometry.
For instance, the second emanant of u

In d2u , , d2u , d 2u
-TO + 2x y T r + y ~T~>dx2

dxdy dy-

has the Boolian invariant

d?u d2u
j-O Jo J Jdx2

dy
2

dxdy

This, then, is a Boolian covariant of the binary quantic u, if the

order of u' exceeds 2. For the order 2 ofu it is the Boolian

invariant used in its production.
The reasoning as to the power of the modulus .in 56 still

applies. Thus the expression of the fact of covariancy of the

function before us is

cos w

d2u
TV* + Tv^ 2 jvJV COS ^
dX 2 cZl 2 c^JT^F

sinw'x 2 (d2 u d2u
sin w ^

\ dx* dy'
2

dxdy
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T , d'
2u .

In particular, -=-g + is an orthogonal covariant, i.e.,
/ 2

ax dy
since ( .

-
) = 1 for all orthogonal substitutions, is un-

v sin co '

altered by any change of rectangular axes without change of

origin.

270.] Cogrediency identical with contragrediency for

orthogonal substitutions. This last fact as to an orthogonal
covariant is a case of an interesting theorem due to Boole.

It should be noticed that there are two discrete classes of

orthogonal substitutions, which may be called direct and skeiv

respectively. In the direct class the sense of rotation from
the axis of X to that of T is the same as that from the axis of

x to that of y, while in the skew class the senses of rotation

are opposite. The modulus for the direct class is + 1, whereas
that for the skew class is 1 .

The formulae for orthogonal substitution are

x = X cos + Fsin 0,

y = JTsin0+Fcos0,

where the upper signs refer to direct and the lower to skew
substitutions. From these there follow

d ^d d
-TY-

= COS0 + BUL0-J- ,aA ax ay

d d d
-TV-

= + sin -j- + cos -=- ,dT dx ~
dy

so that

d d _ . A d
j- cos -y^. + sin -7=. ,

dx dX dY
d d d
y- = sm -=-= + cos -r=.

dy dX ~ dY

Thus for all orthogonal substitutions and - - are co-
dx dy

gredient with x and y ( 51). For orthogonal substitutions

then contragrediency is identical with cogrediency (cf. 46,

68). This is readily seen to be the case if we take f, 17, any
quantities or symbols contragredient with x and y, instead

e d d .

ot and - m particular.
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The application of the cogrediency now before us is as

follows. If the result of transforming a binary quantic

orthogonally is

u~ (a ,a l ,a2 ,...ap)(x,y)
p = (A ,

A 19 A Z ,...AP)(X, F)
p

, ...(1)

while of course x2 + y
2 = X2 + F2

,
... (2)

and the modulus of the substitution is in magnitude
cos 2

0-f sin 2
0, i.e. unity, we have also

p) \dx' dy'

and x d
y

2
/ d J* _ , d ^ (

^
\

\d&J dy
~
^dX' ^dY*

Moreover, if K (a ,
a

l9 a.2J ... ap) (x, y) be any covariant or

orthogonal covariant,

TT , ^ / d d V

W

the upper sign being correct except when both the covariant

and the substitution are skew.

Thus by operation with any combination of the left-hand

sides of (3) and (4), or with any covariant operator such as the

left of (5), on any combination of the left-hand sides of (1) and

(2) or on any covariant or orthogonal covariant, we obtain an

orthogonal covariant or invariant.

Consider in particular the quadratic

ax2 + 2 bxy + cy
2

.

We have by (3) on (l) an orthogonal invariant

and by (4) on (1) or (3) on (2) another

a + c.

The known one acb2
is, of course,

Again, from the cubic

ax3 + 3 bxz
y + 3 cxy

2 + dy
s
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we have by (3) on (1) an orthogonal invariant

by (4) on (1) an orthogonal covariant

and again, by operating on this with (a + c)
-= \- (b + d)

another orthogonal invariant

For another example take the quintic (a, b, c, d, e, f) (x, y)
5

.

We obtain at once the orthogonal invariant

a2
4- 5& 2 +10c 2 +10d2 + 5e2 + /2

,

a cubic orthogonal covariant which leads to the orthogonal
invariant ^ + ^2 + 3

(
b + dy + 3 ^ + ey +^ +^

and from it again a linear orthogonal covariant and the

orthogonal invariant

besides two other orthogonal invariants obtained by operations

with orthogonal covariants found above on others.

The number of independent orthogonal invariants including
full invariants of the binary p-ic is p. The difficulty of dis-

covering the independence or interdependence of orthogonal
invariants determined as above, and the investigation of com-

plete irreducible systems, would have to be attacked separately
in the case of every order p.

Ex. 1. In orthogonal transformations in three dimensions prove that

, -=-, -j
are cogredient with x, y, z. (Boole.)

Ex. 2. For orthogonal transformations covariants and contravariants

coincide. (Sylvester.)

Ex. 3. The ternary cubic

ax* + by*+ cz3+ 3 dx'-y + 3 exif + 3fx*z+ 3gx + 3 liy^z + 3 iys? + 6 kxyz

has the orthogonal invariants

(a + e + g?+ (b+ d + if + (c +/+ K)\ (Boole.)
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271.] Annihilator of orthogonal covariants and invariants.

Sylvester has expressed by a linear differential equation the

condition that a function be an orthogonal covariant or

invariant of a binary quantic.
If we express that the function is unaltered, to the first

order of infinitesimals, when the substitution is made which

effects the turning of the rectangular axes through an infini-

tesimal angle, we express equally that it is unaltered when
we turn them through a finite angle, for, if they be turned

through this angle a by an infinite succession n of infinitesimal

turnings through
-

a, the whole increment of the function is
^ 12

at most comparable with 7i(-a) , i.e. is an infinitesimal,

and vanishes in the limit.

Now the formulae of substitution for turning through an

infinitesimal angle 6 are

y=6X+Y,

omitting infinitesimals of the second order. The modulus of

this, to the first order of infinitesimals, is 1. Indeed 1 is its

absolute value, as in all cases of direct orthogonal substitu-

tion, when infinitesimals of higher orders are expressed in the

formulae of substitution. Now these are, to the same order

of infinitesimals, X̂ = x + 6y,

T = y Ox.

Thus the substitution amounts to giving x and y the incre-

ments Oy and Ox.

Again, if the quantic under consideration be

( OJ o^Oa ,...,) (05,0)*

the substitution may be effected, correctly to the first order

in 6, by first writing it

(a , %, OB, ...ap)(X-6y, y)
p

,

which makes it /.. t / / n '\(Y II\P
(a , % ,

a2 , . . . ap ) (
A

, y) ,

where
( 91)
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and then writing it

(a ',a1',a.2
'

)
...ap')(X,0X+YY,

i.e. (A ,A l9 A 2 ,...Af)(X, Tf,
where

( 94)

A = ctQ+pa^ = a^+pa^e, to the first order in 0,

A p
= ap = ap -pa^e

Thus X, F, A ,
A

lf
A

2 ,
... Ap . l9

A p differ from

x,y, a
,
alt a.2 ,

... ap_l9 ap

by the increments

a
l
= \(p-l)a2

-a
} 0,

whence it follows that the increment of

F(x,y, a ,a1} a2 ,...ap)

c? d f d
,

d d
^T~ x ^T + (Pai T-+(P- l

)
a

2 T- +...+apl* z p
dy

d d d

The necessary and sufficient condition that F be a covariant

for direct orthogonal substitutions is, then, if as usual we adopt
the notation of chapter vi, that F have the annihilator

y-^-x^ + 0-Cl.* dx dy

That it be a covariant also for skew orthogonal substitutions

a further condition is necessary and sufficient. It must be

either unaltered or only changed in sign when y and the

alternate coefficients 15 a3 ,
a5) ... have their signs altered.

For the most general skew orthogonal transformation may be

performed by replacing x, y by x, y, i.e. reversing the

direction of the axis of y, and then performing the most
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general direct orthogonal transformation. Should, however,

a function Kl +Ki> , which has the above annihilator, become

K
l
K

2 upon making these changes of sign, it is readily seen

that K^ K
2
also has the annihilator, since this annihilator is

only altered in sign by the changes of sign of y and a
1 ,
a3 ,

a5 ,

In this case K
l
and K

2 are orthogonal covariants for skew as

well as direct substitutions, while K^ + K.2 and K
l
K

2 are

not. K
1
and K2 have in fact for their factors powers of the

modulus + 1 of which one is even and the other odd.

In particular, orthogonal invariants are functions of the

coefficients only which have the annihilator 1 and are

either unaltered or changed only in sign when the signs of

a
lt
a3 ,

a5 ,
... are altered.

272.] Annihilator of Boolian covariants and invariants.

We may also find an annihilator ofany Boolian covariant or in-

variant from the consideration that any one is unchanged when

the oblique axes are turned through an infinitesimal angle 6.

For such a turning the formulae are, by 266, since a = 0,

y = Y+X cosec o> . 8 + Fcot co . 0.

Thus x and y have the increments

bx = x cot <o . 6 + y cosec o> . 0, by = x cosec co. Q ycota>. 0.

Also it is readily seen that the increments of a
,
a15 a2 ,

... a
t

may be exhibited as follows :

+ ( ,
-a

,
-2

fll ,..., -(p-l)p-2 , -!_!) cosec a>.0

+ ( l>i, tp-lK (p-2)a3 ,..., ttp , )coseca>.^

+ ( , a, ,
2a

2 ,..., (p-lK-i, P P Jcotw.ft

Hence the expression of the fact that the increment of a

Boolian covariant vanishes is that it is annihilated by
d d d , _ d

d d
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which correctly becomes the annihilator of the preceding

article when at = -
, i.e. when the covariant is orthogonal.

2

In particular, Boolian invariants have the annihilator

12 coswi??a +(p 2)a1
-
7 +...

(^ daQ
l da

}

/ \
d d

1

-(p-2)ap-ij- PV'dat'
Ct-ttpj CtCtp )

The second part of this annihilator has the effect of

multiplying every isobaric part of weight w of a Boolian

invariant of degree i by ip 2w. But this multiplier is not

constant throughout, as such Boolian invariants as are not

full invariants are not isobaric in the coefficients of the quantic
to which they belong. They are what isobaric invariants of

the quantic and a quadratic become in a case when the idea

of weight is banished from the coefficients of the latter.

Boolian covariants and invariants have also to obey a

further law, which is best expressed by saying that they must

be unaltered or changed at most in sign when x and y, a and

ap , % and ap_13 a
2 and ap _2 , &c., are interchanged. The

supplementary necessity of the last article as to orthogonal
covariants and invariants might have been expressed in the

same way.

Ex. 4. By turning the axis of y through an angle cZco, keeping that

of x unchanged, prove that, if p. be the index of the power to which

the modulus enters in the equality expressing that F is a Boolian

covariant,
sm *>

(d \ d )

y- QL
) + tan o> Lr.

d/x / d co i

Ans. Express that the increment of (sin uty-P-F vanishes.

273.] Boolian system for linear form. We proceed

chapter xiv to write down complete irreducible systems
Boolian invariants and covariants for binary quantics of the

first few orders, as invariants and covariants of those quanti<
and the quadratic x2 + 2 xy cos w + y

2
.

Take first the linear form ax + by.
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By 251 the system consists of five individuals
; viz.

(1) the linear form itself ax + by}

(2) x2 + 2 xy cos co + y
2

,

(3) the linear Boolian covariant

(a cos <o b) x + (a b cos
o>) y,

(4) the Boolian invariant

a2 2 ab cos co + b2
,

(5) sin 2
co.

Any pencil of lines connected with the given line by de-

scriptive or metrical properties has for its equation a rational

integral function of these equated to zero. There are none of

course whose connexions with the line are purely descriptive.
The Boolian covariant (3), the Jacobian of (l) and (2), is the

perpendicular to ax + by.

The Boolian invariant (4) is the criterion for ax + by running
to one of the circular points at infinity.

A Boolian covariant or invariant is separately homogeneous
in x, y, in a, b, c, and in 1, cosco, 1, in which last (1), (2), (3),

(4), (5) are of degrees 0, 1, 1, 1, 2 respectively.

274.] Case of the quadratic. For

u = ax2 + 2 bxy + cy
2

the Boolian system is that of invariants and covariants of u
and the second quadratic

x2 + 2 xy cos co -f y
2

,

and so
( 257) consists of

(1) the quadratic itself

ax2 + 2 bxy + cy
2
,

(2) x2 + 2xyco&to + y
2
,

(3) ac b 2
, the one full invariant of u,

(4) sin 2
co,

(5) the Boolian invariant

a + c 2 b cos co,

(6) the Jacobian

(a cos co b) x
2 + (a c)xy + (b c cos

co) y
2

.

Interpretation has already been given ( 268) to (5) and (6).



366 LINEAR FORM AND QUADRATIC. [275

Any other Boolian covariant or invariant is a rational

integral function of (l) to (6). For a rational integral func-

tion of them to be such a covariant or invariant it must be

homogeneous in x, y, in a, b, c, and in 1, cosco, 1, separately,

(1), (2), (3), (4), (5), (6) being looked upon as of degrees 0, 1, 0,

2, 1, 1 respectively in 1, cosco, 1.

Ex. 5. Interpret the Boolian covariant

(a+ c 2 b cos
co) (x

2+ 2 xy cos co + ?/-)
sin 2

to (ax
2 + 2 bxy + c?/

2

).

Ans. The perpendiculars to the lines u. To see it take co = -

2

Ex. 6. Interpret the Boolian invariant condition

(a + c 26cosco)
2

-4(ac-6
2
)sin

2
co = 0.

Ans. One of the lines u runs to a circular point at infinity.

275.] Linear form and quadratic. The Boolian system for

fx + rjy and ax2 + 2 bxy + cy
2

is written down from 259 by taking x2 + 2xy cos to + y
2 for v.

We have, besides the system written down in the preceding

article, three Boolian invariants, viz.

(7)

(8)

(9) (a cos to b) r/

2
(a c) T? + (b c cos

co)
2

,

of which (7) is a full invariant, and the following Boolian

covariants, of which (10) and (11) are full covariants,

(10)

(11)

(12)

(13) |

+ {(a c)rj 2(6 ccosa>)} 2/.

In terms of these thirteen all Boolian invariants and Co-

variants of the linear form and quadratic can be rationally
and integrally expressed. They have to be separately homo-

geneous in x and y, in and rj, in a, 6, c, and in 1, cos co, 1.

Besides (1) to (6) which have been interpreted in the last

article, and the full invariant and covariants (7) (10) (ll)
which have been interpreted in chapter xiv, we have (8) and

(12) which have been interpreted as the (4) and (3) of 273.
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We have left (9) which is the Boolian invariant criterion for

(x + yy being one of the bisectors of the angle between the

lines ax2 + 2bxy + cy
2

,
and (13) which is the harmonic conjugate

of (x + yy with regard to these bisectors, as is readily seen

by taking the case when = 0.

276.] Case of the cubic. By 260 the complete Boolian

system for the cubic consists of fifteen individuals. Their

forms for the cubic

ax3 + 3bx2y+3 cxy
2 + dy*

are given by the article referred to, upon replacing a', b', c'
} df

by a, b, c, d, and a, b, c by 1, cos a>, 1.

Let us content ourselves with using 261 to write them

down for the cubic

to whose form the given cubic can certainly be reduced by
a change of axes, taking the lines represented by the Hessian

as new axes of x and y, the one case of exception being the

special one when these lines coincide, i.e. when the discriminant

of the cubic vanishes. We get

(1) x2
+2xycosu> + y

2
,

(2) sin 2
o>,

(3) a#3 + dy
5

, the cubic itself,

(4) adxy,

(5) ad(ax*-dy
3
),

(6) a2d2
,

( 7) (dy* axz
)
cos co + (dy ax) xy,

(8) ad(x
2-y2

),

(9) ax + dy,

(10) (acoso> d)x + (a dcos<a)y,

(11) ad(axdy),

(12) ad(dx + ay), where J723 is chosen,

(13) accos<o,

(14) a2 2 ad cos w + d2
,
where I'32 is chosen,

(15) ad(a
2-d2

).

The degrees in 1, cosw, 1 are not all clearly indicated by the
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powers to which cosco enters in these canonized forms. A
double suffix notation, as in 261, should be used in com-

pounding them homogeneously.

277.] The geometrical relations of the members of this

system may be expressed in various ways.
The full covariants and invariant of the cubic are (3), (4),

(5), (6).
Of these (5) represents the harmonic conjugates of

the lines composing the cubic each with regard to the other

two, and (4) represents the double lines of the involution to

which corresponding lines of the cubic and (5) belong. The
invariant (6) is the discriminant.

Of the other Boolian covariants (7) represents the three

lines whose polar lines with regard to the cubic are at right

angles to them respectively ; (8) represents the bisectors of

the angles between the lines represented by the Hessian (4) ;

(9) is the line whose first polar with regard to the cubic (3) is

(8) ; (ll) is the harmonic conjugate of this with regard to the

Hessian (4) ; (12) is the polar line of (11) with regard to the

cubic
; (10) is at right angles to (9).

Of the Boolian invariants (13), best considered in its full

form M_ C
2_

^
ad_^ cog m + ac -b*

for the unreduced cubic, is the criterion that the Hessian (4)

consist of lines at right angles, i.e. that (3) and (5) are equi-

angular and oppositely turned pencils; (14) is the criterion

that (9) and (12) be at right angles to themselves, i.e. run to

the circular points at infinity; and (15) is the criterion that

(9) and (12) coincide.

In terms of all these (l) to (15) any geometrical criterion,

and any pencil of lines geometrically connected with the pencil

forming the cubic, can be rationally and integrally expressed.

278.] By means of 262 we may in like manner write down
the complete Boolian system of a cubic and a linear form.



CHAPTER XVI.

TEBNAKY QUANTICS. THE QUADRATIC AND CUBIC.

279.] A SINGLE chapter will be added to what has been said

in chapters i to iv on the concomitants (invariants, covari-

ants, contravariants, and mixed concomitants) of quantics in

more variables than two. The importance of ternary and

quaternary quantics belongs to geometry of two and three

dimensions, and their study should be pursued with the aid

of Salmon's Higher Plane Curves, and Geometry of three

dimensions.

We remember from chapter iv that, while in the case of

binary quantics contravariants are not essentially distinct

from covariants, they are essentially distinct in the case of

ternary, &c., quantics.

The principles will be briefly exhibited here, by means of

which, from invariants and covariants of systems of binary

i quantics, we may pass on to invariants, covariants, and con-

|

travariants of ternary quantics.

280.] Let us consider the ternary p-ic in the form

az

where the suffixes (weights) of the various coefficients are

Bb
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/v ny

chosen as in 27, where we supposed > to be each of unit

weight. We might equally have adopted suffix notations

11 % % /
7"

appropriate to cases when -
,
- in the one case, and -

>
- inxx y y

the other, are of unit weight. Any fact as to weight of con-

comitants which may be adduced will have two companion
facts, arising from it by changes corresponding to cyclical

interchange of x, y, z. In one sense, indeed, companion facts

are sixfold, one corresponding to every permutation of x, y, z.

In much that follows the notation of the cubic will for

simplicity of writing be adopted in our work, and the con-

clusions only indicated in the notation of the general p-ic.

It is important to have before us three ways in which the

same cubic may be arranged, namely,

+ 3 (a.2x + b
2y) z2

+ 3(al
x2 +2blxy + l

+ a
Q x* + 3 b x2

y + 3 c
Qxy

2 + dQ y*, . . . (i)

3 b
2yz

2 + a3 z
3
, ... (ii)

5
. ... (iii)

The corresponding triple arrangement is general for the ternary

P-IG.

281.] We first notice that, an invariant or covariant being
unaltered, except for a power of the modulus as factor, when
we substitute for the coefficients and variables x, y, z the new
coefficients and variables given by any linear substitution for

X) y, z whatever, the same is true in particular when the linear

substitution is one affecting x and y only, leaving z unaltered.

Consider, to begin with, invariants only. We are thus told,
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using the notation of the cubic, that an invariant is a function

of % ...(i)

and the coefficients in the quantics

...(2)

...(3)

...(4)

which is unaffected, except by a power of the modulus as

factor, when these quantics are simultaneously linearly trans-

formed. From this we gather that it is a rational integral
function of a3 and invariants of the system (2), (3), (4). Or,

regarding a3 as itself a quantic of zero order, which has itself

for its one invariant,, we may say that an invariant of the

ternary cubic is a rational integral function of invariants of

the system (l), (2), (3), (4). It is isobaric on the whole
( 28),

and of course homogeneous on the whole
( 22), but is not to

be expected to be homogeneous in az and the coefficients of

(2), (3), (4) separately. It is, in fact, a linear function of

invariants of (l), (2), (3), (4) of one whole weight and one

whole degree, but different partial weights and degrees.

The invariant has then ( 247) two annihilators which have

been hitherto called 2Ii, 20, but will for our present purpose
be designated differently, viz.

/ d 7 d \ d
+ ( ! -TT- + 2 b

l -j ) + a2 -jj-^ * dbl

I dc1
' 2 db

2

d d d

d d \ -, d
1
-
i +CI-TT- ) +b2 ^1da1

1 db
1
J 2 da

In the general notation of the ^>-ic we should have

B b
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where only coefficients which actually occur in the p-ic are

present.

282.] In like manner a covariant of the ternary cubic is

a rational integral function, of constant whole order degree
and weight throughout, of covariants and invariants of the

system (1), (2), (3), (4) of 281. And analogously for the

ternary p-ic. A covariant has then
( 247) the two an-

nihilators ,

and these, it is to be noticed, annihilate the ternary p-ic itself,

which is of course to be regarded as one of its own Co-

variants.

This fact has led to the frequent use for the operators Q vx,

Q
xy of the symbolical notation \y , \x -=-

283.] Let us now pay attention to the second and third

forms
( 280) in which the cubic or p-ic may be arranged.

Attending to the second form we see, just as in 281, 282,
that an invariant, or covariant, is a rational integral function

of invariants, or of covariants and invariants, of the system of

p + 1 binary quantics, which for the case of the cubic are

an ,

2/

22 + 3 b
2yz

2 + a3 z
3

;

that an invariant has two annihilates, which for the case of

the cubic are
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and that a covariant has the annihilators

which in particular annihilate the cubic itself.

For the p-ic l
zy
and l

vz are

d

d d

jp
_ 3

In like manner, regarding the third form in 280, we see

that an invariant has two additional annihilators 12M ,
12M ,

and a covariant the two additional annihilators

where, in the case of the cubic,

d d

and, in the general case of the p-ic,

d ,

d d
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284.] The facts as to invariants and covariants expressed

by the existence of their six annihilators thus found are not

all independent. Information as to the nature of their inter-

dependence can be obtained by forming the fifteen alternants

of l
vx ,

&xy ,
liw ,

Q,
vt ,

QXZ) Hax in pairs. Taking the forms

appropriate to the cubic, we readily obtain first the following
triad of alternants ;

d d \ /, d d

, 2 -, -

d 7 d \ / d d

We here see first that the sum 5
1 + JB"

2 +
r

3 vanishes

identically, whatever be the function operated upon. Thus

any function which is annihilated by two of Hlt H.2) H3) or

by two independent sums of multiples of them, is also anni-

hilated by the third, and by any sum of multiples of them.

Before forming the other alternants we proceed to exhibit

the information as to invariants of the cubic given by these.

285.] Any invariant of the cubic is annihilated by H19 H2

and H
3

. For every one of these is a difference of two parts
each of which annihilates it, since it has the six annihilators

12. Let us consider the fact that H
l
H

2 ,
the difference of

the operators written second and third above, annihilates it.

We readily see that

d , d d d , d d \

-j
--h Oj -yr- + c

x -j- +a2 -j h 62 -jj- +a3 -j )

dai
l dbl

1 dc
l

2 da2
2 db2

3 da3
'

d , d d \ / d , d ^ d
+b1 -jr +c1

-r-)Q(a2-j--a
:

l

d,
l

dc^ \ 2 da2
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We notice hence, by Euler's theorem as to homogeneous func-

tions, and the consequent theorem
( 117) as to isobaric

functions, that H^^ H^ operating on a function of degree i

and weight (sum of suffixes) w has the effect of multiplying
it by 3^3w.

Thus since the invariant, which is homogeneous ( 22), is

annihilated by Hl
H.2t it must have a constant weight w

throughout given by 3i_3w = 0>

If we had taken the forms of Hl ,
H2 for the >-ic instead of

the cubic, we should have had in like manner

The information given by Hl
H

2
is then that of 28.

In like manner we have, for the cubic,

/ d , d d dH2-H3
= 3

( ^- +ba^ +c ^ +d ^-
d , d d d , d d ^+ aii H ^1 JT + c

i ~7 I- a2 1--^ ^2 ^JT + as :/ )1 da1

l dbl

1 dc
l

2 da
2

2 db
2

A

da^
f d ^

d d N /, d d ^ d
3

( C
ft i--h^iT/- + ^2 ^ ) 6

( &n ~7T +^iT~")~ 9ao T~^ dc
Q

1 db
1

2 da2
' ^ db l

da^ da

the annihilation of the invariant by which tells us, upon
observation of the form (ii)

of the cubic in 280, that

3i 3w = 0,

where w' is the weight of the invariant when we consider

- and - as of weight unity. Thus
x x

w' = w,

which would also follow from the fact that the particular

substitution which replaces x, y, z by y, z, x, whose modulus

is unity, does not alter the value of the invariant while it

replaces c
,
blt a.2 ,

b
,
al5

a by alt
blt cl5 a2 ,

b.
2 ,
a3

.

For the general case of the >-ic we should have had

3w'= 0.
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In exactly the same way

T7T7. / d , d d .. d-H
> = 3 +b

db
+ c

o^ ^dd,
d d^d d \

+ c ~
I- a -

- --
1" b

d d d \ / d d \ 7 d

the annihilation by which requires that an invariant of the

cubic have the property

3i-3w" = 0,

where w" is the weight when each a is of weight 0, each b of

weight 1, each c of weight 2, and dQ of weight 3, i.e. when
2/ or
- and - are regarded as of unit weight. Thus

w" wf = w.

For the p-ic we should have in like manner

pi 3w" = 0.

Since the sum of H
2
H

3 ,
H3

H
1
and H

1
H2 vanishes,

any function, not necessarily an invariant, which possesses
two of these properties must also possess the third.

Ex. 1. From the fact of annihilation by H3 ,
which may be written

/ d d d d \ / d , d d \

- 2 +23 +>*
show that if any invariant of a cubic be written as a sum of parts, each

separately homogeneous in the sets
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and if i
3 ,

i
2 , i^

be the degrees of any such parts in the first, second,

and third of these sets, then throughout the invariant

For an invariant of the j5-ic the corresponding fact is

Ex. 2. From the fact of annihilation by ff
l
show that throughout an

invariant of the cubic

where i
z

f

,
i.2',

i
t

f
are the partial degrees of any term in the sets

and state the corresponding fact for the p-io.

Ex. 3. From the fact of annihilation byH2
show that throughout an

invariant of the cubic

where 8

X/

,
i
2

x/

, */' are the partial degrees of any term in

and state the corresponding fact for the p-ic.

286.] We now form the other alternants of the six H's. They
occur in cyclical sets of three. Taking the case of the cubic,

and referring to 281, 283 for the notation, we find

d d , d

-^db^db^^
= 0, ...W

^0^-0^ = 0, ...(5)

aA-^A* = o. .-.(6)

The same relations hold in the general notation of the p-ic.
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In like manner we have another triad

^-0^ = 0, ...(7)

GA-a^fl^o, ...(8)

A^-a^a^o. ...(9)

Next we have, for the cubic,

^*^~^A= 3&0-T- + 2c -Tr +d -r +4bi:r- +2ci:Tr
da-L db

1
dc

1

I da2 db2

, d , d 7 d d
+ 3&

2
-=-- 2^-,-- 2b

-j
-- cojrda

3
da2 da1 tu>

x

, d d , d= d j- + 2ci-rr +3b2 -jdc
l

I db2
2 daz

d d d

= &., ...(io)

and similarly

&zx &yz Qyz&zx = &yx '
(
* 2

)

Lastly we have in like manner

= -<V .-(IS)

All these apply to the general notation of the p-ic, as well

as to that of the cubic.

287.] The fifteen alternants of pairs of 12's introduce then
no new operators except the Hlt K2 , H3 of 284. We com-

plete the theory of the annihilators by forming the alternants

of these three with one another and the H's. It is quite easy
to see that
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and that rr n r rr _ o ^

together with two other sets of six, in the first set of which

#! occurs and the suffixes x, y, z are interchanged once

cyclically, and in the other set H
2 occurs and a second cyclical

interchange is made in the suffixes.

Accordingly the nine operators l
yx ,

L
zy ,
&xz , 12^, &vz , 12^,

H^ ,
H2 , HZ form a group such that, when we form the alternant

of any pair of them, some member of the group with a simple
numerical multiplier, or else a zero, is produced.

288.] Three cyclical annihilators suffice to define invari-

ants. We can now see that, if a function of the coefficients

have a cyclical set of three annihilates, such as Qyst
Q,mt Qxv

or i2
2y ,
&xz) l

vx , it has also the other three, and is accordingly,
if homogeneous, an invariant.

Suppose, for instance, that Q,
ynt

Q,txt &xy annihilate a func-

tion. By 286 (10), since 12^ and Q,xy annihilate it, so does

Q,
zy

. By (11), since Q,xy and Q,
y,

annihilate it, so does Q,xs .

And by (12), since L
ys
and lex annihilate it, so does Q,yx .

And again, to repeat from 285, since Qye
and Q,

gy
annihilate

it, so does H^^ ;
and in like manner so do H.2 and H3 . Thus

the function has necessarily the degree and weight properties

expressed in 285 and the examples which follow that

article.

The property of annihilation by il
y2 ,

lgx and lxy includes

then all the facts with regard to invariants of ternary quantics

except that of homogeneity, just as that of annihilation by
12 and 0, i.e. by Q,

yx and Q,
xyt does with regard to invariants

of binary quantics.

We shall see later by another method, which might have

been here applied, that the property of having q cyclical

annihilators of the 12 form includes all the facts but that of

homogeneity as to invariants of #-ary quantics.
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289.] The six annihilators, as well as going in two triads,

go in three pairs lyx ,
l
xy ;

l
ev , 1^ ;

I2xa ,
ilzx . It is some-

times most convenient to use the fact that if two pairs of

these annihilate a function its annihilation by the third pair
is necessitated. For instance, if the first four annihilate it, it

follows from 286 (14) that lsx annihilates it, and from (11)

that &xz does, so that it is an invariant.

The possession of three annihilators not forming a cyclical

set does not suffice.

290.] Invariant of the ternary quadratic. Let us exemplify
some of the above principles by deciding what invariants the

ternary quadratic

a2z
2 + 2 (&!# + \y) z + a <x? + 2 b xy + c

Qy
2

can possess.

Since Q,
yat
and &xy annihilate it, an invariant of the quadratic

is an invariant of the system

and so
( 251) is a rational integral function of

2
. ...1

Again, since lzx and & annihilate it, it is an invariant of

the system

and so is a rational integral function of

c
, a^-aj 2

,
a2

b 2 2a
1
b
1
b + a b

1
2

. ...(2)

Consider the first fact, and let

<K c
o
~ V)* (aA2 -2bQa1

b
l + C

Q
a 2

)"

be a part of the invariant. By 285 its weight measured by
sum of suffixes must be equal to its weight considering a's,

6's, and c as respectively of weights 0, 1, 2. Thus

so that A. = n, and the invariant involves only

a, (a c - 6 2
),
and a b 2-2b

Q
a

l
b
l + c

o
ai-

Similarly it involves only

c (a a2 a/), and a.2bQ
2 2 a ^ b

Q + a^b
2

.
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Now any function of the first of these pairs which is also

a function of the second pair must in particular be so when
c = 0. Thus a necessity as to such a function is that the

said function of

a
2
b 2 and a

Q
b
l

2 2b a
l
b
1

is a function of

and a.2 b
2 2a

l
b
1
b + a b

1
2

.

The difference of the two, and its powers, are obviously the

only functions for which this is the case.

Thus
a,Ko-V)-KV- 2 b

i *i + coi")

and its powers are the only functions which can be invariants,

and they can be so only if this is also a function of c (a a
2 a-f)

and a2 l)
2 2a

l
b
l
b + a b

l

2
,
as it is, viz. the difference of the

two.

The ternary quadratic has then only one irreducible invariant

a c a2 +2bl
a

l
b -aQ b

2-c
Q
a-

2-a
2
b

(

2
,

which is, in the more usual notation,

abc + 2fgh
- af

2-
bg

2- ch2
,

the discriminant.

291.] The ternary cubic. The general ternary cubic can

( 229) be linearly transformed into X* + Y* + Z3 + GmXYZ.
It cannot then have more than two independent invariants.

For if it had three it would have two absolute invariants, i.e.

there would be two functions of the coefficients equal to func-

tions ofm
;
and by elimination of m we could find a relation

in the coefficients only, which there cannot be as the coefficients

are all independent.
Two independent invariants 8 and T, of degrees 4 and 6,

will now be found. It will hereafter be seen that not only is

there no other independent of these, but that there is no other

which cannot be rationally and integrally expressed in terms

of them, so that they form the whole system of irreducible

invariants.

By 285, or by 28, the weight, in either of the three

senses, of an invariant of the ternary cubic is equal to its

degree. Thus 8, which we seek, is of degree 4 and weight 4.

Now suppose that S contains a term or terms of degrees
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m in a3 ,
n in a

2 and 62 , _p in als
619 c^ and q in a

,
6

,
c

,
dQ .

The facts as to degree and weight give us

m+n+p+q = 4,

3m + 2n+p = 4,

and the only positive integral, including zero, values of w, 7*,,

^>,
< which satisfy these equations are given by the scheme

ra, w, p, q

1, 0, 1, 2

0, 2, 0, 2-

0, 1, 2, 1

0, 0, 4,

Thus $, if it exists, must be of the form

where, for instance, the notation (2
1
1
2 1

)
denotes a function

of degree I in a2 ,
b
2 , degree 2 in alt b

lt clt and degree 1 in

^0' 0' C0? ^0'

Moreover, since Qyx
S and Q,

Xff
S = 0, the functions (1

1 2

),

(2
2 2

), (2
1
1
2 1

), (I
4
)
are invariants of the system

Now the invariants of this system are
( 262) the invariants

of the quadratic and cubic given in 260, and the results of

replacing x and y by b
2 and a.2 in the covariants of that

article. Those of degree and sum of suffixes not exceeding
4 are given by (2), (4), (6), (9), (10), (13) of the article in

question, and are

A = a^-b*,
B = ac-b 2

b.
2-ad-bcab + bd-c 2 a 2

.-c^-b, (a d -b
Q
c

) + c, (a c -b 2

).
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We see then that we must have

(I
4
)
=

where A, ju, v, *& are numerical.

Thus we must have

To determine A, JJL, v, tx we may express that S is annihilated

by any of the IT s, except 12^ and JZ^ by which we have

already secured its annihilation, whatever A, ju,, v, w bo. More

easily perhaps we may use the fact that S must be exactly
the same function of

as of

^0 ) ^0 ^0 ' >

since these sets of coefficients are exactly interchanged by the

linear substitution which interchanges y and z leaving x un-

altered, whose modulus is 1
,
which modulus in the expression

of invariancy of an invariant of weight 4 is raised to the fourth

power, thus producing + 1 for the factor. For 8 to be an

invariant the above expression must then be the same as

A(4 {b (a^a^-a
2)-^ (aQa^-a^a2) + b

2 (a a2 a/)}
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We at once see that the two forms are identical if

A. _ /u, _ v _ or

^l
=
l~l

=
~l'

With these values the expression will have Q.m and Qxz for

annihilators, because of its second form, as well as il
yx and

Q
xy because of its first form. It is then an invariant by 289.

Thus the invariant S looked for is, adopting the second form

of writing it,

S = (a a
2
-a

l
2

)
c 2-

-
b-t

b
2 (a q + 3

!
c

) + b2
2a c

~-d {b (a^a 2)-^ (a^-a^) + b
2 (a^-a^)}

292.] The cubic can
( 229) be linearly transformed to the

canonical form X 3 + F3 + 3 + 6 mXYZ.

By a substitution of modulus unity it can consequently be given
the form

Let us consider it in the less particularized form

a 'x* + d 'y* + a
3

'

zz + 6 b^xyz,

in which the names of non-vanishing coefficients accord with

the notation used in general. The modulus of the transforma-

tion which produces this from the general cubic is taken to be

unity.

For this form we have, by the above,

s = a x>VV-A'4 =VKW-V3
)-

For the canonical form itself the value is

which is of course equal not to the S of the untransformed

cubic but to that $ multiplied by the fourth power of the

modulus, which is no longer unity.

Ex. 4. Show that S = is the condition that the cubic be capable
of expression as a sum of three cubes.
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293.] The second invariant T of degree 6, and therefore,
since 3 i = 3w, also of weight 6, can be found as $ has been.

For our purposes, however, the labour may be avoided by
use of a covariant, the Hessian, which it is already known
from 1 1 that the cubic possesses.

For the semi-canonized form

a 'x3 + d 'y* + a
3
'z* + 6 b^xyz,

the Hessian, with the numerical factor 6 3
rejected, is

a 'x, b^z, b^y

b^z, djy, b'x

i. e. (a3

' + 2V3
) y*-V ar + d 'y

3 + a3

The Hessian is then a covariant of the third degree and order.

For the canonical form itself the Hessian is

i e. this is equal to the Hessian of the untransformed quantic

multiplied by the square of the modulus of the fully canonizing
substitution.

Now an invariant of a quantic and a covariant is an in-

variant of the quantic alone. Also
( 19) if ax3 +... and

Ax3 + ... are two quantics of the same order, we may derive

an invariant of the two from one of the first only by operation

with A -= f- . . . . Applying this principle to the cubic and its

Hessian, both of order 3, we derive from the invariant 8
another invariant of the sixth degree. This is T, or rather

a numerical multiple of T.

We can at once derive the expression for T that goes with

the semi-canonized form

a 'x3 + doy + as's? + 6 Ifays,

whose Hessian is as above

-
6,-X' o?

-VHY-V2
,'* +(,' + 2V) xyz,

by operating with

on $, which is i / / / j /
o
1 (a a a3

C c
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The reason for this lawfulness of working with the reduced

number of coefficients is that the full expression for S contains,

besides the terms b
l (a d a3 b^), only terms which involve

coefficients which vanish for the semi-canonized form indeed

only powers and products of such coefficients, a fact which
will be useful later and that the terms in the generating

operator other than those in -= > -y^- > -==- have for
da

Q
dd da3 do

l

coefficients coefficients in the Hessian which vanish for the

semi-canonized form.

The result of performing the operation above, and multiply-

ing by 6, is to obtain

T = (a 'd 'a
3'Y

- 20 6*K'W) - 8V-
For the canonical form itself this becomes

1- 20m3- 8m6
;

but this is equal, not to the T of the untransformed cubic, but
to the T multiplied by the sixth power of the canonizing
modulus.

There is no difficulty in obtaining the lengthy expression
for T in the notation of the general cubic, but only tedious-

ness. It will not be here written down. Reference may be
made for it to Salmon's Higher Plane Curves, 221, 223.

Ex. 5. Prove that bf is given by the quartic in 6/
2 = /3

{3-S*=; 0,

and that when b' is found the corresponding product a '<7 'a/is
uniquely determined.

Ex. 6. The discriminant of this quartic is a perfect square, namely,
a numerical multiple of the square of GltiP + T9

,
which is a numerical

multiple of its catalecticant.

Ex. 7. The discriminant of the ternary cubic is

8
i.e. 64^ + 2*

Ex. 8. The S of the Hessian of a ternary cubic is a numerical

multiple of 48 S3 + T'\

294.] The result of Ex. 5 above leads us to expect that

there are eight distinct ways of reducing the cubic to the
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form ax" + by* + cz* + 6 mxyz by substitutions of such modulus
that 8 and T are absolutely unaltered. (Note that we do not

reckon as distinct different ways in which the product xyz is

the same.) If M be the modulus of such a substitution, the

facts with regard to $ and T give us respectively M* = 1 and
M6 = 1. These lead to M2 = 1, i.e. M = + 1.

It is easy to see that there really are eight ways, and to

exhibit their connexion. Take, for instance, the cubic

#3 + y
3 + z3 + 6 mxyz.

The substitutions of modulus 1

produce three forms whose m's are respectively

lm co
2 m co mm

2
= --^= ra3

= ---= , m = ---= ,

V-3 V-3 V-B

so that m(l-w 3
)

8mm2m3m, = __ y = -=-
3^-3 3v/-3

Also a? = a;', y = y', z= z, whose modulus is 1, gives a

form with m for in, those with m.2i m
3 ,

m4 for m being

obtained in like manner. The product of the eight m's is

then
i

(mm2
m

3
m4)

2 = - 2
,

which accords with 293, Ex. 5.

295.] and T the only irreducible invariants. We may

prove as follows that any other invariant of the ternary cubic

is a rational integral function of 8 and T.

Write the semi-canonized form of the cubic with the notation

(^coefficients
axs + ly

* + CZ3 + 6mxyz, ...(l)

C C 2
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so that S = m(abc-m*),

T=(abc)
2-20m3abc-8m6

,

and
( 293, Ex. 5)

27m8 + 18Sm* + Tm2-S2 = 0. ...(2)

We notice here, and from the last article, that the product of

the eight values of m for substitutions which leave S and T
unaltered, modulus +1 or 1, is a numerical multiple of S2

.

The product of the four for modulus + 1 is a numerical

multiple of S.

Now if an invariant vanish when an m vanishes it must

when any of the m's vanishes. For its form for (l) has m
for a factor, and it is the same thing, a, b, c being really

independent, that its form for

a
2
#3 + 6

2 2/
3 + c

2
3
-f 6m.2xyz

have m
2

for a factor. An invariant divisible by m is then

divisible by mm2
m

3
m

4 ,
i.e. by S; and the quotient as well as

itself must be an invariant. Equally if divisible by abc m3
,

a product of three m's, an invariant is divisible by the fourth,

and so by S.

We have then only to consider the reducibility of invariants

which are not divisible by m or by abc m 3
, which latter call

k. In this notation we have

8 = mk
t ...(3)

T=k2-l8m*k-27mQ

= kz -l8Sm2-27m G
. ...(4)

Consider then an invariant / which is not divisible by in

or by k. Its degree must be a multiple of 3. For k is of

degree 3, so that, if its term free from m is kn
,
this is of degree

3n, and this degree must be preserved throughout. We may
suppose then that the invariant is

I=kn + pk"-
lm9 + qk

n~2m6 + ... + tm3
*,

for it is a function of 8 and T
( 291), and consequently of

the independent k and m, which are all that S and T involve.

It would not be integral were k or m involved fractionally.
Now first use (4) to depress / to the first degree in k, or to

the degree zero in k if no odd powers of k occur in / as already
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exhibited, by substitution for k2 of T+ 188m2 + 27m6
. We

thus get j- = kf(s^ T) m) + ^ (|Sf
T m)?

where the functions / and $ are rational and integral, and

where the former may or may not actually occur.

Firstly, if/($, T, m) do not occur, we have

By aid of (2) we may depress this equation below the eighth

degree in m by successive substitutions such as that of

2\(>S'
2m'' Tmr+2-l8Smr+i

)
for m8+r

,
where r is zero or a

positive integer. We thus get eventually

where A, B, ... K, if they do not vanish, are rational integral

functions of S and T.

Now there are
( 294) eight values of m which must satisfy

this equation of degree 7 at most. It must then be an identity.

Hence, taking the terms free from m,

I=K,

i.e. J is a rational integral function of S and T.

Secondly, if f(S, T, m) do occur, let S be put for k, by

(3), in kf(S, T, m). We have

where F and ^ are rational and integral ;
and this again may

be reduced by (2) to

7m = A'm7 + B'm6 + . . . + H'm + K',

where A', B',...H', K\ if non-vanishing, are rational integral

functions of >S' and T. This equation of degree 7 must be an

identity by reasoning as before, and therefore, taking coef-

ficients of m, / #'
5

so that the conclusion as before is that / is a rational integral

function of S and T.

296.] Covariants of ternary quantics. By 282, 283
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a covariant has three pairs of annihilates, of which the

first pair ^ ^

^-V*,' ^~X
Ty

is typical.

Let a covariant of order w be arranged according to powers
of z, and written

tr. ...(i)

where P involves coefficients only, and P13 P2 , ... Pw are of

orders 1, 2, ... or respectively in a? and /.

The results of operating on this with l vx y-j- and
j

CL-tXs

&xy x ~r must vanish identically. Thus, equating to zero

the terms going with different powers of z, we see that

P P P P P
0' 1' 2> " TO 1> * w

have all separately the two annihilators l
yx y-j- ,

l
xv x-j-'

CLtXj CLfij

In particular P , being free from x and y, is annihilated by
Llux and l

xv ,
i.e. is an invariant of the system

a_,x

p~ 1

y +

As to PI}
P2) ... Pw they are, in like manner, covariants of

this system. The coefficients of the highest powers of x which

occur in them respectively are then seminvariants of the system,
i.e. are annihilated by l

yx .

In particular, the coefficient of x in Pw ,
i.e. in the covariant

(1) itself, is annihilated by l
yx

.

Now suppose again the covariant to be arranged by powers
of y instead of by powers of 0, and apply like reasoning. The
coefficient of x in the covariant is thus seen to be annihilated

by !!,.

It has also been seen that the coefficient P of zm in the
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covariant is annihilated by fl
yx

and Q,
xy . By the same

reasoning the coefficient of x is annihilated by l
zy
and l

yz
.

Thus the coefficient of x in the covariant has the four

annihilators noon*L
yxi

*Lzx> AZ
z/>

*L
yz'

In like manner the coefficient of y has the four annihilators

liw ,
&xv ,

Q,n , &ex \

and the coefficient of z* has the four annihilators

297.] A covariant is given by an end coefficient. When
one of these three coefficients is known the whole covariant

is known.

Consider the arrangement, (1) of the preceding article, by

powers of z. Expressing the fact of annihilation by l xz x -r- >

CiZ

we have, by taking the coefficients of the successive powers

^.P! -xP =0,

&xzP = 0,

which tell us that (l) may be written

the terms beyond the last written down vanishing because

&
X!S
P = 0, i.e. & 2

+lPv = 5
and consequently Q

+rPv = 0,

for any positive value of the integer r.

Now this expression for the covariant may be written

Again consider Pw . It is by the last article annihilated by

vx y- and Q,
xv x-j-

Hence as above, or as in 110, if

cttXs ^y
be the coefficient of x in Pw ,

i.e. in the covariant,
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Consequently, upon insertion of this value for Pm ,
the co-

variant is z a

which, since
( 286) QXgQ.xy

= Q
xv
&xz ,

so that Q,xv and Q,xg are

commutative, and since they do not operate on x, y, z, may
without ambiguity be written

In like manner, if S' be the coefficient of y in the covariant,

and S" (the P above) be the coefficient of z, the covariant

may also be written in either of the forms

Ex. 9. Prove that the covariant may also be written

and in two similar forms derived from S and S', but that since

and l
zy

are not commutative this must not be written

298.] Another method of obtaining the full expression for

a covariant from the coefficient of the highest power of in it

is analogous to that of 160. Substitute, in the final coefficient

S" or P of a covariant of the ternary p-ic u,

u for ap ,

I du I du
,
- - lor an-i , o n_i ,

p dx p dy

__ _ __
p(pl)dxdy p(p\) dtf

for

and divide through by the power of z which occurs as a factor

in the result.
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The proof is easy. We at once see that

x y

u = zpezQ
*>: +

z Zv
ap1

p dx~ p

1 d2u

&c., &c.

Also, if P and Q be two functions of the coefficients,

-
s
a*x+*i

for

m-l

by the method of Leibnitz's theorem. Hence the conclusion

is immediate.

Since zw = z^z* 13
,
the power of z which divides through is

z
w
~, where w is the weight of the final coefficient on the

supposition that z has zero weight, i.e. of the covariant, and

TO is the order of the latter. The difference w w is the weight,

on the same supposition, of the coefficient of x13
.

299.] The search for covariants of ternary quantics is then,

as in the case of binary quantics, coextensive with the search

for their leading or end coefficients, it being equally reasonable

to consider the coefficient of x* or y or z a leader.

Take $", the coefficient of z13
. It has, as has been seen, the

four annihilators
Q, Q, Q, & .

By 286 (13) if nyx and Qxs annihilate a function, then Q.
VK
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must. Thus we may say that 8" has the three annihilators

and, as a consequence, also the fourth l
vz

.

We proceed to see that any rational integral function 8"

with these properties is the last coefficient in a covariant, or

a sum of last coefficients in more covariants than one. (This
latter will be the state of things when 8" is a sum of parts for

which w in (5) below has different values.)

Let us adopt the notation of the cubic for simplicity. That

ilvx and GL
XV are annihilators tells us that S" is a full invariant

of the system
a3 ,

a.2x +b2 y,

a
t
x2 + 2b^y

...(1)

and that lxz is an annihilator tells us that it is a seminvariant

of the system 7

b<
2
z2 +2b1

zx + b xz
,

a3z
z
-f 3 a.2z

2x + 3 a^zx
2 + a x*

}

or, let us say, that it is an anti-seminvariant of the system

c x +c1
zi

bQx
2 +2bl

xz

3 a
2xz

2 + a

...(2)

The consequence that Ii
ys

is an annihilator tells us that in

virtue of having these properties $" must be also an anti-

seminvariant of the system

...(3)

b y +a&
c y

2 +2bl yz +a2
z2

,

^o2/
3 + 3 Cl 2/

2 + 3 b
2yz

2

Taking for /S" any solution of Q,X,S" = 0, &vx
8" = 0. Q,xv8"= 0,
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let us form from it the function

remembering that Q,
ev
and LZX are commutative. We proceed

to see that this, made integral by the lowest necessary power
W of 0, is a covariant.

Because Q,XZS" = we can form from S" a covariant

of the system (2). Call this

-- . ---
l

.

~~
-- ~. , ...

The order r here is given by

where w is the sum of the suffixes in S, or, to express by what
is known, w + vr is the sum of the suffixes in S", and i

3 , i.> t ^
are the degrees of S" in a's, in &'s, and in c's respectively.
vr is non-negative by the known theory of binary quantics.
If for different parts of S" this expression for ta has different

values, the present and following reasoning applies to those

parts separately. By S" we now mean such a part.

Now $, $15 $2 ,
... SB-! are all seminvariants of the system

(1), of which S" is an invariant. For, 286 (4), whatever be

the function operated on

Ot.A.-rrO^a,,;
whence

&_! = a,9X a,ns" = a^S" = o,

because G,yx annihilates S"
;
and

%A_ 2
= fl^. 112^-Sf^-! = iflflrBSw- 1

= 0,

&c., &c.

Again S,Slt S2 ,... S^ ,
S" are all annihilated by Q,,, . That

S" is so has been seen above. Also it has been seen, 286

(12), that o o o o*L
yz

*Lzx
~ **m U,

9M
\L

VX .

Thus

fi,,^-i - &
VAXS" = (fl^-G,.)^ = 0,
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because l
yz
and Q.

yx annihilate S"
;

because Q,
vt
and lyx annihilate 8^^ ;

and so on.

Thus S, $u 82 . ... Sut-i, 8" are all anti-seminvariants of the

system (3). The first, as we shall presently see, is an invariant

of the system. y

All of these when operated on by e
s

*y
and made integral

by multiplication by just adequate powers of will then

produce covariants (invariants a particular case) of the

system (3).

Now these covariants are of orders 0, 1, 2, ... w 1, or

respectively. For in the first place $", an invariant of the

system (1), is unaltered, except at most in sign, when inter-

changes are made in it equivalent to the interchange of x and

y in the system (l). Thus S" is the same function of the

coefficients in the system (3), but for sign at most, as of those

of the system (2). It is, as we have seen, an anti-seminvariant

of both systems. The covariant of the system (3) of which it

is the last coefficient is then of the same order or as that of

the system (2) of which it is also the last coefficient, and

which has been written above (4). This proves what is

wanted as to S". Now S^-it which is obtained from S" by
operation with Q zx ,

i.e. with

d d d 7 d , d d
ao T~ + 2a

l 1
--

1" 3a2 j
--

r- TT + 2 &l ~TT + co T~ '

da
l

I da2
2 da3 db

1

l
db.2 dc

1

is of weight (sum of suffixes) one less than wf

the weight of

8". Also if i/, i
2', if be the degrees of 8" in the coefficients

of the cubic the quadratic and the linear form of the system

(3), so that ^ = 3 2^ - 2 -^

the sum 3i3'+2- 2

/

+ i/ for /S^ or ." is 3^
3

'

+ 2i
2

/ + i
l

f

1,

for the operation replaces in each term one of the coefficients of

the cubic by one in the quadratic, or one in the quadratic by
one in the linear, or, &c. Thus the order of the covariant of

(3), which SV--L ends, is

B/ = 2 w'-l-3i'-21-+1
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In like manner $
Ti7
_ 2 ,

$w_ 3 ,
... $

2 ,
S

lt
S produce covariants of

(3) of orders OT 2, w 3, ... 2, 1, respectively, the last being
therefore an invariant of the set (3).

It hence follows that the covariants of the set (3) in which

$,$!,... $w-ls
$" are the last coefficients are respectively

Thus the expression (4),

1
1 . -

z

.e. ze z
zx

S", is the part free from y, and consequently
the part free from x and y, in an integral expression

*>

which is of the form
( 297) of a covariant of the ternary

quantic.
The notation of the cubic has been used, but the argument

is general.

The expression found from S" is easily seen to obey all the

conditions for a covariant. It has been constructed so as to

be a function of x and covariants of the system (3), so that it

is annihilated by l
yg y-~ and fl^ 2 The symmetry

of its form in x and y tells us that it is also annihilated by

lxx x-r- and &ix z^-- Now annihilation by these pairs
ciz dx -i 7

necessitates annihilationbythe third pair l
xy x -7- il.vx y^-

>

just as in the case ( 289) when a, y, z did not occur. This

can be seen by the properties of alternants contained in the

first example following.

Ex. 10. Prove from 284, 286 the five triads of facts as to alter-

nants of which the types are

d
-r~
dy
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s)(*- s>
-

(
fl--* 5*- s)(*- >

-
(
fl--* )(--

Ex. 11. Vary the argument in the preceding article so as to find

the covariant whose last coefficient is *$" in the form

Ex. 12. As in 285 prove the fact already known from chapter iii.

that throughout a covariant of degree *, order CT, and weight w

= 0,

weight being estimated in either of the three ways.

Ex. 13. The order of any covariaut of a ternary cubic is a multiple
of 3.

Ex. 14. The excess of weight over degree in the coefficient of z in

a covariant of a ternary cubic, z being of weight zero, is non-negative
and even.

300.] Has a ternary quadratic any covariants? Let us

examine for covariants the ternary quadratic

u = a a? + 2 b
Qxy + c y

2
-f 2 (a-^x + b^) z + a.2 z

2
.

The coefficient S" of the highest power of z in any covariant

is an invariant of the system

It is consequently a rational integral function of

Vo-V = a
>
say;

a b
l
2-2b

Q
a

l
b
l + c a

l

2 =
/3, say,

and # .
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It is also annihilated by

d d d
lxg = a2 -j + 2 a. 1

--
1- 6, -^2

da^
L da 1 dbQ

Now ttxg a = 2a
1
c -26

1
6

,

and &xe a-2
= 0.

If then it be f(a2 , a, /3)

::.: a,J(a,, a, ft)
= +

Thus cZ/" df
~l ' ^-2
c/a

2

so that a and (3 only occur in / in the connexion a
2
a j3.

Consequently

where the second argument is the one invariant
( 290), the

discriminant D, of u.

/S
T//

is then such an expression as a
2
mDn

, or a sum of such

terms. It can, in fact, be only one such term. For it has to

be homogeneous and isobaric, the z which it multiplies

being taken as of weight zero, and these two facts give
77i + 3 n = constant and 2m + 2n = constant, so that m and
in are constant.

Now the covariant -Qiy + -nzx

Z 6" >o

determined from a final coefficient S" is unique. Also umD H

is a covariant of u with a.
2

mDn for final coefficient. There is

then no covariant which is not of the form umDn
.

In other words, a ternary quadratic has no covariant which
is not a mere product of powers of its discriminant and itself.

301.] Covariants of tlje ternary cubic. The cubic is taken

as before to be
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It contains ten coefficients and three variables, together
thirteen. The general scheme of linear substitution contains

nine constants. These, eliminated between thirteen equa-
tions expressive of the identity of old and new forms, leave

four equations connecting old and new coefficients and
variables.

We must be prepared then to meet with four absolute

covariants and invariants of the cubic, i.e. to meet with five

quite independent covariants and invariants, including the

cubic itself. We have already met with four, the cubic itself,

the invariants S and T, and one covariant the Hessian.

Another quite independent one must be expected.
Before seeking it let us illustrate the methods of 296-299

by finding the one covariant which we already know, i. e. the

Hessian, of degree 3 and order 3, and consequently ( 299,

Ex. 12) of whole weight |(9 + 6)
= 5. This must also be the

weight of the coefficient of z3 in it.

We seek this coefficient of z3
,
i.e. an invariant of the system

a x* + 3 b
Q
x2

y + 3 c xy'
2 + d y

3
,

a
l
x2 +2b1xy

a
2
x + b.2y,

which is annihilated by

d d d , d d

It must involve a3 . Moreover it cannot involve a 3
2

,
for the

weight of this exceeds 5. Let it be

a3P+Q.

Here P and Q must be separately invariants of the binary

system above. P is an invariant of the system whose degree
and weight are both 2. It must then be a^ b-f. Now,

expressing the annihilation of
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by a3 ^-+3-,
we have, by taking the terms in a3

2
,
a3 ,

1

separately,

(
a

i
ci~V) = > which is obvious,

of which the second gives

Q =
da.>

.e.

where J2 is free from a
2 ,

and has so to be chosen that Q is

an invariant of the system (l). It is made one by taking
R =

^2 a
i 5

f r which 3-Q is seen, as it should, to vanish.

Thus

is the last term in a covariant, the whole expression of which

is obtained by operating on the term with

The coefficient of 3 is correctly

alt

a2 , 2 ,
a

and the whole covariant is, as it should be,

1

216

d*u

dx2 '

dxdy dxdz
= H.

dxdy
'

dy
2

'

dydz

d2u d2u d2u
dxdz

'

dydz dz2

Ex. 1 5. Prove that for the canonical form or
5 + y* + s?+ 6 mxyz the

covariants - Tu+2SH and 8^^+ 3 TH are

(l + 8m
3

) {(4w
3

1) (aj

3 + 2/

3+ ^)+18wa?^}
and

(1 + 8 m3

) {
m2

(5 + 4m
3

) (x* + y
3 + z3

) + 3 (1
- 1 m3

) asy} . (Caijley.}

Dd
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302.] We have to seek another covariant of the ternary

cubic, independent of u, S, T and the Hessian H.

We have seen that there is no other invariant independent
of 8- and T. There can also be no further covariant of order

3. For, by consideration of the canonical form

it may be proved that any cubic covariant must be a linear

function of JT 3 4-F3
-f

3 and XYZ, and consequently of u
and H.

Now
( 299, Ex. 13) the order of any covariant of the cubic

is a multiple of 3. The next possible order is then 6. We
proceed to see that there is a covariant of order 6 and degree
in the coefficients 8, which is independent of u, H, S and T.

We have already two covariants of this order and degree ;

viz. uHS and u2 T. We seek a third, by looking for the

coefficient in it of z6 .

By 299, Ex. 12 the weight of the covariant is 12, which

is the weight of uHS and u2T. The weights of the coefficients

of z6 are equally 12.

The highest power of a
3
which can occur in the coefficient

sought is then a3
4

,
whose weight is 1 2. The coefficient of a3

4

in it must be of weight zero, so that that coefficient is a

function of ,
b
Q ,

c
,
d
Q only, and, being an invariant of

oj
3
4- 3 b

Q
x2
y -f 3 c xy

2 + d y
3
,

a^+ZbiXy + c^y
2
, (!)

a2x + b
2y,

must be an invariant of the first only, and so, being of degree

4, must be a numerical multiple of

Now a3
4 times this is the corresponding coefficient in u2 T.

Thus, after subtracting a numerical multiple of u2
T, we have

left in the coefficient of z6 no terra involving 3
4

. It suffices

then to look for a covariant in which the coefficient of ZQ is of

the form 3 i

We have to determine P15 Q 19 -R
15 S1 ,

as invariants of the

system (l), in such a way that this may be annihilated by
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As in 301 we must have

"

, ...(5)

^ = 0. ...(6)

The first of these tells us that P
t
does not involve a2 ,

and

consequently is an invariant of the cubic and quadratic in the

set (l) only. Its degree is 5 and its weight 3. Now ( 260)
the only invariants of the quadratic and cubic of this degree
and sum of suffixes are

AF= (w-b*) K(Mo-^Mo4)- Vo)

and
( 261, end)

G =a^ + CiV-e^Vo^o-e ViX&o

and of these the first is the coefficient of a3
3

,
the highest power

of a3 which occurs, in the coefficient of 6 in uHS. We may
subtract this covariant, and look for a covariant in which the

coefficient of 6 has the form

With some labour, by successive use of (3), (4), (5), (6), we
can determine Q, R, 8 as invariants of the system (1) For

their expression we need, besides G above and A to F of

291, the following other invariants of the system, taken

from 260 by aid of 262,

K = C
1
a

2
2-26

1
a
2
6
2 + a

1 6/, [
260 (l)],

L = a &
2
3-36 a^/ + 3c

2
2&

2
-^ a2

3
, [

260 (3)],

c
l
cQ)a2

3
, [260

D d 2
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We find that

Q =

The only point of difficulty which presents itself in proceeding

by means of (3), (4), (5), (6) is the determination of the coef-

ficient of A 3 in Q. This has to be chosen so that the eventual

value of S shall be annihilated by 3-.

The above found are not of course the only, or probably
the simplest; expressions for Q, R, S in terms of invariants of

the binary quadratic and cubic, of which there are five besides

the ten A, B,...L, M, as these are connected by many
syzygies.

303.] From this coefficient of ZG in the new covariant the

full expansion of the covariant, which call 4>, may be obtained

by either of the methods already detailed, i.e. by operating

on it either with tfi* "** *
or with sfiei

a
"e*"

9
or by sub-

stituting in it for al5 \, c15 a2 ,
b2 ,

a3 the expressions
-

-7-^1
I d'2u 1 d2u 1 du 1 du , ,. . ,. ,, , ,

* J~T ' ^ -7-9 '
- -r > ~

-r- > u
,
ancl dividing through by the

6 dxdy 6 dy
2

3 dx 3 dy
power of z which occurs as a factor in the result, i.e. z6

.

For the canonical form x* + y
3 + z3 + 6mxyz we at once see

that A = -m2
,
C = 1, F = -m, while B, D, E, G, K, L, M all

vanish, and a3
= 1. Thus the coefficient of ZQ

,
and therefore

of xG + y
6 + z6

,
in the covariant 3> of the canonical form is

9m6
.

For the semi-canonized form ax3 + by
3 + cz* + 6 mxyz the

coefficient of ZQ in < is in like manner 9c2m6
,
so that <E> has

the three terms - 9m6
(a

2x6 + b2y* + c
2
z).

For the canonical form the coefficients of z6 in uHS and

u*T are ms +m6 and 1 20m3 8m6
respectively. The

covariant 4> is the &u of Cayley's third memoir. The & of

Salmon's Higher Plane Curves, 231, has for its ZQ coefficient

3m3 + 6m6
,
and is (4> + 3uSH). & itself might with equal

reason be taken as fundamental.

To find the full expression of 4> for the canonical form

#3 + 2/
3 +^ + 6 mxyz we have to put, in the general expression
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for the final coefficient found in the last article,

x3 + 2/
3 + zz + 6 mocyz ;

x2 + 2 myz, y
2 + 2 mzx, z2 + 2mxy ;

x,mz,y, I, 0, 0, 1,

for a3 ;
a2 ,

b2 ; a,, 6
1} c

x ;
a

,
6

,
c

,
rf

,

respectively, and divide by 26
. The result is that for the

canonical form

x3 + y
3 + z3

)
2

(2m + 5m4 + 20m7
) (a;

3 + y
3 + 3

) /

304.] The system u, H, 8, T, 4> is an algebraically complete
one of invariants and covariants of the cubic. Any other

covariant is a function of them. But there is another covariant

which is irreducible. It was obtained by Brioschi, and is, for

the semi-canonized form a#3 + by
3 + cz3 + 6 mxyz,

(abc + 8m3
)
3
(by

5 cz3
) (cz* ax3

) (ax
3

by
3
).

305.] Contravariants. A contravariant of a ternary quantic
u is

( 66) an invariant of the system consisting of u and the

linear form

in which the coefficients of the latter are present.

Now the annihilators of invariants of two ternary quantics

u, v are

where unaccented H's are the annihilators of invariants of u,

and accented I2's are the corresponding annihilators of in-

variants of v. This is proved exactly as in 281, &c.

A contravariant of u has then the six annihilators

~+t$l
'
a~+id' a" +ri

di'

fi
-+f|'

a~ +{
ss'
^ +4'

and all properties of contravariants, except the one fact

ip + <er'= constant, where w' is the order in f, rj, {, are con-

sequences of these six facts of annihilation.
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Notice the distinction between corresponding facts of

annihilation as to covariants and contravariants. In corre-

sponding annihilators

d .. d
-v&**+*%<

x and y correspond to
77 and

,
and not to and 17

or

and 77.

It is not hard to see, by proceeding as in 296, that the

coefficient of w/
,
the highest power of C which occurs in any

contravariant, is to be determined so as to have the four

annihilators
^t'yxi ^xyi **zx) *^zyi

whereas the four annihilators of the last coefficient in

a covariant are o o o o
^t'yxi ^xy J ^af2 **ys*

A function of the coefficients which is annihilated by

is necessarily also annihilated by O.
zy by 286 (10). Thus

three facts of annihilation suffice for the coefficient of f*'.

It can also be seen, as in the case of covariants, that, when
the final coefficient in a contravariant is known, found as any

homogeneous function annihilated by Q,
tx ,

lxy and li^, the

whole contravariant is determined in the form

where 2 is the coefficient in question.
In a covariant the last coefficient is the one of greatest

weight (sum of suffixes). In a contravariant, on the other

hand, it is the one of least weight. This is reasonable, for, to

make ..

fx + rjy + fz

isobaric when we take x, y, z of weights 1, 1, 0, we naturally
take f, ?], f of weights 0, 0, 1.

Ex. 16. A ternary p-ic (;>>2) cannot have more than, and is to be

expected to have exactly, \ (p+1) (p + 2) 5 algebraically indepen-
dent contravariants and invariants together, i.e. the same number as

of algebraically independent covariants and invariants together.



307] CONTRAVARIANTS OF TERNARY CUBIC. 407

306.] Contravariant of ternary quadratic. The method of

evectants
( 67) is a fruitful one for the discovery of con-

travariants.

The ternary quadratic

has only one contravariant. It is the evectant of the dis-

criminant
aoCoaa + 2 6oai&i

_
ao b 2_ CQ a *-bQ

2 a2 ,

i. e. is formed by operation on this with

d d d d d . d

and is

(c a2
-

1*)
2 + 2 (a,^ - 6 a

2) ft + (a a2 <) r?

2

+ 2 (Mi-Co^)^ 2 &Oi-a*fti)rf+(Vo-V) C
2

-

Geometrically its vanishing expresses the tangential equation
of the conic denoted by the quadratic, or the point-coordinate

equation of a reciprocal conic. Such a contravariant has been

called the reciprocant of a ternary quantic. This word has

been lately also used in a totally different sense of wide

application.

Ex. 17. The result of substituting , ,
for f, rj, in the

dx dy dz

reciprocant of a ternary quadratic u is four times the product of

u and its discriminant. (Cayley^)

307.] Contravariants of the ternary cubic. The method of

evectants also gives three contravariants of the cubic, in terms

of which and the invariants S and T all other contravariants

can be expressed, not however rationally and integrally.

We cannot expect more than three contravariants absolutely

independent of one another and the invariants. For the

cubic

a ic
3 + 3 b

Q
x2
y + 3 c xy

2 + d y* + 3 (a^x
2 + 2 \ xy + ^ y'

2

)
z

and

contain together thirteen coefficients, and the scheme of linear

substitution contains nine. Now elimination of nine quantities
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from thirteen equations leaves four only ;
and if there were

more than five independent invariants and contravariants

there would be more than four independent absolute invariants

and contravariants, i. e. more than four independent results of

elimination of the nine constants of substitution from the

thirteen equations.

Now the first evectant of S, and the first and second

evectants of T, are three independent contravariants.

We may readily form two of these three contravariants for

the canonical form of the cubic.

For the semi-canonized form

axs + by* -f c-0
3 + 6 mxyz

the invariants are
( 292, 293)

S m (abcm3
),

T= (abc)
2 '20m 3abc-8m6

.

Now we know that it is not safe in general to assume that

we can correctly obtain, by use of canonical or particularized

forms, concomitants from other concomitants by processes
which use differentiation with regard to coefficients. For,

though a part of a concomitant may vanish when coefficients

which vanish in the case of a particularized form are made

zero, it is not as a rule the case that the derivatives of that

function with regard to those coefficients vanish.

If we regard, however, the expression for S in 291, we
notice that it consists of the part 6 (a c? a3 6^), which does

not involve coefficients which vanish for the semi-canonized

form, and other terms all of which are of the second or higher

degrees in these coefficients. The derivatives with regard
to all these coefficients will then vanish when they vanish.

Moreover, if we regard the process of formation of T from S
by means of the Hessian, we see that the full expression for T,

too, involves, besides the terms which do not vanish for the

semi-canonized form, only terms of the second and higher

degrees in the coefficients which vanish for that form.

For the semi-canonized form

ax* + by
3 + cz* + 6mxyz

we consequently correctly form the first evectants of S and T
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by operation on the expressions above for those invariants with

Thus the first evectant of S is

P = m (be f
3 + ca

T?

3 + ab C
3
) + (abc

- 4m

and the first evectant of T, divided by 2, is

Q = (abc-

To obtain correctly the second evectant of T it would be

necessary to retain in the full expression for T, not only the

terms in a, b, c, m, but those which involve to the second

degree coefficients which vanish for the semi-canonized form.

The coefficient of 6 in the full expression for this second

evectant of T is

for this is the coefficient of a\ in T. The contravariant is

then

Another way of finding a contravariant which proves to be

the same is suggested by geometry. Its vanishing is the

condition that the line

should touch the cubic. Thus, to find it for the semi-canonized

form
aaj

3 + by
3 + cz3 + 6 mxyz,

we may express that

C
3
(ax

3 + by*)
- c(x + 17 y)

3- 6m(x + 1] y) C
2
xy,

considered as a binary quantic in x, y, may have a square

factor, i.e. take the discriminant of this cubic in x, y. This

discriminant, divided by
6

5
is
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For the fully canonized form

#3
-f 2/

3+& + 6 mocyz

the three contravariants are

jP is called by Cayley (who takes P) the Pippian, and by
other writers the Cayleyan. Q is called the Quippian. F is

the reciprocant.

308.] In terms of P, Q, F and the invariants 8 and T all

contravariants can be expressed. There is, however, one more
irreducible contravariant which is not a rational integral
function of them, obtained by Hermite. For the semi-

canonized form ax3 + by
3 + C0

3 + 6 mxyz its expression is

(abc + 8m3
)
8
(crj

3- b f) (a C
3 -c f

8
) (6f - ar?

3
).

Ex. 18. Prove that 4SQ-37T and TQ + 48S*P are cubic con-

travariants whose canonical forms are

{(1

?C|. (Aronhold.)

Ex. 19. The result of putting *, ,
for f, r?, C in F the re-

d%c &y cL%

ciprocant of a ternary cubic u is the product of u and a covariant;
and the same is true as to the reciprocant of any ternary quantic.

(Cayley.)

309.] Mixed concomitants. A mixed concomitant of a

ternary quantic u may be regarded as a covariant of the

system consisting of u and the linear form

It has then the six annihilators

t.
d d d d * d d

fl +f^-?&' fl +
'5f-^'

a
-+fd?-'

e
rfS

d d ..d d .. d d
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If a mixed concomitant of a ternary p-ic be of orders r, -or'

in x, y, z and f, 77, C respectively, it readily follows that the

terms of it in w'
have the annihilators

of which the first two and one of the others necessitate the

fourth.

If P(^
f
denote the aggregate of these terms the whole

concomitant is

If Sz be the highest term in z which occurs in P, then

$ has the annihilators Qvx ,
Qxv ,

and is consequently an
invariant of the system

(a ,

p .

The whole expression for P is z*e*
" ''

Consequently if Sz^' be the last term in any concomitant

the whole can be derived from it, and is

As to w and / the former may be taken arbitrarily not

below a certain limit
;
viz. not below m where 771 is the first

integer for which (xlzx + ylzy)

m^ 8 = 0. / is then deter-

minate and has a constant difference from r. If K is the con-

comitant for the lowest value m of OT, the concomitant for

any higher value of w is merely (x + rjy + Cz)~
mK. In fact

the whole concomitant, which may be written
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is by Taylor's theorem

where in the square bracket -
(fa? -f yy + z) is put for z.

Any invariant of the system of binary quantics written

above, i.e. any gradient annihilated by lvx and lxv ,
is the

final coefficient in a concomitant of some kind, i.e. an invariant,

covariant, contravariant, or mixed concomitant.

A valuable authority on this subject is a paper by Forsyth
entitled '

Systems of Ternariants that are Algebraically Com-

plete
'

(American Journal, Vol. XII).

Ex. 20. The number of algebraically independent concomitants,

including the /;-ic itself and x+ T]y + f, of a ternary p-ic is

l(P+ 1) (P+ 2)
- 2. (Forsyth.}

Ex. 21. The ternary quadratic has a mixed concomitant whose
last term is (a^b* 2& a

1
6
1 + c a

1

2

)
2 2

;
and in terms of this, the

quadratic itself, the discriminant, and x-\-rjy-{-z &U concomitants

whatever of the quadratic can be expressed.

Ex. 22. Any concomitant of the ternary cubic can be algebraically

expressed in terms of x + 'ny+z and seven concomitants whose last

coefficients are functions of the results of replacing x, y by b.2 ,
a
2
in

(a ,
6

,
c

, O (x, yf, (alt b
1} c,) (x, yf, ( 2 ,

6
2) (x, y), a

3

and their successive derivatives with regard to x. (Cf. 263.)

(Forsyth.)

310.] The whole system of irreducible, pure and mixed,
concomitants of the ternary cubic has been found to consist

of thirty-four forms. This was established by Gordan (Math.
Ann. I). The system was systematically exhibited by
Gundelfinger (Math. Ann. VI) ;

and calculated for the form

ax3 + by
3 + cz3 + 6 mxyz by Cayley (

Am. J. IV).

311.] Quantics in more than three variables. With regard
to <?-ary quantics in general we confine ourselves to one

proposition due to Sylvester.
For a homogeneous function of the coefficients in a q-o,ry
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p-ic to be an invariant it is necessary and sufficient that it

have a cyclical set of q annihilators of the 12 type.

Let x1} x.
2 ,
x3 ,...,xq be the variables, and denote a cyclical

set of &'s, whose symbolical forms as in 282 are

.. , .

It can be readily proved by the theory of multiplication of

determinants that the modulus of the resultant substitution

which is the equivalent of a succession of substitutions is the

product of their moduli. But this is not essential to the

argument, in virtue of the theorem of 23.

By 22 a homogeneous function of the coefficients has only
to be multiplied by a power of I, to become the same function

of the coefficients in the quantic which is obtained by substi-

tuting lx
l ,

Ix2 , . . .
j
lx

q
for x

l ,
x2 ,

. . .
,
x
q
in the given quantic.

By chapter vi, 11
2 1

1 = is the necessary and sufficient

condition that I persist in form after the substitution of

9 > 3 j

for xlt x.2,x3 ,

Thus I2
2 !

I = is the necessary and sufficient condition for

persistence of the homogeneous 7, but for a power of I, after

the substitution of

,
lx.2 ,

Ix3) ...,lxq .

123 2
1 = is in like manner the necessary and sufficient

condition for persistence after the further substitution of

l'x
lt

Z'#
2 + m'#

3 ,
I'x

3 , ...,l'xq ,
but for a power of l'

t
i.e. for per-

sistence, but for a function of the constants as factor, after the

resultant substitution of

II'x2 + lm'xz ,
II'x3 ,

. . .
,
II'x

q
.

Repeat in like manner for I2
4 3 7, H5 4 J, . . . L

q 7
_t

I. We
get eventually that there is persistence, but for a function of

the constants as factor, if and only if

fl
2 . !

/ = 0, fig. 2
1 = 0, . . .

, &. ,_! 1=0,
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after substitutions of which that for x
i
is

where A
ls

A
2 , ..., A ?

are arbitrary, each involving an I or an 771

not involved in any previous one of them, while the substitu-

tions for oj
2 ,
x3 , ...,xq though restricted are consistent.

In like manner, if and only if

12
3i 2

1 = 0, 4> 3 1 = 0, . . .
,
fl

ff 3
_ x 7=0, fl

1 ,1=0,

there is like persistence when for x
2 a general substitution

is made, and for X
L ,
x3 , ... ,

x
q
restricted but consistent substitu-

tions.

Again, similarly,

&
4> 3

I = 0, 5> 4 1 = 0, ... ,&2> ,
I =

express that there is like persistence when xs is generally
substituted for, and a?

15
C
2 >
^4 , ...,^2 consistently. And so on.

Repeat this process q times.

Now the result of this succession of substitutions is the

general substitution of

O)/^ + to/^g + . . . + W/OJg ,

forajj, a;
2 ,...,a5a .

The possession of the
(/
annihilators

**. U % 25 ^fl. ~1> ^1. 9

is then necessary and sufficient for a homogeneous function

J to persist in form, but for a function of the constants of

substitution as factor, after the general linear substitution,

i. e. for it to be an invariant of the <?-ary p-ic.

In like manner for (7, for which ip -sr is constant, to be

a covariant it is necessary and sufficient that C have q cyclical

annihilators 7d
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Also for r, for which ip + -ef
/

is constant, to be a contra-

variant it is necessary and sufficient that it have the q cyclical

annihilators

And for K, for which ip + w' is constant, to be a mixed

concomitant it is necessary and sufficient that it have the

q cyclical annihilators
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Absolute covariants, 52.

A rational integral a. c. is a power of

a quantic, 52.

A fractional one given by two co-

variants, 53.

Limit to number of independent, 55.

Absolute invariants, 40.

One given by any two invariants, 40.

Limit to number of independent, 41.

Algebraically complete systems,

for n linear forms, 339.

for quantics with orders in A. P., 349.

Alternants, defined, 152.

of n and 0, 151.

of n andOr
, 153.

of powers of fl and 0, 154.

of 2H and (20)
r

, 163.

of ternary annihilators, 374, 377, 397.

American Journal, 185.

Anharmonic ratios,

are irrational invariants, 94, 103.

of roots of quart! c, 292.

Annihilation, by H interpreted, 112.

by interpreted, 116.

Annihilators, of invariants, 112, 116,

121, 126.

expi-essed by means of roots, 237, 240.

by means of sums of powers of roots,

238, 240.

derive these sums in succession, 240.

of covariants, 128, 140.

of non-unitary parts of invariants,

224.

of orthogonal concomitants, 361.

of Boolian concomitants, 363.

Annihilators, of all gradients, 251.

of ternary concomitants, 371, 372,

373, 45, 4 10 -

of end coefficients in the same, 391,

406,412.
of g-ary concomitants, 412.

Anti-seminvariants, 133.

Aronhold, 79, 112, 410.

Asyzygetic, or linearly independent,

invariants, 124.

seminvariants, 137.

Boole, 28, 64, 353, 355, 358, 360.

Boolian invariants, &c., 355.

Annihilator of, 363.

Boolian system for linear form, 364.

for quadratic, 365.

for linear form and quadratic, 366.

for cubic, 367.

Booth, 275.

Brill, 297.

Brioschi, 165, 405.

Burnside and Panton, 33, 102, 195, 238.

Canonical forms, definition of, 261.

of binary cubic, 263, &c.

of binary (2w-l)-io, 268.

of quintic and septimic, 271, 274.

of binary 2-ics, 275, 294, 299.

of binary quartic, 277, &c.

of binary sextic, 295, 297.

of binary octavic, 297.

Hammond's of quintic, 305.

of two quadratics, 343.

of ternary cubic, 300, 384, 387.

E 6



4i8 INDEX.

Canonizants, 25, 27, 272.

with repeated factors, 270, 274.

Canonizing equations of 2 n-ice, 289,

296, 299, 300.

Cartesian geometry, Substitutions of,

354-

Catalecticants, 24, 25, 275, 276.

interpreted, 275.

of ternary c. quantics, 301, 303.

Cayley, 16, 38, 50, 63, 78, 99, 103, in,

112, 142, 156, l62, 165, 178,

186, 214, 216, 218, 224, 231,

251, 256, 268, 285, 290, 304,

305 3o6, 320, 322, 325, 326,

353, 4CI > 404, 47 4IO > 412 -

Cayleyan, of ternary cubic, 410.

Clebsch, 79, 80, 217, 304, 322.

Coefficients in quantic freed from second

term are seminvariants, 209.

Cogrediency, defined, 64.

ofx, y with d
v ,

d
x , 59, 88.

of roots with variables, 65.

Orthogonal the same as contragre-

diency, 358, 360.

Combinants, 351.

Concomitants, defined, 85.

Contragrediency, defined, 82.

Geometrical, 83.

of x, y, z, ... and dx ,
d
y

,
d
z , ... , 84.

of x, y and y, x, 88.

Orthogonal the same as cogrediency,

358 > 36o.

Contravariants, defined, 85.

of binary quantics not distinct from

covariants, 87.

of binary quantics found as in-

variants of linear form and the

quantics, 329, 332, 333.
of ternary quantics, 405.

Convention as to numerical multiples of

concomitants, 90.

Correspondence, of seminvariants and

non-unitarie?, 245.
of seminvariants and power enders,

253-

Covariants, defined, 4.

to be expected to exist, 7.

of several quantics from those of one,

28, &c.

of one quantic from those of several,

30, 75

Covariants, of cubic quartic &c., see

Cubic, &c.

Absolute, see Absolute,

of two or more quantics, 56.

of covariants, 57.

derived from emanants, 71.

of second degree in coefficients, 76,

.

79\
as invariants, 89.

are given by one coefficient, 131-134,

39 1 -

as functions of differences, 105.

Sum of numerical coefficients in, 107.

are derivable from sources by substi-

tutions, 207, 392.

Covariancy of factors of a binary

quantic, 91.

Cubic, Binary,
Canonical form of, 16, 263.

Cubicovariant of, 58, 63.

has only one invariant, 98, 173, 198,

228.

has two covariants besides itself,

109.

has no other irreducible covariant,

139, 175, 218.

has a syzygy among concomitants,

175, 219, 267.

Boolian system for, 367.

Cubic, Ternary, Canonical form of, 300,

384, 387-

The invariant 8 of, 381.

The Hessian of, 385, 400.

The invariant T of, 385.

The irreducible system of invariants

of, 387-

The sextic covariant of, 402.

The contravariants of, 407.

Cubic equation, solution of, 16, 265.

Cubic protoinorphs, 215.

Cubicovariant of cubic, 58, 63.

Degree, of an invariant, 32.

of a covariant, 47.

of an invariant of a binary (2 n + i)-ic

is even, 36.

of a covariant of odd order of a binary

quantic is odd, 50.

of a covariant of even order of a

binary (2 n + i)-ic is even, 50.

Constancy of, see Homogeneity.
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Differentiation of seminvariants to pro-
duce others, 231, 332, 350.

Use of to obtain irreducible systems,

333-

Diophantine Equations, 188, &c.

Simple sets of solutions of, 189.

Discriminants, are invariants, 20, 17, 97.
freed from numerical factors, 99.

Weight and degree of, 99.
found in succession, 231.
of quadratics, 1 7.

of binary cubic, 58, 63.

of binary quartic, 102.

of binary quintic, 311.

of ternary cubic, 386.

D'Ocagne, 256.

Dual Substitutions, 83.

Duality in Geometry, 83.

Durfee, 247.

Elemental products of differences, 194.

Eliminants, are invariants, 1 7.

are combinants, 351.

of linear forms, 1 1 .

Emanants, 65.

are absolute covariants, 66.

Geometry of, 68.

Invariants of, 71.

Boolian invariants of, 357.

End coefficients in ternary concomitants,

39'> 393-

Euler, 165.

Euler's Theorem, 84, 146, 375.

Evectants, 30, 86.

Excess, of a gradient, 148.

of an invariant vanishes, 122, 152.

of a semin variant is not negative,

136, 154, 163.

Extent of a gradient, 145.

Faa de Bruno, 21, 144, 165, 207, 247,

304, 308.

Factor in expression of covariancy or

invariancy a power of the modu-

lus, 5, 33, 43, 47> 56, 122.

an integral power for rational integral

concomitants, 36, 43, 49, 56.

Factors of binary quantic, covariancy

of, 91.

of a serninvariant are seminvariants,

144.

Ferrers, 160.

Ferrers' diagrams, 160, 164, 251.
Final coefficients in covariants have

annihilator 0, 133.
Finiteness of systems of concomitants,

80, 196, 200, 201.

of numbers of solutions of Diophan-
tine equations, 189, &c.

Formes-types, 313, 316.

Forms, denned and classified, i.

Forsyth, 349, 350, 412.
Functional determinants. SeeJacobians.

Franklin, 164, 165, 181, 185.

Generating functions, defined, 166.

for (w; i,p), 1 66.

for numbers of seminvariants, 168,

170, 248, 250.

for concomitants of given degree and

order, 178.

Reduced, 179, 181.

Representative, 181.

Real, 1 86.

in case of two quantics, 185.
for perpetuants, 249, 259.

Generators of all seminvariants, 232,253.

Geometry of binary systems, 7, 68.

of emanants, 68.

of Hessians, 73.

of concomitants of cubic, 267.
of concomitants of quartic, 291.

of a quintic for which Iis
=

0, 318.

of a sextic for which /15
= 0, 327.

of two quadratics, 344.

of Boolian concomitants, 356, 357,

365, 366, 368.

Metrical, chap. xv.

Gordan, 43, 79, 80, 178, 188, &c., 304,

322.

Gordan's Theorem, 188, &c.

Proof of for invariants of one binary

quantic, 196.

for invariants and covariants, 200.

for more quantics than one, 201.

Gradients, defined, 145.

annihilated by H and are invariants,

118.

of positive excess are of form Q.G,

123, 157.

always of form Q.G when extent of CL

is infinite, 253.

E 6 2,
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Ground forms, see Irreducible systems.

Gundelfinger, 412.

Hammond, 165, 181, 184, 305, 309,

316, 347, 348.

Hermite, 74, 87, 117, 160, 162, 163,

304, 321, 410.

Hesse, 300.

Hessians, are covariants, 14.

are discriminants of second emanants,

72.

of quadratics are discriminants, 17.

of cubic, Roots of, in.
of quartic, Concomitants of, 288.

of ternary cubic, 385, 400.

Geometry of, 73.

Hilbert, 43, 154, 188, &c., 232, 236.

Hirsch, Meyer, 247.

Homogeneity, of an invariant of one

quantic, 32.

of a complete system of invariants of

several quantics, 44.

in variables of complete systems of

covariants, 46, 56.

in coefficients of the same, 47, 56.

Hyperdeterminants, 77, 161.

Independent Covariants, &c., Limit to

number of, 53.

Exact number of, 210.

Independent invariants, Limit to num-
ber of, 42.

Infinite order, Binary quantic of, 246, &c.

Intermediate invariants and covariants,

27, &c., 144.

are not combinants, 352.

Invariants, defined, 4.

to be expected to exist, 6.

of several quantics from those of one,

27, &c.

of one quantic from those of several,

30, 75-

Homogeneity of, see Homogeneity.
Isobarism of, see Isobarism.

Absolute, see Absolute.

Irreducible, see Irreducible,

of quadratic, cubic, &c., see Quad-
ratic, &c.

Limit to number of independent, 42 .

of two or more quantics, 43.
of covariants, 57.

Invariants, of second degree, 61, 63.

Lineo-linear, 62.

as functions of difference', 93, 94, 1 1 1.

Sum of numerical coefficients in, 94.

Symmetry of, 117.

of odd weight are skew, 1 1 7.

Formation of by aid of H, 124, 127.

Number of Asyzygetic of degree i,

125.

involve all coefficients, 149.

of third degree, 162.

of fourth degree, 162.

of invariants of \u + pv are combi-

nants, 352.

of ternary quantics are defined by
three cyclical or two pairs of

annihilators, 379, 380.

Involution, Criterion of, 25, 353.

Irreducible concomitants are finite in

number, 196, 200, 201.

Irreducible invariants, 42.

covariants, 55.

Irreducible systems,

for linear form, 171.

for quadratic, 108, 171.
for cubic, 172, 173, 218.

for quartic, 176, 180, 219.

for quintic, 178, 184, 306.

for sextic, 178, 322.

for two linear forms, 331.
for linear form and quadratic, 332.
for linear form and cubic, 333.

for linear form and quartic, 338.
for n linear forms, 339.

for two quadratics, 340.

for linear form and two quadratics,

345-

for quadratic and cubic, 346.

Isobarism, of invariants, 37, 39, 43,

375-

of covariants, 49, 51, 56.

Triple of invariants of ternary quan-

tics, 375.

Jacobians, are covariants, 12.

Joubert, 327.

Kempe, 197, 349.

Leading coefficients of covariants are

seminvariants, 132.
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Linear covarianta,

of binary (2 n + l)-ic, 74.

of binary quintic, 74, 313.

of quadratic and cubic, 141.

Linear form, has no invariant, 171.

Boolian system for, 364.

Linear substitution, denned, 3.

Modulus of, 3.

Eeversed, 33.

Cartesian, 354.

Dual, 83.

Linear transformation, denned, 3.

Linearly independent, see Asyzygetic.
Lineo-linear invariants, covariants and

seminvariants, 62, 75, 79, 127,

142.

of u, v are transvectants of u, v,

142.

MacMahon, 165, 246, 247, 248, 249,

25*, 2 55, 256.

Mixed concomitants, denned, 85.

of binary quantics found as covariants

of quantics and linear form, 329,

332, 334-

of ternary quantics, 410.

Modulus of linear substitution, 3.

must not vanish, 3.

irresoluble into factors, 19.

Powers of, 21.

Cartesian, 555.

Orthogonal, 358.

Non-unitary symmetric functions, 245.

Correspondence of with seininvariants,

245-

Non-unitary terms, determine a semin-

variant, 208, 221.

in an invariant are given by an

annihilator, 225, 227, 228, 243.

Number of asyzygetic invariants of

given degree, 125.

of asyzygetic seminvariants of given

type, 137, I56 > ^3.
of seminvariants and invariants of

given degree, 169.

of independent covariants, &c., 53,

211.

of independent invariants, 41.

ofindependentconcomi tants ofternary

p-ic, 406, 412.

Operation with one quantio on another,

60, 307.

with contravariants on covariants, 85.

with covariants on contravariants, 85.

Operators, which effect linear trans-

formation, 115, 121, 130.

which derive covariants from end co-

efficients, 133, 141, 392.

which derive ternary concomitants

from end coefficients, 392, 406,

411.

which annihilate gradients of positive

excess, 123, 158, 232.

which annihilate all gradients, 251.

which derive cubic protomorphs from

quadratic, 215.

which derive seminvariants from non-

unitary terms, 223.

which derive seminvariants from

seminvariants, 226, 231, 232.

which generate seminvariants, 232,

253-

which derive sums of powers in

succession, 240, 241.

Order, of a quantic, I.

of a covariant, 47.

of a covariant of a binary 2 w-ic is

even, 50.

of a covariant of even degree is even,

5-
of a covariant of a binary (2 n + l)-ic

is even or odd together with ita

degree, 50.

Orthogonal, invariants, &c., 356.

cogrediency and contragrediency

identical, 358, 360.

substitutions direct and skew, 358.

Partitions, 125.

Conjugate, 159.

Keciprocal, 160, 164. 169.

Perpetuants, 249, 258, 259.

Pippian. See Cayleyan.
Polar curves, 68.

Power ending products, 250.

One to one correspondence of with

seminvariants, 253.

Protomorphs, denned, 212.

Systems of, 210, 214, 217.

of lowest degrees, 214.

for systems of quantics, 217, 332.
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Quadratic, Binary,
The one invariant of, 98, 172.

has no covariant but itself, 108, 172.

Boolian system for, 365.

Quadratic, Ternary,
The one invariant of, 380.

Question of covariants of, 398.
Contravariant of, 407.

Quadratic protomorphs, 214.

are irreducible, 221.

Quantics, denned and classified, I.

Quartic, Binary,

Catalecticant of, 24, 63, 276.

Quadratic invariant of, 62.

The two invariants of, 101, 125.

Discriminant of, 102.

The equi-anharmonic fur which J=0,

104, 282, 292.

The harmonic for which J=0, 104,

283, 292.

transformed into itself, 142.

has only two irreducible invariants,

177.

Irreducible system and syzygy for,

180, 219, 287.

Canonical form of, 277, 285.

with square factor, 284.

Linear factor of, 290.

Geometry of, 291.

Quartic, Ternary,
Catalecticant of, 302.

not in general a sum of 5 fourth

powers, 301.

Quartic equation, Solution of, 289.

Quartics, Quaternary and quinary, not

in general sums of 9, 14 fourth

powers, 303.

Quintic, Binary,
Canonizant of, 25, 274.

Invariants of, 58, 82, 140, 307, 308.

Linear covariants of, 74, 82, 307, 308.

Generating function for invariants of,

177, 184.

Representative G. F. for, 183.

Canonical form of, 271, 274, 305.

freed from two middle coefficients,

35-
can only be freed from these and

another adjacent when 712
= 0,

SM-
List of concomitants of, 306.

Quintic, Binary,
Forms of concomitants of when c -= 0,

d = 0, 309.

Discriminant of, 311.

Syzygy among invariants of, 311.

expressed with invariant coefficients,

313.

for which I12
= 0, 314, 316, 321.

for which 74
=

0, 317.

for which J8 =0, 317.

for which I18
= 0, 318, 321.

Skew invariant of in terms of roots,

320.

Quippian, of ternary cubic, 410.

Rational integral invariants, &c.,

form a complete system, 6.

Reciprocant, of ternary quadratic, 407.

of ternary cubic, 409.

Reciprocity, Hermite'slaw of, 160, 169,

249.

Resultants. See Eliminants.

Roberts, M., 131, 140, 239.

Roberts, S., 256.

Roots of binary quantic, 91.

Anharmonic ratios of, 94.

Salmon, 28, 64, 78, 80, 304, 305, 308,

347, 404.

Semi-canonical form of quintic, 305,

309-

of ternary cubic, 384, &c.

Seminvariants, 132, 134.

lead covariants, 134, 156.

Formation of by aid of H, 136, 141.

Number of asyzygetic of given type,

137.

of second degree, 137.

of several quantics, 140.

as particular gradients, 146.

have no letters absent, 148.

as eliminants between u and deriva-

tives, 205.

are given by non-unitary terms, 208,

222, 223.

as integrals of nS= Q, 216.

as quantics in dp : I, 229.

of seminvariants so regarded are

seminvariants, 230.

all generated by certain operators,

233, 253-
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Seminvariants, One to one correspond-

ence of with power enders, 253.

derived from others by differentia-

tion, 231, 332.

as invariants of a quantic and its

derivatives, 349.

Seminvariant operators, 226, 242, 257.

Sextic, Binary,

Invariants of, 25, 62, 324.

Generating function for invariants of,

178.

The 26 irreducible concomitants of,

322.

The skew invariant of interpreted,

.

327
'.

Skew invariant, 117.

of a quintic unique, 319.

Skew orthogonal substitutions, 358.

Solubility of quintic for which JT18
= 0,

3i8.

Source of a covariant, 133.

Stephanos, 297.

Stroh, 249, 258, 259.

Substitution of derivatives for varia-

bles, 64.

of derivatives for coefficients, 205,

207, 33 392-

Sufficiency of conditions of annihila-

tion, 1 1 8, 130.

Sum of numerical coefficients in in-

variants, 94.

in covariants and seminvariants,

107.

Sum of powers, Condition that a 2n-ic

be a, 275, 301, 303.

Sums of powers of roots, 238, &c.

Differentiation with regard to, 243.

Sylvester, 64, 86, 87, 112, 144, 148,

154, 156, 161, 165, 181, 185,

231, 257, 268, 301, 304, 322,

326, 351, 353, 360, 361,412.

Symbolical representation, 77, 78, 79.

Symmetry of in- and co-variants, 117,

127, 130, 140.

Syzygy, for binary cubic, no, 175, 267.

for quartic, 181, 221.

among invariants of quintic, 311.

Tumisage, 183.

Ternary quantics, Triple arrangement

of, 370.

Annihilators of invariants &c. of,

370, 372.

Covariants of, 389.

Transvectants, 78.

are lineo-linear invariants of eman-

ants, 79.

give all covariants and invariants, 80.

of a^-ic and itself, 139.

of two binary quantics, 142.

Ueberschiebting, 79-

Uniqueness of covariant led by a semin-

variant, 135.

Universal Concomitant, The, 85.

Von Gall, 325.

Weight, 36, 38, 48, 51, 37.

Constancy of, see Isobarism.
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